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simplement la fin du premier chapitre dans le livre de nos collaborations.

Gabor Lugosi et Sara van de Geer m’ont fait l’immense honneur d’accepter de rapporter cette
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sans toi je n’aurais peut être jamais poussé la porte de la recherche. Cristina, pour ta disponibilité
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Résumé substantiel

Le monde est actuellement en pleine mutation. Beaucoup de transformations majeures des

dernières décennies sont directement ou indirectement liées à l’apprentissage statistique. Dans

divers secteurs, dont la santé, les sciences, l’éducation et la publicité, les statistiques permettent de

résoudre des problèmes qui étaient jusqu’alors inatteignables. Cependant, beaucoup de méthodes

statistiques ont été imaginées dans un cadre ancien, où les bases de données étaient de petites tailles.

La grande dimension, maintenant omniprésente, apporte de nouveaux challenges. Premièrement, il

essentiel de verifier si une méthode est “scalable”, c’est-à-dire, applicable à des jeux de données de

grandes tailles. Ensuite, les bases de données de grandes dimensions sont susceptibles d’être très

corrompues. Dans ce cas, il est essentiel de construire une procédure “robuste“, c’est-à-dire fiable

lorsque des données aberrantes peuvent contaminer l’information disponible. Plus généralement, la

robustesse peut être défini comme la résistance d’une procédure aux hypothèses. Par example, il

est souvent commun de supposer que les données sont toutes indépendantes et identiquement dis-

tribuées. Que se passe t-il si certaines données sont corrompues ? D’autre part, le cadre théorique

de l’apprentissage statistique est basé sur la théorie des probabilités. Les données sont supposées

aléatoires. Que ce passe t-il lorsque la variance des données est grande ? Peut-on tout de même

en tirer une certaine information ? L’objectif de cette thèse est d’apporter une réponse aux ques-

tions précédentes. Nous développons et étudions les propriétés théoriques de différents estimateurs

robustes.

Soit (X, Y ) ∈ X×Y un vecteur aléatoire distribué selon P , supposée inconnue. Soit F une classe

de prédicteurs, c’est-à-dire, une classe de fonctions mesurables f : X 7→ Y . L’objectif principal de

l’apprentissage statistique est de prédire la sortie Y à partir de f(X), pour f dans F . Pour mesurer

la qualité de prédiction d’un prédicteur f , nous introduisons une fonction de perte ` : Y ×Y 7→ R+

où `(f(X), Y ) quantifie l’erreur de prédire f(X) alors que le vrai label est Y . Une règle naturelle

est de chercher la fonction f ∗F dans F minimisant le risque intégré, c’est-à-dire l’erreur moyenne de

`(f(X), Y ) par rapport à la distribution P

f ∗F ∈ argmin
f∈F

RP (f), où RP (f) = E(X,Y )∼P
[
`
(
f(X), Y

)]
.

P étant inconnue, l’oracle f ∗F ne peut être seulement qu’approximé. Pour cela le statisticien dispose

d’un jeu de données D = (Xi, Yi)i∈J1,nK de n observations supposées indépendantes et identiquement

distribuées selon P . Une approche très répandue, consiste à remplacer le risque par sa version

empirique et la minimiser dans F . Cela se nomme la minimisation du risque empirique

f̂n ∈ argmin
f∈F

Rn(f), où Rn(f) =
1

n

n∑
i=1

`
(
f(Xi), Yi

)
.
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La principale contribution de cette thèse est la demonstration mathématique que, lorsque la fonc-

tion de perte ` est Lipschitz, le minimiseur du risque empirique f̂n est robuste au “bruit“ du

problème Y − f ∗F(X) et à un nombre non négligeable de données aberrantes contaminant les vari-

ables aléatoires (Yi)i∈J1,nK. L’analyse est étendue au minimiseur du risque empirique pénalisé, très

répandu chez les praticiens (elastic-net, support-vector-machine, Lasso). Nous développons un nou-

vel argument d’homogénéité, permettant de localiser l’analyse autour de la solution que l’on cherche

à approximer: l’oracle f ∗F . Notre approche est générale et permet d’obtenir des résultats optimaux

pour de nombreux problèmes bien connues en statistiques.

Cependant le minimiseur du risque empirique n’est pas fiable lorsque la classe de prédicteurs F
n’est pas bornée. Lorsque F et ` ne sont pas bornées, il est nécessaire d’imposer de fortes conditions

sur l’enveloppe {`(f(X), Y ), f ∈ F} et la distribution P des données. Ces hypothèses sont trop

contraignantes et souvent non vérifiées en pratique.

Pour relacher ces hypothèses sur l’enveloppe {`(f(X), Y ), f ∈ F}, nous étudions les estimateurs

minmax-Median Of Means. Soit K un entier tel que K divise n (pour simplifier). Soit B1, · · · , BK

une partition de J1, nK en K blocks de même taille n/K. Pour tout k dans J1, KK et f ∈ F , soit

PBk`f = (K/n)
∑

i∈Bk `(f(Xi), Yi) le risque empririque sur le block Bk. L’estimateur minmax-MOM

est défini comme

f̂MOM
K ∈ argmin

f∈F
sup
g∈F

Med
(
PB1(`f − `g), · · · , PBK (`f − `g)

)
,

où Med(·) est l’opérateur médiane. Ces estimateurs ne nécessitent aucune hypothèse sur l’enveloppe

{`(f(X), Y ), f ∈ F}. De plus, par construction, ils sont également robustes à K/2 outliers contam-

inant les labels (Yi)i∈J1,nK, les entrées (Xi)i∈J1,nK, ou les deux à la fois.

L’argument d’homogénéité, applicable pour le minimiseur du risque empirique et l’esimateur

minmax-MOM, permet d’établir des vitesses rapides, c’est-à-dire de l’ordre O(1/n), où n est le

nombre d’observations. De telles vitesses ne sont pas toujours atteignables. Pour cela, nous intro-

duisons le concept d’hypothèse de Bernstein locale. Moralement, la condition de Bernstein signifie

que la variance du problème n’est pas trop grande. Notre analyse permet d’établir des résultats

sous une hypothèse de Bernstein, seulement locale. Cette condition relâche l’hypothèse de Bernstein

globale et permet d’obtenir des vitesses rapides pour des problèmes où la variance est importante, ce

qui n’était pas le cas des analyses précédentes. Si la distribution du bruit est symétrique et “met un

peu de masse“ autour de 0, alors l’hypothèse de Bernstein locale est vérifiée. Par example, lorsque

le bruit est de Cauchy. De plus, notre analyse est simple et permet d’éviter tous les arguments de

“peeling”, normalement utilisés.

Nous utilisons également des arguments de localisation pour étudier des problèmes d’interpolations.

En apprentissage statistique, on dit qu’un estimateur f̂n interpole, lorsque ce dernier prédit parfaite-
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ment sur un jeu d’entrainement, c’est-à-dire f̂n(Xi) = Yi pour n = 1, · · · , n. En grande dimension,

beaucoup de fonctions peuvent interpoler, et certaines d’entre elles sont bonnes. Dans cette thèse,

nous étudions le modèle linéaire Gaussien. Soient (Xi, Yi)i∈J1,nK des vecteurs aléatoires indépendants

et vérifiant

Yi = XT
i β
∗ + ξi ,

où Xi ∼ N (0,Σ), ξi ∼ N (0, σ2), pour σ > 0 et β∗ ∈ Rp. La dimension p est supposé plus grande que

la taille de l’échantillon n. On se place donc dans le cadre de la grande dimension. Nous montrons

que l’estimateur interpolant les données de plus petite norme

β̂n = argmin
{
‖β‖2 : β ∈ Rp,

〈
β,Xi

〉
= Yi, i = 1 · · · , n

}
,

est consistant et atteint même des vitesses rapides sous certaines hypothèses sur le spectre de la

matrice de variance-covariance Σ et le bruit σ. Cette méthode souligne qu’une analyse générale,

comme pour le minimiseur du risque empirique, peut être imaginée pour les solutions interpolantes.

L’idée est simplement de considérer des estimateurs interpolant les données avec une certaines

structure, et d’utiliser cette structure pour localiser les estimateurs.
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Chapter 1

Introduction

The purpose of this introduction is to describe the main concepts developed in this thesis:

Localization arguments (Section 1.3). We present general techniques to obtain fast rates of

convergence. The main idea consists in localizing the analysis around one function of interest,

namely, the oracle.

Regularization (Section 1.4). Regularizations are techniques used to reduce the error and

reduce the overfitting phenomenon.

Robustness (Section 1.6).Robustness in learning can be defined as “the insensitivity to small

deviations from the assumptions“ (Huber and Ronchetti, 2011). The goal consists in building

and analysing estimators under as few assumptions as possible.

Figure 1.1 summarizes the key areas and their interplay in this thesis.

Chapter 2 Chapter 2 Chapter 3 Chapter 4 Chapter 5

Localization ar-

guments
X X X X X

Regularization X X X X

Robustness X X X X

Table 1.1: Schematic interplay of localization arguments, regularization, and robustness in the main

chapters of this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Statistical learning

Machine learning (ML) is a scientific domain at the interface between applied mathematics, opti-

mization and computer science. It focuses on the study of algorithms and statistical models that

computer systems use to perform a specific task. The process of learning begins with observations

or data, such as examples, direct experience, or instruction, in order to look for patterns in data and

make better decisions in the future based on the examples that we provide. ML has various applica-

tions such as email filtering, recommendation systems, natural language processing, bio-informatics,

economics, computer vision or even fraud detection. For example, based on a dataset of items and

ratings, a recommendation system seeks to predict the “rating” or “preference” a user would give

to an new item given its previous preferences. Another example is image classification. The learner

received different types of labeled images (dogs or cats for instance). Given this dataset, the goal

is to automatically label a new image occurring in the process. This is an example of supervized

Learning. On the other hand, in community detection, the learner aims to identify communities

interacting with each other. This is an example of unsupervised learning.

The main focus of this thesis is supervized learning. More precisely, we will be interested in robust

supervized learning. Although robust unsupervised learning also exists, it is out the scope of this

thesis.

Some definitions In this chapter, we present and use many tools borrowed from empirical pro-

cesses. Here, are some very useful definitions and notations that we will use all along this chapter.

Definition 1.1: Empirical measure, empirical process

Let X,X1, · · · , Xn be independent random variables taking values in a measurable space (E, E)

with common distribution P . The empirical measure based on the sample (X1, · · · , Xn) is

defined as

Pn :=
1

n

n∑
i=1

δXi ,

where δx denotes the Dirac’s measure. For a class F of measurable functions f : E 7→ R we

write

Pf = E[f(X)] and Pnf =
1

n

n∑
i=1

f(Xi) .

The empirical process indexed by F is defined by {(P − Pn)(f) : f ∈ F}, see (Van Der Vaart

and Wellner, 1996).
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In supervized machine learning (Vapnik, 2000; Friedman et al., 2001; Shalev-Shwartz and Ben-

David, 2014; Bishop, 2006), the goal is to predict an output Y in Y based on features X in X ,

that is to say, to understand the relationship between an ouput Y and inputs X. The set Y can be

either finite (typically {0, 1}) or infinite (Y ⊂ R), leading to two important problems in supervized

machine learning:

• Classification, when Y is finite. If |Y| = 2, where | · | denotes the cardinality of Y , the

problems is binary classification.

• Regression, when Y is a continuous subset of R.

Typically X = Rp, where p is large and denotes the dimension of the problem. For example:

• For binary classification: X = Rp can correspond to a set of images encoded with their p

pixels and Y = {0, 1}, if the label is 1, the image is labelled as a dog, otherwise as a cat.

• For a regression problem, X can summarize socioeconomic factors and Y = [0, 100] depicts

the score of the left-wing during the next presidential election.

The output Y ∈ Y is not always a deterministic function of an input X ∈ X due to random factors

such as measurement errors. Thus, the couple (X, Y ) is modeled as a random variable with a

certain unknown distribution P . Let PX denote the marginal distribution of X. The goal becomes

to predict the output Y with the input X given that (X, Y ) is sampled from P . To do so, we define

a predictor as a measurable function f : X 7→ Y . The random variable f(X) serves to predict Y .

The set of possible predictors (i.e measurable functions from X to Y) is denoted by F(X ,Y). To

measure the quality of a predictor f in F(X ,Y), we introduce a loss function

` : Y × Y 7→ R+ ,

such that `(f(X), Y ) measures the error of predicting f(X) while the true answer is Y . It is always

assumed that `(y, y) = 0, for every y ∈ Y . Two important examples are:

• Example of classification: let Y = {−1, 1} and `(y, y′) = 1{y 6= y′}. Thus, `(y, y′) = 1 if

y 6= y′ and `(y, y′) otherwise. This loss function is often replaced by convex surrogates for

computation purposes such as the Hinge loss, `(f(X), Y ) = max(0, 1−Y f(X)) or the logistic

loss, `(f(X), Y ) = log(1 + exp(−Y f(X))).

• Example of regression: let Y be a continuous subset of R and `(y, y′) = (y − y′)2/2. It is also

called least squares regression.

Given a random couple (X, Y ) with distribution P , the quality of a prediction function is measured

by its risk, or generalization error, defined as the averaged loss under the distribution P of the

observations:

R(f) = E(X,Y )∼P [`(f(X), Y )] .
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Adopting the notations in Definition 1.1, we also write R(f) = P`f . The optimal predictor f ∗∗P is

defined, when it exists, as the minimizer of the risk over the set of all measurable functions F(X ,Y)

f ∗∗P ∈ argmin
f∈F(X ,Y)

R(f) .

Although the function f ∗∗P may not exist, it does for standard loss functions used in practice.

In this case, f ∗∗P is called a Bayes predictor. For example, in regression with the square loss,

f ∗∗P (X) = E(X,Y )∼P [Y |X]. However, the distribution P being unknown, the Bayes predictor f ∗∗P

is also unknown and must be approximated. To do so, a training dataset of n independent and

indentically observations D = (Xi, Yi)i∈J1,nK in (X ,Y)n with the same distribution P as (X, Y ), is

given. One would like to use the dataset D to predict the output Y associated with the input X.

We can formalize the problem through the notion of learning rule Z : ∪∞n=1(X × Y)n 7→ F(X ,Y)

defined as a measurable function that maps the set of observations to an estimator f̂ . Note that

the observations (Xi, Yi)i∈J1,nK are random. Consequently, the predictor f̂ = Z
(
(Xi, Yi)i∈J1,nK

)
and

its risk are also random. One of our main goal, is to find learning rules with a risk close to the one

of f ∗∗P with high probability. In a non informative way, we search for learning rules such that with

large probability R(Z
(
(Xi, Yi)i∈J1,nK

)
≈ R(f ∗∗P ). Such results can also be derived in expectation

E(Xi,Yi)i∈J1,nK∼P⊗nR(Z
(
(Xi, Yi)i∈J1,nK

)
≈ R(f ∗∗P ) .

In this thesis, we propose results holding with exponentially large probability. In fact, it turns out

that such results often imply bounds in expectation (see Section 1.2.2 for an example).

1.2 Empirical Risk Minimization (ERM)

1.2.1 Definition and properties

Since the risk R(·) is unknown, the most common and wide-spread learning rule consists in replacing

the expectation with respect to P by the empirical measure and minimize it. This method is known

as Empirical Risk Minimization (ERM) and is defined as

Z
(
(Xi, Yi)i∈J1,nK

)
∈ argmin

f∈F(X ,Y)

Rn(f) with Rn(f) =
1

n

n∑
i=1

`(f(Xi), Yi) .

Adopting the notations in Definition 1.1 we write Rn(f) = Pn`f . This natural idea dates back to

works of Gauss in the early 19th-century who introduced the least-squares estimator, which is the

ERM for linear predictors with the square loss function. Many important methods of statistical

estimation such as maximum likelihood or more general M -estimation (Van de Geer, 2000) are

versions of empirical risk minimization. The general theory of empirical risk minimization began

with the works of Vapnik and Chervonenkis (Vapnik, 2000) in the late 1970s and the early 1980s.

Their main idea was to relate the quality of prediction of the empirical risk minimizer with the
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accuracy of approximation of the true distribution P by it empirical counterpart Pn, uniformly over

a well-chosen class of functions. Their approach necessitates a uniform control the empirical process

{(P −Pn)(f), f ∈ F}, for F a well-chosen class of functions (see below in this section). The authors

introduced a number of natural and important measures of complexity of class of functions, such

as entropy and VC-dimension (VC standing for Vapnik-Chervonenkis ).

This intuitive learning rules raises a natural question: how does a minimizer of the empirical

risk Rn performs, that is, how does its risk behave compared with the one of f ∗∗P ? Although a

prediction rule works well on observed points, it does not guarantee that its risk is small. Indeed,

the set of all measurable functions is very large, and it is easy to find a prediction function f such

that f(Xi) = Yi for every i = 1, · · · , n. Such a predictor f is a minimizer of the empirical risk.

However, fitting perfectly the dataset yields in general to poor generalization properties (Shalev-

Shwartz and Ben-David, 2014), a phenomenon known as over-fitting. A standard tool to avoid such

pathological situations is to use regularization methods. There are two equivalent formulations.

• Restriction to a small class of functions: let F ⊂ F(X ,Y) be a class of functions, large

enough to reasonably approximate any measurable function, but not too large to avoid the

over-fitting phenomenon. The minimization of the empirical risk is restricted to the class of

functions F
f̂F ∈ argmin

f∈F
Pn`f .

• Introduction of a penalization: Let Ψ : F(X ,Y) 7→ R+ be a function penalizing the least

regular measurable functions and λ > 0. We define

f̂λ ∈ argmin
f∈F(X ,Y)

{Pn`f + λΨ(f)} .

Figure 1.1: Risk decomposition

Since these two approaches are equiv-

alent, we will focus on the first one, when

the minimization of the empirical risk is

restricted to a sub-class of measurable

functions F . Let f ∗F be the minimizer of

the risk over F .

f ∗F ∈ argmin
f∈F

R(f) .

With these definitions in mind, we have

R(f̂F) ≥ R(f ∗F) ≥ R(f ∗P ) .

Let R(f̂F) − R(f ∗∗P ) be the excess risk.

This quantity is always non-negative and the smaller it is, the better f̂F predicts. The excess
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risk can be decomposed in two terms: the estimation error and approximation error.

R(f̂F)−R(f ∗∗P ) = R(f̂F)−R(f ∗F)︸ ︷︷ ︸
Estimation error

+R(f ∗F)−R(f ∗∗P )︸ ︷︷ ︸
Approximation error

.

We illustrate this error decomposition in Figure 1.1. The estimation error comes from the fact that

f̂F minimizes the empirical risk instead of the true risk. It increases with the complexity1 of F . On

the other hand, an increasing number of observations makes the empirical risk closer to the true risk

and thus reduces the estimation error. The approximation error is due to the fact that f ∗F minimizes

the risk only on a subset of all measurable functions. It decreases with the size of F . Consequently,

there is a trade-off to find, to optimize the choice of F . It is known as the bias-variance trade-off

where the variance is due to the estimation error while the bias is due to the approximation error.

