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Introduction 

The development of flexible and stretchable electronics has opened the possibilities to many 

new outstanding applications. For wearable electronics, very thin flexible devices can conform 

to 3D surfaces and stretchable devices can go even further and follow any deformation. For 

application within the skin, this property is mandatory. The skin can stretch up to 15% and is 

constantly moving. These technologies are thus particularly suitable for developing sensing or 

actuating devices distributed directly onto human skin. 

The feeling of touch and pressure within the artificial skin has been widely studied, but 

integrating temperature sensing capabilities remains a challenge and particularly the non-

contact sensing. This thesis aims to understand the strategies for making stretchable devices; 

and then, to provide the tools to make stretchable sensors and integrate them into artificial 

skin. The different components of a stretchable sensor are analysed to select the appropriate 

materials and methods for this application. New processes for fast and easy fabrication of highly 

stretchable devices are introduced. To understand the challenges and develop processes for 

making soft sensors, a stretchable organic electrochemical transistor with high performance is 

fabricated. Its integration onto the skin would give the ability to sense various physiological 

parameters. Then, a stretchable infrared sensor with similar performance than rigid electronic 

devices is demonstrated. 

Chapter 1 reviews the state-of-the-art stretchable sensors for electronic skin. A study of 

stretchable devices is carried out to understand the design structure of such systems. A 

stretchable sensor comprises 3 different blocks with different strategies to make the overall 

sensor stretchable: the substrate to carry the device, the interconnection integrated into the 

substrate to route the signal, and the active area between the interconnections to generate a 

signal. 
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Chapter 2 provides a method to make highly conductive stretchable interconnections. This 

process allows the fabrication of bulk metallic interconnections for a minimum resistivity under 

stretch and thus, high quality of the signal. 

Chapter 3 presents the integration of interconnections compatible with classic microfabrication 

process, and application to sensor based on organic materials. First, a platform for electrical 

wound-healing is demonstrated to identify the key functionalities of the organic electrochemical 

transistor (OECT). Then, the optimisation of this device is shown in order to make it stretchable.  

Chapter 4 is dedicated to the fabrication of the stretchable temperature and infrared sensor. By 

using the knowledge developed in the previous chapters, the sensor shows promising results for 

integration into electronic skin. 
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1. State-of-the-Art soft Electronics for 

sensing application 

This chapter provides a general overview of the work done to make stretchable electronic 

devices for e-skin applications. The meaning of stretchable, in this thesis, has to be understood 

by the ability of an object (more specifically, a device, or a material) to be elastically elongated 

without being inelastically or permanently deformed. A stretchable device keeps its 

functionality by definition until a certain elongation defining its stretchability. A review of 

stretchable devices is provided in the first section. The different elements of a stretchable 

device are analysed and studied separately. The screening of the materials for the substrate, the 

interconnections and the active material is done. The materials and the processes are chosen 

according to the applications. Then, an introduction of the two sensors developed in this work is 

provided in order to understand the challenges. 

Most of the electronics systems and applications rely on rigid electronic devices. Figure 1 

displays the evolution of electronics from rigid calculators and computers to soft and conformal 

electronic devices. The technology from more than 100 years ago allowed the fabrication of 

cumbersome systems, with restrictive applications such as calculus with a simple computer or 

telephone. However, since the discovery of the transistor in 1925, more and more sophisticated 

devices have been developed. As described by Moore’s law, the continuous miniaturisation of 

the transistors has led to shrinking of electronics. With the first mobile phone in 1973, people 

have been able to take electronic systems with them. As a step forward, devices fully and 

properly integrated on our skin or in textile are being imagined. The smartwatches are the 

perfect examples of what people want to achieve: they can monitor in live what is happening to 

our body. However, the devices are still limited. For now, most of the applications are restricted 

by the rigidity of the available devices.  
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Figure 1: Evolution of electronics, from immobile to wearable systems. It implies the development of 
imperceptible soft and stretchable systems. Reproduced from [1]. 

 

The field of stretchable electronics is emerging to go beyond this limitation. Stretchable 

electronics concern electrical and electronic circuits that are elastically or inelastically 

stretchable by more than a few per cent while retaining function. To achieve this, devices tend 

to be laminar and usually thin. Compared with rigid, hard conventional electronic systems in 

planar formats, stretchable electronic systems can be stretched, compressed, bent, and 

deformed into arbitrary shapes without electrical or mechanical failure within the circuits.  

For this reason, stretchable electronic systems have many important and emerging applications 

in new, soft and curved bio-inspired areas, such as tunable electronic eye cameras or epidermal 

electronics capable of mechanically invisible integration onto human skin. The human body is 

soft, always in movement and in evolution. Its skin can be stretched during movements up to 

15%[2]. So, electronic systems have to match with the mechanical properties of the skin to fit 

with the body. Moreover, this evolution will lead to electronic systems more imperceptible, 

comfortable to use. For example, stretchable sensors for biomedical applications include various 

sensing capabilities such as temperature, touch/pressure, electrocardiogram, and motion 

detection. Stretchable electronic devices can also be attached to any organ in the body to 

monitor or assist functions of organs for health care. The use of very thin flexible sensors has 
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already been integrated and has shown good contact with the skin[3]. However, the use of 

stretchable devices, particularly for large scale applications will improve the reliability and the 

compatibility with the probed surface. Through the engineering of a matrix of sensors, it would 

be possible to re-create tactile and temperature sensing properties for robotic or prosthetic 

applications. The integration of these sensors in a large area is commonly known as electronic 

skin (e-skin).  

Figure 2 shows an example of an e-skin design. The global device is organised with several layers 

of a matrix of sensors. The aim of this skin is to be integrated on prosthesis and to give back all 

the properties of the skin: touch, pressure and temperature. For this purpose, the e-skin is 

structured into layers. Each layer has one application. The outside layer is made out of tactile 

sensors for the feeling of the touch. The second layer is dedicated to infrared temperature 

sensing, and the last layer is for deep pressure sensing. Each sensor response is sent through the 

vertical interconnections to the last layer that receives and analyse the signal[4].  

 

Figure 2: Illustration of the construction of a multifunctional e-skin. The skin is built from 3 layers of 
sensors: touch, infrared and pressure. They are all connected with vertical interconnections to the last 

layer which processes the signal. 
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A stretchable sensor, and more globally a stretchable device is built around three components: 

a substrate, interconnections and a sensitive material. 

 The substrate is the first material to choose. It has to be stretchable because it is the 

material in direct contact with the deformation, and also the matrix containing the 

sensor. The substrate has to be compatible with the process of fabrication of the device. 

The stretchability of the substrate - its ability to deform before it breaks or lose its initial 

properties - is critical.  

 The interconnections are defined by the stretchability and the conductivity. It is 

important to have a high conductivity to collect a proper signal from the device. Thus, a 

study of the conductivity regarding the stretchability of these interconnections is the 

key to choose the material and technique adapted to the application.  

 The active material for sensing: inorganic and organic materials are potential candidates 

for this function. Inorganics are rigid, and thus, an effort to integrate a rigid material 

into a stretchable matrix is the appropriate strategy. For Organics, the material naturally 

possesses a better stretchability than metals. It is possible to improve the stretchability 

by different techniques, and also to study the strategy to minimise the elongation of the 

material: the strain. This strain is caused by the application of a stress: a tension which 

pulls the material. The material has a certain degree of resistance to the stress before 

being strained.  

The fabrication of a stretchable device is always constructed around the same logic. The 

substrate is fabricated independently from the interconnections. Then, depending on the 

material used, a strategy is chosen to integrate the interconnections within this substrate. 

Finally, the active material is patterned through microfabrication techniques[5]. 

The goal of this work is to develop and fabricate stretchable electronic sensors for e-skin 

applications. For instance, a stretchable OECT - with physiological sensing abilities - has been 

developed. Moreover, a temperature sensitive layer was fabricated with an ability to sense 

infrared emission to reproduce the ability of the human body to feel the temperature and to 

“feel” temperature even in contactless approach. All of these devices have to stretch up more 
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than 15 % for an application in e-skin. Thus, an objective of 30% has been targeted for our 

devices; moreover higher stretchability improves the reliability of the device. One challenge 

with stretchable devices, however, is the limited availability of high-performance stretchable 

conductors, semiconductors and more generally devices with the same electrical properties 

than rigid electronic systems. 

Additionally to a certain degree of flexibility, organic materials are potentially low cost and easy 

to integrate for large scale fabrication. For application in sensing, this mechanical flexibility and 

their mixed ionic/electronic conductivity are also more adapted to sense signals in interaction 

with the body, for physiological measurements[5]. Then, the development of organic sensors 

has been chosen as a focus for this work with two sensors: 

 The OECT is a sensor which fits with the vision of the e-skin. It can be used as a multitask 

sensor for measuring physiological parameters on the body.  

 An infrared sensor for contact/non-contact temperature measurement which aims to be 

integrated on the e-skin especially for prosthetic and robotic applications. 

Section 1.1 reviews the existing work on stretchable devices for e-skin application. The 

development of the e-skin is an intensive topic of research. Many examples of pressure sensors 

are available in the literature, but stretchable temperature sensors are still marginal. However, 

examples of e-skin capable of sensing multiple characteristics can be found. 

Section 1.2 presents the use of polymers in organic electronics and illustrates their superior 

stretchable properties. 

Section 1.3 explains the choice of the substrate, compatible with the skin and with 

microelectronic processes. 

Section 1.4 reviews the different strategies for making interconnections stretchable. Different 

approaches are presented. The stretchability of thick rigid materials is enhanced with a tuning 

of the design.  For thin material, using strategy for processing the substrate such as pre-strain 
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during the fabrication of the interconnections is more adapted. Some composite materials can 

also be used as interconnections and are designed to be intrinsically stretchable. 

Section 1.5 deals with the integration of the active area. The two strategies are introduced: the 

rigid-island method, by using a stiff material which is not deformed and the direct integration of 

the sensor on the stretchable substrate which deforms according to it. 

Section 1.6 introduces the basics on the OECT and infrared sensor, which are developed and 

fabricated in the next chapters. 

Section 1.7 sets the objective of the thesis and sum up the technological choices decided in this 

chapter. 

 

1.1. Review of stretchable devices for e-skin 

applications 

The skin is a complex metabolic active organ, which performs essential physiological functions. 

It is the largest organ of the body, making up 5-8% of body weight, with a surface area of 

1.7m2[6]. Primary functions of the skin include barrier protections, temperature and 

tactile/pressure sensing. Sensing functions are carried out by a variety of sensors that transduce 

pressure, vibration, touch, stretch, strain, temperature, pain, and proprioception. Moreover, the 

skin can be stretched to perfectly fit to the shape of the body. 
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Figure 3: Big steps for the evolution of the e-skin from 1970 to 2013. Reproduced from [7]. 

 

Applications can go from mechanically invisible integration onto human skin to even surgical 

and diagnostic implementations. It naturally integrates with the human body to provide 

advanced therapeutic capabilities for prosthetics[8]–[11]. For example, stretchable sensors for 

biomedical applications have been attracting interest to develop various sensing capabilities 

such as temperature, touch, electrocardiogram and motion detection[8], [10], [12], [13].  

Figure 3 presents an overview of the research on e-skin until 2013[7]. Extensive work has been 

achieved in the field regarding the recognition of nerves signal through movement of the 

fingers. Frank et al. reported the successful feedback of sensors for the movement of metallic 

fingers[14]. In 2001, after a workshop on sensitive skin, Lumelsky et al. introduce the first idea 

of an electronic/sensitive skin able to sense the surrounding environment based on LED and 

infrared detectors on a flexible substrate[15]. After, with the development of large scale organic 
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electronics, the research accelerated in the 2000’s. The development of electronic skin with 

pressure sensing capabilities was shown by Someya et al.[16], [17]. Meanwhile, the 

development of the stretchable interconnections presented in the previous section is an intense 

subject of research to reach the first stretchable large area electronic system in 2009 with a 

stretchable matrix of transistors and organic light emitting diode (OLED)[18], [19]. Since 2010, 

the research in e-skin has been in constant progress. To reproduce the capabilities of the skin, 

the main developed devices are pressure and temperature sensors. 

This section presents the integration of stretchable devices for e-skin, with pressure and 

temperature sensors. Then, the work on the integration of multiple sensors in the same device 

is introduced. 

 

1.1.1. Pressure sensing  

Over the last few years, examples of skin-like devices were achieved by focusing on the pressure 

sensor functionality onto a large area, flexible substrates such as PET[16], [20]. The use of 

stretchable material is adapted to the pressure sensing because it deforms according to the 

pressure. Figure 4 displayed an example of a transistor with a sensitive rubber used as a 

dielectric for the transistor. It can transduce the applied pressure into changes of the transistor 

output by the modification of the thickness of the dielectric. Bao et al. reported 

microstructured-rubber-based capacitive pressure sensors with a measured sensitivity up to 

0.5kPa-1[21]. Despite being highly sensitive, these capacitive-based pressure sensors are neither 

conformable nor stretchable due to the required metallic interconnections. As a fully 

stretchable alternative for a pressure sensor, resistive modulation based on thin rubber films 

has been used but shows large hysteresis and reduced sensitivity in the low-pressure regime 

(<10kPa)[22]. Alternative technology incorporates capacitive sensing between adjacent or 

superposed electrodes, widely used for touch screens. This system has the advantage of 

technological simplicity for the sensor itself but requires the use of complex ultralow 

capacitance measurement and specific analogic acquisition circuits. It is highly desirable to 
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develop sensors which deliver direct voltage. Piezoelectric pressure sensors based on 

polyvinylidene fluoride (PVDF) are not strictly speaking stretchable but could be flexible. They 

exhibit a dynamic measurement range within [0-200kPa] and a response time around 

100µs[23]. Moreover, they can be deposited by an additive process such as inkjet printing. They 

also demonstrate pyroelectric behaviour that has been exploited for temperature sensing. 

 

Figure 4: Schematic of a pressure sensor based on a gate with a thickness of dielectric depending on the 
pressure. Reproduced from[21]. 

 

1.1.2. Temperature sensing  

Temperature sensing is a crucial functionality in e-skin that allows the body to be aware of the 

surrounding environment. However, most of the pressure/tactile sensors are also temperature 

sensitive so they can be used with an appropriate calibration for temperature sensing[24]. 

However, it is difficult to separate the contribution of the pressure from the one of the 

temperature as it often has the same kind response. By using two different pyroelectric 

materials with two different poling, Graz et al. have achieved materials with only either 

pyroelectric properties or piezoelectric properties[25]. Trung et al. have separated these two 

effects by using AC gate biasing on the sensitive material, with a transistor and the pyroelectric 

material as a dielectric. The pyroelectric voltage, the capacitance and the mobility were 
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measured to separate the two contributions[26]. A flexible large area matrix of sensors has 

been used for an e-skin application. Yu et al. have made a gold-based temperature sensor on a 

pre-strain substrate with a stretchability of 30%[27]. Then, several groups have developed e-skin 

with sensors using platinum[13] and gold[12] that can resist to the strain of the skin using 

meander shapes. Finally, Someya et al. have made a large area matrix of sensors using a metallic 

mesh with flexible transistors that shows stretchability up to 30%. The range of detection was 

from 30°C to 160°C[17]. 

 

1.1.3. Multisensory integration  

Only a few examples of the integration of multiple skin functionalities have been reported. 

Recently, Javey et al. reported a flexible touch sensor with integrated output capabilities[28]. 

Rogers et al. described an array of thermal sensors integrated onto the skin that could be 

combined with other functionalities such as strain sensors or EEG recording[13]. Segev-Bar et al. 

have demonstrated a pressure, temperature and humidity sensor based on nanoparticles[29]. 

Finally, Kim et al. have demonstrated the engineering of a complete e-skin, capable of being 

used on a prosthetic hand illustrated by Figure 5. It was capable of reproducing almost all the 

properties of the skin such as pressure, temperature, humidity sensing, but also generation of 

heat and can be stretched up to 20%[30]. 
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Figure 5: Artificial skin developed by Kim et al. a) Picture of the device on a prosthetic hand. b) The skin 
comprised a humidity sensor, strain, pressure and temperature sensor mapping and a heater 

encapsulated in polydimethylsiloxane (PDMS). Reproduced from [30]. 

 

The development of e-skin with an ability to sense multiple parameters is not entirely covered. 

The development of a multi-layered device presented in the introduction is a solution for the 

integration in prosthetics and robotics particularly. For this thesis, the focus is on organic 

electronics and particularly on the use of polymers as active materials. 

 

1.2. Polymers in organic electronics 

The organic electronics is a field comprising the use of small molecules and polymers for making 

electronic devices. Some of them can be used in a variety of situation because of the insulating, 

semiconducting and conducting properties. They possess the advantage of being mechanically 

flexible and stretchable more than inorganic materials due to their particular molecular 

arrangement. 

This section summarises the applications of the conducting polymers. Then, a discussion about 

the stretchable properties in polymers compared to other materials is provided. 
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1.2.1. Applications of conducting polymers 

Since the Nobel Prize for the discovery of the conduction of polyacetylene in 1977 by H. 

Shirakawa, A. Heeger and A. MacDiarmid[31], organic electronics has been an intense subject of 

research.  This development has led in recent years to significant advances in the field of organic 

photovoltaics (OPV)[32], OLED[33] and organic thin-film transistors (OTFT)[34]. Indeed, 

compared to inorganic devices, the organic has the advantage of being easier to process with a 

low cost of fabrication. Applications in bioelectronics remain recent. The mechanical flexibility 

of organic devices would help for example to reduce the damaging of the tissues for 

applications in-vivo where rigid devices can cause inflammations to tissues[35], [36]. The ionic 

permeation of the conducting polymers combined with its electrical conductivity greatly 

improve the interface compatibility with biological systems, reducing the impedance of 

contact[37]. 

The main problem with all the applications concerns the stability of the material. Organic 

devices are often sensitive to the O2 and H2O present in the air. The UV light or the use of an 

electrical field can damage the active organic layer irreversibly[38]. In term of pure 

performances, organic materials are not able to achieve mobility and conductivity as high as 

inorganic materials. The semi-crystalline nature is a limiting factor in organic electronics; the 

charges do not move as fast as in the crystalline region, reducing the mobility[39].  

 

1.2.2. Understanding the superior stretchable 

properties of polymers 

In inorganic materials, as displayed in Figure 6a, the atoms are aligned depending on the 

material in a predefined arrangement. The stability is ensured by sharing electrons with 

neighbour atoms forming a covalent bond in the case of silicon for example. When the material 

is stretched, the deformation implies the break of a covalent bond and cracks appears directly in 
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the material[40]. Thus, their perfect crystal structure does not allow a high stretchability 

(typically less than 5%). 

Figure 6b presents the structure of polymers, different from crystals. Usually, polymers are long 

chains of atoms, organised in clusters of crystalline structure in an amorphous matrix. It can 

spread from fully amorphous with disordered chains; to fully crystalline with perfectly oriented 

chains. Most of the polymers are either amorphous or semi-crystalline, and the ratio of 

crystalline /amorphous phases defines the degree of crystallinity of a polymer. This crystallinity 

can also enhance properties that depend on the arrangement of the chains. For example, a 

better crystallinity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 

improves its conductivity[41]. The crystallisation can be improved with the process of 

fabrication. A melted or solubilised polymer gives, for example, more crystallinity at high 

temperature than at low temperature[42]. Another example is to brush the polymer chains to 

orient them in the same direction, enhancing the crystallinity of a conjugated polymer artificially 

and at the same time their conductivity[43]. 

There is another method for inducing crystallinity of the polymer chains: so-called cross-linked 

polymers. This arrangement is constrained by a chemical reaction between a chemical group 

within the polymer chain and another one from a cross-linker agent. This agent can be another 

polymer or a small molecule. Figure 6c presents the structure of the resulting polymer. The 

agent is added to the monomer or polymer mixture in a liquid state and reacts to form a grid. It 

creates less mobility and thus higher stiffness. 
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Figure 6: Crystalline structure of a) monocrystalline arrangement; b) polymer semi-crystalline structure, 
within red the crystallites and in blue the amorphous regions; and c) cross-linked polymers. The polymers 

have the particularity to possess a certain disorder at the mesoscopic phase. It gives him its particular 
mechanical properties. 

 

The PDMS belongs to these cross-linked polymers. There are a lot of different PDMS 

formulations with different length and composition, resulting in different mechanical 

properties. It is made out of several components mixed containing silicone polymers of different 

length, a small polymer terminated by vinyl groups (double carbon bond) and a catalyst. When 

mixed, the vinyl and Si-H groups react together forming the three-dimensional network in an 

amorphous matrix. Depending on the length and the proportion of the polymers, the resulting 

copolymer has different mechanical properties. If more cross-linking agent is added (Figure 7b) 

or if the curing temperature is higher (Figure 7a), this increases the hardness of the PDMS 

because of more cross-linking reactions[44], [45].  
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Figure 7: Mechanical properties of PDMS as a function of the process. a) Stress-strain curve as a function 
of the curing temperature. The strain at break is decreasing when the temperature of curing is higher. 

Reproduced from[44]. b,c,d) stress-strain curve with different ratio of initial polymer:cross-linking agent 
with b) 5:1, c)10:1 and d) 15:1. The strain at break is increasing with less cross-linking agent. Reproduced 

from [46].  

 

It is possible to understand the effect of the crystallinity on the stretchability by studying the 

effect of the strain at the molecular level. Figure 8 presents this mechanism of stretchability in 

polymers. When the structure is stretched, the amorphous phases slide between themselves in 

the direction of the stretch, until reaching a certain rigidity and alignment. Then, when the 

tension is maximum, the crystalline regions start also to slide. The mechanism in cross-linked 

polymers is the same. The polymer-free chains slide and stretch the network until the structure 

is fully tight. 
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Figure 8: Movements of the polymer chains while stretching. The amorphous phases of the chains are 
sliding until being perfectly aligned. Reproduced from [47]. 

 

Obviously, there is a limitation to the strain. At a certain strain, the amorphous phase is 

completely aligned. At this point, the energy needed to displace the amorphous regions is 

equivalent to the crystalline phase. Thus, all the chains in crystalline and amorphous regions 

start to move, and the initial properties of the polymer are degraded.  

The improvement of the crystallinity reduces the amorphous phase ratio. Thus, the 

stretchability is decreasing with this ratio. As a consequence, there is a need to find a 

compromise between electrical and mechanical properties when tailoring its properties. The 

difference of stretchability within materials is important to choose materials with desired 

properties. For the choice of the substrate, the only important factor is the stretchability of the 

material. So, the choice of a polymer with a maximum of amorphous phase seems to be ideal 

for stretchable properties. 

 

1.3. Overview of substrates for e-skin 

The choice of a material for the e-skin raises two problems. First, it has to be compatible with 

the properties of the skin. It has to be stretchable by more than 30% according to the objective 

cited previously. Until now, industrialised electronic and microelectronic devices fabrications 
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are mainly based on rigid silicon. So, it has to be compatible with the process developed on rigid 

substrates. This way, the ability to fabricate organic sensors is ensured. 

This section is dedicated to the choice of the substrate, with a presentation of the different 

stretchable materials, and their compatibility with microfabrication techniques. 

 

1.3.1. Screening materials for soft substrates use 

A prerequisite creating stretchable electronic components is to develop materials that can 

withstand large mechanical constraints. Materials known as hyperelastic possess the desired 

properties of stretchability: 

 they can undergo tremendous strains: between 100% and 700% with a pure elastic 

response 

 they are also incompressible, the shape changes when stretched 

 the volume does not change 

 they have a nonlinear stress-strain relation 

 

 

Figure 9: Young modulus scale for materials from liquid state to diamond. Young Modulus of PDMS and 
rubber are close to the one of the skin. Reproduced from [48]. 

 

For stretchable sensors in e-skin, the ideal substrate would be the one with the same 

characteristics than the skin. In Figure 9 is presented some materials with their Young’s 
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modulus. The right area with tough, hard and brittle materials is not adapted. They need a high 

strength to be deformed, and their elasticity is low. These materials generally break around 5%. 

On the other hand, PDMS and rubber or more globally elastomers have Young’s Modulus close 

to the human body. They are part of the hyperelastic materials, and the Young Modulus of the 

skin is around 0.1-1kPa. It can be stretched by more than 100%, making them a suitable material 

for our application[2], [44], [49]. Among substrate with adequate properties, PDMS and other 

silicone type rubbers are already widely used alongside with polyurethane (PU) based films[2]. 

