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Chapter 1 

1 Introduction 
 
 
 

Staging and monitoring of chronic lung diseases is of major importance for patient care as well as 

for approval of new treatments. Monitoring of chronic lung diseases mainly relies on physiological 

data such as pulmonary function testing (PFT). Among physiological variables, Forced Vital Capacity 

(FVC) and Forced Expiratory Volume in 1 second (FEV1) are spirometry-derived parameters that are 

often used as primary endpoint in clinical trials on restrictive and obstructive lung syndrome, 

respectively. However, spirometry measurements only reflect lung function, not necessarily disease 

activity. Furthermore, in some diseases such as cystic fibrosis, spirometry is reported to be less 

sensitive than computed tomography (CT) for early detection of structural changes [1,2]. In addition, 

small changes in spirometry-derived parameters in an individual are difficult to interpret due to 

measurement variability [3]. Thus, recent literature suggests the need for a second outcome 

variable to adjudicate whether small decrease in measured lung function represents true decline or 

not [3]. Among the suggested second outcome variables, CT offers detailed morphological 

assessment of the disease.  

Morphological assessment is a key point for diagnosis and staging of many chronic lung diseases. 

Among imaging techniques, CT is the gold standard for in vivo morphological assessment of lung 

parenchyma and bronchi [4]. This technique currently offers the highest spatial resolution and thus 

is widely used in chronic lung diseases. However, its use in clinical practice as an endpoint in clinical 

trials remains controversial. The use of magnetic resonance imaging (MRI) for pulmonary evaluation 

is limited by the lack of hydrogen protons in the lungs, although recent improvements of MRI 

technique are promising [5]. MRI has lower spatial resolution than CT but can provide additional 

dynamic and functional information. 

There are several limitations to the use of imaging endpoints in clinical trials, such as the lack of 

standardization of the acquisition protocols and the radiation dose due to CT. There are also 

objective quantification issues. Visual methods are currently the most commonly used for severity 

scoring on imaging, but they suffer from poor standardization, complexity of use and lack of expert 

availability [4,6]. These drawbacks can be addressed by the development of objective quantitative 

scoring methods, but to date quantitative assessment is mainly restricted to CT density-based 

quantification of emphysema [7]. Several new quantitative approaches have been proposed, 

especially for idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease outside 

emphysema [4,8]. These approaches mainly use histogram analysis, airway segmentation or texture 

analysis [4,8–10]. However, their use is limited by the heterogeneity of the acquisition protocols, 

the CT manufacturer dependence of image characteristics and by the influence of physiological 

variables such as the level of inspiration on lung attenuation [4]. Thus, a lot of work remains to be 

done for the development of new imaging biomarkers in chronic lung diseases. 
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1.1 Chronic lung diseases  
 

Chronic lung diseases can be related to interstitial, bronchial or vascular changes. In this thesis, 

systemic sclerosis (SSc) and cystic fibrosis (CF) were used as models for interstitial lung disease (ILD) 

and bronchial disease, respectively. 

 

1.1.1 Systemic sclerosis  
SSc known as scleroderma, is a chronic connective tissue disorder having a prevalence of 100 to 260 

cases per million inhabitants in Europe and in the United States [11] and an incidence of 0.3 to 2.8 

per 100,000 individuals per year [12]. The disease is characterized by tissue fibrosis, 

microvasculopathy and autoimmunity. It involves multiple organs including the skin, the lungs, the 

heart, the gastrointestinal and genitourinary tracts and the musculoskeletal system. Pulmonary 

involvement is found at autopsy in 70 to 100% of the cases and represents the main cause of 

morbidity and mortality [13]. Two types of lung involvement are observed: ILD due to tissue fibrosis, 

and less frequently pulmonary hypertension related to microvasculopathy and/or advanced lung 

fibrosis [13]. Most of SSc-related ILD phenotypes (76%) are represented by nonspecific interstitial 

pneumonia (NSIP) that typically manifests on CT as reticulations, ground-glass opacities and traction 

bronchiectasis with basal and peripheral predominance [11] (Figure 1.1). Usual interstitial 

pneumonia (UIP) is less frequently encountered (11%) [11].  

 

 

 

Figure 1.1. Examples of various ILD manifestations and patterns in systemic sclerosis patients. A) Mild NSIP 
pattern with ground glass opacities (arrow) and traction bronchiectasis. B) Severe NSIP pattern with ground 

glass opacities, reticulations (arrowhead) and traction bronchiectasis (arrow). C) Mild UIP pattern with 
subpleural honeycombing (arrow) 

 

CT is very sensitive for the early detection of ILD, at a pre clinical stage [11]. In the large European 

Scleroderma Trials and Research group (EUSTAR), the prevalence of CT-defined ILD among SSc 

patients was 53%, whereas dyspnea was present in 35% of the patients [14]. ILD extent on initial CT 

has been found to be predictive of both disease progression and mortality [15,16]. Therefore, CT 

plays an important role for ILD screening and staging, along with PFTs. For disease monitoring, PFT 

measurements, especially the forced vital capacity (FVC), is the predominant biomarker. In clinical 

practice, morphological monitoring is made by side-by-side comparison of serial CT examinations. 

Disease worsening is usually associated with an increase of ILD extension and a lung shrinking of the 

diseased areas (Figure 1.2).  
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Figure 1.2. ILD worsening in systemic sclerosis patient. A-B) In the first patient, baseline CT scan (A) shows 
mild ILD presenting as ground glass opacities. Four years later (B), ILD extent has increased. C-D) In the 

second patient, ILD is more severe on the baseline CT scan (C) and some traction bronchiectasis are present. 
Five years later (D) ILD has worsened with a shrinkage of both lower lobes as demonstrated by the posterior 

displacement of the fissures (arrows in C and D) 
 

Several visual scoring systems have been proposed for basic quantification of ILD severity. These 

systems suffer from poor-to- moderate interobserver agreement [17,18]. Correlations between 

these visual scores and PFTs are at best moderate [13,17]. However, changes in CT fibrosis extent 

visually assessed in patients treated by cyclophosphamide have been shown to correlate with 

response to treatment [17]. It was shown that visual assessment of fibrosis on baseline CT can be 

used to predict progression of lung disease and long-term mortality [15,19]. This may lead to better 

patient stratification associated with potential toxicity. Indeed, the wide range of normal PFT values 

makes moderate changes difficult to interpret. The identification on CT of patients who are likely to 

worsen may also be important for further pharmaceutical studies [11]. Visual scoring on CT is 

unrealistic in clinical routine, but new quantitative scores based on histogram and textural methods 

have been proposed, although not currently largely available [9,13]. 

 
1.1.2 Cystic fibrosis 
CF is a recessive autosomal genetic disease caused by mutations of the Cystic Fibrosis 

Transmembrane Regulator (CFTR) gene, coding for an epithelial chloride channel involved in ion and 

fluid transport. CF is the most common inherited disease in Caucasians, and affects more than 

70,000 individuals in Europe and the United States combined [20,21]. F508del is the most frequent 

CFTR gene mutation and is encountered in 86.4% of patients [22], but more than 2000 mutations 

have been identified [23]. Disease severity mainly depends on the degree of lung involvement, 

which can lead to terminal respiratory failure [24]. CF lung disease is a result of abnormalities in 

mucociliary clearance. CFTR dysfunction induces the production of an abnormally viscous mucus 

causing mucoid impactions and subsequent bronchial inflammation, bronchial wall thickening, 

chronic bronchial infection and lastly bronchial dilatation (bronchiectasis) [25] (Figure 1.3). All these 
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morphological changes can be depicted on CT and authors have demonstrated that CT is more 

sensitive than PFTs for their early detection, as well as for monitoring mild disease progression [1,2]. 

Morphological changes on CT are also correlated with clinical endpoints such as survival [26], quality 

of life [2] and exacerbation rate [1,27].  

 

 

 

Figure 1.3. Examples of various disease severity in CF patients. A) CF patient with mild disease. CT scan only 
shows bronchiectasis in the middle lobe (arrow). B) CF patient with severe disease. CT scan shows diffuse 

bronchial dilatations (arrow), bronchial wall thickening and mucoid impactions (arrowhead) 
 

CT can provide morphological information that is complementary to spirometry and clinical 

evaluation. It is used in many CF referral centers as part of patient follow-up but its role in disease 

monitoring remains problematic, notably because of the cumulative irradiation. However, very-low-

dose CT protocols delivering doses close to those of chest radiography were recently described [28–

30]. Quantification of lung disease on CT is mainly based on visual assessment with various scoring 

methods [31], all of which share three limitations: they are difficult to perform and time-consuming, 

require specific training, and are associated with inter- and intra-reader variability [6]. These 

limitations prevent the use of visual scores in daily practice or as an endpoint in clinical studies. 

The development of automated scoring could solve the issues encountered with visual assessment 

methods preventing their use in clinical practice. To the best of our knowledge, no automated 

scoring method has been proposed. If available, automated methods could be also useful for other 

chronic bronchial diseases such as primary ciliary dyskinesia or idiopathic bronchiectasis, sharing 

similar bronchia changes (Figure 1.4). 

 

 

 

Figure 1.4. Similarities in CT presentation between CF (A), primary ciliary dyskinesia (B) and idiopathic 
bronchiectasis. 
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1.2 Introduction to machine learning and its applications in chest imaging 
 

The term « machine learning » was introduced in 1959 by Arthur L. Samuel, who designed the first 

program for the game of checkers [32]. Machine learning is a subset of methods of artificial 

intelligence (AI). Its aim is to develop algorithms that learn interpretation principles from training 

samples, and apply them to new data from the same domain to make informed decisions. Deep 

learning - a subset of machine learning - has recently become a hot topic in radiology. Indeed, deep 

learning for a specific class of problems has been shown to outperform other machine learning 

methods, allowing the creation of models that perform as well or even better than humans. Such a 

revolution was driven from the increasing availability of large datasets, computing capacity of 

graphic processing units (GPU), as well as algorithmic and mathematical progresses in neural 

networks.  

Machine learning is especially relevant for image interpretation. It adopts an evidence-driven 

concept where the underlying decision process is very different from one traditionally adopted by 

radiologists. This section will mainly focus on models commonly used in radiology and especially on 

a specific type of deep learning networks, the convolutional neural network (CNN).  

 
1.2.1 Terminology 
In order to understand machine learning, the first important step is to understand the different 

terms being used (Figure 1.5). 

In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers the ability 

to learn without being explicitly programmed" [32]. Conventional programing relies on a logic that 

is introduced during its conception and does not change. Machine learning applies a different 

principle where the behavior of the program changes according to the training data. It can generate 

systems that are able to automatically learn from the available data, without “being explicitly 

programmed”. Among various algorithms usually used in machine learning, neural networks are 

designed to mimic the way the human brain processes information. In brief, successions of simple 

operations – mimicking the way neurons behave - are used to treat the information. Each neuron 

(formal neuron) processes part of the signal. The composition of these processes is used to build 

the decision algorithm, also called the model. 

Deep learning refers to deep neural network, which is a specific configuration where neurons are 

organized in multiples successive layers [33]. The increase of layers improves the expression power 

and performance of these methods and could produce higher level of abstraction [3] . Deep learning 

currently represents the state-of-the art in machine learning for a variety of tasks and applications, 

especially for problems involving large structured training datasets, which is the case for chest 

radiograph interpretation. In the context of radiology, its goal is to develop algorithms and tools for 

the automated processing, analysis and understanding of digital images towards reproducing the 

human visual perception system. 

The term CAD (computer aided diagnosis) is a generic term encompassing various mathematical 

methods not limited to deep learning [35]. For thoracic imaging, the most prominent application 

refers to lung nodule diagnosis. This includes CAD for detection, named CADe, and CAD for 

characterization, named CADx, used to evaluate the probability of malignancy. Some CADs combine 

both tasks [36]. 
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Radiomics is another popular research direction, relying on more traditional machine learning tools, 

with some recent development exploiting deep learning methods. The objective is to determine 

imaging features of various complexity, which are invisible to the human eye, in order to establish 

correlations with clinical outcomes. There are 3 different categories of features: morphological 

features such as shape, volume, diameter and others, image features or first order features such as 

histogram, kurtosis, mean values and others, and textural features (higher order features) including 

co-occurrence of patterns, filter responses and others. These features are extracted and analyzed 

to be used for classification purposes (is the nodule benign or malignant?) for quantification (what 

is the degree of severity of this bronchial disease?) [37] or for prognosis, response to treatment, or 

correlation with other clinical or biological biomarkers. There are many applications of radiomics in 

thoracic oncology, such as discriminating adenocarcinoma from squamous cell carcinoma [38], 

predicting lung adenocarcinoma invasiveness [39] or epithelial growth factor receptor (EGFR) 

mutation, linking the tumor “radiomics phenotype” and the tumor genotype [40]. 

 

 

Figure 1.5. Overlaps and differences between the different terms used for artificial intelligence applied to 
medical imaging 

 
 
1.2.2 Main concepts regarding machine learning algorithms 
Types of algorithms:  

Machine learning algorithms can be categorized into two main groups: supervised or unsupervised 

algorithms. Algorithms based on supervision rely on samples with annotations provided by clinical 

experts, which will be used for training. Supervised learning algorithms can be trained for 

classification tasks, such as to the presence or absence of disease or anomaly, or for regression tasks, 

for instance to provide a severity score or a prognosis.  

Conversely, algorithms based on unsupervised learning do not involve human intervention. 

Clustering is the most representative example, where the objective is to group samples into 

homogeneous subpopulations, like for example to identify different chronic obstructive pulmonary 

disease (COPD) phenotypes. The performance of unsupervised algorithms is often lower than the 

one achieved with supervised techniques.  

Recently, semi-supervised methods have emerged which combine annotated and non-annotated 

data. In this setting, algorithms learn progressively through a better exploitation of the non-

annotated data. Reinforcement learning is a typical example of semi-supervised learning [41]. 
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Data annotation: 

Supervised algorithms rely on annotated data. There are different types of annotations depending 

on the task that the algorithm seeks to address (Figure 1.6). For classification tasks (presence or 

absence of anomaly or disease), images are simply labeled with two (disease positive or negative) 

or more labels. For instance, ChestX-ray 8 database [42] contains around 110 000 chest 

radiographies labeled as containing one or more of these eight anomalies: atelectasis, cardiomegaly, 

effusion, infiltrates, mass, nodule, pneumonia, pneumothorax. The exact localization of the anomaly 

is not provided within the image. This is also referred as a weakly annotated database. Even though 

the annotation does not include exact localization, some algorithm might automatically learn to 

predict the anatomical position of the anomaly.  

The next level of annotation usually refers to a sparse way of providing information [43] or with 

boundary boxes indicating the regions of interest [44]. Segmentation tasks require the highest level 

of annotation which consists in contouring/delineating the anomalies on each image. This type of 

annotation allows building more precise algorithms but is tedious and time consuming. Such 

datasets are generally smaller and more difficult to generate. 

 

 

 

Figure 1.6. Different types of annotations. In weak annotation, images are simply labeled (nodule = yes or 
no) and exact localization of the anomaly is not provided. In sparse annotation, a bounding box is drawn 

around the nodule, whereas in segmentation the nodule contour is delineated (white area). 
 

 

Database/dataset: 

For machine learning, the quality of data is essential and could be even more important than the 

learning algorithm itself. It guarantees the capacity for the model to perform equally well on cases 

not seen during training. For obtaining a generalizable model, it is important to have a dataset that 

is representative of the disease and also representative of the different acquisition techniques. In 

radiology, datasets must include the different acquisition protocols, the various forms of the 

evaluated disease and also include examinations from disease-free subjects. A model for lung 

fibrosis detection should be trained using a dataset reflecting the heterogeneity of lung fibrosis 

patterns but also including normal CT scans, and CT images acquired on various CT manufacturers. 

If the training dataset only contains a unique fibrosis pattern or acquisitions all performed on the 

same CT unit with the same reconstruction protocol, the risk for the model to be poorly 

generalizable is high. 
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The dataset is usually split in three subcategories, training, validation and testing. The training set -

usually corresponding to 60% of the database- is used to train variant versions of the model with 

different initialization conditions and model optimization parameters. Once the models have been 

trained, their performance is evaluated using 20% of the remaining data, composing what is called 

the validation dataset. The model with the best performance on the validation dataset is selected. 

This model is finally evaluated using the last 20% of samples, which were never previously used and 

compose the test dataset. 

An alternative to the dataset splitting between training and validation is the method of k-fold cross 

validation which allows training and validating using the entire dataset. This approach is especially 

useful when the number of cases is limited. It consists of splitting the training and validation sets to 

several random splits with the same proportion of samples and then repeat the training on them. 

The average performance of the model on these splits is taken into account to judge the model 

performance and acceptability. 

 

Data Preprocessing: 

Data preprocessing is not limited to the decomposition of the dataset into training, validation and 

test. Images have to be “normalized” before being fed to the machine learning algorithm. Various 

degrees of pre-processing can be applied, such as normalization of the physical resolution involving 

slice thickness and voxel size and/or normalization of the grey-level distributions to follow 

predefined distribution and/or image denoising [45]. Radiomics studies involve features selection, 

which are either selected by humans with traditional machine learning techniques or automatically 

identified when using deep learning. On the former case, the preprocessing step also involves the 

choice of image features, among all 3 categories previously described, to feed the algorithm. Among 

these features, the algorithm will select the most prominent ones with respect to the task, using 

different possible techniques such as random forest, Lasso (Least Absolute Shrinkage and Selection 

Operator), SVM (support vector machine), logistic regression and others. 

 

Deep learning architectures 

In radiology, three architectures are predominantly used.  

CNNs are the most popular ones because they are robust and easy to train [46–48]. They rely on the 

succession of simple convolution/deconvolution operators at different scales (Figure 1.7). 

Convolution consists in aggregating information from voxels grouped together, through the 

application of different filters (Figure 1.8). The filters differ from one layer to the next and their 

application generates the input to the subsequent layer. This generally results in a loss of spatial 

information which is recovered through deconvolution. Image segmentation is the most common 

application of this architecture.  
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Figure 1.7. Illustration of a convolution/deconvolution neural network. The convolution part of the network 
applies convolution operators at different scale. Scale reduction (downsampling) between each layer is 

usually obtained by using max-pooling function. Then, the deconvolution part applies deconvolution 
operators and progressively restores the initial scale of the image (upsampling). 

 

 

 

Figure 1.8. Example of convolution with Sobel filter to highlight edges on the horizontal direction. 
 

 

Recurrent neural networks (RNNs) are used to jointly solve different, interdependent problems, 

such as detection and characterization of nodules. The network is organized in closed loops rather 

than in a sequence of operations like CNNs [49]. These loops allow solving the interdependency of 

tasks. Another application of this architecture is the ability to encode temporal information and deal 

with dynamic data, for instance enhancement after contrast administration [50]. 

The last class refers to Generative adversarial networks (GANs) [51], where during training of the 

algorithm, information coming from images is combined with a statistical predictor, jointly 

determining the outcomes. For instance, lung nodules are generally spheroid in shape, and the 

statistical component of the GAN for a lung nodule detection algorithm will reinforce this condition 

for the final prediction. Such methods are used when plausibility of the deep learning result is 
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important to consider. Other architectures do not explicitly provide a statistical interpretation of 

the results. On the contrary to CNNs and RNNs, GAN architectures are the hardest to train. 

 

Hyper parameters, loss function and optimization strategy 

The term hyper parameter refers to all parameters which are defined before training the algorithm, 

by opposition to those which will derive from learning. Number and type vary according to the deep 

learning architecture. Hyperparameters include the number of layers, the learning rate which 

depends on the loss function and optimization strategy. 

The loss function is an important concept to understand. It corresponds to the metrics used by the 

algorithm during training to test its performance. It quantifies the gap between the prediction by 

the algorithm and the ground truth given by the expert annotation/label. The objective of any deep 

learning algorithm is always to minimize its loss function, until the discrepancy between the 

prediction by the network and the ground truth vanishes. The loss function varies according to the 

tasks which is addressed, such as the Dice similarity coefficient loss [52] for segmentation tasks or 

the log loss for detection and classification tasks.  

Several strategies can be used to optimize the loss function during training. The most commonly 

used is the stochastic gradient descent [53]. Gradient descent methods rely on an iterative process 

where every iteration allows moving closer to the optimal model. Stochastic gradient descent allows 

random perturbation of the model that instantly could degrade its performance but finally converge 

to a better solution. 

The learning rate and the number of epochs are also important optimization parameters. The 

learning rate controls the amount of improvement of the network between two iterations. Low 

learning rates guaranty improvements, but of marginal importance. High learning rates refer to 

more unstable models where improvement from one iteration to the next could be more significant, 

associated with the risk of degrading the overall performance. Epoch is a different concept, which 

refers to the number of times where the entire training set has been revisited to update the model 

parameters. A highest number of epochs guaranties better performance on the training set, at the 

cost of increasing computation complexity as well as the risk of overfitting, by selecting features 

which are only specific to the training dataset and are poorly generalizable.  

 

Overfitting and underfitting 

Overfitting is the situation where the trained model performs very well on the training dataset but 

fails on the testing set. Overfitting occurs when the model performance keeps improving in the 

training cohort but decreases in the validation cohort. In other words, the model generates accurate 

predictions on the training set, but fails to reproduce them on new unseen cases. This can be 

observed when the training set is not well balanced or when the number of samples if not sufficient. 

In this situation, it may happen that the algorithm finds an association of features and considers it 

as relevant for the outcome, while it is only the result of fortuitous feature combinations learned 

from a non-representative dataset. This association would disappear when using a larger or 

different sample. Overfitting problems are common with deep learning algorithms containing many 

layers generating lots of variables to learn (from several hundred to several millions) from small 

training sets. 

Another problem that can be seen during training is underfitting. It occurs when the model fails its 
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adaptation to both training and validation sets. The reasons of underfitting can be multiple. In 

presence of multiple subpopulations within the training set, models with an insufficient number of 

parameters will fail to encompass the entire population. Another possible explanation for 

underfitting relates to the nature of the model that has been chosen for the prediction. For example, 

when the notion of time is critical for diagnosis (delayed enhancement), a model that ignores this 

information will most inevitably fail even if the number of parameters is sufficient.  

In summary, overfitting is characterized by a high performance on the training dataset contrasting 

with a poor performance on the validation dataset whereas underfitting is characterized by poor 

performance in both training and validation datasets Figure 1.9). 

 

 

 
Figure 1.9. Underfitting and overfitting. Underfitting is characterized by a high loss in both training and 
validation datasets, whereas overfitting is characterized by a low loss in the training dataset contrasting 

with a high loss on the validation dataset. 
 

 

1.2.3 Artificial intelligence applied to chest radiograph (CXR) reading 
The World Health Organization estimates that two thirds of the global population lack access to 

imaging and radiology diagnostics [54]. Thoracic imaging techniques such as digital chest 

radiography have the major advantage to be easy to use and affordable, even in developing or 

underdeveloped areas. It consists of 2D images and several billions have already been stored on 

picture archiving and communication systems (PACS) and linked to radiological reports. However, 

there is a shortage of experts who can interpret chest radiographies, even when imaging equipment 

is available, which opens tremendous perspectives for the impact of artificial intelligence applied to 

thoracic imaging. 

The first application of artificial intelligence is workflow optimization, by detecting CXR with possible 

abnormalities that should be read first among all CXR of the work list. Using density and texture-

based features, [55] developed a CAD system to automatically determine abnormal chest 

examinations in the work list of radiologists interpreting chest examinations. The turnaround time 

for reporting abnormal CXR was reduced by 44%. CAD can be used for specific detection tasks on 

chest radiograph, such as detection of tuberculosis, pneumonia or lung nodule, and even more 

advances tasks such as multiple diseases detection are being developed as well [56]. 

Among specific detection tasks, a major application of CAD is the diagnosis of lung nodules on chest 
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radiography. This includes CAD for detection (CADe), and CAD for characterization (CADx) used to 

evaluate the nodule probability of malignancy or a combination of them. Whereas radiomics is often 

used for CADx, either using deep learning or classic machine learning techniques, the current 

tendency for developing CADe tools is to use deep learning. Traditional pulmonary nodule CAD 

systems include image preprocessing, nodule detection using various algorithms, extraction of 

features and classification of the candidate lesions as nodules and non-nodules. The number of 

selected features (intensity, shape, texture, size) and the classifiers (support vector machine, Fisher 

linear discriminant and others) depend on the CAD system. The objective is to have adequate 

sensitivity together with a low number of false positives detections. The development of 

convolution neural networks has opened new perspectives but require large annotated chest 

radiograph datasets. 

Transfer learning could overcome this requirement. It consists on training algorithm non-medical, 

everyday images on a large data set and initializing the network with its parameters on the smaller 

medical image dataset. [57] pre trained a CNN model on a subset of the ImageNet dataset which 

contains millions of labeled real-word images and retrained it to classify chest radiographs as 

positive or negative for the presence of lung nodules with a sensitivity of 92% and a specificity of 

86%. 

More recently [58] developed a deep learning-based detection algorithm for malignant pulmonary 

nodules on chest radiographs and compared its performance with that of physicians, with half of 

them being radiologists. They used a dataset of 43 292 chest radiographs with a normal to diseased 

ratio of 3.67. Using an external validation dataset, they found area under the curve (AUC) of the 

developed algorithm was higher than that of 17 of the 18 physicians. All physicians showed 

improved nodule detection when using the algorithm as second reader [58]. 

Automated detection of tuberculosis on chest radiographs is another important field of research. 

Tuberculosis is an important cause of death worldwide, with a high prevalence in underdeveloped 

areas where radiologists are lacking. Several approaches have been used to detect tuberculosis 

manifestations in CXRs. Traditional machine learning approaches mainly used textural features, with 

or without applying bone suppression as pre-treatment of CXR images. [59] used statistical features 

in the image histogram to identify TB positive radiographs and reached an accuracy of 95.7%. Others 

used a combination of textural, focal, and shape abnormality analysis [60]. In [61] a deep learning 

algorithm for automated detection of active pulmonary tuberculosis on chest radiographs was 

developed. Their solution outperformed physicians including thoracic radiologists. In [62] two CNNs 

(AlexNet and GoogLeNet) pre-trained on non-medical images on a dataset of 1007 CXRs, with an 

equivalent number of positive and negative tuberculosis cases. The AUC was 0.99 for the best 

performing classifier combining the 2 pre-trained CNNs which were activated on areas of the lung 

where the disease was present, in the upper lobes. However, as acknowledged by the authors, the 

model was trained for a specific task, which was differentiating normal versus abnormal CXR 

regarding tuberculosis suspicion. This limits the use of the algorithm to areas of high tuberculosis 

prevalence and few mimickers, such as lung cancer also affecting the upper lung zones.  

In addition to pulmonary nodules and tuberculosis there are acute conditions that can be detected 

using such computer-aided solutions, like pneumonia. A deep learning algorithm for pneumonia 

detection compared with performance to that of 4 radiologists, using F1 score metric was proposed 

in [63]. Their model performed better than the averaged radiologists even though no better than 
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the best radiologist. 

Beyond lung nodule detection or other specific detection tasks, detection of multiple abnormalities 

is challenging but more in phase with the clinical practice, since frequently there are multiple 

abnormalities in the chest radiographs. 

Several large databases of annotated chest radiographies are publicly available. One of the largest 

databases is chestX-ray8, already mentioned, built from the clinical PACS of the hospitals affiliated 

to the National Institute of Health. This database includes 112,120 frontal views of 30,805 patients 

and initially the image labels of 8 diseases, then extended to 14 diseases (chestX –ray14), including 

atelectasis, consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis, effusion, 

pneumonia, pleural thickening, cardiomegaly, nodule, mass, and hernia.  

In [64] the performance of Chexnet, trained on chestx-ray14 dataset was compared to the one of 9 

radiologists on a validation set of 420 images containing examples of the pathology labels. The 

radiologists achieved statistically significantly higher AUC performance on cardiomegaly, 

emphysema, and hiatal hernia, whereas for other pathologies, AUCs reached with the algorithm 

were either significantly higher (atelectasis) or with no statistically significant difference (other 10 

pathologies). 

In [65] a deep learning-based algorithm was developed to distinguish normal and abnormal chest 

radiograph results, including malignant neoplasm, active tuberculosis, pneumonia, and 

pneumothorax. The algorithm was trained on a dataset of 54 221 normal chest radiographs and 

35 613 with abnormal findings. External validation using 486 normal and 529 abnormal chest 

radiographs was performed. With a median 0.979 AUC, the algorithm demonstrated significantly 

higher performance than non-radiology physicians, board-certified radiologists, and thoracic 

radiologists. All improved when using the algorithm as second reader.  

These results open new perspectives for radiologists and are very likely to modify our practice. 

 

1.2.4 Artificial intelligence applied to chest CT reading 
The application of medical image analysis to thoracic CT is not a novel research area. CAD has been 

used for automated lung nodule detection on CT. Early approaches at the beginning of the 2000’s 

were based on traditional machine learning approaches, such as Support Vector Machines (SVMs). 

Commercially available computer-aided detection packages were proposed by companies like 

Siemens Healthineer (Erlangen, Germany), GE Healthcare (Milwaukee, WI, USA), R2 Technology 

(Santa Clara, CA, USA) and others.  

Even though none of the two large randomized lung cancer screening studies, NLST (National lung 

cancer screening trial) [66] and NELSON [67] used CAD for lung nodule detection, an ancillary study 

from the NELSON group, published in 2012 [68] compared CAD and double reading by radiologists, 

in a cohort of 400 CT scans randomly selected from the NELSON database. The lung CAD algorithm 

used in this study was commercial software from Siemens Healthineer, available since 2006 

(LungCAD VB10A). Ground truth was established by a consensus reading from expert chest 

radiologists. The sensitivity for lung nodule detection was 78.1% for double reading and 96.7% for 

CAD, at an average cost of 3.7 false positive detections per examination. However, there were only 

5 subsolid nodules (either non-solid or part-solid) in the 400 selected CT scans, and 2 of them were 

not detected by CAD. Using another commercial CAD, only 50% of subsolid nodules were detected 

at best with the highest sensitivity setting, at the average cost of 17 CAD marks per CT [69]. Visual 

confirmation remains necessary for reducing false positives when using a CAD for the detection of 
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subsolid nodules [70]. 

For solid nodules, easier to detect, sensitivity should be adjusted to only detect lung nodules of at 

least 6 mm, according to lung-RADS and Fleischner guidelines [71]. This is a way to limit the false 

positive detections, and the number of candidate lesions to evaluate (Figure 1.10). 

