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échelons”, in ROADEF 2017, 18ème congrès de la société française de recherche
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Abstract

Title: Selective and co-modal transport: models and algorithms

The notion of ”co-modality” was introduced by the European Commission in 2006 as part

of its new transport policy. It refers to the ”efficient use of different modes on their own

and in combination” for the purpose of achieving ”an optimal and sustainable utilisation

of resources” [55]. Unlike previous European transport policies, co-modality does not seek

to oppose road transportation to its alternatives, but rather seeks to take advantage of

the domains of relevance of different transportation modes and of their combinations

to optimize services. In this thesis, we focus on developing new solution algorithms for

variants of vehicle routing problems for city logistics systems arising in the wake of co-

modality. We were particularly interested in developing effective solution methods for

selective variants of the vehicle routing problem and two-echelon variants.

First, we address the Team Orienteering Problem with Time Windows (TOPTW), a

selective variant of routing problems that takes into account customer availability. We

propose an effective algorithm based on a neighborhood search that alternates between

two different search spaces, and uses a long term memory mechanism to benefit from

information gathered while exploring the search space, to solve the TOPTW.

In the second part of this work, we deal with the Two-Echelon Vehicle Routing Problem

(2E-VRP), a variant of the problem that introduces intermediate facilities, refered to as

“satellites”. In a two echelon system, freight is first moved from the depot to the satellites

using large trucks, and then delivered from the satellites to the customers using smaller

vehicles. To solve the 2E-VRP, we introduce a novel algorithm that combines heuristic

methods with mathematical programming techniques.

Finally, we consider the Orienteering Problem with Hotel Selection (OPHS), another

selective variant that shares similarities with the 2E-VRP, namely, the use of intermediate

facilities called hotels. For this problem, we propose a new integer linear programming

model, valid inequalities and a Branch-&-Cut solution method.

v



vi

Extensive experimentation on benchmark instances available in the literature demonstrate

the competitiveness of our solution methods.

Keywords: urban distribution, city logistics, co-modality, selective vehicle routing prob-

lems, two-echelon routing problems, operations research, exact and heuristic solution

methods.
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Introduction

Freight distribution is one of the essential activities in today’s society, and transport

infrastructure and accessibility have become key factors for regional development. With

growing urbanization and e-Commerce thriving, urban distribution has grown to become

a large part of freight distribution, and a key element of the urban economy. However,

urban transport, if poorly managed, is also a major source of noise, pollution, congestion,

and a disturbance to the citizens’ well-being. Both people and goods move in the urban

environment, the former transported by their individual vehicles and collective transports,

the latter by freight carriers and shippers. As traffic increases in towns and city centers,

a better way to ensure an efficient and effective urban mobility for both passengers and

goods becomes essential. Urban space being a limited resource, it is commonly argued

that the movement of passengers and goods in urban areas have a strong interaction.

In this context, the concepts of City Logistics emerged as viable means to mitigate the

problem. The goal of City Logistics is to optimize freight transportation within city areas

while considering traffic congestion and environmental issues as well as costs and benefits

to the freight shippers [237].

According to the European Commission [56], rethinking urban mobility involves optimiz-

ing the use of all the available resources. This can be done by organizing ”co-modality”

between the public transport modes (train, tram, metro, bus, taxi) and private transport

modes. The major benefit of such policy is to reconcile private transport and public

transport interests instead of pitting them against each other. The notion of ”co-modality”

was introduced by the European Commission in 2006 as part of its new transport policy.

It refers to the ”efficient use of different modes on their own and in combination”

for the purpose of achieving ”an optimal and sustainable utilization of resources” [55].

Unlike previous European transport policies, co-modality does not seek to oppose road

transportation to its alternatives, but rather seeks to take advantage of the domains of

relevance of different transportation modes and of their combinations to optimize services.

In order to improve urban mobility, different logistics systems have been proposed.

Potential solutions for urban freight distribution include Cooperative freight transport

1



2 Contents

systems (CFTS) and shared ”passengers & goods” transport systems. CFTS can be defined

as ”systems in which multiple entities cooperatively use and operate the whole or a part

of the transport elements of their logistic activities” [235]. Such systems can reduced

the number of vehicles used and increase their utilization. As for shared ”passengers &

goods” transport systems, they are systems that make use of the existing networks of

collective transport for freight distribution. They can be implemented by adapting the

existing network, or by using the spare capacity of public transport vehicles (e.g. buses,

tramways, etc.) to transport goods [250].

When designing City Logisitcs solutions, decision-makers often rely on optimization

models to evaluate the potential of a solution before implementing it which, can be costly.

Among optimization models, Vehicle Routing Problems (VRPs) are essential tools for

modeling City Logistics, and since their advent in the 1960s, they have been widely used

in practice to tackle transportation and logistics related problems.

Basic vehicle routing problems require few information, namely the location of customers,

road network conditions, travel times/distances, and customer requests. However, mo-

tivated by real life applications, several extensions and variants were studied over te

years. They include further information and specific constraints on the delivery process

such as time windows for customer availability, traffic regulations, variable travel times,

periodic planing, environmental costs, etc. Solving these problems aims at optimizing

the utilization of the available transportation resources while satisfying both carrier and

customer requirements.

In this thesis, we develop effective solution approaches for vehicle routing problem variants

arising in City Logistics. In particular, we are interested in two variants of the problem:

selective vehicle routing problems and the two-echelon vehicle routing problem. Selective

routing problem have the characteristic that not all customer demands need to be satisfied.

In the Team Orienteering Problem (TOP), given a limited fleet of vehicles, and a set of

customers associated with non-negative profits, one must find a set of routes that visit a

subset of customers and maximize the total collected profit. Routes must start and end

respectively, at fixed departure and arrival locations. Moreover, the profit associated with

each customer can be collected at most once. The Two-Echelon Vehicle routing problem

(2E-VRP), on the other hand, is a variant where delivery from one or more depots to the

customers is managed by shipping and consolidating freight through intermediate facilities

called satellites. Freight is first moved from the depots to the satellites using large trucks,

and then delivered from the satellites to the customers using smaller vehicles. The 2E-

VRP models logistics systems that rely on Urban Consolidation Centers for last-mile
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distribution.

This thesis is organized as follows. In the first part of Chapter 1, we provide an overview

on freight distribution in urban areas, its importance, and its challenges with regards

to environmental issues. It presents City Logistics as a potential source of solutions to

the challenges of urban transportation, in particular, concepts such as co-modality and

collaborative distribution. In the second part of the chapter, we provide more details on

Vehicle Routing Problems namely, an overview of existing methods and problem variants

related to this thesis, especially selective routing.

In Chapter 2, we propose an effective neighborhood search for the Team Orienteering

Problem with Time Winows (TOPTW). The TOPTW is an extension of the TOP that

takes into consideration customer availability. Our algorithm is based on a neighborhood

search that (1) alternates between a route search space, and a giant tour search space

using a powerful splitting algorithm, and (2) uses a long term memory mechanism to keep

high quality routes encountered in elite solutions. The goal is to benefit from information

gathered while exploring the search space. Extensive computational experiments highlight

the competitiveness of our method as, it outperforms state-of-the-art algorithms in terms

of overall solution quality and computational time.

The Two-Echelon Vehicle Routing Problem (2E-VRP) is tackled in Chapter 3. To solve

the 2E-VRP, we designed a new hybrid heuristic method that relies on two components.

The first component effectively explores the search space in order to discover a set of

interesting routes using neighborhood search heuristics, in order to determine promising

routes. These routes are then combined into high quality solution using a set covering

formulation of the 2E-VRP. The resolution of the Set Covering model aims to identify

high quality solutions that might have been missed by the neighborhood search procedure.

Experimentation on benchmark instances from the literature show that our algorithm is

on par with state-of-the-art algorithms as, it consistently achieves high quality solutions

within short computational time.

The OPHS is a recently introduced routing problem that shares aspects with both the

Orienteering Problem and the 2E-VRP. In the OPHS, given a number of days D, a set

of intermediate facilities called “hotels”, and a set of “Points Of Interest”, the goal is

to find a maximal profit tour of D connected trips which, must start and end at one of

the available hotels, and visit each POI at most once. In Chapter 4, we propose a new

mathematical model for the OPHS that uses an exponential number of constraints. We

present several valid inequalities to enhance our mathematical model and solve it using
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an exact algorithm. Furthermore, in order to compute lower bounds for the OPHS, we

propose a fast multi-start heuristic based on the order-first split-second approach. To that

effect, we designed a split procedure specifically for the OPHS. The results obtained on

the OPHS benchmark instances show the effectiveness of our method.

Finally, in the conclusion of this thesis, we summarize our contributions and results, and

discuss potential avenues for future research work.



Chapter 1

General context

Urban freight distribution is an essential factor underpinning the socio-economic growth

and development of countries. However, urban transport is also one of the more disturbing

factors for the quality of life in cities. It is associated with several issues, especially traffic

congestion, noise, and pollution which, disturb people’s well-being. As traffic increases in

towns and city centers, a better way to ensure an efficient and effective urban transport

system becomes essential. The concepts of City Logistics have the potential to provide

efficient solutions to the issues related to urban freight distribution. One way of dealing

with this issues is through the development of co-modal transportation systems. In this

chapter, we present the concepts of City Logistics and co-modality. First, we recall issues

related to urban distribution and present City Logistics and co-modality as means to deal

with them. We then present the routing optimization problems involved and treated in

this thesis with a discussion on the exact and heuristic methods used to solve them.

1.1 Urban distribution

Urban freight transport refers to “all movements of goods in to, out from, through or

within the urban area made by light or heavy vehicles, including service transport and

demolition traffic as well as waste and reverse logistics” [53]. It includes a wide range of

transport operations and logistics activities.

Urban freight transport is a key factor in the economic development of cities, and have

a significant impact on the life in cities. Indicators compiled from different studies show

the significance of freight demand in cities from developed countries. Although collected

for specific regions of the world, these indicators do converge [73]. They show that a city

generates:

• 0.1 delivery or pick-up per person per day

5



6 CHAPTER 1. GENERAL CONTEXT

• 1 delivery or pick-up per job per week

• 300 to 400 truck trips per 1000 people per day, and

• 30 to 50 tons of goods transported per person per year.

Nowadays, urban distribution activities are rapidly gaining importance, in regards to their

economic, social and environmental impact. Rapid urbanization is being observed around

the world. According to the Population Division of the United Nations Department of

Economic and Social Affairs, more than half of the world’s population lives in urban

areas, and the proportion is expected to increase to 66% by 20501. In Europe, more than

350 million people live in densely populated areas, and it is expected that the proportion

of people living in city will reach 80% by 2020 [2]. Even tough a growing population could

arguably be an opportunity for cities to prosper, it also means that cities will be facing

an important challenge with regards to logistic issues. Furthermore, the ongoing growth

of e-commerce is also a major reason of the increase of fright flow in urban distribution.

The UN conference on Trade and Development estimates that global e-commerce sales

grew 13% in 20172, and it is very likely to be keep growing in the future. E-commerce

places a high priority on customer demands. As a result, e-retailers and logistics service

providers are required to change their logistics to meet the costumer expectations while

maintaining economically competitive operations. The problem is that, doing so increases

the number of deliveries and creates a larger dispersion of delivery points.

Due to its continues growth, urban transport is becoming a major factor with negative

impact on the quality of life. In large cities and in metropolitan areas, intensive

daily delivery flow hinders road traffic and causes congestion. The narrow streets that

characterize old European cities leave little room for passing traffic. Also, the lack

of accommodations and reserved areas for loading and unloading operations, and the

imbalance between available parking places and parking demand are factors that further

add to the issue. Furthermore, urban distribution is more polluting than long haul

distribution, because of the average age of the vehicles [73]. Air pollution is responsible

for respiratory and cardiovascular diseases and is considered the leading environmental

factor in premature death in the European Union. Figure 1.1 shows the evolution of CO2

emissions by activity sector in France, between 1990 and 2017. Transport was responsible

1More than half of world’s population now living in urban areas, UN survey finds -
https://news.un.org/en/story/2014/07/472752-more-half-worlds-population-now-living-

urban-areas-un-survey-finds
2Global e-Commerce sales surged to $29 trillion - https://unctad.org/en/pages/PressRelease.

aspx?OriginalVersionID=505

https://news.un.org/en/story/2014/07/472752-more-half-worlds-population-now-living-urban-areas-un-survey-finds
https://news.un.org/en/story/2014/07/472752-more-half-worlds-population-now-living-urban-areas-un-survey-finds
https://unctad.org/en/pages/PressRelease.aspx?OriginalVersionID=505
https://unctad.org/en/pages/PressRelease.aspx?OriginalVersionID=505
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Figure 1.1 – CO2 emissions in France by activity sector. [52]

for 38% of CO2 emissions in 2017. It is estimated that freight transportation is responsible

for a fourth of the CO2 emissions caused by transport activities in European cities, and for

30 to 50% of other transport related pollutants [73]. To reduce emissions of air pollutants

related to transport activities, while at the same time maintaining the flow of freight,

cleaner vehicles could be used. However, it only addresses part of the problem as cleaner

vehicles do not influence congestion nor the nuisance caused by freight distribution. Urban

freight also accounts for a significant part of noise pollution. In the city of Bordeaux, in

France, is was established that during the morning rush hour, the circulation of freight

transport vehicles added five decibels (dB(A)) to the noise from the circulation of private

cars [73]. Finally, Smells, vibrations and stress due to congestion are other forms of

disturbances to life quality. Finally, in large cities, while commercial vehicles represent

a small proportion of traffic, they are involved in the majority of accidents that also

involve vulnerable road users [2]. These negative impacts of urban distribution influence

the livability of cities.

The concept of City Logistics is one approach to solving the issues due to urban

distribution. It aims to optimize freight transportation within city areas while considering

traffic congestion and environmental issues as well as costs and benefits to the freight

shippers [237].

1.2 City Logistics

Taniguchi et al. [237] define City Logistics as “the process for totally optimizing the logis-
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Shippers Carriers

Administrators Residents

Figure 1.2 – Stakeholders in City Logistics.

tics and transport activities by private companies with support of advanced information

systems in urban areas considering the traffic environment, the traffic congestion, the

traffic safety and the energy savings within the framework of a market economy”. It aims

to globally optimize logistic systems within urban areas while considering the costs and

benefits for shippers and freight carriers, and the implications on environmental issues

and traffic congestion which, are of concern to the residents. In particular, the objectives

of city logistics can be linked, in no particular order, to [235]:

• Mobility, i.e. ensuring the fluidity of the flow of goods in urban areas by alleviating

traffic congestion.

• Sustainability, i.e. minimizing negative environmental impacts such as air pollution

and noise pollution.

• Livability, i.e minimizing the inconvenience caused to residents.

• Resilience, especially for disaster relief logistics.

Since City logistics aims to optimize the last stage of supply chain management, it must

consider the requirements of everyone that is involved in or impacted by urban freight

distribution. According to Taniguchi et al. [237], in city logistics, there are four key

stakeholders with their specific and often conflicting objectives: shippers, freight carriers,

administrators, and residents.

• Shippers are manufacturer, wholesalers or retailers. They are the customers of the

freight carriers and they want reliable logistics services with lower costs.

• Freight carriers want to be able to meet customer requests and provide better

services at a lower cost. They also need to minimize the cost of collecting and

delivering goods in order to maximize their profits.
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• Residents are the people who live, work in the city. They are not keen on large

trucks coming into their residential area. They want to minimize traffic congestion,

noise, air pollution and traffic accidents near their homes and workplaces.

• City administrators have for objective to improve the economic development of the

city, improve livability, and reduce environmental impact. Their role is to co-ordinate

and facilitate city logistics initiatives.

Because of the difference in perspective between stakeholders, urban freight transport

issues are very complicated. Thus, the design of city logistics solutions requires the

collaboration between several disciplines in order to come up with schemes that reduce

the economic, social and environmental costs of urban freight distribution [234].

Several city logistics solutions were implemented around the world. Taniguchi and Thomp-

son [235] classifies them into four management categories : (1) traffic management, (2)

better transport method, (3) harmony with other urban planning, and (4) others. Traffic

management schemes aim at reducing carrier costs, traffic congestion and environmental

impact. “Better transport methods” solutions are concerned with the smart use of the

available resources and means of transport. Finally, “harmony with other urban planning”

deals with the regulation of logistics facilities building, in order to be consistent with land

use planning. Among this various city logistics schemes, we are interested in:

• The optimization of vehicle routing and scheduling which, is part of the traffic

management category;

• Cooperative freight transport, in the category of better transport methods;

• Co-modal freight transport which, is also part of the better transport methods

category.

1.2.1 Optimizing vehicle routing and scheduling

When designing City Logisitcs solutions, decision-makers need to test the potential

solution in order to identify unexpected side-effects before proceeding with the imple-

mentation. Mathematical models are useful for explaining City Logistics systems and

assessing the effects of applying policy measures on them. Typically, two types of models

are used in the context of city logistics: optimization models and simulation models [237].
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In general, optimization models are used to find how to make the best use of the

available resources. Among optimization models, Vehicle Routing Problems (VRPs) are

essential tools for modeling City Logistics. Their aim is to determine the customer-truck

assignments and the visiting order of customers during freight distribution.. They are

widely used in practice to minimize the costs of vehicle operations of freight carriers.

Basic vehicle routing models require few information, namely the location of customers,

road network conditions, travel times/distances, and customer requests. However, several

extensions and variants were studied to accommodate further information and specific

constraints on the delivery process such as time windows for customer availability, traffic

regulations, variable travel times, . . . etc. Yet, in practice, it is difficult to fully replicate

the real-world conditions of logistics operations, and many elements are ignored in the

modeling process. However, Vehicle Routing models remain useful for understanding the

gap between the current level of efficiency in vehicle operations and the optimal solutions,

and provide a good benchmark for the level of economic and environmental costs [235].

1.2.2 Cooperative freight transport

Cooperative freight transport systems (CFTS) are “systems in which multiple entities

cooperatively use and operate the whole or a part of the transport elements of their

logistics activities.” [269]. As such, CFTS can provide shippers and carriers with cost

saving opportunities that would be impossible to achieve if they were to focus only

on their internal logistics process. Furthermore, sharing resources like vehicles or load

capacity could reduce the number of necessary vehicles while increasing their utilization

and decreasing the total travel time. Thus helping in the achievement of City Logistics

goals like alleviating traffic congestion and reducing environmental impact.

Various types of CFTS have been discussed in both professional and academic literature.

Of interest is so-called “Horizontal logistics cooperation” which, refers to the collaboration

between firms that perform comparable logistics functions [261]; for example, collaboration

between carriers or between shippers even if they are competitors.

Cooperation between carriers can be achieved by sharing or exchanging customer requests

in order to improve their efficiency and profitability which, can result from an increase

in capacity utilization, or from reduced total transportation costs due to improved

transportation planning [261]. There are different techniques to implement order sharing,

including joint route planning. It consists in regrouping all customer orders from all the

participating carriers in a central pool then setting up efficient route plans for all requests
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simultaneously [261]. This results in scales economies in terms of reduced travel distance,

empty vehicle movements and number of required vehicles [71]. Several authors studied

joint planning from a routing optimization point-of-view, and several VRP models were

proposed [71, 150, 172, 74].

In shipper collaboration, multiple shippers consolidate their customer orders and out-

source transportation to a single carrier. They try to identify sets of customer requests that

can be presented to a carrier as bundle, instead of individually, in order to get better rates.

Similarly to carrier collaboration, there are academic studies that study the operational

planning and cost allocation in such systems using vehicle routing optimization models

(see Defryn et al. [79], Lv et al. [175], Lyu et al. [176]).

The implementation of CFTS between shippers benefits greatly from the availability of

Urban Consolidation Centers (UCCs). They are logistics facilities located in the vicinity

of cities where goods destined to the area are delivered and from which consolidated

deliveries as well as additional logistics services are realized [3]. Thus, UCCs play an

essential role in the implementation of CFTS as bases for collecting and delivering goods

but also by facilitating reception, processing, and dissemination of information [269].

A good example of CTFS with a consolidation center can be found in Motomachi Shopping

Street in the Japanese city of Yokohama. An association of 300 shop owners established

a consolidation center with the support of the Yokohama City government and the local

police. Carriers were requested to deliver their orders destined for Motomachi Street to

the consolidation center, where they are transferred to low emission vehicles fueled by

compressed natural gas (CNG). This CFTS reduced the local emissions by decreasing

total vehicle kilometers, increasing the load factor of cooperative vehicles compared with

carriers’ trucks, but also through lower emissions from CNG vehicles and human-powered

carts compared with diesel-powered trucks [269].

In 2010, DHL established its depot at the consolidation center of the city Bath (United

Kingdom). At this center, goods are consolidated for onward delivery using electric vehicles

into central Bath. The electric vehicles used by the center reduced energy consumption

by 55.7% compared to diesel trucks. From January 2011 to the end of April 2012, the

number of deliveries to participating retailers was reduced on average by 76% [253].
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1.2.3 Co-modal freight transport

Co-modal freight transports are relatively new systems which involve making use of the

services offered by all available transport modes, including public passenger transport

vehicles such as trains, trams, buses or taxis for transporting goods as well as passengers

within urban areasThompson and Taniguchi [245]. The idea of such systems is to

take advantage of the free load capacity of public transport vehicles which, is often

underutilized outside of peak periods. The concept of co-modality is discussed in more

details in Section 1.3.

1.3 Co-modality

The notion of co-modality was introduced by the European Commission in 2006 as part

of its new transport policy. It refers to the ”efficient use of different modes on their own

and in combination” for the purpose of achieving ”an optimal and sustainable utilisation

of resources” [55]. Unlike previous European transport policies, co-modality does not seek

to oppose road transportation to its alternatives, but rather seeks to take advantage of

the domains of relevance of different transportation modes and of their combinations

to optimize services. For example, railway transportation could be a viable alternative

for transporting large shipments between districts of a metropolitan area. It is far less

polluting than trucks, but is also less flexible and has higher transshipment costs.

Co-modality is best depicted by recent implementations in some cities that consist in

combining the use of trucks with railways, trams, subways, inland water shipping, bicycles,

and motorcycles for urban freight transport to promote more efficient and sustainable use

of resources. Cargo-tram & e-Tram in Zurich (Switzerland) is an example of a co-modal

system that uses tram infrastructure for waste collection within the city. CargoTram is

used for the collection of bulky waste while e-Tram is reserved for electronic items. In

Japan, the Yamato Transport Company uses a tram system for delivering goods to the

Arashiyama district in Kyoto Taniguchi et al. [236]. The system uses a two carriage tram

with one carriage being reserved for transporting goods into the district where, they are

picked up by electric bicycles and delivered to customers. This system has considerably

reduced the number of trucks used for delivering parcels. Leonardi et al. [162] report

on a trial in which a major supplier of stationery and office supplies to businesses in

central London replaced their diesel vans with electrically-assisted tricycles and electric

vans operating from a urban micro-consolidation center. The results show that the total
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distance traveled and the CO2 equivalent emissions per parcel delivered were considerably

reduced. Furthermore, the trial proved successful from the company’s perspective in terms

of transport, environmental and financial costs.

The promotion of co-modality prompted another trend in City Logistics that involves

integrating passenger and freight transport systems, more specifically, using passenger

transport systems for carrying goods within the city. For example, spare capacity in buses,

tram, and subways can be used for supplying retail stores, and Taxis can transport small

parcels when transporting a passenger, or when they are idle. Combining passenger traffic

and freight transport has the potential to lead to better efficiency and sustainability in

urban distribution, by reducing the number or required vehicles to meet the transportation

needs [249, 178]. Public transport companies can benefit from additional sources of income

from carrying goods on less crowded vehicles. Shippers benefit by having convenient

courier services. Fewer trucks also leads to less congestion, pollution, and noise. However,

using public transport vehicles for transporting goods can require additional handling

equipment which, might be impossible to use in crowded areas and in narrow streets.

Furthermore, there is the risk of deteriorating the service level for passengers. Thus proper

coordinating, planning and scheduling strategies need to be determined to improve the

financial viability and the service quality of a co-modal on-demand services [91].

A pilot project was implemented in the city of Sapporo (Japan) to integrate the city’s

subway system with the truck delivery services operating between the suburbs and the

city center [148]. This new delivery service operated during off-peak hours when passenger

flow is low, and used delivery carts to move the parcel. The carts were loaded in ordinary

subway cars on empty wheelchair spaces. Other workers unloaded them at the arrival

station. The aim of this system was to mitigate urban transport problems, particularly

during winter when heavy snowfall impairs traffic operation. It was well received by the

public (subway users). Trentini et al. [250] performed a case study on the utilization of

spare capacity on buses for the distribution of goods within the city of La Rochelle in

France. Their study assumed that goods were packed into rolls, loaded from a single

distribution center situated at the bus depot, and delivered to bus stops along the

bus route. The delivery is then completed by tricycles. They present a mathematical

formulation of the problem as a vehicle routing problem with transfers. The obtained

results of the case study provide valuable information on the efficiency of the system.

A similar study was performed by Masson et al. [178]. Li et al. [163, 164, 165] studied

the benefits and the drawbacks of combining people and parcel flows using the same taxi

network. They proposed two mathematical models to determine the best schedules and
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routes for satisfying a set of people and parcel transport requests. The first model is

based on the Dial-A-Ride Problem (a routing problem) and aims at finding a set of initial

routes. The second model aims at inserting parcel requests into a set of predetermined

routes. They performed numerical studies using real taxi trail data to show the potential

of their approach. Finally, Ghilas et al. [116, 117] discussed the potential of integrating

truck delivery with public transportation. They consider scheduling a fleet of vehicles for

freight delivery, in a system where goods can be transported to station-hubs from where

they can continue their journey on a public fixed schedule line. Afterwards, they may

eventually be picked up again by another vehicle to be delivered to their final destination.

Transferring freight requests to fixed-scheduled lines can be beneficial during off-peak

hours when the utilization of the scheduled lines is low.

In terms of modeling, these new forms of distribution fall in the category of Vehicle

Routing Problems with additional constraints and features such as capacity constraints,

time windows, multiple-echelons, and transfers between vehicles. In this thesis, we address

the design of decision tools that provide ”co-modal” itineraries optimized in terms of cost

with a focus on two variants of the selective vehicle routing problems, and the two-echelon

vehicle routing problem.

1.4 Overview on vehicle routing problems

1.4.1 Vehicle Routing Problems

Vehicle routing problems (VRPs) are some of the most notable combinatorial optimization

problems of the last fifty years. Due to their major economic impact, their wide range of

applications, and the difficulty and the variety of characteristics combinations of many

real-life settings, VRPs have been, and still are, the subject of intensive research effort.

VRPs are concerned with the design of cost-effective delivery routes to serve a set of

geographically-dispersed customers with respect to some constraints that stem from real-

life settings.

The problem from which is originate vehicle routing problems is the Travelling Salesperson

Problem (TSP) [78] which, is the oldest and most studied routing problem, and also one of

the most recognizable optimization problems. The problem describes the situation where

a salesperson leaves to visit n cities before returning to their starting point, and wants to

find the sequence of visits that minimizes the travel distance. The TSP is usually defined
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on a weighted digraph G = (V,A), where V = {1, ..., n} represents the city to be visited,

and each arc (i, j) ∈ A represents the path from city i to j. A travel distance (or cost)

cij is associated with each arc (i, j). An optimal solution to the TSP corresponds to a

shortest Hamiltonian cycle on graph G.

Usually, VRP refers to the Capacitated Vehicle Routing Problem; a generalization of the

TSP where a fleet of m identical vehicles with limited load capacity Q has to visit the set

of customers, instead of just one salesperson. Each vehicle starts from a depot-node, visits

a subset of customers, with respect to capacity limitations, and then returns to the depot.

As such, the VRP involves two decisions: one is the assignment of customer demands to

capacitated vehicles which, coincides with a Bin Packing Problem, and the other is to

design the best route for each vehicle which, coincides with a TSP. The VRP is defined on

a weighted undirected graph G = (V,E) where, V is a set of |V | = n+ 1 nodes with node

v0 ∈ V representing the depot and the remaining nodes the customers. A non-negative

demand di is associated with each customer i ∈ V \ {v0}. Each edge (i, j) ∈ E represents

the path from node i to j, and has a non-negative travel cost cij. A fleet of m homogeneous

vehicles with a maximum load capacity Q is available at the depot to serve the customers.

A solution of the VRP is a set of m or less delivery routes, i.e. sequences of deliveries to

customers, that start and end at depot, in which each customer is visited exactly once

and the total demand of the customers served in a single route does not exceed vehicle

capacity. The objective of the VRP is to find a set of routes that minimizes the total

travel cost. An example of a VRP instance with its solution is given in Figure 1.3.

Depot Customer

(a) VRP instance.

Depot Customer

(b) VRP solution

Figure 1.3 – Example of a VRP instance with its solution.
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1.4.2 Solution methods

Over the years, a wide array of solution methods for the VRP were presented in the

literature, be it exact methods, heuristics, or meta-heuristics. These methods are surveyed

in the works of Toth and Vigo [246], Baldacci et al. [22], Cordeau et al. [61], Gendreau

et al. [113], Eksioglu et al. [93], Laporte [154], Vidal et al. [263], Toth and Vigo [248]. In

the following, we briefly describe the main methods used to solve VRPs.

1.4.2.1 Exact methods

Exact methods for the VRP range from basic Branch-&-Bound algorithms to remarkably

refined mathematical programming methods.

The first Branch-&-Bound (B-&-B) algorithm for the VRP was introduced by Christofides

and Eilon [49]. They first reduce the problem to a m-TSP with m + 1 fictive depots,

and then use the minimum spanning tree to compute a lower bound. Christofides et al.

[50] introduced two new lower bounds which, greatly improved the performance of B-&-B

algorithms. Laporte and Nobert [158] proposed another B-&-B algorithm based on integer

linear programming formulation of the problem. Hadjiconstantinou et al. [129] used the

lower bounds of Christofides et al. [50] in their improved B-&-B algorithm.

Few works deal with VRPs through Dynamic Programming (DP) methods. To the best of

our knowledge, Eilon et al. [92] and Christofides et al. [51] were the only ones to solve the

VRP with a DP method.Desrosiers et al. [84] proposed a DP approach to solve a dial-a-ride

problem with Time Windows. Dynamic programming is mostly used as components of

other exact approaches, for example, as means to compute bounds, or as part of heuristic

methods.

Nowadays, exact algorithms for the VRP are mostly Branch-&-Cut, Branch-&-Price and

Branch-&-Cut-&-Price algorithms. These algorithms are designed based on one of three

main Integer Linear Programming (ILP) formulations of the problem [154, 218, 195]:

• The Vehicle Flow Formulation is an extension of the classical TSP formulation of

Dantzig et al. [78], and uses binary variables xe to indicate how many times edge

e ∈ E is traversed in the solution. This formulation was first introduced in [158, 159]

and has been widely used ever since then. It can be reinforced through the inclusion

of various valid inequalities.
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• The Set Partitioning Formulation was first introduced by Balinski and Quandt

[23]. This formulation considers feasible routes as the basic object to work with.

Given the set of all feasible routes, it associates a binary variable to each route

to indicate if it is part of the solution or not, i.e, a solution to the model

decides which feasible routes to include. Because route feasibility is implicit, the

SP formulation has the benefit of being generic and can model several variants

of the problem without additional constraints. However, it requires a potentially

exponential number of binary variables. The SP formulation is rather dominant for

designing exact algorithms for the VRP with Time Windows, and performs very

well for the VRP when used inside Branch-&-Cut-&-Price algorithms.

• The Commodity Flow Formulation uses binary variables to represent the load carried

on arc (i, j). It was discussed by Gavish and Graves [107], but the authors did

not report numerical results. Baldacci et al. [18] used a similar formulation with

a Branch-&-Cut algorithm to solve the VRP. Their formulation is defined on an

extended graph that includes a fictive copy of the depot-node to properly model

single-customer routes.

1.4.2.2 Heuristics

Since the 1960s, numerous heuristic methods were proposed to solve the VRP. They

can broadly be classified into constructive and local improvement heuristics. Laporte

[154] refers to the methods presented in this section as classical heuristics because, in

contrast with more recent algorithms and meta-heuristics, they only progress towards a

local optimum in a greedy manner and do not allow the objective function to deteriorate

from one iteration to the next.

As meta-heuristics rose to prominence, constructive heuristics fell into disuse as stand-

alone solution methods. However, they are still very often employed as means to provide

initial solutions to a wide range of meta-heuristics, or to generate new solutions inside

meta-heuristics like GRASP. The savings algorithm of Clarke and Wright [54] is one of

the better-known constructive heuristics. It is simple, easy to implement, and fast, which,

is why it is still widely used inside more sophisticated algorithms. The savings algorithm

starts by constructing back-and-forth routes (v0, vi, v0) for each customer vi ∈ V \ {v0},
and then progressively merges routes at each iteration. More specifically, it identifies and

merges the two routes (v0, . . . , vi, v0) and (v0, vj, . . . , v0) that maximize the saving sij =

ci0 + c0j− cij, under the condition that the resulting route is feasible. The algorithm stops
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when it is no longer possible to merge routes. Numerous improvements and acceleration

methods were proposed for this algorithm, notably by Gaskell [103] and Yellow [270].

Petal algorithms are a family of constructive heuristics, the idea of which is to solve

the set partitioning formulation of the VRP over a subset of promising routes (called

“petals”) generated in a heuristic manner. The sweep algorithm of Gillett and Miller [118]

is one of the earliest examples of such algorithms. This method assumes that customers

are distributed on a plane, and uses a set non-overlapping petals. To generate petals, it

scans the plane in a circular manner around the depot, starting from one customer and

continuing in increasing polar angles. Customers are successively inserted, in this order,

at the end of the current route as long as route constraints are satisfied. Whenever an

insertion becomes infeasible due to route constrains, a new route is initiated. Several

other petal algorithms with more complex petal generation heuristics were presented by

Foster and Ryan [100], Ryan et al. [212] and Renaud et al. [207] to allow embedded and

intersecting routes.

Beasley [25] presented a heuristic approach where the assignment and sequencing of

customers are made in two different phases. This approach, usually referred to as route-

first cluster-second algorithm, starts by solving a TSP on the VRP graph to obtain a

giant tour which determines the order of visits. The giant tour is then split into several

feasible routes by solving a shortest path problem on an auxiliary graph. For a long

time, route-first cluster-second heuristics did not receive much attention, but they started

gaining traction since Prins [199] used them in a very well-performing genetic algorithm

for the CVRP. Another approach, called cluster-first route second heuristic was proposed

by Fisher and Jaikumar [99]. They used a clustering algorithm to group customer visits

into subsets, followed by TSP optimization to find the best route for each cluster. However,

they received less attention, since they needed significant computational effort for routes

optimization.

Improvement heuristics are used to optimize a complete VRP solution, usually generated

by means of a constructive heuristic. Improvement heuristics can be divided into

intra-route moves which, improve each route separately, and inter-route moves which,

operate on multiple routes simultaneously. The most popular intra-route operators are

improvement heuristics that were designed for the TSP, such as the λ − Opt exchanges

of Lin [168]. The latter consists in removing λ edges from the solution, and replacing

them by λ other ones. In Lin and Kernighan [169], the value of λ is modified dynamically

throughout the search, but in VRP literature, neighborhoods with a fixed value of λ are

more commonly used; in particular, 2−Opt and 3−Opt exchanges.
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Inter-route moves mostly consist in removing one or several visits from their current route

and relocating elsewhere. Among the most commonly used inter-route moves, relocate

(also called shift) removes a sequence of visits from one route and reinserts them into

another one, swap exchanges sequences of visits between two routes, and 2−Opt∗ removes

two edges from two routes (one from each) and reconnects them differently. Worthy of

note is that, other heuristics with much larger neighborhoods exist in the literature, for

example, the b-cyclic/k-transfer moves of Thompson and Psaraftis [244] which, consist in

generating a circular permutation of b routes and shifting k customers for each route to

the next one in the permutation. As such, the three previously described heuristics can

be considered special cases of the latter one.

One major issue of improvement heuristics is the cost of exploring a neighborhood, which

can be impractical for large instances. Thus it is necessary to restrict evaluations to a

reduced subset of possible moves. One popular technique to achieve this, called granular

search [247], consists in avoiding the evaluation of moves that involve distant customers.

For each customer i, a list of closest customers Ci is predetermined, and only moves that

involve i and j ∈ Ci are considered. Another way of reducing computation cost is to use

pertinent information on sub-sequences of customers, like partial demands and distances,

to speed the evaluation of a move’s feasibility and cost [136].

1.4.2.3 Meta-heuristics

Meta-heuristics were applied to the VRP very early on, and nowadays they constitute the

bulk of the literature on heuristic methods. Over the last fifteen years, a wide variety of

VRP meta-heuristics were published, and it would take too long to elaborate on them,

even if we were to stick to notable methods only. Rather, we will briefly describe the

principle of each class of algorithms, while mentioning some important contributions.

