T. J. Liesegang, Epidemiology of ocular herpes simplex. Natural history in Rochester, Minn, Arch Ophthalmol, vol.107, issue.8, pp.1160-1165, 1950.

M. Mcelwee, F. Beilstein, M. Labetoulle, F. J. Rixon, and D. Pasdeloup, Dystonin/BPAG1 promotes plusend-directed transport of herpes simplex virus 1 capsids on microtubules during entry, J Virol, vol.87, issue.20, pp.11008-11026, 2013.

M. Miranda-saksena, C. E. Denes, R. J. Diefenbach, and A. L. Cunningham, Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton, Viruses, vol.10, issue.2, 2018.

A. V. Farooq and D. Shukla, Herpes simplex epithelial and stromal keratitis: an epidemiologic update, Surv Ophthalmol, vol.57, issue.5, pp.448-62, 2012.

G. Mcquillan, D. Kruszon-moran, E. W. Flagg, and R. Paulose-ram, Prevalence of Herpes Simplex Virus Type 1 and Type 2 in Persons Aged 14-49: United States, NCHS data brief, vol.2018, issue.304, pp.1-8, 2015.

K. Wang, T. Y. Lau, M. Morales, E. K. Mont, and S. E. Straus, Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level, J Virol, vol.79, issue.22, pp.14079-87, 2005.

F. Pica and A. Volpi, Public awareness and knowledge of herpes labialis, Journal of medical virology, vol.84, issue.1, pp.132-139, 2012.

F. Rozenberg, C. Deback, and H. Agut, Herpes simplex encephalitis : from virus to therapy, Infectious disorders drug targets, vol.11, issue.3, pp.235-50, 2011.

E. Schmutzhard, Viral infections of the CNS with special emphasis on herpes simplex infections, Journal of neurology, vol.248, issue.6, pp.469-77, 2001.

A. Casrouge, S. Y. Zhang, and C. Eidenschenk, Herpes simplex virus encephalitis in human UNC-93B deficiency, Science, vol.314, issue.5797, pp.308-320, 2006.

S. Y. Zhang, E. Jouanguy, and S. Ugolini, TLR3 deficiency in patients with herpes simplex encephalitis, Science, vol.317, issue.5844, pp.1522-1529, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297308

V. Sancho-shimizu, S. Y. Zhang, and L. Abel, Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans, Current opinion in allergy and clinical immunology, vol.7, issue.6, pp.495-505, 2007.

M. Audry, M. Ciancanelli, and K. Yang, NEMO is a key component of NF-kappaB-and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus, The Journal of allergy and clinical immunology, vol.128, issue.3, pp.610-617, 2011.

S. Dupuis, E. Jouanguy, and S. Al-hajjar, Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency, Nature genetics, vol.33, issue.3, pp.388-91, 2003.

K. J. Looker, A. S. Magaret, and M. T. May, First estimates of the global and regional incidence of neonatal herpes infection. The Lancet, Global health, vol.5, issue.3, pp.300-309, 2017.

J. B. Harris and A. P. Holmes, Neonatal Herpes Simplex Viral Infections and Acyclovir: An Update. The journal of pediatric pharmacology and therapeutics : JPPT : the official journal of, PPAG, vol.22, issue.2, pp.88-93, 2017.

M. Labetoulle, P. Auquier, and H. Conrad, Incidence of herpes simplex virus keratitis in France, Ophthalmology, vol.112, issue.5, pp.888-95, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681646

R. C. Young, D. O. Hodge, T. J. Liesegang, and K. H. Baratz, Incidence, recurrence, and outcomes of herpes simplex virus eye disease in Olmsted County, Arch Ophthalmol, vol.128, issue.9, pp.1178-83, 1976.

T. J. Liesegang, Herpes simplex virus epidemiology and ocular importance, Cornea, vol.20, issue.1, pp.1-13, 2001.

M. Labetoulle, P. Kucera, and G. Ugolini, Neuronal pathways for the propagation of herpes simplex virus type 1 from one retina to the other in a murine model, The Journal of general virology, vol.81, pp.1201-1211, 2000.

J. M. Legeais, C. Parc, F. Hermies, Y. Pouliquen, and R. G. , Nineteen years of penetrating keratoplasty in the Hotel-Dieu Hospital in Paris, Cornea, vol.20, issue.6, pp.603-609, 2001.

C. Reynaud, A. Rousseau, G. Kaswin, M. 'garrech, M. Barreau et al., Persistent Impairment of Quality of Life in Patients with Herpes Simplex Keratitis, Ophthalmology, vol.124, issue.2, pp.160-69, 2017.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190, p.131

S. H. James and M. N. Prichard, Current and future therapies for herpes simplex virus infections: mechanism of action and drug resistance, Current opinion in virology, vol.8, pp.54-61, 2014.

C. Macdougall and B. J. Guglielmo, Pharmacokinetics of valaciclovir, The Journal of antimicrobial chemotherapy, vol.53, issue.6, pp.899-901, 2004.

K. R. Wilhelmus, Therapeutic interventions for herpes simplex virus epithelial keratitis. The Cochrane database of systematic reviews, p.2898, 2008.

K. R. Wilhelmus, R. W. Beck, and P. S. Moke, Acyclovir for the prevention of recurrent herpes simplex virus eye disease. Herpetic Eye Disease Study Group, N Engl J Med, vol.339, issue.5, pp.300-306, 1998.

A. Wald, L. Corey, and B. Timmler, Helicase-primase inhibitor pritelivir for HSV-2 infection, N Engl J Med, vol.370, issue.3, pp.201-211, 2014.

R. Duan, R. D. De-vries, A. D. Osterhaus, L. Remeijer, and G. M. Verjans, Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis, J Infect Dis, vol.198, issue.5, pp.659-63, 2008.

M. Van-velzen, D. A. Van-de-vijver, F. B. Van-loenen, A. D. Osterhaus, L. Remeijer et al., Acyclovir prophylaxis predisposes to antiviral-resistant recurrent herpetic keratitis, J Infect Dis, vol.208, issue.9, pp.1359-65, 2013.

M. Van-velzen, T. Missotten, and F. B. Van-loenen, Acyclovir-resistant herpes simplex virus type 1 in intra-ocular fluid samples of herpetic uveitis patients, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology, vol.57, issue.3, pp.215-236, 2013.

A. Rousseau, D. Boutolleau, and K. Titier, Recurrent herpetic keratitis despite antiviral prophylaxis: A virological and pharmacological study, Antiviral research, vol.146, pp.205-217, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02316781

S. Burrel, C. Deback, H. Agut, and D. Boutolleau, Genotypic characterization of UL23 thymidine kinase and UL30 DNA polymerase of clinical isolates of herpes simplex virus: natural polymorphism and mutations associated with resistance to antivirals, Antimicrobial agents and chemotherapy, vol.54, issue.11, pp.4833-4875, 2010.

A. Rousseau, S. Burrel, and J. Gueudry, Aciclovir-resistant HSV1 keratitis: a clinical and virological study, Acta ophthalmologica, vol.96, issue.S261, pp.110-121, 2018.

E. Frobert, S. Burrel, and S. Ducastelle-lepretre, Resistance of herpes simplex viruses to acyclovir: An update from a ten-year survey in France, Antiviral research, 2014.

M. Kumar, J. M. Hill, C. Clement, E. D. Varnell, H. W. Thompson et al., A double-blind placebocontrolled study to evaluate valacyclovir alone and with aspirin for asymptomatic HSV-1 DNA shedding in human tears and saliva, Invest Ophthalmol Vis Sci, vol.50, issue.12, pp.5601-5609, 2009.

U. Sengler, R. T. Adams, O. Krempe, C. Sundmacher, and R. , Herpes simplex virus infection in the media of donor corneas during organ culture: frequency and consequences, Eye, vol.15, pp.644-651, 2001.

S. Biswas, P. Suresh, R. E. Bonshek, G. Corbitt, A. B. Tullo et al., Graft failure in human donor corneas due to transmission of herpes simplex virus, The British journal of ophthalmology, vol.84, issue.7, pp.701-706, 2000.

L. Remeijer, J. Maertzdorf, P. Doornenbal, G. M. Verjans, and A. D. Osterhaus, Herpes simplex virus 1 transmission through corneal transplantation, Lancet, vol.357, issue.9254, p.442, 2001.

G. Thuret, S. Acquart, and P. Gain, Ultrastructural demonstration of replicative herpes simplex virus type 1 transmission through corneal graft, Transplantation, vol.77, issue.2, pp.325-331, 2004.

X. Zheng, Reactivation and donor-host transmission of herpes simplex virus after corneal transplantation, Cornea, vol.21, issue.7, pp.90-93, 2002.

H. Mietz, P. Cassinotti, G. Siegl, B. Kirchhof, and G. K. Krieglstein, Detection of herpes simplex virus after penetrating keratoplasty by polymerase chain reaction: correlation of clinical and laboratory findings, Graefes Arch Clin Exp Ophthalmol, vol.233, issue.11, pp.714-720, 1995.

G. C. Cockerham, K. Bijwaard, Z. M. Sheng, A. A. Hidayat, R. L. Font et al., Primary graft failure : a clinicopathologic and molecular analysis, Ophthalmology, vol.107, issue.11, pp.2083-90, 2000.

J. A. Lomholt, K. Baggesen, and N. Ehlers, Recurrence and rejection rates following corneal transplantation for herpes simplex keratitis, Acta ophthalmologica Scandinavica, vol.73, issue.1, pp.29-32, 1995.

, The Australian Corneal Graft Registry, report. Australian and New Zealand journal of ophthalmology, vol.21, issue.2, pp.1-48, 1990.

B. Roizman and P. E. Pelett, The Familly Herpesviridae: A brief Introduction

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, pp.2381-97, 2001.

S. Crépin, M. Labetoulle, and . Alphaherpesvirinae, Généralités sur les herpèvirus et virus de l'herpès simplex, Paris: Med'Com, issue.1, pp.13-26, 2009.

J. C. Brown and W. W. Newcomb, Herpesvirus capsid assembly: insights from structural analysis, Current opinion in virology, vol.1, issue.2, pp.142-151, 2011.

C. Hulo, E. De-castro, and P. Masson, ViralZone: a knowledge resource to understand virus diversity, Nucleic acids research, vol.39, pp.576-82, 2011.

B. Roizman, P. L. Ward, and . Simplexvirus, The Springer Index of Viruses, pp.663-70, 2011.

T. J. Liesegang, Biology and molecular aspects of herpes simplex and varicella-zoster virus infections, Ophthalmology, vol.99, issue.5, pp.781-99, 1992.

A. T. David, A. Saied, A. Charles, R. Subramanian, V. N. Chouljenko et al., A herpes simplex virus 1 (McKrae) mutant lacking the glycoprotein K gene is unable to infect via neuronal axons and egress from neuronal cell bodies, mBio, vol.3, issue.4, pp.144-156, 2012.

D. Devadas, T. Koithan, R. Diestel, U. Prank, B. Sodeik et al., Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin-nor caveolin-mediated endocytosis, J Virol, vol.88, issue.22, pp.13378-95, 2014.

