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Summary  
Control of periodontal infection and inflammation is crucial for optimal 

periodontal wound healing and regeneration. For this purpose, three different and novel 
strategies were developed and tested for their impact on periodontal wound healing 
parameters in vitro and in vivo. Firstly, an ibuprofen-functionalized polycaprolactone 
(IBU-PCL) membrane was developed as an anti-inflammatory barrier membrane that 
successfully reduced inflammatory markers expression in gingival cells in vitro and 
decreased soft tissue inflammation, thus, improving periodontal tissue healing in an 
experimental periodontitis model in vivo. Secondly, chlorhexidine and ibuprofen 
containing in-situ forming implant (CHX-IBU ISFI) was developed to target both 
infection and inflammation that successfully reduced Porphyromonas gingivalis growth 
and inflammatory response of gingival cells in vitro as well as improved soft tissue 
periodontal wound healing in vivo. Lastly, a thermosensitive chitosan-based hydrogel 
functionalized with atorvastatin encapsulated in a nano-emulsion (ATV-KELP NE) was 
characterized and used to treat an induced bone defect in vivo that resulted in improved 
soft and hard tissue healing by counteracting infection and modulation of immuno-
inflammatory response.  
Keywords: Periodontal regeneration, Porphyromonas gingivalis, controlled-release 
scaffolds, inflammation 
 
Résumé  

Le contrôle de l’infection et de l’inflammation est crucial dans les traitements 
parodontaux de régénération tissulaire. Dans cet objectif, trois stratégies novatrices ont 
été développées et évaluées in vitro et in vivo en se focalisant sur les paramètres associés 
à la cicatrisation. Dans un premier temps, une membrane de polycaprolactone (IBU-PCL) 
fonctionnalisée avec de l’ibuprofène a été développée. Ce nouveau biomatériau aux 
propriétés anti-inflammatoires et utilisé comme barrière permettant l’exclusion tissulaire 
a permis de réduire significativement l’expression des marqueurs de l’inflammation au 
niveau des cellules épithéliales gingivales in vitro et l’inflammation des tissus mous in 
vivo. Dans un second temps, un implant se formant in situ (ISFI) fonctionnalisé par 
ibuprofène et chlorhexidine a été développé pour cibler l’infection et l’inflammation. Ce 
biomatériau a permis de réduire la croissance bactérienne de Porphyromonas gingivalis 
et d’optimiser la cicatrisation des tissus parodontaux par réduction de l’inflammation. 
Enfin, un hydrogel thermosensible fonctionnalisé par atorvastatine encapsulée dans des 
nano-émulsions a été synthétisé (ATV-KELP NE) et a induit une amélioration de la 
néoformation osseuse dans un modèle de calvaria. 
Mot clés : Régénération parodontale, Porphyromonas gingivalis, système à libération 
contrôlée, inflammation 
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1. Introduction 
 

Periodontium refers to the entire complex of the tooth supporting tissues comprising  

gingiva (epithelium and connective tissue), cementum, alveolar bone, and periodontal ligament 

(PDL) (Barczyk et al., 2013; Cho and Garant, 2000; Kinane et al., 2017). The periodontium 

mainly attaches the teeth to the jaw bone, maintains teeth vitality and provides a barrier to the 

tooth supporting structures against the continuous insult by the oral microflora (Katancik et al., 

2016; Mariotti, 2007). The gingiva (soft tissue) represents the superficial periodontium and acts 

as the first line of defense against any foreign aggression. Profound periodontium is composed 

mainly by hard tissues including cementum and alveolar bone. Cementum is a thin, avascular, 

mineralized  tissue that covers the root surface and allows attachment of PDL to the root surface, 

whereas, PDL is composed of collagen fibers, blood vessels and nerves and supports tooth 

attachment to the jaw bone, especially through alveolar bone (Goudouri et al., 2017). The 

different components of periodontium vary in their cellular composition, types, protein content, 

degree of mineralization, rate of metabolic activity and disease susceptibility (Mariotti, 2007). 

Periodontal health is defined by absence of clinically detectable inflammation in these 

periodontal tissues, and a homeostasis between the oral microbiota and the immune response 

of the host (Chapple et al., 2018) (Figure 1). 
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Figure 1: Periodontal health and development of periodontal diseases (gingivitis and 
periodontitis). The upper panel depicts the colonization of the keystone periodontal pathogen, 
Porphyromonas gingivalis (Pg), that shifts the balance of the symbiotic microflora to dysbiotic 
microbiota that triggers host inflammatory-immune response. Dysbiosis and inflammation 
reinforce each other and lead to periodontal tissue breakdown. The lower panel compares 
periodontal health (with no sign of inflammation) to periodontal diseases. In gingivitis, the 
inflammation is restricted to the gingival compartment, however, in periodontitis, the 
inflammation damages the underlying bone and PDL as well (Hajishengallis, 2015). 
  
1.1. Periodontal diseases 

 
 Periodontal diseases entail a broad range of inflammatory pathologies affecting 

tooth-supporting tissues in response to bacterial challenge, notably the keystone periodontal 

pathogen, Porphyromonas gingivalis (Pg) (Kinane et al., 2017). Periodontal diseases are 

mainly induced by bacterial plaque accumulation that can initially manifest itself as superficial 

gingival inflammation, referred to as gingivitis  (Kinane et al., 2017).  Gingivitis symptoms 

include redness, swelling and bleeding of gums. It is the most common form of gingival 

inflammation and is reversible upon the disruption or removal of the dental bacterial biofilm 

formed over the teeth and gingiva (Chapple et al., 2018; Jin et al., 2016). Clinically, the presence 

of chronic inflammation in the periodontal tissues is exhibited by bleeding on probing (BOP) 
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(Papapanou and Susin, 2017). If left untreated, gingivitis progresses to periodontitis which is 

characterized by chronic inflammation of infectious origin that leads to progressive destruction 

of the profound periodontium (gingiva, alveolar bone, cementum and PDL) resulting in gingival 

bleeding, increased periodontal pocket depth (PPD), reduction in clinical attachment (CAL), 

abscess formation, tooth mobility, and eventual tooth loss  (Ivanovski, 2009; Jin et al., 2016; 

Tonetti et al., 2017a). Its symptoms vary with the severity or extent of periodontal destruction 

(Sanz et al., 2010). This destruction of the tooth attachment apparatus (both soft and hard 

tissues) is usually irreversible (Chapple et al., 2018) and periodontitis is considered the main 

cause of tooth loss (Tonetti et al., 2017b). Deep periodontal pockets are the hallmark of 

periodontitis (Kinane et al., 2017) while CAL mostly characterizes history of the destruction 

and is a major determinant of the prognosis of tooth loss (Nunn et al., 2012; Park et al., 2017) 

(Figure 2).   

 
Figure 2: The main stages of periodontal diseases: a) Schematics of healthy gingiva, 
gingivitis, early-to-moderate periodontitis and advanced periodontitis, b) Measurement of 
periodontal pocket depth (PPD). Probing is performed by gently passing a narrow-diameter 
graduated periodontal probe. The probing depth can diminish after successful treatment as a 
result of reduced inflammation and gingival swelling, and tightening of the gingival attachment 
to the tooth (Kinane et al., 2017). 
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1.1.1. Classification of periodontal diseases 
 

Periodontal diseases are classified into different categories to ensure uniformity and 

ease in diagnosis and treatment. Recently, a new classification of periodontal diseases has 

been adopted (Table 1). 

 

 
Table 1: Classification of periodontal diseases and conditions 2017. Gingivitis has been sub-
divided into plaque-induced and non-plaque induced gingivitis. Necrotizing periodontal 
disease, periodontitis and periodontitis as a manifestation of systemic disease have been 
grouped under “periodontitis”. Other conditions affecting periodontium are grouped together 
in a separate category (Caton et al., 2018). 
 

A patient with intact periodontium having a BOP score ≥ 10% of teeth, further classified 

as localized (BOP score ≥10% and ≤30%) or generalized (BOP score > 30%) would be regarded 

as a gingivitis case (Trombelli et al., 2018). Clinically, a patient is a “periodontitis case” if the 

interdental clinical attachment loss is detectable at ≥2 non‐adjacent teeth, or the buccal (or oral) 

clinical attachment loss ≥3 mm with pocketing ≥3 mm is detectable at ≥2 teeth (Papapanou et 

al., 2018) (Figure 3). 

 

 

Figure 3: Healthy and diseased periodontium. a) Healthy periodontal tissues, b) Early 
gingival inflammation (arrow) can be seen in the gingiva between the central incisors, c) 
Clinical appearance of periodontitis,�with tissue loss and deep periodontal ‘pockets’ that are 
a hallmark of disease (arrow) (Kinane et al., 2017). 
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Persistence of inflammation is the key feature of periodontitis. Periodontitis is regarded 

as generalized periodontitis if more than >30% of teeth are affected and is termed localized 

when < 30% teeth are involved (Kinane et al., 2017). Initial and moderate periodontitis are 

ranked as stage 1 and 2 respectively with mostly horizontal bone loss involved, while, stage 3 

and 4 encompass severe periodontitis with vertical bone loss (infrabony defects), complex 

lesions and functional impairment  (Caton et al., 2018) (Table 2).  

 

 

Table 2: Classification of periodontitis based on stages defined by severity (according to the 
level of interdental clinical attachment loss, radiographic bone loss and tooth loss), 
complexity, extent and distribution. At stage 1 and 2, only horizontal bone loss occurs, 
whereas, at the advanced stages 3 and 4, vertical bone loss can lead to tooth loss (Papapanou 
et al., 2018). 
 

1.1.2. Prevalence 
 

Periodontal diseases, comprising gingivitis and periodontitis, are probably the most 

common diseases of mankind (Tonetti et al., 2017b). The prevalence of gingivitis varies 

between 50 and 90% of the world population (Pihlstrom et al., 2005). Despite being less 

common compared to gingivitis, periodontitis remains a public health concern owing to its 

impact on quality of life including its socio-economic aspect (Tonetti et al., 2017b). 

Severe periodontitis is the sixth most prevalent disease worldwide with an overall 

prevalence of 11.2% affecting around 743 million people aged between 15-99 years  (Frencken 
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et al., 2017; Jin et al., 2016).  The prevalence of periodontitis is reported to be between 20 and 

50% of the worldwide population (Albandar and Rams, 2002) with an average of 5% to 20% 

of any population suffering from severe periodontitis, while mild to moderate periodontitis 

affecting majority of adults (Dye, 2012; Petersen and Ogawa, 2012). The prevalence of 

periodontitis increases with age, especially, a drastic rise between the third and fourth decades 

of life is observed reaching a peak prevalence at 40 years. Epidemiological studies highlighted 

the variations by geographical regions and countries. In, 2010, the lowest prevalence of severe 

periodontitis (4.5%) was recorded in Oceania, whereas, the highest (20.4%) in Southern Latin 

America (Frencken et al., 2017). Moreover, periodontitis affects more males than females (Eke 

et al., 2012; Kassebaum et al., 2014). Interestingly, the global patterns did not change between 

the 1990-2010, however, the global burden of periodontal disease was increased by 57.3% from 

1990 to 2010 (Kassebaum et al., 2014; Marcenes et al., 2013; Murray et al., 2012). In France, 

nearly one adult in two exhibit severe periodontal attachment loss (≥ 5mm) (Bourgeois et al., 

2007). 

 

1.1.3. Periodontal diseases and systemic health 

Several systemic conditions such as diabetes mellitus (Lalla and Papapanou, 2011), 

rheumatoid arthritis (Huck et al., 2018), atherosclerosis (Linden et al., 2013; Tonetti et al., 

2013), renal disorders (Deschamps‐Lenhardt et al., 2019), sexual hormones imbalance (Akcalı 

et al., 2018), pre-term birth complications (Huck et al., 2011)  and stress (Akcalı et al., 2013) 

have been reported to have a bidirectional association with periodontal diseases and even the 

possible mechanisms establishing these systemic conditions as the risk-factors for periodontal 

diseases have also been explored. For instance, diabetes mellitus contributes to the initiation 

and progression of periodontal diseases as a high inflammatory mediators content in the 

gingival crevicular fluid (GCF) and saliva of diabetic patients causes PDL breakdown and 

eventual tooth loss (Casanova et al., 2014; Chapple et al., 2013; Patel et al., 2013; Preshaw and 

Bissett, 2013). Likewise, stress reduces salivary flow leading to plaque accumulation (Reners 

and Brecx, 2007) and  high cortisol levels in GCF of patients suffering from stress are linked 

to poor periodontal treatment outcomes (Akcalı et al., 2013; Rai et al., 2011). Moreover, a study 

conducted on Mexican Americans demonstrated that patients with low kidney function were 

more likely to have periodontal diseases compared to those with a normal kidney function 

(Ioannidou et al., 2013). 
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On the other hand,  the locally secreted pro-inflammatory cytokines produced in 

periodontitis, can enter the systemic circulation and induce systemic inflammation by 

increasing the level of C-reactive protein, fibrin and amyloid A (Hajishengallis, 2015a). 

Moreover, the systemic dissemination of periodontal bacteria through gingival ulceration in 

periodontal pockets or swallowing can also cause or exacerbate systemic inflammation as the 

dysbiotic microbiota has the ability to invade and modulate the immune response of the host 

(Alshammari et al., 2017; Bugueno et al., 2018; Elkaïm et al., 2008). Pg has been detected in 

circulating leukocytes and in atherosclerotic lesions, where they may act as pro-atherogenic 

stimuli (Hajishengallis, 2015a; Huck et al., 2015).  

Furthermore, periodontitis has been listed in the World Health Organization 

International Classification of Functioning, Disability and Health framework highlighting its 

importance in influencing the quality of life. Periodontitis compromises both facial esthetics 

and masticatory function, thereby, affecting both personal and professional lives of the patients 

(Papapanou and Susin, 2017) (Table 3). 

Condition Impairment Activity limitations Participation restrictions 

Periodontitis  
Loss of periodontal tissues (loss 

of periodontal attachment and 

alveolar bone; gingival recession)  

Difficulties in 

chewing, eating, 

speaking and 

smiling  

Personal/professional 

relationships may be 

affected 

Table 3: “Towards a Common Language for Functioning, Disability and Health: The 
International Classification of Functioning, Disability and Health World Health 
Organization”. Periodontitis is associated with compromised esthetics, phonetics and 
masticatory function, thereby, negatively impacting the personal and professional lives of 
periodontitis patients (Papapanou and Susin, 2017).  
 

1.1.4. Etiopathogenesis 
 

To date, the mechanisms that explain the transition from health to disease are only 

partially understood. Current concepts are based on complex interactions between a commensal 

flora and the host's immune response within a particular environment (Bartold and Van Dyke, 

2013). Microbial aggression activates host immuno-inflammatory response that leads to tissue 

destruction (Sanz et al., 2010). Although gingivitis and periodontitis are initiated and sustained 

by the microbial biofilm or the dental plaque, nevertheless, genetic and environmental host 
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factors also influence the rate of the disease (Kinane et al., 2017) (Figure 4). Indeed, risk factors 

are categorized as either modifiable or non-modifiable based on their possibility of amendment.  

Dental anatomy or morphology promoting plaque retention, smoking, age, stress, systemic 

diseases, poor nutritional status and socio-economic background are some of the risk factors 

which may negatively influence the immune‐inflammatory response to microbial biofilm 

burden, resulting in exaggerated or “hyper” inflammation (Akcalı et al., 2013; Chapple et al., 

2018; Dye, 2012). Despite the polygenic nature of periodontitis, environmental factors and 

patient related factors also greatly impact the disease onset and progression. Moreover, the 

contribution of the genetic factor cannot be undermined (Divaris et al., 2013). 

 

 

Figure 4: A model explaining the pathogenesis of periodontitis. Microbial challenge is the 
main etiological factor leading to periodontal tissue destruction. The bacterial toxins and other 
virulence factors trigger a host immuno-inflammatory response producing inflammatory 
cytokines and matrix metalloproteinases (MMPs) that lead to a dysregulation of the connective 
tissue and bone metabolism that contribute to the initiation and progression of the disease. This 
response is influenced by both genetic and environmental risk factors  (Kornman, 2008). 
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1.1.4.1. Role of bacteria 
 

The development and progression of gingivitis and periodontitis is attributed to the 

microorganisms residing in the thin pellicle-like biofilm, also referred to as dental plaque, over 

the teeth and periodontal tissues. Interestingly, the oral microbial biofilm can comprise around 

150 species in a single person, and more than 500 different species have been identified in 

human dental plaque so far (Darveau, 2010). Dental plaque is present in both uncalcified (soft) 

and calcified (calculus) forms. The supragingival plaque is usually uncalcified. However, 

subgingival plaque could be calcified, dark in color and more difficult to remove (Akcalı and 

Lang, 2018).  

Periodontitis has a multifactorial pathogenesis, but its main etiological factor is 

associated with dysbiosis of the periodontal flora resulting in increased proportions of anaerobic 

bacteria such as Pg, a gram-negative anaerobe. Pg is considered the keystone pathogen in 

causing periodontal diseases, acting through several virulence factors such as 

lipopolysaccharide (Pg-LPS) and gingipaïns (Bozkurt et al., 2017; Hajishengallis, 2015a; 

Kinane et al., 2017). About 30 other bacteria associated with periodontal disease have been 

grouped into microbial complexes according to their pathogenic ability. Among these bacteria, 

Pg, Tannerella forsythia and Treponema denticola are specifically distinguished by their 

virulence factors (proteases, toxins etc.) and their ability to induce experimental periodontitis 

in animals (Alshammari et al., 2017; Batool et al., 2018 (see Appendix); Holt et al., 1988; Saadi-

Thiers et al., 2013). The triad of the "red complex" is also strongly implicated in disease 

progression in humans (Byrne et al., 2009; Socransky and Haffajee, 2005).  

Recent studies have established a better understanding regarding the role of bacteria 

in the development of periodontal diseases emphasizing the new concept based on 

polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology (Figure 5). 

A diverse microbiota resides in the gingival pocket and these communities are in equilibrium 

with the host. However, colonization by keystone pathogens such as Pg creates the shift from 

a symbiotic microbial flora to a pro-inflammatory dysbiotic community that impairs host 

immune system (through its virulence factors and toxins) causing periodontal tissue destruction 

(Darveau, 2010; Hajishengallis, 2014; Hajishengallis and Lamont, 2012).  
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Figure 5: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease 
etiology. Colonization of the keystone pathogen, Pg, in the oral biofilm shifts the balance of the 
microenvironment from symbiotic microflora to dysbiotic pathogenic community that produces 
toxins and impairs host inflammatory and immune response (Lamont and Hajishengallis, 
2015). 
 

1.1.4.2. Role of inflammatory-immune cross-talk 
 

The severity of periodontal disease varies between individuals. Besides other 

factors, the susceptibility to periodontal inflammation and subsequent disease has been partly 

attributed to the variability in the host defense mechanisms (Trombelli et al., 2004).   

Epithelial cells (EC) function as a physical barrier against pathogens and elicit innate 

and acquired immune responses (Benakanakere and Kinane, 2012; Bugueno et al., 2017; 

Kocgozlu et al., 2009). Fibroblasts (FB) also participate in the local defense system (Sorsa et 

al., 2016). Virulence factors (lipopolysaccharides, toxins, proteases etc.) produced by 

periodontopathogens trigger the EC, FB, alveolar bone cells and immune cells to release pro-

inflammatory mediators such as interleukin-1 beta (IL-1b), tumor necrosis factor-alpha (TNF-

a), prostaglandin E2 (PGE2), Receptor activator of nuclear factor kappa-Β ligand (RANKL) 

and reactive oxygen species (ROS) to initiate the periodontal tissue-destruction pathways 

(Alshammari et al., 2017; Huck et al., 2018; Lapérine et al., 2016; Singh et al., 2018). The 

complement system is a network of interacting channels or molecules that trigger, amplify, and 
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regulate immune and inflammatory signaling pathways (Hajishengallis et al., 2015). Dendritic 

Langerhans cells within the epithelium take up microbial antigenic material and bring it to the 

lymphoid tissue for presentation to lymphocytes. Neutrophils, granulocytes and lymphocytes 

infiltration into the periodontal lesion ensues where neutrophils attempt to engulf and kill 

bacteria (Bostanci et al., 2013). However, the severity and persistence of the periodontal 

infection causes severe chronic inflammatory response that leads to alveolar bone resorption by 

osteoclasts and degradation of PDL fibers by MMPs, consequently, forming the granulation 

tissue. This pathophysiological cascade continues tissue damage leading to tooth loss unless 

the treatment successfully removes the microbial biofilm and granulation tissue (Graves, 2008; 

Sorsa et al., 2016).  

The coordinated recruitment of neutrophils is crucial for periodontal tissue homeostasis 

as they can cause periodontal tissue destruction if their recruitment is not properly regulated or 

the microbial challenge in the periodontium cannot be controlled. Moreover, macrophages are 

detected in great numbers in gingival tissues of patients with gingivitis and chronic 

periodontitis, as confirmed by biopsy studies, and produce pro-inflammatory molecules like IL-

1, TNF-a, MMPs and PGE2. The subset M1 of macrophages has a pro-inflammatory role, 

whereas, M2 produces IL-10 and transforming growth factor beta 1 (TGF-b1) (Hajishengallis 

and Korostoff, 2017; Huck et al., 2017).  

Once lymphocytes reach the site of damage, B cells transform to antibody-producing 

plasma cells. The amount and avidity of the antibodies are instrumental in protection against 

periodontitis. Besides the antibody response, T-cells contribute to cell-mediated immune 

response by stimulating various T-helper (TH) cell responses: TH1, TH2 and TH17. Although 

the exact timing of their involvement and importance are still not fully elucidated, TH1 and 

TH2 cells are considered important during the early and late stages of chronic periodontitis 

respectively (Gemmell and Seymour, 2004). Moreover, recent studies have demonstrated that 

regulatory T (Treg) cells and other TH cell subsets (Kagami et al., 2009) as well as various 

cytokines (such as IL-17, IL-33) are also important in periodontal disease immuno-pathology 

(Lapérine et al., 2016; Schmitz et al., 2005). The phenomenon of osteoclastogenesis leading to 

bone resorption is regulated by several proteins including TNF/TNF receptor family. One of 

such group of proteins is called RANKL with its functional receptor called RANK. RANKL is 

expressed by EC, FB, osteoblasts and activated T cells, B cells and Treg cells. The 

RANK/RANKL binding activates osteoclastogenesis leading to bone resorption (Chen et al., 

2014; Hassan et al., 2017; Lapérine et al., 2016; Wei et al., 2005). 
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The host response plays a crucial role in periodontitis that has been demonstrated in 

several studies involving animal models (Delima et al., 2001; Eskan et al., 2012). An optimally 

regulated host response can provide homeostatic immunity and thus be protective 

(Hajishengallis and Korostoff, 2017). The understanding of the molecular mechanisms 

involving cytokines and complement systems for innate-adaptive immune crosstalk, activation 

and regulation of leukocytes and immune regulation of osteoclastogenesis have highlighted 

novel therapeutic targets for human periodontitis (Hajishengallis and Korostoff, 2017) (Figure 

6). 

 

Figure 6: Immuno-inflammatory cross-talk leading to periodontal tissue destruction. 
Microbial dysbiosis induces innate immune signaling pathways that lead to the development of 
an adaptive immune response within the junctional epithelium and gingival connective tissue. 
Regarding the humoral component of the response, pathogen-specific antibody that diffuses 
into the gingival sulcus (or pocket) or remains in the connective tissue can, in principle, inhibit 
the bacterial challenge via a number of potential mechanisms (indicated). Antibody-mediated 
activation of complement and innate immune cells can enhance gingival inflammation and 
contribute to tissue breakdown. Recent evidence has demonstrated the potential for B-lineage 
cells to express pro-inflammatory cytokines, MMPs, and RANKL. B-lineage cells therefore 
directly and indirectly participate in the degradation of the soft and hard tissue components of 
the periodontium (Hajishengallis and Korostoff, 2017). 
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1.1.4.2.1. Pro-inflammatory mediators 
 

Pro-inflammatory mediators are the key players not only in disease development 

and progression but also in initiating the repair process following tissue injury. TNF-a and IL-

1b are produced immediately after injury at high concentrations and increase the expression of 

adhesion molecules, chemokines, other pro-inflammatory mediators including prostaglandins 

(PGs) specially PGE2 and MMPs. Moreover, they stimulate the activation of osteoclasts, T, 

and B cells. Several studies confirmed that the absence of pro-inflammatory mediators can 

impair or delay wound healing (epithelialization, bone formation) (Graves et al., 2001; Heo et 

al., 2011; Ueda et al., 2014; Zhang et al., 2002), however, their over secretion after their due 

time or in concentrations higher than required can be detrimental for the healing phenomenon 

(Thomas and Puleo, 2011).   

In vivo, the “dual-edged sword” like role of pro-inflammatory mediators has 

demonstrated that the blockade of TNF-a and IL-1b at the early stage of the inflammation 

promotes wound healing, whereas, their prolonged blockade may have negative consequences 

(Zhang et al., 2002). Several studies highlighted the instrumental role played by TNF-a  and 

IL-1b in both the initiation and resolution of inflammation as well as in the regulation of 

osteoclastogenesis (Darveau, 2010; Morand et al., 2017a) (Figure 7). Studies have described 

many pro-inflammatory mediators that play a role in disease pathogenesis and healing such as  

IL-1β, IL-2, IL-6, IL-7, IL-8,IL-12, IL-17, IL-21, IL-23, IL-33, interferon gamma (IFN-γ), and 

TNF-α (Cetinkaya et al., 2013; Lapérine et al., 2016; Miranda et al., 2019). 
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Figure 7: Inflammation-mediated periodontal tissue damage. In periodontitis, bacteria 
produce a variety of virulence factors that elicit a host response consisting of the expression of 
various signaling molecules and mediators, and the recruitment of inflammatory cells. This 
process may culminate in tissue destruction and interfere with tissue regeneration and repair. 
The different pathways involved in the development and progression of periodontitis act as 
potential therapeutic targets for disease management (Thomas and Puleo, 2011). 
 

1.1.4.2.2. Anti-inflammatory mediators 
 

To counter-balance the effect of the pro-inflammatory cytokines and chemokines, 

certain anti-inflammatory (IL-4, IL-5, IL-10, IL-13, and TGF-β) cytokines are also secreted and 

their role is critical in the transition from inflammation to resolution phase (Bozkurt et al., 2006; 

Cetinkaya et al., 2013; Miranda et al., 2019).  

 
1.1.4.2.3. Pro-resolution mediators 
 

The pro-inflammatory mediators signal the generation of specialized pro-resolving 

mediators (SPMs) or induce their receptor targets (Spite et al., 2014). Various arachidonic acid 

(AA) derived metabolites (PGs, leukotrienes, lipoxins), D-series resolvins (RvD1-6), maresins, 

protectins and E-series resolvins (RvE1-3) are the key players in the resolution of inflammation 

preventing fibrosis (Balta et al., 2017; Kantarci and Van Dyke, 2005; Spite et al., 2014; Van 

Dyke, 2017) (Figure 8).  
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Figure 8: Transition from initiation to resolution of periodontal inflammation. Unresolved 
acute inflammation progresses to chronic inflammation that can, eventually, lead to fibrosis. 
In the initial inflammatory phase, polymorphonuclear neutrophils (PMNs) are recruited to the 
lesion. The monocyte/macrophage ratio is critical to achieve the resolution of inflammation 
(Spite et al., 2014). 
 

1.1.5. Management of periodontal diseases: current concepts 
  
 The aim of the periodontal therapy is to control inflammation and disease progression 

so that the patient can maintain a healthy and functional dentition at long term. Gingivitis is 

mainly treated by scaling that involves the removal of plaque or calculus deposits from teeth 

and surrounding tissues and the removal or reduction of risk factors, followed by daily home 

care and professional prophylaxis at follow-up visits (Petit et al., 2019a). 

 
1.1.5.1. Non-surgical therapy 
 
 In mild to moderate periodontitis, the patient management usually involves scaling 

and root planing (SRP) for the removal of both supra-gingival and sub-gingival plaque, and 

calculus deposits. SRP is performed manually with hand scalers and curettes, through power-

driven ultrasonic instruments, or using a combination of both. Manual scalers and curettes are 

sharp instruments with one or two cutting edges used for the removal of plaque and calculus. 

Subgingival cleaning or root planing is crucial in periodontal therapy and is more efficiently 

carried out with the ultrasonic scalers that vibrate at an ultrasonic range (approximately 25,000–

30,000 cycles per second) with stream of water ejected to remove adherent deposits from teeth 

(Adriaens and Adriaens, 2004; Kinane et al., 2017; Lea et al., 2004; Van der Weijden and 
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Timmerman, 2002). Following the initial SRP, adequate healing of the connective tissue 

requires about 4 to 12 weeks. Afterwards, the patient is recalled for a re-evaluation and the 

response to initial therapy is reassessed by recording clinical parameters. 

  If no residual inflammation and pockets exist, then the patient is placed on 

periodontal maintenance therapy. However, if there are signs of active disease, additional 

therapy is required, which could be either localized or generalized and either non-surgical or 

surgical, depending on the extent and severity of the residual inflammation (Graziani et al., 

2017). In non-surgical periodontal therapy, adjunctive chemotherapeutic agents, for instance, 

antimicrobial mouth-rinses and/or toothpastes with agents such as fluorides, chlorhexidine or 

triclosan are also incorporated to ensure and maintain plaque control (Kinane et al., 2017). Since 

supragingival plaque reappears within hours or days after its removal, it is important that 

patients have access to effective alternative chemotherapeutic products that could help them 

achieve adequate supragingival plaque control (Drisko, 2001). Moreover, complete sub-

gingival plaque removal is rather unrealistic to achieve, especially in deep periodontal  pockets 

(Adriaens and Adriaens, 2004; Kocher et al., 2000).  

 SRP with oral hygiene instructions is the most effective therapy to control 

periodontal infection and subsequent gingival inflammation (Tunkel et al., 2002; Van der 

Weijden and Timmerman, 2002). Long-term randomized controlled trials have shown that, 

when these basic conditions are met, non-surgical therapy can be an effective strategy, with no 

difference observed between non-surgical and surgical therapy when mean values of clinical 

measures are compared (PPD, CAL) (Apatzidou and Kinane, 2010; Goodson, 1986; Goodson 

et al., 2012). 

 Clinically, the periodontal treatment is targeted at reducing BOP and PPD, thereby, 

improving CAL as a result of tightened gingival attachment to the tooth due to decreased 

inflammation (Heitz-Mayfield and Lang, 2013). The choice of treatment strategy depends on 

several factors such as severity of the condition, patient’s age and systemic status (Figure 9).  
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Figure 9: Decision algorithm for the therapeutic management of periodontitis. Once 
diagnosed, patients with periodontitis undergo SRP, in addition to basic motivation and 
education on personal plaque control and reducing modifiable risk factors, such as smoking. 
If this approach proves successful at resolving the disease, patients should be offered regular 
maintenance therapy comprising debridement (SRP). If the disease is not controlled, additional 
treatment is needed and can comprise antibiotic, host modulation or surgical therapy (Kinane 
et al., 2017). 
 

 Although non-surgical periodontal therapy, with or without adjunctive therapies, is 

an effective treatment for periodontitis as it reduces PPD and results in the formation of some 

new attachment (Cobb, 2002) it also has several limitations. For instance, in non-surgical SRP, 

the periodontal curettes have a limited access (up to approximately 5.5 mm) and the mean PPD 

in which a plaque-free and calculus-free surface can be established is <4 mm, therefore, the 

efficacy of non-surgical SRP is reduced, especially in deep pockets (PPD >5 mm). In such deep 

pockets, the feasibility to successfully remove calculus increases with surgical access for SRP 

(Deas et al., 2016). In several cases, local anatomical factors that contribute to plaque retention 

may at the same time interfere with the non-surgical SRP, hence, necessitating the gain of 

surgical access or adjuvant therapy to eliminate plaque and calculus at these sites (Harmouche 

et al., 2019; Wang and Greenwell, 2001). Smoking habit and poor plaque control following 

non-surgical therapy also negatively impacts its outcomes (Tomasi et al., 2007). Therefore, in 

severe periodontitis cases, surgical therapy may be necessary to control inflammation and 

improve the treatment outcomes. 
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1.1.5.2. Surgical therapy 

The primary aim of the periodontal surgery is to gain sufficient access for SRP to 

ensure efficient sub-gingival plaque control, especially, in case of deep pockets or furcation 

involvement (Fickl et al., 2009; Serino et al., 2001; Wachtel et al., 2003). Several surgical 

approaches have been developed and modified for improvement over the years such as 

gingivectomy, gingivoplasty, open flap debridement (OFD), modified Widman flap, gingival 

curettage, minimally invasive surgery and regenerative surgery (Fickl et al., 2009; Serino et al., 

2001; Wachtel et al., 2003). In OFD, a section of the gingiva is surgically separated from the 

underlying tissues to provide visibility and access to the lesion. Pocket reduction surgery 

includes resection of soft and hard tissue using various techniques (Kinane et al., 2017; Wang 

and Greenwell, 2001). The excision of the soft tissue wall of the pocket is carried out in 

gingivectomy followed by gingivoplasty to contour the soft tissue (Deas et al., 2016). 

Conventional surgical approaches such as OFD are still considered reliable methods to access 

root surfaces, reduce PPD, and improve CAL gain. Combined SRP and surgery yielded greater 

PPD reduction as compared to periodontal surgery without initial SRP (Aljateeli et al., 2014; 

Graziani et al., 2017). However, the conventional surgical techniques offer only limited 

potential towards regenerating tissues destroyed by disease. Recently, surgical procedures have 

been developed and tested that aim at greater regeneration of periodontal tissues by achieving 

clinical attachment close to their original level (Bartold et al., 2016; Bottino and Thomas, 2015; 

Ivanovski, 2009; Wang et al., 2005). Regenerative surgery such as guided tissue regeneration 

(GTR) or induced tissue regeneration (ITR) with the use of biological agents or growth factors 

(Emdogain) and grafting are being carried out in clinical settings and have shown to improve 

significantly the clinical parameters. Moreover, further optimization and improvement of such 

pro-regenerative procedures is being tested by in vitro and in vivo approaches (Larsson et al., 

2016; Sanz et al., 2019; Sculean et al., 2000, 2011).  

1.1.6. Periodontal wound healing 
 

The periodontal wound healing involves a complex interplay of several cell types, 

chemokines, cytokines, growth factors and extracellular matrix (ECM) factors. This process 

can be categorized into different phases based on the predominant chemical mediators and 

cellular events taking place in each (Chen et al., 2010; Hämmerle et al., 2014; Morand et al., 

2017) (Figure 10) . 
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1.1.6.1. Phases of periodontal wound healing 
 

1.1.6.1.1. Hemostasis 
 

Hemostasis is the first phase of wound healing following an injury which is 

characterized by the formation of a clot or a hemostatic plug formed of activated platelets, 

neutrophils, and red blood cells entangled in a matrix of fibrin that fills the lesion site and 

initiates recruitment of inflammatory cells (Gurtner et al., 2008). This process usually lasts for 

about 3 to 6 hours. Various chemokines, cytokines, and growth factors such as epidermal 

growth factor (EGF), basic fibroblast growth factor (bFGF), TGF-b, platelet-derived growth 

factor (PDGF) and vascular endothelial growth factor (VEGF) are also secreted that drive the 

following phases (Qu and Chaikof, 2010): 

1.1.6.1.2. Inflammatory phase  
 

Inflammatory phase is initiated concomitant with hemostasis and lasts 4 to 6 days. 