1.4.2.3.1 Neighborhood search algorithms Starting from an initial solution,

Neighborhood Search algorithms explore the solution space by moving from the current

solution to another solution in its neighborhood. Typically, they combine inter-route

improvement moves with intra-route moves for re-optimization. However, in contrast

with classical improvement heuristics, the cost of the selected neighbor is not necessarily

better then that of the current solution, thus, neighborhood search heuristics must include

mechanisms to avoid cycling. Well-known Neighborhood search algorithms include Tabu

Search (TS), Simulated Annealing (SA), Variable Neighborhood Search (VNS), and
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Adaptive Large Neighborhood Search (ALNS)

The main idea of TS is to move from a solution to the best solution in a subset of

neighboring solutions, even if it has a worse objective value. To avoid cycling, a short-

term memory, called tabu list, is used to reject recently explored solutions or solutions

sharing some attributes with the current solutions. However, if such a solution constitutes

a new best known solution, it is accepted as an exception to the rule. During the

1990s and early 2000s, TS algorithms were prevalent among CVRP meta-heuristics and

concepts introduced for TS algorithms inspired various other meta-heuristics. Notable TS

implementations include the “Taburoute” of Gendreau et al. [109], the TS with Adaptive

Memory of Taillard [230] and Rochat and Taillard [210], the Unified TS of Cordeau et al.

[58, 60], and the Granular TS of Toth and Vigo [247].

In SA algorithms, at each iteration i, the new solution s is randomly selected in the

neighborhood of the current one si. If s has a better objective value than st, it is accepted

as the incumbent of the next iteration si+1 = s. Otherwise, this solution is accepted

with a probability pi which is controlled by a parameter T called temperature. The

higher the temperature, the higher the probability to accept a deteriorating solution.

Temperature evolves during the search according to a cooling process. It starts high to

favor diversification, then progressively decreases to accept fewer deteriorating moves to

favor intensification. Osman [188] is one of the earliest applications of SA to the VRP.

Dueck [89] and Li et al. [166] implemented a deterministic variant of SA, called Record-

to-Record algorithm where, a solution is accepted if it is not much worse than the current

one.

Variable Neighborhood Search (VNS) uses an ordered list of neighborhoodsN1, N2, . . . , Np,

which are usually of increasing complexity. Starting from an initial solution, the algorithm

applies the first neighborhood of the list until it reaches a local minimum. When it

does, it switches to the next one in the list. The search process goes back to the first

neighborhood whenever it finds an improvement, or when the all neighborhoods have

been explored. The reason behind this process is the fact that local optima are defined for

a given neighborhood, thus switching neighborhoods might allow further improvement of

the solution. Kytöjoki et al. [151] designed a VNS algorithm to solve large-scale real-life

VRP instances.

Finally, Large Neighborhood Search algorithms and Adaptive LNS algorithms simulta-

neously destroy and repair parts of the current solution and are related to the ruin-and-

recreate moves of Shaw [219]. Both usually use several destroy and repair heuristics. The
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difference between the two is the way the choose the destroy and the repair heuristic to

be used during each iteration. In LNS, the choice is usually random, while in ALNS, the

probability of choosing a heuristic is a function of its success rate in previous iterations.

The ALNS was successfully applied to the VRP by Pisinger and Ropke [194].

1.4.2.3.2 Population search method Population search methods are based on the

improvement of a set solutions, called a population, using mechanisms often inspired from

nature. Genetic Algorithms (GA) [134] are the best-knwon example of meta-heuristics

from this category. They evolve a population of solutions through mechanisms such as

crossover, selection and mutation. At each iteration, parent solutions are extracted from

the population and recombined to generate child solutions (crossover) which, replace the

worst individuals of the population (selection). Often, a mutation is applied to the child

solutions after the crossover process, for the purpose of diversification. To the best of

our knowledge, all genetic algorithms that were successfully applied to the VRP rely on

local search procedures to guide the search towards promising solutions. The obtained

algorithms are sometimes referred to as memetic algorithms. Furthermore, many of this

algorithms rely on a route-first cluster-second approach with solutions being represented

by a giant-tour with no trip delimiters. This strategy reduces the size of the search space

and allows the use of simple crossover operators. Examples of successful implementations

include the works of Prins [199, 202], Sörensen and Sevaux [227], Nagata and Bräysy [184]

and Vidal et al. [262].

Among other population search methods that were successfully applied to the VRP, we

mention Path-Relinking algorithms [133, 240]. Path-Relinking algorithms differ from GA,

in the way they recombine solutions and in the size of the pool. Instead of random

crossovers, PR algorithms use an initial solution in which they progressively insert

characteristics of a guiding solution. By doing so, it creates a trajectory connecting the

two of them and which, might contain a new improving solution. Finally, Ant Colony

Optimization (ACO) approaches [87] mimic the behavior of ants foraging for food. Simply

put, ants lay pheromones on their path as they look for food sources. Pheromones

gradually accumulate on the shortest paths to the food source, which are then followed

by more ants. In an ACO, several ants construct solutions using constructive heuristics

that exploit information on search history (pheromone levels) to favor edges that appear

frequently in good solutions. Examples of implementations of ACO for the VRP include

Bullnheimer et al. [40], Bell and McMullen [27], Reimann et al. [206] and Yu et al. [271].
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1.4.2.3.3 Hybrid algorithms Hybrid meta-heuristics are methods which combine

concepts that were originally developed for independent methodologies and blend them

into one single algorithm that benefits of their respective strengths. The hybridization

can be in the form of a method where different techniques are juxtaposed, like two

algorithms being called consecutively or concurrently, or otherwise in the form of an

algorithm where the methods and the various concepts are indissociable from each other.

Several hybrid methods have been applied to the VRP during the last decade. Some of

them are based on the blending of population-based methods with neighborhood-based

methods and local search, for example the combined GA and TS of Perboli et al. [191]. Yet

again, most population search approaches for the VRP rely on local search which, in a

way, makes them hybrid algorithms. Other hybrid approaches combine concepts from

different Neighborhood-Search paradigms into a single algorithm, such as the restart

procedures from GRASP, the probabilistic acceptance criterion from SA, or the use of

variable neighborhoods like VNS. For example, Prins [201] combine a Greedy Randomized

Adaptive Search Procedure (GRASP) with Evolutionary Local Search to solve the VRP,

while Cordeau and Maischberger [62] blend concepts from Iterated Local Search, ruin-

and-recreate moves, and a tabu memory.

Another increasingly popular form of hybridization is the combination of meta-heuristics

with mathematical programming, resulting in the so-called matheuristics. The popular

strategy among matheuristics consists in using integer programming to combine elements

from promising solutions into a complete solution [210, 238, 123, 228].

1.4.3 Variants

Routing problems can be found in a variety of practical applications, each with their own

set of requirements. Naturally, this wide range of settings led to the definition of many

variants, intended to capture in more details the characteristics of real-life situations, or to

better account for different decision contexts. The large variety of practical applications,

characteristics and VRP variants is addressed by a vast literature, and for the sake of

conciseness, it would be impractical to provide a detailed review on VRP variants herein.

Therefore, we refer the reader to the works of Gendreau et al. [114], Vidal et al. [264],

Toth and Vigo [248], and Braekers et al. [36] for comprehensive surveys on the matter.

In the following, we present some common VRP variants that are of relevance to the

present work.
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1.4.3.1 Distance Constrained Vehicle Routing Problems - DVRP

In the distance-constrained VRP, an additional limitation is imposed on route durations.

It allows to account for real-life considerations, such as vehicle fuel autonomy or driver

work-shift durations. Each customer is associated with a service time si and each edge

(i, j) with a travel time tij. The duration of a route is the sum of the service times of its

customers and the travel times between them, and must not exceed a limit L. In most of

the classic benchmark instances from the literature, the travel time and the travel cost

are considered the same, i.e. tij = cij for all (i, j) ∈ E. There are only a few works that

have considered exclusively the DVRP. Laporte et al. [155, 159] presented exact methods

to solve this problem. Prins [199] designed a genetic algorithm where the chromosomes

are permutations of n customers without trip delimiters, and their evaluation is done by

an optimal splitting procedure like that of Beasley [25]. It should be noted that most of

the heuristics and meta-heuristics for the classical VRP can be easily adapted to solve

the DVRP.

1.4.3.2 Vehicle Routing Problems with Time Windows - VRPTW

In the Vehicle Routing Problem with Time Windows (VRPTW), the service of each

customer must occur within a predefined time interval, known as a time window. Moreover,

each customer is associated with a service duration, and each arc with a travel duration.

Waiting times are allowed in case of early arrival at the customer location. On the

other hand, late arrivals are either forbidden if hard time windows are considered, or

are allowed at the cost of penalties if the time windows are soft. The VRPTW has

been widely studied since the 1970s, and numerous exact and heuristic algorithms have

been developed. For extensive reviews on the VRPTW, the reader is referred to Bräysy

and Gendreau [37, 38], Kallehauge [143], Gendreau and Tarantilis [115], and Desaulniers

et al. [83]. The most effective exact methods that were published over the last years

(Jepsen et al. [139], Desaulniers et al. [82], Baldacci et al. [20], Pecin et al. [190]) are

based on a set-partitioning formulation of the problem and can solve instances with

up to 100 customers. the Branch-&-Cut-&-Price of Pecin et al. [190] is even able to

solve most of the instance with up to 200 customers. State-of-the-art metaheuristics

for the VRPTW are of various kinds, among them: Tabu Search [60], Iterated Local

Search [62], Large Neighborhood Search [179, 198], Genetic Algorithms [265], Evolutionary

Algorithms [208], Path Relinking [130], and Memetic Algorithms [185, 31]. The relaxation

of time-constraints during the search process to allow the exploration of infeasible solutions
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is a recurrent idea to improve the performance of meta-heuristics for the VRPTW.

1.4.3.3 Multi-Depot Vehicle Routing Problems - MDVRP

The Multi-Depot Vehicle Routing Problem (MDVRP) is a variant of the CVRP where

several depots are considered for the service of customers. Each vehicle is assigned to

a specific depot which, constitutes the departure and the arrival of its route. Typically,

the supply capacity of a depot is considered, the size of the fleet is limited, and vehicle

are homogeneous. The MDVRP describes a situation where customers are not evidently

clustered around each depot, otherwise, the problem can be solved as several individual

VRPs. The literature on the MDVRP is rather small when compared to the VRP or the

VRPTW. Exact methods for the MDVRP were introduced in Laporte et al. [160], Baldacci

and Mingozzi [19], Contardo and Martinelli [57]. Several heuristics and meta-heuristics

were proposed for the MDVRP. Some of the recent ones are the ILS and Set Covering

approach of Subramanian et al. [228], the Hybrid Genetic Search with Advanced Diversity

Control of Vidal et al. [262], the parallel Tabu Search of Cordeau and Maischberger [62],

the Unified hybrid Genetic Search of Vidal et al. [266], the hybrid granular TS algorithm

was proposed by Escobar et al. [96], and the cooperative co-evolutionary algorithm of

Oliveira et al. [186]. For more detailed reviews on the MDVRP, we refer the reader to

papers of Ombuki-Berman and Hanshar [187], Karakatič and Podgorelec [144], Montoya-

Torres et al. [182].

1.4.3.4 Split Delivery Vehicle Routing Problems - SDVRP

In the classical VRP, each customer is visited exactly once. However, a single visit might

not be enough, if, for example, the requested quantity of goods in larger than vehicle

capacity. The Split Delivery Vehicle Routing Problem (SDVRP) is a variant of the VRP

where customer demands can be satisfied by multiple vehicles, each moving a part of

their request. More than making the model more realistic, the SDVRP can also lead

to savings in transportation costs and fleet size with respect to the VRP (see Dror and

Trudeau [88], Archetti et al. [9]). The literature on the SDVRP is reviewed in Archetti and

Speranza [10] and Irnich et al. [137]. Dror and Trudeau [88] proved that the SDVRP is NP-

Hard despite it being a relaxation of the VRP. Furthermore, two versions of the SDVRP

can be distinguished with respect to fleet-size policy: in the SDVRP-UF the fleet-size is

unlimited, whereas in the SDVRP-LF, the fleet size is limited. Exact-solution approaches

for the SDVRP were proposed by Belenguer et al. [26], Jin et al. [141], Jin et al. [142],
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Archetti et al. [6], and Ozbaygin et al. [189]. Several meta-heuristics were developed for the

SDVRP; many of them adopt a Tabu Search approach. Archetti et al. [12] implemented

an algorithm that uses integer programming to explore promising parts of the search

space identified by a Tabu Search. Aleman and Hill [1] presented a Tabu Search with a

vocabulary building that determines attractive attributes from a population of solutions

and uses them to construct new ones. Berbotto et al. [30] proposed a randomized Granular

Tabu Search to solve the problem. Other heuristic methods include the Memetic Algorithm

of Boudia et al. [32], the Attribute Based Hill Climber (ABHC) of Derigs et al. [81], the

Iterated Local Search of Silva et al. [220], and the heuristic of Chen et al. [48].

1.4.3.5 Vehicle Routing Problems with Profits - VRPP

Vehicle Routing Problems with Profits (VRPP) arise in situations where for practical

reasons, it is either not possible or not desirable to serve all customers. This may be the

case if the company does not have the necessary resources to satisfy customer demands,

or if the marginal cost for serving a customer, given a routing plan, out-weighs the

marginal revenue gained from the service. In the latter case, the total profit could improve

if those customers are left out. As such solving a VRPP implies an implicit choice of

which customers to serve, and which to omit in order to maximize profit. Several routing

problems fall into the category of VRPPs. We provide a brief description of some notable

VRPP variants in Section 1.5.

1.5 Selective routing: the orienteering problem

Selective Vehicle Routing Problems, also known as Vehicle Routing Problems with Profits

(VRPPs), are a class of VRPs where the service of some or all customers is optional, but

rewarded with a prize. As such, an additional decision has to be made on whether or

not optional customers should be served. In selective routing problems, each customer

is associated with a profit (or score) which is collected at most once if the customer is

served. The goal is to define a set of routes such that the total collected profit is maximized

and travel costs are minimized. Hence, VRPPs can be formulated either as bi-objective

discrete optimization problems, or as single objective problems where one of the goals is

the objective function and a constraint is imposed on the other [5]. Figure 1.4 show an

example of a selective VRP where only two vehicles are available. Customers with larger

profits are represented with bigger nodes.
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Depot Customer

(a) Selective VRP instance.

Depot Customer

(b) Selective VRP solution

Figure 1.4 – Example of a selective VRP instance with its solution.

VRPPs can be used to model several classes of real-world applications. Tsiligirides [252]

and Ramesh and Brown [204] describe the problem of scheduling the visits of salesperson

with not enough time to visit all their customers. In Golden et al. [120], an application in

home fuel delivery planing is described. Heating fuel must be delivered to a large number

of customers on a daily basis such that the fuel inventory is maintained at an adequate

level. Scores are used to represent urgency due to low levels of inventory. In Golden et al.

[121], selective routing problems are used to route oil tankers to supply ships at different

locations. Tang and Miller-Hooks [232] describe the application of a selective routing

problem to determine the daily schedule of technicians to service customers while taking

into account customer importance and task urgency. More recently, several papers used

routing problems with profits to deal with the Tourist Trip Design Problem (TTDP) [259,

225, 256, 260, 104]. Usually, when visiting a city or a region, it is impossible to visit

everything, and it is necessary to select which attractions someone is more likely to enjoy.

The TTDP is concerned with making a feasible itinerary to visit these attractions in

the available time span. Other applications of VRPPs found in the literature include the

single-ring design problem when building telecommunication networks [243], collaborative

logistics [167, 101], high-school athlete recruiting [41], and the scheduling of the daily

operations of a steel rolling mill [15, 17].

The literature dealt with several variations of the VRPP, the most basic of them being

variants with only one tour. The most notable of them are the Orienteering Problem

(OP) [252], the Prize Collection TSP (PCTSP) [15, 16], and the Profitable Tour Problem

(PTP) [80]. The main difference between these problems is their objective functions. In

the OP, the goal is to maximize the total collected profit such that the travel cost does

not exceed an upper bound, while on the PCTSP, the objective is to minimize the travel
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cost under the constraint that the total collected profit cannot be smaller than a given

threshold. On the other hand, the objective of the PTP is to maximize the difference

between the total collected profit and the total travel cost. Among these three problems,

the OP is the most studied in the literature.

The OP was introduced by Tsiligirides [252]. It originates from the orienteering sport,

in particular the score orienteering events. In score events, participants are given a map

indicating a large number of “control points” with associated scores. Instead of completing

the course, participants need to score as many points as possible by visiting controls, and

then return within the specified time limit, otherwise they receive large penalties. The OP

is also referred to in the literature as the Selective Traveling Salesperson Problem [156,

111, 243], the Maximum Collection Problem [41], and the Bank Robber Problem [14]. The

OP can be formulated on a complete graph G = (V,A) where V is a set of |V | = n + 2

nodes and A the of arcs. Node v0 ∈ V and vn+1 ∈ V correspond to the departure and the

arrival depots, respectively, while the remaining nodes correspond to customers. A non-

negative profit pi is associated with each customer i ∈ V \ {v0, vn+1}. Each arc (i, j) ∈ A
represents the path from node i to j, and has a non-negative travel time tij. It is supposed

that travel times satisfy the triangle inequality. One vehicle is available to visit a subset

of customers and collect their profit. The profit of each customer can be collected at most

once. The vehicle is uncapacitated but has a maximum route duration Tmax. The vehicle

route starts and ends at the departure and arrival nodes respectively. The objective of

the OP is to find a vehicle route that maximizes the total collected profit while satisfying

the maximum duration constraint on the route.

Several exact solution algorithms were proposed for the OP. Laporte and Martello [156]

proposed schemes to derive upper and lower bounds for the OP, which they then used in

an exact enumerative algorithm. Valid inequalities were later added to their formulation

by Leifer and Rosenwein [161]. The latter used a cutting-plan algorithm to obtain better

upper bounds. Ramesh et al. [205] used a Branch-&-Bound algorithm and Lagrangean

relaxation to solve the OP. Additional families of valid inequalities were introduced by

Fischetti et al. [98], Gendreau et al. [110] who used Branch-&-Cut algorithms to solve the

problem. The algorithm of Fischetti et al. [98] is able to solve instances with up to 500

vertices.

Several authors proposed heuristic methods for the OP. Tsiligirides [252] introduced a

stochastic and a deterministic heuristic for the OP. Both are based on the generation

of a set of paths and then selecting the best one, but differ in how they generate the

paths. The first uses a Monte-Carlo method to insert vertices into the path, while the
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other uses a variation of the algorithm of Wren and Holliday [268]. Ramesh and Brown

[204] designed a four-phase heuristic for the OP. First a vertex insertion phase builds a

tour by relaxing the time limit constraint, then an improvement phase reduces the travel

cost, after that vertices are removed during the third phase, and finally another insertion

heuristic is used to improve the profit. Chao et al. [46] proposed a two-step heuristic.

They used an ellipse of which, the focal points are the start and end vertex, and the

major axis is Tmax, to define a subset of reachable customers. Their heuristic generates

different paths between the departure and the arrival. Afterwards, during each iteration,

it improves the best one by means of node interchanges, then removes some customers

from the best path obtained and restarts. Gendreau et al. [112] designed a tabu search

algorithm that iteratively inserts clusters of vertices into the OP tour or removes a chain

of vertices. Schilde et al. [216] tackled the bi-objective OP using a pareto Ant Colony

Optimization Algorithm and a multi-objective VNS, both hybridize with path relinking

procedures. They reported results on single objective OP instances which, show that their

approach out-performed the previous ones.

The extension of the OP to multiple vehicles is known as the Team Orienteering Problem

(TOP) [47]. It was first studied in Butt and Cavalier [41] under the name of Multiple

Tour Maximum Collection Problem. Due to the complexity of the problem, research on

the TOP focused mainly on heuristic algorithms, and few exact methods were developed.

Butt and Ryan [42] solved the TOP using a column generation algorithm. Boussier et al.

[35] proposed a Branch-&-Price algorithm for the TOP and the TOP with time windows.

They used various acceleration techniques and two pre-processing procedures to increase

the performance of their algorithm. Poggi et al. [196] proposed three different formulations

for the TOP and a Branch-&-Cut-&-Price algorithm. Dang et al. [75] defined a set of

dominance properties and valid inequalities, and solved the problem using a Branch-&-Cut

algorithm. Keshtkaran et al. [147] enhanced the Branch-&-Price approach of Boussier et al.

[35] with a new approach to solve the pricing sub-problem, new relaxations of the pricing

sub-problem and valid inequalities. El-Hajj et al. [94] used a cutting-planes algorithm to

solve the problem. They derived valid inequalities from incompatibility graphs, and from

solving sub-instances to gain information on the original instance.

Several heuristics and metaheuristics were developed to solve the TOP. Chao et al. [47]

introduced the first heuristic for the TOP by adapting their heuristic for the OP so it

chooses the m best paths instead of only the best one. Tang and Miller-Hooks [232]

developed a Tabu Search algorithm with adaptive memory that alternates between small

and large neighborhoods. Archetti et al. [7] developed two tabu search algorithms, one



1.5. SELECTIVE ROUTING: THE ORIENTEERING PROBLEM 29

that only uses feasible solutions and one that also explores unfeasible solutions the search

process. They also developed a slow and a fast variable neighborhood search. An Ant

Colony Optimization (ACO) procedure was introduced by Ke et al. [145]. It uses four

different methods to construct feasible solutions. Vansteenwegen et al. [254] proposed

an algorithm which uses a combination of local search heuristics, and includes Guided

local search (GLS) to improve some of the heuristics. A Skewed Variable Neighbourhood

Search (SVNS) for the TOP was introduced by Vansteenwegen et al. [256]. It uses two

types of intensification mechanisms, one to increase the score and the other to decrease the

travel time. Diversification is carried out by three different procedures. Souffriau et al.

[223] designed a Greedy Randomised Adaptive Search Procedure (GRASP) with Path

Relinking. At each iteration, the algorithm generates an initial solution using a construct

procedure that chooses which vertex to insert based on a greediness to randomness ratio.

The initial solution is then improved using local search. Afterwards, the path relinking is

applied on a pool of high quality solutions, and the new solution is then used to update

said pool. Another population-based method is introduced in [33] who proposed a Memetic

Algorithm (MA) for the TOP. The MA uses a giant-tour encoding to represent solutions.

Individuals are represented as an ordered sequence of all the customers from which a

valid solution is extracted using an Optimal Split Procedure. Muthuswamy and Lam

[183] proposed a Discrete Particle Swarm Optimization (DPSO) algorithm. Dang et al.

[76] proposed a PSO-based MA that extends the work of Bouly et al. [33]. This work was

later extended by Dang et al. [75]. They proposed a new more effective optimal splitting

procedure based on interval graph models. This new procedure has a smaller complexity

than that of their previous works, and allows to explore more solutions without increasing

the global computation time. Other meta-heuristics for the TOP include the Multi-start

Simulated Annealing of Lin [170], the Genetic Algorithm of Ferreira et al. [97], and the

Pareto Mimic algorithm of Ke et al. [146].

Over the last years, research on orienteering problems has been shifting focus towards

variants and extensions of the OP and the TOP. Notable variants include Orienteering

Problems with Time Windows [255, 251, 153, 152, 170, 135, 72], Time Dependant

Orienteering Problems [102, 105], Capacitated Orienteering Problems [5, 239, 28], Arc

Orienteering Problems [260, 11, 8, 106]. For more extensive surveys on orienteering

problems, we invite the reader to refer to the works of Vansteenwegen et al. [257], Archetti

et al. [13], Archetti and Speranza [11], and Gunawan et al. [128].
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1.6 Conclusion

In this chapter, we recalled the concepts related to this thesis. In the first part of the

chapter, we recalled key issues of urban distribution and presented City Logistics, that is

the practices that seek to solve this issues. Among City Logistics research directions, we

focused on “co-modality” and collaboration.

In the second part of the chapter, we described vehicle routing problems related to the

topics discussed above. We recalled exact and heuristic methods that were developed

to solve these problems. We then gave descriptions of some VRP variants that are of

interest in the remaining chapters. Afterwards, we focused on selective routing problems,

in particular, the Orienteering and the Team Orienteering Problem.

In the following chapters, we provide a more detailed description for the problems tackled

in here and present the solution methods we proposed to solve them.



Chapter 2

Effective Neighborhood Search with

Optimal Splitting and Adaptive

Memory for the Team Orienteering

Problem with Time Windows

The Team Orienteering Problem with Time Windows (TOPTW) is an extension of the

well-known Orienteering Problem. Given a set of locations, each one associated with a

profit, a service time and a time window, the objective of the TOPTW is to plan a

set of routes, over a subset of locations, that maximize the total collected profit while

satisfying travel time limitations and time window constraints. In this chapter, we present

an effective neighborhood search for the TOPTW based on (1) the alternation between two

different search spaces, a giant tour search space and a route search space, using a powerful

splitting algorithm, and (2) the use of a long term memory mechanism to keep high quality

routes encountered in elite solutions. We conduct extensive computational experiments

to investigate the contribution of these components, and measure the performance of our

method on literature benchmarks. Our approach outperforms state-of-the-art algorithms

in terms of overall solution quality and computational time. It finds the current best

known solutions, or better ones, for 93% of the literature instances within reasonable

runtimes. Moreover, it is able to achieve better average deviation than state-of-the-art

algorithms within shorter computation times. Plus, new improvements for 61 benchmark

instances were found.

2.1 Introduction

In the Team Orienteering Problem (TOP), we are given a transportation network in which

a starting and an ending point are specified. The network connects a set of points that

31
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correspond to customer locations. Each one of them is associated with a profit and a

service time. For each pair of locations, a travel time is specified. The aim of the problem

is to find a fixed number of disjoint paths from the starting point to the final destination

through a subset of locations, each not exceeding a given time limit, that maximize the

total profit collected from visiting customers.

In this chapter, we consider the Team Orienteering Problem with Time Windows

(TOPTW), a natural extension of the TOP motivated by different practical situations.

Possible applications of the problem range from logistics Golden et al. [121], Tang and

Miller-Hooks [233] to leisure related applications like tourism Vansteenwegen et al. [255].

In the TOPTW, each customer must be visited within a predefined time interval, specified

by an earliest and a latest time, into which the service must start. We assume that the time

windows are hard constraints. This means that early arrivals to a location are permitted,

but the agent must wait for it to be “open” before the service can start. Late arrivals,

however, are not allowed.

Herein, we propose an effective approach that follows the basic structure of a Multi-Start

Iterated Local Search (MS-ILS) to solve the TOPTW. We design a rather straightforward

method that is able to effectively explore the search space to achieve high-quality solutions

within very short computation times.

• First, we investigate the alternation between two search spaces: a giant tour search

space and a route search space. In the route space, solutions are represented as

genuine TOPTW solutions i.e., a set of feasible routes, one for each vehicle in use,

while in the giant tour space, they are represented with an ordered list of customers

with no route delimiters. The transition from the giant tour search space to the route

search space is achieved using a powerful split algorithm. This idea is a follow up

on preliminary work carried out by Guibadj and Moukrim [124]. They proposed a

Memetic Algorithm chapterTW, which uses a giant tour representation for encoding

individuals. MS-ILS, however, uses the giant tour representation more efficiently

within an algorithm that is conceptually simpler and much faster than the MA.

• Second, we integrate an adaptive memory mechanism to overcome the drawbacks

due to pure multi-start heuristics being memoryless. The adaptive memory is used

to store individual routes extracted from diverse high quality solutions. These routes

are then combined to construct promising new starting solutions at each iteration

of the multi-start algorithm.
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• Third, we conduct extensive computational experiments to investigate the contribu-

tion of these components to the search performance of a basic MS-ILS, and measure

the performance of our approach on literature benchmarks. The obtained results

show that our MS-ILS outperforms state-of-the-art algorithms in terms of solution

quality and computation time. It is able to find the current best-known solutions,

or better ones, for 94% of the available benchmark instances. It achieves an overall

average relative gap of 0.17% and 0.14% on the two benchmarks of the literature,

respectively, while being faster than most state-of-the-art algorithms. Additionally,

it was able to improve the solutions of 61 instances for which no optimal solutions

have yet been found. In comparison, the previous best performing approach in the

literature finds 65% of the current best-known solutions, and achieves a relative gap

of 0.80% and 0.34% respectively, on the two benchmarks.

• Finally, we show that our algorithm can be tuned to either favor solution quality at

the cost of more computational effort, or to considerably reduce computation times

while maintaining good solution quality. As such, it can serve as a good basis for

future developments on more complex variants of selective vehicle routing problems.

The remainder of this chapter is organized as follows. Section 2.2 provides a brief overview

of the literature related to the TOPTW, and Section 2.3 gives a formal description of the

problem. Section 2.4 gives a detailed description of our proposed algorithm. First, the

general framework of the method is introduced, and then each of its aspects is described

in detail, including the solution representation, the optimal split procedure, and other

components and parameters. The effectiveness of our approach is shown in Section 2.5.

Finally, Section 2.6 concludes this chapter and provides possible directions for future

research.

2.2 Literature review

Orienteering problems are well-known NP-hard optimization problems, and solving them

within a reasonable amount of time may prove to be rather difficult. There are relatively

few studies that deal with exact methods for the OPTW and TOPTW. Righini and Salani

[209] solve the OPTW using a dynamic programming (DP) algorithm with Decremental

State Space Relaxation (DSSR) Giovanni and Matteo [119], a relaxation of the problem

so that customers can be visited more than once. The solution process consists in solving

the DSSR, and then incrementally tightening the relaxed problem by disallowing multiple
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visits to a critical customer set of increasing size. Duque et al. [90] extend the pulse

algorithm Lozano et al. [173] to solve the OPTW. The algorithm is presented as a

general-purpose framework for hard shortest path problems, and includes two novel

pruning strategies to discard sub-optimal and infeasible solutions. The proposed algorithm

performs better than the dynamic programming approach of Righini and Salani [209].

The authors, however, only reported results on a subset of the benchmark instances.

Tae and Kim [229] presented the first Branch-&-Price (B&P) algorithm for solving the

TOPTW. Recently, Gedik et al. [108] introduced an exact approach for the TOPTW

based on a constraint programming (CP) formulation of the problem. The CP-optimizer

is able to solve several benchmark instances from Montemanni and Gambardella [180] and

Vansteenwegen et al. [255] and provides good upper bounds for the more difficult ones.

Most of the research on orienteering problems with time windows focuses on the design

of heuristic approaches. The fact that profits and travel times are independent, and that

a good solution with respect to one criterion is often unsatisfactory with respect to the

other, make it more difficult to devise consistently good heuristics to solve orienteering

problems, despite them being seemingly simple Gendreau et al. [111]. The presence of

time window constraints increases this difficulty since it becomes harder to pinpoint the

customers that should be included in the solution.

Montemanni and Gambardella [180] proposed a heuristic method to solve the OPTW

and the TOPTW using an Ant Colony System (ACS) algorithm. The ACS was later

improved by Montemanni et al. [181] who identified some of its drawbacks and provided

ways to overcome them by only considering the best solution found during the construction

phase, and only applying the local search procedure on solutions on which it has not yet

been applied. Vansteenwegen et al. [255] introduced a fast and simple Iterated Local

Search (ILS) for the problem. Their algorithm was made fast and simple by only keeping

the insert and shake steps. The authors also introduced a new data set with more

difficult instances constructed from the instances of Solomon [221] and Cordeau et al.

[59]. Tricoire et al. [251] defined the Multi-Period Orienteering Problem with Multiple

Time Windows (MuPOPTW) as a means for scheduling sale representatives to visit

customers. The MuPOPTW is a generalization of OPTW and TOPTW where visits

to customers span a period of time (days), and where multiple time windows are allowed.

As such, each customer may be visited on a different day, and may have several time

windows for each given day. To solve the MuPOPTW, the authors designed a Variable

Neighborhood Search (VNS) algorithm, which also provides good solutions for the OPTW

and the TOPTW. However, their algorithm requires relatively large computation times.
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An algorithm that combines a Greedy Randomized Adaptive Search Procedure (GRASP)

and an Evolutionary Local Search algorithm (ELS) was introduced by Labadie et al.

[153]. Their method uses simple constructive heuristics inside the GRASP to generate

distinct initial solutions, which are then improved using the ELS algorithm. In another

study, Labadie et al. [152] applied the concept of granularity to a VNS approach in order

to reduce the size of the local search neighborhoods to moves that are more likely to

lead to good quality solutions. Using the dual optimal solutions of an LP-problem, they

partition the arc set into intervals of granularity from which they choose those with the

most promising arcs. Two Simulated Annealing based algorithms for the TOPTW were

presented by Lin and Yu [171]. The first one is a Fast Simulated Annealing (FSA) that is

directed towards applications that require quick responses, while the second one is a Slow

Simulated Annealing (SSA) that focuses on solution quality. Guibadj and Moukrim [124]

designed a Memetic Algorithm (MA) that uses the route-first cluster-second approach to

solve the TOPTW. Solutions are represented as permutations of a subset of reachable

customers called giant tours, and a splitting procedure is applied to extract the optimal

set of feasible routes with respect to the order of visits in the giant tour. Souffriau

et al. [224] introduced the Multi-Constraint Team Orienteering Problem with Multiple

Time Windows (MC-TOP-MTW), a variant of the TOPTW that includes additional

knapsack constraints to limit node selection. Such constraints can be used, for example,

to model entrance fees in the case of tourist trip planning applications. The authors

proposed a hybridization of GRASP and ILS, and evaluated the performance of their

algorithm on benchmarks for the related problems, including the TOPTW. An iterative

framework comprising three components, namely I3CH, was proposed by Hu and Lim

[135]. The first two components are a Local Search (LS) and a Simulated Annealing

(SA) that are used to explore the solution space and to discover a set of routes that are

stored in a pool. The last component recombines the stored routes using a Set Packing

formulation to produce good quality solutions. Cura [72] solves the TOPTW using an

Artificial Bee Colony (ABC) approach that mimics the foraging behavior of honey bees.

He introduced a new food source acceptance criterion based on SA and a new scout bee

search behavior based on a local search procedure. Gunawan et al. [125] introduced another

ILS algorithm to solve the OPTW. The algorithm generates an initial solution using a

greedy insertion heuristic that chooses the customers to be inserted based on Roulette-

Wheel selection. The initial solution is then improved using an ILS that uses different local

search operators and a combination of acceptance criteria and perturbation mechanisms

to balance between diversification and intensification of the search. The ILS was later

extended with the inclusion of more local search components by Gunawan et al. [127].
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The latter also introduces, for the TOPTW, a more general mathematical model that can

accommodate heterogeneous fleets and routes with different starting and ending points. A

hybridization that embeds an ILS into a SA algorithm was presented by Gunawan et al.

[126] to address the drawback that is the early termination of the ILS. Schmid and Ehmke

[217] proposed an“Effective Large Neighborhood Search” (ELNS) approach to solve the

TOPTW. The algorithm starts by generating an initial solution. During each iteration

of the algorithm, the solution is destroyed and repaired through operators specifically

designed for the TOPTW. To the extent of our knowledge, the ELNS is currently the

approach that provides the largest proportion of best-known solutions for the TOPTW

benchmark instances.

Finally, for a more detailed overview of the literature about orienteering problems, we

invite the reader to refer to Vansteenwegen et al. [257] and Gunawan et al. [128] who

provide reviews on several relevant variants of the orienteering problem, including the

TOPTW, and discuss applications and solution methods, both exact and heuristic, for

OP variants.

2.3 Problem definition

The TOPTW is defined on a complete graph G = (V,A), where V = {0, 1, 2, ..., n} is the

vertex set, and A = {(i, j) : i 6= j, i, j ∈ V } the arc set. Vertex 0 represents the depot,

which corresponds to the starting and ending points, and each vertex i ∈ V \{0} represents

a customer associated with a non-negative profit (score) Pi, a non-negative service time

σi, and a predefined time window [ei, li]. The profit of each customer i ∈ V \ {0} can be

collected at most once by a vehicle within its associated time window, i.e., a vehicle cannot

visit the customer i if it arrives later than li, and in the event that it arrives earlier than

ei, it has to wait until ei before the service can start. A time window [e0, l0] is associated

with the depot, where e0 = 0 refers to the earliest departure time and l0 refers to the

latest possible arrival time at the depot. A non-negative travel time ci,j is associated with

each arc (i, j) ∈ A. Travel times are assumed to satisfy the triangle inequality.

A fleet of m identical vehicles is available at the depot, and each of them performs at

most one route. A route is an ordered subset of q customers that are visited by the

same vehicle. Routes must start and end at the depot. We note the total profit collected

during a route r, P (r) =
∑i=q

i=1 Pr[i], and its total duration (travel cost) C(r) = c0,r[1] +∑i=q
i=2 (cr[i−1],r[i] +W r

r[i] + σr[i])+cr[q],0, where r[i] denotes the ith customer of the route and
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W r
k the vehicle’s waiting time at customer k. Note that this travel cost corresponds to

the arrival time at the depot. The total duration of each route is constrained within a

predefined time limit Lmax. We assume that Lmax equals the latest possible arrival time

at the depot, i.e., Lmax = l0. A route is considered feasible if and only if C(r) ≤ Lmax

and if each customer is visited within its time window. Thus, a feasible TOPTW solution

S consists of at most m feasible routes in which each customer is visited at most once.

