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Résumé

La thèse actuelle porte sur la combinatoire des mots et les systèmes
dynamiques symboliques. Les systèmes dynamiques symboliques
sont des objets permettant de coder les trajectoires de mots dans
des systèmes dynamiques de transformations d’espaces topologiques.
Parmi ces systèmes dynamiques, des exemples bien connus sont
donnés par les mots Sturmiens et par les échanges d’intervalles. Les
mots Sturmiens sont liés à des algorithmes de géométrie discrète et
les échanges d’intervalles forment une classe intéressante de systèmes
dynamiques. En outre, nous remarquons que certaines familles
d’échanges d’intervalles fournissent des généralisations prometteuses
de mots Sturmiens.

Le sujet principal de cette thèse est la reconnaissabilité des mots
engendrés par des morphismes primitifs. Le concept de reconnaiss-
abilité des morphismes trouve son origine dans l’article de C. Mar-
tin [77] sous le terme de détermination. B. Host a utilisé ce terme
pour la première fois dans son article sur la théorie ergodique des
systèmes dynamiques [58]. La notion de reconnaissabilité est ap-
parue après l’intérêt manifesté par de nombreux scientifiques pour
ses diverses applications théoriques dans divers domaines, de la com-
binatoire des mots à la dynamique symbolique. Une notion similaire
est celle de la circularité. Les deux termes sont souvent, mais pas
toujours, utilisés comme synonymes. Ce manque de cohérence dans
la littérature est parfois source de confusion. À la connaissance de
l’auteur, il n’y a pas encore d’étude qui rassemble ces définitions et
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prouve leur équivalence ou indique les différences qui existent en-
tre elles. Dans cette thèse nous étudions ces différentes notions,
en utilisant une définition cohérente de la reconnaissabilité et de la
circularité.

Les ensembles de mots peuvent être définis à partir de propriétés
sur les graphes d’extension de ses éléments, tels que les ensembles
acycliques, les ensembles dendriques, les ensembles neutres, etc.
Plus précisément, pour un ensemble de mots S, on peut associer
à chaque mot w dans S son graphe d’extension qui décrit les ex-
tensions gauches et droites possibles de w dans S. Nous montrons
comment obtenir la décidabilité de certaines propriétés (acyclique,
dendrique, etc.) d’un langage en utilisant les notions de reconnaiss-
abilité, de graphes d’extension des mots de ce langage et d’une tech-
nique présentée dans [65].

La notion de reconnaissabilité est egalement utilisée dans le do-
maine des semigroupes profinis. Nous décrivons la relation entre la
reconnaissabilité des morphismes et les propriétés des semigroupes
profinis libres [4].

Mots clés— Informatique théorique, combinatoire des mots,
systèmes symboliques dymaniques, reconnaissabilité, circularité, en-
sembles dendrique, graphe d’extension, langage substitutive, groupe
libre,semi-groups profinis



Abstract

The current thesis focuses on the topic of combinatorics on words
and symbolic dynamical systems. The symbolic dynamical systems
are objects for encoding word trajectories in dynamic systems of
transformations in topological spaces. Among these dynamical sys-
tems, well-known examples are given by Sturmian words and by
interval exchange. The Sturmian words are related to discrete ge-
ometry algorithms and the interval exchange forms an interesting
class of dynamical systems. Furthermore, it should be mentioned
that some exchange families provide promising generalizations of
Sturmian words.

The main subject of the thesis is the recognizability of words gen-
erated by primitive morphisms. The concept of recognizability of
morphisms originates in the paper of C. Martin [77] under the term
of determinization. The term was first used by B. Host in his paper
on the Ergodic theory of Dynamical Systems [58]. The notion of
recognizability came in full bloom after the interest shown by many
scientists due to its various theoretical applications in various top-
ics, from combinatorics on words to symbolic dynamics. A similar
notion is that of circularity. The two terms are often, but not always
used as synonymous. This lack of consistency along the literature
could result in confusion. To the best of the author’s knowledge,
there is not, as of yet, any study that collects those definitions and
proves their equivalence or indicates the differences among them. In
the current thesis, we study those different notions, using a coherent

5



6

definition of recognizability.
Sets of words can be defined from properties of the extension

graphs of their elements, such as acyclic sets, dendric sets, neutral
sets, etc. More precisely, given a set of words S, one can associate
with every word w in S its extension graph. That graph describes
the possible left and right extensions of w in the set S. We show
how to obtain the decidability of certain properties using the notion
of recognizability, the extension graphs of the words of a language
and a technique presented in [65].

Furthermore, the notion of recognizability is used in the subject
of Profinite Semigroups. We describe the relationship between the
recognizability of morphisms and certain properties of the free profi-
nite semigroups [4].

Keywords— Theoretical Computer Science, Combinatorics on
Words, Symbolic Dynamical Systems, Recognizability, Circularity,
Dendric Sets, Extension Graphs, Substitutive Language, Free Group,
Profinite Semigroups.
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1
Introduction

1.1 The notion of recognizability

The current thesis focuses on the topic of combinatorics on words
and symbolic dynamical systems. In particular we study symbolic
dynamical systems, and we apply the “natural coding” to trajecto-
ries in order to obtain infinite words and to connect the two theories.
Among these dynamical systems, well-known examples are given by
Sturmian words and by interval exchange. Sturmian words are re-
lated to discrete geometry algorithms and interval exchange forms
an interesting class of dynamical systems. Promising generalizations
of the Sturmian words can be provided by some exchange families.

The main subject of the thesis is the recognizability of words
generated by primitive morphisms. Let ϕ be a morphism on a fi-
nite alphabet A. The ability to decompose in a unique way a long
enough word in the language of the morphism and to recognize the
preimage of that word is what described by the term recognizabil-
ity. The concept of recognizability of morphisms originates from
the paper of John C. Martin [77] under the term of determinization.
The term was first used by B. Host in his paper “Valeurs propres
des systèmes dynamiques définis par des substitutions de longueur
variable” [58]. The notion of recognizability came in full bloom after
the interest shown by many scientists due to its various theoretical
applications in diverse topics, from combinatorics on words to sym-
bolic dynamics. A similar notion that of circularity that appears in
the work of many scientists as by Julien Cassaigne in [24] and by
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10 CHAPTER 1. INTRODUCTION

Filippo Mignosi and Patrice Séébold in [79]. The two terms are of-
ten, but not always used as synonymous. John C. Martin worked on
recognizability on binary alphabets in his work “Minimal flows aris-
ing from substitutions of non-constant length” [77] in 1973. Later,
in 1992 Brigitte Mossé proved that recognizability holds in the case
of primitive non-erasing morphisms in his work “Puissances de mots
et reconnaissabilité des points fixes d’une substitution” [80]. That
result played a pivotal role in the field given that prior to this rec-
ognizability was assumed.

1.2 Main results

Recognizability and circularity are two terms with various and often
overlapping definitions. This inconsistency along the literature can
act as a root of confusion within the field. The lack of clear distinc-
tion between the two terms, calls for a novel revision of the defini-
tions that will allow the disentanglement of the respective notions
and their potential misuse. To the best of the author’s knowledge,
there is not, as of yet, any study that collects those definitions and
proves their equivalence or indicates the differences among them. In
this thesis it has been studied in great detail the equivalence be-
tween those different notions. This clarifies the relation between
the possible variance of the definition which have been introduced
by many authors.

We also show that the notion of recognizability alongside with a
technique introduced in [65] by Karel Klouda and Štěpán Starosta
can be used in order to prove the decidability of different properties
of a language.

In order to understand the combinatorial properties of a language
L(u) of an infinite fixed point u generated by the morphism ϕ over
some finite alphabet A, it is usually convenient to focus on the set of
its bispecial factors, i.e., finite words that occur in u and that can be
extended in u to the left and to the right by several letters. For in-
stance, knowing the set of bispecial factors, it is possible to compute
the factor complexity of u, that is the number of distinct factors of a
given length (see, for instance, [25]). Bispecial factors also allow for
characterization of several families of words like Sturmian words,
and more generally, (eventually) dendric words ([19, 33, 34]). In
order to prove the decidability of such properties we used a fam-
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ily of graphs known as extension graphs. More precisely, given a
set of words S, one can associate with every word u ∈ S a graph
called extension graph that carries the information of which are the
possible left and right extensions of the word u in S. The reason
why the extension graphs are worth studying is that they allow the
characterization of a set as acyclic, dendric set, neutral set, etc.

Normally, in order to decide the above properties we should con-
struct the extension graph for all of the words of the set S and check
if the properties hold for all of these graphs. However, since we may
work on an infinite set S, such as substitutive languages, the above
method cannot be applied. In order to overcome the previous phys-
ical constrain of constructing infinite many graphs, we make use of
the notion of strong two-sided recognizability.

The process of describing bispecial factors is considered by Anna
Frid and Sergey V. Avgustinovich in [48] for a particular class of
recognizable morphisms. It is also studied by K. Klouda in “Bispe-
cial factors in circular non-pushy D0L languages” [63]. In his work
Karel Klouda provide an algorithm for finding all bispecial words
arising from a specific family of morphisms, using pairs of bispecial
extensions (i.e. pairs (a, b) ∈ A × A such that aub is a factor of
u). Inspired by this algorithm and using the notion of the extension
graphs and recognizability, we designed an algorithm that provide
us all the possible extension graphs of the bispecial words in the
language of a morphism. The above mentioned algorithm is the re-
sult of a collaborative work amongst the present author, Francesco
Dolce and Julien Leroy in [35].

Lastly, in the chapter Profinite Semigroups another application of
the notion of recognizability is presented. In this chapter, the link
between the recognizability of morphisms and some properties of
the free profinite semigroups is described thoroughly. This chapter
is based on a survey on the profinite semigroups written by the
current author and Dominique Perrin [69] while most of the results
that are presented are the work of Jorge Almeida and Alfredo Costa
in [7] and [8]. The above mentioned authors along with the present
author are currently preparing a book on the topic of the profinite
semigroups.

chapter:Profinite Semigroups


12 CHAPTER 1. INTRODUCTION

Acknowledgement

I wish to express my sincere appreciation to my supervisor, Do-
minique Perrin, who guided and encouraged me during my doctoral
studies. Without his help and support, the goal of this project would
not have been realized.

I would also like to thank George Rachonis and Patrice Séébold
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Pappa and Giuseppina Rindone for accepting to be members of the
thesis committee. Their feedback was invaluable.

I thank also my colleagues and friends for the stimulating dis-
cussions, Francesco Dolce, Pavel Heller, Andrew Ryzhinov, Pablo
Rotondo, as well as the fellow doctoral students of LIGM.

Furthermore, I would like to express my gratitude to several mem-
bers of the LIGM that helped me and advised me, including Marie-
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2
Preliminaries

2.1 Words

Let A be a set, called alphabet, the elements of which are called
letters. In the following chapters the alphabet is supposed to be
finite. A finite sequence a0a1 . . . an, of elements (ai)0≤i≤n of A is
called a finite word on A or just a word on A.

For two words u = u0u1 . . . un and y = y0y1 . . . ym on the alpha-
bet A, the concatenation product, or simply product, is defined as
follows,

uy = u0u1 . . . uny0y1 . . . ym.

The empty sequence is called the empty word and is denoted by ε.
The set of words on A is denoted by A∗ and the set of all the non-
empty words on A is denoted by A+. The set A∗ is the free monoid
on the set A. If a word w on the alphabet A can be written as a
concatenation product of two words v and z on A (i.e. w = vz),
then v is a prefix of w and z is a suffix of w.

Consider the word u = u0u1 . . . un on the alphabet A. For all
integers i, j such that 0 ≤ i ≤ j ≤ n, the word uiui+1 . . . uj is called
a factor of u and is denoted u[i,j] (or u[i,j+1), with u[i,i) = ε). If a
factor of u is not u itself, it is called a proper factor of u. The length
of u, denoted as |u|, is the number of letters in u. For example, the
word abcda has length 5. The length of the empty word ε is zero.

A right infinite word on the alphabet A is an infinite sequence
x = x0x1 . . . xn . . . of letters on A. The set of right infinite words
on A is denoted by AN. For a word u in A∗, we denote by uω the

13



14 CHAPTER 2. PRELIMINARIES

infinite sequence formed by u, i.e., uω = uuu . . . . The product of a
finite word on A with a right infinite word on A is a right infinite
word on A, as follows,

A∗ ×AN → AN

(u, v) 7→ x = uv

with u = u0u1 . . . un a word in A∗, v = v0v1 . . . vm . . . a word in AN

and uv = u0 . . . unv0 . . . vm . . . in AN. For right infinite words, the
notions of prefix and factor are defined similarly to the finite case.
More precisely, for x = x0x1 . . . in AN the word xixi+1 . . . xj , with
i, j integers with 0 ≤ i ≤ j, is called a factor of x and is denoted
by x[i,j] (or x[i,j+1) with x[i,i) = ε). Any finite factor x0x1 . . . xj of x
on A is called prefix of x. For any prefix v = x0x1 . . . xj of x there
is right infinite word u on A such that vu = x. The language of an
infinite word x on A denoted by L(x) is the set of all its factors.

A left infinite word on the alphabet A is an infinite sequence
y = . . . y−n . . . y−1 of letters on A. The set of left infinite words on
A is denoted by A−N. The product of a left infinite word on A with
a finite word on A is a left infinite word on A, as follows,

A−N × A∗ → A−N

(u, v) 7→ y = uv

with the word u = . . . u−m . . . u−1 in A−N, the word v = v0v1 . . . vn
in A∗ and uv = . . . u−m . . . u−1v0v1 . . . vn being a left infinite word.
For left infinite words, the notions of suffix and factor are defined in
a similar way as in the case of finite words. More precisely, let y =
. . . y−n . . . y−1 be a left infinite word. The word y−jy−j+1 . . . y−i−1y−i

in A∗, with 0 ≤ i ≤ j is called a factor of y and is denoted by y[−j,−i]

(or y[−j,−i+1) with y[−i,−i) = ε). Any finite factor v = y−n . . . y−1

is called a suffix of y. For any suffix v there is a left infinite word
u such that uv = y. The language of a left infinite word y on A,
denoted by L(y) is the set of all its factors.

A bi-infinite word or two-sided infinite word on an alphabet A
is an infinite sequence . . . a−n . . . a−1a0a1 . . . an . . . . The set of bi-
infinite words on A is denoted by AZ. The product of a left infinite
word on A with a right infinite word on A is a bi-infinite word on
A, as in the following bijection,

A−N × AN → AZ

(y, x) 7→ z = y • x
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with y = . . . y−n . . . y−1 in A−N, x = x0x1 . . . xm . . . in A
N and

z = y • x = . . . y−n . . . y−1 • x0x1 . . . xm . . .

being a bi-infinite word, where • is the position zero. The bijection
follows from the fact the position zero is fixed for a bi-infinite word.
For z = y • x, the word x is in AN and is denoted z+, and the
word y is in A−N and is denoted z−. Let z = . . . z−1 • z0z1 . . . , the
word zi . . . zj , with i, j integers with i ≤ j, is called factor of z and
is denoted by z[i,j] (or z[i,j+1) with x[i,i) = ε). The language of a
bi-infinite word z on A, denoted by L(z), is the set of all its factors.

From now on, we will often use the term infinite words instead
of right infinite words, if it is clear from the context.

Let S be a set of words on the alphabet A. For w ∈ S, we denote

LS(w) = {a ∈ A | aw ∈ S}

RS(w) = {a ∈ A | wa ∈ S}

BS(w) = {(a, b) ∈ A×A | awb ∈ S}

and further

ℓS(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) = Card(BS(w)).

We omit the subscript S when it is clear from the context. A word
w is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and
biextendable if e(w) > 0.

A set F of words on the alphabet A is said to be factorial if it
contains all the factors of its elements. A factorial set S is called
right-extendable (resp. left-extendable, resp. biextendable) if every
word in S is right-extendable (resp. left-extendable, resp. biextend-
able).

Remark 2.1.1. If x ∈ AN then the language L(x) is factorial and
right-extendable.

Remark 2.1.2. If y ∈ A−N then the language L(y) is factorial and
left-extendable.

Remark 2.1.3. If z ∈ AZ then the language L(z) is factorial and
biextendable.

A word w is called right-special if r(w) ≥ 2, left-special if ℓ(w) ≥ 2
and bispecial if it is both left-special and right-special.
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For w ∈ S, we denote

mS(w) = eS(w)− ℓS(w)− rS(w) + 1.

We omit the subscript S when it is clear from the context. The
word w is called weak if m(w) < 0, neutral if m(w) = 0 and strong
if m(w) > 0. We say that a factorial set S is neutral if every word
in S is neutral. Also, we say that a factorial set S is weak (resp.
strong) if every word in S is neutral or weak (resp. strong or weak).

An integer p > 0 is a period of a finite word u = a0a1 . . . an if for
all k such that k + p ≤ n, we have ak = ak+p. The smallest period
of u is called the period of u.

Example 2.1.4. The word abcaabcaab has period p = 4, since
abcaabcaab = (abca)2ab.

The notion of period extends without difficulty to infinite words.
An infinite word is called periodic if the set of periods is not empty.
More precisely, a right infinite word u (resp. left infinite word y)
is periodic if there is integer p > 0 such that for all k, n ∈ N with
0 ≤ n < p holds that un+kp = un (resp. y−(n+kp) = y−n). In an
analogous way, a bi-infinite word z is periodic if there is p such that
for all k, n ∈ Z with 0 ≤ n < p holds that zn+kp = zn. The smallest
period is called the period of u.

An integer p > 0 is an ultimate period of a right infinite word
u = a0a1 . . . if there is an integer k0 ≥ 0 such that for all k ≥ k0 we
have ak = ak+p. The smallest ultimate period of an infinite word u
is called the ultimate period of u. An infinite word which admits an
ultimate period is called ultimately periodic. Similarly it can defined
the ultimate periodicity for a left infinite word.

Example 2.1.5. The right infinite word x = abcbcbcbcbc · · · =
a(bc)ω is ultimately periodic with k0 = 1 and ultimate period p = 2,
since it can be written as a · bc · bc · bc · bc . . . .

An infinite word u is aperiodic if it is not ultimately periodic.
Given a set of words S, subset of A∗, and a word u ∈ A∗, we let

Su−1 and u−1S denote the sets

Su−1 = {v ∈ A∗ | vu ∈ S},

u−1S = {v ∈ A∗ | uv ∈ S}.
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A factorial set F is called recurrent if for all u, v ∈ F , there is
word w ∈ F such that uwv ∈ F . A right extendable factorial set is
said to be uniformly recurrent if for all words u ∈ F , there is integer
n ≥ 1 such that the word u is factor of any word in F of length n.

Proposition 2.1.6. [17] A uniformly recurrent set is recurrent.

Proof. Let F be a uniformly recurrent set and w, u be words in F .
Since F is uniformly recurrent there are integers n,m such that the
word w is factor of any word in F of length n and the word u is
factor of words with length m. Since the set is right-extendable,
there exists a word v such that uv in F , with v longer than n. Since
v is longer than n, it follows that w is factor of v, i.e., there are
words r, s in F such that v = rws. Thus, uv = urws is in F and
since the set F is factorial, the factor urw is also in F .

Given an one-sided infinite word x ∈ AN, an occurrence of u ∈
L(x) in x is an integer i ≥ 0 such that xi . . . xi+|u|−1 = u.

Definition 2.1.7. A right infinite word x ∈ AN is recurrent if any
word u ∈ L(x) has a second occurrence in x, i.e., if i is an occurrence
of u in x, then there is another occurrence j, with j > i.

Observe that if every word u has a second occurrence in the right
infinite recurrent word x, then it has an infinity of occurrences.

Proposition 2.1.8. A set F is recurrent and right-extendable if and
only if there is a right infinite word x ∈ AN such that F = L(x).

Proof. Let x ∈ AN be a recurrent right infinite word and let us set
F = L(x). It follows that F is a factorial right-extendable set from
the definition of L(x) as the set of all possible factors of the right
infinite word x. It remains to be proved that F is recurrent. Let
u, v ∈ F . Let i ∈ N be an occurrence of u. Since there is an infinite
number of occurrences of v, there is an occurrence j of v that is such
j > i+ |v|. Thus, xi . . . xj+|v|−1 = uwv and therefore F is recurrent.

Let us now prove the other direction. Let F be recurrent and
right-extendable. The set F can be written with decreasing order
with respect to the length of its elements as follows,

F = {w1, w2, . . . }, with |w1| ≤ |w2| ≤ . . .

Since F is recurrent it holds that for all i ∈ N, there is a word
ui such that wiuiwi+1 ∈ F . Let us now define the following right
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infinite word,

x = w1u1w2u2w3u3 · · · ∈ A
N.

By construction of x it follows that F ⊂ L(x). Any word u =
wiuiwi+1 is a factor of x and is also a word in the set F . Since F
is a factorial set, any factor of u is also in F , which proves that for
all u ∈ L(x), L(u) ⊂ F and therefore L(x) ⊂ F . Thus, F = L(x).
It remains to prove that the right infinite word x is recurrent. Let
u ∈ L(x). Because of the definition x it follows that u ∈ F and since
F is recurrent, there is some w such that uwu ∈ F and therefore uwu
is a factor x which means that uwu ∈ L(x). Thus x is recurrent.

2.2 Morphisms

A substitution ϕ is a mapping from a set of letters A to a set of
words B∗. A substitution can be extended to a monoid morphism
from A∗ to B∗, where ϕ(ε) = ε and ϕ(uv) = ϕ(u)ϕ(v). Then, any
morphism ϕ is uniquely determined by the set of its images ϕ(a) for
all letters a in A. Many times we use the word substitution when we
talk about monoid morphisms. A morphism ϕ is called non-erasing
if ϕ(a) 6= ε for all letters a in the alphabet A. From now on we
consider all morphisms being non-erasing.

Let ϕ be the mapping ϕ : A∗ → A∗. The matrix associated to ϕ is
the integer A×A-matrix such thatMa,b is the number of occurrences
of b in ϕ(a), that is

Ma,b = |ϕ(a)|b.

It can be verified that M(ϕn) =M(ϕ)n for every integer n ≥ 1.

Example 2.2.1. Let ϕ be the morphism on the alphabet A = {0, 1}
such that ϕ(0) = 01 and ϕ(1) = 0. The morphism ϕ has associated
matrix

M(ϕ) =

(
1 1
1 0

)
.

We set ||ϕ|| = maxa∈A |ϕ(a)| and |ϕ| = mina∈A |ϕ(a)|.
Any ϕ : A+ → B+ can be extended to ϕ : AN → BN as follows,

ϕ : AN → BN

x 7→ y = ϕ(x)
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where x = x0x1 . . . an infinite word and ϕ(x) = ϕ(x0)ϕ(x1) . . .
being also an infinite word. This extension is always well defined
since the morphism is supposed to be non-erasing. In the case that
the morphism is erasing, the extension of the morphism ϕ is well
defined if |ϕ(x0 . . . xn)| −−−→

n→∞
+∞. Let y = ϕ(x), then for all posi-

tive integers i there is a minimal integer j such that yi = ϕ(xj)i−k,
k = |ϕ(x0 . . . xj−1)| and ℓ = |ϕ(x0 . . . xj)| with,

k < i ≤ ℓ, and ℓ = k + |ϕ(xj)|.

In other words, the letter yi of y is the letter with index i− k in the
image of the letter xj of x under the morphism ϕ. The existence
of the integer j follows from the fact that the morphism ϕ is non-
erasing. The extension to the infinite words corresponds to the
relation ϕ(uv) = ϕ(u)ϕ(v), for u in A∗ and v in AN.

Similarly, any non-erasing morphism ϕ : A∗ → B∗ can be ex-
tended to ϕ : A−N → A−N as follows,

ϕ : A−N → B−N

x 7→ y = ϕ(x)

where x = . . . x−1 a left infinite word and ϕ(x) = . . . ϕ(x−1) being
also a left infinite word. (Same remark as above for the morphisms
that are not non-erasing.) Let y = ϕ(x), then for all positive integers
i there are integers k, j such that y−i = ϕ(x−j)−i+k, j minimal such
that, for k = |ϕ(x−j−1 . . . x−1)| and ℓ = |ϕ(x−j . . . x−1)| with,

k < i ≤ ℓ, and ℓ = k + |ϕ(x−j)|.

In other words, the letter y−i of y is the letter with index −i + k
in the image of the letter x−j of x under the morphism ϕ. The
extension of the morphism on the left infinite words corresponds to
the relation ϕ(uv) = ϕ(u)ϕ(v), for u in A−N and v in A∗.

Using the previous two extensions of a morphism ϕ we have the
following extension to the set of bi-infinite words,

ϕ : AZ → BZ

z 7→ ϕ(z) = ϕ(z−) • ϕ(z+)

where z− is in A−N and z+ in AN.
If a letter a in A has image under the morphism ϕ that begins

with the letter a (i.e ϕ(a) in aA∗) and if |ϕn(a)| tends to infinity
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with n, there is a unique right infinite word x that has all words
ϕn(a) as prefixes. Indeed, since x is a right infinite word such as
ϕn(a) is a prefix of this word for all integers n, then, ϕn+1(a) (that
is the image of ϕn(a)) is also a prefix of x. That word x, denoted
as ϕω(a), is a right infinite fixed point of the morphism ϕ since it
satisfies that ϕ(x) = x. When it is clear from the context it may be
called a fixed point.

Let b ∈ A such that its image under the morphism ϕ ends with
the letter b (i.e ϕ(b) in A∗b). Then, there is a unique left infinite
word y that has all words ϕn(b) as suffixes. That word y, denoted
as ϕω̃(b), is called a left infinite fixed point of the morphism ϕ and
satisfies that ϕ(y) = y. (The proof is the same as in the right infinite
case.)

Let x = ϕω(a) be a right infinite fixed point and y = ϕω̃(b) a
left infinite fixed point for the morphism ϕ defined above. The bi-
infinite word z = y • x has all words ϕn(a) and all words ϕn(b) as
factors, for all n. That word z, denoted as ϕω̃(b) • ϕω(a), is called
two-sided infinite fixed point of the morphism ϕ and satisfies that
ϕ(z) = z. Indeed,

ϕ(z) = ϕ(y) • ϕ(x) = y • x = z.

The language of a (right, left or two-sided) infinite fixed point x
is the set of all its factors and it is denoted as L(x). This language
is called substitutive. A morphism can have more than one infinite
fixed point and not all of them need to have the same language.

Example 2.2.2 (Fibonacci word). The Fibonacci morphism on the
alphabet A = {0, 1} is defined as:

ϕF : A∗ → A∗,

0 7→ 01,

1 7→ 0.

The Fibonacci word is the right infinite fixed point of ϕF ,
ϕω
F (0) = 010010100100101001010 . . . .

The Fibonacci word can also be defined as the limit of the se-
quence given by u(0) = 1, u(1) = 0 and u(n+1) = u(n)u(n−1) for n ≥ 1.

Example 2.2.3. The morphism ϕ̃F : {0, 1}∗ → {0, 1}∗ with ϕ̃F (0) =
10 and ϕ̃F (1) = 0 has no right infinite fixed point, but it has left

fixed point ϕ̃F
ω̃(0).
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In the following examples there are presented morphisms with
more than one fixed point. In Example 2.2.4 there exist two distinct
right infinite fixed points with different languages, while in Example
2.2.5 there exist two different right infinite fixed points with the same
language.

Example 2.2.4. Let ϕ be a morphism such that ϕ(0) = 01, ϕ(1) =
0 and ϕ(2) = 212. This morphism has two distinct right infinite
fixed points, the Fibonacci word x = ϕω(0) = 010010100100101 . . .
and the word y = ϕω(2) = 2120212012120212 . . . . It can be easily
verified that the languages L(x) and L(y) are different. For instance,
2 ∈ L(y) but 2 6∈ L(x).

Example 2.2.5. The morphism ϕ̃F
2 : {0, 1}∗ → {0, 1}∗ with ϕ̃F

2(0) =
010 and ϕ̃F

2(1) = 10 has two distinct right infinite fixed points
x = (ϕ̃F

2)ω(0) = 0101001010010010 . . . and y = (ϕ̃F
2)ω(1) =

1001001010010010 . . . . The two languages L(x) and L(y) are the
same and it can be justified with use of definition of primitivity, in
the next subsection, and Proposition 2.3.7.

2.3 Primitive morphisms

A morphism ϕ : A∗ → A∗ is called primitive if there is an integer k
such that for all letters a, b in A, the letter b appears in the word
ϕk(a). The smallest such integer k is called the primitivity index of
ϕ.

A square non-negative real matrix M is said to be irreducible if
for all i, j there is integer m such that Mm

i,j > 0.
A square non-negative real matrixM is said to be primitive when,

for some positive integer n, all entries in Mn are positive (i.e. all
Mn

i,j > 0). It can be seen that a morphism ϕ is primitive if and only
if M(ϕ) is primitive.

Example 2.3.1. The matrix,

M =

(
0 1
1 0

)

is irreducible but not primitive.

Example 2.3.2. The Fibonacci morphism ϕF (Example 2.2.2) is
primitive since both letters 0, 1 appear in each of the words ϕ2

F (0)
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and ϕ2
F (1). One has

M(ϕF ) =

(
1 1
1 0

)
, M(ϕ2

F ) =

(
2 1
1 1

)
.

Remark 2.3.3. Every primitive morphism is non-erasing.

The following is a classical result known as Perron-Frobenius The-
orem [87].

Theorem 2.3.4. Let M be an n× n-matrix with real non-negative
coefficients. If M is primitive, then it has a positive eigenvalue ρ
such that |λ| < ρ for every other eigenvalue λ ofM . Moreover, there
corresponds to ρ an eigenvector with strictly positive coefficients.

Proposition 2.3.5. Let ϕ be a primitive morphism on the alphabet
A that is not a singleton. Then, |ϕn(a)| −−−→

n→∞
∞, for all letters a in

A.

Proof. Since ϕ is primitive, there is an integer k such that for all
letters a, b in A, the letter b appears in the word ϕk(a) and thus,
|ϕk(a)| ≥ |A|. Applying this iteratively we obtain |ϕkn(a)| ≥ n|A|.
It follows that for any integer c there is integer N ∈ N such that
|ϕn(a)| > c, for all n ≥ N . Hence |ϕn(a)| −−−→

n→∞
∞, for all letters a

in A.

Proposition 2.3.6. Let ϕ be a primitive morphism. The morphism
ϕn is also primitive, for all positive integers n.

Proof. If k is the primitivity index of the morphism ϕ, then for the
morphism ϕn primitivity holds for the integer k′ = lcm(k, n).

Proposition 2.3.7. For a primitive morphism ϕ, all the right infi-
nite fixed points have the same language.

Proof. Let x, y words in AN be fixed points of the primitive mor-
phism ϕ, such that x = ϕω(a) and y = ϕω(b) for a, b ∈ A. Since
ϕ is primitive there is an integer k such that b is a factor of ϕk(a),
from which follows that L(y) ⊂ L(x). Similarly, since a is a factor
of ϕk(b) it follows that that L(x) ⊂ L(y), which proves that the two
languages are the same.
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Example 2.3.8. The Fibonacci morphism ϕF (Example 2.2.2) is
primitive, while the morphism ϕ : {0, 1} → {0, 1}∗ with ϕ(0) = 010
and ϕ(1) = 11 is not primitive since there is no integer k such that
0 ∈ ϕk(1).

Proposition 2.3.9. The language of a right infinite fixed point x
of a primitive substitution ϕ is uniformly recurrent.

Proof. Let ϕ be a primitive morphism with fixed point x = (xi)i≥0.
Since the morphism is primitive, there is integer k such that for
every letter b, a ∈ L(x), b is factor of ϕk(a).

Let us now consider a word w ∈ L(x). There must exist a letter
in A (without any lose of generality let the letter be b ∈ A) and an
integer k′ ∈ N such that w is factor of ϕk′(b). Hence, for the integer
m = k+k′, the word w is factor of all ϕm(xi) for all xi ∈ L(x), which
implies that w is factor of all words with length at least ||ϕm||.

A primitive morphism with aperiodic right infinite fixed point is
called aperiodic.

Example 2.3.10. The Fibonacci word (Example 2.2.2) is a right
infinite aperiodic fixed point and since the Fibonacci morphism is
primitive, the Fibonacci morphism and all the powers of this mor-
phism are aperiodic.

Remark 2.3.11. In the non-primitive case it is possible to have a
periodic fixed point and an aperiodic fixed point, in which case the
morphism is neither periodic neither aperiodic.

A trivial example is the following,

Example 2.3.12. Let ϕ : {012}∗ → {012}∗ with ϕ(0) = 01, ϕ(1) =
0 and ϕ(2) = 22. This morphism is not primitive and has two
distinct right infinite fixed points, the Fibonacci word ϕω(0) that
is known to be aperiodic and the word ϕω(2) = 222 . . . which is
periodic with period 1.

We are going to show several results due to Mossé, concerning
the periodicity of fixed points of morphisms.

A morphism ϕ : A∗ → A∗ is called elementary if it cannot be
written as ϕ = α◦β with β : A∗ → B∗, α : B∗ → A∗ and Card(B) <
Card(A).
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Lemma 2.3.13. [42] An elementary morphism is injective as a map-
ping from AN to AN.

