
HAL Id: tel-02886382
https://theses.hal.science/tel-02886382

Submitted on 1 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical resolution of satisfiability testing for modal
logics

Valentin Montmirail

To cite this version:
Valentin Montmirail. Practical resolution of satisfiability testing for modal logics. Computer Science
[cs]. Université d’Artois, 2018. English. �NNT : �. �tel-02886382�

https://theses.hal.science/tel-02886382
https://hal.archives-ouvertes.fr


Practical resolution of satisfiability
testing for modal logics

Doctoral thesis

presented and publicly defended on 17th September 2018

to obtain the title of

Doctor of Science from Artois University

(Artificial Intelligence)

by

Valentin Montmirail

Composition of the jury

President: Laurent Simon LaBRI, Bordeaux University, France

Reporters: Martina Seidl Johannes Kepler University, Austria

Andreas Herzig CNRS & Paul Sabatier University, France

Supervisors: Jean-Marie Lagniez Artois University, France

Tiago de Lima Artois University, France

Advisor: Daniel Le Berre Artois University, France

Centre de Recherche en Informatique de Lens – CNRS UMR 8188
Artois University, rue Jean Souvraz, S.P. 18 F-62307, Lens Cedex France

Secretariat : Tél.: +33 (0)3 21 79 17 23 – Fax : +33 (0)3 21 79 17 70

http://www.cril.univ-artois.fr



i



Layout by classes thesul v0.14 (D. Roegel, LORIA) and memcril v0.20 (B. Mazure, CRIL)

The design of the boxes is made by xeboiboites (A. Flesch)

https://members.loria.fr/Roegel/TeX/TUL-user.pdf
mailto:mazure@cril.fr
http://alexisfles.ch/files/latex/boiboites/xeboiboites.doc.pdf


ii



“We can only see a short distance ahead,
but we can see plenty there that needs to
be done.”

Alan Mathison Turing (1950)

iii



iv



Contents

General Introduction 3

I Preliminaries

Chapter 1 Complexity Theory 11

1.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Best, Worst and Average Case . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Different Types of Algorithm . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Computational Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Decision Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Function Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Optimisation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Complement of a Decision Problem . . . . . . . . . . . . . . . . . . . 17

1.3 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Complement of a Complexity Class . . . . . . . . . . . . . . . . . . . 19

1.3.2 Relations Among Complexity Classes . . . . . . . . . . . . . . . . . . 19

1.3.3 Polynomial Reductions and Completeness . . . . . . . . . . . . . . . . 20

1.3.4 Polynomial Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



Contents

Chapter 2 Logics 27

2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Axiomatic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3 Decision Algorithms and Benchmarks 47

3.1 Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Resolution and Unit Propagation . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Conflict Analysis and Clause Learning . . . . . . . . . . . . . . . . . . 52

3.1.3 Choice of variable and choice of polarity . . . . . . . . . . . . . . . . . 54

3.1.4 Latest features of modern SAT solvers . . . . . . . . . . . . . . . . . . 55

3.2 Algorithms for Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Tableaux methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Translation-based methods . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Structural Impact Of The Benchmarks . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Random Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Crafted Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

II Contributions

Chapter 1 The NP Modal Logics Satisfiability Problems 75

1.1 How To Deal With Modal Logic Formulas in K?5 . . . . . . . . . . . . . . . 75

vi



1.1.1 A New Upper-Bound For the Size Of The Kripke Models . . . . . . . 76

1.1.2 A Set Of Simplifications For K?5 . . . . . . . . . . . . . . . . . . . . . 81

1.2 A SAT Translation Of The Problems . . . . . . . . . . . . . . . . . . . . . . . 85

1.2.1 Translation function ‘tr’ . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1.2.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1.3 Experimental Evaluation of the SAT-Based Approach . . . . . . . . . . . . . 90

1.3.1 Results Obtained In Logic WorkBench (LWB) . . . . . . . . . . . . . 91

1.3.2 Results Obtained In TANCS-2000-MQBF . . . . . . . . . . . . . . . . 92

1.3.3 Results Obtained In 3CNFKSP . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 2 The Minimal K?5 Satisfiability Problem 97

2.1 The Minimal K?5 Satisfiability Problem . . . . . . . . . . . . . . . . . . . . . 98

2.2 How To Solve The MinK?5 Satisfiability Problem . . . . . . . . . . . . . . . 99

2.2.1 An Assumption-Based Translation . . . . . . . . . . . . . . . . . . . . 99

2.2.2 Cardinality Optimality Equals Subset Optimality . . . . . . . . . . . 101

2.2.3 Only Unsatisfiable Cores Size Matters . . . . . . . . . . . . . . . . . . 103

2.3 Experiment For The MinK?5 Satisfiability Problem . . . . . . . . . . . . . . 104

2.3.1 Results On The Benchmarks From The Literature . . . . . . . . . . . 105

2.3.2 Results On A Proposed Set Of Benchmarks With Structures . . . . . 106

2.3.3 General Analysis Of The Results Obtained . . . . . . . . . . . . . . . 107

Chapter 3 RECAR: An Abstraction Refinement Procedure 111

3.1 Abstraction Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.1.1 Over-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.1.2 Under-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.2 Counter-Example Guided Abstraction Refinement . . . . . . . . . . . . . . . 115

3.2.1 CEGAR-over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2.2 CEGAR-under . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2.3 CEGAR-under For RCC8 . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.3 Recursive Explore and Check Abstraction Refinement . . . . . . . . . . . . . 129

3.3.1 RECAR-over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3.2 RECAR-under . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.4 Explanation of How The Abstractions Are Called . . . . . . . . . . . . . . . 135

vii



Contents

Chapter 4 The Modal Logic K? Satisfiability Problem 139

4.1 RECAR Approach For The Modal Logic K . . . . . . . . . . . . . . . . . . . 139

4.1.1 Over-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.1.2 Under-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.1.3 MoSaiC: A RECAR-over Approach . . . . . . . . . . . . . . . . . . . 143

4.2 Extensions Of MoSaiC For The Other Modal Logics . . . . . . . . . . . . . 144

4.2.1 How To Encode The Axioms . . . . . . . . . . . . . . . . . . . . . . . 145

4.2.2 Axiom-Aware Under-Abstraction . . . . . . . . . . . . . . . . . . . . . 145

4.2.3 Space-Aware Over-Abstraction . . . . . . . . . . . . . . . . . . . . . . 147

4.2.4 Chain of Modalities Simplifications . . . . . . . . . . . . . . . . . . . 149

4.3 Experimental Evaluation Of MoSaiC . . . . . . . . . . . . . . . . . . . . . . 151

4.3.1 Experimental Evaluation of MoSaiC 1.0 . . . . . . . . . . . . . . . . 152

4.3.2 Experimental Evaluation of MoSaiC 2.0 . . . . . . . . . . . . . . . . 154

4.3.3 General Analysis Of The Results Obtained . . . . . . . . . . . . . . . 157

Conclusion And Perspectives 161

Publications During The Thesis 165

Bibliography 171

viii



1



Contents

2



General Introduction

“A whole is what has a beginning and
middle and end”

Aristotle (335 BCE)

Motivation

Usually, the main problem for a logic L is the problem to determine if, given a formula φ in
L, it exists an assignment of the variables in φ that satisfies it. This decision problem is called
the ‘satisfiability problem in L’. As an example in the propositional logic (or Boolean logic
Boole (1854)), the problem consists in finding, if it exists, an assignment true/false of all the
variables in a formula, in such way that each variable can be consistently replaced by the values
true/false to have at the end, the formula evaluated to true.

In the cases of propositional modal logics that we will consider in this thesis, the complexity
of the satisfiability problems will vary from NP-complete to PSPACE-complete, see Ladner (1977)
and Halpern and Moses (1992) for more details.

Theoretically, if the problem is NP-hard or higher, then it is intractable and it may seems
hopeless to try to solve it in practice. However, it is worth remembering that we usually talk
about the “worst-case” complexity, it may be achievable to solve some instances in practice if
they do not represent the “worst” possible case.

Many teams of researchers are creating solvers able to decide the satisfiability in their logic
L and most of the time compete against each other to see which team created the fastest solver
and how. By this mean, we can have a pretty clear view about the state-of-the-art approach for
solving the satisfiability problem in logic L. A non-exhaustive list of such communities is given
in Table 1.

Community Start Competition / Evaluation Complexity

SAT Community Since 1992 SAT Buro and Büning (1993) NP

ATP Community Since 1996 CASC Sutcliffe and Suttner (1997) Undecidable

QBF Community Since 2003 QBFEVAL Le Berre et al. (2003) PSPACE

CP Community Since 2005 XCSP Roussel and Lecoutre (2009) NP

MaxSAT Community Since 2006 MaxSAT Argelich et al. (2008) NP

PB Community Since 2005 PB Manquinho and Roussel (2006) NP

ASP Community Since 2007 ASPCOMP Gebser et al. (2007) ΣP
2

Table 1: Some competitions of solvers of different complexities

3



General Introduction

These competitions have also an interesting side-effect: they force developers to make their
solvers robust, efficient and re-usable from one year to another. This side-effect may be considered
as the first step of why SAT solvers are nowadays used in so many applications as for example, in
Bounded Model Checking Biere (2009), in Planning Rintanen (2009), in Software dependency Le
Berre and Rapicault (2018), in Software Verification Kroening (2009), the list could go on and
on. The SAT community manages to make SAT solvers usable for solving industrial problems
by forcing developers to make their source-code available from one year to another, by verifying,
with an independent tool, when the solver answers a model that the formula is indeed satisfied
by it or by verifying the proof of unsatisfiability provided by the solver otherwise Gelder (2002).
SAT solvers are such cornerstone tools in Artificial Intelligence nowadays that Edmund Clarke
(Turing award 2007) claimed that “Clearly, efficient SAT solving is a key technology for the 21st

century computer science” Biere et al. (2009).

Modal logics solvers had also a competition, it was called TANCS (TABLEAUX Non-Classical
(Modal) System Comparisons) and it was a competition of non-classical systems held in con-
junction with the TABLEAUX1 conference in 1998 and 2000. These two competitions and their
results have been analysed, Balsiger and Heuerding (1998) for the competition in 1998 and Mas-
sacci and Donini (2000) for the one in 2000. Unfortunately, to the best of our knowledge since
18 years, no competition of propositional modal logic solvers was organised and here is our
diagnostic for that:

1. The benchmarks available do not have the same structure as the one that ‘real-life’ appli-
cations could have;

2. There are no standard input and output formats for solvers of modal logics, the competi-
tions were organised using translators to make the benchmarks readable for the solvers.

As a consequence, there are not enough efficient modal logic solvers to compete with. These are
the different points that we try to address in this thesis. Let us stress now how we want to create
efficient modal logic solvers. We make a claim here, that we will try to demonstrate during this
thesis: to solve efficiently a problem, one of the best current2 technique is to use SAT solvers,
in one way or another.

In a nutshell, our approach in this thesis will be to construct a model by encoding its expected
shape into a SAT encoding and giving it to the SAT solver. For NP-complete modal logics, we
can encode in one shot an equisatisfiable problem in propositional logic and ask the solver, for
the PSPACE-complete modal logics, we will bound the size of the Kripke models and allow more
and more worlds as it is usually done in the Planning community.

For the modal logic whose satisfiability problems are NP-complete, the way that we propose
here to solve them is by applying an efficient translation from modal logic to propositional logic
and then call an off the shelves SAT solver on it. Thus, the difficulty of the problem is no longer
in the solving phase, but it is in the encoding phase.

The disadvantage of that approach is that a SAT-based approach tends to produce unnec-
essary large solutions which could be a problem in the case of ‘real-life’ applications (where
solutions have a meaning and may need to be presented to the user). We then want to find
the optimal solution (to obtain the most concise solution possible). The problem is that, an
optimisation problem related to an NP-complete decision problem is harder than solving the

1http://www.tableaux-ar.org/
2It could be the case that this claim is no longer true in the future. . .

4

http://www.tableaux-ar.org/


satisfiability problem in propositional logic Cook (1971). The technique that we propose is still
using a SAT solver but this time, in an incremental way. In a nutshell, we will ask the SAT solver
to answer if there exists a solution of size n (while having no solution of size n− 1). If it is the
case, then we solved the problem, if it is not the case, we will ask the SAT solver for a reason
of “why there is no solution of size n?”, in order to find the optimal size with as few number of
calls as possible.

Finally, for the case of modal logic whose satisfiability problems are PSPACE-complete, we
know that the propositional logic formula will be of exponential size on the size of the input, so
just translating the problem into propositional logic will likely be impractical. However, there is
existing literature about how to solve PSPACE-complete problems with a SAT solver, especially
recently in the QBF community Janota et al. (2016). Basically, the technique is to transform
the original problem into an easier problem (called the abstraction), in such way that if the
abstraction has a solution, then so does the original problem. And if the abstraction does not
have a solution, the technique is to refine the abstraction, to make it “closer” to the original
problem and to solve again the abstraction. They perform such loop until one abstraction is
satisfiable or until the abstraction is in fact equivalent with the original problem. Such technique
is called CEGAR (Counter-Example Guided Abstraction Refinement) Clarke et al. (2003) and
it is efficient for some PSPACE-complete problems like QBF Janota et al. (2016), Planning Seipp
and Helmert (2013).

We tried a CEGAR approach for PSPACE-complete modal logics but the results were not as
good as we thought they would be. When the problem has a solution, the technique was efficient,
but when the problem was unsatisfiable, either we made too many steps of refinement or we run
out of the memory. To solve this problem, we propose a totally new abstraction-refinement
procedure that we call RECAR. The idea behind it is to use two levels of abstraction and not
just only one. One abstraction has less solutions than the original problem, but if we find a
solution for it, then we solved the original problem. The other abstraction has more solutions
than the original problem, but if we find no solution for it, then we know that it does not exist
a solution for the original problem. The key part of the proposed approach is that these two
abstractions are used interleavedly. Thus when we solve the first abstraction and the procedure
returns unsatisfiable, we use a reason for “why it is unsatisfiable” in order to compute the second
abstraction. And when the second abstraction is solved and the procedure returns satisfiable,
we use some information from the solution to refine the first abstraction more precisely.

We instantiated our RECAR framework for the modal logic K satisfiability problem with
the first abstraction being a translation into a SAT problem, in order to be competitive with the
state-of-the-art approaches. We also generalize the RECAR framework in order to deal with
composition of abstractions in order to outperform the different existing approaches, not only in
K, but in all the PSPACE modal logics we tried.

Synopsis

Let us now explain briefly, how this thesis is organised. First we will explain the existing
requirements, needed to understand our contributions:

• Part I, Chapter 1: Complexity Theory. We will present the important concepts of the
complexity theory. We will explain what it means for a problem to be NP-complete,

5



General Introduction

PSPACE-complete, undecidable, etc. We will also explain the concept of polynomial re-
duction. How we can translate one problem into another without loosing informations and
without a blow-up in the size of the input.

• Part I, Chapter 2: Logics. Because we will talk about different logics, like propositional
logic and modal logics, it is important to define their syntax and semantics properly. These
logics can also represent their formula into different forms such as CNF or NNF that we
will describe.

• Part I, Chapter 3: Decision Algorithms and Benchmarks. Then, we will describe the dif-
ferent algorithms used to decide the satisfiability in the different logics. We will describe,
how modern SAT solvers work, but also the different state-of-the-art approaches to decide
the satisfiability in the different modal logics. Because the structure of the benchmark may
have a huge impact on the performance of an approach, we will also describe the structural
differences between benchmarks that are randomly generated, crafted or resulting from a
polynomial reduction, and representing an industrial problem.

Then, we will describe our actual contributions, and how we solved the different modal logics
satisfiability problems with a SAT solver as follows:

• Part II, Chapter 1: The NP Modal Logics Satisfiability Problems. In this chapter, we will
present the specificity of the NP-complete modal logics. We will extract and prove correct,
from this specificity, a theoretical upper-bound on the size of the Kripke model. Thanks
to this upper-bound, we will propose an equisatisfiable SAT translation solvable by a SAT
solver that outperforms the state-of-the-art approaches on the benchmarks considered.

• Part II, Chapter 2: The Minimal K?5 Satisfiability Problem. Because the SAT-based ap-
proach provides unnecessarily large models, we will present in this chapter different tech-
nique to obtain the smallest model possible with respect to the number of possible worlds.
We will compare a linear/binary search for the model with a PBO/MaxSAT solver approach
and with an incremental SAT-based approach.

• Part II, Chapter 3: RECAR: An Abstraction Refinement Procedure. Then, we wanted to
solve the PSPACE-complete modal logics especially the modal logic K. What we first tried
was a basic CEGAR approach which was not very efficient. But thanks to this failure, we
developed a new abstraction-refinement framework using two levels of abstraction that we
will present in this chapter.

• Part II, Chapter 4: The Modal Logic K? Satisfiability Problem. Now that the RECAR
framework is presented, we can explain in detail how we instantiated it for the modal logic
K satisfiability problem. But also, how we managed to push the performance of our solver
MoSaiC forward and how we made it able to deal with several different propositional
modal logics.

From this point, all the preliminaries and the contributions will be presented. It will be time
to conclude and to sum-up all the different contributions that we proposed in this thesis. But it
will be also the time to propose the different perspectives that this thesis opens.

6



7



General Introduction

8



Part I

Preliminaries

9



Preliminaries

10



Chapter

1Complexity Theory

Contents
1.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Best, Worst and Average Case . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Different Types of Algorithm . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Computational Problems . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Decision Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Function Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Optimisation Problem . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Complement of a Decision Problem . . . . . . . . . . . . . . . . . . 17

1.3 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Complement of a Complexity Class . . . . . . . . . . . . . . . . . . 19

1.3.2 Relations Among Complexity Classes . . . . . . . . . . . . . . . . . 19

1.3.3 Polynomial Reductions and Completeness . . . . . . . . . . . . . . 20

1.3.4 Polynomial Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

“If P=NP, then the world would be a profoundly different place than we usually assume it to be. There
would be no special value in “creative leaps”, no fundamental gap between solving a problem and
recognizing the solution once it is found. Everyone who could appreciate a symphony would be Mozart;
everyone who could follow a step-by-step argument would be Gauß.”

Scott Aaronson

This first chapter will present the different theoretical concepts required to fully understand
the contributions presented in this thesis. We will first describe the different notions of complex-
ity, what does it mean for a problem to be NP-complete, PSPACE-complete, etc. But we will also
go through the notion of Turing machine, which can be deterministic, non-deterministic or can
possess an oracle. Then, from this notion, we will be able to describe the notion of completeness
and explain the difference between being NP-hard and NP-complete for example. And finally,
we will present one of the most important result in complexity: the polynomial hierarchy where
a complexity-class is recursively defined from sub-classes and Turing machine with oracles. This
chapter is definitely not a complete explanation of the complexity theory and we refer the reader
to Papadimitriou (1994), Turing (1938), Soare (2016) for more details.

11



Chapter 1. Complexity Theory

1.1 Computational Complexity

This section aims to describe the basic notions required to understand the following sections. In
a nutshell, the complexity of an algorithm is a measure of the resources needed for its execution.
Usually we measure the time and memory (space).

The complexity theory studies the asymptotic behaviour of the problems which are com-
putable with a fixed quantity of resources, not if the problem is or not computable. Given a
procedure P, the complexity theory studies the time and memory needed to compute P(n) with
respect to the size of the parameter n.

1.1.1 Best, Worst and Average Case

We want to evaluate the complexity of an algorithm independently from the execution speed
of a machine and from the quality of the code produced by a compiler. It is thus necessary to
consider the time spent by a program as a number of elementary operations TP(n) needed to
execute a program with an input of size n.

8

10

14

13

3

6

74

1

Figure 1.1: Example of a binary search tree of size 9 and depth 3.

Let us consider the following problem: we want to find an element in an ordered binary tree.
To perform this search, many techniques can exist. Let us consider the easiest one that we
will denote P, it will go through all the elements, by always starting from the top node, until
it finds the one we are looking for.

• The best case is that the element we are looking for is the root of the tree. In that case
TP(n) = 1;

• The worst case is when the tree is not well balanced and that we have to go through all
the elements. In that case TP(n) = n;

• The average case depends on how well balanced is the tree. But in the case of a perfectly
balanced tree, the average number of operations is TP(n) = log(n);

Example 1

In practice and basically when no precision is given, it will be the case that when we talk
about the complexity of an algorithm, we are discussing its worst case complexity. Indeed, the

12



1.1. Computational Complexity

number of elementary operations in the best case does not give any information on the real
behaviour of the algorithm. For the average case, even if it gives some information, it is difficult
to compute and it depends strongly on some hypothesis (in Example 1.1, how well balanced the
tree is).

Let two functions f : N → N and g : N → N. We say that f(n) is in O(g(n)) if and only if
there exist some n0 ∈ N and some c ∈ N such that:

f(n) ≤ c× g(n),∀n ≥ n0

Definition 1 (Computational Complexity)

1.1.2 Different Types of Algorithm

Obviously, the complexity of an algorithm will have a strong impact on how fast it can finish.
Let us assume that we need 10−9 seconds to execute an elementary operation (which is more
or less the case on nowadays computers). An idea of the time needed to execute an algorithm
according to its complexity is given in Table 1.1.

Complexity Type n=10 n=20 n=50 n=250 n=1000

O(1) Constant 1 ns 1 ns 1 ns 1 ns 1 ns

O(log(n)) Logarithmic 1 ns 1.3 ns 1.7 ns 2.3 ns 3.0 ns

O(n) Linear 10 ns 20 ns 50 ns 0.25 µs 1.0 µs

O(n× log(n)) Linearithmic 10 ns 26 ns 85 ns 0.6 µs 3 µs

O(n2) Quadratic 0.1 µs 0.4 µs 2.5 µs 62.5 µs 1 ms

O(n3) Cubic 1 µs 8 µs 0.12 ms 15.6 ms 1 s

O(2n) Exponential 1 µs 1 ms 13 days 1055 years 10283 years

O(n!) Factorial 3.6 ms 77 years 1047 years 10475 years 102550 years

Table 1.1: Time needed to execute an algorithm according to its complexity

As we can observe on the Table 1.1, the difference in execution time between the complexity
measures can reach multiple orders of magnitude. We can split the complexities in two categories:
the ones bounded by a polynomial expression and the ones which are not. O(log(n)) is bounded
by O(n), O(n× log(n)) is bounded by O(n2), and O(n2) is bounded by O(n3). The cases O(2n)
and O(n!) cannot be bounded by a polynomial expression. From this separation, we can thus
split the different algorithms in two categories: those which have a polynomial-time execution
and those which have not.

13



Chapter 1. Complexity Theory

An algorithm P is said to be polynomial if there is an integer i such that P is of complexity
in O(ni).

Definition 2 (Polynomial-Time Algorithm)

As explained before, the complexity of an algorithm is studied through an asymptotic be-
haviour. If an algorithm P with an input of size n performs exactly (n3 + (3×n2) + (10×n) + 9)
elementary operations, we will consider that the algorithm is of complexity O(n3).

An algorithm P is said to be exponential if it is of complexity in O(Cn
i
) for some constants

i and C with C > 1.

Definition 3 (Exponential-Time Algorithm)

We exclude the case of O(n!) here, we will consider only polynomial and exponential-time al-
gorithms. From now on, we know that there exists problems that can be solved with a polynomial-
time algorithm and other problems that can be solved with an exponential-time algorithm. But
one of the fundamental questions in complexity theory is whether there is at least one problem,
that requires in the best case, an exponential-time algorithm, or said otherwise, that can not be
solved in polynomial time.

1.2 Computational Problems

Algorithms are created for a given problem but complexity theorists try to classify problems that
can or cannot be solved with appropriately restricted resources. In their quest for classifying
problems, they created sets of problems that we will define. A computational problem can be
viewed as an infinite collection of tuples constructed with an instance together with a solution.
The input string for a computational problem is referred to as a problem instance, and should
not be confused with the problem itself.

Consider the problem of primality testing. The instance is a number (eg. 15) and the solution
is “yes” if the number is prime and “no” otherwise (in this case “no”).
Stated another way, the instance is a particular input to the problem, and the solution is the
output corresponding to the given input.
The computational problem of primality testing is the infinite collection of all the possible
instances and the corresponding answers.

Example 2 (The Primality Test)

14



1.2. Computational Problems

1.2.1 Decision Problem

From the notion of computational problem, we can then define some specific type of problems
according to the expected output. One particular class of computational problems is the class of
decision problems. They are one of the central objects of study in complexity theory. A decision
problem is a special type of computational problem whose answer is either “Yes” or “No”, or
alternatively either 1 or 0. A decision problem can be viewed as a formal language, where the
members of the language are instances whose output is yes, and the non-members are those
instances whose output is no. This kind of problem is formally defined as follows:

A problem Σ is a decision problem if and only if the possible outputs are “Yes” and “No”.
It means that the set of problems DΣ of the possibles instances of Σ can be split into two
disjoints sets:

• YΣ: the set of instances for which there is an algorithm solving Σ and answering “Yes”.

• NΣ: the set of instances for which there is an algorithm solving Σ and answering “No”.

Definition 4 (Decision Problem)

The Example 2 is an example of a decision problem, the expected outputs are “Yes” or “No”,
but there are many more decision problems.

1.2.2 Function Problem

There exists other categories of computational problems than the set of decision problems. An-
other famous category is the set of function problems. A function problem is a computational
problem where a single output is expected for every input, but the output is more complex
than that of a decision problem. For function problems, the output is not simply “Yes” or “No”.
Formally we have:

Let us consider L a language and a polynomial-time decidable relation RL such that for all
strings x there is a string y with RL(x, y) if and only if x ∈ L. The function problem P
associated with L is the following computational problem: Given x, find a string y such that
RL(x, y) if such string exists, if no such string exists, return “No”.

Definition 5 (Function Problem Papadimitriou (1994))

15



Chapter 1. Complexity Theory

One famous example of a function problem is the Prime decomposition problem. Given an
integer N , find an integer d with 1 < d < N that divides N (or returns d = N to conclude
that N is prime). As we can see, the output expected is not just “Yes” or “No”, but it is the
integer d.

Example 3 (The Prime Decomposition Problem)

1.2.3 Optimisation Problem

Another set of computational problems that will be addressed in this thesis is the set of optimi-
sation problems. An optimization problem is the problem of finding the best solution among all
solutions. It can be viewed as an extension of the function problem, when not any y are expected
solutions, but only those maximizing (or minimizing) a particular objective function f .

One famous example to illustrate how to define an optimisation problem can be the Knapsack
problem, defined precisely by Tobias Dantzig (1930), it refers to the commonplace problem of
packing the most valuable or useful items without overloading the luggage.

Given a set of items X = {x1, x2, . . . , xn}, each with a weight wi and a value vi, determine
the number of each item to include in a collection so that the total weight is less than or equal
to a given limit W and the total value is as large as possible. It is defined formally as follows:

maximize

n∑
i=1

vi × xi

subject to
n∑
i=1

(wi × yi) ≤W and yi ∈ {0, 1}.

Example 4 (The Knapsack Problem)

We could define many more sets of computational problems but what have been presented
is sufficient for this thesis. Furthermore, except in some cases, we will talk exclusively about
decisions problems. The reason for that is that function problems and optimisation problems
can be casted into a decision problem. For Optimisation Problem, instead of minimizing a value
X, we just have to ask the question “Is N the optimal value?”. If the answer is “Yes”, so the
problem is decided, if it is not the case, we just need to try another value N ′ and try again. To
illustrate how to cast a function problem into a decision problem, let us go back to Example 3,
we can define it as a decision problem as follows:

16



1.3. Complexity classes

Given an integer N and an integer M with 1 < M < N , does N have a factor d with
1 < d ≤ M? In that case, the expected output is no longer the factor d, but it is just “Yes”
or “No” as in any Decision Problem.
To ask the question if N is not prime, the problem needs to be instantiated with

√
N ≤M <

N .

Example 5 (The Prime Decomposition Decision Problem)

1.2.4 Complement of a Decision Problem

One final definition of kind of problem is the complement of a decision problem. The complement
of a decision problem is the decision problem resulting from reversing the yes and no answers.
It is defined formally as follows:

For a decision problem Σ, its complement is the decision problem coΣ such that:

• YcoΣ = NΣ;

• NcoΣ = YΣ;

Definition 6 (Complement of a Decision Problem)

The complement of a decision problem is the decision problem resulting from reversing the
“Yes” and “No” answers. We saw different set of problems and that there exists different kinds of
algorithms that can require polynomial-time or exponential-time. One question that can arise is:
“do some problems need an exponential time algorithm??” or more generally, do some problems
require a certain amount of resources (time, memory, . . . ). To answer this question, complexity
theorists created classes of problems that require a similar amount of a given resource.

1.3 Complexity classes

In this section, we assume that the reader is familiar with the notion of Turing machine (TM)
Turing (1938), which can be deterministic, non-deterministic or with an oracle. To formalize
the question of knowing if there exists at least one problem, which requires in the best case, an
exponential-time algorithm, complexity theorists created sets of problems of related resource-
based complexity. This kind of set of problems is called a complexity class and is defined as
follows:

17



Chapter 1. Complexity Theory

Let f be a function such that f : N → N. A set of problems creates a complexity class C if
they can all be solved by an abstract machine (such as a Turing machine) using O(f(n)) of
resource R, where n is the size of the input.

Definition 7 (Complexity class)

From this point, we can define four complexity classes: TIME, NTIME, SPACE and NSPACE,
where the resourceR will be the time or the space and the abstract machine will be a deterministic
Turing-machine or a non-deterministic Turing machine.

• TIME(f(n)) is the complexity class of all the problems which can be solved with a deter-
ministic Turing machine in time bounded by O(f(n)).

• NTIME(f(n)) is the complexity class of all the problems which can be solved with a non-
deterministic Turing machine in time bounded by O(f(n)).

• SPACE(f(n)) is the complexity class of all the problems which can be solved with a deter-
ministic Turing machine in space bounded by O(f(n)).

• NSPACE(f(n)) is the complexity class of all the problems which can be solved with a
non-deterministic Turing machine in space bounded by O(f(n)).

We can now describe the important complexity classes which are P, NP, EXPTIME, NEXP,
PSPACE and EXPSPACE that will be used in this thesis.

Model of computation Time constraint f(n) Time constraint poly(n) Time constraint 2poly(n)

Deterministic TM TIME(f(n)) P EXPTIME

Non-Deterministic TM NTIME(f(n)) NP NEXP

Table 1.2: Time-complexity classes of problems

Model of computation Space constraint f(n) Space constraint poly(n) Space constraint 2poly(n)

Deterministic TM SPACE(f(n)) PSPACE EXPSPACE

Non-Deterministic TM NSPACE(f(n)) PSPACE EXPSPACE

Table 1.3: Space-complexity classes of problems

For sake of simplicity, when we will talk about a complexity class, we will deal only with
the classes of decision problems, even if there exists complexity classes for counting problem (eg.
#P), function problems (eg. FP), etc. (see Papadimitriou (1994) for more details).

18



1.3. Complexity classes

1.3.1 Complement of a Complexity Class

Now that we know what is a complexity class and the complement of a decision problem, it is
now straightforward to define the complement of a complexity class. We will say that the class
coNP is the complexity class which contains all the complements of the problems inside NP.
Same for all the other complexity classes. More formally we have:

A set of complement of problems creates a complement of a complexity class if they can all
be solved by an abstract machine (such as a Turing machine) using O(f(n)) of resource R,
where n is the size of the input.
For a complexity class named P∗, its complement will be named coP∗.

Definition 8 (Complement of a Complexity Class)

Let us illustrate some examples of problems which belong to NP and their complements which
belong to coNP.

Problems in NP Problems in coNP

Let φ be a Boolean formula, is it
satisfiable?

Let φ be a Boolean formula, is it
unsatisfiable?

Let G be a graph, is there an Hamiltonian
path?

Let G be a graph, is it true that there is no
Hamiltonian path?

Let G be a graph and k an integer, is there
a clique of size k in G?

Let G be a graph and k an integer, is it true
that G does not have a clique of size k?

If one sees NP as the class where we can verify a model in polynomial time, coNP should be
seen as the class where we can verify a counter-example in polynomial time.

Example 6

1.3.2 Relations Among Complexity Classes

These classes looks all separated but they have relations among each other. We can also define
NP =

⋃
k∈N

NTIME(nk) and PSPACE =
⋃
k∈N

SPACE(nk). To represent more easily these complexity

classes and how they are linked with each other, let us illustrate their relations with each other
in Figure 1.2 and let us give a non-exhaustive list of the known results about these complexity
classes and their relations among each other.

19



Chapter 1. Complexity Theory

• P ⊆ NP ⊆ PSPACE;

• PSPACE ⊆ EXPTIME;

• EXPTIME ⊆ EXPSPACE;

• PSPACE ( EXPSPACE;

• P ( EXPTIME;

• P =? NP.

EXPSPACE

NEXP

EXPTIME

PSPACE

NP

P

Figure 1.2: A representation of the relations
among complexity classes

In the next part, we present the notion of completeness. This notion allows us to define the
notion of being the hardest problems in a complexity class.

1.3.3 Polynomial Reductions and Completeness

The notion of polynomial reduction allows us to cast a decision problem into another one that
is at least as hard as the first. Let Σ and Σ′ be two problems, and P an algorithm that takes as
input instances of Σ and returns as output an instance of Σ′. The notion of polynomial reduction
can be defined as follows:

P is called a polynomial reduction if and only if:

• P is a polynomial-time algorithm;

• α is a positive instance of Σ if and only if P(α) is a positive instance of Σ′.

Definition 9 (Polynomial Reduction)

But still, it is not because a problem is in C∗ that it is C∗-Hard. All the problems in NP
are also in PSPACE, but this does not mean that they are PSPACE-Hard. In order to really
separate these problems according to their inherent complexity, complexity theorists created the
notion of hardness and completeness. In a nutshell, we can establish that a problem is “as hard
as” another one if it can be polynomially reduced to this other one. This notion of hardness is
defined as follows:

20



1.3. Complexity classes

A problem Σ is C∗-Hard when for every problem Σ’ in C∗, there exists a polynomial reduction
P from Σ′ to Σ.

Definition 10 (C∗-Hard Problem)

That is, assuming a solution for Σ takes 1 unit time, we can use Σ’s solution to solve Σ’
in polynomial time. As a consequence, finding a polynomial algorithm to solve any C∗-hard
problem would give polynomial algorithms for all the problems in C∗.

Remark 1.1. Because we know from the Figure 1.2, the relation between the complexity classes,
we can make the following remarks:

• Any problem PSPACE-Hard is NP-Hard;

• Any problem NP-Hard is P-Hard.

From this point, we can now define the notion of completeness. If all the problems of one
complexity class C∗ can be polynomially reduced to one problem Σ of that complexity class, we
will say that Σ is C∗-complete.

A problem Σ is said to be C∗-complete if and only if Σ is C∗-hard and Σ is in C∗.

Definition 11 (Completeness)

Now that we have defined the notion of complexity class, of its complement and its com-
pleteness, we can now refine the Figure 1.2. We will just illustrate inside PSPACE to simplify
the Figure.

PSPACE

NP coNP

NP-complete coNP-completeP

Figure 1.3: Illustration of P, NP, coNP, NP-complete, coNP-complete and PSPACE

The Figure 1.3 is drawn under the assumptions still unproved, presented by Papadimitriou
(1994) and Arora and Barak (2009). The assumptions are as follows:

21



Chapter 1. Complexity Theory

• P 6= NP;

• coNP 6= NP;

• NP ∩ coNP 6= P;

• NP 6= PSPACE;

We will reason under these assumptions through the rest of the thesis. Complexity theorists
introduced a new notion of polynomial hierarchy to go gradually from NP to PSPACE.

1.3.4 Polynomial Hierarchy

We suppose the reader familiar with Turing Machine with Oracle.

For the oracle definition of the polynomial hierarchy, we define ∆P
0 = ΣP

0 = ΠP
0 = P where

P is the set of decision problems solvable in polynomial time. We note by PΣP
i a polynomial

Turing machine with an ΣP
i oracle. Then for i ≥ 0 define:

• ∆P
i+1 = PΣP

i

• ΣP
i+1 = NPΣP

i

• ΠP
i+1 = coNPΣP

i

Definition 12 (Polynomial hierarchy Stockmeyer (1976))

Such definition of the polynomial hierarchy implies the following relations:

• ΣP
i ⊆ ∆P

i+1 ⊆ ΣP
i+1

• ΠP
i ⊆ ∆P

i+1 ⊆ ΠP
i+1

• ΣP
i = coΠP

i

It is an open question whether any of these inclusions are proper, though it is widely believed
that they all are and we will assume that they are in this thesis. The union of all classes in the
polynomial hierarchy is the complexity class PH. We can define PH =

⋃
i≥0 ΣP

i . In the Figure
1.4, we can have a graphical representation of PH. The arrows indicate the inclusion of one
complexity class into an other.

We can thus refine our known inclusion, we have: P ⊆ NP ⊆ PH ⊆ PSPACE. One famous
open question is whether the polynomial hierarchy collapses.

22



1.3. Complexity classes

P

NP = ΣP
1

coNP = ΠP
1

∆P
2

ΣP
2

ΠP
2

∆P
3

ΣP
3

ΠP
3

. . . →

. . . →

. . . → PSPACE

Figure 1.4: Syntactic inclusions in polynomial hierarchy.

We will say that the PH collapses at the level ith if for some i ≥ 1, ΣP
i = ΠP

i . This would
imply that ∀j > i ΣP

j = ΠP
j = ∆P

j = ΣP
i .

Definition 13 (The Collapse of The Polynomial Hierarchy)

The equality between PH and PSPACE is not known and it is still an open question. But this
question could be answered by the following property of PH. PH is assumed to have no complete
problems, because we assume in this thesis that PH does not collapse.

If PH has at least one PH-complete problem then the polynomial hierarchy collapses.

Theorem 1 (Stockmeyer (1976))

Sketch of Proof. If there exists a problem φ that is PH-complete, then φ belongs to some
ΣP
i . By the definition of completeness, all other problems in PH can be reduced to φ. This means

that there cannot be any problems in PH that is harder than φ. q.e.d

If PH = PSPACE then the polynomial hierarchy collapses.

Corollary 1

The intuition behind Corollary 1 is that, because there exists PSPACE-complete problems
(eg. Modal Logic K Satisfiability Problem Ladner (1977), defined in the next chapter), if PH =
PSPACE, then by Theorem 1, the polynomial hierarchy collapses.

23



Chapter 1. Complexity Theory

1.4 Conclusion

We presented in this chapter many complexity classes and how they are related to each other.
In this thesis we will focus mainly on NP, PH and PSPACE but it was important to explain the
others. We made a lot of theoretical assumptions that we recall here.

Assumptions: From now on, we assume the following to be true:

1. P 6= NP;

2. coNP 6= NP;

3. NP ∩ coNP 6= P;

4. NP 6= PSPACE;

5. PH does not collapse;

6. PH 6= PSPACE;

From this point, we know complexity classes which are sets of problems requiring the same
amount of resources but we did not present any actual problem that belongs to these classes and
this is what we will do in the next chapter. We will present different logics, different normal forms
to represent a formula and we will explain to which complexity class belongs the satisfiability
problem in these logics.

24



1.4. Conclusion

25



Chapter 1. Complexity Theory

26



Chapter

2Logics

Contents
2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Axiomatic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

“Logic is invincible, because in order to
combat logic it is necessary to use logic.”

Pierre Boutroux

Reasoning using only logic was one of the dreams of the Greeks philosophers such as Aristotle
or Chrysippe de Sole for example. In a nutshell, the Ancient Greeks thought that we could
represent every knowledge and every theorem using only logical propositions linked with logical
operators. The idea behind it is to put the good axiomiatisation to represent any facts and
it is the root of the field of Knowledge Representation. According to the axiomiatisation and
the logical operators that we allow, we will have a more or less expressive logic which will be
more or less difficult to reason about. In this chapter, we will present two different logical-based
frameworks.

• Propositional Logic, allowing us to reason about propositions, which was proposed by Boole
(1854);

• Modal Logics, allowing to reason about modalities such as necessity, possibility, knowledge,
belief and it was proposed by Lewis and Langford (1932).

We will see that Propositional Logic can be seen as a special case of Modal Logics (the case
where there is no modality) and that Modal Logics are a decidable fragment of the First Order
Logic (Blackburn et al. 2006, Theo.18 p46).

27



Chapter 2. Logics

2.1 Propositional Logic

Classical Propositional Logic (also called Boolean Logic Boole (1854)) is called in this thesis
CPL. It is the logic used to reason about propositions. It is based on the notion of propositional
variables enunciated by Chrysippe de Sole (Stoïcian philosopher) in the IIIrd century BCE.
Somehow it can be seen as the Zero Order Logic, where there is no quantifier nor modality and
all the predicates have arity 0. But first, let us define formally its syntax and its semantics.

2.1.1 Syntax

The syntax of the propositional logic can be formally defined as follows:

Let P be an infinite countable set of propositional variables. The language of classical proposi-
tional logic is the set of formulas containing P, closed under the set of propositional connectives
{¬,∧}. It can also be defined by the following grammar in BNF, where p ranges over P:

〈Formula〉 ::= 〈Variable〉
| 〈Constant〉
| ( 〈Formula〉 ∧ 〈Formula〉 )
| ¬ 〈Formula〉

〈Variable〉 ::= p

〈Constant〉 ::= > | ⊥

We denote by > the propositional constant true (the tautology) and ⊥ the propositional
constant false (the contradiction). ∧ is an operator with arity 2 and ¬ is an operator with
arity 1. We define some operators as follows:

• φ ∨ ψ def
= ¬(¬φ ∧ ¬ψ)

• φ→ ψ
def
= ¬φ ∨ ψ

• φ↔ ψ
def
= (φ→ ψ) ∧ (ψ → φ)

Definition 14 (Language of Classical Propositional Logic)

The arity of the operators is important to denote if a formula is well formed or not. An
illustration of this definition is given in the following example:

28



2.1. Propositional Logic

Let P = {a, b, c, d} be a set of propositional variables. The formula φ1 = (a ∨ b) ∧ (c¬d) does
not belong to CPL because no rule allows to build (c¬d) whereas φ2 = (a∨ b)∧ (c∨¬d) does.
We will say in that case that φ1 is not well formed whereas φ2 is well formed.

Example 7

Now that we have defined the language (the syntactical aspects) of CPL, it is interesting to
have a look at its semantics.

2.1.2 Semantics

Regarding the semantical aspects of the classical propositional logic, the notion of interpretation
is important. Each variable can be assigned either to true or false. It is defined as follows:

Let P be an infinite countable set of propositional variables An interpretation is an assignment
of all propositional variables to true or false.
Said differently, it is a function P→ {true, false}.

Definition 15 (Interpretation)

We say that if a formula φ is evaluated to true for a given interpretation (also said satisfied
by that interpretation), then this interpretation is a model of φ.

The relation |= between interpretation M and formulas φ in CPL is recursively defined as
follows:

M |= p iff M(p) = true

M |= ¬φ iff M 6|= φ

M |= φ1 ∧ φ2 iff M |= φ1 andM |= φ2

M |= φ1 ∨ φ2 iff M |= φ1 orM |= φ2

Definition 16 (Satisfaction Relation in CPL)

Here is now a terminology list that we use in this thesis. The satisfaction relation depends
on the logic considered, but, without loss of generality, the notations used are always the same.

• If a formula φ has at least one model, we will say that this formula is satisfiable. We say
that the modelM satisfies the formula φ and we denote it byM |= φ.

29



Chapter 2. Logics

• If a formula is satisfied by all interpretations, we will say that this formula is valid. We
denote it |= φ.

• If a formula is not satisfied by any interpretation, we will say that this formula is unsat-
isfiable.

• Let F be a formula and T a theory, F is a theorem of T if and only if for all interpretation
I, if I |= T then I |= F .

We will then denote by ` φ the syntactical entailment (where φ ` ψ means that it exists a
formal proof of ψ from the formula φ) and by |= φ the semantical entailment. For the language
of propositional logic to be considered as a logic, it is still missing some mechanical aspects
to be able to reason about formulas. These mechanical aspects are called inference rules, and
one famous rule in propositional logic is the Modus Ponens, which is a short form for modus
ponendo ponens which is the Latin for “the way that affirms by affirming”.

The modus ponens can be summarized as “(1) φ implies ψ and (2) φ is asserted to be true, and

therefore ψ must be true”. It is noted:
φ→ ψ φ

ψ or using the sequent notation φ→ ψ, φ ` ψ.

Definition 17 (Modus Ponens (MP))

We just saw the different syntactical and semantical aspects of classical propositional logic.
We can in fact list the good properties that a logic system should have, as follows:

• Soundness: All theorems of the logic are valid (if ` φ then |= φ);

• Completeness: Any valid formula is a theorem (if |= φ then ` φ);

• Decidability: For any formula, there is a program that decides if it is a theorem or
not.

Definition 18 (Desirable Properties of a Logic)

Propositional Logic is sound, complete and decidable.

Theorem 2 (Bernays (1926))

The propositional logic has these desirable properties as demonstrated by Paul Bernays in
1926. The complexity of the satisfiability problem has been shown to be NP-complete by Cook
(1971). This implies that the validity problem is coNP-complete.

30



2.1. Propositional Logic

2.1.3 Normal Forms

We saw the language of classical propositional logic and we saw that the satisfiability problem
in propositional logic is decidable. But to discuss how we can decide efficiently the satisfiability
of a formula in propositional logic, we need to define some normal forms that have been created
to represent formulas. In a nutshell, it is a way to represent formulas without changing the
satisfiability.

Conjunctive Normal Form (CNF)

One famous normal form nowadays used to represent a propositional logic formula and to decide
its satisfiability is the Conjunctive Normal Form and it is defined as follows:

In CPL, a formula φ is in conjunctive normal form (or clausal normal form) if:

• It is a conjunction of one or more clauses;

• Each clause is a disjunction of literals;

• A literal is a propositional variable or its negation.

Definition 19 (Conjunctive Normal Form (CNF))

All of the following formulas on the variables p1, p2, p3, p4, and p5 are in CNF:

• ¬p1 ∧ (p2 ∨ p3)

• (p1 ∨ p2) ∧ (¬p2 ∨ p3 ∨ ¬p4) ∧ (p4 ∨ ¬p5)

• (p1 ∨ p2) ∧ p3

• (p1 ∧ p2)

The following formulas are not in CNF:

1. ¬(p2 ∨ p3)

2. (p1 ∧ p2) ∨ p3

3. p1 ∧ (p2 ∨ (p4 ∧ p5))

Example 8

Every propositional formula can be translated into a logically equivalent formula that is in
CNF. This transformation is based on rules about logical equivalences: the double negative law,
De Morgan’s laws, absorption laws and the distributive law which are as follows:

31



Chapter 2. Logics

• ¬(¬φ) ::= φ;

• ¬(φ ∨ ψ) ::= (¬φ) ∧ (¬ψ);

• ¬(φ ∧ ψ) ::= (¬φ) ∨ (¬ψ);

• φ ∨ (φ ∧ ψ) ::= φ;

• φ ∧ (φ ∨ ψ) ::= φ;

• φ ∨ (ψ ∧ χ) ::= (φ ∨ ψ) ∧ (φ ∨ χ);

• φ ∧ (ψ ∨ χ) ::= (φ ∧ ψ) ∨ (φ ∧ χ);

Let us take back the three non-examples just mentioned, they are respectively equivalent to
the following formulas, in CNF:

1. ¬p2 ∧ ¬p3

2. (p1 ∨ p3) ∧ (p2 ∨ p3)

3. p1 ∧ (p2 ∨ p4) ∧ (p2 ∨ p5)

Example 9

One disadvantage of the conversion to CNF is the size of the generated output. In some cases
this conversion to CNF can lead to an exponential explosion of the formula. An illustration of
such explosion is given in the following Example:

Translating the following non-CNF formula φ into CNF produces a formula with 2n clauses:

φ = (X1 ∧ Y1) ∨ (X2 ∧ Y2) ∨ · · · ∨ (Xn ∧ Yn)

In particular, the generated formula is:

(X1 ∨X2 ∨ · · · ∨Xn) ∧
(Y1 ∨X2 ∨ · · · ∨Xn) ∧
(X1 ∨ Y2 ∨ · · · ∨Xn) ∧
(Y1 ∨ Y2 ∨ · · · ∨Xn) ∧

. . .
(Y1 ∨ Y2 ∨ · · · ∨ Yn)

This formula contains 2n clauses; each clause contains either Xi or Yi for each i.

Example 10

32



2.1. Propositional Logic

There exist transformations into CNF that avoid an exponential increase in size by preserving
satisfiability rather than equivalence. One famous translation to do that is the Tseitin Translation
Tseitin (1983). These transformations are guaranteed to only linearly increase the size of the
formula, but introduce new variables. This means that the original formula and the result of
the translation are equisatisfiable but not equivalent. For some specific cases, Plaisted and
Greenbaum (1986) is even better because it does not encode equivalences between new variables
and sub-formulas but only implications, thus the CNF generated is smaller.

If we go back to φ from the Example 10, but this time we use the Tseitin translation, here is
what we obtain:

Translating the following non-CNF formula φ into CNF with the Tseitin translation gives us
the following:

φ = (X1 ∧ Y1) ∨ (X2 ∧ Y2) ∨ · · · ∨ (Xn ∧ Yn)

The generated formula is:

n∧
i=0

(Zi ↔ (Xi ∧ Yi)) ∧
n∧
i=0

(Zi)

This formula contains n additional variables, but only 4n clauses.

Example 11

Negation Normal Form (NNF)

Another famous normal form is the Negation Normal Form (NNF), which is defined as follows:

We will say that a formula φ is in negation normal form for CPL if the negation operator (¬)
is only applied to variables and the only other allowed operators are conjunctions (∧) and
disjunctions (∨).

Definition 20 (Negation Normal Form (NNF))

Every formula can be converted into NNF using the following rewrite rules (Robinson and
Voronkov 2001, page 204):

• (φ→ ψ) ::= (¬φ ∨ ψ)

• ¬(φ ∨ ψ) ::= (¬φ ∧ ¬ψ)

• ¬(φ ∧ ψ) ::= (¬φ ∨ ¬ψ)

33



Chapter 2. Logics

• ¬¬φ ::= φ

One could see the Conjunction Normal Form as a specific case of Negation Normal Form.
We will see that these two normal forms can be kept even in other logics than the Propositional
Logic. Indeed, we will consider other logics than Propositional Logic for the following limitations
of the propositional reasoning:

• Propositional Variables have a “static aspect” which is sometimes not convenient to reason
about some objects/properties;

• It is impossible to deal easily with common features from different objects;

• It is impossible to manipulate abstract propositions, without describing them explicitly in
the formula.

Obviously, there exists many Normal Forms and we do not plan to discuss all of them, just
the ones important in this thesis. We redirect the reader to Robinson and Voronkov (2001),
which discuss the different Normal Forms for many logics.

So now that we saw that the propositional logic is decidable but not expressive, it is worth
wondering if it exists a logic which is decidable and more expressive than propositional logic.
Such a logic exists, in fact there exist many of them according to the axiomiatisation we give,
they are called Modal Logics and we will describe them formally in the next section.