 

1.3.2. A substrate compatible with microfabrication 

processes 

As a matter of fact, when considering nano/micro-metric layer thicknesses of conventional 

electronic components, the use of ultra-flat, smooth and rigid substrate is more adapted. The 

mechanical deformation of soft substrates during manipulations restrains the precision or the 

reproducibility of the devices. It is easier to have a very flat substrate, making it more adapted 

to spin-coating for example. Moreover, the solvent compatibility of polymer substrates is not as 

good as most of the rigid materials. Organic solvents dissolute or make polymeric materials 

swelling, changing the topology of the material as a substrate[50]. Thus, the number of 

stretchable substrates is limited.  

A big challenge concerning elastomeric substrates is its processability. To produce high-

performance devices, the most conventional process is based on photolithography which 

provides high-resolution patterning. However, the use of photolithography directly on 

elastomers has shown limitations regarding the wettability of the resin and more globally any 

chemicals on PDMS[51]. Some alternative methods have been developed to pattern active 

materials on elastomers with transfer patterning[52], screen printing[53], inkjet printing[54] or 

stamping[55], but are limited in resolution and challenging to implement for multi-layer 

alignment.   
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The main advantage of PDMS over other substrates is its resistance to many solvents, so it is 

compatible with a lot of processes[50]. PDMS is widely used since it is a silicone-based and 

biocompatible polymer. It is commercially available, low cost, solution processable and it is 

stretchable more than 100%[44]. Other substrates used in the literature present significant 

drawbacks. PU is very stretchable, but its compatibility with solvent is very limited[56]. 

Stretchable fibre is also a common substrate used mainly for the integration in textile[57]. It is 

also very stretchable but is not compatible with 2D patterning such as photolithography. 

The choice of the PDMS as a substrate fits with our objectives. It is stretchable by more than 

30%, and it is compatible with microfabrication processes. Usually, the substrate is not the 

limiting material in term of stretchability. The limitations concern the active material and the 

interconnections. 

 

1.4. Review on strategies for making stretchable 

interconnections 

This section presents the different options for the choice of the interconnections. The 

development of highly conductive interconnections is mandatory in the field of electronics and 

more specifically for sensing applications. A change of resistance within a measurement induces 

changes in the response such as parasitic effects or artefacts of measurement. Then, the choice 

of the interconnections depends on the resistivity of the material, defining the resistance of the 

interconnections; along with the degree of stretchability. A trade-off between resistivity and 

stretchability is the main criteria of choice. The aim is to find interconnections with the lowest 

resistivity, but with a stretchability superior to 30%. It is preferable to get a stable resistance 

while stretching to avoid variations in the signal. 
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Three methods have been identified to reach these objectives: 

 The stretchability obtained by the design of thick bulk conductive materials. 

 The stretchability obtained by giving a specific design or by pre-stretching the substrate 

for the integration of the interconnection. 

 The stretchability obtained by using stretchable conductive materials. 

In a first part, the use of rigid materials as interconnections is presented. These materials need a 

special geometrical arrangement to be stretched. In a second part, the processing of the 

substrate to integrate interconnections is introduced, and interconnections using pure 

stretchable materials are presented. They are mostly based on conductive nanomaterials 

blended within a polymeric matrix. In the last part, a detailed discussion about the advantages 

and disadvantages is carried out to conclude on the use of each method. Then, a decision on the 

type of interconnections that are adapted for our application is made. 

 

1.4.1. Stretchability of thick/rigid materials by design 

adjustment 

Non-intrinsically stretchable interconnections deal with the use of material with high Young 

Modulus, typically in the range of hundreds of GPa and with low resistance to the strain. As a 

consequence, stiff materials cannot be used directly as interconnections; some strategies are 

applied to make it stretchable. For thick materials, the design is tuned in order for them to relax 

the constraints independently from the substrate. The stretchability in thin films is different; the 

material cannot be free-standing. Thus, the stretchability comes from the pre-strain of the 

substrate for the deposition of the metal. 
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1.4.1.1. Mechanical behaviour of horseshoe designs 

In order to provide stretchability for such materials, one way is to use a specific geometry of 

metallic lines on an elastomeric matrix. This method is more effective with thick material that 

has a certain self-standing ability and is not strongly bonded to the elastomer. This displacement 

freedom allows the material to move inside the substrate matrix and relax the constraints[58], 

[59]. Figure 10a presents the parameters for the so-called horseshoe design. This design was 

introduced by Gray et al. in 2004 with 5µm thick gold lines electroplated on PDMS[60]. After 

quick optimisation, these lines were able to get 54% strain while maintaining a stable resistance. 

There are four parameters to describe the design of the horseshoe interconnection: 

 the width of the line w 

 the radius of the arc of circle R 

 the angle of the arc of circle θ 

 the length of the connection between two arcs of circle L. 

All of these parameters can be tuned in order to improve the stretchability of the line. 
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Figure 10: Geometry and mechanism of deformation of a horseshoe line. a) Serpentine routing 
parameters, reproduced from [61]. b) Visualisation of the constraints into the horseshoe-shaped 

electrodes. The scale represents the relative plastic strain. c) Non-constrained deformation of a line with 
a horseshoe shape. The scale represents the displacement in the z-axis. Reproduced from [62]. 

 

The mechanism of relaxation has been extensively studied using simulation. In a first approach 

to understand how the line is deformed, Gonzalez et al. have done a simulation of a line free in 

the air[62]. Figure 10c presents the results of the simulation. When the interconnections are 

stretched, the presence of the horseshoe allows the metal to twist and then go out of the plane 

of the 2D structure, releasing the stress.  

To reach the criteria of stretchability, the line has to recover its initial shape. The delamination 

of the line has to be limited as it is considered as a mechanism of failure. Encapsulation of these 

interconnections in an elastomeric substrate limits the out-of-plane movement able to relax the 

stress. In Figure 10b, when the line is constrained in the plane, the accumulation of deformation 

is noticed. Plastic stress is accumulated in the circular areas when stretched. In real conditions, 

when the line is encapsulated, the interconnection is constrained, but also deform out of the 
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plane. The ratio depends on the thickness of the substrates, of the metal and the encapsulation. 

These effects have been studied by Hsu et al. from the same group[63]. 

 

Figure 11: Effect of the encapsulation on a) the mechanism of deformation and b) Variation of resistance 
as a function of the elongation and failure of the interconnection. The encapsulation of the lines 

decreases the out-of-plane movement of the interconnections and thus, decreases their stretchability. 
Reproduced from [63]. 

 

Figure 11a shows the effect of the encapsulation thickness on the out-of-plane deformation. 

Without encapsulation, the line is pushed out of the plane of the substrate. The more the 

substrate thickness is increased, the more the line is constrained into the 2D plane until the 

substrate, and the encapsulation reached the same thickness. In this configuration, the metallic 

line is completely constrained in the plane. In Figure 11b, the impact of the encapsulation layer 

on the mechanism of failure is observed. Without encapsulation, the line breaks at 160% of 

strain whereas the encapsulated line breaks before at 120%. The same trend was observed with 

the delamination of the line from the substrate.  

So, the horseshoe-shaped interconnections encapsulated in a thick enough elastomeric 

substrate is an appropriate base for the device. It is stretchable by more than 30% with a stable 

resistance while stretching. The stretchability can be further enhanced by a study of the 

parameters of its design. More stretchability means less stress induced in the line. Then, the 

reliability of the materials is improved. 
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1.4.1.2. Optimisation of the horseshoe geometry 

Some studies have been made on the geometry of the horseshoes to understand the effects on 

the stretchability of the device[61], [64], [65]. However, it is difficult to compare because it 

depends, as seen before, on the encapsulation thickness but also on the material. Hocheng et 

al. have studied this effect by the simulation of a 5µm gold line embedded in PDMS displayed in 

Figure 12a [61].  

 

Figure 12: Simulation of the device in a), a gold horseshoe-shaped line embedded in PDMS. Impact of b) 
the ratio W/R, c) the angle of routing θ and b) the ratio W/R on the stretchability of the interconnections. 

There are different modes of fracture when tuning the angle α that decreases the stretchability after a 
certain value. Reproduced from [61]. 

 

Figure 12c illustrates two different failure mechanisms: in tension or compression. For an angle 

of routing before θ=115°, the max strain before the break increases with the angle of routing. 
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The line is breaking due to tension in the material. However, once this critical angle is passed, 

the strain at the break of the device is reduced and stays constant with the increase in angle of 

routing. This is attributed to the accumulation of compression stress in the line. When the 

substrate is stretched in one direction, following the Poisson effect, the substrate is compressed 

on the sides, compressing the line and breaking it if the geometry is not adapted. In Figure 12b, 

is presented the effect of W/R ratio on the stresses induced in the lines. Reducing W/R increases 

the possible applied strain before entering the fracture mode, mostly for higher values of W/R. 

Figure 12d presents the maximum Von-Mises strain as a function of the applied strain for 

different values of L/R. This ratio increases the stretchability of the device for low angles of 

routings or decreases it for low values of angle of routings. 

So, it is possible to improve the stretchability of the horseshoe interconnections by using an 

appropriate angle of routing, by improving the W/R ratio and by choosing an appropriate L/R. 

However, the data presented are valid for this case, with these particular materials. Thus, by 

changing the materials, a study on the angle of routing particularly is necessary to optimise it. 

Moreover, only a few examples of experimental data are available (in Figure 12b). So, an 

empirical study would be more adapted to analyse the impact of these parameters.  

 

1.4.1.3. Fabrication of interconnections with horseshoes 

Gray et al. showed that it is possible to create in-plane electroplated gold stretchable 

interconnections via photolithography. The horseshoe shape encapsulated interconnections 

able to withstand a strain up to 50% has been fabricated[60]. They optimised the geometry but 

did not probe the resistance of the resulting line. Then, optimisation of the geometry has led to 

embedded copper lines in PDMS with a stretchability up to 100% and a change in resistance of 

less than 5%[64].  
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Figure 13: Two process to fabricate interconnections encapsulated in an elastomer. a) Electroplating of 
metal is patterned by photolithography and is covered PDMS. Reproduced from[62]. b) A wax layer 

carries a flexible circuit board and is patterned with a laser. Only the patterned lines are kept, and the 
remaining board is removed. Reproduced from [66] 

 

Most of the work found in the literature is based on electroplating for making thick layers of 

metals (>1µm) combined with photolithography presented in Figure 13a. An alternative has 

been found with the design of flexible polymeric serpentines as a substrate for the deposition of 

thin films is shown in Figure 13b. Vanfleteren group has already demonstrated the use of laser 

patterning of a flexible circuit board embedded within PDMS for stretchable applications[67]. 

Initially, a thin metal layer is evaporated on a flexible polymer such as polyimide (PI) or 

polyethylene terephthalate (PET). Next, a temporary adhesive is used to fix and flatten the 

substrate. Finally, a laser beam is used to selectively pattern the interconnection. The lines 

exhibit between 80% and 100% stretchability. A study of the optimisation of the 

interconnections parameters (geometry, materials) has been partially investigated[68]. Using a 

technique based on laser cutting, Yang et al. have demonstrated Indium Tin Oxide on PET 

serpentines displaying stretchability up to 100%. Despite the high stretchability of the film, the 

resistance increases rapidly due to the appearance of cracks in the thin-film[59].  
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The laser patterning appears to be a good alternative to electroplating and photolithography. It 

is faster and cheaper. However, the only examples available in the literature did not take 

advantage of this process for bulk metallic materials for a low resistivity. They only used thin 

films evaporated on polymers. This part was focused on the design of interconnections to be 

integrated into the substrate. The process of the substrate does not change the final 

stretchability of the device. 

 

1.4.2. Stretchability using design and substrate 

buckling 

The stretchability of some other materials can be introduced by using different strategies with 

the substrate. For thin film materials, the thermal or mechanical buckling provides 

stretchability. Other minor strategies to pattern the substrate have also been studied and can 

be used for thick films. 

 

1.4.2.1. Buckling for thin film patterning 

Thin film materials (typically below 1µm) have not the same mechanical behaviour than self-

standing thick materials. Thin-films metals are often thermally evaporated; the force of 

cohesion within the film is weaker compared to the stronger force of adhesion to the substrate. 

Then, the material directly suffers from the deformation of the substrate. So, serpentines shape 

is not adapted to these materials. 

A strategy has been found by using thermal buckling of thin films. In 1998, Whiteside group 

observed thin metal films evaporated on a heated PDMS substrate. It was leading to random 

wavy structures in a sinusoidal shape[69]. In Figure 14 are displayed examples of methods to 

induce thermal buckling. The size and periodicity of the waves induced in the film depend 
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mainly on the difference of height in the substrate. The patterning of the material is possible to 

control the orientation of the waves. 

 

Figure 14: Micrographs of metallic thin film buckled, induced by heating. a) Metal evaporated on PDMS 
heated at 110°C. b,c) Oriented buckles due to rectangular shaped PDMS elevated by 10-20µm from the 

rest of the substrate. d,e) Effect of elevated PDMS by 10-20µm. There are no buckles on the elevated 
area. f) Oriented buckles from rectangular ridges, 10-20µm high and aligned. Reproduced from [69]. 

 

Then, Watanabe et al. introduced the use of pre-strain during the deposition of materials, so 

induced mechanically. The pre-strain is the cause of larger and oriented wrinkles on the surface 

of the materials when released, improving the stretchability of the material[70]. This pre-strain 

method is widely used today for stretchable electronic devices because it can increase the 

stretchability of any thin-films materials. Taking advantage of this property, Lacour et al. have 

shown the first reported stretchability of gold evaporated lines on PDMS, whereby the 

resistance increased by a factor of 8 after 8% strain was applied[71]. In a further step, they 

demonstrated three mm-wide gold lines showing no increase in resistance up to 100% 

stretchability by using a substrate pre-strain method during evaporation[72]. These 

interconnections are completely biocompatible and are widely used for stretchable biosensors. 

Recent work has introduced the use of Gallium as a liquid metal at the interface of gold to make 
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it stretchable without requiring pre-strain, displaying stable resistance after multiple cycles at 

50% strain[73]. 

As mentioned before, this pre-strain method is more adapted for thin films. Zhang et al. have 

studied the effect of the thickness of the metal. They used serpentine metallic interconnections 

and showed that the pre-strain is less efficient for materials thicker than 1µm. Moreover, it does 

not induce any buckles in the metal after 4 µm of thickness. Thus the effect of pre-strain is 

limited[65]. 

The buckling for thin films and the tuning of the geometry for thick films are not the only 

strategies. Some methods taking advantage of the geometry of the substrate have also been 

studied, but their application is marginal. 

 

1.4.2.2. Patterning of the substrate 

One of the strategies to make stretchable interconnections is to take advantage of the ability of 

the material to bend without breaking. Using a pre-strain based technique, Sun et al. have been 

able to transfer silicon ribbons on PDMS that could be used with other materials(Figure 

15a)[74]. By tuning the adhesion on some parts of the substrate, the silicon is bonded regularly 

and when the substrate is released, not bonded parts bend due to the compression of the 

substrate. The stretchability then depends on the ability of the material to bend. The same 

approach can be made by 3D printing of metallic lines (Figure 15b)[75]. The lines are stuck 

regularly on the substrate and printed in the air to be able to move during the elongation. 

Different tests of geometries have been done for interconnections such as spiral structures that 

unfolds when stretched[76]. Fractal structures are also capable of improving stretchability of 

curved lines. 
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Figure 15: Other strategies to make stretchable interconnections a) with 3D sinusoidal shape extracted 
from [74]. b) with 3D printed wires, reproduced from [75], c) Mogul pattern of the substrate extracted 

from [77] and d) Tri-branched cut of the substrate, reproduced from [78] 

 

All the previous methods focus on the ability of the interconnections to deform in a different 

way than the substrate. However, in this approach, the substrate is modified to be able to 

deform preferentially without stretching the interconnections. In Figure 15c, the substrate is 

modified by incorporating some valleys. When stretched, the dug areas are more prone to 

strain, and the flat zones in between are more protected[77]. In Figure 15d, the substrate is cut 

in a tri-branched pattern. When stretched, the substrate twists out of the plane to reduce the 

stress[78]. 

This part has presented the different strategies to use the process to induce stretchability. This 

method is mainly interesting for thin films, with the buckling of the substrate. By mechanically 

stretching the substrate during the deposition, it is possible to reach up to 100% stretchability 

for gold lines[72]. Moreover, this method is also useful not only for interconnections but also to 

improve the stretchability of organic thin films of active materials. In the next section, the last 

category of stretchable interconnections is introduced. 
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1.4.3. Intrinsically stretchable conductive materials 

Researchers have developed highly stretchable elastic conductors made from hyperelastic 

materials. These materials are mainly fabricated by incorporating conductive nanoparticles in a 

stretchable elastomer matrix. Some examples of the best materials in this field are presented in 

Table 1. The conductivity mainly depends on the filling percentage of the particles inside the 

matrix. The more particles and the more contact between the particles there is, reducing the 

resistivity. For the same material and different filling, there is an impact on the conductivity and 

on the stretchability[79], [80].  

Conductive 
material 

Matrix Max 
strain 

Conductivity S.cm
-1

 at 
max strain (Initial) 

Fabrication Ref 

 

Single-walled 
carbon nanotubes 

PDMS 

PDMS 

PDMS 

40% 

120% 

150% 

100 (100) 

10 (10) 

2200 

Printing 

Printing 

Spray-coating 

[19] 

[19] 

[81] 

Ag nanoparticles Fibre 140% 610 (5400) Dipping [82] 

Ag nanowires PDMS 80% 2500(8130) Drop-casting [83] 

Au  

nanoparticles 

PU 

PU 

115% 

486% 

2400 (11500) 

94 (1800) 

Dipping 

Dipping 

[79] 

[79] 

Multi walled 
carbon nanotubes  

PVDF 140% 20 (5710) Drop-casting [80] 

Polyaniline Elastomer 

(SEBS-g-MA) 

215% 10 (1100) Printing [84] 

Table 1: Comparison of the characteristics of some stretchable composites. The initial resistance reached 
can be high, comparable to ITO, but dramatically decreases when stretched. 
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Some studies have been done using long nanowires to improve the stretchability, leading to 

resistivity comparable to the ITO with stretchability more than 300%. The ability to maintain a 

good conductivity upon strain depends on the percolation threshold of the conductive particles. 

The more particles, and the more it is stretchable before losing the conduction. These 

interconnections are compatible with the buckling method, and it can thus improve the above-

mentioned techniques, in term of stability of the conductivity. 

 

1.4.4. Summary of screening methods and design rules 

Composite polymeric materials have the advantage of being highly and intrinsically stretchable, 

but offer lower conductivity (in the range of 10-1000 S.cm-1) than bulk metals (6 x 105 S.cm-1 for 

copper and silver). Moreover and as seen in the previous example, the resistance increases 

consequently when stretched. Composite stretchable interconnections are mainly adapted for 

devices in which the change in the interconnections resistance is not a problem. Moreover, if 

there is a fixed targeted stretchability, it is easy to maximise the conductivity by adding 

conductive particles. Since the material is solution processable, it makes it easy to fabricate. 

Other techniques of patterning such as inkjet, screen printing or transfer patterning are also 

possible. 

By using thin conductive films, the problem of stability in the resistance can be solved by 

processing the substrate to induce buckling[19]. This method presents some problems regarding 

the conventional processes used in microelectronics. Indeed, it is difficult to implement a pre-

stretched substrate in an evaporator or a mask aligner.  

For more convenient processability and lower resistance, a solution is to use bulk metallic 

interconnections, by tuning the geometry. Serpentines architecture can make interconnections 

stretchable up to 100 % and results in a low variation of resistance until break (<5 %). These 

kinds of interconnections are well adapted for devices requiring low resistance and low 

stretchability. However, the fabrication of these metallic interconnections mainly relies on 
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electroplating with photoresists, expensive and tedious to carry out. Thus, there is a need of 

providing a faster and easier method for bulk metallic stretchable interconnections. 

For applications in e-skin, a high stretchability is not necessary for the application. Moreover, a 

low and stable resistance during the stretch is preferred. So, the choice of metallic 

interconnections with a serpentine shape is preferable. However, the development of a faster 

and cheaper method for the fabrication is necessary. The choice of the substrate and the 

interconnections are now clear. Then, the next section is devoted to the integration of the 

active material, to make a stretchable sensor. 

 

1.5. Sensing material integration 

The integration of a sensor on the stretchable substrate with the interconnections is the last 

step for a functional device. This section aims to presents the two approaches for this purpose: 

 The rigid-island method, which consists of a stretchable device, with a rigid part where 

there is the active material. This prevents the materials to deform and be stretched. 

 The fully stretchable device, on which, the whole device is stretched. The main challenge 

of this technique is to give the material the ability to deform without losing its 

properties. 

 

1.5.1. Rigid-island method 

All the stretchability comes from the interconnections and the substrate. The active area is 

made of a rigid material or is deposited on a rigid material. This is easier to integrate as there is 

no need to tune the stretchability of the active material. The main advantage of this method is 

its compatibility with rigid and conventional electronics; providing superior performances. Even 

for organic materials, the fabrication of high-quality devices with no or a few changes in 
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performance while stretching has been demonstrated[85]. Figure 16a displays an example of 

such a device with 3D interconnections made out of flexible materials. The active area called 

island is rigid, this area is not able to deform. The stretchability comes from the bridge structure 

that is done in this case by pre-strain of flexible material. The maximum stress is located at the 

transition between the stretchable interconnections and the island. This stress decreases with 

the pre-strain of the substrate[86]. Experimentally, the island can be made directly out of a 

silicon device[87], or with a stiffening material as an island on the substrate with the material on 

top[88]. With the last choice, it is possible to incorporate any rigid materials. Kim et al. have also 

shown the possibility of incorporating the device directly on a serpentine device in Figure 

16b[30]. 

 

Figure 16: Rigid island devices. a) With a rigid material and stretchable interconnections, reproduced 
from [86] and b) with the active material on the interconnection, reproduced from [30]. This method 

allows the use of inorganic rigid high performing devices. 

 

1.5.2. Fully stretchable devices 

Fully stretchable sensors are required for strain sensors, e.g. the deformation of the active 

material provides the recorded signal. Most of them are based on the use of the polymer 
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composites presented in section 1.4.3. For interconnections, the change in resistance is not 

wanted, because it disrupts the signal carried. However, for strain sensors, the change in 

resistance directly gives the response[89], [90]. 

The engineering of fully stretchable devices relies on the ability of the active area to withstand 

the strain. For thin film materials, the main technique for the integration is based on the 

buckling effect, induced by the pre-strain of the substrate. This allows the fabrication of sensors 

based on thin inorganic materials. For example, Yu et al. have shown an example of a 

temperature sensor based on gold evaporated on a pre-strained substrate[27]. 

For organic material, especially for polymers, section 1.2.2 referred to its superior stretchable 

properties, polymeric materials can be stretched due to their long chains tangled together. So, 

in a thin film on an elastomer, the buckling technique can also be used. It increases even further 

the stretchable properties of the polymer. The film is compressed by the pre-strain of the 

substrate. The increase in mechanical stretchability comes from the properties of the 

amorphous area. After deposition, when the substrate is released, the chains are compressed 

especially in the amorphous area. This method has the advantage of providing good stability in 

term of performances, until the pre-strain value is reached, but is difficult to combine with 

fabrication processes. 

The chosen strategy depends on the type of material and sensor used. The presence of a rigid 

material improves the reliability of the device globally and prevents any stretching to interfere 

with the measurement. However, for strain and pressure sensing, this deformation is necessary 

to give the response of the sensor.  

In this section, the different materials and strategies for making stretchable active devices have 

been presented. The next part deals with the two sensors aimed to be fabricated during this 

thesis. 
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1.6. Integration of OECT and infrared temperature 

sensor for e-skin 

The three characteristics of a stretchable sensor for e-skin have been established. The use of 

metallic serpentines in a stretchable substrate is the base of the device. For the integration of 

the sensor, the method depends on the sensor. For this thesis, the focus on the fabrication of 

two sensors is presented: the OECT and the infrared temperature sensor. 