Neutrophils and macrophages are the predominant cell types that eliminate pathogens at the 

lesion site (Susin et al., 2015). Several cell types such as gingival FB, PDL cells, EC, 

macrophages, and neutrophils secrete cytokines, such as TNF-a IL-1b, IL-6, and TGF-b,  to 

promote proliferative activity of EC and gingival FB and activate immune cells (T cells, B cells) 

(Kim et al., 2009; Noh et al., 2013). Certain enzymes like collagenases are secreted to degrade 

the ECM components, for instance, collagen and fibronectin. Later in this phase, lymphocytes 

infiltrate the lesion site influencing gingival FB proliferation and collagen formation (Morand 

et al., 2017; Trindade et al., 2014). The decrease in the pro-inflammatory precursors/stimuli is 

reflected by reduced numbers of neutrophils and macrophages switch from pro-inflammatory 

to pro-resolutive type (Fujishiro et al., 2008). This phase plays a major role in the process of 

periodontal wound healing and regeneration (Diegelmann and Evans, 2004). 

1.1.6.1.3. Proliferation 
 

The aftermath of inflammatory phase involves the formation of the granulation 

tissue (a highly vascularized tissue rich in FB) (Brancato and Albina, 2011). This period is 

regarded as the proliferative phase that usually spans between 4 to 14 days. This phase is 

dominated by the recruitment of EC, gingival FB and endothelial cells and decrease in wound 

size due to the contraction of myofibroblasts (Velnar et al, 2009; Morand et al., 2017). EC,  

gingival FB and macrophages secrete TNF-a, IL-1b, IL-6, and TGF-b (Brancato and Albina, 
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2011) that induce their activation, proliferation, migration and differentiation (Morand et al., 

2017; Werner et al., 2007). Later, EC secrete MMPs that causes degradation of the ECM 

(Hackam and Ford, 2002). These chemical mediators stimulate and modulate ECM 

biosynthesis, epithelialization, and angiogenesis (Robson, 2003). Proliferation rate varies 

among cells types. Epithelial cells exhibit the highest proliferative rate explaining the 

development of a long junctional epithelium during conventional periodontal wound healing 

(Alpiste-Illueca et al., 2006; Bosshardt and Lang, 2005; Susin et al., 2015). 

1.1.6.1.4. Remodeling 
 
 The final phase of wound healing involves the development of a new epithelium, 

elimination of granulation tissue and ECM remodeling (Velnar et al., 2009). This phase leads 

to complete wound closure and appearance of a scar as a result of fibrosis (Brancato and Albina, 

2011). Gingival FB and PDL reorganize ECM by synthesizing collagen (types I, III, V, VI, XII, 

and XIV), elastin, proteoglycans, MMPs, and their inhibitors (Sarrazy et al., 2011). This phase 

is regulated by several cytokines such as PDGF and TGF-b released by macrophages that 

stimulate gingival FB proliferation and synthesis of matrix components such as 

glycosaminoglycan and fibronectin leading to the contraction of provisional wound matrix 

(Morand et al., 2017). Furthermore, PDGF and TGF-b released during osteoclastic bone 

resorption also regulate osteoblast migration during bone remodeling and differentiation (Zagai 

et al., 2003). 

  Epithelial healing is achieved between 7 and 14 days following periodontal 

surgical therapy (Hämmerle et al., 2014). However, persistence of several factors such as 

infection and inflammation at the lesion site reduces healing rate and leads to greater scarring 

(Martin and Leibovich, 2005; Morand et al., 2017). The inflammatory response can either lead 

to chronic inflammation, scarring and fibrosis or complete resolution (Serhan and Chiang, 

2008). These possibilities may be influenced by many factors, such as the type or site of injury 

and the host response. The resolution of inflammation is initiated by anti-inflammatory and pro-

resolution lipid mediators, such as the lipoxins, resolvins, and protectins that promote the return 

to tissue homeostasis (Serhan and Chiang, 2008). Persistent inflammation or derangement of 

the resolution phase leads to chronic inflammation and, consequently tissue fibrosis and scar 

formation (Maskrey et al., 2011; Morand et al., 2017). 
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Figure 10: Phases of periodontal wound healing. Following an injury, the hemostasis phase 
is characterized by clot formation to maintain hemostasis. Then, inflammatory phase ensues 
which involves inflammatory cell recruitment and wound contraction. Angiogenesis, ECM 
synthesis and epithelialization occur during proliferative phase. Finally, epithelial and bone 
maturation and remodeling takes place in the remodeling phase of periodontal wound healing 
(Morand et al., 2017). 
 

1.1.6.2. Repair versus regeneration 
 

After the control of inflammation, regeneration of the degraded tissues remains the 

ultimate goal of periodontal therapy. Periodontal regeneration is defined as the reproduction or 

reconstitution of the lost or damaged tissues to their pre-existing and ideal form and function. 

Periodontal regeneration can only be fully demonstrated histologically (Ivanovski, 2009). The 

unique anatomy and composition of the periodontium comprising of both soft and hard tissues 

make periodontal wound healing a complex process as it demands a well-coordinated 

interaction between hard and soft tissues (Morand et al., 2017). Conventional periodontal 

therapy most commonly results in repair by collagenous scar tissue and is accompanied by the 

apical migration of gingival epithelium between the gingival connective tissue and the root 

surface forming long junctional epithelium (Alpiste-Illueca et al., 2006; Bosshardt and Lang, 

2005). This healing process does not fully restore either the form or the function of the lost 

structures and, hence, cannot be regarded as regeneration (Ivanovski, 2009). At contrary, 

periodontal regeneration refers to the restoration of periodontal tissues to their original form 

and function and its achievement requires a coordinated wound healing response of hard and 
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soft tissues (Alpiste Illueca et al., 2006; Bosshardt and Sculean, 2009; Ivanovski, 2009) (Figure 

11). Several animal models have also been developed to study periodontal wound healing and 

regeneration at a pre-clinical level (Batool et al., 2018 (see appendix); Kantarci et al., 2015).  

 

 
Figure 11: Patterns of periodontal wound healing. Periodontal healing can involve a) 
formation of long junctional epithelium b) root resorption c) ankylosis d) periodontal 
regeneration (Alpiste-Illueca et al., 2006) . 
 

1.1.6.3. Guided tissue regeneration (GTR) 
 

The concept of GTR was first introduced by Melcher in 1976 (Melcher, 1976). GTR 

is based on the principle of selective cell exclusion or selective cell repopulation. EC migrate 

approximately 10 times faster than other periodontal cells types. The exclusion of EC and 

gingival connective tissue cells from the wound for a period of time long enough to allow other 

cell types with regenerative potential to form cementum, bone and PDL can prevent the 

formation of the undesirable long junctional epithelium formed as a result of the premature 

epithelial down growth, consequently, promoting regeneration. This can be achieved by using 
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various barrier membranes with or without bone grafts (Alpiste-Illueca et al., 2006; Bosshardt, 

2018). The physical separation with the membrane creates a secluded place for the PDL, 

cementoblast and bone cells underneath to populate the site and create the neo-attachment of 

the tooth (Alpiste-Illueca et al., 2006; Bosshardt and Sculean, 2009; Ivanovski, 2009) (Figure 

12). GTR application in humans was first reported in 1982, utilizing a bacterial filter made of 

cellulose acetate (Millipore) as the barrier membrane with histology demonstrating the  new 

attachment (Nyman et al., 1982).  Several pre-clinical and clinical studies have shown improved 

treatment outputs with the application of GTR (Sculean et al., 2008). 

 

 

 
 
Figure 12: Guided tissue regeneration (GTR). The placement of a barrier membrane prevents 
the pre-mature epithelial downgrowth and allows space and time for the underlying bone and 
PDL to mature. This phenomenon leads to periodontal regeneration (Bhavsar et al., 2018). 
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Several factors like defect morphology, plaque index (PI), smoking, patient’s systemic 

condition play an important role in determining the healing response to GTR (Alpiste-Illueca 

et al., 2006; Cortellini et al., 2017; Reynolds et al., 2003). Moreover, membrane exposure owing 

to infection or persistent inflammation constitutes the major limitation of this procedure 

(Ivanovski, 2009; Ling et al., 2003). 

1.1.7. Adjunctive periodontal therapy 
 
 Several drugs have been proposed as adjuncts to non-surgical and surgical 

periodontal therapies for improving treatment outcomes. These include drugs targeting 

pathways involving infection, inflammation, host-immune system and bone metabolism such 

as antimicrobials (antibiotics/antiseptics) (Mombelli et al., 2011), anti-inflammatory (non-

steroidal anti-inflammatory drugs (NSAIDs)) (Agossa et al., 2015) and immune-modulatory 

drugs such as statins (Petit et al., 2019b; Zhang et al., 2014). The drugs are either administered 

systemically or locally. Systemic drug delivery is effective; however, it requires a very high 

dose to achieve an optimal concentration in the periodontal pocket after the initial hepatic 

bypass. The use of such high systemic dose results in several side-effects. At contrary, local 

drug administration has demonstrated greater efficacy because of its at-site delivery. Moreover, 

it requires a much lower dose, thereby, decreasing the risk of systemic side-effects and cost 

(Herrera et al., 2012; Joshi et al., 2016; Zhang et al., 2014). 

1.1.7.1. Modulation of inflammation 
 

Several cytokines are considered as key molecules during periodontal destruction 

process. The AA metabolite, cyclo-oxygenase-2 enzyme (COX-2) plays a dual role in the 

initiation and resolution of inflammation. During the inflammatory phase, the temporal switch 

from pro- to anti-inflammatory eicosanoids is a key event in the resolution of the inflammation. 

The PGs (PGD2 and PGE2) synthesis occurs by AA through COX-2 activity. The pro-

inflammatory effect of PGE2 is counter-balanced by the anti-inflammatory effect of PGD2. The 

shift towards the anti-inflammatory signaling causes blockade of the NFkB pathway, 

consequently, reducing the inflammatory response and progressing towards the resolution 

phase (Agossa et al., 2015) (Figure 13). 

The achievement of a fine balance between pro-inflammatory and anti-inflammatory/ 

pro-resolution mediators is crucial for periodontal wound healing and regeneration. The control 

and modulation of the inflammatory response and, especially, the activation/inhibition of 
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cytokines in a time- and spatial-controlled manner can be a potential therapeutic target for 

periodontal tissue engineering (Morand et al., 2017). 

 
 

 
 
Figure 13: The “tug of war” between periodontal inflammation and resolution. AA is 
metabolized by COX-1 and COX-2 leading to the production of several PGs. PGE2 initiates a 
pro-inflammatory response. At contrary, PGD2 is involved in the resolution of inflammation   
(Agossa et al., 2015). 
 

1.1.7.2.  Anti-inflammatory drugs 
 

Several studies have demonstrated the beneficial impact of anti‐inflammatory 

agents against gingivitis (with reduction in PI, BOP and PPD), either as a single treatment 

modality or as an adjunctive therapy. Since gingivitis leads to the development of periodontitis, 

the use of anti-inflammatory drugs could be effective to control gingival inflammation in 

periodontitis as well (Polak et al., 2015; Rosin et al., 2005). NSAIDs are non-selective inhibitors 

of COX enzymes (COX-1 and COX-2). COX-1 (expressed in cells and tissues) is the precursor 

of PG biosynthesis, whereas, COX-2 is induced by inflammatory triggers (cytokines, hormones 

and growth factors) and produces PGs in the inflammatory and proliferative phase of wound 
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healing (Agossa et al., 2015; Rouzer and Marnett, 2009). NSAIDs such as aspirin, ibuprofen, 

flurbiprofen, and naproxen are amongst the most commonly prescribed drugs worldwide. 

NSAIDs have been tested for decades to ameliorate periodontal inflammation, consequently, 

improving periodontal wound healing (Agossa et al., 2015; Meek et al., 2010). Ibuprofen is one 

of the most frequently prescribed NSAIDs in clinic as well as tested in several pre-clinical and 

clinical trials (Cavagni et al., 2016; Su et al., 2013). Ibuprofen is a selective COX-2 inhibitor 

and has a slight ability to inhibit COX-1 (Agossa et al., 2015). 

1.1.7.3. Antibiotics and antimicrobials 
 
 Poor control of bacterial plaque or lack of maintenance visits are major risk factors 

for periodontal treatment and lead to a reduction in the formation of new attachment and bone 

tissue (Lang and Bartold, 2018, Petit et al, 2019a). The de novo accumulation of plaque 

provokes a relapse of periodontal diseases, even when a significant attachment level has been 

achieved by the treatment (Alpiste-Illueca et al., 2006). The use of anti-plaque chemical agents 

as adjunctive therapy is well established, especially, in treating gingivitis and for the 

maintenance phase of periodontal therapy (Serrano et al., 2015). The administration (both local 

and systemic) of antibiotics and antimicrobials as an adjunct to periodontal therapy has shown 

significant improvement in periodontal parameters (PPD reduction and CAL gain) (Herrera et 

al., 2012). However, the long-term use of systemic antibiotics poses the risk of developing 

bacterial resistance and potential side-effects, therefore, the use of probiotics or other 

antimicrobials is considered as a safer alternative (Martin-Cabezas et al., 2016; Tomasi et al., 

2008).  

1.1.7.4. Pleiotropic drugs: the case of statins 

 Statins, or inhibitors of 3-hydroxy- 3-methylglutaryl coenzyme A reductase 

(HMG-CoA reductase) have demonstrated pleiotropic properties that could be beneficial as an 

adjunct to periodontal therapy for improving the treatment outcomes. Statins possess anti-

inflammatory, anti-bacterial characteristics, can modulate the host-immune response and 

regulate bone metabolism (Petit et al., 2019b; Zhang et al., 2014). Several pre-clinical and 

clinical trials have endorsed their effectiveness in improving periodontal parameters through 

systemic as well as local delivery (Bradley et al., 2016; Fentoğlu et al., 2012; Özdoğan et al., 

2018; Pradeep and Thorat, 2010; Pradeep et al., 2015).  
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1.1.8. Novel spatial and time-controlled drug delivery scaffolds  

According to the American Society for Testing Materials (ASTM—F2150), a scaffold 

is defined as “the support, delivery vehicle, or matrix for facilitating the adhesion, migration, 

or transport of cells or bioactive molecules used to replace, repair, or regenerate tissues”. It 

should precisely replicate the features of the native ECM at the nanoscale to regulate cell 

function and encourage and regulate specific events at the cellular and tissue levels. Moreover, 

scaffolds should be synthesized from biocompatible and biodegradable materials to avoid 

immune responses (Bottino et al., 2017). 

Several scaffolds have been developed for the local delivery of active molecules in a 

time-controlled manner that could be optimized for future clinical use. Functionalized 

membranes (Bottino and Thomas, 2015; Farooq et al., 2015; Morand et al., 2015; Yar et al., 

2016), gels such as hydrogels, nano-emulsions (Anton and Vandamme, 2009, 2011), in-situ 

forming implants (Agossa et al., 2017; Aithal et al., 2018; Do et al., 2014; Prateeksha et al., 

2019), nano-particles (Khodir et al., 2013), liposomes (Sugano et al., 2014) and 3D matrices 

(Eap et al., 2012; Rasperini et al., 2015; Rusu et al., 2019) are some of the major scaffolding 

strategies. These strategies directly deliver the drug at the treatment site enhancing its quick 

absorption and retention, thus, improving its efficiency. The sustained delivery of the active 

molecule promotes wound healing. Furthermore, the low dose of locally delivered drug reduces 

the risk of systemic side-effects. Interestingly, such scaffolds can be optimized  to deliver a 

combination of active molecules such as antimicrobial agents, anti-inflammatory and growth 

factors in a time-dependent manner (Ivanovski et al., 2014; Sundararaj et al., 2013).  

Several characteristics, for instance, chemical and physical properties, morphology, 

porosity and rate of degradation must be considered while designing a scaffold. An ideal 

scaffold is biocompatible, biodegradable and has a three-dimensional architecture, initial 

mechanical strength and appropriate rigidity. Moreover, a high porosity facilitates attachment, 

proliferation, migration, differentiation of cells and also allows the transport of nutrients and 

metabolic waste. However, the scaffold’s rate of degradation must be precisely controlled and 

coordinated to follow the regenerated neo-tissues during their stages of growth, remodeling, 

and maturation (Alsberg et al., 2003). Different techniques or a combination of techniques are 

used for the fabrication of scaffolds such as solvent exchange,  emulsion freeze-drying, salt 

leaching, electrospinning and 3D printing (Agossa et al., 2017; Ivanovski et al., 2014; Loh and 

Choong, 2013). Furthermore, functionalization of scaffolds with active molecules or drugs 

could be obtained by methods like impregnation, incorporation, encapsulation, coating, and 
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grafting. Nevertheless, the use of membranes for periodontal regeneration requires surgical 

administration of the membrane and a subsequent risk of infection or membrane exposure 

besides other surgery-associated complications (Ling et al., 2003). The incorporation of 

conventional gels into periodontal therapy is convenient, however, their easy dislodgement 

from the periodontal pocket limits their efficacy (Kempe and Mäder, 2012; Kranz and 

Bodmeier, 2008).     

 

1.1.8.1. In-situ forming implants (ISFI) 
 

Recently, ISFI have been developed and characterized as poly(lactic-co-glycolic 

acid) (PLGA) based controlled-release local drug delivery systems containing hydroxypropyl 

methylcellulose (HPMC) as adhesive polymer. They have been tested for local administration 

of drugs such as doxycycline or metronidazole for periodontitis treatment (Do et al., 2014, 

2015a). However, since the long-term use of antibiotics can lead to bacterial resistance, a safer 

alternative of ISFI using antiseptic drug chlorhexidine has been developed and tested for local 

periodontitis treatment. These formulations possess a liquid consistency at the time of injection 

that hardens within the periodontal pocket through solvent exchange process and acquires the 

3-dimensional shape of the lesion, thus ensuring a full lesion coverage and greater retention. 

These properties make ISFI a very convenient and efficient intra-pocket therapy as an adjunct 

to periodontal treatment (Agossa et al., 2017) (Figure 14). 
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Figure 14: Mechanism of action of ISFI. The ISFI are liquid formulations and can, therefore, 
be easily injected into the periodontal pocket where they harden upon contact with saliva and 
gingival fluid (through solvent exchange) and achieve the 3D shape of the pocket, thus, 
enhancing the ISFI retention and efficiency (Agossa et al., 2017).
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Persistence of inflammation and infection are the major hinderances in achieving 

optimal periodontal wound healing and regeneration, and their control is crucial to avoid 

inflammation-mediated degradation of periodontal tissues. Therefore, our aim was to develop 

and optimize novel therapeutic strategies for promoting periodontal wound healing and 

regeneration by the modulation of inflammatory response. The co-ordinated healing response 

of the soft and hard periodontal tissues is difficult to achieve, and the following therapeutic 

strategies were developed and tested for their pro-regenerative potential: 

 

I. Development of a novel membrane targeting inflammation to improve 

periodontal treatment outcomes. 

 

As persistence of a chronic inflammation impaired GTR, we hypothesized that the 

control of inflammation through local delivery of anti-inflammatory drug will be of interest to 

improve GTR outcomes. Indeed, we wanted to combine the principle of cellular exclusion 

through the physical properties of a membrane with the pharmacological control of the 

inflammation through ibuprofen delivery. Therefore, we selected to synthesize a 

polycaprolactone membrane functionalized with ibuprofen through electrospinning technique 

due to its physical and biological properties, and we aimed to evaluate its biocompatibility, anti-

inflammatory and pro-regenerative effects in Pg stimulated periodontal cells (EC and FB) in 

vitro and in an experimental model of periodontitis in vivo. 

 

II. Development of a novel ISFI targeting both infection and inflammation to 

improve periodontal treatment outcomes. 

 

As demonstrated previously, non-surgical periodontal treatment outcomes could be 

impaired by local risk factors associated to the depth of the lesion or to the 3D configuration of 

the periodontal lesion. Indeed, persistence of biofilms on the tooth surface or within pocket 

could trigger chronic inflammation and reduce healing potential. To address these problems, 

we hypothesized that the local delivery of both antiseptic and anti-inflammatory drugs in 

addition to SRP will overcome such limitations. ISFI could be an interesting option as it is easy 

to inject within the lesion and fits to its 3D shape. Therefore, we decided to develop an ISFI 

loaded with chlorhexidine and ibuprofen, as a proof of concept, and to evaluate its anti-

microbial and anti-inflammatory properties in vitro and in vivo. 
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III. Development of a novel hydrogel targeting infection, inflammation, immune 

response and bone metabolism to improve periodontal treatment outcomes. 

 

The knowledge of periodontal disease pathogenesis, involving infection triggered-

immuno-inflammatory response leading to dysregulation of bone metabolism, highlights 

potential therapeutic targets. Statins have demonstrated pleiotropic effects including anti-

bacterial activity, modulation of inflammatory-immune response and bone metabolism. 

Therefore, we hypothesized that the local delivery of atorvastatin could improve periodontal 

treatment outcomes and could induce a co-ordinated healing response of soft and hard 

periodontal tissues. Since, statins are poorly soluble in aqueous solvents, we decided to 

synthesize a thermosensitive atorvastatin-functionalized chitosan hydrogel. Furthermore, we 

conjectured that encapsulation of atorvastatin within nano-emulsion particles could enhance 

their intracellular drug delivery.  Thus, in a preliminary study, we decided to explore the 

efficacy of local atorvastatin nano-emulsion delivery in vitro as well as in vivo in a murine 

calvarial bone defect model. 
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CHAPTER 1 
 

Development of a novel strategy to modulate periodontal 

inflammation and to promote periodontal wound healing based on 

synthesis of a novel electrospun functionalized scaffold 
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Publication 1: Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized 

with Ibuprofen for Periodontal Regeneration: An In Vitro and In Vivo Study. (Batool et al., 

Materials, 2018) 

 

Résumé :  

 La persistance d’une inflammation chronique parodontale est le facteur majeur impliqué 

dans la destruction des tissus parodontaux. De plus, il a été observé que celle-ci peut également 

réduire le potentiel de régénération au niveau d’un site parodontal traité. A l’heure actuelle, 

l’utilisation de membrane permettant l’exclusion cellulaire est une technique largement utilisée 

dans le traitement des lésions infra-osseuses. Cependant, les résultats obtenus peuvent varier en 

fonction de facteurs de risque mais également de la réponse inflammatoire et de son intensité 

notamment au niveau des tissus mous, ceci du fait principalement des interactions moléculaires 

entre parodonte superficiel et profond (soft tissues/bone crosstalk) mais également du fait de la 

prolifération des tissus mous au sein du défaut. L’objectif de cette étude a été de développer 

une nouvelle membrane synthétique fonctionnalisée par un anti-inflammatoire et d’évaluer son 

effet sur la réponse inflammatoire cellulaire au niveau des tissus mous et sur la régénération 

parodontale. 

Une membrane a ainsi été synthétisée à base de polycaprolactone par la technique 

d’électrospinning et a été fonctionnalisée par ibuprofène. La membrane a par la suite été 

caractérisée par microscopie électronique à balayage et à transmission. Ces analyses ont permis 

de valider la structure de la membrane obtenue. Celle-ci est formée de fibres régulières 

interconnectés d’un diamètre moyen de 374nm reproduisant la structure de la matrice extra-

cellulaire. De plus, l’encapsulation de l’ibuprofène a pu être observée au sein des fibres de la 

membrane. Enfin, il a été observé un relargage à court terme de l’ibuprofène dans le milieu 

permettant d’atteindre rapidement une dose active au niveau tissulaire. 

Afin d’évaluer les propriétés anti-inflammatoires de cette membrane, une analyse in 

vitro de la viabilité, de la prolifération (scratch assay) et de l’expression des gènes (Rt-qPCR) 

associées à l’inflammation a été réalisée au niveau de cellules épithéliales gingivales et de 

fibroblastes stimulés par le LPS de Pg. Les résultats ont pu mettre en évidence une réduction 

de la vitesse de prolifération des cellules épithéliales stimulées par le LPS lorsque les cellules 

étaient en contact avec la membrane fonctionnalisée. De plus, une réduction de l’expression 

des gènes pro-inflammatoires COX-2 et IL-8 a été observée au niveau des cellules stimulées 

par le LPS et au contact de la membrane fonctionnalisée. L’ensemble de ces données nous ont 
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permis de valider le biomatériau synthétisé et d’évaluer ses effets in vivo sur la cicatrisation 

parodontale.  

Dans un modèle murin de parodontite expérimentale induite par le placement répété de 

ligatures infectées par Pg, les membranes fonctionnalisées par l’ibuprofène ont pu être testées 

après mise en place chirurgicale. L’impact sur la cicatrisation a été mesuré après 22 jours de 

cicatrisation par mesures histomorphométriques. Il a ainsi été observé une amélioration 

qualitative de l’attache parodontale au niveau des sites traités par membrane fonctionnalisée 

caractérisée par un épithélium de jonction plus court que celui observé au niveau des sites 

contrôles (traitement mécanique seul). Bien qu’aucune différence significative n’ait été mise 

en évidence en ce qui concerne le niveau osseux, une réduction du nombre d’ostéoclastes 

(TRAP positive) au niveau des sites traités par membrane fonctionnalisée a été observé.  

Cette étude nous a permis de valider l’intérêt de l’utilisation de telle membrane 

fonctionnalisée par un anti-inflammatoire dans le contexte parodontal. Cependant, des 

améliorations notamment relatives à la dégradation de la membrane dans le temps mais 

également sur le temps et la période de libération du médicament doivent être entrepris afin de 

faciliter son utilisation et optimiser les résultats. De plus, la démonstration de la faisabilité du 

placement d’une membrane dans un modèle murin de parodontite expérimentale a également 

pu être effectuée.  
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Abstract: Ibuprofen (IBU) has been shown to improve periodontal treatment outcomes. The aim of this
study was to develop a new anti-inflammatory scaffold by functionalizing an electrospun nanofibrous
poly-"-caprolactone membrane with IBU (IBU-PCL) and to evaluate its impact on periodontal
inflammation, wound healing and regeneration in vitro and in vivo. IBU-PCL was synthesized
through electrospinning. The effects of IBU-PCL on the proliferation and migration of epithelial
cells (EC) and fibroblasts (FB) exposed to Porphyromonas gingivlais lipopolysaccharide (Pg-LPS)
were evaluated through the AlamarBlue test and scratch assay, respectively. Anti-inflammatory
and remodeling properties were investigated through Real time qPCR. Finally, the in vivo efficacy
of the IBU-PCL membrane was assessed in an experimental periodontitis mouse model through
histomorphometric analysis. The results showed that the anti-inflammatory effects of IBU on gingival
cells were effectively amplified using the functionalized membrane. IBU-PCL reduced the proliferation
and migration of cells challenged by Pg-LPS, as well as the expression of fibronectin-1, collagen-IV,
integrin ↵3�1 and laminin-5. In vivo, the membranes significantly improved the clinical attachment
and IBU-PCL also reduced inflammation-induced bone destruction. These data showed that the
IBU-PCL membrane could efficiently and differentially control inflammatory and migratory gingival
cell responses and potentially promote periodontal regeneration.
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1. Introduction

Periodontal diseases are a group of inflammatory diseases, comprising gingivitis and
periodontitis, induced by bacterial infection. Gingivitis is a reversible disease affecting gingival tissues,
while periodontitis is irreversible and affects the profound periodontium. Severe periodontitis is the
sixth most prevalent disease worldwide affecting around 743 million people [1] and is considered the
main cause of tooth loss with an impact on systemic health and quality of life [2]. Periodontitis leads to
a progressive destruction of the periodontal tissues including alveolar bone, periodontal ligament and
connective tissues. This destructive phenomenon results in periodontal pocket formation defined as
the space between pathologically-detached gingiva and tooth surface clinically measured by increased
pocket depth (PPD) and decreased clinical attachment level (CAL) [3]. CAL refers to the estimated
attachment of tooth-supporting tissues and is directly linked to the prognosis of tooth loss [4].

The main etiological factor of periodontitis is associated with dysbiosis of the periodontal
flora resulting in increased proportions of anaerobic bacteria such as Porphyromonas gingivalis (Pg),
a Gram-negative anaerobe often found in severe periodontal lesions, acting through virulence factors
such as lipopolysaccharide (Pg-LPS) [5]. Periodontal destruction results from the disruption of
host-pathogens balance, characterized by sustained inflammation orchestrated by the activation of
innate immune response leading to massive recruitment of immune cells, the release of inflammatory
mediators including cytokines such as Tumor necrosis factor-alpha (TNF-↵) and proteases such as
matrix metalloproteinases (MMPs) [6].

The aim of periodontal treatment is to reduce bacterial load and suppress inflammation. It consists
of oral hygiene instructions, modification of local or systemic risk factors, scaling and root planing
(SRP) with, in some clinical scenarios, adjunctive therapeutics such as antimicrobials (antibiotics,
antiseptics), probiotics or surgical approaches aiming to reduce bacterial load and sustained tissue
inflammation [7–9]. The conventional treatment achieves the repair of degraded tissue with some
recovery of CAL and reduction in PPD; however, periodontal regeneration still remains elusive [10].
Periodontal regeneration refers to the restoration of destructed tissue to its original state of both
form and function [11]. It is of clinical interest to achieve regeneration as it has been associated
with long-term benefits including tooth retention, less periodontitis recurrence and less expense for
re-intervention [12]. Guided tissue regeneration (GTR) has been considered to be the gold standard
for periodontal regeneration for decades and is still considered effective in improving the clinical
and radiographic parameters of patients with chronic periodontitis [13,14]. The use of a membrane,
as a barrier, prevents early epithelial downgrowth, allowing maturation of bone and periodontal
ligament [15]. The use of non-resorbable membranes allows better space maintenance and clinical
outcomes; however, it requires a second surgery for removal, increasing the risk of infection. In contrast,
the ease of use, gradual degradation and reduced chances of infection render bioresorbable membranes
better candidates for GTR [16]. Nevertheless, GTR outcomes could also be impaired by persistent
inflammation [17], and the use of new functionalized membranes has been proposed to overcome
inflammation and infection-related challenges [18–20].

The phases during periodontal wound healing are under the control of several growth factors and
cytokines. An imbalance between pro- and anti-regenerative molecules can be induced by sustained
release of prostaglandins (PGs) and arachidonic acid (AA) metabolites [21]. Therefore, the use of
non-steroidal anti-inflammatory drugs (NSAIDs) has been proposed in this regard. NSAIDs block
cyclooxygenase (COX), which converts AAs to PGs [22], and previous clinical studies have shown that
their use during periodontal treatment leads to PPD reduction and improvement of CAL gain [23],
as demonstrated for ibuprofen (IBU) or flurbiprofen. However, their long-term use, especially through
systemic delivery, is associated with potential side-effects [24].

Currently, multiphasic scaffolds represent one of the newest and very promising nanomaterials
in the field of drug delivery, wound healing and tissue engineering. Immediate or modified drug
release can be achieved by varying the choice of polymer and the manner of drug loading for nanofiber
production [25]. These strategies tend to facilitate the controlled release and local delivery of drugs
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in a time-dependent manner, rendering it possible to overcome the side-effects of systemic delivery
of certain drugs [26]. The functionalization of scaffolds with drugs could be obtained with several
methods such as impregnation, incorporation, encapsulation, coating and grafting, hence imparting
different advantageous characteristics to the membrane [27]. In this context, a poly-"-caprolactone
(PCL) membrane was evaluated and demonstrated for its pro-regenerative ability in periodontal
applications [28]. The PCL membrane has been reported to be biodegradable and biocompatible
with enhanced mechanical properties to stabilize the initial clot [29]. Interestingly, functionalization
with anti-inflammatory compounds such as alpha-melanocyte-stimulating hormone (↵-MSH) has
already displayed amplified anti-inflammatory effects associated with anti-soft tissue invasion and
anti-fibrotic characteristics [28]. Fascinated by this concept, NSAID-loaded electrospun membranes
(ketoprofen/PCL and piroxicam/chitosan) have also been successfully tested for periodontal
regeneration in vitro with promising results [30–32].

The aim of our study was to develop an efficient anti-inflammatory scaffold to overcome the
post-operative inflammation after GTR, through localized delivery of IBU from electrospun PCL
nanofibers thus, integrating the barrier technique with anti-inflammatory therapy, to assess the
biocompatibility and anti-inflammatory properties of the IBU-functionalized PCL membrane (IBU-PCL)
and to study its potential pro-regenerative role during periodontal wound healing in vitro and in vivo.
The primary expected goal of our synthesized scaffold was to control inflammation and migration of
soft tissue-associated cell types and to achieve a short epithelial attachment reinforced by an underlying
connective tissue support, thereby eliminating the undesirable long junctional epithelial attachment
hindering ad integrum periodontal regeneration.

2. Results

2.1. Release of IBU from IBU-PCL Membrane

The release profile showed that IBU exhibited a burst release. The optimal therapeutic
concentration of IBU (98%) was achieved after 2 h (Figure 1A). Moreover, it confirmed the encapsulation
of the IBU within the PCL phase (Figure 1B). The morphology and fiber diameter distributions of the
IBU-PCL membrane exhibited no beads in the fibrous structure, and the fibers were uniform in size
and interconnected in order to mimic the natural extracellular matrix (ECM) (Figure 1C). The diameter
of fibers was 374 ± 89 nm for the IBU-PCL electrospun fibrous membrane.

Figure 1. Cont.
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Figure 1. Morphology and analyses (quantitative and qualitative) of IBU-PCL electrospun fibrous
scaffolds. In vitro IBU release profile (A) and localization of IBU (B) within PCL electrospun fibers.
98% of IBU was released from PCL electrospun fibers during the first two hours in PBS. Analysis was
determined by UV spectroscopy and transmission electron microscopy observation (TEM). The scale
bar of the TEM images represents 100 and 200 nm. The fiber size distribution was obtained by
measuring at least 200 fibers in different scanning electron microscopy (SEM) images (C) of the
IBU-PCL electrospun fibrous membrane. The fiber solution was constituted by 10% of PCL, 20% of
non-commercial hydroxyapatite (HAnC), 10% of IBU and 10% of polyvinyl acetate (PVAc) (w/w),
and the fiber diameter was of 374 nm. The scale bar of the SEM images represents 10, 3 and 1 µm.

2.2. IBU-PCL Membrane Reduces Proliferation of Pg-LPS-Stimulated Cells

To assess if the IBU-PCL membrane influences EC and FB proliferation in an inflammatory context,
cells were challenged by Pg-LPS during 6–48 h. Exposure to Pg-LPS induced an increased proliferation
of both EC and FB seeded on the PCL membrane at 24 and 48 h (Figure 2A,B). Interestingly, these
increments were not observed for cells seeded on the IBU-PCL membrane.