A. P. Roberts, F. Abaitua, P. O'hare, D. Mcnab, F. J. Rixon et al., Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1, J Virol, vol.83, issue.1, pp.105-121, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667493

P. Xu, S. Mallon, and B. Roizman, PML plays both inimical and beneficial roles in HSV-1 replication, Proceedings of the National Academy of Sciences of the United States of America, vol.113, issue.21, pp.3022-3030, 2016.

H. Gu, Y. Zheng, and B. Roizman, Interaction of herpes simplex virus ICP0 with ND10 bodies: a sequential process of adhesion, fusion, and retention, J Virol, vol.87, issue.18, pp.10244-54, 2013.

R. D. Everett, HSV-1 biology and life cycle, Methods in molecular biology, vol.1144, pp.1-17, 2014.

B. Roizman, D. M. Knipe, D. M. Knipe, P. M. Howley, D. E. Griffin et al., Herpesvirus and their replication, pp.2399-459, 2001.

S. K. Weller and D. M. Coen, Herpes simplex viruses: mechanisms of DNA replication, Cold Spring Harbor perspectives in biology, vol.4, issue.9, p.13011, 2012.

J. M. Melancon, R. E. Luna, T. P. Foster, and K. G. Kousoulas, Herpes simplex virus type 1 gK is required for gB-mediated virus-induced cell fusion, while neither gB and gK nor gB and UL20p function redundantly in virion de-envelopment, J Virol, vol.79, issue.1, pp.299-313, 2005.

S. Cavallero, N. Huot, L. Francelle, P. Lomonte, T. Naas et al., Biological features of herpes simplex virus type 1 latency in mice according to experimental conditions and type of neurones, Invest Ophthalmol Vis Sci, vol.55, issue.12, pp.7761-74, 2014.

S. Maillet, T. Naas, and S. Crepin, Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICP0 transcripts, J Virol, vol.80, issue.18, pp.9310-9331, 2006.

D. Phelan, E. R. Barrozo, and D. C. Bloom, HSV1 latent transcription and non-coding RNA: A critical retrospective, J Neuroimmunol, vol.308, pp.65-101, 2017.

N. M. Sawtell, The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia, J Virol, vol.72, issue.8, pp.6888-92, 1998.

M. Hagmann, O. Georgiev, W. Schaffner, and P. Douville, Transcription factors interacting with herpes simplex virus alpha gene promoters in sensory neurons, Nucleic acids research, vol.23, issue.24, pp.4978-85, 1995.

T. Valyi-nagy, S. Deshmane, A. Dillner, and N. W. Fraser, Induction of cellular transcription factors in trigeminal ganglia of mice by corneal scarification, herpes simplex virus type 1 infection, and explantation of trigeminal ganglia, J Virol, vol.65, issue.8, pp.4142-52, 1991.

K. A. Lillycrop, C. L. Dent, and S. C. Wheatley, The octamer-binding protein Oct-2 represses HSV immediate-early genes in cell lines derived from latently infectable sensory neurons, Neuron, vol.7, issue.3, pp.381-90, 1991.

T. M. Kristie, J. L. Vogel, and A. E. Sears, Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency, Proceedings of the National Academy of Sciences of the United States of America, vol.96, issue.4, pp.1229-1262, 1999.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190, p.133

L. Boissiere, S. Hughes, T. , O. Hare, and P. , HCF-dependent nuclear import of VP16, The EMBO journal, vol.18, issue.2, pp.480-489, 1999.

N. J. Kubat, R. K. Tran, P. Mcanany, and D. C. Bloom, Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression, J Virol, vol.78, issue.3, pp.1139-1188, 2004.

G. R. Dressler, D. L. Rock, and N. W. Fraser, Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo, The Journal of general virology, vol.68, pp.1761-1766, 1987.

N. J. Kubat, A. L. Amelio, N. V. Giordani, and D. C. Bloom, The herpes simplex virus type 1 latencyassociated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription, J Virol, vol.78, issue.22, pp.12508-12526, 2004.

D. L. Kwiatkowski, H. W. Thompson, and D. C. Bloom, The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency, J Virol, vol.83, issue.16, pp.8173-81, 2009.

Q. Y. Wang, C. Zhou, K. E. Johnson, R. C. Colgrove, D. M. Coen et al., Herpesviral latencyassociated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.44, pp.16055-16064, 2005.

T. M. Kristie, Dynamic modulation of HSV chromatin drives initiation of infection and provides targets for epigenetic therapies, Virology, pp.555-61, 2015.

A. R. Cliffe, D. A. Garber, and D. M. Knipe, Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters, J Virol, vol.83, issue.16, pp.8182-90, 2009.

C. Krummenacher, J. M. Zabolotny, and N. W. Fraser, Selection of a nonconsensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript, J Virol, vol.71, issue.8, pp.5849-60, 1997.

M. P. Nicoll, J. T. Proenca, and S. Efstathiou, The molecular basis of herpes simplex virus latency, FEMS microbiology reviews, vol.36, issue.3, pp.684-705, 2012.

R. T. Javier, J. G. Stevens, V. B. Dissette, and E. K. Wagner, A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state, Virology, vol.166, issue.1, pp.254-261, 1988.

G. C. Perng, S. M. Slanina, and A. Yukht, A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation, J Virol, vol.73, issue.2, pp.920-929, 1999.

G. Henderson, W. Peng, and L. Jin, Regulation of caspase 8-and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript, Journal of neurovirology, vol.8, issue.2, pp.103-114, 2002.

G. C. Perng, C. Jones, and J. Ciacci-zanella, Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript, Science, vol.287, issue.5457, pp.1500-1503, 2000.

M. Ahmed, M. Lock, C. G. Miller, and N. W. Fraser, Regions of the herpes simplex virus type 1 latencyassociated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo, J Virol, vol.76, issue.2, pp.717-746, 2002.

K. Tormanen, S. Allen, K. R. Mott, and H. Ghiasi, The Latency-Associated Transcript Inhibits Apoptosis via Downregulation of Components of the Type I Interferon Pathway during Latent Herpes Simplex Virus 1 Ocular Infection, J Virol, vol.93, issue.10, 2019.

R. Srivastava, X. Dervillez, and A. A. Khan, The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits, J Virol, vol.90, issue.8, pp.3913-3941, 2016.

A. A. Chentoufi, E. Kritzer, and M. V. Tran, The herpes simplex virus 1 latency-associated transcript promotes functional exhaustion of virus-specific CD8+ T cells in latently infected trigeminal ganglia: a novel immune evasion mechanism, J Virol, vol.85, issue.17, pp.9127-9165, 2011.

J. L. Umbach, M. F. Kramer, I. Jurak, H. W. Karnowski, D. M. Coen et al., MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs, Nature, vol.454, issue.7205, pp.780-783, 2008.

J. L. Umbach, M. A. Nagel, R. J. Cohrs, D. H. Gilden, and B. R. Cullen, Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia, J Virol Université

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190, p.135

A. J. Davison, Evolution of sexually transmitted and sexually transmissible human herpesviruses, Annals of the New York Academy of Sciences, vol.1230, pp.37-49, 2011.

N. M. Sawtell and R. L. Thompson, Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia, Journal of virology, vol.66, issue.4, pp.2150-56, 1992.

D. M. Neumann, P. S. Bhattacharjee, and J. M. Hill, Sodium butyrate: a chemical inducer of in vivo reactivation of herpes simplex virus type 1 in the ocular mouse model, J Virol, vol.81, issue.11, pp.6106-6116, 2007.

N. M. Sawtell and R. L. Thompson, Comparison of herpes simplex virus reactivation in ganglia in vivo and in explants demonstrates quantitative and qualitative differences, Journal of virology, vol.78, issue.14, pp.7784-94, 2004.

A. C. Wilson and I. Mohr, A cultured affair: HSV latency and reactivation in neurons, Trends in microbiology, vol.20, issue.12, pp.604-615, 2012.

S. Cavallero, N. Huot, L. Francelle, P. Lomonte, T. Naas et al., Biological features of herpes simplex virus type 1 latency in mice according to experimental conditions and type of neurones, Investigative ophthalmology & visual science, vol.55, issue.12, pp.7761-74, 2014.

T. J. Hill, H. J. Field, and W. A. Blyth, Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease, The Journal of general virology, vol.28, issue.3, pp.341-53, 1975.

M. Labetoulle, P. Kucera, and G. Ugolini, Neuronal propagation of HSV1 from the oral mucosa to the eye, Invest Ophthalmol Vis Sci, vol.41, issue.9, pp.2600-2606, 2000.

T. J. Hill, D. L. Yirrell, and W. A. Blyth, Infection of the adrenal gland as a route to the central nervous system after viraemia with herpes simplex virus in the mouse, The Journal of general virology, vol.67, issue.2, pp.309-329, 1986.

H. E. Renis, E. E. Eidson, J. Mathews, and J. E. Gray, Pathogenesis of herpes simplex virus types 1 and 2 in mice after various routes of inoculation, Infection and immunity, vol.14, issue.2, pp.571-579, 1976.

P. Wildy, The progression of herpes simplex virus to the central nervous system of the mouse, The Journal of hygiene, vol.65, issue.2, pp.173-92, 1967.

M. Labetoulle, S. Maillet, S. Efstathiou, S. Dezelee, E. Frau et al., HSV1 latency sites after inoculation in the lip: assessment of their localization and connections to the eye, Invest Ophthalmol Vis Sci, vol.44, issue.1, pp.217-242, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02678895

P. Drane, K. Ouararhni, A. Depaux, M. Shuaib, and A. Hamiche, The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3, Genes & development, vol.24, issue.12, pp.1253-65, 2010.

F. Catez, C. Picard, and K. Held, HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons, PLoS Pathog, vol.8, issue.8, p.1002852, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749614

C. Cohen, A. Corpet, and S. Roubille, Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/Histone H3.3/H3.3 Chaperone Axis, PLoS Pathog, vol.14, issue.9, p.1007313, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02167220

M. A. Maroui, A. Calle, and C. Cohen, Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment, PLoS Pathog, vol.12, issue.9, p.1005834, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911474

H. S. Dai and M. A. Caligiuri, Molecular Basis for the Recognition of Herpes Simplex Virus Type 1 Infection by Human Natural Killer Cells, Frontiers in immunology, vol.9, p.183, 2018.

S. Y. Zhang and J. L. Casanova, Inborn errors underlying herpes simplex encephalitis: From TLR3 to IRF3, The Journal of experimental medicine, vol.212, issue.9, pp.1342-1345, 2015.

Y. Ma and B. He, Recognition of herpes simplex viruses: toll-like receptors and beyond, Journal of molecular biology, vol.426, issue.6, pp.1133-1180, 2014.

J. Melchjorsen, Sensing herpes: more than toll, Reviews in medical virology, vol.22, issue.2, pp.106-127, 2012.

G. K. Lima, G. P. Zolini, and D. S. Mansur, Toll-like receptor (TLR) 2 and TLR9 expressed in trigeminal ganglia are critical to viral control during herpes simplex virus 1 infection, Am J Pathol, vol.177, issue.5, pp.2433-2478, 2010.

L. S. Reinert, K. Lopusna, and H. Winther, Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS, Nature communications, vol.7, p.13348, 2016.