The choice of the OECT has been motivated by the knowledge on the material and the process 

of our laboratory. So, it is a good proof of concept for the development of the materials and the 

process. Moreover, it possesses all the reasons to be integrated into an e-skin. It is a multitask 

sensor able to sense various physiological parameters (ECG, glucose, sweat…); which are highly 

interesting for wearable application onto skin. The development of the infrared sensor is more 

related to the global project of this work. As presented in the introduction, the aim is to 

recreate the properties of the skin and to integrate a layer of these sensors as part as e-skin.  

In this section, is presented the construction and working principle of the OECT and the infrared 

sensor. 

 

1.6.1. OECT working principle 

The OECT is a recording device widely used in bioelectronics. It was first described by White et 

al. in 1984 as a device with behaviour similar to a transistor[91]. The active layer is based on a 

conducting polymer patterned between two electrodes. Its resistance changes by applying a 

signal through the gate. The OECT is a three-terminal device. The construction is displayed in 

Figure 17. The source and the drain are made out of gold and are in contact with PEDOT:PSS 

that constitute the channel. Then, the third terminal is commonly made out of an external 

electrode that is in electrical contact through an electrolyte. It is also possible to make a fully 

planar device with a golden gate[92]. 
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Figure 17: Schematic of an OECT in operation. The PEDOT:PSS layer is deposited between two contacts: 
the source and the drain and the gate, from an external Ag/AgCl electrode, is on top and in contact with 

an electrolyte 

 

In operation, the current is measured through the channel (source to drain current: IDS) upon 

application of a voltage through the gate (gate to source voltage: VGS). The application of a 

positive voltage VGS forces the cations from the electrolyte to enter into the PEDOT:PSS film 

recombines with negative PSS parts, dedoping the active layer. The penetration of the ions thus 

modulates the drain current IDS, making this device an ion to electron transducer. It makes it an 

excellent sensor for measurement at the interface between biological and electronic worlds. 

 

1.6.2. Infrared sensing: definition and construction of a 

device 

As part of e-skin, the ability to sense the temperature is crucial. It protects the user against 

potential harmful environments. The sensing in a non-contact approach is even a step further in 

mimicking the skin. Indeed, our body is also able to detect the radiations emitted by warm heat 

sources. It is important to understand what is behind the infrared radiation to understand how 

works the infrared detection for temperature and detection of movement. Temperature and 

infrared sensing are closely related and cannot be dissociated. 
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1.6.2.1. Definition of an infrared radiation 

The infrared belongs to the light radiation above 800 nm. As described by Planck, an ideal black 

body is a matter, able to absorb all the electromagnetic incident radiation and at a temperature 

T, emits radiations in all directions.  

Figure 18 illustrates the distribution of the spectral radiance; the black body emits in a broad 

band of wavelength depending on the temperature of the black body and with a maximum 

wavelength given by the Wien’s law (Equation 1), with λ in µm and T in Kelvin. 

𝜆𝑚𝑎𝑥(𝑇) =
3000

𝑇
 

Equation 1: Wien’s law 
 

An emitter like the sun has a temperature around 6000 K and has a maximum of emission 

around 500 nm. For objects close to the body temperature, around 300 K, the maximum is 

around 10 µm. So there is a direct link between the temperature and the maximum of intensity. 

Thus, the determination of the temperature of an object is made by measuring its emission.  

 

 

Figure 18: Distribution of the energy as a function of the wavelength. Reproduced from [93] 
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All the materials with a temperature above absolute zero emit radiations depending on their 

temperature, but they are not perfect black body, they have a proper emissivity. The spectrum 

is the same but weighted by a factor ε=1 for perfect black body and ε<1 for others. Then, 

different technics and applications are used. 

 

1.6.2.2. Device construction 

There are two kinds of infrared sensors differentiated by the mechanism of detection. The 

active infrared sensors are often used for the detection of objects and persons passing into a 

specific area. It is made out of two parts: an emitter that emits an IR radiation and a detector 

that detects this radiation. The source is either placed in front of the detector for direct 

detection of the break of the source radiation, or by reflectance, with the source reflecting onto 

the object and goes to the detector. In both cases, when something blocks this radiation, the 

detector knows there is a movement. On the other hand, passive infrared sensors (PIR) are 

based on only one sensor that can detect infrared radiation in a specific field of view. 

Infrared sensors can also be distinguished based on how works the detector. First, the quantum 

infrared sensors are based on the energy transition with low band gap materials. They are 

generally fast, highly sensitive and wavelength dependent. However, the devices need to be 

cooled down to reach these performances. On the other hand, thermal detectors are based on 

the absorption of infrared energy to produce heat, usually not wavelength dependent. They are 

not as accurate and fast as the quantum detectors, but they remain cheap and easier to 

produce. 

In the case of the e-skin, the precision of quantum detectors is not necessary. The simple 

detection of a heat source is enough, and the human body does not need ultra-high accuracy 

and speed. Then, the focus on thermal detectors with a passive infrared sensor construction 

adapted to the detection of temperature is carried out. The active sensors are only adapted for 

movement and proximity detection. 
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1.7. Aim of this thesis 

The development of complete e-skin goes alongside with the development of stretchable 

sensors. Examples of stretchable sensors are mainly covered by touch sensing. The 

development of a multi-sensing e-skin is not widely studied. The approach presented in the 

introduction lies in the development of large areas of sensors. For this application, an objective 

of at least 30% stretchability is set, which corresponds to the double of the estimated maximum 

elongation of the skin. The different blocks for making stretchable sensors were analysed:  

 The substrate is made out of PDMS, for good compatibility with microfabrication 

processes. 

 The interconnections are based on bulk metal for a low and stable resistance during 

elongation.  

 The active material has two options depending on the material. If it cannot endure 

strain, the integration of a rigid material into the stretchable substrate limits the 

deformation. If the material possesses a natural high stretchability, the optimisation of 

the process of fabrication is possible: by tuning the formulation of the material, or by 

using different fabrication methods. 

The main issue of this work is to provide stretchable sensors with similar properties than on 

glass and wafers. Moreover, compatibility with processes for large scale fabrication is 

appreciated as the next step is to integrate the devices in the form of a matrix. 

So, in the next chapter, the process for interconnections based on laser patterning is presented. 

The fabrication of encapsulated interconnections with a stretchability of 80 % is demonstrated 

with similar or superior to what is achieved in the literature. The process is cheaper and faster 

than the literature based mainly on photolithography, with a good lateral resolution of 25 µm 

for the channel of the sensor. As a way to explore the potential use of OECT as well as 

understanding their working principle, the development of this device for an application in 

wound-healing is presented. Once done, by tuning the process presented in the literature, the 



46 

 

fabrication of an OECT that is stretchable by almost 40% while keeping high performance is 

presented. Then, a stretchable infrared based temperature sensor has been developed in order 

to complete the sensing capabilities of the artificial skin. The device can be stretched up to 35% 

without performance changes for temperature sensing. The sensor is based on PVDF as a 

pyroelectric material for temperature detection with a conducting polymeric material using the 

previously developed PEDOT:PSS as an absorber and top electrode of the device.  
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2. Development and evaluation of laser 

patterned stretchable interconnections 

 

This chapter is based on the publication: 

“Laser-patterned metallic interconnections for all stretchable organic electrochemical 

transistors.” 

Bastien Marchiori, Roger Delattre, Stuart Hannah, Sylvain Blayac, Marc Ramuz 

Scientific Reports, volume 8, Article number: 8477 (2018), DOI: 10.1038/s41598-018-26731-8 

 

The development of horseshoe-shaped metallic interconnections is more effective for thick 

metallic materials. These materials have the advantage of being highly conductive. However, 

the literature does not provide a process optimised for bulk metals. The reviewed technology in 

chapter 1 is either based on photolithography, expensive and tedious; or laser patterning of 

thin-films on polymeric flexible substrates, so more resistant. Moreover, the literature does not 

provide clear rules for the design of horseshoe interconnections.  

The objective of this chapter is to develop a fast and simple process to low resistance and 

stretchability optimised for at least 30% strain. In this purpose, a process based on laser 

patterning for the fabrication of metallic interconnections encapsulated in PDMS is described. 

Different materials for the interconnections are studied, and the design is optimised for a 

maximum stretchability.  

Section 2.1 introduced the measuring device for the combination of mechanical/electrical 

characterisation of the stretchable interconnections. The commercially available setups are not 
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adapted for both measurements at the same time. Therefore, a new setup was built as part of 

this thesis. 

Section 2.2 illustrates the innovative process developed during this thesis for the fabrication of 

the bulk metal interconnections. The process is based on the combination of laser ablation, and 

thermal release tape ensures the fabrication of highly stretchable metallic lines–encapsulated in 

PDMS. 

Section 2.3 explains the choice of material and design to maximise the stretchability of the 

interconnections. The choice of aluminium tape allows a stretchability up to 80% 

Section 2.4 presents the results of the characterisation of the interconnections 

Section 2.5 concludes on the chapter. State-of-the-art stretchability up to 80% combined with 

ultra-low mOhms resistance is demonstrated.  

 

2.1. Measuring device for mechanical/electrical 

evaluation 

The measurement of stretchable substrates needs the development of special tools for the 

characterisation. Commercially available devices are either adapted to electrical measurement 

of rigid substrates or to mechanical characterisation. Therefore, the coupling of electrical and 

mechanical characterisation needs the development of a homemade program and setup. In this 

section, the devices and programs developed for the characterisation of stretchable 

interconnections are presented 

Figure 19 illustrates the setup. In Figure 19a, the former setup was constituted with an 

INSTRON, a classical tensile test machine, copper tape and a Keithley. This setup was fully 

manual, and not tuneable for other measurements needed for the future work. The new setup 

is presented In Figure 19b. It was based on a Keithley 2636A for the measurement of electrical 
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properties combined with a motor that moves a plate on which the sample was fixed. The 

motors used were ETEL DynX LM155, with a precision of 5µm, and were able to pull a maximum 

of 18N. In order to do later X and Y stretching, there were two of the same motors in both 

directions. The sample was placed horizontally on two metallic supports, and the device was 

clamped with two jaws. The measurement of the resistance was coordinated with the 

movement by a custom LabVIEW setup developed during this thesis. For the measurement of 

the resistance of the line, a four-wire measurement was used. 

 

Figure 19: Setup of the mechanical/electrical characterisation of a stretchable line. In a) the former setup 
and in b) the new setup with the zoom on the sample c) Schematic of the 4-point probe measurement. 

With the new setup, very accurate resistance was measured while stretching devices. 

 

The LabVIEW setup allows multiple experiments. A program has been developed for measuring 

the performances of a transistor as a function of the strain for the work of the next chapter. 
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More globally, it was possible to coordinate any measurement to the strain with a precision of 

5µm in the motion. 

In Figure 20 is displayed an example of a window for a 4-wire measurement as a function of the 

strain (the LabVIEW code is available in annexe 1). For this measurement, a range for the sweep 

of current has to be specified. For the XY table, the size of the sample, the maximum strain, the 

number of cycles, the number of measures for one cycle and the speed of the table were input. 

At each step, the program takes a measurement, displays it and goes to the next step. To place 

the sample, the jaws are moved using the “Away” and “Close” buttons by specifying the step for 

the movement. Then, once the sample is placed, the electrical contact is ensured by the R0 

measurement corresponding to one measurement without movement. When ready, the 

“Measure” button is pressed to launch the experiment. The program displays in real time the 

results and saves it as a table at the end of the measurement. 

 

Figure 20: LabVIEW user window for the 4-wire measurement as a function of the strain. In input the 
length, the maximum strain, the number of cycles, the number of measures, and the speed of the 

displacement and the sweep of current for the electrical measurement. 
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By adding the corresponding sub-VI, it is easy to tune the program to adapt it with other 

measuring devices. Indeed, other different programs for capacitance measurement, transistor 

characteristics, 2-wire measurement has been made. 

The jaws were 3D printed, and the electrical measurements were made through 4 gold plated 

pins. In order to measure the resistance of the lines, a 4-wire measurement was carried to get 

rid of electrical contact resistance, but also wire resistance and thus to get the pure resistance 

of the lines. A schematic of this technic is presented in Figure 19c. 

In this configuration, the current is provided by the outer electrodes, and the voltage is 

measured through the inner ones. The current needed to measure the voltage is really low; the 

impact of the resistance of the wire and the contacts between the pin and the sample is then 

negligible in the measurement. In the outer pins, the current does not drop because of the 

resistance in a serial circuit. The calculus of the resistance by Ohm's law is therefore not 

affected by these parasitic resistances. 

These tools allowed the measurement and characterisation of the stretchable interconnections. 

In the next section, the process of fabrication is presented. 

 

2.2. Process for highly stretchable interconnections 

fabrication 

The fabrication of the interconnections is based on an innovative process for the fabrication of 

stretchable interconnections encapsulated in PDMS, involving a laser patterning of bulk metal 

foils.  
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Figure 21: Schematic of the process of the metallic line based on a laser cutting of metallic foil stuck on a 
thermal release tape. Once patterned and peeled off, the line was encapsulated in PDMS. Finished device 

is the metal patterned and sandwiched within PDMS layers, which offer a high degree of stretchability. 

 

The overall process is displayed in Figure 21: 

1-  First, a metallic bulk material was laminated on a thermal release double-sided 3195 

Nitto RevAlpha® tape on a glass slide. This tape is a transfer tape used generally in the 

microelectronic industry to fabricate and cut dyes on a silicon wafer. One layer has a 

permanent sticky side while the other can be released with a minimum heating step at 

90°C. After a few seconds, the tape loses all its glueing properties at this temperature.  

2-  The material was cut with a laser beam. Figure 22a displays a picture taken during the 

laser cutting, performed using LPKF Protolaser S equipment. The radiation was at 1064 

nm with a frequency of 75 MHz and a power of 10 W. The diameter of the laser beam 

was 25 µm. 

3-  Subsequently, the unwanted metallic regions were peeled off from the thermal release 

tape substrate as illustrated in Figure 22b using a tweezer.  

4- Only the design of the line was left on the substrate and ready for encapsulation 

5- PDMS was poured on the device and baked at a temperature below 80°C to avoid 

thermal release tape to release. Otherwise, the PDMS merged with the tape and was 

impossible to separate. The thickness of the substrate was 350µm 
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6- The tape was thermally released at 95°C. 

7- The resulting device was laminated upside down on another glass substrate 

8- The device was encapsulated with a spin-coating of PDMS. The encapsulation layer was 

100µm thick. This layer was thick enough to prevent the line to detach from the 

substrate and to be sure this layer is not broken due to out-of-plane movements as 

discussed in the introduction[63]. 

The patterning of high-resolution stretchable bulk metal interconnections with outstanding 

repeatability has been demonstrated using this procedure. The resolution of the line is limited 

by both the dimension of the laser beam (25 µm) and the thickness of the metal. For material 

thickness larger than the laser beam diameter, it is difficult to reach a width below the thickness 

of the metallic foil. Higher resolution can be achieved using advanced laser cutting 

techniques[94]. 

 

Figure 22: Patterning of the interconnections. a) Picture taken during laser patterning, b) illustration of 
the peel-off process. The unwanted regions of metals were either manually removed or fully removed by 

the laser to have a process compatible with conventional thin film microelectronic fabrication. 

 

The transfer tape allows the metal to be perfectly planar on the surface during the fabrication 

process. The PDMS layer is also at the same level than the aluminium. This is very important for 

the compatibility with microelectronic processes such as photolithography, and when thin 

active areas are patterned. The layers of active materials in organic sensors are very thin (in nm 

range) compared to the thick layer of bulk foils (more than 10µm). 
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Compared to others fabrication processes of stretchable metallic connections, the advantages 

of this process are its simplicity since the process does not use a mask, the compatibility with 

microfabrication at an industrial scale-production and its versatility. This process is compatible 

with different metallic foils, such as aluminium, copper or titanium since it can be cut with the 

laser. For this thesis, only the patterning of aluminium has been completely studied. 

 

2.3. Material and design optimisation of 

interconnections for maximum stretchability 

The process for stretchable bulk metal interconnections has been presented before. The choice 

of the metallic material for the interconnections is critical for the device. This section focuses on 

the use of bulk aluminium as a material. It has the advantage of being low cost, and it is easy to 

find different kinds of foils. Various parameters on the material have been studied: 

 Different thickness of aluminium foil 

 The use of an aluminium foil or aluminium tape 

Then, once the choice of the best material established, the optimisation of the design has been 

done to maximise the stretchability of the interconnections. 

 

2.3.1. Material optimisation for interconnections 

In this section, is presented the different types of aluminium tested for the interconnections. 

Different thickness has been investigated as well as two forms: pure foil or tape. 

The graph of Figure 23a illustrates the stretchability of the encapsulated lines. For a 15µm thick 

line, a slight increase of the resistance before the breaking was observed. This was due to the 

deformation inside the metallic layer before rupture. In the case of 30µm and 60µm thick 
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aluminium, no increase was noticed because the line is not breaking, but the PDMS was torn, 

illustrated in Figure 23b. The only exception occurred with aluminium tape which lasted until 

90% of strain. 

 

Figure 23: a) Resistance of the encapsulated Aluminium lines as a function of the material. The cross 
indicates that the PDMS breaks. b) Picture of the 60µm thick aluminium line after tensile test. The PDMS 

was cut, and thus, the line was free in the air.  

 

Figure 24 depicts the SEM picture of the aluminium of different thickness after laser ablation. 

For the thinner layer of 15µm and 30µm Aluminium (respectively Figure 24a and b), there was 

less matter alongside the cut than for thicker aluminium of 60µm and 100µm (respectively 

Figure 24 c and d). The irradiation of a laser with sufficient energy induced the localised melting 

metal where the laser is focused. This melted matter was ejected outside the area of the laser 

beam[95]. It created a re-deposition of metal outside of the laser beam and also reduced the 

precision of the ablation. For thicker aluminium, more repetitions and slower mark speed rate 

have been used, so more energy and then more ejected droplets were observed. 
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Figure 24: SEM picture of laser-cut aluminium at different thickness: a)15µm, b)30µm, c)60µm and 
d)100µm. On the edge of the cut, there was an accumulation of sharp aluminium that breaks the PDMS. 

 

This matter constituted sharp spikes of aluminium making weakness points that damaged the 

PDMS. As a matter of fact, PDMS was inclined to get torn around these spikes. Several methods 

have been found in the literature to reduce the creation of these spikes that broke the PDMS 

prematurely. The use of a confinement layer of 400nm PMMA in the literature has shown good 

improvement of the definition of single pulse of picosecond impulsions, preventing the drops to 

be ejected[95]. Laser ablation of Aluminium in water has been shown to reduce the number of 

this re-deposition in a water medium. The localised ablation leads to the creation of bubbles, 

ejecting the fragments to avoid re-deposition[96]. 

However, the use of thin films confinement is not adapted to a laser cutting of thick films, with 

more energy and more projections. Different confinement layers have been tried to adapt this 

method to the use of glue or tape without success. The water-immersed ablation needs a 
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particular frequency to allow the creation of bubbles at the appropriate rate. It appears that it is 

not possible to achieve this frequency with our laser.  

So, the best solution was to use aluminium tape with the layer of glue that acts as a 

confinement layer and also a protective layer from the aluminium to the PDMS. 

Even if some work presented in chapter 1 has been done in order to optimise the geometry of 

the interconnections, no research group has used thick bulk metal, especially in the form of a 

tape and thus, there is no comparison with the literature.  

 

2.3.2. Design optimisation of interconnections 

A study through the simulation would be complicated with the glue. Therefore, an empirical 

study of the impact of the parameters of the horseshoe is provided in this section. First, an 

optimisation of the transition between the interconnections and the pads is presented, to 

ensure an effect of the geometry on the device. Then, a sweep on these parameters is done to 

determine the combination giving the highest stretchability. 

 

2.3.2.1. Optimisation of transitions between pads of measure and 

interconnections 

A large pad area is required in order to achieve good contact with the pogo-pin, to take the 

measurements. However, a regular point of rupture was observed when doing the tensile tests. 

In Figure 25b, is presented the first layout used. There was no smooth transition between the 

line and the pad. As a result, a regular point of rupture at this transition area was observed 

(Figure 25a). Whatever was the other geometry of the horseshoe, the maximum stress was 

located in this area, and the line broke. 
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Figure 25: Optimisation of the transition from the pad to the line. In configuration a,b) the aluminium 
broke at the edge of the pad, revealing a weak zone. In configuration c), the break was more random and 
not located in the pad area. d) The design of the line with the pad optimised. Scale bar is 200µm, and the 

width of the interconnections is 400µm. 

 

So, the transition was improved as illustrated in Figure 25c. The line width increased regularly 

and then finished in an inverted circle to match the circle of the pad. This led to a more random 

point of rupture located away from the pad. So the influence of horseshoe geometry is much 

more relevant. The final line which was used for the optimisation of the geometry of the 

horseshoe is displayed in Figure 25d. 

 

2.3.2.2. Horseshoe parameters optimisation for maximum stretchability 

To maximise the extension applied to the system, the geometrical parameters of the horseshoe 

described in the introduction and presented in Figure 26 were optimised: the angle of the arc α 

called angle of routing, the radius of the arc R and the length of the connection between two 

arcs L.  

In order to ensure reproducibility and to tune the geometry of the interconnections easily, a 

code in Ruby has been developed, used in the software KLayout. This code is available in Annexe 
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2. The code offers the possibility to tune the angle, the radius and the length of the horseshoes. 

It is also possible to change the size of the pads for the electrical contacts, the number of 

horseshoes, and the shape of the transition between the pad and the horseshoe. The software 

designs one horseshoe according to the entered parameters and copies the pattern to reach the 

number input. Then, it makes the transition to the pad according to the characteristics the user 

selects.  

 

Figure 26: definition of the angle α, the length of the connections L between two arcs of the circles and R, 
the radius of the arc of a circle. The aluminium thickness is 50 µm, and the width of the lines is 400µm. 

The scale bar represents 1mm. 

 

While varying one of the parameters, the others were fixed to either α=15°, L=800µm, or 

R=800µm. From this variation, it is possible to calculate the maximum theoretical stretchability 

ε that can undergo a free serpentine from a coplanar stretch without substrate. The maximum 

theoretical stretchability is defined as the maximum percentage of its elongation before 

becoming completely unfolded. It is expressed by Equation 2; the normalised ratio of the line 

stretched out to the length of the equivalent straight line[61]: 

𝜀 =
2 (𝛼 +

𝜋
2)

+
𝐿
𝑅

2 sin (𝛼 +
𝜋
2)

+
𝐿
𝑅
cos (𝛼 +

𝜋
2)

− 1 

Equation 2: Maximum stretchability equivalent to the normalised ratio of the line stretched out 
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This ratio is equal to 0 when the line is completely flat; and if the total length of the line is the 

double of the equivalent straight line, it is equal to 1. In the following study, this ratio is called 

theoretical stretchability but converted in percentage. 

The mechanical study performed on the lines shows a difference between the theoretical and 

experimental behaviour as presented in Figure 27. For each parameter and over ten separate 

samples, the impact of the shape of the constrained horseshoes on the maximal point of 

rupture was studied, which was correlated to the theoretical stretchability. 

Referring to Figure 27a, the changes in the radius R had a limited impact on the strain at break 

of the line. The stretchability of the line with R=1000µm was the highest, nevertheless showing 

a moderate impact of this parameter in this range of data. Concerning the length L, Figure 27b 

shows the effect on the mechanical properties for L ≤ 1200µm. The strain at break was 

improving (increasing) as a function of increasing L up to 400µm. However, after this value, the 

point of rupture was becoming more constant. For the last parameter α shown in Figure 27c, 

there was an increase in the mechanical properties, up to 15°. However, for α=20°, the line was 

breaking earlier at a lower strain at break value. While the total length of the line was longer, 

the interconnection was expected to be more stretchable with such an angle; this confirmed the 

observation of Hocheng et al. described in the introduction[61]. 

The theoretical stretchability (Equation 2) associated with the data was then calculated, shown 

in the graphs Figure 27a,b,c, and compared to the experimental strain at break as seen in Figure 

27d. The geometry was improving the mechanical performance for equivalent theoretical 

stretchability up to 140%. After this value, the impact was negligible, except for the last data 

point at 210% which had a lower resistance to strain due to the same reasons explained 

previously for α=20°. 
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Figure 27: Optimisation of the stretchability of the interconnections. a,b,c) Experimental strain at break of 
the line for each parameter over 10 samples. The strain was applied at a speed of 100µm/s, and a 

measurement of the electrical resistance was taken at every 0.5% strain with a Keithley® using a four-
terminal measurement setup. d) Compilation of the previous results representing the strain at break as a 

function of the calculated theoretical stretchability which is equivalent to the maximum strain the line 
can undergo before becoming straight.  It is possible to design stretchable interconnections with an 

average point of rupture of 70%. 

