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“John, the kind of control you’re attempting simply is. . . it’s not possible. If there is

one thing the history of evolution has taught us it’s that life will not be contained. Life

breaks free, it expands to new territories and crashes through barriers, painfully, maybe

even dangerously, but, uh... well, there it is. [...] I’m simply saying that life, uh... finds a

way.”

— Dr. Ian Malcolm, Jurassic Park
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Chapter 1

The large-scale structure of the Universe

Contents
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In this chapter, I briefly describe the content and the structuration of our Universe, according to the
present cosmological model and observations.

Résumé

Dans ce chapitre, je décris brièvement le contenu et la structuration de l’Univers, tel qu’il est compris
selon les derniers modèles cosmologiques et les observations les plus récentes.

1.1 Introduction

From various observations of galaxy distribution, it is well established today that the Universe is struc-
tured in nodes connected by filaments and walls which surround large void regions : the Cosmic Web.
These large-scale structure are very complex, and the physical processes occurring at these large scales
are not quite well understood yet. As the structures in the Cosmic Web span a very wide range of den-
sities, their detection, for the less dense ones, is still debated. Therefore, a key step is to detect and
characterise the different structures of the Cosmic Web in order to understand their properties and their
evolution.

Since the first observations of the night sky with telescopes (e.g., by Galileo), catalogues of stars,
planets, and later of galaxies and even galaxy clusters were constructed, extended, and eventually made
public. Today, we have built and launched the most advanced telescopes and satellites (like Planck,
ROSAT, WISE, SDSS, LOFAR, or FERMI), and very promising ones are coming in the near future (like
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SKA, Athena, SRG/eROSITA, Euclid, LSST, or WFIRST). These instruments have observed or will ob-
serve the entire sky (or at least a large portion of it) in a very wide range of the electromagnetic spectrum
(from the radio to the gamma rays). Thanks to all these observations, we can draw a comprehensive
picture of our Universe, for example in terms of galaxy distribution with SDSS, and also in terms of gas
content with ROSAT or Planck.

Gigantic public databases of observations in multi-wavelength are being constructed, making their
analysis and their combinations increasingly easy. However, all these available data (and even more in
the near-future), opens the era of big data (e.g., 300 PB per year are expected in the case of SKA). The
analysis of such quantities of complex data is and will be extremely delicate with the current computa-
tional facilities and the current approaches. The development today of new statistical methods to archive
and analyse efficiently large data volumes is crucial. Some algorithms, especially machine learning and
deep learning algorithms, perform better results than traditional approaches, and most of the time in
a smaller amount of time. They are now used or tested in a variety of domains of Astrophysics from
classification to emulation or component separation.

In my PhD thesis, I have investigated the properties of the largest scale structures of the Cosmic
Web. To this aim, I have used publicly available data in different wavelengths, that I have analysed with
statistical methods such as machine learning algorithms.

The following manuscript is organised in three parts: the first one, with chapters 1, 2, and 3, is
dedicated to an introduction to the subject, a description of the public data analysed and a presentation of
the statistical methods used. The second and the third parts of the manuscript include chapters presenting
the different studies on the properties of matter around the large scale structure of the Universe and the
data reduction of an ESO large programme. More specifically:

• In chapter 4, I describe a new method to estimate the star formation and the stellar mass of galaxies,
that allows us to segregate populations of galaxies inside their host structures. This method is based
on a machine learning algorithm, more specifically on random forest. In particular, this method
led to the construction of value-added catalogues allowing the comparison of spatial distribution
of galaxies (selected by their types) with the spatial distribution of the hot gas properties (derived
from the Sunyaev-Zel’dovich (SZ) effect).

• In chapter 5, I present the analysis of an exceptional object: a galaxy cluster pair between the clus-
ters A399 and A401 connected by a bridge of matter. This system has already been characterised
in terms of gas via X-rays and the Sunyaev-Zel’dovich effect measured by Planck. For the first
time I have added a study of the properties of the galaxies lying in between the two clusters.

• In chapter 6, I use the value-added catalogue containing more than 15 million sources constructed
with the method described in chapter 4 to statistically characterise the properties of galaxies around
cosmic filaments extracted from the SDSS survey. In this chapter, I present the profiles of galaxy
density around identified filaments. I then explore the link between the ratio of passive over ac-
tive galaxies and the profile of the hot gas around filaments. This study opens a path to assess
environmental quenching inside the filaments.

• Chapter 7 presents a proof-of-concept study where I use for the first time a state-of-the-art algo-
rithm of deep learning, namely a Convolution Neural Network, in a component separation context
to detect the hot and diffuse gas via the SZ effect. This method appears promising for the detection
and the characterisation of new individual clusters and complex filamentary structures.
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• In chapters 8 and 9, I describe a large ESO programme aimed at confirming galaxy clusters de-
tected via their SZ effect. I have conducted the data reduction of the image and spectra of galaxies
in the surrounding regions observed with NTT/EFOSC2 and VLT/FORS2. For one particular ob-
ject, a giant gravitational arc was detected. In the last chapter, I present the data reduction and the
results of a dedicated observation of this object with MUSE.

• Finally, I conclude this manuscript with a summary of the results presented in the different chapters
together with the different perspectives that this work opens.

The results presented in this manuscript have led to articles already published or in preparation:

• Gas and galaxies in filament between clusters of galaxies: The study of A399-A401,
V. Bonjean, N. Aghanim, P. Salomé, M. Douspis, and A. Beelen, 2018, A&A, 609, A49

• Star formation rate and stellar masses from machine learning,
V. Bonjean, N. Aghanim, P. Salomé, A. Beelen, M. Douspis, and E. Soubrié, 2019, A&A, 622,
A137

• Detection of intercluster gas in superclusters using the thermal Sunyaev-Zel’dovich effect,
H. Tanimura, N. Aghanim, M. Douspis, A. Beelen, and V. Bonjean, 2019, A&A, 625, A67

• Properties and quenching of WISExSCOS galaxies around SDSS filaments,
V. Bonjean, N. Aghanim, M. Douspis, N. Malavasi, and H. Tanimura, in prep.

• Extracting the Sunyaev-Zel’dovich effect in Planck with deep learning,
V. Bonjean, in prep.

• Gas density and temperature in cosmic filaments on scales of tens of megaparsec,
H. Tanimura, N. Aghanim, N. Malavasi, V. Bonjean, A. Kolodzig, and M. Douspis, in prep.

• Like a spider in its web: a study of the Large Scale Structure around the Coma cluster,
N. Malavasi, N. Aghanim, H. Tanimura, V. Bonjean, and M. Douspis, in prep.

• Measurement of galaxy correlation with thermal Sunyaev-Zel’dovich emission,
G. Fabbian, F. Bianchini, N. Aghanim, M. Douspis, and V. Bonjean, in prep.

1.2 Composition and structuration of the Universe

1.2.1 Components of the Universe

Today, the Universe is composed of ∼ 69.4% of Dark Energy (DE), ∼ 25.8% of Dark Matter (DM), and
∼ 4.8% of ordinary matter (also called baryons), according to measurements from the Cosmic Microwave
Background (CMB) shown in Fig. 1.1 (e.g., Planck Collaboration et al., 2016b). Among these different
components, only baryons are directly observable. A budget in their different phases at low redshift has
been performed (e.g., Fukugita, Hogan, and Peebles, 1998; Cen and Ostriker, 1999; Shull, Smith, and
Danforth, 2012), and according to the latest study by de Graaff et al., 2019 (shown in the right panel of
Fig. 1.1), about 14% of the baryons are in stars, cold gas (mostly in galaxies) and in the Circum Galactic
Medium (CGM), and about 5% of the baryons are lying in a hot gas at temperature of about 108 K in the
Intra Cluster Medium (ICM, in the centres of galaxy clusters). The remaining baryons are in the form of
diffuse gas, either cold or warm (in the range 104−107 K), surrounding the inter-galactic medium. Based
on numerical simulations, baryons were traced along the epochs and about half of them are expected at
low redshift in the form of a warm hot diffuse gas, at temperature of order 105−107 K (shown in Fig. 1.2):
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1.2.2 Structuration into a Cosmic Web

The components of the Universe have evolved together, and eventually formed structures through accre-
tion of matter from the very small fluctuations of the density field due to quantum fluctuations in the
primordial Universe. Today, as observed in the distribution of galaxies in large surveys, like the Sloan
Digital Sky Survey (SDSS, York et al., 2000), the matter in the Universe is distributed following a highly
non-linear density field composed of nodes connecting filaments and walls (also called “pancakes” or
“sheets”), themselves surrounding large void regions (shown in Fig. 1.3). This complex network is called
the Cosmic Web (e.g., Bond, Kofman, and Pogosyan, 1996). Baryons go from voids to walls, from walls
to filaments, and from filaments to nodes, flowing along the skeleton driven by the DM. Matter accreted
into nodes eventually virialises and forms the largest gravitationally bound objects in the Universe: the
galaxy clusters.

Figure 1.3: Distribution of galaxies in the SDSS survey. Image from https://www.sdss.org/science/.
Credits: M. Blanton and SDSS.

This complex structure was also observed in the first N-body numerical simulations (e.g., Zel’Dovich,
1970; Doroshkevich and Shandarin, 1978). These simulations took only gravity into account (neglect-
ing all baryonic effects), and resulted on a network of connected filamentary structures (shown in the
left panel of Fig. 1.4). The first observations of the Cosmic Web were made later in the 80’s, with the
reconstruction of the galaxy distribution around a galaxy cluster in the Center for Astrophysics Redshift
Survey (CfA, de Lapparent, Geller, and Huchra, 1986) (shown in the right panel of Fig. 1.4). This ob-
servation has demonstrated that galaxies were not randomly distributed in space, but rather assembled
around “bubbles”. A few decades later, other large galaxy surveys, e.g., the Two degree Field Galaxy
Redshift Survey (2dFGRS, Colless et al., 2003), or the SDSS (Adelman-McCarthy et al., 2008), con-
firmed these typical filamentary structures connected to galaxy clusters and surrounding large voids (see
Fig. 1.3).

As it is not possible to directly observe the DM, studying the properties of baryons (mainly in galax-
ies or hot gas) in the structures of the Cosmic Web is challenging. The most recent hydro-dynamical
numerical simulations such as Millennium (Springel, 2005), Horizon-AGN (Dubois et al., 2014), BA-
HAMAS (McCarthy et al., 2017), or Illustris-TNG (Springel et al., 2018), have made extremely large
number of particles (up to 15,625,000,000 DM particles in one of the Illustris-TNG simulation) evolve
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scales, and drawing complex forms and shapes that follow the gradient of the density field. Environments
can therefore be characterised through their over-density, defined as:

δ(x) =
ρ(x)− < ρ >
< ρ >

, (1.1)

where ρ(x) is the density in the spatial position x, and < ρ > is the mean density of the considered
field.

1.2.3.1 Identification of structures

The Cosmic Web density field can be reconstructed based on the distribution of galaxies (in the case
of observations), or directly on the dark matter particles (in the case of numerical simulations). Several
methods have been developed to extract the structures and classify the Cosmic Web into nodes, filaments,
walls, and voids, e.g., Bisous (Tempel et al., 2016), DisPerSE (Sousbie, 2011), or NEXUS+ (Cautun,
van de Weygaert, and Jones, 2013). These methods are either based on geometrical pattern recognition
(by designing specific filters), on topological analysis of the density field, or on the gradient of the
density field. Therefore, the resulting detection and classification of the structures heavily depend on
the method, making any comparison delicate to perform (see Libeskind et al., 2018 for a detailed review
on the detection methods). An illustration of the outputs of nine different methods is shown in Fig. 1.6,
where red regions indicate the recovered nodes, blue regions show the filaments, green regions display
the walls, and white regions designate the voids. It is clearly seen that all these methods give a large
variety of outputs, each one with different proportions and sizes of voids, walls, filaments, and nodes.

1.2.3.2 Over-densities of the Cosmic Web elements

Based on numerical simulations, Cautun et al., 2014 have realised an inventory of the Cosmic Web
elements and their evolution. They have detected and classified the structures using their NEXUS+
algorithm. After their identification, they have performed an analysis of the distribution of over-densities
associated with each structure. These distributions are shown in Fig. 1.7. Voids, in red, are as expected
the lowest density regions, with typical over-densities in the range 0.01 < 1+ δ < 1. Voids also dominate
the overall over-density distribution (in black) as they occupy most of the volume of the Cosmic Web.
On the other side, nodes (in yellow) are the most over-dense objects, as expected, with over-densities
starting at around 1 + δ = 10 and going up to very extreme values of the order of 1 + δ = 10, 000. The
over-density distributions of both walls and filaments mainly occupy the same range of values. Most of
the wall over-densities (in green) are found in the range 0.1 < 1 + δ < 10, while filament over-densities
(in blue) are found in the range 0.1 < 1 + δ < 100. We note that filament over-densities overlap with the
nodes’ distribution, suggesting that filaments can be rather dense structures. Moreover, the shape of the
distribution suggests that there are two categories of filaments: the rather dense (1 + δ = 10 − 100) and
the less dense (1 + δ = 0.1 − 1). The densest filaments might be small-sized bridges of matter in dense
environments, which may have different properties from large cosmic filaments (e.g., Aragón-Calvo, van
de Weygaert, and Jones, 2010).

1.2.3.3 Mass and volume fractions of the Cosmic Web elements

Cautun et al., 2014 have also studied the mass and volume fractions of the detected structures (shown in
Fig. 1.8). The two structures that dominate the mass fraction budget are filaments and walls (which may
look like filaments when projected in 2D): they account for ∼ 50% and ∼ 24% of the total mass fraction,
respectively. Voids represent ∼ 15% of the mass fraction, and nodes, where galaxy clusters lie, account
for ∼ 11%. In terms of volume, ∼ 77% of the volume fraction is occupied by voids, while filaments and
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ativistic gas and accretion jets emit powerful lights in the whole range of the electro-magnetic spectrum:
these galaxies are called Active Galactic Nuclei (AGN) (e.g., Seyfert, 1943).

1.3.1.1 Galaxy bi-modality

Today, it is well established that there are two main populations of galaxies: active and passive galaxies.
This is called the “galaxy bi-modality” (e.g., Baldry et al., 2004). The former population, the active one,
contains younger galaxies, that are vigorously forming stars fuelled by their molecular gas. They appear
bluer in the optical wavelengths, are rather not massive, and have typical spiral morphologies (as shown
in the left panel of Fig. 1.9). Galaxies of the later population, the passive ones, have exhausted their
molecular gas supplies and therefore no longer form stars; these galaxies are “red and dead”, appearing
in redder colours in the optical wavelengths. They are more massive, and have elliptical morphologies
(shown in the right panel of Fig. 1.9).

Figure 1.9: Difference between passive and active galaxies. Left: the passive galaxy M87 observed with
the Hubble Space Telescope. Right: the active galaxy M74 observed with the same telescope. Credits:
NASA/ESA.

1.3.1.2 Star formation activity

Generalities

A main quantity allowing to distinguish galaxies from the two populations is the specific star formation
rate (sSFR): how many stars they form compared to their stellar mass. This quantity can hence be
deduced by the following two quantities: the stellar mass (M⋆), and the star formation rate (SFR).
Indeed, displaying these two quantities on a diagram makes it possible to segregate passive from active
galaxies (as shown in Fig. 1.10). This illustration shows positions in the SFR-M⋆ diagram of a sample of
galaxies. Star-forming galaxies (blue dots in Fig. 1.10) are aligned along a line called the main sequence
(e.g., Brinchmann et al., 2004; Elbaz et al., 2007). Galaxies leave the main sequence when they stop
forming stars. This process is called “quenching” and happens when a galaxy looses its cold gas. This
process is not well understood yet because it can be a combination of different phenomena, like the
interaction of galaxies with an external hotter and denser gas (harassment (e.g., Moore et al., 1996),
strangulation (e.g., Peng, Maiolino, and Cochrane, 2015), starvation (e.g., Trussler et al., 2018), ram
pressure stripping (e.g., Gunn and Gott, 1972)), tidal interactions due to mergers, or ejection of the gas
through AGN jets (e.g., Dubois et al., 2013). In all cases, galaxies stop forming stars and undergo a
transitioning stage (green dots in Fig. 1.10, the so-called green-valley (e.g., Alatalo et al., 2014; Moutard
et al., 2018), and finally settle in the region of the passive population (red dots in Fig.1.10). Galaxies
can also undergo episodes of burst of star formation due to recent accretion of gas (e.g., in mergers): this
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1.3.2 Galaxy clusters and large scale structures

1.3.2.1 General properties of clusters

Galaxy clusters are the largest gravitationally bound objects in the Universe. They have typical radius of
∼ 1 Mpc and typical masses in the range 1013.5 − 1015 M⊙. Their underlying over-densities can grow, in
their centres, up to extreme values (i.e., 1 + δ ≥ 104, as seen in Fig. 1.7).