In this thesis, we will only focus on the estimation error of a given estimator. We want to relate

the risk of f̂F with the one of f ∗F , the best risk one can hope using functions in the class F . Taking

the point of view of Vapnik and Chervonenkis, we relate the estimation error R(f̂F)− R(f ∗F) with

the empirical process {(Pn − P )(`f ), f ∈ F}, indexed by the class F . In particular, we have the

following upper bound for the estimation error

R(f̂F)−R(f ∗F) = R(f̂F)−Rn(f̂F)︸ ︷︷ ︸
≤supf∈F |P`f−Pn`f |

+Rn(f̂F)−Rn(f ∗F)︸ ︷︷ ︸
≤0

+Rn(f ∗F)−R(f ∗F)︸ ︷︷ ︸
≤supf∈F |P`f−Pn`f |

≤ 2 sup
f∈F
|P`f − Pn`f | := ‖Pn − P‖`F

To derive upper bounds for the estimation error, it is sufficient to uniformly control the empirical

process {(Pn`f − P`f ), f ∈ F} over the class F . Thus, by analysing deviations between the

risk and its empirical version it is possible to control the estimation error R(f̂F) − R(f ∗F). Such

deviations are at the heart of the theory of empirical processes (Van Der Vaart and Wellner, 1996;

Pollard et al., 1989; Van de Geer, 2000). Concentration results coupled with powerful tools from

empirical processes theory allow to prove many non-trivial and deep results in statistical learning.

In particular, in the 1990s, Talagrand proved a uniform version of Bernstein’s inequality allowing

to concentrate ‖Pn−P‖`F around its expectation (Talagrand, 1996). This result had a huge impact

on the theory of empirical processes and empirical risk minimizer. We will present in Section 1.3

an example of application of this outstanding concentration inequality.

1.2.2 General analysis of the statistical error

In this section, we present standard arguments to bound supf∈F |Pn`f−P`f | = ‖Pn−P‖`F . Results

are derived with high probability and in expectation. The main tools are concentration inequalities

and Rademacher complexities. The first step consists in quantifying the deviation of ‖Pn − P‖`F
around its expectation E‖Pn − P‖`F . To do so, it is necessary to impose strong assumptions over

1see Rademacher and Gaussian complexities below.
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the class `F , where `F = {`
(
f(·), ·

)
, f ∈ F}. For a long time (Devroye et al., 2013; Koltchinskii,

2001; Bartlett, 1998), it has been assumed that the class `F was bounded, that is, there exists a

constant c > 0 such that |`(f(x), y)| ≤ c, for every f ∈ F and (x, y) ∈ X × Y . The main reason

is that no concentration results were available to handle unbounded class `F . Even if more general

results are now available, we focus here on bounded classes `F . Two common examples are:

Example 1: if `(y, y′) = 1{y 6= y′} then c = 1.

Example 2: if y 7→ `(·, y) is convex and L-Lipschitz (|`(y1, y) − `(y2, y)| ≤ L|y1 − y2|, for

every y1, y2 in Y) and F = {
〈
β,Φ(·)

〉
, β ∈ Rp s.t ‖β‖2 ≤ B}, where Φ(·) is a bounded feature

map i.e ‖Φ(x)‖2 ≤ D for every x ∈ X . In this case, c = LBD because for every β in Rp such

that ‖β‖2 ≤ B and (x, y) ∈ X × Y

|`
(〈
β,Φ(x)

〉
, y
)
| = |`

(〈
β,Φ(x)

〉
, y
)
− `(0, 0)| ≤ L|

〈
β,Φ(x)

〉
| ≤ L‖β‖2‖Φ(x)‖2 ≤ LBD .

In this example, the minimizer of the empirical risk minimizer is unique and defined as

β̂ = argmin
β∈Rp:‖β‖2≤B

1

n

∑
i=1

`
(〈

Φ(Xi), β
〉
, Yi
)
, (1.1)

where the loss is L-Lipschitz.

This boundedness assumption allows to control the deviations of ‖Pn−P‖`F around its expectation

with high probability. To do so, we use Theorem 1.1, known as Mc Diarmid’s inequality that we

recall here.

Theorem 1.1: McDiarmid’s inequality

Consider independent random variables X1, · · · , Xn ∈ E and a mapping ψ : En 7→ R. If for all

i ∈ J1, nK and for all x1, · · · , xn, x′i

|ψ(x1, · · · , xi, · · · , xn)− ψ(x1, · · · , x′i, · · · , xn)| ≤ ci ,

then for every t > 0,

P
(∣∣ψ(X1, · · · , Xn)− E[ψ(X1, · · · , Xn)]

∣∣ ≥ t
)
≤ exp

(
− 2t2∑n

i=1 c
2
i

)

For all, x1, · · · , xn in X and y1, · · · , yn in Y , let ψ : (X × Y)n 7→ R be defined as

ψ
(
(x1, y1), · · · , (xn, yn)

)
= sup

f∈F

∣∣∣∣ 1n
n∑
i=1

`(f(xi), yi)− E`
(
f(X), Y

)∣∣∣∣ .
From the boundedness assumption, for all i ∈ J1, nK and (x1, y1), · · · , (xn, yn), (x′i, yi)

′ in X × Y ,∣∣ψ((x1, y1), · · · , (xi, yi), · · · , (xn, yn)
)
− ψ

(
(x1, y1), · · · , (x′i, y′i), · · · , (xn, yn)

)∣∣
≤ 1

n
sup
f∈F

∣∣`(f(xi), yi)− `(f(x′i), y
′
i)
∣∣ ≤ 2c

n
,
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and from Theorem 1.1, with probability larger than 1− exp(−t)

R(f̂F)−R(f ∗F) ≤ 2 sup
f∈F
|P`f − Pn`f | ≤ 2E sup

f∈F
|P`f − Pn`f |︸ ︷︷ ︸

(?)

+c

√
8t

n

Consequently, controlling the estimation error requires to control (?). A common approach is based

on Rademacher complexity that we introduce now.

Definition 1.2: Rademacher complexity

Let X1, · · · , Xn be independent random variables taking values in a measurable space (E, E)

with common distribution P . Let F be a class of functions from E to R. The Rademacher

complexity of the class F is defined as

Rn(F) = E
[

sup
f∈F

(
1

n

n∑
i=1

σif(Xi)

)]
,

where the variables σ1, · · · , σn are i.i.d Rademacher random variables (P(σ1 = 1) = P(σ1 =

−1) = 1/2) independent of X1, · · · , Xn. The expectation is taken with respect to both the

Rademacher random variables and the data X1, · · · , Xn.

The Rademacher complexity of a class F quantifies the extent to which some functions in F can be

correlated with a Bernoulli noise sequence. Such a quantity is large if there exists f in F for which

f(Xi) fits well the noise in expectation. Using such a class is very likely to result in over-fitting. This

idea could serve as an intuitive explanation why Rn(F) can be used as a notion of complexity of a

class of functions in the analysis of empirical risk minimization. Another reason why Rademacher

complexities are very used in practice relies on its appealing properties such as Lemmas 1.1 and 1.2.

In particular, the symmetrization Lemma 1.1 gives (?) ≤ 2Rn(`F) and with probability larger than

1− exp
(
− t)

)
R(f̂F)−R(f ∗F) ≤ 4Rn(`F) + c

√
8t

n
. (1.2)

Although Lemma 1.1 is known for a long time, Rademacher complexities were proposed as a measure

of the complexity for the first time only in the early 2000s in (Bartlett et al., 2002a; Koltchinskii,

2001; Mendelson, 2002).

Lemma 1.1: Symmetrization

Let F be a class of functions from E to R. Then,

E
[

sup
f∈F

∣∣∣∣E[f(X)]− 1

n

n∑
i=1

f(Xi)

∣∣∣∣] ≤ 2Rn(F) .
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Equation (1.2) shows that up to a term of order 1/
√
n the estimation error can be bounded by the

Rademacher complexity of `F , with an exponentially large probability. The computation of Rn(`F)

depends on the problem. In the case of Example 2, from Lemma 1.2 we have

Rn(`F) = E
[

sup
t∈Rp:‖t‖2≤B

∣∣∣∣ 1n
n∑
i=1

σi`
(〈
t,Φ(Xi)

〉
, Yi
)∣∣∣∣] ≤ 2LE

[
sup

t∈Rp:‖t‖2≤B

∣∣∣∣ 1n
n∑
i=1

σi
〈
t,Φ(Xi)

〉∣∣∣∣]

≤ 2LBE
∥∥∥∥ 1

n

n∑
i=1

σiΦ(Xi)

∥∥∥∥
2

≤ 2LB

(∥∥∥∥ 1

n

n∑
i=1

σiΦ(Xi)

∥∥∥∥2

2

)1/2

≤ 2LBD√
n

,

and the following result holds

P
(
R(f̂F)−R(f ∗F) ≤ 8LBD√

n
+ c

√
8t

n

)
≥ 1− exp(−t) . (1.3)

Lemma 1.2: Contraction lemma

Let F be a class of functions from E to R and φ : R 7→ R a L-Lipschitz function

E
[

sup
f∈F

(
1

n

n∑
i=1

σiφ
(
f(Xi)

))]
≤ 2LE

[
sup
f∈F

(
1

n

n∑
i=1

σif(Xi)

)]
.

Equation (1.3) states that the estimation error of f̂F defined in Equation (1.1) is controlled with

high probability by a term of order O(1/
√
n) 2. Since the estimation error of f̂F is always non-

negative, using the integrated tail probability expectation formula we can deduce from (1.3) an

upper bound in expectation

E
(
R(f̂F)−R(f ∗F)

)
=

∫ +∞

0

P(R(f̂F)−R(f ∗F) ≥ t)dt

where the expectation is taken with respect to the i.i.d sample (Xi, Yi)i∈J1,nK with common distri-

bution P , and straightforward computations give

E
(
R(f̂F)−R(f ∗F)

)
≤ A(L,B,D, c)√

n
,

where the constant A depends on L,B,D and c. The expected estimation error is also of order

O(1/
√
n). This example reveals that results holding with high probability are more appealing and

should be preferred. However, they are usually harder to prove and require the development of

concentration inequalities.

2The notation O means that there exists an absolute constant M > 0 big enough such that the excess risk is

bounded by M/
√
n, for n sufficiently large.
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The approach we used is based on a global analysis. The estimation error depends on the

complexity of the entire class F , measured here by the Rademacher complexity of `F . This approach

has been used for example in (Bartlett and Mendelson, 2002; Bartlett et al., 2002a; Koltchinskii

et al., 2002). Despite its simplicity and generality, this analysis presents two main drawbacks.

1. Global Rademacher complexities are too large. In the example of linear functionals with

bounded features it leads to an estimation error of order O(1/
√
n) while it is possible to

obtain rates of order O(1/n), see Section 1.2.3.

2. To obtain results holding with high probability we assumed that the whole class `F is bounded.

Consequently, a general analysis of the estimation error based on global complexity parameters is

not satisfactory. In this thesis, we will present localization arguments allowing to obtain faster

rates. We will also develop other approaches to handle unbounded classes `F .

We presented a general approach based on the Rademacher complexity Rn(`F). There exist other

classical complexities that we will explore in the sequel.

1.2.3 Linear least-squares regression

In Section 1.2.2, we obtained an upper bound on the expected statistical error of order O(1/
√
n). In

this section, we present the example of least-square regression and derive the upper bound O(σ2p/n)

on the estimation error holding in expectation, where σ2 > 0 is the variance of the noise and p is

the dimension. We also briefly present the minimax paradigm and claim that the rate O(σ2p/n) is

minimax-rate-optimal for the problem of least-square regression in a Gaussian setting.

Let (X, Y ) be such that Y |X ∼ N (
〈
X, β∗

〉
, σ2), for β∗ ∈ Rp and X ∼ N (0, Ip). Equivalently,

Y =
〈
X, β∗

〉
+ ξ, where β∗ ∈ Rp, X ∼ N (0, Ip) and ξ ∼ N (0, σ2) is independent of X. Let F =

{
〈
β, ·
〉
, β ∈ Rp} be the class of linear functionals in Rp. For every y, y′ in Y let `(y, y′) = (y− y′)/2

be the quadratic loss function. Let (Xi, Yi)i∈J1,nK be i.i.d random variables distributed as (X, Y ).

The risk associated with β in Rp is defined as

R(β) =
1

2
E
[
(
〈
X, β

〉
− Y )2

]
.

The parameter β∗ minimizes the risk over Rp and for every β ∈ Rp

R(β)−R(β∗) =
1

2
E
[
(
〈
X, β

〉
− Y )2

]
− 1

2
E
[
(
〈
X, β∗

〉
− Y )2

]
= E

[
Y
〈
X, β∗ − β

〉]
+

1

2
E
[〈
X, β

〉2 −
〈
X, β∗

〉2]
=

1

2
E
[〈
X, β − β∗

〉2]
=

1

2
‖β − β∗‖2

2 ,
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where we used the first order condition to have E
[(
Y −

〈
X, β∗

〉)〈
β − β∗, X

〉]
= 0. Let β̂ be the

minimizer of the empirical risk of Rp:

β̂ = argmin
β∈Rp

1

2n

n∑
i=1

(〈
Xi, β

〉
− Yi

)2
= argmin

β∈Rp

1

2n
‖Xβ − Y ‖2

2 ,

where X ∈ Rn×p denotes the feature matrix whose lines are given by XT
i , i = 1, · · · , n and

Y = (Y1, · · · , Yn) ∈ Rn. When XTX is assumed to be invertible, β̂ = (XTX)−1XTY /n, which

is the case only if p ≤ n. This corresponds to a low dimensional regime, when the number of

observations n is bigger than the number of covariates p. In (Lecué and Mendelson, 2016), the

authors establish that

E[R(β̂)−R(β∗)] ≤ c
σ2p

n
,

where the expectation is taking with respect to the data (Xi, Yi)i∈J1,nK and c > 0 is an absolute

constant. A natural question is now the following: is a rate of order O(σ2p/n) optimal, and in

which sense ? The next paragraph gives some elements to answer this question.

Minimax rates of convergence In (Lecué and Mendelson, 2016), the authors provide an up-

per bound of order O(σ2p/n) for the estimation error of the empirical risk minimizer. A large

upper bound does not necessarily reflect a bad mathematical analysis. This may be an inevitable

consequence of the difficulty of the problem. To study the optimality of a rate, we use the no-

tion of minimax risk, see (Tsybakov, 2008; Massart, 2007) for good references. A statistical model

{Pθ, θ ∈ Θ}, is a set of probability measures indexed by a parameter θ in Θ. The minimax risk

associated with the statistical model {Pθ, θ ∈ Θ} is defined as

A∗n := inf
θ̂n

sup
θ∈Θ

Eθ[d(θ, θ̂n)] ,

where the infimum is taken over all estimators θ̂n, d(·, ·) is a distance and Eθ denotes the expectation

with respect to Pθ. A∗n is the best possible rate associated with a statistical model and a distance,

one can expect. Given A∗n it is now possible to claim that an estimator is optimal. We say that

θ̂n is minimax-rate-optimal for the model {Pθ, θ ∈ Θ} and the distance d is there exists a constant

c > 0 such that

sup
θ∈Θ

Eθ[d(θ, θ̂n)] ≤ cΨn ,

where Ψn is the optimal rate of convergence i.e the rate Ψn such that there exists two constants

0 < c ≤ C such that

c ≤ lim inf
n→∞

A∗nΨn ≤ lim sup
n→∞

A∗nΨn ≤ C .

In (Tsybakov, 2003), the authors provide a lower bound of order Ω(σ2p/n)3 for the problem of

least-squares regression when the design and the noise are Gaussians. Consequently, the empirical

3The notation Ω means that there exists an absolute constant m > 0 small enough such that the lower bound is

larger than mσ2p/n
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risk minimizer is minimax-rate-optimal for the problem of least square regression in a Gaussian

model.

The analysis presented in Section 1.2.2 leads to rates of order O(1/
√
n) while the right order is

O(1/n). Thus, an analysis based on global estimates of the complexity of the class of functions is

not satisfactory and more involved arguments have to be used. In section 1.3 we present a new

analysis based on local measures of complexity.

In Chapter 6, we will consider the same model when the dimension p may be larger than n and

X ∼ N (0,Σ).

1.3 Localization methods for ERM

We established upper bounds on the statistical error. In particular, we observed that the general

analysis developed in Section 1.2.2, based on global measures of complexity leads to error rates of

order O(1/
√
n). From (Lecué and Mendelson, 2016), the empirical risk minimizer in the problem of

least-squares in the Gaussian setting attains an error rate of order O(1/n). Thus, we would like to

derive a general analysis of the empirical risk minimizer leading to error rates of order 1/n (when

it is possible).

Due to the symmetrization Lemma 1.1, Rademacher complexities have been proposed as an

effective notion of complexity measure in (Bartlett et al., 2002a; Koltchinskii, 2001; Bartlett and

Mendelson, 2002; Mendelson, 2002). In these papers, the analysis is based on global estimates of

the complexity of the class of functions. No further information is used. However, since the risk

of the empirical risk minimizer is expected to be small, the complexity of a small neighborhood of

the oracle may be sufficient to describe its behavior. It is the main intuition behind localization

methods. They appeared first in (Koltchinskii and Panchenko, 2000) for noiseless problems, i.e

R(f ∗F) = 0. In (Bousquet et al., 2002) the authors performed localization techniques around 0,

assumed to belong to F . See also (Lugosi et al., 2004) for localization methods applied to Boolean

classes. The first localization around the minimizer of the risk, f ∗F in the class F , was presented

by Massart in (Massart, 2000), and then extensively studied in (Bartlett et al., 2005; Bartlett and

Mendelson, 2006a,b) for model selection and empirical risk minimization. In their first versions,

localization methods were developed for general bounded classes of functions. In this thesis, we will

focus on convex classes of functions. We say that the class F is convex, if for every f, g in F and

α ∈ [0, 1], the function αf + (1−α)g belongs to F . The role of convexity if twofold. First, from the

practitioner’s point of view, minimizing the empirical risk is much easier when both the class F and

the loss ` are convex. Performing simple gradient descent-based methods allows to converge toward

the empirical risk minimizer (Boyd et al., 2004). Secondly, from the theoretical standpoint, it is

well known that convexity plays a key role in statistical learning (Lee et al., 1998; Mendelson, 2001).
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1.3.1 A general approach of localization in a bounded setting.

The estimation error R(f̂F)− R(f ∗F), that we will call excess risk now, is a natural measure of ac-

curacy of the approximation of f ∗F by f̂F . The goal is to find tight upper bounds on the excess risk

of f̂F holding with an exponentially large probability. This bound depends on various measures of

complexity that drives the accuracy of approximating the true risk P`f by its empirical counterpart

Pn`f . Hereafter, we present a simple and general approach to derive upper bounds on the excess

risk of the empirical risk minimizer associated with convex loss functions.

For every f ∈ F let us recall that P`f = R(f) = E(X,Y )∼P [`(f(X), Y )] and Pn`f = Rn(f) =

n−1
∑n

i=1 `(f(Xi), Yi). We will also denote byPLf := P`f − P`f∗F and by PnLf := Pn`f − Pn`f∗F .