 
 

 

Figure 1.10. CADe for lung nodule detection. Using commercially available software (Thoracic VCAR, GE 
healthcare, Buc, France), the number of candidate lesion is very high (32 red spots) when the sensitivity is 

adjusted at its highest level, to detect lung nodules from 2 mm (A). Using a different setting, to only detect 
nodules of at least 4 mm, the number of candidate lesions goes down to 5 (B). When adjusted to 6 mm, no 

more candidate lesions are detected (not shown). 
 
 

Using CAD for the detection of lung nodules in patients with extra-thoracic malignancies improved 

the detection of lung nodules, at the cost of an 11% increase of reading time [72]. 

If not used for lung nodule detection, CAD has been used for calculating the volume of screen-

detected nodules in the NELSON study and estimating the volumetry-based doubling time. This 

strategy was the basis of lung nodule management in the NELSON study, nodules of less than 50 

mm3 were considered as negative screen together with lung nodules between 50 and 500 mm3 for 

which the volumetry-based doubling time, calculated at 3 months was less than 400 days [73]. This 

strategy was proven to notably reduce the false positive rate. The ratio of positive screens (true and 

false positives) was 6.6%, in the NELSON study, compared to 24.1% in NSLT, where nodule diameters 

were manually measured and any nodule of at least 4 mm was considered as a positive screen. The 

limits of diameter manual measurements are well known, the intra and inter reader repeatability 

are 1.4 and 1.7 mm respectively [74], which does not allow to reliably detect malignant growth at 3 

months for nodules of less than 10 mm. Conversely, software-based volumetric measurements are 

highly repeatable [75] and doubling times of more than 500 days for solid nodules have a 98% 

negative predictive value for the diagnosis of malignancy [76]. This is the reason why the European 

position statement recommends volume measurement and volume-doubling time estimation for 

the management of detected solid nodules [77].  

Volumetry software are less reliable for subsolid nodules, even though doubling times of solid and 

nonsolid component of part-solid nodules can be separately estimated (Figure 1.11). 
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Figure 1.11: Volumetry-based doubling time measurement of a part-solid nodule. Baseline CT demonstrates 

a part-solid nodule of the right upper lobe (A), with small solid component of 59 mm3 (B). Follow-up CT 
performed 13 months later shows an increase of the solid portion (C). The whole nodule doubling time is 529 
days (Thoracic VCAR software), relatively indolent, but the solid component doubling time is only 121 days, 
typically in the malignant range and reflecting aggressiveness, whereas the nonsolid component doubling 

time is almost 3 years (D). 
 

Besides volumetry-based doubling time estimation, another approach for lung nodule 

characterization is to use radiomics to analyze imaging features derived from medical images. 

Radiomics can be used to characterize tumor aggressiveness, viability, response to chemotherapy 

and/or radiation [78]. Therefore, a radiomic approach can help to reveal unique information about 

tumor biological behavior. It can be used for prognosis estimation in confirmed lung cancers [79] or 

to estimate the risk of distant metastasis [80]. Radiomics has also been used to predict histology 

and mutational profile of lung tumors [81]. Using principal component analysis (PCA) on stable, 

reproducible features, the authors obtained a radiomic signature able to successfully discriminate 

between EGFR+ and EGFR- cases, with an AUC of 0.69.  

The problem of radiomics is the robustness and generalizability of the learned signatures. Indeed, 

radiomics analysis performed on images acquired under specific, homogeneous imaging conditions, 

are not representative of clinical routine [82]. One important condition in the selection of features 

is their reproducibility. 

The use of CNN for CT images is more complex than for 2D chest radiograph images, due to the 3D 

nature of images, the high number of slices and smaller size of datasets, requiring data 

augmentation techniques. To overcome these problems, some studies use 2D CNNs applied to each 

slice, whereas others choose to adopt a patch-based approach or reduce the image size at the cost 

– for both cases - of a loss of information.  

Despite these technical difficulties, results are promising and CNNs generally allow obtaining better 

results than traditional machine learning methods. Using deep learning, [57] obtained an AUC value 

of 0.758 for predicting EGFR mutation x. 

For the 2017 Kaggle Data Science Bowl, whose objective was to predict the cancer risk at 1 year, 

based on lung cancer screening CT examinations, all frontrunner teams used deep learning.  



 

  

17 

[83] trained a deep learning algorithm on a NLST dataset from 14851 patients, 578 of whom having 

developed lung cancer within the next year. They then tested the model on a first test dataset of 

6716 cases, achieving an AUC of 94,4%. Comparison to 6 radiologists was performed for a subset of 

507 patients, and the model’ performance was equivalent or higher to all of them when a single CT 

was analyzed, whereas performances were equivalent when the model and the radiologists made a 

decision including patients’ previous CT scans. 

The use of CNN for thoracic CT is not restricted to nodule evaluation but can also be applied to 

diagnose and stage COPD and predict acute respiratory distress (ARD) and mortality in smokers [84]. 

Training a CNN on the CT scans of 7,983 COPDGene participants, AUC for the detection of COPD was 

0.856 in a nonoverlapping cohort of 1000 another COPDGene participants. AUCs for ARD events 

were 0.64 and 0.55 in COPDGene and ECLIPSE participants, respectively. Deep learning has also been 

used for emphysema quantification based on X-ray images. The model obtained an AUC of 90.7% 

for predicting an emphysema volume of at least 10% [85]. 

CNNs can also be used for the detection and quantification of infiltrative lung diseases (ILD) or for 

automated classification of fibrotic lung diseases. Indeed, even though classification criteria have 

been established by consensus of 4 expert societies inter radiologist agreement is only moderate at 

best, even among experts, and there is a shortage of experts [86]. [87] trained a CNN algorithm for 

automated classification of fibrotic lung disease on a database of 1157 high-resolution CT scans from 

two institutions showing evidence of diffuse fibrotic lung disease. When comparing the model 

performance with that of 91 radiologists, the model accuracy was 73.3% compared to a median 

radiologist accuracy of 70.7%.  

The majority of previous work on ILD pattern detection was based on 2D image classification using 

a patch-based approach. This approach consists in dividing the lung into numerous small patches of 

the same size (e.g., 32×32 pixels) and to classify them into one of the ILD pattern classes. Different 

classifiers can be used, such as SVM, Boltzmann machines, CNNs local binary patterns and multiple 

instance learning [88]. These classifiers are trained on datasets including thousands of annotated 

patches, representatives of each class to identify, normal ground glass, honeycombing, emphysema. 

Caliper software was developed using the patch-based approach, for the quantification of disease 

extent and change in idiopathic pulmonary fibrosis [89,90]. The two advantages of this approach 

are the possibility to separately quantify each anomaly, and the need for only week annotation (e.g. 

categorization), which is less time consuming than semantic segmentation which requires precisely 

contouring disease extent on CT images.  

However – despite the great promises – the aforementioned deep learning methods inherit a 

number of limitations as well. First, such methods do not integrate information about the 

environment such as the subpleural location and basal predominance. In the central lung portion, 

some bronchi may be misclassified as honeycombing, since there is no spatial information with the 

patch-based approach. The results might be disappointing when the model is applied to the whole 

CT image, in spite of good patch classification results in the test data set. Indeed, problematic 

patches including more than one pattern are usually excluded from the training and test datasets, 

similarly to frontier patches at the very lung periphery close to the chest wall or at the interface 

between two different classes of anomaly. 

Another approach is the segmentation of the whole fibrotic extent without quantifying each 

component [91]. This requires contouring the abnormal fibrotic areas on every abnormal slices, 
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which is time consuming but allow then applying the model to the whole lung volume (Figure 1.12).  

 
 

Figure 1.12. Interstitial lung disease segmentation in a patient with idiopathic pulmonary fibrosis 
using a deep-learning based tool. A) Unenhanced CT scan axial transverse image through the lung 

bases demonstrates ground glass, reticulations and bronchiolectasis with subpleural 
predominance. B) ILD segmentation (red). C) Combination of ILD (red) and lung (blue) 

segmentations allowing calculating the volume of diseased lung on CT. 
 

 

1.3 Introduction to elastic registration and its applications in chest imaging 
 

1.3.1 Image registration 
Image registration is the process of aligning two or more sources of data to the same coordinate 

system. In particular the goal of image registration is to define the best transformation (deformation 

field) to accurately align one or more images (source images) to the reference (target images). These 

images can possibly be from different time points, different modalities, or different subjects.  

Image registration methods can be grouped into two different groups depending on the 

transformation model they use (Figure 1.13). Linear transformation models only perform global 

transformation of the image such as rotation, scaling, translation, shear, affine transformation. 

These transformations are particularly useful to register structures such as the head on CT or MRI 

of the brain, that usually do not present local deformations over time. Conversely, nonlinear (ie: 

nonrigid or elastic) define transformations that vary locally, generating for each voxel of the volume 

its optimal displacement. Several nonlinear transformation models have been reported in the 

literature such as free-form deformations (FFDs) [92], thin-plate splines [93] or radial basis functions 

[94]. As shown in [95] elastic registration offers better registration quality for lung registration 

because of the deformable nature of the lung. Through all the different registration methods used 

in medical applications, deformable registration is the one most commonly used due to its richness 

of description. However, traditionally, there was a tradeoff between precision and computational 

requirements for the nonlinear transformation. This seems to be addressed currently with powerful 

GPU and recent deep learning-driven implementations [96,97] at least for some specific indications 
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Figure 1.13. Differences between linear (ie rigid) and nonlinear (ie elastic or nonrigid) transformation 

 

 

In order to define the optimal transformation for both rigid and nonlinear transformations, the 

matching criteria is very important. Traditionally the registration methods can be grouped in 

feature-based and in intensity-based depending on the type of matching approach they use. In 

feature-based methods, the aim of the algorithm is to find correspondences between landmarks 

selected and paired by an expert or (semi-) automatically extracted. Conversely, in intensity-based 

models its aim is to match intensities of the whole images. Feature-based and intensity-based 

methods can also be combined in hybrid methods. To define the best matching, different type and 

metrics of similarity (distance) functions are used in the literature such as Euclidian distance for 

feature-based methods and the sum of absolute differences, the sum of squared differences or the 

normalized cross correlation in density-based methods. To minimize the similarity metric, optimal 

parameters must be found, and different optimization strategies can be adopted. For nonlinear 

transformations, optimization is challenging and both continuous and discrete optimization can be 

considered.  

A robust, multi-metric, multi-modal graph-based registration algorithm has already been developed 

in the laboratory [98,99] and was used for this thesis. This algorithm is based on a Markov random 

field formulation and discrete optimization. 
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1.3.2 Elastic registration applied to chest imaging 
A major application of elastic registration in medical imaging is breathing motion tracking to reduce 

dose and irradiation of normal tissue surrounding the tumor in radiotherapy. Indeed, lung 

parenchyma is one of the most radiosensitive tissues in the thorax [100]. Additionally, motion may 

potentially lead to underdosage to the tumor. To assess the lung deformation during respiration, 

elastic registration should either be applied on end-inspiratory to end-expiratory images or on 4D 

CT images acquired during a respiratory cycle [101]. Elastic registration between inspiratory and 

expiratory images can be used to simulate 4D CT images [102]. 

In radiology, image registration has been evaluated for the diagnosis of lung cancer on serial chest 

CT. Indeed, growth assessment is the most reliable noninvasive method to differentiate between 

benign and malignant nodules. Several authors investigated the use of rigid or elastic registration to 

re-localize the nodules on the baseline or on the follow-up CT examination [103–105]. [103] 

reported a nodule matching accuracy of 81%. These results were improved in [104] where an 

accuracy of 97% using a combination of feature-based and intensity-based transformations was 

reported. Using a semi-rigid registration method, [105] reported a mean distance error of 1.4 ± 0.8 

mm between paired nodules in 12 pairs of patient scans (97 nodules). As underlined this paper, 

comparison between methods is challenging because of the use of proprietary datasets and of the 

difficulty in precisely implementing a competing method.  

In order to allow an independent comparison between registration algorithms on the same dataset 

with algorithm parameters set by their designers, the EMPIRE10 (Evaluation of Methods for 

Pulmonary Image Registration 2010) challenge was created in 2010 [106]. The deformation fields 

were evaluated over four individual categories: lung boundary alignment, fissure alignment, 

correspondence of manually annotated point pairs, and the presence of singularities in the 

deformation field. This public challenge was based on a dataset of 30 pairs of thoracic CT. The 

original challenge was launched in 2010 and 20 teams participated. Nine year later, the EMPIRE10 

challenge remains open to new submissions.  

In radiology, elastic registration has also been used to assess obstructive disease in COPD patients. 

[107] combined elastic registration and density thresholds on inspiratory and expiratory images to 

classify every lung voxel in 174 COPD patients from the COPDGene cohort. Their so called “response 

parametric map” allowed to identify the extent of small airways disease and emphysema. 

Additionally, it provided CT-based evidence supporting there is a continuum originating from 

healthy lung, though functional small airways disease and ending at emphysema with increasing 

COPD severity. More recently, an elastic registration method to assess lung elasticity on 4D chest 

CT images in 13 patients with lung cancer treated by stereotaxic body radiation therapy was 

proposed [108]. They found much lower lung elasticity in COPD compared to non-COPD patients. 

They also showed that areas of low elasticity matched with areas of emphysema and that a 

decreased lung elasticity was a better predictor than emphysema extent for COPD. 

 
1.4 Thesis outline & contributions 
 
In the first part of this thesis (Chapter 2) we will focus on building biomarkers for bronchial diseases 

and especially for cystic fibrosis. First, we developed a simple density-based CT scoring method for 

evaluating high attenuating lung structural abnormalities in patients with CF. The developed score 

correlated well with pulmonary function. The originality of our approach was the use of adapted 



 

  

21 

thresholds taking into account CT acquisition-dependent variations in lung density distribution. We 

also applied this approach in a cohort of patients with primary ciliary dyskinesia and obtained again 

good correlations with pulmonary function. Lastly, we used a radiomics approach to create a CT 

score correlating with clinical prognosis scores for CF. Using 5 different machine learning methods, 

we were able to create radiomics-based models showing moderate-to-good correlations with 2 

clinical prognosis scores, FEV1 and the number of pulmonary exacerbations to occur in the next 12 

months. 

 

In the second part (Chapter 3), we will present our work on deep learning used to create a new 

biomarker for ILD quantification in SSc. We first evaluated a combination of patched-based and fully-

convolutional encoder-decoder architectures for ILD segmentation. In this work, we created a 

framework that integrates deep patch-based priors (trained on publicly available databases) with a 

fully convolutional encoder-decoder network (trained on a small number of images). The 

combination of the two architectures allowed to transfer the learned features across different 

datasets and increased segmentation accuracy. Then we created a new architecture (AtlasNet) 

combining elastic registration and encoder-decoder architecture to segment ILD. The concept is to 

train a certain number of CNNs, each of the them using a predefined anatomy on which all training 

cases are mapped through elastic registration, resulting in a natural data augmentation. This 

method has the advantage to decrease the complexity of observations related to anatomical 

variability and to increase the “anatomical” consistency of redundancies of the networks. AtlasNet 

offered better performances than state-of-art methods for ILD segmentation on chest CT. Lastly, we 

augmented the AtlasNet network through a dual auto-decoder architecture in order to guarantee 

anatomically plausible disease segmentation results. We showed that this method performed better 

than a U-net architecture and as well as radiologists for disease segmentation. The combination of 

disease and lung segmentations allowed to calculate normalized ILD extent and we found that the 

ILD extent provided by our model correlated well with PFTs, especially diffusing capacity for carbon 

monoxide (DLCO), in a large cohort of SSC patients. Additionally, these correlations were confirmed 

in an external validation cohort. 

 

In the last part (Chapter 4), we will present our work on elastic registration used to diagnose and 

monitor interstitial lung disease. First, we used elastic registration of inspiratory to expiratory lung 

MR images for the assessment of pulmonary fibrosis in SSc patients and also evaluated healthy 

volunteers. We observed major differences between patients with and without fibrosis. There was 

a marked shrinkage of the lung bases during expiration in healthy volunteers and SSc patients 

without fibrosis, which was not observed in SSc patients with pulmonary fibrosis. This loss of 

elasticity affected the posterior part of the lung bases, which are known to be affected by fibrosis in 

scleroderma patients. This work has been published in the Radiology Journal [109]. 

Then, we used a combination of elastic registration and deep learning to automatically diagnose ILD 

worsening on serial CT scans of SSc patients. In SSc patients experiencing either morphological or 

functional ILD worsening we observed lung shrinking in the posterior part of the lung bases on the 

follow CT scan. This was not observed in other patients. Additionally, a deep learning using the 

Jacobian maps as input was able to automatically detect focal lung shrinking and assess disease 

progression with a high accuracy.   
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Chapter 2 

2 From digital images to biomarkers 
 
 
 

In this chapter, we will evaluate different approaches to create biomarkers correlating with disease 

severity in bronchial diseases.  

 

In cystic fibrosis (CF), lung morphological changes are known to modify CT density distribution. Most 

CF-related morphological changes exhibit higher CT attenuation values than normal lung 

parenchyma. This is especially the case of bronchial wall thickening and mucus plugging, both of 

which are dramatically improved by new targeted therapies [110]. In [111] it was identified three 

histogram shapes depending on the severity of lung disease in CF patients. Therefore, we 

hypothesized that changes in lung densities could be used to create new imaging biomarkers and 

could help evaluating response to treatment. 

 

First, we developed a simple density-based CT scoring method for evaluating high attenuating lung 

morphological changes in patients with CF [112]. By analogy with automated quantification of CT 

low-attenuation areas in emphysema [113], we postulated that automated quantification of high-

attenuation structures in CF might objectively reflect disease severity and improvement under the 

newly released therapies. The developed score correlated well with FEV1, which is a well-recognized 

marker of functional severity that is often used as a surrogate for mortality in CF clinical studies. 

One originality of our approach is the use of adapted thresholds taking into account CT acquisition-

dependent variations in lung density distribution. Indeed, as shown in this figure 2.1, the shape of 

the histogram curves is different depending on the respiratory phase. Thus, any change in the 

degree of inspiration is likely to influence the repartition of lung densities. 

[112] 

 

Next, we applied this approach to a cohort of patients with primary ciliary dyskinesia (PCD). PCD is 

another bronchial disease with morphological changes close to those observed in CF. Using this 

approach, we also obtained good correlation with FEV1. Additionally, we confirmed that the use of 

adapted thresholds optimized the correlations with functional parameters compared to fixed 

thresholds [114]. 

 

Finally, we evaluated the use of a classical radiomics approach to create a CT score correlating with 

clinical prognosis scores for CF. Although radiomics has mainly been used to build diagnostic and 

prognostic models in oncology [37,115–117], radiomic features from the whole lung can also be 

used as biomarkers for evaluating the severity of diffuse lung diseases. Using 5 different machine 

learning methods, we created radiomics-based models showing moderate-to-good correlations 

with 2 CF clinical prognosis scores, as well as with FEV1 and the number of pulmonary exacerbations 

to occur in the next 12 months. These results were validated in an external patient cohort. 
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Figure 2.1. Patient without respiratory disease undergoing repeated chest CT examinations as part of extra-
thoracic cancer follow-up. There is a variability of the lung CT density distribution in the 3 CT examinations 

performed 1-year apart (CT1, CT2 and CT3) with Mode ranging from -899 to -868 Hounsfield Units (HU) and 
standard deviation (SD) ranging from 137 to 143 HU. 
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2.1 A thresholding approach for automated scoring of the cystic fibrosis lung 
 

2.1.1 Background 
Although the CT attenuation of pulmonary structural abnormalities associated with CF differs from 

that of normal lung, few attempts have been made to quantify CF-related pulmonary lesions in 

terms of CT density distribution. Quantification of low-attenuation areas in order to assess air 

trapping showed a good correlation with residual volume (RV) and maximum mid-expiratory flow 

[118–121]. However, most of these correlations were weak, and the need to acquire expiratory 

images in addition to standard inspiratory images raises concerns regarding the additional radiation 

dose. Quantitative evaluation of airway disease in CF has also been previously performed with other 

approaches, focusing on the analysis of airway size and geometry [10,122,123]. In [122] automated 

airway analysis reported high negative correlations between enlarged airway dimensions and FEV1 

in adults. 

[111] has described a flattening of the lung parenchyma CT density distribution in CF patients with 

severe lung impairment. By analogy with automated quantification of CT low-attenuation areas in 

emphysema [113], we postulated that automated quantification of high-attenuation structures in 

CF might objectively reflect disease severity and improvement under the newly released therapies. 

The objective of this study was to develop an automated density-based CT scoring method for 

evaluating high attenuating lung structural abnormalities in patients with CF.  

 
2.1.2 Methodology 
The proposed method quantifies structural changes with high attenuation values (e.g. bronchial wall 

thickening, mucus plugging/ bronchiolar nodules, consolidation, atelectasis) using a thresholding 

approach. Quantification is performed after whole lung segmentation, which consists of separating 

the lungs from the chest wall and mediastinum.  

Four threshold values were tested (-300, -400, -500 and -600 Hounsfield units (HU)), as well as 10 

adapted threshold values, taking into account, for each CT examination, individual histogram 

features, namely mode –corresponding to the most highly represented attenuation value–, mean 

lung density (MLD), and standard deviation (SD), which are known to be influenced by the 

inspiratory level. Expiration flattens the density distribution curve and also shifts it towards higher 

density values [118,124] (Figure 2.1). We hypothesized that adapted thresholds based on Mode or 

MLD or integrating SD might compensate for the changes of density distribution related to the level 

of inspiration.  

The automated CT-Density score was expressed as the ratio between the high-attenuating 

(diseased) lung volume and total lung volume. For instance, a CT-Density score value of 4 indicated 

that 4% of the total lung volume had an attenuation value superior or equal to the threshold. 

Our aim was to develop a score only requiring inspiratory images, to keep the CT radiation dose as 

low as possible. Indeed, the report by [125] highlighted the increasing exposure to ionizing radiation 

in patients with CF, being mainly attributable to CT scanning. This is the reason why we excluded 

routinely acquiring expiratory CT images in our center. 
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2.1.3 Dataset and implementation 
Dataset 

This multicenter two-phase retrospective study, including adult outpatients with CF, was approved 

by the Paris Ile de France I ethics committee (ref 13.652). The need for informed consent was 

waived. All the patient’s characteristics are summarized in Table 2.1.  

The development phase involved CF patients from six French CF centers who had at least one gating 

(class 3) mutation in the gene coding for the cystic fibrosis transmembrane conductance regulator 

(CFTR) protein and who were treated with Ivacaftor, a new therapy correcting the protein 

dysfunction in patients with gating mutations. Patients were eligible if they had had at least two 

volumetric unenhanced chest CT exams, one before starting ivacaftor and at least one during 

treatment, plus spirometric measurements performed within one month before or after each CT 

exam, all performed from November 2010 through September 2015. A total of 45 CT scans (17 

baseline + 28 follow-up CT scans) from 17 patients were evaluated. The improvement of visual score 

in this development cohort has been reported in a previous paper [110].  

The validation phase involved an independent cohort of CF patients not treated with ivacaftor. This 

cohort included 53 CF outpatients who had unenhanced chest CT and spirometric measurements 

performed on the same day at our adult CF reference center in 2013, as part of their routine follow-

up. 

Exclusion criteria were the unavailability of CT images reconstructed with a soft kernel or a slice 

thickness of more than 2 mm, or the use of contrast injection. Only CT examinations performed as 

routine follow-up and outside an exacerbation phase were taken into account. 

 
Table 2.1. Patient characteristics 

 Development cohort Validation cohort 
Number of patients 17 53 

Age (y) 35 [28-43] 27 [24-33] 

Sex, n (%)   

Male 14 (82) 30 (57) 

Female 3 (18) 23 (43) 

FEV1 % predicted 38 [33-77] * 52 [38-68] 

Note: Data are medians with interquartile ranges in brackets. 
The development cohort comprised 45 pre-therapeutic and follow-up chest CT scans of 
17 adult CF patients treated with ivacaftor. The validation cohort was composed of 53 
adult CF patients not treated with ivacaftor. 
* FEV1 values before treatment with ivacaftor 
FEV1 = forced expiratory volume in 1 second 

 

Depending on the center, inspiratory chest CT examinations of the whole lung were obtained with 

eight different 16-to-128 multislice CT devices from 4 different vendors (Somatom Sensation 16 and 

Somatom Definition DS, Siemens Healthcare, Erlangen, Germany; Lightspeed VCT, Optima CT660 

and Discovery HD750, GE Healthcare, Milwaukee, Wi; Ingenuity CT, Philips Healthcare, Best, The 

Netherlands; Aquilion, Toshiba Medical System, Otawara, Japan).  

Regarding the acquisition protocol, the tube voltage was 80, 100 or 120 kV, depending on body 

weight, in 3 (3%), 37 (38%) and 58 (59%) cases, respectively. Images were reconstructed with a slice 
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thickness of 0.625 to 2 mm, with for each case, at least one set of images reconstructed with a 

standard reconstruction algorithm. This was true for both pre-treatment and follow-up CT scans. 

Median dose length product was 148mGy.cm (interquartile range, IQR=128-185mGy.cm). Iterative 

reconstructions were used for some CT examinations. All CT acquisitions targeted the whole lung 

volume. Respiratory gating was not used for CT acquisitions which were only acquired at full 

inspiration without additional expiratory scanning, since it was not standard of care in the 

participating CF centers. 
The percentage of predicted forced expiratory volume in 1 second (% predicted, FEV1%pred) 

measured at the time of CT was used as an endpoint to assess the CT score performance for cross-

sectional evaluation in the two cohorts. Longitudinal evaluation was also performed in the 

development cohort. Changes in FEV1%pred (ΔFEV1%pred) contemporary to each follow-up CT scan 

were used to assess the performance of the visual and automated scores for patient follow-up. In 

patients with more than two follow-up CT scans, the comparison was always performed with the 

closest preceding simultaneous CT and functional examinations. 

The development cohort included a median of two scans per patient (IQR=2-3) with a median 

interval of 17 months between consecutive scans (IQR=12.5-21.7). The median FEV1%pred was 38% 

before treatment (IQR=33-77) and increased by a median of +3.9% (predicted) between two 

consecutive CT scans on treatment (IQR=-3-+8; range=-17-+28% predicted). 

In the validation cohort, a single CT scan and the corresponding FEV1%pred value were evaluated 

for each patient. The median FEV1%pred was 52% (IQR=38-68). 

 

Implementation details 

Image analysis and disease assessment were performed by 2 radiologists with 5 and 16 years of 

experience in thoracic imaging, respectively. 

CT images were scored blindly to clinical information and to the date of CT. Both automated and 

visual scores were calculated. 

Two commercially available lung-segmentation software programs were systematically used for 

each CT, in order to later evaluate the lung segmentation software influence on the score results: 

Myrian XP-lung software version 1.19.1 (Intrasense, Montpellier, France ; 

http://www.intrasense.fr/myrian-clinical-apps/#lung-vessel-liver-abdofat) and Syngo.via Pulmo CT 

software version VB1B (Siemens Healthineer ; https://www.siemens-healthineers.com/computed-

tomography/options-upgrades/clinical-applications/syngo-pulmo-ct). The central airways were not 

included, contrary to intrapulmonary bronchi and pulmonary vessels. 

Myrian lung segmentation was improved by systematically applying a sequence of basic 

morphological operators, in an automated mode, and was optionally improved by additional manual 

editing with 3D tools, especially to include peripheral consolidations when they had been excluded 

from the initial lung segmentation. 

Three sets of data were thus obtained for the development cohort: 
1. lung segmentation with XP-lung software without manual editing (segmentation 1) 

2. lung segmentation with XP-lung software with manual editing (segmentation 2) 

3. lung segmentation with Pulmo CT software without manual editing (segmentation 3) 

Only segmentation 1 was used for the validation cohort. 

To compare with visual assessment of disease severity, images were visually scored using the  

the CF-CT score, except that air trapping was not assessed because expiratory images were not 
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available [126]. The visual scores in the two cohorts were calculated by one radiologist who had 

received one week of intensive training in a reference center (Lung Analysis, Erasmus Medical 

Center, Rotterdam, The Netherlands) in order to achieve good intraobserver agreement in scoring.  

Twenty-five CT scans from the development cohort were randomly selected to assess repeatability. 

Intraobserver repeatability was evaluated for the visual score and the automated score based on 

segmentation 2, which included manual editing, by two reading sessions performed at a one-month 

interval. Interobserver repeatability was evaluated for the automated score based on segmentation 

2. Repeatability was not assessed for the automated scores based on segmentation 1 or 3, which 

did not include manual editing. 

The time required to obtain the visual and automated scores was measured in the development 

cohort. 
The percentage of predicted forced expiratory volume in 1 second (% predicted, FEV1%pred) 

measured at the time of CT was used as an endpoint to assess the CT score performance for cross-

sectional evaluation in the two cohorts. Longitudinal evaluation was also performed in the 

development cohort. Changes in FEV1%pred (ΔFEV1%pred) contemporary to each follow-up CT scan 

were used to assess the performance of the visual and automated scores for patient follow-up. In 

patients with more than two follow-up CT scans, the comparison was always performed with the 

closest preceding simultaneous CT and functional examinations. 

 

2.1.4 Experimental results 
Spearman's rank correlation coefficient (R) was used to judge the correlation between the CT scores 

and FEV1%pred, and the correlation between changes in the CT scores (Δscores) and changes in 

FEV1%pred (ΔFEV1%pred). Spearman R values were interpreted as follows: <0.4 = absent to weak 

correlation, 0.40-0.59 = moderate correlation, 0.60-0.79 = good correlation, >0.8 = strong 

correlation.  

The statistical significance of changes in the CT scores and FEV1%pred values between baseline and 

last follow-up was evaluated with the Wilcoxon test. 

The intraclass correlation coefficient (ICC) and Bland-Altman plots were used to assess repeatability. 

Excellent repeatability was assumed when the ICC was 0.8 or more. 

 

Cross-sectional correlation in the development cohort 

All CT scans (2 to 4 per patient) with contemporary FEV1%pred values were analyzed for cross-

sectional correlations between the CT scores and FEV1%pred in the development cohort (Table 2.2). 

