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Abstract

Ever since the discovery of Ammonia in the interstellar medium in
1968, the study of nitrogen chemistry has been in the limelight. It
is now well established that the NH molecule plays a crucial role
in the interstellar nitrogen chemistry as it acts as an intermediate
during the formation of the ubiquitous ammonia. Abundance of
this species is a crucial probe of the nitrogen chemistry. With the
advancements in the observational techniques, highly resolved trans-
itions of these molecules in the ISM have been observed. However,
the observed abundance ratios of nitrogen hydrides do not match
with astrochemical models. Earlier models also predicted a high D/H
ratio in nitrogen hydride radicals. The isotopologues are used to
probe chemical pathways. Deuterium fractionation should reflect the
different formation paths, as it is expected to be different depending
on the origin of the deuteration. For accurate analysis of these spec-
tral and continuum observations, non-LTE modeling methods are
employed which requires the NH and ND collisional rate coefficients.
In this work, we present fine and hyperfine resolved rate coefficients
for the (de-)excitation of NH/ND due to collisions with He and that
of NH with H2 that should allow accurate determination of the NH
abundance from the observational spectra.

For calculating collisional rate coefficients, the first step is to define
the potential energy surface (PES) of the colliding system. In this
thesis we present highly correlated ab initio PESs of the NH-He and
NH-H2 van der waals complexes. The accuracy of our new PESs
has been assessed by comparing the energies of the bound states
supported by the PES to the available spectroscopic studies. The
good agreement between theoretical results obtained from the new
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PESs and experimental results demonstrates the high accuracy our
new PESs.

Using the new PES, calculations of the collisional excitation cross
sections of the fine-structure and hyperfine levels of NH by He
were performed for energies up to 3500 cm-1, which yield, after
thermal average, rate coefficients up to 350 K. The calculated rate
coefficients are compared with the previous available theoretical data
and the experimental measurements at room temperature. From
the comparison, we can observe that there is a significant difference
between the present and the previous rate coefficients, which is
attributed essentially to the inclusion of vibrational effect in the new
calculations. We also observe a good agreement with the experiments
confirming that inclusion of NH vibration is needed to accurately
model the energy transfer in the NH-He collisional system. The
collisional excitation cross sections of the fine-structure and hyperfine
levels of ND by He were also calculated, using the modified NH-
He PES, for energies up to 2000 cm-1, which yield, after thermal
average, rate coefficients up to 200 K. These results are compared
with the NH-He results to explain the importance of calculating
ND-He rate coefficients explicitly rather than scaling the NH-He rate
coefficients. We also present the first cross section calculations for
NH-H2. These results would be of particular interest because H2 is
the dominant collisional partner in molecular clouds. As the He and
H2 rate coefficients differ significantly, both the NH-He and NH-H2
sets of collisional data should be used to revise the NH abundance in
space.

vi



To the force that created the Universe

“Remember to look up at the stars and not down at your feet.
Try to make sense of what you see and wonder about what makes
the universe exist. Be curious. And however difficult life may
seem, there is always something you can do and succeed at. It
matters that you don’t just give up."

— Stephen Hawking

“Primary causes are unknown to us; but are subject to simple
and constant laws, which may be discovered by observation, the
study of them being the object of natural philosophy."
— Jean Baptiste Joseph Fourier, The Analytical Theory of Heat

(1878)

“Là où finit le télescope, le microscope commence.
Lequel des deux a la vue la plus grande ?"

— Victor Hugo, Les Misérables (1862)

“Then even nothingness was not, nor existence, There was no
air then, nor the heavens beyond it.
But, after all, who knows, and who can say whence it all came,
and how creation happened?
The gods themselves are later than creation!"

— Nasadiya Sukta, Rig Veda
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Introduction

“My own suspicion is that universe is not only queerer than we
suppose, its queerer than we can suppose"

— J.B.S Haldane, Possible world

Wondering what makes universe exist does excite us and the more we
unravel the mysteries of the universe, the more exciting it gets. From time
immemorial homo sapiens sapiens have been questioning what it is and how
it came into existence! Of course there is no one answer to it and not all
answers are correct, but still the thirst has not quenched and it never will.
What started as a philosophical brainchild, with time, took a deep dive into
science. Though many eminent people believe that the philosophy is dead
and only the scientists are the torch bearers of the knowledge(the grand
design - Hawking et al., 2010), I would humbly disagree as I believe that
philosophy is the light that lighted the torch and is still a guiding light to
many torch bearers. Universe is vast! It is ever evolving both literally and
metaphorically. Literal evolution of universe is a fact and the metaphorical
evolution of the universe is how the idea of universe has evolved in the minds
of the humans over the age. From Aristotle’s (4th c. BC) idea of geocentric
universe (T. Taylor, 2010) to Aryabhata’s (5th c.) heliocentric universe
(Sarma et al., 1896); From the idea of Ptolemy (2nd c.) that universe consists
of Earth, moon, sun and visible planets (Ptolemaeus, 1515) to the rig veda’s
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(interpreted in 8th c.) idea that the universe is everlasting and infinite,
philosophically the design of universe kept stretching. As far as modern
science is concerned, in 1543, Nicolaus Copernicus proposed a heliocentric
theory for the universe (Copernicus, 1543), leading to a revolution in the
scientific community! Galileo, a champion of Copernican theory, in 1609
made an instrument called "telescope" which literally moved the heavens!
Bruno proposing solar system not to be the centre of the universe to Herchel
(1785) proposing that the Sun is not even the centre of our galaxy (Herschel
et al., 1912) and we as a scientific community never stopped and our
understanding of universe kept on becoming clearer with the advancements
in the theoretical, observational and experimental techniques.

As far as the interstellar medium (ISM) is concerned, until the end of
19th century, the space between the stars were empty or filled with ether!
Huggins et al. (1864), based on observations commented on some nebulae
that they were not just cluster of stars but "....objects possessing pecular plan
of structures...". Later, Lockyer (1891) commented that "that these stars
could not be stars in the ordinary sense but swarms of bodies separated from
each other". Hartmann (1904) discovered calcium lines which did not have
oscillations and concluded that "... at some point in space in the line of sight
between the Sun and δ Orionis there is a cloud which produces that absorption,
and which recedes with a velocity of..." leading to the discovery of first atom
in the interstellar medium. Trumpler (1930) found that "....that there was
a general absorbing medium that extinguished starlight....", demonstrating
the presence of a diffuse, absorbing ISM. Payne (1925) found that helium
and hydrogen were highly abundant in the stellar atmosphere (though the
scientific community rejected her claims at the time). In the 1930s scientists
realised the non homogeneity of ISM was suddenly, ISM became dynamic!

Dark clouds are the regions in which most molecules of the ISM are found,
and hence are also known as molecular clouds. Alomst 80 years ago, Swings
and Rosenfeld (1937) discovered the first interstellar molecules in ISM, CH,
based on the observations and hypotheses of Eddington (1926); Russell
(1935) & Swings (1937). Subsequently, McKellar (1940) discovered CN
and Douglas et al. (1941) discovered CH+ in the optical spectrum of EM
radiation. Jansky (1933) published the detection of radio waves in the space
and 30 years later, 26 years after the discovery of first molecule in ISM, the
first molecule, OH, was discovered in the radio wavelengths (Weinreb et al.,
1963). Subsequently, Cheung et al. (1968) discovered NH3. In 1972, with
the successful launch of the Copernicus satellite (with a UV spectrometer
onboard), lead to many observational studies on the interstellar molecules
(Herzberg, 1988). Helium was observed in the ISM by Paresce et al. (1973)
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and the abundance of He in ISM was first given by Freeman et al. (1977).
H2 being a homonuclear molecule, has zero dipole moment and so it does
not emit radio-wavelength lines. Hence it was elusive in ISM for a long time.
Molecular hydrogen in interstellar space was first discovered by Carruthers,
1970 in a rocket observation of Lyman band absorption at wavelengths
between 100 and 110 nm of starlight from ξ Per. After that there were a
series of observations of H2 in space (Spitzer et al., 1974; Gautier et al., 1976;
Treffers et al., 1976;....; Sandford et al., 1993). Heger (1922) and Merrill
(1934) noticed several unidentified bands in the spectra, "diffuse interstellar
band"(DIB), which Allamandola et al. (1989) hypothesized to be due to the
polycyclic aromatic hydrocarbond (PAH) and since then several studies have
been made to confirm it but still most of these DIBs remain unidentified.
The last 5 decades have been a period of wonderful discoveries involving
astronomical molecules! Until this day, with the advances in the ground
based and space based observational facilities, at least 221 molecules have
been detected in space with molecules as complex as ionized buckyballs
(C60

+) (Cordiner et al., 2019) have been detected.

Right from the discovery of Ammonia in the interstellar medium (Cheung
et al., 1968), the study of nitrogen chemistry has been in the limelight.
Nitrogen is an essential component to life on Earth, and studies (for eg,
Wollin et al., 1971; Siro Brigiano et al., 2017) suggest direct connections
between interstellar ammonia and the formation of biologically important
molecules (like amino acids and nucleobases) in space. Recent study also
provides new evidences for the formation of complex macro structures when
the these molecular building blocks of life are subjected to shocks in the
ISM conditions, which answers the missing link between simple amino acids
and complex nucleotides and hence the basis for origin of life in the space
(and in other planetary conditions).

As far as this thesis is concerned, the molecule of our interest is NH. It is now
well established that the NH molecule plays a crucial role in the nitrogen
interstellar chemistry (Scott et al., 1997; Hily-Blant, Walmsley et al., 2010;
Le Gal et al., 2014), as it acts as an intermediate during the formation of
the ubiquitous ammonia both in gas phase and surface of dust grains. In
the gas phase, the ion-molecule reaction and the subsequent dissociative
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recombination takes place as follows (Herbst et al., 1973):

N2 +He+ → N+ +N +He

N+ +H2 → NH+ +H

NH+ +H2 → NH+
2 +H

NH+
2 +H2 → NH+

3 +H

NH+
3 +H2 → NH+

4 +H

NH+
4 + e− → NH3 +H

NH+
2 & NH+

3 upon dissociative recombination gives

NH+
2 + e− → NH +H

NH+
3 + e− → NH +H2

Also,

N2 +H+
3 → N2H

+ +H2

N2H
+ + e− → NH +N

On the surface of dust grain, the neutral-neutral reaction takes place as
follows (Hiraoka et al., 1995):

N +H → NH
NH +H → NH2

NH2 +H → NH3

Even though the presence of NH was predicted since the discovery of the
first molecule (Swings and Rosenfeld, 1937), it was first confirmed by Meyer
et al. (1991) (in HD 27778 and HD 24398) and later by Crawford et al.
(1997) (in HD 149757) and Weselak et al. (2009) (in HD 149757, HD 163800
& HD 169454 ) by absorption-line spectroscopy. Using the Long-Wavelength
Fabry-Perot spectrometer on board Infrared Space Observatory, the fine-
structure rotational lines of NH were detected by Cernicharo et al. (2000)
and J. R. Goicoechea et al. (2004). The ground-state hyperfine rotational
transition lines of NH were detected using the Heterodyne Instrument for
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the Far-Infrared onboard Herschel Space Observatory by C. M. Persson et al.
(2010).

The ISM also consists of isotopes like D, 13C, 15N, 17O, etc and so several
isotopologues have been discovered over the years. Motivation behind the
observational studies of interstellar deuterated molecules was the constraints
provided by the deuterium abundance in the stellar atmosphere. It was soon
realized that isotopologues of molecules with a H atom had abundances far
in excess than the cosmological D/H ratio and that, deuterated molecules
rather act as an important probe for the interstellar chemistry. Hence,
accurate measurements of interstellar D/H ratio (which means accurate
calculation of abundances of deuterated molecules) would give an insight
into the chemical evolution in ISM (A. G. G. M. Tielens, 2013). Roueff,
Lis et al. (2005) model predicted a high D/H ratio in the nitrogen hydride
radicals. Bacmann, Caux et al. (2010) also derived a very high ND/NH
ratio for the protostar 16293-2422. Deuterium fractionation should reflect
the different formation paths, as it is expected to be different depending on
the origin of the deuteration. Bacmann, Daniel et al. (2016) presented the
Herschel/HIFI observations of NH and ND in the 16293E prestellar core,
a source which is in the vicinity of the Class 0 protostar IRAS16293-2422.
The source is known to harbour high abundances of deuterated molecules,
and to have cold temperatures for a starless core, making it easier to detect
species in absorption against the dust continuum emission.

Hence, accurate measurements of the mass and column density of molecular
clouds, which influences their chemistry and evolution, are essential for
our understanding of these regions. Column density relationships between
simple molecules also plays an important role in identifying the unidentified
DIBs. For this, the analysis of observational spectral lines at the radio,
sub-millimeter and infrared region of the electromagnetic spectrum are an
important device to understand the physical and chemical conditions in the
ISM (Tak et al., 2007). These observed spectra are due to the collisional
and radiative transition processes of the constituents (atoms and molecules)
of the observed region. As we know, ISM is non-homogeneous with regions
of various densities. Different processes dominate under different conditions
and in order to know which approach to use for the measurements (or
we can call it modeling), depends on the density and temperature in the
region under consideration. In the regions of high densities, where collisions
are very frequent, the basic assumption is that the kinetic temperature
is equal to excitation temperature i.e., it is in a thermal equilibrium
"Local Thermodynamic Equilibrium (LTE)". Under such circumstances, the
energy levels (of the constituent atom/molecule) are populated according to

7
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Maxwell-Boltzmann statistics. In such cases, only the detailed balancing of
the radiative transitions is required. But most regions in ISM is far from
thermodynamic equilibrium! Especially, in less dense regions such as the
low temperature, molecular clouds of the ISM, the LTE approximation is
not valid. Under Non-LTE conditions, there is not only detailed balancing
for radiative processes, but also a statistical combination of both radiative
and collisional processes (A detailed explanation on theory and need for
NLTE is given in Böhm-Vitense, 1992; A. Tielens, 2005 & Roueff and Lique,
2013). Solving this statistical equilibrium requires the knowledge of energy
levels, the state-to-state rates for radiative processes and the state-to-state
rate for collisional processes. The radiative processes are subject to the
quantum mechanical selection rules and comprise spontaneous emission,
stimulated emission and absorption (through Einstein coefficients A and B).
Therefore for the astrophysics, to obtain the rate coefficients for all energies,
all quantum levels, and all interstellar species is of utmost importance.
Though the Einstein coefficients for molecules are well studied and values
are available for many molecules of astrophysical interest, the collisional
rate coefficients are sparsely available in comparison. Elementary collisions
involving atoms and molecules play an important role in many gaseous
environments, where they provide both the heating and cooling mechanisms
(Fléchard et al., 2015) due to the thermal energy transfer between internal
degrees of freedom. Especially, In cold molecular clouds, the most abundant
species are He and H2 which account for 20% and 80% of the numerical
density, hence collision of the atoms and molecules with these abundant
species are of prime importance for the astrophysical modeling (Dulieu
et al., 2017)(e- and atomic H are also important collision partners but out
of purview of this thesis).

Along with the observational developments, the experimental, theoretical
and technological developments have also took place in the six decades.The
development of cold, supersonic and controlled atomic or molecular beams
paved way to the extensive experiments in the collision domain. Most of the
experiments are based on crossed molecular beam experiments. Toennies
et al. (1979) carried out the first high energy scattering experiments of
H & H2 with rare gases. In few year, CRESU (Cinétique de Réaction
en Ecoulment Supersonique Uniforme) was designed for studying reactive
kinetics of collisions at low temperature. In this, a uniform buffer gas flow
was created using a laval nozzle. The shape of the nozzle and the buffer gas
controlled the temperature (Dupeyrat et al., 1985; Sims et al., 1994; Mertens
et al., 2017; etc..). Using a stark decelerator slowed down the molecular
beams to controlled low velocities. It also helped to achieve high state

8



List of Tables

purity (Gilijamse et al., 2006; Kirste et al., 2012; and others). VMI allowed
measurement of differential cross section (Eppink et al., 1997; Vogels et al.,
2015; etc...). Particle trapping helped accumulating collision signals over a
long time (Willitsch et al., 2008; Sawyer et al., 2011). The cryo-cooled valves
used at low crossing angles aided the system to reach low collision energies
and using this technique systems like CO-H2 (Chefdeville, Stoecklin et al.,
2012), O2-H2 (Chefdeville, Kalugina et al., 2013) were studied. Using the
same technique scattering of He was also studied (Lavert et al., 2014; Klein
et al., 2017). With merged beam experiments, the symmetric top molecules
were studied (Jankunas, Bertsche et al., 2014; Jankunas, Jachymski et al.,
2015; Jankunas, Jachymski et al., 2016). In spite of all these developments
in the experiments, yet the complete understanding of processes in collisions
still remains a challenge due to the experimental difficulties in performing
complete experiments in which all relevant quantities are accessible. Hence,
extracting the collisional (de-)excitation rate coefficients heavily depend
on the theoretical calculations! Even the experimentalists depend on the
theoretical outcomes for a number of reasons. The following excerpt from
"Atom-Molecule Collision Theory" (R. Bernstein, 2013) would throw some
lights on it. "....the experimentalists considering the construction of ever-
more sophisticated apparatus may ask if the additional detail about to be
uncovered from the new experiments has enough theoretical "value" to justify
the effort. What new scientifically significant information can be expected
from the results of the proposed experiments? What are the very meanings of
the terms information content, value, significance? if accurate ab initio atom-
molecule potential surfaces were available and if accurate quantal scattering
calculations could be carried out economically and conveniently, will the need
for most of the collision experiments on simple atom-molecule systems would
be obviated by the theory? The goal of the experiments is to make detailes,
quantitative observations which only test the qualitative predications of the
theory, but also serve to evaluate the parameter in the theory which are least
well known.....".

The theoretical formalism for the collision of diatomic molecule with an
atom was first given by Arthurs and Dalgarno (1960) and following this
Green (1975) generalised the theory for collision between 2 diatoms. These
were for closed-shell diatoms. For open-shell molecules, the rotational levels
are split by spin-rotation coupling (fine structure). The theory for 2Σ and
2Π open-shell molecules with structureless atom was given by Dixon et
al. (1979), Alexander (1982), Corey and Alexander (1988), etc. Several
approximate methods like centrifugal sudden (CS) approximation (McGuire,
1973; McGuire and Kouri, 1974; Kouri et al., 1976; Parker et al., 1977,
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Green, 1976, etc.), infinite order sudden (IOS) approximation (Curtiss,
1968a; Curtiss, 1968b; Curtiss and R. B. Bernstein, 1969; Pack, 1974; Parker
et al., 1977; Goldflam et al., 1979; Green, 1979) and recoupling methods
(Corey and McCourt, 1983; Alexander and Dagdigian, 1985; etc..) were used
for open-shell molecules over the time. The full close coupled(cc) theory
for 3Σ molecules with structureless atom was given by Lique, Spielfiedel,
Dubernet et al. (2005). Several studies, including the calculations in this
thesis involving He, are based on this theory. The further developments in
the theoretical methods for the calculation of collisional rate coefficients
are well documented in Roueff and Lique (2013) and Bouhafs (2017) and
the interested readers are directed to the references therein. Recently
several alternatives to the full quantum time independent CC methods have
also been developed, especially for those rotationally inelastic collisions for
which the full quantal calculations would otherwise be computationally very
costly or impossible. One such alternative is the mixed quantum/classical
theory(MQCT) for inelastic scattering (Semenov et al., 2013a; Semenov
et al., 2013b; Semenov et al., 2015). Ndengué, Dawes et al. (2017) used
the multiconfiguration time dependent Hartree (MCTDH) method to study
the atom-triatom collisions (which was extended to diatom-triatom collision
system by Ndengué, Scribano et al. (2019)). Loreau, Lique et al. (2018)
proposed a statistical method based on the statistical adiabatic channel
model (SACM) and showed to obtain accurate rate coefficients for systems
like CO-H2O, C+-HF (Loreau, Faure et al., 2018; Dagdigian and Kłos, 2018).
With the multiplication of the data, it becomes very important to compile
all these atomic and molecular data (the energy levels, statistical weights,
Einstein A and B coefficients, collision excitatation and de-excitation rate
coefficients). There are databases such as the LAMDA, CDMS, NIST, JPL,
CHIANTI, BASECOL, HITRAN, GEISA, etc... which compiles these data.

As far as NH, which is central to our thesis, is concerned, it has
been extensively studied (especially with He) earlier experimentally and
theoretically (Rinnenthal et al., 2000; Rinnenthal et al., 2002; Dagdigian,
1989; Alexander, Dagdigian and Lemoine, 1991; Krems et al., 2003; Stoecklin,
2009; Toboła et al., 2011; Dumouchel et al., 2012). Previously, The relative
column densities of nitrogen hydrides (NH:NH2:NH3) in the protostellar
object IRAS 16293-2422 was shown to be 3:1:19 (Hily-Blant, Maret et al.,
2010). In the massive cluster-forming region G 10.6-0.4 it was 5.4:2.2:1, and
in W49N it was shown to be 3.2:1.9:1 (C. Persson et al., 2012). Le Gal et al.,
2014 estimated the ratios in dense clouds to be 3:1:3. Bacmann, Caux et al.
(2010) derived a very high deuterium fractionation with an [ND]/[NH] ratio
of between 30 and 100%. Roueff, Loison et al. (2015) predicted [ND]/[NH]
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between 10% and 6% and Bacmann, Daniel et al. (2016) derived a value
of more than 2% at the core and over 20% at the outer regions of 16293E
prestellar core using a complete non-LTE model with NH and ND collisional
data (collisions with He) published by Dumouchel et al., 2012. There are no
studies yet for collision of NH and ND by H2. This thesis deals with the
study of the rotational excitation of NH and ND due to collisions with He
and H2. The main goal of the thesis is to obtain collisional rate coefficients
for these collisional systems for different temperatures one can find in the
cold ISM.
The thesis is divided into 4 parts.