T. Alandijany, A. Roberts, and K. L. Conn, Distinct temporal roles for the promyelocytic Université

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 136 leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection, PLoS Pathog, vol.14, issue.1, p.1006769, 2018.

J. Li, S. Hu, and L. Zhou, Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons, Glia, vol.59, issue.1, pp.58-67, 2011.

E. Cantin, B. Tanamachi, and H. Openshaw, Role for gamma interferon in control of herpes simplex virus type 1 reactivation, J Virol, vol.73, issue.4, pp.3418-3441, 1999.

B. Sainz and W. P. Halford, Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1, J Virol, vol.76, issue.22, pp.11541-50, 2002.

A. I. Kajita, S. Morizane, T. Takiguchi, T. Yamamoto, M. Yamada et al., Interferon-Gamma Enhances TLR3 Expression and Anti-Viral Activity in Keratinocytes, The Journal of investigative dermatology, vol.135, issue.8, pp.2005-2016, 2015.

M. K. Chelbi-alix, L. Pelicano, and F. Quignon, Induction of the PML protein by interferons in normal and APL cells, Leukemia, vol.9, issue.12, pp.2027-2060, 1995.

P. E. Merkl, M. H. Orzalli, and D. M. Knipe, Mechanisms of Host IFI16, PML, and Daxx Protein Restriction of Herpes Simplex Virus 1 Replication, J Virol, vol.92, issue.10, 2018.

C. Maucourant, C. Petitdemange, H. Yssel, and V. Vieillard, Control of Acute Arboviral Infection by Natural Killer Cells, Viruses, vol.11, issue.2, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02017349

Y. R. Yu, E. G. O'koren, and D. F. Hotten, A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues, PloS one, vol.11, issue.3, p.150606, 2016.

M. T. Orr and L. L. Lanier, Natural killer cell education and tolerance, Cell, vol.142, issue.6, pp.847-56, 2010.

A. A. Maghazachi, Role of chemokines in the biology of natural killer cells, Current topics in microbiology and immunology, vol.341, pp.37-58, 2010.

C. A. Biron, K. S. Byron, and J. L. Sullivan, Severe herpesvirus infections in an adolescent without natural killer cells, N Engl J Med, vol.320, issue.26, pp.1731-1736, 1989.

S. Jawahar, C. Moody, M. Chan, R. Finberg, R. Geha et al., Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II), Clinical and experimental immunology, vol.103, issue.3, pp.408-421, 1996.

A. Reske, G. Pollara, C. Krummenacher, D. R. Katz, and B. M. Chain, Glycoprotein-dependent and TLR2-independent innate immune recognition of herpes simplex virus-1 by dendritic cells, Journal of immunology, vol.180, issue.11, pp.7525-7561, 1950.

V. Leoni, T. Gianni, S. Salvioli, and G. Campadelli-fiume, Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappaB, J Virol, vol.86, issue.12, pp.6555-62, 2012.

K. Ahn, T. H. Meyer, and S. Uebel, Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47, The EMBO journal, vol.15, issue.13, pp.3247-55, 1996.

H. S. Dai, N. Griffin, and C. Bolyard, The Fc Domain of Immunoglobulin Is Sufficient to Bridge NK Cells with Virally Infected Cells, Immunity, vol.47, issue.1, pp.159-70, 2017.

C. Deback, A. Rousseau, and M. Breckler, Antiviral effects of Cacicol((R)), a heparan sulfate biomimetic for corneal regeneration therapy, for herpes simplex virus type-1 and varicella zoster virus infection, Antiviral therapy, vol.23, issue.8, pp.665-75, 2018.

M. Kim, N. R. Osborne, and W. Zeng, Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes, Journal of immunology, vol.188, issue.9, pp.4158-70, 1950.

A. Chakravarti, I. Allaeys, and P. E. Poubelle,

, Medecine sciences : M/S, vol.23, issue.10, pp.862-869, 2007.

D. Odobasic, A. R. Kitching, and S. R. Holdsworth, Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase, Journal of immunology research, p.2349817, 2016.

M. Zheng, M. A. Fields, Y. Liu, H. Cathcart, E. Richter et al., Neutrophils protect the retina of the injected eye from infection after anterior chamber inoculation of HSV-1 in BALB/c mice, Invest Ophthalmol Vis Sci, vol.49, issue.9, pp.4018-4043, 2008.

K. Hayashi, L. C. Hooper, T. Okuno, Y. Takada, and J. J. Hooks, Inhibition of HSV-1 by chemoattracted neutrophils: supernatants of corneal epithelial cells (HCE) and macrophages (THP-1) treated with virus components chemoattract neutrophils (PMN), and supernatants of PMN treated with these conditioned media inhibit viral growth, Archives of virology

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France, vol.137, issue.7, pp.1377-81, 2012.

J. Thomas, S. Gangappa, S. Kanangat, and B. T. Rouse, On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis, Journal of immunology, vol.158, issue.3, pp.1383-91, 1950.

A. G. Armien, S. Hu, and M. R. Little, Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis, Brain pathology, vol.20, issue.4, pp.738-50, 2010.

C. Ramakrishna and E. M. Cantin, IFNgamma inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis, PLoS Pathog, vol.14, issue.1, p.1006822, 2018.

D. J. Royer, M. Zheng, C. D. Conrady, and D. J. Carr, Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and Neutrophils, vol.56, pp.3763-75, 2015.

V. Fabre, D. P. Beiting, and S. K. Bliss, Eosinophil deficiency compromises parasite survival in chronic nematode infection, Journal of immunology, vol.182, issue.3, pp.1577-83, 1950.

D. S. Borkar, J. A. Gonzales, and V. M. Tham, Association between atopy and herpetic eye disease: results from the pacific ocular inflammation study, JAMA ophthalmology, vol.132, issue.3, pp.326-357, 2014.

R. A. Rezende, T. Bisol, and K. Hammersmith, Efficacy of oral antiviral prophylaxis in preventing ocular herpes simplex virus recurrences in patients with and without self-reported atopy, American journal of ophthalmology, vol.142, issue.4, pp.563-570, 2006.

P. Y. Ong and D. Y. Leung, Bacterial and Viral Infections in Atopic Dermatitis: a Comprehensive Review, Clinical reviews in allergy & immunology, vol.51, issue.3, pp.329-366, 2016.

S. Doutlik, L. Kutinova, and R. Benda, Some immunological characteristics of subjects suffering from frequent herpes simplex virus recrudescences, Acta virologica, vol.33, issue.5, pp.435-481, 1989.

G. T. Melroe, L. Silva, P. A. Schaffer, and D. M. Knipe, Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction, Virology, vol.360, issue.2, pp.305-326, 2007.

R. D. Everett, P. Freemont, and H. Saitoh, The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110-and proteasome-dependent loss of several PML isoforms, J Virol, vol.72, issue.8, pp.6581-91, 1998.

C. Boutell, S. Sadis, and R. D. Everett, Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro, J Virol, vol.76, issue.2, pp.841-50, 2002.

E. K. Lium and S. Silverstein, Mutational analysis of the herpes simplex virus type 1 ICP0 C3HC4 zinc ring finger reveals a requirement for ICP0 in the expression of the essential alpha27 gene, J Virol, vol.71, issue.11, pp.8602-8616, 1997.

J. Melchjorsen, J. Siren, I. Julkunen, S. R. Paludan, and S. Matikainen, Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3, The Journal of general virology, vol.87, pp.1099-108, 2006.

K. E. Johnson, B. Song, and D. M. Knipe, Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling, Virology, vol.374, issue.2, pp.487-94, 2008.

P. Paladino and K. L. Mossman, Mechanisms employed by herpes simplex virus 1 to inhibit the interferon response, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, vol.29, issue.9, pp.599-607, 2009.

J. Huang, H. You, C. Su, Y. Li, S. Chen et al., Herpes Simplex Virus 1 Tegument Protein VP22 Abrogates cGAS/STING-Mediated Antiviral Innate Immunity, J Virol, vol.92, issue.15, 2018.

C. Su and C. Zheng, Herpes Simplex Virus 1 Abrogates the cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway via Its Virion Host Shutoff Protein, UL41, J Virol, vol.91, issue.6, 2017.

F. Ginhoux and M. Guilliams, Tissue-Resident Macrophage Ontogeny and Homeostasis, Immunity, vol.44, issue.3, pp.439-488, 2016.

C. V. Jakubzick, G. J. Randolph, and P. M. Henson, Monocyte differentiation and antigen-presenting functions, Nature reviews. Immunology, vol.17, issue.6, pp.349-62, 2017.

K. Mott, D. J. Brick, N. Van-rooijen, and H. Ghiasi, Macrophages are important determinants of acute ocular HSV-1 infection in immunized mice, Invest Ophthalmol Vis Sci, vol.48, issue.12, pp.5605-5620, 2007.

H. M. Cathcart, M. A. Fields, M. Zheng, B. Marshall, and S. S. Atherton, Infiltrating cells and IFNgamma production in the injected eye after uniocular anterior chamber inoculation of HSV-1, Invest Ophthalmol Vis Sci, vol.50, issue.5, pp.2269-75, 2009.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190, vol.138

D. H. Lee and H. Ghiasi, Roles of M1 and M2 Macrophages in Herpes Simplex Virus 1 Infectivity, J Virol, vol.91, issue.15, 2017.

D. Carr, Herpes Simplex Virus 1, Macrophages, and the Cornea, J Virol, vol.91, issue.21, 2017.

S. Jeon, A. M. Rowe, K. L. Carroll, S. Harvey, and R. L. Hendricks, PD-L1/B7-H1 Inhibits Viral Clearance by Macrophages in HSV-1-Infected Corneas, Journal of immunology, vol.200, issue.11, pp.3711-3730, 1950.

E. Segura and S. Amigorena, , vol.30, pp.64-72, 2014.

G. Breton, Origin and development of human dendritic cells, vol.31, pp.725-732, 2015.

P. Schuster, J. B. Boscheinen, K. Tennert, and B. Schmidt, The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections, Advances in virology, p.679271, 2011.

H. Hochrein, B. Schlatter, and M. O'keeffe, Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.31, pp.11416-11437, 2004.

G. Pollara, M. Jones, and M. E. Handley, Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion, Journal of immunology, vol.173, issue.6, pp.4108-4127, 1950.

L. Bosnjak, M. Miranda-saksena, D. M. Koelle, R. A. Boadle, C. A. Jones et al., Herpes simplex virus infection of human dendritic cells induces apoptosis and allows crosspresentation via uninfected dendritic cells, Journal of immunology, vol.174, issue.4, pp.2220-2227, 1950.

R. S. Allan, J. Waithman, and S. Bedoui, Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming, Immunity, vol.25, issue.1, pp.153-62, 2006.

S. H. Kassim, N. K. Rajasagi, X. Zhao, R. Chervenak, and S. R. Jennings, In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses, J Virol, vol.80, issue.8, pp.3985-93, 2006.

N. A. Kittan, A. Bergua, and S. Haupt, Impaired plasmacytoid dendritic cell innate immune responses in patients with herpes virus-associated acute retinal necrosis, Journal of immunology, vol.179, issue.6, pp.4219-4249, 1950.