To evaluate the impact of IBU on EC migration, a scratch assay has been performed. Data showed
that early treatment of Pg-LPS-stimulated EC with IBU significantly reduced their migration rate
(42% decrease at 12 h; p < 0.05) (Figure 2C).

Figure 2. Proliferation of EC (A) and FB (B) after 6, 24 and 48h and EC migration after 6–24 h (C). These
different conditions have been measured by using the AlamarBlue test (A,B). EC and FB proliferation
has been evaluated on PCL and IBU-PCL membranes and with or without Pg-LPS stimulation. Data
are expressed as the mean ± SD. * Difference between cells with or without IBU, p < 0.05, † difference
between stimulated cells with or without IBU, p < 0.05. Epithelial migration has been evaluated through
the in vitro scratch assay (C) after injection of IBU (50 µg/mL) at baseline (T0), 2 h (T2) and 4 h (T4) at 6,
12 and 24 h in EC stimulated with Pg-LPS. Data are expressed as the % of wound closure ± SD; * p < 0.05.
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2.3. IBU-PCL Membrane Modulates mRNA Expression in Stimulated Cells

In order to evaluate the anti-inflammatory and pro-regenerative properties of the IBU-PCL
membrane, gene expression of COX-2, IL-8 and extracellular matrix (ECM)-related molecules
(fibronectin-1, collagen-IV, integrin ↵3�1 and laminin-5) was measured in cells stimulated by Pg-LPS.
As expected, exposure to Pg-LPS significantly increased gene expression of inflammatory mediators,
COX-2 and IL-8 in EC and FB seeded on plastic and on the PCL membrane (Figure 3). Such an increase
was counteracted in Pg-LPS-stimulated cells seeded on the IBU-PCL membrane emphasizing the
anti-inflammatory effect associated with the release or contact between cells and IBU.

Figure 3. Gene expression of COX-2, IL-8 in EC (A,C,E,G) and FB (B,D,F,H) cultured on plastic
(A–D) and PCL membrane (E–H). Relative mRNA levels were analyzed by real-time RT-qPCR for
COX-2, IL-8 in EC and FB after 6 h and 24 h. Data are expressed as mean ± SD. † Difference between
non-stimulated and stimulated cells, p < 0.05; * difference between stimulated cells with or without
IBU, p < 0.05.

ECM factor expression was also modulated by Pg-LPS challenge, and this exposure significantly
enhanced fibronectin and laminin-5 expression in FB seeded on plastic and membrane (Figure 4).
IBU had no significant effect on mRNA expression of ECM factors in EC and FB not exposed to Pg-LPS
(Figures 4 and 5) and cultured on plastic compared to their respective controls, whereas, in the presence
of Pg-LPS, IBU significantly decreased integrin ↵3�1 expression in EC (Figure 5) and fibronectin-1
expression in FB (Figure 4). In contrast to the cell cultures on plastic, the IBU-PCL membrane decreased
mRNA expression of collagen-IV, fibronectin-1, integrin ↵3�1 and laminin-5 in both non-stimulated
and stimulated EC and FB at 6 h. These results showed that embedding of IBU within PCL membrane
enhanced its effects on gene expression in a cell-dependent manner. Furthermore, negligible decrease
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of mRNA expression of COX-2, IL-8 and ECM factors by PCL membrane in cells, both non-stimulated
and stimulated with Pg-LPS, revealed the non-toxic/non-inflammatory nature of the membrane.

Figure 4. Gene expression of collagen-IV, fibronectin-1, integrin ↵3�1 and laminin-5 in FB cultured on
plastic (A–D) and PCL membrane (E–H). Relative mRNA levels were analyzed by real-time RT-qPCR
for collagen-IV, fibronectin-1, integrin ↵3�1 and laminin-5 in FB after 6 and 24 h. Data are expressed
as the mean ± SD. † Difference between non-stimulated and stimulated cells, p < 0.05; * difference
between stimulated cells with or without IBU, p < 0.05.

Figure 5. Cont.
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Figure 5. Gene expression of collagen-IV, fibronectin-1, integrin ↵3�1 and laminin-5 in EC cultured on
plastic (A–D) and PCL membrane (E–H). Relative mRNA levels were analyzed by real-time RT-qPCR
of collagen-IV, fibronectin-1, integrin ↵3�1 and laminin-5 in EC after 6 and 24 h. Data are expressed
as the mean ± SD. † Difference between non-stimulated and stimulated cells, p < 0.05; * difference
between stimulated cells with or without IBU, p < 0.05.

2.4. IBU-PCL Membrane Improves Wound Healing in an Induced Periodontitis Mouse Model

IBU-PCL membrane was surgically placed in an experimental periodontitis mouse model to
evaluate its therapeutic potential in vivo (Figure 6). Epithelial attachment (EA) and bone level (BL)
were evaluated 22 d after membrane placement. A qualitative improvement of CAL was observed in
membrane-treated sites exhibiting a more important connective tissue attachment and a corresponding
shorter junctional epithelium in comparison with sites treated with SRP only (p < 0.05 for PCL and
IBU-PCL vs. control) (Figure 6F). Regarding BL, no improvement was measured in sites treated with
either of the membranes in comparison with SRP-treated sites. However, no osteoclastic activity was
observed on alveolar bone margins at IBU-PCL-treated sites, while some was detected at PCL-treated
sites (Figure 6G,H). Interestingly, some inflammatory cell infiltrate was observed surrounding the
membrane (both IBU-PCL and PCL) visibly persistent in the tissue (connective tissue zone) (Figure 6E).
In some cases, a space in the fibrous connective tissue organization indicated the presence of a
membrane (IBU-PCL) that may have stayed intact for a short duration of time.

Figure 6. Cont.
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Figure 6. Periodontal wound healing at 22 days. Corresponding histological sections scaling and
root planning (SRP) (A), IBU-PCL (B,D), and PCL (C,E). Red lines = cemento-enamel junction
(CEJ); green lines = epithelial attachment level; yellow lines = bone level. PCL and the IBU-PCL
membrane are highlighted (*). Histomorphometric analysis (F). EA and BL have been measured on
histological sections. Distances are expressed as the mean ± SD in µm; * p < 0.05. TRAP expression:
Few TRAP-positive cells (red staining) were observed on the bone surface at 22 days (G,H).
Numerous TRAP-positive cells were observed around PCL membrane (*), but not around the
IBU-PCL membrane (**). EPI: gingival epithelium, CT: gingival connective tissue, AB: alveolar bone,
PL: periodontal ligament, R: root, EA: epithelial attachment level, BL: bone loss.

3. Discussion

Achievement of periodontal regeneration is the ideal goal of periodontal treatment. In this
study, an NSAID-loaded scaffold was developed to combine both mechanical properties of a barrier
membrane and anti-inflammatory effects of IBU. Herein, we demonstrated the anti-inflammatory
and anti-migratory effects of IBU-PCL membrane and its positive effects on periodontal wound
healing parameters.

Inflammation is a necessary component of wound healing, which if persists, may hinder tissue
regeneration. Excessive inflammation may lead to wound non-closure or development of granulation
tissue [32]. Furthermore, activation of COX-2 by bacterial stressors or cytokines (IL-1↵, TNF-↵) will
induce production of PGE2, which has been demonstrated to be involved in the regulation of bone
metabolism through activation of related molecular pathways in FB or periodontal ligament cells [33].
Therefore, development of immunomodulatory strategies may be of interest to improve periodontal
regeneration outcomes, and several drugs or compounds from synthetic or natural origin have been
tested, aiming to reduce inflammatory markers’ levels [20,34,35]. However, systemic delivery may
reduce their efficacy and may increase the risk of side-effects. Therefore, new scaffolds based on
nanotechnologies were developed to deliver drug to particular tissues or cells [36].

PCL membranes have been previously used to promote periodontal ligament, bone healing [37,38],
as a scaffold for periodontal cells [39] and as a drug carrier [40,41]. Biocompatibility of PCL has also
been extensively demonstrated with osteoblasts in vitro [42,43] or in vivo [38] and medical-grade PCL
is already available [41]. The PCL membrane exhibited a fiber distribution and diameter similar to the
ECM combining high infiltration and integration with mechanical properties such as low resorbability
and space maintenance [44].

Here, IBU was selected and loaded into PCL core-shelled nanofibers, protecting it during the
electrospinning process [45]. IBU is a well-described anti-inflammatory drug that has been evaluated in
the context of periodontitis [46]. Here, we selected the dose of 50 µg/mL based on the low cytotoxicity
and its capability to reduce EC migration. Herein, this dose was able to reduce the expression of
inflammatory markers induced by Pg-LPS stimulation in both cell types significantly. Pg-LPS is a
strong inducer of pro-inflammatory responses in gingival EC and FB [28,47]. In this inflammatory
model, Pg-LPS increased COX-2 and IL-8 expression as previously observed in a cell-dependent
manner [48–50]. This cell-specific response was also observed in keratinocytes and fibroblasts in skin
substitutes [51] and may be explained by the type of Toll-like receptor (TLR) activated [52,53]. In the
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present study, the IBU-PCL membrane amplified and/or extended over time the anti-inflammatory
effect of IBU depending on cell type emphasizing the role of the progressive release by the scaffold as
observed for the association with the PLGA membrane [54].

The proliferation rate of EC and FB cultured on PCL membranes showed that PCL membranes
were biocompatible for gingival cells. Interestingly, the use of PCL membranes delayed cell
proliferation, and this effect appeared to be less pronounced in EC than in FB [55]. This reduction
of proliferation was amplified with the same dose of IBU in PCL membranes. This difference in
proliferation between EC and FB may be due to the surface chemistry and topography, microstructure
and mechanical properties of the cultures. Furthermore, PCL membranes functionalized with IBU
tend to decrease EC and FB proliferation stimulated by Pg-LPS. These results suggest that the use of
IBU-PCL membranes may prevent or delay gingival cell migration in an inflammatory context.

Concerning the ECM molecule expressions, IBU downregulated collagen-IV, fibronectin-1,
integrin ↵3�1 and laminin-5 expressions in EC and FB cultured on plastic and PCL membrane.
Compared to plastic culture, downregulation of genes was also amplified with the same dose of
IBU in PCL. Fibronectin-1 and laminin-5 are essential for periodontal wound healing. Fibronectin-1
constitutes a provisional wound matrix (clot), and laminin-5 is a key ECM component of the
intact basement membrane and hemi-desmosomes [56]. Integrin ↵3b1 is the main molecule by
which cells communicate with the ECM mainly through binding to laminin-5 and fibronectin-1 [57].
Collagen-IV constitutes a new matrix that replaces the clot and leads to restoration of both the
structure and function of the periodontal basement membrane [58]. These molecules were expressed
by keratinocytes, FB [56] and involved in adhesion, migration, proliferation and interaction between
the epithelial and connective tissues [54–58]. Furthermore, previous in vivo studies have shown that
NSAIDs could significantly inhibit collagen deposition in granulation tissue [59]. Taken together,
these data showed anti-inflammatory, anti-proliferative and anti-fibrotic effects of IBU in a time- and
cell-dependent manner.

The electrospun PCL nanofibrous scaffold architecturally mimics the ECM in living tissues,
but its poor hydrophilicity caused a reduction of its ability of cell adhesion, migration, proliferation
and differentiation [60]. However, by combining two or more classes of materials into composites,
such as a crystalline ceramic (e.g., HA) and a synthetic polymer (e.g., PCL), scaffolds with improved
mechanical properties can be expected [61]. Electrospun composite PCL/nHA (nanohydroxyapatite)
nanofibrous membranes improve mineralization of mesenchymal stem cells to promote bone tissue
regeneration. nHA is the major inorganic component of the bone matrix, and its specific affinity toward
many adhesive proteins and direct involvement in the bone cell differentiation and mineralization
processes make nHA especially appealing for applications in the bone regeneration field [62]. nHA has
been incorporated in PCL by electrospinning in several studies in vitro [63] and in vivo in a calvarial
defect mouse model where association with HA significantly improved bone healing induced by
PCL [64]. The HA-coated PCL membrane has favorable effects on proliferation and differentiation
of human periodontal ligament cells and might be a candidate material for periodontal tissue
regeneration [65]. Similarly, the properties of PCL have also been enhanced by the use of silica [66],
and other pretreatments enhancing mineralization would be of interest for bone tissue mineralization
and regeneration as demonstrated for cellulose-based porous matrix [67].

Establishment of periodontal destruction in mice is a well-described phenomenon [68], and its
use will confer several advantages over the use of large animals in the context of periodontal treatment
such as a large number of available kits for analysis, transgenic strains and laboratory considerations
(housing, cost). Additionally, it will allow us to investigate the molecular mechanisms regulating the
wound healing process or drug application. Infected ligature-induced periodontitis is considered to be
a reliable and reproducible model of experimental periodontitis so far as it is site-specific and results,
as observed in humans, in rupture and apical migration of the junctional epithelium, inflammatory
cell infiltration and time-dependent alveolar bone resorption. In this model, connective tissue and
bone loss occur predictably over a period of 7–15 days [69,70]. The ligatures can be inserted and
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removed on an “as and when required” basis; therefore, using ligatures is a flexible and optimizable
method for disease induction [71]. Moreover, the use of Pg-infected ligatures supported a long-lasting
infection of Pg in mice, resulting in alveolar bone breakdown as seen in humans [72]. In our study,
we demonstrated, to the best of our knowledge, the feasibility of membrane placement in such an
experimental periodontitis model. In vivo, the positive impact of membrane placement on periodontal
wound healing and its biocompatibility were observed. However, it is mandatory to understand
and control the scaffold degradation process. As tissue ingrowth and maturation are tissue-specific
phenomena, a defect filled with immature tissue should not be considered “regenerated”. Hence, many
scaffold-based strategies have failed in the past, as the scaffold degradation was more rapid than tissue
remodeling or maturation. It is important that the scaffold remains intact as the tissue matures in
the scaffold pores, with bulk degradation occurring later [10]. Here, membrane persistence in the
connective tissue zone may have hindered bone regeneration, and an optimization of its degradation
rate is required. However, the use of bioresorbable PCL membrane at 22 d of periodontal wound
healing maintained its primary focus on the soft tissue healing response, whereas a longer time
point needs to be evaluated to study the healing response of the bone and periodontal ligament after
the resorption of the membrane. As a perspective, combination with specific bone pro-regenerative
molecules such as BMP-2 could be performed to improve regeneration of profound periodontium,
as it was demonstrated that electrospun PCL functionalized with BMP-2 enhanced bone healing and
regeneration [73,74]. Such a combination will be of interest to obtain a better bone healing response,
thereby reaching a coordinated soft and hard tissue healing response.

GTR membranes often suffer exposure to consequent infection and inflammation. The post-
operatively persisting inflammation after GTR can worsen the treatment outcomes [17]. Therefore,
application of this IBU-loaded anti-inflammatory GTR membrane (IBU-PCL) could be a judicious
choice to prevent local post-operative inflammation after further optimization with in vivo and
pre-clinical models. In the future, an appropriate combination of antibiotic or growth factors with an
anti-inflammatory drug could be ideal to overcome post-operative GTR complications and could be
beneficial in striding towards improved periodontal wound healing and regeneration.

4. Materials and Methods

4.1. Cell Culture

Human oral epithelial cells (TERT-2 OKF-6, BWH Cell Culture and Microscopy Core, Boston,
MA, USA) (EC) were cultivated in Keratinocyte-SFM medium (Life Technologies, Saint-Aubin, France)
supplemented with growth supplementation mix and antibiotics (10 U/mL penicillin and 100 µg/mL
streptomycin) (Lonza, Levallois-Perret, France). Human oral fibroblasts (FB) were cultivated in RPMI
1640 medium supplemented with 10% fetal bovine serum (Life Technologies, Saint-Aubin, France),
2 mM glutamine, 250 U/mL fungizone and 10 U/mL antibiotics (10 U/mL penicillin and 100 µg/mL
streptomycin) at 37 �C in a humidified atmosphere with 5% CO2, and the culture medium was changed
every 2–3 days as described in Morand et al. [17].

4.2. Bacterial Culture

The Pg strain (ATCC 33277) was purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Bacterial culture was performed under strict anaerobic conditions at 37 �C
in brain-heart infusion medium supplemented with hemin (5 mg/mL) and menadione (1 mg/mL)
purchased from Sigma (St. Louis, MO, USA). For each experiment, bacteria were grown in anaerobic
conditions at 37 �C for 4 days, and before use, the bacterial culture was centrifuged, bacteria were
washed twice with phosphate buffer saline (PBS) and counted as previously described [51]. Commercial
ultrapure Pg-LPS was purchased from InvivoGen (San Diego, CA, USA).
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4.3. Stimulation of Cells with Porphyromonas Gingivalis-Lipopolysaccharide

Twenty-four hours before the experiment, 5.104 EC or 2.104 FB were seeded in each well of a
24-well plate. On the day of the experiment, cells were washed twice with PBS and exposed to Pg-LPS
stimulation at a concentration of 1 µg/mL. Ibuprofen sodium salt (Sigma, St-Quentin, France) was
used as the experimental drug at a concentration of 50 µg/mL.

4.4. Electrospinning and Functionalization

IBU-PCL membranes were prepared by electrospinning process using a Yflow 2.2.D-500
electrospinner (Coaxial Electrospinning Machines/R&D Microencapsulation, Malaga, Spain).
PCL pellets were dissolved at 10% w/w (PCL/solvents) in dichloromethyl/dimethyl formamide
(DCM/DMF) (1:1), and polyvinyl acetate (PVAc) was dissolved at 10% w/w (PVAc/solvents) in DMF;
these two solutions were stirred overnight at room temperature. To prepare PCL-HAnC-IBU (20% of
non-commercial hydroxyapatite (HAnC) and 10% of IBU w/w) scaffolds, PCL pellets were dissolved in
DCM/DMF by stirring overnight at room temperature; then, HAnC and IBU powders were weighed
and dispersed with the help of TWEEN® 80 by stirring overnight at room temperature. Both solutions
were loaded into 20-mL plastic syringes connected to a coaxial spinneret by plastic tubes having inner
needle and outer needle diameters of 0.9 mm and 1.7 mm, respectively, with the outer needle connected
to a positive voltage power supply at 13.26 kV. The shell and core flow rates and the spinning distance
were fixed at 0.5 mL/h and 19 cm. The spun fibers were collected on a static plate connected to a
negative voltage power supply at �2.7 kV.

4.5. Scanning and Transmission Electron Microscopy

In vitro release of IBU was carried out at 37 �C in phosphate buffer saline (PBS) at pH = 7.4.
The materials loaded with IBU were immersed in 3 mL of PBS. At predetermined time intervals,
aliquots of the dissolution medium were withdrawn, and an equivalent amount of fresh medium was
added to maintain a constant dissolution volume. IBU concentration in the aliquots was determined by
UV spectroscopy using a Varian Cary 50 PROBE UV-Visible spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA) at 221 nm from the standard calibration curve. The prepared fibers were studied
by scanning electron microscopy (SEM; CSEM-FEG INSPECT 50, Thermo Fisher Scientific, Waltham,
MA, USA) and transmission electron microscopy (TEM; FEI Tecnai F30 and probe aberration-corrected
FEI-Titan 60-30, Thermo Fisher Scientific) to characterize fibers’ size and morphology. The size
distribution statistics were obtained by measuring at least 200 fibers in different images. Samples for
SEM were mounted on metal stubs and sputter-coated with platinum.

4.6. Cell Viability Assay

The effect of different doses of IBU on EC and FB viability was analyzed by the AlamarBlue assay
(Life Technologies, Saint-Aubin, France). After 6, 24 and 48 h of stimulation, 200 µL of incubation
media were transferred to a 96-well plate and measured at 590 and 630 nm in order to determine the
percentage of AlamarBlue reduction.

4.7. Wound Closure Assay

Cell migration was assessed by the wound-healing “scratch” assay. EC were seeded in 48-well
plates at 2.5 ⇥ 104 cells/mL and grown until confluence. Cells were washed with PBS. In each well,
a scratch was made with the tip of a sterile pipette point (200 µL). Cells were washed again with
PBS in order to remove cell debris. In each well, 500 µL of medium containing IBU or only medium
were added. The scratch was captured immediately and after 24 h with an optical microscope (Nikon
inverted microscope, Eclipse TS100, Nikon, Champigny-sur-Marne, France), and the area of the scratch
was calculated with Photoshop CS4. The closure percentage of the scratch was calculated as ((surface of
the scratch at time 0 h and surface of the scratch at time 24 h)/(surface of the scratch at time 0 h ⇥ 100)),
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as described in [28]. Only ECs, being the first cell type to migrate to the periodontal wound and
hindering tissue regeneration owing to their high proliferation rate, were selected for performing the
scratch test.

4.8. Real-Time qPCR

To quantify RNA expression, qPCR was performed on the cDNA samples. PCR amplification
and analysis were achieved using the CFX Connect™ Real-Time PCR Detection System (Bio-Rad,
Miltry-Mory, France). Amplification reactions have been performed using iTaq Universal SYBR
Green Supermix (Bio-Rad, Miltry-Mory, France). Beta-actin was used as the endogenous RNA
control (housekeeping gene) in the samples. Primer sequences were synthesized by Life Technologies
(Saint-Aubin, France). The specificity of the reaction was controlled using melting curve analysis.
The expression level was calculated using the comparative Ct method (2-DDCt) after normalization to
the housekeeping gene. All PCR assays were performed in triplicate, and the results are represented
by the mean values. All primers sequences are listed in Supplemental File S1.

4.9. Experimental Periodontitis Induction in Mouse Model

To avoid any potential effects of estrogen, only male mice C57BL/6J (n =9) aged 8 weeks were
used in this study. All animals were regularly fed and kept in separate cages. All procedures
were approved by the local ethics committee and performed according to the regulations for animal
experimentation. Mice were examined to evaluate pain and stress, and their weights were monitored
daily. Periodontitis was induced in mice by Pg-infected ligatures to simulate disease condition
comparable to human periodontitis as described previously [68,75]. Briefly, after anesthesia, Pg-infected
silk ligatures (6-0) were placed repeatedly in the palatal sulcus of the first molar (bilaterally) thrice a
week for up to 40 days. The placement of Pg-infected ligatures was facilitated by sulcular incisions
bilaterally and a drop of a thin mix of Glass Ionomer Cement (KetacTM Cem radiopaque, 3M ESPE) to
retain the ligatures in the sulcus around the cervical areas of the maxillary molars. Infected ligatures
were renewed every two days. Gradually, after carrying out a few inductions, the periodontal pocket
was well established, and therefore, the ligatures could be retained within the pocket without any need
of cement to block them. To ensure uniformity and standardization of the defects, the same procedures
were performed bilaterally each time by the same operator to overcome operator bias. After induction,
the periodontal lesion was characterized by periodontal pocket formation, soft tissue inflammation
associated with bleeding on probing and bone destruction assessed through micro-CT to ensure the
uniformity and standardization of defects in terms of the size and morphology before initiating the
treatment (average BL = 485 µm) (Supplemental File S2).

4.10. Treatment of Periodontal Defect

Sulcular incisions were performed bilaterally, along the cervical margins of the maxillary 1st
and 2nd molars and extended a little anteriorly on the mesial aspect of the 1st molar to raise the
flap efficiently to gain surgical access (Figure 7A,B). SRP was performed at all sites, and PCL or
IBU-PCL membranes were surgically placed along the right molars (test sides) in mice (n = 4 and n
= 5, respectively). Left molars were treated only by SRP and constituted control sides. Membranes
were punched with a 3 mm-diameter cutter. The cut circular pieces of membrane were further cut into
two halves. The cut membrane was then placed over the bony defect under the raised flap in such a
way that the concave part of the membrane faced and covered the necks of the crowns of the teeth,
entering the interdental area, as well, and the rest of the bulk of the membrane was placed flat beneath
the flap with its convex side facing towards the palatal midline (Figure 7C–F). The membrane was
then sutured to ensure its retention under the flap (Figure 7G). Post-operative wound healing was
assessed at 7 and 15 days (Figure 7 H,I). Mice were euthanized with an intraperitoneal lethal injection
of pentobarbital (100 mg/kg) (Centravet) 22 days after the treatment.
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Figure 7. Surgical placement of membrane in the induced periodontitis mice model. Incision (A) followed
by flap raising for periodontal lesion access and debridement (B,D). Membrane (*) calibration (C) and
placement (*) beneath the palatal flap (E). Palatal flap covering membrane (arrow) (F). Sutures (G).
Post-surgical views at 7 days (H) and 15 days (I).

4.11. Tissue Preparation

Tissue fixation was performed by intra-cardiac perfusion with a solution containing 4%
paraformaldehyde (PFA) in PBS (pH 7.4). Afterwards, maxillae were dissected and post-fixed
by immersion in the same fixative solution overnight at 4 �C. After rinsing with PBS for 24 h,
the specimens were demineralized at 4 �C in 15% EDTA at pH 7.4 for 3 weeks with a regular change of
solution every 2 days. After extensive washing in PBS, the samples were dehydrated in increasing
concentrations of ethanol and toluene before finally embedding in paraffin (Paraplast plus, Sigma).
Seven micrometer-thick serial frontal paraffin sections of the maxilla were cut with a microtome.

4.12. Histomorphometric Analysis

For histomorphometric evaluation, prepared sections were deparaffinized, rehydrated and
stained with hematoxylin. After dehydration, slides were mounted with Distrene-plasticizer-xylene
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(DPX) resin (Sigma), and computerized images were captured on a microscope (RM 2145 DMRB
microscope, Leica, Rueil-Malmaison, France). Palatal root areas of the first molars were analyzed to
examine the extension of epithelial downgrowth, connective tissue attachment and alveolar bone loss.
For histomorphometric analysis: epithelial attachment (EA) was measured from the cemento-enamel
junction (CEJ) to the apical limit of the epithelium, and the alveolar bone level (BL) was measured
from CEJ to alveolar bone crest (ABC) using imaging software (ImageJ, 1.46r, National Institute of
Mental health (NIMH), Bethesda, Maryland, USA).

4.13. Tartrate-Resistant Acid Phosphatase Activity Assay (TRAP)

Paraffin frontal sections were rehydrated, placed in a fixative solution for 5 minutes and rinsed
with water before staining with acetate buffer (at pH 5.2) containing 2.5 mM naphthol AS-TR-phosphate,
0.36 M N,N-dimethylformamide, 0.1 M sodium tartrate and 4 mM 1,5-naphthalenedisulfonate salt.
After staining, sections were rinsed with water and mounted with mounting medium. Using imaging
software, TRAP-positive cells were analyzed on the ABC surface at the palatal root and the mesial and
distal furcation aspects of the first molar using standardized views.

4.14. Statistical Analysis

All experiments were repeated at least three times (technical and biological replicates),
and statistical analysis was performed using the Mann–Whitney test (XLSTAT, Addinsoft France,
Paris, France). A probability of a p-value < 0.05 was considered significant.

5. Conclusions

We developed an efficient anti-inflammatory GTR membrane. Hence, electrospun biodegradable
IBU-PCL nanofiber membranes could be an optimal choice for the local prevention of post-surgical
inflammation and improved wound healing. Besides, this scaffold may also be used for localized
drug delivery of bioactive molecules such as antimicrobials or growth factors, in a dose- and
spatially-controlled manner.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/4/580/s1,
File S1: Primers’ sequences, File S2: In vivo micro-computed tomography (micro-CT) analyses.
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Résumé : 

 Afin de pallier les difficultés pouvant être associées au placement chirurgical d’un 

biomatériau, telle qu’une membrane, les traitements adjuvants pouvant être utilisés de manière 

simplifiée sont privilégiés. Ainsi, l’utilisation de gel ou de biomatériau injectable représente 

une alternative d’intérêt pour le clinicien. De ce fait, nous avons souhaité développer une 

nouvelle formulation permettant la délivrance locale d’un anti-inflammatoire et d’un 

antiseptique, ceci afin de réduire l’inflammation et de contribuer à la réduction de la charge 

bactérienne par voie chimique.  

Un implant se formant in situ (ISFI) chargé en ibuprofène et en chlorhexidine a ainsi été 

synthétisé et caractérisé. Ce type de biomatériau injectable, biocompatible et biodégradable 

possède la capacité de se conformer à la situation tridimensionnelle de la lésion et permet ainsi 

le relargage des molécules thérapeutiques. Son utilisation est facile et peu chronophage. Il est 

constitué d’acide polylactique-co-glycolique (PLGA) et de N-methyl-pyrrolidone (NMP). 

L’ibuprofène et la chlorhexidine ont été incorporés aux doses suivantes : 1.5% or 5.3% (w/w). 

La caractérisation du relargage des molécules actives à partir de l’ISFI dans de la salive 

artificielle par HPLC a mis en évidence un relargage progressif au cours du temps. Cependant, 

celui-ci est plus important lors des 5 premiers jours.  

Afin d’évaluer les propriétés anti-microbiennes et anti-inflammatoires de cet ISFI, une 

analyse in vitro a été effectuée. Concernant les propriétés anti-microbiennes, des échantillons 

provenant du relargage de l’ISFI dans la salive artificielle ont été mis en contact avec une 

culture de Pg. Les échantillons provenant des 2 types d’ISFI testés ont permis une réduction 

significative du taux de croissance bactérien après 6, 24 et 48h de mise en contact validant 

l’efficacité de la chlorhexidine mais démontrant également un effet antiseptique intrinsèque de 

l’ISFI. Les propriétés anti-inflammatoires de l’ISFI ont également pu être mises en évidence. 

Le milieu de relargage provenant de l’ISFI a été mis en contact de cellules épithéliales 

gingivales stimulées par le LPS de Pg. L’analyse par ELISA des surnageants a mis en évidence 

que la concentration de TNF-a sécrétée par les cellules stimulées traitées par l’ISFI était 

significativement réduite en comparaison avec les cellules contrôles stimulées et non traitées 

après 24h. Ces résultats encourageants obtenus in vitro nous ont permis d’entreprendre une 
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évaluation in vivo. Celle-ci a été effectuée en utilisant la concentration de 1,5% car présentant 

le moins de toxicité cellulaire. 

Dans un modèle murin de parodontite expérimentale induite par placement de ligatures 

infectées par Pg, l’ISFI a été placé au niveau d’une lésion parodontale. L’impact de ce 

traitement sur le degré d’inflammation au niveau des tissus mous a été effectuée après 7 et 15 

jours et a mis en évidence une réduction significative de degré d’inflammation post-traitement 

en comparaison avec les sites contrôles. Cette réduction du degré d’inflammation se caractérise 

par une diminution du nombre de cellules inflammatoires retrouvées au niveau du site de la 

lésion. Sur le plan histologique, l’analyse histomorphométrique a permis de mettre en évidence, 

à court terme, un impact sur la cicatrisation parodontale puisqu’un épithélium de jonction court 

ainsi qu’une attache fibreuse plus importante a pu être mesurée au niveau des sites traités.  

Ces résultats ont permis de valider l’utilisation de l’ISFI chargé en ibuprofène et 

chlorhexidine au niveau cellulaire et au niveau tissulaire. Ils confirment les possibilités 

d’utilisation de ce type de biomatériau comme adjuvant au traitement parodontal mécanique. 

Cependant, une optimisation des temps de relargarge ainsi que des doses doit être entrepris. Ce 

type de biomatériau peut également servir de vecteur pour la délivrance d’autres molécules 

actives immuno-modulatrices ou antiseptiques ciblées sur certaines molécules ou pathogènes 

clés impliqués dans le développement de la lésion parodontale ou la cicatrisation.  
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Development of a thermosensitive statin–functionalized chitosan-

based hydrogel and evaluation of bone healing 
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Résumé : 

 Les premières parties de ce travail de thèse nous ont permis de développer deux types 

de biomatériaux adaptés à une utilisation dans le cadre du traitement des lésions parodontales. 

Ces travaux nous ont également permis de valider l’intérêt de l’utilisation d’un anti-

inflammatoire dans la gestion de l’inflammation chronique et sur la cicatrisation tissulaire.  

Dans cette troisième partie, nous nous sommes intéressés à l’utilisation de molécules plus 

complexes, les statines. Ces molécules sont utilisées de manière extensive pour leurs propriétés 

anti-inflammatoires, anti-oxidantes, anti-bactériennes et sur la réponse immune (Petit et al., 

2019b). Plusieurs études se sont intéressées à leur impact sur le traitement parodontal, 

cependant, malgré des effets positifs sur les résultats de celui-ci, leur administration systémique 

de manière prolongée est associée à un risque d’effets secondaires systémiques. De ce fait, 

différentes stratégies de délivrance locale sont développées à l’heure actuelle. 

Dans ce travail, nous avons souhaité développer un gel permettant la délivrance locale, 

au sein des lésions parodontales, d’une dose efficace de statines. Afin d’atteindre cet objectif, 

nous avons développé un hydrogel à base de chitosan, ce polymère étant utilisable dans des 

applications médicales et présentant des propriétés de biocompatibilité et de biodégradabilité 

compatibles avec les objectifs du traitement. Afin d’intégrer les statines, ici l’atorvastatine, au 

gel, celles-ci ont été incorporées dans des nano-émulsions permettant leur délivrance.  

Dans un premier temps, nous avons caractérisé par différentes méthodes (zeta-sizer, 

microscopie électronique, immunofluorescence, …), les caractéristiques physico-chimiques du 

gel et des nano-émulsions. Nous avons ainsi pu valider la méthode de synthèse, celle-ci 

aboutissant à la synthèse de nano-émulsions homogènes en taille et permettant leur 

internalisation et l’endocytose de la molécule active. Une analyse du profil de relargage de 

l’atorvastatine a également permis d’observer que celui-ci aboutit à un relargage rapide et 

continu de la molécule. 

Afin de valider les potentiels effets de la molécule et la faisabilité de son application, 

nous avons testé celui-ci dans un modèle de lésion induite par forage au niveau de la calvaria. 

Dans des défauts de 2mm de diamètre, nous avons ainsi pu administrer le gel fonctionnalisé par 

l’atorvastatine et comparer les résultats obtenus en termes de néo-formation osseuse après 15j. 

Dans ce modèle pré-clinique, le traitement par gel fonctionnalisé par atorvastatine a accéléré la 

néo-formation osseuse par rapport au groupe non traité (cicatrisation naturelle) mais également 

par rapport au groupe traité par voie systémique.  

Ces résultats valident l’utilisation de ce gel fonctionnalisé par l’atorvastatine in vivo. 