Due to their high densities, galaxy clusters are relatively easy to observe. However, their extension
and their boundaries are not easy to define. To define a cluster’s radius, a threshold in density can be set,
delimiting a volume in which a certain amount of density is encompassed. Usually, the density is defined

as a function of the critical density of the Universe, ρc =
3H(z)2

8πG , and is expressed as follows:

ρ∆c
= ∆cρc. (1.2)

Using this definition, a galaxy cluster is defined by the volume where ρ > ∆cρc, where ∆c is set
arbitrarily. In the literature, three thresholds ∆c are mainly used to define edges of galaxy clusters, from
very central parts to large radii: ∆c = 2500, ∆c = 500, and ∆c = 200. The first two thresholds were
initially set to define cores of clusters, in particular when using X-ray observations that are biased to the
densest environments. The last threshold ∆c = 200 was introduced in numerical simulations as a rough
proxy to the virial radius. Based on these density thresholds, a radius, and thus a mass can be derived.
The radius is defined as the spatial extension up to which the threshold in density is reached: R∆c

. The
mass is defined by the total mass contained inside R∆c

, and can be estimated with the density:

M∆c
= ρ∆c

V∆c
, (1.3)

where V∆c
is the volume embedded in R∆c

. Assuming spherical symmetry, the volume of a cluster in
R∆c

is:

V∆c
=

4
3
πR∆c

3. (1.4)

Mixing Eq. 1.3 with Eq. 1.2, and Eq. 1.4, the mass M∆c
is thus related to the radius R∆c

, by:

M∆c
=
∆cH(z)2

2G
R∆c

3. (1.5)

1.3.2.2 Cluster content

Galaxy clusters are mainly composed of Dark Matter (∼ 80%), hot gas (∼ 16%) at temperature of order
108 K, and stars and cold gas in galaxies (∼ 4%) (e.g., Bykov et al., 2015). Dark Matter (originally sug-
gested by Zwicky, 1937) can be indirectly observable via gravitational lensing induced by high densities
of clusters: the high dense region disturb space-time and lense background galaxies. This phenomenon
produces gravitational arcs around galaxy clusters (e.g., Smail et al., 2007; Wuyts et al., 2010; Dahle et
al., 2016), or weak lensing (e.g., Mandelbaum, 2018), allowing the reconstruction of their total masses.
Dark Matter in clusters also produces CMB lensing, which also allows the reconstruction of their total
masses (e.g., Planck Collaboration et al., 2018a). Studied in numerical simulations, Dark Matter density
profiles around galaxy clusters turned out to be universally shaped, following a Navarro, Frenk, & White
profile (NFW, Navarro, Frenk, and White, 1996; Navarro, Frenk, and White, 1997). Galaxies, as de-
scribed in the previous section, are observable in optical and infra-red via the light emitted by stars and
dust. Their distributions and their properties in clusters are statistically known thanks to observations in
large galaxy surveys like the SDSS (e.g., Baxter et al., 2017; Chang et al., 2018; Adhikari et al., 2019;
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Pintos-Castro et al., 2019). Hot gas in galaxy clusters can be observed in several ways. First, it is vis-
ible in X-rays via the Bremsstrahlung emission (e.g., Byram, Chubb, and Friedman, 1966; Bradt et al.,
1967, for the first detections). This emission is a radiation produced by the deceleration of the hot free
electrons by the charged protons lying in the hot ionised gas. Bremsstrahlung emission is proportional
to n2

e (where ne is the electron density), making X-rays suitable to trace the densest regions of the hot
gas in the ICM. Hot gas can also be detected by the Sunyaev-Zel’dovich effect, that is described in detail
in the next section. Statistical properties of the hot gas around galaxy clusters, like pressure or entropy
profiles, have been derived thanks to numerical simulations and to observations in X-rays and SZ (e.g.,
Nagai, Vikhlinin, and Kravtsov, 2007; Arnaud et al., 2010; Planck Collaboration et al., 2013a; Bartalucci
et al., 2017; Ghirardini et al., 2019). The distributions of the different components in galaxy clusters are
therefore known on average, even up to clusters’ outskirts (see the reviews of Kravtsov and Borgani,
2012, Bykov et al., 2015, and Walker et al., 2019).

1.3.2.3 The Sunyaev-Zel’dovich effect

The Sunyaev-Zel’dovich effect (SZ, Sunyaev and Zeldovich, 1970; Sunyaev and Zeldovich, 1972) is a
secondary CMB anisotropy, resulting from the interaction of CMB photons with a distribution of high
energy electrons. CMB photons interact with the hot ionised electrons via inverse Compton scattering.
Therefore, free electrons input energy to CMB photons and the CMB spectrum is slightly distorted with
a very peculiar spectral signature: a decrement below 217 GHz, and an increment beyond (as shown
in Fig. 1.13). The frequency dependency of the distortion is expressed as a function of the temperature
change ∆T as:

∆T
TCMB

= f (x)y, (1.6)

where TCMB is the temperature of the CMB, f (x) where x = hν
kBTCMB

is the frequency dependency,
and y is the Compton parameter that quantifies the amplitude of the SZ effect. The Compton parameter
y is given by:

y =
σT

mec2

∫

ne(l)kBTe(l)dl, (1.7)

where σT is the Thomson cross-section, me the mass of the electron, c the speed of light, kB the
Boltzmann constant, and ne(l) and Te(l) the density and the temperature of the free electrons along the
line of sight, respectively.

The frequency dependency of the temperature change, f (x), is given by:

f (x) =
(

x
ex + 1
ex − 1

− 4
)

(1 + δSZ(x,Te), (1.8)

where δSZ(x,Te) is the relativistic correction.
While the effect just described above is called the thermal SZ effect (tSZ), there is another effect: the

kinetic SZ effect (kSZ). Here, energy of CMB photons are increased (or decreased) by Doppler effect
induced by the global proper motion with respect to the CMB rest frame of a bulk of hot electrons moving
towards (or backwards) us. For example, it may happen in galaxy clusters that are moving with respect
to the CMB frame. In that case, a change of temperature is expressed as:

∆T
TCMB

= −τe
(vpec

c

)

, (1.9)

where vpec is the velocity of the moving electrons along the line of sight, c the speed of light, and τe
is the electron opacity:
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Collaboration et al., 2013c; Planck Collaboration et al., 2013b; Planck Collaboration et al., 2013a; Adam
et al., 2018).

Figure 1.14: The Coma cluster as seen by Planck in SZ, and by ROSAT in X-rays. Credits: ESA.

Even outside the region of cluster’s outskirts, the SZ effect has also allowed the first detections of the
WHIM around different structures using the stacking of the SZ map reconstructed from Planck:

• Stacking Luminous Red Galaxies (LRG): the WHIM has first been detected in Tanimura et al.,
2019b and de Graaff et al., 2019, where LRG pairs have been stacked in the SZ map and a positive
residual emission have detected in between the galaxies.

• Stacking super-clusters: in an other study, Tanimura et al., 2019a have stacked the Planck SZ maps
at the position of the super-clusters identified in Liivamägi, Tempel, and Saar, 2012, by masking
all the known clusters up to 3 × R500 lying inside. We have detected in this study an excess of SZ
signal due to unbound gas between the clusters in the biggest potential wells generated by the dark
matter in super-clusters of y = (3.5±1.4)×10−8, that correspond to 17-52% of the missing baryons.
The stacked SZ MILCA Planck map of the super-clusters masked from the known clusters, and
the radial profile with the best fitted model of diffuse gas are shown in Fig. 1.15.

• Stacking filaments: in a more dedicated analysis, Tanimura et al., in prep. have stacked cosmic
filaments detected in SDSS galaxies, which allowed the first characterisation in terms of temper-
ature (T=1.2 ± 0.4 × 106 K) and over-density (δ ∼ 25) of the gas in cosmic filaments by the SZ
detection. The stacked SZ profile of filaments is shown in Fig. 1.16.
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Surveys and catalogues in different
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In this chapter, I describe the main public data in different wavelengths that I have used for my work.
The data analysis aspects, such as for example the selections of the sources in the different catalogues (if
any), will be presented in more detail in the different chapters.

Résumé

Dans ce chapitre, je décris les donnée publiques en différentes longueur d’ondes que j’ai utilisée pour
mon travail. Les aspects d’analyse de données, par exemple la sélection des sources dans les différents
catalogues, seront présentés dans les différents chapitres en détail.

2.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey1 (SDSS, York et al., 2000) is one of the largest available optical survey
in astronomy. While other large surveys dedicated to the study of the galaxies cover deeper but smaller

1https://www.sdss.org
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the errors of all these quantities. The magnitudes reported in the AllWISE catalogue were computed with
different methods (e.g., profile fitting, aperture photometry). For some of these magnitudes, a correction
is needed. This is detailed in Chap. 4 where I present the construction of the training set of galaxies used
by the machine learning algorithm to estimate SFR and M⋆ for nearby galaxies.

2.2.2 WISE-based full sky photometric redshift catalogues

A key information to map the Universe through the distribution of galaxies is to know their redshifts z.
It is possible to estimate the redshifts of galaxies very precisely by identifying emission or absorption
lines in their spectra. However, spectroscopic observations are expensive in terms of observing time. A
parallel (and less expensive) way of estimating the redshifts is the use of the photometric observations
in the widest possible range of wavelengths, to fit templates of spectra based on observations or on
theoretical models (e.g., LEPHARE or CIGALE Arnouts et al., 1999; Ilbert et al., 2006; Burgarella, Buat,
and Iglesias-Páramo, 2005). Another approach is the use of machine learning algorithms applied on
magnitudes and/or colours (e.g., ANNz Collister and Lahav, 2004). WISE data have been successfully
used to extend to the infra-red wavelengths the range of photometric bands of optical surveys. This has
allowed to construct photometric redshift catalogues with increased accuracy. I present here the two
full-sky catalogues of photometric redshifts based on WISE that I have used for my analyses: the 2MPZ
and the WISExSCOS catalogues.

I have used these two catalogues as their very high statistics and their full-sky coverage enable the
study of galaxies in very large fields of view outside of the SDSS footprint, needed to study the large-
scale structures. In addition, the machine learning algorithm developed in Chap. 4 can be applied to the
WISE measurements and to the photometric redshift estimations available in the catalogues, allowing
the estimations of SFR and M⋆ of a very high number of sources for both catalogues.

2.2.2.1 The 2MPZ catalogue

The 2MPZ publicly available catalogue6 (Bilicki et al., 2014) is a cross-match between the WISE infra-
red survey, and two near infra-red and optical full-sky surveys: the Two Micron All Sky Survey (2MASS,
Skrutskie et al., 2006), and SuperCOSMOS (Hambly et al., 2001a; Hambly, Irwin, and MacGillivray,
2001; Hambly et al., 2001b). 2MASS has observed the J (1.25µm), H (1.65µm), and K (2.17µm) bands
in the late 90’s with two 1.3m telescopes at the Fred Lawrence Whipple Observatory on Mount Hop-
kins, Arizona, USA, and at the Cerro Tololo Inter-American Observatory, in Chile. SuperCOSMOS is
a digitisation of the sky survey plates taken with the 1.24m UK Schmidt telescope (UKST) in Siding
Spring Observatory, Australia, the 1m ESO Schmidt at La Silla, Chile, and the 1.22m Palomar Schmidt,
in Mount Palomar, California, USA. The SuperCOSMOS data are publicly available, and provide magni-
tudes in three optical bands: B, R, and I. The 2MPZ catalogue contains about one million nearby sources,
with spectroscopic redshifts for about a third of them, and photometric redshifts for the remaining two
thirds, estimated using the library ANNz (Collister and Lahav, 2004) trained on SDSS spectral galaxies.
The median redshift of the catalogue is zmed ∼ 0.08 and the statistical error on the redshift is σz ∼ 0.012.
The low sensitivity of 2MASS and the magnitude cut in the 2MASS catalogue K < 13.9 (to ensure cat-
alogue uniformity), make this catalogue useful to statistically study the distribution of the brightest and
closest galaxies (i.e., the highest mass galaxies). The distribution of the 2MPZ sources as a function of
redshift is shown in Fig. 2.5.

6http://ssa.roe.ac.uk/TWOMPZ.html
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2.4.2.2 The SZ cluster database

A database of clusters detected in SZ has been developed at the Institut d’Astrophysique Spatiale, Or-
say, by M. Douspis, N. Aghanim and collaborators. The database gathers clusters detected in SZ by the
main CMB experiments: Planck (Planck Collaboration et al., 2011; Planck Collaboration et al., 2014;
Planck Collaboration et al., 2015a; Planck Collaboration et al., 2016e), the Atacamy Cosmology Tele-
scope (ACT) (Marriage et al., 2011; Hasselfield et al., 2013)), the South Pole Telescope (SPT) (Bleem
et al., 2015), and clusters individually observed by the Arcminute Microkelvin Imager (AMI) and the
Combined Array for Research in Millimetre-wave Astronomy (CARMA) (Schammel et al., 2013; AMI
Consortium et al., 2012; AMI Consortium et al., 2013b; AMI Consortium et al., 2013a). Clusters in the
SZ meta-catalogue are thus spanning a large variety of angular sizes, redshifts, and y amplitudes, quan-
tities depending on the resolution and on the sensitivity of the experiments they were detected with. The
SZ cluster database is publicly available13, and contains 2,690 sources. For the 1,681 confirmed clusters,
redshifts z and mass M500 are provided. The redshift range of the catalogue is 0.011 < z < 1.7, with a
median value zmed ∼ 0.31.

2.4.3 The MCXC catalogue

Galaxy clusters can be detected via the hot gas, detected in X-rays through Bremsstrahlung emission. The
ROSAT All-Sky Survey (RASS, Truemper, 1982) is to date the only full-sky survey in X-rays (until the
release of SRG/eROSITA that was successfully launched on 13th of July 2019 (Cappelluti et al., 2011)).
Galaxy clusters detected based on ROSAT were combined to build a meta-catalogue: the Meta-Catalogue
of X-ray detected Clusters (MCXC, Piffaretti et al., 2011). The MCXC combines galaxy clusters from
RASS-based catalogues (i.e., the Northern ROSAT All-Sky Survey (NORAS, Böhringer et al., 2000), the
ROSAT-ESO Flux Limited X-ray Survey (REFLEX, Böhringer et al., 2004), the ROSAT brightest cluster
sample (BCS, Ebeling et al., 1998), galaxy clusters around the South Galactic Pole (SGP, Cruddace et
al., 2002), galaxy clusters around the North Ecliptic Pole (NEP, Henry et al., 2006), the Massive Cluster
Survey (MACS, Ebeling, Edge, and Henry, 2001), and the Clusters In the Zone of Avoidance (CIZA,
Ebeling, Mullis, and Tully, 2002)), and from ROSAT serendipitous catalogues (i.e., the 160 square degree
ROSAT Survey catalogue (160SD, Mullis et al., 2003), the 400 square degree ROSAT Cluster Survey
catalogue (400SD, Burenin et al., 2007), the bright SHARC survey cluster catalogue (Romer et al.,
2000), the Southern SHARC catalogue (Burke et al., 2003), the WARPS survey catalogues (Perlman et
al., 2002; Horner et al., 2008), and the Einstein Extended Medium Sensitivity Survey catalogue (EMSS,
Gioia et al., 1990)). The MCXC provides a mass M500, a radius R500, and a redshift z for 1,743 galaxy
clusters in the all sky. The mass and redshift distributions of MCXC clusters are shown and compared
to other SZ and optical catalogues in Fig. 2.8. The MCXC contains mainly lower mass clusters than the
PSZ2 or the RedMaPPer cluster catalogues.

13http://szcluster-db.ias.u-psud.fr/
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Statistical tools are nowadays strongly needed in data analysis. For example, the stacking method
can be used to enhance the signals of cosmic filaments that can be very faint due to their low densities,
Bayesian statistics are useful to constraint any free parameter, the bootstrap method can help to estimate
the errors and/or the significances of any measurement, and the fashionable machine learning algorithms
are very efficient to estimate any property without the use of a model. In this chapter, I describe some
of the statistical tools, codes, or methods that I have used during my PhD thesis. These tools appear at
a regular basis in the future chapters. When possible, I illustrate the applications of the methods with
simple toy models.

Résumé

Aujourd’hui dans l’ère du “big data”, l’astrophysique a plus que jamais besoin d’outils statistiques per-
formants pour analyser le grand nombre de données. Par exemple, la méthode de “stacking” peut être
utilisée pour aider à la détection des filaments cosmiques (pouvant présenter de très faibles signaux en rai-
son de leur faible densité), les statistiques bayésiennes peuvent être utiles pour contraindre les paramètre
libres d’un modèle, la méthode de “bootstrap” peut aider à estimer les erreurs et/ou les pertinences des
mesures, et les algorithmes de “machine learning” peuvent s’avérer être très efficaces pour estimer toute
propriété sans utiliser de modèle physique, avec moindre temps de calcul. Dans ce chapitre, je décris
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certains des outils (codes ou méthodes statistiques) que j’ai utilisés pendant ma thèse. Ces outils appa-
raissent régulièrement lors des travaux présentés dans les prochains chapitres. Dans certains cas, j’illustre
les applications de ces méthodes à l’aide de modèles simplistes.