The objective is to find a solution S that maximizes the total collected profit, i.e., that

maximizes
∑

r∈S P (r). For mixed integer linear programming formulations of TOPTW

(see [180, 255]).

2.4 Solution approach

2.4.1 Method overview

In this work, we propose a randomized Multi-Start Iterated Local Search procedure (MS-

ILS) enhanced by an adaptive memory mechanism. Originally, MS procedures are simple

memoryless algorithms that sample the solution space by applying a local or neighborhood

search from multiple randomly generated initial solutions. If an initial solution falls

inside the attraction basin of a global optimum, the local search will pull it to this

global optimum. Due to their simplicity, more often than not, MS procedures alone have

difficulties to compete with more aggressive meta-heuristics and must be strengthened by

complementary diversification techniques to help surmount local optima.

Our approach employs an Iterated Local Search (ILS) procedure as the local search step

of the MS metaheuristic. The ILS is a simple metaheuristic, the principle of which is to

build a sequence of improved local optima to explore the search space. More specifically,

starting from a solution S, at each iteration, the ILS generates a new solution S ′ by

perturbation of S, then improves it using a local search to obtain S ′′. If S ′′ satisfies an

acceptance criterion, it becomes starting solution for the next iteration; otherwise the

algorithm goes back to S.

The efficiency of our algorithm stems from two key aspects. The first one is to alternate

between two search spaces, each one using a different solution representation. This idea has

proven to be very effective for various vehicle routing problems [200, 203], including the

Team Orienteering Problem (TOP) [34, 77]. In our case, the two solution representations

are the route representation and the giant tour representation. The route representation
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is a genuine TOPTW solution, i.e., a set of feasible routes, one for each vehicle in use.

To ensure fast feasibility checks upon insertion of a customer, we record, for each route,

additional information as regards the arrival time, the waiting time and the maximum

delay allowed for the service at each customer. On the other hand, the giant tour

representation consists of an ordered list T of all the accessible customers in V with

no route delimiters. It is a permutation T = (T [1], T [2], ..., T [n]) of n customers that

ignores route length constraints and time windows. The interesting part about this indirect

solution representation is (1) the fact that one giant tour corresponds to multiple TOPTW

solutions, and (2) that it is possible to retrieve the optimal solution with respect to the

order of customers in polynomial time using a splitting procedure. Thus, it is possible

to search the space of giant tours instead of the TOPTW solution set, without loss of

information. The reverse transformation from the route representation to the giant tour

representation is achieved through a simple concatenation procedure.

The second key component is the integration of a long-term memory mechanism in

order to improve the performance of the algorithm by learning from local optima found

during previous iterations. One important drawback of a pure multi-start procedure is

being a memoryless method: each iteration is independent of the previous one and no

information about the solutions is passed from one iteration to the other. In our approach,

we integrate an adaptive memory mechanism to retain information about interesting

customer sequences observed in high-quality solutions. The use of a memory mechanism

is inspired from the probabilistic tabu search of Rochat and Taillard [210]. It consists

in storing routes extracted from high-quality solutions inside a pool of elite but diverse

routes, and then using them to generate new starting solution. In our approach, the

stored routes are used to construct giant tours using a probabilistic function that is biased

towards the selection of elements that appear more frequently in high-quality solutions.

Algorithm 1 describes the general structure of our MS-ILS approach. At the beginning,

the adaptive memory is initialized using the iterative heuristic described in Section 2.4.2.

During the process, Sbest is set to the best solution found so far.

At each iteration of the main loop, the algorithm constructs a giant tour T using the

routes stored inside the adaptive memory and extracts the solution S associated with

tour T using the Split procedure described in Section 2.4.5. It then performs an ILS (ILS

loop) with T as the starting point. The ILS loop is executed until the maximum number of

iterations iterils is reached. At each iteration of the ILS loop, T is perturbed by applying

a random rotation, and a new giant tour T ′ is derived. The associated solution S ′ is then

extracted from T ′, improved by a local search procedure, and the obtained routes are
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Algorithm 1: MS-ILS algorithm for the TOPTW

Data: TOPTW instance
Result: Sbest solution for the TOPTW instance

1 begin
2 i← 0
3 Sbest ← initializeMemory() // Algorithm 2

4 repeat // Multi-start loop

5 T ← constructGiantTour(M)
6 S ← split(T )
7 for j ← 1 to iterils do // ILS loop

8 T ′ ← randomRotation(T ) // Perturbation

9 S ′ ← split(T ′)
10 S ′′ ← localSearch(S ′)
11 updateMemory(M, S ′′) // see Section 2.4.3

12 if f(S ′′) ≥ f(S) then
13 T ← concat(S ′′)
14 S ← S ′′

15 if f(S) ≥ f(Sbest) then Sbest ← S
16 if new routes have been added into M then // see Section 2.4.3

17 iter ← 0
18 else
19 iter ← iter + 1

20 until iter = itermax
21 return Sbest

inserted into the adaptive memory if they are of good enough quality; otherwise they are

ignored. If S ′ is better than S, it is concatenated into a new giant tour which replaces

T in the next ILS iteration, and S is updated. After the ILS loop, Sbest is updated and

the number of main loop iterations iter is reset to 0. Otherwise, iter is incremented and

the main loop restarts. The algorithms stops when it fails to insert new routes in the

adaptative memory during itermax consecutive iterations.

2.4.2 Memory initialization

The initial set of routes that compose the adaptive memory is generated using the fast

heuristic procedure described in Algorithm 2. The proposed initialization heuristic starts

by building a feasible solution using a Best Insertion Algorithm (BIA) to insert customers.

The implemented BIA constructs a feasible solution by successively inserting customers

in their best possible position. At each iteration, the procedure evaluates all the feasible

insertions of unrouted customers and selects the insertion with the minimum cost. To
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ensure that the feasibility of an insertion is checked in O(1), we record, for each customer

i included in a route r, its waiting time W r
i and the maximum duration by which the

service can be delayed MaxShiftri . All feasible insertions of each non-served customer u

between two adjacent customers i and j are evaluated. The insertion of u is considered

feasible if and only if it delays the visit of j by Shiftu = (ci,u +W r
u + σu + cu,j − ci,j) less

or equal to MaxShiftrj . The best insertion is evaluated using the following cost criterion:

cost(u) = Shiftu/(Pu)
α, where α is a control parameter, the value of which is randomly

generated each time the BIA is used. The aim of cost(u) is to favor the insertion of

customers which maximize the gain in profit while limiting the increase in travel times.

The computational method used for the generation of α is detailed in Section 2.5.2.

Algorithm 2: Memory initialization algorithm for the TOPTW.

Data: S empty solution
V vector of n customers
Result: Sbest best solution found
M Adaptive memory containing a set of routes

1 begin
2 applyBestInsertion(S, V )
3 iter ← 0
4 start← 0
5 l← 1
6 while iter < iterinit do
7 applyDestructionOnEachRoute(S, start, l)
8 U ← getUnroutedCustomers(V, S)
9 applyBestInsertion(S, U)

10 updateMemory(M, S) // see Section 2.4.3

11 if f(S) ≥ f(Sbest) then
12 Sbest ← S
13 iter ← 0
14 l← 0

15 else
16 iter ← iter + 1

17 start← start+ l
18 l← l + 1
19 if l ≥ size(rmax)/2 then l← 1

20 return Sbest

At each iteration of the initialization heuristic, a limited number of customers is removed

from the solution, which is then rebuilt by inserting unrouted customers using the BIA.

The destruction consists in the removal of a sequence of consecutive customers from

each route. These sequences are identified by a starting position start and a length of

l customers. The length of the removed sequences l is first set to 1, and at the end of
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each iteration, start is moved by l positions and l is incremented by one. If the solution

is improved after repair, l is reset to its initial value. Destruction is applied in a circular

manner, i.e., when the end of a tour is reached, the removal continues from the beginning

of the tour. In order to avoid l from becoming too big and causing a large part of the

solution to be destroyed at each iteration, it is reset to 1 each time its value reaches half the

size of the largest route (rmax) in the solution, in terms of the number of visited customers.

The destruction and construction phases are repeated until the algorithm reaches iterinit

iterations without improving the best solution.

2.4.3 Memory update

For performance reasons, we limit the size of the adaptive memory to Msize. When it

becomes full, we need to remove some routes to be able to insert new ones. In order to

keep promising routes, we apply the following strategy. Before its insertion, each route

is labeled with the total collected profit and the total duration of the solution to which

it belongs. The adaptive memory is then sorted in decreasing order of profits using the

duration to resolve any equality. When the adaptive memory is full, the route to be

inserted is first compared to the weakest route of the memory. If the new route’s label

is weaker, i.e. it has a lower total collected profit, the route is ignored. Otherwise, it

is added to the memory and the weakest route is deleted. The idea is that routes that

belong to solutions with higher scores are more likely to contain elements of optimal or

sub-optimal solutions. To speed up the initialization of the adaptive memory, the routes

of each solution generated by the BIA are considered for inclusion in the memory, so the

heuristic is only used once.

2.4.4 Giant tour construction

The construction of giant tours plays an important role in our algorithm since it allows us

to use information collected through past iterations for diversification and intensification

purposes. To construct a giant tour, we select m routes from the adaptive memory and

combine them as follows. LetM′ be a copy of the current memory. First, we extract a route

r fromM′ in a probabilistic way, and discard fromM′ all the routes r′ that share at least

one common customer with r. This process is then repeated until m routes are extracted,

or untilM′ becomes empty. When selecting routes, we favor those extracted from solutions

with higher quality. To that effect, we use the roulette wheel selection mechanism. After
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that, the depot is removed from each of the selected routes. The resulting routes are then

concatenated into a random order to form a partial giant tour, which we complete by

randomly spreading out the unrouted customers over the tour. These unrouted customers

are randomly inserted at the beginning of the tour, at the end, or between the routes in

such a way that the m selected routes remain untouched, as can be seen in the example

depicted in Fig. 2.1.
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0 3 4 1 8 0

0 7 5 4 8 0

0 2 6 3 1 0

0 2 5 6 0

0 9 1 10 0

0 4 1 8 10 0

0 2 9 0

copy of the adaptive memory 

(a) Adaptive memory containing routes from
4 different solutions (n = 10 and m = 2).
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(b) Choose one route and discard all that share
at least one customer with it from the adaptive
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(c) Choose a second route the same way as in
Fig. 2.1b.

7 5 4 8

9 1 10 2 7 5 4 8 6 3

9 1 10

Resulting sub-sequence

Giant tour

(d) Arrange the chosen routes and complete
the giant tour by inserting the remaining
customers at random.

Figure 2.1 – Illustration of the giant tour construction process.

2.4.5 Splitting algorithm

In this section, we present the optimal splitting algorithm used by our MS-ILS to extract

a TOPTW solution from a giant tour. The split consists of extracting m sub-sequences

that do not share customers, and that respect route constraints and maximize the total

collected profit from the giant tour T .
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In their work, Bouly et al. [34] proved that solutions containing only saturated routes

are dominant. Hence, it is unnecessary to enumerate all the feasible routes in T to be

able to find the m ones that maximize the total profit; only saturated routes are needed.

Starting from position i in T , the associated saturated route is obtained by including all

the subsequent customers as long as all the constraints are satisfied, or until the end of

the tour is reached.

Dang et al. [77] presented an evaluation procedure that efficiently uses the limited number

of saturated routes to reduce the complexity of the splitting process. They reduce the

splitting problem to a knapsack problem with conflicts (KPC) [231], and use a dynamic

programming algorithm to determine the optimal splitting in polynomial time. In this

paper, we extend this splitting procedure to tackle time window constraints.

2.4.5.1 Extraction of saturated routes

Let Rs = {ρ1, ρ2, ..., ρn} denote the set of the n possible saturated routes extracted from

the giant tour T . When extracting these routes, it must be ensured that each customer is

visited within its time window and that the route is completed within the given time limit

Lmax, i.e., that C(ρi) ≤ Lmax ∀i ∈ {1, ..., n}. Starting from customer T [i], we initialize

the route ρi = (0, T [i], 0). We then extend it by consecutively including the following

customers T [j], j ≥ i as long as they are visited within their time windows. If the vehicle

arrives at a customer T [j] before the beginning of its time window, a waiting time is

added. If the vehicle arrives too late at customer T [j], if the inclusion of T [j] violates the

time limit constraint, or if the process reaches the end of the giant tour, the extension of ρi

is stopped and the route is considered saturated. In the split algorithm for the basic TOP,

all the saturated routes can be extracted in O(n) because the cost of any sub-sequence

(i + 1, ..., j, j + 1) can be deduced in O(1) from that of (i, ..., j). However, this property

is not satisfied by TOPTW sub-sequences. In our best implementation, route extraction

runs in O(n2).

2.4.5.2 Selection of saturated routes

Once all the saturated routes have been extracted from T , the problem of selecting m

routes that do not have common customers and that maximize the collected profit can

be formulated as follows. Let I = {1, 2, ..., n} be the index set of all the saturated routes

in previously defined set Rs. Set I can be seen as a set of n items where each item i
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is associated with a unitary weight wi = 1 and a value equal to the profit P (ρi). Two

items i and j are considered to be in conflict if the corresponding routes ρi and ρj include

shared customers. Hence, the splitting problem can be formulated as a Knapsack Problem

with Conflicts (KPC) where the objective is to select a subset I ′ ⊂ I of items that

maximizes the total value and such that the total weight of the selected items does not

exceed the knapsack capacity m, and no selected items are in conflict with one another.

In particular, our splitting problem is formulated as a Knapsack Problem with Interval

Conflict Graph (KPICG). In short, a graph H = (X,U) is an interval graph if there is a

mapping I between the vertex set X and a collection of intervals in the real line such that

two vertices in X are adjacent if and only if their respective intervals intersect. Then, for

all i and j in X, (i, j) ∈ U if and only if I(i) ∩ I(j) 6= ∅ [242]. A giant tour T in our

problem matches the real line, and each saturated route ρi extracted from T coincides

with an interval [i, j] where j is the last node of the route.

To solve the KPICG, we use the algorithm proposed by Sadykov and Vanderbeck [213].

They devised a pseudo-polynomial algorithm to solve a KPICG, defined with n items and

a knapsack capacity equal to W , in O(n ·W ). Hence, the following result emerges.

Proposition 1. Given a TOPTW instance with m available vehicles and n saturated

tours extracted from a giant tour T , the splitting of T can be done optimally in O(m · n)

time and space.

Figure 2.2 illustrates the splitting process. The graph in Fig. 2.2a shows a giant tour

T = (1, 2, 3, 4, 5) where each customer has a profit and a time window given in the square

brackets. The number of available vehicles is m = 2, and the maximum operation time

Lmax is 100. For more simplicity, we assume that the service times for each customer are

all equal to 0. The interval model is given in Fig. 2.2b. The first interval [1, 2] for example

with value 40 corresponds to the collected profit of the trip (0, 1, 2, 0). The vehicle leaves

the depot at time 0, waits 10 units of time at node 1 before being able to serve it, and then

leaves to serve node 2 at time 40. Customer 3 cannot be included in this trip, since its

time window is already closed when the vehicle reaches it at time 70. The other intervals

[i, j] of the graph are similarly defined. The maximum score obtained with two vehicles is

equal to 120. Finally, the optimal solution to the splitting process is shown in Fig. 2.2c.

It is composed of two routes starting with customer 1 and 4, respectively.



2.4. SOLUTION APPROACH 45

[30,40] 

10 

40 

40 

 

30 

10 
40 

35 

25 

20 

10 

30 25 

10 

a) a splitting problem with m = 2 

[10,50] 

[20,60] 

[30,50] 

[60,70] 

[0,100] 

b) the weighted interval model 

30 

2 

1 

3 

4 

5 

40 

2 3 

40 

1 2 

80 

4 5 

40 

5 

10 

3 

1 2 3 4 5 

c) the solving steps 

Γ 

i P(i) succ(i) 1 2 

1 40 3 80 120 

2 40 4 80 120 

3 10 4 80 90 

4 80 -  80 80 

5 40 - 40 40 

d) a saturated optimal solution 

[30,40] 

10 

40 

40 

 

30 

10 
40 

35 

25 

20 

10 
10 

[10,50] 

[20,60] 

[30,50] 

[60,70] 

[0,100] 

2 

1 

3 

4 

5 

(a) Splitting problem with m = 2.

[30,40] 

10 

40 

40 

 

30 

10 
40 

35 

25 

20 

10 

30 25 

10 

a) a splitting problem with m = 2 

[10,50] 

[20,60] 

[30,50] 

[60,70] 

[0,100] 

b) the weighted interval model 

30 

2 

1 

3 

4 

5 

40 

2 3 

40 

1 2 

80 

4 5 

40 

5 

10 

3 

1 2 3 4 5 

c) the solving steps 

Γ 

i P(i) succ(i) 1 2 

1 40 3 80 120 

2 40 4 80 120 

3 10 4 80 90 

4 80 -  80 80 

5 40 - 40 40 

d) a saturated optimal solution 

[30,40] 

10 

40 

40 

 

30 

10 
40 

35 

25 

20 

10 
10 

[10,50] 

[20,60] 

[30,50] 

[60,70] 

[0,100] 

2 

1 

3 

4 

5 

(b) Weighted interval model.

[30,40] 

10 

40 

40 

 

30 

10 
40 

35 

25 

20 

10 

30 25 

10 

a) a splitting problem with m = 2 

[10,50] 

[20,60] 

[30,50] 

[60,70] 

[0,100] 

b) the weighted interval model 

30 

2 

1 

3 

4 

5 

40 

2 3 

40 

1 2 

80 

4 5 

40 

5 

10 

3 

1 2 3 4 5 

c) the solving steps 

Γ 

i P(i) succ(i) 1 2 

1 40 3 80 120 

2 40 4 80 120 

3 10 4 80 90 

4 80 -  80 80 

5 40 - 40 40 

d) a saturated optimal solution 

[30,40] 

10 

40 

40 

 

30 

10 
40 

35 

25 

20 

10 
10 

[10,50] 

[20,60] 

[30,50] 

[60,70] 

[0,100] 

2 

1 

3 

4 

5 

(c) Saturated optimal solution.

Figure 2.2 – Example of the splitting procedure.

2.4.6 Local search

The local search (LS) procedure is a key component of our algorithm since it serves

as an intensification mechanism to improve the quality of the solutions constructed

at each iteration. As previously mentioned, our algorithm uses two different solution

representations, each with its own characteristics. Hence, we divide the neighborhood

operators that compose the local search procedure into two sets: the first set is applied

on giant tours, while the second set is performed on routes.

2.4.6.1 Giant tour neighborhoods

The LS includes two neighborhoods for giant tours :

• shift operator : moves a randomly chosen customer from its current position in the

giant tour to a different one;

• swap operator : chooses a random customer from the giant tour and exchanges its
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position with that of another randomly chosen customer;

Because the routes that compose a solution are not explicitly defined in the giant

tour representation, the shift and swap operators do not need to check if feasibility is

maintained, since every move is considered feasible in a giant tour representation. All

that is needed to evaluate a move is to extract the new routes by splitting the giant tour.

For performance purposes, we use the greedy splitting algorithm described in greater

detail below.

2.4.6.2 Route neighborhoods

For route improvement, the LS procedure uses the classical routing neighborhoods Or-Opt

and 2-Opt* to reduce the total travel time of each route, and three other neighborhoods

to fill the resulting time saved in order to increase the total profit. The 2-Opt* operator

replaces arcs (i, i + 1) from route u and (j, j + 1) from route v with arcs (i, j + 1) and

(j, i+1), thus interchanging the two sub-paths without altering the order of visits. The Or-

Opt operator relocates a sequence of one or two successive customers in the same route,

without altering their order of visit. The remaining operators follow the same remove-

and-repair principle of the initialization heuristic described in Section 2.4.2 but differ in

the way they select the customers to be removed and in how they repair the solution:

• Random remove-and-repair : removes d randomly chosen customers from the solution

and, then, using the Best Insertion Algorithm (BIA), inserts currently unrouted

customers. At each iteration, d is randomly generated in the interval [1, Dmax].

• Sequential remove-and-repair : this operator focuses on improving one single route

at a time. This operator removes from each route r a sequence of q consecutive

customers starting from position p mod size(r) and uses BIA to insert new

customers into the destroyed route. At each iteration, p is moved by q customers,

and q is increased by one. When all the customers in a route have been removed

at least once, it skips to the next route in the solution. This operator stops if an

improvement is found, or once all the routes of the solution have been tested. Fig. 2.3

shows an iteration of this operator.

• Parallel remove-and-repair : Similar to the previous operator, this operator removes

from each route r a sequence of q consecutive customers starting from position p

mod size(r). However, instead of focusing on one route, it is applied in parallel on
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Figure 2.3 – Sequential remove-and-repair.

all the routes of the solution, and then inserts unrouted customers using the BIA.

An example of this move is shown in Fig. 2.4. The search in this neighborhood stops

when an improvement is found, or when each customer in the solution has been

removed at least once. Removing parallel sequences from different routes creates

free time slots across the whole solution and gives the opportunity to BIA to move

customers between routes, and introduce more profitable ones in the solution.

2.4.6.3 Local search algorithm

The local search procedure works as follows. At each iteration, the LS randomly selects

one of the previous neighborhoods and explores it. All the neighborhoods have the same

probability of being chosen whether they consider routes or giant tours. The search in

a given neighborhood stops as soon as an improvement is found or when no improving

move can be found. When a neighborhood operator fails to find an improvement, it is

discarded until the solution is improved by another operator. This process is repeated

until all neighborhoods fail to find an improvement to the current solution.

2.4.6.4 Greedy split and concatenation

Because the LS procedure uses two different sets of neighborhoods, and because it can

randomly switch from an operator of one set to that of the other, the number of times
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Figure 2.4 – Parallel remove-and-repair.

a solution shifts from one representation to the other can grow large very quickly. This

negatively impacts computation times, mainly due to the optimal splitting procedure. To

address this aspect of the LS, we devise a fast heuristic splitting method and a giant tour

construction process to go with it.

Inside the LS algorithm, the construction of a giant tour T is achieved by concatenation

of the routes that compose the solution one after the other, and then by appending the

remaining unrouted customers at the end of the tour.

On the same principle as the above fast concatenation method, we describe a greedy

splitting heuristic to evaluate a giant tour T = (T [1], T [2], ..., T [n]). Consider θk =

(T [i], T [i + 1], ..., T [n]) a sub-sequence of T . It is possible to divide θk into two parts by

extracting the saturated route ρk = (T [i], T [i+1], ..., T [j]) and considering the second part

θk+1 = (T [j + 1], T [j + 2], ..., T [n]) as a new sequence of unrouted customers. Our greedy

splitting heuristic consists in performing the previous bisection m times on consecutive

sequences θk, starting with θ1 = T . Fig. 2.5 shows an example of splitting using the

heuristic procedure. The heuristic splitting is used as a quick way to evaluate moves in

the swap and shift neighborhoods. The optimal splitting algorithm is applied at the end

of the LS procedure to extract the best routes from the giant tour.
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Figure 2.5 – Heuristic splitting procedure when m = 2.

2.5 Computational experiments

Our algorithm was coded in C++ using the Standard Template Library (STL) for data

structures, and compiled using the GNU GCC compiler in a Linux environment. In the

following, we present the computational experiments that were carried out in order to tune

the algorithm, to evaluate its performance relative to state-of-the-art algorithms, and to

assess the contribution of each of its components. All the experiments were conducted on

a single thread on an Intel Xeon X7542 CPU at 2.67GHz processor.

2.5.1 Benchmark instances

Our algorithm was tested on the various TOPTW benchmark instances. All the literature

benchmarks are available online at http://www.mech.kuleuven.be/en/cib/.

TOPTW benchmark instances are derived from Solomon et al.’s [221] instances for the

Vehicle Routing Problem with Time Windows (VRPTW), and Cordeau’s [59] instances

for the Multi Depot Periodic VRPTW (MDPVRPTW). The instances were adapted

by considering the customer demands in the original data sets as node profits in the

TOPTW instances. Travel time between two vertices is assumed to be equal to the

euclidean distance. It is rounded down to the first decimal for Solomon’s instances and

to the second decimal for Cordeau’s instances. Solomon’s instances are organized into six

sets: C100, C200, R100, R200, RC100 and RC200, divided according to the distribution

of vertices on the plane (clustered, random, random-clustered) and the width of the

time windows (narrow, wide). Each instance contains either 50 or 100 customers. Since

Cordeau’s instances were originally meant for a periodic variant of the VRP, when using

them for the TOPTW, we consider that all customers are available on the same day.

http://www.mech.kuleuven.be/en/cib/
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Instances in this data set contain a number of customers ranging from 48 to 288.

Righini and Salani [209] constructed the first OPTW instances using 29 of Solomon’s

instances from sets C100, R100 and RC100, and ten instances from Cordeau’s (pr1 to

pr10). Montemanni and Gambardella [180] proposed another 27 instances from sets C200,

R200, and RC200 from Solomon’s instances, and ten others from Cordeau’s instances (pr11

to pr20). Additionally, they extended the earlier instances by increasing the number of

vehicles m and varying it between one and four vehicles. Furthermore, Vansteenwegen

et al. [255] used the original instances of Solomon and Cordeau to introduce new

benchmark instances where the number of vehicles considered for each instance makes

it possible to visit all the customers. Since it is possible to visit all customers, the optimal

solution for these instances is known: it is equal to the sum of all customer profits. Like

Hu and Lim [135], we refer to these instances as the “OPT” data set. As Vansteenwegen

et al. [255] point out, algorithms to solve the TOPTW are generally not designed expecting

the possibility of including all the customers, which makes solving some of the “OPT”

instances to the optimum rather difficult.

2.5.2 Parameter tuning

As described in Section 2.4, our proposed MS-ILS has five sets of parameters:

• α, the control parameter of the BIA;

• Dmax, the maximum number of customers removed by the random removal operator;

• Msize, the size of the adaptive memory;

• iterinit, the number of iterations of the initialization heuristic;

• itermax and iterils, the number of iterations of the main algorithm.

We proceeded first with finding the right value for α. To do this, we ran our algorithm

on the previously mentioned instances while varying the value of α between 0 and 3 by

increments of 0.1. The experiment was repeated ten times, each time with a different

random seed. The remaining parameters of the algorithm were set to preliminary values:

Dmax = 12,MSize = 60, iterils = 10 and itermax = (20∗n)/m. We then computed, for each

instance, the percentage deviation between the average solution value Zavg and the best

solution achieved over all the runs MSILS as: gap = (MSILS − Zavg)/MSILS ∗ 100.
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The results of these experiments are summarized in Fig. 2.6, which shows the average

deviation and average runtime over all the runs.
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Figure 2.6 – Tuning the value of α.

As can be seen on Fig. 2.6, solution quality improves as the value of α increases, and then

starts slowly stabilizing when α becomes greater than one. This observation also holds

for the average runtime: it decreases as α increases and becomes stable when α ≥ 1. The

best performance is obtained when α = 2. However, (1) the difference in performance of

values between 1.8 and 2.8 is rather small, and (2) during our experiments, we observed

that the value of α that performs better varies depending on the instance. Therefore, and

in order to enable diversification during the construction process, we generate a random

value in [1.8, 2.8] for α at each iteration of the algorithm.

The experiments carried out to tune parameter Dmax are similar to the previous ones.

We invoked our MS-ILS on the test instances for different values of Dmax and repeated

it ten times, each time with a different random seed. For our experiments, we decided

to express the value of Dmax as a proportion of the number of customers, so that it

would adapt to different-sized instances. We varied this value between 0.1 ∗ nrouted and

0.5 ∗ nrouted by increments of 0.05, where nrouted is the number of customers visited in the

current solution. We bound the value of Dmax by 0.5 ∗ nrouted, because we consider that

removing more customers would alter the solution too much. We set α as described above

and set the values of the remaining parameters to the preliminary values used before. We

then compared the average deviation and the average runtime achieved by each value of

Dmax over the ten runs, like we did with α. Figure 2.7 summarizes the results of these

experiments. We observe that the CPU time increases with the value of Dmax. On the

other hand, solution quality improves as Dmax becomes larger. There are, however, only
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Figure 2.7 – Tuning the value of Dmax.

slight differences between the results of each value of Dmax in terms of solution quality.

Given these results, we opted to set Dmax to 0.25 ∗nrouted, as it offers a good compromise

in terms of runtime and solution quality.

Finally, parameters itermax and iterils control the computational time of the algorithm,

while parameter Msize controls the size of the adaptive memory. All of these parameters

influence both solution quality and search time, and by changing their values, we

achieve different trade-offs in terms of solution quality and computational effort. Larger

values of these parameters result in better solution quality, but significantly increase

computation times. On the other hand, smaller values lead to a faster termination

of the algorithm, however, at the expense of solution quality. Because of that, using

meta-calibration or other automated tools for tuning our algorithm becomes difficult,

as they will tend to select the maximum value for each parameter if we choose to

maximize solution quality, and minimum values if we choose to minimize computation

times. Hence, in order to calibrate these three parameters, we decided to build a Pareto

test using different combinations of itermax, iterils and Msize. The possible values of

each parameter were set to: Msize ∈ {40m, 50m, ..., 100m}, iterils ∈ {2, 3, 4, 5}, and

itermax ∈ {n/m, 2n/m, ..., 10n/m}. Afterwards, we chose the configuration that offers

the best compromise between solution quality and computation time. The test results

are shown in Fig. 2.8, where we plot for each combination the average deviation and the

average runtime. We chose configuration (itermax, iterils,Msize) = (2 ∗ n/m, 4, 80 ∗m)

because we estimated that the difference in ARPE compared to slower configurations was

not enough compared to the difference in computation time.
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Figure 2.8 – Pareto front of results obtained with different combinations of (itermax,iterils,
Msize).

The final calibration results are displayed in Table 2.1. Note that parameter iterinit

has little impact on the search process. Its value was chosen arbitrarily to allow the

initialization heuristic to fill the adaptive memory with good solutions while keeping the

initialization time very short.

Parameter Description Value

α the control parameter of the BIA [1.8, 2.8]

Dmax max. nb. of customers removed by the Ran-
dom remove-and-repair operator

0.25 ∗ nrouted

Msize size of the adaptive memory 80 ∗m
iterinit nb. of iterations of the initialization heuristic 1000

itermax nb. of iterations of the main algorithm 2 ∗ n/m
iterils nb. of iterations of the ILS 4

Table 2.1 – Final parameter values.

2.5.3 Computational comparisons

In order to evaluate the performance of our proposed MS-ILS for TOPTW, we compared

its results with those of the following state-of-the-art algorithms:

• Variable Neighborhood Search (VNS) proposed by Tricoire et al. [251],

• Greedy Randomized Adaptive Search procedure with Evolutionary Local Search

algorithm (GRASP-ELS) of Labadie et al. [153],
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• LP-Based Granular Variable Neighborhood Search (GVNS) of Labadie et al. [152],

• Iterative Three-Component Heuristic (I3CH) of Hu and Lim [135].

• Large Neighborhood Search (ELNS) of Schmid and Ehmke [217].

The results of GVNS, GRASP-ELS, I3CH, ELNS, and our MS-ILS were all obtained with

five runs of the algorithm on each instance, while VNS was run ten times on each instance.

Note that some results of VNS that were not originally reported by Tricoire et al. [251]

were made available on the authors’ website http : //prolog.univie.ac.at/research/op/.

Since they are better results than those originally published, we used them instead for

our comparisons.

For the sake of fair comparison between the algorithms in terms of computational effort,

the reported running times of each algorithm were adjusted to account for the speed

difference between the different computation setups. Similar to Hu and Lim [135], we

used the Super Pi benchmark for this purpose. Super Pi is a single-threaded program

that computes the digits of π up to a specified number and is commonly used as an

estimate of CPU speed. Table 2.2 indicates the CPU used by each algorithm, its Super Pi

score, which corresponds to the number of seconds needed to compute the first one million

digits of π, and the associated time scaling factor. To obtain this factor, we estimated

the performance of each processor by considering the performance of our machine to be

1. For GRASP-ELS, GVNS and I3CH, we opted to use the Super Pi scores reported

by Hu and Lim [135]. Unfortunately, the scores of VNS and ELNS are not available.

Furthermore, we only had limited information on the experimental setup used by each

of them to be able to estimate their Super Pi scores. For the VNS, given that the paper

was published in 2010, we decided to use the same scaling factor as the one used for the

GVNS (0.32), because of the proximity of their publication dates. As for ELNS [217],

the authors did not report comparisons based on CPU times, and we were not able to

estimate their Super Pi score by only relying on the family of their CPU and its clock

rate. Therefore, we assumed similar performance to our setup. In the remainder of this

section, the time values reported in previous works are adjusted by the associated factors,

in order to account for CPU differences. For example, the adjusted computational time

of a solution obtained by I3CH can be obtained by multiplying its CPU time by 0.95.

Tables 2.3 to 2.5 summarize the results achieved by each algorithm. Comparison of solution

quality is usually drawn in terms of relative percentage error (rpe) with respect to the

best-known solution (BKS) for the standard benchmark, and in terms of average relative
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Algorithm CPU Super Pi Estimate Factor

VNS 2.4 GHz CPU (reference unknown) Unknown ≤ 0.32

GRASP-ELS Intel Pentium 4 processor, 3.00 GHz 44.3 0.32

GVNS Intel Pentium (R) IV, 3 GHz CPU 44.3 0.32

I3CH Intel Xeon E5430 CPU clocked at 2.66 GHz 14.7 0.95

ELNS Intel Xeon 3.1 GHz (reference unknown) Unknown ≈ 1

MS-ILS Intel Xeon X7542 CPU at 2.67GHz 14.1 1

Table 2.2 – Estimation of single-thread performance.

percentage error (arpe) for the “OPT” benchmark, but we chose to include comparisons

on the basis of RPE and ARPE for both benchmarks. These two metrics are computed

as: rpe = (BKS−Zmax)
BKS

∗ 100% and arpe = (BKS−Zavg)

BKS
∗ 100%, where Zmax denotes the best

score obtained over different runs and Zavg the average score. Column cpuavg of each table

reports the average computational time of previous algorithms in seconds. The detailed

results obtained by our MS-ILS are presented in Appendix A, where they are compared

to the best-known solutions in the literature. These results are presented in tables, of

which, each consists of two identically structured parts. Each part contains the name of

the instance, the best-known solution (BKS) to the instance, including the ones found

by our method, the maximum score (Zmax) obtained by our algorithm, the relative error

(rpe), the average score (Zavg), the average error (arpe), and the average computational

time in seconds (cpuavg).

Table 2.3 reports the results obtained by all the state-of-the-art algorithms and the MS-

ILS using the previous configuration on the standard benchmark. As can be seen in the

table, our MS-ILS achieves an average relative gap lower than those achieved by the other

algorithms for every set of instances. As for the relative gap, it achieves better results than

the literature on most instances, apart from instances rc200 with m = 3, and rc100 with

m = 4 where ELNS does slightly better, but at the cost of higher computational effort.

On Cordeau’s instances, our method requires a little more computation time to find high-

quality solutions compared to the likes of the GRASP-ELS and the GVNS, but is still

much faster than I3CH and the VNS, and the quality of the solutions it obtains is much

better than that of the other algorithms. Furthermore, note that Solomon’s instances with

wider time windows become easier to solve as m becomes larger.

The performance of our algorithm on the “OPT” data set is shown in Tables 2.4 and 2.5.

The column #OPT indicates the number of optimal solutions found by the MS-ILS.

Note that, in the case of column #OPT , the value reported at the bottom of the two
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Table 2.3 – Comparison of the MS-ILS to the state-of-the-art methods on the standard
benchmark.