Since f̂F minimizes the empirical risk over F , we have Pn`f̂F ≤ Pn`f for every f in F and in

particular PnLf̂F ≤ 0. Therefore, to control the excess risk of f̂F , it is enough to show that

with large probability for every f in F such that PLf ≥ r∗ we have PNLf > 0. With the same

probability the excess risk PLf̂F will be bounded by r∗. Clearly, the choice of r∗ is an important

(and complicated) task.

Let f ∈ F such that PLf > r∗. The following “homogeneity lemma” shows that risk bounds for

the empirical risk minimizer estimators follow from a concentration of (P − Pn)Lf over sub-classes

of F around the oracle f ∗F .

Lemma 1.3: Homogeneity Lemma (Chinot et al., 2019b)

For every f in F such that PLf > r∗ there exists PLf/r∗ ≥ α > 1, f0 in F such that

α(f0 − f ∗) = f − f ∗ and PLf0 = r∗.

From Lemma 1.3 we obtain

PnLf =
1

n

n∑
i=1

(
`
(
f(Xi), Yi

)
−`
(
f ∗F(Xi), Yi

))
=

1

n

n∑
i=1

(
`
(
(αf0+(1−α)f ∗F)(Xi), Yi

)
−`
(
f ∗F(Xi), Yi

))
,

where PLf0 = r∗ and α > 1. Since, the function y 7→ `(y, y′) is convex for all y′ in Y we have for

every (x, y) ∈ X × Y ,

`
(
(αf0 + (1− α)f ∗F)(x), y

)
≥ α`

(
f0(x), y

)
+ (1− α)`

(
f ∗F(x), y

)
,

and it follows that PnLf ≥ αPnLf0 for f0 in F such that PLf0 = r∗. Thus

PnLf ≥ αPnLf0 = α
(
PLf0+(Pn−P )Lf0

)
= α

(
r∗−(P−Pn)Lf0

)
≥ α

(
r∗− sup

f∈Fr∗
|(Pn−P )(`f−`f∗F )|

)
,
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where Fr∗ = {f ∈ F : PLf = r∗}. Thus, the rest of the analysis consists in finding the smallest

r > 0 such that with high probability

sup
f∈Fr
|(Pn − P )(`f − `f∗F )| < r .

Let An(r) be such that, with high probability

sup
f∈Fr
|(Pn − P )(`f − `f∗F )| < An(r) .

Then with the same probability PLf̂F ≤ inf{r > 0 : An(r) < r}.

So far, we have not used any concentration results. There are many different ways to construct

upper bounds An(r) on the supremum of empirical processes. A very general and common approach

is based on Talagrand’s inequality. In particular we can use the bounds proved by Bousquet (Bous-

quet, 2002) and Klein (Klein, 2002; Klein et al., 2005) that we recall here.

Theorem 1.2: Bousquet and Rio-Klein inequalities

Let F be a class of measurable functions from E into [0, 1] and

σ2
P (F) = sup

f∈F

(
Pf 2 − (Pf)2

)
1. Bousquet bound (Bousquet, 2002): for all t > 0, with probability larger than 1−exp(−t)

sup
f∈F
|(Pn − P )(f)| ≤ E sup

f∈F
|(Pn − P )(f)|+

√
2
t

n

(
σ2
P (F) + 2E sup

f∈F
|(Pn − P )(f)|

)
+

t

2n

2. Rio-Klein bound (Klein, 2002; Klein et al., 2005): for all t > 0, with probability larger

than 1− exp(−t)

sup
f∈F
|(Pn − P )(f)| ≥ E sup

f∈F
|(Pn − P )(f)| −

√
2
t

n

(
σ2
P (F) + 2E sup

f∈F
|(Pn − P )(f)|

)
− t

n

The interval [0, 1] can be replaced by any bounded interval by a simple re-scaling argument. Theo-

rem 1.2 states that the supremum of an empirical process over a bounded class of functions concen-

trates well around its expectation. While Mc Diarmid’s inequality 1.1 provides a uniform version

of Hoeffding’s inequality for bounded classes, Talagrand’s inequality depends on the variance of the

functions class and can be seen a uniform version of Bernstein’s inequality.

If the loss function is 1-Lipschitz and `F − `f∗F = {`f − `f∗F , f ∈ F} is bounded by 1, from
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Theorem 1.2 and Lemma 1.1, with probability larger than 1− exp(−t)

sup
f∈Fr
|(Pn − P )(`f − `f∗F )| ≤ 2Rn(`Fr) +

√
2t

n

(
r + 4Rn(`Fr)

)
+

t

2n
,

and the following theorem easily follows.

Theorem 1.3: Excess risk for ERM associated with bounded classes `F

Let ` be a 1-Lipschitz loss function. Let F ⊂ L2(PX) be a closed convex class of functions such

that `F−`f∗F is bounded by 1. There exists constant, c1, c2, c3 > 0 such that the following holds:

for every t > 0, with probability larger than 1− exp(−c1t) the minimizer of the empirical risk

over F satisfies

R(f̂F)−R(f ∗F) ≤ c2 max

((
r∗
)2
,
t

n

)
,

where

r∗ = E sup
f∈F :PLf≤r

∣∣∣∣ 1n
n∑
i=1

σi(f − f ∗F)(Xi)

∣∣∣∣ ≤ c3r ,

for σ1, · · · , σn independent symmetric {−1, 1}-valued random variables that are independent of

X1, · · · , Xn. The expectation is taken with respect to both the Rademacher random variables

and the inliers (X1, · · · , Xn).

The excess risk of the empirical risk minimizer f̂F is expressed as a fixed-point parameter depending

on local Rademacher complexities. Thank to the localization, it is not necessary to assume that

whole the class `F − `f∗F is bounded but only that the sub-class `Fr∗ − `f∗F = {`f − `f∗F : PLf = r∗}
is bounded.

Let us come back to Example 2 presented in Section 1.2.2 and assume that Y is bounded by

1. Under this assumption, the quadratic loss function is 2-Lipschitz and `F is bounded by 2BD.

Let us also assume that λmin

(
E
[
Φ(X)TΦ(X)

])
≥ γ, for γ > 0 an absolute constant, where λmin(Σ)

denotes the smallest eigenvalue of a symmetric matrix Σ. For r > 0

E sup
f∈F :PLF≤r

∣∣∣∣ 1n
n∑
i=1

σi(f − f ∗F)(Xi)

∣∣∣∣ ≤ E sup

β∈Rp:E
〈
β−β∗,Φ(X)

〉2

≤2r

∣∣∣∣ 1n
n∑
i=1

σi
〈
β − β∗,Φ(X)

〉∣∣∣∣
≤ E sup

β∈Rp:γ‖β−β∗‖22≤2r

∣∣∣∣ 1n
n∑
i=1

σi
〈
β − β∗,Φ(X)

〉∣∣∣∣
≤
√

2r

γ

∥∥∥∥ 1

n

n∑
i=1

σiΦ(Xi)

∥∥∥∥
2

≤ D

√
2r

γn
,

and with probability larger than 1− exp(−t),

R(β̂)−R(β∗) = E
〈
β̂ − β∗,Φ(X)

〉2 ≤ max

(
c(γ,D)

n
,
t

n

)
,
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where c(γ,D) > 0 is a constant depending on D and γ. Using localization arguments we obtain

fast rates of convergence i.e rates of order O(1/n).

1.3.2 Toward a more general analysis

Theorem 1.3 relies heavily on the fact that the class `F is bounded. This setting excludes many

natural and common problems in statistics. For example, in Section 1.3, we considered F =

{
〈
·, t
〉
, t ∈ Rp}, the class of linear functional indexed by Rp. As soon as X has not a compact

support the class F and thus `F are unbounded. Consequently, Theorem 1.3 does not cover the case

where the design X is Gaussian, yet extensively studied in statistics. Moreover, for the quadratic

loss function, the noise was also assumed to be bounded. Thus, the Gaussian model is excluded

from the analysis of Theorem 1.3. The Gaussian model is when Y = f ∗F(X) + W , for some f ∗F

in F and W is a centered Gaussian variable with variance σ2. The target Y consists in noisy

measurements of f ∗F corrupted by a Gaussian noise. Despite the fact that boundedness assumptions

cannot be used for very standard statistical problems, it has been used very frequently in Learning

Theory (Bartlett and Mendelson, 2002; Bartlett et al., 2002a; Massart, 2000) and (Koltchinskii,

2011b) for a good survey. There are two main reasons:

1. Concentration inequalities: Versions of Talagrand’s inequality such as Theorem 1.2 were exten-

sively used in Learning Theory. Local Rademacher complexities naturally appear as measures

of the complexity.

2. When the class F and the target are both bounded, the loss function `(y, y′) = (y − y′)2/2 is

Lispchitz and one can use contraction argument to show that

E sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σi
(
(`(f(Xi), Yi)− `(f ∗F(Xi), Yi)

)∣∣∣∣ ≤ cE sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σi(f − f ∗F)(Xi)

∣∣∣∣ ,
for c > 0 an absolute constant.

Lecué and Mendelson (Lecué and Mendelson, 2013) studied learning problems with the quadratic

loss function without boundedness assumption on the envelope of {`(f(X), Y ) : f ∈ F}. They

were interested in the most natural setting extending bounded classes: the subgaussian framework

(see Definition 1.3). It covers the case of regression with Gaussian noise. Their analysis follows the

“isomorphic method” based on the following idea. Let r∗ such that with large probability

∀f ∈ F : PLf ≥ r∗,
1

2
PLf ≤ PnLf ≤

3

2
PLf ,

then, with the same probability, the empirical risk minimizer f̂F satisfies

PLf̂F ≤ r∗ ,
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because PnLf̂F ≤ 0. The idea of the isomorphic method is to identify the right level r∗ such that

with large probability

sup
f∈F :PLf≥r∗

∣∣(Pn − P )(`f − `f∗F )
∣∣ ≤ 1

2
PLf .

Under the assumption that the noise4 Y − f ∗F(X) is σ-subgaussian and that the class F − f ∗ =

{f − f ∗ : f ∈ F} is B-subgaussian (see Definition 1.3), the authors derived optimal bounds for the

excess risk holding with an exponentially large probability. Their bounds are fixed-points depending

on another notion of complexity measure: The Gaussian complexity (see Section 1.5.1 for a precise

definition).

Definition 1.3: Subgaussian random variable and subgaussian class

Let PX be a probability measure on (E, ε) and let X be distributed according to PX .

1. We say that X is σ-subgaussian if for every λ > 0

E exp
(
λX
)
≤ exp

(
λ2σ2

2

)
2. We say that a class F ⊂ L2(PX) is B-subgaussian with respect to PX if for every f, g in

F and λ > 0

E exp

(
λ
|f(X)|
‖f‖L2(PX)

)
≤ exp

(
λ2B2

2

)

In a path-breaking paper (Mendelson, 2014), Mendelson presented a new general analysis for the

quadratic loss function, `(y, y′) = (y − y′)2/2 allowing to handle general classes of functions (not

necessarily subgaussian). His starting point is that the isomorphic method consisting in showing

that

∀f ∈ F s.t PLf ≥ r∗,
1

2
PLf ≤ PnLf ≤

3

2
PLf ,

for a well chosen parameter r∗, is too restrictive. Only the lower estimate (1/2)PLf ≤ PnLf
is actually required. The key assumption leading to the lower bound is the following small-ball

condition stating that there exist u, γ > 0 such that

inf
f,g∈F

P
(
|f(X)− g(X)| ≥ u‖f − g‖L2(PX)

)
≥ γ > 0

Note that if ‖f‖L4(PX) ≤ κ‖f‖L2(PX) for every f in F , then by the Paley-Zygmund inequality, for

every f, g in F
P
(
|f(X)− g(X)| ≥ u‖f − g‖L2(PX)

)
≥
(

1− u2

κ2

)2

.

4we use the terminology of (Lecué and Mendelson, 2013).
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Thus, the small-ball assumption can be understood as an equivalence norm assumption. Note

that for subgaussian classes, we have ‖f‖Lp(PX) ≤ κ
√
p‖f‖L2(PX) for every p > 0 and thus the

small-ball assumption is automatically satisfied. Under this assumption, Mendelson derives upper

bounds on the excess risk depending on fixed-point complexity parameters defined with Rademacher

complexities, holding with large probability.

1.4 Localization methods for regularized procedures

1.4.1 Regularized empirical risk minimizer

In Section 1.3, we presented localization arguments to derive fast rates of convergence for the

empirical risk minimizer. When the class F is too large, the localization is not sufficient to obtain

small excess risk. A regularization term, promoting an expected behavior of the oracle, can be added

to enforce a similar structural property of the estimator. This approach is called the regularization

method.

Example 1 : Promoting sparsity. Let F = {
〈
β, ·
〉
, β ∈ Rp} be the class of linear func-

tionals in Rp and set β∗ to be the minimizer of the risk R(β) = E(X,Y )∼P [`(
〈
β,X

〉
, Y )] in Rp,

where ` denotes a convex function. The celebrated LASSO estimator (Tibshirani, 1996) is

defined as

β̂λn ∈ argmin
β∈Rp

1

n

n∑
i=1

`
(〈
β,Xi

〉
, Yi
)

+ λ‖β‖1 ,

where ‖β‖1 =
∑p

i=1 |βi|, and λ > 0 is a parameters that has to be chosen carefully. Re-

markably, for a well chosen parameter λ > 0, under some conditions on X and Y , with high

probability (Bellec et al., 2018; Van de Geer et al., 2008; Bickel et al., 2009; Bunea et al.,

2007), one can show that

‖β̂λn − β∗‖2
2 ≤ s

log(p)

n
,

where s = ‖β∗‖0 =
∑p

i=1 1{β∗i 6= 0} denotes the sparsity of the oracle β∗. In this example,

the penalization ‖β‖1 promotes sparse solutions.

Example 2 : Promoting low rank matrices. Let F = {
〈
M, ·

〉
,M ∈ Rm×T}, where〈

A,B
〉

= Tr(ATB) for any matrices A,B in Rm×T . For A ∈ Rm×T , set (σi(A))i∈J1,min(m,T )K its

singular values arranged in a non-increasing order. The 1-Schatten norm is simply the trace-

norm i.e ‖A‖1 = Tr
(√

ATA
)

=
∑min(m,T )

i=1 σi(A). The trace norm regularization procedure is

defined as following

Âλn ∈ argmin
A∈Rm×T

1

n

n∑
i=1

`
(〈
A,Xi

〉
, Yi
)

+ λ‖A‖1 .

This procedure was introduced for low-rank reconstruction of high-dimensional matrices (Gross,

2011; Candes and Plan, 2011; Recht et al., 2010; Rohde et al., 2011). The trace norm has
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similar properties as the `1-norm. In this example, the penalization ‖A‖1 promotes low rank

solutions.

Example 3 : Promoting smooth solutions. Consider a set X and let H ⊂ RX be a

Hilbert space of real valued functions on X with the inner product
〈
·, ·
〉
H. The function

K : X × X 7→ R is called a reproducing kernel of H if

– For any x in X the space H contains the functions Kx : X 7→ R s.t Kx(y) = K(x, y).

– For any x ∈ X and f ∈ H,
〈
Kx, f

〉
= f(x), called the reproducing property.

If a reproducing kernel exists, the space H is called reproducing kernel Hilbert space (RKHS).

A positive definite kernel K is a symmetric function K : X ×X 7→ R such that for any n ∈ N∗

and x1, · · · , xn in X the matrix
(
K(xi, xi) : (i, j) ∈ J1, nK2

)
is positive definite. In (Aronszajn,

1950), the author established that for any positive definite kernel K, there exists a unique

reproducing kernel Hilbert space reproducing K. Thus, for a positive definite kernel K, let

HK be the unique RKHS associated with K and let F = HK . A very popular approach is

the Tikhonov regularization procedure defined as following

f̂λn = argmin
f∈HK

1

n

n∑
i=1

`
(
f(Xi), Yi

)
+ λ‖f‖2

HK ,

where ‖ · ‖HK denotes the norm derived from the inner product in HK . From the reproducing

property and Cauchy-Schwarz inequality, for every x, y ∈ X and f ∈ HK

|f(x)− f(y)| = |
〈
Kx −Ky, f

〉
HK
| ≤ ‖f‖HK‖Ky −Kx‖HK .

The norm of a function in the RKHS controls how fast the function varies over X with respect

to the geometry defined by the kernel. In this example, the penalization ‖f‖HK promotes

smoothness with respect to the metric induced by the kernel K on X .

The first two examples and the third one are very different in nature. `1 and S1 penalizations are

used to expose the sparse nature of the oracle f ∗F (sparse of low rank oracle). Although the `1 norm

does not appear to be directly connected to the notion of sparsity, surprisingly, it promotes sparse

solution. This “modern” approach of regularization has been extensively studied in the statistical

community since the early 2000s.

Example 3 deals with the “classical” point of view in regularization. One may think that the oracle

f ∗F has a certain substructure (smooth for example) and that Ψ(f ∗F) is not too big (Ψ(·) being the

penalization function). The regularized procedure is expected to produce estimates f̂λn for which

Ψ(fλn ) is of the order of Ψ(f ∗F) and its excess risk should depend on Ψ(f ∗F).

More formally, let E be a vector space such that F ⊂ E and Ψ : E 7→ R+ be a penalty function.

It is often assumed that the penalty is a norm (Lecué and Mendelson, 2018) (as in examples 1 and
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2). However, in this thesis we adopt a more general point of view and assume that the penalty is

only a convex function. For F a convex class of functions and λ > 0, the regularized empirical risk

minimizer (RERM) is defined as

f̂λF = argmin
f∈F

1

n

n∑
i=1

`
(
f(Xi), Yi

)
+ λΨ(f) , (1.4)

where ` denotes any convex loss function and (Xi, Yi)i∈J1,nK are i.i.d random variables sampled from

P . For λ = 0, we recover the non-penalized empirical risk minimizer. Small values of λ imply that

the dominating term in (1.4) is the empirical risk, while large values of λ encourage solutions such

that Ψ(f̂λF) is small, even if its empirical risk may be large. The tuning parameter λ has to be

chosen carefully. Since in our case the loss function `, the class of functions F and the penalization

Ψ are convex, the estimator f̂λF is unique and can be easily computed in practice, using tools from

convex optimization (Boyd et al., 2004) such as proximal gradient methods (Schmidt et al., 2011).