Using segmentation 1, the median values of mode and SD were -912 HU (IQR=-899 to -912 HU) and 

170 HU (IQR= 150-183 HU), respectively. All automated CT-Density scores based on adapted 

thresholds showed moderate to good correlations with FEV1%pred (R=-0.55 to -0.68, P<0.001), 

while those based on fixed thresholds led to weaker correlations (R=-0.43 to -0.57, P≤0.004). The 

highest correlation coefficient values were obtained when using Mode+3SD as the threshold (R=-

0.61 to -0.68, depending on the segmentation method, P<0.001). This was also true when 

considering only the initial CT for each patient (R= -0.71 to -0.85, P≤0.005). 

  



 28 

Table 2.2. Cross-sectional correlations between CT-density scores and FEV1%pred 

 Development cohort Validation cohort 
 Segmentation 1 

(17 patients, 
n=45 CT) 

Segmentation 2 
(17 patients, 

n=45 CT) 

Segmentation 3 
(17 patients, 
n=38 CT *) 

Segmentation 1 
(53 patients, 

n=53 CT) 
Threshold R P value R P value R P value R P value 
Fixed thresholds 

(-) 300 HU -0.54 <0.001 -0.48 <0.001 -0.46 0.004 -0.51 <0.001 

(-) 400 HU -0.57 <0.001 -0.52 <0.001 -0.50 0.002 -0.53 <0.001 

(-) 500 HU -0.57 <0.001 -0.53 <0.001 -0.51 0.001 -0.54 <0.001 

(-) 600 HU -0.56 <0.001 -0.53 <0.001 -0.51 0.001 -0.43 0.001 

Adapted thresholds 
MLD +2.5 SD -0.61 <0.001 -0.58 <0.001 -0.56 <0.001 -0.56 <0.001 

MLD +2 SD -0.64 <0.001 -0.61 <0.001 -0.60 <0.001 -0.59 <0.001 

MLD +1.5 SD -0.57 <0.001 -0.64 <0.001 -0.57 <0.001 -0.59 <0.001 

Mode +500 HU -0.63 <0.001 -0.59 <0.001 -0.55 <0.001 -0.61 <0.001 

Mode +400 HU -0.64 <0.001 -0.61 <0.001 -0.58 <0.001 -0.60 <0.001 

Mode +300 HU -0.64 <0.001 -0.62 <0.001 -0.59 <0.001 -0.60 <0.001 

Mode +3 SD -0.68 <0.001 -0.64 <0.001 -0.61 <0.001 -0.61 <0.001 

Mode +2 SD -0.66 <0.001 -0.65 <0.001 -0.64 <0.001 -0.61 <0.001 

Mode +1.5SD -0.65 <0.001 -0.64 <0.001 -0.64 <0.001 -0.60 <0.001 

Mode +1SD -0.67 <0.001 -0.68 <0.001 -0.67 <0.001 -0.56 <0.001 

CT = Computed Tomography, HU = Hounsfield Unit, MLD = Mean Lung Density, SD = Standard 
Deviation 
The development cohort comprised 45 pre-therapeutic and follow-up chest CT scans of 17 adult CF 
patients treated with ivacaftor. The validation cohort was composed by 53 adult CF patients not 
treated with ivacaftor. 
For comparison, the correlation between the visual CF-CT score and FEV1%pred was R=-0.72 (P<0.001) 
in the development cohort and R=-0.64 (P<0.001) in the validation cohort 
* Lung segmentation using Pulmo-CT software (segmentation 3) failed in 7 of the 45 CT 
examinations, in 6 patients (see supplemental material) 

 

Compared to fixed thresholds, adapted thresholds taking into account CT acquisition-dependent 

variations in lung density distribution improved the correlation with FEV1%pred. Indeed, lung 

density is known to be influenced by the level of inspiration, the scanning parameters, the quality 

of CT calibration, and even the CT device manufacturer [127–130]. Whereas expiration flattens the 

density distribution curve with a shift towards higher density values [118,124], most other 

parameters mainly shift the density distribution towards higher or lower values [130,131]. Various 

correction methods have been proposed to quantify emphysema and air trapping, but none has 

been proposed for quantifying high-attenuating structures [118,130–132]. We suspected that 

adapting thresholds based on Mode or MLD might partially correct the shift in density distribution 

due to a lower level of inspiration, whereas the use of SD might partially correct the flattening of 

the density distribution. The benefit of using adapted thresholds was supported by the stronger 

correlations to pulmonary function which were obtained, as compared with fixed thresholds. 

Adapted thresholds based on Mode also allow taking into account the attenuation variations due to 
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various tube voltage setting, since Mode represents the most frequent attenuation value observed 

in the lung histogram. In [133] the correlation between lung function and other histogram 

characteristics was studied and depicted a moderate cross-sectional correlation of Log-iKurtosis 

with FEV1%pred in CF patients. This approach is different from ours, which was based on the 

quantification of high-attenuating structures.  

The correlation coefficient value with FEV1%pred was slightly higher for the visual score (R=-0.72, 

P<0.001) and the correlations between the visual and automated CT scores were good to strong 

(R=0.68 to 0.89; P<0.001) (Table 2.3). 
 
 
Table 2.3. Correlation between the automated CT scores and the CF-CT visual score in the development 

cohort 

 Segmentation 1 
(n=45) 

Segmentation 2  
(n=45) 

Segmentation 3  
(n=38)* 

Threshold R P value R P value R P value 
Fixed thresholds       

(-) 300 HU 0.73 <0.001 0.70 <0.001 0.68 <0.001 

(-) 400 HU 0.77 <0.001 0.77 <0.001 0.72 <0.001 

(-) 500 HU 0.79 <0.001 0.79 <0.001 0.76 <0.001 

Adapted thresholds       

MLD + 2.5 SD 0.77 <0.001 0.76 <0.001 0.72 <0.001 

MLD + 2 SD 0.83 <0.001 0.83 <0.001 0.82 <0.001 

MLD + 1.5 SD 0.77 <0.001 0.86 <0.001 0.86 <0.001 

Mode + 500 HU 0.82 <0.001 0.80 <0.001 0.77 <0.001 

Mode + 400 HU 0.84 <0.001 0.83 <0.001 0.81 <0.001 

Mode + 300 HU 0.86 <0.001 0.86 <0.001 0.85 <0.001 

Mode + 3 SD 0.82 <0.001 0.81 <0.001 0.78 <0.001 

Mode + 2 SD 0.88 <0.001 0.88 <0.001 0.88 <0.001 

Mode + 1.5 SD 0.87 <0.001 0.87 <0.001 0.89 <0.001 

Mode + 1SD 0.80 <0.001 0.81 <0.001 0.83 <0.001 

CT = Computed Tomography, HU = Hounsfield Unit, MLD = Mean Lung Density, SD = Standard 
Deviation 
* Lung segmentation using Pulmo-CT (segmentation 3) failed in 7 of the 45 CT examinations 

 

Cross-sectional correlation in the validation cohort 

Correlations in the validation cohort were close to those obtained in the development cohort. CT-

Density scores based on adapted thresholds (Mode+300, 400 or 500 HU and Mode+1.5, 2 or 3SD) 

showed good correlations with FEV1%pred (R=-0.60 to -0.61; P<0.001) (Figure 2.2).  

The correlation between the visual CF-CT score and FEV1%pred was also good (R=-0.64, P<0.001). 

The cross-sectional correlation of our automated score with FEV1%pred was slightly weaker than 

that of the visual CF-CT score in both the development and validation cohorts in our study, still 

remaining in the upper range of correlation values previously reported for visual scores (-0.33 to -

0.78) [134–137]. 
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Figure 2.2: Automated CT scoring in the validation cohort of patients with various disease severities.           
A-B) Axial CT image in a patient with mild lung disease (FEV1%pred =77%). Bronchiectasis and bronchial wall 

thickening are seen in the posterior segment of the right upper lobe (white arrow). These lesions are 
included in areas of high attenuation (pink areas). Scoring with Mode+300 HU yielded a CT-Density score of 

4.4. This means that 4.4% of the total lung volume had an attenuation value superior or equal to mode (-
899 HU) + 300 HU. C-D) Axial CT image in a patient with moderate disease (FEV1%pred =56%) shows 
bilateral mucus plugging (yellow arrowheads). The CT-Density score was 9.8. E-F) Axial CT image in a 

patient with severe disease (FEV1%pred =31%) shows diffuse bronchiectasis and bronchial wall thickening 
(yellow arrows). The CT-Density score was 14.5. 
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Longitudinal correlations in the development cohort  

Longitudinal correlations between the ΔCT-Density score and ΔFEV1%pred based on the 28 follow-

up CT scans in the development cohort are summarized in Table 2.4.  

ΔCT-Density scores obtained with adapted thresholds appear to better correlate with ΔFEV1%pred 

than the ones of fixed thresholds. The highest correlation coefficient values were obtained with 

Δ(Mode+3SD) (R=-0.55 to -0.61; P≤0.008) and Δ(Mode+300 HU) (R=-0.51 to -0.60; P≤0.008) 

depending on the segmentation method. Quantifying high-attenuating lung structures, instead of 

irreversible bronchial lumen dilatation allows monitoring changes under the newly developed 

targeted therapies and this explains why the developed score correlated well with FEV1 on 

longitudinal follow-up. Normal high-attenuating lung structures such as pulmonary vessels are also 

included. However, differences in pulmonary vessel volume among patients had probably little 

influence on score variations compared to those due to the bronchial disease. 

By contrast, the Δvisual CF-CT score showed only a moderate correlation with ΔFEV1%pred (R=-0.49; 

P=0.008). However, subtle changes are more difficult to assess visually than being detected by 

objective measurements of attenuation. Furthermore, visual scores take into account irreversible 

changes such as bronchial dilatation, which will not improve under treatment.  
 
 

Table 2.4: Correlations between longitudinal changes in CT-density scores (Δ scores)                                     

and in FEV1%pred (Δ FEV1%pred) in the development cohort 

 Segmentation 1 
(n=28) 

Segmentation 2 
(n=28) 

Segmentation 3 
(n=21)* 

Thresholds R P value R P value R P value 
Fixed thresholds       

Δ (-) 300 HU -0.40 0.035 -0.40 0.035 -0.37 0.098 

Δ (-) 400 HU -0.39 0.039 -0.49 0.035 -0.38 0.094 

Δ (-) 500 HU -0.37 0.050 -0.44 0.009 -0.39 0.081 

Δ (-) 600 HU -0.39 0.043 -0.44 0.021 -0.36 0.104 

Adapted thresholds       

Δ(MLD +2.5 SD) -0.52 0.005 -0.53 0.004 -0.51 0.017 

Δ(MLD +2 SD) -0.49 0.008 -0.52 0.005 -0.50 0.022 

ΔMLD +1.5 SD -0.46 0.014 -0.51 0.005 -0.50 0.022 

Δ(Mode +500 HU) -0.50 0.006 -0.56 0.002 -0.46 0.038 

Δ(Mode +400 HU) -0.53 0.004 -0.57 0.002 -0.49 0.023 

Δ(Mode +300 HU) -0.51 0.006 -0.60 <0.001 -0.56 0.008 

Δ(Mode +3 SD) -0.55 0.002 -0.61 <0.001 -0.56 0.008 

Δ(Mode +2 SD) -0.45 0.016 -0.58 0.002 -0.54 0.012 

Δ(Mode +1.5 SD) -0.33 0.090 -0.46 0.014 -0.51 0.018 

Δ(Mode +1SD) -0.26 0.187 -0.31 0.112 -0.49 0.024 

CT = Computed Tomography; HU = Hounsfield Unit; MLD = Mean Lung Density; SD = 
Standard Deviation 
* Because 7 segmentations failed with Pulmo-CT software, only 21 of 28 interscan 
changes could be evaluated with segmentation 3. 
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FEV1%pred and visual CF-CT score showed discordant evolution in 32% of cases overall, with either 

improvement of FEV1%pred but increase of CF-CT score, or worsening of FEV1%pred but decrease 

of CF-CT score. Changes in the CT-Density score and FEV1%pred, with automated scores based on 

Mode+3SD or Mode+300HU, were discordant in 24% (5/21) to 32% (9/28) of cases, depending on 

the segmentation method used (Figure 2.3). The rates of discordance with changes in FEV1%pred 

were in the range of those previously reported (31%, vs 24-32% in our series) [138]. 

FEV1%pred values improved significantly between the pretherapeutic examination and last follow-

up on ivacaftor (+6.3% predicted; 95% confidence interval (95% CI) 0-14.5; P=0.045). Significant 

improvements were also noted in the visual CF-CT score (P=0.016) and in the CT-Density scores 

based on Mode+3SD and Mode+300HU when calculated from segmentations 1 and 2 (P<0.05). An 

improvement was also noted for scores obtained with segmentation 3, even though statistical 

significance was reached for fewer thresholds. The similar results obtained with and without manual 

editing of small segmentation errors (segmentation 1 and 2) demonstrated the process can be fully 

automated. 

 

 

 
 

Figure 2.3: Development cohort: longitudinal changes in FEV1 % predicted versus changes in A) the visual CF-
CT score, and in the CT-Density scores based on B) Mode+300HU and C) Mode+3SD with segmentation 2. 

The changes are concordant in the left upper quadrant (improvement in both FEV1%pred and the CT score) 
and in the right lower quadrant (worsening of both FEV1%pred and the CT score). 
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Repeatability and Time Required 

The intra-observer repeatability of both the visual CF-CT score and the automated CT-Density score 

based on segmentation 2 was excellent (ICC>0.8). However, intra-observer repeatability was higher 

with the automated score (ICCs ≥ 0.947), regardless of the threshold.  

The interobserver repeatability of the automated score was also excellent (ICC 0.947 to 0.997). 

However, we only evaluated repeatability based on the same set of scans, thus only the influence 

of variation in the manual edited segmentations was evaluated, no other potential variation factors, 

which would require repeating scans within a short time frame. 

The average time required to obtain the automated scores was respectively 2.0 ± 0.5 and 0.8 ± 0.2 

minutes when based on segmentation 1 and 3 (no manual editing). It was 6.6 ± 2.4 minutes based 

on segmentation 2 with manual editing. The visual CF-CT score took an average of 17.8 ± 7.8 

minutes. The time required for automated scoring was far shorter than for visual scoring, and is 

compatible with clinical practice. 

 

2.1.5 Discussion 
We report a good cross-sectional correlation between a new automated density-based CT score for 

high-attenuating lung structural abnormalities and FEV1%pred in adults with CF. The automated 

score better correlates with changes in FEV1%pred among patients treated with ivacaftor than did 

the visual score. The developed score was validated in a larger independent cohort of unselected 

adult CF patients, with similar results for two different commercially available lung segmentation 

software.  

[6]Our study has several limitations. First, owing to the retrospective and multicenter design, the 

scanning techniques were not standardized. Contrary to visual scoring, density-based automated 

scoring is highly dependent on the scanning technique, acquisition setting and reconstruction 

parameters The CT examinations used in our development cohort often had different slice 

thicknesses and/or tube voltages. This heterogeneity may have been detrimental for our scoring 

method. However, this corresponds to routine practice and has not prevented from obtaining good 

correlations to the pulmonary function. The use of standardized scanning protocols and calibrated 

breath holds, as previously suggested [139,140], would probably even improve the performance of 

our automated CT scoring method. Another limitation is that the number of CT scans per patient in 

the development cohort was uneven. However, our results were confirmed in the validation cohort, 

with only one CT scan and one FEV1%pred value per patient. A third limitation is that FEV1%pred was 

the only CF outcome measure. However FEV1%pred measurement is the only surrogate for mortality 

to be considered as primary endpoint by the European Medicines Agency for clinical trials in CF 

[141]. Correlations with other clinical endpoints such as quality of life, the exacerbation rate, and 

survival are important for the validation of chest CT as a surrogate outcome and should be assessed 

in further studies [140]. 

In conclusion, our results demonstrate that CT density-based automated scoring of lung structural 

abnormalities is feasible in CF patients. The use of adapted thresholds such as Mode+3SD or 

Mode+300HU to quantify high-attenuating CF-related lesions yielded a good correlation with 

FEV1%pred, in both cross-sectional and longitudinal analyses. This scoring method, validated in a 

second, independent cohort, is much less time-consuming than visual scoring and could prove 

suitable both in daily practice and as an objective endpoint for clinical trials.  
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2.2 Evaluation of the thresholding approach for automated severity scoring of lung 
disease in adults with primary ciliary dyskinesia 

 

2.2.1 Background 
PCD is a rare genetic disorder characterized by defective ciliary structure and/or function, leading 

to inadequate mucociliary clearance and chronic oto-sino-pulmonary disease [142–144]. Organ 

laterality is also affected in almost half the patients [143]. Defective mucociliary airway clearance 

leads to recurrent and chronic bacterial infections of the lower respiratory tract, and to 

bronchiectasis [143]. 

CT is the gold standard method for the diagnosis of bronchiectasis, but its utility for monitoring PCD 

is not yet established [145,146]. Correlations between CT structural changes and disease severity 

(lung function) have rarely been studied in PCD, especially in adults [146–154]. However, a large 

retrospective study recently suggested that a larger disease burden on CT may predict lung function 

decline in adults with PCD, indicating that CT assessment of lung structural abnormalities might be 

of value [146]. 

Most authors who have attempted to quantify bronchial disease in patients with PCD have used 

visual scoring methods initially designed to assess lung structural changes in patients with CF. The 

correlation between these visual scores and FEV1 remains questionable in patients with PCD [148–

155]. For example, [153] reported a good negative correlation between a visual CT score and FEV1 

(R=-0.63, P<0.001), whereas in [152] found no correlation at all (R=-0.36, P=0.61). 

Although bronchiectasis, bronchial wall thickening, mucus plugging and mosaic perfusion are 

present in both PCD and CF, their relative predominance differs between the two diseases. Mosaic 

perfusion and small-airway mucus plugging predominate in PCD, meaning that their respective 

weight in the overall CT score should not be the same as in CF [146,152]. This may be why some 

authors failed to find a correlation between visual scores and spirometry in PCD patients. 

Furthermore, visual scores suffer from several limitations, including the need for dedicated training 

and subjectivity in the assessment of CT changes [6]. 

Most lung structural changes in PCD, especially bronchial wall thickening, mucus plugging, 

consolidations and atelectasis are likely to increase lung attenuation and to modify the density 

histogram characteristics, which can be extracted from the CT images.  

We postulated that disease severity in PCD might also be assessed by quantifying high-attenuating 

lung structures and by analyzing changes in the lung density distribution. We therefore developed 

an automated CT scoring method based on histogram characteristic analysis and threshold-based 

quantification of high-attenuating lung structures in patients with PCD. 
 
2.2.2 Methodology 
The proposed thresholding method is similar to that we previously used in CF patients. 

Several threshold values were tested for their correlation with FEV1 and forced vital capacity (FVC). 

Three threshold values were tested (-300, -400 and -500 HU), as well as eight adapted threshold 

values taking into account, for each CT examination, individual histogram features, known to be 

influenced by the level of inspiration [118,124]. 

The CT-density scores (one for each tested threshold value) were expressed as the proportion of 

lung showing attenuation values above the selected threshold. For instance, a CT-Density score 
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value of 10 indicated that 10% of the lung had an attenuation value superior or equal to the 

threshold on CT. 

Additionally, the correlation between and spirometry measurements and the following histogram 

characteristics was also analyzed: MLD, mode, SD, kurtosis (sharpness of the density distribution), 

and skewness (asymmetry of the density distribution). 

 
2.2.3 Dataset and implementation 
Dataset 

This retrospective study, performed in two accredited PCD reference centers, was approved by the 

Institutional Review Board of Société Pneumologie de Langue Française. The need for informed 

consent was waived, in accordance with French rules for retrospective observational studies. 

All adult outpatients, with a diagnosis of PCD according to the European Respiratory Society 

guidelines [156] were eligible if they had chest CT exams of the whole thorax performed between 

November 2009 and July 2016 and spirometric measurements, both performed within a 6-month 

period. Exclusion criteria were the unavailability of CT images with a slice thickness ≤ 2 mm, 

reconstructed with a soft kernel, or the administration of iodinated contrast medium during the CT 

acquisition. A total of 95 patients with a confirmed diagnosis of PCD were identified, of whom sixty-

two patients were included in this study. Among the 33 excluded patients, 24 had no available CT 

examination, 6 patients had CT scans without soft kernel reconstruction or thin-slice images, and 

the interval between spirometry and CT exceeded 6 months in the remaining 3 cases. Of the 62 

patients who were finally included, PCD diagnosis had been confirmed by electron microscopy of 

ciliary ultrastructure in 51. The remaining 11 patients had Kartagener’s syndrome with diffuse 

bronchiectasis and situs inversus on CT imaging, a combination of signs considered to validate PCD 

diagnosis [154].  

All CT examinations had been performed in the supine position at full inspiration, with usual 

acquisition parameters, allowing obtaining high resolution CT images of the whole thorax during a 

single breath hold. Five different 16-to-64 multislice CT devices from two different vendors 

(Somatom Sensation 16 and Somatom Definition DS, Siemens Healthineer ; Lightspeed plus, Bright 

Speed 16 and Optima CT 660) had been used, depending on the site and date of the CT 

examinations, all performed with equivalent acquisition parameters. The radiation dose resulting 

from each CT acquisition was evaluated by collecting the mean dose-length product (DLP) value 

from the dose reports. The mean DLP per CT scan was 200.3 ± 100.4 mGy.cm. 

Each CT examination was visually analyzed for pulmonary situs type (solitus, inversus or heterotaxy), 
based on the relationship between the upper-lobe bronchus and the ipsilateral pulmonary artery, 

and the morphology of the tracheobronchial tree [157]. A total of 37 patients (60%) had the usual 

arrangement of the pulmonary situs (situs solitus), while 24 (39%) had situs inversus and 1 (1%) had 

left isomerism. CT images were also checked for prior lobectomy. Nineteen patients (31%) had 

previously undergone complete or partial lobectomy, even though bronchial abnormalities are not 

usually restricted to a single lobe in PCD and surgical resection is currently not considered an 

appropriate treatment for PCD [144]. This proportion is in line with the 41% prevalence reported by 

[155]. The resections concerned the middle lobe in 15 patients (24%), the left lower lobe in 1 patient 

(2%), the middle lobe plus the left lower lobe in 2 patients (3%), and the middle lobe plus the lingula 

in the remaining patient (2%). 
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Lung structural changes were assessed by visual scoring and also by histogram analysis and 

thresholding of high-attenuating lung structures. 

FVC and FEV1, expressed as the percentage of predicted values, were retrieved from the patients’ 

files. Spirometry was performed as recommended by the American Thoracic Society/European 

Respiratory Society [158] and predicted values were calculated using the European Community for 

Steel and Coal reference values [159]. The median interval between CT and spirometry was 0 days 

[interquartile range: 0-29], 41 of the 62 CT scans being performed on the same day as spirometry. 

Mean predicted FEV1 was 67 ± 20% and mean predicted FVC was 80 ± 18%. Their correlation to 

patients’ age was weak (R=-0.32, p=0.012 for FEV1) and (R=-0.33, p=0.008 for FVC). 

Characteristics of the study population are presented in Table 2.5. 

 
Table 2.5. Characteristics of the patients (n=62) 
 

Male/Female 32 / 30 

Age, yr 39 (15) 

Bronchial situs  
- solitus 37 (60) 

- inversus 24 (39) 

- left isomerism 1 (1) 

Body mass index, kg/m2 23.71 (4) 

Percentage of predicted FEV1 67 (20) 

Percentage of predicted FVC  80 (18) 

Median interval between spirometry and CT, months [IQR]  0 [0-16] 

For quantitative variables, data are mean with standard deviation in parentheses 
For qualitative variables, data are numbers of patients, and numbers in parentheses are 
percentages.  
Definition of abbreviations: CT = computed tomography; FEV1: = forced expiratory volume in 
1 s; FVC = forced vital capacity; IQR = interquartile range 

 

Implementation details 

First, the lungs were isolated from the mediastinum and chest wall using a commercially available, 

automated lung segmentation software (Myrian XP lung software version 1.19.1, Intrasense ; 

http://www.intrasense.fr/myrian-clinical-apps/#lung-vessel-liver-abdofat).  

This allowed obtaining whole lung volumes, for further density histogram analysis.  

We also obtained separate volumes of the upper (right upper lobe and upper part of the left upper 

lung) and lower lungs (middle lobe, lingula, and lower lobes), after manual contouring of the 

fissures. This was only done for further comparison of the upper and lower lung CT-density scores. 

Otherwise, the process was fully automated. 

All CT images were also visually scored by one thoracic radiologist using the Bhalla score [160]. 

Additionally, twenty randomly selected examinations were independently scored by a second 

radiologist to assess interobserver repeatability. 

 
 
 



 

  

37 

 
2.2.4 Experimental results 
Spearman’s correlation coefficient was used to evaluate the correlations between visual scores, 

histogram characteristics, CT-density scores and spirometry measurements (FEV1 and FVC). 

Spearman R values were interpreted as follows: <0.4 = absent to weak correlation, 0.40-0.59 = 

moderate correlation, 0.60-0.79 = good correlation, >0.8 = strong correlation. To evaluate the 

distribution of high-attenuating lung structural changes, the CT-density scores of the upper lung 

portions (right upper lobe and upper component of the left upper lobe) were compared to those of 

the lower lung portions (middle lobe, lingula, and lower lobes), using Wilcoxon’s paired test. ICC and 

Bland-Altman plots were used to assess interobserver repeatability of the visual scores. Excellent 

repeatability was assumed when the ICC was 0.8 or more. 

 

The interobserver repeatability for the visual score was excellent (ICC = 0.84). Visual CT score, 

performed for all CT scans by one of the 2 radiologists, showed good correlation with FEV1 (R=-0.60; 

p<0.001) and FVC (R=-0.62; p<0.001). 

 

Two histogram characteristics – kurtosis (R=0.56; p<0.001) and skewness (R= 0.60; p<0.001)– 

showed a moderate to good correlation to FEV1 (Table 2.6). The same two characteristics also 

correlated with FVC (R=0.65; p<0.001 and 0.67; p<0.001, respectively). SD showed good negative 

correlation to both FEV1 (R=-0.63; p<0.001) and FVC (R=-0.67; p<0.001). Overall, the correlations 

with FVC were slightly stronger than the correlations with FEV1. Examples of variations in histogram 

shape according to pulmonary function are shown in Figure 2.4. 

 

 
Figure 2.4. Variation of histogram characteristics according to lung disease severity. Histogram of lung 

densities in a patient with mild disease (black line; FEV1 = 81%; FVC=101%; SD=110.1; kurtosis =31.4). The 
histogram of lung densities in a patient with severe disease (grey line; FEV1 =25%; FVC=54%) demonstrates 

higher scattering (SD=213.9) and flattening (kurtosis = 6.7) of the curve. 
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Table 2.6. Correlations between spirometry, histogram characteristics and CT-density scores 

 FEV1 FVC 
 R P value R P value 

Histogram characteristics 

- MLD -0.22 0.084 -0.31 0.012 
- Mode 0.14 0.285 0.11 0.397 
- SD -0.63 <0.001 -0.67 <0.001 
- Kurtosis 0.56 <0.001 0.65 <0.001 
- Skewness 0.60 <0.001 0.67 <0.001 

CT-density score with fixed thresholds 
- (-) 400 HU -0.51 <0.001 -0.59 <0.001 
- (-) 500 HU -0.53 <0.001 -0.61 <0.001 
- (-) 600 HU -0.54 <0.001 -0.61 <0.001 

CT-density score with adapted thresholds 
- MLD +2 SD -0.62 <0.001 -0.67 <0.001 
- MLD +1 SD -0.68 <0.001 -0.71 <0.001 
- Mode +500 HU -0.57 <0.001 -0.64 <0.001 
- Mode +400 HU -0.60 <0.001 -0.65 <0.001 
- Mode +300 HU -0.64 <0.001 -0.70 <0.001 
- Mode +3 SD -0.54 <0.001 -0.62 <0.001 
- Mode +2 SD -0.65 <0.001 -0.70 <0.001 
- Mode +1SD -0.66 <0.001 -0.68 <0.001 
Definition of abbreviations: CT = computed tomography; FEV1 = forced expiratory volume in 
1 s; FVC = forced vital capacity; HU = Hounsfield unit; MLD = Mean Lung Density; SD = 
Standard Deviation  

 
All CT-density scores showed moderate to good negative correlations with FEV1 (R=-0.54 to -0.68; 

p<0.001) and FVC (R=-0.62 to -0.71; p<0.001) (Table 2.6). These correlations were in the upper range 

of previously reported correlations when using visual scores (0.08 to -0.63 for FEV1 and -0.38 to -

0.60 for FVC) [149,151,153]. Overall, CT scores based on fixed thresholds showed weaker negative 

correlations with FEV1 (R=-0.51 to -0.54; p<0.001) and FVC (R=-0.59 to -0.62; p<0.001) than did CT-

density scores based on adapted thresholds taking into account histogram characteristics. The 

strongest correlations were obtained using MLD+1SD as threshold (R =-0.68; p<0.001 for FEV1 and 

R=-0.71 for FVC; p<0.001) (Figure 2.5). As previously described, lung attenuation is known to be 

influenced by parameters such as the level of inspiration, the kilovoltage, and the patient’s position 

in the scan [118,127,128]. Interestingly, best thresholds were different from those found for 

bronchial disease assessment in CF. 

The correlations between CT score and PFTs were in the same range when considering each center 

separately: R=-0.66; p< 0.001 and -0.68; p< 0.001 for FEV1 and R=-0.68; p< 0.001 and -0.70; p< 0.001 

for FVC. With this threshold value (MLD+1SD), the automated score (CT-density score) correlated 

well with the visual score (R=0.70, p<0.001). Within the Bhalla visual score, the automated CT-

density score correlated well with air wall thickening and mucus plugging- related items (R= -0.64 

and -0.61, respectively; p<0.001) and moderately with bronchiectasis-related items (R=-0.58; 

p<0.001)” 
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The automated score values were significantly higher in the lower lungs (median: 8.83; interquartile 

range: 7.61–10.06) than in the upper lungs (median: 6.25; interquartile range: 5.57–6.81) (p<0.001). 

This is consistent with the reported lower lung predominance of bronchial abnormalities in PCD 

patients [152] 

Even though the automated score correlated well with the evaluated functional parameters, we 

also found that patients with similar FEV1 values could have quite different CT phenotypes. Results 

of automated CT scoring in patients with different FEV1 and FVC values are illustrated in Figures 2.6 
and 2.7. We believe that quantitative assessment of structural changes is of interest in addition to 

PFT measurements for both cross-sectional evaluation and disease monitoring. For example, 

disease progression in CF has long relied on assessment of lung function decline whereas CT scan 

analysis clearly shows that structural abnormalities may appear without significant changes in FEV1 

[140]. Thus, CT provides structural information which is complementary to spirometry in patients 

with CF and it is the same for patients with PCD. Calculating CT score does not imply additional 

procedures for the patients since it can be done from standard CT acquisitions performed as 

standard of care. 

