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General Introduction

This thesis deals with real-life complex scheduling problems, stemming in particular
from semiconductor manufacturing systems where dispatching rules are still popular. Opti-
mization algorithms are a promising alternative to dispatching rules, provided that the solved
problem effectively addresses the rich set of constraints and criteria. Scheduling lots in the
diffusion work area of the semiconductor manufacturing facility of STMicroelectronics in
Rousset (France), requires that many constraints are considered within a flexible job-shop
environment such as release dates, setup times, time lags and unavailability periods. All the
machines are capable of processing several jobs in parallel, and a subset of them are complex,
in the sense that the processing time of operations depends on the loading sequences. Differ-
ent criteria have to be considered to optimize the various operational performance measures
of the work area such as throughput, machine utilization and cycle time. Though a specific
work area is studied, the investigated model captures a large number of practical features.
Hence, this work can be applied in many other industrial contexts and contributes to narrow
the gap between theory and practice that is acknowledged in the scheduling literature.

In Chapter 1, a broad overview of the industrial and scientific contexts for this work is
given. After briefly describing the semiconductor manufacturing process and highlighting the
various aspects that make it a complex industry, scheduling decisions are positioned within
the diverse and interacting set of decisions that operation managers of a wafer fabrication
facility have to take. This chapter motivates the different assumptions and choices made to
model the considered scheduling problem and lists some of the potential advantages of opti-
mization algorithms over dispatching rules. Finally, this chapter reviews some works related
to the different features of the considered scheduling problems and solution approaches.

Chapter 2 presents a comprehensive description of the diffusion work area and all aspects
that should be taken into account by the developed approach so that its practical implemen-
tation becomes possible. This chapter is the outcome of the immersive training within the
work area and many discussions with operators, engineers, and managers. Each feature of
the scheduling problem is described, and its inclusion in the problem definition is motivated.
The detailed understanding of the industrial problem calls for new optimization criteria to
be defined. Two new criteria are introduced to respectively increase the consistency between
local scheduling decisions and the global production plan at the facility level and to better
measure the throughput of the work area within a rolling horizon framework. Beyond being
a synthesis of our understanding of the industrial problem, the content of this chapter is the
foundation for the problem formulation in Chapter 4 and the design of a data management
module permitting the extraction of the necessary data from the information systems of the
company.



Before formulating in Chapter 4 the problem described in Chapter 2, Chapter 3 recalls
the batch-oblivious approach proposed by Knopp (2016), which serves as a basis for our
approach. The objective of this thesis is to extend this approach to deal with more constraints
and more criteria and to improve its efficiency. After recalling the different components of the
batch-oblivious approach, Chapter 3 suggests new algorithms that allow improving solutions
during the start time computation with a low computational cost and which lead to solutions
with a more relevant structure from an industrial perspective.

Chapter 4 formalizes all the constraints and criteria described in Chapter 2. The batch-
oblivious approach is extended by integrating new constraints: Minimum time lags, mini-
mum batch size, availability constraints, and production targets. A significant part of this
chapter is devoted to the extension of the batch-oblivious approach in order to model the
internal structure of complex batching machines so that the conjunctive graph can naturally
capture their complex behavior. Different considerations that make the proposed modeling
suitable for a stable industrial application are given.

In the two preceding chapters, only a single criterion is considered while up to six criteria
must be considered in the industrial scheduling problem. Chapter 5 deals with the multicri-
teria aspect of the investigated problem and proposes different approaches. In the two first
approaches, the decision maker is given a flexible modeling of his preferences depending
on whether a trade-off is permitted between any pair of the considered criteria. The two
approaches use these preferences differently during the search process and store the set of
nondominated solutions in a passive archive. These two approaches are compared to a third
approach from the literature that uses the dominance status between the current solution
and the set of nondominated solutions stored in an active archive. The comparison is per-
formed based on the given preferences and known quality indicators and demonstrates that
each approach can be preferable depending on the context. This chapter ends with numeri-
cal experiments that attest the significant improvement that can be brought by the proposed
approach.



Chapter 1

Industrial and Scientific Context

This chapter gives a general overview of the industrial and scientific context of this the-
sis. Section 1.1 starts the chapter with a brief description of the semiconductor manufacturing
process and highlights the different aspects that make it a complex industry. Then, Section 1.2
provides an overview of the operations management of a wafer fabrication facility and posi-
tions the scheduling decisions within the rich and interacting set of decisions. Scheduling, as
one of the approaches for production control, is compared to a widely used dispatching ap-
proach in Section 1.3. This section also motivates the different assumptions and choices that
are made for modeling the studied scheduling problem. The scientific context is discussed
in Section 1.4, where the different features of the considered scheduling problems and the
solution approaches are defined and the related works reviewed.

1.1 An Overview of Semiconductor Manufacturing: Pro-
cess and Complexity

The process in semiconductor manufacturing is used to create integrated circuits (also known
as chips, or die) that are present in everyday electrical and electronic devices. Integrated cir-
cuits, consisting of thousands of components, are gradually created on a wafer made of pure
semiconducting material, Silicon most of the time. A wafer is a thin disc that is sliced from
a single crystal ingot. Depending on the size of the chips and of the wafer, hundreds or thou-
sands of chips can be obtained from a single wafer. The process by which integrated circuits
are created from a raw wafer includes four phases: Wafer fabrication, wafer probe, assem-
bly or packaging, and final testing. The first two phases are grouped into the “Front-end”
process, and the last two in the “Back-end” process. Wafer fabrication, the most techno-
logically complex and capital intensive phase, involves processing wafers to build up the
necessary layers and patterns of conductors, semiconductors, and insulators. Wafer probe
involves electrically testing the individual circuits on each wafer to verify their functioning
and to discard defective ones. The circuits that pass this test are sent to assembly, where they
are placed in plastic or ceramic packages that protect them from the environment. The final
testing ensures that customers receive a defect-free product. A detailed description of semi-
conductor manufacturing processes is given in Ovacik and Uzsoy (2012) and Mönch et al.
(2012).



4 Chapter 1: Industrial and Scientific Context

Figure 1.1 – Processing steps within wafer fabrication (Mönch et al. (2011))

Each phase of the semiconductor manufacturing process is composed of several stages,
each one consisting of a long sequence of operations performed by different machines. As
this thesis is conducted within the context of wafer fabrication, we shall focus only on this
phase, which encompasses most of the complexity encountered in the three other phases.
Recall that the wafer fabrication process builds up layer by layer hundreds or thousands of
integrated circuits on each wafer. Most of the operations in this phase have to be performed
in a clean-room environment to prevent particulate contamination of wafers. The facility in
which wafer fabrication takes place is referred to as a wafer fab. Wafer fabs are classified by
the diameter of the wafers they are tooled to produce. The diameter has gradually increased
to improve throughput and reduce cost. Most of the wafer fabs today process 200mm or
300mm wafers, with the next generation projected to be 450mm. Wafers are grouped in lots,
each containing up to 25 wafers in a specialized contained, either Front Opening Unified Pod
(FOUP) in 300mm fabs or Standard Mechanical InterFace (SMIF) pods for wafers no larger
than 200mm. Lots are the elementary entities that move through the fab. Within the context
of scheduling, lots are denoted as jobs throughout this thesis. From a group of raw wafers to
thousands of integrated circuits, a lot has to go through hundreds of processing operations,
more than 800 for some technologies. The different processing operations needed to produce
a single layer are performed in specialized work areas that consist of machines with similar
capabilities. To build all layers, each lot visits the different work areas many times (more
than 40 times for the most advances products), leading to re-entrant flow. The typical work
areas in a wafer fab are shown in Figure 1.1 where the arrows indicate the flow of lots. These
work areas are briefly described below:

Cleaning The objective of this operation is the removal of contaminants (particles as well
as metallic and organic) from the surface of the wafer. Cleaning is called “wet” when
chemical solutions are used and “dry” when gases are used instead.

Diffusion/Oxidation/Deposition A layer of material is grown or deposited on the surface of
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a cleaned wafer. Diffusion is a common name for the high-temperature process during
which dopant atoms are introduced into the semiconductor by diffusion. Oxidation
aims at growing a dioxide layer on a wafer surface at elevated temperature. Deposi-
tion deposits dielectric or metal layers. Usually, only one of these three operations is
performed per layer.

Photolithography After depositing a photoresistant liquid on the wafer, it is exposed to
ultraviolet light through a mask, also called reticle, which contains the pattern of the
circuit. The exposed wafer is then developed by removing polymerized sections of
photoresist from the wafer. These operations are the most critical and complex ones,
as well as the ones requiring the highest precision. Wafers may pass through this
operation more than 40 times. Since both machines and tooling are costly, this area is
often a bottleneck.

Etching The etching process removes unneeded material from the wafer surface. Patterned
etching removes a pattern that was brought onto the wafer during photolithography.
Unpatterned etching reduces the thickness and involves the entire area of the wafer.
There are two types of etching: Dry etching exposes the wafer surface to a plasma,
while wet etching removes material using chemical solutions.

Ion Implantation This process aims at changing the electrical properties of the exposed
portion of the layer by introducing dopants in the crystal structure of the semiconduc-
tor.

Planarization This is the process of flatting the surface of the wafer, performed each time
before adding a new layer.

After these different processing operations, measurement and inspection operations usu-
ally have to be conducted. These operations aim at controlling the product quality and the
machine performance. Decisions are made according to the inspection results. Good wafers
that pass inspection are sent to downstream operations while those that fail inspection are
either sent to upstream operations for rework or scrapped. Even when a wafer succeeds in
going through all its processing operations and passes all inspections, only a fraction of the
chips on the wafer are usually functional. The ratio of the number of wafers which reach
the probe test to the original number of wafers at the process starting point is called process
yield. The ratio of the number of good chips to the total number of chips on a wafer is called
probe yield.

As a result of the reentrant flows, lots of the same product that are at different stages of
completion compete over the production resources. Moreover, different products are pro-
duced at the same time in a wafer fab. The level of the diversity of products, called product
mix, influences the complexity of the operations management. Depending on the product
mix, wafer fabs can be classified into low-mix and high-mix fabs. In low-mix fabs, high
quantities of a few product types are manufactured. High-mix fabs usually produce Ap-
plication Specific Integrated Circuits (ASICs) which are customized chips for specialized
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applications. In this case, many different product types are manufactured with potentially
small quantities for each product type. In addition to regular production lots, engineering
lots need to be included with the production process. These lots are necessary for the devel-
opment of future products, a necessary condition to survive in a sector with a high velocity
of innovation.

While it is possible to dedicate machines to products in low-mix fabs, products must share
the same machines in high-mix fabs. Several hundred machines can be found in a single
wafer fab. Individual machines cost between 100 thousand and 40 million U.S. dollars. The
building blocks of the machinery of a wafer fab are work centers, also called tool groups.
Some work centers consist of a single machine and some of multiple parallel machines that
provide similar processing capabilities. Machines in a fab have different capabilities and
are subject to different constraints. There are work centers where each machine can process
only one wafer at a time (e.g., photolithography machines); work centers where machines
can process a subset of wafers of the same lot at a time (e.g., ion implantation) ; or work
centers where machines can process all the wafers of a set of lots (a batch) at the same
time (e.g., diffusion). To maximize quality performance, integrated machines, referred to as
cluster tools, have been increasingly used in wafer fabs. These complex machines combine
several single-wafer processing modules with handling robots in a closed environment. They
are capable of processing a certain number of lots in parallel at the cost of a very complex
behavior.

Processing durations can vary immensely between production operations, from a few
minutes to over 12 hours. Many of the long operations involve batch processes, i.e., the joint
processing of several jobs on a machine. Due to the complex behavior of cluster tools, the
processing times of operations depend on the loading sequence. Though having the same
capabilities, machines in the same work center may require different processing times for
the same operation. Also, a machine can process a particular product while it is forbidden
to perform the same operation on a lot of another product. Some work centers require setup
times. For example, in the ion implantation work area, dopants have to be changed frequently,
and machines have to be cleaned. The effort to do this change depends on the dopant required
by the previous lot.

Additional auxiliary resources, are sometimes necessary to process lots on machines. As
a typical example, photolithography machines need reticles to transfer the pattern of the inte-
grated circuit on the surface of the wafer. These auxiliary resources are quite expensive, and
are usually unique for each layer of each product. Then, high-mix fabs require a high number
of reticles while only a minimal number of each type are purchased. Managing this work area
is complex because the correct reticle must be available on the tool for the duration of the lot’s
processing. Recall that, in addition to production operations, lots must go through inspection
and measurement operations. These operations are performed on dedicated machines with
limited capacity. Hence, only a subset of lots is selected (also called sampled) for inspection.
These selection decisions are crucial in order to avoid the late detection of machine failures.
For example, a machine producing defective wafers will continue to do so until the wafers
processed on this machine are measured. After completing an operation on a machine, a lot
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must be moved to the next operation. These handling and transportation operations require
resources. In modern 300mm fabs, these operations are performed by Automated Material
Handling Systems (AMHS). When they are not upgraded by integrating an AMHS, 200mm
fabs operate in a semi-automated mode, meaning that operators perform lot transportation
and storage while lot loading and unloading and machine settings are automated. Whether
human or automated systems, handling resources impose capacity constraints on production
rates. When a lot is neither being processed nor being transported, it must be stored. Storage
spaces in a fab, called buffers, store waiting lots. Buffers can be dedicated to work centers,
work areas or a group of work areas. These buffers can be often assumed unlimited for fabs
that are mainly run manually. However, in 300mm wafer fabs, specific finite-capacity buffers
are used to allow automated transportation of jobs by the AMHS.

The complex, high technology nature of semiconductor manufacturing processes and
equipment leads to a significant uncertainty in the production process. Fabs must face un-
predictable events that cause disruptions of the production flow by responding as quickly
as possible. Production resources are subject to random failures and need random repair
times. At various points in the fab process, entire wafers are discarded, either because the
wafers failed inspection or because they are broken. If defective wafers are not scrapped,
they must be reworked by redoing one or more operations. Sometimes, certain processes
will be stopped until the results of some experiments are obtained, or engineering decisions
are made. Impacted lots in such case, called hold lots, can wait for days before engineering
decisions are made. The yields, whether process or probe, can be unpredictable, especially
for new processes (Bai and Gershwin (1989)).

The different aspects described above show the complexity of wafer fabrication, a com-
plexity that is rarely found elsewhere. When considering the crucial factors of competitive-
ness in semiconductor manufacturing and its high cost, the effective management of pro-
duction operations is critical. As wafer fabrication concentrates most of the capital cost and
most of the time of the semiconductor manufacturing process, the effective management of
these complex operations is decisive for the competitiveness of a company. First, due to the
high capital costs of wafer fabs, it is crucial to maximize the throughput of the fabs and the
machine utilization. In the fierce competition of the global market place, reducing produc-
tion costs is an essential lever for the competitiveness of a company. This reduction can be
obtained by effective management of resources, inventories, yield, and labor. In a situation
where prices, as well as the state of technology, have settled at a certain level, the capability
of improving both quality and delivery time performance, and reducing both the mean and
the variance of cycle times has become one of the most decisive factors for success. Cy-
cle time is defined in this context as the time between a lot being started in the fab and the
completion of the lot.
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1.2 Operations Management of a Wafer Fab

Due to the fierce competition and the complexity of wafer fabrication, the operations man-
agement faces different complex problems. To better position the encountered problems, it is
useful to recall that management decisions are often classified into three categories: Strate-
gic, tactical and operational decisions (Anthony (1965)). These decisions vary on their
impact in the company, their scope, and on the horizon they are applied. In the following,
different problems are described for the different decision levels, primarily focusing on those
concerning a single wafer fab.

Strategic decisions: For a wafer fab, these decisions involve the definition of the product
mix to manufacture and the necessary resources to acquire, so that the assigned ob-
jectives can be reached. Before the existence of a fab, these decisions include its
location, the selection of providers, the design of the plant layout and the structure
of its distribution network. These decisions establish the manufacturing capacity, by
choosing the type and the number of resources, either human, machines or information
systems. Strategic decisions regarding existing fabs impact the manufacturing capac-
ity and product mix. Deciding whether to manufacture a new product or acquire new
resources are strategic decisions. An example of a strategic decision is to upgrade a
200mm fab by integrating an AMHS. These decisions are strategic in the sense that
they have an enormous impact on the bottom line of the companies, and that the eco-
nomic and physical resources involved are such that these decisions are taken on a
horizon usually measured in years.

Tactical decisions: After designing the manufacturing system and its capacity, there are
many decisions related to how to make the best usage of this capacity. Tactical de-
cisions are part of these decisions to be taken for a mid-term horizon, usually several
weeks to one year. Whatever the considered time horizon, tactical decisions are taken
within the logical framework drawn by strategic decisions and do not seriously modify
the production capacities. Typical tactical decisions in manufacturing are production
planning decisions. Given forecasted demands and a finite manufacturing capacity, the
quantities to be achieved within a certain time bucket, a week or a month, should be
decided in such a way that certain performance measures of a fab are optimized. In
semiconductor manufacturing, these decisions are refined to determine the set of lots
to be launched in a wafer fab at the beginning of shorter time buckets, one or more
weeks in duration. These decisions are part of what is referred to as order release.

To cope with the high diversity of products, especially in high-mix fabs, and the short
product life cycles, machines are re-configurable to ensure the flexibility of the system.
Each operation requires a recipe which can be defined as a pre-planned and reusable
set of instructions and settings that specify how an operation is to be performed by
a machine. To make a machine capable of performing a the recipe of an operation,
a qualification in semiconductor manufacturing is needed. A qualification consists in
modifying the hardware and software part of a machine and testing that it is functional.
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Qualifying as much as possible operations on a machine makes the machine flexible
and allows the fab to cope with the diversity of products. Some qualifications can be
relatively quick to perform (e.g., equivalent to a production run), but others might be
very time-consuming (e.g., equivalent to a production cycle time) and hence costly.
Thus, deciding which operations to qualify on which machines is critical and impacts
the flexibility and the capacity of the production system. These decisions are part of
qualification management (see e.g. Johnzén et al. (2011) and Rowshannahad et al.
(2015)). Also, being complex, machines in semiconductor manufacturing are unreli-
able and are subject to frequent failures and unforeseen quality problems. Preventive
maintenance operations are used to reduce the number and the duration of these fail-
ures. However, at the same time, these operations reduce the machine capacity by
making the machine unavailable for production operations during maintenance oper-
ations. By trading off between planned unproductive downtimes due to maintenance
operations and the risk of unscheduled downtimes due to machine failures, preventive
maintenance planning helps to avoid the unexpected failures without stopping produc-
tion too often.

Operational decisions: These decisions have short term effects, ranging from minutes to
days. Because of the long horizon, strategic and tactical decisions use an aggregate
view of the production capacity and the demand. Operational decisions specify the
most detailed and precise instructions for executing tasks. Detailed data are needed to
capture the status of the production resources and the evolution of the demand. A sub-
stantial number of decisions can be classified as operational ones. Each time a machine
becomes available, the question of which product is next to be processed should be an-
swered. The answers to these decisions directly impact the utilization of machines and
the throughput of the fab, the inventory level and the cycle time of the product. As
there are machines that operate better than others from a quality perspective, these de-
cisions can also affect quality measures such as the yield. Production control solutions,
such as dispatching and scheduling, are used to guide or to take these decisions.

The problem of allocation involves other resources, not only production machines. The
AMHS, comprising a limited number of vehicles and rails, requires real-time manage-
ment. Dynamic requests are sent to the system to transport lots between the different
machines. These requests should be considered as soon as possible by allocating ve-
hicles. The route of the vehicle in the rail network must also be decided. When the
machine that must process the transported lot is not available, the question of where
to store the lot meanwhile should be answered. Other operational decisions are related
to inspection and measurement machines. Due mainly to their limited capacity, not all
lots can be measured. The right set of lots to measure should be selected to ensure that
the risk of quality problems on all the production machines is reduced as much as pos-
sible. In addition to the dynamic environment, events that disrupt production randomly
occur. The different decisions must be quickly reviewed to solve the problems. When
a failure or a quality problem occurs on a machine, a quick solution must be found.
It may be necessary to reallocate to other machines lots that are already allocated to a
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failed machine. Maintenance resources, such as technicians and necessary tools, must
be assigned to repair the concerned machine. These resources must be shared by cura-
tive maintenance and planned preventive maintenance operations. Unexpected events,
such as breakdowns, may also concern vehicles of the AMHS. Such events often lead
to the blocking of a section of a rail. If the situation is not well handled, the prob-
lem may quickly propagate and negatively impacts the production. Reallocation of the
vehicles and their rerouting must be decided to recover from such situations.

The decision hierarchy described above does not only have a pedagogical purpose. A
large number of decisions differ on their impact in the company, their scope, their timing,
their time horizon and the level of required data aggregation. It is not realistic to seek to
solve all these decision problems simultaneously. Hence, operations management has been
traditionally decomposed by adopting the described decision hierarchy, in which the various
decision problems are successively solved. By doing this, the degree to which a decision at a
given level, scheduling, for instance, can affect the company’s performance, is constrained by
decisions taken at higher levels of the hierarchy, such as production planning and qualifica-
tion management. This does not reduce the importance of decisions at lower levels. It is true
that when poor strategic decisions are taken, taking the best tactical decisions is not likely to
be of much help. It is also true that, without good decisions at the tactical level, taking the
best decisions at the strategic level will not lead to the expected results. The same interaction
exists between tactical and operational decisions. If it is not possible to solve all the decision
problems at all the decision levels, the performances of a wafer fab can only be better when
the different decisions of the same level are addressed in an integrated way. However, in
the context of the wafer fabrication, this is also difficult. Many challenges, from industrial
and scientific perspectives, still lie ahead for each of the individual problems. Then, when
solving a decision problem, to make sure that the interaction is not ignored, other decisions
are considered as constraints, and their complexity is simplified.

Within this context, the objective of this thesis is to develop a production control ap-
proach. The approach should optimize the different performance measures of a wafer fab
through a better allocation of the resources over time. As mentioned earlier, this can be per-
formed through dispatching or scheduling. The proposed approach is a scheduling solution
that is meant to replace the widely used dispatching rules. A comparison between these two
approaches is detailed in the next section. Again, it is not realistic to try solving the problem
of allocating all the machines of a wafer fab at the same time. At the operational level, the
model of the production resources and the production flows must be detailed as much as pos-
sible. However, an integrated, global model of a wafer fab with this level of details becomes
unwieldy, and the allocation decisions of production machines become computationally in-
tractable.

A practical and realistic approach is to decompose this complex problem into smaller
and more tractable subproblems. A quite natural decomposition approach consists in sepa-
rately managing the different areas of the fab. As highlighted before, machines of a specific
work area share the same capabilities. For example, while it is important to minimize setup
times in the photolithography or ion implantation work areas, it is important to utilize as



1.2 Operations Management of a Wafer Fab 11

Figure 1.2 – Overall structure of the scheduling system of a wafer fab (Sadeghi (2017))

much as possible the batching capacities of machines in the diffusion work area. Constraints
which come from process considerations are different from one work area to another. This
decomposition supports the development of models for individual work areas and proba-
bly gaining computational advantages by exploiting the special structure of the encountered
decision problems. However, solving tractable problems and gaining computational advan-
tages are not sufficient arguments for a company to adopt an optimization approach. Even
if the problem at a wafer fab is decomposed, only the global performances of the wafer fab
are important. When optimizing the production control of a work area, its interactions with
other work areas and its impact on the overall performances of the wafer fab must be taken
into consideration. Figure 1.2 shows the framework that is proposed by Sadeghi (2017). It
is proposed to guide the local scheduling solutions at work area level by providing global
information and targets. Targets are determined by a control approach that models the whole
fab and optimizes its overall performances. In this way, it is made sure that optimizing an
individual area is not done at the expense of the overall performance of the wafer fab.

In this thesis, the proposed scheduling approach is applied to the integrated control prob-
lem in the cleaning and diffusion areas. The motivations for such integration are given in
Section 2.1. The description of the studied work area with the different considered aspects is
detailed in Chapter 2. Due to the large number of constraints and criteria that are handled,
the proposed approach can be applied to different other areas such as the ion implantation
and the photolithography areas. In the remainder of this work, the industrial context is used
to illustrate the different features of the very general scheduling problem under study. In Sec-
tion 1.3, the improvements that can be brought by an optimized scheduling solution, com-
pared to the widely used dispatching solutions, are highlighted. Some modeling choices are
motivated, and some challenges are recalled. Section 1.4 provides a brief literature review
regarding the different considered features of the scheduling problems and the considered
solution approaches.
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1.3 Production Control in Wafer Fabrication

In today’s wafer fabs, scheduling solutions are still not widely applied (Mönch et al. (2012)).
Dispatching rules are often used for shop floor control. A dispatching rule selects the next lot
to be processed among the lots that are waiting in front of a machine group. This selection is
based on the priorities that are assigned to lots based on different lot and machine attributes.
For some sophisticated rules, upstream and downstream information can also be considered.
The persistence of their use in the industrial environment can be explained by the relative
easiness of their implementation and the “explainability” of the proposed decisions, i.e.,
the easiness of explaining and understanding their decision logic. More than the easiness
of understanding, dispatching rules can be enriched by shop floor managers based on their
insights and experience.

Besides these strengths, weaknesses of dispatching rules can be highlighted. First, they
are generally myopic in space and time. They are myopic in space as they are designed
to select a lot to process among the queue of lots waiting in front of a particular machine
group. Even if some upstream and downstream information is taken into consideration, ma-
chine groups in the same shop floor are managed independently. While dispatching rules are
adapted to the dynamic environment of a fab, they are myopic in time as decisions are made
without looking far in the future. A second reason lies in the fact that it may be challenging
to adapt dispatching rules to different situations in the shop floor. In a fast-changing indus-
try like the semiconductor industry, changing situations on the shop floor that result from
changes in the product mix is rather frequent. Finally, a third reason can be mentioned as a
consequence of the second one. Facing new situations, shop floor managers tend to increase
the complexity of the associated dispatching rules to handle new situations or exceptions. By
doing this, dispatching rules may quickly lose their advantage of being understandable.

These weaknesses explain why sequences of lots proposed by dispatching rules are con-
sidered suggestive and not prescriptive. Operators and shop floor managers usually take the
final decisions. When the propositions are judged relevant, the associated lots or batches are
loaded into machines in the given sequence. The myopic character of dispatching rules in
space are corrected in two ways in practice. A unique shop floor manager may communicate
to operators a modified solution to make sure that the overall performance of the whole area
is primarily optimized or to ensure the performance of a particular machine group. Operators
and managers may also communicate with upstream areas to ask for lots that allow their area
performance to be optimized. The propositions of dispatching rules may also be modified to
answer the request of a downstream area. These practices also allow the myopic character of
dispatching rules to be dynamically corrected.

Instead of using dispatching systems, optimized scheduling solutions are a promising
alternative for shop floor control (Mönch et al. (2011)). The considerable amount of data
that such systems require is no longer an obstacle thanks to the high degree of automation
and the high storage capacity of databases allowing real-time data collection. Also, the in-
creasing computation power of modern computers makes it possible to propose high-quality
schedules in a short computational time, which opens up the opportunity of using the op-



1.3 Production Control in Wafer Fabrication 13

timized scheduling solutions in a dynamic environment. Before detailing how scheduling
systems can overcome the weaknesses of dispatching systems, let us highlight in Figure 1.3
the flexibility that scheduling systems bring, giving the different uses that can be made of
control systems. The horizontal axis represents a simplified view of the degree of freedom of
a human scheduler to deviate from the decisions proposed by the system. The vertical axis
represents the decisions that are expected from these solutions, from only batching decisions
to complete scheduling decisions. Note that this graph can be adapted to represent other
decision hierarchies for other areas than the diffusion area and that each level of decisions
on the vertical axis induces all the previous levels. In the studied industrial context, the cur-
rent dispatching system is used to propose batching and sequencing decisions of the batches
on machine groups, and it is not mandatory to follow these propositions. To obtain more
refined decisions, the dispatching system must be reviewed and improved. It is difficult to
consider the suggestions of such a system as firm decisions to be followed by operators due
to the weaknesses described above. Regarding optimized scheduling systems, using a “sim-
ple” post-processing, the proposed schedules can be modified to be adapted to the required
decisions types. Also, by overcoming the weaknesses of dispatching systems, scheduling
systems can prescribe solutions to implement.

Figure 1.3 – Use spectrum of scheduling and dispatching systems

While dispatching means assigning the next job to be processed from a set of waiting
jobs, scheduling is the process of allocating scarce resources over time. The conventional
approach for scheduling is to solve an optimization model that encompasses all the rele-
vant constraints with the specific objectives to optimize. Since scheduling decisions are
time-related, a certain time horizon is inherent to any scheduling process. This ability to
project into the future makes optimized scheduling solutions preferable to dispatching sys-
tems that are myopic in time. Being objective-oriented instead of rule-oriented, scheduling
can also support the scheduling of a whole area, as long as all the relevant constraints are
considered, instead of being myopic in space and restricting the decisions to a particular
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machine group. Moreover, the objective-oriented paradigm of scheduling optimization al-
gorithms makes them more robust to changing situations in the shop floor. Because of the
NP-hardness and very large sizes of most scheduling problems in wafer fabs, heuristics are
typically used to solve them. Even when there are radical changes in the shop floor leading
to new constraints or new objectives, the modularity of scheduling approaches helps to better
deal with these changes than dispatching rules that need to be redesigned.

Regarding the input of scheduling systems, two major categories can be identified: Deter-
ministic and stochastic (Mönch et al. (2012)). In the case where all the characteristics of the
decision problem (processing time of each operation, release date, due date, and so forth) are
well known and single-valued, the scheduling problem is of deterministic type. In contrast, it
is considered of stochastic type if at least one of these characteristics is not known determin-
istically but only with a probability distribution. While stochastic scheduling problems are
academically interesting, they are not often practical (Mönch et al. (2011), Framinan et al.
(2014a)). This thesis focuses then on developing algorithms for deterministic scheduling.
Another assumption that is made is that all the relevant data of the decision problem are
known in advance, i.e., at the point in time where the planning procedure starts. This is what
is qualified in the literature as static scheduling, in opposition to dynamic scheduling where
some parameters are unknown in advance, and no a priori knowledge about them is assumed
(Blazewicz et al. (2007)).

These assumptions can be questionable in a dynamic environment where lots arrive dy-
namically, machines are subject to unpredictable breakdowns and rework occurs randomly.
Even in these conditions, several arguments can be found in favor of a deterministic and
static formulation of the shop floor scheduling problem. Ovacik and Uzsoy (2012) provide
several arguments in this direction, and the ones that motivate the choice of a deterministic
formulation over a stochastic one are summarized in the following. First, if the uncertain-
ties on the shop floor are extreme, management priorities should focus first on locating and
eliminating their sources, without what no scheduling system will work well. Second, the
advent of computerized shop floor information systems considerably reduces uncertainties,
as an important source of these uncertainties lies in the lack of accurate information on what
is taking place in the fab. Finally, adopting a stochastic formulation is not necessarily realis-
tic, and when this modeling is the most adapted one, the study of a deterministic formulation
yields essential insights into the solution of the stochastic formulation.

If the arguments given above motivate the choice of the deterministic formulation of the
studied scheduling problem, they do not imply that the dynamic aspect of the shop floor is
ignored. The scheduling solution needs to be complemented by some mechanism to make
sure that unforeseen disruptions on the shop floor or the arrival of new lots are taken into
consideration in the proposed schedules. The scheduling algorithm to be proposed in this
thesis is used to develop off-line schedules that specify decisions for a certain horizon in
the future. These schedules are referred to as predictive schedules since they represent the
prediction of what will occur on the shop floor under the ideal circumstances of everything
going according to the plan. To cope with the dynamic aspect of the shop floor, a schedule
is generated for a new horizon periodically. This process is usually referred to as a Rolling
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Horizon Procedure. Within this framework, when a scheduling decision is to be made at
any point in time, we solve a subproblem consisting of the jobs currently on hand and a
subset of the jobs that will arrive shortly. Arrival times are assumed to be known a priori. In
addition to this rolling horizon procedure, a strategy that defines how unforeseen events are
considered must be selected, so that schedules reflect more accurately the current state of the
shop floor. In the literature, a periodic strategy is defined as a strategy where rescheduling
occurs regularly with a constant time interval (the rescheduling period), ignoring any event
that occurs between consecutive rescheduling times. For example, in our case, a schedule
could be generated every 15 minutes on a horizon of 12 hours or more. Under an event-driven
strategy, the rescheduling process is also triggered whenever a predefined event occurs.

In real applications, modeling a scheduling problem and developing optimization algo-
rithms to solve is only part of the story. The optimization engine has to be embedded in a
system that enables the decision-maker to actually use it. The system has to be integrated into
the information system of the enterprise, which can be a formidable task (Pinedo (2016)). In
addition to the development or adaptation of the scheduling engine, it is required to design
and implement a database management module. This module makes factory’s databases and
knowledge-bases suitable for input to a scheduling engine. This requires significant efforts.
Any additional complexity in these tasks should be counterbalanced by a significant gain in
other aspects. Any decision to be taken regarding the development of the scheduling sys-
tem, should not only consider the efficiency of the scheduling algorithms. The impacts of
such decisions on the development or the maintenance of the data management module, for
instance, should be taken into consideration.

In this section, some weaknesses of the widespread used dispatching systems are first
highlighted. After mentioning some technical conditions that make scheduling systems ap-
plicable in industry, the gains that can be brought by using scheduling systems are briefly
recalled. The choice for a static and deterministic formulation of the studied scheduling
problem is motivated, and a general framework that allows solving deterministic problems
within a dynamic and stochastic environment is briefly described. In the remainder of this
chapter, the different features of the considered scheduling problems and the solution ap-
proaches are defined and the related works reviewed.

1.4 Literature Review

A tremendous amount of research on scheduling was conducted in the last decades. General
introductions on scheduling are provided in the textbooks of Blazewicz et al. (2007), Brucker
(2007), Framinan et al. (2014b) and Pinedo (2016). To solve scheduling problems, diverse
solution approaches are designed in the literature. In Section 1.4.1, a brief overview of these
approaches is given. Most of the reviewed works in this thesis use approximation approaches
as this thesis proposes a heuristic approach. In Section 1.4.2, a sample of works dealing with
one or more features of the studied scheduling problem are reviewed. The classical job-shop
scheduling problem, as a basis of the tackled problem, is first reviewed in Section 1.4.2.1. In
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Section 1.4.2.2, we briefly describe the different constraints that are considered in this thesis
and review some works that consider these constraints within a job-shop environment. The
most used criteria in the scheduling literature are then reviewed in Section 1.4.2.3. Some of
the specific criteria that are used within the context of semiconductor manufacturing are also
recalled.

1.4.1 Solution Approaches

Known and successful algorithms for scheduling problems cover a wide range of algorithms
that can be divided into two classes: Exact algorithms and approximation algorithms. Exact
algorithms produce optimal solutions, but their running time cannot be bounded from above
by a polynomial in the size of an instance for NP-hard problems if P , NP. In the fol-
lowing, the most commonly used exact algorithms are briefly described. Branch-and-bound
procedures are search methods by implicit enumeration of the set of candidate solutions, that
is thought of as forming a rooted tree with the full set at the root. As its name implies, this
method consists of two fundamental procedures: Branching and bounding. Branching is the
procedure of partitioning a large problem into two or more sub-problems usually mutually
exclusive. Bounding calculates a lower bound on the optimal solution value for each sub-
problem generated in the branching process. Dynamic programming relies on the idea of
transforming the resolution of one problem into the resolution of subproblems, related by
a recurrence relationship on the value of the objective function. Stored solutions for sub-
problems are combined in order to obtain solutions of larger subproblems until the original
problem is solved. Constraint Programming is based on the feasibility and the propagation
of constraints. Besides these generic methods, some particular algorithms exploit specific
properties of scheduling problems in order to construct a solution which is guaranteed to be
optimal. Johnson’s and Moore’s algorithms (Johnson (1954), Moore (1968)) are examples
of such algorithms.

Approximation algorithms (heuristics) are an interesting alternative to exact algorithms
for solving NP-hard problems, as heuristics often provide reasonable trade-offs between so-
lution quality and computational effort. They can provide performance guarantee if it is
possible to quantify the gap between the best-provided solution and the optimal solution,
which is usually not the case. Even if no classification of approximation algorithms can be
unambiguous, it is useful to consider one. Here, approximation algorithms are differentiated
as Construction heuristics and improvement heuristics. Construction heuristics are specifi-
cally tailored for a particular problem for which they iteratively build a solution. The most
commonly used construction heuristics for scheduling problems are list algorithms where the
list of operations is sorted according to a decision strategy called a dispatching rule such as
SPT (Shortest Processing Time), EDD (Earliest Due Date), FIFO (First In First Out). Most
construction heuristics are greedy, meaning that out of the remaining operations/tasks to be
included to a so far generated partial schedule, the next operation is chosen to be the one that
is contributing best to the objective function under consideration at the time the decision is
made. These heuristics may construct solutions that are optimal for some special scheduling
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problems. In general, the generated schedules are either active or non-delay (Pinedo (2016)).
Improvement heuristics (including metaheuristics) are high level algorithms for exploring

search spaces with relatively few modifications to make them adapted to a specific problem.
According to Blum and Roli (2003), metaheuristics can be differentiated between trajectory
methods and population methods. Among trajectory methods, we can mention Simulated
Annealing (SA, Kirkpatrick (1984)) , Tabu Search (TS, Glover (1989)), Greedy Random-
ized Adaptive Search Procedure (GRASP, Feo and Resende (1995)), Variable Neighborhood
Search (VNS, Hansen and Mladenović (1997)), Guided Local Search (GLS, Voudouris and
Tsang (1999)) and Iterated Local Search (ILS, Lourenço et al. (2003)). Among population
metaheuristics, we can mention Genetic Algorithms (GA, Goldberg and Holland (1988)) and
Ant Colony Optimization (ACO, Dorigo and Di Caro (1999)).

1.4.2 Complex Job Shop Scheduling

Scheduling deals with the allocation of resources to tasks over given time and its goal is to
optimize one or more objectives (Pinedo (2016)). Significant research on scheduling was
conducted in the last decades. General introductions on scheduling are provided in the text-
books of Blazewicz et al. (2007), Brucker (2007), Framinan et al. (2014b) and Pinedo (2016).
To classify scheduling problems, they provide updated versions of the classification scheme
introduced in Graham et al. (1977). The resources and tasks in an organization can take
many different forms, depending on the studied sector of activity. In the following, the brief
literature review mainly addresses different aspects of manufacturing production scheduling.
Most of the reviewed works use approximation approaches as this thesis proposes a heuristic
approach. Section 1.4.2.1 discusses the classical job-shop scheduling problem, considered
as a basic problem of the studied problem in this thesis. Section 1.4.2.2 briefly defines the
different constraints that are found in the studied context and reviews works that integrate
them. Section 1.4.2.3 give an overview of the different criteria that are considered in the
scheduling literature before listing those that are particularly studied within the context of
semiconductor manufacturing.

1.4.2.1 Classical Job-Shop Scheduling

In a job-shop scheduling problem, a set of jobs have to be processed on a set of machines,
and each job goes through several sequential operations (a routing) before being completed.
A machine can only perform one operation at a time and preemption is not allowed. Each
operation can only be performed on one specified machine. This scheduling problem is
qualified as classical as the earliest formulations are proposed in the fifties (Bowman (1959)).
It is a hard scheduling problem as it was proven to be NP-hard in Garey et al. (1976). An
overview of solution methods, exact and approximation algorithms, is provided by Błażewicz
et al. (1996) and Jain and Meeran (1999). Successful solutions methods are often based on
the disjunctive graph representation that concisely models dependencies between operations.
Roy and Sussmann (1964) introduced this representation.
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In the last decades, different heuristic approaches efficiently solving the job-shop schedul-
ing problem were proposed. Based on a decomposition approach, the shifting bottleneck
heuristic of Adams et al. (1988) is one of the first heuristic approaches that effectively tackle
the problem. The idea is to solve for each machine a one-machine scheduling problem to
optimality under the assumption that many arc directions in the optimal one-machine sched-
ules coincide with an optimal job shop schedule. As the name suggests, the shifting bottle-
neck heuristic schedules bottleneck machines first. Simulated Annealing was first used by
Van Laarhoven et al. (1992) to solve the job-shop scheduling problem. As a neighborhood
function, swapping resource arcs that are on the critical paths is proposed. This neighborhood
function is shown to be connected, meaning that, from any solution, there is a finite number
of transitions (swaps of resource arcs) that can lead to an optimal solution. It is also shown
that swapping critical arcs always leads to a feasible solution and that no improvement can be
expected from swapping resource arcs that are not critical. Taillard (1994) propose a parallel
tabu search technique that uses the neighborhood function of Van Laarhoven et al. (1992).
Nowicki and Smutnicki (1996) propose an efficient tabu search technique with a neighbor-
hood function that uses the notion of block of Grabowski et al. (1986). A block corresponds
to the maximal subsequence of critical operations without idle time on the same machine.
Instead of swapping all critical arcs like in Taillard (1994), a single critical path is arbitrarily
selected, and only critical arcs at the extremities of blocks are swapped. Besides simulated
annealing and the tabu search, other trajectory metaheuristics are used to solve the job-shop
scheduling problem, like GRASP in Aiex et al. (2003). Different population metaheuristics
are also designed to solve this problem such as genetic algorithm in Gonçalves et al. (2005)
and ant colony optimization that is combined with tabu search in Huang and Liao (2008).

This underlying problem is enriched by considering additional constraints. A well-
studied problem that generalizes the job-shop scheduling problem is the flexible job-shop
scheduling problem that was first studied by Brucker and Schlie (1990). Contrary to the clas-
sical job-shop scheduling problem, the flexible variant assumes that every operation can have
more than one machine on which to be processed. The problem is thus to determine both an
assignment and a sequence of the operations on the machines. Different solution approaches
are used to tackle this problem, as shown in the survey of Chaudhry and Khan (2016). Only
a few works proposing efficient heuristics are given here as examples. Brandimarte (1993) as
well as Hurink et al. (1994) present a tabu search method for the problem. An extended ver-
sion of the disjunctive graph model is proposed in Dauzère-Pérès and Paulli (1997), by taking
into account the fact that operations must be assigned to machines. A connected neighbor-
hood function, where there is no distinction between reassignment and resequencing, is used
within a tabu search heuristic. Improved results are obtained by the tabu search approach of
Mastrolilli and Gambardella (2000). The main contribution of this research is the reduction
of the size of the neighborhoods by only focusing on moves that lead to the lowest makespan.
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1.4.2.2 Constraints

Manufacturing scheduling is subject to a large variety of constraints. The reader can refer
to the different general introductions on scheduling that are provided in the textbooks of
Blazewicz et al. (2007), Brucker (2007), Framinan et al. (2014b) and Pinedo (2016). For the
case of semiconductor manufacturing, the different encountered constraints are described for
example in Mönch et al. (2011) and Yugma et al. (2015). In this section, we briefly describe
the different constraints that are considered in this thesis and review some works that consider
these constraints within a flexible job-shop environment. These constraints within the studied
industrial context are described in detail in Section 2.3 and formalized in Section 4.1.

Release Times, Due Dates and Weights In the job-shop scheduling problem, it is as-
sumed that all jobs are available at the beginning of the scheduling horizon. In practice,
however, jobs may not be processed for various reasons including dynamic job arrivals or
prior scheduling decisions. The earliest time a job can start is called release time. Further-
more, a job may have to be completed at some given time, called due date, for instance,
due to delivery time commitments to customers and planning decisions. For each job, its
release time and due date specify a time window within which its operations should or must
be executed. Also, in practice, jobs may have a different level of importance. Depending on
the context, the importance of a job can be evaluated depending, for instance, on the wait-
ing time, the customer for which the job is assigned, the closeness of the due date given by
the customer, the situation towards some process or planning constraints. To express this
importance, each job is assigned a weight.

Re-entrance In a classical job-shop, each job usually visits a machine at most one time.
Different situations can be found in different industries where jobs might visit one specific
machine or stage more than once: Double firing processes in ceramic tile manufacturing,
the repeated polishing operations in furniture manufacturing (Framinan et al. (2014b)) and
semiconductor manufacturing (Ovacik and Uzsoy (2012)). In wafer fabrication, this is due
to the fact that the basic set of processes required for a layer of circuitry are similar, and there
may be more than twenty layers on a complex circuit such as a microprocessor. The terms
re-entrance or re-circulation are used in the literature to qualify these situations. A study the
re-entrant job-shop scheduling problem can be found in, for example, Zoghby et al. (2005).

Setup times In the classical job-shop scheduling problem, it is assumed that an opera-
tion can start on a machine as soon as this machine completes the previous operation. In
practice, however, a machine may need for example adjustments, cleaning or testing before
starting the newly available operation. In the literature, these operations carried out at ma-
chines that are not directly related with the processing of the jobs are commonly referred to
as changeovers or setup times since they model the time that is needed to set up a machine.
Extensive surveys on the integration of these constraints in scheduling problems can be found
in Allahverdi (2015) and Allahverdi et al. (2008). Here, setup times are broadly differenti-
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ated according to whether they depend or not on the job sequence and the fact they might be
anticipatory or non-anticipatory. Sequence-dependent setup times model the situation where
the duration of the setup time depends both on the job that was just processed on the machine
and on the next job to be processed on the machine. Setup times are called anticipatory or
separable if they can be performed as soon as the machine completes the previous job in
the sequence. Conversely, non-anticipatory setup times require the availability of both the
machine and the next job in the sequence before carrying out the setup. In semiconductor
manufacturing, sequence-dependent setup times occur in some work areas, such as ion im-
plantation and photolithography. Several works in the literature propose a heuristic to solve
the job-shop scheduling problem with setup constraints. For example, the makespan is min-
imized using tabu search in Shen (2014) and simulated annealing in Naderi et al. (2010),
while the maximum lateness is minimized using tabu search in González et al. (2013). Shen
et al. (2018) address a flexible job-shop scheduling problem with sequence-dependent setup
times and where the objective is to minimize the makespan.

Availability constraints The continuous availability of machines during the whole schedul-
ing horizon is an assumption that might be justified in some cases but cannot apply to all
industrial settings. Semiconductor manufacturing is an example where it is essential to con-
sider machine availability constraints. In this industry, machines are complex, thus requiring
frequent preventive maintenance, and very expensive, thus must be used as much as possible
(Bureau et al. (2006)). Also, due to the complexity of scheduling problems in this industry,
a rolling horizon procedure is necessary to decompose the problem over time (Ovacik and
Uzsoy (2012)). When a scheduling problem is solved, some of the decisions from a pre-
vious schedule have to be considered, making some machines unavailable at the beginning
of the horizon for the newly available jobs. It is then important to consider these machine
unavailabilities in order to produce robust and feasible schedules. Surveys of scheduling
problems with machine availability constraints can be found in Schmidt (2000) and Ma et al.
(2010). Here, we only provide an overview of previous studies on scheduling problems with
unavailability periods. In the research studying the integration of availability constraints in
scheduling problems, different ways of modeling availability constraints have been proposed
and investigated in different machine environments. Regarding the possibility for an opera-
tion to be interrupted by an unavailability period, Lee (1999) introduces the semi-resumable
case that includes two cases: (i) Resumable, where the operation can be continued after be-
ing interrupted without any penalty after the end date of the unavailability period and (ii)
Non-resumable, where the operation needs to be fully restarted. Aggoune (2002) introduces
the fourth case for an operation to be interrupted by an unavailability period, called non-
preemptive, to model the situation where an operation can be interrupted neither by another
operation nor by an unavailability period.