2.2 Modal Logics

The term modal logics comes from the fact that these logics are using modality to express a
sentence. A modality expresses the semantics of a verb, an adjective, an adverb, . . . , on a
formula.

Here is a non-exhaustive list of some modalities that we can use in modal logics:

• I know that

• I believe that

• It is necessary that

• It is possible that

• It is mandatory that

• It is permissible that

Example 12

Thanks to these modalities, we can express things in a more concise way than in proposi-
tional logic. We can express that something is true and I believe it to be false, without being
contradictory.

34



2.2. Modal Logics

2.2.1 Syntax

One can consider modal logics in two ways.

• It can be seen as the logic obtained from propositional logic by adding a modal connective
�, ie., if φ is a formula, then �φ is also a formula. Intuitively, �φ asserts that φ is
necessarily true. Dually, ¬�¬φ, abbreviated as ♦φ, asserts that φ is possibly true.

• It can also be seen as a decidable fragment of First Order Logic, where the modalities
replaces the quantifier, where the predicates have a bounded arity and where the models
have the finite-model property.

We focus on the definition where modal logics is an extended version of CPL. We will use
the Kripke semantics Kripke (1959). For more details on modal logic, especially on the notion
of possible worlds, the reader may consult for example Chellas (1980).

Let P be an infinite countable set of propositional variables and � a unary modal operator.
The language of modal logic (noted L) is the set of formulas containing P, closed under the
set of propositional connectives {¬,∧} and �. The language can be defined by the following
grammar in BNF, where p ranges over P:

〈Formula〉 ::= 〈Variable〉
| 〈Constant〉
| (〈Formula〉 ∧ 〈Formula〉)
| ¬ 〈Formula〉
| � 〈Formula〉

〈Variable〉 ::= p

〈Constant〉 ::= > | ⊥

We denote by > the propositional constant true and ⊥ the propositional constant false.
We construct the usual operator in the same way as in CPL plus the modality operator as
follows:

• ♦φ
def
= ¬�¬ψ

Definition 21 (Language of Modal Logic)

The particularity of L is that there exists many different modal logics according to which
axioms are considered. In this section, we will only talk about propositional modal logics re-
specting axiom (K), but there exists many more modal logics and we invite the reader to consult
Blackburn et al. (2006) for more information on this topic.

35



Chapter 2. Logics

2.2.2 Axiomatic Theory

Indeed, the axiomiatisation is an important part of the modal logic theory. In this thesis, we will
talk about the Normal Modal Logics. A normal modal logic is a logic which extends propositional
logic, with a modality � and which has a least the following rules:

φ→ ψ φ

ψ The Modus Ponens (MP)

φ

�φ The Necessitation Rule (N)

�(φ→ ψ)→ (�φ→ �ψ) The Kripke Axiom (K)

The Modal Logic K was one of the first modal logic studied, it has the property to be decidable
and the complexity of its satisfiability problem is PSPACE-complete (see Ladner (1977), Halpern
and Moses (1992) for more details).

There exists many axioms for modal logic, but we will consider here the most common ones
which are:

φ→ �φ (Triv)
�(φ→ ψ)→ (�φ→ �ψ) Axiom (K)
�φ→ ♦φ Axiom (D)
�φ→ φ Axiom (T)
φ→ �♦φ Axiom (B)
�φ→ ��φ Axiom (4)
♦φ→ �♦φ Axiom (5)

The modal logics are named after the axioms they respect. Thus:

• Modal Logic K is the modal logic containing axiom (K) plus the necessitation rule (�>).

• Modal Logic KT is the modal logic K containing axiom (T);

• Modal Logic KT5 is the modal logic KT containing axiom (5);

• . . . .

Definition 22 (Most Common Axioms)

36



2.2. Modal Logics

But even if we can name the logics according to their axioms, some have “historical name”
because they have been considered before Kripke (1959). For example:

• S5 = modal logic KT5;

• weak-S5 = modal logic KD45;

• S4 = modal logic KT4;

• B = modal logic KTB;

Obviously, if it exists S5 and S4, there exists also other modal logics Si, but we will not talk
about them in this thesis and we refer the reader to Lewis and Langford (1932) for more details.
The axioms have also different property between them, like for example ((T) → (D)) or ((T) ∧
(5) → (B)).

In fact, we can graphically represent the link between the different logics, with the Modal
Logic Cube displayed in Figure 2.1. Interestingly enough, this cube has been formally verified by
a High-Order Automated Reasoner. The results of this verification may be found in Benzmüller
(2010).

(T )

(K) (B)

(4)

(5)

T KTB

D

K

KDB

KB

K5

KD5

S4 S5

KD4

K4 KB5K45

KD45

≡ KT5 ≡ KBD4 ≡ . . .

≡ KB4 ≡ KB45

Figure 2.1: The Modal Logic Cube

It is also interesting to notice that on the Figure 2.1, there are only 15 different modal logics
whereas if we have 5 axioms (Def. 22), we should have 32 (25) different logics. This comes from
the fact that some logic may have different axiomatic-name, such as S5 which is KT5 = KBD4
= KBD5 = KBT4 = KBT5 = KDT5 = KT45 = KBD45 = KBT45 = KDT45 = KBDT4 =
KBDT5 = KBDT45. Now that we defined modal logics with their syntax and their axiomatic
theories, it is time to see what is their semantics.

37



Chapter 2. Logics

2.2.3 Semantics

The semantics used here to interpret normal modal logics is the Kripke Semantic Kripke (1959).

Let us consider the following example where P = {a, b} and the formula φ is ♦(a ∧�b). This
example will be used through this part of the preliminaries.

Example 13

Let P be a finite non-empty set of propositional variables. A Kripke Structure is a triplet
K = 〈W,R, V 〉, where:

• W is a non-empty set of possible worlds,

• R ⊆W ×W is a binary accessibility relation

• V : P → 2W is a valuation function which associates, to each p ∈ P, the set of possible
worlds from W where p is true.

Definition 23 (Kripke Structure)

A Pointed Kripke Structure is a pair 〈K, w〉, where K is a Kripke Structure and w is a possible
world inW . Thereafter, whenever we use the term ‘Kripke Structure’ we refer to ‘Pointed Kripke
Structure’.

The relation |= between Kripke Models and formulae in L is recursively defined as follows:

〈K, w〉 |= p iff w ∈ V (p)

〈K, w〉 |= ¬φ iff 〈K, w〉 6|= φ

〈K, w〉 |= φ1 ∧ φ2 iff 〈K, w〉 |= φ1 and 〈K, w〉 |= φ2

〈K, w〉 |= �φ iff ∀w′s.t. (w,w′) ∈ R implies 〈K, w′〉 |= φ

Definition 24 (Satisfaction Relation)

As usual, a formula φ ∈ L is valid (noted |= φ) if and only if it is satisfied by all Kripke
Models 〈K, w〉. A formula φ ∈ L is satisfiable if and only if 6|= ¬φ.

Definition 25 (Validity)

38



2.2. Modal Logics

Here a Kripke model 〈K, w〉 satisfying the formula φ from Example 22. For the sake of
compactness, we represent R as sets.

• W = {w0, w1, w2, w3},

• R = {〈w0, {w3}〉, 〈w1, {w1, w2, w3}〉,
〈w2, {w1, w2, w3}〉, 〈w3, {w1, w2, w3}〉},

• V = {〈a, {w3}〉, 〈b, {w1, w2, w3}〉}.

a, b

w3w0

bw1

b w2

Figure 2.2: A textual and graphical representation of M |= ♦(a ∧�b)

Example 14

All Kripke Models satisfy (K) as explained in Chellas (1980), and this is why we will call
them here K-models. A K-model may satisfy other schemas, a list of such schemas and the
properties corresponding to them is given on Table 2.1. Theses schemas have the particularity
that they add constraints on the Kripke models, as an example we can see that a KT-model will
be a reflexive K-model.

Name Condition on K First Order constraint Schema

axiom (K) None �(φ→ ψ)→ (�φ→ �ψ)

axiom (T) Reflexivity ∀w.R(w,w) �φ→ φ

axiom (B) Symmetry ∀w1.∀w2.(R(w1, w2)→ R(w2, w1)) φ→ �♦φ

axiom (D) Seriality ∀w1.∃w2.R(w1, w2) �φ→ ♦φ

axiom (4) Transitivity ∀w1.∀w2.∀w3.((R(w1, w2) ∧R(w2, w3))→ R(w1, w3)) �φ→ ��φ

axiom (5) Euclideanity ∀w1.∀w2.∀w3.((R(w1, w2) ∧R(w1, w3))→ R(w2, w3)) ♦φ→ �♦φ

Table 2.1: axioms schemata and corresponding structural properties

These correspondences were proposed by Kripke (1959), and it is important to understand
them correctly. Every reflexive K-model satisfies T, but there are non-reflexive K-models that
satisfy T as well. However, every finite K-model satisfying T has an “equivalent” reflexive K-
model. Analogously for the other properties.

Two K-models are equivalent if and only if they are bisimilar. The notion of bisimulation
is intended to capture worlds equivalences and relations equivalences. It is formally defined as
follows:

39



Chapter 2. Logics

We denote by M, s ↔ N, t that there exists, Z, a bisimulation that connects s and t. A
bisimulation Z between models M = 〈W,R, V 〉 and N = 〈W ′, R′, V ′〉 is a relation on W ×W ′
such that if sZt then the following hold:

Invariance V (s) = V ′(t) (the two worlds have the same valuation),

Zig if for some s′ ∈W , (s, s′) ∈ R, then there is a t′ ∈W ′ with (t, t′) ∈ R′ and s′Zt′.

Zag same requirement in the other direction.

Definition 26 (Bisimulation Blackburn et al. (2006))

If one wants to find a finite KT-model, it is safe to search only among reflexive K-models.
Let M and M ′ be two models, M ′ be in bisimulation with M , M ′ will be call a bisimular of M .
Analogously for the other properties.

Let us illustrate this bisimulation on an example. Let us consider the following formula φ = �p
that we want to determine the satisfiability in modal logic S4. We know from axiom (4) that
for any formula φ, we have �φ → ��φ and from axiom (T) that �φ → φ. So one could
consider a line-shaped Kripke model as follows, to satisfy the formula:

p

w0

p

w1

p

w2

. . .

w...

p

wn

This model satisfies the formula φ while respecting axioms (T) and (4) in a way that it
respects for any sub-formula the two axioms (T) and (4), but, it is not transitive nor reflexive.
However, this model possesses necessary a bisimilar which is transitive and reflexive, thanks
to the correspondences presented by Kripke (1959). Such a bisimilar could be for example:

p

w0

Example 15

Following Table 2.1, we will call KT-model a reflexive K-model; a KD-model is a serial K-
model; a K5-model is an euclidean K-model. In fact, all the combinations of these properties
give rise to 15 different kinds of models (presented in Table 2.2).

The satisfiability problems for those different logics have different complexities. But, if we
restrict our attention to one kind of model, we can define one modal logic where validities are
the formulas that are satisfied only by those models. Formally we have:

40



2.2. Modal Logics

Structure Kind Structural Properties Structure Kind Structural Properties

K ∅ (S4) KT4 = KDT4 Reflexive and Transitive

KB Symmetric KD4 Serial and Transitive

KT = KDT Reflexive KD Serial

K4 Transitive KDB Serial and Symmetric

KBT = KBDT Symmetric and Reflexive K45 Transitive and Euclidean

K5 Euclidean KD5 Serial and Euclidean

KB4 = KB5 = KB45 Symmetric and Transitive KD45 Serial, Transitive and Euclidean

(S5) KT5 = KBD4 = KBD5 = KBT4 = KBT5 = KDT5 = KT45 = KBD45
= KBT45 = KDT45 = KBDT4 = KBDT5 = KBDT45

Equivalence

Table 2.2: The Different Kinds of Kripke Models

Let ? range over the model kinds in one of the 15 different kinds in Table 2.2. A formula
φ ∈ L is ?-valid (noted |=? φ) if and only if it is satisfied by all ?-models 〈K, w〉. A formula
φ ∈ L is ?-satisfiable if and only if 6|=? ¬φ. A ?-model that satisfies a formula φ will be called
a ‘?-model for φ’.

Definition 27 (?-Validity)

From this definition, it is now interesting to notice that some satisfiability entails some others.
For instance, one can see that if a formula φ is KT5-satisfiable, then φ is also K-satisfiable,
KT-satisfiable, S4-satisfiable, etc. Whereas, if a formula φ is K-unsatisfiable, then it is also
KT-unsatisfiable, K4-unsatisfiable, S4-unsatisfiable, etc.

If we consider only the axioms we just presented, we can obtain the following theorem:

Any normal modal logic based on axiom K + {(D), (T ), (B), (4), (5)} has the good properties
presented in Def. 18 Kripke (1959), Ladner (1977).

Theorem 3

It was already shown by Ladner that Modal Logic K is PSPACE-complete and that modal logic
S5 is NP-complete. The article Halpern and Rêgo (2007) is capital to understand why there is
such an NP-PSPACE gap between the satisfiability problems. In a nutshell, their conclusion is
that the gap is caused only by the negative introspection axiom also called “axiom (5)”. They
showed that any modal logic which contains the axiom (5) will have a satisfiability problem
NP-complete. All the others which do not contain (5) are PSPACE-complete.

From this moment, it is worth noticing on Figure 2.3 that there is one logic that “contains”
the others. We have K5 which is the smallest NP-complete modal logic with respect to the
number of axioms. Moreover, it is also known that any normal modal logic has the Finite Model

41



Chapter 2. Logics

K5

KD5 K45

S5

KB5

KD45

S5

KD45KB5

KD5K45

K5

+(T)

+(D) +(B)

+(4)+(D)+(B)

+(4)

+(B)

+(D)

Figure 2.3: Relation between NP modal logics

Property Urquhart (1981). In a nutshell, it means that we know that it exists an upper-bound
on the size of a ?-model (or at least, an upper-bound on one of its bisimilar). We will then have
a series of theorems which state which upper-bound is there for which logic.

It it important to denote also that, as in propositional logic, a modal logic formula can be
transformed in Negation Normal Form (NNF) with the following rewrite rules:

• (φ→ ψ) ::= (¬φ ∨ ψ)

• ¬(φ ∨ ψ) ::= (¬φ ∧ ¬ψ)

• ¬(φ ∧ ψ) ::= (¬φ ∨ ¬ψ)

• ¬¬φ ::= φ

• ¬�φ ::= ♦¬φ

From now on, we will consider that any modal logic formula will be in NNF. To define the
upper-bound in modal logic K, we need a final definition about the modal logic formulas which
is: their modal depth.

42



2.2. Modal Logics

The depth of a formula φ in L, denoted depth(φ), is the highest number of nested modalities
as it is defined as follows (where ⊕ ∈ {∧,∨,→,↔}):

depth(p) = depth(>) = depth(⊥) = 0

depth(¬φ) = depth(φ)

depth(φ⊕ ψ) = max(depth(φ),depth(ψ))

depth(�φ) = depth(♦φ) = 1 + depth(φ)

Definition 28 (Modal Depth)

We also need the formal definition of the number of atoms, which is as follows:

Algorithm 2.1: countAtoms(φ)

Data: φ a modal logic formula in NNF, n the numbe of propositional variables in φ
Result: The number of distinct occurences of atoms in φ

1 begin
2 nbV arsPos← [0, 0, . . . , 0]
3 nbV arsNeg ← [0, 0, . . . , 0]
4 Function countNbVars(φ)
5 switch φ do
6 case φ = (ψ ∧ χ) do
7 countNbVars(ψ)
8 countNbVars(χ)
9 end

10 case φ = (ψ ∨ χ) do
11 countNbVars(ψ)
12 countNbVars(χ)
13 end
14 case φ = �ψ do countNbVars(ψ)
15 case φ = ♦ψ do countNbVars(ψ)
16 case φ = p do nbVarsPos[p] = 1
17 case φ = ¬p do nbVarsNeg[p] = 1
18 end
19 end
20 countNbVars(φ)

21 return
n∑
i=1

(nbV arsPos[i]) +
n∑
i=1

(nbV arsNeg[i])

22 end

43



Chapter 2. Logics

The number of atoms in φ in L is the output of the Algorithm 2.1 on φ.

Definition 29 (|Atom(φ)|)

Given a modal logic formula φ, if there is no Kripke model of size lower than Atom(φ)depth(φ),
then φ is unsatisfiable in K.

Theorem 4 (Sebastiani and McAllester (1997))

Given a modal logic formula φ, if there is no Kripke model of size lower than |φ|2×|φ|+depth(φ),
then φ is unsatisfiable in {K,K4,KD4,KD,KT,KB,KDB,KB, S4} |φ| denotes the size of
the formula (where each atom occurence and operators occurence is counted as one).

Theorem 5 (Nguyen (1999))

Now we also need a bound for the NP-complete modal logics, according to complexity theory,
such an upper-bound should be linear in the size of the input and not exponential. We present
such an upper-bound is presented in Theorem 6.

Given a modal logic formula φ, if there is no Kripke model of size lower than |φ|, then φ is
unsatisfiable in {K5,K45,KD5,KB5,KD45, S5}. With |φ| being the size of the formula as
denoted in Halpern and Rêgo (2007).

Theorem 6 (Halpern and Rêgo (2007))

One upper-bound is more precise but only for the modal logic S5 and it is nm(φ), where nm
is the number of modalities in the formula Ladner (1977). In the rest of the thesis we will denote
by UB(φ), the upper-bound on the size of the Kripke model that could satisfy φ. We will make
clear all the time, which logic we are talking about.

Now that we described the different modal logics, it is worth to consider how we can decide
the satisfiability of a formula in that logic and with which kind of procedure, and this is what we
will see in the following chapter. We will first describe the decision procedures for propositional
logic and then the decision procedures for modal logics.

44



2.2. Modal Logics

45



Chapter 2. Logics

46



Chapter

3Decision Algorithms and Benchmarks

Contents
3.1 Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Resolution and Unit Propagation . . . . . . . . . . . . . . . . . . . 49
3.1.2 Conflict Analysis and Clause Learning . . . . . . . . . . . . . . . . 52
3.1.3 Choice of variable and choice of polarity . . . . . . . . . . . . . . . 54
3.1.4 Latest features of modern SAT solvers . . . . . . . . . . . . . . . . 55

3.2 Algorithms for Modal Logics . . . . . . . . . . . . . . . . . . . . . 56
3.2.1 Tableaux methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Translation-based methods . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Structural Impact Of The Benchmarks . . . . . . . . . . . . . . . 63
3.3.1 Random Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Crafted Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 68

“Proving that I am right would be
recognizing that I could be wrong”

Pierre-Augustin Caron de Beaumarchais,
The Marriage of Figaro, 1778

In this chapter, we will discuss the different procedures that exist to decide the satisfiability
of a formula φ in propositional logic, especially the famous modern SAT solvers Marques-Silva
and Sakallah (1999), Moskewicz et al. (2001) (for a complete view of what is actually a SAT
solver see Biere et al. (2009)). We will also discuss satisfiability in modal logics, ie. the different
state-of-the-art approaches that we will use to compare our approaches during this thesis. Then
we will discuss the fact that one technique cannot be the “best technique ever” and is highly
dependent on the structure of the benchmarks.

3.1 Modern SAT Solvers

We will discuss the modern SAT solvers in this section because they will be the cornerstone of
our contributions in this thesis. Indeed, as stated in the introduction, we want to push, as far
as possible, the performance of SAT-based modal logic solvers. But in order to fully understand
how the contributions work, one needs to understand the main components of a modern SAT
solver and this is what will be presented here.

47



Chapter 3. Decision Algorithms and Benchmarks

There exists many techniques to decide the satisfiability of a propositional logic formula
φ. Usually the formula are considered in CNF (Def. 19). Historically, the first approaches were
“incomplete”, t@hey did not go through the whole search tree. They were designed to find quickly
if the formula is satisfiable, ie. it admits a model, but were not efficient (and sometimes even
not able) to prove the unsatisfiability. We can cite as such examples of incomplete approaches:

• Genetic Algorithms Hao and Dorne (1994);

• Survey Propagation Braunstein et al. (2005);

• Variable Neighbourhood Decomposition Hansen et al. (2001);

• The Stochastic Local Search Selman et al. (1992), Kautz and Selman (1996), Hoos and
Stützle (1999).

Worth noticing that early local search solvers were designed to solve optimisation problems and
not decision problems. Another specificity of these solvers is that they are much more efficient
on random generated benchmarks than their complete counterpart.

Modern SAT solvers are complete, ie. they can decide both satisfiability and unsatisfiability,
it will go in the worst case, through all the possibility in the search-tree. When we will talk
about SAT solvers, we will talk especially about the CDCL (Conflict Driven Clause Learning)
approaches Marques-Silva and Sakallah (1999), Eén and Sörensson (2003), Biere et al. (2009).
We will not go through the historical progression of SAT solver with the Davis and Putnam (DP)
Algorithm Davis and Putnam (1960) nor its extension call DPLL Algorithm Davis et al. (1962)
and we redirect the reader to Biere et al. (2009) for such historical survey.

φ ∈ CPL

Propagate()

Conflict?

All Vars
Assigned?

Conflict
Analysis()

SATDecide()

TopLevel
Conflict?

UNSAT
Learn() and
BackJump()

yes

no

yes
no yes

no

Figure 3.1: Schema of the CDCL Framework

48



3.1. Modern SAT Solvers

So, as we can see in Figure 3.1, a modern SAT solver has few components that we will start
to describe in order to understand globally how such a solver is able to decide the satisfiability
of a formula in CPL.

3.1.1 Resolution and Unit Propagation

Two important principles in SAT solvers are the resolution rule and unit propagation. Let us
define also that two literals are said to be complements if one is the negation of the other (in the
following, ¬c is taken to be the complement to c). The resolution rule is a generalisation of the
Modus Ponens. The resolution rule Robinson (1965) is defined as follows:

The resolution rule in propositional logic is a single valid inference rule that produces a new
clause (called resolvent) implied by two clauses containing complementary literals. Exactly
two complementary literals must be used. Formally, we have:

x ∨ α ¬x ∨ β
α ∨ β

Definition 30 (Resolution Rule Robinson (1965))

The resolution rule is sound but incomplete (at least for clausal consequence, it is complete
for deciding unsatisfiability). Said otherwise, it is not guaranteed to infer all the clauses implied
by a CNF formula. However, the resolution is refutationally complete, ie., it ensures that if a
formula is unsatisfiable, then it will infer the empty clause (⊥). It is common to represent the
sequence of resolutions performed by an algorithm until the empty clause with a refutation-tree.

To obtain a complete proof system, one needs also the factorisation rule which is defined as
follows:

The factorisation rule in propositional logic is the following inference rule:

α ∨ α ∨ β
α ∨ β

Definition 31 (Factorisation rule)

From this point, we can now define Unit Resolution.

49



Chapter 3. Decision Algorithms and Benchmarks

The unit resolution of a CNF formula φ is the application of all the resolutions possible which
have in common a variable v which appears in a unit clause (a clause which contains only v).
Such algorithm will be noted UR(φ, v).

Definition 32 (Unit Resolution (UR) Davis and Putnam (1960))

It safe then to remove all the clauses where v appears, if we have all the resolutions possibles
in the formula.

Let φ = ((¬a ∨ ¬b) ∧ (a ∨ c) ∧ (b ∨ c) ∧ (¬c ∨ d) ∧ a). If we apply the unit resolution on the
variable a (which appears in a unit clause), we add the clause (¬b) in the formula φ. Then
by removing all the clauses where a appears, we can have φ = (¬b ∧ (b ∨ c) ∧ (¬c ∨ d)).

Example 16

To apply the unit resolution on a literal l and then delete all the clauses where l appears
is equivalent to assign l to the truth value >. More precisely, it consists into replacing all the
occurrences of l by true and all the occurrences of ¬l by false and then simplify.

This property came from the fact that all the interpretations that could satisfy the formula
φ must satisfy all the literals which belong to the unit clauses. The Unit Propagation is to apply
the unit resolution until we reach a fixed point.

Let φ be a CNF formula, we denote as φ∗ the closure by unit propagation of φ. φ∗ is defined
by the Algorithm 3.1. Worth to notice that φ and φ∗ are equisatisfiable.

Definition 33 (Unit Propagation)

Let us illustrate now, how the UnitPropagation is working in practice. We will give two
examples: one to see how UP can decide the satisfiability of a formula, and also how we can
retrieve the model and another example to see how UP can reach a fixed point.

50



3.1. Modern SAT Solvers

Algorithm 3.1: UnitPropagation (UP)
Input: a CNF formula φ
Output: > if φ is satisfiable, ⊥ if φ is unsatisfiable, φ∗ if we reach a fixed point

1 φ∗ = φ;
2 if (∃c, a unit clause containing v in φ∗) then
3 φ∗ = UR(φ∗, v); // deletion of all clauses containing v
4 if (φ∗ = >) then return > ;
5 if (φ∗ is contradictory) then return ⊥ ;
6 return UnitPropagation(φ∗);

7 else
// A fixed point is reached

8 return φ∗

Let φ = (a ∧ (¬a ∨ ¬b) ∧ (a ∨ c) ∧ (b ∨ c) ∧ (¬c ∨ d)). We have:

φ∗ = (a ∧ (¬a ∨ ¬b) ∧����(a ∨ c) ∧ (b ∨ c) ∧ (¬c ∨ d))

φ∗ = (¬b ∧ (b ∨ c) ∧ (¬c ∨ d))

φ∗ = (c ∧ (¬c ∨ d))

φ∗ = (d)

φ∗ = ∅

Thus, φ is satisfiable. We can even obtain a model by seeing which variables have been used
for the resolution steps. Here the model found is I = {a,¬b, c, d}.

Example 17

Let φ = (c ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ e) ∧ (¬c ∨ ¬e)). We have:

φ∗ = (c ∧������
(a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ e) ∧ (¬c ∨ ¬e))

φ∗ = (¬e ∧ (a ∨ ¬b ∨ e))
φ∗ = (a ∨ ¬b)

We no longer have unit clauses, then we reached a fixed point.

Example 18

For now, it seems straightforward to decide the satisfiability of a CNF formula in CPL.
However, the complexity is telling us that it is intractable, the problem is NP-complete Cook
(1971), so there must have a tricky-part somewhere.

51



Chapter 3. Decision Algorithms and Benchmarks

First, the number of resolvents that can produce a CNF formula can blow-up. It is the case
for the PigeonHole problems Haken (1985) where any resolution proof must have an exponential
size.

Second, we will often reach a fixed point. Thus we then have to make a choice, and then if
we reach the empty clause, it does not mean that the problem is really unsatisfiable, just that
we reached a conflict and some choices we did were maybe wrong. Let us then, in the next part
explain how we can analyse such a conflict and learn from it to avoid making the same mistake
again.

3.1.2 Conflict Analysis and Clause Learning

The goal of the clause learning phase is to find a clause which allows to avoid reproducing twice
the same work in the search-tree. To deduce such clauses that we call Learnt Clauses, we need
to find and analyse the set of literals which is responsible of a conflict Bayardo Jr. and Schrag
(1997), Marques-Silva and Sakallah (1999). But to do so, we will need a set of definitions.

Let φ a CNF formula in propositional logic.
Let Sd = 〈d1, d2, . . . , d〉 with di decided literals be called a decision sequence of φ.
Let Sp = 〈d, {p1, p2, . . . , pm}〉 called a propagation sequence, obtained from φ, such that:

• d is a decision, or ∅ to specify that no decision has been taken;

• pj are propagated literals (unit clauses) thanks to the UnitPropagation.

A decision/propagation sequencemay be seen as an interpretation I representing multiple
decision sequences and propagation sequences noted:
I = 〈∅, 〈x0,1, x0,2, . . . , x0,i〉〉, 〈d1, 〈x1,1, x1,2, . . . , x1,j〉〉, . . . , 〈dn, 〈xn,1, xn,2, . . . , xn,k〉〉.
In such case n will be called the decision level of dn.
The resulting formula will be noted: φ|d1,...,dn .

Definition 34 (Decision/Propagation Sequence)

So now we know how to represent a sequence of decisions and their associated propagation,
let us illustrate how we reach a conflict and we can avoid it:

52



3.1. Modern SAT Solvers

Let φ be a CNF formula composed of the following six clauses using nine variables:

c1 = (x1 ∨ x2) c2 = (x1 ∨ x3 ∨ x7) c3 = (¬x2 ∨ ¬x3 ∨ x4)

c4 = (¬x4 ∨ x5 ∨ x8) c5 = (¬x4 ∨ x6 ∨ x9) c6 = (¬x5 ∨ ¬x6)

If we consider the following decision sequence Sd = 〈¬x7,¬x8,¬x9,¬x1〉 we have:

φ = (x1 ∨ x2) ∧ (x1 ∨ x3 ∨��x7) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x4 ∨ x5 ∨ x8) ∧ (¬x4 ∨ x6 ∨ x9) ∧ (¬x5 ∨ ¬x6)

φ|¬x7
= (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x4 ∨ x5 ∨��x8) ∧ (¬x4 ∨ x6 ∨ x9) ∧ (¬x5 ∨ ¬x6)

φ|¬x7,¬x8
= (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x4 ∨ x5) ∧ (¬x4 ∨ x6 ∨��x9) ∧ (¬x5 ∨ ¬x6)

φ|¬x7,¬x8,¬x9
= (��x1 ∨ x2) ∧ (��x1 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x4 ∨ x5) ∧ (¬x4 ∨ x6) ∧ (¬x5 ∨ ¬x6)

φ|¬x7,¬x8,¬x9,¬x1
=��x2 ∧��x3 ∧ (¬��x2 ∨ ¬��x3 ∨ x4) ∧ (¬x4 ∨ x5) ∧ (¬x4 ∨ x6) ∧ (¬x5 ∨ ¬x6)

φ|¬x7,¬x8,¬x9,¬x1,x2,x3
=��x4 ∧ (¬��x4 ∨ x5) ∧ (¬��x4 ∨ x6) ∧ (¬x5 ∨ ¬x6)

φ|¬x7,¬x8,¬x9,¬x1,x2,x3,x4
=��x5 ∧ x6 ∧ (¬��x5 ∨ ¬x6)

φ|¬x7,¬x8,¬x9,¬x1,x2,x3,x4,x5
= x6 ∧ ¬x6

φ|¬x7,¬x8,¬x9,¬x1,x2,x3,x4,x5,x6
= ⊥

The conflict is obtained from the following decision/propagation sequence: I =
〈∅, 〈∅〉〉, 〈¬x7, 〈∅〉〉, 〈¬x8, 〈∅〉〉, 〈¬x9, 〈∅〉〉, 〈¬x1, 〈x2, x3, x4, x5, x6,¬x6〉〉. Let us now assume
that we would perform this sequence without obtaining the conflict, a simple idea would
be to add the following clause (x7 ∨ x8 ∨ x9 ∨ x1) to φ. In that way, when the first three
decisions will be performed, x1 will be propagated and then we will avoid the conflict.

Example 19

Even though Example 19 is showing a way to generate learnt clauses, they will have a huge
size and each of them will represent only one conflict. Let us remark that some works use this
technique to generate learnt clauses, when these clauses are “small enough”. The main problem
however is that the information contained in this clause is useless in case of a backtrack and
except if a BackJump() is performed, we can safely remove these clauses.

We will not go into the details of the approaches used nowadays in the solvers to generate
Learnt clauses, but in a nutshell, they are using a Direct Acyclic Graph (DAG) to represents
the dependencies between the clauses and the assignment of the truth values obtained by the
UnitPropagation. This way to analyse the conflict and to obtain Learnt clauses is also giving
the approach some information to know at which decision level should be performed a back jump.
If this decision level is equal to 0, then we know that the problem is unsatisfiable, the conflict
has been made without any decision.

In practice, most modern SAT solvers learn clauses associated to the notion of First Unique
Implication Point (UIP), which is any node at the current decision level such that any path from
the decision variable to the conflict node must pass through it. There exists many works based on
conflict analysis, for example Sörensson and Biere (2009) which propose an approach consisting
of performing resolutions while they do not increase the size of the learnt clause. Other work try
to discover subsumed clauses during the conflict analysis Han and Somenzi (2009), Hamadi et al.

53



Chapter 3. Decision Algorithms and Benchmarks

(2010). Another approach proposed by Audemard et al. (2008) tries to extend the implication
graph in order to consider some clauses satisfied by the formula.

So now, we know all the blocks from the Figure 3.1 except one: how to decide which variable
to pick and which polarity. This is what we will explore in the next section.

3.1.3 Choice of variable and choice of polarity

The choice of the next variable that is selected is one of the most important criteria of a SAT
solver. Indeed, if we could select only the good literals then we could construct the model.
Unfortunately it is as hard to pick a variable to construct a model as to solve the satisfiability
problem Liberatore (2000). Finally, the choice of variables in the search has a huge impact of
the number of steps that need to do a CDCL approach, thus also on its execution time Li and
Anbulagan (1997).

There exists many different heuristics to pick a variable and we redirect the reader to Biere
et al. (2009) for more information about them. In this thesis, we will present only the most
used one named VSIDS (Variable State Independent Decaying Sum), presented in Zhang et al.
(2001). In a nutshell, VSIDS maintains a score for each literal, and the literals with the highest
scores are stored in an array used to do the next decision. After learning a clause, the scores of
the literals inside it are incremented. More precisely, the score of all the literals which appear in
the resolution steps during the Conflict Analysis. VSIDS can in fact be defined as follows:

1. Each literal has a score, initialized to 0

2. When a clause is learnt, the score associated with each literal in the clause is incremented.
The score keeps track of how often the literal is used.

3. The unassigned literal with highest score is chosen at each decision point.

4. Ties are broken by random choice.

5. All scores are divided by a constant, periodically.

VSIDS is quite effective because the scores of variable phases is independent of the current
variable assignment, so backtracking is much easier. In an nutshell, the goal of VSIDS is to
solve the hard part of a formula first.

Obviously, this heuristic has been improved/changed. One can cite as such the MiniSAT’s
version of it Eén and Sörensson (2003), which is defined as follows:

1. Each variable has a score

2. When a clause is learnt, the score of all clauses encountered during the conflict analysis is
incremented.

3. Instead of a decay factor, variable scores are “bumped” with larger and larger values in a
floating point representation.

4. When very large values are encountered, all scores are scaled down.

5. 2% of the time, a random decision is made instead. This factor is set at run-time.

54



3.1. Modern SAT Solvers

In addition, MiniSAT implementation of VSIDS always keeps the variables in order by placing
them in an array-based priority queue. Unfortunately, such modifications are making it harder
to understand this heuristic. Some authors even published on the matter on how to understand
VSIDS branching heuristic in CDCL solvers and we redirect the reader to Liang et al. (2015)
for more understanding of this “additive bumping” and this “multiplicative decay”.

Now that we saw how a SAT solver is working, we need to present its different features,
because obviously, nowadays SAT are not just deciding the problems, they are giving more
informations, usable in more complex procedures.

3.1.4 Latest features of modern SAT solvers

Recent SAT solvers are incremental, ie., they are able to check the satisfiability of a formula
“under assumptions” Eén and Sörensson (2003) and are able to output a core (a “reason” for
the unsatisfiability of the formula). The use of unsatisfiable cores is the corner-stone of many
applications, such as MaxSAT Li and Manyà (2009), MCS (Minimal Correction Set) Grégoire et
al. (2014), MUS (Minimal Unsatisfiable Set) Belov et al. (2012). The unsatisfiable core is defined
as follows:

Let φ be a satisfiable formula in CNF built using Boolean variables from P. Let A be a
consistent set of literals built using Boolean variables from P such that (φ∧

∧
a∈A a) is unsat-

isfiable. C ⊆ A is an unsatisfiable core (UNSAT core) of φ under assumptions A if and only
if (φ ∧

∧
c∈C c) is unsatisfiable.

Definition 35 (Unsatisfiable Core under Assumptions)

With such unsatisfiable core, we can now see a SAT solver as a piece of software able to
output a model if the problem is satisfiable or able to output an unsatisfiable core under some
assumptions if the problem is unsatisfiable. From now on, when we will talk about SAT solver,
we will talk about such solver defined as follows:

Let φ be a formula in CNF. A SAT solver for φ, given assumptions A, is a procedure which
provides a pair 〈r, s〉 with r ∈ {SAT,UNSAT} such that if r = SAT then s is a model of φ,
else if r = UNSAT then s is an UNSAT core of φ under assumptions A.

Definition 36 (SAT Solver under Assumptions)

Now that we know how to solve efficiently the satisfiability problem in propositional logic,
which we recall, is a NP-complete problem Cook (1971). Let us see now how we can solve the
satisfiability problem in modal logics which can also be NP-complete but also PSPACE-complete
with respect to the logic considered Ladner (1977), Halpern and Moses (1992).

55



Chapter 3. Decision Algorithms and Benchmarks

3.2 Algorithms for Modal Logics

It seems fair to say that nowadays, the best way to solve the satisfiability problem in propositional
logic is to use a CDCL SAT solver. For the problems in modal logics, the choice is not so clear.
There exists many different techniques with many solvers available in the community. One of
the “basic technique” yet efficient, is to use a Tableau method to decide the satisfiability of the
problem.

3.2.1 Tableaux methods

We suppose the reader familiar with the Tableau method in propositional logic proposed by
Smullyan (1966). The Tableau method is a refutation procedure; if all the branches of the
tableau close, then the initial formula is unsatisfiable. Basically it works as follows: if there
is an analytical rule (ie., they produce strict subformulas of the original formula) for every
logical connective then the procedure will eventually produce a set which consists only of atomic
formulae and their negations, which cannot be broken down any further. Such a set is easily
recognizable as satisfiable or unsatisfiable with respect to the semantics of the logic in question.
To define the Tableaux methods for modal logics, we will use the notation proposed by Fabio
Massacci (2000), which is as follows:

• Prefix: σ a finite non-empty sequence of integers

– σ is interpreted as a state of a model

– the concatenation is denoted: σ.σ′

• Prefixed formula: a pair σ : φ where σ is a prefix and φ is a modal logic formula

• Tableau: a tree where the nodes are labelled with prefixed formulas

• Branch: standard notion in a tree, defined as a path from the root to a leaf.

From such a definition, we can now have the following fundamental properties of the Tableau
calculus:

56



3.2. Algorithms for Modal Logics

Here is a list of fundamental properties needed to construct a Tableau to decide the satisfia-
bility of a formula φ:

• The root of the Tableau is labelled by 1 : φ;

• σ is on a branch if and only if a prefixed formula σ : φ labelled a node on the branch;

• The inference rules are analytic thus if σ.n is a new prefix on the branch, then necessary
σ was already on the branch;

• The set of Prefix on a branch creates a tree;

• The difference of length between two prefixes of the same rule is at most one (“Single
Step Tableaux”);

Definition 37 (Fundamental Properties of the Tableau Calculus)

From this point, it is now easy to see that we need to define rules for every possible operators
in the language considered, to create a Tableau method to decide the satisfiability in this logic.
Let us see the language of modal logic (Def. 21). We know that it has five operators which needs
a rule {¬,∧,∨,�,♦}.

σ : (φ ∨ ψ)

σ : φ | σ : ψ

σ : (φ ∧ ψ)

σ : ψ
σ : φ

σ : ¬¬φ
σ : φ

σ : �φ
σ.n : φ

σ : ♦φ
σ.n : φ (n fresh)

When the label is indicated as fresh, it means that it will be created. When a label is not
indicated as fresh, it just means that the rule should match all the labels that are already existing.

And with such Tableaux rules, it is now possible to deal with modal logic K. To deal with
all the other modal logics based on K, we need to specify a rule to deal with all the axioms.

(K)

σ : �φ
σ.n : φ (T )

σ : �φ
σ : φ (4)

σ : �φ
σ.n : �φ

(B)

σ.n : �φ
σ : φ (D)

σ : �φ
σ : ♦φ (5)

σ : �φ
σ.n : ♦φ (n fresh)

This tableau-rule presentation of the axioms are there to show the relationship with the
properties they force on the Kripke structure. For example, when we take a look at the rule
(B), we can easily see the Symmetry property appearing, however it is not clear how a Tableau
method having such a rule can always terminates, be sound and complete. It is not the goal of
this section, we redirect the reader to the Chapter of Rajeev Goré in the Handbook of Tableau
Methods Goré (1999) to know how a Tableau can be constructed for any logic based on K (or
in (Massacci 2000, Section 10) to use exactly the same Tableau rules). From this point, we will
need few definitions to talk about Tableau methods more precisely. The first definition is the
notion of a branch open/close which is defined as follows:

57



Chapter 3. Decision Algorithms and Benchmarks

A branch B is closed if there is a σ such that, for some propositional variable p, both σ : p
and σ : ¬p are present in B. A Tableau is closed if every branch is closed.

Definition 38 (Closure)

A prefixed formula σ : φ is reduced for rule (r) in B

• if (r) has the form σ : φ→ σ′ : φ′ and σ′ : φ′ is in B;

• if (r) has the form σ : σ1 : φ1 | σ2 : φ2 and at least one of σ1 : φ1 and σ2 : φ2 is in B.

The symbol → does not denote the implication but the horizontal bar of the tableau rules.

Definition 39 (Reduced)

We will say now that:

• A prefixed formula σ : φ is fully-reduced in B if it is reduced for all applicable rules;

• A prefix σ is (fully) reduced if all prefixed formula σ : φ are (fully) reduced;

• A branch B is completed if all prefixes in B are fully reduced for B;

• A branch B is open if it is completed and not closed;

A formula φ is ?-satisfiable if and only if there is an open ?-Tableau starting with 1 : φ. Where
? ranges over (possibly non-empty) subsets of { D, T, 4, B, 5 }.

Theorem 7

Let us show with an example how a Tableau method is working and how we can show the
K-satisfiability of a formula.

58



3.2. Algorithms for Modal Logics

Let us demonstrate that the formula φ = (�¬p1 ∧ ♦(p1 ∨ ♦p2)) is satisfiable in modal logic
K. Or said otherwise, there exist a K-Tableau open.

1: �¬p1 ∧ ♦(p1 ∨ ♦p2)

1: �¬p1 1: ♦(p1 ∨ ♦p2)

1.1: ¬p1

1.1: (p1 ∨ ♦p2)

1.1: p1 1.1: ♦p2

×
1.1.1: p26.

5.

4.

3.

2.

1. φ

(∧), 1

(�), 2.a

(♦), 2.b

(∨), 4

(♦), 5

One can notice that the different notation for an and-branching and for an or-branching.
Indeed, in an and-branching, the Tableau must satisfy both branches whereas in the or-
branching, the Tableau must satisfy at least one of the branches.
Because there is still at least, one branch which is open, we can conclude that the formula φ
is satisfied. In fact, thanks to the prefixes, we can retrieve a Kripke model satisfying it.

φ

w0

¬p1

w1

p2

w2

The Kripke model constructed by the Tableau is depicted above.

Example 20

There exists many solvers in the literature which use the Tableaux methods to solve the
satisfiability problems in modal logics. We can cite as such Spartacus Götzmann et al. (2010)
which is to the best of our knowledge, the most efficient Tableau solver for modal logics. There is
also FaCT++ Tsarkov and Horrocks (2006), LoTREC Gasquet et al. (2005), MetTeL2 Schmidt
and Tishkovsky (2008), KRIS Baader and Hollunder (1991), LWB Balsiger et al. (1998), LCKS5
Abate et al. (2007), etc.. There exists many other Tableaux solvers for modal logics, we just
cited a few of them. The final Tableau solver we want to talk about is InKreSAT Kaminski and
Tebbi (2013) because it makes the link between the two previous sections and the next one. It
is an innovative SAT-based system where the SAT solver drives the development of a Tableau.

There exists other approaches to tackle the modal logics satisfiability problems, and one of
them is to translate the modal logics satisfiability problem into a L-satisfiability problem where
L could be propositional logic, first order logic, etc.

59



Chapter 3. Decision Algorithms and Benchmarks

3.2.2 Translation-based methods

Indeed as we just said, the Tableau method is not the only possible approach to solve a modal
logic satisfiability problem. Another famous technique is to use another logic L and to find
an efficient way to translate the modal satisfiability problem into an L-satisfiability problem.
The propositional logic is widely used in this domain, as explained in Sebastiani and Tacchella
(2009). One solver extremely good at that is Km2SAT Sebastiani and Vescovi (2009). To explain
how this solver is working, let us make the presentation uniform and let us use the traditional
representation of Km formulas (introduced by Fitting (1983)).

α α1 α2 β β1 β2 πr πr0 υr υr0

(φ ∧ ψ) φ ψ (φ ∨ ψ) φ ψ ♦rφ φ �rφ φ

¬(φ ∨ ψ) ¬φ ¬ψ ¬(φ ∧ ψ) ¬φ ¬ψ ¬�rφ ¬φ ¬♦rφ ¬φ

Table 3.1: Traditional representation of Km formulas

Non-literal Km-formulas are grouped into four categories: α (conjunctive), β (disjunctive), π
(existential), υ (universal). Km2SAT uses the propositional logic and their encoding is defined
recursively as follows:

Let A〈,〉 be an injective function which maps a prefixed formula 〈σ, ψ〉, such that ψ is not in
the form ¬φ, into a Boolean variable A〈σ,ψ〉. They assumed that A〈σ,>〉 is > and A〈σ,⊥〉 is ⊥.
Let L〈σ,φ〉 denote ¬A〈σ,φ〉 if ψ is in the form ¬φ, A〈σ,φ〉 otherwise.

Km2SAT (φ)
def
= A〈σ,φ〉 ∧Def(1, φ)

Def(σ,>)
def
= >

Def(σ,⊥)
def
= ⊥

Def(σ,Ai)
def
= >

Def(σ,¬Ai)
def
= >

Def(σ, α)
def
= (L〈σ,α〉 → (L〈σ,α1〉 ∧ L〈σ,α2〉)) ∧Def(σ, α1) ∧Def(σ, α2)

Def(σ, β)
def
= (L〈σ,β〉 → (L〈σ,β1〉 ∨ L〈σ,β2〉)) ∧Def(σ, β1) ∧Def(σ, β2)

Def(σ, πr,j)
def
= (L〈σ,πr,j〉 → L〈σ.jr,πr,j

0 〉
) ∧Def(σ.jr, πr,j0 )

Def(σ, υr)
def
=

∧
for every 〈σ,πr,i〉

(((L〈σ,υr〉 ∧ L〈σ,πr,i〉)→ L〈σ.ir,υr0〉) ∧Def(σ.ir, υr0))

Here πr,j means that πr,j is the j -th distinct πr formula labelled by σ. 〈σ, πr,i〉 ranges over
all the labels r, i, accessible from the label r.

Definition 40 (Km2SAT Encoding)

60



3.2. Algorithms for Modal Logics

We can see that the number of propositional variables and the number of clauses that gen-
erates Km2SAT (φ) will grow exponentially with the modal depth of φ. This has to be the case,
as stated by Halpern and Moses (1992), because K-satisfiability is a PSPACE-complete problem
Ladner (1977). Moreover, if we take a look at how the formula is encoded in propositional logic,
what we see is that Km2SAT will force a “tree-shaped” Kripke-model, it has no guarantee on
the size of the Kripke model outputted. It could exist a much smaller model but Km2SAT does
not search for it. There exists also other solvers that use the help of a SAT solver to decide the
satisfiability in modal logics. We already talked about InKreSAT Kaminski and Tebbi (2013),
but there is also ?SAT Giunchiglia et al. (2002) which interleaves SAT reasoning and domain
reasoning. Somehow, ?SAT can be seen as an early attempt of SMT reasoning Barrett et al.
(2009).

Modal Logic satisfiability problems can also be translated into other logic and/or use another
oracle than a SAT solver to be decided. It is the case for example for the solver Moloss3. It
is a solver based on the SMT encoding presented in Areces et al. (2015) and it uses an SMT
solver to decide the modal logic satisfiability problem. There is also KCSP Brand et al. (2003)
which uses a Constraint Satisfaction Problem Rossi et al. (2006), Mackworth (1977), Stallman
and Sussman (1977) encoding to solve the modal logic K satisfiability problem, unfortunately
the solver is not longer accessible on the Internet to the best of our knowledge. Obviously, there
is also an approach translating the modal logic K satisfiability problem into another PSPACE-
complete problem which is QBF (Quantified Boolean Formula). This approach is designed within
the solver QMRES Pan and Vardi (2004). One last logic that can be used to solve modal logic
satisfiability problems is the first-order logic (FOL). That is the technique that uses (M)SPASS
Hustadt et al. (1999), Weidenbach et al. (2009), but it is also possible to translate directly the
modal logic satisfiability problem into a first-order logic satisfiability problem with an external
tool such as Optimized Functional Translation (OFT) Horrocks et al. (2006) and to call one of
the state-of-the-art FOL solvers such as Vampire Kovács and Voronkov (2013).

Finally, now that we saw the Tableaux approaches and the Translation-based approaches,
there are still some solvers which can not be classified into these two categories, they use an
“other method” that we will now describe.

3.2.3 Other methods

Indeed, some solvers can not be classified as a Tableau-approach nor as a Translation-based
approach, it is the case for example for the solver K

K

Voronkov (1999). The idea behind K

K

is to compare a top-down (Tableau) and a bottom-up (inverse) decision methods. The inverse
method can be seen as bottom-up version of the sequent calculus. To simplify greatly the idea
behind K

K

, one could say that it is a modalised version of the propositional resolution.

Another approach, where it is a resolution-based solver named KSP Nalon et al. (2016).
They presented a clausal calculus for modal logic Km which is sound, complete and terminates
Nalon et al. (2015). Clauses are labelled by the modal level at which they occur. In order to refer
explicitly to modal levels, the modal language is extended with labels. They denote by ml : φ
the fact that φ is true at the modal layer ml in a Kripke model, where ml ∈ N ∪ {∗}. By ∗ : φ
they indicate that φ is true at all modal layers in a Kripke model. The motivation for the use
of this labelled clausal normal form is that inference rules can then be guided by the semantic

3There is no paper talking about Moloss yet but the source-code is accessible at https://github.com/
Meleagant/MOLOSS

61

https://github.com/Meleagant/MOLOSS
https://github.com/Meleagant/MOLOSS


Chapter 3. Decision Algorithms and Benchmarks

information given by the labels and applied to smaller sets of clauses, reducing the number of
unnecessary inferences, and therefore improving the efficiency of the proof procedure.

Finally, the last solver that we want to talk about is BDDTab Goré et al. (2014). Somehow
we could have classified this solver as a Tableau solver, but instead of computing a tableau for
the formula in a classical way, they used a Binary Decision Diagram (BDD) as an effective base
data structure for computing tableaux.

We just talked about a lot of different solvers, but we did not talk about which modal logics
they can deal with, so let us recall all this information in Table 3.2 and list few additional
information just after to clarify some points.