 

 

Figure 2.5. Relationship between the CT-density score based on MLD+1SD and lung functional parameters. 
(A) Relationship between CT-density score and FEV1. (B) Relationship between CT-density score and FVC. 
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Figure 2.6. CT-density scores in patients with increasing disease severity 

Areas of high attenuation, using MLD+1SD as threshold, are tagged in pink. (A, B) Patient with mild lung 
involvement (FEV1 = 80%, CT score = 6.01): (A) Small areas of tree-in-bud (yellow arrow) and subsegmental 

atelectasis (white arrow) are seen on the native axial image. (B) Post-processed image, illustrating that 
these PCD-related abnormalities appear in pink, along with pulmonary vessels. (C, D) Patient with moderate 
lung involvement (FEV1 = 60%, CT score = 8.37): areas of tree-in-bud (black arrow) seen on the native axial 
CT image (C) are more extensive and are pink-colored on the post-processed image (D). (E, F) Patient with 

severe lung involvement (FEV1=25%, CT score = 13.72): (E) Visually, bronchial abnormalities (yellow 
arrowhead) predominantly affect the right lung on the native axial CT image. (F) Post-processed CT image. 

The CT-density score is 17.59 for the right lung and 10.87 for the left lung 
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Figure 2.7. Different imaging features in patients with similar FEV1 values. (A) Patient with FEV1=38% 

predicted and moderate bronchiectasis predominantly affecting the middle lobe. The CT-density score based 
on MLD+1SD was 7.79. (B) Patient with FEV1=38% predicted but much more severe bronchiectasis on visual 

assessment, especially in the lingula. The CT-density score based on MLD+1SD was 12.75. These two 
examples show that CT imaging provides additional information to spirometry, especially regarding regional 

disease distribution (homogeneous versus heterogeneous), and the severity of bronchiectasis, which 
correspond to irreversible changes. 

 

 

2.2.5 Discussion 
To the best of our knowledge, the present study describes the first automated CT scoring method 

designed to quantify lung changes associated with primary ciliary dyskinesia, based on the 

measurement of high-attenuating structures and considering histogram characteristics on CT. This 

approach is close to the quantification of emphysema, based on the measurement of low-

attenuating lung areas. We  had previously validated this method in CF patients [112]. 

Our study has several limitations. Because this study was retrospective, the CT acquisition 

parameters were not standardized. This may have influenced the density thresholds. Standardized 

scanning protocols would probably improve the performance of the developed score. However, the 

fact that the scoring method can be applied to unstandardized CT examinations makes it suitable 

for daily clinical use. We did not perform longitudinal evaluation to determine whether changes in 

the automated CT score correlated with changes in pulmonary function, and whether, as previously 

suggested, CT-scored disease extent can predict the subsequent decline in pulmonary function. 

Indeed, our primary objective was to develop and validate an automated CT score by cross-sectional 

evaluation. Lastly, due to the relative rarity of PCD, it was not possible to split our population into a 

development and validation cohort. Thus, the developed method should further be validated in an 

independent cohort of PCD patients. 

In conclusion, automated density–based CT scoring, together with histogram characteristic analysis, 

is feasible in PCD patients and correlates well with FEV1 and FVC. MLD+1SD offered the best 

correlations with both FEV1 and FVC. Quantitative analysis of structural abnormalities on CT scans 

may prove useful for objectively evaluating lung disease changes in PCD, which may prove useful 

both in daily clinical use and as an outcome in clinical trials. 
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2.3 CT-based Quantification of Lung Disease in Cystic Fibrosis using Radiomics 
 

2.3.1 Methodology 
We hypothesized that a radiomics approach based on machine learning algorithms could be used 

to quantify the degree of lung impairment in CF patients. The objective of this study was to use 

radiomics to extract imaging biomarkers to assess the severity of lung disease in adult CF patients 

and combine them with state-of-the-art machine learning methods 

This method uses a common radiomics approach. First radiomics features are extracted from 3D 

lung volumes and then 5 different machines learning are trained to build a radiomics-based CT score 

correlating to the Nkam score, a 3-year prognostic score that has been validated in more than 2000 

CF adults [161]. The Nkam score was chosen as the target for the radiomics approach because it has 

been validated in the largest cohort of patients, is the most recent score and is thus better adapted 

to the continuous improvements in CF prognosis [161]. 

A total of 38 radiomic features are extracted (Table 2.7). These features include global histogram 

characteristics (7 features), common textural features (24 features) and fractal dimension (7 

features): 

• The global histogram characteristics (first order statistics) included mean lung density, 

standard deviation, mode, kurtosis, skewness, entropy and energy [162]. These elements 

provide global information on the distribution of gray-level intensities but do not take into 

account their spatial interrelationship. 

• The textural features (second order statistics) were derived from those proposed by Haralick 

[163] and extracted using 3D co-occurrence matrices at 2 scales (distance = 1, 2 voxels). 

Texture describes different aspects of contextual information, such as local intensity 

distribution, the degree of uniformity, or amplitude dispersion. 

• The fractal dimension quantifies self-similarity and shape complexity in a given scale. It was 

calculated using the box-counting algorithm and 7 box sizes. 
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Table 2.7. Radiomic features 

1st order statistics 2nd order statistics Fractal dimensions 

Energy Cluster shade (distance = 1) Fractal (distance = 1) 

Entropy Cluster shade (distance = 2) Fractal (distance = 2) 

Kurtosis Cluster tendency (distance = 1) Fractal (distance = 3) 

Mean lung density Cluster tendency (distance = 2) Fractal (distance = 4) 

Mode Contrast (distance = 1) Fractal (distance = 5) 

Skewness Contrast (distance = 2) Fractal (distance = 6) 

Standard deviation Correlation (distance = 1) Fractal (distance = 7) 

 Correlation (distance = 2)  

 Energy (distance = 1)  

 Energy (distance = 2)  

 Entropy (distance = 1)  

 Entropy (distance = 2)  

 Homogeneity (distance = 1)  

 Homogeneity (distance = 2)  

 Inertia (distance = 1)  

 Inertia (distance = 2)  

 Inverse Variance (distance = 1)  

 Inverse Variance (distance = 2)  

 Maximum probability (distance = 1)  

 Maximum probability (distance = 2)  

 Sum average (distance = 1)  

 Sum average (distance = 2)  

 Variance (distance = 1)  

 Variance (distance = 2)  

 

 

Five machine learning techniques are used to develop the model: (i) ridge regression [164], (ii) lasso 

(Least Absolute Shrinkage and Selection Operator) regression [165], (iii) elastic net (ENET) [166], (iv) 

decision trees [167], and (v) support vector machines (SVM) [168].  

Among these 5 techniques, ridge regression, LASSO and ENET produce linear models with the 

following equation: !(#) = &' + ∑ &*#*
+
*,-  , where # = [#-, … , #+] is the input feature vector, 2 is 

the number of features, &*  (beta coefficients) is the weight assigned to feature i and &' (intercept) 

is a constant term. These 3 techniques use a loss function, L, combining ordinary least square 

method (OLS) or even gradient descent methods,  

34&56 =748* − #*
:&6

;
+

*,-

 

where y is the response variable, with a different regularization factor. 

 

 

 

 



 44 

 

- In ridge regression, the L2 penalty which is equal to the square of the magnitude of the coefficients 

is used as regularization factor. The L2 help the Ridge regression to maintain the coefficient small as 

it favorizes the smaller overall sum of squared coefficients. The loss function using the L2 penalty is 

the following: 

34&56 =748* − #*
:&56

;
+

*,-

+ 	=7&5;
>

?,-

 

 where = is the regularization penalty. Feature scaling is very important in Ridge regression. 

 

- The LASSO regression uses the L1 penalty which is equal to the absolute value of the magnitude of 

the coefficients. The loss function of the LASSO regression is the following:  

34&56 =748* − #*
:&56

;
+

*,-

+ 	=7@&5@

>

?,-

 

The sum of the absolute values of the model coefficients a fixed value t. The effect of the L1 penalty 

is to perform a type of feature selection, where features with very small coefficients are not using 

for the model. LASSO can be used to provide a sparse model that usually generalizes better and is 

easier to compute.  It is generally used when the number of features is larger than the number of 

observations model but the LASSO cannot select a number of features superior to the number of 

observations. Another disadvantage of the LASSO regression is that in case of group of highly 

correlated features it tends to select only one feature from the group and to not care which one is 

selected. 

 

- In ENET, both L1 and L2 penalties are used and the loss function is the following: 

34&56 =
∑ 48* − #*

:&56
;+

*,-

22
+ 	= B

1 − D
2

	7&5;
>

?,-

+ 	D7@&5@

>

?,-

E 

where D is the mixing parameter between ridge (α = 0) and lasso (α = 1). Similar to the lasso, the 

elastic net simultaneously does automatic variable selection and continuous shrinkage.  

 

In opposite to the 3 machine learning techniques described above, SVM algorithm can solve linear 

and nonlinear problems. SVM which is very popular on the machine learning community and is used 

for variety of applications. SVM is a supervised machine learning method separating data using 

hyperplanes. To classify the data, it finds for each dimension the hyperplane which has the maximum 

distance (largest margin) from the closest data (support vectors) of the classes to separate. For a 

binary classification problem, and for the linear SVM, the problem can be formulated as: 

argIJ2K∈ℝ,N∈ℝ	 	
1
2
‖P‖;	Q. S. 8*4〈P, #*〉 + V6 − 1 ≥ 0						∀J	{1, … , 2} 

where y is the desired class and 8* ∈ 	 {−1,+1}, x are the features of all the n samples and P, b are 

the hyperparameters of the hyperplane. 

This method can be extended for non-linear classification depending on the kernel which is used. 

For non-linear classification, radial-basis-function, polynomial and sigmoid kernels can be used. The 

regularization term “C” is used to define how much the misclassified point will be penalized. In this 

method, it is important to select a kernel and to set “C” such as over-fitting is avoided. SVM is 
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effective in high dimensional spaces, and still effective in cases where number of dimensions is 

greater than the number of samples. Some of the advantages of SVMs is that they are robust 

towards small number of data points while they deliver one unique solution. Some of the main 

disadvantages of this popular method is that in case that the points on the boundaries are not 

informative then the algorithm will not perform well, while also it can be computationally expensive. 

Again here, similar optimization methods as the ones used for the regression are usually applied in 

order to obtain the best performance of the algorithm. From them, stochastic gradient descent is 

one of the more popular. 

 

Decision trees is a non-parametric supervised learning method used for classification and 

regression. Decision trees represents a combination of tree-like models of decisions, where the data 

are divided into groups based on splits of selected features. The goal is to create a model that 

predicts the value of a target variable by learning simple decision rules inferred from the data 

features. Different criteria can be used for the generation of the trees. Among the most popular 

ones are the weighted mean squared error (MSE): 

\]^	(S) =
1
_`
	 7 48(*) − 8a`6

;

*	∈	bc

 

where _` is the number of training samples at node t, Dt is the training subset at node t, 8(*) is the 

true target value, and 8a` is the predicted target value 

8a` 	=
1
_`
	 7 8(*)

*	∈	bc

 

Moreover, another very commonly used criterion for the splitting and generation of the trees is 

the entropy 

^(S) = 	−7d(J|S)fgh;d(J|S)
i

*,-

 

where d(J|S)is the proportion of the samples that belong to class c for a particular node t. The 

entropy is therefore 0 if all the samples at a node are on the same class, and it is maximal if the 

samples are classified in an uniform way. Decision trees have the advantage to produces a sparse 

model which is usually easy to understand and to interpret. To limit the size of the model, a 

minimum of training inputs to use on each leaf and the maximum depth of the model can be set. 

Additionally, pruning helps to remove branches of low importance. 

 
2.3.2 Dataset and implementation 
Dataset 

This retrospective cohort study was approved by the Institutional Review Board of Société 

Pneumologie de Langue Française (CEPRO-2017-023) and the need for patient consent was waived. 

All outpatients seen at two adult CF referral center between January 2013 and December 2015 for 

routine follow-up were eligible if an unenhanced chest CT examination was available. Exclusion 

criteria were (i) previous lung transplantation, (ii) pulmonary exacerbation requiring intravenous 

antibiotics within one month before or after the CT examination, (iii) no FEV1 measurement within 

two months before or after the CT examination, and (iv) no follow-up information 12 months after 

the CT examination. A total of 215 patients were included in the final study (118 men and 97 women) 
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with a median age of 29 years (interquartile range (IQR), 24-36; range, 18-68). One hundred and 

sixty-two patients were included from center 1 (training cohort), the remaining 53 being included 

from center 2 (test cohort). Patient characteristics are shown in Table 2.8. 

CT examinations were performed on 16- or 64-row devices from different vendors depending on 

the referral center (Somatom Sensation 16 and Somatom Definition DS, Siemens Healthineer, in 

center 1, and LightSpeed VCT and Revolution CT, GE Healthcare in center 2). The entire lung was 

scanned at 100, 120 or 140kV, depending on the patient's morphology and local scanning protocols. 

Tube current modulation was used at both centers. Images were reconstructed with a slice thickness 

of 0.75 to 1.5 mm, using a standard kernel (bf20, bf31 or standard) and a 512 × 512 matrix. All CT 

examinations were reconstructed using a filter back projection algorithm at center 1, whereas 48 

out of 53 examination were reconstructed using iterative reconstruction at center 2. If patients had 

more than one CT during the study, only the CT that was performed furthest from any exacerbations 

was taken into account. In addition to the difference in CT equipment, there was a significant 

difference regarding the mean CT radiation dose in the 2 centers (median CTDIvol = 3.9 mGy [IQR = 

3.2 - 5.0 mGy] at center 1 and 1.2 mGy [1.1 - 3.3 mGy] at center 2, p <0.001). 

Regarding clinical data, the percentage of predicted FEV1 at the time of CT (median interval between 

CT and FEV1 measurement, 0 days; IQR, 0-0 days; range, 0–31 days) was retrieved, along with the 

number of pulmonary exacerbations requiring intravenous antibiotics within 12 months before and 

after CT. Additional data available at the time of the CT examination were collected to calculate 

three clinical prognostic scores, namely the Nkam, CF-ABLE, and Liou scores [161,169,170]. These 

data included age, gender, body mass index (BMI), pancreatic insufficiency, diabetes mellitus, 

Staphylococcus aureus colonization, Burkholderia cepacia colonization, hospitalization in the 

previous 12 months, long-term oxygen therapy, non-invasive ventilation, and oral corticosteroid 

treatment.  

Patients from the first center (training cohort) had more severe disease than those from center 2 

(test cohort) according to predicted FEV1 (58% [IQR=41-77%] vs 70% [53-82%]; p = 0.002), CF-able 

(2.0 [IQR=0.0 - 3.5] vs 1.0 [IQR=0.0 - 3.5], p = 0.02) and Liou (0.9 [IQR=0.7 - 1.0] vs 1.0 [IQR=0.9 - 1.0]; 

p < <0.001) scores. There was no other significant difference in clinical variables between the 

patients from the 2 centers (Table 2.8), especially regarding the Nkam score (p=0.12) which includes 

more clinical parameters than the other 2 clinical prognosis scores. 

 

Implementation details 

In order to develop and test the models on independent datasets, the cohort from center 1 was 

used for training the models whereas the cohort from center 2 was used for testing.  

Prior to feature extraction, lungs are segmented using a commercially available automated software 

program (Myrian XP-Lung version 1.19.1, Intrasense). Then radiomic features are extracted using 

Matlab 2016b (MathWorks, Natick, MA ; https://www.mathworks.com/products/new_products/ 

release2016b.html). 

To prevent data overfitting by the model, parameters such as regularization and kernel type were 

optimized for each of the 5 machine learning methods using a 10-fold cross validation in the training 

dataset.  

The 5 radiomics-based CT scores that were obtained from the development cohort were then 

calculated for the patients of the test cohort (center 2) to evaluate the correlation with clinical 

prognosis scores and other clinically relevant parameters.  
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Table 2.8. Study population 

 
All patients 

(n=215) 

Training cohort 
Center 1 
(n=162) 

Test cohort 
Center 2 
(n=53) 

Comparison 
between 
centers 
p value 

Age (years) 29 [24 - 36] 29 [24 - 36] 27 [22 - 35] 0.31 
Male 118 (55) 84 (52) 34 (64) 0.13 

Body Mass Index (kg/m2) 
20.8 [19.3 - 

23.2] 

20.6 [19.3 - 

23.4] 

21.3 [19.6 - 

23.1] 
0.53 

FEV1 (% of predicted value) 61 [44 - 78] 58 [41 - 77] 70 [53 - 82] 0.002 

Pulmonary exacerbations in the 
12 months before the CT exam 

1 [0 - 2] 1 [0 - 2] 1 [0 - 2] 0.25 

Pulmonary exacerbations in the 
12 months after the CT exam 

1 [0 - 2] 1 [0 - 2] 1 [0 - 2] 0.26 

Pancreatic insufficiency 165 (77) 121 (75) 44 (83) 0.21 
Diabetes 49 (23) 36 (22) 13 (25) 0.73 
Staphylococcus aureus 
colonization 

100 (47) 77 (48) 23 (43) 0.58 

Burkholderia cepacia 
colonization 

4 (2) 1 (1) 3 (6) 0.02 

Nkam score 1.5 [0.0 - 2.5] 1.5 [0.0 - 2.5] 1.0 [0.5 - 2.0] 0.12 
CF-ABLE score 1.0 [0.0 - 3.5] 2.0 [0.0 - 3.5] 1.0 [0.0 - 3.5] 0.02 
Liou score 0.9 [0.8 - 1.0] 0.9 [0.7 - 1.0] 1.0 [0.9 - 1.0] <0.001 

CTDI vol (mGy) 3.6 [2.7 - 4.7] 3.9 [3.2 - 5.0] 1.2 [1.1 - 3.3] <0.001 
interval between CT and FEV1 
measurement 

0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0] 0.144 

For quantitative variables, data are medians, and numbers in brackets are the ranges 
For qualitative variables, data are numbers of patients, and numbers in parentheses are 
percentages.  
FEV1 = forced expiratory volume in 1 second (%); CT = computed tomography 

 

 

2.3.3 Experimental results 
Statistical analysis was performed. The Chi-square and Mann-Whitney U tests were used to compare 

patient characteristics in the development and test cohorts. P-values below 0.05 were considered 

to be statistically significant.  

The Spearman's rank coefficient (R) was calculated in test cohort to determine the correlation 

between the radiomics based CT scores and the Nkam score. The correlations with 2 other clinical 

scores used for CF (CF-ABLE and Liou scores), FEV1, age, and the number of pulmonary exacerbations 

requiring intravenous antibiotics within 12 months before and after CT were evaluated by the same 

approach. Spearman R values were interpreted as follows: <0.4 = absent to weak correlation, 0.40-

0.59 = moderate correlation, 0.60-0.79 = good correlation, >0.8 = strong correlation.  

LASSO regression selected 6 parameters: 3 histogram characteristics (skewness, mode, and energy), 

2 fractal distance (scale of 5 and 6 voxels) and 1 textural feature (cluster tendency at a distance of 
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1 voxel). The same parameters and 9 additional were selected by ENET. The fact that all the features 

selected by LASSO regression were also selected by ENET, showed the stability of the regularization 

term used to build the linear model. The intercept (β0) and β coefficients of the models obtained 

with LASSO regression, Ridge regression and ENET are provided in Table 2.9. The decision tree 

algorithm selected only 2 parameters, namely skewness, and mode (Table 2.10). This resulted in a 

non-continuous score with only 9 possible values to quantify the severity of lung disease.  

 
 
Table 2.9. Beta coefficients for the 3 linear models 

Beta coefficients Ridge LASSO Elastic Net 
Intercept 4,45 3,96 5,07 
Energy -0,77 -1,27 -1,13 
Entropy 0,65   
Kurtosis -1,03  -0,17 
Mean lung density -1,51  -1,46 
Mode -1,87 -2,78 -2,01 
Skewness -1,66 -1,91 -2,67 
Standard deviation -0,39   
Cluster shade (distance =1) -0,41   
Cluster shade (distance =2) -0,28   
Cluster tendency (distance =1) -0,67 -0,05 -0,74 
Cluster tendency (distance =2) -0,50   
Contrast (distance =1) 0,37   
Contrast (distance =2) -0,08   
Correlation (distance =1) -0,11   
Correlation (distance =2) -0,13   
Energy (distance =1) 0,27   
Energy (distance =2) 0,26   
Entropy (distance =1) 0,32  0,36 
Entropy (distance =2) 0,35  0,48 
Homogeneity (distance =1) -0,26  -0,08 
Homogeneity (distance =2) -0,02   
Inertia (distance =1) 0,37   
Inertia (distance =2) -0,08   
Inverse Variance (distance =1) -0,28   
Inverse Variance (distance =2) -0,87  -1,11 
Maximum probability (distance =1) -0,40  -0,44 
Maximum probability (distance =2) -0,23   
Sum average (distance =1) 0,02   
Sum average (distance =2) 0,04   
Variance (distance =1) 0,30   
Variance (distance =2) 0,32   
Fractal (distance =1) 0,13   
Fractal (distance =2) 0,40  0,19 
Fractal (distance =3) 0,31  0,12 
Fractal (distance =4) -0,28   
Fractal (distance =5) 0,24 0,07 0,15 
Fractal (distance =6) 0,51 0,72 0,78 
Fractal (distance =7) 0,09   
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Among evaluated image histogram characteristics, Kurtosis has already been used in one series of 

26 pediatric CF patients, to quantify lung disease extent [133]. The authors reported a modest 

correlation between Log-iKurtosis and FEV1. In our study, among the machine learning algorithms 

performing feature selection, only ENET selected kurtosis as a significant feature. 

The comparable and consistent results of the 5 machine learning algorithms that were independent 

of the applied lung segmentation software, confirm the stability of the radiomics approach for 

extracting imaging biomarkers able to quantify lung disease severity in adult CF patients.  

Compared to the other 4 machine learning techniques evaluated in our study, LASSO has the 

advantage of producing a sparse model with a continuous score and selecting fewer features than 

ENET. Sparse models are less computationally expensive and a continuous score is better suited to 

a wide spectrum of lung disease severity such as that observed in CF. 
 

Table 2.10. CT score built with the decision tree algorithm 

Feature Score = S1+ S2 
Skewness:   

< 0.458 

S1 
1,91 

0.458 - 0.731 1.30 

> 0.731 0,45 

Mode:   

< 0.147 

S2 
1.34 

0.147 - 0.267 0.63 

≥ 0.267 0.05 

 

 

The radiomics-based CT scores obtained with the 5 machine learning techniques showed moderate-

to-good correlation with the Nkam score in the test cohort (R=0.57 to 0.63; p<0.001) (Table 2.11). 

CT images from patients with different Nkam scores are shown in Figure 2.8. Thus we showed that 

radiomics parameters extracted after whole lung segmentation can be used to quantify lung disease 

severity in CF, which is a diffuse bronchial disease.  

Correlation was also found with other prognosis scores. The correlation with the Liou score (R=-0.55 

to -0.65; p<0.001) was moderate-to-good depending on the machine learning algorithm used, 

whereas the correlation with the CF-able score was weak (R=0.28 to 0.38; p = 0.005 to 0.04). The 

weak correlation observed with CF-ABLE may be explained by the fact that pulmonary exacerbations 

within one month before the CT examination were an exclusion criterion in our study. This probably 

had an impact on the correlation with the CF-ABLE score, which takes into account exacerbations in 

the last 3-month period, whereas the 2 other scores consider those in the last 12 months.  

In relation to individual clinical variables, all radiomics based CT scores correlated well with 

predicted FEV1 (R=-0.62 to -0.66; p<0.001). In CF patients monitoring, CT is used to detect and 

monitor structural changes in the lung that may precede functional changes [171]. To be recognized 

as surrogate outcomes, imaging biomarkers should predict clinical endpoints, especially survival 

[31]. However, because of the low annual mortality rate of CF, survival cannot be used to develop a 

scoring method for this disease. According to the Guideline on the Clinical Development of Medicinal 
Products for the Treatment of CF published by the European Medicines Agency, FEV1 is the only 
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surrogate for mortality that should be considered as a primary endpoint for clinical trials in CF [141]. 

The correlation obtained in our study between the radiomics-based CT scores and FEV1 was better 

than that reported in several studies using visual scores (-0.33 to -0.78) [134–137].  

All radiomics-based CT scores also showed moderate-to-good correlation with the number of 

pulmonary exacerbations to occur in the 12 months after the CT examination (R=0.38 to 0.55; 

p<0.001 p=0.004), whereas a significant correlation with the number of pulmonary exacerbations in 

the previous 12 months was only found with radiomics-based CT scores built using LASSO (R=0.29; 

p =0.03) and decision trees (R=0.39, p=0.003). Correlation with the risk of further pulmonary 

exacerbations, is an important clinical endpoint. Although only weak-to-moderate, this correlation 

was better than that previously reported by authors using a visual scoring (R=0.28) [1].  

 
Table 2.11. Correlations between quantitative variables and CT scores obtained with the 5 machine 

learning algorithms 

Variable LASSO 
R 

(p value) 

Ridge 
R 

(p value) 

Elastic Net 
R 

(p value) 

Decision 
trees 

R 
(p value) 

SVM 
R 

(p value) 

Nkam score R=0.59 

(p<0.001) 
R=0.6 

(p<0.001) 
R=0.57 

(p<0.001) 
R=0.61 

(p<0.001) 
R=0.63 

(p<0.001) 

Liou score R=-0.59 

(p<0.001) 
R=-0.55 

(p<0.001) 
R=-0.56 

(p<0.001) 
R=-0.65 

(p<0.001) 
R=-0.57 

(p<0.001) 

CF-ABLE score 
 

R=0.28 

(p=0.043) 
R=0.35 

(p=0.01) 
R=0.30 

(p=0.029) 
R=0.29 

(p=0.037) 
R=0.38 

(p=0.005) 

FEV1 R=-0.62 

(p<0.001) 
R=-0.63 

(p<0.001) 
R=-0.62 

(p<0.001) 
R=-0.63 

(p<0.001) 
R=-0.66 

(p<0.001) 
Pulmonary exacerbations in 
the 12 months before the CT 
exam 

R=0.29 

(p=0.033) 
R=0.25 

(p=0.068) 
R=0.27 

(p=0.052) 
R=0.39 

(p=0.003) 
R=0.25 

(p=0.066) 

Pulmonary exacerbations in 
the 12 months after the CT 
exam 

R=0.42 

(p=0.002) 
R=0.39 

(p=0.004) 
R=0.38 

(p=0.004) 
R=0.55 

(p<0.001) 
R=0.40 

(p=0.003) 

FEV1 = forced expiratory volume in 1 second (%); CT = computed tomography 
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Figure 2.8. A) The calculated value for the Nkam score was 0.5 in this 20-year-old CF patient. Using CT 
images, the radiomics approach predicted a Nkam score value of 0.35 with Lasso and 0.30 with Decision 

trees. B) By comparison, the calculated value for the Nkam score was 3 in this 48-year-old CF patient. Using 
CT images, the radiomics approach predicted a Nkam score value of 2.96 with Lasso and 2.11 with Decision 

trees. 
 

2.3.4 Discussion 
To the best of our knowledge, this study is the first to evaluate a radiomics-based approach to 

quantify lung disease on CT in adults with CF. Moderate-to-good correlations between radiomics-

based models and the Nkam score [161], the Liou score [169], the FEV1 and the number of 

pulmonary exacerbations to occur in the next 12 months was found in a patient cohort from a center 

different from the training cohort. 

A major strength of our study is that the 5 radiomics models developed in one center remained 

predictive of disease severity in an independent cohort despite different CT equipment, acquisition 

and reconstruction parameters, including the use of iterative reconstructions only in the test center. 

The differences in scanning protocols resulted in a significantly lower radiation dose exposure in the 

test cohort. The absence of standardized acquisition protocols and the use of standard of care 

images is a strength of our study. Indeed, the reproducibility of many textural parameters is 

influenced by acquisition and reconstruction parameters [172–174]. Building radiomics-based CT 

scores from standardized parameters limits their applicability for routine practice. 

This study has several limitations. First, the proposed radiomics-based CT scores provide an overall 

estimation of structural changes in the lung but cannot separately quantify irreversible 

bronchiectasis and changes such as bronchial wall thickening or mucous plugging which are 

potentially reversible using the newly developed therapies [110]. We deliberately based our score 

on inspiratory CT images, and did not use expiratory CT images in addition. Indeed, we believe 

routine expiratory CT images are not justified in CF patients because of the increase in radiation 

dose and the lack of implications for patient care. Finally, our study population only included adult 

CF patients and the developed approach should therefore be validated in pediatric CF populations. 

In conclusion, radiomics can be used to calculate automated CT scores that are correlated to clinical 

prognosis scores, FEV1 and risk of exacerbations in adult CF patients from different institutions. This 

offers new perspectives for automated CT assessment of diffuse bronchial diseases. 
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Chapter 3 

3 Interstitial lung disease segmentation 
using deep learning 

 

 

In this chapter, we investigate a deep learning-based segmentation tool to quantify interstitial lung 

disease (ILD) extent on chest CT in systemic sclerosis (SSc) patients. 

ILD quantification is a major challenge for patient care in many chronic lung diseases including 

systemic sclerosis. It mainly relies on a physiological approach using pulmonary function testing 

(PFT), often used as primary endpoint in clinical trials. However, PFT measurements are imperfect 

and only reflect lung function, not necessarily disease activity. Additionally, disease extent is known 

to be an independent predictor of disease progression and mortality in patients in several ILD, 

including idiopathic pulmonary fibrosis and SSc [15,16,175]. 

Among imaging techniques, CT is the gold standard for in vivo morphological assessment of lung 

parenchyma and for the early detection of ILD [11]. Several visual scoring systems have been 

proposed but they only allow basic quantification of ILD severity and they suffer from poor-to-

moderate inter-observer agreement [13]. ILD quantification on CT would require an automated and 

reproducible segmentation of the diseased lung.  