 

The key parameters of the geometry for the horseshoes were identified to achieve maximum 

stretchability with the interconnections. The tuning of the angle of routing α has the highest 

impact on the break of the lines, with an optimum angle of 15°. The parameter L must also be 

greater than 400µm to achieve the best stretchability. Finally, even if the choice of the radius of 

the horseshoe has a reduced impact on the mechanical performance of the line, R=1000 µm can 

be chosen to maximise the stretchability. By linking these parameters to the resulting 
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theoretical stretchability, an estimate of the strain at break of the interconnections is made 

possible.  

There is a range between 140% and 180% of theoretical stretchability in which the rupture of 

the line stays similar when tuning the geometry. These interconnections have a measured 

average stretchability of 80%. This value is roughly half of theoretical stretchability. It is mainly 

attributed to the encapsulation of the line. During the strain, the line tends to deform out of the 

plane, which the encapsulation layer does not allow. This results in an increase of the stress in 

the line and explains the earlier break[63]. For the characterisation of the interconnections, the 

parameters chosen are α=15°, L=800µm, R=800µm, giving a theoretical stretchability of 180%, 

within the range determined. 

 

2.4. Characterisation and performances of 

stretchable interconnections 

Figure 28 illustrates the electrical behaviour of a stretchable line during a uniaxial tensile test. 

During the stretch, the resistance increased by only 1% from 183mΩ to 185mΩ up to 60% 

elongation. This value and variation of resistance for stretched interconnections represent 

state-of-the-art achievements. Then, the resistance stayed stable during the relaxation period of 

the line. The resistance was increasing due to the development of irreversible deformations in 

the line such as cracks[63]. 

 



63 

 

 

Figure 28: Example of electrical/mechanical characterisation of a line with the resistance as a function of 
the strain up to 60% for a line with width = 400 µm, α=15°, L=800µm, R=800µm, metal thickness=50 µm 
for a total length of the serpentines of approximately 95mm. The distance between the jaws was 40mm. 

The strain was applied up to 60% and goes back to 0%. There was an increase of 1% in the resistance 
while stretching due to small strain in the metal, but afterwards, the resistance stayed constant during 

relaxation from 60 to 0 %. 

 

Comparing this behaviour to the literature[64], [72], the resistance is 10 to 100 times lower and 

is stable while stretching because the pure metallic sheets are highly conductive and thick. It is 

also possible to get high stretchability using composite polymers. However the conductivity is 

around 1000 times smaller, and it decreases under stretching[79], [84].  
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Figure 29: Cycling of the interconnection for a line with width = 400µm, α=15°, L=800µm, R=800µm, 
metal thickness=50. As expected, the device was more stretchable at small strain and could be stretched 

up to 90 times at 30% before breaking. 

 

These interconnections have been characterised with cycling measurements in Figure 29. On 

this graph, logically, the line could endure fewer cycles if it was stretched more. At 50% strain, 

the interconnections cannot handle more than 30 cycles, at 40%, around 60 cycles and at 30%, 

near 90 cycles. Globally, at each cycle, the resistance increased slightly until the break to reach 

3% of the initial value. As mentioned before, this rise is related to dislocation in the material. 

This effect is more important as it approaches the rupture of the interconnections because the 

line is at the edge of the rupture. 

 

2.5. Conclusion on the interconnections 

Very stable and state-of-the-art interconnections under strain have been developed. The low 

resistance allows precise measurement for the sensors. The process used is compatible with the 

microfabrication techniques and makes the substrate flat and ready for the next step of sensor 

integration. The interconnections are stretchable up to 80% which is more than the objective of 

30%. However, the cycling measurements show roughly 90 cycles of stretching before the break 
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of the line. These performances are good enough for laboratory tests but need improvement for 

e-skin applications. Improvement of the stretchability is possible through a study of the 

encapsulation layer. Thinner encapsulation would help the line with going out of the plane. 

However, the line could also break the integrity of the PDMS by pushing the encapsulation 

layer. Therefore, a study of the encapsulation integrity and the stretchability of the line are 

necessary to optimise the thickness of this layer. 
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3. OECT for biosensing and artificial skin 

applications 

This chapter is based on the publications: 

“Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro 

cell monitoring.” 

Vincenzo Curto, Bastien Marchiori, Adel Hama, Anna-Maria Pappa, Magali P. Ferro, Marcel 

Braendlein, Jonathan Rivnay, Michel Fiocchi, George G. Malliaras, Marc Ramuz and Róisín M. 

Owens 

Microsystems & Nanoengineering (2017) 3, 17028; DOI:10.1038/micronano.2017.28 

 

“Laser-patterned metallic interconnections for all stretchable organic electrochemical 

transistors” 

Bastien Marchiori, Roger Delattre, Stuart Hannah, Sylvain Blayac, Marc Ramuz 

Scientific Reports, volume 8, Article number: 8477 (2018), DOI: 10.1038/s41598-018-26731-8 

 

In the previous chapter, the characterisation of the interconnections has demonstrated the 

possibility to be cycled up to 30% around 90 times before the break. The OECT is a sensor that 

allows multiple measurements and can be integrated into a skin to measure real-time 

parameters of the human body. On top of this, the process is well mastered and the integration 

of PEDOT:PSS on top of the interconnections is a technological challenge for the fabrication of 

organic fully stretchable devices. 
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The OECT is a transistor often based on PEDOT doped with PSS as active material, a conducting 

polymer which is widely used for its ability to transduce an ionic flow into current flow. To 

summarise the section 1.6.1, the OECT is a three terminals transistors working in depletion 

mode. In the case of p-type PEDOT:PSS channel, a high current is flowing in the channel 

between the source and the drain. When a positive gate voltage is applied to the electrolyte 

(between Gate and Source); cations penetrate into the channel and drastically reduce its 

conductivity. 

The first demonstration of a highly stretchable, albeit out of plane OECT was shown five years 

ago (Figure 30a)[97]. Despite its high stretchability up to 270%, the non-coplanar structure of 

the OECT makes biointerface applications complicated. The PEDOT:PSS was printed in 3D 

between the electrodes through the shape of nanowires. When the substrate was stretched, 

the wire was elongated until being fully tight and then broke. 

A fabrication process for an in-plane stretchable OECT on PDMS has recently been developed. 

The patterning of interconnections was based on evaporated gold through a shadow mask of 

parylene on a pre-strained substrate. After, photolithography of PEDOT:PSS by using an 

orthogonal photoresist on the pre-strained substrate led to an OECT which was stretchable up 

to 30% without cracking as a result of a pre-strain step before fabrication in Figure 30b[98]. 

However, for this device, only a modest transconductance of 0.6mS was achieved. The process 

of fabrication was long and needed to pre-strain the substrate during the fabrication. Moreover, 

the use of photolithography directly on PDMS is not totally reproducible. Finally, OECTs were 

stretchable only up to the initial pre-strain load. Past this value, the mechanical integrity of the 

device was compromised, leading to the apparition of cracks. Thus, a development of an 

accurate process for the fabrication of this device and a work on the material to make it 

stretchable without pre-strain is relevant. 
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Figure 30: Demonstration of stretchable OECT in the literature. a) Non coplanar stretchable OECT up to 
120%. It displays high stretchability, but is not planar, so tricky to use for e-skin and biosensing. 

Reproduced from [97]. b) Stretchable OECT with no variation in the output characteristics up to 30-40% 
strain. The device shows low current and relies on mechanical buckling. Reproduced from [98]. 

 

The objective of this chapter is to adapt the process of the rigid OECTs and to integrate the 

stretchable interconnections. For this purpose: 

Section 3.1 reviews the applications and process of a rigid OECT, to understand the issues of its 

fabrication and use. 

Section 3.2 presents the methodology for the characterisation of the stretchable devices. 

Section 3.3 shows the development of a wound-healing assay on a rigid substrate as a way to 

master the process. 
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Section 3.4 presents the optimisation of the formulation of PEDOT:PSS and the process to 

render the device fully stretchable. 

Section 3.5 concludes on the results of this chapter and question on the relevance of these 

interconnections for fully stretchable sensors. 

 

3.1. OECT fabrication on rigid substrates 

In this section, the PEDOT:PSS is presented as a conducting polymer and the formulation 

optimised for maximum stability and conductivity is introduced. Then, the standard process of 

fabrication is described. 

 

3.1.1.  PEDOT:PSS as conducting polymer for OECTs 

The PEDOT:PSS is an intensively used conducting polymer due to its highly conductive 

properties. Its formulation is well understood for use as a rigid thin film. 

 

3.1.1.1. Structure of the PEDOT:PSS  

The highest conductivity of PEDOT:PSS reported in the literature is around 1400 S.cm-1 by Kim et 

al.[99], that makes it relevant for use as electrodes. Combined with low absorption of the light 

in the visible range, the PEDOT:PSS has found a particular use in electrodes for organic solar 

cells[100], [101]. 

As shown in Figure 31, the polymer is made of a PEDOT backbone doped with PSS. The presence 

of PSS induces a delocalisation of the electronic bond in the PEDOT, making it hole-conducting. 
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Figure 31: Chemical Structure of PEDOT and PSS. 

 

Apart from its conductivity, PEDOT:PSS is well known for its mixed ionic and electronic 

conductivity[102], [103]. The polymer is used for bioelectronics applications because of its 

permeability to ions. Most of the signals from the body come from ionic currents. The material 

can transduce ionic current through electronic current to interpret biological signals. Initially, 

PEDOT:PSS was deposited by electrochemical polymerisation[104]. A solution of EDOT 

monomer and PSS was deposited on an electrode. Then, upon an electric field, the monomer is 

oxidised producing a radical that reacts with another one, forming a polymer chain. The PSS acts 

as a counter-ion to stabilise the reaction. 

 

3.1.1.2. Applications 

The high optical transparency of thin PEDOT:PSS and its high electrical conductivity make it 

really attractive as transparent electrodes, and its colour can be easily tuned, making it blue or 

transparent by oxidation or reduction. Taking advantage of this particular change, 

electrochromic windows have been investigated, to use it as a darkening layer in the automobile 

industry for example[105]. Kim et al. have increased its conductivity to 1400 S.cm-1 and used it 

for organic solar cells[99]. Moreover, the work function and the ability of PEDOT:PSS to conduct 

holes makes it attractive as a hole injector in OLED[106].  
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As an organic electrode and due to its high conductivity, PEDOT:PSS is widely used for 

bioelectronic applications. For recording bio-signals, this polymer has the same advantages than 

other conducting polymers over rigid metallic electrodes. For example, microelectrodes made of 

platinum and indium has shown improved performance for deep brain stimulation with a 

coating of PEDOT[107]. Due to its mixed conductivity, dry flexible electrodes of PEDOT:PSS has 

shown similar performances than commercially available wet electrodes for electrocardiography 

(ECG) for heart monitoring[108] and electroencephalography (EEG) for brain monitoring[109]. 

The penetration of ions inside the layer makes it an excellent non-polarisable electrode[109]. 

The OECT is an important application of PEDOT:PSS, measuring a variety of physiological signals. 

For ion detection, the OECT has shown variations in its electrical properties with different ionic 

concentrations in its electrolyte[110]. Sessolo et al. have also shown the possibility of coupling 

an OECT with a polymeric membrane that is permeable to specific ions, for ion-selective OECT 

sensors[111]. Another field of use is in enzymatic sensors. By immobilising a specific enzyme 

onto the gate, it is possible to detect and measure a concentration of various molecules such as 

glucose[112], lactate[113], adrenaline[114]... 

The second branch of application for the OECT is the recording of cells properties in vivo or in 

vitro. For the detection of non-electrogenic cells, without any natural electrical activity, the 

mechanism of detection is based on the natural ability of the cell to act as a barrier for ions. For 

in vitro models, cells are seeded and grown either directly on the devices, or on filters, 

suspended on top of the OECT. A voltage is sent through the gate to measure the properties of 

this layer. The cell layer induces a delay in the dedoping process of the OECT, acting as a 

parasitic capacitance. Depending on the frequency of the gate voltage, the response through 

the channel is different. It is determined by several parameters[92]: the integrity of the tight 

junctions between the cells, the integrity of the membrane, the coverage of the device and the 

adhesion of the cells. Then, the properties of the cells can be measured with the addition of 

different drugs or toxins[115].  

The OECT has also shown good results for the recording and the stimulation of electrogenic cells 

such as neurones and nerves. For in vivo applications, Khodagholy et al. have shown a superior 
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signal-to-noise ratio than a penetrating silicon probe using an OECT for recording the activity of 

the brain for electrocorticography (ECoG). They demonstrated good results for long-term 

measurement showing its biocompatibility and also confirming that the mechanical flexibility of 

the device reduces injuries in the brain[116], [117]. The low-temperature process of the OECT 

also allowed the fabrication on a bioresorbable substrate for implantable electrodes[118]. 

The ability of the OECT to measure the properties of the cells is used for the development of the 

wound healing assay. 

 

3.1.1.3. Formulation 

Nowadays, the PEDOT:PSS is commercially available as a dispersion in water (Clevios PH1000 

from Heraeus, e.g.). This formulation of PEDOT:PSS is highly conductive and perfectly suitable 

for spin coating or inkjet printing. Figure 32 is a schematic of the molecular structure of a film of 

PEDOT:PSS. The deposited material has a natural arrangement of PEDOT rich domains as 

crystallites (surrounded by dash points) which is the electronic charge transport in an 

amorphous PSS rich region. This second region helps with the mobility of the ions.  
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Figure 32: Crystallites arrangement of PEDOT:PSS on a substrate with PEDOT rich area in blue and PSS in 
grey. The PEDOT rich areas form regions with a certain degree of crystallinity in a matrix of PSS 

amorphous rich areas. Figure copied from [102] 

 

To enhance the conductivity of the film, a technique consists in increasing the crystallinity of the 

PEDOT:PSS arrangement with the addition of a high boiling point solvent such as methanol or 

dimethyl sulfoxide or ethylene glycol[119], [120]. The addition of such a solvent allows a better 

organisation of the rich PEDOT area by pushing the PSS out of the crystallites[121]. Thus, it also 

decreases the ion mobility inside. For ethylene glycol (EG), the best ratio has been found around 

5% v/v, for the best ratio ionic/electronic mobility[102].  

The dodecylbenene sulfonic acid (DBSA), an anionic surfactant enhances the film formation as 

well as the conductivity, by acting as a counter anion on distorted PEDOT chains[122]. The best 

ratio has been found at 0.5%v/v to avoid phase separation[123].  

Silanes, such as 3-glycidoxypropyltrimethoxysilane (GOPS), are used to avoid the problems 

mentioned above of stability by using organic materials. The material bonds to the substrate 

and avoids delamination, particularly in a liquid environment, mostly for bioelectronic 

applications. This formulation, introduced by Sessolo et al. is now widely used. It is particularly 

adapted to the measurement in an aqueous environment with the OECT[124]. 
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3.1.2. Fabrication process of standard OECTs 

There are several fabrication methods for the patterning of organic materials. For industrial use, 

the most effective is probably spray coating, inkjet or spray coating because they are easily 

scalable. However, they suffer from a lack of patterning resolution, and the development of 

compatible formulations is necessary. So, for our purpose of research, photolithography has 

been a compromise and is available in all cleanroom facilities. 

The most used process used for OECT relies on the patterning of gold interconnections with 

photolithography and lift-off and then peel-off of parylene for the patterning of PEDOT:PSS by 

photolithography[125]. This is illustrated in Figure 33. 

 

Figure 33: Schematic depicting the fabrication steps. The gold lines are patterned by lift-off of the resin 
after evaporation and PEDOT:PSS area is patterned with peel-off of parylene. 

 

1- The patterning of gold is done by lift-off of the photoresist with acetone. Few 

micrometres of photoresist are spin-coated on the substrate at a certain rotation speed. 

After spin coating of the resist, a soft baking is necessary to evaporate the solvent and 

thus fix the photoresist to the substrate. In this process, a positive photoresist S1813 is 

used and baked for 1 minute at 110°C. After exposition to UV light, the sample is 

immersed in an MF26A developer to remove the resin from the part of the slide where 

there will be the gold lines. 
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2- The next step is to evaporate the metal onto the substrate. The metal is heated in a 

crucible with current by Joule effect. Once above its melting point temperature, the 

metal is ejected to the samples placed upside down and condenses on the cold 

substrate. Then, the unwanted parts of the gold are removed by immersion in acetone. 

This solvent has a high solubility power and goes underneath the gold to solubilise the 

resin entirely after a few hours.  

3- Two layers of Parylene-C (PaC) are added by vapour phase deposition. The PaC is an 

excellent insulating material, so a first layer of 1.5µm is deposited to insulate the 

interconnections. A second layer of 2.5µm is used later for the patterning of the 

conducting polymer. 2% soap (Microchem90) is spin coated acting as an anti-adhesive to 

prevent adhesion between the two layers. PaC thickness is controlled by the quantity of 

initial dimer loaded inside the furnace.  

4- The two layers of PaC are opened where the polymer is deposited, for electrical contacts 

and at the gate. A second photolithographic step with a thick layer of AZ9260 is used. 

The subsequent patterned device is placed inside a reactive ion etching system (RIE). A 

plasma is created in a vacuum chamber by the ionisation of O2 and CHF3 gas.  

5- The deposition of PEDOT:PSS is done by spin-coating. The solution discussed previously 

is deposited on the substrate with a controlled rotation speed which determines the 

thickness. The device is baked a first time at 110°C for 1. 

6- The peel-off is the step following this 1st baking. With tape, the top layer of PaC is 

removed from the bottom one, removing the photoresist and the PEDOT from the non-

patterned areas. After, the device is baked for 1h at 140°C to dry completely the 

PEDOT:PSS layer, remove all traces of solvents and help the cross-linking process that 

provides stability of the device in water and adhesion to the substrate. 

A picture of the final device is displayed in Figure 34a and a zoom in the design in Figure 34b. 

The two big squares are the gate, and the small lines reach the transistors. There are 6 

transistors per well, with different sizes, to get different sizes of wound. The well is stuck with 

biomedical silicone glue to ensure no leaks and biocompatibility since cells are cultivated inside. 
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Figure 34: a) Picture of the final device on glass with glass well on top of the transistors to cultivate cells 
on top and b) design of the device zoomed in the well. In orange the gold lines and in blue/black: the 

PEDOT:PSS layer. 

 

3.2. Characterisation methodology 

This section is dedicated to the tools and the methods used to characterise the OECT. First, the 

two main methods to characterise the OECT are introduced. Then, the setup used to 

characterise the PEDOT:PSS on a stretchable substrate is presented. 

 

3.2.1. Output and transfer transistor characteristics 

For further measurement of the OECT, the setup for the characterisation has been associated 

with the displacement table. Figure 35 presents the electrical output characteristics of an OECT. 

Figure 35a displays the output curve of the transistor, with the drain current (IDS) as a function 

of the drain voltage (VDS) for different values of gate voltage (VGS). VDS was varied from 0V to -

0.6V for values of VGS from -0.6V to 0.6V. In this curve, the two regimes of the transistor are 

distinguished. In the linear regime, IDS increases linearly with VDS for low values of VDS and, when 

the voltage tends to -0.6V, the saturation regime is reached. The current cannot be higher and is 

thus independent of the voltage. The current of saturation increases from VGS=0.6V to VGS=-

0.6V. When going towards VGS=-0.6V, the channel is more and more doped because there are 

more and more cations inside the PEDOT:PSS layer and then, the current decreases. 
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Figure 35: electrical characteristics of an OECT. a) Output curve of the device with different values of VGS 
from -0.6V to 0.6V and b) Transfer curve of the device with different values of VDS from 0V to -0.6V and c) 
the associated transconductance. The OECT channel is 50µm length and 50µm width and the electrolyte 

is a KH2PO4 solution at 0.01M 

 

Another way to plot the transistor characteristics is presented in Figure 35b. The transfer curve 

represents IDS as a function of VGS from -0.6V to 0.6V for different values of VDS from 0 to -0.6V. 

For high positive VGS, the channel is almost full of cations, and so, the current is very low 

whatever the value of VDS. From this transfer curve, the transconductance gm can be extracted 

and is plotted in Figure 35c. The transconductance is a useful figure of merit and corresponds to 

the ability of the OECT to be de-doped under gate bias. A high gm ensures a high OECT gain, and 

thus a high sensitivity when used as a sensor. It is calculated from the variation of current 

divided by the variation of gate voltage (ΔIDS/ΔVGS) for a given VDS. Depending on the drain 

voltage, the transconductance has a maximum value for one gate voltage. This value is getting 

closer to VGS when increasing drain voltage. 
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3.2.2. Measurement of OECT characteristics on the XY 

table 

The device was clamped on the tensile test table described previously to proceed to the 

electrical characterisation of the device under strain. Programs developed to measure the 

characteristics of the transistor were used. Figure 36 shows a picture of the setup. The 

electrolyte was dropped on the channel, and the gate was in contact with the liquid on top. This 

gate is attached to a 3D printed plastic  

 

Figure 36: Photograph of the setup used to characterise the OECT. The device was clamped at either end. 
One output from the Keithley® was connected to the source and the drain. A second output was 

connected to an Ag/AgCl electrode immersed in an electrolyte. The strain and the electrical 
measurements were synchronised with LabVIEW. 

 

The electrolyte used was a KH2PO4 solution at 0.01M. The device was not compatible with a 

classic phosphate buffer saline solution (PBS). An electrochemical reaction occurred on the 

aluminium, damaging the PEDOT:PSS layer. 
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3.2.3. Conductivity measurements 

For the conductivity measurement on flexible/stretchable substrates, a four-wire measurement 

setup has been developed. Commercially available setups have the main drawback of using 

sharp pins to be very precise in the placement of the contact. In the case of soft substrates, the 

small pins were damaging the substrate and were not able to measure thin layer materials. 

Figure 37 displays our system. It had larger and smoother pins to reduce the damage done to 

the layer.  

 

Figure 37: Conductivity measurement setup for soft substrates. The pins were large to avoid the substrate 
to be pierced. 

 

As mentioned in the previous section, the current was applied through the outer pins with a 

Source Measurement Unit (NI PXIe-4141), and the voltage was measured with a Digital 

Multimeter (NI PXI-4071).  

The configuration used is known as the Kelvin technique. The probes are aligned and equally 

spaced. Equation 3 is used to calculate the sheet resistance Rs if the two following conditions are 

satisfied[126]: 

- The space between the probes is larger than the thickness 

- The distance between the edge and the probes is larger than the distance between the 

probes 
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𝑅𝑠 =
𝜋

ln(2)

∆𝑉

𝐼
 

Equation 3: Formula for the calculation of the sheet resistance in the Kelvin configuration 

 

Then, the conductivity of the layer is calculated if the thickness is known by dividing the 

resistivity by the thickness e in Equation 4. 

𝜎 =
1

𝑅𝑠 ∗ 𝑒
 

Equation 4: formula for the calculation of the conductivity σ with the sheet resistance Rs and the thickness 
e 

 

The samples evaluated were squares of 17mm by 25mm of a PEDOT:PSS layer on PDMS. The 

solution was spin-coated on a PDMS sample after treatment with O2 plasma.  

 

3.3. Development of an OECT as a wound healing 

assay 

In this section, a device inspired by electrical wound-healing is described. Classic methods rely 

on gold electrodes to make the wound and to follow the healing by electrical impedance 

spectroscopy (EIS). The fabrication of an OECT, used in a standard two electrodes system to 

make the wound is demonstrated. Then, the device is used as a transistor to measure the 

healing. Contrary to conventional methods used to monitor cell layer integrity, OECT allows the 

coupling with microscopy techniques as this polymer is transparent. Moreover, with the OECT 

configuration for the healing, the properties of the cells that are covering it are followed 

electrically.  
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3.3.1. OECT as a platform for the wound healing assay 

Wound-healing is a technique commonly used to observe the migration of a cell monolayer. 

Following the formation of the wound, cells in the proximity are monitored over time using a 

microscope to study their ability to heal and migrate over the damaged area. This is the best 

method to study the displacement of the cells and their interaction during the migration with 

other cells or with the extracellular matrix. 