Table 3.2: List of solvers and the logics they can deal with

Solvers Oracle used K KT S4 K5 KD45 S5

Spartacus Götzmann et al. (2010) –

Tableaux

FaCT++ Tsarkov and Horrocks (2006) –

LoTREC Gasquet et al. (2005) –

MetTeL2 Schmidt and Tishkovsky (2008) –

KRIS Baader and Hollunder (1991) –

LWB Balsiger et al. (1998) –

LCKS5 Abate et al. (2007) –

InKreSAT Kaminski and Tebbi (2013) Minisat Eén and Sörensson (2003)

Translation

Km2SAT Sebastiani and Vescovi (2009) SAT∗

?SAT Giunchiglia et al. (2002) SATO Zhang (1997)

Moloss Areces et al. (2015) Z3 de Moura and Bjørner (2008)

KCSP Brand et al. (2003) CP∗

QMRES Pan and Vardi (2004) QBF∗

MSPASS Hustadt et al. (1999) –

Vampire Kovács and Voronkov (2013) –

Other

K

K

Voronkov (1999) –

KSP Nalon et al. (2016) –

BDDTab Goré et al. (2014) –

• KCSP does not deal “officially” with KT and S4, but Stevenson et al. (2008) extends the
algorithm to deal with these two logics.

• SAT∗ in the line of Km2SAT means that this solver can be used in combination with any
SAT solver from the literature, eg. Glucose Audemard and Simon (2009)

• CP∗ in the line of KCSP means that this solver can be used in combination with any CP
solver from the literature, eg. AbsCon Merchez et al. (2001)

62



3.3. Structural Impact Of The Benchmarks

• QBF∗ in the line of QMRES means that this solver can be used in combination with any
QBF solver from the literature, eg. RaReQS Janota et al. (2016)

• KSP deals with KT and S4, but in 2018, it is still preliminary and not fully optimized to
be competitive.

Now that we know what are the state-of-the-art approaches to solve modal logic ? satisfiability
problems, we need to know what are the standard benchmarks to evaluate them. A small
amount of benchmarks have been produced for testing the effectiveness of the different technique
Giunchiglia et al. (1996), Balsiger et al. (2000), Patel-Schneider and Sebastiani (2003), Massacci
(1999), Massacci and Donini (2000). But before describing these benchmarks and explaining
how they have been created, let us remind what is known in the SAT community for decades:
the structure of the benchmark will influence the experimental results. What A. Einstein said
about a fish also applies to solving techniques “If You Judge a Fish by Its Ability to Climb a
Tree, It Will Live Its Whole Life Believing that It is Stupid”.

3.3 Structural Impact Of The Benchmarks

Indeed, as we just said, the structure of a benchmark impacts the performance of any solver.
This is why the ability to visualise the structure of a benchmark has been studied in the SAT
community Sinz (2004), Selman (2004). Some graphical tool such as DPvis developed by Sinz
and Dieringer (2005) were made available to see the structure of the benchmarks in CNF. In a
nutshell, what is interesting for us here is depicted in Figure 3.2.

The Figure 3.2 on the left represents the primal graphs of some peculiar SAT instances. The
primal graph is an undirected graph G = (V,E), where the vertex set V is the set of variables
of S and {x, y} ∈ E if and only if there is a clause c ∈ S that contains both variables x and y.

What we can see in Figure 3.2, is a perfect decomposition of why the SAT instances are
classified in three categories: Application, Crafted, Random. We will say in thesis, as in the SAT
community, that:

63



Chapter 3. Decision Algorithms and Benchmarks

Figure 3.2: “Interaction graphs for different SAT instances before (left) and after (right) three
steps of a DP algorithm run (and subsequent simplification by unit propagation). On the top, an
instance from automotive product configuration is shown, in the middle a pigeon hole formula,
and on the bottom a random 3-SAT formula with a clause-variable-ratio near the phase-transition
point” Sinz (2004)

• An instance is an Application instance if it comes from a modelisation of a real problem
(such as the Automotive Product Configuration in the Figure 3.2). The motivation
behind this category is to highlight the kind of applications SAT solvers may be useful
for.

• An instance is a Crafted instance if it is designed to give a hard time to the solvers,
or represent otherwise problems that are challenging to typical solvers (including, for
example, instances arising from puzzle games), (such as the Pigeon Hole Problem Haken
(1985) in the Figure 3.2). These benchmarks are typically small. The motivation behind
this category is to highlight current challenging problem domains that reveal the limits
of current technology.

• An instance is a Random instance if it is has been randomly generated. This category is
motivated by the fact that the instances can be fully characterized and by its connection
especially to statistical physics.

Definition 41 (Different categories of benchmark)

64



3.3. Structural Impact Of The Benchmarks

This separation may sound like a sugar coat on the SAT instances but it is not the case. The
performance of solvers have very high variations according to which category of benchmarks we
are using to evaluate them. In fact, as explained in Järvisalo et al. (2012), “In 2011, the smallest
crafted instance not solved by any solver within the time-out contained only 141 variables, 292
clauses, and 876 literals in total. In contrast, the biggest application instance solved by at least
one solver contained 10 million variables, 32 million clauses, and a total of 76 million literals”.

Now that we know what are the categories, let us see in which of them are all the already-
existing benchmarks from the literature.

3.3.1 Random Benchmarks

The first category of benchmark that we want to talk about are the 3CNFK Giunchiglia et al.
(1996).

3CNFK Benchmarks

An atom in the generator presented in Algorithm 3.2 is either a propositional variable or its
negation. The function flip_coin(p) represents a function checking if a generated random number
between 0 and 1 is higher or not than p. The function rand_propositional_atom(N) will generate
a random propositional variable with an index being between 1 and N . The algorithm will always
generate clauses of size 3 (hence the name 3CNF) and the modalities are randomly added.

The idea behind this generator (presented in Algorithm 3.2) is to have an algorithm which
can provide a statistical control of some important features eg. hardness and satisfiability rate, of
the formulas generated. As the name suggests, it is a generator for Modal Logic K Satisfiability
Problem. Because we will not talk in this thesis about multiple agents formulas Blackburn et al.
(2006), we will re-write the generator algorithm with only one modality (�).

Finally, the parameters L and N allow for a “tuning” of the probability of satisfiability and of
the hardness of random 3CNF formulas. Indeed, varying the L/N ratio, the plot of satisfiability
percentages draws a transition from 100% satisfiability to 100% unsatisfiability Mitchell et al.
(1992). The 50% crossover point always located around the fixed value L/N ≈ 4.30. A precise
experimentation of different approach on these benchmarks may be found in Giunchiglia et al.
(2000). The conclusion is as follows: the mean and the median CPU times plots reveal an
easy-hard-easy pattern always centred in the value L/N ≈ 4.30. One can thus easily control the
satisfiability-rate and the difficulty of an instance thanks to this generator.

CNF-KSP Benchmarks

We just presented one family of benchmarks which look like a propositional logic CNF formula in
the construction, with modalities embedded in the clauses. This set was judged “not completely
satisfactory” mainly because the Algorithm either generates a too easy formula for the current
heavily-optimised solvers or because they generate a high rate of trivial or insignificant instances.
Thus a new version of 3CNFK benchmarks has been created Patel-Schneider and Sebastiani
(2003).

The name we give in this thesis to this set is not really satisfactory but we decided to
keep it for consistency with the articles we published on the subject. We discovered this set of

65



Chapter 3. Decision Algorithms and Benchmarks

Algorithm 3.2: 3CNFK Generator
Data: L the number of clauses, N the number of propositional variables, d the modal

depth, p a probably with which any random atom is propositional
Result: A 3CNFK formula randomly generated

1 begin
2 Function 3CNF(L,N, d, p)
3 for i from 1 to L do Ci := rand_clause(N, d, p)

4 return
L∧
i=1

Ci

5 end
6

7 Function rand_clause(N, d, p)
8 for j from 1 to 3 do lj := rand_lit(N, d, p)

9 return
3∨
j=1

lj

10 end
11

12 Function rand_lit(N, d, p)
13 ϕ := rand_atom(N, d, p)
14 if (flip_coin(0.5)) then return ϕ
15 else return ¬ϕ
16 end
17

18 Function rand_atom(N, d, p)
19 if ((d=0) or flip_coin(p)) then
20 return rand_propositional_atom(N)
21 end
22 else
23 C := rand_clause(N,d-1,p)
24 return �C
25 end
26 end
27 end

benchmarks thanks to the article presenting the solver KSP , so we named it, at this moment,
CNF-KSP to make the difference with the original 3CNF. But the real authors of this set are,
as mentioned by the paper cited, Peter Patel-Schneider and Roberto Sebastiani.

The new generator is really similar to the first one and is presented in Algorithm 3.3. Unlike
3CNFK , it allows to control the generated formula thanks to a probability distributions. Here
is an example of the kind of formula that it can generate: (¬p2 ∨�(p4 ∨�(¬p3 ∨ p4))) ∧ (p1 ∨
¬(�(¬p3 ∨�(p1 ∨ ¬p2 ∨ p3)))). As we can see, despite the name being CNF-KSP, the formulas
generated are far from being in Conjunctive Normal Form. The generator has two parameters
to control the shape of formulas.

• The first parameter, C, is a list of list (eg. [[0, 0, 1]]) telling it how many disjuncts to
put in each disjunction at each modal level. Each internal list represents a finite discrete

66



3.3. Structural Impact Of The Benchmarks

Algorithm 3.3: CNF -KSP Generator
Data: L the number of clauses, N the number of propositional variables, d the modal

depth, C, is a list of list telling it how many disjuncts to put in each disjunction
at each modal level, p, is a list of list of lists that controls the
propositional/modal rate.

Result: A CNF -KSP formula randomly generated
1 begin
2 Function CNF-KSP(L,N, d, C, p)
3 for i from 1 to L do
4 repeat Ci := rand_clause(N, d, p) until is_new(Ci)
5 end

6 return
L∧
i=1

Ci

7 end
8

9 Function rand_clause(N, d,C, p)
10 K := rand_length(d,C)
11 P := rand_propNum(d,p,K)
12 repeat
13 for j from 1 to P do lj := rand_sign().rand_atom(N,0,C,p)
14 for j from P + 1 to K do lj := rand_sign().rand_atom(N,d,C,p)

15 Cl :=
K∨
j=1

lj

16 until no_repeated_atoms_in(Cl)
17 return Sort(Cl)
18 end
19

20 Function rand_atom(N, d,C, p)
21 if (d=0) then return rand_propositional_atom(N)
22 else
23 C := rand_clause(N,d-1,C,p)
24 return �C
25 end
26 end
27 end

probability distribution. For instance “[0, 0, 1]” says “0/1 of the disjunction have 1 disjunct,
0/1 have 2 disjuncts, and 1/1 have 3 disjunctions (fixed length 3)”.

• The second parameter, p, is a list of list of lists (eg. [[[], [], [0, 3, 3, 0]]]) that controls the
propositional/modal rate. The top-level elements are for each modal depth (here all the
same), the second-level elements are for disjunctions with 1,2,3,. . . disjunctions (here only
the third matters to simulate 3CNFK as all disjunctions have three disjuncts in such case).
In the old version (3CNFK), with p = 0.5 is now represented by [[[], [], [0, 3, 3, 0]]].

Because the generator eliminates duplicated atoms in a clause, it takes care to not disturb

67



Chapter 3. Decision Algorithms and Benchmarks

the probabilities by first determining the “shape” of a clause and only then instantiating it
with propositional variables. If a clause has repeated atoms, either propositional or modal, the
instantiation is rejected and another instantiation of the shape is performed.

The MQBF Random QBF Benchmarks

The basic benchmark MQBF was first proposed for TANCS in Massacci (1999) and Massacci and
Donini (2000). The intuition behind is to encode validity of Quantified Boolean Formula (QBF)
into a satisfiability problem in modal logic K. In practice it works as follows: they generate
a QBF formula with c clauses, an alternation depth equal to d with at most v variables per
quantifier scope. As an example, if we set d=3 and v=2, we can generate a QBF formula looking
like:

∀v32v31, ∃v22v21, ∀v12v11,∃v02v01cnfc−clauses(v01 . . . v32) (3.1)

For each clause, they randomly generate k different variables (default 4) and each is negated
with a probability of 50%. The first and third variable (if it exists) are existentially quantified,
whereas the second and fourth variable are universally quantified. This aims at eliminating
trivially unsatisfiable formulas Cadoli et al. (2002). The depth of each literal is randomly chosen
from 1 to d. The QBF formula can then be translated into modal logic with different encodings:

• An optimization of Ladner’s original translation Ladner (1977) that does not introduce
new variables;

• A further optimized translation in which the formulas corresponding to the alternation
depth are somewhat “compiled away”;

• An optimized translation which is close to Schmidt-Schauß and Smolka’s reduction of QBF
validity into ALC satisfiability Schmidt-Schauß and Smolka (1991).

From those different translation functions and the different parameters settings, the MQBF
family is in fact a collection of five classes, called qbf, qbfL, qbfS, qbML and qbfMS4, for
a total of 1016 formulas, of which 617 are known to be satisfiable and 399 are known to be
unsatisfiable (due to at least one solver being able to solve the formula). Except qbf which is
just a set of 56 satisfiable benchmark with 1 variable, the different values of the parameters for
these categories of benchmarks are as follows: m ∈ {10, 20, 30, 40, 50} denotes the number of
clauses; n ∈ {4, 8, 16} denotes the number of variables; a ∈ {4, 6} denotes the alternation depth.
For each triplet (a, n,m) we have 8 problems, so a family is composed of 240 problems.

3.3.2 Crafted Benchmarks

MQBF was the last family of randomly generated instances from the literature. The other
families are now more in the Crafted category in a way that they were designed in sub-family in
order to give an hard-time to the different approaches possible.

4the ‘L’ stands for Ladner’s translator, the ‘S’ for the one of Schmidt-Schauß and Smolka

68



3.3. Structural Impact Of The Benchmarks

The Logic WorkBench (LWB) Benchmarks

The LWB family is subdivided into 18 classes Balsiger et al. (2000) (1008 formulas, half are
satisfiable and half are unsatisfiable by construction of the benchmark classes). Basically the
18 classes should be considered as 9 classes which can be either satisfiable or unsatisfiable by
construction. The Logic WorkBench were created to test modal logic solvers in modal logic K,
KT and S4. We will not describe all the benchmark generators because they are all described in
Balsiger et al. (2000), but let us for some classes of formula (the ones that we found interesting),
list the following informations: “why is the formula satisfiable ?”, “How is the formula hidden in
order to make the problem harder to solve?” and finally a small definition of the formula.

1. k_branch_p. The branching formula as defined in Halpern and Moses (1992), plus a nega-
tion symbol in front and the additional sub-formulas ¬�npn div 3+1 in order to make the
formula satisfiable. We assume n < 100.

k_branch_p(n) := ¬(p100 ∧ ¬p101

n∧
i=0

(�i(bdepth(n) ∧ det(n) ∧ branching(n)) ∨ ¬�npn div 3+1))

bdepth(n) :=
n+1∧
i=1

(p100+i → p99+i)

det(n) :=

n∧
i=0

(p100+i → (pi → �(p100+i → pi)) ∧ (¬pi → �(p100+i → ¬pi)))

branching(n) :=
n−1∧
i=0

(p100+i ∧ ¬p101+i → ♦(p101+i ∧ ¬p102+i ∧ pi+1) ∧ ♦(p101+i ∧ ¬p102+i ∧ ¬pi+1))

2. k_branch_n. The branching formula as defined in Halpern and Moses (1992).

k_branch_n(n) := ¬(p100 ∧ ¬p101

n∧
i=0

(�i(bdepth(n) ∧ det(n) ∧ branching(n))))

bdepth(n) := as in k_branch_p
det(n) := as in k_branch_p
branching(n) := as in k_branch_p

3. k_ph_p. The pigeonhole formulas as defined in Haken (1985) but modalized. We assume
n < 100. Some � and ♦ are added to make it harder to find a solution.

k_ph_p(n) := ♦left(n)→ ♦right(n)

left(n) :=

n+1∧
i=1

(

n∨
j=1

(l(i, j)))

right(n) :=

n∨
j=1

i1 = 1, . . . n+1, i2 = i1 + 1, . . . , n+1(l(i1, j) ∧ l(i2, j))

l(i, j) :=

{
�p100i+j if i < j

p100i+j otherwise

69



Chapter 3. Decision Algorithms and Benchmarks

4. k_ph_n. The pigeonhole formulas with one missing conjunct on the right-hand side. We
assume n < 100. Some � and ♦ are added to make it harder to find a solution.

k_ph_p(n) := ♦left(n)→ ♦right(n)

left(n) := as in k_ph_p

right(n) :=
∨

j=1..n,i1=1..n+1,i2=i1+1..n+1

(l2(n, i1, j) ∧ l2(n, i2, j))

l2(n, i, j) :=

{
¬l(i, j) if i = j or i = (2n)div 3+1
l(i, j) otherwise

5. k_poly_p. The formula (p1 ↔ p2) ∨ (p2 ↔ p3) ∨ . . . ∨ (pn−1 ↔ pn) ∨ (pn ↔ p1). If we have
a polygon with n vertices, and all the vertices are either black or white, then two adjacent
vertices have the same color. If n is odd, then this formula is satisfiable in CPL. Many �
and ♦ and superfluous subformulas are added to hide the problem and make it harder for the
solver to find the solution.

k_poly_p(n) :=

{
poly(3n+ 1) if n mod 2 = 0

poly(3n) otherwise

poly(n) := �n+1
n+1∧
i=1

(pi) ∨ f(n, n) ∨�n+1
n+1∧
i=1

(¬p2i)

f(i, n) :=


⊥ if i = 0

♦(f(i− 1, n) ∨ ♦i(pn ↔ p1)) ∨�pi+2 i = n
♦(f(i− 1, n) ∨ ♦i(pn ↔ pi+1)) ∨�pi+2 otherwise

6. k_poly_n. As for k_poly_p, but for an even number of vertices. Many � and ♦ and
superfluous subformulas are added to hide the problem and make it harder for the solver to
detect its unsatisfiability.

k_poly_p(n) :=

{
poly(3n) if n mod 2 = 0

poly(3n+ 1) otherwise

poly(n) := as in k_poly_p
f(i, n) := as in k_poly_p

We could continue to enumerate all the different classes but it would be unnecessary, the
Craftedness has been demonstrated with these 6/18 examples. The formulas for KT and S4 are,
except few examples, the same ‘kind’ of formulas as in K. For example the class kt_ph_p is
defined as left(n)→ ♦right(n) with the same left, right and l functions as in k_ph_p.

Now that we showed what is propositional logic, what are the modal logics, what are the
state-of-the-art approaches to solve modal logics satisfiability problems and what are the standard
benchmarks to evaluate the approach, it is time to present our contributions in this domain.
To avoid too many repetitions, We made all the time run all the solvers on the benchmarks
represented in InToHyLo format Hoffmann (2010) and we check the Kripke models returned by
our solvers (and the other solvers when possible) with the checker mdk-verifier Lagniez et al.
(2016b) that we developed for the occasion and which is accessible at the following address :
http://www.cril.univ-artois.fr/~montmirail/mdk-verifier/.

70

http://www.cril.univ-artois.fr/~montmirail/mdk-verifier/


3.3. Structural Impact Of The Benchmarks

71



Chapter 3. Decision Algorithms and Benchmarks

72



Part II

Contributions

73



Contributions

74



Chapter

1TheNPModal Logics Satisfiability Problems

Contents
1.1 How To Deal With Modal Logic Formulas in K?5 . . . . . . . . 75

1.1.1 A New Upper-Bound For the Size Of The Kripke Models . . . . . . 76
1.1.2 A Set Of Simplifications For K?5 . . . . . . . . . . . . . . . . . . . 81

1.2 A SAT Translation Of The Problems . . . . . . . . . . . . . . . . 85
1.2.1 Translation function ‘tr’ . . . . . . . . . . . . . . . . . . . . . . . . 86
1.2.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1.3 Experimental Evaluation of the SAT-Based Approach . . . . . . 90
1.3.1 Results Obtained In Logic WorkBench (LWB) . . . . . . . . . . . . 91
1.3.2 Results Obtained In TANCS-2000-MQBF . . . . . . . . . . . . . . 92
1.3.3 Results Obtained In 3CNFKSP . . . . . . . . . . . . . . . . . . . . 93

“Modal Logics can be at the heart of
Artificial Intelligence”

Nicolas Szczepanski (2012)

SAT solvers have been used successfully to solve a wide range of problems. We report in our
contributions our own positive experience in deciding the satisfiability of modal logic formulas.
We first focus on the modal logics L which have the particularity to be NP-complete. Indeed, if
one logic is NP-complete, then for sure it exists a polynomial reduction from L to CPL where
the problem can be decided using a SAT solver.

1.1 How To Deal With Modal Logic Formulas in K?5

The Kripke structures that can be models of formulas have a size (with respect to the number of
worlds in the structure) which is linear in the size of the input due to the polysize model property
Bezhanishvili and Marx (2003). The modal logic K?5 stands for all modal logics containing the
axiom 5. The intuition behind the translation that we propose is as follows: we know that the
maximum number of worlds to consider to decide the satisfiability of a formula in modal logic
K?5 is linear in the size in the formula (proof in Halpern and Rêgo (2007)). However, even if it
is linear, such bound (which is |φ|) can hardly be used in practice if one wants to translate a K?5
formula into propositional logic: it may lead to CNF too large to be handled by a SAT solver on
a standard personal computer. Thus, the first thing we want to know is: can we have a smaller
upper-bound on the size of the Kripke models? Because the lower will be the bound, the smaller
will be the generated CNF and thus the more efficient will be a SAT-based approach.

75



Chapter 1. The NP Modal Logics Satisfiability Problems

1.1.1 A New Upper-Bound For the Size Of The Kripke Models

The idea of our new upper-bound is as follows: if a formula has no diamond, then the upper-
bound must be one. Said otherwise, the upper-bound should be linear in the number of diamonds
in the case of NP-complete modal logics. So this is the kind of function we want to create. We
propose the following upper-bound that we call the diamond-degree.

The diamond degree of φ ∈ L, noted dd(φ), is defined recursively, as follows:

dd(φ) = dd′(nnf(φ))

dd′(>) = dd′(¬>) = 0

dd′(p) = dd′(¬p) = 0

dd′(φ ∧ ψ) = dd′(φ) + dd′(ψ)

dd′(φ ∨ ψ) = max(dd′(φ), dd′(ψ))

dd′(�φ) = dd′(φ)

dd′(♦φ) = 1 + dd′(φ)

Definition 42 (Diamond-Degree)

The theorem that we want to prove to have a valid upper-bound is thus:

If for a formula φ, there is no Kripke model of a size bounded by dd(φ) + 1, then φ is
unsatisfiable in {K5,K45,KB5, S5}. And if there is no Kripke model of size bounded by
dd(φ) + 2 then φ is unsatisfiable in {KD5,KD45}.

Theorem 8

We recall here the proof that has been proposed in Caridroit et al. (2017a) for modal logic
S5. Let φ be a formula in NNF and let sub(φ) be the set of all sub-formulas of φ. A tableau
for φ is the smallest non-empty set TS5 = {s0, s1, . . . , sn} such that each si ∈ TS5 is a subset of
sub(φ) and φ ∈ s0. In addition, each set si ∈ TS5 satisfies the following conditions:

1. ¬> 6∈ s.

2. if p ∈ s then ¬p 6∈ s.

3. if ¬p ∈ s then p 6∈ s.

4. if ψ1 ∧ ψ2 ∈ s then ψ1 ∈ s and ψ2 ∈ s.

5. if ψ1 ∨ ψ2 ∈ s then ψ1 ∈ s or ψ2 ∈ s.

6. if �ψ1 ∈ s then ∀s′ ∈ TS5 we have ψ1 ∈ s′.

76



1.1. How To Deal With Modal Logic Formulas in K?5

7. if ♦ψ1 ∈ s then ∃s′ ∈ TS5 s.t. ψ1 ∈ s.

Let φ be in NNF. The number of elements of the set TS5 created by constructing its tableau
is bounded by dd′(φ) + 1.

Lemma 1

Proof. Let ψ ∈ sub(φ). Let g(ψ) be the number of sets s added to TS5 because of ψ. That
is, g(ψ) is the number of times the condition involving operator ♦ is triggered for sub-formulas
of ψ. We show that, for all ψ ∈ sub(φ) we have g(ψ) ≤ dd′(ψ). We do so by induction on the
structure of ψ.

Induction base. We consider four cases: (1) ψ = >, (2) ψ = ¬>, (3) ψ = p and (4) ψ = ¬p.
In all cases, the condition involving ♦ will never be triggered for formulas in sub(ψ). Then
g(ψ) = 0 ≤ dd′(ψ).

Induction step. We consider four cases:

1. ψ = ψ1∧ψ2. Assume ψ ∈ s, for some s ∈ TS5. In this case, the algorithm adds ψ1 and ψ2 to
s. Therefore, g(ψ) is bounded by g(ψ1)+g(ψ2). The latter is bounded by dd′(ψ1)+dd′(ψ2)
(by the induction hypothesis). Then g(ψ) ≤ dd′(ψ).

2. ψ = ψ1 ∨ ψ2. Assume ψ ∈ s, for some s ∈ TS5. In this case, the algorithm adds either ψ1

or ψ2 to s. Therefore, g(φ) is bounded by max(g(ψ1), g(ψ2)). The latter is bounded by
max(dd′(ψ1), dd′(ψ2)) (by the induction hypothesis). Then g(ψ) ≤ dd′(ψ).

3. ψ = �ψ1. Assume ψ ∈ s, for some s ∈ TS5. In this case, the algorithm adds ψ1 to all
s′ ∈ TS5. Therefore, g(ψ) is bounded by g(ψ1). The latter is bounded by dd′(ψ1) (by the
induction hypothesis). Then g(ψ) ≤ dd′(ψ).

4. ψ = ♦ψ1. Assume ψ ∈ s, for some s ∈ TS5. In this case, if there is no s′ containing ψ1

then the algorithm adds a new s′′ to TS5 and adds ψ1 to s′′. Therefore, g(ψ) is bounded
by 1 + g(ψ1). The latter is bounded by 1 + dd′(ψ1) (by the induction hypothesis). Then
g(ψ) ≤ dd′(ψ).

Therefore, we have |TS5| = 1 + g(φ) ≤ 1 + dd′(φ). q.e.d

Thus, for any φ ∈ L, each si of the tableau TS5 corresponds to a wi ∈ W in the S5-model,
|TS5| ≤ dd(φ) + 1 means that the number of worlds in the S5-model is bounded by dd(φ) + 1.

For all the other NP modal logics, we will perform also a Tableau method, but this time, the
Tableau will be for K5 and we will show that by adding the different axioms, if they can add
worlds in the Tableau. Let φ be a formula in NNF and let sub(φ) be the set of all sub-formulas
of φ. Basically after defining a K5-Tableau, it will have to respect the following Lemma:

77



Chapter 1. The NP Modal Logics Satisfiability Problems

Let φ be in NNF. The number of elements of the set T created by constructing its tableau is
bounded by dd′(φ) + 1.

Lemma 2

But before we proof the Lemma 2, we need to define the K5-Tableau and explain the intuition.

A K5-Tableau for φ is a non-empty set T = {s0, s1, . . . , sn} such that each si ∈ T is a subset
of sub(φ) and φ ∈ s0. We also need to keep the relations (R) between s0 and the other worlds,
we know that ∀i 6= 0, ∀j 6= 0 (si, sj) ∈ R due to the euclidean axiom (5). In addition, each
set si ∈ T satisfies the following conditions:

1. ¬> 6∈ si.

2. if p ∈ si then ¬p 6∈ si.

3. if ¬p ∈ si then p 6∈ si.

4. if ψ1 ∧ ψ2 ∈ si then ψ1 ∈ si and ψ2 ∈ si.

5. if ψ1 ∨ ψ2 ∈ si then ψ1 ∈ si or ψ2 ∈ si.

6. if �ψ1 ∈ si and i 6= j 6= 0 then ∀sj ∈ T we have ψ1 ∈ sj and (si, sj) ∈ R.

7. if �ψ1 ∈ s0 then ∀si ∈ T s.t. (s0, si) ∈ R we have ψ1 ∈ si.

8. if ♦ψ1 ∈ si and i 6= 0 then ∃sj ∈ T s.t. ψ1 ∈ sj and (si, sj) ∈ R.

9. if ♦ψ1 ∈ s0 then ∃si ∈ T s.t. (s0, si) ∈ R and ψ1 ∈ si.

Definition 43 (A K5-Tableau)

We need to know also that this K5-Tableau is sound and complete. For the intuition about
why this Tableau is sound and complete for modal logic K5, one needs to have a look at the
shape of a K5-Structure. An example of such a structure is given in Figure 1.1.

As we can see, the structure can be split into two sub-figures: on one side there is w0 alone
and on the other side there is somehow a sub-KT5-structure. Except w0 that can access (or not)
any other worlds, all the other relations are true. The sub-structure obtained when we remove
w0 is necessarily an equivalence relation due to the euclideanity from axiom (5).

One can use a tool such as Alloy Jackson (2006) to display examples of K5-Structure: an
Alloy model is given in appendix of this thesis. We can see on Figure 1.2 that when asked with
3 worlds, there is only three possible kind of K5-structures.

78



1.1. How To Deal With Modal Logic Formulas in K?5

a, b

w1w0

bw3

b w2

Figure 1.1: Example of a K5-Structure

Figure 1.2: Examples from Alloy when asked K5-structures with 3 worlds

The K5-Tableau proposed in Def.43 is sound and complete.

Theorem 9

Proof. The Tableau proposed in Def. 43 is very similar to the well known K-Tableau
showed sound and complete by R.Goré (1999). We just split the rules for the modalities {♦, �}
into 2 parts due to axiom (5). Indeed, because we know due to the shape of K5-structures, that
for all si, sj 6= s0 (si, sj) ∈ R. q.e.d

We need now the proof of the Lemma 2.

Proof. Let ψ ∈ sub(φ). Let g(ψ) be the number of sets s added to T because of ψ. That is,
g(ψ) is the number of times the conditions involving operator ♦ are triggered for sub-formulas
of ψ. We show that, for all ψ ∈ sub(φ) we have g(ψ) ≤ dd′(ψ). We do so by induction on the
structure of ψ.

Induction base. We consider four cases: (1) ψ = >, (2) ψ = ¬>, (3) ψ = p and (4)
ψ = ¬p. In all cases, the conditions involving ♦ are not triggered for formulas in sub(ψ). Then
g(ψ) = 0 ≤ dd′(ψ).

Induction step. We consider six cases:

1. ψ = ψ1 ∧ψ2. Assume ψ ∈ s, for some s ∈ T . In this case, the algorithm adds ψ1 and ψ2 to
s. Therefore, g(ψ) is bounded by g(ψ1)+g(ψ2). The latter is bounded by dd′(ψ1)+dd′(ψ2)
(by the induction hypothesis). Then g(ψ) ≤ dd′(ψ).

79



Chapter 1. The NP Modal Logics Satisfiability Problems

2. ψ = ψ1 ∨ ψ2. Assume ψ ∈ s, for some s ∈ T . In this case, the algorithm adds either ψ1

or ψ2 to s. Therefore, g(φ) is bounded by max(g(ψ1), g(ψ2)). The latter is bounded by
max(dd′(ψ1), dd′(ψ2)) (by the induction hypothesis). Then g(ψ) ≤ dd′(ψ).

3. ψ = �ψ1. Assume ψ ∈ si, for some si ∈ T s.t i 6= 0. In this case, the algorithm adds ψ1

to all sj ∈ T . Therefore, g(ψ) is bounded by g(ψ1). The latter is bounded by dd′(ψ1) (by
the induction hypothesis). Then g(ψ) ≤ dd′(ψ).

4. ψ = �ψ1. Assume ψ ∈ s0. In this case, the algorithm adds ψ1 to all si ∈ T s.t (s0, si) ∈ R.
Therefore, g(ψ) is bounded by g(ψ1). The latter is bounded by dd′(ψ1) (by the induction
hypothesis). Then g(ψ) ≤ dd′(ψ).

5. ψ = ♦ψ1. Assume ψ ∈ si, for some si ∈ T s.t. i 6= 0. In this case, if there is no sj
containing ψ1 then the algorithm adds a new sk to T and adds ψ1 to sk. Therefore, g(ψ) is
bounded by 1 + g(ψ1). The latter is bounded by 1 +dd′(ψ1) (by the induction hypothesis).
Then g(ψ) ≤ dd′(ψ).

6. ψ = ♦ψ1. Assume ψ ∈ s0. In this case, if there is no sj containing ψ1 then the algorithm
adds a new sk to T , adds (s0, sk) to R and adds ψ1 to sk. Therefore, g(ψ) is bounded
by 1 + g(ψ1). The latter is bounded by 1 + dd′(ψ1) (by the induction hypothesis). Then
g(ψ) ≤ dd′(ψ).

Therefore, we have |T | = 1 + g(φ) ≤ 1 + dd′(φ). q.e.d

Thus, for any φ ∈ L, each si of the tableau T corresponds to a wi ∈ W in the K5-model,
|T | ≤ dd(φ) + 1 means that the number of worlds in the K5-model is bounded by dd(φ) + 1.

To show that this proof can be extended to any other NP-complete modal logics, we need to
show that the different following rules can be added to a K5 Tableau and they will not create
an additional world in the model.

(T )

�φ ∈ si
φ ∈ si (4)

(si, sj) ∈ R and �φ ∈ si
�φ ∈ sj

(B)

�φ ∈ si and (si, sj) ∈ R
(sj , si) ∈ R (D)

�φ ∈ si
♦φ ∈ si

For any logic K?5 in {K5,K45,KB5,KT5}, the number of worlds in the K?5-model for a
formula φ satisfiable is bounded by dd(φ) + 1

Lemma 3

Proof. We will iterate with all the rules that we can add to our K5 Tableau and we will
show that none of them is creating additional worlds.

• (T). If we add (T) then we obtain a KT5 Tableau, and then it is already proved that
dd(φ) + 1 is an upper-bound in the proof of Lemma 1.

80



1.1. How To Deal With Modal Logic Formulas in K?5

• (4). If we have �φ ∈ si and (si, sj) ∈ R then we have �φ ∈ sj .

• (B). If we have �φ ∈ si and (si, sj) ∈ R then we need to add the symmetrical relation
(sj , si) ∈ R and φ must be true in sj because of that.

q.e.d

For any logic K?5 in {KD5,KD45}, the number of worlds in the K?5-model for a formula φ
satisfiable is bounded by dd(φ) + 2

Lemma 4

Proof. We will show that if we add to our K5 Tableau the axiom (D), then it can create
only one additional world.

• (D). If there exists sj such that (si, sj) ∈ R and that φ is in sj then ♦φ is satisfied in si.
But if it does not exist such a sj , Tableau needs to create a new sj , adds (si, sj) ∈ R and
adds φ in sj .

q.e.d

Now that we have an upper-bound for the size of the Kripke models, the next thing we want
to do is to simplify, as much as possible, the input formulas. That way, when we compute the
diamond-degree of the simplified formula, it is smaller than the one of the original formula.

1.1.2 A Set Of Simplifications For K?5

It is well known that, in modal logic KT5, there exists only two distinct modalities � and ♦.
Said otherwise, it is known that:

In modal logic KT5, for ◦ ∈ {♦,�}, we have the following equivalences:

◦ ◦ ◦ ◦ ◦ ◦�φ↔ �φ

◦ ◦ ◦ ◦ ◦ ◦ ♦φ↔ ♦φ

Theorem 10 (Garson (2016))

Here, we want to generalize this result, by stating that every modal logic formula in NNF
containing the axiom (5) has at most 6 different modalities, viz. ♦,�,��,♦♦,�♦ and ♦�.

81



Chapter 1. The NP Modal Logics Satisfiability Problems

In modal logic K?5, for ◦ ∈ {♦,�}, we have the following equivalences:

� ◦ ◦ ◦�φ↔ ��φ

� ◦ ◦ ◦ ♦φ↔ �♦φ

♦ ◦ ◦ ◦�φ↔ ♦�φ

♦ ◦ ◦ ◦ ♦φ↔ ♦♦φ

Theorem 11 (Drop the Middle Theorem 4.23 in Chellas (1980))

We now have the simplifications for any logic containing axiom (5) and we know that if we
add the axiom (T), then we obtain the modal logic KT5 which can be even further simplified.
The question that may arise now is: what simplification are applicable according to which axioms
have been added. For that, we propose the following theorems:

In modal logic KD5, we have the following equivalences:

(1) ��φ↔ ♦�φ (2) ♦♦φ↔ �♦φ

Theorem 12

Proof. Let us prove (1) and (2) by using the axioms (D), (5) and the Theorem 11.

(1)→ We have ��φ. By axiom (D), we know that ��φ→ ♦�φ.

(1)← We have ♦�φ. By axiom (5), we have �♦�φ. By Theorem 11, we have ♦�φ→ ��φ.

(2)→ We have ♦♦φ. By axiom (5), we have �♦♦φ. By Theorem 11, we have ♦♦φ→ �♦φ.

(2)← We have �♦φ. By axiom (D), we have ♦♦φ.

q.e.d

Because the modal logic KD5 contains the axiom (5), we can also apply the simplifications
presented in Theorem 11 to further simplify the formulas.

In modal logic K45, we have the following equivalences:

(1) �φ↔ ��φ (2) ♦φ↔ ♦♦φ

Theorem 13

82



1.1. How To Deal With Modal Logic Formulas in K?5

Proof. Let us prove (1) and (2) by using the axioms (4), (5) and the Theorem 11.

(1)→ We want to prove �φ→ ��φ, we already have it from axiom (4) (ψ → �ψ).

(1)← We have ��φ → ��φ tautologically. Then by adding a diamond, we have ♦��φ →
♦��φ. Then from the contraposition of axiom (5) (♦�φ→ �φ), we have ��φ→ ♦��φ.
Then from Theorem 11, we have ��φ→ �φ.

(2)→ We have ♦φ. Then we have ♦φ → �♦φ from (axiom 5). Then by adding a diamond, we
have ♦♦φ → ♦�♦φ. Then the contrapositive of axiom (4), we have ♦φ → ♦�♦φ. Then
by Theorem 11, we have ♦φ→ ♦♦φ.

(2)← We have ♦φ directly from the contrapositive of axiom (4).

q.e.d

From this theorem, we know that each K45 formula has at most 4 different modalities, viz.
♦,�,�♦ and ♦�.

In modal logic KB5, we have the following equivalences:

(1) �φ↔ ��φ (2) ♦φ↔ ♦♦φ

Theorem 14

Proof. KB5 is just another name for the modal logic KB45. Thus every simplifications
on NP modal logics implied by the axiom (4) can also be applied with the axiom (B) (see Table
2.2). q.e.d

Obviously, one can combine axioms to simplify even further the formulas. For example, the
modal logic KD45 can be easily simplified as follows:

In modal logic KD45, we have the following equivalences:

(1) �φ↔ ♦�φ (2) ♦φ↔ �♦φ

Theorem 15

Proof. Let us prove (1) and (2) by using the Theorems 13 and 12. (1) We know that
♦�φ ↔ ��φ by Theorem 12. Then we know that ♦�φ ↔ �φ by Theorem 13. (2) We know

83



Chapter 1. The NP Modal Logics Satisfiability Problems

that �♦φ↔ ♦♦φ by Theorem 12. Then we know that �♦φ↔ ♦φ by Theorem 13. q.e.d

Thus, we know that in modal logic KD45, we have, as in KT5, only two distinct modalities
� and ♦. From now on, we know that any modal logic which contains the axiom (5) can be
simplified in one way or another in order to reduce the number of modalities in the formula. This
is extremely helpful for the diamond-degree which depends only on the number of diamonds in
the formula, the fewer there are, the smaller will be the upper-bound for the SAT translation
that we propose. There exists a preprocessing, which is validity-preserving in any modal logic
containing axiom (K), called the Box Lifting and is defined as follows:

(1) (�φ ∧�ψ)↔ �(φ ∧ ψ) (2) (♦φ ∨ ♦ψ)↔ ♦(φ ∨ ψ)

Theorem 16 (Box Lifting Sebastiani and Vescovi (2009))

It allows to reduce the number of modalities in the formula and it is quite straightforward to
understand. For (1), it says that φ must be true in all possible worlds, and ψ must be true in
all possible worlds. Thus, both must be true in all possible worlds. Similar for (2).

For the NP modal logics, one can go even further in the simplifications. We thus propose the
following theorem to split the modalities when the axiom (5) is activated.

For any formula φ and ψ, in a modal logic which contains the axiom (5), we have the following:

(◦1φ
⊕
◦1 ◦2 ψ)↔ ◦1(φ

⊕
◦2ψ)

for ◦1, ◦2 ∈ {♦,�} and
⊕
∈ {∧,∨}.

Theorem 17 (?5-Lifting)

Proof. This theorem has many cases, let us list them and start proving them one by one.

1. (�φ ∧��ψ)↔ �(φ ∧�ψ)

2. (�φ ∧�♦ψ)↔ �(φ ∧ ♦ψ)

3. (�φ ∨��ψ)↔ �(φ ∨�ψ)

4. (�φ ∨�♦ψ)↔ �(φ ∨ ♦ψ)

5. (♦φ ∧ ♦�ψ)↔ ♦(φ ∧�ψ)

6. (♦φ ∧ ♦♦ψ)↔ ♦(φ ∧ ♦ψ)

7. (♦φ ∨ ♦�ψ)↔ ♦(φ ∨�ψ)

8. (♦φ ∨ ♦♦ψ)↔ ♦(φ ∨ ♦ψ)

The cases (1), (2), (7) and (8) are straightforward from Theorem 16. The cases (3) and (4)
can be obtained from (5) and (6) using the duality of box and diamond.
(5) left to right: (♦φ∧♦�ψ)→ ♦(φ∧�ψ). We know from (Chellas 1980, p.141) that (♦χ∧♦δ)→
♦(♦χ∧δ) is a theorem in modal logic K5. Thus we know that we have (♦φ∧♦�ψ)→ ♦(♦φ∧�ψ).
From this point, we know that if ∃K = 〈W,R, V 〉, such that 〈K, w〉 |= (♦φ ∧ ♦�ψ). There is w′,

84



1.2. A SAT Translation Of The Problems

w′′ in R(w) s.t. 〈K, w′〉 |= φ and 〈K, w′′〉 |= �ψ. By axiom 5 and thus the euclideanity, we have
that w′ in R(w′′) and also that w′′ in R(w′). Also by axiom 5, we have that all v′′ in R(w′′)
is also in R(w′) and all v′ in R(w′) is in R(w′′). Then we have 〈K, w′〉 |= �ψ. Thus we have
〈K, w〉 |= ♦(φ ∧�ψ).

(5) right to left: ♦(φ ∧�ψ)→ (♦φ ∧ ♦�ψ).
If ∃K = 〈W,R, V 〉, such that 〈K, w0〉 |= ♦(φ ∧ �ψ). So it exists w such that (w0, w) ∈ R then
〈K, w〉 |= (φ ∧ �ψ). Then we have 〈K, w〉 |= φ and 〈K, w〉 |= �ψ. Then ∀w′, s.t. (w,w′) ∈ R,
we have 〈K, w′〉 |= ψ. But, because we have axiom (5), we know that (w0, w

′) ∈ R, thus we have
〈K, w0〉 |= ♦�ψ. Finally, we thus know that we have 〈K, w0〉 |= (♦φ ∧ ♦�ψ).

(6) left to right: (♦φ ∧ ♦♦ψ)→ ♦(φ ∧ ♦ψ).
We know from the axiom (5) that we have ♦♦φ → �♦♦φ. From the Theorem 11, we can thus
obtain ♦♦φ → �♦φ. We then have (i) ♦�φ → ��φ. We have (♦φ ∧ �(¬φ ∨ �¬ψ)) → ♦�¬ψ
by principles of modal logic K. From (i) we obtain (♦φ ∧ �(¬φ ∨ �¬ψ)) → ��¬ψ. From that
we get (♦φ ∧ ♦♦ψ)→ ♦(φ ∧ ♦ψ) by propositional reasoning.

(6) right to left: ♦(φ ∧ ♦ψ)→ (♦φ ∧ ♦♦ψ).
We know from the axiom (5) that (♦ψ → �♦ψ). By propositional reasoning, we know that
φ ∧ ♦ψ → φ ∧ �♦ψ. Then we know that ♦(φ ∧ ♦ψ) → ♦(φ ∧ �♦ψ) Then by distributing, we
have ♦(φ ∧ ♦ψ)→ (♦φ ∧ ♦�♦ψ) Then by Theorem 11, we have ♦(φ ∧ ♦ψ)→ (♦φ ∧ ♦♦ψ)

q.e.d

Now we have all the components to propose a polynomial reduction from modal logic K?5
satisfiability problems into a satisfiability problem in CPL (SAT problem).

1.2 A SAT Translation Of The Problems

Indeed, the main contribution here is to demonstrate a SAT encoding of these satisfiability
problems and to see the practical efficiency of the proposed approach. To avoid a polynomial
blow-up and in order to obtain a CNF as small as possible, all the simplifications presented
before are applied (when possible) to φ before translating φ into propositional logic.

85



Chapter 1. The NP Modal Logics Satisfiability Problems

1.2.1 Translation function ‘tr’

Let φ be a formula for which we want to decide the satisfiability in K?5.

tr(φ, n) = tr′(nnf(φ), 0, n)

tr′(>, i, n) = > tr′(¬>, i, n) = ¬>
tr′(p, i, n) = pi tr′(¬p, i, n) = ¬pi
tr′((φ ∧ δ), i, n) = tr′(φ, i, n) ∧ tr′(δ, i, n)

tr′((φ ∨ δ), i, n) = tr′(φ, i, n) ∨ tr′(δ, i, n)

tr′(�φ, i, n) =


(¬Ri,0 ∨ tr′(φ, 0, n)) ∧

n∧
j=1

(tr′(φ, j, n)) (i 6= 0)

(¬R0,0 ∨ tr′(φ, 0, n)) ∧
n∧
j=1

(¬R0,j ∨ tr′(φ, j, n)) otherwise

tr′(♦φ, i, n) =


(Ri,0 ∧ tr′(φ, 0, n)) ∨

n∨
j=1

(tr′(φ, j, n)) (i 6= 0)

(R0,0 ∧ tr′(φ, 0, n)) ∨
n∨
j=1

(R0,j ∧ tr′(φ, j, n)) otherwise

Definition 44 (Translation function ‘tr’)

The translation adds fresh Boolean variables pi to the formula, denoting the truth value of p in
the world wi, variables R0,i denoting the truth value of wi is accessible from w0 and variables Ri,0
denoting the truth value of w0 is accessible from wi. In such function, the i parameter represents
the index of the world. This translation is different from the one proposed in Caridroit et al.
(2017a) which deals only with modal logic KT5. Here, thanks to the variables Ri,j which starts
from (resp. ends at) w0, we are able to represents the different K?5 Structures.

We need to know how we can add the translation of the axioms {(B), (D), (4), (T )} in order
to be able to solve all the modal logics K?5. One simple technique to deal with different modal
logics is to include the constraints of the different axioms considered to the CNF. This simple
extension amount to overload the translation function for the different axioms and to append to
the translation the constraints of the axioms considered.

The function is defined over a Negative Normal Form (NNF) formula for sake of simplicity.
Note that the result of the translation is not in CNF. As such, a classical translation into CNF
such as Tseitin (1983) is needed to use a SAT oracle.

86



1.2. A SAT Translation Of The Problems

tr((T ), n) =
n∧
j=0

(R0,j ∧Rj,0) tr((D), n) =
n∨
j=0

(R0,j)

tr((B), n) =

n∧
j=0

(¬R0,j ∨Rj,0) tr((4), n) =

n∧
j=0

n∧
k=0

(¬R0,j ∨ ¬Rj,k ∨R0,k)

Definition 45 (Translation of axioms)

Proof. The translation of each axioms came from the relations in First Order Logic, presented
by H.Sahlqvist (1975) in 1973 plus the implication of what would be the result if we also add
the translation of the Euclideanity. q.e.d

• φ is satisfiable in modal logic K5 if and only if tr(φ, dd(φ) + 1) is satisfiable.

• φ is satisfiable in modal logic K45 if and only if tr(φ, dd(φ) + 1) ∧ tr((4), dd(φ) + 1) is
satisfiable.

• φ is satisfiable in modal logic KB5 if and only if tr(φ, dd(φ) + 1) ∧ tr((B), dd(φ) + 1) is
satisfiable.

• φ is satisfiable in modal logic KT5 if and only if tr(φ, dd(φ) + 1) ∧ tr((T ), dd(φ) + 1) is
satisfiable.

• φ is satisfiable in modal logic KD5 if and only if tr(φ, dd(φ) + 2) ∧ tr((D), dd(φ) + 2) is
satisfiable.

• φ is satisfiable in modal logic KD45 if and only if tr(φ, dd(φ) + 2)∧ tr((D), dd(φ) + 2)∧
tr((4), dd(φ) + 2) is satisfiable.

Theorem 18

Proof. The translation is simulating the different cases of the Tableau used to prove Lemma
2 and we already proved that dd can be used as a valid upper-bound for modal logic K?5.

q.e.d

Without loss of generality, we will talk about UB(φ) to denote the upper-bound which can
be dd(φ) + 1 or dd(φ) + 2 according to which NP-modal logics is used. Now that we have the
translation from K5 to SAT and that we know that every K?5 Structures for φ are bounded
polynomially by the diamond-degree of φ.

87



Chapter 1. The NP Modal Logics Satisfiability Problems

It is interesting to notice in Definition 45 that only the relations related to w0 are constrained
by the axioms. Indeed, the other relations are necessarily true due to the shape of K?5 structures.

From this point, if we want to find if a formula φ is KD45-satisfiable with a model of size n for
example, we will have to solve with a SAT solver the formula: (tr(φ, n) ∧ tr((D), n) ∧ tr((4), n).
During the translation, any ri,j with i, j > 0 is directly replaced by >, because it has to be true
due the shape of a K5-structure. Interesting to notice that if we want to solve the formula φ as a
modal logic KT5, we will have the propositional logic formula: (tr(φ, dd(φ)+1)∧ tr((T ), dd(φ)+
1)), which after simplification of the variables Ri,j which are now all equal to true, we will obtain
the exact same formula as the one proposed in Caridroit et al. (2017a). From an efficiency
perspective, it is worth to consider the logic with the less axioms possible, in order to avoid adding
too many clauses which will not change the satisfiability of the formula. Thus for example, if
we want to solve the formula φ in modal logic KB45, we will just consider axiom (B) which will
give the same results with a smaller propositional logic formula.

Moreover, one can see that we can sometimes translate multiple times the same subformula
and because it does not depend on the index of the worlds (except for w0) we will all the time
obtain the same set of clauses in propositional logic. One way to avoid such phenomenon is to
propose a caching system in order to plug the already-translated result and not translate twice
the same sub-formula. We will present how such a caching works in the next subsection.

1.2.2 Caching

Caching is a classical way to avoid redundant work. *SAT performs caching using a “bit matrix”
Giunchiglia et al. (2002). Efficient implementation of BDD Bryant (1986) packages also rely
on caching, to build an explicit graph. These two examples require additional time and space
to search and cache already performed works. Here, our technique is a “simple but efficient”
trade-off. It does not memoize the work, so it may not cache all possible formulas, but it only
requires a flag to detect redundant work.