1.4.2 General approach of localization for regularized procedures

The penalization term λΨ(f) added to the empirical risk brings a new information that has to be

included in the analysis. Since the penalization term Ψ(·) promotes estimators f̂λF such that Ψ(f̂λF)

is small, a simple and natural idea is to add a localization term taking into account the fact that f̂λF

should be close to f ∗F with respect to the metric induced by Ψ. We can derive an analysis similar

as the one developed in Section 1.3. For the sake of simplicity we will assume that Ψ is norm. The

analysis could be extended to more general convex penalization, see Chapter 4

Let P λ
n `f = n−1

∑n
i=1 `

(
f(Xi), Yi

)
+ λΨ(f) and P λ

nLf = P λ
n (`f − `f∗F ). By definition, P λ

n `f̂λF
≥

P λ
n `f∗F and the proof consists in showing that with high probability, for every f ∈ F such that

Ψ(f − f ∗F) > ρ∗ or PLf > r∗ we have P λ
nLf > 0. Automatically, with the same probability, we have

Ψ(f̂λF − f ∗F) ≤ ρ∗ and PLf̂λF ≤ r∗

Let f ∈ F such that Ψ(f − f ∗F) > ρ∗ or PLf > r∗. As for the analysis of the empirical risk

minimizer in Section 1.3, we want to use the homogeneity Lemma 1.3 to reduce the analysis onto

the set {f ∈ F : PLf = r∗}. Because of the localization with respect to the regularization norm,

the situation is more delicate (see Figure 1.2 for a geometric representation of the problem) and

two cases appear:

1. Cone 1: {f ∈ F : PLf ≤ r∗} ⊂ {f ∈ F : Ψ(f − f ∗F) ≤ ρ∗}
Use the homogeneity lemma 1.3. There exist α > 1 and f0 in F s.t α(f0− f ∗F) = f − f ∗F with

PLf0 = r∗. Automatically Ψ(f0 − f ∗F) ≤ ρ∗. By convexity of the penalization term and the

loss function it follows that

P λ
nLf = PnLf + λ

(
Ψ(f)−Ψ(f ∗F)

)
≥ αP λ

nLf0 ,
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where f0 satisfies PLf0 = r∗ and Ψ(f0 − f ∗F) ≤ ρ∗.

2. Cone 2: {f ∈ F : Ψ(f − f ∗F) ≤ ρ∗} ⊂ {f ∈ F : PLf ≤ r∗}
Take α = Ψ(f − f ∗F)/ρ∗ > 1 and f0 defined by α(f0 − f ∗F) = f − f ∗F . Thus Ψ(f0 − f ∗F) = ρ∗

and automatically PLf0 ≤ r∗. As for the first case we have

P λ
nLf = PnLf + λ

(
Ψ(f)−Ψ(f ∗F)

)
≥ αP λ

nLf0 ,

where this time, f0 satisfies PLf0 ≤ r∗ and Ψ(f0 − f ∗F) = ρ∗.

Figure 1.2: Localization cones for regularized empirical risk minimizer

Define B(ρ∗, r∗) = {f ∈ F : PLf ≤ r∗} ∩ {f ∈ F : Ψ(f − f ∗F) ≤ ρ∗}. The rest of the proof

consists in proving that P λ
nLf ≥ 0 for every f in ∂B(ρ∗, r∗), where ∂B(ρ∗, r∗) denotes the border

of B(ρ∗, r∗).

Analysis in the cone 1: Let f0 in F such that PLf0 = r∗ and Ψ(f0 − f ∗F) ≤ ρ∗

P λ
nLf0 = PnLf0 + λ

(
Ψ(f0)−Ψ(f ∗F)

)
≥ r∗ − sup

f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf = r∗,Ψ(f − f ∗F) ≤ ρ∗

}
− λρ∗

≥ r∗

2
− sup

f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf = r∗,Ψ(f − f ∗F) ≤ ρ∗

}
,

for λ ≤ r∗/(2ρ∗). The rest of the analysis is devoted to find the smallest r > 0 such that, with large

probability

sup
f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf = r,Ψ(f − f ∗F) ≤ ρ∗

}
≤ r/2 .
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Analysis in cone 2: the sparsity equation In (Lecué and Mendelson, 2018), Lecué and

Mendelson studied the RERM associated with the quadratic loss function. The authors developed

the notion of “sparsity equation“ allowing to obtain tight bounds on the excess risk, depending on

the structure of the oracle f ∗F such as its sparsity or its rank. Their intuition is based on the fact

that the LASSO procedure promotes sparsity because of the large subdifferential of the `1-norm in

sparse vectors. We recall that the subdifferential of Ψ in a point f is defined as(
∂ψ
)
f

= {z∗ ∈ E∗ : Ψ(f + h)−Ψ(f) ≥ z∗(h), ∀h ∈ E} ,

where E∗ is the dual space of the normed space (E,Ψ). Let t ∈ Rp,(
∂‖ · ‖1

)
t

= {g ∈ Rp : ‖g‖∞ ≤ 1,
〈
t, g
〉

= ‖t‖1} ;

and the subdifferential of ‖ · ‖1 is larger for sparse than non-sparse vectors. The penalization would

shift the estimates toward subspaces with large subdifferentials. This phenomenon can be extended

to other penalization functions. Let

S(r, ρ) = {f ∈ F : PLf ≤ r} ∩ {f ∈ F : Ψ(f − f ∗F) = ρ} ,

and

∆(ρ, r) = inf
f∈S(r,ρ)

sup
z∗∈(∂Ψ)f∗F

z∗(f − f ∗F) .

It is expected that ∆(ρ, r) will be large if the subdifferential in the oracle f ∗F is large. Let f0 ∈
S(r∗, ρ∗) From the subdifferential definition, for any z∗ in (∂Ψ)f∗F

Ψ(f0)−Ψ(f ∗F) ≥ z∗(f0 − f ∗F) ≥ inf
f∈S(ρ∗,r∗)

z∗(f − f ∗F) ,

and since it holds for any z∗ in (∂Ψ)f∗F it follows that Ψ(f0)−Ψ(f ∗F) ≥ ∆(r∗, ρ∗) and

P λ
nLf0 = PnLf0 + λ

(
Ψ(f0)−Ψ(f ∗F)

)
≥ − sup

f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf ≤ r∗,Ψ(f − f ∗F) = ρ∗

}
+ λ∆(r∗, ρ∗) .

If ∆(r∗, ρ∗) ≥ ρ∗/2, λ = r∗/(2ρ∗) and

sup
f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf ≤ r∗,Ψ(f − f ∗F) = ρ∗

}
< r∗/4 ,

then P λ
nLf0 > 0. It shows why the subdifferential of f ∗F must be large.

Theorem 1.4: Deterministic results for RERM

Let r∗ and ρ∗ be chosen such that

sup
f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf ≤ r∗,Ψ(f − f ∗F) ≤ ρ∗

}
< r∗/4 ,
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and

∆(r∗, ρ∗) ≥ ρ∗/2,

Then for λ = r∗/(2ρ∗) we have

Ψ(f̂λF − f ∗F) ≤ ρ∗ and PLf̂λF ≤ r∗

Theorem 1.4 is completely deterministic. Thus, to obtain upper bound on the excess risk it is

sufficient to construct a tight upper bound An(r, ρ) such that with high probability.

sup
f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf ≤ r,Ψ(f − f ∗F) ≤ ρ

}
≤ An(r, ρ) ,

and with the same probability, r∗ and ρ∗ defined as

r∗ = inf

{
r > 0 : ∆(r, ρ∗) ≥ ρ∗

2
and An(r, ρ∗) <

r∗

4

}
,

satisfy the requirements of Theorem 1.4.

Remark 1.1. If the norm Ψ is “smooth”, in the sense that the subdifferential of Ψ in f is small for

any f , then there is little hope to have ∆(r, ρ) ≥ ρ/2. In this case we can always take ρ∗ = 3Ψ(f ∗F)

and for f0 in the second cone (i.e PLf0 ≤ r∗,Ψ(f0 − f ∗F) = ρ∗) we have

Ψ(f0)−Ψ(f ∗F) ≥ Ψ(f0 − f ∗F)− 2Ψ(f ∗F) = Ψ(f ∗F) ,

and by chosing r∗ such that

sup
f∈F

{∣∣(Pn − P )(`f − `f∗F )
∣∣ : PLf ≤ r∗,Ψ(f − f ∗F) ≤ 3Ψ(f ∗F)

}
< r∗/4 ,

with λ = r∗/(6Ψ(f ∗F)) we have

Ψ(f̂λF − f ∗F) ≤ 3Ψ(f ∗F) and PLf̂λF ≤ r∗ .

This method can be applied systematically to obtain error bounds depending on Ψ(f ∗F).

1.4.3 Advantages of localization methods for regularized empirical risk

minimizers

Using homogeneity arguments, the analysis is reduced to the uniform control of
∣∣(Pn−P )(`f −`f∗F )

∣∣
over “localized” sub-classes of F . There are several advantages:

1. It leads to smaller error rates than the approach based on global complexity parameters. In

addition, the regularization adds another localization around the oracle f ∗F , often essential to

show that the RERM is minimax-rate-optimal (Lecué and Mendelson, 2018).
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2. Some proofs are substantially simplified since we no longer use a peeling argument.

3. The localization Ψ(f−f ∗F) ≤ ρ∗ may imply that the class {f ∈ F : PLf ≤ r∗ and Ψ(f−f ∗F) ≤
ρ∗} is bounded. For example, let F = HK be a RKHS associated with a bounded kernel K

(|K(x, y)| ≤ 1 for any x, y ∈ X ). Let us define the penalization by Ψ(f) = ‖f‖HK , where

‖·‖HK denotes the norm in the RKHS associated withK. Take ρ∗ = 3‖f ∗‖HK as in Remark 1.1.

Let f in F be such that Ψ(f − f ∗F) ≤ ρ∗ and x ∈ X . From the reproducing property

|f(x)| = |
〈
Kx, f

〉
HK
| ≤ ‖f‖HK ≤ ‖f − f ∗F‖HK + ‖f ∗‖HK ≤ 4‖f ∗F‖HK .

In this example, the control of (Pn−P )(`f−`f∗F ) uniformly over {f ∈ F : PLf ≤ r∗ and Ψ(f−
f ∗F) ≤ ρ∗} can be done using Talagrand’s concentration inequality (see Theorem 1.2), inde-

pendently from the distribution of X. Note that bounded kernels are very common in machine

learning (Shawe-Taylor et al., 2004; Scholkopf and Smola, 2001).

1.5 Complexity parameters in statistical learning

As presented in Sections 1.2 and 1.3, bounding the excess risk of the (R)ERM reduces to the uniform

control of (Pn−P )(`f − `f∗F ) over a sub-class F̃ ⊂ F (the whole class F for slow-rates or sub-classes

when using localization arguments). When the class of functions `F̃ − f ∗F = {`f − `f∗F : f ∈ F̃}
is bounded, it is possible to show that the supremum of the empirical process indexed by `F̃ − f ∗F
concentrates well around its expectation (see Theorem 1.2). Informally, with large probability

sup
f∈F̃
|(Pn − P )(`f − `f∗F )| ≈ E sup

f∈F̃
|(Pn − P )(`f − `f∗F )|

From the symmetrization principle (see Lemma 1.1), E supf∈F̃ |(Pn − P )(`f − `f∗F )| can be upper

bounded by the Rademacher complexity of `F̃ − `f∗F and thus, the performances of the (R)ERM

directly depend on the Rademacher complexity Rn(`F̃ − `f∗F ). Thus, Rademacher complexities

naturally appear when considering bounded classes of functions. However, there exist other ways

of measuring the complexity of a class of functions F . This section is devoted to present one of

these alternatives: The Gaussian complexity. Since the computation of Gaussian and Rademacher

complexities may be involved sometimes, we also present some tools to bound these quantities in

practice.

1.5.1 Another examples of complexity: the Gaussian complexity

Definition 1.3 presents the notion of subgaussian classes extending the one of bounded classes. A

natural way of measuring the complexity of subgaussian classes is via the Gaussian complexity of

F that we introduce now.
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Let {Gf : f ∈ F} be the canonical Gaussian process indexed by F ⊂ L2(PX) i.e E[Gf ] = 0 for

all f in F and the covariance function is given by the inner product in L2(PX) that is E[GfGh] =〈
f, h
〉
L2(PX)

for every g, h in F . The Gaussian complexity of F is defined as

E‖G‖F := sup

{
E sup
h∈H

Gh : H ∈ F is finite

}
In (Lecué and Mendelson, 2018), the authors studied ERM associated with subgaussian classes and

obtained error rates expressed as fixed point of localized Gaussian complexities defined as

inf{r > 0 : E‖G‖Fr ≤ γr
√
n} ,

where γ > 0 is an absolute constant, n is the number of observations and Fr = {f ∈ F : ‖f‖L2(PX) ≤
r}. The main reason why Gaussian complexities appear naturally when learning subgaussian classes

will be given at the very end of Section 1.5.2. The quantity E‖G‖F may look complicated at a first

glance but for many applications it has a simple form. For example let F = {
〈
t, ·
〉

: t ∈ T ⊂ Rp}
be the class of linear functionals in Rp indexed by T and let X be a random vector in Rp with a

covariance matrix Σ, then

E‖G‖F = E sup
t∈T

〈
G, t
〉

= w∗(Σ1/2T ) ,

where G ∼ N (0,Σ) and Σ1/2T = {Σ1/2t : t ∈ T}. The quantity w∗(T ) = E supt∈T
〈
G, t
〉
, where

G ∼ N (0, Ip), is called the Gaussian mean-width of the set T . It is a well-known quantity, appearing

in many phenomena in geometric functional analysis, (Vershynin, 2018; Holmes, 2012). One can

think the Gaussian mean-width as one of the basic geometric quantities associated with subsets of

T ⊂ Rp, such as volume, surface area... The Gaussian mean-width of various sets T is known, see

for example (Vershynin, 2018; Chatterjee and Goswami, 2019). The Gaussian complexity is also

easily computable on several finite dimensional classes of functions such as

1. F = {
〈
t, ·
〉

: t ∈ T ⊂ Rp} the class of linear functionals in Rp.

2. F = {
〈
A, ·
〉

: A ∈ A ⊂ Rm×T} the class of linear functionals in Rm×T (Lecué and Mendelson,

2018).

Sometimes, the computation of Gaussian complexities is more involved. In Section 1.5.2 we present

different tools to bound the expectation of the supremum of a (sub-)Gaussian process and thus

E‖G‖F .

1.5.2 Tools to control Rademacher and Gaussian complexities

Rachemacher and Gaussian complexities measure the richness of class of functions. Empirical risk

minimizer and its regularized versions can be analyzed with fixed-point complexity parameters de-

pending on Rademacher or Gaussian complexities. Building upper bounds for these quantities is
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thus an important question. In this section we present some basic and more advanced tools to

bound the expected suprema of stochastic processes (and obtain upper bounds on the Rademacher

and Gaussian complexities).

Definition 1.3 presents the notion of subgaussian class of functions. This definition can be

extended to other pseudo-distances. Let (T, d) be a pseudo-metric space and (Xt)t∈T be a stochastic

process indexed by T . The process (Xt)t∈T is called subgaussian with respect to the pseudo-metric

d if for any t, s in T the increments Xs −Xt are d(t, s)-subgaussian i.e for any λ > 0

E exp
(
λ(Xt −Xs)

)
≤ exp

(
λ2d2(t, s)

2

)
.

Note that for T = F ⊂ L2(PX) and d(f, g) = ‖f − g‖L2(PX) we recover Definition 1.3. Such

stochastic processes have very remarkable properties. Let N(T, d, ε) be the ε- covering number of

(T, d), that is, the minimal number of balls (defined with the metric d) with radius ε needed to

completely covers T . The ε-entropy of (T, d) is defined as

H(T, d, ε) = logN(T, d, ε) .

The supremum of a subgaussian process is bounded from above by Dudley’s entropy integral.

Theorem 1.5: Dudley integral

Let (Xt)t∈T be a subgaussian random process with respect to the pseudo-metric d. Then, for

every t0 in T , there exists an absolute constant c > 0 such that

E sup
t∈T

Xt ≤ c

∫ D(T )

0

√
H(T, d, ε)dε and E sup

t∈T
|Xt −Xt0| ≤ c

∫ D(T )

0

√
H(T, d, ε)dε ,

where D(T ) = sup{d(t, s) : t, s ∈ T} is the diameter of (T, d).

Theorem 1.5 is derived from chaining techniques (Talagrand, 2006) and is very useful to compute

the Rademacher complexityRn(F) of a class of functions F . Conditional onX1, · · · , Xn, the process
√
nRn(F) is subgaussian with respect to the pseudo-distance L2(Pn) and it follows that

Rn(F) ≤ c√
n
E
∫ Dn(F)

0

√
H(F , L2(Pn), ε)dε ,

where Dn(F) = supf∈F Pnf
2. Note that both the diameter Dn(F) and the entropy with respect

to the pseudo metric L2(Pn) are random. Following the approach developed in (Giné et al., 2006),

it is possible to derive upper bounds on the right term under entropy conditions. Roughly, the

idea consists in showing that L2(Pn) and L2(PX) are close to each other in a certain sense, and use
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bounds on the entropy defined with respect to the metric L2(PX).

Theorem 1.5 is very useful to obtain upper bounds on Rademacher and Gaussian complexities.

However, a close look at the proof reveals a potential source of looseness. To circumvent this

problem, Talagrand developed the idea of generic chaining and introduced the so called Talagrand’s

γ2 functional introduced in Definition 1.4.

Definition 1.4: Talagrand’s γ2

Let (T, d) be a metric space. A sequence (Ts)s≥0 of subsets of T is said to be admissible if

|T0| = 1 and 1 ≤ |Ts| ≤ 22s for every s ≥ 1. The γ2-functional of (T, d) is defined as

γ2(T, d) = inf
(Ts)

sup
t∈T

∞∑
s=0

2s/2d(t, Ts) ,

where the infimum is with respect to all admissible sequences (Ts)s≥0 and d(t, Ts) = minx∈Ts d(t, x).

The γ2-functional is a refinement of the Dudley’s integral. In particular we have

γ2(T, d) ≤ c

∫ D(T )

0

√
H(T, d, ε)dε ,

and the following theorem holds:

Theorem 1.6: Generic chaining

Let (Xt)t∈T be a subgaussian process with respect to the pseudo-metric d. Then, for every t0

in T , there exists an absolute constant c > 0 such that

E sup
t∈T

Xt ≤ cγ2(T, d) and E sup
t∈T
|Xt −Xt0| ≤ cγ2(T, d) .

Moreover,

P
(

sup
t∈T
|Xt −Xt0| ≥ c

(
γ2(T, d) + uD(T )

))
≤ exp(−u2) ,

where D(T ) denotes the diameter of (T, d)

In practice, the γ2-functional is often harder to compute that the Dudley’s integral. The main

advantage of this quantity comes from Talagrand’s majorizing measure Theorem, saying that the

γ2-functional gives an optimal bound on Gaussian processes.

Theorem 1.7: Majorizing measure theorem

Let (Xt)t∈T be a Gaussian process with respect to the pseudo-metric d defined as d(t, s) =
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E(Xt −Xs)2. Then, there exist two absolute constants c, C > 0 such that

cγ2(T, d) ≤ E sup
t∈T

Xt ≤ Cγ2(T, d) .

Theorems 1.6 and 1.7 explain why the Gaussian complexity appears naturally when learning sub-

gaussian classes. With large probability we can control supf∈F̃ |(Pn − P )(`f − `f∗F )| and relate it

with its diameter and the Talagrand’s γ2 which is equivalent to the Gaussian complexity.

1.6 Robustness in learning theory

Statistical learning is based on assumptions one makes on the observations. It can be an implicit

or an explicit assumption about the randomness and the independence of the data. For example,

in Sections 1.2 and 1.3 we assumed that (Xi, Yi)i∈J1,nK were i.i.d and (often) well concentrated.

The robustness in learning can be defined as “the insensitivity to small deviations from the as-

sumptions“ (Huber and Ronchetti, 2011). The goal of robust learning is to build estimators under

minimal hypotheses. Robustness issues have become popular because collected data are often con-

taminated, a situation that can be modeled by heavy-tailed distribution or the adjunction of outliers

to the dataset. With bigger datasets, this corruption is even more likely. Informally, we say that

an estimator is robust if it deviates moderately from its target even when data are not i.i.d and

subgaussian. We will give more precise definitions in the sequel.

