N
N

N

HAL

open science

Matter in the largest structures of the Universe: from
galaxies to filaments, observations and data analysis

Victor Bonjean

» To cite this version:

Victor Bonjean. Matter in the largest structures of the Universe: from galaxies to filaments, obser-
vations and data analysis. Astrophysics [astro-ph]. Université Paris sciences et lettres, 2019. English.

NNT: 2019PSLEOO10 . tel-02882460

HAL Id: tel-02882460
https://theses.hal.science/tel-02882460

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-02882460
https://hal.archives-ouvertes.fr

PSL %

UNIVERSITE PARIS

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a 'Observatoire de Paris

La matiere dans les plus grandes structures de I’Univers :
des galaxies aux filaments, observations et analyse de

Soutenue par

Victor BONJEAN
Le 27 Septembre 2019

Ecole doctorale n°127

Astronomie_ et astro-
physique d’lle-de-France

Spécialité
Astronomie et
physique

astro-

I’.@vatowe
de Paris

PSL*

données

Composition du jury :

Francoise COMBES
Professeure au Collége de France

Stéphane ARNOUTS
Chargé de recherce au LAM

Olivier DORE
Research scientist au JPL

Sophie MAUROGORDATO
Directrice de recherche a lOCA

Simon, D. WHITE
Professeur au MPA

Nabila AGHANIM
Directrice de recherce a I'l|AS

Philippe SALOME
Astronome au LERMA

Présidente

Rapporteur

Rapporteur

Examinatrice

Examinateur

Directrice de thése

Directeur de thése






“John, the kind of control you’'re attempting simply is... it’s not possible. If there is
one thing the history of evolution has taught us it’s that life will not be contained. Life
breaks free, it expands to new territories and crashes through barriers, painfully, maybe
even dangerously, but, uh... well, there it is. [...] I'm simply saying that life, uh... finds a
way.”

— Dr. Ian Malcolm, Jurassic Park
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Cosmological context






Chapter 1

The large-scale structure of the Universe

Contents
1.1 Introduction . . .. . . ... i i i ittt ittt it eeeeeneneeees 3
1.2 Composition and structuration of the Universe . . . . ... ... .......... 5
1.2.1 Components of the Universe . . . . . . . . ... ... ... ... 5
1.2.2  StructurationintoaCosmicWeb . . . . . . . . .. ... oL 7
1.2.3  Characterisation of the Cosmic Web . . . . . . ... ... ... .. ...... 8
1.3 Observation of collapsed objects . . . . . . . . .. v i vt vttt i i 11
131 Galaxies . . . . . . o v it e 11
1.3.2  Galaxy clusters and large scale structures . . . . . . . . ... ... ... ... 16

In this chapter, I briefly describe the content and the structuration of our Universe, according to the
present cosmological model and observations.

Résumé

Dans ce chapitre, je décris brievement le contenu et la structuration de 1’Univers, tel qu’il est compris
selon les derniers modeles cosmologiques et les observations les plus récentes.

1.1 Introduction

From various observations of galaxy distribution, it is well established today that the Universe is struc-
tured in nodes connected by filaments and walls which surround large void regions : the Cosmic Web.
These large-scale structure are very complex, and the physical processes occurring at these large scales
are not quite well understood yet. As the structures in the Cosmic Web span a very wide range of den-
sities, their detection, for the less dense ones, is still debated. Therefore, a key step is to detect and
characterise the different structures of the Cosmic Web in order to understand their properties and their
evolution.

Since the first observations of the night sky with telescopes (e.g., by Galileo), catalogues of stars,
planets, and later of galaxies and even galaxy clusters were constructed, extended, and eventually made
public. Today, we have built and launched the most advanced telescopes and satellites (like Planck,
ROSAT, WISE, SDSS, LOFAR, or FERMI), and very promising ones are coming in the near future (like



SKA, Athena, SRG/eROSITA, Euclid, LSST, or WFIRST). These instruments have observed or will ob-
serve the entire sky (or at least a large portion of it) in a very wide range of the electromagnetic spectrum
(from the radio to the gamma rays). Thanks to all these observations, we can draw a comprehensive
picture of our Universe, for example in terms of galaxy distribution with SDSS, and also in terms of gas
content with ROSAT or Planck.

Gigantic public databases of observations in multi-wavelength are being constructed, making their
analysis and their combinations increasingly easy. However, all these available data (and even more in
the near-future), opens the era of big data (e.g., 300 PB per year are expected in the case of SKA). The
analysis of such quantities of complex data is and will be extremely delicate with the current computa-
tional facilities and the current approaches. The development today of new statistical methods to archive
and analyse efficiently large data volumes is crucial. Some algorithms, especially machine learning and
deep learning algorithms, perform better results than traditional approaches, and most of the time in
a smaller amount of time. They are now used or tested in a variety of domains of Astrophysics from
classification to emulation or component separation.

In my PhD thesis, I have investigated the properties of the largest scale structures of the Cosmic
Web. To this aim, I have used publicly available data in different wavelengths, that I have analysed with
statistical methods such as machine learning algorithms.

The following manuscript is organised in three parts: the first one, with chapters 1, 2, and 3, is
dedicated to an introduction to the subject, a description of the public data analysed and a presentation of
the statistical methods used. The second and the third parts of the manuscript include chapters presenting
the different studies on the properties of matter around the large scale structure of the Universe and the
data reduction of an ESO large programme. More specifically:

o In chapter 4, I describe a new method to estimate the star formation and the stellar mass of galaxies,
that allows us to segregate populations of galaxies inside their host structures. This method is based
on a machine learning algorithm, more specifically on random forest. In particular, this method
led to the construction of value-added catalogues allowing the comparison of spatial distribution
of galaxies (selected by their types) with the spatial distribution of the hot gas properties (derived
from the Sunyaev-Zel’dovich (SZ) effect).

o In chapter 5, I present the analysis of an exceptional object: a galaxy cluster pair between the clus-
ters A399 and A401 connected by a bridge of matter. This system has already been characterised
in terms of gas via X-rays and the Sunyaev-Zel’dovich effect measured by Planck. For the first
time I have added a study of the properties of the galaxies lying in between the two clusters.

o In chapter 6, I use the value-added catalogue containing more than 15 million sources constructed
with the method described in chapter 4 to statistically characterise the properties of galaxies around
cosmic filaments extracted from the SDSS survey. In this chapter, I present the profiles of galaxy
density around identified filaments. I then explore the link between the ratio of passive over ac-
tive galaxies and the profile of the hot gas around filaments. This study opens a path to assess
environmental quenching inside the filaments.

o Chapter 7 presents a proof-of-concept study where I use for the first time a state-of-the-art algo-
rithm of deep learning, namely a Convolution Neural Network, in a component separation context
to detect the hot and diffuse gas via the SZ effect. This method appears promising for the detection
and the characterisation of new individual clusters and complex filamentary structures.



o In chapters 8 and 9, I describe a large ESO programme aimed at confirming galaxy clusters de-
tected via their SZ effect. I have conducted the data reduction of the image and spectra of galaxies
in the surrounding regions observed with NTT/EFOSC2 and VLT/FORS?2. For one particular ob-
ject, a giant gravitational arc was detected. In the last chapter, I present the data reduction and the
results of a dedicated observation of this object with MUSE.

e Finally, I conclude this manuscript with a summary of the results presented in the different chapters
together with the different perspectives that this work opens.

The results presented in this manuscript have led to articles already published or in preparation:

o Gas and galaxies in filament between clusters of galaxies: The study of A399-A401,
V. Bonjean, N. Aghanim, P. Salomé, M. Douspis, and A. Beelen, 2018, A&A, 609, A49

o Star formation rate and stellar masses from machine learning,
V. Bonjean, N. Aghanim, P. Salomé, A. Beelen, M. Douspis, and E. Soubrié, 2019, A&A, 622,
Al137

o Detection of intercluster gas in superclusters using the thermal Sunyaev-Zel’dovich effect,
H. Tanimura, N. Aghanim, M. Douspis, A. Beelen, and V. Bonjean, 2019, A&A, 625, A67

e Properties and quenching of WISExSCOS galaxies around SDSS filaments,
V. Bonjean, N. Aghanim, M. Douspis, N. Malavasi, and H. Tanimura, in prep.

o FExtracting the Sunyaev-Zel’dovich effect in Planck with deep learning,
V. Bonjean, in prep.

o Gas density and temperature in cosmic filaments on scales of tens of megaparsec,
H. Tanimura, N. Aghanim, N. Malavasi, V. Bonjean, A. Kolodzig, and M. Douspis, in prep.

o Like a spider in its web: a study of the Large Scale Structure around the Coma cluster,
N. Malavasi, N. Aghanim, H. Tanimura, V. Bonjean, and M. Douspis, in prep.

o Measurement of galaxy correlation with thermal Sunyaev-Zel’dovich emission,
G. Fabbian, F. Bianchini, N. Aghanim, M. Douspis, and V. Bonjean, in prep.

1.2 Composition and structuration of the Universe

1.2.1 Components of the Universe

Today, the Universe is composed of ~ 69.4% of Dark Energy (DE), ~ 25.8% of Dark Matter (DM), and
~ 4.8% of ordinary matter (also called baryons), according to measurements from the Cosmic Microwave
Background (CMB) shown in Fig. 1.1 (e.g., Planck Collaboration et al., 2016b). Among these different
components, only baryons are directly observable. A budget in their different phases at low redshift has
been performed (e.g., Fukugita, Hogan, and Peebles, 1998; Cen and Ostriker, 1999; Shull, Smith, and
Danforth, 2012), and according to the latest study by de Graaff et al., 2019 (shown in the right panel of
Fig. 1.1), about 14% of the baryons are in stars, cold gas (mostly in galaxies) and in the Circum Galactic
Medium (CGM), and about 5% of the baryons are lying in a hot gas at temperature of about 10% K in the
Intra Cluster Medium (ICM, in the centres of galaxy clusters). The remaining baryons are in the form of
diffuse gas, either cold or warm (in the range 10* — 107 K), surrounding the inter-galactic medium. Based
on numerical simulations, baryons were traced along the epochs and about half of them are expected at
low redshift in the form of a warm hot diffuse gas, at temperature of order 10°—107 K (shown in Fig. 1.2):



this phase is called the Warm Hot Inter-galactic Medium (WHIM, Davé et al., 2001; Haider et al., 2016;
Martizzi et al., 2019). These baryons have been partially observed in densest environments (e.g., Eckert
et al., 2015), with [OVI] absorption lines in quasars line of sights (e.g., Nicastro et al., 2018), or in
measurements of the Sunyaev-Zel’dovich (SZ) effect (this effect is described later in Chap. 1.3.2.3) (e.g.,
Tanimura et al., 2019a; Tanimura et al., 2019b; de Graaff et al., 2019). As a matter of fact, about 20% of
the baryons, expected to lie in the WHIM, are still not detected to date (de Graaff et al., 2019).

galaxies® 7+2%
cold gas” 1.7+ 0.4%

B Dark matter | Baryons [l Dark energy

Figure 1.1: Left: content of our Universe according to Planck measurements (Planck Collaboration et al.,
2016b). Figure adapted from http://public.planck.fr/multimedia/1-photographies. Right: baryon budget
at low redshfit. Figure from de Graaff et al., 2019.
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Figure 1.2: Evolution of the baryons in different phases from z = 6 to z = 0 based on numerical
simulations. Half of the baryons are today lying in the WHIM. Figure from Haider et al., 2016.



1.2.2 Structuration into a Cosmic Web

The components of the Universe have evolved together, and eventually formed structures through accre-
tion of matter from the very small fluctuations of the density field due to quantum fluctuations in the
primordial Universe. Today, as observed in the distribution of galaxies in large surveys, like the Sloan
Digital Sky Survey (SDSS, York et al., 2000), the matter in the Universe is distributed following a highly
non-linear density field composed of nodes connecting filaments and walls (also called “pancakes” or
“sheets”), themselves surrounding large void regions (shown in Fig. 1.3). This complex network is called
the Cosmic Web (e.g., Bond, Kofman, and Pogosyan, 1996). Baryons go from voids to walls, from walls
to filaments, and from filaments to nodes, flowing along the skeleton driven by the DM. Matter accreted
into nodes eventually virialises and forms the largest gravitationally bound objects in the Universe: the
galaxy clusters.

Figure 1.3: Distribution of galaxies in the SDSS survey. Image from https://www.sdss.org/science;.
Credits: M. Blanton and SDSS.

This complex structure was also observed in the first N-body numerical simulations (e.g., Zel’ Dovich,
1970; Doroshkevich and Shandarin, 1978). These simulations took only gravity into account (neglect-
ing all baryonic effects), and resulted on a network of connected filamentary structures (shown in the
left panel of Fig. 1.4). The first observations of the Cosmic Web were made later in the 80’s, with the
reconstruction of the galaxy distribution around a galaxy cluster in the Center for Astrophysics Redshift
Survey (CfA, de Lapparent, Geller, and Huchra, 1986) (shown in the right panel of Fig. 1.4). This ob-
servation has demonstrated that galaxies were not randomly distributed in space, but rather assembled
around “bubbles”. A few decades later, other large galaxy surveys, e.g., the Two degree Field Galaxy
Redshift Survey (2dFGRS, Colless et al., 2003), or the SDSS (Adelman-McCarthy et al., 2008), con-
firmed these typical filamentary structures connected to galaxy clusters and surrounding large voids (see
Fig. 1.3).

As it is not possible to directly observe the DM, studying the properties of baryons (mainly in galax-
ies or hot gas) in the structures of the Cosmic Web is challenging. The most recent hydro-dynamical
numerical simulations such as Millennium (Springel, 2005), Horizon-AGN (Dubois et al., 2014), BA-
HAMAS (McCarthy et al., 2017), or Illustris-TNG (Springel et al., 2018), have made extremely large
number of particles (up to 15,625,000,000 DM particles in one of the Illustris-TNG simulation) evolve



10000 km/s

Figure 1.4: First hints of the Cosmic Web structure. Left: one of the first n-body simulations that repro-
duced the distribution of the matter in the Universe modelling gravity only. Figure from Doroshkevich
and Shandarin, 1978. Right: first observation of the large-scale galaxy distributions from the CfA2
survey. Figure from de Lapparent, Geller, and Huchra, 1986.

through gravity and have also included the physical processes related to the interactions of baryons (e.g.,
hydrodynamics, magnetic fields, cooling, star formation, Active Galactic Nuclei (AGN) feedback, etc.).
Hydro-dynamical simulations output properties of baryons around DM structures (as shown in Fig. 1.5),
and it is then possible to construct mock images that reproduce observable quantities. Therefore, hydro-
dynamical simulations offer the opportunity to study the property of the matter around the structures of
the Universe, useful to compare with the observations.

b S ¥
Figure 1.5: Snapshot at z = 0 of the TNG300 simulation from Illustris-TNG. It shows the bary-

onic density field, in a region with sides of about 300 Mpc. Image from the Illustris-TNG website
(http://www.tng-project.org/media/).

1.2.3 Characterisation of the Cosmic Web

The Cosmic Web exhibits different environments, that mostly depend on the density field. Environments
can be either local or global. They can be related to the different elements of the Cosmic Web: the nodes,
the filaments, the walls and the voids; each of these environments spanning a wide range of densities and



scales, and drawing complex forms and shapes that follow the gradient of the density field. Environments
can therefore be characterised through their over-density, defined as:

s(xy=2 P~ 1.1)

where p(x) is the density in the spatial position x, and < p > is the mean density of the considered
field.

1.2.3.1 Identification of structures

The Cosmic Web density field can be reconstructed based on the distribution of galaxies (in the case
of observations), or directly on the dark matter particles (in the case of numerical simulations). Several
methods have been developed to extract the structures and classify the Cosmic Web into nodes, filaments,
walls, and voids, e.g., Bisous (Tempel et al., 2016), DisPerSE (Sousbie, 2011), or NEXUS+ (Cautun,
van de Weygaert, and Jones, 2013). These methods are either based on geometrical pattern recognition
(by designing specific filters), on topological analysis of the density field, or on the gradient of the
density field. Therefore, the resulting detection and classification of the structures heavily depend on
the method, making any comparison delicate to perform (see Libeskind et al., 2018 for a detailed review
on the detection methods). An illustration of the outputs of nine different methods is shown in Fig. 1.6,
where red regions indicate the recovered nodes, blue regions show the filaments, green regions display
the walls, and white regions designate the voids. It is clearly seen that all these methods give a large
variety of outputs, each one with different proportions and sizes of voids, walls, filaments, and nodes.

1.2.3.2 Over-densities of the Cosmic Web elements

Based on numerical simulations, Cautun et al., 2014 have realised an inventory of the Cosmic Web
elements and their evolution. They have detected and classified the structures using their NEXUS+
algorithm. After their identification, they have performed an analysis of the distribution of over-densities
associated with each structure. These distributions are shown in Fig. 1.7. Voids, in red, are as expected
the lowest density regions, with typical over-densities in the range 0.01 < 1+ 6 < 1. Voids also dominate
the overall over-density distribution (in black) as they occupy most of the volume of the Cosmic Web.
On the other side, nodes (in yellow) are the most over-dense objects, as expected, with over-densities
starting at around 1 + 6 = 10 and going up to very extreme values of the order of 1 + 6 = 10,000. The
over-density distributions of both walls and filaments mainly occupy the same range of values. Most of
the wall over-densities (in green) are found in the range 0.1 < 1 + § < 10, while filament over-densities
(in blue) are found in the range 0.1 < 1 + ¢ < 100. We note that filament over-densities overlap with the
nodes’ distribution, suggesting that filaments can be rather dense structures. Moreover, the shape of the
distribution suggests that there are two categories of filaments: the rather dense (1 + 6 = 10 — 100) and
the less dense (1 + 6 = 0.1 — 1). The densest filaments might be small-sized bridges of matter in dense
environments, which may have different properties from large cosmic filaments (e.g., Aragén-Calvo, van
de Weygaert, and Jones, 2010).

1.2.3.3 Mass and volume fractions of the Cosmic Web elements

Cautun et al., 2014 have also studied the mass and volume fractions of the detected structures (shown in
Fig. 1.8). The two structures that dominate the mass fraction budget are filaments and walls (which may
look like filaments when projected in 2D): they account for ~ 50% and ~ 24% of the total mass fraction,
respectively. Voids represent ~ 15% of the mass fraction, and nodes, where galaxy clusters lie, account
for ~ 11%. In terms of volume, ~ 77% of the volume fraction is occupied by voids, while filaments and



Figure 1.6: Comparison of nine methods to extract structures and classify them into nodes, filaments,
walls, and voids. Figure from Libeskind et al., 2018.

12 + " overall —
[ 1 nodes ]
filaments

1.0 walls =

08 F

PDF

06 F
04 F

02 f

0.0 Lo o
102 10" 10° 10! 10 10° 10*
density 1+8

Figure 1.7: Histogram of the density 1 + ¢ for the four different environments: nodes, filaments, walls,
and voids, obtained from numerical simulations. Figure from Cautun et al., 2014.

walls account for ~ 24%, and nodes for only < 0.1%. Voids, although dominating the volume fraction
budget, are one of the least massive structures because of their very low densities (1 + ¢ ~ 0.01 as shown
above). On the other hand, due to their very high densities (1 + 6 ~ 100 — 1,000), nodes represent

10



about the same mass fraction than voids despite their very tiny volume fraction. Filaments and walls
occupy both a considerable volume fraction and represent most of the mass in the Universe, making
those structures the most suitable to characterise the Cosmic Web.
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Figure 1.8: Mass and volume fractions occupied by the Cosmic Web structures, which are the nodes, the
filaments, the walls, and the voids, from numerical simulations. Figure from Cautun et al., 2014.

1.3 Observation of collapsed objects

Now that the global picture of the Cosmic Web has been presented, I briefly describe here the main
astrophysical objects used to trace these large scale structures and to characterise them: these objects are
galaxies and galaxy clusters. I present their global properties, and how they are observed.