Proof. Let ϕ : A∗ → A∗ be a morphism which is not injective as a
mapping fromAN to itself. SetX = ϕ(A) the image of the morphism
ϕ. Let Y be the basis of the intersection of all free submonoids
containing X∗, from which follows that X ⊂ Y ∗, and let β : B → Y
be a bijection from an alphabet B to the free monoid Y . Since Y
is a free monoid, the image of a letter a ∈ A under the morphism
ϕ can be decomposed in a unique way in elements of Y , that is, for
any a ∈ A, ϕ(a) can be written as ϕ(a) = y1y2 . . . yn for yi ∈ Y .
Then, we can define a morphism α : A∗ → B∗ that maps each letter
a ∈ A to a word in B∗, i.e., α(a) = b1 . . . bn with bi ∈ B. Since for
any letter a ∈ A we have that,

ϕ(a) = β ◦ α(a) = β(b1 . . . bn) = y1 . . . yn

it follows that ϕ = β ◦ α. Let λ be a morphism that maps each
word x ∈ X to the first symbol of its decomposition in words of Y ,
that is x ∈ λ(x)Y ∗. If some y ∈ Y does not appear as an initial
symbol in the words of X , set Z = (Y \ y)y∗. Then Z∗ is free
and X∗ ⊂ Z∗ ⊂ Y ∗. Thus Y = Z, a contradiction. Since ϕ is not
injective onAN, there are distinct words x, x′ such that ϕ(x) = ϕ(x′),
and since the first letter of the two images is the same, the map λ is
also not injective which implies that Card(Y ) < Card(X), showing
that ϕ is not elementary.

Lemma 2.3.14. Let ϕ : A∗ → A∗ be a periodic primitive elemen-
tary morphism with fixed point x, then for every letter a ∈ A one
has r(a) ≤ 1 (i.e. the letter a can be followed by at most one letter
in x) and thus the period of x is at most Card(A).

Before giving the proof, let us define p(n) as the number of factors
of length n of the fixed point x.

Proof. It will be proved that if p(n) < p(n+1) for an integer n ∈ N,
then there is an integer m > n such that p(m) < p(m+ 1). Indeed
if p(n) < p(n + 1), then there is word u ∈ L(x) with |u| = n
which is right-special, which means that there are two distinct letters
a, b ∈ A such that ua, ub ∈ L(x). Since ϕ is elementary, it follows by
Lemma 2.3.13 that the morphism ϕ is injective on AN. Thus there
are some words v, w with av, bw in L(x) such that ϕ(av) 6= ϕ(bw).
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If |ϕ(u)| > |u| or if ϕ(a), ϕ(b) begin by the same letter, the longest
common prefix of ϕ(uav), ϕ(ubw) (i.e. lcp(uav, ubw)) is a right-
special word with length m > n. Otherwise, if |ϕ(u)| = |u| and
the lcp(a, b) = ε, we replace u by ϕ(u) and we do the same thing
until we will have right-special word longer than n. The existence of
such a word is verified because of primitivity, since having an image
of a word with the same length as the word itself can happen only
a bounded number of times. However, if the morphism is periodic,
i.e., the fixed point x is periodic, then p(n) is bounded. Thus, by the
previous argument, no letter in the fixed point can be right-special,
which implies that the period of x is at most Card(A).

The following Lemma gives an upper bound for the periodicity,
which implies decidability.

Lemma 2.3.15. Let ϕ be a primitive morphism with fixed point
x. If the morphism is periodic then the period of x is at most

||ϕ||Card(A)−1.

Proof. The proof is done by induction on Card(A). If Card(A) = 1,
then the periodicity holds for a period p = 1. Let us now study the
case of an elementary morphism ϕ. The morphism ϕ is injective as
a mapping from AN to AN as it follows from Lemma 2.3.13. Since
ϕ is also periodic, it follows from Lemma 2.3.14 that the period of
x is at most Card(A).

Let us now consider the not elementary case. Since ϕ is not
elementary, it holds that there are morphisms α : B∗ → A∗ and
β : A∗ → B∗ such that ϕ = α ◦ β and Card(B) < Card(A). Set
y = β(x) and ψ = β ◦ α. Then, ψ(y) = ψ(β(x)) = β ◦ α(β(x)) =
β(x) = y. Thus y is a fixed point of the primitive morphism ψ and
we may apply the induction hypothesis, that is, ψ is periodic. Last,
since y = β(x) and therefore α(y) = α ◦ β(x) = ϕ(x) = x. This
implies that ||α|| · ||ψ||Card(B)−1 ≤ ||ϕ||Card(A)−1.

The following result, as well as Theorem 2.3.17 are going to be
used in the proof of Theorem 2.3.18.

Proposition 2.3.16. Let ϕ be a primitive morphism. There is a
k ≥ 0 such that ||ϕn|| ≤ k|ϕn| for all n ≥ 1.

Proof. Set M = M(ϕ). By Theorem 2.3.4 there is a real number
ρ and a strictly positive vector v such that Mv = ρv. Let α =
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min{va | a ∈ A} and β = max{va | a ∈ A}. Then for every a ∈ A,

α

β
ρn ≤

ρnva
β

=
∑

b∈A

(Mn)a,bvb
β

≤
∑

b∈A

(Mn)a,b ≤
∑

b∈A

(Mn)a,bvb
α

=
ρnva
α
≤
β

α
ρn.

Since for every a ∈ A, |ϕn(a)| =
∑

b∈A(M
n)a,b, this shows that

α

β
ρn ≤ |ϕn| ≤ ||ϕn|| ≤

β

α
ρn

and, thus,

||ϕn|| ≤
β

α
ρn ≤

β2

α2
|ϕn|.

This proves the statement with k = β2/α2.

A word v in a language is called primitive if it cannot be written
in the form ui for any word u in the language and any number i > 1.

Lemma 2.3.17. Let ϕ be a primitive morphism with a fixed point
x. If there exists a primitive word v and integers n, p ≥ 1 such that

(i) for every a, b ∈ A with ab ∈ L(x), ϕp(ab) is a factor of vn, and

(ii) 2|v| ≤ |ϕp|,

then L(x) is periodic.

Proof. For every letter a ∈ A, since ϕp(a) is a factor of vn, as factor
of ϕp(ab) that is factor of vn, there is an integer na, a proper prefix
wa of v and a proper suffix va of v such that ϕp(a) = vav

nawa.
Similarly, there is an integer nb and word wb that is proper prefix of
v such that ϕp(b) = vbv

nbwb. If ab ∈ L(x), then vnawavbv
nb ∈ L(x)

and is a factor of vn. Since v is primitive, this forces wavb = v or
wavb = ε. Thus the language L(x) is periodic.

Theorem 2.3.18. [80] Let ϕ : A∗ → A∗ be a primitive aperiodic
morphism with right infinite fixed point x. Then there is m > 0,
such that for any v in A+, vm does not belong in the language L(x).

Proof. Since ϕ is primitive, L(u) is uniformly recurrent. Let r ≥ 1
be such that every word ab ∈ L(u) of length 2 is a factor of every
word of length r in L(u).

Assume that wn ∈ L(u) for some nonempty w ∈ L(u). Let
p ≥ 1 be such that |ϕp−1| ≤ 2|w| < |ϕp|. For every a, b ∈ A with
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ab ∈ L(u), since ab appears in all words of the language of length
r it follows that the word ϕp(ab) appears as factor in each word of
L(u) of length 2r||ϕp||. Hence, by Lemma 2.3.17, we have

|wn| < 2r||ϕp|| (2.3.1)

since otherwise every ϕp(ab) would be factor of wn with 2|w| < |ϕp|
and thus L(x) would be periodic, that leads to a contradiction.

Since |wn| = n|w|, we deduce from (2.3.1) the inequality

n <
2r||ϕp||
1
2
|ϕp−1|

< 4r
||ϕp||

|ϕp−1|
≤ 4r||ϕ||

||ϕp−1||

|ϕp−1|
≤ 4r||ϕ||k

where the last inequality and the constant k follow from Proposi-
tion 2.3.16. This shows that for any v in L(x) \ {ε}, there is no
power vm of v in L(x) with m larger that 4r||ϕ||k.

2.4 Language of a morphism

Let ϕ : A∗ → A∗ be a non-erasing morphism. The set of all the
factors of the words ϕn(a) for all integers n and all letters a in A is
called the language of the morphism ϕ and is denoted by L(ϕ).

Proposition 2.4.1. Let ϕ be a non-erasing morphism with right
infinite fixed point x. Then L(x) ⊆ L(ϕ).

Proof. For a morphism ϕ with right infinite fixed point x, there is a
letter a in A such that x = ϕω(a). For any word w factor of x there
is an integer n such that w is factor of the prefix ϕn(a) and since
ϕn(a) is in L(ϕ) (because of definition), so is its factor w.

A similar result holds for the language of a left fixed point of a
morphism.

Proposition 2.4.2. Let ϕ be a non-erasing morphism with left
fixed point y. Then L(y) ⊆ L(ϕ).

The proof is similar to the proof of Proposition 2.4.1. It is enough
to work with suffixes instead of prefixes.
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Proposition 2.4.3. Let ϕ be a primitive morphism with a right
infinite fixed point x. Then L(x) = L(ϕ).

Proof. Let ϕ be a primitive morphism with a right infinite fixed
point x = ϕω(a). Because of primitivity, there is an integer k such
that all letters of the finite alphabet A appear in ϕk(a). Since ϕω(a)
is fixed point it holds that,

ϕk(ϕω(a)) = ϕω(a) = x

which proves that all letters appear in the fixed point x and thus all
their images appear in x too. Hence, L(ϕ) ⊆ L(x).

From Proposition 2.4.1 we have that L(x) ⊆ L(ϕ), which proves
the wanted equality.

Proposition 2.4.4. Let ϕ be a primitive morphism with a left
infinite fixed point y. Then L(y) = L(ϕ).

The proof is similar to the proof of Proposition 2.4.3.
The previous results do not hold for the case of the two-sided

infinite fixed point, as it can be seen in the following example, where
z = y • x in AZ with L(z) 6⊂ L(ϕ).

Example 2.4.5. Let ϕ be the primitive morphism such that ϕ(0) =
02, ϕ(1) = 201 and ϕ(2) = 212. Since ϕ(0) is in 0A∗, there is unique
right infinite fixed point x and since ϕ(1) in A∗1, there is unique left
fixed point y as follows,

x = ϕω(0) = 022122122 . . . and y = ϕω̃(1) = . . . 21202201.

Let z = y •x be a two-sided infinite fixed point of ϕ. The word 10 is
in language L(z) but not in the language of the morphism L(ϕ). (It
can be proved using extension graph for the empty word, as defined
in Section 4.1).

0

1

2

0

1

2

Figure 2.1: The extension graph of E(ε).
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A two-sided fixed point z = y • x of a morphism ϕ is called
admissible if z−1z0 = y−1 • x0 is in the language L(ϕ), where x is
a right infinite fixed point and y is a left infinite fixed point of the
morphism ϕ.

Example 2.4.6. The word z in Example 2.4.5 is not admissible. For
the morphism ϕ : {0, 1}∗ → {0, 1}∗ with ϕ(0) = 010 and ϕ(1) = 0
the two-sided infinite fixed point z = ϕω̃(0) • ϕ̃ω(0) is admissible.

Observation 2.4.7. For a two-sided infinite fixed point z = y • x
of a morphism ϕ it holds that L(x),L(y) ⊆ L(z).

Proposition 2.4.8. Let z be an admissible two-sided fixed point of
a morphism ϕ, then L(z) ⊆ L(ϕ).

Proof. Let z be an admissible two-sided fixed point. Since z−1z0 is
in the language L(ϕ), it follows that ϕn(z−1z0) is in L(ϕ), for all
positive integers n. Thus, any factor of the two-sided fixed point z
is in L(ϕ), which implies that L(z) ⊆ L(ϕ).

Example 2.4.9. Let ϕ be the morphism with ϕ(0) = 01, ϕ(1) = 01
and ϕ(2) = 0. The two-sided z = ϕω̃(1) • ϕω(0) is admissible fixed
point since 10 ∈ L(ϕ). It holds that L(z) ⊂ L(ϕ) but the equality
between the two languages does not hold since 2 is in L(ϕ) but not
in L(z).

Proposition 2.4.10. Let z be an admissible two-sided infinite fixed
point of a primitive morphism ϕ, then L(z) = L(ϕ).

Proof. It follows from Proposition 2.4.8 that L(z) ⊆ L(ϕ). In order
to prove the other side, it is enough to recall that since the morphism
is primitive, all letters of the alphabet can be found in ϕi(z) for
some integer i > 0. Since z is a fixed point it holds that ϕi(z) = z
which implies that all letters can be found in the fixed point. Since
ϕk(z) = z for all integers k ≥ 0, it follows that all words w ∈ L(ϕ)
are factors of z. Thus, L(ϕ) ⊆ L(z) which proves that the two sets
coincide.

Example 2.4.11. The language L(z) from Example 2.4.6 coincides
with the language L(ϕ) of the morphism.

A connection for a substitution ϕ is a pair (b, a) of letters in A
such that the first letter of ϕω(a) is a, and the last letter of ϕω̃(b) is
b and the word ba is in L(ϕ).
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Remark 2.4.12. A two-sided infinite fixed point z of a morphism
ϕ is admissible if and only if (z−1, z0) is a connection.

Proposition 2.4.13. Let z be an admissible two-sided fixed point
of a primitive morphism ϕ such that z = y • x, then L(z) = L(x) =
L(y) = L(ϕ).

Proof. The proof follows easily from Propositions 2.4.10, 2.4.3 and
2.4.4.

Proposition 2.4.14. Every morphism on an alphabet A has a
power with a right (resp. left) infinite fixed point in AN.

The following proof is for the right infinite fixed point. The proof
for the left infinite fixed point is similar.

Proof. Let ϕ : A∗ → A∗ be a non-erasing morphism. Let A1 be the
set defined as follows,

A1 = {a ∈ A | |ϕ
n(a)| → ∞}.

Let A0 be the complement of A1, i.e., A = A0 ∪ A1. For the set A0

we have that,
ϕ(A0) ⊂ A∗

0.

Indeed, for a letter a in A0 let the image under the morphism ϕ be,

ϕ(a) = β0β1 . . . βn , for βi ∈ A.

If there is a βi, with 0 ≤ i ≤ n, such that βi in A1, then |ϕ
n(βi)| →

∞, which implies that |ϕn(a)| → ∞, that leads to a contradiction.
First we will examine the case where A0 6= ∅. There exists a

letter a in A for which there is integer n such that ϕn(a) = a.
Hence, ϕ(aω) = aω is a right infinite fixed point.

Let us now examine the case where A0 = ∅. It holds that for any
letter a,

ϕn(a) ∈ anA
∗ and ϕ(an) = an+1A

∗, with an, an+1 ∈ A

for all integers n. Since the alphabet is finite, there exist integers i, j
with i < j such that ai = aj and ϕj−i(ai) is in aiA

∗, which proves
that there is a right infinite fixed point for the power j − i of the
morphism ϕ.
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Example 2.4.15. Let ϕ be the morphism with ϕ(0) = 1 and ϕ(1) =
01. For the morphism ϕ there is no letter in the alphabet A such
that ϕ(a) ∈ aA∗. However, for the 2-power of the morphism holds
that ϕ2(0) = 01 ∈ 0A∗ and ϕ2(1) = 101 ∈ 1A∗1. It follows that
(ϕ2)ω(0) and (ϕ2)ω(1) are right infinite fixed points and a (ϕ2)ω̃(1)
is left infinite fixed point of the morphism ϕ2.

Proposition 2.4.16. Every primitive morphism has a power that
has a connection.

Proof. Let a, b be letters in A such that ba ∈ L(ϕ). Since A is finite
it follows that there are integers i, p and j, q such that ϕi(a) and
ϕi+p(a) start with the same letter, without loss of generality let it
be c ∈ A, and ϕj(b) and ϕj+q(b) end with the same letter, without
loss of generality let it be d ∈ A. Let k = max{i, j}, since ba ∈ L(ϕ)
it follows that ϕk(ba) ∈ L(ϕ) and hence its factor dc is also in L(ϕ).
We have that ϕp(c) starts with the letter c and ϕq(d) ends with the
letter d. Let ℓ = lcm(p, q), then ϕr(c) ∈ cA∗ and ϕr(d) ∈ A∗d which
implies that (ϕℓ)ω(c) ∈ cA∗ and (ϕℓ)ω̃(d) ∈ A∗d. Thus, (d, c) is a
connection for ϕℓ.

Observation 2.4.17. Every morphism has a power with an admis-
sible two-sided infinite fixed point.

Example 2.4.18. The morphism ϕ from Example 2.4.15 has no
connection but the power ϕ2 has connection (1, 0) and two-sided
infinite fixed point z = (ϕ2)ω̃(1) • (ϕ2)ω(0).
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3
Recognizability

The recognizability of morphisms is a core notion underpinning vari-
ous scientific fields, ranging from combinatorics on words to symbolic
dynamics. In the nominal work of Martin [77], the author examines
the concept of recognizability using the term of determinization.
The goal of this chapter is to elucidate further the notion of rec-
ognizability of morphisms and bridge the various definitions found
in the literature. The term first appears in the work of B. Host,
“Valeurs propres des systèmes dynamiques définis par des substi-
tutions de longueur variable” [58]. A notion that bears apparent
similarity is that of circularity, to the extent where the two terms
are used interchangeably in the literature. Nevertheless, these two
terms are not entirely equivalent, and this inconsistency across def-
initions might act as a root of confusion in the field. This chapter
aims to accumulate the existing definitions and bridge them under a
common framework, where the equivalence of each is studied against
that of the others.

3.1 Synchronization point

In this chapter we will denote by u the right infinite fixed point
of a morphism and we will refer to it as fixed point. Also, when
not specifically defined otherwise, we consider that a morphism is
non-erasing.

Definition 3.1.1. Let ϕ : A→ A∗ be a morphism with fixed point
u ∈ AN. A triplet (p, v, s) where p, s ∈ A∗, v = v0v

′vn ∈ L(u) \ {ε},

33



34 CHAPTER 3. RECOGNIZABILITY

v′ = v1 . . . vn−1, (vi)0≤i≤n ∈ A is an external interpretation of a word
u ∈ L(u) if ϕ(v) = pus, where p is prefix of ϕ(v0) = pq and s is
suffix of ϕ(vn) = rs and u = qϕ(v′)r, as shown in Figure 3.1, while
the triplet (q, v′, r) is an internal interpretation of the word u when
it holds that u = qϕ(v′)r.

v0 v′ vn

p q ϕ(v′) r s

v

ϕ(v) = pus

Figure 3.1: A graphical explanation of the definitions of external and internal
interpretation.

Remark 3.1.2. If there is an external interpretation (p, v, s) of a
word u in L(u), then there is an internal interpretation too.

Let ϕ be a morphism with fixed point u. If there is an external
interpretation (p, w, s) of u on u, then we say that the word w ∈
L(u) covers the word u ∈ L(u) if it holds that u is a factor of ϕ(w)
but it is not a factor of ϕ(v) for any proper factor v of w. Note that
the number of words covering a finite word u is finite.

Example 3.1.3. Let ϕF be the Fibonacci morphism (Example
2.2.2). The word w = 010 covers the word u = 0100, as it can
be seen in Figure 3.2. Indeed, there is no proper factor v of w such
with u would be factor of ϕ(v), while u is factor of ϕ(w).

In the case of a primitive morphism, every word w ∈ L(u) can
be extended both on the left and the right and therefore an internal
interpretation implies the existence of at least one external interpre-
tation.

A morphism ϕ is called prefix (resp. suffix) if ϕ is non-erasing
and for each a, b ∈ A if ϕ(a) is prefix (resp. suffix) of ϕ(b), then
ϕ(a) = ϕ(b). A morphism ϕ is called bifix if ϕ is simultaneously
prefix and suffix.
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0 1 0

0 1 0 0 1

w

ϕF

ϕ(w) = u1

Figure 3.2: In the Fibonacci language the word w = 010 covers u = 0100.

Example 3.1.4. The Fibonacci morphism ϕF (Example 2.2.2) is
suffix since no image of a letter is suffix of the image of another
letter but it is not prefix since ϕF (1) = 0 is a prefix of ϕF (0) = 01.

Let u ∈ L(u). We say that (u1, u2) is a synchronization point of
u for the morphism ϕ with fixed point u, if u = u1u2 and

∀p, s, v ∈ L(u) such that ϕ(v) = pus⇒∃v1v2 factorization of v

with ϕ(v1) = pu1 and ϕ(v2) = u2s.

A synchronization point is a boundary between two elements of
ϕ(L(u)) whenever w appears as a factor of an element of ϕ(A∗)
and can be denoted by |, i.e w = w1|w2. It is permitted to have sev-
eral synchronization points in a word, for example (w1, w2w3) and
(w1w2, w3) are two synchronization points of the word w = w1w2w3,
i.e., w = w1|w2|w3.

v1 v2

p u1 u2 s

ϕ

Figure 3.3: A graphical explanation of the definition of the synchronizing point.

An interpretation of u = u1u2 passes by (u1, u2) if there is v =
v1v2 such that ϕ(v1) = pu1 and ϕ(v2) = u2s.
From the previous definition we can easily obtain the following
proposition,
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Proposition 3.1.5. Every external interpretation of u ∈ L(u)
passes by (u1, u2) if and only if (u1, u2) is a synchronization point of
u.

Example 3.1.6. Let ϕ be the Fibonacci morphism (Example 2.2.2)
with fixed point the Fibonacci word u. The word 00101 ∈ L(u) has
two synchronizing points (0, 0101) and (001, 01), i.e., 0|01|01.

Using the word cutting point we will indicate the positions of a
word w that are such that w = w1w2 and there exist words u1, u2
with pw1w2s ∈ L(u) such that ϕ(u1) = pw1, ϕ(u2) = w2s with
p, s ∈ A∗ and u1u2 ∈ L(u).

Observation 3.1.7. A synchronization point is “fixed” for a word
no matter where the word may appear as factor in the fixed point
(“fixed” in the sense that if v = v0 . . . vn ∈ L(u) has synchronizing
point at position k, with 0 ≤ k < n, then if u[i,i+n] = v, there is
synchronization point in position i+ k). A synchronization point is
a cutting point while every cutting point is not always a synchro-
nization point, as it is shown in the following example.

Example 3.1.8. Let ϕTM be the Thue-Morse morphism with ϕTM(0) =
01, ϕTM(1) = 10 and fixed point,

u = ϕω
TM(0) = 01101001100101 · · ·= |01|10|10|01|10|01|01| . . . .

The word 010 ∈ L(u) contains one cutting point because of its
length (|010| > ||ϕTM || = 2). Specifically, there are two cutting
points, at position 1 and 2, but none of these is a synchronization
point. Indeed, for the pair (0, 10) there are words v1 = 1 and v2 = ε,
such that v1010v2 = 1010 ∈ ϕ(L(u)) and 10 ∈ ϕ(L(u)). However,
if we change the extensions to the words v′1 = ε and v′2 = 1 with
v′1010v

′
2 = 0101 ∈ ϕ(L(u)) with 101 6∈ ϕ(L(u)), which implies that

(0, 10) is not synchronization point. Similarly, it can be seen that
the pair (01, 0) is also not a synchronization point. However, the
word 011 ∈ L(u), has a synchronizing point (01, 1) because every
decomposition passes from the position between the two consecutive
1’s, since they cannot appear as a factor of the image of any letter
of the alphabet under the morphism ϕTM . Since the position 2 is
synchronization point, it is also a cutting point as it follows from
the above observation.
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A morphism ϕ : A∗ → A∗ is called k-uniform if for all a ∈ A, we
have |ϕ(a)| = k.

Example 3.1.9. The Thue-Morse morphism ϕTM (Example 3.1.8)
is 2-uniform. Particularly it is prefix and suffix, thus it is bifix. The
Fibonacci morphism ϕF (Example 2.2.2) is not k-uniform for any
integer k.

Definition 3.1.10. Let ϕ be a morphism with fixed point u and
let u ∈ L(u). We say that (u1, u2) is a strong synchronization point
if there exists letter a ∈ L(u) such that ,

∀p, s, v ∈ L(u) such that ϕ(v) = pus⇒∃v1v2 factorization of v with

ϕ(v1) = pu1, ϕ(v2) = u2s and

the first letter of v2 is a.

Remark 3.1.11. Every strong synchronization point of a word u ∈
L(u) is a synchronization point but the reverse is not necessarily
true, as shown bellow.

Example 3.1.12. Let ϕF be the Fibonacci morphism (Example 3.2.3)
and u be the Fibonacci word. The word 10 ∈ L(u) has a synchro-
nization point (1, 0). There are two external interpretations of u,
(0, 00, 1) and (0, 01, ε). For the interpretation (0, 00, 1) of u there is
v = 00 with v1 = 0 and v2 = 1, while for (0, 01, ε) there is v′ = 01
with v′1 = 0 and v′2 = 1 that verify the definition of the synchro-
nizing point. Since v2 and v′2 do not start with the same letter, the
synchronization point (1, 0) is not strong.

The word w = 00 ∈ L(u) has synchronization point (0, 0) and
unique external interpretation (ε, 10, 1) and therefore there are unique
v1 = 1 and v2 = 0, which means that the word v2 starts always with
the letter 0 and thus (0, 0) is a strong synchronization point of w.

The word w′ = 0010 ∈ L(u) has a synchronization point (0, 010)
and it also has two different external interpretations that pass from
that position, (ε, 100, 1) and (ε, 101, ε). For the interpretation (ε, 100, 1)
there are v1 = 0, v2 = 01 and for the interpretation (ε, 101, ε) there
are v′1 = 0, v′2 = 00. The words v2 and v′2 start with the same letter
and thus the synchronization point (0, 010) is strong.

Observation 3.1.13. In the case of a prefix morphism every syn-
chronization point is a strong synchronization point.
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The above observation holds since if a word of a substitutive
language of a prefix morphism has a synchronization point, then
the decoding after that synchronization point is unique.

3.2 Determined words

The first time that the idea of identifying the interpretations of a
word of a substitutive language took place was in the work of John
C. Martin [77], where the following definition appears,

Definition 3.2.1 (Martin). Let ϕ : A∗ → A∗ be a morphism with
right infinite fixed point u. Let u ∈ L(u) longer than ||ϕ(a)||. The
word u is determined if there is a unique internal interpretation
(q, v, r) of u.

See Figure 3.4 for a graphical representation of the above defini-
tion.

v1 . . . vn

q ϕ(v1) . . . ϕ(vn) r

v =

u =

ϕ

Figure 3.4: A graphical explanation of Definition 3.2.1.

Example 3.2.2. Let us work with the Thue-Morse morphism ϕTM

(Example 3.1.8) and fixed point u = ϕω
TM(0). All words u ∈ L(u)

with length at least 5 are determined. Specifically, all the words with
such length having as a factor one of the words 00 or 11 (i.e. 0010,
0011, 0110, 1100, 1101) have a synchronization point between the
0’s and the 1’s, since there is no letter in the alphabet that under the
morphism ϕTM has an image with factor 00 or 11. The only words
of length 4 in the language that do not have two consecutive same
letters are 0101 and 1010, which have unique decomposition, 01|01
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and 10|10 respectively, and therefore unique internal interpretations
(ε, 00, ε) and (ε, 11, ε) respectively. Indeed, if the previous is not
true, then their preimages are factors of length more than 3 of the
sequence 0∗ or 1∗ that is not in the language L(u) (we cannot have
more than two consecutive 0’s or 1’s). Finally, every long enough
word u ∈ L(u) (|u| ≥ 4) has at least one synchronizing point. Since
the Thue-Morse morphism ϕTM is bifix, it follows that the internal
interpretation of the word u is also unique.

Later, Martin stated the following (Lemma 1 [77]):
If ϕ is primitive, there exists an integer t such that any factor of
length t of the fixed point u is determined.

The proof of the above lemma was characterized as not convinc-
ing and the following counterexample (Example 3.2.3) proves that
the above lemma is not true.

Example 3.2.3. Let ϕF be the Fibonacci morphism that is primi-
tive, with fixed point u = ϕω(0) (Example 2.2.2). It is known that
the prefixes of the Fibonacci word are left-special and that the set
of factors of the Fibonacci word is closed by reversal. Thus, the
reversal of any prefix of the Fibonacci word is right special. Hence,
there are right special words of every length. Let us suppose that u
is a right special word in L(u) (i.e. can be extended on the right by
0 and 1). Since there is no word in L(u) that has two consecutive
1’s, the last letter of u has to be 0. Similarly, we conclude that
u = w10 since otherwise we would had three consecutive 0’s (that
implies that the preimage of this factor has two consecutive 1’s, that
is not possible). It can be seen that there are two distinct internal
interpretations of u, (ε, v1, ε) and (ε, v, 0), where ϕ(v) = w1. (See
Figure 3.5)

0

10

v

ϕ(v) = w1 0
10

010

Figure 3.5: A graphiccal explanation of Example 3.2.3.
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We introduce the following definition that describes the mor-
phisms that satisfy Martin’s lemma (Lemma 1 [77]).

Definition 3.2.4. Let ϕ : A∗ → A∗ be a morphism with a fixed
point u. We say that ϕ is strongly circular if there is an integer t
such that any factor of u of length t is determined.

In other words, a morphism is strongly circular if there is a unique
internal interpretation of any word of length at least t.

Example 3.2.5. As it has been explained in Example 3.2.2 the
Thue-Morse morphism ϕTM is strongly-circular for t = 4, while ac-
cording to Example 3.2.3 the Fibonacci morphism ϕF is not strongly-
circular.

3.3 Right, left and two-sided recognizability

The term recognizablewas introduced by B. Host [58] and M. Queffélec [87].
In Mossé’s work [80] there is the notion of one-sided recognizabil-
ity (right recognizable and left recognizable) and that of two-sided
recognizability. The first one is the one used by B. Host (Definition
3.3.2).

3.3.1 Right recognizability

Let u be a fixed point of a morphism ϕ. We will define the set Ek,u,
where k ≥ 1, as follows,

Ek,u = {0} ∪ {|ϕk(u[0,p−1])|; p > 0}.

We are going to use the notation Eu instead of E1,u. The set Eu

gives all the cutting points of the fixed point.
It holds that Ek,u ⊂ Ek−1,u, ∀k > 1. Indeed, if i ∈ Ek,u, then

there is a word u prefix of u such that i = |ϕk(u)| = |ϕk−1(ϕ(u))| =
|ϕk−1(u′)|, with u′ = ϕ(u) prefix of the fixed point. Thus, i ∈ Ek−1,u.
Hence, Ek,u ⊂ Ek−1,u.

Example 3.3.1. Let ϕ be the Fibonacci morphism (Example 2.2.2)
with fixed point,

u = 0100101001 . . . .

It can be seen thatEu = {0, 2, 3, 5, 7, 8, 10, . . .} andE2,u = {0, 3, 5, 8, . . .}
for which holds that E2,u ⊂ Eu as it was expected.
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Let fu denote the function

fu : N → N

i 7→ fu(i) =

{
|ϕ(u[0,i))| if i > 0,

0 if i = 0.

The function fu can be extended for the two-sided infinite word case
as follows,

fu : Z → Z

i 7→ fu(i) =





|ϕ(u[0,i))| if i > 0,

0 if i = 0,

−|ϕ(u[i,0))| if i < 0.

It is implied that Eu = fu(N). When it is clear from the context,
we simply write f instead of fu.

The following definition appears in the work of B. Host [58].

Definition 3.3.2. [58] Let ϕ : A∗ → A∗ be a morphism with a
fixed point u. We say that ϕ is right recognizable on u if there is an
integer L > 0 such that if u[i,i+L] = u[j,j+L] and i ∈ Eu, then j ∈ Eu.
(See Figure 3.6)

. . . ui′ . . . uj′ . . .

. . . u[i,i+L] . . . u[j,j+L] . . .

u

ϕ(u)

ϕ

Figure 3.6: A graphical illustration of Definition 3.3.2.

Example 3.3.3. The Fibonacci morphism ϕF is right recognizable
with L = 1. All the possible words of length 2 in the language L(u)
are 00, 01, 10. For the words 01, 00 we know that there is always a
synchronization point in the first position since the letter 0 is always
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the beginning of an image of a letter, hence i ∈ Eu for all i such
that u[i,i+1] = 00 or 01. Contrary to this, for the word 10 we are
sure that i /∈ Eu for all i such that u[i,i+1] = 10.

The following property shows that the recognizability on a fixed
point u of a morphism ϕ depends only on the language L(u) of the
fixed point.

Proposition 3.3.4. Let ϕ be a morphism with a fixed point u.
Then ϕ is right recognizable on u for some constant L, if and only
if any word u ∈ L(u) of length L+1 with an external interpretation
(ε, v, s) has a synchronization point (ε, u).