♦

∧

a ♦

b

(a) φ = ♦(a ∧ ♦b)

∨

∧

a1 ∨

b1 b2

∧

a2 ∨

b1 b2

(b) tr(φ, dd(φ))

∨2

∧

a1 ∨1

b1 b2

∧

a2 ∨1

b1 b2

(c) tr+(φ, dd(φ))

∨2

∧

a1 ∨1

b1 b2

∧

∨1

b1 b2

a2

(d) tr+(φ, dd(φ)) with simplification

Figure 1.3: Translation of ♦(a ∧ ♦b) (left), initial translation (middle-left), tagged formula
(middle-right), final translation (right)

88



1.2. A SAT Translation Of The Problems

In the example depicted in Figure 1.3.b, sub-formula (b1 ∧ b2) appears twice. The translation
of the first diamond creates two sub-formulas a1 ∧ ♦b and a2 ∧ ♦b, where each ♦b needs to
be translated. Because in KT5 (all worlds are connected), the translations of ♦b on different
worlds are equivalent (all the Ri,j are true), so we can reuse the same sub-formula. It means
that instead of using a tree, we can work with a DAG, which allows a more efficient translation
to CNF.

Example 21

The result of the translation tr′ is independent of the index in the case of a modality in modal
logic KT5. More formally we have: tr′(◦φ, i, n) = tr′(◦φ, j, n) ∀i, j and ◦ ∈ {♦,�} in modal
logic KT5.

Lemma 5

Proof. By definition, there are only 2 cases:

• (◦ = �) then, tr′(�φ, i, n) =
∧n
k=1(tr′(φ, k, n))

• (◦ = ♦) then, tr′(♦φ, i, n) =
∨n
k=1(tr′(φ, k, n))

In each case, the result is independent from i, so choosing j as an index gives the exact same
result. q.e.d

Informally, Lemma 5 shows the fact that no matter how embedded the modal sub-formula
is, its translation will always give the same result (independent from the index i). Therefore,
we can start by translating the most embedded sub-formula, tag the corresponding node and
backtrack. The resulting formula may contain several nodes with the same tag. This means that
these sub-formulas are syntactically identical (see Figure 1.3.c). Then, we maintain only one
occurrence of the sub-formula, transforming the tree in a DAG (see Figure 1.3.d). Structural
caching is thus performed on the fly before translating to CNF. The translation function using
this technique is noted tr+. This lazy-caching system leads to huge improvement in KT5 as
explained in Caridroit et al. (2017a).

It is trickier to see if such a caching can be extended to any modal logic containing axiom
(5). In fact, only a part of the translation can be cached in K?5, but not all of it as in KT5. In
the more general case, we have:

89



Chapter 1. The NP Modal Logics Satisfiability Problems

If we consider the translation of the modalities as follows:

tr′(�φ, i, n) = Σi ∧∆ tr′(�φ, j, n) = Σj ∧∆

tr′(♦φ, i, n) = Σi ∨∆ tr′(♦φ, j, n) = Σj ∨∆

∀i, j 6= 0. Then ∆ (being the other part of the formula) may be cached.

Lemma 6

Proof. By Definition of tr. We know that the second conjunction (resp. disjunction) can
be cached if the index is different than 0. q.e.d

As we can see, the caching system is less efficient than the one that we can obtain if we deal
only with KT5. For the sake of understanding, in the experimental part, we did not implement
the caching of Caridroit et al. (2017a) in K?5SAT when it deals with KT5. That way, one can
see the impact of a dedicated approach against a more general one.

Now that we have a set of simplifications, a SAT translation and a lazy-caching system, it
is time to see if the whole approach is competitive with the state-of-the-art modal logic K?5
solvers. We named our solver K?5SAT and it works as follows:

1. It simplifies the formula as much as possible;

2. It translates the formula into a propositional logic formula using caching;

3. It calls Glucose Eén and Sörensson (2003), Audemard et al. (2013) on it to solve it.

1.3 Experimental Evaluation of the SAT-Based Approach

We compared K?5SAT against existing solvers considered state-of-the-art in Lagniez et al.
(2017a), Nalon et al. (2016) and Caridroit et al. (2017a) for the modal logic K, KT and S4, but
able to deal with some/all logics containing axiom (5) namely: Moloss 0.9 Areces et al. (2015),
SPASS 3.7 Hustadt et al. (1999), S52SAT Caridroit et al. (2017a), and Vampire 4.0 Kovács
and Voronkov (2013) with a combination of the optimized functional translation Horrocks et al.
(2006).

One must understand correctly what we are doing here, due to the fact that there does not
exist modal logic K?5 benchmarks to evaluate the different approach nor dedicated K?5 solvers.
We took general modal logic solvers (like Moloss and SPASS) and we give them the axioms (5),
(D), (4) or (T) according to the logic we consider. Those solvers do not consider that axiom (5)
will be by default, thus they expect any kind of Kripke structure to arrive.

For the benchmarks, one thing to understand correctly is which logic entails which other. We
already saw that being satisfiable in KT5 entails being satisfiable in K5 and being unsatisfiable in
K5 entails being also unsatisfiable in KD45 for example. But this phenomenon is not happening

90



1.3. Experimental Evaluation of the SAT-Based Approach

only in modal logic K?5. Indeed, every Kripke structure is at least, a K-Structure, thus the
unsatisfiability in modal logic K entails the unsatisfiability in all the modal logics.

Because it would be CPU-consuming to test all the K?5 logics and that the CPU ressources
of CRIL are mutualised, we restraint ourselves to 3 different K?5 logics, namely: K5, KD45 and
KT5. K5 being the base of our approach, it is worth to compare against other approach to see if
we are competitive without considering any axioms. KT5 is a logic that we already dealt with in
Caridroit et al. (2017a), thus it is interesting to compare our general approach against a totally
dedicated one. And finally, we test modal logic KD45, because it is a famous modal logic (the
modal logic representing the belief Tallon et al. (2004)) and also because it is the logic which
adds the most clauses in our SAT approach. We have to translate the axioms (D) and (4), thus
it is normally there that we will have the “worst” results.

1.3.1 Results Obtained In Logic WorkBench (LWB)

Solver K-SAT K-UNSAT KT-SAT KT-UNSAT S4-SAT S4-UNSAT Total

# Benchs (504) (504) (504) (504) (504) (504) (3024)

Moloss 142 100 214 189 308 308 1261

SPASS 295 286 137 126 310 295 1549

Vampire 404 409 317 306 311 288 2035

S52SAT

K?5SAT 420 412 403 397 423 398 2453

VBS 420 412 403 397 423 398 2453

Table 1.1: #Instances solved in LWB K,KT,S4 in modal logic K5

Solver K-SAT K-UNSAT KT-SAT KT-UNSAT S4-SAT S4-UNSAT Total

# Benchs (504) (504) (504) (504) (504) (504) (3024)

Moloss 136 119 214 174 305 300 1248

SPASS

Vampire

S52SAT

K?5SAT 380 350 377 321 402 396 2226

VBS 380 350 377 321 402 396 2226

Table 1.2: #Instances solved in LWB K,KT,S4 in modal logic KD45

In Table 1.1, Table 1.2 and Table 1.3, an empty line represents the fact that the solver cannot
deal with the logic considered.

As it was the case in Caridroit et al. (2017a), it appears that the SAT-based approaches
performs extremely well when the translation is adapted to the problem. Indeed, we can see
that S52SAT does better than K?5SAT in modal logic KT5. This is obvious because S52SAT

91



Chapter 1. The NP Modal Logics Satisfiability Problems

Solver K-SAT K-UNSAT KT-SAT KT-UNSAT S4-SAT S4-UNSAT Total

# Benchs (504) (504) (504) (504) (504) (504) (3024)

Moloss 155 142 177 80 288 244 1086

SPASS 287 288 144 130 320 301 1470

Vampire 367 357 398 396 426 399 2343

S52SAT 480 425 478 409 480 421 2693

K?5SAT 433 420 421 402 453 410 2539

VBS 480 425 478 409 480 421 2693

Table 1.3: #Instances solved in LWB K,KT,S4 in modal logic KT5

is dedicated to solve only KT5. For the other logics, Moloss is an SMT-based approach using
MiniSAT Eén and Sörensson (2003) as an internal SAT solver and we can see that it does not
perform as well as K?5SAT. This is mainly due to the fact that Moloss is created to deal with
all the modal logics, even the PSPACE-complete one like K, KT or S4 for example. Thus the
simplifications are not applied by Moloss. SPASS has good results when we take into account
that it is not supposed to deal only with modal logic. SPASS is a resolution-based solver which
translates modal logics formulas into first-order logic formulas5. And finally Vampire does very
good too for an external First-Order Logic solver used after an optimized functional translation
Horrocks et al. (2006). Again, Vampire is not really designed to deal with modal logic formulas
and it is a complete and efficient tool which can answer the satisfiability as we do here, but it
can also do theory reasoning, interpolation, consequence elimination, program analysis and many
other.

1.3.2 Results Obtained In TANCS-2000-MQBF

Solver qbf qbfL qbfS qbfMS qbfML Total

# Benchs (56) (240) (240) (240) (240) (1016)

Moloss 56 0 177 0 0 233

SPASS 50 79 235 108 0 472

Vampire 56 240 239 208 240 983

S52SAT

K?5SAT 56 153 240 172 28 649

VBS 56 240 240 240 240 1016

Table 1.4: #Instances solved in MQBF in modal logic K5

The instances in MQBF have a very huge number of modalities with a deep modal depth in
5We just used the default options in SPASS except the theory for the logic considered

(see http://www.cs.man.ac.uk/~schmidt/mspass/manual/script_1.html for more explanation).

92

http://www.cs.man.ac.uk/~schmidt/mspass/manual/script_1.html


1.3. Experimental Evaluation of the SAT-Based Approach

Solver qbf qbfL qbfS qbfMS qbfML Total

# Benchs (56) (240) (240) (240) (240) (1016)

Moloss 47 0 74 2 0 123

SPASS

Vampire

S52SAT

K?5SAT 40 142 240 166 28 450

VBS 47 142 240 166 28 450

Table 1.5: #Instances solved in MQBF in modal logic KD45

Solver qbf qbfL qbfS qbfMS qbfML Total

# Benchs (56) (240) (240) (240) (240) (1016)

Moloss 56 0 132 10 0 198

SPASS 56 0 108 235 0 399

Vampire 56 240 240 208 240 984

S52SAT 56 178 240 240 240 954

K?5SAT 56 153 240 202 174 825

VBS 56 240 240 240 240 1016

Table 1.6: #Instances solved in MQBF in modal logic KT5

general. The minimum modal depth of formulae in this category is 19, the maximum 225, average
69.2 with a standard deviation of 47.5. Thus a solver which would not apply the simplification
presented in Theorem 11 has poor chances to solve these instances efficiently. Interestingly,
because these formulas have a huge number of modalities and are highly complex (they are
representing QBF formulas), Vampire does extremely good results. It is able to infer conclusions
out of reach for a SAT solver which allows it to solve efficiently the formulas. Here the weakness
of all the SAT-based approach is the translation phase. It is too long to translate the formula
(when it does not simply blow-up the memory allocated).

1.3.3 Results Obtained In 3CNFKSP

And here the results are extremely logical, the category 3CNFKSP are extremely similar to a
SAT problem, so as expected the three techniques based on a SAT solver (Moloss with MiniSAT,
S52SAT and K?5SAT with Glucose). In fact, when we check the VBS, all the instances are
solved in the three logics considered, which was not the case in the other categories. The results
of Moloss in the case K5 are surprising compared to the two other logics. But it turns out that
the adding of axioms make the results (SAT or UNSAT) easy to obtain for Moloss, without them
Moloss runs out of time. SPASS and Vampire, using First-Order Logic (FOL) techniques are not

93



Chapter 1. The NP Modal Logics Satisfiability Problems

Solver md=1 md=2 Total

# Benchs (240) (760) (1000)

Moloss 53 115 168

SPASS 235 287 522

Vampire 240 411 651

S52SAT

K?5SAT 221 760 981

VBS 240 760 1000

Table 1.7: #Instances solved in 3CNFKSP in modal logic K5

Solver md=1 md=2 Total

# Benchs (240) (760) (1000)

Moloss 240 760 1000

SPASS

Vampire

S52SAT

K?5SAT 219 760 979

VBS 240 760 1000

Table 1.8: #Instances solved in 3CNFKSP in modal logic KD45

Solver md=1 md=2 Total

# Benchs (240) (760) (1000)

Moloss 240 760 1000

SPASS 235 302 537

Vampire 204 359 563

S52SAT 240 760 1000

K?5SAT 240 760 1000

VBS 240 760 1000

Table 1.9: #Instances solved in 3CNFKSP in modal logic KT5

as efficient as a SAT solver to solve modal logic instances which are closer to a SAT instances
than to a highly-structured instance for which FOL solvers are more optimized.

Now that we evaluate our solver K?5SAT and we demonstrated that it is now the state-of-
the-art approach for solving the K?5-SAT problem. We know how many benchmarks from the

94



1.3. Experimental Evaluation of the SAT-Based Approach

community are K?5-Satisfiable, thus it is now interesting to see how far is the diamond-degree
from the optimal value, ie., the Kripke model with the smallest number of worlds satisfying the
formula. Obviously this problem is a function problem and it is harder to solve than just the
satisfiability problem. We will see in the next chapter, how the translation tr can be adapted
and how a SAT solver, in incremental mode, can be used to obtain the smallest Kripke model
possible.

95



Chapter 1. The NP Modal Logics Satisfiability Problems

96



Chapter

2TheMinimal K?5 Satisfiability Problem

Contents
2.1 The Minimal K?5 Satisfiability Problem . . . . . . . . . . . . . . 98

2.2 How To Solve The MinK?5 Satisfiability Problem . . . . . . . . 99

2.2.1 An Assumption-Based Translation . . . . . . . . . . . . . . . . . . . 99

2.2.2 Cardinality Optimality Equals Subset Optimality . . . . . . . . . . 101

2.2.3 Only Unsatisfiable Cores Size Matters . . . . . . . . . . . . . . . . . 103

2.3 Experiment For The MinK?5 Satisfiability Problem . . . . . . . 104

2.3.1 Results On The Benchmarks From The Literature . . . . . . . . . . 105

2.3.2 Results On A Proposed Set Of Benchmarks With Structures . . . . 106

2.3.3 General Analysis Of The Results Obtained . . . . . . . . . . . . . . 107

Providing a model, a certificate of satisfiability, is important to check the answer given by the
solver. This is true both for the author of the solver or a user of that solver. This is mandatory
nowadays in many solver competitions, among them the SAT competition Simon et al. (2005). It
has also been shown that those models can help improving NP-oracle based procedures Marques-
Silva and Janota (2014): a procedure requiring a polynomial number of calls to a yes/no oracle
can be transformed into a procedure requiring only a logarithmic number of calls when the oracle
can provide a model.

Another example of the importance for an oracle to provide a model may be found in the
model rotation technique Marques-Silva and Lynce (2011), a method for the detection of clauses
that are included in all MUSes (Minimal Unsatisfiable Sets) of a given formula via the analysis
of models returned by a SAT oracle. Even if the theory does not guarantee a reduction of the
number of oracle calls, in practice it provides a huge performance gain (up to a factor of 5) Belov
and Marques-Silva (2011).

Finding the smallest model may be even more important in some contexts. The provided
model usually has a meaning for the user, like in Hardware Verification Fairtlough and Mendler
(1994) where the model is in fact an explanation of the bug found in the design of the hardware.
The smaller the model is, the more precise could be the location of the bug. It could also be the
case that the model should be inspected by the user or displayed on a screen. Thus, the smaller,
the better. There is a huge literature about minimizing models for SAT Iser et al. (2013), Soh
and Inoue (2010), Koshimura et al. (2009).

In this chapter, we will see what can be the different techniques to obtain the smallest K?5
models with respect to the number of possible worlds.

97



Chapter 2. The Minimal K?5 Satisfiability Problem

2.1 The Minimal K?5 Satisfiability Problem

In this work, the minimality is achieved on the size of a Kripke structure 〈M,w〉, noted |M |,
corresponding to its number of worlds. Let us use a formula as a running example to see how
we can obtain the smallest possible:

Let P = {a, b}. φ = ((�¬a ∨ ♦b) ∧ ♦a ∧ �b) is a modal logic formula. We
can easily find a K5 model such as the following one: W = {w0, w1, w2}, R =
{(w0, w1), (w0, w2), (w1, w2), (w1, w1), (w2, w1), (w2, w2)}, V = {〈a, {w1}〉, 〈b, {w0, w1, w2}〉}.
The size of 〈M,w0〉 equals 3.

Example 22

Let us remark that obtaining the minimal model for φ is not as simple as merging the worlds
with the same valuations into only one world in any model of φ. The minimality cannot be
guaranteed that way. Indeed, φ is also satisfied by the following structure containing only one
world: W = {w0}, R = {(w0, w0)}, V = {〈a, {w0}〉, 〈b, {w0}〉}, which is a minimal model. Let us
define more formally the problem of Minimal K?5 Satisfiability Problem.

A formula φ is min-K?5-satisfied by a Kripke structure 〈M,w〉 (noted 〈M,w〉 |=min φ) if and
only if 〈M,w〉 |= φ and φ has no model 〈M ′, w′〉 such that |M ′| < |M |.

Definition 46 (Minimal K?5 Satisfiability)

Let a formula φ in L be given. The minimal K?5 satisfiability problem (MinK?5-SAT) is the
problem of finding a structure 〈M,w〉 such that 〈M,w〉 |=min φ.

Definition 47 (Minimal K?5 Satisfiability Problem)

A very simple way to tackle this problem is to use the solver K?5SAT (presented in the
previous chapter) with a linear search strategy. Roughly, the procedure starts by trying structures
of size b = 1. If no model is found, it iterates the process, each time increasing the value of b by
1. It iterates until a model of φ is found or the upper bound UB(φ) is reached. This strategy
is called 1toN. It is of course also possible to do it in reverse order: the procedure starts with
b = UB(φ) and decreases the value of b by 1 (this is called Nto1). Yet another possibility is
to use a binary search (called Dico). However, these approaches are very naive. If we take, for
instance, 1toN when the solution is a model of size m, it will perform m translations from K?5
to SAT and then m calls to a SAT solver. The problem here is that such strategy does not take
advantage of the previous UNSAT answer of the SAT solver to solve the new formula.

98



2.2. How To Solve The MinK?5 Satisfiability Problem

2.2 How To Solve The MinK?5 Satisfiability Problem

In this section, we will present different techniques that can be used to solve the MinK?5 Sat-
isfiability Problem. The first of them is to use an incremental-SAT solver. Modern SAT solvers
are able to take advantage of previous calls when they are used incrementally Eén and Sörensson
(2003), Audemard et al. (2013). The usual way to do that is to add selectors (assumptions)
to the input formula and to get as output, on the suitable cases, some kind of “reason” for its
unsatisfiability, in terms of these selectors. We propose here a way to add such selectors in the
translation from K?5 to SAT.

2.2.1 An Assumption-Based Translation

In order to take advantage of the ability of modern SAT solvers to return a reason for unsatisfia-
bility, we also add more information to the translated formula. Here, we change the translations
of �ψ and ♦ψ in order to add fresh propositional variables (si) that we call selectors, in such a
way that the truth value of the selectors determines if the world i is ‘active’ or ‘inactive’ in the
current Kripke structure. Formally (and with the additional parameters), we have:

Let φ ∈ L which contains the axiom (5).

trs(φ, n) = trs
′(nnf(φ), 0, n)

trs
′(>, i, n) = > trs

′(¬>, i, n) = ¬>
trs
′(p, i, n) = pi trs

′(¬p, i, n) = ¬pi
trs
′((φ ∧ · · · ∧ δ), i, n) = trs

′(φ, i, n) ∧ · · · ∧ trs
′(δ, i, n)

trs
′((φ ∨ · · · ∨ δ), i, n) = trs

′(φ, i, n) ∨ · · · ∨ trs
′(δ, i, n)

trs
′(�φ, i, n) =


(¬Ri,0 ∨ trs

′(φ, 0, n)) ∧
n∧
j=1

(¬sj ∨ trs
′(φ, j, n)) (i 6= 0)

(¬R0,0 ∨ trs
′(φ, 0, n)) ∧

n∧
j=1

(¬R0,j ∨ (¬sj ∨ trs
′(φ, j, n))) otherwise

trs
′(♦φ, i, n) =


(Ri,0 ∧ trs

′(φ, 0, n)) ∨
n∨
j=1

(sj ∧ trs
′(φ, j, n)) (i 6= 0)

(R0,0 ∧ trs
′(φ, 0, n)) ∨

n∨
j=1

(R0,j ∧ (sj ∧ trs
′(φ, j, n))) otherwise

Definition 48 (Translation function ‘trs’ with selectors)

First, it is important to notice that, there is always at least one selector affected at true
because in modal logic there is always at least one world, called the actual-world. A K?5-model
has to have at least one possible world (the actual world). The reader may verify that the selector
s0 does not exist. It is not added to the translation because it is considered to be always set to

99



Chapter 2. The Minimal K?5 Satisfiability Problem

true. In the remainder of this Chapter, we denote by trs(φ) the formula trs(φ,UB(φ)) and the
set of all selectors of trs(φ) is denoted by S(φ) (i.e., S(φ) = {si | 1 ≤ i ≤ dd(φ)}).

Let us go back to Example 22 with the formula φ = ♦(a ∧�b). The translation trs(φ) is:

(R0,0 ∧ a0 ∧ (¬R0,0 ∨ b0) ∧ (¬R0,1 ∨ ¬s1 ∨ b1)) ∨ (R0,1 ∧ s1 ∧ a1 ∧ (¬R1,0 ∨ b0) ∧ (¬s1 ∨ b1))

Intuitively, every formula with subscript i is a formula that is true at the possible world i. As we
can see, if one selector si is false, then the sub-formula connected to it will be considered false
as well. We thus respect the idea that if the selector si is false, then the world i is not present
in the model (and we do not care about the valuation of the propositions there in).

Below, we have a formula that is equivalent to deactivate s1 (because s0 is considered to be
for sure activated).

(R0,0 ∧ a0 ∧ (¬R0,0 ∨ b0) ∧ (¬R0,1 ∨ ¬⊥ ∨ b1)) ∨ (R0,1 ∧ ⊥ ∧ a1 ∧ (¬R1,0 ∨ b0) ∧ (¬⊥ ∨ b1))

After the application of the simplification, the formula is equivalent to (R0,0∧a0∧(¬R0,0∨b0))
And if we take a closer look, this formula is tr(φ, 1) (the translation without any selectors and
allowing only 1 world). It corresponds to the problem of deciding if φ is satisfiable in a model
of size 1.

a, b

w0

In fact, the model that the SAT solver finds is this K5-Structure which is a K5-model of φ.

Example 23 (Example of “trs”)

Moreover, even though we are using here the incremental-SAT technique, it is still possible
to simulate the approaches presented before (1toN, Nto1 and Dicho). The disadvantages is that
the size of the formula generated with this translation is bigger due to the fact that we must
bound it by UB(φ) compared to the other approach where the bound is necessary smaller or
equal. However, as pointed out in Caridroit et al. (2017a), the size of the formulas generated
with the theoretical upper-bound are reasonable and adding the selectors does not increase too
much the size. Moreover, because the translation is the bottleneck of the approach and not the
SAT solving, translating the formula only once gives us a speed-up compared to the approaches
presented before (1toN, Nto1, Dicho).

As we can see, the problem of solving the minimal K?5 satisfiability problem is now equivalent
to the problem of satisfying trs(φ) and minimize the number of si, for i > 0, assigned to true
(or, equivalently, maximize the number of si assigned to false). This problem is well known in
the literature as the Partial MaxSAT problem Li and Manyà (2009), which consist on satisfying
all the hard clauses and the maximum number of soft clauses. In our case, the hard clauses are
those generated by the translation function, and the soft-clauses are the unit clauses {¬si | si ∈

100



2.2. How To Solve The MinK?5 Satisfiability Problem

S(φ) and i > 0}, which are added to the problem. Obviously it can also be seen as a pseudo-
Boolean optimization problem Roussel and Manquinho (2009), where the optimization function
to be minimized is the number of selectors assigned to true.

We can thus use state-of-the-art Partial MaxSAT or PBO solvers. However, it is not the
only way, as we show in the following section that, by considering the structure of K?5-models,
extracting a MSS can also be used to decide the problem.

Without loss of generality, in the following sections, we represent a set of unit soft clauses
as the set of selectors composing it (eg.: {s1, s2, s3} rather than {¬s1,¬s2,¬s3}). We will also
consider formulas Σ in CNF as a set of clauses.

2.2.2 Cardinality Optimality Equals Subset Optimality

In this section, we will need the notion of MSS and co-MSS, so let us defined it. The problem of
computing a Maximal Satisfiable Set of clauses (MSS problem) consists in extracting a maximal
set of clauses from a formula in CNF that are consistent together O’Sullivan et al. (2007). The
minimal correction subset (MCS or co-MSS) is the complement of its MSS.

Let a unsatisfiable formula Σ in CNF be given. S ⊆ Σ is a Maximal Satisfiable Subset (MSS)
of Σ if and only if S is satisfiable and ∀c ∈ Σ \ S, S ∪ {c} is unsatisfiable.

Definition 49

Let a unsatisfiable formula Σ in CNF be given. C ⊆ Σ is a Minimal Correction Subset (MCS
or co-MSS) of Σ if and only if Σ \ C is satisfiable and ∀c ∈ C, Σ \ (C \ {c}) is unsatisfiable.

Definition 50

It is also possible to define a partial version of the MSS problem, where the objective is to
compute a MSS such that some given sub-set of the clauses (the hard clauses) must be in it.
This problem is related to the Partial MaxSAT problem. In fact, a solution to a Partial MaxSAT
problem is one of the biggest MSS that satisfies the set of hard-clauses. In general, a partial
MSS is not a solution to a Partial MaxSAT problem but, in the specific case of MinK?5-SAT, a
partial MSS is also a solution to its corresponding Partial MaxSAT problem.

Let ψ be a formula in CNF equi-satisfiable to trs(φ), and let χ be the formula
∧UB(φ)
i=1 ¬si.

With UB(φ) = dd(φ) + 2 (or UB(φ) = dd(φ) + 1 if the axiom (D) is not considered). A MSS
of (ψ∧χ), where ψ is the set of hard clauses, is also a solution to the Partial MaxSAT problem
〈ψ, χ〉.

Proposition 1

101



Chapter 2. The Minimal K?5 Satisfiability Problem

The proof of Proposition. 1 uses the following lemma.

Let ψ = trs(φ), and let χ be the formula
∧
si∈S′ ¬si, where S

′ ⊆ S(φ). If (ψ ∧χ) is satisfiable
then so is the formula (ψ ∧ χ′), where χ′ is obtained from χ by replacing the occurrences of
one selector s ∈ S ′ by another selector s′ ∈ S(φ) \ S ′.

Lemma 7

Proof. [Sketch] The proof is done by an induction on the length of the formula φ. In the
induction base, ψ = p, for some p ∈ P. We have ψ = p1 and S(φ) = {}, which means that the
claim is true (because S(φ) \ S ′ = ∅).

We have several cases on the induction step. Since their proofs are all similar, we show only
one of them here.

Let φ = �φ′. If i 6= n We have ψ = (¬Ri,0 ∨ trs
′(φ, 0, n)) ∧

∧n
j=1(¬sj ∨ trs

′(φ, j, n)),
χ =

∧
si∈S′ ¬si, and S(φ) = {s1, . . . , sn}. Now, let χ′ be obtained from χ where si is replaced by

sj ∈ S(φ) \ S′. If (ψ ∧ χ) is satisfied by a model M then we construct a new model M ′, which
equals M except that the truth assignment of all propositional variables with subscript i are the
same as those with subscript j. We immediately have that if M |= χ then M ′ |= χ′. We also
have that if M |= ¬si then M ′ |= ¬sj . Finally, for each 1 ≤ i ≤ n, if M |= trs(φ

′, i, n)) then
M ′ |= trs(φ

′, j, n)), by the induction hypothesis (since the length of φ′ is strictly smaller than
that of φ). Therefore, M ′ |= ψ ∧ χ′. q.e.d

Proof. Towards a contradiction, assume that there exists a MSS δ1 = (ψ ∧ χ1), where
χ1 =

∧
s∈S1
¬s, which is not the biggest one. Thus, there exists another MSS δ2 = (ψ ∧ χ2),

where χ2 =
∧
s∈S2
¬s and such that |S1| < |S2|. Now, let S3 = S2 \ {s} ∪ {s′}, where s ∈ S2 and

s′ ∈ S1. By Lemma 7, the formula δ3 = (ψ ∧ χ3), where χ3 =
∧
s∈S3
¬s is satisfiable, because it

is δ2 with one of the selectors of S2 in χ2 replaced by another selector. It is easy to see that one
can keep replacing selectors in this set until we have the set Sk, such that S1 ⊆ Sk. The formula
δk = (ψ ∧ χk), where χk =

∧
s∈Sk
¬s, is satisfiable, by applying Lemma 7 |S1| times. Then Sk

a MSS that includes S1, which contradicts the assumption. This means that every MSS of the
initial formula is one of the biggest ones. Therefore, any MSS of (ψ ∧χ) is also a solution to the
partial MaxSAT problem 〈ψ, χ〉. q.e.d

As a direct consequence of Proposition 1, we can always find a MSS such that the indexes
of the selectors inside it are contiguous. This means that we can consider an optimisation that
reduces the search space (breaks the symmetry), by adding the following constraint:

(

n−1∧
i=1

¬si → ¬si+1) (2.1)

By giving as input trs(φ) plus S(φ), we can solve the MinK?5-SAT problem with a MaxSAT
solver, or a PBO solver. If we also add Equation 2.1 to the input, we can then use a MSS-
extractor. However, we demonstrate in the following section that we can push the envelope
further by considering a dedicated approach using an incremental SAT solver with unsatisfiable
cores.

102



2.2. How To Solve The MinK?5 Satisfiability Problem

2.2.3 Only Unsatisfiable Cores Size Matters

Before defining formally the core-guided approach and its different properties, let us consider the
following case: Let φ the input formula and let UB(φ) = 10. We translate φ using selectors and
start by trying to find a model for it. Assume that, after some computation, we conclude that
4 worlds cannot be deactivated altogether, i.e., if the selectors si, sj , sk and sl are set to false,
we have an inconsistency. We can infer that we will need at least 7 worlds in the K?5-model for
φ. This comes from the fact that the ‘4 worlds which cannot be deactivated altogether’ can be,
in fact, any group of 4 worlds. Indeed, in the sequel, we demonstrate that if we have a group of
m selectors forming an unsatisfiable core and the upper-bound equals n, then we need at least
(n−m+ 1) worlds in the K?5-model of the input formula.

Let φ ∈ L such that UB(φ) = n. If C is a UNSAT core of φ under assumptions S(φ) then
trs(φ, n

′) is unsatisfiable for all n′ ∈ {1, . . . , (n− |C|)}.

Proposition 2

If C is an UNSAT core of φ with assumptions S(φ) then any set of literals C ′ = {¬s | s ∈ S(φ)}
such that |C ′| = |C| is a UNSAT core of φ.

Lemma 8

Proof. Assume that C is an UNSAT core of φ with assumptions S(φ). We have that
(φ ∧

∧
s∈C s) is unsatisfiable. Now, towards a contradiction, also assume that there exists a set

C ′ = {¬s | s ∈ S(φ)} such that |C ′| = |C| and (φ∧
∧
s∈C ¬s) is satisfiable. By Lemma 7, we can

obtain a new set D from C ′ by replacing the selectors in C ′ by those in C such that (φ∧
∧
s∈D ¬s)

is satisfiable. Because D = C, we have a contradiction. Therefore, any set of literals C ′ obtained
as such is a UNSAT core of φ. q.e.d

We can now prove the Proposition 2 thanks to the Lemma 8.

Proof. The formula has n worlds. The SAT solver returns a core C of size m. So one
of the selectors has to be true. But due to Lemma 8, we have to put at least one selector to
true to all the possible unsatisfiable cores of size m. Said otherwise, we must have (n−m+ 1)
selectors to be true together, or the formula will be necessarily unsatisfiable. This also means
that ∀b′ ∈ [1 . . . (n−m)] trs(φ, b

′) is unsatisfiable. q.e.d

From this property, it is possible to construct an interactive algorithm which is based on
incremental SAT. The SAT solver will be able to return an unsatisfiable core, and by interpreting
it as explained in Proposition 2, we can refine the bound used in the translation. Such a technique
is presented in Algorithm 2.1.

103



Chapter 2. The Minimal K?5 Satisfiability Problem

Algorithm 2.1: K?5SAT 1toN with selectors
Data: φ ∈ L
Result: 〈M,w〉 such that 〈M,w〉 |=min φ, else UNSAT

1 begin
2 b← 1 ;
3 〈r, s〉 ← sat-solver(trs(φ, b)) ;
4 n← UB(φ) ;
5 while (r 6= SAT ∧ (b ≤ n)) do
6 b← (n− |s|+ 1) ;
7 〈r, s〉 ← sat-solver(trs(φ, b)) ;

8 if (r 6= SAT) then
9 return UNSAT

10 else
11 〈M,w〉 ← getModel(s) ;
12 return 〈M,w〉;

The procedure starts by trying structures of size b = 1. If no model is found, it iterates
the process, each time increasing the value of b by (UB(φ) − |s| + 1) (where |s| is the size of
the core). It iterates until a model of φ is found or the upper bound UB(φ) is reached. The
procedure sat-solver() that appears in the algorithm is the SAT solver “glucose” presented
in Audemard et al. (2013), Eén and Sörensson (2003). The procedure getModel() is a procedure
that generates the K?5-model from the SAT model given as its argument. We present only the
approach 1toNc (1toN with selectors) but the approaches Nto1c and Dichoc are similar.

2.3 Experiment For The MinK?5 Satisfiability Problem

Now that we evaluate our solver K?5SAT and we demonstrated that it is now the state-of-
the-art approach for solving the K?5-SAT problem. We know how many benchmarks from
the community are K?5-Satisfiable, thus it is now interesting to see how far the upper-bound
proposed (UB(φ)) from the optimal value and how many instances we can solved optimally (out
of the many satisfiable instance that we could at least solved). We compare several different
approaches to solve the MinK5-SAT problem:

• K?5SAT with five different strategies: 1toNc, 1toN, Nto1, Dichoc, Dicho.

• CNF plus MaxSAT solver: maxHS-b Davies and Bacchus (2013), mscg2015b dos Reis Mor-
gado et al. (2014), and MSUnCore Heras et al. (2011).

• Pseudo-Boolean (PB) translation plus PBO solver: NaPS Sakai and Nabeshima (2015),
SAT4J-PB Le Berre and Parrain (2010), SCIP Maher et al. (2017)

• CNF plus symmetry breaking plus MCS extraction with the LBX solver Mencía et al.
(2015).

The symmetry breaking could have been applied to all the direct approaches (MaxSAT, PBO,
MCS) but we choose to apply it only on MCS extraction to display the impact of such symmetry
breaking.

104



2.3. Experiment For The MinK?5 Satisfiability Problem

2.3.1 Results On The Benchmarks From The Literature

We deal only with K5 here because the other logics will not change the interpretation that we
do of the results. Moreover this is the logic which has the more satisfiable instances in the
benchmarks that we considered. The study for KT5 was published in Lagniez et al. (2018a).

Method K KT S4 Total

# Benchs (185) (279) (160) (624)

K?5SAT 185 279 160 624

1toN 168 226 100 494

Nto1 124 126 12 262

Dicho 140 200 89 429

1toNc 185 279 160 624

Dichoc 185 245 160 590

maxHS 125 159 68 352

MSCG 137 183 71 391

MSUnCore 115 138 60 313

NaPS 147 217 78 442

SAT4J 62 129 91 282

SCIP 124 234 160 518

LBX 148 235 153 536

VBS 185 279 160 624

a: in LWB K,KT,S4

md=1 md=2 Total

(62) (27) (89)

62 27 89

48 0 48

0 0 0

40 0 40

62 27 89

62 15 77

20 0 20

62 10 72

19 0 19

62 10 72

19 0 19

16 0 16

62 14 76

62 27 89

b: in 3CNFKSP

qbf qbfS Total

(56) (171) (227)

56 171 227

56 171 227

56 112 168

56 171 227

56 171 227

56 171 227

56 0 56

56 171 227

56 0 56

56 171 227

56 0 56

56 56 112

56 171 227

56 171 227

c: in MQBF

Table 2.1: #Instances solved with one of the smallest model possible

One may wonder why there is such a difference in the results between the approaches using
K?5SAT and theMaxSAT solvers. This came from the fact thatMaxSAT solvers cannot take into
account inherent properties of modal logic K?5, they just have embedded cardinality constraints
used to count the number of satisfied/falsified clauses to return the smallest model not the fact
that the si with i 6= 0 are all interchangeable.

We can also observe that 1toN and Dicho approaches are more successful than Nto1. The
explanation is that these benchmarks can usually be solved with few possible worlds, thus starting
with the theoretical upper-bound is less efficient.

In the case of MQBF displayed in Table 2.1c, we can see that Dicho, Dichoc, 1toN and 1toNc
approaches are better than the other ones. Moreover, it is interesting to see that the whole
qbf family is K5-satisfiable (even KT5 in fact), even though they are normally used to evaluate
modal logic K solvers. It is worth noticing that the performance of a MaxSAT or a PB approach
are globally worst than the MSS-extraction approach. However, if we add the symmetry breaking

105



Chapter 2. The Minimal K?5 Satisfiability Problem

from Equation 2.1 then the performances become equivalent.

The problem with these benchmarks is that they were originally designed to evaluate K, KT
and S4 modal logic solvers. Thus the smallest value in the number of possibles worlds is usually
pretty small. To circumvent this problem, we proposed new benchmarks designed for modal logic
KT5 and having some kind of structures to allow bigger model.

2.3.2 Results On A Proposed Set Of Benchmarks With Structures

We proposed new benchmarks based on planning with uncertainties in the initial states, to
check the performance of the different approaches on structured benchmarks. In such planning
problems, some fluent f may be initially true, initially false, or neither. If the fluent f is initially
instantiated, we consider it as �f0 stating that it is necessary that the fluent f is true at the
time t = 0, if not, we consider ♦f0 ∧ ♦¬f0 stating that it is possible that f is true at the time
t = 0 and it is possible that f is false at the time t = 0. The rest of the translation is a basic
translation from planning to SAT with a bound on the size of the plan except that here, each
part of the rest of the translation is necessarily true, thus after a box � modality. If the latter
case, two different initial situations are possible. As a result, instead of a single initial state
s0, we may have several different initial states, which are consistent with available knowledge
about the system (see Eiter et al. (2000) for more details and applications). By construction,
all instances considered here have a plan to minimize. Modal logic KT5 formulas are generated
with a CEGAR approach Clarke et al. (2003). We increase the value of the bounded-horizon
until we reach the smallest value for which there exists a plan as explained in Rintanen (2009).

Method block bomb cube omelet ring safe Total

# Benchs (20) (30) (100) (30) (40) (60) 280

1toN 10 25 100 0 40 0 175

Nto1 5 10 20 0 20 0 55

Dicho 20 20 70 0 40 0 150

1toNc 20 25 100 10 40 30 225

Dichoc 20 30 100 18 40 34 242

maxHS 17 22 82 0 40 5 166

MSCG 20 25 72 0 40 4 161

MSUnCore 10 22 68 0 38 0 138

NaPS 20 30 74 2 40 8 174

SAT4J 20 20 58 0 33 0 131

SCIP 20 30 100 5 40 10 200

LBX 12 26 79 0 40 0 157

VBS 20 30 100 18 40 34 242

Table 2.2: #instances of Planning solved in modal logic KT5

106



2.3. Experiment For The MinK?5 Satisfiability Problem

We performed experimental evaluations on a variety of planning benchmarks. It includes the
traditional conformant benchmarks, namely: Bomb-in-the-toilet, Ring, Cube, Omelet and Safe
(see Petrick and Bacchus (2002) for more details) modelled here as planning with uncertainties in
the initial state. We also performed evaluations on classical benchmarks: Blocksworld, Logistics,
and Grid, in which the authors of Hoffmann and Brafman (2006) introduced uncertainty about
the initial state. All the benchmarks are available for download6.

To select the “minimalizable” benchmarks, we set a time-out of 1500 seconds. We managed
to solve 28 benchmarks out of the 119 available. We tried other solvers: Spartacus Götzmann
et al. (2010) solved 15 instances and SPASS Hustadt et al. (1999) solved 5, with both being a
subset of the 28 solved by S52SAT. Our generator has negligible execution times and is available
for download7. Each of these benchmarks has a plan of size N (where N can be different for
each benchmark) which has been verified. We then generated modal logic benchmarks from
these instances by fixing the horizon at N , N + 1, . . . , N + 9 having thus 280 benchmarks, all
KT5-satisfiable, to test our minimisation techniques.

As in the MQBF, CNF-KSP and LWB benchmarks before, we can see in Table 2.2 that the
use of selectors allows us to solve more benchmarks. But, surprisingly, here the best approach is
to use a dichotomic search instead of a linear search from 1 to N. This is mainly due to the size
of the smallest model, which is rarely a small number, as it was the case in LWB for example.
Moreover, each call to the SAT solver is more time-consuming because the instances are harder
to solve in practice. This again reminds us that the benchmarks considered can influence the
result obtained.

2.3.3 General Analysis Of The Results Obtained

Figure 2.1: Scatter-plot of 1toN vs 1toNc

6https://fai.cs.uni-saarland.de/hoffmann/ff/cff-tests.tgz
7http://www.cril.fr/~montmirail/planning-to-s5/

107

https://fai.cs.uni-saarland.de/hoffmann/ff/cff-tests.tgz
http://www.cril.fr/~montmirail/planning-to-s5/


Chapter 2. The Minimal K?5 Satisfiability Problem

For the analysis of the results obtained, we use the one provided in Lagniez et al. (2018a)
which are on the same sets of benchmarks but solved in modal logic KT5. First thing we can
see is, the use of selectors leads to a speed-up in the runtime of the approach to find the smallest
model possible, as depicted in Figure 2.1. Two questions remain though, what is the cost of
obtaining the smallest model possible against just one model? and is the search for a small
model worth it?

Figure 2.2: S52SAT vs S52SAT-1toNc (time)

The answer to the first question: is it time-consuming to obtain the smallest model possible?
if yes, but for a reasonable cost. The difference in the runtime between the smallest and just one
model is depicted in Figure 2.2. As we can see, for approximately four times the runtime, the
model can be optimal with respect to the number of possible worlds.

However, it is definitely worth it to search for the smallest model as depicted in Figure 2.3.
Problems which have a diamond-degree of hundreds can sometimes be solved with just one world,
which is quite a problem if one wants to evaluate solvers. Moreover, one can see on the Figure
2.3 that the Planning benchmarks that we proposed have a better scalability property. The
bigger the instance become, the harder it is to solve it and the bigger will be the smallest model
possible. Finally, because the translator we proposed is reading a standard format for Planning
problems, one can use it to translate any PDDL problems into an InToHyLo formula to evaluate
solvers.

Now that we showed how to solve NP modal logic satisfiability problems, it is time to attack
the PSPACE modal logic satisfiability problems. But because we assume in this thesis that
NP 6= PSPACE, translating in one shot the PSPACE modal logic satisfiability problem into a
satisfiability problem in propositional logic will lead to an exponential blow-up that we want to
avoid. However, because we still want to rely on a SAT solver, we will explain in the next section
the framework that we proposed to solve efficiently PSPACE problems with a SAT solver as an
oracle.

108



2.3. Experiment For The MinK?5 Satisfiability Problem

Figure 2.3: S52SAT vs S52SAT-1toNc (size)

109



Chapter 2. The Minimal K?5 Satisfiability Problem

110



Chapter

3RECAR: AnAbstraction Refinement Procedure

Contents
3.1 Abstraction Functions . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.1.1 Over-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.1.2 Under-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.2 Counter-Example Guided Abstraction Refinement . . . . . . . . 115

3.2.1 CEGAR-over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2.2 CEGAR-under . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2.3 CEGAR-under For RCC8 . . . . . . . . . . . . . . . . . . . . . . . . 116

3.3 Recursive Explore and Check Abstraction Refinement . . . . . 129

3.3.1 RECAR-over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3.2 RECAR-under . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.4 Explanation of How The Abstractions Are Called . . . . . . . . 135

“To understand recursion, one must first
understand recursion.”

Stephen Hawking

As we just said in the previous chapter if we want to solve PSPACE problems with a SAT
solver, a direct translation may not be the most efficient approach. In the literature, one technique
to solve problems which are above NP in the complexity hierarchy is to abstract the problem, ie.
to solve problems which are easier in practice. Moreover, one could also note that the problems
are easier to solve also in theory, because NP oracles are used to approximate PSPACE problems.
The drawback being that the abstraction usually does not have the same number of models as
the original problem, which must be taken into account.

For this reason, we can classify abstractions into two categories. The Over Abstractions, with
less models than the original problem (one should read it as a problem over-constrained), and
the Under-Abstractions with more models than the original problem (one should read it as a
problem under-constrained). The advantage of such approach is that we can decide sometimes
the original problem by solving its abstraction.

• If an over-abstraction has a model, then the original problem has also a model.

• If an under-abstraction has no model, then neither has the original problem.

111



Chapter 3. RECAR: An Abstraction Refinement Procedure

Another important feature is that the abstraction is refined according to the feedback of the
solver.

This makes abstractions procedure extremely successful in various domain such as QBF
solving Tentrup (2017), Janota et al. (2016), Software Verification Mordan and Mutilin (2016),
Bounded Model Checking Clarke et al. (2003), Bug Detection Wang et al. (2007), Planning
Seipp and Helmert (2013), Satisfiability in the Propositional Fragment of First-Order Logic
Khasidashvili et al. (2015), Satisfiability Modulo Theory Brummayer and Biere (2009) and many
other domains. But even if these domains seems all very different from one another, they all rely
on the same principles that we will describe in the next sections.

3.1 Abstraction Functions

The first notion that we will need to present RECAR and its implications is the notion of
Abstraction. It is a notion widely studied in the theory of the Abstract Interpretation Cousot
and Cousot (1977; 1979). This theory studies the abstractions, their soundness and completeness.
Even if Abstract Interpretation comes from the late 1970s, the mathematical background is much
older. It goes back to Évariste Galois, a French mathematician, who is at the origins of the Galois
connections Ore (1944) which works as follows:

Given two lattices 〈C,vC〉 and 〈A,vA〉, a Galois connection noted C −−−→←−−−α
γ

A is defined with:

• α : 〈C,vC〉 → 〈A,vA〉, where α is called an abstraction function;

• γ : 〈A,vA〉 → 〈C,vC〉, where γ is called an concretization function;

such that ∀x ∈ C,∀y ∈ A we have that x vC γ(y) ↔ α(x) vA y, with v being the partial
orders which compose the lattices.

Definition 51 (Galois connection)

Note thatv here corresponds in logic to the consequence relation |=. From this Galois connection,
we can obtain many results:

• γ ◦ α is extensive (ie., (γ ◦ α)(x) vC x) and it represents the information lost by the
abstraction;

• α preserves t and γ preserves u (with t and u being the least and greatest upper-bound
in the lattices);

• If γ ◦ α is the identity, then C and A are isomorphic from the information standpoint;

• Abstraction functions can be composed (ie., an abstraction of an abstraction is still an
abstraction).

112



3.1. Abstraction Functions

Galois connection is already used in the SAT/CP Community without being named. For
instance, in Constraint Programming, there are used when solving continuous problems. In-
deed, as the intervals with real bounds are not representable in a nowadays computer, there are
approximated with intervals with floating-point bounds. The reader may find additional work
on how to use Abstract Interpretation in the CP domain in the book of Marie Pelleau (2015).
The transition from one representation to the other forms a Galois connection as shown in the
following example.

Let J be the set of intervals with real bounds and I the set of floating-point bounds intervals.
Given two lattices 〈In,⊂〉 and 〈Jn,⊂〉, there exists a Galois connection:

Jn −−−→←−−−α
γ

In

α([x1, y1]× · · · × [xn, yn]) = [x1, y1]× · · · × [xn, yn]

γ([x1, y1]× · · · × [xn, yn]) = [x1, y1]× · · · × [xn, yn]

In this example, the abstraction function α transforms a Cartesian product of real bound
intervals into a Cartesian product of floating-point bounds intervals. It approximates each
real bounds by the closest floating-point number rounded in F in the corresponding direction.
As for the concretization function γ, it is direct since a floating-point number is also a real.

Example 24

Abstract Interpretation and the Galois connection behind it are rich theories, widely used
in computer science to formalize reasoning involving the sound and complete abstraction of the
semantics of formal systems. We can give as example the semantics of programs describes their
possible runtime executions in all possible execution Cousot and Cousot (1992), Formal proofs
of program correctness Cousot (2000), Static Analysis Cousot (1981), Model Checking Clarke
and Schlingloff (2001) and Counter-Example Guided Abstraction Refinement Clarke et al. (2003)
that we will define more precisely in a next section.

In this thesis, we will consider decision problems, more precisely satisfiability problems in
different logic. To that aim, as stated at the beginning of this chapter, we will not consider
concretization functions, but only abstraction functions. We will classify abstraction functions
into two categories the over-abstraction and the under-abstraction.

3.1.1 Over-Abstraction

The over-abstraction functions are functions that takes a problem φ in parameter and outputs a
problem φ̂ which is more constrained than φ. The property being that if φ̂ has a model, then so
does φ. Formally they can be defined as follows:

113



Chapter 3. RECAR: An Abstraction Refinement Procedure

For a problem φ defined in language L1, an over-abstraction function α̂ from L1 to L2, with
φ ∈ L1, is defined as follows:

α̂ : L1 → L2

φ 7→ φ̂

This function preserves that if there is M2 such that M2 |=2 φ̂, then there is M1 such that
M1 |=1 φ. |=i denotes the satisfiability relation in Li, thus M1 is a model for L1 and M2 is a
model for L2.

Definition 52 (Over-Abstraction Function)

This kind of functions are well known in the Planning community, by those who solves
Planning problems with a SAT-based planner Rintanen (2009). Indeed, it is known that Planning
problems may have plan of exponential size. But many approaches translate the original problem
into a SAT problem by bounding the size of the authorized plan. Like this, if the SAT solver
finds a model, then it means that it exists a plan of size n, if not it just means that we need to
increase the size of the authorized plan.

3.1.2 Under-Abstraction

The under-abstraction functions are functions that takes a problem φ in parameter and outputs
a problem φ̌ which is less constrainted than φ. The property being that if φ̌ has no model, then
so does φ. Formally they can be defined as follows:

For a problem φ defined in language L1, an under-abstraction function α̌ from L1 to L2, with
φ ∈ L1, is defined as follows:

α̌ : L1 → L2

φ 7→ φ̌

This function preserves that if there is M1 such that M1 |=1 φ then there is M2 such that
M2 |=2 φ̌. |=i denotes the satisfiability relation in Li, thus M1 is a model for L1 and M2 is a
model for L2.

