T. Alberts, K. Khanin, and J. Quastel, The continuum directed random polymer, J. Stat. Phys, vol.154, issue.1-2, pp.305-326, 2014.

T. Alberts, K. Khanin, and J. Quastel, The intermediate disorder regime for directed polymers in dimension 1 + 1, Ann. Probab, vol.42, issue.3, pp.1212-1256, 2014.

G. Amir, I. Corwin, and J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions, Comm. Pure Appl. Math, vol.64, issue.4, pp.466-537, 2011.

A. Auffinger and M. Damron, The scaling relation ? = 2? ? 1 for directed polymers in a random environment, ALEA Lat. Am. J. Probab. Math. Stat, vol.10, issue.2, pp.857-880, 2013.

A. Auffinger and M. Damron, A simplified proof of the relation between scaling exponents in first-passage percolation, Ann. Probab, vol.42, issue.3, pp.1197-1211, 2014.

M. Balázs, J. Quastel, and T. Seppäläinen, Fluctuation exponent of the KPZ/stochastic Burgers equation, J. Amer. Math. Soc, vol.24, issue.3, pp.683-708, 2011.

A. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth, 1995.

E. Bates and S. Chatterjee, The endpoint distribution of directed polymers, 2016.

L. Benigni, C. Cosco, A. Shapira, and K. Wiese, Hausdorff dimension of the record set of a fractional Brownian motion, Electron. Commun. Probab, vol.23, p.8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02168796

Q. Berger and H. Lacoin, The high-temperature behavior for the directed polymer in dimension 1+ 2, Ann. Inst. Henri Poincaré Probab. Stat, vol.53, pp.430-450, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01170204

Q. Berger and N. Torri, Directed polymers in heavy-tail random environment, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01706666

P. Bertin, Free energy for Brownian directed polymers in random environment in dimension one and two, 2008.

P. Bertin, Very strong disorder for the parabolic Anderson model in low dimensions, Indag. Math. (N.S.), vol.26, issue.1, pp.50-63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00766752

L. Bertini and N. Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence, J. Statist. Phys, vol.78, pp.1377-1401, 1995.

L. Bertini and N. Cancrini, The two-dimensional stochastic heat equation: renormalizing a multiplicative noise, Journal of Physics A: Mathematical and General, vol.31, issue.2, pp.615-622, 1998.

L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys, vol.183, issue.3, pp.571-607, 1997.

S. Bezerra, S. Tindel, and F. Viens, Superdiffusivity for a Brownian polymer in a continuous Gaussian environment, Ann. Probab, vol.36, issue.5, pp.1642-1675, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00602426

P. Billingsley, Convergence of probability measures, vol.228, p.229, 1968.

P. Billingsley, Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, 1999.

G. Biroli, J. Bouchaud, and M. Potters, Extreme value problems in random matrix theory and other disordered systems, Journal of Statistical Mechanics: Theory and Experiment, issue.07, p.7019, 2007.

E. Bolthausen, A note on the diffusion of directed polymers in a random environment, Comm. Math. Phys, vol.123, issue.4, pp.529-534, 1989.

A. Borodin, I. Corwin, and P. L. Ferrari, Free energy fluctuations for directed polymers in random media in 1+ 1 dimension, Communications on Pure and Applied Mathematics, vol.67, issue.7, pp.1129-1214, 2014.

A. Borodin, I. Corwin, and D. Remenik, Log-gamma polymer free energy fluctuations via a fredholm determinant identity, Communications in Mathematical Physics, vol.324, issue.1, pp.215-232, 2013.

A. Borodin and V. Gorin, Lectures on integrable probability, Probability and statistical physics in, vol.91, pp.155-214, 2016.

Y. Broeker and C. Mukherjee, Quenched central limit theorem for the stochastic heat equation in weak disorder, 2017.

Y. Bröker and C. Mukherjee, Localization of the Gaussian multiplicative chaos in the Wiener space and the stochastic heat equation in strong disorder, 2018.

P. Calabrese, P. L. Doussal, and A. Rosso, Free-energy distribution of the directed polymer at high temperature, Europhysics Letters), vol.90, issue.2, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00520467

F. Caravenna, R. Sun, and N. Zygouras, Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. (JEMS), vol.19, issue.1, pp.1-65, 2017.