Instances
VNS GRASP-ELS GVNS I3H ELNS MS-ILS

rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu

m=1

c100 0.00 0.11 31.5 0.00 0.00 7.2 0.56 1.22 53.3 0.00 - 24.0 0.00 0.00 19.0 0.00 0.00 2.0

r100 0.00 0.05 28.5 0.11 0.22 1.1 1.72 2.68 9.4 0.56 - 27.2 0.00 0.06 15.2 0.00 0.02 2.1

rc100 0.00 0.04 20.9 0.33 0.40 0.6 1.88 3.51 3.1 1.66 - 24.3 0.00 0.31 10.5 0.00 0.02 1.1

c200 0.00 0.21 179.3 0.40 0.61 10.3 0.55 1.11 61.6 0.40 - 80.2 0.00 0.08 47.0 0.00 0.08 9.9

r200 0.95 1.60 341.1 1.14 2.15 3.6 2.98 3.90 10.8 1.58 - 167.4 0.05 0.29 65.6 0.03 0.10 22.9

rc200 0.25 1.52 278.2 1.55 2.37 2.6 2.70 4.13 5.1 2.85 - 113.4 0.23 0.48 47.2 0.01 0.15 13.4

pr01-pr10 0.02 1.10 263.1 0.75 1.46 1.6 0.56 1.62 4.0 1.07 - 103.6 0.10 0.18 40.1 0.02 0.18 13.0

pr11-pr20 1.44 3.41 334.7 2.20 3.42 2.5 3.21 4.30 7.8 4.31 - 123.7 1.44 2.08 67.5 0.85 1.15 21.5

m=2

c100 0.00 0.27 28.2 0.00 0.07 22.7 0.47 0.72 44.7 0.00 - 24.0 0.17 0.20 30.6 0.00 0.03 3.6

r100 0.18 1.43 20.3 1.04 1.78 2.5 1.22 1.83 19.3 0.61 - 27.2 0.14 0.29 25.5 0.00 0.04 2.7

rc100 0.23 1.46 17.7 1.46 2.32 1.5 0.78 2.80 6.5 0.90 - 24.3 0.00 0.05 20.7 0.00 0.05 2.9

c200 0.59 0.95 174.6 0.17 0.34 9.4 0.34 0.66 10.8 0.76 - 80.2 0.00 0.20 63.5 0.00 0.14 16.8

r200 0.85 1.35 324.8 0.92 1.24 5.6 1.26 1.89 4.7 0.81 - 167.4 0.27 0.49 42.2 0.08 0.26 30.9

rc200 1.03 2.02 257.5 1.19 1.71 5.5 2.22 3.09 4.1 1.16 - 113.4 0.29 0.68 52.5 0.15 0.38 25.9

pr01-pr10 1.10 4.11 167.9 1.34 2.42 6.2 1.05 2.02 12.5 1.34 - 103.6 0.72 1.20 85.0 0.10 0.43 18.1

pr11-pr20 1.95 4.30 198.0 3.11 4.24 9.2 1.90 2.87 26.4 3.39 - 123.7 2.05 2.97 135.0 0.84 1.29 32.1

m=3

c100 0.11 0.73 27.4 0.24 0.56 27.8 0.45 0.95 52.8 0.11 - 82.6 0.11 0.49 40.5 0.00 0.09 5.1

r100 0.23 1.48 19.8 0.91 1.58 4.4 1.23 2.28 23.7 0.22 - 59.9 0.08 0.24 35.3 0.00 0.06 3.5

rc100 0.38 1.42 19.4 1.85 2.83 2.8 0.93 2.34 10.8 0.29 - 56.0 0.01 0.37 30.2 0.00 0.25 2.9

c200 0.29 1.01 63.0 0.58 0.92 8.6 0.77 1.29 17.7 0.16 - 381.2 0.22 0.42 27.7 0.08 0.18 5.2

r200 0.09 0.16 102.9 0.06 0.07 0.8 0.17 0.26 2.2 0.07 - 500.5 0.06 0.08 4.9 0.03 0.06 3.2

rc200 0.11 0.32 129.3 0.13 0.26 2.7 0.32 0.44 2.4 0.04 - 417.7 0.06 0.11 14.8 0.07 0.11 8.0

pr01-pr10 1.80 3.92 151.4 1.61 2.27 13.0 0.66 1.43 27.5 0.66 - 234.7 1.17 1.86 124.2 0.23 0.63 25.7

pr11-pr20 2.51 4.06 165.6 3.02 3.97 13.7 1.74 2.52 48.2 1.84 - 289.4 2.64 3.40 191.7 0.48 0.94 43.3

m=4

c100 0.38 1.34 26.2 0.79 1.12 27.1 1.14 1.72 42.6 0.20 - 180.7 0.77 1.26 48.5 0.10 0.31 7.6

r100 0.36 1.60 19.6 1.00 1.71 7.7 1.27 2.34 27.1 0.22 - 112.4 0.13 0.37 42.7 0.06 0.17 4.4

rc100 0.58 2.45 18.7 1.67 2.41 4.3 1.08 1.92 11.8 0.36 - 95.9 0.10 0.35 37.7 0.11 0.33 3.5

c200 0.00 0.00 33.5 0.00 0.00 0.0 0.00 0.00 0.2 0.00 - 158.2 0.00 0.00 0.0 0.00 0.00 0.1

r200 0.00 0.00 48.2 0.00 0.00 0.0 0.00 0.00 0.1 0.00 - 86.3 0.00 0.00 0.0 0.00 0.00 0.1

rc200 0.00 0.00 52.7 0.00 0.00 0.0 0.00 0.01 0.3 0.00 - 155.9 0.00 0.00 0.0 0.00 0.00 0.1

pr01-pr10 2.56 4.24 129.0 2.58 3.20 14.6 1.77 2.32 40.7 1.06 - 402.8 2.40 3.25 156.1 0.35 0.77 34.4

pr11-pr20 3.00 4.17 130.6 3.28 4.10 20.9 2.74 3.50 74.4 1.16 - 472.1 3.21 3.99 234.9 0.44 1.03 59.1

Average 0.66 1.59 118.9 1.04 1.55 7.5 1.18 1.93 20.8 0.87 - 156.7 0.51 0.80 54.9 0.13 0.29 13.3
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tables corresponds to the sum of the values of the column. Note also that the authors of

GRASP-ELS [153] and GVNS [152] only report the average value of solutions obtained

over several runs. Most of the published metaheuristics reported their results using the

average relative gap arpe, except for Hu and Lim [135] who used only the best relative gap

rpe. For this reason, we split the comparisons into two: Table 2.4 displays comparisons

based on the arpe, while Table 2.5 shows the comparisons based on the rpe. Even though

the “OPT” data set is known to be difficult to solve, MS-ILS achieves both the smallest

average relative gap and the second smallest relative gap, and is able to obtain 59 out of

66 optimal solutions in a reasonable amount of time. The I3CH is the only other algorithm

that finds slightly better solutions than the MS-ILS, but it requires significantly higher

computational times to do so. In some cases, it is up to twenty times slower than the

MS-ILS.

Table 2.4 – Performance comparison based on arpe average for “OPT” data set.

Instances Nb.
VNS GRASP-ELS GVNS ELNS MS-ILS

#OPT arpe% cpu #OPT arpe% cpu #OPT arpe% cpu #OPT arpe% cpu #OPT arpe% cpu

c100 9 9 0.02 6.4 - 0.00 0.4 - 0.47 2.5 9 0.00 1.5 9 9 0.5

r100 12 1 0.50 6.9 - 0.73 33.7 - 1.55 12.6 4 0.73 45.4 5 0.47 14.7

rc100 8 4 0.85 6.7 - 0.90 25.2 - 1.29 12.6 3 0.39 39.1 4 0.37 8.0

c200 8 - - - - 0.00 0.0 - 0.00 0.2 8 0.00 0.0 8 0.00 0.1

r200 11 - - - - 0.04 2.1 - 0.17 1.8 11 0.01 9.7 11 0.00 2.9

rc200 8 - - - - 0.03 0.9 - 0.16 0.9 8 0.00 2.6 8 0.00 1.4

pr01-pr10 10 5 1.30 22.9 - 0.92 22.9 - 1.25 16.4 3 1.22 154.9 5 0.95 25.8

Avg./Total 66 19 0.67 10.7 - 0.37 12.2 - 0.70 6.7 46 0.34 36.2 50 0.26 7.6

Table 2.5 – Performance comparison based on rpe average for “OPT” data set.

Instances Nb.
VNS I3H ELNS MS-ILS

#OPT rpe% cpu #OPT rpe% cpu #OPT rpe% cpu #OPT rpe% cpu

c100 9 9 0.00 6.4 9 0.00 45.2 9 0.00 1.5 9 0.00 0.5

r100 12 1 0.20 6.9 8 0.07 833.8 4 0.58 45.4 5 0.34 14.7

rc100 8 4 0.37 6.7 8 0.00 54.5 3 0.29 39.1 4 0.19 9.4

c200 8 - - - 8 0.00 0.6 8 0.00 0.0 8 0.00 0.1

r200 11 - - - 9 0.07 164.7 11 0.00 9.7 11 0.00 2.9

rc200 8 - - - 7 0.04 180.7 8 0.00 2.6 8 0.00 1.4

pr01-pr10 10 5 1.06 22.9 6 0.78 310.3 3 1.06 154.9 5 0.86 26.4

Avg./Total 66 19 0.41 10.7 55 0.14 227.1 46 0.27 36.2 50 0.20 7.9

For a more thorough comparison, we conducted additional experiments using other

combinations of values for parameters itermax, iterils and Msize in order to achieve

smaller and larger computation times than those presented above. We then compared the

performance of every combination with those of the state-of-the-art algorithms, namely

VNS, GRASP-ELS, GVNS, I3CH and ELNS in terms of computation time (CPU) and
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in terms of either relative error(rpe) or average relative error (arpe). The combinations

of values used for these experiments were chosen based on the results of the Pareto test

described in Section 2.5.2. The results of these experiments are displayed in Figures 2.10

and 2.9, and Tables 2.6 and 2.7.

Figures 2.10 and 2.9 show the performance of the MS-ILS using different combinations

of parameters compared to state-of-the-art algorithms; the first in terms of computation

time and relative error (rpe), the second in terms of cpu and average relative error (arpe).

As can be seen in both figures, the MS-ILS achieves better results compared to the

remaining algorithms: not only does it achieve smaller deviations when computation times

are equivalent, but each combination of parameter values we tested resulted in smaller

deviations compared to the remaining algorithms.
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Figure 2.9 – Comparison of different MS-ILS settings with the literature based on CPU
and RPE.

Tables 2.6 and 2.7 display the results of two runs of the MS-ILS using two different

settings of itermax, iterils and Msize. The first setting is the same as the one used in

the above comparisons with the literature. The second one is a slower version of the

algorithm obtained by setting itermax = 30n/m, iterils = 10 and Msize = 100m. The

main observation here is that, if allowed to run longer, the MS-ILS is able to further

improve solution quality. It is able to find the best known solutions for all of Solomon’s

instances at least one time out of five. On the “OPT” benchmark, it can obtain the

optimal solutions for 59 out of 66 instances. Overall, it is able to find the best known

solutions for 93% of the instances available in the literature.

During our experiments, including the tuning experiments, the MS-ILS found 61 new best-
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Table 2.6 – Comparison of two different settings of MS-ILS on the standard benchmark.

Instances
MS-ILS (2,4,80) MS-ILS (30,10,100)

rpe% arpe% cpu rpe% arpe% cpu

m=1

c100 0.00 0.00 2.0 0.00 0.00 32.5

r100 0.00 0.02 2.1 0.00 0.00 25.9

rc100 0.00 0.02 1.1 0.00 0.00 19.1

c200 0.00 0.08 9.9 0.00 0.00 80.4

r200 0.03 0.10 22.9 0.00 0.03 167.1

rc200 0.01 0.15 13.4 0.00 0.05 131.8

pr01-pr10 0.02 0.18 13.0 0.00 0.01 131.2

pr11-pr20 0.85 1.15 21.5 0.85 0.97 205.0

m=2

c100 0.00 0.03 3.6 0.00 0.00 30.2

r100 0.00 0.04 2.7 0.00 0.01 23.8

rc100 0.00 0.05 2.9 0.00 0.01 20.8

c200 0.00 0.14 16.8 0.00 0.07 85.0

r200 0.08 0.26 30.9 0.01 0.19 187.9

rc200 0.15 0.38 25.9 0.02 0.21 171.9

pr01-pr10 0.10 0.43 18.1 0.03 0.20 124.4

pr11-pr20 0.84 1.29 32.1 0.64 0.91 254.1

m=3

c100 0.00 0.09 5.1 0.00 0.04 39.8

r100 0.00 0.06 3.5 0.00 0.00 27.5

rc100 0.00 0.25 2.9 0.00 0.09 26.1

c200 0.08 0.18 5.2 0.02 0.11 32.1

r200 0.03 0.06 3.2 0.00 0.05 18.7

rc200 0.07 0.11 8.0 0.00 0.09 36.5

pr01-pr10 0.23 0.63 25.7 0.01 0.30 168.7

pr11-pr20 0.48 0.94 43.3 0.12 0.64 349.4

m=4

c100 0.10 0.31 7.6 0.10 0.22 44.7

r100 0.06 0.17 4.4 0.00 0.08 34.9

rc100 0.11 0.33 3.5 0.01 0.08 31.8

c200 0.00 0.00 0.1 0.00 0.00 0.1

r200 0.00 0.00 0.1 0.00 0.00 0.1

rc200 0.00 0.00 0.1 0.00 0.00 0.1

pr01-pr10 0.35 0.77 34.4 0.00 0.51 241.2

pr11-pr20 0.44 1.03 59.1 0.12 0.69 415.7

Average 0.13 0.29 13.3 0.06 0.17 98.7
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Figure 2.10 – Comparison of different MS-ILS settings with the literature based on CPU
and ARPE.

Table 2.7 – Comparison of two different settings of MS-ILS on the “OPT”.

Instances Nb.
MS-ILS (2,4,80) MS-ILS (30,10,100)

#OPT rpe% arpe% cpu #OPT rpe% arpe% cpu

c100 9 9 0.00 0.00 0.5 9 0.00 0.00 0.6

r100 12 5 0.34 0.47 14.7 10 0.02 0.09 92.7

rc100 8 4 0.19 0.37 9.4 7 0.08 0.19 58.5

c200 8 8 0.00 0.00 0.1 8 0.00 0.00 0.1

r200 11 11 0.00 0.00 2.9 11 0.00 0.00 1.4

rc200 8 8 0.00 0.00 1.4 8 0.00 0.00 1.8

pr01-pr10 10 5 0.86 0.95 26.4 6 0.64 0.71 144.8

Avg./Total 66 50 0.20 0.26 7.9 59 0.10 0.14 42.8

known solution values for the standard benchmark instances: 23 for Solomon’s instances

and 38 for Cordeau’s. Table 2.8 reports the new best-known solution values found by MS-

ILS. For each instance, it indicates the number of vehicles and the new solution value.

Altogether, our MS-ILS is very competitive. It is able to find the current best-known

solutions for 94% of the literature instances and was able to improve the best-known

solutions for many of them. It achieves an average relative error (arpe) of only 0.17% on

the standard benchmark and 0.14% on the “OPT” benchmark, and a relative percentage

error (rpe) of 0.06% and 0.10%, on the two benchmarks, respectively, while still being

faster than most state-of-the-art algorithms. In comparison, the previous best performing

approach in the literature finds 65% of the current best-known solutions, and achieves an

arpe of 0.80% on the standard benchmark and 0.34% on the “OPT” benchmark, and a

rpe of 0.51% and 0.27%, on the two benchmarks, respectively. Finally, our experiments
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Table 2.8 – New best-known solutions values found by MS-ILS.

Instance m Old BKS New BKS Instance m Old BKS New BKS Instance m Old BKS New BKS

r207 1 1077 1078 c108 4 1130 1140 pr14 3 1372 1375

r208 1 1117 1118 r104 4 974 975 pr15 3 1654 1694

r209 1 961 962 r112 4 972 974 pr18 3 1281 1289

r210 1 1000 1002 pr19 3 1417 1428

rc204 1 1140 1143 pr04 2 926 928 pr20 3 1684 1722

rc208 1 1057 1058 pr05 2 1101 1103

pr10 2 1134 1145 pr02 4 1079 1083

r201 2 1256 1260 pr13 2 843 845 pr03 4 1232 1247

r202 2 1350 1353 pr15 2 1220 1238 pr04 4 1585 1595

r203 2 1420 1431 pr18 2 953 955 pr05 4 1838 1858

r205 2 1395 1402 pr19 2 1034 1041 pr06 4 1860 1894

r206 2 1447 1452 pr20 2 1237 1251 pr08 4 1382 1390

r209 2 1419 1423 pr09 4 1619 1622

r210 2 1430 1438 pr02 3 943 945 pr10 4 1943 1965

rc201 2 1385 1386 pr03 3 1010 1014 pr12 4 1132 1133

rc202 2 1520 1523 pr04 3 1294 1296 pr13 4 1386 1392

rc203 2 1637 1639 pr05 3 1482 1500 pr14 4 1670 1688

rc204 2 1716 1718 pr06 3 1514 1515 pr15 4 2065 2085

rc207 2 1601 1609 pr08 3 1139 1141 pr17 4 934 936

rc208 2 1691 1705 pr09 3 1275 1277 pr18 4 1539 1554

pr10 3 1573 1582 pr19 4 1750 1780

r201 3 1441 1450 pr13 3 1145 1159 pr20 4 2062 2115

show that the MS-ILS can be tuned to either favor speed or solution quality and remain

relatively better than other approaches.

2.5.4 Performance analysis

In the following, we discuss the results of the experiments conducted to evaluate the impact

of each of the key components of our algorithm, namely the combination of two different

search spaces and the adaptive memory. To do this, we derive alternative versions of the

MS-ILS by disabling search spaces one at a time, or by disabling the adaptive memory.

The considered configurations are as follows:

(a) Standard: the standard algorithm described in Section 2.4.

(b) No Routes: an alternate version of MS-ILS where the route search space operators

are disabled.

(c) No Tours: an alternate version of MS-ILS where the giant tour search space

operators and the splitting procedures are disabled. To construct solutions from

the memory, we simply select m routes that do not share customers.
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(d) No Memory: version of the standard algorithm where the adaptive memory and

giant tour construction are disabled. Each iteration of the main loop starts from a

randomly generated solution.

All of the above configurations were run ten times on each instance of both the standard

and the “OPT” benchmark using the parameter values given in Section 2.5.2. Table 2.9

shows the average gap relative to the best know solutions, and the average CPU time

achieved by each of the configurations from (a) to (d).

Table 2.9 – Performance analysis of MS-ILS components.

(a) Standard (b) No Routes (c) No Tours (d) No Memory

Instances arpe cpu arpe cpu arpe cpu arpe cpu

m=1 Solomon 100 0.02 % 2.3 0.92 % 1.0 0.06 % 2.9 0.07 % 3.1

Solomon 200 0.09 % 21.1 1.55 % 8.1 0.15 % 18.0 0.45 % 8.6

Cordeau 0.57 % 21.8 4.50 % 6.8 0.69 % 19.5 1.03 % 21.6

avg 0.23 % 15.1 2.32 % 5.3 0.30 % 13.5 0.52 % 11.1

m=2 Solomon 100 0.03 % 3.7 1.17 % 1.6 0.04 % 3.4 0.37 % 2.4

Solomon 200 0.31 % 26.8 1.65 % 46.0 0.42 % 12.6 0.98 % 6.5

Cordeau 0.83 % 31.5 4.98 % 8.8 1.05 % 21.0 2.66 % 14.9

avg 0.39 % 20.7 2.60 % 18.8 0.50 % 12.3 1.33 % 8.0

m=3 Solomon 100 0.12 % 4.5 1.30 % 6.5 0.12 % 3.7 0.85 % 2.3

Solomon 200 0.28 % 6.6 1.57 % 4.4 0.32 % 4.7 1.39 % 1.9

Cordeau 0.83 % 42.3 5.03 % 13.7 1.00 % 24.8 3.37 % 13.2

avg 0.41 % 17.8 2.63 % 8.2 0.48 % 11.1 1.87 % 5.8

m=4 Solomon 100 0.28 % 6.7 1.72 % 4.3 0.33 % 4.7 1.49 % 2.0

Solomon 200 0.00 % 0.1 0.00 % 0.1 0.00 % 0.1 0.00 % 0.1

Cordeau 0.84 % 54.2 5.44 % 22.2 1.07 % 24.8 3.97 % 12.8

avg 0.37 % 20.3 2.39 % 8.9 0.47 % 9.9 1.82 % 5.0

OPT Solomon 100 0.31 % 11.2 0.97 % 10.3 0.55 % 2.5 0.70 % 2.3

Solomon 200 0.00 % 1.7 0.10 % 16.7 0.00 % 0.9 0.02 % 1.1

Cordeau 0.99 % 28.2 1.76 % 70.3 1.10 % 6.7 1.42 % 10.3

avg 0.44 % 13.7 0.94 % 32.5 0.55 % 3.3 0.72 % 4.6

Comparisons between the configurations (a) to (c) highlight the impact of alternating

between route and giant tour search spaces instead of only using one of them. Disabling

either one of the search spaces translates into a decrease of solution quality compared

to configuration (a), but removing the route operators has a bigger impact on solution

quality than removing giant tour operators. We still decided to keep both spaces in the

design of the algorithm because both of them help improve solution quality; besides, the

giant tour search spaces is still needed to find good solutions for some instances.

Comparisons between configurations (a) and (d) show the contribution of including the
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adaptive memory into the multi-start framework. As we can see, adding the adaptive

memory significantly improves the average gap on the two benchmarks, with a reasonable

impact on CPU time. In terms of solution quality, the use of the adaptive memory has a

more significant impact when solving instances of the standard benchmark with m ≥ 2

than when solving instances with m = 1. This is because when m = 1, the algorithm

chooses a previous local optimum and tries to improve it, whereas when m ≥ 2, the

algorithm constructs new solutions using several from previous local optima.

Most of the time, disabling one component results in a decrease in computation

times. However, depending on the instance, the opposite can happen, and disabling

one component may result in bigger computation times. For example, in the standard

benchmark on Solomon’s instances with m = 1; disabling the route space local search

operators hinders the progress of the algorithm towards good solutions, which explains

the increase in CPU time.

2.6 Conclusion

In this chapter, we introduced a simple yet very effective Multi-Start Iterated Local Search

(MS-ILS) for the Team Orienteering Problem with Time Windows. Our algorithm is based

on a local search that alternates between two different search spaces: the route search space

that corresponds to actual solutions to the TOPTW, and the giant tour search space that

makes it possible to explore the solution space without being limited by time windows

and length constraints. In order to improve solution quality, several local search operators

are included to be used in each search space. Additionally, the algorithm integrates an

adaptive memory mechanism to further improve performance by making use of previous

local optima to build better solutions.

Computational results have shown that our approach performs very well compared to

state-of-the-art algorithms and is able to outperform them in terms of overall solution

quality and computation times. In particular, the MS-ILS is able to find the current best-

known solutions, or better ones, for 94% of the benchmark instances within reasonable

runtimes, and achieves an overall average relative gap of 0.17% and 0.14% on the two

benchmarks of the literature, respectively. Our approach was also able to find new best

solutions for 61 instances for which no optimal solution has yet been found.

Finally, the method proposed herein is flexible in the sense that it can be easily adapted to

accommodate new constraints or to address other variants of the problem. One potential
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direction for future research would be to extend our algorithm to more realistic versions

of orienteering problems with time windows.



Chapter 3

A Neighborhood Search and Set

Cover Hybrid Heuristic for the

Two-Echelon Vehicle Routing

Problem

The Two-Echelon Vehicle Routing Problem (2E-VRP) is a variant of the classical vehicle

routing problem arising in the context of city logistics. In the 2E-VRP, freight from a

main depot is delivered to final customers using intermediate facilities, called satellites. In

this paper, we propose a new hybrid heuristic method for solving the 2E-VRP that relies

on two components. The first component effectively explores the search space in order

to discover a set of interesting routes. The second recombines the discovered routes into

high-quality solutions. Experimentations on benchmark instances show the performance

of our approach: our algorithm achieves high-quality solutions in short computational

times and improves the current best known solutions for several large scale instances.

3.1 Introduction

Freight transportation is a key factor underpinning economic growth. However, it is

also a major nuisance, especially in urban areas where congestion and environmental

effects disturb people’s well-being. As demand for freight transportation increases, new

transport policies and better traffic management become essential to limit its effects. The

concept of city logistics is one approach to solving the problem. It aims to optimize freight

transportation within city areas while considering traffic congestion and environmental

issues as well as costs and benefits to the freight shippers [237]. Some of the most used

models in city logistics are multi-echelon distribution systems, especially two-echelon

systems.

65



66 CHAPTER 3. A NEIGHBORHOOD SEARCH AND SET COVER HYBRID HEURISTIC FOR

THE TWO-ECHELON VEHICLE ROUTING PROBLEM

In a two-echelon distribution system, delivery from one or more depots to the customers

is managed by shipping and consolidating freight through intermediate depots called

satellites. Freight is first moved from the depots to the satellites using large trucks. Then,

freight is delivered from the satellites to the customers using smaller vehicles. Proceeding

like this allows to shape more conveniently the fleet of vehicles to be used, as larger trucks

are more cost efficient whereas smaller ones are preferable in city centers. Because the

flow of freight in each echelon depends on that in the other echelon, routing problems

arising in two-echelon distribution systems must be studied as a whole; they cannot be

merely decomposed into two separate sub-problems. The problem that studies how to

efficiently route freight in such systems is known as the Two-Echelon Vehicle Routing

Problem (2E-VRP).

In this work, we consider the basic version of the 2E-VRP. It is characterized by a single

depot and a set of satellites. A fleet of homogeneous vehicles of known size is available

at each echelon. Vehicle capacities are limited. Only one type of product is to be shipped

and split deliveries are only allowed at the first level. The objective is to minimize the

total routing cost in both levels.

To address this problem, we propose a hybrid heuristic that relies on two components

embedded in an iterative framework. The first component aims to generate a set of

promising routes using destroy and repair operators combined with an efficient local

search procedure. The second component recombines the generated routes by solving

a set covering problem to obtain a high quality solution. Computational experiments

conducted on the test instances of the literature show the performances of our approach,

as it reached high quality solutions in short computing times, and was able to improve

the current best known solution for several large instances.

The remainder of this paper is organized as follows. In Section 3.2, an overview of the

related literature is given. The problem is described in Section 3.3, and the proposed

approach is explained in Section 3.4. Section 3.5 presents computational results and

compares them to the best known solutions of the literature. Finally, Section 3.6 concludes

and discusses possible directions for future research.

3.2 Literature review

One of the first studies on the optimisation of two-echelon distribution systems was

presented by Jacobsen and Madsen [138, 177] who considered the problem of daily
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newspaper distribution involving two editors who wanted to share their facilities and

transportation means to reduce costs. In their problem, they considered several transfer

points to transfer newspapers from one vehicle to another, but unlike the 2E-VRP they

didn’t allow for split deliveries and retailers could be served directly from the printing

office.

Crainic et al. [68] studied a new organizational and technological framework for urban

freight management in congested areas. They used data from the city of Rome to design

a two-tier distribution system. They introduced intermediate facilities to consolidate

freight and redistribute it among small vehicles, as larger ones cannot pass through

the narrow streets of the city centre. They also proposed a mathematical model for

the problem of locating the satellite facilities. Later, Crainic et al. [69] considered a

two-echelon, synchronized, scheduled, multi-depot, multiple-tour, heterogeneous vehicle

routing problem with time windows for which they presented a general mathematical

model and promising algorithmic avenues. Subsequently, Crainic et al. [67] compared the

performance of a analysed the impact of various parameters on the total cost of the

2E-VRP. They studied the impact of depot location, satellite numbers and locations,

and customer distribution. They conclude that the 2E-VRP yields better results than

the VRP when the depot is located outside the customers area. In [66], the authors

provide a complementary study where they considere a more general cost that includes

infrastructure costs, operational costs, and environmental cost.

Perboli et al. [193] introduced a flow-based formulation for the 2E-VRP and generated

three sets of instances with up to fifty customers and four satellites, based on CVRP

instances. The authors also proposed valid inequalities for the 2E-VRP and two math-

based heuristics. Their Branch-&-Cut algorithm (B-&-C) was able to optimally solve

instances with 21 customers. By using new families of valid inequalities, Perboli et al. [192]

were able to optimally solve all the instances with 21 customers and to reduce the gap on

the larger ones.

Crainic et al. [64] developed two heuristics for the 2E-VRP. Both algorithms proceed by

separating the first and second echelon, and solving them sequentially. However, one solves

the second level routing problem by decomposing it into a set of independent VRPs using

a clustering heuristic, while the other treats it as multi-depot VRP.

A multi-start heuristic for solving the 2E-VRP was proposed in [65]. The algorithm starts

by assigning the customers to the satellites using a heuristic criterion then proceeds to the

resolution of the m+1 resulting VRPs, where m is the number of satellites, using an exact
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method. After that, the solution is perturbed by randomized changes to the customer-to-

satellite assignment, and the problem is solved again until a maximum number of iterations

is reached. Components of the multi-start heuristic were used in a hybrid GRASP with

path re-linking in [63]. The algorithm first generates solutions using GRASP. Some of

the generated solutions may be infeasible, a feasibility search is then applied. Feasible

solutions are improved using a local search. Finally, using path re-linking, the algorithm

tries to further improve the solutions.

Hemmelmayr et al. [132] designed an Adaptive Large Neighbourhood Search (ALNS) for

the 2E-VRP. The ALNS algorithm proceeds by removing, at each iteration, a subset of

customers from the current solution using a destroy operator and, then, re-inserting the

removed customers in different positions using a repair operator. The authors presented

4 repair operators and 8 destroy operators divided into two sets : those that change the

satellite configuration of the current solution by opening/closing satellites, and those that

keep the satellite configuration unchanged and have a smaller impact on the structure of

the solution. New larger instances with up to 200 customers were also introduced. The

ALNS improved many of the best solutions previously published.

Jepsen et al. [140] presented a Branch-&-Cut algorithm for the 2E-VRP based on a MILP

formulation. Said formulation is a relaxation of the 2E-VRP that provides lower bounds

for the problem but not necessarily feasible solutions. Therefore, the authors also present

a feasibility problem to test if the produced integer solutions are valid solutions for the

2E-VRP, and a branching scheme to branch on infeasible ones. The B&C algorithm was

able to solve to optimality instances with up to 50 customers.

Santos et al. [214] developed two Branch-&-Price (B&P) algorithms to solve the 2E-VRP

: one only considers routes that satisfy elementary constraints while the other relaxes

such conditions when pricing. In a later work [215], they proposed a reformulation of the

problem that overcomes symmetry issues observed in their previous formulations, and

implemented a Brand-&-Cut-&-Price algorithm by incorporating valid inequalities into

their B&P. The new algorithm performed well in comparison to other exact methods.

The current best exact method for the 2E-VRP was introduced by Baldacci et al. [21]. Its

main idea is to decompose the 2E-VRP into a set of MDVRPs with side constraints then

solve the generated set of subproblems to obtain an optimal solution for the 2E-VRP. The

proposed algorithm relies on a new ILP formulation that is used to derive a relaxation,

and a bounding procedure based on dynamic programming and a dual ascent method.

The authors provide detailed results on instances from previous literature, as well as a
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newly generated set of instances with up to 100 customers.

Zeng et al. [272] presented a hybrid two phase heuristic for the 2E-VRP composed of

a GRASP and Variable Neighbourhood Descent (VND). First, the GRASP generates

a feasible solution using a route-first cluster-second procedure, then, the VND tries to

improve it. The process is repeated until a maximum number of iterations is reached. The

algorithm provides good results but, unfortunately, only instances comprising up to 50

customers were used for the tests.

Breunig et al. [39] published a Large Neighbourhood Search (LNS) for the 2E-VRP.

Their algorithm is based on the destroy-and-repair approach. At each iteration, a destroy

operator is used to remove customers from the current solution, then a repair operator is

used to re-insert them at different positions, and a local search is performed to improve

the new solution. The authors use 5 different destroy operators and one repair operator.

While its principle resembles that of the ALNS of [132], the algorithm of [39] is faster and

conceptually simpler. The authors also resolved inconsistencies between different versions

of benchmark instances, and made them available online in a unified format. The LNS-2E

was able to improve the best known solutions for several instances of the literature.

Recent years saw a growing interest for the 2E-VRP with the introduction of different

variants of the problem. The Time Dependant 2E-VRP with Environmental Considera-

tions was introduced in [226]. Contrary to the standard 2E-VRP, this variant acounts

for accounts for vehicle type, traveled distance, vehicle speed, load, multiple time zones,

and CO2 emissions. The authors proposed a MILP formulation of the problem and some

valid inequalities to strenghten it, and did a case study on a Dutch supermarket chain to

show the applicability of their model to a real-life problem. Wang et al. [267] proposed an

algorithm for the 2E-VRP with Environmental Considerations (2E-CVRP-E) that closely

resembles the prévious variant. Their algorithm comprises of a Variable Neighborhood

Search (VNS) followed by the resolution of a linear programm to further improve the

obtained solution. They tested their algorithm on newly proposed instances for the 2E-

VRP-E and on instances for the standard 2E-VRP, and were able to improve several best

known solutions for 2E-VRP instances.

Grangier et al. [122] proposed an adaptive large neighborhood search (ALNS) for the

Two-Echelon Multiple-Trip Vehicle Routing Problem with Satellite Synchronization (2E-

MTVRP-SS). This variant of the problem was first discussed in [69] and [193] but neither

a resolution algorithm nor instances were proposed since then. The proposed ALNS uses

a set of custom repair and destroy heuristics, and an efficient feasability check to solve
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the problem. Results are reported on instances obtained from the extension of standard

2E-VRP instnaces.

In [222], the Adaptive Two-Echelon Capacitated Vehicle Routing Problem (A2E-CVRP)

was proposed. Compared to 2E-CVRP, A2E-CVRP considers multiple depots and allows

direct shipping from the depot to the customers. The authors introduced a mathematical

formulation and lower bound for A2E-CVRP that is also used for deriving an upper bound.

They performed computational experiments on the small instances of the 2E-VRP and

showed that the A2E-CVRP yields lower route costs compared to the classical 2E-VRP.

Finally, Zhou et al. [273] introduced a Multi-Depot Two-Echelon Vehicle Routing Problem

with Delivery Options (MD-TEVRP-DO) for last mile distribution. This variant of

the problem considers multiple depots from which satellites can be served, and more

importantly, each customer is associated with a particular depot and can be served in two

different ways. Vehicles can serve customers either by direclty visiting the customer (Home

Delivery) or by leaving the shipment at a pickup facility from which the customer can

retrieve it (Customer Pickup). The authors proposed a Hybrid Multi-Population Genetic

Algorithm to solve the problem and tested it on an instance generated from real world

data and on several randomly generated instances.

3.3 Problem definition

The 2E-VRP is defined on a weighted undirected graph G = (V,A), where V is the set

of nodes and A the set of arcs. Set V is partitioned as V = {v0} ∪ Vsat ∪ Vcust. Node v0

represents the depot, subset Vsat contains nsat satellites and subset Vcust contains ncust

customers. Set A = A1∪A2 is divided into two subsets. A1 = {(i, j) : i, j ∈ {v0}∪Vsat, i 6=
j} contains the arcs that can be taken by first level vehicles: trips between the depot and

the satellites and trips between pairs of satellites. A2 = {(i, j) : i, j ∈ Vsat ∪ Vcust, (i, j) /∈
Vsat × Vsat, i 6= j} contains the arcs that can be taken by second level vehicles: trips

between customers and satellites and trips between pairs of customers. A travel cost

cij, (i, j) ∈ A, is associated with each arc. We assume that the matrix (cij) satisfies the

triangle inequality.

Each customer i ∈ Vcust demands di units of freight to be delivered. The demand of

a customer cannot be split among several vehicles, that is, a customer must be served

exactly once. Moreover, customer demands cannot be delivered by direct shipping from

the depot and must be consolidated at a satellite. Satellite demands are not explicitly
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given but considered to be the sum of all the customer demands that are served trough

the satellite. We assume that it can exceed vehicle capacity and thus, we allow for it to

be split among different vehicles e.i. a satellite can be served by more than one vehicle.

A satellite may also have a demand equal to zero and, in this case, not be visited by any

vehicle. Consolidating shipments at satellite s ∈ Vsat incurs handling costs equal to hs

times the quantity of handled goods.

A fleet f1 of m1 identical vehicles of capacity Q1 is located at the depot v0 and is used to

deliver goods to the satellites. Additionally, a fleet f2 of m2 identical vehicles of capacity

Q2 is available for serving the customers. Each of the m2 vehicles can be located at any

satellite s ∈ Vsat as long as the number of vehicles at one satellite does not exceed a limit

ks.

We define a first-level route as a route performed by a first-level vehicle that starts at the

depot, visits one or several satellites then returns to the depot. In a same way, we define a

second-level route as a route run by a second-level vehicle that starts at satellite s ∈ Vsat,
visits a subset of customers before returning to s. Routes must respect vehicle capacities,

that is, the sum of deliveries made by a first-level route to the satellites it visits must not

exceed Q1 and the total demand of the customers visited by a second-level route must

not exceed Q2. Each vehicle performs only one tour, and each route has a cost equal to

the sum of the costs of the arcs used.

The objective of the 2E-VRP is to find a set of routes at both levels such that each

costumer is visited exactly once, the capacity constraints are respected, the quantity

delivered to costumers from each satellite is equal to the quantity received from the

depot, and the total routing and handling costs are minimized. Figure 3.1 shows a solution

example for the 2E-VRP.

Figure 3.1 – Example of a 2E-VRP solution.
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3.4 Solution method

We propose a hybrid heuristic that relies on a neighborhood search to generate good

feasible solutions, and a integer programming (IP) method to recombine the routes from

those solutions into a better one. Algorithm 3 summarizes the steps of our method.

Algorithm 3: Neighborhood Search and Set Cover hybrid heuristic for the 2E-VRP.