Definition 53 (Under-Abstraction Function)

This kind of functions are well known in the Constraint community, but in this field, they
are called Relaxation Davies and Bacchus (2013). Indeed, it is common in this field to forget
some constraints. But then, if the problem is unsatisfiable, then for sure it is also unsatisfiable
with the missing constraints.

114



3.2. Counter-Example Guided Abstraction Refinement

cegar(φ) ψ ← φ̂

check(ψ)SAT ψ ≡?
sat φ UNSAT

ψ ← refine(ψ)

sat
unsat yes

unk.

Figure 3.1: The CEGAR framework with over-abstraction

Using the two kind of functions that we just presented is done in many fields in many different
ways, but Clarke et al. (2003) tried to framework the use of them in a procedure called CEGAR
which stands for Counter-Example Guided Abstraction Refinement. It is the procedure which is
widely use and on which RECAR is based, so let us it introduce it in the next section.

3.2 Counter-Example Guided Abstraction Refinement

As we just said, CEGAR is a framework to make “user-friendly” the use of over/under abstrac-
tions functions to solve problems. It takes into consideration decision problems and there are
two kinds, according to which kind of abstraction functions you are using.

3.2.1 CEGAR-over

Let us first describe the CEGAR-over, ie. the CEGAR framework instantiated with over-
abstraction functions. An example of a CEGAR using over-abstractions is given on Fig. 3.1. It
receives a formula φ as input and computes an over-abstraction ψ. Then it uses an oracle (check)
to check whether ψ is satisfiable. If so it concludes that φ is satisfiable by construction of an
over-abstraction function. Otherwise, ψ is refined, ie. it gets closer to φ, until it is satisfiable,
or until the refined over-abstraction is detected to be equisatisfiable to φ, denoted ψ ≡sat φ, (ie.
∃M,M |=1 ψ iff ∃M ′,M ′ |=2 φ)8, where it concludes that φ is unsatisfiable. In the following,
φ ≡?

sat ψ means an incomplete efficient equi-satisfiability test which returns yes or unknown.
An illustration of how the search space of the different over-abstraction are becoming closer and
closer from the search space of the original problem is given in Figure 3.2.

φ̂ ⊆ refine(φ̂) ⊆ refine2(φ̂) ⊆ . . . ⊆ refinen(φ̂) = φ

Figure 3.2: How the over-abstractions search-space become closer to the original problem’s one

This framework is widely used, for example, for solving Planning problems with a SAT solver
Rintanen (2009). Indeed, it is known that the worst-case possible is a plan of exponential size.
But in practice, the worst-case is rare, thus the technique to abstract the problem into a SAT

8|=1 and |=2 denote possibly different consequence relations (for propositional logic and modal logic K for
instance).

115



Chapter 3. RECAR: An Abstraction Refinement Procedure

problem asking the question “can we find a plan of size 0?” if it is the case, then the problem
is decided. If not, the size of plan is refine and a new SAT problem is created : “can we find a
plan of size 1?”, etc. Now that we describe the CEGAR-over, let us go to the description of its
under-counterpart.

3.2.2 CEGAR-under

ψ ← φ̌cegar(φ)

check(ψ)UNSAT λ |=? φ

ψ ← refine(ψ)

SATunsat
sat,λ yes

no

Figure 3.3: The CEGAR framework with under-abstraction

Indeed, the CEGAR framework can also be instantiated with under-abstraction functions.
In fact, it is much more common to find it with such abstraction when it is about solving NP
problems with a SAT solver. As a matter of fact, CEGAR-under is more used for NP problems
whereas CEGAR-over is more used for PSPACE problems even if, from the framework, nothing
is forcing it.

An example of a CEGAR using under-abstractions is given on Fig. 3.3. It receives a formula
φ as input and computes an under-abstraction ψ. Then it uses an oracle (check) to check whether
ψ is unsatisfiable. If so it concludes that φ is unsatisfiable by construction of an under-abstraction
function. Otherwise, ψ is refined, ie. it gets closer to φ, until it is satisfiable, or until the model
λ for the refined under-abstraction is detected to be also a model for φ, denoted λ |=? φ9, where
it concludes that φ is satisfiable.

An illustration of how the search space of the different under-abstraction are becoming closer
and closer from the search space of the original problem is given in Figure 3.4.

φ̌ ⊇ refine(φ̌) ⊇ refine2(φ̌) ⊇ . . . ⊇ refinen(φ̌) = φ

Figure 3.4: How the under-abstractions search-space become closer to the original problem’s one

Let us illustrate it with an article that we wrote for the conference CP 2018 Glorian et al.
(2018), which is not related to modal logics, but which is definitely a CEGAR-under approach
of the problem.

3.2.3 CEGAR-under For RCC8

The RCC8 language is a widely-studied formalism for describing topological arrangements of
spatial regions. Two fundamental reasoning problems that are associated with RCC8 are the

9ie.∃λ |= ψ then ∃f s.t. f(λ) |= φ

116



3.2. Counter-Example Guided Abstraction Refinement

X DC Y

X Y

X EC Y

X Y

X PO Y

X Y

X EQ Y

X,Y

X TPP Y

X

Y

X TPP−1 Y
Y

X

X NTPP Y
X
Y

X NTPP−1 Y
Y
X

Figure 3.5: Illustration of the base RCC8 relations

problems of satisfiability and realization. Given a qualitative constraint network (QCN) of RCC8,
the satisfiability problem is deciding whether it is possible to assign regions to the spatial variables
of the QCN in such a way that all of its constraints are satisfied (solution). The realization
problem is producing an actual spatial model that can serve as a solution.

RCC8 is based on the following eight relations: equals (EQ), partially overlaps (PO), ex-
ternally connected (EC), disconnected (DC), tangential proper part (TPP) and its inverse
(TPP−1), and non-tangential proper part (NTPP) and its inverse (NTPP−1). These spatial
relations are illustrated in Fig. 3.5.

Given a qualitative constraint network (QCN) of RCC8, we are particularly interested in its
satisfiability problem, which is the problem of deciding if there exists a spatial interpretation of
the variables of the QCN that satisfies its constraints. The satisfiability problem for RCC8 (and
RCC5) is NP-complete Renz and Nebel (1999). Once a QCN of RCC8 is known to be satisfiable,
one typically deals with the realization problem in order to produce an actual spatial model that
can serve as a solution, which is a tractable problem (see Li (2006)).

Research in RCC8 usually focuses either on symbolically checking the satisfiability of a QCN
or on presenting a method to realize (valuate) a satisfiable QCN. To the best of our knowledge,
combining those two lines of research in an interrelating manner has not been considered in the
literature, as the first line deals with native constraint-based methods, and the second one with
rich mathematical structures that are difficult to implement.

We bind those two lines of research together in a unified and homogeneous approach by means
of an incremental SAT-based technique known as CEGAR. The idea is as follows: instead of
creating an equisatisfiable propositional formula as per the state of the art Huang et al. (2013),
we generate an under-approximation formula (a formula which is under-constrained, also called
relaxation in other domains). Meaning, if an under-approximation is unsatisfiable, then by
construction the original formula is unsatisfiable; otherwise, the SAT solver outputs a model
that can then be checked. It could be the case that the approach is lucky and the model of
the under-approximation is also a model of the original formula, in which case the problem is
decided. In general, the under-approximation is constantly refined, i.e., it comes closer to the
original formula and, in the worst-case, it will eventually become equisatisfiable with the original
formula after a finite number of refinements. Let us give us a small preliminary about RCC8
before presenting our CEGAR-under encoding.

117



Chapter 3. RECAR: An Abstraction Refinement Procedure

Region Connection Calculus

The Region Connection Calculus (RCC) Randell et al. (1992) is a first order theory for repre-
senting and reasoning about mereotopological information between regions of some topological
space. Its relations are based on a connectedness relation C. In particular, using C, a set of
binary relations is defined. From this set, the RCC8 fragment can be extracted: { DC, EC,
PO, EQ, TPP, NTPP, TPP−1, NTPP−1 }. These eight ones are jointly exhaustive and
pairwise disjoint, meaning that only one of those can hold between any two regions. As noted
in the introduction, this fragment (illustrated in Fig.3.5), will be referred to simply as RCC8 for
convenience.

We can view regions in RCC as non-empty regular subsets of some topological space that
do not have to be internally connected and do not have a particular dimension, but that are
usually required to be closed Renz (2002) (i.e., the subsets equal the closure of their respective
interiors). Let R(X ) denote the set of all regions of some topological space X . Then, we can have
the following interpretation for the basic relations of RCC8, where Ri denotes the interpretation
of R for two instantiated region variables. Semantically, binary relation R contains all the
possible instantiations of its pair of region variables.

Given two regions X and Y in R(X ), then:a

EQi(X,Y ) iff X = Y

DCi(X,Y ) iff X ∩ Y = ∅
ECi(X,Y ) iff X̊ ∩ Y̊ = ∅, X ∩ Y 6= ∅
POi(X,Y ) iff X̊ ∩ Y̊ 6=∅, X * Y, Y * X

TPPi(X,Y ) iff X ⊂ Y,X * Y̊

TPP−1
i (X,Y ) iff Y ⊂ X,Y * X̊

NTPPi(X,Y ) iff X ⊂ Y̊
NTPP−1

i (X,Y ) iff Y ⊂ X̊

aÅ denotes the interior of A.

Definition 54 (Set Notation of RCC8)

Given two basic relations R and S of RCC8 that involve the pair of variables (i, j) and (j, k)
respectively, the weak composition of R and S, denoted by CT(R,S), yields the strongest relation
of RCC8 that contains R ◦ S, i.e., it yields the smallest set of basic relations such that, each
of which can be satisfied by the instantiated variables i and k for some possible instantiation
of variables i, j, k with respect to relations R and S. We remind the following definition of the
weak composition operation from Renz and Ligozat (2005):

118



3.2. Counter-Example Guided Abstraction Refinement

For two basic relations R, S of RCC8, their weak composition CT(R,S) is defined to be the
smallest subset {T1,T2, . . . ,Tn} of 2RCC8 such that Ti ∩ (R ◦ S) 6= ∅ ∀i ∈ {1, . . . , n}.

Definition 55 (Weak Composition CT )

CT DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

DC * DC EC
PO TPP
NTPP

DC EC
PO TPP
NTPP

DC EC
PO TPP
NTPP

DC EC
PO TPP
NTPP

DC DC DC

EC DC EC
PO

TPP−1

NTPP−1

DC EC
PO TPP
TPP−1

EQ

DC EC
PO TPP
NTPP

EC PO
TPP
NTPP

PO TPP
NTPP

DC EC DC EC

PO DC EC
PO

TPP−1

NTPP−1

DC EC
PO

TPP−1

NTPP−1

* PO TPP
NTPP

PO TPP
NTPP

DC EC
PO

TPP−1

NTPP−1

DC EC
PO

TPP−1

NTPP−1

PO

TPP DC DC EC DC EC
PO TPP
NTPP

TPP
NTPP

NTPP DC EC
PO TPP
TPP−1

EQ

DC EC
PO

TPP−1

NTPP−1

TPP

NTPP DC DC DC EC
PO TPP
NTPP

NTPP NTPP DC EC
PO TPP
NTPP

* NTPP

TPP−1 DC EC
PO

TPP−1

NTPP−1

EC PO
TPP−1

NTPP−1

PO
TPP−1

NTPP−1

PO TPP
TPP−1

EQ

PO TPP
NTPP

TPP−1

NTPP−1
NTPP−1 TPP−1

NTPP−1 DC EC
PO

TPP−1

NTPP−1

PO
TPP−1

NTPP−1

PO
TPP−1

NTPP−1

PO
TPP−1

NTPP−1

PO TPP
NTPP
TPP−1

NTPP−1

EQ

NTPP−1 NTPP−1 NTPP−1

EQ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

Table 3.1: The RCC8 CT, where * specifies the universal relation

The result of the weak composition operation for each possible pair of basic relations of RCC8
is provided by a dedicated table, called the weak composition table Li and Ying (2003) (RCC8 CT
for short), shown in Table 3.1. The weak composition operation for two general RCC8 relations
can be computed by unifying the results (sets) of the weak composition operations for all ordered
pairs of basic relations that involve a basic relation from the first general relation and a basic
relation from the second one. Henceforward, a general RCC8 relation will be represented by the
set of its basic relations.

In order to concretely capture the qualitative spatial information that is entailed by a knowl-

119



Chapter 3. RECAR: An Abstraction Refinement Procedure

edge base of RCC8 relations, we will use the notion of a Qualitative Constraint Network (QCN),
defined as follows:

A QCN of RCC8 is a pair N = (V,C) where V is a non-empty finite set of variables (each
one corresponding to a region), and C is a mapping associating a relation C(v, v′) ∈ 2RCC8

with each pair (v, v′) of V × V . Further, mapping C is such that C(v, v) ⊆ {EQ} and
C(v, v′) = (C(v′, v))−1.

Definition 56 (Qualitative Constraint Networks (QCN))

Concerning a QCN N = (V,C), we have the following definitions: An instantiation of V
is a mapping σ defined from V to the domain R(X ). A solution (realization) σ of N is an
instantiation of V such that for every pair (v, v′) of variables in V , (σ(v), σ(v′)) satisfies C(v, v′),
i.e., there exists a base relation b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b. N is satisfiable if and
only if it admits a solution. The constraint graph of a QCN N is the graph (V,E), denoted by
GN , for which we have that {v, v′} ∈ E if and only if C(v, v′) 6= RCC8 (i.e., C(v, v′) corresponds
to a non-universal relation) and v 6= v′.

SAT Encoding of the RCC8 Satisfiability Problem

To obtain a SAT encoding of the RCC8 satisfiability problem, we need to define how to trans-
late the different possible relations. We will represent a region i as a set of four variables
{x−i , y

−
i , x

+
i , y

+
i } as illustrated in Fig. 3.6.

y

x

y−i

x−i

y+
i

x+
i

•

•

i

+

−

Figure 3.6: Illustration of how a region is represented

All the possibles cases for every relation may be found and proved, along with their link with
Point Algebra, in (Long 2017, Table 6.2). From this encoding, we can then propose the following
SAT encoding which translates all the edges possible:

120



3.2. Counter-Example Guided Abstraction Refinement

For all relations R in all the given edges (i, j) of the input problem N we have:

translate(N ) :=
∧

∀(R,i,j)∈N

translate(R, i, j)

Definition 57 (SAT Translation – translate)

Then from (Long 2017, Table 6.2), if we want to translate for example the relation EC
between nodes i and j (the procedure is similar for other RCC8 relations), we will have the
following SAT encoding as per Def. 57:

translate(EC, i, j) := EC(i, j)→ (ECr(i, j) ∨ECl(i, j) ∨ECu(i, j) ∨ECd(i, j))

Definition 58 (SAT Translation of EC on the edge i-j)

From this definition, we can see that the relation EC for the edge (i, j) can only be satisfied
by 4 different cases, viz., left, right, up, down. Each case is defined as follows:

ECr(i, j)→((x−i < x−j ) ∧ (x−i < x+
j )) ∧

((x−i = x+
j ) ∧ (x+

i < x+
j )) ∧

((y−i < y+
j ) ∨ (y−i < y+

j )) ∧
((y+

i < y−j ) ∨ (y+
i < y−j ))

ECu(i, j)→((x−i < x−j ) ∨ (x−i = x−j )) ∧
((x−i > x+

j ) ∨ (x−i = x+
j )) ∧

((y−i < y−j ) ∧ (y−i < y+
i )) ∧

((y+
i = y−j ) ∧ (y+

i < y+
j ))

ECl(i, j)→((x−i > x−j ) ∧ (x−i = x+
j )) ∧

((x−i > x+
j ) ∧ (x+

i > x+
j )) ∧

((y−i < y+
j ) ∨ (y−i < y+

j )) ∧
((y+

i < y−j ) ∨ (y+
i < y−j ))

ECd(i, j)→((x−i < x−j ) ∨ (x−i = x−j )) ∧
((x−i > x+

j ) ∨ (x−i = x+
j )) ∧

((y−i > y−j ) ∧ (y−i = y+
i )) ∧

((y+
i > y−j ) ∧ (y+

i > y+
j ))

The inverse relations are defined as usual: TPP−1(i, j) = TPP(j, i) and NTPP−1(i, j) =
NTPP(j, i). For every node in the QCN with N nodes that we want to solve, we will add the
following constraint assuring that all the point coordinates are in good order:

N∧
i=1

((x−i < x+
i ) ∧ (y−i < y+

i ))

121



Chapter 3. RECAR: An Abstraction Refinement Procedure

We want to point out that, if the propositional variable (A < B) is true, then the variables
(A > B) and (A = B) are false. To express this, we use the following clauses:

AMO :=
∧

a∈{x,y}

∧
c1∈{−,+}

∧
c2∈{−,+}

N∧
i=1

N∧
j=1


((ac1i < ac2j ) ∨ (ac1i = ac2j ) ∨ (ac1i > ac2j )) ∧
(¬(ac1i < ac2j ) ∨ ¬(ac1i = ac2j )) ∧
(¬(ac1i < ac2j ) ∨ ¬(ac1i > ac2j )) ∧
(¬(ac1i = ac2j ) ∨ ¬(ac1i > ac2j )) ∧

 (3.1)

Thanks to Equation 3.1 (AMO – At Most One), we can thus replace, for example, in EC (i,j) (u),
(x−i < x+

j ) ∨ (x−i = x+
j ) by ¬(x−i > x+

j ). The same applies for all the disjunctions in (Long
2017, Table 6.2). Last but not least, we want to ensure the transitivity of the relations on all the
possible coordinates; this will have the biggest impact on the size of the generated CNF. For all
the triplets (i, j, k) in a triangulation (chordal completion of the constraint graph of an input
QCN), we must add the following rules for every combination (c1, c2) that can be assured by
transitivity ∈ {(−,−), (−,+), (+,−), (+,+)} and for both axis a ∈ {x, y}:

transitivity(i, j, k) :=
∧



((ac1i = ac1j ) ∧ (ac1j = ac2k ))→ (ac1i = ac2k )

((ac1i < ac1j ) ∧ ¬(ac1j > ac2k ))→ (ac1i < ac2k )

((ac1i > ac1j ) ∧ ¬(ac1j < ac2k ))→ (ac1i > ac2k )

((ac1j > ac2k ) ∧ ¬(ac1i < ac1j ))→ (ac1i > ac2k )

((ac1j < ac2k ) ∧ ¬(ac1i > ac1j ))→ (ac1i < ac2k )


We will not enter the details of how a graph can be made chordal; it is a standard procedure

and we redirect the reader to Savický and Vomlel (2009) for more information about how it can
be done. It is worth noting that triangulating a graph can take linear time in the size of the
output chordal graph. Before moving to the CEGAR part, we need to prove that the encoding
we designed is sound and complete.

Let N = (V,C) be a QCN of RCC8, and G a chordal supergraph of the constraint graph of
N . If toSAT(N ) is defined as follows:

toSAT(N ) := translate(N )∧AMO∧
N∧
i=1

((x−i < x+
i )∧(y−i < y+

i ))∧
∧

(i,j,k)∈G

transitivity(i, j, k)

then toSAT(N ) is equisatisfiable with N .

Theorem 19

Proof. We need to show that toSAT(N ) is equisatisfiable with N . In order to do so, we

split toSAT(N ) in two parts. The first one (translate(N )∧ AMO∧
N∧
i=1

((x−i < x+
i )∧ (y−i < y+

i )))

is obviously the input problem; this representation comes from Long (2017) and the relation with
Point Algebra (PA). As proven in Sioutis and Koubarakis (2012), it is enough to check the path

122



3.2. Counter-Example Guided Abstraction Refinement

consistency with respect to the chordal graph, so the real difficulty of this proof is demonstrating
why by adding a finite number of transitivity constraints does the translation become equisatis-
fiable. The intuition is that, each time we add a transitivity constraint transitivity(i, j, k), we
force the SAT solver to find only relations in this triangle which match the weak composition table
CT (Table 3.1). For this purpose, we need to enumerate all the cases pertaining to the CT and
show that, each time, the transitivity constraints force the solver to find only relations allowed
by the CT. Let us consider the following case: (i,j) has the relation EQ and (j,k) has the rela-
tion NTPP. Then by the CT, the transitivity constraints should force to find NTPP on (i,k).
Because of what we assume true, we have the following propositional variables assigned to true:
(x−i = x−j ), (y−i = y−j ), (x−i < x+

j ), (y−i < y+
j ), (x+

i > x−j ), (y+
i > y−j ), (x+

i = x+
j ), (y+

i = y+
j )

(which encodes EQ(i, j)) and (x−j > x−k ), (y−j > y−k ), (x−j < x−k ), (y−j < y+
k ), (x−j > x+

k ), (y−j >

y−k ), (x−j < x+
k ), (y−j < y+

k ) (which encodesNTPP(j, k)). Then, we want to obtain the following:

(1.a) (x−i > x−k ) (1.b) (y−i > y−k )

(2.a) (x−j < x−k ) (2.b) (y−j < y+
k )

(3.a) (x−j > x+
k ) (3.b) (y−j > y−k )

(4.a) (x−j < x+
k ) (4.b) (y−j < y+

k )

1.a We have (x−i = x−j ) and (x−j > x−k ). Due to the transitivity constraint transitivity(i, j, k)

at one point, we add the clause: ((x−i = x−j ) ∧ ¬(x−j < x−k )→ (x−i > x−k )). Then, because
of AMO, we have ((x−j > x−k )→ ¬(x−j < x−k )). Thus we have (x−i > x−k ).

2.a We have (x−i = x−j ) and (x−j < x+
k ). Due to the transitivity constraint transitivity(i, j, k)

at one point, we add the clause: (¬(x−i < x−j ) ∧ (x−j < x+
k )→ (x−i < x+

k )). Then, because
of AMO, we have ((x−i = x−j )→ ¬(x−i < x−j )). Thus we have (x−i < x+

k ).

3.a We have (x+
i = x+

j ) and (x+
j > x−k ). Due to the transitivity constraint transitivity(i, j, k)

at one point, we add the clause: (¬(x+
i < x+

j ) ∧ (x+
j > x−k )→ (x+

i > x−k )). Then, because
of AMO, we have ((x+

i = x+
j )→ ¬(x+

i < x+
j )). Thus we have (x+

i > x−k ).

4.a We have (x+
i = x+

j ) and (x+
j < x+

k ). Due to the transitivity constraint transitivity(i, j, k)

at one point, we add the clause: (¬(x+
i > x+

j ) ∧ (x+
j < x+

k )→ (x+
i > x+

k )). Then, because
of AMO, we have ((x+

i = x+
j )→ ¬(x+

i > x+
j )). Thus we have (x+

i < x+
k ).

The cases on the y-axis (1.b, 2.b, 3.b and 4.b) are similar to the one on the x-axis. From this
point forward, we just have to enumerate in that way all the possible cases pertaining to the
weak composition table. This would be extremely space-consuming so we leave it as exercise for
the reader. q.e.d

We just saw that if we encode all the transitivity cases for every triangle in the respective
chordal graph in accordance with our description, we obtain an equisatisfiable SAT encoding.
However, when we take a closer look at what can be time-consuming, function transitivity is
exactly what we want to avoid at any cost due to the size of its encoding, and that is why we
propose a CEGAR approach to circumvent it.

123



Chapter 3. RECAR: An Abstraction Refinement Procedure

Translating parsimoniously the transitivity constraints

As we explained earlier, the function transitivity can be costly and it hence needs to be
avoided if we want to have a competitive approach. This is exactly the hypothesis on which
our CEGAR approach rests. Let us take the example illustrated in Fig. 3.7, a RCC8 problem
with 5 nodes and 5 relations given as input (the relations are shown in black in Fig. 3.7).
Thus, when we translate this problem into a propositional logic formula, we obtain the following
formula:

under(N ) = translate(EC, 0, 1) ∧ translate(EC, 1, 2)

∧ translate(EC, 2, 3)

∧ translate(EQ, 3, 4) ∧ translate(DC, 3, 4)

∧ translate(EQ, 4, 0) ∧ translate(DC, 4, 0)

∧ EC0,1 ∧ EC1,2 ∧ EC2,3 ∧ (EQ3,4 ∨DC3,4) ∧ (EQ4,0 ∨DC4,0)

∧ AMO ∧
4∧
i=0

((x−i < x+
i ) ∧ (y−i < y+

i ))

Let N be a QCN, then under(N) is an under-abstraction of N (i.e., it has at least the same
amount of models).

Theorem 20

01

2

3

4
EC

EC

EC

EQ ∨ DC

EQ ∨ DC

*
*

Figure 3.7: An example of the constraint graph of an RCC8 problem N , (the labels denote the
corresponding RCC8 relations), in red the edges added to make the graph chordal

Proof. under(N) is a subset of clauses of the equisatisfiable encoding (Thm. 19). Thus
if under(N ) is unsatisfiable, then N is also unsatisfiable by definition of the logical conjunction.
q.e.d

At this point, the translation is an under-abstraction of the original problem, i.e., if it is
unsatisfiable, then for sure the problem is unsatisfiable, but a model of this translation does not
imply that it exists a model for the original problem. The CEGAR Assumption (2) is respected

124



3.2. Counter-Example Guided Abstraction Refinement

by construction of the translation, to obtain this equisatisfiability we need to have:

toSAT(N ) = under(N )

∧ transitivity(0, 1, 2)

∧ transitivity(0, 2, 3)

∧ transitivity(0, 3, 4)

As the number of triangles in a chordal graph is bounded by a number N (worst case:
N = |V |3 when the graph is complete), we can now easily see that after we translate the
transitivity of each triangle (an operation that we will call a refinement in what follows), we can
refine the problem N times and obtain an equisatisfiable formula.

We need to find a way to check efficiently if a returned model of the under-abstraction is
also a model of the original formula. For this purpose, we used the algorithm Directional Path
Consistency (DPC) presented in Dechter et al. (1991), Long et al. (2016). The algorithm 3.1
performs the model-checking and returns the triangle which results in the assignment of the
empty set to some relation. From this point forward, if the checker returns the triangle (i,j,k)
and we consequently add the transitivity constraint transitivity(i, j, k) in the propositional
formula, then it is impossible for the checker to return once again the same triangle. As discussed
earlier, the maximum set of transitivity constraints that we need to add is of finite size, at which
point we will have an equisatisfiable formula.

We now have all the pieces to create two different ways to solve the satisfiability and at the
same time the realization problem in RCC8. The first one is by using a direct encoding (with
the function toSAT(N )). The second one is by using a CEGAR approach for it, like the one
presented in Algorithm 3.2, which in the worst-case (the case where all the transitivity rules must
be considered) will end-up being just a slightly slower version of the direct encoding; however,
this has been experimentally found to never occur in practice as explained later. Moreover,
every time we have that the instance is satisfiable, we also obtain an interpretation of the model
returned by the SAT solver. In other words, we solve the satisfiability and realization problems
together.

Algorithm 3.1: check(λ,N)

Data: N=(V,C) with n variables, λ a partial assignment of N
Result: An inconsistent triangle if false, otherwise null (the model is a realization of N)

1 N ← assign(N,λ);
2 G← (V,E ← E(GN ));
3 for vk from vn to v1 do
4 Fk ← {vs : {vs, vk} ∈ E ∧ (s < k)} ;
5 foreach {vi, vj} ∈ Fk with (i < j) do
6 if ({vi, vj} 6∈ E) then E ← E ∪ {{vi, vj}} ;
7 Temp← Ri,j ∩ (Ri,k �Rk,j);
8 if Temp ⊂ Ri,j then
9 Ri,j ← Temp;

10 Rj,i ← Temp−1;

11 else if Ri,j = ∅ then return (i,j,k) ;

12 return null;

125



Chapter 3. RECAR: An Abstraction Refinement Procedure

Algorithm 3.2: CEGAR-RCC8(N )

Data: N=(V,C) with n variables
Result: A realization of N if it is possible to obtain one, UNSAT otherwise

1 G← (V,E ← E(GN ));
2 setOfTriangles ← Chordal(G);
3 transitivity ← >;
4 ψ ← under(N) ; // under-abstraction step
5 while (setOfTriangle 6= ∅) do
6 λ← SAT-Solver(ψ ∧ transitivity) ; // solve step
7 if (λ = ⊥) then return UNSAT ;
8 res← check(λ,N) ; // check step
9 if (res = null) then return interpret(λ) ;

10 else
11 setOfTriangle.remove(res);
12 transitivity ← transitivity ∧ transitivity(res) ; // refinement step

13 λ← SAT-Solver(ψ ∧ transitivity) ; // worst case: equisatisfiability
14 if (λ = ⊥) then return UNSAT ;
15 else return interpret(λ) ;

Experimental Results

Now that we have a new SAT encoding and a CEGAR approach for solving the satisfiability and
realization problems in RCC8, we want to compare against the state-of-the-art. For this purpose,
we implemented the approach within the solver Churchill10 and we used Glucose Audemard et al.
(2013), Eén and Sörensson (2003) as an internal SAT solver. We will compare Churchill in direct-
encoding and CEGAR mode against the state-of-the-art qualitative spatial reasoners for RCC8,
which are GQR Westphal et al. (2009), Renz-Nebel01 Renz and Nebel (2001), RCC8SAT Huang
et al. (2013), PPyRCC8 Sioutis and Koubarakis (2012), and Chordal-Phalanx Sioutis and Con-
dotta (2014). Each solver is using default settings, except GQR, which is using the flag “-c
horn”. By using the flag “-c horn”, GQR decomposes an RCC8 relation into horn sub-relations
(which is standard behavior for the rest of the solvers), instead of basic relations; this changes
the branching factor from 4 to ∼ 1.4. Moreover, PPyRCC8 and Chordal-Phalanx are run using
PyPy as recommended by their authors to improve the overall performance. We compare these
solvers on four categories of benchmarks.

1. The first set consists of random hard instances that have been generated with:

“gencsp -i 100 -n 100 -d 10 15 0.5 -r nprels”.11

In particular, it consists of 100 instances of 100 nodes for every average degree from 10.0
to 15.0 with a 0.5 step and using only relations that result to NP-completeness (nprels);
thus, a total of 1 100 QCNs were generated.

2. The second set is generated exactly like the first one but with 500 nodes instead of 100 and
for a range of d between 10.0 and 20.0, consisting of a total of 2100 QCNs.

10The name comes from the historical figure who used to also do a lot of CEGAR
11The generator comes with the Renz-Nebel01 solver

126



3.2. Counter-Example Guided Abstraction Refinement

Figure 3.8: Runtime distribution on the 1st set Figure 3.9: Runtime distribution on the 2nd set

3. The third set is the random-scale-free-like-instances Sioutis et al. (2016), which consists
of 300 instances, 30 instances for every size from 1 000 to 10 000 nodes with a 1 000 step.
These instances are normal to hard.

4. The fourth set is the random-scale-free-like-np8-instances Sioutis et al. (2016), which con-
sists of 70 instances, 10 for every size from 500 to 3 500 nodes with a 500 step. These
instances are hard to very hard as they are defined solely by nprels.

Regarding sets 3 and 4, scale-free networks are networks whose degree distribution follows a
power law Barabási and Albert (1999); this kind of structured networks have been used exten-
sively in the recent literature Huang et al. (2013), Sioutis and Condotta (2014). The experiments
were ran on a cluster of Xeon, 4 cores, 3.3 GHz with CentOS 7.0 with a memory limit of 32GB
and a runtime limit of 900 seconds per solver per benchmark. All solvers’ answers were checked
by verifying if all the solvers gave the same output for each benchmark. No discrepancy was
found.

Regarding Fig. 3.8 and Fig. 3.9, which show the runtime distributions of the different solvers
for the 1st and 2nd set of instances, we can see that Churchill and GQR are extremely fast to
solve the respecting sets. Indeed, it took at most 1.42 seconds for Churchill to solve the hardest
instance of the 1st set and 10.10 seconds for GQR, and 32.70 seconds on the 2nd set for Churchill.
For Churchill it is mainly due to the fact that the networks are small (100 and 500 nodes), thus
the triangulation of the graph and the SAT translation are extremely efficient. Moreover, the
speed-up is also because we perform in average a small number of CEGAR loops (avg: 8.90
for 1st set and 11.87 for 2nd set). However, when we take a look at the direct translations
(RCC8SAT and Churchill Direct), 500 nodes is already too much and this blows up the allowed
memory.

Table 3.2 shows the number of benchmarks solved for sets 3 and 4. The best results of a
given row are presented in bold colour and the number of benchmarks which cannot be solved
because of lack of memory is provided between parenthesis (if such benchmarks do not exist a
dash is displayed). The line VBS represents the Virtual Best Solver (a practical upper-bound
on the performance achievable by picking the best solver for each benchmark). On the 3rd set,
we can see the scalability of a CEGAR approach against a direct encoding (Churchill Direct)
or via a CP representation. The results are clear, when the number of nodes is too big, the SAT
approaches require too much memory or too much time for the translation of the problem and,

127



Chapter 3. RECAR: An Abstraction Refinement Procedure

Table 3.2: Results on sets 3 (left) and 4 (right)

random-scale-free-like-instances random-scale-free-like-np8-instances

#Nodes (x1000) < 6 6 7 8 9 10 0.5 1 1.5 2 2.5 3 3.5

#Instances 150 30 30 30 30 30 10 10 10 10 10 10 10

Renz-Nebel01
0 0 0 0 0 0 0 0 0 0 0 0 0

- - - - - - - - - - - - -

0 0 0 0 0 0 0 0 0 0 0 0 0
RCC8SAT

(150) (30) (30) (30) (30) (30) (10) (10) (10) (10) (10) (10) (10)

PPyRCC8
134 19 20 21 23 23 10 9 10 8 7 3 3

(14) (8) (7) (7) (7) (4) - - - - (1) (5) (7)

150 30 30 30 30 30 10 10 10 10 10 10 10
Chordal-Phalanx

- - - - - - - - - - - - -

GQR-1500
150 30 30 30 30 30 10 10 9 6 10 8 9

- - - - - - - - - - - - -

0 0 0 0 0 0 0 0 0 0 0 0 0
Churchill Direct

(150) (30) (30) (30) (30) (30) (10) (10) (10) (10) (10) (10) (10)

Churchill CEGAR
150 30 30 18 8 6 10 10 10 10 10 10 10

- - - (10) (20) (24) - - - - - - -

VBS 150 30 30 30 30 30 10 10 10 10 10 10 10

hence, become inefficient. The bigger the network, the more time Churchill CEGAR spends
model-checking the output of the SAT solver and the more space is required to add transitivity
constraints. In some cases, we just reach the space limit and are unable to solve instances.

On the 4th set, we study the scalability on very hard instances that are of reasonable size.
We can see here that SAT solvers still have a hard time with the size of the input, and that
using a CEGAR approach instead of a direct encoding leads to a huge improvement. In-
deed, Churchill CEGAR managed to solve all the instances, but, unfortunately, it took more
time than Chordal-Phalanx to do so in most cases (median: 37.97s for Churchill vs 16.78 for
Chordal-Phalanx); however, it was faster in the worst-case (max: 163.10s for Churchill vs 714.12s
for Chordal-Phalanx). This is mainly due to the fact that model-checking many times, which is
typically the case when the network has a size between 2 000 and 3 500 nodes, is time-consuming.
In fact, a sum-up of how the runtime of Churchill is distinguished by Triangulation time, Check-
ing time, and Solving time is given in Table 3.3.

When we analyse the results given in Table 3.3, the analysis is clear: when the network is
small (1st and 2nd sets) the main percentage of the time is spent in the triangulation of the
graph. When the network is big (3rd and 4th sets) the main percentage of the time is spent in
the Checking time. But in any case, the SAT solver is not the bottleneck here.

For all the results, it is worth remembering that even if we are a little bit slower on sets 3
and 4, we are solving in the same time the realization problem, i.e., we output a realization for
the input problem, not only a decision about the satisfiability of that problem.

Now that we saw what are the CEGAR over and under and an instantiation of the CEGAR-
under framework for the RCC8 satisfiability problem, let us make a small sum-up of the situation

128



3.3. Recursive Explore and Check Abstraction Refinement

Table 3.3: Sum-up of times for the three steps in Churchill

Time (s) Triangulation Checking Solving

min med max min med max min med max

1st set 0.220 0.390 0.630 0.015 0.030 0.151 0.002 0.003 0.010

2nd set 3.910 12.910 20.153 0.430 1.170 2.057 0.015 0.030 0.370

3rd set 8.708 55.96 128.96 7.900 222.3 668.57 0.015 0.860 16.38

4th set 3.765 21.530 68.230 0.560 24.410 58.950 0.012 0.250 15.73

before presenting RECAR. We can easily sum-up the framework as follows: a classic CEGAR
approach with over-abstraction and a SAT short-cut performs well when the input is satisfiable.
But generally, it does not perform well in problems which are unsatisfiable. Respectively, a
classic CEGAR approach with under-abstraction and an UNSAT short-cut performs well when
the input is unsatisfiable. But generally, it does not perform well in problems which are satisfiable.
The reason for both is that it may have to keep refining until it reaches equi-satisfiability with
the original problem.

One way to address this issue is to mix SAT and UNSAT short-cuts, as in Brummayer and
Biere (2009) and Wang et al. (2007). In these approaches, the methods alternate between over
and under abstractions. Another way is to theorize a new framework able to use both kind of
abstractions. This is what we did and what we will present in the next section.

3.3 Recursive Explore and Check Abstraction Refinement

In this section, we present a new framework that we call RECAR which stands for Recursive
Explore and Check Abstraction Refinement which is a sound, complete and terminating frame-
work to mix both kinds of abstractions and to be able to interleave them during the search. As
in the CEGAR framework, it can be used in two modes, that we will present now.

3.3.1 RECAR-over

The RECAR-over approach, depicted in Fig. 3.10 and Algorithm. 3.3, interleaves both kinds
of abstractions: each abstraction is performed with the information retrieved from solving the
previous one. The UNSAT short cut is implemented using a recursive call to the main procedure
when a strict under-abstraction φ̌ can be built. One should also note that the proposed approach
permits abstractions on two different levels: one is used to simplify the problem at the domain
level (recursive call), while the other one is used to approximate the problem at the oracle
level. In order to apply RECAR, the under-abstraction φ̌ and the over-abstraction φ̂ must
satisfy some properties. In the following, isSAT(φ) means that φ is satisfiable (6|=1 ¬φ) and
isUNSAT(φ) means (|=2 ¬φ), but on possibly different consequence relations (therefore the 1

and 2). RC(φ, φ̌) denotes a Boolean function deciding if a Recursive Call should occur.

129



Chapter 3. RECAR: An Abstraction Refinement Procedure

To be able to perform a RECAR-over framework to decide a problem, one must verify a list
of assumptions. We assume that isSAT is the satisfiability in the corresponding logic of φ̂ and
that ≡?

sat is sound.

1. Function ‘check’ is a sound and complete implementation of ‘isSAT’ which terminates.

2. isSAT(φ̂) implies isSAT(refine(φ̂)).

3. There exists n ∈ N such that refinen(φ̂) ≡?
sat φ.

4. isUNSAT(φ̌) implies isUNSAT(φ).

5. Let under(φ) = φ̌. ∃n ∈ N s.t. RC(undern(φ),undern+1(φ)) evaluates to false.

Definition 59 (RECAR-over Assumptions)

Note that we have φ̂ is satisfiable implies φ is satisfiable by Assumptions 2 and 3 together.
In the following, we show that, under these assumptions, RECAR is sound, complete and
terminates. To do so, we present the algorithm recar - over(φ) in Algorithm. 3.3.

recar(φ) ψ ← φ̂

check(ψ)SAT ψ ← refine(ψ)

ψ ≡?
sat φ UNSAT

RC(φ, φ̌)

recar(φ̌) no

sat

unsat

yes

unk.

yes

unsat

sat

Figure 3.10: The RECAR framework starting with over-abstraction

130



3.3. Recursive Explore and Check Abstraction Refinement

Algorithm 3.3: recar - over(φ)

1 ψ ← φ̂ ;
2 while (ψ ≡?

sat φ returns “unknown") do
3 if (check(ψ) = SAT) then return SAT ;
4 if (RC(φ, φ̌) returns “yes") then
5 if (recar - over(φ̌) = UNSAT) then return UNSAT ;

6 ψ ← refine(ψ) ;

7 return check(ψ) ;

If recar - over(φ) returns SAT then φ is satisfiable.

Theorem 21 (Soundness)

Proof. Assume that recar - over(φ) returns SAT. This happens only if check(ψ) returns
SAT, either from line 3 or from line 7. Thus, we know that isSAT(ψ) holds (by Assump. 1). But
ψ equals to φ̂ or equals to refinen(φ) for some n ∈ N. Then φ is satisfiable (by Assump. 2 and
3).

q.e.d

The intuition behind the proof of Th. 22 is that there are two ways to conclude that φ is
UNSAT. In the first case, φ̂ is refined a finite number of times until it is detected equi-satisfiable
to φ and check returns UNSAT. Then φ is unsatisfiable. In the second case, one of the under-
abstractions is shown UNSAT, then φ is UNSAT (by Assump. 4).

If recar - over(φ) returns UNSAT then isUNSAT(φ).

Theorem 22 (Completeness)

Proof. By induction on the number k of recursive calls to recar - over (Line 5). Assume
recar - over(φ) returns UNSAT after k recursive calls.

In the induction base k = 0 (no recursive call). Then we must have exited the loop (ψ ≡?
sat φ)

(by Assump. 3) and check(ψ) returns UNSAT. This means that ψ is unsatisfiable (by Assump. 1)
and therefore isUNSAT(φ) holds (because of equi-satisfiability).

The induction hypothesis is: for all k ≤ n, if recar - over(φ) returns UNSAT after k recursive
calls then isUNSAT(φ).

In the induction step k = n + 1. Then the conditions of lines 4 and 5 of the algorithm are
true. This means that recar - over(φ̌) returns UNSAT after k recursive calls to recar - over. Then
isUNSAT(φ̌) (by I.H.). Then isUNSAT(φ) (by Assump. 4).

131



Chapter 3. RECAR: An Abstraction Refinement Procedure

q.e.d

The intuition behind the proof of Th. 23 is that the function performs a finite number of
recursive calls (Assump. 5). Moreover, each of these calls will have a finite number of refinements
before terminating (Assump. 3).

recar - over terminates for any input φ.

Theorem 23 (Termination)

Proof. We have that (1) For all φ, there exists n ∈ N such that RC(undern(φ), undern+1(φ))
evaluates to false (by Assump. 5) and (2) For each i ≤ n there ismi ∈ N such that refinemi(φ̂) ≡?

sat

φ (by Assump. 3).

Then, for any input φ, the recursive call of line 6 of the algorithm will be executed at most
n times before the condition of line 5 becomes false. For each one of these recursive calls, the
while-loop of the algorithm will be executed at most mi times before the condition of line 2
becomes false. Therefore, for any input, recar - over halts after a finite number of recursive calls.

q.e.d

An instantiation of this framework is given in the next chapter to decide the satisfiability
of PSPACE modal logics Lagniez et al. (2017a). The over-abstraction function is a bounded-
reduction into propositional logic, the under-abstraction function is a function able to smartly
remove conjunction in the formula that are “supposedly” not responsible for the unsatisfiability
of the formula. Obviously, as in the CEGAR framework, there exists an under version of
RECAR. But to the best of our knowledge, in 2018, this RECAR-under framework has never
been instantiated.

3.3.2 RECAR-under

The principle is the same as for RECAR-over, we have a list of assumptions that must be re-
spected, we have a general schema and a proof for the correctness, completeness and termination
of the algorithm.

132



3.3. Recursive Explore and Check Abstraction Refinement

We assume that isUNSAT is the unsatisfiability in the corresponding logic of φ̌, that isSAT
is the satisfiability of the corresponding logic of φ̂.

1. Function ‘check’ is a sound and complete implementation of ‘isUNSAT’ which termi-
nates.

2. isUNSAT(φ̌) implies isUNSAT(refine(φ̌)).

3. There exists n ∈ N and λ such that λ |=? refinen(φ̌) and λ |=? φ.

4. isSAT(φ̂) implies isSAT(φ).

5. Let over(φ) = φ̂. ∃n ∈ N s.t. RC(overn(φ), overn+1(φ)) evaluates to false.

Definition 60 (RECAR-under Assumptions)

recar(φ) ψ ← φ̌

check(ψ)UNSAT ψ ← refine(ψ)

λ |=? φ SAT

RC(φ, φ̂)

recar(φ̂) no

unsat

sat,λ

yes

unk.

yes

sat

unsat

Figure 3.11: The RECAR framework starting with under-abstraction

If recar -under(φ) returns SAT then φ is satisfiable.

Theorem 24 (Soundness)

Proof. By induction on the number k of recursive calls to recar -under (Line 5). Assume
recar -under(φ) returns SAT after k recursive calls. In the induction base k = 0 (no recursive

133



Chapter 3. RECAR: An Abstraction Refinement Procedure

Algorithm 3.4: recar -under(φ)

1 ψ ← φ̌ ;
2 λ← >;
3 while (λ |=? φ returns “unknown") do
4 if (λ← check(ψ) = UNSAT) then
5 return UNSAT

6 if (RC(φ, φ̂) returns “yes") then
7 if (recar -under(φ̂) = SAT) then
8 return SAT

9 ψ ← refine(ψ) ;

10 return check(ψ) ;

call). Then we must have exited the loop (λ |=? φ) and check(ψ) returns SAT. This means that
ψ is satisfiable (by Assump. 1) and therefore isSAT(φ) holds (becaus λ |=? φ by Assump. 3). The
induction hypothesis is: for all k ≤ n, if recar -under(φ) returns SAT after k recursive calls then
isSAT(φ). In the induction step k = n+ 1. Then the conditions of lines 4 and 5 of the algorithm
are true. This means that recar -under(φ̂) returns SAT after k recursive calls to recar -under.
Then isSAT(φ̂) (by I.H.). Then isSAT(φ) (by Assump. 4).

q.e.d

If recar - under(φ) returns UNSAT then isUNSAT(φ).

Theorem 25 (Completeness)

Proof. Assume that recar - over(φ) returns UNSAT. This happens only if check(ψ) re-
turns UNSAT, either from line 3 or from line 7. Thus, we know that isUNSAT(ψ) holds (by
Assump. 1). But ψ equals to φ̌ or equals to refinen(φ) for some n ∈ N. Then φ is unsatisfiable
(by Assump. 2 and 3). q.e.d

recar - under(φ) terminates for any input φ.

Theorem 26 (Termination)

Proof. We have that (1) For all φ, there exists n ∈ N such that RC(overn(φ), overn+1(φ))
evaluates to false (by Assump. 5) and (2) For each i ≤ n there is mi ∈ N such that it exists
λ |=? refinemi(φ̌) and λ |=? φ (by Assump. 3). Then, for any input φ, the recursive call of line 6
of the algorithm will be executed at most n times before the condition of line 5 becomes false.

134



3.4. Explanation of How The Abstractions Are Called

For each one of these recursive calls, the while-loop of the algorithm will be executed at most
mi times before the condition of line 2 becomes false. Therefore, for any input, recar - over halts
after a finite number of recursive calls. q.e.d

Now that we showed our theoretical contribution which is the RECAR framework and that
we proved that it is sound, complete and that it terminates whether it is used with first an
over-abstraction (RECAR-over) or with an under-abstraction (RECAR-under). Let us now go
through the next chapter where we present a RECAR-over instantiation for the modal logic K
Satisfiability Problem first, and then we show how the solver can be extended for all the other
modal logics and what are the necessary optimization to make the solver competitive with the
state-of-the-art approaches.

3.4 Explanation of How The Abstractions Are Called

We just presented different framework that are able to use abstractions to decide a problem. But
they all work differently. In fact, one can represent how the abstractions are refined with the
Figure 3.12.

Figure 3.12: Illustration of the different kind of abstractions framework

Indeed, what we can see is that first, the CEGAR-over and CEGAR-under are not moving in
two dimensions, they are set with one kind of abstractions, and they just refined it until they reach
a fix-point to decide the problem. Indeed, a CEGAR-over cannot perform an under-abstraction
and a CEGAR-under cannot perform an over-abstraction. There exists also the Branch and
Price algorithm Savelsbergh (1997) (one famous method to solve combinatorial optimisation

135



Chapter 3. RECAR: An Abstraction Refinement Procedure

problems). It is basically doing an alternation between an over-abstraction and under-abstraction
until it is able to decide the satisfiability of the problem. This approach is doing better than
the CEGAR framework in the way that, this time, it is able to move in two dimensions, but
unfortunately, the trajectory is known in advance, it will first do an over-abstraction, then an
under-abstraction, then an over-abstraction etc. until deciding the problem.

The RECAR framework that we proposed is freer in the way that the trajectory is not
known in advance. It could be the case that the function RC, which decide if we should perform
a recursive call, is never true. In that case the RECAR-over is equals to the CEGAR-over
and it will never perform an under-abstraction. It could also be the case that the function RC
is always true, then the RECAR-over and RECAR-under will behave in the same way as a
Branch and Price algorithm and it will just alternate the abstractions.

The goal of the RECAR framework is to give the freedom, thanks to the RC function, to
adapt the direction to the problem that we want to solve. It could be the case that for some
instances of a problem, behaving as a CEGAR-over or as a CEGAR-under framework is the
best behaviour. It could also be the case that for some other instances of a problem, behaving as
Branch and Price is the best behaviour. The RECAR framework, when it is well instantiated,
will be able to behave as both and to adapt its behaviour to the instances.

136



3.4. Explanation of How The Abstractions Are Called

137



Chapter 3. RECAR: An Abstraction Refinement Procedure

138



Chapter

4TheModal Logic K? Satisfiability Problem

Contents
4.1 RECAR Approach For The Modal Logic K . . . . . . . . . . . . 139

4.1.1 Over-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.1.2 Under-Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.1.3 MoSaiC: A RECAR-over Approach . . . . . . . . . . . . . . . . . 143

4.2 Extensions Of MoSaiC For The Other Modal Logics . . . . . . 144

4.2.1 How To Encode The Axioms . . . . . . . . . . . . . . . . . . . . . . 145

4.2.2 Axiom-Aware Under-Abstraction . . . . . . . . . . . . . . . . . . . 145

4.2.3 Space-Aware Over-Abstraction . . . . . . . . . . . . . . . . . . . . . 147

4.2.4 Chain of Modalities Simplifications . . . . . . . . . . . . . . . . . . 149

4.3 Experimental Evaluation Of MoSaiC . . . . . . . . . . . . . . . 151

4.3.1 Experimental Evaluation of MoSaiC 1.0 . . . . . . . . . . . . . . . 152

4.3.2 Experimental Evaluation of MoSaiC 2.0 . . . . . . . . . . . . . . . 154

4.3.3 General Analysis Of The Results Obtained . . . . . . . . . . . . . . 157

À ce propos, rien n’est plus arbitraire
qu’une logique modale : “J’ai fini cette
logique, je peux en avoir une autre ?”
semble-t-on dire de ce côté-là.