When unavailability constraints are due to preventive maintenance, two additional cases
can be distinguished. The first case, called deterministic, is when maintenance periods are
fixed in advance. The second case, called flexible, corresponds to the situation where mainte-
nance periods also have decision variables, i.e., each maintenance period has to be scheduled
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in a given time window. Azem et al. (2012) propose heuristics for the job-shop problem with
resource availability constraints where preemption between operations and unavailability pe-
riods are allowed and unavailability periods are flexible. Gao et al. (2006) tackle the flexible
job-shop scheduling problem with non-fixed availability periods using genetic algorithms.
In Zribi et al. (2008), a hierarchical approach is proposed that first solves the assignment
problem and then the sequencing problem in the multipurpose machine job-shop scheduling
problem. Mati (2010) proposes a tabu thresholding heuristic to solve the non-preemptive
job-shop scheduling problem with machine unavailability for makespan minimization. The
metaheuristic uses a new block-based neighborhood function, in which the block concept is
generalized to include the unavailability periods of machines. Some sufficient conditions are
also proposed to eliminate non-improving moves that involve operations at the borders of
unavailability periods. Tamssaouet et al. (2018) investigate the job-shop scheduling problem
with availability constraints. Changes that are related to the introduction of unavailability
periods are highlighted, and a redefinition of critical operations is proposed. A move evalua-
tion function that allows ignoring a large proportion of non-improving moves is used within
simulated annealing and tabu search heuristics.

Batching processing A machine may be able to process several jobs simultaneously. These
machines are called batching machines, while a batch is defined as a group of jobs that
have to be processed jointly (Brucker et al. (1998)). A batch scheduling problem consists
in grouping the jobs on each machine into batches and in scheduling these batches. Two
types of batching problems can be found: Parallel processing (p-batching ) and sequential
processing (s-batching ) (Mönch et al. (2012)). The term p-batching refers to the capability
of machines to process more than one job at the same time. The s-batching refers to the
presence of sequence-dependent setup times. In this case, jobs are grouped into families so
that major setup times only occur when finishing production of one family while there is
no setup times or minor ones between jobs of the same family. Surveys related to batching
in general and to batching for semiconductor manufacturing can respectively be found in
Potts and Kovalyov (2000) and Mathirajan and Sivakumar (2006). As can be seen in these
surveys, scheduling on a single or parallel batching machines received most the research
attention. In practice, these problems most of the time are solved using dispatching rules
instead of optimization approaches. Below, some works that consider batching constraints
within a job-shop environment are reviewed.

Most existing solution approaches for complex job-shop scheduling problems with batch-
ing machines rely on the disjunctive graph representation. A modified shifting bottleneck
heuristic of Adams et al. (1988) is also proposed in Ovacik and Uzsoy (2012). The modified
disjunctive graph representation of Ovacik and Uzsoy (2012), qualified as a batch-aware
disjunctive graph in Knopp et al. (2017), introduces dedicated nodes to represent batching
decisions explicitly. As the combination of delayed precedence constraints that are required
by the shifting bottleneck heuristic and the dummy batching nodes produce cyclic graphs,
Mason and Oey (2003) propose a cycle elimination procedure to promote cycle-free sched-
ules. This paper considers a complex job-shop scheduling problem and batch processing ma-
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chines while minimizing the total weighted tardiness. The same representation and heuristic
are also used in Mason et al. (2005) and Mönch and Rose (2004). In Mönch et al. (2007),
the considered job-shop environment contains parallel batching machines, machines with
sequence-dependent setup times and re-entrant process flows. It is shown that the use of more
advanced subproblem solution procedures, like a genetic algorithm, in a shifting bottleneck
heuristic for complex job shops obtains better results compared to when using dispatching-
based procedures. A simulated annealing heuristic is presented in Yugma et al. (2012) which
relies on the batch-aware disjunctive graph and on batch specific moves where different ob-
jectives are optimized. This thesis uses the heuristic approach proposed by Knopp (2016) and
Knopp et al. (2017) that relies on a novel modeling approach, called batch-oblivious. As in
a classical conjunctive graph, the batch-oblivious conjunctive graph uses nodes to uniquely
model operations and arcs to model precedence constraints on routes and resources. Instead
of inserting additional nodes and arcs, batches are encoded in the arc weights. This new
representation has several advantages. It reduces the structural complexity of the graph and
allows reusing ideas and techniques for less complex problems such as the move proposed
by Dauzère-Pérès and Paulli (1997) for the flexible job-shop scheduling problem. Last but
not least, an integrated construction algorithm is proposed that simultaneously computes start
dates and improves the solution during the graph traversal

Time lags In the classical job-shop scheduling problem, jobs are allowed to wait indefi-
nitely in front of the machine of its next operation. In practice, there are many situations
where this waiting time is constrained. The extreme situation, commonly known as no-wait,
is where the operations of jobs must be carried out without interruptions. In the semiconduc-
tor manufacturing, intermediate situations between assuming indefinite waiting times and the
no-wait case are found, where a maximum waiting time is allowed. In the literature, this is
referred to as maximum time lag constraints. For example, there is often a time restriction
between operations in the etch work area and the oxidation/deposition/diffusion work area
(Mönch et al. (2011)). These time windows are installed by the process engineering depart-
ment to prevent native oxidation and contamination effects on the wafer surface. In general,
maximum time lags can occur for arbitrary pairs of operations of the same job. Thus, time
lags can be adjacent or overlapping and, at the same operation, one maximum time lag can
start, and another one can end. An overview and classification of different maximum time
lag constraints that appear in semiconductor manufacturing is given in Klemmt and Mönch
(2012). The addition of time lag constraints between successive job operations complicates
even the usually simple task of finding a feasible schedule. Assuming that the waiting time
can be indefinite, the classical job-shop scheduling problem also assumes that a job can
start its next operation just after completing the previous operation. Similarly, jobs can be
constrained in some situation to wait until a given minimum time has elapsed since the com-
pletion of the previous operation. Minimum time lags may be used to model transportation
delays between two machines, the duration of activities that do not require resources (like
drying or cooling down), or intermediate processes on non-bottleneck machines between
two bottleneck machines (Zhang (2010)).
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Few works considering time lags within job-shop scheduling problems can be found
(González et al. (2015)). Based on a disjunctive graph modeling, a memetic algorithm is
proposed in Caumond et al. (2008) to solve the job-shop scheduling the problem with max-
imum time lags between successive operations. Artigues et al. (2011) present a heuristic
approach using an insertion heuristic and resource constraint propagation. Lacomme et al.
(2012) consider generic time lags between arbitrary operations and propose a randomized
heuristic. González et al. (2015) address the job-shop scheduling problem with time lags and
sequence-dependent setup times. A scatter search approach, based on tabu search and path
relinking, is proposed while using neighborhood structures aiming at reducing the makespan
and regain feasibility. A generalization of the classical job-shop scheduling problem with
release times, minimum time lags and a general precedence graph is considered in De Bon-
tridder (2005). A tabu search algorithm is proposed to minimize the total weighted tardiness.

Complex machines In deterministic problems, it is usually considered in the literature that
the processing time of an operation on a machine is fixed and known in advance. This mod-
eling may be unrealistic when considering machines that show complex internal behavior.
In this work, a machine is qualified as complex when the loading sequence of such machine
influences the processing times of operations. A particular case of complex machines, found
in semiconductor manufacturing and well studied in the literature, are cluster tools. A cluster
tool combines several single-wafer processing chambers within a closed environment with a
wafer handling robot. Cluster tools have been increasingly used for many processes, includ-
ing photolithography, etching, deposition, and testing. Lee (2008) provides an overview of
the literature on cluster tool scheduling. Most of the scheduling literature regarding cluster
tools deals with internal scheduling (Mönch et al. (2011)), using dispatching rules or cyclic
scheduling. Usually, from the perspective of semiconductor manufacturers, modifying these
internal schedulers is difficult as they are proprietary to the manufacturer of the tools. The
only degree of freedom to optimize the performances of such machines is the sequencing
of jobs before their loading (Geiger et al. (1997)). The external scheduling of cluster tools,
i.e., the job sequencing for this type of equipment, is challenging because of the cluster tool
control and architecture (Dümmler (1999)). As a consequence, different sequences of lots
will lead to different operation cycle times, i.e., the time between the processing start of the
operation and its processing end on the machine. Regarding their modeling, there are in the
literature two ways of dealing with the external scheduling of cluster tools. The first way con-
sists in using a detailed simulation model of a cluster tool to evaluate the cycle times for job
sequences for the scheduling algorithm (Dümmler (1999)). In the second way of modeling
cluster tools, cycle time approximations are used, e.g., Niedermayer and Rose (2004).

Some machines found in the diffusion and wet cleaning area can be qualified as com-
plex machines, without being cluster tools. However, as these two classes of tools share a
complex behavior (Rotondo et al. (2015a)), studies conducted on cluster tools can provide
useful insights into the behavior of diffusion machines and their modeling. Different reasons
make, for example, wet benches complex: The possibility to have different batches running
in parallel, the absence or the limited capacity of internal storage, the presence of bottleneck



24 Chapter 1: Industrial and Scientific Context

components, the presence of internal scheduling algorithms, more or less sophisticated, and
the diversity of processes with different processing times. Several works in the literature
study the scheduling of wet benches. Lee et al. (2007a) consider the cyclic scheduling of
jobs with different processing of a wet bench machine. Based on conditions for preventing
deadlocks and collisions, deduced from the Petri net modeling of wet operations, a mixed
integer programming model is proposed for determining the robot task sequences, the jobs
in progress at the baths, and a timing schedule. The internal scheduling of wet bench ma-
chines is also solved using Constraint Programming (Novas and Henning (2012)) and branch
and bound algorithms (Kim et al. (2012), Kim et al. (2014)). Geiger et al. (1997) formulate
the problem of optimizing throughput of a wet bench machine as a permutation flow-shop
scheduling problem with no-wait and blocking constraints, with the objective of minimizing
the makespan. Construction heuristics and a tabu search are proposed to solve this problem.
To evaluate the quality of a solution, each new permutation is passed through a robot con-
trol logic that was developed to mimic the actual controlling algorithm that is not available.
Based on the same argument, Rotondo et al. (2015b) use a genetic algorithm to compute per-
mutation sequences that are fed to a scheduling module that mimics the internal scheduling
algorithm. In all the reviewed works dealing with the external scheduling of wet benches, it
is always assumed that the batches are already formed.

In this thesis, the complexity of wet benches is handled by modeling in detail their internal
resources and constraints. The proposed approach is based on the modeling, called route-
graph-aware conjunctive graph, introduced by Knopp et al. (2014) in order to model complex
non-batching machines. As the graph formulation of Knopp et al. (2014) is closely related to
the job-shop scheduling formulation with processing alternatives introduced in Kis (2003),
the results of the last work are applied and adapted. In Chapter 4, the batch-oblivious and
route-graph-aware conjunctive graph representations are completely merged so that complex
batching machines such as wet benches can be modeled in detail.

Production targets Different reasons can explain the complexity of semiconductor man-
ufacturing: Multiple product types, long, re-entrant, and constrained process flows, diverse
types of a large number of expensive and complex machines, unpredictable yield and ma-
chine downtimes. It is difficult and time-consuming to schedule lots within such a com-
plex and large scale manufacturing system. Recall that the wafer fabrication process goes
through multiple workshops, each consisting of machines with similar capabilities, specific
constraints, and objectives. Accordingly, the scheduling problem at the fab level is decom-
posed into sub-problems, and the decisions are taken for each of the individual workshops
(Ovacik and Uzsoy (2012). By doing this, to fully realize the potential improvements that
can be brought by scheduling, the interrelation and interaction between these local solutions
should be ensured. Planning and decision making in semiconductor manufacturing comprise
several decision levels with scopes that range from the entire supply chain to the internal
dispatching decisions within cluster tools. The scopes of different decision levels differ in
their time horizon, the level of modeled detail, and the granularity of decisions to be taken.
The decisions taken at a level become constraints to satisfy or targets to meet for the lower
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levels. This hierarchical approach is widely accepted in semiconductor manufacturing (Uz-
soy et al. (1994)). Shop-floor control solutions such as scheduling and dispatching are at
the lower level in this hierarchy. When managing an individual work area, the consistency
between local and operational decisions should be made consistent with the production plan
determined at the fab level. A way of doing this is to feed aggregate information on global
production objectives to the shop-floor controlling solution. From a scheduling perspective,
release dates, due dates, job weights or production targets can take factory level objectives
into account (Mönch and Drießel (2005), Sadeghi et al. (2015)). As the three first parameters
are already discussed earlier, a focus is given below on production targets.

Due to the complexity of semiconductor manufacturing, it is common to set daily produc-
tion targets by product type and by production stage. These production targets set a bridge
between shop-floor control and the master production plan. In addition to the objective of
guiding shop-floor controlling solutions, different operational objectives motivate production
targets: Ensure the “linearity” of the production line, reduce the WIP and cycle times, and
maximize tool utilization. Few works discussing the determination of production targets can
be found in the literature. Chang et al. (1995) present an iterative algorithm for determining
daily production targets and the corresponding machine allocation by product type and by
production stage. After determining these targets with infinite capacity, they are modified by
taking into consideration finite capacity and how many wafers may flow into the stage from
its upstream stages within one day. In Wu et al. (1998), a computer-aided decision support
system intended for daily target setting is described. The procedure computing the daily pro-
duction targets at each stage and for each product is based on the master production schedule
and capacity estimation. The targets serve as a guideline for dispatching by driving them
to meet the higher level and mid-terms targets from the master production schedule and to
maximize capacity utilization. Kao and Chang (2018) propose an approximation approach
for computing production targets while taking into consideration the induced variation on the
wafer flows. Sadeghi et al. (2015) proposes a general framework which aims at supporting
and controlling local decisions by considering global objectives and information. The gen-
eral idea is to provide to local policies a set of extra information in order to achieve global
objectives while ensuring consistency between global and local decisions. The first pro-
posed control mechanism is updating job weights. Optimization of the quantities of products
to complete for each production stage and each period is the second proposed mechanism.
These quantities become objectives to attain, but also constraints to satisfy, at the local level.

There is a patent interaction between planning and scheduling decisions. As higher
level decisions, production planning decisions provide targets for scheduling decisions at
a lower level. Also, poor scheduling decisions can degrade the performance and feasibility
of planning decisions (Dauzère-Péres and Lasserre (2012)). If a hierarchical approach can
be motivated, it is difficult to motivate the choice of ignoring production targets resulting
from production planning when developing a shop-floor control solution. To the best of our
knowledge, only Govind et al. (2008) explicitly mention the integration of production tar-
gets within shop-floor control. An integrated approach, adopted by Intel, to optimize fab
efficiency is described. This approach consists of three main components: A linear program-
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ming based optimization engine that provides production targets at product and operation
level within the photolithography area; a scheduling component for complex areas and a
dispatching component for less complex areas or to complete the scheduling component on
complex areas. However, except the general description of this integrated approach, no detail
is given about the approach in general or on how the production targets are considered within
the scheduling component in particular. Chapter 4 proposes a new approach of considering
production targets when scheduling individual areas in order to ensure the consistency be-
tween local decisions and global objectives. The modeling and the integration within the
proposed scheduling approach are described in Section 4.2.3.

1.4.2.3 Criteria

Different criteria are considered in the scheduling literature. Different classifications of these
criteria can be found. Depending on whether they involve information regarding due dates or
deadlines, or not, they can be classified as due-date-related or non-due-date-related criteria.
They can be feasibility related when they represent the satisfaction of a given constraint and
can be rescheduling related if they involve information from two different schedules (Fram-
inan et al. (2014a)). They can also belong to the “minimax” family where the maximum
value of a set of functions is to be minimized or “minisum” if the sum of functions is to be
minimized (T’kindt and Billaut (2006)). Most of the considered criteria are regular, i.e., a
non-decreasing function of completion times of the jobs (e.g., makespan, maximum lateness,
total weighted flow time, or total weighted tardiness). Definitions of these criteria are pro-
vided in the textbooks of Blazewicz et al. (2007), Brucker (2007), Framinan et al. (2014b) and
Pinedo (2016). Total earliness is an example of non-regular criteria as it is a non-increasing
function of completion times. A survey on scheduling problems with non-regular criteria is
given in Baker and Scudder (1990).

When solving the job-shop scheduling problem, most of the literature deals with makespan
minimization. An extension of the classical approaches which consider the makespan objec-
tive is the extension of the problem to other objective functions. A simulated annealing
metaheuristic is developed in He et al. (1996) for the total tardiness based on left and right
shift of operations to generate the neighborhoods. Pinedo and Singer (1999) present a shift-
ing bottleneck heuristic for minimizing the total weighted tardiness in a job shop. Essafi et al.
(2008) propose a genetic algorithm that is combined with an iterated local search to minimize
the total weighted tardiness. Mati et al. (2011) propose an algorithm for regular criteria that
utilizes the neighborhood function that swaps critical arcs and an efficient method to evalu-
ate moves. A general approach for minimizing any regular criterion in the flexible job-shop
scheduling problem is proposed in García-León et al. (2015).

Within the context of semiconductor manufacturing, the criteria for scheduling problems
are derived from performance measures for the entire fabs. The most important of these
measures are the cycle time, the throughput and on-time delivery (Mönch et al. (2011)).
For example, the cycle time can be minimized when using the total weighted flow time, the
throughput of a machine or an area is maximized through makespan minimization and the
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total weighted tardiness can be used as an on-time delivery measure. Due-date related cri-
teria are used for example in Lee et al. (1992) and Mönch and Roob (2018). In practice,
different criteria may be considered. For example, instead of considering the total weighted
flow time for cycle time minimization, a new criterion with a close formulation is used in
Artigues et al. (2006), Yugma et al. (2012), Bitar et al. (2016) and Knopp (2016). In addi-
tion to decomposing the scheduling problem at the fab level into sub-problems at individual
workshops level, the problem is also decomposed in time. Instead of an infinite scheduling
horizon, the scheduling problem is optimized over a finite horizon. Regarding throughput
performance, it becomes irrelevant in this case to consider the makespan. In this context,
the number of processed wafers within the given horizon is used for example as a way of
maximizing the throughput (Artigues et al. (2006), Yugma et al. (2012), Bitar et al. (2016)).
Due to the high cost of machines, criteria that are related to capacity utilization can be used.
A non-regular criterion, called batching coefficient, is used in the context of batching ma-
chines by Artigues et al. (2006) and Yugma et al. (2012). Within the photolithography area
where reticles are used as auxiliary resources, a non-regular criterion is used to minimize the
number of their moves in Govind et al. (2008) and Bitar et al. (2016). Feasibility criteria can
also be defined when it is not always possible to satisfy certain constraints. For example,
Knopp (2016) proposes a new criterion that computes the violation of maximum time lags in
a given schedule. This thesis uses all the relevant criteria that are defined in Artigues et al.
(2006), Yugma et al. (2012), Bitar et al. (2016) and Knopp (2016). New criteria are defined
to handle production targets and practical considerations.

1.5 Overview and Main Contributions

In this section, we present an overview of the structure of this manuscript and highlight the
main contributions of the individual chapters.

Chapter 2, Problem Description
This chapter provides a detailed description of the diffusion and cleaning work area.
The integration of the scheduling problems in these two areas is first motivated. The
different features of the scheduling problem are described, and the adopted modeling
choices are motivated. Then, the different criteria to be considered are detailed. They
are either related to the area performance or to the satisfaction of constraints. The
formulation of these criteria must answer the concerns of the area and the overall fab,
and must consider the rolling horizon framework of the scheduling solution. This
textual description of the studied scheduling problem serves as a basis to the formal
modeling given of Chapter 4. The content of this chapter was kept alive during the
whole project and periodically updated. The summarized knowledge is based on the
expertise of many operators, process and production engineers, and managers, through
immersion experiences and meetings.

Chapter 3, Improvements of the Batch-Oblivious Approach
The objective of this thesis is to design a scheduling solution to be used in an indus-
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trial context. The starting point is the resolution approach proposed by Knopp et al.
(2017), called the batch-oblivious approach, for a complex job-shop scheduling prob-
lem. This chapter first recalls the main components of the batch-oblivious approach,
and the considered problem, less complex than the one described in Chapter 2. Then,
different ideas to improve the efficiency of this approach are proposed. Efficient strate-
gies that allow exploring more solutions are proposed. These strategies require a short
computational time to explore the graph when searching for operations to complete
unfilled batches. Based on the notion of active scheduling, new strategies are designed
to accept delaying the start time of an unfilled batch in order to include late operations.
The objective of these strategies is to reach solutions with good quality quickly.

Chapter 4, Extensions of the Batch-Oblivious Approach
This chapter extends the batch-oblivious approach in order to solve the industrial
scheduling problem. The different features described in Chapter 2 are first formally
modeled. A new objective that allows optimizing the throughput of the work area while
taking into consideration the rolling horizon framework is proposed. To deal with pro-
duction targets, a new criterion is proposed to increase the consistency between local
scheduling decisions and the global production plan at the fab level. The integration
of all considered constraints during the computation of schedules is detailed. A signif-
icant contribution is the possibility of modeling in detail complex batching machines
such as wet benches in the cleaning area through a generalization of the batch-oblivious
conjunctive graph. A construction algorithm that takes batching decisions on the fly
while considering the internal constraints of complex machines is proposed.

Chapter 5, Multiobjective Optimization Approach
Due to the significant number of criteria, this chapter is dedicated to the study of the
multiobjective aspect of the scheduling problem and proposes different approaches. In
the two first approaches, the decision maker is given a flexible modeling of his pref-
erences depending on whether the trade-off is permitted between any pair of criteria.
The two approaches use differently these preferences during the search process and
stores the set of nondominated solutions in a passive archive. These two approaches
are compared to a third approach from the literature that uses the dominance status
between the current solution and the set of nondominated solutions stored in an ac-
tive archive. The comparison is performed based on the given preferences and known
quality indicators, and shows that each approach can be more suitable depending on
the context. This chapter ends by numerical experiments on industrial instances that
attest the significant improvement that can be brought by the proposed approach.



Chapter 2

Problem Description

The main goal of this chapter is to provide a comprehensive, textual, in-depth description
of all aspects that should be taken into account by a scheduling algorithm in order to be a
viable component of a real scheduling system. Section 2.1 gives a brief description of the
main considered work area and the processes that take place. The complex structures and
behavior of the furnaces and wet benches are detailed in Section 2.2. Section 2.3 describes
all the relevant constraints that have their origins from the physical system, processes or
WIP management considerations in the wet cleaning and diffusion area. Finally, the different
objectives to optimize are motivated and explained in Section 2.4.

2.1 Industrial Application: Cleaning and Diffusion Area

Diffusion processes are used in the production of semiconductors to deposit or grow a thin
layer of insulating or conductive materials onto the wafers, using high temperature, in order
to spread or to diffuse these impurities into the substrate. The main objective of these pro-
cesses is primarily to alter the type and the level of conductivity of semiconductor materials.
Even if the diffusion technologies are old, they are still widely used in the industry. This is
mainly due to the ability of the machines performing these operations, called furnaces be-
cause of high temperatures (600°-1200°) that are required, to process simultaneously large
batches with low cost. Some furnaces can process simultaneously up to 7 lots.

Due to batching capacity of the furnaces and to the fact that the operations performed on
these machines have generally long processing times (3h -12h), the batching and scheduling
decisions at the levels of the furnaces can affect the performance of the whole fab. Produc-
tion schedulers must permanently decide whether to start processing an incomplete batch or
to wait for additional lots. If a hasty decision is taken to load an incomplete batch, the long
processing times make it difficult to absorb the negative effects of such a decision. Waiting
for a long time negatively impacts the machine utilization and the cycle time of lots. What-
ever system is used to schedule lots on the furnaces, it cannot be expected to obtain a high
throughput if there is no communication with upstream operations. Production schedulers,
whether human or computer systems, must orient upstream operations to process lots that
can complete batches waiting in front of the furnaces. So in order to optimize the scheduling
and batching decisions in the diffusion area, it is important to include upstream operations
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Figure 2.1 – Optimization Scope in the Diffusion Area

in the optimization scope. As it may be expected from the complexity of the semiconductor
industry, almost all types of operations can precede diffusion operations. Including all of
them can quickly transform the problem of scheduling the diffusion area to the problem of
scheduling the whole fab.

Conveniently, the majority of upstream operations are wet cleaning operations that are
performed on a small set of machines. Wet cleaning operations aim at removing contami-
nants (particles as well as metallic and organic) from the surface of the wafer, etching the
thin oxide layer on the wafer and preparing the wafer surface for the next operations in the
route. The cleaning is called wet as the operations are mainly performed using chemical
solutions. The machines performing these cleaning operations are called wet benches and
are also capable of processing multiple operations at the same time. However, considering
that these cleaning machines process small batches with smaller processing times compared
to diffusion machines and processes, it can be assumed that the filling of the batches in this
sub-area is less critical, which allows stopping the extension of the optimization scope at
this level. In addition to the first reason given above, the considerable number of time lag
constraints between wet cleaning and diffusion operations also motivates the integration of
wet cleaning operations in the optimization scope.

For the sake of conciseness, the whole area that is studied is called diffusion area in the
remainder of the thesis. Figure 2.1 schematizes the optimization scope that is considered in
the industrial application. The allocations decisions concern the machines that perform dif-
fusion operations and machines that process wet cleaning operations. Scheduling decisions
are taken for all the operations of lots that are waiting or currently being processed in the
selected machines. Lots that are currently processed in other areas and will arrive soon in the
diffusion area are also concerned by the scheduling decisions. These arriving lots, are inte-
grated into the problem to solve thanks to the quite accurate estimation of their arrival time
in the diffusion area. As shown in Figure 2.1, the wet benches, in addition to the furnaces,
also feed machines in other areas, like dry etching, implantation, and lithography. Therefore,
while optimizing the scheduling in the diffusion area, it is important to make sure that the
situation in the other areas is not degraded.
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2.2 Integration of Complex Machines

In most of the deterministic scheduling literature, the behavior of machines is assumed to be
simple when the processing times of operations are fixed. This assumption can be realistic
in many industrial contexts and situations. However, this modeling can be far from reality
when the processing behavior of a machine cannot be simply reflected through fixed pro-
cessing times of the operations processed on these machines. Cluster tools are an example
of this kind of machines that present a complex behavior. These machines combine several
processing modules with wafer handling robots in a closed environment (Lee (2008)). Most
of the scheduling literature regarding cluster tools deals with internal scheduling (see Mönch
et al. (2011)). When dealing with the external scheduling of these complex tools, there are
in the literature two ways of modeling and integrating them in a larger scheduling problem.
The difficulty of doing this lies in the fact that different sequences of lots will lead to differ-
ent operation cycle times, i.e., the time between the processing start of the operation and its
completion on the machine. This can be explained by the interaction between the different
components, different internal constraints, and the internal scheduling algorithm. As a con-
sequence, assuming a fixed processing time for an operation can be unrealistic. To deal with
this, the first way consists in using a detailed simulation model of a cluster tool to evaluate the
cycle times for job sequences for the scheduling algorithm, such as for example in Dümmler
(1999). In the second way of modeling cluster tools, cycle time approximations are used,
e.g., Niedermayer and Rose (2004).

The machines that are considered in the industrial application are not considered as clus-
ter tools, but a subset of them can be described as complex machines. Relevant differences
between these complex machines and cluster tools exist (Rotondo et al. (2015a)). However,
as these two classes of tools share a complex behavior, studies conducted on cluster tools
can provide useful insights into the behavior of diffusion machines and their modeling. In
Section 2.2.2 and Section 2.2.1, descriptions of the detailed internal structures of the furnaces
and wet benches are given, respectively.

2.2.1 Wet Benches

A wet bench is a tool used to carry out wet cleaning and etching operations in semiconductor
manufacturing. Such tools are capable of batching, so multiple wafers from different lots
can be processed at the same time. Benches commonly include several tanks (or modules
or “baths”), each containing either cleaning or etching solutions and water in a rinsing tank.
Due to the multiplicity of vendors, different types of wet benches in terms of structure can
be found. The wet bench type described here is the prevalent one in the studied industrial
context. A schematic representation of such machines is given in Figure 2.2. The processing
part of this type of machines consists of two modules ( M1 and M2) and a dryer (D) where
the wafers are rinsed and dried. Each module consists of its own robot and two tanks. The
handling part, in addition to the two robots dealing with the wafer handling inside the two
modules, consists of: A loading port and an unloading port ; a robot that ensures the batching
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Figure 2.2 – Example of the structure of a wet bench machine.

after the loading and the unbatching after the processing ; a robot that transports the wafers
between the different components (M1, M2, D).

After loading all the lots of a batch into the machine, all the wafers are consolidated in
one batch. After this, depending on the type of the required process, the batch is transported
from one component to another one. There are two types of process that can be categorized
according to the route followed by a batch through the components M1, M2 and D. If a batch
is concerned with the first process type, called short process, it visits one of the processing
modules before being dried in the dryer. If the second process type is used, called long
process, the batch visits all the components following this sequence (M1 → M2 → D).

Different reasons explain why it is not realistic to only associate fixed processing times
to operations performed on this type of wet benches. The first is the possibility of having
several batches being processed at the same time. In other words, there may be a batch in
each of the processing components (M1, M2, D), in addition to a batch that may be loaded
and another one being unloaded. The second reason is the absence of storage capacity be-
tween modules. This is modeled in the scheduling literature as blocking constraints (Hall and
Sriskandarajah (1996)). With blocking constraints, a batch, having completed processing on
a module, remains on it until the next module becomes available for processing.

To illustrate this complex behavior, a small industrial instance is used. Table 2.1 provides
four examples of processes with elementary processing times, given in minutes, on wet bench
modules. The first three processes (1, 2 and 3) are short processes while the last one is a
long process. The first step of Processes 2 and 3 can be performed either on Module M1

or on Module M2. For Process 1, the first step can only be performed on Module M1. The
considered problem is described in Table 2.2. Eight lots have to be scheduled on a wet
bench machine, four of which require the same short process (Process 1) and four others the
same long process (Process 4). Column “Possible Sequences” provides the sequence each
operation follows in the wet bench machine. Note that the first step of the short process can
only be processed by Module M1. In order to optimize machine throughput, the optimization
criterion is the makespan.

The optimal sequence, in terms of machine throughput, is shown on a Gantt chart from a
job perspective in Figure 2.3(a) and from a machine perspective in Figure 2.3(b). Different
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Table 2.1 – Example of processes on a wet bench machine.

Process Type M1 M2 D
1 Short 13 - 15
2 Short 38 15
3 Short 21 15
4 Long 16 47 15

Table 2.2 – Small size industrial problem instance.

LotID ProcessID Process Type Possible Sequences
A 4 Long Process M1 → M2→ D
B 4 Long Process M1 → M2→ D
C 1 Short Process M1 → D
D 1 Short Process M1 → D
E 1 Short Process M1 → D
F 1 Short Process M1 → D
G 4 Long Process M1 → M2 → D
H 4 Long Process M1 → M2 → D

aspects of the complex behavior can be identified in these figures. First, the example shows
the possibility of parallel processing of multiple batches. Even if the batch containing jobs A
and B is the first one to be loaded on the machine, it is ready to be unloaded only when the
two next batches are unloaded. Second, the consequence of the blocking constraint can be
identified in Figure 2.3(b). Considering the step sequence on Module M1, the last batch in the
sequence, containing jobs G and H, does not start its processing directly after its predecessor,
even if it is available at the beginning of the scheduling horizon. This is because Module M1

is blocked by the batch containing jobs E and F. This last batch is waiting for the batch
containing jobs D and E to free the dryer so that it can free Module M1.

(a) Job perspective Gantt Chart. (b) Machine perspective Gantt Chart.

Figure 2.3 – Scheduling 8 jobs on a wet bench machine, using route graph modeling.
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2.2.2 Furnaces

Furnaces perform deposition, oxidation and annealing processes. These machines are also
capable of batching. Some furnaces can process up to 7 lots at the same time. Similarly to
wet benches, different kinds of furnaces can be found in the shop floor. The furnace type de-
scribed here is the prevalent one in the studied industrial context. A schematic representation
of such machines is given in Figure 2.4. For the processing part, it is a vertically oriented
thermal processor composed of a processing chamber called a tube and a separated movable
wafer holder called a boat, which has a vertical array of notches into which the wafers are
received and held horizontally. When the boat is fully loaded, it is moved inside the tube
where the process takes place. When the process is finished and the tube cooled, the tube is
moved down in order to be unloaded. The handling part consists of: Two load ports dealing
with the loading of the lots from outside the machine and the unloading in the other direc-
tion; a loading robot dealing with the handling of the containers in all of their movements
inside the machine; a charging robot dealing with the wafer transfer from the containers to
the boat before the processing and in the other direction after the end of the processing of
wafers inside the tube. In addition to these moving components, there is a stocker playing a
role of the inventory stand where containers are stored , full or empty.

Typically, the loading robot received the containers of lots that are introduced into the
machine by the loading ports and moves them to the stocker. When the batch is fully loaded
into the stocker, the charging robot moves all the wafers into the boat. When all the wafers
of the batch are in the boat, the boat is moved into the tube where the process takes place.
At the end of the process, the boat is first cooled down before the charging robot puts back
the processed wafers in their containers waiting in the stocker. Finally, the loading robot
transfers the containers from the stocker to the unloading port. Following this description, it
may be realistic to assign diffusion operations a fixed processing time that includes the actual
processing time in the tube and the sum of all handling times. However, the internal buffer
allows improving the throughput of the machine while making its behavior more complex.
An additional batch B2 can be loaded into the machine while another one B1 is being pro-
cessed, which advances its processing start time by the time needed to load the lots of B2 into
the stocker. Moreover, the charging robot can simultaneously load Batch B2 into the boat
while B1 is unloaded.

Figure 2.4 – Example of the structure of a furnace.
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2.3 Constraints

This section describes all the constraints that the scheduling algorithm should take into ac-
count in order to produce feasible and robust schedules that can be implemented in a real
workshop. For each considered constraint, some statistics on the real application are given
to illustrate the complexity of the problem to solve.

2.3.1 Lot

The silicon wafers are the input and the elementary production units in the wafer semicon-
ductor manufacturing facility. These production units are transferred and processed in lots.
Currently the convention is that a lot has a size equal to or less than 25 wafers. Each lot be-
longs to a certain product. From manufacturing perspective, products differ in the routes they
follow in the fab. In addition to the difference in the size and the route in the fab, lots also dif-
fer in terms of priority where certain lots in a wafer fab are more important than others. Then,
the scheduling system should assign the lots to machines and sequences them by adhering as
much as possible to this priority. For each lot, a release date is given that specifies its arrival
date in the diffusion area. Finally, the lots can be in different status at any time. A lot is
considered waiting if it is in front of a machine. A lot can be running if it is currently being
processed in a machine. A lot is frozen if at least one of its subsequent operations is already
scheduled. For instance, lots of a batch that is already loaded in a furnace, while another
one is being processed, are considered frozen as this decision cannot be changed in normal
conditions. Within a rolling horizon framework, some of the waiting lots can be considered
as frozen if it is decided to freeze the decisions that were previously taken and that are related
to their next operations in their routes. In all these cases, the release date occurs before the
start of the scheduling horizon. Finally, lots that are not yet available in the diffusion area,
and for which a quite reliable arrival time estimation is given, are called arriving lots. The
release dates of arriving lots occurs after the start of the scheduling horizon. In the industrial
application, the scheduling algorithm has to solve instances with 500 lots on average. The
average distribution of the different status over the population of the lots is: 40% waiting,
35% running, 15% frozen and 10% running.

2.3.2 Routing Constraints

A semiconductor product specifies the integrated circuit that is manufactured and the variety
of these circuits is as wide as the variety of functions that they are meant to fulfill. However,
all integrated circuits are made of the same few basic structures and manufacturing processes
on the same set of tools. The differences between the products lie in the the variation in
the number, the sequence and the combination of the process operations and the machines
setups. It is the notion of the route that allows describing the unique process flow that a lot of
a particular product takes. It can be defined as the sequence of operations that wafers must
follow through the factory and the details how processing should be performed at each oper-
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ation. It begins with lot start and ends with lot ship. It should be noted that not all operations
must be performed; metrology operations can be skipped with a specified percentage.

Several difficulties in managing a fab come from the complexity of these routes. First, a
route usually has several hundred operations. Especially in the case of high-mix fabs, there
is a large number of routes that coexist in parallel or intersect at the level of many opera-
tions. Also, wafer manufacturing has a high degree of reentrancy, i.e. the same work area
is visited many times to perform different operations within the same route. In the industrial
application, as the objective is to optimize the scheduling of lots within the diffusion area,
the routes of the different products will not be considered in their totality. Instead, only the
portions of the routes containing the operations that have to be processed on the furnaces
and the wet benches are considered. In each sub-route, there will only be diffusion or clean-
ing operations. If, for instance, only one operation separates a sequence of diffusion and
cleaning operations, they will belong to different sub-routes. In the industrial application, the
scheduling algorithm has to solve instances with 164 different routes on average. The num-
ber of operations per route varies from 1 to 7, with an average of 3 operations. On average,
scheduling decisions should be taken for more than 1, 500 operations. Figure 2.5 shows the
partition of the lots regarding the length of their routes.

Figure 2.5 – Distribution of route lengths (number of operations)

2.3.3 Recipes

As described above, a lot of a given product has to follow a sequence of operations defined by
the route of the product. A recipe is associated with each operation of each route. The recipe
can be defined as a pre-planned and reusable set of instructions and settings that specify how
an operation is to be performed by a machine on a wafer in order to get the desired output.
In other words, a recipe specifies the type of process a lot must undergo at a given level of
operation. In the industrial application, there are on average more than 130 recipes in each
problem instance. On average, four machines are able to process a given recipe.
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2.3.4 Qualifications

The fierce competition, the globalization, and the technological breakthrough have shortened
the product lifecycle, requiring the companies to reduce their manufacturing response time.
Therefore, flexible production systems are required to quickly respond to market fluctuation,
increase the production agility and answer the diverse market demand. One of the categories
of flexibility in a manufacturing system is machine flexibility. Machine flexibility is obtained
through what is called a qualification. It is a kind of setup with the difference that a quali-
fication is performed once and not before each production run. Making a machine flexible
means qualifying this machine for several different recipes. It is also important to indicate
that, in addition to the process of making the machine capable to perform an operation with
a certain recipe, qualification defines also the capacity of the machine to process this recipe
(Johnzén et al. (2011), Rowshannahad et al. (2015)).

However, due to technical and economic reasons, it is not possible to obtain total flexibil-
ity of the machines. The technical reasons can be hardware or software restrictions that make
it impossible to qualify all the recipes on a machine. Besides, qualifying a recipe on a ma-
chine is often time and energy-consuming. Test products must be used for test runs. During
test runs, the machines are under scheduled downtime status, therefore in a non-productive
status. Metrology and defect inspection resources must also be extensively used. Hence, it is
not economically wise to perform too many qualifications. Due to the restrictions explained
above, the wet cleaning machines and the furnaces are qualified only for a subset of recipes.
Therefore, we are given for each machine, the set of recipes for which it is qualified. This
information will be given at the machine level. In the industrial instances, a furnace can
process 4 recipes on average, and a wet bench can process 25 recipes on average.

2.3.5 Maximum Time Lags

The physical and chemical processes may set up time constraints between different opera-
tions. For example, the time between some operations must be limited to avoid contamination
and oxidation. So, in order to prevent these risks, time windows are defined by process engi-
neers to respect these time constraints. So, we can be given a maximum time lag constraints
for each ordered pair of distinct operations of each lot. Such a constraint specifies the max-
imum period of time between the beginning (or end) of processing of an operation until the
beginning (or end) of processing of the following operation in the route of the lot. It is im-
portant to outline that these time lag constraints can be chained in the sense that there can
be operations where one maximum time lag constraint ends and another one starts. For re-
sulting schedules, it is always required that both constraints are observed. As a consequence,
in some cases, starting the first operation of the earlier constraint can be impossible because
the later constraint cannot be fulfilled. In the real application, on average 35% of lots are
affected by these constraints. At the beginning of the scheduling horizon, 20% of the lots are
already under time constraints. The maximum period of time lies between 12 hours and one
day.
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Figure 2.6 – Time constraints for two consecutive operations of a lot

As this will be justified later, these constraints are considered soft ones. Instead of looking
for fully respecting these constraints, the objective is to minimize as much as possible their
violation. In this case, the difference in the impact of their violation should be taken into
consideration. The violation of a constraint that results in lot scrapping should be prioritized
before a violation constraint that results in yield loss. For each maximum time lag constraint,
we are given a violation cost that represents the impact on lot quality if it is violated.

2.3.6 Minimum Time Lags

A minimum time lag constraint specifies a minimum delay between the execution of two
operations of the same job, not necessarily consecutive. These constraints can be used to
model minimum delays that are imposed for process considerations. These time lags can
also be used to model the transfer of a job from one machine to the next if it requires a
transportation time. Finally, these constraints are also used to differentiate between the cycle
time of an operation and the actual duration this operation uses its resources. This last case
is used within a proposed modeling of wet benches.

Whatever is modeled through these constraints, a minimum duration during which the lot
has to wait before starting the next operation is given. When process constraints are mod-
eled, this duration is determined by process engineers. When transport times are modeled
through these constraints, the minimum duration first depends on the distance that separates
the machine to which the next operation of a lot is assigned to. When lot transportation is
manually performed by operators, the minimum duration also depends on their speed and
their availability, conditioned by the WIP level in the area. Finally, when used to model the
operation cycle time, the minimum duration is equal to the theoretical processing duration.
Figure 2.6 illustrates an example of time constraints between two consecutive operations.
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2.3.7 Availability Constraints

Machines may be unavailable during certain periods of time for different reasons, such as
failures or unexpected quality control problems. To avoid these failures without stopping
production too often, preventive maintenance are planned on machines by trading off between
planned unproductive downtimes and the risk of unscheduled downtimes due to machine
failures. These preventive maintenance operations make machines unavailable for processing
operations. As this work deals with deterministic scheduling, only unavailability periods that
are known in advance are considered such as preventive maintenance operations, current
machine failures or machine unavailabilities that are due to previous scheduling decisions
within a rolling horizon framework.

The continuous availability of machines during the whole scheduling horizon is an as-
sumption that might be justified in some cases but cannot apply to all industrial settings.
Semiconductor manufacturing is an example where it is important to consider machine avail-
ability constraints. In this industry, machines are very expensive, thus must be used as much
as possible (Bureau et al. (2006)). In the same time, due to their complexity, these machines
require frequent preventive maintenance. Also, due to the complexity of scheduling problems
in this industry, a rolling horizon procedure is necessary to decompose the problem over time
(Ovacik and Uzsoy (2012)). When a scheduling problem is solved, some of the decisions
from a previous schedule have to be considered, making some machines unavailable at the
beginning of the horizon for the newly available jobs. Then, it is important to consider these
machine unavailabilities in order to produce robust and feasible schedules. In the industrial
application, when unavailability periods are used to model preventive maintenance, there are
on average five maintenance opertions a day, with an average duration of 10 hours and a
median duration of 4 hours. On average, 85% of machines are unavailable at the beginning
of the scheduling horizon due to previous scheduling decisions (frozen and running lots).

Among the different possibilities of modeling availability constraints, the modeling that
better fits the industrial setting is the deterministic and non-preemptive modeling. The un-
availability periods are considered deterministic as it is assumed that each unavailability of
each machine has a fixed start and end time. The non-preemptive modeling represents the
situation where an operation can be interrupted neither by another operation nor by an un-
availability period (Aggoune (2002)). Notice that when machines are modeled in details,
these availability constraints may be given at component level.

2.3.8 Setup Times Constraints

After completing an operation, a machine may be set up, i.e. made ready, for the next opera-
tion by various tasks including machine cleaning, tool changing, and temperature adjusting.
A machine setup before the processing of the first operation and after the last operation could
also be necessary. The time needed for the setup, called setup time or change over time, may
depend on the previous and next operations to be processed on the machine. Such setup times
are called sequence-dependent. If the setup time only depends on the next operation to be
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executed, it is called sequence-independent.
In the studied area, there is no actual setup time needed for the machine within the op-

timization scope. However, these constraints are used to model the inefficiencies that are
induced by the direct succession of two recipes on the same machine. An inefficiency is
modeled as an estimation of the sum of unproductive times of machine processing compo-
nents. These artificial setup times are sequence-dependent. For each concerned machine, a
setup duration is given for each recipe pair. It defines a minimum duration between the end of
processing of an operation and the beginning of processing of the following operation on the
same machine. These constraints, in addition to minimum time lags, are used in a proposed
modeling of wet benches.

2.3.9 Batching Constraints

The most important constraint to consider in this study is parallel batching, abbreviated as p-
batching, which refers to the capability of machines to process more than one job at the same
time. All the machines considered in the industrial application are batching machines. All
the lots in a batch are processed together, start at the same time and have the same processing
time. On a qualified batching machine, an operation can only be batched with operations that
share the same recipe.

While the objective is to process as many lots as possible in the same batch, the physical
batching capacity of each machine cannot be exceeded. This physical capacity varies from
three to seven lots for furnaces and is equal to two lots for wet bench machines. Due to
process considerations, the maximal batching capacity for some recipes is lower than the
physical capacity of a machine. While trying to optimize batch filling, the proposed schedule
should respect the maximal batching capacities that are given for each couple (machine,
qualified recipe). Moreover, also due to process consideration, some recipes on wet cleaning
machines require a minimal batch size that forbids loading a batch on the concerned machines
if the batch size is lower than the minimal given batch size.

2.3.10 Quality Control Tasks

As the semiconductor industry is subject to high-quality requirements, manufacturing pro-
cesses must be permanently monitored. One of the means to ensure that the process is stable,
the machine clean and under control is the machine-oriented inspection called quality con-
trol task, or quality task in short. To perform these quality tasks, specific monitoring lots are
regularly added. As it is usually mandatory to monitor several parameters of the machine,
several quality tasks should be conducted on each machine. In addition to the classification
of the quality tasks according to the parameter or the state monitored in the machine, there is
another classification, more relevant for the scheduling, that is done according to the condi-
tions for a quality task to be performed on a machine. In this classification, two main types
of quality tasks can be distinguished:
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1. Calendar quality tasks: Quality tasks in this class should be done periodically, i.e. after
a fixed period of time since the last one;

2. Dynamic Quality Tasks: Quality tasks in this class must be conducted when the num-
ber of wafers processed by the machine and impacted by the monitored parameter is
approaching a certain limit corresponding to the maximum accepted risk.

All quality tasks should be conducted in order to meet quality requirements and prevent
high cost due to the scrapping of production lots. However, production capacity is wasted if
the quality tasks are performed when the risk is minimal. So, it is preferable to minimize the
number of quality tasks as long as that does not lead to the breach of the fixed conditions.

For most of the furnaces, it is possible to ignore quality tasks as they are batched with
production lots and have their own dedicated production capacity. Therefore, except for
the loading and unloading durations, quality tasks can be ignored in the scheduling model.
However, in our industrial setting, there is a group of furnaces for which quality tasks have to
be done separately from the production lots and which last as long as processing operations.
Therefore, it is imperative to include quality tasks in the scheduling model. For wet cleaning
machines, there are different quality tasks that are conducted in order to monitor different
parameters. These tasks consume production capacity especially as they cannot be batched
with production lots.

In the proposed scheduling system, only calendar quality tasks are taken into consider-
ations. Even if dynamic quality tasks are currently negligible, considering them could be
important in the future. Regarding calendar tasks, instead of having a fixed mandatory start
time, it is only mandatory to process them during the shift to which they are assigned. This
can be modeled as flexible unavailability periods. As these constraints are currently not han-
dled by our model, these tasks are considered as special lots to which are associated with
artificial maximal time lags.