Proof. Let ϕ be a right recognizable morphism on a fixed point u

for some constant L > 0. Let u ∈ L(u) with |u| = L+ 1 and exter-
nal interpretation (ε, v, s). There is an occurrence i of u such that
ϕ(v) = us = u[i,i+L]s. Let us now take another external interpre-
tation (p′, v′, s′) of u on u. There is an occurrence j 6= i of u such
that ϕ(v′) = p′u[j,j+L]s

′ = p′us′ (See Figure 3.7). Since ϕ is right
recognizable on u and i ∈ Eu, it follows that j ∈ Eu and therefore
j ∈ Eu. Thus p

′ = ε and (ε, u) is a synchronization point.
In order to prove the other direction, let u ∈ L(u) have an oc-

currence i ∈ Eu. Then, there is external interpretation (ε, v, s) of u
and (ε, u) is a synchronization point, from hypothesis. Thus (ε, u)
is a synchronization point. Thus, for any other occurrence j of u
with external interpretation (p′, v′, s′) (i.e. ϕ(v′) = p′u[j,j+L]s

′ with
u[j,j+L] = u) holds that p′ = ε. Then j ∈ Eu which proves that right
recognizability holds for L > 0.

Proposition 3.3.5. Let ϕ be a morphism with fixed points u,v
such that L(u) = L(v). The morphism ϕ is right recognizable on v

if and only if it is right recognizable on u.

Proof. This result follows from Proposition 3.3.4.

Remark 3.3.6. The hypothesis L(u) = L(v) is satisfied in the
primitive case since the languages of all fixed points coincide (i.e.
if u,v ∈ AN are fixed points of the primitive morphism ϕ, then
L(u) = L(v)). In this case the above result is consequence of
Mossé’s Theorem (to be seen below).
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. . . v . . . v′ . . .

. . . u[i,i+L] s . . . p′ u[j,j+L] s′ . . .

u

u = ϕ(u)

ϕ

Figure 3.7: Occurrences i and j of u ∈ L(u) from the proof of Proposition 3.3.4.

Proposition 3.3.7. [80] Let ϕ be a primitive morphism with ape-
riodic fixed point. The morphism is not right recognizable if and
only if for any integer L > 0 there is w with |w| = L + 1 and two
letters a, b ∈ A such that,

1. the word ϕ(b) is a strict suffix of the word ϕ(a),

2. the words ϕ(a)w and ϕ(b)w are in the language L(u) and they
have the same decoding.

The following proposition indicates the relation between strongly
circularity and right recognizability.

Proposition 3.3.8. If a morphism is strongly circular then it is
right recognizable.

Proof. Let ϕ be a strongly circular morphism for some constant
t > 0 and a fixed point u. Let u ∈ L(u) with |u| = t and let i
be an occurrence of u in u, i.e., u[i,i+|u|) = u, with i ∈ Eu. Since
ϕ is strongly circular for t, the word u has a unique internal inter-
pretation (p, v, s) with u = pϕ(v)s. Since i ∈ Eu the interpretation
must pass by the position i which implies that p = ε. Let j > 0
be another occurrence of u, i.e., u[j,j+|u|) = u. Since the internal
interpretation is always (ε, v, s) it holds that j ∈ Eu and therefore
the morphism is right recognizable.

The inverse of the previous proposition is not always true, as it
is indicated in the following example.



44 CHAPTER 3. RECOGNIZABILITY

Example 3.3.9. Let ϕ : {0, 1, 2}∗ → {0, 1, 2}∗ with ϕ(0) = 0120,
ϕ(1) = 12, ϕ(2) = 12 and fixed point u = ϕω(0). It can be verified
that this morphism is right recognizable for the constant L = 2.
However, this is not strongly circular. Indeed, for any integer t > 1,
there is a word u,

u =

{
(12)

t
2 if t is even,

(12)
t−1
2 1 if t is odd.

that have at least two distinct internal interpretations. More pre-
cisely, in the case of t = 2, there is the word u = 12 with interpre-
tations (ε, 1, ε) and (ε, 2, ε). Similarly, for any longer pair integer t

such that t mod 4 = 0 there is a word w = (12)
t
2 with interpreta-

tions (ε, (12)
t
4 , ε) and (ε, (21)

t
4 , ε). For any pair t with t mod 4 = 2

the word w has interpretations (ε, (12)⌊
t
4
⌋1, ε) and (ε, (21)⌊

t
4
⌋1, ε).

Finally, for an odd integer t there is the word w′ = (12)
t−1
2 1 with

interpretations (ε, (12)⌊
t−1
4

⌋, 2) and (ε, (21)⌊
t−1
4

⌋, 2). Thus, the mor-
phism is right recognizable but not strongly circular.

Remark 3.3.10. If the morphism is prefix and right recognizable
then it is strongly circular.

3.3.2 Left recognizability

Definition 3.3.11. Let ϕ : A∗ → A∗ be a morphism with fixed
point u. We say that ϕ is left recognizable on u if there is an integer
L > 0 such that for every i > L if u[i−L,i] = u[j−L,j] and i+ 1 ∈ Eu,
then j + 1 ∈ Eu.

Example 3.3.12. Let ϕ be the morphism on the alphabet A =
{0, 1} such that ϕ(0) = 010, ϕ(1) = 10 and fixed point u = ϕω(0).
The morphism ϕ is left recognizable with L = 1. All the possible
words of length 2 in the language L(u) are 00, 01, 10. For the word
01 we know that there is never a synchronization point in the last
position since the letter 1 is never the ending of an image of a letter,
hence i /∈ Eu for all i such that u[i,i+1] = 01. Similarly to this, for
the word 00 it can be easily seen that there is a synchronization
between the two 0’s and never at the last position. Thus, i /∈ Eu for
all i such that u[i,i+1] = 00 Contrary to the previous cases, for the
word 10 we are sure that i ∈ Eu for all i such that u[i,i+1] = 10.
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Proposition 3.3.13. Let ϕ be a morphism with a fixed point u.
Then ϕ is left recognizable on u for some constant L, if and only if
any word u ∈ L(u) of length L+ 1 with an external interpretation
(p, v, ε) has a synchronization point (u, ε).

Proof. Let ϕ be a left recognizable morphism on a fixed point u

for some constant L > 0. Let u ∈ L(u) with |u| = L + 1 and
external interpretation (p, v, ε). There is an occurrence i − L of u
such that ϕ(v) = pu = u[i−L,i]. Let us now take another external
interpretation (p′, v′, s′) of u on u. There is an occurrence j−L 6= i
of u such that ϕ(v′) = p′u[j−L,j]s

′ = p′us′ (See Figure 3.8). Since ϕ
is left recognizable on u and i+ 1 ∈ Eu, it follows that j + 1 ∈ Eu.
Thus, s′ = ε and (u, ε) is a synchronization point of u on u.

In order to prove the other direction, let u ∈ L(u) have an oc-
currence i − L ∈ Eu with interpretation (p, u, ε). Then, (u, ε) is a
synchronization point (from hypothesis). For any other interpreta-
tion (p′, v′, s′) for some occurrence j−L of u holds that s′ = ε. Then
j + 1 ∈ Eu which implies left recognizability for L > 0.

. . . v . . . v′ . . .

. . . p u[i−L,i] . . . p′ u[j−L,j] s′ . . .

u

u = ϕ(u)

ϕ

Figure 3.8: Occurrences i − L and j − L of u ∈ L(u) from the proof of Propo-
sition 3.3.13.

The following result is similar to the one for the right recogniz-
ability given by Mossé in [80] and can be proved in an analogous
way.

Proposition 3.3.14. Let ϕ be a primitive morphism with aperiodic
fixed point. The morphism is not right recognizable if and only if
for any integer L > 0 there is a word w with |w| = L + 1 and two
letters a, b ∈ A such that,
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1. the word ϕ(b) is a strict prefix of the word ϕ(a),

2. the words wϕ(a) and wϕ(b) are in the language L(u) and they
have the same decoding.

The following proposition indicates the relation between strongly
circularity and left recognizability.

Proposition 3.3.15. If a morphism is strongly circular then it is
left recognizable.

Proof. The proof is analogous to the proof of Proposition 3.3.8

The inverse of the previous proposition is not always true, as it
is indicated in the following example.

Example 3.3.16. Let ϕ : {0, 1, 2}∗ → {0, 1, 2}∗ with ϕ(0) = 0120,
ϕ(1) = 12, ϕ(2) = 12 and fixed point u = ϕω(0). It can be verified
that this morphism is left recognizable for some constant L = 2.
However, this is not strongly circular, from Example 3.3.9.

Remark 3.3.17. If the morphism is suffix and left recognizable
then it is strongly circular.

3.3.3 Two-sided recognizability

Definition 3.3.18. [80] Let ϕ : A∗ → A∗ be a morphism with a
fixed point u. We say that ϕ is two-sided recognizable on u if there is
an integer L > 0 such that for every i > L if u[i−L,i+L] = u[j−L,j+L]

and i ∈ Eu, then j ∈ Eu.

Example 3.3.19. Let us work with the Fibonacci morphism ϕF

(Example 2.2.2) with fixed point u = ϕω
F (0). The words that belong

in the language L(u) cannot have as factor two consecutive 1’s nor
three consecutive 0’s (since that implies that their preimage would
have as factor at least two consecutive 1’s). Also, if there is a factor
00, there has to be a synchronization point in the position between
the two 0’s. Moreover, after each appearance of the letter 1 there
is a synchronization point (since 1 cannot be anything but the end
of an image of a letter). Because of the aboves, it can be seen
that any word with length more that three (L = 1) has at least one
synchronization point (because this word contains 1’s or 00’s factors)
and is uniquely decomposed. Thus, the Fibonacci morphism is two-
sided recognizable.
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Let us introduce the following equivalence that can be used in
order to reform the above definition.

For every n ≥ 1, we define an equivalence relation on the set of
integers at least equal to n as follows,

i ∼u,n j if and only if u[i−n,i+n] = u[j−n,j+n].

Using the above equivalence relation, a morphism ϕ is said to be
two-sided recognizable if there is an integer n ≥ 0 such that for
every i, j ≥ n, whenever i ∼u,n j then i ∈ Eu if and only if j ∈ Eu.

In other words, for a two-sided recognizable morphism, a long
enough word of its substitutive language has synchronization point
except maybe of a bounded suffix and prefix.

Proposition 3.3.20. Let ϕ be a morphism with a fixed point u ∈
AN. Then ϕ is two-sided recognizable on u for some constant L > 0,
if and only for any word u ∈ L(u) and for any words u1, u2 ∈ L(u)
of length L and L+ 1 respectively with u1u2 ∈ L(u) a factorization
of u such that there is an external interpretation (p, v, s) of u which
passes by (u1, u2), then (u1, u2) is a synchronization point.

Proof. Let ϕ be a two-sided recognizable morphism on a fixed point
u for some constant L > 0. Let u ∈ L(u) with |u| = 2L + 1 and
external interpretation (p, v, s). There is an occurrence i − L of u
such that

ϕ(v) = pus = pu[i−L,i+L]s = pu[i−L,i)u[i,i+L]s = pu1u2s

with u1 = u[i−L,i), u2 = u[i,i+L] and i ∈ Eu. For another external
interpretation (p′, v′, s′) of u on u, there is a position j 6= i in u

such that ϕ(v′) = p′u[j−L,j+L]s
′ = p′us′ (See Figure 3.9). Since ϕ

is two-sided recognizable on u and i ∈ Eu, it follows that j ∈ Eu.
Thus (u[i−L,i),u[i,i+L]) = (u1, u2) is a synchronization point.

In order to prove the other direction, let u ∈ L(u) have an
occurrence i − L in u such that i ∈ Eu (i.e. u[i−L,i+L] = u).
Then, there is external interpretation (p, v, s) of u and the pair
(u[i−L,i),u[i,i+L]) = (u1, u2) is a synchronization point, from hypoth-
esis. Thus, for any other occurrence j−L of u with external interpre-
tation (p′, v′, s′) (i.e. ϕ(v′) = p′u[j−L,j+L]s

′ with u[j−L,j+L] = u) holds
that j ∈ Eu which proves two-sided recognizability for L > 0.
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. . . v
v1 v2

. . . v′

v′1 v
′
2

. . .

. . . p u[i−L,i) u[i,i+L] s . . . p′ u[j−L,j)u[j,j+L] s′ . . .

u

u = ϕ(u)

ϕ

Figure 3.9: Occurrences i − L and j − L of u ∈ L(u) from the proof of Propo-
sition 3.3.20.

Proposition 3.3.21. The definition of one-sided recognizability
(resp. right, left) is stronger than the one of two-sided recogniz-
ability.

Proof. If a morphism is right recognizable (resp. left) for a constant
L > 0 then for any word u[i−K,i+K] with K ≥ L , if the position i is
in Eu then this position is a synchronization point since for its factor
u[i,K] (resp.u[K,i]) if the position i is in Eu then it is a synchronization
point.

The following is an example of a morphism that is two-sided
recognizable but not left recognizable.

Example 3.3.22. Let us work with the Fibonacci morphism ϕF

that is two-sided recognizable according to Example 3.3.19 and right
recognizable from Example 3.3.3.

However, Fibonacci morphism is not left recognizable. It can be
seen that the image of a right special word extended by the longest
common prefix of the images of its extensions is also right-special.
Let us use the notation lcp(e1, e2) for the longest common prefix of
the images of the words e1, e2. If for a right special word w ∈ L(u)
with extensions e1, e2 ∈ L(u) we suppose that ϕF (w)lcp(e1, e2) is
not right special, then it follows that two distinct words we1, we2
have the same images, i.e., ϕF (we1) = ϕF (we2). That leads to
a contradiction since the Fibonacci morphism is injective. For a
right-special word, the last letter is 0 and could have been image of
1 or prefix of the image of 0, which implies that the position after
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the 0 can be in Eu or not respectively. Thus, the morphism ϕF is
not left recognizable.

Proposition 3.3.23. Every suffix two-sided recognizable morphism
is right recognizable.

Proof. Let ϕ be a suffix two-sided recognizable morphism. Because
of the definition of two-sided recognizability there is an integer L > 0
such that for every i, j ∈ N with u[i−L,i+L] = u[j−L,j+L] and i ∈ Eu,
then j ∈ Eu. Since the morphism is suffix, if i ∈ Eu, then the
decoding before this cutting point is unique. Hence, if i − L ∈ Eu

then j − L ∈ Eu. Consequently, there is an integer L′ = 2L > 0 for
which the morphism is right recognizable.

Example 3.3.24. The Fibonacci morphism ϕF is suffix and two-
sided recognizable (Example 3.3.19). We have that ϕF to be right
recognizable (Example 3.3.3) which is in accord with Proposition 3.3.23.

Proposition 3.3.25. Every prefix two-sided recognizable morphism
is left recognizable.

The proof is analogous to the proof for Proposition 3.3.23.
We have already seen that two-sided recognizability does not im-

ply one-sided recognizability and as it can be seen in the following
example, it is possible for a morphism ϕ to be two-sided recognizable
but neither right recognizable nor left recognizable.

Example 3.3.26. Let us work with the morphism ϕ : {0, 1}∗ →
{0, 1}∗, with ϕ(0) = 010, ϕ(1) = 0 and fixed point u = ϕω(0). The
morphism ϕ is two-sided recognizable with L = 1, since for all words
u[i−1,i+1] ∈ L(u) of length 3 = 2L+1 if the position i ∈ Eu then for
any other position [j−L, j+L] in the fixed point that the word may
appear, holds that j is also in Eu. Indeed, it can be seen that two
consecutive 0’s cannot appear as a factor of the image of any letter
of the language under the morphism ϕ. Also, the letter 1 is never
the first neither the last letter of an image of a letter, and therefore
it cannot appear in the beginning or the end of a word. Because of
the aboves, for any word u[i−1,i+1] with ui = 1 follows that i 6∈ Eu,
while if ui = 0, it comes from 01 or 10, then if ui−1 = 0 then i ∈ Eu

but if ui−1 = 1 then i 6∈ Eu since it comes from 010. It can be
verified easily for all words of length 3, 001, 010, 100 and 000. In
order a morphism ϕ not to be left recognizable, we have to prove



50 CHAPTER 3. RECOGNIZABILITY

that for all integers L there is long enough word about which it is
not decidable whether its last position is in Eu or not. We can see
that for morphism ϕ, the word u = 0 can be extended on the right
by the words 10 and 0. In the first case, the last position of u is
not in Eu, while in the second case it is. Let us now take the image
of them under the morphism ϕ (as seen in Figure 3.10). We know
that ϕ(0) = 010 and the images of its extensions are ϕ(0) = 010,
ϕ(10) = 0010. If we take the longest common prefix of them (the
notation lcp is used for the longest common prefix of the images of
the words) and add it after of the image of 0, we obtain the word
u′ = ϕ(u) lcp(0, 10) = 0100 ∈ L(u) that can be extended on the
right by 10 and 0. In the first case the last position of u′ is not
in Eu while in the second is. Every time that we repeat the same
procedure we got longer words whose last position may be or not in
the set Eu (See Figure 3.10). Thus, ϕ is not left recognizable.

The way to prove that ϕ is not right recognizable is similar to
the one used for the left recognizability. Let us start with the word
u = 0 ∈ L(u), that can be extended on the left by 01 and 0. In the
first case the position on the left of u = 0 is in Eu, while in the second
case it is not in Eu. Taking the image of u under ϕ extended by the
longest common suffix of the images of the two possible extensions
of its (the notation lcs() is used for the longest common suffix of the
images of two words), we have the word u′ = lcs(01, 0)ϕ(u) = 0010
that can be extended on the left by 01 or 0 and in the first case the
position on the left of u′ is not in Eu while in the second case it is.
Reapplying the same idea we obtain an arbitrary long word w for
which we cannot decide whether the position on the left of the first
letter is in Eu or not (See Figure 3.10). Hence, the morphism ϕ is
not right recognizable.

01

0

0

10

u

010

01

0 ϕ(u) 0
10

010

Figure 3.10: A graphiccal explanation of Example 3.3.26.
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3.3.4 Strong two-sided recognizability

Let us now introduce the definition of strong recognizability. Some
authors use the term recognizability when they refer to the term of
strong two-sided recognizability.

Definition 3.3.27. A morphism ϕ with a fixed point u is called
strongly two-sided recognizable if there exists an integer l > 0 such
that for any word u ∈ L(u) of length at least 2l, there are integers
i, j ∈ N with 0 ≤ i < l and |u| − l ≤ j < |u| and a unique word
v ∈ L(u), such that u[i,j) = ϕ(v), and whenever u[m,m+|u|) = u, then
there are positions i′, j′ ∈ N with fu(i

′) = m + i, fu(j
′) = m + j,

u[i′,j′) = v.

Observation 3.3.28. In other words, if a morphism is strongly two-
sided recognizable, it is two-sided recognizable and the preimage of
every factor of the fixed point of this morphism is unique except
for some bounded suffix and prefix. The two-sided recognizability
follows from strong recognizability. Indeed, the fact that u[i,j) =
ϕ(v) implies that the decoding of u[i,j) is known and thus if the
position ⌊|u|/2⌋ ∈ Eu, then the position is a synchronization point,
otherwise it can never be a cutting point whenever the word may
appear in the fixed point.

The smallest integer l that satisfies Definition 3.3.27 is called con-
stant of recognizability of ϕ.

Example 3.3.29. Let ϕF be the Fibonacci morphism (Example
2.2.2) with fixed point u being the Fibonacci word. This morphism
is strongly two-sided recognizable with constant of recognizability
l = 2. That can be checked for all words of length 2l = 4 in the
language L(u) which are the following ones, 0010, 0100, 0101, 1001
and 1010. For each one of them there are integers i, j and unique
word v ∈ L(u) that satisfy Definition 3.3.27. Specifically, the words
above can be written as 0ϕF (0)0, 01ϕF (1)0, εϕF (0)01, 1ϕF (1)01
and 1ϕF (0)0 respectively, no matter where they may appear in the
fixed point u. Finally, since the definition is satisfied for all words
of length 2l, then it is also satisfied for all the possible extensions of
them and therefore for all words with length at least 2ℓ.

Observation 3.3.30. Strongly recognizability does not imply one-
sided recognizability.
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The following example indicates a case where the previous obser-
vation holds.

Example 3.3.31. Let ϕF be the Fibonacci morphism (Example
2.2.2). As it was shown in Example 3.3.29, the Fibonacci morphism
is strongly two-sided recognizable, while from Example 3.3.22 it is
not left recognizable.

Intuitively someone may wrongly assume that strongly recogniz-
ability is the same as injectivity, that is why we present the following
remark.

Remark 3.3.32. Strongly recognizability does not imply injectiv-
ity.

An example that supports the previous remark is the following
one:

Example 3.3.33. Let ϕ : {0, 1, 2}∗ → {0, 1, 2}∗ be the primitive
morphism with ϕ(0) = 01002, ϕ(1) = 010 and ϕ(2) = 010 and
fixed point u = ϕω(0). This morphism can be obtained as the third
power of the Fibonacci morphism ϕF (Example 2.2.2) if we replace
the second appearance of the letter 1 in the word ϕ3

F (0) = 01001 by
the letter 2, which is going to have as image ϕ(2) = ϕ3

F (1) = 010.
The fixed point u is almost identical to the Fibonacci word (with
some replacements of the letter 1 by 2) and thus it is aperiodic.
For l = 3 we check all words w ∈ L(u) with |w| = 2l = 6, to see
if they satisfy Definition 3.3.27. The only words of this length in
L(u) are 001002, 002010, 010010, 010020, 020100, 100100, 100201,
201001 and 201002. All these words have synchronization points but
they are not long enough in order to have integers i, j that satisfy the
conditions of Definition 3.3.27. Indeed, the word u = 010010 ∈ L(u)
has a synchronizing point in position 3 (in between the two 0’s) and
has two distinct internal interpretations (ε, 1, 010) and (ε, 2, 010). It
can be seen that for the integers i = 0 and j = 3, there are words
v1 = 1 and v2 = 2 such that ϕ(v1) = u[0,3) and ϕ(v2) = u[0,3) and
thus the constant of recognizability cannot be equal 3. However, if
the words are long enough we can obtain the wanted integers and
the unique preimage of the factor in between the two integers. It
can be verified that the morphism is strongly two-sided recognizable
with constant of recognizability l = 11 but it is not injective. It
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can be verified that all words with the needed with length at least
2l + 1 = 23 verify the definition. An example is the word,

w = 01002010020100100201002

which can be decomposed uniquely as w = ϕ(0)ϕ(0)ϕ(1)ϕ(0)ϕ(0).
For the word w there are integers i = 10 < l and j = 13 ≥ |w| − l =
12 such that w[i,j) = ϕ(1) and it will be like that whenever w appears
in the fixed point. However, if we had chosen a smaller constant,
for example l′ = 10 we have the word

w′ = 0100201002010010020100

that can be decomposed in two different ways, w′ = ϕ(0)ϕ(0)ϕ(1)ϕ(0)010
and w′ = ϕ(0)ϕ(0)ϕ(2)ϕ(0)ϕ(1)0 and since the central part is differ-
ent in the two decompositions, it follows that there cannot be found
integers i, j that satisfy the definition of strongly recognizability.

Let us recall the equivalence relation on ∼u,n for n ≥ 1 by

i ∼u,n j if and only if u[i− n, i+ n] = u[j − n, j + n].

As a complement, the condition defining the two-sided recognizabil-
ity can be formulated with the following stronger condition, called
asymptotic injectivity: whenever fu(i) ∼u,n fu(j) then ui = uj .
Such a condition is clearly satisfied when ϕ is injective.

Example 3.3.34. Let ϕF be the Fibonacci morphism (Example 2.2.2)
with fixed point u the Fibonacci word.

u = 01|0|01|01|0|01|0|01|01|0|01|01|0 . . .

The morphism ϕF does not satisfy the asymptotic injectivity for
n = 0 on u. Indeed, fu(1) = 2 and fu(2) = 3 with u2 = u3 = 0
although u1 = 1 and u2 = 0. It is satisfied however for n = 1.
Indeed, uk = 0 if and only if uf(k)+1 = 1.

Remark 3.3.35. Asymptotic injectivity holds if and only if the
morphism is strongly two-sided recognizable.

Indeed, if a morphism ϕ is strongly two-sided recognizable for
a constant of recognizability l > 0, then it can be verified that
asymptotic injectivity holds for all integers n such that n ≥ l, since
the position that would be examined is in the part of the word that



54 CHAPTER 3. RECOGNIZABILITY

has unique preimage. It is also easy to verify the other way. If
asymptotic injectivity holds for some integer n, then the morphism
ϕ is strongly recognizability for some constant l > n.

The following lemma proves that two-sided recognizability, under
certain conditions other than asymptotic injectivity may also implies
strongly recognizability.

Lemma 3.3.36. If ϕ is two-sided recognizable morphism and suffix
(resp. prefix, injective) then it is strongly two-sided recognizable.

Proof. Suppose that ϕ is two-sided recognizable for a recognizability
constant L > 0. Let u ∈ L(u) be a word such that u = u[i,i+2L+2||ϕ||].
It can be seen that there is a position n, i + 1 ≤ n < i + L + ||ϕ||
such that n ∈ Eu and similarly there is a position m ∈ Eu with
i + |u| − L − ||u|| ≤ m < i − L + ||u||. Because of the two-sided
recognizability, the positions n,m are synchronizing points. If the
morphism is prefix (resp. suffix, injective), the preimage of u[n,m) is
unique. Hence, the morphism ϕ is strongly two-sided recognizable
for a constant ℓ ≤ L+ ||ϕ||.

Let us now give the following proposition that provides us with
another way of defining strongly two-sided recognizability. The
proposition is based on Mossé’s definition of two-sided recognizabil-
ity that was presented earlier in this chapter (Definition 3.5.1).

Proposition 3.3.37. Let ϕ : A∗ → A∗ be a morphism with a fixed
point u. The morphism ϕ is strongly two-sided recognizable on u if
and only if there is an integer L > 0 such that for every i > L if
u[i−L,i+L] = u[j−L,j+L] and i ∈ Eu, then j ∈ Eu and ui′ = uj′ , for
f(i′) = i and f(j′) = j.

Proof. Let ϕ be a strongly two-sided recognizable for some constant
ℓ > 0, then the morphism is two-sided recognizable with unique
preimage except of a suffix or prefix (Observation 3.3.28). The ex-
istance of a unique preimage for any long enough word (longer that
2ℓ) implies that there is an integer L > 0 such that for every i > L
if u[i−L,i+L] = u[j−L,j+L] and i ∈ Eu, then j ∈ Eu and ui′ = uj′, for
i′ = f(i) and j′ = f(j)..

In order to prove the other direction, let ϕ have a constant L > 0
such that for every i > L if u[i−L,i+L] = u[j−L,j+L] and i ∈ Eu,
then j ∈ Eu and ui′ = uj′, for i

′ = f(i) and j′ = f(j). It can be
verified that the morphism ϕ is strongly two-sided recognizable for a
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constant ℓ = L+2||ϕ||. Indeed, for any word u with length 2ℓ there
is a position k ∈ Eu in the factor u[L,ℓ) and a position n ∈ Eu in the
factor u[|u|−ℓ,|u|−L) and there are possibly more positions in Eu in the
interval [k,m] of u. For any position i of the interval [k,m] we can
apply the hypothesis. Thus, for any such position i, if i ∈ Eu then
the i is a synchronization point and ui′ is unique, for the position
i′ = f(i). Thus, by concatenation there is unique v = u[k′,m′], with
f(k′) = k and f(m′) = m, that is such that ϕ(v) = u[k,m]. Since the
positions k,m are synchronization points, if there is an occurrence
n ∈ N of the word u in the fixed point u, i.e., if u[n,n+|u|) = u, then
there are positions k1, m1 ∈ Eu with k1 = n+k andm1 = n+m with
u[k1,m1] = ϕ(v), which proves strongly two-sided recognizability.

Because of the above Proposition, it seems natural that there is
some connection between the strong two-sided recognizability and
the strong synchronization points, as it is indicated in the following
proposition.

Proposition 3.3.38. Let ϕ be a morphism with a fixed point
u ∈ AN. Then ϕ is strongly two-sided recognizable on u for some
constant L > 0, as described in Proposition 3.3.37, if and only for
any word u ∈ L(u) and for any words u1, u2 ∈ L(u) of length L
and L + 1 respectively with u1u2 ∈ L(u) a factorization of u such
that there is an external interpretation (p, v, s) of u which passes by
(u1, u2), then (u1, u2) is a strong synchronization point.

Proof. Let ϕ be a strongly two-sided recognizable morphism. From
Observation 3.3.28 we have that ϕ is two sided recognizable and
therefore by Proposition 3.3.20, any word u ∈ L(u) of length 2L+1
with an external interpretation (p, v, s) such that ϕ(v) = pu[i−L,i+L]s
that passes by (u[i−L,i),u[i,i+L]) = (u1, u2) has a synchronization
point (u1, u2). Let k be the integer such that i = f(k). Since the
morphism is strongly two-sided recognizable, the letter uk is unique,
which proves that (u1, u2) is a strong synchronization point.

In order to prove the other direction, let u ∈ L(u) of length
2L + 1 with an external interpretation (p, v, s) such that ϕ(v) =
pu[i−L,i+L]s = pu1u2s that passes by (u[i−L,i),u[i,i+L]) = (u1, u2) and
this point is a strong synchronization point. Since any strong syn-
chronization point is always a synchronization point and also with
the condition that the letter ui′ that corresponds to the position
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i′ = f(i) is fixed, it follows from Proposition 3.3.20 that ϕ is two-
sided recognizable. Therefore, for any other occurrence j − L of u,
i.e., u[j−L,j+L] = u = u1u2, since i ∈ Eu then j ∈ Eu and uj′ = ui′ ,
for j′ = f(j), which proves strong two-sided recognizability.

3.4 Mossé’s recognizability Theorem

The following theorem is known as B.Mossé’s recognizability The-
orem and it is a very important result of B. Mossé’s [80], because
before it the recognizability was supposed.

Theorem 3.4.1. [80] Every primitive aperiodic morphism is strongly
two-sided recognizable.

We show here the proof given by P. Kůrka [68], which might be
more comprehensible than the original one, given by B. Mossé, but
let us first define the following equivalence relation.

Let ϕ be a morphism with a fixed point u. Let u[i,i+n) = u[j,j+n).
The equivalence relation ≈ is defined between two intervals [i, i+n)
and [j, j+n) when fu(N)∩[j, j+n) can be obtained by fu(N)∩[i, i+n)
by a shift of j − i positions. In other words, [i, i+ n) ≈ [j, j + n) if
the two intervals have cutting points in similar positions.

Example 3.4.2. Let ϕF be the Fibonacci morphism with fixed
point u = ϕω

F (0) = 01|0|01|01|0|01|0|01|01|0|01|01|0| . . . , where |
is the notation for the positions in E = f(N). The word u = 0010 =
u[2,5] = u[7,10] = u[15,18] and it can be verified that [2, 5] 6≈ [7, 10] and
[2, 5] ≈ [15, 18].

The following proof is divided in two parts. In the first part it
is proved that every primitive aperiodic morphism is recognizable
while in the second part it is proved the stronger result that states
that under the same conditions the morphism is strongly two-sided
recognizable. The fist part is used in order to prove the second part.

Proof. (Theorem 3.4.1)[68] First part: The theorem is going to be
proved with use of contradiction. Let us fix integer k > 0, we shall
later chose a large enough value for the integer k, and let us work
with a morphism ϕ, assuming that the contrary of the theorem is
true (i.e. the morphism ϕ is primitive aperiodic and not two-sided
recognizable). For a given p, let lp = ||ϕ

p||k+1. Since ϕ is not two-
sided recognizable, for each integer p ≥ 0 there exist positions ip, jp
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such that ip ∈ f(N) and jp /∈ f(N) with u[ip−lp,ip+lp] = u[jp−lp,jp+lp].
Because of the size of the constant lp, every word of length more than
2lp has at least 2k+1 cutting points, which implies that u[ip−lp,ip+lp]

has also at least 2k+1 cutting points. More precisely, every word of
the previous form has at least k cutting points before the position
ip and k after. Let rp, sp be the smallest integers such that,
(
Card([ip − rp, ip) ∩ f

p(N)) = ⌊
k

2
⌋

)
∧

(
Card([ip, ip + sp) ∩ f

p(N)) = k − ⌊
k

2
⌋

)
.

The choice of the integers rp, sp is such that the factor u[ip−rp,ip+sp]

has k cutting points and it is a factor of u[ip−lp,ip+lp]. It follows that
ip− lp < ip− rp and ip+ sp ≤ ip+ lp and u[ip−rp,ip+sp] = u[jp−rp,jp+sp].
Since rp, sp are chosen to be the smallest such integers, it follows
that ip − rp and ip + sp are cutting points. Hence, there exists an
integer i′p such that ip−rp = f p(i′p) and ip+sp = f p(i′p+k) as in the
upper part of Figure 3.11. Since jp /∈ f(N), for jp − rp and jp + sp
there exist integers j′p, tp such that,
(
f p(j′p) ≤ jp − rp < f p(j′p + 1)

)
∧

(
f p(j′p + tp − 1) < jp − sp ≤ f p(j′p + tp)

)
.

j′p j′p + t

jp − rp jp + sp

v0 v1
w0

vt−2

wt−1

vt−1

fp

Ap ϕp(w0) ϕp(wt−1) Bp

i′p i′p + k

ip − rp ip + sp

u0 u1 uk−2 uk−1

fp

ϕp(u0) ϕp(u1) ϕp(uk−2) ϕp(uk−1)

Figure 3.11: Decomposition of ϕp(u).