Data: 2E-VRP instance
Result: Sbest solution for the 2E-VRP instance

1 begin
2 S ← S0

3 Sbest ← S0

4 Sbest ← BestInsertionHeuristic()
5 S ← Sbest
6 pool← {}
7 while !Stopping criteria do
8 S ← RouteGenerationHeuristic(S, pool)
9 if cost(S) < cost(Sbest) then Sbest ← S

10 S ← RouteRecombination(pool)
11 if cost(S) < cost(Sbest) then
12 Sbest ← S
13 else
14 S ← GreedyInsertionHeuristic() // Restart

15 return Sbest

At each iteration of the algorithm, the route generation heuristic takes an initial solution

S and tries to improve it while exploring the solution space and storing new routes

in the pool. After that, the recombination component uses the discovered routes to

construct a better solution by solving a Set Cover based formulation of the 2E-VRP. If

the recombination fails to produce a better solution, the algorithm constructs a different

one from scratch and uses it as initial solution for the route generation heuristic during

the next iteration. The idea of the approach is to use the integer program as a mean to

find better quality solutions missed by the route generation heuristic while guiding the

search process towards different regions of the solution space.

A comparable approach was proposed by Rochat et al. [210] for the vehicle routing problem

with time windows. However, they used the exact model as a post-optimization method

after the completion of their heuristic. This is generally the case due to the exponential

worst case performance of the model. What is new in our proposal is that we iteratively

apply a Set Cover (SC) based formulation of the problem as a refinement technique rather
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Algorithm 4: Route generation heuristic for the 2E-VRP.

Data: 2E-VRP instance
Initial Solution S0

Result: Sbest solution for the 2E-VRP instance
1 begin
2 S ← S0

3 Sbest ← S0

4 repeat
5 i← 1
6 while i < imax do
7 Stmp ← destroy(S, τ)
8 Stmp ← localSearch(repair(Stmp))
9 Stmp ← firstLevelReconstruction(Stmp)

10 pool← update(pool, Stmp) // Add routes to pool

11 if cost(Stmp) < cost(S) then
12 S ← Stmp
13 i← 1
14 τ ← τmin

15 else
16 i← i+ 1
17 increment(τ)

18 cost(S) < cost(Sbest) Sbest ← S
19 iter ← 0
20 iter ← iter + 1
21 S ← perturb(S)

22 until iter = iterrepeat
23 return Sbest

than focusing on the local search results. We show that is possible to combine efficiently

heuristic and exact algorithms to explore the search space within short runtimes.

3.4.1 Route generation heuristic

The neighborhood search we use to explore the solution space is based on the destroy-

and-repair principle. At each iteration, a part of the solution is destroyed by removing a

limited number of customers using a destroy operator. The removed customers are then

re-inserted into the solution with a repair operator. The structure of this heuristic is

described in Algorithm 4.

Starting from an initial solution, a random number η ∈ [1, τ ] of customers is removed from

the second echelon. The maximum number of customers to be removed τ is first initialized
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to τmin and then increased after each non-improving iteration until it reaches τmax. As

soon as an improvement is found, τ is reset to τmin. Slowly varying the value of τ during

the execution allows to intensify the search around promising solutions and then to slowly

increase diversification as the search converges toward a local optima. Once the solution is

destroyed, the removed customers are reinserted using a repair operator and the obtained

solution is passed to a local search to improve the second echelon routes. After that, the

satellite demands are computed and the first echelon routes are constructed to obtain a

complete solution. If the new solution has a better objective value than S, it is accepted

as the new incumbent. Moreover, after imax consecutive iterations without improving

the incumbent solution, the best-known solution is updated and the configuration of the

available satellites is modified using perturb(S) to allow the search procedure to explore

a different region of the solution space. The solution obtained after the perturbation

becomes the new incumbent. The algorithm ends after iterrepeat consecutive iterations

have been performed without improving the best-found solution.

3.4.1.1 Destruction

The destroy procedure only considers the second level routes. At each iteration, it

randomly chooses one of the following operators and removes a random number of

customers η in [1, τ ].

a. Random removal operator: removes η randomly chosen customers from the

solution.

b. Worst removal operator: removes the customers with the highest increase in

solution cost. More precisely, it calculates for each customer k located between i

and j a saving value cik + ckj − cij. Savings are then normalized by the average cost

of the incident arcs of the corresponding customer and altered by a random factor

between 0.8 and 1.2 as in [132]. Finally, customers are sorted in decreasing order of

their normalized savings and the η first customers are removed from the solution.

Normalizing the savings serves to avoid repeatedly removing the customers that are

isolated from the others.

c. Sequence removal operator: removes a sequence of η consecutive customers from

a randomly chosen route. If η is larger than the chosen route, the whole route is

destroyed and the remaining number of customers is removed from a second route.
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3.4.1.2 Repair and first level reconstruction

Repair is performed by using two heuristics : Best Insertion Heuristic (BIH) and Greedy

Insertion Heuristic (GIH). When repairing an incomplete solution, we first use BIH. This

constructive heuristic identifies among all the unrouted customers the one that increases

the least the total solution cost and inserts it at its best position. It repeats the process

until all customers are routed. If one or more customers remain unrouted because their

demands are higher than the largest remaining capacity of any vehicle, the repair process

is restarted using GIH. The Greedy Insertion Heuristic inserts customers in a random

order one after the other at their cheapest possible position in the solution. If the GIH

fails, the customers are randomly reordered and the heuristic restarts. We observed that

proceeding this way is sufficient to achieve feasible solutions after a small number of

tries. These repair heuristics consider feasible insertions in already existing routes. If the

maximum number of vehicles is not yet reached, the creation of new empty routes from

open satellites is also tested.

The construction of the first-echelon routes is achieved by means of a heuristic similar

to GIH. The heuristic starts by creating for each satellite with a demand greater than

Q1 enough back-and-forth trips so that its remaining demand becomes smaller than Q1.

Once it is done, the heuristic proceeds to insert of the remaining demands the same way

as GIH.

3.4.1.3 Local search

The local search procedure consists of the following operators : 2 − opt, 2 − opt∗,

Relocate(λ), and Swap(λ1, λ2) with λ, λ1, λ2 ∈ {1, 2}. The 2 − opt operator [169] is

performed on each route and 2−opt∗ [197] is performed on routes originating from the same

satellite. Relocate moves sequences of λ customers to their best positions in the solution.

Finally, Swap exchanges the positions of two sequences of λ1 and λ2 customers from the

same route or from two different routes. At each iteration, the local search procedure

randomly applies one of the above operators. If the chosen operator does not improve

the solution, it is discarded, otherwise the set of operators is reset. The process continues

until all operators have been discarded. Moves from each operator are performed in a

first-improvement manner until no improving move can be found in the neighborhood.
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3.4.1.4 Perturbation

In order to explore different regions of the search space, we temporarily close satellites

and reopen them using the Close Satellites and Open Satellites operators.

a. Close Satellites: randomly chooses one satellite among the open ones having at

least one route originating from them and closes it. The routes of the chosen satellite

are reassigned to an open satellite that keeps their cost to a minimum. When the

number of open satellites becomes less than the minimum required to serve all

customers, the operator chooses a random satellite among the closed ones and opens

it.

b. Open Satellites: chooses a random number of satellites among those that are

closed and opens them. In order to allow the number of open satellites to decrease,

especially at the beginning when most of them are open, the number of satellites to

be opened can be nil.

3.4.2 Recombination method

The route recombination component uses a pool of routes collected during the search

process and recombines them to obtain a high-quality solution by solving a set cover

based formulation of the problem. In the following, we introduce the notations used in

the IP model.

LetM be the set of all the possible first level routes, andMs ⊆M the subset of first-level

routes that serve satellite s ∈ Vsat. We note gr the cost of route r ∈M. Let R be the set of

all the possible second-level routes, and Rs the subset or routes passing through s ∈ Vsat,
thus R =

⋃
s∈VsatRs. We associate to each route r ∈ R a cost cr, and a load wr =

∑
c∈r dc

equal to the total demand of customers visited in route r. The binary parameter δri is

equal to 1 if and only if route r ∈ R visits customer i ∈ Vcust, and 0 otherwise. The

second-level routes having been extracted from valid solutions, they all satisfy the vehicle

capacity constraints.

Let yr ∈ {0, 1} be a binary decision variable equal to 1 if and only if first-level route

r ∈ M is in the solution, xr ∈ {0, 1} a binary decision variable equal to 1 if and only if

second-level route r ∈ R is in the solution, and qsr a non-negative variable representing

the amount of goods delivered by route r ∈ M to satellite s ∈ Vsat. We assume that



3.4. SOLUTION METHOD 77

qsr = 0 if satellite s is not visited in route r. Parameter hs represents handling costs at

satellite s ∈ Vsat. The route recombination model can be formulated as follows:

min z =
∑
r∈R

cr · xr +
∑
r∈M

gr · yr +
∑
s∈Vsat

∑
r∈Ms

hs · qsr (3.1)

s.t.
∑
r∈R

δri · xr ≥ 1 , ∀i ∈ Vcust (3.2)∑
r∈Rs

xr ≤ ks , ∀s ∈ Vsat (3.3)∑
r∈R

xr ≤ m2 (3.4)∑
r∈M

yr ≤ m1 (3.5)∑
r∈Ms

qsr =
∑
r∈Rs

wr · xr , ∀s ∈ Vsat (3.6)∑
s∈Vsat

qsr ≤ Q1 · yr , ∀r ∈M (3.7)

xr ∈ {0, 1}, r ∈ R (3.8)

yr ∈ {0, 1}, r ∈M (3.9)

qsr ∈ R+, s ∈ Vsat, r ∈M (3.10)

The objective function (3.1) states to minimize routing costs on both levels plus handling

costs at each satellite. Constraints (3.2) ensure that each customer is visited at least

once. Constraints (3.3) limit the number of second-level vehicles per satellite. Constraints

(3.4) and (3.5) impose upper bounds on the number of vehicles used to implement first

and second level routes. Balance between the quantity delivered by first-level routes to a

satellite and the customer demands supplied from said satellite is imposed by constraints

(3.6). Constraints (3.7) ensure that the capacity of first-level vehicles in not exceeded.

Because the total amount of goods that need to be supplied to each satellite is not

known beforehand, we cannot assume that capacity constraints are respected by first-

level routes like we did for second-level routes. We need to explicitly state them in the

formulation. Finally, constraints (3.8), (3.9), and (3.10) define the values domain for the

decision variables.

Note that the model we use in our recombination component is a relaxation of the 2E-

VRP. Constraints (3.2) require that each customer is visited at least once, instead of

exactly once. However, since the distance matrix satisfies the triangle inequality, the
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two formulations remain equivalent as the resolution process will naturally lean towards

solutions with the least possible amount of visits to a same customer. If the pool contains

all the possible routes, solving the formulation with the relaxed model will still result in

an optimal solution where each customer is visited exactly once. The idea of relaxing the

problem stems from the fact that the recombination pool only contains a limited subset

of routes, thus the solutions it finds may be few. To increase the number of combinations

that can be made, we choose to allow combining routes that share common customers,

as it can lead to better objective values. Even though the resulting combination may not

be a valid solution to the 2E-VRP, removing the extra visits to each customer makes it

feasible while producing new routes and further lowering the objective value.

3.4.2.1 Pool management and initialization

The performance of the route recombination component strongly depends on the size of

the pool of routes. A larger size increases the chances of finding high-quality solutions but

also induces higher computation times, whereas a small size reduces computation times

but makes finding improved solutions less likely. Thus, pool size must be fixed in order

to offer a good trade-off between solution quality and computation efforts. Furthermore,

to account for the lesser number of available routes, it is better to keep inside the pool

only routes that are more likely to be in high-quality solutions. To this end, we assign

each route a priority based on the cost of the solution it was extracted from, thus favoring

routes that belong to the best found solutions. When the pool capacity is reached, routes

with lower priority are removed and replaced by the new ones. If a route already exists

inside the pool, its priority is updated if it is extracted from a better solution.

The pool is initialized with the routes of x different solutions generated by the Greedy

Insertion Heuristic described in Section 3.4.1.2 and improved with the local search

procedure described in Section 3.4.1.3. Furthermore, for each satellite s we add m1 copies

of round trip routes to s from the depot to account for the possibility of it being served

more than once.

3.4.2.2 Correcting heuristic

When the route recombination model is solved, some customers might be visited more

than once. In this case, we use a correcting heuristic to remove the extra visits and produce

a valid solution. The algorithm starts by establishing the set Vcm of customers that are
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visited more than once. It then computes for each visit v of each customer i ∈ Vcm its

removal gain δiv, removes the visit with the highest gain and updates the gains for the

remaining ones. When the number of visits to a customer drops to one, it is removed from

Vcm. The procedure is repeated until Vcm becomes empty. During our tests, we observed

that only a few customers tend to be visited multiple times. Thus, this simple heuristic

proves to be enough to provide good results with limited computational effort.

3.5 Computational results

Our algorithm was coded in C++ using the Standard Template Library (STL) for data

structures, and IBM ILOG CPLEX 12.6.3 to solve the IP. The algorithm is compiled with

the GNU GCC compiler in a Linux environment and tested on an Intel Xeon E5-2670v2

CPU at 2.50GHz with similar performance to the ones used in the literature.

We conducted extensive computational experiments on the benchmark instances for

the 2E-VRP. There are currently six instance sets available. The size of the instances

ranges from 12 customers and 2 satellites, to 200 customers and 10 satellites. The main

characteristics of the benchmark instances are listed in Table ?? of Appendix ??. Note

that the small instances of Set 1 are no longer used for testing, thus they are not included.

For our tests we used the files provided by Breunig et al. [39].

3.5.1 Parameter tuning

The proposed approach has six parameters: (1) imax, iterrepeat, τmin and τmax in the

route generation heuristic; (2) the size of the pool (Spool) in the route recombination

component; and (3) the stopping criterion of the iterative framework. We carried out a

series of preliminary experiments to set the parameter values: we tested our algorithm on

a subset of instances while varying parameter values, and kept those that offered the best

trade-off between solution quality and runtime. The stopping criteria is set according to

previous literature. Breunig et al. [39] set the maximum runtime of their algorithm to 60s

for small instances and 900s for larger ones. Wang et al. [267] use the maximum runtime

and the maximum number of iterations Nalgo without improving the best found solution

as stopping rules. They set them so that the maximum runtime of their algorithm does

not exceed 1500s. To show the performance of our method we restrict our runtime to
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60s and 900s as do Breunig et al. [39]. The remaining parameter settings are given in

Table 3.1.

Parameter Description Value

imax max. nb. of non-improving iterations before per-
turbing the solution

0.2n

iterrepeat max. nb. of non-improving iterations for the route
generation

10

τmin, τmax max. nb. of customers to be removed 0.15n, 0.45n

Spool size of the pool
∑
dc

m2 ∗ 15

Nalgo max. nb. of non-improving iterations in the global
algorithm

n

Table 3.1 – Parameter settings.

3.5.2 Comparison with the literature

In order to investigate the effectiveness of the proposed algorithm, we compare its

performance, when applicable, with that of the ALNS by Hemmelmayr et al. [132], the

LNS by Breunig et al. [39] and the VNS by Wang et al. [267] as well as the current best-

known solution for each instance from the literature. All the results were obtained through

five independent runs of the algorithm and are summarized in Table 3.2. The results of

our Neighborhood Search and Set Cover Hybrid Heuristic are listed in column ”NS-SC”.

The columns ”ALNS”, ”LNS”, and ”VNS” show the results of the methods proposed by

Hemmelmayr et al. [132], Breunig et al. [39], and Wang et al. [267], respectively. The

average and the best objective value of the five runs are given in columns ”Avg. 5” and

”Best 5”, respectively. Column ”CPU” shows the average runtime of the algorithm in

seconds. The column ”BKS” refers to the best-known solution of that set of instances. As

was observed by Breunig et al. [39], there exist some small differences in objective values

that can be explained by a different rounding convention or the small optimality gap of

CPLEX. Table 3.3 summarizes the gaps obtained by each algorithm on each benchmark.

Columns ”Avg. %” and ”Best %” show the average and best gap, respectively, expressed

as a percentage. The overall gap is calculated by considering the number of instances in

each benchmark. The detailed results obtained by our NS-SC are presented in Appendix B,

where they are compared to the best-known solutions in the literature.

Instances in Sets 2 and 3, are relatively easy to solve and all algorithms are able to find the
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ALNS LNS VNS NS-SC
Avg. % Best % Avg. % Best % Avg. % Best % Avg. % Best %

Set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Set 3 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Set 4a 0.01 0.00 0.07 0.02 0.04 0.00
Set 4b 0.30 0.26 0.01 0.00 0.05 0.02 0.03 0.00
Set 5 2.00 0.63 1.51 0.86 0.39 0.20 0.80 0.42
Set 6 A 0.16 0.04 0.06 0.02 0.07 0.02
Set 6 B 0.17 0.11 0.07 0.01 0.11 0.03
Overall 1.27 1.20 0.18 0.09 0.08 0.03 0.10 0.04

Table 3.3 – Summary of average and best gaps on 2E-VRP benchmarks.

best known solutions at least one time out of five. Instances in Set 4, while not bigger than

some instances of Sets 2 and 3, are more difficult to solve due to customer distribution.

The LNS algorithm is the only one that finds the current best known solutions for all the

instances in Set 4. Our ”NS-SC” only misses four of them, and still achieves high quality

solutions with gaps less than 0.04%. Instances of Set 5 are the largest of the literature and

those where the gaps and the runtimes are more important. On these instances, all the

algorithms fail to achieve the best known solutions for several instances, mainly due to

the bigger numbers of customers ans satellites that constitute the instances. The ALNS

and the LNS can achieve an average relative gap of 2.00% and 1.51%, respectively. The

VNS achieves an average relative gap of 0.39%, but is slower than the other algorithms.

Our algorithm, on the other hand, offers good compromise between solutions quality and

runtime, as it achieves an average relative gap of 0.80% while being significantly faster

than both the LNS and the VNS. It was also able to improve the current best known

solutions for a total of seven instances from Set 5 during our experiments. Only Breunig

et al. [39] and Wang et al. [267] report results on the instances of Set 6. The LNS, the

VNS, and our NS-SC are all able to obtain very low average relative gaps on both Set 6a

and Set 6b, but once again our algorithm has a smaller runtime. Overall, our algorithm

is able to achieve the current best known solutions for 216 out of 234 instances with

an overall average relative gap of 0.10% and running times smaller than those of the

literature. Based on these results, our approach is very effective in solving the 2E-VRP.

3.6 Conclusions

In this work, we presented a hybrid heuristic for the 2E-VRP. The algorithm uses an

effective neighborhood search to explore the solution space and discover high quality
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solutions. By keeping trace of the exploration steps, the heuristic generates a set of

routes which are then recombined using an integer programming model. Solving this

model serves as way to find better solutions that were missed by the neighborhood search

procedure and to faster lead the algorithm towards promising regions of the solution

space. Computational experiments on the standard benchmark instances demonstrate

the competitiveness of our approach. Our algorithm consistently achieves high quality

solutions with an overall average relative gap of 0.10%, while requiring less running time

than other algorithms, and improves the current best known solutions for seven instances

for which no optimal solution is known.

In summary, the results presented in this work are encouraging for the application of our

approach to optimize other two-echelon routing problems. Its components can be adapted

and additional ones can be integrated to account for different constraints. Future work

will primarily focus on the extension of the algorithm to variants of the 2E-VRP and

similar routing problems, mainly to accommodate more practical constraints and more

realistic cost structures.





Chapter 4

A Branch-&-Cut Algorithm for the

Orienteering Problem with Hotel

Selection

The Orienteering Problem with Hotel Selection (OPHS) is a recent extension of the

orienteering problem (OP) where intermediate facilities, called “hotels” are introduced.

Given a number of days D, a set of hotels and a set of POIs, the goal of the OPHS

is to find a tour of D connected trips, that visits a subset of POIs and maximizes the

total collected profit. Each trip must start and end at one of the available hotels. In

this chapter, we present a new mathematical formulation of the problem several valid

inequalities to enhance it. We also introduce a fast heuristic based on the order-first

split-second approach for the OPHS, and use it to generate lower bounds for the exact

algorithm to solve our model. Finally, we conduct several computational experiments to

evaluate the performance of our method on benchmark instances of the literature. Results

demonstrate the effectiveness of our approach.

Introduction

The Orienteering Problem with Hotel Selection (OPHS) is a recent extension of the

orienteering problem (OP) where intermediate facilities, called “hotels” are introduced. In

the OPHS, we consider set of N points of interest (POIs) and a set of H hotels. To each

POI we assign a non-negative score, while hotels have no scores. The time need to travel

from point i ot point j (whether hotel or POI) is known. It is supposed fixed and verifies

the triangle inequality. Given a planning horizon of D days and a fixed time budget for

each day, the goal of the OPHS is to determine a tour that maximizes the total collected

profit from visiting a subset of POIs. The profit from visiting a POI can be collected at

most once. The tour is composed of D connected trips, one for each day. A trip is an

85
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ordered list of POIs that starts and ends at one of the available hotels. The departure and

the arrival of a trip are not necessarily the same. The departure hotel and the arriving

hotel of the tour are fixed in advance, and can be used as intermediate hotels during the

tour.

Several real-life applications can be modeled using an OPHS: a traveling salesperson

planning a multiple day business trip to visit potential clients who needs to select which

clients to visit and must choose appropriately where to spend the night at the end of each

day, the design of a multi-day tourist trip across an attractive region, or the planning of

submarine surveillance activities [85].

In this chapter, we address the exact solution of the OPHS using a Branch-&-Cut

approach. In Section 4.1, we provide a comprehensive review of solution methods for

the OPHS, as well as a review on some related problems. In Section 4.2, we introduce

a new integer linear programming model for the OPHS and in Section 4.3 we present

several valid inequalities to reinforce it. Then, in Section 4.4 we describe a fast heuristic

to solve the problem based on the order-first split-second approach, and introduce novel

splitting procedure specific to the OPHS. The overall structure of our exact algorithm is

described in Section 4.5. Experimental results on literature benchmarks are presented in

Section 4.6 and Section 4.8 concludes the chapter.

4.1 Related work

The OPHS was introduced by Divsalar et al. [85] who, presented an integer linear

programming model for the problem and a Skewed Variable Neighborhood Search (SVNS).

The SVNS is comprised of two phases: an initialization phase, and an improvement phase.

In the initialization, the algorithm builds a list of feasible hotel sequences which, will

be used to construct solutions during the improvement phase. To this effect, the SVNS

constructs the list of all feasible hotel sequences, calculates a potential score for each pair

of hotels by solving an OP with a simple local search method, and then uses that score to

sort the list of feasible sequences and keep only a subset of it. Afterwards, it constructs

the initial solution. During the improvement phase, the SVNS tries to identify an optimal

combination of hotels while simultaneously looking for the best selection of POIs for a

given combination of hotels. The improvement phases relies on two “shaking” functions:

one for the POIs and one for the hotels, and a local search algorithm composed of nine local

search moves. Furthermore, the authors introduced 229 benchmark instances of varying
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sizes to evaluate their algorithm. These instances are generated based on instances for

the OP, and 224 of them have known optimal solutions. The performance of the SVNS

depends on the total number of feasible hotel combinations and produces good solutions

in a reasonable time when the number of hotels and the number of trips are small.

Later, Divsalar et al. [86] proposed a Memetic Algorithm for the OPHS. Like the SVNS,

the MA is also structured into two main parts: the initialization and the main-loop.

During the initialization, the MA computes a potential score for each pair of hotels by

solving an OP and generates an initial population. To generate the initial population,

the algorithm composes feasible hotel sequences starting from the departure and selecting

the successive hotels in a probabilistic fashion. Afterwards, it inserts POIs into each trip

of every feasible sequence to obtain complete OPHS solutions. The main-loop aims at

improving the solutions. It includes two crossover operators and one mutation operator

that are used to populate a solution pool by generating new solutions with new feasible

hotel sequences. The population is then updated by selecting individuals from the pool.

While they follow the same two steps, the MA and the SVNS differ in how they deal

with feasible hotel sequences. In the SVNS all the feasible hotel sequences are created

in advance when, in the MA new sequences are obtained by the genetic operators by

combining the previously created sequences. This causes the MA to be more efficient that

the SVNS and perform better when the total number of feasible sequences gets larger. To

evaluate their MA, the authors also introduced 176 more complex instances with known

optimal solutions.

The OPHS is closely related to the Traveling Salesperson Problem with Hotel Selection

(TSPHS) which, was originally discussed by Vansteenwegen et al. [258]. Like in the OPHS,

in the TSPHS, the salesperson has to visit a number of customers, they should select a

hotel at the end of each day to rest, and continue their visits the next day starting from the

same hotel. However, unlike in the OPHS, the salesperson must visit all their customers

and the number of days allowed for the visits is not limited. The objective of the problem

becomes to, first, minimize the number of days needed to visit all the customers, and

second, to minimize the total travel length.

To the best of our knowledge, most of the research on the TSPHS focuses on heuristic

solution methods. Vansteenwegen et al. [258] proposed a two-index formulation of the

TSPHS, together with a set of benchmark instances of varying sizes. Their formulation

can be optimally solved for instance with up to 40 customers. Additionally, the authors

solve the TSPHS using a heuristic algorithm that relies on two initialization methods and

an improvement phase. The first initialization method generates an initial solution based
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on the “nearest neighbor” principle, while the second starts by solving a TSP over the set

of customers and, then, inserts hotels into the resulting tour to make it a feasible TSPHS

solution. The improvement phase consists of several neighborhood from the literature as

well as search operators designed specifically for the TSPHS. Castro et al. [44] modified the

formulation of Vansteenwegen et al. [258] by using a weighted objective function instead

of the lexicographical ordering of the two objectives, and the Dantzig–Fulkerson–Johnson

sub-tour elimination constraints instead of the Miller–Tucker–Zemlin constraints. They

also proposed a Memetic Algorithm (MA) with an embedded Tabu Search (TS) to solve

the problem. In their framework, the Memetic Algorithm is concerned with the hotel

selection decision, while the routing decision is delegated to the Tabu Search. The MA

uses a population that comprises individuals made only of hotel sequences, and a one-

point crossover operator based on hotel exchange. It generates TSPHS tours by using two

construction heuristics, one that inserts customers into a hotel sequence and another one

based on the “Order-First Split-Second” principle. The TS is composed of several local

search operators, on of which is specifically designed for the problem. The MA of Castro

et al. [44] achieves very competitive results compared to other algorithms of the literature.

It is, however, rather complex and can be slow on large instances. Castro et al. [43]

introduced a Set-partitioning formulation and a fast heuristic algorithm for the TSPHS.

Their approach uses an “Order-First Split-Second” method to generate an initial solution

which, is then improved using a Variable Neighborhood Descent (VND) embedded into

an Iterated Local Search (ILS). The VND uses several neighborhood search operators,

some of which focus on customer routing and others on hotel selection. Baltz et al. [24]

introduced the Traveling Salesperson Problem with Multiple Time Windows and Hotel

Selection (TSP-MTWHS) for which, they proposed a Mixed Integer Linear Programming

model and a randomized heuristic. More Recently, Lu et al. [174] presented a hybrid

metaheuristic that combines a Memetic Algorithm with dynamic programming to solve

the TSPHS. Their hybrid MA is built on the use of three dedicated crossover operators

for solution recombination, an adaptive rule for crossover selection, and a two-phase local

search procedure which alternates between feasible and infeasible search spaces. It also

uses a dynamic programming approach to find an optimal hotel sequence for a given

TSP tour and transform it into a TSPHS solution. This DP algorithm is used during the

initialization phase which, is similar to that of Castro et al. [44], and at the end of the

local search procedure to re-optimize the hotel sequence of the solution.

In Vehicle Routing problems with Intermediate Facilities (VRP-IF), the constraint that

requires routes to start and end at the same depot is relaxed. Thus, similar to the OPHS,

they allow routes to be split into trips that may start from and end at a different facility.
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Several problems involving intermediate facilities (IFs) have been studied in the literature,

among which the Periodic Vehicle Routing Problem with Intermediate Facilities (PVRP-

IF) and the Vehicle Routing Problem with Intermediate Replenishment Facilities (VRP-

IF), Even though these problems present similarities to the OPHS, they also differ from it

in several ways. There are three differences with the OPHS that are common to all these

problems: unlike in the OPHS, all the customer vertices have to be served, the number of

trips is not limited, and instead of maximizing a score, the objective of these problems is

the minimization of the total cost (usually, the travel cost) of the vehicle routes.

In the PVRP-IF [4, 131], a set of customers have to be visited one or several times over

a time horizon using a fleet of vehicles. Each vehicle leaves the depot, serves a subset of

customers, and when its work shift is over, returns to the depot. Intermediate facilities

are made available so that vehicles can stop and renew their capacity when it is reached,

to avoid returning to the depot. The vehicles may visit the intermediate facilities as many

times as needed. A vehicle route in the PVRP-IF corresponds to a tour in the OPHS and

is divided into ”simple routes” which correspond to OPHS trips. Compared to the OPHS,

where each trip is limited by a time budget, in the PVRP-IF, the time limit is applied on

the whole tour and the number of customers that can be visited during each trip is only

limited by vehicle capacity.

The Vehicle Routing Problem with Intermediate Replenishment Facilities (VRPIRF) [241]

was first introduced by Crevier et al. [70] under the name “Multi-Depot Vehicle Routing

Problem with Inter-Depot Routes”. In the VRPIRF, intermediate facilities act as

replenishment depots along vehicle routes. It is supposed that the total demand of the

customer set exceeds the total capacity of the vehicle fleet. Thus, during their route,

vehicles may need to stop at intermediate facilities to renew their load, in order to be able

to satisfy customer demands. Similar to the PVRP-IF, the number of customers visited

in the parts of the vehicle route between two intermediate facilities is limited by vehicle

capacity, and an upper bound is imposed on the duration of the whole route. A VRPIRF

route corresponds to an OPHS tour, and the part of route between two consecutive

facilities is called a “route segment”. Unlike the OPHS, the total duration of routes

must not exceed an upper-bound. Furthermore, the duration of “routes segments” is not

explicitly limited, but vehicle capacities imply a certain limitation. Solution methods for

the problem were proposed by Crevier et al. [70], Tarantilis et al. [241] and Hemmelmayr

et al. [131]

Finally, the Waste Collection Vehicle Routing Problem with Time Windows

(WCVRPTW) [149, 29] is a variant of the VRP-IF where customer nodes represent
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sites at which waste is collected and intermediate facilities are used as disposal sites.

In the WCVRPTW, empty vehicles depart from the central depot, collect the waste from

the customer sites, and when full, visit a disposal site to be emptied. At the end of

their work shift, the vehicles must return empty to the depot. Compared to VRP-IF, the

WCVRPTW considers further practical constraints, namely: time windows, routing time

limit per vehicle, vehicle capacity, route capacity, and driver breaks. The route capacity

includes maximum number of stops and lifts, and maximum volume and weight that a

driver can handle per day.

4.2 Problem description

Given a non-empty set Vh = {0, . . . , H − 1} of H ≥ 2 hotels, and a set Vc = {H, . . . , H +

n−1} of n points of interest (POIs), the OPHS is defined on a complete graph G = (V,A)

where V = Vh ∪ Vc , and A = {(i, j) : i 6= j, i, j ∈ V }. Each POI i ∈ Vc is associated

with a non-negative profit (score) pi. Each arc (i, j) ∈ A is associated with a non-negative

travel cost ci,j. Travel costs are assumed symmetric and satisfy the triangle inequality. The

departure and the arrival depots are represented by hotels 0 and 1, while the remaining

hotels are called “extra hotels”. A “trip” designates a sequence of POIs starting and

ending at an available hotel. The length of each trip d ∈ [1, D] is limited by a given time

budget Ld. A “tour” is an ordered set of connected trips (i.e. each trip starts where the

previous one ends) of which, the first starts at the departure hotel, and the last ends at

the arrival hotel. Both the departure and the arrival can be used as intermediate hotels

during the tour. Since there is no limit on the number of visits to a hotel, a hotel can be

selected more than once during the tour. Thus, a tour is not necessarily a single cycle.

The objective of the OPHS is to determine a tour of connected trips that maximizes the

sum of collected profits where each POI is visited at most once and the time budget of

each trip is respected.

Using the above notation, the OPHS can be formulated as an Integer Linear Program

(ILP). Let ydi be a binary decision variable that takes the value 1 if POI i is visited in trip

d, and 0 otherwise. Let wdh be a binary decision variable that takes the value 1 if trip d

ends at hotel h, and 0 otherwise. Because two successive trips end and start at the same

hotel, variables wdh also indicate the starting hotel for trip d+1. Thus, we use variables w0
h

to indicate if a hotel h is used as the departure hotel for trip 1. Finally, let xdi,j be a binary

decision variable which takes the value 1 if, in trip d, a visit to vertex i (hotel or POI) is

followed by a visit to vertex j, 0 otherwise. We propose the following mathematical model
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max z =
D∑
d=1

∑
i∈Vc

piy
d
i (4.1)

s.t.
D∑
d=1

ydi ≤ 1 , ∀i ∈ Vc (4.2)∑
j∈V

xdi,j = ydi , ∀i ∈ Vc, d ∈ [1, D] (4.3)∑
j∈V

xdj,i = ydi , ∀i ∈ Vc, d ∈ [1, D] (4.4)∑
h∈Vh

wdh = 1 , ∀ d ∈ [0, D] (4.5)∑
i∈V

xdi,h = wdh , ∀h ∈ Vh, d ∈ [1, D] (4.6)∑
i∈V

xdh,i = wd−1
h , ∀h ∈ Vh, d ∈ [1, D] (4.7)

w0
0 = 1 (4.8)

wD1 = 1 (4.9)∑
i∈V

∑
j∈V

ci,jx
d
i,j ≤ Ld , ∀d ∈ [1, D] (4.10)∑

i∈U

∑
j∈U\{i}

xdi,j ≤ |U | − 1 , ∀U ⊆ Vc, |U | ≥ 2, d ∈ [1, D] (4.11)

ydi ∈ {0, 1}, ∀i ∈ Vc, d ∈ [1, D] (4.12)

wdh ∈ {0, 1}, ∀h ∈ Vh, d ∈ [1, D − 1] (4.13)

xdi,j ∈ {0, 1}, ∀i ∈ V, j ∈ V, d ∈ [1, D] (4.14)

for the OPHS, denoted hereafter ILP :

The objective function (4.1) maximizes the sum of collected profits from the visited POIs.

Constraints (4.2) impose that each POI is visited at most once. Constraints (4.3) and

(4.4) ensure the connectivity of each trip. Constraints (4.5) guarantee that each trip

starts and ends at one of the available hotels. Constraints (4.6) and (4.7) ensure tour

connectivity; that is, if a trip ends at a given hotel h, the following trip starts at the same

hotel. Constraints (4.8) and (4.9) ensure that the tour starts at the departure hotel and

ends at the the arrival hotel. The upper bound on the length of each trip is imposed by

constraints (4.10). Constraints (4.11) are the classical Dantzig–Fulkerson–Johnson subtour

elimination constraints. Note that the subsets U in constraints (4.11) only involve POI

vertices, since the trips in an OPHS solution might be cycles that start and end at the

same hotel. Constraints (4.12), (4.13) and (4.14) define the value domains for the decision
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variables.

Enumerating all the subtour elimination constraints produces a formulation with an

exponential number of constraints. In practice, when solving routing problems, the

problem is first relaxed by removing the subtour elimination constraints from the model,

and then introducing them back into the model only when needed.

Constraints (4.11) can be replaced with the stronger Generalized Subtour Elimination

Constraints (GSECs) [157] which, enhance both the elimination of specific subtours and

the connectivity in the solution. GSECs were first applied to solve the Orienteering

Problem (OP) by Fischetti et al. [98] and were later used to solve the Team Orienteering

Problem (TOP) by El-Hajj et al. [94].

Given a subset S of POIs, we note δ(S) the set of arcs in A with exactly one end-vertex

in S, and γ(S) the set of arcs with both end-vertices in S. The GSECs are formulated as

follows:

∑
(u,v)∈δ(U)

xdu,v ≥ 2ydi , ∀U ⊆ Vc, |U | ≥ 2, ∀i ∈ U, ∀d ∈ [1, D] (4.15)

These constraints state that any set of at least two POIs has to be connected to its

complement. Thus, they ensure that each visited POI i is reachable from one or two hotel

vertices.

Furthermore, due to the degree constraints (4.3), (4.4), (4.7) and (4.8), the GSECs can

be written as:

∑
(u,v)∈γ(U)

xdu,v ≤
∑
i∈U

ydi − ydj , ∀U ⊆ Vc, |U | ≥ 2, ∀j ∈ U, ∀d ∈ [1, D] (4.16)

∑
(u,v)∈γ(S)

xdu,v ≤
∑

i∈S∩Vc

ydi − ydj + 1 , ∀S ⊆ V, S ∩ Vh 6= ∅, |S| ≥ 2, ∀j ∈ Vc \ S, ∀d ∈ [1, D]

(4.17)

Constraints (4.16) impose an upper bound on the number of internal arcs of the subtour

U to avoid the formation of a cycle. On the other hand, constraints (4.17) state that if a

POI is visited outside of the main trip S, one arc of the trip has to be removed in order

to connect the external POI.
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4.3 Valid inequalities

4.3.1 Irrelevant components

Finding and removing POIs that cannot be visited in any feasible solution is a simple

way of reducing the size of the problem search space. We deem a POI i “unreachable”

during day d if, given any pair of hotels (h1, h2) ∈ V 2
h , the travel cost of the trip (h1, i, h2)

exceeds the allotted time budget Ld.