3.1 Machine learning algorithms

3.1.1 Introduction

In the last decades, new statistical developments have begun to play an important role in data reduction
and in data analysis. Particularly, the studies involving machine learning algorithms have increased
exponentially, as such tools are very efficient to identify commonalities in data without resorting to any
model. There are two families of machine learning algorithms: the unsupervised and the supervised ones.
In the first case, the algorithms are designed to classify the input data. The user must assume the number
of classes. This family includes clustering methods, such as k-mean algorithms, and the Self-Organizing
Maps (SOM)1. In the second case, machine learning algorithms are designed to estimate properties or
labels, based on inputs and outputs, both provided by the user. The user must in this case have a perfect
knowledge of the labels or of the properties of reference used as output in the training catalogue. This
family includes algorithms such as Artificial Neural Networks (ANN, W. White and Rosenblatt, 1963),
Random Forests (RF, Ho, 1995), Support Vector Machine (SVM, Hearst, 1998), and algorithm of Deep
Learning (DL) such as Convolutional Neural Networks (CNN, Fukushima, 1980). Machine learning
algorithms, mostly supervised ones, have already been applied successfully in astronomy, astrophysics,
and cosmology (e.g., Baron, 2019, for a review on machine learning algorithms in astrophysics). For
example, basic machine learning algorithms, like ANN or RF, have been used to estimate galaxy redshifts
or galaxy types (e.g., Bilicki et al., 2014; Bilicki et al., 2016; Krakowski et al., 2016; Siudek et al.,
2018; Bonjean et al., 2019), to estimate spectral properties of sources (e.g., Ucci et al., 2018) to classify
sources (e.g., Aghanim et al., 2015), to search for variable stars (e.g., Pashchenko, Sokolovsky, and
Gavras, 2018), as a very non-exhaustive list of examples of applications. More sophisticated algorithms
of machine learning, like DL algorithms (e.g., CNN), widely improve the results compared to results
obtained with physical models. In most of the cases, the computation time required to estimate the
results is also significantly reduced. For example, CNN algorithms have been already used to estimate
galaxy morphologies and redshifts (e.g., Huertas-Company et al., 2015; Pasquet et al., 2019; Boucaud
et al., 2019), to fit galaxy surface brightness profiles (e.g., Tuccillo et al., 2018), to compare galaxy
surveys (e.g., Domínguez Sánchez et al., 2019), to detect cosmic structures (e.g., Aragon-Calvo, 2019),
to learn the structure formation from initial conditions (e.g., Lucie-Smith et al., 2018; He et al., 2018),
or to generate fast Cosmic Web simulations (e.g., Rodríguez et al., 2018, Ullmo et al., in prep.).

I describe here three examples of supervised machine learning algorithms that I have used for my
analyses: the Random Forests, the Neural Networks, and the Convolutional Neural Networks.

I have also implemented a RF algorithm, together with other algorithms of machine learning (ANN
and CNN) in python for a course of machine learning. They are implemented to be applied on a test-
case dataset, called the MNIST data. These data are available in the keras module in python, and
contains 60, 000 2D 28×28 pixels patches, in which digital numbers are drawn. Each patch is associated
with its label, between 0 and 9. These data are known to be the “Hello World !” of machine learning.
Implementations, short descriptions, and examples of the different codes applied to the MNIST data are
publicly available on my on-line courses of machine learning2.

1http://scikit-learn.org/
2https://github.com/vicbonj/cours_ml
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3.1.2 Caveats: bias and error estimates

Machine learning algorithms are very efficient to find correlations in the data. They always output a
result, but results can sometimes be very different from the expected ones. This can be due to a bad
training of the algorithm, a correlation found between unexpected features in the training catalogue
that biases the training, or to an over-fitting of the training catalogue. Therefore, one of the biggest
challenges in the machine learning domain is to estimate the performances of the trained algorithms (e.g.,
estimating the statistical errors, estimating and understand the biases). As errors on individual predictions
of machine learning algorithms are usually not estimated by the algorithms, errors are often estimated
statistically, over a sub-sample of the training sample. A usual way to estimate the performance and the
errors of a machine learning algorithm is to split the training catalogue into three sub-samples, and train,
validate, and test the algorithm on these independent samples. For example, a training catalogue is split
into 80% / 10% / 10%. The 80%, called training set, are used for the training process, while other first
10%, called validation set, are used to check the results on an independent catalogue during the training
process, and thus to prevent over-fitting of the training catalogue. The remaining 10%, called the test set,
are independent of the training process, and are thus used to estimate the statistical errors and the biases.
Retrospectively, the original sample can be split differently to ensure these percentages do not affect the
results.

3.1.3 Random forests

Random Forests are machine learning algorithms based on decision tree learning (e.g., Ho, 1995, for the
first implementation). Decision trees split iteratively and optimally the training set into several classes,
by associating classes to data points and by reducing the Gini impurity3:

G =

C
∑

i=1

p(i)(1 − p(i)), (3.1)

where C is the number of classes, and p(i)) is the probability of picking a data point with class i.
In practice, simple if-else rules on the input features are defined, in order to classify the training set

at each splitting, so that each class are equally distributed as a function of the outputs commonalities.
RF algorithms then use the mean estimator of a “forest” of decision trees, trained by bootstrapping

the training set. For a training set of n samples, with X = x1, ..., xn and Y = y1, ..., yn being the inputs and
the outputs of the machine learning, respectively, the estimator for an untrained value x′ is computed as
follows:

ỹ
(

x′
)

=
1
M

M
∑

m=1

ỹm

(

x′
)

, (3.2)

where M is the number of decision trees, and ỹm is the estimator for x′ of the decision tree m trained
on a random sample with replacement of n elements in the sample of couples (X,Y).

To optimise the training and obtain the best results, some parameters have to be set, such as the num-
ber of trees, M, or the maximum depth of the trees (i.e. the maximum number of splitting), dmax. These
parameters can be set by training the RF on the training set varying the values of M and dmax, and by
comparing the scores of the RF on the validation set. The best optimised parameters can be set to the
ones providing the best score. This method prevents over-fitting.

The RF algorithms are rather easy to understand, and very efficient. In addition, unlike with ANN
(described in the next section), no data pre-processing is needed, meaning that the values themselves are

3https://scikit-learn.org/stable/modules/tree.html#classification-criteria
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The Adam optimiser is commonly use in DL algorithms. It is very efficient as it adapts iteratively the
precision of the errors.

One of the main advantages of the neurons is that they can be modulated, to maximise the optimisa-
tion of the loss function and learn very high non-linear models. Neurons can be disposed in “layers”. In
that case, the weights ~W become a matrix W, and the bias b becomes a vector, ~b. The biases bi of the i

neurons are different to ensure the independence of the features learned by the neurons. The output of a
layer is a vector f (~x), mathematically written as follows:

f (~x) = g(W.~x + ~b). (3.4)

There is no limit in the number of neurons in a layer, and layers can be themselves superposed to
increase the non-linear character of the models in case of very complex data. ANN algorithms with a
large number of layers are part of Deep Learning (DL) algorithms. In DL, the outputs of the first layer,
f (~x), is taken as inputs of the second layer, and so on, with as many layers of as many neurons as wanted.
In some cases (e.g., classifiers or segmentations), when a probability is wanted as output of the network,
the last activation function after the last layer is chosen to rescale the value between 0 and 1. The Sigmoid
is an example of such activation function:

Sigmoid(x) =
1

1 + e−x
. (3.5)

To summarise mathematically, for an ANN composed of three layers (indexed by 1, 2 and 3) of
several neurons each with a Relu activation function, and a Sigmoid last activation function, the outputs
of the network that are compared with the outputs ~y are written:

f (~x) = Sigmoid3(W3.ReLU2(W1.ReLU1(W2.~x + ~b1) + ~b2) + ~b3). (3.6)

The deeper the algorithm, the more complex the model is, and the better it learns. However, if the
model is too deep for a too simple case, the model may start to learn the statistical noise of the training
catalogue (this is called over-fitting). To prevent this effect, results are estimated iteratively on the train-
ing set and on the validation set. The training can be stopped when the results on the validation set start
to decrease as compared to the results on the training set: this is called the early stopping. Another way
of preventing over-fitting is to include dropout layers (Srivastava et al., 2014). Dropout layers randomly
ignore a percentage (set by the user) of neurons in the network. This technique approximates a large
number of networks with different architectures working together in parallel, improving the results. To
increase the performance and the results, parameters can also be tuned. The main ones are the number
of layers, and the number of neurons in each layer.

I will use ANN to confirm the results obtained with the RF to estimate SFR and M⋆ of nearby
galaxies (presented in Chap. 4).

3.1.5 Convolutional Neural Networks

ANN and deep ANN algorithms are ideal to learn very highly non-linear features in very large sized
input data, like images. However, when the aim is to analyse spatial coherent objects in input images
(e.g., segmentation, detection of sources), the features to capture can be invariant in translation and in
rotation. That can be for example the case for the SZ emission generated by the hot gas in galaxy clusters
seen in the Planck frequency maps. In that case, successive convolutional layers can be applied to the
images, to extract the relevant spatial information that is encoded and injected into an ANN (or decoded
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parameters, allowing the study of the statistics of the derived parameters (e.g., their distributions, their
degeneracies). The MCMC samples the probabilities of the parameters as a function of the prior distri-
butions (given by the user), and of a likelihood loss function that is computed based on the differences
between the estimated models and the data. MCMC algorithms have already been successfully applied
in astrophysics and cosmology, e.g., to estimate the cosmological parameters with Planck (e.g., Planck
Collaboration et al., 2016b), to compute comet orbits (e.g., Lang and Hogg, 2012), or to compute dust
properties in warm debris disks (e.g., Olofsson et al., 2012).

MCMC uses the Metropolis algorithm to generate a chain of parameters. It works as follows. Given
any data y, its error σ, and a model f (x, a), where a is the parameter to fit, the required output is the
posterior distribution:

p(a | y, x, σ) = p(a) × p(y | x, σ, a), (3.7)

where p(y | x, σ, a) is the likelihood function computed based on the model f :

L(a) = p(y | x, σ, a) ∝ −1
2

∑

n

(yn − f (xn, a))2

σ2
n

, (3.8)

and p(a) is the prior distribution of the parameter a, usually a uniform or a normal law, between
the fixed boundary conditions [amin, amax]. Then, the chain of parameters is constructed following these
steps:

• Initialise the chain with an arbitrary point a0.

• For each iteration i, pick up a parameter ai+1 that follows the prior distribution p(a).

• Compare the likelihood obtained with ai+1 with the one obtained with ai: β = L(ai+1)/L(ai).

• Generate a uniform random number u ∈ [0, 1]:

– if u ≤ β, accept ai+1 in the chain,

– else u > β, conserve the previous value in the chain: ai+1 = ai.

The chain converges to the maximum of likelihood, accepting at each iteration a new parameter in
the chain if the likelihood is higher than the previous one, and rejecting with a non zero probability pa-
rameters with lower likelihoods. The chain contains the probability distribution of the fitted parameters.

The publicly available emcee implementation of the MCMC algorithm in python is very efficient
in terms of computation time (Foreman-Mackey et al., 2013). The emcee package uses an optimised
algorithm, the Affine Invariant MCMC Ensemble Sampler, described in detail in Goodman and Weare,
2010. This tool has been used at a regular basis in astronomy and in cosmology. I will use the emcee
package in my analysis of the physical properties of the gas in the bridge of matter between the galaxy
cluster pairs A399-A401 and A21-PSZ2 G114.90-34.35 (Bonjean et al., 2018), presented in Chap. 5. I
will also use it to fit the quiescent fraction profile around cosmic filaments, presented in Chap. 6.5.2.

3.2.2 Stacking

When the detections of individual objects are not possibles due to their very faint signals (e.g., low densi-
ties filaments in galaxy density maps, or diffuse gas in SZ Planck maps), an averaged characterisation of
all the objects is possible by stacking. Stacking is equivalent to averaging signals individually measured
on the data. By doing so, the noise of the data is reduced by

√
n (where n is the number of considered ob-

jects), and the average signal is enhanced. This technique has already been succesfully used for example
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ρk =
d + 1
n
∑

i=1
Aki

, (3.9)

where ρk is the density at the point k, and Aki are the areas (or volumes) of the triangles (or
tetrahedra) connected to the point k.

• The densities estimated with Eq. 3.9 are linearly interpolated on a regular grid, and the density
field is reconstructed (bottom panel of Fig. 3.6).

I have developed a python implementation of the DTFE, the pyDTFE, publicly available on GitHub4.
I will use it to compute the full sky galaxy density maps detailed in Chap. 4.6.3. These maps were used
to characterise cosmic filaments and clusters (Chap. 6 and Chap. 7). I will also use the pyDTFE code to
detect galaxy over-densities in between the galaxy cluster pair A399-A401 (Chap. 5.4.3).

3.3.2 RadFil

To derive galaxy properties around cosmic filaments in Chap. 6, I have used the code developed by
Zucker and Chen, 2018: RadFil5. It is a code that measures radial profiles around filamentary structures,
using interpolation of filament’ spines and their first derivatives at each point. RadFil was originally
developed to study inter-stellar filaments (e.g., Zucker, Battersby, and Goodman, 2018). I have optimised
the code to apply it to large-scale structure cosmic filaments. The advantage of the RadFil code is that
knowing the positions of the filaments, a profile can be measured in any 2D python array.

The RadFil code can be used in two ways: in the first option (not used here), the user provides the
code with a single python 2D array of a given observable, the code detects the skeleton of the filament,
if any, and outputs the measured profiles around the filament. In the second option, the user provides
the code with two python 2D arrays, one being the observable (the pixel values representing the quantity
to measure), and the other one being a mask tracing the spine of the filament around which RadFil
will measure the profiles. I use RadFil in Chap. 6 with the second option for two main reasons. First,
the cosmic filaments have very low signal-to-noise ratio observables compared to inter-stellar filaments,
preventing the RadFil code for detecting them. Second, optimised methods to extract cosmic filaments
in the Cosmic Web have already been successfully applied in galaxy surveys (e.g., Libeskind et al.,
2018 for a review, Bonnaire et al. in prep.). Positions of filamentary Cosmic Web structures are thus
already known so they can be directly input in the code. In my work, I have used the catalogue of
cosmic filaments extracted by DisPerSE in a SDSS spectroscopic sample of galaxies that is presented in
Chap. 6.2.1.

An illustration of RadFil is shown hereafter on a single toy model.
I have modelled a filament spine in a map of size 1000×1000 pixels, that I smoothed with a Gaussian

filter of σ = 30 pixel width (top line of Fig. 3.7). I have measured the profile of the smoothed filament
around the spine of the modelled filament with RadFil (bottom line of Fig. 3.7). I have fitted a Gaussian
on the measured average profile to compare the measured and the theoretical filament’s width. The stan-
dard deviation of the Gaussian measured by the fit is σm = 30.07 ± 0.03 pixels, that is very close to the
theoretical one, σ = 30 pixels.

I will use RadFil to measure the galaxy properties around cosmic filaments based on density maps
(presented in Chap. 6). I will also measure SZ profiles in the Planck SZ MILCA map, to compare RadFil
with other methods based on Healpix projections, presented in Tanimura et al., in prep.

4https://github.com/vicbonj/pydtfe
5https://github.com/catherinezucker/radfil
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Abstract

Star-formation activity is a key property to probe the structure formation and hence characterise the
large-scale structures of the Universe. This information can be deduced from the star formation rate
(SFR) and the stellar mass (M⋆). Determining these quantities from UV, optical, or IR luminosities
relies on complex modelling and on priors on galaxy types. In this chapter, I have developed a method
based on the machine-learning algorithm Random Forest to estimate the SFR and the M⋆ of galaxies in
the redshift range 0.01 < z < 0.3, independent of their type. The machine-learning algorithm takes as
inputs the redshifts, WISE luminosities, and WISE colours in near-IR, and is trained on SFR and M⋆
from the SDSS MPA-JHU DR8 catalogue. The trained RF is unbiased with respect to redshift or galaxy
type, and it can accurately estimate SFR and M⋆ with scatters ofσSFR = 0.38 dex andσM⋆ = 0.16 dex for
SFR and stellar mass, respectively. The full-sky coverage of the WISE satellite allows us to characterise
the star-formation activity of all galaxies outside the Galactic mask with spectroscopic redshifts in the
range 0.01 < z < 0.3. The RF model can also be applied to photometric-redshift catalogues, with best
scatters of σSFR = 0.42 dex and σM⋆ = 0.24 dex obtained in the redshift range 0.1 < z < 0.3. I have thus
applied the machine learning algorithm to construct a value-added catalogue based on the WISExSCOS
catalogue of photometric redshifts. The value-added catalogue is further used to study the statistical
properties of galaxies around cosmic filaments (in Chap. 6), and in other studies discussed in Chap. 4.8.
This chapter uses material from “Star formation rate and stellar masses from machine learning”, V.
Bonjean, N. Aghanim, P. Salomé, A. Beelen, M. Douspis, and E. Soubrié, 2019, A&A, 622, A137.