Des expériences complémentaires restent cependant nécessaires pour valider son utilisation 
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dans le domaine parodontal. En effet, le modèle de calvaria est un modèle intéressant pour 

aborder la régénération osseuse mais ne reflète pas la complexité du système parodontal. De ce 

fait, l’évaluation de ce type de traitement devra être envisagé dans un modèle de parodontite 

expérimentale.  
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The pleiotropic effects of statins have been evaluated to assess their potential benefit in the treatment of various inflammatory and
immune-mediated diseases including periodontitis. Herein, the adjunctive use of statins in periodontal therapy in vitro, in vivo, and
in clinical trials was reviewed. Statins act through several pathways to modulate inflammation, immune response, bone metabolism,
and bacterial clearance. They control periodontal inflammation through inhibition of proinflammatory cytokines and promotion of
anti-inflammatory and/or proresolution molecule release, mainly, through the ERK, MAPK, PI3-Akt, and NF-κB pathways.
Moreover, they are able to modulate the host response activated by bacterial challenge, to prevent inflammation-mediated bone
resorption and to promote bone formation. Furthermore, they reduce bacterial growth, disrupt bacterial membrane stability,
and increase bacterial clearance, thus averting the exacerbation of infection. Local statin delivery as adjunct to both nonsurgical
and surgical periodontal therapies results in better periodontal treatment outcomes compared to systemic delivery. Moreover,
combination of statin therapy with other regenerative agents improves periodontal healing response. Therefore, statins could be
proposed as a potential adjuvant to periodontal therapy. However, optimization of the combination of their dose, type, and
carrier could be instrumental in achieving the best treatment response.

1. Introduction

Periodontitis is an inflammatory disease of infectious origin
characterized by progressive destruction of periodontal soft
and hard tissues leading to tooth loss. The main symptoms
comprise gingival inflammation, formation of periodontal
pocket, alveolar bone loss, abscess, or tooth mobility [1].
The pathogenesis of periodontitis involves a complex inter-
action of immune and inflammatory cascades initiated by
bacteria of the oral biofilm [2]. Persistent inflammation and
dysbiosis worsen periodontal tissue damage, and the host
response plays a vital role in this phenomenon contributing
to tissue destruction [3].

The conventional treatment comprising scaling and root
planing (SRP) presents limitations in certain cases involving
deep periodontal pockets, inaccessible areas, or severe

periodontitis [4]. Therefore, several adjunctive pharmacolog-
ical therapeutics have been tested to improve its outcomes. In
this context, systemic and local deliveries of drugs such as
antibiotics, bisphosphonates, anti-inflammatory drugs, antic-
ytokines, probiotics, and prebiotics have been tested so far to
reduce bacterial load and to control inflammation [5–9].
Likewise, the use of statins in periodontal treatment has been
explored recently [10]. Statins, or inhibitors of 3-hydroxy-
3-methylglutaryl coenzyme A reductase (HMG-CoA reduc-
tase), are a group of drugs, used primarily to treat hyperlipid-
emia and to prevent cardiovascular diseases [11]. After their
discovery in the 70s, they have been widely prescribed world-
wide [12]. They differ mainly in their ring structure, and
these structural differences modify their pharmacological
properties including hydrophilicity and lipophilicity. The
lactone ring is present in an active form (already hydrolyzed)
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in all statins except for simvastatin, lovastatin, and mevasta-
tin, in which the lactone ring is activated (hydrolyzed) in the
liver. The lactone form of the statins enables their transport,
metabolism, and clearance [13] (Table 1).

Apart from their lipid-lowering properties, statins
possess pleiotropic effects due to their anti-inflammatory,
antioxidative, antibacterial, and immunomodulatory proper-
ties [14–17]. Statins have also been reported to have anabolic
effects on the bone by augmenting bone morphogenetic
protein-2 (BMP-2) expression, thus contributing towards
the differentiation and activity of osteoblasts (OBs) [18]. In
view of their beneficial properties, statins have been pre-
sented as new potential candidates for improving periodontal
therapy outcomes [19, 20].

In several preclinical and clinical studies, statins have
exhibited contradictory results [21–23] depending on the
mode of delivery (local vs systemic), anatomy and severity
of the lesions, type of disease, and treatment approach
(nonsurgical vs surgical). Therefore, the aim of this literature
review was to establish a better understanding of the prophy-
lactic and therapeutic effects of all statin types administered
locally or systemically as adjuvant to nonsurgical/surgical
periodontal treatment in existing preclinical models and
clinical settings and to explore the biological mechanisms
underlying these healing and proregenerative effects in the
management of periodontitis.

2. Methods

2.1. Literature Search. Studies published in English language
only were included, and the last search was carried out in
September 2018. Regarding studies performed on animal
models and clinical trials, a systematic literature search was
performed in the PubMed/MEDLINE and ScienceDirect
databases. A hand search has also been performed after
checking references of the identified articles. Concerning
in vivo studies, the following keywords were used for the
search: periodontitis OR periodontal disease OR alveolar
bone loss OR periodontal attachment loss OR periodontal
pocket AND simvastatin OR statin OR rosuvastatin OR
atorvastatin OR cerivastatin OR mevastatin OR lovastatin
OR pravastatin OR Fluvastatin OR pitavastatin OR
Hydroxymethylglutaryl-CoA Reductase Inhibitors AND
mouse OR dog OR pig OR rat OR rodent OR rabbit OR

monkey OR in vivo. A study was considered eligible if it
met the following criteria: (1) experimentally induced peri-
odontitis (EIP) and/or acute/chronic periodontal defects
(ACP), (2) treatment of EIP and/or ACP with statins (local
or systemic or combination) with or without SRP or other
periodontal treatment modalities, and (3) at least one peri-
odontal parameter assessed as outcome. Exclusion criteria
for in vivo studies were the following: (1) periapical lesions,
(2) tooth extraction models, (3) orthodontic movements,
(4) calvarial models, (5) long bone defects, and (6)
drug-induced gingival enlargement.

Concerning clinical studies, the following keywords were
used for the search: periodontitis OR periodontal disease OR
alveolar bone loss OR periodontal attachment loss OR peri-
odontal pocket AND simvastatin OR statin OR rosuvastatin
OR atorvastatin OR cerivastatin OR mevastatin OR lova-
statin OR pravastatin OR Fluvastatin OR pitavastatin OR
Hydroxymethylglutaryl-CoA Reductase Inhibitors. A study
was considered eligible if it met the following criteria: (1) ran-
domized and controlled clinical trials, (2) cohort clinical
studies, (3) longitudinal studies, (4) patients with diagnosis
of chronic or aggressive periodontitis, (5) systemic or local
administration of statins with nonsurgical or surgical peri-
odontal treatment, and (6) at least one periodontal parame-
ter: pocket depth (PD), clinical attachment level (CAL),
bone loss (BL), or tooth loss (TL) assessed as outcome. Exclu-
sion criteria for clinical studies were the following: (1) no
follow-up, (2) no periodontal treatment, and (3) reviews,
letters, and case reports.

2.2. Study Selection. Titles and abstracts of the studies were
screened independently by two reviewers (CP and FB) and
categorized as suitable or not for inclusion. Full reports were
reviewed independently for studies appearing to meet the
inclusion criteria or for which there was insufficient infor-
mation in the title and abstract to allow a clear decision.
Disagreements between the authors were resolved after
discussion with a third reviewer (OH).

2.3. Risk of Bias Assessment. Risk of bias was assessed using
the Cochrane Collaboration’s tool for assessing risk of bias
which provided guidelines for the following parameters:
sequence generation, allocation concealment method, blind-
ing of the examiner, address of incomplete outcome data, and
free of selective outcome reporting. The degree of bias was
categorized as follows: low risk if all the criteria were met,
moderate risk when only one criterion was missing, and high
risk if two or more criteria were missing. Two reviewers
(FB and CP) independently performed the quality assess-
ment, and any disagreement was resolved by a third investi-
gator (OH) (Supplemental Table 1).

3. Results

3.1. Effect of Statins on the Inflammatory-Immune
Crosstalk. Localization of periodontium at the interface
between the teeth and jaws exposes periodontal tissues to
continuous bacterial challenge which could contribute to
exacerbation of the immune response during periodontal

Table 1: Physical properties of different types of statins.

Drug Source Solubility Molecular mass (Da)

Atorvastatin Synthetic Lipophilic 1209.42
Simvastatin Natural Lipophilic 418.6
Lovastatin Natural Lipophilic 404.5
Mevastatin Natural Lipophilic 390.52
Pravastatin Natural Hydrophilic 446.52
Fluvastatin Synthetic Lipophilic 411.47
Cerivastatin Synthetic Lipophilic 459.56
Pitavastatin Synthetic Lipophilic 421.46
Rosuvastatin Synthetic Hydrophilic 481.54
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wound healing. Recruitment of inflammatory cells at the
periodontal site, including polymorphonuclear (PMN) leu-
kocytes, macrophages, and lymphocytes, is associated to the
release of a complex nexus of cytokines. When the inflamma-
tory front migrates toward the alveolar bone, it stimulates
osteoclastogenesis and subsequent alveolar bone destruction
[24]. Therefore, the importance of inflammation control at
the soft tissue level cannot be undermined.

The effects of statins on the inflammatory-immune cross-
talk involved in the periodontal wound healing have been
evaluated. Statins decrease the levels of proinflammatory
cytokines (interleukin-1 beta (IL-1β), interleukin-8 (IL-8),
interleukin-6 (IL-6), and tumor necrosis factor-alpha
(TNF-α)) and increase the release of anti-inflammatory
mediators (IL-10) and chemokines [25, 26]. There are several
pathways implicated in the action of statins, notably suppres-
sion of HMG-CoA reductase, thereby inhibiting Rac and
p21Ras phosphorylation. As Rac and p21Ras are coupled to
the transcription of proinflammatory molecules via MAP
kinase (MAPK) pathways, therefore, statins also suppress
nuclear factor kappa B (NF-κB) activation, thus reducing
the expression of proinflammatory molecules [27] (Figure 1).

3.1.1. Effect of Statins on InflammatoryMolecules. In vitro, the
effect of statins on inflammatory mediators’ secretion was
demonstrated to be cell specific. For instance, in human oral
epithelial cells [15] and OBs [28], statins reduced IL-6, IL-8
release, whereas, in T-cells [29, 30], statins increased the
expression of IL-4, IL-5, IL-10 and IL-13. In vivo, statins
confirmed the reduction of cyclooxygenase-2 (COX-2),

prostaglandin E2 (PGE2), IL-1β, IL-6, IL-8, TNF-α,
interferon-gamma (IFN-γ), C-reactive protein (CRP),
colony-stimulating factors (CSF2, CSF3), recruitment of
mononuclear inflammatory cells, and several Toll-like recep-
tors (TLRs) invariousEIPorACPmodels [26, 31–35].Clinical
trials also corroborated the downregulation of inflammation
by the use of statins, as demonstrated by increased IL-10
level in gingival crevicular fluid (GCF) from hyperlipid-
emic patients treated with statins [19].

3.1.2. Effect of Statins on Proresolution Molecules. Periodontal
wound healing and regeneration involve a constant
“tug-of-war” between the proinflammatory and anti-inflam-
matory/proresolution mediators [36, 37]. Anti-inflammatory
effects of statins enhancing resolution of periodontal
inflammation, that is, initiated by several endogenous
chemical and lipid mediators, such as the lipoxins (LXs),
resolvins (RVs), protectins, and maresins, could possibly
explain the positive treatment outcomes [38, 39]. However,
further studies need to explore the exact effect of statins
on the proresolution mediators.

3.1.3. Effect of Statins on Host Modulation. Literature reports
contradictory results regarding the effect of statins on differ-
ent types of immune cells. For instance, in an ACP model,
simvastatin did not change circulating white blood cell
(WBC) counts in a study [33], whereas leukocyte infiltration
was decreased by atorvastatin gavage in an EIP model [40].
Similarly, regulatory T (Treg) cells that control adaptive
immunity against pathogens and activate other effector
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Figure 1: Effect of statins on the inflammatory-immune crosstalk. Direct LFA1 site binding by lipophilic statins decreases ICAM-1
presentation leading to reduced leukocyte chemotaxis and antigen presentation. Statins inhibit MHC-II induction by IFN-γ leading
to decreased T-cell activation. Statins lower mevalonate release, leading to resolution of inflammation via the ERK, MAPK, and
PI3K-Akt pathways.
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immune cells were reported to be regulated by statins. In
this regard, atorvastatin and simvastatin demonstrated an
increase in the number of human Treg cells and differen-
tiation of CD4 into Treg in vitro [41, 42].

Furthermore, TLRs have an important role in the
immune-inflammatory crosstalk with a consequent impact
on periodontal wound healing response. In the context of
periodontal treatment, targeting TLRs has been proposed as
it could enhance antimicrobial properties, suppress adverse
inflammation, or activate tissue repair [43]. Interestingly,
simvastatin inhibited the stimulation of several TLRs
(1, 2, 3, 4, 6, 7, and 9) by Aggregatibacter actinomycetem-
comitans (A.a) LPS in vivo, reducing its capability to
escape innate immune response [33]. Hence, statins play an
instrumental role in the modulation of inflammatory and
immune responses.

3.1.4. Inhibition of Major Histocompatibility Complex Class II
(MHC-II) by Statins. In case of nonresolving periodontal
lesions, bacterial antigens are processed and presented by
antigen-presenting cells and macrophages. Such process is
associated to massive immune cell recruitment implicated
in tissular destruction [2]. In this regard, statins are able to
inhibit MHC-II expression due to inhibition of the inducible
promoter IV of the class II transactivator (CIITA) as
observed in several cell types, including monocytes and
macrophages [44]. This effect renders statins to have a poten-
tial host-modulating impact on periodontal treatment.

3.1.5. Lymphocyte Function-Associated Antigen-1 LFA1 Site
Binding by Statins. Lymphocyte function-associated
antigen-1 (LFA-1), an integrin with its main ligand intercel-
lular adhesion molecule-1 (ICAM-1), is activated on the
surface of fibroblasts (FBs) by IFN-γ and represents a critical
phase in the early stage of inflammation. ICAM-1 regulates
LFA-1-dependent neutrophil transmigration and recruit-
ment to the inflammation site [45]. Several studies have
demonstrated the inhibition of LFA-1 by statins in many
inflammatory and immune diseases other than periodontitis.
Statins inhibit ICAM-1 upregulation and chemotaxis of
monocytes [46]. Lovastatin, simvastatin, and mevastatin, but
not pravastatin, were able to inhibit the LFA-1/ICAM-1 inter-
action in vitro by binding to the L-site of LFA-1 [47]. In this
way, statins limit the exacerbation of immune-mediated
inflammatory response at the lesion site. However, the impact
of statins on LFA-1 binding in the context of periodontal
wound healing remains unexplored.

3.1.6. Effect of Statins on Nitric Oxide Synthase (NOS). NOS
plays an important role in host defence and homeostasis
and has been implicated in the pathogenesis of periodontitis,
where it is expressed in FBs, epithelial cells, rests of Malassez,
macrophages, osteoclasts (OC), and vascular endothelial cells
[48, 49]. In chronic periodontitis, bacterial challenge induces
proinflammatory cytokine release and a higher expression of
inducible NOS (iNOS) and NOS derived from FBs and
WBCs that migrate to the periodontal lesion [50–52] leading
to inflammation-mediated bone resorption [53]. Various
studies demonstrated a NOS-inhibiting effect by the use

of statins. For instance, in vivo, rosuvastatin significantly
reduced inflammation-mediated tissue destruction and gin-
gival iNOS expression [54].

Concerning the underlying mechanism of action, statins
attenuate the production of reactive oxygen species (ROS)
induced by NADPH oxidase by suppressing Rac’s geranyla-
tion. Phosphatidylinositol-3 active kinase (PI3-Akt) is a
kinase that phosphorylates and stimulates eNOS. Mevalonate
is able to inhibit PI3-Akt; therefore, by reducing the concen-
tration of mevalonate, statins upregulate eNOS-derived NO
production resulting in vasorelaxation that leads to improved
angiogenesis and wound healing response [27].

3.1.7. Effect of Statins on Matrix Metalloproteinases (MMPs).
MMPs degrade extracellular matrix proteins, especially colla-
gen, contributing to the degradation of periodontal tissue
including alveolar bone [55]. Most statins have been reported
to potently inhibit the expression of MMP-1, MMP-8, and
MMP-9 upregulated by LPS as demonstrated for simvastatin
in mononuclear cells in vitro [56]. Moreover, in vivo, a
decrease of MMP-1, MMP-2, MMP-8, and MMP-9 was
observed by the use of statins [31, 57–59]. Thus, statins
prevent periodontal tissue and alveolar bone destruction by
inhibiting the release of MMPs.

3.2. Effect of Statins on Bone Metabolism. Statins have an
impact on bone metabolism through increase of osteogene-
sis, decrease of OB apoptosis, and osteoclastogenesis [60].
Statins allow periodontal regeneration via the Ras/Smad/ex-
tracellular signal-regulated kinase (Erk)/BMP-2 pathway that
enhances bone formation [61] and by antagonizing TNF-α
through Ras/Rho/mitogen-activated protein kinase (MAPK)
that causes osteoclastic differentiation [62]. Moreover, they
significantly increase OB differentiation factors such as alka-
line phosphatase (ALP), osteocalcin (OCN), bone sialopro-
tein (BSP), BMP-2 [63], osteopontin (OPN), and vascular
endothelial growth factor (VEGF) [64] (Figure 2).

3.2.1. Role of Statins in the Promotion of Osteogenesis. Inhibi-
tion of HMG-CoA by statins decreases prenylation of farne-
syl pyrophosphate (FPP) and geranylgeranyl pyrophosphate
(GPP) leading to increased levels of BMP-2 and VEGF
through the PI3-Akt pathway. Interestingly, both VEGF
and BMP-2 regulate OB differentiation and bone formation
during bone repair and regeneration [65, 66]. Concerning
BMP, simvastatin and lovastatin increased the levels of
BMP-2, consequently, increasing OB activity in vitro
[58, 63]. Statins present a cost-effective option when com-
pared with growth factors such as BMP-2 [67, 68].

Hydrophobic statins (simvastatin, atorvastatin, and ceri-
vastatin) also increased mRNA expression of VEGF in OBs
[69]. Likewise, simvastatin increased osteoprotegerin (OPG)
expression in periodontal tissue [58] and enhanced matrix
calcification in human bone marrow stem cells by diminish-
ing the mean size of the fibroblastic colony-forming units
(CFU-Fs) [70]. In vivo, statins stimulated bone growth and
repair by increasing angiogenesis [71]. In particular, the
lactone-form statins (lovastatin and simvastatin) stimulated
OB differentiation of mouse periodontal ligament cells
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(PDLs) via the ERK1/2 pathway (phosphorylation) and
enhanced intercellular matrix mineralization [63].

3.2.2. Role of Statins in the Inhibition of Bone Destruction.
Statins act through certain pathways that avert bone degrada-
tion. Several clinical trials confirm the reduction of alveolar
bone loss by statins, as an adjunct to SRP [72]. Many studies
reported significantly decreased bone resorption by the use of
simvastatin, rosuvastatin, and atorvastatin [26, 28, 32, 73].
Interestingly, simvastatin reduced TNF-α-induced synthesis
of Cysteine-rich 61 (Cyr61) and chemokine ligand 2
(CCL2) [74] that are potential osteolytic mediators in inflam-
matory bone diseases, in human OB, thereby decreasing bone
loss. Besides, statins increase bone formation by inhibiting
OB apoptosis, augmenting TGF-β against the Smad3 sig-
naling pathway. As an evidence, pitavastatin, mevastatin,
and simvastatin induced the expression of Smad3 in non-
transformed OBs (MC3T3-E1) [75]. Consequently, statins
prevent bone destruction and also promote bone healing
and regeneration.

3.2.3. Role of Statins in the Inhibition of Osteoclastogenesis.
Statins suppress osteoclastogenesis through the OPG/recep-
tor activator of the nuclear factor kappa-B ligand (RANKL)/-
RANK signaling pathway. Statins (simvastatin, atorvastatin,
and fluvastatin) inhibited, in vitro and in vivo, the expression
of the receptor activator of RANK which along with
RANKL is required for the differentiation of OC precursors
[26, 31, 33, 58, 76]. Nevertheless, IL-10 is also implicated in
inhibiting bone resorption by preventing the RANK/RANKL
pathway ([77]); hence, statins could potentially reduce
the inflammation-mediated bone resorption [25]. Another
mechanism for osteoclastogenesis involving unprenylated
Rap GTP-binding protein 1A (Rap-1A), a RAS super family

of small GTP-binding protein member, has been studied in
the context of statins. Rosuvastatin, pravastatin, cerivastatin,
and simvastatin caused accumulation of unprenylated
Rap-1A in rabbit osteoclast-like cells and macrophages,
inhibiting osteoclast-mediated resorption. Interestingly,
hydrophilic statin (cerivastatin) was more effective than
hydrophobic statin (rosuvastatin) to inhibit OC prenylation
[78]. Additionally, the mRNA expression of cathepsin K, a
key marker of OC differentiation, is reduced by simvastatin
through inhibition of Src signaling andmodulation of MAPK
including ERK1/ERK2. Moreover, upregulation of AKT leads
to a decrease of OC activity via RANKL and BMP-2 [79].

3.3. Antibacterial Effect of Statins. Periodontitis is a polymi-
crobial disease involving keystone pathogen such as
Porphyromonas gingivalis (P.g) that is able to hijack the
adaptive immune response. Therefore, elimination of the
periodontal pathogens is the cornerstone of periodontal
treatment. Uncontrolled infection hinders periodontal
wound healing and may worsen the therapeutic outcome by
reducing the clinical attachment gain. Statins exhibit antimi-
crobial effects attributed to an increased bacterial clearance
from the infection site as demonstrated in a model of sepsis
(Figure 3) ([80]). Hence, statins could provide an additional
benefit during periodontal wound healing (Table 2).

Cholesterol is an integral component needed by bacteria
for maintaining their membrane integrity. Statins can coun-
ter bacteria by inhibiting the intermediate in the isoprenoid
biosynthesis pathway necessary for membrane stability,
which is substituted by cholesterol and protects bacteria from
the toxic effect of statins. Statins, therefore, kill bacteria
directly and by lowering accessible host cholesterol content
for bacterial growth and protection. Such effects may be
due to the disruption of teichoic acid structures reducing bio-
film formation ([81]). Statins display antibacterial activity
towards anaerobic bacteria, including periodontal pathogens
such as A.a and P.g. For instance, low concentration of sim-
vastatin was proven to be effective against A.a and P.g even
if A.a was more sensitive (MIC < 1 μg/mL) than P.g (MIC
until 2μg/mL dilution) [82]. The hydrophobic nature of
simvastatin may explain its antibacterial activity against peri-
odontal pathogens where it disrupts the bacterial membrane
in a “soap-like” manner causing its death [83]. Nevertheless,
not all statins exhibit antibacterial activity. The degree of
HMG-CoA reductase inhibition corresponds directly to the
cholesterol-lowering capabilities of statins [84] but it does
not seem commensurate with their antibacterial potency [85].

Some other mechanisms are modulated by the action of
statins on lipoxin A4 (LXA4) production, a proresolving lipid
mediator that enhances bacterial clearance, consequently
reducing the severity of periodontal disease [86, 87]. Further-
more, the mechanistic target of rapamycin (mTOR) signal-
ing, regulated principally by TLRs via two major pathways
(NF-κB-dependent pathway and a PI3-Akt-dependent path-
way), is also involved in bacterial clearance [88]. It is known
that statins inhibit isoprenoid synthesis, impeding intracellu-
lar signaling molecules like Rho or Rac [89].

Therefore, it is plausible that statins possess certain
antibacterial properties that could facilitate periodontal

Statins

↘ mevalonate↗ ER

↘ RANK/RANKL

↘ NF#B

↘ osteoclastogenesis

↘ prenylation proteins

TNFR

↘ TNF-%

↘ Cyr61 and CCL2

↗ PI3K-Akt

↗ VEGF
↗ BMP2
↗ TGF-&
↗ Smad3

↗ osteogenesis ↘ bone resorption

Figure 2: Effects of statins on several pathways involved in bone
metabolism. Statins decrease osteoclastogenesis via RANK/RANKL
and NF-κB signaling. Statins promote osteogenesis by increasing
VEGF, BMP2, and TGF-β expression through the PI3-Akt
pathway. Statins prevent inflammation-mediated bone resorption
by decreasing TNF-α, via TNFR.
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treatment. However, since periodontitis is a polymicrobial
disease, the susceptibility of various other periodontal patho-
gens to statins must also be evaluated.

3.4. Effects of Statins in Induced Periodontitis Models. Statins
have been tested in several induced periodontitis models to
evaluate improvement in periodontal parameters and their
underlying biological mechanisms. In vivo, 35 studies were
identified based on the inclusion criteria (Figure 4), out of
which 16 involved local statin delivery (Table 3), 17 used
systemic route (Table 4), and 2 employed a combination
of both modes (Table 5). In the studies evaluating local
statin application, 8 studies involved the treatment of EIPs
while the remaining 8 investigated the treatment of ACP
models, one of which was induced by LPS injection of
Escherichia coli (E. coli) [90]. Concerning the systemic
administration of statins (Table 4), 14 out of the total 17
studies treated EIPs, whereas the 3 remaining studies

involved ACP models by LPS injections of A.a [32, 33] and
P.g into the gingiva [76].

Regarding the mode of periodontitis induction, in total,
24 out of 35 studies had EIP with ligatures (cotton, nylon,
or silk), whereas 11 used ACP including the 4 studies where
periodontitis was induced by bacterial LPS. Studies were
mostly performed in rodents (Tables 3, 4, and 5). In ACP
models, the surgically created lesions were mainly intrabony
defects, fenestration defects, dehiscence defects, furcation
class II defects, and 3-walled intrabony defects.

In 6 studies, animals with systemic diseases (i.e, osteopo-
rosis [26, 91, 92], metabolic syndrome [32], cyclosporine
A-associated alveolar bone loss [35], hyperlipidemia [54],
or hypertension [93] were used to evaluate the effect of sta-
tins treatment. Overall, 22 studies involved treatment with
simvastatin, 7 with atorvastatin, 3 with rosuvastatin, 2 with
lovastatin, and only one with fluvastatin. Some studies inves-
tigated more than one type of statin. In vivo, the systemic

Statins

↘ Mevalonte

↘ prenylation proteins

↘ cholesterol

↘ bacterial growth
↘ bacterial membrane stability

↘ Rac

↘ NADPH oxydase

↘ ROS

↗ bacterial clearance

↗ proresolution molecules

↘ Rho

↗ PI3K-Akt

↗ mTOR↘ NF#B

Figure 3: Antibacterial effect of statins. Statins arrest bacterial growth and disrupt their membrane stability by decreasing cholesterol. Statins
increase bacterial clearance by decreasing NF-κB and ROS signaling (via the PI3K-Akt and NADPH oxidase pathways, respectively) and by
enhancing proresolution molecule release.

Table 2: Representative in vitro studies evaluating the impact of statins on periodontal pathogens.

Local drug delivery
Reference Experimental design Type of statin dose Results Periodontal consideration

[82]

MIC was determined against P.g
(ATCC 33277) and A.a (ATCC
25586) using serial dilution

method

Simvastatin, 1 μg/mL to 500 μg/mL ↘ P.g
↘ A.a

Simvastatin had an antibacterial
effect against the keystone

pathogens involved in periodontal
disease

[138]

A.a (ATCC 43719), P. nigrescens
(ATCC 33563), or P.g (ATCC

33277) were cultured on a trilayer
functional CS membrane with

EGCG and lovastatin

Lovastatin 0.1, 0.5, 1, and 2mg
↘ P.g
↘ A.a

Lovastatin had an antibacterial effect
against periodontopathogenic

bacteria
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dosage used ranged from 0.3 to 30mg/kg with 20mg/kg as
the most commonly tested dose. The dose of locally delivered
statins varied with the type of carrier/scaffold used (Table 3).
Five studies demonstrated insignificant improvements [94–
98]. Interestingly, 3 of them involved surgical treatment of
ACP models by local statin application [94, 96, 98] and one
study employed nonsurgical local statin therapy [95],
whereas only one EIP was treated with systemic statin deliv-
ery [97]. One study even demonstrated a negative impact of
statin use [99].

3.5. Clinical Outcomes. The selected studies evaluating the
effect of statins in the context of periodontal treatment
included 23 controlled and randomized clinical trials, 8
cohort studies, and 1 longitudinal study (Figure 4). Primary
outcomes varied between improvement of clinical attach-
ment level (CAL), reduction of pocket depth (PD), tooth loss,
radiographic bone defect depth, periodontal inflamed surface
area (PISA), and serum and/or GCF proinflammatory cyto-
kines level. Most of the studies focused on the local adminis-
tration (n = 25) of statins (Table 6), while 7 investigated the
impact of systemic route (Table 7). Essentially, effects of sta-
tins have been evaluated as an adjunct to both nonsurgical
and surgical treatments, mainly in the context of chronic
periodontitis in healthy patients.

3.6. Statins as a Local Adjunct to Nonsurgical Periodontal
Treatment. The effect of local delivery of statins as an adjunct
to nonsurgical periodontal therapy (SRP) was studied in
20 clinical trials (Table 6). Atorvastatin and simvastatin
have been the most commonly studied statins. Amongst
the identified studies, 13 demonstrated a significant PD
reduction, CAL gain, and IBD fill in healthy patients, 2 in

well-controlled type II diabetes patients, and 3 in smokers.
At contrary, in 2 studies, the test groups using atorvastatin
or simvastatin did not show any significant differences when
compared with the control [21, 100]. For instance, with
simvastatin, the mean PD gain was 1 23 ± 0 57mm for the
control group versus 1 83 ± 0 07mm for the test group
(p = 0,112) and the mean CAL gain was 2 09 ± 0 08mm for
the control group versus 2 43 ± 0 01mm for the test group
(p = 0 889) after 45 days. Nevertheless, authors found a
statistically significant reduction of PI, BOP, IL-6, and IL-8
levels [21].

Only 4 studies compared the outcomes obtained with
more than one statin; however, contradictory results were
observed. For instance, one study did not show any signifi-
cant difference between atorvastatin and simvastatin [100],
whereas better results were obtained with atorvastatin in
another study [101]. Nevertheless, two studies highlighted
greater efficacy with rosuvastatin in comparison with
atorvastatin [20, 102].

Interestingly, studies that have investigated the effects
of statin treatment on the biological markers from GCF
showed that simvastatin administration reduced signifi-
cantly IL-6, IL-8 and increased the anti-inflammatory
IL-10 [21, 100, 103].

3.7. Statins as a Local Adjunct to Surgical Periodontal
Treatment. Statins have also been inspected for their role in
the surgical treatment outcomes. In all identified studies
where statins (simvastatin, atorvastatin, and rosuvastatin)
were locally administered concomitant to surgical approach
(including the use of biomaterials or PRF), a significant
reduction of PD, improvement of CAL, and bone defect fill
was achieved in the test group in comparison to the control
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Figure 4: Selection of the studies.
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id
en
ce

of
ne
w
ce
m
en
tu
m

de
po

si
tio

n
ob
se
rv
ed

on
th
e
ro
ot

su
rf
ac
e

N
o
in
fl
am

m
at
or
y
ce
ll
in
fi
ltr
at
e

w
as

no
te
d
in

th
e

EG
C
G
14
-C

S-
lo
va
st
at
in

1
gr
ou

p
Fi
br
ou

s
co
nn

ec
tiv

e
tis
su
e

ap
pr
ox
im

at
ed

to
th
e
su
rg
ic
al

de
fe
ct

T
he

tr
ila
ye
r
fu
nc
tio

na
lC

S
m
em

br
an
e
w
ith

EG
C
G
an
d
lo
va
st
at
in

en
ha
nc
ed

pe
ri
od

on
ta
l

re
ge
ne
ra
tio

n
an
d
bo
ne

fo
rm

at
io
n
ra
te

[1
40
]

D
og
s
(m

al
e)

A
C
P
(m

ax
ill
ar
y
bo
ne

de
fe
ct
)

Ex
tr
ac
tio

n
of

m
ax
ill
ar
y
2n

d
an
d
3r

d
in
ci
so
rs

fo
llo
w
ed

by
8
w
ee
ks

of
so
ck
et
he
al
in
g
an
d,

la
te
r,
pr
ep
ar
at
io
n
of

th
re
e-
w
al
le
d
in
tr
ab
on

y
de
fe
ct
s
(4

×
4×

5m
m
:b
uc
co
lin

gu
al
,

m
es
io
di
st
al
,a
nd

de
pt
h,

re
sp
ec
tiv

el
y)

on
th
e

m
es
ia
ls
id
e
of

m
ax
ill
ar
y
bi
la
te
ra
lc
an
in
es

R
em

ov
al
of

re
si
du

al
ce
m
en
tu
m

by
SR

P

N
on

su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Lo
va
st
at
in

4
m
g
di
ss
ol
ve
d
in

ch
lo
ro
fo
rm

to
fo
rm

a
3
w
t%

PL
G
A
so
lu
tio

n
Lo

ca
li
nj
ec
tio

ns
of

PL
G
A
-l
ov
as
ta
tin

-C
S-
te
tr
ac
yc
lin

e
0.
3%

na
no

pa
rt
ic
le
s
pr
ep
ar
ed

as
a
hy
dr
og
el
by

m
ix
in
g
w
ith

ge
la
tin

(1
0
m
g/
10
0
m
m

3 )
to

fi
ll

th
e
de
fe
ct
s

↗
ne
w
de
po

si
ts
of

ce
m
en
tu
m

on
th
e
ro
ot

su
rf
ac
e

↗
ac
tiv

e
pl
as
m
ac
yt
oi
d

os
te
ob
la
st
ic
ri
m
m
in
g
al
on

g
th
e

tr
ab
ec
ul
ar

su
rf
ac
e
of

th
e
bo
ne

ad
ja
ce
nt

to
th
e
de
fe
ct

↗
pe
rc
en
ta
ge

of
ne
w
bo
ne

fo
rm

at
io
n
(4
1.
32
%
)

N
o
ev
id
en
ti
nfl

am
m
at
io
n

PL
G
A
-l
ov
as
ta
tin

-c
hi
to
sa
n-
te
tr
ac
yc
lin

e
na
no

pa
rt
ic
le
s
sh
ow

ed
a
go
od

os
te
og
en
ic

po
te
nt
ia
l.
T
he
y
pr
om

ot
ed

ne
w
bo
ne

an
d

ce
m
en
tu
m

fo
rm

at
io
n

[9
6]

R
at
s
(m

al
e)

A
C
P
(m

an
di
bu

la
r
bo
ne

de
fe
ct
)

Pr
ep
ar
at
io
n
of

su
rg
ic
al
de
fe
ct
s
0.
8
m
m

in
di
am

et
er

th
ro
ug
h
th
e
al
ve
ol
ar

bo
ne

ov
er

th
e

m
es
io
bu

cc
al
ro
ot

of
th
e
m
an
di
bu

la
r
M
1

bi
la
te
ra
lly

Su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Si
m
va
st
at
in

2.
5%

ge
l

D
ef
ec
tw

as
fi
lle
d
w
ith

2.
5%

si
m
va
st
at
in

ge
l

Si
ng
le
to
pi
ca
la
pp

lic
at
io
n

↘
m
ar
ro
w
sp
ac
es

in
si
m
va
st
at
in
-t
re
at
ed

de
fe
ct
s

↗
co
lla
ge
n
fi
br
il
or
ga
ni
za
tio

n
↗

O
PN

in
bo
ne

m
at
ri
x

↗
al
ve
ol
ar

bo
ne

re
ge
ne
ra
tio

n

Si
m
va
st
at
in

ge
li
m
pr
ov
ed

th
e
qu

al
ity

of
th
e

ne
w
bo
ne

an
d
de
cr
ea
se
d
bo
ne

re
so
rp
tio

n
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T
ab

le
3:
C
on

tin
ue
d.