Recently, machine learning has gained a lot of attention with encouraging reports on variety of open 

problems from different communities. Artificial neural networks (ANNs) and, in particular, 

convolutional neural networks (CNNs) achieved impressive results in a variety of tasks after the 

breakthrough of AlexNet architecture in the ImageNet Large Scale Visual Recognition Competition 

in 2012 [176]. These powerful algorithms are machine learning models that are mostly inspired from 

human intelligence and utilize fairly elementary sequential mathematical operations (linear 

operators) that seek to reproduce an outcome using a combination of observations rather than 

understanding the process of decision and reproducing it, as a variety of statistical based model are 

working [33]. In particular, a very interesting and different component of these algorithms is their 

ability to find and automatically generate the characteristics/ features that are more appropriate 

for the specific problem they want to address. Networks of this kind have existed for decades [177], 

but have only recently managed to achieve adequate performance mainly due to the large volumes 

of available annotated data, the massive parallelization capabilities of GPUs and a number of public 

contribution libraries that facilitated a lot their usage. The term deep learning is used recently to 

describe a set of schemes and tools that are utilized in order to train complex and multi-layered 

ANNs using a large amount of data. Since the breakthrough of AlexNet in 2012 [178], more and more 

researchers are utilizing deep learning approaches pushing the state of the art performance to a 

variety of tasks such as object detection in images [179], image super resolution [180], action 

detection in video, natural language processing [181]. Following these very promising advances 

from the aforementioned fields, slow and confident strides have also been taken in the fields of 

computer assisted medicine [182,183]. 

In particular, several deep-learning architectures have been evaluated or specifically developed for 

segmentation and/ or classification on medical images. These architectures consist of a sequence of 
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layers mainly optimized on the task they need to address. Architectures that address classification 

tasks are usually consist of fully convolutional layers forming architectures as the AlexNet [178], 

DenseNet [184] or many other architectures proposed recently on the literature. On the other hand, 

architectures that address segmentation problems are usually fully convolutional adapting an 

encoder-decoder scheme such as U-Net [46] for segmentation on 2D and V-Net [185] for 

segmentation of 3D volumes. Moreover, recently recurrent neural networks (RNN) have also been 

evaluated by several authors [183]. 

In general, the networks that are focusing on segmentation tasks in medical imaging aim to 

automatically, efficiently and accurately segment different organs or types of diseases. Indeed, 

segmentation can be used to evaluate shape, volume and many other characteristics that are very 

important from a medical point of view [183]. Image segmentation is one of the most often studied 

problems in medical image analysis [186,187]. Segmentation seeks to associate each voxel with a 

specific label/class, for instance diseased or healthy area in interstitial lung diseases. Existing 

literature can be classified into two distinct categories, model-free and model-based methods. 

Model-based methods assume that the geometric prior distribution of the structure to be 

segmented can be learned and modeled with sub-space approaches (e.g. active shapes), 

probabilistic or graphical models and atlas-based approaches being some representatives in this 

category [187]. These methods work well with normal anatomical structures where the notion of 

repeatability makes sense but fail to capture disease variation that is in general random. Model-free 

approaches on the other hand purely rely on the observation space combining image likelihoods 

with different classification techniques. CNNs currently give state of the art results on image 

segmentation of medical image analysis. These networks can adapt a patch-based approach, where 

the network uses a patch extracted around the voxel that need to be segmented or a dense 

pixelwise prediction where the network produces the segmentation of each voxel producing directly 

the segmentation mask. 

Patch-based approach can also be used with classic machine learning and this has been done with 

diverse results [9,188,189]. [190], who used CNN for ILD segmentation with a patch-based approach, 

reported an accuracy of 86% for classification of lung voxels in 7 classes. To achieve these results, 

they used an algorithm inspired from VGG architecture but with an even more shrunk kernel size 

and only 5 convolutional layers. This was further improved by [88] who used a CNN composed of 

four convolution layers and two fully connected layers for patch-based ILD segmentation. The 

authors reported an accuracy ranging from 85% to 96% depending on their data split and shown the 

superiority of CNN over SVM who offered an accuracy of 77 to 90%. As previously mentioned, the 

main drawback of the patch-based approach is to not take into account context information such 

as the subpleural location and basal predominance usually seen in ILD. 

Dense pixelwise prediction based on the entire image has been made popularized since the 

introduction of fully convolutional networks (fCNN) [191]. The main limitation to the use of CNN for 

dense prediction was the pooling layers of the encoder architecture who allow to take into account 

the context but gradually decrease image resolution. By using skip connections during the 

upsampling process, fCNN allows to recover spatial resolution to obtain a full resolution prediction 

despite the use multiple pooling steps. The fCNN was one of the first encoder-decoder architecture. 

Connections between the encoder and the decoder parts have been further improved, for instance 

by the transfer of maxpooling indices from the encoder to the decoder parts in SegNet [47] or by 
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direct connection between opposing contracting and expanding convolutional layers using 

concatenation in U-Net [46]. U-net which outperformed previous encoder-decoder architectures 

has become very popular for medical image analysis. A 3D variant of the U-net, called V-net has 

been proposed by [185]. 

An alternative to the encoder-decoder architecture is the use of atrous convolutions (also termed 

dilated convolutions) in the Deeplab architectures. This architecture has been successfully 

implemented by [192] for ILD segmentations and it allowed them to improve the balanced cross-

validation accuracy from 72% when using their previous patch-based approach [190] to 82%, while 

also decreasing inference time from 237 to 58 ms. 

In contrast to patch-based CNNs, dense prediction has the advantage to take into account the full 

context of the image and to reduce redundant computation. The use of the full context of the image 

is of particular interest in ILD. Indeed, spatial localization is a key element of ILD analysis on CT, 

especially for the diagnosis of idiopathic pulmonary fibrosis [193,194]. In SSc, ILD distribution is also 

a key feature and usually predominates in the subpleural aspects of the lower lobes [195,196]. 

The main challenges for deep learning in medical imaging arise from the limited availability of 

training samples – that is amplified when targeting 3D architectures –, the lack of discriminant visual 

properties, the three-dimensional nature of observations (high dimensional data) and the lack of 

context integration in an implicit or explicit manner. 

The only available ILD dataset [43] is sparsely annotated and the lack of annotated database is a 

common problem for the development of segmentation methods in medical imaging.  

In this chapter we investigate a two-fold approach, one that looks into sparse classification through 

patch-based CNNs and a second that seeks to deliver full labeling of the disease using also 

convolutional neural networks.  

First, we evaluated a combination of patched-based and fully-convolutional encoder-decoder 

architectures for ILD segmentation [197]. In this work, we created a framework that integrated deep 

patch-based priors (trained on publicly available databases) with a fully convolutional encoder-

decoder network (trained on a small number of images). The combination of the two architectures 

allowed to transfer the learned features across different datasets and increased segmentation 

accuracy. This could help to decrease the amount of fully-annotated images used to train a model.  

Secondarily, we created a new architecture (AtlasNet) combining elastic registration and encoder-

decoder architecture to segment ILD [48] The idea is to train n number of CNN, each of them using 

a predefined anatomy on which all training cases are mapped through elastic registration, resulting 

in a natural data augmentation. This method also has the advantage to decrease the complexity of 

observations related to anatomical variability and to increase the “anatomical” consistency of the 

networks. AtlasNet offered better performances than state-of-art methods for ILD segmentation on 

chest CT. Despite the small number of fully annotated CT scans (17 examinations) used for training 

and validation, AtlasNet performed similarly to 3 radiologists. 

Lastly, we augmented the AtlasNet network through a dual auto-decoder architecture in order to 

guarantee anatomical plausibility in disease segmentation results. We showed that this method 

performed better than a U-net architecture and as well as radiologists for disease segmentation. 

The combination of disease and lung segmentations allowed to calculate normalized disease extent 

and we found that the ILD extent provided by our model was well correlated with PFTs, especially 

DLCO, in a cohort of 171 SSc patients. These correlations were confirmed in an external validation 

cohort of 31 SSc patients.  
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3.1 Deep patch-based priors under a fully convolutional encoder-decoder 
architecture for interstitial lung disease segmentation 

 

3.1.1 Background 
Delineation of disease extent on CT images is often difficult and 3D manual outlining is extremely 

labor intensive. This is a common problem in medical imaging explaining the lack of ground truth 

and partial labelling of databases. Indeed, to the best of our knowledge, the only available ILD 

dataset [43] is only sparsely annotated; i.e. it includes only some selected images from the whole 

volumetric dataset. Until now, such databases are exploited within slice [198] or patch-based 

[190,199] classification paradigms. However, patch-based classification of lung tissue is not very 

appropriate for disease segmentation since it fails to capture accurate and smooth boundaries 

between different tissue types. [200]ILD segmentation, i.e. voxel classification, has been pursued 

using a Markov Random Field, Gaussian Mixture Model and Mean Shift algorithm [201], or 

watershed segmentation algorithm and Fuzzy C-Means [202]. These methods however exploit fairly 

limited global context as well as not that powerful classifiers, thus failing to achieve robust 

segmentation results.  

In this work, we introduce a novel framework that uses a patch-based implementation of CNN, 

exploits sparsely annotated regions of high confidence and learns local textural patterns and is 

followed by a deep convolutional encoder-decoder architecture, trained on whole image 

annotations. The patch-based CNN learns local textural patterns while the convolutional encoder-

decoder also learns high-level relationships and thus ensures spatial homogeneity of the produced 

segmentation. The combination of the two architectures allows transferring the learned features 

across different datasets and thus enriches the deployed feature space, so that the labor-intensive 

annotation of whole images can be limited to only a few sample. The method achieved high accuracy 

for ILD segmentation on CT images of SSc patients, as quantified by overlap scores. The different 

architectures are compared, and their advantages and possible limitations are discussed shedding 

light into their performance for tissue characterization in medical images.  

 

3.1.2 Methodology 
The proposed framework combines local and global learning through the use of patch-based and 

fully convolutional dense networks, respectively. Specifically, we implemented a patch-based deep 

CNN in order to exploit the available partial datasets and introduced its probabilistic output as an 

additional layer into a subsequent dense convolutional encoder-decoder network, in order to 

increase the spatial homogeneity of segmentations. Due to unavailability of disease annotation of 

the whole slices to train the encoder-decoder, manual segmentations on 3D CT images have been 

created by a medical expert for a small number of SSc patients. 
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Patch-based classification:  

A relatively simple convolutional architecture (ConvNet) was chosen as it offers a good trade-off 

between computational time and accuracy. In particular, the network consisted of 2 convolutional, 

2 fully connected layers, and a softmax layer. Each convolutional layer (with filters of size 5 × 5) was 

followed by a tanh activation function and a 3 × 3, stride 2, max-pooling operation which down-

sampled the input patch. Similarly, each of the 2 fully- connected layers was followed by a tanh 
function, the output of which was introduced to a softmax layer for the final classification. The 

network was optimized using cross entropy loss. For classification of new images, a patch was 

extracted around each pixel of the CT slices and the predicted label for the patch was inherited to 

the central pixel.  

 

Deep convolutional encoder-decoder architecture:  

We use the SegNet deep learning network [47] which performs pixelwise classification and is 

composed of an encoder and a decoder network. It consisted of 13 convolutional layer groups, 

similar to the ones of VGG16 network, which have been initialized with the VGG16 pretrained 

weights (Figure 3.1). The entire architecture consisted of repetitive blocks of convolutional, batch 

normalization, rectified-linear units (ReLU) and max-pooling layers. The network was optimized 

using cross entropy loss. 

 

 

 
Figure 3.1. Visual representation of the SegNet architecture used as convolutional encoder-decoder 
 

 

Combination of architectures:  

There are different approaches to fuse or transfer knowledge between different deep learning 

architectures. In this approach, we combined datasets as well as network outputs. In particular, 

after training a patch-based CNN we calculated the probability maps for each class and used them 

as input to a convolutional encoder-decoder, additionally to the gray level image (i.e. extra 

channels). Through this transfer, the second network can exploit during the learning procedure the 

prior knowledge about the spatial distribution of different tissue classes. Again for the optimization 

of this architecture we used cross entropy loss. The whole framework is illustrated in Figure 3.2 
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Figure 3.2. The proposed combination model with the two training datasets. 

Note : CED = convolutional encoder-decoder 
 

3.1.3 Dataset and Implementation Details 
Datasets: 

We performed experiments using two different datasets.  

The first dataset included (volumetric) CT images from 12 SSc patients. These images had been fully 

annotated according to 3 different classes: healthy lung, diseased lung, and background (body tissue 

outside the lung and background). Lung segmentation had been performed using Myrian XP-lung 

software (Intrasense) and subsequently manually corrected whenever required. ILD segmentation 

had been performed by a chest radiologist tracing the disease boundaries in axial view over all CT 

slices. Assessment of the method was performed on 20 additional patients with annotations on only 

20 selected CT slices, resulting in a total of 400 annotated slices for the test dataset.  

The second dataset was a publicly available ILD dataset [43] which contains 905 selected slices from 

120 patients including in total 13 ILD labels (such as ground glass, fibrosis, micronodules, 

consolidation, etc). This dataset is sparsely annotated, and thus could only be used for the patch-

based model. Since our goal was to segment ILD extent in SSc patients, we were not interested in 

the subcategorization of individual tissue abnormalities, thus we merged all the indicated disease 

manifestations into a single class.  

 

Implementation details: 

For the patch-based CNN, 80000 patches were extracted for each class containing samples from 

both datasets (ILD and SSc). For our experiments, we used patches of size 29 × 29. The model was 

trained for 50 epochs with learning rate for the stochastic gradient descent (SGD) 0.5 while every 3 

epochs the learning rate was reduced to half. The momentum was set to 0.9 and the weight decay 

to 5.10-4.  

For training of the convolutional encoder-decoder we used around 3400 CT slices and for the 

training of the convolutional encoder-decoder with the combined input 150 CT slices. For our 

experiments, we used image slices of the original dimension (512 × 512) and we first pre-trained the 

model for 60 epochs (without incorporating probability maps) with learning rate for the SGD starting 

at 0.01 and then reducing every 20 epochs by 2.5·10-3. Similarly to the patch-based classifier, the 

momentum was set to 0.9 and the weight decay to 5.10-4.  

We trained the combination convolutional encoder-decoder architecture for 70 epochs, with 

combined input (CT images and probability maps), initializing the encoder weights with the ones 

calculated from the pre-training phase. 

Moreover, for training the convolutional encoder-decoder and the combination models, we 

performed median frequency balancing [47] to balance the data, as the samples with disease were 

considerably fewer than the rest of the samples. In such a setup, the assigned weight to a class in 
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the loss function was the ratio of the median of class frequencies computed on the entire training 

set divided by the class frequency.  

In order to assess the importance of information fusion, we also retrained the convolutional 

encoder-decoder without using the probability maps from the patch-based network (Table 3.1, row 

3) using the same 150 slices as in the proposed scheme. 

 

3.1.4 Experimental Results 
We evaluated the detection accuracy of each class against any other class, using four metrics, 

namely sensitivity, specificity and precision and the Dice similarity coefficient (Appendix). Since the 

metrics were calculated for every slice, we averaged the results across slices by weighting the values 

based on the coverage of each class within each slice. This should be equivalent to an approximate 

estimation of the metrics in 3D. For comparison with others, we reported results for each 

architecture individually to approximate the performance of the methods in [190] and [203] by the 

patch-based CNN (Table 3.1, 1st row) and [47] by the convolutional encoder-decoder. 

Our proposed method offered higher precision and specificity for disease classification, but lower 

sensitivity compared to the other three methods (Table 3.1). The high sensitivity of the patch-based 

strategy was accompanied by a low precision indicating that it is not appropriate for dense 

classification. Additionally, retraining the convolutional encoder-decoder without information 

fusion, boosted the results but did not outperformed the proposed method. Moreover, Figure 3.3 

shows that the proposed strategy outperformed the other two in respect to the Dice similarity 

coefficient for both diseased and healthy lung, with mean values for the diseased tissue of 0.619, 

0.694, 0.709 and 0.722 for the patch-based, the convolutional encoder-decoder, the convolutional 

encoder-decoder with retrain and the proposed strategy, respectively.  

 
Table 3.1. Different evaluation metrics for the testing dataset  

Method 
Specificity Sensitivity Precision 

Disease Healthy Disease Healthy Disease Healthy 
Patch-
based 

0.948 0.990 0.902 0.743 0.489 0.924 

CED 0.971 0.983 0.906 0.889 0.598 0.923 

CED retrain 0.981 0.980 0.819 0.932 0.639 0.891 

Proposed 0.989 0.985 0.827 0.943 0.671 0.904 

CED = convolutional encoder-decoder 

 

 

Figure 3.3. The average, maximum and minimum values for the calculated Dice coefficient for diseased and 
healthy tissue and all employed strategies. Blue and red indicate values above and below the average. 

Visual assessment of the segmentation is illustrated for a test subject in Figure 3.4.  
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In agreement with the quantitative assessment the patch-based approach produces noisy 

detections with healthy and diseased lung often inter-mixed. The other two approaches detect the 

different categories with higher consistency (indicated by higher lower bounds of Dice), with the 

proposed strategy reporting less false detections for the disease class than the convolutional 

encoder-decoder.  

The most similar studies [190,203] targeting the classification of ILD patterns with patch-based CNNs 

achieved 85.5% and 92.8% classification accuracy, respectively. Binary classification of ILD, non-ILD 

and healthy (normal) subjects (15 in each group) was performed in [204] using linear regression and 

texture features. Detection rates for the patients with ILD were 73% when compared to non-ILD and 

67% when compared to normal. Although not directly comparable, our method, which is equivalent 

to a 3-class voxel-wise classification problem, achieved a total accuracy of 89.3% (percent- age of 

correctly classified voxels) and sensitivity 82.7% and 94.3% for ILD and healthy lung respectively. ILD 

segmentation was investigated also by other groups, but to the best of our knowledge only in 

respect to selected patterns. In [205], watershed and FCM segmentation methods were applied to 

capture microcystic patterns or larger cysts (present in ILD of grade 2 or 3) and assessed only visually 

on data of a single patient.  

 

 
Figure 3.4. Example of pixel classification (interstitial lung disease in red, lung in green and 

background in blue) using the different deep learning strategies. A) Axial CT slice showing bilateral 
interstitial lung disease, B) Ground truth, C) Patch-based approach, D) convolutional encoder-

decoder, E) proposed method. 
 

Additionally to high detection accuracy, the proposed method produced spatially homogeneous 

regions within slices (over axial sections) which is attributed to the fully convolutional architecture. 

For this reason, there was no need to impose spatial consistency constraints for example through 

the use of Conditional Random Fields [203]. Moreover, accurate boundary localization was achieved 

due to the design of the decoder network. The hierarchical decoders use the max-pooling indices 

received from each corresponding encoder to perform non-linear upsampling of the low-resolution 

feature maps. Mapping the low-resolution feature maps to the resolution of the original CT images 

allowed to overcome coarse labeling and localize boundaries. Spatial homogeneity and accurate 

localization was also observed across slices (over sagittal and coronal sections), thus, although not 
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guaranteed, we do not expect to have a significant gain from the substitution of our 2D networks 

by 3D architectures. Furthermore, collection of good quality 3D ground truth is difficult, because 

the manual outlining is usually performed over axial slices, thus often lacks smooth boundaries 

across the other two planes.  

The training of the patch-based model required a bit less than an hour as the architecture was 

relatively small. In that strategy, the extraction of patches was the most computationally demanding 

task. This is a limitation in the testing phase where the number of voxels to be annotated is 

particularly large. On the other hand, the convolutional encoder-decoder required around 24 hours 

for the training and another 6 hours for the final training by the combined input. However, for both 

of them, the testing phase lasted only a few seconds for segmentation of one lung image. 

 
3.1.5 Discussion 
In this chapter, we have introduced a novel framework that integrates deep, patch-based (trained 

on available databases) priors with a fully convolutional encoder-decoder network (trained on a 

small number of images), to improve generalization performance.  

Additionally to high detection accuracy, the proposed method produced spatially homogeneous 

regions within slices (over axial sections) which is attributed to the fully convolutional architecture. 

For this reason, there was no need to impose spatial consistency constraints for example through 

the use of Conditional Random Fields [203]. Moreover, accurate boundary localization was achieved 

due to the design of the decoder network. The hierarchical decoders use the max-pooling indices 

received from each corresponding encoder to perform non-linear upsampling of the low-resolution 

feature maps. Mapping the low-resolution feature maps to the resolution of the original CT images 

allowed to overcome coarse labeling and localize boundaries. Spatial homogeneity and accurate 

localization was also observed across slices (over sagittal and coronal sections), thus, although not 

guaranteed, we do not expect to have a significant gain from the substitution of our 2D networks 

by 3D architectures. Furthermore, collection of good quality 3D ground truth is difficult, because 

the manual outlining is usually performed over axial slices, thus often lacks smooth boundaries 

across the other two planes.  

The combination of the two architectures allowed enriching the deployed feature space and thus 

increased the segmentation accuracy. The method was applied for ILD segmentation on CT images, 

but generalizes to other tissue or texture characterization problems as well. It does not incorporate 

any shape or deformation priors or physiological models that guide detection, therefore it is not 

specialized to the detection of localized structures, such as organs or uniform masses (although it 

can handle also this type of problems given enough training data). On the other hand, by learning 

only from image content, the method is modular and easy to use. Future work includes the 

investigation of 3D convolution and the trade-off between possible gain in volumetric smoothness 

over the additional computational cost required to minimize discontinuities of annotations over 

sagittal and coronal views. 
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3.2 Development of a multi-atlas non-linear deep networks for medical image 
segmentation (AtlasNet) 

 
 
3.2.1 Background 
In this work, we propose a novel multi-network architecture that copes with the above limitations. 

The central idea is to train multiple redundant networks fusing training samples mapped to various 

anatomical configurations. These configurations correspond to a representative set of anatomies 

and are used as reference spaces (frequently referred to as atlases). The mapping corresponds to a 

non-linear transformer. Elastic registration based on a robust, multi-metric, multi-modal graph-

based framework is used within the non-linear transformer of the network. Training is performed 

on the sub-space and back-projected to the original space through a de-transformer that applies an 

inverse nonlinear mapping. The responses of the redundant networks are then combined to 

determine the optimal response to the problem.  

The proposed framework (Figure 3.5) relates also to the multitask learning paradigm (MTL), where 

disparate sources of experimental data across multiple targets are combined in order to increase 

predictive power. The idea behind this paradigm is that by sharing representations between related 

tasks, we can improve generalization. Even though an inductive bias is plausible in such paradigms, 

the implicit data augmentation helps reducing the effect of the data-dependent noise. The idea of 

MTL for image segmentation has been incorporated before, such as in deep networks [206] where 

soft or hard parameter sharing of hidden layers is performed, or in multi-atlas segmentation [187], 

where multiple pre-segmented atlases are utilized in order to better capture anatomical variation. 

As in most ensemble methods, the concept is that the combination of solutions by probabilistic 

inference procedures can offer superior segmentation accuracy. 

The proposed AtlasNet differs from previous methods with respect to both scope and applicability. 

In (single or multi) atlas segmentation, the aim is to map a pre-segmented region of interest from a 

reference image to the test image, therefore applicability is limited to normal structures (e.g. organs 

of the body or healthy tissue) that exist in both images. Exploitability is further reduced in the case 

of multi-atlas segmentation due to the rareness of multiple atlases. The proposed strategy on the 

contrary is suitable also for semantic labeling of voxels (as part of healthy or pathological tissue) 

without the requirement of spatial correspondence between those voxels in atlas and test image.  

AtlasNet uses multiple forward non-linear transformers that map all training images to common 

subspaces to reduce biological variability and a backward de-transformer to relax the effect of 

possible artificial local deformations. In fact, due to the ill-posedness of intersubject image 

registration, regularization constraints are applied to derive smooth solutions and maintain 

topological relationships among anatomical structures. Consequently, image registration does not 

always produce a perfectly conforming diffeomorphism due to the nonexistence of a single atlas 

that matches all anatomies. The use of multiple spaces comes to reduce the atlas selection bias, 

while the backward transformation aims to balance the effect of possible alterations in local image 

texture due to the nonlinearity in the transformation. Highly promising results comparable to 

human accuracy on the challenging task of interstitial lung disease (ILD) segmentation demonstrate 

the potential benefits of our approach. Furthermore, the obtained performance outreached 

redundant conventional networks.  
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Finally, the proposed approach addresses most of the limitations of existing neural network 

approaches. First, it requires fairly small number of training examples due to the reduced diversity 

of observations once mapped to a common anatomy. Second, it performs data augmentation in a 

natural manner thanks to the elastic mapping between observations and representative anatomies. 

Third, it inherits robustness, stability and better generalization properties for two reasons: the 

limited complexity of observations after mapping, and the “anatomically” consistent redundancy of 

the networks.  

 

 

 

 

Figure 3.5. The proposed AtlasNet framework. 
 

 

 

3.2.2 Methodology  
The method consists of two main parts, a transformer and a de-transformer part. The former maps 

a sample S to N different atlases Ai,i ∈ {1,...,N}, constructs their warped versions, and trains N 

different networks, while the latter projects back the N predictions to the initial space. These 

projections are then combined to obtain the final segmentation. The transformer part consists of a 

non-linear deformable operator (transformer Ti) and a segmentation network Ci while the de-

transformer part uses the inverse deformable operator (de-transformer Ti-1) i to map everything 

back to the initial space of a sample S. The framework is flexible, enables any suitable transformation 

operator (with an existing inverse) to be coupled with a classifier. 

 

Multimetric Deformable Operator  

There is a huge literature regarding elastic registration in the field of medical imaging, as depicted 

in [41]. The method that we used in atlasnet is a graph-based elastic registration method. In 

particular, the elastic non-linear operator is implemented using a deformable mapping to a given 

atlas. Let us denote without loss of generality by S the source sample and Ai where i ∈ {1, . . . , N } 

the atlas corresponding to a given transformer. Let us consider that without loss of generality a 

number of metric functions ρj can be used to compare the deformed source image and the target 



 

  

63 

anatomy Ai. The non-linear transformer T corresponds to the operator that optimizes in the 

continuous domain Ω the following energy: 

^	4jk; ], m*6 = 	n 7P?o?4] ∘ jk, m*6qΩ
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Where P?  are linear constraints factorizing the importance of the different metric functions. Such a 

problem is ill-posed and therefore an additional regularization constraint is often considered 

imposing smoothness on the elastic mapping, or: 
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where u () is a penalty function acting on the spatial derivatives of the transformation as 

regularization to impose smoothness. Such a formalism can be considered either in the continuous 

setting that requires differentiable functions with respect to the metric functions o?  or in a discrete 

setting. The advantage of discrete variant is that it can integrate an arbitrary number and nature of 

metric functions as well as regularizers while offering good guarantees as it concerns the optimality 

properties of the obtained objective function. Inspired by the work done in [207] we express the 

non-linear operator as a discrete optimization problem acting on a quantized version of the 

deformation space. Let L = l1 , · · · , lm be a discrete set of labels corresponding to a set of 

displacements D = dl1 , · · · , dlm . Furthermore, let us assume without loss of generality that instead 

working on full domain we consider a graph G that can with an interpolation strategy generate a full 

domain displacement field. The use of the graph serves also as a way to reduce the computational 

complexity of the problem. In that case, the registration problem is equivalent of finding a global 

label l such that the following energy is minimized:  
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where z{x is the domain support corresponding to the hs node of the graph and v4f(P)6 is an 

interpolation function that produces the displacement of P. 

In particular the interpolation function is very important as it defines the weight that each voxel will 

have to the node and the reverse. These weights are proportional to the distance of the voxels from 

the node and each of the voxels can participate to more than one node depending to its distance 

from the node. In practice, the interpolation function defines the influence of a node on the pixel of 

the volume x – the closer the voxel the higher the influence of the node. A very common and usually 

used choice to define the weights/ influence of the voxels to the nodes and inverse is the cubic B-

splines, resulting in the well-known Free Form Deformation (FFD) model. 

A quite common way to deal with the computational complexity and the accuracy of the method is 

the adaptation of a pyramidal approach over the grid. The main idea is to begin with large 

displacement vectors and slowly reduce their range approaching iteratively to the best solution. This 

means that in the beginning we expect the deformation vectors to produce important 

displacements converging to some small and local deformations. 

In our framework, we have used free form deformations as an interpolation strategy, invariant to 

intensity image metrics (mutual information, discrete wavelet metric, correlation ratio, and 
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normalized cross correlation), pyramidal implementation approach for the optimization and belief 

propagation for the estimation of the optimal displacement field in the discrete setting (step 1 in 

Algorithm 1, Figure 3.6). Details on the implementation can be found in [208]. After defining the 

optimal deformations T between the source image S and the different atlases Ai in the transformer 

part, AtlasNet uses the inverse transformations to project back to the initial space of the source 

image the predicted segmentation maps (step 3 in Algorithm 1). Different fusion strategies can be 

used for the combination of the predicted ]*
|}{ (step 4 in Algorithm 1). For the specific application 

the final segmentation ]	|}{ has been calculated by averaging all the predicted probalilistic ]*
|}{. 

Figure 3.6. AtlasNet pseudocode 
 

The method consists of two main parts, a transformer and a de-transformer part. The former maps 

a sample S to N different atlases Ai,i ∈ {1,...,N}, constructs their warped versions, and trains N 

different networks, while the latter projects back the N predictions to the initial space. These 

projections are then combined to obtain the final segmentation. The transformer part consists of a 

non-linear deformable operator (transformer Ti) and a segmentation network Ci while the de-

transformer part uses the inverse deformable operator (de-transformer Ti-1) i to map everything 

back to the initial space of a sample S. The framework is flexible, enables any suitable transformation 

operator (with an existing inverse) to be coupled with a classifier.  
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Figure 3.7. The proposed AtlasNet framework. 

 

 

Segmentation Networks  

The segmentation networks Ci operate on the mapped image, Ti(S), to produce a segmentation map 

and can be the same or different depending on the task and the application and are completely 

independent of the exact classifier. After defining the optimal deformations Ti,i = 1...N, between the 

source image and the different atlases in the transformer part, AtlasNet uses the inverse 

transformations to project back to the initial space of the source image S the predicted 

segmentation maps: Sseg= T-1(Ci(Ti(S))).  
In this work, motivated by the state-of-the-art performance of FCNs in several problems we adapted 

them for dense labeling. We use the SegNet deep learning network [47] which performs pixelwise 

classification and is composed of an encoder and a decoder architecture and follows the example 

of U-net [46]. It consists of repetitive blocks of convolutional, batch normalization, rectified- linear 

units (ReLU) and indexed max-pooling layers, similar to the ones of the VGG16 network (Figure 3.1). 