We begin by presenting the notion of robustness in the problem of mean estimation. Besides giving

good insights on the notion of robustness, it will serve as the starting point for the construction of

more advanced estimators.

1.6.1 The problem of mean estimation

Univariate case The most simple, yet fundamental problem in statistics, is the mean estimation.

Let X1, · · · , Xn be i.i.d real random variables with distribution PX and mean µX . The goal is to

estimate the mean µX . To do so, one can naturally use the empirical mean

µ̂n =
1

n

n∑
i=1

Xi .

From the law of large number, we know that µ̂n converges almost surely to µX and the goal is to

obtain non-asymptotic results, for a fixed number of observations n. When the distribution PX is

well concentrated around its expectation µX , the empirical mean is a “good“ estimator of the mean

µX . For example, let X1, · · · , Xn be i.i.d N (0, σ2) random variables. Straightforward computations

show that the empirical mean estimator satisfies defined as

∀δ ∈ (0, 1), P
(
|µX − µ̂X | ≥ cσ

√
log(1/δ)

n

)
≤ δ .
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This result easily extends when (Xi)i∈J1,nK are i.i.d σ-subgaussian random variables. An important

problem in statistics is to build estimators of the mean achieving the same performance as the

empirical mean when the subgaussian assumption is relaxed and some outliers may have corrupted

the dataset.

Problem 1: Is it possible to relax the assumption that (Xi)i∈J1,nK are subgaussian and assume

only the existence of a 2nd moment ?

Problem 2: What if O outliers corrupt the data ?

The works (Devroye et al., 2016; Lerasle and Oliveira, 2011) answer the problem 1 in the uni-

variate case. The authors define level-dependent estimators as estimators depending on the level

of confidence δ, and show that there is no estimator independent of the confidence level with the

optimal deviations σ
√

log(1/δ)/n when the data are only assumed to have a second-order moment.

Thus, under the only assumption of a second-order moment, it is possible to obtain the deviation

σ
√

log(1/δ)/n only if the estimator µ̂(δ) depends on the confidence level δ ∈ (0, 1). Once we ac-

cept that the estimator depends on the confidence level δ, different constructions exist (Catoni,

2012; Nemirovsky and Yudin, 1983). The Median Of Means (MOM) scheme (Lerasle and Oliveira,

2011; Nemirovsky and Yudin, 1983) is probably the most natural and widespread construction of

level-dependent estimator. Let B1, · · · , BK be a partition of J1, nK into K blocks of same size (for

the sake of simplicity, it is here assumed that K divides n). For each block Bk, k ∈ J1, KK, let

PBkX := (n/K)−1
∑

i∈Bk Xi be the empirical mean in the block Bk. The MOM-estimator of µX is

defined as

µ̂MOM
K = Median(PB1X, · · · , PBKX) .

Easy computations (see (Lerasle and Oliveira, 2011; Devroye et al., 2016) for example) show that

µ̂MOM
K with K = c log(1/δ) is a level-dependent subgaussian estimator of the mean when only

assuming that X1, · · · , Xn have a second-order moment: for δ ∈ (0, 1) the estimator µ̂MOM
K with

K = c log(1/δ) verifies

P
(
|µX − µ̂MOM

K (δ)| ≥ cσ

√
log(1/δ)

n

)
≤ δ ,

where c > 0 is an absolute constant.

Problem 2 is related to the notion of breakdown points (Donoho and Huber, 1983), which has

been repeatedly investigated in the statistical community. The “Median step“ allows to handle a

number of outliers O ≤ cK. Thus, MOM-estimators are particularly interesting because they can

simultaneously solve problems 1 (heavy-tailed distributions) and 2 (corruption by outliers).

Multivariate case The extension of the median to the multivariate case is an interesting problem.

In the past few years, this generalization has received a lot of attention. In particular, two different
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communities with different notions of robustness have tried to tackle the problem of multivariate

robust mean estimation

The statistical community is interested in constructing reliable estimators when the data

(Xi)i∈J1,nK might be heavy-tailed (Lugosi et al., 2019b; Depersin and Lecué, 2019; Minsker

et al., 2015, 2018; Cherapanamjeri et al., 2019; Hopkins, 2018; Chen et al., 2018). Formally,

let (Xi)i∈J1,nK be i.i.d random vectors in Rp with mean µX ∈ Rp and covariance matrix Σ.

We say that µ̂(δ) is a subgaussian-estimator (Lugosi et al., 2019b) of the mean µX at level

δ ∈ (0, 1) if

P
(
‖µX − µ̂n(δ)‖2 ≥ c1

√
Tr(Σ)

n
+ c2

√
‖Σ‖ log(1/δ)

n

)
≤ δ ,

where c1, c2 > 0 are two absolute constants and ‖Σ‖ denotes the operator norm of Σ.

The computer science community considers a very different notion of robustness. The

goal is to construct robust procedures when O outliers may contaminate the dataset (Di-

akonikolas et al., 2019a; Cheng et al., 2019). It covers the Huber ε-contamination model (Hu-

ber and Ronchetti, 2011) but also adversarial corrupted data. They want to construct esti-

mators, computable in a polynomial time, with the optimal dependence with respect to the

number of outliers O. These results are also different in nature from the previous because the

bounds only hold with constant probability p < 1.

Recently, combining ideas from (Diakonikolas et al., 2019a) and (Lugosi et al., 2019b), (Depersin

and Lecué, 2019) showed that a single algorithm (computable in a nearly-linear time) solves both

problems 1 and 2. This estimator is based on MOM ideas.

The construction of robust estimators of the mean can be used to build estimators solving more

involved learning tasks.

1.6.2 The notion of robustness in supervized learning

In this section, we come back to the context of supervized learning. Let (X, Y ) be distributed as P .

Let PX be the marginal distribution of X and D = (Xi, Yi)i∈J1,nK be a dataset of n (not necessarily

independent) random variables. As explained in Section 1.2, given a convex class of functions F
and a loss ` : Y ×Y 7→ R+, the goal is to use the dataset D to approximate/compute the oracle f ∗F

defined as

f ∗F = argmin
f∈F

P`f := argmin
f∈F

E(X,Y )∼P
[
`
(
f(X), Y

)]
.

Recall that the empirical risk minimizer is defined as

f̂F = argmin
f∈F

Pn`f := argmin
f∈F

1

n

n∑
i=1

`
(
f(Xi), Yi

)
.
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We presented different results on the excess risk for the empirical risk minimizer and its regularized

versions. The analysis strongly relies on concentration inequalities (see Section 1.3 and 1.4). In

particular, the use of Talagrand inequality requires the boundedness of `F while the framework

developed in (Lecué and Mendelson, 2013) focuses on the case when the class of functions `F is

subgaussian and thus possesses finite exponential moments. We always assumed that the data were

independent and identically distributed as P . We would like to relax these two assumptions. It

leads to two different notions of robustness in supervized learning

1. Robustness with respect to outliers: Let I and O be such that I +O = n. Let DI be

a set containing I informative data (X1, Y1), · · · (XI , YI). These data are supposed to be i.i.d

with distribution P . Let DO be a set containing O outliers (X̃1, Ỹ1), · · · (X̃O, ỸO). On these

data, nothing is assumed. We say that an estimator f̂n is robust with respect to O outliers if

P
(
R(f̂n)−R(f ∗F) ≥ ζn

∣∣DI ∩ DO) = P
(
R(f̂n)−R(f ∗F) ≥ cζn

∣∣D) ,

where c > 0 is an absolute constant, ζn > 0 and D = (Xi, Yi)i∈J1,nK is a dataset containing

n i.i.d random variables distributed as P . In other words, an estimators f̂n is robust to O
outliers if (up to an absolute constant) its risk remains unchanged while introducing at most

O outliers in the dataset.

It is also possible to consider variants of this setting. For example, let X1, · · · , Xn be

i.i.d random variables distributed as PX and Y1, · · · , YI be i.i.d random variables such that

(X1, Y1), · · · , (XI , YI) are i.i.d with common distribution P . Nothing is assumed on the O
outliers ỸI+1, · · · , Ỹn and let D = (Xi, Yi)i∈J1,IK ∪ (Xi, Ỹi)i∈JI+1,nK. This case covers situations

where only the labels are corrupted by outliers.

2. Robustness with respect to heavy-tailed: We say that an estimator f̂n is robust to

heavy-tailed distribution at the order k if

P
(
R(f̂n)−R(f ∗F) ≥ ζn|DPk

)
= P

(
R(f̂n)−R(f ∗F) ≥ cζn|DP ∗

)
,

where c > 0 is an absolute constant, DPk = (Xi, Yi)i∈J1,nK is a dataset of i.i.d random variables

with common distribution Pk and DP ∗ = (Xi, Yi)i∈J1,nK is a dataset of i.i.d random variables

with common distribution P ∗. These distributions are such that, for (X, Y ) ∼ Pk∗ , the class

{`
(
f(X), Y

)
, f ∈ F} is subgaussian and for (X, Y ) ∼ Pk the class {`

(
f(X), Y

)
, f ∈ F} has

only k-th order moments. In words, an estimator f̂n is robust with respect to heavy-tailed

distribution if one can prove rates of convergence for its excess risk which are as good if the

class {`
(
f(X), Y

)
, f ∈ F} is subgaussian or if it only satisfies moment conditions.

1.6.3 The limitations of the empirical risk minimizer

The empirical risk minimizer and its regularized counterpart are widespread in machine learning

and statistics. They are used for various of real-world applications. Since large datasets are the
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most vulnerable to corruption, it is a very important question to know whether ERM and RERM

are reliable in such settings.

Let `(y − y′) = (y − y′)2/2 be the quadratic loss function and F = {
〈
t, ·
〉
, t ∈ Rp} be the

class of linear functions indexed by Rp. Neither the loss nor the class F are bounded. Let D =

(Xi, Yi)i∈J1,nK ∈ (Rp × R)n be a dataset of n random variables. The empirical risk minimizer is

defined as

β̂n = argmin
β∈Rp

1

2n

n∑
i=1

(〈
Xi, β

〉
− Yi

)2
.

In this case, it is clear that a single outlier (Xo, Yo) can break down performance of the (R)ERM.

This phenomenon occurs if outliers contaminate only the labels (Yi)i∈J1,nK, only the inputs (Xi)i∈J1,nK,

or both. Thus, (R)ERM with the quadratic loss function is not robust with respect to outliers at

all. In addition, it is quite obvious to see that the estimator β̂n is not robust to heavy-tailed

distributions. For heavy-tailed distributions the empirical risk can be very far from the true risk

and the empirical risk minimizer is not reliable in such cases. Indeed, let us come back to the

problem of univariate mean estimation. Given i.i.d random variables (Xi)i∈J1,nK sampled from PX ,

the goal is to estimate µX = E[X1]. Let F = R and `(y, y′) = (y − y′)/2, for any y, y′ in R. We

have

f ∗F = argmin
f∈F

E(f −X)2/2 = µX and f̂n = argmin
f∈F

1

2n

n∑
i=1

(f −Xi)
2 =

1

n

n∑
i=1

Xi ,

and if PX is heavy-tailed, the estimator f̂n = n−1
∑n

i=1Xn is very far from the oracle f ∗F = µX .

Consequently, there is hope to obtain general results of robustness for the (R)ERM associated with

the quadratic loss function (Mendelson, 2014; Lecué and Mendelson, 2018).

Now, let F be a general class of functions and let ` denote the quadratic loss. As presented in

Section 1.3, the (R)ERM achieves good performances when Pn(`f − `f∗) concentrated well around

its expectation P (`f − `f∗) uniformly over sub-classes of F . From the following decomposition

f(Xi)− Yi = f(Xi)− f ∗F(Xi) + f ∗F(Xi)− Yi = (f − f ∗F)(Xi)− ξi ,

for f ∈ F and where ξi = Yi − f ∗F(Xi), it follows that

Pn(`f − `f∗F ) =
1

2n

n∑
i=1

(f − f ∗F)2(Xi)︸ ︷︷ ︸
quadratic process

− 1

n

n∑
i=1

ξi(f − f ∗F)(Xi)︸ ︷︷ ︸
multiplier process

.

Consequently, the process
(
Pn(`f − `f∗F )

)
f∈F concentrates well around its expectation, if and only

if, both the quadratic and the multiplier processes concentrate well. It is clear that the quadratic

process behaves nicely only when the class F − f ∗ = {f − f ∗F , f ∈ F} concentrates well. The

concentration of the multiplier process (Mendelson, 2016, 2017) involves both the random variables
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f(Xi) − f ∗F(Xi)

)
i∈J1,nK and

(
Yi − f ∗F(Xi)

)
i∈J1,nK. The random variable Yi − f ∗F(Xi) can be seen as

the noise of the problem 5. As these processes don’t concentrate well under moments conditions,

the excess risk of the (R)ERM deteriorates when the noise Y − f ∗F(X) and the class F − f ∗F are

not assumed subgaussian. Thus, even when the class F − f ∗F is bounded, there is no hope for the

(R)ERM with the quadratic loss to be reliable if the noise Y − f ∗F(X) is heavy-tailed.

Consider an unbounded loss function `. Several examples of such functions are given below.

The concentration of Pn(`f − `f∗F ) requires a subgaussian assumption on the class F −f ∗F . However,

contrary to the quadratic loss function, the noise does not need to be subgaussian if the loss satisfies

the following Lipschitz condition: There exists L > 0 such that for every f, g ∈ F and (x, y) ∈ X×Y∣∣`(f(x), y
)
− `
(
g(x), y

)∣∣ ≤ L
∣∣f(x)− g(x)

∣∣ .
Here are some examples of Lipschitz (and convex) losses

• The logistic loss defined, for any u ∈ R and y ∈ Y = {−1, 1}, by `(u, y) = log(1+exp(−yu))

is 1-Lipschitz.

• The hinge loss defined, for any u ∈ R and y ∈ Y = {−1, 1}, by `(u, y) = max(1 − uy, 0) is

1-Lipschitz.

• The Huber loss defined, for any δ > 0, u, y ∈ R, by

`(u, y) =

1
2
(y − u)2 if |u− y| ≤ δ

δ|y − u| − δ2

2
if |u− y| > δ

,

is δ-Lipschitz.

• The quantile loss defined, for any τ ∈ (0, 1), u, y ∈ R, by `(u, y) = ρτ (u− y) where, for any

z ∈ R, ρτ (z) = z(τ − I{z ≤ 0}) is 1-Lipschitz. For τ = 1/2, the quantile loss is the absolute

loss.

From the Lipschitz assumption, a concentration of {Pn(`f−`f∗F ), f ∈ F} follows from a concentration

of F − f ∗F without assumptions on (Yi)i∈J1,nK. The (R)ERM is robust with respect to heavy-tailed

labels (Yi)i∈J1,nK and to outliers in the labels. This is a standard idea in the theory of robust M -

estimators (Huber and Ronchetti, 2011). This intuition is developed in Chapters 2, 3, 4 and 5. We

show that heavy-tailed target Y does not affect the performances of the (R)ERM when the loss

function is simultaneously convex and Lipschitz. We also demonstrate that the (R)ERM exhibits the

minimax-optimal rate when O outliers corrupt only the labels. Table 1.2 summarizes the robustness

results achieved by the empirical risk minimizer and its regularized versions.

5Using the terminology of (Mendelson, 2014)
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Robustness
Heavy-tailed

F − f ∗
Heavy-tailed

noise Y − f ∗F(X)
Outliers (Xo)O Outliers (Yo)O

(R)ERM with

Lipschitz loss

(R)ERM with

quadratic loss

Table 1.2: Summary robust properties of the (R)ERM with different loss functions.

1.6.4 More advanced robust estimators

As presented in Section 1.6.3, the (R)ERM with unbounded loss is not robust to heavy-tailed classes

of functions `F − `f∗F or to outliers contaminating the inputs (Xi)i∈J1,nK. Thus, one would like a

systematic construction to get reliable estimators when the class F − f ∗F may be heavy-tailed or

when outliers corrupt the inputs (Xi)i∈J1,nK. Here, we present a simple construction based on the

Median Of Means scheme. It relaxes the assumptions on the class F − f ∗ and the i.i.d assumption

on the data (Xi, Yi)i∈J1,nK.

The setting is the following. Let I and O be such than I +O = n and DI ∪DO is a partition of

D = (Xi, Yi)i∈J1,nK into two datasets, where DI is composed of I i.i.d informative data distributed

as (X, Y ) and DO is composed of O outliers for which nothing is assumed.

In Section 1.6.1, we presented the Median Of Means estimator of the mean. This estimator is

robust to outliers and it achieves subgaussian deviations from the mean even if data only have two

moments. Thus, one would like to apply a similar construction for supervized learning problems.

Recall that the oracle f ∗F is defined as

f ∗F ∈ argmin
f∈F

E(X,Y )∼P
[
`
(
f(X), Y

)]
,

where the distribution P is unknown. A first approach is to replace the expectation by the empirical

mean and minimize this empirical risk. However, as presented in Section 1.6.3, when the class

F − f ∗F is heavy-tailed, there is no hope to prove deviations of this estimator as good as under

subgaussian assumptions. Instead, we estimate the expectation with the (level-dependent) MOM

estimator of the mean. Let K ∈ J1, nK assumed to divide n for simplicity. For any k ∈ J1, KK and

f ∈ F , let PBk`f = (K/n)
∑

i∈Bk `
(
f(Xi), Yi

)
. The MOM-estimator of the risk P`f is defined as

MOMK(f) = Median
(
PB1`f , · · · , PBK`f

)
. Although being attractive, minimizing MOMK(f) over

F is not sufficient to obtain fast-rates of convergence. A simple explanation comes from the lack

of linearity of such a procedure. Recall that the linearity of the empirical process {(Pn − P )(f)}
is important to use localisation techniques and derive “fast rates” of convergence for ERM (see

Section 1.3). Comparing the minimizer of MOMK(f) over F and f ∗F requires to compare differences

of median, which does not concentrate as well as the median of the differences. To bypass this issue
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of non linearity, the authors in (Lecué and Lerasle, 2019) noticed that the oracle f ∗F also verifies

f ∗F ∈ argmin
f∈F

sup
g∈F

E(X,Y )∼P
[
`
(
f(X), Y

)
− `
(
g(X), Y

)]
.

Replacing the expectation by the MOM-estimator we finally get the minmax-MOM estimators and

their penalized versions defined as

f̂MOM
K argmin

f∈F
sup
g∈F

Median
(
PB1(`f − `g), · · · , PBK (`f − `g)

)
f̂MOM
K,λ argmin

f∈F
sup
g∈F

Median
(
PB1(`f − `g), · · · , PBK (`f − `g)

)
+ λ
(
Ψ(f)−Ψ(g)

)
,

where Ψ : E 7→ R+ denotes a penalty function and λ > 0 is a tuning parameter. From these defini-

tions, it is clear that both f̂MOM
K and f̂MOM

K,λ are robust to at least K/2 outliers. These outliers, can

corrupt both the inputs and the outputs (Xi, Yi)i∈J1,nK. Such estimators, have been studied in (Lecué

and Lerasle, 2019) for the quadratic loss. The following theorem summarizes their principal results.