Part II consists of 4 chapters. In these 4 chapters, we introduce a general
background of the collision and theory behind the scattering of a rigid
diatom by a structureless atom in the space fixed frame. We also give a brief
account of the close coupling bound state method which we use to calculate
the bound states energies of the Van der Waals complexes.

Part III consists of 5 chapters. Chapter 5 gives the pure, fine and hyperfine
rotational energy levels of NH and ND. Chapter 6 introduces a general theory
for the collision dynamics of an open shell 3Σ− diatom with a structureless
1S atom.

In Chapter 6 and 7, we present new 3 Dimensional potential energy surfaces
(PESs) for the NH-He and ND-He complexes, fine-structure resolved state-
to-state collisional rate coefficients for the collsion of NH and ND by He, and
hyperfine resolved state-to-state collisional rate coefficients for the same.

Chapter 8 introduces a general theory for the collision dynamics of an open
shell 3Σ− diatom with a 1Σ diatom. We present first ever four dimensional
analytical model of the PES for the NH-H2 system. A first use of this
PES to compute the pure rotational level resolved state-to-state scattering
calculation for collison of NH by para-H2 and ortho-H2 is reported. We also
present the fine structure resolved state-to-state rate coefficients of NH-H2
calculated using a 2D PES.

In Chapter 9 we present the bound states of the NH-He and NH-Ar complexes
excluding and including the fine structures of NH.
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PART II

THEORY





CHAPTER 1

Formalism for Collision induced
Energy tranfer

“Nothing happens until something moves."
— Albert Einstein

To study collisions in space theoretically, it is first necessary to model the
collision in such a way that it would be viable to form a theory! The collision
between two species (In the case of this thesis, it is diatom-atom or diatom-
diatom) leads to scattering of one species by another. More specifically, in
our cases we study only the inelastic non-reactive scattering, that is, the 2
species remain unchanged post collision and only the total kinetic energy
changes and this energy excites or de-excites the internal modes of the target
(the diatom in our case).

Figure 1.1: A general idea of scattering

Since what we are trying to understand are the collisions between atoms
and molecule, we HAVE to delve in the quantum space. (All is not well with
classical mechanics! - Shankar, 1994). So what we essentially formalize here
is to appropriate the Quantum scattering Theory to study the van der waals
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1. Formalism for Collision induced Energy tranfer

complexes formed by the colliding partners and the molecule of interest and
find the scattering cross-section, from which we can get the rate co-efficients.
The explanations given in this chapter are based on my understanding of
the selected chapters of following textbooks: Griffiths (2017), Child (1996),
J. Taylor (1972) and Atkins et al. (2011).

In Quantum mechanics, a system is described by a wavefunction Ψ and the
wavefunction Ψ(x, t) evolves in time as

i~
∂Ψ
∂t

= HΨ (1.1)

where, ~ is the reduced planck’s constant, and H is an operator called the
the Hamiltonion, which actually characterises system that is being studied.
This equation can be separated into equations based on the time and space
components of the wavefunction, i.e,

Ψ(x, t) = ψ(x).φ(t) (1.2)

Substituting 1.2 in 1.1 (and skipping the intermediate steps where we actually
separate the variables) we get

Hψ = Eψ (1.3a)

i~
dφ

dt
= Eφ (1.3b)

where, E is the constant in the dimensions of energy and equates to both
left hand side (LHS) and right hand side (RHS) of the equation 1.1. Since
time-independent wavefunction satisfies equation 1.3a, this equation is called
the time-independent Schrödinger equation and E represents the state of
Energy the system is in. For the purpose of computation, we always use
the time-independent Schrödinger equation and so, any further mention of
"Schrödinger equation" should be, by default, read as time-independent
Schrödinger equation.

1.1 Quantum scattering
Scattering theory is a very extensive subject and there are several ways to
define the scattering and the scattering cross section. I would like to present
here, one of the explanations of quantum scattering (QS) and the derivation
of scattering cross-section. In this section, I introduce the basics of QST
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1.1. Quantum scattering

and in the next chapters move on the theory specific to a computationally
feasible, system specific case(s).
The Figure 1.2 gives us a rough idea of how scattering occurs. The colliding

Figure 1.2: A general representation of scattering for an attractive potential

projectile approaches the target; takes an orbit in the interacting region
(which will be later defined by the potential (V); the colliding partner departs
and moves away from the target. Even though the actual computation is in
the time-independent scattering theory domain, we start with the description
in the time-dependent scattering to describe the salient features of QS and
as the discussion progresses, we will move to the time-independent domain.
As we can see that the orbit in the interacting region is very complicated, we
ignore the precise details of the orbits while mathematically describing the
scattering. Instead, we try to express these orbits in terms of asymptotes
close to the approaching (incoming) and departing (outgoing) regions. In
summary, we can define the terms as follows:

in asymptote
Ω+−−→ actual orbit

Ω-←− out asymptote

|ψin〉 → |ψ〉 ← |ψout〉

The Ω± is the moller wave operator which evolves the wavefunction from
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1. Formalism for Collision induced Energy tranfer

in/out asymptote to the actual orbit. That gives,

|ψ〉 = Ω− |ψout〉
⇒ |ψout〉 = Ω†

- |ψ〉
= Ω†

-Ω+ |ψin〉
(1.4)

If we define an operator, S such that

S = Ω†
-Ω+

this gives,
|ψout〉 = S |ψin〉 (1.5)

Since this operator S relates |ψout〉 directly to the |ψin〉, this is called the
scattering operator.
We can represent the wavefuntion in terms of an improper momentum
eigenvector of the Hamiltonion (In the proceeding chapters you will notice
how this will be replaced by the quantum number for the molecular cases).

Figure 1.3: Incoming projectile with momentum |p〉 scattering to an
outcoming momentum |p′〉 through a solid angle dΩ

If Figure 1.3 represnts the scattering, then

ψin(p) = 〈p|ψin〉
ψout(p′) = 〈p′|ψout〉 (1.6)

with the above definition, we write the scattering operator S in the mo-
mentum representation as 〈p′|S |p〉 and this is the "S-matrix". We can
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1.1. Quantum scattering

hence think of S-matrix as the probability amplitude that an in state with
momentum p gives an out state with momentum p′.
Let us now define an operator R as S = 1+R.

Since S commutes with the hamiltonion operator H, R also commutes with
H. That implies,

〈p′|R |p〉 = −2πi.δ(Ep′ − Ep)t(p′ ← p) (1.7)

Substituting eq. 1.5 in S = 1+R, we get

〈p′|S |p〉 = δ(p′ − p)− 2πi.δ(Ep′ − Ep)t(p′ ← p) (1.8)

The term t(p′ ←p) is defined as the "on-shell" T- matrix. The scattering
amplitude is given by,

f(p′ ← p) = −(2π)2m t(p′ ← p) (1.9)

This is gives us,

〈p′|S |p〉 = δ(p′ − p) + i

2πm.δ(Ep′ − Ep)f(p′ ← p) (1.10)

For the figure 1.3, the probabibility, w of the particle emerging with
momentum, p′ anywhere in the element of the solid angle, dΩ is given
by

w(dΩ← ψin) = dΩ
∫ ∞

0
p′

2
dp′ |ψout(p′)|2 (1.11)

The total number of particles scattering into dΩ is given by Nout;

Nout(dΩ) =
∫
d2p nin w(dΩ← ψin)

⇒ Nout(dΩ)
nin

=
∫
d2pw(dΩ← ψin)

⇒ σ(dΩ← ψin) =
∫
d2pw(dΩ← ψin) (1.12)

σ(dΩ ← ψin) is the cross section for the scattering of the particles and
coming out through the solid angle dΩ. Using eqs. 1.5 in 1.6 and writing it
in integral form gives,

ψout(p′) =
∫
d3p 〈p′|S |p〉 ψin(p) (1.13)
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1. Formalism for Collision induced Energy tranfer

Substituting eq. 1.10 in 1.13 we get,

ψout(p′) =
∫
d3p

[
δ(p′ − p) + i

2πm.δ(Ep′ − Ep)f(p′ ← p)
]
ψin(p)

⇒ψout(p′) = ψin(p) + i

2πm

∫
d3p δ(Ep′ − Ep)f(p′ ← p)ψin(p) (1.14)

Substituting eq. 1.14 in 1.11 and hence in eq. 1.12, we get

σ(dΩ← ψin) = dΩ|f(p′ ← p)|2

⇒ dσ

dΩ(p′ ← p) = |f(p′ ← p)|2
{
∵ σ(dΩ← p) = dσ

dΩ(p′ ← p) dΩ
}

σ(p′ ← p) =
∮ dσ

dΩ(p′ ← p) dΩ

σ(p′ ← p) =
∮
|f(p′ ← p)|2dΩ (1.15)

Looking back at eq 1.9,

f(p′ ← p) = −(2π)2m︸ ︷︷ ︸
A

t(p′ ← p)︸ ︷︷ ︸
〈p′|T |p〉

and from eq 1.15 we get,

σ(p′ ← p) = A2
∮
|〈p′|T |p〉|2dΩ (1.16)

Hence we have described the Total scattering cross section in terms of the
on-shell T matrix. So, with this idea of cross-section (which is the what
we want to calculate), we move to the case specific to our interest, that is,
scattering phenomenon in a molecular system. For doing that, first we need
to theoretically describe a molecular system.

1.2 Describing a molecular system

In quantum mechanics, the molecular system is described by the Hamiltonian
opertor which is defined by the total energy of the constituent electrons and
nuclei. If we ignore the spin (we will introduce the effect of spin later!), the
system can be described by a coulomb Hamiltonian i.e., the Hamiltonian is a
sum of the kinetic energies of electrons, nuclei and the coulomb interactions
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1.2. Describing a molecular system

Figure 1.4: A representation of co-ordinates for a system of electrons and
nuclei

between them. For a molecular system of n electrons and N nuclei with
co-ordinates as represented in fig. 1.4, the Hamiltonian is given by,

H =

Nuclear Kinetic Energy︷ ︸︸ ︷
−~2

2

N∑
α=1

1
Mα

∇2
α

Electronic Kinetic Energy︷ ︸︸ ︷
− ~2

2me

n∑
i=1
∇2

i

+ e2

4πε0


n∑

i,j=1

1
|ri − rj|︸ ︷︷ ︸

electron-electron repulsion

+
N∑

α,β=1

ZαZβ
|Rα −Rβ|︸ ︷︷ ︸

Nuclear-Nuclear repulsion

−
n∑
i=1

N∑
α=1

Zα
|ri −Rα|︸ ︷︷ ︸

electron-nuclear attraction


(1.17)

where, Mα is the mass of αth nuclei, me is the mass of the electron, Rα is the
distance between origin and the αth nuclei, ri is the distance between origin
and the ith, ∇2 is the Laplace operator, e is the charge of the electron, ε0 is
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1. Formalism for Collision induced Energy tranfer

the permittivity in vacuum and Z is the atomic number. If,

−~2

2

N∑
α=1

1
Mα

∇2
α = TN(R) (1.18)

− ~2

2me

n∑
i=1
∇2

i = Te(r) (1.19)

e2

4πε0

n∑
i,j=1

1
|ri − rj|

= Vee(r) (1.20)

e2

4πε0

N∑
α,β=1

ZαZβ
|Rα −Rβ|

= VNN(R) (1.21)

− e2

4πε0

n∑
i=1

N∑
α=1

Zα
|ri −Rα|

= VeN(r, R) (1.22)

In short, the Hamiltonian can be written as,

H = TN(R) + Te(r) + Vee(r) + VNN(R) + VeN(r, R) (1.23)
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CHAPTER 2

Born-oppenheimer
approximation and Potential

Energy Surface

“I can make it clearer; I can’t make it simpler."
— J. R. Oppenheimer

As we saw in the previous chapter (eq 1.3a), the schrödinger equation is
given by

HΨ(r,R) = EΨ(r,R) (2.1)

If the Hamiltonian consisted of only pure functions of r and R, we could
have decoupled the equation as we could have written the wavefunction as
a product of nuclear and electronic terms,

Ψ(r,R) = ψ(r)χ(R) (2.2)

But unfortunately, because of the term VeN(r,R), it is not possible. To
overcome this hurdle, we use the Born-Oppenheimer approximation.

2.1 The Born-Oppenheimer approximation
In simple words, the Born-Oppenheimer (BO) approximation allows us to
separate the nuclear and electronic parts. In this section I will just briefly in-
troduce the BO approximation. For a detailed explanation i would direct the
"interested" readers to the Born et al., 1927, its translation by S.M.Blinder,
1998, and Pauling et al., 1935. The physical basis for the BO approximation
is the difference in the masses of the atomic nuclei and the electrons. The
nuclear constituents are more than 1000 times greater than the mass of
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2. Born-oppenheimer approximation and Potential Energy Surface

the electrons and with this the Hamiltonian can be approximated in two ways:

(i). Since the acceleration of a particle is inversely proportional to
its mass, the electrons are moves (or accelerates) very fast, with respect to
the nucleus. So the nucleus is "almost" fixed with respect to the electronic
motion. Or, in other words the nuclear distance (R) is parameterized and
hence its no more an operator. that is from eq 1.22,

VeN(r,R)⇒ VeN(r;R) (2.3)

(ii). The next approximation directly stems from the mass difference.
Let us define some γ such that

γ = me

M
{M is total nuclear mass}

Mα = me

γµα
{µα is the reduced mass}

Using this in eq 1.18,

TN(R) = −γ ~2

2me

N∑
α=1

µα∇2
α

TN(R) = −γT ′N(R)

If,

Hel = Te(r) + Vee(r) + VNN(R) + VeN(r; R)

then, eq 1.23 becomes,

H = Hel − γT ′N(R)

And so, the eq 2.1 becomes,{
Hel − γT ′N(R)

}
Ψ(r,R) = E Ψ(r,R) (2.4)

Since mass of the nucleus is huge when compared to mass of the electron,
the ratio me

M
is infinitesimally small. Hence γ is approximately equal to

zero and eq 2.4 becomes,

Hel ψ(r,R) = Eel ψ(r,R) (2.5)
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2.2. Electronic Schrödinger equation and Potential Energy Surface

From eq 2.3, since R is parameterized, the Hamiltonian (Hel) and the
corresponding Energy (Eel) is also parameterized. That is, eq 2.5 becomes,

Hel(R) ψ(r;R) = Eel(R) ψ(r;R) (2.6)

Substituting eq 2.6 back in eq 2.4 and considering the fact the resulting
Hamiltonian is purely dependent on R, we get,

{
TN(R) + Eel(R)

}
ψN(R) = E(R) ψN(R) (2.7)

With eq 2.6 and 2.7, the total hamiltonian has been approximately separated
into electronic and nuclear parts using Born-Oppenheimer approximation.
How?

• Eq 2.6 is solely the Hamiltonion containing terms that affect the elec-
tron. Hence it is the electronic Schrödinger equation. We can fix
a particular R (clamped-nuclei) and solve for the wavefunction ψ(r;R)
and repeat the same for a range of R. This gives a set of eigenvalues
(Eel) which forms the Potential Energy Surface (PES). Infact this the
key feature of BO approximation. It depicts the electronic structure
of the system without bringing the nucleus into the picture.

• Once we solve the eq 2.6, we can write the Total Hamiltonian (H )
in terms of nuclear kinetic energy and the PES as in eq 2.7. We
can interpret this equation as the movement of the nuclei along the
PES of the system. Hence we can call the eq 2.7 as the "Nuclear
Schrödinger equation" and solving this will give us the scattering
cross section for the system.

2.2 Electronic Schrödinger equation and
Potential Energy Surface

In this section, a short account of solving the Electronic Schrödinger equation
(eq 2.6) to arrive at the PES is presented. We keep this section short, just
touching the salient features of the solving technique, because it is not the
main focus of this thesis. Yet it is a significant step towards finding the
cross-section (as explained in the chapter 1, is the main goal).
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2. Born-oppenheimer approximation and Potential Energy Surface

From the previous section, we know that the Hamiltonian for the electronic
part is given by

Hel = − ~2

2me

n∑
i=1
∇2

i + e2

4πε0

n∑
i,j=1

1
|ri − rj|

− e2

4πε0

n∑
i=1

N∑
α=1

Zα
|ri −Rα|

+ constant

(2.8)
We can solve this in two ways: one is the ab intio method and the other is the
semi-empirical method. The choice is made based on the level of accuracy
needed and the affordability of computational cost. In this thesis, all the PES
are calculated ab initio, so we discuss only the ab intitio calculation technique.
In this method, the electronic wavefunction (ψ(r;R)) is defined using a model
and the eq 2.6 is solved with just the knowledge of the fundamental values
of the atoms in the system. To determine this (electronic) wavefunction, a
self-consistent field method called the Hartree-Fock method is first used.

2.2.1 Hartree-Fock (self-consistent field) method
The main difficulty in solving the eq 2.6 is the presence of the electron-
electron repulsion term Vee(r) in the Hamiltonian because it depends on the
electron-electron separation (ri - rj). Let us assume that the total electronic
wavefunction, ψ is almost similar to a wavefunction, ψe, which is defined by
the schrödinger equation

Heψe = Eeψe (2.9)
where, He is given by Te (eq 1.19) + VeN (eq 1.21), and the summation in
the eq 1.19 denotes that the many-electron system can be written in terms
of unperturbed n-single-electrons, if we ignore the interactions between the
electrons. That is,

He =
n∑
i=1

hi

{
∵ hi = − ~2

2me

∇2
i −

Ze2

4πε0
1

|ri −R|

}
(2.10)

(P.S: This is only an exceptional case in this thesis where the Hamiltonian
is denoted by a lowercase (h) character.)
Now, this eq 2.10 can be separated into n single-electron wave equations
with the wavefunction ψa(ri;R), where a represents the orbital occupied by
the electron and ri is the co-ordinate of the ith electron. In short, this can
be denoted as ψa(i).

hiψa(i) = Eaψa(i) (2.11)
The wavefunction ψe is product of all the one-electron wavefunctions:

ψe = ψa(1)ψb(2)ψc(3).....ψz(n) (2.12)
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2.2. Electronic Schrödinger equation and Potential Energy Surface

If we consider the spin of the electrons, then these wavefunctions must obey
the Pauli’s exclusion principle. That means if one electron in the orbital a
has a spin up (↑), then the other electron in the same orbital cannot have
the same spin. This can be represented by one of the pauli matrices σ3 and
the wavefunction for a particular orbital would be

ψa = 1√
2
ψa(1)ψa(2)(↑ (1) ↓ (2)− ↓ (1) ↑ (2)) (2.13)

This introduces the concept of spinorbitals which is defined as

ψ↑a(1) = ψa(1) ↑ (1) ψ↓a(1) = ψa(1) ↓ (1)
ψ↑a(2) = ψa(2) ↑ (2) ψ↓a(2) = ψa(2) ↓ (2)

Each term in the previous equation is a unique spinorbital and can be
represented as φu(i) where u represents the combination of orbital and spin.
This single orbital in eq 2.13 can be represented in the form of a determinant.

ψa = 1√
2

∣∣∣∣∣φi(1) φj(1)
φi(2) φj(2)

∣∣∣∣∣ (2.14)

The determinant in the eq 2.14 is a Slater determinant. If we extend this
single orbital wavefunction to all the orbitals consisting of n-electrons, eq
2.12 can be written in terms of Slater determinant consisting of n × n
elements:

ψe = 1√
n!

∣∣∣∣∣∣∣∣∣∣
φx(1) φy(1) . . . φz(1)
φx(2) φy(2) . . . φz(2)

... ... ... ...
φx(n) φy(n) . . . φz(n)

∣∣∣∣∣∣∣∣∣∣
(2.15)

In order to find the wavefunction,ψe, of the system of n-electrons, we can
solve for individual spinorbitals φu(i) using the wave equation called the
Hartree-Fock (HF) equation:

fiφx(i) = εxφx(i) (2.16)

εx is the spinorbital energy and fi is the fock operator which incorporates
the (previously ignored) electron-electron repulsion term, Vee(r) as a coulomb
operator (Ju) and exchange operator (Ku). The fock operator is defined as:

fi = hi +
∑
u

(Ju(i)−Ku(i)) (2.17)

Both the operators Ju(i) and Ku(i) are defined in terms of all spinorbitals φu.
That is, to solve for one spinorbital using eq 2.16, we need the information
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2. Born-oppenheimer approximation and Potential Energy Surface

about all the other spinorbitals which is like a paradoxial situal! This is
overcome by a method of successive approximations until a convergence
is achieved. In this method, first a trial set of spinorbitals assumed and
the fock operator is formed and using that the HF equations are solved to
get a new set of spinorbitals. This new set of spinorbitals are once again
used to form a new fock operator and the same procedures are repeated
until a self-consistent solution is reached. The choice of the intial trial set
depends on the number of electrons (n) in the system and the accuracy of
the calculation because for a system of n electrons, the system can have
a finite n occupied spinorbitals and also an infinite number of unoccupied
spinorbitals which are eigenfunctions of the spinorbital energy. Further
details of the trial set are given in the section 2.2.3.