For the optimization of the network we used cross entropy loss. 

Different fusion strategies can be used for the combination of the segmentations. We used the 

probabilistic output of the classifiers (before hard decision) and fused the output of the different 

networks based on majority voting. The proposed framework is shown in Figure 3.7.  
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3.2.3 Dataset and Implementation  
Dataset 

The dataset included 17 (volumetric) CT scans consisting of 6888 slices in total, each being of 512 × 

512 dimension, which were fully annotated. Due to the average time required to manually fully 

annotate disease on one CT exam (~ 6-10 hours), it was not possible to annotate enough patients 

to use a 3D network. Indeed 3D networks consists of a bigger number of parameters than 2D. The 

ILD annotation was performed by a medical expert tracing the disease boundaries in axial view over 

all slices, which were used for training the classification model. Assessment of the method was 

performed on images from 20 additional patients being annotated only on 20 selected CT slices by 

three different observers. Images had been acquired at full inspiration on CT scanners from 2 

manufacturers (Siemens Healthcare, Erlangen, Germany; Milwaukee, USA). 

 
Implementation Details  

For the registration, we used the same parameters for all images and all atlases. Three different 

similarity metrics have been used, namely, mutual information, normalized cross correlation and 

discrete wavelet metric. For the mutual information 16 bins were used, in the range of −900 to 100.  

We used the same parameters for training all SegNet networks (initial learning rate = 0.01, decrease 

of learning rate = 2.5·10-3 every 10 epochs, momentum = 0.9, weight decay = 5·10-4). The training of 

a single network required around 16 hours on a GeForce GTX 1080 GPU, while the prediction for a 

single (volumetric) subject lasted only a few seconds. For data augmentation we performed only 

random rotations (between −10 and 10o) and translations (between 0 and 20 pixels per axis) 

avoiding local deformations since the anatomy should not artificially change. Moreover, for training, 

we performed median frequency balancing [47] to balance the data, as the samples with disease 

are considerably fewer than the rest of the samples.  

For all experiments we used 6 different atlases and registered both training and testing images to 

them. The choice of atlases was made by a radiologist towards integrating important variability of 

the considered anatomies. 

 

3.2.4 Experimental Results 
ILD segmentation on CT images was considered for evaluation of the proposed multi-network 

architecture; boundaries are hard to detect, visual characteristics of the disease can significantly 

vary and delineation suffers from poor-to-moderate interobserver agreement [13]. Moreover, 

although several visual scoring systems have been proposed for the disease, they only allow basic 

quantification of ILD severity.  

Our experimental evaluation had two objectives: (i) to evaluate robustness and accuracy of AtlasNet 

compared to conventional networks and (ii) to examine whether the proposed methodology could 

truly be trained with fewer examples while leading to good performance. We used five metrics, 

namely sensitivity, precision, Hausdorff distance (Appendix), average contour distance and Dice 

similarity coefficient (over the number of epochs) (Appendix), to evaluate the performance of the 

proposed method.  
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Figure 3.8-A presents the behavior of our method using different number of atlases. It can be 

observed that the Dice similarity coefficient initially increases and tends to stabilize for more than 5 

templates. It is noteworthy that even using only one atlas, the deformable operator of AtlasNet 

helps to increase the Dice coefficient (from 0.533 to 0.604), as indicated by Figure 3.8-B and 

achieves the highest values of Dice similarity coefficient compared to conventional networks and 

usual data augmentation techniques. This can be potentially explained through the introduction of 

constraints associated with the mapping. ILD indications are usually observed at the lungs 

boundaries, and therefore mapping all training sample to a same template allows to enhance this 

valuable constraint implicitly within the network. 

 

 

Figure 3.8. Quantitative evaluation of the Dice similarity coefficient for varying parameters. 
 

To evaluate the performance of our architecture with fewer samples, we used a reduced number of 

samples (30%, 50% and 70% respectively) for the same number of epochs (18) and compared the 

performance with the one in [47]. The obtained mean Dice similarity coefficient values in [47] were 

0.434, 0.462, 0.487, while for AtlasNet they were 0.613, 0.646 and 0.672 respectively, indicating the 

robustness of AtlasNet with a significantly lower number of samples. In simple words, the proposed 

architecture produces better or similar results with 30% of the samples compared to the state-of-

the-art architecture [47] with and without data augmentation.  

 

Although results on different datasets are not directly comparable, we compared our method with 

works related to ILD segmentation. [190] classified CT image patches with ILD patterns using a CNN 

and obtained 0.856 accuracy for 6 disease classes. By extracting patches on our data (where 

different patterns are annotated as a single class) in the same way as in [190] we obtained 0.916 

accuracy. In [197] a patch-based CNN was augmented with a deep encoder-decoder to exploit 

partial annotations. By applying AtlasNet on the same dataset as in [197], we increased the mean 

Dice similarity coefficient from 0.671 to 0.725.  

Moreover, we compared AtlasNet with respect to disease segmentation with standard frameworks 

(without registration and with and without data augmentation) for the same number of epochs (18) 

and illustrate results in Table 3.2 and Figure 3.8-B. For equal comparison, we assessed accuracies 

using the same classification strategy [47] trained on the initial CT slices, and after performing data 

augmentation as described earlier. The proposed method reports the best accuracy with respect to 

Hausdorff distance, average contour distance and Dice similarity coefficient, indicating that the 

disease segmentation is much more accurate than by the conventional frameworks with or without 

data augmentation. This can be inferred also from Figure 3.9 where axial slices of two different 

subjects are depicted. It is clear that the proposed approach segments accurately the boundaries of 

the disease.  
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For a more complete evaluation, we also compared AtlasNet with the annotations of three different 

medical experts. The annotations of one observer have been used as ground truth to evaluate the 

rest. From Table 3.2 and Figure 3.9, it can be observed that AtlasNet demonstrates more robust 

performance than manual segmentation. Finally, it is worth mentioning that even if the network 

operates on 2D slices, without accounting for out-of-slice connections, the fusion of the different 

atlases’ predictions makes the final segmentation smooth across all three axes.  

Concerning the computational resources, we used a single segmentation network [47] for each of 

the N atlases, therefore the time and memory usage for one atlas is that of the CNN, while we also 

showed that a small N (such as 6) is sufficient. For segmentation of one volumetric CT on a single 

GPU the total testing time (using 6 atlases) is 3–4 min, including the registration step while the 

registration cost is negligible since a graph-based GPU algorithm is used taking 3–5 s per subject. 

This cost drops linearly with the number and computing power of GPUs. Thus, we believe that the 

additional complexity of AtlasNet is fully justified, since it improves performance by more than 20% 

and also maintains it stable with only 30% of the training data compared to conventional single 

networks.  

 

 

 

Figure 3.9. Example of interstitial lung disease segmentation (red color) in 2 patients using the different 
deep learning strategies. 

 

 
Table 3.2. Evaluation metrics for the testing dataset for the systemic sclerosis disease.  

Method Sensitivity Precision Hausdorff 
distance 

Average 
distance 

DSC 

SegNet 0.348 0.623 4.984 1.891 0.533 

Augmentation & 
SegNet 

0.534 0.567 4.077 1.309 0.619 

Inter-observer 0.693 0.522 4.005 1.317 0.662 

AtlasNet 0.682 0.545 3.981 1.274 0.677 

DSC = Dice Similarity Coefficient 
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3.2.5 Discussion 
We present a novel multi-network architecture for (healthy or pathological) tissue or organ 

segmentation that maximizes consistency by exploiting diversity. Evaluation of the method on 

interstitial lung disease segmentation highlighted its advantages over previous competing 

approaches as well as inter-observer agreement. The investigation of techniques for soft parameter 

sharing of hidden layers, and information transfer between the different networks and atlases is our 

direction for future work. Finally, the extension to multi-organ segmentation including multiple 

classes and loss functions is one of the potential directions of our method. 

The integration of registration and segmentation is another promising direction of this work. 

Currently, the elastic transformer operator is independent to the network. Numerous recent works 

have claimed and shown strong experimental evidence that transformation can be learned as well 

[97,209]. Proposing and end-to-end network that is able to automatically deform the target towards 

different anatomies and distinguish pathologies from healthy tissue will eliminate the registration 

dependency and benefit from the mutual coupling of the two terms. In order to achieve this 

challenging objective, the approach has to evolve towards 3D networks. Learning 2D deformable 

mappings might introduce bias since deformations are often out-of-plane and therefore cannot be 

easily and appropriately learned with 2D models.  
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3.3 Automated assessment of the extent of interstitial lung disease in systemic 
sclerosis patients: a deep learning-based approach 

 
The goal of this study was to develop a robust deep learning-based quantification tool, trained from 

a fully annotated dataset of contiguous CT images of the same ILD, allowing automated 

quantification of ILD extent in SSc patients. The notion of extent is relative with respect to the 

volume within the lung, and therefore on top of determining the area corresponding to the disease 

indication, the whole lung has to be determined as well.  

 

3.3.1 Methodology 
The model was developed in the training dataset using a variant of AtlasNet [48]. Briefly, the 

AtlasNet architecture trains n number of deep convolutional neural networks (DCNNs), each of the 

them using a predefined anatomy on which all training cases are mapped through elastic 

registration, resulting in a natural data augmentation. For this study, we augmented the AtlasNet 

network through a dual auto-decoder architecture based on SegNet architecture (Figure 3.10). This 

was motivated by the need to guarantee anatomical plausibility of the disease segmentation results 

and was achieved through the introduction of spatial inter-dependencies between lungs and disease 

classes, predicted by two different decoder parts. Each decoder relies on a cross-entropy loss 

function, while we penalize predictions for the disease class that are outside the predicted lungs.  

 

 

Figure 3.10. Visual representation of the single dual auto-decoder architecture used to train AtlasNet 
framework. 

 

 

After the training of the N different DCNNs, AtlasNet combines their predictions using an ensemble 

strategy and applying a simple majority voting principle. For the training of AtlasNet, we used six 

different DCNNs with a Seg-Net autoencoder architecture. We present the single architecture in 

Figure 3.11. 
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Figure 3.11. Visual representation the AtlasNet framework using 6 atlases 

 

3.3.2 Dataset and Implementation  
Dataset 

This single center retrospective study was approved by the Institutional Review Board of the Société 

Pneumologie de Langue Française (CEPRO-2017-023) which waived the need for patient consent. 

Patients who met the American College of Rheumatology / European League against Rheumatism 

2013 criteria for SSc [210] were recruited from the database of the Centre de Référence Maladies 

Systémiques Autoimmunes Rares d’Ile de France. Between January 2009 and October 2017, 591 

patients from this reference center underwent a chest CT. Seventeen of these patients were 

selected to compose a training/validation dataset. This dataset included 6888 high resolution axial 

CT images, from 3 patients without and 14 patients with various degrees of severity of SSc-ILD, as 

assessed by 2 experienced radiologists with 18 and 19 years of experience in chest imaging, 

respectively. CT images of the other 574 patients were reviewed in consensus by the same 

radiologists for the presence of one or more of the following features typically found in SSc-ILD: 

ground glass opacities, reticulations, traction bronchiectasis and/or bronchiolectasies, with or 
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without honeycombing in a predominantly subpleural location. Exclusion criteria were 1/ motion 

artifacts 2/ signs of lung disease other than SSc-ILD 3/ acquisitions in the prone position 4/ contrast 

media injection 5/unavailability of complete PFTs measurement within 3 months before or after CT. 

Of the 191 patients finally included, 20 patients were randomly assigned to compose a test cohort. 

The correlation between PFTs and ILD extent assessed by deep learning was evaluated for the other 

171 patients, composing the correlation to PFTs cohort. 

An external validation cohort was composed by SSc patients from another institution (Hôpital Saint 

Antoine, Paris France), who had been evaluated between March 2009 and March 2014. The same 

inclusion and exclusion criteria were used. 

For the training, test and correlation to PFTs datasets, whole lung CT examinations were obtained 

with 4 different 16-to-128 multislice CT scanners from 2 different manufacturers (Somatom 

Sensation 16, Somatom DS and Somatom AS+, Siemens Heathineer ; Revolution HD, General Electric 

Healthcare), using non-standardized acquisition parameters. Images were reconstructed with a slice 

thickness of 0.625 to 1.5mm, using filter back projection or iterative reconstruction algorithms, and 

a high frequency kernel (LUNG, B70f or I70F). In the three datasets, the majority of CT examinations 

had been acquired on Siemens equipment (3/17 in the training 

For the external validation cohort, CT examinations were obtained with a different multislice CT 

scanner (Somatom Sensation 64, Siemens Healthineer) using non-standardized acquisition 

parameters. Images were reconstructed with a slice thickness of 1.5mm, using filter back projection 

only and a high frequency kernel (B60f) different from the one used at our institution. 

Disease segmentation was performed by manually outlining the extent of ILD on axial CT images, 

including ground glass opacities, reticulations, traction bronchiectasis and honeycombing. CT 

images in the training dataset were fully annotated by one radiologist with 5-year experience in 

chest imaging, meaning that disease extent was manually contoured on each CT image showing 

signs of ILD. Disease segmentation was performed by manually outlining the extent of ILD on axial 

CT images, including ground glass opacities, reticulations, traction bronchiectasis and 

honeycombing. CT exams in the test cohort were partially annotated by 3 independent radiologists 

with 1 to 4 years of experience in chest imaging. Each of them annotated 20 CT slices equally spaced 

from the lung apices to the right diaphragmatic dome, representing a total of 400 annotated slices 

for each radiologist. Additionally, lungs were segmented in the training and the test dataset by one 

radiologist. 

 

Implementation Details  

The 6888 annotated images for both lung and disease, each being of 512×512 dimension have been 

used for training. For Atlasnet, we used 6 atlases and the same registration parameters as previously 

described. For comparison purposes, we also trained a U-Net architecture [211] on the same data 

(Figure 3.12). The same parameters were used for training all networks (initial learning rate = 0.01, 

decrease of learning rate = 2.5·10-3 every 10 epochs, momemtum = 0.9, weight decay = 5·10-4).  

AtlasNet does not use any conventional data augmentation method. In order to address the request 

for comparison, data augmentation was performed for the U-net architecture, involving random 

rotations (between -10 and 10 degrees) and translations (between 0 and 20 pixels per axis) avoiding 

local deformations since the anatomy should not artificially change. 

The training of a single network was completed on approximately 16 hours using a GeForce GTX 

1080 GPU, while the prediction for a single CT scan is done in a few seconds.  
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Figure 3.12. Visual representation of the U-net architecture. 
 

The 2 developed algorithms (proposed AtlasNet and U-Net) were then applied to the test cohort, 

and ILD contours provided by the algorithm were compared to those from 3 independent 

radiologists. In order to assess the clinical relevance of the deep learning method, the correlation 

between disease extent (normalized using lung volume) and the PFT measurements was evaluated 

in the remaining 171 patients from the data base who had chest CT and PFTs performed within a 3-

month interval and composed the correlation to PFTs cohort. Correlation to PFTs was also evaluated 

in the external validation cohort. To calculate normalized disease extent, the volume of the diseased 

lung was divided by the whole lung volume, measured using an in-house lung segmentation tool. 

 

3.3.3 Experimental results 
Statistical analysis 

Statistical analysis was performed. Patient characteristics were compared using the Fisher’s exact 

test and the Mann-Whitney U test. Dice similarity coefficient (DSC) [52] (Appendix) was calculated 

in the test cohort to evaluate the agreement among radiologists’ contours, and between each 

radiologist and the contours generated from the two different deep learning algorithm (AtlasNet 

and U-Net).  

There was no significant difference in patient characteristics between those from the test and the 

correlation to PFTs cohorts (p>0.05, Table 3.3) except for a significantly lower proportion of patients 

without detectable autoantibodies (p=0.016) and a slightly larger ILD extent in the test cohort 17.5% 

versus 12.7% with AtlasNet segmentation (p= 0.043) and 19.0% versus 13.1% with U-Net (p=0.049).  
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Table 3.3. Characteristics of patients with systemic sclerosis from our institution 
 Test cohort 

(n=20) 

Correlation to 
PFTs cohort 

(n=171) 

p value 

Age, y 55 [46-64] 58 [48-67] 0.514 

Female 17 (85) 137 (81) 0.770 

Diffuse systemic sclerosis 13 (65) 83 (49) 0.237 

Modified Rodnan skin score 13 [4-18] 8 [2-16] 0.353 

Autoantibodies *:    

- Anti-centromere antibodies 1 (5) 26 (15) 0.318 

- Anti-Scl-70 antibodies 11 (55) 92 (54) 0.953 

- Other autoantibodies 5 (25) 51 (30) 0.798 

- No autoantibodies 3 (15) 3 (2) 0.016 

Pulmonary function tests:    

- % of predicted total lung capacity 81 [76-88] 89 [74-103] 0.092 

- % of predicted forced vital capacity 78 [57-88] 88 [72-104] 0.064 

- % of predicted diffusing capacity for carbon 

monoxide 

45 [34-50] 51 [36-65] 0.169 

- % of predicted carbon monoxide transfer 

coefficient 

70 [53-84] 74[59-82] 0.737 

ILD extent on CT (% of lung volume):    

- Proposed method (AtlasNet) 17.5 [12.7-30.8] 12.7 [4.0-24.7] 0.043 

- U-Net 19.0 [13.8-33.1] 13.1 [4.8-27.2] 0.049 

* One patient had both anti-centromere and anti-Scl-70 antibodies. 
For quantitative variables, data are medians, and numbers in brackets are the interquartile range. 
For qualitative variables, data are numbers of patients, and numbers in parentheses are 
percentages. 

 

 

Patients from the correlation to PFTs cohort were mainly women (n= 137; 81%), with a median age 

of 58 years [IQR = 48-67]. The proportion of diffuse (n=83; 48%) and limited (n= 88; 51%) SSc was 

similar. Most patients had positive anti-Scl70 autoantibodies (n=90; 54%). The mean interval 

between CT and PFTs was 0 days [IQR = 0-0 day, range = 0-92 days]. The median forced vital capacity 

(FVC) was 88% of the predicted value [IQR = 72-104%] and the median total lung capacity (TLC) was 

89% of the predicted value [IQR = 74-103%]. Pulmonary gas exchange was also impaired with a 

median diffusion lung capacity for carbon monoxide (DLCO) corrected for haemoglobin of 51% of 

the predicted value [IQR = 36-65%] and a median carbon monoxide transfer coefficient (KCO) 

corrected for haemoglobin of 74% of the predicted value [IQR = 59-82].  

Additionally, 31 patients from another institution were included in the external validation cohort. 

Patients from this cohort were mainly women (n=24; 77%), with a median age of 60 years [IQR = 46-

71]. Their clinical characteristics were not significantly different from those from the correlation to 

PFTs cohorts (p>0.05) except for a significantly higher KCO (p=0.026), but disease extent was not 

different (p>0.05) (Table 3.4). 
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Table 3.4. Characteristics of patients of the external validation cohort 

 External 
validation 

cohort 
(n=31) 

Correlation to 
PFTs cohort 

(n=171) 

p 

value 

Age, y 60.0 [46-71] 58 [48-67] 0.939 

Female 24 (77%) 137 (80) 0.808 

Pulmonary function tests:    

- % of predicted total lung capacity 87.0 [74-91] 89 [74-103] 0.193 

- % of predicted forced vital capacity 84.0 [76-93] 88 [72-104] 0.471 

- % of predicted diffusing capacity for carbon 

monoxide 

53.0 [42-61] 51 [36-65] 0.121 

- % of predicted carbon monoxide transfer 

coefficient 

77.0 [66-81] 74[59-82] 0.026 

ILD extent on CT (% of lung volume):    

- Proposed method (AtlasNet) 10.6 [6.4-22.5] 12.7 [4.0-24.7] 0.904 

- U-Net 10.8 [6.6-22.4] 13.1 [4.8-27.2] 0.552 

For quantitative variables, data are medians, and numbers in brackets are the interquartile range. 
For qualitative variables, data are numbers of patients, and numbers in parentheses are 
percentages. 

 

 

To test the performance of our model, we first calculated the DSC among radiologists in the test 

cohort. Indeed, besides being time consuming, manual ILD contouring on chest CT images is subject 

to interobserver variability [212]. The DSC is the most common metric for validating medical volume 

segmentations [213]. The median radiologists’ DSCs ranged from 0.68 to 0.71, in phase with the 

results by [212] who found a DSC of observers ranging from 0.41 to 0.77 for overall ILD 

segmentation, whereas lower DSCs values were found for individual signs of ILD [212,213]. 

It is noteworthy that there were fewer differences between the algorithm and each radiologist’s ILD 

contours than among radiologists’ contours in our study. Using AtlasNet, the median DSCs between 

deep learning and manually outlined ILD extent for each radiologist (Figures 3.13 and 3.14) ranged 

from 0.74 [0.65-0.77] to 0.75 [0.63-0.79] (Table 3.5). DSCs between U-Net and manually outlined 

ILD extent were lower, ranging from 0.71 [0.61-0.77] to 0.72 [0.63-0.78]. For the lung segmentation, 

AtlasNet achieved a DSC of 0.985 [0.966-0.989] compared to 0.974 [0.968-0.979] for U-Net. 

Moreover, U-Net occasionally generated false disease detections in organs outside the lung such as 

the stomach, which was not observed with AtlasNet. Overall, AtlasNet performed better than U-Net 

showing 1% absolute improvement on DSCs for lung segmentation and more than 3% absolute 

improvement on DSCs for the disease segmentation. 
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Table 3.5. Median Dice Similarity Coefficients between ILD contours in the test cohort 

 Radiologist 1 Radiologist 2 Radiologist 3 AtlasNet U-Net 
Radiologist 1 1 0.70 

[0.63-0.77] 

0.68 

[0.60-0.74] 

0.74 

[0.65-0.79] 

0.72 

[0.68-0.77] 

Radiologist 2  1 0.71 

[0.65-0.77] 

0.75 

[0.63-0.79] 

0.73 

[0.64-0.78] 

Radiologist 3   1 0.74 

[0.65-0.77] 

0.71 

[0.62-0.77] 

Dice similarity scores are expressed as medians [interquartile range (IQR)] 
 

 

 

 

Figure 3.13. Comparison between automated and manual segmentations in a 52-year-old female patient 
with systemic sclerosis-related interstitial lung disease. (A) Axial chest computed tomography shows ground 
glass opacities and reticulations in the posterior parts of the lower lobes. These diseased areas are similarly 

contoured by the algorithm (B) and the 3 radiologists (C,D,E). 
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Figure 3.14. Comparison between automated and manual segmentations in a 38-year-old male patient with 
systemic sclerosis-related interstitial lung disease. (A) Axial chest computed tomography shows extensive 

ground glass with reticulations and severe traction bronchiectasis in both lower lobes. Contouring of these 
diseased areas was similar by the algorithm (B) and the 3 radiologists (C,D,E). 

 

 

 

Using AtlasNet architecture, the median normalized volume of diseased lung in the correlation to 

PFTs cohort was 12.7% [IQR = 4.0-24.7%]. Among all PFT parameters, the highest correlation was 

obtained with DLCO (R=-0.76; p<0.001) (Figure 3.15). The computed disease extent also correlated 

well with TLC (R=-0.70; p<0.001) and FVC (R=-0.62; p<0.001), and correlated moderately with KCO 

(R=-0.54, p<0.001) (Table 3.6). Correlation to PFT was in the same range when using U-Net 

architecture (R= -0.75 for DLCO, R= -0.69 for TLC, R= -0.61 for FVC and R=-0.53 for KCO; p<0.001 for 

all).  

These correlations with PFT parameters were higher than those previously reported for visual scores 

(R= -0.38 to -0.39 for TLC, R= -0.39 to -0.43 for FVC, and R= -0.39 to -0.50 for DLCO) [15,195,214,13] 

as well as those obtained by [215], using a texture-based classifier for SSc-ILD segmentation in the 

SLS-I cohort [9] (R = -0.32 for FVC, -R = 0.34 for TLC and R=-0.35 for DLCO). [215] developed a texture-

based classifier using a local histogram analysis of small patches to classify each voxel into different 

lung patterns and a support vector machine (SVM) algorithm. Using this method [216] reported a 

weaker correlation between ILD-extent on CT and DLCO (R=-0.39) than that observed in our study. 

The same approach, based on textural analysis and the SVM algorithm, was used for the 

quantification of idiopathic pulmonary fibrosis [217]. The correlations to FVC % predicted and to 

DLCO % predicted ranged from -0.37 to -0.49 and from -0.57 to -0.68, respectively, weaker than the 

correlation obtained by our method.  

A histogram-based approach was proposed in [218]. Unlike the texture-based classifier [9], this 

method uses the histogram characteristics of the entire lung. In this semi-automated method, SSc-

ILD is quantified by isolating lung radiodensity values between -200 and -700 Hounsfield Units. The 
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correlations to the FVC (R =-0.56) and the DLCO (R =-0.67) obtained in that study were close to those 

obtained in our’s. However, since there is no anatomical characterization of the disease any cause 

of increased lung density, caused by infection, for example, may interfere with the quantification. 

We tested the developed algorithm on an external cohort of 31 SSc patients and found correlation 

to pulmonary indexes to be in the same range for TLC and FVC, whereas the correlation to DLCO 

was less, while remaining superior to that reported for visual scores, as mentioned above. 

Correlation levels to TLC and FVC were R=-0.70 to -0.72 and R=-0.57 to-0.60, respectively, whereas 

the correlation to DLCO was less, especially for U-Net (R=-0.60) versus AtlasNet (R=-0.65), p<0.001 

for both. 

 

 

 

 

 

Figure 3.15. Relationship between systemic sclerosis-related interstitial lung disease extent measured by the 
algorithm and pulmonary function test measurements. 

DLCO: Percentage of predicted diffusing capacity for carbon monoxide; FVC: Percentage of predicted forced 
vital capacity; KCO: Percentage of predicted carbon monoxide transfer coefficient; TLC: Percentage of 

predicted total lung capacity 
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Table 3.6. Correlation between disease extent and pulmonary function tests 

 Correlation to PFTs cohort 
(n=171) 

External validation 
cohort 
(n=31) 

AtlasNet U-Net AtlasNet U-Net 
- % of predicted total lung capacity R= -0.70 

(p<0.001) 

R= -0.69 

(p<0.001) 

R= -0.70 

(p<0.001) 

R= -0.72 

(p<0.001) 

- % of predicted forced vital capacity R= -0.62 

(p<0.001) 

R= -0.61 

(p<0.001) 

R= -0.57 

(p<0.001) 

R= -0.60 

(p<0.001) 

- % of predicted diffusing capacity for 
carbon monoxide 

R= -0.76 

(p<0.001) 

R= -0.75 

(p<0.001) 

R= -0.65 

(p<0.001) 

R= -0.60 

(p<0.001) 

- % of predicted carbon 
monoxide transfer coefficient 

R= -0.54 

(p<0.001) 

R= -0.53 

(p<0.001) 

R= -0.35 

(p=0.068) 

R= -0.34 

(p=0.084) 

 

3.3.4 Discussion 
We report the first deep learning-based method to evaluate the extent of infiltrative lung disease in 

SSc with results similar to those of radiologists, the advantage being that it allows quantitative 

analysis of all CT scan images, contrary to visual scoring. The ILD extent provided by our model using 

AtlasNet architecture was well correlated with PFTs, especially DLCO.  

Like [219] – in a different clinical context: idiopathic pulmonary fibrosis- , we chose to focus our 

method on the assessment of ILD overall extent, rather than choosing a pattern-based approach. 

Indeed, the overall percentage of diseased lung has been reported to be a strong predictor of 

mortality in patients with SSc [15] without referring to the specific patterns. Moreover, individual 

signs of ILD such as reticulations and ground glass opacities often overlap, and the interobserver 

agreement for the differentiation between bronchiectasis and honeycombing is only moderate 

[220]. 

The strength of our study is that the algorithm was trained with a cutting-edge deep learning 

technique, validated in comparison to radiologists, and its clinical relevance was evaluated in a large 

patient group from a reference center and confirmed on an external dataset. In addition, the 

training and testing phases were based on heterogeneous CT images. Because technical parameters 

are known to significantly influence imaging features, it was essential to train the algorithm with 

various CT parameters, so that it would be applicable in any CT protocol [221,222].  

One limitation to our study is we could not assess the repeatability of our deep learning algorithm 

when assessing disease extent on distinct but concomitant CT acquisitions. Indeed, patients from 

this retrospective cohort had no medical reason to have short-term repeated CT scans. Another 

limitation is the use of annotations from only 1 observer for the learning dataset. However, the DSCs 

between computed and manual outlines by 3 observers were similar, confirming that this did not 

bias our results. 

In conclusion, we have developed a fully automatic deep learning-based method that performs as 

well as radiologists for outlining ILD extent on chest CT of patients with SSc and has the advantage 

to be applicable to all acquired images. Thus, the total disease extent, which is a recognized 

powerful predictor of mortality, can be automatically quantified. We believe that this new method 

can thus contribute to improved efficiency of patient care among patients with SSc and future 

refinements will allow using it for various additional pulmonary diseases.  
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Chapter 4 

4 Motion and registration: exploiting 
dynamics for interstitial lung disease 

evaluation  
 

 

In this chapter, we evaluated the use of elastic registration to diagnose and monitor interstitial 

lung disease (ILD). We also hypothesized that registration could be used to understand lung 

deformation during respiration or over time. To quantify lung deformation, we used the Jacobian 

determinant, which can be calculated from the deformation fields (Appendix). The Jacobian 

determinant corresponds to the quantitative value of the volume change for each voxel of a 

Jacobian matrix. It quantifies the stretching or shrinking of each voxel (Figure 4.1). 

 

 

 

Figure 4.1. Illustration of the Jacobian determinant. Jacobian determinant is the quantitative value of the 
deformation matrix of each voxel. If the voxel size remains similar after deformation (V0=V1), logarithm of 
the Jacobian determinant (Log_Jac) is 0. If the deformed voxel is smaller than the original, Log_Jac has a 

negative value, whereas if the deformed voxel is larger, Log_Jac is positive. 
 

Our approach exploits micro and macro information regarding the spatio-temporal behavior of the 

lungs. In particular we introduce two variants, one exploiting the dynamics of the respiratory cycle 

using magnetic resonance imaging and one focusing on the longitudinal modeling of the lung 

through elastic mapping between follow up computed tomography examinations. 