This reasoning can be extended to reduce the number of available arcs by defining

“irrelevant” arcs. An arc (i, j) ∈ V 2 is “irrelevant” to day d, if the travel cost of trip

(h1, i, j, h2), is greater than Ld for every pair of hotels (h1, h2) ∈ V 2
h . Unreachable POIs

and irrelevant arcs are removed from the problem by adding the following constraints,

where D− is the set of days where POI i (resp. arc (i, j)) is unreachable (resp. irrelevant).

∑
d∈D−

ydi = 0 (4.18)∑
d∈D−

xdi,j = 0 (4.19)

4.3.2 Bounds on trip profits

El-Hajj et al. [94] proposed a set of valid inequalities for the Team Orienteering Problem

(TOP) by imposing bounds on the characteristics of a subset of tours, mainly the collected

profit and the number of visited POIs. They derive smaller instances from the original

problem and either solve or bind them to gain useful information for the construction of

the tours of the original problem.

Let T =
⋃D−1
n=1 {(d1, d2, . . . , dn) | di ∈ [1, D], di+1 = di + 1} be the set of all tuples of at

most D− 1 successive trips. For each T ∈ T , let T̄ be the set of trips d ∈ [1, D] such that

d /∈ T . For each instance X of the problem and T ∈ T , we note XT the instance derived

by only keeping the trips of T and relaxing the constraints (4.8) and (4.9) of the base

model. Let LB(X) be a lower bound of a given instance X and UB(X) its upper bound.

Clearly, constraints (4.20) are valid inequalities for the OPHS. The total collected profit

of any subset of successive trips cannot exceed the upper bound of an instance constituted

of only this trips with no constraints on the departure nor the arrival.
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∑
d∈T

∑
i∈Vc

piy
d
i ≤ UB(XT ) , ∀T ⊂ T (4.20)

The use of UB(XT ) can be extended to impose a lower bound on the profit collected

during the tours in T̄ ; that is the profit collected outside of T . Indeed, given a lower

bound LB(X) of the problem, the total profit collected during the tours in T and the

tours in T̄ has to be greater or equal to LB(X). Thus, given an upper bound on the profit

collected in T , we can deduce a lower bound on the profit that has to be collected in T̄ .

This can be expressed as follows.

∑
d∈T̄

∑
i∈Vc

piy
d
i ≥ LB(X)− UB(XT ) , ∀ T ⊂ T (4.21)

To compute the upper and lower bounds required in inequalities (4.20) and (4.21), we start

by solving the instances XT such that T contains only one trip, i.e. T ∈ {(d) | d ∈ [1, D]}.
The obtained bounds are then used in cuts to solve instances containing more trips: to

solve XT and T = (d1, . . . , dn) with n < D, we first solve XT ′ with T ′ = (d1, . . . , dn−1).

4.3.3 Bounds on the number of POIs per trip

Similarly to profits, it is also possible to bound the number of visited POIs in each trip.

To find an upper bound UBPOI on the number of visited POIs in a subset of trips, we first

derive an instance XT
min from the previously defined instance XT , by setting the profit of

each POI to pmin = min{pi, i ∈ Vc}. We then modify our model to maximize the number

of visited customers while satisfying constraints (4.2) to (4.7), (4.10) to (??), (4.20), and

(4.21). The resulting upper bound is used to bound the number of POIs.

Next, in order to get a lower bound LBPOI on the number of POIs per trip, we consider

the one trip instances XT such that T ∈ {(d) | d ∈ [1, D]} and, for each one of them,

minimize the number of visited POIs while satisfying constraints (4.2) to (4.7), (4.10) to

(4.14), (4.20), and (4.21). Note that these inequalities are limited to single trips only and

do not concern subsets of more than one trip. Furthermore, for the purpose of computing

LBPOI , constraints (4.21) are rewritten as:
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∑
d∈T

∑
i∈Vc

piy
d
i ≥ LB(X)− UB(X T̄ ) , ∀ T ⊂ T (4.22)

The obtained values of LBPOI(X
T ) and UBPOI(X

T ) are then used in the following valid

inequalities to restrict the number of POIs visited in each trip or subset of successive

trips:

∑
d∈T

∑
i∈Vc

ydi ≤ UBPOI(X
T
min) , ∀T ⊂ T (4.23)

∑
i∈Vc

ydi ≥ LBPOI(X
(d)) , ∀d ∈ [1, D] (4.24)

To compute the upper bounds on the number of visited POIs, we proceed in the same

manner as with the bounds on trip profits, i.e., solving the instances XT that contain a

single trip only, and then using the obtained bounds to solve instances containing more

trips.

4.3.4 Incompatibility cuts

Incompatibility cuts stem from the observation that if two given locations, either hotels

or POIs, are located too far away from one another, they are very unlikely to belong into

the same trip, due to time budget considerations. This observation can be extended to

pairs of arcs (if traversing two given arcs takes too much time, they are unlikely to be

used in the same trip), and eventually to pairs of arcs and vertices. In the following, we

only consider incompatibilities between vertices, incompatibilities between arcs, and to

some extent, incompatibilities between arcs and hotels.

More formally, we consider two components of an instance X, arcs or vertices, incompatible

during day d if they cannot be together in the corresponding trip d, in any optimal

solution of the problem. Based on this, we define an incompatibility graph between vertices

GdV (V, IncdV ), and another one for incompatibilities between arcs GdA(A, IncdA), for each day

d ∈ [1, D]. The arc sets of these graphs are defined as:
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1. IncdV = {(i, j) | i, j ∈ V, UB(X[i
d∼ j]) < LB(X)};

2. IncdA = {((i1, j1), (i2, j2)) | (i1, j1), (i2, j2) ∈ A, UB(X[(i1, j1)
d∼ (i2, j2)]) <

LB(X)};

where X[i
d∼ j] denotes an instance of the modified problem where i and j must both be

visited during day d, and X[(i1, j1)
d∼ (i2, j2)] denotes an instance of the modified problem

where arcs (i1, j1) and (i2, j2) must be traversed both during day d.

Finally, note that the construction of the full set of incompatibilities can be difficult,

depending on the instance. Nevertheless, it is still possible to initialize the incompatibility

graphs using some simple rules, and afterwards, as the solution process progresses, add

new edges using the previous definition of the graphs and relying on new cuts.

4.3.4.1 Simple incompatibilities

We can easily find incompatibilities between hotels and POIs by following the same

reasoning used in Section 4.3.1:

r1. If the travel cost between a pair of hotels (h1, h2) is greater than the time budget of

a given day d, then the two hotels cannot be selected in the corresponding trip.

r2. If the travel cost between a POI i and a hotel h is greater than the time budget for

a given day d, then i cannot be visited in a trip where hotel h is used as either the

departure or the arrival.

r3. Given a pair of POIs (i, j), if for every pair of hotels (h1, h2), the travel cost of the

trip (h1, i, j, h2) exceeds the allotted time budget, i and j cannot be visited during

the same trip.

r4. Given a pair of arcs u = (i1, j1) and v = (i2, j2), if for every pair of hotels (h1, h2),

the cost of the shortest path from h1 to h2 containing u and v exceeds the time

budget, then u and v cannot be used together during the corresponding trip.

r5. If i and j are two incompatible vertices, then arcs u ∈ ({i} × V ) ∪ (V × {i}) and

v ∈ ({j} × V ) ∪ (V × {j}) cannot be used together in one trip.

The above properties are mainly used to initialize the incompatibility graphs GdV and GdA
which, then, will be used to derive incompatibility cuts as explained in Section 4.3.4.2.
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However, we can also use them to formulate simpler inequalities to express incompatibil-

ities between hotels, POIs and hotels, and arcs and hotels as follows.

wd−1
h1

+ wdh2 ≤ 1 , ∀(h1, h2) ∈ V 2
h , d ∈ [1, D], ch1,h2 > Ld (4.25)

ydi ≤ 1− wdh , ∀i ∈ Vc, ∀h ∈ Vh, d ∈ [1, D], ci,h > Ld (4.26)

ydi ≤ 1− wd−1
h , ∀i ∈ Vc, ∀h ∈ Vh, d ∈ [1, D], ci,h > Ld (4.27)

xdi,j ≤ 1− wdh , ∀i ∈ V, ∀j ∈ V, ∀h ∈ Vh, d ∈ [1, D], ch,i + ci,j > Ld (4.28)

xdi,j ≤ 1− wd−1
h , ∀i ∈ V, ∀j ∈ V, ∀h ∈ Vh, d ∈ [1, D], ci,j + cj,h > Ld (4.29)

Constraints (4.25) express incompatibilities between hotels, constraints (4.26) and (4.27)

express incompatibilities between a hotel and POI, and constraints (4.28) and (4.29) are

for incompatibilities between arcs and hotels. Note that the incompatibilities between

pairs of POIs, resp. arcs, are not expressed here; the reason being that inequalities of the

form

ydi + ydj ≤ 1 , ∀(i, j) ∈ IncdV , d ∈ [1, D] (4.30)

are dominated by the clique cuts described in Section 4.3.4.2. Thus we use those cuts to

implement these incompatibilities.

Furthermore, the previous incompatibility constraints can be extended to express

incompatibilities between arcs or POIs and pairs of hotels. Given a pair of hotels (h1, h2),

if the total distance from h1 to a POI i and from i to h2 is greater than time budget,

then i cannot be visited in a trip where the two hotels are used as departure and arrival

respectively. Likewise, in the case of an arc, we simply need to consider the travel cost

from the h1 to the first extremity of the arc, the arc’s cost, and the travel cost from the

second extremity of the arc to h2. The resulting constraints are expressed as follows.

ydi ≤ 2− (wd−1
h1

+ wdh2) , ∀i ∈ V, ∀(h1, h2) ∈ V 2
h , d ∈ [1, D], ch1,i + ci,h2 > Ld (4.31)

xdi,j ≤ 2− (wd−1
h1

+ wdh2) , ∀i ∈ V, ∀(h1, h2) ∈ V 2
h , d ∈ [1, D], ch1,i + ci,j + cj,h2 > Ld

(4.32)

Finally, it would be possible to establish incompatibilities between POIs or between arcs

with regards to a fixed hotel or pair of hotels. However, we choose not to, because of the

additional computational effort that it requires.
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4.3.4.2 Clique cuts

As stated before, incompatibility cuts between vertices and between arcs are computed

by extracting cliques from the incompatibility graphs GdV and GdA. A clique is a subset of

vertices of an undirected graph such that every two vertices in the clique are adjacent.

Thus, a clique of GdV (resp. GdA) is a subset of vertices (resp. arcs) which are pairwise

incompatible, and therefore, visiting any vertex (resp. traveling through an arc) of the

clique during a given trip excludes the remaining elements from being visited (resp.

traversed) during that same trip; that is, a trip can only contain one element of the clique.

Clique cuts are formulated using the following inequalities, whereK andQ represent clique

of GdV and GdA, respectively.

∑
i∈K

ydi +
∑
h∈K

wdh ≤ 1 , ∀d ∈ [1, D] (4.33)∑
(u,v)∈Q

xdi,j ≤ 1 , ∀d ∈ [1, D] (4.34)

Because they produce stronger cuts, large and maximal cliques are more desirable for

inequalities (4.33) and (4.34). A clique is said to be maximal if it cannot be extended by

including more adjacent vertices, and a maximal clique is maximum if it is the largest

clique in the graph. In general, the number of maximal cliques in a graph is an exponential

function of the number of its vertices, and finding the maximum clique is an NP-Hard

problem. However, efficient algorithms to find maximal cliques or a subset of them are

available in the literature. The details concerning the generation of cliques are discussed

in Section 4.5.

4.3.5 Equivalence breaking cuts

In the OPHS, the trips that form a solution are asymmetric: they have each a different

time budget, and different departures and arrivals. However, given an OPHS tour, it is

possible to derive an equivalent tour with the same objective value while maintaining the

order of visits of POIs, by simply shifting the first POIs from one trip to the last positions

of the preceding one and vice versa, as long as the time limit constraint is satisfied. Fig. 4.1

shows an example of such equivalent tours.

In order to remove these equivalent solutions from the search space, we only consider

tours where it is not possible to shift the first customer of any trip to the end of the trip
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h0 h2 h1h3c1 c2 c9c8c3 c4 c7c6c5S1

h0 h2 h1h3c1 c2 c9c8c3 c4 c7c6c5S2

h0 h2 h1h3c1 c2 c9c8c3 c4 c7c6c5S3

Figure 4.1 – Equivalent OPHS tours.

preceding it. This is achieved by adding the following constraints to our model.

∑
(h1,i)∈Vh×Vc

ch1,ix
d
h1,i

+
∑

(i,j)∈V 2
c

ci,jx
d
i,j

+
∑

(i,h2)∈Vc×Vh

ci,vx
d
i,h2

+
∑
h2∈Vh

cv,h2x
d+1
h2,v

> Ld
∑
h2∈Vh

xd+1
h2,v

, ∀v ∈ Vc, ∀d ∈ [1, D − 1]

(4.35)

4.4 Computing an initial solution

To obtain an initial feasible solution we have implemented a heuristic approach for the

OPHS. Algorithm 5 details the steps of this heuristic. The algorithm is a Multi-Start

Heuristic (MS-OPHS) which performs irestart iterations in total. At each iteration, the

heuristic generates a random permutation π of POIs from which, it extracts a solution

using an order-first split-second algorithm. Afterwards the extracted solution is improved

using a local search procedure. It starts by removing d randomly chosen POIs from the

solution, with d a random number in [1, dmax]. Then it applies the 2 − Opt operator

on the partial solution to decrease the duration of each trip. After that, new POIs are

inserted in the solution using a Best Insertion Heuristic (BIH). The implemented BIH

constructs a feasible solution by successively inserting POIs in their best possible position.

At each iteration, the procedure evaluates all the feasible insertions of unrouted POIs and

selects the insertion with the minimum cost cost(u) = Shiftu/(pu)
2 where, Shiftu =

min(ci,u+cu,j−ci,j), i and j being two consecutive nodes in the solution. The local search

then repeats until it reaches itermax iterations without improving the current solution. In

the following, we present a new splitting procedure, specific for the OPHS.
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Algorithm 5: Multi-start Local Search for the OPHS.

Data: Sbest empty solution
Vh and Vc vectors of h hotels and n POIs, respectively.
Result: Sbest best solution found

1 begin
2 for i← 0 to irestarts do
3 π ← RandomPermutation(Vc)
4 S ← Split(π, Vh)
5 while iter < itermax do // Local search loop

6 S ′ ← S
7 d← rand(1, ddmax)
8 RandomReomval(S ′, d)
9 Apply2Opt(S ′)

10 U ← getUnroutedPOIs(V, S ′)
11 ApplyBestInsertion(S ′, U)
12 if f(S ′) ≥ f(S) then
13 S ← S ′

14 iter ← 0

15 else
16 iter ← iter + 1

17 if f(S) ≥ f(Sbest) then
18 Sbest ← S

19 return Sbest

4.4.1 Splitting algorithm for the OPHS

In our approach, a giant tour is a permutation Π = (π1, π2, ..., πn) of all the accessible

POIs in Vc with no route delimiters and no hotels. The aim of the splitting procedure is

to select which sub-sequence of POIs to visit during each trip, and to select the hotels

to use between each trip, in order to maximize the total collected profit, while satisfying

time budget constraints. This problem can be reduced to a longest path problem on an

auxiliary directed acyclic graph Gaux = (Vaux, Aaux) defined as follows. The set of nodes

is Vaux = {vi,h,p | i ∈ [1, n], h ∈ Vh, p ∈ [1, D]} ∪ {d, a} where, each node vi,h,p represents a

visit to POI πi after leaving hotel h on day p. The nodes d and a are dummy nodes that

act as the departure and the arrival of the shortest path.

The construction of the arc set Aaux is based on the definition of saturated trips. Starting

from position i of Π, the corresponding saturated trip is maximum length trip obtained

by including all the subsequent customers as long as all the time budget constraints are

satisfied, or until the end of the tour is reached. As such, POIs that remain unrouted after
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splitting can only be located between saturated trips in Π. The splitting problem consists

in identifying D sub-sequences in Π and the hotels connecting them, such that the total

collected profit is maximized. We can show that for any permutation Π, there exists an

optimal solution for this problem where all the trips are saturated. This is formalized

in Proposition 4.1. Therefore, the optimal splitting can be found by considering only

saturated trips.

Proposition 4.1. For any instance of the OPHS where D is number of days, for any

sequence Π of POIs of this instance, and for any optimal solution Sπ to the splitting

problem, there exists a solution S ′π where all the trips are saturated and such that Sπ and

S ′π have the same profit.

Proof. Let Π = (π1, π2, ..., πn) be a sequence of OPHS POIs. We note 〈i, li〉Π a sub-

sequence of Π of length li starting from position i, i.e. (πi, πi+1, ..., πi+li). Let SΠ =

(〈i1, li1〉Π, . . . , 〈iD, liD〉Π) be the optimal solution of the splitting problem of Π. Suppose

〈ik, lik〉Π ∈ SΠ an unsaturated trip.

- If 〈ik+1, lik+1
〉Π and 〈ik, lik〉Π are such that ik+1 > ik + lik + 1, i.e. there are unrouted

customers between them, then it is possible to extend 〈ik, lik〉Π by at least one

customer and increase the collected profit. Thus SΠ is not optimal.

- Else, if 〈ik, lik〉Π and 〈ik+1, lik+1
〉Π are such that ik+1 = ik + lik + 1, it is possible

to derive a solution S ′Π with the same profit as SΠ by shifting POIs from the start

of 〈ik+1, lik+1
〉Π to 〈ik, lik〉Π until it becomes saturated. This is possible because the

distances verify the triangle inequalities. Consequently, the obtained solution SΠ =

(〈i1, li1〉Π, . . . , 〈ik, l′ik〉Π, 〈i
′
k+1, li′k+1

〉Π, . . . , 〈iD, liD〉Π) is optimal. If 〈i′k+1, li′k+1
〉Π not

saturated, we apply the same logic to it. By repeating this process, we can replace

each trip of a solution by a saturated one, until we derive an optimal solution where

all the trips are saturated.

To construct the set of arc Aaux, for each POI πi in Π, we identify a saturated route

ri(h1, h2, p) for every possible pair of hotels (h1, h2), and for each day p ∈ [1, D]. Each arc

of the graph is associated with a weight equal to the profit of the trip it represents. Thus,

Aaux is constructed as follows:
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• Arc (vi,h1,p, vj,h2,p+1) with i < j represent a saturated trip ri(h1, h2, p). It is included

in Aaux if and only if POI j is not part of ri(h1, h2, p). The weight of these arcs is

equal to the total profit of the saturated route they represent.

• Arcs (vi,h1,p, vi,h2,p+1) with h1 6= h2, represent an empty trip that starts at hotel h1

and ends at h2. Their weight is equal to 0.

• Arcs (d, vi,1,0) are used to select the POI in Π from which the visits start. They have

a weight equal to 0.

• Arcs (vi,h1,D, a) represent the last saturated trip ri(h1, 1, D) that ends at the final

hotel (hotel 1). Their weight is equal to the profit of the saturated trip.

Figure 4.2 depicts the auxiliary graph associated with a giant tour Π = {1, 2, . . . , n}, in

an instance with 2 hotels and 3 days. The nodes vi,h,d corresponding to visits to a same

customer i are regrouped within the same gray rectangle. Note that only a subset of arcs

are represented in order not to overload the illustration.

1₁₁

2₁₁

n₁₁

1₁₂

1₂₂

2₁₂

2₂₂

n₂₂

n₁₂

1  ₁₃ 

1₂₃ 

2₁₃ 

2₂₃ 

n₂₃ 

n₁₃ 

d a

Day 1 Day 2 Day 3

Figure 4.2 – Auxiliary graph for a permutation of n POIs to be split into 3 trips using 2
hotels.

An OPHS solution corresponds to a path from node d to a in Gaux. Thus, the solution

with maximum profit corresponds to the longest path between d and a. The auxiliary

graph Gaux is acyclic by construction. Moreover, it is layered in such a way that every

path from d to a contains exactly D + 1 arcs, and that no customer can be visited twice

in the same path. As such, the longest path can be computed in O(n2m2D) complexity

using Bellman’s algorithm for directed acyclic graphs.
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4.5 Overall algorithm

Our mathematical model is solved by means of a Branch-&-Cut algorithm where GSECs

are separated. At the beginning, the model contains constraints (4.2)-(4.10), constraints

(4.12)-(4.14) and some initial cuts. During the pre-processing phase, the irrelevant

components are detected and removed from the model. Then, an initial feasible solution

is computed using the heuristic described in Section 4.4. Afterwards, the cuts described

above, namely incompatibility cuts, equivalence breaking cuts and bounds on scores and

on visited POIs are generated and stored in a cut pool to allow for faster separation during

the solution process. For the incompatibility cuts, we first generate the simple constraints

(i.e. constraints (4.25) to (4.29) ) and construct the incompatibility graphs for the clique

cuts, then we determine for each node i ∈ V a maximal clique that contains it, using the

metaheuristic of Rossi et al. [211]. The generation of bounds on trip scores and visited

POIs is achieved by using the same Branch-&-Cut algorithm to solve the associated sub-

problems, but without including the bound-based cuts, and with a time limitation to keep

the pre-processing phase short.

Our algorithm uses two different separation procedures, one for the GSECs and the other

for the remaining cuts. The separation of GSECs is exclusively performed on candidate

solutions in integral nodes. When a candidate solution is detected, the algorithm checks

if it contains any subtour. If it does, it is rejected and the violated GSECs are added

to the model. To identify subtours in integral solutions, this procedure looks for strong

components in the directed graph. Recall that a digraph is strongly connected if, for every

pair of vertices (i, j), it contains a path from i to j. A strongly connected component of a

digraph is a subset of its vertices such that the induced subgraph is strongly connected.

As such, subtours in integral solutions correspond to non-trivial strongly connected

components. As for the remaining cuts, our separation strategy is very simple, and consists

in checking if any of the cuts in the cut pool are violated by the current LP relaxation.

All violated inequalities found, regardless of their type, are added to the model.

In order to perform better, the overall algorithm needs to be able to detect “good” feasible

solutions early. To this end, we use two heuristic procedures to derive a feasible solution

from a relaxation of the problem. The first heuristic (H1) uses the linear programming

relaxation of ILP to construct a solution to the problem. Given the fractional values of

variables ydi and wdh, H1 proceeds one trip at a time. For each trip d, it constructs an OP

instance by rounding the fractional values of each ydi variable to the nearest integer to

the determine the list of potential POIs, and rounding the variables wd−1
h1

and wdh2 such
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that wd−1
h1

= maxh∈Vh(wd−1
h ) and wdh2 = maxh∈Vh(wdh) to determine the departure and the

arrival of the OP instance, respectively. Afterwards, it uses the best insertion heuristic

(BIH) described in Section 4.4 to solve the resulting OP instance. In the end, the OP

solutions are concatenated to form a solution for the OPHS.

The second heuristic (H2) works in a similar fashion, but is only applied on candidate

solutions. Recall, that because the subtour elimination constraints are relaxed from ILP,

candidate solutions might be infeasible due to the presence of subtours. If it is the case,

H2 uses the integer values of variables ydi and wdh to construct OP instances for each trip

d and then, solves each OP instance using a dynamic programming (DP) procedure [95].

Using DP within H1 is rather inconvenient, sees as DP is slower than BIH, especially in

instances where the number of POIs per trip is significant. Furthermore, the OP instances

resulting from candidate solutions are usually smaller.

4.6 Computational experiments

Our algorithm was implemented in C++ using the Standard Template Library (STL) and

the IBM ILOG CPLEX 12.6.3 C++ API to solve the IP model, and compiled using the

GNU GCC compiler in a Linux environment. All the experiments were conducted on a

single thread on an Intel Xeon X7542 CPU at 2.67GHz processor. In the following, we

present and discuss the results of our computational experiments that were carried out

in order to evaluate the performance of our model relative to the state-of-the-art, and to

assess the contribution of each of the proposed valid inequalities.

4.6.1 Benchmark instances

Our algorithm was tested on the OPHS benchmark instances of Divsalar et al. [85] and

Divsalar et al. [86] which, are available online at http://www.mech.kuleuven.be/en/

cib/op.

The OPHS benchmark instances are organized into five sets which were all created using

the benchmark instances of Tsiligirides [252] and Chao et al. [45] for the Orienteering

Problem. Table 4.1 summarizes the main characteristics of each set of instances. Column

nb. reports the number of instances in the set, column D reports the number of trips in

the instance, and columns |Vh| and [Vc| show the number of hotels and the number of

POIs in the instance, respectively.

http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op


4.6. COMPUTATIONAL EXPERIMENTS 105

Instances nb. D |Vh| |Vc|
Set 1 35 2 3 [30, 100]

35 3 4 [30, 100]

35 4 5 [30, 100]

Set 2 35 3 7 [30, 100]

35 4 8 [30, 100]

Set 3 22 4 12 [62, 100]

22 5 14 [62, 100]

Set 4 5 2 5 [98, 100]

5 3 5 [98, 100]

Set 5 22 4 14 [62, 100]

22 4 17 [62, 100]

22 5 12 [62, 100]

22 5 17 [62, 100]

22 6 12 [62, 100]

22 6 14 [62, 100]

22 6 17 [62, 100]

13 8 17 [98, 100]

9 10 17 [98, 100]

Table 4.1 – Characteristics of the OPHS benchmark instances.

The instances in sets 1, 2, 3, and 5 were all generated from OP instances for which optimal

solutions are known, and in a way such that the optimal OPHS solution corresponds to

the optimal OP solution. To create an OPHS instance with D trips, the authors start

from an optimal solution to a regular OP instance. First, they divide the length of the

solution by D to have an estimate of the time budget per trip, and divide the OP tour

into D sub-paths such that the length of each sub-path, apart from the last one, is greater

or equal to the estimated one. The hotels are then added to the instance as follows: (1)

the departure hotel and the arrival hotel are inserted, respectively, at the location of

the starting and the ending vertex of the optimal OP tour, (2) one intermediate hotel is

inserted at the location of the last vertex of each sub-path apart from the last one, and

(3) additional intermediate hotels are added at the location of randomly selected POIs

that are not in the optimal OP path.

For the instances in Set 4, the authors used large OP instances with no known optimal

solutions from Chao et al. [45]. They used the departure and the arrival of the instance

as the departure hotel and the arrival hotel of the OPHS instance, and replaced three
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randomly selected vertices with intermediate hotels. As for the trips, they imposed equal

time budgets on every trip for each instance.

4.6.2 Evaluation of the lower bound heuristic

To evaluate the performance of our lower bound heuristic (MS-OPHS), we tested it on

the OPHS benchmark and compare its results to the Memetic Algorithm of Divsalar et al.

[86]. The comparison is made in terms of solution quality and average computation time.

Table 4.2 reports the results obtained by our method (MS-OPHS) and those obtained

by the MA of Divsalar on literature benchmarks. Our results were obtained through five

independent runs of the MS-OPHS on each instance. The first half of the table shows the

characteristics of the benchmark instances. Column “Ex. hotels” indicates the number of

intermediary hotels in the instance, column “Trips” the number of trips, and column “Nb.

inst.” the number of instances that compose the set. The second half of the table displays

the results of each model. Column “Best%” displays the gap obtained during the best run

of the algorithm, column “AVG%” the average gap of all the runs, and CPU indicates the

average computation time in seconds. The gap here is the percentage difference between

the obtained solution and the optimal solution. Note that for Set 4, the optimal solutions

are not necessarily known, thus we use the best known solution. The gaps are calculated

as follows: gap = ((Optimal − Result)/Optimal) ∗ 100, where result is the value of the

obtained solution.

The results show that our method performs worse than the MA, but that is understand-

able, given the simplicity of the MS-OPHS. However, its performance is rather satisfactory.

On small instances (few hotels and trips), it is on par with MA, and it was even able to

improve some best known solutions in Set 4.

4.6.3 Comparison between mathematical models

In this section, we present a comparison between our algorithm and exact methods

available in the literature. As mentioned before, Divsalar et al. [85] are the only ones

we know of, who proposed a mathematical formulation for the OPHS. However, they

only tested their model on a small subset of instances. For the sake of comparison, we

implemented their model and tested it on all the benchmark instances available in the

literature. We then compared it with the base ILP model presented in Section 4.2.
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Set of instances MA [86] MS-OPHS

Name Ex. hotels Trips Nb.inst. Best % AVG % CPU Best % AVG % CPU

Set 1 1 2 35 1.29 1.44 2.59 0.32 0.5 0.83

2 3 35 0.43 0.88 1.84 0.48 1.27 1.17

3 4 35 0.46 0.6 1.09 0.68 2.69 1.44

Set 2 5 3 35 0.41 0.81 1.41 0.35 1.23 1.39

6 4 35 0.39 0.64 1.15 1.31 3.58 1.58

Set 3 10 4 22 0.96 1.72 6.59 4.54 6.56 3.56

12 5 22 1.43 1.98 5.44 4.65 7.81 4.21

Set 4 3 2 10 0.76 0.76 1.17 -0.23 -0.12 2.28

Set 5 12 4 22 1.24 1.78 6.5 3.88 6.7 3.88

15 4 22 1.32 1.92 6.63 3.89 6.52 2.04

10 5 22 1.3 1.99 5.43 5.1 7.76 3.99

15 5 22 1.4 2.22 5.41 4.65 7.81 4.21

10 6 22 1.24 2.3 4.66 6.4 10.12 4.36

12 6 22 1.63 2.28 3.49 6.51 10.3 4.77

15 6 22 1.39 2.55 4.78 6.46 10.48 4.49

15 8 13 2.95 3.66 5.16 12.83 16.15 4.36

15 10 9 3.78 5.03 5.04 4.89 6.92 8.33

Avg. / Total - - 405 1.32 1.92 4.02 3.92 6.25 3.35

Table 4.2 – Comparison of the MS-OPHS with the MA of Divsalar et al. [86].

Table 4.3 shows the comparison between results obtained by the model of Divsalar et al.

[85] and the results obtained by ours. The first half of the table shows the characteristics

of the benchmark instances. Column “Ex. hotels” indicates the number of intermediary

hotels in the instance, column “Trips” the number of trips, and column “Nb. inst.” the

number of instances that compose the set. The second half of the table displays the results

of each model. Column “#OPT ” displays the number of instances that were solved to

optimality whithin a one hour time limit. Column “GAP% ” is the average gap between the

best upper bound (UB) and the best lower bound (LB) obtained for unsolved instances.

It is calculated as GAP% = 100 ∗ (UB − LB)/UB. Finally, column CPU reports the

average solution time expressed in seconds.

The results presented in Table 4.3 show that our model performs better than that of

Divsalar et al. [85]. It is able to solve much more instances to optimality and is also

faster. Note that, the model of Divsalar et al. [85], when it cannot solve an instance,

achieves a better GAP than our model. This is due to subtour elimination constraints.

Indeed, when using MTZ constraints, the integral solutions obtained during the solution

process are all feasible solutions for the OPHS. On the other hand, when using GSECs,

integral solutions in the search tree might not be valid solutions, due to the presence of
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subtours. As such, Divsalar’s model has better chances of finding feasible lower bounds

than our model. Hence, the better gaps. However, this flaw can be easily corrected by

introducing an efficient repair heuristic in the Branch-&-Cut process.

Set of instances Divsalar et al. [85] Base model (ILP)

Name Ex. hotels Trips Nb.inst. #OPT GAP% CPU #OPT GAP% CPU

Set 1 1 2 35 20 5,69 360 35 0 430

2 3 35 18 9,82 877 32 2,63 397

3 4 35 13 11,25 789 28 8,11 657

Set 2 5 3 35 17 8,44 781 34 0,24 525

6 4 35 14 12,02 1043 24 15,51 396

Set 3 10 4 22 1 31,09 2403 3 65,41 389

12 5 22 0 46,58 - 2 80,05 966

Set 4 3 2 5 2 24,99 490 2 26,26 139

3 3 5 0 25,56 - 0 73,05 -

Set 5 12 4 22 1 30,91 2302 4 51,92 1123

15 4 22 0 34,21 - 4 48,26 1643

10 5 22 0 48,56 - 1 82,51 1809

15 5 22 0 44,1 - 1 88,74 924

10 6 22 0 49,28 - 2 81,63 1401

12 6 22 1 46,93 2048 3 81,36 737

15 6 22 0 47,2 - 2 87,53 2016

15 8 13 0 65,04 - 0 98,3 -

15 10 9 0 83,52 - 0 99,79 -

Avg. / Total - - 405 87 34,73 1233 177 55,07 903

Table 4.3 – Comparison between the base ILP model and the model of Divsalar et al. [85].

4.6.4 Evaluation of components

To study the impact of the proposed valid inequalities, we conducted several experiments.

During each of them, we solved the base model plus one set of valid inequalities. Table 4.4

shows the impact of the additional cuts added to the basic model. The table is devided

into 5 similar parts of three columns each. Each part reports the number of instances being

solved to optimality (#Opt) whithin a one hour time limit, the average gap between the

best upper bound and the best lower bound (GAP%), and the average solution time

expressed in seconds (CPU). Columns “Base model” displays the results obtained with

the base model, columns “Heuristics” display the results obtained by using the heuristics

discribed in Section 4.5, and each of the remaining columns shows the results obtained

by using the model plus the heuristics and the set of valid inequalities displayed in the
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header of the column.

Based on the results shown in Table 4.4, we notice a significant increase in the number

of solved instances once the heuristics are included in the algorithm. The introduction of

valid inequalities further improves the number of solved instances. However, some perform

better than others depending on the set of instances. For example, on the instances of set

2 with 5 extra hotels and 3 trips, incompatibility cuts perform better than cuts based on

bounds on the number of POIs. But, POI cuts perform better on instances of set 1 with 2

extra hotels and 3 trips. Overall, the results show that using the proposed heuristics and

valid inequalities improves the performance of our algorithm.

4.7 Numerical results

In this section, we present the results obtained by our algorithm on the OPHS instances.

Table 4.5 show the results of our algorithm on the OPHS instances. Columns “|Vc|” and

“OPT” in these tables indicate the number of POIs of the instance, and the value of

the optimal solution. Columns “LB” and “UB” show the best lower bound and the best

upper bound obtained by our algorithm, respectively, and column “Gap” represents the

gap between the lower and the upper bound. Column “CPU” displays the computation

time needed to solve the instance. A dash “−” indicates that the instances could not

solved within the one-hours time limit.

We observe that our algorithm is able to solve most of the instances with less than 6 extra

hotels and less than 4 trips. However, it struggles with instances that contain more than

10 extra hotels or more than 4 trips. On the other hand, the number of POIs per instance

does not seem to have much effect on the solution process, compared to the number of

hotels and the number of trips which, affect the number of possible hotel permutations in

an OPHS tour. These results appear to show that the latter has a greater impact on the

difficulty of solving the OPHS than the number of POIs.

Furthermore, note that there are instances where the B-&-C could not solve an instance

to optimality, while other configurations that incorporate less cuts are able to do so. This

may be due to the fact that adding several cuts might slow down the algorithm due to the

additional effort required for cut separation. Furthermore, we also noticed that solutions

with higher objective values are not always good initial solutions, and that sometimes

slightly worse solutions cause CPLEX to converge more rapidly.
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Set of instances Branch-&-Cut

Name Ex. hotels Trips Nb.inst. #OPT GAP% CPU

Set 1 1 2 35 35 0 130

2 3 35 31 0.31 289

3 4 35 29 0.47 316

Set 2 5 3 35 30 0.24 256

6 4 35 29 0.64 525

Set 3 10 4 22 6 6.9 809

12 5 22 3 11.45 441

Set 4 3 2 5 2 22.74 50

3 3 5 0 10 -

Set 5 12 4 22 5 7.94 984

15 4 22 5 8.24 555

10 5 22 5 10.68 1282

15 5 22 4 10.85 1118

10 6 22 5 12.2 1010

12 6 22 4 13.58 892

15 6 22 3 14.76 537

15 8 13 0 27.88 -

15 10 9 0 49.51 -

Avg. / Total - - 405 196 11.58 613

Table 4.5 – Results of the B-&-C algorithm on OPHS benchmarks.

4.8 Conclusion

The OPHS is a variant of the Orienteering Problem where intermediate facilities, called

“hotels” are introduced. Given a number of days D, a set of hotels and a set of POIs,

the goal of the OPHS is to find a tour of D connected trips, that visits a subset of POIs

and maximizes the total collected profit. Each trip must start and end at one of the

available hotels. In this chapter, we introduced a new mathematical model for the OPHS

and an exact method to solve it. We presented several valid inequalities to reinforce

our mathematical model and improve the performance of our algorithm, as well as a

fast heuristic based on the order-first split-second approach. The results obtained on the

OPHS benchmark instances show the effectiveness of our method.