2.2.2 Electronic correlation
Though the fock operator (eq 2.17) incorporates the electron-electron in-
teractions, they are just averages. They are neither instantaneous nor do
they account for the electronic distribution. Hence the HF equation does
not acknowledge the electron correlations. There are several methods to
introduce this correlation in the calculations. In this thesis we have used the
coupled cluster method for all our PES calculations, hence we will discuss
only this electronic correlation method in this section. For other methods,
one can refer to Atkins et al. (2011), Lewars (2010) and R. Bernstein (2013).

2.2.2.1 Coupled Cluster (CC) method
This method introduces a cluster operator C which relates the exact
electronic wavefunction, ψ to the wavefunction ψe as:

ψ = eCψe

and eC can be series expanded as

eC = 1 + C + 1
2!C

2 + 1
3!C

3 + 1
4!C

4 + .......

and the Cluster operator is defined as

C = C1 + C2 + . . .+ Cn

where Cn is the n-electron excitation operator (i.e, C1 is 1-electron operator
and so on). If the HF wavefuction,ψe (eq 2.15) can be written in short as:

ψe = ‖φ1φ2 . . . φlφm . . . φn‖
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2.2. Electronic Schrödinger equation and Potential Energy Surface

φl, φm are some random occupied spinorbital among the n occupied
spinorbitals. Now, a singly excited wavefunction is a single electron is
excited from a occupied spinorbital to an unoccupied spinorbital. i.e,

ψ′e = Φp
l = ‖φ1φ2 . . . φpφm . . . φn‖

Similarly the doubly excited wavefunction can be written as

ψ′′e = Φpq
lm = ‖φ1φ2 . . . φpφq . . . φn‖

etc.. So, the electron excition operator is given by

C1ψe =
∑
l,p

cpl Φ
p
l

C2ψe =
∑

l,m,p,q

cpqlmΦpq
lm

and similarly for C3 and so on up to Cn. c is the excitation amplitude.
So finally the electronic schrödinger equation that is to be solved looks
something like

Hele
Cψe = Eele

Cψe

While CC method is applied in computations, a few approximations are
made. First, the taylor series expansion is finite (since terms beyond Cn1 and
so on cannot exist). Second, the C operator includes only specific excitiation.
For example, If C is truncated at C1+C2, then the approach is called coupled
cluster single double excitation (CCSD). If C = C1+C2+C3 it is called
CCSDT. The CC approach is an iterative (variational) technique. As
accurate as it is, once we consider higher order excitation for a system with
large number of electrons, the computation cost increases beyond practical
limits. To overcome, the CC aproach is combined with a non-iterative
approach for higher order terms (Raghavachari et al., 1989) . For example,
if CC theory is followed for singles and doubles and for the triples, the non-
iterative (perturbation) approach is used, it is referred to as CCSD(T).

2.2.3 Basis sets
At the end of section 2.2.1, the trial sets for the HF approach was discussed.
Since these are a set of spinorbitals, these are set of basis functions that
represent the spinorbitals exactly. Ideally the set must contain infinite
number of basis functions because the trial set must consist of infinite
number of unoccupied spinorbitals too. But in the computational point of
view, this is impossible. Hence a finite basis set has to be chosen taking
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2. Born-oppenheimer approximation and Potential Energy Surface

into account the computational cost and accuracy. Several basis sets are
used in ab initio calculations and new (and better) basis sets keep getting
added every now and then. So the posssibilities are infinite! In this thesis,
the basis set developed by T.H.Dunning and coworkers (Dunning, 1989) has
been used. These are especially designed for post-HF calculations (electronic
correlation) and hence the name "correlation-consistent (cc)". The usual
designation of the cc-set is like "cc-pVXZ" where p is for the polarization
function, V for valence, X for the number of shells the valence function
contains (X could be Double, Triple, quadruple,etc...) and Z stands for zeta.
For example, cc-pVDZ denotes correlation consistent-polarized valence-only
Doubly-split zeta basis set. This basis set can be further augmented to
include diffuse functions for lang-range interactions. In that case the basis
set is designated as aug-cc-pVXZ (X=D,T,Q,5,.....). These basis set can
also converge systematically to the complete-basis-set (CBS) limit using
empirical extrapolation techniques.

2.3 Analytic representation

The objective of this thesis is to use these ab initio electronic potential
values to calculate the total wavefunction of the system using eq 2.7 and
hence the cross sections. In the next chapter, we will see that solution to eq
2.7 involves solving second-order differential equations by "close coupling"
approach in which the equations are expanded in spherical coordinates. So
it is necessary to expand our ab initio electronic potentials analytically in
such a way that it is easily accessible for furthur calculations. Also, it is
important to correctly incorporate all the symmetries and angular variations
of the system in these analytic form. To represent this, we choose a set of
coordinates which can be easily translated while using the PES for dynamic
calculations. Fig 2.1 represents the jacobi coordinates for a AB+CD system.

rAB and rCD are the bond lengths of the diatoms AB and CD, R is the
distance between the centre-of-masses of AB and CD, Θ is the angle between
R and rAB, Θ′ the angle between R and rCD and φ is the rotation of CD
about R. For a AB+C system, R would become the distance between c.o.m
of AB and C, Θ′ and φ will vanish.
For now, let us assume that AB and CD are rigid rotors, which implies rAB
and rCD are constants. Therefore, if V represents the analytic form of the
PES in the above mentioned coordinates, then V ≡ V(R,Θ,Θ′,φ) (and for
AB+C system read V ≡ V(R,Θ)). There are several possible analytic forms
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2.3. Analytic representation

Figure 2.1: A representation of jacobi coordinate.

of a system, but in general, the analytic representation takes the form:

V (R,Θ,Θ′, φ) =
∑
λ

Eλ
el(R)Xλ(0,Θ,Θ′, φ)

where λ is the λth point on the grid of ab initio electronic potential values
and X is the angular function.
For the AB+C system the same would be

V (R,Θ) =
∑
λ

Eλ
el(R)Xλ(0,Θ)
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CHAPTER 3

Nuclear Schrödinger equation
and Cross Section

“I insist upon the view that ‘all is waves’. "

— Erwin Schrödinger

After solving the electronic Schrödinger equation for Eel and constructing
the PES, next step is to solve the eq 2.7 type equation using the PES.
In the chapter 1, we described a very general molecular system consisting
of electrons and nucleus. In this chapter, we will further sophisticate the
description of our system. We are interested in the collision between atom
and diatom/diatom and diatom. Since our focus is only on the nuclear part,
if we are to assume that the diatom does not have any vibrational degree of
freedom, the diatom becomes a linear rigid rotor.
If we consider the spherical coordinates representing the system to be fixed
in space as in fig 3.1, and translate the AB molecule such that its centre of
mass coincides with the origin, then the coordinates of AB and CD would
be r ≡ r(θ, φ) and r′ ≡ r′(R, θ′, φ′) respectively. The total Hamiltonian (the
LHS of eq 2.7) in this coordinate system becomes

H = HAB(r) +HCD(r′) + TN(R) + V (R,Θ)

In this chapter we only focus on the collision between a diatom and an atom,
say AB + C. Therefore, the HCD = 0 and hence

H = HAB(r) + TN(R) + V (R,Θ)
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3. Nuclear Schrödinger equation and Cross Section

Figure 3.1: Space Fixed co-ordinates for a AB+CD system.

where,

HAB = ~2

2I j2 (3.1)

TN(R) = − ~2

2µ∇
2
R

= − ~2

2µ

(
∂2

∂R2 −
l2

R2

)
(3.2)

I is the moment of inertia of the rigid rotor AB; j and l are rotational mo-
mentum operator of molecule AB and orbital angular momentum operator
of the atom C respectively. The total angular momentum operator is then
defined as J = j + l with J as its eigenvalue and M as the projection of J
in the z-axis.
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Note: The eigenvalues of angular momentum operator Li is given as follows

L2 |n,mn〉 = n(n+ 1) |n,mn〉
Lz |n,mn〉 = mn |n,mn〉

If n is the angular momentum eigenstate, mn is its projection in z-axis and
its value (mn= -n, -n+1,...,0,..., n-1, n).
In a spherically symmetric system, the eigenstates are given by the
wavefunctions which are of the form

ψ(r, θ, φ) = u(r)Y mn
n (θ, φ) (3.3)

where u(r) is the radial part of the wavefunction and Y mn
n (θ, φ) is the

spherical harmonics which is defined as

Y mn
n (θ, φ) = 〈θ, φ|n,mn〉

Then the wave equation for the molecule AB is given by

HABY
mj
j (r) = ~2

2I j(j + 1)Y mj
j (r) (3.4)

If the atom C is approaching AB with a kinetic energy E, the total energy
of the system for a particular rotational momentum j is

Ej = E + ~2

2I j(j + 1) (3.5)

The total wavefunction of the system ΨJ
jl(R, r, r′), for a particular in state

|j, l〉(or input channel) satisfies the schrödinger equation for the total system

HΨJ
jl(R, r, r′) = EjΨJ

jl(R, r, r′) (3.6)

Since Ej is a sum of incident energy and the energy of the state of target
particle, The wavefunction ΨJ

jl is a superposition of initial and final states.
The total wavefunction can be expanded in the form of eq 3.3 as

ΨJ
jl(R, r, r′) = 1

R

∑
j′l′

U Jjl
j′l′ (R)Y J

j′l′(r, r′) (3.7)

where

Y J
j′l′(r, r′) =

∑
mj ,ml

〈j′l′mjml|j′l′JM〉Y
mj
j′ (r)Y ml

l′ (r′) (3.8)
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3. Nuclear Schrödinger equation and Cross Section

and U Jjl
j′l′ (R), the radial part of the wavefunction, is a superposition of initial

state (j,l) and a final (scattered) state (j′, l′). For simplicity purpose, we
write U Jjl

j′l′ (R) as U J
j′l′(R).

Theoretically, j′ and l′ could have infinite values. But for computation,
the terms are truncated at finite numbers until the result are converged to
desired significant figures. Substituting eqs 3.1 3.2 3.7 in 3.6, we get

− ~2

2µR
∑
j′l′

(
µ

I
j2 + ∂2

∂R2 −
l2

R2 −
2µ
~2 V (R,Θ)− 2µ

~2 Ej

)
U J
j′l′(R)Y J

j′l′(r, r′) = 0

(3.9)

⇒ ~2

2µ
∑
j′l′

Y J
j′l′(r, r′)

(
µ

I
j′(j′ + 1) + ∂2

∂R2 −
l′(l′ + 1)
R2 − 2µ

~2 Ej

)
U J
j′l′(R)

=
∑
j′l′

U J
j′l′(R)V (R,Θ)Y J

j′l′(r, r′)

~2

2µ
∑
j′l′

Y J
j′l′(r, r′)

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

j′j

)
U J
j′l′(R) =

∑
j′l′

U J
j′l′(R)V (R,Θ)Y J

j′l′(r, r′)

(3.10)

where

k2
j′j = 2µ

~2

(
Ej −

~2

2I j
′(j′ + 1)

)
(3.11)

If we orthonormalize the above equation by gram-schmidt process using
Y J
j′′l′′(r, r′), a wavefunction orthogonal to Y J

j′l′(r, r′), we get

~2

2µ

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

j′j

)
U J
j′l′(R) =

∑
j′′l′′

U J
j′′l′′(R) 〈j′′l′′JM |V (R,Θ) |j′l′JM〉

(3.12)

Hence we arrive at the coupled second order differential equation.These are
called the close-coupling equation.

3.1 Close-coupling apprach
There are several approaches to solve the eq 3.12 type equations. In this
section we discuss one of the most exact methods to mathematically solve
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3.1. Close-coupling apprach

these equations. This approach is used to find the cross-sections throughout
this thesis.
In the above equation we observe that we have two orthogonal sets of
wavefunction, one that is defined by j, l and the other by j′, l′. If we compare
this with equations of chapter 1 , these are the in and out wavefunctions.
that is, if |j, l〉 is the initial channel(momentum), |j′, l′〉 is the final channel
(momentum).
From the previous chapter, we know that the analytic representation of the
electronic potential is, in general, of the form

V (R,Θ) =
∑
λ

Eλ
el(R)Pλ(cos(Θ)) (3.13)

〈j′′l′′JM |V (R,Θ) |j′l′JM〉 in the eq 3.12 decomposes into

〈j′′l′′JM |V (R,Θ) |j′l′JM〉 =
∫ ∫ (

Y J
j′′l′′(r, r′)

)∗
V (R,Θ)Y J

j′l′(r, r′) dr dr′

=
∫ ∫ (

Y J
j′′l′′(r, r′)

)∗∑
λ

Eλ
el(R)Pλ(cos(Θ))Y J

j′l′(r, r′) dr dr′

=
∑
λ

Eλ
el(R)

∫ ∫ (
Y J
j′′l′′(r, r′)

)∗
Pλ(cos(Θ))Y J

j′l′(r, r′) dr dr′︸ ︷︷ ︸
fλ

(3.14)

As we know from the Fig.3.1 that Θ = θ − θ′, the legendre polynomial
P(cos(Θ)) can be written as a function of r and r′ as

Pλ(cos(Θ)) = 4π
2λ+ 1

∑
mλ

Y mλ
λ (r)(Y mλ

λ (r′))∗ (3.15)

Substituting eq 3.15 and eq 3.8 in RHS of eq 3.14,

fλ = 4π
2λ+ 1

∑
mλ,mj ,ml

∫ ∫
〈j′′l′′JM |j′′l′′mjml〉 〈j′l′mjml|j′l′JM〉(
Y
mj
j′′ (r)

)∗
(Y ml

l′′ (r′))∗Y mλ
λ (r)(Y mλ

λ (r′))∗Y mj
j′ (r)Y ml

l′ (r′) dr dr′

(3.16)

It is an integral of multiple spherical harmonics. The solution to the integral
summed over all the projections is

fλ = (−1)j′+j′′−J
√

([j′][j′′][l′][l′′])
(
j′′ j′ λ
0 0 0

)(
l′′ l′ λ
0 0 0

){
j′ l′ J
l′′ j′′ λ

}
(3.17)
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3. Nuclear Schrödinger equation and Cross Section

where [n]=2n+1,
(
. . .
. . .

)
and

{
. . .
. . .

}
are wigner 3j and 6j symbols (for the

definition refer to Edmonds, 1957 and Rose, 1957).
Therefore, fλ ≡ fJλ (j′′l′′ ← j′l′). Substiting this in eq 3.14 gives

〈j′′l′′JM |V (R,Θ) |j′l′JM〉 =
∑
λ

Eλ
el(R)fJλ (j′′l′′ ← j′l′) (3.18)

And eq 3.12 becomes
~2

2µ

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

j′j

)
U J
j′l′(R) =

∑
j′′l′′λ

eλ(R)fJλ (j′′l′′ ← j′l′)U J
j′′l′′(R)

(3.19)

To solve the above equation, the collision is subjected to the condition that
as R approaches 0, the wavefunction vanishes. So the solution lies in the
asymptotic behaviour of the radial wavefunction as R tends to ∞.
From chapter 1, the superposition of incoming and outgoing waves in terms
of the scattering matrix is given by

U J
j′l′(R) = δjj′δll′e

−i(kjjR− lπ2 ) −

√√√√ kjj
kj′j
〈j′l′|SJ |jl〉 ei(kj′jR−

lπ
2 ) (3.20)

This gives us the scattering S-matrix.

3.2 Cross section and Rate coefficient
As we saw in the chapter 1, to define the cross section, we first define the
T-matrix as in eq 1.8 is given as

〈j′l′|T J |jl〉 = δjj′δll′ − 〈j′l′|SJ |jl〉 (3.21)

So the total cross section over all J, l for transition between rotational
levels j and j′ would be

σ(j′ ← j) = π

k2
jj[j]

∑
J,l,l′

[J ]
∣∣∣∣〈j′l′|T J |jl〉∣∣∣∣2 (3.22)

The collisional (de-excitation) rate coefficient (kj←j′(T)) is the Maxwellian
average of the collisional cross section (σj←j′(E)). It is defined as

kj←j′(T ) =
√

8kBT
πµ

( 1
kBT

)2 ∫ ∞
0

σj←j′(E)E e
−
(

E
kBT

)
dE (3.23)
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3.2. Cross section and Rate coefficient

where kB is the boltzmann constant, T is the Temperature and E is the
collision Energy.
The excitation rate coefficient is then obtained through detailed balance

kj′←j(T ) = kj←j′(T ) gj
′

gj
e

(
Ej−Ej′
kBT

)

39





CHAPTER 4

Bound States

“Let us call such a state quasi-bound state because it would be
an honest bound state if the barrier were infinitely high."

— J.J. Sakurai, Modern Quantum Mechanics

In the previous chapter, we saw that for the scattering wavefunctions, the
boundary condition is such that the wavefunction vanishes at R=0 and as
R tends to infinity, the wavefunction approaches an asymptotic form. For
a bound state, the wavefunction vanishes at both the ends of the R. For a
potential well, we seek states between the well depth and 0 energy. That is,

−V0 < E < 0

Figure 4.1: Bound states

For our system, as mentioned in the previous chapter, the schrödinger
equation is of the form

−
[
−∇

2

2µ + Eel +H

]
ψ = Eψ (4.1)
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4. Bound States

As we can see, it doesn’t contain a first-order derivative term. Hence, the
equation can be solved by a technique called log-derivative method (the
same technique is used for dynamic calculations too).
Eq 4.1 is of the form

−
[
∇2 + A(R)

]
ψ(R) = 0 (4.2)

The bound state wavefunction, ψ(R) is defined such that

ψb(R) → 0 at R = 0 & R→ +∞

According to Johnson (1978) and Hutson (1994a), wavefunctions that satify
the above conditions can be calculated by a procedure that combines gordan’s
iterative procedure and the node count method.

4.1 Gordan’s iterative procedure
According to Gordon (1969), the eq.4.2 can be integrated outward from
the inner boundary and inward from the outward boundary to a common
matching point. In this way, M linearly independant solutions with arbitrary
derivatives can be calculated. These solutions are grouped as an M×M
square matrix wavefunction Ψ(R). Hence this Ψ(R) would also satisfy the
eq 4.2. Since Ψ(R) is linearly independent, the correct wavefunction ψ(R)
must be possible to be expressed as

ψb(R) = Ψ(R) ·C

where C is a column vector of unknown coefficients.
The procedure is assuming a trial value for the energy (E) and integrate eq
4.2 outward and inward to a common matching point Rm. Let us assume

Ψl(R)→ approaches Rm from left
and

Ψr(R)→ approaches Rm from right

If the trial value is the eigenvalue then,

ψb(R) = Ψl(R) · l R ≤ Rm (4.3)
and

ψb(R) = Ψr(R) · r R ≥ Rm (4.4)
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4.2. Node count method

where l and r are unknown vectors.
Since the eigenfunction is continous, at the matching point Rm,

Ψl(Rm) · l = Ψr(Rm) · r = ψb(Rm) (4.5)
and

Ψ′l(Rm) · l = Ψ′r(Rm) · r = ψ′b(Rm) (4.6)

Combining eqs 4.5 and 4.6 and writing in a matrix form gives(
Ψl(Rm) Ψr(Rm)
Ψ′l(Rm) Ψ′r(Rm)

)(
l
−r

)
= 0

⇒
∣∣∣∣∣Ψl(Rm) Ψr(Rm)
Ψ′l(Rm) Ψ′r(Rm)

∣∣∣∣∣ = 0 (4.7)

That implies that the determinant in eq 4.7 becomes 0 at each eigenvalue.
Once we know the eigenvalue, the vectors l and r can be found. Hence we
find the wavefunction Ψ(R). If we define a log-derivative matrix to be

Y (R) = Ψ′(R) Ψ−1(R) (4.8)

At matching point, eq 4.6 becomes

Yl(Rm) Ψl(Rm) · l = Yr(R) Ψr(Rm) · r (4.9)

⇒ (Yr(Rm)− Yl(Rm))ψB(Rm) = 0

⇒ |Yr(Rm)− Yl(Rm)| = 0 (4.10)

Eq 4.10 is the matching condition. Hence rather than propagating the
wavefunction and its derivative, it is sufficient if we propagate just the
long derivative matrix. And, as the log-derivative matrices depend on the
energy at which it is solved, the values of energy where the determinant
Yr(Rm)− Yl(Rm) goes to zero gives the eigenvalues.

4.2 Node count method
Though the previous method to find the eigenvalue is very effective, it
requires the trial energy (which is already a guess!) to be close to the
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eigenvalue. Also, we cannot know the exact number of eigenvalues between
2 energies. So we cannot be certain if we have found all the eigenvalues or
not. This difficulty is overcome by the node count method.
A node is defined as the zero of the determinant function |Ψ(R)|. Each
zero is assigned an integer n and the corresponding eigenvalue En. If the
node count is greater than n, the trial energy E ≥ En and if the node count
is ≤ n the E < En.

4.3 An Algorithm of implementation
A small algorithm below explains how the procedure works:

1. Initialise the parameters (setting the input parameters)

a) Potential parameters: Emin = well depth, Emax = 0, the length R
(Rmin, Rmax) and the mid point (Rmid) which is set as the position
of the minimum of the potential.

b) Type of log-derivative propagator to use.
c) Specify the specific state, JTOT (ground state (JTOT = 0) or

higher (JTOT = 1, 2, ...)).
d) Set a value (ε) for convergence of the energy (the minimum energy

difference between Emin and Emax) for the iteration to stop.