Lo
ca
ld

ru
g
de
liv
er
y

R
ef
er
en
ce

Ex
pe
ri
m
en
ta
lp

er
io
do

nt
iti
s
in
du

ct
io
n
m
od

el
(i
)
A
ni
m
al

(i
i)
M
et
ho

d
(i
ii)

Si
te

Pe
ri
od

on
tit
is
tr
ea
tm

en
t

(i
)
T
yp
e
of

tr
ea
tm

en
t

(i
i)
T
yp
e
an
d
do

se
of

st
at
in

(i
ii)

M
od

e
an
d
tim

e
of

st
at
in

de
liv
er
y

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

[9
9]

D
og
s
(m

al
es

an
d
fe
m
al
es
)

A
C
P
(m

an
di
bu

la
r
bo
ne

de
fe
ct
)

Pr
ep
ar
at
io
n
of

bi
la
te
ra
l3

-w
al
le
d
in
tr
ab
on

y
de
fe
ct
s(
4×

4×
4m

m
)d

is
ta
lo
ft
he

m
an
di
bu

la
r

PM
2
an
d
m
es
ia
lo

ft
he

PM
4
an
d
cl
as
s
II

fu
rc
at
io
n
de
fe
ct
s
at

th
e
bu

cc
al
fu
rc
at
io
n
of

th
e

m
an
di
bu

la
r
M
1
m
ea
su
ri
ng

4
m
m

oc
cl
us
al

ap
ic
al
ly
an
d
4
m
m

bu
cc
ol
in
gu
al
ly
fo
llo
w
ed

by
he
al
in
g
an
d
SR

P
of

de
fe
ct
si
te
s

N
on

su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Si
m
va
st
at
in

0.
5
m
g
or

2.
0
m
g
in

30
μL

m
et
hy
lc
el
lu
lo
se

ge
l

T
hr
ee

w
ee
kl
y
in
je
ct
io
ns

↗
ed
en
tu
lo
us

ri
dg
e
th
ic
kn

es
s

(2
9%

gr
ea
te
r
w
ith

si
m
va
st
at
in
)

↗
bo
ne

lo
ss
in

cl
as
s
II
fu
rc
at
io
n

de
fe
ct
s

↗
le
ng
th

of
ne
w
ce
m
en
tu
m

in
th
e
in
te
rp
ro
xi
m
al
in
tr
ab
on

y
de
fe
ct

↗
bo
ne

he
ig
ht

w
ith

si
m
va
st
at
in

(2
m
g)

N
o
ne
w
ce
m
en
tu
m

w
as

ob
se
rv
ed

in
fu
rc
at
io
ns

Si
m
va
st
at
in

w
as

no
ta

pp
ro
pr
ia
te
fo
r
th
e

tr
ea
tm

en
to

fc
la
ss
II
fu
rc
at
io
n
de
fe
ct
s.

H
ow

ev
er
,i
ti
m
pr
ov
ed

bo
ne

he
al
in
g
in

in
tr
ab
on

y
de
fe
ct
s
an
d
ed
en
tu
lo
us

ri
dg
es

si
gn
ifi
ca
nt
ly

[2
2]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
M
2
bi
la
te
ra
lly

N
on

su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

A
to
rv
as
ta
tin

2%
w
/v

co
nt
ai
ni
ng

C
S
ge
l

Lo
ca
l1

00
μL

vo
lu
m
e
ap
pl
ic
at
io
n
ev
er
y
ot
he
r

da
y
un

til
eu
th
an
as
ia

↘
IL
-1
β
,I
L-
6,
an
d
IL
-8

↗
IL
-1
0
(t
im

e
de
pe
nd

en
t)

↘
al
ve
ol
ar

bo
ne

re
so
rp
tio

n
(s
ig
ni
fi
ca
nt
ly
w
ith

AT
V
+
CS

ap
pl
ic
at
io
n
an
d
in
si
gn
ifi
ca
nt
ly

w
ith

A
T
V
al
on

e)
↘

at
ta
ch
m
en
tl
os
s

Im
pr
ov
em

en
to

fi
nfl

am
m
at
or
y

an
d
os
te
oc
la
st
ic
ac
tiv

ity
sc
or
e

ov
er

tim
e

A
to
rv
as
ta
tin

w
ith

ch
ito

sa
n
do

w
nr
eg
ul
at
ed

in
fl
am

m
at
io
n-
m
ed
ia
te
d
bo
ne

re
so
rp
tio

n

[9
0]

R
at
s
(f
em

al
e)

EI
P
by

in
je
ct
io
n
of

E.
co
li
LP

S
10

μL
of

en
do

to
xi
n
in
je
ct
io
n

(1
m
g/
m
L
of

LP
S
in

PB
S)

be
tw
ee
n
M
1
an
d
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ev
en
ta
tiv

e)
Si
m
va
st
at
in

0.
5
m
g
of

si
m
va
st
at
in

an
d
3.
75

m
g
of

SI
M
-A

LN
-C

D
in

H
2O

T
hr
ee

w
ee
kl
y
12

μL
in
je
ct
io
n
bi
la
te
ra
lly

in
to

th
e
pa
la
ta
l/i
nt
er
pr
ox
im

al
gi
ng
iv
a
of

M
1

an
d
M
2

T
re
at
m
en
ts
ta
rt
ed

on
e
w
ee
k
be
fo
re

in
du

ct
io
n

↗
bo
ne

pr
es
er
va
tio

n
du

ri
ng

ex
pe
ri
m
en
ta
l p

er
io
do

nt
iti
s
by

pr
op

hy
la
ct
ic
SI
M
-A

LN
-C

D
in
je
ct
io
n

↘
su
bs
ul
cu
la
r
in
fl
am

m
at
io
n

↘
al
ve
ol
ar

bo
ne

lo
ss

↘
O
C
nu

m
be
r

Si
m
va
st
at
in

pr
ot
ec
te
d
ag
ai
ns
ta

lv
eo
la
r
bo
ne

lo
ss
an
d
so
ft
tis
su
e
in
fl
am

m
at
io
n

[9
8]

D
og
s
(f
em

al
e)

A
C
P
(m

an
di
bu

la
r
bo
ne

de
fe
ct
)

Pr
ep
ar
at
io
n
of

de
hi
sc
en
ce

de
fe
ct
s
(5

×
3m

m
)

bi
la
te
ra
lly

on
th
e
la
te
ra
la
sp
ec
to

ft
he

m
an
di
bu

la
r
PM

2
m
es
ia
lr
oo
ts
an
d
re
m
ov
al
of

Su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Si
m
va
st
at
in

G
ra
ft
su
rg
er
y
w
ith

H
A
gr
af
ts
bi
la
te
ra
lly

co
ve
re
d
w
ith

re
so
rb
ab
le
bi
la
ye
r
co
lla
ge
n

m
em

br
an
es

hy
dr
at
ed

w
ith

10
m
g
si
m
va
st
at
in

↗
w
id
th

of
ne
w
bo
ne

in
ed
en
tu
lo
us

ri
dg
e

D
is
ta
nc
e
be
tw
ee
n
C
EJ

an
d
th
e

al
ve
ol
ar

cr
es
tw

as
m
or
e
co
ro
na
l

in
de
hi
sc
en
ce

de
fe
ct
s
tr
ea
te
d

Si
m
va
st
at
in

im
pr
ov
ed

ne
w
bo
ne

fo
rm

at
io
n

w
he
re

pe
ri
os
te
um

ex
is
te
d
an
d
di
d
no

ti
nd

uc
e

se
ve
re

si
de

eff
ec
ts
ex
ce
pt

fo
r
m
od

er
at
e

sw
el
lin

g
th
at
,e
ve
nt
ua
lly
,s
ub

si
de
d

10 Mediators of Inflammation



T
ab

le
3:
C
on

tin
ue
d.

Lo
ca
ld

ru
g
de
liv
er
y

R
ef
er
en
ce

Ex
pe
ri
m
en
ta
lp

er
io
do

nt
iti
s
in
du

ct
io
n
m
od

el
(i
)
A
ni
m
al

(i
i)
M
et
ho

d
(i
ii)

Si
te

Pe
ri
od

on
tit
is
tr
ea
tm

en
t

(i
)
T
yp
e
of

tr
ea
tm

en
t

(i
i)
T
yp
e
an
d
do

se
of

st
at
in

(i
ii)

M
od

e
an
d
tim

e
of

st
at
in

de
liv
er
y

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

ro
ot

ce
m
en
tu
m

Sp
lit
-m

ou
th

de
si
gn

(g
ra
ft
su
rg
er
y
pe
rf
or
m
ed

at
th
e
tim

e
of

de
fe
ct

pr
ep
ar
at
io
n)

Lo
ca
li
nj
ec
tio

n
10

m
g
SI
M

(0
.5
m
g/
kg
)
in

et
ha
no

l(
10
0
μL

)
T
hr
ee

w
ee
kl
y
in
je
ct
io
ns

(o
ne

w
ee
k
af
te
r
th
e

gr
af
ts
ur
ge
ry

an
d
de
fe
ct
pr
ep
ar
at
io
n)

w
ith

si
m
va
st
at
in

(i
ns
ig
ni
fi
ca
nt
)

T
hr
ee

w
ee
ks

po
st
-o
p
af
te
r

si
m
va
st
at
in

in
je
ct
io
n
(fi
rm

sw
el
lin

g
ab
ou

t1
×
1c

m
to

3 5
×
3 5

cm
in

si
ze
),
di
sa
pp

ea
re
d

in
2
m
on

th
s

[5
9]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

Le
ft
m
an
di
bu

la
r
M
1

N
on

su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Si
m
va
st
at
in

1
m
g/
m
L

(N
atr

os
ol
+
sim

va
sta

tin
ge
ls
ol
ut
io
n)

in
to

th
e

pe
ri
od

on
ta
lp

oc
ke
t

SR
P
an
d
ir
ri
ga
tio

n
w
ith

si
m
va
st
at
in

Si
ng
le
in
je
ct
io
n

↘
M
M
P-
8
ex
pr
es
si
on

↘
bo
ne

lo
ss

Si
m
va
st
at
in

re
du

ce
d
pe
ri
od

on
ta
lb

on
e
lo
ss

[1
41
]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Si
m
va
st
at
in

0.
2
m
g
in

50
μL

PB
S
to
pi
ca
lly

in
je
ct
ed

in
to

th
e

bu
cc
al
gi
ng
iv
ae

T
w
ic
e
a
w
ee
k
fo
r
70

da
ys

↗
A
LP

ac
tiv

ity
↗

bo
ne

no
du

le
fo
rm

at
io
n

N
o
in
fl
am

m
at
or
y
ce
lls

ar
ou

nd
th
e
ne
w
bo
ne

↘
bo
ne

lo
ss

Si
m
va
st
at
in

re
co
ve
re
d
th
e

lig
at
ur
e-
in
du

ce
d
al
ve
ol
ar

bo
ne

re
so
rp
tio

n
(4
6%

re
ve
rs
al
of

bo
ne

he
ig
ht
)

Si
m
va
st
at
in

in
cr
ea
se
d
bo
ne

re
ge
ne
ra
tio

n
an
d

re
du

ce
d
in
fl
am

m
at
io
n

[1
42
]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
an
di
bu

la
r
le
ft
M
1

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ev
en
ta
tiv

e)
Si
m
va
st
at
in

0.
5
m
g/
kg

bo
dy

w
ei
gh
to

ra
lly

Fo
llo
w
ed

by
la
se
r
th
er
ap
y

T
re
at
m
en
ts
ta
rt
ed

1
da
y
be
fo
re

in
du

ct
io
n
an
d

da
ily

un
til

eu
th
an
as
ia

↘
bo
ne

lo
ss

↘
ca
rb
on

yl
at
ed

pr
ot
ei
ns

in
gi
ng
iv
a

Si
m
va
st
at
in

re
du

ce
d
bo
ne

lo
ss

[9
1]

R
at
s
(f
em

al
e
ov
ar
ec
to
m
iz
ed
)

EI
P
by

lig
at
ur
es

M
an
di
bu

la
r
ri
gh
tM

1

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
Si
m
va
st
at
in

10
-6
M
,3

×
10

−7
M
,1
0-
7
M

su
bp

er
io
st
ea
l

in
je
ct
io
ns

(0
.0
5
m
L)

↘
pe
ri
od

on
ta
lb

re
ak
do

w
n

↘
bo
ne

lo
ss

in
al
ve
ol
ar

bo
ne

cr
es
tz
on

e
in

a
do

se
-d
ep
en
de
nt

m
an
ne
r

(1
0−

7
>
10

−6
>
3×

10
−7
)

Si
m
va
st
at
in

re
du

ce
d
bo
ne

lo
ss

in
a

do
se
-d
ep
en
de
nt

m
an
ne
r
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le
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C
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tin
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Lo
ca
ld

ru
g
de
liv
er
y

R
ef
er
en
ce

Ex
pe
ri
m
en
ta
lp

er
io
do

nt
iti
s
in
du

ct
io
n
m
od

el
(i
)
A
ni
m
al

(i
i)
M
et
ho

d
(i
ii)

Si
te

Pe
ri
od

on
tit
is
tr
ea
tm

en
t

(i
)
T
yp
e
of

tr
ea
tm

en
t

(i
i)
T
yp
e
an
d
do

se
of

st
at
in

(i
ii)

M
od

e
an
d
tim

e
of

st
at
in

de
liv
er
y

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

T
w
ic
e
a
w
ee
k
si
nc
e
th
e
fi
rs
td

ay
of

lig
at
ur
e

in
se
rt
io
n
to

th
e
25
th

da
y

[1
43
]

R
at

(f
em

al
e)

EI
P
(l
ig
at
ur
e)

M
ax
ill
ar
y
M
2
bi
la
te
ra
lly

N
on

su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Si
m
va
st
at
in

SI
M
-P
Pi

co
nj
ug
at
e

D
iff
er
en
tt
re
at
m
en
ts
in
cl
ud

in
g
SI
M
-P
Pi

(d
is
so
lv
ed

in
25
%
,2
.5
6
m
g,
eq
ui
va
le
nt

to
1.
5
m
g
SI
M
)
an
d
SI
M

ac
id

(d
is
so
lv
ed

in
PB

S,
1.
56

m
g,
eq
ui
va
le
nt

to
1.
5
m
g
of

SI
M
)
lo
ca
lly

in
je
ct
ed

(1
0
μL

)
in
to

th
e
pa
la
ta
lg
in
gi
va

be
tw
ee
n
th
e
m
ax
ill
ar
y
M
1
an
d
M
2

O
n
th
e
fi
rs
td

ay
of

w
ee
ks

1,
2
an
d
3
af
te
r

lig
at
ur
e
pl
ac
em

en
t

↗
al
ve
ol
ar

bo
ne

cr
es
t

pr
es
er
va
tio

n
w
ith

SI
M
-P
Pi

↗
bo
ne

vo
lu
m
e

↗
tr
ab
ec
ul
ar

th
ic
kn

es
s

↗
tr
ab
ec
ul
ar

nu
m
be
r

↘
tr
ab
ec
ul
ar

se
pa
ra
tio

n
↘

ne
ut
ro
ph

il
an
d
ly
m
ph

oc
yt
e

sc
or
e

↘
O
C
sc
or
e

Si
m
va
st
at
in

im
pr
ov
ed

pe
ri
od

on
ta
lb

on
e

re
ge
ne
ra
tio

n
an
d
de
cr
ea
se
d
pe
ri
od

on
ta
l

in
fl
am

m
at
io
n
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T
ab

le
4:
In

vi
vo

st
ud

ie
s
ev
al
ua
tin

g
th
e
im

pa
ct
of

sy
st
em

ic
st
at
in

ad
m
in
is
tr
at
io
n
on

pe
ri
od

on
ta
lw

ou
nd

he
al
in
g.

Sy
st
em

ic
dr
ug

de
liv
er
y

R
ef
er
en
ce

Ex
pe
ri
m
en
ta
lp

er
io
do

nt
iti
s
in
du

ct
io
n
m
od

el
(i
)
A
ni
m
al

(i
i)
M
et
ho

d
(i
ii)

Si
te

Pe
ri
od

on
tit
is
tr
ea
tm

en
t

(i
)
T
yp
e
of

tr
ea
tm

en
t

(i
i)
T
yp
e
an
d
do

se
of

st
at
in

(i
ii)

M
od

e
an
d
tim

e
of

st
at
in

de
liv
er
y

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

[3
1]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
le
ft
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
A
to
rv
as
ta
tin

1
m
g/
kg
,5

m
g/
kg
,a
nd

10
m
g/
kg

1
ho

ur
be
fo
re

in
du

ct
io
n
an
d
th
er
ea
ft
er

on
ce

da
ily

↘
M
M
P-
2,
M
M
P-
9

↘
R
A
N
K
-L
,R

A
N
K

↗
O
PG

↗
G
SH

le
ve
ls

↘
IL
-1
β
,T

N
F-
α,

an
d
M
PO

(d
os
e

de
pe
nd

en
t)

↘
C
O
X
-2

le
ve
l

↘
M
D
A
ac
tiv

ity
↘

al
ve
ol
ar

bo
ne

lo
ss
is
do

se
de
pe
nd

en
t

A
to
rv
as
ta
tin

pr
ot
ec
te
d
ag
ai
ns
t

al
ve
ol
ar

bo
ne

lo
ss

in
a

do
se
-d
ep
en
de
nt

m
an
ne
r

[5
8]

R
at
s
(f
em

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
le
ft
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
Si
m
va
st
at
in

3,
10
,a
nd

30
m
g/
kg
/d
ay

1
ho

ur
be
fo
re

in
du

ct
io
n
an
d
th
er
ea
ft
er

on
ce

da
ily

↗
BM

P-
2
an
d
O
PG

le
ve
ls

↗
T
R
A
P
ac
tiv

ity
↘

M
PO

ac
tiv

ity
(d
os
e
de
pe
nd

en
t)

↘
IL
-1
β
an
d
T
N
F-
α

↗
IL
-1
0

↘
gi
ng
iv
al
G
SH

↗
gi
ng
iv
al
M
D
A
an
d
N
O
X

↘
iN
O
S,
M
M
P-
1,
M
M
P-
8,
R
A
N
K
,a
nd

R
A
N
K
L
ex
pr
es
si
on

N
o
di
ff
er
en
ce
s
in

A
ST

an
d
A
LT

le
ve
ls

In
hi
bi
tio

n
of

al
ve
ol
ar

bo
ne

lo
ss

Si
m
va
st
at
in

pr
ev
en
te
d
in
fl
am

m
at
or
y

bo
ne

re
so
rp
tio

n
an
d
po

ss
es
se
d

an
tio

xi
da
nt

pr
op

er
tie
s

[1
44
]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
le
ft
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
A
to
rv
as
ta
tin

1,
3,
an
d
9
m
g/
kg

A
to
rv
as
ta
tin

m
ix
ed

in
st
er
ile

sa
lin

e
by

ga
va
ge

30
m
in

be
fo
re

lig
at
ur
e
pl
ac
em

en
ta

nd
th
en

da
ily

un
til

eu
th
an
as
ia

↘
al
ve
ol
ar

bo
ne

lo
ss

in
th
e
fu
rc
at
io
n
ar
ea

as
w
el
la
s
in

pr
ox
im

al
fa
ce
s
of

up
pe
r
M
2

(4
7%

re
du

ct
io
n
w
ith

9
m
g
do

se
co
m
pa
re
d
to

th
at

w
ith

th
e
co
nt
ro
l)

In
si
gn
ifi
ca
nt

bo
ne

lo
ss

pr
ot
ec
tio

n
w
ith

1
an
d
3
m
g
do

se
s

A
to
rv
as
ta
tin

ha
d
pr
ot
ec
tiv

e
eff
ec
t

ag
ai
ns
ta

lv
eo
la
r
bo
ne

lo
ss

[4
0]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
le
ft
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e
+
th
er
ap
eu
tic
)

A
to
rv
as
ta
tin

0.
3
m
g/
kg

or
27

m
g/
kg

by
ga
va
ge

In
co
m
bi
na
tio

n
w
ith

A
LN

30
m
in

be
fo
re

lig
at
ur
e
pl
ac
em

en
ta

nd
th
er
ea
ft
er

on
ce

da
ily

un
til

eu
th
an
as
ia
or

5
da
ys

af
te
r
th
e

st
ar
to

fp
er
io
do

nt
iti
s
in
du

ct
io
n
an
d
th
en

da
ily

un
til

eu
th
an
as
ia

↘
T
R
A
P
an
d
M
PO

ac
tiv

ity
↘

ce
m
en
tu
m

re
so
rp
tio

n
↘

ne
ut
ro
ph

ili
a
an
d

ly
m
ph

om
on

oc
yt
os
is

↘
al
ve
ol
ar

bo
ne

lo
ss
bo
th

pr
op

hy
la
ct
ic
al
ly
(3
9%

)
an
d

th
er
ap
eu
tic
al
ly
(5
3.
4%

)w
ith

lo
w
er
do

se
of

AL
N
+
AT

V
(0
.0
1
m
g/
kg
+0

.3
m
g/
kg
,

re
sp
ec
tiv

el
y)

Pr
ev
en
te
d
BA

LP
re
du

ct
io
n
w
ith

lo
w
er

do
se

of
AL

N
+
AT

V
N
o
eff
ec
to

n
se
ru
m

tr
an
sa
m
in
as
es

A
to
rv
as
ta
tin

re
du

ce
d
al
ve
ol
ar

bo
ne

lo
ss
,c
em

en
ta
lr
es
or
pt
io
n,

an
d

in
fl
am

m
at
or
y
ce
ll
in
fi
ltr
at
io
n
bo
th

pr
op

hy
la
ct
ic
al
ly
an
d
th
er
ap
eu
tic
al
ly
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T
ab

le
4:
C
on

tin
ue
d.

Sy
st
em

ic
dr
ug

de
liv
er
y

R
ef
er
en
ce

Ex
pe
ri
m
en
ta
lp

er
io
do

nt
iti
s
in
du

ct
io
n
m
od

el
(i
)
A
ni
m
al

(i
i)
M
et
ho

d
(i
ii)

Si
te

Pe
ri
od

on
tit
is
tr
ea
tm

en
t

(i
)
T
yp
e
of

tr
ea
tm

en
t

(i
i)
T
yp
e
an
d
do

se
of

st
at
in

(i
ii)

M
od

e
an
d
tim

e
of

st
at
in

de
liv
er
y

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

[1
45
]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
le
ft
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
A
to
rv
as
ta
tin

0.
3,
3,
an
d
27

m
g/
kg

by
ga
va
ge

30
m
in

be
fo
re

lig
at
ur
e
pl
ac
em

en
ta

nd
th
er
ea
ft
er

on
ce

da
ily

un
til

eu
th
an
as
ia

↘
al
ve
ol
ar

bo
ne

in
a
do

se
-d
ep
en
de
nt

m
an
ne
r
(3
9%

fo
r
3
m
g/
kg

an
d
56
%

fo
r

27
m
g/
kg

do
se
s)

Pr
ev
en
te
d
th
e
re
du

ct
io
n
of

B
A
LP

se
ru
m

le
ve
ls
(2
7
m
g/
kg
)

Pr
ev
en
te
d
le
uk

oc
yt
os
is
(2
7
m
g/
kg
)

A
to
rv
as
ta
tin

pr
ev
en
te
d
al
ve
ol
ar
bo
ne

lo
ss
w
ith

bo
th

pr
op

hy
la
ct
ic
an
d

th
er
ap
eu
tic

do
se
s

[3
2]

R
at
s
(f
em

al
e
w
ith

m
et
ab
ol
ic
sy
nd

ro
m
e)

A
C
P
(i
nj
ec
tio

n
of

20
μg

of
A
.a
LP

S
in

PB
S)

in
to

th
e
pa
la
ta
lg
in
gi
va

be
tw
ee
n
th
e

m
ax
ill
ar
y
M
1
an
d
M
2,
th
ri
ce

pe
r
w
ee
k
fo
r

4
w
ee
ks

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
Si
m
va
st
at
in

20
m
g/
kg
/d
ay

D
ai
ly
vi
a
ga
va
ge

fo
r
4
w
ee
ks

T
re
at
m
en
ts
ta
rt
ed

on
th
e
sa
m
e
da
y
as

in
je
ct
io
n
of

LP
S

↘
LP

S
in
du

ce
d
al
ve
ol
ar

bo
ne

lo
ss

in
bo
th

le
an

an
d
fa
tr
at
s
(s
ig
ni
fi
ca
nt
ly
)

↘
in
fi
ltr
at
io
n
of

m
on

on
uc
le
ar

ce
lls

↘
in
fl
am

m
at
or
y
sc
or
e

↘
LP

S
st
im

ul
at
ed

R
A
N
K
L
an
d
C
SF
2

ex
pr
es
si
on

in
bo
th

le
an

an
d
fa
tr
at
s

↘
bo
ne

re
so
rp
tio

n

Si
m
va
st
at
in

do
w
nr
eg
ul
at
ed

in
fl
am

m
at
io
n-
m
ed
ia
te
d
bo
ne

re
so
rp
tio

n

[3
3]

R
at
s
(f
em

al
e)

A
C
P
in
je
ct
io
n
of

20
μg

/r
at

of
A
.a

LP
S
th
ro
ug
h
th
e
pa
la
ta
lg
in
gi
va

be
tw
ee
n
th
e

m
ax
ill
ar
y
M
1
an
d
M
2
th
ri
ce

pe
r
w
ee
k
fo
r

8
w
ee
ks

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
Si
m
va
st
at
in

(2
0
m
g/
kg
/d
ay
)
da
ily

vi
a
or
al
ga
va
ge

fo
r
8
w
ee
ks

↘
LP

S
in
du

ce
d
al
ve
ol
ar
bo
ne

lo
ss
(3
1%

)
↘

LP
S
in
du

ce
d
os
te
oc
la
st
og
en
es
is

↘
T
N
F-
α,

IL
-1
α,

IL
-1
β
,I
L-
6,
C
SF
-2
,

C
SF
-3
,M

C
P-
1,
an
d
M
M
P-
9

↘
LP

S
in
du

ce
d
T
LR

fa
m
ily

m
em

be
rs
’

ex
pr
es
si
on

Si
m
va
st
at
in

do
w
nr
eg
ul
at
ed

in
fl
am

m
at
io
n-
m
ed
ia
te
d
bo
ne

re
so
rp
tio

n

[2
5]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
ax
ill
ar
y
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
R
os
uv
as
ta
tin

20
m
g/
kg

in
w
at
er

by
ga
va
ge

1
h
be
fo
re

lig
at
io
n
an
d
th
en

on
ce

da
ily

un
til

eu
th
an
as
ia

↗
IL
-1
0

↘
IL
-1
β

↗
M
D
A

↗
G
SH

↘
in
fl
am

m
at
o r
y
in
fi
ltr
at
e

↘
O
C
nu

m
be
r

↗
O
B
nu

m
be
r

↘
al
ve
ol
ar

bo
ne

lo
ss
(s
ig
ni
fi
ca
nt
ly
)

R
os
uv
as
ta
tin

pr
ot
ec
te
d
ag
ai
ns
t

al
ve
ol
ar

bo
ne

lo
ss

[5
4]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

H
yp
er
lip

id
em

ia
in
du

ct
io
n
th
ro
ug
h
di
et

M
ax
ill
ar
y
M
2

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
R
os
uv
as
ta
tin

20
m
g/
kg

in
w
at
er

by
ga
va
ge

1
h
be
fo
re

lig
at
io
n
an
d
th
en

on
ce

da
ily

un
til

eu
th
an
as
ia

↘
gi
ng
iv
al
iN
O
S
(s
ig
ni
fi
ca
nt
ly
)

↘
in
fl
am

m
at
io
n
an
d
hy
pe
re
m
ia

↘
al
ve
ol
ar

bo
ne

lo
ss

R
os
uv
as
ta
tin

pr
ot
ec
te
d
ag
ai
ns
t

in
fl
am

m
at
io
n-
in
du

ce
d
bo
ne

de
gr
ad
at
io
n

[3
4]

R
at
s
(m

al
e)

EI
P
by

lig
at
ur
es

M
an
di
bu

la
rM

1
an
d
m
ax
ill
ar
y
M
2
bi
la
te
ra
lly

N
on

su
rg
ic
al
tr
ea
tm

en
t(
th
er
ap
eu
tic
)

Si
m
va
st
at
in

10
m
g/
kg

in
w
at
er

on
ce

da
ily

or
al
ly
un

til
eu
th
an
as
ia

T
re
at
m
en
ts
ta
rt
ed

8
da
ys

af
te
r
pe
ri
od

on
tit
is

in
du

ct
io
n

↘
al
ve
ol
ar

bo
ne

lo
ss

↘
IL
-6

↘
C
R
P

Si
m
va
st
at
in

de
cr
ea
se
d
in
fl
am

m
at
io
n

an
d
al
ve
ol
ar

bo
ne

lo
ss
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T
ab

le
4:
C
on

tin
ue
d.

Sy
st
em

ic
dr
ug

de
liv
er
y

R
ef
er
en
ce

Ex
pe
ri
m
en
ta
lp

er
io
do

nt
iti
s
in
du

ct
io
n
m
od

el
(i
)
A
ni
m
al

(i
i)
M
et
ho

d
(i
ii)

Si
te

Pe
ri
od

on
tit
is
tr
ea
tm

en
t

(i
)
T
yp
e
of

tr
ea
tm

en
t

(i
i)
T
yp
e
an
d
do

se
of

st
at
in

(i
ii)

M
od

e
an
d
tim

e
of

st
at
in

de
liv
er
y

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

[9
3]

R
at
s
(m

al
e
hy
pe
rt
en
si
ve
)

EI
P
by

lig
at
ur
es

M
an
di
bu

la
r
M
1
bi
la
te
ra
lly

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e)
R
os
uv
as
ta
tin

2
m
g/
kg

or
al
ga
va
ge

T
re
at
m
en
ts
ta
rt
ed

si
nc
e
th
e
da
y
of

in
du

ct
io
n

da
ily

un
til

eu
th
an
as
ia

↘
bo
ne

lo
ss
in

fu
rc
at
io
n
ar
ea

↘
at
ta
ch
m
en
tl
os
s

↘
T
R
A
P-
po

si
tiv

e
m
ul
tin

uc
le
at
ed

ce
lls

R
os
uv
as
ta
tin

re
du

ce
d
al
ve
ol
ar

bo
ne

lo
ss

an
d
os
te
oc
la
st
og
en
es
is

[9
7]

R
at
s

EI
P
by

lig
at
ur
es

M
an
di
bu

la
r
M
1

N
on

su
rg
ic
al
tr
ea
tm

en
t(
pr
ot
ec
tiv

e
+
th
er
ap
eu
tic
)

Si
m
va
st
at
in

D
iff
er
en
tt
re
at
m
en
ts
:s
im

va
st
at
in
-s
im

va
st
at
in
:

aq
ue
ou

s
su
sp
en
si
on

of
si
m
va
st
at
in

by
ga
va
ge

(3
5
m
g/
kg
/d
ay
)
ad
m
in
is
tr
at
io
n
be
fo
re

an
d
af
te
r

pe
ri
od

on
tit
is
in
du

ct
io
n;

si
m
va
st
at
in
-w

at
er
:

si
m
va
st
at
in

ad
m
in
is
tr
at
io
n
be
fo
re

an
d
fi
lte
re
d

w
at
er

af
te
r
pe
ri
od

on
tit
is
in
du

ct
io
n;

an
d

w
at
er
-s
im

va
st
at
in
:w

at
er

ad
m
in
is
tr
at
io
n
be
fo
re

an
d
si
m
va
st
at
in

af
te
r
pe
ri
od

on
tit
is
in
du

ct
io
n

N
o
si
gn
ifi
ca
nt

di
ff
er
en
ce
s
be
tw
ee
n

gr
ou

ps
re
ce
iv
in
g
si
m
va
st
at
in

be
fo
re

th
e

in
du

ct
io
n
of

pe
ri
od

on
tit
is
an
d
th
os
e

th
at

re
ce
iv
ed

w
at
er

N
o
pr
ot
ec
tiv

e
eff
ec
to

fs
im

va
st
at
in

ag
ai
ns
tt
he

de
ve
lo
pm
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group [104–108] (Table 6). Amongst these studies, the mean
difference of PD between the test and control groups ranged
from 1 3 ± 0 21mm to 2 51 ± 0 22mm (p < 0 001). Thus, the
mean difference of CAL between the test and control groups
ranged from 1 16 ± 0 09mm to 2 35 ± 0 08 (p < 0 001).
Moreover, the mean difference of bone defect fill between
the test and control groups ranged from 1 336 ± 0 714 to
3 08 ± 0 07 (p < 0 001).

3.8. Impact of Systemic Administration of Statins on
Nonsurgical Periodontal Treatment Outcomes. The impact
of systemic administration of statins on nonsurgical peri-
odontal treatment outcomes was evaluated in a few studies
(Table 7). From the 7 studies identified, 4 demonstrated
significant improvements regarding reduction of PD,
CAL gain, and/or tooth loss in comparison to the control
group [56, 109–111]. At contrary, 3 other studies did not show
any significant differences in periodontal outcomes between
the statin-treated and control groups [112–114]. These dis-
crepancies could be due to the very short follow-up of the
abovementioned 3 studies (3 months) compared to the other
ones (from 3 months to 7 years follow-up). Moreover, one
of the studies did not compare the treatment group with a
control group [110].

4. Discussion

Statins exhibit multiple effects, including modulation of
inflammatory-immune crosstalk, bone regeneration, and
antibacterial activity, to promote periodontal wound healing
and regeneration (Figure 5). They act through several closely
interrelated pathways highlighting potential therapeutic tar-
gets. The hydrophobic or hydrophilic nature of statins deter-
mines their efficacy, action on periodontal pathogens, and

treatment response and appears to be largely cell and tissue
dependent [69, 78]. Further insight into this may help select-
ing the best statin.

Moreover, the mode of statin delivery also affects the
treatment outcomes. Oral systemic administration of statins
reduces periodontal inflammation and consequent tooth loss
[111] but the low resultant dose available to the tissues after
hepatic bypass renders them relatively less efficacious [60].
On the other hand, a higher dose to enhance efficacy
can manifest systemic side effects such as statin-induced
myopathy, hepatotoxicity, nephrotoxicity, pulmonary man-
ifestations, ophthalmological manifestations, gastrointesti-
nal hemorrhage risk, and oral manifestations (dryness,
itch, bitterness, and cough) [115, 116]. Therefore, to avoid
these side effects, various local application strategies have
been tested that allow site-specific delivery reducing the
required dose, frequency of application, and bioavailability
in the blood [60, 117, 118], concomitantly improving patient
compliance [119].