1.3.1 Galaxies

Galaxies are the easiest extra-galactic collapsed objects to observe since they emit in optical wavelength
which is adapted to humans eyes. They were first observed in the 19th century and in the beginning of
the 20th century, where they were originally defined as “diffuse nebulae” lying in our own galaxy. In the
early 20’s, E. Hubble confirmed their origin as extra-galactic, and since then galaxies were rapidly clas-
sified as a function of their morphologies and later as a function of their properties (e.g., their observed
colours) (e.g., Hubble, 1926; de Vaucouleurs, 1959). Indeed, galaxies span a wide range of morpholo-
gies: spheroidal, elliptical, spiral, irregular, etc. They have typical sizes between few parsecs to few kpc,
and have typical stellar masses in the range 108 — 10!' My. They are mainly composed of Dark Matter,
that have formed halos which are at the origin of gravitational potential wells. They contain gas, which
is the cradle of star formation; it has been accreted inside the potential wells, and it it inside galaxies in
form of a cold neutral molecular gas with T < 300 K, or warm ionised gas with T > 5000 K (Kalberla
and Kerp, 2009)). Galaxies also contain stars, with populations tracing their ages and thus the age of
the galaxies. The last main constituent of galaxies is the dust: it is related to the emission of stars as it
absorbs the stellar light emitted in optical, producing a “redenning” (e.g., Trumpler, 1930), and re-emits
it in the infra-red wavelengths. Therefore, dust and stars are the main ingredients to measure the stel-
lar population of a galaxy. A central super massive black hole may lie in the centre of some galaxies,
producing accretion of matter in their nuclei. The violent physical processes due to the interaction of rel-
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ativistic gas and accretion jets emit powerful lights in the whole range of the electro-magnetic spectrum:
these galaxies are called Active Galactic Nuclei (AGN) (e.g., Seyfert, 1943).

1.3.1.1 Galaxy bi-modality

Today, it is well established that there are two main populations of galaxies: active and passive galaxies.
This is called the “galaxy bi-modality” (e.g., Baldry et al., 2004). The former population, the active one,
contains younger galaxies, that are vigorously forming stars fuelled by their molecular gas. They appear
bluer in the optical wavelengths, are rather not massive, and have typical spiral morphologies (as shown
in the left panel of Fig. 1.9). Galaxies of the later population, the passive ones, have exhausted their
molecular gas supplies and therefore no longer form stars; these galaxies are “red and dead”, appearing
in redder colours in the optical wavelengths. They are more massive, and have elliptical morphologies
(shown in the right panel of Fig. 1.9).

Figure 1.9: Difference between passive and active galaxies. Left: the passive galaxy M87 observed with
the Hubble Space Telescope. Right: the active galaxy M74 observed with the same telescope. Credits:
NASA/ESA.

1.3.1.2 Star formation activity
Generalities

A main quantity allowing to distinguish galaxies from the two populations is the specific star formation
rate (sSFR): how many stars they form compared to their stellar mass. This quantity can hence be
deduced by the following two quantities: the stellar mass (M,), and the star formation rate (SFR).
Indeed, displaying these two quantities on a diagram makes it possible to segregate passive from active
galaxies (as shown in Fig. 1.10). This illustration shows positions in the SFR-M, diagram of a sample of
galaxies. Star-forming galaxies (blue dots in Fig. 1.10) are aligned along a line called the main sequence
(e.g., Brinchmann et al., 2004; Elbaz et al., 2007). Galaxies leave the main sequence when they stop
forming stars. This process is called “quenching” and happens when a galaxy looses its cold gas. This
process is not well understood yet because it can be a combination of different phenomena, like the
interaction of galaxies with an external hotter and denser gas (harassment (e.g., Moore et al., 1996),
strangulation (e.g., Peng, Maiolino, and Cochrane, 2015), starvation (e.g., Trussler et al., 2018), ram
pressure stripping (e.g., Gunn and Gott, 1972)), tidal interactions due to mergers, or ejection of the gas
through AGN jets (e.g., Dubois et al., 2013). In all cases, galaxies stop forming stars and undergo a
transitioning stage (green dots in Fig. 1.10, the so-called green-valley (e.g., Alatalo et al., 2014; Moutard
et al., 2018), and finally settle in the region of the passive population (red dots in Fig.1.10). Galaxies
can also undergo episodes of burst of star formation due to recent accretion of gas (e.g., in mergers): this

12



is called “starburstiness” (e.g., Elbaz et al., 2011). Such galaxies lie in the upper regions of the main
sequence in the SFR-M,, diagram (shown in purple points in Fig. 1.10).

THE STAR-FORMING MAIN SEQUENCE AND OUTLIERS
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Figure 1.10: Schematic view of the SFR-M,, diagram. Active galaxies in blue follow a main sequence.
Starbursts in purple and passive galaxies in red lie in the upper and in the lower region of the diagram,
respectively. Transitioning galaxies in green are populating the green valley. Credits: CANDELS col-

laboration.

Estimating M, and SFR
Estimating the quantities SFR and M, is complex (see Kennicutt and Evans, 2012 for a review); they

are directly or indirectly related to the observations of stars. But as presented above, the light of stars
interacts with other components (e.g., it is absorbed by dust), so a good understanding of the contributions
of the different elements interacting with the light from stars is necessary in order to properly estimate
the quantities. An example of galaxy spectrum of the galaxy M82 is shown in Fig. 1.11. The different
elements contributing to the total light escaping from galaxies (OB stars, non-ionizing stars, HII regions,
synchrotron, and dust) have been reconstructed with models of Galliano, Dwek, and Chanial, 2008 and

Galliano et al., 2011.

The young and massive O- and B-type stars are the hottest and thus the most energetic stars (e.g.,
purple line in Fig. 1.11). Their black-body spectra peak in the blue wavelength and they strongly emit
in the UV. The UV luminosity of distant galaxies traces these types of stars that in turn directly relate
to the SFR, as they represent the youngest stellar populations. However, at these wavelengths the dust
absorption is very important and correcting the UV luminosities from the dust attenuation is not trivial
(e.g., Lagache, Puget, and Dole, 2005; Kennicutt and Evans, 2012). Multi-wavelength tracers or dust

attenuation estimations in the UV/optical are therefore needed to correct UV luminosities and use them
as a direct tracer to derive estimations of SFR (e.g., Calzetti, Kinney, and Storchi-Bergmann, 1994;
Kennicutt, 1998; Salim et al., 2007; Kennicutt and Evans, 2012; Janowiecki et al., 2017).
The non-ionizing low-mass old stars represent most of the contribution to the galaxy luminosities in
the optical (e.g., orange line in Fig. 1.11). As they are the most numerous in a galaxy, the optical lumi-
nosity is also directly related to the number of stars, and thus to the stellar mass, given a theoretical model

13



of star population and an initial mass function (IMF) (e.g. Bruzual and Charlot, 2003). The estimation of
stellar masses strongly depends on the assumed IMF. For example, a typical correcting/calibration factor
of ~ 1.6 is needed to change from a stellar mass with a Salpeter IMF (Salpeter, 1955) to a stellar mass
with a Chabrier (Chabrier, 2003) IMF (Haas and Anders, 2010).

In the near IR (NIR) (~ 0.8um< A <~ 3um), the old and non-massive stars also represent most
of the contribution to the total luminosity. These wavelengths can therefore also trace the stellar mass
through the old population, in the same way as optical measurements do (e.g., Wen et al., 2013). In
the mid IR (MIR) (~ 3um< A <~ 70um), the contribution of dust becomes predominant (e.g., red line
in Fig. 1.11). Particularly in the 8-12 um band, the contribution of heated small grains and polycyclic
aromatic hydrocarbon (PAH, Leger and Puget, 1984) offers a useful tool to study the composition and
the abundance of dust. From ~ 20um to ~ 70um, the luminosity is mostly due to thermalised dust and
large grains heated by the UV emission of the energetic young O- and B-types stars. The luminosity in
the IR is thus indirectly related to the SFR and some relation between these two quantities were built,
using for example the 8um and the 24um bands from the Spitzer satellite (Werner et al., 2004), or the
12um and the 22um from the Wide-Field Infra-red Survey Explorer (WISE, Wright et al., 2010) satellite
(e.g., Calzetti et al., 2007; Kennicutt et al., 2009; Jarrett et al., 2013; Cluver et al., 2014; Cluver et al.,
2017).
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Figure 1.11: Spectrum of the galaxy M82, with observations from Spitzer, IRAS, ISO, WISE, 2MASS
and Herschel. The contribution of the different components have been reconstructed with models of Gal-
liano, Dwek, and Chanial, 2008 and Galliano et al., 2011. Image from http://dustpedia.com/science.php.
Credits: DustPedia team.

1.3.1.3 Environmental dependency

An environmental dependency on the properties of galaxies has been shown both on observations and on
simulations (e.g., Peng et al., 2010; Peng, Maiolino, and Cochrane, 2015; Alpaslan et al., 2016; Malavasi
et al., 2017; Laigle et al., 2018; Kraljic et al., 2018; Pintos-Castro et al., 2019; Kraljic et al., 2019; Sarron
et al., 2019).

In high density environments, like galaxy clusters, galaxies are observed more passive (e.g., Pintos-
Castro et al., 2019). Indeed, galaxy clusters (described in detail the next section) are the “graveyards”
of galaxies: galaxies are falling into their potential wells, and due to the interaction with the hot gas
inside clusters, stop forming stars and slowly “die”. As a result, galaxies in clusters contain mostly
populations of old stars, exhibiting similar properties, thus resulting in similar observed spectral energy
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distributions (SED). Therefore, clusters can be described as an aggregation of passive galaxies at same
redshifts appearing with the same colours. However, as galaxies span a different range of magnitudes
(which mostly depend on their sizes or on their stellar masses), they tend to align along a red sequence in
colour-magnitude diagrams (e.g., Gladders and Yee, 2000). The red sequence is thus a good indicator of
the presence of galaxy clusters: it is even used for their detections in large galaxy surveys (e.g., Rykoff
et al., 2014).

Correlations between galaxy properties and less dense environments such as cosmic filaments have
also already been observed. For example, spins of galaxies were found to align along the axis of the fila-
ments: this is called “spin-alignment” (e.g., Jones, van de Weygaert, and Aragén-Calvo, 2010; Aragon-
Calvo and Yang, 2014; Codis, Pichon, and Pogosyan, 2015; Kraljic, Dave, and Pichon, 2019). It has
also been observed that galaxies inside cosmic filaments tend to be more massive and more passive (e.g.,
Alpaslan et al., 2016; Malavasi et al., 2017; Laigle et al., 2018; Kraljic et al., 2018; Sarron et al., 2019).
Figure 1.12 shows the distributions of distances of passive and active galaxies around cosmic filaments
detected with DisPerSE on VIPERS galaxies at z ~ 0.7. The median distance of most massive galax-
ies is smaller than the median distance of less massive ones, and the median distance to filaments of
passive galaxies is smaller than the median distance of active ones. Recently, some studies have found
that Cosmic Web environment may be sufficient to explain the quenching of galaxies (e.g., Gabor and
Davé, 2015; Aragon-Calvo, Neyrinck, and Silk, 2016). Aragon-Calvo, Neyrinck, and Silk, 2016 have
investigated the effects of the connections of the Cosmic Web in the accretion of the gas inside galaxies
and the interactions with the diffuse gas inside filaments as the origin of quenching of galaxies, while
Gabor and Davé, 2015 have reproduced the results from Peng et al., 2010 showing the correlation be-
tween environment and quenching of galaxies, simply by defining a temperature of quenching inside the
host halos. However, the link between the Cosmic Web and the properties of galaxies is still not clear to
date, but there may be a correlation with the hot and diffuse gas that is surrounding cosmic filaments and
galaxy clusters (e.g., Kukstas et al., 2019). It is thus crucial to investigate both galaxy properties and gas
properties around the Cosmic Web structures to understand the mechanisms of quenching.
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Figure 1.12: Distribution of distance of galaxies to filaments D normalised by the mean inter-galaxy
separation < D, > for three selections of galaxies. Left: selection in mass. Middle: selection in galaxy
type. Right: selection in mass for active galaxies. Arrows indicate the median values of the distributions.
Figure from Malavasi et al., 2017.
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1.3.2 Galaxy clusters and large scale structures
1.3.2.1 General properties of clusters

Galaxy clusters are the largest gravitationally bound objects in the Universe. They have typical radius of
~ 1 Mpc and typical masses in the range 10'3> — 10'> M. Their underlying over-densities can grow, in
their centres, up to extreme values (i.e., 1 +9 > 10%, as seen in Fig. 1.7).

Due to their high densities, galaxy clusters are relatively easy to observe. However, their extension
and their boundaries are not easy to define. To define a cluster’s radius, a threshold in density can be set,
delimiting a volume in which a certain amount of density is encompassed. Usually, the density is defined

2
as a function of the critical density of the Universe, p, = 3?758 ,

and is expressed as follows:

PA. = Acpe. (1.2)

Using this definition, a galaxy cluster is defined by the volume where p > A.p., where A, is set
arbitrarily. In the literature, three thresholds A, are mainly used to define edges of galaxy clusters, from
very central parts to large radii: A, = 2500, A, = 500, and A, = 200. The first two thresholds were
initially set to define cores of clusters, in particular when using X-ray observations that are biased to the
densest environments. The last threshold A, = 200 was introduced in numerical simulations as a rough
proxy to the virial radius. Based on these density thresholds, a radius, and thus a mass can be derived.
The radius is defined as the spatial extension up to which the threshold in density is reached: Ra,. The
mass is defined by the total mass contained inside Rx_, and can be estimated with the density:

MA(? = pAcVAc’ (13)

where V, is the volume embedded in Rp,. Assuming spherical symmetry, the volume of a cluster in
Ry, is:

4
Vy, = gnRAﬁ. (1.4)
Mixing Eq. 1.3 with Eq. 1.2, and Eq. 1.4, the mass Mj, is thus related to the radius Ry, by:
AHGE)? 4
M, = ———Ra.". 1.
A oG Ra (1.5)

1.3.2.2 Cluster content

Galaxy clusters are mainly composed of Dark Matter (~ 80%), hot gas (~ 16%) at temperature of order
108 K, and stars and cold gas in galaxies (~ 4%) (e.g., Bykov et al., 2015). Dark Matter (originally sug-
gested by Zwicky, 1937) can be indirectly observable via gravitational lensing induced by high densities
of clusters: the high dense region disturb space-time and lense background galaxies. This phenomenon
produces gravitational arcs around galaxy clusters (e.g., Smail et al., 2007; Wuyts et al., 2010; Dahle et
al., 2016), or weak lensing (e.g., Mandelbaum, 2018), allowing the reconstruction of their total masses.
Dark Matter in clusters also produces CMB lensing, which also allows the reconstruction of their total
masses (e.g., Planck Collaboration et al., 2018a). Studied in numerical simulations, Dark Matter density
profiles around galaxy clusters turned out to be universally shaped, following a Navarro, Frenk, & White
profile (NFW, Navarro, Frenk, and White, 1996; Navarro, Frenk, and White, 1997). Galaxies, as de-
scribed in the previous section, are observable in optical and infra-red via the light emitted by stars and
dust. Their distributions and their properties in clusters are statistically known thanks to observations in
large galaxy surveys like the SDSS (e.g., Baxter et al., 2017; Chang et al., 2018; Adhikari et al., 2019;
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Pintos-Castro et al., 2019). Hot gas in galaxy clusters can be observed in several ways. First, it is vis-
ible in X-rays via the Bremsstrahlung emission (e.g., Byram, Chubb, and Friedman, 1966; Bradt et al.,
1967, for the first detections). This emission is a radiation produced by the deceleration of the hot free
electrons by the charged protons lying in the hot ionised gas. Bremsstrahlung emission is proportional
to n? (where 7. is the electron density), making X-rays suitable to trace the densest regions of the hot
gas in the ICM. Hot gas can also be detected by the Sunyaev-Zel’dovich effect, that is described in detail
in the next section. Statistical properties of the hot gas around galaxy clusters, like pressure or entropy
profiles, have been derived thanks to numerical simulations and to observations in X-rays and SZ (e.g.,
Nagai, Vikhlinin, and Kravtsov, 2007; Arnaud et al., 2010; Planck Collaboration et al., 2013a; Bartalucci
et al., 2017; Ghirardini et al., 2019). The distributions of the different components in galaxy clusters are
therefore known on average, even up to clusters’ outskirts (see the reviews of Kravtsov and Borgani,
2012, Bykov et al., 2015, and Walker et al., 2019).

1.3.2.3 The Sunyaev-Zel’dovich effect

The Sunyaev-Zel’dovich effect (SZ, Sunyaev and Zeldovich, 1970; Sunyaev and Zeldovich, 1972) is a
secondary CMB anisotropy, resulting from the interaction of CMB photons with a distribution of high
energy electrons. CMB photons interact with the hot ionised electrons via inverse Compton scattering.
Therefore, free electrons input energy to CMB photons and the CMB spectrum is slightly distorted with
a very peculiar spectral signature: a decrement below 217 GHz, and an increment beyond (as shown
in Fig. 1.13). The frequency dependency of the distortion is expressed as a function of the temperature
change AT as:

AT
T = Sy, (1.6)
CMB

where Tcyvp is the temperature of the CMB, f(x) where x = ksi}“lZMB is the frequency dependency,

and y is the Compton parameter that quantifies the amplitude of the SZ effect. The Compton parameter
y is given by:

y= 5 [ nekaiiha 17
mecC

(<

where ot is the Thomson cross-section, m. the mass of the electron, ¢ the speed of light, kg the
Boltzmann constant, and n(/) and T.([) the density and the temperature of the free electrons along the
line of sight, respectively.

The frequency dependency of the temperature change, f(x), is given by:

41
¢ +1 —4)(1 + 8s7(x, Te), (1.8)

fx) = (x

ex_

where 0s7(x, T.) is the relativistic correction.

While the effect just described above is called the thermal SZ effect (tSZ), there is another effect: the
kinetic SZ effect (kSZ). Here, energy of CMB photons are increased (or decreased) by Doppler effect
induced by the global proper motion with respect to the CMB rest frame of a bulk of hot electrons moving
towards (or backwards) us. For example, it may happen in galaxy clusters that are moving with respect
to the CMB frame. In that case, a change of temperature is expressed as:

AT 1%
= —re (), (19)
Tems c

where vy is the velocity of the moving electrons along the line of sight, ¢ the speed of light, and 7.
is the electron opacity:
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Te = O'Tfne(l)dl. (1.10)

The kSZ effect is another way of detecting the hot and diffuse gas in the Cosmic Web, but as shown
in the right panel of Fig. 1.13, it is a very tiny effect, even smaller than the tSZ effect. Therefore its
detection is for now only statistical (e.g., Planck Collaboration et al., 2016f; Planck Collaboration et al.,
2018b) or in individual structures presenting high velocities observed with high resolutions and high
sensitivity telescopes like NIKA2 (e.g., Adam et al., 2017). Hence I only mention the tSZ effect as the
“SZ effect” in the following manuscript.
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Figure 1.13: Left: CMB spectrum in dotted line, and distorded by the SZ effect in solide line. Here, the
effect have been modeled for a galaxy cluster 1000 times more massive than typical galaxy clusters to
illustrate the effect. Right: spectral distortion of the SZ effect. A decrement in the CMB itensity is seen
below 217 GHz, and an increament is seen beyond. Figure from Carlstrom, Holder, and Reese, 2002.

The probability of a CMB photon to interact with an electron is quite small. Therefore, the SZ effect
is preferentially detected in extended and dense regions, where the probability of a CMB photon to be
scattered is the highest. Galaxy clusters are very extended objects containing an ionised ICM heated at
temperature of about T ~ 10® K. This hot gas in clusters is an ideal environment to produce SZ effect. For
example, this effect has allowed the characterisation and the detections of thousands of galaxy clusters,
either in surveys like Planck, the Atacama Cosmology Telescope (ACT), or the South Pole Telescope
(SPT) (e.g., Planck Collaboration et al., 2016c; Planck Collaboration et al., 2016e; Marriage et al.,
2011; Hasselfield et al., 2013; Bleem et al., 2015), or in individual pointings with dedicated instruments
like MUSTANG, NIKA2, or ALMA (e.g., Adam et al., 2018; Kitayama et al., 2016). A recent review
presenting the astrophysics with the SZ effect have been made in Mroczkowski et al., 2019.

1.3.2.4 Large scale structure detections with stacking and SZ

The SZ effect is proportional to n. X 7', making it more sensitive to lower dense region compared to
Bremsstrahlung emission seen in X-rays (as seen in Fig. 1.14). The SZ effect is therefore in theory the
most suitable tracer of the diffuse gas lying around the Cosmic Web structures. As a matter of fact, the SZ
effect has allowed first statistical and individual studies of the hot gas in clusters’ outskirts (e.g., Planck
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Collaboration et al., 2013c; Planck Collaboration et al., 2013b; Planck Collaboration et al., 2013a; Adam
etal., 2018).
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Figure 1.14: The Coma cluster as seen by Planck in SZ, and by ROSAT in X-rays. Credits: ESA.