J-Y Girard, Le Point aveugle

Now that we just proposed a theoretical framework that we showed sound, complete and
terminating, it is time to see how such a framework can be instantiated to solve problems. The
first instantiation that we proposed is an instantiation using a SAT solver to decide the Modal
Logic K Satisfiability Problem within the solver MoSaiC.

4.1 RECAR Approach For The Modal Logic K

As our over-abstraction function, we define a translation from modal logic K to classical propo-
sitional logic

139



Chapter 4. The Modal Logic K? Satisfiability Problem

4.1.1 Over-Abstraction

tr(φ, n) = tr′(nnf(φ), 0, n)

tr′(>, i, n) = >
tr′(⊥, i, n) = ⊥
tr′(p, i, n) = pi

tr′(¬p, i, n) = ¬pi
tr′(φ ∧ ψ, i, n) = tr′(φ, i, n) ∧ tr′(ψ, i, n)

tr′(φ ∨ ψ), i, n) = tr′(φ, i, n) ∨ tr′(ψ, i, n)

tr′(�φ, i, n) =
n∧
j=0

(ri,j → tr′(φ, j, n))

tr′(♦φ, i, n) =
n∨
j=0

(ri,j ∧ tr′(φ, j, n))

Definition 61 (Translation)

The translation adds fresh variables pi and rai,j to the formula: pi denotes that variable p
is true in the world wi whereas rai,j corresponds to wj being accessible from wi by the relation
a. We have the following as an immediate result (where UB(φ) is the theoretical upper-bound
presented in Theorem 5).

φ is K-satisfiable if and only if tr(φ,Atom(φ)depth(φ)) is satisfiable in propositional logic.

Theorem 27

Therefore, in order to decide the satisfiability of a formula φ ∈ L, one can simply feed a
SAT solver with tr(φ,Atom(φ)depth(φ)). The main issue is that the translation may generate an
exponentially larger formula that the RECAR framework wants to avoid. Now, in order to apply
the RECAR approach, we first need to find an over-abstraction which respects the assumptions
presented in Definition 59.

Let φ ∈ L. The over-abstraction of φ, denoted φ̂, is the formula tr(φ, 1).

Definition 62 (Over-abstraction)

140



4.1. RECAR Approach For The Modal Logic K

Let 1 ≤ n ≤ Atom(φ)depth(φ). The refinement of tr(φ, n), noted refine(φ, n) is the formula
tr(φ, n+ 1).

Definition 63 (Refinement)

It is important to notice that Atom(φ) counts the number of different atoms in the formula
φ. If we consider φ = p ∧ ¬p, there are two different atoms in this formula, thus Atom(φ) = 2.
The following theorem will demonstrate that the previous over-abstraction can satisfied the
RECAR-over Assump. 2 and 3.

If isSAT(tr(φ, n)) then isSAT(tr(φ, n + 1)), for all 1 < n ≤ Atom(φ)depth(φ). (RECAR-over
Assump. 2)

Theorem 28

Proof. [Proof Sketch] The idea is that if φ is satisfied by a modelM with n worlds, then we
can find a modelM′ with n+ 1 worlds satisfying φ. The additional world is just not accessible
from the ones already inM. q.e.d

The latter result allows us to use this over-abstraction and refinement in the RECAR-over
approach. It is easy to see that RECAR-over Assumptions 2 and 3 are satisfied. The RECAR-
over Assumption 1 is satisfied by using a SAT solver which is sound, complete and terminates.
The following section will demonstrate how one can satisfy the RECAR-over Assumption 4 and
5.

4.1.2 Under-Abstraction

To understand the intuition behind the under-abstraction we use an example. Let φ = (♦p ∧
�¬p∧χ) for some χ ∈ L, where depth(χ) is huge. This is clearly unsatisfiable because (♦p∧�¬p)
is unsatisfiable. One can see that right away without even knowing what χ looks like. However, a
CEGAR approach using the over-abstraction and refinement defined earlier will take a long time
before finally conclude it. The reason is that each refinement tr(φ, n+ 1) of the original formula
will be shown unsatisfiable and it will not stop until the theoretical upper-bound is reached.

To avoid these pathological cases, the RECAR approach also performs under-abstractions.
To see how it works, let us take that formula φ again. First, we add to each conjunct in φ
a fresh variable si (a selector) that will be assumed to be true by the SAT solver, as done
in Figure 4.1. Then, we make the first over-abstraction tr(φ, 1) and give it to a modern SAT
solver. The solver will return UNSAT with an unsatisfiable core. From this core, we extract
a set of selectors core. Let us assume, in our example, that core = {s1, s2}. This means that
the formula φ̌ = (♦p ∧ �¬p), which is the one labelled by the selectors, is enough to prove the
unsatisfiability of φ with only 1 possible world. Proving the unsatisfiability of φ̌ will imply that

141



Chapter 4. The Modal Logic K? Satisfiability Problem

∧

∨

¬s1 ♦

p

∨

¬s2 �

¬p

∨

¬s3 χ

Figure 4.1: How selectors are applied to φ = (♦p ∧�¬p ∧ χ)

φ is unsatisfiable. Note that, in this specific case, UB(φ̌) is much smaller than UB(φ). Thus the
CEGAR approach applied to φ̌ will succeed much earlier, while it may have failed for the entire
formula φ. Formally, we have the following.

under(p, core) = p

under(¬p, core) = ¬p
under(�φ, core) = �(under(φ, core))

under(♦φ, core) = ♦(under(φ, core))

under((φ ∧ ψ), core) = under(φ, core) ∧ under(ψ, core)

under((ψ ∨ χ), core) =


under(χ, core) if ψ = ¬si, si ∈ core
> if ψ = ¬si, si 6∈ core
(under(ψ, core)

∨under(χ, core)) otherwise

Definition 64 (Under-Approximation)

under(φ, core) is unsatisfiable in K and si ∈ core means that ∀w in all Kripke models, si ∈
V (w), implies φ is unsatisfiable in K.

Theorem 29

The intuition of the proof is that each selector si enables an operand in a conjunction of the
formula. Each time function ‘under’ is called with a non-empty core, operands not enabled with
a selector from the core will be removed from the formula.

142



4.1. RECAR Approach For The Modal Logic K

Proof. Let φ be in NNF. We show that under(φ, core) is unsatisfiable in K implies φ
is unsatisfiable in K by induction on the structure of φ. The induction hypothesis being that
for every formula φ smaller than n, if 〈M,w〉 |= φ then 〈M,w〉 |= under(φ, core). We assume
because it is necessarily the case, that if si ∈ core then ∀w in all Kripke models, si ∈ V (w) and
if si¬ ∈ core then ∀w in all Kripke models, ¬si ∈ V (w). Assume φ satisfiable in K. Then ∃M,w
s.t. 〈M,w〉 |= φ. There are two cases in the induction base: (1) φ = p and (2) φ = ¬p. In both
of them under(φ, core) = φ. There are four cases in the induction step:
(1) φ = ♦(ψ). ∃ 〈M,w〉 s.t. 〈M,w〉 |= ♦(ψ). Then ∃ 〈M,w′〉 s.t. (w,w′) ∈ R, 〈M,w′〉 |= ψ.
Then 〈M,w′〉 |= under(ψ, core) by induction hypothesis. Thus 〈M,w〉 |= under(φ, core);
(2) φ = �(ψ). This case is analogous to (1).
(3) φ = (ψ ∧ χ). ∃ 〈M,w〉 |= (ψ ∧ χ). Then 〈M,w〉 |= ψ and 〈M,w〉 |= χ. Then 〈M,w〉 |=
under(ψ, core) and 〈M,w〉 |= under(χ, core) by induction hypothesis. Thus 〈M,w〉 |= under(φ, core);
(4) φ = (ψ ∨ χ). We consider the three cases:
(4.a) ψ = ¬si and si ∈ core. Then ∃ 〈M,w〉 |= (¬si ∨χ) but si ∈ V (w), then 〈M,w〉 |= χ. Then
〈M,w〉 |= under(χ, core) by induction hypothesis. Thus 〈M,w〉 |= under(φ, core);
(4.b) ψ = ¬si and si 6∈ core. ∃ 〈M,w〉 |= (¬si ∨ χ). but we always have 〈M,w〉 |= >. Thus
〈M,w〉 |= under(φ, core).
(4.c) This case is analogous to (3). q.e.d

Theorem 29 shows that function ‘under’ satisfies RECAR-over Assump. 4. To see that it
also satisfies Assump. 5, note that the length of undern+1(φ, core) is smaller or equal to that of
undern(φ, core′) (even though the sets core and core′ usually differ).

4.1.3 MoSaiC: A RECAR-over Approach

The function addS will add selectors on the different conjuncts in the formula. Here the function
RC from the previous chapter is replaced by the simple equality test φ̌ = φ. We implemented
the RECAR-over approach for modal logic K satisfiability problem within the solver MoSaiC,
using the over and under abstractions defined in the previous sections. MoSaiC combines
several features found in state-of-the-art solvers. As in Km2SAT Sebastiani and Vescovi (2009),
it optimises the input by performing the rules: Box Lifting, Flattening, and Truth Propagation
through modal and Boolean operators (see Sebastiani and Vescovi (2009) for more details).
MoSaiC also uses the SAT solver glucose in incremental mode Eén and Sörensson (2003),
Audemard et al. (2013) to decide the satisfiability of each ψ.

Note that some implementation details differ a bit from Figure 4.2. For instance, we do not
call glucose on ψ but on an updated ψ′ with selectors on conjuncts under the assumption
that these selectors are satisfied; we do not need to generate the under abstraction φ̌ to test the
condition φ̌ = φ: we just need to know the number of selectors involved in the unsatisfiability of
the formula. We also return a Kripke model in the main procedure, not just SAT/UNSAT. We
take advantage of such information to provide a new bound for l. And finally, note that in our
case max(|M |, l + 1) always returns |M | because it is not possible to find a model smaller than
M by construction of φ̌.

The condition Jump() ? visible in Figure 4.2 is an heuristic to improve in practice, the
performance obtained by MoSaiC. More explanation will be given in the section talking about
the experimental evaluation, but in a nutshell here is what we detect. At one point in the
search, we reach a sub-formula after making an under-abstraction, which is so small that we
would spend too many times making iteration. Thus, instead of making these iterations, we

143



Chapter 4. The Modal Logic K? Satisfiability Problem

SAT MoSaiC(φ) l ← 1 MoSaiC′(φ, l)

φ ← addS(φ)

ψ ← tr(φ, l)glucose(ψ)

l > UB(φ) UNSAT

φ̌ ← under(φ, core) φ̌ = φ l ← l + 1

Jump() ?

l ← UB(φ̌)

MoSaiC′(φ̌, l)

l ← max(|M |, l + 1)

|

sat

unsat

yes

no

yes

no

yes

no

unsat

sat,M

Figure 4.2: MoSaiC: RECAR-over for modal logic K

detect heuristically that if we put the bound l to the theoretical upper-bound of the sub-formula
and that it does not generate a memory-out, then we should do it. In that way, we generate a
propositional logic formula which is equisatisfiable with the sub-formula and we can decide in one
shot thanks to glucose, the satisfiability of this under-abstraction. Heuristically, the function
Jump() is as follows: (|φ̌| × UB(φ̌) < BIG) with BIG set according to the memory-limit that
we allow for the solver.

From now on, in this thesis, we saw how to solve NP modal logics, how to solve modal logic
K satisfiability problem thanks to a RECAR-over approach. The last part is now related to how
to deal with all kind of modal logics. Said otherwise, how we can extend MoSaiC in such way
that it can deal with all the logics based on K. This is what we will see in the next section.

4.2 Extensions Of MoSaiC For The Other Modal Logics

As we just said, we want to extend MoSaiC in order to make it able to deal with the different
modal logics. As stated in the Preliminaries part of this thesis, we all know that each modal
logic is just modal logic K with additional axioms. It seems natural to search how we can make
MoSaiC encodes the different axioms of modal logic and this is what we will see know in this
section.

144



4.2. Extensions Of MoSaiC For The Other Modal Logics

4.2.1 How To Encode The Axioms

It is well known that some axioms correspond to constraints on Kripke structures Sahlqvist
(1975). For instance, every reflexive K-structure satisfies T. Even if there are non-reflexive K-
structures satisfying T as well, it is always possible to find an “equivalent” reflexive K-structure.
Two K-structures are equivalent if and only if they are bi-similar. The reader may find the
definition of bi-simulation, for instance, in Blackburn et al. (2006). Therefore, if one wants
to find a finite KT-model, it is safe to search only among reflexive K-structures. Analogous
reasoning may also be used for the other properties. Consequently, following Table 2.1, we call
KT-structure a reflexive K-structure and we call S4-structure (or KT4-structure) a reflexive and
transitive K-structure.

Therefore, to deal with different modal logics, we append to the translation into CNF, the fol-
lowing constraints corresponding to the different axioms (with m the number of modal operators
and n the number of worlds):

tr((T ), n) =

n∧
i=0

(ri,i) tr((D), n) =

n∧
i=0

n∨
j=0

(ri,j)

tr((B), n) =
n∧
i=0

n∧
j=0

(ri,j → rj,i)

tr((4), n) =
n∧
i=0

n∧
j=0

n∧
k=0

((ri,j ∧ rj,k)→ ri,k)

tr((5), n) =
n∧
i=0

n∧
j=0

n∧
k=0

((ri,j ∧ ri,k)→ rj,k)

Definition 65 (Translation of Axioms)

The translation of each axiom came from the relations in First Order Logic, presented by
Sahlqvist. Thus, when axiom (T) is considered (i.e. modal logic KT), the over-abstraction
function is (tr(φ, n) ∧ tr((T ), n)). When both axioms (T) and (4) (i.e. modal logic S4) are
considered, the over-abstraction function is (tr(φ, n) ∧ tr((T ), n) ∧ tr((4), n)).

When considering modal logic axioms other than K, the formulas usually need more worlds to
be satisfied. Consequently, the SAT translation becomes too big to be handled (some CNF have
hundreds of million of clauses). Thus, we provide a new space-aware over-abstraction function
and a new axiom-aware under-abstraction function, to be used in the framework.

4.2.2 Axiom-Aware Under-Abstraction

So far, when the formula was unsatisfiable, the only way to prove its unsatisfiability was to
cut some branch rooted in AND nodes in order to produce an unsatisfiable sub-formula that
can be translated into a CNF. When dealing with axiom (T), we have �φ → φ and then, as

145



Chapter 4. The Modal Logic K? Satisfiability Problem

demonstrated in the following property, it is possible to construct an under-abstraction of the
formula that also removes some boxes.

Let us consider an NNF formula φ ∈ L in a modal logic satisfying (T). If we replace a
sub-formula �ψ by ψ, then the resulting formula φ′ is an under-abstraction of φ.

Proposition 3

Proof. To prove that this property holds, it is enough to check that if φ is satisfiable then
so is φ′. W.l.o.g., in the following, we suppose that all the OR and AND nodes are binary
and we remind that the Boolean operators are commutative. Let us consider an NNF modal
logic formula φ, and φ′ a copy of φ which differs on only one sub-formula rooted on a box node
�ψ ∈ φ where �ψ has been replaced by ψ in φ′. We show that, if there exists a Kripke model
K = 〈W,R, V 〉 and a possible world w ∈ W , s.t. 〈K, w〉 |= φ then 〈K, w〉 |= φ′ by induction on
the structure of φ. Induction base: φ = �ψ and φ′ = ψ, where ψ contains no operator �. If
there is 〈K, w〉 |= �ψ then 〈K, w〉 |= ψ due to axiom (T). Let us now prove the different cases
on the induction step:
(1): φ = (χ1∧χ2) and χ1 contains (�ψ) and φ′ = (χ′1∧χ2) where χ′1 is χ1 where (�ψ) has been
replaced by ψ. The case where χ2 contains (�ψ) is analogous due to the commutativity. We
have 〈K, w〉 |= (χ1 ∧ χ2) iff 〈K, w〉 |= χ1 and 〈K, w〉 |= χ2. By IH, 〈K, w〉 |= χ′1 and 〈K, w〉 |= χ2,
iff 〈K, w〉 |= (χ′1 ∧ χ2). Thus 〈K, w〉 |= φ′.
(2): φ = (χ1∨χ2) and χ1 contains (�ψ) and φ′ = (χ′1∨χ2) where χ′1 is χ1 where (�ψ) has been
replaced by ψ. Anologous to (1).
(3): φ = �χ and χ contains (�ψ) and φ′ = �χ′ where χ′ is χ where (�ψ) has been replaced by
ψ. We have 〈K, w〉 |= �χ iff ∀w′ if (w,w′) ∈ Ra then 〈K, w′〉 |= χ. By IH, 〈K, w′〉 |= χ′, then
∀w′ if (w,w′) ∈ Ra then 〈K, w′〉 |= �χ′. Thus 〈K, w〉 |= φ′.
(4): φ = ♦χ and χ contains (�ψ) and φ′ = ♦χ′ where χ′ is χ where (�ψ) has been replaced by
ψ. Anologous to (3). q.e.d

Note that such property does not hold for modal logic K: �⊥ is satisfiable in K but incon-
sistent in KT.

146



4.2. Extensions Of MoSaiC For The Other Modal Logics

carve(p, core) = p carve(¬p, core) = ¬p
carve(�φ, c) = �(carve(φ, core))

carve(♦φ, core) = ♦(carve(φ, core))

carve((¬si ∨�χ) ∧ χ, core) =

{
carve(�χ, core) if si ∈ core
carve(χ, core) if si 6∈ core

carve((φ ∧ ψ), c) = carve(φ, core) ∧ carve(ψ, core)

carve((ψ ∨ χ), core) =


carve(χ, core) if ψ = ¬si, si ∈ core and χ = (χ1 ∧ χ2)

> if ψ = ¬si, si 6∈ core and χ = (χ1 ∧ χ2)

carve(ψ, core) ∨ carve(χ, core) otherwise

Definition 66 (Under-abstraction carve function)

In order to select the boxes which will be replaced, we propose to improve the under-
abstraction presented in the previous section, which combines selectors and unsatisfiable cores to
search unsatisfiable sub-formulas. There we proposed to add a selector to each branch rooted in a
AND node to be able to activate/deactivate some parts of the formula. When the solver is called
to check the satisfiability of the formula, it is called with the set of selectors as assumptions. If
the solver returns UNSAT, then the unsatisfiable core returned is used to remove parts of the
formula that are not in the reason of its inconsistency. What we propose here consists in also
replacing each �ψ by ((¬sk ∨�ψ) ∧ ψ). This somehow says ‘when we activate the selector sk,
then we translate the whole modality, if not, we just translate ψ in the current world’. We define
formally such a function in Definition 66.

One question that arise when we see such a function, guided by the unsatisfiable core returned
by the SAT solver is: is it really worth-it to trust the SAT solver? Is it really more efficient than
just cutting boxes randomly in the formula. We will demonstrate experimentally the importance
to trust the SAT solver in detecting the reason for why a formula is unsatisfiable.

Now, we can again use the core returned by the solver to extract a sub-formula that is
unsatisfiable. That under-abstraction will remove some boxes from the formula which are not
involved in its inconsistency. The difference that is when we translate a box into SAT it is not
useful to translate twice the formula ψ in the current world.

4.2.3 Space-Aware Over-Abstraction

As already pointed out in the introduction, the bottleneck of CEGAR-based approaches using
SAT oracle is the size of generated CNF formulas. For the case we are interested in, this bottleneck
is reached when the over-abstraction function is called with a large number of worlds. However,
it is possible to estimate the size of the CNF formula before computing it and then be aware
that the translation will exhaust memory on targeted hardware.

In the following, we propose a space-aware over-abstraction function that is used instead of
the original one when the space taken by the CNF reaches a given threshold. This new over-

147



Chapter 4. The Modal Logic K? Satisfiability Problem

abstraction is performed by disabling some disjuncts from the original formula. For this function
to exist and to respect the RECAR assumptions, it needs to verify that cutting edges rooted in
an OR node produces a weaker formula, i.e. every model of the resulting formula is also a model
of the initial formula.

Let us consider an NNF modal logic formula φ ∈ L. If we cut an edge rooted in an OR node,
then the resulting formula φ′ is an over-abstraction of φ.

Property 1

Proof. To prove that this property holds, it is enough to check that every model of φ′ is
also a model of φ. W.l.o.g., in the following we suppose that all the OR and AND nodes are
binary. Indeed, (φ1⊕φ2⊕ · · · ⊕φn) can be rewritten as (φ1⊕ (φ2⊕ (· · · ⊕ (φn−1⊕φn)))), where
⊕ ∈ {∧,∨}. Let us remind also that the boolean operators are commutative, so we only need to
prove that property on the left or on the right side. Let φ be an NNF formula in L containing
(ψ1 ∨ψ2) and φ′ be equals to φ but with (ψ1 ∨ψ2) replaced by ψ1. We show that, if there exists
a Kripke model K = 〈W,R, V 〉 and a possible world w ∈ W , s.t. 〈K, w〉 |= φ′ then 〈K, w〉 |= φ
by induction on the structure of φ.

Induction base: φ = (ψ1 ∨ ψ2) and φ′ = ψ1, where ψ1 contains no operator ∨. The claim is
clearly true.

Let us now prove the different cases in the induction step:
(1): φ = (χ1∧χ2) and χ1 contains (ψ1∨ψ2) and φ′ = (χ′∧χ2) where χ′ is χ where (ψ1∨ψ2) has
been replaced by ψ1. The case where χ2 contains (ψ1∨ψ2) is analogous due to the commutativity.
We have 〈K, w〉 |= (χ′1∧χ2) iff 〈K, w〉 |= χ′1 and 〈K, w〉 |= χ2. By IH, since we have 〈K, w〉 |= χ′1,
we have 〈K, w〉 |= χ1. And because we also have 〈K, w〉 |= χ2, then we have 〈K, w〉 |= (χ1 ∧ χ2).
Thus 〈K, w〉 |= φ.
(2): φ = (χ1∨χ2) and χ1 contains (ψ1∨ψ2) and φ′ = (χ′∨χ2) where χ′ is χ where (ψ1∨ψ2) has
been replaced by ψ1. The case where χ2 contains (ψ1∨ψ2) is analogous due to the commutativity.
We have 〈K, w〉 |= (χ′1 ∨ χ2) iff 〈K, w〉 |= χ′1 or 〈K, w〉 |= χ2. Two cases have to be considered, if
we have 〈K, w〉 |= χ2, then we also have 〈K, w〉 |= (χ1 ∨ χ2). Otherwise, we have 〈K, w〉 |= χ′1,
by IH we have 〈K, w〉 |= (χ1. Then we have 〈K, w〉 |= (χ1 ∨ χ2). Thus we have 〈K, w〉 |= φ.
(3): φ = �χ and χ contains (ψ1 ∨ ψ2) and φ′ = �χ′ where χ′ is χ where (ψ1 ∨ ψ2) has been
replaced by ψ1. We have 〈K, w〉 |= �χ′ iff ∀w′ s.t. if (w,w′) ∈ Ra then we have 〈K, w′〉 |= χ′.
By IH, 〈K, w′〉 |= χ, then ∀w′ s.t. if (w,w′) ∈ Ra then we have 〈K, w〉 |= �χ. Thus 〈K, w〉 |= φ.
(4): φ = ♦χ and χ contains (ψ1 ∨ ψ2) and φ′ = ♦χ′ where χ′ is χ where (ψ1 ∨ ψ2) has been
replaced by ψ1. Analogous to (3).

Thus, ∀φ in NNF, if 〈K, w〉 |= φ′ then 〈K, w〉 |= φ. q.e.d

Let us remark that Proposition 1 can be extended to the case where a set of edges rooted in
OR nodes are cut. Consequently, it is possible to consider a new kind of over-abstraction that
cuts edges rooted in OR nodes. More precisely, we create such over-abstraction sub-formula by
cutting heuristically a set of edges rooted in OR nodes which have the bigger impact on the
upper-bound and we translate it into a CNF formula. We call this function cut-or(φ, b), where
the parameter b is the number of OR nodes cut. Obviously, the refinement function is linked to

148



4.2. Extensions Of MoSaiC For The Other Modal Logics

∨

ψ1

1

♦

ψ2

2
♦

∨

ψ3

3
ψ4

4

∨

ψ1

1

♦

ψ2

2
♦

∨

ψ3

3
ψ4

4

∨

ψ1

1

♦

ψ2

2
♦

∨

ψ3

3
ψ4

4

∨

ψ1

1

♦

ψ2

2
♦

∨

ψ3

3
ψ4

4

Figure 4.3: Function cut-or(φ, 3) and its refinements

this over-abstraction (it is not possible to cut an edge and then increase the number of worlds
without violating the RECAR Assumptions). Thus, we consider a new refinement function
refineor (φ̂, b) that is inductively defined as follows:

refineor (φ̂, b) =


φ̂ if b = 0

φ′ ∀b > 0 and refineor (φ̂, b− 1) 6= φ

φ otherwise

where φ′ is defined such that refineor (φ̂, b− 1) ( φ′ ⊆ φ. Intuitively, refineor (φ̂, b) restores b OR
nodes to φ̂ if possible.

Basically the refine function consists in restoring at least one edge which were cut at each
induction step. Now, let us demonstrate that the proposed couple over-abstraction cut-or(φ, b)
and refinement function refineno (ψ) satisfies the needed conditions recalled in preliminaries. An
illustration of the functions “ cut-or′′ and “ refine′′o is done in Figure 4.3.

ψ = cut-or(φ, n) is satisfiable implies refineor (ψ, 1) is satisfiable (Assump. 2) and
refineor (ψ, n) ≡sat φ (Assump. 3).

Theorem 30

Proof. The proof is straightforward. From Proposition 1 we know that adding back an
edge rooted in an OR node preserves the satisfiability. Because refineor (ψ, b) can only add edges
back, then we have directly that ψ = cut-or(φ, n) is satisfiable implies refineor (ψ, 1) is satisfiable.
For the Assumption 3, the result comes directly from the definition of refineor (ψ, n) and the fact
that we can only add a finite number of edges. q.e.d

4.2.4 Chain of Modalities Simplifications

Once all above simplifications are performed, the resulting “abstracted” formula may contain
chains of modalities. This is a critical information that can be exploited if we want to further
improve the performance of a solver.

149



Chapter 4. The Modal Logic K? Satisfiability Problem

Simplifications for Modal Logic S4

They are known simplifications of chain of modalities in modal logic S4 which preserves logical
equivalency (Van Benthem 2010, Sec. 5.5).

��φ↔ �φ (4.1)
♦♦φ↔ ♦φ (4.2)
�♦�♦φ↔ �♦φ (4.3)

As such, it means that any chain of modal operators (involving the same modality a) can be
reduced to a chain of maximum 3 modal operators in modal logic S4, which is tolerable for the
translation into CNF done by the over-approximation function.

Because modal logic K and modal logic KT “have infinitely many non-equivalent modalities”
Van Benthem (2010), there is no such result to the best of our knowledge for K and KT. To deal
with chains of modalities in those logics, we propose the following simplifications which preserve
satisfiability.

Simplifications for Modal Logic K

Let us consider a simple case where the modal prefix contains only diamonds. In this case, it is
safe to test only the end of the chain without taking into account the modalities. The resulting
sub-formula is equisatisfiable to the original formula.

♦♦ . . .♦ψ ≡sat ψ in modal logic K.

Theorem 31

Proof. (⇒) If 〈K, w〉 |= ♦ . . .♦ψ then there is w′s.t.〈K, w′〉 |= ψ. (⇐) If 〈K, w〉 |= ψ then
we can add a world w′ to K s.t. w ∈ R(w′). In this case, 〈K, w′〉 |= ♦ψ. By continuing doing so,
we can show that ♦ . . .♦ψ is sat. q.e.d

♦ . . .♦�ψ is sat in modal logic K.

Theorem 32

Proof. �ψ is satisfiable for all ψ ∈ L. Therefore, by Theorem 31, ♦ . . .♦�ψ is satisfiable
for all ψ ∈ L. q.e.d

150



4.3. Experimental Evaluation Of MoSaiC

Simplifications for Modal Logic KT

Modal logic KT is different. Reflexivity (Axiom (T)) implies that �⊥ is unsatisfiable, which
means we cannot apply the same technique as in K. Moreover, because of the absence of tran-
sitivity (Axiom (4)), we cannot simplify (�♦�♦φ) into (�♦φ), as in S4. We thus propose
new simplifications which preserve satisfiability (but not equivalence) in KT. However it is still
possible to retrieve a model for the original formula by finding a model for the simplified formula.

� ◦ ψ ≡sat ◦ψ, for ◦ ∈ {�,♦}.

Theorem 33

Proof. Case 1: ◦ = ♦. (⇒) If �♦ψ is sat then, by Axiom (T), ♦ψ is sat. (⇐) Assume
〈K, w〉 |= ♦ψ. We can create a new model 〈K′, w〉 which is the unwind of 〈K, w〉. This is an
infinite tree with root at w which is bisimilar to 〈K, w〉. By assumption, there at least one world
w′ ∈ R(w) s.t. 〈K′, w′〉 |= ψ. Also note that the reflexivity property of the original structure K
implies 〈K′, w′〉 |= ♦ψ. There can also be some worlds w′′ ∈ R(w) s.t. 〈K, w′′〉 6|= ψ. We can
remove all such branches from the root. In the model obtained, all worlds accessible from w
satisfy ψ. To make this model a KT-model, we add a reflexive arrow only on the root w. This
final model satisfies �♦ψ. Case 2 is similar. The only difference is that there are no branches
w′′ to be removed. q.e.d

♦ψ ≡sat ψ

Theorem 34

Proof. (⇒) If there is 〈K, w〉 |= ♦ψ, then there is w′ ∈ R(w) s.t. 〈K, w′〉 |= ψ. (⇐) If
〈K, w〉 |= ψ, by the contraposition Axiom (T), 〈K, w〉 |= ♦ψ. q.e.d

The original version of MoSaiC, ie. the version without the Axiom-Aware under-abstraction
and the Space-aware over-abstraction, will be call for now on MoSaiC 1.0. Whereas the one
with these two abstractions plugged and the use of simplifications will be called MoSaiC 2.0.
Let us see in the next section, how such a solver, in its version 1.0 and 2.0 is able to compete
against state-of-the-art approaches for modal logic K, KT and S4.

4.3 Experimental Evaluation Of MoSaiC

First, let us go through the experimental conditions that we put to evaluate the different modal
logic solvers. The experiments ran on a cluster of Xeon, 4 cores, 3.3 GHz with CentOS 6.4
with a memory limit of 32GB and a runtime limit of 900 seconds per solver per benchmark, no
matter the logic considered. All solvers answers have been checked since the satisfiability of each
benchmark is known by design. No discrepancy was found.

151



Chapter 4. The Modal Logic K? Satisfiability Problem

4.3.1 Experimental Evaluation of MoSaiC 1.0

We compared MoSaiC 1.0, against state-of-the-art solvers for the modal logics K, namely:

• KSP 0.1.2 Nalon et al. (2016)

• Km2SAT 1.0 Sebastiani and Vescovi (2009)

• Vampire 4.0 Kovács and Voronkov (2013) with a combination of the optimized functional
translation Horrocks et al. (2006)

• *SAT Giunchiglia et al. (2002)

• BDDTab 1.0 Goré et al. (2014)

• FaCT++ 1.6.4 Tsarkov and Horrocks (2006)

• InKreSAT 1.0 Kaminski and Tebbi (2013)

• Spartacus 1.1.3 Götzmann et al. (2010)

• MoSaiC 1.0 Lagniez et al. (2017a) in two modes RECAR and CEGAR

What we mean by MoSaiC 1.0 in CEGAR mode is that, we use MoSaiC 1.0 to solve the
instance, but we do not create any under-abstraction. Thus what MoSaiC 1.0 in CEGAR mode
is doing could be represented by the Figure 4.4.

CEGAR(φ) ψ ← tr(φ, l)

glucose(ψ)SAT l > UB(φ) UNSAT

ψ ← tr(φ, l)
l← 1

sat
unsat yes

no l← l + 1

Figure 4.4: MoSaiC 1.0 in CEGAR mode

What we expect from MoSaiC 1.0 in CEGAR mode is to be efficient for satisfiable bench-
marks but far from efficient for unsatisfiable benchmarks. Indeed, its only way to decide the
unsatisfiability is to reach the theoretical upper-bound of the original formula or by simplifica-
tions to obtain ⊥.

For our first analysis of MoSaiC 1.0, our goal is not yet to analyse its results precisely
against the state-of-the-art, we will do that in MoSaiC 2.0 because it is its latest version thus
the one usable by others. Our first goal is to see if the RECAR short-cut is efficient and leads
to progress against just a simple CEGAR loop. We deal with all the benchmarks for modal
logic K in one shot without any distinction yet. So we compare the solvers on the classical LWB
benchmarks for modal logics K Balsiger et al. (2000), on the MQBF Massacci and Donini (2000)

152



4.3. Experimental Evaluation Of MoSaiC

Figure 4.5: Runtime distribution on a different benchmarks for modal logic K

Figure 4.6: Scatter-plot CEGAR vs RECAR

153



Chapter 4. The Modal Logic K? Satisfiability Problem

and on the CNF-KSP Patel-Schneider and Sebastiani (2003). This leads to a mega-set of 3024
(1008 + 1016 + 1000) benchmarks respectively. With 1578 (504 + 617 + 457) benchmarks being
satisfiable and 1367 (504 + 399 + 464) benchmarks being unsatisfiable.

Figure 4.5 shows the runtime distribution on all the benchmarks for all the solvers that we
consider to solve modal logic K Satisfiability Problem. We can see that our over-abstraction
CEGAR approach is the worst solver whereas our RECAR approach outperforms the other
solvers. This is easy to understand, There is basically 1367 benchmarks which are almost impos-
sible for CEGAR to solve. Km2SAT performs specific reasoning to detect earlier some UNSAT
benchmarks without generating the CNF, which explains why it performs much better than our
CEGAR approach. *SAT interleaves SAT reasoning and domain reasoning, and can be consid-
ered as an under-approximation cegar approach. It shows good results, despite being tied with
the old SAT solver SATO12.

Our best competitor, Spartacus, is based on a tableaux method, not on SAT: SAT based-
techniques were not the best way to tackle such problems up to now. Spartacus reaches the
time-out on unsolved benchmarks while we exhaust the available memory: the solvers behave
quite differently and have different limits. We will analyse more finely such difference in the next
section.

We can see in Figure 4.6 that for most benchmarks, the RECAR approach outperforms the
CEGAR one. The under approximation often provides a formula with a much smaller upper-
bound, which produces a CNF of reasonable size to be handed in to the SAT solver. Note that
in this plot, memory out for the CEGAR approach is denoted by a timeout, ie. a point at 900
seconds. This is mainly due to improvements in solving unsatisfiable benchmarks (1118/1367)
for RECAR vs (155/1367) for CEGAR. For satisfiable benchmarks, the bound update resulting
from the recursive call helps to reach faster a satisfiable formula. 1446 for RECAR vs 1053 for
CEGAR.

From this analysis, the results were clear: MoSaiC is slower than Spartacus on many bench-
marks because we spend too many times translating the formula instead of just deciding it
directly. Moreover, Spartacus is able to deal with more logics than just modal logic K, this
is mainly why we also decide to do so. Basically MoSaiC 1.0 was a confirmation: a simple
CEGAR approach cannot work, the RECAR framework is efficient to decide PSPACE-complete
problems, but to push the envelope forward, we will need other abstractions, more adapted to
the problems and the benchmarks that we consider to evaluate the solvers.

4.3.2 Experimental Evaluation of MoSaiC 2.0

We chose to compare the solvers on the classical LWB benchmarks for modal logics K, KT
and S4 Balsiger et al. (2000). These benchmarks are generated using the script from Nalon
et al. (2016) using 56 formulas with 18 parameter settings, for a total of 1008 formulas, 504
satisfiable, 504 unsatisfiable Balsiger et al. (2000) for each logic. We compared MoSaiC 2.0,
against state-of-the-art solvers for the modal logics K, KT and S4, namely:

• Moloss 0.9 Areces et al. (2015)

• KSP 0.1.2 Nalon et al. (2016)

• BDDTab 1.0 Goré et al. (2014)
12*SAT is deeply integrated with SATO, which makes very difficult an update to a more recent SAT solver.

154



4.3. Experimental Evaluation Of MoSaiC

Solver LWBK SAT LWBK UNSAT TotalK LWBKT SAT LWBKT UNSAT TotalKT LWBS4 SAT LWBS4 UNSAT TotalS4

#Instances 504 504 1008 504 504 1008 504 504 1008

Moloss 71 (0) 83 (0) 154 (0) 68 (0) 170 (0) 238 (0) 269 (0) 203 (0) 472 (0)

InKreSAT 192 (24) 247 (0) 439 (24) 155 (9) 193 (0) 348 (9) 248 (0) 304 (0) 552 (0)

BDDTab 248 (5) 277 (4) 525 (9) – – – 211 (0) 270 (0) 481 (0)

FaCT++ 264 (10) 284 (19) 548 (29) 184 (30) 226 (59) 410 (89) 298 (42) 338 (25) 636 (67)

MoSaiC 1.0 263 (241) 306 (198) 569 (439) 230 (251) 222 (253) 452 (504) 277 (229) 225 (277) 502 (506)

KSP 249 (4) 328 (3) 577 (7) 130 (2) 93 (0) 223 (2) 223 (0) 205 (0) 428 (0)

Spartacus 331 (33) 320 (10) 651 (43) 207 (74) 251 (59) 458 (133) 273 (17) 350 (13) 623 (30)

MoSaiC 2.0 362 (142) 317 (78) 679 (220) 304 (167) 245 (223) 549 (390) 360 (8) 381 (40) 741 (48)

VBS 362 342 704 304 245 549 364 381 741

Table 4.1: Number of LWB instances solved in K, KT and S4

• FaCT++ 1.6.4 Tsarkov and Horrocks (2006)

• InKreSAT 1.0 Kaminski and Tebbi (2013)

• Spartacus 1.1.3 Götzmann et al. (2010)

• MoSaiC 1.0 Lagniez et al. (2017a) extended with the translation of the axioms.

In practice, MoSaiC 2.0 is able to change which over-abstraction function it is using, com-
pared to MoSaiC 1.0 which is just increasing the number of worlds as an over-abstraction. We
determined experimentally as an heuristic for when stop using the original abstraction and start
using the one that we proposed here that the threshold (|φ| × currentBound > 5000) worked
fine for these benchmarks on our computer with memory limit of 32GB. When this threshold is
reached, MoSaiC starts to cut some edges in order to make the formula smaller and thus faster
to translate.

It is important to notice that KSP (kindly provided by its authors) is still under development
for modal logics KT and S4. Its results should be considered as preliminary. We can see that the
number of memory-out between MoSaiC 1.0 and MoSaiC 2.0 reduces drastically in the three
logics thanks to the new over-abstraction, which reduces the size of the formula that need to be
translated. Thus, the memory used to solve the instance (if it manages to solve it).

When we take a closer look at the runtime, we can see that not only the number of memory-
out reduces, but the new abstractions provide a speed-up. When we look at Figure 4.7, we can
see that, even if MoSaiC 1.0 was designed to deal with modal logic K, its main problem is that
it spends too much time translating the formula instead of solving them.

Small sum up of the difference between MoSaiC 1.0 and 2.0 The only difference in
modal logic K between MoSaiC 1.0 and 2.0 are the new over-abstraction and some simplifications
on the prenex of modalities. Basically, if the new over-abstraction provides such a gain is an
explanation about the fact that, if for a SAT-based approach, we try to translate part by part
and not the formula as a whole, we manage to solve many more instances.

We can see the progression of SAT-based approaches between Km2SAT Sebastiani and Vescovi
(2009) which translates smartly the formula as a whole, MoSaiC 1.0 Lagniez et al. (2017a) which
translates the whole-formula with a bound on the size of the Kripke model and MoSaiC 2.0
which translates smartly chosen sub-formula with a bound on the size of the Kripke model. The

155



Chapter 4. The Modal Logic K? Satisfiability Problem

Figure 4.7: Runtime distribution on LWB in modal logic K

results are clear: the smaller is the need-to-be-translate formula, the better are the results of the
solver.

When we take a look at the results on modal logic KT, which are depicted in Table 4.1 and
Figure 4.8 we were surprised by the results obtained by MoSaiC 1.0 which is not designed for
modal logic KT at the beginning. But these results can easily be explained: the translation of
the axiom (T) is adding unit clauses in the propositional logic formula. This is boosting the unit
propagation of the embedded SAT solver which can thus decide quickly the satisfiability of the
formula. However, as we can see on Figure 4.8, the new under-abstraction and the simplifications
lead to a huge gain in the performance of MoSaiC.

In modal logic S4, we can see that the gap between MoSaiC 1.0 and MoSaiC 2.0 is bigger
than in modal logic K or KT, as depicted in Figure 4.9. However, the speed-up obtained thanks
to the translation of axiom (T) which add unit clauses is killed by the translation of axiom (4),
which is here, making the formula harder by adding many clauses.

The SAT-based approach for S4 is extremely efficient due to the simplifications of modality
chains, which reduce translation time. Indeed, the simplifications can be apply on any sub-
formula which is definitely helping the solver by reducing the size of formula. Moreover, because
the time of translation is reduced, due to the new over-abstraction and the new under-abstraction,
MoSaiC 2.0 is much faster than MoSaiC 1.0 (2.3s vs 31s median time).

In order to understand the difference on the efficiency on solving these logics, we collected
information about the size of the computed Kripke models. As depicted in Table 4.2, adding
axioms tends to increase the size of the models found in number of worlds. This can be partially
explained by the fact that these models must satisfy more constraints on the Kripke model we are

156



4.3. Experimental Evaluation Of MoSaiC

Figure 4.8: Runtime distribution on LWB in modal logic KT

min Q1 med mean Q3 max
K 1 2 22 174 279 903
KT 1 52 207 364 613 1505
S4 1 33 113 256 399 1217

Table 4.2: Sizes of the Kripke structures for satisfiable benchmarks for each modal logic

searching. It happens fewer times in S4 because we can greatly reduce the number of modalities.

4.3.3 General Analysis Of The Results Obtained

As explained in Section 3.4, the behaviour of a RECAR-over solver should be to have trajec-
tories between a CEGAR-over behaviour and a Branch and Price behaviour. Let us see
now, MoSaiC 2.0 on some peculiar benchmarks to see exactly how it is behaving and how the
abstractions are used to decide problems.

On Figure 4.10, we can see the behaviour of MoSaiC 2.0 on different instances, they were
picked especially to display a behaviour. There are unfortunately too many benchmarks and
some times too many steps of refinements to display them all. So we just pick eight different
instances and display only until 100 steps of refinements.

First thing we can see is that, because MoSaiC is not design to do so, they are never a line
below the Branch And Price line. Indeed, MoSaiC can do at most as many over-abstraction
refinement steps as under-abstraction refinement steps. Each under-abstraction step is performed
by a recursive call, and the first thing it does after this call is to perform an over-abstraction.

157



Chapter 4. The Modal Logic K? Satisfiability Problem

Figure 4.9: Runtime distribution on LWB in modal logic S4

Then, we can also see that the behaviour of MoSaiC when it want to solve pigeon-hole
problems is very similar to the behaviour that could have a CEGAR-over approach. Indeed in
such case, it is usually the case that all the selectors are part of the unsatisfiable core, so there
are few under-abstractions. Moreover, even one there is one, after one refinement we decide that
it is satisfiable and we go back dealing with the whole formula.

On the other side of the lines is the branch-formulas as defined in Halpern and Moses (1992)
where here we do the opposite and what we do in the case of pigeon-hole problems. We do
almost at each-step, an under-abstraction refinement. The problem again in this case is that we
do not output much information from it. Those are the worst-case possible for us, and more
generally they are the worst problems for SAT-based approach, as explained in Sebastiani and
Vescovi (2009). They force us to do many steps of under-abstraction refinement, but we do not
take many information from it. So because of that, we are just extremely slow to decide these
problems, when we manage to do so.

And between these two lines, they are many different trajectories. poly, lin and 3CNF are
(and it is also the case for the other benchmarks of these categories) usually few under-abstraction
at the beginning, which allow to reduce greatly, the size of the formula. And then just a very
fast and high number of over-abstraction refinement steps which allow MoSaiC to decide these
problems. The three last lines are part of the MQBF set of benchmarks are here, they are more
or less the normal behaviour of MoSaiC.

We can even see, on the modKLadn benchmark, MoSaiC deciding the problem. What is
happening here is that, the under-abstraction managed to reduce the input to a very small
sub-formula and with an upper-bound around 90, we manage to decide that the problem was
unsatisfiable.

158



4.3. Experimental Evaluation Of MoSaiC

Figure 4.10: Behaviour of MoSaiC 2.0 on some benchmarks in modal logic K

159



Chapter 4. The Modal Logic K? Satisfiability Problem

160



Conclusion And Perspectives

Conclusion

In this work we have explored the idea of exploiting direct and incremental SAT-based techniques
for the automated reasoning in all the Modal Logics based on K. Just after introducing, in Part
I, the necessary elements to understand this thesis, we proposed in Part II, different approaches
to solve the different modal logic satisfiability problems:

• First of all, we explored the idea of solving the NP-complete modal logics with a direct
encoding into a propositional logic satisfiability problem which can thus be solved with an
off-the-shelves SAT solver. By doing so, we proposed a syntactic-property that we called
the diamond-degree and we proved that the maximum number of worlds to satisfy a formula
in modal logics K?5 is linear in the diamond-degree in the formula. Once this upper-bound
has been established, we proposed a series of axiom-dependent simplifications in order
to reduce the size of the input formula without loosing the equi-satisfiability. Then, we
presented a SAT encoding of the problem, which can deal with all the axioms of the normal
modal logics. We demonstrated experimentally that such a SAT encoding is extremely
efficient in practice to decide the satisfiability of the problem.

• In a second chapter, once we analysed the results obtained by our SAT encoding, we
realized that the upper-bound proposed (diamond-degree) is usually far too big compared
to what is the minimum required to satisfy the formula. Having this idea in mind, we
thus proposed a new optimization problem that we call the Minimal K?5 Satisfiability
Problem which is to find the smallest Kripke structure which K?5-satisfy a formula. To
solve this optimization problem we presented different techniques. The first one being a
simple linear search with the direct encoding. The second one being an encoding into a
MaxSAT or PBO problems solvable with an off-the-shelves MaxSAT or PBO solvers. Then
we proposed an incremental-SAT based approaches, using unsatisfiable cores to speed-up
the linear search. We demonstrated experimentally that “giving knowledge” to the SAT
solver, by using selectors and analysing them to understand why a formula is unsatisfiable,
is the best approach to solve the Minimal K?5 Satisfiability Problem. During this chapter,
we also proposed a new series of benchmarks, thanks to a translator from Planning problems
with uncertainties in the initial states into modal logic S5 formulas and we show that the
results that we can draw from the experiments are benchmarks-dependent. We do not
draw the same conclusion if we just use the state-of-the-art benchmarks or our Planning
benchmarks.

• Once the NP-complete modal logics were explored, we wanted to deal with PSPACE-
complete modal logics. Unfortunately a direct encoding into a SAT problem is first, already
proposed by the extremely efficient Km2SAT Sebastiani and Vescovi (2009) solver, and sec-
ond not necessary the best outcome possible due to the translation being exponential in
the size of the input. To thus deal efficiently with PSPACE-complete modal logics, we
presented a framework that we call RECAR, based on the CEGAR framework, which is
a generic way to incrementally solve PSPACE problems without having to deal, except in
the worst-case, with the exponential blow-up. We demonstrated that this framework is

161



Conclusion And Perspectives

sound, complete and terminates and that it can be instantiated in two ways, as CEGAR.
The first way, that we call RECAR-over, is to first perform an over-abstraction and to call
recursively the framework on an under-abstraction. The second way, that we call RECAR-
under, is to first perform an under-abstraction and to call recursively the framework on an
over-abstraction.

• Finally, we wanted to instantiate our framework to see its efficiency on PSPACE-complete
problems. To do so, we developed the solver MoSaiC, able to deal with modal logic K in
its 1.0 version. The results we obtained were extremely encouraging because, except being
slower sometimes than the state-of-the-art approaches, we manage to solve more problems.
The 2.0 version was thus already found: we need to solve faster instances and we want to
deal with other PSPACE modal logics. To do so, we presented axiom-aware simplifications
and new over-abstraction and under-abstraction. MoSaiC 2.0 was then tested against the
state-of-the-art solvers for modal logics K, KT and S4 and we demonstrated experimentally
that the RECAR framework instantiated with the over and under-abstractions that we
proposed managed to solve faster and more instances than the state-of-the-art approaches.

We have at the end of this thesis, if we want to sum-up quickly our contributions: a new
solver able to deal with all the NP-complete modal logics, a new set of benchmarks based on
Planning with uncertainties problems, a new solver able to deal with all the PSPACE-complete
modal logics, and finally, a framework totally generic, usable in two ways, to deal with PSPACE
(or even beyond) problems.

Obviously, this thesis raises more questions than it solves and we give in the next sections,
few directions that we consider worth exploring.

Future Works

We see several important research lines to explore in order to extend or enhance our results:

1. The first one of them, is a problem that we did not have time to consider in only three years
of thesis: a generic upper-bound for PSPACE-complete modal logics. We conjecture that an
upper-bound linear in dd(φ)depth(φ) could be an upper-bound for PSPACE-complete modal
logics. It respects the theory saying that the bound must be exponential, it could make
the link between NP and PSPACE modal logics and it respects the remark from Halpern
and Moses (1992) stating that such an upper-bound has to be exponential in the modal
depth of the formula.

2. Another perspective would be to deal with multiple modalities (multi-agent) and to gen-
erate “real world” benchmarks capturing such a meaning. What is proposed in MoSaiC
can be extended easily for multi-agent modal logics. We did not do it basically because the
state-of-the-art benchmarks are only mono-agent, so it was not worth to make even harder
the explanation in this thesis.

3. A third perspective would be to finally instantiated the RECAR-under framework, which
has not be the case to the best of our knowledge. One idea to do so is to deal with EXPTIME
modal logics problems by adding the Common-Knowledge. The extension consists of the
introduction of a group G of agents, and of n modal operators �i (with i = 1, ..., n) with the

162



intended meaning that "agent i knows." Thus �iϕ (where ϕ is a formula of the calculus)
is read “agent i knows ϕ”. We can define an operator EG with the intended meaning of
"everyone in group G knows" by defining it with the axiom EGϕ⇔

∧
i∈G�iϕ (more details

about Common-Knowledge in Costa and Benevides (2005)). In such context, the under-
abstraction is clear: if only one agent does not know ϕ, then it is impossible to have EGϕ,
if it does, then we need to refine with two agents, then three, until, in the equisatisfiable
case, where all the agents must know ϕ. With such an under-abstraction we can obtain a
simple modal logic formula which can be decide with MoSaiC.

4. To see if MoSaiC could be using all the recent progress in Parallel-SAT solving, using just
a Parallel SAT solver Balyo and Sinz (2018) such as D-Syrup Audemard et al. (2017) or
AmPhaRoS Audemard et al. (2016) is not really satisfying because it does not exploit
all the possibilities. One could think about different over-abstraction performed all in a
parallel way and procedures about how to mix all the informations returned from all the
over-abstraction solved. Or to get inspired by Bonacina (2018) which works is about how to
solve First Order Logic formulas in parallel. Modal Logics being just a decidable fragment,
it could be interesting to see how it can be adapted.

