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Abstract

Steady-state operations of the next-generation fusion device ITER (International
Thermonuclear Experimental Reactor) will require the development of reliable
numerical tools to estimate key engineering parameters suitable for technological
constraints at reasonable computational cost. For example, divertor monoblocks will
have to be preserved from impinging heat loads exceeding 10 MW/m2 to prevent
possible mechanical damages.

So-called transport codes fulfill this requirement since they rely on two-dimensional
fluid equations averaged over time fluctuations, similarly to Reynolds Averaged
Navier-Stokes models commonly used for engineering applications in the neutral
fluid community. Furthermore, transport codes can gather most of the physical
ingredients ruling the edge plasma behavior, as well as realistic magnetic topology
and wall geometry.

However, their predictability is limited by a crude description of turbulent
(particle, momentum and energy) fluxes perpendicular to the magnetic field lines.
In the plasma community, a special concern is devoted to acquire a detailed
understanding and the predictive capability of cross-field transport, dominated by
turbulence, since it strongly impacts the power extraction and the confinement of
plasma over extended periods of time. In transport codes though, turbulent fluxes,
which are assumed diffusive, are crudely determined by either homogeneous, or
ad-hoc diffusive coefficients, or feedback-loop procedures applied a-posteriori on
experimental data.

Motivated by these issues, in this work we introduce step-by-step a new approach
with the aim to self-consistently estimate the distribution of turbulent fluxes in
transport codes, when steady-state plasmas are concerned. The underlying strategy
is inspired by the work done from the 60’s in neutral turbulence and adapted here
to plasma for fusion applications.

The first key concept is the Boussinesq assumption. It consists in assuming a
colinearity between the Reynolds stress tensor - which represents the contribution



of turbulence to the mean flow - and the mean rate of strain tensor - expressed by
the gradient of the mean velocity through a coefficient: the so-called eddy-viscosity.

The second concept is to express this new eddy viscosity coefficient as a function
of characteristic turbulence quantities. As a starting point, in this work, we have
focused on the most popular in Computational Fluid Dynamics (CFD), the κ-ε
model, where transport equations for the averaged kinetic turbulent energy and
the turbulence dissipation rate are designed semi-empirically. Steady-state κ and ε
allow for a self-consistent estimation of the eddy-viscosity coefficient, thus including
the impact of turbulence in steady-state mean flows.

We propose a κ-ε-like model where two transport equations for turbulent kinetic
energy and its dissipation rate are derived algebraically, including the physics of
the linear interchange instability. Indeed, the interchange instability is known to
drive most of plasma turbulence in the edge and in the scrape-off layer, particularly
at the low-field side, where it leads to a ballooned distribution of the cross-field
transport. Moreover, on the basis of dimensional analysis, transport coefficients are
related to reference turbulent scales of velocity and time according to the so-called
quasi-linear theory, widely used in the framework of reduced models for plasmas.

For the numerical implementation, we exploit the flexibility of the transport
package SolEdge2D-EIRENE, developed for many years through the collaboration
of the IRFM at the CEA and the laboratory M2P2 at Aix-Marseille University.

Since the new model is semi-empirical, it presents some free parameters to be
closed. In this work, we have proposed different approaches. First, an automatic
fitting procedure to optimize the numerical results with respect to a single experi-
mental test-case. Then, to be more general and increase the predictive capabilities
of the model, a reference scaling law for the width of the heat-flux profile in the
scrape-off layer has been assumed, empirically determined from the experimental
measurements of the outer target heat load in various machines.

The new model is integrated in SolEdge2D-EIRENE for simulations with diverted
plasma in TCV and WEST-like geometries, for L-mode discharges. Steady-state
results are discussed and shown to favorably compare with experimental data at both
the outer mid-plane and the outer divertor. Moreover, self-consistent distributions
of diffusivities are shown to exhibit poloidal asymmetries consistently with the
ballooned distribution of cross-field transport observed at the same conditions in
both first-principle codes and experiments.



Résumé en français

Le fonctionnement à l’équilibre du réacteur à fusion de prochaine génération, ITER,
nécessitera le développement d’outils numériques fiables permettant d’estimer
les paramètres d’ingénierie clés à un coût de calcul raisonnable. Les codes de
transport répondent à cette exigence car ils reposent sur des équations fluides
bidimensionnelles qui sont moyennées sur les fluctuations temporelles, de la même
manière que les modèles Reynolds Averaged Navier-Stokes couramment utilisés dans
la communauté des fluides neutres. De plus, les codes de transport intègrent la
plupart des ingrédients physiques régissant le comportement du plasma de bord,
ainsi que une topologie magnétique réaliste et la géométrie du mur.

Cependant, leur prévisibilité est limitée par une description inadéquate des
écoulements turbulents perpendiculaires aux lignes de champ magnétique, qui
affectent fortement le confinement du plasma sur de longues périodes. En effet les
écoulements turbulents, supposés diffusifs, sont grossièrement déterminés par des
coefficients de diffusion homogènes ou ad-hoc, ou par des procédures basées sur des
boucles de rétroaction appliquées a-posteriori à des données expérimentales.

Motivés par ces questions, nous présentons dans ce travail un nouveau modèle
pour estimer de manière cohérente la distribution des écoulements turbulents dans
les codes de transport pour des plasmas en régime stationnaire. La stratégie consiste
à introduire des modèles numériques efficaces largement utilisés dans la communauté
de la turbulence neutre dans le contexte de la physique des plasmas.
Deux concepts clés issu de la communauté des fluides neutres nous ont inspirés
dans ce travail. Le premier est l’hypothèse de Boussinesq. Elle consiste à linéariser
le tenseur de contraintes de Reynolds dans l’équation de Navier-Stokes moyennée
dans le temps à partir d’une hypothèse de diffusion dans laquelle le terme de
proportionnalité est appelé eddy viscosity. Le second concept est le modèle κ-ε, dans
lequel les équations de transport pour l’énergie turbulente cinétique et le taux de
dissipation de la turbulence sont obtenues de manière semi-empirique. A l’équilibre,
κ et ε permettent une estimation auto-cohérente de l’eddy viscosity, intégrant ainsi
l’impact de la turbulence sur les écoulements moyennés à l’état d’équilibre.



Ces concepts ne peuvent pas être appliqués directement pour enrichir la modéli-
sation des flux perpendiculaires dans les plasmas en raison de différentes propriétés
de turbulence. Par conséquent, nous proposons une adaptation du modèle κ-ε aux
plasmas de fusion, où deux équations de transport pour l’énergie cinétique turbulente
et son taux de dissipation sont dérivées algébriquement. Ces équations intégrent
la physique de l’instabilité d’interchange linéaire, qui conduit à une distribution
ballonnée du transport perpendiculaire dans le bord du plasma.

Différentes approches sont décrites afin de déterminer les paramètres libres:
premièrement, une procédure de boucle de rétroaction pour optimiser les résultats
numériques comparés avec un test expérimental. Ensuite, on utilise une loi d’échelle
de référence pour la largeur du profil de flux de chaleur dans la SOL, déterminée
empiriquement à partir des mesures expérimentales du flux de chaleur sur le divertor
externe dans diverses machines.

Le nouveau modèle est intégré au package SolEdge2D-EIRENE, développé en
collaboration entre le CEA et le laboratoire M2P2 de l’Université d’Aix-Marseille.
Les résultats numériques à l’état d’équilibre sont discutés et on démontre qu’ils se
comparent favorablement aux données expérimentales aussi bien à l’outer midplane
qu’au divertor externe. De plus, on montre que les distributions de diffusivité
présentent des asymétries poloïdales cohérentes avec la distribution ballonnée du
transport perpendiculaire observée dans les mêmes conditions dans les codes de
premier principe et les expériences.
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2 1.1. Nuclear fusion

This chapter introduces the main concepts about thermonuclear fusion, magnet-
ically confined plasmas and transport mechanisms. A brief introduction on the 2D
transport code SolEdge2D-EIRENE is also provided.

1.1 Nuclear fusion
Thermonuclear fusion may have a crucial role in the energy economy of the future,
due to almost limitless fuel reserves, negligible impact on the environment and
inherent nuclear safety. The physical mechanism consists in a nuclear reaction
between two light atoms which are compressed together until they overcome the
electrostatic repulsion and combine into a more stable element. This process
releases kinetic energy and subatomic particles (neutrons or protons). The amount
of released energy depends on the mass defect ∆m = mR −mP between reacting
and produced nuclei, according to the Einstein law:

E = ∆mc2 (1.1)

where c is the speed of light in vacuum. A fusion process that produces a nucleus
lighter than 56Fe or 62Ni is generally exothermic, namely it yields a net energy
release. Indeed, when species with mass number lower than 56Fe or 62Ni fuse, the
binding energy of the reaction increases leading to a favorable process to produce
energy. In figure 1.1, the reaction rate 〈σv〉 of the three most efficient fusion
reactions is displayed in m3/s against the temperature in 109K. Temperatures

Figure 1.1: The reaction rate against temperature for the three most efficient fusion
reactions (D-T,D-D,D-He3). Figure from Wikipedia web page.

required for a typical fusion reaction to be accessible are in the order of 108K
(the temperature of the solar surface is nearly 6000K). The deuterium-tritium
fusion reaction, which produces one atom of 4

2He at 3.5MeV and one neutron
at 14.1MeV , is the best compromise between energy demand and gain, with a
cross-section of 〈σv〉 = 10−22 − 10−21m3s−1:

2
1D +3

1 T →4
2 He(3.5MeV ) +1

0 n(14.1MeV ) (1.2)
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Deuterium is highly available in nature since it can be extracted from water, tritium
has to be produced artificially from D but also 6Li and 10B.

The amount of energy produced per event by fusion is about 17.6MeV against
nearly 200MeV in a typical fission reaction. However, while the fission of 1kg
of 235U supplies about 23 · 106kWh, the equivalent amount of D-T fuel produces
about 108kWh, because the atomic mass is much lower in the latter case. Moreover,
compared to fission, fusion does not imply chain reactions, thus it is intrinsically
safe but needs continuous fueling.

We introduce the so-called amplification factor Q ≡ Pfus
Pin

as an indicator of the
fusion energy gain, and eventually the viability of a fusion reactor. Pfus is the total
power produced by nuclear reactions, while Pin is the power injected to enable the
nuclear reactions.

At the extreme temperatures required by fusion reactions, the fuel is completely
ionized, appearing as a globally neutral gas made of ions and electrons. This is the
so-called forth-state of matter or thermonuclear plasma. Containing such a system
in a solid vessel is unconceivable due to the prohibitive temperatures.

Extreme temperatures are not sufficient to ensure positive Q. In order to have
a net production of energy, the Lawson criterion should be observed:

nTiτE > 3× 1021][keV sm−3] (1.3)

where n is the density in m−3, Ti is the ion temperature in keV and tauE is the
energy confinement time in s, namely the decay time of plasma energy when all the
power sources are shut off. Inertial confinement and magnetic confinement are the
main procedures to exploit fusion reactions in a thermonuclear facility. The former
relies on high levels of heating and compression (n ∼ 1031m−3) of fuel pellets; the
latter, which is the mechanism concerned in this work, on the magnetic confinement
of charged particles composing the plasma. The next-generation fusion facility
which is being built near Cadarache, in France, called International Thermonuclear
Experimental Reactor (ITER), is designed to reach Q = 10 ([1]).

1.2 Magnetic confinement and tokamaks
By magnetic confinement we mean the constraining of plasma fuel, which is electrical
conductive, into a defined reaction environment modeled by magnetic fields, where
extreme temperatures are reached. In particular, a system of coils forces charged
particles to follow helical orbits around the field according to the Lorenz force
F L = qE + qv ×B, where q, E and B are the particle charge, the electrostatic
and the magnetic fields, respectively. When assuming a uniform magnetic field,
the motion of a single charged particle is described by:

• a fast cyclotron rotation on the plane transverse (⊥) to the magnetic
field lines, characterized by gyrofrequency Ωs = qsB/ms and radius ρL,s =
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msv⊥/qsB, also called Larmor radius. ms and qs are the mass and charge of
species s, while v⊥ is the average particle velocity in the ⊥ direction.

• a free motion parallel (‖) to the magnetic field lines

Assuming T = 108K and B = 5T and v⊥ ∼ vth =
√
kBT/m (vth is the thermal

velocity and kB is the Boltzmann constant), one finds ρL,e = 4.5 × 10−5m and
ρL,D+ = 2.8× 10−3m, much lower than typical machine scales. The parallel length
scale, at the contrary, relates to the free motion of charged particles and they are
comparable with the machine ones. The solution adopted in tokamaks to confine
plasma is thus to twist the magnetic field lines into a helical shape in order to
constrain charged particles to move into closed trajectories.

Tokamaks represent the most common type of fusion machine in the framework of
magnetic confinement. They consist in toroidal devices where ϕ is the axisymmetric
angle around the main axis of the machine, while R and a are the major and minor
radius respectively, as shown in figure 1.2. Finally, θ is the poloidal coordinate. In

𝑰𝒑𝒍𝒂𝒔𝒎𝒂 

𝑰𝑻 

Main 
 axis 

Figure 1.2: Cartoon of the axisymmetric geometry of a tokamak. The major and minor
radius R and a are displayed in red, ϕ and θ are the toroidal and poloidal angles while BT
(in blue), BP (in yellow) and Btot (in green) are the toroidal, poloidal and total magnetic
fields respectively. Finally, Iplasma is the plasma current induced by the central solenoid,
flowing in the toroidal direction, while IT is the toroidal current flowing in the poloidal
plane.

order to twist the magnetic field, a current (Iplasma) is driven in the plasma using
the transformer principle. The primary inducing coil in placed at the center of
the machine, while the secondary coil is the plasma itself. A poloidal magnetic
field BP , induced by the plasma current, combines to the external, toroidal one
BT , generated by the toroidal current IT circulating within the toroidal coils. The
resulting twisted magnetic field Btot is shown in figure 1.2. Btot is helical, with each
magnetic field line lying on one of the nested set of toroidal flux surfaces.

The distribution of the toroidal magnetic field BT varies proportionally to IT
according to the Biot-Savart law integrated around the circle of radius R:

BT = µ0IT
2πR (1.4)
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The shape of the poloidal magnetic field BP , on the other hand, is governed
by the plasma current according to the same rule, this time integrated around
the circuit of radius a:

BP = µ0Iplasma
2πa (1.5)

The amplitude of BP is small compared to BT , thus the total magnetic field
Btot scales approximately as 1/R, as represented in figure 1.3. Two regions can thus

𝑅 

High Field 
Side 

Low Field 
Side 

M
ag

n
et

ic
 a

xi
s 

𝐵𝑡𝑜𝑡 
 Magnetic axis 

𝑅 

𝐵𝑃  

𝐵𝑇  

𝐵𝑇  𝐵𝑃  

𝑝 

Figure 1.3: Shape of BT and BP varying with R. The HFS is the region where the
magnetic field is more intense, the LFS the one where it is the weaker.

be defined with respect to the magnetic axis (i.e. the direction of BT ) depending on
the intensity of Btot : the so-called High Field Side (HFS) and Low Field Side (LFS).
In particular, in the LFS both the magnetic field and plasma pressure decrease,
therefore ∇p ·∇B > 0. Such a condition drives the plasma towards an unstable
state, as discussed in 1.4.3.1.

Let us focus on the helical paths of magnetic field lines. At some toroidal angle
ϕ, the field line has a given poloidal position, which it reaches again after a certain
variation of the toroidal angle, ∆ϕ. We define the safety factor q:

q ≡ ∆ϕ
2π (1.6)

which stands for the number of toroidal turns that field lines undergo to complete a
poloidal turn. For straight field lines and BP � BT , this length can be estimated as:

q = 1
2π

∮ 1
R

BT

BP

dθ (1.7)

where dθ is the infinitesimal variation in the poloidal direction while moving through
a toroidal angle dϕ. When large values of the ratio R/a and circular cross-section
tokamaks are considered, one obtains the approximation:

q ∼ aBT

RBP

(1.8)
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1.2.1 Limiter vs divertor configuration
Necessarily, in finite geometries, magnetic field lines can intercept the vessel and
thus hot plasma interacts with wall materials: heavy sputtered atoms and molecules
reach the plasma and cool it down. The simplest technical solution to control
these heat and particle fluxes arising from imperfect confinement is the insertion
of a solid component in the vessel design, with the specific aim of being the
target where magnetic field lines can impinge on. These latter are called open
field lines because the magnetic flux surface where they lie on close within the
target. The last-closed field surface (LCFS), also called separatrix, separates the
confined main plasma from the scrape-off layer (SOL), which is the boundary
plasma. Usually, the distance between the toroidal magnetic axis and the separatrix
corresponds to the minor radius a.

The most exploited target designs are the toroidal limiter and the divertor.

The toroidal limiter is a solid component tangent to the LCFS and extending
all along the toroidal direction, as shown in 1.4. In this case, we say that the
plasma is in limiter configuration.

𝜃

𝜑

Core plasma

Separatrix

Scrape-Off 
Layer Limiter

Close flux 
surface

Figure 1.4: Cartoon of a cross-section of the plasma in a toroidal limiter magnetic
configuration. The separatrix is outlined by a dotted line.

Nowadays, the divertor configuration, shown in figure 1.5, is preferred to the
limiter one in most cases, since in the latter, a large amount of sputtered material
from the limiter can reach the main plasma and cool it down, compromising the
performance of the machine.

Indeed, the divertor configuration allows for more distance between the plasma
core and the solid targets, as one can see in figure 1.5. An additional current is
driven in the toroidal direction to create a magnetic topology which in the poloidal
plane is characterized by an X-point. At the X-point, the poloidal magnetic field is
null and the safety factor q is theoretically infinite. In this configuration, the SOL
region above the X-point is usually referred to as the main scrape-off layer while the
one below is the divertor leg. Also, the private flux region is defined as a thin layer
of plasma sustained by the transport of particles and heat from the main plasma.
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Figure 1.5: Cartoon of the divertor magnetic configuration in the single-null variant.
Picture from [2].

When just one X-point is induced, the magnetic equilibrium is indicated as
single null and there are two divertor legs, as in figure 1.5. However, more exotic
topologies can be induced, such as the double-null (with two X-points) and the
snowflake (multiple X-points). In this thesis, the single-null diverted configuration
is especially concerned.

1.2.2 The sheath
The SOL plasma interacts with the solid target through the so-called sheath, a
non-neutral region where the plasma potential drops down. The sheath forms
because after the ignition of the plasma (within a few µs), electrons accelerate
along the magnetic field lines and, due to their high mobility, they charge the
wall negatively. Therefore, a thin sheath builds up to shield the bulk electrostatic
potential, as shown in figure 1.6. This sheath is characterized by a positive electric
field where ions are accelerated towards the wall. On the other hand, incoming
electrons with kinetic energy lower than the potential barrier are repelled, implying
that ne < ni. The equilibrium is reached when the electron and ion fluxes equal,
namely nev‖,e = niv‖,i. The filtering effect of the sheath on electron energy is
taken into account in the boundary condition on the energy fluxes are equal at
the entrance of the sheath, which are convective:

ΓE,se,‖,i = γinse,iTse,ivse,‖,i + 1
2minse,iv

3
se,‖,i (1.9)

ΓE,se,‖,e = γense,eTse,evse,‖,e (1.10)
γi and γe are called sheath transmission coefficients and weight the energy at the
sheath according to the species. The estimation of both can be read in [3]. Usually,
γi = 5/2 and γe = 5 are assumed.

The thickness of the sheath is in the order of magnitude of the Debye length:

λD =
√
ε0kBTe
neq2

e

(1.11)
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Figure 1.6: Cartoon representing the sheath region.

where ε0 is the vacuum permittivity, ne the electron density and qe the electron
charge. For Te = 20eV and ne = 1019m−3, one obtains λD ∼ 10−5m.

In the sheath the electrostatic potential is provided by the Poisson equation:

∇‖V = −qe
ε0

(ni − ne) (1.12)

while the electrons can be described by the Boltzmann equation:

n‖,e = nse exp(qe(V − Vse)/kBTe) (1.13)

where nse and Vse are density and potential at the sheath limit.

The physics of the sheath roughly outlined here occurs at too small scale to be
described by fluid codes, but is the base on which boundary conditions are defined.

1.3 Single particle motion
In this section, the motion of a single charge particle is investigated when it
interacts with the electro-magnetic field.

In general, the force balance of such a particle (in non-relativistic cases) reads:

m
dv

∂t
= q

[
E + v ×Btot

]
(1.14)

where Btot = B = B(x, t), E = E(x, t) and q and m are the charge and the
mass respectively. The projection of 1.14 on the direction parallel (‖) to the
total magnetic field B provides:

m
dv‖
dt

= qE‖ (1.15)
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which states that the acceleration of the particle along B is governed by the parallel
component of the electric field and its orientation is provided by the sign.
On the other hand, the projection of equation 1.14 on the plane perpendicular (⊥)
to the magnetic field lines, leads to different kinds of motion depending on both E
and B.

• When E = 0 and B is uniform in space and constant in time, one
recovers the gyro-motion in the ⊥ plane as the zero-order expansion of 1.14
around the quantity ω/ωc, where ω is the frequency of the motion and ωc is
the gyro-frequency:

ωc = v⊥
ρL

= |q|B
m

(1.16)

Indeed, one can assume that ω/ωc → 0 which implies a scale separation
between the gyro-motion and the drift motion. This is called adiabatic
assumption. In this case, the guiding center of such a particle moves in circles
of radius ρL.

• Assuming homogeneous magnetic and electric fields, the guiding
center undergoes a drift of the velocity given by:

v
(0)
d = vE×B = E ×B

B2 (1.17)

The E ×B velocity is perpendicular to both the magnetic and electric fields
and does not depend on the particle charge, thus it does not imply the
formation of a net current.

• Finally, when B is not homogeneous as in equation 1.4, further drift mecha-
nisms come into play. Indeed, according to the adiabatic assumption, when
expanding 1.14 to the first order, one obtains for the drift velocity:

v
(1)
d = vE×B + v∇B + vR

= E ×B

B2 + +1
2
q

|q|
ρLv⊥

B ×∇B
B2 + m

qB2v
2
‖
Rc ×B

R2

where the second term is called ∇B drift velocity, while the third one is
the curvature drift (Rc is the curvature vector, defined from the axis of
symmetry of the torus up to the field line). Both depend on the particle
charge. Moreover, as shown in figure 1.7, v∇B drifts the particle vertically,
implying the generation of a vertical electric field which in turn causes an
horizontal shift provided by the E ×B drift.

Eventually, in the most general form, the velocity of a plasma particle has
the structure below:

v = v‖
B

B
+ vg + vd (1.18)

where vg is the high-frequency gyro-motion of the charged particle.
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𝐵 𝐸 
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Figure 1.7: E×B drift and ∇B drift causing horizontal and vertical motion respectively.

1.4 Plasma transport
As mentioned above, charged particles undergo two kinds of motion as they are
confined: a gyro-motion perpendicular to the magnetic field lines, and a free motion
along these latter. However, further mechanisms come into play in toroidal plasmas
that must be taken into account to assure the confinement over long periods of
time. We refer to the mutual particle interactions, taken into account by the
so-called classical description of transport and particle drifts, due to the interaction
of the plasma with the electro-magnetic field. These latter are concerned in the
neoclassical and turbulent description of transport.