Even outside the region of cluster’s outskirts, the SZ effect has also allowed the first detections of the
WHIM around different structures using the stacking of the SZ map reconstructed from Planck:

e Stacking Luminous Red Galaxies (LRG): the WHIM has first been detected in Tanimura et al.,
2019b and de Graaff et al., 2019, where LRG pairs have been stacked in the SZ map and a positive
residual emission have detected in between the galaxies.

o Stacking super-clusters: in an other study, Tanimura et al., 2019a have stacked the Planck SZ maps
at the position of the super-clusters identified in Liivamigi, Tempel, and Saar, 2012, by masking
all the known clusters up to 3 X Rsgp lying inside. We have detected in this study an excess of SZ
signal due to unbound gas between the clusters in the biggest potential wells generated by the dark
matter in super-clusters of y = (3.5+1.4)x 1078, that correspond to 17-52% of the missing baryons.
The stacked SZ MILCA Planck map of the super-clusters masked from the known clusters, and
the radial profile with the best fitted model of diffuse gas are shown in Fig. 1.15.

e Stacking filaments: in a more dedicated analysis, Tanimura et al., in prep. have stacked cosmic
filaments detected in SDSS galaxies, which allowed the first characterisation in terms of temper-
ature (T=1.2 + 0.4 x 10° K) and over-density (0 ~ 25) of the gas in cosmic filaments by the SZ
detection. The stacked SZ profile of filaments is shown in Fig. 1.16.
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Tempel, and Saar, 2012. Clusters are masked up to 3XRs00. Right: radial profile of the stacked y MILCA
map. A model of diffuse gas has been fitted, to relate the quantity of unbounded gas to 17-52% of the
missing baryons. Figures from Tanimura et al., 2019a.
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Figure from Tanimura et al., in prep.
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Chapter 2

Surveys and catalogues in different
wavelengths
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In this chapter, I describe the main public data in different wavelengths that I have used for my work.
The data analysis aspects, such as for example the selections of the sources in the different catalogues (if

any), will be presented in more detail in the different chapters.

Résumé

Dans ce chapitre, je décris les donnée publiques en différentes longueur d’ondes que j’ai utilisée pour
mon travail. Les aspects d’analyse de données, par exemple la sélection des sources dans les différents

catalogues, seront présentés dans les différents chapitres en détail.

2.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey! (SDSS, York et al., 2000) is one of the largest available optical survey
in astronomy. While other large surveys dedicated to the study of the galaxies cover deeper but smaller

'https://www.sdss.org
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regions in the sky (e.g., GAMA (Driver et al., 2009; Driver et al., 2011), VIPERS (Guzzo et al., 2014), or
COSMOS (Scoville et al., 2007)), the SDSS takes advantage of its very large footprint (more than 1/3 of
the sky is observed, see Fig. 2.1). The SDSS, started in 2000, has provided images in five optical bands:
u, g, 1, 1 and z, and have performed spectroscopic measurements of more than three million astronomical
objects (including stars, quasars, galaxies, etc.). It uses the facility of two 2.5m telescopes at the Apache
Point Observatory (New Mexico, USA) and at Las Campanas Observatory (Atacama, Chile). The SDSS
is a collaboration that aims at mapping the nearby Universe, and at understanding the physical properties
of objects in different domains of astrophysics (e.g., stellar physics, cosmology, planetary science). As a
matter of fact, SDSS data have been used to probe the existence of dark matter with the distribution of
galaxies, to study the BAO, the physics of the galaxies, quasars, stars, and also to study the Milky way,
the Solar system and other planetary systems?.

Messier 33

> S . ,
‘;‘\ Southern Galactic Cap : Northern Galactic Cap
SDSS

Figure 2.1: Image showing the footprint of the SDSS-III survey, together with observations of the galaxy
Messier 33 and its HII region NGC 604. Image from https://www.sdss.org/surveys/. Credits: M. Blanton
and SDSS.

The SDSS is currently in its fourth stage of observation, and has made public its 15th data release
(SDSS-IV DR15). SDSS has released catalogues of galaxies seen in spectroscopy, i.e., with very reliable
redshifts, like the LOWZ and the CMASS selections (both part of the BOSS survey (Dawson et al.,
2013)), mapping the low redshifts (0.15 < z < 0.45) and intermediate redshift (0.4 < z < 0.7) Universe,
respectively. I describe these two catalogues in detail in Chap. 6.2.1; the positions and redshifts of these
two catalogues have been used by N. Malavasi (IAS, Orsay) to extract a catalogue of cosmic filaments.
This catalogue is the base of the study presented in Chap. 6, where I investigate the statistical properties
of galaxies around cosmic filaments. From the SDSS catalogue of galaxies observed in spectroscopy,
several value-added catalogues have also been generated, based on more detailed study of galaxy spectra,
in order to derive their physical properties, like the SFR or the stellar mass (e.g., Brinchmann et al., 2004;
Chen et al., 2012; Maraston et al., 2013; Montero-Dorta et al., 2016). I have chosen the SDSS MPA-JHU

*https://www.sdss.org/science/
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DRS8 catalogue (described in detail in Chap. 2.1), as a reference to construct the training catalogue used
to train the machine learning algorithm developed to estimate SFR and stellar mass of nearby galaxies,
presented in Chap. 4.

The SDSS MPA-JHU DRS catalogue

On the spectral SDSS galaxy catalogues released at each DR, value-added catalogue were computed by
the MPA-JHU groups, from the Max Planck Institute for Astrophysics (MPA) and the Johns Hopkins
University (JHU). They have studied in detail the emission lines in the spectra and fitted the continuum
to extract different galaxy properties. The catalogue based on the DR8? of the SDSS, that is the MPA-
JHU DRS catalogue, is publicly available on the SDSS website*. It provides SFR and stellar masses for
1,843,200 galaxies with redshifts up to z ~ 0.33, computed following Kauffmann et al., 2003, Brinch-
mann et al., 2004, and Tremonti et al., 2004. They have used the photometric and the spectroscopic
information of the SDSS data to estimate the SFR, leading to a more accurate measurement than using
the spectra only. For this reason, I have chosen this catalogue to construct the training set of the machine
learning algorithm developed to estimate SFR and M, for nearby galaxies (presented in Chap. 4). The
distribution of the sources in the SFR-M,, diagram of the SDSS MPA-JHU DR8 catalogue is shown in
Fig. 2.2.
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Figure 2.2: SFR-M,, diagram of SDSS MPA-JHU DRS galaxies. The lines show the 1o to S0~ contours.
The dots represent 100 randomly selected galaxies from the catalogue. The purple solid line shows the
main sequence of star forming galaxies given by (Elbaz et al., 2007). The colours of the galaxies indicate
the distance to the main sequence, d2ms, illustrating the passivity.

The median SFR (flagged as SFR_TOT_P50 in the SDSS MPA-JHU DRS catalogue) are estimated
using the nebular emission lines corrected from the dust extinction. For star-forming galaxies, the H,

Shttp://sdss3.org/dr8/
“https://www.sdss.org/drl4/data_access/value-added-catalogs/?vac_id=mpa- jhu-stellar-masses
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emission-line and the Balmer decrement H,/Hg in the fiber aperture are used as proxy of the SFR
(Brinchmann et al., 2004), combined with the photometry in the u, g, r, i, and z bands outside the
aperture (in order to take into account star forming regions in the entire extension of the galaxies). For
AGN or no-emission-line galaxies, the SFR were estimated using a relation between the SFR and the
spectral index D4ggp (Bruzual A., 1983; Balogh et al., 1999; Brinchmann et al., 2004). The median M,
(flagged as LGM_TOT_P50 in the SDSS MPA-JHU DRS catalogue) are computed based on Kauffmann
et al., 2003. In Kauffmann et al., 2003, they have used Monte Carlo realisations of different star for-
mation histories based on theoretical models of stellar populations of Bruzual and Charlot, 2003. They
have assumed a Kroupa initial mass function (IMF) (Kroupa, 2001), and have fitted the models to the
magnitudes in the u, g, 1, i, and z bands, corrected from nebula emission lines from the spectra.

The SDSS MPA-JHU DR8 catalogue provides a flag (BPTCLASS) indicating the positions of the
galaxies in the Baldwin, Phillips & Terlevich (BPT) diagram (Baldwin, Phillips, and Terlevich, 1981).
This diagram segregates population of galaxies by comparing the emission-line ratios [OIII] /Hg and
[NII] /H,. In the classification provided by the MPA-JHU DRS catalogue, BPTCLASS = 1 corresponds
to star-forming galaxies, BPTCLASS = 2 to composite galaxies (transitioning), BPTCLASS = 3 to
AGN, BPTCLASS = 4 and BPTCLASS = 5 to low-S/N emission lines galaxies (Brinchmann et al.,
2004). The class BPTCLASS = -1 corresponds to galaxies unclassifiable in the BPT diagram: passive
galaxies without emission lines (Brinchmann et al., 2004). These classes are efficient to segregate the
populations of galaxies, as shown in Fig. 2.3. The BPTCLASS = 1 galaxies are well aligned on the main
sequence of star forming galaxies, the BPTCLASS = -1 galaxies are well in the red cloud of passive
galaxies, and the BPTCLASS = 2 galaxies are well populating the green valley between the two main
populations.
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Figure 2.3: BPT classes of the SDSS MPA JHU DRS catalogue in a SFR-M,. diagram. The contours
show the different BPT classes: BPT = -1 in red show the passive galaxies, BPT = 1 in blue the active
galaxies, BPT = 2 in green the transitioning galaxies, and BPT = 3 in purple the AGN.
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2.2 The WISE satellite

The Wide-field Infra-red Survey Explorer (WISE) satellite (Wright et al., 2010) has observe the full sky
in infra-red with a 40 cm telescope. It was launched on December 2009, and has observed the full-sky
in four near- and mid infra-red wavelengths, at 3.4um (W1), 4.6um (W2), 12um (W3), and 22um (W4),
providing maps with spatial resolutions of 6.1", 6.4", 6.5" and 12", respectively. The WISE survey has
a sensitivity 1,000 times better than the first survey in infra-red, i.e., the Infra-red Astronomical Satellite
(IRAS, Neugebauer et al., 1984). The wavelengths of WISE are ideally placed in the electromagnetic
spectrum to study the dust in the galaxies and also the emission of old stars. When combined with
other surveys in optical, like the SDSS, an almost complete view of the star formation ongoing in nearby
galaxies can be retrieved, as the information of both old stars and dust emitting the light absorbed from
the young stars are available. Thus, its wavelengths range and its incredibly large number of detected
sources (> 700,000,000), make WISE an ideal instrument to estimate galaxy properties such as SFR and
stellar mass. An image combining the full sky observations of WISE in W1, W3, and W4, is shown in
Aitoff projection in Fig. 2.4.

Figure 2.4: Image combining the full sky observations of WISE in the W1 (blue colour), W3 (green
colour), and W4 (red colour) bands. Image from the NASA’s website: https://www.nasa.gov/mission_
pages/WISE/multimedia/pial 5481.html. Credits: NASA/JPL-Caltech/UCLA.

2.2.1 The AIWISE Source Catalogue

From the co-added WISE Atlas Images, the AIIWISE Source Catalogue was generated and made public?,
with accurate positions, photometry, and ancillary informations for 747,634,026 detected sources (Cutri
et al., 2013). The catalogue provides several informations about the sources, such as their magnitude and
their signal-to-noise ratio in the four bands, their position on the sky, their ellipticity, etc., together with

3 Available at http://wise2.ipac.caltech.edu/docs/release/allwise/expsup/secl_3.html#src_cat
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the errors of all these quantities. The magnitudes reported in the AIIWISE catalogue were computed with
different methods (e.g., profile fitting, aperture photometry). For some of these magnitudes, a correction
is needed. This is detailed in Chap. 4 where I present the construction of the training set of galaxies used
by the machine learning algorithm to estimate SFR and M, for nearby galaxies.

2.2.2 WISE-based full sky photometric redshift catalogues

A key information to map the Universe through the distribution of galaxies is to know their redshifts z.
It is possible to estimate the redshifts of galaxies very precisely by identifying emission or absorption
lines in their spectra. However, spectroscopic observations are expensive in terms of observing time. A
parallel (and less expensive) way of estimating the redshifts is the use of the photometric observations
in the widest possible range of wavelengths, to fit templates of spectra based on observations or on
theoretical models (e.g., LEPHARE or CIGALE Arnouts et al., 1999; Ilbert et al., 2006; Burgarella, Buat,
and Iglesias-Pdramo, 2005). Another approach is the use of machine learning algorithms applied on
magnitudes and/or colours (e.g., ANNz Collister and Lahav, 2004). WISE data have been successfully
used to extend to the infra-red wavelengths the range of photometric bands of optical surveys. This has
allowed to construct photometric redshift catalogues with increased accuracy. I present here the two
full-sky catalogues of photometric redshifts based on WISE that I have used for my analyses: the 2MPZ
and the WISExSCOS catalogues.

I have used these two catalogues as their very high statistics and their full-sky coverage enable the
study of galaxies in very large fields of view outside of the SDSS footprint, needed to study the large-
scale structures. In addition, the machine learning algorithm developed in Chap. 4 can be applied to the
WISE measurements and to the photometric redshift estimations available in the catalogues, allowing
the estimations of SFR and M, of a very high number of sources for both catalogues.

2.2.2.1 The 2MPZ catalogue

The 2MPZ publicly available catalogue® (Bilicki et al., 2014) is a cross-match between the WISE infra-
red survey, and two near infra-red and optical full-sky surveys: the Two Micron All Sky Survey (2MASS,
Skrutskie et al., 2006), and SuperCOSMOS (Hambly et al., 2001a; Hambly, Irwin, and MacGillivray,
2001; Hambly et al., 2001b). 2MASS has observed the J (1.25um), H (1.65um), and K (2.17um) bands
in the late 90’s with two 1.3m telescopes at the Fred Lawrence Whipple Observatory on Mount Hop-
kins, Arizona, USA, and at the Cerro Tololo Inter-American Observatory, in Chile. SuperCOSMOS is
a digitisation of the sky survey plates taken with the 1.24m UK Schmidt telescope (UKST) in Siding
Spring Observatory, Australia, the Im ESO Schmidt at La Silla, Chile, and the 1.22m Palomar Schmidt,
in Mount Palomar, California, USA. The SuperCOSMOS data are publicly available, and provide magni-
tudes in three optical bands: B, R, and I. The 2MPZ catalogue contains about one million nearby sources,
with spectroscopic redshifts for about a third of them, and photometric redshifts for the remaining two
thirds, estimated using the library ANNz (Collister and Lahav, 2004) trained on SDSS spectral galaxies.
The median redshift of the catalogue is zmeq ~ 0.08 and the statistical error on the redshift is o, ~ 0.012.
The low sensitivity of 2MASS and the magnitude cut in the 2MASS catalogue K < 13.9 (to ensure cat-
alogue uniformity), make this catalogue useful to statistically study the distribution of the brightest and
closest galaxies (i.e., the highest mass galaxies). The distribution of the 2MPZ sources as a function of
redshift is shown in Fig. 2.5.

Shttp://ssa.roe.ac.uk/TWOMPZ.html
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Figure 2.5: Distribution of the 2MPZ and of the WISExSCOS all-sky photometric redshifts catalogues
as a function of redshift.

2.2.2.2 The WISExSCOS catalogue

An extension of the 2MPZ was realized by cross-matching WISE and SuperCOSMOS. This catalogue,
the WISExSCOS (Bilicki et al., 2016), is also publicly available’. For the construction of this catalogue,
Bilicki et al., 2016 have no longer made use of the 2MASS survey, that limited the redshift range of the
2MPZ. The WISExSCOS catalogue contains about 20 million of sources and covers about 70% of the sky
(outside our galaxy), with a median redshift of zmeq = 0.2, and with a statistical error of o, ~ 0.033. The
catalogue provides photometric redshifts for all the sources, estimated with ANNz trained on spectroscopic
redshifts from the GAMA survey (Driver et al., 2009; Driver et al., 2011). The catalogue has a lower
magnitude limit at W1 > 13.8, making it complementary to the 2MPZ catalogue for less bright galaxies.
The distribution of the WISExSCOS sources as a function of redshift is shown in Fig. 2.5.

2.3 The Planck satellite

2.3.1 Planck frequency maps

The Planck mission (Tauber et al., 2010) dedicated to cosmology was launched in May 2009. The Planck
satellite has observed the full sky in nine frequencies, well chosen to encompass the CMB black-body
emission and study its anisotropies at an unprecedented precision. Planck is the third generation of
satellite that aimed at studying the CMB, after COBE (Boggess et al., 1992) and WMAP (Mather et al.,
1990). Planck comprised two main instruments: the Low Frequency Instrument (LFI, Bersanelli et al.,
2010; Mennella et al., 2011), which has observed the sky at 30, 44, and 70 GHz with angular resolutions
respectively of 33.29, 27.00, and 13.21 arcmin, and the High Frequency Instrument (HFI, Lamarre et al.,

"http://ssa.roe.ac.uk/WISExSCOS.html
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2010; Planck HFI Core Team et al., 2011) that observed the sky at 100, 143, 217, 353, 545, and 857 GHz
with angular resolutions of 9.68, 7.30,5.02, 4.94, 4.83, and 4.64 arcmin, respectively.

The Planck collaboration has provided the community with nine full-sky maps of the sky, all of
them publicly available on the Planck Legacy Archive®, in the HEALPIX format®. The nine Planck
frequency maps are shown in Fig. 2.6 in Mollweide projection. The figure is from Planck Collaboration
et al., 2016a. I use the Planck frequency maps in Chapt 7 to extract the SZ effect with a deep learning
algorithm.

30 GHz

100 GHz

217 GHz

353 GHz 545 GHz 857 GHz

40° 108 <10 101 10 10° 10° 10* 10° 10° 107
30-353 GHz: 8T [K.); 545 and 857 GHz: surface brightness [kly/sr]

Figure 2.6: Mollweide projections of the sky seen in the nine frequencies of the Planck satellite. The
figure is from Planck Collaboration et al., 2016a. Credits: ESA and the Planck Collaboration.

2.3.2 A y-map by Planck

The frequencies of Planck have been specifically chosen to measure the SZ effect from the hot gas.
Based on two component separation techniques, i.e., the Needlet Internal Linear Combination (NILC,
Remazeilles, Delabrouille, and Cardoso, 2011) and the Modified Internal Linear Combination Algorithm
(MILCA, Hurier, Macias-Pérez, and Hildebrandt, 2013), the Planck collaboration has constructed full-
sky maps of the y SZ Compton parameter at a resolution of 10 arcmin, using the six highest frequencies
(Planck Collaboration et al., 2016¢). At several times in this manuscrit, i.e., in Chap. 5, Chap. 6, and
Chap. 7, I use the latest MILCA Planck y map from 2015 Planck Collaboration et al., 2016¢. This map is
publicly available!'” in the HEALPIX format!!, with ng4e=2048 and a pixel size of fpx=1.7 arcmin. An
orthographic projection of the northern and the southern hemispheres of the MILCA y map is shown in
Fig. 2.7. The figure is from Planck Collaboration et al., 2016¢c. This map has been extensively used, for
example to measure the power spectrum of the SZ emission (e.g., Hurier and Lacasa, 2017), or to derive

8https://pla.esac.esa.int/#home
°Gérski et al., 2005.
http://pla.esac.esa.int/pla/
"Gérski et al., 2005.
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a universal pressure profile of the gas around galaxy clusters (Planck Collaboration et al., 2013a). The
SZ map has also been used for dedicated analysis of individual objects such as the Coma cluster (Planck
Collaboration et al., 2013c), or the galaxy cluster pair A399-A401 (Planck Collaboration et al., 2013b).

-3.5 e— — 5.0 y X 10

Figure 2.7: Orthographic projection of the Planck 2015 MILCA y-map. The northern hemisphere is on
the left, with the Coma cluster in its centre, and the southern hemisphere is on the right. The figure is
from Planck Collaboration et al., 2016c¢.

2.3.3 The Planck Catalogue of Compact Sources

Planck has provided the community with nine catalogues of compact sources (PCCS, Planck Collabora-
tion et al., 2016d), detected in its nine frequency maps. The catalogues provide positions, flux estimates,
and signal-to-noise ratio detections for the detected sources. As the SZ y-maps from Planck can be
contaminated by infra-red sources or radio sources, these catalogues are very useful to mask regions of
possible contamination when studying large-scale structures in the SZ map. I will use these catalogues
in this purpose in Chap. 5 and in Chap. 7.