5. And finally a last perspective which is very broad: to spread the RECAR framework in
many other domains where the CEGAR approaches are already efficient. Such as Model
Checking Kupferman (2018) where there is, in the Handbook of Model Checking 2018, even
a chapter about Abstraction and Abstraction Refinements Dams and Grumberg (2018). Or
in QBF solving, in Planning, etc.

All these perspectives are for us extremely interesting and exciting future work.

163



Conclusion And Perspectives

164



Publications During The Thesis

This thesis has permit to publish a set of national and international publications. They have been
used to explain the different contributions in this thesis. But I also worked with other colleagues
on work unrelated with modal logics. All the publications have their names in alphabetical
order and does not reflect the importance of each co-author. We all contributed equally to the
different works, even though I am the main developper of all the softwares realized for these
articles. In order to find more easily what were the contributions of three years of research, let
us list them here:

International Conference Papers with Proceedings

• Lagniez et al. (2018b) Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin
Montmirail: Space-Awareness in a SAT-Based Approach For PSPACE Modal Logics. In: Pro-
ceedings of the Fifteenth International Conference of Knowledge Representation and Reasoning
(KR 2018), October 2018, S. ?–?. – URL ? (to appear).

– This article is presented in the Part II, Chapter 4, Section 4.2.

• Glorian et al. (2018) Gael Glorian, Jean-Marie Lagniez, Valentin Montmirail and Michael
Sioutis: An Incremental SAT-Based Approach to Reason Efficiently On Qualitative Constraint
Network. In: Proceedings of the 24th International Conference of Principles and Practice of
Constraint Programming (CP 2018), August 2018, S. 160–178. – URL https://doi.org/10.
1007/978-3-319-98334-9_11

– This article is presented in Part II, Chapter 3, Section 3.2.

• Lagniez et al. (2018a) Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin Mont-
mirail: An Assumption-Based Approach for Solving The Minimal S5-Satisfiability Problem.
In: Proceedings of the 9th International Joint Conference on Automated Reasoning (IJCAR
2018), July 2018, S. 1–18. – URL https://doi.org/10.1007/978-3-319-94205-6_1

– This article is generalized in Part II, Chapter 2, Section 2.1.
– This article presents only how to minimize and search for a S5-model.

• Lagniez et al. (2017a) Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin Mont-
mirail: A Recursive Short-Cut for CEGAR: Application To The Modal Logic K Satisfiability
Problem. In: Proceedings of the 26th IJCAI International Joint Conference on Artificial In-
telligence (IJCAI 2017), URL https://www.ijcai.org/proceedings/2017/94, August 2017,
S. 674–680

– This article is generalized in Part II, Chapter 3, Section 3.3.
– The article presents only the RECAR-over framework.

• Caridroit et al. (2017a) Thomas Caridroit, Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima
and Valentin Montmirail: A SAT-based approach for solving the modal logic S5 satisfiability
problem. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017),
AAAI, Feb. 2017, S. 3864–3870. – URL http://aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14380/14111

165

https://doi.org/10.1007/978-3-319-98334-9_11
https://doi.org/10.1007/978-3-319-98334-9_11
https://doi.org/10.1007/ 978-3-319-94205-6_1
https://www.ijcai.org/proceedings/2017/94
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14380/14111
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14380/14111


Publications During The Thesis

– This article is generalized in Part II, Chapter 1, Section 1.2.
– This article talks only about S52SAT and a SAT translation from modal logic S5 to

propositional logic.

International Workshop Papers with Proceedings

• Lagniez et al. (2016b) Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin
Montmirail: On Checking Kripke Models for Modal Logic K. In: 5th Workshop on Practical
Aspects of Automated Reasoning (PAAR@IJCAR’16), Springer, June 2016, S. 69–81. – URL
http://ceur-ws.org/Vol-1635/#paper-07

National Conference Papers with Proceedings

• Lagniez et al. (2018c) Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin
Montmirail: Une approche SAT incrémentale pour le problème de satisfiabilité minimale
en logique modale S5. In: Actes des 14es Journées Francophones de Programmation par
Contraintes (JFPC 2018), URL https://home.mis.u-picardie.fr/~evenement/JFPC2018/
articles/JFPC_2018_papier_1.pdf, June 2018, S. 1-10

• Lagniez et al. (2017b) Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin
Montmirail: Un raccourci récursif pour CEGAR : Application au problème de satisfiabilité
en logique modale K. In: Actes des 11es Journées d’Intelligence Artificielle Fondamentale
(JIAF 2017), URL https://pfia2017.greyc.fr/share/actes/IAF/Lagniez_IAF_2017.pdf,
July 2017, S. 169–176

• Caridroit et al. (2017b) Thomas Caridroit, Jean-Marie Lagniez, Daniel Le Berre, Tiago de
Lima and Valentin Montmirail: Une approche basée sur SAT pour le problème de satisfiabilité
en logique modale S5. In: Actes des 13es Journées Francophones de Program- mation par Con-
traintes (JFPC 2017), URL http://www.cril.univ-artois.fr/jfpc2017/articles/JFPC_
2017_paper_11.pdf, June 2017, S. 45–53

• Lagniez et al. (2016a) Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin
Montmirail: A propos de la vérification de modèles en logique modale K. In: Actes des 10es
Journées d’Intelligence Artificielle Fondamentale (JIAF 2016), URL https://www.supagro.
fr/jfpc_jiaf_2016/Articles.IAF.2016/Lagniez_IAF_2016.pdf, June 2016, S. 149–157

National Journal Papers with Proceedings

• Defourneau et al. (2017) Thibault Defourneau, Florent Dewez and Valentin Montmirail: Le
Jeu du Lights Out : une approche visuelle des mathématiques au travers d’un atelier. In:
MathemaTICE: Volume 54 (2017), March. – URL http://revue.sesamath.net/spip.php?
article950. – (Online article)

Unpublished International Work

• Dewez and Montmirail (2017) Florent Dewez and Valentin Montmirail: The Hill Cipher: A
Weakness Studied Through Group Action Theory. November 2017. – URL https://hal.
archives-ouvertes.fr/hal-01631232. – (Unpublished yet)

166

http://ceur-ws.org/Vol-1635/#paper-07
https://home.mis.u-picardie.fr/~evenement/JFPC2018/articles/JFPC_2018_papier_1.pdf
https://home.mis.u-picardie.fr/~evenement/JFPC2018/articles/JFPC_2018_papier_1.pdf
https://pfia2017.greyc.fr/share/actes/IAF/Lagniez_IAF_2017.pdf
http://www.cril.univ-artois.fr/jfpc2017/articles/JFPC_2017_paper_11.pdf
http://www.cril.univ-artois.fr/jfpc2017/articles/JFPC_2017_paper_11.pdf
https://www.supagro.fr/jfpc_jiaf_2016/Articles.IAF.2016/Lagniez_IAF_2016.pdf
https://www.supagro.fr/jfpc_jiaf_2016/Articles.IAF.2016/Lagniez_IAF_2016.pdf
http://revue.sesamath.net/spip.php?article950
http://revue.sesamath.net/spip.php?article950
https://hal.archives-ouvertes.fr/hal-01631232
https://hal.archives-ouvertes.fr/hal-01631232


167



Publications During The Thesis

Alloy Script to visualize the shape of the K* Structure

module modal

sig World {
accessibles : set World

}

one sig W0 extends World {}

pred five {
all u,v,w:World | u->v in accessibles and u->w in accessibles implies v->w in accessibles

}

pred t {
all u:World | u->u in accessibles

}

pred d {
all u : World | some u.accessibles

}

pred b {
all u,v:World | u->v in accessibles implies v->u in accessibles

}

pred four {
all u,v,w:World | u->v in accessibles and v->w in accessibles implies u->w in accessibles

}

fact w0 {
all w:World | w = W0 or w in W0.^accessibles

}

pred show[] {
some World
five
four
d

}

run show for exactly 4 World

One just need to change the predicate “show” and the line “run show for exactly n World” to
see the shape of the structure with n worlds.

168



169



Publications During The Thesis

170



Bibliography

[Abate et al. 2007] Abate, Pietro ; Goré, Rajeev ; Widmann, Florian: Cut-Free Single-
Pass Tableaux For The Logic of Common Knowledge. In: Workshop on Agents and Deduction
(WAD@TABLEAUX’07), Springer, July 2007, p. 1–20. – URL http://users.cecs.anu.edu.
au/~rpg/Submissions/lck.pdf

[Areces et al. 2015] Areces, Carlos ; Fontaine, Pascal ; Merz, Stephan: Modal Satisfiability
via SMT Solving. p. 30–45. In: De Nicola, Rocco (Editor) ; Hennicker, Rolf (Editor):
Software, Services, and Systems: Essays Dedicated to Martin Wirsing on the Occasion of His
Retirement from the Chair of Programming and Software Engineering, Springer International
Publishing, 2015. – URL https://doi.org/10.1007/978-3-319-15545-6_5. – ISBN 978-3-
319-15545-6

[Argelich et al. 2008] Argelich, Josep ; Li, Chu M. ; Manyà, Felip ; Planes, Jordi: The
First and Second Max-SAT Evaluations. In: JSAT 4 (2008), Nr. 2-4, p. 251–278. – URL
https://satassociation.org/jsat/index.php/jsat/article/view/53

[Aristotle 335 BCE] Aristotle: De Poetica. Forgotten Books, 335 BCE. – URL https:
//books.google.fr/books?id=EYuJEx4GKncC. – ISBN 9781605063362

[Arora and Barak 2009] Arora, Sanjeev ; Barak, Boaz: Computational Complexity - A
Modern Approach. Cambridge University Press, 2009. – URL http://www.cambridge.org/
catalogue/catalogue.asp?isbn=9780521424264. – ISBN 978-0-521-42426-4

[Audemard et al. 2008] Audemard, Gilles ; Bordeaux, Lucas ; Hamadi, Youssef ; Jab-
bour, Saïd ; Sais, Lakhdar: A Generalized Framework for Conflict Analysis. In: Büning,
Hans K. (Editor) ; Zhao, Xishun (Editor): Theory and Applications of Satisfiability Test-
ing - SAT 2008, 11th International Conference, SAT 2008, Guangzhou, China, May 12-15,
2008. Proceedings Volume 4996, Springer, 2008, p. 21–27. – URL https://doi.org/10.1007/
978-3-540-79719-7_3. – ISBN 978-3-540-79718-0

[Audemard et al. 2013] Audemard, Gilles ; Lagniez, Jean-Marie ; Simon, Laurent: Im-
proving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Ex-
traction. In: (Järvisalo and Gelder 2013), p. 309–317. – URL https://doi.org/10.1007/
978-3-642-39071-5_23. – ISBN 978-3-642-39070-8

[Audemard et al. 2016] Audemard, Gilles ; Lagniez, Jean-Marie ; Szczepanski, Nicolas ;
Tabary, Sébastien: An Adaptive Parallel SAT Solver. In: Rueher, Michel (Editor): Prin-
ciples and Practice of Constraint Programming - 22nd International Conference, CP 2016,
Toulouse, France, September 5-9, 2016, Proceedings Volume 9892, Springer, 2016, p. 30–48. –
URL https://doi.org/10.1007/978-3-319-44953-1_3. – ISBN 978-3-319-44952-4

[Audemard et al. 2017] Audemard, Gilles ; Lagniez, Jean-Marie ; Szczepanski, Nico-
las ; Tabary, Sébastien: A Distributed Version of Syrup. In: Gaspers, Serge (Editor) ;
Walsh, Toby (Editor): Theory and Applications of Satisfiability Testing - SAT 2017 - 20th
International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Pro-
ceedings Volume 10491, Springer, 2017, p. 215–232. – URL https://doi.org/10.1007/
978-3-319-66263-3_14. – ISBN 978-3-319-66262-6

171

http://users.cecs.anu.edu.au/~rpg/Submissions/lck.pdf
http://users.cecs.anu.edu.au/~rpg/Submissions/lck.pdf
https://doi.org/10.1007/978-3-319-15545-6_5
https://satassociation.org/jsat/index.php/jsat/article/view/53
https://books.google.fr/books?id=EYuJEx4GKncC
https://books.google.fr/books?id=EYuJEx4GKncC
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/978-3-540-79719-7_3
https://doi.org/10.1007/978-3-540-79719-7_3
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-319-44953-1_3
https://doi.org/10.1007/978-3-319-66263-3_14
https://doi.org/10.1007/978-3-319-66263-3_14


Bibliography

[Audemard and Simon 2009] Audemard, Gilles ; Simon, Laurent: Predicting Learnt Clauses
Quality in Modern SAT Solvers. In: Boutilier, Craig (Editor): IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, Interational Joint Conference on Artificial Intelligence, 2009, p. 399–404. –
URL http://ijcai.org/Proceedings/09/Papers/074.pdf

[Baader and Hollunder 1991] Baader, Franz ; Hollunder, Bernhard: A Terminolog-
ical Knowledge Representation System with Complete Inference Algorithms. In: Boley,
Harold (Editor) ; Richter, Michael M. (Editor): Processing Declarative Knowledge, Interna-
tional Workshop PDK’91, Kaiserslautern, Germany, July 1-3, 1991, Proceedings Volume 567,
Springer, 1991, p. 67–86. – URL https://doi.org/10.1007/BFb0013522. – ISBN 3-540-
55033-X

[Balsiger and Heuerding 1998] Balsiger, Peter ; Heuerding, Alain: Comparison of Theorem
Provers for Modal Logics - Introduction and Summary. In: (de Swart 1998), p. 25–26. – URL
https://doi.org/10.1007/3-540-69778-0_4. – ISBN 3-540-64406-7

[Balsiger et al. 1998] Balsiger, Peter ; Heuerding, Alain ; Schwendimann, Stefan: Log-
ics Workbench 1.0. In: (de Swart 1998), p. 35–37. – URL https://doi.org/10.1007/
3-540-69778-0_8. – ISBN 3-540-64406-7

[Balsiger et al. 2000] Balsiger, Peter ; Heuerding, Alain ; Schwendimann, Stefan: A
Benchmark Method for the Propositional Modal Logics K, KT, S4. In: J. Autom. Reasoning
24 (2000), Nr. 3, p. 297–317. – URL https://doi.org/10.1023/A:1006249507577

[Balyo and Sinz 2018] Balyo, Tomás ; Sinz, Carsten: Parallel Satisfiability. In: (Hamadi
and Sais 2018), p. 3–29. – URL https://doi.org/10.1007/978-3-319-63516-3_1. – ISBN
978-3-319-63515-6

[Barabási and Albert 1999] Barabási, Albert-László ; Albert, Réka: Emergence of Scaling
in Random Networks. In: science 286 (1999), Nr. 5439, p. 509–512

[Barrett et al. 2009] Barrett, Clark W. ; Sebastiani, Roberto ; Seshia, Sanjit A. ; Tinelli,
Cesare: Satisfiability Modulo Theories. In: (Biere et al. 2009), p. 825–885. – URL https:
//doi.org/10.3233/978-1-58603-929-5-825. – ISBN 978-1-58603-929-5

[Bayardo Jr. and Schrag 1997] Bayardo Jr., Roberto J. ; Schrag, Robert: Using CSP
Look-Back Techniques to Solve Real-World SAT Instances. In: Kuipers, Benjamin (Editor) ;
Webber, Bonnie L. (Editor): Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97,
IAAI 97, July 27-31, 1997, Providence, Rhode Island., AAAI Press / The MIT Press, 1997,
p. 203–208. – URL http://www.aaai.org/Library/AAAI/1997/aaai97-032.php. – ISBN
0-262-51095-2

[Belov et al. 2012] Belov, Anton ; Lynce, Inês ; Marques-Silva, João: Towards efficient
MUS extraction. In: AI Commun. 25 (2012), Nr. 2, p. 97–116. – URL https://doi.org/10.
3233/AIC-2012-0523

[Belov and Marques-Silva 2011] Belov, Anton ; Marques-Silva, João: Accelerating MUS
extraction with recursive model rotation. In: Bjesse, Per (Editor) ; Slobodová, Anna
(Editor): International Conference on Formal Methods in Computer-Aided Design, FMCAD

172

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/BFb0013522
https://doi.org/10.1007/3-540-69778-0_4
https://doi.org/10.1007/3-540-69778-0_8
https://doi.org/10.1007/3-540-69778-0_8
https://doi.org/10.1023/A:1006249507577
https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
https://doi.org/10.3233/AIC-2012-0523
https://doi.org/10.3233/AIC-2012-0523


’11, Austin, TX, USA, October 30 - November 02, 2011, FMCAD Inc., 2011, p. 37–40. – URL
http://dl.acm.org/citation.cfm?id=2157663. – ISBN 978-0-9835678-1-3

[Benzmüller 2010] Benzmüller, Christoph: Verifying the Modal Logic Cube Is an Easy
Task (For Higher-Order Automated Reasoners). In: Siegler, Simon (Editor) ; Wasser,
Nathan (Editor): Verification, Induction, Termination Analysis - Festschrift for Christoph
Walther on the Occasion of His 60th Birthday Volume 6463, Springer, 2010, p. 117–128. –
URL https://doi.org/10.1007/978-3-642-17172-7_7. – ISBN 978-3-642-17171-0

[Bernays 1926] Bernays, Paul: Axiomatische Untersuchung des Aussagen-Kalkuls der
"Principia mathematica". Springer, 1926. – URL https://books.google.fr/books?id=
-hBntAEACAAJ

[Bezhanishvili and Marx 2003] Bezhanishvili, Nick ; Marx, Maarten: All Proper Normal
Extensions of S5-square have the Polynomial Size Model Property. In: Studia Logica 73
(2003), Nr. 3, p. 367–382. – URL https://doi.org/10.1023/A:1023383112908

[Biere 2009] Biere, Armin: Bounded Model Checking. In: (Biere et al. 2009), p. 457–481. –
URL https://doi.org/10.3233/978-1-58603-929-5-457. – ISBN 978-1-58603-929-5

[Biere et al. 2009] Biere, Armin (Editor) ; Heule, Marijn (Editor) ; Maaren, Hans van
(Editor) ; Walsh, Toby (Editor): Frontiers in Artificial Intelligence and Applications. Volume
185: Handbook of Satisfiability. IOS Press, 2009. – URL https://www.iospress.nl/book/
handbook-of-satisfiability/. – ISBN 978-1-58603-929-5

[Blackburn et al. 2006] Blackburn, Patrick ; Benthem, Johan van ; Wolter, Frank:
Handbook of Modal Logic. Volume 3. Elsevier, 2006. – URL https://hal.inria.fr/
inria-00120237. – ISBN 978-0444516909

[Bonacina 2018] Bonacina, Maria P.: Parallel Theorem Proving. In: (Hamadi and Sais 2018),
p. 179–235. – URL https://doi.org/10.1007/978-3-319-63516-3_6. – ISBN 978-3-319-
63515-6

[Boole 1854] Boole, George: An Investigation of the Laws of Thought: On which are Founded
the Mathematical Theories of Logic and Probabilities. Walton and Maberly, 1854 (George
Boole’s collected logical works). – URL https://books.google.fr/books?id=SWgLVT0otY8C

[Brand et al. 2003] Brand, Sebastian ; Gennari, Rosella ; Rijke, Maarten de: Con-
straint Methods for Modal Satisfiability. In: Apt, Krzysztof R. (Editor) ; Fages, François
(Editor) ; Rossi, Francesca (Editor) ; Szeredi, Péter (Editor) ; Váncza, József (Edi-
tor): Recent Advances in Constraints, Joint ERCIM/CoLogNET International Workshop on
Constraint Solving and Constraint Logic Programming, CSCLP 2003, Budapest, Hungary,
June 30 - July 2, 2003, Selected Papers Volume 3010, Springer, 2003, p. 66–86. – URL
https://doi.org/10.1007/978-3-540-24662-6_4. – ISBN 3-540-21834-3

[Braunstein et al. 2005] Braunstein, Alfredo ; Mézard, Marc ; Zecchina, Riccardo: Survey
propagation: An algorithm for satisfiability. In: Random Struct. Algorithms 27 (2005), Nr. 2,
p. 201–226. – URL https://doi.org/10.1002/rsa.20057

[Brummayer and Biere 2009] Brummayer, Robert ; Biere, Armin: Effective Bit-Width
and Under-Approximation. In: Moreno-Díaz, Roberto (Editor) ; Pichler, Franz (Editor) ;
Quesada-Arencibia, Alexis (Editor): Computer Aided Systems Theory - EUROCAST 2009,

173

http://dl.acm.org/citation.cfm?id=2157663
https://doi.org/10.1007/978-3-642-17172-7_7
https://books.google.fr/books?id=-hBntAEACAAJ
https://books.google.fr/books?id=-hBntAEACAAJ
https://doi.org/10.1023/A:1023383112908
https://doi.org/10.3233/978-1-58603-929-5-457
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://hal.inria.fr/inria-00120237
https://hal.inria.fr/inria-00120237
https://doi.org/10.1007/978-3-319-63516-3_6
https://books.google.fr/books?id=SWgLVT0otY8C
https://doi.org/10.1007/978-3-540-24662-6_4
https://doi.org/10.1002/rsa.20057


Bibliography

12th International Conference, Las Palmas de Gran Canaria, Spain, February 15-20, 2009,
Revised Selected Papers Volume 5717, Springer, 2009, p. 304–311. – URL https://doi.org/
10.1007/978-3-642-04772-5_40. – ISBN 978-3-642-04771-8

[Bryant 1986] Bryant, Randal E.: Graph-Based Algorithms for Boolean Function Manipula-
tion. In: IEEE Trans. Computers 35 (1986), Nr. 8, p. 677–691

[Buro and Büning 1993] Buro, M. ; Büning, H.K.: Report on a SAT competition. In:
Bulletin of the European Association for Theoretical Computer Science 49 (1993), p. 143–151.
– URL http://stamm-wilbrandt.de/en/Report_on_a_SAT_competition.pdf

[Cadoli et al. 2002] Cadoli, Marco ; Schaerf, Marco ; Giovanardi, Andrea ; Giovanardi,
Massimo: An Algorithm to Evaluate Quantified Boolean Formulae and Its Experimental
Evaluation. In: J. Autom. Reasoning 28 (2002), Nr. 2, p. 101–142. – URL https://doi.org/
10.1023/A:1015019416843

[Caridroit et al. 2017a] Caridroit, Thomas ; Lagniez, Jean-Marie ; Le Berre, Daniel ; de
Lima, Tiago ; Montmirail, Valentin: A SAT-based approach for solving the modal logic S5
satisfiability problem. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI 2017), AAAI, Feb. 2017, p. 3864–3870. – URL http://aaai.org/ocs/index.php/
AAAI/AAAI17/paper/view/14380/14111

[Caridroit et al. 2017b] Caridroit, Thomas ; Lagniez, Jean-Marie ; Le Berre, Daniel ;
de Lima, Tiago ; Montmirail, Valentin: Une approche basée sur SAT pour le prob-
lème de satisfiabilité en logique modale S5. In: Actes des 13es journées Francophones
de Programmation par Contraintes (JFPC 2017), ., June 2017, p. 45–53. – URL http:
//www.cril.univ-artois.fr/jfpc2017/articles/JFPC_2017_paper_11.pdf

[Chellas 1980] Chellas, Brian F.: Modal Logic: An Introduction. Cambridge University Press,
1980. – URL https://books.google.fr/books?id=v4YIAQAAIAAJ. – ISBN 978-0521295154

[Clarke et al. 2003] Clarke, Edmund M. ; Grumberg, Orna ; Jha, Somesh ; Lu, Yuan ;
Veith, Helmut: Counterexample-Guided Abstraction Refinement For Symbolic Model Check-
ing. In: J. ACM 50 (2003), Nr. 5, p. 752–794. – URL http://doi.acm.org/10.1145/876638.
876643

[Clarke et al. 2018] Clarke, Edmund M. ; Henzinger, Thomas A. ; Veith, Helmut ; Bloem,
Roderick: Handbook of Model Checking. Volume 1. Springer International Publishing, 2018. –
URL https://link.springer.com/book/10.1007/978-3-319-10575-8. – ISBN 978-3-319-
10575-8

[Clarke and Schlingloff 2001] Clarke, Edmund M. ; Schlingloff, Bernd-Holger: Model
Checking. In: (Robinson and Voronkov 2001), p. 1635–1790. – URL https://www.
sciencedirect.com/science/book/9780444508133. – ISBN 0-444-50813-9

[Cook 1971] Cook, Stephen A.: The Complexity of Theorem-Proving Procedures. In: Harri-
son, Michael A. (Editor) ; Banerji, Ranan B. (Editor) ; Ullman, Jeffrey D. (Editor): Proc.
of ACM’71, ACM, 1971, p. 151–158. – URL http://doi.acm.org/10.1145/800157.805047

[Costa and Benevides 2005] Costa, Vania ; Benevides, Mario R. F.: Formalizing Concurrent
Common Knowledge as Product of Modal Logics. In: Logic Journal of the IGPL 13 (2005),
Nr. 6, p. 665–684. – URL https://doi.org/10.1093/jigpal/jzi049

174

https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
http://stamm-wilbrandt.de/en/Report_on_a_SAT_competition.pdf
https://doi.org/10.1023/A:1015019416843
https://doi.org/10.1023/A:1015019416843
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14380/14111
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14380/14111
http://www.cril.univ-artois.fr/jfpc2017/articles/JFPC_2017_paper_11.pdf
http://www.cril.univ-artois.fr/jfpc2017/articles/JFPC_2017_paper_11.pdf
https://books.google.fr/books?id=v4YIAQAAIAAJ
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
https://link.springer.com/book/10.1007/978-3-319-10575-8
https://www.sciencedirect.com/science/book/9780444508133
https://www.sciencedirect.com/science/book/9780444508133
http://doi.acm.org/10.1145/800157.805047
https://doi.org/10.1093/jigpal/jzi049


[Cousot 1981] Cousot, Patrick: Semantic Foundations of Program Analysis. In: Much-
nick, S.S. (Editor) ; Jones, N.D. (Editor): Program Flow Analysis: Theory and Applications.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981, Chap. 10, p. 303–342

[Cousot 2000] Cousot, Patrick: Partial Completeness of Abstract Fixpoint Checking. In:
Choueiry, Berthe Y. (Editor) ; Walsh, Toby (Editor): Abstraction, Reformulation, and
Approximation, 4th International Symposium, SARA 2000, Horseshoe Bay, Texas, USA, July
26-29, 2000, Proceedings Volume 1864, Springer, 2000, p. 1–25. – URL https://doi.org/10.
1007/3-540-44914-0_1. – ISBN 3-540-67839-5

[Cousot and Cousot 1977] Cousot, Patrick ; Cousot, Radhia: Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In: Graham, Robert M. (Editor) ; Harrison, Michael A. (Editor) ; Sethi, Ravi
(Editor): Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977, ACM, 1977, p. 238–252. – URL
http://doi.acm.org/10.1145/512950.512973

[Cousot and Cousot 1979] Cousot, Patrick ; Cousot, Radhia: Systematic Design of Program
Analysis Frameworks. In: Aho, Alfred V. (Editor) ; Zilles, Stephen N. (Editor) ; Rosen,
Barry K. (Editor): Conference Record of the Sixth Annual ACM Symposium on Principles of
Programming Languages, San Antonio, Texas, USA, January 1979, ACM Press, 1979, p. 269–
282. – URL http://doi.acm.org/10.1145/567752.567778

[Cousot and Cousot 1992] Cousot, Patrick ; Cousot, Radhia: Inductive Definitions, Se-
mantics and Abstract Interpretation. In: Sethi, Ravi (Editor): Conference Record of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Albuquerque, New Mexico, USA, January 19-22, 1992, ACM Press, 1992, p. 83–94. –
URL http://doi.acm.org/10.1145/143165.143184. – ISBN 0-89791-453-8

[Dams and Grumberg 2018] Dams, Dennis ; Grumberg, Orna: Abstraction and Abstraction
Refinement. Volume 1. p. 385–419. see (Clarke et al. 2018). – URL https://doi.org/10.
1007/978-3-319-10575-8_13. – ISBN 978-3-319-10575-8

[Dantzig 1930] Dantzig, Tobias: Number: The language of Science. Nature, 1930. – URL
https://www.nature.com/articles/147009a0

[Davies and Bacchus 2013] Davies, Jessica ; Bacchus, Fahiem: Exploiting the Power of MIP
Solvers in MaxSAT. In: (Järvisalo and Gelder 2013), p. 166–181. – URL https://doi.org/
10.1007/978-3-642-39071-5_13. – ISBN 978-3-642-39070-8

[Davis et al. 1962] Davis, Martin ; Logemann, George ; Loveland, Donald W.: A Machine
Program For Theorem-Proving. In: Commun. ACM 5 (1962), Nr. 7, p. 394–397. – URL
http://doi.acm.org/10.1145/368273.368557

[Davis and Putnam 1960] Davis, Martin ; Putnam, Hilary: A Computing Procedure for
Quantification Theory. In: J. ACM 7 (1960), Nr. 3, p. 201–215. – URL http://doi.acm.
org/10.1145/321033.321034

[de Moura and Bjørner 2008] de Moura, Leonardo Mendonça ; Bjørner, Nikolaj: Z3: An
Efficient SMT Solver. In: Ramakrishnan, C. R. (Editor) ; Rehof, Jakob (Editor): Tools
and Algorithms for the Construction and Analysis of Systems, 14th International Conference,

175

https://doi.org/10.1007/3-540-44914-0_1
https://doi.org/10.1007/3-540-44914-0_1
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/567752.567778
http://doi.acm.org/10.1145/143165.143184
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://www.nature.com/articles/147009a0
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-39071-5_13
http://doi.acm.org/10.1145/368273.368557
http://doi.acm.org/10.1145/321033.321034
http://doi.acm.org/10.1145/321033.321034


Bibliography

TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings Volume 4963,
Springer, 2008, p. 337–340. – URL https://doi.org/10.1007/978-3-540-78800-3_24. –
ISBN 978-3-540-78799-0

[Dechter et al. 1991] Dechter, Rina ; Meiri, Itay ; Pearl, Judea: Temporal Constraint
Networks. In: Artificial Intelligence 49 (1991), Nr. 1-3, p. 61–95. – URL https://doi.org/
10.1016/0004-3702(91)90006-6

[Defourneau et al. 2017] Defourneau, Thibault ; Dewez, Florent ; Montmirail, Valentin:
Le Jeu du Lights Out : une approche visuelle des mathématiques au travers d’un atelier. In:
MathemaTICE: Volume 54 (2017), March. – URL http://revue.sesamath.net/spip.php?
article950. – (Online article)

[Dewez and Montmirail 2017] Dewez, Florent ; Montmirail, Valentin: The Hill Cipher:
A Weakness Studied Through Group Action Theory. November 2017. – URL https://hal.
archives-ouvertes.fr/hal-01631232. – (Unpublished yet)

[Eén and Sörensson 2003] Eén, Niklas ; Sörensson, Niklas: An Extensible SAT-solver.
In: (Giunchiglia and Tacchella 2003), p. 502–518. – URL https://doi.org/10.1007/
978-3-540-24605-3_37. – ISBN 3-540-20851-8

[Eiter et al. 2000] Eiter, Thomas ; Faber, Wolfgang ; Leone, Nicola ; Pfeifer, Gerald ;
Polleres, Axel: Planning under Incomplete Knowledge. In: Lloyd, John W. (Editor) ;
Dahl, Verónica (Editor) ; Furbach, Ulrich (Editor) ; Kerber, Manfred (Editor) ; Lau,
Kung-Kiu (Editor) ; Palamidessi, Catuscia (Editor) ; Pereira, Luís Moniz (Editor) ; Sagiv,
Yehoshua (Editor) ; Stuckey, Peter J. (Editor): Computational Logic - CL 2000, First
International Conference, London, UK, 24-28 July, 2000, Proceedings Volume 1861, Springer,
2000, p. 807–821. – URL https://doi.org/10.1007/3-540-44957-4_54. – ISBN 3-540-
67797-6

[Fairtlough and Mendler 1994] Fairtlough, Matt ; Mendler, Michael: An Intuitionistic
Modal Logic with Applications to the Formal Verification of Hardware. In: Pacholski, Leszek
(Editor) ; Tiuryn, Jerzy (Editor): Computer Science Logic, 8th International Workshop, CSL
’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers Volume 933, Springer, 1994,
p. 354–368. – URL https://doi.org/10.1007/BFb0022268. – ISBN 3-540-60017-5

[Fitting 1983] Fitting, Melvin: Proof Methods for Modal and Intuitionistic Logics. Springer,
1983. – URL https://www.springer.com/la/book/9789027715739. – ISBN 978-90-277-1573-
9

[Garson 2016] Garson, James: Modal Logic. In: Zalta, Edward N. (Editor): The Stanford
Encyclopedia of Philosophy. Spring 2016. Metaphysics Research Lab, Stanford University, 2016,
p. .. – URL https://plato.stanford.edu/archives/spr2016/entries/logic-modal/

[Gasquet et al. 2005] Gasquet, Olivier ; Herzig, Andreas ; Longin, Dominique ; Sahade,
Mohamad: LoTREC: Logical Tableaux Research Engineering Companion. In: Beckert,
Bernhard (Editor): Automated Reasoning with Analytic Tableaux and Related Methods, Inter-
national Conference, TABLEAUX 2005, Koblenz, Germany, September 14-17, 2005, Proceed-
ings Volume 3702, Springer, 2005, p. 318–322. – URL https://doi.org/10.1007/11554554_
25. – ISBN 3-540-28931-3

176

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1016/0004-3702(91)90006-6
http://revue.sesamath.net/spip.php?article950
http://revue.sesamath.net/spip.php?article950
https://hal.archives-ouvertes.fr/hal-01631232
https://hal.archives-ouvertes.fr/hal-01631232
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/3-540-44957-4_54
https://doi.org/10.1007/BFb0022268
https://www.springer.com/la/book/9789027715739
https://plato.stanford.edu/archives/spr2016/entries/logic-modal/
https://doi.org/10.1007/11554554_25
https://doi.org/10.1007/11554554_25


[Gebser et al. 2007] Gebser, Martin ; Liu, Lengning ; Namasivayam, Gayathri ; Neumann,
André ; Schaub, Torsten ; Truszczynski, Miroslaw: The First Answer Set Programming
System Competition. In: Baral, Chitta (Editor) ; Brewka, Gerhard (Editor) ; Schlipf,
John S. (Editor): Logic Programming and Nonmonotonic Reasoning, 9th International Confer-
ence, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings Volume 4483, Springer,
2007, p. 3–17. – URL https://doi.org/10.1007/978-3-540-72200-7_3. – ISBN 978-3-540-
72199-4

[Gelder 2002] Gelder, Allen V.: Extracting (Easily) Checkable Proofs from a Satisfiability
Solver that Employs both Preorder and Postorder Resolution. In: International Symposium on
Artificial Intelligence and Mathematics, AI&M 2002, Fort Lauderdale, Florida, USA, January
2-4, 2002, CiteSeerx, 2002, p. 1–10. – URL http://rutcor.rutgers.edu/~amai/aimath02/
PAPERS/33.ps

[Giunchiglia et al. 2000] Giunchiglia, Enrico ; Giunchiglia, Fausto ; Sebastiani, Roberto ;
Tacchella, Armando: SAT vs. translation based decision procedures for modal logics: a
comparative evaluation. In: Journal of Applied Non-Classical Logics 10 (2000), Nr. 2, p. 145–
172. – URL https://doi.org/10.1080/11663081.2000.10510994

[Giunchiglia and Tacchella 2003] Giunchiglia, Enrico (Editor) ; Tacchella, Armando (Ed-
itor): Theory and Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. Volume 2919.
Springer, 2003. (Lecture Notes in Computer Science). – URL https://doi.org/10.1007/
b95238. – ISBN 3-540-20851-8

[Giunchiglia et al. 2002] Giunchiglia, Enrico ; Tacchella, Armando ; Giunchiglia,
Fausto: SAT-Based Decision Procedures for Classical Modal Logics. In: Journal of Auto-
mated Reasoning 28 (2002), Feb, Nr. 2, p. 143–171. – URL https://doi.org/10.1023/A:
1015071400913. – ISSN 1573-0670

[Giunchiglia et al. 1996] Giunchiglia, Fausto ; Roveri, Marco ; Sebastiani, Roberto:
A New Method for Testing Decision Procedures in Modal and Terminological Logics. In:
Padgham, Lin (Editor) ; Franconi, Enrico (Editor) ; Gehrke, Manfred (Editor) ; McGuin-
ness, Deborah L. (Editor) ; Patel-Schneider, Peter F. (Editor): Proceedings of the 1996
International Workshop on Description Logics, November 2-4, 1996, Cambridge, MA, USA
Volume WS-96-05, AAAI Press, 1996, p. 119–123. – URL https://pdfs.semanticscholar.
org/2477/d66cf583e0942f1854e351721f2cd3f4e7c1.pdf. – ISBN 1-57735-014-6

[Glorian et al. 2018] Glorian, Gael ; Lagniez, Jean-Marie ; Montmirail, Valentin ;
Sioutis, Michael: An Incremental SAT-Based Approach to Reason Efficiently On Quali-
tative Constraint Network. In: Principles and Practice of Constraint Programming - 24th
International Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings, Springer,
August 2018, p. 160–178. – URL https://doi.org/10.1007/978-3-319-98334-9_11

[Goré 1999] Goré, Rajeev: Tableau Methods for Modal and Temporal Logics. p. 297–396.
In: D’Agostino, Marcello (Editor) ; Gabbay, Dov M. (Editor) ; Hähnle, Reiner (Editor) ;
Posegga, Joachim (Editor): Handbook of Tableau Methods, Springer, 1999. – URL https:
//doi.org/10.1007/978-94-017-1754-0_6. – ISBN 978-94-017-1754-0

[Goré et al. 2014] Goré, Rajeev ; Olesen, Kerry ; Thomson, Jimmy: Implementing Tableau
Calculi Using BDDs: BDDTab System Description. In: Demri, Stéphane (Editor) ; Kapur,

177

https://doi.org/10.1007/978-3-540-72200-7_3
http://rutcor.rutgers.edu/~amai/aimath02/PAPERS/33.ps
http://rutcor.rutgers.edu/~amai/aimath02/PAPERS/33.ps
https://doi.org/10.1080/11663081.2000.10510994
https://doi.org/10.1007/b95238
https://doi.org/10.1007/b95238
https://doi.org/10.1023/A:1015071400913
https://doi.org/10.1023/A:1015071400913
https://pdfs.semanticscholar.org/2477/d66cf583e0942f1854e351721f2cd3f4e7c1.pdf
https://pdfs.semanticscholar.org/2477/d66cf583e0942f1854e351721f2cd3f4e7c1.pdf
https://doi.org/10.1007/978-3-319-98334-9_11
https://doi.org/10.1007/978-94-017-1754-0_6
https://doi.org/10.1007/978-94-017-1754-0_6


Bibliography

Deepak (Editor) ; Weidenbach, Christoph (Editor): Automated Reasoning - 7th Interna-
tional Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 19-22, 2014. Proceedings Volume 8562, Springer, 2014, p. 337–
343. – URL https://doi.org/10.1007/978-3-319-08587-6_25. – ISBN 978-3-319-08586-9

[Götzmann et al. 2010] Götzmann, Daniel ; Kaminski, Mark ; Smolka, Gert: Spartacus: A
Tableau Prover for Hybrid Logic. In: Electr. Notes Theor. Comput. Sci. 262 (2010), p. 127–139.
– URL https://doi.org/10.1016/j.entcs.2010.04.010

[Grégoire et al. 2014] Grégoire, Éric ; Lagniez, Jean-Marie ; Mazure, Bertrand: An Exper-
imentally Efficient Method for (MSS, CoMSS) Partitioning. In: Brodley, Carla E. (Editor) ;
Stone, Peter (Editor): Proceedings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence, July 27 -31, 2014, Québec City, Québec, Canada., AAAI Press, 2014, p. 2666–2673.
– URL http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8324. – ISBN 978-
1-57735-661-5

[Haken 1985] Haken, Armin: The Intractability of Resolution. In: Theor. Comput. Sci. 39
(1985), p. 297–308. – URL https://doi.org/10.1016/0304-3975(85)90144-6

[Halpern and Moses 1992] Halpern, Joseph Y. ; Moses, Yoram: A guide to complete-
ness and complexity for modal logics of knowledge and belief. In: Artificial Intelligence 54
(1992), Nr. 3, p. 319 – 379. – URL http://www.sciencedirect.com/science/article/pii/
0004370292900494. – ISSN 0004-3702

[Halpern and Rêgo 2007] Halpern, Joseph Y. ; Rêgo, Leandro C.: Characterizing the NP-
PSPACE Gap in the Satisfiability Problem for Modal Logic. In: J. Log. Comput. 17 (2007),
Nr. 4, p. 795–806. – URL https://doi.org/10.1093/logcom/exm029

[Hamadi et al. 2010] Hamadi, Youssef ; Jabbour, Saïd ; Sais, Lakhdar: Learning for
Dynamic Subsumption. In: International Journal on Artificial Intelligence Tools 19 (2010),
Nr. 4, p. 511–529. – URL https://doi.org/10.1142/S0218213010000303

[Hamadi and Sais 2018] Hamadi, Youssef (Editor) ; Sais, Lakhdar (Editor): Handbook
of Parallel Constraint Reasoning. Springer, 2018. – URL https://doi.org/10.1007/
978-3-319-63516-3. – ISBN 978-3-319-63515-6

[Han and Somenzi 2009] Han, HyoJung ; Somenzi, Fabio: On-the-Fly Clause Improvement.
In: (Kullmann 2009), p. 209–222. – URL https://doi.org/10.1007/978-3-642-02777-2_
21. – ISBN 978-3-642-02776-5

[Hansen et al. 2001] Hansen, Pierre ; Mladenovic, Nenad ; Pérez-Brito, Dionisio: Vari-
able Neighborhood Decomposition Search. In: J. Heuristics 7 (2001), Nr. 4, p. 335–350. –
URL https://doi.org/10.1023/A:1011336210885

[Hao and Dorne 1994] Hao, Jin-Kao ; Dorne, Raphaël: An Empirical Comparison of
Two Evolutionary Methods for Satisfiability Problems. In: Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE World Congress on Computational Intelli-
gence, Orlando, Florida, USA, June 27-29, 1994, IEEE, 1994, p. 451–455. – URL https:
//doi.org/10.1109/ICEC.1994.349908. – ISBN 0-7803-1899-4

178

https://doi.org/10.1007/978-3-319-08587-6_25
https://doi.org/10.1016/j.entcs.2010.04.010
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8324
https://doi.org/10.1016/0304-3975(85)90144-6
http://www.sciencedirect.com/science/article/pii/0004370292900494
http://www.sciencedirect.com/science/article/pii/0004370292900494
https://doi.org/10.1093/logcom/exm029
https://doi.org/10.1142/S0218213010000303
https://doi.org/10.1007/978-3-319-63516-3
https://doi.org/10.1007/978-3-319-63516-3
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1023/A:1011336210885
https://doi.org/10.1109/ICEC.1994.349908
https://doi.org/10.1109/ICEC.1994.349908


[Heras et al. 2011] Heras, Federico ; Morgado, António ; Marques-Silva, João: Core-
Guided Binary Search Algorithms for Maximum Satisfiability. In: Burgard, Wolfram (Ed-
itor) ; Roth, Dan (Editor): Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011, AAAI Press,
2011, p. 1–7. – URL http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3713

[Hoffmann 2010] Hoffmann, Guillaume: Tâches de raisonnement en logiques hybrides, Henri
Poincaré University, Nancy, Ph.D. thesis, 2010. – URL https://tel.archives-ouvertes.
fr/tel-01746342v2/document

[Hoffmann and Brafman 2006] Hoffmann, Jörg ; Brafman, Ronen I.: Conformant Planning
via Heuristic Forward Search: A New Approach. In: A.I. 170 (2006), Nr. 6-7, p. 507–541. –
URL https://doi.org/10.1016/j.artint.2006.01.003

[Hoos and Stützle 1999] Hoos, Holger H. ; Stützle, Thomas: Towards a Characterisation
of the Behaviour of Stochastic Local Search Algorithms for SAT. In: Artif. Intell. 112 (1999),
Nr. 1-2, p. 213–232. – URL https://doi.org/10.1016/S0004-3702(99)00048-X

[Horrocks et al. 2006] Horrocks, Ian ; Hustadt, Ullrich ; Sattler, Ulrike ; Schmidt,
Renate: Computational Modal Logic. In: Handbook of Modal Logic. (Blackburn et al. 2006).
– URL https://hal.inria.fr/inria-00120237. – ISBN 978-0444516909

[Huang et al. 2013] Huang, Jinbo ; Li, Jason J. ; Renz, Jochen: Decomposition and tractabil-
ity in qualitative spatial and temporal reasoning. In: Artificial Intelligence 195 (2013), p. 140–
164. – URL https://doi.org/10.1016/j.artint.2012.09.009

[Hustadt et al. 1999] Hustadt, Ullrich ; Schmidt, Renate A. ; Weidenbach, Christoph:
MSPASS: Subsumption Testing with SPASS. In: Lambrix, Patrick (Editor) ; Borgida,
Alexander (Editor) ; Lenzerini, Maurizio (Editor) ; Möller, Ralf (Editor) ; Patel-
Schneider, Peter F. (Editor): Proceedings of the 1999 International Workshop on Description
Logics (DL’99), Linköping, Sweden, July 30 - August 1, 1999 Volume 22, CEUR-WS.org, 1999,
p. 1–2. – URL http://ceur-ws.org/Vol-22/schmidt.ps

[Iser et al. 2013] Iser, Markus ; Sinz, Carsten ; Taghdiri, Mana: Minimizing Models
for Tseitin-Encoded SAT Instances. In: (Järvisalo and Gelder 2013), p. 224–232. – URL
https://doi.org/10.1007/978-3-642-39071-5_17. – ISBN 978-3-642-39070-8

[Jackson 2006] Jackson, Daniel: Software Abstractions - Logic, Language, and Analysis. MIT
Press, 2006. – URL http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=
10928. – ISBN 978-0-262-10114-1

[Janota et al. 2016] Janota, Mikolás ; Klieber, William ; Marques-Silva, Joao ; Clarke,
Edmund M.: Solving QBF with counterexample guided refinement. In: Artif. Intell. 234
(2016), p. 1–25. – URL https://doi.org/10.1016/j.artint.2016.01.004

[Järvisalo and Gelder 2013] Järvisalo, Matti (Editor) ; Gelder, Allen V. (Editor): Theory
and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki,
Finland, July 8-12, 2013. Proceedings. Volume 7962. Springer, 2013. (Lecture Notes in
Computer Science). – URL https://doi.org/10.1007/978-3-642-39071-5. – ISBN 978-3-
642-39070-8

179

http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3713
https://tel.archives-ouvertes.fr/tel-01746342v2/document
https://tel.archives-ouvertes.fr/tel-01746342v2/document
https://doi.org/10.1016/j.artint.2006.01.003
https://doi.org/10.1016/S0004-3702(99)00048-X
https://hal.inria.fr/inria-00120237
https://doi.org/10.1016/j.artint.2012.09.009
http://ceur-ws.org/Vol-22/schmidt.ps
https://doi.org/10.1007/978-3-642-39071-5_17
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
https://doi.org/10.1016/j.artint.2016.01.004
https://doi.org/10.1007/978-3-642-39071-5


Bibliography

[Järvisalo et al. 2012] Järvisalo, Matti ; Le Berre, Daniel ; Roussel, Olivier ; Simon,
Laurent: The International SAT Solver Competitions. In: AI Magazine 33 (2012), Nr. 1. –
URL http://www.aaai.org/ojs/index.php/aimagazine/article/view/2395

[Kaminski and Tebbi 2013] Kaminski, Mark ; Tebbi, Tobias: InKreSAT: Modal Reasoning
via Incremental Reduction to SAT. In: Bonacina, Maria P. (Editor): Automated Deduction
- CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA,
June 9-14, 2013. Proceedings Volume 7898, Springer, 2013, p. 436–442. – URL https://doi.
org/10.1007/978-3-642-38574-2_31. – ISBN 978-3-642-38573-5

[Kautz and Selman 1996] Kautz, Henry A. ; Selman, Bart: Pushing the Envelope: Plan-
ning, Propositional Logic and Stochastic Search. In: Clancey, William J. (Editor) ; Weld,
Daniel S. (Editor): Proceedings of the Thirteenth National Conference on Artificial Intelligence
and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96,
Portland, Oregon, August 4-8, 1996, Volume 2., AAAI Press / The MIT Press, 1996, p. 1194–
1201. – URL http://www.aaai.org/Library/AAAI/1996/aaai96-177.php

[Khasidashvili et al. 2015] Khasidashvili, Zurab ; Korovin, Konstantin ; Tsarkov, Dmitry:
EPR-based k-induction with Counterexample Guided Abstraction Refinement. In: Gottlob,
Georg (Editor) ; Sutcliffe, Geoff (Editor) ; Voronkov, Andrei (Editor): Global Conference
on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia, October 16-19, 2015 Volume 36, Easy-
Chair, 2015, p. 137–150. – URL http://www.easychair.org/publications/paper/245322

[Koshimura et al. 2009] Koshimura, Miyuki ; Nabeshima, Hidetomo ; Fujita, Hiroshi ;
Hasegawa, Ryuzo: Minimal Model Generation With Respect To An Atom Set. In: in
International Workshop on First-Order Theorem Proving, CiteSeer, 2009, p. 49–59. – URL
http://ceur-ws.org/Vol-556/paper06.pdf

[Kovács and Voronkov 2013] Kovács, Laura ; Voronkov, Andrei: First-Order Theorem
Proving and Vampire. In: Sharygina, Natasha (Editor) ; Veith, Helmut (Editor): Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings Volume 8044, Springer, 2013, p. 1–35. – URL https://doi.org/10.
1007/978-3-642-39799-8_1. – ISBN 978-3-642-39798-1

[Kripke 1959] Kripke, Saul: A Completeness Theorem in Modal Logic. In: J. Symb. Log. 24
(1959), Nr. 1, p. 1–14. – URL http://dx.doi.org/10.2307/2964568

[Kroening 2009] Kroening, Daniel: Software Verification. In: (Biere et al. 2009), p. 505–532.
– URL https://doi.org/10.3233/978-1-58603-929-5-505. – ISBN 978-1-58603-929-5

[Kullmann 2009] Kullmann, Oliver (Editor): Theory and Applications of Satisfiability Testing
- SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings. Volume 5584. Springer, 2009. (Lecture Notes in Computer Science). – URL
https://doi.org/10.1007/978-3-642-02777-2. – ISBN 978-3-642-02776-5

[Kupferman 2018] Kupferman, Orna: Automata Theory and Model Checking. Volume 1.
p. 107–151. see (Clarke et al. 2018). – URL https://doi.org/10.1007/978-3-319-10575-8_
4. – ISBN 978-3-319-10575-8