It holds that,

|u[jp−rp,jp+sp)| = |u[ip−rp,ip+sp)| ≤ k||ϕp||
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and also,

|u[jp−rp,jp+sp)| ≥ |u[fp(j′p+1),fp(j′p+tp−1)]| ≥ tp|ϕ
p|

Thus,

tp|ϕ
p| ≤ k||ϕp|| ⇒ tp ≤ k

||ϕp||

|ϕp|
.

The above inequality means that the integer tp is bounded, which
implies that there exists t > 0, u ∈ Ak, v ∈ At and an infinite
set E ′ ⊆ N such that for any p ∈ E ′, tp = t,u[i′p,i

′
p+k) = u and

u[j′p,j
′
p+t) = v (See Figure 3.11 bottom). Let w = v[1,t−2]. For any

p ∈ E ′ there exists Ap suffix of ϕp(v0) and Bp prefix of ϕp(vt−1) such
that,

ϕp(u) = u[ip−rp,ip+sp] = u[jp−rp,jp+sp] = Apϕ
p(w)Bp.

as in Figure 3.12. For q ∈ Eu such that q > p we have,

Aqϕ
q(w)Bq = ϕq(u) = ϕq−p(ϕp(u)) = ϕq−p(Ap)ϕ

q(w)ϕq−p(Bp).

Let us suppose that Aq 6= ϕq−p(Ap), hence one of them has to be
prefix of the other. Without loss of generality let us set ϕq−p(Ap) =
Aqz, which implies that |z| is a period of ϕq(w). Thus, zn is prefix of
ϕq(w) for n integer such that n|z| ≤ |ϕq(w)|. For a k large enough
, since |Aq| + |Bq| + |w| ≥ k and thus |w| ≥ k − |Aq| − |Bq|, we
can find a large enough integer n that contradicts Theorem 2.3.18.
Thus, there are p, q ∈ E ′ with q > p such that Aq = ϕq−p(Ap) and
Bq = ϕq−p(Bp) as in Figure 3.12.

Let mp be the position in u such that mp− rp−f
p(j′p) = jp− r−

p − f p(j′p). Then, from Aq = ϕq−p(Aq) and Bq = ϕq−p(Bq) follows
that,

u[mp−rp,mp+sp) = u[jp−rp,jp+sp) = Apϕ
p(w)Bp = ϕp(u) = u[fp(i′p),f

p(i′p+k)).

Finally, applying ϕq−p we obtain,

[jq − rq, jq + sp) = [f q−p(mq − rp), f
q−p(mq + sp)) ≈ [f q(i′p), f

q(i′q + k))

= [iq − rq, iq + sq)

which leads to a contradiction since jp /∈ f(N) by assumption.
Second part: We define the following equivalence on the letters

of an alphabet. Two letters a, b ∈ A are equivalent (a ∼ b) if and
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mq − rp j′p + t

jp − rp jp + sp

j′p j′p + t

v0 v1
w0

vt−2

wt−1

vt−1

fp

Ap ϕ
p(w0) ϕp(wt−1) Bp

f q−p

Aq ϕq(w0) ϕq(wt−1) Bq

i′p i′p + k
u0 u1 uk−2 uk−1

ip − rp ip + sp

fp

ϕp(u0) ϕp(u1) ϕp(uk−2) ϕp(uk−1)

f q−p

ϕq(u0) ϕq(u1) ϕq(uk−2) ϕq(uk−1)

Figure 3.12: Decomposition of ϕp(u).

only if there is an integer n ∈ N such that ϕn(a) = ϕn(b). Since we
work on a finite alphabet A, there is a maximal integer p such that
two letters of the alphabet A will be equivalent (i.e if two letters
are not equivalent up to the integer p, then there is no need to
check larger integers cause we are sure that they are not equivalent).
Thus, if ϕp(a) 6= ϕp(b), then for all k ≥ 0, ϕk(a) 6= ϕk(b). From
Proposition 2.3.6 we have that if ϕ is primitive, so is any power ϕi

for i ∈ N of his. Also, since ϕ is primitive, the language L(ϕ) is the
same with the language of all fixed points of ϕ and the ones of the
powers of his. That being the case, the morphism ϕp+1 is primitive
with aperiodic fixed point. Applying Theorem 3.4.1 to ϕp+1, we have
that two-sided recognizability holds, i.e., there exists an integer lp
such that for any integers r, q > lp, if u[q−lp,q+lp] = u[r−lp,r+lp] and
q ∈ f p+1(N), then r ∈ f p+1(N). Let us set l = lp + ||ϕ

p+1||. For
u ∈ L(u), |u| ≥ 2l we are sure that there is at least a cutting point
between the positions lp and l (including the position lp). Hence,
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there is unique integer k and unique numbers n0, n1, . . . nk with,

lp ≤ n0 < n1 < · · · < nk ≤ |u| − lp,

such that for any u[q,q+|u|] = u,

[q + lp, q + |u| − lp] ∩ f
p+1(N) = {q + n0, q + n1, . . . , q + nk}

as it can be seen in Figure 3.13. Hence, there is word w ∈ Ak∩L(u)
such that u[nt,nt+1] = ϕp+1(wt) for 0 ≤ t < k. Let us suppose
that there is w′ ∈ Ak ∩ L(u) such that ϕp+1(w) = ϕp+1(w′). Since
p + 1 > p we deduce that ϕp(w) = ϕp(w′) = v that is unique. If
we set n0 = i and nk = j we have that i ≤ l and j ≥ |u| − l and
the word v id unique, which implies that the morphism is strongly
two-sided recognizable, which proves the theorem.

w0w1 . . . wk

ϕp(w0) = v0 ϕ
p(w1) = v1 . . . ϕp(wk) = vk

ϕp+1(w0) ϕp+1(w1) . . . ϕp+1(wk)

w

v

u

lp |u| − lpl |u| − l

ϕp

ϕp+1

Figure 3.13: A graphical explanation of the proof of Theorem 3.4.1.

We should also mention that aperiodicity is an important condi-
tion in the above theorem, since there are primitive periodic mor-
phisms that are not two-sided recognizable, as it can be seen in the
following example.

Example 3.4.3. The morphism ϕ with ϕ(0) = 010, ϕ(1) = 101
and fixed point u = ϕω(0) is periodic with period p = 2 and prim-
itive but not two-sided recognizable. For every m ∈ N the words
(10101010)2m belong in L(u). However, there are two different ex-
ternal interpretations for each one of them, (ε, ϕ((10)m), 10) and
(1, ϕ((01)m), 0), which implies that we can always find long enough
word u[i−L,i+L] = u[j−L,j+L] such that i ∈ Eu and j /∈ Eu.
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Example 3.4.4. Let ϕ be the morphism with ϕ(0) = 012, ϕ(1) = 0,
ϕ(2) = 22 and fixed point u = ϕω(0). This morphism is non-
primitive and it has aperiodic fixed point,

u = 012|0|22|012|22|22|012|0|22| . . .

The morphism is not periodic since at every application of the
morphism ϕ, the number of 2’s increases. All words of the form
2(22)k ∈ L(u) with k ∈ N have two distinct external interpretations
(ε, 2k+1, 2) and (01, 02k, ε). Let us suppose that the two interpre-
tations correspond to the factors u[i−k,i+k] = u[j−k,j+k], for which it
can be seen that i ∈ Eu and j 6∈ Eu, which implies that ϕ is not
two-sided recognizable.

Theorem 3.4.1 does not give any information on the constant of
recognizability. When we know that such an integer exists, it can be
computed by checking all positive integers one by one until we reach
it. For any integer l it is enough to verify if strongly recognizability
holds for all the words of length 2l + ||ϕ||, since if it is verified for
them that means that it is for any longer word as well. The next
result by F. Durand and J. Leroy gives a theoretical bound on that
constant.

Theorem 3.4.5. [40] Let ϕ : A∗ → A∗ be an aperiodic primitive
morphism. The constant of recognizability of ϕ is bounded by

2||ϕ||6(|A|)2+6(|A|)||ϕ||28(|A|)2

+ ||ϕ|||A|.

According to the authors of [40], that bound could have been
improved but the result would not have been optimal, while the
difficulty would have been increased rapidly.

3.5 Recognizability on two-sided infinite fixed

points

Everything that has been presented so far for the right infinite fixed
points holds for the left fixed points. We should now present the
recognizability in the case of two-sided infinite fixed points.

Definition 3.5.1. Let ϕ be a primitive morphism with admissible
two-sided infinite fixed point z. The morphism is two-sided recog-
nizable if there is an integer L > 0 such that if z[i−L,i+L] = z[j−L,j+L]

and i ∈ Eu, then j ∈ Eu, where Eu = fz(Z).
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The above definition is the same as the one for the one-sided
infinite case (Definition 3.3.18), with the only difference that in this
case the i, j ∈ Z are relative integers.

Example 3.5.2. Let ϕF be the Fibonacci morphism (Example
2.2.2) and ϕ2 be the square Fibonacci morphism. Since ϕ2(0) =
010 ∈ 0A∗ and ϕ2(1) = 01 ∈ A∗1 it follows that z = (ϕ2)ω̃(1) •
(ϕ2)ω(0) is a two-sided fixed point,

z = · · · 0101 • 01001 · · ·

such that z[−1,0] = 10. The morphism ϕ2 is two-sided recognizable
with L = 1. That can be seen by checking all words of length 3 in
L(z) which are 001, 010, 100, 101. It can be verified that for all
words z[i−1,i+1] holds that i ∈ Eu (i.e. the position i is a cutting
point) only in the cases z[i−1,i+1] = 001 and 101, while for the rest of
the words of that length it holds that i 6∈ Eu. Since it is decidable
whether i ∈ Eu for all words z[i−1,i+1], it follows that it is decidable
for any larger words too.

Proposition 3.5.3. Let ϕ be a morphism with a admissible two-
sided infinite fixed point z ∈ AZ. Then ϕ is two-sided recogniz-
able on z for some constant L, if and only if any word u ∈ L(z)
of length 2L + 1 with an external interpretation (p, v, s) such that
ϕ(v) = pz[i−L,i+L]s that passes by (z[i−L,i), z[i,i+L]) has a synchro-
nization point (z[i−L,i), z[i,i+L]).

Proof. Let us suppose that ϕ is two-sided recognizable for the ad-
missible two-sided infinite fixed point z ∈ AZ. If u ∈ L(z) with
|u| = 2L + 1 has external interpretation (p, v, s) that passes by
(u

[0,
|u|−1

2
)
, u

[
|u|−1

2
,|u|−1]

), then v is such that ϕ(v) = pz[i−L,i+L]s with

i ∈ Ez, for i ∈ Z, as in Figure 3.14. Let us consider another
interpretation (p′, v′, s′) of u. Then there is a j ∈ Z such that
ϕ(v′) = p′z[j−L,j+L]s

′ = p′us′ as in Figure 3.14. Since ϕ is two-sided
recognizable and i ∈ Ez for (p, v, s), then j ∈ Ez. Thus, the in-
terpretation (p′, v′, s′) passes by (z[j−L,j), z[j,j+L]) which proves that
(u

[0, |u|−1
2

)
, u

[ |u|−1
2

]
) is a synchronization point of |u|.

In order to prove the other direction, let u ∈ L(z) with |u| = 2L+
1 and external interpretation (p, v, s) with (u

[0, |u|−1
2

)
, u

[ |u|−1
2

,|u|−1)
) a

synchronization point of u in the language L(z), i.e., there is i ∈ Ez

such that ϕ(v) = pz[i−L,i+L]s = pus. Then, since (u
[0,

|u|−1
2

)
, u

[
|u|−1

2
,|u|−1)

)
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. . . v . . . v′ . . .

. . . p z[i−L,i+L] s . . . p′ z[j−L,j+L] s′ . . .

z

z = ϕ(z)

ϕ

i j

Figure 3.14: Occurrences i and j of u ∈ L(u) from the proof of Proposition 3.3.4.

a synchronization point of u, it follows that any other interpreta-
tion (p′, v′, s′) of u passes by (p′u

[0,
|u|−1

2
)
, u

[
|u|−1

2
,|u|−1)

s′) and therefore

if j ∈ Z is such that ϕ(v′) = p′z[i−L,i+L]s
′ then j ∈ Ez which proves

two-sided recognizability.

The asymptotic injectivity is defined similarly to the one-side in-
finite case: if there is integer n > 0 such that whenever fu(k) ∼u,n

fu(ℓ) then uk = uℓ (where for an integer i, ui is the letter u[i,i]). It
implies that ϕ is injective on L(z), as it follows from Remark 3.5.7.
Such a condition is clearly satisfied when ϕ is injective.

Example 3.5.4. Let ϕ be the Fibonacci morphism (Example 2.2.2).
For n = 0 the morphism ϕ does not satisfy the asymptotic injectivity
as it can be seen from the words u2 = u3 = 0. Since fu(1) = 2 and
fu(2) = 3, the letters u1 = 1, u2 = 0 are prefixes of the images
of the letters u1 and u2 respectively. The asymptotic injectivity is
satisfied for the integer n = 1 since uk = 0 if and only if uf(k)+1 = 1
and uk = 1 if and only if uf(k)+1 = 0 for any k ∈ N.

Example 3.5.5. Let us work with the square of Fibonacci mor-
phism ϕ2, presented in Example 3.5.2, with fixed point the follows,

z = (ϕ2)ω̃(1)•(ϕ2)ω(0) = . . . |010|01|010|010|01•010|01|010|010|01|010| . . . .

This morphism has asymptotic injectivity which requires n = 3.
Indeed, for n = 2 asymptotic injectivity does not hold because of the
word 10010 ∈ L(z). More precisely, fz(3) ∼z,2 fz(4), since f(3) =
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|ϕ2(010)| = |01001010| = 8, f(4) = |ϕ2(0100)| = |01001010010| =
11 and

z[f(3)−2,f(3)+2] = z[6,10] = 10010 = z[9,13] = z[f(4)−2,f(4)+2].

However, it can be seen that z3 = 0 while z4 = 1, which implies
that asymptotic injectivity does not hold for n = 2.

Let us check if it holds for n = 3. Let fz(k) ∼z,3 fz(ℓ), i.e.,
z[f(k)−3,f(k)+3] = z[f(ℓ)−3,f(ℓ)+3]. All words in the language of length
7 with a cutting point in the third position are, 0100100, 0100101
and 0010100. Each of them has a unique external interpretation
(ε, 001, 1), (ε, 010, 0) and (01, 0100, 10) respectively, and therefore
each of them has a unique preimage which implies that z = ℓ and
that asymptotic injectivity holds.

The following is a variant of Mossé’s Theorem 3.4.1.

Theorem 3.5.6. A primitive aperiodic substitution ϕ is recognizable
on each of its two-sided admissible fixed-points.

Proof. Let ϕ be primitive and non-periodic with two-sided infinite
fixed point z. From Mossé’s Theorem 3.4.1 we know that this mor-
phism is two-sided recognizable with some constant L ≥ 0 for the
one-sided infinite fixed point z+ = z0z1 · · · . We will show that ϕ is
recognizable on the substitutive language of the two-sided infinite
fixed point z and moreover that the recognizability constant is the
same.

Let i, j ∈ Z be such that the equivalence i ∼z,L j holds. Without
any loss of generality we may choose i < j. Let k < ℓ be an integer
such that fz(k) ≤ i− L < j + L < fz(ℓ) (see Figure 3.15).

k m p ℓ

fz(k) i− L i i+ L j − L j j + L fz(ℓ)

Figure 3.15: Locating k,m, p, ℓ.

Suppose that i ∈ Ez(ϕ). Let m ∈ Z be such that fz(m) = i.
Then

fz(m+ t) ∼z,L fz(m) = i

∼z,L j

∼z,L j − i+ f(m+ t)
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where the first and the last equivalence follow from the fact that
z[k+t,ℓ+t) = z[k,ℓ) and thus, z[fz(k+t),fz(ℓ+t)) = z[fz(k),fz(ℓ)).

Since fz(m+ t) ∼z+,L j− i+ fz(m+ t) and fz(m+ t) ∈ Ez (from
definition of Ez), it follows from two-sided recognizability on z+ that
j − i+ fz(m+ t) ∈ Ez, i.e there is q ≥ 0 such that fz+(q) = fz(q) =
j − i+ fz(m+ t). Set p = q − t. Then,

fz(p+ t)− fz(m+ t) = |ϕ(z[m+t,p+t))|

= |ϕ(z[m,p))| = fz(p)− fz(m).

Since fz(m) = i, we conclude that fz(p) = fz(m) + j − i = j and
thus that j ∈ Ez(ϕ). The proof that j ∈ Ez(ϕ) implies i ∈ Ez(ϕ) is
entirely analogous.

Remark 3.5.7. Two-sided recognizability in the case of a substitu-
tive language of an admissible two-sided infinite word z ∈ AZ with
asymptotic injectivity implies injectivity.

Proof. Let ϕ be a primitive morphism with admissible two-sided
fixed point z. Let X = ∪i∈Zϕ

i(z) be a shift space generated by the
fixed point z and x ∈ X be a bi-infinite word of the shift space.

Let x, y ∈ X be such that ϕ(x) = ϕ(y). From Theorem 3.5.6,
the morphism is two-sided recognizable for a constant L > 0 (with
respect to asymptotic injectivity). For the admissible fixed point z,
and for i ∈ Z, there exist k, ℓ ∈ Z such that z[k−L,k+L] = x[i−L,i+L]

and z[ℓ−L,ℓ+L] = y[i−L,i+L]. Then, by asymptotic injectivity, follows
that zℓ = zk and thus xi = xj .

3.6 Synchronizing delay and Circular morphisms

3.6.1 Synchronizing delay

Let us now return to the case of right infinite fixed points. The
following definition was given by F. Mignosi and P. Séébold in [79].

Definition 3.6.1. [79] Let ϕ : A∗ → A∗ be a morphism with a
fixed point u. We say that ϕ has synchronizing delay D > 0 if the
following property holds: for all words u ∈ L(u), if u admits two
distinct internal interpretations, say

(p, v, s) and (p′, v′, s′)
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where v = v1 . . . vn, v
′ = v′1 . . . v

′
m with vi, v

′
i ∈ A and v, v′ ∈ L(u),

then whenever |pϕ(v1) . . . ϕ(vi−1)| > D and |ϕ(vi+1) . . . ϕ(vn)s| > D,
there exists a number j ∈ N such that pϕ(v1) . . . ϕ(vi) = p′ϕ(v′1) . . . ϕ(v

′
j)

and vi = v′j .
That being the case, the two decompositions are synchronized at
distance D from the borders. See Figure 3.16 for a graphical repre-
sentation of the above definition.

p ϕ(vi−1) ϕ(vi) ϕ(vi+1) s

p′ ϕ(v′j−1) ϕ(v′j) ϕ(v′j+1) s′

D D

Figure 3.16: A graphical representation of Definition 3.6.1.

Remark 3.6.2. In order to check if a morphism has a synchronizing
delay D, it is enough to check all words of length smaller than
2D+2||ϕ||+2. The 2||ϕ|| is needed since every factor of that length
has at least two cutting points (i.e. there are two positions in f(N)),
while 2D+2 is needed so that the length of what is before and what
is after the fixed points will be longer than D. To be more precise,
it is enough to check the words with lenght n that is,

2D + |ϕ|+ 2 ≤ n ≤ 2D + 2||ϕ||+ 2.

The reason why there is a lower bound is that if a word is shorter
than that bound, then the conditions of the definition cannot be
applied.

The following proposition gives some relation between the notion
of synchronizing delay and the one of strongly circularity.

Proposition 3.6.3. Any bifix morphism with finite synchronizing
delay is strongly circular.

Proof. If a morphism ϕ has synchronizing delay D then we know
that any word v ∈ L(u) with length more than 2D + 2||ϕ|| + 2
has a synchronization point. Also, since it is bifix, the decoding of
v before and after the synchronization point has to be unique and
therefore there is unique internal interpretation for v. Hence, ϕ is
strongly circular.
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3.6.2 Circular morphisms

Definition 3.6.4. Let ϕ : A∗ → A∗ be a morphism and u ∈ AN its
fixed point. We say that two external interpretations (p, v, s) and
(p′, v′, s′) of a word u ∈ L(u) are synchronized at position k if there
exist indices i and j such that

ϕ(v0 . . . vi) = pu0 . . . uk and ϕ(v′0 . . . v
′
j) = p′u0 . . . uk

with v = v0 . . . vn, v
′ = v′0 . . . v

′
m, 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Example 3.6.5. Let ϕ : {0, 1}∗ → {0, 1}∗ with ϕ(0) = 001, ϕ(1) =
01 and fixed point u = ϕω(0). The word u = 010010 ∈ L(u)
has three different external interpretations, (ε, 100, 01), (ε, 101, 1),
(0, 001, 1) and all of them are synchronized at positions 2 and 5.

1 0 0

0 1 0 0 1 0 0 1

1 0 1

0 1 0 0 1 0 1

0 0 1

0 0 1 0 0 1 0 1

ϕF

(ε, 100, 01)

ϕF

(ε, 101, 1)

ϕF

(0, 001, 1)

2 5 2 5

2 5

Figure 3.17: External interpretations of u = 010010 synchronized at positions 2
and 5 of u.

Remark 3.6.6. If all external interpretations of a word u ∈ L(u)
are synchronized at position k, with 0 ≤ k ≤ |u|, then the position
k is a synchronizing point of u.

The inverse is also true. More precisely, if a word has a synchro-
nizing point, then all its external interpretations, by definition, pass
from this point and therefore they are synchronized at the position
of the synchronizing point.
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Definition 3.6.7. [65] Let ϕ : A→ A∗ be a morphism and u ∈ AN

a fixed point of ϕ. The morphism ϕ is called weakly circular if there
is a constant D > 0 such that any v in the language L(u) longer
than D has a synchronization point.

Example 3.6.8. The Fibonacci morphism ϕF (Example 2.2.2) is
weakly circular for D = 1, since all words with length at least 2 have
as factor the letter 1 at least once or they have two consecutive 0’s.
In the first case, the position after the appearance of 1 is a synchro-
nization point. In the second case, the position in between the two
0’s is a synchronization point. Hence, all external interpretations
are pairwise synchronized at the synchronization points.

It can be proved that the definition of two-sided recognizability
is stronger than the one of weakly circularity, as follows later from
Theorem 3.6.9.

Theorem 3.6.9. Any two-sided recognizable morphism is weakly
circular.

Proof. Let us suppose that ϕ is two-sided recognizable for a constant
L > 0. In order to obtain weakly circularity we have to ensure the
existence of a synchronizing point. Let us set D = L + ||ϕ|| and
we will prove that weakly circularity holds for this constant. For
any i > D position in u such that u[i−D,i+D] ∈ L(u) it can be seen
that the factor u[i−||ϕ||,i+||ϕ||] of u[i−D,i+D] has a position k ∈ Eu with
i − ||ϕ|| ≤ k ≤ i + ||ϕ||. Also, since ϕ is two-sided recognizable
with constant L, it holds that if there is an integer j such that
u[j−L,j+L] = u[k−L,k+L], then j ∈ Eu. It follows that the position k
of the word u[k−L,k+L] is a synchronization point and since u[k−L,k+L]

is factor of u[i−D,i+D], it is also a synchronization point of his. Hence,
forD = L+||ϕ||, every word u[i−D,i+D] has at least a synchronization
point.

Proposition 3.6.10. An injective morphism is weakly circular if
and only if is two-sided recognizable.

Proof. Let ϕ be an injective weakly circular morphism for D > 0
with a fixed point u. That being the case, every w = u[i−D,i+D] ∈
L(u) has at least two synchronizing points at positions k and l,
i − D ≤ k < i and i < l ≤ i + D. The factor u[k,l) of w has
unique preimage because of the injectivity and therefore for any
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position in the interval [k, l), including the position i, if i ∈ Eu

then it is a synchronization point. More precisely, if there is j ∈ N

such that u[j−D,j+D] = u[i−D,i+D] with the above reasoning there
are positions k′, l′ with k − (i−D) = k′ − (j −D) and i+D − l =
j+D−l′ synchronization points such that u[k′,l′) = u[k,l) and because
of injectivity the preimage is unique and thus if i ∈ Eu then j ∈ Eu.
Hence, the morphism ϕ is two-sided recognizable for a constant
L = D. The other side follows from Theorem 3.6.9.

The above proposition is not true for the non-injective case as it
is demonstrated in Example 3.6.11.

Example 3.6.11. Consider the morphism ϕ : 0→ 012, 1→ 201, 2→
2 with fixed point u = ϕω(0). The morphism is non-injective since
ϕ(20) = ϕ(12). The fixed point is periodic with period p = 4. This
morphism is weakly circular for D = 4, since every word v ∈ L(u)
longer than D has as factor the word 22 which has a synchronizing
point between the two 2 (2 is always either the beginning or the end
of an image of a letter and there is no letter a ∈ A such that 22
would have been a factor of ϕ(a)). The above can be verified from
the words of length 5. However, the morphism ϕ is not two-sided rec-
ognizable. Indeed, for L = 3 we can find a word v = 1220122 ∈ L(u)
that has two different internal interpretations u[i−3,i+3] = (1, 220, 2)
and u[j−3,j+3] = (12, 122, ε). For the first one, ui = 0 with i ∈ Eu,
while for the second one uj = 0 with j 6∈ Eu. We have that |v| = 7
and since the word starts with the letter 1, the only possible exten-
sion on the left by a letter is 0. Since |0v| = 8 = 2p, it follows that
(0v)∗ ∈ L(u). Similarly, all words of the form v(0v)3n−1 ∈ L(u), for
n ∈ N we have two internal interpretations (1, (2201)n−1220, 2), and
(12, (1220)n−1122, ε), where ui = 0 with i ∈ Eu but uj = 0 with
j 6∈ Eu. It has just been proved that all words of the previous form
(these words have length 7n, n ∈ N) do not satisfy the definition of
two-sided recognizability and therefore L 6= 3n for all n ∈ N. Thus,
the morphism is not two-side recognizable since there can be found
arbitrary long words u[i−L,i+L] = u[j−L,j+L] for which the positions i
and j are not simultaneously in Eu or not in Eu.

In the definition of weakly circularity, any word long enough has
at least a synchronization point. In the following definition of cir-
cularity, any long enough word has to verify the two following con-
ditions:
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• it should have at least a synchronization point,

• it has a unique preimage, except of some prefix and/or suffix.

Let us now present the definition of circularity,

Definition 3.6.12. [65] Let ϕ : A∗ → A∗ be a morphism with
fixed point u ∈ AN. Let (p, v, s) and (p′, v′, s′) be two external inter-
pretations of a non-empty word u ∈ L(u) with v = v0v1 . . . vn and
v′ = v′0v

′
1 . . . v

′
m.

We say that ϕ is circular with delay D > 0 if whenever we have

|ϕ(v0 . . . vi)| − |p| > D and |ϕ(vi+1 . . . vn)| − |s| > D

for some 0 ≤ i ≤ n, then there is 0 ≤ j ≤ m such that

|ϕ(v0 . . . vi−1)| − |p| = |ϕ(v
′
0 . . . v

′
j−1)| − |p

′|

and vi = v′j .

(See Figure 3.18)

vi . . . vi+k

p ϕ(vi) . . . ϕ(vi+k) s

p′ ϕ(v′j) . . . ϕ(v′j+k) s′

v′j . . . v
′
j+k

v

v′

ϕ(v) = pus
ϕ(v′) = p′us′

> D
> D

ϕ

ϕ

Figure 3.18: A graphical illustration of Definition 3.6.12.

In other words, a long enough word has unique ϕ-preimage except
for some prefix and suffix shorter than a constant D+ 1. Indeed, it
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can be seen that for a long enough word u in the language L(u) of
a circular morphism, we may be able to apply Definition 3.6.12 to
all positions i + k ∈ N for k > 0, k ∈ N that satisfy the following
inequalities,

|ϕ(v0 . . . vi+k)| − |p| > D and |ϕ(vi+k+1 . . . vn)| − |s| > D.

Let K ∈ N be the largest such integer k. It follows that vi = v′j ,
vi+1 = v′j+1, . . . , vi+K = v′j+K . Thus, the word u can be decomposed
as follows,

u = u0 . . . uf(i)−1ϕ(vi)ϕ(vi+1) . . . ϕ(vi+K)uf(i+K+1) . . . u|u|−1

where,

|u0 . . . uf(i)−1| < D and |uf(i+K+1) . . . u|u|−1| < D.

The word vivi+1 . . . vi+K is factor of any preimage of the word u.

Remark 3.6.13. The definition of circularity applies to words u ∈
L(u) longer than 2D + 1. Any word u longer than 2D + ||ϕ|| of
the language of a circular morphism with constant D have at least
a synchronizing point, since |u[D,|u|−D]| ≥ ||ϕ|| and for that factor
we will have unique preimage and therefore at least a synchroniza-
tion point. The existence of the synchronization point implies weak
circularity for the morphism.

Observation 3.6.14. Circularity implies weak circularity but the
inverse is not always true.

Example 3.6.15. Let us work with the non-injective morphism
ϕ : {0, 1, 2}∗ → {0, 1, 2}∗ with ϕ(0) = 0120, ϕ(1) = 12, ϕ(2) = 12
and fixed point u = ϕω(0). The language L(u) is not circular
since for every m ∈ N the word (12)2m has two different preimages
(12)m and (21)m. However, the corresponding external interpreta-
tions have synchronizing points for m > 1 at the positions 2k for
0 ≤ k ≤ m. One can easily check that the language L(u) is weakly
circular since every v ∈ L(u) with length more than D = 5 has a
synchronization point. Indeed, D 6= 3 since the word 1201 ∈ L(u)
has two distinct external interpretations (ε, 20, 20) and (0, 01, 2) and
no synchronization point. Similarly, D 6= 4 since the word 12012 has
two distinct interpretations (0, 01, ε) and (ε, 20, 0) and no synchro-
nization point. It can be verified that D = 5 by checking that all
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words of length 6 have synchronization point, and thus the mor-
phism is weakly circular but not circular.

The delay of circularity and that of weak circularity are not nec-
essarily equal. If a morphism has circular delay D, it is not implied
that every word u of length at least D+1 has a synchronizing point.
However, for the words longer than 2D + 1, if there is a cutting
point in between the positions D and |u| −D, then this position is
a synchronization point because of circularity. The example 3.6.16
demonstrates the case of a morphism that is circular and weakly
circular with the two delays not being equal.

Example 3.6.16. Let ϕTM be the Thue-Morse morphism (Exam-
ple 3.1.8). It can be verified that ϕTM is circular for a delay D = 1.
For D = 1 it is enough to check the words of length 5 (since the
definition holds for length |u| > 2 × 1 + ||ϕTM || = 4). Since cir-
cularity implies weak circularity, the morphism ϕTM is also weakly
circular. It is easy to see that weak circularity does not hold for
D′ = 1, since 01 does not have any synchronization point. Also,
D′ 6= 2 since the word 010, with length more than D′ = 2 does not
have a synchronizing point. It can be verified that the definition
of weak circularity holds for D′ = 3, since all words longer than 3
have at least a synchronization point. Indeed, the words 0101 and
1010 that belong in the language are the only words with length at
least 3 that do not have as factor two consecutive 0’s or 1’s. Both
of them have unique external interpretation, (ε, 00, ε) and (ε, 11, ε)
respectively. Therefore, the positions where the interpretations pass
are synchronization points. All the other words longer that 4 have
at least one factor 00 or 11, in which case we know that the position
in between the same letters is a synchronizing point.

The following proposition proves that weak circularity implies
circularity in the case of injective substitutions.

Proposition 3.6.17. An injective weakly circular morphism with
delay D is circular for a certain delay D′.

Proof. Let the injective morphism ϕ : A∗ → A∗ with fixed point
u be weakly circular for a delay D > 0. Now let us take a word
w ∈ L(u) such that |w| > 2D + 1. We recall that f(i) = |ϕ(u[0,i))|.
Because of the chosen length of w we have that it has at least two
distinct synchronization points in positions f(i), f(j) of w, with 0 ≤



3.6. SYNCHRONIZING DELAY AND CIRCULAR MORPHISMS 73

f(i) < D+1 ≤ f(j) ≤ 2D+1. Since the morphism is injective, the
factor w[f(i),f(j)−1] = ϕ(x) has unique preimage x ∈ L(u). Now let
(p, v, s) and (p′, v′, s′) be two external interpretations of the word w.
If there is an integer κ such that,

|ϕ(v0 . . . vκ)| − |p| > D ∧ |ϕ(vκ+1 . . . vn)| − |s| > D

and for the position f(κ) holds that f(i) ≤ f(κ) ≤ f(j), then the
letter vκ is unique as it is factor of the unique preimage x. Hence,
for any other interpretation (p′, v′, s′) of w there is an integer λ such
that,

|ϕ(v0 . . . vκ−1)| − |p| = |ϕ(v
′
0 . . . v

′
λ−1)| − |p

′|

and vκ = v′λ. It follows then that the morphism is circular forD, but
it is possible that there are smallest constants for which circularity
is satisfied (D′ ≤ D).