2.4 Galaxy cluster catalogues

In order to study the larger scale structures of the Cosmic Web, galaxy clusters are used as they sit at the
intersection of the filaments. Rather easy to detect in different wavelengths due to their high densities,
several publicly available catalogues provide samples of galaxy clusters detected in different wavelengths
(e.g., in optical, in X-ray, in SZ). I present here some of these catalogues, that I have used for my work.

2.4.1 The RedMaPPer catalogue

The Red-sequence Matched-filter Probabilistic Percolation (RedMaPPer, Rykoft et al., 2014) is an algo-
rithm developed to detect clusters in large galaxy optical surveys, such as the SDSS or the Dark Energy
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Survey'? (DES, The Dark Energy Survey Collaboration, 2005). Based on the detection of red-sequence-
galaxy over-densities, the algorithm provides positions and redshift probability distributions for the de-
tected clusters, together with membership probabilities assigned to galaxies, and a richness A related
to the number of galaxies in the clusters. Rykoff et al., 2014 have successfully applied RedMaPPer to
the SDSS DRS spectroscopic galaxies and have detected 25,325 galaxy clusters in the redshift range
0.08 < z < 0.55, over approximately 10,500 squared degrees on the sky. The RedMaPPer catalogue
has been extensively studied in different wavelengths (e.g., Saro et al., 2015; Hurier and Angulo, 2018;
Geach and Peacock, 2017), allowing the confirmations of the galaxy clusters and the measurements of
their properties (e.g., their masses). I show the resdhift z and the mass Msgp distributions in Fig. 2.8,
compared with other catalogues of galaxy clusters detected in different wavelengths that are presented
hereafter. For this figure, I have used the scaling relation between the richness and the stellar mass Msqg
from Saro et al., 2015 to compute the mass estimation of the clusters.
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Figure 2.8: Redshift z and mass M5 distributions of the PSZ2, the MCXC, and the RedMaPPer cata-
logue of galaxy clusters.

2.4.2 SZ cluster catalogues
2.4.2.1 Planck PSZ2 catalogue

The Planck collaboration has used the six Planck HFI frequency maps (they have disgarded low fre-
quency maps due to their larger beams (> 10 arcmin) and noise) with multi-match filters, filtering with
generalized Navarro, Frenk and White pressure profile model (GNFW, Nagai, Vikhlinin, and Kravtsov,
2007; Arnaud et al., 2010), and taking into account the beam at each frequencies and the spectral depen-
dance of the SZ effect. They have implemented three different algorithms for the cluster detection: two
implementations of the Matched Multi-Filter (MMF1 (Herranz et al., 2002) and MMF3 (Melin, Bartlett,
and Delabrouille, 2006)), and PowellSnakes (PwS Carvalho, Rocha, and Hobson, 2009; Carvalho et al.,
2012). They have detected, with the union of the three methods, 1,653 galaxy cluster candidates with a
signal-to-noise ratio greater than 4.5 o~ (Planck Collaboration et al., 2016e). The purity of the catalogue
is of 83% (Planck Collaboration et al., 2016¢), leading to about 300 of false detections, which are in-
frared or CO residual sources passing through the spatial and spectral filters of the algorithms. For the
confirmed galaxy clusters with measured redshifts, mass Msg are provided in the catalogue, estimated
following Planck Collaboration et al., 2014. The mass and redshift distributions of the PSZ2 clusters
with confirmed redshifts are shown in Fig. 2.8.

2https://www.darkenergysurvey.org
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2.4.2.2 The SZ cluster database

A database of clusters detected in SZ has been developed at the Institut d’ Astrophysique Spatiale, Or-
say, by M. Douspis, N. Aghanim and collaborators. The database gathers clusters detected in SZ by the
main CMB experiments: Planck (Planck Collaboration et al., 2011; Planck Collaboration et al., 2014;
Planck Collaboration et al., 2015a; Planck Collaboration et al., 2016e), the Atacamy Cosmology Tele-
scope (ACT) (Marriage et al., 2011; Hasselfield et al., 2013)), the South Pole Telescope (SPT) (Bleem
et al., 2015), and clusters individually observed by the Arcminute Microkelvin Imager (AMI) and the
Combined Array for Research in Millimetre-wave Astronomy (CARMA) (Schammel et al., 2013; AMI
Consortium et al., 2012; AMI Consortium et al., 2013b; AMI Consortium et al., 2013a). Clusters in the
SZ meta-catalogue are thus spanning a large variety of angular sizes, redshifts, and y amplitudes, quan-
tities depending on the resolution and on the sensitivity of the experiments they were detected with. The
SZ cluster database is publicly available!3, and contains 2,690 sources. For the 1,681 confirmed clusters,
redshifts z and mass Msgg are provided. The redshift range of the catalogue is 0.011 < z < 1.7, with a
median value zypeq ~ 0.31.

2.4.3 The MCXC catalogue

Galaxy clusters can be detected via the hot gas, detected in X-rays through Bremsstrahlung emission. The
ROSAT All-Sky Survey (RASS, Truemper, 1982) is to date the only full-sky survey in X-rays (until the
release of SRG/eROSITA that was successfully launched on 13th of July 2019 (Cappelluti et al., 2011)).
Galaxy clusters detected based on ROSAT were combined to build a meta-catalogue: the Meta-Catalogue
of X-ray detected Clusters (MCXC, Piffaretti et al., 2011). The MCXC combines galaxy clusters from
RASS-based catalogues (i.e., the Northern ROSAT All-Sky Survey (NORAS, Bohringer et al., 2000), the
ROSAT-ESO Flux Limited X-ray Survey (REFLEX, Bohringer et al., 2004), the ROSAT brightest cluster
sample (BCS, Ebeling et al., 1998), galaxy clusters around the South Galactic Pole (SGP, Cruddace et
al., 2002), galaxy clusters around the North Ecliptic Pole (NEP, Henry et al., 2006), the Massive Cluster
Survey (MACS, Ebeling, Edge, and Henry, 2001), and the Clusters In the Zone of Avoidance (CIZA,
Ebeling, Mullis, and Tully, 2002)), and from ROSAT serendipitous catalogues (i.e., the 160 square degree
ROSAT Survey catalogue (160SD, Mullis et al., 2003), the 400 square degree ROSAT Cluster Survey
catalogue (400SD, Burenin et al., 2007), the bright SHARC survey cluster catalogue (Romer et al.,
2000), the Southern SHARC catalogue (Burke et al., 2003), the WARPS survey catalogues (Perlman et
al., 2002; Horner et al., 2008), and the Einstein Extended Medium Sensitivity Survey catalogue (EMSS,
Gioia et al., 1990)). The MCXC provides a mass Msqg, a radius Rsgg, and a redshift z for 1,743 galaxy
clusters in the all sky. The mass and redshift distributions of MCXC clusters are shown and compared
to other SZ and optical catalogues in Fig. 2.8. The MCXC contains mainly lower mass clusters than the
PSZ2 or the RedMaPPer cluster catalogues.

Bhttp://szcluster-db.ias.u-psud. fr/
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Tools and methods
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Statistical tools are nowadays strongly needed in data analysis. For example, the stacking method
can be used to enhance the signals of cosmic filaments that can be very faint due to their low densities,
Bayesian statistics are useful to constraint any free parameter, the bootstrap method can help to estimate
the errors and/or the significances of any measurement, and the fashionable machine learning algorithms
are very efficient to estimate any property without the use of a model. In this chapter, I describe some
of the statistical tools, codes, or methods that I have used during my PhD thesis. These tools appear at
a regular basis in the future chapters. When possible, I illustrate the applications of the methods with
simple toy models.

Résumé

Aujourd’hui dans I’eére du “big data”, I’astrophysique a plus que jamais besoin d’outils statistiques per-
formants pour analyser le grand nombre de données. Par exemple, la méthode de “stacking” peut étre
utilisée pour aider a la détection des filaments cosmiques (pouvant présenter de tres faibles signaux en rai-
son de leur faible densité), les statistiques bayésiennes peuvent étre utiles pour contraindre les parametre
libres d’un modele, la méthode de “bootstrap” peut aider & estimer les erreurs et/ou les pertinences des
mesures, et les algorithmes de “machine learning” peuvent s’avérer étre tres efficaces pour estimer toute
propriété sans utiliser de modele physique, avec moindre temps de calcul. Dans ce chapitre, je décris
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certains des outils (codes ou méthodes statistiques) que j’ai utilisés pendant ma thése. Ces outils appa-
raissent régulierement lors des travaux présentés dans les prochains chapitres. Dans certains cas, j’illustre
les applications de ces méthodes a I’aide de modeles simplistes.

3.1 Machine learning algorithms

3.1.1 Introduction

In the last decades, new statistical developments have begun to play an important role in data reduction
and in data analysis. Particularly, the studies involving machine learning algorithms have increased
exponentially, as such tools are very efficient to identify commonalities in data without resorting to any
model. There are two families of machine learning algorithms: the unsupervised and the supervised ones.
In the first case, the algorithms are designed to classify the input data. The user must assume the number
of classes. This family includes clustering methods, such as k-mean algorithms, and the Self-Organizing
Maps (SOM)'. In the second case, machine learning algorithms are designed to estimate properties or
labels, based on inputs and outputs, both provided by the user. The user must in this case have a perfect
knowledge of the labels or of the properties of reference used as output in the training catalogue. This
family includes algorithms such as Artificial Neural Networks (ANN, W. White and Rosenblatt, 1963),
Random Forests (RF, Ho, 1995), Support Vector Machine (SVM, Hearst, 1998), and algorithm of Deep
Learning (DL) such as Convolutional Neural Networks (CNN, Fukushima, 1980). Machine learning
algorithms, mostly supervised ones, have already been applied successfully in astronomy, astrophysics,
and cosmology (e.g., Baron, 2019, for a review on machine learning algorithms in astrophysics). For
example, basic machine learning algorithms, like ANN or RF, have been used to estimate galaxy redshifts
or galaxy types (e.g., Bilicki et al., 2014; Bilicki et al., 2016; Krakowski et al., 2016; Siudek et al.,
2018; Bonjean et al., 2019), to estimate spectral properties of sources (e.g., Ucci et al., 2018) to classify
sources (e.g., Aghanim et al., 2015), to search for variable stars (e.g., Pashchenko, Sokolovsky, and
Gavras, 2018), as a very non-exhaustive list of examples of applications. More sophisticated algorithms
of machine learning, like DL algorithms (e.g., CNN), widely improve the results compared to results
obtained with physical models. In most of the cases, the computation time required to estimate the
results is also significantly reduced. For example, CNN algorithms have been already used to estimate
galaxy morphologies and redshifts (e.g., Huertas-Company et al., 2015; Pasquet et al., 2019; Boucaud
et al., 2019), to fit galaxy surface brightness profiles (e.g., Tuccillo et al., 2018), to compare galaxy
surveys (e.g., Dominguez Sanchez et al., 2019), to detect cosmic structures (e.g., Aragon-Calvo, 2019),
to learn the structure formation from initial conditions (e.g., Lucie-Smith et al., 2018; He et al., 2018),
or to generate fast Cosmic Web simulations (e.g., Rodriguez et al., 2018, Ullmo et al., in prep.).

I describe here three examples of supervised machine learning algorithms that I have used for my
analyses: the Random Forests, the Neural Networks, and the Convolutional Neural Networks.

I have also implemented a RF algorithm, together with other algorithms of machine learning (ANN
and CNN) in python for a course of machine learning. They are implemented to be applied on a test-
case dataset, called the MNIST data. These data are available in the keras module in python, and
contains 60, 000 2D 28 x 28 pixels patches, in which digital numbers are drawn. Each patch is associated
with its label, between 0 and 9. These data are known to be the “Hello World !” of machine learning.
Implementations, short descriptions, and examples of the different codes applied to the MNIST data are
publicly available on my on-line courses of machine learning?.

"http://scikit-learn.org/
Zhttps: //9ithub.com/vicbonj/cours_ml
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3.1.2 Caveats: bias and error estimates

Machine learning algorithms are very efficient to find correlations in the data. They always output a
result, but results can sometimes be very different from the expected ones. This can be due to a bad
training of the algorithm, a correlation found between unexpected features in the training catalogue
that biases the training, or to an over-fitting of the training catalogue. Therefore, one of the biggest
challenges in the machine learning domain is to estimate the performances of the trained algorithms (e.g.,
estimating the statistical errors, estimating and understand the biases). As errors on individual predictions
of machine learning algorithms are usually not estimated by the algorithms, errors are often estimated
statistically, over a sub-sample of the training sample. A usual way to estimate the performance and the
errors of a machine learning algorithm is to split the training catalogue into three sub-samples, and train,
validate, and test the algorithm on these independent samples. For example, a training catalogue is split
into 80% / 10% / 10%. The 80%, called training set, are used for the training process, while other first
10%, called validation set, are used to check the results on an independent catalogue during the training
process, and thus to prevent over-fitting of the training catalogue. The remaining 10%, called the test set,
are independent of the training process, and are thus used to estimate the statistical errors and the biases.
Retrospectively, the original sample can be split differently to ensure these percentages do not affect the
results.

3.1.3 Random forests

Random Forests are machine learning algorithms based on decision tree learning (e.g., Ho, 1995, for the
first implementation). Decision trees split iteratively and optimally the training set into several classes,
by associating classes to data points and by reducing the Gini impurity?:

c
G =) pli)1 - p()), (3.1)
i=1
where C is the number of classes, and p(i)) is the probability of picking a data point with class i.
In practice, simple if-else rules on the input features are defined, in order to classify the training set
at each splitting, so that each class are equally distributed as a function of the outputs commonalities.
RF algorithms then use the mean estimator of a “forest” of decision trees, trained by bootstrapping
the training set. For a training set of n samples, with X = x, ..., x, and Y = yy, ..., y, being the inputs and
the outputs of the machine learning, respectively, the estimator for an untrained value x’ is computed as
follows:

1 M
F) =5 ) ), (3.2)
m=1

where M is the number of decision trees, and ¥, is the estimator for x’ of the decision tree m trained
on a random sample with replacement of n elements in the sample of couples (X, Y).

To optimise the training and obtain the best results, some parameters have to be set, such as the num-
ber of trees, M, or the maximum depth of the trees (i.e. the maximum number of splitting), dmax. These
parameters can be set by training the RF on the training set varying the values of M and dp,x, and by
comparing the scores of the RF on the validation set. The best optimised parameters can be set to the
ones providing the best score. This method prevents over-fitting.

The RF algorithms are rather easy to understand, and very efficient. In addition, unlike with ANN
(described in the next section), no data pre-processing is needed, meaning that the values themselves are

*https://scikit-learn.org/stable/modules/tree.html#classification-criteria
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useful and play a role during the training process. For these reasons, I will use the RF to estimate galaxy
properties (SFR and M, ) with machine learning (presented in Chap. 4).

3.1.4 Artificial Neural networks

While very efficient for simple cases, RF are nevertheless limited when the input data are too complex
(e.g., learning very high non-linear relations, or using inputs with high dimensions such as images or data
cubes). Artificial Neural Networks, also called Multi-Layer Perceptrons (e.g., W. White and Rosenblatt,
1963, for the first implementation) often perform equivalent or better results. ANN are probably the most
familiar kind of algorithms used in machine learning, and also the most known. Their principle is inspired
by the nature of our brain, composed of “neurons”, that are connected and exchanging informations with
each other. ANN estimate a prediction (performing classification or regression), by transforming the
inputs in successive layers of linear combinations, weighted in the neurons.

In practice, a neuron is a function that linearly combines inputs X with weights W, adds a bias b
(different for each neuron to maximise the variety of the information learned), and passes the output into
an activation function g, that quantifies the significance of the information learned. It is mathematically
written as follows (a schematic view of a neuron is also shown in Fig. 3.1):

f(®) = g(W.2+ b). (3.3)

: ]
“ 1

x| O\
X @»@—»f(?)=g(W’.?+b)
)

n
n

Figure 3.1: Illustration of a neuron in a neural network algorithm. The neuron is the shaded blue region.
The x; are the inputs, the W; are the weights, b is the bias, and g is the activation function.

There are many different activation functions in the literature (ReLU, Sigmoid, TanH, Softmax, and
so on), each of them showing advantages and disadvantages. The choice of the activation function is very
dependent of the cases. In DL, the REctified Linear Unit (ReLU), that is g(x) = max(0, x), is commonly
used. The main advantages of the ReLLU activation function are the high and non-bounded values that it
can reach, allowing a more efficient training for gradient-based learning (contrary to sigmoid activation
function where the gradient becomes very small when x increases). Another advantage of the ReLU
is a more sparse information learned (allowing the “disconnections” of the neurons in the case where
g(x) < 0). B

During the training process, the weights W are learned iteratively so that a loss function that min-
imises the errors between f(x3 and the outputs ¥ is minimised. The errors are back-propagated based
on gradient descent. Several functions are used in the literature to optimise the back-propagation of
the errors (e.g., Adam (Kingma and Ba, 2014), Stochastic Gradient Descent, Adadelta (Zeiler, 2012)).
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The Adam optimiser is commonly use in DL algorithms. It is very efficient as it adapts iteratively the
precision of the errors.

One of the main advantages of the neurons is that they can be modulated, to maximise the optimisa-
tion of the loss function and learn very high non-linear models. Neurons can be disposed in “layers”. In
that case, the weights W become a matrix W, and the bias b becomes a vector, b. The biases b; of the i
neurons are different to ensure the independence of the features learned by the neurons. The output of a
layer is a vector f(¥), mathematically written as follows:

(@) = g(W.%+ b). (3.4)

There is no limit in the number of neurons in a layer, and layers can be themselves superposed to
increase the non-linear character of the models in case of very complex data. ANN algorithms with a
large number of layers are part of Deep Learning (DL) algorithms. In DL, the outputs of the first layer,
f(X), is taken as inputs of the second layer, and so on, with as many layers of as many neurons as wanted.
In some cases (e.g., classifiers or segmentations), when a probability is wanted as output of the network,
the last activation function after the last layer is chosen to rescale the value between 0 and 1. The Sigmoid
is an example of such activation function:

Sigmoid(x) = 3.5

1+e*

To summarise mathematically, for an ANN composed of three layers (indexed by 1, 2 and 3) of
several neurons each with a Relu activation function, and a Sigmoid last activation function, the outputs
of the network that are compared with the outputs ¥ are written:

f(R) = Sigmoid;(W3.ReLUy(W1.ReLU (W22 + by) + by) + b3). (3.6)

The deeper the algorithm, the more complex the model is, and the better it learns. However, if the
model is too deep for a too simple case, the model may start to learn the statistical noise of the training
catalogue (this is called over-fitting). To prevent this effect, results are estimated iteratively on the train-
ing set and on the validation set. The training can be stopped when the results on the validation set start
to decrease as compared to the results on the training set: this is called the early stopping. Another way
of preventing over-fitting is to include dropout layers (Srivastava et al., 2014). Dropout layers randomly
ignore a percentage (set by the user) of neurons in the network. This technique approximates a large
number of networks with different architectures working together in parallel, improving the results. To
increase the performance and the results, parameters can also be tuned. The main ones are the number
of layers, and the number of neurons in each layer.

I will use ANN to confirm the results obtained with the RF to estimate SFR and M, of nearby
galaxies (presented in Chap. 4).

3.1.5 Convolutional Neural Networks

ANN and deep ANN algorithms are ideal to learn very highly non-linear features in very large sized
input data, like images. However, when the aim is to analyse spatial coherent objects in input images
(e.g., segmentation, detection of sources), the features to capture can be invariant in translation and in
rotation. That can be for example the case for the SZ emission generated by the hot gas in galaxy clusters
seen in the Planck frequency maps. In that case, successive convolutional layers can be applied to the
images, to extract the relevant spatial information that is encoded and injected into an ANN (or decoded
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with de-convolutional layers in the case of segmentation map reconstructions). These algorithms are
called Convolutional Neural Networks (e.g., Fukushima, 1980, for the first implementation).

The principle of the CNN is almost the same than for the NN, except that the neurons are defined
differently; they are convolutions (compared to linear combinations). The weights W learned during the
training are the weights of the convolutional kernels. As for ANN, the outputs of a layer become the
inputs of the next layer. By superposing convolutional layers, the typical sizes of the features learned
at each layer increase. The encoded signal at the end of the convolutional layers thus contains informa-
tion at different scales, allowing the learning of very complex objects. Between convolutional layers,
MaxPool layers are often added, that reduce by a factor 2 the dimensions of the convolved images by
keeping the maximum values of the pixels in (2 x 2) pixel kernels. The MaxPool layers decrease the
number of free parameters, and thus increase efficiently the duration of the training. A schematic view of
a CNN is shown in Fig. 3.2, taken from http://cs231n.github.io/convolutional-networks/.
To optimise the performance and prevent over-fitting, more parameters than in the case of ANN have to
be tuned, like the size of the convolutional kernels, or the number of filters.