In a classic wound-healing assay (or scratch assay), cells are grown in a confluent monolayer, 

and then the layer is ‘wounded’ using a pipette tip or razor blade. However, the scratch assay 

does not offer precise control of the size and the shape of the wounded area. Moreover, it lacks 

reproducibility, as the scratch assay is generally a manual technique. To overcome some of 

these limitations, Keese et al.[127], [128] first proposed an alternative method to obtain precise 

control of the wound size and shape by using AC electrical currents to achieve electroporation 

of cells (wounding) in a well-defined region corresponding to the area of a micro-sized gold 

electrode. It is highly reproducible, but it is difficult to follow the healing with classic 

microscopy, with a non-transparent gold electrode. 

 

Figure 38: Schematic of the microfluidic device, comprising an OECT in a microfluidic channel. A cell layer 
is grown on top, and the media is perfused in the microfluidic channel. 
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One of the key advantages of using the OECT technology for testing the cells is the possibility for 

easy integration of micron-sized electrodes with a microfluidic structure in a compact manner, 

illustrated in Figure 38. As further evidence of our capabilities of using the OECTs to perform 

standard biological assays, an electric wound-healing assay for the cell layer cultured has been 

developed in the microfluidics. The device comprised an OECT in a microfluidic channel cut in 

poly(methyl methacrylate) (PMMA) and is covered by a pressure sensitive adhesive (PSA) to 

ensure sealing. Inspired by these findings, an electrical wound healing assay based on the use of 

the OECT to generate a wound in the cell layer covering the transistor channel has been 

developed. Conversely, OECT technology is fully compatible with high-resolution microscopy as 

the PEDOT:PSS active layer of the transistor channel is optically transparent[92]. In this scenario, 

the use of the OECT to perform an electrical wound healing assay can provide a unique tool to 

overcome the current limitations on the use of micron-sized gold electrodes, making this 

method fully compatible with standard microscopy tools.  

 

3.3.2. Results of the wound healing on the OECT 

An electrical wound assay has been developed using the OECT channel and the gate electrode in 

a slightly different operation mode compared to the classic transistor configuration[116], as 

shown in Figure 39a. The source and drain of the transistor are shorted together to obtain an 

equipotential distribution of the applied AC voltage in the transistor channel, while a second, 

bigger, electrode is used to close the electrical circuit and act as the counter electrode for the 

wound generation. It should be noted that by shorting the source and drain of the OECT 

channel, effectively an electrode is generated, which, used together with the bigger second 

electrode (gate electrode), was employed for the generation of the electrical wound in the cell 

layer.  
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Figure 39: A microfluidic electrical wound-healing assay with the OECT. a) Schematic of the experimental 
set-up of the developed OECT-based electrical wound-healing assay. A confluent cell layer covering the 

transistor channel area is electroporated with an oxidative square voltage, typically below 3 V, resulting 
in an electrical wound of the same dimension as the transistor channel. The semicircle lines represent the 

electric field distribution at the electrode/electrolyte interfaces across the cell layer, while the two grey 
cells covering the transistor channel represent the electrically wounded cells. b) The impact on the OECT 

maximum transconductance (gm=ΔID/ΔVG) caused by the application of oxidative potentials for duty 
cycles equal to 0.3 (green), 0.4 (red), and 0.5 (blue), n=3.  

 

The alternating potential applied to the system is schematically represented in the bottom 

diagram of Figure 39a. For the generation of the electric wound, a square wave pulse is applied 

from zero to the desired voltage (typically below 3V) at a frequency of 40kHz (period of 25μs). 

The schematic of Figure 39a shows the direction of the electric field across the two electrodes in 

the electrolyte. As the transistor channel is a much smaller electrode, the potential drop at the 

electrode/liquid interface across the cell layer covering this region is above the critical cell 

membrane rupturing value (4200 mV)[129], resulting in a localised cell electroporation and lysis, 

schematically represented by the grey cells, Figure 39a.  

For the OECT wound-healing assay, one crucial parameter is the stability of the PEDOT:PSS 

organic conducting layer upon the application of a high oxidative potential needed to induce the 

electroporation of the cells. In addition, higher potentials (>1 V) in an aqueous environment can 

lead to electrochemical reactions within water associated to the oxidation and thus the 
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formation of other cytotoxic species, such as chlorine[127]. Interestingly, the use of AC currents 

at high frequency (>10kHz) can easily bypass these undesirable conditions even for potentials 

up to 5V[128]. Nonetheless, it is well known that the irreversible electrochemical oxidation of 

PEDOT:PSS-conjugated polymer leads to structural changes in the polymer backbone and loss in 

its conductivity[130]. Figure 39b shows the variation of the maximum transconductance value of 

the OECT (gm = ΔID/ΔVG) when sequentially stepping the potential from 0 to 3.4V at 40kHz for 

30s each time, using the electrical configuration and the wave signal shown in Figure 39a. By 

evaluating the variations in the maximum transconductance of the OECT, it is possible to obtain 

useful information on possible degradation processes induced in the PEDOT:PSS layer. For a 

duty cycle of 0.5 (blue line/triangle, tON=12.5μs, tOFF=12.5μs), a rapid decrease of the OECT 

transconductance is observed for a potential above 1.5V, resulting in a total loss of ~50% at 

3.4V.  

To improve the device stability in this wide potential window, a possible solution is to change 

the duty cycle of the squared pulse signal. A shorter duty cycle reduces the total supplied 

energy for undesired oxidative reactions in the conjugated polymer and, at the same time, 

allows a longer relaxation of the system. For instance, a duty cycle of 0.4 (red line/circle, 

tON=10μs, tOFF=15μs) slightly improves the device stability with a total loss of ~40% at 3.4V, while 

for a duty cycle of 0.3 (green line/square, tON=7.5μs, tOFF=17.5μs), the OECT shows a more stable 

behaviour in the potential window of interest. In the latter conditions, a final ~6% decrease in 

the maximum transconductance is observed only when the OECT was sequentially cycled to a 

potential up to 3.4V. These findings are particularly important as they provide evidence that 

under these conditions, that is, 40kHz, duty cycle 0.3, the OECT channel is capable of supporting 

high oxidative potentials without an irreversible loss in its amplification performance, an 

essential requirement to perform in-line electrical monitoring of the cell layer during healing.  

Next, the electrical wound-healing assay was performed by seeding MDCK II-pLifeAct cells on 

the OECT. Initial optimisation experiments were performed in a classic, static configuration 

using a glass well to contain the cell culture media. Figure 40a shows a typical frequency-

dependent transistor response in the absence (dashed grey curve) and in the presence of a fully 
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confluent MDCK II-pLifeAct cell layer (solid black line). In the images below (black frame), the 

brightfield and the F-actin fluorescence pictures of a confluent cell layer are shown. The 

electrical wound to the cells was then generated by pulsing the electrode with 2.7V at 40kHz 

(duty cycle 0.3) for 30s. An identical pulsing protocol was repeated four times until a complete 

absence of fluorescence covering the transistor channel was observed. The F-actin fluorescence 

images (orange frame) shows the well-defined square shape of the wound corresponding to the 

size of the transistor channel (100 × 100μm2), proving the ability of the OECT to create an 

electric wound in a well-confined area of the cell layer. 

Following the formation of the wound, optical and electrical monitoring of the healing process is 

started, by using the same OECT employed for the generation of the wounding. Moreover, the 

electronic monitoring of the healing process was performed by using the OECT as a three-

terminal device. Figure 40a shows the time evolution of the frequency dependent response of 

the OECT measured every 16min while cells were healing, shown by the gradual colour change 

of the curves from orange (wounded cell layer) to blue (healed cell layer). As the healing begins, 

slight variations in the cut-off frequency were measured, arising from the initial rearrangement 

of the cells in the proximity of the electrical wound, and the formation of two moving healing 

fronts. The initial stage of the healing process corresponds to the closely packed orange curves 

of Figure 40a. Subsequently, with the advancing of the healing fronts toward the middle of the 

wound a continuous decrease in the cut-off frequency is observed until completion of the 

healing, as revealed by the proximity of the blue curves. The electrical evolution of the healing 

process can be appreciated in more detail in the inset graph of Figure 35a, showing a well-

defined sigmoidal trend with two steady state conditions corresponding to the start, with a cut-

off frequency equal to ~600Hz, and the end of the healing, with a cut-off frequency equal to 

~60Hz, respectively. The images of Figure 40a (blue frame) show the brightfield and 

fluorescence images of the fully healed cell layer. Encouraged by these findings, the OECT 

electrical wound-healing assay is then integrated with the microfluidics. Figure 40b shows the 

typical time evolution of the cell layer resistance obtained during the healing process of the 

cells. First, the cells were wounded on the transistor channel resulting in a complete loss of cell-
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related impedance, as well as the actin fluorescence, in a well-defined manner, as shown before 

and in the inset fluorescence picture at time zero.  

 

Figure 40: a) Typical time evolution of the OECT frequency-dependent response during the healing 
process of an electrical wound generated on a confluent cell layer of MDCK II-pLifeAct. A confluent layer 

of cells grown on the transistor channel induces a shift in the OECT cut-off frequency, from ~1400Hz 
(dashed grey line) to ~30Hz (solid black line). Following the generation of the electrical wound (2.7V at 
40kHz, duty cycle 0.3, cycle time 30s), the cut-off frequency increases (orange line) due to loss of cells 
from the active area of the device. As the healing of the cells progresses, a continuous decrease in the 

cut-off frequency is monitored until completion (blue line). The inset graph shows the sigmoidal evolution 
in the cut-off frequency during the healing process. The data point at time zero is omitted for clarity. 

Below are shown brightfield and fluorescence images for the pre-wound (black frame), wounded (orange 
frame), and healed (blue frame) cell layer (scale bar, 50μm). b) Electrical wound-healing assay performed 
inside the microfluidic device. On the top, the temporal evolution of the Rcl during the healing process is 
shown. The bottom panel contains the brightfield and the F-actin fluorescence images at a different time 
during the healing process. In the brightfield images, the red arrows highlight the densely packed healing 
fronts incorporating the wounded cells and likely leading to the final increase of ~1.5-fold in the effective 

Rcl. (scale bar, 50μm). 

 

It is also important to note from the brightfield image that, following electroporation, dead cells 

were still covering the transistor channel area although they were not responsible for 
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substantial resistive contributions (Rcl 10% of initial value) within the first hour of the healing 

process. As the healing front of the cells started to move toward the centre of the transistor 

channel, a continuous increase in the cell resistance is measured with a final Rcl ~1.5-fold higher 

than the starting resistance before the wound. This is attributed to the formation of a densely 

packed healing front (less permeable to ions/higher resistance) due to the incorporation of 

debris from the dead cells lying on top of the transistor channel. This is clearly visible in the 

brightfield images collected 1.5 and 3h after starting of the healing process as indicated by the 

red arrows. 

The wound-healing assay developed in this section is a powerful tool to monitor with more 

accuracy the migration and the properties of the cells. Its implementation within a microfluidic 

chip is a step forward in the improvement of in vitro test. It fits better with the conditions of 

pressure and flow in the body. All organs in the body are soft and so, to make an OECT on a 

stretchable substrate would represent even a better modelling of in vivo real conditions. 

Furthermore, in the objective to follow the healing on top of the skin, the use of OECTs in an e-

skin seems possible.  
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3.4. Development of OECT on a stretchable 

substrate 

The development on a rigid substrate has been demonstrated in the previous sections for the 

development of a wound-healing assay. The process is adapted for a rigid substrate for classical 

applications but not for the integration of stretchable materials. In this purpose, the 

development of a stretchable OECT on PDMS is presented. A schematic of the resulting device is 

shown in Figure 41. In this section, the methods available in the literature for making PEDOT:PSS 

stretchable are identified. The optimisation of the formulation of PEDOT:PSS is then presented. 

The adaptation from the rigid process is explained to integrate only stretchable materials. The 

integration of the channel is discussed as an essential parameter to make a stretchable device. 

Finally, results of the stretchable device are presented. 

 

Figure 41: Resulting device modelled in 3D. The device is made out of stretchable interconnections with 
PEDOT:PSS in dark blue for the channel, encapsulated in PDMS. As a stretchable device, it can be bent 

and accommodated to 3D surfaces. 
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3.4.1. Review on enhancing stretchability of 

PEDOT:PSS 

The stretchability of PEDOT:PSS has already been studied in the literature. Two additives have 

been proved to improve the stretchability of PEDOT:PSS. Chen et al. have characterised 

mechanically self-standing films of blends of PEDOT:PSS with polyvinyl alcohol (PVA)[131]. With 

more than 60% of PVA, the film endures a stretch by more than 90% before rupture. On the 

other hand, the addition of non-conducting polymer decreases the conductivity of the film. The 

conductivity decreases by a factor 10 between 0% and 70% PVA and then decreases drastically. 

So, there is a trade-off between the mechanical and the electrical properties. They suggest the 

best ratio of 30-40% of PEDOT:PSS in PVA for self-standing film, whereas a more important ratio 

of PEDOT:PSS around 70% might be preferred for thin films because the low resistivity cannot 

be compensated by a high thickness. 

The second additive is a fluorosurfactant. The commercial name is known as Zonyl FS-300, sold 

by DuPont, but due to environmental issues with the biodegradability of the product, it has to 

be replaced with Capstone FS-30. Bao group in Stanford extensively studied the effect of this 

surfactant on the mechanical and electrical properties of PEDOT:PSS for applications as 

transparent electrodes, mainly for solar cells. The use of fluorosurfactant has several enhancing 

effects. First, it helps with the wettability of the solution on polymer hydrophobic substrates 

[132]. With a 1% Zonyl, it also increases the conductivity of the resulting film. The surfactant 

induces phase segregation of PEDOT and PSS, forming longer PEDOT-rich region, that favours 

the mobility of the holes[132]. This effect is similar to the addition of a co-solvent such as 

ethylene glycol. Finally, the most important for stretchable electronics, it greatly increases the 

stretchability of the PEDOT:PSS as a thin-film[133]. The mechanical and electrical behaviour of 

PEDOT:PSS on PDMS with the fluorosurfactant are displayed in Figure 42. Without Zonyl, the 

layer had an increase in the resistance by a factor 60 at 50% strain whereas it was only by a 

factor 2 with 1% of surfactant (Figure 42a). 
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Figure 42: Stretchability of PEDOT:PSS deposited on PDSM with a fluorosurfactant. a) Resistance change 
in resistance as a function of strain. b) Cycling of the device and c) Micrograph of the layer during cycling 

measurement. The resistance of the PEDOT:PSS has increased by a factor 2 at 50% strain. There is an 
apparition of cracks between 25% and 50% strain that increases the resistance of the layer permanently. 

Reproduced from[133]. 

 

In Figure 42b, the cycling of the device has shown stable resistance until 20% strain. Then, the 

resistance starts to increase irreversibly due probably to the apparition of cracks particularly 

visible at 50% strain in Figure 42c. 

The activation of the substrate is also a very important parameter; it has a huge impact on the 

final stretchability. Lipomi et al. have shown that a light activation completely changes the 

stretchability of the PEDOT:PSS[133]. While 3 minutes of an O2 plasma at 150W led to an 

increase of the resistance of the layer by more than 50 times at 5%, the same plasma treatment 

but for 10 seconds, the device reached the same value of resistance at 50% strain. Moreover, a 
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UV/ozone treatment of the substrate for 20 minutes improved, even more, the stretchability of 

the PEDOT:PSS layer, multiplying its initial resistance by only a factor 2 at 50%. The mechanism 

of the behaviour of the mechanical behaviour of PDMS after activation is presented in Figure 43. 

When activated, the PDMS forms brittle material on its surface, close to silica. When stretched, 

these rigid areas break forming islands of rigid materials. The PEDOT:PSS on the island does not 

deform. Between the islands, however, the conducting polymer endures a lot of strain. It leads 

to the creation of the same cracks than the PDMS, and thus an increase in the resistance[133], 

[134]. 

 

Figure 43: Mechanism proposed to explain the behaviour of PDMS under stretch after strong plasma 
treatment. The apparition of ductile areas decreases the stretchability of a thin layer on top, extracted 

from [133]. 

 

The use of additives is a known method to improve the stretchability of PEDOT:PSS deposited 

on PDMS. The use of PVA and Capstone, a fluorosurfactant is promising. With both additives, 

the stretchability is increased to reach around 30% strain without detrimental damage to the 

layer. In the purpose of a stretchable OECT, to make it compatible with the different materials 

composing the device, the study of the process of fabrication is necessary. 
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3.4.2. Formulation optimisation of PEDOT:PSS for 

stretchable properties 

As mentioned in section 3.1.1.3, the formulation of PEDOT:PSS mixture for the OECT channel is 

based on work done by Sessolo et al. to improve its conductivity and adhesion[124]. This 

formulation has been developed for rigid/flexible OECTs, but not for a stretchable one. To 

increase the stretchability of PEDOT:PSS films, the two main chemicals introduced in the 

previous section were investigated: a fluorosurfactant (capstone®) and polyvinyl alcohol (PVA) 

since these two compounds are known[131]–[133]. The resistance of a layer of PEDOT:PSS 

mixture on PDMS was evaluated as a function of the strain for different amounts of additives. In 

Figure 31 the graphs of the different experiments for the PEDOT:PSS mixture optimisation. 

 

Figure 44: Optimisation of the formulation for the PEDOT:PSS layer spin-coated on a PDMS substrate. a) 
Resistance as a function of the strain for different wt% of PVA. b) Resistance as a function of the strain for 
different vol% of Capstone®. The samples were squares of 17mm by 25mm of PEDOT:PSS layer on PDMS. 

 

As shown in Figure 44, without any additives, the formulation described previously had a stable 

resistance until 20% strain. After this value, the resistance increased rapidly, and the layer 

resistance was too high to provide good performance for OECT. The impact of PVA on the 

stretchability of the film was investigated with solutions from 0wt% to 70wt% without the 
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addition of GOPS (Figure 44a). Its addition resulted in an increase of resistance and provided no 

improvement for the stretchability. With regard to the literature, it appeared that the addition 

of PVA does not affect the mechanical properties before 40wt% of PVA[131]. The best 

mechanical properties were found with 50wt% PVA, but it appeared that the PEDOT:PSS 

mixture layer was delaminating from the PDMS substrate while stretching. This was most likely 

due to the absence of GOPS which acts as a cross-linker agent, helping with the adhesion of the 

film[135]. The impact of the addition of Capstone between 0vol% and 40vol% is available in 

Figure 44b. 

The best ratio of Capstone is 20vol%; it showed high conductivity and an increase of the 

resistance at around 35% strain. A study of the polymer at the molecular level is needed to 

thoroughly understand the impact of the different additives on the mechanical and electrical 

properties. 

 

Figure 45: Ratios estimated to be the best for each additive. The addition of Capstone as a 
fluorosurfactant increases the stretchable properties of the PEDOT:PSS. Furthermore, the addition of PVA 
also enhances the mechanical properties, but ultimately appears to delaminate from the substrate under 

stretch. The samples are squares of 17 mm by 25 mm of PEDOT:PSS layer on PDMS. 

 

A comparison with the best two ratios of additives is displayed in Figure 45. Since the PVA based 

solution delaminated under stretching, 20vol% Capstone was selected as an additive for 
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improving the mechanical properties of the active area. It resulted in an active area with high 

stretchability and a conductivity of 150S.cm-1; in the same range than the value reported by the 

supplier (900S.cm-1) [136]. This solution was spin coated on the device at the end of the 

fabrication process presented in the next section. 

 

3.4.3. Process optimisation to integrate stretchable 

materials 

The process developed is based on the most common way of making an OECT, namely the 

parylene-C (Pa-C) lift-off technique described previously. The use of the parylene layer as a 

sacrificial layer also avoids the use of photolithography directly on PDMS, which is difficult due 

to the adhesion of the photoresist on PDMS[51]. However, the existing process is not adapted 

for the etching of thick layer of Parylene and then PDMS. There are several parameters to 

adjust: the thickness of parylene, the thickness of photoresist, and the parameters for etching 

PDMS. 

 

Figure 46: Schematic depicting the fabrication steps. The encapsulated lines are covered by parylene. The 
opening of the channel and contacts on pads are done by photolithography and reactive ion etching of 

parylene and the PDMS encapsulation layer. The PEDOT:PSS formulation is spin-coated, and the sacrificial 
parylene layer is removed to pattern the active area. The resulting device is a fully stretchable OECT 

including metallic lines, PEDOT:PSS and PDMS 
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A schematic of the fabrication process is depicted in Figure 46, where Pa-C was used as a 

sacrificial layer and support for the photolithography process.  

1- Rather than using Pa-C as a second layer for the insulator which is not stretchable, a thin 

(8µm) PDMS spin-coated layer was used by mixing PDMS with hexane (1:1 in mass). The 

choice of 8µm of PDMS as an encapsulation layer is enough to ensure at least 50% of 

strain without delamination of the line. With 1-2µm of PDMS, it quickly led to the break 

of the encapsulation layer and to the delamination of the lines. With 8µm of PDMS, the 

failure of the device was observed before this effect occurred. With thicker layer, it was 

too long to open the channel at the etching step presented further. Instead of using pure 

aluminium for the interconnections, the aluminium was first covered with 100nm of gold 

to ensure superior electrical connection and biocompatibility. The aluminium has indeed 

a thin layer of oxide that induces a resistance between the PEDOT:PSS and the 

aluminium. 

2- The encapsulated line was coated with a soap solution acting as an anti-adhesive. Next, a 

4µm Pa-C layer was deposited and patterned by photolithography and plasma etching 

with an opening at the contact pads and in the channel. The PDMS encapsulation layer 

was first etched with a mixture of O2 and SF6[137], [138] and the Pa-C layer was then 

etched with a mixture of O2 and CHF3[124] to open the connections on the pads and on 

the channel. The PEDOT:PSS mixture was spin coated, and the sacrificial Pa-C layer was 

subsequently completely peeled-off from the PDMS device. The etching was highly 

exothermic, making the photoresist more brittle and the process of peel-off more 

difficult. The thickness of parylene was increased from 2µm to 4µm to make it more rigid 

and thus easier to remove. 

3- The thickest layer (24µm) of AZ 9260 available on the supplier website was used, with 

two steps: 

- Spin coating at 2400rpm for 60sec and baking 110°C for 80sec 

- Spin coating at 2100rpm for 60sec and baking at 110°C for 160sec 

Otherwise, the thickness of photoresist was too thin to etch the PDMS completely 
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4- For the etching of PDMS, a plasma of O2 and SF6 was used at a ratio 1:4 as described in 

the literature[137], [138]. 100sccm of SF6 and 25sccm of O2 at 70mTorr at 300W were 

used, corresponding to the maximum power pressure and flow of SF6 allowed by the 

tool. The etch rate was around 0.35µm/min but was not entirely linear because of the 

heat created during the process. For a layer of 8µm PDMS, it needed around 20 minutes 

to be etched. The first device that as etched at room temperature needed 25 minutes to 

be etched, while even if the machine had a chiller, the temperature could go up to 30-

40°C for the next ones and increased the etch rate.  

5- The spin coating step was similar than for the rigid OECT, but the solution with 20% 

Capstone was used. 

6- The peel-off was the same than for the standard OECT; a tape was used to remove the 

parylene layer and only leave the PEDOT PSS on the channel and the pads. 

This process used the interconnections presented in chapter 2, but the integration of a 

transistor needs a modification of the device. The interconnections were cut in the middle to 

implement the channel made of PEDOT:PSS. 

 

3.4.4. Transistor channel integration 

Low resistance interconnections with high stretchability have been developed. The objective 

was to integrate an OECT with these lines. The strategy was to cut by laser the line in the middle 

to create a channel with the desired length. There was a major problem limiting the 

stretchability of the device, illustrated in Figure 47. When stretched, the PDMS and the 

interconnection were not elongated in the same way. The line was pulled back, leading to an 

empty gap even for strain inferior to 10%. Thus, it created an area where the PEDOT, which was 

on top of both materials, was highly stretched and then broke. 