Résumé

L’activité de formation d’étoiles d’une galaxie est une propriété clé pour sonder la formation des struc-
tures, et ainsi caractériser les structures à grande échelle présentes dans l’Univers. Cette information peut
être déduite du taux de formation d’étoiles (SFR) et de la masse stellaire (M⋆). La détermination de ces
deux grandeurs à partir de luminositiés en UV, en optique, ou en IR, repose sur une modélisation com-
plexe et sur des connaissances a priori du types de galaxies. Dans ce chapitre, je présente une méthode
que j’ai développé basée sur un algorithme de machine learning (Random Forest) pour estimer SFR et
M⋆ des galaxies dans la plage de redshift 0, 01 < z < 0, 3, indépendamment de leur type. L’algorithme
prend en entrée le redshift, les luminosités et les couleurs de WISE en proche IR, et est basé sur les
SFR et M⋆ du catalogue SDSS MPA-JHU DR8. Le modèle généré est non biasé en ce qui concerne le
redshift ou le type de galaxie, et peut estimer SFR et M⋆ avec des erreurs statistiques de σSFR = 0, 38
dex et de σM⋆ = 0, 16 dex respectivement. La couverture complète du ciel du satellite WISE permet
la caractériserisation de l’activité de formation d’étoiles de toutes les galaxies à l’extérieur du masque
galactique (avec 0, 01 < z < 0, 3). Le modèle de RF peut également être appliqué aux catalogues de
galaxies avec redshifts photométriques, avec des erreurs statistiques de σSFR = 0, 42 dex et σM⋆ = 0, 24
dex. J’ai appliqué cette méthode pour construire un catalogue à valeur ajoutée basé sur le catalogue avec
redshifts photométriques : le WISExSCOS catalogue. Le catalogue à valeur ajoutée généré est notam-
ment utilisé pour étudier les propriétés statistiques des galaxies autour des filaments cosmiques (présenté
au Chap. 6), et dans une autre étude présentée au Chap. 4.8. Ce chapitre utilise du matériel du papier
“Star formation rate and stellar masses from machine learning”, V. Bonjean, N. Aghanim, P. Salomé,
A. Beelen, M. Douspis, et E. Soubrié, 2019, A&A, 622, A137.

4.1 Introduction

Several methods have been developed to estimate SFR and M⋆ from infra-red or optical bands (e.g.,
Calzetti et al., 2007; Kennicutt et al., 2009; Jarrett et al., 2013; Cluver et al., 2014; Cluver et al., 2017).
All of these relations are well calibrated. However, as passive and active galaxies have very different
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colours in IR, applying these methods to galaxies without having any prior on their types can lead to
potential biases. Ideally, optical spectroscopic data are needed to estimate the SFR and M⋆ properties,
but they are not always available as they are costly in terms of observing time.

In this chapter, an alternative approach is chosen to estimate SFR and M⋆ for all galaxies over 70%
of the sky (i.e., outside the Galactic plane) with measured redshifts in the range 0 < z < 0.3, without any
priors on galaxy types. To do so, a machine learning algorithm, i.e., a random forest (see Chap. 3.1.3),
heve been used. Such a method is able to estimate very non-linear laws based on models trained on
reliable given inputs and outputs. In the present case, it allows us to estimate SFR and M⋆ independently
of any complex model nor any priors on galaxy types. Very recently, Delli Veneri et al., 2019 have used a
similar approach to derive SFR based on optical colours from the SDSS photometric survey on a limited
portion of the sky. Here, the random forest algorithm is trained on WISE infra-red magnitudes, allowing
an application on the full usable sky (masked from our galaxy).

4.2 Constructing a training set

Ensuring good, that is, unbiased, training of the machine learning algorithm, the choice of inputs and
reference outputs is essential.

4.2.1 The choice of inputs and outputs

First of all, the inputs have to be defined, that is, the data that are proxy to estimate the SFR and the M⋆.
Motivated by its full-sky coverage and its very large number of sources (more than 700,000,000 sources),
I have chosen the WISE infrared data as inputs, namely the AllWISE Source Catalogue (see Chap. 2.2.1).
As the SFR can evolve with redshift, I have also chosen to use the redshift z as input. As a proxy for the
stellar mass, I have chosen the WISE luminosity in the W1 band (3.4µm), that traces the old non-ionizing
stars (Wen et al., 2013; Jarrett et al., 2013). As a proxy for the SFR, I have chosen the WISE luminosity in
the W3 band (12µm), that traces the emission from small grains of dust, thus directly related to the total
quantity of dust, itself indirectly related to the SFR (re-emission of the UV from young stars absorbed by
the dust) (Jarrett et al., 2013; Cluver et al., 2014; Cluver et al., 2017). I have chosen not to consider the
W4 band of WISE although it is a good tracer of the SFR (Jarrett et al., 2013; Cluver et al., 2014; Cluver
et al., 2017), as Bilicki et al., 2016 found that its larger beam size (of 12”) and its poorer sensitivity could
lead to an important incompleteness and a significant bias of source selection with respect to redshift.
The aim of my study being to estimate the SFR and the stellar mass for both galaxy types (active and
passive), without any prior, I have also chosen as input two WISE colours to segregate the galaxy types:
W1-W2 (3.4 − 4.6µm) and W2-W3 (4.6 − 12µm). Wright et al., 2010 have found that these two colours
are very efficient to segregate morphologies, and thus galaxy types: elliptical E and passive spiral S0
galaxies are mainly located in the regions 0.5<W2-W3<1.5 and -0.1<W1-W2<0.3, while active spiral
galaxies are located in the regions 1<W2-W3<4.5 and -0.1<W1-W2<0.7. Alatalo et al., 2014 have also
found that WISE colours were a good proxy to segregate transiting galaxies and active galaxies, with
a threshold between the two types around W2 − W3 ∼ 2.8. I show in Fig. 4.1 the colour W2-W3 as a
function of the passivity of the galaxies, i.e., the distance to the main sequence d2ms, for a sample of
galaxies from the SDSS MPA-JHU DR8 catalogue cross-matched with WISE. It confirms that WISE
colours are very efficient to segregate populations.

The second ingredient of the construction of the training catalogue is the choice of the outputs that
are used as reliable reference for SFR and M⋆. I have chosen the SFR and stellar masses from the SDSS
MPA-JHU DR8 catalogue, as their estimations are based on robust methods and on reliable spectra. The
catalogue and the details about the estimations of the SFR and the stellar mass are presented in Chap. 2.1.
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ML with z ML without z Analytical
All Passive (BPT = -1) Active (BPT = 1) Transiting (BPT = 2) All All

σM⋆ 0.16 0.11 0.23 0.13 0.32 0.23
σSFR 0.38 0.38 0.30 0.39 0.43 0.47 (active only)

Table 4.1: Summary of the different scatters obtained on the test set with different methods.

seen. Moreover, the scatter of the results depends only very slightly on galaxy type. For passive galaxies,
with BPT = -1, the scatter on M⋆ tends to be reduced: σSFR = 0.38 dex and σM⋆ = 0.11 dex. For active
galaxies, with BPT = 1, the inverse trend is seen and the scatter on the SFR tends to be reduced with a
small increase of the scatter of M⋆: σSFR = 0.30 dex and σM⋆ = 0.23 dex. For transitioning galaxies,
with BPT = 2, the scatters are roughly the same as the overall ones obtained on the all the populations:
σSFR = 0.39 dex and σM⋆ = 0.13 dex. A summary of the different scatters is shown in Tab. 4.1.

4.4.3 Comparison with other methods

Several studies have derived analytical formulae to determine SFR and M⋆, some of them also based
on the WISE luminosities (e.g., Wen et al., 2013; Jarrett et al., 2013; Cluver et al., 2014; Cluver et al.,
2017). I have compared the SFR and M⋆ estimated with the RF algorithm with those derived using
different approaches, but based on the same observables (WISE luminosities: LW1 and LW3). I have
focused on the M⋆ estimated with the relation from Wen et al., 2013, using LW1:

log (M⋆Wen) = 1.12 × log (LW1) − 0.04, (4.1)

and on the SFR estimated from Cluver et al., 2014 using LW3, (derived for active galaxies only):

log (SFRCluver) = 1.13 × log (LW3) − 10.24. (4.2)

I have computed M⋆ with Eq. 4.1 for all galaxies. In the left panel of Fig. 4.10, I compare M⋆
estimated with Eq. 4.1 with M⋆ from the SDSS MPA-JHU DR8 catalogue. I also show the 1, 3, and 5 σ
contours of the RF estimations. This comparison shows the smaller scatter of the M⋆ estimated with the
RF algorithm. This result is not surprising considering that the RF algorithm has five inputs compared to
only one for Eq. 4.1. Scatters are σM⋆Wen = 0.23 dex and σM⋆ML = 0.16 dex (see also Tab. 4.1).

SFR are computed, for star-forming galaxies only with BPT = 1, to satisfy the conditions of Cluver
et al., 2014, following Eq. 4.2. They are compared with the SFR from the SDSS MPA-JHU catalogue
(right panel of Fig. 4.10). The blue contours show the RF estimations, and the red contours show the
SFR computed with the method from Cluver et al., 2014 for passive galaxies (i.e., BPT = -1). A smaller
scatter for the SFR estimations from the RF algorithm is found; this is again expected since five inputs
are used for the RF algorithm compared to only one for Eq. 4.2. The limitation of the application domain
of a relation between LW3 and SFR is also shown in terms of its dependence on galaxy type (huge bias
on the red contours showing the passive galaxies). Scatter are σSFRCluver = 0.47 dex and σSFRML = 0.30
dex for active galaxies (see also Tab. 4.1), while for passive galaxies scatters are σSFRCluver = 0.49 dex and
σSFRML = 0.38 dex. For passive galaxies computed with Eq. 4.2, a bias, defined as the absolute difference
of the means, is found: bCluver = 0.93 dex (compared with bML = 0.04 dex for RF estimations).

As a second comparison, I have used a catalogue of galaxies with SFR computed using an alternative
method. An example is the extended version of the COLD GASS (CO Legacy Database for GASS)
catalogue of nearby galaxies, the xCOLD GASS catalogue1 (Saintonge et al., 2017). The sample contains
532 nearby galaxies (z < 0.05) from SDSS selected in mass (M⋆ > 109M⊙). The galaxies span a wide

1Publicly avaible at http://www.star.ucl.ac.uk/xCOLDGASS/index.html
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intersections of the three Gaussians fitted on the distribution of the d2ms on a sample of SDSS galaxies,
used to model the three populations of galaxies (shown in the right panel of Fig. 4.1). After the splitting,
the catalogue contains 7,249,961 active, 4,353,744 transitioning, and 4,161,830 passive galaxies. The
distributions of the three populations of galaxies in redshifts are shown in the right panel of Fig. 4.16.

4.6.3 Galaxy density maps

Based on the WISExSCOS value-added catalogue and on its three sub-samples of galaxy types defined
above, I have constructed 3D galaxy density maps, in the redshift range 0.1 < z < 0.3, using the positions
of the sources on the sphere and their redshift information. To do so, I have reconstructed the density
field with the pyDTFE code presented in Chap. 3.3.1. Based on 3072 3D density fields in patches of
3.7◦ × 3.7◦, I have generated four 3D HEALPIX full-sky maps: one for all galaxies, and one for each
of the three populations of galaxies. The number of pixels of the HEALPIX maps are nside = 2048, i.e.,
a pixel resolution of 1.7’, and the binning in redshift was arbitrarily set at δz = 0.01. An example of
a slice at z = 0.15 of the 3D passive galaxy density map (smoothed at 30’ for visualisation) is shown
in Fig. 4.17. The large scale distribution of the galaxies is seen, together with contaminations, i.e., the
stripes due to the WISE scanning strategy, the mask of our galaxy and of the Magellanic cloud, and
the reddening from dust around our galaxy and the Magellanic cloud. High density concentrations are
also seen, which are galaxy clusters. In addition to the four galaxy density maps, I have constructed in
the same way 3D maps of SFR and M∗ for all galaxies, and for the active, transitioning, and passive
populations. The maps are constructed by interpolating at their 3D positions the SFR and M∗ estimated
with the RF algorithm.

4.7 Towards a WebService tool

I have developed a WebService based on python and on the Django package5. It allows to quickly
estimate on the fly the SFR and M⋆ properties of photometric SDSS sources. The interface is very
user friendly, one only has to enter the coordinates of the field and a radius for the cone search. The
trained RF model is called and loaded in back-end. HTML SQL queries on the AllWISE catalogue and
on the SDSS photometric redshift survey are performed in parallel, and a cross-match between the two
catalogues is performed on the fly. The RF model then uses the photometric redshifts from SDSS and
the WISE luminosities and colours to estimate SFR and M⋆, and display the sources in an interactive 3D
fields, together with their associated positions on the SFR-M⋆ diagram. The user can easily select with a
lasso selection the sources of a desired type with the information on the distance to the main sequence of
star-forming galaxies, and see their updated positions in the 3D field. A screen-shot in Fig. 4.18 shows
the interface of the WebService, with an example in a field of 30 arcmin around the position (R.A. =
180◦, Dec.= 0◦). In this example, passive galaxies were selected with the diagram on the right. An
over-density of the selected passive galaxies is seen in the 3D density field on the left (light blue circle).
The redshift and the position of this over-density of passive galaxies were matched with a galaxy cluster
from the RedMaPPer catalogue presented in Chap.2.4.1: RMJ120143.7-001104.2, at z = 0.16. Thus,
this example also shows the potential of such value-added catalogue and tool to detect galaxy clusters.

4.8 Summary

I have developed a method based on machine learning to estimate the SFR and M⋆ of galaxies, in the
redshift range 0.01 < z < 0.3, over the whole usable sky when their redshifts are known.

5https://www.djangoproject.com
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Abstract

In this chapter, I present a multi-wavelength analysis of two pairs of galaxy clusters selected with the SZ
effect. I have focused on one pair of particular interest: A399-A401 at redshift z ∼ 0.073, that is linked
by a bridge of matter of 3 Mpc. I have also performed the first analysis of one lower-significance newly
associated pair: A21-PSZ2 G114.09-34.34 at z ∼ 0.094, separated by 4.2 Mpc. I have characterised the
intra-cluster gas using the SZ signal from Planck and, when possible, the galaxy optical and infra-red
properties based on two photometric redshift catalogues: 2MPZ and WISExSCOS. From the SZ data, I
have measured the gas pressure in the clusters and in the inter-cluster bridge. In the case of A399-A401,
the results are in perfect agreement with previous studies and, using the temperature measured from
the X-rays, I have further estimated the gas density in the bridge, n0 = (4.3 ± 0.7) × 10−4cm−3. The
optical and IR colour-colour and colour-magnitude analyses of the galaxies selected in the cluster pair,
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together with their star formation activities, show no segregation between the galaxy populations both
in the clusters and in the bridge of A399-A401: they are all passive. The gas and galaxy properties of
this pair suggest that the whole system has formed at the same time and corresponds to a pre-merger,
with a cosmic filament gas heated by the collapse. For the cluster pair A21-PSZ2 G144.90-34.35, I have
estimated the pressure in the clusters and in the inter-cluster bridge in SZ. However, as the optical and
IR data are limited in this case, concluding on the presence of an actual cosmic filament or proposing a
scenario is not possible. This chapter uses material from “Gas and galaxies in filament between clusters

of galaxies: The study of A399-A401”, V. Bonjean, N. Aghanim, P. Salomé, M. Douspis, and A. Beelen,
2018, A&A, 609, A49.

Résumé

Dans ce chapitre, je présente une analyse multi-longueurs d’onde de deux paires d’amas de galaxies
sélectionnées avec l’effet SZ. J’ai mis l’accent sur une paire de particuler intérêt : la paire A399-A401,
à redshift z ∼ 0, 073, qui est reliée par un pont de matière long de 3 Mpc. J’ai également effectué la
première analyse d’une paire nouvellement associée : la paire A21-PSZ2 G114.09-34.34, à z ∼ 0, 094,
séparée par 4,2 Mpc. J’ai caractérisé le gaz intra-amas en utilisant le signal SZ de Planck, et spécifique-
ment pour A399-A401, j’ai étudié les propriétés optiques et infrarouges des galaxies à l’aide de deux
catalogues de redshift photométriques : 2MPZ et WISExSCOS. A partir des données SZ, j’ai mesuré la
pression du gaz dans les amas et dans le pont. Dans le cas de A399-A401, les résultats sont en accord
avec les études précédentes, et en utilisant la température mesurée à partir des observations en X, j’ai
estimé la densité du gaz dans le pont comme étant n0 = (4, 3±0, 7)×10−4cm−3. Les analyses optiques et
infrarouges des couleurs et des magnitude des galaxies sélectionnées comme membre de la paire d’amas,
ainsi que leurs activités de formation d’étoiles, ne montrent aucune différence entre les populations de
galaxies d’amas et celle du pont : elles sont toutes passives. Les propriétés du gaz et des galaxies de cette
paire suggèrent que tout le système s’est formé en même temps et correspond à une pré-fusion, avec un
gaz filamentaire cosmique chauffé par l’effondrement des deux amas. Pour la paire d’amas A21-PSZ2
G144.90-34.35, j’ai estimé la pression dans les amas et dans le pont inter-amas avec l’effet SZ. Cepen-
dant, comme les données optiques et IR sont limitées dans ce cas, il n’est pas possible de conclure sur la
réelle présence d’un filament cosmique ou de proposer un scénario. Ce chapitre utilise du matériel du pa-
pier “Gas and galaxies in filament between clusters of galaxies: The study of A399-A401”, V. Bonjean,
N. Aghanim, P. Salomé, M. Douspis, et A. Beelen, 2018, A&A, 609, A49.