2. Begin the node count method

a) Set the trial energy as E = 1
2(Emin + Emax). (Hence the name

bisection method)
b) Solve eq 4.2 for det|Ψ(R)| to find the number of nodes. If the

node count > n,
c) Change Emax = E If the node count ≤ n,
d) Change Emax = E

e) With the new value of Emax or Emin repeat from step (a).
f) Stop the above loop once Emax − Emin ≤ ε.
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3. Begin the Gordon’s Procedure
(Once the above iteration ends, we would be close to the eigenvalue.
Hence this energy would be a good guess for the initial trial energy
for Gordan’s procedure.)

a) With the new trial energy E, integrate the eq 4.2 inward and
outward to a common matching point Rm (Rmid would be the
best guess.)

b) Solve for eq 4.10 to find the exact eigenvalue.

4. If the node was more than 1, then go back to 2. and repeat the steps.

5. Once all the eigenvalues are calculated go back to 1., change the JTOT
and repeat the steps.
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CHAPTER 5

Spectroscopy of NH/ND

Before getting into the collision of the molecule, it is important to first
understand the structure of the molecule. As NH and ND are isotopologue,
we can discuss their spectroscopy together (Since H and D differ only by
neutron number, there is no difference in the electronic configuration). The
electronic orbital structure for the ground electronic state of NH/ND is
given in Fig 5.1 The spectroscopic notation for electronic state of a linear

Figure 5.1: The molecular orbital structure for the ground-state of NH/ND

molecule is 2S+1Λs, where Λ ≡ |M |; M is the eigenvalue of the Lz=0,±1,±2,...
with respective Λ denoted by symbols Σ,Π,∆,...; S is the total spin of the
molecule; s is the symmetry which could be + or -. For the ground state of
NH (ND), M=0, S=1, s=-. Therefore, the electronic ground state symmetry
of NH/ND is 3Σ−.

49
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N Energy ( in cm-1)
NH ND

0 0.0000 0.000
1 32.6796 17.5806
2 97.9975 52.7301
3 195.8717 105.4250
4 326.1786 175.6298
5 488.7537 263.2978
6 683.3913 368.3695
7 909.8448 490.7749
8 1167.8260 630.4314
9 1457.0060 787.2448

Table 5.1: Energies of first 10 pure rotational levels of NH and ND (3Σ−)
molecules

5.1 Rotational Energy Levels

If we consider NH/ND to be a non-rigid diatomic molecule, then

E(N) = ~2

2I︸︷︷︸
B

N (N + 1 )− ~4

2I2r2k︸ ︷︷ ︸
D

N 2 (N + 1 )2

= B N (N + 1 )−D N 2 (N + 1 )2 (5.1)

where B and D are rotational constant and centrifugal distortion constant
respectively and N is the nuclear rotational angular momentum of NH/ND.
I, r and k are moment of inertia, distance between the 2 atoms and force
constant respectively. The B and D values for NH in the ground electronic
state (3Σ−) are 16.34320634 cm-1 and 0.0017139 cm-1 respectively. And, the
B and D values for ND in the 3Σ− state are 8.7913 cm-1 and 0.0004904 cm-1

respectively. Substituting these values, and values for N gives the rotational
energy levels of NH and ND. For the purpose of clarity, we will call this as
pure rotational energy levels. Table 5.1 gives first 10 pure rotational levels
of the NH and ND molecules.
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5.1. Rotational Energy Levels

5.1.1 Fine splitting of Energy levels of NH/ND
In the beginning of this chapter, we showed that the 3Σ− state of NH/ND
has 2 unpaired electrons and Λ = 0. Since Λ = 0, the spin-orbit coupling
is zero. But due to the presence of a non-zero spin-spin coupling, NH/ND
molecules are represented by a intermediate coupling scheme (intermediate
between Hund’s case (a) and (b)). In this case, the total angular momentum
of the molecule,j is defined as

j = N + S (5.2)

Due to the non-zero electron spin, the molecule has a non-zero electron
spin dipole moment. Because of this arises the fine structure splitting
of NH/ND molecules. Fine structure splitting is due to the Spin-rotation
coupling and spin-spin coupling. Spin-rotation coupling is the interaction of
electron spin magnetic moment and the molecular rotation magnetic moment.
Spin-spin coupling is the interaction between the magnetic moments of the
2 unpaired electrons. In the intermediate coupling scheme, the effective
Hamiltonian of the molecule is

Heff = Hrot + Hsn + Hss (5.3)

where Hrot, Hsn and Hss are the rotational Hamiltonian, spin-rotation
Hamiltonian and spin-spin Hamiltonain of the molecule repectively. They
are given by

Hrot = BN 2 −DN 4

Hsn = γ(N · S)

Hss = 2
3λ(3S2

z − S)

where B and D are rotational constant and centrifugal distortion constant
respectively, and γ and λ are spin-rotation and spin-spin coupling constants
respectively. (the vibrational dependance of γ and λ is ignored) The γ
and λ values (used in this thesis) for NH in the ground electronic state
(3Σ−) are -0.0550 cm-1 and 0.9200 cm-1 repectively and the same for ND
are -0.0294 cm-1 and 0.9184 cm-1 respectively. Since the multiplicity of the
NH/ND is 3 (2S+1 ), each N is split into 3 levels (2 levels with (-1)N parity
and 1 level with (-1)N+1 parity). Since the Hss is not zero in the case of 2
unpaired electrons, this term mixes the states with same parity which leads
to intermediate coupling of states. In this case, the 3 levels are labeled F1,
F2 and F3.
In "pure" hund’s case (b) (that is, if we neglect the Spin-spin coupling),
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5. Spectroscopy of NH/ND

the 3 levels would correspond to j=N+1, j=N and j=N-1. That is, if
the wavefunctions corresponding to the levels of pure hund’s case (b) are
denoted as |N = j − 1, S, j,mj〉, |N = j, S, j,mj〉 and |N = j + 1, S, j,mj〉
respectively, the intermediate coupled wavefunctions for j≥1 is written as
|F1, j,mj〉 = cosα |N = j − 1, S, j,mj〉+ sinα |N = j + 1, S, j,mj〉
|F2, j,mj〉 = |N = j, S, j,mj〉
|F3, j,mj〉 = − sinα |N = j − 1, S, j,mj〉+ cosα |N = j + 1, S, j,mj〉

where α is the mixing angle and can be obtained by diagonalization of the
Hamiltonian Heff . The eigenvalue corresponding to these wavefunctions
gives the energies of the respective rotational levels. If eigenvalue corres-
ponding to |N = j − 1, S, j,mj〉, |N = j, S, j,mj〉 and |N = j + 1, S, j,mj〉
are E1(j), E2(j) and E3(j) respectively, the corresponding eigenvalues of the
intermediate coupled wavefunctions would be EF1(j), EF2(j) and EF3(j).

Heff |N,S, j,mj〉 gives

E1(j) = Bj(j − 1)−Dj2(j − 1)2 + γ(j − 1) +
(

2
3 −

2j
2j + 1

)
λ

E2(j) = Bj(j + 1)−Dj2(j + 1)2 − γ + 2
3λ

E3(j) = B(j + 1)(j + 2)−D(j + 1)2(j + 2)2 − γ(j + 2) +
(

2
3 −

2(j + 1)
2j + 1

)
λ

and Heff |Fi, j,mj〉 gives EFi in terms of E1, E2 and E3 as follows

EF1(j) = 1
2

E1(j) + E3(j)−

√√√√(E1(j)− E3(j))2 + 16j(j + 1)
(2j + 1)2 λ

2

 (5.4)

EF2(j) = E2(j) (5.5)

EF3(j) = 1
2

E1(j) + E3(j) +

√√√√(E1(j)− E3(j))2 + 16j(j + 1)
(2j + 1)2 λ

2

 (5.6)

Table 5.2 gives first 15 fine structure resolved rotational levels of the NH
and ND molecules.
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5.1. Rotational Energy Levels

N j Energy ( in cm-1) Label (N,Fi)NH ND

0 1 0.0000 0.0000 0,F1
1 0 31.5706 16.4292 1,F3
1 2 32.5046 17.4339 1,F1
1 1 33.3556 18.2367 1,F2
2 1 97.5646 52.2348 2,F3
2 3 97.7164 52.5040 2,F1
2 2 98.6736 53.3862 2,F2
3 4 195.5071 105.1418 3,F1
3 2 195.6137 105.0764 3,F3
3 3 196.5477 106.0810 3,F2
4 5 325.7409 175.2996 4,F1
4 3 326.0268 175.3606 4,F3
4 4 326.8546 176.2858 4,F2
5 4 488.6854 263.0855 5,F3
5 5 489.4297 263.9537 5,F2

Table 5.2: Energies of first 15 fine structure resolved rotational levels of the
NH(3Σ−)

5.1.2 Hyperfine structures

Another significant interaction that affects the rotational levels of NH and
ND is the presence of a non-zero nuclear spin. For NH and ND molecules,
both the N, H(D) nuclei have a non-zero spin (IN = 1, IH = 1

2 , ID = 1).
This introduces additional quantum numbers namely F1 and F, which are
defined as

F1 = j + IH

and
F = F1 + IN

The hyperfine splitting is characterised mainly by the presence of nuclear
quadrupole moment and interaction between the nuclear spin and total
angular momentum of the molecule (other nuclear spin interactions are very
negligible).
So, the hamiltonian describing the hyperfine structures is given as
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5. Spectroscopy of NH/ND

Hhf = HQ + Hij

where

HQ =
2∑

k=1

(eQq)k
2Ik(2Ik − 1)j(2j − 1)

[
3(Ik · j)2 + 3

2(Ik · j)− Ik(Ik + 1)j(j + 1)
]

Hij =
2∑

k=1
Ck(Ik · j)

where eQq are the quadrupole coupling constants and C is the nuclear
spin-rotation interaction. Hence the total Hamiltonian of the molecule, Hmol

is equal to Heff + Hhf . The eigenvalue of Hmol |N, j, F1, F 〉 would give the
energies of the hyperfine rotational levels. But for NH and ND, the hyperfine
splitting of energy levels is very small when compared to the fine structures.
Also since the spin of H and D are different, the splitting is different for NH
and ND (Notice the difference in the F1 and F of table 5.3 and table5.4).

N j F1 F Energy (in cm-1)

0 1 1.5 0.5 0.0000
0 1 1.5 1.5 0.0006
0 1 1.5 2.5 0.0017
0 1 0.5 0.5 0.0036
0 1 0.5 1.5 0.0049
1 0 0.5 0.5 31.5728
1 0 0.5 1.5 31.5728
1 1 1.5 2.5 33.3572
1 1 0.5 1.5 33.3574
1 1 1.5 0.5 33.3582
1 1 1.5 1.5 33.3582
1 1 0.5 0.5 33.3586
2 1 0.5 1.5 97.5641
2 1 0.5 0.5 97.5663
2 1 1.5 0.5 97.5699

Table 5.3: Energies of first 15 hyperfine structure resolved rotational levels
of the NH(3Σ−)
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N j F1 F Energy (in cm-1)

0 1 0 1 0.0000
0 1 1 2 0.0006
0 1 1 0 0.0011
0 1 1 1 0.0011
0 1 2 3 0.0018
0 1 2 2 0.0023
0 1 2 1 0.0026
1 0 1 0 16.4292
1 0 1 1 16.4292
1 0 1 2 16.4292
1 1 2 1 18.2187
1 1 1 0 18.2195
1 1 1 1 18.2195
1 1 1 2 18.2195
1 1 0 1 18.2199

Table 5.4: Energies of first 15 hyperfine structure resolved rotational levels
of the ND(3Σ−)

In the next chapters, we will see how these fine and hyperfine splitting
of energy levels will affect the bound states, cross section and the rate
co-efficients of the systems involving NH and ND.
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CHAPTER 6

NH-He: PES and Scattering
Calculations

NH(3Σ−)-He(1S) (the notation for the ground state of Helium atom is
1S since it is a noble gas) collisions have been extensively studied earlier
(Rinnenthal et al., 2002; Krems et al., 2003; Cybulski et al., 2005; Toboła
et al., 2011). The advancement in the computational capabilities opens
new avenues for enhancement. In this chapter, we will discuss some these
improvements and the effect of these improvements on the rate coefficients.

6.1 Potential Energy Surface

Previously, Cybulski et al., 2005 calculated NH-He PESs. They did the ab
initio calculations using spin-restricted coupled-cluster method with aug-cc-
pvQZ basis set. The depth of their potential well was around 19.86 cm-1

at R=6.33a0 and Θ = 62.3◦. Several studies were done using these PES
and it proved to be successful. However, these calculations do not take into
account the intramolecular vibrational motion of the NH molecule. Several
recent studies (Bouhafs and Lique, 2015, Kalugina et al., 2014, Lique, 2015)
have shown the importance of inclusion of the vibrational motion of light
molecular hydrides and its effect on the dynamic calculations. So, in this
chapter we present and use the PES which includes the vibrational
motion of NH molecule.

For the new ab initio calculations, the NH-He geometry is described in
Jacobi coordinates as in Fig 6.1.
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Figure 6.1: Jacobi coordinates for NH-He

The new an initio calculations were carried out using partially spin-restricted
coupled cluster method with single, double and perturbative triple excitation
[RCCSD(T )] with the aug-cc-pVXZ(X=T,Q,5) basis sets (section 2.2.2.1
and 2.2.3) using the MOLPRO package (Werner et al., 2010). The energies
were extrapolated to the Complete Basis Set(CBS) limit using the following
function

ER(X) = ER(∞) +Be−(X−1) + Ce−(X−1)2 (6.1)

where X is the cardinal number of the basis set(X=3,4,5 in this case). ER(∞)
is the estimated energy at CBS limit as X→∞, and B and C are constant
parameters. The energies at all geometries were also corrected for the
basis-set superposition error. This was done using the counterpoise method
proposed by Boys et al., 1970. In this method, the energies of NH and He
are computed separately using the full basis set used for calculating energies
of NH-He. These quantities are then differenced so that the errors cancel
out.

V (R) = ENH−He(R)− (ENH(R) + EHe(R)) (6.2)

where V(R) is the BSSE corrected potential. The an initio calculations were
carried out for a range of values. R varied from 35.0a0 to 3.0a0; Θ varied
from 0◦ to 180◦ in steps of 10◦ and r =[1.6, 1.8, 1.95, 2.2, 2.4]a0
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The ab initio points were analytically represented as a 3-dimensional
potential energy surface by intrapolating the points in the form:

V3D(r, R,Θ) =
Nmax∑
n=1

Lmax∑
l=1

dl+m−1
m0 (Θ)Anl(R)(r − re)n−1 (6.3)

dl+m−1
m0 (Θ) is the reduced wigner (Edmonds, 1957) rotation matrix, Nmax is

n(r), Lmax is n(Θ), re is the equilibrium bond length of NH molecule (For
our calculations, re = 1.95a0) and Anl(R) is the matrix containing the an
initio points V(R). This 3D-PES takes into account the vibrations of NH
up to the vibrational state v=2. So, we can find the expectation value of
the 3D potential at any of the vibrational states up to v=2. It gives us a
3D PES averaged over the bond lengths (which will be henceforth referred
as 3D-avg PES).

Vav(R,Θ) = 〈v(r)|V3D(r, R,Θ) |v(r)〉

=
Nmax∑
n=1

Lmax∑
l=1

dl+m−1
m0 (Θ)Anl(R) 〈v(r)| (r − re)n−1 |v(r)〉 (6.4)

The wavefunction |v(r)〉 was calculated by Bouhafs and Lique, 2015.
〈v(r)| (r − re)n−1 |v(r)〉 values are given in table 6.1. The contour plot
of the 3D-avg PES over the ground vibrational state (v = 0) is presented in
fig 6.2. We have also computed a new PES from the ab initio points but
for a fixed internuclear distance (r = 1.99 bohr)(this will be referred as 2D
PES throughout this thesis).

n=1 n=2 n=3 n=4 n=5

v=0 1.0000 0.0346 0.0214 0.0026 0.0026
v=1 1.0000 0.1060 0.0729 0.0185 0.0185
v=2 1.0000 0.1814 0.1385 0.0548 0.0548

Table 6.1: 〈v(r)| (r− re)n−1 |v(r)〉 values for given n and vibrational state,v.

The global minima of the interaction potential for the 3D-avg PES is -19.71
cm-1 at R = 6.30a0 and Θ = 64◦. If we compare the 3D-avg PES with the
PES of Cybulski et al., the overall difference (absolute) between the 2 PESs
are depicted in the fig 6.3. The colormap gives the energy difference. The
white region means the differences are > 0.1 cm-1. As we can see from the
figure, there is a very few region where there are no differences (0). Also

59



6. NH-He: PES and Scattering Calculations

0 20 40 60 80 100 120 140 160 180
θ (degrees)

4

5

6

7

8

9

10

11

12
R 
(b
oh

r)

-19.71-18 -16 -15
-15

-10

-10

-7

-7

-5

-5

-3

-3

-2

-2

-1

-1

 0 75300
1000 2000

Figure 6.2: Contour plot of 3D-avg NH-He PES as a function of R and Θ.

the differences are very asymmetric. Approximately, we can say that the
differences are significant as He approaches close to the center of mass of
NH on the side of N. The position of global minima of the 2 PESs are in
good agreement.

6.2 Collisonal Dynamics of NH(3Σ−) with
He(1S)

In chapter 3, we perceived the theory for dynamics of molecule-diatom
system where the molecule does not have any unpaired electrons (i.e., a
closed-shell molecule). But, since we know that NH has 2 unpaired electrons
in its ground state (i.e., its an open-shell molecule), we saw the importance
of considering the spin interactions (fine and hyperfine structures) from
the previous chapter. In this section, we rewrite equations of chapter 3 to
include the spin in the dynamic equations.

6.2.1 Fine Structure transitions
From eq 5.2,

j = N + S
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Figure 6.3: Difference between 3D-avg PES and PES of Cybulski et al.,
2005. The energies are in cm-1.

Therefore the wavefunction for NH molecule in pure hund’s case (b) can be
defined as

Y j′

N ′S′(r) =
∑

mN ,mS

〈N ′S ′mNmS|j′mj〉Y mN
N ′ (r)Y mS

S′ (r) (6.5)

with EN ′S′ as the energy of the corresponding level. If the total angular
momentum of the system is defined as JT = j+l, then the total wavefunction
of eq 3.7 becomes,

ΨJT
NSjl(R, r, r′) = 1

R

∑
N ′j′l′

U JTNjl
N ′j′l′ (R)Y JT

N ′j′l′(r, r′) (6.6)

with
Y JT
N ′j′l′(r, r′) =

∑
mj ,ml

〈j′l′mjml|j′l′JTM〉Y j′

N ′S′(r)Y ml
l′ (r′) (6.7)

Therefore the close-coupling equations of eq 3.12 would become
~2

2µ

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

N ′S′

)
U JT
N ′j′l′(R)

=
∑

N ′′j′′l′′
U JT
N ′′Sj′′l′′(R) 〈N ′′Sj′′l′′JTM |V (R,Θ) |N ′Sj′l′JTM〉

(6.8)
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To solve these equations, we exploit the fact that the N and S are weakly
coupled in the hund’s case(b) molecules. Hence we can rewrite the coupling
scheme of the system as follows

N + l = J

and
J + S = JT

That is, total angular momentum of open-shell system (JT ) is a sum of total
angular momentum of closed-shell system (J) and spin angular momentum
of open-shell system (S). This, along with the fact that the potential V is
independant of the spin and the orientation of the sytem in the space-fixed
coordinate, felicitates us to write the potential matrix, wavefunction and
hence the cross section of an open-shell system in terms of the closed shell
system. This simplifies the equations as follows

〈N ′′Sj′′l′′JTM |V (R,Θ) |N ′Sj′l′JTM〉 =
∑
J ′′

(−1)j′−j′′−l′+l′′ [J ′′]
√

[j′][j′′]

×
{
S N ′ j′

l′ JT J

}{
S N ′′ j′′

l′′ JT J

}
〈N ′′l′′JMJ |V (R,Θ) |N ′l′JMJ〉

(6.9)

where 〈N ′′l′′JMJ |V (R,Θ) |N ′l′JMJ〉 is simply the potential matrix of closed-
shell system (eq 3.18) given by

〈N ′′l′′JMJ |V (R,Θ) |j′l′JMJ〉 =
∑
λ

Eλ
el(R)fJλ (N ′′l′′ ← N ′l′) (6.10)

Substituting eq 6.10 in eq 6.9 and simplifying the three 6-j matrices gives
the interaction potential matrix as

〈N ′′Sj′′l′′JTM |V (R,Θ) |N ′Sj′l′JTM〉 =
∑
λ

(−1)S−λ−JT
√

[N ′][N ′′][j′][j′′][l′][l′′]

×Eλ
el(R)

(
N ′′ N ′ λ
0 0 0

)(
l′′ l′ λ
0 0 0

){
j′ l′ JT
l′′ j′′ λ

}{
j′ N ′ S
N ′′ j′′ λ

}
(6.11)

Now, if we consider the intermediate coupling, the total wavefunction
corresponding to the total angular momentum JT would be,

ΨJT
Fijl

(R, r, r′) = 1
R

∑
F ′i j
′l′

U JTFijl
F ′i j
′l′ (R)Y JT

F ′i j
′l′(r, r

′)
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with

Y JT
F ′i j
′l′(r, r

′) =
∑
mj ,ml

〈j′l′mjml|j′l′JTM〉Y
m′j
F ′i j
′(r)Y ml

l′ (r′)