The injectivity is an important condition in the above proposi-
tion. As it is indicated by Example 3.6.15, the above is not true for
the non-injective case.

The notion of circularity seems similar to the one of synchronizing
delay. The equivalence between the two is given by the following
lemma.

Lemma 3.6.18. A primitive morphism ϕ : A∗ → A∗ has finite
synchronizing delay if and only if it is circular.

Proof. Let ϕ be a primitive morphism and L(u) be the language of
the morphism with a fixed point u. Let ϕ be circular morphism for
a delay D > 0 and u a word in L(u) with external interpretations
(p1, v, s1) and (p2, v

′, s2), with v = (vi)0≤i≤n and v′ = (v′i)0≤i≤m. It
follows that there are internal interpretations (p′1, v1 . . . vn−1, s

′
1) and

(p′2, v
′
1 . . . v

′
m−1, s

′
2), with words p′1, p

′
2, s

′
1, s

′
2, such that ϕ(v0) = p1p

′
1,

ϕ(vn) = s′1s1, ϕ(v
′
0) = p′2p2 and ϕ(v′n) = s′2s2. Let i ∈ N be an

integer that satisfies the following inequalities,

|p′1ϕ(v1) . . . ϕ(vi−1)| = |ϕ(v0) . . . ϕ(vi−1)| − |p1| > D

|ϕ(vi+1) . . . ϕ(vn−1)s
′
1| = |ϕ(vi+1) . . . ϕ(vn)| − |s1| > D.

Because of circularity, there is an integer j such that 0 ≤ j ≤ m
such that,

|p′1ϕ(v1 . . . vi−1)| = |p
′
2ϕ(v

′
1 . . . v

′
j−1)| and vi = v′j.
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Hence,

|p′1ϕ(v1) . . . ϕ(vi−1)ϕ(vi)| = |p
′
2ϕ(v

′
1) . . . ϕ(v

′
j)|

and since the words p′1ϕ(v1 . . . vi) and p′2ϕ(v
′
1 . . . v

′
j) are prefixes of

u, it follows that D is a synchronizing delay.
For the other direction, we suppose that there is word u ∈ L(u)

such that u = pϕ(v1) . . . ϕ(vn−1)s = p′ϕ(v′1) . . . ϕ(v
′
m−1)s

′. Because
of primitivity, the morphism is uniformly recurrent and consequently
every word in the language is extendable in both sides. That implies
that there are v, v′ ∈ L(u) such that ϕ(v) = p1pϕ(v1) . . . ϕ(vn−1)ss1
and ϕ(v′) = p′1p

′ϕ(v′1) . . . ϕ(v
′
m−1)s

′s′1. Thus, there exist two exter-
nal interpretations (p1, v, s1), (p

′
1, v

′, s′1) of the word u. From the defi-
nition of synchronizing delay we have that if |pϕ(v1) . . . ϕ(vi−1)| > D
and |ϕ(vi+1) . . . ϕ(vn−1)s| > D then there is j integer such that
pϕ(v1) . . . ϕ(vi) = p′ϕ(v′i) . . . ϕ(v

′
j) and vi = vj. We have also that

|pϕ(v1) . . . ϕ(vi−1)| > D ⇒ |pϕ(v1) . . . ϕ(vi−1)ϕ(vi)| > D

and |ϕ(vi+1) . . . ϕ(vn−1)s| > D. Thus, if

|pϕ(v1 . . . vi)| > D + ||ϕ||

and
|ϕ(vi+1 . . . vn1s)| > D + ||ϕ||

there is a position j of v′ for which holds that,

|ϕ(v0v1 . . . vi)| − |p1| = |pϕ(v1 . . . vi)| =

= |p′ϕ(v′1 . . . v
′
j)| = |ϕ(v

′
0 . . . v

′
j)| − |p

′
1|

and vi = v′j , from which we conclude that the language L(u) is
circular.

Observation 3.6.19. Primitivity is needed for the proof of Theo-
rem 3.6.18 since if primitivity does not hold, we cannot convert the
internal interpretations to external interpretations.

Observation 3.6.20. It follows from the proof of Lemma 3.6.18
that if a morphism is circular with delay D then the same constant
satisfies the definition of synchronizing delay.

In the work of K. Klouda and S. Starosta [65] we can find the
following corollary that guarantees the circularity for the case of
primitive injective morphisms with aperiodic fixed point.
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Corollary 3.6.21. [65] If u is an aperiodic fixed point of a primitive
injective morphism, then the morphism is circular.

The bound on the value of the delay D is hard to find, however
a bound is given in [64] for the simple case of a circular k-uniform
morphism on a two letter alphabet, with k ≥ 2.

Theorem 3.6.22. [64] If a morphism ϕ : {a, b}∗ → {a, b}∗ is cir-
cular with fixed point u = ϕω(a) and k-uniform, then the minimum
value of its delay, denoted by Dmin, is bounded as follows:

1. Dmin ≤ 8 if k = 2,

2. Dmin ≤ k2 + 3k − 4 if k is an odd prime number,

3. Dmin ≤ k2(k
d
− 1) + 5k − 4 otherwise,

where d is the least divisor of k greater than 1.

Observation 3.6.23. If a language L(u) contains arbitrary long
words with two different ϕ-preimages it cannot be circular.

Example 3.6.24. Let ϕ be morphism on A = {0, 1, 2} with ϕ(0) =
0120, ϕ(1) = 121, ϕ(2) = 212 and fixed point u = ϕω(0). It is easy
to verify that (12)n ∈ L(u) for all n > 0. For all integers D > 0
there is word v ∈ (12)∗ ∩ L(u) of length |v| = 2D. The image of
the word v, let u = ϕ(v) ∈ (12)∗, is also in L(u) and has length
|u| = 3(2D) = 6D and it is of the form u = 1212 · · ·2. Every such
word u has two different external interpretations, (ε, (12)D, ε) and
(p, v, s) = (2, (21)D2, 12). For the interpretation (ε, (12)D, ε) and
the position i = D − 1 of the word v it holds that,

|ϕ(v0 . . . vi)| − |ε| = 3|v0 . . . vi| − 0 = 3D > D

and
|ϕ(vi+1 . . . v2D−1)| − |ε| = 3(2D) = 6D > D.

However, for the external interpretation (p′, v′, s′) = (2, (21)D2, 12),
there is no integer j such that |ϕ(v′0 . . . v

′
j)| − |p

′| = 3D. Indeed,

|ϕ(v′0 . . . v
′
j)| − |p

′| = 3(j − 1)− 1 = 3j − 2 6= 3D

for any D ∈ N. Thus, the definition of circularity is not verified for
any constant D > 0 which proves that the morphism is not circular.
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The following theorem gives the equivalence between circularity
and strongly recognizability.

Theorem 3.6.25. A morphism is circular if and only if it is strongly
two-sided recognizable.

Proof. Let ϕ be a circular morphism with delay D > 0, with fixed
point u. Let u ∈ L(u) be longer than 2D + 2||ϕ||, with external
interpretation (p, v, s), where v = (vi)0≤i≤n. Because of the length
of u the factor u[D,|u|−D] of u is longer than 2||ϕ||. Therefore, there
are at least two distinct positions in Eu, f(i), f(j) with 0 ≤ f(i) <
D+ ||ϕ||+1 and |u| − (D+ ||ϕ||+1) ≤ f(j) < |u|. The integers i, j
are positions in v such that the following inequalities hold,

|ϕ(v0 . . . vi)| − |p| > D and |ϕ(vi+1 . . . vn)| − |s| > D

|ϕ(v0 . . . vj)| − |p| > D and |ϕ(vj+1 . . . vn)| − |s| > D.

Without any loss of generality i can be the smallest such integer
and j the largest. Because of circularity, the factor vi . . . vj of v is
“fixed” and is factor of any other external interpretation. Hence,
we have that ϕ is strongly two-sided recognizable for constant ℓ =
D + ||ϕ||+ 1.

In order to prove the other way we suppose that ϕ is strongly two-
sided recognizable with a constant ℓ > 0. The definition of circu-
larity holds for D = ℓ. Indeed, if (p, v, s) and (p′, v′, s′) are external
interpretations of u and |ϕ(v0 . . . vi)| − |p| > ℓ and |ϕ(vi+1 . . . vn)| −
|s| > ℓ, then there exist positive integers α, β, with 0 ≤ α < i
and i + 1 ≤ β < n such that u[f(α),f(β)) = ϕ(vα . . . vβ−1), where
vα . . . vβ−1 is “fixed” because of strongly recognizability (“fixed” in
the sense that is always factor of any v′ for which (p, v′, s) external
interpretation of u and that its image corresponds always to the
same position in u). Thus, since the letter vi is factor of vα . . . vβ−1,
the letter vi is also “fixed”, which implies circularity for D = ℓ. (See
Figure 3.19)

The following result is a stronger than Corollary 3.6.21, given by
K. Klouda and S. Starosta in [65], since it is not required injectivity.

Theorem 3.6.26. Any primitive aperiodic morphism is circular.

Proof. Let us suppose that ϕ is primitive aperiodic morphism. Then
from Mossé’s Theorem 3.4.1 follows that the morphism ϕ is strongly
recognizable. From Theorem 3.6.25 it follows that since ϕ is strongly
two-sided recognizable, it is circular.
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vi . . . vi+k

p ϕ(vi) . . . ϕ(vi+k) s

p′ ϕ(v′j) . . . ϕ(v′j+k) s′

v′j . . . v
′
j+k

v

v′

ϕ(v)
ϕ(v′)

> D > D

|u| ≥ 2D + 1

ϕ

ϕ

Figure 3.19: A graphical explanation of the proof of Theorem 3.6.25.

3.7 Summary and graphical illustration of the

chapter

In this section we will summarize the results presented in the chapter
using a graphical representation of the relations that exist between
the different definitions.

The following graph (Figure 3.23) will make clear which defini-
tions are stronger and which are equivalent under certain conditions
in the general case of a substitutive language L(u) of a morphism ϕ
with an aperiodic fixed point u.

The set diagram presented in Figure 3.20 shows all possible re-
lations between the finite collection of different sets that satisfy the
definitions that are mentioned in this chapter.

It is important to mention that the graph in Figure 3.20 is sim-
plified in the case of primitive morphisms as it can be seen in the
following remark and in Figure 3.22.

Remark 3.7.1. Let ϕ : A → A∗ be an aperiodic primitive mor-
phism with ϕ-fixed point u. Then, the morphism ϕ is:

1. two-sided recognizable,
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weakly circular

2-sided recogn.

circular≡strongly

2-sided recogn.

right

recogn.

left

recogn.

str.

circ.

Figure 3.20: Relations between the definitions of recognizability and circularity.

2. strongly two-sided recognizable,

3. circular,

4. weakly circular.

Remark 3.7.1 is the result of propositions and theorems presented
earlier in this chapter. More precisely, strongly two-sided recogniz-
ability implies two-sided recognizability from Observation 3.3.28,
while the other direction follows from Mossé’s Theorem 3.4.1, since
every primitive morphism is strongly two-sided recognizable and
therefore every primitive two-sided recognizable morphism is strongly
two-sided recognizable. The equivalence between strongly two-sided
recognizability and circularity holds from Theorem 3.6.25. Lastly,
circularity implies weakly circularity, as stated in the Observation 3.6.14,
while the other direction follows in the primitive aperiodic case from
Mossé’s Theorem 3.4.1 and Theorem 3.6.25, since every primitive
aperiodic morphism is strongly two-sided recognizable and therefore
circular, which means that adding the condition that the morphism
is weakly circular does not change the previous result. A graphical
illustration of the equivalences described above is the Figure 3.21.
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Two-sided recognizable

Weakly circular

Circular

Strongly two-sided
recognizable

Figure 3.21: Relations between the definitions of recognizability and circularity
for the case of primitive and aperiodic morphisms.

weakly circ.≡circular≡

strongly 2-sided

recogn.≡strongly recogn.

right

recogn.

left

recogn.

str.

circ.

Figure 3.22: Relations between the definitions of recognizability and circularity
for the primitive case.
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Left recognizable Right recognizable

Two-sided recognizable

Weakly circular Circular

Strongly
two-sided
recognizable

Synchronizing delay

A

BC
A

E

D
K K

G F

JJ

H

I

Strongly circular

M

N

O
P

Figure 3.23: Relations between the definitions for an aperiodic morphism.

A: Proposition 3.3.21 (holds always),

B: Proposition 3.3.23 (under the condition of suffix morphism),

C: similar to Proposition 3.3.25 (under the condition of prefix morphism),

D: Observation 3.3.28 (holds always),

E: Lemma 3.3.36 (under the condition of suffix or prefix morphism),

F: Theorem 3.6.9 (holds always),

G: Proposition 3.6.10 (under the condition of injective morphism),

H: Observation 3.6.14 (holds always),

I: Proposition 3.6.17 (under the condition of injective morphism),

J: Lemma 3.6.18 (under the condition of primitive morphism),

K: Theorem 3.6.25 (holds always),

M: Proposition 3.3.15 (holds always),

N: Remark 3.3.17 (hunder the condition of suffix morphism),

O: Proposition 3.3.8 (holds always),

P: Remark 3.3.10 (under the condition of prefix morphism).



4
Decidable properties of extension graphs

Given a set of words S, one can associate with every word u ∈ S a
graph called extension graph. This graph carries the information of
how the word u can be extended on the left and on the right in S.
The reason why extension graphs are worth studying is that they
allow the characterization of a set as acyclic, dendric set, neutral
set, etc.
Normally, in order to be able to decide some of the above properties
we should construct the extension graph for all the words of the set
S, and check if the property holds for all of these graphs. However,
since we may work on an infinite set S, such as substitutive lan-
guages, the above method cannot be applied. In order to be able to
decide if some of the above properties holds, we use the notion of
strong two-sided recognizability.

4.1 Extension graphs

4.1.1 Extension graph

Let S be a bi-extendable set of words. For w ∈ S, we consider the
undirected bipartite graph ES(w) with set of vertices the disjoint
union of LS(w) and RS(w) and edges the pairs (a, b) ∈ BS(w), where
LS(S), RS(S), BS(S) are the ones defined in chapter Preliminaries.
This graph is called the extension graph of w. When it is clear
from the context we omit the S. We note that, since ES(w) has
ℓ(w) + r(w) vertices and b(w) edges, the number 1 − m(w) is the
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Euler characteristic of the graph ES(w) (see [33]).
If the extension graph ES(w) is acyclic, then m(w) ≤ 0. Thus

w is weak or neutral. More precisely, one has in this case that
c = 1−m(w) is the number of connected components of the graph
ES(w).

A graph is called acyclic if there is no way to start at any vertex
and follow a consistently-directed sequence of edges that eventually
loops back to that vertex again. A bi-extendable set S is called
acyclic if for every w ∈ S the graph ES(w) is acyclic. A graph is
connected when there is a path between every pair of vertices. The
set S is connected if for every w ∈ S the graph ES(w) is connected.

A graph is dendric if it is connected and acyclic. A bi-extendable
set S is called a dendric set of characteristic c if for any nonempty
w ∈ S, the graph ES(w) is a dendric and if ES(ε) is a union of
c dendric graphs (the definition of dendric set in [19] corresponds
to a dendric set of characteristic 1). It is clear that a dendric set
is always a connected and acyclic set. Note that a dendric set of
characteristic c is a neutral set of characteristic c.

Example 4.1.1. Let ϕF be the Fibonacci morphism (Example 2.2.2)
with fixed point u the Fibonacci word. The extension graphs of the
empty word ε and of the two letters are shown in Figure 4.1. The
extension graphs E(ε), E(0) and E(1) are connected and acyclic.

E(ε)

0

1

0

1

E(0)

0

1

0

1

E(1)

0 0

Figure 4.1: The graphs E(ε), E(0) and E(1) for the language L(u).

Example 4.1.2. Let ϕTM be the Thue-Morse morphism (Exam-
ple 3.1.8) with fixed point u = ϕω

TM(0). The extension graphs of
the empty word and of the two letters are shown in Figure 4.2. All
of the graphs are connected while the graph E(ε) has a cycle and
the graphs E(0) and E(1) are acyclic.

Remark 4.1.3. Any non bispecial word has extension graph that
is dendric.

If a word is not bispecial, then its extension graph has one of
the forms as seen in the Figure 4.3. The graph E1 corresponds to
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E(ε)

0

1

0

1

E(0)

0

1

0

1

E(1)

0

1

0

1

Figure 4.2: The graphs E(ε), E(0) and E(1) for the language L(u).

E1

r ℓ1

. . .

ℓ2

E2

r1

. . .

r2

ℓ

E3

r ℓ

Figure 4.3: Extension graphs of non bispecial words.

the words that are right special but not left special, the graph E2
corresponds to the words that are left special but not right special,
while the graph E3 corresponds to the words that are neither right
special nor left special.

A planar dendric set of characteristic c with respect to two orders
<L and <R on the alphabet A is a dendric set of characteristic c
compatible with the two orders (see [20]), i.e., for any w ∈ S one
has

a <L c =⇒ b ≤R d for any (a, b), (c, d) ∈ BS(w).

As explained in [20] we can extend <L and <R to two orders over A∗

by taking the induced anti-lexicographic order for <L and induced
lexicographic order for <R.

Thus, if the extension graph E(w) is a planar dendric graph and
it has the vertices of LS(w) placed ordered by <L on a line and those
of RS(w) placed ordered by ≤R on a parallel line, then the edges of
the graph will be straight non-crossing segments.

4.1.2 Generalized extension graph

For two sets of words X, Y and a word w ∈ S, we denote

LX
S (w) = {x ∈ X | xw ∈ S},

RY
S (w) = {y ∈ Y | wy ∈ S},

BX,Y
S (w) = {(x, y) ∈ X × Y | xwy ∈ S}.
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We omit the subscript S when it is clear from the context.
As for E(w), we consider EX,Y (w) as an undirected bipartite

graph on the set of vertices which is the disjoint union of LX(w)
and RY (w). Such a graph is called a generalized extension graph.
When X = An, and S is understood, we write L(n)(w) instead of
LAn

(w). Similarly we define R(m)(w), B(n,m) and E (n,m)(w). More-
over, when n = m, we set B(n) = B(n,n) and we call the graph
E (n)(w) = E (n,n)(w) the uniform generalized extension graph (of de-
gree n) of w. Note that E(w) = E (1,1)(w).

Observation 4.1.4. Note that identifying in a generalized exten-
sion graph E (n,m)(u) of a word u in a substitutive language all ver-
tices on the left having the same last letter and all vertices on
the right having the same first letter, we find the extension graph
E (1,1)(u).

Indeed, if there is an edge (u1a, bu2) in the graph E (n,m)(u), then
u1aubu2 ∈ L(u) and therefore there is edge (a, b) ∈ E(u). Let
us now suppose that there is an edge (c, d) ∈ E(u) that does not
correspond to any edge in E (n,m)(u). That means that there are no
words u3, u4 ∈ L(u), with |u3| = n− 1 and |u4| = m− 1, such that
u3cudu4 ∈ L(u), which implies that there is a word in L(u) that is
not extendable, which leads to a contradiction.

Example 4.1.5. Let ϕF be the Fibonacci morphism (Example 2.2.2)
with fixed point u the Fibonacci word.

The extension graph E(ε) and the generalized uniform extension
graph E (3)(ε) of the empty word are represented in Figure 4.4. It can
be seen that as it was mention in the above Observation, identifying
in E (3)(ε) all vertices on the left having the same last letter and all
vertices on the right having the same first letter, we find the graph
E(ε).

1

0

0

1

101

001

010

100

001

010

100

101

Figure 4.4: The graphs E(ε) (on the left) and E3(ε) (on the right). Both of the
graphs are connected and acyclic, hence they are dendric.
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The Fibonacci set is a planar dendric set with respect to the two
orders 1 <L 0 and 0 <R 1 (see [20]).

4.2 Antecedent

We will define in this section the notion of the antecedent of a word
in a substitutive language and we will correlate this notion with
the one of strongly two-sided recognizability, that was thoroughly
presented in the previous chapter.

Let us first give the following examples as motivation.

Example 4.2.1. Let ϕF be the Fibonacci morphism with fixed
point u the Fibonacci word (Example 2.2.2). The morphism ϕF

is right recognizable as it has already seen in Example 3.3.3 and
it is suffix. It can be verified that any word u ∈ L(u) ∩ A∗1 has
a unique internal interpretation and therefore it can be uniquely
written as u = sϕF (v)p, where v ∈ L(u) and s a proper suffix of
ϕ(0) or ϕ(1), i.e s ∈ {ε, 1} and p = ε. The word v is considered as
the preimage of u or, as we will call it later, its antecedent.

Example 4.2.2. Let ψ be the following morphism,

ψ :

{
0 7→ 01

1 7→ 01
,

with fixed point u = ψω(0) = 0101010101 · · · and therefore language
L(u) = (ε+ 1)(01)∗(ε+ 0). Any word u ∈ L(u) is of the form

u = s(01)kp

for some words p ∈ {ε, 0}, s ∈ {ε, 1}. We thus get two possible
factorizations

sψ((10)⌊k/2⌋)p = u = sψ((01)⌊k/2⌋)p,

which prevents us from defining the antecedent of u.

The next example shows that antecedents may be undefined even
if the considered morphism has an aperiodic fixed point.

Example 4.2.3. Consider the following morphism,

ρ :





0 7→ 0120

1 7→ 121

2 7→ 212
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with fixed point u = ρω(0) = 01201212120120 · · · ∈ AN. The fixed
point u is not ultimately periodic, since for all integers n ∈ N the
word 0(12)3

n

0 occurs in the language L(u). We are unable to define
the antecedent of the words of the form (12)k. For example, the word
u = (12)3 = 12121 has internal interpretations (ε, 1, 21), (1, 2, 1) and
(12, 1, ε) and therefore we cannot define the antecedent of u.

Motivated by the previous examples, we will now formally define
the notion of the antecedent.

Definition 4.2.4 (Antecedent). Let ϕ : A∗ → A∗ be a morphism
with fixed point u and u ∈ L(u). The antecedent of u in L(u) (if it
exists) is the longest non-empty word w ∈ L(u) such that

1. u = xϕ(w)y for some words x, y ∈ A∗ and

2. for any internal interpretation (s, v, p) of u, there exists i, j ∈
{0, . . . , |v| − 1}, i ≤ j, such that w = v[i,j], x = sϕ(v[0,i)) and
y = ϕ(v(j,|v|−1])p.

(See Figure 4.5)

v0 . . . vi−1 vi . . . vj vj+1 . . . v|v|−1

s ϕ(v[0,i)) ϕ(w) ϕ(v[j+1,|v|)) p

v
w

u = sϕ(v)p

x y

Figure 4.5: A graphical explanation of the definition of the antecedent.

In other words, the antecedent is the longest common factor from
whom pass all the internal interpretations.

Remark 4.2.5. If the antecedent of a word in a substitutive lan-
guage exists, then it is unique.

The uniqueness of the antecedent follows directly from the second
condition in the definition of the antecedent and the fact that the
antecedent is the longest such word.



4.2. ANTECEDENT 87

Remark 4.2.6. If a word u ∈ L(u) admits an antecedent w, then
any word u′ ∈ L(u) that has the word u as factor admits an an-
tecedent w′. More precisely, the antecedent w′ of u′ has as factor
the antecedent w of u.

Example 4.2.7. Let ϕF be the Fibonacci morphism (Example 2.2.2)
with fixed point u the Fibonacci word. The word u = 10010 ∈ L(u)
has two distinct internal interpretations (1, 101, ε) and (1, 10, 0). It
can be verified that the antecedent of u is the word w = 10 ∈ L(u),
that is the longest common factor of the words 101 and 10.

The existence of the antecedent for a long enough word in a
substitutive language is guaranteed in the case that strong two-sided
recognizability holds for the language, as we will further explain it
in the following part of this section.

Let us recall the definition of a strongly two-sided recognizable
morphism on a fixed point (after Proposition 3.3.37), as the mor-
phism ϕ : A∗ → A∗ with a fixed point u for which there is an integer
L > 0 such that for every i > L if u[i−L,i+L] = u[j−L,j+L] and i ∈ Eu,
then j ∈ Eu and ui′ = uj′, where f(i

′) = i and f(j′) = j.
The next proposition states that strong two-sided recognizability

ensures the existence of the antecedent for all words long enough in
the language.

Proposition 4.2.8. If ϕ is a strongly two-sided recognizable mor-
phism on a fixed point u for a constant L > 0, then for all words
u ∈ L(u) of length at least 2L+ ||ϕ||, u has an antecedent w. Fur-
thermore, if x, y are as in Definition 4.2.4, then we have |x| < L+||ϕ||
and |y| < L+ 1.

Proof. We will first prove the existence of the antecedent for a long
enough word u. Let u ∈ L(u) with |u| ≥ 2L + ||ϕ||. In the factor
v = u[L,|u|−1−L] of u = u0 . . . u|u|−1, there is at least one cutting
point, because of its length (|v| ≥ ||ϕ||). Let i, j ∈ Eu be such that
L ≤ i ≤ L + ||ϕ|| and i ≤ j ≤ |u| − 1 − L, be the smallest and
the largest position respectively in the interval [L, |u| − 1− L] that
belong in Eu. Let us note that Card([L, |u| − 1−L] ∩Eu) > 0. For
any position k ∈ [L, |u| − 1 − L] ∩ Eu there is a factor u[k−L,k+L] of
the word u, where we can apply the definition of strong two-sided
recognizability. Thus, the position k is a strong synchronization
point (from Proposition 3.3.38) and the letter uk′ with f(k

′) = k is
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unique. Therefore, by concatenation on the positions in [L, |u|−1−
L] ∩ Eu the word v′ = u[i′,j′] with f(i

′) = i and f(j′) = j is unique
and thus it is a common factor of all the internal interpretations of
u.

Let ((sm, vm, pm))m≤M be the set of all internal interpretations of
the word u and M > 0 be the number of distinct internal interpre-
tations that correspond to u. Note thatM is finite since every finite
word has finite number of distinct internal interpretations. Since the
word v′ = u[i′,j′] is a factor of any vm, there are words rm, tm ∈ L(u)
such that vm = rmv

′tm . It is then enough to consider the word
w = rv′t, where r (resp. t) is the longest common suffix (resp. pre-
fix) of all (rm)m≤M (resp. (tm)m≤M). It then follows that the word
w is the antecedent of u.

Consider now an internal interpretation (s, v, p) of the word u
and let w be the antecedent of u. Let u = xϕ(w)y for x, y ∈ L(u)
and let w = v[ℓ,h], for 0 ≤ ℓ, h ≤ |v| − 1. Since

u = xϕ(w)y = xϕ(v[ℓ,h])y = sϕ(v)p

it follows that,

|x| ≤ |sϕ(v[0,ℓ))| ≤ |sϕ(v[0,ℓ−1))|+ ||ϕ|| < L+ ||ϕ||

and
|y| ≤ |ϕ(v[h,|v|−1)p)| ≤ L.

Corollary 4.2.9. Let ϕ be a strongly two-sided recognizable mor-
phism on a fixed point u for a constant L > 0. Let x, y ∈ L(u) be
as in Definition 4.2.4 with y 6= ε (resp. x 6= ε). If ϕ is suffix (resp.
prefix) then there is a letter a such that y is a proper prefix (resp.
x is a proper suffix) of ϕ(a).

Proof. Let us assume that the morphism ϕ is prefix (resp. suffix)
and strongly two-sided recognizable on L(u), where u is a fixed
point of the morphism. Let x, y, w be defined as in the general
case and let (s, v, p) be an internal interpretation of the word u ∈
L(u), with u = sϕ(v)p. Let i, j with i ≤ j be positions in the
word v such that w = v[i,j], where w is the antecedent of u. Thus,
y = ϕ(v(j,|v|−1])p. Considering another interpretation (s′, v′, p′) of
u, we also have y = ϕ(v′(j′,|v|−1])p

′. Since w is the longest common
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factor of the preimages and since the morphism ϕ is prefix, one has
ϕ(v(j,|v|−1]) = ϕ(v′(j′,|v′|−1]) = ε. Thus y = s = s′.

We say that a morphism ϕ is everywhere growing if |ϕn| goes
to infinity when n increases. A primitive morphism is everywhere
growing.

Corollary 4.2.10. Let ϕ be an everywhere growing morphism with
a fixed point u. If ϕ is strongly two-sided recognizable for some
constant L > 0 on u, then for all u ∈ L(u) with length at least
2L + ||ϕ||, there exists a unique finite sequence (u1, u2, . . . , uk) of
words in L(u) such that

i) u1 does not have any antecedent (in particular, |u1| < 2L+||ϕ||);

ii) ui is the antecedent of ui+1;

iii) uk = u.

The previous sequence will be called the sequence of antecedents
of u in L(u).

The above corollary is the result of applying recursively Propo-
sition 4.2.8 on the words that are longer that 2L + ||ϕ||, as it is
demonstrated in the following example.

Example 4.2.11. The Fibonacci morphism ϕF with fixed point the
Fibonacci word (Example 2.2.2) is everywhere growing and strongly
two-sided recognizable for a constant L = 1. Let us consider the
word u3 = 0010010100. It can be verified that the antecedent of u3 is
the word u2 = 01001, while the antecedent of the former is u1 = 010
(see Figure 4.6). One has |u3| = 10 ≥ 2 · 1 + 2, |u2| = 5 ≥ 2 · 1 + 2
and |u1| = 3 < 2 · 1 + 2. Thus, for the word u3 there is a unique
finite sequence (u1, u2, u3) = (010, 01001, 0010010100), that satisfies
Corollary 4.2.10 and it is the sequence of antecedents of u3 in L(u).

Since strong two-sided recognizability can guarantee the existence
of the antecedent of a long enough word in a substitutive language,
it is important to be able to decide whether a morphism is strongly
two-sided recognizable or not. The following theorems that appear
in [44] and [79] lead to the result that under certain conditions it is
decidable whether the morphism is strongly two-sided recognizable.
Let us first give the following definitions.
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0 1 0

0 1 0 0 1

0 0 1 0 0 1 0 1 0 0

ϕF

ϕF

u2

u3

u1

Figure 4.6: The sequence of antecedents of the word u3 = 0010010100 in the
Fibonacci language.

A word u ∈ L(u) is said to be bounded if (|ϕn(u)|)n≥0 is a bounded
sequence. A morphism ϕ is said to be pushy if there are arbitrarily
long bounded words in L(u), otherwise it is non-pushy.

Let us also now mention that a word is called k-power-free if it
does not contain any k-power as a factor, i.e., it has no factor of the
form vk, for some integer k ≥ 2. A morphism ϕ is called k-power-
free for some k ≥ 2 if for every k-power-free word u in L(ϕ), its
image ϕ(u) is also k-power-free.

Theorem 4.2.12. [44] It is decidable whether a morphism is pushy
or not. Moreover, it is decidable whether a morphism is k-power-free
for some k ≥ 2.

Theorem 4.2.13. [79] Let ϕ be non-erasing. If ϕ is k-power-free
for some k ≥ 2, then it is strongly two-sided recognizable. If ϕ is
non-pushy and strongly two-sided recognizable, then it is k-power-
free for some k ≥ 2.

Corollary 4.2.14. If ϕ is non-erasing and non-pushy, then it is
decidable whether or not it is strongly two-sided recognizable.

Note that a pushy morphism can be either strongly two-sided
recognizable or not.

Example 4.2.15. The Fibonacci morphism ϕF (Example 2.2.2)
with fixed point u the Fibonacci word is not pushy, since it is every-
where growing and thus no word in L(u) is bounded. On the other
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hand, the morphism ζ : {0, 1}∗ → {0, 1}∗,

ζ : 0 7→ 001,

1 7→ 1

with fixed point uζ = ζω(0) and the morphism η : {0, 1, 2, 3}∗ →
{0, 1, 2, 3}∗,

η : 0 7→ 01203,

1 7→ 121,

2 7→ 212,

3 7→ 3

with fixed point uη = ηω(0) are pushy. Indeed, 1m ∈ L(uζ) and 3m ∈
L(uη) for all for all m ≥ 0 (and |ζn(1m)| = |ηn(3m)| = m for all n ≥
1). While it can be checked that ζ is strongly two-sided recognizable
with constant of recognizability 1, we can prove that the morphism
η is not strongly two-sided recognizable. Indeed all words of the
form (12)n ∈ L(uη) for n ∈ N have at least two distinct internal
interpretations that pass from totally different positions. Therefore,
in the words of the previous form there is no synchronization point,
let alone a strong synchronization point.

Lastly, let us recall Mossé’s Theorem 3.4.1 that states that any
primitive aperiodic morphism is strongly two-sided recognizable.

4.3 Evolution of the extensions of bispecial words

In what follows we will suppose that ϕ is a non-erasing non-pushy
strongly two-sided recognizable morphism for a constant L > 0 on
a fixed point u of ϕ.

We also assume that the substitutive language L(u) is bi-extendable,
i.e., for all u ∈ L(u), there exist a, b ∈ A such that aub ∈ L(u). We
say that the morphism ϕ is left-marked (resp. right-marked) if for
all distinct letters a, b ∈ A, ϕ(a) and ϕ(b) have distinct first letter
(resp. distinct last letter).