5.1 Introduction

As the galaxy clusters are built up over time from mergers and interactions of smaller systems (e.g.,
Navarro, Frenk, and White, 1995; Springel et al., 2005), they are naturally connected to the Cosmic
Web via the filaments. Strategies to probe the Cosmic Web are thus associated with our ability to probe
filamentary structures between clusters or in their outskirts. This is in principle possible via observation
of the galaxy distribution (e.g., Durret et al., 2016), the weak gravitational lensing (e.g., Eckert et al.,
2015), the X-ray emission from the hot gas (e.g., Eckert et al., 2015), and the thermal SZ effect (e.g.,
Planck Collaboration et al., 2013b), but the search for filaments linking the clusters to the Cosmic Web
is really difficult due to their very low densities. This subject has gained a lot of interest, and focuses
mostly on two cases: filaments in the outskirts of individual clusters, and inter-cluster filaments (or
bridges) in pairs of clusters. Regarding the former case, Eckert et al., 2015 detected large-scale structures
of several Mpc in the outskirts of the galaxy cluster Abell 2744 at redshift z = 0.306, from combined
observations in the X-ray, of galaxy over-densities, and from weak lensing analysis. For the DAFT/FADA
cluster sample (Guennou et al., 2010), Durret et al., 2016 found filaments in clusters’ outskirts with
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two-dimensional galaxy densities obtained with CFHT and SUBARU observations. Regarding cluster
pairs, the inter-cluster filaments or the bridges are expected to be denser, with a hotter gas, and thus in
principle easier to detect, in particular in the X-rays and in the SZ effect (Dolag et al., 2006). Cluster
pairs are thus good targets and have therefore been the subject of numerous studies. The photometric
properties of the galaxies in the inter-cluster filament, their star-formation evolutions, their stacked weak
lensing properties, their stacked SZ contributions, and so on, were performed in many selected cluster
(or group) pairs (e.g. Fadda et al., 2008; Gallazzi et al., 2009; Edwards et al., 2010; Zhang et al., 2013;
Martínez, Muriel, and Coenda, 2016; Epps and Hudson, 2017; Tanimura et al., 2019b; de Graaff et al.,
2019). Galaxy clusters may show substructures or evidence of dynamical effect: they merge, interact,
and accrete smaller groups. The galaxy properties derived from optical and near-infrared data thus need
to be combined, in a multi-wavelength analysis, with the study of cluster gas content. The gas properties
of cluster pairs were therefore also investigated mostly using X-ray observations. This is the case of
the particular pair A399-A401, thoroughly studied using data from ASCA, ROSAT, Suzaku and XMM-
Newton (e.g. Karachentsev and Kopylov, 1980; Ulmer and Cruddace, 1981; Fujita et al., 1996; Fabian,
Peres, and White, 1997; Sakelliou and Ponman, 2004; Fujita et al., 2008; Akamatsu et al., 2017). The
gas in this galaxy cluster pair was already studied using both the X-ray (with ROSAT) and the SZ effect
(with the Planck SZ MILCA map of 2013) by Planck Collaboration et al., 2013b. Very recently, this pair
was studied in LOFAR (Govoni et al., 2019), where the authors have detected the presence of magnetic
fields in the bridge re-accelerating the electrons in the ionised gas between the two clusters.

In this chapter, I present a multi-wavelength analysis of A399-A401, based on the SZ map of 2015
from Planck, and optical and near infra-red data from photometric redshift catalogues with physical
galaxy properties estimated as described in Chap. 4. I also present a newly interesting pair: A21-PSZ2
G114.90-34.35.

5.2 SZ selection of galaxy cluster pairs

I have first constructed a sample of cluster pairs based on the SZ signal given that it is a priori the most
appropriate tracer of the diffuse hot gas. In practice, I have based the selection both on the SZ cluster
database (presented in Chap. 2.4.2) and on the signal-to-noise ratio of the SZ signal between the pairs.

5.2.1 SZ selection

Following Planck Collaboration et al., 2013b, I have applied three conditions to select the galaxy-cluster
pairs. First, the two clusters need to be at the same redshift, second, the distance between the two clusters
needs to be large enough to avoid blending effects, and finally, the significance of the SZ signal in the
inter-cluster region needs to be above 2σ. The two first empirical conditions were proposed by Planck
Collaboration et al., 2013b: ∆z<0.01, and considering the Planck MILCA SZ map beam of 10 arcmin,
30 arcmin<θsep<120 arcmin, where ∆z is the redshift difference between the two clusters and θsep is the
angular distance separating the two clusters. This corresponds to projected distances between 3 and 40
Mpc. I have found a total of 71 cluster pairs satisfying the two conditions (Fig. 5.1) in the SZ cluster
database of 2,690 clusters or candidates presented in Chap. 2.4.2.2. This is about three times more pairs
than the selection based on clusters from the MCXC catalogue, performed in Planck Collaboration et al.,
2013b. About one third of the clusters in these pairs are Abell clusters (Abell, Corwin, and Olowin,
1989), one third are Planck newly detected clusters, and the others are X-ray clusters from the MCXC
catalogue or SZ clusters detected by SPT.
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the bridge, y = 14.5 ± 1.8
(

l
Mpc

)0.5
× 10−6, where l is an effective depth of the bridge along the line of

sight. By comparing the obtained Compton parameter with a weight-averaged y parameter in the SZ map
(roughly estimated at y = 14 − 17 × 10−6 in Planck Collaboration et al., 2013b), they have deduced an
effective density n0 = 3.1 × 10−4cm−3 and an effective depth l = 1.1 Mpc. Akamatsu et al., 2017 have
compared this depth to the size of the bridge in the radial direction, ∼ 2.6 Mpc (compatible with the
result of my analysis, a size of 3.0±0.2 Mpc), and have concluded that the bridge is flattened. Following
their method, I have focused on the very central region of the bridge (within 2’ of the longitudinal axis)

and have estimated a Compton parameter y = 17.2 ± 1.3
(

l
Mpc

)0.5
× 10−6, with kbTX = 6.5 ± 0.5 keV and

n0 = 3.3
(

l
Mpc

)−0.5
× 10−4cm−3 (see their Fig. 7). I have compared this value to the value of the SZ map,

y = 22.2±1.8×10−6, and have estimated an effective depth of l = 1.7±0.5 Mpc. This value suggests that
the shape of the bridge is consistent with a cylinder, compatible with the hypothesis behind the model
chosen for the bridge in this analysis. However, the computations of the bridge depth l strongly depend
on the model of the electron density and on the assumed value of y.

The re-analysis of the Suzaku data by Akamatsu et al., 2017 has shown hints of a shock in the
direction parallel to the one linking the two clusters. Such a shock would be incompatible with a merger
scenario of two clusters only, since numerical simulations predict shocks in the radial direction (Akahori
and Yoshikawa, 2008). This suggests a pre-existing cosmic filament, an hypothesis supported by Planck
Collaboration et al., 2013b. The analysis presented in this chapter is complementary and brings additional
information on the scenario. The SZ emission traces and detects the diffuse gas, with a density one order
of magnitude below the mean densities in the clusters. In addition, I have detected a galaxy over-density
between the clusters A399 and A401 with a significance of approximately 8σ. The colour-colour, colour-
magnitude, and SFR-M⋆ diagram of the galaxies selected in the pair show that they are all passive. No
segregation is seen between the galaxies belonging to the three components of the pair. The properties of
the galaxies in the pair A399-A401 are those of the typical populations of galaxies in clusters or in dense
collapsed structures. This contrasts with the results showing a large fraction of star-forming galaxies
in intermediate-density environments such as filaments (Gallazzi et al., 2009; Edwards et al., 2010). It
suggests that the mechanisms by which galaxies can undergo a quenching of star formation (e.g. mergers,
harassment, ram pressure, etc.) are more efficient in the A399-A401 system which could be related to
the hot and pressured gas observed in the pair in SZ, X-rays, and radio.

5.6 Conclusion

I have performed an SZ-based selection of galaxy-cluster pairs showing hints of SZ signal potentially
associated with inter-cluster bridges. Among the 71 pairs satisfying the selection criteria on redshift
and angular distance separations, I have selected the systems at the highest significance: A399-A401
at redshift z = 0.073 with S/Nfil = 8.74, and A21-PSZ2 G114.90-34.35 at redshift z = 0.094 with
S/Nfil = 2.53. For these two systems, I have performed a multi-wavelength analysis that constrained the
gas properties, and I have studied the galaxy properties in the three components of the pair, defined by
the two clusters and the inter-cluster bridge.

For the most significant pair, A399-A401, I have measured a gas pressure in the inter-cluster bridge
only with the SZ effect, P0 = (2.84 ± 0.27) × 10−3keV.cm−3, that is in agreement with previous studies
that used both X-ray and SZ measurements (Planck Collaboration et al., 2013b). The types, morpholo-
gies, and star-formation activities of the galaxies in the clusters and in the inter-cluster bridge can not
be differenciated: they are all passive. The analysis of the galaxy properties weakens the post-merger
hypothesis which was already disfavoured by the lack of a big offset between the positions of the BCGs
and the centres of the X-ray emissions. This study, alternatively, favour the scenario in which the gas
between the two clusters is associated with a former cosmic filament. The gas is collapsing, smoothly
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compressed, and heated by the collision of the two clusters A399 and A401. The current data are how-
ever not deep enough to accurately measure the effect of environmental quenching in the bridge that
connects the two clusters. However, since the recent observation of this pair in LOFAR by Govoni et al.,
2019, a selection of radio sources can be performed in the bridge. A proposal for observing time with
ALMA is being prepared in collaboration with G. Castignani (EPFL), P. Salomé (LERMA), F. Combes
(Collège de France), N. Aghanim (IAS), and P. Jablonka (EPFL). We will select specific sources based
on the SFR in order to study the influence of the hot gas environment on the galaxies.

For the newly associated pair of clusters A21-PSZ2 G114.90-34.35, I have detected an inter-cluster
bridge at 2.5σ from the analysis of the Planck MILCA SZ map and from the 3D galaxy density field.
However, a significant detection of the bridge or a detailed study of galaxy properties around the pair is
not possible due to the lack of statistics. Dedicated observations in the X-rays, with a higher-resolution
SZ instrument, or optical or near infra-red wide-field spectroscopic data are necessary to confirm the
presence of inter-cluster bridge.

More complex systems, super-clusters, with high significance inter-cluster SZ signal were identified
in my sample and should be subject to future dedicated analyses: the Shapley super-cluster (in collab-
oration with N. Aghanim and T. Bonnaire) and the super-cluster A3395-A3391. This system is in the
footprint of the PACT y map (Aghanim et al., 2019), a high resolution SZ map obtained combining ACT
and Planck frequency channels. The high resolution of the PACT map should allows to have a more
detailed analysis of the gas properties of A3395-A3391.
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Abstract

The role played by the large-scale structures in the galaxy evolution is not quite well understood yet. In
this chapter, I investigate the galaxy properties in the range 0.1 < z < 0.3 from the WISExSCOS value-
added catalogue presented in Chap. 4.6.1 around the cosmic filaments detected with DisPerSE. I also link
the galaxy properties and the gas content in the Cosmic Web. I have fitted a profile of galaxy over-density
around cosmic filaments with a typical radius rm = 7.4 ± 0.1 Mpc. I have measured an excess of passive
galaxies near the filament’s spine, higher than the excess of transitioning and active galaxies. I have also
detected SFR and M⋆ gradients pointing towards the filament’s spine. I have investigated this result and
found an M⋆ gradient for each type of galaxies: active, transitioning, and passive, and a positive SFR
gradient for passive galaxies. I have investigated the quiescent fraction fQ profile of galaxies around
the cosmic filaments. Based on recent studies of the role of the gas and of the Cosmic Web on galaxy
properties, I have modelled fQ with a β model of gas pressure. The slope obtained here, β = 0.54± 0.18,
is compatible with the scenario of projected isothermal gas in hydrostatic equilibrium (β = 2/3), and

82



with the profiles of gas fitted in SZ (1/3 < β < 2/3). The material presented in this chapter will be used
for a future publication: “Quenching of WISExSCOS galaxies around SDSS filaments”, V. Bonjean, N.
Aghanim, M. Douspis, N. Malavasi, and H. Tanimura, in prep.

Résumé

Le rôle joué par les structures à grande échelle dans l’évolution des galaxies n’est toujours pas bien
compris à ce jour. Dans ce chapitre, j’étudie les propriétés des galaxies dans la gamme de redshift
0, 1 < z < 0, 3 du catalogue de valeur ajoutée WISExSCOS présenté au Chap. 4.6.1, autour des filaments
cosmiques détectés avec DisPerSE. J’ai étudié le lien entre les propriétés des galaxies et le contenu en gaz
dans la toile cosmique. Pour ce faire, j’ai ajusté un profil de surdensité de galaxies autour des filaments
cosmiques, et ai obtenu un rayon typique de rm = 7, 4 ± 0, 1 Mpc. J’ai mesuré un excès de galaxies
passives dans les régions internes des filaments. J’ai aussi mesuré des excès de galaxies en transition
et actives, mais inférieur à celui des galaxies passives. J’ai aussi détecté des gradients de SFR et de
M⋆ pointants vers les régions internes des filaments. J’ai investigué ce résultat en séparant les types de
galaxies, et j’ai aussi mesuré un gradient de M⋆ pour chaque type : active, en transition, et passive, et
un gradient de SFR positif pour les galaxies passives. J’ai ensuite étudié le profil de fraction de galaxies
éteintes, fQ, autour des filaments cosmiques. Basé sur des études récentes de la distribution du gaz
autour des filaments de la toile cosmique, j’ai modélisé fQ avec un modèle β de pression du gaz. La
pente obtenue ici, β = 0, 54 ± 0, 18, est compatible avec celle d’un profil projeté d’un gaz isotherme en
équilibre hydrostatique (β = 2/3), et compatible avec les profils de gaz détectés en SZ (1/3 < β < 2/3).
Le matériel présenté dans ce chapitre sera utilisé dans le cadre d’une future publication : “Quenching of

WISExSCOS galaxies around SDSS filaments”’, V. Bonjean, N. Aghanim, M. Douspis, N. Malavasi, et
H. Tanimura, en préparation.

6.1 Introduction

While galaxy clusters are relatively easy to study, to characterise, and even to detect, other Cosmic Web
structures, like cosmic filaments, are not easily defined because of their low densities. No global picture
such as the one drawn for the galaxy clusters has been derived yet, and even the definition of cosmic
filaments is still arguable since it depends on the way they are detected. Several methods have been
proposed to detect the cosmic filaments, for example Bisous (Tempel et al., 2016), DisPerSE (Sousbie,
2011), NEXUS+ (Cautun, van de Weygaert, and Jones, 2013), or very recently T-ReX (Bonnaire et al.,
in prep.). Each of them has advantages and disadvandages, making comparison between them really
difficult (see Libeskind et al., 2018 for a review or Bonnaire et al., in prep.). Despite this, recent studies
have used those methods to investigate the physical properties of the matter (Dark Matter, gas, or galax-
ies) in the filaments (e.g., Colberg, Krughoff, and Connolly, 2005; Dolag et al., 2006; Aragón-Calvo, van
de Weygaert, and Jones, 2010; Cautun et al., 2014; Gheller et al., 2015; Gheller et al., 2016; Martizzi
et al., 2019; Gheller and Vazza, 2019, Galárraga et al., in prep.). But studying the gas is only possible
in numerical simulations. Indeed, the hot gas around cosmic filaments is very hard to detect either in SZ
or in X-rays because of its low density and low temperature. It is only accessible in a few exceptional
objects such as the galaxy cluster pair A399-A401 presented in Chap. 5. Alternatively, some studies have
used the stacking around the highest density regions (in between galaxy cluster pairs (Tanimura et al.,
2019b; de Graaff et al., 2019) or inside super-clusters (Tanimura et al., 2019a)) to detect the densest parts
of the gas in the filaments around clusters. A first statistical study of the hot gas using the SZ effect
around cosmic filaments is performed in Tanimura et al., in prep.

Galaxies around cosmic filaments, easier to detect, have started to be extensively studied recently
in different surveys: in SDSS (e.g., Martínez, Muriel, and Coenda, 2016; Chen et al., 2017; Kuutma,
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Tamm, and Tempel, 2017, at z = 0.1, z < 0.7, and z < 0.7 respectively), in GAMA (e.g., Alpaslan et al.,
2015; Alpaslan et al., 2016; Kraljic et al., 2018, at z < 0.2, z < 0.2, and 0.03 < z < 0.25 respectively), in
CFHTLS1 (e.g., Sarron et al., 2019, at 0.15 < z < 0.7), in VIPERS (e.g., Malavasi et al., 2017, at z = 0.7),
and in COSMOS (e.g., Laigle et al., 2018, at 0.5 > z > 0.9). These studies show evidence of galaxy
population segregation inside filaments, hints of pre-processing and quenching process of galaxies while
entering the large scale structures, and of a positive stellar mass gradient pointing towards the filament’s
spines. Although these trends are detected in different studies, the mechanisms responsible of these
processes are not understood yet, and the role of the environment on the evolution of the galaxies is still
not clear.

In this chapter, I present a statistical study of galaxy properties from the value-added catalogue
presented in Chap. 4, around cosmic filaments at low redshift (in the range 0.1 < z < 0.3) extracted with
DisPerSE in a spectroscopic sample of galaxies from the SDSS. I show the statistical distributions of all
galaxies, and of passive, transitioning, and active galaxies around the cosmic filaments, together with
their stellar mass and SFR profiles. I also investigate the role of the Cosmic Web and of the hot gas on
the galaxy quenching around the cosmic filaments, by linking the quiescent fraction profile to a profile
of hot gas.