2.3.11 Production Targets

Because of the long and complex production processes in wafer manufacturing, linearity
constraints are defined in order to have intermediate controls on lot manufacturing processes
and to balance processing routes. Routes are divided into a specified number of blocks where
activities within a block are considered as WIP level to avoid WIP accumulation in the fab.
The goal is to control the production process within each block in order, for instance, to
maintain the WIP levels close to predetermined WIP level targets. In our context, linearity
consists of smoothing differences between the WIP level of a block and its fixed target (Wu
(2014)).

The control of linearity constraints in semiconductor manufacturing is considered as a
global objective. More precisely, we seek to guide the real-time local scheduling decisions
to minimize the deviation of the WIP levels or the cycle times within each block from their
desired targets. Different mechanisms can be used to orient local schedulers to the realization
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of global objectives. Priorities of lots can be updated in order to include the information and
the decisions at the global level. Also, quantities of products to complete in operations can
be sent and imposed at the local level.

These quantities, also called move targets, are given usually on a daily basis and have
been extensively used as a means of production control in the semiconductor industry (Wu
(2014)). In contrast with their importance in practice, move targets did not capture much at-
tention from researchers. Only few works on real-time scheduling mention these constraints
without formalizing it (Ham et al. (2006), Lee et al. (2008), Lee et al. (2007b), Wu et al.
(1998)). The problem of computing these targets is more investigated. Wu et al. (1998) pro-
pose a procedure to compute the daily targets based on the master production schedule, the
capacity estimation. Chuang and Lin (2003) propose an algorithm that begins with setting
the required delivery date to define other related requirements by backtracking the production
line requirements to determine how many stages need to be passed before delivery, and to
decide where and how to set up and arrange the production machine, in order to complete and
deliver the ordered goods on time. Sadeghi (2017) studied the consistency of global and local
scheduling decisions in semiconductor manufacturing. A general framework which aims at
supporting and controlling local decisions by considering global objectives and information
is proposed. A base Linear Programming model which considers a linearity objective is used
to compute the move targets that local schedulers must realize.

At the scheduling level, these imposed quantities are considered as production targets.
Fixed quantities to produce are given to certain group of operations. Formally, we consider
n lots L = {L1, L2, ..., Ln} to be processed on a set of m machines M = {M1,M2, . . . ,Mm} .
Each lot Li is composed of a linear sequence of ni operations Oi = {Oi1,Oi2, . . . ,Oini}. Let
us consider p production targets T = {T1,T2, . . . ,Tp}. For each operation Oi j of lot Li, we
associate a set Ti j to which the operation contributes:

Ti j = {k ∈ T/Oi j contributes to the realization of target k} (2.1)

Note that it is possible to have Ti j = ∅, which means that operation Oi j does not contribute
to any of the production targets. It is also possible that |Ti j| > 1, which means that operation
Oi j contributes to more that one production target. To each production target k is associated
a requested production volume Dk ∈ N . In the industrial context, these quantities are given
for a horizon of one day and the area management tries to be close as much as possible to
these objective volumes. There are production targets that are defined to manage the whole
fab daily, and these are the most important targets. There is also another set of targets which
stems from the monthly production plan. On average, there are 25 targets, and the requested
volume, outside the those stemming from the monthly plan, varies from 150 to 2000 wafers.

2.3.12 Interlacing Constraints

As motivated in Section 1.3, the rolling horizon is used to cope with the dynamic and stochas-
tic nature of the scheduling problem in the industrial setting. In this section, we describe
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constraints that interlace the current scope with adjacent scopes. At a given time, when a
schedule has to be computed, a scheduling horizon is given. Instead of being part of the
problem definition, the duration of this horizon is a parameter that has to be determined
carefully. When considering the state of the diffusion area at the beginning of the schedul-
ing horizon, machines can be occupied by frozen and running lots. These machines are not
available until all these lots are processed and unloaded. Additionally, the initial states of
all machines and their relevant components must be given at the beginning of the schedul-
ing horizon. These states can be the initial setup of the machine or its unavailability due to
maintenance operations or quality tasks.

The time lags, either maximum or minimum, defines relative time windows. However,
there are time lags that have their first operation in an upstream area that is not considered
in the optimization scope. In such case, when a lot is concerned with such time lag, it is
already under constraints when it arrives in the area. This situation applies also to time
lags that have their two operations within the optimization scope. At the beginning of the
scheduling horizon, a subset of lots have already gone through the first operation of a time
lag. In such case, the start or completion times of the first operation of already triggered time
lags should be given. The required information depends on whether the time lag is triggered
before or after the processing of the first operation. So, instead of a relative window, such
time lags prescribe absolute windows. As the maximum time lags can be chained, triggering
one results in transforming all the successive linked time lags to absolute windows.

2.4 Criteria

After listing all the constraints to satisfy, we motivate and describe in the following criteria
to optimize. As discussed in the literature review given in Section 1.4.2.3, the criteria that
are classically investigated in the scheduling literature are not adapted to the industrial set-
ting we are studying. Some of the criteria described in this section are defined by previous
works dealing with the scheduling within the context of the semiconductor manufacturing
(Artigues et al. (2006), Yugma et al. (2012), Bitar (2015) and Knopp (2016)). This section
also motivates the definition of new criteria. A formal definition of these criteria is given in
Section 4.2.1.

2.4.1 Weighted Number of Moves

This objective is related to the throughput of the working area. A move defines the processing
of a single wafer on a machine. The number of moves of a batch is the number of wafers
of all lots contained in that batch. To promote the processing of operations of lots with high
priority, the number of wafers of lot is weighted by the priority of the lot. The number of
moves of the whole area is the sum of number of moves of all the batches.
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(Weighted number of moves of Batch B) =
∑

(Lots L in B)

(priority of L) · (#wafers of L) .

When scheduling lots, a limited horizon should be considered because, if it is not the case,
all the operations in the problem instance are scheduled and then all scheduling solutions are
equivalent. Optimization would not make sense in this case. Hence, only those batches
started within the scheduling horizon must be taken into account. If the processing of an
operation is started within the scheduling horizon and finished after the end of the horizon,
the weighted number of moves of a batch is multiplied by the proportion of the processing
time that occurs within the horizon. This criterion is already defined and studied in several
works (Artigues et al. (2006), Yugma et al. (2012), Bitar (2015)).

2.4.2 Discounted Weighted Number of Moves

When considering the weighted number of moves, all the solutions where the same opera-
tions are processed within the scheduling horizon are considered equivalent. When taking
the rolling horizon framework into account, some solutions may be considered better than
others on a long-term perspective. Between two solutions with the same weighted number of
moves, it is better to choose the one where full batches are scheduled first. By doing this, in-
complete batches that are scheduled later may be completed when the scheduler is run again.
Figure 2.7 shows two solutions for the same problem: in Figure 2.7(a), only the number of
started moves is considered; in Figure 2.7(b), the discounted number of moves is considered.
In the same way, a solution in which lots with high priority are sequenced first is better than a
solution in which these lots are produced at the end of the horizon. These different situations
should be considered when only a part of the proposed schedule is really implemented in the
shop floor.

(a) without discounting (b) with discounting

Figure 2.7 – Example showing the advantage of using the discounted number of moves

The considerations above motivate the definition of a new criterion, called Discounted
Weighted Number of Moves, that promotes solution where full batches and lots with high
priorities are sequenced at the beginning of the scheduling horizon. The term “discounted”
expresses the idea that time affects the value of a move and that a wafer processed now
is worth more than a wafer processed in one hour. A different discounting scheme can be
imagined. In the industrial application of Bitar (2015), a stepwise discounting factor is used.
In this case, the discounting factor is the same for all operations that are started within an
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elementary period. For the used indicator to be relevant, the duration of this elementary
period and the decreasing of the discounting factor should be preprocessed carefully. Instead
of this, a linear discounting factor is used in this work.

2.4.3 Batching Coefficient

The batching coefficient is a performance indicator that describes the capacity usage of the
operations performed on batching machines. Defined on the planning horizon, it is calculated
as the number of moves divided by the sum of the number of batches performed on each
machine, times the maximum capacity of that machine. Note that the denominator is the
number of lots that could be performed if the machine is loaded up to its maximum capacity.
With M denoting the set of machines and H denoting the planning horizon, the objective can
be written as

(#moves in H)∑
m ∈ M

(#batches performed on m in H) · (wafer capacity of m)
.

Note that this quotient is equal to one if all batches are filled to their maximum wafer
capacity. We include the objective of maximizing the batching coefficient into our objective
function. This objective can be seen as a means to support the improvement of other goals.
This objective also avoids the cost that is associated with each machine run. This criterion is
also defined and studied in several works (Artigues et al. (2006), Yugma et al. (2012), Knopp
(2016)).

2.4.4 Weighted Flow Factor

Competitive production cycle time is a critical performance for semiconductor factories for
several reasons. For device prototyping, typically involving several design changes, a shorter
product development time allows a quicker response to rapidly changing market needs. For
production lines, a smaller cycle time improves the ability to satisfy customer demands. Also,
for the same level of throughput, a shorter cycle time results in a smaller work in process that
not only reduces the capital tied up but also leads to an uncluttered plant floor. Finally, the
smaller the cycle time, the smaller the inventory buffer that needs to be maintained at the
downstream machines. When product designs become obsolescent, such inventory may lose
value. There is also a technological reason for reducing the cycle time. The shorter the time
wafers are exposed to aerial contaminants while waiting for processing, the smaller the yield
loss (Lu et al. (1994)).

Scheduling can contribute to the improvement of this operational indicator by reducing
the waiting time of the lots in front of the machines in the optimized area. Weighted flow
factor is the defined criterion to evaluate the waiting times of lots in the diffusion area in
order to reduce the cycle times. To specify the criterion, we introduce the theoretical route
duration of a lot, which is equal to the shortest possible manufacturing duration of a lot.
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In order to define this, we choose the fastest machine for each operation of the lot. The
fastest machine for an operation is the one with the smallest sum of the durations for loading,
processing, and unloading. This sum is what we call the minimum duration of an operation.
The theoretical route duration of a lot is the sum of the minimum duration of all operations
of its route plus the minimum time lags between them.

The actual route duration of a lot is the time between the initiation date of the lot and the
completion date of the lot (end of unloading after its final operation). The flow factor of a lot
is its actual route duration divided by its theoretical route duration. Now, the weighted flow
factor that we want to minimize is the weighted average of all flow factors. This criterion is
also known as x-factor. In opposition to move related criteria, this criterion is independent
of the scheduling horizon. With L denoting the set of lots to schedule, the objective can be
written as

1∑
l ∈ L (priority of l)

·
∑
l ∈ L

(priority of l) · (actual route duration of l)
(theoretical route duration of l)

.

2.4.5 Time Lag Violation Cost

Lots that have not yet started the processing of a time lag triggering operation can always
be scheduled without maximum time lag violations because the start of the constraint can
still be delayed. However, an ongoing maximum time lag implies fixed due date for the final
operation of the time lag. Since time lags might be nested or chained, lots with due dates
induced by time lags can imply other unstarted time lags that might become unsatisfiable as
a consequence. As a schedule has to be always determined, it is more cautious to transform
these constraints to the objective of minimizing their violation. Another reason that motivates
this choice is the fact that the duration of such constraints are only experimental estimates
and their violation does not automatically lead to yield loss or lot scrapping.

The scheduler has to deal with the possibility of such time lag violations and, as specified
in Section 2.3.5, violation costs are given. We distinguish reworkable time lags from non-
reworkable time lags. Lots with violated reworkable time lags need to be reworked in case
a time lag violation occurs. This imposes a rework cost. Lots with violated non-reworkable
time lags have a defectivity risk that rises increasingly with the duration of the maximum time
lag violation. Once a non-reworkable lot is defective, it must be scrapped, which induces
a scrap cost. We assume that scrapping is inevitable once a certain violation duration is
reached. Lots that must be reworked or scrapped remain unscheduled since we know that
processing them is pointless.

Thus, for each maximum time lag, a violation cost k, a maximum duration d (a relative
due date) and an ultimate duration γ (a relative deadline) are given. The ultimate duration
must be equal to or greater than the maximum duration. For a completion time C of the
considered operation, the violation severity of the time lag is specified as
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Time

Violation Cost

due date deadline

scrap cost

rework cost

Figure 2.8 – Time lag violation cost as a function of the completion date of a lot.


0 if C ≤ d
k if C > γ

k · (C−d)2

(γ−d)2 otherwise

Figure 2.8 illustrates the violation cost as a function of the completion time of a lot.
Maximum and ultimate durations are denoted as due date and deadline, since Figure 2.8
assumes that the time constraint has already started. For non-reworkable lots, the ultimate
duration is greater than the maximum duration. For reworkable lots, the time lag maximum
and ultimate durations are equal. We want to minimize the sum of all time lag violations over
the maximum time lags of all scheduled operations.

2.4.6 Production Target Satisfaction

Considering production targets as constraints may be very restrictive. The quantities speci-
fied by these targets are given by an aggregated plan which makes them only estimations and
ideal targets to achieve. It is possible to be in a situation where a target can never be fully
satisfied by the available lots to schedule. As for the maximum time lags, the production tar-
gets are then transformed into an objective of maximizing their satisfaction. As move related
objectives, the criterion that models the production target satisfaction should depend on the
scheduling horizon.

Each production target k is associated with a requested volume Dk ∈ N. Given a sched-
ule, the actual produced volume for each target k in the specified planning horizon can be
computed. Let Pk ∈ N be this quantity. Given these two parameters, we can compute the
completion rate of the production target k as Xk = Pk

Dk
. It is possible to have different levels

of satisfaction for the same completion rate of two different production targets. A production
target can define a minimum quantity to produce, or a quantity that is desirable to reach but
not to exceed. So, instead of working with the completion rate Xk, the expected satisfaction
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of the decision maker that depends on that completion rate can be modeled. Let Yk be the ex-
pected satisfaction. As there could be a different level of satisfaction for the same completion
rate depending on the production target, we consider for each production target k a function
Fk that returns a satisfaction level for any completion rate. In the industrial application, as
the targets only define a minimal quantity to produce, the satisfaction can be computed as
shown below. Figure 2.9 illustrates the relation between the completion rate and the chosen
satisfaction models.

Fk(Xk) =

{
Xk, Xk ≤ 1
1, Xk > 1 (2.2)

0.5 1 1.5 2

0.5

1

1.5

Figure 2.9 – Minimal quantity and indifference to over-production case

The chosen satisfaction model is just an example and more sophisticated ones can be
defined. When the satisfaction level of a target is defined, it remains to define how to evaluate
a solution based on the satisfaction of individual targets to compare different solutions. To
define such an evaluation, we have to answer these questions: Is it preferable to maximize
the average satisfaction level, even if this leads to penalize some production targets? Or is it
preferable to minimize the dispersion between the satisfaction level of all the targets, even if
this leads to producing less volumes?

2.5 Conclusion

This chapter provides a comprehensive definition of a complex scheduling problem arising
from the diffusion area in semiconductor manufacturing. The objective of this thesis is to de-
velop an approach that can handle all the features of the scheduling problem. To be feasible,
the solution returned by the approach must satisfy a large number of constraints: job-related
constraints such as routing and release dates; machine related constraints such as batching



2.5 Conclusion 49

capacities, qualifications, and availabilities; sequence-dependent setup times; minimum and
maximum time lags. As the schedule is predictive, the operation times must be accurate
as much as possible so that the predicted performances are not far from the actual perfor-
mances of the implemented schedules. This can be achieved through accurate input data and
adequate modeling. A significant challenge when modeling the practical scheduling prob-
lem arises when considering wet benches with complex behavior. Adequate modeling of
these machines is a significant parameter when considering the perspective of industrializing
the solution approach. Due to the stochastic and dynamic environment, the approach to be
proposed must be integrated within a rolling horizon framework. As a consequence, the ap-
proach is called to solve a complex scheduling problem frequently, and every time there are
significant changes within the area. Adding to this the large size of the problem instances,
the efficiency of the approach appears as a critical criterion for possible industrialization.

Besides integrating all the constraints, the approach must propose solutions leading to
high performance across the optimized area and contributing to the overall objectives at the
fab level. In the studied context, as in most practical situations, different criteria must be op-
timized at the same time. In this chapter, relevant criteria that are defined in previous works
are recalled: Weighted number of moves, batching coefficient, weighted flow factor and a
criterion that is related to time lag violation. The definition of new criteria is motivated:
Discounted weighted number of moves and a criterion that is related to production target
satisfaction. The prime objective of this thesis is to design an approach capable of handling
a significant number of criteria. An interesting perspective is to study the relation between
the different criteria in order to define a minimal set of relevant ones. To deal with the dif-
ferent challenges, the proposed approach in this thesis is built upon the approach proposed
by Knopp (2016) for solving complex job shop scheduling problems and the approach pro-
posed by Bitar (2015) for handling the multiobjective aspect. The remaining of this report is
devoted to the description of the proposed approach.





Chapter 3

Improvements of the Batch-Oblivious
Approach

To solve the scheduling problem described in Chapter 2, the approach developed in this
thesis is based on the batch-oblivious approach proposed in Knopp et al. (2017), which re-
lies on a conjunctive graph where batching decisions are encoded in the arc weights. Along
with this representation, an integrated construction algorithm is proposed that simultaneously
computes start dates and improves the solution during the graph traversal. Not bound to one
specific heuristic, the building blocks of the batch-oblivious approach can be applied within
different heuristics. The objective of this chapter is to improve the efficiency and the effec-
tiveness of the batch-oblivious approach. To evaluate the different propositions described
in this chapter, the complex job-shop scheduling problem in Knopp et al. (2017) is solved.
Section 3.1 provides the formal description of the problem, which considers a subset of the
constraints defined in Chapter 2 and classical regular objective functions. Section 3.2 sum-
marizes the different components of the original batch-oblivious approach. The framework
that allows the graph to be modified during the start time computation while maintaining the
feasibility of the solution is recalled and generalized in Section 3.3.1. Based on the results
of Section 3.3.1, Section 3.3.2 describes the proposed ideas to improve a solution during the
start time computation with a low computational cost. In Section 3.4, a new constructive
algorithm is developed that intentionally inserts idle times in order to increase the size of
the batches and to obtain more relevant solutions from an industrial perspective. Finally,
using industrial instances, Section 3.6 assesses the improvements achived by our different
propositions.

3.1 Formal Problem Description

This section provides a formal definition of the problem considered in Knopp et al. (2017).
The characteristics defined in Chapter 2 and not considered here are: Multiple machines per
operation, minimum and maximum time lags, availability constraints, minimum batch size
constraints, control quality tasks, and production targets. The internal complexity of some
machines is ignored by associating fixed processing times to operations. These character-
istics are formalized and considered in Chapter 4. Also, only classical regular criteria are
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considered in this chapter. The criteria that are specific to the industrial context are also for-
malized in Chapter 4. The problem considered here is a flexible job-shop scheduling problem
with p-batching, reentrant flows, sequence-dependent setup times and release times (complex
job-shop scheduling problem). Using the α|β|γ notation of Graham et al. (1979), this class of
scheduling problems can be denoted as FJc|r j, si, j, B, recr|reg.

A set of jobs J have to be processed using a given set of machinesM. Each job j ∈ J
is associated to a set of operations O j = {o1, j, o2, j, . . . , o|O j|, j}, a release time r j ∈ Z. and a

size σ j ∈ N. The disjoint union O = O1
.
∪ O2 . . .

.
∪ O|J| denotes the set of all operations. For

a given set of recipes R , each recipe q ∈ R prescribes a machine mq ∈ M, a processing
duration pq ∈ N0 and a batching capacity bq ∈ N>0. As described in Section 2.3.3, a recipe
specifies the process a job must undergo in a machine. Differently than in the industrial
context, it is assumed that a recipe prescribes a unique machine. So, instead of associating a
unique recipe to each operation that can be performed on multiple machines, each operation
is associated with a subset of recipes Ri, j ⊂ R. This modeling choice is motivated by
the fact that the same recipe can prescribe different sets of qualified machines depending
on the job (product). Let us define a mapping f : O × M → R that returns the required
recipe q ∈ R by operation oi, j ∈ O if it can be performed on machine m ∈ M. A given
mapping s : R×R → N0 prescribes sequence-dependent setup times between operations that
are scheduled on the same machine. Let Om = {oi, j ∈ O | ∃q ∈ Ri, j ∧ mq = m} denote the set
of operations that can be assigned to machine m ∈ M.

A schedule is completely characterized by selecting recipes qi, j ∈ Ri, j and start times
S i, j ∈ Z for all operations oi, j ∈ O. We denote the machines, processing durations and batch-
ing capacities related to this selection as mi, j, pi, j and bi, j, respectively. A completely char-
acterized schedule is obtained after the partition of all operations into batches, the assign-
ment of the formed batches to qualified resources, their sequencing and finally the assign-
ment of start times. The three first decisions can all be represented by a family of batches
B = {Bm,x}m∈M,x∈{1,...,tm}, where Bm,x is the batch sequenced at position x on machine m and
tm ∈ {0, . . . , |Om|} the number of batches assigned to machine m. As only operations with the
same recipe can be processed in the same batch, qB denotes the associated recipe to the batch
B ∈ B, i.e., qB = qi, j ∀oi, j ∈ B. Let σB =

∑
oi, j∈B σ j denote the size of the batch B.

To describe a feasible schedule , selected recipes qi, j and start times S i, j of operations oi, j

have to respect several constraints that are detailed in the following. Preemption is not al-
lowed: Once the processing of operation has begun, it cannot be interrupted. Thus, the
completion time of an operation oi, j ∈ O j is given by Ci, j = S i, j + pi, j. Operations belong-
ing to the same job have to be performed in the order given by the route of the job. So,
Ci, j ≤ S i+1, j has to be fulfilled for all oi, j ∈ O with i <

∣∣∣O j

∣∣∣. The first operation o1, j ∈ O j of
each job cannot be processed before its release time, so S 1, j ≥ r j must hold for all j ∈ J .
Operations performed on the same machine must not overlap. Hence, for two operations oi, j

and ok,l ∈ O with mi, j = mk,l, either S i, j = S k,l or S i, j ≥ Ck,l or Ci, j ≤ S k,l must hold.
Regarding batching constraints, only operations of the same family can be processed at

the same time on the same machine. So, for two operations oi, j and ok,l ∈ Owith incompatible
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families qi, j , qk,l and mi, j = mk,l, S i, j , S k,l is required. Any formed batch B ∈ B must
respect the batching capacity of the machine to which it is assigned. Thus, σB ≤ bB ∀B ∈ B
is required. To respect sequence-dependent setup times, for all operations oi, j and ok,l ∈ O

with mi, j = mk,l and S i, j , S k,l, either Ci, j + s(qi, j, qk,l) ≤ S k,l or Ck,l + s(qk,l, qi, j) ≤ S i, j must
hold.

With the different constraints being satisfied, the objective is to optimize given criteria. A
feasible schedule is completely defined when recipes qi, j ∈ Ri, j are selected and, start times
S i, j and completion times Ci, j are determined for all operations oi, j ∈ O. The completion
time of job j ∈ J is the completion time of its last operation, i.e., C j = C|O j|, j. The quality
of a schedule is measured by an objective function, which is a function f : R|O| → R that
maps tuples of operation start times to a real number. In the scope of this chapter, we want
to optimize objective functions that are regular (Brucker (2007)). With this type of objec-
tive functions, the quality of a schedule cannot deteriorate by advancing the start times of
some of its operations. In other words, when considering regular objective functions, there
always exists a left-justified schedule that is optimal. More formally, for any pair of tuples
of start times (S 1, . . . , S |O|), (S ′1, . . . , S

′

|O|
) ∈ R|O| with S 1 ≤ S ′1 ∧ · · · ∧ S |O| ≤ S ′

|O|
, it follows

that f (S 1, . . . , S |O|) ≤ f (S ′1, . . . , S
′

|O|
). Most of the papers in the literature deal with regular

functions ( see e.g. Mati et al. (2011), García-León et al. (2015)). The makespan, the total
weighted completion time, the total weighted tardiness or the maximum lateness are exam-
ples of well-known regular functions. To consider some of these functions, each job j ∈ J
also has a due date d j ∈ Z and a weight ω j ∈ R. In the numerical results of Section 3.6, the
total weighted completion time and the total weighted tardiness are used.

3.2 Recalling the Batch-Oblivious Approach

Most existing solution approaches for Complex Job-Shop scheduling problems with batch-
ing machines rely on the disjunctive graph representation of Ovacik and Uzsoy (2012). This
representation introduces dedicated nodes to represent explicitly batching decisions. A novel
batch-oblivious modeling is introduced by Knopp et al. (2017). Like a classical conjunc-
tive graph, the batch-oblivious conjunctive graph uses nodes to uniquely model operations
and arcs to model precedence constraints on routes and resources. Instead of using addi-
tional nodes and arcs to model batches, batches are coded in the arc weights. This new
representation has many advantages. It reduces the structural complexity of the graph and
allows reusing ideas and techniques for a less complex problem like the move proposed by
Dauzère-Pérès and Paulli (1997) for the flexible job-shop scheduling problem. Last but not
least, it is possible to propose an integrated algorithm that computes start times and improves
the solution during the graph traversal by filling underutilized batches through a combined
resequencing and reassignment strategy. In this work, we adopt the same representation in
the form of batch-oblivious modeling. We propose a new integrated algorithm that modifies
the solution differently during graph traversal.
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3.2.1 Batch-Oblivious Conjunctive Graph

A classical conjunctive graph G = (V, E) is an acyclic directed graph with nodes V = O ∪

{0, ∗} that correspond to the operations in O plus an artificial start node 0 and an artificial end
node ∗. For a node v ∈ O, we denote its route successor by r(v) ∈ V \ {0} and its machine
successor by m(v) ∈ V \ {0}. Analogously, its predecessors are denoted by r−1(v) ∈ V \ {∗}
and m−1(v) ∈ V \{∗}. The artificial start node 0 has |J|+ |M| outgoing edges and no incoming
edges. Analogously, the artificial end node ∗ has |J| + |M| incoming edges and no outgoing
edges. This graph can be used to determine start times S v of operations v ∈ O. A weight
lu, v ∈ N0 is assigned to each edge (u, v) ∈ E in order to ensure a minimum duration between
the beginning of adjacent operations: S v ≥ S u + lu, v for each edge (u, v) ∈ E. Having this,
start times of operations correspond to distances of longest paths from the artificial start
node. Let us denote by L(v,w) ∈ N0 the distance of a longest path from node v ∈ V to node
w ∈ V . For each operation v ∈ O, its start time is determined by S v = L(0, v). To reflect the
constraints, we define edge weights as follows. For edge (0, o1, j) ∈ E connecting the artificial
start node 0 with the initial operation o1, j of a job j ∈ J , the edge weight is set to the release
time r j of job j ∈ J . For edge (0, om) ∈ E connecting the artificial start node 0 with the initial
operation om scheduled on machine m ∈ M, the edge weight is set to zero. For route edge
(v, r(v)) ∈ E with v , 0, the edge weight is set to the processing duration pv of operation v.
For machine edge (v,m(v)) ∈ E with v , 0 of non-batching machines, the edge weight is set
to the sum pv + s(qv, qm(v)) of the processing duration of v and the sequence-dependent setup
time between v and m(v) on machine mv = mm(v).

While the representation provided by Ovacik and Uzsoy (2012) introduces dedicated
nodes to represent explicitly batching decisions, the approach proposed by Knopp et al.
(2017) is not intrusive of the classical conjunctive graph and models batching decisions by
only adapting the weights of resource edges (u, v) ∈ E, i.e., such that m(u) = v. The weight of
a machine edge is set to zero if its adjacent operations should be processed in the same batch.
Otherwise, the edge weight is set to pu + s(qu, qv), as in the non-batching case. However,
setting lu, v = 0 only guarantees that S u ≤ S v but not that S u = S v, which must be satisfied
if p-batching constraints are considered. To make sure that batching decisions are feasible,
an invariant, given in (3.1), must be satisfied when the possibility of batching two adjacent
operations u and v is studied. Using this invariant, it follows that, for each operation u ∈ V ,
computing the longest path lead to scheduling the machine successor operation v = m(u) ei-
ther at the same time as u or at a later point in time where processing durations and sequence-
dependent setup times are satisfied. This property propagates naturally: Multiple operations
belonging to the same batch are connected in a path of zero weighted machine edges. In the
remaining of this chapter, when batching an operation v with its predecessor u is possible,
we assume that the following two conditions are already verified: qu = qv = q, q ∈ R and, if
B is the batch that contains u, σB + σv ≤ bq.(

lu, v = 0 ∧ S u ≥ S r−1(v) + lr−1(v),v

)
∨

(
lu, v = pu + s(u, v,mu)

)
(3.1)

The invariant (3.1) can be interpreted as follows: An operation v can be batched with
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its resource predecessor u, if the job of v is available before the already determined start
time of u, i.e., S r−1(v) + lr−1(v),v ≤ S u. In the original approach, the start time of u is never
changed while it is proposed in Section 3.4 to recompute S u so that it can be batched with v
when it is relevant. As shown in Section 3.3.1, another important ingredient of the approach
proposed in Knopp et al. (2017) is the dynamic modification of the conjunctive graph during
the schedule construction, by advancing suitable nodes, in order to fill-up incomplete batches.
Before going forward, most notations that are used within this chapter are listed in Table 3.1

Figure 3.1 shows an example to compare batch-aware and batch-oblivious representa-
tions. It shows a schedule with three jobs A, B, and C using two machines. We see two
batches processed on machine 2, each consisting of two operations: The first batch with oper-
ation 1 and operation 4, and the second batch with operation 5 and operation 8. For brevity of
notation, sequence-dependent setup times have been omitted and let us denote p1,4 = p1 = p4

and p5,8 = p5 = p8. Note that invariant (3.1) is not visualized in Figure 3.1 (b), so we assume
that S 1 ≥ rB and S 5 ≥ S 7 + p7.

3.2.2 Adaptive Computation of Start Times

In order to develop heuristic algorithms to solve the considered problem, the move pro-
posed by Dauzère-Pérès and Paulli (1997) for the flexible job-shop scheduling problem is
adapted to modify a given batch-oblivious conjunctive graph. This move, which integrates
the resequencing and reassignment of operations, does not require any specific knowledge
of previous batching decisions as it only considers a single operation at a time. In addition
to the improvement of the solution quality within the chosen heuristic by applying the move
of Dauzère-Pérès and Paulli (1997), it is proposed to improve batching decisions during the
computation of start times. When traversing the graph to compute the start times, suitable
nodes are advanced by removing and reinserting them in the graph to “fill up” incomplete
batches.

When the graph is not modified, it is possible to compute first a topological ordering.
Then, all nodes are traversed in this order to compute start times and to take batching de-
cisions regarding adjacent nodes only. This approach is no longer viable if the graph is
modified while being traversed. To be effective, three main concerns must be addressed
when improving a solution during the computation of start times: Feasibility of the solution,
efficient search for potential candidates to complete batches and suitable choice of the candi-
dates. The framework proposed by Knopp et al. (2017) to ensure the feasibility of the solution
while it is dynamically modified is recalled and generalized in Section 3.3.1. The generalized
framework helps to increase the efficiency of the search, and supports the integration within
the batch-oblivious approach of some constraints as shown in Chapter 4. Section 3.3.2 recalls
the different strategies proposed by Knopp et al. (2017) to choose the candidates to advance
and describes new efficient strategies. The strategies presented in Section 3.3.2 are called
non-delay as they only select candidates that can be included in incomplete batches without
delaying their start times. Section 3.4 proposes new strategies to select operations that may
require the delay of batch start times.
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Figure 3.1 – A comparison of alternative representations of the same schedule (Knopp (2016))



3.2 Recalling the Batch-Oblivious Approach 57

Table 3.1 – Table of Notation

J Set of jobs
M Set of machines
O Set of all operations
R Set of all recipes
B Family of batches
V Nodes of batch-oblivious conjunctive graph (V = O∪{0, ∗})

O j Operations of job j
Om Set of all operations that can be processed on machine m

r j Release time of job j
ω j Weight of job j
d j Due time of job j

oi, j Operation
u�,v�, w� Nodes of graph G

B� Batch
m� Machine, if indexed, the index refers to an operation oi, j ∈

O, node v ∈ V or batch B ∈ B that are using this machine
q� Recipe, if indexed, the index refers to an operation oi, j ∈ O,

node v ∈ V or batch B ∈ B
p� Processing duration, if indexed, the index refers to a recipe

q ∈ R, an operation oi, j ∈ O, node v ∈ V or batch B ∈ B
σ� Size of a job j ∈ J , a job of a node v or an operation oi, j, or

a batch B ∈ B
lu,v Weight of the edge between two nodes u and v in the batch-

oblivious conjunctive graph G
S �, C� Start and completion times, the index may refer to an oper-

ation oi, j ∈ O, node v ∈ V or batch B ∈ B
t� Job availability of an operation oi, j ∈ O or a node v ∈ V

(tv = S r−1(v) + lr−1(v),v)
V s Set of the settled nodes
Vu Set of the unsettled nodes
V f Set of the first job unsettled nodes
E0 Set of non-delaying candidates to fill an incomplete batch
E∞ Set of delaying candidates to fill an incomplete batch
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3.3 Search Acceleration and New Search Strategies

This section introduces our different propositions to make the batch-oblivious approach more
efficient. Section 3.3.1 recalls how a solution is kept feasible while it is improved during the
computation of start times. Then, some properties are generalized, and new ones are high-
lighted. Based on the highlighted properties, Section 3.3.2 proposes new efficient strategies
for node selection. The generalization proposed in this section are also necessary for the
integration of new constraints, such as the minimum batch size, studied in Section 4.3.

3.3.1 Dynamic graph modification: Solution feasibility

It is proposed to improve the solution while a schedule is computed dynamically. To obtain
a feasible solution, these modifications must respect all the constraints and ensure that no
cycle is introduced in the graph. To do so, let us consider a batch-oblivious conjunctive
graph G = (V, E) to be used to compute a schedule: Consider feasible batching decisions
by making the weights of related edge resources equal to zero and compute the start times
of operations. During such algorithm, let us define settled nodes to be those for which start
times are already computed and unsettled nodes those for which this is not yet done. Let
us define a cut C = (V s,Vu) that is a partition of V of the graph G, where V s is the set of
all settled nodes, and Vu is the set of all unsettled nodes. To compute the start time of node
v ∈ V , the start times of its predecessors must already be computed, i.e., they must already be
settled. To ensure this, it is required that there is no edge from an unsettled node to a settled
node. In this case, i.e. E ∩ (Vu × V s) = ∅, we call the cut C unidirectional.

Let us denote by Gs = (V s, E s) and Gu = (Vu, Eu) the resulting subgraphs. The edges of
each graph G? ∈ {Gs,Gu,G} are given by E? = E ∩ (V? × V?). Let us denote for a node
v ∈ V? its indegree in G? by deg−?(v) and its outdegree in G? by deg+

?(v). A node v ∈ V?

without incoming edges (i.e. deg−?(v) = 0) is called a root node of G?. A node v ∈ V? without
outgoing edges (i.e. deg+

?(v) = 0) is called a leaf node of G?. A settled node v ∈ V s that
has its resource successor unsettled, i.e., m(v) ∈ Vu, is called last machine settled node. The
set V l ⊆ V s denotes the set of all last machine settled nodes and its cardinality is at most the
number of machines |M|. Note that the set of leaf nodes in V s is a subset of V l. An unsettled
node v ∈ Vu that has its route predecessor settled, i.e., r−1(v) ∈ V s, is called first job unsettled
node. Such a node can be either a root node in Vu or not. The set V f ⊆ Vu denotes the set
of all first job unsettled nodes and its cardinality is at most the number of jobs |J|. Note also
that the set of root nodes in Vu is a subset of V f .

Figure 3.2 illustrates a partition of the nodes of the same batch-oblivious conjunc-
tive graph in Figure 3.1. C represents the unidirectional cut. The green filled nodes are
settled nodes, i.e., V s = {0, 1, 2, 4, 7}. The grey filled nodes are unsettled nodes, i.e.,
Vu = {3, 5, 6, 8, 9, ∗}. The green filled nodes that are outlined in black correspond to the
last machine settled nodes, i.e., V l = {2, 4}. The grey filled nodes that are outlined in black
correspond to the first job unsettled nodes, i.e., V f = {3, 5, 8}.
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Figure 3.2 – Partition of batch-oblivious conjunctive graph nodes

To settle a first job unsettled node w ∈ V f after a last machine settled node u ∈ V l of Gs,
w is removed from Gu and appended to Gs. If m−1(w) = u, the operation remains assigned
to machine mw and sequenced after the same machine predecessor w. In this case, no edges
need to be modified. Otherwise, if m−1(w) , u, we modify the graph G as follows: The
machine related conjunctive edges (m−1(w),w) ∈ E and (w,m(w)) ∈ E of operation w are
replaced by an edge (m−1(w),m(w)) and the edge (u,m(u)) ∈ E is replaced by two edges
(u,w) and (w,m(u)). Settling a node does not change any route edge. If m−1(w) , u and
mw = mu, then w is resequenced. If m−1(w) , u and mw , mu, then w is reassigned. Note
that we require for a node v ∈ Vu to be reassigned after a node w ∈ V s such that ∃ q ∈ Rw

with mq = mu. After these graph modifications, the weight of edge (u,w) is determined in a
way that satisfies the batching constraints and the invariant (3.1). Finally, the start time of w
can be computed as its predecessors are already settled and the weight of the resource edge
(u,w) is determined.

In Knopp et al. (2017), it is proved that, after settling a first job unsettled node w after
a leaf node u ∈ V s, the modified graph G′ = (E′,V ′) does not contain any cycle and C′ =

(V s′ ,Vu′), where V s′ = V s ∪ {w} and Vu′ = Vu \ {w}, is a unidirectional cut in G′. In this
work, instead of restricting to the set that contains only leaf nodes in V s, it is allowed to
settle a node w after any last machine settle node u ∈ V l. Theorem 3.1 ensures the previous
result and that no cycle in introduced in the modified graph G′ and that C′ = (V s′ ,Vu′) is a
unidirectional cut in G′. The proof is not detailed here as the same arguments given in Knopp
et al. (2017) can be used.

Theorem 3.1. Let G = (V, E) be a conjunctive graph and let C = (V s,Vu) be a unidirectional
cut in G. When a first job unsettled node w ∈ V f ⊆ Vu is settled after a last machine settled
node u ∈ V l ⊆ V s of Gs, the modified graph G′ = (V ′, E′) does not contain any cycle and
C′ = (V s′ ,Vu′) is a unidirectional cut in G′.

In the original approach, the start time of a settled node is never changed. In other words,
when the start time of an operation u is computed, it is assumed that no decision related to
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this operation, such as its assignment or its sequencing, is ever revised. Different reasons
can motivate the generalization of the framework to reconsider already taken decisions. In
this thesis, the possibility of reconsidering decisions that are related to settled nodes has two
motivations:

• In the original approach, if v is the selected operation to be settled after operation u
such that S r−1(v) + lr−1(v),v > S u, u and v will be in different batches as invariant (3.1)
is not satisfied. In Section 3.4, different approaches are proposed to allow including
an operation v in an incomplete batch, even when the job of v is available after the
already computed start time of the batch. However, to satisfy the p-batching constraint
that imposes a common start time for all operations in a batch, it becomes necessary to
recompute the start times of the operations already in the incomplete batch so that the
selected late operation can be included in the batch.

• The other situation where it becomes necessary to reconsider already taken decisions
that are related to settled nodes is when taking into account minimum batch size con-
straints. Our proposed approach to consider these constraints is described in Sec-
tion 4.3.4. It requires the possibility of resequencing already settled nodes if their
batches do not satisfy minimum batch size constraints.

To cope with these different situations, we extend the approach by giving the possibility
to unsettle a node v ∈ V s. First, let us define a reachability relation as ≺ ⊂ V × V , which
contains (u, v) ∈ V×V if and only if there exists a path from u to v in the conjunctive graph G.
To unsettle a node u ∈ V s, u is removed from Gs and appended to Gu. Also, any node v ∈ V s

such that u ≺ v must be unsettled. By performing this routine, it is ensured that the validity
of the unidirectional cut is maintained. Regarding the feasibility of the solution, the risk of
introducing a cycle depends on the changes made to the graph, and must be studied on a
case-by-case basis.

3.3.2 Node Selection Strategies

To compute the start times and determine the weight of resource edges, the nodes of the graph
are traversed in the topological order. Let v be the currently visited node. Before settling
it and computing its start time, the possibility of batching it with its machine predecessor
u = m−1(v) is checked. If the batch B containing u is complete, v is directly settled after u.
If the batch is incomplete and it is possible to add v, v is also settled after u and the weight
of edge lu,v = 0. If the two previous conditions are not satisfied, it can be interesting to look
for other nodes that can be advanced in order to complete batch B. In the original work of
Knopp et al. (2017), it was shown that the quality of the obtained schedule strongly depends
on the selection of the nodes to settle. If the batch containing u ∈ V s is incomplete, there
may be nodes in V f that can fill the unused capacity. The selection strategies are different in
the way Vu is explored. In Knopp et al. (2017), after selecting a node v ∈ Vu, one of three
strategies can be used to determine a node w to be settled after u = m−1(v). Let E0 be the set
of nodes found by a given strategy to fill an incomplete batch.
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• A static strategy settles v after its resource predecessor, i.e., E0 = ∅. This strategy does
not modify the graph and iterates the nodes in the topological order, as any classical
start time computation algorithm.

• Using a resequencing strategy, if the batch containing u is incomplete and v does not
satisfy all the conditions to complete the batch, the machine successors of v are iterated
until a candidate operation is found. The search is stopped at the first found compatible
node. In this case, E0 = {w ∈ Vu ∧ qu = qw ∧ S r−1(w) + lr−1(w),w ≤ S u} and |E0| = 1.

• If E0 = ∅, a third strategy, called reassignment strategy, can be triggered. Using
this last strategy, the search is extended to operations on other machine sequences.
Instead of visiting all machine sequences as in the original approach, it is sufficient
to restrict the search to any machine m such that ∃Ri, j ⊃ {q, q′}, where q = qu and
mq′ = m. The search is also stopped at the first found candidate node. In this case,
E0 = {w ∈ Vu ∧ ∃q ∈ Rw | q = qu ∧ mu , mw ∧ S r−1(w) + lr−1(w),w ≤ S u} and |E0| = 1.

If none of the used strategies find a candidate, node v is settled after its predecessor u. The
complexity analysis of these strategies shows that, in the worst case, both the resequencing
and the reassignment strategies explore O(|V |) operations to select a node. Consequently,
the runtime bound of the whole schedule computation algorithm is O(|E||V |). As shown in
the experimental results of Knopp et al. (2017), the search strategies lead to better solutions
even if the computational cost is high. When they are triggered, these strategies search for
filling nodes among all those belonging to Vu. However, only the nodes that have their route
predecessors settled are potential candidates. Hence, instead of looking in Vu, it is sufficient
to only look in its subset V f defined in Section 3.3.1. So, instead of exploring the graph, we
propose to maintain the set V f in an auxiliary data structure. This data structure maps each
job j to its first unsettled node v ∈ V f . Whenever a node v is settled, its route successor r(v)
becomes the first unsettled node of the same job, which is done in constant time. When the
set V f is tracked, faster strategies can be proposed. These new strategies, as the search is only
performed in V f and as |V f | = |J|, explore at most O(|J|) nodes. Consequently, the runtime
bound of the whole schedule computation algorithm is O(|E||J|). The search can be made
faster with some preprocessing. Instead of considering all nodes in V f , one can only focus
on the subset of the first job unsettled node of jobs that have in their routing an operation that
has among its eligible batch families the batch family of the batch to be completed. In other
words, if qB is the recipe of the batch to complete, the search is performed on the reduced
subset Vr ⊂ V f such that Vr = {v ∈ V f | v ∈ O j ∧ ∃oi, j ∈ O j ∧ qB ∈ Ri, j}. A simple
preprocessing allows this by mapping each batch family to the set of jobs that have at least
one operation that uses qB.

The first proposed strategy is called the integrated strategy. If the batch containing u is
incomplete and v does not satisfy all the conditions to complete the batch, the nodes in Vr are
iterated. This strategy is called integrated as it does not differentiate between resequencing
and reassignment. The nodes in Vr are iterated looking for a candidate that satisfies all the
conditions. If such a node is found, the search is stopped. In this case, E0 = {w ∈ Vr ∧ ∃q ∈
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Rw | q = qu ∧ S r−1(w) + lr−1(w),w ≤ S u} and |E0| = 1. If none of the used strategies find
a candidate, node v is settled after its predecessor u. In this strategy, the set Vr is always
traversed in the same order.

In all previous strategies, if there is no node w such that S r−1(w) + lr−1(w),w ≤ S u, node v
is settled after its resource predecessor u. We propose to relax this condition and potentially
accept to integrate late operations in incomplete batches, at the cost of recomputing the start
times of the operations in the incomplete batch. Also, within the strategies described above,
the search is stopped when one candidate is found. If, after adding w to the batch of u, the
batch is still incomplete, the search is triggered again and run through almost the same search
space, i.e., V ′f = V f \ {w} ∪ {r(w)}. Instead of this, the search for all possible candidates that
can complete the batch can be performed once. This strategy is motivated by the fact that late
operations can be added to incomplete batches. If late operations are accepted and if the first
encountered operation during the search is late, the batch start time may be delayed while
there are operations that can be added without any delay on the initial batch start time.

The proposed strategy is called the collecting strategy. This strategy iterates nodes in Vr

for operations that can be integrated into the incomplete batch without delaying its start time.
Instead of stopping the search when a single node is found, the search is ongoing as long
as the maximum capacity is not reached. The set of non-delaying operations is E0 = {w ∈
Vr | ∃q ∈ Rw ∧ q = qu ∧ S r−1(w) + lr−1(w),w ≤ S u}. As delaying operations are also potential
candidates, in addition to set E0, let E∞ = {w ∈ Vr | ∃q ∈ Rw∧q = qu∧S r−1(w) + lr−1(w),w > S u}

be the set of delaying operations found during the search. As the objective is to search for
a set of candidates instead of only one, we look indifferently operations to resequence or to
reassign. If B is the incomplete batch to which u belongs, the search continues as long as
there is still unused capacity, i.e., σB +

∑
w∈E0 σw < bq. At the end of the search, if adding the

nodes in E0 results in a complete batch or if E0 , ∅ and E∞ = ∅, these nodes are settled one
by one after u. If the two sets E0 and E∞ are empty, v is settled after its resource predecessor
u. Finally, when the nodes in E0 do not complete batch β and if E∞ is not empty, the batch
size can potentially increase if the late operations are added by delaying the start time of
the whole batch. While doing this, an important question arises: What is the latest start
time beyond which it is no longer interesting to try to increase the batch size. The proposed
answer is detailed in Section 3.4.1 and consists in selecting a subset of E∞.

The third proposed strategy is the random integrated strategy. Instead of traversing the
element of Vr in the same order, this strategy searches for all non-delaying nodes E0 as in
the collecting strategy. At the end of the search, one node is randomly selected. The three
proposed approaches are similar to the reassignment strategy as they visit all potential nodes.
The resequencing strategy, by visiting only nodes on the sequence of the machine on which
u is processed, only considers a subset of all the potential nodes. The experimental results
showing the improvement brought by the new proposed strategies over the former ones are
detailed in Section 3.6.1.
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3.4 Active Scheduling Approaches

The way schedules are constructed in the original approach is described here as locally non-
delay. When a node is visited during the graph traversal, the construction algorithm gives
this node the earliest start time. The last condition only defines what is called semi-active
schedules in the scheduling literature (Pinedo (2016)). Locally non-delay construction de-
scribes the way it is ensured that the invariant (3.1) is satisfied and the set of nodes that are
candidates to be advanced. Regarding the satisfaction of the invariant that ensures the fea-
sibility of batching decisions, operation v can be batched with its resource predecessor u if
the job is available before the already determined start time of u, i.e., S r−1(v) + lr−1(v),v ≤ S u.
In other words, operation v can be batched with its resource predecessor u only if it does not
delay the start of the batch to which u belongs. However, it is still possible to ensure the
satisfaction of the invariant by recomputing the start time of u and delaying the start time of
the batch to include operation v. Also, in the original approach, the search for operations that
can be advanced to complete a batch is restricted to compatible operations that are available
before the already computed start time of the batch. Instead of this, the search can also be
extended to operations that can potentially delay the start time of the incomplete batch.