Remark 4.3.1. If ϕ is a primitive morphism with fixed point u,
then the language L(u) is bi-extendable.
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Example 4.3.2. Let ϕF be the Fibonacci morphism (Example 2.2.2)
with fixed point u the Fibonacci word. Since the Fibonacci mor-
phism is primitive, the substitutive language L(u) is bi-extendable.
Also, since ϕ(0), ϕ(1) ∈ 0A∗ the morphism is not left-marked but it
is right-marked since the two images end in different letters.

If u ∈ L(u) admits an antecedent w with u = xϕ(w)y, then by
definition there exist some words ℓ, r such that ℓwr ∈ L(u), x is a
suffix of ϕ(ℓ) and y is a prefix of ϕ(r). By Proposition 4.2.8, x and
y have length smaller than L + ||ϕ|| and L respectively. Since ϕ is
non-erasing, the same property holds for ℓ and r. For all integers
m,n > 0, we set

B(m,n)
x,y (w) = {(ℓ, r) ∈ B(m,n)(w) | ϕ(ℓ) ∈ A∗x and ϕ(r) ∈ yA∗}.

We say that a pair ((ℓ, r), (ℓ′, r′)) ∈ B
(m,n)
x,y (w) × B

(m,n)
x,y (w) is a left

special pair for w (resp. a right special pair) if ℓ, ℓ′ (resp. r, r′)
have distinct last letter (resp. first letter). A pair ((ℓ, r), (ℓ′, r′)) ∈

B
(m,n)
x,y (w) × B

(m,n)
x,y (w) is a bispecial pair if it is right-special and

left-special.

Remark 4.3.3. Every right special (resp. left special) word has a
right-special (resp. left-special) pair.

Proposition 4.3.4. If w ∈ L(u) is bispecial then there is a bispecial

pair in B
(m,n)
x,y (w)×B

(m,n)
x,y (w).

Proof. A bispecial word w ∈ L(u) is right special and left special by
definition. Thus, by Remark 4.3.3 there is a left-special pair

((ℓ1, r1), (ℓ2, r2)) ∈ B
(m,n)
x,y (w)× B(m,n)

x,y (w)

and right-special pair

((ℓ3, r3), (ℓ4, r4)) ∈ B
(m,n)
x,y (w)×B(m,n)

x,y (w).

Thus ℓ1, ℓ2 end in different letters and r3, r4 start with different
letters. If ℓ3, ℓ4 end with different letters, then ((ℓ3, r3), (ℓ4, r4)) is
a bispecial pair. Similarly, if r1, r2 start with different letters, then
((ℓ1, r1), (ℓ2, r2)) is a bispecial pair.

Let us now examine the case where ℓ3, ℓ4 ∈ A
∗a for some letter

a ∈ A. Then at least one of the words ℓ1, ℓ2 does not end with the
letter a. Without loss of generality, let ℓ1 ∈ A

∗b for some b distinct
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from a. Similarly, the right extension r1 ∈ cA
∗ should have different

first letter with at least one of the right extensions r3, r4. Without
any loss of generality, let r3 ∈ dA∗ for a letter d distinct from c.
Thus, there is a bispecial pair

((ℓ1, r1), (ℓ3, r3)) ∈ B
(m,n)
x,y (w)× B(m,n)

x,y (w).

Let us consider words u, v ∈ A+. We let fL(u, v) (resp. fR(u, v))
denote the longest common suffix (resp. longest common prefix) of
the words ϕ(u) and ϕ(v).

As it has been already mentioned in the previous chapter, strong
two-sided recognizability implies that any long enough word in the
language has a unique preimage except of some prefix and suffix.
The length of that prefix and suffix in the case of a strongly two-sided
recognizable language for a constant L > 0, depends on the constant
L. More precisely, after Proposition 4.2.8 and Corollary 4.2.9 we
obtain the upper bounds for the length of the prefix and suffix that
are denoted as CL and CR respectively and they are the following
ones,

CL =





1 if ϕ is right-marked,

||ϕ|| if ϕ is suffix, but not right-marked,

L+ ||ϕ|| otherwise;

CR =





1 if ϕ is left-marked,

min{||ϕ||, L+ 1} if ϕ is prefix, but not left-marked,

L+ 1 otherwise.

Example 4.3.5. Let ϕ be the Fibonacci morphism with fixed point
u the Fibonacci word (Example 2.2.2). Let us remind that the
morphism is strongly two-sided recognizable for a constant L = 1.
Since ϕ(0) = 01 ∈ A∗1 and ϕ(1) = 0 ∈ A∗0 we have that ϕ is
right-marked and thus CL = 1. However since ϕ(0), ϕ(1) ∈ 0A∗ the
morphism ϕ is not left-marked and also since ϕ(0) = 01 = ϕ(1)0 it
is also not prefix. Thus, CR = L+ 1 = 1 + 1 = 2.

Lemma 4.3.6. Let ϕ be a strongly two-sided recognizable mor-
phism with fixed point u. Let u ∈ L(u) and let w be its antecedent
with u = xϕ(w)y and x, y ∈ A∗. If u is left special then so is
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his antecedent w. More precisely, there is a left special pair in

B
(|x|+1,|y|+1)
x,y (w)×B

(|x|+1,|y|+1)
x,y (w).

Proof. We proceed by contradiction, assuming that there is a letter

a ∈ A such that for all (ℓ, r) ∈ B
(|x|+1,|y|+1)
x,y (w), the last letter of ℓ

is a. Let (s, v, p) be an internal interpretation of u with s being a
proper suffix of the image of a letter α ∈ A and p a proper prefix
of a letter β ∈ A with αvβ ∈ L(u). Then, by definition of the
antecedent, we have that v = twq for some words t, q such that
x = sϕ(t) and y = ϕ(q)p. By our assumption on the left extensions
of w either t = ε (and thus α ∈ {ε, a}) or t ∈ A∗a. The second
possibility cannot occur for all interpretations, otherwise w, who is
a factor of aw would not be the antecedent of u (See Figure 4.7).

a w

x ϕ(w) y

Figure 4.7: A graphical explanation of Lemma 4.3.6.

Thus, there exists at least one interpretation of the form (s, v, p)
with α ∈ {ε, a} and v ∈ wA∗. In particular, we have x = s,
where x is a suffix of ϕ(a) distinct from ϕ(a). This actually im-
plies that all interpretations are of this form. Indeed, if (s′, v′, p′) is
an interpretation of u with v′ = t′wq′ and t′ = t′′a, we must have
x = s = s′ϕ(t′) = s′ϕ(t′′)ϕ(a), which is impossible, since x is a suffix
of ϕ(a) distinct from ϕ(a). We finally deduce that u has a unique
left extending letter which is the letter b such that bx is suffix of
ϕ(a). Hence, u is not left special, which is a contradiction.

More precisely, the previous prove the existence of a left special

pair in B
(|x|+1,|y|+1)
x,y (w)× B

(|x|+1,|y|+1)
x,y (w).

The following lemma is similar to Lemma 4.3.6, considering the
right special case instead of the left special one.

Lemma 4.3.7. Let ϕ be a strongly two-sided recognizable mor-
phism with fixed point u. Let u ∈ L(u) and let w be its antecedent
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with u = xϕ(w)y and x, y ∈ A∗. If u is right special then so is
his antecedent w. More precisely, there is a right special pair in

B
(|x|+1,|y|+1)
x,y (w)×B

(|x|+1,|y|+1)
x,y (w).

The proof is analogous to the proof of Lemma 4.3.6.
The following lemma gives more precise information on the rela-

tion of a word and its antecedent.

Lemma 4.3.8. Let ϕ be a strongly two-sided recognizable mor-
phism with fixed point u. Let u ∈ L(u) and let w be its antecedent
with u = xϕ(w)y, with x, y ∈ A∗.

1. If u is left special, then so is w and there exists a left special
pair

((ℓ, r), (ℓ′, r′)) ∈ B(CL,CR)
x,y (w)× B(CL,CR)

x,y (w)

such that x = fL(ℓ, ℓ
′). In particular |x| < CL.

2. If u is right special, then so is w and there exists a right special
pair

((ℓ, r), (ℓ′, r′)) ∈ B(CL,CR)
x,y (w)× B(CL,CR)

x,y (w)

such that y = fR(r, r
′). In particular, |y| < CR.

Proof. Let us prove the first item and the second one can be proved
in a symmetrical way.

The existence of a left special pair inB
(|x|+1,|y|+1)
x,y (w)×B

(|x|+1,|y|+1)
x,y (w)

is given by Lemma 4.3.6.
We will now show that such a left special pair can be chosen

to satisfy x = fL(ℓ, ℓ
′). By definition of B

(|x|+1,|y|+1)
x,y (w), for all

(ℓ, r) ∈ B
(|x|+1,|y|+1)
x,y (w), x is a suffix of ϕ(ℓ) and x 6= ϕ(ℓ) (because

ϕ is non-erasing). If for all (ℓ, r), (ℓ′, r′) ∈ B(|x|+1,|y|+1)
x,y (w), we have

|fL(ℓ, ℓ
′)| > |x|, then u is not left special, which is a contradiction.

Thus, there exists pairs (h, s), (h′, s′) ∈ B
(|x|+1,|y|+1)
x,y (w) satisfying

x = fL(h, h
′) (and in particular x /∈ {ϕ(h), ϕ(h′)}). If fL(ℓ, ℓ

′) = x
or if ((h, s), (h′, s′)) is a left special pair, we are done. Let us show
by contradiction that the converse cannot happen. We assume that
fL(ℓ, ℓ

′) = x′ with |x′| > |x| (and x suffix of x′) and that a ∈ A
is such that h, h′ ∈ A∗a. Since ((ℓ, r), (ℓ′, r′)) is a left special pair,
there exists b, c ∈ A such that ℓ ∈ A∗b and ℓ′ ∈ A∗c, with b 6= c. We
assume without loss of generality that a 6= b. Writing z = fL(ℓ, h)
and z′ = fL(ℓ, h

′), we have x suffix of z and of z′. If both z and z′ are



96 CHAPTER 4. DECIDABLE PROPERTIES OF EXTENSION GRAPHS

longer than x, then since x′ is also longer than x, this implies that
x is a strict suffix of fL(h, h

′), which is a contradiction. Therefore,
either ((ℓ, r), (h, s)) is a left special pair satisfying x = fL(ℓ, h), or
((ℓ, r), (h′, s′)) is a left special pair satisfying x = fL(ℓ, h

′).

Let us finally show that we can replace B
(|x|+1,|y|+1)
x,y (w) byB

(CL,|y|+1)
x,y (w).

We consider a left special pair ((ℓ, r), (ℓ′, r′)) ∈ B
(|x|+1,|y|+1)
x,y (w) ×

B
(|x|+1,|y|+1)
x,y (w) such that x = fL(ℓ, ℓ

′). In particular, we have
x /∈ {ϕ(ℓ), ϕ(ℓ′)}. If |x| + 1 = CL, we are done. If |x| + 1 <
CL, then since L(u) is bi-extendable, there exists h, h′ such that

(h, r), (h′, r′) ∈ B
(CL,|y|+1)
x,y (w) with h ∈ A∗ℓ and h′ ∈ A∗ℓ′. As

x /∈ {ϕ(ℓ), ϕ(ℓ′)}, we have fL(h, h
′) = fL(ℓ, ℓ

′) = x. The last pos-
sibility |x| + 1 > CL cannot happen. Indeed, if ϕ is right-marked,
then x = ε and CL = 1. Otherwise, Proposition 4.2.8 ensures that
|x| < CL.

Lastly, since we are interested in the left special pairs and since
we are working on bi-extendable languages, we can change without
any problem the length of the right extensions to CR.

Proposition 4.3.9. The antecedent w of a bispecial word u, with
u = xϕ(w)y, is bispecial and also there is a bispecial pair ((ℓ1, r1), (ℓ2, r2)) ∈

B
(CL,CR)
x,y (w) × B

(CL,CR)
x,y (w), with x = fL(ℓ1, ℓ2) and y = fR(r1, r2).

In particular, |y| < CR and |x| < CL.

Proof. A word is bispecial when it is right special and left special.
From Lemma 4.3.6 and Lemma 4.3.7 we have that the antecedent
w of u is right special pair and left special respectively and thus we
have that it is bispecial. Furthermore, from the previous Lemma,
there is at least one left special pair and one right special pair in

B
(CL,CR)
x,y (w) × B

(CL,CR)
x,y (w) and thus, following the same procedure

as in Proposition 4.3.4, it can be verified that there is bispecial pair

in B
(CL,CR)
x,y (w)× B

(CL,CR)
x,y (w).

Let us now suppose that for none of these pairs holds that x =
fL(ℓ1, ℓ2) and y = fR(r1, r2). Let us study the case where x =
fL(ℓ1, ℓ2) but y 6= fR(r1, r2). If y 6= fR(r1, r2) for all bispecial pairs

in B
(CL,CR)
x,y (w) × B

(CL,CR)
x,y (w), then |fR(r1, r2)| > |y| for all bispe-

cial pairs. Thus, there is a word v ∈ A+ for each pair such that
fR(r1, r2) = yv. All those words (v) have to start with the same let-
ter, because if not there can be constructed a pair such that fR = |y|
that is not possible because of our assumptions. Therefore, the word
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xϕ(w)y is left special but not right special, which leads to a contra-
diction.

The cases where x 6= fL(ℓ1, ℓ2) and y 6= fR(r1, r2) or x 6= fL(ℓ1, ℓ2)
and y 6= fR(r1, r2) are similar.

Remark 4.3.10. There exist two computable constants DL and DR

such that for all ℓ ∈ ADL and all r ∈ ADR, |ϕ(ℓ)| ≥ DL + CL − 1
and |ϕ(r)| ≥ DR + CR − 1.

Indeed, the existence of the constants DL and DR follows from
the fact the morphism ϕ is assumed to be non-pushy and non-erasing
and moreover, they are trivially computable.

Example 4.3.11. Let ϕ be the Fibonacci morphism with fixed
point the Fibonacci word (Example 2.2.2). We have already seen
in Example 4.3.5 that CL = 1 and CR = 2. The constant DL = 1,
since |ϕ(0)| = |01| = 2 ≥ DL + CL − 1 = 1 + 1 − 1 = 1 and
|ϕ(1)| = |0| = 1 ≥ DL +CL− 1 = 1. The constant DR = 2. Indeed,
DR 6= 1 since |ϕ(1)| = |0| = 1 < DR + CR − 1 = 1 + 2 − 1 = 2.
By verifying all the words of length 2 in the substitutive language
we have that |ϕ(01)| = |010| = 3 ≥ DR + CR − 1 = 2 + 2 − 1 = 3,
|ϕ(00)| = |0101| = 4 ≥ DR + CR − 1 = 3 and |ϕ(10)| = |001| = 3 ≥
DR + CR − 1 = 3.

Lemma 4.3.12. Let u ∈ L(u) bispecial with antecedent w ∈ L(u)
such that u = xϕ(w)y and constants DL, DR as described in Re-
mark 4.3.10. Then,

Card(B(DL,DR)(u)) ≤ Card(B(DL,DR)
x,y (w)).

Note that the Card(B(DL,DR)(u)) is equal to the number of edges
in the graph E (DL,DR)(u). Thus, the above lemma proves that the
extension graph E (DL,DR)(w) of the antecedent has at least as many
edges as the extension graph of the decedent.

Proof. Let ϕ be a morphism with a fixed point u and u ∈ L(u)
with antecedent w ∈ L(u) such that u = xϕ(w)y and from Propo-
sition 4.3.9 we have that |x| < CL and |y| < CR.
The proof is done in two steps. In the first step we will prove that for

every pair (ℓ, r) ∈ B(DL,DR)(u) there is a pair (ℓ′, r′) ∈ B
(DL,DR)
x,y (w)

such that ϕ(ℓ′) ∈ A∗ℓx and ϕ(r′) ∈ yrA∗. In the second step we
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will prove that two distinct pairs in B(DL,DR)(u) cannot be related
to the same pair in B(DL,DR)(w).

For the first part of the proof, let (ℓ, r) ∈ B(DL,DR)(u), i.e., ℓur ∈
L(u) with |ℓ| = DL and |r| = DR. Then,

ℓur = ℓxϕ(w)yr ∈ L(u)

and since the language is bi-extendable there are words ℓ′, r′ such
that ℓ′wr′ ∈ L(u), |ℓ′| = DL, |r

′| = DR. Let us remind that because
of Remark 4.3.10 |ϕ(ℓ′)| ≥ DL +CL− 1 and |ϕ(r′)| ≥ DR +CR− 1.
Thus,

ϕ(ℓ′wr′) = ϕ(ℓ′)ϕ(w)ϕ(r′) = u1ℓxϕ(w)yru2 ∈ L(u)

for some words u1, u2 ∈ A∗. The last follows from the fact that
|x| ≤ CL and |ℓ| = DL, which implies that

|x|+ |ℓ| < CL +DL ≤ CL +DL − 1 = |ϕ(ℓ′)|.

Thus, there is a pair (ℓ′, r′) ∈ B
(DL,DR)
x,y (w). with ϕ(ℓ′) ∈ A∗ℓx and

ϕ(r′) ∈ yrA∗.
We now move to the second part of the proof. We proceed by

contradiction. Let the extension pairs (ℓ1, r1), (ℓ2, r2) ∈ B
(DL,DR)(u)

be distinct and let us also suppose that both of them result from the

pair (ℓ′, r′) ∈ B
(DL,DR)
x,y (w). Since ℓ′wr′ ∈ L(u) with |ℓ′| = DL and

|r′| = DR, then ϕ(ℓ
′)ϕ(w)ϕ(r′) ∈ L(u) with |ϕ(ℓ′)| ≥ DL + CL − 1

and |ϕ(r′)| ≥ DR + CR − 1 (Remark 4.3.10). Thus, there are words
words u1, u2 such that

u1xϕ(w)yu2 ∈ L(u)

with
|u1| = |ϕ(ℓ

′)| − |x| ≥ (DL + CL)− CL ≥ DL

and
|u2| = |ϕ(r

′)| − |y| ≥ (DR + CR)− CR ≥ DR.

Therefore, the words ℓ1, ℓ2 are suffixes of length DL of u1 and the
words r1, r2 are prefixes of length DR of the word u2, which implies
that ℓ1 = ℓ2 and r1 = r2 respectively, which leads to a contradiction.

Lastly, combining the two parts we can conclude that

Card(B(DL,DR)(u)) ≤ Card(B(DL,DR)
x,y (w)).



4.3. EVOLUTION OF THE EXTENSIONS OF BISPECIAL WORDS 99

The following corollary is a direct consequence of the proof of
Lemma 4.3.12.

Corollary 4.3.13. Let u ∈ L(u) with antecedent w ∈ L(u) such
that u = xϕ(w)y and constantsDL, DR as described in Remark 4.3.10.
Then,

B(DL,DR)(u) =

{
(ℓ, r) | ∃ (ℓ′, r′) ∈ B(DL,DR)

x,y (w) :
ϕ(ℓ′) ∈ A∗ℓx
ϕ(r′) ∈ yrA∗

}
.

Corollary 4.3.14. Let u ∈ L(u) with antecedent w ∈ L(u) and
constants DL, DR as described in Remark 4.3.10. Then,

Card(B(DL,DR)(u)) ≤ Card(B(DL,DR)(w)).

The above corollary follows directly from Lemma 4.3.12 and the

fact that Card(B
(DL,DR)
x,y (w)) ≤ Card(B(DL,DR)(w)) for all words w ∈

L(u). The last inequality holds since the word w may have right
extensions ℓ ∈ L(DL) with ϕ(ℓ) 6∈ A∗x and right extensions r ∈ RDR

with ϕ(r) 6∈ yA∗.

Lemma 4.3.15. Let ϕ be a morphism with a fixed point u. Let
w ∈ L(u) be a bispecial factor such that ϕ(w) admits an antecedent.
If ((ℓ, r), (ℓ′, r′)) ∈ B(DL,DR)(w) × B(DL,DR)(w) is a left special pair
(resp. right special pair), then |fL(ℓ, ℓ

′)| < CL (resp. |fR(r, r
′)| <

CR).

Proof. Let us first prove that for a left special pair ((ℓ, r), (ℓ′, r′)),
we have |fL(ℓ, ℓ

′)| < CL. The proof is symmetric for a right special
pair.

The result is trivial if ϕ is right marked, since in this case fL(ℓ, ℓ
′) =

ε always, so let us assume it is not. Let us consider the word
W = fL(ℓ, ℓ

′)ϕ(w) and let us write ℓ = ℓ1 · · · ℓDL
and ℓ′ = ℓ′1 · · · ℓ

′
DL

,
with ℓi, ℓ

′
j ∈ A for all i, j. We also fix ℓ0 = ℓ′0 = ε. By defi-

nition of fL, there exist m,n ∈ {0, . . . , DL} such that fL(ℓ, ℓ
′) =

αϕ(ℓ(m,DL]) = βϕ(ℓ′(n,DL]
) with α, β respectively suffix of ϕ(ℓm)

and ϕ(ℓ′n). We furthermore assume without loss of generality that
α 6= ϕ(ℓm) whenever m 6= 0 and that β 6= ϕ(ℓn) whenever n 6= 0.
We thus get the two following external interpretations of W :

(ℓm, ℓ(m,DL]w, ε) and (ℓn, ℓ(n,DL]w, ε).

Since ϕ(w) admits an antecedent and it is a factor of W , by
Remark 4.2.6. Thus, the word W admits an antecedent w′ such
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that W = xϕ(w′)y with |x| < CL (Proposition 4.3.8). More pre-
cisely, for any internal interpretation (s, v, p) ofW , there exist i, j ∈
{0, . . . , |v| − 1}, i ≤ j, such that w′ = v[i,j], x = sϕ(v[0,i)) and
y = ϕ(v(j,|v|−1])p. Considering the two previous internal interpreta-
tions of W , if |fL(ℓ, ℓ

′)| ≥ CL, there exist m′ ∈ {m, . . . , DL}, n
′ ∈

{n, . . . , DL} and j ∈ {1, . . . , |w|} such that x = αϕ(ℓ(m,m′)) =
βϕ(ℓ′(n,n′)) and w′ = ℓ[m′,DL]w[1,j] = ℓ′[n′,DL]

w[1,j]. This implies that

ℓDL
= ℓ′DL

, contradicting the fact that ((ℓ, r), (ℓ′, r′)) is a left special
pair. We conclude that |fL(ℓ, ℓ

′)| < CL.

Corollary 4.3.16. Let ϕ be a morphism with a fixed point u. Let
w ∈ L(u) be a bispecial word such that ϕ(w) admits an antecedent.
If ((ℓ1, r1), (ℓ2, r2)) ∈ B

(DL,DR)(w)×B(DL,DR)(w) is a bispecial pair,
then

|fL(ℓ1, ℓ2)| < CL and |fR(r1, r2)| < CR.

Furthermore, the word u = fL(ℓ1, ℓ2)ϕ(w)fR(r1, r2) ∈ L(u) is
bispecial and

B(DL,DR)(u) ⊃

{
(ℓ, r) | ∃ (ℓ1, r1) ∈ B

(DL,DR)(w) :
ϕ(ℓ1) ∈ A

∗ℓfL(ℓ1, ℓ2)
ϕ(r1) ∈ fR(r1, r2)rA

∗

}
.

(4.3.1)

Proof. Let ϕ be a morphism with a fixed point u. Let w ∈ L(u)
be a bispecial word, then by Proposition 4.3.4 there is a bispecial
pair in B(DL,DR)(w) × B(DL,DR)(w). Since this pair is by defini-
tion left-special and right-special, it follows by Lemma 4.3.15 that
|fL(ℓ1, ℓ2)| < CL and |fR(r1, r2)| < CR respectively.

Let now ((ℓ1, r1), (ℓ2, r2)) ∈ B
(DL,DR)(w)×B(DL,DR)(w) be a bis-

pecial pair. We will prove that the word u = fL(ℓ1, ℓ2)ϕ(w)fR(r1, r2) ∈
L(u) is bispecial. Since ℓiwri ∈ L(u) for i ∈ {1, 2}, then ϕ(ℓi)ϕ(w)ϕ(ri) ∈
L(u) for all i ∈ {1, 2}. Also, since |ℓ1| = |ℓ2| = DL, because of the
definition ofDL (Remark 4.3.10), we have that |ϕ(ℓi)| ≥ DL+CL−1.
Similarly, since |r1| = |r2| = DR, we have that |ϕ(ri)| ≥ DR+CR−1
for all i ∈ {1, 2}. We conclude that there are words hi, si ∈ L(u) for
i ∈ {1, 2} such that,

ϕ(ℓi) = hifL(ℓ1, ℓ2) and ϕ(ri) = fL(r1, r2)si.

It can be seen that the words hi and si have length at most DL and
DR respectively. Indeed,

|hi| = |ϕ(ℓi)| − |fL(ℓ1, ℓ2)| > (DL + CL − 1)− CL = DL − 1 ≥ DL
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and

|si| = |ϕ(ri)| − |fR(r1, r2)| > (DR + CR − 1)− CR =≥ DR.

Furthermore, h1, h2 have distinct last letter and s3, s4 have distinct
first letter, showing that u is bispecial. Equation (4.3.1) is immedi-
ate.

Definition 4.3.17. If w and u are as in Corollary 4.3.16, we say
that u is a bispecial extended image of w.

Observe that while any long enough word has a unique antecedent
(by Proposition 4.2.8), a given bispecial factor may have several
bispecial extended images. In the case of a bifix morphism (i.e. a
prefix and suffix morphism), any long enough bispecial word v has
a unique bispecial extended image u, and the antecedent of u is
exactly v (see [48]).

4.4 Graph of extension graphs

Let us remind that ϕ : A∗ → A∗ is a non-erasing non-pushy strongly
two-sided recognizable morphism on the substitutive language L(u)
for a constant L > 0. In this section we will introduce a finite graph
whose set of vertices is the set of extension graphs of all bispecial
words in the substitutive language L(u).

Let BE =
{
E (DL,DR)(u) | u ∈ L(u), u bispecial

}
. Any generalized

extension graph contains at most Card(ADL) +Card(ADR) vertices,
so this set is finite. Our aim is to give an algorithm that describe,
among all possible graphs with vertices in ADL ∪ ADR, which ones
belong to BE and that also describe the relation between antecedents
and decedents.

We first consider the subset of initial generalized extension graphs
IE ⊂ BE defined as IE =

{
E (DL,DR)(v) ∈ BE | |v| ≤ 2L+ ||ϕ||

}
.

From Proposition 4.2.8, we cannot guarantee the existence of the
antecedent for the set of words L(u) ∩ A<2L+||ϕ||.

Example 4.4.1. The Fibonacci morphism ϕ has constants DL = 1
and DR = 2, as it has been explained in Example 4.3.11. The set IE
contains the generalized extension graphs of the bispecial words of
length smaller than 2L+ ||ϕ|| = 4, i.e., of ε, 0 and 010 (Figure 4.8).
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E(1,2)(ε)

0

1

00

01

10

E(1,2)(0)

0

1

01

10

E(1,2)(010)

0

1

01

10

Figure 4.8: The graphs E(1,2)(ε), E(1,2)(0) and E(1,2)(010).

Because of strong two-sided recognizability, any word longer than
2L+ ||ϕ|| can be uniquely factorized as u = xϕ(w)y with w ∈ L(u)
being the antecedent of u. Moreover, Corollary 4.3.13 implies that
the sets of (left-, right- and bi-) extensions of a bispecial word u
depend only on the set of extensions of its antecedent w and not on
the word w itself.

We define a relation R on BE × BE as follows:

(
E (DL,DR)(u), EDL,DR(u′)

)
∈ R ⇐⇒

{
|u|, |u′| ≥ 2L+ ||ϕ||
E (DL,DR)(u) = E (DL,DR)(u′)

Let [E (DL,DR)(u)] be the corresponding class of the graph E (DL,DR)(u).

Example 4.4.2. Let us consider the Fibonacci morphism ϕ and
the two bispecial words u = 010010 and v = 01001010010 with
length more than 4 (Example 4.4.1). The generalized extension
graphs of the classes G = [E (1,2)(u)] and H = [E (1,2)(v)] are shown
in Figure 4.9.

G

0

1

01

10

H

0

1

01

10

Figure 4.9: The graphs of the classes G = [E(1,2)(u)] (on the left) and H =
[E(1,2)(v)] (on the right).

In the previous section we defined the bispecial extended image
of a bispecial word in a substitutive language. A bispecial word v
may have more than one bispecial extended images. This number

is nevertheless finite (a trivial bound is given by
(
Card(B(DL,DR)(v))

2

)
.

On the other hand, any long enough bispecial word u in a strongly
two-sided recognizable language has a unique antecedent w and, in
this case, Card(B(DL,DR)(u)) ≤ Card(B(DL,DR)(w)).
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Let us now show that given another bispecial word v such that
u = sϕ(v)p is a bispecial extended image of v for some words s, p,

one has Card(B
(DL,DR)
x,y (v)) ≤ Card(B

(DL,DR
x,y (w)). Let us consider

a pair (ℓ, r) ∈ B
(DL,DR)
x,y (v). Since w is factor of any preimage of u

one has v = twq for some words t, q. It follows that there is a pair

(ℓ′, r′) ∈ B
(DL,DR)
x,y (w) with ℓ′ = ℓ′′t and r′ = qr′′, for some words

ℓ′′, r′′. This shows the claim.
Let us call adequate a substitutive language in which if a bispecial

word w2 has extension graph in the same class of graphs as another
word w1, i.e., [E

(DL,DR)(w1)] = [E (DL,DR)(w2)], then if u1 is a bispecial
extended image of w1 that has w1 as antecedent and it can be written
as u1 = xϕ(w1)y, then there is a bispecial extended image u2 of w2

that has the word w2 as antecedent which is written as u2 = xϕ(w2)y
and [E (DL,DR)(u1)] = [E (DL,DR)(u2)].

We say that a morphism with a fixed point u is adequate if the
language L(u) is adequate.

A substitutive language L(u) will be called ultimately adequate
if there is an integers N > 0 such that the previous definition holds
for all words longer than N .

A trivial category of morphisms that are adequate is the class of
the morphisms that are stable.

Definition 4.4.3. A morphism ϕ is stable if there are words u, v ∈
A∗ such that for any two distinct letters a, b ∈ A holds that fL(a, b) =
u and fR(a, b) = v.

Example 4.4.4. Let ζ : {0, 1, 2}∗ → {0, 1, 2}∗ be the following
morphism,

ζ : 0 7→ 020,

1 7→ 00,

2 7→ 01210.

It can be verified that ζ is stable since fL(0, 1) = fL(0, 2) = fL(1, 2) =
0 and fR(0, 1) = fR(0, 2) = fR(1, 2) = 0. However, the morphism
η : {0, 1, 2}∗→ {0, 1, 2}∗ defined as follows,

η : 0 7→ 020,

1 7→ 00,

2 7→ 0210,
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is not stable since fR(0, 1) = 0 6= fR(0, 2) = 02.

Remark 4.4.5. If a morphism is right-marked and left-marked then
it is stable.

Indeed, if a morphism is right-marked and left-marked then for
any two letter a, b ∈ A holds that fL(a, b) = fR(a, b) = ε and thus
the morphism is stable.

Proposition 4.4.6. Let ϕ be a morphism on an alphabet A satis-
fying the usual conditions. If the morphism ϕ is stable, then ϕ is
adequate.

Proof. Let ϕ be a morphism with fixed point u and let words u, v ∈
A∗ such that for any two distinct letters a, b ∈ A, fL(a, b) = u
and fR(a, b) = v. Let w be a bispecial word in L(u). Since for
any two distinct right extensions r1, r2 ∈ RL(u)(w) it holds that
fR(r1, r2) = v and since for any two distinct left extensions ℓ1, ℓ2 ∈
LL(u)(w) it holds that fL(ℓ1, ℓ2) = u, then the only possible bispecial
extended image of w is w′ = uϕ(w)v. In order to prove that w is
the antecedent of w′ we should suppose that |w′| ≥ 2L+ ||ϕ||, since
otherwise we cannot assure the existence of the antecedent. Let us
now suppose that a word z distinct to the word w is the antecedent
of w′. Thus, since the antecedent is the longest common factor of
all the preimages it holds that the word z must be a factor of w.
Let α, β ∈ A∗, with at least one of them the non-empty word, be
such that w = αzβ. Since the bispecial word z is the antecedent
of u, there are x = fL(ℓ

′
1, ℓ

′
2) = u and y = fR(r

′
1, r

′
2) = v , with

ℓ′1, ℓ
′
2 ∈ L

DL

L(u)(z) and r
′
1, r

′
2 ∈ R

DR

L(u)(z), such that

w′ = uϕ(z)v.