H. K. Lee, M. Zamora, and M. M. Linehan, Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection, The Journal of experimental medicine, vol.206, issue.2, pp.359-70, 2009.

A. M. Eis-hubinger, D. S. Schmidt, and K. E. Schneweis, Anti-glycoprotein B monoclonal antibody protects T cell-depleted mice against herpes simplex virus infection by inhibition of virus replication at the inoculated mucous membranes, The Journal of general virology, vol.74, pp.379-85, 1993.

R. Mancuso, F. Baglio, and M. Cabinio, Titers of herpes simplex virus type 1 antibodies positively correlate with grey matter volumes in Alzheimer's disease, Journal of Alzheimer's disease : JAD, vol.38, issue.4, pp.741-746, 2014.

S. P. Deshpande, M. Zheng, M. Daheshia, and B. T. Rouse, Pathogenesis of herpes simplex virusinduced ocular immunoinflammatory lesions in B-cell-deficient mice, J Virol, vol.74, issue.8, pp.3517-3541, 2000.

D. J. Royer, M. M. Carr, H. R. Gurung, W. P. Halford, and D. Carr, The Neonatal Fc Receptor and Complement Fixation Facilitate Prophylactic Vaccine-Mediated Humoral Protection against Viral Infection in the Ocular Mucosa, Journal of immunology, vol.199, issue.5, pp.1898-911, 1950.

D. J. Royer, H. R. Gurung, and J. K. Jinkins, A Highly Efficacious Herpes Simplex Virus 1 Vaccine Blocks Viral Pathogenesis and Prevents Corneal Immunopathology via Humoral Immunity, J Virol, vol.90, issue.11, pp.5514-5543, 2016.

R. M. Coles, S. N. Mueller, W. R. Heath, F. R. Carbone, and A. G. Brooks, Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1, Journal of immunology, vol.168, issue.2, pp.834-842, 1950.

A. Van-lint, M. Ayers, A. G. Brooks, R. M. Coles, W. R. Heath et al.,

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 139 virus-specific CD8+ T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation, Journal of immunology, vol.172, issue.1, pp.392-399, 1950.

C. Shimeld, J. L. Whiteland, and S. M. Nicholls, Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex virus type 1, J Neuroimmunol, vol.61, issue.1, pp.7-16, 1995.

T. Derfuss, S. Segerer, and S. Herberger, Presence of HSV-1 immediate early genes and clonally expanded T-cells with a memory effector phenotype in human trigeminal ganglia, Brain pathology, vol.17, issue.4, pp.389-98, 2007.

J. E. Knickelbein, K. M. Khanna, M. B. Yee, C. J. Baty, P. R. Kinchington et al., Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency, Science, vol.322, issue.5899, pp.268-71, 2008.

S. Himmelein, A. Lindemann, I. Sinicina, M. Strupp, T. Brandt et al., Latent herpes simplex virus 1 infection does not induce apoptosis in human trigeminal Ganglia, J Virol, vol.89, issue.10, pp.5747-50, 2015.

M. R. Jenkins, J. A. Rudd-schmidt, and J. A. Lopez, Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time, The Journal of experimental medicine, vol.212, issue.3, pp.307-324, 2015.

A. A. Khan, R. Srivastava, and D. Spencer, Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes, J Virol, vol.89, issue.7, pp.3776-92, 2015.

S. Jeon, S. Leger, A. J. Cherpes, T. L. Sheridan, B. S. Hendricks et al., PD-L1/B7-H1 regulates the survival but not the function of CD8+ T cells in herpes simplex virus type 1 latently infected trigeminal ganglia, Journal of immunology, vol.190, issue.12, pp.6277-86, 1950.

A. Hill, P. Jugovic, and I. York, Herpes simplex virus turns off the TAP to evade host immunity, Nature, vol.375, issue.6530, pp.411-416, 1995.

S. Barcy and L. Corey, Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4+ T cells, Journal of immunology, vol.166, issue.10, pp.6242-6251, 1950.

N. Koyanagi, T. Imai, and K. Shindo, Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis, The Journal of clinical investigation, vol.127, issue.10, pp.3784-95, 2017.

A. M. Arvin, Varicella vaccine: genesis, efficacy, and attenuation, Virology, vol.284, issue.2, pp.153-161, 2001.

S. L. Tillieux, W. S. Halsey, E. S. Thomas, J. J. Voycik, G. M. Sathe et al., Complete DNA sequences of two oka strain varicella-zoster virus genomes, J Virol, vol.82, issue.22, pp.11023-11067, 2008.

M. Vazquez, P. S. Larussa, and A. A. Gershon, Effectiveness over time of varicella vaccine, Jama, vol.291, issue.7, pp.851-856, 2004.

M. Marin, M. Marti, A. Kambhampati, S. M. Jeram, and J. F. Seward, Global Varicella Vaccine Effectiveness: A Meta-analysis, Pediatrics, vol.137, issue.3, p.20153741, 2016.

P. B. Gilbert, E. E. Gabriel, and X. Miao, Fold rise in antibody titers by measured by glycoproteinbased enzyme-linked immunosorbent assay is an excellent correlate of protection for a herpes zoster vaccine, demonstrated via the vaccine efficacy curve, J Infect Dis, vol.210, issue.10, pp.1573-81, 2014.

P. B. Gilbert and A. R. Luedtke, Statistical Learning Methods to Determine Immune Correlates of Herpes Zoster in Vaccine Efficacy Trials, J Infect Dis, vol.218, issue.suppl_2, pp.99-101, 2018.

Q. Qi, M. M. Cavanagh, L. Saux, and S. , Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in Older Individuals, PLoS Pathog, vol.12, issue.10, p.1005892, 2016.

A. Weinberg, L. Pang, and M. J. Johnson, The Effect of Age on the Immunogenicity of the Live Attenuated Zoster Vaccine Is Predicted by Baseline Regulatory T Cells and VZV-Specific T Cell Immunity, J Virol, 2019.

M. N. Oxman, M. J. Levin, and G. R. Johnson, A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults, N Engl J Med, vol.352, issue.22, pp.2271-84, 2005.

E. D. Willis, M. Woodward, and E. Brown, Herpes zoster vaccine live: A 10year review of postmarketing safety experience, Vaccine, vol.35, issue.52, pp.7231-7270, 2017.

V. A. Morrison, G. R. Johnson, and K. E. Schmader, Long-term persistence of zoster vaccine efficacy, Clin Infect Dis, vol.60, issue.6, pp.900-909, 2015.

T. C. Heineman, A. Cunningham, and M. Levin, Understanding the immunology of Shingrix

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 140 recombinant glycoprotein E adjuvanted herpes zoster vaccine, Current opinion in immunology, vol.59, pp.42-48, 2019.

, CDC Shingles vaccination. Secondary CDC Shingles, 2018.

L. R. Stanberry, A. L. Cunningham, and A. Mindel, Prospects for control of herpes simplex virus disease through immunization, Clin Infect Dis, vol.30, issue.3, pp.549-66, 2000.

L. Corey, A. G. Langenberg, and R. Ashley, Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group, Jama, vol.282, issue.4, pp.331-371, 1999.

L. R. Stanberry, S. L. Spruance, and A. L. Cunningham, Glycoprotein-D-adjuvant vaccine to prevent genital herpes, N Engl J Med, vol.347, issue.21, pp.1652-61, 2002.

S. E. Straus, A. Wald, and R. G. Kost, Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: results of a placebo-controlled vaccine trial, J Infect Dis, vol.176, issue.5, pp.1129-1163, 1997.

L. H. Nguyen, D. M. Knipe, and R. W. Finberg, Replication-defective mutants of herpes simplex virus (HSV) induce cellular immunity and protect against lethal HSV infection, J Virol, vol.66, issue.12, pp.7067-72, 1992.

Y. Hoshino, L. Pesnicak, and K. C. Dowdell, Comparison of immunogenicity and protective efficacy of genital herpes vaccine candidates herpes simplex virus 2 dl5-29 and dl5-29-41L in mice and guinea pigs, Vaccine, vol.26, issue.32, pp.4034-4074, 2008.

F. Yao and E. Eriksson, A novel anti-herpes simplex virus type 1-specific herpes simplex virus type 1 recombinant, Human gene therapy, vol.10, issue.11, pp.1811-1819, 1999.

H. Augustinova, D. Hoeller, and F. Yao, The dominant-negative herpes simplex virus type 1 (HSV-1) recombinant CJ83193 can serve as an effective vaccine against wild-type HSV-1 infection in mice, J Virol, vol.78, issue.11, pp.5756-65, 2004.

R. Brans, N. V. Akhrameyeva, and F. Yao, Prevention of genital herpes simplex virus type 1 and 2 disease in mice immunized with a gD-expressing dominant-negative recombinant HSV-1, The Journal of investigative dermatology, vol.129, issue.10, pp.2470-2479, 2009.

R. Brans and F. Yao, Immunization with a dominant-negative recombinant Herpes Simplex Virus (HSV) type 1 protects against HSV-2 genital disease in guinea pigs, BMC microbiology, vol.10, p.163, 2010.

Z. Lu, R. Brans, N. V. Akhrameyeva, N. Murakami, X. Xu et al., High-level expression of glycoprotein D by a dominant-negative HSV-1 virus augments its efficacy as a vaccine against HSV-1 infection, The Journal of investigative dermatology, vol.129, issue.5, pp.1174-84, 2009.

R. Brans, E. Eriksson, and F. Yao, Immunization with a dominant-negative recombinant HSV type 1 protects against HSV-1 skin disease in guinea pigs, The Journal of investigative dermatology, vol.128, issue.12, pp.2825-2857, 2008.

A. V. Iyer, B. Pahar, V. N. Chouljenko, J. D. Walker, B. Stanfield et al., Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses, Virol J, vol.10, p.317, 2013.

H. E. Farrell, C. S. Mclean, C. Harley, S. Efstathiou, S. Inglis et al., Vaccine potential of a herpes simplex virus type 1 mutant with an essential glycoprotein deleted, J Virol, vol.68, issue.2, pp.927-959, 1994.

G. De-bruyn, M. Vargas-cortez, and T. Warren, A randomized controlled trial of a replication defective (gH deletion) herpes simplex virus vaccine for the treatment of recurrent genital herpes among immunocompetent subjects, Vaccine, vol.24, issue.7, pp.914-934, 2006.

W. P. Halford, R. Puschel, E. Gershburg, A. Wilber, S. Gershburg et al., A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine, PloS one, vol.6, issue.3, p.17748, 2011.

E. E. Brittle, F. Wang, J. M. Lubinski, R. M. Bunte, and H. M. Friedman, A replication-competent, neuronal spread-defective, live attenuated herpes simplex virus type 1 vaccine, J Virol, vol.82, issue.17, pp.8431-8472, 2008.

D. M. Coen, M. Kosz-vnenchak, and J. G. Jacobson, Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate, Proceedings of the National Academy of Sciences of the United States of America nervous system macrophages, vol.193, pp.2615-2636, 1950.

R. Menasria, C. Canivet, J. Piret, and G. Boivin, Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis, PloS one, vol.10, issue.12, p.145773, 2015.

K. Vogel, S. Thomann, B. Vogel, P. Schuster, and B. Schmidt, Both plasmacytoid dendritic cells and monocytes stimulate natural killer cells early during human herpes simplex virus type 1 infections, Immunology, vol.143, issue.4, pp.588-600, 2014.