 

Elastic registration between inspiratory and expiratory images is usually used for tumor tracking in 

radiotherapy but can also be used to assess lung deformation during a respiratory cycle. Fibrosis is 

known to be associated to a loss of tissue elasticity. Therefore, elastic registration could help the 

detection of pulmonary fibrosis. As a demonstration of this hypothesis, we evaluated SSc patients, 

known to have a high prevalence of pulmonary fibrosis. The major limitation to the use of CT to 

assess lung deformation is the radiation dose. Indeed, CT examination only consists in inspiratory 
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acquisition in SSc patients and adding expiratory images would result in an unjustified increase of 

the radiation dose. To overcome this problem for this “proof of concept” study, we decided to MRI 

and register inspiratory to expiratory lung MR images. MRI is a radiation-free technique, and 

acquisitions can be safely repeated at different portions of the respiratory cycle. This is important 

when testing new methods of evaluation. 

Currently, lung MRI is not used in clinical practice to evaluate ILD because of a low spatial resolution 

and a poor image quality due to motion artifacts and the short transverse relaxation time (T2*) of 

the lung parenchyma. Recently, high-resolution lung MRI has been made possible by the 

development of ultrashort echo time (UTE) sequences using non-cartesian k-space sampling and 

respiratory gating to compensate for respiratory motion. Ultrashort TEs compensate for the low 

proton density and the very short T2* of the lung parenchyma [223,224,5,225,226].  

Thus, the purpose of our study was to evaluate the feasibility of elastic registration applied to 

inspiratory and expiratory lung MR images for the assessment of pulmonary fibrosis in patients with 

SSc and also evaluated healthy volunteers. We observed major visual differences in Jacobian maps 

between patients with and those without fibrosis on CT. There was a marked shrinkage of the lung 

bases during expiration in healthy volunteers and SSc patients without fibrosis, but not in those with 

pulmonary fibrosis. 

As a second approach, we assessed the possibility to diagnose ILD worsening using elastic 

registration of serial CT scans. For disease monitoring, PFT measurements, especially the forced vital 

capacity (FVC), is the predominant biomarker. The functional deterioration according to the 

American Thoracic Society / European Respiratory Society / Japanese Respiratory Society / Latin 

American Thoracic Association (ATS/ERS/JRS/ALAT) criteria used for idiopathic pulmonary fibrosis 

(IPF) can be defined as a relative decline of 10% in absolute FVC or of 15% in absolute DLCO 

[193,227,228]. However, changes in PFTs are considered by some authors as a somewhat insensitive 

endpoint [3] and it has been suggested to combine FVC measurement with morphological 

evaluation of disease progression in clinical trials [229]. In SSc patients, there are no clear 

recommendations regarding the role of CT for monitoring ILD. CT is often performed in situations 

of increased pulmonary symptoms or decline in PFT measurements [230]. Like IPF, SSc-related ILD 

is a fibrosing interstitial lung disease. Thus, looking for ILD changes on serial CT scans not only 

requires comparing the disease extent but also evaluating the lung shrinking related to the fibrosing 

process. Only a few studies have evaluated longitudinal changes of SSc-related ILD on CT and all 

focused on the evaluation of ILD extent [16,17,231]. Assessment of lung shrinking is more complex 

and requires a side-by-side comparison of CT images at each level. To the best of our knowledge, 

the systematic quantification of local shrinking has not been previously evaluated for monitoring 

lung fibrotic changes. The aim of this work was to develop a new method based on elastic 

registration of serial CT scans of the chest for assessing lung parenchyma changes in patients with 

SSc. We observed major visual differences in Jacobian maps between patients with ILD worsening 

and patients with disease stability based on PFTs. There was a lung shrinking in the posterior part 

of the lung bases in patients having functional or morphological worsening. By combining elastic 

registration of serial CT and a deep learning classification method we were able to automatically 

detect focal lung shrinking and assess disease progression with an accuracy of 83%. 
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4.1 Use of Elastic Registration in Pulmonary MRI for the assessment of Pulmonary 
Fibrosis in Systemic Sclerosis patients 

 

 

4.1.1 Background 
Currently elastic registration methods are mainly used in radiotherapy to localize lesions and 

generate ghosts of motion to anticipate cardiac or breathing movements [232,233]. Recently, [234], 

described a registration method to estimate lung motion during a respiratory cycle on CT images 

and follow the motion of lung nodules. The major drawback with CT is that the dose of radiation is 

doubled when both expiratory and standard inspiratory acquisitions are performed, while MRI is 

radiation-free. [235] showed a difference in lung motion between healthy and hypoxemic mice, 

using MRI and elastic registration. We show that unenhanced MRI sequences, performed at the end 

of inspiration and expiration, can effectively and non-invasively detect lung fibrosis. 

We hypothesized that elastic registration could be used to evaluate and quantify the local lung 

deformation between inspiratory (source image) and expiratory lung MRI (target image), and 

compare lung deformation patterns in healthy volunteers and SSc patients with and without lung 

fibrosis documented on CT. Thus, the purpose of this study was to evaluate the feasibility of elastic 

registration of inspiratory to expiratory lung MRI for the assessment of pulmonary fibrosis in 

patients with SSc. 
 

4.2 Methodology 
The method consists of registering inspiratory lung images to expiratory lung images to assess 

differences in lung shrinking pattern between subject with and without lung fibrosis. 

The registration of inspiratory lung images to expiratory lung images is performed using a multi-

metric, multi-modal graph-based elastic registration algorithm [99] (Figure 4.2). This registration 

algorithm is available for research purposes at www.mrf-registration.net 

The quality of elastic registration was evaluated by comparing its performance to that of two 

independent observers (Figure 4.3). The first observer with 1 year of experience in thoracic imaging, 

manually placed all landmarks on inspiration and then on expiration. A second observer with 3 years 

of experience in thoracic imaging directly placed the corresponding points on the expiratory 

images. Elastic registration automatically placed the landmarks of inspiratory images on expiratory 

images (registered expiratory landmarks). All expiratory landmark coordinates were collected and 

the mean distances were calculated: distance A = between observer 1 and 2; distance B = between 

observer 1 and registered expiratory landmarks; and distance C = between observer 2 and registered 

expiratory landmarks. 
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Figure 4.2: Example of inspiratory to expiratory elastic registration of lung MRI in a healthy 24-year-old 
male, using the algorithm. A) The checkboard image before elastic registration shows differences between 

the source inspiratory image and the target expiratory image; B) Checkboard image after elastic 
registration; C) Target expiratory image; D) Inspiratory image after elastic registration. Arrows on the vessel 

bifurcation show the correct match between the 2 images (C,D). 
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Figure 4.3. Landmarks placed on an inspiratory coronal lung MR image in a healthy 33-year-old male. 1) 
middle of the carina, 2) bifurcation of upper lobe bronchus and intermediate trunk, 3) Convergence between 

right postero-basal veins, 4) convergence between left postero-basal veins, 5) convergence of the external 
sub-segmental veins of the right upper lobe, 6) convergence of the external sub-segmental veins of the left 
upper lobe, 7) first division of the apical segmental artery of the left upper lobe, 8) division of right postero 
and laterobasal artery, 9) division of left postero and laterobasal arteries, 10) posterior aspect of the origin 

of the left subclavian artery, 11) bifurcation of the left upper lobe apical artery 

(Abbreviations: MR = magnetic resonance) 
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Elastic registration of inspiration to expiration produces diffeomorphic deformation maps for each 

study participant from which the Jacobian determinant of each voxel is calculated.  

To allow comparison between patients, the Jacobian determinants are first normalized using the 

expiratory to inspiratory volumes ratio. Normalization is performed because the relative decrease 

in lung volume between inspiratory images and expiratory images ranged from 11 to 64% among 

the 27 subjects (mean ± standard deviation (SD) = 39% ± 14) with no significant difference (p=0.07) 

between healthy volunteers (mean ± SD = 44% ±11 ; range = 26 - 64%) and SSc patients (mean ± SD 

= 34% ±15 ; range = 11-57%). By comparing inspiratory and expiratory volume measured on MRI to 

corresponding total lung capacity and mean residual volume measured on PFT, we observed 

significantly lower inspiratory volume on MRI compared to PFT (3.5L ± 0.85 vs 4.9L ±1.3, 

respectively; p=0.001) but similar expiratory volume (2.12 L ±0.51 vs 2.19L ±0.51, respectively; 

p=0.67). This demonstrates that a proportion of the inspiratory images was not acquired at full 

inspiration. Therefore, part of the differences in exhaled volumes we observe are not only related 

to the disease but to patient cooperation, reinforcing the need to normalize Jacobian determinants. 

Then the Jacobian maps is registered to a same reference volume. The use of a common reference 

volume for all the Jacobian maps allowed to average them for visual comparison. 

 
The Jacobian determinants are post-processed as follows:  

• Step 1: The Jacobian determinants are normalized for each participant using his/her own expiratory volume / 

inspiratory volume ratio as a moderation factor. This ratio obtained from lung segmentations allows taking into 

account the varying degrees of expiration among study participants and obtain relative values of Jacobian 

determinants. 

• Step 2: Expiratory MRI scan of one of the healthy volunteers is used as common template for Jacobian 

comparison in the entire cohort. Each participant’s expiratory mask is registered to the common expiratory 

mask and the calculated transformation is applied to the Jacobian determinants. We use the sum of absolute 

difference, as similarity metric, because the masks were binary volumes. The idea is to be able to compare 

values of Jacobian in the same reference volume. 

• Step 3: The Jacobian determinants are averaged to produce a unique 3D Jacobian map for each group of study 

participants: study participants with SSc without pulmonary fibrosis, study participants with SSc-related 

pulmonary fibrosis and healthy volunteers 

• Step 4: Axial, sagittal and coronal 2D Jacobian maps are produced for each participant and each group by 

averaging Jacobian determinants along each axis (x; y; z), in order to represent the deformation on axial, 

coronal and sagittal views. 

Color maps are used to visually represent deformation based on the logarithm of the Jacobian 

determinants. Negative values indicate voxel shrinking, positive values- voxel stretching, and nil 

values indicate no volume change in the voxel (Figure 4.1). Based on the Jacobian maps, we 

arbitrarly defined lung areas showing marked shrinkage as those with Jacobian logarithm values 

below -0.15. Since the number of subjects was small in this preliminary study, the idea was to create 

a simple rule to differentiate between expiratory patterns that were visually different between 

groups. Marked shrinkage areas (MSA) are segmented for each study participants with SSc by using 

this cut-off value as a threshold and they are compared to MSA of the unique 3D Jacobian map for 

the healthy volunteer group. This comparison use the Dice Similarity Coefficient [52] (Appendix). 
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4.2.1 Dataset and implementation 
Dataset 

This prospective, single center cohort study was approved by the Sud-Ouest et Outre-Mer I ethics 

committee (study number: 2017-A00961-52) and registered on clinical trial.gov (NCT03207997). All 

participants provided written informed consent. From September 2017 to March 2018, all 

consecutive patients with SSc referred for cardiac MRI as part of their routine follow-up at Cochin 

University Hospital were asked to give their consent for having additional 2 lung MRI sequences. 

Included participants were at least 18 years old with a confirmed diagnosis of SSc based on American 

College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) criteria 2013 [210] 

and recent (<3-month) PFTs and CT, performed with standard parameters (0.625 to 1.25 mm slice 

thickness, sharp kernel, 512x512 matrix). Exclusion criteria were exacerbation of pulmonary fibrosis, 

orthopnea and inability to perform a 17-second breath hold. A group of healthy volunteers also 

underwent lung MRI. 

All MRIs were performed on a 3T-MRI unit (SKYRA Magnetom, version VE 11, Siemens Healthineers, 

Erlangen, Germany) using an 18-phased array- body coil. All study participants were placed in the 

supine position with the arms along the body. Two 3D-UTE gradient echo (GRE) spiral Volume 

Interpolated Breath-Hold Examination (VIBE) sequences, one following a full inspiration, the other 

after a full expiration were acquired in all study participants. Each sequence, performed in the 

coronal plane lasted 17s. Parameters were as follows: repetition time 2.73ms, echo time 0.05ms, 

flip angle 5°; field-of-view 500 x 500mm, slice thickness 2.5mm, matrix: 240 x 240, in-plane 

resolution: 2.08 x 2.08 mm, spiral duration: 1800µs, acceleration factor (iPAT) of 2. 

Two of the 20 SSc patients referred for routine cardiac MRI during the study period refused to 

participate and one (less than 18-year-old) did not fulfil the inclusion criteria. Another patient was 

excluded because of poor quality the MRI due to a misunderstanding of breathing instructions. Thus, 

16 SSc patients were evaluated. Their CT were then reviewed by a thoracic radiologist with 18 years’ 

experience (MPR) who defined one group with and the other without signs of SSc-pulmonary 

fibrosis. A group of 11 healthy volunteers was also evaluated. 

Thus, there were 27 study participants in total, 14 females and 13 males (Table 4.1). Females (mean 

age ±standard deviation (SD) = 54.8±19.2 years, range: 24-82) were significantly older than males 

(38.8±19.1 years, range: 24-81) (p=0.04).  

On CT, nine of the 16 SSc patients had no signs of infiltrative lung disease, whereas the remaining 

seven had signs of SSc-related pulmonary fibrosis with traction bronchiectasis in addition to ground 

glass and reticulations predominantly affecting the posterior portions of both lower lobes. The mean 

interval between MR and CT was 14 (±26) days. Healthy volunteers were more frequently men 

(p=0.01) and younger than study participants with SSc. Forced vital capacity (FVC) and carbon 

monoxide diffusing capacity corrected for anemia (DLCOc) values were poorer in the SSc-fibrosis 

group (p=0.03) and (p<0.001), respectively, than in SSc patients without pulmonary fibrosis. Body 

mass index (BMI) did not differ among the three groups (p=0.67). 
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Table 4.1. Study Cohort Characteristics 

 Healthy 
volunteers 

(n=11) 

Systemic 
sclerosis -
no-fibrosis 

(n=9) 

Systemic 
sclerosis -

fibrosis 

(n=7) 

p value 

Female gender 2 (18%) 7 (78%) 5 (71%) 0.02 * 

Age (years) 29.1 ±9.3 59 ±17.5 60 ±16.3 <0.001 * 

Body mass index 21.8 ±1.6 22.6 ±2.3 21.8 ±2.9 0.67 * 

Smoker 3 (27%) 4 (44%) 3 (42%) 0.68 * 

Forced vital capacity (percentage of 
predicted value) 

- 96 ±26 66 ±19 0.03 

DLCOc (percentage of predicted value) - 68 ±15 38 ±6 <0.001 

* comparison of the 3 groups (Healthy volunteers, Systemic sclerosis patients without pulmonary 
fibrosis, Systemic sclerosis patients withpulmonary fibrosis) 
Categorical variables are presented as numbers of study participants, and numbers in parentheses 
are percentages. Quantitative variables are presented as means ± standard deviation 

 DLCOc: carbon monoxide diffusing capacity corrected for anemia; 
 

Implementation Details 

As a preprocessing step, semi-automated lung segmentation is performed with Myrian XP-lung 

software (Intrasense, Montpellier, France ; http://www.intrasense.fr/myrian-clinical-apps/#lung-

vessel-liver-abdofat). All voxels outside the lung are masked out by using the same level of signal 

intensity (400), close to that of chest wall muscles. This allow obtaining a uniform background in 

order to avoid registration errors. Indeed, the signal from extrapulmonary structures is much higher 

than that from the lungs which impacts the results of the registration. 

Elastic registration was performed from the barycenter of the mask. We performed a multilevel 

method with 3 pyramid levels. For each level, control grid resolution was 8 x 8 x 8 in voxels, with 5 

iterations. 

We applied a multimetric similarity method using normalized cross correlation, normalized mutual 

information (using 16 bins histogram, level: 0;400), and wavelet metric transform. 

Calculations were performed on a workstation using 4 graphic processing units (GTX1080, Nvidia). 

 

4.2.2 Experimental results 
Characteristics of the study participants were compared using the Fisher’s exact test for categorical 

variables or ANOVA and Student’s t-test for quantitative data. Distances between expiratory 

landmarks were compared using the Bartlett variance test. Receiver-operating characteristic (ROC) 

analysis was used to determine the best cut-off values of Dice Similarity Coefficient for the presence 

of pulmonary fibrosis. P-values ˂.05 were regarded as significant. 

The mean distance between the expiratory landmarks of observers 1 and 2 (distance A) was 7.4 

(±7.1) mm, while the mean distances between observers and registered landmarks (distance B and 

C) were 5.8 (±5.1) mm and 7.7 (±5.9) mm, respectively. Mean distance for each patient is presented 

in Table 4.2. There was no statistical difference among the three mean distances (p=0.49). The 

distances after the 9th patient were smaller, suggesting a learning curve phenomenon for the 2 

observers. The registration method worked with same quality between patients and healthy 
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volunteers (Figure 4.4). 

 

 
Table 4.2. Mean landmarks distance for each patient. 
 

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Mean  
±SD 

Distance 
A 10.8 9.9 8.9 26.5 6.5 23.2 10.7 21.8 10.1 2.0 3.2 2.4 2.1 3.2 1.6 2.2 3.2 4.8 3.6 9.0 4.2 9.8 2.5 3.6 3.0 4.4 1.8 7.4±7.1 

Distance 
B 7.7 7.8 4.4 27.8 4.2 4.3 5.9 5.1 12.8 7.0 3.8 2.5 2.6 3.4 2.5 2.2 4.4 2.9 6 9.2 3.8 8.4 3.5 4.9 4.7 4.8 2.3 5.8±5.1 

Distance 
C 12.4 12 10.6 5.9 7.4 25.5 11.1 23.1 13.6 7.3 3.7 3.2 3.3 3.0 2.4 3.5 4.2 5.6 4.7 9.6 6.2 8.5 3.4 5.6 4.2 6.9 2.4 7.7±5.9 

 
 

 
Figure 4.4: Elastic registration in a healthy volunteer (A-D) and a SSc patient (E-H). 

In the healthy volunteer, A and B show the same point (arrow) on the warped image (A) and the target 
image (B). Images C and D show the checkboard image of source and warped images (C) and the 

checkboard image of target and warped images (D). 
In the SSc patient, E and F show the same point (arrow) on the warped image (E) and the target image (F). 
Images G and H show the checkboard image of source and warped images (G) and checkboard image of 

target and warped images (H). 
 

 

Visual analysis of color maps showed differences in the distribution of the Jacobian determinants 

among the study participants with SSc and healthy volunteers. We observed the same expiratory 

deformation pattern in healthy volunteers and SSc patients without fibrosis, with a decrease in 

volume (areas with marked deformation during expiration) mainly found in the posterior lung bases. 

This was not observed in patients with fibrosis (Figure 4.5). Under the assumption that a loss of 

elasticity might precede the appearance of fibrotic changes on CT we also included SSc patients 

having no signs of infiltrative lung disease on CT. However, this hypothesis was not confirmed in our 

sample.  
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Figure 4.5: Projection in x; y; z axis of the mean of the Jacobian determinants, in each group. The marked 
shrinkage areas (red color) are found in the dorsal aspect of the lung bases in healthy volunteers and in SSc 

patients without high resolution CT evidence for pulmonary fibrosis. In the corresponding areas, the lungs of 
patients with evidence for systemic sclerosis -fibrosis show little deformation with mean Jacobian 

determinant near to 0 (green color). These lung areas are those with signs of fibrosis on CT. 
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Quantitative analysis 

Regarding the localization of marked shrinkage areas in the lung, the mean Dice Similarity 

Coefficient value was 0.44±0.13 for study participants without fibrosis and 0.25±0.15 for those with 

fibrosis (p=0.02). Its best cut-off value for the presence of fibrosis was 0.36 on receiving operator 

characteristic (ROC) curve analysis, with a sensitivity of 86% (95% confidence interval (CI) 

[0.46;0.99]), and a specificity of 75% (95% CI [0.53;0.89]), (AUC=0.81; 95% CI [0.54; 1], p=0.04) 

(Figure 4.6). 

 

 

Figure 4.6. ROC curve of Dice coefficient for the entire cohort. The best Dice coefficient cut-off value for the 
presence of fibrosis was 0.36, with a sensitivity of 86% (95% CI [46;99]), and a specificity of 75% (95% CI 

[53;89]), (AUC= 0.81; 95% CI [0.54; 1], p=0.04) 

(Abbreviations: CI = confidence interval) 
 

 

4.2.3 Discussion 
This preliminary study evaluating elastic registration of inspiratory to expiratory MRI for the 

detection of pulmonary fibrosis in SSc patients showed major visual differences in Jacobian maps 

between those with and those without fibrosis on CT. There was a marked shrinkage of the lung 

bases during expiration in healthy volunteers and SSc patients without fibrosis, but not in those with 

pulmonary fibrosis. So far, the evaluation of pulmonary fibrosis on MRI has mostly been based on 

gadolinium-enhanced sequences. [236] evaluated late contrast enhancement [237] performed 

contrast imaging at different times, and showed differences in enhancement patterns between 

inflammatory and non-inflammatory fibrotic lesions. Currently elastic registration methods are 

mainly used in radiotherapy to localize lesions and generate ghosts of motion to anticipate cardiac 

or breathing movements [232,233]. Recently, [234], described a registration method to estimate 

lung motion during a respiratory cycle on CT images and follow the motion of lung nodules. The 

major drawback with CT is that the dose of radiation is doubled when both expiratory and standard 

inspiratory acquisitions are performed, while MRI is radiation-free. [235] showed a difference in 

lung motion between healthy and hypoxemic mice, using MRI and elastic registration. We show that 

unenhanced MRI sequences, performed at the end of inspiration and expiration, can effectively and 

non-invasively detect lung fibrosis. 

There are several limitations to our study. First, this feasibility study only included a small number 

of study participants resulting in large confidence intervals for sensitivity and specificity. 
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Furthermore, healthy and diseased subjects were not age- and sex-matched. For practical and 

ethical reasons, lung MR sequences were not repeated to assess the method repeatability. Also, we 

did not take into account the clinical scoring of skin sclerosis. Patients with high Rodnan scores (>20) 

[238] have marked skin sclerosis, which can result in decreased chest expansion. However, the basal 

shrinkage in SSc-fibrosis patients supports our hypothesis that this method effectively identifies 

fibrosis-related loss of elasticity, because restriction from skin sclerosis would not be predominantly 

basal. Finally, we only evaluated patients who could hold their breath for 17 seconds, thus this 

method is probably not applicable to patients with advanced lung disease. 

In conclusion, elastic registration of inspiratory to expiratory MRI offers new perspectives in the 

non-invasive evaluation of lung fibrosis in patients with SSc. These results must be confirmed in a 

larger cohort, but could apply to other fibrotic lung diseases. 
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4.3 Elastic registration of follow-up CT scans for longitudinal assessment of 
interstitial lung disease in systemic sclerosis 

 
Lung shrinking is an important component of lung fibrosis worsening, but is difficult to assess based 

on visual assessment. PFTs can be used to detect a restrictive pattern, but rely on global evaluation 

of lung volumes, which is not sensitive to focal worsening. Elastic registration could determine and 

characterize lung changes locally. 

The aim of this study was to develop a new method based on elastic registration of serial CT scans 

of the chest for assessing lung parenchyma changes in patients with SSc. 

 
 
4.3.1 Methodology 
The proposed framework associates elastic registration of follow-up to baseline CT scanner and a 

deep learning classifier to determine if the disease worsened or not. 

The preprocessing steps includes image resampling to a 1-mm isotropic resolution and lung 

segmentation using an in-house deep-learning based segmentation tool. 

Then follow-up CT images are elastically registered to match baseline images and calculate the 

deformation maps. Elastic registration is performed with the robust, multi-metric, multi-modal 

graph-based registration algorithm [98,99] we previously used in this thesis. 

Jacobian maps are obtained by calculating the logarithm of the Jacobian (log_jac) determinant for 

each voxel of the deformation matrix. 

In order to get statistics for the whole cohort and allow comparison between groups, all Jacobian 

maps are elastically registered to a common template using the same registration algorithm [98,99]. 

For automated detection of disease worsening on CT, a deep learning architecture was used. The 

network’s architecture is summarized in Figure 4.7 and it consists from convolutional and fully 

convolutional layers. In particular, the network has 2 convolutional layers followed by batch 

normalization and ReLU activations and 2 fully connected layers. Each convolutional layer learns a 

3 x 3 down sampling kernel. The network is optimized using cross entropy loss in order to predict 

functional or morphological changes. The fully connected layers have 1024 and 100 units, 

respectively. Using the same network we trained it in the beginning to predict functional worsening 

- as determined from the PTFs scores while we also tried to train it in order to predict morphological 

worsening - as determined from the radiologists assessment. The Jacobian maps of the whole lung 

are used as input. 
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Figure 4.7. The architecture of the classifier used for our experiments consists of two fully-convolutional 
layers, followed by two fully-connected layers. For convolutional layers, "3 x 3" denotes the kernel size, while 

S and P denote respectively, the stride and padding used. The number in brackets is the number of output 
channels. For the fully-connected layers, the numbers at each layer denote the number of hidden units in it. 

The final prediction is the class probability. The entire classifier was trained with the binary cross entropy 
loss. 

 
4.3.2 Dataset and implementation 
Dataset 

This single-center, retrospective cohort study was approved by the Institutional Review Board of 

Société de Pneumologie de Langue Française (CEPRO-2017-023) which waived the need for patients’ 

consent. Patients who met the American College of Rheumatology (ACR) / European League against 

Rheumatism (EULAR) 2013 criteria for SSc [210] were recruited from the database of the Centre de 

Référence Maladies Systémiques Autoimmunes Rares d’Ile de France at Cochin Hospital. This 

database collects the socio-demographic, clinical, morphological and biological characteristics as 

well as PFTs measurement of SSc patients referred to this tertiary care center. SSc patients who 

were evaluated at our institution between January 2009 and October 2017 were eligible if they had 

at least 2 consecutive unenhanced CT of the chest performed in the supine position. Exclusion 

criteria were 1/ presence of motion artifacts, 2/ signs of another lung disease on CT, and 3/ 

unavailability of PFTs within 3 months of the CT scans. If patients had more than two CT meeting 

the inclusion criteria, only the oldest and the more recent CT scans were taken into account. 

During the study period, 591 SSc patients from our reference center underwent a chest CT at our 

radiology department. Among the 295 patients who had at least 2 unenhanced CT of the chest 

performed in the supine position, 212 fulfilled the inclusion criteria (Flow chart, Figure 4.8). The 

majority of them were women (n=177; 83%) with limited cutaneous disease (n=128; 60%) (table 
4.3). 
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Figure 4.8. Flow chart 

 

 
Table 4.3. Patient characteristics according to functional changes 

 All 
(n=212) 

Functional 
worsening 

(n=91) 

Functional 
stability 

 (n=121) 

P value 

Age (years) 53 [45;62] 54 [48;63] 52 [42;62] 0.117 

Female 177 (83) 79 (87) 98 (81) 0.350 

Limited cutaneous systemic sclerosis 128 (60) 51 (56) 77 (64) 0.321 

Rodnan score at baseline 6 [2;13] 7 [2;14] 6 [2,13] 0.649 

Baseline pulmonary function tests:     

 -  %TLC 95 [81;108] 94 [78;109] 96 [87;107] 0.330 

-  %FVC 91 [75;104] 91 [74;106] 93 [75;103] 0.606 

-  %DLCOc 63 [49;76] 62 [46;75] 65 [50;77] 0.366 

-  %KCOc 79 [68;91] 79 [67;90] 80 [70;91] 0.783 

Interval time between baseline and 
follow-up chest CT (months) 

37 [23;53] 45 [34;65] 27 [16;49] <0.001 

ILD on baseline CT 147 (69) 71 (78) 75 (62) 0.016 

Changes in pulmonary function tests:     

-  %TLC 0 [-7; +5] -4 [-10; +3] 1 [-3; +6] 0.013 

-  %FVC -2 [-8; +6] -8 [-12; -2] +3 [-3; +7] <0.001 

-  %DLCOc -4 [-11; 0] -13 [-18; -8] -2 [-5; +3] <0.001 

-  %KCOc -6 [-14; +2] -13 [-22; -5] -2 [-7; +5] <0.001 

Morphological worsening on CT 73 (34) 47 (52) 26 (21) <0.001 

Mean log_jac 0.02 

[-0.05;+0.07] 

0.05 

[+0.00;+0.11] 

0.01 

[-0.08;+0.03] 

<0.001 

Note: %DLCOc = percentage of predicted diffusing capacity for carbon monoxide; %KCOc = percentage 
of predicted carbon monoxide transfer coefficient; %FVC = percentage of predicted forced vital 
capacity; %TLC = percentage of predicted total lung capacity; CT = computed tomography; ILD = 
interstitial lung disease; Log_jac = logarithm of the Jacobian determinant 
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Inspiratory unenhanced CT scans of the whole lung were acquired on multislice CT devices 

(Somatom Sensation 16, Somatom DS and Somatom AS+ from Siemens Healthineer; and Revolution 

HD from General Electric Healthcare). Acquisition and reconstruction parameters were those 

fulfilling CT criteria: images were reconstructed with a slice thickness of 0.625 to 1.25mm using 

either a filter back projection or iterative reconstruction algorithms, and a high frequency kernel. 

Visual image analysis was performed by two chest radiologists in consensus with 5 and 18-year 

experience in chest imaging, respectively. The two radiologists were blinded to the PFT 

measurements and the results of the deep learning classifier. CT exams were reviewed for the 

presence of ILD, defined by the presence of ground glass opacities, reticulations, traction 

bronchiectasis or honey combing in various combinations. Then, side-by-side comparison of 

baseline and follow-up CT images was performed to assess whether ILD showed morphological 

stability, worsening or improvement. CT scans were considered to show improvement when 

associated with a volume decrease of the ground glass. Worsening consisted either in an increase 

of ILD extent or an increase of traction bronchiectasis and/or honey combing with or without 

increase of ILD extent. 

PFTs measurements performed within 3 months of the baseline and follow-up chest CT acquisition 

were retrieved from the database. PFTs measurements included percentage of predicted forced 

vital capacity (%FVC), total lung capacity (%TLC), diffusing capacity for carbon monoxide (%DLCOc) 

and carbon monoxide transfer coefficient (%KCOc). The percentage of predicted DLCOc and KCOc 

had been corrected for measured haemoglobin. Functional changes were evaluated according to 

the ATS/ERS/JRS/ALAT criteria. Functional worsening was defined by a decrease in absolute FVC of 

10% or a decrease in absolute DLCO of 15% [193]. 