Figure 47 illustrates the various geometries of the channel tested to limit this effect: 
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a- The line for the channel was cut perpendicular to the direction of the stretch and called 

horizontal channel. The channel was pulled by the serpentine, and there was a failure. 

b- The line was also cut perpendicular, but a long straight line was used after the end of the 

horseshoe to counter the pulling of the deformed horseshoe. It also showed a 

premature failure. 

c- The channel was ended with a triangular shape, to prevent the displacement of the 

interconnections inside the PDMS. The channel was less affected by the strain; however, 

the gap was still observed. 

d- The channel was cut parallel to the strain. This strategy has reduced the horizontal 

displacement of the line inside the PDMS. A small rotation of the line upon stretching 

was observed alongside with the apparition of cracks. However, they did not appear in 

the sensing area, in between the lines. Then, it did not impact the performance of the 

device. 

 

Figure 47: different configurations for the channel:  a) horizontal channel 15% strain, b) long and straight 
horizontal channel 30% strain, c) triangular ended horizontal channel 15% strain,  and d) vertical channel 

30% strain. The arrows represent the directions of the stretch. Scale bar is 400µm. 
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This mismatch is a big problem when using materials with such a big difference in Young 

Modulus. With the same force applied, the resulting strain in the material is completely 

different, leading to incompatible movements and mechanical failure. To force the line to move 

with the PDSM substrate, (3-Mercaptopropyl)trimethoxysilane (MPTMS) was tested. It bonds Si 

groups to metal atoms[139]. However, it resulted in the same failure, probably because the 

force of deformation was too strong.  

The resulting design kept for the channel was then vertical channel, and the final device is 

displayed in Figure 48. The channel was designed perpendicular to the strain direction to 

minimise the extension of its length during the strain. 

 

Figure 48: Zoom of the final device on the channel. In blue, the PEDOT, patterned by photolithography in 
a square shape. The size of the square is voluntarily very large compared to the channel size, to see more 

easily later the effect of the stretch on the PEDOT:PSS. Scale bar is 500µm. 
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3.4.5. Characterisation of the stretchable OECT 

With these optimised metallic interconnections and PEDOT:PSS formulation designed for 

improved stretchability, a stretchable OECT was fabricated. A picture of a device under test is 

available in Figure 49. 

 

Figure 49: Picture of the channel at the end of the process for different strains. For the 0 % strain picture 
and 500µm for the others. Some cracks are appearing in the active area, but the channel zone is not 

affected. Scale bar is 1mm 

 

A diminution of the channel length in 2D was observed due to the compression of PDMS on the 

side. Some cracks are appearing, but only out of the channel, keeping its integrity and so, its 

ability to successfully conduct current.  
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Figure 50: Output curves of the device with VGS varying from 0V to 0.5 for different strains. The OECT had 
initially a channel length of 250µm and a thickness of 300nm with an external Ag/AgCl gate. The device 

clearly displays transistor behaviour showing high current even at 38%. Nevertheless, the current has 
decreased by a factor 7.  

 

A typical output characteristics from an OECT for different strains is presented in Figure 50, with 

a drain-to-source voltage (VDS) swept from 0 to -0.8V, for a gate-to-source voltage (VGS) ranging 

in magnitude from 0 to 0.5V in 0.1V increments. The length of the OECT channel was initially 

250µm, the contact lines are 400µm wide, and the total device thickness was 300µm. For the 

best transistor, a maximum drain current magnitude around 2.8mA was obtained. The current 
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decreased while stretching, transistor behaviour with a current magnitude of 0.2mA was still 

observed until 38% strain.  

 

Figure 51: a) The maximum transconductance as a function of the strain extracted from the IV curves of 
the best performing device with an initial transconductance around 6.5mS at 0% strain. There was a 
noticeable reduction in the performance after 11% strain. Focussing on the zoom part in the graph of 

Figure c, for strains between 17% and 38%, the transconductance was diminishing slowly from 1.5mS to 
0.35mS. After this value, it was not possible to record a proper output curve and therefore extract the 

transconductance. b) Transconductance as a function of VGS associated with the output curves Figure 50. 
The maximum transconductance can reasonably be associated with the point between VGS = 0V and VGS = 

0.05V.  

 

The maximum transconductance associated with the output curves for each strain applied is 

displayed in Figure 51a. On this graph, only the maximum transconductance is displayed, which 

in our case, corresponded to the gain between a gate voltage magnitude of 0V and 0.05V as 

displayed in Figure 51b. 
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In Figure 51a, a slight decrease was observed down to 5mS at an elongation of 11%, after which, 

there was a significant drop between 11% and 17% where the transconductance felt to 1.5mS, 

and finally a slow decrease to 0.35mS until 38% elongation.  

The maximum transconductance of 6.5mS was comparable to rigid based OECTs fabricated on 

glass[116]. The drop in OECT performance after 11% strain has been observed previously. For 

strain higher than 10%, cracks started to appear in the PEDOT:PSS films and so, it is fair to 

assume that the elastic limit has been reached, thereby entering the plastic region[133]. This 

deterioration in performance was not seen in Figure 44b, where the PEDOT:PSS mixture film 

resistance was fairly stable and lower than 1kΩ until 40% strain. As a result, the drastic 

reduction of transconductance can be attributed to the interface between the PEDOT:PSS layer 

and the metal. Since these two materials had different mechanical properties (Young’s 

Modulus), there was an accumulation of stress at this interface which was detrimental to the 

overall performance of the OECT. 

Many devices were displaying the same performance than the one presented previously. 

However and as seen in Figure 52, performances could drop faster. The initial IV was showing 

good results initially, and the maximum transconductance dropped linearly with the strain until 

around 20%. Then, it decreased suddenly, and it was not possible to extract any 

transconductance from the output curve. The main hypothesis is that between 15% and 20%, 

many cracks were appearing in the PEDOT:PSS layer, and sometimes, there could be some 

defects that lead to the apparition of cracks within the channel. This could be confirmed by 

coupling these electrical measurements with microscopy techniques on top of the tensile table.  
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Figure 52: Output curves for a device featuring a channel length of 250µm and a 500nm-thick layer of 
PEDOT:PSS. The device showed good performance until 19% strain and then suddenly dropped. The first 

measurement with VGS=0V was completely different from the other datasets, resulting in negative 
transconductance in some cases. The other curves are still showing transistor behaviour. The 

transconductance plot has been extracted from VGS=0V and VGS=0.05V. 
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3.5. Conclusion on the stretchable OECT 

A process to pattern a stretchable electrochemical transistor has been developed. By taking 

advantage of the interconnections, the process is based on the lift-off of a sacrificial Parylene-C 

layer by replacing non-stretchable materials with PDMS, patterned by photolithography and dry 

etching. This process is a proof of the compatibility of the devices and tools presented with 

standard microfabrication techniques; it avoids any pre-strain step and contains only 

stretchable materials.  

The resulting device displays similar performance than a standard OECT until 11% strain, with 

good transconductance and output characteristics until 38%. However, due to the mechanical 

properties mismatch between the rigid interconnections and the PDMS, the integration of thin 

layer polymer (PEDOT:PSS) at the interface is damaged during elongation. This limitation has 

been countered by an appropriate design, but there is still a drop of performance after 11% 

strain while the PEDOT:PSS has shown more stretchability.  

Fully stretchable sensors in this configuration are more adapted with thin layer 

interconnections, following the elongation of the substrate. Thus, some modifications could be 

brought to improve the stretchability of the device: 

 Re-design the structure of the device entirely to avoid this mismatch and maybe limit the 

displacement of the PDMS to the vicinity of the interconnections. 

 Work on the transition from the interconnections to the PDMS, using glue. This glue 

would stick the interconnections to the PDMS. 

 Use a substrate with a gradient of Young modulus, rigid in the polymeric active area and 

stretchable in the interconnections. It would mimic the bridge-island structure 
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4. Development of a stretchable IR sensor 

An objective of an e-skin in prosthetics is to reproduce the capabilities of the skin on a robotic 

arm for instance. The use of pressure sensors for giving the feeling of touch is an active topic of 

research, and the transmission of the response of the sensors to the brain has been intensively 

studied[140]. The topic of this chapter deals with the integration of the feeling of temperature 

and especially for the detection of non-contact heat sources. Thus, it would be possible to 

detect the temperature before being too close from the object and injuring the artificial skin. 

The objective of this chapter is to develop infrared sensors with more than 30% stretchability.  

A review of the temperature sensors has identified the pyroelectric materials as an adequate 

choice for the e-skin application. The PVDF is a polymeric material presenting these properties. 

It possesses the particularity of inducing an electrical field with a change of temperature that 

disappears when the temperature is kept stable. To avoid the mismatch of Young Modulus 

within the material, a rigid-island strategy is adopted, and the process is adapted in 

consequence. Then, methods for the characterisation of the devices are explained. Finally, 

various characteristics of the device are presented: 

 The direct temperature sensing through the measurement of its capacitance 

 The dynamic sensing of temperature change by the measurement of induced voltage 

 The response to infrared illumination 

 The properties under strain 

Section 4.1 introduces the different method for temperature sensing and justifies the choice of 

pyroelectric measurement and the use of poly[(vinylidenefluoride-co-trifluoroethylene] (PVDF-

TrFE) as an active material for the sensor. 

Section 4.2 presents the design of the sensor and particularly, the choice of the rigid-island 

method for this sensor. 
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Section 4.3 is dedicated to the presentation of the methods used for the characterisation of the 

device. 

Section 4.4 presents the characterisation of the device. 

Section 4.5 concludes on the results presented and details the advantages of the use of the 

interconnections developed for this sensor. 

 

4.1. Overview of devices and material for IR sensing 

In this section, the different methods for thermal sensing are introduced. The pyroelectric 

materials, as a choice for the sensor, are presented, and their potential for the e-skin is 

explained. 

 

4.1.1. Different types of thermal sensors 

A classic thermal infrared sensor is constructed around the absorption of a black body material 

on a thermal sensor. The material absorbs the infrared radiation and produces heat. This heat 

source is placed on a heat-sensitive material, with different properties depending on its 

temperature. There are several types of sensors generally used for temperature measurement. 

 The thermocouple lies on the Seebeck effect. A junction of two different metals exposed 

at a hot temperature creates a difference of potential between the two metals placed at 

a known cold temperature. This voltage is related to the temperature difference. It is 

also possible to make a thermopile, a device that comprises multiple small 

thermocouples in series for a higher output voltage, thus, a higher sensitivity. 

 The resistance temperature detector (RTD) is based on materials which have a 

predictable change in resistance depending on the temperature. These materials are 

mostly metals such as platinum or copper. 
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 Thermistors are made out of ceramic semiconducting materials. One type is negative 

temperature coefficient (NTC) thermistors; they are semiconducting materials with 

metal oxides mixture. When the temperature increased, the electrons can move more 

easily from the valence band to the conduction band, decreasing its overall resistance. 

Others are positive temperature coefficient (PTC) materials and possess a brutal rise in 

resistance in a certain range temperature 

 Some temperature sensors can exploit the properties of semiconductor junctions to 

determine the temperature. When passing a constant current through the junction, the 

resulting voltage is a linear function of the temperature 

 The pyroelectric detectors are based on a pyroelectric material that can generate a 

voltage when there is a change of temperature. Compared to other material, these 

detectors do not need to be powered. The response delivers directly a voltage that is 

conveniently measured.  

The temperature detection techniques based on the use of very rigid metals or semiconductors 

might be difficult to use for making devices stretchable; while some polymeric pyroelectric 

materials are available, giving more flexibility for mechanical properties and for processing. The 

detection of temperature induced in pyroelectric materials is due to its particular crystal 

organisation. 

 

4.1.2. Piezoelectric and pyroelectric materials 

Piezoelectricity is the capacity of a material to turn mechanical stresses such as sound waves, 

touch or vibrations into an electrical field. Crystals that exhibit natural crystalline structure with 

centrosymmetry usually show piezoelectricity effect. At the molecular level, the symmetry 

provides stability and electrical neutrality. When atoms are not symmetric within the unit cell, 

due to the distribution of the electrons, the structure exhibits a natural dipole at least in a single 

cell[141]. If the distribution of the dipoles is random, the crystal does not naturally show 

piezoelectric properties. It needs a specific process step of “poling” to align the dipoles. It is 
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possible to stretch it or to apply a high electrical field to force the polarisation. Once the 

polarisation is done, some materials, so-called ferroelectric can retain the polarisation before 

Curie temperature. For other materials, the stress is kept to maintain the dipoles oriented. 

 

Figure 53: Mechanism of pyroelectricity. Due to the relaxation of the global dipolar moment Ps, a voltage 
is induced to keep the neutrality of the device through the relaxation of the charges at the interface of 

the material. Reproduced from [142]. 

 

Some of these piezoelectric materials also exhibit pyroelectric properties. The material contains 

the preferentially oriented dipoles at a stable state at a certain temperature. Figure 53 

illustrates the mechanism of the creation of voltage by pyroelectricity. Initially, in between two 

electrodes, the device is stable, and the potential between two electrodes is 0. When a change 

of temperature appears, a voltage is induced through the electrodes[143]. This voltage is 

transient and created due to the change of charges at the interface of the material for a dipolar 

state. When the dipolar moment is changing through temperature or pressure on the material, 

the global neutrality is not the same, leading to a movement within the charges on the surface. 

To keep the neutrality at the interface of the electrodes, electrons are moving from one 

electrode to the other one. Once the temperature stable, the device is stable again, and no 

voltage is induced. 
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This device has the advantage of being very sensitive to the change in temperature, and a 

simple measure of the voltage can be performed. However, the voltage induced is not 

permanent. So, dynamic measurement is essential to measure the change of temperature. 

However, the dipolar moment of the device is closely related to the change of temperature. So, 

a direct determination of the temperature can be made by measuring the dipolar moments. 

The PVDF is the most used polymer for its pyroelectric properties. 

 

4.1.3. PVDF as pyroelectric material 

In this work, the copolymer PVDF-TrFE was used as a pyroelectric material. The PVDF and its 

copolymers are widely used due to their mechanical flexibility, low temperature of 

crystallisation, ferroelectric and piezoelectric properties[144], [145]. The PVDF is also well 

known for its strong piezoelectric responsivity, first reported by Kawai et al.[146].  

The PVDF and its copolymers can present four different crystalline phases[147], [148]: 

 The α phase, obtained with the crystallisation from the liquid state. It is a not polar 

phase and thus not piezoelectric. 

 The β phase, the pyroelectric phase with strongest piezoelectric and pyroelectric 

properties, obtained from stretching α-phased PVDF or at crystallisation at high pressure 

and temperature. 

 The γ phase, obtained by addition of a polar solvent or by baking PVDF from the α phase 

at high temperature. 

 The δ phase, made by electrical or mechanical poling of the α phase. 

The PVDF is a semi-crystalline polymer. As described before, the crystallised phases presented 

previously are surrounded by amorphous polymer phases[149]. The β phase has the highest 

alignment of hydrogen and fluor and thus, the strongest dipolar moment. However, the 

alignment between the chains is random, so the global dipolar moment is neutral. 
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Depending on the process used for the deposition of the PVDF, the crystallisation leads to 

different structures, but only one presents the crystalline structure suitable for pyroelectric 

properties (β-phase)[141]. Nevertheless, the PVDF does not crystallise naturally in the good 

phase; it needs to be annealed and/or stretched[147]. In order to allow the direct crystallisation 

of the β-phase from the solvated state, it is possible to use PVDF-TrFE copolymers[141], [150]. 

Once it has crystallised, it is possible to pole the copolymer layer in order to create the 

pyroelectric properties by applying a high electric field across the layer[141], [151], [152]. 

 

Figure 54: Absorption spectrum of PVDF-TrFE for different thickness. There is a strong absorption after 
7µm. Reproduced from [153].  

 

In addition, the absorption spectrum of this material shows a high absorption for wavelength 

after 7µm[153]. From Wien's displacement law, the maximum of emission matches with 

temperatures below 140°C. Previous work has shown the feasibility of IR sensor with PVDF in far 

infrared[153], [154]. Pecora et al. have also shown the operation of a flexible PVDF-TrFE 

pyroelectric sensor under absorption of a specific radiation[155] and Graz et al. have done a 

flexible sensor based on the absorption of PVDF in far-infrared to detect the approach of a 

human finger[25].  
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So the PVDF is well adapted for detection of human body for example[156], dealing with low 

temperature and low emission. The aim of the e-skin is to detect high-temperature surfaces 

before touching it. Thus, a layer absorbing higher temperature radiations and then lower 

wavelength is more appropriate. For the detection of far infrared radiations, one solution is to 

use special conditions of evaporation to deposit porous gold as known as black-gold[157], [158]. 

For near-infrared, another solution is to use an electrode that has absorption properties in the 

desired wavelength band: below 7µm.  

 

4.1.4. Potential in infrared sensing for e-skin  

An easy way for making infrared sensor includes the deposition of an absorbing infrared layer 

on top of a temperature sensor. The absorption in the layer creates a local increase of the heat 

that is sensed by the thermal sensor. The sensor is easy to fabricate, but, it is not possible to 

distinguish an infrared radiation from the effect of the outside temperature. The calculation of 

the temperature from an infrared radiation needs a constant temperature, with a proper 

calibration. The measurement takes advantage of the difference of power emitted, illustrated 

by Figure 18 from chapter 1. The power emitted increases with the temperature. Moreover, the 

exact calculation of the temperature depends on the material. The emissivity of the surface has 

to be taken into account. The human skin has the same problem; the determination of the exact 

temperature is not possible. However, by approaching the hand from a hot surface, it is possible 

to feel the heat and determine if the temperature is higher than the ambient. 
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Figure 55: A flexible pyroelectric infrared sensor. a) Design of the device and b) Output curve to a laser of 
5mW at 632nm. Reproduced from [155]. 

 

Stretchable and flexible infrared sensors in e-skin are still marginal. The only mention in the 

literature is from Lumelski et al. They developed a flexible e-skin based on infrared LED coupled 

with a detector for proximity detection based on the reflection of the LED, capable of sensing an 

object up to 20cm. This work is less interesting for pure infrared sensing. As mentioned before, 

people have already done flexible temperature and visible radiation temperature sensor with 

PVDF-TrFE [25], [155], but not stretchable. An example of a flexible temperature sensor by 

Pecora et al. is displayed Figure 55[155]. In Figure 55a, the device is made out of a printed 

transistor connected to the pyroelectric capacitor. The device shows a voltage induced by a 

temperature change. The measurement of the device under illumination of 5mW of a laser at a 

wavelength of 632nm is displayed in Figure 55b. The device shows only a low response of about 

1mV under illumination. This is probably because the silver layer reflects the signal partially and 

the PVDF-TrFE absorption at this wavelength is particularly low. 

The sensor designed during this thesis intends to replace the top electrode by using an 

absorbing and conducting material. The absorption of the sensor aimed to be in the near 

infrared, to ensure sensing of temperature near 100°C. 
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4.2. Design and fabrication of the sensor 

This section presents the design of the sensor. The device was based on the blocks developed in 

the previous chapters. 

Contrary to the design of the OECT, which had the PEDOT:PSS deposited on the device for a fully 

stretchable device, the IR sensor take the full advantage of the rigid metallic interconnections by 

using the rigid-island approach. A schematic of the device is displayed in Figure 56. The 

interconnections were connected in the middle to a round-shape island of 5mm diameter and 

on the other side to a pad used to take the signal. The PVDF-TrFE was deposited, constituting 

the bottom electrode. The top electrode, made of stretchable PEDOT:PSS took the signal and 

also provided the stretchability between the active area and the other part of the 

interconnection carrying the signal from the top electrode.   

 

Figure 56: Schematics of the temperature sensor device. a) 3D view of the device. In the middle, the active 
area of the sensor and on the sides, the pads are collecting the measured signal. They were linked with 
stretchable gold interconnections. b) Side view of the stack, the layer of PVDF was sandwiched between 

two gold electrodes, and the top electrode was covered with PEDOT:PSS to ensure stretchability.  
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Figure 57: Fabrication process of the IR sensor. The PVDF-TrFE was spin-coated, and a layer of gold was 
evaporated through a shadow mask. The PEDOT:PSS was drop-casted on a PDMS empty substrate and 

laminated on top of the device. 

 

A schematic of the fabrication of the device is depicted in Figure 57: 

1- The interconnections of chapter 2 were not encapsulated directly with PDMS 

2- The PVDF-TrFE was spin-coated at 1500rpm, from a solution of 10% in Methyl Ethyl 

Ketone for a thickness of 3µm through a Kapton mask. The device was then annealed at 

150°C for 30 minutes 

3- 100nm of gold was evaporated on top of the PVDF-TrFE through a shadow to get a 

proper electrical contact when the top PEDOT:PSS electrode was laminated on top 

4- The formulation from chapter 3 of PEDOT:PSS was drop-casted on an empty PDMS 

substrate after plasma treatment (25W, no gas) and was baked at 110°C for 1h. 

5- This PEDOT:PSS on PDMS is laminated after plasma treatment (25W, no gas) to ensure 

sealing of the device. The PEDOT:PSS was not spin coated directly on the substrate 

because the subsequent device was conductive, so no measurement of capacitance 

would have been possible due to short-cut. 
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4.3. Methodology of characterisation 

The real-time measurement of the capacitance was done with an Agilent 4263B LCR meter, 

calibrated with a 47pF capacitance. The system is highly resistive, so the capacitance was 

extracted by measuring the parallel capacitance.  

The real-time measurement of the temperature was done by placing a KTY81-210 silicone 

temperature sensor on the device. The resistance of the sensor was related to the temperature 

with a homemade Matlab program by interpolation of the calibrated values from the datasheet.  

For real-time measurement of the temperature, the heat source was an electronic heat gun 

with an adjustable and controllable temperature. The output was set up at 80°C and placed in 

the direction of the sample at 10cm. For static measurement of the capacitance as a function of 

the temperature, a hot plate was used, and the corresponding temperature was taken from the 

temperature sensor after 5 minutes stabilisation required for the hotplate to have a stable 

temperature. 

The real-time measurement of the voltage was done by using a Keithley 2636A Source unit 

connected to both electrodes without applied current. 

Stretching measurement was done by using the tensile table coupled with the above-mentioned 

methods and equipment. 
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4.4. Sensor characterisation under temperature 

change and under IR illumination 

This section presents the characterisation of the device through different measurements: 

 Direct temperature sensing through the measurement of its capacitance 

 Sensing of temperature change by direct voltage measurement induced after poling 

 The voltage response of the poled device under infrared illumination 

 The properties under strain 

The device shows two modes of operation: 

 By measuring the capacitance, it is possible to determine the temperature directly. It just 

needs a proper calibration. The device can be poled, or not. 

 By poling the device, it is possible to detect a change of temperature. Through the 

relaxation of dipoles, a voltage is induced when the temperature changes. This voltage is 

only a temporary response and cannot give an absolute value of the temperature. 

 

4.4.1. Device characterisation under temperature 

change through capacitance measurement 

Figure 58a presents a graph of the capacitance and the temperature as a function of time for 

one device. The change of capacitance followed closely the change of temperature from the 

temperature sensor which validates the temperature sensing through the capacitance 

measurement. 
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Figure 58: Electrical characterisation of the sensor with a temperature change. a) Capacitance change 
regarding the temperature change of the device b) Capacitance as a function of the temperature for 3 

devices. There was a linear response within a range of temperature. 

 

The capacitance as a function of the temperature from ambient temperature to 100°C is 

displayed in Figure 58b. The device showed a very linear response to a temperature below 60°C 

with a sensitivity of 7.2pF/°C for the device 3 and 7.71pF/°C for the device 2. Then above 60°C, 

the capacitance started to deviate from the trend and the above 100°C the capacitance was not 

measurable. The device 1 showed a higher initial capacitance, but a sensitivity of 5.95pF/°C. It 

was lower than for the other devices, but the linear range was broader: between 30°C and 90°C. 

So without poling, it was possible to use the device as a temperature sensor by measuring its 

capacitance. 
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4.4.2. Device characterisation under temperature 

change through voltage measurement after poling 

The device showed a linear response to temperature change without poling through the 

measurement of the capacitance. However, pyroelectric materials are mostly used for their 

ability to sense a change in temperature, and not absolute temperature, by poling the 

device[159]. Moreover, the measurement of the capacitance is not direct; it requires a 

complicated circuit to extract the value. After poling of the device, the measurement of a 

voltage is less invasive and does not need a complicated setup. 

The device was poled with an aluminium electrode laminated on top. The setup was provided 

by the company IRLYNX and made out of a sinusoidal generator with an amplifier. The devices 

were poled at 700Vpp with 10 periods of a signal at a frequency of 0.5Hz. This voltage was the 

limit for the poling of the device. Higher voltage resulted in the burning of the device. 