1.4.1 Classical transport
Within the plasma, charged particles interact via Coulomb collisions. The dis-
placement of their guiding centers can lead them to the neighboring magnetic flux
surfaces, allowing for a local (i.e. short-range) transport of matter and energy.
These interactions are random and isotropic, thus the transport can be modeled by
diffusion, where the length scale is provided by the Larmor radius while the time
scale is determined by the collision frequency νC . νC varies as nT−1.5, ρL as T 0.5,
thus the overall dependence of the diffusion coefficient DC is T−0.5.

DC = νCρ
2
L (1.19)

For pure deuterium plasma, DC is of the order of 10−2 − 10−4m2/s, much lower
than the values observed experimentally.

1.4.2 Neoclassical transport
When taking into account the profile of the magnetic field B ∝ 1/R, the neoclassical
description of transport is invoked. This latter includes the effects of the plasma’s
toroidal shape to the diffusive transport of particles and energy due to collisions.
Two main regimes are identified depending on the collisionality ν∗ = νC/(v⊥/qR) =
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λC/L‖, where v⊥ ∼ vth. L‖ = 2πqR is called connection length and it esteems
of the total length of a magnetic field line.

When ν∗ � 1, the Pfirsch-Schlüter regime is concerned, characterized by small
mean free path λ = v⊥/νC , since the motion of a typical thermal particle is
disturbed by collisions before an orbit has been completed. This is the usual picture
of boundary plasma. The diffusion coefficient can be expressed as:

DPS = νλ2 (1.20)

On the contrary, when ν∗ � 1, we have the so-called banana regime, where
particles are mostly trapped into banana orbits. The plasma core is usually in
such a regime. In this case, the diffusion coefficient (here for electrons) can be
estimated as in 1.21 ([4]):

Db ∼
q2

ε3/2
νeρ

2
L,e (1.21)

where ε = R/a is the aspect ratio, νe is the electron collisional rate, q the safety
factor and ρL,e the Larmor radius for electrons. The magnitude of diffusive transport
in the neoclassical framework is usually in the order of 10−1m2/s, at least one order
of magnitude lower than experimental observations (see for example [5] and [6]).

1.4.3 Turbulent transport
For this reason, for quite some time the transport of particles and energy across
the magnetic flux surfaces has been referred to as anomalous. Nowadays, it
is well established within the plasma community that the most responsible for
the discrepancy between neoclassical diffusivity and experimental observation is
turbulence. Turbulence is a state of fluids where sudden changes in pressure and flow
velocity occur, involving several temporal and spatial scales. In plasmas, it is caused
by the interplay between plasma transport and self-consistent electro-magnetic fields
due to linear and non-linear saturation of different instabilities ([7]). The drive can
also be triggered by geometrical effects (see for example [8]). Due to its relevance in
this work, a particular instability is outlined below, called the interchange instability.

1.4.3.1 Interchange instability

The curvature of the magnetic field allows plasma ions and electrons to experience
the drifts discussed in 1.3. In analogy with the fluid Rayleigh-Bénard instability
- where aligned buoyancy force and temperature stratification trigger turbulent
flows above a threshold - in magnetized plasma an instability arises when ∇B is
aligned with ∇p . This is called interchange instability and it is mostly present
at the LFS of tokamaks, where ∇B ·∇p > 0. As a consequence, the transport of
plasma results enhanced in such a region rather than on the HFS. This poloidal
asymmetry is referred to as the ballooning effect, observed experimentally both
in limiter ([9]) and diverted plasmas ([10]).
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The word interchange refers to the exchange of energy among different flux
tubes whenever the system departs from thermodynamical equilibrium in regions
characterized by inhomogeneous magnetic field. This mechanism is shown in figure
1.8, left panel. A more detailed description is provided in the right panel, where
the outer midplane region (i.e. the equatorial plane) is concerned.

Here indeed, a poloidal perturbation of the potential generates small convection
cells with iso-potential contour line (in yellow in the right panel of figure 1.8),
leading to local electric fields and thus radial E ×B drift perpendicularly to the
magnetic field. The ∇B (and the curvature) drift velocity are directed vertically
and have opposite sign for ions and electrons. The combination of such drifts enable
the mixing of the inner, warmer plasma, having a higher ∇B velocity, with the
outer plasma, colder and relatively slower. Moreover, it fosters a charge separation
leading to a perturbation of the plasma density distribution poloidally.

Assuming a sinusoidal shape of the potential and density distributions along
the poloidal direction, the interchange instability occurs when the phases are in
quadrature, namely when the phase shift is ∼ π/2.

𝛻𝑝 > 0

𝛻𝐵 > 0

𝛻𝑝 < 0

𝛻𝐵 > 0

HFS: stable LFS: unstable

∇𝐵 > 0 𝐵
∇𝑝 > 0

𝒗𝑬×𝑩

𝒗𝛁𝐁,𝐢

𝒗𝑬×𝑩

𝒗𝛁𝐁,𝒆
Iso-potential

𝑅

𝜃

Figure 1.8: Cartoon of the interchange instability mechanism driving turbulence at the
LFS of the tokamaks, left panel. In the right panel, a zoom of the LFS region, where
convection cells with iso-potential contour lines (in yellow) are created by the perturbation
of the potential. The black arrows indicate the direction of the E ×B and ∇B drifts.

The expression of the linear interchange growth rate γI is provided analytically
in the framework of the linear stability analysis of a reduced model for turbulent
plasma (see for example [11], [12]), resulting in the following expression:

γI =
(
p/ρLRc

p/∇p

)
(1.22)

where Rc is the curvature of the magnetic field and ρL is the Larmor radius. Equation
1.22 can be arranged observing that Rc ∼ B/∇B and p/ρL ∼ c2

s, thus becoming:

γI = cs
R
·
(
γ0

√√√√R2∇pi ·∇Bϕ

piBϕ

)
(1.23)
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The amplitude coefficient γ0 is usually set to 1.

1.4.3.2 Enhanced confinement

Instabilities-driven turbulent fluxes can be lowered significantly when the confine-
ment of the plasma is improved. In 1982, the German tokamak ASDEX reached for
the first time an High Confinement regime (called H-mode) in divertor configuration
([13]). When transiting from the Low-Confinement (L-mode) to the H-mode, the
plasma pressure gradients is observed to enhance and steep in the edge region,
forming a pedestal and causing the shrinking of the SOL width at the outer midplane,
extensively observed experimentally (see for instance [14] and [15]).

1.5 Modeling via the transport code SolEdge2D-
EIRENE

As discussed in the previous sections, magnetically confined plasma is a complex
system where several physical phenomena come into play and interact with each
other: the magnetic confinement, the wall geometry, the transport of plasma and
heat along both the magnetic field and the perpendicular direction, as much as the
plasma-wall interaction and the transport of impurities within the vessel.

Numerical simulations on such a complex system within reasonable compu-
tational time can only be afforded by so-called transport codes, relying on two-
dimensional fluid equations for main plasma quantities (for instance SOLPS [16] or
EDGE2D [17]). In this work, we have used the code called SolEdge2D-EIRENE.

SolEdge2D-EIRENE is a transport code package developed at CEA Cadarache,
in France, in collaboration with the M2P2 laboratory of the Aix-Marseille University
([18], [19], [20]). It was designed with the purpose of simulating the edge and the
scrape-off layer of plasma in a toroidally axysimmetric spatial domain including
realistic wall geometry and plasma-wall interactions. This latter is treated by
coupling SolEdge2D with the Monte Carlo code EIRENE ([20]). Accounting for
neutrals (both atoms and molecules) is crucial since they drive the source of
particles, momentum and energy in the SOL.

1.5.1 Assumptions and equations
The model is derived from the fluid approach of Braginskii ([21]), which is assumed to
be valid for high values of the collisionality, ν∗ = L‖/λC , where the electron mean free
path λC is proportional to T 2

e /ne according to [22]. For a tokamak with major radius
R = 2m and safety factor q = 4, when assuming Te = 100eV and ne = 1019m−3,
ν∗ ∼ 5. This result implies that the plasma is actually marginally collisional, and
indeed kinetic corrections can be designed for the Braginskii equations. In the
following, these latter are not taken into account. In particular, the description of
the parallel transport follows a collisional approach, while the cross-field transport
is usually modeled as a diffusive term.
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SolEdge2D solves the equations of n (density), T (temperature), v‖ (velocity
component aligned to the magnetic field) for both electrons and ions, assuming
quasi-neutrality (ne = ni) and ambipolarity (v‖,e = v‖,i), which can be relaxed
including an equation for the electric potential. The model is presented in detail
in [19] (equations 1 − 4). n, T and v‖ are the moments of the averaged kinetic
distribution function.

Below, the density, momentum and energy equations are reported. The definition
of the different terms can be found in [19].

∂n

∂t
+∇‖(nv‖) =∇ · (Dn∇⊥n) + Sn (1.24a)

∂

∂t
(minv‖) +∇ · (minv‖v) = −∇‖pi + qenE‖ +Rei

+∇ ·
(
ν‖∇‖v‖

B

B
+minν∇⊥v‖

)
+ Sm,i (1.24b)

∂Ei
∂t

+∇ · (Eivi + pivi) = qiniv‖E‖ + v‖Rei

+∇ ·
(
κi∇‖Ti

B

B
+ nχi∇⊥Ti

)
+∇ ·

(
ν‖v‖

B

B
+min∇⊥v‖

)
+Qei + SE,i (1.24c)

∂Ee
∂t

+∇ · (Eeve + peve) = −qenv‖E‖ + v‖Rie

+∇ ·
(
κe∇‖Te

B

B
+ nχe∇⊥Te

)
+Qie + SE,e (1.24d)

In this system of equations, perpendicular transport terms rely on transport
coefficients Dn, χe, χi, ν. The main concern of this work, as discussed in section
1.6, is to develop a new modeling of these quantities to improve the predictive
capabilities of the code.

In 1.9(a) and 1.9(b) examples of the code output are reported below for a WEST
(W Environment in Steady-state Tokamak) test-case.

1.5.2 Boundary conditions

The boundary conditions of the code are derived from the physics of the sheath. In
particular, at the entrance of the pre-sheath, the absolute value of plasma parallel
velocity along the magnetic field lines reaches minimum sound speed. Indeed,
due to the strong sink located at the wall and consequent loss of particles, the
plasma behaves like a fluid which expands into vacuum after crossing the sheath
entrance. This is the Bohm condition for the plasma parallel velocity, expressed by
equation 1.25. The Bohm condition is used in SolEdge2D as immersed boundary
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Figure 1.9: Poloidal maps of plasma density and electron temperature calculated by
SolEdge2D-EIRENE for a WEST test case.

condition in the penalization technique.

|vse,‖,i| ≥ cs =
√
qe(Te + Ti)

mi

(1.25)

Moreover, the parallel heat flux impinging on the solid target q‖,BC reads:

q‖,BC = (γnTv‖)BC (1.26)

where γ is the total sheath transmission coefficient.

1.5.3 Numerical treatment
Finite volume for the spatial discretization and implicit/explicit Eulerian for the time
integration are the numerical schemes exploited by SolEdge2D. The code can handle
elaborate magnetic configurations thanks to its explicit domain decomposition
technique, consisting in numerically solving each sub-domain in parallel. In
particular, for numerical efficiency SolEdge2D generates a grid aligned to magnetic
flux surfaces. Magnetic measurements at different locations surrounding the vacuum
vessel are used as real-time inputs to achieve the numerical reconstruction of
the plasma current density and the magnetic equilibrium (see for example [23]).
To model complex and realistic vessel walls, a penalization technique has been
implemented ([24], [25]), inspired by the Computation Fluid Dynamics community.
Its aim is to extend the mesh to the wall of the machine and apply a mask function
which defines the cells to be solved (corresponding to the plasma domain) and
the ones related to the solid material.
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Figure 1.10: Example of mesh decomposition for a WEST magnetic equilibrium. Each
sub-domain is characterized by a different color.

1.6 Perpendicular turbulent transport in SolEdge2D
The approach adopted by SolEdge2D to treat cross-field transport, as most transport
codes for tokamak plasma, is assuming that the turbulent contribution to particle,
momentum and energy flux is modeled by diffusion. As an example, we will consider
the Braginskii equation for the density, however the same reasoning can also be
applied to the momentum equation 1.24b and the energy equations 1.24c and
1.24d. We call Γn,⊥ the perpendicular particle flux, which in general is defined
by 1.27, where v⊥ is the perpendicular velocity.

Γn,⊥ = nv⊥ (1.27)

The Braginskii equation for the density therefore reads:
∂n

∂t
+∇‖(nv‖) +∇ · Γn,⊥ = Sn (1.28)

Γn,⊥ models plasma turbulent phenomena occurring in the cross-field direction.
Since transport codes cannot simulate high-frequency fluctuations of the flow, we
average the continuity equation 1.24a, and so Γn,⊥, with respect to such frequencies.
This is similar to the Reynolds average used for the simulation of turbulence in
neutral fluids, as we will see in Chapter 2. The result is provided in equation 1.29:

〈Γn,⊥〉 = 〈n〉〈v⊥〉+ 〈ñṽ⊥〉 (1.29)

where 〈〉 is the average operator and ñ and ṽ are the fluctuating component of
the respective quantities. Here the vectorial nomenclature has been omitted for
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simplicity.

While 〈v⊥〉 can be related to the pinch velocity of plasma, 〈ñṽ⊥〉 is the transport
of n due to high-frequency turbulence, which has to be modeled. A typical closure is
to relate it to averaged quantities through a viscosity coefficient whose value has to
be closed, as done in 1.30. Here, that coefficient is Dn, while in the energy equation
for electrons and ions the diffusion coefficients are χe and χi respectively (see
equation 1.24). Note that when replacing 1.30 in equation 1.28, one recovers 1.24a.

Γn,⊥ ∼ −Dn∇⊥n (1.30)

In many cases, in transport simulations, density diffusion (or transport) coefficient
is assumed constant and set to 1m2/s as a standard, while the work presented in
this manuscript aims at providing a finer description of the cross-field transport.

The approach expressed by 1.30 is close to the Boussinesq assumption, adopted
in the framework of the one-point closure models for neutral fluids, as discussed in
Chapter 2.

Also, the approach expressed by 1.30 allows to estimate the characteristic lengths
of the system, in particular the SOL width which, to a first approximation, can
be determined from the equilibrium between parallel and perpendicular transport,
as showed in 1.31. This expression can be obtained from equation 1.24a at steady
state and when assuming Sn = 0 (consistently with the so-called simple-SOL
description of the SOL presented in [3]).

1
L‖

∫ L‖

0
∇‖(nv‖)dl‖ =∇ · (Dn∇⊥n) (1.31)

where Dn is taken constant. Frequently, in cylindric coordinates, the SOL radial
extension is smaller than the minor radius a, thus, to estimate its width, toroidal
effects can be neglected and a plane geometry can be assumed.

The first term on the left-hand side of equation 1.31 can be integrated recalling
the Bohm condition for plasma at the solid target v‖ = ±cs where the sign is
opposite at l‖ = 0 and at l‖ = L‖:

1
L‖

∫ L‖

0
∇‖(nv‖)dl‖ ∼

2ncs
L‖

(1.32)

where as working assumption we set the average parallel velocity v‖ ∼ cs.
Finally, we perform a dimensional analysis on equation 1.32, namely we rewrite

each term of the latter as a function of the reference dimensional quantities:
2ncs
L‖

= Dnn

λ2
n

(1.33)

Since here we assume that λn ∼ λSOL, an expression for the latter is readily ob-
tained:

λn =
√
DnL‖
2cs

(1.34)
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Adopting Dn = 1m2/s, T = 100eV , L‖ = 10m and deuterium plasma, one obtains
λn ∼ 10mm, much smaller than the size of the machine.

By the same reasoning on pressure (equation 1.24d), one finds:

λp =
√
χeL‖
2γecs

(1.35)

The e-folding length of the cross-field heat flux λq in the SOL, on the other hand, is
another useful estimation of the SOL width, since it allows to evaluate the surface
region where the heat load impinges on. Therefore, in SolEdge2D simulations
discussed in this thesis we refer to λq as estimation fo λSOL, or, alternatively, to
the pressure e-folding length in the SOL (especially addressed in the framework of
dimensional analysis).

Constant or ad-hoc diffusion coefficient, which can be easily exploited in transport
codes, in most cases cannot provide but a rough description of the cross-field
transport of plasma within the tokamak. Their distribution can be however traced
basing on the data set available for a given experiment. This is the rationale behind
the automatic fitting procedure outlined in the next section.

1.7 Automatic fitting procedure
In the current version of transport codes like SolEdge2D, SOLPS etc., ad-hoc
effective transport coefficients are set as inputs, compared to experimental ones
and adjusted with iterative schemes ([6]).

To address the issue of cross-field fluxes in transport codes, a more sophisticated
fitting procedure can be invoked. Instead of providing transport coefficients as an
input to the code, one directly provides midplane profiles of density and temperature.
The code will automatically adjust the transport coefficients so as to match in the
end the simulated midplane profiles with the experimental ones. More precisely,
one uses the Proportional-Integral feedback loop described on Figure 1.11 to correct
on the fly the transport coefficients while the temporal loop of the code is running.

The gain of the feedback loop τi has been adjusted to ensure the code stability,
while the difference of signals ε is given by the following formula:

ε ≡ D⊥ −D⊥,0 = 1
τi

∫ (
∂rnXP − ∂rnsimu)dt+K(∂rnXP − ∂rnsimu) (1.36)

where ∂rn is the density gradient and the subscripts XP and simu stand for
experimental and simulation respectively. Typically, the time constant associated
with the integral correction must be larger than the parallel time τ‖ = L‖/cs, with
τ‖ ∼ 10−5[s].

Using this feedback loop automatic procedure, the way of running SolEdge2D is
made simple for experiments interpretation. As an input of the code, one directly
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Figure 1.11: The scheme of the feedback loop procedure implemented in SolEdge2D-
EIRENE is represented as a control system.∂rnXp, provided as input, is the experimental
profile while ∂rnsimu is the one provided by the simulation. ε is the error between these
two. K and 1

τi
are the transfer functions of this scheme and finally D⊥ is the output.

provides experimental measurements of density and temperature in the midplane.
As an output, one still obtains a 2D poloidal map of density and temperature
but one additionally gets a 1D profile of the cross-field diffusivities that were ad-
hoc before. The poloidal variation of these coefficients is, though, not taken into
account. Since one sets 1D radial profiles of density and temperature at the outer
midplane, one gets 1D radial profiles of diffusivities. These latter are assumed
to be homogeneous on each flux surface. Once the transport coefficients are set
by the feedback procedure, one knows that experimental and simulated midplane
quantities are in rather good agreement.

Figure 1.12 shows the radial distributions of diffusivity and thermal conductivity
for ions and electrons calculated with SolEdge2D-EIRENE by fitting Thomson
scattering data for density and temperature at outer midplane, in the H-mode
low-density ASDEX Upgrade shot discussed in [6].

From this figure, it is manifest that diffusive transport coefficients have specific
spatial distribution which must be taken into account for a proper estimation of
plasma density and heat load in the poloidal plane.

Therefore, the next chapters are devoted to the discussion on possible strategies to
model self-consistently transport coefficients and improve the predictive capabilities
of transport codes concerning the estimation of plasma perpendicular fluxes.
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Figure 1.12: Radial profiles of diffusivity Dperp, in red color, and thermal conductivity
for ions and electrons χi and χe, in blue and black color respectively. These profiles have
been calculated by SolEdge2D-EIRENE by fitting experimental density and temperature
data published in [6].
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The aim of this chapter is to introduce the key features of neutral fluid turbulence
theory which inspired the work presented in this manuscript. In particular, we
introduce the concept of eddy viscosity and characterize one of the most popular
models in the framework of Computational Fluid Dynamics (CFD): the κ-ε model.

2.1 Introduction to turbulence concepts in neu-
tral fluids

Turbulence is an ubiquitous phenomenon in nature. It can be experienced every
day, from the mixing of milk and coffee in a cappuccino to the annoying bumps
occurring during a flight. It usually dominates all other flow phenomena and results
in increased energy dissipation, mixing, heat transfer and drag.

As a general concept, turbulence is a spatially and temporally complex regime
of fluids characterized by random, unsteady nonlinear fluctuations due to the
advection of a three-dimensional quantity called vorticity, defined as the curl of the
velocity field u: ω ≡ ∇× u(see appendix A). Turbulence arises as instability of
the laminar flow, resulting from the competition between the non-linear inertial
terms (destabilizing) and the linear (in Newtonian fluids) viscous term (stabilizing)
contained in the Navier-Stokes equation, recalled below for an incompressible flow:

ρ
∂ui
∂t

+ ρ

(
uj

∂

∂xj

)
ui = − ∂p

∂xi
+ ∂τij
∂xj
− αui + Fi (2.1a)

∂ui
∂xi

= 0 (2.1b)

Here a tensorial notation has been used. The left-hand side is the material derivative
of ui, where ρ ≡ mn is the volumetric mass density [kg/m3]. p is the hydrostatic
pressure while the viscous stress tensor τij accounts for (normal and tangential)
stresses associated with dynamic viscosity µ[kg/ms] :

τij ≡ µ

[
∂ui
∂xj

+ ∂uj
∂xi

]
(2.2)

Finally, −αui is a large-scale drag force governed by an α coefficient and Fi is
a generic external force.

It is conventional to introduce the tensorial quantity called rate-of-strain tensor
Sij, defined as:

Sij = 1
2

[
∂ui
∂xj

+ ∂uj
∂xi

]
(2.3)

Thus a most compact form of the stress tensor reads:

τij = 2ρνSij (2.4)

In figure 2.1, a cartoon of a sheared fluid element is shown to explain the origin of
the stress tensor.
The ratio between inertial and viscous terms is called Reynolds number, defined as:
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Figure 2.1: Distortion of a fluid element in a parallel shear flow.

Re ≡ ρuL

µ
= uL

ν
(2.5)

where L is the system linear dimension in [m] and ν[m2/s] is the kinematic viscosity
characteristic of the fluid. High values of such a number, depending on the given
scale and on the fluid, imply unstable and eventually turbulent flow.

2.1.1 Energy cascade and Kolmogorov theory for isotropic
homogeneous turbulence

Fluids with high values of Re are characterized by whirling structures (or eddies)
of widely varying size and velocity, whose organization can be investigated by
observing the turbulent energy spectrum of the flow. This spectrum displays in the
Fourier’s space the energy exchange occurring among eddies with different scales
and it is usually referred to as energy cascade.

Since the concept of cascade is relevant further in this thesis, especially in
the design of a new modeling for the cross-field fluxes in SolEdge2D-EIRENE,
it is worth to present it in detail.

The first pioneering work on the derivation of the power law for the energy
spectrum was made by Kolmogorov in 1941 in the framework of steady-state isotropic
homogeneous three-dimensional turbulence. His theory relies on dimensional analysis
to estimate the effective rate of energy transfer between different turbulent scales,
depending on the characteristic scales of the system. Most important, this theory
predicts the existence of a finite-size region in the space scales, called inertial range,
where the mechanism of energy transfer does not change (this feature is called
self-similarity) and does not depend on the viscosity.