And the total wavefunction satisfies the Schrödinger equation,

HeffΨJT
Fijl

(R, r, r′) = EFij
T ΨJT

Fijl
(R, r, r′)

Then, the total energy of the NH-He system for a particular level Fij of NH
(eq 3.5) becomes

EFij
T = E + EFij

where E is the kinetic energy of the He atom and EFij is the energy of the
Fij level of NH.
Hence, the close-coupled equations for the intermediate coupling would be

~2

2µ

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

F ′i j
′

)
U JT
F ′i j
′l′(R)

=
∑

F ′′i j
′′l′′

U JT
F ′′i j

′′l′′(R) 〈F ′′i j′′l′′JTM |V (R,Θ) |F ′i j′l′JTM〉

(6.12)

And, 〈F ′′i j′′l′′JTM |V (R,Θ) |F ′i j′l′JTM〉 and 〈N ′′Sj′′l′′JTM |V (R,Θ) |N ′Sj′l′JTM〉
are related as follows:

〈F ′′i j′′l′′JTM |V (R,Θ) |F ′i j′l′JTM〉 =
∑
N ′′N ′

cj
′

N ′F ′i
cj
′′

N ′′F ′′i
〈N ′′Sj′′l′′JTM |V (R,Θ) |N ′Sj′l′JTM〉

(6.13)

Substituting eq 6.11 in eq 6.13 and hence in in eq 6.12 and subjecting it
to the condition that the wavefunction vanishes as R approaches 0, very
similar to what we did in chapter 3, gives the solution as follows

U JT
F ′i j
′l′(R) = δNN ′δjj′δll′e

−i(kFijR−
lπ
2 ) −

√√√√ kFij
kF ′i j′

〈F ′i j′l′|SJT |Fijl〉 e
i(kF ′

i
jR−

lπ
2 )

(6.14)

This gives us the S-matrix. And the T matrix

〈F ′i j′l′|T JT |Fijl〉 = δNN ′δjj′δll′ − 〈F ′i j′l′|SJT |Fijl〉 (6.15)
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So the total cross section over all JT for transition between rotational
levels N,Fi and N′,F′i would be

σ(F ′i j′l′ ← Fijl) = π

k2
Fij

[j]
∑
JT ,l,l′

[JT ]
∣∣∣∣〈F ′i j′l′|T JT |Fijl〉∣∣∣∣2 (6.16)

The collisional de-excitation rate coefficient is hence defined as

kFij←F ′i j′(T ) =
√

8kBT
πµ

( 1
kBT

)2 ∫ ∞
0

σFijl←F ′i j′(E)E e
−
(

E
kBT

)
dE (6.17)

6.2.2 Hyperine Structure transitions
As we can notice from the table 5.3, hyperfine splitting of the NH levels are
very small. Hence, the hyperfine levels can be assumed to be degenerate.
Then, the integral cross sections corresponding to transitions between
hyperfine levels of the NH molecules can be obtained from scattering S-
matrix between fine structure levels using a recoupling method. This makes
the dynamic calculations for the hyperfine transitions much simpler. For
computational convenience, we introduce the opacity tensor PK

F ′i j
′←Fij where

K is the order of the tensor. The opacity tensor is derived from the S-matrix
as follows:
From eq 6.15, T-matrix in terms of S-matrix (for fine-structure) is given by

〈F ′i j′l′|T JT |Fijl〉 = δNN ′δjj′δll′ − 〈F ′i j′l′|SJT |Fijl〉

From this, a reduced T-matrix is defined in terms of the order of the opacity
tensor (K) as

〈F ′i j′l′|TK |Fijl〉 =(−1)−j−l′ [K]
√

[j′][j]

×
∑

JTN ′N

cjNFic
j′

N ′F ′i
(−1)JT [JT ]

{
l′ j′ JT
j l K

}{
K j j′

S N ′ N

}
× 〈F ′i j′l′|T JT |Fijl〉

And hence the opacity tensor is defined as

PK
F ′i j
′←Fij = 1

[K]
∑
ll′

∣∣∣∣〈F ′i j′l′|TK |Fijl〉∣∣∣∣2
We can arrive at cross-section for transition between hyperfine levels
|N, j, F1, F 〉 and |N ′, j′, F ′1, F ′〉 with respect to the opacity tensor of fine

64



6.3. Results

structure transitions using a recoupling method derived in detail in Daniel
et al., 2004 and the modalities are explained in Faure et al., 2012. The final
cross-section is hence given as follows:

σ(N ′j′F ′1F ′ ← NjF1F ) = π

k2
NjF1F

[F1][F ′1][F ′]
∑
K

{
F1 F ′1 K
F ′ F IH

}{
j j′ K
F ′1 F1 IN

}
PK
F ′i j
′←Fij

(6.18)

6.3 Results

6.3.1 Fine structure resolved scattering
The scattering calculations were performed for the main 14N and 4He iso-
topes by solving close-coupled equations using the MOLSCAT code (Hutson,
1994b). The MOLSCAT codes were modified using the equations in sec 7.3,
to include Fine structure of the energy levels and the intermediate coupling
scheme.

Using this modified MOLSCAT codes, the scattering calculations were
performed for a total energy grid of 3500 cm-1 with variable steps. For the
energies below 1250 cm-1,the step was equal to 1 cm-1; between 1250 and
1500 cm-1, it was increased to 5 cm-1; and for the energy interval 1500 –
3500 cm-1, it was increased to 10. The reason for using finer energy grids at
lower energies is because the resonances that occur in the cross sections at
low energies can be well noticed.

Before doing the actual calculations, it is necessary to set the values of
various variable parameters involved in the MOLSCAT codes to ensure
convergence of the inelastic cross sections. Firstly, it is necessary to include
several energetically inaccessible (closed) levels in the calculations for the
cross section to converge. For our calculations, at the largest energies, the
NH rotational basis was extended to N = 20 to ensure convergence of the
rotational cross sections between levels with N ≤ 8. It is also needed to
converge inelastic cross sections with respect to partial waves. The total
angular momentum quantum number J needed for the convergence was set
up to 81 for the inelastic cross sections.

In MOLSCAT, it is necessary to adjust the propagator’s parameters in order
to ensure convergence of cross section. For all the energies, the minimum
and maximum integration distances were Rmin = 3.0 bohr and Rmax varied
between 50 and 80 bohr. The STEPS parameter was adjusted for each range
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6. NH-He: PES and Scattering Calculations

of energies in order to obtain a step length of the integrator sufficient to
ensure convergence. The values of the STEPS parameter decreases with
increasing energy (from 50 to 10 for the given energy ranges). The reduced
mass of the NH–He system is µ = 3.1600 amu. (For further information of
the parameter and their value of convergence, refer Appendix A)

With these input parameters, the integral state-to-state cross sections are
calculated. Even though our main goal is to calculate the rate coefficients,
it is still interesting to plot the cross-sections. Figure 6.4 presents the
energy variation of the integral cross sections for transitions from the initial
rotational level N = 0,F 1 of NH.

By averaging over a Maxwellian distribution of the collisional velocities using
the equation 3.23, we obtained thermal rate coefficients for excitation and
de-excitation transitions between fine-structure levels of NH. We obtained
rate coefficients for temperatures up to 350 K. The thermal dependence of
the state-to-state rate coefficients is illustrated in Fig.6.5 for transitions out
of the N = 0, F 1 level.

6.3.2 Hyperfine resolved excitations
Using the S-matrix of the fine structure resolved state-to-state dynamic
calculations, we calculated the hyperfine resolved NH–He cross sections using
the procedure described in section 6.2. Then, by averaging the cross sections
over a Maxwellian distribution of the collisional velocities, we obtained
thermal rate coefficients for excitation and de-excitation transitions between
hyperfine levels of NH. We obtained rate coefficients for temperatures up
to 150 K. Figure 6.6 presents the temperature variation of the hyperfine
resolved NH–He rate coefficients for a selected transitions.
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Figure 6.4: Collisional excitation cross sections of NH by He from N=0,F1.(a)
is for F -conserving transitions, while (b-d) are for F -changing transitions.
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Figure 6.5: Temperature dependent rate-coefficients of collision of NH by
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F -conserving transitions, while (b-d) represents F -changing transitions.
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6.4 Observations and Discussions

6.4.1 Fine Structure excitations
We can see from fig 6.4 that the resonances appear at low collisional energies.
This is related to the presence of an attractive potential well of a depth of
≈20 cm-1, which allows for the He atom to be temporarily trapped there
and hence quasi-bound states to be formed before the complex dissociates
(Smith et al., 1979; Christoffel et al., 1983). However, few resonances are
seen in the excitation cross sections since the energy spacing between two
rotational levels is generally large in comparison to the well depth of the
NH–He PES.

The magnitude of the cross sections shown in Fig 6.4 seems to be governed
by the following propensity rules:

1. The cross sections decrease with increasing ∆N, which is the usual
trend for rotational excitation. In addition, even ∆N transitions are
favored over odd ∆N transitions. This is a consequence of dominant
even anisotropy of the PES over the odd anisotropy (i.e., the radial
coefficients Aln(R) of Eq.6.4 with even l dominates over those with
odd l).

2. A propensity rule exists for F -conserving transitions (∆j = ∆N in the
case of pure Hund’s case (b)).

The rate coefficients obviously display the same propensity rules as seen in
the integral cross sections. In particular,the rate coefficients for F -conserving
transitions are generally larger than those for F -changing transitions. The
same propensity rules were previously observed in NH–He (Toboła et al.,
2011) collisions. The latter propensity, predicted theoretically (Alexander
and Dagdigian, 1983), is general for molecules in the 3Σ- electronic state
and was previously observed in O2(X3Σ-)-He (Orlikowski, 1985, Lique, 2010)
and SO(X3Σ-)-He (Lique, Spielfiedel, Dubernet et al., 2005) collisions.

We can compare our results with the previous theoretical and experimental
works. First, we compare the results of the present work with that of
Toboła et al., 2011. Figure 6.7 presents the comparison of the kinetic
energy variation of the collisional cross sections for some selected transitions
obtained from the 3D-avg PES, 2D PES and from Toboła et al., 2011 using
the PES of Cybulski et al., 2005. We can notice from the figure, some
deviations (as large as a factor of 2) exist between the two sets of data,
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Figure 6.7: Comparison between NH-He fine structure cross sections obtained
from the 3D-avg PES, the 2D PES, and the Cybulski PES. The left panel is
a representation of F -conserving transitions, while the right panel represents
F -changing transitions.

especially for transitions with odd ∆N. These deviations are not only due to
the use of different PESs but also due to the inclusion of the vibration of NH
in the new PES. This can be illuminated by comparing the 3D-avg PES and
the Toboła et al., 2011 results with the cross sections of the 2D PES (orange
and green lines of fig.6.7). We notice a significant part of the difference
between the cross sections from the new PES and from the PES of Cybulski
et al., 2005 comes from the inclusion of the NH vibration, confirming again
the importance of inclusion of the intramolecular vibration.

Secondly, to juxtapose the results of the present work with the experiments,
we compare the calculated rate coefficients at 300 K with the experimental
results of Rinnenthal et al., 2002. The comparison is essentially between
the sum of all rate coefficients from a particular state N,Fi. Table 6.2
presents these values. We can notice a good global agreement between the
theoretical and experimental results. The total theoretical and experimental
rate coefficients decrease with increasing N, as can be seen for the average
total rate coefficients from the table 6.2. Such behavior is explained by the
energy gap with the closest levels that increase with increasing N.

Thirdly, we can compare the experimental and theoretical state-to-state rate
coefficients of NH-He also. Fig 6.8 presents the scatter diagram of the two.

The overall agreement between theoretical and experimental data is
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N F1 F2
Theory? Experiment? Theory? Experiment?

0 10.23 8.3
1 10.13 13.01 10.85 12.66
2 10.96 13.39 13.04 20.73
3 10.62 9.62 12.61 13.25
4 9.67 8.44 11.38 12.87
5 8.52 6.13 9.89 11.07
6 7.31 3.44 8.45 7
7 5.99 3.11 6.91 6.01

N F3
Theory? Experiment?

0
1 12.48 24.48
2 17.69 9.18
3 11.96 10.04
4 10.45 16.28
5 9.02 9.48
6 7.63 6.98
7 6.21 6.26

Table 6.2: Total rate coefficients (in units of 10-11cm3s-1) out of the N,Fi
states as a function of the initial nuclear rotation quantum number N at 300
K. (? "Theory" refers to the rate coefficients of 3D-avg PES and "experiment"
refers to the results of Rinnenthal et al., 2002).

reasonably good despite some significant deviations. Most of the
experimental collisional data are reproduced within a factor of 2-3. The
mean deviation between the experimental and theoretical rate coefficients is
a factor of 5 with very few exceptions. These large deviations are for the
rate coefficients with the smaller magnitude that are probably more difficult
to measure experimentally. Indeed,the error bar mentioned by Rinnenthal
et al., 2002 is 0.08×10-11 cm3s-1 and largely exceeds the value of these low
magnitude rate coefficients.
Also, it is worth mentioning that the experimental results do not show the
usual F -conserving propensity rules, and the experimental rate coefficients
do not fulfill the detailed balance as already noticed in the work of Toboła
et al., 2011.
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Figure 6.8: Experimental and theoretical state-to-state NH-He rate
coefficients.

6.4.2 Hyperfine excitations
For the collision of NH by He, the hyperfine rate coeffients seems to be
governed by the following propensity rules: For both ∆j = ∆N and ∆j 6=
∆N transitions, the largest rate coefficients are

1. if ∆F1 = ∆j then ∆F = ∆ F1,

2. if ∆F1 = ∆j ±1 then ∆F = ∆F1±1.

These relations must be combined both with the range of allowed values
for the quantum number F and with the degeneracy factor (2F+1) and it
significantly modifies the propensity rules for transitions. The ∆F = ∆F1
= ∆j propensity rule is more pronounced for ∆j = ∆N transitions than
for the ∆j 6= ∆N ones and hence the only well defined propensity rule for
NH-He hyperfine transitions is ∆F = ∆F1 =∆j.
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CHAPTER 7

ND-He: PES and Scattering
Calculations

In the introduction, we saw the significance of isotopic substitutions in
the ISM and hence the importance of studying the (de-)excitation of
isotopologues. For modeling the abundance, usually the rate coefficients
of the main isotopologue are used for the secondary isotopologue. It may
work for the heavier atoms, but for light atoms like H, it may not be reliable
because the relative mass difference between H and D is significant. Hence
each isotopologue needs to be specifically studied. In this chapter, we study
the collision of ND by He.

7.1 Potential Energy Surface
For ab initio calculations, the ND-He geometry is described in Jacobi
coordinates as in Fig 7.1.rND denotes the centre of mass of the ND molecule
while rNH denotes the centre of mass of NH and ra is the difference between
the centre of masses.

Since the ground state electronic potentials of NH-He and ND-He are the
same in the Born-Oppenheimer approximation, we use the NH-He interaction
potential for ND-He also. The main difference between the NH-He and
ND-He is the difference in the position of the centre of mass. This difference
is introduced computationally as a displacement in the Jacobi coordiante in
the analytic expansion of the PES using the following equations:

Θ = Sin−1
(
R′SinΘ′

R

)

R =
√
R′2 + r2

a + 2R′racosΘ′
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Figure 7.1: Jacobi coordinates for ND-He and NH-He.

where Θ, Θ′, R, R′, ra are defined as in fig.7.1.
For averaging the 3D PES over the vibrational state, we evaluate the
ND vibrational wavefunction (|v(r)>) using the DVR method. 〈v(r)| (r −
re)n−1 |v(r)〉 values are given in table 7.1. Fig. 7.2 shows the contour plot of
the 3D averaged ND-He PES. The position of the well depth are unchanged.
The effect of the shift in the position of centre of mass on the PES can be
noticed by looking at the difference between the ND-He PES and the NH-He
PES. Fig. 7.3 is the contour plot of the differences between the 3D-avg
PESs of NH-He and ND-He.

n=1 n=2 n=3 n=4 n=5

v=0 1.0000 0.0252 0.0153 0.0014 0.0007
v=1 1.0000 0.0767 0.0503 0.0094 0.0046
v=2 1.0000 0.1301 0.0924 0.0272 0.0150

Table 7.1: 〈v(r)| (r− re)n−1 |v(r)〉 values for given n and vibrational state,v.

7.2 Results

7.2.1 Fine structure excitations

For the scattering calculations of ND-He collisions, the cross-sections are
calculated using the close coupling (Arthurs, Dalgarno and Bates, 1960)
method. To solve the quantum coupled equations, we use the MOLSCAT
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Figure 7.2: Contour plot of 3D-avg ND-He PES as a function of R and Θ.
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(Hutson, 1994b) code modified (as mentioned in the previous chapter) to
take into account the fine structure energy levels of ND. The cross sections
are computed for a total energy grid of 2000 cm−1. For the convergence
of the inelastic cross section, the ND rotational basis was extended up to
N=22 for cross sections between levels with N<8. The rotational basis
varied with varying energies. Also, the propagator parameters (integration
distance and STEPS) were adjusted to ensure the convergence of the cross
section. The convergence values of the paramenters are given in Appendix
A. The reduced mass (µ) of the ND-He system is 3.202 amu (compared to µ
of NH-He which is 3.1600 amu). Figure 7.4 presents the energy variation of
the integral cross sections for transitions from the initial rotational level N
= 0,F 1 of ND.

By averaging over a Maxwellian distribution of the collisional velocities using
the equation 3.23, we obtain the thermally averaged rate coefficients for
excitation and de-excitation transitions between fine-structure levels of ND.
We obtained rate coefficients for temperatures up to 200 K. The thermal
dependence of the state-to-state rate coefficients is illustrated in Fig. 7.5 for
transitions out of the N = 0, F 1 level.

7.2.2 Hyperfine structure
Using the S-matrix of the fine structure resolved state-to-state dynamic
calculations of ND-He, we calculated the hyperfine resolved ND–He cross
sections using a procedure similar to what we did in the previous chapter.
Then, by averaging the cross sections over a Maxwellian distribution of the
collisional velocities, we obtained thermal rate coefficients for excitation
and de-excitation transitions between hyperfine levels of NH. We obtained
rate coefficients for temperatures up to 150 K. Figure 7.6 presents the
temperature variation of the hyperfine resolved ND–He rate coefficients for
a selected transitions.
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Figure 7.4: Collisional excitation cross sections of ND by He from N 0,F1.(a)
is for F -conserving transitions, while (b-d) are for F -changing transitions.
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Figure 7.5: Temperature dependent rate-coefficients of collision of ND by
He from N=2,F 1 for hyperfine resolved levels.(a) is a representation of
F -conserving transitions, while (b-d) represents F -changing transitions.
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Figure 7.6: Temperature dependent rate-coefficients of collision of ND by
He from N=3,F2 for hyperfine resolved levels.(a) is a representation of
F -changing transitions, while (b) represents F -conserving transitions.
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7.3 Observations and Discussions

We can see from fig. 7.4, resonances appear at low collisional energies. As
observed in NH-He cross section (fig. 6.4), we notice resonances in the
cross section at low kinetic energies for the ND-He collisions too. These
resonances, related to the feshbach and orbiting resonances, are due to
the asymptotically closed channel and quasi-bound states (Chandler, 2010;
Naulin et al., 2014).

For the fine structure resolved transitions, the magnitude of the cross sections
shown in Fig 7.4 decreases with increasing ∆N and even-∆N transitions
are favored over odd-∆N transitions. Similarly, F -conserving transitions are
favoured over F -changing transitions. For the hyperfine resolved transitions
(fig. 7.6), the rate coeffient is governed by the propensity rules that for both
∆j = ∆N and ∆j 6= ∆N transitions, the largest rate coefficients are ∆F =
∆ F1 if ∆F1 = ∆j and ∆F = ∆F1±1 if ∆F1 = ∆j ±1. These are the same
propensity rules which were observed for NH-He (de-)excitations.

To show the significance of H/D substitution in NH, we compare the results
of NH-He and ND-He scattering calculations. Due to the difference in
the nuclear spin of H and D, we cannot directly compare the results of
ND-He hyperfine structure resolved rate coefficients with that of the NH-He.
But, since we have calculated them directly from the fine structures, the
differences will be transmitted to the hyperfine transitions too.1 Hence we
compare the results of NH-He and ND-He fine-structure resolved scattering
calculations.

Fig. 7.7 compares the cross sections of the collisions of NH and ND by He
for a few fine-structure resolved state-to-state transitions. As we can notice
from figs. 7.7, there are significant differences between the values of ND-He
and NH-He. The differences are larger at low energies than at high energies.
The pattern of differences in cross sections are similar for both excitation
and de-excitation. This can be clearly noticed from table 7.2. The main

1We could compare these results (fine and hyperfine) with the Dumouchel et al., 2012
results to show the significance of use of the new PES, but since it had some energy level
misrepresentations, we cannot directly correlate them. Hence the comparison is ignored.
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Figure 7.7: comparing the fine-structure resolved cross-section of ND-He
(solid line) and NH-He (dashed line).
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Transition E =100 cm-1 E =500 cm-1

NH ND ND NH ND ND
0,F1 → 1,F1 0.243 0.213 0.335 0.586 1.001 0.165
0,F1 → 2,F1 0.252 2.486 4.569 3.380 3.666 4.542
0,F1 → 1,F3 0.044 0.045 0.070 0.121 0.209 0.034
0,F1 → 2,F3 0.113 1.091 2.000 1.464 1.598 1.980
0,F1 → 2,F2 0.573 1.687 3.104 2.353 2.530 3.138
4,F1 → 1,F1 0.207 0.288 0.263 0.293 0.228 0.204
4,F1 → 2,F1 0.562 2.055 3.697 1.282 2.459 3.540
4,F1 → 3,F1 1.587 1.405 0.632 1.460 1.151 0.412
4,F1 → 2,F2 0.157 0.202 0.555 0.335 0.306 0.687
4,F1 → 2,F3 0.088 0.088 0.303 0.216 0.174 0.452

Table 7.2: comparison of cross-sections (in Å2) of NH-He, ND-He with
NH-He PES and ND-He with ND-He PES

reason for the huge differences between ND-He and NH-He cross sections at
lower energies is the differences in the energy levels of NH and ND. Since
the lower energy levels of ND are closely spaced when compared to NH, the
cross sections of ND-He are higher than that of NH-He.