We also have that w′ = uϕ(w)v, from which follows that,

uϕ(w)v = uϕ(z)v

⇒ ϕ(z) = ϕ(x) = ϕ(αzβ)

that leads to a contradiction since at least one of the words α, β
is non-empty and the morphism is non-erasing. Thus, every word
w has a unique decedent that is the word w′ = uϕ(w)v, and this
word has w as antecedent. The graph E (DL,DR)(uϕ(w)v) depends
only on the extension pairs of the antecedent w, or equivalently it
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depends only on graph E (DL,DR)(w). Every word w′′ with extension
graph in the class [E(w)] has exactly the same extension pairs and
therefore its bispecial extended image uϕ(w′′)v has the word w′′ as
the antecedent and [E (DL,DR)(uϕ(w′′)v] = [E (DL,DR)(uϕ(w)v)], which
proves that the morphism ϕ is adequate.

Let us now prove that the bifix morphisms are also adequate.

Proposition 4.4.7. Let ϕ be a morphism on an alphabet A sat-
isfying the usual conditions. If the morphism ϕ is bifix, then ϕ is
adequate.

Proof. Let w be a bispecial word in the substitutive language L(u),
where u is a fixed point of the morphism ϕ. Let the word u =
xϕ(w)y be a bispecial extended image of w. We suppose that the
length of u is more than 2L+ ||ϕ|| and we firstly prove that w is the
antecedent of u. Let us prove it by contradiction, supposing that
the antecedent of u is a word w′ distinct to w. Therefore the word
w′ is a proper factor of w. Let w = αw′β, where at least one of the
α, β ∈ A∗ is the non-empty word. Thus,

u = xϕ(w)y

= xϕ(αw′β)y

= (xϕ(α))ϕ(w′)(ϕ(β)y)

= x′ϕ(w′)y′

with x′ = xϕ(α), y = ϕ(β)y and with at least one of the words α,
β a non-empty word. Let us suppose that α 6= ε (resp. β 6= ε). We
have that x′ = fL(ℓ1, ℓ2), for ℓ1, ℓ2 left extensions in a left special pair

((ℓ1, r1), (ℓ2, r2)) ∈ B
(DL,DR)
x′,y′ (w′). Because of the definition of the an-

tecedent we have that (x′, ϕ(w′)y′) is a strong synchronization point
of u. We also have that x′ = xϕ(α) = xϕ(α[0,|α|−1)ϕ(α|α|−1 where
αi ∈ A, for i ∈ {0, . . . , |α| − 1}. Since there is a decomposition of
u as u = xϕ(α[0,|α|−1)ϕ(α|α|−1ϕ(w

′)y′ where (x′, ϕ(w′)y′) is a syn-
chronization point and since the morphism is bifix, it follows that
(xϕ(α[0,|α|−1), ϕ(α|α|−1ϕ(w

′)y′) is a strong synchronization point too.
The previous implies that there is a word α|α|−1w

′ 6= w′ that satisfies
the definition of the antecedent which leads to a contradiction.

Let us now recall that words with extension graphs in the same
class have the same number of bispecial extended images because
they depend only on the bispecial pairs, or equivalently they depend
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on the edges of the graph. Since all bispecial extended images of a
word w in a class of graphs [E (DL,DR)(w)] have the word w as the
antecedent, then their extension graph depends only on the graph
of w. Therefore the same holds for any other word v such that
[E (DL,DR)(v)] = [E (DL,DR)(w)], which implies that for each bispecial
extended image u = xϕ(w)y of w there is a bispecial extended image
u′ = xϕ(v)y for which holds that [E (DL,DR)(u)] = [E (DL,DR)(u′)].
Thus, the bifix morphism ϕ is adequate.

Definition 4.4.8. Let us consider the labeled directed graphK(L(u)),
having set of vertices IE ⊔ (BE/R) and set of edges defined as
follows: there is an edge in K(L(u)) going from G to H , labeled
(fL(ℓ1, ℓ2), fR(r1, r2)), if

1. G = E (DL,DR)(u) ∈ IE or G = [E (DL,DR)(u)] ∈ (BE/R),

2. H = [E (DL,DR)(v)] ∈ (BE/R),

3. there exist a bispecial pair ((ℓ1, r1), (ℓ2, r2)) in E
(DL,DR)(u) such

that

(a) L(DL)(v) =
{
t | ∃ s ∈ L(DL)(u) : ϕ(s) ∈ A∗tfL(ℓ1, ℓ2)

}
,

(b) R(DR)(v) =
{
q | ∃ p ∈ R(DR)(u) : ϕ(p) ∈ fR(r1, r2)qA

∗
}
,

(c) B(DL,DR)(v) =

{
(t, q) | ∃ (s, p) ∈ B(DL,DR)(u) :

ϕ(s) ∈ A∗tfL(ℓ1, ℓ2)
ϕ(p) ∈ fR(r1, r2)qA

∗

}
,

4. the word u is the antecedent of the word v = fL(ℓ1, ℓ2)ϕ(u)fR(r1, r2)
in L(u).

Theorem 4.4.9. Let ϕ be a strongly two-sided recognizable mor-
phism on the adequate substitutive language of a fixed point u. The
graph K(L(u)) is finite and computable.

Proof. The subgraph of K(L(u)) involving vertices in IE is com-
putable since it only involves words of bounded length and this
bound is computable by Theorem 3.4.5. For any integer n, the num-
ber of possible graphs such that Card(B(DL,DR)(w)) = n for a certain
word w is finite. Moreover, for any edge from u to v in the graph
we have Card(B(DL,DR)(v)) ≤ Card(B(DL,DR)(u)), since u is the an-
tecedent of v (Corollary 4.3.14). It follows from Corollary 4.2.10
that the maximal value of Card(B(DL,DR)(w)), for w ∈ L(u), is at-
tained in the initial part of the graph (i.e. for a w of length less then
2L+ ||ϕ||). Thus, the set (BE/R) is also finite and computable.
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The following theorem proves that all possible extension graphs
of the bispecial words in an adequate strongly two-sided recognizable
substitutive language appear in the graph K.

Theorem 4.4.10. Let ϕ be a strongly two-sided recognizable mor-
phism on the adequate substitutive language of a fixed point u. If v
is a bispecial word in L(u), then [E (DL,DR)(v)] ∈ K(L(u)).

Proof. Let the word v ∈ L(u) be bispecial. We will prove by recur-
rence on the length of the word v that the algorithm for the construc-
tion of the graph of extension graphs K(L(u)) includes the construc-
tion of the graph E (DL,DR)(v). If |v| ≤ 2L+ ||ϕ||, then E (DL,DR)(v) ∈
IE and therefore E (DL,DR)(v) ∈ K(L(u)). If |v| > 2L+||ϕ||, then be-
cause of strong two-sided recognizability, it holds that the word v has
an antecedent. Let u be the antecedent of v, with |u| < |v|. By the
recurrence hypothesis we have that [E (DL,DR)(u)] ∈ K(L(u)). Since
the word v is bispecial we have that v is bispecial extended image of
its antecedent u, and it is of the form v = fL(ℓ1, ℓ2)ϕ(u)fR(r1, r2),
with ((ℓ1, r1), (ℓ2, r2)) ∈ B

(DL,DR)(u) × B(DL,DR)(u) a bispecial pair
of u. Regarding the constructions of the graph E (DL,DR)(v) there are
the two possible cases. The first case is that there is a word z ∈ L(u)
such that E (DL,DR)(z) ∈ K(L(u)) and [E (DL,DR)(v)] = [E (DL,DR)(z)].
In this case, since the morphism is adequate, it is enough to consider
the graph of the word z and the bispecial extended images only for
z and not those of v. The second case is that the graph E (DL,DR)(v)
is not in the same class with any of the graphs that are so far con-
structed in K(L(u)), in the later case the class [E (DL,DR)(v)] should
be added in K(L(u)). In both cases we draw an edge from the class
[E (DL,DR)(u)] to the class [E (DL,DR)(v)]. Thus, it has been proved
that [E (DL,DR)(v)] ∈ K(L(u)).

Example 4.4.11. Let L(u) be the substitutive language of the Fi-
bonacci morphism ϕF , that is strongly two-sided recognizable for
a constant L = 1 (Example 3.3.29). Let us also remind that for
the Fibonacci morphism we have that DL = 1 and DR = 2 (Ex-
ample 4.3.11). It can be verified that the Fibonacci morphism is
stable since ϕL(0, 1) = ε and ϕR(0, 1) = 0. Thus, the morphism ϕF

is adequate and it is enough to construct the graph K.
The initial generalized extension graphs for the Fibonacci mor-

phism ϕF are given in Example 4.4.1. Let us remind that the length
of the words that we consider in order to construct the subgraph
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IE is less than 4, since 4 = 2L + ||ϕ||. Let us now construct the
rest of the graph K(L(u)), as seen in the Figure 4.10. We start
by the word ε. It can be verified that ε has only one extended
bispecial image, that is the word 0. Indeed, for all bispecial pairs
((ℓ1, r1), (ℓ2, r2)) in B(1,2)(ε) × B(1,2)(ε) it holds that fL(ℓ1, ℓ2) = ε
and fR(r1, r2) = 0, which implies that the only bispecial extended
image of ε is the word fL(ℓ1, ℓ2)ϕF (ε)fR(r1r2) = εε0. However the
word 0 is shorter than 4 and therefore E (1,2)(0) ∈ IE and thus we
do not draw an edge. We follow now the same procedure for the
word 0, which for the same reasoning has also one bispecial ex-
tended image, that is the word 010. Since |010| = 3 ≤ 4 and the
graph E (1,2)(010) is in IE we also do not draw an edge. We move
now to the word 010 which has for bispecial extended image the
word u = 010010, with length |u| = 6 > 4. Before drawing the
graph we should verify that the word 010 is the antecedent of u.
The word u has unique internal interpretation (s, v, p) = (ε, 010, 0)
and therefore the antecedent is the word v = 010. Thus, we should
add the graph E (1,2)(u) in K(L(u)) and we should design an edge
from E (1,2)(010) to E (1,2)(u) labeled by (ε, 0). Similarly, we can verify
that there is only one extended image of u and that it is the word
w = εϕF (u)0 = 01001010010, and that the antecedent of w is u.
Since there is no graph in K(L(u)) \ IE that is in the same class as
E (1,2)(w), we design the graph E (1,2)(w) and an edge from E (1,2)(u)
to E (1,2)(w) labeled by (ε, 0). Then we compute the extended im-
age z of w and we verify that w is the antecedent of z. We have
that z = εϕF (w)0 = ϕF (01001010010)0 = 0100101001001010010.
The graph E (1,2)(z) is identical to the graph E (1,2)(u) and therefore
they are in the same class [E (1,2)(u)]. Thus, we draw an edge from
the graph E (1,2)(w) to the graph E (1,2)(u), labeled (ε, 0). We do not
have any other graphs to calculate and thus we have the whole graph
K(L(u)).

Let us define the function Φ : N→ N such that Φ(n) = n||ϕ||+
CL + CR. We also use the notation Φk(n) = Φk−1(Φ(n)) for all
k > 1.

Proposition 4.4.12. Let ϕ be strongly two-sided recognizable mor-
phism with the fixed point u for a constant L > 0. Let u be a
bispecial factor of length n. Then all bispecial extended images of
u have length at most Φ(n).
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E(1,2)(ε)

0

1

00

01

10

E(1,2)(0)

0

1

01

10

E(1,2)(010)

0

1

01

10

E(1,2)(010010)

0

1

01

10

E(1,2)(ϕF (010010)0)
0

1

10

01

(ε, 0)

(ε, 0)(ε, 0)

IE

Figure 4.10: The graphs K(L(u)) for the Fibonacci word u.

Proof. Since u is bispecial, there is a bispecial pair ((ℓ1, r1), (ℓ2, r2))
inB(DL,DR)(u) which leads to a bispecial image v = fL(ℓ1, ℓ2)ϕ(u)fR(r1, r2).
By Lemma 4.3.8, |fL(ℓ1, ℓ2)| < CL and |fR(r1, r2)| < CR. Hence,

|fL(ℓ1, ℓ2)ϕ(u)fR(r1, r2)| < CL+|ϕ(u)|+CR ≤ CL+n||ϕ||+CR = Φ(n).

The following theorem gives an upper bound on the length of the
words that we considered in order to construct the graph K, but let
us first define the constant δ as follows.

Let δ = δ(K(L(u))) be the length of the longest simple path in
the graph K(L(u))

Theorem 4.4.13. Let ϕ be a strongly two-sided recognizable mor-
phism for a constant L > 0 on the adequate substitutive language
L(u). For any long enough bispecial word v ∈ L(u) there is a



110 CHAPTER 4. DECIDABLE PROPERTIES OF EXTENSION GRAPHS

bispecial word z ∈ L(u) with |z| ≤ Φδ(2L + ||ϕ|| − 1) such that
[E (DL,DR)(v)] = [E (DL,DR)(z)].

Proof. It follows from the definition of δ that every possible exten-
sion graph of a bispecial word in the language L(u) must appear
either in the initial graphs IE if the word is shorter that 2L+ ||ϕ||,
where L > 0 is the constant of recognizability, or it will appear in a
path of length at most δ starting from an initial graph G ∈ IE (and
not passing through IE again). From Proposition 4.4.12 it follows
that for any bispecial word v with length at least 2L+ ||ϕ|| it is pos-
sible to choose a word z of length at most Φδ(2L+ ||ϕ||−1) that has
the exact same extension graph, i.e., E (DL,DR)(v) ∈ [E (DL,DR)(z)].

Example 4.4.14. Let ϕF be the Fibonacci morphism with fixed
point the Fibonacci word. The only possible extension graphs of a
bispecial word in L(u) are showed in Figure 4.10. It follows from the
graph K(L(u)) that the length of the longest simple path is δ = 2.
Thus, for a bispecial word u ∈ L(u) there exists a bispecial word
v ∈ L(u) of length |v| ≤ Φ2(3) = 21, such that E (1,2)(u) ∈ [E (1,2)(v)].

Corollary 4.4.15. Let ϕ be an adequate strongly two-sided recog-
nizable morphism on a fixed point u. Then it is decidable whether
the substitutive language L(u) is a dendric set (resp. acyclic, con-
nected, neutral).

We can actually decide any property of the substitutive language
L(u) that depends only on the shape of the extension graphs of
words in L(u). Given a particular extension graph, we can also
decide whether there exists some word in L(u) that has that graph
as extension graph and we can even describe all words in L(u) for
which this is the case, as it can be seen in the following example.

Example 4.4.16. Let us work with the Fibonacci morphism ϕ =
ϕF with graph of extension graphs K(L(u)) as seen in the Fig-
ure 4.10. Let w = 010010 for which the extension graph is already
calculated. Since the class [E (1,2)(w)] is in a loop of length 2, the
words in the language L(u) whose graph is in the same class can
be obtained calculating the 2k-time bispecial extended image, for
k > 0. More precisely, the word w′ = εϕ(εϕ(w)0)0 is bispecial
with extension graph in the class [E (1,2)(w)]. Similarly, the word
w′′ = ϕ(εϕ(w′)0)0 is bispecial with graph in the class [E (1,2)(w)].
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All bispecial words with graphs in the class [E (1,2)(w)] can be ob-
tained in the same way.

The previous definition of the graph of extension graphs K can be
generalized to the case of ultimately adequate morphisms as follows.

Definition 4.4.17. Let us consider the labeled directed graph K̃(L(u))
of an ultimately adequate substitutive language of a fixed point u of
a morphism ϕ. If N ≤ 2L+ ||ϕ|| then K̃ = K. If N > 2L+ ||ϕ|| we
consider the labeled directed graph K̃(L(u)) having set of vertices
IE ⊔IEE ⊔(BE/R). The set IE contains the extension graphs of all
bispecial words of length less that 2L+||ϕ||, the set IEE is the set of
extension graphs of all bispecial words with length at least 2L+ ||ϕ||
and at most N , where N is the constant that satisfies the ultimate
adequate propriety and (BE/R) is the class of graphs defined as in
the previous case. The set of edges is defined as follows: there is an
edge in K̃(L(u)) going from G to H , labeled (fL(ℓ1, ℓ2), fR(r1, r2)),
if

1. G = E (DL,DR)(u) ∈ IE or G = E (DL,DR)(u) ∈ IEE and
H = E (DL,DR)(v) ∈ IEE or H = [E (DL,DR)(v)] ∈ (BE/R),

2. G = [E (DL,DR)(u)] ∈ (BE/R) and H = [E (DL,DR)(v)] ∈ (BE/R),

3. there exist a bispecial pair ((ℓ1, r1), (ℓ2, r2)) in E
(DL,DR)(u) such

that

(a) L(DL)(v) =
{
t | ∃ s ∈ L(DL)(u) : ϕ(s) ∈ A∗tfL(ℓ1, ℓ2)

}
;

(b) R(DR)(v) =
{
q | ∃ p ∈ R(DR)(u) : ϕ(p) ∈ fR(r1, r2)qA

∗
}
;

(c) B(DL,DR)(v) =

{
(t, q) | ∃ (s, p) ∈ B(DL,DR)(u) :

ϕ(s) ∈ A∗tfL(ℓ1, ℓ2)
ϕ(p) ∈ fR(r1, r2)qA

∗

}
,

4. the word u is the antecedent of the word v in L(u).

Remark 4.4.18. Let us point out that in the sets IE and IEE
there are no classes of graphs. In particular, even if two words u, v
have exactly the same graph, we have to draw two different graphs
E (DR,DL)(v) and E (DR,DL)(u).

Theorem 4.4.19. Let ϕ be a strongly two-sided recognizable ulti-
mately adequate morphism on the substitutive language of a fixed
point u. The graph K̃(L(u)) is finite and it contains all the classes
of the graphs for all the bispecial words in L(u).
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Proof. The proof is the same as those of Theorem 4.4.9 and The-
orem 4.4.10 except of the fact that it is added the subgraph IEE .
The subgraph IEE is also finite since there are finitely many bispe-
cial words with length smaller than N > 0, where N is the smallest
constant that satisfies the definition of ultimate adequety.

Similarly with the K graph, in the case of the graph K̃ it holds
that for any long enough bispecial word u ∈ L(u) there is a bispecial
word v ∈ L(u) such that [E (DL,DR)(u)] = [E (DL,DR)(v)]. For this, it

is enough to define δ̃ = δ̃(K̃(L(u))) to be the length of the longest
simple path in the graph K̃(L(u)). It can be proved that |v| ≤

Φδ̃(2L+ ||ϕ|| − 1).

Conjecture 4.4.20. Any strongly two-sided recognizable morphism
on substitutive language is adequate.

Notice that if the above conjecture is true, then Theorem 4.4.13
and Corollary 4.4.15 hold for all strongly two-sided recognizable
morphisms.



5
Profinite Semigroups

This chapter is based on a survey on profinite semigroups [69] and
most of the results that are presented by Jorge Almeida and Alfredo
Costa (see [7] and [8]). The motivation for the following introduc-
tion to profinite semigroups is to present some relation between the
profinite semigroups and the recognizability, which is the principal
notion of the thesis.

5.1 Profinite semigroups and symbolic dynam-

ics

As an introduction to the profinite topology we consider the exam-
ple of the Fibonacci morphism ϕF , defined in Example 2.2.2. The
Fibonacci sequence can be extended to a converging sequence in the
profinite topology. A subsequence of the Fibonacci sequence that
contains words converging both in the suffix and the prefix topology,
but not in the profinite topology, is the following subsequence,

ϕ2
F (0) = 010

ϕ4
F (0) = 01001010

ϕ6
F (0) = 010010100100101001010

· · ·

defined by w2n+2 = ϕ2n
F (0), with n ≥ 1. Indeed, in this sequence,

each term is both a prefix and a suffix of the next one, but since

113
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the length of the words is alternately odd and even, the sequence is
not a Cauchy sequence with respect to the profinite topology that
we will see how it is defined later.

We will see that the subsequence

ϕ2
F (0) = 010

ϕ6
F (0) = 010010100100101001010

ϕ24
F (0) = 01001010 · · ·01001010

· · ·

defined by wn!+2 = ϕn!
F (0), with n ≥ 1, converges in the profinite

topology to a pseudoword denoted ϕω
F (0) which, in a certain sense,

begins by the Fibonacci infinite word with prefixes (ϕn
F (0))n≥0 and

ends with the left infinite word with suffixes (ϕ2n
F (0))n≥0. The pseu-

doword ϕω(0), as an element of the free profinite monoid, is the limit
of the sequence wn!+2 = ϕn!

F (0) and its length is a profinite natural

number, the limit of the sequence Fn!+2 in N̂. If we consider the se-
quence of Fibonacci words as a sequence of group words, then their
lengths should be seen as elements of Ẑ. From this point of view,
the length of ϕω

F (0) as a group pseudoword (that is, considering the
projection of ϕω

F (0) in the free profinite group generated by A), is
the limit of Fn!+2 in the ring of profinite integers, which is F2 = 1,
as we have seen in the previous section. Hence, ϕω

F (0), as a group
pseudoword, can be supposed to be a letter.

Before moving to the notions of profinite groups and free profinite
groups, we will make a quick reminder of what a free group is.

Let A be a set. Then the free group FG(A) or otherwise denoted
as FG if A is clear from the context, is the set that consists of
expressions that can be build of all elements of the set A, considering
expressions different, unless they are equivalent because of the group
axioms. We call generators of the free group FG(A) the elements
of A. A group G is called free if it is isomorphic to FG(A) for some
subset A of G (i.e. every element of G has a unique decomposition
in elements of A ∪A−1).

5.1.1 Projective limits

We define profinite semigroups as projective limit of finite semi-
groups. What is interesting about that limit is that it preserves the
properties that hold true for all finite semigroups. Let us now define
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the notion of projective limit, since it is necessary for the definition
of profinite semigroups.

It is important to recall that the morphisms between topological
semigroups are the continuous morphisms of semigroups.

A projective system (or inverse system) of topological semigroups
is given by

(i) a directed set I, that is a partially ordered set (poset) in which
any two elements have a common upper bound,

(ii) a topological semigroup Si for each i in I,

(iii) a connecting morphism ψi,j : Si → Sj for each pair (i, j) ∈ I
with i ≥ j, such that ψi,i is the identity on Si and for i ≥ j ≥ k,
ψi,k = ψj,k ◦ ψi,j ( i.e. the diagram in Figure 5.1 commute).

XkXj

Xi

ψi,kψi,j

ψj,k

Figure 5.1: Projective system.

The pair ((Si)i∈I , (ψi,j)i≥j) is an inverse system, and the mor-
phisms ψi,j are the transition morphisms of the system.

Example 5.1.1. The set Z+ of positive integers, ordered by divis-
ibility (that is, n ≥ m if and only if m|n), is a directed set. The
family of cyclic groups (Z/nZ)n∈Z+ forms a projective system for
the morphisms ψn,m defined by ψn,m(x) = x mod m.

In the same way, the family of cyclic groups (Z/n!Z)n∈Z+ , indexed
by the set Z+ with the natural total order on integers, is a projective
system.

More precisely, let n = 4 and m = 12, where 4|12. We have
S4 = Z/4Z = {0̄, 1̄, 2̄, 3̄} and S12 = Z/12Z = {0̄, . . . , 1̄1}. There
is a connecting morphism ψ12,4 : S12 → S4, such that ψ12,4(x) =
x mod 4, for example ψ12,4(7̄) = 7̄ mod 4̄ = 3̄.

Example 5.1.2. Let Mi,p for i ≥ 0, p ≥ 1 be the family of monoids
Mi,p = {1, . . . , ai+p−1} with ai+p = ai (Figure 5.2). This family is
a profinite system for the connecting morphisms Mi,p → Mj,q for
j ≥ i and q|p, sending the generator a of Mi,p on the generator a of
Mj,q.
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1 a · · · a
i

a
i+1

a
i+p−1

a a a

a

a

a

a

Figure 5.2: The monoid ∈Mi,p.

The projective limit (or inverse limit) of the projective system,
that has been defined above, is a topological semigroup S together
with the morphisms Φi : S → Si such that the following conditions
hold (see Figure 5.3),

1. for all i, j ∈ I with i ≥ j, one has ψi,j ◦ Φi = Φj ;

2. for any topological semigroup T and any family of morphisms
Ψi : T → Si such that, for all i, j ∈ I with i ≥ j, the equality
ψi,j ◦Ψi = Ψj holds, there exists a unique morphism θ : T → S
such that Φi ◦ θ = Ψi for all i ∈ I.

Si

S

T

Sj

ψi,j

Φi Φj

θ
Ψi Ψj

Figure 5.3: The projective limit.

The projective limit of a projective system always exists and it
is unique. In order to prove the existence of the projective limit we
have to take the subsemigroup S of the product

∏
i∈I Si consisting
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of all (si)i∈I such that, for all i, j ∈ I with i ≥ j,

ψi,j(si) = sj ,

endowed with the product topology. The maps Φi : S → Si are the
projections, that is, if s = (si)i∈I , then Φi(s) = si.
We will use the notation lim←−i∈I

Si for the projective limit and if the

projective system is known we can use the notation lim←−Si, for S.

Remark 5.1.3. A sequence (sn)n converges in lim
←−i∈I

Si if and only

if, for every i ∈ I, the sequence (Φi(sn))n converges in Si.

Let us mention that it is possible that the projective limit may
be empty, as it happens in the following example,

Example 5.1.4. Let Sn be the set of positive integers Z+ under
addition, with ψn,m(x) = 2n−mx being the connecting morphisms.
In this case the projective limit is empty. That follows from the
definition of the projective limit as a semigroup S ⊆

∏
i∈I Si, con-

sisting of sequences (si)i∈I such that Ψi,j(si) = sj , for all i ≥ j. In
this specific example we want si = 2si+1, that is true only if si = 0
for each i in I, but since 0 6∈ Sn we conclude that S = {∅}.

However, that is never the case under the conditions mentioned
in the following proposition,

Proposition 5.1.5. [89, Lemma 3.1.26] Consider a projective limit
S = lim←−Si of compact semigroups. Then S is a nonempty compact
semigroup. If, moreover, the connecting morphisms ψi,j : Si → Sj

are onto, then each component projection Φi : S → Si is onto.

In particular the result holds when the semigroups Si are finite.
From now on we will suppose that the semigroups in the projec-

tive system are compact and the connecting morphisms are onto.
The projective system and the projective limit of topological

monoids or groups are defined in exactly the same way. For a pro-
jective system of topological monoids, one has to take all morphisms
as continuous monoid morphisms, and similarly for groups1 and for
every abstract algebra.

Example 5.1.6. The projective limit of the family of cyclic groups

in Example 5.1.1 is the group of profinite integers Ẑ = lim
←−n≥1

Z/nZ.

1Actually, a monoid morphism between groups is already a group morphism.
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In Ẑ one has limn! = 0. As in any group there is a unique idempo-
tent, which is 0.

Example 5.1.7. The projective limit of the family Mi,p is the

monoid N̂ of profinite natural integers. In N̂ there are two idem-
potents: 0 and ω = limn!.

5.1.2 Free profinite monoids

In order to better explain the idea of profinite monoids we present
the specific case of a finite alphabet A. Let u and v be two dis-
tinct words in A∗. We can consider a finite monoid M and some
homomorphism ϕ : A∗ → M such that the images of the two dis-
tinct words are distinct, ϕ(u) 6= ϕ(v). We say that such a monoid
separates the words u and v of A∗.

Example 5.1.8. Let us consider the morphism ϕ : {a, b}∗ → Z/2Z,
such that ϕ(x) = |x| mod 2. It can be seen that ϕ separates the
words aba, ab ∈ A∗, since |aba| mod 2 = 1 6= 0 = |ab| mod 2.

Let us now define the natural metric as the function d : A∗×A∗ →
R+ such that

d(u, v) =

{
2−r(u,v) if u 6= v

0 if u = v

where r(u, v) is the minimal cardinality of a monoid separating u
and v. Because of the definition of natural metric, we have that
two words are closer the larger the monoid that separates them is.
The natural metric is an ultrametric since it satisfies the following
conditions,

• d(u, v) ≤ min(d(u, w), d(w, u)),

• d(u, v) = d(v, u),

• d(ux, vy) ≤ max(d(u, v), d(x, y)).

That metric space has a completion Â∗, which is a compact met-
ric space. The multiplication on A∗ is uniformly continuous with

respect to the metric d, and so the completion Â∗ is a topological
monoid whose multiplication is the unique continuous extension of
the multiplication on A∗. More precisely, the metric space A∗ is a
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dense submonoid of Â∗. An easy way to think of the elements of

Â∗ is as generalizations of words over the alphabet A. The elements

of A∗ are isolated in the topological space Â∗. The elements of Â∗

are called pseudowords over the alphabet A, the elements of Â∗ \A∗

are called infinite pseudowords and the ones in A∗ are called finite
pseudowords.

An intuitively way to define the profinite monoid is as compact
Hausdorff monoid M that is if u and v ∈ M are distinct, then there
is a continuous homomorphism ϕ : M → N with ϕ(u) 6= ϕ(v), where
N is a finite monoid endowed with the discrete topology.

Remark 5.1.9. The finite monoids are profinite, if endowed with
the discrete topology.

Coming back to the special case of Â∗, it can be characterized as
free profinite monoid generated by A in the sense that if ϕ : A→ N
is a mapping into a profinite monoid N , then there is a unique
extension of the morphism ϕ to a continuous homomorphism ϕ̂ :

Â∗ → N .

A more formal way to define the free profinite monoid on a finite
alphabet A is as the projective limit of this family, which does also
satisfy the universal property, as seen in the following proposition.

Proposition 5.1.10. The natural mapping ι : A→ Â∗ is such that
for any map ϕ : A → M into a profinite monoid there exists a

unique continuous morphism ϕ̂ : Â∗ → M such that ϕ̂ ◦ ι = ϕ.

MÂ∗

A

ϕι

ϕ̂

Figure 5.4: The universal property of Â∗.

Example 5.1.11. The free profinite monoid on the one-letter al-

phabet A = {a} is the set Â∗ identified with N̂ (A∗ is identified with
N), with

Â∗ = {ax|x ∈ N̂}.
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5.2 Free profinite groups

The notion of profinite monoids can be generalized to the notions of
profinite semigroups and profinite groups. The formal way to define
the profinite group is as a projective limit of a projective system of

finite groups, while the free profinite group F̂G(A) is as projective
limit of the projective system formed by the isomorpism classes of
A-generated finite groups.

Let us present the specific case of the profinite semigroup gener-

ated by the alphabet A, denoted as Â+. The way to construct this
set is exactly the same as the one that is presented above for the

construction of Â∗. The profinite semigroup Â+ is basically the set

Â∗ \ {ε}.

Finally, we use the notation FG(A) and F̂G(A) for the free group
generated by A and the free profinite group generated by A respec-
tively. The second one has FG(A) as a dense subgroup. The rank

of F̂G(A) is the cardinality of the alphabet A.
The free group FG(A) can be considered a profinite monoid, in

which case, the canonical projection from Â∗ onto FG(A) is the

unique continuous homomorphism pG : Â∗ → FG(A) fixing the ele-
ments of A.

Example 5.2.1. The free group FG({a}) identified with Ẑ.

Theorem 5.2.2. [86] For each x ∈ A∗, the sequence (xn!)n≥0 con-

verges in Â∗ to an idempotent denoted by xω.

The way that xω is defined is as the limit

xω = lim
n→∞

xn! (5.2.1)

of the sequence (xn!) in Â∗.

Proof. In order to prove that the sequence (xn!) converges in Â∗, we
will prove that it is a Cauchy sequence. Let ε > 0, we would like to
find integer n > 0 such that for all integers q, p ≥ n, d(xq!, xp!) < ε.
Because of the way that the natural metric is defined, it is enough to
show that there is no monoidM with size |M | ≤ n that separates the
elements xq! and xp!. Let ϕ : A∗ → M be such that Card(M) ≤ n
and let us consider s = ϕ(x). Since the monoid M is finite, there
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is an integer r ≤ n such that sr = 1. Also, since p, q ≥ n, one
has that n|p! and n|q!. Hence, xq! = xq! = 1 which implies that
d(sp!, sq!) = 0 and thus there is no such monoid M that separates
the two elements.

Now, it remains to see that xω is an idempotent. That fol-
lows from the fact that for a large enough integer n one has that
ϕ(xn!)ϕ(xn!) = sn!sn! = 1 · 1 = 1 = ϕ(xn!).

Remark 5.2.3. The limit xω is a notation and it should not be
considered an infinite word.

As it has been seen in Example 5.1.1, for Ẑ we have lim n! = 0.

5.3 Green’s relations

Before giving to the definition of Green’s relations let us present the
notion of subshift. A two-sided infinite word (or bi-infinite word) on
an alphabet A is an element x = (xn)n∈Z of AZ. Given a factorial
biextendable subset F of A∗, the set of two-sided infinite words with
all their factors in F is denoted X (F ). It is closed for the product
topology of AZ. The set X (F ) is also invariant by the shift mapping
σ : AZ → AZ, defined by y = σ(x) if yn = xn+1 for any n ∈ Z. A
nonempty closed and shift-invariant subset of AZ is called a subshift
(also called shift space) of AZ. The subshifts of AZ are precisely the
subsets of the form X (F ), with F an infinite factorial biextendable
subset of A∗. Moreover, whenever F and F ′ are infinite factorial
biextendable sets, one has X (F ) ⊂ X (F ′) if and only if F ⊂ F ′, and
in particular each subshift is completely determined by a unique
factorial biextendable set.