The concept of scale hierarchy underlying the definition of energy cascade, on the
other hand, was proposed by Richardson in 1922 for fully-developed, steady-state
turbulence. According to this concept, the largest turbulent eddies, created by
instabilities in the mean flow, are themselves subject to inertial instabilities and
rapidly break-up to evolve into smaller swirls. Smallest eddies are in turn unstable
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and pass their energy and momentum onto even smaller structures, and so on. An
energy cascade is thus established between neighing turbulent scales, evoking the
idea of a cascading waterfall.

The direction of the energy cascade can actually be either direct (dominant in
three-dimensional treatment of turbulence) and inverse. This distinction is related
to the inviscid (ν = 0) invariants of the system. In hydrodynamical systems, an
invariant is a quantity determined from the fluid variables (and possibly their spatial
derivatives), advected by the flow and which holds "frozen" into this latter.

In three-dimensional turbulence, two global invariants are defined: the (kinetic)
energy E(t) = 1

2〈u · u〉 and the helicity H(t) = 1
2〈u · ω〉, which is a measure of

linkage and/or knotting of vortex lines in the flow.
In two-dimensional turbulence, energy and enstrophy, defined as Z(t) = 1

2〈w ·w〉,
are conserved, where Z is a measure of the strength of the vorticity field.

2.1.1.1 Direct cascade

The direct cascade is typical of three-dimensional turbulence, where helicity H(t)
and energy E(t) are conserved. In particular, the conservation of energy leads
the simple relation:

Ein = Eν(t) + Eα(t) (2.6)

where Ein is the energy injected at a given scale kin ∝ `−1
in , ` being the characteristic

size of the eddy. Eν(t) is the energy dissipated by small (or "Kolmogorov") scales (`ν),
while Eα is dissipated by drag mechanisms involving largest eddies. Equation 2.6
leads to the split of the spectrum displayed in figure 2.2. Here, an instability-driven
source is injected in kin, the energy is transferred without dissipation in the inertial
range and, finally, dissipated at the smallest length scales (k ≥ kν). On the other
hand, the large length scales characterized by k < kin reach a statistical (thermal)
equilibrium due to local and non-local energy diffusion across the wavenumbers,
where all Fourier modes undergo a thermal bath described by a Gibbs-ensemble
equipartition distribution E(k) ∝ k2 (see [26] for reference). Let us characterize
a turbulent scale by its typical length `, velocity u` and time t` = `/u`. Let
κ` = 1

2u
2
` be the turbulent energy per unit mass of scale `, while ε is the power

per unit mass coupled to the system, assumed to be scale-independent due to
the conservation law, so that:

κ` = t`ε (2.7)

Given the definition of κ` and (2.7), one obtains:

ε ∝ κ`
t`
∝ u3

`

`
(2.8)

Thus as the scale is reduced, the characteristic velocity decreases like `1/3, and κ`
reads:

κ` ∝ ε
`

u`
∝ ε

`

(`ε)1/3 = (ε`)2/3 (2.9)
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Figure 2.2: Log-log sketch of the energy spectrum in direct cascade. Figure from [27].

Now the rate of transfer of the spectral energy density is given by Ek = dκ`/dk,
where k = 1/` by definition. Eventually the scaling of Ek reads:

Ek ∝
1
k

(
ε

k

)2/3

= ε2/3k−5/3 (2.10)

This is the Kolmogorov scaling law of the spectral energy density as a power law in
terms of the wavenumber k, with exponent equal to −5/3, where κ`/t` ∝ ε does
not depend on `. Using dimensional analysis, one can prove that `ν/L ∝ Re−3/4,
where L = κL

ε
is the integral scale and `ν =

(
ν3

ε

)1/4
is the Kolmogorov scale,

showing that for high Reynolds numbers (and therefore for turbulent flows) the
range of turbulent scales concerned widens.

For simplicity, we assume zero injection of helicity in the analysis above, however
all experimental investigations, numerical simulations and phenomenological theories
indicate that both energy and helicity have a simultaneous mean transfer to the
small scales [27].

2.1.1.2 Inverse cascade

In the inverse cascade, typical of two-dimensional turbulence, both kinetic energy
and enstrophy are conserved and a double cascade scenario can be outlined ([28]).
The former undergoes an inverse cascade towards large scales, while the latter
experiences a direct cascade to small scales, as sketched in figure 2.3.

This scenario implies the existence of two inertial ranges (for both energy and
enstrophy) where the effects of the viscosity and the external forces are negligible.
A forcing injection is localized in kin. The injected energy is then transferred to
ever larger scales kα < kin in a quasi-stationary fashion. In the energy inertial
range, E(k) depends only on the energy dissipation rate ε and the wavenumber k
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Figure 2.3: Log-log sketch of the energy and enstrophy spectrum in inverse cascade.
Figure from [27].

according to the power law E(k) ∝ ε2/3k−5/3, retrieved both experimentally ([29])
and numerically ([30]).

On the other hand, Z(t) is transferred to smaller scales through the enstrophy
inertial range governed by the enstrophy dissipation rate η related to molecular
viscosity. The power law proposed by Kraichnan in [28] on the basis of dimensional
analysis is Z(t) ∝ η2/3k−3, numerically retrieved in [31] for Re = 327682.

Both for direct and inverse cascades defined for neutral fluids, the interac-
tion between scales is local, meaning that the transfer of energy occurs among
neighbouring wave numbers.

2.1.2 Statistical approach and averaging techniques
We have learned that in turbulent flows, where the Reynolds number is sufficiently
high, the range of scales describing the size of the eddies is wide, since `ν/L ∝ Re−3/4.
A statistical approach can therefore be adopted aiming at modeling part of the scale
motion instead of solving them directly. Such a model reduction can be achieved
through different averaging techniques. In general, an averaging operator filters the
variable f which therefore can be separated into mean and fluctuating components,
f and f ′ respectively:f = f + f ′.

• The ensemble average is one of the most commonly used in fluid mechanics.
Provided a number N of experiments, the averaging operator is defined as:

f ≡ 1
N

N∑
i=1

fi (2.11)

fi being the value of the variable for each experience.

• The time average is exploited for statistically stationary flows. In this case
the averaged variable reads:

f ≡ lim
T→∞

1
T

∫ t+T

t
f(t′)dt′ (2.12)
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This averaging technique is used in the RANS numerical approach for turbulent
flows, as we will see in the next section.

Starting from the second half of the 20th century, the Favre density-weighted
averaging has been introduced in the fluid mechanics for flows with varying density
[32]. The Favre-averaged component of the instantaneous flow variable f(x, t)
is defined as f̃ = ρf

ρ
, where ρ is the volumetric mass density and f and ρ

are time-averaged.
In the present thesis, this approach has not been used despite its relevance with

plasma flows.

2.2 Numerical approach for turbulent flows
The numerical resolution of the whole turbulent energy spectrum, achieved in
the Direct Numerical Simulations (DNS) [33], is usually too costly, therefore the
Reynolds-averaged Navier-Stokes (RANS) statistical approach, based on the time-
averaging of the whole spectrum, is often exploited. An intermediate approach,
adopted in the so-called Large Eddy Simulations (LES), consists in filtering only
the dissipative scales [34] [35] [36]. For the sake of comparison, in figure 2.4 a com-
parison between solving capabilities in DNS, LES and RANS numerical approaches
are showed, while in 2.5 the mixing between two streams with unequal scalar
concentrations is numerically reproduced with DNS, LES and RANS simulations
respectively [37].
Figure 2.4 shows that DNS simulations compute the entire spectrum of turbulent

Figure 2.4: Comparison of solving capabilities in RANS, LES and DNS approaches [38].

scale motion; LES simulations filer Kolmogorov scales out (which therefore have
to be modeled) while solving the rest of the spectrum; finally RANS simulations
apply an averaging procedure to the whole spectrum.

In figure 2.5, the comparison of results from DNS, LES and RANS simulations
is provided, showing two streams with unequal scalar concentrations. Here, one
can appreciate a definite structure of eddies in DNS case, where all the scales are
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DNS

LES

RANS

Figure 2.5: Comparison of DNS, LES and RANS simulations for two streams with
unequal scalar concentrations [37].

solved, while turbulent structures tend to blur as far as LES and mostly RANS
simulations are concerned.

2.2.1 The RANS averaging procedure
Experimental observations and numerical simulations of turbulent flows (extensively
reported in many textbooks, such as in [39]) denote a strongly fluctuating behavior
in time, as illustrated in figure 2.6, with a broad range in the frequency scale.
Therefore, the RANS statistical averaging approach is often used.

Figure 2.6: Time history of the fluctuating velocity at a point in a turbulent flow.
Picture from [40].

In the RANS approach, first introduced by Reynolds ([41]), the time average
for the instantaneous flow variable f(x, t) is defined as:

f(x, t) ≡ lim
T→∞

1
T

∫ t+T

t
f(x, t′)dt′ (2.13)
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with f(x, t) = f(x, t) + f ′(x, t), with f ′(x, t) = 0 by construction. T →∞ cannot
be realized in any physical flow. However, when the time scale of the averaged (or
mean) flow, T , is just much larger than the time scale of turbulent fluctuations, the
scale separation between oscillating and mean contributions makes sense.

Time-averaging the non linear term leads to higher-order correlations in the
equations governing the motion of the fluid, which are unknown a priori. The mean
component of the Navier-Stokes equation indeed reads:

ρ
∂ui
∂t

+ ρ

(
ui

∂

∂xj

)
ui = − ∂p

∂xi
+ ∂

∂xj

[
τ ij − ρu′iu′j

]
− αui + F i (2.14)

In equation 2.14, quantities are averaged with respect to turbulent fluctuations.
Therefore, ∂ui

∂t
does not vanish since the time evolution expressed by the partial

derivative is much slower than the typical time scale of fluctuations, due to the
scale separation.

RSij = −ρu′iu′j is the Reynolds stress tensor, which provides the momentum
exchange between mean and fluctuating fields. Its explicit formulation

RSij = −ρ

u
′
xu
′
x u′xu

′
y u′xu

′
z

u′yu
′
x u′yu

′
y u′yu

′
z

u′zu
′
x u′zu

′
y u′zu

′
z

 (2.15)

shows that each element of RSij is a quadratic velocity correlation function
measuring the mutual, statistical dependence of the velocity components, unknown
a priori. We refer to the trace of this tensor as the turbulent kinetic energy κ ≡ 1

2u
′2
i

with i = x, y, z.

In the so-called Reynolds stress models (RSM ), transport equations are de-
rived for each of the six distinct Reynolds stress terms by manipulating equation
(2.1). However, this procedure lets another higher-order correlation term to arise
for each equation. Moreover, it remains relatively expensive and not always
straightforward to implement.

When the time evolution of moments of order n for some field f is coupled by
the non-linearity to moments of order n+1, a general approach is to apply a closure-
based moment method. This latter is an approximation which provides an expression
for the higher-order moments depending on lower-order ones. Schematically, an
example of hierarchy composed by equations of increasing order is provided below
up to order three:

∂tf = ff + ν∆f
∂tff = fff + ν∆ff

∂tfff = ν̃∆fff (2.16)

Here f is the generic flow variable while the last term in the first and second
equations is the non-linearity (governed by the dissipation coefficient ν), coupled
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to the moment of higher order. For the third equation, the closure is applied
with a term of the same order, governed by coefficient ν̃. Most models describing
turbulence in neutral fluids adopt this approach, assuming an algebraic relation for
the turbulent stresses, which represent the non-linear contribution to be closed (see
sections 2.3 and 2.4).

The statistical closure problem is a common feature in the moment-based
description of both plasmas and neutral fluids. For instance, advection by the E×B
drift across the magnetic field surfaces is a remarkable example of plasma non-
linearity. In chapter 1 we have seen that transport codes designed for magnetically
confined plasmas use the moment-based closure to estimate cross-field fluxes
responsible for advection, which indeed are modeled as diffusive terms, namely
as a function of lower-order moments.

2.3 The eddy viscosity concept
In equation (2.1), the statistical closure problem has been introduced for the
Reynolds stress tensor RSij when the average Navier-Stokes equation is concerned.
In 1877, Boussinesq postulated the following shear-stress strain-rate relationship
for one-dimensional time-averaged flows:

τxy +RSxy = ρ(ν + νt)
∂ux
∂y

(2.17)

where νt is called turbulent or eddy viscosity. The rationale behind equation (2.17) is
that the transfer of momentum caused by advecting fluctuations can be interpreted
as an analogous phenomenon to the molecular transport momentum leading to
laminar stress τxy, where the effect of turbulence is to bump up the effective viscosity
from ν to ν + νt, with νt � ν.

The three-dimensional generalization of equation (2.17) is referred to as the
Boussinesq’s equation. It reads:

RSij = −ρu′iu′j = ρνt

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
− ρ

3u
′
ku
′
kδij (2.18)

where δij is the Kronecker delta and ∂uk
∂xk

= 0 for incompressible flow. The last term
is the contribution of normal stresses, which acts like pressure forces.

Unlike the molecular viscosity ν, the eddy viscosity νt is a property of the
motion and not of the fluid.

The Boussinesq’s equation on the Reynolds stress tensor represents an assump-
tion and implies that turbulent and mean flow scales are locally proportional at any
point of the flow. However, in principle there is no reason that the eddy viscosity
should depend exclusively upon turbulence parameters, such as κ. In general, the
ratio RSij/Sij depends on both mean flow and turbulent scales.
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2.4 Turbulence models based on one-point clo-
sure

Many turbulence models are based on the Boussinesq eddy viscosity approach (also
called one-point closure) to determine the Reynolds stress tensor. The simplest one
is a straight estimation of RSij basing on dimensional arguments.

2.4.1 Prandtl mixing length theory
At the beginning of the 20th century, Prandtl suggested a way to estimate the
Reynolds stress tensor on the basis of dimensional analysis. He was inspired by the
success of the kinetic theory of gases in predicting a macroscopic property such as
the molecular viscosity from a simple relation with respect to the mean free-path
length and the root-mean-square velocity of molecules.

Indeed, in laminar flows, layers of fluid slide over each other and experience
a mutual drag per unit area, exchanging momentum when they bounce around
between the layers. In a similar fashion, in turbulent flows lumps of fluid are
thrown around and jostled by turbulence.

Hence, Prandtl introduced a turbulent viscosity νt = lmixVT , where lmix is
the mixing length, namely the typical length where the fluid lump conserves its
momentum, and VT is a measure of the amplitude of the fluctuating field. This
expression is consistent with the evidence that the more energetic the turbulence,
the greater the momentum exchange, and hence the greater the eddy viscosity.

With these assumptions, the Reynolds stress tensor can be modeled (here for
a one-dimensional flow) by:

RSxy = ρVT lmix
dux
dy

(2.19)

Furthermore, the following assumption holds:

VT ' lmix

∣∣∣∣∣duxdy
∣∣∣∣∣ (2.20)

and thus:

νt =
(
lmix

)2∣∣∣∣∣duxdy
∣∣∣∣∣ (2.21)

The closure of zero-equation models consists in finding a proper prescription of lmix
in order to close the equation (2.21). Depending on the geometry of the turbulent
system, few values have been proposed (see [42]) in order to provide at least a
qualitative prediction of the Reynolds stress tensor.

2.4.2 One-equation models
These models introduce one transport equation for the characteristic turbulent
velocity scale VT , which is set proportional to the square root of the kinetic energy
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transported by fluctuations, κ. The components of the Reynolds stress tensor are
thus related to this scale. This choice seems reasonable since the more energetic
the turbulence, the greater the momentum exchange, and so the eddy viscosity
and the Reynold stress.

As already mentioned, κ is the trace of RSij:

κ ≡ 1
2m

(
u′xu

′
x + u′yu

′
y + u′zu

′
z

)
(2.22)

An equation for κ can be derived analytically from the Navier-Stokes equations
(see for instance [43] for further details), in the form:

ρ
∂κ

∂t
+ ρ

∂

∂xj
(ujκ) = RSij

∂ui
∂xj
− µ ∂u

′
i

∂xk

∂u′i
∂xk

+ ∂

∂xk

(
µ
∂κ

∂xj
− 1

2ρu
′
iu
′
iu
′
j − p′u′j

)
(2.23)

The left hand-side is the total derivative, composed by the time rate of κ
and its advection.

The first term in the right-hand side is a source representing the specific kinetic
energy per unit volume that an eddy gains per unit time due to the mean strain
rate ∂ui

∂xj
. It can be demonstrated that as far as the equation for the kinetic energy

of the mean flow is considered, such a term appears as a sink, since the production
of turbulence is a result of the mean flow loosing its kinetic energy. RSij contains
the Boussinesq eddy viscosity µt.

The second term in the right-hand side is referred to as a dissipation, representing
the mean rate at which the kinetic energy of the smallest turbulent eddies is
transferred to thermal energy at the molecular scale. This term, which is always
positive, is also called ε in the literature.

The third term is diffusion allowed by molecular motion, equally responsible
for the diffusion of the mean flow momentum. Finally, the last terms refer to
the rate at which turbulent energy is transported and redistributed though the
flow via turbulent fluctuations.

The eddy viscosity is estimated as a function of some turbulent velocity scale
VT , which is set as the square root of κ:

νt = κ
1
2 ` (2.24)

This implies that we let a turbulent quantity such the eddy viscosity to scale as a
mean quantity, here κ. Furthermore, equation (2.24) is an isotropic relation, since
the same amount of momentum is assumed to be transported in all directions
from one given point.

2.4.3 Two-equations models
These models, which are the most popular ones in a wide range of engineering analysis
and research, provide independent transport equations for both the turbulent kinetic
energy scale κ and another characteristic measure of the turbulent flow, depending on
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the distinguishing type of model. They represent complete description of turbulence,
in the sense that they take into account both time and space scales of turbulence.
However, while the derivation of the κ equation is nearly analytical, a significant
amount of uncertainty lies in the complementing transport equation.

In 1942, Kolmogorov indicated the specific dissipation rate ω as the most
appropriate unknown to be coupled to κ. This quantity, measured in [s−1], can
be interpreted as the inverse of the time scale of dissipation of turbulent eddies.
Dimensional arguments lead to the following scales:

νt ∼ ρκ/ω, ` ∼ κ1/2/ω, ε ∼ ωκ (2.25)

Three years later, Chou [44] proposed to use ε, the dissipation rate measured
in [m2/s3], thus obtaining for the scales:

νt ∼ ρκ2/ε, ` ∼ κ3/2/ε (2.26)

Further options came along in the following years, proposed by Rotta (1951) and
Zeierman and Wolfshtein (1986), for instance. In all of them, dissipation, length
scale and eddy viscosity are related on the basis of dimensional analysis. The
κ − ω and the κ − ε models are so far the most used to deal with turbulent
systems in the engineering framework.

2.4.3.1 The κ-ω model

The equations proposed for this model in [42] are:

ρ
∂κ

∂t
+ ρuj

∂κ

∂xj
= ∂

∂xj

[(
µ+ µt

σκ

)
∂κ

∂xj

]
+ τij

∂ui
∂xj
− β∗ρκω (2.27a)

ρ
∂ω

∂t
+ ρuj

∂ω

∂xj
= ∂

∂xj

[(
µ+ µt

σω

)
∂ω

∂xj

]
+ α

ω

κ
τij
∂ui
∂xj
− βρω2 (2.27b)

where in 2.27b the last two terms are the production and the destruction (or
dissipation) terms.

The closure coefficients are obtained here by considering two turbulent flow
cases, one reproducing the decaying of homogeneous, isotropic turbulence, the
other simulating a boundary layer.

α = 5/9, β = 3/40, β∗ = 9/100, σω = 1/2, σκ = 1/2 (2.28)

The κ− ω model has been shown to give excellent predictions, within the 6% of
DNS (Direct Numerical Simulation) ones, for pipe flows at Re ∼ 40000 [42].

2.4.3.2 The κ − ε model

One of the most exploited models in CFD for the treatment of turbulence in neutral
fluids is the κ-ε model, first introduced by Launder and Spalding in 1974 [45]. In
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this model, the second variable is the energy dissipation rate, ε[m2/s3]:

ε ≡ 2νS ′ijS ′ij (2.29)

when the fluid is incompressible, though, 2.29 can be simplified in:

ε ≡ ν
∂u′i
∂xj

∂u′i
∂xj

(2.30)

A transport equation can be derived analytically for ε by performing the operation:

L(·) = ν
∂u′i
∂xj

∂

∂xj
(·) (2.31)

The mathematical proceeding is described in detail in [46]. The complete model
is described by the following system:

ρ
∂κ

∂t
+ ρuj

∂κ

∂xj
= ∂

∂xj

[(
µ+ µt

σκ

)
∂κ

∂xj

]
+ τij

∂ui
∂xj
− β∗ρκω (2.32a)

ρ
∂ε

∂t
+ ρuj

∂ε

∂xj
= −2µ

[
u′iku

′
jk + u′kiu

′
kj

]∂ui
∂xj
− 2µu′ku′ij

∂2ui
∂xk∂xj

−2µu′iku′imu′km − 2µνu′ikmu′ikm

+ ∂

∂xj

(
µ
∂ε

∂xj
− µu′ju′imu′im − 2νp′mu′jm

)
(2.32b)

Let us focus on the 2.32b. As usual, the left-hand side represents the material deriva-
tive of ε. The right-hand side is composed essentially by three distinct contributions:

• The production term:

Pε = −2µ
[
u′iku

′
jk + u′kiu

′
kj

]∂ui
∂xj
− 2µu′ku′ij

∂2ui
∂xk∂xj

(2.33)

Pε is modeled basing on the assumption of local equilibrium. Given: Pε ∝
Pκ/tP , where Pκ = τij

∂ui
∂xj

is the production term of κ and tκε the characteristic
time scale for the production of ε, then Pε can be modeled as:

Pε =
[
τij
∂ui
∂xj

]
(tκε)−1 (2.34)

which is equivalent to state that the rate of change of ε must scale with κ, or:

tκε = κ

ε
(2.35)

thus eventually:

Pε = Cε1
κ

ε
Pκ (2.36)
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• The sink (or dissipation) term:

Sε = −2µu′iku′imu′km − 2µνu′ikmu′ikm (2.37)

Sε can be modeled on the basis of dimensional arguments, recalling the
definition of tκε:

Sε ∝
ε

tκε
= Cε2

ε2

κ
(2.38)

• The diffusion term:

Dε = ∂

∂xj

(
µ
∂ε

∂xj
− µu′ju′imu′im − 2νp′mu′jm

)
(2.39)

which can be modeled by means of a properly-scaled eddy viscosity µt/σε:

Dε = ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xj

]
(2.40)

The combination of all the three modeled therms reads, for the complete
κ − ε system:

ρ
∂κ

∂t
+ ρuj

∂κ

∂xj
= ∂

∂xj

[(
µ+ µt

σκ

)
∂κ

∂xj

]
+ τij

∂ui
∂xj
− β∗ρκω (2.41a)

ρ
∂ε

∂t
+ ρuj

∂ε

∂xj
= ∂

∂xj

[(
µ+ µt

σε

∂ε

∂xj

)]
+ Cε1

ε

κ
τij
∂ui
∂xj
− Cε2ρ

ε2

κ
(2.41b)

The eddy viscosity in this case reads:

µt = ρCµ
κ2

ε
(2.42)

Below the closure coefficients are reported. These have been obtained in a systematic
fashion by empirical procedures specified in [47].

Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σκ = 1., σε = 1.3 (2.43)

It has been shown that the κ− ε model performs quite nicely for free shear flows
given by jets, wakes and mixing layers [42]. In general, despite its heuristic closure,
it is exploited successfully in a broad range of applications ranging from industrial
(notably airplanes design) to environmental flows.

The concepts of eddy viscosity and κ-ε model are well-known modeling tools in
the theory of neutral turbulence, however, following a new and ambitious approach,
they may be thought to be cautiously adapted and exploited also in the framework
of turbulent perpendicular transport in magnetically confined plasmas.

In the next chapter, a number of approaches is outlined for the modeling of
turbulent transport in plasmas, which can be addressed to customize the concepts
of eddy viscosity and κ-ε model.
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This part of the thesis addresses some theoretical methods concerning the
description of turbulence-driven transport in magnetically confined plasmas.

First, the quasi-linear approach is presented as a methodology to relate plasma
diffusive cross-field fluxes to the velocity scale of turbulence. A qualitative analysis
is also proposed to include the sink of turbulence in such an analysis.

In the second section, prey-predator models are shown to be a successful tool to
describe the interplay between two competitive species, especially in transients, so
they are found to fit the general picture of plasma turbulence as prey and its sink
mechanisms as predators.

Finally, we recall the formalism of the Lorenz equations for chaotic systems,
which benefit from several well-known properties, and sketch possible analogies with
both prey-predator models in plasma and κ-ε models for neutral fluids.

3.1 The quasi-linear approach
In the limit of a electrostatic field characterized by small-amplitude oscillations, the
Fourier transform of the fluid density equation (3.1) can be linearized to predict the
transport associated to its fluctuations. The starting equation is the following one:

∂tn+ [ψ, n] = −νñ (3.1)

The transport of n is taken into account by the non-linear term in Poisson brackets
[ψ, n] ≡ z · (∇ψ ×∇n), where z is the unit vector directed as the magnetic field
B. Here ψ is the normalized electric potential. On the right-hand side, the linear
oscillating restoring force ñ (called Krook’s term) is characterized by frequency
ν and relates to the effect of collisions on n.

The Poisson brackets approximate the transport of n due to the E × B drift:
∇ · (vE×Bn). vE×B ≡ B×∇ψ

B2 is the E ×B velocity. The transport of n thus relates:

∇(vE×Bn) =∇ ·
(

B ×∇ψ n

B2

)

= (∇×B)(∇ψ) n
B2 −B(∇×∇ψ) n

B2 + (B ×∇ψ)∇
(
n

B2

)

= µ0J
n

B2∇ψ + B ·
[
∇ψ ×∇

(
n

B2

)]

= µ0

B2

(
J ·∇ψ

)
n+B2 B

B2

[
∇ψ ×∇

(
n

B2

)]

∼
��

���
��

β

(
−JE

p

)
n +B2

[
ψ,

n

B2

]
(3.2)

where we used the Maxwell-Ampère law ∇×B = µ0J , µ0 being the permeability
in free space and J the current density. This term is further expanded by using
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the definition of β ≡ nTkB
B2/2µ0

, called plasma β and indicating the ratio between
plasma and magnetic pressure. Therefore, µ0 = βB2/p (p = nTkB). As mentioned
at the beginning of this section, we relate to the electrostatic plasma limit, thus
β → 0. Finally, one expands the last term obtaining:

B2
[
ψ,

n

B2

]
= [ψ, n] + �������

B2n
[
ψ,

1
B2

]
(3.3)

where the last term is neglected because we suppose that B is nearly uniform in
space. This approximation is called straight field approximation.

We introduce the following averaging procedure:

n = n+ ñ n = 〈n〉y,t 〈ñ〉y,t = 0 (3.4a)

where 〈n〉 = 〈n〉y stands for the average of n against the magnetic flux surface
(y). Let us average Eq.(3.1):

∂tn+ [ψ, n] + 〈[ψ̃, ñ]〉 = 0 (3.5)

and subtract Eq.(3.5) from Eq.(3.1) to obtain:

∂tñ+ [ψ̃, n] + [ψ, ñ] + [ψ̃, ñ]− 〈[ψ̃, ñ]〉 = −νñ (3.6)

The quasi-linear approach consists in linearizing equation 3.6 under the assumption
of small perturbations, thus [ψ̃, ñ]→ 0 and 〈[ψ̃, ñ]〉 → 0.

First, equation 3.6 is Fourier-transformed to access the dispersion relation of
n, namely n̂, against the spectrum of poloidal wavenumbers ky and frequencies
ω, due to its transport:

ωn̂− kyn̂∂xψ + kyψ̂∂xn = −iνn̂ (3.7)

The dispersion relation reads:

n̂ = −kyψ̂∂xnΩ + iν
(3.8)

where ψ̂ is the Fourier-transformed of the potential ψ. Ω ≡ ω − ky∂xψ is the total
frequency accounting also for the Doppler shift, provided by ky∂xψ.

Let us assume a simple notation for the drift velocity vE×B → U , where the
bold character is omitted, and consider the hypothesis of incompressible flow, so
that a stream function ψ can be defined with the same physical meaning as the
electrostatic potential in plasma. Therefore, vE×B = −∇ × (ψẑ).

The non-linear term [ψ̃, ñ] can be expressed as:

[ψ̃, ñ] = ∂y(ñ∂xψ̃) + ∂x(ñ(−∂yψ̃))
= ∂y(ñŨy) + ∂x(ñŨx) (3.9)
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which leads to:

〈[ψ̃, ñ]〉 = ∂x〈ñ(−∂yψ̃)〉 = ∂x〈ñŨx〉 (3.10)

where Ũx = −∂yψ̃ and Ũy = ∂xψ̃ are the component of Ũ in the x and y direction
respectively.

In the Fourier space, the correlation between fluctuating fields reads:

Ũ ñ →
∑

k′yω
′k′′yω

′′
Ûk′yω′n̂k′′yω′′e

−i(ω′+ω′′)t+i(k′y+k′′)x (3.11)

Applying the averaging operator 〈Ũ ñ〉 on the latter equation leads to k′y + k′′y =
0 and ω′ + ω′′ = 0, so that:

〈ñŨ〉 →
∑
ky ,ω

Û−ky−ωn̂kyω =
∑
kyω

n̂kyωÛ
∗
kyω (3.12)

where Û∗kyω is the complex conjugate of Ûkyω.
As a function of ψ, the non-linear term 〈[ψ̃, ñ]〉 becomes:

〈[ψ̃, ñ]〉 = −∂x
∑
ky ,ω

(
− ikyn̂ψ̂∗

)

= −∂x
∑
ky ,ω

(
i|kyψ̂|2

Ω + iν
∂xn

)
(3.13)

Now the mean equation can be reformulated:

∂tn+ [ψ, n]− ∂xDQL∂xn = 0 (3.14)

where one defines:

DQL =
∑
ky ,ω

(
i|kyψ̂|2

Ω + iν

)
(3.15)

Working out DQL:

DQL =
∑
ky ,ω

i|kyψ̂|2

Ω2 + ν2 (Ω− iν)

∼ i
∫ +∞

−∞
dΩ|kyψ̂|2

Ω
Ω2 + ν2 +

∫ +∞

−∞
dΩ|kyψ̂|2

ν

Ω2 + ν2 (3.16)

The first term in equation (3.16) is identically equal to zero for parity reasons
(the argument of the integral is an odd function). It is also required that DQL is
real. Concerning the second one, provided that ν → 0, it tends to π∑ky ,ω |kyψ̂|2δΩ.
Note that this latter result is independent from ν.
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Finally, the quasi-linear transport coefficient reads:

DQL =
∑
ky ,ω

|kyψ̂|2πδΩ (3.17)

In equation (3.17), |kψ̂|2 refers to turbulent kinetic energy due to fluctuations of
the advective velocity field. δΩ is the Dirac’s δ function revealing that diffusion
is localized in resonant modes.

DQL can be expressed in a compact form which stresses the dimensional
dependence: DQL = κτc, where κ is the kinetic turbulent energy (this notation is
consistent with the κ-ε model for neutral fluids), while τc is the correlation time
corresponding to the life time of turbulent structures.

3.1.1 Beyond the quasi-linear approach
The quasi-linear analysis does not provide a prediction for the correlation time.
In this section, we investigate this contribution when approaching the quasi-linear
procedure from a system of coupled equations, similar to the κ-ε one (see chapter
2). We use the same nomenclature to indicate the turbulent energy κ and its
dissipation rate ε.

∂tκ+ [ψ, κ] = −ακ− ε (3.18a)

∂tε+ ���[ψ, ε] = −βε− κ

τκτε
(3.18b)

τ ′c = κ/ε (3.18c)

−ακ and −βε are the actual restoring forces for κ and ε respectively, as small as
wanted, modeled to localize the resonant interaction. τκ and τε are the restoring
time scales needed for κ and ε to recover the state of equilibrium, while τ ′c provides
the characteristic time of dissipation. Moreover, in 3.18b, the Poisson brackets are
neglected since we suppose it is a sub-grid contribution.

We allow for a scale separation of κ into mean (κ) and fluctuating (κ̃) components,
such that κ(x) = 〈κ〉, thus 〈κ̃〉 = 0. The same notation is adopted for ε.

We average equations 3.18a and 3.18b and obtain:

∂tκ+ [ψ, κ] + 〈[ψ̃, κ̃]〉 = 0 (3.19)

∂ε = − κ

τκτε
(3.20)

We substract 3.19 from 3.18a and 3.20 from 3.18b:

∂tκ̃+ [ψ, κ̃] + [ψ̃, κ] + ���[ψ̃, κ̃] −����〈[ψ̃, κ̃]〉 = −ακ̃− ε̃ (3.21a)

∂tε̃ = −βε̃− κ̃

τκτε
(3.21b)

As usual, non-linear contributions with respect to fluctuations are neglected in the
framework of a linear instability approach, thus 〈[ψ̃, f̃ ]〉 → 0 and [ψ̃, f̃ ] → 0.
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Equations 3.21a and 3.21b are Fourier-transformed in space and time, κ̂ and
ε̂ being the transformed functions:

(Ω + iα)κ̂+ (ky∂xκ)ψ̂ = −ε̂ (3.22a)

(Ω + iβ)ε̂ = −i κ̂

τκτε
(3.22b)

The dispersion relation for ε̂ thus reads:

ε̂ = κ̂/(τκτε)
iΩ− β (3.23)

Comparing 3.18c with 3.23, one finds that:

τ ′c = τετκ(iΩ− β) (3.24)

where τ ′c ∝ τκτε. The dispersion relation for κ reads:

κ̂ = −τ ′c(kyψ̂)
τ ′c(Ω + iα) + 1∂xκ (3.25)

Therefore, the non-linear contribution to the transport of κ is provided by:

〈[ψ̃, κ̃]〉 → −∂x
∑
ky ,ω

(−ikyψ̂∗)κ̂

= −∂x
(∑
ky ,ω

i|kyψ̂|2τ ′c
(Ω + iα)τ ′c + 1∂xκ

)
(3.26)

The expression for DQL can thus be defined in the form:

DQL,κε =
∑
ky ,ω

i|kyψ̂|2τ ′c
(Ω + iα)τ ′c + 1

= i|kyψ̂|2
(Ωτ ′c+1)2

(τ ′c)2 + α2

(
Ω ∗ (τ ′c)−1 − iα

)

∼ i
∫ +∞

−∞
dX|kyψ̂|2

X

X2 + α2 +
∫ +∞

−∞
dX|kyψ̂|2

α

X2 + α2 (3.27)

where X = Ω + 1/τ ′c. We recall the same arguments as in the classical quasi-linear
analysis to finally find the following expression for DQL,κε:

DQL,κε =
∑
kyω

|kyψ̂|2π (3.28)

Compared to the result obtained in 3.17, 3.28 shows that the total correlation time
accounts for both frequency Ω and the inverse of turbulent energy dissipation time τ ′c:

τc = πδ(Ω + 1/τ ′c) (3.29)
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Eventually, the evolution of averaged κ is provided by equation 3.30.

∂tκ+ [ψ, κ] + ∂x(DQL,κε∂xκ) = 0 (3.30)

In the asymptotic limit ε → 0, one has τ ′c → ∞ and τ → πδΩ, which is the
result of the standard quasi-linear analysis.

These results show that, on the basis of a κ-ε-like system, it is possible to
infer additional information in the correlation time of the quasi-linear diffusivity,
concerning the dissipation of turbulent energy. Compared to the standard estima-
tion of quasi-linear diffusivity, where the correlation time is a quantity generally
fitted with gyrokinetic simulations [48], the method proposed above is a first-
step qualitative approach towards a more predictable estimation of diffusivity
in plasma turbulent fluxes.

3.2 Prey-predator models
Prey-predator models were first developed to describe the loss-win interactions
between two actors in dynamical systems: a resource and a consumer.

In 1925, the US chemist Alfred J. Lotka proposed a basic set of equations to
represent such as interplay in chemical reactions where the reagents concentrations
oscillate [49]. In 1926, the Italian physicist Vito Volterra independently presented
the same kind of mathematical system to outline the increase of predator fish (and
corresponding decrease in prey fish) in the Adriatic Sea within a certain observation
time [50].

The so-called Lotka-Volterra model consists in two coupled differential equations:

∂tx = x(α− βy) (3.31a)
∂ty = y(γx− δ) (3.31b)

Here, as a general case, x = x(r, t) and y = y(r, t) are the prey and the predator
species, respectively; ∂tx and ∂ty are their rate of change in time. α is the growth
rate of the prey in absence of the predator, β measures the impact of predation
∂tx
x
, γ is the death (or emigration) rate of y when no interaction with species x

is observed and δx denotes the rate of growth (or immigration) of the predator
population as a function of the size of the prey. α, β, γ and δ are positive parameters.
The characteristic prey-predator dynamics is shown in Figure 3.1(a).

This system exhibits a motion constant, namely a quantity which is con-
stant along any solution (x(t), y(t)) and is determined by the initial conditions
(x(r, 0), y(r, 0)):

C = α ln y(t)− βy(t)− γx(t) + δ ln x(t) (3.32)

In the xy-plane, these curves are closed, as illustrated in Figure 3.1(b), meaning
that the solutions are periodic oscillations.
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(a) The periodic loss-win dynamics be-
tween the prey(in blue) and the predator
(in green).

(b) Level curves of the conserved quan-
tity. In this zero-dimensional simulation,
α = 1, δ = 5 and β = γ = 5. Equilibrium
points are marked by a star in (0, 0) and
(1, 0.5).

Figure 3.1: The prey-predator model.

The Lotka-Volterra system is just one flavor of prey-predator model. The
Kermak and McKendrick model [51], for example, studies the susceptile-infectious
interactions in the framework of epidemics, the Galbraith one [52] investigates on
the dynamics between the populace and predator institution occurring in economy.
Although the biological origin of this kind of models, indeed, they appear to be
very efficient in systems which show periodic loss-win behavior between two (or
more) species.

3.2.1 An example of a prey-predator model in plasma
This is the reason why in the last years the mathematical formalism of the prey-
predator model has been found to well represent the picture of self-regulating
turbulence via the E×B shear in the edge region of magnetically confined plasmas
(see for instance [53], [54], [55]). The advantage of such models is the capability
in capturing the main mechanisms undergoing the self-regulation of turbulence,
while transport models, derived from the fundamental equations of plasma physics,
often tend to be extremely detailed.

For instance, in the work proposed by Diamond and Miki in 2013 ([55]), the
amplitude of turbulent fluctuations represents the prey, while two turbulence
E ×B shearing mechanisms are outlined as predators (called mean flows and zonal
flows). In this model, which is 1D in the cross-field direction, the dynamics of
Low-confinement → High-confinement transitions, the competition between shear
flows in suppressing turbulence and finally the evolution of mean field density n
and pressure p profiles are self-consistently reproduced using transport equations.
For this reason, this work has represented a reference in the conception of the new
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modeling of cross-field fluxes in SOLEdge2D-EIRENE discussed further in this
thesis (chapters 4 and 5).

Let us consider the evolution of turbulent energy I in the Miki and Diamond
model:

∂tI = I(γI −∆ωI − α0E0 − αVEV ) + χN∂r(I∂rI) (3.33)
Here the first term in the right-hand side is the source, the second one is the
self-saturation of turbulence, regulated by the parameter ∆ω[s−1]. This is the
nonlinear damping of I. α0 and αV are coefficients regulating the coupling with the
E ×B shearing mechanisms and χN is the turbulent thermal diffusivity.

The first term on the right-hand side represents the turbulence generation by the
ion temperature gradient via linear instability, where γI = γI0(cs/R)

√
(R/LT )− (R/LT )crit

is its local growth rate. Here γI0 is the amplitude, cs the thermal velocity, R the ma-
jor radius, LT the temperature gradient length and (R/LT )crit a threshold parameter.

The diffusive components of density and pressure radial fluxes Γn and Γp, dis-
played in 3.34, are linked to turbulence dynamics by the transport coefficients D = χ.

Γn ∝ D∂rn

Γp ∝ χ∂rp (3.34)

D = τcc
2
sI

1 + αtEV
(3.35)

where τc = a/cs, a is the minor radius and αt is a model parameter. The function
describing 3.35 assures that the transport coefficient follows the dynamics of
turbulence, due to the linear dependence to I (discussed in [56]).

D is also inversely proportional to the energy of the shearing flow (EV ). This
flow locks the transition into an improved plasma regime, where cross-field turbulent
transport is dropped, and so D and χ.

Figure 3.2 shows the time trace of turbulent energy (in blue) and E × B
shearing flows (in green and red) on the left, and the phase-portrait of the predator-
prey system on the right, highlighting the typical prey-predator dynamics, similar
indeed to 3.1(a) and 3.1(b).

This behavior is expected because the coupling between predator and prey
recalls the mathematical formalism of 3.31, which consists in the product xy and
in 3.31 and in α0E0I and αVEV I in 3.33. From a mathematical point of view, the
prey-predator models represent in general an interesting reference when modeling
the competition between plasma turbulence and E × B shears. In this sense the
prey-predator formalism can guide the improvement of transport models when the
effects of turbulence on mean flows are included.

Equation 3.33 keeps the original nomenclature of [55]. It is worth to make clear
that in the next chapters the turbulent kinetic energy (which in [55] is denoted as
I) will be indicated as κ to stress the parallelism with the κ-ε model exploited in
Computational Fluid Dynamics.
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Figure 3.2: Plots from [55]. On the left, time trace of turbulent energy (in blue),
zonal flows (in green) and mean flows (in red). On the right, the phase-portrait of the
predator-prey system. For both, a portion of the total time range is considered.

3.3 The Lorenz system
Another interesting mathematical reference for the study of plasma dynamics is the
well-known Lorenz system, used to describe (the dynamics of) chaotic phenomena.
The aim of this section is to display the main properties of such a model.

3.3.1 Equations and physical meaning
The Lorenz system is a mathematical model developed in 1963 by Edward Lorenz
to study the atmospheric convection. It displays a set of non-linear deterministic
equations relating the properties of a two-dimensional layer of depth H where a
temperature difference ∆θ = θH − θC is imposed, the layer being uniformly warmed
from the bottom side, where θ = θH , and cooled from the upper one, where θ = θC ,
as shown in figure 3.3. The fluid is also characterized by diffusivity κ and kinematic

𝐻 

𝜃𝐻 

𝜃𝐶  

2𝐷 𝑓𝑙𝑢𝑖𝑑 𝑙𝑎𝑦𝑒𝑟 

Figure 3.3: 2D fluid layer of width H, uniformly warmed from below, where temperature
θ = θH , and cooled from above, where θ = θC .
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viscosity ν, and undergoes a buoyancy force where g is the gravity acceleration.
In detail, the Lorenz equations describe the time evolution of the stream function

ψ, the temperature θ and the heat source θ2:

∂tθ = Raψ − θ − ψθ2 (3.36a)
∂tθ2 = −α2θ2 + θψ (3.36b)
∂tψ = Pr

(
θ − ψ

)
(3.36c)
(3.36d)

These equations can be derived analytically from Navier-Stokes equations, see ap-
pendix C.
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Figure 3.4: Time evolution of ψ, Θ and Θ2 in a given time range.

3.3.2 Fixed point analysis
The interest of system 3.36 consists in capturing many features about the physics
of thermo-convection in a two-dimensional fluid layer. Standard procedure of
fixed-point analysis allows to describe in detail such properties. The fixed points
are the solutions of equations in 3.36:

0 = Raψ − θ − ψθ2 (3.37a)
0 = −α2θ2 + θψ (3.37b)

0 = Pr
(
θ − ψ

)
(3.37c)

where the over-line symbols denote the steady-state unknowns. Equation 3.37c
readily yields θ = ψ and 3.37a leads to α2θ2 = ψ

2. Eventually, one has:

0 = ψ

(
α2(Ra− 1)− ψ2

)
(3.38)
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which admits three real solutions only for Ra > 1:

ψ = 0 ; ψ = ±
√
α2(Ra− 1) (3.39)

When Ra < 1, only the trivial solution ψ = θ = θ2 = 0 is permitted, which
corresponds to the one addressed in the linear analysis. Moreover, this solution
describes the system when there is no convection .

When performing a stability analysis, we study the stability of the fixed point
in response to a small perturbation, a scale separation being implied. Equation
3.40, shown below, is the fluctuating component of 3.36, where the familiar tilde (̃·)
notation is assumed for the oscillating components of θ, θ2 and ψ.

∂tθ̃ = −θ̃ +
(
Ra− θ2

)
ψ̃ − ψθ̃2 −�

��ψ̃θ̃2 (3.40a)

∂tθ̃2 = θ̃ψ + ψ̃θ − α2θ̃2 + �
�̃ψθ̃ (3.40b)

∂tψ̃ = Pr
(
θ̃ − ψ̃

)
(3.40c)
(3.40d)

The eigenvalue γ is the solution of:

0 =

∣∣∣∣∣∣∣
−(γ + 1) Ra− θ2 ψ

Pr −(γ + Pr) 0
ψ θ −(γ + α2)

∣∣∣∣∣∣∣
where: ∣∣∣∣∣∣∣

−(γ + 1) Ra− θ2 ψ
Pr −(γ + Pr) 0
ψ θ −(γ + α2)

∣∣∣∣∣∣∣
= −ψ

∣∣∣∣∣Pr −(γ + Pr)
ψ θ

∣∣∣∣∣− (γ + α2)
∣∣∣∣∣−(γ + 1) Ra− θ2

Pr −(γ + Pr)

∣∣∣∣∣
Therefore:

−γ3 − γ2(1 + α2 + Pr)
= −γ

(
Pr(1 + α2) + α2 + ψ

2 − Pr(Ra− θ2)
)

= −α2Pr− Prψ2 + α2Pr(Ra− θ2)− Prψθ = 0 (3.41)

which is the dispersion relation. One finds that the fixed point θ = 0, θ2 = 0,
ψ = 0 is stable for Ra < 1 and unstable for Ra > 1, where Ra emerges like the
natural control parameter of this analysis.

Indeed, when this fixed point is concerned, 3.41 becomes:

(γ + α2)
(
γ2 + γ(1 + Pr) + Pr(1− Ra)

)
= 0 (3.42)
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yielding to:

γ1,± = −(1 + Pr)± ((1 + Pr)2 + 4Pr(Ra− 1))1/2 ; γ2 = −α2 (3.43)

The condition for the stability of the fixed point is γ1,± < 0 and thus Ra > 1.