Next, to show the importance/effect of inclusion of the change in the position
of the centre of mass, we present in table 7.2, a comparison between the cross
sections of: (a) NH-He; (b) ND-He calculated using the NH-He PES, energy
levels of ND and the reduced mass of ND-He and (c) the exact ND-He cross
sections calculated using the ND-He PES (fig. 7.2), energy levels of ND
and reduced mass of ND-He, for 2 different energies. We can notice that
all 3 cross sections differ significantly. If we compare the two ND-He cross
sections, the differences in the values show the importance of including the
shift in the position of centre of mass. Especially for even ∆N , the difference
between the two ND-He cross sections are very large.

Fig. 7.8 compares the rate coefficients of the collisions of NH and ND by He
for a few fine-structure resolved state-to-state transitions. The figure shows
that the rate coefficients also differ significantly. In general, the even ∆N
transitions have larger differences than the odd ∆N transitions. Except for
the ∆N = 1 transitions, for all the transitions, the ND-He rate coefficients
are higher than that of NH-He. Also, for these transitions, the differences
are more at lower temperatures and decreases with increasing temperature.
But for ∆N = 1 transitions, the case seems to be reversed.

Based on the above observations, the difference between NH-He and ND-He

84



7.3. Observations and Discussions

can be attributed to the following parameters (in the order of significance):

• The shift in the position of centre of masses of NH and ND.

• The difference in the energy levels of NH and ND (rotational constant
difference)

• The difference of the reduced masses of NH-He (3.160 amu) and ND-He
(3.202 amu).
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CHAPTER 8

NH-H2: PES and Scattering
Calculations

As mentioned in the introduction, molecular hydrogen is the most
abundant molecule in the ISM and hence an important collisional partner.
Astrophysicists often use scaled He collisional rate coefficients to approximate
excitation by H2. The use of this approximation has previously been found
to be inaccurate (Dubernet, M.-L. et al., 2006; Lanza et al., 2014; Bouhafs,
Lique et al., 2017). In this chapter we present the collision of NH by H2.

Hydrogen has a nuclear spin of 1/2 and hence for H2 the nuclear spins
of the hyrogen can either be in the same direction (I=1) or the opposite
(I=0). This leads to the ortho- (oH2) and para- (pH2) forms, also called
nuclear-spin isomers of H2. To satisfy the exclusion principle, the rotational
levels of oH2 are given by odd values of the rotational quantum number j,
while the levels of pH2 have even j values. Both oH2 and pH2 are important
collisional partner, so we have to consider the collisional processes for both
species separately.

8.1 Potential Energy Surface
For the ab initio calculations, the NH-H2 geometry is described in Jacobi
coordinates as in Fig 8.1.
R is the distance between the centre-of-masses of NH and H2, Θ is the

angle between R and the bond length of NH, Θ′ the angle between R and
the bond length of H2 and φ is the azimuthal angle representing the rotation
of H2 about R. The PES is calculated for a fixed NH and H2 bond distance
of 1.99 bohr and 1.44 bohr respectively. Θ and Θ′ varies between 0◦ and
180◦ while φ varied between 0◦ and 90◦.
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8. NH-H2: PES and Scattering Calculations

Figure 8.1: Jacobi coordinates for NH-H2.

The new an initio calculations were carried out using partially spin-restricted
coupled cluster method with single, double and perturbative triple excitation
[RCCSD(T )] using F12a method(Adler et al., 2007; Knizia et al., 2009)
with the aug-cc-pVTZ(AVTZ) basis set (section 2.2.2.1 and 2.2.3) using
the MOLPRO package (Werner et al., 2010). To obtain the analytic
representation accessible for close coupling solutions, the ab initio points
are fitted as described in section 2.3 for a radial grid of R with 0≤L1≤10
and 0≤L2≤4 giving a total of 86 radial expansion coefficients (L1 and L2
are the Legendre polynomial expansion terms in he interaction potential
associated with NH and H2 respectively). Figure 8.2 shows contour plots
of the analytical potential. Each contour is a 2-Dimensional cut of the 4D
NH-H2 PES.

The Global minima for this PES is at R = 6.30 bohr, Θ = 180◦ and Θ′ =
0◦/180◦ with a well depth of 149.10 cm-1. The PES also has another local
minima at R = 6.80 bohr, Θ = 0◦ and Θ′ = 90◦ with a well depth of 109.54
cm -1.
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8.1. Potential Energy Surface

Figure 8.2: Contour plot of 4D NH-H2 PES for fixed values of co-ordinates
mentioned in each contour. 89



8. NH-H2: PES and Scattering Calculations

8.2 Collisonal Dynamics of diatom with
diatom

The detailed derivation for the case of closed shell diatom-diatom collision
was first given by Green (1975). In the beginning of chapter 3, we introduced
the total Hamiltonian for a diatom-diatom system. If we don’t consider HCD
= 0, then we can write

HAB = ~2

2I j1
2 (8.1)

HCD = ~2

2I j2
2 (8.2)

where the molecule AB and CD are closed-shell molecule. With this, we can
get the close-coupling equations for for diatom-diatom system (similar to eq.
3.12) as follows

~2

2µ

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

γ′γ

)
U J
γ′ (R) =

∑
γ′′

U J
γ′′(R) 〈j′′1 j′′2 j′′12l

′′J |V (R,Θ,Θ′,Φ) |j′1j′2j′12l
′J〉

(8.3)

where, j1 and j2 are the rotational momenta quantum numbers of the mo-
lecules AB and CD respectively. l is the orbital momentum of the collision,
j12 = j1 + j2, J = j12 + l. γ ≡ j1j2j12l.

If the electronic potential V (R,Θ,Θ′,Φ) is of the form

V (R,Θ,Θ′,Φ) =
∑
λ1λ2λ

Eλ1λ2λ
el (R)

∑
m1m2m

〈λ1λ2m1ml|j′λ′JM〉Y m1
λ1 (r)Y m2

λ2 (r′)Y m
λ (R)

(8.4)

the term 〈j′′1 j′′2 j′′12l
′′J |V (R,Θ,Θ′,Φ) |j′1j′2j′12l

′J〉 becomes

〈j′′1 j′′2 j′′12l
′′J |V (R,Θ,Θ′,Φ) |j′1j′2j′12l

′J〉 =
∑
λ1λ2λ

Eλ1λ2λ
el (R)(−1)J+j′1+j′2+j′12

×
√

([j′1][j′′1 ][j′2][j′′2 ][j′12][j′′12][l′][l′′][λ]2[λ1][λ2])
(
λ l′′ l′

0 0 0

)

×
(
λ1 j′′1 j′1
0 0 0

)(
λ2 j′′2 j′2
0 0 0

){
l′′ l′ λ
j′12 j′′12 J

}
j′′12 j′′2 j′′1
j′12 j′2 j′1
λ λ2 λ1


(8.5)
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Then the solution to eq. 8.3, subject to boundary condition that the
wavefunction vanishes as R → 0 and the S-matrix is expressed as follows

U J
γ′ (R) = δγγ′e

−i(kγγR− lπ2 ) −

√√√√ kγγ
kγ′γ
〈γ′|SJ |γ〉 ei(kγ′γR−

l′π
2 ) (8.6)

where,

k2
γ′γ = 2µ

~2 (E + Eγ − Eγ′)

From the S-matrix, the cross section is obtained as

σ(j′1j′2 ← j1j2) = π

k2
γγ[j1][j2]

∑
J,j12,j′12,l,l

′

[J ]
∣∣∣∣δγγ′ − 〈γ′|SJ |γ〉∣∣∣∣2 (8.7)

This gives the cross section for pure rotational level resolved (de-)excitation
of closed-shell linear rigid rotor - linear rigid rotor collision. These equations
are directly implemented in the default MOLSCAT codes ITYPE=3 (Hutson,
1994b). But, we know that NH is an open-shell molecule and we saw the
importance of considering the spin interactions (fine structures) for atom-
diatom system from chapter 6. In the next section, we rewrite the above
equations to include the spin in the dynamic equations similar to what we
did in section 6.2.

8.2.1 Collisonal Dynamics of NH(3Σ−) with H2(1Σ)
Similar to sec. 6.2, we start from the pure hund’s (b) case of the NH molecule
and later we will consider the intermediate coupling case.

In the pure hund’s case (b), the total angular momentum quantum number
for NH molecule is given by

j1 = N + S

where, N is rotational momentum quantum numbers of NH molecule. Hence
the wavefunction of the NH molecule would be given by eq. 6.5. Therefore
the close-coupling equations becomes

~2

2µ

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

β′β

)
U JT
β′ (R) =∑
β′′

U JT
β′′ (R) 〈β′′JT |V (R,Θ,Θ′,Φ) |β′JT 〉

(8.8)
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where, β ≡ NSj1j2j12l. N and j2 are the rotational momenta quantum
numbers of the molecules NH and H2 respectively. l is the orbital momentum
of the collision, j12 = N + j2, J = j12 + l and JT = J + S.

If the interaction potential is in the form of eq. 8.4, then the term
〈β′′JT |V (R,Θ,Θ′,Φ) |β′JT 〉 would become

〈β′′JT |V (R,Θ,Θ′,Φ) |β′JT 〉 =
∑

Jj12j′12

(−1)j′′R+j′R+j′′2 +j′2+l′′+l′

× [J ′]
√

[j′1][j′′1 ][j′R][j′′R][j′12][j′′12]

×
{
N ′ j′2 j′12
l′ J ′ j′R

}{
N ′′ j′′2 j′′12
l′′ J j′′R

}{
j′R N ′ J
S JT j′1

}

×
{
j′′R N ′′ J
S JT j′′1

}
〈j′′1 j′′2 j′′12l

′′J |V (R,Θ,Θ′,Φ) |j′1j′2j′12l
′J〉

(8.9)

where, jR = j2 + l and 〈j′′1 j′′2 j′′12l
′′J |V (R,Θ,Θ′,Φ) |j′1j′2j′12l

′J〉 is given by
eq.8.5.

For intermediate coupling case, the close-coupling equation would hence
be

~2

2µ

(
∂2

∂R2 −
l′(l′ + 1)
R2 + k2

α′α

)
U JT
α′ (R) =

∑
α′′

U JT
α′′ (R) 〈α′′JT |V (R,Θ,Θ′,Φ) |α′JT 〉

(8.10)

where, α ≡ Fiγ ≡ Fij1j2j12l. 〈α′′JT |V (R,Θ,Θ′,Φ) |α′JT 〉 can be written in
terms of 〈β′′JT |V (R,Θ,Θ′,Φ) |β′JT 〉 as follows

〈α′′JT |V (R,Θ,Θ′,Φ) |α′JT 〉 =
∑
N ′′N ′

cj
′

N ′F ′i
cj
′′

N ′′F ′′i
〈β′′JT |V (R,Θ,Θ′,Φ) |β′JT 〉

(8.11)

Therefore the solution to the close coupled eq.8.10 subject it to boundary
condition that the wavefunction vanishes as R → 0 (as we did before) would
be

U JT
α′ (R) = δαα′e

−i(kααR− lπ2 ) −
√
kαα
kα′α
〈α′|SJT |α〉 ei(kα′αR−

l′π
2 ) (8.12)

This gives us the S-matrix. So the total cross section over all JT for
transitions between fine-structure resolved rotational energy levels of any
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3Σ− −1 Σ system Fi,j1,j2 and F′i,j′1,j′2 would be

σ(F ′i , j′1, j′2 ← Fi, j1, j2) = π

k2
αα[j1][j2]

∑
JT ,j12,j′12l,l

′

[JT ]
∣∣∣∣δαα′ − 〈α′|SJT |α〉∣∣∣∣2

(8.13)

k2
αα = 2µE

~2

where, E is the relative kinetic energy.
The collisional de-excitation rate coefficient is hence defined as

kFij1j2←F ′i j′1j′2(T ) =
√

8kBT
πµ

( 1
kBT

)2 ∫ ∞
0

σFij1j2←F ′i j′1j′2(E)E e
−
(

E
kBT

)
dE

(8.14)

8.3 Influence of H2 basis on scattering
calculations

Before starting the scattering calculations, it is necessary to select a suitable
rotational basis set for H2 to ensure the convergence of the cross section.
In this section we investigate the effect of various possible rotational basis
sets on the pure rotational level resolved state-to-state cross sections. The
comparison of selected pure rotational level resolved cross sections computed
for a selected total energy of NH-H2 collisions are presented in Table 8.1.

Energy (cm-1) para-H2 ortho-H2
j2=0 j2 = 0,2 j2 = 0,2,4 j2 = 1 j2 = 1,3

50 0.2494 0.3626 0.3624 - -
100 19.0338 19.4505 19.4383 - -
200 0.5098 0.7662 0.7631 19.0825 19.3520
300 0.1880 0.1753 2.8846 2.9075
1000 0.0105 0.0084 0.0566 0.0509

Table 8.1: values of cross section (in Å2) for the highest transition of each
energy.
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8. NH-H2: PES and Scattering Calculations

For E = 50 and 100 cm-1, there were no transitions for collisions with ortho-
H2 because the energies were below the threshold energy for the transition.

For para-H2, there is a considerable difference in the cross sections between
j2 = 0 and j2 = 0, 2 basis sets up to 300 cm-1 (37% for 50 cm-1 & 7% for
300 cm-1) but for the basis sets j2 = 0, 2 and j2 = 0, 2, 4 the differences are
very negligible (0.05% for 50 cm-1 & 0.4% for 100 cm-1). It is interesting to
note that for E = 300 cm-1, the difference is negative which is different from
other energies where the differences are positive. Even for E=1000 cm-1,
the difference is negative (-22%). With regards to the ortho-H2 basis sets,
j2 = 1 and j2 = 1, 3, the differences in the cross sections for energies 200,
300 and 1000 cm-1 are ≈ 1.4%, 0.8% & 0.1% respectively.

Up to 300 cm-1 there are no new transitions with increase in the basis of j2.
But at and beyond 1000 cm-1 there are new transitions. The cross sections
of the j2 → j′2 transitions [where, j2 = 0 or 1 and j′2 = 2 or 3] are very less
for ortho-H2 (of the order of 10-3 Å2), while for both ortho- and para-H2 the
cross sections for j′2 → j′2 transitions are higher when compared to j2 → j2.
With respect to the computational cost, the time taken for calculations
with j2 = 0,2,4 is too CPU consuming when compared to other 2 basis sets
of para-H2 and for ortho-H2, time taken with j2 = 1,3 is a lot more when
compared to j2 = 1.

From the calculations, we can hence say that j2 = 0,2 would be more
suitable for performing the scattering calculations for para-H2 and j2 = 1
for ortho-H2.

8.4 Results and observations

8.4.1 Pure rotational level resolved scattering
calculation

Using the NH-H2 4D PES, we performed the first scattering calculations
for the transitions between the pure rotational levels (N ) of NH and H2 (j2)
using the default MOLSCAT code (Hutson, 1994b) for linear rigid rotor -
linear rigid rotor type collision (section 8.2). The value of convergence of
various parameters used in the calculations are given in appendix A. The
rotational basis set for H2 is set based on the analysis of section 8.3. Figure
8.3 presents the energy variation of the integral cross sections for transitions
between pure rotational levels of NH and H2. In which, figures 8.3.1 presents
the cross sections for a selected transtions between NH-pH2(j2=0 ) levels
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and figures 8.3.2 presents the cross sections for a selected transtions between
NH-oH2(j2=1 ) levels.
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Figure 8.3: Collisional excitation cross sections of NH by H2 for pure
rotational level transitions using 4D NH-H2 PES. 1(a)&(b) are collision of
NH by para-H2; 2(a)&(b) are collision of NH by ortho-H2.

From the fig. 8.3 we can compare the effect of ortho-H2 and para-H2 on the
cross section. We observe sevaral rosonance features at multiple regions of
the kinetic energy spectrum. These can be associated with the quasi-bound
states formed, within the multiple potential wells present in the NH-H2 PES,
due the temporary trapping of the H2 molecules in these barriers. And the
resonances beyond the potential well depth energies can be attributed to
the shape of the potential wells (shape resonances). We can also observe
that the intensity of the resonance are more for NH-pH2 collsions when
compared with NH-oH2 collisions. That is, the NH-oH2 cross sections are
comparitively smoother. This difference is because of the fact that, for
H2(j2ge1 ) has a lot of resonances when compared to H2(j2=0 ) and hence
most of them get overlapped (Lanza et al., 2014). We can cleary notice that
the magnitude of cross sections of NH-oH2 collisions are higher than that of
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8. NH-H2: PES and Scattering Calculations

NH-pH2. For NH-pH2, even-∆N (especially ∆N=2) transitions have larger
cross sections compared to other transitions, while the same propensity rule
doesn’t seem to be the case for NH-oH2.

By averaging over a Maxwellian distribution of the collisional velocities, we
obtain thermally averaged rate coefficients for excitation and de-excitation
transitions between the pure rotational levels of NH and H2. We obtained
rate coefficients for temperatures up to 60 K. Fig.8.4 compares the rate
co-efficients of NH-pH2 and NH-oH2 for selected transitions.
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Figure 8.4: Comparing the temperature dependent rate-coefficients of
collision of NH by para-H2 (solid) and ortho-H2 (dashed) for a selected
pure rotational level transitions.

Obviously, the rate coefficients displays the same propensity rules as observed
for the cross sections. From fig.8.4 we can notice that, for odd-∆N transitions,
the NH-oH2 collision (de-)excitations have larger rate-coefficients when
compared to that of NH-pH2 while for the even-∆N transitions it is the
reverse. In general, the differences between the NH-pH2 and NH-oH2 rate-
coefficients, decreases with increasing ∆N.
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8.4. Results and observations

These comparisons are worth mentioning because these differences
demonstrates the need for dedicated calculations for NH-pH2 and NH-oH2
explicitly rather than using the same rate-coefficients for both or scaling
one data to the other.

8.4.2 Fine structure resolved scattering calculation

For performing the fine structure resolves scattering calculations with the
4D NH-H2 PES, we tried to implement the modifications to the linear rigid
rotor - linear rigid rotor collision type of MOLSCAT codes as discussed
in section 8.2.1. We could reproduce the fine-structure resolved energy
levels of the NH-pH2 and NH-oH2 complexes but there are a few nodi in
translating these to the interaction potential matrix and so, for now, it is
being considered as a future prospect.

0 20 40 60 80 100 120 140 160 180
θ (degrees)

4

5

6

7

8

9

10

11

12

R 
(b
oh

r)

-57.70

-57

-57

-52

-52

-40

-40

-40

-25

-25

-25

-16

-16

-16

-10

-10

-10

-5

-5

-5

-3

-3

-3

-2

-2

-2

 0

 0

75

75

300

300

1000

1000

2000

2000

NH-H2 2D PES

Figure 8.5: Contour plot of averaged 2D NH-H2 PES as a function of R and
Θ.

In order to get a preliminary idea of the rate-coefficients of the fine structure
resolved transitions of NH colliding with H2 and to compare them with that
of the collisions with He, we performed the scattering calculations with the
averaged 2D NH-H2 PES. For this, the 4D PES is integrated over all the Θ′
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8. NH-H2: PES and Scattering Calculations

and Φ angles. This reduces the diatom-diatom system to diatom-atom "like"
system. Hence we can use the modified MOLSCAT code for linear rigid
rotor - atom collsion type (The same that was used for NH-He and ND-He
scattering calculations). Fig.8.5 shows the contour plot of the averaged 2D
NH-H2 PES. Using this PES in the MOLSCAT codes that was modified
to take into account the fine structures of the NH energy levels, we solve
the quantum coulpled equations to get the cross sections. The scattering
calculations were performed up to a total energy of 1000 cm-1 with a step of 1
cm-1. The value of convergence of various parameters used in the calculations
are given in appendix A. The reduced mass of the NH–H2 system is µ =
1.7600 amu.

Fig.8.6 presents the energy variation of the integral cross sections for
transitions from the initial rotational level N = 0,F 1 of NH. As observed in
the case of pure rotational level resolved cross sections of NH-pH2 collisions,
the fine structure resolved transitions also have several resonance features
at multiple regions. Also, the propensity rules and pattern of cross section
variation with respect to kinetic energy is similar to that of the NH-pH2(j2=0 )
cross sections. Hence we can say that the averaged 2D PES of NH-H2 is only
equivalent to collision of NH by H2 in its ground rotational level (j2=0 ).