6.2 The catalogue of filaments

6.2.1 Cosmic filaments from LOWZ/CMASS

The BOSS survey is the only extra-galactic survey in the third stage of the SDSS (SDSS-III). It combines
the LOWZ and the CMASS catalogues, probing the low redshift (0.15 < z < 0.45) and the intermediate
redshift (0.4 < z < 0.7) Universe, respectively. These two catalogues are extensions of the primary
samples of SDSS galaxies to fainter regions and to bluer galaxies, in order to increase the spatial number
density by a factor of three2. This sample was used by N. Malavasi (IAS, Orsay) to construct a catalogue
of cosmic filaments using DisPerSE (Sousbie, 2011). I show in Fig. 6.1 the spatial distribution of the
filaments overlaid with the SDSS galaxies density field. The details of the construction of the catalogue
are given in Malavasi et al., in prep.

DisPerSE is an algorithm that detects filaments in catalogues of discrete points. The method is based
on the density field, reconstructed with the Delaunay Tessellation Field estimator (DTFE, described in
Chap. 3.3.1). DisPerSE detects critical points in the density field, that can be either maximum density
points, minimum density points, saddle points or bifurcation points. The output of DisPerSE is thus a
catalogue of filaments, defined as connecting the saddle points to the maximum density points. Each
filament is constructed by several small segments, with given positions and redshifts. DisPerSE also
outputs a persistence, that is a quantity related to the significance of the filament’s detections, that was
set to 3 σ in this case. I have defined the mean positions of the filaments (R.A.mean,Dec.mean) being the
mean of the positions (R.A.i,Dec.i) of the i segments. In the following, I have defined the minimum,
mean, and maximum redshifts of the filaments, zmin, zmean, and zmax, as the minimum, the mean, and the
maximum redshifts of the segments composing the filaments.

6.2.2 Selection of DisPerSE filaments

Since I study the properties of the WISExSCOS value-added catalogue, I have thus excluded the fila-
ments for which parts went outside the redshift range of the WISExSCOS catalogue, that is 0.1 < z < 0.3,
to ensure that the filaments of our selection are entirely studied. I have also cut the longest filaments at

1https://www.cfht.hawaii.edu/Science/CFHTLS/
2https://www.sdss.org/dr15/spectro/extragalactic-observing-programs/
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• 0 < l < 20 : nobj = 1042,

• 20 < l < 40 : nobj = 2291,

• 40 < l < 100 : nobj = 2226.

For the case of short filaments, I have set the upper limit to 20 Mpc based on the information given by
the 2-point correlation functions of groups in the 2DF survey (Yang et al., 2005), that infer that filaments
below this typical size may be the tiniest and densest filaments, i.e., bridges of matter connecting two
clusters, such as the bridge between A399 and A401, presented in Chap. 5. I have set the limit between
the regular and the long filaments arbitrarily to 40 Mpc to keep the same statistics in the two categories
(about 2250 filaments in each).

6.3 Measuring the profiles

6.3.1 Methodology

In order to measure the radial profiles of galaxy quantities around filaments, I have used the RadFil
code (presented in Chap. 3.3.2). To do so, RadFil takes as input two maps: one of the quantity of
interest, here the maps of galaxy densities constructed in Chap. 4.6, and one tracing the spine of the
filament around which it will perform the measurement, here the maps tracing the spines of the selected
DisPerSE filaments. In order to obtain the radial profiles, few steps were needed, explained hereafter.

• Normalisation of the maps

The galaxies in the WISExSCOS value-added catalogue are not uniformly distributed in redshift,
and the three population of galaxies do not follow the same distributions, as it is shown in Fig. 4.16.
Thus, the values of the mean galaxy densities in each redshift slice of the galaxy density maps
constructed in Chap. 4.6 also follow the same redshift distribution. Measuring the absolute value
of the galaxy densities may thus introduce bias. To avoid this, and to measure only the excess of
galaxies relative to the mean galaxy density in the field, I have normalised the 3D density maps in
order to consider over-densities δ. I have divided each slice of redshift of each 3D map by their
mean galaxy density values:

1 + δgal(z) =
ρgal(z)

< ρgal(z) >
. (6.1)

In that way, the 3D maps are transformed from biased densities ρgal to unbiased over-densities
1 + δgal.

• Projection on patches

For each of the 5559 filaments, I have projected the 3D maps of the obtained galaxy over-density
1 + δgal, on 3D patches centred on the position of the corresponding filament using a tangential
projection. The 3D patches have a pixel resolution of θpix = 1.7 arcmin, a bin in redshift of 0.01
(same as the full-sky maps), and a number of pixels which depends on the length of the filament
(computed in arcmin with the mean redshift zmean). Doing so, all filaments are entirely seen in
their corresponding individual patch and the fields of view of the largest patch is 19◦ × 19◦. As
95% of the patches have fields of view below 15◦ ×15◦, I have neglected the projection effects and
assumed the flat sky approximation.
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• Stack along redshift

Due to the high value of the statistical error on the photometric redshifts of the sources in the WI-
SExSCOS catalogue, σz = 0.033, 3D density profiles around filaments would be biased. There-
fore, I have stacked the 3D patches (obtained above) along the redshift axis to remove the uncer-
tainty on the positions of the galaxies in the redshift space. The resulting stacked maps are thus
2D arrays. Before stacking along redshift, in order to minimise the noise due to background and
foreground galaxies, I have removed for each filament the regions of the 3D patch that lie outside
the redshift range zmin − σz < z < zmax + σz, where zmin and zmax are the minimum and maximum
redshifts of the filament. Mathematically, this step translates into:

< 1 + δgal >=
1
bz

zmax+σz
∑

z=zmin−σz

(

1 + δgal

)

(z), (6.2)

where bz is the number of redshift bins in the range [zmin − σz, zmax + σz].

• Application of RadFil

I have fed RadFil with the 5559 2D stacked maps obtained above, together with the 5559 associated
2D filament’s spine projections, also in the format of 2D arrays. RadFil then measures the radial
profiles < 1 + δgal > (r) around each of the 5559 filaments.

• Stack the profiles

Finally, I have stacked the 5559 profiles to get one unique profile, exhibiting statistical trends
thanks to the significant reduction of the noise.

• Estimation of the error bars

To estimate the errorbars on the stacked profiles, I have used the bootstrap method (detailed in
Chap. 3.2.3). For the n measured profiles (where n is the number of filaments), I have randomly
selected n over n profiles with replacement, and have computed the mean profile. I have repeated
this measurement 1000 times and have computed the mean and the standard deviation of the 1000
mean profiles. The mean and standard deviations are taken as final measurements and errors in
this study.

6.3.2 Masking the galaxy cluster members

In order to measure galaxy over-density profiles along filaments uncontaminated by the galaxy cluster
members, I have removed the regions around known galaxy clusters, by masking the maps at the position
of all clusters with z < 0.4 from the PSZ2 catalogue (presented in Chap. 2.4.2), the MCXC catalogue
(presented in Chap. 2.4.3), the RedMaPPer catalogue (presented in Chap. 2.4.1), and from other cata-
logues of galaxy clusters detected in the SDSS: AMF9 (Banerjee et al., 2018), WHL2012 (Wen, Han,
and Liu, 2012), and WHL2015 (Wen and Han, 2015).

To mask the clusters in an optimal way, I have defined six masks: the first one where the galaxy
clusters are not masked, and the five others where the clusters were masked in regions from 1 × R500 to
5 × R500. The results are shown in Fig. 6.3. The galaxy over-density profiles decrease with increasing
radius of the mask, up to r = 3 × R500. Beyond this radius, the profiles are unchanged but the error-bars
increase. I have thus chosen to mask the clusters at r = 3×R500. For clusters without estimated R500 (only
a handful from the Planck catalogue in the SDSS area), I have masked a region with radii increasing up
to r = 10 arcmin. I show in Fig. 6.4 that masking at r = 5 arcmin is enough, as no difference in the
profiles is noticed. I have also masked regions around the critical points provided by DisPerSE, namely
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a study led by H. Tanimura, we have detected the SZ emission around cosmic filaments detected with
DisPerSE on SDSS galaxies in the range 0.2 < z < 0.6. We have estimated the temperature of the gas
around the filaments to be T ∼ 106 K, that is larger than the temperature of quenching of the halos found
in (Gabor and Davé, 2015): T ≥ 105.4 K.

The quiescent fraction profile measured in the previous section and shown in Fig. 6.12 should depend
mostly on the processes of quenching, that drives the population changeover. Driven by the results from
Tanimura et al., in prep. and by the previous studies discussed above, I have modelled the fQ profile with
a model of distribution of gas density around the cosmic filaments. Considering the results shown in the
right panel of Fig. 1.16, where the gas has been successfully fitted in SZ with a β-model, historically
used to model the gas density profiles in galaxy clusters (Cavaliere and Fusco-Femiano, 1978), I have
used the same model for fQ. It writes as:

fQ(r) =
fQ0

(

1 +
(

r
rs

)2
)

3
2β
+ c, (6.5)

where fQ0 is the mean ratio of excess of passive galaxies over the sum of the excess of active and
passive galaxies in the center of the filaments, rs is the core radius, β the slope of the profile, and c is the
background value.

I have performed an MCMC analysis (described in Chap. 3.2.1) and obtained the posterior distribu-
tions of the four parameters of Eq. 6.5. I show their distributions and their correlations in Fig. 6.13. I also
display in orange in Fig. 6.12 1000 models randomly picked from the MCMC distribution. The median
parameters are: fQ0 = 0.017 ± 0.003, rs = 4.4 ± 1.7 Mpc, β = 0.54 ± 0.18, and the background value
c = 0.498± 0.001. Assuming the quiescent fraction of galaxies traces the pressure of the gas responsible
of the quenching, the values of the slope β of the gas profile and of the quiescent fraction profile should
be the same. In this study, the slope β is not well constrained as seen in the distribution in Fig. 6.13: it
is fully degenerated with the parameter rs. However, β = 2/3 which is the case for projected iso-thermal
gas in hydrostatic equilibrium (scenario supported by numerical simulation, e.g., in Gheller and Vazza,
2019), is encompassed in the values allowed by the MCMC. Moreover, the values 1/3 < β < 2/3 that
best fit the gas profile in SZ shown in the right panel of Fig. 1.16 (where χ2 = 3.1, χ2 = 2.7, and χ2 = 2.5,
for β = 0, β = 1/3, and β = 2/3, respectively) are also encompassed in the allowed values by the MCMC.

6.6 Summary

I have studied in detail the statistical properties of the galaxies from the WISExSCOS value-added cat-
alogue around cosmic filaments detected with DisPerSE in the SDSS. I have measured with a high
significance (& 5σ) galaxy over-density radial profiles on the full sample of galaxies, and also on the
three populations: active, transitioning, and passive galaxies.

Despite some biases on the measurement due to the methodology or to the data themselves, I have
fitted an average profile of galaxy over-density around cosmic filaments with an exponential law. I have
obtained a typical radius of rm = 7.4 ± 0.1 Mpc. I have also pointed out the evidence of a higher excess
of passive galaxies than transitioning galaxies, and a higher excess of transitioning galaxies than active
galaxies near the filament’s spines. This excess of passive galaxies induces an SFR and an M∗ gradient
pointing towards the filament’s spines, that I have also detected. This indicates that there are more passive
galaxies near the filament’s spines, in agreement with the previous studies (e.g., Malavasi et al., 2017;
Kraljic et al., 2018; Laigle et al., 2018; Sarron et al., 2019).

I have also studied the excess of M∗ and of SFR for the three galaxy populations, and have pointed
out the evidence of a positive M∗ gradient for the active, the transitioning, and the passive populations
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very large galaxy surveys like Euclid4, LSST5, or WFIRST6, such studies on galaxy properties will be
possible for a broader range of redshift, for a wider field of view, and thus with a higher significance.

4https://www.euclid-ec.org
5https://www.lsst.org
6https://www.nasa.gov/wfirst
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Abstract

The Planck collaboration have extensively used the six Planck HFI maps, each of them with a beam
below 10 arcmin, to construct a full sky y map and to detect galaxy clusters with dedicated component
separation methods. Although powerful, these methods still introduce some bias in the detection of the
sources or in the reconstruction of the SZ signal, due to bias priors. For example the cluster detection
algorithm use the GNFW profile model as proxy for the shape of the galaxy clusters. This profile is
accurate on average, but not in individual clusters. In this chapter, I study the possibility of using deep
learning algorithms to detect the SZ signal from the Planck HFI frequency maps, without resorting on
any physical model. I use U-Net architecture network that shows very good performance, detecting all of
the Planck clusters in a test area. I have detected more than 13,000 candidate SZ sources in the full sky,
and have estimated their reliability by stacking different maps at their positions, i.e., CMB lensing, galaxy
over-density, ROSAT. They indicate together that very low pressure SZ sources are detected in Planck

thanks to the deep learning method. I also show that the diffuse emission is recovered around known
large-scale structures such as Shapley, A399-A401, Coma, and Leo. These results are promising for the
identification and the characterisation of the gas in the largest structures of the Universe. The material
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presented in this chapter will be used for a future publication: “Extracting the Sunyaev-Zel’dovich effect

in Planck with deep learning”, V. Bonjean, in prep.

Résumé

La collaboration Planck a utilisé les six fréquences de Planck HFI, chacune d’elles avec un faisceau
inférieur à 10 arcmin, pour construire une carte du ciel complet du paramètre y, et pour détecter des
amas de galaxies avec des méthodes de séparation de composantes dédiées. Bien que puissantes, ces
méthodes introduisent des biais dans la détection des sources ou dans la reconstruction du signal SZ. Par
exemple, l’algorithme de détection d’amas utilise le profil GNFW pour modéliser la forme des amas de
galaxies. Ce profil représente les amas en moyenne, mais n’est pas optimal pour représenter les amas
individuellement. Dans ce chapitre, j’étudie la possibilité d’utiliser des algorithmes de “deep learning”
pour détecter le signal SZ dans les cartes de fréquences de Planck HFI, sans recourir à aucun modèle
physique. J’utilise une architecture de réseau de type U-Net, montrant de très bonnes performances, par
exemple en détectant tous les amas Planck dans une zone de test. J’ai détecté plus de 13 000 candidats SZ
dans le ciel, et j’ai estimé leur fiabilité en utilisant le “stacking” dans différentes cartes à leurs positions,
i.e., la carte de lentillage gravitationnel du CMB, des cartes de surdensité de galaxies, et la carte en
émission X de ROSAT. Les résultats indiquent que des sources SZ individuelles à très basse pression
sont détectées dans Planck avec cette nouvelle méthode. Je montre aussi que l’émission SZ diffuse
est détectée autour de structures connues comme Shapley, A399-A401, Coma, et Leo. Ces résultats sont
prometteurs pour l’identification et la caractérisation du gaz dans les plus grandes structures de l’Univers.
Le matériel présenté dans ce chapitre sera utilisé dans le cadre d’une prochaine publication : “Extracting

the Sunyaev-Zel’dovich effect in Planck with deep learning”, V. Bonjean, en préparation.

7.1 Motivations

The Planck satellite (presented in Chap. 2.3), thanks to its spectral coverage between 30 GHz and 857
GHz, have provided data ideal to capture the signature of the SZ effect. Based on two component
separation techniques, i.e., NILC and MILCA (presented in Chap. 2.3.2), the Planck collaboration has
constructed full-sky maps of the y SZ Compton parameter at a resolution of 10 arcmin, using the six
frequencies of HFI (Planck Collaboration et al., 2016c).

The Planck collaboration has also applied Matched Multi-Filters on the six Planck HFI frequency
maps (as detailed in Chap. 2.4.2), to detect hundreds of new galaxy clusters via the SZ effect, that
were later confirmed in optical (e.g., Planck Collaboration et al., 2016e; Streblyanska et al., 2019).
Since then, some studies have shown promising results by increasing the number of Planck SZ cluster
sources to about 3500 by using new approaches, like artificial neural networks (Hurier, Aghanim, and
Douspis, 2017), or by combining with other wavelengths, e.g., in X-ray with ROSAT (Tarrío, Melin, and
Arnaud, 2019). Other studies have aimed at producing new higher resolution and lower noise SZ maps
by combining Planck and ACT data (Aghanim et al., 2019). New detections of individual clusters or of
stacked diffuse gas are still ongoing (as discussed in Chap. 1.3.2.4), showing that the full potential of the
Planck data has not been completely exploited.

Studies deriving SZ catalogues or maps have combined the data with biased knowledge priors (e.g.,
assuming GNFW profile model), or by degrading the resolutions to the highest angular beam for homo-
geneity (Planck Collaboration et al., 2016c). Those biased knowledge priors may prevent us from using
the full potential of the Planck data. In this chapter, I show the possible application of deep learning
algorithms on the Planck frequency maps to detect the SZ effect. By training on high signal-to-noise SZ
sources, i.e., galaxy clusters, deep learning algorithms are able to detect lower signal-to-noise ratio SZ
components without depending on any explicit model. This study is promising for the detection and the
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characterisation of individual structures with low pressure and diffuse gas in the Planck data. This is to
date a proof-of-concept study, where the mass or the redshift distributions of the detected SZ candidate
sources are still to quantify, and where the limits in signal-to-noise ratios of diffuse gas detections are
still to estimate.

7.2 Learning procedure

In this study, I have trained a deep learning algorithm applied on the Planck HFI frequency maps to
detect low signal-to-noise SZ sources via high signal-to-noise SZ emissions generated by the hot gas
inside the galaxy clusters. To do so, I have chosen as inputs of the machine learning algorithm small
patches of the Planck HFI frequency maps, and as outputs segmentation maps, showing the positions of
the clusters in the patches. The trained model thus provides an SZ probability map, between 0 and 1, that
can be compared with the known clusters in a test sample, or with the Planck MILCA SZ map.