— CAR
— TRUCK
= VAN

D — BICYCLE

g FULLY
J " INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU  POOLING FLaTEN FULLY - soFTMaX
FEATURE LEARNING CLASSIFICATION

Figure 3.2: Illustration of a CNN classifier, where the inputs is an image of a car. Figure is taken from
this website: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53. The convolutional layers encode the information of the spatial features at
different scales. The encoded information is injected in an ANN, that learns to classify the images. The
last activation function, a sigmoid, gives a probability of belonging to a class (in that case, a car).

I will present how I have used CNN to detect the SZ signal in the Planck frequency maps in Chap. 7.

3.2 Statistical methods
3.2.1 MCMC

While machine learning algorithms are very efficient at estimating non-linear properties without resort-
ing to models, these techniques are less efficient at estimating errors on derived quantities. However,
when a model is physically motivated to analyse data, another way of estimating (or fitting) properties
in a more traditional way is the Monte Carlo Markov Chain (MCMC, Metropolis et al., 1953; Hastings,
1970). Such algorithms are very powerful when computing non-linear models, with numerous param-
eters with potential degeneracies. In those cases, basic algorithms, like the least square minimisation,
only return the parameters that minimise a loss function (in the example of the least square minimisa-
tion, the minimisation of the sum of the squared errors). The MCMC goes further and returns a chain of
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parameters, allowing the study of the statistics of the derived parameters (e.g., their distributions, their
degeneracies). The MCMC samples the probabilities of the parameters as a function of the prior distri-
butions (given by the user), and of a likelihood loss function that is computed based on the differences
between the estimated models and the data. MCMC algorithms have already been successfully applied
in astrophysics and cosmology, e.g., to estimate the cosmological parameters with Planck (e.g., Planck
Collaboration et al., 2016b), to compute comet orbits (e.g., Lang and Hogg, 2012), or to compute dust
properties in warm debris disks (e.g., Olofsson et al., 2012).

MCMC uses the Metropolis algorithm to generate a chain of parameters. It works as follows. Given
any data y, its error o, and a model f(x,a), where a is the parameter to fit, the required output is the
posterior distribution:

plaly,x,o)=pla)x py|x o, a), 3.7

where p(y | x, 0, a) is the likelihood function computed based on the model f:

SO, @)
—_—

1 =
L(a) = pQy|x,o,a)« -3 Z o (3.8)
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and p(a) is the prior distribution of the parameter a, usually a uniform or a normal law, between
the fixed boundary conditions [@min, @max]. Then, the chain of parameters is constructed following these
steps:

o Initialise the chain with an arbitrary point ay.

o For each iteration i, pick up a parameter a;. that follows the prior distribution p(a).

Compare the likelihood obtained with ;1 with the one obtained with a;: 8 = L(aj+1)/ L(a;).

Generate a uniform random number u € [0, 1]:

— if u < 3, accept a;41 in the chain,

- else u > 3, conserve the previous value in the chain: a;4 = a;.

The chain converges to the maximum of likelihood, accepting at each iteration a new parameter in
the chain if the likelihood is higher than the previous one, and rejecting with a non zero probability pa-
rameters with lower likelihoods. The chain contains the probability distribution of the fitted parameters.

The publicly available emcee implementation of the MCMC algorithm in python is very efficient
in terms of computation time (Foreman-Mackey et al., 2013). The emcee package uses an optimised
algorithm, the Affine Invariant MCMC Ensemble Sampler, described in detail in Goodman and Weare,
2010. This tool has been used at a regular basis in astronomy and in cosmology. I will use the emcee
package in my analysis of the physical properties of the gas in the bridge of matter between the galaxy
cluster pairs A399-A401 and A21-PSZ2 G114.90-34.35 (Bonjean et al., 2018), presented in Chap. 5. 1
will also use it to fit the quiescent fraction profile around cosmic filaments, presented in Chap. 6.5.2.

3.2.2 Stacking

When the detections of individual objects are not possibles due to their very faint signals (e.g., low densi-
ties filaments in galaxy density maps, or diffuse gas in SZ Planck maps), an averaged characterisation of
all the objects is possible by stacking. Stacking is equivalent to averaging signals individually measured
on the data. By doing so, the noise of the data is reduced by +/n (where n is the number of considered ob-
jects), and the average signal is enhanced. This technique has already been succesfully used for example
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in Tanimura et al., 2019b, de Graaff et al., 2019, and Tanimura et al., 2019a, to find SZ signal between
galaxy pairs and in super-clusters.

1000 1000

400 400

Figure 3.3: Illustration of the stacking method. Left: 1000 Gaussians injected in a 1000 x 1000 pixels
map. 2D Gaussians have the same standard deviations o = 3 and amplitudes A = 1 (in arbitrary units).
Right: a Gaussian noise is added on the map with a standard deviation of o ypise = A.

To illustrate the “power” of stacking, I present a simple toy model, shown in Fig. 3.3 and Fig. 3.4. I
have generated 1000 2D Gaussians uniformly distributed in a 1000 x 1000 pixels map (in the left panel of
Fig. 3.3), with same standard deviations, oo = 3 pixels, and same amplitudes, A = 1 (in arbitrary units).
The Gaussians are distributed between 0.1 and 0.9 times the size of the map, to ensure that all the sources
are entirely seen in the map. I have injected a Gaussian noise on the map, following a normal law with
a mean m = ( and a standard deviation o ejse = A, so that the 1000 Gaussians are almost completely
hidden in the noise (in the right panel of Fig. 3.3). Then, knowing their positions, I have measured the
radial profiles around the 1000 2D Gaussians as a function of the distance 6 to the centres, and I have
stacked all the measured signals by averaging the 1000 profiles. I show in Fig. 3.4 the stacked radial
profile and the model of the 2D Gaussians model input in the map with the mean value of the map added.
Despite the very high noise input in the map, a very nice agreement is seen between the input model
and the stacked measurement. The errorbars of the stacked profile have been computed with another
statistical tool, the bootstrap, that I describe in the next section.

I will use the stacking method in Chap. 6 and in Chap. 7, to study galaxy properties around cosmic
filaments and to probe the statistical properties of a sample of galaxy clusters detected in the Planck
frequency maps via the SZ effect with a deep learning algorithm.

3.2.3 Bootstrap

Not only it is important to measure a signal, but it is even more important to estimate the error bar which
enables to compute its significance. In statistics, the bootstrap technique is a way of estimating the dis-
tribution of any measurement on a sample, when the distribution is a priori not known. It uses random
re-sampling with replacement to generate new different samples containing data from the “father” sam-
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Figure 3.4: Stacked measured profile in blue and input model (where the mean value of the map was
added) in orange of the 2D Gaussians shown in Fig. 3.3. Errors on the stacked measured profiles were
computed with bootstrap.

ple. Then, measuring a desired quantity on the “re-sampled samples” provide a distribution rather than a
single value. That way an error can be estimated. As stacking use a sample of data and provide only one
stacked value, the bootstrap method is well suited to estimate the errors on stacked properties.

I illustrate hereafter an application of the bootstrap with a detailed example. I assume that the prop-
erty of interest is the mean value, and its error bar, of a Gaussian distribution of 1000 points, centred on 0
with a standard deviation o = 1. [ have generated a sample A of n = 1000 points a; following a Gaussian
distribution. The histogram of the points is shown in the left panel of Fig. 3.5. The mean value of this
sample can be estimated by using the standard formula: A = % 2 aj.

The mean value of the distribution shown in the left panel of Fig. 3.5 is A = —0.00052, very close
to theoretical mean value that is 0. To estimate an error bar on this measure, I have used the bootstrap
technique; I have constructed 1000 new samples of 1000 points randomly picked, with replacement, in
the sample A (i.e., one point can be picked several times). I have then estimated the mean values of the
1000 samples. Now, a sample B containing the 1000 mean values b; has been constructed and its distri-
bution is shown in the right panel of Fig. 3.5. The mean and the standard deviation of the mean values
can be estimated with this distribution. In this case, I have obtained B = 0.00002, and o5 = 0.03078.
The measurement is then A = 0.00002 + 0.03078, fully consistent with the theoretical mean value 0.

In the following, I will use the bootstrap technique to estimate the error bars on the stacked galaxy
profiles around cosmic filaments presented in Chap. 6.
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Figure 3.5: Illustration of the bootstrap technique used to compute the mean of a sample A of 1000 points
from a normal distribution with a theoretical mean A = 0. Left: the histogram of the sample A. Right:
the distribution of B obtained by bootstrapping the sample A 1000 times is shown.

3.3 Developed or adapted codes

3.3.1 pyDTFE

The distribution of galaxies is the best way to capture the large-scale structures in the Universe, and
thus the best way to detect them. As presented in Chap. 1.2.2, structures can be described and detected
through their shapes and their over-densities. Therefore, estimating the density field in the Universe is
a key step for studying the large-scale structures. The Delaunay Tessellation Field Estimator (DTFE,
Schaap and van de Weygaert, 2000) has been especially developed to reconstruct the density field in the
Cosmic Web. It is widely used to study the Cosmic Web (e.g., Bernardeau and van de Weygaert, 1996;
Schaap and van de Weygaert, 2000; Sousbie, 2011; Cautun et al., 2015). The method automatically
adapts to large density gradients which is the case for the elements in the Cosmic Web that span a wide
range of densities (see Chap. 1.2.2). Furthermore, the method does not depend on any parameters as is
the case for other approaches such as the k-nearest neighbours, where the density fields depend on the
chosen parameter k. The DTFE bases the computation of the density in each point on the connected cells
of the Delaunay Tessellation, that traces triangles (in 2D, or tetrahedra in 3D) between each points and
thus takes into account the environment at different scales.

I describe hereafter in detail the different steps of the DTFE, referring step by step to an example of
a DTFE application on a sample of 1000 uniformly distributed points (shown in Fig. 3.6). The DTFE is
composed of three main steps:

e Based on a sample of discrete points in Cartesian space (upper left panel of Fig. 3.6), a Delaunay
Tessellation is computed, i.e., space is divided into triangles (or tetrahedra in 3D) whose vertices
are formed by the points of the sample (upper right panel of Fig. 3.6).

e Based on the triangles (or tetrahedra) of the Delaunay Tessellation, an estimate of the density is
computed at each point based on the local density. The density is defined as one over the sum of
the areas of the n triangles connected to a point k (or of the volumes of the n tetrahedra). To take
into account the fact that any area (or volume) is seen d + 1 times, where d is the dimension (i.e.,
2D or 3D) of the sample, the areas (or volumes) are also divided by d + 1:
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where p; is the density at the point k, and Ay; are the areas (or volumes) of the triangles (or
tetrahedra) connected to the point k.

e The densities estimated with Eq. 3.9 are linearly interpolated on a regular grid, and the density
field is reconstructed (bottom panel of Fig. 3.6).

I have developed a python implementation of the DTFE, the pyDTFE, publicly available on GitHub*.
I will use it to compute the full sky galaxy density maps detailed in Chap. 4.6.3. These maps were used
to characterise cosmic filaments and clusters (Chap. 6 and Chap. 7). I will also use the pyDTFE code to
detect galaxy over-densities in between the galaxy cluster pair A399-A401 (Chap. 5.4.3).

3.3.2 RadFil

To derive galaxy properties around cosmic filaments in Chap. 6, I have used the code developed by
Zucker and Chen, 2018: RadFil>. It is a code that measures radial profiles around filamentary structures,
using interpolation of filament’ spines and their first derivatives at each point. RadFil was originally
developed to study inter-stellar filaments (e.g., Zucker, Battersby, and Goodman, 2018). I have optimised
the code to apply it to large-scale structure cosmic filaments. The advantage of the RadFil code is that
knowing the positions of the filaments, a profile can be measured in any 2D python array.

The RadFil code can be used in two ways: in the first option (not used here), the user provides the
code with a single python 2D array of a given observable, the code detects the skeleton of the filament,
if any, and outputs the measured profiles around the filament. In the second option, the user provides
the code with two python 2D arrays, one being the observable (the pixel values representing the quantity
to measure), and the other one being a mask tracing the spine of the filament around which RadFil
will measure the profiles. I use RadFil in Chap. 6 with the second option for two main reasons. First,
the cosmic filaments have very low signal-to-noise ratio observables compared to inter-stellar filaments,
preventing the RadFil code for detecting them. Second, optimised methods to extract cosmic filaments
in the Cosmic Web have already been successfully applied in galaxy surveys (e.g., Libeskind et al.,
2018 for a review, Bonnaire et al. in prep.). Positions of filamentary Cosmic Web structures are thus
already known so they can be directly input in the code. In my work, I have used the catalogue of
cosmic filaments extracted by DisPerSE in a SDSS spectroscopic sample of galaxies that is presented in
Chap. 6.2.1.

An illustration of RadFil is shown hereafter on a single toy model.

I have modelled a filament spine in a map of size 1000 x 1000 pixels, that I smoothed with a Gaussian
filter of oo = 30 pixel width (top line of Fig. 3.7). I have measured the profile of the smoothed filament
around the spine of the modelled filament with RadFil (bottom line of Fig. 3.7). I have fitted a Gaussian
on the measured average profile to compare the measured and the theoretical filament’s width. The stan-
dard deviation of the Gaussian measured by the fit is o, = 30.07 + 0.03 pixels, that is very close to the
theoretical one, oo = 30 pixels.

I will use RadFil to measure the galaxy properties around cosmic filaments based on density maps
(presented in Chap. 6). I will also measure SZ profiles in the Planck SZ MILCA map, to compare RadFil
with other methods based on Healpix projections, presented in Tanimura et al., in prep.

“https://github.com/vicbonj/pydtfe
Shttps://github.com/catherinezucker/radfil
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Figure 3.6: Application of the DTFE code to a sample of 1000 uniformly distributed random points.
Top left: the spatial distribution of the 1000 random points. Top right: the Delaunay Tessellation of the
points. Bottom: densities estimated with Delaunay triangles have been interpolated on a grid. Yellow
pixels show over-dense regions while blue pixels show under-dense regions. The field has been smoothed
for visualisation. The initial points are overlaid in orange.
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Figure 3.7: Top left: model of filament spine in a 1000 x 1000 pixels map. Top right: the filament is
smoothed with a Gaussian of o~ = 30 pixels width. Bottom left: illustration of RadFIl: the code measures
the profiles in each red lines orthogonal to the filament spine. Bottom right: the average radial profiles
measured by RadFil. A Gaussian has been fitted to the profile, with a measure width o, = 30.07 = 0.03,
in agreement with the theoretical one, i.e., oo = 30 pixels.
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Chapter 4

Galaxy types with machine learning
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Abstract

Star-formation activity is a key property to probe the structure formation and hence characterise the
large-scale structures of the Universe. This information can be deduced from the star formation rate
(SFR) and the stellar mass (M,). Determining these quantities from UV, optical, or IR luminosities
relies on complex modelling and on priors on galaxy types. In this chapter, I have developed a method
based on the machine-learning algorithm Random Forest to estimate the SFR and the M, of galaxies in
the redshift range 0.01 < z < 0.3, independent of their type. The machine-learning algorithm takes as
inputs the redshifts, WISE luminosities, and WISE colours in near-IR, and is trained on SFR and M,
from the SDSS MPA-JHU DRS catalogue. The trained RF is unbiased with respect to redshift or galaxy
type, and it can accurately estimate SFR and M, with scatters of ospr = 0.38 dex and oy, = 0.16 dex for
SFR and stellar mass, respectively. The full-sky coverage of the WISE satellite allows us to characterise
the star-formation activity of all galaxies outside the Galactic mask with spectroscopic redshifts in the
range 0.01 < z < 0.3. The RF model can also be applied to photometric-redshift catalogues, with best
scatters of ospr = 0.42 dex and o, = 0.24 dex obtained in the redshift range 0.1 < z < 0.3. I have thus
applied the machine learning algorithm to construct a value-added catalogue based on the WISExSCOS
catalogue of photometric redshifts. The value-added catalogue is further used to study the statistical
properties of galaxies around cosmic filaments (in Chap. 6), and in other studies discussed in Chap. 4.8.
This chapter uses material from “Star formation rate and stellar masses from machine learning”, V.
Bonjean, N. Aghanim, P. Salomé, A. Beelen, M. Douspis, and E. Soubrié, 2019, A&A, 622, A137.

Résumé

Lactivité de formation d’étoiles d’une galaxie est une propriété clé pour sonder la formation des struc-
tures, et ainsi caractériser les structures a grande échelle présentes dans I’ Univers. Cette information peut
étre déduite du taux de formation d’étoiles (SFR) et de la masse stellaire (M, ). La détermination de ces
deux grandeurs a partir de luminositiés en UV, en optique, ou en IR, repose sur une modélisation com-
plexe et sur des connaissances a priori du types de galaxies. Dans ce chapitre, je présente une méthode
que j’ai développé basée sur un algorithme de machine learning (Random Forest) pour estimer SFR et
M, des galaxies dans la plage de redshift 0,01 < z < 0, 3, indépendamment de leur type. L’algorithme
prend en entrée le redshift, les luminosités et les couleurs de WISE en proche IR, et est basé sur les
SFR et M, du catalogue SDSS MPA-JHU DRS. Le modele généré est non biasé en ce qui concerne le
redshift ou le type de galaxie, et peut estimer SFR et M, avec des erreurs statistiques de ospr = 0, 38
dex et de oM, = 0,16 dex respectivement. La couverture compléte du ciel du satellite WISE permet
la caractériserisation de ’activité de formation d’étoiles de toutes les galaxies a I’extérieur du masque
galactique (avec 0,01 < z < 0,3). Le modele de RF peut également étre appliqué aux catalogues de
galaxies avec redshifts photométriques, avec des erreurs statistiques de ospr = 0,42 dex et o, = 0,24
dex. J’ai appliqué cette méthode pour construire un catalogue a valeur ajoutée basé sur le catalogue avec
redshifts photométriques : le WISExSCOS catalogue. Le catalogue a valeur ajoutée généré est notam-
ment utilisé pour étudier les propriétés statistiques des galaxies autour des filaments cosmiques (présenté
au Chap. 6), et dans une autre étude présentée au Chap. 4.8. Ce chapitre utilise du matériel du papier
“Star formation rate and stellar masses from machine learning”, V. Bonjean, N. Aghanim, P. Salomé,
A. Beelen, M. Douspis, et E. Soubrié, 2019, A&A, 622, A137.

4.1 Introduction
Several methods have been developed to estimate SFR and M, from infra-red or optical bands (e.g.,

Calzetti et al., 2007; Kennicutt et al., 2009; Jarrett et al., 2013; Cluver et al., 2014; Cluver et al., 2017).
All of these relations are well calibrated. However, as passive and active galaxies have very different

49



colours in IR, applying these methods to galaxies without having any prior on their types can lead to
potential biases. Ideally, optical spectroscopic data are needed to estimate the SFR and M, properties,
but they are not always available as they are costly in terms of observing time.

In this chapter, an alternative approach is chosen to estimate SFR and M, for all galaxies over 70%
of the sky (i.e., outside the Galactic plane) with measured redshifts in the range 0 < z < 0.3, without any
priors on galaxy types. To do so, a machine learning algorithm, i.e., a random forest (see Chap. 3.1.3),
heve been used. Such a method is able to estimate very non-linear laws based on models trained on
reliable given inputs and outputs. In the present case, it allows us to estimate SFR and M, independently
of any complex model nor any priors on galaxy types. Very recently, Delli Veneri et al., 2019 have used a
similar approach to derive SFR based on optical colours from the SDSS photometric survey on a limited
portion of the sky. Here, the random forest algorithm is trained on WISE infra-red magnitudes, allowing
an application on the full usable sky (masked from our galaxy).

4.2 Constructing a training set

Ensuring good, that is, unbiased, training of the machine learning algorithm, the choice of inputs and
reference outputs is essential.