We also obtain the thermally averaged rate coefficients for excitation and
de-excitation transitions between fine-structure levels of NH. We obtain rate
coefficients for temperatures up to 120 K. This thermal dependence of the
state-to-state rate coefficients is illustrated in Fig.8.7. The magnitude of
the rate coefficients (and also the cross sections) are governed by the same
propensity rules which were observed in NH-He and ND-He fine structure
(de-)excitations and the NH-pH2.
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Figure 8.6: Collisional excitation cross sections of NH by H2 from N=0,F1.
(a) is for F -conserving transitions, while (b-d) are for F -changing transitions.
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Figure 8.8: comparing the fine-structure resolved rate coefficients of NH-H2
(solid line) and NH-He (dashed line).

Fig.8.8 compares the fine structure resolved rate coefficients of the collisions
of NH by He and H2 for selected transitions. In general, there are significant
differences between the values of NH-He and NH-H2 rate coefficients. For all
the transitions, the NH-H2 rate coefficients are larger than that of NH-He.
From fig.8.8(a) we can notice that the differences are larger for the even-∆N
transitions than the odd-∆N transitions. Additionally, the F-conserving
transition have larger differences than the F-changing transitions. Also,
the differences decreases with increasing ∆N (read even-∆N and odd-∆N
separately).

Based on the above observations, we can safely say that He can neither be
used as a model or can be scaled for H2 in its ground rotational state, let
alone the complete H2 in its ground electronic state. Hence this proves the
need for calculating the rate coefficients for collisions with H2 separately
rather than using the data of He.
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CHAPTER 9

Bound states of van der Waals
systems

In this chapter, I present the calculation of the bound states of the NH-He
and NH-Ar van der Waals complexes in its ground electronic state.

9.1 NH–He bound state calculations

As discussed in chapter 4, the bound state energies are the eigenvalues of
the close coupled equations below the dissociation energy which satisfies
the boundary conditions ( ψb(R) = 0 at R=0 and as R → + ∞). To
find such eigenvalues, the approach described in chapter 4 is used. This
is implemented as explained in section 4.3 in the BOUND (Hutson, 1993)
codes.

The bound state calculations were performed for the main 14N and 4He
isotopes. The coupled equations were solved using the log derivative method.
The calculations were performed with a propagator step size of 0.01 bohr,
and the other propagation parameters were taken as the default BOUND
input. The input parameters Emin and RMID were decided based on the PES
which has a global minimum with energy = -19.7135 cm-1 at R= 6.30 bohr
(RMID). Based the convergence of the output, the parameters RMAX and
JMAX were set at RMAX= 40a0 and JMAX= 14.

The bound energy levels of the NH-He complex computed with the Cybulski
et al. (2005) PES and the 3D-avg PES without considering the fine-structures
of NH are listed in Table 9.1. Energies are given relative to the ground
state energy of NH. Calculations with the Cybulski et al. (2005) PES were
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J l Energy (in cm-1)
Cybulski et al. (2005) 3D-avg PES Cybulski PES

0 0 -4.4174 -4.3236 -4.4176
1 1 -3.7818 -3.6904 -3.7821
2 2 -2.5375 -2.4587 -2.5382
3 3 -0.7538 -0.6886 -0.7550

Table 9.1: NH–He bound energy levels (in cm-1) obtained excluding the NH
fine structure. Energies are relative to the ground-state energy of NH. All
the levels correspond to the approximate quantum numbers N = 0. J and
l correspond to the total and orbital angular momentum of the complex,
respectively.

performed to validate the codes. The bound energy levels in Cybulski et al.
(2005) are also reported for the purpose of comparison.

In the next step, the BOUND code is modified to calculate fine-structure
resolved bound states for the NH-He complex. This was done in two main
steps. Normally, in the in-built rigid diatom + atom type interactions, pure
rotational levels of NH are constructed directly from the input details (B
and D values of NH) and these energy levels are identified by a unique set of
quantum numbers. To include the fine-structure, we introduce a subroutine
which calculates the energies of each level using the equations 5.6. Once the
energy levels and the corresponding unique quantum numbers are assigned,
the same algorithm described in chapter 4 is introduced in the bound code
to find the eigenvalues. The fine-structure resolved bound states of the
NH-He complex published in Cybulski et al. (2005) are compared with the
bound states calculated with the new 3D-avg PES and the PES of Cybulski
et al. (2005) in table 9.2. Energies are given relative to the ground state
energy of NH.

9.1.1 Discussions

Firstly, from tables 9.1 and 9.2, we can confirm that NH-He complex supports
a bound state and that the energy of these bound states are in very good
agreement with that of the Cybulski et al. (2005). The dissociation energy
of the complex is slightly smaller (D0 = 4.3237 cm-1) than the one calculated
with the previous Cybulski et al. PES (D0 = 4.4097 cm-1). The small
difference (0.08 cm-1) is attributed to the differences between well depth of
the Cybulski and 3D-avg PES of NH–He.
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9.1. NH–He bound state calculations

J l Energy (in cm-1)
Cybulski et al. (2005) 3D-avg PES Cybulski PES

1 0 -4.4174 -4.3216 -4.4177
0 1 -3.7790 -3.6868 - 3.7792
1 1 -3.7832 -3.6922 -3.7835
2 1 -3.7815 -3.6908 -3.7818
1 2 -2.5365 -2.4579 -2.5368
2 2 -2.5385 -2.4595 -2.5391
3 2 -2.5372 -2.4585 -2.5379
2 3 -0.7536 -0.69038 -0.7561
3 3 -0.7542 -0.68922 -0.7599
4 3 -0.7537 -0.68845 -0.7596

Table 9.2: NH–He bound energy levels (in cm-1) obtained including the
NH fine structure. Energies are relative to the ground-state energy of NH.
All the levels correspond to the approximate quantum numbers N = 0,F1. J
and l correspond to the total and orbital angular momentum of the complex,
respectively.

J l Bound state energy (in cm-1)
using 2D PES

0 0 -4.3897
1 1 -3.7555
2 2 -2.5140
3 3 -0.7360

Table 9.3: NH-He bound states (excluding the fine-structures) energies
calculated using 2D PES

Also, if we compare the bound states calculated from 2D PES and 3D-avg
PES with that of the Cybulski et al. (2005) values, we realise the effect of
the larger basis set and the effect of inclusion of the vibrations of NH. As,
we can see from table 9.3 and 9.1 , there is a 0.63 - 2.4 % difference between
the values of Cybulski et al. (2005) and the energy from 2D PES. And, if we
compare the bound state energies calculated using 2D PES and 3D-avg PES,
we notice a 1.5 - 6.6 % difference between the values which demonstrates
the significance of inclusion of the NH vibrations.

To compare the results of the present work with the experimental results
of Kerenskaya et al. (2004), the values in table 9.1 are used, as the fine
structure splitting could not be resolved in their experiments. Using the
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l Rotational constant(B) in cm-1

Cybulski et al. (2005) 3D-avg PES Cybulski PES
1 0.3178 0.3166 0.3177
2 0.3133 0.3108 0.3132
3 0.3053 0.3029 0.3052

Table 9.4: Calculated Rotational Constants for different Pontential energy
surfaces

equation, El = E0 + B l(l+1) and the bound state values of 3D-avg PES of
table 9.1, we get the average rotational constant, B = 0.311 cm-1 which is
slightly lower than the experimental value of 0.334 cm-1. (B from Cybulski
et al. (2005) paper is 0.313 cm-1). We can clearly notice that the values are
in good agreement.

If we use the equation, El = E0 + B l(l+1) - D l2(l+1)2 and the bound
state values of 3D-avg PES of table 9.1, we get rotational constant, B =
0.3195 cm-1 and D = 0.0015 cm-1 (B and D values calculated from Cybulski
et al. (2005) paper are 0.3200 cm-1 and 0.0011 cm-1, respectively).

Hence we can confirm that the constant values from the 3D-avg PES used
in this thesis can be accurate enough to predict the rotational spectra of
the NH-He complex. This also proves the correctness of our new method of
calculating the fine-structure resolved bound states.
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9.2 NH–Ar bound state calculations
Using the highly correlated 3D-avg PES, we have computed the bound-states
of Ar-NH complex by the coupled-channel approach, as implemented in
the BOUND program (Hutson, 1993). The bound state calculations were
performed for the main 14N and 40Ar isotopes. The coupled equations
were solved using the log-derivative propagator of Manolopoulos (LDMA)
(Manolopoulos, 1988; Hutson, 1994a).
Similar to the case of NH-He complex, we first perform the bound state
calculations neglecting the NH fine structures. The calculations were done
with a propagator step size of 0.01 bohr, and the other propagation para-
meters were taken as the default BOUND values. The rotational basis
includes the rotational states with Jmax ≤ 10. The bound energy levels
of the Ar-NH complex computed with the 3D-avg PES are listed in Table 9.5.

J l Energy(in cm-1)
0 0 -73.1507
1 1 -72.9324
2 2 -72.4988
3 3 -71.8479

Table 9.5: NH-Ar bound energy levels (in cm-1) obtained excluding the NH
fine structure.

As mentioned in the previous section, the NH molecule exhibits a fine
structure due to the presence of non-zero the electronic spin. The modified
BOUND program which includes this fine structure of NH molecule as
explained in the previous section is used. Table 9.6 presents the bound state
energies for the first few values of the total angular momentum J.

9.2.1 Discussions

The bound energy levels indicate a weak coupling of the electron spin
and rotation of the NH molecule. This is as expected, as the same is
observed in the case of NH-He bound states. From the present calculations,
dissociation energy (D0) of the complex is 73.1503 cm-1 which is higher
than the previously calculated value of Kendall et al. (1998) (D0= 71.5
cm-1). The difference (1.65 cm-1) can be majorly attributed to the difference
between the Ar-NH PESs used in the two calculations. Since the PES we
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J l Energy(in cm-1)
1 0 -73.1519
0 1 -72.8964
1 1 -72.9507
2 1 -72.9305
1 2 -72.4804
2 2 -72.5169
3 2 -72.4947
2 3 -71.8333
3 3 -71.8658
4 3 -71.8426

Table 9.6: NH–Ar bound energy levels (in cm-1) obtained including the
NH fine structure. Energies are relative to the ground-state energy of NH.
All the levels correspond to the approximate quantum numbers N = 0,F1. J
and l correspond to the total and orbital angular momentum of the complex,
respectively.

used is highly correlated and also includes the vibration of the NH molecule,
these values are more accurate. The differences can also to attributed to
the method employed to calculate the dissociation energy.

Also, fitting the energies of Table 9.5 to the rigid rotor expression,EJ =
E0 +BJ(J+1)−DJ2(J+1)2 (J corresponds to the total angular momentum
of the complex), we obtain the rotational constant B = 0.1087 cm-1 and D
= 0.000025 cm-1. Considering the accuracy of our new PES, we can posit
that these values can be used for future reference and calculations.

108



PART IV

CONCLUSIONS





CHAPTER 10

Conclusions & Prospectives

In this thesis the theoretical study of 3 inelastic collisions of astrophysical
interest were presented. The first two were the study of the collisions of open
shell linear diatoms (NH & ND) with structureless atom (He), while the
other was collisions between an open shell linear diatom (NH) and a closed
shell linear diatomic molecule (H2). A study of spectroscopy of the open
shell linear diatom - structureless atom complex is also presented here. The
conclusions reached in these studies are summarized here and the possible
extensions of this work is also briefly mentioned.

We have presented a new highly accurate PES for the NH–He van der Waals
complex. The 3D PES was obtained from highly correlated calculations at
the RCCSD(T) level using a complete basis set extrapolation. The new PES
is found to be in good agreement with the previously published one. We
use the same NH-He interaction potential for ND-He by taking into account
the displacement of the centre of mass of NH and ND in the analytical
representation. Collisional excitation of NH and ND (X3Σ−) by He was
studied at the close-coupling level using these highly correlated 3D-avg PESs
for both fine structure and hyperfine structure resolved energy levels of NH
and ND.

Calculations of the collisional excitation cross sections of the fine-structure
level resolved NH by He were performed for energies up to 3500 cm-1, which
yield, after a thermal average, rate coefficients up to 350 K and for the
fine-structure levels of ND by He for energies up to 2000 cm-1, which after a
thermal average, yielded rate coefficients up to 200 K. The calculated
rate coefficients of NH-He were compared with available experimental
measurements and previous theoretical results. A fairly global agreement was
found between experimental and theoretical data. The significant differences
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were surprising taking into account the accuracy of the present theoretical
approach also given that this kind of theoretical modeling has been shown
to well reproduce experiments for other systems. [for example,CN–He(Lique,
Spielfiedel, Feautrier et al., 2010); OH-He (Kalugina et al., 2014,Kłos et
al., 2007)]. Hence, the accuracy of the experimental data is legitimately
challenged. This may also be supported by the fact that, in the experiments,
some of the rate coefficients have not been directly measured but inferred
through a master equation (Eq.(1) of Rinnenthal et al., 2002) which will
propagate the errors.

The NH and ND rate coefficients were also compared in great detail and we
found significant differences between the two sets of data. Fine structure
resolved rate coefficients of both NH and ND present a strong propensity
rules in favor of ∆j = ∆N transitions, as expected from theory. The
differences were clearly explained by the different rotational structure of
the two molecules as well as the different expansion of their associated
interaction potential with He. This comparison also shows that one has to
be careful when using inelastic rate coefficients of the main isotopologues
to interpret observation of deuterated isotopologues especially for a light
hydride like NH.

We also present the hyperfine resolved state-to-state collisional rate
coefficients of NH and ND by He. We have obtained hyperfine resolved
rate coefficients for transitions involving the lowest levels of NH and ND for
temperatures up to 150 K. The ∆j = ∆F1 = ∆F propensity rule is observed
for the hyperfine transitions of both isotopologues.

Using new 3D-avg PES of NH-He, we have also studied the spectroscopy of
the NH–He complex including and excluding the fine structures of NH, and
we have determined a new rotational constant ( B = 0.3195 cm-1 and D =
0.0015 cm-1) that agrees well with the available experimental data. Such an
agreement confirms that the new 3D-avg PES is accurate enough. Hence,
resonances that could be seen in experimental cross sections obtained with
a cross molecular beam machine would possibly be accurately analyzed with
this new interaction potential. As an additional task, the same bound state
calculations were extended to NH-Ar complexes too.

We have also presented a new highly accurate PES for the NH–H2 van der
Waals complex for the first time. The 3D PES was obtained from highly
correlated calculations at RCCSD(T) level of theory using F12a method with
AVTZ basis set. Using this NH-H2 4D PES, we performed the first scattering
calculations for the transitions between the pure rotational levels of NH and
H2. It was noticed that the NH-pH2 cross sections and NH-oH2 are quite
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different. For NH-pH2, even-∆N (especially ∆N=2) transitions had larger
cross sections compared to other transitions, while the same propensity rule
did not apply for for NH-oH2. The comparisons demonstrated the need
for dedicated calculations for NH-pH2 and NH-oH2 explicitly rather than
using the same rate-coefficients for both or scaling one data to the other.
For performing the fine structure resolved scattering calculations for NH-H2,
the 4D PES was averaged to a 2D NH-H2 PES. Using this 2D PES, the
closed coupled equations for the collision of open shell linear diatoms and
structureless atom were solved. It was noticed that the propensity rules and
pattern of cross section variation with respect to kinetic energy were similar
to that of the NH-pH2(j2=0 ) and there were significant differences between
the values of NH-He and NH-H2 rate coefficients. Hence, It was concluded
that He can neither be used as a model nor can be scaled even for H2 in its
ground rotational state and so, the rate coefficients for collisions with H2
has to be calculated separately rather than using the data of He.

10.1 Prospective
"A universe of possibilities!!"

To start with, can use the new hyperfine rate coefficients of NH-He and
ND-He to perform the non-LTE radiative transfer modeling calculations to
revise the NH and ND abundances.

Another important prospect would to complete the inclusion of the fine
structure of 3Σ open shell molecules in the MOLSCAT codes for rigid rotor-
rigid rotor collision system and using that, calculating the fine structure
resolved state-to-state rate coefficients of NH-pH2 and NH-oH2 collisions
using the new 4D NH-H2 PES. If and when successful, we could use them
for deriving the hyperfine rate coefficients of NH-H2. As of now, we can also
get the hyperfine rate coefficients from the S-matrix of fine-structure NH-H2
which we calculated using the 2D averaged PES. Also, similar to what we
did with NH-He PES, we can include the displacement of centre of mass, to
get a PES for ND-H2 and perform the scattering calculations.

It would be interesting to use the modified BOUND codes (that we presented
and used in this thesis) for other similar systems. We can also modify the
BOUND codes to include the fine structures of 3Σ molecules to find the fine
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structure resolved bound states for diatom-diatom complexes (keeping in
mind NH-H2). There is a lot to be done and can be done and will be done,
I hope I Will contribute to atleast some of it!
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APPENDIX A

Convergence Parameters

For efficient computation with MOLSCAT we split total energies into smaller
grids and for each segment we optimized the input parameters of MOLSCAT
in order to converge cross sections among the levels of our interest. The
main parameters that have been used are

STEPS which is the step size of the propagator,
RMIN is the starting point of the integration,
RMAX is the range of the integration,
JMAX defines the rotational basis set (J1MAX & J2MAX in case of 2
molecule collision) and
LMAX specifies the highest Legendre term to include in the expansion of
the potential(L1MAX & L2MAX in case of 2 molecule collision).

Parameter Energy range ( in cm-1)
33-100 101-500 501-1000 1001-2000 2001-3000

RMAX 80 70 50 50 50
STEPS 70 50 20 20 10
LMAX 14 15 17 18 20
JMAX 10 9 15 18 20

Table A.1: Convergence Parameters used for NH-He calculations
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Parameter Energy range ( in cm-1)
17-100 101-500 501-1000 1001-2000 2001-3000

RMAX 60 60 50 45 45
STEPS 40 30 20 15 10
LMAX 13 16 20 26 30
JMAX 11 15 18 22 26

Table A.2: Convergence Parameters used for ND-He calculations

Parameter Energy range ( in cm-1)
17-100 101-500 501-1000

RMAX 70 50 40
STEPS 50 30 25
L2MAX 10 10 10
J2MAX 9 12 15

Table A.3: Convergence Parameters used for pure rotational level resolved
NH-para-H2 (J1MAX = 0,2) calculations using 4D PES

Parameter Energy range ( in cm-1)
17-100 101-500 501-1000

RMAX - 80 70
STEPS - 30 20
L2MAX - 10 10
J2MAX - 12 18

Table A.4: Convergence Parameters used for pure rotational level resolved
NH-ortho-H2 (J1MAX = 1) calculations using 4D PES

Parameter Energy range ( in cm-1)
17-100 101-500 501-1000

RMAX 100 90 70
STEPS 30 25 20
LMAX 14 17 20
JMAX 10 13 18

Table A.5: Convergence Parameters used for fine structure resolved NH--H2
calculations using averaged 2D PES
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ABSTRACT
Collisional excitation of light hydrides is important to fully understand the complex chemical and physical processes of atmospheric and
astrophysical environments. Here, we focus on the NH(X3Σ−)-Ar van der Waals system. First, we have calculated a new three-dimensional
Potential Energy Surface (PES), which explicitly includes the NH bond vibration. We have carried out the ab initio calculations of the
PES employing the open-shell single- and double-excitation couple cluster method with noniterative perturbational treatment of the triple
excitations. To achieve a better accuracy, we have first obtained the energies using the augmented correlation-consistent aug-cc-pVXZ
(X = T, Q, 5) basis sets and then we have extrapolated the final values to the complete basis set limit. We have also studied the collisional
excitation of NH(X3Σ−)-Ar at the close-coupling level, employing our new PES. We calculated collisional excitation cross sections of the
fine-structure levels of NH by Ar for energies up to 3000 cm−1. After thermal average of the cross sections, we have then obtained the rate
coefficients for temperatures up to 350 K. The propensity rules between the fine-structure levels are in good agreement with those of similar
collisional systems, even though they are not as strong and pronounced as for lighter systems, such as NH–He. The final theoretical values are
also compared with the few available experimental data.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097651

I. INTRODUCTION

The study of inelastic collisions plays a relevant role in the
understanding of important processes in different fields, such as
atmospheric and astrophysical chemistry and physics. In particular,
open-shell molecules are crucial, being highly reactive compounds,
and intermediate in a large number of chemical reactions. A relevant
chemical species is the NH radical. This compound serves as a pro-
totype for other collisional studies involving open-shell molecules.
Being diatomic, it is also preferred for both experimental and theo-
retical scattering studies, owing to its large rotational energy level
spacings. In addition, the magnetic moment of its 3Σ− electronic
ground state makes NH suitable for studies of ultracold molecules1,2

because it can be easily thermalized at low temperatures through

collision with cold buffer gas atoms. In the past, NH has been the
subject of many theoretical and experimental collisional studies in
different electronic states and with a variety of perturbers, such as
the rare gases He3–10 and Ne.11–13

In our work, we focus on the calculation of a new ab initio 3D-
averaged Potential Energy Surface (PES) and collisional excitation
of the NH(3Σ−)-Ar system. To our knowledge, there are no theoret-
ical scattering studies for the fine-structure excitation of NH(3Σ−)
by Ar, while there is only one experimental work performed by
Dagdigian,14 employing a crossed beam apparatus. However, this
experiment provides only relative collisional cross sections up to the
rotational level N = 4 and no rate coefficients are available.