A. J. Chucair-elliott, H. R. Gurung, M. M. Carr, and D. Carr, Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection, Invest Ophthalmol Vis Sci, vol.58, issue.11, pp.4670-82, 2017.

C. Handfield, J. Kwock, and A. S. Macleod, Innate Antiviral Immunity in the Skin, Trends in immunology, vol.39, issue.4, pp.328-368, 2018.

C. Levin, H. Perrin, and B. Combadiere, Tailored immunity by skin antigen-presenting cells, Human vaccines & immunotherapeutics, vol.11, issue.1, pp.27-36, 2015.

M. Wojtasiak, D. L. Pickett, and M. D. Tate, Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection, The Journal of general virology, vol.91, pp.2158-66, 2010.

J. L. Hor, W. R. Heath, and S. N. Mueller, Neutrophils are dispensable in the modulation of T cell immunity against cutaneous HSV-1 infection, Sci Rep, vol.7, p.41091, 2017.

S. J. Molesworth-kenyon, N. Popham, A. Milam, J. E. Oakes, and R. N. Lausch, Resident Corneal Cells Communicate with Neutrophils Leading to the Production of IP-10 during the Primary Inflammatory Response to HSV-1 Infection, Int J Inflam, vol.2012, p.810359, 2012.

F. H. Shen, S. W. Wang, T. M. Yeh, Y. Y. Tung, S. M. Hsu et al., Absence of CXCL10 aggravates herpes stromal keratitis with reduced primary neutrophil influx in mice, J Virol, vol.87, issue.15, pp.8502-8512, 2013.

E. L. Foster, E. L. Simpson, and L. J. Fredrikson, Eosinophils increase neuron branching in human and murine skin and in vitro, PloS one, vol.6, issue.7, p.22029, 2011.

J. C. Carmichael, H. Yokota, R. C. Craven, A. Schmitt, and J. W. Wills, The HSV-1 mechanisms of cell-tocell spread and fusion are critically dependent on host PTP1B, PLoS Pathog, vol.14, issue.5, p.1007054, 2018.

M. Kim, N. R. Truong, and V. James, Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in human skin, PLoS Pathog, vol.11, issue.4, p.1004812, 2015.

P. G. Whitney, C. Makhlouf, and B. Macleod, Effective Priming of Herpes Simplex Virus-Specific CD8(+) T Cells In Vivo Does Not Require Infected Dendritic Cells, J Virol, vol.92, issue.3, 2018.

T. Hain, F. Melchior, and N. Kamenjarin, Dermal CD207-Negative Migratory Dendritic Cells Are Fully Competent to Prime Protective, Skin Homing Cytotoxic T-Lymphocyte Responses, The Journal of investigative dermatology, vol.139, issue.2, pp.422-451, 2019.

E. Segura and S. Amigorena, Inflammatory dendritic cells in mice and humans, Trends in immunology, vol.34, issue.9, pp.440-445, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00846095

M. Van-velzen, J. D. Laman, A. Kleinjan, A. Poot, A. D. Osterhaus et al., Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype, Journal of immunology, vol.183, issue.4, pp.2456-61, 1950.

H. Xu, A. Manivannan, and R. Dawson, Differentiation to the CCR2+ inflammatory phenotype in vivo is a constitutive, time-limited property of blood monocytes and is independent of local inflammatory mediators, Journal of immunology, vol.175, issue.10, pp.6915-6938, 1950.

P. C. Rosato and D. A. Leib, Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host-pathogen standoff, Future virology, vol.10, issue.6, pp.699-714, 2015.

M. B. Gill, D. E. Wright, C. M. Smith, J. S. May, and P. G. Stevenson, Murid herpesvirus-4 lacking thymidine kinase reveals route-dependent requirements for host colonization, The Journal of general virology, vol.90, pp.1461-70, 2009.

A. Takashima and Y. Yao, Neutrophil plasticity: acquisition of phenotype and functionality of antigenpresenting cell, Journal of leukocyte biology, vol.98, issue.4, pp.489-96, 2015.

S. H. Chen, Y. W. Lin, A. Griffiths, W. Y. Huang, and S. H. Chen, Competition and complementation between thymidine kinase-negative and wild-type herpes simplex virus during co

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin

B. Roizman and D. M. Knipe, Herpes simplex viruses and their replication, vol.568, pp.2399-2459, 2001.

D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin et al., , p.569

, Virology, vol.4

T. J. Liesegang, Epidemiology of ocular herpes simplex. Natural history in Rochester, Minn, 571 1950 through 1982, ArchOphthalmol, vol.107, pp.1160-1165, 1989.

A. V. Farooq and D. Shukla, Herpes simplex epithelial and stromal keratitis: an epidemiologic 573 update, Surv Ophthalmol, vol.57, pp.448-62, 2012.

G. A. Smith, S. P. Gross, and L. W. Enquist, Herpesviruses use bidirectional fast-axonal transport to 575 spread in sensory neurons, ProcNatlAcadSciUSA, vol.98, pp.3466-3470, 2001.

E. R. Richter, J. K. Dias, J. E. Gilbert, and S. S. Atherton, Distribution of herpes simplex virus type 1 577 and varicella zoster virus in ganglia of the human head and neck, JInfectDis, vol.200, pp.1901-1906, 2009.

S. Kaye and A. Choudhary, Herpes simplex keratitis, ProgRetinEye Res, vol.25, pp.355-380, 2006.

M. E. Lewis, W. C. Leung, V. M. Jeffrey, and K. G. Warren, Detection of multiple strains of latent 580 herpes simplex virus type 1 within individual human hosts, J Virol, vol.52, pp.300-305, 1984.

T. J. Liesegang, M. Ljd, P. J. Daly, and D. M. Ilstrup, Epidemiology of ocular herpes simplex, 1989.

, ArchOphthalmol, vol.107, pp.1155-1159, 1950.

M. Labetoulle, P. Auquier, H. Conrad, A. Crochard, M. Daniloski et al., Incidence of herpes simplex virus keratitis in France, Ophthalmology, vol.584, pp.888-895, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681646

R. C. Young, D. O. Hodge, T. J. Liesegang, and K. H. Baratz, Incidence, recurrence, and outcomes of 586 herpes simplex virus eye disease in Olmsted County, Minnesota, 1976-2007: the effect of oral 587 antiviral prophylaxis, ArchOphthalmol, vol.128, pp.1178-1183, 2010.

T. J. Liesegang, Herpes simplex virus epidemiology and ocular importance, Cornea, vol.20, pp.1-13, 2001.

H. Motani, K. Sakurada, H. Ikegaya, T. Akutsu, M. Hayakawa et al., , p.590

H. Iwase, Detection of herpes simplex virus type 1 DNA in bilateral human trigeminal 591 ganglia and optic nerves by polymerase chain reaction, JMedVirol, vol.78, pp.1584-1587, 2006.

R. J. Cohrs, J. Randall, J. Smith, D. H. Gilden, C. Dabrowski et al., Analysis 593 of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-594 zoster virus nucleic acids using real-time PCR, JVirol, vol.74, pp.11464-11471, 2000.

A. Criddle, T. Thornburg, I. Kochetkova, M. Departee, and M. P. Taylor, , p.596, 2016.

, Superinfection Exclusion of Alphaherpesviruses, J Virol, vol.90, pp.4049-58

B. Meignier, B. Norrild, and B. Roizman, Colonization of murine ganglia by a superinfecting 598 strain of herpes simplex virus, Infect Immun, vol.41, pp.702-710, 1983.

Y. M. Centifanto-fitzgerald, E. D. Varnell, and H. E. Kaufman, Initial herpes simplex virus type 1 600 infection prevents ganglionic superinfection by other strains, Infect Immun, vol.35, pp.1125-1157, 1982.

R. W. Price, M. A. Walz, C. Wohlenberg, and A. L. Notkins, Latent infection of sensory ganglia with 602 herpes simplex virus: efficacy of immunization, Science, vol.188, pp.938-978, 1975.

N. Mador, A. Panet, and I. Steiner, The latency-associated gene of herpes simplex virus type 1 604 (HSV-1) interferes with superinfection by HSV-1, JNeurovirol, vol.8, issue.2, pp.97-102, 2002.

M. Labetoulle, P. Kucera, G. Ugolini, F. Lafay, E. Frau et al., Neuronal 606 propagation of HSV1 from the oral mucosa to the eye, InvestOphthalmolVisSci, vol.41, pp.2600-2606, 2000.

M. Labetoulle, S. Maillet, S. Efstathiou, S. Dezelee, E. Frau et al., HSV1 latency sites after 608 inoculation in the lip: assessment of their localization and connections to the eye, 2003.

S. Maillet, S. Crepin, T. Naas, A. M. Roque-afonso, F. Lafay et al., Herpes 611 simplex virus type 1 latently infected neurons differentially express the latency associated and 612 ICP0 transcripts, JVirol, vol.80, pp.9310-9321, 2006.

S. Cavallero, N. Huot, L. Francelle, P. Lomonte, T. Naas et al., , p.614, 2014.

, Herpes simplex virus type 1 latency in mice according to experimental conditions and type of 615 neurones, Invest Ophthalmol Vis Sci, vol.55, p.7761

R. H. Lachmann and S. Efstathiou, Utilization of the herpes simplex virus type 1 latency-617 associated regulatory region to drive stable reporter gene expression in the nervous system, 1997.

, JVirol, vol.71, pp.3197-3207

D. M. Coen, M. Kosz-vnenchak, J. G. Jacobson, D. A. Leib, C. L. Bogard et al., Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse 621 trigeminal ganglia but do not reactivate, Proc Natl Acad Sci U S A, vol.620, pp.4736-4776, 1989.

C. L. Wilcox, L. S. Crnic, and L. I. Pizer, Replication, latent infection, and reactivation in neuronal 623 culture with a herpes simplex virus thymidine kinase-negative mutant, Virology, vol.187, pp.348-52, 1992.

S. Efstathiou, S. Kemp, G. Darby, and A. C. Minson, The role of herpes simplex virus type 1 625 thymidine kinase in pathogenesis, J Gen Virol, vol.70, pp.869-79, 1989.

R. L. Thompson and N. M. Sawtell, Replication of herpes simplex virus type 1 within trigeminal 627 ganglia is required for high frequency but not high viral genome copy number, JVirol, vol.74, p.965, 2000.

S. H. Chen, A. Pearson, D. M. Coen, and S. H. Chen, Failure of thymidine kinase-negative herpes 630 simplex virus to reactivate from latency following efficient establishment, J Virol, vol.78, pp.520-523, 2004.

H. R. Gurung, M. M. Carr, and D. J. Carr, Cornea lymphatics drive the CD8(+) T-cell response to 632 herpes simplex virus-1, Immunol Cell Biol, vol.95, pp.87-98, 2017.