F. Caravenna, R. Sun, and N. Zygouras, Universality in marginally relevant disordered systems, Ann. Appl. Probab, vol.27, issue.5, p.2017

F. Caravenna, R. Sun, and N. Zygouras, On the moments of the (2+1)-dimensional directed polymer and stochastic heat equation in the critical window, 2018.

F. Caravenna, R. Sun, and N. Zygouras, The two-dimensional KPZ equation in the entire subcritical regime, 2018.

P. Carmona and Y. Hu, On the partition function of a directed polymer in a Gaussian random environment, Probab. Theory Related Fields, vol.124, issue.3, pp.431-457, 2002.

P. Carmona and Y. Hu, Fluctuation exponents and large deviations for directed polymers in a random environment, Stochastic Process. Appl, vol.112, issue.2, pp.285-308, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00102255

A. René, S. A. Carmona, and . Molchanov, Parabolic Anderson problem and intermittency, Mem. Amer. Math. Soc, vol.108, issue.518, p.125, 1994.

S. Chandrasekhar, M. Kac, and R. Smoluchowski, Marian Smoluchowski: his life and scientific work, 2000.

S. Chatterjee, The universal relation between scaling exponents in first-passage percolation, Ann. of Math, vol.177, issue.2, pp.663-697, 2013.

S. Chatterjee, Proof of the path localization conjecture for directed polymers, 2018.

S. Chatterjee and A. Dunlap, Constructing a solution of the (2 + 1)-dimensional KPZ equation, 2018.

M. C. John and . Clark, The representation of functionals of Brownian motion by stochastic integrals, The Annals of Mathematical Statistics, pp.1282-1295, 1970.

F. Comets and J. Neveu, The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: the high temperature case, Comm. Math. Phys, vol.166, issue.3, pp.549-564, 1995.

F. Comets, Directed polymers in random environments, 2017.

F. Comets, C. Cosco, and C. Mukherjee, Renormalizing the Kardar-Parisi-Zhang equation in d ? 3 in weak disorder, 2019.

F. Comets and C. Cosco, Brownian polymers in Poissonian environment: a survey, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837909

F. Comets, C. Cosco, and C. Mukherjee, Fluctuation and rate of convergence for the stochastic heat equation in weak disorder, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837908

F. Comets and Q. Liu, Rate of convergence for polymers in a weak disorder, Journal of Mathematical Analysis and Applications, vol.455, issue.1, pp.312-335, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01705859

F. Comets, T. Shiga, and N. Yoshida, Directed polymers in a random environment: path localization and strong disorder, Bernoulli, vol.9, issue.4, pp.705-723, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00103820

F. Comets, T. Shiga, and N. Yoshida, Probabilistic analysis of directed polymers in a random environment: a review, Stochastic analysis on large scale interacting systems, vol.39, pp.115-142, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00104909

F. Comets and N. Yoshida, Some new results on Brownian directed polymers in random environment, RIMS Kokyuroku, vol.1386, pp.50-66, 2004.

F. Comets and N. Yoshida, Brownian directed polymers in random environment, Comm. Math. Phys, vol.254, issue.2, pp.257-287, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00101805

F. Comets and N. Yoshida, Directed polymers in random environment are diffusive at weak disorder. The Annals of Probability, pp.1746-1770, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00003250

F. Comets and N. Yoshida, Localization transition for polymers in Poissonian medium, Comm. Math. Phys, vol.323, issue.1, pp.417-447, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00704994

J. Cook and B. Derrida, Directed polymers in a random medium: 1/d expansion and the n-tree approximation, J. Phys. A, vol.23, issue.9, pp.1523-1554, 1990.

I. Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl, vol.1, issue.1, p.76, 2012.

I. Corwin, Kardar-Parisi-Zhang universality, Notices of the AMS, vol.63, issue.3, pp.230-239, 2016.

I. Corwin, O. Neil, T. Connell, N. Seppäläinen, and . Zygouras, Tropical combinatorics and whittaker functions, Duke Mathematical Journal, vol.163, issue.3, pp.513-563, 2014.