4.2.1 The choice of inputs and outputs

First of all, the inputs have to be defined, that is, the data that are proxy to estimate the SFR and the M,,.
Motivated by its full-sky coverage and its very large number of sources (more than 700,000,000 sources),
I have chosen the WISE infrared data as inputs, namely the AIWISE Source Catalogue (see Chap. 2.2.1).
As the SFR can evolve with redshift, I have also chosen to use the redshift z as input. As a proxy for the
stellar mass, I have chosen the WISE luminosity in the W1 band (3.4um), that traces the old non-ionizing
stars (Wen et al., 2013; Jarrett et al., 2013). As a proxy for the SFR, I have chosen the WISE luminosity in
the W3 band (12um), that traces the emission from small grains of dust, thus directly related to the total
quantity of dust, itself indirectly related to the SFR (re-emission of the UV from young stars absorbed by
the dust) (Jarrett et al., 2013; Cluver et al., 2014; Cluver et al., 2017). I have chosen not to consider the
W4 band of WISE although it is a good tracer of the SFR (Jarrett et al., 2013; Cluver et al., 2014; Cluver
etal., 2017), as Bilicki et al., 2016 found that its larger beam size (of 12”) and its poorer sensitivity could
lead to an important incompleteness and a significant bias of source selection with respect to redshift.
The aim of my study being to estimate the SFR and the stellar mass for both galaxy types (active and
passive), without any prior, I have also chosen as input two WISE colours to segregate the galaxy types:
W1-W2 (3.4 — 4.6um) and W2-W3 (4.6 — 12um). Wright et al., 2010 have found that these two colours
are very efficient to segregate morphologies, and thus galaxy types: elliptical E and passive spiral SO
galaxies are mainly located in the regions 0.5<W2-W3<1.5 and -0.1<W1-W2<0.3, while active spiral
galaxies are located in the regions 1<W2-W3<4.5 and -0.1<W1-W2<0.7. Alatalo et al., 2014 have also
found that WISE colours were a good proxy to segregate transiting galaxies and active galaxies, with
a threshold between the two types around W2 — W3 ~ 2.8. I show in Fig. 4.1 the colour W2-W3 as a
function of the passivity of the galaxies, i.e., the distance to the main sequence d2ms, for a sample of
galaxies from the SDSS MPA-JHU DRS catalogue cross-matched with WISE. It confirms that WISE
colours are very efficient to segregate populations.

The second ingredient of the construction of the training catalogue is the choice of the outputs that
are used as reliable reference for SFR and M,.. I have chosen the SFR and stellar masses from the SDSS
MPA-JHU DRS catalogue, as their estimations are based on robust methods and on reliable spectra. The
catalogue and the details about the estimations of the SFR and the stellar mass are presented in Chap. 2.1.
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Figure 4.1: 2D histogram of the projected distance to the main sequence in the SFR-M,, diagram vs. the
W2-W3 colour, for 148,685 SDSS galaxies cross-matched with WISE. Top: histogram of the W2-W3
colour. Two Gaussians are fitted for the passive galaxies in red, and for the active galaxies in blue. Right:
histogram of the projected distance to the main sequence, d2ms. Three Gaussians are fitted: passive (in
red), active (in blue), and transiting (in green) galaxies. The black dotted lines show the intersections
of the Gaussians defining active and passive galaxies, in both the colour and the distance to the main
sequence.

4.2.2 Selection of WISE sources

On the one hand, I have cleaned the AIWISE Source Catalogue to ensure reliable measurements. I
have used the profile-fitted photometry measurements of the W1 (3.4um), W2 (4.6um), and W3 (12um)
bands, noted wimpro, w2mpro, and w3mpro in the AIIWISE Source Catalogue. The associated errors
and signal-to-noise ratios are noted w1sigmpro, w2sigmpro, w3sigmpro, and w1isnr, w2snr, w3snr,
respectively. I have rejected all sources with known detection artifacts or measurement artifacts, by
adding a constraint cc_flags = 0 for each of the three bands. I have also selected the sources with
high-quality photometry measurements, by selecting the higher signal-to-noise ratios. To do so, I have
followed Krakowski et al., 2016 and have selected only sources with reliable magnitudes in W1 and W2:
wisnr > 2, w2snr > 2, as the WISE magnitudes are upper-values below w*snr < 2 (where * can be 1,
2, or 3) (Krakowski et al., 2016). Around one third of the sources selected in W1 and W2 have w3snr
< 2. In this case, following Krakowski et al., 2016, I have corrected the w3mpro magnitudes by adding
a correction +0.75. On the cleaned sample, I have also applied a 0'"-order k-correction (dependence on
redshift) by adding the quantity —2.5 X log (1 + z) to the magnitudes in each of the three bands (where z
is the spectroscopic redshift taken from the SDSS catalogue).

4.2.3 Selection of SDSS sources

On the other hand, I have selected a sub-sample of the SDSS catalogue to keep only sources with reliable
estimated properties. To do so, I have set the following flags in the SDSS MPA-JHU DRS catalogue:
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RELIABLE # 0, Z WARNING = 0, SFR_TOT_P50 # -9999, LGM_TOT_P50 # -9999, and Z > 0.
This cleaned sub-sample contains 794,633 galaxies with reliable SFR and M.

4.2.4 Cross-match between WISE and SDSS

Finally, I have constructed the training catalogue for the machine learning algorithm by performing a po-
sitional cross-match of the SDSS sub-sample (of 794,633 galaxies) with the cleaned AIIWISE Sources
Catalogue, within a radius of 6” (the beam of the W1 band of WISE from which the source positions are
extracted). I have removed from the cross-matched catalogue all multiple associations to prevent mis-
matched inputs/outputs properties between WISE and SDSS, and only ensure reliable properties. The
final cleaned training catalogue contains 573,582 galaxies. This cross-match catalogue contains spectro-
scopic redshifts from SDSS, WISE reliable w*mpro magnitudes, and reliable SFR and M, measurements
from SDSS. These properties are the input and output data of the machine learning algorithm. I show in
Fig. 4.2 the range of LW1, LW3, W1-W2 and W2-W3 of the training catalogue. In Fig .4.3, I also show
the contours of the SFR-M,, properties.
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Figure 4.2: Histograms showing the range of the input data. Left: luminosities of the sources of the
training catalogue. Right: colours of the same sources.

4.2.5 Training, validation, and test set

To further estimate the errors on the RF, I have split the training catalogue into three sub-samples. Fol-
lowing standard procedures, I have defined three randomised sub-samples: 60% for the training set, 20%
for the validation set, and 20% for the test set. I have further checked that changing the sizes of the
sub-samples does not affect the results of the RF algorithm.

4.3 Training the machine learning algorithm

4.3.1 Optimisation of the training

To optimise the efficiency of the training of a machine learning algorithm, hyper-parameters have to be
tuned. In the case of the random forest, as described in Chap. 3.1.3, the two main hyper-parameters are
the number of trees M and the maximum depth of the trees dpax. To set M and dpax, I have trained the
RF on the training set, varying M and dp,.x. For each combination (M, dp.x), | have computed the score
of the RF on the validation set using the coefficient of determination 100 x R?, where R? = 1 — 02, /0.
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Figure 4.3: SFR vs. M, diagram for the sources of the training catalogue. The lines show the 1o to 5o
contours. The dots show 100 randomly selected galaxies. The purple solid line traces the main sequence
of star forming galaxies given by (Elbaz et al., 2007). The colours of the dots are related to the distance
to the main sequence, d2ms, and are thus directly representative of the passivity of the galaxies.

By noting n the number of sources, y; their output values (from SDSS) and y; their associated estimated
values by the RF, o2, can be expressed as 072, = 2o i = y;)? and represent the residual sum of squares,
and 0% = 2o i ) represent the variance of the output distribution. I have set the two parameters
M and dpx to the ones giving the highest score on the validation set. Figure 4.4 shows the score of the

RF on the validation set, depending on the two parameters M and dpax.
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Figure 4.4: Percentage score of the RF results on the validation sample as a function of the RF parameters
M and dpax (M being the number of trees and dpax the maximum depth). Setting M = 40 and dpyax = 12
is enough in this case to optimise the RF.

For the parameter dp,.x, the performance of the RF increases until dpn,x = 12 and starts decreasing
beyond, indicating an over-fitting of the training set. Thus, dpax is set to dmax = 12. The parameter M
represents the statistics of the forest (number of trees). Thus, a simple lower limit is enough to optimise
the training, meaning that enough statistics was reached to properly estimate the results. Increasing the
value of M to higher values does not give significant changes. Here, setting M = 40 is sufficient to ensure
good statistics. The optimal score on the validation set is 84.5%.
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4.3.2 Relevance of the input parameters

One advantage of the RF algorithm is that the relevance of the input parameters during the training
process can be estimated and studied. I have studied the relevance of the input parameters, by estimating
either SFR alone, M, alone, or both SFR and M, (left, middle, and right panel in Fig. 4.5, respectively).
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Figure 4.5: Relevance of the input parameters during the training of the RF. Left: RF trained to estimate
M, only. Middle: RF trained to estimate SFR only. Right: RF trained to estimate both SFR and M.

From the five input parameters, the first obvious tendency is the low impact of the redshift (only on
the dependence on distance, as the redshift is also hidden in the luminosities LW1 and LW3) and of the
colour W1-W2 during the three trainings. For the estimation of M, alone, it is clear that the luminosity
LW1, as expected, is the more relevant parameter, with only a very slight contribution from the colour
W2-W3. For the SFR estimation alone, two more relevant parameters, as expected, are the luminosity
LW3 and the colour W2-W3 used to segregate the two main populations of galaxies. The case where
the RF is trained to estimate both SFR and M, shows that the two more relevant parameters are the
luminosity LW1 and the colour W2-W3, with a slight contribution (of about 5%) of the luminosity LW3.
This indicates that the two quantities LW1 and W2-W3 are the most efficient to classify and segregate
galaxy populations. I have confirmed this results by showing in Fig. 4.6 the two populations of galaxies,
i.e., active and passive, very well separated by the two quantities LW1 and W2-W3.

4.3.3 Results

I have trained the RF on the training set, with the two parameters set to M = 40 and dpax = 12. SFR
and M, are then estimated on the test set, noted SFRyr. and M, , respectively. I have then compared
these results with their reference values from the SDSS catalogue, noted SFRspss and M, spss. The
performance of the RF in terms of the errors and biases can hence be estimated by comparing the values
from the SDSS and those estimated with the RF. Figure 4.7 shows an overall good agreement between the
SDSS values and the values estimated with the RF algorithm, both for SFR and for M. This agreement
indicates that the RF algorithm is well trained.

For the stellar mass estimated with the RF algorithm (Fig. 4.7 left panel), the scatter between the
estimated and reference SDSS values is quantified through the variance: 0'1%,[* = 0.026. The associated
standard deviation is o, = 0.16 dex, translated into a statistical error of a factor 107 = 1.45. For the
SFR (Fig. 4.7 right panel), the scatter is larger and the variance is o%FR = 0.145. This gives a standard
deviation of ospr = 0.38 dex, and a statistical error of a factor 1075/ = 2 .40.
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Figure 4.6: 1o and 30 contours of galaxy types as a function of the two most relevant parameters
during the training of the RF: W2-W3 and LW1. Blue contours represent active galaxies, red contours
passive galaxies, green contours transiting galaxies, and purple contours AGN, according to the BPT
classification of the SDSS MPA/JHU DRS catalogue.
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Figure 4.7: Results of the RF on the test sample (20% of the entire sample), with RF parameters set to
M = 40 and dy,ox = 12. Left: M, estimations with the RF compared to M, from the SDSS MPA-JHU
DR& catalogue. Right: SFR estimations with the RF compared to SFR from the SDSS MPA-JHU DR8

catalogue.

4.4 Robustness of the algorithm

It is important to have precise results, with error bars estimated from the RF for both SFR and M, values,
and it is of equal importance to have accurate, that is unbiased, results.

4.4.1 Errors according to redshift

I have first investigated potential bias induced by the redshift dependence of the SFR and stellar mass in
the redshift range, 0 < z < 0.3, of the training catalogue used. I show in Fig. 4.8 the errors (defined as the
difference between machine-learning estimated values and SDSS values), for M, (left panel) and SFR
(right panel) for the galaxies in the test set. No obvious bias on redshift is observed. In the left panel of
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Fig. 4.8, a slight increase of the scatter for M is seen at very low redshifts. This is due to biases on the
magnitudes for low redshift sources. This is detailed in Sect. 4.4.4.
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Figure 4.8: Errors of the RF results obtained for sources in the test set (same errors as those presented in
Fig. 4.7) as a function of redshift, for M, and SFR.

4.4.2 Errors according to galaxy types

Another bias can be potentially induced by the galaxy types. To explore this possibility, I have compared
the results of the RF algorithm as a function of the BPT classes provided in the SDSS MPA-JHU DRS
catalogue. The BPT classes are good indicators of the galaxy types (as shown in Fig. 2.3 in Chap. 2.1,
where the red contours of passive galaxies with BPT = -1 are well in the cloud of red and dead galaxies,
the blue contours of active galaxies with BPT = 1 are well aligned along the main sequence, and the
green contours of transiting galaxies with BPT = 2 are well populating the green valley). The positions
in the BPT diagram can therefore be reliable proxies of the galaxy type. In Fig. 4.9, I show the results
of the RF (same as those displayed in Fig. 4.7), with the contour colours displaying the different BPT
classes.
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Figure 4.9: SFR and M, obtained with the RF algorithm on the test set compared to the SDSS classifi-
cation based on the BPT diagram. Colour code of the contours is the same as in Fig. 2.3 (in Chap. 2).

The RF performs equally well for any type of galaxy and no strong bias induced by the galaxy type is
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ML with z ML without z Analytical
All | Passive (BPT =-1) | Active (BPT =1) | Transiting (BPT = 2) All All
oM, | 0.16 0.11 0.23 0.13 0.32 0.23
osrr | 0.38 0.38 0.30 0.39 0.43 0.47 (active only)

Table 4.1: Summary of the different scatters obtained on the test set with different methods.

seen. Moreover, the scatter of the results depends only very slightly on galaxy type. For passive galaxies,
with BPT = -1, the scatter on M, tends to be reduced: ospr = 0.38 dex and o, = 0.11 dex. For active
galaxies, with BPT = 1, the inverse trend is seen and the scatter on the SFR tends to be reduced with a
small increase of the scatter of M,: ospr = 0.30 dex and o, = 0.23 dex. For transitioning galaxies,
with BPT = 2, the scatters are roughly the same as the overall ones obtained on the all the populations:
osrr = 0.39 dex and oy, = 0.13 dex. A summary of the different scatters is shown in Tab. 4.1.

4.4.3 Comparison with other methods

Several studies have derived analytical formulae to determine SFR and M,, some of them also based
on the WISE luminosities (e.g., Wen et al., 2013; Jarrett et al., 2013; Cluver et al., 2014; Cluver et al.,
2017). I have compared the SFR and M, estimated with the RF algorithm with those derived using
different approaches, but based on the same observables (WISE luminosities: LW1 and LW3). I have
focused on the M, estimated with the relation from Wen et al., 2013, using LW 1:

log My wen) = 1.12 X log (LW1) — 0.04, @.1)

and on the SFR estimated from Cluver et al., 2014 using LW3, (derived for active galaxies only):

log (SFRciyver) = 1.13 X log (LW3) — 10.24. 4.2)

I have computed M, with Eq. 4.1 for all galaxies. In the left panel of Fig. 4.10, I compare M
estimated with Eq. 4.1 with M, from the SDSS MPA-JHU DR& catalogue. I also show the 1, 3, and 5 o
contours of the RF estimations. This comparison shows the smaller scatter of the M, estimated with the
RF algorithm. This result is not surprising considering that the RF algorithm has five inputs compared to
only one for Eq. 4.1. Scatters are o, ,, = 0.23 dex and oy, = 0.16 dex (see also Tab. 4.1).

SFR are computed, for star-forming galaxies only with BPT = 1, to satisfy the conditions of Cluver
et al., 2014, following Eq. 4.2. They are compared with the SFR from the SDSS MPA-JHU catalogue
(right panel of Fig. 4.10). The blue contours show the RF estimations, and the red contours show the
SFR computed with the method from Cluver et al., 2014 for passive galaxies (i.e., BPT = -1). A smaller
scatter for the SFR estimations from the RF algorithm is found; this is again expected since five inputs
are used for the RF algorithm compared to only one for Eq. 4.2. The limitation of the application domain
of a relation between LW3 and SFR is also shown in terms of its dependence on galaxy type (huge bias
on the red contours showing the passive galaxies). Scatter are ospre,,., = 0.47 dex and ospr,, = 0.30
dex for active galaxies (see also Tab. 4.1), while for passive galaxies scatters are osgr,,., = 0.49 dex and
osrry. = 0.38 dex. For passive galaxies computed with Eq. 4.2, a bias, defined as the absolute difference
of the means, is found: bcpyyver = 0.93 dex (compared with by, = 0.04 dex for RF estimations).

As a second comparison, I have used a catalogue of galaxies with SFR computed using an alternative
method. An example is the extended version of the COLD GASS (CO Legacy Database for GASS)
catalogue of nearby galaxies, the xCOLD GASS catalogue' (Saintonge et al., 2017). The sample contains
532 nearby galaxies (z < 0.05) from SDSS selected in mass (M, > 10°My). The galaxies span a wide

'Publicly avaible at http://www.star.ucl.ac.uk/xCOLDGASS/index.html
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Figure 4.10: Comparisons on the test set. Left: M, estimated with the method of Wen et al., 2013,
using the LW1, compared with M, from SDSS. The lines represent the 1, 3, and 5o contours of the RF
estimations. Right: SFR computed (for star-forming galaxies only) with the method of Cluver et al.,
2014, using LW3, compared to SFR from the SDSS catalogue. The blue contours show the results of the
RF for active galaxies only (i.e., BPT = 1). The red contours show the SFR estimated with the method
of Cluver et al., 2014 for passive galaxies (i.e., BPT = -1). In both panels, the dashed line shows the
one-to-one correlation.

range of SFR values and galaxy types, each of them observed IRAM-30m CO(1-0) observations, and as
mentioned, “because the COLD GASS sample is large and unbiased, it serves as the perfect reference for
studies of particular galaxy populations”. SFR and M, are computed with the method from Janowiecki
et al., 2017, using a combination of UV from the Galaxy Evolution Explorer satellite’ (GALEX, Milliard
etal., 2017) and of infrared from WISE. I show in Fig. 4.11 the results of the RF algorithm for the galaxies
of the xCOLDGASS catalogue (with only one association with AIIWISE sources within a radius of 6"),
compared with their values (noted S17). A good overall agreement is seen, and a small bias is observed
in the SFR estimations, especially for passive galaxies. As a bias is also observed between the SDSS
MPA-JHU DRS values and the UV+IR estimation in the right panel of Fig. 4.11, the bias observed in
the SFR estimated by the RF algorithm possibly comes from the two different methods for the SFR
estimations in Saintonge et al., 2017 and in the SDSS MPA-JHU DRS catalogue. Indeed, they do not
use the same wavelengths to estimate their quantities. This shows that unobscured UV SFR is not seen
in WISE or in SDSS. The catalogue chosen as output values for the RF algorithm (the SDSS MPA-JHU
DRS) is thus very restrictive and may bias the RF algorithm. Other value-added catalogues of galaxies,
with more reliable SFR and M, estimations, may be chosen as outputs to construct the training catalogue
of the RF algorithm, and hence increase the performance.

4.4.4 Limitation

The results of the RF algorithm agree well with previous works, in particular those of Wen et al., 2013
and Cluver et al., 2014. The domain of application of all three studies in terms of galaxies and more
precisely in terms of redshifts is similar (mean redshift at around z = 0.15). Comparisons with other
available catalogues providing SFR and M, are not possible when the sources under consideration are
too different from the domain of application of the RF algorithm, that is, the domain of the catalogue
chosen as outputs (in this case the SDSS MPA-JHU DRS catalogue). I have focused on two extreme

*http://www.galex.caltech.edu
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Figure 4.11: Comparison with the XCOLDGAS catalogue from Saintonge et al., 2017 for the sources
that match only once with the AIIWISE catalogue in a 6" radius. Left: M, estimated with the RF
compared with the M, provided by the SDSS MPA-JHU values catalogue. Middle: SFR estimated with
the RF compared with the SFR provided by the xCOLDGAS catalogue, computed with combined UV
and IR data. Right: SFR given by the SDSS MPA-JHU DRS catalogue compared with the SFR from
xCOLDGAS.

cases, where the domains of application prevent us from obtaining reasonable estimates. On the one
hand, I have considered very nearby galaxies with redshifts z < 0.01, and on the other hand, high-redshift
galaxies, upto z = 8.