H. Vahed, A. Agrawal, R. Srivastava, S. Prakash, P. A. Coulon et al., Unique 634, 2018.

. Type-i-interferon, Expansion/Survival Cytokines and JAK/STAT Gene Signatures of Multi-635

, Functional HSV-Specific Effector Memory CD8(+) TEM Cells Are Associated with Asymptomatic 636

, Ocular Herpes in Humans, J Virol

M. Greyer, P. G. Whitney, A. T. Stock, G. M. Davey, C. Tebartz et al., , p.638

S. J. Turner, T. Gebhardt, M. O'keeffe, W. R. Heath, and S. Bedoui, T Cell Help Amplifies Innate 639 Signals in CD8(+) DCs for Optimal CD8(+) T Cell Priming, Cell Rep, vol.14, pp.586-597, 2016.

R. M. Coles, S. N. Mueller, W. R. Heath, F. R. Carbone, and A. G. Brooks, Progression of armed CTL 641 from draining lymph node to spleen shortly after localized infection with herpes simplex virus 642, 2002.

, JImmunol, vol.168, pp.834-838

R. Song, O. O. Koyuncu, T. M. Greco, B. A. Diner, I. M. Cristea et al., , 2016.

, Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion. MBio, vol.7, pp.2145-2160

M. A. Maroui, A. Calle, C. Cohen, N. Streichenberger, P. Texier et al., , p.646

J. Welsch, A. Corpet, L. Schaeffer, M. Labetoulle, and P. Lomonte, Latency Entry of Herpes, vol.647, 2016.

, Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment

, PLoS Pathog, vol.12, p.1005834

J. R. Cabrera, A. J. Charron, and D. A. Leib, Neuronal Subtype Determines Herpes Simplex Virus, vol.1, 2018.

, Latency-Associated-Transcript Promoter Activity during Latency, J Virol, vol.92

A. S. Bertke, S. M. Swanson, J. Chen, Y. Imai, P. R. Kinchington et al., A5-positive primary 652 sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in 653 vitro, J Virol, vol.85, pp.6669-77, 2011.

A. Sato, A. Suwanto, M. Okabe, S. Sato, T. Nochi et al., , p.655

H. Kiyono, Vaginal memory T cells induced by intranasal vaccination are critical for 656 protective T cell recruitment and prevention of genital HSV-2 disease, J Virol, vol.88, pp.13699-708, 2014.

B. M. Mitchell and J. G. Stevens, Neuroinvasive properties of herpes simplex virus type 1 658 glycoprotein variants are controlled by the immune response, JImmunol, vol.156, pp.246-255, 1996.

J. E. Schrimpf, E. M. Tu, H. Wang, Y. M. Wong, and L. A. Morrison, B7 costimulation molecules 660 encoded by replication-defective, vhs-deficient HSV-1 improve vaccine-induced protection 661 against corneal disease, PLoS One, vol.6, p.22772, 2011.

D. J. Davido, E. M. Tu, H. Wang, M. Korom, G. Casals et al.,

S. D. Haenchen and L. A. Morrison, Attenuated Herpes Simplex Virus 1 (HSV-1) Expressing a 664, 2018.

, Mutant Form of ICP6 Stimulates a Strong Immune Response That Protects Mice against HSV-1-665

, Induced Corneal Disease, J Virol, vol.92

A. A. Khan, R. Srivastava, A. A. Chentoufi, E. Kritzer, S. Chilukuri et al., , p.667

S. A. Syed, J. N. Furness, T. T. Tran, N. B. Anthony, C. E. Mclaren et al., , p.668

L. Benmohamed, Bolstering the Number and Function of HSV-1-Specific CD8(+) Effector 669, 2017.

, Memory T Cells and Tissue-Resident Memory T Cells in Latently Infected Trigeminal Ganglia 670 Reduces Recurrent Ocular Herpes Infection and Disease, J Immunol, vol.199, pp.186-203

D. J. Royer, M. M. Carr, H. R. Gurung, W. P. Halford, and D. Carr, The Neonatal Fc Receptor, p.672, 2017.

, Complement Fixation Facilitate Prophylactic Vaccine-Mediated Humoral Protection against 673 Viral Infection in the Ocular Mucosa, J Immunol, vol.199, pp.1898-1911

T. J. Hill, H. J. Field, and W. A. Blyth, Acute and recurrent infection with herpes simplex virus in the 675 mouse: a model for studying latency and recurrent disease, JGenVirol, vol.28, pp.341-353, 1975.

J. T. Proenca, H. M. Coleman, V. Connor, D. J. Winton, and S. Efstathiou, A historical analysis of 677 herpes simplex virus promoter activation in vivo reveals distinct populations of latently 678 infected neurones, J Gen Virol, vol.89, pp.2965-74, 2008.

J. L. Arthur, C. G. Scarpini, V. Connor, R. H. Lachmann, A. M. Tolkovsky et al., Herpes 680 simplex virus type 1 promoter activity during latency establishment, maintenance, and 681 reactivation in primary dorsal root neurons in vitro, JVirol, vol.75, pp.3885-3895, 2001.

N. De-regge, O. N. Van, H. J. Nauwynck, S. Efstathiou, and H. W. Favoreel, Interferon alpha induces 683 establishment of alphaherpesvirus latency in sensory neurons in vitro, 2010.

N. M. Sawtell and R. L. Thompson, Comparison of herpes simplex virus reactivation in ganglia in 685 vivo and in explants demonstrates quantitative and qualitative differences, JVirol, vol.78, p.7784, 2004.

, While the D2 increases also occurred in SC16-or TKdel-611 infected lips, infiltration was exacerbated on D4 (Figure 4 E to J). Comparatively, no 612 monocytes and CCL2 was observed at D4 in SC16-superinfected lips, (Figure 6C), suggesting 613 that the key signaling processes that recruit monocytes to site of HSV-1 lip infection, such as 614 lytic viral replication early after viral inoculation, which likely reduces the level of inflammation at the site of virus inoculation in 607 comparison to other models, 2000.

, While similar levels of inflammatory chemokines (CCL5, CCL11, CXCL1, vol.2, p.617

C. Cxcl9, CCL4) were observed in the lips just after the inoculation of, pp.16-618

. Efstathiou, This difference is likely 620 directly related to the non-neurovirulent nature of TKdel: the lack of of viral replication within the 621 neuronal somata, or TKdel-strains (Figure 6 A and B, respectively), 1989.

. Poccardi, In mice of the superinfection group, the SC16-629 superinfected iTG was characterized by reduced and delayed inflammatory monocyte burden 630 (Figure 8 E), accompanied by an absence in other inflammatory immune subsets, such as 631 macrophages, neutrophils, eosinophils (Figure 8 E to I). These data corroborate our previous 632 findings on the blockade of viral replication control in SC16-superinfected iTG, A vs B), this phenomenon corresponded with trending peaks of inflammatory monocyte 625 infiltrate in the respective iTGs at these times (Figure 8 E), vol.633, 2019.

(. Lucinda, Monocytes perform inflammatory functions, and also differentiate into DC and 638 macrophage subsets, Many innate immune subsets work in concert for the control of HSV-1, vol.637, 2013.

. Menasria, NK cells recognise and lyse HSV-1-infected cells (Dai and Caligiuri, p.641, 2015.

. Chucair-elliott, corneal scarification) that do 644 not correspond with the vast majority (>96%) of primary HSV-1 infections at the orofacial 645 mucocutaneous tissues as observed in humans (Liesegang, 1989). Indeed, the ocular 646 scarification route modifies experimental HSV-1 disease outcomes (Cavallero et al., 2014) and 647 first exposes the virus to an immune privileged tissue, However, 642 it is difficult to ascertain the real functions of immune subsets during the natural course of HSV-643 1 infection when their roles are assessed in animal models, vol.648, 2007.

. Rezende, To the best of our 664 knowledge, the role of eosinophils in the context of HSV-1 infection has not yet been described 665 while they are well known as major effectors in the context of allergic diseases. Clinical reports 666 had already emphasized that allergic people may experience i) more severe course of HSK 667 than non-allergic controls, HSV-1-infected lips 662 (Figure 4H), and in the TGs ipsilateral to single SC16 inoculation (Figure 8H), 1989.

. Foster, Altogether eosinophils seem to be important components of anti-infectious immunity, with 674 equivocal functions, maybe due to their multifunctionality during different inflammatory 675 conditions, Thus, vol.677, 2011.

. Carmichael, 2018) within the infected lip or TG under inflammatory 679 conditions

. Eyerich, Transmission of HSV-1 antigen from skin to the lymph node occurs via 682 a relay between Langerhans cells and dermal DCs, Dendritic cells are known to play a central role in the immune response to skin infections 681, vol.683, 2015.

, SC16-infected lip infection did not increase until late acute phase and into latency (Figure 4)

, However, CD11b + ve DC numbers were increased by D2 in SC16-superinfected lips

. Hain, This 687 suggests that a heightened level of immunosurveillance is established by D4 in mice initially 688 infected with TKdel, which allows greater exposure of virus to professional antigen-presenting 689 cells that prime HSV-1-specific adaptive T cell responses. Furthermore, both DC subsets were 690 present during virus latency (D28) in the TGs and lips (Figures 4 I and J, and 8 I and J), 691 suggesting heightened levels of immunosurveillance even after lytic viral replication has 692 stopped. We acknowledge we were unable to discriminate CD11b +ve DC subsets using our 693 staining panel, and may include DCs that prime tissue-homing T cell responses, 2019.

. Xu, Thus, complementary experiments will necessary to further define the 696 subpopulations of CD11b +ve DC and their specific roles in our model, a question that was 697 beyond the scopus of this wide range exploratory study about immune kinetics following 698, vol.695, 2005.

. Interestingly and . Coles, The same 704 group later demonstrated that these "armed" effector T cells were able to eliminate HSV-1-705 infected cells during the lytic replication but did not prevent viral dissemination to the sensitive 706 neuronal ganglia, T cells are major component of HSV-1 immunity. We demonstrated a ~10 to 8-fold 700 increases in the number of CD4 +ve and CD8 +ve T cells infiltrating into SC16-or TKdel-infected 701 lips at D4 after lip infection, 2002.

, However, as lytic viral replication starts from D6 in the contralateral TG, we 711 believe that triggering the mobilisation of HSV-1-specific effector T cells by lip infection could 712 be a major factor that protects the contralateral TG from HSV-1 thus restricting disease to 713 unilaterality. Under superinfection conditions, the antecedent TKdel inoculation of the lip may 714 elicit effector T cell immunosurveillance, Due to the HSV-1 infection kinetics after single lip infection, viral replication can 709 not be prevented in the SC16-infected iTG, as long as it is already ongoing at D4 (Labetoulle 710 et, 2003.

. Efstathiou, However, this strain is able to penetrate the nerve endings at the site 718 of inoculation after local replication in the epithelia (where cellular thymidine kinase is 719 expressed, contrary to neurons), with subsequent persistent infection in TG neurons 720, TKdel is unable to replicate in neurons due to the lack of viral thymidine kinase 717, p.723, 1989.

, while similar levels of lip infiltration ocurred (Figure 4 E to I). Thus, this modified strain of HSV-724 1 appears as ideal for triggering protective immune mechanisms, while constraining lytic viral 725 replication to the site of infection

. Gill, TKdel strain may be non-virulent in some immune cells that 727 do not express cellular thymidine kinase, such as mature neutrophils, but remain susceptible 728 to wild-type HSV-1 infection, 2009.