I. Corwin and L. Tsai, KPZ equation limit of higher-spin exclusion processes, Ann. Probab, vol.45, issue.3, pp.1771-1798, 2017.

C. Cosco, The intermediate disorder regime for brownian directed polymers in poisson environment, Indagationes Mathematicae, 2019.

C. Cosco and S. Nakajima, Gaussian fluctuations for the directed polymer partition function for d ? 3 and in the whole l 2 -region, 2019.

A. Dembo and L. Tsai, Weakly asymmetric non-simple exclusion process and the Kardar-Parisi-Zhang equation, Communications in Mathematical Physics, vol.341, issue.1, pp.219-261, 2016.

A. Dembo and O. Zeitouni, Large deviations techniques and applications, Applications of Mathematics, vol.38, 1998.

H. Frank-den, Lectures from the 37th Probability Summer School, Lecture Notes in Mathematics, vol.1974, 2007.

B. Derrida and H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves, New directions in statistical mechanics, vol.51, pp.817-840, 1987.

P. S. Dey and N. Zygouras, High temperature limits for (1 + 1)-dimensional directed polymer with heavy-tailed disorder, Ann. Probab, vol.44, issue.6, pp.4006-4048, 2016.

J. Diehl, M. Gubinelli, and N. Perkowski, The Kardar-Parisi-Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions, Communications in Mathematical Physics, vol.354, issue.2, pp.549-589, 2017.

M. Donsker and S. Varadhan, Asymptotics for the Wiener sausage, Communications on Pure and Applied Mathematics, vol.28, issue.4, pp.525-565, 1975.

V. Dotsenko, Bethe ansatz replica derivation of the GOE Tracy-Widom distribution in one-dimensional directed polymers with free endpoints, J. Stat. Mech. Theory Exp, vol.18, issue.11, p.11014, 2012.

P. Le and D. , Crossover between various initial conditions in KPZ growth: flat to stationary, Journal of Statistical Mechanics: Theory and Experiment, vol.2017, issue.5, p.53210, 2017.

A. Dunlap, Y. Gu, L. Ryzhik, and O. Zeitouni, Fluctuations of the solutions to the KPZ equation in dimensions three and higher, 2018.

A. Dunlap, Y. Gu, L. Ryzhik, and O. Zeitouni, The random heat equation in dimensions three and higher: the homogenization viewpoint, 2018.

R. Durrett, Probability: theory and examples, 1996.

F. Samuel, D. R. Edwards, and . Wilkinson, The surface statistics of a granular aggregate, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.381, pp.17-31, 1982.

T. Franco, P. Gonçalves, and M. Simon, Crossover to the stochastic Burgers equation for the WASEP with a slow bond, Communications in Mathematical Physics, vol.346, issue.3, pp.801-838, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01355447

R. Fukushima and S. Junk, Zero temperature limit for the Brownian directed polymer among Poissonian disasters, 2018.

T. Funaki, Lectures on random interfaces. SpringerBriefs in Probability and Mathematical Statistics, 2016.

T. Funaki and J. Quastel, KPZ equation, its renormalization and invariant measures, Stoch. Partial Differ. Equ. Anal. Comput, vol.3, issue.2, pp.159-220, 2015.

G. Giacomin, Random polymer models, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00155080

P. Gonçalves and M. Jara, Nonlinear fluctuations of weakly asymmetric interacting particle systems. Archive for Rational Mechanics and, Analysis, vol.212, issue.2, pp.597-644, 2014.

P. Gonçalves, M. Jara, and S. Sethuraman, A stochastic Burgers equation from a class of microscopic interactions, Ann. Probab, vol.43, issue.1, pp.286-338, 2015.

P. Gonçalves, M. Jara, and M. Simon, Second order Boltzmann-Gibbs principle for polynomial functions and applications, Journal of Statistical Physics, vol.166, issue.1, pp.90-113, 2017.

Y. Gu, Gaussian fluctuations of the 2d KPZ equation, 2018.

Y. Gu, L. Ryzhik, and O. Zeitouni, The Edwards-Wilkinson limit of the random heat equation in dimensions three and higher, Communications in Mathematical Physics, vol.363, issue.2, pp.351-388, 2018.