The other fixed points, namely for ψ = θ and ψ2 = α2θ2 = α2(Ra−1) correspond
to steady convection. In these cases, the dispersion relation relates:

γ3 + γ2(1 + α2 + Pr) + α2γ(Pr + Ra) + 2α2Pr(Ra− 1) = 0 (3.44)

It is possible to demonstrate that there exist a critical value of the control parameter
Ra = Ra∗ such that this pair of solutions bifurcates towards instability (see Appendix
C). The critical value is given by Ra∗ ≡ Pr 3+α+Pr

Pr−(1+α2)
.

In particular, close to marginality, for Pr > (1 + α2), ones has three cases:

• 0 < Ra < 1, there is only a single fixed point such that ψ = 0, θ = 0 and
θ2 = 0;

• 1 < Ra < Ra∗, the fixed point ψ = 0 is unstable and there exist two stable
fixed points with ψ 6= 0;

• Ra > Ra∗: all fixed points are unstable.

The other regime is for Pr < (1 + α2), such that:

• 0 < Ra < 1, there is only a single stable fixed point such that ψ = 0;

• Ra > 1, the fixed point ψ = 0 becomes unstable and there exists two fixed
points with ψ 6= 0 that remain stable for all values of Ra.

In figure 3.5, a set of chaotic solutions for the Lorenz system is displayed, called
Lorenz attractor, when α2 = 8/3, Ra = 28 and Pr = 10, and for initial conditions
(1, 1, 1). In this figure, Pr < (1 + α2) Ra∗ ∼ 24.7 and all fixed points are unstable.
Figure 3.6(a) and 3.6(b) show the Lorenz attractor when 1 < Ra < Ra∗ and
0 < Ra < 1 respectively while both α2 and Pr hold the same and the initial
conditions imposed are (1, 1, 1).
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Figure 3.5: Lorenz attractor when α2 = 8/3, Ra = 28 and Pr = 10. Moreover, x, y and
z correspond to ψ, θ and θ2 in the notation used in 3.36.
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(a) Lorenz attractor when α2 = 8/3, 1 <
Ra = 10 < Ra∗ and Pr = 10. The fixed
point ψ = 0 is unstable and there exist two
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As mentioned in chapter 1, transport codes for magnetically confined plasmas
usually rely on ad-hoc diffusion coefficients for the estimation of steady-state cross-
field fluxes. This procedure is constraining because the spatial distribution of such
quantities, net of time transients, is expected to vary significantly according to several
factors, including plasma instabilities, absorbed power, magnetic equilibrium...

As far as diffusive cross-field fluxes are modeled, a more generalized description
of transport coefficients is thus required. This goal can be achieved by letting these
coefficients scale with some property of the turbulent state of the system, as in the
quasi-linear theory (see chapter 3). The latter describes a linear relation between
diffusivity and turbulent kinetic energy, however more sophisticated dependencies
should be taken into account both in transients and steady-state, due to the interplay
of turbulent fluxes primarily with shear flows, observed both in experimental
observations [57],[58] and first-principle simulations of plasma [59].

In this chapter, a new modeling is presented for the calculation of (diffusive) cross-
field fluxes in the edge and SOL plasmas of diverted tokamaks, when Braginskii’s
equations are concerned. This model is introduced into the two-dimensional
transport code SolEdg2D-EIRENE and comes after the work begun in [60] in
the framework of limited plasmas. In its most general form, the model allows to
calculate self-consistent transport coefficients when the system reaches equilibrium.

In the first section, we discuss the problematic related to this new modeling and
we present the strategy of its design, conceived by steps of increasing complexity
depending on both the closure of free parameters and the number of equations
concerned. Each step of the modeling is presented exhaustively, from its charac-
teristic equation(s) up to the implementation in SolEdge2D-EIRENE. Finally, for
each modeling step, the numerical results are commented and compared to the
experimental data of given L-mode discharges of TCV and WEST tokamaks.

4.1 Motivations and strategy of the model

4.1.1 Motivations
Chapters 1 and 3 raised two important issues, which represent the main moti-
vations of this thesis:

• Being predictive when modeling cross-field fluxes?
Either homogeneous and ad-hoc distributions of transport coefficients are
rough in most of the simulations and do not model consistently poloidal
asymmetries. Moreover, the automatic fitting procedure discussed in chapter
1 is efficient a posteriori, meaning that it does not contain any method or
information useful to improve the predictive capabilities of the simulation.

• Getting more information on the effects of steady-state turbulence
on the main plasma in transport codes
Transport of particles, momentum and energy in plasma can be related to the
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averaged turbulent energy at steady state, as argued in chapter 3, but in the
two-dimensional Braginskii equations, where fluctuations due to turbulence are
not present, the contributions to the turbulent energy have to be determined.

We address these issues drawing inspiration from the concepts of eddy viscosity
and the κ-ε model described in chapter 2. Indeed they do not require a spectral
treatment of turbulence, as in the quasi-linear approach. Instead, they rely on
Reynolds-averaged Navier Stokes equations, similar to the Braginskii equations
numerically solved by transport codes, turning to be appealing for the issue of
modeling cross-field turbulent fluxes in plasma. However, the concepts of eddy
viscosity and κ-ε model are based on the strong assumption of isotropic and
homogeneous turbulence, therefore they cannot be applied to magnetized plasma,
where turbulence is known to be anisotropic and non-homogeneous.

Since turbulence in plasmas shows some similitudes with 2D turbulence in
neutral fluids ([29]), the evolution of the quantity enstrophy (the integral of vorticity
square), which in 2D turbulence is an inviscid invariant, may be addressed for
plasmas too. In [61], for instance, a set of transport equations is derived analytically
for the evolution of turbulent kinetic energy and enstrophy in isothermal plasma.

As a working assumption, in this work we propose a heuristic approach to
customize the semi-empirical transport equations for κ and ε for non-isothermal
plasma, including the physics of interchange-driven turbulence. This system is
coupled to transport equations of plasma particles, momentum and energy and it is
closed employing two different approaches, based on experimental data on operating
tokamaks. Other closures may be taken into account than an empirical one, such
as integrating transport and first-principle fluid codes to allow for more accurate
estimations of transport coefficients. In this work we focus on the former solution.

Heuristic approach means that while the structure of transport equations 2.32
is mostly preserved, some terms are adapted to model specific physical mechanism
typical of magnetically confined plasmas and observed experimentally, like the
enhanced cross-field transport at the low-field side. This process is mostly driven by
the interchange instability, as mentioned in chapter 1. Such an adaptation has been
inspired by the work of [55] in the framework of prey-predator models for plasma
turbulence, already debated in chapter 3. In particular, we adapt the following terms:

• The drive. The source term, which in equation 2.32a is given by RSij ∂ui∂xi
=

µt〈Sij〉2, is turned into γκκ, which is dimensionally consistent. γκ is the growth
rate of the instability driving the turbulence.

• The sink term. In the κ-ε model for neutral fluids, ε represents the
dissipation rate of turbulent kinetic energy towards small, dissipative scales.
Its meaning in the framework of magnetically confined plasmas cannot be hold,
since the dissipation of turbulent energy is way more puzzling. Many kinds
of instabilities may inject energy to different scales and several dissipation
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mechanisms may take place there at the same time (see for instance [29]).
Therefore, ε does not keep its original meaning in the framework of this thesis:
it should be rather interpreted like a general predator of turbulent kinetic
energy κ.

4.1.2 Strategy
The model has been designed by steps concerning three different branches: (i)
the equations; (ii) the closure; (iii) the experimental data set, as schematically
shown in 4.1. In the first step, the model consists in one equation; it is closed
by an improved automatic fitting procedure implemented in SolEdge2D-EIRENE,
which fits the numerical results with diagnostics data from a single experiment;
this diagnostics refer to the TCV tokamak.

In the second step, the one-equation model holds valid, but the closure involves
the exploitation of an empirical scaling law. Three discharges from TCV are
exploited as benchmark.

Finally, in the third step, two equations are solved for the model, using the same
empirical scaling law as in the previous step, but the match with experimental
data concerns the WEST machine.

Single XP

Scaling 

law

1st step (sec. 4.2)

2nd step (sec. 4.3)

3rd step (sec. 4.4)

Figure 4.1: Strategy of the modeling. Choice of the model (one or two equations, blue
boxes), the experimental test-cases to use as benchmarks for the numerical results (pink
boxes) and the closure (single experiment or scaling law, green boxes).

4.2 First step: one-equation model and tuning
with TCV data

The first step consists in implementing a one-equation model for turbulent kinetic
energy κ in addition to the governing equations of SolEdge2D. Then, the diffusion
of plasma density and temperature in the cross-field direction is set proportional
to κ at steady-state, in the spirit of the quasi-linear approach. A feedback-loop
procedure ensures that free parameters are optimized by tuning numerical results
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with one experimental test-case given by a TCV discharge. These results, displayed
at the end of the section, have been published in [62].

4.2.1 Equation and dimensional analysis
The time evolution of κ is described by 4.1, which is a semi-empiric transport
equation obtained with an heuristic procedure. Basically, κ is advected in space by
both diffusion and convection like moments in the Braginskii model, while source
and sink are algebraically designed. Moreover, it is semi-empirical because the
dissipation of turbulent energy relies on free parameters, which have to be closed
experimentally. Also, the κ equation undergoes the same averaging as density,
momentum and energy in the Braginskii approach. Here the turbulent energy
is defined as: κ = 1

2〈ũ
2〉 m2/s2.

∂tκ+∇‖(κu‖) +∇⊥ · (κu⊥)−∇⊥ · (Dκ∇κ) = γκκ−∆ωκ2 (4.1)

For the sake of simplicity, hereafter the bold notation for vectors will be omitted.

On the left-hand side we recognize the material derivative of κ, with separate
components for contributions parallel and perpendicular to magnetic field lines.
This latter is linked to mean field drift velocities u⊥, which so far are not addressed
in this work, therefore hereafter ∇⊥ · (κu⊥) is neglected. Indeed, we suppose that
the transport of turbulent energy is purely diffusive, governed by diffusivity Dκ.
The first term on the right-hand side is the growth rate γκ of leading instabilities.
Here we assume γκ = γI + βT 2

e , as expressed in equation 4.2. γI is the linear
interchange instability growth rate, while βT 2

e , which is introduced heuristically,
represents a turbulent background in hot plasma, where β is a free parameter
whose dimension is eV −2s−1.

γκ = γ0
cs
R

√
R2∇pi∇BT

piBT

+ βT 2
e (4.2)

where we recall that R is the system size (tokamak major radius), cs the sound
speed in plasma and BT the toroidal magnetic field. We also set γ0 = 1. The last
term on the right-hand side, ∆ωκ2, is defined as the self-saturation of turbulence:
it keeps the system stable, by avoiding that κ grows indefinitely. The order of the
exponent is the minimum to ensure such a feature. It is the second free parameter
of the model and its dimensions are m−2s.

To determine the leading terms in equation 4.1, dimensional analysis is manda-
tory. Hereafter, the subscript 0 denotes the reference dimensional quantities,
while the index ∗ describes non-dimensional variables, such that for a generic
f variable, f ∗ = f/f0.

Let us consider the normalized equation divided by κ0/t0, where t0 = R/c0 is the
reference time and c0 =

√
T0/mi is the average thermal velocity of charged particles
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in the parallel channel, T0 being the reference temperature. Such a choice for the
reference time addresses to relatively slow evolution scales (especially compared to
the inverse of gyrokinetic frequency or even the drift wave time τd ∼ cs/a, where
cs is the thermal velocity and a is the tokamak minor radius). Therefore, it suits
the modeling of turbulent cross-field fluxes at steady-state.

∂t∗κ
∗ +

(
c0t0
L‖

)
∇∗‖(κ∗u∗‖) =

(
D0t0
l0,⊥2

)
∇∗⊥ · (D∗κ∇∗⊥κ)

+ γ∗κκ
∗ −∆ω∗κ2∗ (4.3)

On the right-hand side, D0 and l0,⊥2 are the reference diffusivity and perpendicular
length. Moreover, basing on the relation between parallel and perpendicular channel,
the following dimensional analysis can be outlined:

D0t0
l0,⊥2

∼ c0t0
L‖

= 1
2πq (4.4)

where we used for the connection length: L‖ = 2πqR, with q as safety factor.
Therefore, the contributions related to the advection are at lower order of magnitude
than the other terms in the equation.

As mentioned at the beginning of this section, 4.1 is a semi-empiric transport
equation modeled exploiting heuristic arguments. In principle, one can approach
the analytical derivation of a κ-like equation with the same rationale as in the
derivation of the standard κ equation in Computational Fluid Dynamics, namely
manipulating the fluid force balance equation. In the appendix B, however, which
has to be intended as an exercise, the procedure is very general, with no in-depth
expansion of either the pressure tensor, the external force (which is the electro-
magnetic field) and the collisional term.

4.2.2 Free parameters and model’s closure
β and ∆ω are the free parameters of the model, the former referring to the modeling
of a turbulent background in the core plasma, the latter relating to the self-
saturation of turbulent kinetic energy. In order to close the model, we tune them
with diagnostic data available for a single experimental test case. First, an expression
for the transport coefficient is provided proportional to κτc, with τc +R/cs, in the
spirit of the quasi-linear approach. Dn is the particle diffusivity, exploited hereafter
as a reference transport coefficient. Indeed, as usually done in transport codes, we
assume that electron and ion thermal conductivities are proportional to Dn, thus
in the following, conclusions are also valid for χe and χi.

κ is the non-trivial, steady-state solution of equation 4.1. It is easy to demon-
strate that, when neglecting the higher-order terms (the advection contributions),
κ = γκ/∆ω, therefore:

Dn = tcκ = tc
γκ
∆ω = R

cs

(
cs/R

∆ω

√
R2∇pi∇Bφ

piBφ

+ β

∆ωT
2
e

)
(4.5)
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Equation 4.5 allows to determine the spatial steady-state distribution of the
cross-field transport in the poloidal plane.

β and ∆ω are closed iteratively, by tuning the radial profile provided by 4.5
to the one inferred by experimental data using the automatic fitting procedure
discussed in chapter 1. Such a method is well outlined in the scheme of figure 4.2.

Model 
D⊥,𝜅  

Figure 4.2: Scheme of the one-equation model implemented in the feedback-loop-
procedure. The green loop is the feedback loop analyzed in chapter 1, while the red one
is the new loop integrating the one-equation model.

Experimental data on density and temperature (nexp, Te,exp and Ti,exp) are
diagnosed at the outer midplane and each set of data is fitted by SolEdge2D (see
figure 4.5 concerning density measurements). Here, we enforce the radial profile
of the diffusivity (D⊥,κ) at the outer midplane to match the radial distribution
inferred from the fitting procedure (D1D

⊥,fb), generating automatically a constraint
for β and ∆ω. Hereafter, we refer to D1D

⊥,fb as the feedback diffusivity.

With such constraints on radial profiles of plasma quantities at the outer
midplane, the code numerically solves their distributions in poloidal plane (n2D,
T 2D
e and T 2D

i ), which in turn are coupled to the κ model, resulting in a first-attempt
transport coefficient D⊥,κ. The expression first-attempt refers to the fact that the
diffusivity is not optimized at this stage of the loop, and so are the free parameters.

The radial profile of D⊥,κ is compared to D1D
⊥,fb in figure 4.5, where α0 = ∆ω−1

and ζ = β/∆ω are more convenient definitions for the free parameters. The error
Err(α0, ζ) = ‖D⊥,κ −D1D

⊥,fb‖ is a function of α0 and ζ; therefore the minimization
of Err(α0, ζ) leads to explicit values of the free parameters and finally to close the
model. The contour plot in 4.3 shows the result of this optimization: the lighter
the color of contour regions, the smaller the error.

Optimized α0 and ζ re-enter the model which in turn defines the full two-
dimensional distribution of the cross-field transport. The advantage of such an
approach compared to the feedback-loop procedure seen in chapter 1 consists in
the gain of the poloidal dependence of the diffusivity calculated by the model,
provided by the modeling of the interchange instability.
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𝐸𝑟𝑟 𝛼0, 𝜁 = 𝐷⊥,𝜅 
1𝐷 − 𝐷⊥,𝑓𝑏

1𝐷  

Figure 4.3: The optimization of the error Err(α0, ζ) allows to find uniquely the values
of the free parameters α0 and ζ and close the model.

4.2.3 Experimental setting
The experimental data set available for the fitting of the model is the L-mode,
lower-single-null, ohmic, low-density, attached plasma discharge #51333 in TCV
(Tokamak à configuration Variable). The sketch of the magnetic separatrix for
this discharge is displayed in blue in figure 4.4. The main plasma parameters for
this test-case are presented in Tab.4.1: Btor is the toroidal magnetic field, Ipol
is the poloidal electric current, POhm is the ohmic power injected in the plasma
and nsep is the density at the separatrix.

Table 4.1: Main plasma parameters for TCV shot 51333.

Btor[T ] Ipol[kA] POhm[MW ] ne,sep[m−3]
1.4 210 0.21 6.8·1018

At this stage of the modeling, TCV has been chosen as reference machine since
in general it benefits from a wide set of edge diagnostic (as shown in figure 4.4):
high resolution Thomson scattering (HRTS) and reciprocating Langmuir probes
(RCP) plunging at the outer midplane, well-embedded Langmuir probes (LP) to
monitor the divertor and the infrared thermography system (IR) (see [63], [64] and
[65]).

4.2.4 Results
The model is implemented in the 2D transport code SolEdge2D-EIRENE assuming
pure deuterium plasma, neglecting the mean field velocity drifts. Moreover, in the
code, the contributions due to the advection of κ appearing in equation 4.1 are
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𝑍
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Figure 4.4: Cross section sketch of the TCV vacuum vessel with main diagnostics. Also,
the magnetic separatrix for the three outer-divertor leg configurations presented in section
4.3: the long leg, in orange, the medium leg, in blue and the short leg, in green.

included and they contribute in smoothening the solution.

Dn(𝜅) 

Figure 4.5: Numerical profile of plasma diffusivity at the outer midplane (continuous
blue line) compared to the feedback-loop diffusivity (continuous black line).

In figure 4.5, radial profiles of the model diffusivity (blue line) and the feedback
diffusivity (black line) are displayed. Ion and electron thermal conductivities are
expected to be proportional to D1D

⊥,κ by construction. Despite the optimization
procedure, a finite relative error persists between the two profiles. This relative
error is provided by the fact that the interchange instability growth rate in equation
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4.5 enforces a precise profile of the radial diffusivity, while ∆ω only adjusts its
amplitude. Despite the error, the advantage of such modeling is to provide a
first-attempt profile of the transport coefficient calculated self-consistently.

The profiles of density and electron temperature at the outer midplane are
compared to the fit of the HRTS data (see figure 4.6), resulting in a decent agreement
of the electron temperature at the separatrix. Although the free parameters of the
model are closed to match as much as possible the experimental data at the outer
midplane, the model profiles of plasma density and temperature do not overlap the
experimental fits, due to the relative error between diffusivity profiles mentioned
for figure 4.5.
Figure 4.7 shows the steady-state distribution of the particle diffusivity in the

* 

SE2D n 
Fit 
HRTS 

(a)

* 

SE2D Te 
Fit Te 
HRTS 

SE2D Ti 

(b)

Figure 4.6: Radial profiles of density and temperature at the outer midplane, compared to
HRTS data. In the density plot (a), the black continuous line denotes the fit of experimental
acquisitions. Note that in (b) the agreement between numerical and fitted profiles of the
electron temperature is nice in the neighborhood of the separatrix (R = Rsep).

poloidal plane. The model captures the poloidal asymmetry of the turbulent
transport due to the interchange instability (ballooning). Similar qualitative
results were obtained in [60], where, also, the cross-field transport is driven by the
interchange instability on the LFS for a limited plasma (MISTRAL test-case, see
[24]).

Finally, the profiles of density, electron temperature, saturation current and
perpendicular heat flux at the outer divertor are displayed in figure 4.8 as a function
of the coordinate s along the wall. sSP denotes the position of the separatrix. The
comparison with the Langmuir probes suggests a general overestimation of the peak
value of a factor variable from 2 to 3, except for the electron temperature which
shows a nice agreement with the peak value of the experimental temperature.
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Figure 4.7: Distribution of self-consistently calculated plasma diffusivity in the poloidal
plane in TCV geometry. The high value of diffusivity in the common flux region is
thought to be due to numerical diffusion. In the far SOL, where the gradient of pressure
is expected to be low, the diffusivity is large because here the effect of the model closure
is dominant.

4.3 Second step: one-equation model, tuning with
experimental scaling law

The model exploited above is interesting because it allows to calculate self-consistently
the poloidal distribution of the cross-field transport. However, its free parameters
still depend on a single, experimental test-case. When changing machine, or even
discharge, they cannot be used anymore.

To enhance the predictive capabilities of the model and allow for the calculation
of plasma mean quantities in the poloidal plane when changing geometry, magnetic
configuration or input conditions, we introduce a new way to close the model [66].
In this second step, the one-equation model is closed by the experimental scaling
law proposed in [67] for the SOL width.

4.3.1 Equation
We recall the equation for κ seen in 4.1:

∂tκ+∇‖(κu‖)−∇⊥ · (Dκ∇κ) = γκκ−∆ωκ2 (4.6)

Similarly to equation 4.1, in equation 4.6 the perpendicular advection due to drift
velocities is neglected (∇⊥ · (κu⊥) = 0).
For simplicity, in the growth rate coefficient γκ we equal to zero the heuristic
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Figure 4.8: Outer target profiles of density, electron temperature, saturation current
and heat flux perpendicular to the divertor.

term accounting for the background turbulence of the core plasma βT 2
e = 0,

thus obtaining:

γκ = cs
R

√
R2∇pi∇Bϕ

piBϕ

(4.7)

The dimensional analysis holds as in equation 4.3.

4.3.2 Free parameters and model’s closure
∆ω is the only free parameter of the model. To evaluate it, we first consider
the non-trivial, steady-state solution of equation 4.6, provided that the transport
contributions are higher-order terms:

κ = γκ/∆ω (4.8)
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Then, in the framework of dimensional analysis, we exploit the relation describing
the equilibrium of the plasma pressure (1.35) discussed in chapter 1:

2γeλ2
SOL

χe
'
L‖
cs

(4.9)

where γe is the electron sheath transmission coefficient while χe is the electron ther-
mal conductivity. Hence, provided (4.8), the SOL width λSOL can be estimated as:

λ2
SOL '

L‖
γecs

χe = L‖R

2γec2
s

(
γκ
∆ω

)
(4.10)

where the inverse relation returns the self-saturation coefficient ∆ω:

∆ω = L‖R

2γe(λscalingSOL )2
γκ

1
c2
s

(4.11)

Here the closure comes into play by assuming for λSOL the scaling law proposed in
[67] and tested experimentally with nice good agreement in several machines ([15]
and [14]).