7.2.1 Training catalogue

7.2.1.1 Catalogue of clusters

I have selected three catalogues of galaxy clusters to construct the segmentation maps that are used as
output data for the training of the machine learning algorithm. First, the PSZ2 catalogue of clusters, to
start with the very simplest case: learning Planck with Planck. To ensure the purity of the clusters, I have
selected the 1,094 PSZ2 sources that are confirmed galaxy clusters, i.e., with measured redshifts. I note
this cleaned catalogue the Planck z catalogue. I note the catalogue of remaining candidates the Planck
no-z catalogue. Second, I have chosen the MCXC catalogue of X-ray clusters, as it contains lower mass
clusters. I have selected MCXC clusters that are not included in the Planck catalogue, to merge galaxy
clusters detected in different wavelengths. In the following, I note the 1,193 galaxy clusters of the MCXC
catalogue that are not included in the PSZ2 catalogue, the MCXCwP catalogue. Finally, I have selected the
RedMaPPer cluster catalogue from optical data to test the limits of the model and try to detect very low
SZ signals, as it contains lower mass and higher redshift clusters. I have used RedMaPPer with different
selections in richness λ (relative to the number of galaxies in the clusters), i.e., different selection in
mass. I note RMi the selection of the RedMaPPer clusters with the criterion: λ > i. In the following,
I use the RM50 and the RM30 cluster catalogues. The three initial catalogues, i.e., PSZ2, MCXC, and
RedMaPPer, are presented in detail in Chap. 2.4.

7.2.1.2 Training set and test set

I have used HEALPIX with nside = 2 to split the sky onto 48 tiles of equal-sized area of 860 square
degrees each. One of them, the seventh one, is arbitrarily chosen to define a test area. This area is
centred on the position (l = 112.5◦, b = 41.81◦). In this area, there are 40 clusters from the Planck
z catalogue, 18 from the Planck no-z catalogue, and 50 from the MCXCwP catalogue. This area, and
especially the clusters inside, are used as a test area and a test sample, and none of its 860 square degrees
is seen by the model during the training. The training set is based on patches (projected as described in
the next section), extracted in the remaining 47 tiles of the sky.

7.2.1.3 Planck patches and segmentations

I have extracted from the Planck HFI frequency maps n = 100, 000 multi-channel patches, of 64 × 64
pixels with a resolution of θpix=1.7 arcmin (giving a field of view of 1.83◦ × 1.83◦). These patches
are chosen in the sky with random positions and random orientations, but each of the 100,000 patches
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contains at least one galaxy cluster of the cluster catalogue chosen as output. I have then constructed their
associated segmentation maps, by drawing circles of 5 arcmin diameter at the positions of the clusters.
The pixels showing the positions of the clusters are set to 1, while the pixels in any other regions are
set to 0. The diameter of the circles showing the positions of the galaxy clusters are set to 5 arcmin,
i.e., the size of the smallest beam in the Planck HFI frequency maps (at 857 GHz). This fixed size acts
like a filter and probably induces a bias in the reconstruction of the SZ sources in the SZ probability
maps, preventing the computation of any reliable flux. However, the information up to a resolution of
5 arcmin can be learned by the network. The dimension of the input data is 100, 000 × 64 × 64 × 6
pixels, and the dimension of the output data is 100, 000 × 64 × 64 × 1 pixels. 10% of the 100,000 input
patches, randomly chosen, are let selected the validation set, used to compute the performance of the
machine learning algorithm during the training process and to stop the training in case of over-fitting.
The training set is constructed with the remaining 90% patches.

7.2.2 Data pre-processing

To successfully apply the deep learning algorithm on Planck frequency HFI maps, a pre-processing of
the data is needed. The mean input data and their standard deviations should be of the order of the unity,
as machine learning algorithms perform better results for this range of values. However, in the Planck

maps, a large variety of sources are detected, that are producing signals with very different spectral
responses (e.g., radio sources bright in the low frequencies, dust sources bright in the high frequencies).
The shapes of the pixel distributions of the Planck HFI frequency maps are thus very non Gaussians,
preventing a simple normalisation of the maps to their means and their standard deviations. Here, I have
chosen an approach to optimise the capture of the CMB spectrum deviation at the scale of the CMB
fluctuation values (i.e., the secondary anisotropies, like the SZ effect).

The CMB fluctuations are themselves Gaussian distributions, but any kind of external sources (other
than CMB anisotropies) add positive emissions in the Planck frequency maps. This produces an asym-
metric Gaussian distribution, extended to the right part of the pixel distributions. I have thus fitted a
Gaussian to the left part of the distributions, up to their statistical modes (values that appear most often),
as shown in the left panel of Fig. 7.1. This part of the pixel distributions must contain the noise and the
CMB fluctuations in each frequencies. I have then normalised each maps by the means and the standard
deviations of the fitted Gaussians. This approach optimises the use of deep learning algorithms on the
Planck frequency maps for the study of the CMB fluctuations at each frequencies (e.g., the SZ effect).
I show the pixel distributions of each of the pre-processed HFI frequency maps in the right panel of
Fig. 7.1.

7.2.3 U-Net architecture

Convolutional Neural Networks (CNN) are very efficient to encode informations on extended objects
that can be invariant in translation or in rotation (detailed in Chap. 3.1.5), such as the case for SZ sources
in the Planck maps. Moreover, the U-Net architecture, based on CNN, is one of the most efficient to
reconstruct segmentation images (Ronneberger, Fischer, and Brox, 2015) (e.g., the U-Net architecture
has won the ISBI cell tracking challenge 2015 applied on biomedical image segmentation). For these
reasons, I have naturally chosen this network architecture to perform the training. A schema of the
original architecture from Ronneberger, Fischer, and Brox, 2015 is shown in Fig. 7.2.

The architecture of the U-Net is symmetric and is composed of two blocks: a contracting part, or
encoder (that encodes the spatial relevant informations), and an expansive part, or decoder (that decodes
the learned informations to, e.g., reconstruct segmentation maps). This network has already been suc-
cessfully applied in astrophysics to generate fast numerical simulations, to detect cosmic structures, or to
estimate the flux of blended galaxies (e.g., He et al., 2018; Aragon-Calvo, 2019; Boucaud et al., 2019).
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have also added dropout layers with a rate of 0.2 after each convolutional layers. The number of filters in
the beginning of the network is related to the complexity of the recovered different features. As the maps
of Planck used do not contain much complex spatial features, I have started the number of filters at 8,
increasing to 128 in the last layer of the encoder. I have used the Adam optimizer with an initial learning
rate set at 0.4, and the binary cross-entropy loss function. All the parameters on which the training
depend (i.e., dropout rate, kernel size, number of filters, initial learning rate) were varied in different
trainings of the U-Net, until finding the one actually learning the SZ features.

7.3 Cluster detection

I have investigated two cases. First, by training with the Planck z clusters, I have studied the possibility
of detecting more clusters in the Planck maps with deep learning. I show the results hereafter. Second,
I have trained three other models based on four different cluster catalogues in the output segmentation
maps. I have added successively MCXCwP, RM50, and RM30. Those clusters, even though not included in
the Planck catalogue, show statistical traces of SZ emission (as seen by the positive fluxes in Fig. 7.7).
This was performed to study the possibility of detecting very diffuse SZ emissions, and reconstructing
an SZ probability map. These results are shown in Chap. 7.4

7.3.1 Results on the test area

To train the algorithm to detect low signal-to-noise SZ sources in Planck HFI frequency maps, I have
started with the simplest possible case: learn Planck with Planck. The segmentation maps used as
outputs were generated based on the Planck z catalogue, to ensure an absolutely pure catalogue of
galaxy clusters. The U-net has been successfully trained for about ∼1.5 h on a GPU NVidia Tesla
K80, with a batch size of 20, and an early stopping of 12 epochs. Based on the trained model, I have
constructed a full sky map of SZ probability p.

To estimate the performance of the model and ensure that the U-Net has learned to detect SZ sources,
I have compared the SZ probability map in the test area and the test catalogues (i.e., clusters in the seventh
HEALPIX pixel with nside = 2, described in Chap. 7.2.1.2). To detect galaxy clusters, I have simply
defined the clusters as areas of probability p greater than a threshold pmax. For each area recovered
above pmax, I have computed the position as the barycentre of the pixels. This detection method is very
simplistic and not optimal but it is yet efficient enough to roughly check overall consistency. I have cross-
matched the sources detected with this method with the three catalogues: Planck z, Planck no-z, and
MCXCwP, and have studied the recovered clusters as a function of the detection threshold pmax. I show
in Fig. 7.3 the recovered clusters on the three catalogues (left panel) together with the number of new
detected sources (right panel). For a threshold pmax = 0.1, all the Planck z clusters are recovered,
together with 89% of Planck no-z clusters, and 12% of MCXCwP clusters. I have also detected 187 new
sources.

To ensure that the newly detected sources do not correspond statistically to point sources that might
contaminate the model (e.g., infra-red point sources), I have stacked the 187 new detected sources de-
tected in the test area with the threshold pmax = 0.1 in the Planck MILCA SZ map and in the Planck HFI
frequency maps. I show the results of the stack in Fig. 7.4. Presence of SZ sources is suggested by a
significant y emission in the Planck MILCA SZ map and by a signature of the SZ effect in the centre of
the HFI frequency maps are seen (i.e., a negative emission in the 100 and 143 GHz maps, and a positive
emission for the frequencies above 217 GHz). SZ sources may be populated by dust, suggested by the
excess of signal also seen in the centre of the map at 217 GHz. A bright infra-red source is also seen in
the HFI frequency stacked maps (under the centres), with an intensity increasing with the frequencies,
together with a complex background in the 100, 143, and 217 GHz stacked maps coming from the CMB.
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MCXC and the RedMaPPer clusters that are shown in Chap. 2.4. However, as the SZ effect is a projected
effect, there is a degeneracy between the redshift and the mass of the individual clusters. A detailed
investigation of the range of redshifts and masses of the new detected sources is not performed in the
present study, that only shows the potential of the application of deep learning algorithms on Planck data.
This detailed analysis will be subject of a future study.

7.4 Diffuse SZ emission

Motivated by the construction of a new SZ map more sensitive to lower signal-to-noise SZ emission,
I have trained three other U-nets, by choosing lower SZ signal-to-noise ratio galaxy cluster catalogues
of reference to construct the segmentation maps of the training catalogue. In practice, I have added the
MCXCwP clusters, the RM50, and finally the RM30 clusters, in addition to the Planck z clusters. There
are in total four U-Net models, the first one being the one presented in the previous section.

I have generated four full-sky maps of SZ probability based these four U-Net trained models. To illus-
trate the detection of diffuse gas, I have arbitrarily focused on four regions around large-scale structures
already identified as containing diffuse SZ signal: the Shapley super-cluster (Aghanim et al., in prep.),
the galaxy cluster pair A399-A401 that is fully described in Chap. 5, the Coma super-cluster (Erler et al.,
2015, Malavasi et al. in prep.), and the Leo super-cluster. I show these structures in patches extracted
from the SZ probability maps derived from the four models, together with the Planck SZ MILCA map
for a visual comparison in Fig. 7.8.

When adding the MCXCwP clusters, the diffuse gas around the super-clusters and the bridge of matter
between A399 and A401 are recovered. For the models with the RedMaPPer clusters, potential indica-
tions of large scale structures connecting the structures are seen. The SZ probability maps obtained with
the U-Net are visually very close to the MILCA SZ map, but they seem less noisy and better resolved.
These preliminary results are promising for the detection and the characterisation of the diffuse gas in
the large-scale structures.

7.5 Summary

By training deep learning algorithms such as the U-Net on the Planck HFI frequency maps to recognise
the spatial and spectral features of high signal-to-noise SZ signatures produced by the hot gas in known
galaxy clusters, lower signal-to-noise SZ sources are recovered. In the most conservative case when
training with the Planck z catalogue of 1,094 sources, I detect about 200 clusters more that are known
MCXC clusters, and more than 13,000 new sources above a detection threshold pmax = 0.1. This is
about a factor three more than the numbers of sources found by Hurier, Aghanim, and Douspis, 2017
or Tarrío, Melin, and Arnaud, 2019. Although the detection threshold has been set to a low value, the
sample of detected sources does not seem to suffer much from contamination, as shown in the stack of
the 13,220 new detected sources in maps probing galaxy cluster counterparts in different wavelengths.
The presence of dark matter halos is highlighted by the stacked CMB lensing map, the presence of
hot gas by the stacked Planck SZ MILCA map and the X-ray ROSAT map, the presence of red galaxy
over-density with the stacked galaxy maps constructed with the value-added WISExSCOS photometric
redshift catalogue.

By focusing on areas around multiple systems, I have shown that deep learning models can be used to
reconstruct an SZ map, more sensitive to lower signal-to-noise ratio SZ emissions. Although a qualitative
study is still to perform in a future analysis, this proof-of-concept study shows the potential of applying
deep learning algorithms on Planck data.

The U-Net and the method presented in this study can in principle also be applied to any components
separation in the Planck data, e.g., radio emission, dust emission, CO emission, CMB, and so on. I am
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Résumé

Dans ce chapitre, je décris l’analyse de données du large programme ESO (PI: N. Aghanim) obtenu
pour confirmer par la spectroscopie des galaxies en optique (avec VLT/FORS2) la présence d’amas de
galaxies détectés par leur contenu en gaz avec le satellite Planck. Due à des problèmes lors de la sélection
des sources à observer en spectroscopie, cette analyse requiert finalement une analyse des images en
photométrie (NTT/EFOSC2), qui ont du être re-traitées. L’analyse est toujours en cours à ce jour.

8.1 Introduction

Surveying the whole sky with Planck has permitted the detection of the most massive clusters and the
rarest ones in the exponential tail of the mass function (Planck Collaboration et al., 2016e). Several
follow-ups of Planck clusters were realised with the European Northern Observatory (ENO) at Las Ca-
narias (Barrena et al., 2018; Streblyanska et al., 2019), the Russian Turkish Telescope (RTT150) (Planck
Collaboration et al., 2015b), in the SDSS survey (Streblyanska et al., 2018), and with the Canada-France-
Hawaii Telescope (CFHT) (van der Burg et al., 2016), to ensure confirmation and redshift measurement
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characterization and validation of the PSZ1 catalogue). The sample of selected sources consisted of
142 cluster candidates. These sources comprised 21 high-reliability SZ sources (referred to as class 1
in Planck Collaboration et al., 2014), and 121 good reliability sources (class 2 and 3). In this chapter,
I present the ongoing data reduction of both spectroscopic and photometric measurements of the ESO
large programme.

8.2 Observations

The observations took place before the beginning of my PhD thesis, between 2013 and 2016, with a total
of 233 hours 25 minutes and 33 seconds of observations in photometry and in spectroscopy. In total,
119 cluster candidates were observed with the NTT/EFOSC2 telescope in the R and the z bands (with
the filters R#642 and z#623 respectively). These observations allowed the estimation of redshifts, zest,
based on the red sequence (Gladders and Yee, 2000). The galaxy members of 49 cluster candidates with
zest > 0.5 were observed in spectroscopy with VLT/FORS2, and some of the remaining candidates with
zest < 0.5 were additionally observed with a shallow V band (with the V#641 filter in the NTT/EFOSC2).

Figure 8.2: Image of the NTT at La Silla, in the southern part of the Atacama desert of Chile. Image
from https://www.eso.org/public/images/ib-la-silla15/. Credits: Iztok Boncina/ESO.

8.2.1 NTT/EFOSC2 imager

The photometric observations were made with the NTT/EFOSC2 in imaging mode, mounted at the Nas-
myth B focus of the NTT (3.58m Richey-Chretien telescope, shown in Fig. 8.2). The camera contains
2048 × 2048 pixels, with sizes of 15 × 15µm, or 0.12” × 0.12” on the sky, with a reading mode of 2 × 2
binned pixels corresponding to a field of view of 4.1′×4.1′. For all clusters, three observing blocks were
performed, together with corresponding biases and flat fields. A positional offset was applied to the three
observing blocks to remove the bad pixels, and to fill the inter-pixel regions.

8.2.2 VLT/FORS2 spectrograph

The spectroscopic observations were made with the VLT/FORS2 instrument in MXU mode, installed on
the UT1 telescope (Antu) of the European Southern Observatory (ESO) in Paranal (shown in Fig. 8.3).
The camera is composed of a mosaic of two 2k×4k MIT CCDs with 15µm pixels, with a pixel scale
of 0.25"/pixel using the Standard Resolution collimator, corresponding to a field size of 6.8’×6.8’. The
GRIS300I grism together with the OG590 filter were chosen in order to span a wavelength range of
6000 − 11000Å, and thus to properly detect the 4000Å break of passive galaxies in the typical range of
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Figure 8.3: Image of the VLT in Paranal in Chile. Image from
https://www.eso.org/public/images/eso0137k/. Credits: ESO.

redshift: 0.5 . z . 1. For all clusters, two to six observing blocks were taken, together with ten bias,
seven flat fields and one arc lamp calibration frames in the end of each observing nights. Standard star
frames were observed in MOS mode within one slit of 5", usually one to three nights before or after the
MXU observations.