Future work will focus on the improvement of our exact algorithm and the development of

effective meta-heuristics based on our order-fist, split-second approach. The introduction

of well-thought upper-bounds, branching rules, and cut management strategies can

potentially lead to significant improvements in the performance of our exact algorithm.

Decomposition approaches are also a direction to be explored. Additionally, several
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extensions of the OPHS can be considered for future work, including time windows, service

times at the POIs, scores for the hotels, visiting and lodging fees or even multi-modal

variant of the problem.



Conclusion and future work

With the ever increasing urbanization and the growing trend that is e-commerce, the

share of urban freight distribution in energy consumption and environmental pollution, is

bound to increase in the future. In recent years, City Logistics and its various concepts,

such as co-modality and collaborative distribution, emerged as viable solutions to mitigate

the negative impacts of urban distribution. In this thesis, we took a closer look at how

vehicle routing problems can contribute to the operation of City Logistics systems, and

propose several innovative methods to solve selective and multi-echelon variants of the

vehicle routing problem.

We started Chapter 1 with an overview on freight distribution in urban areas, its

importance, and its challenges with regards to environmental issues. We then presented

City Logistics as potential source of solutions to the challenges of urban transportation.

We focused on concepts such as co-modality: what it is, what it aims for and how it is

implemented in various contexts. Throughout this part of the chapter, we gave examples

on how vehicle routing problems contribute to City Logistics. In the second part of the

chapter, we presented in more details the Vehicle Routing Problem. We gave an overview

of solution methods that were developed to solve VRPs, and discussed variants of the

problem, especially selective variants.

In Chapter 2, we presented an effective meta-heuristic for the Team Orienteering Problem

with Time Windows (TOPTW). The TOPTW is a selective variant of the VRP where

the goal is to plan a set of routes over a subset of locations, that maximizes profits

while taking into consideration time limitations on the routes and customer availability.

Our algorithm is based on a neighborhood search that alternates between a route search

space, and a giant tour search space to explore the solution space without being limited

by time windows and length constraints. In order to benefit from information gathered

while exploring the search space, our method integrates an adaptive memory mechanism

that allows to use local optima to build high quality solutions. Computational results

on literature benchmark shown the competitiveness of our approach. In particular, it is

able to find the current best-known solutions, or better ones, for 94% of the benchmark

113
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instances within reasonable runtimes, and was able to find new best solutions for 61

instances for which no optimal solution has yet been found.

After the TOPTW, we tackled the Two-Echelon Vehicle Routing Problem (2E-VRP),

a variant of the VRP where, freight from a main depot is delivered to final customers

using intermediate facilities, called satellites. The 2E-VRP is a variant that developed in

the context of City Logistics. To solve the 2E-VRP, we designed a hybrid algorithm

that combines heuristic solution methods with mathematical programming. It relies

on a neighborhood search heuristic to explore the search space and generate a set of

promising routes. These routes are then combined into high quality solution using a set

covering formulation of the 2E-VRP. This aims to identify high quality solutions that

might have been missed by the neighborhood search procedure, and lead the algorithm

towards promising regions of the solution space. This approach proved very effective, as

demonstrated by computational experiments on the standard benchmark instances. It

consistently achieves high quality solutions, on par with state of the art-algorithms, yet

requires significantly less computational time.

The OPHS is a routing problem that shares aspects with both the Orienteering Problem

and the 2E-VRP. In the OPHS, given a number of days D, a set of intermediate facilities

called “hotels”, and a set of “Points Of Interest”, the goal is to find a maximal profit tour

of D connected trips which, must start and end at one of the available hotels, and visit

each POI at most once. In Chapter 4, we presented a new mathematical model for the

OPHS with an exponential number of constraints and solved it using an exact method.

We presented several valid inequalities to enhance the performance of our mathematical

model, as well as heuristics to obtain feasible solution from the LP relaxation of the

problem. Furthermore, we introduced a fast multi-start heuristic for the OPHS based

on the order-first split-second approach. To that effect, we designed a split procedure

specifically for the OPHS. The results obtained on the OPHS benchmark instances show

the effectiveness of our method.

The contributions of this thesis and the empirical findings they led to are very encouraging

and open up multiple research perspectives. At first, we should solidify our work on the

solution of the OPHS. Several ways to improve our exact method can be investigated.

The introduction of additional valid inequalities, whether adaptations of cuts designed

for similar problems or cuts specific to the OPHS is planned. Similarly, studying ways

to reduce the size of the problem, either through effective pre-processing procedures or

by using decomposition algorithms should be done. We observed that the number of

hotel combinations might have a bigger effect on difficulty than the number of nodes
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in the instance, as such, extensive experiments should be carried out to confirm it. If

it is confirmed, design choices to improve the algorithm need to take that into account.

Furthermore, we plan on proposing a new more effective meta-heuristic approach for

the OPHS. The results obtained by both our simple OPHS heuristic using a splitting

procedure, and the performance of our MS-ILS in solving the TOPTW encourage us to

explore this avenue.

Regarding the 2E-VRP, our solution approach, while very competitive, still has room for

improvement. Solving the set covering formulation during the recombination step is very

time consuming, and needs to be sped up. In our implementation, we used CPLEX to solve

the MILP as is, but using ideas from column generation methods is a viable way to reduce

the computational effort necessary to find the optimal solution of the partial model, or at

least to significantly improve the upper bound. Using an effective heuristic approach to

solve the set covering problem instead of an exact algorithm, and using more elaborate

strategies for pool management are also ideas worth exploring. Furthermore, in order

to improve solution quality, more diversification is needed in the adaptive memory. The

introduction of new components adapted for route generation and better pool management

strategies might allow us to achieve that.

In our numerous computational experiments, we noticed that different components of

the algorithm have different impacts on the solution process, depending on the instance

being treated. A single component could improve the performance of the algorithm

on one instance of the problem, and degrade it on another one. For example, the

route recombination component in our hybrid algorithm for the 2E-VRP improves the

performance of the algorithm on large instances like those of set 5, but rarely finds

improvements when used on smaller instances, yet still constitutes a major overhead in

computation time. Thus, knowing which characteristics of the instance influence the effect

of a component or even if a parameter can be a determinant factor in improving the design

and the performance of our heuristics. By using these characteristics, it would be possible

to allow algorithms to automatically adapt to each instance, on the spot, by considering

or discarding components to suit its specifics. Identifying the features that characterize

an instance of the problem to predict which heuristic suits them best, constitutes another

relevant direction for future work.

Finally, future work should also include the extension of our algorithms to other more

general variants of the routing problems studied herein. These so-called Rich VRPs

or Multi-attribute VRPs consider more complex constraints and objectives arising in

real life applications. The consideration of environmental costs, risks and uncertainty,
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varying travel times, pick-up and delivery practices, transfers and transshipments, and

synchronisation are all of relevance to the optimization of City Logistics.
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[24] Baltz, A., Ouali, M. E., Jäger, G., Sauerland, V., and Srivastav, A. (2015). Exact and heuristic
algorithms for the travelling salesman problem with multiple time windows and hotel selection. Journal
of the Operational Research Society, 66(4):615–626.

[25] Beasley, J. E. (1983). Route first—cluster second methods for vehicle routing. Omega, 11(4):403 –
408.

[26] Belenguer, J. M., Martinez, M. C., and Mota, E. (2000). A lower bound for the split delivery vehicle
routing problem. Operations Research, 48(5):801–810.

[27] Bell, J. E. and McMullen, P. R. (2004). Ant colony optimization techniques for the vehicle routing
problem. Advanced Engineering Informatics, 18(1):41–48.

[28] Ben-Said, A., El-Hajj, R., and Moukrim, A. (2019). A variable space search heuristic for the
capacitated team orienteering problem. Journal of Heuristics, 25(2):273–303.

[29] Benjamin, A. and Beasley, J. (2010). Metaheuristics for the waste collection vehicle routing problem
with time windows, driver rest period and multiple disposal facilities. Computers & Operations
Research, 37(12):2270 – 2280.
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[71] Cruijssen, F., Bräysy, O., Dullaert, W., Fleuren, H., and Salomon, M. (2007). Joint route
planning under varying market conditions. International Journal of Physical Distribution & Logistics
Management, 37(4):287–304.

[72] Cura, T. (2014). An artificial bee colony algorithm approach for the team orienteering problem with
time windows. Computers & Industrial Engineering, 74:270 – 290.



121

[73] Dablanc, L. (2009). Freight transport for development toolkit: Urban freight - freight transport, a
key for the new urban economy. World Bank, Department for International Development.

[74] Dahl, S. and Derigs, U. (2011). Cooperative planning in express carrier networks — an empirical
study on the effectiveness of a real-time decision support system. Decision Support Systems, 51(3):620
– 626.

[75] Dang, D.-C., El-Hajj, R., and Moukrim, A. (2013a). A branch-and-cut algorithm for solving the
team orienteering problem. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 332–339, Berlin, Heidelberg. Springer Berlin Heidelberg.

[76] Dang, D.-C., Guibadj, R. N., and Moukrim, A. (2011). A pso-based memetic algorithm for the team
orienteering problem. In Applications of Evolutionary Computation, pages 471–480, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[77] Dang, D.-C., Guibadj, R. N., and Moukrim, A. (2013b). An effective pso-inspired algorithm for the
team orienteering problem. European Journal of Operational Research, 229(2):332–344.

[78] Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, 2(4):393–410.
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Appendix A

Detailed results of the MS-ILS on

TOPTW benchmarks

In this appendix, we present the detailed results obtained by our Multi-Start Iterated

Local Search on all the TOPTW instances from the standard and the ”OPT” benchmarks.

Tables A.2 to A.11 and Tables A.13 to A.22 show the detailed results obtained by MS-

ILS using two different parameter settings : one that offers good compromise between

speed and solution quality, and one which favors solution quality. The performance of

MS-ILS is measured in terms of relative percentage error (rpe) with respect to the best-

known solution (BKS), and in terms of average relative percentage error (arpe) with

respect to the BKS. These two metrics are computed as: rpe = (BKS−Zmax)
BKS

∗ 100% and

arpe = (BKS−Zavg)

BKS
∗ 100%, where Zmax and Zavg denote the best profit and the average

profit obtained over five runs, respectively.

Each of the aforementioned tables is composed of two identically structured parts. Each

part contains seven columns. The first column displays the name of the instance. Column

(BKS) shows the current best-known solution to the instance, including the one found

by our method. The columns remaining under the heading MS-ILS indicate the maximum

score (Zmax) obtained by our algorithm, the relative error (RPE), the average score (Zavg),

the average error (ARPE), and the average computational time in seconds (cpuavg),

respectively. New best-known solutions are displayed in bold in column (Zmax).

1.1 Results of the MS-ILS using a fast setting

In this Section, we present the results obtained by the MS-ILS while using a combination

of parameter values that offer a good compromise between computation times and solution

quality (fast setting). The parameter values are detailed in Table A.1. Tables A.2 to A.9

report the results obtained by MS-ILS on instances from the standard benchmark, while
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Tables A.10 to A.11 show those obtained on the ”OPT” benchmark. Note that in the case

of the ”OPT” benchmark, the solution value reported in column (BKS) is known to be

optimal.

Table A.1 – Fast setting parameter values.

Parameter Description Value

α the control parameter of the BIA [1.8, 2.8]
Dmax max. nb. of customers removed by the Ran-

dom remove-and-repair operator
0.25 ∗ nrouted

Msize size of the adaptive memory 80
iterinit nb. of iterations of the initialization heuristic 1000
itermax nb. of iterations of the main algorithm 2 ∗ n/m
iterils nb. of iterations of the ILS 4



1.1. RESULTS OF THE MS-ILS USING A FAST SETTING 135

Table A.2 – Results for Solomon’s instances with m = 1 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 320 320 0.00 320 0.00 0.4 c201 870 870 0.00 870 0.00 3.3

c102 360 360 0.00 360 0.00 1.9 c202 930 930 0.00 930 0.00 6.1

c103 400 400 0.00 400 0.00 3.7 c203 960 960 0.00 960 0.00 11.6

c104 420 420 0.00 420 0.00 5.7 c204 980 980 0.00 974 0.61 29.4

c105 340 340 0.00 340 0.00 1.0 c205 910 910 0.00 910 0.00 6.3

c106 340 340 0.00 340 0.00 0.6 c206 930 930 0.00 930 0.00 4.9

c107 370 370 0.00 370 0.00 0.9 c207 930 930 0.00 930 0.00 7.9

c108 370 370 0.00 370 0.00 1.1 c208 950 950 0.00 950 0.00 9.9

c109 380 380 0.00 380 0.00 2.6

r101 198 198 0.00 198 0.00 0.4 r201 797 797 0.00 797 0.00 5.5

r102 286 286 0.00 286 0.00 2.0 r202 930 930 0.00 926.8 0.34 16.9

r103 293 293 0.00 293 0.00 2.7 r203 1028 1028 0.00 1026.8 0.12 23.5

r104 303 303 0.00 303 0.00 3.4 r204 1093 1093 0.00 1093 0.00 36.0

r105 247 247 0.00 247 0.00 0.9 r205 953 953 0.00 953 0.00 10.0

r106 293 293 0.00 293 0.00 2.4 r206 1032 1032 0.00 1031.6 0.04 20.4

r107 299 299 0.00 299 0.00 2.5 r207 1078 1078 0.00 1077.6 0.04 24.6

r108 308 308 0.00 308 0.00 3.1 r208 1118 1118 0.00 1116.6 0.13 46.6

r109 277 277 0.00 277 0.00 1.4 r209 962 959 0.31 958.6 0.35 24.4

r110 284 284 0.00 283.4 0.21 1.3 r210 1002 1002 0.00 1001.6 0.04 20.4

r111 297 297 0.00 297 0.00 2.4 r211 1051 1051 0.00 1051 0.00 23.8

r112 298 298 0.00 298 0.00 2.3

rc101 219 219 0.00 219 0.00 0.6 rc201 795 795 0.00 795 0.00 3.9

rc102 266 266 0.00 266 0.00 1.2 rc202 938 938 0.00 938 0.00 10.0

rc103 266 266 0.00 266 0.00 1.1 rc203 1003 1003 0.00 1002.4 0.06 18.0

rc104 301 301 0.00 301 0.00 1.3 rc204 1143 1143 0.00 1139.4 0.31 28.6

rc105 244 244 0.00 244 0.00 0.8 rc205 859 859 0.00 859 0.00 7.4

rc106 252 252 0.00 251.6 0.16 0.8 rc206 899 899 0.00 896.6 0.27 8.8

rc107 277 277 0.00 277 0.00 1.5 rc207 983 983 0.00 983 0.00 12.1

rc108 298 298 0.00 298 0.00 1.3 rc208 1058 1057 0.00 1055 0.28 18.5

Avg. 303.7 303.7 0.00 303.6 0.01 1.77 969.7 969.6 0.01 968.7 0.10 16.2
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Table A.3 – Results for Solomon’s instances with m = 2 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 590 590 0.00 590 0.00 1.6 c201 1460 1460 0.00 1454 0.41 7.6

c102 660 660 0.00 658 0.30 3.2 c202 1470 1470 0.00 1470 0.00 12.4

c103 720 720 0.00 720 0.00 5.5 c203 1480 1480 0.00 1478 0.14 24.2

c104 760 760 0.00 760 0.00 9.3 c204 1490 1490 0.00 1490 0.00 45.9

c105 640 640 0.00 640 0.00 1.4 c205 1470 1470 0.00 1470 0.00 13.5

c106 620 620 0.00 620 0.00 1.9 c206 1480 1480 0.00 1480 0.00 8.7

c107 670 670 0.00 670 0.00 1.6 c207 1490 1490 0.00 1484 0.40 10.7

c108 680 680 0.00 680 0.00 2.6 c208 1490 1490 0.00 1488 0.13 11.8

c109 720 720 0.00 720 0.00 5.4

r101 349 349 0.00 349 0.00 1.2 r201 1260 1255 0.40 1252.4 0.60 13.7

r102 508 508 0.00 508 0.00 1.9 r202 1353 1352 0.07 1349.8 0.24 42.9

r103 522 522 0.00 521.6 0.08 2.6 r203 1431 1431 0.00 1424.6 0.45 61.3

r104 552 552 0.00 550.4 0.29 4.5 r204 1458 1458 0.00 1458 0.00 3.6

r105 453 453 0.00 453 0.00 1.6 r205 1402 1402 0.00 1395.4 0.47 32.0

r106 529 529 0.00 529 0.00 2.3 r206 1452 1450 0.14 1449.2 0.19 60.4

r107 538 538 0.00 538 0.00 3.2 r207 1458 1458 0.00 1458 0.00 4.9

r108 560 560 0.00 560 0.00 3.7 r208 1458 1458 0.00 1458 0.00 0.2

r109 506 506 0.00 506 0.00 2.5 r209 1423 1423 0.00 1418.2 0.34 51.8

r110 525 525 0.00 524.6 0.08 2.4 r210 1438 1434 0.28 1430.4 0.53 54.5

r111 544 544 0.00 544 0.00 2.7 r211 1458 1458 0.00 1458 0.00 14.3

r112 544 544 0.00 544 0.00 3.5

rc101 427 427 0.00 427 0.00 1.8 rc201 1386 1383 0.22 1378.8 0.52 7.8

rc102 505 505 0.00 504.2 0.16 2.5 rc202 1523 1523 0.00 1520.8 0.14 16.4

rc103 524 524 0.00 524 0.00 2.5 rc203 1639 1637 0.12 1634.8 0.26 31.1

rc104 575 575 0.00 574.6 0.07 3.3 rc204 1718 1716 0.12 1712.2 0.34 58.0

rc105 480 480 0.00 480 0.00 3.1 rc205 1462 1462 0.00 1460 0.14 13.1

rc106 483 483 0.00 482.2 0.17 1.8 rc206 1552 1550 0.13 1543.2 0.57 13.7

rc107 534 534 0.00 534 0.00 4.3 rc207 1609 1609 0.00 1602 0.44 27.3

rc108 556 556 0.00 556 0.00 4.0 rc208 1705 1695 0.59 1693.6 0.67 39.8

Avg. 561.2 561.2 0.00 561.0 0.04 3.03 1482.0 1480.9 0.08 1478.2 0.26 25.2



1.1. RESULTS OF THE MS-ILS USING A FAST SETTING 137

Table A.4 – Results for Solomon’s instances with m = 3 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 810 810 0.00 810 0.00 1.6 c201 1810 1810 0.00 1810 0.00 1.0

c102 920 920 0.00 920 0.00 5.0 c202 1810 1810 0.00 1810 0.00 1.4

c103 990 990 0.00 984 0.61 8.2 c203 1810 1810 0.00 1810 0.00 1.4

c104 1030 1030 0.00 1030 0.00 10.4 c204 1810 1810 0.00 1810 0.00 1.8

c105 870 870 0.00 868 0.23 2.2 c205 1810 1810 0.00 1810 0.00 0.2

c106 870 870 0.00 870 0.00 3.0 c206 1810 1810 0.00 1810 0.00 0.1

c107 910 910 0.00 910 0.00 3.6 c207 1810 1810 0.00 1810 0.00 0.2

c108 920 920 0.00 920 0.00 4.7 c208 1810 1810 0.00 1810 0.00 0.1

c109 970 970 0.00 970 0.00 7.4

r101 484 484 0.00 484 0.00 1.5 r201 1450 1445 0.34 1440.4 0.66 33.8

r102 694 694 0.00 692.2 0.26 3.1 r202 1458 1458 0.00 1458 0.00 0.7

r103 747 747 0.00 747 0.00 4.2 r203 1458 1458 0.00 1458 0.00 0.1

r104 778 778 0.00 778 0.00 5.5 r204 1458 1458 0.00 1458 0.00 0.1

r105 620 620 0.00 619.4 0.10 2.2 r205 1458 1458 0.00 1458 0.00 0.1

r106 729 729 0.00 727.2 0.25 2.9 r206 1458 1458 0.00 1458 0.00 0.1

r107 760 760 0.00 760 0.00 4.4 r207 1458 1458 0.00 1458 0.00 0.1

r108 797 797 0.00 797 0.00 3.7 r208 1458 1458 0.00 1458 0.00 0.1

r109 710 710 0.00 710 0.00 2.8 r209 1458 1458 0.00 1458 0.00 0.1

r110 737 737 0.00 736.4 0.08 2.7 r210 1458 1458 0.00 1458 0.00 0.1

r111 774 774 0.00 773.8 0.03 3.7 r211 1458 1458 0.00 1458 0.00 0.1

r112 776 776 0.00 776 0.00 5.6

rc101 621 621 0.00 621 0.00 1.4 rc201 1698 1698 0.00 1693.2 0.28 19.3

rc102 714 714 0.00 711.6 0.34 2.5 rc202 1724 1724 0.00 1724 0.00 16.9

rc103 764 764 0.00 753.4 1.39 2.9 rc203 1724 1724 0.00 1724 0.00 0.1

rc104 835 835 0.00 834.8 0.02 4.3 rc204 1724 1724 0.00 1724 0.00 0.1

rc105 682 682 0.00 682 0.00 2.3 rc205 1719 1709 0.58 1709 0.58 27.2

rc106 706 706 0.00 705.2 0.11 2.3 rc206 1724 1724 0.00 1724 0.00 0.3

rc107 773 773 0.00 772 0.13 3.0 rc207 1724 1724 0.00 1724 0.00 0.2

rc108 795 795 0.00 795 0.00 4.3 rc208 1724 1724 0.00 1724 0.00 0.1

Avg. 785.7 785.7 0.00 784.8 0.12 3.84 1639.7 1639.1 0.03 1638.8 0.06 3.9
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Table A.5 – Results for Solomon’s instances with m = 4 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 1020 1020 0.00 1020 0.00 3.2 c201 1810 1810 0.00 1810 0.00 0.0

c102 1150 1150 0.00 1150 0.00 8.4 c202 1810 1810 0.00 1810 0.00 0.1

c103 1210 1210 0.00 1206 0.33 11.7 c203 1810 1810 0.00 1810 0.00 0.1

c104 1260 1260 0.00 1254 0.48 16.4 c204 1810 1810 0.00 1810 0.00 0.1

c105 1070 1060 0.93 1060 0.93 3.2 c205 1810 1810 0.00 1810 0.00 0.1

c106 1080 1080 0.00 1074 0.56 5.0 c206 1810 1810 0.00 1810 0.00 0.1

c107 1120 1120 0.00 1120 0.00 4.7 c207 1810 1810 0.00 1810 0.00 0.1

c108 1140 1140 0.00 1134 0.53 7.2 c208 1810 1810 0.00 1810 0.00 0.1

c109 1190 1190 0.00 1190 0.00 9.0

r101 611 611 0.00 610.8 0.03 1.9 r201 1458 1458 0.00 1458 0.00 0.1

r102 843 839 0.47 837.4 0.66 3.2 r202 1458 1458 0.00 1458 0.00 0.1

r103 928 928 0.00 926.4 0.17 4.5 r203 1458 1458 0.00 1458 0.00 0.1

r104 975 974 0.10 974 0.10 7.4 r204 1458 1458 0.00 1458 0.00 0.1

r105 778 778 0.00 774.8 0.41 2.9 r205 1458 1458 0.00 1458 0.00 0.1

r106 906 906 0.00 906 0.00 4.3 r206 1458 1458 0.00 1458 0.00 0.1

r107 950 950 0.00 950 0.00 4.9 r207 1458 1458 0.00 1458 0.00 0.1

r108 995 995 0.00 992.6 0.24 5.8 r208 1458 1458 0.00 1458 0.00 0.1

r109 885 885 0.00 885 0.00 3.3 r209 1458 1458 0.00 1458 0.00 0.1

r110 915 915 0.00 915 0.00 4.1 r210 1458 1458 0.00 1458 0.00 0.1

r111 952 951 0.11 949.4 0.27 5.0 r211 1458 1458 0.00 1458 0.00 0.1

r112 974 974 0.00 972.2 0.18 5.9

rc101 811 811 0.00 811 0.00 1.8 rc201 1724 1724 0.00 1724 0.00 0.1

rc102 909 902 0.77 901.8 0.79 3.0 rc202 1724 1724 0.00 1724 0.00 0.1

rc103 975 974 0.10 968.4 0.68 4.2 rc203 1724 1724 0.00 1724 0.00 0.1

rc104 1065 1065 0.00 1064.6 0.04 4.4 rc204 1724 1724 0.00 1724 0.00 0.1

rc105 875 875 0.00 872.2 0.32 2.8 rc205 1724 1724 0.00 1724 0.00 0.1

rc106 909 909 0.00 904.2 0.53 3.5 rc206 1724 1724 0.00 1724 0.00 0.1

rc107 987 987 0.00 984 0.30 3.7 rc207 1724 1724 0.00 1724 0.00 0.1

rc108 1025 1025 0.00 1025 0.00 4.4 rc208 1724 1724 0.00 1724 0.00 0.1

Avg. 983.0 982.2 0.09 980.4 0.26 5.16 1641.1 1641.1 0.00 1641.1 0.00 0.1

Table A.6 – Results for Cordeau’s instances with m = 1 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 308 308 0.00 308 0.00 0.9 pr11 353 353 0.00 351.8 0.34 1.4

pr02 404 404 0.00 404 0.00 3.6 pr12 442 441 0.23 440.8 0.27 6.1

pr03 394 394 0.00 394 0.00 5.9 pr13 467 467 0.00 464.4 0.56 8.3

pr04 489 489 0.00 489 0.00 12.7 pr14 567 555 2.12 553 2.47 22.7

pr05 595 595 0.00 594.4 0.10 24.3 pr15 708 708 0.00 708 0.00 39.5

pr06 591 590 0.17 587.6 0.58 40.6 pr16 674 650 3.56 648.2 3.83 53.0

pr07 298 298 0.00 298 0.00 1.3 pr17 362 362 0.00 362 0.00 1.8

pr08 463 463 0.00 463 0.00 5.3 pr18 539 539 0.00 539 0.00 8.7

pr09 493 493 0.00 493 0.00 10.8 pr19 562 560 0.36 553.4 1.53 28.8

pr10 594 594 0.00 587.2 1.14 24.6 pr20 667 652 2.25 650.4 2.49 44.3

Avg. 462.9 462.8 0.02 461.82 0.18 13.0 534.1 528.7 0.85 527.1 1.15 21.5
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Table A.7 – Results for Cordeau’s instances with m = 2 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 502 502 0.00 502 0.00 1.2 pr11 566 564 0.35 564 0.35 1.9

pr02 715 714 0.14 711.8 0.45 5.0 pr12 774 765 1.16 765 1.16 8.6

pr03 742 742 0.00 738.4 0.49 7.6 pr13 845 840 0.59 836.4 1.02 13.8

pr04 928 928 0.00 926.8 0.13 22.5 pr14 1017 993 2.36 991 2.56 29.0

pr05 1103 1094 0.82 1093.2 0.89 26.0 pr15 1238 1238 0.00 1228.8 0.74 72.2

pr06 1076 1076 0.00 1060.8 1.41 39.9 pr16 1231 1198 2.68 1182 3.98 68.4

pr07 566 566 0.00 566 0.00 2.7 pr17 652 646 0.92 645.4 1.01 3.0

pr08 834 834 0.00 833 0.12 10.3 pr18 955 955 0.00 947.4 0.80 18.9

pr09 909 909 0.00 907.2 0.20 22.0 pr19 1041 1038 0.29 1030.8 0.98 35.6

pr10 1145 1145 0.00 1137.8 0.63 43.4 pr20 1251 1251 0.00 1246.8 0.34 69.8

Avg. 852 851 0.10 847.7 0.43 18.1 957 948.8 0.84 943.76 1.29 32.1

Table A.8 – Results for Cordeau’s instances with m = 3 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 622 622 0.00 619.6 0.39 1.7 pr11 654 654 0.00 654 0.00 3.0

pr02 945 943 0.21 941.6 0.36 8.3 pr12 1002 999 0.30 998 0.40 13.2

pr03 1014 1013 0.10 1009.4 0.45 14.1 pr13 1159 1157 0.17 1147 1.04 19.6

pr04 1296 1290 0.46 1279.8 1.25 21.7 pr14 1375 1367 0.58 1361.8 0.96 45.7

pr05 1500 1487 0.87 1485.6 0.96 38.5 pr15 1694 1684 0.59 1682.2 0.70 58.4

pr06 1515 1515 0.00 1504.6 0.69 51.8 pr16 1668 1637 1.86 1628.8 2.35 92.2

pr07 744 744 0.00 742.8 0.16 3.9 pr17 841 841 0.00 838.2 0.33 5.1

pr08 1141 1137 0.35 1135 0.53 13.0 pr18 1289 1289 0.00 1276.2 0.99 16.5

pr09 1277 1277 0.00 1265.6 0.89 26.8 pr19 1428 1423 0.35 1417.6 0.73 48.3

pr10 1582 1577 0.32 1571.6 0.66 76.9 pr20 1722 1706 0.93 1688.8 1.93 131.1

Avg. 1163.6 1160.5 0.23 1155.56 0.63 25.7 1283.2 1275.7 0.48 1269.26 0.94 43.3

Table A.9 – Results for Cordeau’s instances with m = 4 using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 657 657 0.00 657 0.00 0.1 pr11 657 657 0.00 657 0.00 0.0

pr02 1083 1079 0.37 1075.6 0.68 12.8 pr12 1133 1131 0.18 1127.8 0.46 22.1

pr03 1247 1247 0.00 1237.4 0.77 14.3 pr13 1392 1380 0.86 1377.4 1.05 28.3

pr04 1595 1593 0.13 1587.4 0.48 38.7 pr14 1688 1684 0.24 1676 0.71 59.5

pr05 1858 1841 0.91 1835.4 1.22 61.5 pr15 2085 2071 0.67 2056.2 1.38 119.5

pr06 1894 1885 0.48 1875.8 0.96 67.9 pr16 2065 2052 0.63 2042.4 1.09 124.8

pr07 876 876 0.00 872 0.46 4.7 pr17 936 932 0.43 923.6 1.32 7.1

pr08 1390 1380 0.72 1373.6 1.18 17.9 pr18 1554 1539 0.97 1530.4 1.52 35.6

pr09 1622 1613 0.55 1607.4 0.90 45.6 pr19 1780 1772 0.45 1756 1.35 63.8

pr10 1965 1958 0.36 1943.4 1.10 80.2 pr20 2115 2115 0.00 2084.4 1.45 129.9

Avg. 1418.7 1412.9 0.35 1406.5 0.77 34.4 1540.5 1533.3 0.44 1523.12 1.03 59.1
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Table A.10 – Results for Solomon’s instances of ”OPT” data set using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 1810 1810 0.00 1810 0.00 2.6 c201 1810 1810 0.00 1810 0.00 0.0

c102 1810 1810 0.00 1810 0.00 0.1 c202 1810 1810 0.00 1810 0.00 0.1

c103 1810 1810 0.00 1810 0.00 0.1 c203 1810 1810 0.00 1810 0.00 0.1

c104 1810 1810 0.00 1810 0.00 0.1 c204 1810 1810 0.00 1810 0.00 0.1

c105 1810 1810 0.00 1810 0.00 0.2 c205 1810 1810 0.00 1810 0.00 0.1

c106 1810 1810 0.00 1810 0.00 1.1 c206 1810 1810 0.00 1810 0.00 0.1

c107 1810 1810 0.00 1810 0.00 0.0 c207 1810 1810 0.00 1810 0.00 0.1

c108 1810 1810 0.00 1810 0.00 0.1 c208 1810 1810 0.00 1810 0.00 0.1

c109 1810 1810 0.00 1810 0.00 0.1

r101 1458 1458 0.00 1457.4 0.04 4.1 r201 1458 1458 0.00 1458 0.00 0.1

r102 1458 1458 0.00 1458 0.00 10.7 r202 1458 1458 0.00 1458 0.00 0.5

r103 1458 1458 0.00 1455.6 0.16 58.8 r203 1458 1458 0.00 1458 0.00 0.1

r104 1458 1442 1.10 1438.8 1.32 12.1 r204 1458 1458 0.00 1458 0.00 3.7

r105 1458 1458 0.00 1453.4 0.32 6.8 r205 1458 1458 0.00 1458 0.00 0.1

r106 1458 1458 0.00 1457.6 0.03 13.6 r206 1458 1458 0.00 1458 0.00 0.1

r107 1458 1453 0.34 1450.4 0.52 14.5 r207 1458 1458 0.00 1458 0.00 2.5

r108 1458 1455 0.21 1454.6 0.23 15.7 r208 1458 1458 0.00 1458 0.00 0.3

r109 1458 1450 0.55 1447.2 0.74 8.6 r209 1458 1458 0.00 1458 0.00 0.1

r110 1458 1447 0.75 1444.2 0.95 11.3 r210 1458 1458 0.00 1458 0.00 0.1

r111 1458 1450 0.55 1448.2 0.67 10.4 r211 1458 1458 0.00 1458 0.00 24.0

r112 1458 1449 0.62 1448.8 0.63 9.7

rc101 1724 1719 0.29 1715 0.52 10.3 rc201 1724 1724 0.00 1724 0.00 0.1

rc102 1724 1721 0.17 1721 0.17 19.7 rc202 1724 1724 0.00 1724 0.00 9.9

rc103 1724 1724 0.00 1721.8 0.13 15.9 rc203 1724 1724 0.00 1724 0.00 0.1

rc104 1724 1724 0.00 1724 0.00 0.5 rc204 1724 1724 0.00 1724 0.00 0.1

rc105 1724 1711 0.75 1706.6 1.01 7.0 rc205 1724 1724 0.00 1724 0.00 0.1

rc106 1724 1719 0.29 1705.8 1.06 8.6 rc206 1724 1724 0.00 1724 0.00 0.2

rc107 1724 1724 0.00 1723.6 0.02 4.4 rc207 1724 1724 0.00 1724 0.00 0.2

rc108 1724 1724 0.00 1722.8 0.07 9.1 rc208 1724 1724 0.00 1724 0.00 0.1

Avg. 1640.6 1637.7 0.19 1636.0 0.30 8.82 1641.1 1641.1 0.00 1641.1 0.00 1.6

Table A.11 – Results for Cordeau’s instances of ”OPT” data set using the fast setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 657 619 5.78 619 5.78 1.5 pr06 3671 3671 0.00 3671 0.00 113.9

pr02 1220 1207 1.07 1202.4 1.44 16.9 pr07 948 942 0.63 939.2 0.93 4.5

pr03 1788 1770 1.01 1767.8 1.13 24.9 pr08 2006 2006 0.00 2005.8 0.01 11.7

pr04 2477 2474 0.12 2471.2 0.23 69.3 pr09 2736 2736 0.00 2736 0.00 0.2

pr05 3351 3351 0.00 3351 0.00 20.7 pr10 3850 3850 0.00 3850 0.00 0.3

Avg. 1898.6 1884.2 1.60 1882.3 1.72 26.7 2642.2 2641.0 0.13 2640.4 0.19 26.1
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1.2 Results of the MS-ILS using a slow setting

In this Section, we present the results obtained by the MS-ILS while using a combination

of parameter values to favor solution quality (slow setting) instead of computation time.

The parameter values are detailed in Table A.12. Tables A.13 to A.20 report the results

obtained by MS-ILS on instances from the standard benchmark, while Tables A.21 to A.22

show those obtained on the ”OPT” benchmark. Note that in the case of the ”OPT”

benchmark, the solution value reported in column (BKS) is known to be optimal.

Table A.12 – Slow setting parameter values.