[Ladner 1977] Ladner, Richard E.: The Computational Complexity of Provability in Systems
of Modal Propositional Logic. In: SIAM J. Comput. 6 (1977), Nr. 3, p. 467–480. – URL
https://doi.org/10.1137/0206033

180

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2395
https://doi.org/10.1007/978-3-642-38574-2_31
https://doi.org/10.1007/978-3-642-38574-2_31
http://www.aaai.org/Library/AAAI/1996/aaai96-177.php
http://www.easychair.org/publications/paper/245322
http://ceur-ws.org/Vol-556/paper06.pdf
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.2307/2964568
https://doi.org/10.3233/978-1-58603-929-5-505
https://doi.org/10.1007/978-3-642-02777-2
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1137/0206033


[Lagniez et al. 2016a] Lagniez, Jean-Marie ; Le Berre, Daniel ; de Lima, Tiago ; Montmi-
rail, Valentin: À propos de la vérification de modèles en logique modale K. In: Actes des 10es
Journées d’Intelligence Artificielle Fondamentale (JIAF 2016), ., June 2016, p. 149–157. – URL
https://www.supagro.fr/jfpc_jiaf_2016/Articles.IAF.2016/Lagniez_IAF_2016.pdf

[Lagniez et al. 2016b] Lagniez, Jean-Marie ; Le Berre, Daniel ; de Lima, Tiago ; Montmi-
rail, Valentin: On Checking Kripke Models for Modal Logic K. In: 5th Workshop on Practical
Aspects of Automated Reasoning (PAAR@IJCAR 2016), Springer, June 2016, p. 69–81. – URL
http://ceur-ws.org/Vol-1635/#paper-07

[Lagniez et al. 2017a] Lagniez, Jean-Marie ; Le Berre, Daniel ; de Lima, Tiago ; Mont-
mirail, Valentin: A Recursive Shortcut for CEGAR: Application To The Modal Logic
K Satisfiability Problem. In: Proceedings of the 26th IJCAI International Joint Confer-
ence on Artificial Intelligence (IJCAI 2017), ijcai.org, August 2017, p. 674–680. – URL
https://www.ijcai.org/proceedings/2017/94

[Lagniez et al. 2017b] Lagniez, Jean-Marie ; Le Berre, Daniel ; de Lima, Tiago ; Montmi-
rail, Valentin: Un raccourci récursif pour CEGAR : Application au problème de satisfiabilité
en logique modale K. In: Actes des 11es Journées d’Intelligence Artificielle Fondamentale
(JIAF 2017), ., July 2017, p. 169–176. – URL https://pfia2017.greyc.fr/share/actes/
IAF/Lagniez_IAF_2017.pdf

[Lagniez et al. 2018a] Lagniez, Jean-Marie ; Le Berre, Daniel ; de Lima, Tiago ; Montmi-
rail, Valentin: An Assumption-Based Approach for Solving The Minimal S5-Satisfiability
Problem. In: Proceedings of the 9th International Joint Conference on Automated Rea-
soning (IJCAR 2018), Springer, July 2018, p. 1–18. – URL https://doi.org/10.1007/
978-3-319-94205-6_1

[Lagniez et al. 2018b] Lagniez, Jean-Marie ; Le Berre, Daniel ; de Lima, Tiago ; Montmi-
rail, Valentin: Space-Awareness in a SAT-Based Approach For PSPACE Modal Logics. In:
Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth Interna-
tional Conference, KR 2018, Tempe, Arizona, USA, 30 October - 2 November, 2018, Proceed-
ings, Springer, October 2018, p. to appear. – URL http://reasoning.eas.asu.edu/kr2018/

[Lagniez et al. 2018c] Lagniez, Jean-Marie ; Le Berre, Daniel ; de Lima, Tiago ; Montmi-
rail, Valentin: Une approche SAT incrémentale pour le problème de satisfiabilité minimale
en logique modale S5. In: Actes des 14es journées Francophones de Programmation par Con-
traintes (JFPC 2018), ., June 2018, p. 1–10. – URL https://home.mis.u-picardie.fr/
~evenement/JFPC2018/articles/JFPC_2018_papier_1.pdf

[Le Berre and Parrain 2010] Le Berre, Daniel ; Parrain, Anne: The SAT4J Library, release
2.2. In: JSAT 7 (2010), Nr. 2-3, p. 59–6. – URL http://jsat.ewi.tudelft.nl/content/
volume7/JSAT7_4_LeBerre.pdf

[Le Berre and Rapicault 2018] Le Berre, Daniel ; Rapicault, Pascal: Boolean-Based Depen-
dency Management for the Eclipse Ecosystem. In: International Journal on Artificial Intelli-
gence Tools 27 (2018), Nr. 1, p. 1–23. – URL https://doi.org/10.1142/S0218213018400031

[Le Berre et al. 2003] Le Berre, Daniel ; Simon, Laurent ; Tacchella, Armando: Challenges
in the QBF Arena: the SAT’03 Evaluation of QBF Solvers. In: (Giunchiglia and Tacchella
2003), p. 468–485. – URL https://doi.org/10.1007/978-3-540-24605-3_35. – ISBN 3-
540-20851-8

181

https://www.supagro.fr/jfpc_jiaf_2016/Articles.IAF.2016/Lagniez_IAF_2016.pdf
http://ceur-ws.org/Vol-1635/#paper-07
https://www.ijcai.org/proceedings/2017/94
https://pfia2017.greyc.fr/share/actes/IAF/Lagniez_IAF_2017.pdf
https://pfia2017.greyc.fr/share/actes/IAF/Lagniez_IAF_2017.pdf
https://doi.org/10.1007/978-3-319-94205-6_1
https://doi.org/10.1007/978-3-319-94205-6_1
http://reasoning.eas.asu.edu/kr2018/
https://home.mis.u-picardie.fr/~evenement/JFPC2018/articles/JFPC_2018_papier_1.pdf
https://home.mis.u-picardie.fr/~evenement/JFPC2018/articles/JFPC_2018_papier_1.pdf
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf
https://doi.org/10.1142/S0218213018400031
https://doi.org/10.1007/978-3-540-24605-3_35


Bibliography

[Lewis and Langford 1932] Lewis, Clarence Irving ; Langford, Cooper Harold: Symbolic
logic. New York, The Century Co, 1932 (Century philosophy series). – URL https://archive.
org/details/symboliclogic00carr

[Li and Anbulagan 1997] Li, Chu M. ; Anbulagan: Heuristics Based on Unit Propagation
for Satisfiability Problems. In: Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes, Morgan
Kaufmann, 1997, p. 366–371. – URL http://ijcai.org/Proceedings/97-1/Papers/057.pdf

[Li and Manyà 2009] Li, Chu M. ; Manyà, Felip: MaxSAT, Hard and Soft Con-
straints. In: (Biere et al. 2009), p. 613–631. – URL http://dx.doi.org/10.3233/
978-1-58603-929-5-613. – ISBN 978-1-58603-929-5

[Li 2006] Li, Sanjiang: On Topological Consistency and Realization. In: Constraints 11
(2006), Jan, Nr. 1, p. 31–51. – URL https://doi.org/10.1007/s10601-006-6847-9. – ISSN
1572-9354

[Li and Ying 2003] Li, Sanjiang ; Ying, Mingsheng: Region Connection Calculus: Its models
and composition table. In: Artificial Intelligence 145 (2003), Nr. 1-2, p. 121–146. – URL
https://doi.org/10.1016/S0004-3702(02)00372-7

[Liang et al. 2015] Liang, Jia H. ; Ganesh, Vijay ; Zulkoski, Ed ; Zaman, Atulan ; Czar-
necki, Krzysztof: Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-
Learning SAT Solvers. In: Piterman, Nir (Editor): Hardware and Software: Verifica-
tion and Testing - 11th International Haifa Verification Conference, HVC 2015, Haifa, Is-
rael, November 17-19, 2015, Proceedings Volume 9434, Springer, 2015, p. 225–241. – URL
https://doi.org/10.1007/978-3-319-26287-1_14. – ISBN 978-3-319-26286-4

[Liberatore 2000] Liberatore, Paolo: On the complexity of choosing the branching literal in
DPLL. In: Artif. Intell. 116 (2000), Nr. 1-2, p. 315–326. – URL https://doi.org/10.1016/
S0004-3702(99)00097-1

[Long 2017] Long, Zhiguo: Qualitative Spatial And Temporal Representation And Reasoning:
Efficiency in Time And Space, Faculty of Engineering and Information Technology, University
of Technology Sydney (UTS), Ph.D. thesis, January 2017. – URL http://hdl.handle.net/
10453/90055

[Long et al. 2016] Long, Zhiguo ; Sioutis, Michael ; Li, Sanjiang: Efficient Path Consistency
Algorithm for Large Qualitative Constraint Networks. In: Kambhampati, Subbarao (Editor):
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJ-
CAI 2016, New York, NY, USA, 9-15 July 2016, IJCAI/AAAI Press, 2016, p. 1202–1208. –
URL http://www.ijcai.org/Abstract/16/174. – ISBN 978-1-57735-770-4

[Mackworth 1977] Mackworth, Alan K.: Consistency in networks of relations. In: Artificial
Intelligence 8 (1977), Nr. 1, p. 99 – 118. – URL http://www.sciencedirect.com/science/
article/pii/0004370277900078. – ISSN 0004-3702

[Maher et al. 2017] Maher, Stephen J. ; Fischer, Tobias ; Gally, Tristan ; Gamrath,
Gerald ; Gleixner, Ambros ; Gottwald, Robert L. ; Hendel, Gregor ; Koch, Thorsten ;
Lübbecke, Marco E. ; Miltenberger, Matthias ; Müller, Benjamin ; Pfetsch, Marc E. ;
Puchert, Christian ; Rehfeldt, Daniel ; Schenker, Sebastian ; Schwarz, Robert ; Ser-
rano, Felipe ; Shinano, Yuji ; Weninger, Dieter ; Witt, Jonas T. ; Witzig, Jakob: The

182

https://archive.org/details/symboliclogic00carr
https://archive.org/details/symboliclogic00carr
http://ijcai.org/Proceedings/97-1/Papers/057.pdf
http://dx.doi.org/10.3233/978-1-58603-929-5-613
http://dx.doi.org/10.3233/978-1-58603-929-5-613
https://doi.org/10.1007/s10601-006-6847-9
https://doi.org/10.1016/S0004-3702(02)00372-7
https://doi.org/10.1007/978-3-319-26287-1_14
https://doi.org/10.1016/S0004-3702(99)00097-1
https://doi.org/10.1016/S0004-3702(99)00097-1
http://hdl.handle.net/10453/90055
http://hdl.handle.net/10453/90055
http://www.ijcai.org/Abstract/16/174
http://www.sciencedirect.com/science/article/pii/0004370277900078
http://www.sciencedirect.com/science/article/pii/0004370277900078


SCIP Optimization Suite 4.0 / ZIB. Takustr. 7, 14195 Berlin : ZIB, 2017 (17-12). – Research
Report. – URL http://nbn-resolving.de/urn:nbn:de:0297-zib-62170. Document Type:
ZIB-Report

[Manquinho and Roussel 2006] Manquinho, Vasco M. ; Roussel, Olivier: The First Eval-
uation of Pseudo-Boolean Solvers (PB’05). In: JSAT 2 (2006), Nr. 1-4, p. 103–143. – URL
http://sat.inesc-id.pt/~vmm/research/papers/jsat06_2.pdf

[Marques-Silva and Janota 2014] Marques-Silva, João ; Janota, Mikolás: On the Query
Complexity of Selecting Few Minimal Sets. In: Electronic Colloquium on Computational Com-
plexity (ECCC) 21 (2014), p. 31. – URL http://eccc.hpi-web.de/report/2014/031

[Marques-Silva and Lynce 2011] Marques-Silva, João ; Lynce, Inês: On Improving MUS
Extraction Algorithms. In: (Sakallah and Simon 2011), p. 159–173. – URL https://doi.
org/10.1007/978-3-642-21581-0_14. – ISBN 978-3-642-21580-3

[Marques-Silva and Sakallah 1999] Marques-Silva, Joao ; Sakallah, Karem A.: GRASP:
A Search Algorithm for Propositional Satisfiability. In: IEEE Trans. Computers 48 (1999),
Nr. 5, p. 506–521. – URL https://doi.org/10.1109/12.769433

[Massacci 1999] Massacci, Fabio: Design and Results of the Tableaux-99 Non-classical
(Modal) Systems Comparison. In: Murray, Neil V. (Editor): Automated Reasoning with
Analytic Tableaux and Related Methods, International Conference, TABLEAUX ’99, Saratoga
Springs, NY, USA, June 7-11, 1999, Proceedings Volume 1617, Springer, 1999, p. 14–18. –
URL https://doi.org/10.1007/3-540-48754-9_2. – ISBN 3-540-66086-0

[Massacci 2000] Massacci, Fabio: Single Step Tableaux for Modal Logics. In: J. Autom.
Reasoning 24 (2000), Nr. 3, p. 319–364. – URL https://doi.org/10.1023/A:1006155811656

[Massacci and Donini 2000] Massacci, Fabio ; Donini, Francesco M.: Design and Results
of TANCS-2000 Non-classical (Modal) Systems Comparison. In: Dyckhoff, Roy (Editor):
Proc. of TABLEAUX’00 Volume 1847, Springer, 2000, p. 52–56. – URL https://doi.org/
10.1007/10722086_4. – ISBN 3-540-67697-X

[Mencía et al. 2015] Mencía, Carlos ; Previti, Alessandro ; Marques-Silva, João: Literal-
Based MCS Extraction. In: Yang, Qiang (Editor) ; Wooldridge, Michael (Editor): Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, 2015, p. 1973–1979. – URL
http://ijcai.org/Abstract/15/280. – ISBN 978-1-57735-738-4

[Merchez et al. 2001] Merchez, Sylvain ; Lecoutre, Christophe ; Boussemart, Frédéric:
AbsCon: A Prototype to Solve CSPs with Abstraction. In: Walsh, Toby (Editor): Principles
and Practice of Constraint Programming - CP 2001, 7th International Conference, CP 2001,
Paphos, Cyprus, November 26 - December 1, 2001, Proceedings Volume 2239, Springer, 2001,
p. 730–744. – URL https://doi.org/10.1007/3-540-45578-7_59. – ISBN 3-540-42863-1

[Mitchell et al. 1992] Mitchell, David G. ; Selman, Bart ; Levesque, Hector J.: Hard
and Easy Distributions of SAT Problems. In: (Swartout 1992), p. 459–465. – URL http:
//www.aaai.org/Library/AAAI/1992/aaai92-071.php. – ISBN 0-262-51063-4

[Mordan and Mutilin 2016] Mordan, Vitaly O. ; Mutilin, Vadim S.: Checking several
requirements at once by CEGAR. In: Programming and Computer Software 42 (2016), Nr. 4,
p. 225–238. – URL https://doi.org/10.1134/S0361768816040058

183

http://nbn-resolving.de/urn:nbn:de:0297-zib-62170
http://sat.inesc-id.pt/~vmm/research/papers/jsat06_2.pdf
http://eccc.hpi-web.de/report/2014/031
https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/3-540-48754-9_2
https://doi.org/10.1023/A:1006155811656
https://doi.org/10.1007/10722086_4
https://doi.org/10.1007/10722086_4
http://ijcai.org/Abstract/15/280
https://doi.org/10.1007/3-540-45578-7_59
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
https://doi.org/10.1134/S0361768816040058


Bibliography

[Moskewicz et al. 2001] Moskewicz, Matthew W. ; Madigan, Conor F. ; Zhao, Ying ;
Zhang, Lintao ; Malik, Sharad: Chaff: Engineering an Efficient SAT Solver. In: Proceedings
of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22,
2001, ACM, 2001, p. 530–535. – URL http://doi.acm.org/10.1145/378239.379017. – ISBN
1-58113-297-2

[Nalon et al. 2015] Nalon, Cláudia ; Hustadt, Ullrich ; Dixon, Clare: A Modal-Layered
Resolution Calculus for K. In: Nivelle, Hans de (Editor): Automated Reasoning with Analytic
Tableaux and Related Methods - 24th International Conference, TABLEAUX 2015, Wrocław,
Poland, September 21-24, 2015. Proceedings Volume 9323, Springer, 2015, p. 185–200. – URL
https://doi.org/10.1007/978-3-319-24312-2_13. – ISBN 978-3-319-24311-5

[Nalon et al. 2016] Nalon, Cláudia ; Hustadt, Ullrich ; Dixon, Clare: KSP : A Resolution-
Based Prover for Multimodal K. In: Olivetti, Nicola (Editor) ; Tiwari, Ashish (Editor):
Automated Reasoning - 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal,
June 27 - July 2, 2016, Proceedings Volume 9706, Springer, 2016, p. 406–415. – URL https:
//doi.org/10.1007/978-3-319-40229-1_28. – ISBN 978-3-319-40228-4

[Nguyen 1999] Nguyen, Linh A.: A New Space Bound for the Modal Logics K4, KD4 and S4.
In: Kutylowski, Miroslaw (Editor) ; Pacholski, Leszek (Editor) ; Wierzbicki, Tomasz
(Editor): Mathematical Foundations of Computer Science 1999, 24th International Sympo-
sium, MFCS’99, Szklarska Poreba, Poland, September 6-10, 1999, Proceedings Volume 1672,
Springer, 1999, p. 321–331. – URL https://doi.org/10.1007/3-540-48340-3_29. – ISBN
3-540-66408-4

[Ore 1944] Ore, Øystein: Galois Connexions. In: Transactions of the Ameri-
can Mathematical Society 55 (1944), p. 493–513. – URL https://doi.org/10.1090/
S0002-9947-1944-0010555-7

[O’Sullivan et al. 2007] O’Sullivan, Barry ; Papadopoulos, Alexandre ; Faltings, Boi ;
Pu, Pearl: Representative Explanations for Over-Constrained Problems. In: Proceedings of
the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver,
British Columbia, Canada, AAAI Press, 2007, p. 323–328. – URL http://www.aaai.org/
Library/AAAI/2007/aaai07-050.php. – ISBN 978-1-57735-323-2

[Pan and Vardi 2004] Pan, Guoqiang ; Vardi, Moshe Y.: Symbolic Decision Proce-
dures for QBF. In: (Wallace 2004), p. 453–467. – URL https://doi.org/10.1007/
978-3-540-30201-8_34. – ISBN 3-540-23241-9

[Papadimitriou 1994] Papadimitriou, Christos H.: Computational complexity. Addison-
Wesley, 1994. – URL https://dl.acm.org/citation.cfm?id=1074100.1074233. – ISBN
978-0-201-53082-7

[Patel-Schneider and Sebastiani 2003] Patel-Schneider, Peter F. ; Sebastiani, Roberto: A
New General Method to Generate Random Modal Formulae for Testing Decision Procedures.
In: J. Artif. Intell. Res. 18 (2003), p. 351–389. – URL https://arxiv.org/pdf/1106.5261.
pdf

[Pelleau 2015] Pelleau, Marie: Abstract Domains in Constraint Programming. 1st. Am-
sterdam, The Netherlands, The Netherlands : Elsevier Science Publishers B. V., 2015. –
URL https://www.sciencedirect.com/science/book/9781785480102. – ISBN 1785480103,
9781785480102

184

http://doi.acm.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-319-24312-2_13
https://doi.org/10.1007/978-3-319-40229-1_28
https://doi.org/10.1007/978-3-319-40229-1_28
https://doi.org/10.1007/3-540-48340-3_29
https://doi.org/10.1090/S0002-9947-1944-0010555-7
https://doi.org/10.1090/S0002-9947-1944-0010555-7
http://www.aaai.org/Library/AAAI/2007/aaai07-050.php
http://www.aaai.org/Library/AAAI/2007/aaai07-050.php
https://doi.org/10.1007/978-3-540-30201-8_34
https://doi.org/10.1007/978-3-540-30201-8_34
https://dl.acm.org/citation.cfm?id=1074100.1074233
https://arxiv.org/pdf/1106.5261.pdf
https://arxiv.org/pdf/1106.5261.pdf
https://www.sciencedirect.com/science/book/9781785480102


[Petrick and Bacchus 2002] Petrick, Ronald P. A. ; Bacchus, Fahiem: A Knowledge-
Based Approach to Planning with Incomplete Information and Sensing. In: Ghallab, Malik
(Editor) ; Hertzberg, Joachim (Editor) ; Traverso, Paolo (Editor): Proceedings of the
Sixth International Conference on Artificial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France, AAAI, 2002, p. 212–222. – URL http://www.aaai.org/Library/AIPS/
2002/aips02-022.php. – ISBN 1-57735-142-8

[Plaisted and Greenbaum 1986] Plaisted, David A. ; Greenbaum, Steven: A Structure-
Preserving Clause Form Translation. In: J. Symb. Comput. 2 (1986), Nr. 3, p. 293–304. –
URL https://doi.org/10.1016/S0747-7171(86)80028-1

[Randell et al. 1992] Randell, David A. ; Cui, Zhan ; Cohn, Anthony G.: A Spatial
Logic based on Regions and Connection. In: Nebel, Bernhard (Editor) ; Rich, Charles
(Editor) ; Swartout, William R. (Editor): Proceedings of the 3rd International Conference
on Principles of Knowledge Representation and Reasoning (KR’92). Cambridge, MA, October
25-29, 1992., Morgan Kaufmann, 1992, p. 165–176. – URL http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.39.486&rep=rep1&type=pdf. – ISBN 1-55860-262-3

[dos Reis Morgado et al. 2014] Reis Morgado, António José dos ; Ignatiev, Alexey S. ;
Marques Silva, João: MSCG: Robust Core-Guided MaxSAT Solving. In: Journal on
Satisfiability Boolean Modeling and Computation 9 (2014), p. 129–134. – URL https://
satassociation.org/jsat/index.php/jsat/article/view/127

[Renz 2002] Renz, Jochen: A Canonical Model of the Region Connection Calculus. In:
Journal of Applied Non-Classical Logics 12 (2002), Nr. 3-4, p. 469–494. – URL https:
//doi.org/10.3166/jancl.12.469-494

[Renz and Ligozat 2005] Renz, Jochen ; Ligozat, Gérard: Weak Composition for Qualitative
Spatial and Temporal Reasoning. In: Beek, Peter van (Editor): Principles and Practice of
Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain,
October 1-5, 2005, Proceedings Volume 3709, Springer, 2005, p. 534–548. – URL https:
//doi.org/10.1007/11564751_40. – ISBN 3-540-29238-1

[Renz and Nebel 1999] Renz, Jochen ; Nebel, Bernhard: On the Complexity of Qualitative
Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus. In:
Artificial Intelligence 108 (1999), Nr. 1-2, p. 69–123. – URL https://doi.org/10.1016/
S0004-3702(99)00002-8

[Renz and Nebel 2001] Renz, Jochen ; Nebel, Bernhard: Efficient Methods for Qualitative
Spatial Reasoning. In: Journal of Artificial Intelligence Research 15 (2001), p. 289–318. –
URL https://doi.org/10.1613/jair.872

[Rintanen 2009] Rintanen, Jussi: Planning and SAT. In: (Biere et al. 2009), p. 483–504. –
URL https://doi.org/10.3233/978-1-58603-929-5-483. – ISBN 978-1-58603-929-5

[Robinson 1965] Robinson, John A.: A Machine-Oriented Logic Based on the Resolution
Principle. In: J. ACM 12 (1965), Nr. 1, p. 23–41. – URL http://doi.acm.org/10.1145/
321250.321253

[Robinson and Voronkov 2001] Robinson, John A. (Editor) ; Voronkov, Andrei (Editor):
Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press, 2001. – URL
https://www.sciencedirect.com/science/book/9780444508133. – ISBN 0-444-50813-9

185

http://www.aaai.org/Library/AIPS/2002/aips02-022.php
http://www.aaai.org/Library/AIPS/2002/aips02-022.php
https://doi.org/10.1016/S0747-7171(86)80028-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.486&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.486&rep=rep1&type=pdf
https://satassociation.org/jsat/index.php/jsat/article/view/127
https://satassociation.org/jsat/index.php/jsat/article/view/127
https://doi.org/10.3166/jancl.12.469-494
https://doi.org/10.3166/jancl.12.469-494
https://doi.org/10.1007/11564751_40
https://doi.org/10.1007/11564751_40
https://doi.org/10.1016/S0004-3702(99)00002-8
https://doi.org/10.1016/S0004-3702(99)00002-8
https://doi.org/10.1613/jair.872
https://doi.org/10.3233/978-1-58603-929-5-483
http://doi.acm.org/10.1145/321250.321253
http://doi.acm.org/10.1145/321250.321253
https://www.sciencedirect.com/science/book/9780444508133


Bibliography

[Rossi et al. 2006] Rossi, Francesca (Editor) ; Beek, Peter van (Editor) ; Walsh, Toby (Ed-
itor): Foundations of Artificial Intelligence. Volume 2: Handbook of Constraint Programming.
Elsevier, 2006. – URL http://www.sciencedirect.com/science/bookseries/15746526/2.
– ISBN 978-0-444-52726-4

[Roussel and Lecoutre 2009] Roussel, Olivier ; Lecoutre, Christophe: XML Representation
of Constraint Networks: Format XCSP 2.1. In: CoRR abs/0902.2362 (2009). – URL http:
//arxiv.org/abs/0902.2362

[Roussel and Manquinho 2009] Roussel, Olivier ; Manquinho, Vasco M.: Pseudo-Boolean
and Cardinality Constraints. In: (Biere et al. 2009), p. 695–733. – URL https://doi.org/
10.3233/978-1-58603-929-5-695. – ISBN 978-1-58603-929-5

[Sahlqvist 1975] Sahlqvist, Henrik: Completeness and Correspondence In The First and
Second Order Semantics For Modal Logic. 82 (1975), p. 110 – 143. – URL http://www.
sciencedirect.com/science/article/pii/S0049237X08707286. – ISSN 0049-237X

[Sakai and Nabeshima 2015] Sakai, Masahiko ; Nabeshima, Hidetomo: Construction of
an ROBDD for a PB-Constraint in Band Form and Related Techniques for PB-Solvers. In:
IEICE Transactions 98-D (2015), Nr. 6, p. 1121–1127. – URL http://search.ieice.org/
bin/summary.php?id=e98-d_6_1121

[Sakallah and Simon 2011] Sakallah, Karem A. (Editor) ; Simon, Laurent (Editor): The-
ory and Applications of Satisfiability Testing - SAT 2011 - 14th International Conference, SAT
2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings. Volume 6695. Springer, 2011. (Lec-
ture Notes in Computer Science). – URL https://doi.org/10.1007/978-3-642-21581-0. –
ISBN 978-3-642-21580-3

[Savelsbergh 1997] Savelsbergh, Martin W. P.: A Branch-and-Price Algorithm for the
Generalized Assignment Problem. In: Operations Research 45 (1997), Nr. 6, p. 831–841. –
URL https://doi.org/10.1287/opre.45.6.831

[Savický and Vomlel 2009] Savický, Petr ; Vomlel, Jirí: Triangulation Heuristics for BN2O
Networks. In: Sossai, Claudio (Editor) ; Chemello, Gaetano (Editor): Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty, 10th European Conference, ECSQARU
2009, Verona, Italy, July 1-3, 2009. Proceedings Volume 5590, Springer, 2009, p. 566–577. –
URL https://doi.org/10.1007/978-3-642-02906-6_49. – ISBN 978-3-642-02905-9

[Schmidt and Tishkovsky 2008] Schmidt, Renate A. ; Tishkovsky, Dmitry: A General
Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Frag-
ments. In: Armando, Alessandro (Editor) ; Baumgartner, Peter (Editor) ; Dowek, Gilles
(Editor): Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney,
Australia, August 12-15, 2008, Proceedings Volume 5195, Springer, 2008, p. 194–209. – URL
https://doi.org/10.1007/978-3-540-71070-7_17. – ISBN 978-3-540-71069-1

[Schmidt-Schauß and Smolka 1991] Schmidt-Schauß, Manfred ; Smolka, Gert: Attributive
Concept Descriptions with Complements. In: Artif. Intell. 48 (1991), Nr. 1, p. 1–26. – URL
https://doi.org/10.1016/0004-3702(91)90078-X

[Sebastiani and McAllester 1997] Sebastiani, Roberto ; McAllester, David: New Upper
Bounds for Satisfiability in Modal Logics the Case-study of Modal K / IRST, Trento, Italy.

186

http://www.sciencedirect.com/science/bookseries/15746526/2
http://arxiv.org/abs/0902.2362
http://arxiv.org/abs/0902.2362
https://doi.org/10.3233/978-1-58603-929-5-695
https://doi.org/10.3233/978-1-58603-929-5-695
http://www.sciencedirect.com/science/article/pii/S0049237X08707286
http://www.sciencedirect.com/science/article/pii/S0049237X08707286
http://search.ieice.org/bin/summary.php?id=e98-d_6_1121
http://search.ieice.org/bin/summary.php?id=e98-d_6_1121
https://doi.org/10.1007/978-3-642-21581-0
https://doi.org/10.1287/opre.45.6.831
https://doi.org/10.1007/978-3-642-02906-6_49
https://doi.org/10.1007/978-3-540-71070-7_17
https://doi.org/10.1016/0004-3702(91)90078-X


Citeseerx, October 1997. – Technical Report 9710-15. – URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.42.8332.

[Sebastiani and Tacchella 2009] Sebastiani, Roberto ; Tacchella, Armando: SAT Tech-
niques for Modal and Description Logics. In: (Biere et al. 2009), p. 781–824. – URL
https://doi.org/10.3233/978-1-58603-929-5-781. – ISBN 978-1-58603-929-5

[Sebastiani and Vescovi 2009] Sebastiani, Roberto ; Vescovi, Michele: Automated Rea-
soning in Modal and Description Logics via SAT Encoding: the Case Study of K(m)/ALC-
Satisfiability. In: J. Artif. Intell. Res. 35 (2009), p. 343–389. – URL https://doi.org/10.
1613/jair.2675

[Seipp and Helmert 2013] Seipp, Jendrik ; Helmert, Malte: Counterexample-Guided Carte-
sian Abstraction Refinement. In: Borrajo, Daniel (Editor) ; Kambhampati, Subbarao
(Editor) ; Oddi, Angelo (Editor) ; Fratini, Simone (Editor): Proc. of ICAPS’13, AAAI,
2013, p. 347–351. – URL http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/
view/6034. – ISBN 978-1-57735-609-7

[Selman 2004] Selman, Bart: Algorithmic Adventures at the Interface of Computer Science,
Statistical Physics, and Combinatorics. In: (Wallace 2004), p. 9–12. – URL https://doi.
org/10.1007/978-3-540-30201-8_3. – ISBN 3-540-23241-9

[Selman et al. 1992] Selman, Bart ; Levesque, Hector J. ; Mitchell, David G.: A New
Method for Solving Hard Satisfiability Problems. In: (Swartout 1992), p. 440–446. – URL
http://www.aaai.org/Library/AAAI/1992/aaai92-068.php. – ISBN 0-262-51063-4

[Simon et al. 2005] Simon, Laurent ; Le Berre, Daniel ; Hirsch, Edward A.: The SAT2002
Competition. In: Annals of Mathematics and A.I. 43 (2005), Nr. 1, p. 307–342. – URL
https://doi.org/10.1007/s10472-005-0424-6

[Sinz 2004] Sinz, Carsten: Visualizing the Internal Structure of SAT Instances (Prelim-
inary Report). In: Proceeding, Online (Editor): SAT 2004 - The Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing, 10-13 May 2004,
Vancouver, BC, Canada, Online Proceedings Volume 3569, Springer, 2004, p. 1–6. – URL
http://www.satisfiability.org/SAT04/programme/117.pdf

[Sinz and Dieringer 2005] Sinz, Carsten ; Dieringer, Edda-Maria: DPvis - A Tool to
Visualize the Structure of SAT Instances. In: Bacchus, Fahiem (Editor) ; Walsh, Toby
(Editor): Theory and Applications of Satisfiability Testing, 8th International Conference, SAT
2005, St. Andrews, UK, June 19-23, 2005, Proceedings Volume 3569, Springer, 2005, p. 257–
268. – URL https://doi.org/10.1007/11499107_19. – ISBN 3-540-26276-8

[Sioutis and Condotta 2014] Sioutis, Michael ; Condotta, Jean-François: Tackling Large
Qualitative Spatial Networks of Scale-Free-Like Structure. In: Likas, Aristidis (Editor) ;
Blekas, Konstantinos (Editor) ; Kalles, Dimitris (Editor): Artificial Intelligence: Methods
and Applications - 8th Hellenic Conference on AI, SETN 2014, Ioannina, Greece, May 15-17,
2014. Proceedings Volume 8445, Springer, 2014, p. 178–191. – URL https://doi.org/10.
1007/978-3-319-07064-3_15. – ISBN 978-3-319-07063-6

[Sioutis et al. 2016] Sioutis, Michael ; Condotta, Jean-François ; Koubarakis, Mano-
lis: An Efficient Approach for Tackling Large Real World Qualitative Spatial Networks.

187

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8332
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8332
https://doi.org/10.3233/978-1-58603-929-5-781
https://doi.org/10.1613/jair.2675
https://doi.org/10.1613/jair.2675
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6034
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6034
https://doi.org/10.1007/978-3-540-30201-8_3
https://doi.org/10.1007/978-3-540-30201-8_3
http://www.aaai.org/Library/AAAI/1992/aaai92-068.php
https://doi.org/10.1007/s10472-005-0424-6
http://www.satisfiability.org/SAT04/programme/117.pdf
https://doi.org/10.1007/11499107_19
https://doi.org/10.1007/978-3-319-07064-3_15
https://doi.org/10.1007/978-3-319-07064-3_15


Bibliography

In: International Journal on Artificial Intelligence Tools 25 (2016), Nr. 2, p. 1–33. – URL
https://doi.org/10.1142/S0218213015500311

[Sioutis and Koubarakis 2012] Sioutis, Michael ; Koubarakis, Manolis: Consistency of
Chordal RCC-8 Networks. In: IEEE 24th International Conference on Tools with Artificial
Intelligence, ICTAI 2012, Athens, Greece, November 7-9, 2012, IEEE Computer Society, 2012,
p. 436–443. – URL https://doi.org/10.1109/ICTAI.2012.66. – ISBN 978-1-4799-0227-9

[Smullyan 1966] Smullyan, Raymond M.: Trees and Nest Structures. In: J. Symb. Log. 31
(1966), Nr. 3, p. 303–321. – URL https://doi.org/10.2307/2270448

[Soare 2016] Soare, Robert I.: Turing Computability - Theory and Applications. Springer,
2016 (Theory and Applications of Computability). – URL https://doi.org/10.1007/
978-3-642-31933-4. – ISBN 978-3-642-31932-7

[Soh and Inoue 2010] Soh, Takehide ; Inoue, Katsumi: Identifying Necessary Reactions in
Metabolic Pathways by Minimal Model Generation. In: Coelho, Helder (Editor) ; Studer,
Rudi (Editor) ; Wooldridge, Michael (Editor): ECAI 2010 - 19th European Conference
on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings Volume 215,
IOS Press, 2010, p. 277–282. – URL http://www.booksonline.iospress.nl/Content/View.
aspx?piid=17757. – ISBN 978-1-60750-605-8

[Sörensson and Biere 2009] Sörensson, Niklas ; Biere, Armin: Minimizing Learned Clauses.
In: (Kullmann 2009), p. 237–243. – URL https://doi.org/10.1007/978-3-642-02777-2_
23. – ISBN 978-3-642-02776-5

[Stallman and Sussman 1977] Stallman, Richard M. ; Sussman, Gerald J.: Forward
Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Cir-
cuit Analysis. In: Artificial Intelligence 9 (1977), Nr. 2, p. 135–196. – URL https:
//doi.org/10.1016/0004-3702(77)90029-7

[Stevenson et al. 2008] Stevenson, Lynn ; Britz, Katarina ; Hörne, Tertia: KT and
S4 Satisfiability in a Constraint Logic Environment. In: Ho, Tu B. (Editor) ; Zhou,
Zhi-Hua (Editor): PRICAI 2008: Trends in Artificial Intelligence, 10th Pacific Rim In-
ternational Conference on Artificial Intelligence, Hanoi, Vietnam, December 15-19, 2008.
Proceedings Volume 5351, Springer, 2008, p. 370–381. – URL https://doi.org/10.1007/
978-3-540-89197-0_35. – ISBN 978-3-540-89196-3

[Stockmeyer 1976] Stockmeyer, Larry J.: The Polynomial-Time Hierarchy. In: Theor.
Comput. Sci. 3 (1976), Nr. 1, p. 1–22. – URL https://doi.org/10.1016/0304-3975(76)
90061-X

[Sutcliffe and Suttner 1997] Sutcliffe, Geoff ; Suttner, Christian B.: The CADE-13
ATP System Competition. In: J. Autom. Reasoning 18 (1997), Nr. 2, p. 137–138. – URL
https://doi.org/10.1023/A:1005839515219

[de Swart 1998] Swart, Harrie C. M. de (Editor): Automated Reasoning with Analytic Tableaux
and Related Methods, International Conference, TABLEAUX ’98, Oisterwijk, The Nether-
lands, May 5-8, 1998, Proceedings. Volume 1397. Springer, 1998. (Lecture Notes in Computer
Science). – URL https://doi.org/10.1007/3-540-69778-0. – ISBN 3-540-64406-7

188

https://doi.org/10.1142/S0218213015500311
https://doi.org/10.1109/ICTAI.2012.66
https://doi.org/10.2307/2270448
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1007/978-3-642-31933-4
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17757
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17757
https://doi.org/10.1007/978-3-642-02777-2_23
https://doi.org/10.1007/978-3-642-02777-2_23
https://doi.org/10.1016/0004-3702(77)90029-7
https://doi.org/10.1016/0004-3702(77)90029-7
https://doi.org/10.1007/978-3-540-89197-0_35
https://doi.org/10.1007/978-3-540-89197-0_35
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1023/A:1005839515219
https://doi.org/10.1007/3-540-69778-0


[Swartout 1992] Swartout, William R. (Editor): Proceedings of the 10th National Conference
on Artificial Intelligence. San Jose, CA, July 12-16, 1992. AAAI Press / The MIT Press, 1992.
– URL http://www.aaai.org/Conferences/AAAI/aaai92.php. – ISBN 0-262-51063-4

[Szczepanski 2012] Szczepanski, Nicolas: Méthodes Efficaces de Raisonnement en
Logique Modale. In: Master Thesis (2012). – URL http://www.cril.univ-artois.fr/
~szczepanski/publi_en.html

[Tallon et al. 2004] Tallon, Jean-Marc ; Vergnaud, Jean-Christophe ; Zamir, Shmuel:
Communication among Agents: A Way to Revise Beliefs in KD45 Kripke Structures. In:
Journal of Applied Non-Classical Logics 14 (2004), Nr. 4, p. 477–500. – URL https://doi.
org/10.3166/jancl.14.477-500

[Tentrup 2017] Tentrup, Leander: On Expansion and Resolution in CEGAR Based QBF
Solving. In: Majumdar, Rupak (Editor) ; Kuncak, Viktor (Editor): Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II Volume 10427, Springer, 2017, p. 475–494. – URL https:
//doi.org/10.1007/978-3-319-63390-9_25. – ISBN 978-3-319-63389-3

[Tsarkov and Horrocks 2006] Tsarkov, Dmitry ; Horrocks, Ian: FaCT++ Description
Logic Reasoner: System Description. In: Furbach, Ulrich (Editor) ; Shankar, Natarajan
(Editor): Automated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings Volume 4130, Springer, 2006, p. 292–297. – URL
https://doi.org/10.1007/11814771_26. – ISBN 3-540-37187-7

[Tseitin 1983] Tseitin, G. S.: On the Complexity of Derivation in Propositional Calculus.
In: Auto. of Reaso. 2: Classical Papers on Computational Logic 1967–1970. Springer, 1983,
p. 466–483. – URL http://www.decision-procedures.org/handouts/Tseitin70.pdf

[Turing 1938] Turing, Alan M.: Systems of Logic Based on Ordinals, Princeton University,
NJ, USA, Ph.D. thesis, 1938. – URL https://doi.org/10.1112/plms/s2-45.1.161

[Turing 1950] Turing, Alan M.: Computing Machinery and Intelligence. In: Mind 59 (1950),
Nr. 236, p. 433–460. – URL http://www.jstor.org/stable/2251299. – ISSN 00264423,
14602113

[Urquhart 1981] Urquhart, Alasdair: Decidability and the finite model property. In: J. Philo-
sophical Logic 10 (1981), Nr. 3, p. 367–370. – URL https://doi.org/10.1007/BF00293428

[Van Benthem 2010] Van Benthem, Johan: Modal Logic For Open Minds. Volume 1. Center
for the Study of Language and Inf, 2010. – 350 p. – URL http://fenrong.net/teaching/
mljvb.pdf. – ISBN 978-1575865980

[Voronkov 1999] Voronkov, Andrei: K

K

: A Theorem Prover For K. In: Ganzinger, Harald
(Editor): Automated Deduction - CADE-16, 16th International Conference on Automated
Deduction, Trento, Italy, July 7-10, 1999, Proceedings Volume 1632, Springer, 1999, p. 383–
387. – URL https://doi.org/10.1007/3-540-48660-7_35. – ISBN 3-540-66222-7

[Wallace 2004] Wallace, Mark (Editor): Principles and Practice of Constraint Programming
- CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 - October
1, 2004, Proceedings. Volume 3258. Springer, 2004. (Lecture Notes in Computer Science). –
URL https://doi.org/10.1007/b100482. – ISBN 3-540-23241-9

189

http://www.aaai.org/Conferences/AAAI/aaai92.php
http://www.cril.univ-artois.fr/~szczepanski/publi_en.html
http://www.cril.univ-artois.fr/~szczepanski/publi_en.html
https://doi.org/10.3166/jancl.14.477-500
https://doi.org/10.3166/jancl.14.477-500
https://doi.org/10.1007/978-3-319-63390-9_25
https://doi.org/10.1007/978-3-319-63390-9_25
https://doi.org/10.1007/11814771_26
http://www.decision-procedures.org/handouts/Tseitin70.pdf
https://doi.org/10.1112/plms/s2-45.1.161
http://www.jstor.org/stable/2251299
https://doi.org/10.1007/BF00293428
http://fenrong.net/teaching/mljvb.pdf
http://fenrong.net/teaching/mljvb.pdf
https://doi.org/10.1007/3-540-48660-7_35
https://doi.org/10.1007/b100482


Bibliography

[Wang et al. 2007] Wang, Chao ; Gupta, Aarti ; Ivancic, Franjo: Induction in CEGAR for
Detecting Counterexamples. In: Formal Methods in Computer-Aided Design, 7th International
Conference, FMCAD 2007, Austin, Texas, USA, November 11-14, 2007, Proceedings, IEEE
Computer Society, 2007, p. 77–84. – URL https://doi.org/10.1109/FAMCAD.2007.21. –
ISBN 0-7695-3023-0

[Weidenbach et al. 2009] Weidenbach, Christoph ; Dimova, Dilyana ; Fietzke, Arnaud ;
Kumar, Rohit ; Suda, Martin ; Wischnewski, Patrick: SPASS Version 3.5. In: Schmidt,
Renate A. (Editor): Automated Deduction - CADE-22, 22nd International Conference on Au-
tomated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings Volume 5663, Springer,
2009, p. 140–145. – URL https://doi.org/10.1007/978-3-642-02959-2_10. – ISBN 978-
3-642-02958-5

[Westphal et al. 2009] Westphal, Matthias ; Wölfl, Stefan ; Gantner, Zeno: GQR: A Fast
Solver for Binary Qualitative Constraint Networks. In: Benchmarking of Qualitative Spatial
and Temporal Reasoning Systems, Papers from the 2009 AAAI Spring Symposium, Technical
Report SS-09-02, Stanford, California, USA, March 23-25, 2009, AAAI, 2009, p. 51–52. –
URL http://www.aaai.org/Library/Symposia/Spring/2009/ss09-02-011.php

[Zhang 1997] Zhang, Hantao: SATO: An Efficient Propositional Prover. In: McCune,
William (Editor): Automated Deduction - CADE-14, 14th International Conference on Auto-
mated Deduction, Townsville, North Queensland, Australia, July 13-17, 1997, Proceedings Vol-
ume 1249, Springer, 1997, p. 272–275. – URL https://doi.org/10.1007/3-540-63104-6_28.
– ISBN 3-540-63104-6

[Zhang et al. 2001] Zhang, Lintao ; Madigan, Conor F. ; Moskewicz, MatthewW. ; Malik,
Sharad: Efficient Conflict Driven Learning in Boolean Satisfiability Solver. In: Ernst, Rolf
(Editor): Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2001, San Jose, CA, USA, November 4-8, 2001, IEEE Computer Society,
2001, p. 279–285. – URL https://doi.org/10.1109/ICCAD.2001.968634. – ISBN 0-7803-
7249-2

190

https://doi.org/10.1109/FAMCAD.2007.21
https://doi.org/10.1007/978-3-642-02959-2_10
http://www.aaai.org/Library/Symposia/Spring/2009/ss09-02-011.php
https://doi.org/10.1007/3-540-63104-6_28
https://doi.org/10.1109/ICCAD.2001.968634


191



192



Résumé

Ces quinze dernières années, des progrès spectaculaires dans le cadre du test de cohérence de
formules propositionnelles (SAT) ont permis à une grande variété de problèmes de satisfaction
et d’optimisation d’être traités à l’aide d’un moteur de résolution générique, le solveur SAT. Au
delà des seuls solveurs SAT, de nombreux cadres utilisant des techniques issues du monde SAT
ont pu bénéficier de ces améliorations : on citera par exemple SAT modulo Theories (SMT)
ou Answer Set Programming (ASP). Cependant, il existe encore de nombreux formalismes pour
lesquels le test de cohérence ne passe pas à l’échelle. C’est le cas par exemple dès que l’on rajoute
des opérateurs modaux dans une formule logique. Le but de cette thèse est de concevoir un outil
de résolution efficace pour tester la cohérence de formules logiques dans le cadre de la logique
modale, problème que nous appellerons Modal SAT. Une première approche sera d’étudier les
diverses façons de réduire le problème Modal SAT à un problème pour lequel il existe des solveurs
efficaces en pratique : par exemple SAT, SMT ou ASP. Une autre approche sera de concevoir un
solveur “ad hoc” pour Modal SAT en adaptant les principes et techniques des meilleurs solveurs
cités plus haut. L’évaluation de solveurs requiert un ensemble varié de benchmarks, idéalement
représentant des problèmes Modal SAT réels (par opposition aux problèmes générés aléatoirement
ou aux exemples académiques). Un aspect important de la thèse sera de collecter et classer les
problèmes Modal SAT disponibles dans la communauté et d’en créer de nouveaux.

Mots-clés: logiques modales, évaluation, raisonnement automatique

Abstract

In the past fifteen years, dramatic improvements in the context of testing propositional for-
mulas consistency (SAT) have enabled a wide variety of satisfaction and optimization problems to
be processed using a generic resolution engine: the SAT solver. Beyond SAT solvers, many fields
using SAT world technics have benefited from these improvements: for example SAT modulo
Theories (SMT) or Answer Set Programming (ASP). However, there are still many formalisms
for which the coherence test does not pass the scale. This is the case for example when we add
modal operators in a logical formula. The aim of this thesis is to design an effective resolution
tool to test the consistency of logical formulas within modal logic, problems that we will call
Modal SAT. One approach is to study the various ways to reduce the problem to a SAT problem
for which there are effective solvers in practice: for example SAT, SMT or ASP. Another ap-
proach will be to design an “ad hoc” solver for Modal SAT adapting the principles and technics
of the best solvers mentioned above. Checking solvers requires a diverse set of benchmarks,
ideally representing actual Modal SAT problems (as opposed to randomly generated problems
or academic examples). An important aspect of the thesis will be to collect and classify Modal
SAT problems available in the community and create new ones.

Keywords: modal logics, benchmarks, automated reasoning

193



194



195


	Couverture
	Dédicace
	Contents
	General Introduction
	I Preliminaries
	Complexity Theory
	Computational Complexity
	Best, Worst and Average Case
	Different Types of Algorithm

	Computational Problems
	Decision Problem
	Function Problem
	Optimisation Problem
	Complement of a Decision Problem

	Complexity classes
	Complement of a Complexity Class
	Relations Among Complexity Classes
	Polynomial Reductions and Completeness
	Polynomial Hierarchy

	Conclusion

	Logics
	Propositional Logic
	Syntax
	Semantics
	Normal Forms

	Modal Logics
	Syntax
	Axiomatic Theory
	Semantics


	Decision Algorithms and Benchmarks
	Modern SAT Solvers
	Resolution and Unit Propagation
	Conflict Analysis and Clause Learning
	Choice of variable and choice of polarity
	Latest features of modern SAT solvers

	Algorithms for Modal Logics
	Tableaux methods
	Translation-based methods
	Other methods

	Structural Impact Of The Benchmarks
	Random Benchmarks
	Crafted Benchmarks



	II Contributions
	The NP Modal Logics Satisfiability Problems
	How To Deal With Modal Logic Formulas in K5
	A New Upper-Bound For the Size Of The Kripke Models
	A Set Of Simplifications For K5

	A SAT Translation Of The Problems
	Translation function `tr'
	Caching

	Experimental Evaluation of the SAT-Based Approach
	Results Obtained In Logic WorkBench (LWB)
	Results Obtained In TANCS-2000-MQBF
	Results Obtained In 3CNF_KSP


	The Minimal K5 Satisfiability Problem
	The Minimal K5 Satisfiability Problem
	How To Solve The MinK5 Satisfiability Problem
	An Assumption-Based Translation
	Cardinality Optimality Equals Subset Optimality
	Only Unsatisfiable Cores Size Matters

	Experiment For The MinK5 Satisfiability Problem
	Results On The Benchmarks From The Literature
	Results On A Proposed Set Of Benchmarks With Structures
	General Analysis Of The Results Obtained


	RECAR: An Abstraction Refinement Procedure
	Abstraction Functions
	Over-Abstraction
	Under-Abstraction

	Counter-Example Guided Abstraction Refinement
	CEGAR-over
	CEGAR-under
	CEGAR-under For RCC8

	Recursive Explore and Check Abstraction Refinement
	RECAR-over
	RECAR-under

	Explanation of How The Abstractions Are Called

	The Modal Logic K Satisfiability Problem
	RECAR Approach For The Modal Logic K
	Over-Abstraction
	Under-Abstraction
	MoSaiC: A RECAR-over Approach

	Extensions Of MoSaiC For The Other Modal Logics
	How To Encode The Axioms
	Axiom-Aware Under-Abstraction
	Space-Aware Over-Abstraction
	Chain of Modalities Simplifications

	Experimental Evaluation Of MoSaiC
	Experimental Evaluation of MoSaiC 1.0
	Experimental Evaluation of MoSaiC 2.0
	General Analysis Of The Results Obtained



	Conclusion And Perspectives
	Publications During The Thesis
	Bibliography
	Résumé
	Abstract