Theoretically, it is always possible to construct an optimal solution using the original con-
struction algorithm on the batch-oblivious conjunctive graph. A new construction algorithm
is proposed in this work that is called locally active as idles times are intentionally added
in order to complete batches. This was felt like a useful shortcut that accelerates the search
by quickly constructing good solutions. Instead of constraining operation v to be available
before the start time of its resource predecessor u in order to ensure the satisfaction of the
invariant, it may be interesting to delay and recompute the start times of all the operations
belonging to the same batch as u. Also, instead of restricting the search to operations that
can complete a batch without delaying its start time, we extend the search for any operation
that can be added to the batch without delaying its start time by more than a given maximal
delay. By doing this, several questions arise: What is the maximal acceptable delay? If the
start time of an incomplete batch is to be delayed, do we recompute only the start times of
the operations already in the batch or do we sequence the delaying operation at the beginning
of the batch sequence?

3.4.1 Computation of the Maximal Delay

If a batch B is still incomplete, the collecting strategy defined in Section 3.3.2 is triggered.
The search returns two sets: E0 = {w ∈ Vr ∧ ∃q ∈ Rw | q = qu} and E∞ = {w ∈ Vr ∧ ∃q ∈
Rw | qu = q ∧ S r−1(w) + lr−1(w),w > S u}. If the batch remains incomplete after inserting all the
nodes in E0, it may be beneficial to insert nodes in E∞. Adding all the delaying operations
can be extreme. Different rules can be designed to decide which delaying nodes to integrate
to the incomplete batch. Let us consider B0 the incomplete batch obtained after including
all the nodes in E0 and let us denote its earliest start time by S , i.e., S = S u,∀u ∈ B0. The
recipe of the incomplete batch B0 is q, its size is σB0 and its maximal size is bq. Let tv denote
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the job availability time of node v, i.e., tv = S r−1(v) + lr−1(v),v. Let us assume, w.l.o.g, that
the nodes in E∞ are ordered in the non-decreasing order of their job availability time, i.e.,
∀wi ∈ E∞ | 1 < i < |E∞|, twi−1 ≤ twi ≤ twi+1 . The question of whether to start B0 as it is
or to include nodes from E∞ arises. Let Bl denote a formed batch that contains B0 and all
operations in E∞ that are available before tvl , i.e., Bl = B0 ∪ {vi ∈ E∞, i ≤ l} and let S l be the
time beyond which it is no longer beneficial to delay the start time of batch Bl. Finally, let
B f denotes the final batch.

The first rule, called Simple Rule and abbreviated by SR, relies on the idea that the ac-
ceptable delay must depend on the batch filling, i.e., the larger the size of the incomplete
batch, the shorter must be the delay. The computation of the time beyond which it is not
beneficial to delay the start time S of the batch B0, denoted by S 0, is shown in (3.2). The
delay is proportional to the processing duration and to the proportion of the incomplete size.
When S 0 is computed, all the delaying nodes that are available before this time are added to
the batch, i.e., wi ∈ E∞|twi < S 0. This rule gives as a final batch B f = B0∪{wi ∈ E∞|twi < S 0}.

S 0 = S + pq
bq − σB0

bq
(3.2)

The idea of Cigolini et al. (2002) inspires the second rule for dynamic scheduling on
batching machines. This rule is called Cigolini Rule and abbreviated to CR. Cigolini et al.
(2002) suggest to dynamically determine the length of the time window production planners
should wait and leave the batching machine idle to reduce the flow time without adversely af-
fecting the machine utilization rate. The basic idea of the computation is to balance between
the total delay of the already available operations, if the decision of delaying the batch start
time is taken, and the upper bound of the avoided delay that could be gained by an hypo-
thetical next-arriving operation that will be added to the batch, if the decision of immediate
loading is taken. This idea, when applied to the batch B0, can be expressed as in (3.3).∑

u∈B0

(S 0 − tu) ≤ pq (3.3)

Using this equation, the latest start time S 0 for the incomplete batch B0 can be computed
as

S 0 ≤
pq +

∑
u∈B0 tu∣∣∣B0
∣∣∣ (3.4)

When S 0 > S , it means that it may be beneficial to delay the start time of B0 and check if it
is possible to include nodes in E∞ that are available before S 0, i.e., wi ∈ E∞|twi < S 0. Instead
of adding all the operations that satisfy the previous condition, only the earliest available
node w1 is added. The same reasoning that was applied to B0 should be applied to the new
batch B1 and iteratively for each new batch Bl that is obtained after adding operation wl ∈ E∞

to batch Bl−1. The latest start time S l of Bl should be recomputed to take the waiting time of
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the latest added node wl ∈ E∞ into account. This idea is expressed in (3.5), which generalizes
(3.3). The latest start time of batch Bl can be computed as in (3.6).∑

u∈Bl

(S l − tu) ≤ pq (3.5)

S l ≤
pq +

∑
u∈Bl tu∣∣∣Bl
∣∣∣ (3.6)

All the computations above assume that the jobs are equally important. When different
priorities are associated with jobs, a delay of x time units of a job with high priority should not
be considered equal to a delay of x time units of a job with lower priority. The computation
of the latest start time S l should be adapted to take into account these new data. Let ωu

be the priority associated with the job of operation u. Let us assume it is decided to add
operation wl to a batch that is still incomplete after this. The delay of the already available
operations wl ∈ Bl should be weighted with their job priority. In opposition to dynamic
scheduling, the next arriving operation is known to be wl+1 and therefore its job priority.
Considering this, (3.5) can be generalized to obtain (3.7). The latest start time of batch S l

can be computed as shown in (3.8). The complete procedure to select the final batch B f is
detailed in Algorithm 3.1. It is assumed that the elements of E∞ are sorted in non-decreasing
order of their job available times. ∑

u∈Bl

ωu(S l − tu) ≤ ωwl+1 pq (3.7)

S l ≤
ωwl+1 pq +

∑
u∈Bl ωutu∑

u∈Bl ωu
(3.8)

Algorithm 3.1 Selection of delaying nodes using the Cigolini Rule (CR)

CigoliniRule (B0, E∞)
B f ← B0

f o r l ∈ {0, 1, . . . , |E∞| − 1}

S l ←
ωwl+1 pq+

∑
u∈Bl ωutu∑

u∈Bl ωu

i f ( twl+1 < S l )
B f ← B f ∪ {wl+1}

e l s e
break

The two above rules have different perspectives. The Simple Rule has a machine perspec-
tive and focuses on capacity utilization without considering the job characteristics such as
their available times. The delay is mainly determined by the batching capacity of the ma-
chine and the batch processing time. Even if it tries not to have a negative impact on machine
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utilization, the Cigolini Rule focuses more on job flow times. A third rule, called Geometric
Rule and abbreviated as GR, attempts to combine both the machine and job perspectives.
Figure 3.3 is used to illustrate the use of this rule. Three jobs sharing the same batching
family have to be scheduled on a machine with a capacity of 3 jobs. The absolute capacity
of a batching machine is modeled as a surface whose length is the time during the machine
is available, and the width is the batching capacity of the machine. In Figure 3.3, this ca-
pacity is modeled through the gray rectangle. The blue surface in Figure 3.3(a) represents
the proportion of the absolute capacity that can be used by the available and arriving jobs of
the same family when the p-batching constraint is relaxed, i.e., if a job is processed as soon
when it is available. In the following, this capacity is called actual capacity.

The idea of the geometric rule is to minimize the unused actual capacity when a batching
decision is taken. To illustrate this, let us consider the problem in Figure 3.3(a) for which
there are three solutions. The first solution is illustrated in Figure 3.3(b) where the started
batch B contains only Job 1. In this case, the unused actual capacity is the part of the actual
capacity that can no longer be used anymore, i.e., since the machine becomes available until
the end of the started batch. This capacity is represented with a dashed surface in all sub-
figures of Figure 3.3. When B = {1}, the lost actual capacity is equal to 4, where the unit is
expressed as a time unit times a size unit. The second solution is illustrated in Figure 3.3(c)
where the started batch B = {1, 2}. In this case, the lost actual capacity is equal to 3. In the
last solution, where B = {1, 2, 3}, the lost actual capacity is equal to 5. So, according to the
Geometric Rule, the best decision is to start the batch B = {1, 2}. The same result is obtained
using the Simple rule or the Cigolini Rule.

The procedure for selecting the delaying nodes from E∞ is detailed in Algorithm 3.2.
To compute the actual capacity of the batching machine that is processing the incomplete
batch B, its availability time tm is first computed. When a regular function is considered, it
can be shown that the lost actual capacity for a batch is minimized if the batch is started as
soon as all the jobs are available. For each possible batch Bl, its earliest start time S l and
earliest completion time Cl are computed. The first component of the lost actual capacity
corresponds to the capacity that could be used by the jobs that are available before the start
time of the selected batch. The second component corresponds to the capacity that could be
used by the job that arrives between the start time and the completion time of the selected
batch.

Note that all these rules use local information about the concerned machine and the se-
lected nodes. A delaying node can be selected to complete a batch while it can naturally be
part of a complete batch with some unsettled operations. Different ways can be imagined
to include more information about the whole graph in order to improve the selection of the
delaying nodes. The way that was adopted in this work is quite simple: Exclude all delaying
nodes that have a chance, even a small one, of being part of a batch. It is considered that
a node has a chance of being in a full batch if there is at least one recipe for which the re-
maining unsettled nodes can be partitioned in full batches. In other words, a node wl ∈ E∞ is
excluded if: ∃q ∈ Rwl | A = {w ∈ Vu ∧ q ∈ Rw} ∧

∑
w∈A σw mod bq = 0.

In addition to the non-delay selection strategies given in Section 3.3.2, six additional
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(a) Batching problem with three jobs
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(b) Actual lost capacity = 4, B f = {1}
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(c) Actual lost capacity = 3, B f = {1, 2}
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Size

(d) Actual lost capacity = 5, B f = {1, 2, 3}

Figure 3.3 – Example illustrating the use of the Geometric Rule
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Algorithm 3.2 Selection of delaying nodes using the Geometric Rule (GR)

GeometricRule (B0, E∞)
tm ← availability of machine m before processing B
f o r l ∈ {0, 1, ..., |E∞|}

S l ← maxwi∈Bl{twi , tm}

Cl ← S l + pq

lostCapacityl ←
∑

wi∈Bl min{S l − tm, S l − twi}

lostCapacityl ← lostCapacityl +
∑

wi∈E∞\Bl max{0,Cl − tw − twi}

B f ← Bl | lostCapacityl ≤ lostCapacityk,∀k ∈ {0, 1, ..., |E∞|}

strategies can be defined, according to the rule that is used to select delaying nodes and
the level of information that is used, i.e., local information or global information about the
whole solution. The collecting strategy returns the set of non-delaying nodes E0 and the set
of delaying nodes E∞. Then, based on this last strategy, the six additional strategies are:
SR-L, SR-G, CR-L, CR-G, GR-L and GR-G. The two first letters in the abbreviations define
the selection rule, and the last letter refers to the level of used information, G for global
information and L for local information.

3.4.2 Move Feasibility

In the case where a non-delay selection strategy is used, Theorem 3.1 ensures that no cycle is
introduced if all the candidates are settled after the last node u of the incomplete batch B and
that the unidirectional cut remains valid. When delaying nodes are selected, Theorem 3.1 is
no longer sufficient. As they are available after the incomplete batch start time, sequencing
these nodes after the last node u of the incomplete batch B is not sufficient as the invariant
(3.1) cannot be satisfied. It becomes necessary to unsettle the already batched nodes and to
assign new start times to these nodes that allow adding the delaying nodes in the incomplete
batch B, i.e., so that the invariant becomes satisfied. If multiple delaying nodes are selected,
the start time of the new batch is determined by the job availability of the latest delaying
operation. Let us consider an incomplete batch B = {u1, . . . , u|B|} where the nodes are sorted
in their topological order, a set of non-delaying nodes E0 and a subset of delaying nodes
D = {w1, . . . ,wl} ⊂ E∞ where the nodes are sorted in the non-decreasing order of their job
availability. The obtained new batch is denoted by B f = B∪ E0 ∪D and its earliest start time
is given by the job availability of w = wl ∈ D. All the nodes in E0 are to be sequenced after
the u|B|, last sequenced operations in the incomplete batch.

If it is feasible to delay the start time until tw, there are two alternatives for updating the
solution.

1. The first alternative consists in sequencing w after u|B| and only recomputing the start
times without modifying the graph. To ensure that w is batched with its resource
predecessor, it is sufficient to give for u1 a start time that is equal to tw = S r−1(w) +
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Figure 3.4 – Resequencing a delaying node w before an incomplete batch

lr−1(w),w to make sure that all the remaining nodes in Bl will be in the same batch.
However, preliminary computational results show that this way of proceeding does not
lead to good results. This can be explained by the fact the batching decisions are not
reflected in the graph structure. In other words, if a classical algorithm that computes
left shifted schedule is used on the obtained batch-oblivious conjunctive graph where
all the resource edge weights are determined, the schedule is not feasible if a late
operation is added to a batch.

2. The second alternative is to make sure that batching decisions are reflected in the graph.
After unsettling all the nodes of B, w is first sequenced between m−1(u1) and u1. In this
way, the new batch B f is naturally obtained. However, before doing this, it should be
ensured that delaying the start time is feasible, i.e., no cycle is introduced in the graph.

Lemma 3.1 ensures that no cycle is introduced when the maximal delay of the start time
of the incomplete batch is lower than its processing time. This condition is naturally satisfied
when the Simple Rule is applied (3.2). It can also be proved that this condition is always
satisfied when the Cigolini Rule and the Geometric Rule are applied to a problem where all
the jobs are equally important (3.6). When jobs have different priorities, the Cigolini Rule
can accept the batch start time to be delayed by its processing time.

Lemma 3.1. Let w ∈ D be a delaying operation that is sequenced before u1. No cycle is
introduced if the start time of the incomplete batch B is delayed by less than its processing
time, i.e., tw < S u1 + pq.

Proof. As the operation w is sequenced before batch B, w is sequenced between m−1(u1) and
u1. There are only two possible ways of creating a cycle by moving w, which are illustrated
in Figure 3.4.
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1. there was a path in the graph between w and m−1(u1),

2. or (and) there was a path in the graph between u1 and w

First, notice that the resource arcs before and after w are deleted when w is moved. In
case 1, if such a path exists, this means that there is a path from an unsettled node w to a
settled node m−1(u1). This contradicts the definition of the unidirectional cut C = (V s,Vu).

In case 2, two situations can occur. Because of reentrant flows, the route predecessor
r−1(w) can be u1. In this case, tw = S u1 + pq which contradicts tw < S u1 + pq. In the second
situation, if such a path exists, r−1(w) belongs to this path which implies S r−1(w) ≥ S u1 + pq.
r−1(w) cannot be the artificial node 0 as this implies that there is a cycle in the graph before
moving w, thus pr−1(w) > 0. This implies that tw − S u1 ≥ pq, which is in contradiction with
tw < S u1 + pq.

�

If it can be beneficial to accept this delay, the sufficient conditions introduced in Dauzère-
Pérès and Paulli (1997) can be used to make sure that no cycle is introduced while the batch is
delayed by more than its processing time. This can be the case when optimizing the batching
coefficient described in Section 2.4, which is not a regular objective function. Instead of
sufficient conditions, it is also possible to check that there is no path from u1 to w, but also
to any wl ∈ E∞ verifying twl > S u1 + pq. Algorithms like DFS or BFS (Cormen et al. (2009))
can be used to identify such paths. The exploration can be made efficient if the exploration
is cut every time an unsettled node v ∈ Vu is visited. Any delaying node that has its route
predecessor not visited by the exploration algorithm can be added to the incomplete batch
without making the solution unfeasible. Within this work, we do not allow delaying by
more than the processing time of the incomplete batch for three reasons. From a flow time
perspective, there is no benefit in delaying by more that the processing time. In a case where
a different objective function is used, it is always possible to obtain a solution where the
discarded delaying nodes can be added to the incomplete batch within the neighborhood-
based metaheuristic. Third, it is not realistic from an industrial perspective to let a machine
idle for such long time.

3.4.3 Active Schedule Construction

Using the results of the previous sections, a general algorithm can be designed to construct
and improve schedules starting from a batch-oblivious conjunctive graph. As locally non-
delay strategies can be considered as a special case of locally active strategies, only one
algorithm is given here. The overall schedule construction algorithm is shown in Algo-
rithm 3.3. Given a batch-oblivious conjunctive graph and a selection strategy, this algorithm
returns a schedule.

Initially, only the artificial start node 0 is considered to be settled. The different sets,
V s,V l and V f defined in Section 3.3.1, are initialized. Then, nodes that meet the criteria of
Theorem 3.1 can be successively settled without introducing any cycle. At each iteration,
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a root node v is selected in Vu and its resource predecessor u is determined. If the batch
containing u is incomplete and v is not a compatible candidate, candidates to complete the
batch are searched for using the given selection strategy. If a non-delay strategy is chosen,
only set E0 can be non-empty. If this is the case, all the found nodes are sequenced after u and
instead of settling v, the last inserted candidate in E0 is settled. If an active strategy is chosen,
potential delaying nodes can be given in E∞. As explained above, this set can be reduced
when global information about the whole graph is considered. Before moving the selected
delaying nodes, all the nodes in the incomplete batch B and the nodes that are settled and
reachable from the batch nodes are unsettled first. Then, the delaying nodes are sequenced
one by one after the resource predecessor of the incomplete batch B. Lemma 3.1 ensures that
no cycle is introduced. If E∞ is not empty, instead of settling v, the last available selected
node is settled. When the node to settle v and the resource predecessor u are determined, the
invariant (3.1) and the conditions regarding the batching capacity and compatibility are used
to decide whether it is possible to batch nodes u and v. Finally, the different sets are updated.
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Algorithm 3.3 An active schedule construction algorithm for a given conjunctive graph G
and a given selection strategy

computeStartDatesAdaptively (G,Strategy)
S 0 ← 0
V s ← {0} ; Vu ← V \ {0} ; V f ←

{
v ∈ Vu | r−1(v) = 0

}
Bv ← {v} (∀ v ∈ V) ; σBv ← σ j (∀ v ∈ V | v ∈ O j)
whi le V s , V

v← select (v ∈ Vu | deg−u (v) = 0)
u← m−1(v)
i f (σBu < bu and (qu , qv or S r−1(v) + pr−1(v) > S m−1(v)) )

Vr ←
{
w ∈ V f | w ∈ O j ∧ ∃oi, j ∈ O j ∧ qu ∈ Ri, j

}
(E0, E∞)← Strategy(u,Vr)
E∞ ← E∞ \

{
wl ∈ E∞ | ∃q ∈ Rwl | A = {w ∈ Vu ∧ q ∈ Rw} ∧

∑
w∈A σw mod bq = 0

}
i f ( E0 , ∅ )

f o r ( i ∈
{
1, . . . ,

∣∣∣E0
∣∣∣} )

sequence wi after u
v← w|E0|

i f ( E∞ , ∅ )
u← m−1(ui) (ui ∈ Bu ∧ m−1(ui) < Bu)
f o r ( i ∈ {1, . . . , |Bu|} )

V s ← V s \ {v ∈ V s ∧ ui ≺ v} ; Vu ← Vu ∪ {v ∈ V s ∧ ui ≺ v} ;
V f ← V f \ {r(ui)} ∪ {ui}

Bui ← {ui} ; σBui
← ρ j (ui ∈ O j)

f o r ( l ∈ {1, . . . , |E∞|} )
sequence wl after u

v← w|E∞ |
i f ( S r−1(v) + pr−1(v) ≤ S u and qu = qv and σBu + σv ≤ bv )

S v ← S u

Bv ← Bv ∪ Bu ; σBv ← σBv + σBu

e l s e
S v ← max

(
S r−1(v) + pr−1(v), S u + pu + s(σu, σv)

)
V s ← V s ∪ {v} ; Vu ← Vu \ {v} ; V f ← V f \ {v} ∪ {r(v)}
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3.5 Heuristic Approaches

Since the batch-oblivious methodology is not bound to one specific solution approach, it
can be deployed within different heuristic frameworks. We developed a heuristic approach
based on the idea of Greedy Randomized Adaptive Search Procedures (GRASP) of Feo and
Resende (1995). Our heuristic creates many different starting solutions by randomizing a
construction heuristic, and each solution is independently improved using a metaheuristic.
The GRASP based approach is parallelized as follows. Each solution is constructed and
improved independently and thus can be run in its own thread. Communication between
threads is only needed to update the best overall solution once a thread has completed its
computation. A fixed number of threads is used, and each thread restarts with a new initial
solution once the chosen metaheuristic has met the stopping criterion, which is the maximum
number of non-improving moves in our implementation. In the following, we describe the
framework within which are applied the different building blocks developed in the previous
sections.

First, we define a deterministic construction heuristic which adapts the methods pre-
sented in Yugma et al. (2012) and Knopp et al. (2014). If due dates and weights are given,
jobs are initially sorted in decreasing order of their ratio w j

d j
(weight divided by due date).

Otherwise, jobs are initially sorted in decreasing order of the sum of the shortest process-
ing durations of their operations. The heuristic then iterates over the sorted list of jobs and
successively inserts all operations of the current job. The operations of a job are greedily
inserted, starting from the first operation, by selecting the best insertion position for each
operation. The best insertion position is determined by the objective function value of the
partial solution obtained by actually inserting the considered operation. The construction is
completed when all operations of all jobs have been inserted. The randomization of the con-
struction heuristic is done by perturbing the sorted list of jobs as follows. A tuning parameter
Pi ≥ 1 is introduced that steers the perturbation intensity. At each iteration of the construc-
tion heuristic, the next job to be inserted is determined by randomly selecting one of the first
Pi elements in the sorted list of remaining jobs. The operations of the job are then greedily
inserted as described earlier and the job is then removed from the list.

After the construction heuristic, each solution is independently improved using one of the
following heuristics: Hill climbing, tabu search or simulated annealing. In all these heuris-
tics, we combine the move of Dauzère-Pérès and Paulli (1997) that is adapted to the batch-
oblivious graph with the adaptive start time computation from Section 3.4.3 as follows. After
a batch-oblivious move is performed, an adaptive start time computation follows in order to
determine start times and batching decisions. The combined result of both modifications is
considered as one single move. If such a move is rejected, all involved changes are collec-
tively reverted. The hill climbing approach starts with the solution found by the construction
heuristic and explores the neighborhood using steepest descent. All moves reachable from
the current solution are evaluated, and the one leading to the best solution is selected. The
local search approach continues until no strictly better solution is found. The tabu search
approach explores the same neighborhood as the hill climbing approach, and its implementa-
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tion is similar to the approach described in Dauzère-Pérès and Paulli (1997). Due to the low
performances of our GRASP approach when using one of these two improvement heuristics,
the numerical results reported in this thesis are obtained by using the simulated annealing
approach. Chapter 6 discusses the conditions that should help these approaches, particularly
tabu search, to be effective when solving the studied industrial problem.

Our simulated Annealing metaheuristic is based on the same integrated move and also
starts with the solution found by the construction heuristic. In each step, one node is ran-
domly chosen to be moved, its feasible insertion positions are computed, and one of them
is randomly selected and performed. In the remaining of the manuscript, this neighborhood
operator is referred to as (N1). We use a geometric cooling schedule that maintains a tem-
perature T which is multiplied by a cooling factor Pc < 1 after each iteration. At iteration n,
the move is immediately accepted if the current value of the objective function fn improves
the previous objective function value fn−1. Otherwise, the new solution is accepted with a
probability of exp(−∆

T ), where ∆ = fn − fn−1. If the new solution is not accepted, all changes
related to the move are reversed. Note that this mechanism of accepting or rejecting a new
solution is only valid when a unique objective function is optimized. The various changes
that must be made to the simulated annealing approach when considering multiple criteria are
described in Chapter 5. The search is stopped if the best solution does not improve during a
specified number of iterations Pm. The initial temperature is determined by sampling a fixed
number Ps of random moves. For each random move r, we evaluate its influence ∆ = fr − fi

on the objective function value fi of the initial solution. Then, for a tuning parameter Pp, the
Pp-th percentile of these values is selected as the initial value for temperature T .

3.6 Numerical Results

The algorithms presented in this chapter were implemented in C++14 and compiled using
the GCC MinGW-W64 compiler in version 5.3. All numerical experiments are conducted on
an Intel Xeon E3-1240 3.5 GHz machine (4 cores) running Microsoft Windows 7. Different
types of industrial and academic instances are used to perform the experiments. Section 3.6.1
evaluates the improvements brought by the idea proposed in Section 3.3. Section 3.6.2 eval-
uates the active scheduling construction that was introduced in Section 3.4.

In these two sections, industrial instances are used to perform the evaluation. The in-
stances provided by Knopp et al. (2017) are used. In this benchmark, 15 industrial instances
are from the Manufacturing Execution System of a semiconductor manufacturing facility
throughout one year. Smaller instances with around 25 machines represent a subset of the
actual area while larger instances with around 100 machines correspond to the full area. The
number of jobs per instance is between 119 and 346. For each job, between one and seven
operations have to be performed. Only some of the machines are capable of processing mul-
tiple operations in the same batch. Sequence-dependent setup times are required only for
some of the non-batching machines. Since no due times are provided, the total weighted
completion time is minimized. Second, 15 random instances that are close to the industrial
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instances were generated. The random instances include due times which are not present in
the industrial instances. In addition to the instances of Knopp et al. (2017), new industrial
instances are proposed. These 30 new industrial instances are larger and from another semi-
conductor manufacturing facility. The number of jobs per instance ranges from 324 to 503.
For each job, between one and five operations have to be performed, with three operations
on average. These jobs must be scheduled on an average of 68 machines, all capable of
batching. The batching capacity lies between 2 and 7 jobs. Sequence-dependent setup times
are required for a subset of machines. Here also, since no due times are provided, the total
weighted completion time is minimized.

The sampling strategy of our simulated annealing implementation avoids the need to
adapt parameters for individual instances. For all numerical experiments, we used the fol-
lowing identical parameter settings: A cooling factor of Pc = 0.99999, a number of samples
Ps = 100, a maximum number of iterations Pm = 100 000, a temperature percentile of
Pt = 5 %, and a perturbation intensity of Pi = 5. All heuristics are run only once, and six
parallel threads are used in all runs of the GRASP based approach.

3.6.1 Search Acceleration

This section analyzes the impact of the different selection strategies on the solution quality
and the algorithm complexity. The impact on the solution quality is studied through the
values of the objective function while the impact on the algorithm complexity is studied
through the number of evaluated solutions during the search. The strategies proposed in the
original approach are: Static (Static), resequencing (Reseq.) and reassignment (Reass.). The
proposed selection strategies in this work are: Integrated (Integ.), random integrated (RandI)
and collection (Colle.). We performed numerical experiments for the described industrial (I),
random (R) and large industrial (LI) instances allowing a maximum computational time of 5
minutes per instance.

To compare the different selection strategies in terms of computational time, the static
strategy is used as a reference. Using this strategy, the graph is traversed in a topological
order without modifying it. Except determining the resource edge weights of adjacent nodes,
the start time computation algorithm is similar to the one used to compute start times of a
classical job-shop scheduling problem. All the remaining strategies modify the graph during
the traversal and the objective of this section is to quantify the impact of this dynamic modi-
fication on the overall heuristic efficiency. Table 3.4 provides results in terms of the relative
deviation from the number of evaluated solutions when using the static selection strategy.
We provide average (I, R, LI) and median (Ĩ, R̃, L̃I) values of these relative deviations over
all instances. The results show that the integrated (Integ.) strategy is the less computation-
ally expensive strategy, even when compared to the resequencing strategy that only visits the
sequence of the machine on which the incomplete batch is processed. In terms of search
scope, the integrated strategy is similar to the reassigning strategy while its impact on the
cost of the solution evaluation is insignificant compared to the reassigning strategy. The
collection strategy is comparable to the resequencing strategy on industrial instances and a
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I |J| |M| Static Reseq. Reass. Integ. RandI. Colle. Best
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1 119 24 92859 92704 92847 92590 92729 92574 92213
2 148 22 244072 242612 239958 239603 241160 239074 238885
3 195 25 211428 202988 201591 202649 202106 201338 200403
4 209 24 270566 260563 260685 262094 261235 260072 257881
5 186 88 167725 164165 162814 163828 162711 163669 161895
6 268 26 336934 329559 326863 327466 331198 333012 322253
7 210 94 150225 150138 149527 149347 149746 150189 149123
8 310 17 448961 450223 452413 449348 452473 453228 438563
9 231 95 167311 167178 167182 165880 165501 165032 164967
10 245 94 198503 198608 192045 191651 190891 192146 189736
11 302 24 555015 551641 551996 554145 554133 555569 546987
12 302 24 344315 340928 343984 341900 340457 341343 337527
13 324 94 345414 332642 342826 322730 326592 322728 320299
14 315 101 450482 450548 475399 452997 448138 447107 443049
15 346 94 737808 705237 706577 695041 702964 706138 666736
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1 20 3 10259 10097 10277 10460 10311 10719 9760
2 20 3 5993 5953 5910 5923 5917 5920 5807
3 20 3 7026 7135 7029 7000 7090 7052 6919
4 40 6 9139 8775 9230 9087 8818 9189 8355
5 40 6 14415 14660 14298 14280 14591 14605 13819
6 40 6 32151 31749 31579 31934 31775 30426 30247
7 60 9 16095 15933 15975 16405 16360 16575 15055
8 60 9 40607 40993 42348 40904 41829 40798 38681
9 60 9 31250 28833 31507 31647 31008 28582 27163
10 100 15 28969 26926 27424 27469 27799 27209 25923
11 100 15 29229 30780 30626 32270 31280 32560 29229
12 100 15 39357 37969 40997 39425 39266 38351 37641
13 200 30 25805 25020 39772 39772 39772 39772 20533
14 200 30 48187 46223 49237 46646 44373 44699 42915
15 200 30 55882 52089 58693 51780 51212 52449 46796

Table 3.2 – Detailed results for industrial (I) and random (R) instances
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I |J| |M| Static Reseq. Reass. Integ. RandI. Colle. Best
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1 387 68 1131106 1108559 1109041 1107291 1097131 1096921 1093221
2 324 68 835842 822043 817539 808904 805291 811100 805291
3 371 68 1031342 1014364 1010052 995683 997343 1001902 992560
4 439 68 1394102 1394477 1383265 1359476 1355619 1349153 1338876
5 430 68 1287692 1265294 1270913 1258167 1256222 1261125 1246551
6 395 68 1082755 1077850 1102216 1057445 1069574 1069176 1050548
7 411 67 1010895 1003652 1041410 996867 994410 1000492 990319
8 365 69 887616 871965 873220 862148 863043 871351 860628
9 503 69 1468135 1440749 1515790 1427672 1427048 1452309 1408230
10 343 68 738287 735367 733741 730888 729417 730368 727274
11 335 68 755049 746470 735004 724180 724567 728510 720125
12 345 68 809212 802516 812959 804917 801155 799757 793489
13 377 67 835125 835169 829729 828000 829105 830386 823082
14 388 67 903892 905564 901933 897496 903206 901618 894565
15 463 68 1122956 1096137 1152916 1105984 1109073 1116161 1091991
16 391 69 889565 877978 932764 868486 869672 875613 864129
17 444 68 1194587 1179057 1163692 1157813 1157872 1189496 1145017
18 442 69 1019700 1019013 1025305 1017598 1018673 1032335 1000346
19 434 68 1053419 1045067 1062705 1046149 1051990 1059316 1036134
20 408 68 1012496 999743 1012212 992658 1000119 1005128 987737
21 363 68 750520 729772 729138 728013 731591 737031 726536
22 368 68 821328 817840 820089 802799 806050 811743 796646
23 409 68 943067 934059 925559 912422 923405 924488 912422
24 391 69 892340 875322 932764 868486 871322 875784 864129
25 365 69 885972 874476 873168 860965 868457 868399 859919
26 387 68 1126199 1113093 1105315 1108028 1103167 1099767 1095099
27 371 68 1033292 1017538 1011163 997569 998017 1002329 994029
28 324 68 840785 823818 814969 810101 814505 807115 805496
29 439 68 1391421 1394592 1383596 1360509 1362046 1353407 1337919
30 430 68 1287216 1261929 1271679 1250807 1250105 1265772 1245194

Table 3.3 – Detailed results for large industrial (LI) instances
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bit more computationally expensive on the random instances. This can be explained by the
fact that the collection strategy looks for a set of candidates instead of a unique candidate
within the integrated strategy. Regarding the random integrated strategy, it is more expensive
than all the other strategies except the reassignment strategy. This strategy is similar to the
collection strategy as it searches for possible candidates, but instead of settling all the found
nodes, it randomly picks one and settles it. To summarize, the proposed idea to accelerate
the search significantly reduces the cost of modifying the graph dynamically. Also, the larger
the number of batching machines and the larger the batching capacities, the more significant
the impact of the strategies on the heuristic efficiency.

Reseq. Reass. Integ. RandI. Colle.

I -3.98% -37.24% -1.92% -15.73% -3.96%
Ĩ -4.21% -44.93% -2.48% -16.07% -4.03%
R -7.08% -28.58% -5.81% -18.07% -11.27%
R̃ -7.83% -25.35% -6.17% -19.15% -11.71%
LI -9.74% -72.25% -0.86% -13.49% -7.98%
L̃I -9.71% -73.08% -0.76% -13.72% -8.02%

Table 3.4 – Impact of the different strategies on the heuristic efficiency.

Initial Static Reseq. Reass. Integ. RandI. Colle.

I 14.14% 3.62% 2.04% 2.26% 1.35% 1.48% 1.46%
Ĩ 13.47% 2.37% 1.40% 1.22% 1.19% 0.95% 0.92%
R 67.98% 8.70% 6.27% 14.13% 12.89% 12.15% 11.93%
R̃ 58.34% 6.29% 5.31% 6.11% 7.17% 5.65% 5.47%
LI 10.05% 3.09% 1.89% 2.75% 0.76% 0.92% 1.37%
L̃I 9.88% 3.20% 1.62% 2.01% 0.58% 0.90% 1.17%

Table 3.5 – Aggregate results for all instances.

Table 3.2 provides the obtained objective function values for the (I) and (R) instances
using the GRASP based approach. Table 3.3 provides the same results for the (LI) instances.
In column |J| and |M|, the number of jobs and the number of machines are respectively given
for each instance. The next six columns report the results for the different strategies. The
last column “Best” reports the best values obtained after a long computational time, most of
them using the integrated strategy by allowing a computational time of 2 hours. Table 3.5
provides results in terms of the relative deviation to the best values. We provide average (I, R,
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LI) and median (Ĩ, R̃, L̃I) values of these relative deviations over all instances. The column
“Initial” refers to the solution that is computed using the non-randomized version of the
construction heuristic. Regarding the industrial instances, it can be noticed that the potential
improvement cannot be expected to be large as the static strategy already obtains solutions
after 5 minutes that are already quite close (3.61% on average) to the solutions obtained after
2 hours. However, an improvement of 1% in the industrial context is already significant.
The results show that the new proposed strategies outperform the old ones when applied to
the industrial instances (I, LI). Regarding the random instances, the results show that the re-
sequencing strategy outperforms all others, especially when the average of relative deviations
(row R) is analyzed. The average of relative deviations for less performing strategies is
mainly due to significantly high relative deviation for one particular instance (13). When
R̃ is analyzed, the gap between the different strategies to the resequencing one is reduced,
especially the collection strategy.

3.6.2 Active Scheduling Approaches

This section analyzes the impact of the six active strategies proposed in Section 3.4 on the
solution quality. Recall that the six strategies are: SR-L, SR-G, CR-L, CR-G, GR-L and GR-G.
The two first letters in the abbreviations define the selection rule, and the last letter refers to
the level of information that is used, G for global information and L for local information. The
impact on the solution quality is studied through the objective function. As in the previous
section, We performed numerical experiments for the described industrial (I) and random (R),
and large industrial (LI) instances allowing a maximum computational time of 5 minutes per
instance.

Table 3.7 provides the obtained objective function values for the (I) and (R) instances
using the GRASP based approach. Table 3.8 provides the same results for the (LI) instances.
In column |J| and |M|, the number of jobs and the number of machines are respectively given
for each instance. The next six columns report the results for the different strategies. The
last column “Best” reports the best values obtained after a computational time of 2 hours.
Table 3.6 provides results in terms of the relative deviation to the best values. We provide
average (I, R, LI) and median (Ĩ, R̃, L̃I) values of these relative deviations over all instances.
The column “Non-delay” reports the best results that were obtained by locally non-delay
strategies. The six remaining columns report the aggregate results of the proposed active
strategies.

When comparing the different active strategies, either using local or global information,
the strategies using the Cigolini Rule (CR) show lower results compared to the two other
rules. Most of the best results among active strategies are obtained when using the Geomet-
ric Rule (GR). The fact that the Geometric Rule (GR) performs better than the Simple Rule
(SR) is confirmed when comparing their results. Except for the random instances, the results
also show that the chosen way to use global information does not lead to statistically signif-
icant improvements compared to using local information. Considering what was discussed
earlier, GR-L strategy can be considered as the best active strategy. This strategy shows
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Non-delay CR-G CR-L GR-G GR-L SR-G SR-L

I 1.35% 1.15% 1.54% 1.00% 0.98% 1.26% 1.20%
Ĩ 0.92% 1.01% 0.83% 0.91% 0.81% 0.81% 0.72%
R 6.27% 21.67% 22.02% 17.47% 18.71% 17.47% 20.67%
R̃ 5.31% 21.13% 20.73% 8.29% 10.58% 11.56% 16.26%
LI 0.76% 3.34% 2.82% 1.50% 1.40% 1.65% 1.69%
L̃I 0.58% 2.61% 2.59% 1.06% 1.10% 1.26% 1.17%

Table 3.6 – Aggregate results for active strategies over all instances.

better results than all non-delay strategies on the small industrial instances (I). The same
conclusion can be derived for almost all the other active strategies. As all active strategies,
the GR-L strategy is not effective on the random instances (R). With 16.5% less moves than
the static strategy, GR-L is less efficient than all the non-delay strategies, except the reas-
signment strategy. Even with this low efficiency, when considering the large industrial (LI)
instances, GR-L is performing better than all the non-delay strategies, except the integrated
strategies (deterministic or random). Globally, the results show that non-delay approaches
dominate active strategies on most instances. After some analysis, we believe this is due to
the fact that, until some point, there is a positive correlation between the filling of batches,
which is the primary objective of the active approaches, and the minimization of the total
weighted completion time. However, beyond this point, systematically trying to fill batches
can have a negative impact on the solution quality. Active strategies are valid locally, but may
negatively impact the remainder of the schedule, i.e., the completion times of the following
operations in the routes and in the sequences on machines. Hence, by postponing too much
operations that are early in the schedule, the completion times of many related operations in
the schedule might increase, and thus the sum of completion times that is minimized.

The observation above supports the fact that active scheduling approaches are better than
non-delay scheduling approaches on the (I) instances but are worst on the (LI) instances.
This is probably because only a small subset of machines in the (I) instances are capable of
batching while all machines are capable of batching in the (LI) instances. In other words,
all operations of the jobs in the (LI) instances are performed on batching machines and sys-
tematically applying active scheduling approaches can only delay the completion times of
the jobs. This negative impact is negligible on the (I) instances since only few operations
of each job are to be performed on batching machines. The results on the (R) instances can
also be explained by the fact that there may be no significant correlation between the fill-
ing of batches and minimization of the total weighted tardiness. The interest of using active
scheduling approaches is shown in Section 4.5.2, where some of the criteria described in
Chapter 2 are optimized. It is shown that active strategies quickly converge to solutions with
a more relevant structure from an industrial point of view.



3.6 Numerical Results 81
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1 119 24 92739 92797 92958 92964 92957 92876 92213
2 148 22 239790 239592 238943 241058 238970 240517 238885
3 195 25 201961 202096 202716 201600 201722 201221 200403
4 209 24 262321 261439 261518 258913 260511 260811 257881
5 186 88 162430 162693 164144 162314 163612 162239 161895
6 268 26 330303 323665 325194 329327 326392 328585 322253
7 210 94 149661 149313 149573 150039 149616 149413 149123
8 310 17 443011 442204 449679 451968 449993 452780 438563
9 231 95 166225 166067 165224 166355 166216 166141 164967

10 245 94 191865 192445 190847 190395 191075 191006 189736
11 302 24 553066 546987 552216 547104 553212 548450 546987
12 302 24 339197 347394 340130 339204 342865 340817 337527
13 324 94 323552 338941 324935 324845 321338 322958 320299
14 315 101 450905 459113 446484 446860 445681 447682 443049
15 346 94 688804 690728 679048 678954 707048 699825 666736
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1 20 3 10757 11128 10988 10887 10757 10887 9760
2 20 3 5847 5999 6007 6050 5953 6055 5807
3 20 3 6919 7018 7000 6994 7022 7006 6919
4 40 6 8929 9095 8903 9171 8748 9001 8355
5 40 6 16070 16684 14857 14410 15721 16219 13819
6 40 6 31401 30858 31668 31694 31196 31370 30247
7 60 9 15948 17089 15814 15842 15386 16383 15055
8 60 9 47741 47150 41887 42772 43545 44971 38681
9 60 9 32902 30748 28740 28589 27892 29737 27163

10 100 15 31840 32567 30055 31420 29040 32547 25923
11 100 15 37082 36550 34830 36381 36821 36416 29229
12 100 15 48143 45756 42405 44822 41992 45317 37641
13 200 30 39772 39772 39772 39772 39772 39772 20533
14 200 30 56158 56158 56158 56158 56158 56158 42915
15 200 30 62981 62981 62981 62981 62981 62981 46796

Table 3.7 – Detailed results for active strategies on industrial (I) and random (R) instances
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1 387 68 1107391 1108829 1104264 1099900 1100460 1111277 1093221
2 324 68 819461 816441 817861 813607 816252 812244 805291
3 371 68 1003629 1004053 999882 992560 1000167 1001452 992560
4 439 68 1382811 1380381 1352936 1348068 1354399 1361682 1338876
5 430 68 1283581 1279889 1282336 1272651 1271828 1269531 1246551
6 395 68 1092304 1083130 1072512 1070123 1079720 1072578 1050548
7 411 67 1045562 1008866 1003780 1002627 1004605 999941 990319
8 365 69 880299 884002 860845 870810 865953 868298 860628
9 503 69 1541709 1529149 1464928 1471851 1485569 1473129 1408230

10 343 68 742596 732379 730873 730143 732828 731675 727274
11 335 68 730402 731720 723979 724048 729548 728564 720125
12 345 68 808197 813386 800198 802408 800441 799376 793489
13 377 67 850238 845181 831649 834439 833975 832272 823082
14 388 67 911439 912696 903147 902567 900748 901895 894565
15 463 68 1179034 1159050 1103211 1118703 1106526 1134971 1091991
16 391 69 894942 892842 879157 873143 870932 871939 864129
17 444 68 1223141 1189413 1175077 1166131 1187585 1181704 1145017
18 442 69 1083392 1081267 1049754 1056137 1059130 1050512 1000346
19 434 68 1077375 1085293 1068728 1058395 1070051 1069143 1036134
20 408 68 1012612 1006108 1000042 997970 1005372 999306 987737
21 363 68 738997 736468 734367 733876 730712 733143 726536
22 368 68 828245 818219 812782 810161 810529 808839 796646
23 409 68 950087 931594 928500 924353 924254 925620 912422
24 391 69 887504 887613 873070 873494 874745 879765 864129
25 365 69 877080 875241 860828 870883 865953 874568 859919
26 387 68 1104112 1110921 1101706 1095953 1103186 1107208 1095099
27 371 68 1005287 1009103 998316 998334 997809 1001273 994029
28 324 68 819202 816981 810878 812359 814459 809237 805496
29 439 68 1369409 1374306 1352330 1347685 1353412 1348199 1337919
30 430 68 1298812 1284300 1279408 1267957 1275803 1280827 1245194

Table 3.8 – Detailed results for active strategies on large industrial (LI) instances
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3.7 Conclusion

In this chapter, we considered the complex job-shop scheduling problem that is solved in
Knopp (2016). After formalizing the considered constraints and criteria, the batch-oblivious
approach is reviewed. The remainder of the chapter was dedicated to the generalization of
some results in the original batch-approach and the improvement in terms of efficiency. New
efficient strategies, qualified as locally non-delay strategies, that adaptively fill up incomplete
batches during the graph traversal are proposed without delaying their start times. The nu-
merical results show that the new strategies improve the batch-oblivious approach in terms of
efficiency and, even more importantly, in terms of solution quality on the industrial instances.
In the second part of the chapter, a new construction algorithm that intentionally inserts idle
times is developed. The numerical results show that one of the proposed active strategies is
outperforming non-delay strategies on one set of industrial instances.

The scheduling problem considered in this chapter is a subproblem of the one defined
in Chapter 2. Chapter 4 extends the improved batch-oblivious approach by considering all
the constraints defined in Chapter 2. The numerical results support three different strate-
gies: The resequencing strategy for the random instances, the integrated strategy for large
industrial instances and the active strategy that uses the proposed geometric rule for small in-
dustrial instances. An interesting perspective is to use an offline or online learning algorithm
that chooses the best strategy for the instance to solve and probably also depending on the
optimization phase. After studying several strategies in this chapter, it can be concluded that
it is not obvious to obtain significant improvements by lying only on more sophisticated node
selection strategies. A more promising perspective is the improvement of the neighborhood
structure by choosing interesting nodes to move and their insertion positions. Instead of sim-
ulated annealing, metaheuristics such as Variable Neighborhood Search can be interesting to
solve the industrial instances that are characterized by their large size.





Chapter 4

Extensions of the Batch-Oblivious Ap-
proach

Modeling complex batching machines is the most challenging feature considered in this
chapter. In Knopp et al. (2014), the concept of route graph is proposed to model complex
machines in detail. However, this modeling does not support the modeling of complex ma-
chines with batching capabilities such as wet benches in the diffusion area. One of the impor-
tant contributions of this thesis is the generalization of the batch-oblivious conjunctive graph
through the use of route graphs to model complex batching machines. The resulting graph
is referred to as extended batch-oblivious conjunctive graph. In general, this chapter extends
the improved batch-oblivious approach described in Chapter 3 so that all the constraints de-
fined in Chapter 2 are taken into account. Section 4.1 recalls the route graph modeling and
provides the formal description of all considered constraints. Section 4.2 formalizes the con-
sidered criteria. Besides the criteria that are defined in previous works, this section suggests
two new criteria: The discounted weighted number of moves to model the throughput within
a rolling horizon framework and the target satisfaction indicator to model the satisfaction of
production targets.