 

Figure 59: Characterisation of a device after poling. a) Change of the capacitance and b) voltage 
generated due to the change of temperature, the baseline was at -200mV and was brought to 0. The 
change of capacitance was less important than before poling. However, when the temperature was 

increased, there was a voltage created contrary to without poling 

 

Figure 59 presents the graphs of the characterisation after the poling of the device. Figure 59a 

shows the change in capacitance as a function of the temperature. The sensitivity of the 
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capacitance has decreased to reach 1.6pF/°C. The voltage created due to the poling is displayed 

in Figure 59b, called pyroelectricity. The voltage sensed through the electrodes was stable, and 

a peak of 200mV was measured when the temperature was increased by 7°C by the heat gun. 

This voltage represented the derivative of the temperature change. From the baseline, the 

voltage increased when the temperature was going higher and decreases when the 

temperature was decreasing. During the cooling, the voltage was slightly lower than the 

baseline. 

The device was most likely not optimally poled. First, the capacitance was expected to be higher 

than the initial one. Indeed, the poling orients the dipoles in the same direction, so, the 

capacitance should have increased. Moreover, the values of the peak of voltage induced by 

temperature change were lower than what was found in the literature at a similar 

thickness[159].  

 

4.4.3. Voltage measurement under IR illumination 

The poled device can be used for temperature sensing. For the infrared temperature sensor, the 

absorption of the top electrode was studied. Then, the device under illumination of IR radiation 

was measured.  

The gold is a commonly used electrode, which shows a high electrical conductivity but presents 

poor IR absorption properties. Moreover, as mentioned before, the PVDF does not absorb 

infrared wavelength below 7µm. A replacement electrode must have absorption in the IR to 

absorb an IR radiation, low resistivity to carry the signal and finally, stretchability to be 

integrated for e-skin application. The properties of PEDOT:PSS has already shown high 

stretchability and conductivity. In addition, a thick layer of PEDOT:PSS (thicker than 10µm) does 

not transmit any radiation between 600nm and 1400nm(Figure 60a). For its properties of 

stretchability, the formulation of PEDOT:PSS with a fluorosurfactant described in chapter 3 was 

used. 
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The response of the sensor to the illumination under a LED at a wavelength of 830nm is 

displayed in Figure 60b. The intensity of the illumination was measured at 0.3mW/mm² which 

gives a power of 5.88mW on the 19mm² surface of the sensor. The LED was kept on for 10 

seconds and then turned off. The non-poled device has not shown any voltage response to the 

illumination. The poled device, on the contrary, displayed a very sharp reaction. As soon as the 

LED was turned on, a peak of voltage was measured. The peak represented a dynamic response; 

it showed a rapid change of temperature. As the change of temperature was quick, it would be 

interesting to see if the intensity of the peak is proportional to the power sent through the LED. 

The peak amplitude is 13mV, which is ten times better than the flexible device reported in the 

literature at 632 nm for similar energy[155]. There was also the reversed peak when the LED 

was turned off, with an amplitude of -12mV, so almost the same magnitude. This sharp peak 

showed that when the LED was turned off, the dissipation was also almost instantaneous. 

 

Figure 60: a) Absorption spectrum of a PEDOT:PSS thick layer. b) Device under infrared illumination at 
830nm. The PEDOT:PSS absorbs the radiation, creating a local heat source that induces a voltage for a 

poled device. The non-poled device did not create any voltage. 

 

So, the device showed satisfying sensitivity to a LED lighting, but still, need to be close enough 

to get a sufficient energy. Some optimisations are still possible: the use of an infrared dye inside 

the PEDOT:PSS for the top electrode has already shown similar results. The PEDOT:PSS is not a 

strong IR absorber. Then, the electrode needs to have a sufficient thickness to show good 
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absorption, and the heat is dissipated through the whole electrode. The use of a dye would 

allow the top electrode to be thinner. Then, the heat would be more concentrated and closer to 

the active material. Moreover, with a better poling, an increase in the sensitivity by a factor 10 

could be expected. 

 

4.4.4. Characterisation under stretching 

The pyroelectricity generated of a poled device from 0% to 10% is shown in Figure 61. When 

stretched, the device displayed a very important noise, with an amplitude of 50mV. This noise 

was then too high to measure any change of temperature and was even worst for infrared 

sensing, having a lower response. However, once the device went back to 0% strain, the voltage 

went back to normal. This might be improved by a better poling of the device, but needs to be 

investigated. Therefore, further characterisation of the non-poled device under strain was 

carried out. 

 

Figure 61: Pyroelectric response of a poled device to the stretch, the voltage was measured on the device 
from 0% to 10% stretch. 
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Characterisation of the capacitance as a function of the temperature (non-poled devices) is 

displayed at different strains in Figure 62. The device had the same behaviour with temperature 

change at 0% stretch (Figure 62a) and 35% (Figure 62b). It means that the change of resistance 

due to the stretch of PEDOT:PSS layer had no impact on the capacitance measurement. 

The measurement of the capacitance of a non-poled device at the ambient temperature as a 

function of the deformation is displayed in Figure 62c. The capacitance decreased by only 3% 

between 0 and 35% strain. Then, it decreased from 430pF to 400pF between 35% and 40%. 

Further measurement of the capacitance after 40% was then impossible to read because of 

rupture of PEDOT:PSS after 40%.  

 

Figure 62: Stretching of a non-poled device for temperature sensing. a,b) Response of the sensor to an 
increase of temperature at 0 and 35%. c) Capacitance at ambient temperature as a function of the strain. 

The device did not show a significant change in the response until 35%. Then, there was a drop in the 
capacitance which decreased the sensitivity. d) Capacitance at ambient temperature of a device stretched 

from 25% to 35% 
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The graph of the change of capacitance of a non-poled device, from 25% to 35% strain at a 

constant temperature, is displayed in Figure 62d. There was a transient drop of 3pF capacitance 

when the device was stretched by 5%. This is due to the piezoelectric properties of the PVDF-

TrFE. The pressure and the strain had the same effect than the temperature on its response. 

Then, when the displacement was finished, the capacitance almost came back to its initial value, 

losing 0.8pF which was equivalent to an error of around 0.5°C for this sensor. This loss could 

indicate an irreversible deformation. 

 

4.5. Conclusion on the stretchable temperature 

sensor 

The final device presented had a temperature sensing sensitivity of 7pF/°C at no strain. No 

change in its performance was noticed up to 35% strain. Sensing of infrared radiations was 

possible after poling. However, optimisation is possible to be able to measure pyroelectric 

voltage properly under stretch. So, the fabricated device was more adapted to temperature 

sensing through the measure of capacitance. This device was fully compatible with the e-skin 

approach. It can be integrated into a matrix and can mimic the properties of the skin.  

Moreover, this chapter showed that the rigid-island approach is well adapted to the 

interconnections developed during this work.  
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5. Conclusion and outlook 

The development of sensors capable of reproducing human skin capabilities is a stimulating 

topic of research. The integration of pressure sensors within an artificial skin has been made 

possible by using stretchable sensors. However, the fabrication of stretchable temperature 

sensors and more particularly non-contact temperature sensing has not been extensively 

covered. 

This work presented activities on stretchable electronics. It demonstrated the development of 

stretchable electronics and more specifically for sensing application in e-skin. Due to the 

favourable mechanical flexibility and theoretical potential stretchability, the development of 

sensors based on organic materials was focused in this work. The stretchability targeted for 

applications in e-skin has been established at 30%. The aim is to get low interconnection 

resistance with limited variation during the stretch in order to not alter the sensor signal. The 

development of two stretchable sensors was presented: 

 An organic electrochemical transistor, enabling the measure of physiological parameters. 

 An infrared temperature sensor, enabling the measure of the temperature in a non-

contact approach. 

Chapter 1 presented an overview of stretchable electronics to understand the challenges; and 

to choose the materials and technologies for the development of stretchable interconnections. 

The best solution has been identified through the horseshoe-shaped metallic interconnections. 

No stretchability exceeding 100% has been demonstrated in the literature, but it allows low 

resistance and high stability while stretching. The fabrication processes are based on 

photolithography and were tunable to the dedicated application. For the integration of the 

active sensors, a classic technique – so-called island architecture - is to stiffen an area and work 

only on the stretchability of the interconnections. Another approach is to use intrinsically 

stretchable materials deposited for instance on a pre-strained substrate. This gives good 

stretchability but is not easily compatible with the classic techniques of microfabrication.  
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In chapter 2, the process and the characterisation of low resistance and stretchable 

interconnections patterned with a laser was detailed. The device was stretchable by 80% with 

an increase in resistance by 1%. This outcome represents state-of-the-art achievement. It 

presented comparable stretchability as already reported, but with unprecedented stable and 

low resistance in the milliohms range, due to the use of bare metallic foil. Moreover, the 

fabrication process was fast and easy to integrate into microfabrication processes. This low 

resistance under stretch is required for the fabrication of high-performance stretchable sensors.  

In chapter 3, the development of a stretchable OECT has been demonstrated. The development 

of this device on a rigid substrate for wound-healing was presented in a first approach. This 

work was an introduction to demonstrate the sensing potential of OECTs and what are the 

challenges in using this device. State-of-the-art formulation and process has been optimised to 

make OECT stretchable. Compared to literature, the electrical performances obtained are 

comparable to rigid devices at no strain. The device was stretchable until 38%, but the 

transconductance was not firmly stable while stretching. Indeed, the fabrication of this sensor is 

challenging due to the heterogeneity in Young Modulus at the interface between the various 

materials used; for instance between rigid metal and soft polymer. A proper engineering of the 

transition metal/polymer has to be carried out to reduce the mechanical mismatch and get 

smooth transition. 

In the final chapter, PVDF-TrFE was used to fabricate a stretchable temperature sensor. This 

infrared sensor aimed to be integrated directly in an electronic skin. This sensor showed 

promising results, as for instance, a 35% stretchability without any change in the performance. 

The interconnections developed through this thesis were adequate for the development of the 

IR temperature sensor. Compared to the OECT, the design of the infrared sensor appeared more 

adapted to the use of the bulk metal interconnections. The rigid island formed did not cause the 

problems of Young modulus mismatch found with the integration of the active material in 

between the rigid metal and the soft substrate. The rigid interconnections were stiff and 

perfectly adapted serving as mechanical island that carried the active materials. 
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The next step of this work is to integrate the sensors in a matrix to use it in the e-skin model as 

displayed in Figure 2. The infrared sensor can be used for pressure and temperature with also 

the detection of infrared. First, it is necessary to work on the dissociation of these different 

effects. Indeed, as a pyroelectric material, the PVDF-TrFE has also a sensitive response to 

pressure and strain. But, in the aim of integrating these devices with other pressure and touch 

sensors, it would be possible to decouple at least temperature from these effects. Indeed, the 

use of touch and pressure sensors stable with the temperature would allow to predict the 

response of the PVDF-TrFE to these stimulations. Moreover, it is also not possible to detect the 

infrared preferentially over the temperature response. However, a heat source at a high 

temperature emits a high power density of infrared radiations. Thus, the sensor would feel a 

strong heating. In the case of an e-skin, anyway, the skin would feel very high temperature and 

know there is a hazard. 

The development of a stretchable infrared sensor is a crucial step of the development of the e-

skin. Integration in a matrix is the next challenge. The interconnections developed in this work 

are stretchable in one direction, but not in the perpendicular axis. However, some works have 

already been done to adapt the use of the serpentines in all the directions and can be easily 

adapted for the present interconnections. Moreover, the design of a matrix implies a device to 

address each sensor, with the fabrication of stretchable thin films transistors as active matrix for 

example. If multiple sensing layers are used in a stack configuration with each layer addressing a 

specific sensing capability; recorded signal has to transmit from one layer to another through 

vertical interconnections in order to collect all the data. These vertical interconnections have to 

be developed by inserting conventional metallic wires in between layers. As an alternative, the 

recorded signals could be transfer by light, through stretchable waveguides to carry the 

information[160].  
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Scientific contributions 

Peer-reviewed journal articles: 

“Laser-patterned metallic interconnections for all stretchable organic electrochemical 

transistors”, Bastien Marchiori, Roger Delattre, Stuart Hannah, Sylvain Blayac, Marc Ramuz 

Scientific Reports, (2018), volume 8, Article number: 8477, DOI: 10.1038/s41598-018-26731-8 

 

“Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro 

cell monitoring”, Vincenzo F. Curto, Bastien Marchiori, Adel Hama, Anna-Maria Pappa, Magali P. 

Ferro, Marcel Braendlein, Jonathan Rivnay, Michel Fiocchi, George G. Malliaras, Marc Ramuz 

and Róisín M. Owens 

Microsystems & Nanoengineering - Nature (2017) 3, 17028; DOI:10.1038/micronano.2017.28 

 

“Saccharomyces boulardii CNCM I-745 restores intestinal barrier integrity by regulation of E-

cadherin recycling”, Chloé Terciolo, Aurélie Dobric, Mehdi Ouaissi, Carole Siret,  Gilles Breuzard, 

Françoise Silvy, Bastien Marchiori,  Sébastien Germain, Renaté Bonier, Adel Hama, Roisin Owens, 

Dominique Lombardo, Véronique Rigot, Frédéric André 

 Journal of Crohn's and Colitis, (2017), vol. 11, no 8, p. 999-1010; doi:10.1093/ecco-jcc/jjx030 

 

“Effect of E cigarette emissions on tracheal cells monitored at the air-liquid interface using an 

organic electrochemical transistor”, Magali P Ferro, Lara Leclerc, Mohamad Sleiman, Bastien 

Marchiori, Jérémie Pourchez, Roisin M. Owens and Marc Ramuz 

Journal article accepted with revisions in Advanced Biosystems 
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“PVDF-TrFE based stretchable infrared temperature sensor for e-skin application”, Bastien 

Marchiori, Stuart Hannah, Sylvain Blayac, Marc Ramuz 

Journal article in Preparation 

 

“Serpentine shaped metal with active material for high surface area electrodes”, Mohamed 

Nasreldin, Bastien Marchiori, Marc Ramuz, Roger Delattre, Thierry Djenizian 

Journal article in Preparation 

 

Oral contributions: 

“New Process for the Patterning of Fully Stretchable Organic Biosensors—Application to the 

Organic Electrochemical Transistor”, Bastien Marchiori, Roger Delattre, Sylvain Blayac, Marc 

Ramuz 

Oral presentation at the MRS Spring Meeting 2018, Phoenix, United States of America 

 

“New process for a fully stretchable Organic Electrochemical Transistor”, Bastien Marchiori, 

Roger Delattre, Sylvain Blayac, Marc Ramuz 

Oral presentation at the E-MRS Spring Meeting 2017, Strasbourg, France 
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Résumé des parties en français 

Introduction 

Le développement de l'électronique flexible et extensible a ouvert la possibilité à de 

nombreuses nouvelles applications. Les systèmes électroniques que l’on peut porter sur soi sont 

généralement flexibles et très minces, ils peuvent se conformer aux surfaces 3D. Les dispositifs 

extensibles peuvent être encore plus efficaces, et subir toute déformation. Pour une application 

sur la peau, cette propriété est obligatoire. La peau peut s'étirer jusqu'à 15% et bouge 

constamment. Ces technologies sont donc particulièrement adaptées au développement de 

capteurs et d’actionneurs distribués directement sur la peau humaine. 

La sensation de toucher et de pression dans la peau artificielle a été largement étudiée, mais 

l'intégration de capacités de détection de température reste un défi, et en particulier la 

détection sans contact. Cette thèse a pour objectif de comprendre les stratégies de fabrication 

de dispositifs étirables ; et ensuite, de fournir les outils pour fabriquer des capteurs étirables 

pour les intégrer dans une peau artificielle. Les différentes composantes d'un capteur extensible 

sont analysées pour sélectionner les matériaux et les méthodes appropriés à cette application. 

De nouveaux procédés de fabrication facile et rapide de dispositifs hautement étirables sont 

introduits. Pour comprendre les défis et développer les procédés de fabrication de capteurs 

extensibles, un transistor électrochimique organique (OECT) étirable et performant est fabriqué. 

Son intégration sur la peau permettrait de détecter divers paramètres physiologiques. Ensuite, 

la fabrication d’un capteur infrarouge extensible avec des performances similaires à celles des 

dispositifs électroniques rigides est démontrée. 

Le chapitre 1 passe en revue les capteurs étirables déjà existants pour la peau électronique. Une 

étude des dispositifs extensibles est réalisée pour comprendre la structure de la conception de 

tels systèmes. Un capteur extensible comprend 3 blocs avec différentes stratégies pour rendre 

l'ensemble du capteur extensible: le substrat pour porter le dispositif, les interconnexions 
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intégrées dans le substrat pour transmettre le signal, et la zone active entre les interconnexions 

pour générer ce signal. 

Le chapitre 2 décrit une méthode pour réaliser des interconnexions étirables hautement 

conductrices. Ce procédé permet la fabrication d'interconnexions métalliques épaisses pour une 

résistivité minimale sous étirement et ainsi une qualité du signal élevée. 

Le chapitre 3 présente l'intégration des interconnexions compatibles avec les procédés de micro 

fabrication classiques et son application à des capteurs organiques, ave la fabrication d’un 

transistor électrochimique organique. 

Le chapitre 4 est consacré à la fabrication du capteur de température et infrarouge étirable. En 

utilisant les connaissances développées dans les chapitres précédents, le capteur montre des 

résultats prometteurs pour une intégration dans une peau électronique. 
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Résumé du chapitre 1: Etat de l’art sur les capteurs pour 

l’électronique souple  

Ce chapitre donne un aperçu général du travail effectué pour fabriquer des dispositifs 

électroniques étirables destinés à des applications en peau électronique. La définition de 

dispositif étirable, dans cette thèse, doit être comprise par la capacité d’un objet (plus 

précisément d’un dispositif ou d’un matériau) à être élastiquement allongé sans être 

inélastiquement, ou définitivement déformé. Un dispositif étirable conserve par définition sa 

fonctionnalité jusqu'à un certain allongement définissant son extensibilité. Une étude des 

différents dispositifs étirables pour la peau électronique est effectuée dans la première section. 

Les différents éléments d'un tel système étirable sont identifiés et analysés. Une sélection des 

matériaux pour le substrat, les interconnexions et la zone active est effectuée. Les matériaux et 

les procédés sont choisis en fonction des applications. Ensuite, une introduction aux deux 

capteurs développés pendant cette thèse est fournie afin d’en comprendre les défis. 

Les composants électroniques étirables sont les circuits électriques et électroniques qui sont 

élastiquement ou inélastiquement extensibles de plus de quelques pourcents tout en 

maintenant leurs fonctions initiales. Pour ce faire, les dispositifs ont tendance à être  

généralement fins. Comparés aux systèmes électroniques conventionnels rigides, en formats 

planaires, les systèmes électroniques étirables peuvent être étirés, compressés, pliés et 

déformés selon des formes quelconques sans défaillance électrique ou mécanique des circuits. 

Pour cette raison, les systèmes électroniques extensibles ont de nombreuses applications 

importantes et émergentes dans de nouveaux domaines inspirés par le vivant, mous et incurvés, 

tels que les caméras oculaires électroniques ou la peau artificielle, capable d'une intégration 

mécaniquement invisible sur la peau humaine. Le corps humain est mou, toujours en 

mouvement et en évolution. Sa peau peut être étirée pendant les mouvements jusqu'à 15% [2]. 

Les systèmes électroniques doivent donc correspondre aux propriétés mécaniques de la peau 

pour s’adapter au corps. De plus, cette évolution conduira à des systèmes électroniques plus 

imperceptibles, plus confortables à utiliser. Par exemple, les capteurs extensibles pour des 
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applications biomédicales incluent diverses capacités de détection telles que la température, le 

toucher / pression, l'électrocardiogramme et la détection de mouvement. Des appareils 

électroniques étirables peuvent également être attachés à n’importe quel organe du corps pour 

surveiller ou assister les organes pour les soins de santé. Des capteurs très minces et flexibles 

ont déjà été intégrés et ont montré un bon contact avec la peau [3]. 

Un capteur étirable, et plus globalement un dispositif étirable, est construit autour de 3 

composants: un substrat, des interconnexions et un matériau actif. 

• Le substrat est le premier matériau à choisir. Il doit être étirable car il s'agit du 

matériau qui subit directement la déformation, et contient le capteur. Le substrat doit 

être compatible avec le procédé de fabrication du dispositif final. L'extensibilité du 

substrat: sa capacité à se déformer avant qu'il ne casse ou ne perde ses propriétés 

initiales est essentielle. 

• Les interconnexions, sont définit l’extensibilité et la conductivité de l’interconnexion. Il 

est important d'avoir une conductivité élevée pour que le signal délivré par le capteur 

soit précis. Ainsi, une étude de la conductivité relative à l’extensibilité de ces 

interconnexions est la clé pour choisir les matériaux et les techniques adaptés à cette 

application. 

• Le matériau actif de détection: les matériaux inorganiques et organiques sont des 

candidats potentiels pour cette fonction. Les matériaux inorganiques étant rigides, la 

stratégie appropriée consiste donc à intégrer un matériau rigide dans une matrice 

étirable. En ce qui concerne les matériaux organiques, ceux-ci possèdent naturellement 

une meilleure extensibilité que les métaux. Il est possible d’améliorer la capacité 

d’étirement du dispositif global par différentes techniques et d’étudier la stratégie 

permettant de minimiser les contraintes subies par le matériau actif conduisant à sa 

rupture. Cette contrainte est causée par l'application d'une force: une tension qui tire le 

matériau. Le matériau a un certain degré de résistance à la contrainte avant d'être étiré. 
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La fabrication d'un dispositif étirable est toujours construite autour d’une même logique. Le 

substrat est fabriqué indépendamment des interconnexions. Ensuite, en fonction du matériau 

utilisé, une stratégie est choisie pour intégrer les interconnexions au sein de ce substrat. Enfin, 

le matériau actif est déposé et défini en utilisant des techniques de micro-fabrication [5]. 

Le but de ce travail est de développer et de fabriquer des capteurs électroniques extensibles 

pour des applications en peau artificielle. Par exemple, un OECT étirable – utilisé pour la  

détection de signaux physiologiques - a été développé. De plus, un capteur sensible à la 

température a été fabriqué, possédant une capacité à détecter une émission infrarouge, afin de 

reproduire la capacité du corps humain à ressentir la température, même sans contact direct 

avec cette dernière. Tous ces dispositifs doivent être capables de s’étirer de plus de 15% pour 

être intégrés dans une peau électronique. Ainsi, un objectif de 30% a été défini pour nos 

capteurs; et une extensibilité accrue améliorera d’autant plus la fiabilité de l'appareil. Un 

problème avec les dispositifs étirables, cependant, est la disponibilité limitée de matériaux 

conducteurs métalliques, de semi-conducteurs et plus généralement de dispositifs ayant les 

mêmes propriétés électriques que les systèmes électroniques rigides. 

Outre un certain degré de flexibilité, les matériaux organiques sont potentiellement peu 

coûteux et faciles à intégrer dans une fabrication à grande échelle. Pour la détection, cette 

flexibilité mécanique et leur conductivité ionique / électronique mixte sont également mieux 

adaptées à la détection de signaux en interaction avec le corps, pour des mesures 

physiologiques [5].Par conséquent, le développement de capteurs organiques a été choisi 

comme axe de ce travail avec deux capteurs: 

• L'OECT est un capteur qui correspond à la vision de peau électronique. Il peut être utilisé 

comme capteur multitâche pour mesurer des paramètres physiologiques du corps. 

• Un capteur infrarouge pour la mesure de température contact / sans contact, qui vise à être 

intégré à la peau électronique, en particulier pour les applications en prothétiques et en 

robotiques. 
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Résumé du chapitre 2: développement et caractérisation 

d’interconnexions étirables fabriquées par découpe 

laser 

Le développement d'interconnexions métalliques en forme de fer à cheval est plus efficace pour 

les matériaux métalliques épais. Ces matériaux ont l’avantage d’être très conducteurs. 

Cependant, la littérature ne fournit pas de procédé de fabrication optimisé pour les métaux 

épais. La technologie étudiée dans le chapitre 1 est soit basée sur la photolithographie, 

coûteuse et fastidieuse; soit sur la découpe laser de films minces sur un substrat polymère 

flexible. De plus, la littérature n’établit pas de règles claires pour la conception des 

interconnexions en forme de fer à cheval. 