This scaling law relies on a heuristic drift-based model for high-confinement and
low-gas-puff plasma regime, stating that in the SOL vertical ∇B and curvature
drifts are balanced against near-sonic parallel flows to the divertor plates, resulting
in a SOL width whose expression is:

λSOL ∼ 2qρL,i (4.12)

q is the safety factor while ρL,i is the ion Larmor radius. It is further assumed
that the turbulent perpendicular electron thermal diffusivity is the main source
of heat flux across the separatrix, flooding the SOL width with heat from the
core plasma. Therefore, while the neoclassical interpretation is provided for the
cross-field particle channel, turbulent arguments are used to describe the energy one
in the SOL. Comparisons of the expected heat e-folding length λq with scaling laws
inferred from measurements in the JET and ASDEX tokamaks for both low and
high-confinement regimes are shown to be in satisfactory agreement, as reported in
[14].

In this latter paper, λq measured in L-mode discharges is found to be 2 − 3
times larger than predicted by the scaling law in H-mode. We use such an empirical
relation to infer the following expression to be exploited in (4.11):

λSOL ∼ 4qρL,i (4.13)

Indeed, in this stage of the modeling, we only refer to L-mode discharges. Recalling
q = aBT/RBP and ρL,i = miv⊥,i/qiB, equation 4.11 becomes:

∆ω = πA2

16γeqcylρ2
∗
γκ

1
c2
s

(4.14)
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with A = R/a the aspect ratio and ρ∗ = ρ/a the normalized gyro-radius.
Equation 4.14 shows that ∆ω is a non-trivial function of the magnetic field

(through the term γκ
qcylρ∗

). For given tokamak and discharge conditions, the scan
of the model on the outer divertor leg Ldiv may represent a first step to test
such closure and the model itself.

4.3.3 Experimental and numerical setting
For the experimental match, we chose a set of lower single null (LSN), Ohmic,
L-mode discharges where the outer divertor leg length Ldiv is varied while main
plasma parameters are nearly unchanged. This experiment is widely described
and investigated in [65].

The three magnetic configurations consist in: the short-leg (Ldiv = 21 cm) shot
#51262, the medium-leg (Ldiv = 36 cm) shot #51333, and the long-leg (Ldiv = 64
cm) shot #51325. The following parameters are kept constant: major radius R = 89
cm, minor radius a = 22 cm, elongation k = 1.4, plasma current Ip = 210 kA,
poloidal magnetic field at the outer midplane Bp,omp = 0.18 T. The latter are used
as input parameters in SolEdge2D-EIRENE.

As boundary conditions in the code, the gas-puff is adjusted to obtain the same
density at the separatrix for the three cases, while for the input power crossing the
separatrix and entering the SOL Pin, we set a reasonable value of 100kW .

Table 4.2: Boundary conditions for the three simulations

nseo,OMP [m−3] Pin[kW ]
0.7·1019 100

4.3.4 Results
In this section, the numerical results from SolEdge2D-EIRENE (published in [68])
are displayed and discussed.

Outer mid-plane distributions of plasma are first investigated when varying Ldiv.
Since this procedure does not change the main plasma (input power, plasma current,
gas puff, poloidal magnetic field BP are kept constant), density and temperature
profiles are not expected to change meaningfully, in fact HRTS data related to the
three configurations overlap. This is indeed retrieved in SolEdge2D outputs, see
Figure 4.9. The overall trend is recovered thanks to the model and found to be in
a very good agreement with experimental data from the HRTS diagnostics in the
SOL, for both density and electron temperature, and also in the edge region for Te.
Two-dimensional maps in figure 4.10 show the self-consistently calculated distribu-
tion of the cross-field particle diffusivity Dn on the poloidal plane, at steady-state.

In all the three magnetic configurations, the ballooning feature is observed. The
ballooning is responsible for the enhanced cross-field transport at the outer mid-plane
downwards close to the X-point, due to the "bad" curvature of the LFS (∇p·∇B > 0).
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𝑅 − 𝑅𝑠𝑒𝑝 [𝑚] 

Density [𝑚−3] 

𝑅 − 𝑅𝑠𝑒𝑝 [𝑚] 

𝑇𝑒  [𝑒𝑉] 

  ∗   HRTS short 

  ∗   HRTS medium 

  ∗   HRTS long 

Figure 4.9: Radial profiles of plasma density (left panel) and electron temperature
(right panel) at the outer midplane, outlined by continuous lines, for the three magnetic
configurations. These numerical results, obtained with SolEdge2D-EIRENE, are compared
to high-resolution Thomson scattering data (sketched in the small cartoon of TCV vessel).

Simulations show that the model, which cannot count on the calculation of
fluctuations, is also able to capture the fact that this enhanced transport broadens up
to the common flux region (where the SOL plasma is constrained by the separatrix
below the X-point), but not in the private flux region. This picture is consistent with
TOKAM3X isothermal simulations in TCV-like geometry [65] and Compass-like
geometry [69], when neutrals are not modeled. This picture is consistent also with
experimental observations in the MAST tokamak [70].
We verify whether the distribution of the cross-field particle flux Γn,⊥ = −Dn∇n is
also concerned by the interesting features seen for the particle diffusivity, in figure
4.11: Qualitatively, both the ballooning at the LFS and the enhanced cross-filed
transport in the common flux region are conserved. In particular, when compared
to Γn,⊥ from TOKAM3X turbulent simulations (in figure 4.12), the distribution
of particle flux estimated by our model denotes a sharper difference in transport
between LFS and HFS, where turbulent fluxes are almost absent, probably due to
the lack in the modeling of instability mechanisms other than interchange.

Finally, the heat flux experimental profiles measured for each discharge by the
IR system are compared to numerical profiles in figure 4.13, where a nice overlap
in both absolute value and shape of the profiles can be observed. In the SOL
region, the slope of heat flux decay is overestimated for the short and medium
configurations, while in the long one the estimation of the SOL width is very good.

We use the standard parametrization described by the Eich’s formula ([71]) to
estimate λq as the best approximation for λSOL. We find that the value of λq for
each discharge is comprised in the experimental range of [5− 10]mm (see [65]): The
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#51262 
#51333 

#51325 

𝑅 [𝑐𝑚] 𝑅 [𝑐𝑚] 𝑅 [𝑐𝑚] 

𝑍
 [

𝑐𝑚
] 

𝐷𝑛 [𝑚2/𝑠] 𝐷𝑛 [𝑚2/𝑠] 𝐷𝑛 [𝑚2/𝑠] 

Figure 4.10: Particle diffusivity Dn self-consistently calculated on the poloidal plane
for the three magnetic configurations. Note the ballooning and the existence of enhanced
transport in the common flux region.

Figure 4.11: Particle flux Γn,⊥ = −Dn∇n self-consistently calculated on the poloidal
plane by SolEdge2D-EIRENE for the three magnetic configurations.

trend of λq against the outer divertor leg length is shown in figure 4.14, left panel.
The linear trend observed in the experiment and reported in [65] is not retrieved
for the three configurations. This result may be expected since these discharges are



4. A new modeling for cross-field turbulent transport of diverted plasma 67

Figure 4.12: Estimation of the 2D map of Γn,⊥ from TOKAM3X turbulent simulations
(i.e. with fluctuating components).

Table 4.3: Value of the λSOL at the divertor, remapped at the outer midplane, estimated
numerically.

51262 51333 51325
λSOL = 7.8mm λSOL = 10.3mm λSOL = 9.1mm

not following the scaling law for the λSOL used to close the model.

4.4 Third step: two-equation model, tuning with
experimental scaling law

The third step consists in coupling the transport equations of κ and ε, which is a
quantity related to the dissipation of turbulent energy. The advantage is adding
in the description further information on turbulence thanks to a second reference
scale provided by steady-state ε (the first one is related to κ). We also hold the
same closure on the scaling law of λSOL as in the second step modeling.
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𝑅 − 𝑅𝑠𝑒𝑝 [𝑚] 𝑅 − 𝑅𝑠𝑒𝑝 [𝑚] 𝑅 − 𝑅𝑠𝑒𝑝 [𝑚] 

𝑞⊥ [𝑊𝑚−2]  𝑞⊥ [𝑊𝑚−2]  𝑞⊥ [𝑊𝑚−2]  

Figure 4.13: Perpendicular heat flux remapped at the outer midplane for the three
magnetic configurations and compared to infrared data. Note that both the absolute
magnitude and the scaling are in really good agreement with experimental measurements.

𝜿 − 𝜺 𝑬𝑿𝑷(𝑳𝑷)

SHORT

MEDIUM

LONG

Model Exp (LP)

Figure 4.14: Model scaling (left panel) and experimental scaling (right panel) of λq
against the outer divertor leg length Ldiv. In the right panel, the empty squares stand for
target infrared data and the green diamond stands for the outer midplane reciprocating
probe data (see [65] for further details).

4.4.1 Equations and dimensional analysis
The equations describing the evolution of κ and ε are displayed below:

∂tκ+∇‖(κu‖)−∇⊥ · (Dκ∇κ) = γκκ−∆ωκ2 − ε (4.15a)

∂tε+∇‖ · (εu‖)−∇⊥ · (Dε∇ε) = γεε−
P

κ3/2 ε
2 (4.15b)

where the equation for κ is the same as 4.6 except for the coupling term ε.
In analogy with equation 4.15a, in 4.15b the left-hand side contains the material
derivative and the diffusive term governed by diffusivity Dε. On the right hand
side, the source is driven by the growth rate γε, while the last contribution relates
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to an intricate dissipation term which is a function of κ, ε, and a new parameter, P .
As working assumption, the structure of this latter is designed such that at steady
state (and net of transport contributions ∇‖ · (εu‖) and ∇⊥ · (Dε∇ε)) 4.15b reads:

ε ∝ κ3/2 (4.16)

In the theory of neutral fluids this scaling relation occurs in the energy inertial
range of inverse energy cascade when two-dimensional turbulence is addressed (see
chapter 2). In such a range, energy is transferred from the injection scale to scales
with lower wavenumber, corresponding to larger characteristic lengths. Also in
magnetized plasmas, large-scale flows called zonal flows, which are responsible
for the shear of turbulent fluxes, can be excited or damped due to the non-linear
coupling of smaller scales (see [56]). For this similarity between inverse energy
cascade in neutral and plasma turbulence, 4.16 is enchosen as constraint for the
heuristic design of equation 4.15b.

4.4.2 Free parameters and model’s closure
At this stage of the modeling, ∆ω is only assumed to assure that κ does not
diverge to infinity when the dissipation rate ε goes to zero. To determine ∆ω, we
consider equation 4.15a, net of transport terms and at steady-state, when ε = 0
and therefore κ reaches a prescribed maximum value κmax:

γκ −∆ωκmax = 0 (4.17)

Thus one readily obtains: ∆ω = γκ/κmax.
P (m/s) is a dimensional free parameter governing the saturation of turbulence and
that is closed by the scaling law for λSOL from [67] used in the previous section.
To determine its expression, we start recalling the dimensional analysis for the
equilibrium of the electron pressure (equation 4.18):

2γeλ2
SOL

χe
'
L‖
cs

(4.18)

and therefore:

λSOL =
√
L‖χe
2γecs

(4.19)

A new functional dependence of the transport coefficient is now introduced. In
analogy with the κ-ε in neutral fluid, we set:

χe = Cµ
κ2

ε
(4.20)

where Cµ is prescribed. To determine κ and ε, we solve the system described in 4.15
at the equilibrium, net of the contributions provided by the transport of both κ and ε:

γκκ− ε = 0 (4.21)

γεε−
P

κ
3
2
ε2 = 0 (4.22)
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System 4.22 exhibits two solutions: the trivial one (0; 0) and
([
P γκ
γε

]2
; γ3

κ

[
P
γε

]2)
.

The non-trivial solution is plugged in 4.20 which reads:

χe = Cµ
P

γε

2
γκ (4.23)

The inverse relation provides:

P = λSOLγε

√
2γecs
CµγκL‖

(4.24)

Finally, we exploit the scaling law given by 4.13 for L-mode plasma: λSOL ∼ 4qρL,i
and make each term explicit against plasma and machine parameters, obtaining:

P = γε
γκ
csρ
∗

√√√√γeqcyl
Cµπ

(
γκR

cs

)
αS
A

(4.25)

4.4.3 Experimental and numerical setting
In the framework of a multi-machine application, the full κ-ε model is implemented
in the SolEdge2D-EIRENE code assuming as reference test-case an early lower-
single-null discharge from WEST tokamak during its second experimental campaign.
For this latter, the diagnostics available are: interfero-polarimetry, Reciprocating
Langmuir Probes (RCP) at the outer midplane, and Langmuir probes (LP) at the
outer divertor.
A WEST discharge has been chosen as a reference experiment to validate the
new modeling of the cross-field transport against a different machine from TCV
(multi-machine approach). However, for the sake of completeness, the full κ-ε should
also be tested and validated against TCV data exploited in the previous sections.

In table 4.4 the operation parameters are reported.

Table 4.4: Main plasma parameters for WEST shot 52698.

Ip[kA] n̄e[m−2] LH1/LH2[MW ]
700 1.8·1019 1.6/0.5

The simulation is run assuming pure deuterium plasma, no drifts and the
boundary conditions of table 4.5. nBC is the density of plasma at the entrance of

Table 4.5: Boundary conditions for density and input power.

nBC [m−3] Pin[kW ]
1.9·1019 400

the SOL, Pin is the rate of energy which flows from the main plasma crossing
the separatrix.
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4.4.4 Results
In this section very preliminary results of the κ-ε model implemented in the
SolEdge2D-EIRENE are displayed.

At the outer midplane, the numerical profile of the density in the SOL region
falls within the experimental data range defined by the outputs of the interfero-
polarimetry and the reciprocating Langmuir probes (RLP) (see figure 4.15), with a
certain degree of incertitude. Thus only a qualitative comparison can be provided.
The agreement is good at the separatrix, since the density profile is constrained
only at the core boundary.

𝑅 − 𝑅𝑠𝑒𝑝[𝑚]

𝑛 [𝑚−3]

Model

Interf.-pol.

RCP

Figure 4.15: Radial profile of density at the outer midplane (blue curve), compared
to two sets of experimental data: the interfero-polarimentry (balck crosses) and the
reciprocating Langmuir probes (black circles).

The poloidal distribution of the particle diffusion coefficient is represented in
4.16. In this two-equation version of the modeling, the ballooning at the LFS is
retrieved and appears as a sharp region of enhanced cross-field transport, which is
radially confined in the edge region.The X-point is affected by enhanced cross-field
transport as well, which in future analysis should be further investigated.

Electron density, parallel density current and parallel heat flux at the outer
divertor and remapped at the outer midplane are displayed in figure 4.17 as a function
of the normalized magnetic flux. They are compared to Langmuir probes (LP)
denoting a nice agreement. Finally, figure 4.18 shows the heat flux perpendicular
to the outer divertor plate and remapped at the outer midplane. The estimation
of the heat flux width, taken as best approximation for λSOL, provides λq ' 9mm.
This is in quantitative agreement with measures of heat flux in the main plasma
obtained with reciprocating Langmuir probes across multiple shots, shown in the
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𝑍
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𝑚
]

𝐷𝑛 [𝑚
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Figure 4.16: Poloidal distribution of the particle diffusivity self-consistently calculated
by the κ-ε model coupled to SolEdge2D-EIRENE.

Figure 4.17: Electron density n, parallel density current jsat,‖ and parallel heat flux
(q‖) at the outer divertor and remapped at the outer midplane (blue lines) compared to
experimental measurements from Langmuir Probes (red dots).

right figure of 4.18 (courtesy of [72]). Further analysis is required for this latter
modeling step of the κ-ε-like approach to turbulent fluxes in SolEdge2D-EIRENE.
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𝑞⊥ [𝑀𝑊/𝑚2] 

𝑅 − 𝑅𝑠𝑒𝑝[𝑚] 

𝑞∥ [𝑀𝑊/𝑚2] 

𝝀𝒒 ∼ 𝟗 𝒎𝒎 

𝑍 [𝑚] 

Figure 4.18: Heat flux perpendicular to the outer divertor plate and remapped at the
outer midplane (left panel). In the right, measures of heat flux in the main plasma
obtained with reciprocating Langmuir probes across multiple shots (picture from [72]).
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A new semi-empirical modeling of the cross-field fluxes in diverted plasma has
been outlined in chapter 4 and it has been showd that the model, implemented
in SolEdge2D-EIRENE, increases the predictive capabilities of the code, since
numerical results favorably compare to experimental data.

However, a parametric analysis should be implemented, consisting in testing
the sensitivity of the model against plasma and machine parameters, to compare
numerical results against empirical scaling law and disclose the range of validity
of the model itself.

This kind of analysis is demanding when exploiting two-dimensional transport
codes, due to the physics (a detailed description of the charged particle motion
along the magnetic field lines or the plasma-wall interactions), and the numerics
(two-dimensional grid). Therefore, fast simulations based on one-dimensional
reduced models may be appealing.

In this chapter, we project the new semi-empirical model presented in chapter 4
on the radial direction of the poloidal plane. Such a simplification aims to build a
sort of toy-model, where the main physical mechanisms driving plasma quantities
are preserved, in the same spirit of prey-predator models introduced in chapter
3. The equations and the numerical setting are outlined. Numerical scaling laws
for both the width of the SOL and the energy confinement time are compared
to the experimental ones provided by [14] and [73] respectively and commented.
Finally, some conclusive perspectives are outlined.

5.1 System of equations
A system of partial differential equations describing the evolution of plasma density,
energy, vorticity, κ, ε and neutrals density in the core up to the scrape-off layer
is integrated using the integral operator:

1
L‖

∫ L‖

0
dl‖ (5.1)

The resulting system reads:

∂tn+ 2χmncs
L‖

−∇r(Dn∇rn) = Sn (5.2a)

∂tEα + 2χmnTαcs
L‖

−∇r(DnTα∇rn+ χαn∇rTα) = SE (5.2b)

∂tΩ−
2χmncs
L‖

(
φ

Te
− Λ

)
−∇r(ν∇rΩ) = 0 (5.2c)

∂tκ = γκκ− ζκ2 − ε+∇r(Dκ∇rκ) (5.2d)

∂tε = γεε−
P

κ3/2 ε
2 +∇r(Dε∇rε) (5.2e)

∂tn0 = Dn0∇2
rn0 + In0 − Sn (5.2f)

where n is the density, Eα = 3
2nTα is the energy (per unit volume), where α = e, i

for electrons and ions respectively), Ω is the vorticity, κ and ε the turbulent energy
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and its rate of dissipation, n0 the neutral density. All of them are functions of
the radial coordinate r and time t.

Equations 5.2a and 5.2c are integrated from 1.24a, 1.24c and 1.24d in chapter 1.
Equations 5.2e and 5.2f for κ and ε are integrated from 4.1 and 4.15b in chapter
4. Finally, a vorticity equation and a diffusive-like equation for neutrals have been
added. The former is derived by manipulating the force balance in the radial
direction (see appendix A), Ω being defined as:

Ω ≡ mi∇r

(
qen∇rφ

B2 + ∇rpi
B2

)
(5.3)

where φ is the electrostatic potential, qe is the electron charge and pi is the ion
pressure. In most results presented in this chapter, equation 5.2c is not coupled
to the others, except in last section (5.5).

Equation 5.2f is a simple model to take into account the particle source due to
neutrals ionization, in particular the rearrangement of the ionization front depending
to the plasma temperature: Sn = 〈σv〉iznn0, where 〈σv〉iz is the ionization rate
coefficient measured in m3s−1, and Ei is the ionization potential for the hydrogen,
measured in eV . An expression for 〈σv〉iz can be found in [22]:

〈σv〉iz = 10−5 (Te/Ei)0.5

E1.5
i (6 + Te/Ei)

exp(−Ei/Te) (5.4)

As the input power, and so the plasma temperature, increases, the peak of 〈σv〉iz
moves outward namely towards the wall. In figure 5.1, the steady source rate Sn is
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(a) Radial profile of the ioniza-
tion rate coefficient: scan vs
input power.
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(b) Radial profile of electron tem-
perature: scan vs input power.

plotted against the radial distance and compared to In0, the rate of injected neutrals
measured in [m−3s−1]. The latter is modeled as a Heaviside function of amplitude
|(In0)| = (n∗− n(rsep)) · δt/FBτ , located at the separatrix rsep. n∗ = 1019m−3 is set
as input. n(rsep) is the value of plasma density at the separatrix, δt is the time step
characterizing the numerical simulation and finally FBτ is the gain of the feed-back
loop on the amplitude |(In0)|. Basically, the amplitude of the injected neutrals
In0 varies according to a feed-back loop designed on the plasma density at the
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Figure 5.1: Radial profiles of plasma source Sn (in magenta) and neutral source In0 (in
grey) at steady state, for a simulation run according to the reference parameters of 5.1
and input power Pin = 1MW

.

separatrix: when this latter diverge from the prescribed value, n∗, this mechanism
reacts to correct the error and increases or decreases the reference value I0.

As a result, at steady state neutrals mostly concentrate near the wall, where
the non-null sub-domain of the Heaviside function is located, and diffuse inward
with the transport coefficient Dn0, as shown in figure 5.2.
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Figure 5.2: Radial profiles of neutrals density for given plasma parameters.
.

Both the SOL region and the core are simulated by this model, which represents a
distinctive feature compared to other predator-prey models designed for magnetized
plasma. The distinction between these two is hold by the mask function χm in the
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parallel contributions of equations 5.2a, 5.2c and 5.2c, which describe the Bohm
condition for the respective variables near the wall. χm = 1 in the SOL while
χm = 0 in the core.

SE is the external heat source rate, localized in the core region and expressed
by the following relation:

SE = Pin exp
(
− 1

1− (r/a)2

)
(5.5)

SE is plotted against the radial coordinate in figure 5.3.
Transport coefficients Dn and χα are modeled as in chapter 4 (section 4.4), namely

Figure 5.3: Plot of the energy source SE against the radial coordinate for arbitrary
amplitude Pin. Note that it is localized in the core.

as eddy-viscosity-like diffusivities: Dn ∝ χα ∝ κ2

ε

κ2/ε with g = Dn, χα. Dn0 in equation 5.2f is fixed and set as input.
Finally, we will refer to the cylindrical system of coordinates, as shown in the

cartoon of figure 5.4, thus the divergence operator becomes ∇ · F = 1
r
∂r(rf)

with F = f êr.

5.2 The numerical setting
The system described in equation 5.2 is solved numerically after discretization in
space and time according to the finite volume method and the backwards Eulerian
method respectively. The time step is assumed constant, while the mesh is modeled
to be denser in the separatrix region.

On the inner and outer boundaries, we impose zero-gradient for each unknown.
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Figure 5.4: Cartoon of the cylindrical system of coordinates used for 5.2. The red line
represents the spatial domain of the system
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Figure 5.5: Spatial mesh
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A diffusive operator is defined and recalled for each equation to build the
component of the characteristic matrix which depends on transport coefficients.
To test such an operator, we compare the analytical and numerical profiles of
density, in the simple case of constant particle diffusivity (Dn = 1m2/s) isothermal
plasma (Tα = cst but also Sn = cst) and zero-density at the outer boundary
(therefore, the Bohm condition is not addressed here and there is no physical
distinction between core and SOL).