Parameter Description Value
α the control parameter of the BIA [1.8, 2.8]
Dmax max. nb. of customers removed by the Ran-

dom remove-and-repair operator
0.25 ∗ nrouted

Msize size of the adaptive memory 100
iterinit nb. of iterations of the initialization heuristic 1000
itermax nb. of iterations of the main algorithm 30 ∗ n/m
iterils nb. of iterations of the ILS 10
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Table A.13 – Results for Solomon’s instances with m = 1 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 320 320 0.00 320 0.00 9.5 c201 870 870 0.00 870 0.00 39.1

c102 360 360 0.00 360 0.00 29.9 c202 930 930 0.00 930 0.00 67.7

c103 400 400 0.00 400 0.00 47.5 c203 960 960 0.00 960 0.00 83.0

c104 420 420 0.00 420 0.00 89.4 c204 980 980 0.00 980 0.00 169.0

c105 340 340 0.00 340 0.00 13.2 c205 910 910 0.00 910 0.00 99.0

c106 340 340 0.00 340 0.00 18.8 c206 930 930 0.00 930 0.00 65.8

c107 370 370 0.00 370 0.00 19.7 c207 930 930 0.00 930 0.00 69.0

c108 370 370 0.00 370 0.00 25.7 c208 950 950 0.00 950 0.00 50.4

c109 380 380 0.00 380 0.00 38.3

r101 198 198 0.00 198 0.00 4.7 r201 797 797 0.00 797 0.00 61.6

r102 286 286 0.00 286 0.00 17.4 r202 930 930 0.00 927.4 0.28 99.3

r103 293 293 0.00 293 0.00 29.1 r203 1028 1028 0.00 1028 0.00 156.3

r104 303 303 0.00 303 0.00 42.2 r204 1093 1093 0.00 1093 0.00 266.1

r105 247 247 0.00 247 0.00 16.8 r205 953 953 0.00 953 0.00 107.1

r106 293 293 0.00 293 0.00 23.6 r206 1032 1032 0.00 1032 0.00 134.5

r107 299 299 0.00 299 0.00 27.9 r207 1078 1078 0.00 1078 0.00 136.2

r108 308 308 0.00 308 0.00 37.2 r208 1118 1118 0.00 1118 0.00 352.1

r109 277 277 0.00 277 0.00 26.1 r209 962 962 0.00 962 0.00 164.5

r110 284 284 0.00 284 0.00 23.9 r210 1002 1002 0.00 1001.4 0.06 158.3

r111 297 297 0.00 297 0.00 29.5 r211 1051 1051 0.00 1051 0.00 202.0

r112 298 298 0.00 298 0.00 31.7

rc101 219 219 0.00 219 0.00 10.3 rc201 795 795 0.00 795 0.00 43.9

rc102 266 266 0.00 266 0.00 23.0 rc202 938 938 0.00 938 0.00 86.8

rc103 266 266 0.00 266 0.00 19.9 rc203 1003 1003 0.00 1002.4 0.06 248.6

rc104 301 301 0.00 301 0.00 26.6 rc204 1143 1143 0.00 1139.4 0.31 256.1

rc105 244 244 0.00 244 0.00 13.0 rc205 859 859 0.00 859 0.00 67.1

rc106 252 252 0.00 252 0.00 17.4 rc206 899 899 0.00 896.6 0.27 73.4

rc107 277 277 0.00 277 0.00 21.7 rc207 983 983 0.00 983 0.00 119.1

rc108 298 298 0.00 298 0.00 28.3 rc208 1058 1058 0.00 1055 0.28 159.4

Avg. 303.7 303.7 0.00 303.7 0.00 26.29 969.7 969.7 0.00 969.2 0.05 130.9
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Table A.14 – Results for Solomon’s instances with m = 2 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 590 590 0.00 590 0.00 17.1 c201 1460 1460 0.00 1458 0.14 54.3

c102 660 660 0.00 660 0.00 22.8 c202 1470 1470 0.00 1470 0.00 84.6

c103 720 720 0.00 720 0.00 41.6 c203 1480 1480 0.00 1478 0.14 129.2

c104 760 760 0.00 760 0.00 71.1 c204 1490 1490 0.00 1490 0.00 225.5

c105 640 640 0.00 640 0.00 25.7 c205 1470 1470 0.00 1470 0.00 36.4

c106 620 620 0.00 620 0.00 14.3 c206 1480 1480 0.00 1480 0.00 27.1

c107 670 670 0.00 670 0.00 17.7 c207 1490 1490 0.00 1486 0.27 65.5

c108 680 680 0.00 680 0.00 19.2 c208 1490 1490 0.00 1490 0.00 57.6

c109 720 720 0.00 720 0.00 41.9

r101 349 349 0.00 349 0.00 12.5 r201 1260 1260 0.00 1254.6 0.43 95.0

r102 508 508 0.00 508 0.00 18.0 r202 1353 1353 0.00 1351.6 0.10 228.9

r103 522 522 0.00 521.6 0.08 24.8 r203 1431 1430 0.07 1425.6 0.38 371.6

r104 552 552 0.00 552 0.00 34.1 r204 1458 1458 0.00 1458 0.00 1.7

r105 453 453 0.00 453 0.00 17.0 r205 1402 1402 0.00 1396.6 0.39 275.8

r106 529 529 0.00 529 0.00 19.9 r206 1452 1452 0.00 1450.8 0.08 297.6

r107 538 538 0.00 538 0.00 29.6 r207 1458 1458 0.00 1458 0.00 2.7

r108 560 560 0.00 560 0.00 32.1 r208 1458 1458 0.00 1458 0.00 0.2

r109 506 506 0.00 506 0.00 20.5 r209 1423 1423 0.00 1419.4 0.25 344.9

r110 525 525 0.00 525 0.00 21.0 r210 1438 1438 0.00 1432 0.42 431.5

r111 544 544 0.00 544 0.00 24.3 r211 1458 1458 0.00 1458 0.00 17.5

r112 544 544 0.00 544 0.00 31.8

rc101 427 427 0.00 427 0.00 13.9 rc201 1386 1386 0.00 1384.6 0.10 64.2

rc102 505 505 0.00 504.8 0.04 22.3 rc202 1523 1523 0.00 1519.8 0.21 136.9

rc103 524 524 0.00 524 0.00 18.7 rc203 1639 1639 0.00 1636.6 0.15 197.0

rc104 575 575 0.00 574.8 0.03 30.2 rc204 1718 1718 0.00 1717 0.06 249.4

rc105 480 480 0.00 480 0.00 16.4 rc205 1462 1462 0.00 1461.8 0.01 126.3

rc106 483 483 0.00 482.8 0.04 18.6 rc206 1552 1552 0.00 1546.2 0.37 132.9

rc107 534 534 0.00 534 0.00 19.3 rc207 1609 1607 0.00 1604.4 0.16 176.0

rc108 556 556 0.00 556 0.00 27.1 rc208 1705 1705 0.00 1696 0.53 292.5

Avg. 561.2 561.2 0.00 561.1 0.01 24.94 1481.9 1481.9 0.01 1479.7 0.16 152.7
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Table A.15 – Results for Solomon’s instances with m = 3 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 810 810 0.00 810 0.00 30.9 c201 1810 1810 0.00 1810 0.00 0.7

c102 920 920 0.00 920 0.00 38.5 c202 1810 1810 0.00 1810 0.00 1.1

c103 990 990 0.00 986 0.40 77.3 c203 1810 1810 0.00 1810 0.00 1.6

c104 1030 1030 0.00 1030 0.00 52.1 c204 1810 1810 0.00 1810 0.00 1.8

c105 870 870 0.00 870 0.00 18.7 c205 1810 1810 0.00 1810 0.00 0.3

c106 870 870 0.00 870 0.00 30.2 c206 1810 1810 0.00 1810 0.00 0.2

c107 910 910 0.00 910 0.00 21.4 c207 1810 1810 0.00 1810 0.00 0.2

c108 920 920 0.00 920 0.00 37.4 c208 1810 1810 0.00 1810 0.00 0.1

c109 970 970 0.00 970 0.00 51.5

r101 484 484 0.00 484 0.00 15.3 r201 1450 1450 0.00 1442 0.55 204.4

r102 694 694 0.00 694 0.00 21.1 r202 1458 1458 0.00 1458 0.00 0.6

r103 747 747 0.00 747 0.00 29.6 r203 1458 1458 0.00 1458 0.00 0.1

r104 778 778 0.00 778 0.00 33.3 r204 1458 1458 0.00 1458 0.00 0.1

r105 620 620 0.00 620 0.00 12.0 r205 1458 1458 0.00 1458 0.00 0.1

r106 729 729 0.00 729 0.00 30.6 r206 1458 1458 0.00 1458 0.00 0.1

r107 760 760 0.00 760 0.00 43.6 r207 1458 1458 0.00 1458 0.00 0.1

r108 797 797 0.00 797 0.00 27.2 r208 1458 1458 0.00 1458 0.00 0.1

r109 710 710 0.00 710 0.00 32.7 r209 1458 1458 0.00 1458 0.00 0.1

r110 737 737 0.00 736.8 0.03 22.6 r210 1458 1458 0.00 1458 0.00 0.1

r111 774 774 0.00 774 0.00 27.8 r211 1458 1458 0.00 1458 0.00 0.1

r112 776 776 0.00 776 0.00 33.8

rc101 621 621 0.00 621 0.00 16.5 rc201 1698 1698 0.00 1694 0.24 120.5

rc102 714 714 0.00 712.8 0.17 15.0 rc202 1724 1724 0.00 1724 0.00 13.9

rc103 764 764 0.00 760.6 0.45 33.8 rc203 1724 1724 0.00 1724 0.00 0.1

rc104 835 835 0.00 835 0.00 39.5 rc204 1724 1724 0.00 1724 0.00 0.2

rc105 682 682 0.00 682 0.00 18.2 rc205 1719 1719 0.00 1710 0.52 156.9

rc106 706 706 0.00 705.4 0.08 25.4 rc206 1724 1724 0.00 1724 0.00 0.2

rc107 773 773 0.00 773 0.00 27.5 rc207 1724 1724 0.00 1724 0.00 0.2

rc108 795 795 0.00 795 0.00 32.8 rc208 1724 1724 0.00 1724 0.00 0.1

Avg. 785.7 785.7 0.00 785.4 0.04 30.90 1639.7 1639.7 0.00 1638.9 0.05 18.7
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Table A.16 – Results for Solomon’s instances with m = 4 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 1020 1020 0.00 1020 0.00 20.8 c201 1810 1810 0.00 1810 0.00 0.0

c102 1150 1150 0.00 1150 0.00 30.0 c202 1810 1810 0.00 1810 0.00 0.1

c103 1210 1210 0.00 1208 0.17 60.6 c203 1810 1810 0.00 1810 0.00 0.1

c104 1260 1260 0.00 1260 0.00 70.4 c204 1810 1810 0.00 1810 0.00 0.1

c105 1070 1060 0.93 1060 0.93 26.9 c205 1810 1810 0.00 1810 0.00 0.1

c106 1080 1080 0.00 1078 0.19 40.2 c206 1810 1810 0.00 1810 0.00 0.1

c107 1120 1120 0.00 1120 0.00 34.8 c207 1810 1810 0.00 1810 0.00 0.1

c108 1140 1140 0.00 1132 0.70 57.1 c208 1810 1810 0.00 1810 0.00 0.1

c109 1190 1190 0.00 1190 0.00 61.9

r101 611 611 0.00 611 0.00 16.0 r201 1458 1458 0.00 1458 0.00 0.1

r102 843 843 0.00 840 0.36 29.4 r202 1458 1458 0.00 1458 0.00 0.1

r103 928 928 0.00 928 0.00 41.4 r203 1458 1458 0.00 1458 0.00 0.1

r104 975 975 0.00 975 0.00 50.5 r204 1458 1458 0.00 1458 0.00 0.1

r105 778 778 0.00 776 0.26 22.4 r205 1458 1458 0.00 1458 0.00 0.1

r106 906 906 0.00 905 0.11 23.5 r206 1458 1458 0.00 1458 0.00 0.1

r107 950 950 0.00 950 0.00 39.2 r207 1458 1458 0.00 1458 0.00 0.1

r108 995 995 0.00 994.6 0.04 52.3 r208 1458 1458 0.00 1458 0.00 0.1

r109 885 885 0.00 885 0.00 37.2 r209 1458 1458 0.00 1458 0.00 0.1

r110 915 915 0.00 915 0.00 26.9 r210 1458 1458 0.00 1458 0.00 0.1

r111 952 952 0.00 950.8 0.13 38.9 r211 1458 1458 0.00 1458 0.00 0.1

r112 974 974 0.00 973.6 0.04 41.3

rc101 811 811 0.00 811 0.00 25.9 rc201 1724 1724 0.00 1724 0.00 0.1

rc102 909 908 0.11 904.4 0.51 26.5 rc202 1724 1724 0.00 1724 0.00 0.1

rc103 975 975 0.00 975 0.00 39.0 rc203 1724 1724 0.00 1724 0.00 0.1

rc104 1065 1065 0.00 1065 0.00 28.8 rc204 1724 1724 0.00 1724 0.00 0.1

rc105 875 875 0.00 875 0.00 24.6 rc205 1724 1724 0.00 1724 0.00 0.1

rc106 909 909 0.00 909 0.00 33.7 rc206 1724 1724 0.00 1724 0.00 0.1

rc107 987 987 0.00 986 0.10 46.9 rc207 1724 1724 0.00 1724 0.00 0.1

rc108 1025 1025 0.00 1025 0.00 28.9 rc208 1724 1724 0.00 1724 0.00 0.1

Avg. 983.0 982.7 0.04 981.8 0.12 37.10 1641.1 1641.1 0.00 1641.1 0.00 0.1

Table A.17 – Results for Cordeau’s instances with m = 1 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 308 308 0.00 308 0.00 12.0 pr11 353 353 0.00 353 0.00 10.6

pr02 404 404 0.00 404 0.00 37.2 pr12 442 441 0.23 441 0.23 37.4

pr03 394 394 0.00 394 0.00 48.2 pr13 467 467 0.00 467 0.00 96.1

pr04 489 489 0.00 489 0.00 158.2 pr14 567 555 2.12 555 2.12 209.2

pr05 595 595 0.00 595 0.00 172.6 pr15 708 708 0.00 708 0.00 430.6

pr06 591 591 0.00 590.4 0.10 331.7 pr16 674 650 3.56 650 3.56 444.2

pr07 298 298 0.00 298 0.00 12.0 pr17 362 362 0.00 362 0.00 15.0

pr08 463 463 0.00 463 0.00 61.8 pr18 539 539 0.00 539 0.00 81.6

pr09 493 493 0.00 493 0.00 106.7 pr19 562 560 0.36 554.2 1.39 279.7

pr10 594 594 0.00 594 0.00 371.6 pr20 667 652 2.25 651.2 2.37 445.4

Avg. 462.9 462.9 0.00 462.84 0.01 131.2 534.1 528.7 0.85 528.04 0.97 205.0
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Table A.18 – Results for Cordeau’s instances with m = 2 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 502 502 0.00 502 0.00 9.3 pr11 566 566 0.00 565.6 0.07 24.4

pr02 715 713 0.28 713 0.28 48.0 pr12 774 768 0.78 766.2 1.01 50.5

pr03 742 742 0.00 742 0.00 50.0 pr13 845 845 0.00 840.2 0.57 113.4

pr04 928 928 0.00 928 0.00 95.5 pr14 1017 996 2.06 994.8 2.18 251.4

pr05 1103 1103 0.00 1093.4 0.87 181.8 pr15 1237 1237 0.00 1230.2 0.55 383.6

pr06 1076 1076 0.00 1074.2 0.17 382.0 pr16 1231 1199 2.60 1190.6 3.28 666.2

pr07 566 566 0.00 566 0.00 24.4 pr17 652 646 0.92 646 0.92 22.2

pr08 834 834 0.00 834 0.00 56.2 pr18 955 955 0.00 955 0.00 181.5

pr09 909 909 0.00 909 0.00 166.2 pr19 1041 1041 0.00 1040.2 0.08 334.1

pr10 1145 1145 0.00 1137 0.70 230.8 pr20 1251 1251 0.00 1246.8 0.34 514.0

Avg. 852 851.8 0.03 849.86 0.20 124.4 956.9 949.8 0.64 947.16 0.91 254.1

Table A.19 – Results for Cordeau’s instances with m = 3 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 622 622 0.00 620.8 0.19 16.6 pr11 654 654 0.00 654 0.00 28.5

pr02 945 945 0.00 943.8 0.13 61.4 pr12 1002 1000 0.20 997.6 0.44 71.0

pr03 1014 1014 0.00 1012.6 0.14 110.3 pr13 1159 1159 0.00 1155 0.35 143.3

pr04 1296 1296 0.00 1286.8 0.71 122.7 pr14 1375 1375 0.00 1365.4 0.70 335.5

pr05 1500 1500 0.00 1488.8 0.75 291.5 pr15 1694 1694 0.00 1683.4 0.63 601.5

pr06 1515 1515 0.00 1514.6 0.03 351.2 pr16 1668 1651 1.02 1638.8 1.75 736.1

pr07 744 744 0.00 744 0.00 19.5 pr17 841 841 0.00 838.8 0.26 39.7

pr08 1141 1141 0.00 1137 0.35 120.5 pr18 1289 1289 0.00 1279 0.78 123.4

pr09 1276 1276 0.00 1271.4 0.36 168.7 pr19 1428 1428 0.00 1420.4 0.53 365.7

pr10 1582 1582 0.00 1577.8 0.27 424.4 pr20 1722 1722 0.00 1705.6 0.95 1049.1

Avg. 1163.5 1163.5 0.00 1159.76 0.29 168.7 1283.2 1281.3 0.12 1273.8 0.64 349.4

Table A.20 – Results for Cordeau’s instances with m = 4 using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 657 657 0.00 657 0.00 0.0 pr11 657 657 0.00 657 0.00 0.0

pr02 1083 1083 0.00 1078.2 0.44 85.0 pr12 1133 1133 0.00 1129.4 0.32 120.1

pr03 1247 1247 0.00 1239.4 0.61 75.9 pr13 1392 1392 0.00 1385.8 0.45 170.5

pr04 1595 1595 0.00 1587 0.50 242.5 pr14 1688 1688 0.00 1682.6 0.32 473.1

pr05 1858 1858 0.00 1841.2 0.90 482.1 pr15 2085 2085 0.00 2063.4 1.04 669.6

pr06 1894 1894 0.00 1883.8 0.54 487.7 pr16 2065 2056 0.44 2040 1.21 908.9

pr07 876 876 0.00 872.4 0.41 36.7 pr17 936 936 0.00 932 0.43 95.3

pr08 1390 1390 0.00 1378.8 0.81 142.2 pr18 1554 1554 0.00 1541.2 0.82 171.6

pr09 1622 1622 0.00 1615.2 0.42 246.8 pr19 1780 1780 0.00 1763.6 0.92 540.6

pr10 1965 1965 0.00 1956.4 0.44 613.4 pr20 2115 2098 0.80 2085.8 1.38 1007.3

Avg. 1418.7 1418.7 0.00 1410.94 0.51 241.2 1538.8 1537.9 0.12 1528.08 0.69 415.7
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Table A.21 – Results for Solomon’s instances of ”OPT” data set using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
c101 1810 1810 0.00 1810 0.00 3.7 c201 1810 1810 0.00 1810 0.00 0.0

c102 1810 1810 0.00 1810 0.00 0.1 c202 1810 1810 0.00 1810 0.00 0.1

c103 1810 1810 0.00 1810 0.00 0.1 c203 1810 1810 0.00 1810 0.00 0.1

c104 1810 1810 0.00 1810 0.00 0.1 c204 1810 1810 0.00 1810 0.00 0.1

c105 1810 1810 0.00 1810 0.00 0.1 c205 1810 1810 0.00 1810 0.00 0.1

c106 1810 1810 0.00 1810 0.00 1.0 c206 1810 1810 0.00 1810 0.00 0.1

c107 1810 1810 0.00 1810 0.00 0.0 c207 1810 1810 0.00 1810 0.00 0.1

c108 1810 1810 0.00 1810 0.00 0.1 c208 1810 1810 0.00 1810 0.00 0.1

c109 1810 1810 0.00 1810 0.00 0.1

r101 1458 1458 0.00 1458 0.00 3.0 r201 1458 1458 0.00 1458 0.00 0.1

r102 1458 1458 0.00 1458 0.00 6.8 r202 1458 1458 0.00 1458 0.00 1.6

r103 1458 1458 0.00 1458 0.00 198.5 r203 1458 1458 0.00 1458 0.00 0.1

r104 1458 1458 0.00 1452.6 0.37 160.0 r204 1458 1458 0.00 1458 0.00 2.6

r105 1458 1458 0.00 1458 0.00 31.4 r205 1458 1458 0.00 1458 0.00 0.1

r106 1458 1458 0.00 1458 0.00 6.9 r206 1458 1458 0.00 1458 0.00 0.1

r107 1458 1458 0.00 1457.4 0.04 157.3 r207 1458 1458 0.00 1458 0.00 1.9

r108 1458 1458 0.00 1457.2 0.05 121.9 r208 1458 1458 0.00 1458 0.00 0.3

r109 1458 1458 0.00 1456.8 0.08 52.6 r209 1458 1458 0.00 1458 0.00 0.1

r110 1458 1458 0.00 1456 0.14 135.2 r210 1458 1458 0.00 1458 0.00 0.1

r111 1458 1457 0.07 1455 0.21 129.3 r211 1458 1458 0.00 1458 0.00 9.0

r112 1458 1456 0.14 1454.6 0.23 109.4

rc101 1724 1724 0.00 1723.2 0.05 68.0 rc201 1724 1724 0.00 1724 0.00 0.1

rc102 1724 1713 0.64 1713 0.64 149.6 rc202 1724 1724 0.00 1724 0.00 13.4

rc103 1724 1724 0.00 1724 0.00 19.6 rc203 1724 1724 0.00 1724 0.00 0.1

rc104 1724 1724 0.00 1724 0.00 0.7 rc204 1724 1724 0.00 1724 0.00 0.2

rc105 1724 1724 0.00 1715 0.52 127.2 rc205 1724 1724 0.00 1724 0.00 0.1

rc106 1724 1724 0.00 1718 0.35 92.7 rc206 1724 1724 0.00 1724 0.00 0.3

rc107 1724 1724 0.00 1724 0.00 4.3 rc207 1724 1724 0.00 1724 0.00 0.1

rc108 1724 1724 0.00 1724 0.00 5.8 rc208 1724 1724 0.00 1724 0.00 0.1

Avg. 1640.6 1640.1 0.03 1639.1 0.09 54.66 1641.1 1641.1 0.00 1641.1 0.00 1.1

Table A.22 – Results for Cordeau’s instances of ”OPT” data set using the slow setting.

MS-ILS MS-ILS

instance BKS Zmax rpe% Zavg arpe% cpuavg instance BKS Zmax rpe% Zavg arpe% cpuavg
pr01 657 622 5.33 620.2 5.60 18.4 pr06 3671 3671 0.00 3671 0.00 11.8

pr02 1220 1216 0.33 1213.2 0.56 226.7 pr07 948 943 0.53 941.8 0.65 44.9

pr03 1788 1785 0.17 1784 0.22 621.7 pr08 2006 2006 0.00 2006 0.00 5.2

pr04 2477 2477 0.00 2476.6 0.02 506.4 pr09 2736 2736 0.00 2736 0.00 0.2

pr05 3351 3351 0.00 3351 0.00 12.1 pr10 3850 3850 0.00 3850 0.00 0.3

Avg. 1898.6 1890.2 1.16 1889.0 1.28 277.1 2642.2 2641.2 0.11 2641.0 0.13 12.5





Appendix B

Detailed results of the NS-SC on

2E-VRP benchmarks

In this appendix, we present the detailed results obtained by our Neighborhood Search

and Set Cover Hybrid Heuristic (NS-SC) on all the 2E-VRP benchmark instances.

B.1–?? show the detailed results obtained by our NS-SC. For each instance, we report

the best obtained solution, the average solution value of five runs, and the average

computation time. The average and the best objective value of the five runs are given in

columns ”Avg. 5” and ”Best 5”, respectively. Column ”CPU” shows the average runtime

of the algorithm in seconds. The column ”BKS” refers to the best-known solution of that

set of instances.

Table B.3 – Results on Set 4a instances.

NS-SC BKS

Instance Avg. 5 Best.5 CPU

1 1569,42 1569,42 20 1569,42

2 1438,93 1438,32 25 1438,33

3 1570,43 1570,43 27 1570,43

4 1424,04 1424,04 22 1424,04

5 2193,52 2193,52 27 2193,52

6 1279,89 1279,89 36 1279,87

7 1458,60 1458,60 22 1458,63

8 1363,92 1363,76 25 1363,74

9 1450,25 1450,25 31 1450,27

10 1407,65 1407,65 28 1407,64

11 2052,99 2047,62 21 2047,46

12 1209,46 1209,46 25 1209,42

13 1481,80 1481,80 22 1481,83

14 1393,64 1393,64 24 1393,61

15 1489,92 1489,92 20 1489,94

Continued on next page
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Table B.3 – Continued from previous page

16 1389,20 1389,20 29 1389,17

17 2088,88 2088,48 23 2088,49

18 1227,68 1227,68 26 1227,61

19 1564,66 1564,66 19 1564,66

20 1272,98 1272,98 24 1272,97

21 1577,82 1577,82 19 1577,82

22 1281,83 1281,83 22 1281,83

23 1807,35 1807,35 23 1807,35

24 1282,69 1282,69 24 1282,68

25 1527,46 1522,40 23 1522,42

26 1167,47 1167,47 24 1167,46

27 1481,91 1481,91 27 1481,57

28 1210,46 1210,46 25 1210,44

29 1723,22 1722,30 19 1722,04

30 1211,63 1211,63 23 1211,59

31 1490,32 1490,32 26 1490,34

32 1199,05 1199,05 18 1199,00

33 1509,94 1508,32 27 1508,30

34 1233,96 1233,96 22 1233,92

35 1718,42 1718,42 26 1718,41

36 1228,95 1228,95 22 1228,89

37 1528,73 1528,73 33 1528,73

38 1170,84 1169,20 28 1169,20

39 1520,92 1520,92 27 1520,92

40 1199,42 1199,42 35 1199,42

41 1667,96 1667,96 29 1667,96

42 1194,54 1194,54 34 1194,54

43 1439,67 1439,67 33 1439,67

44 1045,14 1045,14 37 1045,13

45 1456,19 1450,95 33 1450,96

46 1088,79 1088,79 41 1088,77

47 1593,38 1587,29 30 1587,29

48 1082,21 1082,21 31 1082,20

49 1434,88 1434,88 28 1434,88

50 1085,07 1083,16 20 1083,12

51 1398,04 1398,04 33 1398,05

52 1125,69 1125,69 29 1125,67

53 1567,79 1567,79 34 1567,77

54 1127,66 1127,66 29 1127,61

Avg 1420,50 1419,97 22 1419,94
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Table B.4 – Results on Set 4b instances.

NS-SC BKS

Instance Avg. 5 Best.5 CPU

1 1569,42 1569,42 28 1569,42

2 1442,23 1438,32 33 1438,33

3 1570,43 1570,43 28 1570,43

4 1424,04 1424,04 31 1424,04

5 2193,64 2193,52 36 2193,52

6 1279,89 1279,89 30 1279,87

7 1408,58 1408,58 32 1408,57

8 1360,32 1360,32 38 1360,32

9 1403,53 1403,53 29 1403,53

10 1360,54 1360,54 34 1360,56

11 2052,99 2047,43 60 2047,46

12 1209,46 1209,46 36 1209,42

13 1450,94 1450,94 29 1450,93

14 1393,64 1393,64 27 1393,61

15 1466,84 1466,84 28 1466,83

16 1387,85 1387,85 24 1387,83

17 2089,19 2088,48 37 2088,49

18 1227,68 1227,68 34 1227,61

19 1548,16 1546,28 27 1546,28

20 1272,98 1272,98 26 1272,97

21 1577,82 1577,82 26 1577,82

22 1281,83 1281,83 26 1281,83

23 1652,98 1652,98 29 1652,98

24 1282,69 1282,69 28 1282,68

25 1408,58 1408,58 29 1408,57

26 1167,47 1167,47 28 1167,46

27 1444,49 1444,49 28 1444,50

28 1210,46 1210,46 34 1210,44

29 1552,66 1552,66 27 1552,66

30 1211,63 1211,63 36 1211,59

31 1441,48 1440,85 29 1440,86

32 1199,05 1199,05 29 1199,00

33 1478,87 1478,87 27 1478,86

34 1233,96 1233,96 32 1233,92

35 1570,73 1570,73 31 1570,72

36 1228,95 1228,95 32 1228,89

Continued on next page
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Table B.4 – Continued from previous page

37 1528,73 1528,73 35 1528,73

38 1163,07 1163,07 26 1163,07

39 1520,92 1520,92 34 1520,92

40 1163,04 1163,04 39 1163,04

41 1652,98 1652,98 31 1652,98

42 1190,68 1190,17 36 1190,17

43 1407,09 1406,10 44 1406,11

44 1035,64 1035,05 42 1035,03

45 1405,37 1402,41 47 1401,87

46 1058,54 1058,10 48 1058,11

47 1552,66 1552,66 40 1552,66

48 1074,51 1074,51 34 1074,50

49 1436,07 1434,88 36 1434,88

50 1065,30 1065,30 34 1065,25

51 1387,51 1387,51 38 1387,51

52 1103,50 1103,47 34 1103,42

53 1545,76 1545,76 31 1545,73

54 1113,66 1113,66 29 1113,62

Avg 1397,43 1397,07 33 1397,04
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Table B.1 – Results for Set2 instances.

NS-SC BKS

Instance Avg Best5 CPU

Set 2a

E-n22-k4-s10-14 371.50 371.50 1 371.50

E-n22-k4-s11-12 427.22 427.22 1 427.22

E-n22-k4-s12-16 392.78 392.78 1 392.78

E-n22-k4-s6-17 417.07 417.07 1 417.07

E-n22-k4-s8-14 384.96 384.96 1 384.96

E-n22-k4-s9-19 470.60 470.60 1 470.60

E-n33-k4-s14-22 779.05 779.05 5 779.05

E-n33-k4-s1-9 730.16 730.16 7 730.16

E-n33-k4-s2-13 714.63 714.63 5 714.63

E-n33-k4-s3-17 707.48 707.48 5 707.48

E-n33-k4-s4-5 778.74 778.74 7 778.74

E-n33-k4-s7-25 756.85 756.85 7 756.85

Avg 577.59 577.59 3 577.59

Set 2b

E-n51-k5-s11-19 581.64 581.64 23 581.64

E-n51-k5-s11-19-27-47 527.63 527.63 18 527.63

E-n51-k5-s2-17 597.49 597.49 24 597.49

E-n51-k5-s2-4-17-46 530.76 530.76 21 530.76

E-n51-k5-s27-47 538.22 538.22 22 538.22

E-n51-k5-s32-37 552.28 552.28 21 552.28

E-n51-k5-s4-46 530.76 530.76 20 530.76

E-n51-k5-s6-12 554.81 554.81 24 554.81

E-n51-k5-s6-12-32-37 531.92 531.92 19 531.92

Avg 549.50 549.50 21 549.50

Set 2c

E-n51-k5-s11-19 617.42 617.42 24 617.42

E-n51-k5-s11-19-27-47 530.76 530.76 18 530.76

E-n51-k5-s2-17 601.39 601.39 25 601.39

E-n51-k5-s2-4-17-46 601.39 601.39 25 601.39

E-n51-k5-s27-47 530.76 530.76 21 530.76

E-n51-k5-s32-37 752.59 752.59 30 752.59

E-n51-k5-s4-46 702.33 702.33 24 702.33

E-n51-k5-s6-12 567.42 567.42 22 567.42

E-n51-k5-s6-12-32-37 567.42 567.42 23 567.42

Avg 607.94 607.94 23 607.94
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Table B.2 – Results for Set3 instances.

NS-SC BKS

Instance Avg Best 5 CPU

Set 3a

E-n22-k4-s13-14 526.14 526.14 1 526.15

E-n22-k4-s13-16 521.10 521.10 1 521.09

E-n22-k4-s13-17 496.39 496.39 1 496.38

E-n22-k4-s14-19 498.81 498.81 1 498.80

E-n22-k4-s17-19 512.80 512.80 1 512.80

E-n22-k4-s19-21 520.41 520.41 1 520.42

E-n33-k4-s16-22 672.19 672.19 6 672.17

E-n33-k4-s16-24 666.03 666.03 6 666.02

E-n33-k4-s19-26 680.38 680.38 4 680.37

E-n33-k4-s22-26 680.38 680.38 4 680.37

E-n33-k4-s24-28 670.41 670.41 4 670.43

E-n33-k4-s25-28 650.55 650.55 4 650.58

Avg 591.30 591.30 3 591.30

Set 3b

E-n51-k5-s12-18 690.57 690.57 28 690.59

E-n51-k5-s12-41 683.01 683.01 28 683.05

E-n51-k5-s12-43 710.39 710.39 25 710.41

E-n51-k5-s39-41 728.50 728.50 28 728.54

E-n51-k5-s40-41 723.71 723.71 29 723.75

E-n51-k5-s40-43 752.15 752.15 29 752.15

Avg 714.72 714.72 28 714.75

Set 3c

E-n51-k5-s13-19 560.71 560.71 25 560.73

E-n51-k5-s13-42 564.43 564.43 23 564.45

E-n51-k5-s13-44 564.43 564.43 24 564.45

E-n51-k5-s40-42 746.27 746.27 31 746.31

E-n51-k5-s41-42 771.54 771.54 28 771.56

E-n51-k5-s41-44 802.91 802.91 31 802.91

Avg 668.38 668.38 27 668.40
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Table B.5 – Results on Set 5 instances.

NS-SC BKS

Instance Avg Best 5 Best CPU

100-5-1 1569.47 1564.46 1564.46 598 1564.46

100-5-1b 1112.89 1103.55 1103.55 694 1103.55

100-5-2 1017.44 1016.33 1016.32 708 1016.32

100-5-2b 782.29 782.29 782.25 617 782.25

100-5-3 1045.29 1045.29 1045.29 392 1045.29

100-5-3b 828.55 828.55 828.54 481 828.54

Avg 1059.32 1056.75 1056.74 582 1056.74

100-10-1 1129.47 1128.64 1124.93 560 1124.93

100-10-1b 912.62 911.95 911.95 563 911.95

100-10-2 1005.60 997.29 993.34 524 985.40

100-10-2b 772.88 766.28 766.28 647 766.28

100-10-3 1046.26 1042.66 1042.63 455 1042.63

100-10-3b 864.41 861.87 849.73 595 849.73

Avg 955.21 951.45 948.14 557 946.82

200-10-1 1548.47 1539.76 1539.76 900 1538.35

200-10-1b 1186.24 1175.81 1175.81 900 1175.81

200-10-2 1368.75 1361.58 1352.87 900 1352.87

200-10-2b 1003.22 995.20 986.48 900 986.48

200-10-3 1817.55 1814.23 1779.68 900 1779.68

200-10-3b 1208.28 1205.12 1196.93 900 1196.93

Avg 1355.42 1348.62 1338.59 900 1338.35
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Table B.6 – Results on Set 6a instances.

NS-SC BKS

Instances Avg5 Best 5 CPU

A-n51-4 652.00 652.00 32 652.00

A-n51-5 663.41 663.41 40 663.41

A-n51-6 662.51 662.51 61 662.51

A-n76-4 985.98 985.95 193 985.95

A-n76-5 979.15 979.15 322 979.15

A-n76-6 970.20 970.20 326 970.20

A-n101-4 1194.17 1194.17 479 1194.17

A-n101-5 1212.14 1211.35 646 1211.38

A-n101-6 1156.56 1155.94 655 1155.89

B-n51-4 563.98 563.98 27 563.98

B-n51-5 549.23 549.23 27 549.23

B-n51-6 556.32 556.32 36 556.32

B-n76-4 792.73 792.73 128 792.73

B-n76-5 783.93 783.93 135 783.93

B-n76-6 774.17 774.17 238 774.17

B-n101-4 939.54 939.21 419 939.21

B-n101-5 967.82 967.82 483 967.82

B-n101-6 960.29 960.29 582 960.29

C-n51-4 689.18 689.18 25 689.18

C-n51-5 723.12 723.12 33 723.12

C-n51-6 699.24 697.00 36 697.00

C-n76-4 1054.89 1054.89 233 1054.89

C-n76-5 1115.32 1115.32 228 1115.32

C-n76-6 1065.37 1065.37 312 1060.52

C-n101-4 1300.58 1297.42 621 1297.42

C-n101-5 1306.23 1306.23 533 1304.86

C-n101-6 1288.43 1284.48 617 1284.48

Avg 911.35 910.94 277 910.71
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Table B.7 – Results on Set 6b instances.

NS-SC BKS

Instances Avg5 Best 5 CPU

A-n51-4 744.24 744.24 24 744.24

A-n51-5 811.52 811.52 30 811.52

A-n51-6 930.11 930.11 35 930.11

A-n76-4 1385.51 1385.51 167 1385.51

A-n76-5 1519.86 1519.86 228 1519.86

A-n76-6 1666.06 1666.06 263 1666.06

A-n101-4 1881.44 1881.44 718 1881.44

A-n101-5 1709.06 1709.06 629 1709.06

A-n101-6 1788.98 1781.96 675 1777.69

B-n51-4 653.09 653.09 33 653.09

B-n51-5 672.10 672.10 33 672.10

B-n51-6 767.13 767.13 35 767.13

B-n76-4 1094.52 1094.52 248 1094.52

B-n76-5 1218.67 1218.11 900 1218.13

B-n76-6 1328.24 1326.73 220 1326.76

B-n101-4 1500.55 1500.55 623 1500.55

B-n101-5 1396.83 1395.32 714 1395.32

B-n101-6 1448.94 1445.97 900 1445.97

C-n51-4 867.56 867.56 32 866.58

C-n51-5 943.12 943.12 39 943.12

C-n51-6 1050.42 1050.42 38 1050.42

C-n76-4 1438.96 1438.96 152 1438.96

C-n76-5 1745.47 1745.39 193 1745.39

C-n76-6 1756.45 1756.45 900 1756.54

C-n101-4 2070.72 2064.87 598 2064.86

C-n101-5 1969.04 1964.63 797 1964.63

C-n101-6 1863.23 1861.50 752 1860.73

Avg 1341.55 1340.60 369 1340.38
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