M. Gubinelli and M. Jara, Regularization by noise and stochastic Burgers equations. Stochastic Partial Differential Equations: Analysis and Computations, vol.1, pp.325-350, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858787

M. Gubinelli, P. Imkeller, and N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi, vol.3, issue.6, 2015.

M. Gubinelli and N. Perkowski, KPZ reloaded, Communications in Mathematical Physics, vol.349, issue.1, pp.165-269, 2017.

M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique, J. Amer. Math. Soc, vol.31, issue.2, pp.427-471, 2018.

M. Hairer, Solving the KPZ equation, Ann. of Math, vol.178, issue.2, pp.559-664, 2013.

M. Hairer, A theory of regularity structures, Invent. Math, vol.198, issue.2, pp.269-504, 2014.

M. Hairer and H. Shen, A central limit theorem for the KPZ equation, Ann. Probab, vol.45, issue.6B, p.2017

T. Halpin, -. Healy, and K. A. Takeuchi, A KPZ cocktail-shaken, not stirred . . . toasting 30 years of kinetically roughened surfaces, J. Stat. Phys, vol.160, issue.4, pp.794-814, 2015.

E. Häusler and H. Luschgy, Stable convergence and stable limit theorems, of Probability Theory and Stochastic Modelling, vol.74, 2015.

C. C. Heyde, A rate of convergence result for the super-critical Galton-Watson process, J. Appl. Probability, vol.7, pp.451-454, 1970.

C. C. Heyde, Some central limit analogues for supercritical Galton-Watson processes, J. Appl. Probability, vol.8, pp.52-59, 1971.

M. Hoshino, Paracontrolled calculus and funaki-quastel approximation for the KPZ equation, Stochastic Processes and their Applications, 2017.

C. Howard, Lower bounds for point-to-point wandering exponents in Euclidean first-passage percolation, Journal of applied probability, vol.37, issue.4, pp.1061-1073, 2000.

D. Howard and C. Newman, Euclidean models of first-passage percolation, Probability Theory and Related Fields, vol.108, pp.153-170, 1997.

E. P. Hsu and K. Sturm, Maximal coupling of Euclidean Brownian motions, Communications in Mathematics and Statistics, vol.1, issue.1, pp.93-104, 2013.

Y. Hu and K. Lê, Asymptotics of the density of parabolic Anderson random fields, 2018.

A. David, C. Huse, and . Henley, Pinning and roughening of domain walls in Ising systems due to random impurities, Physical review letters, vol.54, issue.25, p.2708, 1985.

N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes. Second Edition. Kodansha scientific books, 1989.

A. Iksanov and Z. Kabluchko, A central limit theorem and a law of the iterated logarithm for the Biggins martingale of the supercritical branching random walk, J. Appl. Probab, vol.53, issue.4, pp.1178-1192, 2016.

A. Iksanov, K. Kolesko, and M. Meiners, Fluctuations of Biggins' martingales at complex parameters, 2018.

J. Imbrie and T. Spencer, Diffusion of directed polymers in a random environment, J. Statist. Phys, vol.52, issue.3-4, pp.609-626, 1988.

K. Itô, Multiple Wiener integral, Journal of the Mathematical Society of Japan, vol.3, issue.1, pp.157-169, 1951.

J. Jacod and A. Shiryaev, Limit theorems for stochastic processes, vol.288, 2003.

, Svante Janson. Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, 1997.

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, 1991.

M. Kardar, G. Parisi, and Y. Zhang, Dynamic scaling of growing interfaces, Physical Review Letters, vol.56, issue.9, pp.889-892, 1986.

D. Khoshnevisan, Analysis of stochastic partial differential equations, CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, vol.119, 2014.

J. Krug and H. Spohn, Kinetic roughening of growing surfaces, Solids far from equilibrium, pp.477-582, 1992.

H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, vol.24, 1990.

A. Kupiainen, Renormalization group and stochastic pdes, Annales Henri Poincaré, vol.17, issue.3, pp.497-535, 2016.

C. Labbé, Weakly asymmetric bridges and the KPZ equation, Communications in Mathematical Physics, vol.353, issue.3, pp.1261-1298, 2017.