L'objectif de ce chapitre est de développer un procédé simple et rapide permettant la 

fabrication d’interconnexions métalliques possédant une faible résistance et une extensibilité 

maximale. Dans ce but, un procédé de fabrication basé sur de la découpe laser permettant la 

fabrication d'interconnexions métalliques encapsulées dans du PDMS est décrit. Différents 

matériaux pour les interconnexions sont étudiés et la forme est optimisée pour une extensibilité 

maximale. 

Des interconnexions avec une faible résistance et stables sous étirement ont été fabriquées. 

Leur faible résistance permet une mesure précise pour des capteurs. Le procédé utilisé est 

compatible avec les techniques de micro-fabrication et le dispositif final est plat et prêt pour la 

prochaine étape d'intégration du capteur. Les interconnexions sont extensibles jusqu'à 80%, ce 

qui est plus que l'objectif de 30%. Cependant, les mesures en cyclage montrent environ 90 

cycles d'étirement avant la rupture de la ligne. Ces performances sont suffisantes pour des tests 

en laboratoire, mais doivent être améliorées pour les applications de peau électronique. Une 

amélioration de l'étirement est possible grâce à une étude de la couche d'encapsulation.  
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Résumé du chapitre 3: développement d’un OECT 

étirable pour des applications de capteur biologique et 

de peau électronique 

L'OECT est un capteur qui permet plusieurs mesures et qui peut être intégré dans une peau 

pour mesurer les paramètres en temps réel du corps humain. De plus, le processus est bien 

maîtrisé et l'intégration du PEDOT:PSS au-dessus des interconnexions est un défi technologique 

pour la fabrication de dispositifs organiques totalement étirables. L'OECT est un transistor 

souvent à base PEDOT dopé avec du PSS en tant que matériau actif. Ce polymère est conducteur 

et largement utilisé pour sa capacité à convertir un flux ionique en flux de courant.  

Un procédé pour structurer un transistor électrochimique étirable a été développé. En utilisant 

les interconnexions du chapitre 2, le procédé de fabrication repose une couche sacrificielle de 

Parylène-C et sur le remplacement des matériaux non étirables par du PDMS, définis par 

photolithographie et gravure plasma. Ce procédé constitue une preuve de la compatibilité des 

dispositifs et des outils présentés avec les techniques de micro-fabrication standard. Il évite 

toute étape de pré-étirement et ne contient que des matériaux étirables. 

Le dispositif résultant affiche des performances similaires à celles d’une OECT standard jusqu’à 

11% de déformation, avec une bonne transconductance et de bonnes caractéristiques de sortie 

jusqu’à 38%. Cependant, en raison du déséquilibre des propriétés mécaniques entre les 

interconnexions rigides et le PDMS, le polymère en couche mince (PEDOT:PSS) à l'interface est 

endommagé pendant l'étirement. Une conception appropriée du canal a permis de contrer 

cette limitation, mais les performances ont encore baissé après une déformation de 11%, alors 

que le PEDOT: PSS a montré plus d’extensibilité sur PDMS. 
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Résumé du chapitre 4: développement et caractérisation 

d’un capteur température/infrarouge étirable 

Un objectif de l'e-skin sur des prothèses est de reproduire les capacités de la peau sur un bras 

robotique. L'utilisation de capteurs de pression pour donner la sensation du toucher est un sujet 

de recherche très actif et la transmission de la réponse des capteurs au cerveau a fait l'objet 

d'études approfondies [140]. Ce chapitre traite de l'intégration de la sensation de température 

et en particulier de la détection de sources de chaleur sans contact. Ainsi, il serait possible de 

détecter la température avant d’être trop près de l’objet et d’endommager la peau artificielle. 

L'objectif de ce chapitre est de développer des capteurs infrarouges avec une extensibilité 

supérieure à 30%. Un examen des capteurs de température a permis d’identifier les matériaux 

pyroélectriques comme un choix adéquat pour l’application de peau électronique. Le PVDF est 

un matériau polymère présentant ces propriétés. Il possède la particularité d'induire un champ 

électrique avec un changement de température qui disparaît lorsque la température est 

maintenue stable. Pour éviter le décalage du module d’Young dans le matériau, une stratégie 

d'îlots rigides est adoptée et le procédé de fabrication est adapté en conséquence. Ensuite, les 

méthodes de caractérisation des dispositifs sont expliquées. Enfin, différentes caractéristiques 

du dispositif sont présentées: 

• la détection directe de température grâce à la mesure de capacité 

• La détection dynamique du changement de température par la mesure de tension induite 

• la réponse à une illumination infrarouge 

• ses propriétés sous étirement 

Le dispositif final présente une sensibilité à la détection de la température de 7pF/ °C sans 

contrainte. Aucun changement dans ses performances n'a été observé jusqu'à 35% d’étirement. 

La détection des radiations infrarouges est possible après polarisation du capteur. Cependant, 

son optimisation est requise pour pouvoir mesurer correctement la tension pyroélectrique sous 

étirement.  
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Conclusion 

Le développement de capteurs capables de reproduire les capacités de la peau humaine est un 

sujet de recherche stimulant. L'intégration de capteurs de pression dans une peau artificielle a 

été rendue possible grâce à l'utilisation de capteurs étirables. Cependant, la fabrication de 

capteurs de température étirables et plus  la détection de température sans contact n'a pas été 

largement étudiée. 

Ce travail a présenté les activités en rapport avec l'électronique étirable. Il a mis en évidence le 

développement de l'électronique extensible et plus spécifiquement pour des applications de 

détection dans la peau électronique. En raison de la flexibilité mécanique et de l’extensibilité 

potentielle des matériaux organiques, le développement de capteurs organiques a été choisi 

pour ce travail. L'objectif d’extensibilité  des capteurs a été établi à 30%. Le but est d’obtenir 

une faible résistance d’interconnexion avec une variation limitée pendant l’étirement afin de ne 

pas altérer le signal du capteur. Le développement de deux capteurs étirables a été présenté: 

• Un transistor électrochimique organique, permettant la mesure de paramètres 

physiologiques. 

• Un capteur de température infrarouge, permettant la mesure de la température dans une 

approche sans contact. 

Le chapitre 1 a présenté un aperçu de l'électronique étirable pour en comprendre les défis, et 

pour choisir les matériaux et les technologies pour le développement d'interconnexions 

étirables. La meilleure solution identifiée repose sur des interconnexions métalliques en forme 

de fer à cheval. Aucune extensibilité supérieure à 100% n'a été démontrée dans la littérature, 

mais elle permet une faible résistance et une grande stabilité lors de l’étirement. Pour 

l’intégration des capteurs actifs, une technique classique – dite à architecture d’île - consiste à 

rigidifier une zone et à ne travailler que sur l’extensibilité des interconnexions. Une autre 

approche consiste à utiliser des matériaux intrinsèquement étirables déposés par exemple sur 
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un substrat précontraint. Cela donne une bonne extensibilité mais n'est pas facilement 

compatible avec les techniques dites classiques de micro fabrication. 

Dans le chapitre 2, le procédé de fabrication et la caractérisation des interconnexions étirables à 

faible résistance coupés au laser ont été décrits. Le dispositif était étirable à 80% avec une 

augmentation de résistance de 1%. Il présentait une extensibilité comparable à celle déjà 

rapportée, mais avec une stabilité sans précédent et une résistance faible de l’ordre du 

milliohms, du fait de l’utilisation de feuilles métalliques épaisses. De plus, sa fabrication était 

rapide et facile à intégrer aux procédés de micro fabrication. Cette faible résistance à 

l’étirement est nécessaire pour la fabrication de capteurs extensibles de haute performance. 

Au chapitre 3, le développement d’un OECT extensible a été démontré. Le développement de ce 

dispositif sur un substrat rigide pour la cicatrisation des plaies a été présenté dans une première 

approche. Ce travail était une introduction pour démontrer le potentiel de détection des OECT 

et quels sont les défis liés à l'utilisation de ce dispositif. La formulation et le procédé  à la pointe 

de la technologie ont été optimisés pour rendre cet OECT étirable. Par rapport à la littérature, 

les performances électroniques obtenues sans contraintes sont comparables à des dispositifs 

rigide. Le dispositif était extensible jusqu'à 38%, mais la transconductance n'était pas stable lors 

de l'étirement. En effet, la fabrication de ce capteur est difficile en raison de l'hétérogénéité du 

module de Young à l'interface entre les différents matériaux utilisés; par exemple entre un 

métal rigide et un polymère souple. Une ingénierie appropriée à la transition métal / polymère 

doit être réalisée pour réduire les inégalités mécaniques et obtenir une transition en douceur. 

Dans le dernier chapitre, le PVDF-TrFE a été utilisé pour fabriquer un capteur de température 

étirable. Ce capteur infrarouge avait pour objectif d'être intégré directement dans une peau 

électronique. Ce capteur a montré des résultats prometteurs, avec une extensibilité de 35% 

sans aucune modification des performances. Les interconnexions développées dans le cadre de 

cette thèse étaient an adéquation avec le développement du capteur de température 

infrarouge. Par rapport à l'OECT, la conception du capteur infrarouge est apparue plus adaptée 

à l'utilisation d'interconnexions métalliques épaisse. L'îlot rigide formé ne posait pas les 

problèmes d’incompatibilité de module d’Young rencontrés avec l'intégration du matériau actif 
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entre le métal rigide et le substrat étirable. Les interconnexions étaient rigides et parfaitement 

adaptées, servant d'îlot mécanique portant le matériau actif. 

La prochaine étape de ce travail consiste à intégrer les capteurs dans une matrice afin de 

l’utiliser dans le modèle de peau électronique illustré par la figure 2. Le capteur peut être utilisé 

pour la pression et la température, ainsi que pour la détection infrarouge. Cependant, il est 

nécessaire de travailler sur la dissociation de ces différents effets. En effet, en tant que matériau 

piézoélectrique, le PVDF-TrFE a également une réponse à la pression et aux contraintes. Mais, 

dans le but d’intégrer ces dispositifs à d’autres capteurs de pression et de contact, Il serait 

possible de découpler au moins la température de ces effets. En effet, l'utilisation de capteurs 

tactiles et de pression stables à la température permettrait de prédire la réponse du PVDF-TrFE 

à ces stimulations. De plus, il n'est également pas possible de détecter l'infrarouge de 

préférence sur la réponse en température. Cependant, une source de chaleur à haute 

température émet une densité de puissance élevée des rayonnements infrarouges. Ainsi, le 

capteur sentirait un échauffement. Quoi qu'il en soit, dans le cas d'une peau électronique, la 

peau sentirait une source très chaude et comprendrait un danger. Le développement d'un 

capteur infrarouge étirable est une étape cruciale au développement de la peau électronique. 

L'intégration en matrice de capteur est le prochain défi. Les interconnexions développées dans 

ce travail sont extensibles dans une direction mais pas dans l'axe perpendiculaire. Cependant, 

certains travaux ont déjà été réalisés pour adapter l'utilisation des serpentins dans toutes les 

directions et peuvent être facilement adaptés aux interconnexions actuelles. De plus, la 

conception d'une matrice implique un dispositif pour adresser chaque capteur, avec la 

fabrication de transistors à films minces étirables, comme matrice active par exemple. Si 

plusieurs couches de détection sont utilisées dans une configuration d'empilement, chaque 

couche s'adressant à une capacité de détection spécifique, le signal enregistré doit être transmis 

d'une couche à une autre par des interconnexions verticales afin de collecter toutes les 

données. Ces interconnexions verticales doivent être développées en insérant des fils 

métalliques conventionnels entre les couches. Alternativement, les signaux enregistrés 

pourraient être transférés par la lumière, à travers des guides d'ondes extensibles pour porter 

les informations [160]. 
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Annexe 1: LabVIEW code to make the stretching test  
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Annexe 2: Code developed to design horseshoe 

interconnections 

 

This code is developed in Ruby, which is compatible with KLayout. It designs serpentines with pads 
connectors, with desired parameters Alpha, Radius, Width, L, number of serpentines, and width of the 
connection between the pad and the serpentines. 

 

module MyMacro 
 
#Initialization 
#Create a new view (mode 1) with an empty layout 
main_window = RBA::Application::instance.main_window 
layout = main_window.create_layout(1).layout 
layout_view = main_window.current_view 
#Set the database unit (shown as an example, the default is 0.001) 
layout.dbu = 0.01 
#Create a layer (in this sample layer 1, datatype 0) 
layer_index = layout.insert_layer(RBA::LayerInfo::new(1, 0)) 
#Add a cell (in this case "TOP") 
cell_index = layout.add_cell("TOP") 
cell = layout.cell(cell_index) 
 
# Definition of the horseshoe parameters 
w = 400*100   #Width line in µm divided by database unit 
a = 20               #Angle alpha in deg 
r = 800*100    #Radius of the arc of circle in µm divided by database unit 
L = 800*100    #Length of connection between 2 horseshoe in µm divided by database unit 
 
#Internal parameters for the design 
alpha=a*Math::PI / 180       #Radians 
ar= Math::PI + 2*a*Math::PI / 180      #Radians+ half circle 
ac= (a*Math::PI / 180) 
rint = r-w/2       #Internal circle  radius 
rext = r+w/2       #External circle radius 
rconnecteur=rext*5       #Radius of the connector to the pad  
nboucles = 10      #Number of horseshoe 
n=100         #Precision for the number of point in the arc of circle 
da= ar/n      #Angle of the precision 
a=0 
b=0 
d=0 
 
#Calculous of the coordinates for the first motif 
#Points of the external circle 
fa=Math::cos(alpha) *rext *(-1) 
fo=Math::sin(alpha) *rext *(-1) 
#1

st
 point of the connection 

ao=Math::cos(alpha) *L 
aa=Math::sin(alpha) *L 
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la=fa+aa 
lo=fo-ao 
#2

nd
 point rectangle 

bo=Math::sin(alpha) *rint 
ba=Math::cos(alpha) *rint 
ca=la-ba 
co=lo-bo 
#Last point circle 
car= ca-ba 
cor=co+bo 
#Other point rectangle 
dar=Math::sin(alpha) *L 
dor=Math::cos(alpha) *L 
ra=car+dar 
ro=cor+dor 
#Back of the first motif 
wa=ra-Math::cos(alpha)*w 
wo=ro+Math::sin(alpha)*w 
far=Math::cos(alpha) *rint*(-1) 
forr=Math::sin(alpha) *rint *(-1) 
aor=Math::cos(alpha) *L 
aar=Math::sin(alpha) *L 
lar=far+aar 
lor=forr-aor 
dpa= a+fa 
 
#Distance between 2 motifs 
d=dpa + ra 
 
# Left pad 
pts = [] 
p1a=wa-ba 
p1o= wo+bo 
arp= Math::PI + alpha 
dap= arp/n 
acp= alpha 
p2a=p1a-(rconnecteur-rint-w) 
 
#Drawing 1

st
 motif and left pad 

serpentines and connection 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(p1a+rint * Math::cos(i*dap-acp), p1o+rint * Math::sin(i*dap-acp)))) 
end 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(p2a+rconnecteur * Math::cos((n-i)*Math::PI/n), p1o+rconnecteur * 
Math::sin((n-i)*Math::PI/n)))) 
end 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(p1a+rext * Math::cos((n-i)*alpha/n-acp), p1o+rext * Math::sin((n-
i)*alpha/n-acp)))) 
end 
cell.shapes(layer_index).insert(RBA::Polygon::new(pts)) 
#Circle of the pad 
pts=[] 
cpa=p1a-rint-3000*100 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(cpa+3000*100 * Math::cos(i*2*Math::PI/n), 3000*100 * 
Math::sin(i*2*Math::PI/n)))) 
end 
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cell.shapes(layer_index).insert(RBA::Polygon::new(pts)) 
#Rectangle pad 
cell.shapes(layer_index).insert(RBA::Box::new(cpa, -3000*100, cpa-9000*100, 3000*100)) 
for j in 0..nboucles 
pts = [] 
 
#dernier point du cercle de centre (a,b) 
fa=Math::cos(alpha) *rext *(-1) +a 
fo=Math::sin(alpha) *rext *(-1) 
 
#pour le premier point du rectangle 
ao=Math::cos(alpha) *L 
aa=Math::sin(alpha) *L 
la=fa+aa 
lo=fo-ao 
 
#Coordonnées du centre de la boucle 2 
#Pour le premier point du rectangle 
bo=Math::sin(alpha) *rint 
ba=Math::cos(alpha) *rint 
ca=la-ba 
co=lo-bo 
 
#Coordonnées du dernier point du cercle 
car= ca-ba 
cor=co+bo 
 
#coordonnées du point du rectangle au dessus 
dar=Math::sin(alpha) *L 
dor=Math::cos(alpha) *L 
ra=car+dar 
ro=cor+dor 
 
#Creation de la structrureretour 
wa=ra-Math::cos(alpha)*w 
wo=ro+Math::sin(alpha)*w 
far=Math::cos(alpha) *rint*(-1) +a 
forr=Math::sin(alpha) *rint *(-1) 
aor=Math::cos(alpha) *L 
aar=Math::sin(alpha) *L 
lar=far+aar 
lor=forr-aor 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(a+rext * Math::cos(i*da-ac), b+rext * Math::sin(i*da-ac)))) 
end  
pts.push(RBA::Point::new(la,lo)) 
#Boucle 2 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(ca+rint * Math::cos(i*da-ac), co+rint * Math::sin(-(i*da-ac))))) 
end  
pts.push(RBA::Point::new(ra,ro)) 
pts.push(RBA::Point::new(wa,wo)) 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(ca+rext * Math::cos((n-i)*da-ac), co+rext * Math::sin(-((n-i)*da-ac))))) 
end  
pts.push(RBA::Point::new(lar,lor)) 
pts.push(RBA::Point::new(far,forr)) 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(a+rint * Math::cos((n-i)*da-ac), rint * Math::sin((n-i)*da-ac)))) 
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end 
 
#Polygone 
cell.shapes(layer_index).insert(RBA::Polygon::new(pts)) 
a=a-d+1 
end 
 
# Ajout du pad à droite 
p1a=a+d 
p1o=0 
#dernier rectangle 
pts = [] 
r11a=p1a+rint*Math::cos(alpha) 
r11o=p1o-rint*Math::sin(alpha) 
r12a=p1a+rext*Math::cos(alpha) 
r12o=p1o-rext*Math::sin(alpha) 
r21a=r11a-L*Math::sin(alpha) 
r21o=r11o-L*Math::cos(alpha) 
r22a=r12a-L*Math::sin(alpha) 
r22o=r12o-L*Math::cos(alpha) 
pts.push(RBA::Point::new(r11a,r11o)) 
pts.push(RBA::Point::new(r12a,r12o)) 
pts.push(RBA::Point::new(r22a,r22o)) 
pts.push(RBA::Point::new(r21a,r21o)) 
cell.shapes(layer_index).insert(RBA::Polygon::new(pts)) 
 
#dernier arc de cercle + rectangle 
pts=[] 
centrea=r22a+rint*Math::cos(alpha) 
centreo=r22o-rint*Math::sin(alpha) 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(centrea+rint * Math::cos(-(n-i)*da+ac), centreo+rint * Math::sin(-(n-
i)*da+ac)))) 
end  
r3a=centrea+rint*Math::cos(alpha)-L*Math::sin(alpha) 
r3o=centreo+rint*Math::sin(alpha)+L*Math::cos(alpha) 
pts.push(RBA::Point::new(r3a,r3o)) 
r4a=r3a+w*Math::cos(alpha) 
r4o=r3o+w*Math::sin(alpha) 
pts.push(RBA::Point::new(r4a,r4o)) 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(centrea+rext * Math::cos(-i*da+ac), centreo+rext * Math::sin(-i*da+ac)))) 
end  
cell.shapes(layer_index).insert(RBA::Polygon::new(pts)) 
 
#connecteur 
# Ajout du pad à gauche 
pts = [] 
r5a= r4a+ba 
r5o= r4o+bo 
arp= Math::PI + alpha 
dap= arp/n 
acp= alpha 
p2a=r5a+(rconnecteur-rint-w) 
 
#serpentin jusqu'à 90° puis connection 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(r5a+rint * Math::cos((n-i)*dap), r5o+rint * Math::sin((n-i)*dap)))) 
end 
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for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(p2a+rconnecteur * Math::cos(i*Math::PI/n), r5o+rconnecteur * 
Math::sin(i*Math::PI/n)))) 
end 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(r5a+rext * Math::cos(i*alpha/n+Math::PI), r5o+rext * 
Math::sin(i*alpha/n+Math::PI)))) 
end 
cell.shapes(layer_index).insert(RBA::Polygon::new(pts)) 
 
#cercle pad 
pts=[] 
cpa=r5a+rint+3000*100 
for i in 0..n 
pts.push(RBA::Point::from_dpoint(RBA::DPoint::new(cpa+3000*100 * Math::cos(i*2*Math::PI/n), 3000*100 * 
Math::sin(i*2*Math::PI/n)))) 
end 
cell.shapes(layer_index).insert(RBA::Polygon::new(pts)) 
 
#rectangle pad 
cell.shapes(layer_index).insert(RBA::Box::new(cpa, -3000*100, cpa+9000*100, 3000*100)) 
 
#End 
layout_view.select_cell(cell_index, 0)  
layout_view.add_missing_layers 
layout_view.zoom_fit 
end 
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Abstract : 

Stretchable electronics concern electrical and electronic circuits that are elastically or 
inelastically stretchable by more than a few percents while retaining function. In order to 
achieve this, devices tend to be laminar and usually thin. Compared with rigid, hard 
conventional electronic systems in planar formats, stretchable electronic systems can be 
stretched, compressed, bent, and deformed into arbitrary shapes without electrical or 
mechanical failure within the circuits. Currently, stretchable electronic systems have many 
important and emerging applications in new, soft and curved bio-inspired areas, such as 
tuneable electronic eye cameras or artificial skin capable of mechanically invisible integration 
onto human skin. These sensors would be integrated on robotic or prosthetic hands to recreate 
the same sensing capabilities than the skin: touch, pressure and temperature. The aim of this 
thesis is to identified strategies and materials to make stretchable devices with stretching 
capabilities similar to the one of the skin (~15%) with performance close to rigid devices. In this 
purpose, a microfabrication process to fabricate organic sensors has been developed. The 
devices are based on laser cut bulk metallic stretchable interconnections with maximum 
elongation of 80% in PDMS matrix. Then, these tools have been used to fabricate a biosensor: 
the organic electrochemical transistor (OECT).  The transistor is based on a conducting polymer 
and is able to sense physiological signal. A temperature sensor has also been developed, able to 
sense infrared signal, like the human skin. These devices can stand up to 30% strain and can be 
integrated into a matrix for artificial skin applications. 
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Résumé : 

Le domaine de l’électronique étirable  concerne les circuits électriques et électroniques qui sont 
élastiquement ou inélastiquement étirables par plus de quelques pourcents tout en gardant leur 
intégrité mécanique et électrique. Actuellement, les dispositifs électroniques étirables ont de 
nouvelles applications émergentes, notamment pour les intégrer sur la peau. Ces systèmes, se 
présentent sous la forme d’une peau artificielle, qui peut intégrer des capteurs. Ces capteurs, 
peuvent être aussi intégrés sur des mains robotiques, ou des prothèses, pour recréer les mêmes 
propriétés que la peau : toucher, pression et température. Le but de ce travail est d’identifier les 
stratégies et les matériaux permettant de fabriquer des dispositifs étirables possédant une 
capacité d’étirement comparable à celle de la peau (~15%) avec des performances proches de 
l’électronique rigide. Pour cela, un procédé de micro fabrication permettant de fabriquer des 
capteurs organiques a été développé. Les systèmes développés sont basé sur des 
interconnections métalliques en forme de serpentin permettant un étirement jusqu’à 80%. 
Ensuite, ces différents outils ont été utilisés pour fabriquer un dispositif biomédical : le 
transistor électrochimique organique (OECT). Ce transistor utilise un polymère conducteur pour 
capter des signaux physiologiques. Enfin, un capteur température a été développé. Il peut aussi 
capter des signaux infrarouges, à la manière de la peau humaine. Ces dispositifs peuvent 
supporter des déformations jusqu’à 30% de sa longueur initiales et peuvent donc être intégrer 
sous forme de matrice pour une utilisation sur la peau artificielle. 

 