, Based on the OO model, that mimics most 734 of the key clinical aspects of human HSV-1-associated disease, our data help in the 735 comprehension of the unilateral nature of the HSK in humans, and also provide arguments for 736 the feasibility of a preventive strategy against HSV-1 ocular disease based on the use of 737 modified HSV-1 strains as vaccinal tools. Indeed, we demonstrated changes in the local 738 immune landscape i.e. early recruitment of lymphocytes into the primary infection site, and an 739 absence/reduction of inflammatory cells and chemokines during acute phase of virus 740 replication, which were associated with development or protection against disease, including 741 reactivations from latency. The state of immunity that occurs naturally after viral inoculation 742, Our study provides important insights into the relationship between immune response 732 kinetics and HSV-1 infection kinetics, according to the fitness of the viral strain and the 733 sequence of inoculation (single versus reinfection)

D. S. Borkar, J. A. Gonzales, V. M. Tham, E. Esterberg, A. C. Vinoya et al., Association between atopy and herpetic eye disease: results from the pacific 753 ocular inflammation study, JAMA Ophthalmol, vol.752, issue.3, pp.326-331, 2014.

J. C. Brazil, M. Quiros, A. Nusrat, and C. A. Parkos, Innate immune cell-epithelial 756 crosstalk during wound repair, J Clin Invest, vol.130, 2019.

C. Canivet, O. Uyar, C. Rheaume, J. Piret, and G. Boivin, The recruitment of 758 peripheral blood leukocytes to the brain is delayed in susceptible BALB/c compared 759 to resistant C57BL/6 mice during herpes simplex virus encephalitis, J Neurovirol, vol.760, issue.3, pp.372-383, 2019.

J. C. Carmichael, H. Yokota, R. C. Craven, A. Schmitt, and J. W. Wills, The HSV-1 762 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B, 2018.

, PLoS Pathog, vol.14, issue.5, p.1007054

F. Catez, C. Picard, K. Held, S. Gross, A. Rousseau et al., HSV-1 765 genome subnuclear positioning and associations with host-cell PML-NBs and 766 centromeres regulate LAT locus transcription during latency in neurons, PLoS Pathog, vol.767, issue.8, p.1002852, 2012.

S. Cavallero, N. Huot, L. Francelle, P. Lomonte, T. Naas et al., , 2014.

, Biological features of herpes simplex virus type 1 latency in mice according to 770 experimental conditions and type of neurones, Invest Ophthalmol Vis Sci, vol.55, issue.12, pp.771-7761

A. J. Chucair-elliott, H. R. Gurung, M. M. Carr, and D. J. Carr, Colony Stimulating 773 Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve 774 Degeneration in Response to HSV-1 Infection, Invest Ophthalmol Vis Sci, vol.58, issue.11, pp.4670-4682, 2017.

D. M. Coen, M. Kosz-vnenchak, J. G. Jacobson, D. A. Leib, C. L. Bogard et al., Thymidine kinase-negative herpes simplex virus mutants establish latency 778 in mouse trigeminal ganglia but do not reactivate, Proc Natl Acad Sci U S A, vol.86, issue.12, pp.779-4736, 1989.

R. J. Cohrs, J. Randall, J. Smith, D. H. Gilden, C. Dabrowski et al., Analysis of individual human trigeminal ganglia for latent herpes simplex virus 782 type 1 and varicella-zoster virus nucleic acids using real-time PCR, J Virol, vol.74, issue.24, pp.783-11464, 2000.

R. M. Coles, S. N. Mueller, W. R. Heath, F. R. Carbone, and A. G. Brooks, , 2002.

, Progression of armed CTL from draining lymph node to spleen shortly after localized 786 infection with herpes simplex virus 1, J Immunol, vol.168, issue.2, pp.834-838

C. D. Conrady, M. Zheng, N. A. Mandal, N. Van-rooijen, and D. J. Carr, IFN-alpha-789 driven CCL2 production recruits inflammatory monocytes to infection site in mice, 2013.

, Mucosal Immunol, vol.6, issue.1, pp.45-55

H. S. Dai and M. A. Caligiuri, Molecular Basis for the Recognition of Herpes Simplex 792 Virus Type 1 Infection by Human Natural Killer Cells, Front Immunol, vol.9, p.183, 2018.

V. Decman, M. L. Freeman, P. R. Kinchington, and R. L. Hendricks, Immune control 795 of HSV-1 latency, Viral Immunol, vol.18, issue.3, pp.466-473, 2005.

S. Doutlik, L. Kutinova, R. Benda, J. Kaminkova, M. Krcmar et al., , 1989.

, Some immunological characteristics of subjects suffering from frequent herpes 798 simplex virus recrudescences, Acta Virol, vol.33, issue.5, pp.435-446

S. Efstathiou, S. Kemp, G. Darby, and A. C. Minson, The role of herpes simplex 800 virus type 1 thymidine kinase in pathogenesis, J Gen Virol, vol.70, pp.869-879, 1989.

S. Eyerich, K. Eyerich, C. Traidl-hoffmann, and T. Biedermann, Cutaneous Barriers 803 and Skin Immunity: Differentiating A Connected Network, Trends Immunol, vol.39, issue.4, pp.315-804, 2018.

V. Fabre, D. P. Beiting, S. K. Bliss, N. G. Gebreselassie, L. F. Gagliardo et al., Eosinophil deficiency compromises parasite survival in chronic nematode 807 infection, J Immunol, vol.806, issue.3, pp.1577-1583, 2009.

A. S. Flores-torres, M. C. Salinas-carmona, E. Salinas, and A. G. Rosas-taraco, , 2019.

R. Eosinophils and . Viruses, Viral Immunol, vol.32, issue.5, pp.198-207

E. L. Foster, E. L. Simpson, L. J. Fredrikson, J. J. Lee, N. A. Lee et al., , 2011.

, Eosinophils increase neuron branching in human and murine skin and in vitro, PLoS, vol.813, issue.7, p.22029

T. Gebhardt, S. N. Mueller, W. R. Heath, and F. R. Carbone, Peripheral tissue 815 surveillance and residency by memory T cells, Trends Immunol, vol.34, issue.1, pp.27-32, 2013.

M. Gelderblom, F. Leypoldt, K. Steinbach, D. Behrens, C. U. Choe et al., Temporal and spatial dynamics of cerebral immune cell accumulation in 819 stroke, Stroke, vol.818, issue.5, pp.1849-1857, 2009.

T. Gianni, V. Leoni, and G. Campadelli-fiume, Type I interferon and NF-kappaB 821 activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial 822 and neuronal cell lines, J Virol, vol.87, issue.24, pp.13911-13916, 2013.

M. B. Gill, D. E. Wright, C. M. Smith, J. S. May, and P. G. Stevenson, Murid 824 herpesvirus-4 lacking thymidine kinase reveals route-dependent requirements for 825 host colonization, J Gen Virol, vol.90, pp.1461-1470, 2009.

T. Hain, F. Melchior, N. Kamenjarin, S. Muth, H. Weslati et al., , 2019.

C. Dermal, Negative Migratory Dendritic Cells Are Fully Competent to Prime 828 Protective, Skin Homing Cytotoxic T-Lymphocyte Responses, J Invest Dermatol, vol.829, issue.2, pp.422-429

C. Handfield, J. Kwock, and A. S. Macleod, Innate Antiviral Immunity in the Skin, 2018.

, Trends Immunol, vol.39, issue.4, pp.328-340

T. J. Hill, H. J. Field, and W. A. Blyth, Acute and recurrent infection with herpes 833 simplex virus in the mouse: a model for studying latency and recurrent disease, 1975.

, J.Gen.Virol, vol.28, issue.3, pp.341-353

J. L. Hor, W. R. Heath, and S. N. Mueller, Neutrophils are dispensable in the 836 modulation of T cell immunity against cutaneous HSV-1 infection, Sci Rep, vol.7, 2017.

L. Huang and J. A. Appleton, Eosinophils in Helminth Infection: Defenders and 839 Dupes, Trends Parasitol, vol.32, issue.10, pp.798-807, 2016.

A. V. Iyer, B. Pahar, V. N. Chouljenko, J. D. Walker, B. Stanfield et al., Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus 842 protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces 843 lasting T cell memory immune responses, Virol J, vol.10, p.317, 2013.

C. Johnston, S. L. Gottlieb, W. , and A. , Status of vaccine research and 846 development of vaccines for herpes simplex virus, Vaccine, vol.34, issue.26, pp.2948-2952, 2016.

G. Kaswin, A. Rousseau, M. Garrech, E. Barreau, N. Pogorzalek et al., Optical aberrations in patients with recurrent herpes simplex keratitis and 850 apparently normal vision, Br J Ophthalmol, vol.97, issue.9, pp.1113-1117, 2013.

A. Katsumoto, H. Lu, A. S. Miranda, and R. M. Ransohoff, Ontogeny and functions 853 of central nervous system macrophages, J Immunol, vol.193, issue.6, pp.2615-2621, 2014.

S. Kaye and A. Choudhary, Herpes simplex keratitis, Prog Retin Eye Res, vol.25, issue.4, pp.355-380, 2006.

M. Kim, N. R. Truong, V. James, L. Bosnjak, K. J. Sandgren et al., , 2015.

, Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in 859 human skin, PLoS Pathog, vol.11, issue.4, p.1004812

J. E. Knickelbein, S. Divito, and R. L. Hendricks, Modulation of CD8+ CTL effector 861 function by fibroblasts derived from the immunoprivileged cornea, Invest Ophthalmol, vol.862, 2007.

, Vis Sci, vol.48, issue.5, pp.2194-2202

M. Labetoulle, P. Auquier, H. Conrad, A. Crochard, M. Daniloski et al., , 2005.

, Incidence of herpes simplex virus keratitis in France, Ophthalmology, vol.112, issue.5

M. Labetoulle, P. Kucera, G. Ugolini, F. Lafay, E. Frau et al., Neuronal 867 pathways for the propagation of herpes simplex virus type 1 from one retina to the 868 other in a murine model, J Gen Virol, vol.81, pp.1201-1210, 2000.

M. Labetoulle, P. Kucera, G. Ugolini, F. Lafay, E. Frau et al., Neuronal 870 propagation of HSV1 from the oral mucosa to the eye, Invest.Ophthalmol.Vis.Sci, vol.871, issue.9, pp.2600-2606, 2000.

M. Labetoulle, P. Kucera, G. Ugolini, F. Lafay, E. Frau et al., Neuronal 873 propagation of HSV1 from the oral mucosa to the eye, Invest Ophthalmol Vis Sci, vol.874, issue.9, pp.2600-2606, 2000.

M. Labetoulle, S. Maillet, S. Efstathiou, S. Dezelee, E. Frau et al., HSV1 876 latency sites after inoculation in the lip: assessment of their localization and 877 connections to the eye, Invest Ophthalmol Vis Sci, vol.44, issue.1, pp.217-225, 2003.

D. H. Lee and H. Ghiasi, Roles of M1 and M2 Macrophages in Herpes Simplex Virus, vol.879, 2017.

. Infectivity, J Virol, issue.15, p.91

D. H. Lee, U. Jaggi, and H. Ghiasi, CCR2+ migratory macrophages with M1 status 881 are the early-responders in the cornea of HSV-1 infected mice, PLoS One, vol.14, issue.4, p.215727, 2019.