H. Lacoin, New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2, Comm. Math. Phys, vol.294, issue.2, pp.471-503, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00361863

G. Last, Stochastic Analysis for Poisson Processes, pp.1-36, 2016.

G. Last and M. Penrose, Lectures on the Poisson process, 2017.

G. Last and M. D. Penrose, Martingale representation for Poisson processes with applications to minimal variance hedging, Stochastic Processes and their Applications, vol.121, pp.1588-1606, 2011.

G. F. Lawler, Intersections of random walks. Modern Birkhäuser Classics, 2013.

C. Licea, C. M. Newman, and M. S. Piza, Superdiffusivity in first-passage percolation, Probab. Theory Related Fields, vol.106, issue.4, pp.559-591, 1996.

C. Maes and T. Thiery, Midpoint distribution of directed polymers in the stationary regime: Exact result through linear response, Journal of Statistical Physics, vol.168, issue.5, pp.937-963, 2017.

J. Magnen and J. Unterberger, The scaling limit of the KPZ equation in space dimension 3 and higher, Journal of Statistical Physics, vol.171, issue.4, pp.543-598, 2018.

P. Maillard and M. Pain, 1-stable fluctuations in branching Brownian motion at critical temperature I: the derivative martingale, 2018.

K. Matetski, J. Quastel, and D. Remenik, The KPZ fixed point, 2016.

O. Mejane, Upper bound of a volume exponent for directed polymers in a random environment, Ann. Inst. H. Poincaré Probab. Statist, vol.40, issue.3, pp.299-308, 2004.

I. Mitoma, Tightness of probabilities on c

, The Annals of Probability, pp.989-999, 1983.

S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokoloff, and Y. B. Zeldovich, Intermittency, diffusion and generation in a nonstationary random medium, Reviews in Mathematics and Mathematical Physics, vol.15, issue.1, 2014.

R. M. Gregorio and . Flores, On the (strict) positivity of solutions of the stochastic heat equation, Ann. Probab, vol.42, issue.4, pp.1635-1643, 2014.

R. Gregorio, T. Moreno-flores, B. Seppäläinen, and . Valkó, Fluctuation exponents for directed polymers in the intermediate disorder regime, Electron. J. Probab, vol.19, issue.89, 2014.

C. Mueller, On the support of solutions to the heat equation with noise, Stochastics Stochastics Rep, vol.37, issue.4, pp.225-245, 1991.

C. Mukherjee, A central limit theorem for gibbs measures including long range and singular interactions and homogenization of the stochastic heat equation, 2017.

C. Mukherjee, A. Shamov, and O. Zeitouni, Weak and strong disorder for the stochastic heat equation and continuous directed polymers in d ? 3, Electron. Commun. Probab, vol.21, p.12, 2016.

D. Ocone, Malliavin's calculus and stochastic integral representations of functional of diffusion processes, Stochastics: An International Journal of Probability and Stochastic Processes, vol.12, issue.3-4, pp.161-185, 1984.

O. Neil, M. Connell, and . Yor, Brownian analogues of Burke's theorem, Stochastic Process. Appl, vol.96, issue.2, pp.285-304, 2001.

P. Olsen and R. Song, Diffusion of directed polymers in a strong random environment, J. Statist. Phys, vol.83, issue.3-4, pp.727-738, 1996.

M. Petermann, Superdiffusivity of polymers in random environment, 2000.

J. Quastel, Introduction to KPZ, Current developments in mathematics, pp.125-194, 2011.

J. Quastel and H. Spohn, The one-dimensional KPZ equation and its universality class, Journal of Statistical Physics, vol.160, issue.4, pp.965-984, 2015.

F. Rassoul, -. , and T. Seppäläinen, Process-level quenched large deviations for random walk in random environment, Annales de l'institut Henri Poincaré (B), vol.47, pp.214-242, 2011.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, vol.293, 2005.

R. Tyrrell-rockafellar, Convex analysis, Princeton Mathematical Series, issue.28, 1970.

L. , C. Rogers, and D. Williams, Diffusions, Markov processes and Martingales, vol.2, 1994.

U. Rösler, V. A. Topchii, and V. A. Vatutin, The rate of convergence for weighted branching processes [translation of Mat, Tr, vol.5, issue.1, pp.18-45, 2002.

, Siberian Adv. Math, vol.12, issue.4, pp.57-82, 2002.