At baseline, median age was 53 years [IQR = 45;62 years] and 69% (n=146/212) had ILD on CT 

examination. Median %FVC was 91% [IQR = 75; 104] with 18 % of patients (n=38/212) having a FVC 

lower than 70% of the predicted value. DLCO measurement at baseline was available for 196 

patients (92%). Median %DLCOc was 63% [IQR=49;76] with 61% of patients (n=120/196) having 

DLCOc lower than 70% of the predicted value. Patient characteristics in the learning (172 patients) 

and test cohorts (40 patients) were not statistically different (Table 4.4). 

Median interval time between baseline and follow-up was 37 months [IQR = 23; 53 months]. It was 

significantly longer for patients with functional worsening (median = 45 months; [IQR = 34; 65] than 

for patients with functional stability (median = 27 months; [IQR = 16; 46]) (p<0.001). It was also 

significantly longer in patients showing morphological worsening on CT (median = 43 months; [IQR 

= 32; 59]) compared to those having morphological stability (median = 32 months; [IQR = 19; 49]) 

(P=0.01) on visual assessment. 

On PFTs, lung fibrosis not only decreases lung volumes but is also associated with a decrease in 

DLCO and KCO. These parameters are reported to correlate to ILD extent on CT in both SSc and IPF 

[15,207,205,13,9,210,230]. Both FVC and DLCO have been long used to monitor ILD progression in 

SSc [231]. Regarding PFTs, all but 25 patients had both baseline and follow-up measurement of 

DLCOc. Overall, we observed a mild decline in pulmonary function with -2% [IQR = -8; +6] and -4% 

[IQR = -11; 0] median changes in %FVC and %DLCO, respectively. Ninety-one patients (43%) met the 

ATS/ERS/JRS/ALAT criteria for functional deterioration. Visual comparison between baseline and 

follow-up CT showed morphological worsening in 73 patients (n=73/212, 34%), including 8 patients 

who developed an ILD. In 7 patients (n=7/212, 3%), ILD had improved on the follow-up CT 
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examination, whereas in the remaining 132 patients (n=132/212, 62%) the disease was considered 

as morphologically stable. 
 

Table 4.4. Patient characteristics in the learning and test cohorts 

 Learning cohort 

(n=172) 

Test cohort 

(n=40) 

P value 

Age (years) 54 [45; 63] 52 [45; 59] 0.434 

Female 142 (83) 35 (88) 0.636 

Limited cutaneous systemic 
sclerosis 

102 (59) 26 (65) 0.592 

Rodnan score at baseline 7 [3;14] 6 [2;11] 0.174 

Baseline pulmonary function tests:    

- %TLC 95 [79: 108] 96 [90; 107] 0.387 

- %FVC 91 [75; 104] 94 [81; 104] 0.498 

- %DLCOc 62 [48; 76] 69 [52; 75] 0.387 

- %KCOc 78 [67; 91] 83 [77; 90] 0.216 

Interval time between baseline 
and follow-up chest CT (months) 

37 [23; 53] 44 [25; 56] 0.411 

ILD on baseline CT 118 (69) 28 (70) 1 

Changes in pulmonary function 
tests : 

   

- %TLC -1 [-7; +5] 1 [-5; +4] 0.828 

- %FVC -2 [-8; +6] -1 [-7; +4] 0.516 

- %DLCOc -4 [-11; +1] -5 [-12; -2] 0.895 

- %KCOc -6 [-14; +3] -6 [-14; +1] 0.929 

Functional deterioration according 
to ATS/ERS/JRS/ALAT guidelines 

73 (42) 18 (45) 0.86 

Morphological worsening on CT 59 (34) 12 (35) 1 

Mean log_jac 0.02 

[-0.05; +0.07] 

0.02 

[-0.05; +0.07] 

0.796 

Note: %DLCOc = percentage of predicted diffusing capacity for carbon monoxide; %KCOc = 
percentage of predicted carbon monoxide transfer coefficient; %FVC = percentage of predicted 
forced vital capacity; %TLC = percentage of predicted total lung capacity; CT = High resolution 
computed tomography; ILD = interstitial lung disease; Log_jac = logarithm of the Jacobian 
determinant 

 

Morphological worsening was significantly more frequent in patients with functional worsening 

(n=47/91, 52%) than in patients with functional stability (n=26/121, 21%) (p<0.001) (table 4.3 and 

figure 4.9). Similarly, PFT changes were significantly different between patients showing 

morphological worsening, stability or improvement (p≤0.001) (table 4.5 and figure 4.10). The 

decline in %TLC, %FVC, %DLCOc and %KCOc was significantly more frequent for patients with visual 

worsening on CT as compared to patients with visual stability (P = 0.010; P< 0.001; P<0.001 and P= 
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0.001, respectively). Similarly the decline in %FVC and %DLCOc was significantly more frequent for 

patients with morphological worsening compared to those with improvement on CT (P= <0.001 and 

P=0.024, respectively), whereas median %FVC significantly increased for patients with 

morphological improvement in comparison with patients having morphological stability on CT 

(changes = +15% [IQR =+5; +22]), P=0.007). 

 

 

 

Figure 4.9. Distribution of functional parameters according to functional evolution. Box-plots show the 
median, lower and upper quartile of percentage of predicted forced vital capacity (%FVC), total lung 

capacity (%TLC), diffusing capacity for carbon monoxide (%DLCOc) and carbon monoxide transfer coefficient 
(%KCOc), as well as the median, lower and upper quartile of mean value of the Jacobian logarithms for each 

patient. 
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Table 4.5. Patient characteristics according to morphological changes 

 All 
(n=212) 

Visual 
worsening 

on CT 

(n=73) 

Visual 
stability on 

CT 

(n=132) 

Visual 
improvemen

t on CT 

(n=7) 

P 
value 

Age (years) 53 [45;62] 51 [45;63] 54 [44;61] 57 [55;63] 0.376 

Female 177 (83) 58 (79) 114 (86) 5 (71) 0.209 

Limited cutaneous systemic 
sclerosis 

128 (60) 33 (45) 92 (70) 3 (43) 0.001 

Rodnan score at baseline 6 [2;13] 10 [4;10] 4 [5;19] 3 [0;20] <0.001 

Baseline pulmonary function 
tests: 

     

 -  %TLC 95 [81; 108] 90 [75; 101] 99 [87; 110] 83 [78; 97] <0.001 

-  %FVC 91 [75; 104] 83 [66; 100] 94 [81; 105] 82 [75; 88] 0.005 

-  %DLCOc 63 [49; 76] 56 [42; 70] 69 [53; 80] 46 [36; 56] <0.001 

-  %KCOc 79 à)[68; 91] 76 [64; 87] 82 [71; 92] 75 [66; 84] 0.135 

Interval time between 
baseline and follow-up chest 
CT (months) 

37 [23; 53] 43 [32; 59] 32 [19; 49] 46 [24; 65] 0.003 

ILD on baseline CT 147 (69) 66 (90) 74 (56) 7 (100) <0.001 

Changes in pulmonary 
function tests: 

     

-  %TLC 0 [-7; +5] -3 [-10; +3] 0 [-5; +6] +6 [-2; +13] 0.013 

-  %FVC -2 [-8; +6] -7 [-11; 0] +2 [-5; +6] +15 [+5; +22] <0.001 

-  %DLCOc -4 [-11; 0] -10 [-16; -4] -3 [-9; +1] -4 [-8; +11] <0.001 

-  %KCOc -6 [-14; +2] -10 [-20; -1] -3 [-11; +4] -6 [-9; +1] 0.001 

Functional deterioration 
according to 
ATS/ERS/JRS/ALAT guidelines 

91 (43) 47 (64) 41 (31) 3 (43) <0.001 

Mean log_jac 0.02 

[-0.05;+0.07] 

0.05 

[-0.01; +0.10] 

0.01 

[-0.07;+0.04] 

-0.08 

[-0.15; -0.00] 

0.005 

Note: %DLCOc = percentage of predicted diffusing capacity for carbon monoxide; %KCOc = percentage 
of predicted carbon monoxide transfer coefficient; %FVC = percentage of predicted forced vital 
capacity; %TLC = percentage of predicted total lung capacity; CT = High resolution computed 
tomography; ILD = interstitial lung disease; Log_jac = logarithm of the Jacobian determinant 

 



 

  

99 

 

Figure 4.10. Distribution of functional parameters according to morphological changes on serial CT scans. 
Box-plots show the median, lower and upper quartile of percentage of predicted forced vital capacity 

(%FVC), total lung capacity (%TLC), diffusing capacity for carbon monoxide (%DLCOc) and carbon 
monoxide transfer coefficient (%KCOc), as well as the median, lower and upper quartile of mean value of the 

Jacobian logarithms for each patient. 
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Implementation details  

For the registration of medical volumes we used the similar framework that described in Chapter 3 

using normalized cross correlation, mutual information and discrete wavelet transform. We used as 

regularization between the unary and pairwise terms the value of 3.0 while the entire framework 

has been optimized using FastPD algorithm which is quite efficient and fast [239]. 

Jacobian maps were visually compared between patients with functional stability or functional 

worsening, and between patients with improvement, stability or worsening based on visual 

morphological assessment. The registered Jacobian maps were averaged for each patient group to 

produce a unique 3D Jacobian map for visual comparison of each group. Mean log_jac values of 

each patient were also calculated for comparison between groups and evaluation of the correlation 

with PFT changes. 

To train the deep learning-based classifiers, patients were randomly split into a learning (172 

patients, including 80% for training and 20% for validation) and a test dataset (40 patients). The 

learning rate was initialized to 0.0001 and reduced by a factor of 0.2 every 50 epochs. Training was 

done for 500 epochs. We used the Adam optimizer with a batch size of 8 and a weight decay of 

0.0005. We trained a network with the same architecture as this in the beginning to predict 

functional worsening - as determined from the PTFs scores while we also tried to train it in order to 

predict morphological worsening - as determined from the radiologists assessment. The Jacobian 

maps of the whole lung are used as input. 

 

4.3.3 Experimental results 
Characteristics of the study participants were compared using the Fisher’s exact test for categorical 

variables or ANOVA and Mann-Whitney test for quantitative data. Correlation between mean 

log_jac values and changes in PFT parameters (%TLC, %CVF, %DLCO and %KCO) was evaluated 

calculating Spearman correlation coefficient. Sensitivity, specificity and accuracy of the classifiers to 

predict morphological or functional worsening were respectively calculated using visual analysis of 

CT or functional changes as reference. P-values ˂0.05 were regarded as significant. 

 

The qualitative assessment of the distribution of the lung log_jac values has produced clear visual 

separation between the patient groups. Sagittal views summarizing the lung distribution of log_jac 

values in each group have shown homogeneous log_jac values in patients with stable disease either 

based on functional (figure 4.11) or morphological criteria (figure 4.12). Conversely, there was a 

lung shrinking (negatives log_jac values) in the posterior part of the lung bases in patients having 

functional or morphological worsening, whereas the same areas showed expansion (positive log_jac 

values) in the small group of patients with morphological improvement on native CT images. Thus, 

by calculating Jacobian determinant maps, we were able to demonstrate that lung shrinking 

predominates in the posterior areas of lung bases which are the predominant location of ILD in SSc 

patients. Using a conceptually similar registration approach on lung magnetic resonance images, we 

had previously shown that the posterior areas of lung bases were those showing the most important 

deformation between inspiration and expiration in healthy individuals and that such deformation 

was lost in SSc patients with lung fibrosis [109]  
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Figure 4.11. Sagittal projection of the mean of the Jacobian determinant maps in the 2 groups of patients 
according to functional changes. 

 
 
 

 

Figure 4.12. Sagittal projection of the mean of the Jacobian determinants maps in the 3 groups of patients 
according to morphological changes. 

 

 

Mean log_jac of the lung was significantly different between patient groups according to functional 

(p<0.001) (figure 4.9) or morphological changes (p<0.001) (figure 4.10). Patients experiencing 

disease worsening (morphological or functional) had higher values of mean log_jac of the lung. 

We found a moderate negative correlation between individual mean log_jac value and changes 

in %DLCOc (R=-0.42; P<0.001) and a weak negative correlation between individual mean log_jac 

value and changes in %FVC (R=-0.38; P<0.001), %TLC (R=-0.27; P<0.001) and %KCOc (R =-0.30; 

P<0.001). The negative correlations between the mean log_jac values and changes in PFT 

parameters (R = -0.38 for %FVC, R=-0.27 for %TLC, and R=-0.42 for %DLCO) although only weak to 

moderate were in the range of those previously reported for fibrotic ILDs, using other automated 

methods based on imaging [217,240]. In SSc patients, [240] reported weak correlation between 

changes in disease extent and both FVC (R=-0.33 to -0.40) and TLC (R=-0.16 to -0.18). In patients 

with IPF, [217] reported weak-to-moderate inverse correlation between changes in disease extent 

and changes in %DLCO (R=-0.27 to -0.54) and in %FVC (R= -0.43 to -0.44). The weak correlation 

between mean log_jac of the lung and changes in TLC suggests that evaluating the deformation of 

the whole lung is not an optimal biomarker to quantify shrinking due to lung fibrosis. The main value 

of Jacobian maps is to provide spatial information about the lung deformation. Averaging Jacobian 

determinants of the whole lung volume negatively impacts the correlation to functional changes 

because some lung areas necessarily expand during the image registration process to compensate 

for shrinking areas. 
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When using ATS/ERS/JRS/ALAT functional deterioration criteria as reference to train and test the 

classifier, we reached a sensitivity of 89%, a specificity of 77% and an accuracy of 83% to predict 

disease worsening (16 true positives, 17 true negatives, 5 false positives and 2 false negatives). 

When using visual assessment of morphological changes as reference to train and test the model, 

we obtained a sensitivity of 79%, a specificity of 81% and an accuracy of 80% (11 true positives, 21 

true negatives, 5 false positives and 3 false negatives). 

The 80 to 83% accuracy obtained for predicting worsening was only based on an evaluation of the 

lung deformation, without taking into account increase in disease extent, which is also a factor of 

worsening [217,240] and may not be associated with a significant lung shrinking in the early phase 

of fibrosis. Thus, combining lung deformation assessment with automated quantification of lung 

disease extent could improve the detection of ILD worsening. The added value of this approach 

remains to be evaluated. 

In order to create an approach which can be generalized for other ILDs, we only evaluated patients 

who underwent chest CT in the supine position, because this is the way most CT examinations are 

performed to diagnose and monitor ILDs of any cause. Contrary to computer aided diagnosis tools 

based on disease segmentation, elastic registration does not depend on the ILD pattern, with 

variable proportions of ground glass, reticulation and honey combing according to the specific cause 

of fibrosis [11,241]. We believe that our approach could be suitable for monitoring other causes of 

pulmonary fibrosis such as IPF. For other fibrotic diseases where pulmonary fibrosis does not 

predominate in the lung bases, such as sarcoidosis [242], another Jacobian maps classifier should 

probably be specifically trained to accurately predict worsening during CT follow-up. 

 

 

4.3.4 Discussion  
To the best of our knowledge, this study is the first to use elastic registration for an automated 

assessment of worsening during the evolution of a fibrotic interstitial lung disease. Elastic 

registration applied to serial CT images, in combination with a deep learning classification method 

was able to automatically detect focal lung shrinking and assess disease progression. The developed 

method was able to predict functional impairment with an accuracy of 83% and could be used for 

an automated assessment of ILD worsening in SSc.  

Our study suffers from several limitations. First, some of the follow-up CT examinations may have 

been performed to explore pulmonary function decline due to causes other than fibrosis, which may 

have underestimated the correlation between functional deterioration and lung deformation. 

Additionally, due to the retrospective design, the range of time interval between baseline and 

follow-up CT examinations was uneven and significantly shorter in patients with stable disease. 

Lastly, functional deterioration in SSc is not always due to pulmonary fibrosis. Patients can also 

develop pulmonary hypertension which will not be depicted by an analysis of lung deformation. This 

was not taken into account in our study. On the other hand, a discrepancy between functional 

deterioration and lack of lung shrinking might raise the suspicion for pulmonary hypertension as the 

cause of impairment. Also, we did not take into account worsening of skin sclerosis as a factor of 

lung function deterioration. High Rodnan scores (>20) can result in decreased chest expansion [238]. 

However, this phenomenon would not predominantly affect the lung bases contrary to lung 

shrinking, as depicted on lung deformation maps. 

In conclusion, lung shrinking detected using an elastic registration of serial CT scans can be used for 
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an automated assessment of ILD worsening in patients with SSc. This method could prove useful for 

other causes of lung fibrosis, especially IPF. The proposed formulation exploits in two distinct sets 

elastic registration and deep neural networks prediction methods. These two steps remain 

independent, and therefore the most natural extension will be to couple them into a single neural 

network architecture as recently suggested from [209].  
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Chapter 5 

5 General conclusion 
 
 
 
In this thesis we propose a holistic approach to assess severity of lungs diseases through optimal 

exploitation of spatiotemporal information. Our approach is of increasing complexity, targeting 

initially the use of radiomics for global disease classification, the use of deep learning for precise 

delineation of disease boundaries and concludes with the integration of dynamic/spatio-temporal 

data for better characterization of disease and its progression.  

 

5.1 Contributions 
In the first part of the thesis we proposed different models to score bronchial disease severity on 

CT scanner. For this, we used a simple thresholding approach and a more sophisticated machine 

learning approach. The main difficulty when developing such score is the lack of ground truth to 

define disease severity. However, using radiomics we were able to build a score correlated to a 3-

year prognosis score and the number of exacerbations to occur in the upcoming year in an 

independent cohort from another hospital with images acquired using a more recent CT scanner 

model resulting in a lower radiation dose exposure. Despite the large size of the cohort in view of 

the disease prevalence, the number of patients was too small to expect a deep learning approach 

to improve the results. Our work contributes to show that automated CT scoring of bronchial 

diseases is doable and that a radiomic approach evaluating the whole lung volume can be used for 

scoring diffuse bronchial diseases. This offers new perspectives for the use of CT imaging-based 

biomarkers, for both patient monitoring and evaluation of newly developed drugs. Additionally, we 

confirmed that scoring methods used in cystic fibrosis can be adapted for other diffuse bronchial 

diseases such as primary ciliary dyskinesia. 

In the second part of the thesis, we demonstrated that combining deep learning and elastic 

registration to atlases (AtlasNet) improves the performance for image segmentation. We also 

showed that using this method, a small number of representative patients was sufficient to produce 

a model performing as well as radiologists to segment interstitial lung disease (ILD) in patients with 

systemic sclerosis. The model provided a biomarker well correlated to several pulmonary function 

indexes and was generalizable to an independent cohort from another hospital. The use of such 

biomarker opens new perspectives for disease evaluation but also for research aiming to 

understand the relationship between morphological changes and clinical data including survival. 

The combination of deep learning and elastic registration is not limited to the segmentation of 

intestinal lung disease but can also be used for other segmentation tasks and adapted for 

classification tasks. 

In the third part of the thesis, we demonstrated that evaluating lung deformation during respiration 

can be used to detect fibrotic changes of the lung and that the study of lung deformation over time 

can be used for monitoring fibrotic lung diseases. Although it is known that lung fibrosis is associated 

with elasticity loss and shrinking of diseased areas, these features had not been previously evaluated 
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in fibrotic interstitial lung diseases (ILD). Even though lung MRI provides less morphological 

information than CT, we were able to automatically detect fibrosis in systemic sclerosis patients only 

by looking at lung deformation between inspiratory and expiratory lung MR images. Additionally, 

we showed that looking at lung shrinking over time on CT it was possible to reliably diagnose ILD 

worsening. The study of lung deformation, including the possible use of MRI, offers new 

perspectives for diagnosis and follow up of patients with fibrosing ILDs. 

 
5.2 Future works 
Coupling detection, delineation and spatiotemporal progression. In this thesis, we have mostly 

exploited three well known techniques in medical imaging; biomarkers discovery, segmentation & 

elastic registration. These three different components were treated in an independent fashion and 

were combined through a sequential paradigm. The integration of these steps into a 

couple/interchangeable formulation could greatly improved performance. Segmentation can 

benefit from registration and vice-versa. Dynamic biomarkers discovery and classification could 

benefit from the outcome of elastic registration. Deep neural networks offer great perspectives in 

this direction and are currently under investigation.  

 
Using radiomics and deep learning in diffuse bronchial lung diseases. In this thesis, we mainly 

focused on creating CT scores predicting disease severity. However, since the beginning of our work, 

new therapies have been introduced and can now be used in cystic fibrosis patients having the 

predominant genetic mutation. These therapies dramatically improve a large proportion of patients 

but are very costly and are associated to side effects. Assessment of treatment response is a possible 

application of the models proposed in this thesis. Beyond this, using radiomics and deep learning to 

predict response to the newly developed drugs is a new research field for which patient databases 

are currently being created. 

 

Evaluating automated interstitial lung disease (ILD) extent as a prognostic factor. As a first step, 

we developed a deep-learning based automated segmentation model for the evaluation of ILD 

extent showing good correlations with pulmonary function. To confirm the clinical value of this 

biomarker, the correlation with survival remains to be evaluated. Additionally, we believe that 

disease extent could be combined with other clinical and functional data to build a composite 

prognosis score. 

 

Combining ILD segmentation and elastic registration for ILD monitoring. In this thesis, we 

separately evaluated ILD disease extent and lung deformation due to the development of fibrosis. 

However, the information obtained by these 2 approaches could be combined.  

Firstly, disease extent could be used as a constraint for the elastic registration between serial 

examinations or between inspiratory and expiratory CT images. This could improve the registration 

process.  

Secondly, for disease monitoring, changes in disease extent could be used to enrich the model. 

Indeed, disease progression may combine increased disease extent and lung shrinking. In our 

experience, some patients with systemic sclerosis suffer from a progressive increase of ILD extent 

without significant lung shrinking, especially in the initial phase of the disease, whereas other 
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develop shrinking within a stable disease extent.  

 

Evaluating the developed methods on other ILD. In this thesis, we focused on systemic sclerosis as 

a model of fibrosing interstitial lung disease. However, among fibrosing ILDs, idiopathic pulmonary 

fibrosis is the most frequent and severe one, with a 5-year survival of approximatively 50%. The 

methods for ILD quantification and ILD monitoring that we developed could be of great interest in 

this context, especially in view of the newly developed anti fibrotic drugs, which could be evaluated 

through collaboration with other centers. 
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Appendix I 

6 Glossary of formulas 
 

 
 

Dice similarity coefficient (DSC): The DSC is a statistic used to compare the similarity of two 

segmentations. It is commonly in image segmentation, in particular for comparisons against 

reference masks in medical applications. It is calculated according to the following formula:  

~]� =
2 × |]1 ∩ ]2|
|]1| + |]2|

 

 where S1 and S2 are the areas of the first and second segmentation, respectively [52]. 

 

 

Hausdorff distance: The Hausdorff distance is a metric commonly used in computer vision to 

evaluate segmentations. It corresponds to the maximum distance between the boundaries of a 

segmentation and the nearest point of the boundaries of the other segmentation. 

It is calculated according to the following formula: 

ℎ(m, É) = max
Ü	á	à

â	min
N	∈	å

	{q(ç, V)}é 

 were a and b are points of the boundaries A and B, respectively. 

 

 

Jacobian determinant: The Jacobian matrix of a vector-valued function such as the deformation 

map is the matrix of all its first-order partial derivatives. In particular for a 3D deformation 

 

è = ê
ë11 ë12 ë13

ë21 ë22 ë23

ë31 ë32 ë33

í =

⎣
⎢
⎢
⎢
⎡
ñ#′

ñ#ò ñ#′
ñ8ò ñ#′

ñôò

ñ8′
ñ#ò ñ8′

ñ8ö ñ8′
ñôò

ñô′
ñ#ò ñô′

ñ8ò ñô′
ñôò ⎦
⎥
⎥
⎥
⎤

 

while its determinant can be formulated as: 

|è| = ë11(ë22ë33 − ë23ë32) − ë21(ë12ë33 − ë13ë32) + ë31(ë12ë23 − ë13ë22) 
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Appendix II 

7 Synthèse 
 
 
Dans cette thèse, nous évaluons des méthodes d’intelligence artificielle pour la détection, la 

caractérisation et la classification des maladies pulmonaires chroniques en imagerie. 

L’évaluation de gravité et la surveillance des maladies pulmonaires chroniques représentent deux 

challenges importants pour la prise en charge des patients et l’évaluation des traitements. La 

surveillance repose principalement sur les données fonctionnelles respiratoires, incluant en 

particulier le volume expiratoire maximal en 1 seconde (VEMS) pour les pathologies bronchiques 

obstructives et la capacité fonctionnelle vitale (CVF) pour les pneumopathies fibrosantes. 

Cependant, l’évaluation morphologique reste un point essentiel pour le diagnostic et l’évaluation 

de sévérité. Pour cela, le scanner pulmonaire est l’examen de référence car il permet d’obtenir des 

images haute résolution du parenchyme. Dans cette thèse, nous nous intéressons à la 

mucoviscidose et la sclérodermie, que nous utilisons respectivement comme modèles de pathologie 

bronchique obstructive et de pneumopathie fibrosante. 

Dans le chapitre 2, nous évaluons différentes approches pour quantifier la sévérité de pathologies 

bronchiques chroniques au scanner. Une approche simple consiste à quantifier les zones 

hyperdenses dues aux remaniements inflammatoires par une méthode de seuillage ayant pour 

particularité d’utiliser un seuillage adaptatif. Cette méthode est également évaluée dans une autre 

maladie bronchique chronique, la dyskinésie ciliaire primitive. Une méthode plus sophistiquée de 

radiomique est également évaluée pour prédire un modèle complexe d’évaluation de la gravité 

clinique. Nos résultats montrent qu’il est possible de quantifier l’atteinte pulmonaire à l’aide d’une 

approche globale évaluant la totalité du volume pulmonaire. 

Dans la seconde partie, nous présentons une approche locale visant à contourer automatiquement 

les zones d’atteinte fibrosante de la sclérodermie en scanner pour en quantifier la sévérité. Pour 

cela une méthode d’apprentissage profond (deep learning) de type réseau neuronal convolutif est 

utilisée. Une architecure combinant recalage élastique à des atlas anatomiques et réseaux 

neuronaux convolutifs est proposée dans le but de réaliser une augmentation de données, de 

diminuer la complexité du problème liée aux variations anatomiques et de renforcer la cohérence 

anatomique de chaque réseau neuronal. En pratique, une étape préliminaire de recalage des 

données d’imagerie à plusieurs atlas anatomiques est réalisée puis un réseau neuronal indépendant 

est entrainé pour chacun des atlas. Cette architecture améliore significativement les performances 

du modèle obtenu qui présente des performances équivalentes à celles des radiologues et permet 

de quantifier l’extension de la maladie au sein des poumons. L’application de cette méthode de 

contourage est ensuite réalisée sur une large cohorte de patients atteints de sclérodermie et les 

résultats obtenus sont bien corrélés à la sévérité fonctionnelle. 

Dans la dernière partie, nous nous intéressons à l’utilisation des données dynamiques visant à 

évaluer l’évolution de l’atteinte fibrosante de la sclérodermie. La fibrose est habituellement 

responsable d’une perte des propriétés élastiques du tissu et d’une rétraction tissulaire.  La 

combinaison d’images IRM pulmonaire acquises en inspiration et en expiration et d’une méthode 
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de recalage élastique est utilisée pour évaluer les profils de contraction pulmonaire au cours de la 

respiration, en fonction de la présence ou non d’une fibrose. Cette méthode permet de différencier 

les sujets sains et ceux atteints de fibrose, pour lesquels il existe une perte de contraction des bases 

pulmonaires entre inspiration et expiration. La même méthode est utilisée pour évaluer la 

contraction pulmonaire liée à l’aggravation de la fibrose au cours du suivi. Combinée à un réseau 

neuronal profond cette approche permet de diagnostiquer de manière automatique l’aggravation 

fibreuse chez les patients sclérodermiques. 
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Résumé : L’évaluation de la gravité et la 
surveillance des maladies pulmonaires 
chroniques représentent deux challenges 
importants pour la prise en charge des patients et 
l’évaluation des traitements. La surveillance 
repose principalement sur les données 
fonctionnelles respiratoires mais l’évaluation 
morphologique reste un point essentiel pour le 
diagnostic et l’évaluation de sévérité. 
Dans la première partie de cette thèse, nous 
proposons différents modèles pour quantifier la 
sévérité de pathologies bronchiques chroniques 
au scanner. Une approche simple par seuillage 
adaptatif et une méthode plus sophistiquée de 
radiomique sont évaluées 
Dans la seconde partie, nous évaluons une 
méthode d’apprentissage profond pour contourer  

automatiquement l’atteinte fibrosante de la 
sclérodermie en scanner. Nous combinons le 
recalage élastique vers différents atlas 
morphologiques thoraciques et l’apprentissage 
profond pour développer un modèle dont les 
performances sont équivalentes à celles des 
radiologues. 
Dans la dernière partie, nous démontrons que 
l’étude de la déformation pulmonaire en IRM 
entre inspiration et expiration peut être utilisée 
pour repérer les régions pulmonaires en 
transformation fibreuse, moins déformables au 
cours de la respiration, et qu’en scanner, 
l’évaluation de la déformation entre des examens 
successifs de suivi peut diagnostiquer 
l’aggravation fibreuse chez les patients 
sclérodermiques. 
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Abstract : Disease staging and monitoring of 
chronic lung diseases are two major challenges 
for patient care and evaluation of new therapies. 
Monitoring mainly relies on pulmonary function 
testing but morphological assessment is a key 
point for diagnosis and staging  
In the first part, we propose different models to 
score bronchial disease severity on computed 
tomography (CT) scan. A simple thresholding 
approach using adapted thresholds and a more 
sophisticated machine learning approach with 
radiomics are evaluated 
In the second part, we evaluate deep learning 
methods to segment lung fibrosis on chest CT 

scans in patients with systemic sclerosis. We 
combine elastic registration to atlases of 
different thoracic morphology and deep learning 
to produce a model performing as well as 
radiologists 
In the last part of the thesis, we demonstrate that 
lung deformation assessment between 
inspiratory and expiratory magnetic resonance 
images can be used to depict fibrotic lung areas, 
which show less deformation during respiration 
and that CT assessment of lung deformation on 
serial CT scans can be used to diagnose lung 
fibrosis worsening 

 

 