The development and selection of an optimal statin deliv-
ery carrier are crucial as it enhances the statin retention on
the lesion and acts as a scaffold for cell growth and differen-
tiation [120]; therefore, it should be capable to withstand the
oral environment, continuous fluid exchange inside the
pocket, and salivary influx.

Several studies demonstrate that anti-inflammatory
properties of statins vary according to the type and dose of
statin used [121]. On a cellular level, modulation of macro-
phage polarization from a proinflammatory M1 to a proreso-
lution M2 phenotype by systemic delivery of immune
modulatory drugs resolved persistent inflammation associ-
ated with chronic periodontitis [122]. In this context, statins’
ability to switch M1 to M2 to promote periodontal wound
healing and regeneration needs to be explored. Furthermore,

Table 5: In vivo studies evaluating the impact of a combination of local and systemic statin administration on periodontal wound healing.

Local + systemic drug delivery

Reference

Experimental periodontitis
induction model
(i) Animal
(ii) Method
(iii) Site

Periodontitis treatment
(i) Type of treatment
(ii) Type and dose of statin
(iii) Mode and time of statin delivery

Results Periodontal considerations

[57]
Rats (male)
EIP by ligature mandibular
M1

Nonsurgical treatment (therapeutic)
Atorvastatin
Systemically (5mg/kg in a volume of
0.5mL) and locally (0.1mg/kg in a
volume of 0.05mL) at a dose of
0.1 mg/kg in a volume of 0.05 mL

↗ alveolar bone area %
↗ VEGF
↘ MMP-9
↘ alveolar bone and
attachment loss
Local application showed
better results on
periodontium healing

Atorvastatin increased the
alveolar bone regeneration

while decreasing the
periodontal inflammation

and attachment loss

[92]

Rats (female
ovarectomized)
EIP by ligatures
Maxillary M1 and M2
bilaterally

Nonsurgical treatment (therapeutic)
Simvastatin
Local injection (0.8mg/0.05mL)
Oral (25mg/kg)
For two months until euthanasia

↗ alveolar crest height (28%
with local & oral and 27%
with local)
↗ BV/TV
↗ trabecular thickness
↘ trabecular separation

Simvastatin reduced bone
degradation when

administered locally,
systemically, or both locally
and systemically together

The animals included in the studies are healthy unless stated otherwise. Treatment was considered (1) “preventative” when it started at least one day before the
start of EIP/ACP induction, (ii) “protective” when it started the same day as that of EIP/ACP induction, and (iii) “therapeutic” when it started at least one day
after the start of EIP/ACP induction.
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pe

2
di
ab
et
ic

pa
tie
nt
s
(n
on

sm
ok
er
s)

C
hr
on

ic
pe
ri
od

on
tit
is

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

1:
SR

P+
AT

V
G
ro
up

2:
SR

P+
pla

ce
bo

9
m
on

th
s
fo
llo
w
-u
p

↗
m
SB

I
↘

PD
↗

C
A
L
ga
in

↘
IB
D
de
pt
h
an
d
D
D
R

N
o
si
gn
ifi
ca
nt

di
ff
er
en
ce

fo
r

PI
at

al
lt
im

e
in
te
rv
al
s

ev
al
ua
te
d

A
to
rv
as
ta
tin

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

[1
25
]
(I
nd

ia
)

R
C
T

A
to
rv
as
ta
tin

1.
2%

at
or
va
st
at
in

ge
l(
A
T
V

ge
l(
1.
2
m
g/
0.
1
m
L)
)

71
Sm

ok
er
s

C
hr
on

ic
pe
ri
od

on
tit
is

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

1:
SR

P+
AT

V
G
ro
up

2:
SR

P+
pla

ce
bo

9
m
on

th
s
fo
llo
w
-u
p

↘
PD

↗
m
ea
n
C
A
L
ga
in

↘
m
ea
n
pe
rc
en
ta
ge

of
D
D
R

↘
m
SB

I
↘

IB
D
de
pt
h

N
o
st
at
is
tic
al
ly
si
gn
ifi
ca
nt

di
ff
er
en
ce

in
th
e

si
te
-s
pe
ci
fi
c
PI

sc
or
e
an
d

fu
ll-
m
ou

th
PI

sc
or
e

be
tw
ee
n
th
e
gr
ou

ps
at

an
y

vi
si
t

A
to
rv
as
ta
tin

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
05
]
(I
nd

ia
)

C
oh

or
t

A
to
rv
as
ta
tin

1.
2%

A
T
V
ge
l

96
H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

C
hr
on

ic
pe
ri
od

on
tit
is

Su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
OF

D
+
PR

F
G
ro
up

II
:O

FD
+
PR

F+
1 2

%
A
T
V

G
ro
up

II
I:
O
FD

al
on

e
9
m
on

th
s
fo
llo
w
-u
p

A
T
V
ge
la
nd

PR
F
al
on

e
sh
ow

ed
si
gn
ifi
ca
nt
ly
th
e

fo
llo
w
in
g:

↘
PD

↗
m
ea
n
C
A
L
ga
in

↘
IB
D
de
pt
h

A
to
rv
as
ta
tin

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in
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T
ab

le
6:
C
on

tin
ue
d.

Lo
ca
ld

ru
g
de
liv
er
y

R
ef
er
en
ce

St
ud

y
ar
ea

T
yp
e
of

st
ud

y

D
ru
g

M
od

e
of

de
liv
er
y

D
os
e

N
um

be
r
of

pa
tie
nt
s

Pe
ri
od

on
ta
ls
ta
tu
s

T
yp
e
of

pa
tie
nt
s

T
yp
e
of

tr
ea
tm

en
t

St
ud

y
de
si
gn

(g
ro
up

s)
Fo

llo
w
-u
p

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

N
o
st
at
is
tic
al
ly
si
gn
ifi
ca
nt

di
ff
er
en
ce

in
PI

an
d
m
SB

I
sc
or
es

be
tw
ee
n
th
e
gr
ou

ps
at

9
m
on

th
s

[1
01
]
(I
nd

ia
)

R
C
T

A
to
rv
as
ta
tin

an
d

si
m
va
st
at
in

10
m
L
of

1.
2%

A
T
V
ge
l

(1
.2
m
g/
0.
1
m
L)

an
d
10

m
L

of
1.
2%

SI
M

ge
l

(1
.2
m
g/
0.
1
m
L)

96
H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

C
hr
on

ic
pe
ri
od

on
tit
is

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
1 2

%
A
T
V

G
ro
up

II
:S
RP

+
1 2

%
SI
M

G
ro
up

II
I:
SR

P+
pla

ce
bo

9
m
on

th
s
fo
llo
w
-u
p

T
he

2
st
at
in
s
le
ad

to
th
e

fo
llo
w
in
g:

↘
PD

↘
m
SB

I
↘

IB
D
de
pt
h

↗
m
ea
n
C
A
L
ga
in

St
at
is
tic
al
ly
gr
ea
te
r
re
su
lts

fo
r
A
T
V
th
an

fo
r
SI
M

fo
r

PD
re
du

ct
io
n,

C
A
L
ga
in

an
d
pe
rc
en
ta
ge

of
IB
D

re
du

ct
io
n

A
to
rv
as
ta
tin

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
49
]
(I
nd

ia
)

R
C
T

Si
m
va
st
at
in

Si
ng
le
to
pi
ca
lt
ra
ns
m
uc
os
al

in
je
ct
io
n
1.
2
m
g
SI
M

60
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
pla

ce
bo

G
ro
up

II
:S
RP

+
SI
M

6
m
on

th
s
fo
llo
w
-u
p

↘
m
SB

I
↘

m
ea
n
PD

↗
m
ea
n
C
A
L

↗
IB
D
fi
ll

↘
G
I

Si
m
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
26
]
(I
nd

ia
)

R
C
T

Si
m
va
st
at
in

SI
M

1.
2
μg

/in
j.

(0
.1
2
μg

/m
m
3)

M
et
hy
lc
el
lu
lo
se

ge
l

72
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

M
an
di
bu

la
r
bu

cc
al
cl
as
s
II

fu
rc
at
io
n
de
fe
ct
s

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
pla

ce
bo

G
ro
up

II
:S
RP

+
1 2

m
gS

IM
6
m
on

th
s
fo
llo
w
-u
p

↘
SB

I
an
d
PB

↗
C
A
L

↗
IB
D
fi
ll

Si
m
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
50
]
(I
nd

ia
)

R
C
T

A
to
rv
as
ta
tin

1.
2%

A
T
V
m
et
hy
l

ce
llu

lo
se

ge
l

60
pa
tie
nt
s

C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
1 2

%
A
T
V

G
ro
up

s
II
:S
RP

+
pla

ce
bo

ge
l

9
m
on

th
s
fo
llo
w
-u
p

↘
PD

↘
m
SB

I
↗

m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

Si
m
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
51
]
(I
nd

ia
)

R
C
T

Si
m
va
st
at
in

1.
2%

SI
M

ge
l

38
C
hr
on

ic
pe
ri
od

on
tit
is

W
el
l-
co
nt
ro
lle
d
ty
pe

II
di
ab
et
es

N
on

sm
ok
er
s

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
SI
M

G
ro
up

II
:S
RP

+
pla

ce
bo

9
m
on

th
s
fo
llo
w
-u
p

↘
PD

↗
m
ea
n
C
A
L
ga
in

↗
m
ea
n
ra
di
og
ra
ph

ic
bo
ne

fi
ll ↘
m
SB

I

Si
m
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in
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T
ab

le
6:
C
on

tin
ue
d.

Lo
ca
ld

ru
g
de
liv
er
y

R
ef
er
en
ce

St
ud

y
ar
ea

T
yp
e
of

st
ud

y

D
ru
g

M
od

e
of

de
liv
er
y

D
os
e

N
um

be
r
of

pa
tie
nt
s

Pe
ri
od

on
ta
ls
ta
tu
s

T
yp
e
of

pa
tie
nt
s

T
yp
e
of

tr
ea
tm

en
t

St
ud

y
de
si
gn

(g
ro
up

s)
Fo

llo
w
-u
p

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

[1
52
]
(I
nd

ia
)

R
C
T

R
os
uv
as
ta
tin

1.
2%

ro
su
va
st
at
in

(R
SV

)
ge
l

65
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
(n
on

sm
ok
er
s)

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
RS

V
G
ro
up

II
:S
RP

+
pla

ce
bo

6
m
on

th
s
fo
llo
w
-u
p

↘
m
SB

I
↘

PD
↗

m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

R
os
uv
as
ta
tin

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[2
0]

(I
nd

ia
)

R
C
T

A
to
rv
as
ta
tin

+
ro
su
va
st
at
in

1.
2%

R
SV

an
d
1.
2%

A
T
V
ge
l

90
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
(n
on

sm
ok
er
s)

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
pla

ce
bo

G
ro
up

II
:S
RP

+
1 2

%
R
SV

ge
l

G
ro
up

II
I:
SR

P+
1 2

%
A
T
V
ge
l

9
m
on

th
s
fo
llo
w
-u
p

T
he

2
st
at
in
s
le
ad

to
th
e

fo
llo
w
in
g:

↘
m
SB

I
↘

PD
↗

m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

St
at
is
tic
al
ly
gr
ea
te
r
re
su
lts

fo
r
R
SV

th
an

fo
r
A
T
V
fo
r

PD
re
du

ct
io
n,

C
A
L
ga
in
,

IB
D
re
du

ct
io
n,

an
d
m
sS
B
I

re
du

ct
io
n

A
to
rv
as
ta
tin

an
d

ro
su
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
06
]
(I
nd

ia
)

R
C
T

R
os
uv
as
ta
tin

1.
2%

R
SV

ge
l

90
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
(n
on

sm
ok
er
s)

Su
rg
ic
al
tr
ea
tm

en
t

2/
3-
w
al
le
d
in
tr
ab
on

y
de
fe
ct
s

G
ro
up

I:
O
FD

al
on

e
G
ro
up

II
:O

FD
+
PR

F
G
ro
up

II
I:
OF

D
+
PR

F+
1 2

%
R
SV

ge
l

9
m
on

th
s
fo
llo
w
-u
p

↘
PD

↗
m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

R
os
uv
as
ta
tin

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
07
]
(I
nd

ia
)

R
C
T

R
os
uv
as
ta
tin

1.
2%

R
SV

ge
l

11
0

C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
(n
on

sm
ok
er
s)

M
an
di
bu

la
r
de
gr
ee

II
fu
rc
at
io
n

de
fe
ct
s

Su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

1:
OF

D
+
pla

ce
bo

ge
l

G
ro
up

II
:O

FD
+
PR

F+
HA

G
ro
up

II
I:
OF

D
+
RS

V
1 2

m
gg

el
+
PR

F+
HA

9
m
on

th
s
fo
llo
w
-u
p

↘
PD

↗
m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

↘
PI

an
d
m
SB

I

R
os
uv
as
ta
tin

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
53
]
(I
nd

ia
)

R
C
T

A
to
rv
as
ta
tin

1.
2%

at
or
va
st
at
in

ge
l

90
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

In
tr
ab
on

y
de
fe
ct

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
AL

N
G
ro
up

II
:S
RP

+
1 2

%
A
T
V

G
ro
up

II
I:
SR

P+
pla

ce
bo

gr
ou

p
9
m
on

th
s
fo
llo
w
-u
p

↘
PD

↗
m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

↘
m
SB

I

Lo
ca
ld

el
iv
er
y
of

at
or
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n
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T
ab

le
6:
C
on

tin
ue
d.

Lo
ca
ld

ru
g
de
liv
er
y

R
ef
er
en
ce

St
ud

y
ar
ea

T
yp
e
of

st
ud

y

D
ru
g

M
od

e
of

de
liv
er
y

D
os
e

N
um

be
r
of

pa
tie
nt
s

Pe
ri
od

on
ta
ls
ta
tu
s

T
yp
e
of

pa
tie
nt
s

T
yp
e
of

tr
ea
tm

en
t

St
ud

y
de
si
gn

(g
ro
up

s)
Fo

llo
w
-u
p

R
es
ul
ts

Pe
ri
od

on
ta
lc
on

si
de
ra
tio

ns

[1
54
]
(I
nd

ia
)

R
C
T

Si
m
va
st
at
in

0.
1
m
L
SI
M

ge
l

(1
.2
m
g/
0.
1
m
L)

24
A
gg
re
ss
iv
e
pe
ri
od

on
tit
is

H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

In
tr
ab
on

y
de
fe
ct

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P+
pla

ce
bo

ge
l

G
ro
up

II
:S
RP

+
SI
M

ge
l

6
m
on

th
s
fo
llo
w
-u
p

↘
PD

↗
m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

↘
m
SB

I
A
ll
pa
tie
nt
s
to
le
ra
te
d
th
e

dr
ug

w
ith

no
po

st
ap
pl
ic
at
io
n

co
m
pl
ic
at
io
ns

N
o
st
at
is
tic
al
ly
si
gn
ifi
ca
nt

di
ff
er
en
ce

be
tw
ee
n
gr
ou

ps
I

an
d
II
re
ga
rd
in
g
PI

Si
m
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

[1
08
]
(I
nd

ia
)

R
C
T

Si
m
va
st
at
in

1.
2
m
g
Si
m
va
st
at
in

ge
l

20
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
pa
tie
nt
s
(n
on

sm
ok
er
s)

Su
rg
ic
al
tr
ea
tm

en
t

PD
≥
5m

m
in

th
e
m
an
di
bu

la
r

m
ol
ar

re
gi
on

bi
la
te
ra
lly

G
ro
up

I:
OF

D
+
SI
M

G
ro
up

II
:O

FD
+
pla

ce
bo

ge
l

9
m
on

th
s
fo
llo
w
-u
p

↗
IB
D
fi
ll
fo
r
gr
ou

p
I

Si
gn
ifi
ca
nt

re
su
lts

at
9

m
on

th
s
in

bo
th

gr
ou

ps
:

↘
G
I,
PD

↗
m
ea
n
C
A
L
ga
in

Si
m
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

[1
55
]
(I
nd

ia
)

R
C
T

Si
m
va
st
at
in

10
μL

pr
ep
ar
ed

SI
M

ge
l

(1
.2
m
g/
0.
1
m
L)

40
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
pa
tie
nt
s

Sm
ok
er
s
on

ly

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

I:
SR

P
+
SI
M

1.
2%

G
ro
up

II
:S
RP

+
pla

ce
bo

9
m
on

th
s
fo
llo
w
-u
p

↘
m
SB

I
↘

PD
↗

m
ea
n
C
A
L
ga
in

↗
IB
D
fi
ll

Si
m
va
st
at
in

in
cr
ea
se
d

pe
ri
od

on
ta
lr
eg
en
er
at
io
n

an
d
C
A
L
ga
in

[1
56
]
(I
nd

ia
)

R
C
T

Si
m
va
st
at
in

1.
2%

si
m
va
st
at
in

ge
l

60
C
hr
on

ic
pe
ri
od

on
tit
is

H
ea
lth

y
(n
on

sm
ok
er
s)

N
on

su
rg
ic
al
tr
ea
tm

en
t

G
ro
up

A
:S
RP

+
pla

ce
bo

G
ro
up

B:
SR

P+
SI
M

ge
l

6
m
on

th
s
fo
llo
w
-u
p

↘
m
SB

I
an
d
PD

↗
m
ea
n
C
A
L
ga
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it is yet to be established if statin-induced reduction in
plasma total cholesterol and LDL cholesterol levels in the
periodontal space could decrease macrophage recruitment
to improve the treatment outcome.

Despite the documented anti-inflammatory properties of
statins, a local high-dose statin application causes consider-
able soft tissue inflammation [123]. Accordingly, studies
determined that reducing the simvastatin dose from 2.2mg
to 0.5mg reduced inflammation without compromising its
bone growth potential [67]. A 10mg/kg/day dose in rats is
equivalent to 70mg/day for humans, so it is a high systemic
dose compared to that commonly used in clinical practice
(20-40mg/day) [124].

Concerning locally applied statins, most clinical studies
investigated the 1.2% dose (mainly atorvastatin, simvastatin,
and rosuvastatin) [20, 23, 125, 126]. Therefore, other doses
should be tested to compare efficacy.

Most of the review articles have focused on the use of sta-
tins as adjunct to the nonsurgical SRP in clinical settings
[127–129]. Here, this review encompasses the use of statins
(local, systemic, or combination), alone or in addition to
other drugs or scaffolds, in nonsurgical or surgical periodon-
tal treatment in vitro, in vivo, and in clinical trials. However,
the potential of statins in surgical periodontal therapy
remains relatively less explored except for a few studies where
treatment outcomes were improved, primarily, with the

combination of some other regenerative agents such as allo-
graft or PRF [105, 106]. Cognizant of the numerous studies
involving statins, not all statin types have been studied so
far; thus, exploring all natural and synthetic statins to com-
pare their efficacy and safety could be instrumental.

Notably, 17 out of 32 clinical studies were carried out by
the same group of researchers on similar population; there-
fore, generalizations should be drawn with caution. Addi-
tionally, in most studies involving statins, the follow-up
period was no longer than 9 months [103, 130]. Hence, it is
imperative to follow clinical studies for periods longer than
those commonly investigated so as to achieve a deeper and
more genuine insight into their long-term benefits. Discrep-
ancies amongst outcomes between time points are of impor-
tance to clearly conclude. For instance, the meta-analysis
performed by Sinjab et al. [131] declared the outcomes of
the control group of a study [20] to be better by considering
the data up to 6 months follow-up, whereas the meta-analysis
performed by Ambrósio et al. regarded the treatment group
of the same study to have better outcomes as the follow-up
data until 9 months was taken into account [132].

Moreover, the studies carried out so far mainly involved
hyperlipidemic patients, diabetic patients, or smokers. Sys-
temic diseases, such as obesity or metabolic syndrome, have
been linked with periodontitis [133]. It has been demon-
strated that such conditions modify significantly the host
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response to periodontal pathogens [134] but also could
impaired treatment response. For instance, in a rat model
of metabolic syndrome, the effects induced by statins in rats
with metabolic syndrome were different in comparison with
rats without [32] highlighting the potential modulation of
pharmacologic effect due to the systemic condition. Even if
clinical trials performed in diabetes patients or exhibiting
hyperlipidemia showed promising results when statins were
administered concomitantly to nonsurgical periodontal
treatment [56, 110, 113, 114], more studies are required to
better understand the differential biological mechanisms
modulated by statin’s administration. It would also be of
importance to assess statins’ tolerance and efficacy in subjects
with different systemic conditions where periodontal treat-
ment response is impaired (e.g., liver diseases, kidney dys-
function, and immunocompromised states).

In clinical trials, the local application of statins with
surgical periodontal treatment always showed significant
improvements in periodontal parameters [105, 106]. How-
ever, in vivo, statin application in ACP models showed con-
tradictory results [99] which could be explained by the
limitations of animal models to simulate conditions identical
to human periodontal disease. Nevertheless, as a direct opti-
mization of treatment protocols in humans is not ethically
permissible, the utility of preclinical models to get directions
and overall assessment of the expected treatment outcomes
in clinical scenarios cannot be undermined.

Concerning the systemic administration of statins, a
study reported that using a combination of two pharmacoki-
netically different statins (20mg/day of atorvastatin plus
40mg/day of pravastatin) in hyperlipidemic patients for
one year improved their lipid profiles compared to those on
monotherapies [135]. Besides, a case of a hyperlipidemic
patient experiencing certain side effects with a high dose of
systemic simvastatin who could well tolerate a combination
of reduced doses of simvastatin and rosuvastatin instead
has also been reported [136]. To the best of our knowledge,
no two statins have been combined for periodontal treatment
so far; nonetheless, combination of two statins could be
tested for its impact on periodontal treatment response.

Likewise, the impact of incorporating statins with antimi-
crobial agents, growth factors, or other proregenerative mol-
ecules within a local application system could be studied as
adjunct to SRP. Statin integration into gels [21] or dentifrice
[137] could enhance ease of application and patient’s compli-
ance and could be potentially beneficial in the maintenance
phase to counter periodontal breakdown that persists after
conventional periodontal treatment. The literature does not
report the impact of statins on patients with extremely poor
oral hygiene; nonetheless, it could be interesting to explore
the impact of statins on oral hygiene indicators.

5. Conclusion

Statins have been studied in depth in the context of bone
regeneration, but soft tissue healing remains relatively less
explored. Further research into it could present statins as a
potential adjunctive therapeutic strategy with a positive
impact on both hard and soft periodontal tissue healing.

Furthermore, the impact of statins on proresolution mole-
cules has not been investigated in the context of periodontal
wound healing and regeneration. This could unveil new
vistas for statins as regenerative therapeutics. Since all
available statins have not been tested yet, new studies need
to evaluate the impact of other statins on antibacterial,
inflammatory, immune, and osteoprogenitor responses. To
conclude, choosing an optimum dose of statins, based on
the mode of drug delivery and the carrier employed, may
enhance the positive impact of statins on the periodontal
treatment outcomes. Moreover, combining statins with
growth factors or other drugs in an efficient carrier system
may be beneficial to promote periodontal regeneration.

Abbreviations

M1: First molar
M2: Second molar
M3: Third molar
mPEG: Polyethylene glycol monomethyl ether
PDLLA-PLGA: Poly-(d,l-lactide) and

poly-(d,l-lactide-co-glycolide
BSA: Bovine serum albumin
PDGF: Platelet-derived growth factor
PM: Premolar
PDL: Periodontal ligament cells
EGCG: Epigallocatechin-3-gallate
CS: Chitosan
BALP: Bone alkaline phosphatase
LPS: Lipopolysaccharide
PBS: Phosphate buffered saline
ALN-CD: Alendronate-β-cyclodextrin
SIM: Simvastatin
CEJ: Cementoenamel junction
HA: Hydroxyapatite
TGF-β: Transforming growth factor beta
E. coli: Escherichia coli
PPi: Isopropyl alcohol
TRAP: Tartrate-resistant acid phosphatase
GSH: Glutathione
MDA: Malondialdehyde
MPO: Myeloperoxidase
GIOP: Glucocorticoid-induced osteoporosis
DKK1: Dickkopf-related protein
CAT: Enzyme catalase
SOD: Enzyme superoxide dismutase
MMPs: Matrix metalloproteinases
MCP: Monocyte chemotactic protein
CSF: Colony-stimulating factor
A.a: Aggregator actinomycetemcomitans
P.g: Porphyromonas gingivalis
COX: Cyclooxygenase
ALP: Alkaline phosphatase
AST: Aspartate aminotransferase
ALT: Alanine aminotransferase
IP: Intraperitoneal
TG: Triglyceride
ATV: Atorvastatin
PD: Pocket depth
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RANKL: Receptor activator of the NF-κB ligand
RANK: Receptor activator of NF-κB
OPG: Osteoprotegerin
OPN: Osteopontin
BV/TV: Bone volume/tissue volume
CAL: Clinical attachment level
SRP: Scaling and root planing
INFRA: Radiographic infrabony defect fill
MF: Metformin
DDR: Defect depth reduction
DFDBA: Demineralized freeze-dried bone allograft
OFD: Open flap debridement
BOP: Bleeding on probing
GI: Gingival index
PI: Plaque index
mSBI: Modified sulcus bleeding index
IBD: Intrabony defect
PRF: Platelet-rich fibrin
PISA: Periodontal inflamed surface area
LDL-C: Low-density lipoprotein cholesterol
HDL-C: High-density lipoprotein cholesterol
OB: Osteoblasts
OC: Osteoclasts
EIP: Experimentally induced periodontitis
ACP: Acute/chronic periodontal defect
NOX: Nitrate/nitrite levels
VEGF: Vascular endothelial growth factor.
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Development of a thermosensitive statin–functionalized chitosan-based hydrogel and 

evaluation of bone healing 

 

1. Introduction 

Periodontitis is a chronic inflammatory disease of infectious origin characterized by a 

progressive destruction of tooth-supporting tissues (Hajishengallis, 2015b). The main 

symptoms include gingival inflammation, periodontal pocket formation, alveolar bone loss, 

abscess, tooth mobility and eventual tooth loss. Periodontitis is a risk factor for several systemic 

conditions and also negatively impacts the quality of life (Linden et al., 2013). The pathogenesis 

of periodontitis involves a complex interaction of immune and inflammatory cascades initiated 

by oral biofilm bacteria (Cekici et al., 2014). It involves a disturbance of homeostasis between 

the host's immune response and the dysbiotic microbial flora at the site of the lesion 

(Hajishengallis, 2015b). 

Non-surgical therapy, that consist of scaling and root planing (SRP), has a positive 

impact on periodontal health in most cases, however, some limitations related to type of disease, 

specific flora, presence of systemic or local risks factors such as inflammatory pathologies, 

smoking or unadapted dental fillings may decrease the rate of response to these non-surgical 

procedures leading to the need of adjunctive therapies or surgical treatments (Graziani et al., 

2017). 

Risk factors for optimal healing of periodontal lesions include exacerbation of bacterial 

infection at the site of periodontal injury leading to persistent inflammation characterized by 

increased levels of inflammatory markers such as cytokines, chemokines and matrix 

metalloproteinases (MMPs) or an imbalance with their antagonists/inhibitors promoting the 

activity of pro-inflammatory mediators (Agossa et al., 2015; Morand et al., 2017).  

Statins, or inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, are a group 

of drugs used primarily to treat hyperlipidemia and to prevent cardiovascular disease   However, 

in recent years, various pleiotropic properties of statins such as anti-inflammatory, antioxidant, 

antibacterial and immunomodulatory have paved their path to periodontal treatment (Petit et 

al., 2019b). 

With regards to their action on the immune and inflammatory response involved in 

periodontal healing, statins reduce the pro-inflammatory cytokine levels (IL-1β, IL-8, IL-6, 

TNF-α) and increase the release of anti-inflammatory mediators (IL-10, IL-12), chemokines, 

cytokines such as IFN-γ (Estanislau et al., 2015; Grover et al., 2016; Petit et al., 2019b). In 

addition, statins impede periodontal destruction by inhibiting the expression of MMPs such as 
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MMP-1, MMP-8 and MMP-9 (Poston et al., 2016). Statins can also regulate bone metabolism 

through three major mechanisms: the promotion of osteogenesis, the suppression of osteoblast 

apoptosis and the inhibition of osteoclastogenesis (Petit et al., 2019b; Zhang et al., 2014). 

Statins allow periodontal regeneration by increasing Smad signaling, which accelerates bone 

formation, and by antagonizing TNF-α via Ras/Rho/MAPK, initiators of osteoclastic 

differentiation. They also significantly increase the levels of osteoblast (OBs) differentiation 

factors such as alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and VEGF 

(Vascular Endothelial Growth Factor) (Sousa et al., 2016). Nevertheless, statins have also 

demonstrated interesting antibacterial properties against key periodontopathogens such as 

Porphyromonas gingivalis (Pg) and Aggregatibacter actinomicetemcomitans (Aa) (Emani et 

al., 2014; Lee et al., 2016).  Furthermore, they improve epithelialization and wound healing 

through the regulation of inflammation (Schwinté et al., 2017). 

Several epidemiological studies have demonstrated a beneficial effect of systemic statin 

administration on SRP response (Norata and Catapano, 2014). However, the application of local 

statins as an adjunct to the SRP results in a significantly greater reduction in clinical periodontal 

probing depth (PPD), depth of the radiographic defect, bleeding index (BI) and, hence, 

periodontal inflammation compared to that with their systemic administration (Saxlin et al., 

2009). Thus, the systemic status of the patient and the mode of administration of statins are 

important factors that influence SRP outcomes and also determine the risk of side effects (Katz 

et al., 2005). 

Among the statins family, the effect of both systemic and local simvastatin on 

periodontitis treatment with both systemic and local administration has been extensively 

studied in several in vitro, in vivo and clinical studies (Muniz et al., 2018; Petit et al., 2019b). 

However, atorvastatin (ATV) and some other statin family members, despite showing similar 

efficiency towards bone metabolism and immune-inflammatory response involved in 

periodontal healing, have been less studied (de Araújo et al., 2013; Bertl et al., 2017; Goes et 

al., 2016; Sousa et al., 2016).  

Since statins are insoluble in aqueous solutions, the addition of a surfactant is crucial 

for achieving statins solubility. In this regard, the use of a nano-emulsion (NE) is considered 

instrumental for the local delivery of such drugs or compounds (Anton and Vandamme, 2009; 

Anton et al., 2016). The emulsions are characterized by the dispersion of two immiscible liquids 

where a liquid is dispersed in the form of droplets in the continuous phase of another liquid and 

when the size of the droplets reaches a scale below 1µm, these emulsions are called NE (Ganta 

et al., 2010). NE is a heterogeneous system in which the oily phase is dispersed as droplets in 
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an aqueous phase and stabilized by emulsifying agents. Emulsifying agents are surfactants that 

can reduce the interface voltage between two immiscible liquid phases (oil and water) by 

adsorbing preferentially at their interfaces. The solubilization capacity in water (Wmax) is 

reached with a water / oil-surfactant-statin ratio of 60:40. This ratio is used for the formulation 

of vitamin E-based NEs associated with, for instance, Kolliphor ELP (KELP). The interest of 

formulating NEs is to increase the concentration of the molecule of interest in a given volume 

and to facilitate the endocytosis of the molecule of interest by the target cells (Martínez-Ballesta 

et al., 2018).  

The aim of this study was to synthesize, characterize and evaluate, in vitro and in vivo, 

the potential pro-regenerative effect of a thermosensitive and muco-adhesive hydrogel 

functionalized by ATV on the control of inflammation. 

 

2. Materials & Methods 

2.1. Characterization of thermosensitive chitosan-based hydrogel (ChiG) 

 2.5% ChiG solutions were prepared by dissolving 125 mg of chitosan (Sigma, St-

Quentin, France) in 5 ml of a 1% aqueous acetic acid solution. After cooling the chitosan 

solution to 4°C, 600 mg of glycerophosphate (Gp) salt powder (Sigma, St-Quentin, France) was 

added. This concentration of Gp at 0.56M ensures a thermo-irreversible chitosan gel at 37°C. 

The mixture is maintained for 15 minutes with constant stirring. The resulting transparent ChiG 

solution was stored at 4°C (Ganji et al., 2007; Madi and Kassem, 2018). 

  

2.2. Solubility tests for ATV  

 Since statins display low solubility in ChiG, an oil or co-solvent must be added to 

ensure its solubility. The solubility of ATV was visually tested in 7 surfactant or co-surfactant 

oils: KELP, capmul, castor oil, labrafil M, tetraglycol, transcutol P or D-α-Tocopherol 

polyethylene glycol succinate (TPGS). 5 mg of ATV were mixed with 1 ml of surfactant oil or 

co-surfactant before being vortexed for 30 seconds, passed through an ultrasound bath for 1 

minute and then heated at 50°C for 5 minutes. The oils or co-solvents that could dissolve statins 

upon visual verification were tested again with the increasing concentration of statins ATV. 

Accordingly, KELP was selected for further experimentations due to its interesting physical 

and chemical properties. 
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2.3. Characterization of NE  

 Vitamin E was used as a base with KELP for preparing the statins functionalized NE. 

This statin-vitamin E mixture and surfactant was heated to 80°C and vortexed until the 

dissolution of ATV. The mixture was then cooled down to 25°C and distilled water (MilliQ) 

was added in increasing concentrations to achieve the solubilizing limit of water which is 

detected visually as the clear/ transparent NE formulation becomes cloudy/turbid. 

 

2.3.1. Scanning and Transmission Electron Microscopy SEM and TEM 

The statin functionalized with NE was characterized for size and surface charge. 

Measurement of the size of ATV- KELP NE was performed using the Zetasizer® software that 

measures the particle size using dynamic light scattering. These measurements were confirmed 

by TEM analysis. Measurement of the surface charge of ATV-functionalized NE was 

performed using Zetasizer® Zeta potential software that measures surface charge by Doppler 

laser electrophoresis.  

 

2.3.2. pH 

The pH measurement of ChiG, ChiG mixed with ATV and ChiG containing ATV-

KELP NE was performed using an electronic pH meter and confirmed by the use of pH paper. 

 

2.3.3. Release profile 

 ATV release profile in ChiG was performed using a 6-wells plate. The vitamin E KELP 

based NE was labeled with a fluorescent dye NR668. This Dye is excited around 488-530nm 

and emits in the visible (600nm). 500μL of ChiG functionalized with the labeled ATV-KELP 

NE was deposited in each well. Then, the plate was heated for 10 min at 40 °C to gel the 

preparation. Finally, 5 mL of MilliQ water was added to each well and the wells were stirred 

constantly in the dark. Aliquots of 1 mL were taken at regular time intervals and were returned 

to the wells after analysis. A standard range was achieved by diluting increasing concentrations 

of labeled NE in a constant volume of deionized water.  

 

2.4. Cell culture 

 TERT-2 OKF-6 Human Oral Epithelial Cells (EC) (BWH Cell Culture and 

Microscopy Core, Boston, MA, USA) were cultured in Keratinocyte-SFM medium (Life 

Technologies, Saint-Aubin, France) supplemented with a mixture growth supplement and 

antibiotics (10 U/ml penicillin and 100 μg/ml streptomycin) (Lonza, Levallois-Perret, France). 
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The cells were cultured at 37°C in a humidified atmosphere with 5% CO2 and the culture 

medium was changed every 2 to 3 days. 