After formalizing all the features of the industrial scheduling problem in the two first sec-
tions, Section 4.3 is dedicated to the description of the different building blocks that allow to
design a general approach that considers all the features of the studied problem. Section 4.3.1
specifies the extended batch-oblivious conjunctive graph that fully merges the original batch-
oblivious conjunctive graph recalled in Section 3.2.1 and the route graph modeling. With the
obtained graph, it becomes possible to model in detail complex batching machines such as
wet benches. Section 4.3.2 describes the computation of accurate start times while consid-
ering the different features: Minimum time lags, batching constraints, unavailability periods,
multiple resources per operation and sequence-dependent setup times. When modeling in
detail complex batching machines, a batching decision not only leads to the modification of
some edge weights, but also to the modification of the graph structure. Thus, Section 4.3.3
specifies the different conditions that must be met so that the batching decisions to be taken
on the fly are feasible. Thanks to the generalization of the original approach proposed in Sec-
tion 3.3.1 where already taken decisions are reconsidered, minimum batch size constraints
can naturally be integrated within the batch-oblivious approach as described in Section 4.3.4.
The different building blocks developed in Section 4.3 are used to propose a general solution
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approach in Section 4.4 that can efficiently solve complex job-shop scheduling problems
while considering all the features of the studied industrial problem. Section 4.5 ends this
chapter with a discussion on the modeling of complex machines, and reports numerical re-
sults that show the advantages of using the integrated and active strategies introduced in
Chapter 3 when optimizing some of the criteria defined in Section 4.2.

4.1 Formal Modeling of the Problem Constraints

We are given a set of jobs J to schedule. Each job j ∈ J has a release date r j ∈ Z and
a size σ j ∈ N. A release date is negative when the job is available in the area before the
start of the scheduling horizon. It takes a positive value when the job arrives in the area
after the beginning of the scheduling horizon. In the real-world problem, each job has a
linear route of processing operations. In order to model machines in detail, their internal
resources should be modeled explicitly. For the sake of clarity, the term resource designates
the production entities at which level the scheduling decisions are taken. The term machine
is reserved for independent production entities found on the shop floor. For instance, a wet
bench, as described in Section 2.2.1, is called a machine and its processing components (M1,
M2, D) are called resources. If a machine is complex and is modeled in detail, it has at
least two internal resources in the problem definition. If a machine is not modeled in detail,
the two terms “machine” and “resource” can be used indifferently. For the same reason, a
step corresponds to the processing of a job within a whole machine such as a furnace or
a wet bench. The term operation is used to describe the elementary processing of a job
within an internal resource of a machine. Therefore, the set of jobs J have to be processed
on a given set of resources M . Each operation must be assigned to a subset of resources
chosen from a set of qualified resources. Contrary to Chapter 3 where operations require a
unique resource, it is considered here that an operation may require multiple resources. For
example, if a furnace is modeled in detail, a step performed on this machine will be replaced
by a sequence of internal operations requiring multiple resources. For instance, we have seen
in Section 2.2.2 that the process requires two resources, i.e., a boat and a tube. The resulting
approach is also capable of solving scheduling problems where steps may require multiple
machines. For example, it is possible to solve the scheduling problem encountered in the
photolithography area where steps require the photolithography tool and reticles at the same
time. However, to make the description easier and as the focus of this thesis is the scheduling
of the diffusion area, we assume that each step requires a single machine.

The inputs describing the industrial problem include, for each job, a linear route of pro-
cessing steps to be sequenced on the qualified machines. If complex machines should be
modeled in detail, a sequence of operations must be scheduled on the internal resources
of the machine rather than having to sequence a single step on a complex machine. For
a solution to be feasible, it is necessary to ensure that, when a resource of a machine per-
forms an operation of a step of a job, all the subsequent operations must be performed on
the internal resources of the same machine. To include these dependencies between internal
components of complex machines, the concept of route graph is introduced in Knopp et al.
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(2014). For each job, this graph is constructed during the preprocessing phase, i.e., before
solving the problem. In Section 4.1.1, the preprocessing of the route graph is formalized.
In Section 4.1.2, the basic problem description is given. Section 4.1.3 extends the problem
description by introducing batching constraints. Section 4.1.4 introduces the modeling of
unavailability periods and Section 4.1.5 formalizes the modeling of minimum and maximum
time lag constraints.

4.1.1 Route Graph Modeling

For each job in J , a linear sequence of steps S = (o1, . . . , oi, . . . , on) is given, where n is
the total number of steps. The route graph G of each job, where each node represents an
operation, is obtained from the given sequence as follows:

• Association of separator nodes: For each step oi ∈ S , associate two separator nodes
αi and φi.

• Static assignment of machines: For each step oi ∈ S that can be processed on mi ma-
chines, create a set Pi = {oi,1, . . . , oi, j, . . . , oi,mi} with a cardinality equal to the number
of machines that are qualified to process this step.

• Step decomposition into operations: For each step oi, j ∈ Pi, if the assigned machine
is considered as complex, a sequence of ni, j operations Qi, j = (oi, j,1, . . . , oi, j,k, . . . , oi, j,ni, j)
is created. Each sequence only describes the process type without specifying the re-
quired resources. For the case of a wet bench, an example of such sequence is a
chemical etching operation that is followed by a drying operation. If the assigned ma-
chine is not considered as complex, the step oi, j ∈ Pi is considered as an operation, i.e.,
Qi, j = (oi, j,1) = (oi, j).

• Static assignment of resources: Each operation oi, j,k ∈ Qi, j may require a subset of
the complex machine resources and there may be flexibility over these resources. If for
example a furnace with two tubes and two boats is modeled in detail, the processing
operation requires two resources and can sometimes be performed indifferently using
one of the couples (tube, boat). Let mi, j,k be the number of possible combinations of re-
sources that can process operation oi, j,k ∈ Qi, j. As the resources are statically assigned
to each operation oi, j,k in the sequence Qi, j, the total number of sequences after assign-
ment is equal to mi, j =

∏
oi, j,k∈Qi, j

mi, j,k. Let Cl
i, j = (ol

i, j,1, . . . , o
l
i, j,k, . . . , o

l
i, j,ni, j

), where
l ∈ {1, . . . ,mi, j}. A sequence Cl

i, j is called in the remaining of the chapter a movable
component after the resources are assigned. As stated earlier, when a machine is not
considered to be complex, it is considered as a resource. Therefore, each step oi, j ∈ Pi

that was assigned to a non-complex machine corresponds to a unique movable compo-
nent C1

i, j = Qi, j = (oi, j) with one node. Let C be the set of all movable components.

• Parallel composition: For each movable component Cl
i, j, add an arc from αi to the first

node in the sequence and an arc from the last node in the sequence to φi, i.e., (αi, ol
i, j,1)
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and (ol
i, j,ni, j

, φi).

• Serial composition: Add an arc from each φi to αi+1, where i < n.

Starting with a linear sequence of steps, after executing the algorithm given above, a
two-terminal series-parallel graph (Eppstein (1992)) G j = (O j, E j, α j, φ j) is associated with
each job j ∈ J , where O j denotes the set of nodes and E j the set of arcs. As described
above, the resulting movable components are inserted between two separator nodes. In
G j = (O j, E j, α j, φ j), α j denotes the left separator node of the first step of the job route and
φ j represents the right separator node of the last step of the job route. To schedule a job, the
assignment decisions are obtained by selecting a unique movable component C ∈ C between
two successive separator nodes α and φ and the selected operations are sequenced on their
assigned resources. Through the notion of movable components, the use of the route graph
ensures that, when a resource of a machine performs an operation of a step of a job, all the
subsequent operations must be performed on the internal resources of the same machine. We
extend the basic version of the problem description by an additional constraint. Consider
two operations that are part of the same movable component and require a shared resource.
In some cases, we want to acquire the resource between the two operations exclusively, i.e.,
other operations cannot use the resource in between. This can model for example the use of a
boat within a furnace. A boat is used as follows: First, wafers are loaded from its containers
to the boat using the charging robot. Then, the boat is moved into the tube where the process
is conducted. Afterward, the boat is removed from the tube and has to cool down before
its wafers can be unloaded using the charging robot. After loading wafers in a boat, this
resource cannot be used by other batches until the wafers of the current batch are unloaded
after cooling down.

More formally, let C = (o1, . . . , oi, . . . , onc) be a movable component. For each movable
component C ∈ C, we are given a set of resource acquisitions as a subset Ai ⊂ Mi × O j for
each operation oi ∈ C. Each acquisition a = (m, ol) ∈ Ai specifies the acquired resource m and
the operation ol at which level the resource is released. Acquisition constraints are restricted
to operations within the same movable component, i.e., oi, ol ∈ C. The path Pm = (oi, . . . , ol)
in G j must be minimal in the sense that, for all operations ok ∈ Pm with k , i, k , l,
we must have m < Mk. Note that a resource can be immediately reacquired, i.e., m ∈ Ak

is allowed. In Knopp (2016), it is considered that, if a resource m is acquired between
two operations oi and ol, then m becomes available after the completion time of ol. This
modeling must be generalized so that it is possible to handle blocking constraints (Hall and
Sriskandarajah (1996)) encountered for example in wet benches. When dealing with these
constraints, resource m is released as soon as operation ol starts its processing. To model
blocking constraints through resource acquisitions, when a = (m, ol) ∈ Ai, we consider that
m ∈ Ml even if m is not actually required by v. By allowing different processing times for an
operation depending on the resources, it becomes possible to model blocking constraints.

Figures 4.1(a) and 4.1(b) illustrate two route graphs of two jobs with a wet cleaning step
using, respectively, a short process and a long process on the wet bench machine. As already
specified, the wet bench machine consists of two modules (M1 and M2) and a dryer D. First,
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let us consider the case of a short process that uses one of the processing modules and module
D. The modeling of an operation of a job that should be performed on this machine is shown
in the route graph of Figure 4.1(a). Since resources are statically assigned to operations,
the possibility of performing the processing part of a short process is expressed through the
flexibility of choosing one of the sequences in the route graph. Resource acquisitions are
indicated by superscript “A” and a dashed line (which is not an edge of the route graph) to
the release operation. The scheduling algorithm is allowed to use resource M1 only when
resource D becomes available. Resource acquisition constraints are used to express blocking
constraints that model the absence of storage capacity between machine components. As a
consequence of this absence of storage capacity, a batch that completes a step remains on
the machine component until a downstream component becomes available for processing.
Our modeling considers that, in addition to D, M1 is part of the resources required by the
drying operation even if actually it is not the case. However, the drying operation requires
M1 for a duration 0. The same notations, given above for the case of short processes, can be
used to understand the modeling of long processes, i.e., processes that follow this sequence
(M1 → M2 → D) as shown in Figure 4.1(b).

α

MA
1 D

MA
2 D

φ

acquire

acquire

(a) Short process

α MA
1 MA

2 D φ
acquire

acquire

(b) Long process

Figure 4.1 – Modeling of a wet bench machine.

4.1.2 Basic Problem Description

Formally, for each job j ∈ J , feasible sequences of operations are specified by a given
route graph G j = (O j, E j, α j, φ j), where O j denotes the set of nodes and E j the set of arcs.
As described above, the resulting movable components are inserted between two separator
nodes. In G j = (O j, E j, α j, φ j), α j denotes the left separator node of the first step of the
job route and φ j represents the right separator node of the last step of the job route. For each
operation v ∈ O j, we are given a set of resources Mv ⊂ M. As a generalization of the problem
considered in Knopp (2016), instead of using all the resources for the same duration, each
resource may be used for a specific duration. Formally, a processing time pv,m ∈ N is given
for each operation v on resource m ∈ Mv. It is possible to have pv,m = 0 to represent for
example the time during which a resource is used at the level of the operation that releases
it to model blocking constraints. If the example in Figures 4.1(a) is considered, the drying
operations, at which level resource M1 is released, uses M1 during p = 0. However, the
processing time pv ∈ N0 of operation v, computed as pv = maxm∈Mv(pv,m), cannot be null.
For each resource m ∈ Mv that is required by an operation v, a setup family fv,m ∈ F from



90 Chapter 4: Extensions of the Batch-Oblivious Approach

a given set of setup families F is specified. A given mapping s : F × F → N0 prescribes
sequence-dependent setup times between scheduled operations that use the same machine.
Setup times must fulfill the triangle inequality: For all ( f1, f3, f3) ∈ F × F × F , s( f1, f3) ≤
s( f1, f2) + s( f2, f3) must hold. For separator operations v ∈ O, we assume without loss of
generality that Mv = ∅ and pv = 0.

A schedule is completely characterized by providing for each job j ∈ J a route selec-
tion R j ⊂ O j and start dates S i, j ∈ Z for all selected operations oi, j ∈ R j. The route selec-
tion R j must describe a path (α j = o1, j, . . . , o|R j |, j = φ j) in the route graph G j. We denote the
resources and processing durations related to this selection as Mi, j and pi, j, respectively. The
disjoint union R = R1

.
∪ R2 . . .

.
∪ R|J| denotes all selected operations. To describe a schedule

that is feasible, selected routes R j and start dates S i, j have to respect several constraints that
are detailed in the following:

• Preemption is not allowed: Once the processing of operation has begun, it cannot be
interrupted. Thus, the completion time of an operation oi, j ∈ O j on resource m ∈ Mi, j

is given by Ci, j,m = S i, j + pi, j,m.

• The completion time of operation oi, j ∈ O j on all its resources is given by Ci, j =

S i, j + pi, j = maxm∈Mi, j(Ci, j,m).

• Operations belonging to the same job have to be performed in the order that is specified
by the route selection. So, Ci, j ≤ S i+1, j has to be fulfilled for all oi, j ∈ R with i <

∣∣∣R j

∣∣∣.
• The first operation o1, j ∈ R j of each job cannot be processed before its release date, so

S 1, j ≥ r j must hold for all j ∈ J.

• For two operations oi, j, ok,l ∈ R with Mi, j∩Mk,l , ∅, having S i, j = S k,l in general means
that a batch is created, which is only allowed in the cases specified in Section 4.1.3. In
all other cases, for all common resources m ∈ Mi, j∩Mk,l of two operations oi, j, ok,l ∈ R,
either S i, j + pi, j,m + s(σi, j,m, σk,l,m) ≤ S k,l or S k,l + pk,l,m + s(σk,l,m, σi, j,m) ≤ S i, j must hold.

• The resource acquisition constraint now imposes that, for an acquisition a = (m, ok, j) ∈
Ai, j of a resource m ∈ Mi, j at an acquisition operation oi, j with a corresponding release
operation ok, j, there must not be any other operation that uses m between S i, j and
Ck, j,m. So, for all operations ox,y ∈ O (, oi, j, , ok, j) with m ∈ Mx,y, either S x,y ≥ Ck, j,m

or Cx,y ≤ S i, j must hold.

4.1.3 Batchable Resources

In this section, the problem is extended to include batching constraints. The possibility of
modeling in details batching machines is one of the contributions of this thesis. In Knopp
(2016), batching is restricted to movable components of one operation. In this thesis, this
restriction is relaxed, and batching is considered for movable components of any length.
Formally, we extend the problem as follows. We are given a set of recipes R. For each recipe



4.1 Formal Modeling of the Problem Constraints 91

q ∈ R, we are given a maximal batching capacity bmax
q ∈ N>0 and a minimal batching capacity

bmin
q ∈ N>0. A recipe qv ∈ R is assigned to each operation v ∈ O. All operations v ∈ O that

are assigned to the same recipe q ∈ R require an identical set of resources Mv, and must have
the same processing duration pv,m and the same setup family fv,m for each resource m ∈ Mv.
As the movable components model a sequence of operations within complex machines, it
is required that all recipes that are assigned to nodes of the same component to have same
maximal and minimal batching capacities bmax

q and bmin
q . Also, it is required that recipes of

operations belonging to the same movable components are distinct.
A completely characterized schedule is obtained after the partition of all operations into

batches, the assignment of the formed batches to qualified resources, their sequencing and
finally the assignment of start times to batches. The three first decisions can all be represented
by a family of batches B = {Bm,x |}m∈M,x∈{1,...,tm}, where Bm,x is the batch sequenced at position
x on resource m and tm ∈ {0, . . . , |Om|} is the number of batches assigned to resource m. As
a batch can be processed by several resources, we require B ∩ B′ = ∅,∀B, B′ ∈ B. Only
operations of the same recipe can be processed at the same time on the same resource. So,
for two operations oi, j, ok,l ∈ R with qi, j = qk,l, we relax the resource sequencing constraints
of Section 4.1.2 and allow S i, j = S k,l. If S i, j , S k,l, the resource sequencing constraints
from Section 4.1.2 have to be fulfilled. Also, as only operations with the same recipe can
be processed in the same batch, let qB denote the associated batch family to batch B ∈ B,
i.e., qB = qi, j ∀oi, j ∈ B. Let σB =

∑
oi, j∈B σ j denote the size of batch B. Any formed batch

B ∈ B must respect the batching capacity of the machine to which it is assigned. Thus, we
require σB ≤ bmax

qB
∀B ∈ B. The size of any batch should also respect minimum batch size

constraints, i.e., σB ≥ bmin
qB
∀B ∈ B.

When considering batching on movable components larger than one node, additional
conditions must be satisfied for a solution to be feasible. If oi ∈ C = (o1, . . . , oi, . . . , onc)
and o′i ∈ C′ = (o′1, . . . , o

′
i , . . . , o

′
nc′

) belong to the same batch B ∈ B, it should be ensure that
∀k = {1, . . . , nc}, ∃B ∈ B such that {ok, o′k} ⊆ B. Considering batching machines also lead the
relaxation of the resource acquisition constraints defined in Section 4.1.2. It was prescribed
that, for an acquisition a = (m, ok, j) ∈ Ai, j of a resource m ∈ Mi, j at an acquiring operation oi, j

with a corresponding release operation ok, j, there must not be any other operation that uses
m between S i, j and Ck, j,m. When m is a batching resource, it is allowed for other operations
ox,y ∈ O (, oi, j, , ok, j) with m ∈ Mx,y to use m between S i, j and Ck, j,m provided that S i, j = S x,y

or S k, j = S x,y . In other words, operations ox,y must be batched either with oi, j or ok, j.

4.1.4 Unavailability Periods

This section extends the previous problem description in order to include resource availabil-
ity constraints. These constraints model periods during which a resource is unavailable to
process operations like those resulting from preventive or curative maintenance operations.
Formally, we extend the problem as follows. For each resource m ∈ M, we are given a set
of fixed unavailability periods Um. Each unavailability period um,l ∈ Um has a fixed start date
S m,l and a fixed end date Cm,l. Regarding the possibility for an operation to be interrupted
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by an unavailability period, the non-preemptive case is considered. This models the situation
where an operation can be interrupted neither by another operation nor by an unavailability
period. Thus, for each resource m ∈ M, for each operation oi, j ∈ R such that m ∈ Mi, j and
for each um,l ∈ Um, S i, j + pi, j,m ≤ S m,l or Cm,l ≤ S i, j must hold.

4.1.5 Minimum and Maximum Time Lags

In Chapter 2, two types of times lags are described: Minimum time lags and maximum time
lags. As these time lags are related to operations of the same job, it is possible to extend
the route graph by including them. However, to avoid enlarging the disjunctive graph of the
problem that is obtained by aggregating all route graphs of all the jobs, these constraints are
stored in an auxiliary data structure. To illustrate the different situations that can be modeled
by these constraints, a toy example of a route graph is given in Figure 4.2. The job has
two steps, the first one to be performed on a wet bench and the second one on furnaces
(F1, F2 and F3). The step to be performed on a wet bench is modeled with three movable
components. The two movable components with two nodes represent the case where the
wet bench is modeled in detail, and this is similar to the case considered in Figure 4.1(a).
The third movable component with one node represents the case where the wet bench is
considered as a resource. As a unique modeling of complex machines must be considered,
this example is given only to illustrate the integration of time lags.
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Figure 4.2 – Route graph with time lags

A minimum time lag specifies a minimum delay between the execution of two operations
of the same job (Zhang (2010)), not necessarily consecutive. Recall that the set of operations
for a job j ∈ J is denoted as O j = {o1, j, . . . , o|O j|, j}. Formally, let us consider a set of
minimum time lags Lmin ⊂ J × N3. The components of a time lag λ = ( j, k, l, d) ∈ Lmin

have the following meaning: j ∈ J identifies the job; k, l ∈ N with 1 ≤ k < l ≤
∣∣∣O j

∣∣∣
identify operations ok, j and ol, j ∈ O j; d ∈ N≥0 identifies the minimum time lag duration
between the start time of ok, j and the start time of ol, j. Thus, for each minimum time lag
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λ = ( j, k, l, d) ∈ Lmin, S l, j ≥ S k, j + d must hold. Such a time lag may for instance arise if the
transfer of a job from one machine to the next requires a given transportation time (λmin

1 in
Figure 4.2). These constraints can also be used to model minimum delays that are imposed
for process considerations (λmin

2 in Figure 4.2). Finally, these constraints are also used to
differentiate between the cycle time of an operation and the actual duration of this operation
on its resources(λmin

3 in Figure 4.2). The use of minimum time lags to model this last situation
is illustrated in the data-driven analytical modeling proposed in Section 4.5.1.

Regarding maximum time lags, they model in the industrial context time windows that are
defined to prevent risks to the product quality. Such constraints specify the maximum period
of time between the start (or end) of a step and the start (or end) of another step in the route
of a job. In Figure 4.2, λmax

1 models a maximum time lag between the end of two successive
steps in the route of a job. Formally, let us consider a set of maximum time lag constraints
Lmax ⊂ J × Z4 ×R>0. The components of a time lag ( j, k, l, d, γ, c) ∈ Lmax have the following
meaning: j ∈ J identifies the job; k, l ∈ N, with 1 ≤ k < l ≤

∣∣∣O j

∣∣∣, identify separator operations
ok, j and ol, j ∈ O j; d ∈ N≥0 identifies a maximum time lag duration; γ ∈ N≥0, with γ ≥ d,
identifies an ultimate time lag duration; and c ∈ R>0 identifies the cost of a time lag violation.
When considering maximum time lags as hard constraints, the two last parameters γ and c
are not relevant. In such case, for each λ = ( j, k, l, d, γ, c) ∈ Lmax, S l, j ≤ S k, j + d must hold so
that the schedule is feasible. However, within the studied industrial context, maximum time
lags are considered as soft constraints. This modeling is motivated in Section 2.4.5.

4.2 Formal Modeling of the Problem Criteria

As already stated, a schedule is completely characterized by providing for each job j ∈ J a
route selection R j ⊂ O j and start dates S i, j ∈ Z for all selected operations oi, j ∈ R j. The route
selection R j must describe a path (α j = o1, j, . . . , o|R j |, j = φ j) in the route graph G j. We denote
the resources and processing durations related to this selection as Mi, j and pi, j, respectively.
The disjoint union R = R1

.
∪ R2 . . .

.
∪ R|J| denotes all selected operations. The completion

time of a job j ∈ J is the completion time of its last operation, i.e., C j = C|O j|, j = Cφ j . The
quality of a schedule is measured by the given objective function. An objective function is a
function f : R|O| → R that maps tuples of operation start times to a real number.

In the scope of this chapter, we want to optimize all the criteria defined and industrially
motivated in Chapter 2. As the problem described in this chapter is a generalization of the
problem in Chapter 3, the regular objective functions are also handled. Section 4.2.1 formal-
izes the different criteria that translate actual operational performances: Cycle time, machine
throughput and utilization. Section 4.2.2 recalls the modeling, proposed by Knopp (2016),
where the maximum time lag constraints become an objective of minimizing maximum time
lag violations. Section 4.2.3 introduces our new modeling for handling the satisfaction of
production targets.
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4.2.1 Performance Criteria

First, let us consider the criteria that were already defined in previous works. The weighted
flow factor, also called average X-Factor, is used in Artigues et al. (2006), Yugma et al.
(2012), Bitar (2015) and Knopp (2016). This criterion is designed to reduce the cycle time
and the WIP in the considered optimization scope. We are given ε j a minimum possible time
to process all operations of a job j ∈ J . The flow factor of a lot is its actual route duration
divided by its theoretical route duration. Now, the weighted flow factor f1 that we want to
minimize is the weighted average of all flow factors as shown in (4.1). In Artigues et al.
(2006), Yugma et al. (2012) and Knopp (2016), instead of considering all jobs as in Bitar
(2015), only those that are completed within the scheduling horizon are taken into considera-
tion. When doing this, poor operational performances may be obtained. The objective of this
criteria is to contribute to competitive cycle times in the whole fab by minimizing as much
as possible the number of static jobs, jobs that stay for a long time within the optimization
scope. When considering only jobs that are completed within the horizon, a solution where
a large number of static jobs are completed outside the scheduling horizon may be evaluated
as a solution with good quality. Also, by allowing release dates with a negative value, the
actual route duration is not restricted by the beginning of the scheduling horizon.

f1 =
1∑

j∈J ω j

∑
j∈J

ω j(C j − r j)
ε j

(4.1)

Contrary to the weighted flow factor, the remaining criteria defined in this section depend
on the scheduling horizon. We consider, w.l.o.g., the time 0 as the beginning of the horizon
and H its end time. H is also used as the duration of the scheduling horizon. When consider-
ing a scheduling horizon, an operation oi, j ∈ R in a given schedule may be completed before
the end of the horizon, i.e., Ci, j ≤ H, be started after the end of the horizon , i.e., S i, j ≥ H or
the end of the horizon may fall within its processing, i.e., S i, j < H ∧ Ci, j > H. To consider
these different situations, a completion rate θi, j is defined in (4.2) for each operation oi, j ∈ R.
Assuming that σ j denotes the size of a job j ∈ J in number of wafers, the weighted number
of moves f2 can be computed as in (4.3).

θi, j =


min(pi, j,H−Ci, j)

pi, j
if Ci, j ≤ H,

0 else
(4.2)

f2 =
∑
oi, j∈R

ω jσ jθi, j (4.3)

The weighted number of moves expresses the objective of maximizing the overall
throughput of the machines considered in the optimization scope. All solutions where the
same operations are processed within the scheduling horizon are considered as equivalent.
When considering a rolling horizon framework, some solutions may be considered better
than others in the long term. Between two solutions in which the same weighted number of
moves are started, it is better to choose the one with a larger number of moves and where
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more important jobs are performed at the beginning of the horizon. The discounted weighted
number of moves is proposed to cope with these considerations. Let us define in (4.4) αi, j

as the discount rate of operation oi, j ∈ R . This rate expresses the idea that the further the
completion time of an operation, the lower its contribution to the solution quality. Using this
rate, the discounted weighted number of moves f3 is defined in (4.5).

αi, j = 1 −
Ci, j

H
(4.4)

f3 =
∑
oi, j∈R

ω jσ jαi, jθi, j (4.5)

The last criterion defined here is the batching coefficient. This measure represents the
average of the actual size of each batch divided by its maximal size. This criterion also
depends on the scheduling horizon. Thus, let BH = {B ∈ B | S i, j < H,∀oi, j ∈ B} denote the
set of batches started before the end of the scheduling horizon. The batching coefficient f4 of
a schedule can be defined then as in (4.6)

f4 =

∑
B∈BH σB∑
B∈BH bB

(4.6)

4.2.2 Maximum Time Lag Violation

Considering maximum time lags as soft constraints was motivated in Section 2.4.5. In Sec-
tion 4.1.5, it is considered that a set of maximum time lags constraints Lmax ⊂ J × Z4 × R>0

is given. As already described, the components of a time lag λ = ( j, k, l, d, γ, c) ∈ Lmax have
the following meaning: j ∈ J identifies the job; k, l ∈ N with 1 ≤ k < l ≤

∣∣∣O j

∣∣∣ identify
operations ok, j and ol, j ∈ O j; d ∈ N≥0 identifies a maximum time lag duration; γ ∈ N≥0 with
γ ≥ d identifies an ultimate time lag duration; and c ∈ R>0 identifies the cost of a time lag
violation.

Now consider a feasible schedule with start dates S i, j ∈ N that are given for all scheduled
operations oi, j ∈ R. For each time lag λ = ( j, k, l, d, γ, c) ∈ Lmax, its delay L = S l, j − S k, j is
and its violation severity is defined as

Vλ =


0 if L ≤ d,
c if L > γ,
(L−d)2

(γ−d)2 · c else.
(4.7)

Note that, in cases where the initial operation of a time lag refers to an operation that has
started its processing in the past, k ≤ 0 is allowed and we assume for notational consistency
that (though the operation is not part of the considered scheduling problem) its start date is
still given by S k, j. Overall, the total maximum time lag violation severity f5 to minimize is
defined in 4.8.
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f5 =
∑
λ∈Lmax

Vλ. (4.8)

This definition comprises the cases described in Section 2.4.5. For reworkable lots, we
have d = γ, which corresponds to a constant violation cost regardless of the duration of the
delay. For non-reworkable lots, we have d < γ, which corresponds to a cost that increases
quadratically with the duration of the delay as long as the delay does not exceed the ulti-
mate duration which reflects the very probable scrapping of the lot. Note that this objective
function is not regular, since advancing an operation that starts a maximum time lag could
increase the total maximum time lag violation severity. Note also that this objective func-
tion is computed for all the operations, not only those that are processed within the given
scheduling horizon.

4.2.3 Production Target Satisfaction

As motivated in Section 2.3.11, production targets, also called daily move targets, are exten-
sively used as a means of production control in semiconductor manufacturing. Their goal is
to smooth the differences between the WIP level of a production stage and its fixed target.
When computed accurately, the satisfaction of production targets allows the local schedul-
ing decisions to be consistent with global objectives at the fab level. The formulation given
here, instead of being specific to semiconductor manufacturing, may be used to any situation
where it is felt important to make sure that the produced schedules stick to a production plan
determined at a higher level.

We are given a setT of production targets. Let a given set Ti, j denote the set of production
targets to which an operation oi, j ∈ R contributes. Note that it is possible to have Ti j = ∅,
which means that the operation oi j does not contribute to any production target. It is also
possible that |Ti j| > 1, which means that operation oi j contributes to more than one production
target. To each production target τ ∈ T , we associate a requested volume Dτ ∈ N and
a weight wτ. We assume that, without loss of generality,

∑
τ∈T wτ = 1. An operation is

defined as contributing to its associated production targets if it starts its processing within
the scheduling horizon. Let OH be the set of operations that are started within the horizon.
Given a feasible schedule, Pτ =

∑
oi, j∈OH ,τ∈Ti, j

σ j defines the produced volume for each target
τ ∈ T .

Given a feasible schedule, Xτ = Pτ
Dτ

denotes the completion rate of a production target
τ ∈ T . It is possible to have different levels of satisfaction for the same completion rate
of two different production targets. A production target may define a minimum quantity to
produce, but it may also define a quantity that is desirable to reach but not to exceed. So,
instead of only using the completion rate Xτ, the expected satisfaction Yτ of the decision
maker that depends on the completion rate Xτ can be modeled. In the industrial application,
as targets only define minimal quantities to produce, the satisfaction can be computed as
in (4.9).



4.2 Formal Modeling of the Problem Criteria 97

Yτ =

Xτ if Xτ ≤ 1,
1 else

(4.9)

After defining the satisfaction level of a production target, it remains to define how to
evaluate the satisfaction of multiple production targets in a schedule. It appears that decision
makers may require a high level of global satisfaction and, at the same time, may want to
balance the satisfaction levels of the different production targets. As a first modeling, the
weighted sum of the satisfaction of the production targets

∑
τ∈T wτYτ could be used to ex-

press the idea of overall satisfaction. Fully compensatory, this modeling does not ensure to
correctly balance targets, which can lead to unfair solutions. Even if global satisfaction is
maximized, it could happen that the satisfaction of some targets will be far from the aver-
age. Even worse, this indicator is not very discriminating since multiple solutions may be
equivalent to the same average satisfaction level, although the balance can be very different.

Balancing means satisfying as fairly as possible. This often corresponds to minimizing
the difference between the most and the least satisfied targets. Maximizing the satisfaction
of the least satisfied target max minτ∈T (Yτ) is one of the usual ways of modeling satisfaction
balance. This modeling is the extreme opposite of the first one as it only focuses on balancing.
This focus on balancing may come with a significant cost in total satisfaction. Even worse,
the obtained criterion is not very discriminating since multiple solutions remain equivalent
from the point of view of the worst satisfaction level analysis. With the same minimum
satisfaction level, the solution with the largest overall satisfaction level may not be proposed.

The two models above have the merit of being easy to understand. However, they either
focus on overall satisfaction or on balancing. Here, we present a new criterion. We consider
three requirements that the criterion to be proposed should meet. First, it should produce
values that can be easily interpreted by decision makers. Second, the criterion must take into
consideration the weights of the production targets. Finally, it should consider balancing and
overall satisfaction simultaneously. It should also be flexible. In other words, depending
on the context, the decision maker can prioritize overall satisfaction or balancing, without
ignoring the other. This should be done through a parameter in the indicator for which a
value is given as input, depending on the context and the decision maker preferences.

The proposed criterion is called TSI, which stands for Target Satisfaction Indicator, and
is computed using (4.10). This indicator has the form of what is called weighted power mean.
Below, we show that this indicator meets the three requirements listed above. It is also shown
that this indicator is a generalization of the two first models.

TSI =

∑
τ∈T

wτYα
τ

1/α

(4.10)

Regarding the first requirement, it is easy to verify that the weights wτ and the satisfaction
levels Yτ of the production targets are included in 4.10. As a weighted power mean, we can
quickly check that the second requirement is also satisfied. It is proven that functions, in the
form of weighted power mean, always produce values that lie between the smallest and the
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largest of the Yτ values. There is no case where the indicator has a value smaller than the
satisfaction level of the least satisfied target, nor a case where the indicator has a value larger
than the satisfaction level of the most satisfied target. Also, as the individual satisfaction
levels Yτ lie between 0% and 100%, TSI is also in this interval. Finally, let us show that
TSI satisfies the last requirement. Before this, let us show that TSI is a generalization of the
two previous models. The weighted sum can be obtained by considering α = 1. It is less
obvious to see that MaxMin modeling can be obtained by giving some values for α. We have
in the literature the result shown in (4.11). This means that TSI is equivalent to MaxMin
modeling if for a sufficiently small parameter α. Less relevant in the case of production
target satisfaction, it is interesting to mention that the maximum satisfaction level is returned
if parameter α is chosen large enough, i.e. limα→+∞ TS I = max{Y1, ...,Yτ, ...,Yp}.

lim
α→−∞

TS I = min{Y1, ...,Yτ, ...,Yp} (4.11)

By varying α, it is then possible to move from a focus on overall satisfaction to a fo-
cus on balancing. The decision maker can, by giving intermediate and less extreme values
to α, choose to focus more on overall satisfaction or balancing, depending on the context.
More important, by a right choice of the parameter α, TSI can discriminate solutions that
are equivalent on total satisfaction, resp., balancing, but that are different on balancing, resp.,
total satisfaction. To illustrate the flexibility that TSI offers, let us consider two toy examples.
In the first example, there are two production targets with the same importance. Let us as-
sume there are two solutions S 1 and S 2. In S 1, the satisfaction of the two production targets
is, respectively, 100% and 0%. In S 2, the satisfaction level is 50% for each of the production
targets. S 1 and S 2 are equivalent if the weighted sum is used with total satisfaction of 50%.
This does not meet the decision maker preferences as S 2 is preferred since it is better bal-
anced. If TSI is computed for the two solutions with α = 0.5, it will be respectively 25.2%
for S 1 and 50% for S 2, i.e., S 2 is better and corresponds to the decision maker preferences.

To illustrate the behavior of TSI depending on α, let us consider in Figure 4.3 another
toy example with two production targets. Let us assume that one of the production targets
always has a satisfaction level of 50%. The satisfaction levels of the other production target
are represented in the x-axis. The y-axis corresponds to values of TSI. The different curves
correspond to the different values that are given to parameter α.

−0.2 0.2 0.4 0.6 0.8 1 1.2

0.5

1
α = 1
α = 0.5
α = −1
α = −100

Figure 4.3 – TSI behavior with α ≤ 1
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4.3 Extending the Batch-Oblivious Approach

We tackle the problem described in Sections 4.1 and 4.2 by extending the batch-oblivious
approach. This section generalizes the batch-oblivious conjunctive graph representation of
Section 3.2 such that all properties of the scheduling problem described in Section 4.1 are
taken into account. We provide a self-contained description by introducing the notations
and detailing the graph. Section 4.3.1 describes the extended graph that considers the route
graph concept and all the constraints handled in Chapter 3, except batching constraints. Sec-
tion 4.3.2 details the integration of minimum time lags and unavailability periods when com-
puting the start time of a node. Section 4.3.3 describes the proposed approach to handle the
batching constraints, especially for complex machines that are modeled in detail. Finally,
Section 4.3.4 describes how minimum batch size constraints are handled.

4.3.1 Extended Batch-Oblivious Conjunctive Graph

The disjunctive graph representing the problem to solve is obtained by combining all the
route graphs of jobs in the problem, in addition to the classical start and end dummy nodes.
Let us now introduce an extended batch-oblivious conjunctive graph representation. Sched-
ules are represented as a directed acyclic graph G = (V, E) with the set of nodes V = O∪{0, ∗}
that corresponds to the set of operations O plus an artificial start node 0 and an artificial end
node ∗. Note that all operations can be considered to be part of the conjunctive graph, even
if they are not scheduled. We denote the edges involved in the sequencing of operations on
resource m ∈ M by ER

m ⊂ E. Analogously, edges involved in the sequencing of the operations
of a job j ∈ J are denoted by EJ

j ⊂ E. The disjoint union E =
.⋃

j∈J EJ
j

.
∪

.⋃
m∈M ER

m of these
paths yields all edges of the graph. One corresponds to the route of its job and all others to
the sequencing of its assigned resources. For a node v ∈ R, we denote its route successor by
r(v) ∈ V \ {0} and the set of its resource successors by m(v) ⊂ V \ {0}. For each node v ∈ V ,
succ(v) denotes the set of all the successors, i.e., succ(v) = {r(v)} ∪ m(v). out(v) denotes the
number of the successors, i.e., out(v) = |succ(v)| Analogously, its predecessors are denoted
by r−1(v) ∈ V \ {∗} and m−1(v) ⊂ V \ {∗}. The set of all predecessors of v is denoted by
pred(v) and its cardinality by in(v). Each unscheduled operation u ∈ O \ R corresponds to a
disconnected node in the conjunctive graph, i.e. in(u) = out(u) = 0. The artificial start node 0
has |J| + |M| outgoing edges and no incoming edges. The artificial end node ∗ has |J| + |M|
incoming edges and no outgoing edges. Overall, the graph has |E| = |J|+ |M|+ |R|+

∑
v∈R |Mv|

edges.
Start dates S v ∈ Z of operations v ∈ O are determined from conjunctive graphs using the

longest paths. Some adaptations are needed for our generalized problem. Again, a weight lu,v

is associated to each edge (u, v) ∈ E to ensure a minimum duration between the start dates
of adjacent operations, i.e. S v ≥ S u + lu,v is required for each edge (u, v) ∈ E. For each
operation v ∈ O, its start date S v is determined by the distance L(0, v) of the longest path
from the artificial start node 0 to node v. To respect the constraints given in our schedul-
ing problem, edge weights are defined as follows. For edges (0, o1, j) ∈ EJ

j connecting the
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Figure 4.4 – Example of generalized batch-oblivious graph

artificial start node 0 with the first operation o1, j of job j ∈ J, the edge weight is set to the
release date max(0, r j) of job j. For edges (0, om) ∈ ER

m connecting the artificial start node 0
with the first operation om sequenced on resource m ∈ M, the edge weight is set to zero. For
route edges (v, r(v)) ∈ E with v , 0, the edge weight is set to the processing duration pv

of operation v. For resource edges (v,w) ∈ ER
m with v , 0 and w ∈ m(v), the edge weight

is set either to zero when both operations are in the same batch, or to pv,m + s( fv,m, fw,m),
i.e., the sum of the resource-dependent processing duration pv,m of operation v on resource m
and the sequence-dependent setup time s( fv,m, fw,m) between operation v and operation w on
machine m. To avoid making the graph larger and more complex, minimum time lags and un-
availability periods are not modeled explicitly in the graph. They are considered only during
the start date computation, using auxiliary data structures.

When modeling non-batching machines in detail, we include the resource acquisition
constraint using Property 4.1. It is then required that for each resource acquisition a =

(m, v) ∈ Au of each operation u ∈ R, there must be an edge (u, v) ∈ ER
m. This property must

be preserved if the graph is modified. After examining the example below, this property is
reformulated and generalized in Property 4.2 to take into account batching machines.

Property 4.1. Let a = (m, v) ∈ Au be the acquisition of a resource m at an operation u ∈ R j

with a corresponding release operation v ∈ R j. For all operations w ∈ R (, u, , v) with
m ∈ Mw there must not be any path in the disjunctive graph that has the form (u, . . . ,w, . . . , v).
Consequently, v must directly follow u in the sequencing of operations scheduled on re-
source m. Thus, there must be an edge (u, v) ∈ ER

m.

Let us consider an example of two jobs (J1, J2) with two steps each. The first steps of both
jobs require different recipes on a furnace which is modeled as a resource F1. The second
steps of the two jobs can be batched together on a wet bench described in Section 2.2.1 that
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is modeled in detail. The processing part of this machine includes two processing resources
(M1 or M2) and a drying resource (D). The jobs to be scheduled require the same short
process, i.e., through one of the modules (M1 or M2) and the dryer (D). The maximum
batching capacity of this machine is two jobs. Figure 4.4 represents a generalized batch-
oblivious representation of a solution of this problem. The nodes α� and φ� represent the
separator nodes of the two jobs while 0 and ∗ represent the artificial start and end nodes. The
black arcs represent routing constraints; the blue arcs represent the sequencing on module
M1; the red arcs represent the sequencing on the dryer D and the green arcs represent the
sequencing on furnace F1. Both jobs J1 and J2 use M1 and D. As there is no internal buffer,
resource acquisition constraints are used to model blocking constraints. Operation 2 acquires
M1 and will only release it when operation 3 can start its processing and thus the processing
of operation 5. In the same way, operation 5 acquires M1 and release it at the processing start
of operation 6. The resulting graph, representing the blocking constraints, is similar to the
alternative graph proposed by Mascis and Pacciarelli (2002).

Recall that it was required in Property 4.1 that there must be an edge (u, v) ∈ ER
m for each

acquisition constraint a = (m, v) ∈ Au. If there is a compatible operation w with operation u
and if this requirement is not relaxed when considering batching, w can never be batched with
u as it can never be a direct successor of u on m. If we consider the example of Figure 4.4,
the acquisition constraint impedes operation 5 to be batched with operation 2. If a batching
resource is acquired, the requirement above is redefined in Property 4.2. It is then required
that for each acquisition a = (m, v) ∈ Au of batching resource m of each operation u ∈ R,
it is allowed to sequence operations between u and v on resource m provided that all these
operations are batched either with u or v.

Property 4.2. Let a = (m, ok, j) ∈ Ai, j be the acquisition of a resource m at an op-
eration oi, j ∈ R j with a corresponding release operation ok, j ∈ R j. If there is a path
P = (u,w1, . . . ,wi, . . . ,wn, v) ⊂ ER

m, it is required that all wi such that i ∈ {1, . . . , n} are
batched either with u or v.

4.3.2 Start Time Computation

To compute the start times and to determine the weights of resource edges, the nodes of the
graph are traversed in topological order. In Chapter 3, the computation of the start time of
an operation is based on the already computed start times of the direct predecessors and the
determined weights of the incoming edges. When dealing with the problem described here, it
is necessary to include additional constraints. First, the computation of the start time should
take into account the minimum time lags. For each node v and for each λ = ( j, u, v, d) ∈ Lmin,
S v ≥ S u + d must hold. In the remainder of this chapter, rv defines the job availability time
of operation v and is computed as in (4.12).

rv = max(S r−1(v) + lr−1(v),v, max
( j,u,v,d)∈Lmin

(S u + d)) (4.12)
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In addition to the minimum time lags, availability constraints are not also explicitly mod-
eled in the structure of the conjunctive graph. In the industrial context, a resource can be
unavailable to process production operations because of preventive maintenance, curative
maintenance and quality tasks. Quality tasks are described in Section 2.3.10, where it is
specified that only calendar quality tasks are considered in this thesis. These quality tasks
must be performed on the concerned machines during a given shift. This can be modeled
as what is called in the literature flexible unavailability periods (Gao et al. (2006), Azem
et al. (2012)). This modeling corresponds to the situation where unavailability periods also
have decision variables, i.e., each unavailability period has to be scheduled in a given time
window. Instead of this modeling, each quality task is considered as a production job with a
route containing one step that is only qualified on the machine on which the quality task must
be performed. It is then assumed that these tasks are included in the set of given jobs J . Re-
garding the fact that these tasks must be performed within a given time window I j = [s j, e j],
this is handled through maximum time lag constraints. It is also assumed that the set of max-
imum time lags Lmax contains the time lags concerning quality tasks. Note that in this case,
as the route of a job modeling a quality task has only one step, the initial operation u of a time
lag λ = ( j, u, v, d, γ, c) ∈ Lmax cannot refer to an actual step of the job. We allow u = 0 and
assume its completion time equal to the time window start time, i.e., Cu = s j. The maximum
time lag duration d ∈ N≥0 and the ultimate time lag duration γ ∈ N≥0 are equal to the length
of the time window, i.e., d = γ = e j − s j. It is assumed that the cost c of performing the
quality task outside its assigned time window is given as input.

Resources can also be unavailable due to maintenance, either preventive or curative.
As mentioned in Section 4.1.4, each resource m ∈ M has a set of unavailability periods
Um = {um,1, . . . , um,l, . . . , um,|Um |}. As the unavailability periods are not explicitly modeled in
the graph, the classical longest path calculation algorithm is not sufficient to determine accu-
rate start times for operation. Algorithm 4.1 is proposed to adjust the earliest start times of
operations while taking into consideration the additional constraints in this chapter: Multiple
resource requirement, batching constraints, sequence-dependent setup times and minimum
time lags.

Algorithm 4.1 starts by computing the job availability time rv of operation v as defined in
(4.12). The initial earliest start time S v is computed based on the start times of all the prede-
cessors of v. Recall that the length lu,v of the resource edge (u, v) is set either to zero when
both operations are included in the same batch, or to pu,m + s( fu,m, fv,m), i.e., the sum of the
resource-dependent processing duration pu of operation u on resource m and the sequence-
dependent setup time s( fu,m, fv,m) between operation u and operation v on machine m. Then,
the algorithm adjusts the earliest start time by scanning the unavailability periods on all the
resources in Mv performing operation v. The set of all unavailability periods UMv on all the
resources in Mv is obtained by merging the sets of unavailability periods Um where m ∈ Mv.
It is assumed that the unavailability periods ul ∈ UMv are scanned in non-decreasing order of
their start times S l. The loop ends when S v + pv ≤ S l, which means that operation v can be
started and completed without preemption.
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Algorithm 4.1 Algorithm for computing the earliest start time of an operation

computeStartTime (v)
rv ← max(S r−1(v) + lr−1(v),v,max( j,u,v,d)∈Lmin(S u + d))
S v ← max(rv,maxu∈m−1(v)(S u + lu,v))
UMv ←

⋃
m∈Mv

Um

f o r ul = [S l,Cl] ∈ UMv

i f S v < S l

i f S v + pv ≤ S l

break
S v ← Cl

e l s e i f S v ≤ Cl

S v ← Cl

4.3.3 Integration of Batching Constraints

The novelty brought by the batch-oblivious approach is a representation of batching deci-
sions in conjunctive graphs which is non-intrusive regarding the structure of the graph. No
dedicated batching nodes or additional arcs are introduced and the structure of the classical
conjunctive graph remains as is. Batching decisions are modeled by adapting the weights
of machine edges (u, v) ∈ ER

m. The weight of a machine edge is set to zero if its adjacent
operations should be processed in the same batch. Otherwise, the edge weight is set to
pv,m + s( fu, fv), as in the non-batching case. To make sure that batching decisions are feasi-
ble, the proposed invariant (3.1) is recalled in Chapter 3. When the possibility of batching
two adjacent operations u and v is studied, this invariant can be interpreted as follows: An
operation v can be batched with its resource predecessor u, if the job of v is available be-
fore the already determined start time of u, i.e., S r−1(v) + lr−1(v),v ≤ S u. Different adaptations
of the original batch-oblivious approach must be made to tackle the more general problem
considered in this thesis.