Theorem 1.8: MOM with quadratic loss (Lecué and Lerasle, 2019)

Let

rQ = inf

{
r > 0 : ∀J ⊂ I, |J | ≥ 2

n
E sup
f∈F :‖f−f∗F‖L2(PX )≤r

∣∣∑
i∈J

σi(f − f ∗F)(Xi)
∣∣ ≤ c|J |r

}

rM = inf

{
r > 0 : ∀J ⊂ I, |J | ≥ 2

n
E sup
f∈F :‖f−f∗F‖L2(PX )≤r

∣∣∑
i∈J

σiξi(f − f ∗F)(Xi)
∣∣ ≤ c|J |r2

}
,

where (σi)i∈J1,nK are i.i.d Rademacher random variables independent of (X,Yi)i∈J1,nK and ξi =

Yi − f ∗F(Xi). Let K ∈ J1, nK be such that K ≥ cO. With probability larger than 1− exp(cK),

the estimator f̂MOM
K satisfies

‖f̂MOM
K − f ∗F‖2

L2(PX) ≤ cmax

(
r2
Q, r

2
M ,

K

n

)
and R(f̂MOM

K )−R(f ∗F) ≤ cmax

(
r2
Q, r

2
M ,

K

n

)

The rates of convergence of f̂MOM
K depend on two fixed-point complexity parameters. From The-

orems 1.6 and 1.7, when both the class F − f ∗F and the noise Y − f ∗F(X) are subgaussian, the

Rademacher complexities can be replaced by Gaussian complexities. Therefore, this results shows

that minimax MOM-estimators achieve the performance of the ERM in the subgaussian case proved

in (Lecué and Mendelson, 2013), even when up to cK outliers have corrupted the dataset. When the

class F − f ∗F and the noise Y − f ∗F(X) are heavy-tailed, the computation of Rademacher complexi-

ties may be involved (Mendelson, 2016, 2017). In particular, for heavy-tailed noise Y − f ∗F(X) the

complexity parameter rM may be very large which is not entirely satisfactory. To bypass this issue,

it is possible to consider robust Lipschitz loss function. From the Lipschitz property, we remove

the dependence to the noise. Consequently, the minmax-MOM estimators with Lipschitz loss are



36 CHAPTER 1. INTRODUCTION

robust to outliers and to heavy-tailed class of functions F − f ∗F . It is also possible to obtain similar

results for regularized minmax-MOM estimators f̂MOM
K,λ using the sparsity equation developed in

Section 1.3.2.

Robustness
Heavy-tailed

F − f ∗
Heavy-tailed

noise Y − f ∗F(X)
Outliers (Xo)O Outliers (Yo)O

Minmax MOM with

Lipschitz loss

Minmax MOM with

quadratic loss

Table 1.3: Summary robust properties of the minmax-MOM estimators different loss functions.

This general approach allows to construct reliable estimators when the data are corrupted and

heavy-tailed. There exist other constructions. For example, in (Loh and Wainwright, 2015; Loh

et al., 2017) the authors proposed robust generalized penalized M -estimators. They establish error

rates for every stationary points around the oracle f ∗F . However, they obtain results only with poly-

nomial probability and for the linear model in Rp. Another line of works investigated robust versions

of the gradient descent, based on variants of the multivariate median-of-means technique (Alistarh

et al., 2018; Chen et al., 2017; Yin et al., 2018; Prasad et al., 2018). The works (Audibert and

Catoni, 2011; Brownlees et al., 2015; Holland and Ikeda, 2017) systematically use the Catoni’s ap-

proach (Catoni, 2012) to construct robust estimators. Very recently, (Minsker and Mathieu, 2019)

presented a “hybrid” approach between the Catoni’s and the median-of-means estimators. Their

theoretical analysis is accompanied by very encouraging simulations. However, as for the minmax-

MOM estimators, there is still no available algorithm able to compute these estimators. It remains

an open question.

1.7 Summary of the contributions

Some arguments presented so far are borrowed from Chapters 2 to 6. We provide here a short

summary of the results obtained in this thesis chapter by chapter.

Chapter 2 We introduced the homogeneity Lemma 1.3 to study the empirical risk minimizer

associated with Lipschitz and convex loss function when the class F − f ∗F is assumed to be sub-

gaussian. Under a local Bernstein condition we derived fast rates with no assumption on the noise

Y − f ∗F(X). We also provide precise results to know when this new local Bernstein condition is

verified. Very informly, if the distribution of the noise Y − f ∗F(X) puts some mass around 0, then
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the local Bernstein condition is granted. This results show that the empirical risk minimizer is ro-

bust with respect to heavy-tailed noise Y − f ∗F(X). We obtain minimax-rate-optimal results when

applying our main theorem to practical problems.

Theorem 1.9: Robustness of ERM to heavy tailed noise

Let ` be a convex and Lipschitz loss function. Let (Xi, Yi)i∈J1,nK be i.i.d random variable

distributed as (X, Y ). Let us assume that the class F − f ∗F is a convex 1-subgaussian class,

that the distribution of the noise Y − f ∗F(X) is symmetric and puts some mass around 0 (see

chapter 2 for a more precise definition). Define

r∗ = inf

{
r > 0 : E sup

f∈F :‖f−f∗F‖L2(PX )≤r

∣∣ n∑
i=1

σi(f − f ∗F)(Xi)
∣∣ ≤ cnr2

}

Then with probability larger than 1− exp
(
− cn(r∗)2

)
, any minimizer of the empirical risk f̂n

verifies

‖f̂n − f ∗F‖2 ≤ r∗ and R(f̂n)−R(f ∗F) ≤ c(r∗)2

Then, we study theoretical properties of minmax-MOM estimators associated with Lipschitz and

convex loss function. Such estimators allow to relax the subgaussian assumption on the class F−f ∗F
and the i.i.d assumption.

Theorem 1.10: Minmax-MOM estimators with Lipschitz losses

Let F be a convex class of functions and ` be a Lipschitz loss function. Let I and O be such

that I +O = n and DI ∪ DO be a partition of D = (Xi, Yi)i∈J1,nK into two datasets, where DI
is composed of I i.i.d informative data distributed as (X, Y ). Assume that the distribution of

Y − f ∗F(X) is symmetric and puts some mass around 0 (as for the ERM) and that K ≥ cO.

Then, with probability 1− exp(−cK), the minmax-MOM estimator f̂MOM
K verifies

‖f̂MOM
K − f ∗F‖2

L2(PX) ≤ cmax

(
(r∗)2,

K

n

)
and R(f̂MOM

K )−R(f ∗F) ≤ cmax

(
(r∗)2,

K

n

)
,

where

r∗ = inf

{
r > 0 : ∀J ⊂ I, |J | ≥ 2

n
E sup
f∈F :‖f−f∗F‖L2(PX )≤r

∣∣∑
i∈J

σi(f − f ∗F)(Xi)
∣∣ ≤ c|J |r2

}
.

Chapter 3 This chapter extends the results obtained in Chapter 2 to regularized problems. We

study the estimators

f̂λn = argmin
f∈F

Pn`f+λΨ(f) and f̂MOM
K,λ = Median

(
PB1(`f−`g), · · · , PBK (`f−`g)

)
+λ
(
Ψ(f)−Ψ(g)

)
,
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when the penalization Ψ is a norm. We develop the analysis presented in Section 1.4 to derive

general results for the RERM when the class F − f ∗F is subgaussian and the loss is simultaneously

convex and Lipschitz. We study the sparsity equation for many regularization norms and obtain

minimax-rate-optimal results when applying our main theorems. As for the ERM, the RERM

associated to Lipschitz loss function is robust with respect to the noise Y − f ∗F(X).

The regularized minmax MOM estimators are studied under the same setting as the RERM except

that the i.i.d assumption is relaxed and that the class F−f ∗F is no longer assumed to be subgaussian.

Similar results are also obtained under refinement of the local Bernstein condition introduced in

Chapter 2.

Chapter 4 This chapter considers RERM estimators when the regularization is not necessarily a

norm. This setting covers important examples such as the elastic net regularization and the Ridge

regularization. We derive complexity-dependent bounds i.e depending on Ψ(f ∗F), in a setting close

to the one studied in Chapter 3.

We also use the homogeneity Lemma 1.3 to show that the subgaussian assumption of F − f ∗F is

not always required. We present the example of Support Vector Machine (SVM) associated with a

bounded kernel K. As explained in Section 1.4, the homogeneity Lemma reduces the proof to an

upper bound of the empirical process on a bounded subspace of F . In this situation, Talagrand’s

inequality applies without assuming that the class is subgaussian. In particular, no assumption

is necessary on the input (Xi)i∈J1,nK. We also generalize the results for regularized minmax-MOM

when the penalization is not a norm

Chapter 5 This chapter focuses only the ERM and it regularization counterpart. We show that

the (R)ERM is robust when O outliers may contaminate the labels. The main theorem of this

chapter is the following.

Theorem 1.11: Robustness of (R)ERM to outliers in the labels

Let I and O be such that I + O = n. Let ` be a convex and Lipschitz loss function. Let

(Xi)i∈J1,nK be i.i.d random variable distributed as X and let (Yi)i∈J1,IK be i.i.d random variables

distributed as Y . Then with probability larger than 1− exp
(
− cn(r∗)2

)
, the minimizer of the

(regularized) empirical risk f̂n verifies

‖f̂n − f ∗F‖2 ≤ c

(
r∗ +

O
n

)
and R(f̂n)−R(f ∗F) ≤ c

(
(r∗)2 +

O
n

)
where r∗ denotes the error rate in a non-contaminated setting, that is when (Xi, Yi)i∈J1,nK are

i.i.d random variables.

From Theorem 1.11, as long as less than nr∗ outliers contaminate the labels, the performances of

the (R)ERM remain unchanged. When r∗ is minimax-rate-optimal, these bounds are also minimax-



1.7. SUMMARY OF THE CONTRIBUTIONS 39

rate-optmal in a setting where O outliers corrupt only the labels. Since in Chapters 2 and 3 we

obtain minimax-rate-optimal for many regularized (or not) problems, we show that the (R)ERM is

often minimax-rate-optimal when the class F −f ∗F is subgaussian and O outliers corrupt the labels.

Chapter 6 Contrary to Chapters 2, 3, 4 and 5, this chapter does not focus on robustness. We

study the linear model in the Gaussian setting when the dimension p may be much larger than

the number of observations n. Let (Xi, Xi)i∈J1,nK be i.i.d random variables distributed as (X, Y )

verifying

Y = XTβ∗ + ξ, X ∼ N (0,Σ), ξ ∼ N (0, σ2) ,

for β∗ ∈ Rp. We study the interpolating estimator with minimum norm defined as

β̂n = argmin{‖β‖2 : XT
i β = Yi, i ∈ J1, nK} .

Using localization methods, we investigate the benign overtting phenomenon in the large deviation

regime, that is when the bounds on the excess risk hold with probability 1−exp(−cn). Localization

with respect to the Euclidean norm allows to obtain fast rates O(1/n) when the signal-to-noise ratio

is large enough. When the signal-to-noise ratio is too low, we also recover the optimal rates at a

deviation level 1− exp(−cn), showing the optimality of our results in this setting.
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Chapter 2

Robust Statistical learning with

Lipschitz and convex loss functions

In this chapter, we obtain estimation and excess risk bounds for Empirical Risk Minimizers (ERM)

and minmax Median-Of-Means (MOM) estimators based on loss functions that are both Lipschitz

and convex. Results for the ERM are derived under weak assumptions on the outputs and sub-

gaussian assumptions on the design as in (Alquier et al., 2019). The difference with (Alquier et al.,

2019) is that the global Bernstein condition of this chapter is relaxed here into a local assumption.

We also obtain estimation and excess risk bounds for minmax MOM estimators under similar as-

sumptions on the output and only moment assumptions on the design. Moreover, the dataset may

also contains outliers in both inputs and outputs variables without deteriorating the performance

of the minmax MOM estimators.

Unlike alternatives based on MOM’s principle (Lecué and Lerasle, 2019; Lugosi and Mendelson,

2016), the analysis of minmax MOM estimators is not based on the small ball assumption (SBA) of

(Koltchinskii and Mendelson, 2015). In particular, the basic example of non parametric statistics

where the learning class is the linear span of localized bases, that does not satisfy SBA (Saumard,

2018) can now be handled. Finally, minmax MOM estimators are analysed in a setting where

the local Bernstein condition is also dropped out. It is shown to achieve excess risk bounds with

exponentially large probability under minimal assumptions insuring only the existence of all objects.

41



42 CHAPTER 2. ROBUST ERM AND MINMAX-MOM

2.1 Introduction

In this chapter, we study learning problems where the loss function is simultaneously Lipschitz and

convex. This situation happens in classical examples such as quantile, Huber and L1 regression

or logistic and hinge classification (van de Geer, 2016). As the Lipschitz property allows to make

only weak assumptions on the outputs, these losses have been quite popular in robust statistics

(Huber and Ronchetti, 2011). Empirical risk minimizers (ERM) based on Lipschitz losses such as

the Huber loss have received recently an important attention (Zhou et al., 2018; Elsener and van de

Geer, 2018; Alquier et al., 2019).

Based on a dataset {(Xi, Yi) : i = 1, . . . , N} of points in X × Y , a class F of functions and a

risk function R(·) defined on F , the statistician want to estimate an oracle f ∗ ∈ argminf∈F R(f)

or to predict an output Y at least as good as f ∗(X). The risk function R(·) is often defined as the

expectation of a loss function ` : (f, x, y) ∈ F ×X ×Y → `f (x, y) ∈ R with respect to the unknown

distribution P of a random variable (X, Y ) ∈ X × Y : R(f) = E`f (X, Y ). Hereafter, the risk is

assumed to have this form for a loss function ` such that, for any (f, x, y), `f (x, y) = ¯̀(f(x), y), for

some function ¯̀ : Ȳ ×Y → R, where the set Ȳ is a convex set containing all possible values of f(x).

The loss function ` is said Lipschitz and convex when the following assumption holds.

Assumption 2.1. There exists L > 0 such that, for any y ∈ Y, ¯̀(·, y) is L-Lipschitz and convex.

Many classical loss functions satisfy Assumption 2.1 and we recall some of them below.

• The logistic loss defined, for any u ∈ Ȳ = R and y ∈ Y = {−1, 1}, by ¯̀(u, y) = log(1 +

exp(−yu)) satisfies Assumption 2.1 with L = 1.

• The hinge loss defined, for any u ∈ Ȳ = R and y ∈ Y = {−1, 1}, by ¯̀(u, y) = max(1−uy, 0)

satisfies Assumption 2.1 with L = 1.

• The Huber loss defined, for any δ > 0, u, y ∈ Y = Ȳ = R, by

¯̀(u, y) =

1
2
(y − u)2 if |u− y| ≤ δ

δ|y − u| − δ2

2
if |u− y| > δ

,

satisfies Assumption 2.1 with L = δ.

• The quantile loss is defined, for any τ ∈ (0, 1), u, y ∈ Y = Ȳ = R, by ¯̀(u, y) = ρτ (u − y)

where, for any z ∈ R, ρτ (z) = z(τ − I{z ≤ 0}). It satisfies Assumption 2.1 with L = 1. For

τ = 1/2, the quantile loss is the L1 loss.

All along the paper, the following assumption is also granted.

Assumption 2.2. The class F is convex.
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When (X, Y ) and the data ((Xi, Yi))
N
i=1 are independent and identically distributed (i.i.d.), for

any f ∈ F , the empirical risk RN(f) = (1/N)
∑N

i=1 `f (Xi, Yi) is a natural estimator of R(f).

The empirical risk minimizers (ERM) (Vapnik, 2000) obtained by minimizing f ∈ F → RN(f)

are expected to be close to the oracle f ∗. This procedure and its regularized versions have been

extensively studied in learning theory (Koltchinskii, 2011a). When the loss is both convex and

Lipschitz, results have been obtained in practice (Bach et al., 2012; Bubeck, 2015) and theory

(van de Geer, 2016). Risk bounds with exponential deviation inequalities for the ERM can be

obtained under weak assumptions on the outputs Y , but stronger assumptions on the design X.

Moreover, fast rates of convergence (Tsybakov, 2004) can only be obtained under margin type

assumptions such as the Bernstein condition (Bartlett and Mendelson, 2006a; van de Geer, 2016).

The Lipschitz assumption and global Bernstein conditions (that hold over the entire F as in

(Alquier et al., 2019)) imply boundedness in L2-norm of the class F , see the discussion preceding

Assumption 2.4 for details. This boundedness is not satisfied in linear regression with unbounded

design so the results of (Alquier et al., 2019) don’t apply to this basic example such as linear

regression with a Gaussian design. To bypass this restriction, the global condition is relaxed into a

“local” one as in (Elsener and van de Geer, 2018; van de Geer, 2016), see Assumption 2.4 below.

The main constraint in our results on ERM is the assumption on the design. This constraint can

be relaxed by considering alternative estimators based on the “median-of-means” (MOM) principle

of (Nemirovsky and Yudin, 1983; Birgé, 1984; Jerrum et al., 1986; Alon et al., 1999) and the

minmax procedure of (Audibert and Catoni, 2011; Baraud et al., 2017). The resulting minmax

MOM estimators have been introduced in (Lecué and Lerasle, 2019) for least-squares regression as

an alternative to other MOM based procedures (Lugosi and Mendelson, 2016; Lugosi et al., 2019a;

Lecué and Lerasle, 2017). In the case of convex and Lipschitz loss functions, these estimators satisfy

the following properties 1) as the ERM, they are efficient under weak assumptions on the noise 2)

they achieve optimal rates of convergence under weak stochastic assumptions on the design and 3)

the rates are not downgraded by the presence of some outliers in the dataset.

These improvements of MOM estimators upon ERM are not surprising. For univariate mean

estimation, rate optimal sub-Gaussian deviation bounds can be shown under minimal L2 moment

assumptions for MOM estimators (Devroye et al., 2016) while the empirical mean needs each data to

have sub-Gaussian tails to achieve such bounds (Catoni, 2012). In least-squares regression, MOM-

based estimators (Lugosi and Mendelson, 2016; Lugosi et al., 2019a; Lecué and Lerasle, 2017, 2019)

inherit these properties, whereas the ERM has downgraded statistical properties under moment

assumptions (see Proposition 1.5 in (Lecué and Mendelson, 2016)). Furthermore, MOM procedures

are resistant to outliers: results hold in the “O ∪ I” framework of (Lecué and Lerasle, 2017, 2019),

where inliers or informative data (indexed by I) only satisfy weak moments assumptions and the

dataset may contain outliers (indexed by O) on which no assumption is made, see Section 2.3. This

robustness, that almost comes for free from a technical point of view is another important advantage
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of MOM estimators compared to ERM in practice. Figure 2.1 1 illustrates this fact, showing that

statistical performance of the standard logistic regression are strongly affected by a single corrupted

observation, while the minmax MOM estimator maintains good statistical performance even with

5% of corrupted data.