Let us consider the density equation (5.2a) at steady state:

1
r
∂r(Dnr∂r) = −Sn (5.6)

We integrate 5.6 twice obtaining:

n(r) = n(r = 0)− Snr
2

4Dn

(5.7)

We also exploit the zero-density condition at the outer boundary (where r =
rmax):

n(r) = Sn(r2
max − r2)
4Dn

(5.8)

which indeed provides n(rmax = 0). The comparison between numerical and
analytical results is shown in figure 5.6. The quality of this diffusive operator is
proved by estimating the L2 norm for increasing mesh refining. Figure 5.7 shows
that the relative error calculated as L2 norm increases with the square of the average
space step h2

ave, resulting in a reliable diffusion operator.
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Figure 5.6: Radial profiles of the numerical density (continuous red line) vs the analytical
one (blue squares).
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Figure 5.7: L2 norm relative error between numerical and analytical density is in the
order of 2% in the worst case (higher average space step have).
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5.3 Results for a scan against the input power
Equations 5.2a-5.2f are solved for given value of the input power: Pin is increased
within the range [0.1MW − 6MW ] for a WEST-like set of data (see 5.1). The
power released from the core region, Pin, is a key parameter to scan the solutions
of equation 5.2. Indeed, the rate of energy entering the system affects plasma and
neutrals balance by varying the ionization rate coefficient, regulates the equilibrium
of ion and electron energy an therefore the drive of turbulent energy, as illustrated
in figure 5.8. Moreover, Pin has an engineering relevance since it can be related
to the auxiliary power injected to the plasma (net of the radiative power which
so far is not concerned in this model).
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Figure 5.8: One-dimensional profiles for increasing input power.
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Table 5.1: WEST data

R[m] a[m] BT [T ] BP [T ] k ε

2.5 0.5 3.7 0.2 1.5 5

5.4 Comparison with experimental scaling laws

5.4.1 Scan of the SOL width
Fast scans of plasma main quantities with respect to machine parameters allow
for direct comparison with experimental scaling laws. We compare engineering
quantities calculated from the model (notably the SOL width and the energy
confinement time) to experimental scaling laws widely used in plasma community,
in order to identify the parametric limits of validity of the model and, likely, regimes
where these engineering quantities bifurcate due to different operational regimes of
plasma. λSOL is the first quantity addressed due to its crucial role in governing the
power exhaust in tokamaks. The numerical scaling of the plasma pressure width,
assumed as the best approximation for the λSOL, is plotted against the input power.
Then it is compared to the empirical scaling law for the heat flux width from [14].

Figure 5.9(a) and 5.9(b) display the scaling of λSOL (continuous black line)
against increasing input power Pin ∈ [0.1MW, 6MW ] and poloidal magnetic field
BP . This trend is compared to the scaling law for the heat flux width at the
divertor (remapped at the outer midplane) from [14], in red in the figure. This
scaling law reads:

λq = 1.44± 0.67B−0.8±0.32
T q1.4±0.67P 0.22±0.1

in R−0.03±0.28 (5.9)

As Pin increases, the ion Larmor radius ρ = mv
qB

is also expected to increase
due to the thermal velocity, and so the λSOL, while as BP rises, the safety factor
qcyl = aBT

RBP
drops because it is inversely proportional to this control parameter,

and so the SOL width.
λq is estimated by the slope of the exponential regression of pressure in the first

region of the SOL, near the separatrix (see figures 5.10(a) and 5.10(b)). The width
of this region covers about 20% of the SOL width. The grey-shaded area is the
95% confidential interval corresponding to such regression.

Figure 5.9(a) and 5.9(b) show that the numerical values obtained for the λSOL
follow the same trend of the scaling law, with a maximum relative error of nearly
15% within the range of input power explored, and nearly 11% within the range
investigated for BP .

It is worth to stress that the nice agreement between numerical results and
empirical data shown in figure 5.9(a) cannot be retrieved when assuming a constant
transport coefficient, as usually accepted in the framework of transport coefficients.
In this case, indeed, λ2

SOL ∝
χαL‖√
Tsep

would rather decrease, diverging from the
trend of the scaling law.
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Figure 5.9: Results from the model compared to the scaling laws when varying two
different control parameters.
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Figure 5.10: Radial pressure profile for the simulation with Pin = 1MW .
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Figure 5.11: Study of the sensitivity of the plasma pressure width in the SOL compared
to the major radiu R (left panel) and the toroidal magnetic field BT . Note that for this
latter, the model denotes nearly no dependence, as expected in the scaling law of equation
5.9

.

Finally, we address the sensitivity analysis of numerical pressure width against
the major radius R and the toroidal magnetic field BT , retrieving that λSOL
decreases when the major radius R drops down and there is almost no dependence
with respect to BT , consistently with 5.9.

5.4.2 Scan of the energy confinement time τE

The same exercise is proposed for the thermal energy confinement time scaling
against Pin and BP and compared to the empirical law for L-mode plasma discussed
in [73], usually called ITER96-th.
In the previous section, a nice agreement between the λSOL calculated by the model
and the scaling law has been verified. Physically, there exists a link between the SOL
width and the energy confinement time, which has been investigated experimentally
([74]). We wonder whether this 1D model is able to capture such a link, by comparing
the numerical output of the energy confinement time to the ITER96-th scaling law.

τLE,th = 0.023I0.96B0.03
T P−0.73

in n0.4M0.2R1.83ε−0.06k0.64 (5.10)

where I is the plasma current in [MA], BT is the toroidal magnetic field in [T ],
P is the loss power in [MW ], n is the line-averaged density, in [m−2], M is the
average ion mass in [AMU ], R the major radius in [m] and finally ε and k are the
inverse aspect ratio and the elongation, respectively.

τE,th is shown to decrease as Pin increases, probably due to the rise of free energy
available to instabilities, driving a confinement degradation. On the contrary, τE,th
is directly proportional to the plasma current and thus to BP .

In the model, we define τE as:

τE = W

Pin − dW/dt
(5.11)
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where W is the global plasma energy content, Pin is the total heating power applied
to the plasma and dW/dt is the time variation of W at steady state (dW/dt = 0).
Hence, equation 5.11 is reduced to: τE = 3/2

∫
nTdV

Pin
, where at the numerator the

local energy content is integrated over the spatial domain. Figures 5.12(a) and
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(a) Scan of the energy confinement time τE
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compared to the experimental scaling law
for the thermal energy confinement time
(continuous red line) discussed in [73].
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energy confinement time (continuous red
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Figure 5.12: Numerical results compared to scaling laws when varying two different
control parameters.

5.12(b) show the comparison between the trend of τE obtained numerically (black
line) and the scaling law (red line), when varying Pin and BP respectively. The
red-shaded area corresponds to the root mean square error related to the power
regression of the scaling law, equal to 15.8%.

The qualitative trend of the empirical scaling law is retrieved, even though it
does not constrain the model by construction.

5.5 Case with shear: preliminary modeling and
results

So far, the modeling proposed in this work has referred to a low-confinement regime
for plasma, meaning that the saturation of turbulent energy κ is regulated by the
scaling laws which close the model itself.

In the perspective of capturing also the physical mechanisms behind the L-
H transition, we introduce in the model a new element aiming at competing
with turbulent energy as in prey-predator models. This element is the E × B
shear, defined by:

ωE×B ≡ ∇r〈vθE×B〉θ = 1
B

∆rφ (5.12)
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Despite detailed origins and physical mechanisms on the L−H transition are still
unclear within the fusion community, several tokamak experiments showed that it
occurs when the radial electric field Er = −∇φ rapidly changes near the separatrix,
causing a shearing of radial turbulent transport and finally an improvement of the
confinement. During the transition, the E ×B shear would overcome the rate of
generation of turbulent energy. This is usually known as E ×B shear suppression
paradigm ([75]).

The E × B shear, which has the dimension of a frequency, is introduced
in the model via the growth rates γκ and γε in the source terms for κ and ε
respectively, such that:

γκ = γI + rβE×Bω
2
E×B ; γε = γI + βE×Bω

2
E×B (5.13)

where r is a parameter of the system. The definitions provided in 5.13 represent
a working assumption. Here the coupling of the E ×B shear with the equations
governing the plasma (equation 5.2) is provided by the vorticity equation 5.2c which
estimates Ω and therefore the electric potential φ.

The idea is that in L-mode, the dominant mechanism of drive is the interchange
instability γκ/ε ∼ γI , while approaching to the H-mode, γκ ∼ rβE×Bω

2
E×B and

γε ∼ βE×Bω
2
E×B (βE×B regulates the amplitude of the shear). The transition is led

by the input power Pin.

We solve the one-dimensional system varying Pin from 0.1MW to 8MW . In
these simulations, as first step, we assumed quasi-linear-like diffusivities: Dn ∝
χe ∝ χi ∼ (R/cs)κ. In this case one has:

χe = R

cs
κ (5.14)

Since the steady-state solutions of the κ-ε system are: (0; 0) and
([
P γκ
γε

]2
; γ3

κ

[
P
γε

]2)
(see 4.21 and 4.22), the resulting diffusivity reads:

χe = R

cs

(
P
γκ
γε

)2

(5.15)

We recall the relation describing the equilibrium of plasma pressure in the framework
of dimensional analysis (1.35) and introduce 5.15:

λ2
SOL = L‖

2γecs
χe = L‖

2γecs
R

cs

(
P
γκ
γε

)2

(5.16)

Finally, the inverse relation provides the expression of the parameter P :

P = λscaling,LSOL

γε
γκ
cs

√
2γe
L‖R

(5.17)
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where λscaling,LSOL is the empirical scaling law for the low-confinement regime dis-
cussed in [14].

When the plasma tends to the low confinement (for relatively small input power
Pin), the ratio γε

γκ
→ γI

γI
→ 1, while, increasing the input power and approaching

to the H-mode, γε
γκ
→ 1

r
. In this latter case:

P = λscaling,LSOL

1
r
cs

√
2γe
L‖R

(5.18)

According to [14] and [15], the empirical scaling law of the SOL width in high-
confinement regime λscaling,HSOL is smaller than the one in low-confinement by a
factor 2. Therefore, by setting r = 2, we retrieve immediately that P scales
as 1

2λ
scaling,L
SOL = λscaling,HSOL .

Since the diffusivity is governed by the parameter P containing the scaling law,
we conclude that the distribution of diffusivity in our model is sensitive to a possible
change of plasma regime. This is indeed observed in numerical results, showed below.

𝑟 [𝑚] 

(a) Radial profile of electron temperature
for increasing input power. These simu-
lations include the physics of the E ×B
shear.

𝑟 [𝑚] 

(b) Radial profile of plasma diffusivity for
increasing input power. These simulations
include the physics of the E ×B shear.

Figure 5.13: Radial profiles of Te and Dn for increasing Pin.

Some key features can be highlighted:

• In figure 5.13(a) the radial profile of electron temperature at steady state
denotes a pedestal (namely a sharp increase localized at the separatrix) from
the threshold power Pin = 2.5MW on.

• The radial profile of diffusivity, on the other hand, displays a gradually-
increasing drop for corresponding values of input (see figure 5.13(b)). In
particular, at Pin = 6MW , a deep drop develops at the separatrix, representing
a region where the transport of plasma is highly hampered, since here
the transport coefficient undergoes a reduction of more than two orders
of magnitude. This feature recalls the mechanism played by transport barriers,
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regions where the radial turbulent transport is hindered by the E ×B shear
([56]).

Interestingly, the trend of τE against input power compared to the ITER96-th
scaling law, represented in figure 5.14, bifurcates at the threshold power Pin =
2.5MW corresponding to the arising of the pedestal and the drop of Dn, suggesting
a transition to a high confinement regime.

10-1 100

Power [MW]

100

E
 [m

s]

Model

E
 =  P-0.69 [ITER96-th]

Figure 5.14: Energy confinement time calculated numerically (continuous black line)
and compared to the ITER96-th scaling law (continuous red line). A bifurcation arises in
Pin = 2.5MW , which may suggest a transition towards an improved confinement regime
of plasma.

Future goals require to upgrade the model with E ×B shear, by using the eddy-
viscosity-like diffusivities. Therefore, the SOL width and the energy confinement
time should be investigated, as done in the case with no-shear, and compared
against H-mode scaling laws.
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Conclusions

This Ph.D. work contributes in developing a new modeling of turbulent cross-field
fluxes in edge diverted plasma with the goal to improve the predictive capabilities
of the transport code SolEdge2D-EIRENE. To achieve such a result, we bridged
the concepts of eddy viscosity and κ-ε model - widely used in Computational Fluid
Dynamics to model turbulence semi-empirically in neutral flows - to the quasi-linear
theory and the physics of interchange-instability-driven turbulence exploited in the
framework of reduced models for turbulent plasma.

We recall that two-dimensional transport codes based on Braginskii fluid
equations are crucial to support steady-state operations in the next-generation
fusion device ITER because of their reasonable computational cost. Among them,
we exploited the flexibility of SolEdge2D-EIRENE, which allows to simulate versatile
realistic magnetic configurations and plasma-wall interactions.

Transport codes rely on ad-hoc diffusion coefficients for the estimation of steady-
state cross-field fluxes. These latter can be provided a posteriori from experimental
data on plasma density and temperature acquired from the machine diagnostics after
each discharge. We showed in chapter 1 that this proceeding can be optimized by
means of an automatic fitting procedure implemented in SolEdge2D-EIRENE, which
however is constrained by the specific experimental observations, thus degrading
the predictive capabilities of the code.

Motivated by this issue, in chapter 4 we proposed a step-by-step modeling
of plasma turbulent cross-field fluxes where two transport equations are derived
algebraically, one for the turbulent kinetic energy and the other for its dissipation
rate, inspired by the κ-ε model adopted in Computational Fluid Dynamics. We
included a production term based on the linear interchange instability. These
additional equations are coupled to the Braginskii equations solved by SolEdge2D-
EIRENE through the modeling of the cross-field fluxes of density, momentum and
energy. We assumed for these latter a diffusive expression where the transport
coefficients vary with the local value of turbulent kinetic energy and its dissipation
rate at the equilibrium, consistently with the eddy viscosity concept outlined in



chapter 2.

We showed in chapter 3 that similarly to the eddy viscosity assumption, also in
the framework of plasma physics transport coefficients can be related to reference
turbulent scales of velocity and time according to the so-called quasi-linear theory,
leading to DQL = κτc. While the standard approach allows to find a linear
dependence between transport coefficients and the turbulent energy κ, thus providing
the reference velocity scale, it does not predict a closure for the time scale τc. We
proposed a qualitative discussion where we argued that it is possible to infer
additional information in the expression of such a time scale, concerning the
dissipation of turbulent energy, using the dispersion relations of a κ-ε-like system.
In particular, we found that τc ∝ (κ

ε
)−1 and for ε → 0 one recovers the standard

quasi-linear analysis. Compared to this latter, where the time scale is generally
fitted with gyrokinetic simulations [48], the method that we propose is a first-step
towards a more predictable estimation of diffusivity in plasma turbulent fluxes.

In Chapter 4, the step-by-step modeling has been formally outlined. In the first
step, the model consists in one equation for the turbulent energy κ, which is coupled
with the Braginskii set of equations. A steady state solution for κ allows to estimate
the transport coefficient according to the standard quasi-linear approach. The free
parameters are closed by an improved automatic fitting procedure implemented in
SolEdge2D-EIRENE, which fits the numerical plasma profiles at the outer midplane
with diagnostics data of a single discharge. The comparison between numerical and
experimental profiles of the transport coefficient at the outer midplane shows a good
accordance. The model’s free parameters still need to be closed by experimental
data available from a single discharge.

To add predictive capabilities to the model, in the second step the one-equation
model is closed by the empirical scaling law for λSOL proposed by [67] and [14].
Transport coefficients are evaluated self-consistently according to the standard
quasi-linear approach. Three discharges from the TCV machine are referred to
as benchmark, where the main plasma is kept in the same conditions while the
outer divertor leg length is varied. We showed that the kind of closure that we
adopted improves the predictive capabilities of the model. Indeed, the model has
been able to reproduce two-dimensional distributions of plasma quantities in the
edge and near SOL, just providing the boundary conditions of plasma in the core.
At the outer midplane, radial profiles of density and temperature nearly overlap,
successfully reproducing the fact that the main plasma is unchanged when the
magnetic configuration is varied. Moreover, these profiles compare very well with
the experimental data in the edge region.



The two-dimensional distribution of density transport coefficient and flux is
also calculated self-consistently for the three magnetic configurations (assuming
that the thermal conductivity and the viscosity are proportional to the particle
diffusivity). For all of them, the ballooning feature is observed at the low-field side as
a consequence of the interchange-instability-driven turbulence on plasma mean fields.

Simulations show that the model is also able to capture that this enhanced
transport broadens up to the common flux region, but not in the private flux region,
consistently with turbulent three-dimensional isothermal simulations made with
TOKAM3X in TCV-like geometry and Compass-like geometry. This picture is
consistent also with experimental observations in the MAST tokamak.

The estimation of the SOL width is also consistent with the observed range
of values, however, λSOL does not scale as the outer divertor leg length as found
experimentally. The reason is that the three TCV discharges are not fitted by
the scaling law used to close the model. Indeed, numerical results show λSOL is
nearly unchanged when varying the outer divertor leg length, while experimentally
it linearly increases with the latter.

Finally, in the third step of the new modeling, two equations are outlined
describing the evolution of the turbulent energy and its dissipation rate, exploiting
the same empirical scaling law as closure. This time, the expression of the transport
coefficient scales as both the turbulent energy and its dissipation rate, consistently
with the eddy-viscosity concept and the qualitative observations on the extended
quasi-linear analysis discussed in chapter 3. Numerical simulations refer to an
early WEST discharge where experimental observations exhibit a certain level of
incertitude. Preliminary results show a good accordance between the plasma density
profile and diagnostics observations at the separatrix. Also, at the divertor the
estimation of the SOL width is shown to be in quantitative agreement with measures
of heat flux in the main plasma obtained with reciprocating Langmuir probes across
multiple shots. The two-dimensional distribution of the particle transport coefficient
denotes a sharp ballooning at the LFS, especially in the edge region. Such a result
needs however a further investigation, due to the evidence of enhanced transport in
the X-point.

We showed in chapter 5 that a one-dimensional reduction of the new model
allows to perform fast simulations where we scan the SOL width λSOL and the
energy confinement time τE at steady-state against crucial machine parameters such
as the input power and the poloidal magnetic field. The strength of such approach
is a reliable and fast verification of numerical results provided by the new model
across multi-machine simulations against widely-used scaling laws for λSOL and



τE. The comparison of such scans with the predictions of respective scaling laws is
showed to be favorable.

Future improvements of the model can be implemented by exploiting its flexibility.
Indeed, the expression of the turbulence growth rate can be easily improved to
take into account different kinds of instability, provided the relation between its
growth rate and mean plasma quantities. Moreover, in future simulations we should
perform multi-machine simulations and account for the multi-fluid capability of
SolEdge2D-EIRENE by simulating impurities in plasma discharges.

We think that this new modeling may also be adapted to reproduce improved
confinement plasma regimes by introducing a predator-like mechanism for turbulent
energy within the equations, provided by the E × B shear flow. First promising
efforts have been done to this aim, as outlined in chapter 5. Here, simulations with
increasing input power show that when the λSOL bifurcates towards the scaling
law proposed by [15] for H-mode plasma, temperature radial profile exhibits a
pedestal-like behavior at the separatrix, where the radial transport coefficient is
found to decrease significantly.
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A
A.1 Vorticity equation for neutral fluids
Let us consider the momentum balance for neutral fluids:

∂t(minu) +∇ · (pI +minu⊗ u)−minν∆u− dΘ(min)ΘG = 0 (A.1a)
∇ · u = 0 (A.1b)

where dΘ(min) is the dilatation coefficient depending on the temperature variation
Θ, G is the buoyancy force aligned along the î direction. k̂ is the axis of symmetry
of the system. For the sake of simplicity let us the Boussinesqu’s approximation,
namely the density is assumed constant in time and space, the only effect of density
variation being present in the buoyancy force driven by dilatation.

The curl of equation (A.1) reads:

∂tω +∇×
[
∇ · (u⊗ u)

]
− ν∆ω − αΘ∇Θ×G = 0 (A.2)

where ω ≡ ∇ × u and αΘ ≡ dΘ(log(n)). We use the following relation to treat
the convection term:

∇ · (u⊗ u) = −u× (∇u) = 1
2∇(u2) + u(∇ · u) (A.3)

where the second term vanishes when applying the curl operator and the third term
cancels out due to the assumption of nearly incompressible flow. When projecting
equation (A.2) along the k̂ direction, one obtains:

∂tW +∇×
[
ω × u

]
· k̂ − ν∆W + αΘG∂yΘ = 0 (A.4)

where we define W ≡ ω · k̂. We recall another useful relation:

∇× (ω × u) = ω(∇ · u)− u(∇ · ω) + (u ·∇)ω − (ω ·∇)u (A.5)
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98 A.2. Vorticity equation for magnetically confined plasma

the first two terms vanishing by assumption and by construction respectively.
Moreover, one has:[

∇× (ω × u)
]
· k̂ = (u ·∇)W − (ω ·∇)u‖ (A.6)

where u‖ = u · k̂.
Now one can rewrite equation (A.4):

dtW − (ω ·∇)u‖ − ν∆W + αΘG∂yΘ = 0 (A.7)

where dtW ≡ ∂tW + (u ·∇)W is the material derivative.
Equation (A.7) can be further manipulated if one explicit the velocity field with

respect to its stream function ψ: u = k̂ ×∇ψ. Then one has:

(u ·∇)W = (k̂ ×∇ψ) ·∇W = k̂ · (∇ψ ×∇W ) ≡
[
ψ,W

]
(A.8)

with
[
·
]
standing for Poisson’s brackets. So finally equation (A.7) becomes:

∂tW +
[
ψ,W

]
+ αΘG∂yΘ = ν∆W + (ω ·∇)u‖ (A.9)

where the third term in the left-hand side takes into account for the stratification of
density due to temperature variation while the second term in the right-hand side
may be further developed according to the system once the equation is integrated
along the axis of symmetry.

A.2 Vorticity equation for magnetically confined
plasma

We start from the conservation of total electric charge:

∇ · j =∇ · (j‖b̂) +∇ · (jE×B + jp + j∗) = 0 (A.10)

where b̂ = B/B and jE×B, jp and j∗ are total E×B, polarization and diamagnetic
charge densities respectively. jE×B = eniuE×B − eneuE×B = 0.

Assuming that ∇×B ∼ 0, reasonable in an electrostatic framework, it can be
demonstrated for the divergence of the diamagnetic current [A/m3]:

∇ · j∗ ∼ e∇ · (niu∇B,i − neu∇B,e) (A.11)

with

u∇B,α = 1
2
qα
|qα|

ρL,αv⊥,α
B ×∇B

B2 (A.12)

While for the divergence of the polarization current [A/m3], one has:

∇ · jp = −mie∂t∇ ·
[
ni
B2

(
∇⊥φ+ ∇⊥pi

eni

)]
−mie∇ ·

{
ui∇ ·

[
ni

B2

(
∇⊥φ+ ∇⊥pi

eni

)]}
(A.13)
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For convenience, we define the vorticity the following quantity:

Ω ≡ mi∇ ·
(eni∇⊥φ

b2 + ∇⊥pi
B2

)
(A.14)

[Ω] = [C/m3], where the kinetic pressure is in [eV ] and the potential in [V ].
One can develop ∇ · jp and consider the first-order approximation of the ion

drift velocity u⊥,i ∼ u
(1)
⊥,i, namely ui ∼ u‖,i + uE×B,i + u∇B,i, and obtain:

∇ · jp = ∂t(Ω)−∇ · (uiΩ) (A.15)

The parallel current density ∇ · (j‖b̂) can be computed from the generalized Ohm’s
law:

∇ · (j‖b̂) = j‖
(
∇ 1
B

)
·B +∇‖j‖ (A.16a)

j‖ = 0.71σ‖
∇‖Te
e
− σ‖

(
∇‖φ+ ∇‖pe

en

)
(A.16b)

where σ‖[S/m] is the electric conductivity (j = σE).
Let us stress some important assumptions about the magnetic field B that

fit the 1D κ-ε model:

1. B = Bb̂, with static b̂.

2. ∇ × B ∼ 0 acceptable for low β ≡ nT
B2/2µ0

namely in the electrostatic
framework.