The first generalization of the invariant (3.1) includes minimum time lag constraints. In
the problem of Chapter 3, the job availability of a node v is equal to the completion time of
the route predecessor r−1(v). With minimum time lag constraints, the job availability of an
operation v is given by rv, computed as shown in (4.12). The invariant is redefined as shown
in (4.13).

(
lu, v = 0 ∧ S u ≥ rv

)
∨

(
lu, v = pu,mu + s( fu, fv,mu)

)
(4.13)

An important extension of the original batch-oblivious approach is the possibility of mod-
eling in detail complex machines, which is done through the route graph modeling. Instead of
handling individual operations, the scheduling algorithm is constrained to handle sequences
of operations in order to take the interdependence of internal resources of complex machines
and their internal constraints into account. In Section 4.1.1, these sequences of operations
are called movable components. In Knopp (2016), batching is restricted to movable compo-
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nents consisting of one single node. In other words, batching machines cannot be modeled
in detail. However, it is proposed in Knopp (2016) to generalize the approach to deal with
operations that can require multiple batching machines at the same time. First, while adapt-
ing it to handle minimum time lag constraints, the proposed invariant is recalled. Then, the
approach is generalized so that batching machines can be modeled in detail, i.e., batching is
no longer restricted to movable components consisting of one single node.

The new invariant is shown in (4.14). As in the invariant (4.13), an operation v ∈ R
can extend an incomplete batch if its job availability rv occurs before the already computed
start time of the incomplete batch. When multiple resources are required, an additional
condition must be fulfilled, i.e.,

∣∣∣m−1(v)
∣∣∣ = 1. This means that an operation v requiring

multiple resources can only extend a batch when the same operation u precedes v on all its
required resources. The invariant must be fulfilled for all edges (u, v) ∈ ER

m where u ∈ m−1(v).(
lu, v = 0 ∧

∣∣∣m−1(v)
∣∣∣ = 1 ∧ S u ≥ rv

)
∨

(
lu, v = pu,m + s( fu,m, fv,m)

)
(4.14)

In the studied industrial context, all the machines within the optimization scope are batch-
ing machines. Some of these machines, specifically wet benches, are qualified as complex
machines because it is not realistic to associate a fixed processing time to the operations they
perform. The route graph modeling in Section 4.1.1 allows these machines to be modeled in
detail. In addition to the different internal constraints that must be satisfied when constructing
a schedule, an additional constraint that is related to the batching decision must be satisfied.
The batches are formed outside of the machine. The jobs of the same batch stay together
during all the operations that the batch goes through inside the machine, i.e., they will all use
the same internal resources and simultaneously. If two nodes of two movable components are
part of a batch, all the other nodes of the same two movable components, two by two, must
be batched together. Instead of taking batching decisions regarding individual operations,
these decisions are made for sequences of operations.

Previously, different conditions had to be satisfied when checking the possibility of batch-
ing two individual operations. The concerned operations must have the same recipe and
satisfy the invariant. when considering a sequence of operations, in addition to the men-
tioned conditions, before batching two nodes of two distinct movable components, it should
be ensured that the same decision can be taken for all the other remaining nodes of the same
components. Definition 4.1 introduces the notion of equivalence of movable components.
Similar to the notion of a recipe when considering individual nodes, this equivalence con-
ditions the possibility of batching two sequences of operations. In brief, the two sequences
should belong to different jobs, have the same length and each node at a given rank in a se-
quence must require the same recipe of the node with the same rank in the other sequence.
This is a translation of the fact that all the jobs of the same batch stay together during all the
operations that the batch goes through inside the machine.
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Definition 4.1. Let C = (u1, . . . , ul, . . . , un) ⊂ EJ
j and C′ = (v1, . . . , vl′ , . . . , vn′) ⊂ EJ

j′ be two
movable components. They are said to be equivalent, denoted by C ≡ C′ if:

• j , j′,

• n = n′,

• qul = qvl′ , ∀ul ∈ C, vl′ ∈ C′ and l = l′,

• ∀λ = ( j, ul, ul+k, d) ∈ Lmin where ul, ul+k ∈ C, ∃λ = ( j′, vl′ , vl′+k, d) ∈ Lmin such that
vl, vl′+k ∈ C′.

One of the main innovations of the batch-oblivious approach is the fact that batching
decisions are taken on the fly. During the traversal of the graph, the possibility of batching
two adjacent nodes u and v is considered. If they cannot be batched together, and if the batch
containing u is incomplete, the graph can be explored for compatible candidates using one
of the strategies described in Section 3.3.2. This leads to the dynamic modification of the
graph. If the static strategy is chosen, the batching decisions are only restricted to adjacent
nodes, and the graph is not modified during the start time computation. However, when
constraining the construction algorithm to take batching decisions regarding a sequence of
operations instead of individual operations, it may become necessary to modify the graph
even if the static strategy is chosen.

The proposed approach to handle batching decisions on complex machines is to give
freedom to the construction algorithm regarding the first nodes in the movable components
u1 ∈ C and constrain the construction algorithm to take the same batching decisions regarding
the remaining nodes of the concerned movable components. While doing this, if u1 ∈ C and
v1 ∈ C′ are batched together and C ≡ C′, it should be ensured that it is always possible to
modify the graph so that any two nodes ul ∈ C and vl′ ∈ C′, where l = l′ , 1, can be batched
together. More specifically, the graph should be modified so that ul and vl′ become adjacent
on all the resource edges. Proposition 4.1 gives us this guarantee. Before stating it, we give
below some results that make the proof of the proposition easier.

Lemma 4.1. Let us consider two operations u and v with Mu ∩ Mv , ∅. If u is sequenced
before v on a resource m ∈ Mu ∩Mv within a feasible schedule, it is also sequenced before v
on all the other resources Mu ∩ Mv \ {m}

Proof. Otherwise, there will be a cycle, which contradicts the assumption of the solution
feasibility. �

Lemma 4.2. Let us consider two operations u and v with qu = qv, i.e., Mu = Mv. If u is
sequenced before v in a feasible solution, it is possible to advance v and make it a direct
successor of u on all the resources m ∈ Mu without creating a cycle if S u ≥ S r−1(v) + pr−1(v).

Proof. To resequence v after u on all the resources m ∈ Mu, the resource arcs before and after
v are deleted. Let w ∈ m(u) the resource successors in the initial solution before resequencing
v. A cycle is introduced after resequencing v if:
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1. there was a path between v and u before the move, or

2. there was a path between w ∈ m(u) and v before the move.

In case 1, if there was a path between v and u, then there was a path between r(v) and u as
all the resource arcs after v are deleted. As u is sequenced before v on all resources m ∈ Mu,
this implies that there was a cycle in the initial solution, which contradicts the assumption of
its feasibility.

In case 2, if there was a path between any resource successor w ∈ m(u) and v, then
there was a path between w and the r−1(v) as all the resource arcs before v are deleted. As
S u ≤ S w∀w ∈ m(u) and pr−1(v) > 0, this implies that S u ≤ S r−1(v) < S r−1(v) + pr−1(v), a
contradiction to the condition S u ≥ S r−1(v) + pr−1(v) . �

The proposed approach to handle batching decisions on complex machines is to give
freedom to the construction algorithm regarding the first nodes in the movable components
u1 ∈ C. During the start time computation, if there is a node v1 ∈ C′ such that C ≡ C′

and S u1 ≥ rv, it is possible to consider the inclusion of v1 and u1 in the same batch. As
S u1 ≥ rv implies that S u1 ≥ S r−1(v1) + pr−1(v1), Lemma 4.2 ensures that no cycle is created
when sequencing v1 after u1 on all the resources m ∈ Mu1 . If such a move is performed,
it results that

∣∣∣m−1(v)
∣∣∣ = 1 which leads to the satisfaction of the invariant (4.14). If we

consider the example in Figure 4.4, these results allow operation 5 to be sequenced after
operation 2 so that they belong to the same batch. The new solution after moving operation
5 is shown in Figure 4.5. In the resulting conjunctive graph, we can see that, instead of
having operation 3 as a direct successor of operation 2 to model the acquisition constraint,
operation 5 is sequenced between these two operations which is allowed as operations 2 and
5 belong to the same batch. The same comment applies to the acquisition constraint between
operations 5 and 6. However, before considering moving operation 5 after operation 2, it
should be ensured that it is possible to batch the other nodes of the two movable components,
i.e., operations 3 and 6. It should be ensured that it is possible to modify the graph when
necessary and that the invariant (4.14) is satisfied. This guarantee is given by Proposition 4.1.

Proposition 4.1. Let C = (u1, . . . , ul, . . . , un) and C = (v1, . . . , vl′ , . . . , vn) be two movable
components such that C ≡ C′. If the two first operations in the two movable components u1

and v1 can be batched together, it is also possible to batch together all the subsequent op-
erations in the two movable components, i.e., ul with vl′ such that l = l′,∀l ∈ {1, . . . , n}
.

Proof. It is possible to batch u1 and v1 together when S u1 ≥ rv1 . When the previous condition
is satisfied, Lemma 4.2 allows v1 to be moved directly after u1 on all resources m ∈ Mu1 = Mv1

which results in the satisfaction of the invariant (4.14). If the two first operations u1 ∈ C
and v1 ∈ C′ are in the same batch, we have S u1 = S v1 , and consequently ru2 = rv2 . As
C ≡ C′,we have qu2 = qv2 inducing in turn Mu2 = Mv2 . Thanks to Lemma 4.1, either u2 is
sequenced before v2 on all the resources Mu2 = Mv2 , or the opposite. Let us consider w.l.o.g.
the case where u2 is sequenced before v2. As ru2 ≤ S u2 and ru2 = rv2 , it results that rv2 ≤ S u2 .
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Figure 4.5 – Example of batching long movable components

Thanks to Lemma 4.2, it is possible to advance v2 and make it a direct successor of v2 on
each resource m ∈ Mu2 = Mv2 without creating any cycle. Making vk′+1 a direct successor
of vk+1 on each resource m ∈ Mvk+1 = Mvk′+1 leads to |m(vk+1)| = 1. Given this last result, i.e.∣∣∣m−1(v2)

∣∣∣ = 1 and S u2 ≤ rv2 , the invariant (4.14) is fulfilled, which allows the two operations
u2 and v2 to be batched.

If ul and vl are batched, the same arguments can be used to prove that operations ul+1 and
vl+1 can also batched and so forth for all the operations uk ∈ C and vk ∈ C′ with k > l+1. �

Proposition 4.1 ensures that, if two first operations of equivalent movable components
are batched together, it is possible to batch all the subsequent operations of the two movable
components. Then, during the graph traversal, invariant (4.14) must be checked to decide
if two equivalent operations u and v that are the first in their respective movable component
should be batched. Each time such a decision is taken, the graph must be modified to ensure
that all the subsequent operations of v are batched with the subsequent equivalent operations
of u. In other words, this modification should lead to the satisfaction of invariant (4.14).
When dealing with batching decisions on movable components with more that one node,
because of the resource acquisition constraints, it may become necessary to modify the graph
even if the static strategy is chosen. When considering the example in Figure 4.5, after
moving operation 5 after operation 2, it is not necessary to modify the graph again as all the
conditions are already met so that operations 3 and 6 are in the same batch. This modification
is necessary for example when considering jobs requiring the long process in Figure 4.1(b).

In addition to adapting the edge weights, it may also be necessary to modify the graph
when dealing with batching decisions on long movable components. When only the edge
weights are modified, if the batching decisions that are taken within a solution are no longer
valid within the new solution obtained after applying the chosen neighborhood operator, the
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Figure 4.6 – Example of an infeasible solution

edge weights are adapted accordingly. Similarly, it should be ensured that the graph can be
modified if the batching decisions that are already taken in the previous solution are no longer
valid so that Property 4.2 is satisfied. For example, when operations 1 and 4 are resequenced
on furnace F1, the batching decisions taken within the solution shown in Figure 4.5 are not
valid within the new solution shown in Figure 4.6. In the new solution, invariant (4.14) is no
longer satisfied since r5 > S 2. In this case, considering the resource acquisition constraints,
operation 3 must be the direct successor of 2 on module M1 and the same thing for operations
5 and 6. In this case, it is sufficient to sequence operation 3 before operation 5 on module
M1.

In the general case, Algorithm 4.2 can be used during the traversal of a graph G
to undo invalid batching decisions that are inherited from a previous solution. This al-
gorithm is used when the invalid batching decisions involve long movable components
C = (u1, . . . , ul, . . . , un) and C′ = (v1, . . . , vl, . . . , vn) where some operations imposes resource
acquisition constraints. When visiting v1, batching C and C′ is no longer valid when there
is a resource acquisition a(m, ul′) ∈ Aul such that (ul, ul′) < ER

m while rv1 > S u1 . To obtain
a feasible solution, all the resource acquisitions that are related to operations in C must be
satisfied. For each resource acquisition constraint a = (m, ul′) ∈ Aul , it must be ensured that
ul′ is sequenced before vl, which means that ul′ is sequenced directly after ul on resource m.
Also, if there are resources that are required by both ul and ul′ without being acquired by
ul, ul′ must be also sequenced before vl on all the concerned resources. If there are other
components that belong to the same batch than C and C′, this routine is applied to undo the
batching decisions of any adjacent components. For example, if there is a third component
C′′ = (w1, . . . ,wl, . . . ,wn) batched with C and C′, the routine in Algorithm 4.2 is applied
when visiting the first node w1 in C′′ if rw1 > S v1 .
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Algorithm 4.2 Algorithm to undo an invalid batching decision

unbatch (C = (u1, . . . , ul, . . . , un),C′ = (v1, . . . , vl, . . . , vn),G)
assert (rv1 > S u1)
f o r l ∈ {1, . . . , n}

f o r a = (m, ul′) ∈ Aul

f o r m′ ∈ Mul ∩ Mul′

sequence ul′ before vl on m′

4.3.4 Integration of Minimum Batch Size Constraints

In the industrial setting, if a batch does not satisfy the minimal batching capacity of a ma-
chine, the processing of the concerned jobs is delayed until some jobs arrive and complete
the batch. The same principle is adopted here. Working within a rolling horizon framework,
it is sufficient to schedule the concerned batches outside of the scheduling horizon. Assum-
ing that there are enough jobs to load all the machines during the whole scheduling horizon,
scheduling the concerned operations at the end of their respective resource sequences means
that they are scheduled outside of the scheduling horizon. If batches that do not satisfy the
minimum batch size constraints are started within the scheduling horizon, the operations be-
longing to these batches and all the subsequent operations in the routes are excluded when
computing the different criteria. This way of considering minimum batch size constraints
can naturally be integrated to the batch-oblivious approach as it is designed to modify the
graph during the start time computation and also thanks to the possibility, introduced in Sec-
tion 3.3.1, of reconsidering already taken decisions.

Algorithm 4.3 Algorithm for resequencing a batch with a size lower than the minimum batch
size

resequenceBatchSmallSize (B,G,V s,Vu,V f )
f o r v ∈ B

u← v1 | v1 ∈ Cv = (v1, . . . , v, . . . , vn)
I ← {w ∈ V s | u ≺ w}
V s ← V s \ I ; Vu ← Vu ∪ I ; V f ← V f \

{
w ∈ O j | u ∈ O j

}
∪ {u}

whi le u , φi | u ∈ G j = (O j, E j, α j, φ j)
sequence u before ∗ on all resources Mu

u← r(u)
re turn I

During the graph traversal, let us consider that the current visited operation v, which is
sequenced after an incomplete batch B. Let q be the recipe of batch B and let us consider the
situation where the size of this batch is below the given minimum batch size, i.e., σB < bmin

q .
Using one of the strategies presented in Section 3.3.2, candidate operations can be looked
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up in order to complete B. If no candidate is found (E0 ∪ E∞ = ∅), settling v after B means
that an infeasible decision is proposed within the considered solution. When implementing
the proposed schedule on the shop floor, this can be ignored by executing the next batch in
the sequence. It is also possible to post-process the solution so that the concerned batches
are removed. By doing this, there is a significant risk of degrading the solution quality if this
situation occurs several times within the proposed solution. To reduce the negative impact
of this situation on the implemented solution, it is then proposed to sequence the incomplete
batches at the end of their assigned resource sequences.

The modification of the graph during its traversal is described in Algorithm 4.3. Let
us consider that during the traversal of the extended batch-oblivious conjunctive graph G, a
batch B does not satisfy the minimum batch size constraint, i.e., σB < bmin

q . Recall that as
discussed in Chapter 3, a cut C = (V s,Vu) is defined to ensure that the different modifications
of the graph do not introduce cycles. The unidirectional cut C = (V s,Vu) is a partition of
the graph G, where V s is the set of settled nodes, and Vu is the set of unsettled nodes. Also,
the set V f ⊆ Vu is defined as the set of all first job unsettled nodes, and its cardinality is at
most the number of jobs |J|. When resequencing the incomplete batches at the end of their
assigned resource sequences, these sets must be maintained. In Algorithm 4.3, for each node
v ∈ B, if v is not the first node in its movable component Cv, the resequencing must start
with the first node u = v1. The set I contains all the settled nodes that are reachable from
u. Resequencing u requires recomputing the start times of all the nodes in I which leads
to their removal from the set of settled nodes V s and their insertion in the set of unsettled
nodes Vu. Operation u becomes the first job unsettled node. After maintaining these sets, the
modification of the graph is performed within the loop. All the scheduled operations that are
succeeding u in the route graph G j are resequenced, one after another, before the artificial
end node ∗. By proceeding in this way, it can be ensured that no cycle is introduced in the
graph and that the acquisition constraints are satisfied. It is worth highlighting that it is not
impossible for the moved operation to be part of a batch that satisfies the minimum batch size
constraints. The selected strategy can discover them in order to complete another incomplete
batch with the same recipe q. Finally, the integration of minimum batch size constraints is
another reason that makes the use of the static strategy irrelevant.

4.4 General Solution Approach

Using the results of the previous sections, an algorithm that generalizes the one proposed in
Section 3.4.3 can be designed to construct and improve schedules starting from an extended
batch-oblivious conjunctive graph. For clarity, we focus on the construction of schedules that
uses locally non-delay strategies. The overall schedule construction algorithm that considers
all the constraints of the problem studied in this chapter is shown in Algorithm 4.4. Given an
extended batch-oblivious conjunctive graph G and a selection strategy, this algorithm returns
a schedule. Initially, only the artificial start node 0 is considered to be settled. The different
sets, V s,V l and V f defined in Section 3.3.1, are initialized. Then, nodes that meet the criteria
of Theorem 3.1 can be successively settled without introducing any cycle. At each iteration,
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a root node v is selected in Vu and one of its resource predecessors u ∈ V s is determined. The
proposed approach to handle batching decisions on complex machines is to give freedom to
the construction algorithm regarding the first nodes in the movable components. This also
applies when it is necessary to undo batching decisions that are no longer valid within the
current solution. Then, if u is the first node in its movable component, batching decisions
that are inherited from previous solutions are first checked. If the movable components Cu

and Cv of nodes u and v are batched together while invariant (4.14) is not satisfied because
rv > su, the graph must be modified to undo these batching decisions and to make sure that
the resource acquisition constraints within the movable component Cu are satisfied. This is
accomplished through the procedure detailed in Algorithm 4.2. As v may no longer be a root
unsettled node, i.e., deg−u (v) > 0 , the iteration is ended in order to select another node from
Vu.

If there is no infeasible batching decision involving u and v and if it is not possible to
extend the batch of u by adding v, the given strategy is used to search for potential candidates
that can increase the batch. When the given strategy is a locally non-delay strategy, all
the nodes in w ∈ E0 are available before the start time of u, i.e., S u ≥ rw. Lemma 4.2
ensures that no cycle is created when sequencing w after u on all the resources m ∈ Mu

and Proposition 4.1 ensure us that if u and v can be batched together, it is also possible to
batch all the subsequent operations of the two movable components Cu and Cv. When the
node to settle v and one of its resource predecessor u are determined, invariant (4.14) and
the conditions regarding the batching capacity and compatibility are used to decide whether
it is possible to batch nodes u and v. If it not possible to batch these two operations, it
should be ensured that the size of the batch containing u is at least equal to the minimum
batch size. If it is not the case, the procedure described in Algorithm 4.3 is used to sequence
all the concerned operations at the end of their resource sequences. If the batch containing
u satisfies its minimum batch size constraint and as v cannot be batched with u, the start
time of v is computed using Algorithm 4.1 which considers the minimum time lags, the
unavailability periods and the sequence-dependent setup times. At the end of the iteration,
the sets V s,V l and V f are updated.

The extended batch-oblivious approach is not bounded to one specific solution approach
and can be applied within different heuristics. To evaluate the proposed approach, the same
framework as in Chapter 3 is used. The GRASP approach creates many different starting
solutions by randomizing the construction heuristic. To improve these initial solutions, the
simulated annealing metaheuristic is used. Due to the various extensions, the neighborhood
function (N1) described in Section 3.5 is no longer adapted. Either when constructing or
improving an initial solution, the problem considered in this chapter imposes a different
framework for the insertion and the removal of nodes from a partial or complete solution.
A move works in two phases: First, it removes all nodes belonging to a currently scheduled
movable component from the conjunctive graph. Second, it inserts all nodes that belong to a
movable component into the conjunctive graph. The latter movable component could either
be the same that was removed before or it could be a parallel (i.e., alternative) movable com-
ponent. Removing nodes from a conjunctive graph is a straightforward procedure where no
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Algorithm 4.4 A schedule construction algorithm for an extended batch-oblivious conjunc-
tive graph G and a selection strategy

computeStartDatesAdaptively (G,Strategy)
S 0 ← 0
V s ← {0} ; Vu ← V \ {0} ; V f ←

{
v ∈ Vu | r−1(v) = 0

}
Bv ← {v} (∀ v ∈ V) ; σBv ← σ j (∀ v ∈ V | v ∈ O j)
whi le V s , V

v← select (v ∈ Vu | deg−u (v) = 0)
u← w | w ∈ m−1(v)
i f ( u ∈ Cu = (u1, . . . , ul, . . . , un) and u = u1 )

i f ( rv > su ∧ Au , ∅ ∧ ∃a = (m,w) | w < m(u) )
unbatch(Cu,Cv)
c o n t in u e

i f (σBu < bmax
u and (Cu . Cv or qu , qv or rv > S u) )

(E0, E∞)← Strategy(u,V f )
i f ( E0 , ∅ )

f o r ( w ∈ E0 )
v← w
f o r ( i ∈ {1, . . . , l, . . . , n} )

sequence wi after ui on all resources Mui , (wi ∈ Cw, ui ∈ Cu)
i f (

∣∣∣m−1(v)
∣∣∣ = 1 and S u ≥ rv and Cu ≡ Cv and qu = qv and σBu + σv ≤ bv )

S v ← S u

Bv ← Bv ∪ Bu ; σBv ← σBv + σBu

e l s e
i f (σBu < bmin

u and S u < H )
I ← resequenceBatchSmallSize (Bu,G,V s,Vu,V f )
Bw ← {w} (∀ w ∈ I) ; σBw ← σ j (∀ w ∈ I | w ∈ O j)
c o n t in u e

S v ← computeStartTime (v)
V s ← V s ∪ {v} ; Vu ← Vu \ {v} ; V f ← V f \ {v} ∪ {r(v)}
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decisions have to be taken. However, inserting nodes efficiently is challenging since a mean-
ingful and feasible insertion position has to be found while coping with multiple resources
per operation and resource acquisition constraints. The route graph formulation proposed by
Knopp (2016) is closely related to the job-scheduling problem with processing alternatives
studied in Kis (2003), where multiple resources per operation are also considered. Then,
the insertion technique for nodes proposed by Kis (2003), which avoids enumerating dom-
inated insertion positions, is adapted by Knopp (2016) by considering resource acquisition
constraints. As the extended batch-oblivious graph proposed in this chapter is an aggregation
of route graphs, the algorithm proposed in Knopp (2016) for determining feasible insertion
positions is still applicable when solving the general problem considered in this thesis. Then,
in short, the neighborhood operation, referred to as (N2), randomly select a movable compo-
nent and randomly select one of the insertion positions determined by the adapted algorithm
of Kis (2003). By applicable, it is meant that the insertion positions returned by the algo-
rithm are feasible when applied to our extended batch-oblivious conjunctive graph. However,
the algorithm of Kis (2003) avoids enumerating dominated insertion positions in the sense
of the makespan. This may lead to discarding interesting moves or to choosing dominated
moves when considering other criteria. An interesting research direction is to generalize
these findings when considering other criteria than the makespan.

4.5 Numerical Results

The approach presented in this chapter is implemented in C++14 and compiled using the
GCC MinGW-W64 compiler in version 5.3. All numerical experiments are conducted on an
Intel Xeon E3-1240 3.5 GHz machine (4 cores) running Microsoft Windows 7. The parame-
ters of the metaheuristic are the same than the ones used in Chapter 3. The objective of this
section is to discuss the integration of some features of the industrial scheduling problem.
Section 4.5.1 focuses on the modeling of complex batching machines. Most of the results
and the discussion are presented in Tamssaouet et al. (2018b). In addition to the detailed
modeling of the wet benches, an aggregated modeling where these machines are consid-
ered as black boxes is described. This new modeling is called here data-driven analytical
modeling. As the data management module was initially designed to collect the necessary
data for data-driven analytical modeling, a small industrial instance is used to perform the
comparison between the two modelings. Besides the algorithm efficiency, the comparison
is performed according to different practical considerations. Section 4.5.2 evaluates the the
selection strategies described in Chapter 3 while considering the relevant criteria in the in-
dustrial context. The objective is to show that, when using the active strategy, solutions with
a more relevant structure from the industrial perspective are obtained.
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4.5.1 Modeling Complex Batching Machines: Wet Benches

In the industrial context, all the machines of the diffusion area are capable of batching. While
it is realistic to associate fixed processing times with steps on the furnaces, cleaning steps on
the wet benches have variable processing times depending on the loading sequences. Recall
that, for clarity, a step corresponds to the entire processing of a job within a machine like a
furnace or a wet bench. The term operation is used to describe the elementary processing
of a job within an internal resource of a machine. In order to choose a suitable modeling
approach for real applications, different practical aspects should be considered. The first and
direct impact of a given modeling is the prediction accuracy, that can be defined as the dif-
ference between the planned and realized times. In the context of the diffusion area, several
aspects make the prediction accuracy critical. Most of the jobs in wet-etch steps must pro-
ceed for further processing to furnaces without exceeding a maximum time lag between the
two batching processes. As efficient schedules for wet-etch steps are essential to ensure high
productivity at the furnaces (Ham and Fowler (2008)), an accurate prediction of completion
times on wet bench machines helps to ensure that the satisfaction of time constraints. Also,
the prediction accuracy is crucial when considering batching constraints. Poorly estimated
job arrival times to furnace steps reduce the expected improvement from a scheduling algo-
rithm over dispatching rules, e.g., Kohn and Rose (2013). The second aspect that should be
considered when choosing a modeling technique is its impact on the efficiency of the schedul-
ing algorithm. With only a few minutes to determine a solution, it is essential to make sure
that the solution evaluation is not too time-consuming with the adopted modeling. Third,
the resulting complexity of the scheduling system should be considered. In real applications,
modeling a scheduling problem and developing an optimization algorithm to solve it is only
part of the story. The impact of the modeling choice on the data management module must
be taken into consideration.

Two models of wet benches are proposed in this thesis. The first uses the concept of route
graph to model the machines in detail. Based on the route graph modeling, the generalized
batch-oblivious conjunctive graph proposed in Section 4.3 allows the internal resources of
these batching machines to be modeled. The second modeling is called data-driven analyt-
ical modeling. In this second approach, machines are considered as black boxes. To reflect
their complex behavior, additional constraints are added to the model. To illustrate these two
alternatives, the small industrial instance given in Section 2.2.1 is recalled. Table 4.1 pro-
vides four examples of recipes with the elementary processing times, given in minutes, on
wet bench modules. The three first recipes (1, 2 and 3) are short processes while the last one
is a long process. The first step of recipes 2 and 3 can be performed either on Module M1 or
on Module M2. For Recipe 1, the first operation can only be performed by Module M1. The
considered problem is described in Table 4.2. Eight jobs have to be scheduled on a wet bench
machine, four of which require the same short process (Recipe 1) and four others the same
long process (Recipe 4). Column “Possible Sequences” provides the sequence of operations
each step follows in the wet bench machine. Note that Module M1 can only process the first
operation of the short process. In order to optimize machine throughput, the optimization
criterion is the makespan.
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Table 4.1 – Example of processes on a wet bench machine.

Recipe Type M1 M2 D
1 Short 13 - 15
2 Short 38 15
3 Short 21 15
4 Long 16 47 15

Table 4.2 – Small size industrial problem instance.

LotID RecipeID Recipe Type Possible Sequences
A 4 Long Recipe M1 → M2→ D
B 4 Long Recipe M1 → M2→ D
C 1 Short Recipe M1 → D
D 1 Short Recipe M1 → D
E 1 Short Recipe M1 → D
F 1 Short Recipe M1 → D
G 4 Long Recipe M1 → M2 → D
H 4 Long Recipe M1 → M2 → D

The two modelings are used to solve this small instance. No preprocessing is required
when using the generalized batch-oblivious graph modeling, which is not the case for the
other alternative. With the data-driven analytical modeling, wet benches are modeled as
black boxes. Step processing times are computed as the averages of historical cycle times.
Due to the parallel processing of the batches, instead of directly using historical process cycle
times as step processing times, a factor α < 1 is estimated and used to compute the actual
processing times. As it is possible to have three batches inside the processing part, the actual
processing time is considered to be equal to α = 1

3 times the historical cycle time. The use
of actual processing times is relevant from a machine perspective. From a job perspective,
it should be ensured that jobs stay within wet bench steps at least during the historical cycle
times. To do this, the historical cycle times are used as additional minimum time lags that
are introduced to force jobs to stay at wet bench steps before moving to the next step on their
routes. Finally, mainly due to blocking constraints, the inefficiencies that are generated by the
succession of two steps are represented as sequence-dependent setup times. After classifying
wet-etch processes, experts working in this area provided us with estimated inefficiencies
that are generated by the succession of two process classes. However, this is not enough as
the completion time of a step is not only influenced by its direct first predecessor, but also
up to its fourth predecessor. To deal with this, we use simple decision rules that are given
to operators on the shop floor. A set of efficient sequences with a length up to five steps
are displayed for operators in front of the concerned machines. Inefficient sequences are
also identified. To make the scheduling algorithm promote efficient sequences, setup times
between successive steps are adjusted to make sure that the difference between the largest
sum of setup times among efficient sequences and the smallest sum of setup times among
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inefficient sequences is maximized. After formulating constraints on what is considered as
acceptable changes, an integer linear program is used to obtain these adjustments.

Using the described data-driven analytical modeling, the optimal solution is represented
through a Gantt chart from a job perspective in Figure 4.7(a) and from a resource perspective
in Figure 4.7(b). Each color represents a distinct job; rectangles represent steps and parallel
rectangles batches. In this solution, four batches are constructed, each containing two jobs.
The length of the colored rectangles represents the actual processing time of each step. In
Figure 4.7(a), vertical lines to the right side represent the constraint that forces each job to
wait during the cycle time before going to the next step in its route. In Figure 4.7(b), the
setup time is represented as a small rectangle with a downward diagonal pattern.

(a) Job perspective Gantt Chart. (b) Machine perspective Gantt Chart.

Figure 4.7 – Scheduling 8 jobs on a wet bench machine, using data-driven analytical modeling.

(a) Job perspective Gantt Chart. (b) Machine perspective Gantt Chart.

Figure 4.8 – Scheduling 8 jobs on a wet bench machine, using route graph modeling.

Using the route graph modeling, the optimal solution is shown on a Gantt chart from a
job perspective in Figure 4.8(a) and from a resource perspective in Figure 4.8(b). Different
aspects of complex behavior can be identified in these figures. First, note that this modeling
can represent the possibility of parallel processing of multiple batches. Even if the batch
containing jobs A and B is the first one to be loaded on the machine, it is ready to be unloaded
only when the two next batches are unloaded. Finally, the consequence of the blocking
constraint can be identified in Figure 4.8(b). Considering the step sequence on Module M1,
the last batch in the sequence, containing jobs G and H, does not start its processing directly
after its predecessor even if it is available at the beginning of the scheduling horizon. This
is because Module M1 is blocked by the batch containing jobs E and F. This last batch is
waiting for the batch containing jobs D and E to free the dryer so that it can free Module M1.

The two considered models allow the same optimal loading sequence to be obtained
in terms of machine throughput. However, let us compare the models according to other
practical aspects. The obtained prediction accuracy using the data-driven analytical modeling
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is not satisfactory. This can be explained by the use of rough estimates and adjustments, time
averages and a loss of relevant information after too many data aggregations. Regarding the
route graph modeling, the prediction accuracy is satisfactory as the machine is modeled in
detail and the processing times are explicitly considered for each process type. Considering
the fast-changing environment, the data-driven analytical modeling is also not satisfactory
regarding the scheduling system complexity. This model should be periodically reviewed
in order to update the process classification and time estimations, which could be reflected
in the implementation of the database management subsystem. In the same way, efficient
and inefficient sequences should be reviewed together with the estimated setup times. Also,
as the internal modules can be unavailable without making the whole machine unavailable,
data extraction has to be conditioned by the production status of these internal modules. The
processing and setup times have to be adapted to the current configuration: Both modules are
available, one of the modules is unavailable, or both modules are unavailable. This leads to
a sophisticated scheduling system and more effort to maintain it.

Using the route graph modeling, this additional burden and complexity can be avoided.
It requires only the processing times of the operations, that are already part of the recipe def-
inition. As the internal resources are explicitly considered, their unavailabilities are naturally
integrated. Finally, an important aspect that should be considered when choosing a modeling
is its impact on the efficiency of the scheduling algorithm. Having only a few minutes to
determine a solution, it is essential to make sure that the solution evaluation is not too time-
consuming with the adopted modeling. Regarding this aspect, the driven analytical modeling
is more advantageous as each step is represented by a single node in the conjunctive graph.
Instead of a single node, a step is represented by a set of nodes when using the route graph
modeling, one node for each operation. For example, when ignoring the artificial and separa-
tor nodes, the conjunctive graph of the instance above contains 10 nodes with the data-driven
analytical modeling and 20 nodes with the route graph modeling. The solution evaluation,
already the most consuming time phase in the solution approach, becomes more expensive.
Then, the GRASP metaheuristic is slower and explores fewer solutions.

Though the route graph modeling has some advantages, the data-driven analytical mod-
eling is adopted in the remaining of the thesis. This choice is constrained by the fact that
the data management module was initially designed to collect the necessary data for the
data-driven analytical modeling. Regarding the route graph modeling, different perspectives
can be explored. An experimental study should be conducted to evaluate the impact on the
metaheuristic efficiency. If the increase in the size of the generalized batch-oblivious graph
negatively impacts the efficiency of the metaheuristic, the perspective of combining the two
modelings can be interesting. The GRASP metaheuristic can be run with the data-driven ana-
lytical modeling, and each improving solution is recomputed using the route graph modeling.
Comparing the solutions obtained with only the route graph modeling and those obtained
combining the route graph modeling and the data-driven analytical modeling should help to
decide which approach is the most relevant. Modeling complex machines where the handling
part and the internal scheduling algorithm cannot be ignored is another challenge to address.
The route graph modeling is only capable of capturing the complex behavior resulting from
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the structure and the internal constraints of the machines. When this complex behavior is
also due to the internal scheduling algorithm, using data-driven analytical modeling may be
more interesting if it is not possible to incorporate the control logic to the detailed modeling.

4.5.2 Selection Strategies: Weighted Number of Moves

In Chapter 3, efficient selection strategies are proposed, and their performances are compared
to those proposed by Knopp et al. (2017). Though industrial instances are used to conduct
the experiments, a classical objective function is used: Total weighted completion time. This
section proposes to conduct a comparative study between the different strategies using in-
dustrial instances encompassing all the constraints described in Chapter 2 and formalized
in Section 4.1. The weighted number of moves (WNM) (4.3) is the chosen objective func-
tion. From an area management perspective, productivity is the most important objective,
and the weighted number of moves expresses this objective. Besides, to study the solution
quality in the criteria space, it is also proposed to study the structure of the solutions. This is
done by using two objective functions as indicators: Discounted weighted number of moves
(DWNM) (4.5) and batching coefficient (BC) (4.6). The discounted weighted number of
moves is used to measure the tendency of a strategy to perform more operations and oper-
ations with higher job priorities at the beginning of the scheduling horizon. The batching
coefficient is the average ratio of the actual size of each batch over its maximal size.

Five selection strategies are compared: Active, Integrated (Integ.), Resequencing (Re-
seq.), reassignment (Reass.) and Static. Within the active strategy, the geometric rule is used
to compute the maximal delay. In addition to the active strategy, another strategy that is
proposed in this thesis is the integrated strategy, which looks for operations to complete a
batch in all the sequences of machines that are capable of processing the recipe of the incom-
plete batch. The resequencing and reassignment strategies are proposed in Knopp (2016).
When using the static strategy, the start time computation algorithm only computes the start
times of operations without modifying the solution. To perform the evaluation, two sets of
instances are extracted from the Manufacturing Execution System of the company. The first
set of instances, referred to as Large Industrial (LI), includes the data with the real status
of the diffusion area at 15 different instant. The second set of instances, referred to as Very
Large Industrial (VLI), includes the data with the status of the diffusion area in 10 different
full days.

Given the chosen objective function, the relevant constraints that are considered in the two
sets are the release dates, minimum time lags, sequence-dependent setup times, availability
constraints and batching constraints. For each job, between one and five operations have to
be performed, with three operations on average. These jobs must be scheduled on average
on 68 machines, all capable of batching. The batching capacity lies between 2 and 7 jobs.
The two sets of instances are different regarding the number of jobs. In the LI instances, the
number of jobs varies from 350 to 550, while this number varies from 1500 to 1800 in the
VLI instances. As the chosen indicators are all horizon dependent, a scheduling horizon of
8 hours is selected for the LI instances and 24 hours for the VLI instances. A computational
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time of 300 seconds is allowed for both instance sets. Potentially confidential, the detailed
results are not reported here. Table 4.3 provides results in terms of the relative deviation to
the best values. We provide average and median values of these relative deviations for each
instance set and selection strategy. In addition to the results relative to the solutions obtained
with a computational time of 300 seconds, the results relative to the solutions obtained with
a computational time of 60 seconds are reported for the LI instances.

Strategy WNM DWNM BC
Average Median Average Median Average Median

L
I(

60
s)

Active (GR) -0.6% -0.5% -1.9% -1.7% -0.4% 0.0%
Integ. -0.7% -0.6% -3.9% -4.0% -1.5% -1.2%
Reseq. -1.7% -1.6% -10.0% -10.5% -4.4% -4.4%
Reass. -1.6% -1.5% -3.1% -2.6% -2.2% -2.0%
Static. -21.8% -28.8% -28.5% -31.8% -19.7% -20.2%

L
I(

30
0s

)

Active (GR) -0.1% 0.0% -2.5% -2.5% -0.8% -0.7%
Integ. -0.2% 0.0% -2.7% -2.4% -1.2% -0.7%
Reseq. -0.5% -0.6% -7.9% -7.8% -3.9% -4.5%
Reass. -0.3% -0.2% -3.0% -2.9% -1.4% -1.2%
Static. -2.4% -1.8% -15.0% -14.6% -8.0% -7.3%

V
L

I(
30

0s
) Active (GR) -2.3% -2.3% -3.8% -4.7% 0.0% 0.0%

Integ. -0.1% 0.0% -0.3% 0.0% -2.2% -2.3%
Reseq. -4.1% -4.0% -6.2% -6.2% -7.2% -6.9%
Reass. -9.3% -9.3% -12.6% -12.7% -4.0% -4.1%
Static. -45.3% -50.4% -54.2% -58.6% -28.5% -31.0%

Table 4.3 – Aggregate results for different strategies when optimizing the weighted number of moves

The analysis of the results in Table 4.3 leads to several conclusions. Before going further,
let us recall that Section 3.6 shows that, except for the static strategy, the integrated strat-
egy is the most efficient strategy, meaning that, a metaheuristic using the integrated strategy
explores more solutions than when using other strategies. When solving the instances used
in this section, compared to the integrated strategy, the active and resequencing strategies
explore on average 5% fewer solutions while the reassignment strategy explores 50% fewer
solutions. Globally, the results show that the two proposed strategies perform better than
those proposed in the original batch-oblivious approach regarding the chosen optimization
criterion (WNM) and the criteria that are only used as indicators (DWNM). For example,
regarding WNM and the LI instances, the solutions obtained using the active strategy with
a computational time of 60 seconds are equivalent to those obtained using the resequenc-
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ing strategy with a computational time of 300 seconds. For the VLI instances, the average
and median of the relative deviations when using the integrated strategy are almost null while
these two metrics have a value of −9.3% when using the reassignment strategy. An important
observation that can also be made when looking to the results is the significant improvement
brought by the adaptive start time computation compared to the static strategy, especially for
the VLI instances. For example, the median of relatives deviations over the VLI instances is
equal to 54% when using the static strategy while this same metric takes a null value when
the integrated strategy is used.

In addition to the comparison between all strategies, the experiments are conducted in
particular to compare the active strategy and the integrated strategy. The active strategy is
designed to allow a batch to be completed by delaying operations when no other operation
can be added without delaying the start time of the concerned batch. In the same situation,
the integrated strategy will let the batch incomplete even if there are operations that can
be added with a small delay in the already computed start time of the batch. When there
are permanently enough jobs in the queue in the horizon, it may be unnecessary to delay a
batch that is almost complete in order to include an additional operation that can be part of
a large size batch that is going to be processed soon. This situation corresponds to the VLI
instances. When the VLI instances are extracted, all the jobs that go through the diffusion
area during a horizon of 24 hours are included, and this horizon corresponds to the scheduling
horizon when solving these instances. These instances are used in Chapter 5 to compare
the solution proposed by our approach to the actual schedules implemented in the studied
diffusion area. On the contrary, the LI instances are those the scheduling approach must
solve in real conditions. When optimizing these instances over a given horizon such as 8
hours, it is unrealistic to include all the jobs that are going to be available during the horizon
with accurate release dates. Thus, in case of the LI instances, except in the first hours of the
horizon, there is a low level of work in process.

In the light of what has been mentioned and the results in Table 4.3, it may be possible to
conjecture that the active strategy quickly obtains better solutions in a context of a low level
of work in process in comparison with the integrated strategy. Indeed, when looking at the
results of these strategies when solving the VLI instances, the integrated strategy performs
better. However, regarding the LI instances, even if it explores fewer solutions, the active
strategy performs better than the integrated one. Regarding the WNM considered as the
objective function, the difference between the two strategies is too small to be significant.
Regarding the DWNM and the BC, the active and the integrated strategies can be considered
equivalent with a computational time of 300 seconds. With a computational time of 60
seconds, the active strategy is better than all other strategies regarding the DWNM and the
BC. For example, the average and the median of the DWNM obtained by the integrated
strategy is at least lower by 1.3% than the values obtained with the active strategy. Also, the
average and the median of the BC is at least lower by 1.1% than the values obtained with the
active strategy. While it can be expected from the active strategy to perform well on the BC,
it may be surprising to obtain the best values on the DWNM, as the principle of the active
strategy is to delay the start times of incomplete batches to include additional operations. It
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can be concluded that even though it explores fewer solutions, the active strategy quickly
reaches good quality solutions. Moreover, considering the industrial concerns and the rolling
horizon framework, the found solutions have a more relevant structure.

4.6 Conclusion

In this chapter, we considered the industrial scheduling problem described in Chapter 2.
The different constraints and criteria are formalized. In addition to the criteria defined in
previous works, two new criteria are proposed: Discounted weighted number of moves to
model throughput within the rolling horizon framework and the target satisfaction indicator
to integrate production targets. The batch-oblivious graph is generalized to handle all the
industrial criteria defined in Chapter 2. The invariant that must be satisfied when making
batching decisions is reformulated to take into consideration minimum time lags and multiple
resources per operation. As the availability constraints are not explicitly expressed in the
graph, an algorithm is proposed to adjust operation start times when multiple resources are
required. From a structure perspective, the batch-oblivious graph presented in Chapter 3
is generalized by modeling job routes through the route graph that is introduced by Knopp
(2016) instead of a linear sequence of operations. The route graph is initially proposed to
allow complex machines to be modeled in detail. In this chapter, this modeling is generalized
to tackle complex machines that are capable of batching. In the original batch-oblivious
approach, batching decisions are encoded through edge weights. When dealing with complex
batching machines, in addition to the edge weights that must be modified, the graph must also
be modified during its traversal to make sure that the internal constraints of the machines are
satisfied. Necessary conditions that allow the graph to be modified while guaranteeing the
feasibility of the solution are presented. This chapter ends with numerical results where the
integration of some features of the industrial scheduling problem is discussed. It is shown that
the generalized batch-oblivious graph is capable of handling the studied industrial problem.
The practical advantages of modeling complex batching machines in detail are highlighted.
The numerical experiments also show that the use of the active strategy allows the solution
approach to obtain solutions with more relevant structures from an industrial perspective. So
far, only one optimization criterion is used at the same time in the numerical experiments.
Chapter 5 is dedicated to the different approaches that are used to handle the multiobjective
aspect of the scheduling problem at hand.





Chapter 5

Multiobjective Optimization Approach

The preceding chapters of this thesis focused on the improvement and the extension of
the batch-oblivious approach so that all the constraints found in the industrial context are
efficiently handled. Chapter 4 defines and formalizes different optimization criteria that suit
the industrial application. However, a single criterion is optimized so far in the numerical
experiments. This chapter is devoted to the development of different approaches to handle
the multiobjective aspect of the scheduling problem at hand. Section 5.1 gives notations and
some known definitions in multiobjective optimization, such as the dominance relations and
reference points that are used in this work. The chosen modeling of the decision maker pref-
erences is discussed and formally defined in Section 5.1.3. After this introductory section,
two types of approaches are suggested. In Section 5.2, the simulated annealing approach is
adapted to solve the multiobjective problem by using given preferences, and the weighted
augmented Tchebychev metric to aggregate the criteria. Two ways of computing the accep-
tance probability of a new solution within simulated annealing are proposed which result in
two versions of the simulated annealing approach. Section 5.3 motivates and describes ap-
proaches where a set of nondominated solutions is maintained during the search. The two
versions of the simulated annealing approach in Section 5.2 are modified to allow the archiv-
ing of nondominated solutions during the search process. In addition to these two approaches
that require the preferences of the decision maker, the Archived Multiobjective Simulated
Annealing (AMOSA) of Bandyopadhyay et al. (2008) that does not require the preferences
of the decision maker is the third investigated approach. Using industrial instances, these
three approaches are compared in Section 5.5.1 and in Section 5.5.2 by considering the given
preferences and some quality indicators defined in Section 5.3.3. This chapter is concluded
with a comparison between the results of our approach and the actual results of the diffusion
area.