Figure 2.1: MOM Logistic Regression VS Logistic regression from Sklearn (p = 50 and N = 1000)

Compared to (Lugosi and Mendelson, 2016; Lecué and Lerasle, 2019), considering convex-

Lipschitz losses instead of the square loss allows to simplify simultaneously some assumptions

and the presentation of the results for MOM estimators: L2-assumptions on the noise in (Lu-

gosi and Mendelson, 2016; Lecué and Lerasle, 2019) can be removed and complexity parameters

driving risk of ERM and MOM estimators only involve a single stochastic linear process, see

Eq. (2.3) and (2.6) below. Also, contrary to the analysis in least-squares regression, the small

ball assumption (Koltchinskii and Mendelson, 2015; Mendelson, 2014) is not required here. Recall

that this assumption states that there are absolute constants κ and β such that, for all f ∈ F ,

P[|f(X)− f ∗(X)| ≥ κ ‖f − f ∗‖L2
] ≥ β. It is interesting as it involves only moments of order 1 and

2 of the functions in F . However, it does not hold with absolute constants in classical frameworks

such as histograms, see (Saumard, 2018; Han and Wellner, 2017) and Section 2.5.

Finally, minmax MOM estimators are studied in a framework where the Bernstein condition

is dropped out. In this setting, they are shown to achieve an oracle inequality with exponentially

large probability (see Section 2.4). The results are slightly weaker in this relaxed setting: the excess

risk is bounded but not the L2 risk and the rates of convergence are “slow” in 1/
√
N in general.

Fast rates of convergence in 1/N can still be recovered from this general result if a local Bernstein

type condition is satisfied though, see Section 2.4 for details. This last result shows that minmax

MOM estimators can be safely used with Lipschitz and convex losses, assuming only that inliers

data are independent with enough finite moments to give sense to the results. To approximate

1All figures can be reproduced from the code available at https://github.com/lecueguillaume/MOMpower

https://github.com/lecueguillaume/MOMpower
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minmax MOM estimators, an algorithm inspired from (Lecué and Lerasle, 2019; Lecué et al., 2018)

is also proposed. Asymptotic convergence of this algorithm has been proved in (Lecué et al., 2018)

under strong assumptions, but, to the best of our knowledge, convergence rates have not been

established. Nevertheless, the simulation study presented in Section 2.7 shows that it has good

robustness performances.

The paper is organized as follows. Optimal results for the ERM are presented in Section 2.2.

Minmax MOM estimators are introduced and analysed in Section 2.3 under a local Bernstein

condition and in Section 2.4 without the Bernstein condition. A discussion of the main assumptions

is provided in Section 2.5. Section 2.6 presents the theoretical limits of the ERM compared to

the minmax MOM estimators. Finally, Section 2.7 provides a simulation study where a natural

algorithm associated to the minmax MOM estimator for logistic loss is presented. The proofs of

the main theorems are gathered in Sections 2.9, 2.10.1 and 2.10.2.

Notations Let X ,Y be measurable spaces and let Ȳ denote a convex set Ȳ ⊃ Y . Let F be a class

of measurable functions f : X → Ȳ and let (X, Y ) ∈ X ×Y be a random variable with distribution

P . Let µ denote the marginal distribution of X. For any probability measure Q on X ×Y , and any

function g ∈ L1(Q), let Qg =
∫
g(x, y)dQ(x, y). Let ` : F ×X ×Y → R, (f, x, y) 7→ `f (x, y) denote

a loss function measuring the error made when predicting y by f(x). It is always assumed that

there exists a function ` : Ȳ ×Y → R such that, for any (f, x, y) ∈ F ×X ×Y , `(f(x), y) = `f (x, y).

Let R(f) = P`f = E`f (X, Y ) for f in F denote the risk and let Lf = `f − `f∗ denote the excess

loss. If F ⊂ L1(P ) := L1 and Assumption 2.1 holds, an equivalent risk can be defined even if

Y /∈ L1. Actually, for any f0 ∈ F , `f − `f0 ∈ L1 so one can define R(f) = P (`f − `f0). W.l.o.g.

the set of risk minimizers is assumed to be reduced to a singleton argminf∈F R(f) = {f ∗}. f ∗ is

called the oracle as f ∗(X) provides the prediction of Y with minimal risk among functions in F .

For any f and p > 0, let ‖f‖Lp = (P |f |p)1/p, for any r > 0, let rBL2 = {f ∈ F : ‖f‖L2 ≤ r} and

rSL2 = {f ∈ F : ‖f‖L2 = r}. For any set H for which it makes sense, H + f ∗ = {h+ f ∗ s.t h ∈ H},
H−f ∗ = {h−f ∗ s.t h ∈ H}. For any real numbers a, b, we write a . b when there exists a positive

constant c such that a ≤ cb, when a . b and b . a, we write a � b.

2.2 ERM in the sub-Gaussian framework

This section studies the ERM, improving some results from (Alquier et al., 2019). In particular, the

global Bernstein condition in (Alquier et al., 2019) is relaxed into a local hypothesis following (van de

Geer, 2016). All along this section, data (Xi, Yi)
N
i=1 are independent and identically distributed with

common distribution P . The ERM is defined for f ∈ F → PN`f = (1/N)
∑N

i=1 `f (Xi, Yi) by

f̂ERM = argmin
f∈F

PN`f . (2.1)

The results for the ERM are shown under a sub-Gaussian assumption on the class F − F with
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respect to the distribution of X. This result is the benchmark for the following minmax MOM

estimators.

Definition 2.1. Let B ≥ 1. F is called B-sub-Gaussian (with respect to X) when for all f ∈ F
and all λ > 1

E exp(λ|f(X)|/‖f‖L2) ≤ exp(λ2B2/2) .

Assumption 2.3. The class F −F is B-sub-Gaussian with respect to X, where F −F = {f1− f2 :

f1, f2 ∈ F}.

Under this sub-Gaussian assumption, statistical complexity can be measured via Gaussian mean-

widths.

Definition 2.2. Let H ⊂ L2. Let (Gh)h∈H be the canonical centered Gaussian process indexed by H

(in particular, the covariance structure of (Gh)h∈H is given by (E(Gh1 −Gh2)2)
1/2

= (E(h1(X)− h2(X))2)
1/2

for all h1, h2 ∈ H). The Gaussian mean-width of H is w(H) = E suph∈H Gh.

The complexity parameter driving the performance of f̂ERM is presented in the following defi-

nition.

Definition 2.3. The complexity parameter is defined as

r2(θ) ≥ inf{r > 0 : 32Lw((F − f ∗) ∩ rBL2) ≤ θr2
√
N}

where L > 0 is the Lipschitz constant from Assumption 2.1.

Let A > 0. In (Bartlett and Mendelson, 2006a), the class F is called (1, A)-Bernstein if, for

all f ∈ F , PL2
f 6 APLf . Under Assumption 2.1, F is (1, AL2)-Bernstein if the following stronger

assumption is satisfied

‖f − f ∗‖2
L2
6 APLf . (2.2)

This stronger version was used, for example in (Alquier et al., 2019) to study ERM. However, under

Assumption 2.1, Eq (2.2) implies that

‖f − f ∗‖2
L2
6 APLf 6 AL‖f − f ∗‖L1 6 AL‖f − f ∗‖L2 .

Therefore, ‖f −f ∗‖L2 6 AL for any f ∈ F . The class F is bounded in L2-norm, which is restrictive

as this assumption is not verified by the class of linear functions for example. To bypass this issue,

the following condition is introduced.

Assumption 2.4. There exists a constant A > 0 such that, for all f ∈ F satisfying ‖f − f ∗‖L2
=

r2(1/(2A)), we have ‖f − f ∗‖2
L2
6 APLf .
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In Assumption 2.4, Bernstein condition is granted in a L2-sphere centered in f ∗ only. Outside

of this sphere, there is no restriction on the excess loss. From the previous remark, it is clear that

we necessarily have r2(1/(2A)) ≤ AL (as long as there exists some f ∈ F such that ‖f − f ∗‖2 ≥
r2(1/2A)). This relaxed assumption is satisfied for many Lipschitz-convex loss functions under

moment assumptions and weak assumptions on the noise as it will be checked in Section 2.5. The

following theorem is the main result of this section.

Theorem 2.1. Grant Assumptions 2.1, 2.2, 2.3 and 2.4, f̂ERM defined in (2.1) satisfies, with

probability larger than

1− 2 exp

(
−CNr

2
2(1/(2A))

(AL)2

)
, (2.3)

‖f̂ERM − f ∗‖2
L2
≤ r2

2(1/(2A)) and PLf̂ERM ≤
r2

2(1/(2A))

2A
, (2.4)

where C is an absolute constant.

Theorem 2.1 is proved in Section 2.9.1. It shows deviation bounds both in L2 norm and for the

excess risk, which are both minimax optimal as proved in (Alquier et al., 2019). As in (Alquier

et al., 2019), a similar result can be derived if the sub-Gaussian Assumption 2.3 is replaced by a

boundedness in L∞ assumption. An extension of Theorem 2.1 can be shown, where Assumption 2.4

is replaced by the following hypothesis: there exists κ such that for all f ∈ F in a L2-shpere centered

in f ∗, ‖f − f ∗‖2κ
L2
6 APLf . The case κ = 1 is the most classical and its analysis contains all the

ingredients for the study of the general case with any parameter κ ≥ 1. More general Bernstein

conditions can also be considered as in (van de Geer, 2016, Chapter 7). These extensions are left

to the interested reader.

Notice that none of the assumptions 2.1, 2.2, 2.3 and 2.4 involve the output Y directly. All

assumptions on Y are done through the oracle f ∗. Yet, as will become transparent in the applications

in Section 2.5, some assumptions on the distributions of Y are required to check the assumptions

of Theorem 2.1. These assumptions are not very restrictive though and Lipschitz losses have been

quite popular in robust statistics for this reason.

2.3 Minmax MOM estimators

This section presents and studies minmax MOM estimators, comparing them to ERM. We relax

the sub-Gaussian assumption on the class F − F and the i.i.d assumption on the data (Xi, Yi)
N
i=1.

2.3.1 The estimators

The framework of this section is a relaxed version of the i.i.d. setup considered in Section 2.2.

Following (Lecué and Lerasle, 2017, 2019), there exists a partition O ∪ I of {1, · · · , N} in two

subsets unknown to the statistician. No assumption is granted on the set of “outliers” (Xi, Yi)i∈O.



48 CHAPTER 2. ROBUST ERM AND MINMAX-MOM

“Inliers”, (Xi, Yi)i∈I , are only assumed to satisfy the following assumption. For all i ∈ I, (Xi, Yi)

has distribution Pi, Xi has distribution µi and for any p > 0 and any function g for which it makes

sense ‖g‖Lp(µi) = (Pi|g|p)1/p.

Assumption 2.5. (Xi, Yi)i∈I are independent and, for any i ∈ I, ‖f − f ∗‖L2 = ‖f − f ∗‖L2(µi) and

PiLf = PLf .

Assumption 2.5 holds in the i.i.d case but it covers other situations where informative data

(Xi, Yi)i∈I may have different distributions. Typically, when F is the class of linear functions on

Rd, F = {
〈
t, ·
〉
, t ∈ Rd} and (Xi)i∈I are vectors with independent coordinates (Xi,j)j=1,...,d, then

Assumption 2.5 is met if the coordinates (Xi,j)i∈I have the same first and second moments for all

j = 1, . . . , d.

Recall the definition of MOM estimators of univariate means. Let (Bk)k=1,...,K denote a partition of

{1, . . . , N} into blocks Bk of equal size N/K (if N is not a multiple of K, just remove some data).

For any function f : X × Y → R and k ∈ {1, . . . , K}, let PBkf = (K/N)
∑

i∈Bk f(Xi, Yi). MOM

estimator is the median of these empirical means:

MOMK

(
f
)

= Med(PB1f, · · · , PBKf) .

The estimator MOMK

(
f
)

achieves rate optimal sub-Gaussian deviation bounds, assuming only that

Pf 2 <∞, see for example (Devroye et al., 2016). The number K is a tuning parameter. The larger

K, the more outliers are allowed. When K = 1, MOMK

(
f
)

is the empirical mean, when K = N ,

the empirical median.

Following (Lecué and Lerasle, 2019), remark that the oracle is also solution of the following

minmax problem:

f ∗ ∈ argmin
f∈F

P`f = argmin
f∈F

sup
g∈F

P (`f − `g) .

Minmax MOM estimators are obtained by plugging MOM estimators of the unknown expectations

P (`f − `g) in this formula:

f̂ ∈ argmin
f∈F

sup
g∈F

MOMK

(
`f − `g

)
. (2.5)

The minmax MOM construction can be applied systematically as an alternative to ERM. For

instance, it yields a robust version of logistic classifiers. The minmax MOM estimator with K = 1

is the ERM.

The linearity of the empirical process PN is important to use localisation technics and derive

“fast rates” of convergence for ERM (Koltchinskii, 2011b), improving “slow rates” derived with the

approach of (Vapnik, 1998), see (Tsybakov, 2004) for details on “fast and slow rates”. The idea

of the minmax reformulation comes from (Audibert and Catoni, 2011), where this strategy allows

to overcome the lack of linearity of some alternative robust mean estimators. (Lecué and Lerasle,

2017) introduced minmax MOM estimators to least-squares regression.
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2.3.2 Theoretical results

Setting

The assumptions required for the study of estimator (2.5) are essentially those of Section 2.2 except

for Assumption 2.3 which is relaxed into Assumption 2.5. Instead of Gaussian mean width, the

complexity parameter is expressed as a fixed point of local Rademacher complexities (Bartlett et al.,

2005; Boucheron et al., 2005; Bartlett et al., 2005). Let (σi)i=1,...,N denote i.i.d. Rademacher random

variables (uniformly distributed on {−1, 1}), independent from (Xi, Yi)i∈I . Let

r̃2(γ) ≥ inf

{
r > 0, ∀J ⊂ I : |J | ≥ N

2
,E sup

f∈F :‖f−f∗‖L2
≤r

∣∣∣∣∑
i∈J

σi(f − f ∗)(Xi)

∣∣∣∣ ≤ r2|J |γ
}
. (2.6)

The outputs do not appear in the complexity parameter. This is an interesting feature of

Lipschitz losses. It is necessary to adapt the Bernstein assumption to this framework.

Assumption 2.6. There exists a constant A > 0 such that for all f ∈ F if ‖f − f ∗‖2
L2

= CK,r then

‖f − f ∗‖2
L2
6 APLf where

CK,r = max

(
r̃2

2(1/(575AL)), 864A2L2K

N

)
. (2.7)

Assumptions 2.6 and 2.4 have a similar flavor as both require the Bernstein condition in a L2-

sphere centered in f ∗ with radius given by the rate of convergence of the associated estimator (see

Theorems 2.1 and 2.2). For K ≤ (r̃2
2(575/(AL))N)/(846A2L2) the sphere {f ∈ F : ||f − f ∗||L2 =√

CK,r} is a L2-sphere centered in f ∗ of radius r̃2(575/(AL)) which can be of order 1/
√
N (see

Section 2.3.2). As a consequence, Assumption 2.6 holds in examples where the small ball assumption

does not (see discussion after Assumption 2.9).

Main results

We are now in position to state the main result regarding the statistical properties of estimator (2.5)

under a local Bernstein condition.

Theorem 2.2. Grant Assumptions 2.1, 2.2, 2.5 and 2.6 and assume that |O| ≤ 3N/7. Let γ =

1/(575AL) and K ∈
[
7|O|/3, N

]
. The minmax MOM estimator f̂ defined in (2.5) satisfies, with

probability at least

1− exp(−K/2016), (2.8)

‖f̂ − f ∗‖2
L2
≤ CK,r and PLf̂ ≤

2

3A
CK,r . (2.9)

Suppose that K = r̃2
2(γ)N , which is possible as long as |O| . Nr̃2

2(γ). The deviation bound is

then of order r̃2
2(γ) and the probability estimate 1−exp(−Nr̃2

2(γ)/2016). Therefore, minmax MOM

estimators achieve the same statistical bound with the same deviation as the ERM as long as r̃2
2(γ)

and r2(θ) are of the same order. Using generic chaining (Talagrand, 2014), this comparison is true
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under Assumption 2.3. It can also be shown under weaker moment assumption, see (Mendelson,

2017) or the example of Section 2.3.2.

When r̃2
2(γ) � r2(θ), the bounds are rate optimal as shown in (Alquier et al., 2019). This is why

these bounds are called rate optimal sub-Gaussian deviation bounds. While these hold for ERM in

the i.i.d. setup with sub-Gaussian design in the absence of outliers (see Theorem 2.1), they hold for

minmax MOM estimators in a setup where inliers may not be i.i.d., nor have sub-Gaussian design

and up to Nr̃2
2(γ) outliers may have contaminated the dataset.

This section is concluded by presenting an estimator achieving (2.5) simultaneously for all K.

For all K ∈ {1, . . . , N} and f ∈ F , define TK(f) = supg∈F MOMK

(
`f − `g

)
and let

R̂K = {g ∈ F : TK(g) ≤ (1/3A)CK,r} . (2.10)

Now, building on the Lepskii’s method, define a data-driven number of blocks

K̂ = inf

(
K ∈ {1, . . . , N} :

N⋂
J=K

R̂J 6= ∅
)

(2.11)

and let f̃ be such that

f̃ ∈
N⋂

J=K̂

R̂J . (2.12)

Theorem 2.3. Grant Assumptions 2.1, 2.2, 2.5 and 2.6 and assume that |O| ≤ 3N/7. Let γ =

1/(575AL). The estimator f̃ defined in (2.12) is such that for all K ∈
[
7|O|/3, N

]
, with probability

at least

1− 4 exp(−K/2016),

‖f̃ − f ∗‖2
L2
≤ CK,r and PLf̃ ≤

2

3A
CK,r .

Theorem 2.3 states that f̃ achieves the results of Theorem 2.2 simultaneously for all K ≥ 7|O|/3.

This extension is useful as the number |O| of outliers is typically unknown in practice. However,

contrary to f̂ , the estimator f̃ requires the knowledge of A and r̃(γ). These parameters allow to build

confidence regions for f ∗, which is necessary to apply Lepski’s method. Similar limitations appear in

least-squares regression (Lecué and Lerasle, 2019) and even in the basic problem of univariate mean

estimation. In this simpler problem, it can be shown that one can build sub-Gaussian estimators

depending on the confidence level (through K) under only a second moment assumption. On the

other hand, to build estimators achieving the same risk bounds simultaneously for all K, more

informations on the distribution of the data are required, see (Devroye et al., 2016, Theorem 3.2).

In particular, the knowledge of the variance, which allows to build confidence intervals for the

unknown univariate mean, is sufficient. The necessity of extra-information to obtain adaptivity

with respect to K is therefore not surprising here.
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Some basic examples

The following example illustrates the optimality of the rates provided in Theorem 2.2 even under a

simple L2-moment assumption.

Lemma 2.1 ((Koltchinskii, 2006)). In the O ∪ I framework with F = {
〈
t, ·
〉

: t ∈ Rd}, we have

r̃2
2(γ) ≤ Rank(Σ)/(2γ2N), where Σ = E[XXT ] is the d× d covariance matrix of X.