For the first case, I have used a sample of very nearby (z < 0.01) star-forming galaxies, that was
constructed by combining the Spitzer catalogue SINGS (Kennicutt et al., 2003) and the Herschel Space
Observatory catalogue KINGFISH (Kennicutt et al., 2011). The SINGS/KINGFISH catalogue of 79
sources was used by Cluver et al., 2017 to successfully estimate the relation between SFR and LW3. In
this catalogue, the redshift domain, i.e., z < 0.01, implies that the galaxies are resolved, and therefore
the use of the WISE Atlas Images is needed to accurately measure the fluxes of the objects (Saintonge
et al., 2017; Cluver et al., 2017). The WISE magnitudes may lack flux emission, that is seen in Fig. 4.8,
as a higher scatter in M, estimations for very-low-redshift galaxies (z < 0.01).

For the second case, I have used the COSMOS2015 catalogue® (Laigle et al., 2018), which provides
apparent magnitudes in 30 bands for approximately half a million objects up to redshifts z = 8. It also
provides photometric redshifts, SFR, and stellar masses, computed with the code LEPHARE* (Arnouts
and Ilbert, 2011). Here, the application of the RF algorithm is not possible. In this case, the main issue
is the resolution of WISE of 6"; too many COSMOS sources are associated with a WISE galaxy inside
the WISE beam, and therefore a correct association with the AIIWISE catalogue is not possible.

The application domain of the RF algorithm is thus 0.01 < z < 0.3. Applying it beyond this redshift
limit may lead to strong biases, as such sources have not been seen during the training.

4.5 Redshift dependency during the training

4.5.1 Train without redshift

The SFR and stellar mass estimated with the RF rely on the redshift information. Redshifts are used to
compute the luminosities and they also impact the evolution of the mean global SFR over time. The need
for redshift information to estimate the M, and the SFR is very restrictive, as spectroscopic redshifts are
hard to obtain, and photometric ones are not accurate. I have tested the performance of the RF method

Shttp://cosmos.astro.caltech.edu
“http://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html

59



without any redshift information. This implies that the k-correction on the magnitudes have not been
applied, and that the luminosities have not been computed. The input parameters are thus only the two
WISE magnitudes W1 and W3 and the two WISE colours W1-W2 and W2-W3. In Fig. 4.12, I show the
results on the test set. The accuracy of the method is highly degraded: the scatter of M, estimations is
oM, = 0.32 dex and the scatter of SFR estimations is ospr = 0.43 dex (compared to o, = 0.16 dex
and ospr = 0.38 dex with the redshift information in inputs; see also Table 4.1).
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Figure 4.12: Results of the RF on the test sample, with only W1, W3, W1-W2 and W2-W3 in input, i.e.,
without any information about the redshift z. Left: M, estimated with the RF compared with M, from
the SDSS MPA-JHU DRS catalogue. Right: SFR estimated with the RF compared with SFR from the
SDSS MPA-JHU DRS catalogue.

4.5.2 Modelling photometric redshifts

In order to investigate if the machine-learning algorithm trained on a spectroscopic-redshift catalogue can
also be applied to high-accuracy photometric-redshift catalogues, I have modelled an error as o.(1 + z)
and added it to the spectroscopic redshifts of the test sample. In Fig. 4.13, I show in blue the evolution
of the scatter of the SFR and M, estimates as a function of o,(1 + z). A large increase of the scatter is
seen for both properties with decreasing redshift accuracy. This trend is due to two effects. On the one
hand, the increase in redshift error obviously impacts the SFR and M, estimates. On the other hand, an
additional bias increases the scatters on SFR and M. This is shown in the left panel of Fig. 4.14, for the
SFR estimates with o,(1 + z) = 0.015.

In order to correct for this bias, I have arbitrarily modelled it with an exponential a X e~¥/% (see
Fig. 4.14). As shown in Fig. 4.15, the biases evolve with the photometric redshift errors. In Fig. 4.13,
I show in orange the scatter on the bias-corrected properties as a function of redshift. The scatters are
significantly reduced, but still rather large: o, = 0.35 dex and ospr = 0.44 dex at 0,(1 + z) = 0.03. In
the range 0.1 < z < 0.3, the scatters (shown in green in Fig. 4.13) are reduced down to more reasonable
values, such as oy, = 0.24 dex and ospr = 0.42 dex at o;(1 + z) = 0.03 (the accuracy expected for the
photometric-redshift catalogue of Euclid). Hence, the RF algorithm could be applied to present or future
photometric-redshift catalogues like DES, LSST, Pan-Starrs, Euclid, or WFIRST. In the meantime, I have
applied the RF algorithm to a full-sky catalogue of photometric redshifts, the WISExSCOS catalogue.
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Figure 4.13: Evolution of the scatters of the properties estimated with the RF as a function of the redshift
error 0(1 + z). Left: scatter for M. Right: scatter for SFR. The blue lines correspond to the scatters
of the whole sample, regardless of the induced bias. The orange lines correspond to the scatters of bias-
corrected properties from the biases modelled in Fig. 4.15. The green lines correspond to the scatters
of sources in the redshift range 0.1 < z < 0.3 (while blue and orange lines are sources in the range
0<z<0.3).
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Figure 4.14: Example of bias induced by the additional redshift error. Left: for o,(1 + z) = 0.015
the errors on the SFR estimates are shown as a function of redshift. The blue line corresponds to the
modelled bias. Right: same errors, corrected for the bias.

4.6 WISEXSCOS value-added catalogue and maps

4.6.1 WISEXSCOS value-added catalogue

The WISExSCOS photometric redshift catalogue (described in Chap. 2.2.2.2), contains both photometric
redshift estimates and WISE magnitudes. Based on these properties, I have estimated SFR and M, for
15,765,535 sources in the redshift range 0.1 < z < 0.3 using the RF algorithm. The range of SFR and of
M, of the WISExSCOS value-added catalogue is shown in the left panel of Fig. 4.16.

61



2.5 — ;=0 ;=0
—— 0;=0.005 —— 0;=0.005
— ;=001 2.01 0;=0.01
2.0 A — 0,=0.015 0,=0.015
—— 0;=0.02 0;=10.02
— 0,=0.025 15 0;=10.025
L 154 — 0;=0.03 « 0;=0.03
= &
< <1 10
1.0
05 4 0.5 1
0.0 A 0.0 |
T T r T T r r T r T T T r T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
V4 z

Figure 4.15: Evolution of the bias as a function of redshift, for different redshift errors (indicated by the
colours). Left: bias for M, estimates. Right: bias for SFR estimates.
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Figure 4.16: Left: range of SFR and of M, of the 15,765,535 sources in the WISExSCOS value-added
catalogue in the range 0.1 < z < 0.3. Right: distributions of the active, transitioning, and passive galaxies
of the WISExSCOS value-added catalogue as a function of redshift.

4.6.2 Distance to the main sequence estimation

Similarly to estimating the activity of galaxies by computing specific SFR (which illustrates the effi-
ciency of a galaxy in forming stars), the distance to the main sequence on an SFR-M, diagram which is
translated into a colour in Fig. 4.3 informs us about the star formation activity. Since this distance, noted
d2ms, is directly related to the distance of a galaxy from being star-forming, I prefer to use the term
passivity rather than activity. The redder the points in Fig. 4.3, the more distant from the main sequence
of star-forming galaxies, and the more passive the galaxies are. The quantity d2ms, efficiently estimated
by the RF algorithm, can be a very useful property to segregate populations of active, transitioning, or
passive galaxies. I have thus split the 15,765,535 sources of the WISExSCOS catalogue in the range
0.1 < z < 0.3, into the three galaxy populations, i.e., active, transitioning, and passive galaxies, using
the d2ms. I have defined as active galaxies sources with d2ms < 0.4, as transiting galaxies sources with
0.4 < d2ms < 1.25, and as passive galaxies sources with d2ms > 1.25. These cuts are defined by the
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intersections of the three Gaussians fitted on the distribution of the d2ms on a sample of SDSS galaxies,
used to model the three populations of galaxies (shown in the right panel of Fig. 4.1). After the splitting,
the catalogue contains 7,249,961 active, 4,353,744 transitioning, and 4,161,830 passive galaxies. The
distributions of the three populations of galaxies in redshifts are shown in the right panel of Fig. 4.16.

4.6.3 Galaxy density maps

Based on the WISExSCOS value-added catalogue and on its three sub-samples of galaxy types defined
above, | have constructed 3D galaxy density maps, in the redshift range 0.1 < z < 0.3, using the positions
of the sources on the sphere and their redshift information. To do so, I have reconstructed the density
field with the pyDTFE code presented in Chap. 3.3.1. Based on 3072 3D density fields in patches of
3.7° x 3.7°, I have generated four 3D HEALPIX full-sky maps: one for all galaxies, and one for each
of the three populations of galaxies. The number of pixels of the HEALPIX maps are ngjqe = 2048, i.e.,
a pixel resolution of 1.7°, and the binning in redshift was arbitrarily set at 6, = 0.01. An example of
a slice at z = 0.15 of the 3D passive galaxy density map (smoothed at 30’ for visualisation) is shown
in Fig. 4.17. The large scale distribution of the galaxies is seen, together with contaminations, i.e., the
stripes due to the WISE scanning strategy, the mask of our galaxy and of the Magellanic cloud, and
the reddening from dust around our galaxy and the Magellanic cloud. High density concentrations are
also seen, which are galaxy clusters. In addition to the four galaxy density maps, I have constructed in
the same way 3D maps of SFR and M., for all galaxies, and for the active, transitioning, and passive
populations. The maps are constructed by interpolating at their 3D positions the SFR and M, estimated
with the RF algorithm.

4.7 Towards a WebService tool

I have developed a WebService based on python and on the Django package®. It allows to quickly
estimate on the fly the SFR and M, properties of photometric SDSS sources. The interface is very
user friendly, one only has to enter the coordinates of the field and a radius for the cone search. The
trained RF model is called and loaded in back-end. HTML SQL queries on the AIWISE catalogue and
on the SDSS photometric redshift survey are performed in parallel, and a cross-match between the two
catalogues is performed on the fly. The RF model then uses the photometric redshifts from SDSS and
the WISE luminosities and colours to estimate SFR and M, and display the sources in an interactive 3D
fields, together with their associated positions on the SFR-M,, diagram. The user can easily select with a
lasso selection the sources of a desired type with the information on the distance to the main sequence of
star-forming galaxies, and see their updated positions in the 3D field. A screen-shot in Fig. 4.18 shows
the interface of the WebService, with an example in a field of 30 arcmin around the position (R.A. =
180°, Dec.= 0°). In this example, passive galaxies were selected with the diagram on the right. An
over-density of the selected passive galaxies is seen in the 3D density field on the left (light blue circle).
The redshift and the position of this over-density of passive galaxies were matched with a galaxy cluster
from the RedMaPPer catalogue presented in Chap.2.4.1: RMJ120143.7-001104.2, at z = 0.16. Thus,
this example also shows the potential of such value-added catalogue and tool to detect galaxy clusters.

4.8 Summary

I have developed a method based on machine learning to estimate the SFR and M, of galaxies, in the
redshift range 0.01 < z < 0.3, over the whole usable sky when their redshifts are known.

Shttps://www.djangoproject.com
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Figure 4.17: Mollweide projection of the slice at z = 0.15 of the 3D passive galaxy density map con-
structed with the pyDTFE code. The map is smoothed at 30’ for visualisation. The large-scale distribu-
tion of the galaxies is seen, together with artefacts from the WISE scanning strategy, and the masks of
our galaxy and of the Magellanic cloud.

The trained Random Forest model gives SFR errors of o-spr = 0.38 dex and M, errors of o, = 0.16
dex, independently of the galaxy types, and unbiased with respect to redshift. I have further checked that
the choice of an RF algorithm was not altering the performance by comparing the results to other machine
learning algorithms like Artificial Neural Networks.

The RF algorithm is trained on the redshift z, the WISE luminosities LW1 and LW3, and the WISE
colours W1-W2 and W2-W3. These input properties allow a very efficient segregation of the different
galaxy types, and are good proxies to estimate the stellar mass and the SFR. As outputs to train the
algorithm, I have chosen the SFR and M, from the SDSS MPA-JHU DRS catalogue. However, the
method can be adapted in the future with any other catalogue with SFR and M,, to improve the results,
and also to increase the redshift range of the application domain.

I have applied the RF algorithm to the WISExSCOS photometric redshift catalogue, computing the
SFR and M,, of 15,765,535 sources in the full usable sky (outside our galaxy), in the range 0.1 < z < 0.3.
This catalogue was used in several projects, such as the cross-correlation of galaxy types and SZ effect
(in collaboration with G. Fabbian, F. Bianchini, and N. Aghanim), or the multipolar analysis galaxy
cluster outskirts as a function of the galaxy types (in collaboration with C. Gouin and N. Aghanim). I
have also used this catalogue to study the properties of the galaxies in the bridge of matter between A399
and A401 (presented in the next chapter), and the derived galaxy density maps to characterise galaxy
properties around large-scale cosmic filaments (in Chap. 6).
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Figure 4.18: Screen-shot of the WebService. Sources are shown in a 30’ radius around the arbitrary
position (R.A. = 180°, Dec.= 0°). Passive galaxies are selected, showing an over-density (light blue

circle). This cluster of passive galaxies corresponds to the RedMaPPer cluster RMJ120143.7-001104.2,
atz = 0.16.
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Chapter 5

Detailed study of the bridge of matter
A399-A401
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Abstract

In this chapter, I present a multi-wavelength analysis of two pairs of galaxy clusters selected with the SZ
effect. I have focused on one pair of particular interest: A399-A401 at redshift z ~ 0.073, that is linked
by a bridge of matter of 3 Mpc. I have also performed the first analysis of one lower-significance newly
associated pair: A21-PSZ2 G114.09-34.34 at z ~ 0.094, separated by 4.2 Mpc. I have characterised the
intra-cluster gas using the SZ signal from Planck and, when possible, the galaxy optical and infra-red
properties based on two photometric redshift catalogues: 2MPZ and WISExSCOS. From the SZ data, 1
have measured the gas pressure in the clusters and in the inter-cluster bridge. In the case of A399-A401,
the results are in perfect agreement with previous studies and, using the temperature measured from
the X-rays, I have further estimated the gas density in the bridge, ng = (4.3 + 0.7) x 10~*cm™>. The
optical and IR colour-colour and colour-magnitude analyses of the galaxies selected in the cluster pair,
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together with their star formation activities, show no segregation between the galaxy populations both
in the clusters and in the bridge of A399-A401: they are all passive. The gas and galaxy properties of
this pair suggest that the whole system has formed at the same time and corresponds to a pre-merger,
with a cosmic filament gas heated by the collapse. For the cluster pair A21-PSZ2 G144.90-34.35, I have
estimated the pressure in the clusters and in the inter-cluster bridge in SZ. However, as the optical and
IR data are limited in this case, concluding on the presence of an actual cosmic filament or proposing a
scenario is not possible. This chapter uses material from “Gas and galaxies in filament between clusters
of galaxies: The study of A399-A401”, V. Bonjean, N. Aghanim, P. Salomé, M. Douspis, and A. Beelen,
2018, A&A, 609, A49.

Résumé

Dans ce chapitre, je présente une analyse multi-longueurs d’onde de deux paires d’amas de galaxies
sélectionnées avec I’effet SZ. J’ai mis ’accent sur une paire de particuler intérét : la paire A399-A401,
a redshift z ~ 0,073, qui est reliée par un pont de matiere long de 3 Mpc. J’ai également effectué la
premiere analyse d’une paire nouvellement associée : la paire A21-PSZ2 G114.09-34.34, a z ~ 0,094,
séparée par 4,2 Mpc. J’ai caractérisé le gaz intra-amas en utilisant le signal SZ de Planck, et spécifique-
ment pour A399-A401, j’ai étudié les propriétés optiques et infrarouges des galaxies a I’aide de deux
catalogues de redshift photométriques : 2MPZ et WISExSCOS. A partir des données SZ, j’ai mesuré la
pression du gaz dans les amas et dans le pont. Dans le cas de A399-A401, les résultats sont en accord
avec les études précédentes, et en utilisant la température mesurée a partir des observations en X, j’ai
estimé la densité du gaz dans le pont comme étant ng = (4,3 +0,7)x 10~*cm™3. Les analyses optiques et
infrarouges des couleurs et des magnitude des galaxies sélectionnées comme membre de la paire d’amas,
ainsi que leurs activités de formation d’étoiles, ne montrent aucune différence entre les populations de
galaxies d’amas et celle du pont : elles sont toutes passives. Les propriétés du gaz et des galaxies de cette
paire suggerent que tout le systeme s’est formé en méme temps et correspond a une pré-fusion, avec un
gaz filamentaire cosmique chauffé par I’effondrement des deux amas. Pour la paire d’amas A21-PSZ2
G144.90-34.35, j’ai estimé la pression dans les amas et dans le pont inter-amas avec I’effet SZ. Cepen-
dant, comme les données optiques et IR sont limitées dans ce cas, il n’est pas possible de conclure sur la
réelle présence d’un filament cosmique ou de proposer un scénario. Ce chapitre utilise du matériel du pa-
pier “Gas and galaxies in filament between clusters of galaxies: The study of A399-A401”, V. Bonjean,
N. Aghanim, P. Salomé, M. Douspis, et A. Beelen, 2018, A&A, 609, A49.

5.1 Introduction

As the galaxy clusters are built up over time from mergers and interactions of smaller systems (e.g.,
Navarro, Frenk, and White, 1995; Springel et al., 2005), they are naturally connected to the Cosmic
Web via the filaments. Strategies to probe the Cosmic Web are thus associated with our ability to probe
filamentary structures between clusters or in their outskirts. This is in principle possible via observation
of the galaxy distribution (e.g., Durret et al., 2016), the weak gravitational lensing (e.g., Eckert et al.,
2015), the X-ray emission from the hot gas (e.g., Eckert et al., 2015), and the thermal SZ effect (e.g.,
Planck Collaboration et al., 2013b), but the search for filaments linking the clusters to the Cosmic Web
is really difficult due to their very low densities. This subject has gained a lot of interest, and focuses
mostly on two cases: filaments in the outskirts of individual clusters, and inter-cluster filaments (or
bridges) in pairs of clusters. Regarding the former case, Eckert et al., 2015 detected large-scale structures
of several Mpc in the outskirts of the galaxy cluster Abell 2744 at redshift z = 0.306, from combined
observations in the X-ray, of galaxy over-densities, and from weak lensing analysis. For the DAFT/FADA
cluster sample (Guennou et al., 2010), Durret et al., 2016 found filaments in clusters’ outskirts with
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two-dimensional galaxy densities obtained with CFHT and SUBARU observations. Regarding cluster
pairs, the inter-cluster filaments or the bridges are expected to be denser, with a hotter gas, and thus in
principle easier to detect, in particular in the X-rays and in the SZ effect (Dolag et al., 2006). Cluster
pairs are thus good targets and have therefore been the subject of numerous studies. The photometric
properties of the galaxies in the inter-cluster filament, their star-formation evolutions, their stacked weak
lensing properties, their stacked SZ contributions, and so on, were performed in many selected cluster
(or group) pairs (e.g. Fadda et al., 2008; Gallazzi et al., 2009; Edwards et al., 2010; Zhang et al., 2013;
Martinez, Muriel, and Coenda, 2016; Epps and Hudson, 2017; Tanimura et al., 2019b; de Graaff et al.,
2019). Galaxy clusters may show substructures or evidence of dynamical effect: they merge, interact,
and accrete smaller groups. The galaxy properties derived from optical and near-infrared data thus need
to be combined, in a multi-wavelength analysis, with the study of cluster gas content. The gas properties
of cluster pairs were therefore also investigated mostly using X-ray observations. This is the case of
the particular pair A399-A401, thoroughly studied using data from ASCA, ROSAT, Suzaku and XMM-
Newton (e.g. Karachentsev and Kopylov, 1980; Ulmer and Cruddace, 1981; Fujita et al., 1996; Fabian,
Peres, and White, 1997; Sakelliou and Ponman, 2004; Fujita et al., 2008; Akamatsu et al., 2017). The
gas in this galaxy cluster pair was already studied using both the X-ray (with ROSAT) and the SZ effect
(with the Planck SZ MILCA map of 2013) by Planck Collaboration et al., 2013b. Very recently, this pair
was studied in LOFAR (Govoni et al., 2019), where the authors have detected the presence of magnetic
fields in the bridge re-accelerating the electrons in the ionised gas between the two clusters.