C. Rovira and S. Tindel, On the Brownian-directed polymer in a gaussian random environment, Journal of Functional Analysis, vol.222, pp.178-201, 2005.

T. Sasamoto, The 1D Kardar-Parisi-Zhang equation: height distribution and universality, PTEP. Prog. Theor. Exp. Phys, issue.2, p.15, 2016.

T. Sasamoto and H. Spohn, One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality, Physical review letters, vol.104, issue.23, p.230602, 2010.

T. Seppäläinen, Scaling for a one-dimensional directed polymer with boundary conditions, Ann. Probab, vol.40, pp.19-73, 2012.

T. Seppäläinen and B. Valkó, Bounds for scaling exponents for a 1+1 dimensional directed polymer in a Brownian environment, ALEA Lat. Am. J. Probab. Math. Stat, vol.7, pp.451-476, 2010.

Y. Shiozawa, Central limit theorem for branching Brownian motions in random environment, J. Stat. Phys, vol.136, issue.1, pp.145-163, 2009.

Y. Shiozawa, Localization for branching Brownian motions in random environment, Tohoku Math. J, vol.61, issue.2, pp.483-497, 2009.

G. Yakov and . Sinai, A remark concerning random walks with random potentials, Fund. Math, vol.147, issue.2, pp.173-180, 1995.

F. Spitzer, Principles of random walk, Graduate Texts in Mathematics, vol.34, 1976.

D. Stoyan, W. Kendall, and J. Mecke, Stochastic geometry and its applications, 1987.

A. Sznitman, Brownian motion, obstacles and random media, Springer Monographs in Mathematics, 1998.

M. Talagrand, Mean field models for spin glasses: a first course, Lectures on probability theory and statistics, vol.1816, pp.181-285, 2000.

C. Tracy and H. Widom, Erratum to: (2008) integral formulas for the asymmetric simple exclusion process, Communications in Mathematical Physics, vol.304, pp.875-878, 2011.

A. Craig, H. Tracy, and . Widom, Level-spacing distributions and the Airy kernel, Communications in Mathematical Physics, vol.159, issue.1, pp.151-174, 1994.

C. A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Comm. Math. Phys, vol.177, issue.3, pp.727-754, 1996.

C. A. Tracy and H. Widom, A Fredholm determinant representation in ASEP, Journal of Statistical Physics, vol.132, issue.2, pp.291-300, 2008.

C. A. Tracy and H. Widom, Asymptotics in ASEP with step initial condition, Communications in Mathematical Physics, vol.290, issue.1, pp.129-154, 2009.

V. Vargas, A local limit theorem for directed polymers in random media: the continuous and the discrete case, Ann. Inst. H. Poincaré Probab. Statist, vol.42, issue.5, pp.521-534, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00108099

V. Vargas, Strong localization and macroscopic atoms for directed polymers, Probability theory and related fields, vol.138, pp.391-410, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00150392

J. B. Walsh, An introduction to stochastic partial differential equations. InÉcole d'été de probabilités de Saint-Flour, XIV-1984, Lecture Notes in Math, vol.1180, pp.265-439, 1986.

W. Woess, Random walks on infinite graphs and groups, of Cambridge Tracts in Mathematics, vol.138, 2000.

M. V. Wüthrich, Fluctuation results for Brownian motion in a Poissonian potential, Ann. Inst. H. Poincaré Probab. Statist, vol.34, issue.3, pp.279-308, 1998.

M. V. Wüthrich, Scaling identity for crossing Brownian motion in a Poissonian potential, Probab. Theory Related Fields, vol.112, issue.3, pp.299-319, 1998.

M. V. Wüthrich, Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential, Ann. Probab, vol.26, issue.3, pp.1000-1015, 1998.

M. V. Wüthrich, Geodesics and crossing Brownian motion in a soft Poissonian potential, Ann. Inst. H. Poincaré Probab. Statist, vol.35, issue.4, pp.509-529, 1999.

M. V. Wüthrich, Numerical bounds for critical exponents of crossing Brownian motion, Proc. Amer. Math. Soc, vol.130, issue.1, pp.217-225, 2002.

N. Zygouras, Some algebraic structures in the KPZ universality, 2018.