8.3 Data reduction

During my PhD thesis, I have conducted the data reduction of the spectroscopic data of the galaxy
members of the 49 clusters observed with VLT/FORS2. During the preparation of the spectroscopic
observations in 2013-2015, there was an issue with the selection of the targets. The targets were originally
supposed to be selected based on the red sequence sources observed with the NTT/EFOSC2, but the
selection was instead done on the pre-images with VLT/FORS2 without information on the colour of
galaxies. As as result, the purity of the selected members was very low and only a handful galaxy
members were available for each cluster, compared to the 50 to 80 originally expected. Spectroscopic
data alone can thus not provide enough information to confirm the redshifts of the clusters: they have to
be combined with the information about the red sequence of galaxies, obtained with the photometry with
NTT/EFOSC2. Therefore, during my PhD, I have supervised an intern-ship, Raphaël Wicker, to work
on the reduction of the photometric NTT/EFOSC2 observations.

8.3.1 Spectroscopy

Following the strategy proposed with the ESO large programme collaboration, I have originally started to
reduce the data with the software VIMOS Interactive Pipeline and Graphical Interface (VIPGI) adapted
to handle FORS2 spectroscopic data: F-VIPGI (Nastasi et al., 2013). This software was perform-
ing the standard data reduction steps: bias substraction, correction from flat-field, spectral calibration,
spectro-photometric calibration. The F-VIPGI software, although powerful and interactive, was de-
grading the spectral resolutions of the VLT/FORS2, and was not providing satisfying results on the
spectro-photometric calibration (some sources were quite noisy or contaminated by atmosphere emis-
sion lines). I have therefore changed software and used the latest FORS2 pipeline1, together with the
latest EsoRex package2 (v. 3.12.3) to apply the standard reduction steps. The bias frames were combined

1available at http://www.eso.org/sci/software/pipelines/
2available at http://www.eso.org/sci/software/cpl/esorex.html
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using the fors_bias recipe. The flat field frames were combined and corrected from the master bias,
the bad pixels, and calibrated in wavelengths with the lamp frame and the lamp line catalog (provided
by ESO) using the fors_calib recipe. All the observing files (including standard star frames) were
corrected from corresponding master bias, master flat field, bad pixels, dispersion and curvature coeffi-
cients with the fors_science recipe. The spectro-photometric calibration was automatically made by
the fors_science recipe when a spectro-photometric table computed with the fors_science recipe
of a standard star frame is given together with a corresponding flux table provided by ESO. ESO re-
duction recipe fors_science outputs calibrated spectra for each observing block. The spectra of each
observing block and of each observation night were combined, by averaging them, to reduce the noise.

8.3.2 Photometry

Together with Raphaël Wicker, we have used the latest EFOSC2 pipeline3, with the EsoRex to apply
the standard reduction steps to the raw photometric data. EsoRex has standardised the recipes for all
the instruments. Therefore, the reduction steps were the same as for the spectroscopic observations with
VLT/FORS2. The bias frames were combined using the efosc_bias recipe. The flat field frames were
combined and corrected from the master bias, the bad pixels with the efosc_calib recipe. All of the ob-
serving files were corrected from corresponding master bias, master flat field, bad pixels, dispersion and
curvature coefficients with the efosc_science recipe. The photometric calibration was automatically
made by the efosc_science recipe with the zero points provided by the EFOSC2 pipeline. Images of
each observing block and observing night were combined to reduce the noise of the background, and to
fill the inter-pixel regions.

The sources were extracted in the combined images, with SExtractor (Bertin and Arnouts, 1996).
The resulting source catalogue provides magnitudes in the R, V, and z bands. The S/N of the recovered
sources was set at S/N > 1.5 σ for the systematic analysis of the images. Stars from GAIA DR2 in the
field of each cluster were removed when they matched SExtractor sources in a radius of 5". False detec-
tions due to cosmic rays were also removed from the catalogue based on obvious bias in the magnitudes
provided by SExtractor.

8.4 Example of results for PSZ1 G231.05-17.32

I present here one example of the cluster PSZ1 G231.05-17.32, for which both photometric and spectro-
scopic observations have been performed. This cluster was observed in photometry with NTT/EFOSC2
the night of the 27/28th of March 2014, in the R and Z bands, during 24 min each. Spectroscopy with
VLT/FORS2 was observed the night of the 13/14 of September 2015 during 10 min and the night of the
9/10 of December 2015 during 42 min. In the left panel of Fig. 8.4, I show the reduced observation of
NTT/EFOSC2, and overlaid the sources extracted with SExtractor. I show in the right panel of Fig. 8.4
the galaxy density maps of the cleaned catalogue of photometric sources, constructed with the pyDTFE
code (described in Chap. 3.3.1). It clearly shows a source over-density in the left part of the field of view.

Spectra observed with VLT/FORS2 were also reduced following the reduction steps described in
Chap. 8.3.1. I have used the on-line webservice MARZ4 to fit template spectra and thus measure the
redshifts of the sources. The five well fitted spectra in the field of view of the cluster PSZ1 G231.05-
17.32 are shown in Fig. 8.5 and in Fig. 8.6

For this cluster, where five spectra were well fitted at the same redshift, and here an over-density of
sources is seen in the field-of-view, I confirm the cluster, at z = 0.644 ± 0.006.

3available at http://www.eso.org/sci/software/pipelines/
4https://samreay.github.io/Marz/
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Résumé

Lors des analyses des images prises avec le NTT/EFOSC2 dans le cadre du large programme de l’ESO
pour confirmer certains amas Planck, un arc gravitationnel exceptionellement grand et lumineux a été dé-
couvert autour de l’amas PSZ1 G311.65-18.48. Cet objet a été sujet à des observations complémentaires,
notamment avec l’instrument MUSE. Je décris ici l’analyse de données de ces observations, qui serviront
par la suite à une étude plus poussée dus gaz moléculaire dans la galaxie lentillée à l’aide d’observation
en sub-mm, comme avec ALMA.

9.1 Introduction

By construction, the SZ-selected cluster sample seen in spectroscopy is essentially mass limited and
contains massive clusters (> 5 × 1014 M⊙) beyond z ∼ 0.5. These clusters are ideal for the observations
of lensed background galaxies (LBG). The NTT/EFOSC2 data from the ESO Large Programme have
lead to the discovery of the brightest giant arc ever seen in the optical/NIR at redshift z = 2.37, with an
observed total (AB) magnitudes of (R, z, J,Ks) = (18.03, 17.92, 17.66, 17.28), lensed by the cluster PSZ1
G311.65-18.48 at redshift z = 0.44 (Dahle et al., 2016). The combined NTT/EFOSC2 observation in
the R band of the field of view of the cluster PSZ1 G311.65-18.48 with the giant arc is shown in the left
panel of Fig. 9.1.

This newly discovered arc is much brighter than any previously known cluster-lensed LBG such
as the Cosmic Eye (Smail et al., 2007, z = 3.0 R=20 AB), or RCSGA 032727-132609 (Wuyts et al.,
2010, z = 1.7, 38" long arc with R=19 AB). Its exceptional observed length (55"; the width is < 1")
indicates extremely high magnification (µ & 50). In addition, its redshift (z = 2.37) puts it in a fortuitous
location where the spectral features ranging from Lyα to Hα are readily accessible for ground-based
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redshift, including one double image of the same source at z = 3.504, their index start with 1000 in
Tab. 9.1. Four other sources were detected after visual inspection, with also one double image at z =

4.614 (with index 2000 in Tab. 9.1). I present the four recovered multiple images that will be used to
construct the mass model of the cluster PSZ1 G311.65-18.48 in Tab. 9.1.

In parallel to our own analysis, this giant arc has been studied by an independent team with the
Hubble Space Telescope (Rivera-Thorsen et al., 2019), to construct a lens model with a high accuracy.

Index RA DEC Redshift A_WORLD B_WORLD THETA MAG_AUTO

3 5 237.563288 -78.197442 2.3700 0.000170 0.000050 62.23 18.8026
23 28 237.522244 -78.184778 2.3695 0.000249 0.000097 19.04 17.0217
40 48 237.499542 -78.188104 2.3694 0.000214 0.000085 46.33 17.6982
117 127 237.491025 -78.192897 2.3697 0.000198 0.000162 -59.13 18.6497
99 109 237.506232 -78.191985 1.1864 0.000113 0.000078 -76.35 20.8396
149 159 237.556697 -78.195855 1.1864 0.000059 0.000037 62.50 22.1555
171 1001 237.571100 -78.187364 3.5040 1.000000 1.000000 0.00 NaN
172 1002 237.495519 -78.196176 3.5040 1.000000 1.000000 0.00 NaN
177 2003 237.497030 -78.193454 4.6140 1.000000 1.000000 0.00 NaN
178 2004 237.522970 -78.193377 4.6140 1.000000 1.000000 0.00 NaN

Table 9.1: Table of the four multiple images detected, used to generate the lensing model. The four first
rows are each positions of the four arcs of the giant arc. The second part is the multiple image detected
with the continuum and SExtractor. The third part is the multiple image detected by muselet. The
fourth part is the multiple image detected by visual inspections.

9.4 Summary

I have described the MUSE observation and data reduction of an exceptional giant arc discovered in the
Planck/ESO large programme. This giant arc is produced by the galaxy cluster PSZ1 G311.65-18.48 at
z = 0.44, which lenses a star forming galaxy at z = 2.37. This analysis is still ongoing to date.

Based on the results obtained in this study, a proposal of observing time with ALMA was performed
two times (PI: A. Beelen). The ALMA facilities would allow the detection and the characterisation of
gas in resolved clumps inside the lensed galaxy, and therefore study at an unprecedented scale the star
formation process in a galaxy at the epoch of the peak of star formation (which occurred at z ∼ 2).
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Part IV

Conclusions
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During my PhD, I have explored the properties of the baryonic matter in the Cosmic Web, focusing
(i) on the galaxies and (ii) on the hot and diffuse gas, either in the intergalactic medium located along
filaments or inside galaxy clusters.

First, I have investigated the potential of using galaxy properties to characterise the largest structures
in which they are lying. To do so, I have fully developed a machine learning algorithm to estimate the
most relevant galaxy properties that allow their segregation into two types (passive and active) and the
measurement of their star formation rates (SFR) and their stellar masses (M⋆). This machine learning
algorithm is based on random forest, and was trained on infra-red data from the WISE satellite based on
SFR and M⋆ estimated in optical from the SDSS. The trained model can be applied to WISE counterpart
galaxies up to z = 0.3. It provides unbiased results with redshift or galaxy type. The model performs
good with standard deviation of σSFR = 0.38 dex and σM⋆ = 0.16 dex. This method can be extended
to higher redshifts and can be improved by choosing even better quality catalogue as training set for the
machine learning algorithm. For example, choosing as training set the SFR and stellar masses from the
GAMA galaxy surveys may allow an estimation of these quantities up to higher redshifts (i.e., z ∼ 0.5).
Significant improvements may also be possible with the future large galaxy surveys coming with very
high statistics like Euclid or WFIRST.

One product of my PhD was a value-added galaxy catalogue, based on the WISExSCOS photometric
redshift catalogue. Using the trained random forest model described above, I have estimated the SFR
and the stellar masses for the sources of the WISExSCOS catalogue in the range 0.1 < z < 0.3. Based
on this catalogue, I have investigated the link between galaxy properties and the hot gas and in particular
the quenching of the star formation activity of the galaxies. I have focused on an exceptionally dense
filament: a bridge of matter between the two merging galaxy clusters A399 and A401. This particular
pair was previously known and characterised by its gas content in X-rays and in SZ. In my PhD, I have
modelled the gas using only the SZ effect, constrained its properties, and for the first time studied the
star formation activity of galaxies lying in the bridge. These galaxies were found to be passive, as the
galaxies in the two clusters, confirming the hypothesis of a pre-merger stage where the gas lying in the
bridge is heated by the future collapse of the two clusters. This analysis could be completed with (i)
observations of the galaxy members in optical and in the mm/sub-mm (SITELLE, ALMA) as well as
with (ii) higher resolution in SZ (NIKA2). This bridge of matter is a perfect laboratory to study for the
first time in details the relation in a filament between the hot gas and the galaxy properties (like their
molecular gas content or their star formation efficiency).

I have extended my work on the bridge between A399 and A401 to a more significant number of
cosmic filaments. In order to do so, I have performed a statistical analysis of the galaxy properties in
a new sample of larger and less dense filaments. These cosmic filaments were detected thanks to the
SDSS galaxy spatial distribution with a method based on the gradient of the galaxy density field named
DisPerSE. I have identified 5559 filaments in the redshift range 0.1 < z < 0.3. I have then studied pro-
files of galaxy density and of galaxy properties, namely SFR and M⋆ around filaments of different sizes.
The analysis exhibited an excess of passive, transitioning, and active galaxies around filaments. I have
explored the relation between the galaxy properties and the hot gas. More specifically, I have explored
the link between the profile of quenching of galaxies, obtained from their passivity, and the profile of
the surrounding hot gas, using the outputs of a statistical analysis of the properties of the hot gas around
cosmic filaments. No firm conclusion on the relation between both profiles can be drawn for now con-
sidering the lack of statistics, but still an MCMC analysis shows commonalities between the allowed
value of the shape of the quenching profiles and of the shape of the gas profile. This type of study may
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be repeated with more significant conclusions using the future large galaxy surveys with higher statistics
like Euclid and WFIRST.

I have then explored the possibility of using deep learning algorithms to improve the detection of the
hot and diffuse gas around the structures of the Cosmic Web via the SZ effect. Previous studies have
already successfully detect the SZ effect and have constructed full-sky y maps or have detected galaxy
clusters using the Planck frequency maps. However, the SZ effect is very faint, quite hard to detect, and
none of the methods developed for now are optimal for the detection of faint sources. In this context,
I have developed a deep learning algorithm to detect the SZ effect in the Planck data. In this proof-
of-concept, I have detected more than 10,000 galaxy cluster candidates, that together show significant
counterparts in other wavelengths by stacking maps at their positions (like presence of dark matter by
stacking CMB lensing map or confirmation of diffuse hot gas by stacking ROSAT map in X-rays). This
shows promising results for individual detections and characterisation of the hot gas around the largest
structures of the Cosmic Web. This method can be improved if one uses higher resolution SZ maps like
the ones from the ACT or the SPT surveys. In the future, the galaxy cluster candidates detected thanks
to this method may be compared to the next generation of full sky surveys allowing the confirmation
of the presence of diffuse gas (i.e., with SRG/eROSITA in the X-rays). This could lead to a relatively
high number of new detected galaxy clusters or complex structures in the full sky, mostly expected at
intermediate or high redshift (i.e., z ≥ 0.5).

Finally I worked on the data reduction and analysis of an ESO large programme that aimed at con-
firming 129 southern SZ-cluster candidates from Planck via the detection of their galaxy members in
optical bands g, r, and z and in spectroscopy from 4000 to 8000 Angstrom. I have developed pipelines
to reduce both photometric data obtained with NTT/EFOSC2 and spectroscopic data obtained with
VLT/FORS2. Among the 129 SZ sources, only a handful are false detections. Estimated redshifts can
be provided for all the confirmed clusters. A total of 49 clusters with estimated redshifts z > 0.5 were
observed with VLT/FORS2. The spectroscopic confirmation of about 10 galaxy clusters with at least 10
galaxy members per cluster is secured but the analysis of the full sample of ∼ 3000 obtained spectra is
still ongoing. Within the sample of 129 SZ sources of this programme, a giant arc was detected around
one of the observed clusters. This giant arc has been observed with the MUSE facilities in spectroscopy
and in photometry. I present the data reduction, and the final products, i.e., (i) well resolved spectra of
the giant arc showing emission lines from regions of active star formation and (ii) an integrated image of
the giant arc together with of multiple lensed sources. These data will be the basis for the construction
of a lensing mass model to characterise both the lens and the high-redshift background object. We pro-
posed to observe this giant arc with ALMA in order to map its molecular gas content at a high angular
resolution. This will permit to study the resolved star formation regions in a galaxy at the epoch of the
peak of star formation, i.e., z ∼ 2.

As a conclusion, the work achieved in this PhD confirmed that using new techniques of machine
learning is relevant and very powerful to efficiently measure the physical properties of large numbers
of objects (i.e., galaxy surveys) but also to improve the detection and characterisation of faint signals
(i.e., hot gas in filaments and clusters via the SZ effect). This is an important step for the study of the
interplay between the galaxies and their environment inside the Cosmic Web. This interaction and the
possible galaxy quenching induced is an important agent for the evolution of galaxies. During these
three years, I have set-up new methods and applied them to a number of different cases that all together
shade a new light on the baryonic content of the Cosmic Web (in clusters, bridges of matter, and cosmic
filaments). This work can now be improved and extended to new cases. It opens new perspectives and
several projects are currently being implemented on this purpose.
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U-Net and more generally Convolutional Neural Networks are very powerful, and I intend in the
future to keep a close eye on such new statistical developments in data analysis, in order to continue to
apply them to various cases in observational cosmology. The increasingly large number of data expected
in the near future together with modern data analysis tools are thus very promising for cosmology and in
particular for the study of the Cosmic Web. In the context of the big data era in astronomy, well repre-
sented for example by the upcoming Square Kilometer Array (SKA) survey, developing computationally
and timely efficient tools for data reduction or source extraction in multi-channel data seems to me to be
of a highest priority and relevance.
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