In this chapter, I present a multi-wavelength analysis of A399-A401, based on the SZ map of 2015
from Planck, and optical and near infra-red data from photometric redshift catalogues with physical
galaxy properties estimated as described in Chap. 4. I also present a newly interesting pair: A21-PSZ2
G114.90-34.35.

5.2 SZ selection of galaxy cluster pairs

I have first constructed a sample of cluster pairs based on the SZ signal given that it is a priori the most
appropriate tracer of the diffuse hot gas. In practice, I have based the selection both on the SZ cluster
database (presented in Chap. 2.4.2) and on the signal-to-noise ratio of the SZ signal between the pairs.

5.2.1 SZ selection

Following Planck Collaboration et al., 2013b, I have applied three conditions to select the galaxy-cluster
pairs. First, the two clusters need to be at the same redshift, second, the distance between the two clusters
needs to be large enough to avoid blending effects, and finally, the significance of the SZ signal in the
inter-cluster region needs to be above 20-. The two first empirical conditions were proposed by Planck
Collaboration et al., 2013b: Az<0.01, and considering the Planck MILCA SZ map beam of 10 arcmin,
30 arcmin<6ep <120 arcmin, where Az is the redshift difference between the two clusters and 6gep, is the
angular distance separating the two clusters. This corresponds to projected distances between 3 and 40
Mpc. I have found a total of 71 cluster pairs satisfying the two conditions (Fig. 5.1) in the SZ cluster
database of 2,690 clusters or candidates presented in Chap. 2.4.2.2. This is about three times more pairs
than the selection based on clusters from the MCXC catalogue, performed in Planck Collaboration et al.,
2013b. About one third of the clusters in these pairs are Abell clusters (Abell, Corwin, and Olowin,
1989), one third are Planck newly detected clusters, and the others are X-ray clusters from the MCXC
catalogue or SZ clusters detected by SPT.
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5.2.2 Projection in patches

Since one of the aim of the analysis is to study and characterise the gas between pairs of clusters, I have
considered the SZ signal significance in terms of the signal-to-noise ratio of the SZ emission in the bridge
region: S /Ny. For each cluster pair, I have projected patches of the Planck MILCA SZ map of s = 90
pixels aside, centered on the mean of the two cluster positions, with a pixel resolution 6, depending on
the angular distance 6, separating the two clusters: 6, = (5 X 6sp)/s. I have rotated the patches for
convenience (the alignment of the clusters is always horizontal), and have masked the SZ signal at the
positions of the Planck Catalogue of Compact Sources (Planck Collaboration et al., 2016d) presented in
Chap. 2.3.3, and at the positions of the other SZ sources in the fields (except in an area defined as the
region encompassed within 3 X r5po from the cluster centres). In order to define the radii r509, I have
used the relation between masses and radii (the Eq. 1.5 in Chap. 1), for the 1,681 SZ clusters for which
both redshift and mass estimates Mss(%o are available. Figure 5.2 shows two examples of projected SZ
maps, for the pair A399-A401 and A21-PSZ2 G144.90-34.35, with the red circles representing the rsg
radii of the clusters, and the white pixels the masked regions. On these patches, I have defined the area
of the potential inter-cluster bridge as the cylinder between the minimum of the two rs5po in the radial
direction and between the two rsoo in the longitudinal direction. I have estimated the signal-to-noise
ratio S /Nf1 = (Ym,fil — Ym,bked)/Obked» Where yp 1 is the mean SZ signal in the area defining the bridge,
and ym pked and opked are the SZ mean signal and the standard deviation of the background area beyond
the 3 X rsq distance from the cluster centres.
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Figure 5.1: Distribution of the 71 cluster pairs in the parameter space Az-6s.,. The areas and colours of
the circles depend on S /Ng;. The pairs for which S/Ng; > 2 are shown with green open circles. The red
open circles indicate the final selection after exclusion of pairs lying in complex systems.

I show in Fig. 5.1 the 71 cluster pairs that satisfy the two first conditions (redshift and angular
separations) in the SZ cluster database. The size and colour of the circles show the estimated S /Ng.
Green open circles mark the pairs for which the S/N is greater than two. Among these, I have chosen to
discard the cluster pairs belonging to larger and more complex systems such as the Shapley super-cluster,
or the pair containing the cluster A3395, a system already known to host several groups (Lakhchaura et
al., 2011; Planck Collaboration et al., 2013b). I have also finally removed the pair SPT J0655-5234-SPT
J0659-5300, at redshift z = 0.47, with S /Ng; = 2.03. The redshift of this system is high, and thus the two
catalogues used to study the galaxies in Sect. 5.4, with zjeq ~ 0.08 and zpeq ~ 0.2, lack statistics. Some
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of these removed complex systems will conduct to further dedicated analysis (discussed in Chap. 5.6).
Eventually, I have focused on two isolated pairs with a significant SZ signal in their inter-cluster region
(red open circles in Fig. 5.1): the pair A399-A401 at redshift z ~ 0.073 with § /N5 = 8.74, and the newly
associated pair A21-PSZ2 G114.09-34.34 at redshift z ~ 0.094 with S /N5 = 2.53. Their main properties
are presented in Tab. 5.1, and the projected patches of the Planck MILCA SZ map are shown in Fig. 5.2.
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Figure 5.2: Projected patches of the Planck MILCA SZ map for the two selected cluster pairs. Left: the
pair A399-A401. Right: the pair A21-PSZ2 G114.90-34.35. The red circles show the radii rsop of the
clusters and the white pixels are masked from the Planck Catalog of Compact Sources and from other
clusters in the fields. The black crosses show the centres of the SZ clusters.

Cluster R.A. (deg) Dec. (deg) S/Nsz S/Ng Z r500 Mpc)  Osep ) Osep Mpc)  S/Nfit S /NfiLa

A399 44.45 13.05 1296 8.85 0.072 1.20

A401 44.73 1357 1966 974 0074 130 00 30 874789
A2l 5.15 2867 936 619 0094  1.07
PSZ2G1149 535 2805 478 263 0095 093 OO0 42253 208

Table 5.1: Main properties of the selected pairs: cluster names, SZ positions in R.A. and Dec., S/Ns of
the clusters from the SZ catalogue and in galaxy over-density (Sect. 5.4.3), redshifts, estimated radii r509.
The last four columns indicate the angular separation in arcmin and in Mpc, and the S/Ns of the bridges
in the SZ map (Sect. 5.2) and in galaxy over-density (Sect. 5.4.3).

5.3 Gas properties from SZ analysis

5.3.1 Model

In order to derive the gas properties of the inter-cluster bridge, I have modeled the entire system with four
components: two clusters, one bridge, and a planar background (see the schema in Fig. 5.3). To model
the galaxy clusters (blue and green components in Fig. 5.3), I have chosen the spherically symmetric
Generalised Navarro, Frenk,& White (GNFW) pressure profile (Nagai, Vikhlinin, and Kravtsov, 2007),
that was fitted by Arnaud et al., 2010; Planck Collaboration et al., 2013a to best represent the gas pressure
profiles around galaxy clusters. This model takes the form:
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r) = Po (5.1)

a1Benew =)/’
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where r is the radius, Py is the central pressure, r; = rsgp/cs00 is the characteristic radius, and v, «,
Bonrw are the internal (r < rg), intermediate (r ~ rg), and external (r > ry) slopes, respectively. All the
parameters, but two, are fixed to the ones of the universal profile fitted by Planck Collaboration et al.,
2013a on stacked SZ clusters. The two parameters let free are Sgnrpw (related to the cluster extension),
and Py (related to the Compton parameter y amplitude). These two parameters can be degenerated with
each other, and with some parameters of the bridge, such as its length or its pressure.
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Figure 5.3: Front and profile schematic views of the model: the two clusters in green and in blue with
two free parameters each, and the inter-cluster bridge in red with three free parameters. The length of
the filament / is fixed to the distance between the two rs5g9/2 of each cluster. A planar background with
three free parameters is considered.

The GNFW pressure profile was specifically developed to model the pressure distribution in galaxy
clusters. As such, it cannot be applied to filaments or bridges. In the absence of any physically motivated
or established model of the inter-cluster filamentary gas, I have chosen an isothermal S-model (Cavaliere
and Fusco-Femiano, 1978), with a cylindrical symmetry, to describe the pressure distribution in the radial
direction of the bridge:

ne o

(1 +(r£c)2)%ﬁ’

where r is the radius, n is the central electron density in the bridge, r, is the core radius, and g
the slope, fixed to 4/3 following Planck Collaboration et al., 2013b, to model non-magnetised filament
(Ostriker, 1964). Since the recent discovery of magnetic fields in the bridge between the two clusters
A399-A401 with LOFAR (Govoni et al., 2019), this non-magnetised model is outdated. Parameters could
be improved by setting the slope at a different value, or by choosing a different model. However, results

ne (r) = (5.2)
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of my study were published before this discovery. I have thus the slope S to to 4/3 and have derived the
other parameters of the model without accounting for a magnetic field. Three parameters are let free:
the central pressure in the bridge Py = ng X kpT" (where T is the electron gas temperature), the core
radius r. (bridge extension in the radial direction), and the position of the bridge in the radial direction,
cy (expressed as a percentage of the map size). The length of the bridge in the horizontal direction / is
fixed to the distance between the two rsoo/2 of each cluster, in order to avoid any degeneracy between
the parameters of the bridge and those of the two clusters, and thus avoid any bias in the measurements
of the pressures of the clusters.

Finally, a plane (f(x,y) = ax + by + ¢) is chosen to model the background; it corrects from possible
residual gradient emission induced by large-scale contamination to the SZ signal, such as galactic dust
emission.

5.3.2 Results for the pair A399-A401

I have performed an MCMC analysis using the python algorithm emcee (Foreman-Mackey et al., 2013)
on the pair A399-A401, to fit the ten free parameters to the Planck MILCA SZ map. The resulting
posterior parameter distributions are shown in Fig. 5.4.
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Figure 5.4: Posterior parameter distributions from the MCMC analysis of the system A399-A401. The
diagonal plots show the one-dimensional likelihood of the ten parameters.

The Gaussian distributions of the parameters mean that the algorithm have converged. No degenera-
cies are seen between the three parameters of the background and the physical parameters of the model.
This shows that for the cluster pair A399-A401 the measured physical properties, such as the pressures in
the clusters or in the bridge, are not biased by a potential large-scale contamination. An interesting point
when looking at the correlations between the ten parameters is the degeneracies between the two param-
eters of the cluster model, i.e., Bonrw and Pg. This reflects that a high SZ amplitude can be obtained by
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the combination of a high external slope and a small cluster extension. No obvious degeneracies with
other parameters are seen. Similarly to the cluster, a degeneracy between the two physical parameters of
the bridge, i.e., central pressure and radial extension: Py = ng X kpT" and r¢, is seen.

From the MCMC analysis, the best-fit median central pressure in the bridge is Py = (2.84 + 0.27) X
10‘3keV.cm_3, and the best-fit radius is . = 1.52 + 0.09 Mpc, that is, r, = 17.6 £ 1.1 arcmin. The
bridge’s pressure obtained from the SZ-only analysis is in agreement with the value obtained with the
density and the temperature measurements from the analysis of Planck Collaboration et al., 2013b, that
used both SZ and X-rays (ROSAT) data (that is Py = (2.6 £ 0.5) X 10‘3keV.cm'3). Assuming the
most accurate temperature measured by Fujita et al., 2008 and Akamatsu et al., 2017 with Suzaku in
X-rays, kpTx = 6.5 = 0.5keV, I have estimated the central density in the bridge. I have found ny =
(4.3 +£0.7) x 10~*cm™3, which is again in full agreement with the value ng = (3.7 + 0.2) x 10™*cm™3
derived by Planck Collaboration et al., 2013b from their combined analysis of SZ and X-ray signals.

I have simulated a map with the best-fitted model (clusters + bridge) using the parameters derived
from the MCMC (see Tab. 5.2). The reduced chi-square value obtained from the residuals between the
model and the SZ map is y*> = 0.97. I show the residual SZ signal after subtracting the model in the SZ
map in Fig. 5.5. It exhibits no significant SZ emission between the clusters. Small stripes at pixel scale
are visible at the position of the clusters. This is related to the correlation between the pixels, due to the
re-pixelisation of the Planck pixels during the projection of the patches, that is not taken into account
in the model. Finally, I show the good agreement between the model and the data by showing in the
left panel of Fig. 5.6 the model superimposed with the longitudinal cut in the SZ map, across the two
clusters, and the residuals after substraction of the model.

A399 A401 Filament

Po(keV.cm™) BGNFW Po(keV.cm™) BGNFW Po(keV.cm™) re (Mpc) cy (%)

(1.54+£0.04)x 107> 3.60+0.04 (2.27+0.04)x1072 3.98+0.03 (2.84+027)x 107> 1.52+0.09 51.24+0.15

Table 5.2: Best-fit parameters of the model derived from the MCMC. The best values are the median of
the parameters distributions, and the error-bars are computed with the 16" and the 84™ percentiles.
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Figure 5.5: Residual Planck MILCA SZ map of the pair A399-A401 after subtracting the model (clusters
+ inter-cluster bridge) with the best-fit parameters from Tab. 5.2. The red circles represent the 5o radii
of each cluster, and the black crosses their central positions. The small-scale features seen at the position
of the two clusters in the residuals are due to the substraction of the model that do not takes into account
the re-pixelisation of Planck pixels.
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Figure 5.6: Left: longitudinal cut across the A399-A401 pair. Top panel: the fuchsia line shows the
Planck MILCA SZ data. The red line shows the model (clusters + inter-cluster bridge) with the best-fit
parameters from Tab. 5.2. The dotted green, blue, and red lines show the contributions of A399, A401,
and of the inter-cluster bridge, respectively. Bottom panel: residuals after subtracting the model (clusters
+ inter-cluster bridge). Right: longitudinal cut across the A21-PSZ2 G114.90-34.35 pair.

5.3.3 Results for the pair A21-PSZ2 G114.90-34.35

The newly associated pair A21-PSZ2 G114.90-34.35 shows hints of SZ signal at S /N5 ~ 2.5, associated
with the inter-cluster region. I have performed the same analysis on the SZ map as for A399-A401.
Similarly, the parameters Py and Bgyrw of the two clusters are degenerated. Considering the lower
significance of the SZ signal in this case, fitting the parameters of the model with the MCMC is more
difficult. Therefore, I have further fixed the extension radius of the bridge r.. As this parameter is
expected to be lower or equal to the clusters’ extensions, I have set it to the smallest rsgg of the two
clusters, here r.=0.92 Mpc or r.=8.5 arcmin. The gas pressure of the bridge derived by the MCMC is
in this case: Py = 1. 6Jr07 x 103keV.cm™>. In the left panel of Fig. 5.6, I show the contributions of the
three components of the system (clusters + inter-cluster bridge) computed with the best-fit parameters
from the MCMC analysis, in a longitudinal cut across the SZ map. The reduced chi-square is in this case
x? = 0.96, indicating a good agreement between the model and the data.

5.4 Galaxy properties in the cluster pairs

The SZ observations have allowed the detection of diffuse gas in between the clusters of the two pairs
A399-A401 and A21-PSZ2 G114.90-34.35. They have allowed us to constrain the physical properties of
the gas in the bridges of matter between the clusters. Here, I present the study of the galaxies in the three
components (clusters and bridges) of the two pairs, and investigate the possible differences between their
properties (galaxy types and star formation activities). I focus on the pair A399-A401 and summarise the
main results on the pair A21-PSZ2 G114.90-34.35.

5.4.1 Catalogue of galaxies

As the redshift of the pair A399-A401 is quite low, at z ~ 0.073, the use of the WISExSCOS value-
added catalogue constructed in Chap. 4 alone is not appropriate, as it has a lower flux limit: W1 > 13.8
(the median redshift of the WISExSCOS is z = 0.2). This limit cuts the brightest galaxies, that are the
higher mass galaxies at low redshift, i.e., galaxies that are expected to be in the pair. However, using
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the WISExSCOS catalogue is still useful as it contains lower mass galaxies at low redshift, with W1 >
13.8, potentially also lying in the pair. In order to also take into account the brightest galaxies at low z,
I have used the 2MPZ photometric redshift catalogue. The 2MPZ catalogue, with a median redshift of
z = 0.08, is complementary to the WISExSCOS as there is an upper limit in K < 13.9. Both catalogues
are presented in Chap. 2. Following Bilicki et al., 2016, I have unified the two catalogues, assuming that
the K band of 2MASS and the W1 band of WISE are equivalent for low redshift galaxies. In that way,
the union catalogue is complete up to W1<17, and contains high and lower mass galaxies at the redshift
of the galaxy cluster pair, i.e., z ~ 0.073. The union catalogue contains photometric redshifts estimations
and WISE measurements. I have thus estimated SFR and M, with the random forest algorithm presented
in Chap. 4 for sources lying in the 3° x 3° patch studied in SZ.

5.4.2 Identification of galaxy members

In order to study the properties of the galaxies in the pair, galaxies have to be associated with the three
components (i.e., the two clusters and the bridge). I have first selected the galaxies in the redshift range
0 < z £ 0.5 within the 3° x 3° field of the Planck MILCA SZ map (seen in Fig. 5.2). This first selection
contains 6,487 sources. I have then refined the selection in order to focus on galaxies likely to belong to
the A399-A401 pair. To do so, I have selected galaxies in the range 0.068 < z < 0.078, corresponding
to the redshift range between the lowest and the highest redshift of the cluster system plus and minus
the velocity dispersion of the two clusters given in Oegerle and Hill, 2001. For simplicity and coherence
with the SZ analysis, I have assumed that member galaxies are defined as those within an area of radius
rs00, centred on the SZ cluster positions. The galaxies belonging to the inter-cluster bridge are defined to
be between the positions ¢y plus or minus the core radius . of the bridge, both fitted with the MCMC in
SZ in Sect. 5.3. Galaxies outside these regions are considered as field galaxies. I show in the left panel
of Fig. 5.7 the galaxies selected in the redshift range of the pair, i.e., 0.068 < z < 0.078, identified to
the three components of the pair A399-A401. The orange dots represent the field galaxies, whereas the
green, blue, and red dots show the galaxies belonging to A399, A401, and to the inter-cluster bridge,
respectively.
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Figure 5.7: Left: Galaxies in the field of the pair A399-A401, in the redshift range 0.068 < z < 0.078.
The orange dots show the field galaxies. The green dots show the galaxies in the galaxy cluster A399,
the blue ones the galaxies in A401, and the red dots those in the inter-cluster bridge. The purple circles
indicate active galaxies. Right: Distributions of the S/Ns of over-densities for the three components of
the pair A399-A401. The blue line corresponds to the cluster A401, the green line to A399, and the red
one to the inter-cluster bridge.
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5.4.3 Galaxy over-densities

Based on the pyDTFE python code (see Chap. 3.3.1), [ have estimated the 3D galaxy density field around
the pair A399-A401. I have computed the over-density of the galaxies in the range 0 < z < 0.5, within
the field of the Planck MILCA SZ map. For each redshift bin of width 6z = 0.005, I have computed the
mean over-density in the three regions that define the three components of the pair (i.e., the two clusters
and the bridge). I have compared the mean density in the galaxy cluster regions and in the bridge to
the mean density of the background and its standard deviation. In the right panel of Fig. 5.7, I show the
distribution of the over-densities, noted S/N, as a function of redshift for the three components of the
pair. It is clear that the S/Ns in the regions of the two galaxy clusters and the one of the inter-cluster
bridge are peaking at the same redshift, that is the mean redshift of the pair. With the galaxies only, the
bridge between the two clusters is detected with a high significance, i.e., S/Ng ~ 8, that is comparable
with the significance of the detection of the gas with the SZ signal.

5.4.4 Galaxy properties

In order to study the different galaxy populations and types in the pair A399-A401, I have focused on
several indicators: optical colours, infra-red colours, and SFR-M, diagram.

5.4.4.1 Red sequence in optical

I have used the photometric bands of SuperCOSMOS, already provided in the union catalogue, to pro-
duce the colour-magnitude diagram B-R versus R, for the galaxies in the pair A399-A401. The resulting
plot is shown in the left panel of Fig. 5.8. The galaxies in the three components of the system align in a
red sequence. An interesting point is that the galaxies in the bridge are also following the red sequence. 1
have further investigated this result by studying infra-red properties and the passivity of the sources with
their SFR and M, estimated with the RF algorithm presented in Chap. 4.
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Figure 5.8: Left: Colour-magnitude diagram using B and R photometric bands from SuperCOSMOS.
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