3. B is homogeneous and constant, so b̂×∇B = 0, ∇ 1
B

= 0 and ∇ ·uE×B = 0

For these reasons, it results: u∇B,i = u∇B,e = 0 and equation (A.2) reads:

∂tΩ +∇‖(u‖,iΩ) +∇‖j‖ −∇r(ν∇rΩ) = 0 (A.17a)
Ω = Ω(r, θ, z) (A.17b)
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B
B.1 Derivation of a general “κ” equation for mag-

netized plasma

The derivation of a “κ” equation for magnetized plasmas is similar to the one
adopted for neutral fluids, namely the momentum equation is manipulated in order
to obtain transport equation for the turbulent kinetic energy κ.

In the most general form, when assuming incompressible flow and the Boussi-
nesq’s assumption for the density, the momentum equation reads:

mn0
∂ui
∂t

+mn0ul
∂ui
∂x`

= −∂P`,i
∂x`

+ 〈F`,i〉+R`,i (B.1)

where i, j and ` are the space component of the velocity vector u, P`,i is the pressure
tensor and finally 〈F`,i〉 and R`,i are generic terms representing an external force
(averaged over the distribution function f) and the collisional term respectively.

In neutral fluids, 〈F`,i〉 = Fi = mn0〈gi〉 is the buoyancy force, while R`,i = ∂τ`,i
∂x`

,
where τ`,i is the stress tensor heuristically introduced in the Euler’s equation in
order to take into account for irreversible exchange of momentum due to mutual
friction of fluid tubes.

In plasmas, 〈F`,i〉 is the electro-magnetic force and R`,i is the collisional operator.
Hereafter, we will keep handling the both in a generic fashion.

First, equation (B.1) is multiplied by u`:

mn0
∂(uiuj)
∂t

+mn0u`
∂(uiuj)
∂x`

=

−uj
∂P`,i
∂x`

− ui
∂P`,j
∂x`

+ uj(R`,i + 〈F`,i〉) + ui(R`,j + 〈F`,j〉) (B.2)
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We introduce Πij = Pij/(mn0), mn0Zi = Ri + 〈Fi〉f and Uij = uiZj so that:

∂tui + u`
∂ui
∂x`

+ ∂Π`i

∂x`
= Zi (B.3a)

∂t
(
uiuj

)
+ u`

∂
(
uiuj

)
∂x`

+ uj
∂Π`i

∂x`
+ ui

∂Π`j

∂x`
= Uij + Uji (B.3b)

The mean part for this system is then given by:

∂tui + u`
∂ui
∂x`

+ ∂ 〈ũ`ũi〉
∂x`

+ ∂Π`i

∂x`
= Zi (B.4a)

∂t
(
uiuj

)
+ u`

∂
(
uiuj

)
∂x`

+ uj
∂Π`i

∂x`
+ ui

∂Π`j

∂x`

+ ∂t 〈ũiũj〉+ ∂ 〈ũ`ũiũj〉
∂x`

+ u`
∂ 〈ũiũj〉
∂x`

+
∂
(
〈ũ`ũj〉ui

)
∂x`

+
∂
(
〈ũ`uj〉 ũi

)
∂x`

+
〈
ũj
∂Π̃`i

∂x`

〉
+
〈
ũi
∂Π̃`j

∂x`

〉
= U ij + U ji (B.4b)

The equations for the fluctuating part are then obtained.

∂tũi +
∂
(
ũ`ũi − 〈ũ`ũi〉

)
∂x`

+ ũ`
∂ui
∂x`

+ u`
∂ũi
∂x`

+ ∂Π̃`i

∂x`
= Z̃i (B.5a)

∂t
(
ũiũj − 〈ũiũj〉

)
+
∂
(
ũ`ũiũj − 〈ũ`ũiũj〉

)
∂x`

+ u`
∂
(
ũiũj − 〈ũiũj〉

)
∂x`

+
∂
(
ũ`uiũj − 〈ũ`uiũj〉

)
∂x`

+
∂
(
ũ`ũiuj − 〈ũ`ũiuj〉

)
∂x`

+ ũj
∂Π̃`i

∂x`
−
〈
ũj
∂Π̃`i

∂x`

〉
+ ũi

∂Π̃`j

∂x`
−
〈
ũi
∂Π̃`j

∂x`

〉
= Ũij + Ũji (B.5b)

As done in the derivation of the fluid equations the term ∂t(uiuj) in B.4b can
be determined using B.4a.

uj∂tui + uju`
∂ui
∂x`

+ uj
〈ũ`ũi〉
∂x`

+ uj
∂Π`i

∂x`
= ujZi (B.6a)

ui∂tuj + uiu`
∂uj
∂x`

+ ui
∂ 〈ũ`ũj〉
∂x`

+ ui
∂Π`j

∂x`
= uiZj (B.6b)

So that one obtains:

∂t
(
uiuj

)
+ u`

∂
(
uiuj

)
∂x`

+ uj
∂ 〈ũ`ũi〉
∂x`

+ ui
∂ 〈ũ`ũj〉
∂x`

+ uj
∂Π`i

∂x`
+ ui

∂Π`j

∂x`
= ujZi + uiZj (B.7a)
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Taking this expression into account one can then simplify B.4b.

∂t 〈ũiũj〉+ ∂ 〈ũ`ũiũj〉
∂x`

+ u`
∂ 〈ũiũj〉
∂x`

+ 〈ũ`ũj〉
∂ui
∂x`

+ 〈ũ`ũi〉
∂uj
∂x`

+
〈
ũj
∂Π̃`i

∂x`

〉
+
〈
ũi
∂Π̃`j

∂x`

〉
=
〈
ũiZ̃j

〉
+
〈
ũjZ̃i

〉
(B.7b)

The trace defines the energy K of the fluctuating field in the κ model.

K = 1
2mn0 〈ũiũi〉 (B.8a)

∂tK + u`
∂K

∂x`
+ 1

2mn0
∂ 〈ũ`ũiũj〉

∂x`

+mn0 〈ũ`ũi〉
∂ui
∂x`

+
〈
ũi
∂P̃`i
∂x`

〉
= mn0

〈
ũiZ̃i

〉
(B.8b)
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C
C.1 The 2D Rayleigh-Bénard system

C.1.1 Rayleigh-Bénard equations
Let us consider equation A.9 in appendix A when (ω ·∇)u‖ = 0. The Rayleigh-
Bénard set of equations is completed by a transport equation of the temperature
difference Θ of the same form as that for the vorticity W :

∂tΘ +
[
ψ,Θ

]
− κ∇2Θ = S (C.1a)

This expression characterises the evolution of the field Θ given a source S and
the divergence of the flux Q defined by:

Q = Θu− κ∇Θ (C.1b)

This heat flux is governed by a convective contribution with the incompressible
velocity u depending on the stream function ψ, leading to the Poisson bracket in
equation: temperature balance v5 and on a diffusive flux −κ∇Θ.

C.1.2 Averaging and fluctuations
In the chosen example of this Section, the z-direction is a direction of symmetry, i.e.
there is no dependence on z and the x-direction is that of stratification governed
by the buoyancy force gΘx. We shall further assume that the direction y is
periodic which allows one introducing an average with respect to this direction
and consequently to split the fields f into their average 〈f〉 and fluctuations f̃ ,
namely the departure from the average, f = 〈f〉 + f̃ . One can then apply this
projection on the momentum balance equation equation: momentum conservation
as well as to the vorticity equation: momentum conservation v5 and temperature
equations equation: temperature balance v5. We first consider the momentum
balance and in particular the non-linear tensor.
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106 C.1. The 2D Rayleigh-Bénard system

C.1.2.1 Momentum balance

We start here from the momentum balance equation equation: momentum conser-
vation taking into account the simplifications introduced in the buoyancy force.

∂t
(
minu

)
+∇·

(
pI +minu⊗ u

)
− ν∇2

(
minu

)
−min0Θg x = 0 (C.2a)

In the Favre averaging approach let us define the average 〈nu〉 = n0V fb. Here
V fb is the velocity governed by the force balance, therefore:

∂tV fb + 1
min0
∇ 〈p〉+ 1

n0
∇·〈nu⊗ u〉 − ν∇2V fb − 〈Θ〉 g x = 0 (C.2b)

For the sake of simplicity in the present work we shall consider the Boussinesq
approximation, namely that one can approximate n by n0, so that 〈u〉 = V fb

and u = V fb + ũ, and consequently:

∂tV fb +∇·
(
V fb ⊗ V fb

)
− ν∇2V fb

= − 1
min0
∇ 〈p〉+ 〈Θ〉 g x−∇·〈ũ⊗ ũ〉 (C.2c)

Given the relationship between the flow and the stream function one has V fb =
z ×∇ 〈ψ〉. Since 〈ψ〉 only depends on x, one finds therefore that: V fb = y∇x 〈ψ〉.
There are thus constraints governed by the underlying symmetry as readily found
with the projections in the x and y directions respectively.

∂tVfb − ν∇2Vfb = −∇·〈ũũy〉 (C.3a)

∇·〈ũũx〉 = − 1
min0

∇x 〈p〉+ 〈Θ〉 g (C.3b)

To obtain equation: y-projection average momentum balance v1, we have taken into
account that V fb·∇ = Vfb∇y and that the averaged fields V fb and 〈p〉 only depends
on x. As a consequence, the only source term for Vfb is the kinematic pressure
tensor governed by the velocity fluctuations ũ. Furthermore, the velocity Vfb does
not contribute to the force balance in the x direction, equation: x-projection average
momentum balance v1. To complete equation: average momentum balance v1, one
must consider the equation governing the fluctuating velocity ũ = z ×∇ψ̃:

∂tũ + 1
min0
∇p̃+∇·

(
ũ⊗ ũ

)
− ν∇2ũ− Θ̃g x + Vfb∇yũ

+ ũx∇xV fb =∇·〈ũ⊗ ũ〉 (C.4)
The kinematic pressure tensor is the non-linear contribution to these equations that
will govern the mode coupling and the development of turbulence.

C.1.2.2 Mean and fluctuating Rayleigh-Bénard equations

We now consider the separation in mean and fluctuating part in the system equation:
momentum conservation v5 coupled to equation: temperature balance v5

∂tΘ +
[
ψ,Θ

]
+∇xψ ∂yΘ−∇xΘ ∂yψ − κ∇2Θ = S (C.5a)

∂tW +
[
ψ,W

]
−∇xW∂yψ +∇xψ∂yW − ν∇2W + g ∂yΘ = 0 (C.5b)
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In this system we have allowed the temperature, stream function and vorticity fields
to be split into the previous terms and a linear contribution in x, hence replacing Θ
by Θ + x∇xΘ where ∇xΘ is a constant parameter and ψ by ψ + x∇xψ, ∇xψ being
a constant parameter and W by W +x∇xW , ∇xW being a constant parameter. As
such the system is not quite consistent since we have ignored here the relationship
between ψ and W , W = ∇2

xψ. These terms provide source terms to the system that
allow one removing S from equation: temperature field v0. In this framework one
can split the fields into their average and fluctuations with respect to the y-average.

∂t 〈Θ〉+
〈[
ψ̃, Θ̃

]〉
− κ∇2 〈Θ〉 = 0 (C.6a)

∂tΘ̃ +
[
ψ̃, Θ̃

]
−
〈[
ψ̃, Θ̃

]〉
− κ∇2Θ̃

+
(
∇x 〈ψ〉+∇xψ

)
∂yΘ̃−

(
∇x 〈Θ〉+∇xΘ

)
∂yψ̃ = 0 (C.6b)

∂t 〈W 〉+
〈[
ψ̃, W̃

]〉
− ν∇2 〈W 〉 = 0 (C.6c)

∂tW̃ +
[
ψ̃, W̃

]
−
〈[
ψ̃, W̃

]〉
− ν∇2W̃ + g ∂yΘ̃

+
(
∇x 〈ψ〉+∇xψ

)
∂yW −

(
∇x 〈W 〉+∇xW

)
∂yψ = 0 (C.6d)

On finds here that the terms ∇x 〈f〉 and ∇xf have similar contributions. At this
stage their separation can appear to be be artificial. However, when stepping
to the Fourier modes, the former will govern a mode coupling while the latter
does not. Introducing a difference between these two terms is therefore justified
in that particular framework.

C.1.2.3 Kinematic pressure tensor

We consider both the Eulerian equation: momentum conservation and Lagrangian
forms of the evolution equation of u.

∂t
(
minu

)
+∇·

(
pI +minu⊗ u

)
− ν∇2

(
minu

)
−min0Θg x = 0 (C.7a)

min
(
∂tu +

(
u·∇

)
u
)

+∇p− ν∇2
(
minu

)
−min0Θg x = 0 (C.7b)

Given the identity:

mi∂t
(
nu⊗ u

)
= ∂t

(
nu
)
⊗ u + nu⊗ ∂t

(
u
)

(C.8a)

one can obtain the evolution equation for the tensor u ⊗ u:

mi∂t
(
nu⊗ u

)
=
(
−∇p+ ν∇2

(
minu

)
+min0Θg x

)
⊗ u

−
(
min

(
u·∇

)
u +miu∇·

(
nu
))
⊗ u

+ u⊗
(
−min

(
u·∇

)
u−∇p+ ν∇2

(
minu

)
+min0Θg x

)
(C.8b)
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The latter can also be written as:

min∂t
(
u⊗ u

)
+
(
∇p+min

(
u·∇

)
u− ν∇2

(
minu

)
−min0Θg x

)
⊗ u

+ u⊗
(
∇p+min

(
u·∇

)
u− ν∇2

(
minu

)
−min0Θg x

)
= 0 (C.8c)

where we have used the particle balance equation ∂tn +∇·
(
nu
)

= 0.

C.1.3 Equations in Fourier space
Let us now introduce the projection on Fourier modes, both in the x and y
directions, using the position vector r determined by (x, y) and the wave vector
k given by (kx, ky).

Θ =
∑

k

Θkeik·r (C.9a)

ψ =
∑

k

Ψkeik·r (C.9b)

Since the two fields are real one has the standard relations Θ−k = Θ∗k, Ψ−k = Ψ∗k.
Depending on the needs the notation k can be replaced by the equivalent (kx, ky).
The Rayleigh-Bénard equation then take the form:

∂tΘ(kx,ky) + iky

(
∇xψΘ(kx,ky) −∇xΘΨ(kx,ky)

)
+ κk2Θ(kx,ky)

+
∑
k′

Ψ(k′x,k′y)Θ(kx−k′x,ky−k′y)

(
kxk

′
y − kyk′x

)
= 0 (C.10a)

∂tW(kx,ky) + iky

(
∇xψW(kx,ky) −∇xWΨ(kx,ky)

)
+ ikygΘ(kx,ky) + νk2W(kx,ky)

+
∑
k′

Ψ(k′x,k′y)W(kx−k′x,ky−k′y)

(
kxk

′
y − kyk′x

)
= 0 (C.10b)

W(kx,ky) = −k2Ψ(kx,ky) (C.10c)

The structure of these equations is therefore an evolution of a field, either Θ or
W , which includes damping and drift, a linear coupling term to the other field,
and non-linear coupling to the stream function ψ, keeping in mind that stream
function and vorticity are coupled by the linear Poisson relation equation: Fourier
vorticity potential v0. This system can be simplified in the case ∇xψ = 0 and
∇xW = 0, a case that is mostly considered in the literature.

∂tΘ(kx,ky) − iky∇xΘ Ψ(kx,ky) + κk2Θ(kx,ky)

+
∑
k′
TΘ,Ψ(k,k′)Ψ(k′x,k′y)Θ(kx−k′x,ky−k′y) = 0 (C.11a)

∂tΨ(kx,ky) − i
ky
k2 gΘ(kx,ky) + νk2Ψ(kx,ky)

+
∑
k′
TΨ,Ψ(k,k′)Ψ(k′x,k′y)Ψ(kx−k′x,ky−k′y) = 0 (C.11b)
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given:

TΘ,Ψ(k,k′) = z ·
(
k × k′

)
(C.12a)

TΨ,Ψ(k,k′) =

(
k − k′

)2
− k′2

k2

(
z ·
(
k × k′

))
(C.12b)

where we have used the identity kxk′y − kyk′x = z · (k × k′).

C.1.4 Stepping to the Lorenz model
We reduce the model by considering a reference mode Θ(kx,ky) and a correction to
the mean temperature gradient of the form Θ(2kx,0), hence a given mode and its
impact on transport determined by the second term.

∂tΘ(kx,ky) = iky∇xΘ Ψ(kx,ky) − κk2Θ(kx,ky) − 2kxkyΨ(−kx,ky)Θ(2kx,0) (C.13a)

This equation introduces a coupling to both Ψ(kx,ky) and Ψ(−kx,ky). Neglecting higher
harmonics for Ψ reduces the evolution of these two modes to the linear contributions.

∂tΨ(kx,ky) = i
ky
k2 gΘ(kx,ky) − νk2Ψ(kx,ky) (C.13b)

In the framework of the Lorenz model a symmetric boundary condition with
respect to x = 0 is imposed so that Θ(−kx,ky) = Θ(kx,ky) and Ψ(−kx,ky) = Ψ(kx,ky).
Furthermore, the structure of the mode coupling highlighted by the two previous
equations, then ensures that one can consider the modes Θ(kx,ky) to be imaginary
while the modes Ψ(kx,ky) are real, hence:

Ψ(kx,ky) = Ψ(−kx,−ky) = Ψ(−kx,ky) = Ψ(kx,−ky)

Θ(kx,ky) = −Θ(−kx,−ky) = Θ(−kx,ky) = −Θ(kx,−ky)

One can then modify equation: temperature main mode kx ky v1 to obtain:

∂tθ1 = −ky∇xΘ ψ1 − κk2θ1 − 2kxkyψ1θ2 (C.15a)

∂tψ1 = ky
k2 gθ1 − νk2ψ1 (C.15b)

with the definitions θ1 = iΘ(kx,ky), θ2 = iΘ(2kx,0) and ψ1 = Ψ(kx,ky). This system is
only complete provided one considers the evolution equation of Θ(2kx,0).

∂tΘ(2kx,0) = −κ
(
4k2

x

)
Θ(2kx,0) + 2kxkyΨ(kx,−ky)Θ(kx,ky) (C.16a)

and therefore the evolution equation for θ2:

∂tθ2 = −κ
(
4k2

x

)
θ2 + 2kxkyψ1θ1 (C.16b)

We then consider as reference time the inverse of κk2, normalise the stream function
by κk2/(2kxky) an the temperature field by Θ such that Θ = (νk2/(kyg), one can
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then introduce the Rayleigh dimensionless parameter Ra = −k2
yg∇xΘ/(k2νk2κk2)

and the Prandtl dimensionless parameter Pr = ν/κ, one then obtains the nor-
malised system:

∂tθ1 = Ra ψ1 − θ1 − ψ1θ2 (C.17a)
∂tψ1 = Pr

(
θ1 − ψ1

)
(C.17b)

∂tθ2 = −4k2
x

k2 θ2 + ψ1θ1 (C.17c)

In this system the drive is due to the term proportional to Ra, the Rayleigh
parameter being proportional to the external drive by the imposed temperature
gradient, The Prandtl number is a measure of the relative importance of the damping
terms, viscosity versus heat diffusion, and the third parameter characterises the
geometry according to the choice of the relevant k2

x and k2.

C.1.5 Bifurcation and thermoconvection
In this subsection, the details about the stability analysis concerning the Lorenz
model are discussed, in particular when the non-trivial fixed points are concerned.

As mentioned in chapter 3, for ψ = θ and ψ
2 = α2θ2 = α2(Ra − 1), the

dispersion relation relates:

γ3 + γ2(1 + α2 + Pr) + α2γ(Pr + Ra) + 2α2Pr(Ra− 1) = 0 (C.18)

Since the first three coefficients of the eigen value equation C.18 are real and
positive, this function intersects the real axes once and there is a real root γR and
two complex conjugate roots γC and γC∗. Furthermore, one finds the product of
the three roots γR|γC |2 is eqaul to −2α2Pr(Ra− 1) < 0 which implies that γR < 0.
The stability of the fixed point then depends on on the sign of the real part of the
imaginary roots, given that these are complex conjugate. A change of sign of this
real part implies that there exist a value of the control parameter Ra such that
γ = iω + ε with ω and ε real. We consider the case close to marginality, hence
such that ε � ω, in order to expand equation C.18 for small ε. To facilitate the
calculation, it is convenient to reformulate the dispersion relation as:

γ3 + Aγ2 +Bγ + C = 0 (C.19)

The equation for ω and ε is then:

−iω3 − 3ω2ε− Aω2 + 2Aiωε+ iBω +Bε+ C = 0 (C.20)

We can split this equation into two independent equations, one for the real part
and one for the imaginary part, obtaining:

ω3 = ω(2Aε+B) (C.21)
Aω2 = −3ω2ε+Bε+ C (C.22)
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For ω 6= 0, equation C.21 reads:

ω2 = B + 2Aε (C.23)

and (C.22) becomes:

AB + 2A2ε = −3Bε+Bε+ C (C.24)

Therefore:

2ε(A2 +B) = C − AB (C.25)

For ε = 0 (at marginality), one has ω2 = B and C = AB, providing:

ω2 = α2(Pr + Ra) (C.26)

and:

Ra∗ = Pr 3 + α + Pr
Pr− (1 + α2) = 1 + 1 + α2 + (2 + α2)Pr + Pr2

Pr− (1 + α2) (C.27)

Ra∗ > 0 only for Pr > α2 + 1. In this latter case, S∗ > 1.

When ε 6= 0, the sign of ε is given by the sign of C − AB. Since α2 6= 0,
C > AB requires:

Ra(Pr− (1 + α2)) > Pr(3 + α2 + Pr) (C.28)

Finally, for Pr > (1 + α2), ε > 0, if Ra > Ra∗, three cases arise:

• 0 < Ra < 1, there is only a single fixed point such that ψ = 0, θ = 0 and
θ2 = 0;

• 1 < Ra < R∗, the fixed point ψ = 0 is unstable and there exist two stable
fixed points with ψ 6= 0;

• Ra > R∗: all fixed points are unstable.

The other regime is for Pr < (1 + α2), such that:

• 0 < Ra < 1, there is only a single stable fixed point such that ψ = 0;

• Ra > 1, the fixed point ψ = 0 becomes unstable and there exists two fixed
points with ψ 6= 0 that remain stable for all values of Ra.

The case ω = 0, which is the second solution of equation C.21, leads to:

ε = C

B
= 2Pr(Ra− 1)

Pr + Ra (C.29)

Thus it describes the marginality state of the solution ψ = 0, hence ε > 0 for Ra > 1.
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