H. K. Lee, M. Zamora, M. M. Linehan, N. Iijima, D. Gonzalez et al., , 2009.

, Differential roles of migratory and resident DCs in T cell priming after mucosal or skin 885 HSV-1 infection, J Exp Med, vol.206, issue.2, pp.359-370

L. Legroux, C. L. Pittet, D. Beauseigle, G. Deblois, A. Prat et al., An 887 optimized method to process mouse CNS to simultaneously analyze neural cells and 888 leukocytes by flow cytometry, J Neurosci Methods, vol.247, pp.23-31, 2015.

C. Levin, H. Perrin, C. , and B. , Tailored immunity by skin antigen-891 presenting cells, Hum Vaccin Immunother, vol.11, issue.1, pp.27-36, 2015.

T. J. Liesegang, Epidemiology of ocular herpes simplex, Natural history in Rochester, p.893, 1989.

. Minn, Arch Ophthalmol, vol.107, issue.8, pp.1160-1165, 1950.

N. Lucinda, M. M. Figueiredo, N. L. Pessoa, B. S. Santos, G. K. Lima et al., Dendritic cells, macrophages, NK and CD8(+) T lymphocytes play pivotal 896 roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and 897 granzyme B, Virol J, vol.14, issue.1, p.37, 2017.

M. M'garrech, A. Rousseau, G. Kaswin, A. Sauer, E. Barreau et al., , 2013.

, Impairment of lacrimal secretion in the unaffected fellow eye of patients with recurrent 900 unilateral herpetic keratitis, Ophthalmology, vol.120, issue.10, pp.1959-1967

S. Maillet, T. Naas, S. Crepin, A. M. Roque-afonso, F. Lafay et al., , 2006.

, Herpes simplex virus type 1 latently infected neurons differentially express latency-905 associated and ICP0 transcripts, J Virol, vol.80, issue.18, pp.9310-9321

M. A. Maroui, A. Calle, C. Cohen, N. Streichenberger, P. Texier et al., Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of 909 Its Genome with the Nuclear Environment, PLoS Pathog, vol.12, issue.9, p.908, 2016.

C. P. Marques, S. Hu, W. Sheng, and J. R. Lokensgard, Microglial cells initiate 912 vigorous yet non-protective immune responses during HSV-1 brain infection, Virus 913 Res, vol.121, issue.1, pp.1-10, 2006.

N. J. Megjugorac, H. A. Young, S. B. Amrute, S. L. Olshalsky, and P. Fitzgerald-bocarsly, Virally stimulated plasmacytoid dendritic cells produce chemokines and 916 induce migration of T and NK cells, J Leukoc Biol, vol.75, issue.3, pp.504-514, 2004.

J. Melchjorsen, Sensing herpes: more than toll, Rev Med Virol, vol.22, pp.106-121, 2012.

R. Menasria, C. Canivet, J. Piret, and G. Boivin, Infiltration Pattern of Blood 921 Monocytes into the Central Nervous System during Experimental Herpes Simplex 922 Virus Encephalitis, PLoS One, vol.10, issue.12, p.145773, 2015.

S. J. Molesworth-kenyon, A. Milam, A. Rockette, A. Troupe, J. E. Oakes et al., Expression, Inducers and Cellular Sources of the Chemokine MIG, p.925, 2015.

, During Primary Herpes Simplex Virus Type-1 Infection of the Cornea, Curr Eye Res, vol.926, issue.8, pp.800-808

S. J. Molesworth-kenyon, N. Popham, A. Milam, J. E. Oakes, and R. N. Lausch, , 2012.

, Resident Corneal Cells Communicate with Neutrophils Leading to the Production of 929 IP-10 during the Primary Inflammatory Response to HSV-1 Infection, Int J Inflam, vol.930, p.810359, 2012.

H. Motani, K. Sakurada, H. Ikegaya, T. Akutsu, M. Hayakawa et al., , 2006.

, Detection of herpes simplex virus type 1 DNA in bilateral human trigeminal ganglia 933 and optic nerves by polymerase chain reaction, J Med Virol, vol.78, issue.12, pp.1584-1587

P. Y. Ong and D. Y. Leung, Bacterial and Viral Infections in Atopic Dermatitis: a 936 Comprehensive Review, Clin Rev Allergy Immunol, vol.51, issue.3, pp.329-337, 2016.

N. Poccardi, A. Rousseau, O. Haigh, J. Takissian, C. Deback et al., , 2019.

, The kinetics of primary herpetic infection in ipsilateral and contralateral TGs 940 determine the nature of HSV-1 acute infection and reactivation

T. Rdc, R: A Language and Environment for Statistical Computing". Austria: R Foundation for 942 Statistical Computing), 2011.

C. Reynaud, A. Rousseau, G. Kaswin, M. Garrech, E. Barreau et al., Persistent Impairment of Quality of Life in Patients with, Herpes Simplex, p.945, 2017.

. Keratitis, Ophthalmology, vol.124, issue.2, pp.160-169

R. A. Rezende, T. Bisol, K. Hammersmith, C. J. Rapuano, A. L. Lima et al., Efficacy of oral antiviral prophylaxis in preventing ocular herpes simplex virus 948 recurrences in patients with and without self-reported atopy, Am J Ophthalmol, vol.142, issue.4, pp.949-563, 2006.

E. R. Richter, J. K. Dias, J. E. Gilbert, and S. S. Atherton, Distribution of herpes 951 simplex virus type 1 and varicella zoster virus in ganglia of the human head and neck, J Infect Dis, vol.952, issue.12, pp.1901-1906, 2009.

P. C. Rosato and D. A. Leib, Neurons versus herpes simplex virus: the innate 954 immune interactions that contribute to a host-pathogen standoff, Future Virol, vol.10, issue.6, pp.955-699, 2015.

A. Rousseau, D. Boutolleau, K. Titier, T. Bourcier, C. Chiquet et al., , 2017.

, Recurrent herpetic keratitis despite antiviral prophylaxis: A virological and 958 pharmacological study, Antiviral Res, vol.146, pp.205-212

D. J. Royer, H. R. Gurung, J. K. Jinkins, J. J. Geltz, J. L. Wu et al., A 961 Highly Efficacious Herpes Simplex Virus 1 Vaccine Blocks Viral Pathogenesis and 962 Prevents Corneal Immunopathology via Humoral Immunity, J Virol, vol.90, issue.11, pp.5514-963, 2016.

E. Segura, A. , and S. , Inflammatory dendritic cells in mice and humans, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00846095

, Trends Immunol, vol.34, issue.9, pp.440-445

F. H. Shen, S. W. Wang, T. M. Yeh, Y. Y. Tung, S. M. Hsu et al., Absence 967 of CXCL10 aggravates herpes stromal keratitis with reduced primary neutrophil influx 968 in mice, J Virol, vol.87, issue.15, pp.8502-8510, 2013.

G. A. Smith, S. P. Gross, and L. W. Enquist, Herpesviruses use bidirectional fast-970 axonal transport to spread in sensory neurons, Proc Natl Acad Sci U S A, vol.98, issue.6, p.3470, 2001.

S. Soby, R. R. Laursen, L. Ostergaard, and J. Melchjorsen, HSV-1-induced 973 chemokine expression via IFI16-dependent and IFI16-independent pathways in 974 human monocyte-derived macrophages, Herpesviridae, vol.3, issue.1, pp.4280-4283, 2012.

C. L. Sokol and A. D. Luster, The chemokine system in innate immunity, Cold Spring, p.977, 2015.

, Harb Perspect Biol, vol.7, issue.5

A. Takashima and Y. Yao, Neutrophil plasticity: acquisition of phenotype and 979 functionality of antigen-presenting cell, J Leukoc Biol, vol.98, issue.4, pp.489-496, 2015.

A. W. Taylor and T. F. Ng, Negative regulators that mediate ocular immune privilege, 2018.

, J Leukoc Biol

T. M. Tumpey, H. Cheng, X. T. Yan, J. E. Oakes, R. N. Lausch et al., Chemokine 984 synthesis in the HSV-1-infected cornea and its suppression by interleukin-10, J 985 Leukoc Biol, vol.63, issue.4, pp.486-492, 1998.

M. Van-velzen, L. Jing, A. D. Osterhaus, A. Sette, D. M. Koelle et al., Herpes simplex virus-specific CD8+ T cells can clear established lytic infections from 988 skin and nerves and can partially limit the early spread of virus after cutaneous 989 inoculation, J Immunol, vol.172, issue.1, pp.392-397, 2013.

, Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein 992 expression and immune competence in latently infected human trigeminal ganglia

M. Van-velzen, J. D. Laman, A. Kleinjan, A. Poot, A. D. Osterhaus et al., Neuron-interacting satellite glial cells in human trigeminal ganglia have an 996 APC phenotype, J Infect Dis, vol.9, issue.8, pp.1359-1365, 2009.

K. Vogel, S. Thomann, B. Vogel, P. Schuster, and B. Schmidt, Both plasmacytoid 1001 dendritic cells and monocytes stimulate natural killer cells early during human herpes 1002 simplex virus type 1 infections, Immunology, vol.143, issue.4, pp.588-600, 2014.

P. F. Weller and L. A. Spencer, Functions of tissue-resident eosinophils, Nat Rev 1005 Immunol, vol.17, issue.12, pp.746-760, 2017.

P. G. Whitney, C. Makhlouf, B. Macleod, J. Z. Ma, E. Gressier et al., , 2018.

, Effective Priming of Herpes Simplex Virus-Specific CD8(+) T Cells In Vivo Does Not 1008 Require Infected Dendritic Cells, J Virol, vol.92, issue.3

K. R. Wilhelmus, R. W. Beck, P. S. Moke, C. R. Dawson, B. A. Barron et al., Acyclovir for the prevention of recurrent herpes simplex virus eye disease, p.1010, 1998.

, Herpetic Eye Disease Study Group, N Engl J Med, vol.339, issue.5, pp.300-306

M. Wojtasiak, D. L. Pickett, M. D. Tate, S. L. Londrigan, S. Bedoui et al., Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication 1015 and disease in an intranasal model of herpes simplex virus type 1 infection, J Gen 1016 Virol, vol.91, pp.2158-2166, 2010.

H. Xu, A. Manivannan, R. Dawson, I. J. Crane, M. Mack et al., , 2005.

, Differentiation to the CCR2+ inflammatory phenotype in vivo is a constitutive, time-1019 limited property of blood monocytes and is independent of local inflammatory 1020 mediators, J Immunol, vol.175, issue.10, pp.6915-6923

R. C. Young, D. O. Hodge, T. J. Liesegang, and K. H. Baratz, Incidence, recurrence, 1022 and outcomes of herpes simplex virus eye disease in Olmsted County, Arch Ophthalmol, vol.128, issue.9, p.1183, 2007.

Y. R. Yu, E. G. O'koren, D. F. Hotten, M. J. Kan, D. Kopin et al., A 1026 Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal 1027 and Inflamed Murine Non-Lymphoid Tissues, PLoS One, vol.11, issue.3, p.150606, 2016.