 

2.5. Immunofluorescence- uptake of drug by cells 

The endocytic capacity of ATV-KELP NE was tested on EC by optical microscopic 

observation of Dye NR668, fluorescent in red in the visible (emission spectrum = 600nm). A 

sterile glass plate was placed in the bottom of each well of a 24-wells plate before seeding 2* 

105 cells per well. After 24h, a NR668-labeled ATV-KELP NE preparation diluted in the cell 

culture medium replaced the culture medium of each well after thorough rinsing with PBS. The 

cells remained in culture for 24h in contact with the NE before recovering the glass plates on 

which the cells were cultured in order to observe them under an optical microscope. 

 

2.6. Treatment of calvarial bone defect 

The mice were anesthetized intraperitoneally with a mixture of ketamine (80 mg/kg) 

and xylazine (10 mg/kg) as a function of body weight of the mouse (approximately 0.1 ml /10 

g of body weight). The top of the head was shaved before making a single vertical incision of 

about 1.5 cm in the middle of the skull until bone contact. Then, a calvarial defect of 2 mm 

diameter was made by drilling with appropriate round bur.  

After cleaning the surgical wound with physiological saline and drying by tamponade, a drop 

of 50 μL of  statin-functionalized or non-functionalized gels were deposited on the calvarial 

defect. Finally, a continuous suture of calvarial skin (silk suture 6-0) allowed surgical wound 

closure hermetically. The healing was evaluated after 15 days. As a control, ATV was also 

administered systemically by oral gavage (10mg/kg/day) for 15 days.  

 

2.6.1. In vivo calcein injection 

Injections of calcein in phosphate-buffered saline (10 mg/kg, Sigma-Aldrich Co.) were 

performed intra-peritoneally 10 days and 3 days before the sacrifice (Figure 1).  
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Figure 1: Surgical preparation of calvarial defect (2mm) treated with local ATV ChiG NE. 
The bone defect was carefully drilled with a round bur using constant irrigation to avoid over-
heating. The defect was cleaned with physiological saline, dried with a guaze and treated with 
local application of ChiG containing ATV-KELP NE. The wound was sutured hermetically. 
Calcein was injected 10 and 3 days before sacrifice.  
 
 
2.6.2. Tissue preparation 

 The mice were euthanized by a lethal intraperitoneal injection of pentobarbital (100 

mg/kg). The calvaria were then dissected and post-fixed by immersing in a solution of 4% 

paraformaldehyde diluted in PBS before being placed overnight at 4°C. After careful washing 

in PBS, the samples were included in OCT (Tissue-Tek) cryostat medium and stored at -20 °C. 

Then, 10μm thick serial sections of the calvaria were cut with a cryostat at -30°C. The 

computerized images were analyzed using imaging software. 
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2.6.3. Histological and immunofluorescence analyses 

 The sections to be observed were then immersed for 10 minutes in paraformaldehyde 

before being rinsed and stained for 5 minutes in alizarin red. Slides were mounted using DAKO 

mounting medium prior to examination under microscope (RM 2145 DMRB microscope, 

Leica, Rueil-Malmaison, France). The immunofluorescent calcein staining was followed using 

fluorescent microscope (RM 2145 DMRB microscope, Leica, Rueil-Malmaison, France). The 

circumference of neo-bone area was marked and measured by Olympus cellSens Entry imaging 

software. At least 3 samples per mouse were considered for each condition tested.  

 

3. Results 

3.1. Characterization of NE and NE loaded chitosan- based hydrogel 

After measuring with Zetasizer device and its Zetasizer® software, the NE droplets 

average size was estimated: 42.51 nm (KELP NE) and 37.96 nm (ATV-KELP NE 

functionalized with ATV) with the range being between 40-100nm (Figure 2). The NE surface 

charge was on average -26.7 mV (KELP NE) and -21.4 mV (ATV-KELP NE).  

   

Figure 2: Analysis of droplet size of ATV-KELP NE by SEM and TEM. For TEM, the samples 
were labeled with uranyl acetate. A heterogeneity of the observed droplets is noted by 
measurements on the images captured during the observation under the microscope. These data 
are consistent with those found by measurement with Zetasizer®, 37.96nm for KELP-ATV. 
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All synthesized formulations have a pH between 6.3 and 6.8, thus, potentially 

cytocompatible and usable in clinic (Table 1). 

Preparation pH 

Chitosan gel 6.3 

ATV Chitosan gel 6.5 

Chitosan gel + ATV-KELP NE  6.4 

  
Table 1: pH of different ChiG preparations. 

 

3.2. Release profile  

  The results of spectrophotometric analysis of the release over 72 hours of KELP NE 

containing ATV were measured using a spectrophotometer (Uviline 9400) (Figure 3). The 

release in the ChiG follows a linear curve with a coefficient of determination greater than 0.95. 

At 24h, about 45% of the NE is released and it takes a little more than 72 hours for the ChiG to 

escape almost all of the NE. The release curve of ATV-KELP NE shows a semblance of plateau 

between 10 and 24h that can be explained by a quick release of the NE at the periphery of the 

gel while a latency time of the NE in the core of the gel to reach the periphery before being 

released. 
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Figure 3: Release curve of NR668 labeled ATV-KELP NE. It follows a linear curve with a 
semblance of plateau between 10 and 24h.  
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3.3. NE endocytosis 

 The endocytosis capacity of ATV-KELP NE was tested at 24h on EC by fluorescence 

microscopic observation of dye NR668 fluorescent in red in the visible (emission spectrum = 

600nm). The internalization of the NR668 dye (red) around the DAPI stained nuclei (in blue) 

shows that the NE is able to penetrate and deliver the drug into the EC (Figure 4).  

 

 

Figure 4: Endocytosis of drug from statins functionalized NE by EC. The internalization of 
the NR668 dye (red) around the DAPI stained nuclei (in blue) shows that the NE is able to 
penetrate and deliver the statin into the EC. 
 

3.4. Statins functionalized NE induce neo-bone formation in vivo 

 Histomorphometric and immunofluoresence analyses confirmed neo-bone formation 

in the area of induced bone defect in vivo. The new bone area was measured in µm2 and was 

shown to be significantly greater in mice treated with local ATV-KELP NE application 
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compared to other groups. Interestingly, systemic and ATV ChiG also showed better healing 

response compared to the untreated control and the placebo ChiG. However, their new bone 

formation was still less in comparison with that formed in ATV-KELP NE group. Moreover, 

the immunofluorescent calcein staining confirmed the presence of speckled areas of new bone 

within the defect area (Figure 5). In addition to the bone formation, the surrounding soft tissue 

of the treated subjects demonstrated significantly decreased inflammation at 15 days of wound 

healing compared to that in the untreated/control mice characterized by reduced PMN 

infiltration. 

 

 

Figure 5: Histological and corresponding immunofluorescent sections of induced bone 
defect at 15 days of wound healing a) untreated and treated with b) placebo ChiG, c) systemic 
ATV, d) local ATVChiG, e) local ATV-KELP NE, f) graph representing the area of new bone 
formed (µm2) within the induced calvarial bone defect. * p<0.05 compared to untreated 
control, ** p<0.05 compared to systemic ATV, placebo and ATV ChiG.  
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4. Discussion 

In this study, we demonstrated the neo-bone forming properties of ATV that promote 

wound healing and regeneration. Several in vivo studies have corroborated that statins, 

especially ATV, are effective in reducing inflammation (de Araújo et al., 2013) and promoting 

osteogenesis by inhibiting osteoclastic activity (Zhang et al., 2014). However, the improvement 

of statin-induced bone regeneration in vivo largely depends on the at-site concentration of the 

drug (Zhang et al., 2014). In local drug administration, the delivery system plays an important 

role. Here, we selected to develop a chitosan-based hydrogel. ChiG has a low viscosity at low 

temperature and gels at 37°C. This property will be of interest as we aim, in the future, to use 

it in the context of periodontitis, allowing its convenient application and in situ retention within 

periodontal pockets (Sheshala et al., 2019). The gel is biocompatible, biodegradable and 

mucoadhesive. Its liquid consistency allows easy intra-pocket injection and becomes 

irreversibly hard within the periodontal pocket (in 4 min at 37°C) (Ganji et al., 2007). Moreover, 

the use of a thermosensitive ChiG ensures the delivery of an effective statin concentration 

directly to the lesion site. Furthermore, the gel completely resorbs on its own without generating 

any toxic byproducts that can interfere with the healing process. The sustained drug delivery of 

statins in a controlled manner maintains optimal drug dose necessary for the modulation of 

inflammatory process. A similar chitosan-based hydrogel containing hyaluronic acid has 

already been developed for periodontal tissue engineering (Miranda et al., 2016). 

  In order to increase aqueous solubility and improve the bioavailability of statins, an 

NE-based drug delivery system was successfully developed using vitamin E-based KELP-to 

encapsulate statins in nanodroplets. The NE size below 200nm ensures good endocytosis by 

cells of interest as shown by our in vitro results of oral EC endocytosis. 

 TEM revealed a certain degree of heterogeneity in the sizes of NE droplets, however, 

the average size was found similar to that recorded by Zetasizer®. Indeed, NEs are a type of 

nanoparticles generally defined as dynamic structures formed of surfactants encapsulating an 

internal phase containing a molecule of interest. The integrity of the particles can be maintained 

by a complex mixture of small molecular weight, surfactants (emulsifiers) (Sarker, 2005).  

 The loading of any drug delivery system is an important property that governs its 

suspension stability due to electrostatic interactions as well as its in vivo performance (Ganta et 

al., 2014). However, the properties of the NE depend on the composition of the material at the 

interface between the droplets and the dispersion medium. It was, therefore, important to 

measure the surface charge of the NE prepared. Thermodynamically stable particles possess 
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very low surface tension (Sarker, 2005) while a low surface charge of these NE droplets 

enhances their stability in the gel. Thus, the size of KELP-based NE used in this study and its 

non-neutral surface charge ensure better intracellular uptake of the drug. At the cellular level, 

NE uptake can occur via phagocytosis, macropinocytosis or endocytosis. The endocytosed 

molecules can accumulate in lysosomes, intracellular vacuoles or cytoplasm (Ganta et al., 

2014). 

 pH is one of the many important physicochemical properties to evaluate for any 

product intended for local application. It is one of the factors playing an important role in the 

transition from a healthy gingiva to a pathological periodontium (Socransky and Haffajee, 

2005) as the development of periodontitis is associated with an increase in pH in the gingival 

sulcus (around 8.5). It is due to the degradation of the proteins present in the GCF, which results 

in the production of ammonium (NH4). The latter promotes the precipitation of calcium salts 

from GCF or saliva resulting in the formation of sub- or juxta-gingival calculus, thereby, 

contributing to the development and exacerbation of periodontal disease. In addition, a 

localized increase in pH facilitates the emergence of acid-sensitive and more proteolytic 

species, such as Pg (Barros et al., 2016). However, all tested ChiG preparations have a pH 

between 6.3 and 6.8, and therefore, compatible with periodontal healing. 

 In vitro, our release profile exhibits a sustained and gradual statins delivery from the 

ChiG over period of 3 days. Thus, this pattern is expected to aid in the initial phase of healing 

and avert inflammation-mediated tissue destruction. In the context of periodontitis 

management, this sustained release pattern allows prolonged use of statins by periodontal cells 

on the days following SRP. 

 An in vivo evaluation was performed in a mouse calvarial model as a proof of concept 

to validate the usability of the ChiG and to ensure of potential biological effects with the 

selected dose of ATV. Rodents have periodontal, anatomical, bacterial and pathogenic 

characteristics similar to humans (Saadi-Thiers et al., 2013; Batool et al., 2018). However, the 

tiny size of the murine oral cavity presents a technical challenge in the placement of ligatures 

loaded with the periodontopathogenic bacteria necessary for the induction of periodontitis. To 

overcome this difficulty, a relatively faster and easier model of induced bone defect in mouse 

calvaria was chosen. The compressive force exerted on murine calvaria is similar to that of 

intraoral wounds (Choi et al., 2010). The calvaria model, although not a true periodontal system, 

can be used in a wide variety of pathological applications relevant to dental research. This 

model is frequently used in the evaluation of bone healing in vivo, specially, for studying bone 

turnover and the anti-inflammatory effects of a molecule (Graves et al., 2008). It presents 
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several advantages such as easy surgical access to bone, faster induction of bone defect and 

convenient suture placement. Nevertheless, this murine model of calvaria can be used as a 

preliminary model to optimize dose and delivery system in the study of bone regeneration 

before advancing to the more complicated induced periodontitis models (Batool et al., 2018) 

(see appendix).  

 Histological analysis showed increased neo-bone formation and decreased soft tissue 

inflammation in the mice treated with ATV-KELP NE compared to the untreated controls. 

These results suggest that an application of 50 μL of gel containing 0.1 mg of ATV is a suitable 

dose for topical application in a mouse model. In the context of periodontal treatment, the 

control of soft tissue inflammation is instrumental to achieve an optimized wound healing and 

hard tissues regeneration. Therefore, this reduced inflammation score characterized by reduced 

PMN recruitment will be of interest as it will promote bone healing as demonstrated with others 

pharmacological treatments (Alshammari et al., 2017; Huck et al., 2018; Yuan et al., 2011). 

Moreover, the local application of ATV-KELP NE showed better healing response compared 

to systemic ATV through oral gavage. This finding is consistent with the literature and will be 

of interest to reduce the risk of side effects associated with long-term administration of statins 

(Estanislau et al., 2015; Petit et al., 2019b).  

 Despite the convenience associated with the use of calvarial model, it has limitations 

in simulating a real periodontal lesion caused by periodontopathogens’ infection. In future, it 

would be mandatory to assess the regenerative potential of such statin functionalized ChiG and 

NE in an experimental periodontitis mouse model associated with bacterial inoculation, for 

instance Pg, in order to study the antibacterial, anti-inflammatory, immune system and bone 

metabolism modulatory properties of statins and to consider the complexity of the periodontal 

lesion. Furthermore, the incorporation of other pro-regenerative agents to the statins 

functionalized NE, for instance, growth factors such as BMP2 or other pro-resolution agents 

such as resolvins, could further enhance its efficiency to promote periodontal wound healing 

and regeneration. 

 

5. Conclusion 

The thermosensitive statins functionalized ChiG and ATV-KELP NE are efficient 

controlled drug delivery systems with potential regenerative effect. The preliminary results are 

promising. However, evaluation of its impact in an experimental periodontitis model could give 

beneficial insights into their efficiency in promoting periodontal wound healing and 

regeneration in particular.
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Control of periodontal inflammation is the main goal of periodontal therapy. However, 

as mentioned previously, its outcomes could be reduced by risk factors such as sustained 

inflammation and recurrent infection (Goodson et al., 2012; Kinane et al., 2017; Van Dyke, 

2008). Therefore, we aimed to develop several therapeutic strategies targeted against these two 

major biological processes to improve periodontal treatment outcomes.  

In our first study, we synthesized IBU-PCL membrane as an anti-inflammatory barrier 

membrane to overcome local post-op inflammation associated with GTR surgery. For this 

purpose, IBU-PCL membrane was synthesized by electrospinning core-shell technique. This 

biomaterial displays interesting physical and chemical properties allowing the consideration of 

its use in the periodontal field. Indeed, such functionalization of active molecules with PCL 

membranes has been reported in several studies (Liang et al., 2007; Morand et al., 2015). The 

core-shell method protected within the core the active molecule (IBU) inside the shell (PCL). 

Several studies have confirmed the desirable properties of PCL membrane such as 

biocompatibility, similar fiber distribution and diameter as that of ECM in vitro (Ferrand et al., 

2014; Lam et al., 2008; Morand et al., 2015) and in vivo (Vaquette et al., 2012).  Interestingly, 

our results also showed decreased proliferation rate of EC and FB cultured on PCL membrane 

as suggested in literature (Kasaj et al., 2008). This effect was amplified in the presence of IBU 

with a consequent delay in cellular proliferation and migration. This characteristic is 

instrumental in achieving selective cellular exclusion that could be beneficial in an 

inflammatory context. The IBU dose used (50µg/mL) was non-cytotoxic and its local and 

controlled release induced an efficient anti-inflammatory effect without any risk of side-effects 

associated with systemic IBU delivery.  IBU-PCL reduced ECM factors (collagen-IV, 

fibronectin-1, integrin α3β1 and laminin-5) gene expressions in EC and FB. These molecules 

are key players in wound healing as they are involved in orchestrating intra-cellular and inter-

cellular interactions such as adhesion, migration and proliferation (Cantón et al., 2010; Kasaj 

et al., 2008; Larjava et al., 2011). However, their precise roles need to be further explored in 

the context of periodontal wound healing (Jakhu et al., 2018).  

Our in vitro results were validated by treatment of experimental periodontitis with IBU-

PCL membrane in vivo in a well-established Pg-infected ligature-induced periodontitis mouse 

model (Batool et al., 2018 (see appendix); Saadi-Thiers et al., 2013). This animal model mimics 

the disease pathology and GTR using IBU-PCL membrane demonstrated reduced pre-mature 

epithelial downgrowth reflected by shorter EA in treated sites compared to that of control. The 

formation of long junctional epithelium is undesirable for ideal periodontal wound healing and 

regeneration (Alpiste-Illueca et al., 2006; Bosshardt and Lang, 2005). Furthermore, IBU 
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decreased inflammation-mediated bone resorption as shown by reduced osteoclast number in 

treated sites. IBU-PCL membrane successfully improved the soft tissue healing response, 

however, a longer follow-up (not incorporated in our study) was necessary to anticipate bone 

healing.  

Despite cost-effective housing, easy availability of strains and analyses kits and ethical 

reasons, the small oral cavity of mice renders this surgery rather challenging for the operator. 

Moreover, a limited quantity and size of sample is achieved. Nevertheless, the biocompatibility 

and feasibility of surgical membrane placement in a mouse model was presented. At the same 

time, we also developed an interesting surgical model to overcome issues associated to the long-

term ligature placement through the drilling of a standardized maxillary defect (Batool et al., 

2018, see Appendix). However, it needs more technical improvement to ensure the reproducible 

size of the defect and allows an easy membrane placement. Such model would be of interest to 

evaluate biomaterials in the context of guided bone regeneration or alveolar socket preservation. 

Although our IBU-PCL membrane helped in achieving a local post-op inflammation control, 

addition of antimicrobials, growth factors or pro-resolution molecules could further optimize 

periodontal wound healing and regeneration.  

Our second study involved the development of ISFI containing CHX and IBU to target 

both inflammation and infection simultaneously. PLGA based ISFI have been well-described 

for different therapeutic applications (Bode et al., 2018) including periodontal disease 

management (Agossa et al., 2017; Do et al., 2015b). CHX-IBU ISFI presents an antibiotic free 

strategy, thus, overcoming the problem of bacterial resistance associated with long-term 

antibiotic use as adjunct to periodontal treatment as demonstrated earlier (Agossa et al., 2017). 

The solvent exchange method enables preparation of liquid formulations that are easily 

injectable into the periodontal pocket and harden only inside the pocket, acquiring a 3D shape 

of the periodontal lesion. This prevents their accidental dislodgement from the lesion site, 

thereby, ensuring better efficacy and retention of active molecules. The biocompatibility of 

CHX-IBU ISFI was established in EC. The IBU released by the developed ISFI reduced 

significantly the TNF-a levels that were up-regulated as a result of Pg-exposure in vitro.  

 In vivo, the CHX-IBU ISFI was injected directly into the periodontal pocket created by 

Pg-infected ligatures-induced mouse model as described previously (Batool et al., 2018; Saadi-

Thiers et al., 2013).  This resulted in significantly decreased inflammatory score of the treated 

sites in comparison to those treated with placebo ISFI or untreated controls. Furthermore, an 

improved periodontal wound healing response was demonstrated by reduced EA and improved 

FA along the root. Nonetheless, the bone healing did not show improvement indicating the need 
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of a longer follow-up or an addition of other pro-regenerative molecules or growth factors 

capable of inducing bone regeneration.  

In the third study, statins containing thermosensitive chitosan-based hydrogel and nano-

emulsion were synthesized and characterized. ATV was functionalized with ChiG. The ChiG 

was formulated as described earlier (Ganji et al., 2007; Madi and Kassem, 2018). However, to 

further enhance the solubility of hydrophobic ATV, a vitamin E-KELP based NE was 

synthesized to encapsulate ATV within its nanodroplets and act as a spatial and controlled-

release drug delivery system. The ATV-KELP NE was characterized for its size, pH and release 

profile. The average size of NE particles prepared (37.96nm) was in correspondence to the 

reported size range of NE particles (Anton and Vandamme, 2011). The release profile 

confirmed a sustained release of ATV from ATV-KELP NE. The endocytosis of the NE by EC 

confirmed intracellular uptake of the encapsulated drug released by ChiG. Our in vitro findings 

were corroborated by the results obtained from in vivo in a calvarial model of induced bone 

defect treated with local ATV ChiG, local ATV-KELP NE and systemic ATV.  The results 

demonstrated neo-bone formation in treated sites compared to the untreated controls. 

   Taken together, all these results need to be evaluated and compared according to several 

parameters related to technology required for their synthesis, cost-effectiveness and most 

importantly, their applicability at the clinical level. The electrospinning technique can create 

unique fibers by mixing various polymer solutions with other polymers, chemical agents, drugs, 

growth factors and nanoparticles. It can synthesize gels or membranes that can also be used for 

stem cell transplantation (Galler et al., 2012). However, it is difficult to control the pore 

size/shape within the scaffold or to maintain sufficient mechanical properties with this 

technique (Reneker and Yarin, 2008; Zhang et al., 2012). To overcome this shortcoming, an 

alternative method, known as thermally-induced phase separation has shown to improve 

macro/micro pore networks within 3D nanofibrous scaffolds fabrication (Gupte and Ma, 2012).  

Various therapeutic approaches, including guided tissue regeneration (GTR) (Alpiste-

Illueca et al., 2006; Tonetti et al., 2004), platelet-rich fibrin (PRF) (Martande et al., 2016), and 

enamel matrix derivatives (EMD) (Sculean et al., 2000, 2011), have achieved success in the 

regeneration of lost periodontal tissues, but the treatment outcomes remain highly variable. Cell 

therapy has also been extensively explored to optimize therapeutic management of periodontal 

diseases (Bassir et al., 2016; Du et al., 2015; Trofin et al., 2013). Moreover, several recombinant 

human cytokines and growth factors have been investigated regarding their ability to stimulate 

periodontal tissue regeneration. The results of pre-clinical and clinical studies have shown that 

the application of fibroblast growth factor-2 (FGF-2) facilitates cell proliferation of resident 
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progenitor cells from surrounding bone marrow and PDL and enhances angiogenesis, and bone 

formation in 2 or 3 wall defects to induce periodontal tissue regeneration (Chen and Jin, 2010; 

Du et al., 2015; Nagayasu-Tanaka et al., 2015). Nevertheless, the outcomes of these 

regenerative procedures carried out in animal models and clinical studies remain limited to the 

three bony wall periodontal defects, and the results are highly unpredictable in the case of 

advanced periodontal defects in which resident progenitor cells are reduced or destroyed 

(Nagayasu-Tanaka et al., 2015). Therefore, these therapies need to be improved based on stem 

cell biology, especially those involved in the differentiation of stem cells into PDL, cementum 

and alveolar bone. 

The effect of autologous mesenchymal stem cells (MSC) transplantation has been 

investigated in clinical trials for periodontal regeneration of systemically healthy patients (Baba 

et al., 2016; Chen et al., 2016). However, this strategy cannot be used in patients with systemic 

diseases, such as diabetes, rheumatoid arthritis or advanced age in whom the intrinsic properties 

of MSCs are altered. Hence, there is a need for an allogeneic transplantation approach for 

patients who experience difficulty with autologous transplantation for periodontal regeneration 

therapy. Pre-clinical studies involving allogeneic MSCs such as adipose-derived multi-lineage 

progenitor cells (ADMPC) have demonstrated their efficacy, safety and favorable periodontal-

regenerative potential (Du et al., 2014; Fu et al., 2014; Venkataiah et al., 2019). Current 

evidence suggests that the periodontal microenvironment may induce ADMPC to grow and 

differentiate into periodontal tissues and that the ADMPC themselves might secrete various 

factors that stimulate resident progenitor cells (Lemaitre et al., 2017). These unique properties 

make ADMPC a lucrative cell source for stem cell-based therapeutic approaches for periodontal 

diseases. 

Recently an injectable and thermosensitive chitosan/gelatin/glycerol phosphate 

hydrogel has been successfully tested in vivo, to provide a 3D environment for transplanted 

induced pluripotent stem cells (iPSC) and to enhance stem cell delivery and engraftment for 

periodontal regeneration. Interestingly, the results exhibited enhanced osteogenic potential due 

to its functionalization with BMP-6 and caused regeneration of PDL. This also minimized the 

exacerbation of inflammation resulting in potential periodontal regeneration (Chien et al., 

2018). Therefore, iPSCs and trans-differentiated cells may be promising cell sources for 

periodontal tissue regeneration (Cho et al., 2019). 

Several encapsulation strategies such as liposomes (Di Turi et al., 2012; Sugano et al., 

2014), micelles (Wang et al., 2019) and nano-particles/ nano-emulsions (Kaur et al., 2017; Lee 

et al., 2016) have been investigated to optimize spatial- and controlled-delivery of active 
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molecules like growth factors  (Wang et al., 2017) or pharmacological agents (Lee et al., 2016) 

for periodontal regeneration. These techniques improve the intracellular uptake of the active 

molecules, enhancing their efficiency and decreasing their resultant systemic availability.  

The synchronization of the rate of scaffold resorption with that of healing tissues is 

crucial for optimizing the periodontal treatment outcomes (Bresaola et al., 2017; Hoornaert et 

al., 2016; Ivanovski et al., 2014). Thus, it is very important to precisely follow the rate of drug 

release and degradation of the drug carrier. Several advanced techniques such as matrix-

assisted laser desorption-ionization time-of-flight mass-spectrometry (MALDI-TOF MS) are 

used to evaluate the release of active drug within tissues could be extremely beneficial. 

Furthermore, MALDI-TOF technique can allow phenotypic identification of 

periodontopathogens from periodontal disease patients, improving accuracy of diagnosis and 

efficiency of the corresponding treatment plan (Rams et al., 2018; Yeh et al., 2019).  

The precise mapping of cell response through cutting-edge techniques involving 

transcriptomic and proteomics analyses has widened the horizon of periodontal diagnostics and 

therapeutic targeting. For instance, microRNAs (miRNAs) are short, noncoding RNAs 

involved in the regulation of several processes associated with inflammatory diseases and 

infection. Bacterial infection modulates their expression to subvert any innate immune 

response. The impact of miRNA expression induced by infection with common periodontal 

pathogens such as Pg  has been evaluated in gingival tissue samples (Stoecklin-Wasmer et al., 

2012). Several miRNAs are differentially expressed in healthy and diseased gingival tissues 

and impact inflammatory cytokine release (such as TNF-a and IL-10), thereby, potentially 

helping both in diagnosis as well as in delineating targets for modulation of inflammation 

(Simões et al., 2019). Several mimics and inhibitors of such miRNA have been evaluated 

recently for control of inflammation mediated bone resorption (Fujimori et al., 2019; Huck et 

al., 2017). Gingival biopsies of periodontitis patients or samples collected from experimental 

periodontitis animal models can undergo transcriptome analyses (RNA sequencing/ 

microarrays) to reveal the expression and splicing pattern of genes involved in periodontitis 

pathogenesis. These beneficial insights into the mechanisms underlying the disease could be 

highly instrumental in highlighting the precise therapeutic targets and improving the 

periodontal treatment strategies (Kim et al., 2016). More recently, spatial-transcriptomics have 

made it possible to map gene activity in different compartments of the gingival tissues, hence, 

providing more precise information on the cell types and specific genes regulating 

inflammation in specific tissues within the periodontium. Further exploration into this could 

help in optimizing the harmonized and coordinated healing response of all tissue compartments 
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within periodontium (Lundmark et al., 2018). With advancing research, attempts are aimed at 

a better understanding of the mechanisms underlying bacterial invasion, involvement of defense 

barriers, receptors inducing different signaling pathways and inflammatory-immune responses. 

Recently, the use of intestinal epithelial cell line (CACO-2) has rendered it possible to evaluate 

the effect of bacterial invasion through epithelial and intestinal barriers to improve our 

understanding of local and systemic dissemination of periodontopathogenic bacteria (Bugueno 

et al., 2018; Yamada et al., 2018). Such developments also aid in establishing dose responses 

at a systemic level.  

In vivo, to reduce the technical challenge associated with the conventional ligature 

model, a simplified method has been described to enhance feasibility of placing a bacterially 

retentive ligature between two molars for inducing experimental periodontitis. This model can 

induce gingival tissue inflammation and alveolar bone loss within 18 days after ligature 

placement. Furthermore, it can also be used on germ-free mice to investigate the role of human 

oral bacteria in periodontitis (Marchesan et al., 2018). In addition, very recently, an injection 

of a cocktail of type II collagen antibodies along with an oral gavage of Pg in mice has shown 

to induce adequate periodontal destruction in a shorter time, thus, serving as a time-saving 

alternative to conventional periodontitis induction methods (Alshammari et al., 2018). 

Therefore, the identification of the key factors associated to each phase of the wound healing 

and the regeneration process, will be instrumental to develop new regenerative strategies based 

on the controlled delivery of specific drug or molecules. Interestingly, laser capture 

microdissection (LCM) will be helpful to isolate specific tissue compartments of the 

periodontium and will also allow such precise identification (Nakamura et al., 2007). 

The use of combination therapies such as autogenous connective tissue grafts with EMD 

(Nemcovsky and Beitlitum, 2018), combination of pro-regenerative agents/ drugs (Lee et al., 

2016; Martande et al., 2016), stem cells and growth factors (Chien et al., 2018) have shown 

better potential of periodontal wound healing and regeneration compared to monotherapies.  
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Periodontal diseases have a high impact on public health due to their high prevalence 

worldwide. Periodontal regeneration is the ultimate goal of periodontal treatment; however, it 

is not fully achieved despite effective, costly and time-consuming treatments. Therefore, new, 

easy to use, inexpensive and low side effect causing therapeutic strategies need to be developed. 

Strategies that minimize infection and inflammation at the periodontal lesion site 

contribute successfully towards the promotion of periodontal wound healing and regeneration. 

The development of spatial- dose and time-controlled release scaffolds has shown to be more 

efficient with rapid recovery of diseased tissues and decreased risk of systemic side effects. 

Interestingly, such local drug delivery systems supplying therapeutic active agents can be 

incorporated as adjuncts to periodontal therapy to improve the treatment outcomes. In this 

context, as our first strategy, we developed IBU-PCL membrane to counter local post-op 

inflammation associated with GTR therapy in periodontal treatment that improved periodontal 

parameters by significantly decreasing inflammation in vitro and in vivo. However, the 

resolution of inflammation was observed mainly at the soft tissue level in vivo. This strategy 

will be of interest as adjunctive to surgical approach especially if more specific drugs could be 

included. 

Our second strategy constituted the development of a CHX-IBU ISFI that successfully 

counteracted periodontal infection and inflammation simultaneously in vitro. In vivo, its easy 

intra-pocket administration resulted in significant amelioration of periodontal treatment 

outcomes with a marked improvement in soft tissue healing response. The easy use of this 

treatment strategy will allow its development especially in the context of adjuvant to non-

surgical periodontal treatment and/or in the management of at-risk patients.  

The two above mentioned approaches failed to significantly enhance alveolar bone 

healing in vivo at the time points tested. However, as our third strategy, we synthesized a 

thermosensitive hydrogel ATV-ChiG and encapsulated ATV within nano-droplets ATV-KELP 

NE to further enhance its cellular uptake. This approach led to a decrease in infection-triggered 

inflammation-mediated tissue degradation in vivo. It is noteworthy that this approach improved 

the healing response of both soft and hard tissues. Nevertheless, in the future, optimization of 

the combination of pro-regenerative agents (such as drugs, growth factors, stem cells etc.) for 

their doses and rate of release with appropriate scaffolds adapted for their rate of degradation 

with rate of neo-tissue formation is crucial for achieving periodontal regeneration. The addition 

of pro-resolution agents to such approaches can help prevent or avert inflammation-mediated 

periodontal tissue breakdown and establish periodontal tissue homeostasis, thus, leading to 

optimal periodontal wound healing and regeneration. 
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Abstract: This review encompasses different pre-clinical bioengineering approaches for periodontal
tissues, maxillary jaw bone, and the entire tooth. Moreover, it sheds light on their potential
clinical therapeutic applications in the field of regenerative medicine. Herein, the electrospinning
method for the synthesis of polycaprolactone (PCL) membranes, that are capable of mimicking the
extracellular matrix (ECM), has been described. Furthermore, their functionalization with cyclosporine
A (CsA), bone morphogenetic protein-2 (BMP-2), or anti-inflammatory drugs’ nanoreservoirs
has been demonstrated to induce a localized and targeted action of these molecules after
implantation in the maxillary jaw bone. Firstly, periodontal wound healing has been studied in
an induced periodontal lesion in mice using an ibuprofen-functionalized PCL membrane. Thereafter,
the kinetics of maxillary bone regeneration in a pre-clinical mouse model of surgical bone lesion
treated with BMP-2 or BMP-2/Ibuprofen functionalized PCL membranes have been analyzed by
histology, immunology, and micro-computed tomography (micro-CT). Furthermore, the achievement
of innervation in bioengineered teeth has also been demonstrated after the co-implantation
of cultured dental cell reassociations with a trigeminal ganglia (TG) and the cyclosporine A
(CsA)-loaded poly(lactic-co-glycolic acid) (PLGA) scaffold in the jaw bone. The prospective
clinical applications of these different tissue engineering approaches could be instrumental in
the treatment of various periodontal diseases, congenital dental or cranio-facial bone anomalies,
and post-surgical complications.

Keywords: bioengineered tooth; BMP-2; cyclosporine A; electrospun polycaprolactone; ibuprofen;
innervation; nanoreservoirs; periodontitis
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1. Introduction

Tooth loss undermines oral health, affecting both function and aesthetics, compromising oral
health related quality of life [1]. Periodontitis, a group of inflammatory diseases of infectious
origin, is considered as the main cause of tooth loss. It is characterized by progressive destruction
of the tooth-supporting tissues (gingiva, cementum, alveolar bone, and periodontal ligament)
resulting in gingival bleeding, increased periodontal pocket depth, abscess formation, tooth mobility,
and—consequently—tooth loss [2]. Besides the conventionally employed therapy, mainly comprising
scaling and root planing to reduce bacterial load, regeneration of destructed tissues is the ultimate
objective of periodontal treatment as it has been demonstrated to improve function and long-term
retention of the tooth [3]. Currently, for the restoration of missing tooth, implant placement is a widely
used therapeutic modality. However, in some cases, there is low residual bone height or volume,
caused by local trauma, tumor resection, or systemic conditions, necessitating bone regeneration prior
to implant placement [4].