Let ϕ be a primitive substitution over a finite alphabet A. It is
known that each such substitution can be associated with a minimal
subshift Xϕ.

The Green’s relations are five equivalence relations that charac-
terize the elements of a semigroup in terms of the principal ideals
that they generate. The three of the Green’s relations are J , R and
L, which are defined as follows,

• u J v ⇔ MuM =MvM ,

• u R v ⇔ uM = vM ,
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• u L v ⇔ Mu =Mv.

Therefore, we say that the relation uRv holds if and only if there
exists elements m,m′ ∈ M such that u = vm and v = um′ and
similarly for all the other relations. Because of the above definitions
we have that R ⊂ J and L ⊂ J . The other two Green’s relations
are defined as follows,

• H = R∩ L,

• D = R ∨ L.

The latest relation D is otherwise defined as the equivalence RL =
LR. Two elements s, t are said to be D-equivalent if and only if the
relation sL ◦ Rt holds (i.e. there exists element m ∈ M such that
sRm and mLt or there exists element m′ ∈ M such that sLm′ and
m′Rt).

It can be seen easily that the relationsR and L imply the relation
D, while the relation H implies both of the relations R and L.
Let us use the notation Ha, Ra, La, Da for the classes H,R,L,D
respectively that contain the element a ∈M .

Remark 5.3.1. Over finite monoids one has D = J .

A J -class decomposes into R-classes and L-classes, and those
classes decompose into H-classes. Moreover, as mentioned above, in
the case of a finite monoid holds that J = D = L◦R = R◦L, which
implies that the intersection of every such L-class and a R-class is
non-empty. The following proposition can be used in order to prove
the above.

Proposition 5.3.2. For any finite monoid, if sJ t then L(s)∩R(t) 6=
∅.

Proof. sJ t⇒ sDt⇒ ∃ x ∈M s.t. sLxRt⇒ L(s) ∩R(t) 6= ∅

A D-class can be presented by a graph called “egg-box”, that is
illustrated in Figure 5.5. In this graph, the rows correspond to the
R-classes, while the columns correspond to the L-classes. Every
sub-box of the “egg-box” is an intersection of an R-class and an L-
class, thus it is a non empty H-class. According to Green’s theorem
any two D-equivalent H-classes have the same cardinality. The D
relation between two elements m,n ∈ M can be represented using
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L1 L2 . . .

R1

R2

...

Figure 5.5: D-class representation as an “egg-box”.

m p

q n

Figure 5.6: D-relation between two elements m,n ∈M .

the “egg-box” as seem in Figure 5.6, which illustrates the existence
of elements q, p ∈ M such that mLqRn and mRpLn. This implies
that there is a permutability of R and L, since if R(a) ∩ L(b) 6= ∅,
then R(b) ∩ L(a) 6= ∅. Also, the family of J -classes (resp. R,
L-classes) is ordered by u ≤J v if and only if MuM ⊂ MvM .

Example 5.3.3. Let M = {ε, a, b} be the monoid defined by the
automaton presented in Figure 5.7. It is easy to see that the follow-
ing equations hold,

ab = b, bb = b, ba = a, aa = a.

Those lead to the result that aRb, while a and b are not L-equivalent
as it can be seen from the “egg-box” in Figure 5.7.

0 1

a
b

a

b

“egg-box”: a b

Figure 5.7: Automaton that generates the monoid M = {ε, a, b}.

Example 5.3.4. Let M = {1, a, b, ab, ba, 0} be the monoid defined
by the automaton presented in Figure 5.8 for which the “egg-box”
presented in the same figure illusterates the relations between the
classes.
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0 1

b

a

1

a ab

ba b

0

Figure 5.8: Automaton that generates the monoid M = {ε, a, b}.

Definition 5.3.5. A D-class (or an H-class or R-class or L-class)
is regular if it contains an idempotent.

Lemma 5.3.6. (Location Lemma) Let M be a finite monoid and
s, t ∈ M such that sDt. Then stDt (resp. stRs, stLt) if and only if
the H-class L(s) ∩R(t) contains an idempotent.

An element u of a monoid M is characterized as regular if u ∈
uMu (i.e. there is x ∈M such that uxu = u).

Lemma 5.3.7. (Von Neumann) The following three propositions
concerning an element a of a monoid M are equivalent,

1. a is regular,

2. La contains an idempotent,

3. Ra contains an idempotent.

In a compact monoid, a J -class contains a regular element if
and only if all its elements are regular, if and only if it contains an
idempotent, and for that reason, if K is one of the relations J ,R,L
,H, one says that a K-class is regular when some of (equivalently,
all of) its elements are regular.

Lemma 5.3.8. Let M be a finite monoid. A D-class is regular if
and only if every element in the class is regular if and only if contains
a regular element.

Proof. Let us suppose that there is a regular element s in a D-class
D. Then there is element t ∈ D such that s = sts, which implies
that st = stst and hence st is an idempotent. Furthermore, the
equality s = sts implies that stDs and hence D is regular.
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In order to prove the next part of the lemma we will suppose that
D is regular, which implies that every R-class contains an idempo-
tent, let us call the idempotent e. For all elements s ∈ D there are
elements e, t ∈ D such that st = e from which follows that sts = s,
and hence every element is regular.

The regular D-classes are the ones that contain idempotents. In
the monoid M , the H-classes of idempotents are the maximal sub-
groups of M , with respect to the inclusion relation (a subgroup of
M is a subsemigroup of M which is a group). The maximal sub-
groups contained in the same regular D-class are isomorphic. If M
is profinite, then J = D, and the maximal subgroups of the same
regular D-class are isomorphic as profinite groups.

A profinite monoidM also satisfies the stability property, u J ux
if and only if u R ux, and dually for the relation L, we have that
u J xu if and only if u L xu, for every u, x ∈M .

Let H be an H-class of M . Set T (H) = {x ∈ M | Hx = H}.
Each x ∈ T (H) defines a map ρx : H → H by ρx(h) = hx. The
set of the translations ρx for x ∈ T (H) is a topological group acting
by permutations on H , denoted Γ(H). The groups corresponding to
different H-classes contained in the same J -class J are continuously
isomorphic and their equivalence class, called the Schützenberger
group of J , is denoted G(J). Every H-class has the same cardinality
as its Schützenberger group G(J). If the D-class is regular, then
there is at least one group in every column and every raw and as
said above, all of them are isomorphic one to each other.

If J is a regular J -class, then every H-class of J which is a group
is isomorphic to G(J). Indeed, H ⊂ T (H) and the restriction to
H of the mapping ρ : x ∈ T (H) → ρx ∈ Γ(H) is an isomorphism
(see [70] for a more detailed presentation).

A subshift X is minimal if it does not contain subshifts different
that X . It can be proved that if a subshift X is minimal, then
L(X )\A+ is contained in a regular J -class, denoted as J(X ). Thus,
J(X ) is by definition the set of infinite pseudowords such that all
their finite factors are in L(X ).

Proposition 5.3.9. J(X ) is a J-class of Â∗.

More precisely, J(X ) is a maximal not trivial J -class.
Before moving to the next lemma let us use the notation −→v for

the right infinite word whose finite prefixes are those of v, while
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the notation ←−v is the notation used for the left infinite word whose
finite suffixes are those of v.

Lemma 5.3.10. [5] For a minimal subshift X , two elements u, v ∈
J(X ) are R-equivalent (resp. L-equivalent) if and only if −→u = −→v
(resp. ←−u =←−v ).

It is known from [14] that w ∈ J(X ) lies in a subgroup if and only
if the two-sided infinite word←−w .−→w ∈ X . It follows that the maximal
subgroups H ⊂ J(X ) are in bijection with the elements of X , with
any element w ∈ H being sent to the two-sided infinite words←−w .−→w .
It is denoted by Hx the maximal subgroup corresponding to x.

5.4 Limit return sets

In order to define limit return sets, we have to present the notion of
return words.

Let F be a factorial set. A right return word , or otherwise called
just return word, to x ∈ F is a nonempty word w ∈ F such that
xw begins and ends with x but has no internal factor equal to x.
We denote by RF (x) (or simply R(x) if F is clear) the set of return
words to x. Note thatRF (x) is a prefix code, since if it was not, that
would imply that there is a word in RF (x) that has x as internal
factor and that contradicts the definition.

For x ∈ F , we denote

ΓF (x) = {w ∈ F | xw ∈ F ∩ A
∗x}.

Thus RF (x) is the set of nonempty words in ΓF (x) without any
proper prefix in ΓF (x). Similarly, a left return word to x ∈ F is a
nonempty word w ∈ F such that wx begins and ends with x but
has no internal factor equal to x. The set of the left return words to
x is denoted by R′

F (x) and the relation R′
F (x) = xRF (x)x

−1 holds
always.

There is a similar definition presented in [39] of the sets Ru.v,
called the n-delayed return words of uv, where |u| = n. This is
the set of all the factors x[i,j) such that i, j are two consecutive
occurrences of the words uv in x. It can be easily seen that,

R (uv) = u−1 Ru.v v and R (u) =Rε.u .
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Example 5.4.1. Let F be the Fibonacci set. The sets of right and
left return words to a are RF (a) = {a, ba} and R

′
F (a) = {a, ab}.

Let us recall that a word is called primitive if it has only a trivial
representation as a power of other words. Non-primitive words are
the periodic words.

Example 5.4.2. Let F be a periodic set. Let w be a primitive
word of length n such that F = F (w∗). Then, for any word x ∈ F
of length at least n, the set RF (x) is reduced to one word of length
n. It is true that there is a word of length n in RF (x), and that is
because n is the period of the fixed point. Also, if there was a longer
one then it would have internal factor x because of the period of the
fixed point. Lastly, there cannot be a word shorter than n, since if
there was such a word, that would mean that there is a word z such
that w = zk that is not possible since w is chosen to be primitive.
More precisely, let x = wu and v ∈ RF (x), where |v| < n. If
|uv| < n, then we can write w as w = zuv for some z ∈ F . However
if such the case, it can be easily seen that z is also a suffix of w,
hence w = zz′z, for some z′ ∈ F . Following the same procedure we
can conclude that w∗ = z∗ that leads to a contradiction, since w is
chosen to be primitive.

The following result appears in [22].

Proposition 5.4.3. [22] Let F be a factorial set. For any x ∈ F ,
one has ΓF (x) = RF (x)

∗ ∩ x−1F .

Proof. If a nonempty word w is in ΓF (x) and not in RF (x), then
w has an internal factor x. Thus, setting v as the factor after the
first appearance of x in w until the end of it, we have w = uv with
u ∈ ΓF (x) and v nonempty. Since ΓF (x) is right unitary, we have
v ∈ ΓF (x), from which we conclude w ∈ RF (x)

∗ by induction on
the length of w. Moreover, xw ∈ F and thus w ∈ x−1F .

Conversely, assume that w is a nonempty word in RF (x)
∗∩x−1F .

Set w = uv with u ∈ RF (x) and v ∈ RF (x)
∗. Then xw = xuv ∈

A∗xv ⊂ A∗x, since xv ends with x (v ∈ RF (x)) and xw ∈ F . Thus,
w ∈ ΓF (x).

Note that for any words x, y ∈ F such that xy ∈ F , it holds the
following,

RF (xy) ⊂ RF (y)
∗. (5.4.1)
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Indeed, let w ∈ RF (xy), which implies that xyw ∈ F has the
word xy as suffix and prefix but has no other appearance of it. It
follows that yw ∈ x−1F has y as suffix and prefix and it possible has
other appearances of the factor y, which implies that w ∈ ΓF (y).
From Proposition 5.4.3 we have that w ∈ RF (y)

∗ ∩ y−1F ⊂ RF (y
∗).

Thus, RF (xy) ⊂ RF (y)
∗.

A similar relation stands for the left return words,

R′
F (xy) ⊂ R

′
F (y)

∗. (5.4.2)

Example 5.4.4. Let ϕ : a 7→ ab, b 7→ a3b and F be the set of
finite factors of the fixed point ϕω(a). One has RF (a) = {a, ba} and
RF (aa) = {a, babaa, babababaa}, thus RF (aa) ⊂ RF (a)

∗ as it was
expected by Equation (5.4.1).

The first theorems that indicate some relation between the char-
acterization of a set as dendric or connected and the free groups are
the following ones presented in [19, Theorem 4.5] and [19, Theorem
4.7].

Theorem 5.4.5. [19] Let F be a uniformly recurrent dendric set.
For any x ∈ F , the set of return words RF (x) is a basis of FG(A).

The above theorem shows that in a dendric set a property much
stronger than Equation (5.4.1) holds, and in order to be proved it
uses Equation (5.4.1) and the following theorem.

Theorem 5.4.6. [19] Let F be a uniformly recurrent connected set.
For any w ∈ F , the set RF (w) generates the free group FG(A).

Example 5.4.7. Let F be the Tribonacci set on A = {a, b, c},
defined by the morphism τ : a 7→ ab, b 7→ ac, c 7→ a with fixed point
τω(a). Then the set of return words is RF (a) = {a, ba, ca}, which is
a basis of FG(A).

5.5 Groups of fixed points of morphisms

Let ϕ : A∗ → A∗ be a primitive substitution and let L(ϕ) be the
uniformly recurrent set of factors of a fixed point of ϕ, noted as
u. Let J(ϕ) be the J -class J(F (ϕ)), and G(ϕ) the Schützenberger
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group of J(ϕ). In that case, it holds that ϕ(F (ϕ)) ⊂ F (ϕ), which,

in view of J(ϕ) = F (ϕ) \ A∗, justifies the following observation.
Let ϕ be a substitution over A. Then ϕ extends to a unique

continuous endomorphism of Â∗, which we still denote by ϕ. We can

prove that the topological monoid End(Â∗) is profinite. Thus, the
morphism ϕω is well defined as the unique idempotent in the closure

of the subsemigroup of End(Â∗) generated by ϕ. By definition of the

pointwise topology, one has ϕω(u) = limϕn!(u), for every u ∈ Â∗.

Remark 5.5.1. The inclusions ϕω(F (ϕ)) ⊆ J(ϕ) and ϕ(J(ϕ)) ⊆
J(ϕ) hold.

Recall that a connection for a substitution ϕ is a word ba ∈ L(ϕ)
with b, a ∈ A, such that the first letter of ϕω(a) is a, and the last
letter of ϕω(b) is b. It has been proved by Almeida [15, Lemma 4.1],
that for every primitive substitution there is a connection. In terms
of subshifts Xϕ of a morphism ϕ with fixed point x, a connection
can be seen as a word x−1x0 ∈ L(x). A connective power of ϕ is
a finite power of ϕ, noted as ϕ̃ , that is such that the first letter
of ϕ̃(a) is a and the last letter of ϕ̃(b) is b. The intersection of
the R-class containing ϕω(a) with the L-class containing ϕω(b) is a
maximal subgroup of J(ϕ) and is noted as Hba.

The following proposition proves the existence of a connection
for all primitive substitutions.

Proposition 5.5.2. [12] Every primitive substitution has a connec-
tion.

Proof. Let a, b ∈ A be such that ba ∈ L(ϕ). Since the alphabet A is
chosen to be finite, there are integers i, j ≥ 0 and p, q ≥ 1 such that
ϕi(a) and ϕi+p(a) start with the same letter and the words ϕj(b) and
ϕj(b) and ϕj+q(b) end with the same letter. Let us set the integer
k = max (i, j) and let us also set c be the first letter of ϕk(a) and
d be the last letter of ϕk(b). Since ba ∈ L(ϕ) so does its k-image
ϕk(ba), and since dc is a factor of ϕk(ba) we have that dc ∈ L(ϕ).

Also, it can be seen that ϕ since ϕp(c) ∈ A∗, then ϕω(c) ∈ cÂ∗, and

similarly ϕω(d) ∈ Â∗d. Thus, it is implied that dc is a connection of
the primitive substitution.

Example 5.5.3. Let τ : a 7→ ab, b 7→ ba be the Thue-Morse mor-
phism. The word aa is a connection for τ and τ̃ = τ 2 is a connective
power of τ , since τω(a) ∈ aA∗a.



130 CHAPTER 5. PROFINITE SEMIGROUPS

The following lemma presented in [7] indicates that natural ac-
tions are induced on certain subsets of the J-class of a primitive
substitution.

Lemma 5.5.4. [7] Let ϕ be a primitive substitution and let ba be a
connection for ϕ. If ϕ̃ is a connective power of ϕ, then ϕ̃(Hba) ⊆ Hba.

Definition 5.5.5. A sequence x on a finite alphabet is linearly re-
current for a constant K ∈ N if it is recurrent and if, for every factor
u ∈ L(x), the difference between two successive occurrences of u in
x is less than K|u|.

Remark 5.5.6. While in the case of linearly recurrent sequence
the constant K does not depend on the word u, in the uniformly
recurrent case the constant may depends on the word u.

The following theorem bounds the cardinality of the set of return
words to a word u and it has been proved by F.Durand, B. Host and
C.Skau in [39].

Theorem 5.5.7. Let u be a linearly recurrent aperiodic sequence
with constant K. Then, for all u ∈ L(u), card(RF (u)) ≤ K(K+1)2.

Also, in the work of F.Durand [37] it has been proved the follow-
ing proposition.

Proposition 5.5.8. [37] All substitutive subshifts are linearly re-
current.

Thus, the following corollary easily follows,

Corollary 5.5.9. Let ϕ be a non-periodic primitive substitution
with biinfinite fixed point u. Then, the sequence |R(n,u[−n,n])| is
bounded.

Remark 5.5.10. The set Hba is a maximal subgroup of J(ϕ).

The fact that the H-class Hba is a group follows immediately
from basic properties of Green’s relations and from ϕω(a), ϕω(b) and
ϕω(ba) being all elements of J(ϕ), where the latter is true because
ba ∈ L(ϕ) (cf. Remark 5.5.1).

Proposition 5.5.11. [7] Let X be a minimal aperiodic subshift of
AZ and x ∈ X . Suppose there are strictly increasing sequences
of positive integers (pn)n and (qn)n such that R(pn, x[−pn,pn]) =
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{rn1, rn2 . . . rnM
} for all n > 0. Let (r1, r2 . . . rM) be an arbitrary

accumulation point of the sequence (rn1 , rn2 . . . rnM
)n in the Â+

M
.

Then < r1, r2, . . . , rM > is the maximal subgroup Hx of J(X ).

The following result by J.Almeida and A.Costa [7] uses the notion
of two-sided recognizability in order to prove that there is related to
the relation between the set Hba of a connection ba of a morphism
ϕ and image of any connective power ϕ̃ of ϕ.

Proposition 5.5.12. [7] Let ϕ be an aperiodic primitive substitu-
tion and let ba be a connection of ϕ. If ϕ̃ is a connective power of
ϕ, then Hba ⊆ Im(ϕ̃).

Proof. Because of the definition of Hx as a maximal subgroup cor-
responding to x we have that there is a unique element x of the
subshift Xϕ such that Hx = Hba. Because of Lemma 5.5.4, the word
x can also be written as

. . . ϕ̃(x−2)ϕ̃(x−1) · ϕ̃(x0)ϕ̃(x1)ϕ̃(x2) . . .

which implies that x is a fixed point of the connective power ϕ̃.
Hence, the connective power ϕ̃, because of Theorem 3.4.1, is two-
sided recognizable with a constant of recognizability l > 0.

Now, by Corollary 5.5.9 the sequence |R(n,u[−n,n])| is bounded.
Thus, we can find a strictly increasing sequence of integers (pn) such
that |R(n,u[−n,n])| =M forM ∈ N and pn > l. Since the cardinality
of the set of return words is M , we can denote R(n,u[−pn,pn]) =
{rn1, rn2 . . . rnM

}. As it has been proved above, the connective power
ϕ̃ is two-sided recognizable and since pn is longer than 2l + 1 and
the position 0 ∈ Eu, we have that any other appearance of x[−pn,pn]

in the fixed point x, such as x[i−pn,i+pn], i ∈ Eu. Also, since x is
is linearly recurrent, there are infinite appearances of x[−pn,pn] in
bounded distances. Hence, there are integers i, j > 0 with j > i
such that x[i−pn,i+pn] = x[j−pn,j+pn] = x[−pn,pn] and i, j ∈ Eu. That
means that the factor x[i,j−1] ∈ Im(ϕ̃).

Let us denote by (r1, r2, . . . , rM) the accumulation point of the
sequence (rn1 , rn2 . . . rnM

)n, which belongs to Im(ϕ̃)M . Because of
Proposition 5.5.11 we can conclude that Hba ⊆ Im(ϕ̃).

The above Theorem 5.5.12 that uses the notion of two-sided rec-
ognizability is used for the proof of the following theorem that was
also presented in [7].
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Theorem 5.5.13. Let ϕ be a non-periodic primitive substitution.
Consider a connection ba for ϕ and a connective power ϕ̃. Then
Hba = ϕ̃(Hba) = ϕω(Hba).

Proof. Since ϕ̃ is a connective power of ϕ, so it is any of its powers
ϕ̃k. By Proposition 5.5.12 we have that Hba ⊆ Im(ϕ̃k). Hence, for

any element g ∈ Hab there is uk ∈ Â+ such that g = (ϕ̂)k!(uk).
Since the mapping on continuous endomorphisms of finitely gener-
ated profinite semigroups is continuous, there is word u such that
g = ϕ̃ω(u) = ϕω(u). Thus, we have that g = ϕω(g) which proves
the equality Hba = ϕω(Hba).

The relation ϕ̃(Hba) ⊆ Hba holds because of Lemma 5.5.4. As it
has been mentioned above, any k power of a connective power ϕ̃ is
also a connective power for ba. Hence, ϕ̃k!−1(Hba) ⊆ Hba. Also, it
follows from the definition of R,L-classes that all such classes are
closed, and thus so it is the H-class (as an intersection of closed
classes). Since Hba is closed we can take the limit for k and obtain
ϕ̃ω−1(Hba) ⊆ Hba. We have,

Hba = ϕω(Hba) = ϕ̃ω(Hba) = ϕ̃(ϕω−1(Hba)) ⊆ ϕ̃(Hba)

which proves the equality ϕ̃(Hba) = Hba.

In order to prove the main theorem of this chapter we should in-
troduce some more notions first. Let ϕ be a morphism, Xϕ be its sub-
shift and ba ∈ L(Xϕ) be a connection and ϕ̃ be a connective power.
We will use the notation i for the unique homomorphism from the
semigroup freely generated by X = b−1R(ba)b into the semigroup
freely generated by the alphabet A that is such that i(x) = x for all
x ∈ X . As it has been mentioned earlier X is a code, which implies
that the morphism i is injective. The homomorphism i can be ex-

tended uniquely to a continuous homomorphism i : X̂∗ → Â∗ called
the encoding associated with the connection ba.It has been proven in
[75] that the last mapping i is also injective.

Let us now define the unique continuous homomorphism q :

X̂∗ → F̂G(X) that is the identity on the generators. There are
also the continuous endomorphisms ϕ̃X and ϕ̃X,G such that the fol-
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lowing diagram commutes:

Â∗

ϕ̃
��

X̂∗ioo

ϕ̃X

��

q
// F̂G(X)

ϕ̃X,G

��

Â∗ X̂∗ioo
q
// F̂G(X)

More precisely the endomorphism ϕ̃X and ϕ̃X,G are such that ϕ̃X(x) =
wX and ϕ̃X,G(x) = wX for x ∈ X , where wX is a semigroup words
and a group word respectively.

Let us also note that if a semigroup admits the following presen-
tation,

〈X | R〉S

for a relation R, then it also admits the presentation,

〈X | (q × q)(R)〉G.

It has been proven in [7] that a profinite subgroup associated with
a primitive substitution ϕ and a connection ba admits a semigroup
presentation, as it follows from the next proposition.

Proposition 5.5.14. [7] Let ϕ be a primitive substitution over the
alphabet A, ba be a connection for ϕ, and ϕ̃ be a connective power
of ϕ. Put X = Xϕ(a, b) and H = Im(ϕω ◦ i), where i is the encoding
associated with ba. Then Ker(ϕω ◦ i) ⊆ ϕ̃ω

X and so H admits the
presentation

〈X|ϕ̃ω
X(x) = x (x ∈ X)〉S. (5.5.1)

In the proof of Proposition 5.5.14 presented by J.Almeida and
A.Costa [7] one can obtain the following commutative diagram,

Lemma 5.5.15. [15] If u is a non-empty factor of the J -class J(ϕ),
then ϕω(u) belongs in J(ϕ).

Proof. Let ϕω(v) ∈ J(ϕ), such that u is one of its factors. Then

there are words x, y ∈ Â∗ such that ϕω(v) = xuy. Applying the
homomorphism ϕω we have ϕω(ϕω(v)) = ϕω(xuy). Since ϕω is an
idempotent homomorphism it holds that ϕω(v) = ϕω(x)ϕω(u)ϕω(y),
which implies that the infinite word ϕω(u) is a factor of ϕω(v). It is
known that J(ϕ) is a J-maximal J -class, which implies that ϕω(u) ∈
J(ϕ).
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HĤ

Im(i)Im(i)

X̂∗X̂∗

X̂∗X̂∗

ϕ̃ = ϕ̃ω+1

ϕ̃ω+1

ϕ̃ω ◦ i ϕ̃ω ◦ i
ϕ̃

ϕ̃X

ϕ̃ω

ϕ̃ω

ϕ̃ω ◦ i

ϕ̃ω ◦ i

i i

Figure 5.9: The universal property of Â∗.

Lemma 5.5.16. [7] Let X be a minimal subshift of AZ and v ∈ Â∗

such that it belongs to maximal subgroup of J(X ). If the words
u1, u1 ∈ A

∗ are such that they are suffix and prefix of the word v
respectively, then v ∈ 〈R(u1, u2)〉.

Proof. Let v ∈ J(X ) that satisfies the above conditions, which im-
plies that v3 ∈ J(X ). Hence, u1vu2 ∈ J(X ). There must exist
sequence of words (wn) ,such that all elements wn belong in L(X ),

that converges to u1vu2 ∈ u1u2Â∗∩ Â∗u1u2. It can be assumed that
all wn have the factor u1u2 as suffix and prefix. It is implied that
wn(u1u2)

−1 ∈ Γ(u1u2) (i.e. it is a product of words in R(u1, u2)),

and we conclude that u−1
1 wnu

−1
2 ∈ 〈R(u1, u2)〉, and hence so does

the limit.

Proposition 5.5.17. Let ϕ be a primitive substitution over an al-
phabet A, ba be a connection of the morphism ϕ, and ϕ̃ be a con-
nective power of ϕ. Let X = Xϕ(a, b) and H = (ϕω ◦ i), where i is
the encoding associated with ba. Then, H = Hba.

Proof. Firstly we will prove that H is contained in Hba. We have
that a, b ∈ A are such that ba is a factor of J(ϕ). The words ϕω(a),
ϕω(b) and all other elements of ϕω(Xϕ(a, b)) belong to J(ϕ), by
Lemma 5.5.15. Also, by definition we have that if v ∈ ϕω(Xϕ(a, b))

that means that v ∈ ϕω(a)Â∗ ∩ Â∗ϕω(b). Hence, ϕω(Xϕ(a, b)) ∈
R(ϕω(a)) ∩ L(ϕω(b)) = Hba, from which we conclude that H =
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ϕω(i(X)) ⊆ Hba. Let us now prove the other direction. Let v ∈ Hba,
which implies that it has suffix b and prefix a. From Lemma 5.5.16
we have that v ∈ X∗, and because of definition of i, v ∈ Im(i)
that implies Hba ⊆ Im(i) and applying the morphism ϕω we have
ϕ(Hba) ⊆ Im(ϕω ◦ i). Since Hba = ϕω(Hba), by Theorem 5.5.13, it
holds that Hba ⊆ H .

The following is the main result in [7].

Theorem 5.5.18. Let ϕ be a aperiodic primitive substitution over
the alphabet A. Let ba be a connection of the morphism ϕ and let
Xϕ = aRF (ba)a

−1. Then G(ϕ) admits the presentation

〈X | ϕ̃ω
X,G(x) = x, x ∈ X〉G. (5.5.2)

Proof. By Proposition 5.5.17 we have that H = Hba that implies
that H is a Schützenberger group G(ϕ). It follows then from Propo-
sition 5.5.14 that H admits the presentation,

〈X | ϕ̃ω
X(x) = x, x ∈ X〉S.

It is known that there is a canonical projection q : X̂∗ → F̂G(X)
such that ϕ̃X = ϕ̃X,G ◦ q and taking that into consideration we can
write the above presentation as follows,

〈X | q(ϕ̃ω
X(x)) = q(x), x ∈ X〉G.

Finally, from the diagram in Figure 5.9 we conclude that H is gen-
erated as follows,

〈X | ϕ̃ω
X,G(x) = x, x ∈ X〉G.

Example 5.5.19. Let ϕ 7→ ab, b 7→ ba be the Thue-Morse mor-
phism (defined in Example 3.1.8). The word aa is a connection for
ϕ and ϕ̃ = ϕ2 is a connective power of the morphism ϕ. The set
RF (aa) has four elements and thus so does the setX = aRL(ϕ)(aa)a

−1.
Specifically, X has the following four elements: x = abba, y =
ababba, z = abbaba and t = ababbaba. One has ϕ̃X(x) = zxy,
ϕ̃X(y) = ztxy, ϕ̃X(z) = zxty and ϕ̃X(t) = ztxty. By Theo-
rem 5.5.18, the group G(ϕ) is the profinite group generated by
X with the relations ϕω

X,G(u) = u for u ∈ X . Actually, since

ϕω(y)ϕω−1(x)ϕω(z) = ϕω
TM(t), the relation xy−1z = t is a conse-

quence of the relations above and thus G(ϕ) is generated by x, y, z.
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6
Conclusions

The current thesis focused on the topic of combinatorics on words
and symbolic dynamical systems. The main subject of the thesis
was the recognizability of words generated by primitive morphisms.
There were presented various definitions that are supposed to be
equivalent in the bibliography and it was provided a study proves
their equivalence or indicates the differences among them.

Some of the many applications of the notion of recognizability
were presented in Chapter Decidable properties of extension graphs
and in Chapter Profinite Semigroups.

In the first one the notion of recognizability alongside a technique
used in [65] were used in order to prove the decidability of differ-
ent properties of extension graphs (defined in [19]) of elements of a
language such as acyclic sets, dendric sets, neutral sets, etc. More
precisely, the use the recognizability provided decidability of exten-
sion graphs and all the properties of the language that depend on
the graphs themselves. The results presented in this thesis regarding
this topic are for substitutive language of right infinite fixed points
generated by a morphism. However, the results can be generalized
to the case of the two-sided infinite fixed points or even to the case
of the language of a morphism.

Lastly, in Chapter Profinite Semigroups the notion of recogniz-
ability was used in the subject of Profinite Semigroups. Specifically,
it was presented the link with Profinite extensions of a morphism.

There are many other circumstances in which the property of
recognizability is used. One of the many is the representation of
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symbolic minimal dynamical systems by sequences of partitions in
towers. This representation (due to Richard H. Herman, Ian F.
Putnam, and Christian F. Sk [56]) is used to compute the dimension
group of a minimal system (for further details see the work of Fabien
Durand, Bernard Host, Dominique Perrin [38]).
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de France, Paris, 2003.

[69] Revekka Kyriakoglou and Dominique Perrin. Profinite semi-
groups. arXiv preprint arXiv:1703.10088, 2017.

[70] Gérard Lallement. Semigroups and combinatorial applications.
John Wiley & Sons, New York-Chichester-Brisbane, 1979. Pure
and Applied Mathematics, A Wiley-Interscience Publication.

[71] Hendrick Lenstra. Profinite Fibonacci numbers. Nieuw Archief
voor Wiskunde, 6:297–300, 2005.

[72] Douglas Lind and Brian Marcus. An introduction to symbolic
dynamics and coding. Cambridge University Press, Cambridge,
1995.

[73] M. Lothaire. Algebraic Combinatorics on Words. Cambridge
University Press, Cambridge, UK, 2002.

[74] Roger C. Lyndon and Paul E. Schupp. Combinatorial group
theory. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
Reprint of the 1977 edition.

[75] S. Margolis, Mark Sapir, and Pascal Weil. Irreducibility of
certain pseudovarieties. Comm. Algebra, 26(3):779–792, 1998.

[76] Stuart W. Margolis, Mark Sapir, and Pascal Weil. Closed sub-
groups in pro-V topologies and the extension problem for in-
verse automata. Internat. J. Algebra Comput., 11(4):405–445,
2001.



146 BIBLIOGRAPHY

[77] John C. Martin. Minimal flows arising from substitutions of
non-constant length. Math. Systems Theory, 7:72–82, 1973.

[78] J. D. McKnight, Jr. and A. J. Storey. Equidivisible semigroups.
J. Algebra, 12:24–48, 1969.

[79] Filippo Mignosi and Patrice Séébold. If a DOL language is
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[84] Dominique Perrin and Jean-Éricric Pin, editors. Infinite Word-
sAutomata, Semigroups, Logic and Games, volume 141 of Pure
and Applied Mathematics. Elsevier, 2004.
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