5.1 Definitions and Notations

In the preceding chapters, different criteria to optimize are motivated and defined. However,
only one criterion is optimized so far. The remainder of this chapter is devoted to the different
approaches that are proposed to handle the multiobjective aspect of the scheduling problem
at hand. In the following, the problem is first formally described. Then, some well-known
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definitions in the literature of multicriteria optimization, see e.g., T’kindt and Billaut (2006),
are recalled. Section 5.1.1 describes different dominance relations that introduce a general
definition of optimal solutions in the context of multiobjective optimization. Section 5.1.2
introduces the definitions of some reference points that are used in this thesis. Finally, differ-
ent ways of modeling of the preferences of the decision maker are discussed in Section 5.1.3.
In this last section, the chosen modeling is also formally defined.

5.1.1 Dominance Relations

The objective is to simultaneously optimize n given criteria f = ( f1, . . . , fi, . . . , fn). Let X be
the set of feasible solutions and Y ⊂ Rn the image in the criteria space of X by f . Note that
we assume, without loss of generality, that the given objectives are to be minimized. For a
single criterion optimization, i.e., n = 1, the structure associated with R is a total order, i.e.,
there is no incomparability between two solutions, which makes the definition of an optimal
solution straightforward. Due to the conflicting nature of the considered criteria, it is rare
to find a solution that concurrently optimizes all the criteria. A more general definition of
optimality is obtained by defining a dominance relation.

Different dominance relations are described in the literature. The most used one is the
Pareto dominance, formally defined in Definition 5.1. This relation introduces a new defini-
tion of optimal solutions. In Definition 5.2, a point in the criteria space is said nondominated
if it is not possible to improve one criterion without degrading others. In Definition 5.3, a
solution x ∈ X is called an efficient solution if its projection in the criteria space results in a
nondominated point. Pareto dominance introduces a class of Pareto optima. Let us denote by
XE the set of efficient solutions and YN the projection of XE in the criteria space. YN defines
the trade-off curve in the criteria space, also called the Pareto front.

Definition 5.1 (Pareto dominance ). Let y and y′ ∈ Y be such that y = f (x), y′ = f (x′) and
x, x′ ∈ X. It is said that y dominates y′ and noted y ≤ y′ if and only if yi ≤ y′i ,∀i = 1, . . . , n
and ∃i ∈ {1, . . . , n} such that yi < y′i . By extension, a solution x ∈ X dominates a solution
x′ ∈ X, noted x ≤ x′, if and only if f (x) ≤ f (x′).

Definition 5.2 (Nondominated point). An objective vector y ∈ Y is nondominated if and
only if @y′ ∈ Y such that y′ ≤ y

Definition 5.3 (Pareto optimum). A solution x ∈ X is a Pareto optimum, also called an
efficient solution , if and only if @x′ ∈ X such that f (x′) ≤ f (x), i.e. f (x) is nondominated

In addition to the Pareto dominance, several relations are defined in the literature. Defi-
nitions 5.4 and 5.5 illustrate two additional relations that are classically used in the literature.
Each of these relations introduces a new definition of an optimal solution in case of multi-
objective optimization. Other relations like the ε−dominance, cone ε−dominance, and angle
dominance can be found in the literature (see Liu et al. (2019)).

Definition 5.4 (Weak dominance). Let y, y′ ∈ Y. It is said that y weakly dominates y′ and
noted y 5 y′ if and only if yi ≤ y′i ,∀i = 1, . . . , n
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Definition 5.5 (Strict dominance). It is said that y strictly dominates y′ and noted y < y′ if
and only if yi < y′i ,∀i = 1, . . . , n

5.1.2 Reference Points

Generally speaking, a reference point is any vector yre f which is considered as an objective
to reach. The objective is to find the closest possible solution to this point, in the sense of a
function to be optimized. If the set of efficient solutions XE is known, it is possible to define
three reference points: Ideal point, the utopian point and the nadir point. These points are
respectively defined in Definitions 5.6, 5.7 and 5.8. The Nadir and ideal point produce im-
portant information about a multiobjective optimization problem. For a decision maker, they
show the possible range of the objective values of all the criteria over the Pareto set: They
are respectively exact upper and lower bounds for the set of efficient points. They may also
be important within optimization algorithms (Ehrgott and Tenfelde-Podehl (2003)). As the
set of efficient solutions is unknown in our case, yid, yut and yna denote in the remainder of the
chapter approximations of the ideal point, the utopian point, and the nadir point, respectively.
The way these reference points are approximated is discussed in Section 5.2.

Definition 5.6 (Ideal point). A point yid = (yid
1 , . . . , y

id
n ) ∈ Rn is called ideal if and only if, for

each i ∈ {1, . . . , n}, yid
i = miny∈Y yi holds.

Definition 5.7 (Utopian point). A point yut = (yut
1 , . . . , y

ut
n ) ∈ Rn is called an utopian point if

and only if it dominates the ideal point yid, i.e. yut ≤ yid . This point does not correspond to
any feasible solution.

Definition 5.8 (Nadir Point). A point yna = (rna
1 , . . . , r

na
n ) is called nadir (or anti-ideal point)

if and only if yna
i = maxy∈YN yi, ∀ i ∈ {1, . . . , n}.

5.1.3 Preferences of the Decision Maker

Instead of a unique optimal solution, the dominance relations defined in Section 5.1.1 lead
to a set of incomparable solutions. Hence, at some stage of the problem-solving process, the
decision maker has to explicit his preferences about the objectives in order to choose a single
solution. Evans (1984) presents three occasions where the decision maker can provide his
preferences: Before, during or after the search process. Methods that require the decision
maker to intervene before the resolution process are called a priori methods. Examples of
such methods are the two approaches proposed in Section 5.2. When the decision maker is
allowed to provide his preferences during the resolution process, a method is called interac-
tive. Methods in the last category are called a posteriori, as they allow the decision maker
to formulate his preferences after the resolution process. An example of such methods is the
approach discussed in Section 5.3.4.

While preferences are the basis of tie-breaking between solutions in the efficient set, their
incorporation is difficult because of uncertainties arising from a lack of prior problem knowl-
edge and fuzziness of human preferences. Different ways of modeling preferences can be
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encountered in the literature. When the trade-off between criteria is acceptable, the different
criteria may be aggregated into a single criterion where different weights are associated with
the criteria. The weighted sum or the weighted Tchebychev metric are examples of such
modeling. When no trade-off between the criteria is allowed, the order in which the criteria
are considered is related to their importance, the most important criterion being in the first
place. In this case, the lexicographic order is used. The decision maker can also present
goals to reach for each criterion. Therefore, instead of optimizing the criteria, the objective
is to find a solution which satisfies the goals, even if this solution does not correspond to an
efficient solution (T’kindt and Billaut (2006)). Other ways of modeling the preferences can
be found in the literature (see e.g., Marler and Arora (2004) and Rachmawati and Srinivasan
(2006)).

To make the problem as general as possible, we consider in this thesis that the decision
maker is offered two ways of expressing his preferences. These preferences are used dur-
ing the search process of the approaches detailed in Section 5.2 whereas they may only be
used to select a final solution among the set of nondominated solutions in the approaches of
Section 5.3. The first way that can suit the preferences of the decision maker is the use of a
lexicographic order. As mentioned before, this modeling fits the situation where no trade-off

between the criteria is admitted. In the industrial context, this concerns the criteria that model
constraint satisfaction, i.e., maximum time lags and production targets. These constraints are
considered as soft constraints, not because the decision maker considers their violation as
acceptable, but because the context can make their satisfaction impossible. Regarding these
particular criteria, it may be unlikely for the decision maker to accept a trade-off with pure
performance criteria such as the weighted number of moves or X-factor. When the trade-off

is possible, the decision maker is given the possibility of prioritizing some criteria over others
through weights.

Formally, a relation � ⊆ Rn × Rn is called a lexicographic order if A � B ⇔ A ≺
B ∨ A = B with (a1, . . . , an) ≺ (b1, . . . , bn) ⇔ ∃ m ≤ n : ∀ i < m : ai = bi ∧ am < bm. In the
context of multicriteria optimization, we consider that each criterion fi is associated with a
lexicographic rank li ≤ n. It is assumed that these ranks are contiguous and the smaller is
the rank, the more important is the criterion. Let assume without loss of generality that the
indices of the criteria are given in the non-decreasing order of lexicographic rank, i.e., ∀i <
n, li ≤ li+1. Since such relations meet the properties of antisymmetry, transitivity and totality,
lexicographic orders are total orders. This allows pairwise comparisons of objective function
values. As the lexicographic ranks are required to be contiguous, having ln = n implies that
each criterion is given a distinct rank, i.e., li = i. In this case, if y1 � y2 where y1, y2 ∈ Y , then
y1 ≺ y2 ∨ y1 = y2 with (y1

1, . . . , y
1
n) ≺ (y2

1, . . . , y
2
n)⇔ ∃ m ≤ n : ∀ i < m : y1

i = y2
i ∧ y1

m < y2
m.

When ln < n, this means that at least two criteria share the same rank, i.e., ∃i < n |
li = li+1. In this case, it is understood that the trade-off between the concerned criteria is
acceptable. It is not enough to use a lexicographic order to compare two solutions. In this
situation, a second way of taking into account the preferences of the decision maker is to use
weights. We consider that we are given weights c ∈ Rn

>0. Each criterion fi is associated with
weight ci ∈ R>0 that translates the priority of the decision maker.
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It should be noted that weights only allow discriminating between criteria that share the
same lexicographic rank. Weights are used to aggregate the concerned criteria in a single
function. In this thesis, this aggregation is done as a weighted augmented Tchebychev met-
ric within the local search heuristics. As the use of the weighted augmented Tchebychev
metric requires the computation of some reference points, which requires, in turn, to have
initial solutions, the weighted sum is used as an aggregation function within the construction
heuristic. This modeling is general as it encompasses three situations. The first one is when
all the criteria have different ranks. In this case, weights are meaningless. The second situa-
tion is when all the criteria have the same rank, and the priorities are only expressed through
weights. The last situation is a hybrid one where there are at least two lexicographic ranks
and at least two criteria that share the same rank and that are differentiated through weights.

.

5.2 A Priori Approaches

Within our GRASP approach, the simulated annealing is used to improve initial solutions.
Since local search algorithms, such as simulated annealing, have been initially designed for
single-objective optimization, they are single-trajectory algorithms, meaning that they fol-
low a single solution. A common approach for multiobjective optimization is to reduce the
multidimensional objective problem to a single-dimensional one by weighting all objectives
in one objective function and to use a standard acceptance probability for the resulting eval-
uation function. This section develops such an approach by using the given preferences of
the decision maker. This proposed approach is a generalization of the approaches given
in Bitar (2015) and Knopp (2016). In Bitar (2015), it is assumed that preferences are ex-
pressed through weights that are associated with the criteria. As simulated annealing is used
in the proposed memetic algorithm, the weighted augmented Tchebychev metric is used to
aggregate the different criteria, which is necessary to compute the acceptance probability and
compare between nondominated solutions. In Knopp (2016), it is supposed that preferences
are expressed through a lexicographic order. To calculate the acceptance probability, the
metric proposed in Bitar (2015) is used to aggregate all criteria.

The simulated annealing approach described in this section keeps most of the compo-
nents described in Section 4.4. Our Simulated Annealing metaheuristic is based on the same
neighborhood function and also starts with the solution found by the construction heuristic.
In each iteration, the neighborhood operation N2 described in Section 4.4 randomly selects
one movable component be moved, its feasible insertion positions are computed, and one of
them is randomly selected and performed. We use a geometric cooling schedule that main-
tains a temperature of T which is multiplied by a cooling factor Pc < 1 after each iteration.
The original metaheuristic must be adapted when it comes to studying whether to accept or
not the newly generated solution. At iteration k, let x be the current solution and x′ be the
new generated one and let y = f (x) and y′ = f (x′) be their projection in the criterion space,
respectively. In the single objective case, as objective values are scalars, the move is imme-
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diately accepted if the new value of the objective function y′ improves the current objective
function value y. Otherwise, the new solution is accepted with a probability of exp(−∆

T ),
where ∆ = y′ − y. If the new solution is not accepted, all changes related to the move are
reversed.

With n criteria, the objective values y and y′ are vectors in Y ⊂ Rn. With no preference
information, dominance relations as the Pareto dominance described in Section 5.1.1 can
be used to compare the two solutions. However as these relations describe partial orders,
the solutions may be incomparable. Also, the most important feature of simulated annealing
that consists in accepting non-improving solutions requires the computation of an acceptance
probability based on a scalar that depends on the objective function values. In this section,
this problem is solved by considering the given preferences of the decision maker, through
lexicographic ranks and weights, during the search process. Two ways of using these prefer-
ences during the computation of the acceptance probability are investigated, leading to two
versions of the simulated annealing approach referred to as SA-I and SA-II.

When aggregation is needed, the weighted augmented Tchebychev metric is used. This
metric is described in Section 5.2.1 while the approximation of the reference points that are
required is detailed in Section 5.2.2. The main objective of this section is to go through the
different ways of considering the given preferences during the search process. To compute the
acceptance probability, it may seem more natural to aggregate criteria when only weights are
provided. The main difference between the two versions of the simulated annealing approach
lies in the aggregation or not of criteria with different lexicographic ranks. Section 5.2.3
provides different ways to compare between the current solution x and the new solution x′.

5.2.1 Weighted Augmented Tchebychev Metric

The weighted Tchebychev metric is a known aggregation function in the context of multi-
criteria optimization (see T’kindt and Billaut (2006)). It determines the weighted distance to
a reference point yre f ∈ Rn using weights λ ∈ Rn and the maximum norm defined as L∞ :
Rn → R, (y1, . . . , yn) 7→ maxn

i=1 |yi|. Note that weights λ ∈ Rn are different from the weights
c ∈ Rn

>0 given by the decision maker. The determination of λ ∈ Rn and yre f ∈ Rn is described
in Section 5.2.2. The advantage of this aggregation function, when the parameters are well
chosen, is that it allows any efficient solution to be reached. This property is not guaranteed
when the weighted sum is used, since efficient solutions (called non-supported solutions)
might not be attainable with any set of coefficients. Instead of the weighted Tchebychev
metric, we use the weighted augmented Tchebychev metric that is obtained by augmenting
the first metric by a term. This term is added to break ties between solutions that are equal
regarding the objective that dominates the maximum norm but is different regarding other
objectives.

In Section 5.2.3, different ways of considering preferences are exposed. Regarding the
use of the weighted augmented Tchebychev metric, it may be only needed to aggregate cri-
teria with the same lexicographic rank or all criteria of the optimization problem. When only
criteria with the same rank are aggregated, the weighted augmented Tchebychev metric of
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criteria with rank l is denoted by aλ, yre f , ρ, l and is given in (5.1).

aλ, yre f , ρ, l : Rn → R,

aλ, yre f , ρ, l(y1, . . . , yn) 7→ maxn
i=1, li=l λi

∣∣∣yi − yre f
i

∣∣∣ + ρ

n∑
i=1, li=l

λi

∣∣∣yi − yre f
i

∣∣∣ . (5.1)

As mentioned above, the term ρ
∑n

i=1, li=l λi

∣∣∣yi − yre f
i

∣∣∣ is added in order to break ties be-
tween solutions that are equal regarding the objective that dominates the maximum norm but
different regarding other objectives. The L∞ norm should always be the dominating term to
guarantee that the weighted sum is only relevant for breaking ties between solutions that are
equally rated by the L∞ norm. Thus, the parameter ρ must be chosen sufficiently small. With∑n

i=1, li=l λi

∣∣∣yi − yre f
i

∣∣∣ ≤ n ·maxn
i=1, li=l λi

∣∣∣yi − yre f
i

∣∣∣ < 2 · n ·maxn
i=1, li=l λi

∣∣∣yi − yre f
i

∣∣∣
(for each y ∈ Y except the ideal point for which aλ, yre f , ρ, l(yid) might be equal to zero), fixing
the parameter to ρ = 1

2·n does always satisfy the desired property, i.e. the L∞ norm is always
the dominating term in the weighted augmented Tchebychev metric. After estimating the
parameter ρ, other parameters of the weighted augmented Tchebychev metric are discussed
in the next section. The weighted augmented Tchebychev metric of all criteria is denoted by
aλ, yre f , ρ and is given in (5.2).

aλ, yre f , ρ : Rn → R,

aλ, yre f , ρ(y1, . . . , yn) 7→ maxn
i=1 λi

∣∣∣yi − yre f
i

∣∣∣ + ρ

n∑
i=1

λi

∣∣∣yi − yre f
i

∣∣∣ . (5.2)

When there are n criteria, the objective values y and y′ are vectors in Y ⊂ Rn. In this first
approach, the comparison between y and y′ is performed using the given preferences of the
decision maker. It is assumed that these preferences are given in the form of a lexicographic
rank li and a weight ci for each criterion fi. As it is assumed without loss of generality that the
indices of the criteria are given in the non-decreasing order of lexicographic rank, ln denotes
both the lexicographic rank of the criteria fn and the total number of lexicographic ranks.
Let g : Rn → Rln , y 7→ y be the function, given in (5.3), that aggregates the criteria with
the same lexicographic rank using the weighted augmented Tchebychev metric. After this
aggregation, there are ln values to consider lexicographically.

g : Rn → Rln ,

g(y1, . . . , yn) 7→ (aλ, yre f , ρ, 1, . . . , aλ, yre f , ρ, ln). (5.3)
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5.2.2 Approximation of Parameters of the Metric

An important parameter in the considered aggregation function is the reference point yre f ∈

Rn from which the distance of a solution is computed. To determine this reference point,
all the resource constraints in the conjunctive graph are relaxed. So, the conjunctive graph
consists only of edges related to the routes of the job. For each job, the shortest path is
chosen. In other words, each operation of a job is given as a processing time the time it
requires when assigned to the fastest machine. Note that the release dates of all jobs are
still modeled in this graph. Then, the computation of the earliest start dates in this graph
yields a schedule without waiting periods. The computation of the objective function values
for such schedules leads to lower bounds of the considered regular objective functions to
minimize and upper bounds for objective functions to maximize. The construction of this
graph also leads to lower bounds for the objectives that were derived from maximum time
lag constraints. By relaxing the resource, the notion of batch disappears. As it is not trivial
to compute the context-dependent upper bound for the batching coefficient criterion, it was
considered equal to 1. Thus, the obtained objective function values can either represent an
ideal point or a utopian point, used as the reference point within the weighted augmented
Tchebychev metric.

After describing how the reference point and the parameter ρ are determined, let us deal
with the weights λ ∈ Rn of the aggregation function. In addition to discriminating between
the criteria, these weights are essential to normalize the values to be compared. The con-
sidered objective functions do not use the same unit of measurement and have a different
magnitude. For example, the total maximum time lag violation severity and weighted flow
factors cannot be directly compared. The computation of these weights uses the estimated
nadir point yna (see Definition 5.8). During preprocessing, a set of sample solutions S ⊂ X
is chosen by performing random moves on a starting solution. Note that the same set is also
used to calibrate simulated annealing (it is |S | = Ps, for the parameter Ps). Then, the set
Q ⊆ S is defined to determine the sampled solutions that are best with respect to at least one
considered objective function. This is given by

Q =

n⋃
i=1

argmin
x∈S

fi(x).

An estimation of the nadir point is then determined by the point yna ∈ Rn which is defined by

yna
i = max

s∈Q
fi(s) ∀ i ∈ {1, . . . , n} .

When having the reference and the nadir points, it becomes possible to normalize the values
of all criteria. The weights c ∈ Rn

>0 provided by the decision maker are used when determin-
ing λ ∈ Rn so that he can have the possibility to prioritize some criteria over others. Based on
this, the weights λ ∈ Rn, used in the weighted augmented Tchebychev metric, are determined
as

λi =
ci

yna
i − yre f

i

(∀ i ∈ {1, . . . , n}),
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where yna ∈ Rn is the estimation of the nadir point and yre f ∈ Rn is the reference point. For
consistency, weights ci are ignored when all criteria are aggregated and when there are more
that one lexicographic rank.

5.2.3 Acceptance Conditions of a New Solution

As an a priori approach, the simulated annealing approach developed in this section assumes
that preferences of the decision maker are known in advance and are applied during the
search process. When preferences are available, the question is how to use them during
the search. A first alternative consists of strictly adhering to the preferences. For example,
when a lexicographic order is given, if a new solution significantly improves a less important
criterion with the cost of a small deterioration of a more important criterion, the new solution
will not be kept. In this case, it is assumed that sticking to the preferences will always lead to
final solutions that are satisfactory, which may be not the case. Instead of the first alternative,
it is also plausible to loosen the way the preferences are considered. This second alternative
may have the benefit of getting solutions with satisfying values for the less important criteria,
and may also lead the search to a region where the most important criteria have better values.
In this section, we define two ways of considering the preferences given as lexicographic
ranks and weights. Numerical results are given in Section 5.5.

The pseudo-code of the simulated annealing approach is given in Algorithm 5.1. It starts
with the solution x returned by the construction heuristic, the initial temperature T and the
cooling factor α. As the simulated annealing approach is embedded in the GRASP frame-
work, x∗ denotes the global best solution found so far. “Stop” denotes the stopping criteria.
In the industrial application, the maximum number of non-improving iterations is taken as
the stopping criterion. At each iteration of the loop, x denotes the current solution and x′ the
new solution generated by applying the neighborhood operator N . One node of the graph
representing x is randomly chosen to be moved, its feasible insertion positions are computed,
and one of them is randomly selected and performed. y, y′ and y∗ are the projection in the
criterion space of x, x′ and x∗, respectively. At each iteration of the simulation annealing, the
decision of keeping or discarding the new solution x′ must be taken. When a single criterion
is optimized, the solution is automatically accepted if it improves the current solution x. In
our case, a solution is judged as improving by using the lexicographic ranks and the weights.
First, the values of y and y′ that correspond to criteria having identical ranks are aggregated
using the function g described in (5.3) to obtain y and y′. As a total ordering, a lexicographic
order allows pairwise comparisons of objective function values. Therefore, if y′ � y, the new
solution x′ is automatically accepted. Also, if the new solution x′ improves the global best
solution found so far within GRASP, i.e, y′ ≺ y∗, x′ becomes the new best solution.

If x is lexicographically better than x′, the simulated annealing enables x′ to be accepted
with a probability that depends on the exploration stage. In the single objective case, as
objective values are scalars, the new solution is accepted with a probability of exp(−∆

T ), where
∆ = y′ − y. If the new solution is not accepted, all changes related to the move are reversed.
To compute this probability in case of multiple criteria, two alternatives are investigated. A
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first approach consists of strictly sticking to the preferences of the decision maker by only
basing the calculation of the acceptance probability on the lowest rank m in the lexicographic
order where y′m > ym. Recall that the lower the lexicographic rank, the more important a
criterion. Within this approach, ∆1 is computed using the Tchebychev metric given in (5.1),
i.e., ∆1 = aλ, yre f , ρ, l(y′) − aλ, yre f , ρ, l(y). The preferences are respected by disregarding higher
ranks in the computation of the probability and by using the weights ci in the determination
of parameters λi. The use of this approach is what defines the first version of the simulated
annealing approach denoted by SA-I.

In the other approach, preferences are neglected when computing the acceptance proba-
bility of x′ by aggregating all the values of the criteria using the weighted augmented Tcheby-
chev metric in (5.2). As the lexicographic order is ignored, it does not seem consistent to use
the weights ci in the determination of parameters λi. With this second approach, ∆2 is com-
puted by aggregating all the criteria. The use of this approach is what defines the second
version of the simulated annealing approach denoted by SA-II. Then, depending on the cho-
sen approach, ∆ takes the value of ∆1 or ∆2 and the acceptance probability is computed
subsequently.

Algorithm 5.1 A priori Simulated Annealing (Prio-SA)

Prio-SA (x, x∗,T, α,Stop)
whi le Stop = False

x′ ← N(x)
y← f (x) , y′ ← f (x′) , y∗ ← f (x∗)
y← g(y′) , y′ ← g(y′) , y∗ ← g(y∗)
i f ( y′ � y )

x← x′

i f ( y′ ≺ y∗ )
x∗ ← x′

i f ( y ≺ y′ )
∆1 = y′m − ym | y′m > ym ∧ y′l = yl∀l < m (SA-I)
∆2 = aλ, yre f , ρ(y′) − aλ, yre f , ρ(y) (SA-II)
∆ = ∆1 Y ∆ = ∆2

i f ( exp(−∆
T ) ≤ random(0, 1) )

x← x′

T ← α ∗ T
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5.3 Archive-Based Approaches

5.3.1 Introduction

The central concept within the approaches discussed in this section is the concept of Archive.
Instead of keeping a unique best solution during the search process, while using the given
preferences, this approach stores in the archive the set of nondominated solutions visited
so far. This approach is adopted in order to save and update all well spread nondominated
solutions generated by the algorithm during the search. After each iteration, the archive is up-
dated with the new non-dominated solution. This set of non-dominated solutions represents
an approximation of the Pareto front. Below are given the different practical considerations
that motivate and show the interest of producing an approximation of the Pareto front.

The first consideration that can motivate the choice of this approach is that actual values
of the different optimization criteria can be of a little relevance in practice. In the studied
industrial context, it is difficult for a human to decide whether a solution is good or not,
based only for example on the value of the time lag violation severity or the X-factor. This
observation can be made even for criteria that are a direct translation of performance indica-
tors, for example the weighted number of moves. As the scheduler does not have visibility
of all the lots that will enter the area during the scheduling horizon, the predicted number of
moves is always underestimated. Comparing these values to historical performances of the
area does not lead to a fair evaluation of solutions. Even if a decision maker has an idea of
what are the best performances for a period, it is challenging to produce at each run of the
scheduler aspiration goals that take into consideration the actual context and the expectation
of the decision maker. Rather than focusing on exact values, decision-makers are more ori-
ented towards goals of minimum/maximum achievements levels for a set of preferences. In
addition to the irrelevance of actual values, because of the imprecision of input data and the
gap between the predicted and the actual performances of the proposed solution, focusing on
improving a single criterion by a few percentage points makes little, if any, sense (Framinan
et al. (2014a)).

The choice of keeping a set of non-dominated solutions makes it possible to handle these
practical considerations, provided that the set is a good approximation of the Pareto front.
For each solution, it becomes manageable to decide whether a solution is good or not on
a criterion when using the range of the criterion on all the solutions belonging to the ap-
proximated Pareto front. Also, as decision-makers are reluctant to extreme values, the final
solution can be chosen among the set of nondominated solutions after excluding extreme
solutions. Having a set of nondominated solutions may also prevent the risk of focusing on
improving by a low percentage a criterion with a high priority while significantly degrading
a less important priority. Instead of blindly applying the given preferences, attention can be
given to such situations.

Several other considerations support the use of an approximation of the Pareto front.
While taking into consideration a set of criteria and a set of constraints during the optimiza-
tion process, it may be interesting to include additional criteria and constraints in the choice
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of the final solution. As a particular case of this possibility, different values of some prob-
lem parameters can be used to reevaluate the solutions. For instance, instead of having one
TSI criteria with a unique value of parameter α, multiple TSI can be added by changing the
value of this parameter. This can lead to more robust solutions that are less sensitive to the
imprecision of the given preferences. With a set of nondominated solutions, it also becomes
possible to study the question of whether all objectives are necessary and whether some of
the objectives may be omitted. The number of considered objectives strongly influences both
the performance of the optimization algorithms and the decision making process in general.
First, with more objectives, more incomparable solutions can arise, the number of which af-
fects the generating method’s performance. Second, the larger the number of objectives, the
more complex the choice of an appropriate solution for a decision maker. The question of
criteria reduction is closely linked to the fundamental issue of conflicting and non-conflicting
optimization criteria and can be answered by analyzing the Pareto set approximation (Brock-
hoff and Zitzler (2007)).

Since local search algorithms, such as simulated annealing that is used in the proposed
GRASP approach, have been originally designed for single-objective optimization, they are
single-trajectory algorithms, meaning that they follow a single solution. Various extensions
of these algorithms can be found in the literature. Different works propose a simple extension
of the initial algorithms, in the sense that a single current solution is considered and moved
through the search space while keeping a set of nondominated solutions. Multiobjective
simulated annealing (MOSA) of Ulungu et al. (1999) and archived multiobjective simulated
annealing (AMOSA) of Bandyopadhyay et al. (2008) are examples of such extension. In-
stead of focusing on single solutions, other works propose extensions that are based more on
improving the full archive iteratively. The Pareto local search (PLS) of Angel et al. (2004)
and the indicator-based multiobjective local search (IBMOLS) of Basseur et al. (2012) are
examples of such extensions (Blot et al. (2018)).

As specified above, to adequately handle the different practical considerations, it is essen-
tial that the obtained set of nondominated solutions is a good approximation of the efficient
set. Before using classical indicators that can be used to evaluate the quality of the approx-
imated Pareto front, it should first be shown that the final solution obtained after applying
the given preferences on the approximated Pareto front is not worse than the final solution
obtained by one of the a priori approaches SA-I and SA-II. One of the specific questions we
want to answer is to decide whether it is more advisable to use a given preference model
during the search (a priori selection) or, on the contrary, to generate an approximation of the
Pareto optimal frontier and then to apply the same preference model once on that approxima-
tion. Eppe et al. (2011) investigated how preference models can be compared to each other
and to gain further insight into how they interact with multiobjective metaheuristics. This
study concludes that a priori preference articulation should be preferred when addressing
many-objective combinatorial problems, i.e., problems that have more than three conflicting
objectives (Ishibuchi et al. (2009)). As the problem studied in this thesis considered many
objective functions, it should be ensured that the performance of the a priori approach is not
deteriorated.
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In this thesis, three archive-based approaches are investigated. The two first approaches
are based on SA-I and SA-II that are proposed in the previous section. In addition to keeping
the best solution regarding the given preferences, a passive archive stores the nondominated
solutions discovered during the search. The archive is qualified passive as there is no in-
teraction between its content and the search process. The third approach is the Archived
Multiobjective Simulated Annealing (AMOSA) of Bandyopadhyay et al. (2008). The choice
of this approach is motivated by the fact that it is only an extension of the simulated anneal-
ing that is already used as an improvement heuristic approach within our GRASP frame-
work and that the reported experimental results show that it is well performing when solving
many-objective problems. The main component of this approach is recalled in Section 5.3.4.
Before this, Section 5.3.2 discusses the different questions that arise around the concept of
the archive. Section 5.3.3 defines the used quality indicators that are known in the literature
to assess an approximated set of a Pareto front.

5.3.2 Archive

The archive stores potential Pareto optimal solutions, i.e., solutions not yet dominated by any
other solutions found so far. This is the set of solutions finally returned by the optimization
algorithm. Generally, the update of the archive with the new solutions found during the
search and which are potentially nondominated generally lies on Pareto dominance. In the
literature, other dominance relations are used (Liefooghe (2009)). Let Ak denotes the archive
at the end of iteration k. This set must satisfy two conditions:

1. Any two points of Ak must be non-dominated with respect to each other. More for-
mally, ∀y, y′ ∈ Ak, y � y′ ∧ y′ � y.

2. Any found point not in Ak is dominated by at least one point in Ak. In other words,
∀yi < Ak where i ≤ k,∃y ∈ Ak such that y ≤ yi.

An important question regarding the size arises when an archive is used to store nondom-
inated solutions found so far. Depending on the answer to this question, different archiving
strategies can be distinguished: Unconstrained archive, constrained archive, and fixed archive
size. The unconstrained archiving is discussed in Fieldsend et al. (2003). An unconstrained
archive can be used to store all the nondominated solutions found during the search process.
However, some problems may have an exponential number of nondominated solutions (in-
finite for some continuous problems), and it becomes impossible to store all of them. Also,
preserving all elite points is costly in time (due to the linear comparison with all archived
solutions needed before a new point can be inserted into the archive). Thus, different strate-
gies can be implemented to reduce the number of stored solutions. The constrained archiving
is discussed in Knowles and Corne (2004). When the archive size exceeds an a priori hard
bound, different techniques can be used to reduce the size of the archive. For example, in
Bandyopadhyay et al. (2008), by using clustering, the member within each cluster whose av-
erage distance to the other members is minimum is considered as the representative member
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of the cluster. A last archiving strategy is based on a constant storage capacity. This strat-
egy is similar to the bounded archiving when there are too many nondominated solutions but
differs when the archive is not full, in which case dominated solutions are also added to the
archive (Liefooghe (2009)).

Before considering the possibility of having large size archive, it was preferred in this the-
sis to adopt an unconstrained archive strategy. This choice allows a better understanding of
the problem. Also, in case it becomes necessary to use a constrained archive, a better estima-
tion of the size can be obtained through the analysis of the results of an unconstrained archive
strategy. Different reasons can be found in Fieldsend et al. (2003) in favor of the adopted
strategy. Two negative consequences of using a constrained strategy are highlighted. The
main consequence is the small extent of the estimated front, i.e., loss of diversity. Second,
extra search time is required in order to rediscover the extremes of the estimated Pareto front.
Also, for the problem studied in Bandyopadhyay et al. (2008), it is highlighted that the clus-
tering algorithm is the most time-consuming procedure in AMOSA. As mentioned before,
the main drawback of an unconstrained strategy is the computational and memory cost of
maintaining the archive when its size increases. To minimize the computational cost, Field-
send et al. (2003) proposes data structures to facilitate the use of an unconstrained archive,
without the need for a linear comparison with the nondominated set for every new point in-
serted. In this thesis, a less sophisticated way is adopted in order to improve the efficiency of
maintaining the archive.

5.3.3 Quality Indicators

A good set of nondominated solutions should satisfy two goals: Convergence and diversity.
Convergence refers to finding a set of solutions that lies on or is close to the actual Pareto-
optimal front. Diversity refers to finding a set of solutions which are diverse enough to
represent the entire range of the Pareto-optimal front. The assessment of these sets is far
from being a trivial issue. It is stated in Zitzler et al. (2003) that unary quality indicators, i.e.,
which assign a single value to each non-dominated point set, are inherently limited in their
inferential power. Different indicators must be combined for better quality evaluation of a set
of nondominated solutions. In this thesis, the quality indicators used in García-León et al.
(2019) are adopted. Two measures are used to evaluate the convergence: Hypervolume (HV)
and Mean Ideal Distance. The two other measures evaluate the diversity of the final archive:
Maximum Spread (D) and Spacing (SP).

As its name suggests, the hypervolume consists of the measure of the region which is
simultaneously dominated by the points in archive A and bounded above by a reference point
yhv ∈ Rn. To compute this indicator in the numerical experiments, we used the implemen-
tation proposed by Fonseca et al. (2006). The mean ideal distance is the second indicator
assessing the convergence of an archive by measuring the closeness between this archive and
an ideal point. When there are only criteria to minimize, it is common to use the origin point
as an ideal point. As some criteria are to be maximized in our context, the origin point cannot
be an ideal point. To use this indicator, we used in the experiments a unique point ymid for
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all the instances that dominate the utopian points described in Section 5.1.2. This indicator
is formalized in (5.4).

MID =

∑
x∈A

√∑n
i=1( fi(x) − ymid

i )2

|A|
(5.4)

D =

√√
n∑

i=1

f max
i − f min

i (5.5)

The two remaining indicators are used to assess the diversity of the produced set of non-
dominated solutions. The maximum spread (D) is used for measuring the diagonal length of
a hyperbox that is formed by extreme function values observed in the Pareto curve (Zit-
zler (1999)). This indicator is computed using (5.5), where f max

i = maxx∈A( fi(x)) and
f min
i = minx∈A( fi(x)) are respectively the maximum and minimum values of criterion fi for all

the solutions in A. The last metric is spacing (SP) that was introduced in Schott (1995) for
measuring the average distance between consecutive solutions in A. The metric is formalized
in (5.6), where d̂ j = minxk∈A,k, j

∑n
i=1

∣∣∣ fi(x j) − fi(xk)
∣∣∣ is the distance between a nondominated

solution x j and its nearest solution, and d = 1
|A|

∑|A|
j=1 d̂ j is the average of these distances for

all solutions in A.

S P =

√√√
1
|A|

|A|∑
j=1

(d̂ j − d)2 (5.6)

These quality measures are proposed in Section 5.5.2 to assess the final archives produced
by the three investigated approaches. An archive is a better approximation of the Pareto front
if the values of the hypervolume and the maximum spread are maximum, and if the values of
the mean ideal distance and spacing are minimum.

5.3.4 Archived Multiobjective Simulated Annealing

For completeness and notational consistency, this section summarizes the main ideas of
AMOSA that was proposed by Bandyopadhyay et al. (2008). The different propositions
are reformulated to consider a minimization problem. Contrary to the original approach, in-
stead of a constrained archive, the size of the archive in our implementation is unconstrained.
Also, instead of storing the nondominated solutions that are produced by a single AMOSA,
the archive is shared by all AMOSAs running in parallel within the GRASP framework. Sec-
tion 5.3.4.1 defines the concept of amount of dominance that measures the amount by which
a solution dominates another one. Section 5.3.4.2 goes through the different cases depending
on the dominance status between the new solution and the current solution and between the
new solution and the solutions in the current archive.
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5.3.4.1 Amount of Dominance

The amount of dominance is an important concept that distinguishes AMOSA from other
extensions of the simulated annealing to handle multiobjective problem optimization. Instead
of formulating the acceptance criterion between the current solution and the new solution in
terms of the difference in the number of solutions that they dominate, AMOSA takes into
consideration the amount by which this dominance takes place. Recall that n is the number
of considered objectives. Let x and x′ ∈ X be two solutions, and y and y′ be their projection
on the criterion space, respectively. The amount of dominance is defined in (5.7), where
Ri denotes the range of the ith objective. As this range is not usually known a priori, the
solutions in the archive along with the new and current solutions are used for computing it.

∆domy,y′ =

n∏
i=1,yi,y′i

∣∣∣yi − y′i
∣∣∣

Ri
(5.7)

5.3.4.2 AMOSA process

As mentioned above, the archived multiobjective simulated annealing (AMOSA) of Bandy-
opadhyay et al. (2008) is an example of the extension of the initially proposed simulated an-
nealing approach where a single solution is considered and moved through the search space.
The pseudo-code of this adapted simulated annealing approach is given in Algorithm 5.2.
AMOSA starts with the solution x returned by the construction heuristic, the initial temper-
ature T and the cooling factor α. As this heuristic is embedded in the GRASP framework, A
denotes the set of nondominated solutions found so far. “Stop” denotes the stopping criteria.
As in the a priori simulated annealing described in Section 5.2, the maximum number of
non-improving iterations is taken as the stopping condition.

Let x be the current solution at each iteration, y the projection of x in the criterion space, x′

the new obtained solution after applying the neighborhood operationN2 and y′ its projection
in the criterion space. The decision of accepting x′ is based on the dominance status of y′

with respect to y and solutions in the archive A. In addition to the amount of dominance
defined in Section 5.3.4.1, two additional measures are necessary to define this dominance
status. The dominance rank r is defined as the number of points in A that dominate point y′.
This measure is first used in the multiobjective genetic algorithm proposed by Fonseca and
Fleming (1993). The third measure is the dominance count c that is defined as the number
of point in A that are dominated by point y′ (Liefooghe (2009)). As the dominance status
between the new point y′ and the current point y are explicitly analyzed and as y may or may
not be part of the archive, it is assumed that the computation of these two measures exclude
the current point y when it belongs to the archive. Also, using the transitivity property of the
dominance relation, it can be shown that if r > 0, then c = 0.

Based on the dominance status between y and y′, three different cases are distinguished.
For each case, different sub-cases are identified based on the values of r and c. These different
situations are recalled below:
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Algorithm 5.2 Archive Multiobjective Simulated Annealing (AMOSA)

AMOSA (x, A,T, α,Stop)
whi le Stop = False

x′ ← N(x)
y← f (x) , y′ ← f (x′)
r ← |{ya ∈ A \ {y} | ya ≤ y′}|
c← |{ya ∈ A \ {y} | y′ ≤ ya}|

i f ( y ≤ y′ and r ≥ 0 ) ( Case 1 )
∆domavg =

∑
ya∈A\{y}|ya≤y′ ∆domya ,y′+∆domy,y′

r+1

i f ( exp(−∆domavg

T ) ≤ random(0, 1) )
x← x′

i f ( y � y′ and y′ � y ) ( Case 2 )
i f ( r ≥ 1 ) ( Case 2 .1 )

∆domavg =
∑

ya∈A\{y}|ya≤y′ ∆domya ,y′

r

i f ( exp(−∆domavg

T ) ≤ random(0, 1) )
x← x′

i f ( r = 0 and c = 0 ) ( Case 2 .2 )
x← x′

A← A ∪ {x′}
i f ( c ≤ 1 ) ( Case 2 .3 )

x← x′

A = (A \ {x ∈ A | x′ ≤ x}) ∪ {x′}

i f ( y′ ≤ y ) ( Case 3 )
i f ( r ≥ 1 ) ( Case 3 .1 )

∆dommin ← minya∈A ∆domya,y′

i f ( exp−∆dommin) ≤ random(0, 1) )
x← xmin

i f ( r = 0 and c = 0 ) ( Case 3 .2 )
x← x′

A← (A \ {x}) ∪ {x′}
i f ( c ≤ 1 ) ( Case 3 .3 )

x← x′

A← (A \ {x ∈ A | x′ ≤ x}) ∪ {x′}
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• Case 1: y ≤ y′ and r ≥ 0. In this case, the current solution y dominates the new
obtained solution y′ and r points from the archive A dominate y′. Even being a non-
improving solution, there is a non-zero probability of accepting the new solution y′.
The probability of acceptance is equal to exp(−∆domavg

T ) where T denotes the current
temperature. ∆domavg, computed as shown in (5.8), denotes the average amount of
dominance of the new point y′ by (r + 1) points, namely, the current solution y and r
points of the archive A.

∆domavg =

∑
ya∈A\{y}|ya≤y′ ∆domya,y′ + ∆domy,y′

r + 1
(5.8)

• Case 2: y � y′ and y′ � y. In this case, the new point y′ and the current point y
are nondominating with respect to each other. Based on the values of r and c, three
situations may arise:

1. r ≥ 1: the new point y′ is dominated by at least one point in the archive A. Note
that here the current solution y may or may not be on the front of the archive. In
this situation, the probability of acceptance of y′ is exp(−∆domavg

T ) where ∆domavg

is defined in (5.9).

∆domavg =

∑
ya∈A\{y}|ya≤y′ ∆domya,y′

r
(5.9)

2. r = 0 and c = 0: y′ is nondominating with respect to the other points in the
archive as well. In this case, y′ is on the same front as the archive. Therefore,
x′ is selected as the current solution and added to the archive, i.e., x = x′ and
A = A ∪ {x′}.

3. c ≤ 1: the new point y′ dominates c points of the archive. Again, x′ is selected
as the current solution, i.e., x = x′. Regarding the archive, x′ is added and all the
dominated solutions are removed, i.e., A = (A \ {x ∈ A | x′ ≤ x}) ∪ {x′}.

• Case 3: y′ ≤ y. In this case, the new point y′ dominates the current point y. As in the
previous case, three situations may arise based on the values of r and c:

1. r ≥ 1: the new point y′ is dominated by at least one point in the archive A. Con-
trary to the same situation in Case 2, it is certain that y is not in the archive. Ac-
cording to the simulated annealing paradigm, y′ is accepted with probability 1 as
it improves the current solution y. However, due to the presence of the archive in
AMOSA, some solutions are still better than y′. Therefore, it is proposed to make
y and the closest point to y′ in the archive compete for acceptance. The closest
point in the archive to y′, denoted ymin, is the point with the minimum amount of
dominance, denoted ∆dommin. The computation of this amount of dominance can
be found in (5.10). The solution xmin from the archive which corresponds to the
minimum difference is selected as the current point with probability exp−∆dommin).
Otherwise, x is selected as the current point, i.e., x = x.
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∆dommin = min
ya∈A

∆domya,y′ (5.10)

2. r = 0 and c = 0: y′ is nondominating with respect to the other points in the
archive except the current point y if it belongs to the archive. Recall that the
computation of r and c does not consider the current point y if it belongs to the
archive. Thus, the new point y′ is accepted, i.e., x = x′. The new solution is added
to the archive and the current solution is removed if it belongs to the archive, i.e.,
A = (A \ {x}) ∪ {x′}.

3. c ≤ 1: The new point y′ dominates c points of the archive. Note that c does
not count the current point y that may or may not be in the archive. Again, x′ is
selected as the current solution, i.e., x = x′. Regarding the archive, x′ is added
and all the dominated solutions are removed, i.e., A = (A\ {x ∈ A | x′ ≤ x})∪{x′}.

As shown through the different situations, the decision of accepting or not a new solution
depends on the current solution and on the archived solutions. Contrary to AMOSA, SA-I
and SA-II are a priori approaches that require the preferences of the decision maker. Another
difference is that the archive within these two a priori approaches does not influence the ac-
ceptance decision of a new solution. In Section 5.5.2, we compare AMOSA to the archive
version of the two a priori approaches (SA-I and SA-II) using the quality indicators in Sec-
tion 5.3.3. As stated before, one of the objectives in the numerical experiment is to study
whether an a posteriori approach such as AMOSA can compete with an a priori approach
when taking into account given preferences. In Section 5.5.1, in addition to comparing SA-I
and SA-II, the given preferences are used to select a final solution from the AMOSA archive
so that the three approaches are compared.

5.4 Multiobjective GRASP Approach

As explained in Chapter 3, our heuristic creates many different starting solutions by random-
izing a construction algorithm. Each solution is then independently improved using a local
search method. We use a construction method which greedily inserts operations. To improve
constructed solutions, we use a Simulated Annealing metaheuristic. When considering mul-
tiple criteria, some changes have to be made on this framework. In this section, we describe
the Multiobjective GRASP approach and summarize the different building blocks discussed
in this chapter.

As in Chapter 3, the construction heuristic sorts the jobs in decreasing order of their ratio
w j

d j
(weight divided by due date). When dues dates are not part of the problem definition, as

it is the case with the industrial instances, only weights are used to sort the jobs. Otherwise,
jobs are initially sorted in decreasing order of the sum of the shortest processing durations
of their operations. As the construction heuristic is used within a GRASP approach, the con-
struction is randomized by perturbing the sorted list of jobs. A tuning parameter Pi ≥ 1 is
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used to steer the perturbation intensity. At each iteration of the construction heuristic, the
next job to be inserted is determined by randomly selecting one of the first Pi elements in
the sorted list of remaining jobs. The heuristic then iterates over the sorted list of jobs and
successively inserts all operations of the current job. The best insertion position for each
operation is the insertion position that leads to the best values of the criteria for of the partial
solution. To find the best insertion position, the operation is inserted in all feasible positions,
and the obtained partial solutions are compared. If there are two or more criteria with the
same lexicographic rank, the weighted sum is used to aggregate their value. It is not possible,
at least for the first constructed solution, to use the weighted augmented Tchebychev metric
as the determination of one of its parameters already requires initial solutions. The construc-
tion is completed when all operations of all jobs have been inserted. The first initial solution
is automatically stored in the empty archive. The next constructed and improved solutions
are added if the solutions already in the archive do not dominate them.

Each constructed solution is then independently improved using one of the three simu-
lated annealing based heuristics: SA-I, SA-II, and AMOSA. In each step of these metaheuris-
tics, a new solution is obtained by applying to the current solution the neighborhood function
described in Section 4.4. The differences on how a new solution is accepted in the three ap-
proaches is studied. The acceptance conditions used by the a priori approaches SA-I and SA-
II are given in Section 5.2.3 and those used within AMOSA can be found in Section 5.3.4.2.
In AMOSA, accepting the new solution is a necessary condition for adding it to the archive.
However, in SA-I and SA-II, as there is no interaction between the search process and the
passive archive, the new solution, whether accepted or not, is compared with the archived
ones at any iteration. For all the metaheuristics, we use the same geometric cooling schedule
that maintains a temperature T which is multiplied by a cooling factor Pc < 1 after each itera-
tion. The initial temperature is determined by sampling a fixed number Ps of random moves.
When optimizing a single criterion, we compute the difference ∆ between the criterion value
of the new solution x′ obtained after performing a selected move and the initial solution x,
i.e., ∆ = f (x′) − f (x). In case of multiple criteria, the weighted augmented Tchebychev met-
ric in (5.2) is used to compute these values, i.e, ∆ = aλ, yre f , ρ( f (x′)) − aλ, yre f , ρ( f (x)). Then, for
a tuning parameter Pp, the Pp-th percentile of these values is selected as the initial value for
the temperature T . The search within SA-I and SA-II is stopped if the best solution does not
improve during a specified number of iterations Pm. In AMOSA, the search is stopped when
it does not succeed to update the archive during the same specified number of iteration Pm.