Over the last few decades, many different techniques and biomaterials, including guided tissue
regeneration (GTR), guided bone regeneration (GBR), bone grafts of human, xenogenic or allogenic
origins, growth factors, and various pharmacological agents, have been tested with the aim of
regenerating periodontium and maxillary bone in vitro, in vivo, and in clinical settings but the results
of the clinical trials have been, by and large, variable [5–11]. Current strategies for periodontal and
bone regeneration are based on the fabrication of scaffolds which are biocompatible and can act as
suitable vehicles for delivery of bioactive molecules (growth factors, drugs) or stem cells [12]. Not only
does the scaffold material provide bulk mechanical support to the regenerating tissues but it also
mimics the extracellular matrix (ECM) of tissues which directs the cell behavior to contribute towards
the regenerative process [13]. In this context, control of inflammatory process has been suggested
as sustained inflammation may impair regenerative therapeutic outcomes [14]. Membranes loaded
with drugs such as ibuprofen (Ibu) and growth factors such as bone morphogenetic protein-2 (BMP-2)
have already been tested in mice and have exhibited beneficial effects on wound healing and tissue
regeneration [15,16]. Pre-clinical and clinical studies in the treatment of jaw bone defects are focused on
bone substitution and regenerative approaches, the latter requiring novel experimental development
and functionalization of bioactive molecules, different types of stem cells with synthetic biomembranes
or scaffolds.

The association of transforming growth factor-beta 3 (TGF-�3) and dental pulp stem cells for
peri-implant bone regeneration in an animal model of anterior implant repair showed promising
results compared to mere bone substitution with bone powder [17]. Moreover, the trabecular bone
was found to be having a superior bone density in the control group with surrounding osteoblasts
arranged in clusters. Different types of stem cells (stem cells of human exfoliated deciduous teeth,
human dental pulp stem cells, and bone marrow mesenchymal stem cells) have been compared for
their ability to stimulate bone response in a model of calvarial defect in immunodeficient mice [18].
These stem cells were transplanted with a polylactic-polyglycolic acid (PLGA) scaffold and exerted
similar bone regeneration abilities after 12 weeks of transplantation [18].

In humans, a recent study demonstrated positive results of a collagen-enriched xenogenic bovine
bone mineral on post-operative volumetric bone alterations [19]. Another clinical technique for
alveolar ridge preservation has been based on the association of xenogenic bone substitute with
10% collagen and covered with native bilayer collagen membrane [20]. Although a significant reduction
of radiographic bone loss was observed with this technique. Nevertheless, these methods seem
limited by the absence of biological bone and vascularization. To overcome this limitation, the use
of mesenchymal stem cells (MSC) was clinically evaluated to treat maxillary bone defects following
biopsies or osteolytic odontogenic benign tumors. Results showed promising outcome in terms
of bone volume or density with MSC from autologous bone marrow on bone regeneration after
biopsies or osteolytic lesions [21]. As the kinetics of in situ stem cells’ release cannot be controlled,
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functionalization of a synthetic PCL biomembrane with mesenchymal stem cells, as we proposed for
the treatment of a maxillary bone lesion, may overcome such limitation.

Replacement of missing tooth by tooth tissue engineering has recently attracted much
attention [22]. Therefore, besides periodontal tissue engineering, regenerating the entire missing
tooth has also been attempted by tooth bioengineering. Vascularization and innervation are essential
factors for homeostasis and response to noxious stimuli, determining the success of the bioengineered
tooth [23]. Previous studies have shown that reassociations between dissociated mesenchymal cells
and an intact epithelium from embryonic mouse molars (14th embryonic day, ED14) rendered it
possible to obtain dental germs [24]. Their subcutaneous implantation in the mouse resulted in the
formation and morphogenesis of molars that were vascularized but not innervated [25]. In 2014,
Eap et al. synthesized "-polycaprolactone (PCL) membranes by electrospinning and functionalized
them with nerve growth factor (NGF) nanoreservoirs. By adding a trigeminal ganglion (TG) to the
functionalized membrane and the germ, peripheral axons were detected in the pulp cavity as early as
two weeks after implantation [26]. In another study, a TG was implanted with the germ to constitute
a supply of nerve fibers, in conjunction with a systemic treatment with cyclosporine A (CsA) in the
drinking water of mice [27]. This treatment allowed the subcutaneous development of vascularized
and innervated molars as early as two weeks after implantation. CsA has immunomodulatory
properties and stimulates nerve growth [28]. The side effects of the systemic administration of
CsA, including renal dysfunction and cancers, have been widely reported and, thus, not negligible.
To overcome this issue, local delivery of the molecule is more desirable, therefore, development of
scaffold, such as biomembrane functionalized with nanoreservoirs of CsA, is of clinical interest with
multiple therapeutic targets and has been successfully tested [29].

The objective of this review is to present new regenerative strategies based on controlled local
delivery of active anti-inflammatory drugs and growth factors through functionalized membranes
targeting each component of tooth and its supporting tissues.

2. Materials and Methods

2.1. Materials

Poly (D, L-lactic acid/glycolic acid) 50/50 polymer (PLGA; MW 24-38 KDa), under the
commercial name Resomer® RG 503, was purchased from Evonik Industries AG (Darmstadt, Germany).
Polycaprolactone (PCL; MW 80 KDa) analytical grade, cyclosporine A (0.1 mg/mL), dexamethasone
(used as HPLC internal standard), Pluronic® F-68 surfactant, ethyl acetate (Class 3 solvent according to
the pharmacopeia), acetonitrile, methanol (HPLC grade), and Ibuprofen (50 µg/mL) were all purchased
from Sigma-Aldrich (St. Louis, MO, USA). BMP-2 (200 ng/mL) was acquired from Euromedex
(Souffelweyersheim, France) and chitosan (Protasan UPCL 113, 500 µg/mL) from NovaMatrix
(Sandvika, Norway).

2.2. Synthesis and Characterization of Cyclosporine A (CsA) Loaded PLGA Nanoparticles

Cyclosporine A loaded PLGA (PLGA/CsA) nanoparticles were prepared in a continuous
microfluidic reactor using a PEEK-made interdigital micromixer (SIMM-V2, Slit Interdigital Micro
Mixer, IMM, Mainz, Germany) by carrying out an oil-in-water (O/W) emulsification process followed
by a solvent evaporation procedure as previously described [29]. Scanning electron microscopy
(SEM, Inspect F50, FEI, Eindhoven, The Netherlands) was employed to determine the shape of the
synthesized PLGA NPs.

2.3. PCL Scaffold Synthesis and Functionalization

PCL was dissolved in a mixture of dichloromethane/dimethylformamide (DCM/DMF 50/50 v/v)
at 15% w/v and stirred overnight before use. A standard electrospinning set-up (EC-DIG apparatus,
IME Technologies, Eindhoven, Netherlands) was used to fabricate the PCL scaffolds as described
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earlier [30]. The objective was to achieve nanoreservoirs distributed randomly on the surface
of PCL nanofibers as shown in another study [30]. In our study, for some experiments, PCL
scaffolds were incubated in a chitosan solution (chitosan, 500 µg/mL) for 15 min and rinsed
with the buffer for 15 min. These scaffolds were then incubated in PLGA or PLGA/CsA NPs
solution for another 15 min and, finally, thoroughly washed for 15 min, thus, constructing a ‘bilayer’
(chitosan/PLGA/CsA) on the fiber surface. Repetition of this protocol five times allowed the
construction of (chitosan/PLGA/CsA)5, respectively. Even though this buffer solution provided
high ionic strength to the media, the NPs remained strongly bound to the PCL electrospun nanofibers.
For other experiments, (BMP-2/chitosan)10 and (Ibuprofen/chitosan)3 were built up on the PCL
scaffold as described recently [15]. BMP-2 and ibuprofen remain protected and available for cellular
activity due to their encapsulation in the nanoreservoirs of chitosan. Finally, Ibuprofen-functionalized
PCL membranes (PCL/Ibu) were synthesized by mixing PCL pellets dissolved in DCM/DMF
and Ibuprofen (10% of Ibu w/w) with TWEEN® 80 and electrospinning process in a Yflow
2.2.D-500 electrospinner (Coaxial Electrospinning Machines/R&D Microencapsulation, Malaga, Spain)
using the shell–core technique as described recently [16].

Scanning electron microscopy (SEM) was used to characterize fibers size and morphology of the
different scaffolds as described earlier [15].

2.4. In Vivo Micro-Surgical Protocols

All experimental protocols fulfilled the authorization of the “Ministère de l’Enseignement
Supérieur et de la Recherche” under the agreement numbers 01715.01 and 01715.02. The Ethics
Committee of Strasbourg named “Comité Régional d’Ethique en Matière d’Expérimentation Animale
de Strasbourg (CREMEAS)” specifically approved this study.

First, periodontitis was induced in mice by Porphyromonas gingivalis-infected ligatures to simulate
disease condition comparable to human periodontitis as described previously [31]. To surgically treat
the periodontal lesion, the test sites were treated with PCL/Ibu membrane [16].

Secondly, an intrabony periodontal lesion was created with a 0.5 mm round bur and a PCL/Ibu
membrane was placed on the created bone lesion in such a manner that its ends could be blocked
beneath the vestibular and palatal flaps. Bone level was evaluated by manual probing of the pocket
depth and with the micro-computed tomography (micro-CT) analysis to confirm bone loss before
initiating the treatment plan.

Thirdly, a maxillary bone lesion was created, under general anesthesia, in the diastemal area with
a dental bur (0.8 mm) after gingival incision. On one side, bi-functionalized BMP-2/Ibuprofen or
functionalized BMP-2 scaffold was implanted while the other side served as a control without scaffold
or with non-functionalized scaffold for 30 and 90 days. The gingiva was closed with biological glue
composed of enbucrilate (Histoacryl®, B. Braun, Rubi, Spain). To study the evolution of bone response,
a longitudinal post-operative follow-up using micro-CT was conducted.

Finally, first mandibular molars were dissected from ICR mice (Charles River Laboratories,
l’Arbresle, France) embryos at embryonic day 14 (ED14). Germs cultured on semi-solid medium
reached the bell stage. For the innervation experiments, molars were cultured for six days on
semi-solid medium as previously described [27], associated with a TG on PCL scaffolds (functionalized
by chitosan/PLGA or chitosan/PLGA/CsA) for one night and implanted in the diastemal area.
An incision was made up to the bone contact at the top of the alveolar crest in diastemal zone, in front
of the first maxillary molar (M1). The bone lesion was obtained using a round bur (diameter 0.8 mm).
Then, the cultured germ associated with TG on the CsA biomembrane was implanted and the lesion
was closed with fibrin biological glue composed of enbucrilate (Histoacryl®, B. Braun, Rubi, Spain) for
two and four weeks.
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2.5. Histology and Indirect Immunofluorescence

For histology, samples were fixed for 24 h in 4% paraformaldehyde, decalcified in
ethylenediaminetetraacetic acid (EDTA) at 37 �C for one week and embedded in paraffin. Serial sections
(10 µm) were stained with hematoxylin/eosin or Gomori trichrome stain and observed on a Leica
DM4000B microscope.

For the immunofluorescence, some samples were embedded in Tissue-Tek, frozen at �20 �C
and sectioned (10 µm) using a cryostat (Leica, CM3000). Serial sections were rinsed with phosphate
buffered saline (PBS), fixed for 10 min with 4% paraformaldehyde at 4 �C and treated as previously
described [27], using anti-peripherin, anti-CD31 and anti-osteocalcin antibodies. Sections were
observed with a fluorescence microscope (Leica DM4000B).

3. Results

3.1. Characterization of the Biomembrane

The control nanofibrous structure (Figure 1A), the distribution of CsA (Figure 1B), BMP-2/Ibu
nanoreservoirs (Figure 1C) and the PCL–Ibuprofen structure (Figure 1D) were characterized by SEM.
The PCL scaffolds exhibited a nonwoven mesh like structure with a large surface area per volume
ratio (Figure 1 A). The distribution of nanoreservoirs was random (Figure 1B). The morphology and
fiber diameter distribution of the ibuprofen electrospun fibrous membrane showed that there were no
beads in the fibrous structure and the fibers were uniform in size and interconnected in order to mimic
the natural extracellular matrix (Figure 1D). The diameter of fibers was 374 ± 89 nm for the PCL/Ibu
electrospun fibrous membrane.
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Figure 1. Scanning electron microscopy (SEM) observations of non-functionalized PCL scaffolds
consisting of non-woven electrospun nanofibers (A), PCL scaffolds grafted with CsA-loaded
PLGA nanoparticles (chitosan/PLGA/CsA)5 (B), with BMP-2/Ibuprofen (PCL/(BMP-2)3/(Ibu)3)
nanoreservoirs (C) or with Ibuprofen (D). For the morphological study by SEM, the different scaffolds
were fixed with 4% paraformaldehyde, dehydrated in successive baths of ethanol (25, 50, 75, 90,
100%) and treated with hexamethyldisilazane (HDMS). They were mounted on a supporting sample
holder using carbon conductive adhesive, then, silver-coated and observed with a Philips XL-30 ESEM
scanning electron microscope in conventional mode (high vacuum) with a Everhart-Thornley secondary
electron detector.

3.2. Assessment of PCL Membrane Functionalized with Ibuprofen on Periodontal Wound Healing in
Periodontitis-Induced Mouse Model

In periodontal wound healing at seven days (Figure 2E,H,I), inflammatory infiltrate could
be observed in the control. Moreover, fibrous attachment primarily remained dominant but new
cementum formation was also initiated (Figure 2I). More cementum formation was visualized in
the test using PCL/Ibu (Figure 2K) compared to that in the control. The test also exhibited a better
organization of the gingival tissue (Figure 2F,G). In fact, separate zones comprising dense cellular
zone and collagen zone could be distinctively observed in the test. Membrane interposed between
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the cells and surrounded by inflammatory cells was shown in the test (Figure 2G). In the control,
an increase in the cementum and bone formation was seen at 15 days of wound healing (Figure 2L–M)
compared to that at seven days (Figure 2E–G). Epithelial attachment level was found to be improving
while the fibrous attachment was observed to be replaced by epithelium and newly formed cementum.
The differences between the control and test were less pronounced when the membrane persisted.
Inflammation on the cervical margins of the persistent membrane could still be seen. Dense collagen
bundles inserted on the bone away from the root surface were observed.Nanomaterials 2018, 8, x FOR PEER REVIEW    6 of 16 
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Figure 2. Periodontitis induced with Porphyromonas gingivalis-infected ligatures and treatment with
PCL/Ibu membrane (A–D). (B) sulcular incision along the first and second maxillary molars, (C) raising
the flaps for exposure and access, (D) surgical placement of PCL/Ibu membrane on the periodontal
lesion, (E–N) histological view at 7 and 15 days. (E–K) histology of periodontal wound healing at
7 days and (L–N) at 15 days. Red line = cementoenamel junction, blue line = fibrous connective tissue
attachment, green line = epithelial attachment, yellow line = bone level. After anesthesia, a slight
incision to the bone crest contact was made to facilitate the first ligature placement at the junction
between the gum and the tooth along the first and second molars (M1-M2) as previously described [16].
The thread was then blocked with a drop of glass ionomer (Fuji IIGC, GC, France, Bonneuil sur Marne,
France). Sterilized black braided 6.0 silk threads (Ethicon, Auneau, France) were incubated in culture
medium containing P.gingivalis in an anaerobic chamber for one day. P.gingivalis-soaked ligatures were
placed around maxillary first and second molars. The ligatures were inspected and replaced (with
freshly infected ones) thrice a week for a period of 40 days. An incision was performed along the
sulcular margins of the first and second molars and extended anteriorly on the mesial aspect of the
first molar to efficiently raise the flap to gain access. Ibuprofen-functionalized PCL membrane was
punched with a 3 mm diameter cutter. The circular pieces of membrane were further divided into half
to achieve a size appropriate enough to cover the lesion. The cut membrane was then placed into the
periodontal pocket after raising the flap such that the membrane stays flat beneath the flap covering
the lesion fully and the necks of the crowns (molars) partially, entering the inter-dental area as well.
The flap was nicely repositioned to perform a suture on the flap while maintaining the membrane
underneath [16]. AB: alveolar bone, CT: connective tissue, EPI: epithelium, PL: periodontal ligament,
R: root. Stars showing PCL/Ibu membrane.

3.3. Assessment of PCL Membrane Functionalized with Ibuprofen on Periodontal Wound Healing in a Mesial
Bone Defect Model

A good bulk of the bone over and around the mesial root of the first molar was removed
(Figure 3A–E) as confirmed by the micro-CT’s sagittal view (Figure 3F,G). Sagittal views of the
histological sections compare the bone level and epithelial attachment level in the control (Figure 3H)
and test (Figure 3I). Long junctional epithelium was found to be formed in the test (Figure 3I, arrow).
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Figure 3. Surgical bone defect model and treatment with PCL/Ibu membrane (A–I). (A–E) demonstrate
the surgical procedure for creating the mesial bone defect. After anesthesia, sulcular incision (A) was
given along maxillary first molar and extended anteriorly on the mesial aspect of the first molar for
efficient raising of palatal and vestibular flaps so that they do not hinder the bone drilling procedure.
The exposed bone was drilled to create the intrabony defect (B). The bone over and around the mesial
root of the first molar was removed. Constant irrigation with physiological saline was maintained to
avoid overheating of the bur and the bone area concerned. The drilled bone was, later, nicely irrigated,
cleaned, and dried to remove all the bone chips and debris. PCL/Ibu functionalized membrane was
placed on the created bone lesion (C) in such a manner that its ends could be blocked beneath the
vestibular and palatal flaps. Palatal and vestibular flaps were approximated covering the PCL/Ibu
membrane underneath and sutured (9-0 ETHILON* Polyamide 6/6) or glued to retain the membrane
underneath (D,E). (F) micro-CT view before the bony defect and (G) after bony defect. (H,I) Histology
of periodontal wound healing at 15 days. Red line = cementoenamel junction, yellow line = bone level.
(I) Arrow showing short epithelial attachment in test. M1: first upper molar, R: root.

3.4. Maxillary Bone Regeneration Based on Nanoreservoirs Functionalized PCL with BMP-2 and BMP-2/Ibu

Surgery to study bone regeneration is the same as that depicted later in the text (Section 3.5).
The only difference is that on one side, bi-functionalized BMP-2/Ibuprofen or functionalized BMP-2
scaffolds were implanted while the contra-lateral bone lesion served as a control without scaffold or
with non-functionalized PCL scaffold for 30 and 90 days.

Trichrome of Gomori stain and immunofluorescence for osteocalcin showed the degree of bone
neoformation and closure of the bone lesion (Figure 4). At 30 days, the membrane is largely colonized
by the cells (Figure 4A–C). For the mice treated with a non-functionalized membrane, little neoformed
bone was observed at day 30 compared to the lesions treated with the membranes functionalized
with BMP-2 or BMP-2/ibuprofen (Figure 4A). At 90 days, the bone bridge was thicker (Figure 4G–I).
Neoformed bone showed trabeculations in different directions from the original bone. In lesions treated
with PCL membrane or with PCL/BMP-2 (Figure 4G,H), areas of mineralization extended further and
further tending to join the osseous banks at day 90 with BMP-2/ibuprofen (Figure 4I). A greater number
of red blood cells was found around the functionalized PCL/BMP-2-treated lesion (Figure 4H) than
the PCL/BMP-2/Ibu-treated lesion (Figure 4I). The control lesion appeared to be the least vascularized
area. Osteocalcin antibody was used to demonstrate osteoblastic activity and bone neoformation
(Figure 4D–F,J–L). After 30 days, immunofluorescence showed differences in bone formation according
to the different scaffolds tested. Osteoblasts were visualized in the bone/scaffold interface (Figure 4E,F
white arrows) for PCL/BMP-2 and PCL/BMP-2/Ibu scaffolds while with unfunctionalized PCL very
few osteoblasts were detected (Figure 4D). After 90 days, there was a massive expression of this
protein (Figure 4K,L, white arrows), allowing clear observation of distinctly differentiated osteoblasts
in almost all microscopic fields within the scaffold area. These results corroborated the efficiency of
biocompatible scaffolds in promoting new bone regeneration to repair maxillary bone defects.
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Figure 4. Trichrome of Gomori staining (A–C,G–I) and immunofluorescence for osteocalcin (D–F,J–L)
after 30 (A–F) and 90 days (G–L) implantation of PCL (A,D,G,J), PCL/(BMP-2)10 (B,E,H,K) and
PCL/(BMP-2)10/(Ibu)3 (C,F,I,L). Arrows indicated neoformed bone positive for osteocalcin. White dots
indicate the limit of the maxillary bone. For the immunofluorescence, samples were embedded in
Tissue-Tek, frozen at �20 �C and sectioned (10 µm) using a cryostat (Leica, CM3000). Serial sections
were rinsed with PBS, fixed for 10 min with 4% paraformaldehyde at 4 �C and treated as previously
described [27] using the rabbit anti-osteocalcin antibodies (Santa Cruz Biotechnology, dilution 1/200).
Sections were observed with a fluorescence microscope (Leica DM4000B). G: gingiva, LBR: lesion with
bone regeneration, PCL: scaffold.

The micro-CT (phoenix/X-ray, GE sensing & Inspection Technologies GmbH, Wunstorf, Germany)
validated the position of the standardized lesion on the bone crest, in close proximity to the first molar.
The sections acquired in micro-CT allowed visualizing the periosteal reaction at the base of the
lesion, with regards to the nasal cavity (Figure 5C,E). This mechanism corresponds to a physiological
osteoformation activity in response to the experimental surgical trauma. This micro-CT analysis
confirmed that the bridge connecting the bone banks was mineralized (Figure 5G,G’). The micro-CT
also measured the size of the initial bone defect (T0), which in this case corresponded to the diameter of
the drilling bur used. On the 3D volume micro-CT reconstructions, the bony margins of the lesion were
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clear at T0 (Figure 5B), whereas at 90 days, the banks were more rounded, showing bone remodelling.
We assessed the initial size of the lesion (Figure 5B) and observed the progressive bone response at
90 days with the BMP2-functionalized membranes and the non-functionalized PCL (Figure 5D,F)
which does not lead to a closure of the bone banks. The 3D micro-CT reconstruction at 90 days in
case of a bifunctionalized membrane with BMP-2 and ibuprofen (BMP-2/Ibu) showed a closure of the
lesion, but the sections still showed that the bone formed was not as mineralized as the bone at the
edges of the lesion (Figure 5C’,E’,G’). The thickness of the neoformed bone bridge formed was smaller
compared to the initial situation (Figure 5G’).Nanomaterials 2018, 8, x FOR PEER REVIEW    10 of 16 
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Figure 5. Micro-CT sections (A,C,E,G,C’,E’,G’) and 3D reconstructions (B,D,F,H) at T0 (A,B) and after
90 days of implantation of PCL (C,D,C’), PCL/BMP-2 (E,F,E’), and PCL/BMP-2/Ibu (G,H,G’). To study
the evolution of bone response, we conducted an ex vivo longitudinal post-operative follow-up using
micro-CT. The X-ray microtomography acquisitions were performed after 0 and 90 days. The size of
the reconstructed isotropic voxel was 8 µm. M1: first upper molar, NC: nasal cavity.

3.5. Molar Bioengineering and Innervation After Bone Implantation Using CsA Functionalized Membrane

An incision was made up to the bone contact at the top of the alveolar crest in diastemal area,
in front of the M1 (Figure 6(Aa)). The bone lesion was obtained using a round bur (diameter 0.8 mm)
(Figure 6(Ab)). Then, the cultured germ associated with a TG on the CsA biomembrane was implanted
(Figure 6(Ac)) and the lesion was closed with a biological glue (Figure 6(Ad)), which allowed to
cover the whole surgical site and promoted the wound healing. Two weeks after implantation,
the mucosa was macroscopically and histologically closed (Figure 6(Ae)). Samples were recovered
after two and four weeks of implantation (Figure 6B,C). Well-formed teeth were developed in the
maxillary bone. The crown presented a normal morphogenesis with several cusps (Figure 6(Bf))
and the root formation was initiated after two weeks (Figure 6Bf) and further developed after four
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weeks (Figure 6(Cj)). Odontoblasts and ameloblasts were functional, they secreted predentin/dentin
and enamel organic matrix, respectively (Figure 6(Bf),(Cj)). The PCL membrane was detected in
contact with the bioengineered tooth (Figure 6(Bi)). Indirect immunofluorescence analysis two
weeks after implantation revealed the presence of blood vessels positive for CD31 (Figure 6(Bg))
in the dental pulp and some nervous filaments positive for peripherin at the base of the tooth
(Figure 6(Bh)). Four weeks following implantation, nerve fibers penetrated the dental pulp in the
most apical region (Figure 6(Ck),(Cl)). In both cases, nerve fibers were associated with the blood
vessels. After implantation with control PCL membranes ((chitosan/PLGA)5), bioengineered teeth
were vascularized but not innervated (not shown) [22].
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Figure 6. (A) Different stages of the microsurgery: incision of the gingiva (Aa), maxillary bone lesion
obtained with a dental bur (500 µm) (Ab), implantation of the membrane with the bioengineered
tooth and TG (Ac), closing of the gingiva with biological glue (Ad), and wound healing of the
mucosa two weeks after implantation (Ae). (B,C) Histology, vascularization and innervation of
bioengineered tooth implanted on PCL scaffolds functionalized with CsA-loaded PLGA nanoparticles
(chitosan/PLGA/CsA)5 after two (B) or four (C) weeks of implantation. Samples were embedded in
Tissue-Tek, frozen at �20 �C and sectioned (10µm) using a cryostat (Leica, CM3000). Serial sections
were rinsed with PBS, fixed for 10 min with 4% paraformaldehyde at 4 �C. Some were stained
with hematoxylin/eosin ((Cf),(Ci),(Cj)) or for the immunofluorescence as previously described using
rabbit anti-peripherin (Abcam, dilution 1/600) and rat anti-CD31 (BD Pharmingen, dilution 1/100)
antibodies [22] ((Bg),(Bh),(Ck),(Ci)). Cell nuclei were stained with 200 nM DAPI (Sigma-Aldrich Co,
Darmstadt, Germany). D: dentin, DP: dental pulp, E: enamel, M1: first upper molar, Od: odontoblasts,
TG: trigeminal ganglion.
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4. Discussion

Tissue regeneration is a pivotal field of research in dentistry, especially in regenerative endodontics
or periodontology. The aim of the current therapeutic approaches is to regenerate lost tissues and
several strategies have been developed and tested in this regard. Particularly, the use of bioactive
scaffolds, such as membranes, has been widely studied [32].

In the context of periodontal and bone regeneration, synthetic membranes should combine
both mechanical and biological properties to prevent their collapse within the defect and, ultimately,
being capable of delivering ‘at-site’, the biomolecules or cells with controlled release to promote
regeneration. To achieve this goal, electrospinning technique has been used to synthesize membranes from
PCL [14–16,33]. PCL membranes are biocompatible, bioresorbable, and non-toxic [34,35]. Furthermore,
they mimic efficiently the extracellular matrix supporting adhesion, differentiation, and cell proliferation.
Interestingly, not only does their synthetic origin overcome the use of animal derived products but also
exhibits desirable mechanical properties such as rigidity and low rate of resorption [36].

PCL membrane could also be utilized as an efficient drug delivery vehicle as described in
this review with several interesting therapeutic applications for local delivery of certain bioactive
agents such as anti-inflammatory or osteogenic molecules. Several strategies have been proposed
to functionalize such scaffolds. Drugs, peptides, or other active molecules could be either inserted
within the synthesized fibers through core-shell loading technique allowing a passive release of the
compound during resorption of the fibers or by direct contact with the cells [16]. Nanoreservoir
technology could also be used to deliver the active compounds to cells reaching tissues/organs
in a controlled active manner as demonstrated for BMP2-PCL membrane [37]. In the context of
periodontal diseases, evaluation of therapeutic efficacy should be assessed in both septic and aseptic
conditions. Periodontitis is an inflammatory disease of infectious origin; therefore, it can be argued
that concomitant to anti-inflammatory treatment, delivery of antimicrobial such as antibiotics would
be of interest [38]. Here, we described two different models of periodontal destruction, one induced by
infected ligature allowing to take into consideration the infectious nature of the disease, and the second
one, where the lesion is mechanically induced by drilling in a depth-controlled manner. Thereafter,
the test of new biomaterials or scaffolds for active compound delivery could be performed in a
well-described environment.

The feasible synthesis of such PCL-membrane by electrospinning technique combining both
core–shell and nanoreservoirs functionnalization will open new perspectives in the field of regenerative
medicine. In this regard, combination of a passive anti-inflammatory drug release and nanoreservoir
containing pro-regenerative molecules such as growth factors would be of great interest. The passive
release of anti-inflammatory molecules may reduce the risk of persistent inflammation with
concomitant active release of pro-regenerative drugs, promoting specific regeneration of the tissues.
For instance, if combined in a such scaffold as described earlier, passive release of ibuprofen will
decrease the inflammation leading to increased BMP-2 secretion by macrophages [39] while active
loading of BMP-2 or other growth factor will directly promote in a specific manner, the regeneration
of targeted tissue such as alveolar bone. This strategy could be developed with other growth factors
combining osteogenic, osteoinductive, and angiogenic molecules such as vascular endothelial growth
factor (VEGF) [40] or other signaling molecules such as hepatocyte growth factor (HGF), as an
upregulation of VEGF and BMP-2 receptor via nuclear factor kappa B (NF-B) has been shown
for HGF, in cultured osteocytes and in vivo, promoting osteogenesis and neo-vascularization of
tissue-engineered bone [41].

As described previously, the use of such scaffolds leads to the regeneration of small defects
such as periodontal lesion as well as more significant bone destruction such as observed in the bone
regeneration of critical size defect. However, the combination with stem cells, such as bone-marrow
derived stromal cells, may be of interest to improve clinical outcomes [42]. Such strategies have
already been evaluated and are already used clinically in orthopedic surgery, with functionalization
based on multipotent mesenchymal stem cells [43]. However, it is of importance to describe the
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significant impact of the surgical technique used for membrane placement on regeneration related
outcomes. Exposure of membrane has a potential detrimental influence on the outcome as observed
for bone regeneration [44]. The full coverage of membrane by the flap is, therefore, mandatory. To
our knowledge, no data are available regarding the effect of functionalized-PCL membrane exposure
on the outcome of the therapy. Such parameters should be evaluated in the future to determine,
more precisely, the potential of use of this type of biomaterial.

Tooth engineering has been the ultimate goal of regenerative dentistry for decades and many
successful protocols have been described [45]. PCL membrane has been successfully tested to improve
vascularization and innervation of the germ. For example, stem cells have the ability to stimulate axonal
growth and are characterized by immunomodulatory properties. The concentration of nanoreservoirs
can be adapted and the CsA release kinetics have already been the subject of a previous study [29].
In other medical domains, CsA has been used in the form of microspheres in hydrogel, which could be
explored for tooth bioengineering [46].

In a previously reported work, we tried to implant reassociations in alveolar bone on M1 or M2
extraction sites but the tooth germ did not develop and was resorbed. We assume that this failure was
due to a difference in bone type and bone healing metabolism. The hypothesis established that natural
bone healing occurred more rapidly at the extraction site (pulp bleeding, alveolar bone, presence of
mesodermal cells, and odontogenic mesenchymal stem cells) than at the level of a diastemal bone
lesion in the diastemal zone (basal bone with poor vascularization). Hence, it was necessary to combine
tooth regeneration techniques with bone regeneration strategies to prepare the implant site in the best
manner possible. Besides its effect on osteogenesis, the membrane allowed isolation of the lesion from
the nasal cavity, which was otherwise mostly approached during the milling process, in this murine
model. This exposure of the lesion to bacteria of the nasal cavity could slow bone healing and this
risk is greater in the absence of the membrane. Interestingly, in such model, fibrin glue could be used
to protect the surgical site and maintain the membrane on site since it does not interfere with the
underlying bone healing [47].

5. Conclusions

The development of regenerative nanomedicine illustrated by the synthesis and characterization
of bioactive scaffolds such as membranes will open new therapeutic conservative approaches aiming
to maintain, at long-term, the existing teeth and also, when required, to restore esthetics and function
of missing teeth without exogenous devices such as dental implants.
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Summary: 

Control of periodontal infection and inflammation is crucial for optimal periodontal wound healing and 

regeneration. For this purpose, three different and novel strategies were developed and tested for their impact 

on periodontal wound healing parameters in vitro and in vivo. Firstly, an ibuprofen-functionalized 

polycaprolactone (IBU-PCL) membrane was developed as an anti-inflammatory barrier membrane that 

successfully reduced inflammatory markers expression in gingival cells in vitro and decreased soft tissue 

inflammation, thus, improving periodontal tissue healing in an experimental periodontitis model in vivo. 

Secondly, chlorhexidine and ibuprofen containing in-situ forming implant (CHX-IBU ISFI) was developed to 

target both infection and inflammation that successfully reduced Porphyromonas gingivalis growth and 

inflammatory response of gingival cells in vitro as well as improved soft tissue periodontal wound healing in 

vivo. Lastly, a thermosensitive chitosan-based hydrogel functionalized with atorvastatin encapsulated in a nano-

emulsion (ATV-KELP NE) was characterized and used to treat an induced bone defect in vivo that resulted in 

improved soft and hard tissue healing by counteracting infection and modulation of immuno-inflammatory 

response.  

 

Keywords: Periodontal regeneration, Porphyromonas gingivalis, controlled-release scaffolds, inflammation 

 

Résumé en français 
Le contrôle de l’infection et de l’inflammation est crucial dans les traitements parodontaux de régénération 

tissulaire. Dans cet objectif, trois stratégies novatrices ont été développées et évaluées in vitro et in vivo en se 

focalisant sur les paramètres associés à la cicatrisation. Dans un premier temps, une membrane de 

polycaprolactone (IBU-PCL) fonctionnalisée avec de l’ibuprofène a été développée. Ce nouveau biomatériau 

aux propriétés anti-inflammatoires et utilisé comme barrière permettant l’exclusion tissulaire a permis de réduire 

significativement l’expression des marqueurs de l’inflammation au niveau des cellules épithéliales gingivales in 

vitro et l’inflammation des tissus mous in vivo. Dans un second temps, un implant se formant in situ (ISFI) 

fonctionnalisé par ibuprofène et chlorhexidine a été développé pour cibler l’infection et l’inflammation. Ce 

biomatériau a permis de réduire la croissance bactérienne de Porphyromonas gingivalis et d’optimiser la 

cicatrisation des tissus parodontaux par réduction de l’inflammation. Enfin, un hydrogel thermosensible 

fonctionnalisé par atorvastatine encapsulée dans des nano-émulsions a été synthétisé (ATV-KELP NE) et a 

induit une amélioration de la néoformation osseuse dans un modèle de calvaria. 

 

Mot clés : Régénération parodontale, Porphyromonas gingivalis, système à libération contrôlée, inflammation 
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