The most recent PES is given by Kendall et al.15 They employed
a combination of supermolecular and intermolecular unrestricted
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Møller-Plesset perturbation theory (UMPPT)16,17 and a selection of
monomer-centered basis sets augmented with bond functions. How-
ever, the NH bond length was kept frozen at 1.96 bohrs. Recent
studies10,13,18,19 have proven that the use of a 3D PES which takes into
account molecular vibration leads to more accurate results when
employed in collisional excitation studies of light hydrides by rare
gases. Moreover, inclusion of the bond vibrational motion makes
it possible to comprise excited vibrational states. Hence, we have
computed a new ab initio PES for the NH(3Σ−)–Ar van der Waals
complex including the NH bond vibration.

Then, we present the first fully quantum close-coupling (CC)
calculations of rotational inelastic cross sections for the NH(3Σ−)–
Ar collisional system. In addition, we have taken into account the
spin-coupling splitting of the rotational levels and we have included
the temperature dependence of the fine-structure resolved rate coef-
ficients in the final results.

The paper is organized as follows: Sec. II covers the calcu-
lation of the new NH–Ar PES and information about the bound
states of the NH–Ar complex; in Sec. III, we present the scattering
calculations, including the inelastic cross sections and rate coef-
ficients. In Sec. IV, we compare the resulting cross sections with
the available experimental data in Ref. 14. Conclusions are given in
Sec. V.

II. POTENTIAL ENERGY SURFACE
The two interacting species are considered in their ground elec-

tronic states NH(3Σ−) and Ar(1S). The NH(3Σ−)–Ar van der Waals
system has the 3A′′ ground electronic state. In this work, we used
the Jacobi coordinate system (see Fig. 1). The center of coordinates
is placed in the NH center of mass (c.m.), and the vector R connects
the NH c.m. with the Ar atom. The rotation of the NH molecule is
defined by the θ angle, and the r coordinate describes the NH bond
length.

FIG. 1. Definition of the Jacobi coordinate system. The origin of the coordinate
system corresponds to the NH center of mass. R is the distance between the origin
and the Ar atom, θ is the angle at which the Ar approaches the NH molecule, and
r is the NH bond length.

We performed the calculations for five NH bond lengths
r = [1.6, 1.8, 1.95, 2.15, 2.5] bohrs which allows us to take into
account vibrational motion of the NH molecule up to v = 2. We
have carried out ab initio calculations of the PES of the NH–Ar
van der Waals complex with the partially spin-Restricted Cou-
pled Cluster with Single, Double, and perturbative Triple excitation
method [RCCSD(T)],20,21 using the MOLPRO 2015 package.22 In
order to determine the interaction potential, V(R, θ, r), the basis set
superposition error (BSSE) was corrected at all geometries using the
Boys and Bernardi counterpoise scheme,23

V(R, θ, r) = ENH-Ar(R, θ, r) − ENH(R, θ, r) − EAr(R, θ, r), (1)

where the energies of the NH and Ar monomers are computed using
the full basis set of the complex.

To achieve a good description of the charge-overlap effects,
we have performed the calculations in a rather large augmented
correlation-consistent basis set aug-cc-pVXZ (X = T, Q, 5).24 Then,
we have extrapolated the energies to the Complete Basis Set (CBS)
limit using the following scheme:25

EX = ECBS + Ae−(X−1) + Be−(X−1)2

, (2)

where X is the cardinal number of the aug-cc-pVXZ basis set, EX is
the energy corresponding to the aug-cc-pVXZ basis set, ECBS is the
energy extrapolated to the CBS limit, and A and B are the param-
eters to adjust. We have carried out the calculations for θ angle
values from 0○ to 180○ in steps of 10○. R-distances were varied from
3.0 to 40.0 bohrs, yielding 52 points for each angular orientation.
Overall, ∼5000 single point energies were calculated for the NH–Ar
complex.

A. Analytical representation of the potential
energy surface

The analytical expression employed for the interaction poten-
tial V (R, θ, r) has the following form:26

V(R, θ, r) = N∑
n=1

L∑
l=1

Bl,n(R)(r − re)n−1dl+m−1
m0 (cos(θ)), (3)

where

Bl,n(R) = e−al,n(R−R(0)
l,n )( 2∑

i=0
b(i)l,n Ri)− 1

2
⎛⎝1+ tanh

R − R(1)l,n

Rref
l,n

⎞⎠ ∑j=6,8,10

c(j)l,n
Rj .

(4)

The basis functions dl+m−1
m0 (cos(θ)) are Wigner rotation functions,

N is the total number of r-distances, and L is the total number of
angles. The analytic potential was found to reproduce the calculated
energies quite well: the mean difference between the analytic fit and
the ab initio computed interaction energies is less than 2% over the
entire grid.

Previous studies18 have shown that averaging of the PES over
the corresponding vibrational level v leads to a better agreement
with experimental results than using a purely two-dimensional PES.
The newly constructed PES, which takes into account the stretching
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of the NH molecule, can be averaged over any vibrational state, up to
v = 2. The averaging is done using the following formula:

Vv(R, θ) = ⟨v(r)∣V(R, θ, r)∣v(r)⟩. (5)

The NH vibrational wave functions |v(r)⟩ were those computed by
Bouhafs et al.,13 which were evaluated using a discrete variable rep-
resentation (DVR) method27 from ab initio calculations of the NH
potential function using the internally contracted multireference
configuration interaction (MRCI)28 level and a large aug-cc-pV5Z
atomic basis set.

Figure 2 depicts the contour plot of our 3D PES averaged over
the ground vibrational state v = 0 as a function of R and θ (hereafter
referred to as 3D-ave PES). For this weakly bound system, the global
minimum in the interaction energy was found to be −104.138 cm−1

(R = 6.7 bohrs, θ = 69○).
Our study is in good agreement with the NH–Ar PES previ-

ously published.15 Kendall et al.15 carried out calculations for the
NH–Ar interaction with the supermolecular unrestricted Møller-
Plesset (UMP) perturbation theory and a combination of different
basis sets. The NH intermolecular distance was fixed at 1.95 bohrs.
According to the authors, the best results have been obtained with
the aug-cc-pVTZ(ext-b) basis set, augmented with bond functions,
and the global minimum is found at R = 6.75 bohrs and θ = 67○,
with a well depth of −100.3 cm−1 and an uncertainty within the
5%. These values are very close to our results for r = 1.95 bohrs
(R = 6.7, θ = 67○, 103.787 cm−1). Furthermore, the results of our 3D-
ave PES also agree well with those listed above, confirming the high
accuracy of our study. The slightly increased deepness of our well-
depth is mostly due to the use of CBS extrapolation, since the energy
follows a monotonic trend toward negative values, by approach-
ing the infinite basis set limit. Figure 3 depicts the variation of the
angle at which occurs the minimum of the interaction potential, for
different NH bond distances. While the equilibrium angle changes

FIG. 2. Contour plot (in cm−1) of the NH–Ar PES averaged over the ground
vibrational state v = 0 as a function of Jacobi coordinates R and θ.

FIG. 3. Equilibrium angles at different NH bond lengths. The R coordinate at the
minimum energy does not change with r and has always a value of ∼6.7 bohrs.

substantially over increasing r, the R distance is always close to
R = 6.7.

B. NH–Ar bound states and dissociation energy
Using the highly correlated 3D-ave PES described in Sec. II A,

we have computed the bound states of the NH–Ar complex using
a coupled-channel approach, as implemented in the BOUND pro-
gram.29 The bound state calculations were performed for the main
14N and 40Ar isotopes.

As a first step, we performed bound state calculations neglect-
ing the NH fine structure (i.e., NH was considered as a closed shell
molecule). The calculations were performed with a propagator step
size of 0.01 bohr, and the other propagation parameters were taken
as the default BOUND values. The rotational basis includes the rota-
tional states with Nmax ≤ 10. The bound energy levels of the NH–
Ar complex computed with the 3D-ave PES are listed in Table I.
From the present calculations, dissociation energy (D0) of the com-
plex is 73.15 cm−1 which is slightly larger than the previously cal-
culated value of Kendall et al.15 (D0 = 71.5 cm−1). The difference
(1.65 cm−1) can be mainly attributed to the difference between the
two NH–Ar PESs used in the calculations. Indeed, the well depth of

TABLE I. NH–Ar bound energy levels (in cm−1) obtained excluding the NH fine struc-
ture. Energies are relative to the ground-state energy of NH. All the levels correspond
to the approximate quantum numbers N = 0. J and l correspond to the total and orbital
angular momentum of the complex, respectively.

J l Energy (cm−1)

0 0 −73.1507
1 1 −72.9324
2 2 −72.4988
3 3 −71.8479
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TABLE II. NH–Ar bound energy levels (in cm−1) obtained with the inclusion of the NH
fine structure. Energies are relative to the ground-state energy of NH. All the levels
correspond to the approximate quantum numbers N = 0, F1. J and l correspond to
the total and orbital angular momentum of the complex, respectively.

J l Energy (cm−1)

1 0 −73.1519
0 1 −72.8964
1 1 −72.9507
2 1 −72.9305
1 2 −72.4804
2 2 −72.5169
3 2 −72.4947
2 3 −71.8333
3 3 −71.8658
4 3 −71.8426

the 3D-ave PES considering the vibration motion is slightly deeper
(by few cm−1) than the rigid rotor one of Kendall et al.,15 and
this difference leads to a larger estimated value of the dissociation
energy.

In order to derive the rotational constant of the NH–Ar com-
plex, we have fitted the energies of Table I to the rigid rotor
expression EJ = E0 + BJ(J + 1) − DJ2(J + 1)2, where J corre-
sponds to the total angular momentum of the complex. We have
obtained for the rotational and quartic centrifugal distortion con-
stants, B = 0.1087 cm−1 and D = 0.000 025 cm−1. Such estimates
allow generating the energetic structure of the complex and are use-
ful for the interpretation of future experimental spectra. As a com-
parison, our rotational constant is in good agreement with the value
obtained by Jansen et al.,30 i.e., B = 0.1007.

As previously mentioned, the NH molecule exhibits a fine
structure because of the coupling between the rotational angular
momentum and the electronic spin. The BOUND program was
modified to include this fine structure of the NH molecule.10 Table II
presents the bound state energies for the first total angular momen-
tum J. The predicted bound energy levels indicate that the coupling
of the electron spin to the rotational motion of the complex is very
weak. As a consequence, energy levels of NH–Ar are very simi-
lar to those obtained by neglecting the fine structure, as already
found for the NH–He complex.10 The dissociation energy is thus not
significantly impacted by the fine structure.

III. SCATTERING CALCULATIONS
Rotational transitions in the NH(3Σ−) electronic ground state

show fine-structure splitting, due to spin-rotation coupling. The
rotational wave function of NH for j ≥ 1 in the intermediate coupling
scheme can be written as31,32

∣F1jm⟩ = cosα∣N = j − 1, Sjm⟩ + sinα∣N = j + 1, Sjm⟩,
∣F2jm⟩ = ∣N = j, Sjm⟩,
∣F3jm⟩ = − sinα∣N = j − 1, Sjm⟩ + cosα∣N = j + 1, Sjm⟩,

(6)

where |N, Sjm⟩ denotes pure Hund’s case (b) basis functions and
the mixing angle α is obtained by diagonalization of the molecular
Hamiltonian. In this relation corresponding to the Hund’s case (b),
the total molecular angular momentum j is defined by

j = N + S, (7)

where N and S are the nuclear rotational and the electronic spin
angular momenta. In the pure case (b) limit, α→ 0, the F1 level cor-
responds to N = j − 1 and the F3 level to N = j + 1. The levels in the
spin multiplets are usually labeled by the nuclear rotational quantum
number N and the spectroscopic index Fi. This notation will be used
hereafter.

Using the new 3D-ave PES, we have studied the collisional exci-
tation of NH by Ar. The scattering calculations were performed
for the main 14N and 40Ar isotopes. The detailed description of
the Close-Coupling (CC) calculations that consider the fine struc-
ture levels of the colliders is given in Ref. 32. The quantal coupled
equations have been solved in the intermediate coupling scheme
using the MOLSCAT code33 modified to take into account the fine
structure of the rotational energy levels.

We used a total energy grid with variable steps. For the energies
below 500 cm−1, the step was equal to 1 cm−1, and then, between 500
and 1000 cm−1, it was increased to 2 cm−1 and to 20 for the interval
1000–3000 cm−1. Using this energy grid, the resonances (shape and
Feshbach) that usually appear in the cross sections at low energies
were correctly represented.

In order to ensure the convergence of the inelastic cross sec-
tions, it is necessary to include in the calculations several energeti-
cally inaccessible (closed) levels. At the largest energies considered
in this work, the NH rotational basis was extended to N = 12 to
ensure the convergence of the rotational cross sections between lev-
els with N < 8. One also needs to converge inelastic cross sections
with respect to partial waves. The total angular momentum quan-
tum number J needed for the convergence was set up to 238 for the
inelastic cross sections.

Moreover, in MOLSCAT, it is necessary to adjust the propaga-
tor’s parameters in order to ensure the convergence of cross section
calculations. For all the energies, the minimum and maximum inte-
gration distances were Rmin = 3.0 bohrs and Rmax = 50 bohrs, respec-
tively. The STEPS parameter was adjusted for each value of energy
in order to obtain a step length of the integrator sufficient to achieve
the convergence. In our work, the value of the STEPS parameter
decreases with increasing energy, going from 50 to 7 and, therefore,
constraining the R spacing below 0.1–0.2 bohr at all energies. The
reduced mass of the NH–Ar system is µ = 10.912 u, and the NH(3Σ−)
rotational and centrifugal distortion constants have been taken from
Ref. 34.

Figure 4 presents the energy variation of the integral cross sec-
tions for transitions from the initial rotational level N = 0, F1 of NH.
The resonances shown at low collisional energies are related to the
presence of a ∼104 cm−1 deep attractive potential well. As a con-
sequence, the Ar atom can be temporarily trapped there forming
quasibond states before dissociation of the complex.35,36 However,
excitation cross sections are less affected and therefore show few
resonances. Indeed, the energy spacing between rotational levels is
generally larger than the well depth of the PES.

The magnitude of the cross sections shown in Fig. 4 seems to
present the following propensity rules:
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FIG. 4. Collisional excitation cross sections of NH by Ar from N = 0, F1. (a) is
for fine-structure conserving transitions, while (b) and (c) are for fine-structure
changing transitions.

FIG. 5. Thermal dependence of the rate coefficients of NH by Ar from N = 0, F1. (a)
is for fine-structure conserving transitions, while (b) and (c) are for fine-structure
changing transitions.
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(1) Overall decreasing of the cross sections with increasing ∆N,
according to the usual trend for rotational excitation. In addi-
tion, even ∆N transitions are favored over odd ∆N transitions
as a consequence of near-homonuclearity of the PES.

(2) Fine-structure conserving transitions are favored, i.e., ∆j
= ∆N in the case of pure Hund’s case (b).

The same propensity rules are shown in similar systems, such as
NH-He and NH-Ne collisions.8,10,13 In particular, the latter applies
in general to molecules in the 3Σ− electronic state. Both propensity
rules have been predicted theoretically37 and also observed for the
O2-He38,39 or SO(X3Σ−)–He32 collisions.

The thermal rate coefficients, kFij→F′i j′(T), for excitation
and de-excitation transitions between fine-structure levels of NH
can be calculated by averaging CC excitation cross sections,
σFij→F′i j, over a Maxwellian distribution of collision velocities, as
follows:

kFij→F′i j′(T) = (8kBT
πµ
) 1

2 ( 1
kBT
)2 ∫ ∞

0
EkσFij→F′i j′(Ek)e −EkkBT dEk, (8)

where kB is the Boltzmann constant, µ is the reduced mass of the
system, and Ek is the translational energy.

The thermal dependence of these state-to-state rate coefficients
for temperatures up to 350 K is shown in Fig. 5 for transitions out of
the N = 0, j = 1, F1 level.

The rate coefficients display the same propensity rules as seen
for the integral cross sections. In particular, the rate coefficients
for F-conserving transitions are generally larger than those for
F-changing transitions.

IV. COMPARISON WITH EXPERIMENTS
Our new calculated cross sections can be compared with the

previous experimental results, obtained for a collisional energy of
410 cm−1 and for rotational levels up to N = 4, F1 (Ref. 14). Table III
shows experimental and theoretical values normalized with respect
to theN = 0, F1→N′ = 1, F1 cross section. The F-conserving propen-
sity rule is overall fulfilled in both the experimental and calculated
values. In addition, the F-conserving cross sections follow the sim-
ple scaling relation observed by Dagdigian,14 as shown in Fig. 6.

TABLE III. Comparison between experimental and our theoretical cross sections at a
collisional energy of 410 cm−1 and for transitions out of the N = 0, F1 rotational level.
All the values are normalized with respect to the cross section for the N = 0, F1 →
N′ = 1, F1 transition. Experimental error in parentheses is in unit of the last quoted
digit.

F1 F2 F3

N′ Expt.a Theoryb Expt.a Theoryb Expt.a Theoryb

1 1.0 1.0 0.662(40) 0.560 0.255(54) 0.217
2 0.407(54) 1.906 0.284(46) 1.275 0.154(20) 0.833
3 0.068(15) 0.427 0.059(10) 0.321 0.047(08) 0.239
4 0.023(05) 0.061 . . . . . . . . . . . .

aReference 14.
bOur work.

FIG. 6. Scaling relation for different F-levels over increasing final N′. The values
correspond to the N = 0, F1 → N′ = X, F2 and N = 0, F1 → N′ = X, F3 cross
sections normalized with respect to the N = 0, F1 → N′ = X, F1 one, with X = 1, 2,
and 3.

The main discrepancy is the trend of the cross sections over increas-
ing ∆N and over even/odd ∆N, as discussed for the first propensity
rule in Sec. III. Furthermore, according to the results of Ref. 14, the
largest cross sections are those with N′ = 1, whereas this is not the
case in our study. In fact, larger values are related to the transitions
involving N′ = 2, as also shown in Fig. 4.

It is likely that these discrepancies are due to a particular feature
of the experiment. In fact, as declared by the author, the NH beam
was not entirely pure, with 68% of the population in the rotational
ground state N = 0, F1, and approximately 16% and 9% in the N = 1,
F1 and N = 1, F2 levels, respectively. By taking into account this
NH beam population composition, the propensity rules observed
in the experiment can be reproduced making a convolution of the
various cross sections involved. This is shown in Table IV, which
gathers values computed using 68% contribution from the inelastic
cross section for transitions out of the N = 0, F1, 16% from cross

TABLE IV. Comparison between experimental and convolved theoretical cross sec-
tions at a collisional energy of 410 cm−1 and for transitions out of the N = 0, F1
rotational level. All the values are normalized with respect to the cross section of the
N = 0, F1 → N′ = 1, F1 transition. Experimental error in parentheses is in unit of the
last quoted digit. The convolution of the theoretical values is described in Sec. IV.

F1 F2 F3

N′ Expt.a Theoryb Expt.a Theoryb Expt.a Theoryb

1 1.0 1.0 0.662(40) 0.842 0.255(54) 0.365
2 0.407(54) 0.954 0.284(46) 0.654 0.154(20) 0.411
3 0.068(15) 0.224 0.059(10) 0.172 0.047(08) 0.123
4 0.023(05) 0.037 . . . . . . . . . . . .

aReference 14.
bOur work. See text for details.
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sections involving the N = 1, F1, and 9% from those involving the
N = 1, F2.

It should be pointed out that there is a 7% population with
unknown distribution and thus the theoretical results obtained
through convolution are still different in magnitude from the exper-
imental ones.

V. CONCLUSION
We have computed a new highly accurate 3D PES for the NH–

Ar collisional system by taking into account the stretching of the NH
bond. We carried out these ab initio calculations at the RCCSD(T)
level and a complete basis set extrapolation. The results are in good
agreement with the most recent PES available.15

Employing our new 3D-ave PES, we have calculated the disso-
ciation energy of the NH–Ar van der Waals complex and the corre-
sponding rotational and centrifugal distortion constants. We have
also performed scattering calculations at the close-coupling level,
obtaining collisional cross sections for energies up to 3000 cm−1.
We have then determined rate coefficients for temperatures up to
350 K. The resulting values follow the same propensity rules seen in
other similar systems,10,13 i.e., overall decreasing with increasing ∆N,
even ∆N favored over odd ∆N and larger values for F-conserving
transitions.

Our theoretical results have been compared to a previous exper-
imental study.14 The discrepancy concerning the ∆N propensity
rules can be explained with the impurity of the NH population of
the experimental molecular beam, since we have been able to repro-
duce the results of the experiment through convolution of various
cross sections, as discussed in Sec. IV.

We hope that our results will encourage new experimen-
tal studies concerning collisional excitation of NH(3Σ−) by Ar.
In particular, it would be interesting to fill the gap of missing
data regarding Ar as a collisional partner, with respect to systems
involving He or Ne, more widely studied. Furthermore, a com-
plete overview of these systems could also encourage studies with
ortho- and para-H2, highly important for astrophysical environ-
ments.

SUPPLEMENTARY MATERIAL

The supplementary material provides the analytic form of the
NH–Ar potential energy surface and the NH–Ar collisional rate
coefficients.
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APPENDIX C

Rate-coefficients

All the rate coefficient datas of are available here.

For all the rate coefficients of specific systems, you can click on the specific
links:

NH-He Fine Structure
NH-He Hyperfine Structure
ND-He Fine structure
NH-pH2 pure rotational level
NH-oH2 pure rotational level
NH-H2 Fine structure

The values will be updated in the LAMBA and BASECOL databases as
they are published.
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