The GRASP based approach is parallelized as follows. Each solution is constructed and
improved independently and thus can be run in its thread. In the numerical experiments, the
same improvement heuristic is used within all threads. Thus, for example, SA-I refers in the
next section to the whole GRASP approach that uses SA-I to improve the initial solution.
Communication between threads is only needed to update the shared information. When
AMOSA is used, the archive is shared between the different threads. When SA-I and SA-
II are used, the best overall solution must be updated every time one of the threads finds
a better solution. When a passive archive is built during the search process of the a priori
approaches, the new solution at any iteration of any thread must be compared to the solutions
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already in the archive. The control of the selection and the removal of solutions in the shared
archive is performed using Pareto dominance. A fixed number of threads is used, and each
thread restarts with a new initial solution once its improvement heuristic has met the stopping
criterion. To evaluate the different versions of our GRASP approach, industrial instances are
used in the next section. The comparison is made according to the given preferences and
the quality indicators described in Section 5.3.3. Section 5.5.3 concludes this chapter by
evaluating the impacts of our approach by comparing its results to the actual results of the
studied diffusion area.

5.5 Numerical Results

The objective of this section is to study the different proposed approaches to handle the
multiobjective aspect of an industrial scheduling problem. The three approaches are SA-I,
SA-II, and AMOSA, for which, we used the following identical parameter settings for all
numerical experiments,: A cooling factor Pc = 0.99999, a number of samples Ps = 100,
a maximum number of non-improving iterations Pm = 100 000, a temperature percentile of
Pt = 5 %, and a perturbation intensity Pi = 5. All heuristics are run only once, and six
parallel threads are used in all runs of the GRASP based approach. The two instance sets of
Section 4.5.2 are again used to conduct the numerical experiments. The first set of instances,
called LI, contains 15 large industrial instances. The number of jobs ranges from 350 to
550. The second set, called VLI, contains ten very large instances where the number of
jobs ranges from 1, 500 to 1, 800. For each job in these two instance sets, between one and
five operations have to be performed, with three operations on average. The jobs must be
scheduled on average on 68 machines, all capable of batching. The batching capacity lies
between 2 to 7 jobs. Similarly to Section 4.5.2, the scheduling problem include the following
constraints: Release dates, minimum time lags, sequence-dependent setup times, availability
constraints, batching constraints. Moreover, the multiobjective scheduling problem includes
additional characteristics. The problem also encompasses maximum time lag constraints as
soft constraints by minimizing their violation. Four violation costs are defined depending on
the impact of the violation on the quality of products. Production targets are also modeled as
soft constraints by defining a criterion that reflects the overall level of their satisfaction.

The solutions are evaluated according to five criteria: Total maximum time lag viola-
tion severity (TVS), target satisfaction indicator (TSI), weighted number of moves (WNM),
weighted flow factor (WFF) and batching coefficient (BC). Each criterion is respectively
given a lexicographic rank and a weight as a pair (l, c): TVS (1,1), TSI(2,1), WFF(3,1),
WNM(3,1) and BC(4,1). Only the weighted flow factor and the weighted number of moves
share the same lexicographic rank. By considering α = 1, the objective is to maximize the
overall satisfaction disregarding the balancing between the satisfaction of the individual tar-
gets. The values of the horizon-dependent criteria (TSI, WNM, and BC) are computed for a
horizon of 8 hours for LI instances and 24 hours for VLI instances. The experiments are con-
ducted allowing a computational time of 5 minutes for LI instances and 15 minutes for VLI
instances. Using these settings and instances, the different sections below pursue different
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objectives. Section 5.5.1 compare the three approaches from the perspective of the decision
maker preferences. Section 5.5.2 evaluates the approaches from the perspective of the quality
of the final sets of nondominated solutions. Finally, Section 5.5.3 focuses on VLI instances
to evaluate the potential impact of the approach developed in this thesis by comparing its
results to the actual results of the diffusion area.

5.5.1 Comparison Based on Preferences

The objective of this section is to study the impact of the approach when the preferences
are considered during the search process on the final solution quality. In this thesis, it is
assumed that the decision maker expresses his preferences through lexicographic ranks and
weights. The trade-off is not allowed between criteria with different lexicographic ranks. The
importance of criteria with the same rank is expressed through weights. In Section 5.2.3,
two approaches that consider the preferences of the decision maker are introduced. The first
approach, referred to as SA-I, strictly adheres to the preferences by computing the acceptance
probability based on the criteria with the lowest rank. In the second approach, referred to as
SA-II, the acceptance probability relies on all criteria and ignores the provided preferences.
In addition to comparing SA-I and SA-II, the best solutions for the preferences are selected
from the final archives of AMOSA. To make sure that the cost of maintaining the archive
does not penalize the results of AMOSA, the implementations of SA-I and SA-II also store
the nondominated solutions in passive archives.

The results are reported in Table 5.1 and Table 5.2 for the LI and VLI instances, respec-
tively. The results are reported in terms of the relative deviation to the best value for each
criterion among the solutions that are lexicographically the best. As no maximum time lag
constraint is violated in any solution of any approach, the results regarding TVS are not re-
ported. The results for the remaining criteria are sorted in the lexicographic order: TSI, WFF,
WNM, and BS. The results for each criterion are reported in three adjacent columns, and for
each of the approach (SA-I, SA-II, and AMOSA). For the objectives to minimize (WFF),
the relative deviations are positive, and the closer the value to 0, the better the solution. For
the objectives to maximize (TSI, WNM, and BS), the relative deviations are negative and the
closer the value to 0, the better the solution.
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When analyzing the solutions of the LI instances reported in Table 5.1, it appears that
the best approach that adheres to the given preferences is SA-I. SA-I obtains the best values
for TSI for 14 over 15 instances. As the most crucial criterion after TVS, better values
of TSI imply lexicographically better solutions. These results show that adhering to the
preferences throughout the search when dealing with the LI instances, leads to solutions
that are satisfying regarding these same preferences. However, the results also show that
optimizing in priority the most important criterion has a significant negative impact on the
least important criteria. Indeed, SA-I leads to solutions with lower quality regarding the three
remaining criteria when compared to SA-II and AMOSA. The close values of the average and
median of the relative deviations on WFF, WNM, and BC do not allow to draw a conclusion
about which approach, between SA-II and AMOSA, performs better. However, as SA-II is
better than AMOSA on TSI, it seems that SA-II, as it can be predicted by considering its
design, leads to solutions where all the criteria are pulled as close as possible to the best
values. Different conclusions can be made when analyzing the results for the VLI instances
reported in Table 5.2. As when solving the LI instances, SA-I obtains the best solution for
9 VLI instances over 10 when considering the preferences. Contrary to the LI instances,
SA-I is by far better than the two other approaches on all the criteria, except for the least
important criterion BC. The results of SA-II and AMOSA can be explained by a significant
drop in the number of explored solutions that approximately represents 35% of the number
of explored solutions by SA-I. In the industrial context, only instances that are similar to LI
instances are going to be solved. VLI instances, as in the case of Section 5.5.3, may be solved
exceptionally to validate and quantify the improvements of operational performances that can
be brought by an optimized scheduling approach. The results for such instances seem much
better with SA-I. This is why Section 5.5.2 only uses the LI instances to compare the three
approaches by using quality measures of the produced sets of non-dominated solutions.

5.5.2 Comparison Based on Quality Indicators

An ideal approach for solving a multiobjective optimization problem is an approach that
enables convergence with a guaranteed spread of solutions. Convergence ensures that the set
of solutions is as close as possible to the optimal Pareto front. To measure the convergence of
an algorithm, different indicators are defined in the literature. The hypervolume (HV) and the
mean ideal distance (MID) are used here to evaluate the convergence. The reference point
having the worst values of the criteria is used to compute the hypervolume. For example,
the worst value for TSI and BC is O. When considering only minimization problems, the
mean ideal distance (MID) is the average distance between non-dominated solutions and
the origin point. The origin point cannot be used in our case since there are at the same
time criteria to maximize and criteria to minimize. Instead of the origin point, we consider
an ideal point. For example, the ideal value for TSI and BC is 1. Diversity is related to
the sparsity of solutions to ensure that the decision maker has multiple representative trade-
off solutions among conflicting objectives. To measure the diversity, we use the maximum
spread (D) which gives the longest diagonal of the hyperbox formed by the extreme values
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of the criteria. We also use the spacing metric (S P) that represents the average distance
between consecutive solutions in the archive. The results related to convergence indicators
are reported in Table 5.3 and those related to diversity indicators can be found in Table 5.4.

Instances HV MID
SA-I SA-II AMOSA SA-I SA-II AMOSA

1 98878934 96643427 102762325 9115 7484 9226
2 122149619 122149641 117219409 6817 6391 8052
3 58489634 58967724 61630159 9347 10937 11776
4 74860649 73930565 82180998 9987 9897 10830
5 53787143 54183952 56026335 11808 11796 12389
6 46340977 48382832 49075639 13004 12140 13577
7 63342626 63193650 67070949 15013 14947 15605
8 52718120 53399896 51175823 13912 13779 15111
9 54658751 55458791 56462692 12720 12629 13952

10 43250728 43088713 45432540 15978 15637 16686
11 73233089 72036060 75912776 13714 13476 14500
12 67077945 66614927 69416988 12018 11471 12774
13 64070792 63893194 67087905 11544 10869 11206
14 55138201 55703626 55873980 12534 12627 13922
15 45466194 46109040 45662555 13249 12970 15018

Average -3,8% -3,5% -0,6% 3,7% 1,2% 12,1%
Median -3,8% -4,0% 0,0% 1,8% 0,0% 10,5%

Table 5.3 – Comparison of SA-I, SA-II and AMOSA for hypervolume HV and mean ideal distance
MID

Before analyzing the results of the experiments, we first discuss the size of the archive and
the impact of its maintenance during the search on the number of explored solutions. When
solving the LI instances, the average number of nondominated solutions in the final archive of
SA-I, SA-II, and AMOSA is 21, 18 and 61, respectively. Even with a larger final archive, the
impact of maintaining the archive within AMOSA is approximately close to the one observed
within the two simulated annealing approaches. On average, the number of visited solutions
is reduced by 5% when maintaining the archive compared to the number of explored solution
within simulated annealing approaches without archive. Regarding convergence, Table 5.3
reports the hypervolume HV and mean ideal distance MID for each approach. Recall that the
larger HV , the better the approach, and the smaller MID, the better the approach. The table
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also provides the average and the median over the LI instances of the relative deviations
to the best values (maximum value for HV and minimum value for MID). According to
HV , the results show that AMOSA performs better than SA-I and SA-II, and that there is no
significant difference between these two last approaches. According to MID, the results show
that SA-II is better than SA-I which in turn performs better than AMOSA. In the previous
section, the results show that SA-II is the best approach that optimizes all the considered
criteria simultaneously and this is confirmed with the lowest values on MID.

Instances D SP
SA-I SA-II AMOSA SA-I SA-II AMOSA

1 5199 51 4747 2219 13 1330
2 2672 81 4472 760 17 1563
3 2811 266 4638 562 96 1453
4 2923 125 4247 685 12 1540
5 1375 151 2541 398 46 762
6 2646 375 3393 921 108 1179
7 2646 177 3783 842 33 997
8 1150 150 4524 316 59 1487
9 864 49 4279 145 11 1485

10 1523 51 3655 338 21 1045
11 1853 571 3249 498 169 1056
12 2835 517 4692 1021 121 1401
13 3766 703 2662 1200 204 776
14 474 425 4598 74 131 1795
15 1946 25 3511 482 13 503

Average -42,6% -93,6% -2,5% 2684,5% 5,0% 4563,2%
Median -40,3% -95,3% 0,0% 759,2% 0,0% 2440,5%

Table 5.4 – Comparison of SA-I, SA-II and AMOSA for maximum spread D and spacing S P

Regarding diversity, Table 5.4 reports the maximum spread D and spacing S P for each
approach. Recall that the larger D, the better the approach, and the smaller S P, the better
the approach. The table also provides the average and the median over all the LI instances
of the relative deviations to the best values (maximum value for D and minimum value for
S P). According to D, the results show that AMOSA performs better than SA-I which in
turn perform better than SA-II. When considering S P, the order is reversed as SA-II is the
best approach while AMOSA is the approach that produces archives where solutions are far
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from each other. The different quality indicators help better understand how the different
approaches work when solving the LI instances. SA-II converges to the region that is closer
to the ideal point, and the produced archive contains solutions that are crowded in this region.
This can be seen through the low values of MID and S P. This convergence comes with the
drawback of only producing an approximation of a portion of the actual Pareto front and not
its full extent which can be seen through the low values of D and which may also explain
the low values of HV . The results show that AMOSA is quite the opposite of SA-II. The
values of D and S P show that AMOSA produces archives covering larger portions of the
Pareto front with solutions that are more distant from each other when comparing to the two
other approaches. Maintaining a rich set of diverse solutions and making the approximation
set closer to the Pareto front comes with the drawback of a low convergence to the trade-off

region where solutions are the closest to the ideal point. As the four quality indicators always
rank SA-I in second position, the behavior of SA-I lies between the two extreme behaviors of
AMOSA and SA-II. SA-I converges to the trade-off area faster than AMOSA while ensuring
a better spread than SA-II as it is designed to converge to the extreme values of the most
important criteria.

The objective of the experiments is not to decide which approach to use. The numerical
results, while allowing a better understanding of the different approaches, can be consid-
ered as preliminary. No definitive conclusions can be drawn without extensive experiments
where additional quality indicators are used, and the different parameters of the approaches
are finely tuned. In the numerical experiments of this chapter, the three approaches share
the same parameters such as the initial temperature, the cooling factor and the number of
non-improving moves. The setting of these parameters may be more suitable for one ap-
proach than another. As six threads are used to improve the initial solutions, the number of
non-improving moves is never reached by SA-I and SA-II which means that only six initial
solutions are improved within the GRASP approach. On the contrary, up to 12 initial solu-
tions are improved for some of the LI instances when AMOSA is used as an improvement
heuristic. This means that AMOSA spends 100, 000 iterations without updating the archive.
Maybe more importantly than conducting additional numerical experiments, a better under-
standing of the preferences of the decision maker is critical to choose an approach. If the
preferences are precise instructions rather than general orientations, the numerical results
show that SA-I is the most fitting approach. However, our practical experience showed us
that, when a decision maker formalizes his preferences, they should be often be understood
as general orientations. In this case, even if an approach is better than another one on dif-
ferent quality indicators, choosing a final solution is still a challenge that cannot be taken on
without a clear understanding of the preferences. Finally, it should be noted that the parallel
implementation of the GRASP approach allows different improvement approaches to be used
in different threads. This may result in a global approach that combines the different strength
of the three improvement approaches.
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5.5.3 Potential Impacts of the Proposed Approach on Industrial In-
stances

The purpose of this section is to validate the approach described throughout the thesis by
comparing its solutions to the actual solutions of the studied work area. To conduct the
comparison, all relevant data of 10 different days over six months are extracted from the
Manufacturing Execution system. The obtained instances are the VLI instances that are al-
ready used in the previous sections. The choice of a period of one day is mainly motivated
by the fact that production targets are set daily. To perform a fair comparison, all the con-
straints and events that can affect the schedule quality must be reflected in the instances. The
instances are then built as follows:

• All lots that were in the area during the chosen period are included in the set of jobs to
schedule.

• Due to reentrance, lots may return several times to the work area during a day. The
reentrance makes it impossible to consider as equivalent a lot and a job. Instead, a job
is equivalent to the couple lot and release date. For example, a lot that arrived in the
area at 06h00, left the area for another one at 14h00 pm to come back again at the
diffusion area at 19h00 will be represented by two distinct jobs. This modeling may
results in some inconsistency in the solutions returned by an approach that solves the
problem a posteriori. For example, operations of the job available at 06h00 may be
performed after 19h00 which does not make sense.

• Concerning the characteristics of lots, their size and release dates do not change over
time while their priority is thought as a dynamic attribute to influence the decisions of
the operators. To make the study manageable, it is assumed that the priority of a job is
the priority of the represented lots just after it was released in the area. This assumption
does not introduce any bias in the comparison as the computation of the performance
indicators of the actual solution makes the same assumption.

• An availability constraint is attached to the problem whenever a machine became un-
available due to preventive or curative maintenance or to quality problems.

• At the beginning of the horizon, a machine can already be processing batches. These
situations are also modeled through availability constraints from a machine perspec-
tive, and future release dates from a job perspective.

• To model the wet benches, the analytical data-driven modeling described in Sec-
tion 4.5.1 is used.

• In opposition to furnaces on which the quality tasks described in Section 2.3.10 do not
utilize production capacity, these tasks must be separately carried out on wet benches.
Due to the unavailability of historical data, these constraints are not considered in the
experiments. Thus we consider during the analysis of the results that quality tasks
consume a capacity that is equivalent to what is required by 1% of moves.
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• Another feature that was not described in this thesis is measurement operations. Af-
ter some production operations, some jobs are measured on inspections machines to
monitor the process stability of the machines and the quality of products. It should be
noted that not all jobs are measurable and measurement operations do not imperatively
follow a production operation. These operations are not explicitly considered in the
problem. To make the model realistic, the transport times between machines are over-
estimated to take into consideration the waiting times of measurable jobs in front of
inspection machines and the corresponding measurement times. Minimum time lags
are used to model both transport times and the needed time by the measurement oper-
ations, with a minimum duration of one hour. Hence, a minimum time lag constraint
is systematically added between any two operations of any job, whether a job is mea-
surable or not, and whether there is an actual measurement step or not between the
corresponding operations.

The obtained VLI instances are then used to conduct the experiments. The number of
jobs varies between 1, 500 and 1, 800 with an average of three operations per job. Jobs must
be scheduled on average on 68 machines, all capable of batching. The batching capacity
lies between 2 and 7 jobs. The resulting scheduling problem includes the following con-
straints: Release dates, minimum and maximum time lags, sequence-dependent setup times,
availability constraints and batching constraints. On average, there are 25 production targets
classified into two subgroups: Priority targets translating the objective of ensuring the linear-
ity of the production line at the fab level; less important targets stemming from the monthly
production plan. The solutions for the problems described by the instances, either actual ones
or those found by our approach, are evaluated according to five criteria: Total maximum time
lag violation severity (TVS), target satisfaction indicator (TSI), weighted number of moves
(WNM), weighted flow factor (WFF) and batching coefficient (BC). By considering α = 1,
the objective is to maximize the overall satisfaction disregarding the balancing between the
satisfaction of the individual targets. To facilitate the interpretation of the results, the job
weights are ignored when computing WNM and are only considered when computing WFF.
The values of the horizon-dependent criteria (TSI, WNM, and BC) are calculated for a hori-
zon of 24 hours for the actual solutions and the solutions of our approach. As extracted data
only include operations that are processed over the chosen horizon of 1 day, the values of
the horizon-free criteria are also computed over a horizon of one day for the actual solutions.
However, when optimized, the values of these criteria are not restricted to the horizon in our
approach.

Before carrying the experiments, different choices must be made. First, a selection strat-
egy must be chosen among all those proposed in this thesis and those proposed by Knopp
(2016). In Section 4.5.2, the numerical results point out that the best strategy when dealing
with the VLI instances is the integrated strategy. In the current chapter, different approaches
to handle the multiobjective aspect of the industrial scheduling problem were proposed. In
Section 5.5.1, the numerical results show that better results are obtained when using SA-I.
Thus, to compare the solutions proposed by our approach with the actual solutions, we use
the integrated strategy to improve solutions during the start time computation and SA-I to
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handle the given preferences during the search process. The experiments are conducted by
allowing a computational time of 30 minutes. In the industrial setting, the proposed approach
should solve instances such as the LI instances used in the previous section, and it is practical
to allow a computational time of five minutes. The choice of 30 minutes as the computational
time is motivated by the fact that the average number of explored solutions in 30 minutes for
instances of one day, which is approximately 650, 000, is equal to the average number of
explored solutions for instances to be solved in real conditions during five minutes. Similarly
to the previous sections, the results of our approach are reported as a relative deviation to
the actual results instead of the best values. The detailed results per instance are reported in
Table 5.5 which are aggregated in Table 5.6.

Instances TVS TSI WWF WNM BC

1 -100% 7.7% -9.4% 9.2% 4.8%
2 -100% 22.1% -5.9% 2.7% 5.0%
3 -100% 10.6% 11.4% 2.3% 5.2%
4 -100% 9.3% -19.9% 11.2% 4.2%
5 -100% 8.3% 4.6% 9.7% 4.8%
6 -100% 12.8% -5.1% 3.4% 2.8%
7 -100% 9.6% -5.8% 2.1% 7.0%
8 -100% 7.7% -7.0% 3.6% 8.4%
9 -100% 7.9% -15.4% 7.4% 7.5%

10 -100% 10.1% 4.3% 11.1% 6.6%

Table 5.5 – Detailed results comparing the solutions determined by our approach and the actual
solutions

TVS TSI WWF WNM BC

Average -100% 10.6% -4.8% 6.3% 5.6%
Median -100% 9.6% -5.8% 6.3% 5.2%

Table 5.6 – Aggregated results comparing the solutions determined by our approach and the actual
solutions

The numerical results show that our approach can bring a significant improvement in
the operational performances of the diffusion area. Indeed, there are eight instances out of
ten where the proposed solutions are dominating the actual solutions on all criteria. For
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the two other instances (3 and 5), the actual solutions are only better for the weighted flow
factor (WFF). Because of the preferences, all the solutions obtained by our approach are
actually better than the actual ones. While there are on average four maximum time lags
that are violated in the actual solutions, no violation is observed in the proposed solutions.
The satisfaction of the production targets and the utilization of the batching capacity are ap-
proximately increased by 10% and 5%, respectively. The weighted flow factor, representing
the waiting time of jobs weighted by their priorities in front of the different machines in the
area, is approximately decreased by 5%. Finally, if we consider the weighted number of
moves and the assumption that the integration of the quality task will reduce the value of this
criterion by 1%, the proposed solutions still improve the actual performances by more than
5%. These results demonstrate that there is room for improving the operation performances
of the studied work area and that the proposed approach can bring such improvement as it
efficiently solves the industrial scheduling problem while taking the rich set of constraints
and criteria into account.

5.6 Conclusion

By detailing how we handle the multicriteria aspect of the industrial scheduling problem,
this chapter achieves the description of the whole approach developed through the two pre-
ceding chapters. Three approaches for optimizing multiple criteria are examined. In the two
first approaches, the decision maker is provided with a flexible modeling of his preferences
depending on whether the trade-off is permitted between any pair of the considered criteria.
The two approaches use differently these preferences during the search process and stores
the set of nondominated solutions in a passive archive. These two approaches are compared
to a third approach from the literature that uses the dominance status between the current
solution and the set of nondominated solutions stored in an active archive. The comparison
is performed based on the given preferences and known quality indicators and demonstrates
that each approach can be more suitable depending on the context. This chapter ends with
numerical experiments that attest the significant improvement that can be brought by the
proposed approach.

The numerical results show that each of the three approaches investigated in this chapter
may be more interesting for a given context. In order to choose the approach to use or to
show how to combine all of them, more numerical experiments should be carried out, and
additional quality indicators may be necessary. In addition to more experiments, a better
perception of the preferences of the decision maker is a prime condition to design the final
approach. This understanding will also benefit to the design of a suitable procedure that picks
a final solution from the final archive.
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Conclusions and Perspectives

6.1 Conclusions

The objective of this thesis is to model and solve a multiobjective complex job-shop schedul-
ing problem in the diffusion area of semiconductor manufacturing facilities. The rich set of
constraints and criteria that are considered lead to a general scheduling problem that can be
applied to other work areas in semiconductor manufacturing and other industrial contexts.
The starting point of this thesis is the batch-oblivious approach proposed in Knopp et al.
(2017) for solving complex job-shop scheduling and the approach proposed by Bitar (2015)
regarding multiobjective optimization. The contributions of this thesis are the improvement
of the efficiency of the batch-oblivious approach, its extension to additional constraints and
a better management of the optimization of multiple objectives. This leads to a solution
approach that can efficiently tackle the industrial scheduling problem described in Chapter 2.

To ensure that feasible and realistic schedules are proposed, a large set of constraints are
identified and modeled within the diffusion area. The original batch-oblivious approach is
extended by considering additional constraints that model essential features of the industrial
scheduling problem: Minimum time lags, minimum batch size and availability constraints.
For example, minimum time lag constraints are used to model actual minimum time lags, but
also transport times and are part of the set of constraints used to model complex machines
as black boxes while this modeling, referred to as data-driven analytical modeling, is kept
realistic. Also, regarding complex batching machines, the batch-oblivious conjunctive graph
is generalized to offer the possibility of modeling at the same time the internal structures and
batching capacities of machines. It is shown that the use of the extended batch-oblivious
conjunctive graph has the advantage of providing more accurate predictive schedules and
requires less data collection and maintenance. The approach is also extended by integrating
more relevant industrial criteria: Weighted number of moves and batching coefficient. As
the proposed method is meant to be used within a rolling horizon framework, the discounted
weighted number of moves is a new criterion that is introduced to prioritize the throughput
and the priority adherence of a solution at the beginning of the scheduling horizon. An
original contribution of this thesis is the integration of production targets, which are set to
guide the local work areas towards the realization of daily and monthly objectives of fabs.
The Target Satisfaction Indicator (TSI) is proposed as a criterion that enables the decision
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maker to emphasize either the overall satisfaction of the production targets or the balancing
between the production targets.

Besides extending the original batch-oblivious approach, this work improves its effi-
ciency. An important component within the batch-oblivious approach is the capability to
improve a schedule during the start time computation. When a batch is incomplete, a search
for additional operations that can be selected to complete the batch is triggered. New se-
lection strategies, such as the integrated strategy, are introduced, and experimental results
attest their low computational cost. Apart from its efficiency, the active strategy intentionally
inserts delays to complete batches, which leads to more interesting and acceptable solutions
from the industrial point of view.

6.2 Perspectives

The different experiments conducted in this thesis show that the proposed approach obtains
promising results. Though the approach can be used in the industrial setting with a significant
impact on the operational performances, the solution approach can still be improved. In
addition to the different perspectives described in the different chapters, this section lists new
perspectives that we have already started to explore or those to be studied in the future.

Section 6.2.1 is dedicated to the description of ideas that can improve the different com-
ponents of the proposed solution approach. As already mentioned in Chapter 3, the GRASP
approach obtains way much better results when the simulated annealing approach is used to
improve the initial solutions compared to the hill climbing and the tabu search approaches.
The low performance of the tabu search approach can be explained by the large size of the
neighborhood when dealing with industrial instances. The computational cost of fully ex-
ploring the neighborhood is too prohibitive. To make such an approach suitable to solve the
industrial instances, new efficient neighborhood functions should be designed. The different
identified perspectives in this direction and the different cautions that must be considered are
described in Section 6.2.2. Besides the improvement of the approach efficiency and effective-
ness and though a rich set of features are already considered in the studied scheduling prob-
lem, the model still can be enriched by integrating other operational decisions. Section 6.2.3
provides some examples of possible integrations. Finally, some industrial perspectives are
discussed in Section 6.2.4.

6.2.1 Improvement of the Solution Approach

This section explores several perspectives to improve the different components of the solu-
tion approach. Regarding the solution representation, Chapter 4 proposes an extended batch-
oblivious conjunctive graph that can model complex batching machines in detail. However,
instead of the route graph modeling, the data-driven analytical modeling described in Sec-
tion 4.5 is used in the industrial application as the data management module was initially de-
signed to collect the data this modeling requires. Before modeling in detail complex batching
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machines, it must be ensured that the size increase of the extended batch-oblivious approach
due to the detailed modeling of machines does not negatively impact the efficiency of the
solution approach. An experimental study can help to evaluate this impact. If the increase in
the size of the extended batch-oblivious conjunctive graph negatively impacts the efficiency
of the metaheuristic, the possibility of combining the two modelings can be interesting. The
GRASP metaheuristic can be run with the data-driven analytical modeling, and each im-
proving solution is recomputed using the route graph modeling. Comparing the solutions
obtained with only the route graph modeling and those obtained combining the route graph
modeling and the data-driven analytical modeling should help to decide which approach is
the most relevant.

Modeling complex machines where the handling part and the internal scheduling algo-
rithm cannot be ignored is another challenge to address. The route graph modeling is only
capable of capturing the complex behavior resulting from the structure and the internal con-
straints of the machines. When this complex behavior is also due to the internal scheduling
algorithm, using the data-driven analytical modeling may be more interesting if it is not pos-
sible to include the control logic in the detailed modeling.

Another component of the approach that requires special attention is the evaluation of
solution quality. The importance of this procedure lies in the fact that it is the computationally
most expensive component of the approach. This procedure is even more important within
the batch-oblivious approach as it also improves schedules during the traversal of conjunctive
graphs. Chapter 3 proposes efficient strategies such as the integrated strategy that enables a
solution to be dynamically improved with little computational effort. The numerical results
show that three different strategies are dominating: The resequencing strategy for the random
instances, the integrated and active strategies for large industrial instances. An interesting
approach that can increase the positive impact of this procedure on the quality of the final
solution determined by the global approach is to choose the strategy that is the most adapted
to the solved instance and to the stage of the search process. The use of machine learning
techniques can be a good solution to automate the selection and the combination of the search
strategies.

An interesting approach to reduce the computational time of the solution quality eval-
uation is to incrementally maintain the longest paths as proposed by Michel and Van Hen-
tenryck (2003), Pearce and Kelly (2007) and Sobeyko and Mönch (2016). The idea is to
recalculate, after each move, only the start times that might have changed instead of updat-
ing the start time of every scheduled node in the conjunctive graph. It can be assumed that
the number of explored solutions can significantly be increased when partially updating the
conjunctive graph. This is, in particular, promising for large problem instances, such as the
studied industrial ones, since the expected gain grows with the number of nodes in the graph.
Also, if the application of this idea results in a significant reduction in the computational cost
of the solution quality, the potential negative impact of modeling complex machines in detail
may be lower and the choice of the route modeling safer. However, even though this idea
can be applied to flexible job-shop scheduling problems with standard objective functions,
different reasons can be mentioned that makes not straightforward the application of this idea
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in the batch-oblivious approach with the objective functions of the industrial context:

• In addition to the changes induced by the application of the neighborhood operator, the
new solution depends on the changes that are performed during the adaptive start time
computation algorithm. When considering a flexible job-shop scheduling problem, the
region of affected nodes does not change during the schedule computation while, in
the batch-oblivious approach, this region may potentially change each time a node is
selected to complete a batch.

• Also, if the start times are only updated for the nodes that are topologically ordered
after the directly impacted nodes, it could be possible to fill batches that are topolog-
ically ordered before these nodes as the invariant can be satisfied for nodes that are
affected by the move.

• Regarding the objective functions, the classical ones that are studied in the literature are
based on the completion times of jobs. The computation of several criteria considered
in this thesis, such as the weighted number of moves, the target satisfaction indicator
and the time lag violation severity, are based on the start and completion times of
operations. In this case, maintaining the values of these criteria incrementally must be
done in parallel to the start times of operations.

In addition to the improvement of the different components, the performance of the
GRASP approach can likely be improved by fine-tuning its parameters. Even if some pa-
rameters are adapted to each instance through the sampling strategy, thorough numerical
experiments should be performed to determine the best values for the minimum temperature
and the maximum number of non-improving moves. The GRASP approach could be im-
proved by adding a memory mechanism through path-relinking (see Resendel and Ribeiro
(2005)). When considering multiple criteria, if an archive of nondominated solutions is main-
tained, the elements of the archive are the best elite solutions determined during the search.
Path-relinking can provide an intensification strategy by exploring trajectories that connect
the nondominated solutions. The performances of the GRASP approach may be improved
by applying other metaheuristics than simulated annealing. Tabu search is an attractive alter-
native as it is among the most effective approaches for solving scheduling problems. Experi-
mental results that are not reported in this report show that tabu search is not performing well
compared to simulated annealing when all possible moves are explored, i.e., all operations
and all feasible insertion positions are considered. The large size of the neighborhood can ex-
plain this poor performance. For example, a solution for an industrial instance has dozens of
thousands of neighbors, and tabu search only performs a few iterations if the computational
time is limited to a few minutes. The effectiveness and efficiency of a tabu search approach
heavily depends on the neighborhood functions which are addressed in Section 6.2.2.
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6.2.2 Design of New Neighborhood Functions

In the industrial setting, it is required to determined good solutions in a short computational
time. To achieve this, the heuristic to be used must explore as many solutions as possible.
The idea of a partial update of the start times can contribute to the increase in the efficiency
of our solution approach. Besides increasing the number of explored solutions in a maximum
computational time, a more promising and challenging perspective is to increase the num-
ber of effective moves. In this thesis, depending on the solved problem, two neighborhood
functions are used:

• In the approach described in Chapter 3, a neighbor is obtained by a move where a node
and a feasible insertion position are randomly selected. This neighborhood structure is
referred to as (N1).

• In the approach described in chapters 4 and 5, as sequences of operations are to be
moved together while these operations may require multiple resources and impose
resource acquisition constraints, neighbors are selected differently. After randomly
selecting a movable component, a move works in two phases: First, it removes all
nodes belonging to a movable component from the conjunctive graph. Second, it in-
serts all nodes that belong to a movable component into the conjunctive graph. The
efficient insertion of the sequence of operations is challenging since a meaningful and
feasible insertion position has to be found while coping with multiple resources per
operation and resource acquisition constraints. Then, the insertion technique for nodes
proposed by Kis (2003), which avoids enumerating dominated insertion positions in
the sense of the makespan, is adapted by Knopp (2016) by considering resource acqui-
sition constraints. One of the insertion positions determined by the adapted algorithm
is randomly selected. This neighborhood structure is referred to as (N2).

In both approaches, the nodes to move are randomly selected. Regarding the determina-
tion of insertion positions, the first approach randomly picks one among all feasible insertion
positions. In the second approach, one insertion position is randomly selected among all
dominating insertion positions in the sense of makespan. There is clearly room to increase
the proportion of effective moves. It is interesting for example to generalize the insertion
technique for nodes proposed by Kis (2003) to other optimization criteria. However, it is a
more manageable task to design new neighborhood functions when solving the problem of
Chapter 4 without considering the detailed modeling of complex machines. In the remainder
of this section, preliminary findings and future perspectives in this direction are described.

To improve the performance of our approach, it is important to be able to identify improv-
ing moves. Identifying such moves can be done through characterizing the properties of the
interesting nodes and insertion positions or by designing efficient procedures that can evalu-
ate the effect of a move on the objective function without actually making the move. Several
efficient heuristics proposed for the job-shop scheduling problem (e.g., Van Laarhoven et al.
(1992), Taillard (1994), Mati et al. (2011)) use the operation criticality as a property to select
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operations to move. In addition to restricting the set of candidate operations to critical ones,
other approaches (e.g., Nowicki and Smutnicki (1996), Mati (2010)) only focus on opera-
tions that are at the extremes of critical blocks. Before describing some perspectives in this
direction, we review two works (Tamssaouet et al. (2018) and Tamssaouet et al. (2018a)) that
study sub-problems of the complex job-shop scheduling problem described in Chapter 4 and
for which the results are not reported in this thesis.

In Tamssaouet et al. (2018a), we study the scheduling problem of minimizing makespan
on parallel identical batching machines with dynamic job arrivals and incompatible families.
The study of the batch-oblivious conjunctive graph shows it lacks a fundamental property
of efficient neighborhood functions (Van Laarhoven et al. (1992)): The removal of an op-
eration from a machine sequence cannot increase start times. To ensure this property, the
construction algorithm is modified so that operations in the same batch are sequenced in the
non-increasing order of their job availability. With the first neighborhood function (N3),
only critical nodes are candidates, while in the second function (N4), the set of candidates is
restricted to the set of nodes that are critical and in the first position of their batch sequences.
The experimental results show that the static strategy using (N3) is significantly better than
when using (N1) where all nodes are potential candidates. With the same strategy, no signif-
icant difference is observed between the results obtained using (N4) and the ones obtained
using (N1). When allowing the solution to be improved during the traversal of the graph,
no significant difference is observed between the three neighborhood functions, while the
results are globally better than when using the static strategy. The results of using neighbor-
hood functions such as (N3) cannot be impressive as it is known that the use of critical paths
is less appealing in parallel machine scheduling problems compared to job-shop or flow-shop
problems. This work was conducted as a first step to make our heuristic more efficient when
solving the industrial scheduling problem considered in this thesis.

However, in the perspective of improving our solution approach by increasing the number
of effective moves, different cautions should be considered.

• First, attention must be given to the definition of critical operations and their proper-
ties. In Tamssaouet et al. (2018), we address the job-shop scheduling problem in which
the machines are not available during the whole planning horizon and to minimize the
makespan. The disjunctive graph model is used to represent job sequences and to adapt
and extend known structural properties of the classical job-shop scheduling problem
to the problem at hand. These results have been included in two metaheuristics (Sim-
ulated Annealing and Tabu Search) with specific neighborhood functions and diversi-
fication structures. Computational experiments on problem instances of the literature
show that our Tabu Search approach outperforms Simulated Annealing and existing
approaches. In this paper, it is brought out that, when considering availability con-
straints, a zero slack for an operation is neither a necessary nor a sufficient condition
for being a critical operation. When considering regular classical criteria, the definition
of critical operations and their properties must be reviewed when a new constraint is
introduced.
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• Another important point of attention when designing neighborhood functions that rely
on critical operations is the computational cost of identifying such operations. As it
is necessary to compute the latest start times, the number of explored solutions is on
average half the number of explored solutions when only the earliest start times are
computed. This computational cost may be prohibitive in different situations:

– When the average ratio of critical operations for the studied instances is large,
where it may become uninteresting to reduce the set of candidates operations to
the critical ones.

– When these neighborhood functions are used within heuristics where a unique
neighbor is visited such as simulated annealing. It may be more interesting to
use heuristics where a set of neighbors is visited, such as tabu search so that the
cost of identifying the critical operations is amortized. This is more beneficial
when considering the fact that only the computation of the earliest start times is
necessary to evaluate the neighbor quality. The computation of the latest start
times becomes essential for the accepted neighbor.

– When it is possible to find a move of a non-critical operation that leads to a better
improvement than any move of a critical operation. In the case of a job-shop
scheduling problem, no improvement can be obtained by moving a non-critical
operation. When considering the makespan minimization for the scheduling of
parallel batch processing machines, it is shown in Tamssaouet et al. (2018a) that
a move of a non-critical operation can improve the solution, but there is always
a move of a critical operation that can lead at least to the same improvement.
This is no longer valid when considering batching constraints within a flexible
job-shop scheduling problem. A simple example can be constructed to show that
a move of a non-critical operation leads to a larger improvement than any move
of critical operations. However, the experimental results that are not reported
in this thesis show that the occurrence frequency of such situations is very low.
Using a hill-climbing heuristic, the numerical results show that a move of a non-
critical operation is better than all moves of critical operations only in 0.5% of
the iterations.

• In addition to the challenges raised above, there are different limitations when con-
sidering neighborhood functions that rely on the notion of critical operations. In the
industrial context, some of the defined criteria are regular: Weighted flow factor, move-
related criteria, and target satisfaction indicator. The weighted flow factor, based on
the job completion times, is quite similar to the standard weighted total completion
time and the notion of critical operation is still relevant. Even though they are regular,
other criteria in the list above are however different as the notion of critical operation is
not relevant. When considering such criteria, there is a need to characterize interesting
moves. For example, it can be shown that there is no direct improvement after moving
an operation having a resource predecessor that completes its processing outside of the
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horizon. The irrelevance of operation criticality can also be observed when considering
non-regular criteria, such as the time lag violation severity and the batching coefficient.

All the reasons above make the definition of efficient neighborhood functions based on
the criticality of operations challenging, and even impossible depending on the criteria. The
problem becomes more complex when considering multiple criteria simultaneously. A per-
spective that seems both relevant and challenging is to design scoring functions that evaluate,
even approximately, the impact of moving operations and the impact of insertion positions.
When optimizing classical objective functions such as the makespan or the total weighted
completion time, operation properties such as being critical or being located in the extremes
of a critical block can be expressed through boolean functions. If specific criteria such as
the weighted number of moves are optimized, it may be possible to design adequate func-
tions to assess the impact of moving operations. The main advantage of such functions is the
possibility to aggregate the score for each criterion in multiobjective optimization.

Instead of characterizing interesting operation candidates and insertion positions, the sec-
ond alternative is to design efficient functions that evaluate the impact of a move on the ob-
jective function without actually making it. Such functions for regular criteria can be found
for the job-shop scheduling problem in Mati et al. (2011) and the flexible job-shop schedul-
ing problem in García-León et al. (2015). When well designed, these functions can be very
effective in characterizing moves. For instance, the evaluation function in Dauzère-Pérès
and Paulli (1997) discards all the moves that are identified as uninteresting in Nowicki and
Smutnicki (1996). Generalizing these functions when considering batching constraints is a
promising perspective. The batch-oblivious graph can support the design of such functions,
although it can be challenging because of the dynamic change of edge weights. Finally, re-
garding the neighborhood functions, it is felt that analyzing their connectivity property is
important.

6.2.3 Integration of Scheduling Decisions with other Operational
Decisions

An interesting long-term perspective could be to integrate scheduling decisions with the dif-
ferent operational decisions that are described in Section 1.2. In the current approach, the
transportation of jobs between the different machines is modeled through minimum time
lags. A challenging problem is to solve in an integrated way the production and transporta-
tion scheduling problems, by explicitly considering the vehicles of the AMHS along with
the production machines. We believe that the extended batch-oblivious conjunctive graph is
already rich enough to solve such a problem.

In addition to the transport time, the duration of minimum time lags includes the possible
necessary time to measure a lot on inspection machines before going to the next production
operation. It should be noted that not all jobs are measurable, and measurement operations
are not mandatory. Due to the limited measurement capacity, only jobs that can significantly
reduce the risk should be measured (see e.g. Dauzere-Péres et al. (2010) and Rodriguez-
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Verjan et al. (2015)). Two levels of integration can be studied when taking the measurement
and inspection operations into account, and in both situations, it becomes necessary to com-
pute the risk level of machines during the schedule computation and to consider additional
criteria.

• The first level is to ignore the measurement capacity while making sure that measurable
lots are processed on machines that see their risk increases.

• In addition to production operations, the second level of integration is to schedule
measurement operations on the inspection machines.

Another promising perspective is to better integrate availability constraints that are par-
tially imposed by preventive maintenance planning. In this thesis, it is assumed that all un-
availability periods have a fixed start time and a fixed duration. It might be too challenging
to solve in an integrated way production and maintenance scheduling, but it can be practical
and beneficial to assume that unavailability periods are flexible. Instead of fixed unavail-
ability periods, it is possible to consider that preventive maintenance operations should be
completed within a time window. This flexibility can improve the operational performances
of the work area.

6.2.4 Industrial Perspectives

Finally, let us conclude this manuscript by providing some industrial perspectives. The differ-
ent numerical experiments show that the proposed approach can bring substantial improve-
ment in the operational performances. By improving the efficiency of the approach and taking
the realistic modeling of the scheduling problem into account, we believe that the approach
is ready to be industrialized. However, this seems insufficient to convince management up
to now. In addition to taking more time to communicate better and explain the general prin-
ciples of the approach, it may be interesting to look for other validation approaches that can
convince management of the advantages of using optimized scheduling systems.

However, we believe that real-time validation is the best approach to draw conclusions.
First, all the necessary components for a scheduling system are already available. Data and
the display interface are available in the semiconductor industry. The optimization engine
and the data management module were developed during this thesis. The solutions of the
optimization engine should be now industrialized in the display interface. In the fab where
this thesis was conducted, the risk of disrupting the work area is very low when performing
real-time validation. The operators still have the freedom to derogate to the solutions pro-
posed by the optimized scheduling approach. If the industrialization proves to be a success,
it is practicable and relevant to apply the proposed approach to other work areas of a fab.
Because of the rich set of constraints and criteria be considered in our method, it should be
possible to quickly deploy it in other areas such as the photolithography and ion implantation
areas.
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Abstract:
This work deals with a real-life scheduling problem arising in semiconductor manufacturing
where dispatching rules are still widely used. Optimization algorithms are a promising al-
ternative to dispatching rules, provided that the solved problem encompasses the rich set of
complex constraints and criteria. We consider a flexible job-shop scheduling problem with p-
batching, reentrant flows, sequence-dependent setup times, unavailability periods, time lags
and release dates. Different criteria must be considered to optimize the different operational
performances: Overall throughput, target satisfaction, machine utilization and cycle time.

The proposed heuristic approach relies on the adaptation of the disjunctive graph that was
introduced in a previous thesis, called batch-oblivious, where batching decisions are encoded
in the arc weights. This graph is extended to allow the modeling of the internal resources
of complex batching machines. An efficient algorithm is proposed to simultaneously com-
pute start times and improve the solution during the graph traversal by filling underutilized
batches. In addition to this integrated algorithm, the solution is improved within a simulated
annealing metaheuristic. Depending on whether the preferences of the decision-maker are
given before the search process, different approaches to handle the multiobjective aspect of
the problem are studied and compared. The different components are embedded within a par-
allelized implementation of the GRASP metaheuristic. Different experiments on large size
industrial instances show the significant improvement that can be brought by the proposed
approach in computational times of several minutes.
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Résumé :
Ce travail traite d’un problème d’ordonnancement complexe rencontré dans la fabrication
de semi-conducteurs où l’utilisation de règles de priorité reste encore largement répan-
due. Les algorithmes d’optimisation constituent une alternative prometteuse à ces règles,
à condition de prendre en compte le nombre important de contraintes complexes et de
critères. Nous considérons un problème d’ordonnancement de type job-shop flexible avec
“p-batching”, des flux rentrants, des temps de préparation dépendant de la séquence, des
périodes d’indisponibilité, des délai entre opération et des dates de début au plus tôt. Dif-
férents critères doivent être pris en compte pour optimiser les différentes performances opéra-
tionnelles: débit global, satisfaction des objectifs de production, utilisation des machines et
temps de cycle.

L’approche proposée repose sur l’adaptation du graphe disjonctif proposée dans une thèse
précédente, appelée “batch-oblivious”, où les décisions de “batching” sont modélisées à
travers les poids des arcs. Cette représentation a été étendue pour permettre la modélisation
des ressources internes des machines complexes. Un algorithme efficace est proposé pour
calculer les dates de début et, en même temps, améliorer la solution pendant le parcours du
graphe. Une deuxième phase d’amélioration, plus classique, est assurée par une métaheuris-
tique de type recuit simulé. Selon que les préférences du décideur sont ou non exprimées
avant l’optimisation, différentes approches traitant l’aspect multiobjectif du problème sont
étudiées et comparées. Les différents composants sont intégrés dans une métaheuristique
de type GRASP. Différentes expérimentations sur des données industrielles de grande taille
montrent l’amélioration significative que peut apporter l’approche dans des temps de calcul
de quelques minutes.