The proof of Lemma 2.1 is recalled in Section 2.10.1 for the sake of completeness. Lemma 2.1

grants only the existence of a second moment for X even though the rate obtained Rank(Σ)/(2γ2N)

is the same as the one we would get under a sub-Gaussian assumption given that r2(θ) ∼ Rank(Σ)/(2θ2N).

Moreover, Section 2.5 shows that Assumptions 2.4 and 2.6 are satisfied when F = {
〈
t, ·
〉

: t ∈ Rd}
and X is a vector with i.i.d. entries having only a few finite moments. Theorem 2.2 applies therefore

in this setting and the Minmax MOM estimator (2.5) achieves the optimal fast rate of convergence

Rank(Σ)/N . This shows that when the model is the entire space Rd, the results for the ERM from

Theorem 2.1 obtained under a sub-Gaussian assumption is the same as the one for the minmax

MOM from Theorem 2.2 under only weak moment assumption.

However, Lemma 2.1 does not describe a typical situation. Having r̃2
2(γ) of the same order as

r2
2(θ) under only a second moment assumption is mainly happening on large models such as the

entire space Rd. For smaller size models such as the Bd
1 -ball (the unit ball of the `d1-norm), the

picture is different: r̃2
2(γ) should be bigger than r2

2(θ) unless X has enough moment. To make this

statement simple let us consider the case N = 1. In that case, we have r2
2(θ) ∼ √log d. Let us now

describe r̃2
2(γ) under various moment assumptions on X to see when r̃2

2(γ) compares with
√

log d.

Let X = (xj)
d
j=1 be a random vector. It follows from Equation (3.1) in (Mendelson et al., 2007)

that

E sup
t∈Bd1∩rBd2

|
〈
t,X

〉
| .


rE
(∑d

j=1 x
2
j

)1/2

if r ≤ 1/
√
d

rE
(∑k

j=1(x∗j)
2
)1/2

if 1/
√
d ≤ r ≤ 1

Emaxj=1,...,d |xj| if r ≥ 1.

where k = d1/r2e and x∗1 ≥ . . . ≥ x∗d is a non-increasing rearrangement of the absolute values of

the coordinates xj, j = 1, . . . , d of X. Assume that x1, . . . , xd are i.i.d. distributed like x such that

Ex = 0 and Ex2 = 1. Assume that x has 2p moments, for p ≥ 1 and let c0 be such that E[x2p] ≤ c0.

Then, using Jensen’s inequality, we obtain(
E

[
1

k

k∑
j=1

(x∗j)
2

])p

≤ 1

k

k∑
j=1

E[(x∗j)
2p] ≤ 1

k

d∑
j=1

E[x2p
j ] ≤ c0d

k
.

It follows that

E

(1

k

k∑
j=1

(x∗j)
2

)1/2
 ≤ (E[1

k

k∑
j=1

(x∗j)
2

])1/2

≤
(
c0d

k

)1/(2p)

≤
(
c0d

k

)1/(2p)

≤ (c0dr
2)1/(2p) .
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Hence,

E sup
t∈Bd1∩rBd2

|
〈
t,X

〉
| .


r
√
d if r ≤ 1/

√
d

(c0dr
2)1/(2p) if 1/

√
d ≤ r ≤ 1

(c0d)1/(2p) if r ≥ 1.

.

Assume that f ∗ =
〈
t∗, ·
〉
, with t∗ = 0. Then,

r̃2(γ) = inf

{
r > 0 : E sup

t∈Bd1∩rBd2

|
〈
t,X

〉
| ≤ γr2

}
. (c0d)1/(4p)/

√
γ .

In particular, 
r̃2(γ) � 1 when p ≥ log(c0d),

1 . r2(γ) .
√

log d when log(c0d)/ log log d ≤ p ≤ log(c0d),

r̃2(γ) � d1/(4p) when p ≤ log(c0d)/ log log d.

Let us now show that these estimates are sharp by considering x = ε(1+Rη) where ε is a Rademacher

variable, η is a Bernouilli variable (independent of ε) with mean δ = 1/d and R = d1/(4p). We have

Ex = 0 and Ex2 = 1 + Rδ ≤ 2 because Rδ ≤ 1 when p ≥ 1. Let xj = εj(1 + Rηj), j = 1, . . . , d be

i.i.d. copies of x. We have

E max
j=1,...,d

|xj| ≥ (1 +R)P
[

max
j=1,...,d

|xj| ≥ 1 +R

]
= (1 +R) (1− P[ηj = 0,∀j = 1, . . . , d]) = (1 +R)(1− (1− δ)d) ≥ (1 +R)e−1 & d1/(4p).

As a consequence, for all 1 ≤ r . d1/(8p),

E sup
t∈Bd1∩rBd2

|
〈
t,X

〉
| = E max

j=1,...,d
|xj| > r2

and so r̃2
2(γ) & d1/(4p). As a consequence, under only a L2p moment assumption one cannot have

r̃2
2(γ) better than d1/(4p).

As a consequence, r̃2(γ) can be much larger than r2(θ) when x has less than log(c0d)/ log(log d)

moments, for instance, r̃2
2(γ) can be of the order of d1/8 when x has only 2 moments. This picture

is different from the one given by Lemma 2.1 where we were able to get equivalence between r̃2(γ)

and r2(θ) only under a second moment assumption.

2.4 Relaxing the Bernstein condition

This section shows that minmax MOM estimators satisfy sharp oracle inequalities with exponen-

tially large deviation under minimal stochastic assumptions insuring the existence of all objects.

These results are slightly weaker than those of the previous section: the L2 risk is not controlled

and only slow rates of convergence hold in this relaxed setting. However, the bounds are sufficiently
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precise to imply fast rates of convergence for the excess risk as in Theorems 2.2 if a slightly stronger

Bernstein condition holds.

Given that data may not have the same distribution as (X, Y ), the following relaxed version of

Assumption 2.5 is introduced.

Assumption 2.7. (Xi, Yi)i∈I are independent and for all i ∈ I, (Xi, Yi) has distribution Pi, Xi has

distribution µi. For any i ∈ I, F ⊂ L2(µi) and PiLf = PLf for all f ∈ F .

When Assumption 2.6 does not necessary hold, the localization argument has to be modified.

Instead of the L2-norm, the excess risk f ∈ F → PLf is used to define neighborhoods around f ∗.

The associated complexity is then defined for all γ > 0 and K ∈ {1, · · · , N} by

r̄2(γ) ≥ inf

{
r > 0 : max

(E(r)

γ
,
√

1536VK(r)
)
≤ r2

}
(2.13)

where

E(r) = sup
J⊂I:|J |≥N/2

E sup
f∈F :PLf≤r2

∣∣∣∣ 1

|J |
∑
i∈J

σi(f − f ∗)(Xi)

∣∣∣∣ ,
and VK(r) = max

i∈I
sup

f∈F :PLf≤r2

√
VarPi(Lf )

√
K

N
.

There are two important differences between r̄2(γ) on one side and r2(θ) in Definition 2.2 or r̃2(γ)

in (2.6) on the other side. The first one is the extra variance term VK(r). Under the Bernstein

condition, this term is negligible in front of the “expectation term” E(r) see (Bartlett and Mendel-

son, 2006a). In the general setting considered here, the variance term is handled in the complexity

parameter. The second important consequence is that r̄2 is a fixed point of the complexity of F

localized around f ∗ with respect to the excess risk rather than with respect to the L2-norm. An

important consequence is that this quantity is harder to compute in practical examples. As a

consequence, the results of this section are more of theoretical importance.

Theorem 2.4. Grant Assumptions 2.1, 2.2, 2.7 and assume that |O| ≤ 3N/7. Let γ = 1/(768L)

and K ∈
[
7|O|/3, N

]
. The minmax MOM estimator f̂ defined in (2.5) satisfies, with probability at

least 1− exp(−K/2016), PLf̂ ≤ r̄2
2(γ).

Recall that Assumptions 2.1 and 2.2 are only meaning that the loss function is convex and

Lipschitz and that the class F is convex. Assumption 2.7 says that inliers are independent and

define the same excess risk as (X, Y ) over F . In particular, Theorem 2.4 holds, as Theorem 2.2,

without assumptions on the outliers (Xi, Yi)i∈O and with weak assumptions on the outputs (Yi)i∈I

of the inliers (we remrak that excess loss function f → PLf is well-defined under no assumption

on Y – even if Y /∈ L1 – because |Lf | ≤ L|f − f ∗|). Moreover, the excess risk bound holds

with exponentially large probability without assuming sub-Gaussian design, a small ball hypothesis
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or a Bernstein condition. This generality can be achieved by combining MOM estimators with

convex-Lipschitz loss functions.

The following result discuss relationships between Theorems 2.2 and 2.4. Introduce the following

modification of the Bernstein condition.

Assumption 2.8. Let γ = 1/(768L). There exists a constant A > 0 such that for all f ∈ F if

PLf = C ′K,r then ‖f − f ∗‖2
L2
6 APLf where, for r̃2(γ) defined in (2.6),

C ′K,r = max

(
r̃2

2(γ/A)

A
,
1536AL2K

N

)
.

Assumption 2.8 is slightly stronger than Assumption 2.4 since the L2-metric to define the sphere

is replaced by the excess risk metric. If Assumption 2.8 holds then Theorem 2.5 implies the same

statistical bounds for (2.5) as Theorem 2.2 up to constants, as shown by the following result.

Theorem 2.5. Grant Assumptions 2.1, 2.2, 2.7 and assume that |O| ≤ 3N/7. Assume that the

local Bernstein condition Assumption 2.8 holds. Let γ = 1/(768L) and K ∈
[
7|O|/3, N

]
. The

minmax MOM estimator f̂ defined in (2.5) satisfies, with probability at least 1− exp(−K/2016),∥∥∥f̂ − f ∗∥∥∥2

L2

≤ max

(
r̃2

2(γ/A),
1536L2A2K

N

)
and PLf̂ ≤ max

(
r̃2

2(γ/A)

A
,
1536L2AK

N

)
.

Proof. First, VK(r) ≤ LV ′K(r) for all r > 0 where V ′K(r) =
√
K/N maxi∈I supf∈F :PLf≤r2 ‖f − f ∗‖L2(µi)

.

Moreover, r → E(r)/r2 and r → V ′K(r)/r2 are non-increasing, therefore by Assumption 2.8 and the

definition of r̃2(γ), V ′K(r),

1

γ
E

(
r̃2(γ/A)√

A

)
≤ r̃2

2(γ/A)

A
and

√
1536V ′K

(√
1536L

√
AK

N

)
≤ 1536A2LK

N
.

Hence, r̄2
2(γ) ≤ max(r̃2

2(γ/A)/A, 1536L2A(K/N)).

2.5 Bernstein’s assumption

This section shows that the local Bernstein condition holds for various loss functions and design

X. In Assumption 2.4 and 2.6, the comparizon between PLf and ‖f − f ∗‖2
L2

is only required on

a L2-sphere. In this section, we prove that the local Bernstein assumption can be verified over the

entire L2-ball and not only on the sphere under mild moment conditions. The class F − {f ∗} is

assumed to satisfy a “ L2+ε/L2-norm equivalence assumption”, for ε > 0.

Assumption 2.9. Let ε > 0. There exists C ′ > 0 such that for all f ∈ F , ‖f − f ∗‖L2+ε ≤
C ′‖f − f ∗‖L2
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Assumption 2.9 is a “L2+ε/L2” norm equivalence assumption over F − {f ∗}. A “L4/L2” norm

equivalence assumption over F − {f ∗} has been used for the study of MOM estimators (see (Lu-

gosi and Mendelson, 2016)). Examples of distributions satisfying Assumption 2.9 can be found in

(Mendelson, 2014, 2015).

There are situations where the constant C ′ depends on the dimension d of the model. In that

case, the results in (Lugosi and Mendelson, 2016; Lecué and Lerasle, 2019) provide sub-optimal

statistical upper bounds. For instance, if X is uniformly distributed on [0, 1] and F = {∑d
j=1 αjIAj :

(αj)
p
j=1 ∈ Rd} where IAj is the indicator of Aj = [(j − 1)/d, j/d] then for all f ∈ F , ‖f − f ∗‖L2+ε

≤
dε/(4+2ε) ‖f − f ∗‖L2

so C ′ = dε/(4+2ε). This dependence with respect to the dimension d is inevitable.

For instance, in (Lugosi and Mendelson, 2016; Lecué and Lerasle, 2019), a L4/L2 norm equivalence

is required. In this case, C ′ = d1/4 which ultimately yields sub-optimal rates in this example. On

the other hand, as will become clear in this section, the rates given in Theorem 2.2 or Theorem 2.3

are not deteriorated in this example. This improvement is possible since the Bernstein condition is

only required in a neighborhood of f ∗.

2.5.1 Quantile loss

The proof is based on (Elsener and van de Geer, 2018, Lemma 2.2) and is postponed to Sec-

tion 2.10.2. Recall that `f (x, y) = (y − f(x))(τ − I{y − f(x) ≤ 0}).

Assumption 2.10. Let C ′ be the constant defined in Assumption 2.9. There exist α > 0 and

r > 0 such that, for all x ∈ X and for all z in R such that |z − f ∗(x)| ≤ r(
√

2C ′)(2+ε)/ε, we have

fY |X=x(z) ≥ α, where fY |X=x is the conditional density function of Y given X = x.

Theorem 2.6. Grant Assumptions 2.9 (with constant C ′) and 2.10 (with parameter r and α).

Then, for all f ∈ F satisfying ‖f − f ∗‖L2 6 r, ‖f − f ∗‖2
L2
6 (4/α)PLf .

Consider the example from Section 2.3.2, assume that K . Rank(Σ) and let r2 = CK,r =

r̃2
2(γ) ≤ Rank(Σ)/(2γ2N). If C ′ = dε/(4+2ε), Assumption 2.10 holds for r and an associated α & 1

as long as d1/2
√

Rank(Σ)/N . 1 and, for all x ∈ X and for all z in R such that |z − f ∗(x)| . 1,

fY |X=x(z) & 1. As Rank(Σ) 6 d, the first condition reduces to N & d2. In this situation, the rates

given in Theorems 2.2 and 2.3 are still Rank(Σ)/N . This gives a partial answer, in our setting, to

the issue raised in (Saumard, 2018) regarding results based on the small ball method.

2.5.2 Huber Loss

Consider the Huber loss function defined, for all f ∈ F , x ∈ X and y ∈ R, by `f (x, y) = ρH(y−f(x))

where ρH(t) = t2/2 if |t| ≤ δ and ρH(t) = δ|t|−δ2/2 otherwise. Introduce the following assumption.

Assumption 2.11. Let C ′ be the constant defined in Assumption 2.9. There exist α > 0 and r > 0

such that for all x ∈ X and all z in R such that |z − f ∗(x)| ≤ (
√

2C ′)(2+ε)/εr, FY |X=x(z + δ) −
FY |X=x(z − δ) > α, where FY |X=x is the conditional cumulative function of Y given X = x.
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Under this assumption and a “L2+ε/L2” assumption, the local Bernstein condition is proved to

be satisfied in the following result whose proof is postponed to Section 2.10.2.

Theorem 2.7. Grant Assumptions 2.9 (with constant C ′) and 2.11 (with parameter r and α).

Then, for all f ∈ F satisfying ‖f − f ∗‖L2 6 r, there exists α > 0 (given by Assumption 2.11) such

that ‖f − f ∗‖2
L2
6 (4/α)PLf .

2.5.3 Logistic classification

In this section we consider the logistic loss function.

Assumption 2.12. There exists c0 > 0 such that

P
(
|f ∗(X)| ≤ c0

)
≥ 1− 1

(2C ′)(4+2ε)/ε
.

where C ′ is defined in Assumption 2.9.

The following result is proved in Section 2.10.2.

Theorem 2.8. Grant Assumptions 2.9 and 2.12. Then, for all r > 0 and all f ∈ F such that

‖f − f ∗‖L2 6 r,

PLf >
e−c0−r(2C

′)(2+ε)/ε

2
(
1 + ec0+r(2C′)(2+ε)/ε

)2‖f − f ∗‖2
L2

.

The proof is postponed to Section 2.10.2. As for the Huber Loss and the Hinge Loss, the rates

of convergence are not deteriorated when C ′ may depend on the dimension as long as r× (C ′)(2+ε)/ε

is smaller than some absolute constant.

2.5.4 Hinge loss

In this section, we show that the local Bernstein condition holds for various design X for the Hinge

loss function. We obtain the result under the assumption that the oracle f ∗ is actually the Bayes

rules which is the function minimizing the risk f 7→ R(f) over all measurable functions from X to

R. Recall that, under this assumption, f ∗(x) = sign(2η(x) − 1) where η(X) = P(Y = 1|X). In

that case, the Bernstein condition (see (Bartlett and Mendelson, 2006a)) coincides with the margin

assumption (see (Tsybakov, 2004; Mammen and Tsybakov, 1999)).

Assumption 2.13. Let C ′ be the constant defined in Assumption 2.9. There exist α > 0 and

0 < r ≤ (
√

2C ′)−(2+ε)/ε such that for all x ∈ X , for all z ∈ R, |z − f ∗(x)| ≤ (
√

2C ′)(2+ε)/εr

min
(
η(x), 1− η(x), |1− 2η(x)|

)
≥ α .

Assumption 2.13 is also local and has the same flavor as Assumptions 2.10 and 2.11.
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Theorem 2.9. Grant Assumptions 2.9 (with constant C ′) and 2.13 (with parameter r and α).

Assume that the oracle f ∗ is the Bayes estimator i.e. f ∗(x) = sign(2η(x)− 1) for all x ∈ X . Then,

for all f ∈ F such that ‖f − f ∗‖L2 6 r, ‖f − f ∗‖2
L2
6 2

α
PLf .

The proof is postponed to Section 2.10.2.

2.6 Comparison between ERM and minmax MOM

In this section, we show that robustness properties with respect to heavy-tailed data and to outliers

of the minmax MOM estimator in Theorem 2.2 cannot be achieved by the ERM. We prove two lower

bounds on the statistical risk of ERM. First, we show that ERM is not robust to contamination in

the design X and second that ERM cannot achieve the optimal rate with a sub-Gaussian deviation

under only moment assumptions.

We first show the absence of robustness of ERM w.r.t. contamination by even a single in-

put variable. We consider the absolute loss function of linear functionals `t(x, y) = |y −
〈
x, t
〉
|.

Let X1, . . . , XN denote i.i.d. Gaussian vectors, and suppose that there exists t∗ such that Yi =〈
Xi, t

∗〉, i = 1, . . . , N . Assume that a vector v ∈ Rd was added to X1 (and that this is the only

corrupted data). Hence, we are given the dataset (X1 + v, Y1), (X2, Y2), · · · , (XN , YN). Consider

the ERM constructed on this dataset i.e t̂ERM ∈ argmint∈Rd PN`t where PN`t = (1/N)|Y1 −
〈
X1 +

v, t
〉
|+ (1/N)

∑N
i=2 |Yi −

〈
Xi, t

〉
|. In this context, the following lower bound holds.

Proposition 2.1. There exist absolute constants c0 and c2 such that the following holds. If the

contamination vector v satisfies |
〈
v, t∗

〉
| ≥ (1/2) ‖v‖2 ‖t∗‖2, with ‖v‖2 ≥ c2N , then with probability

at least 1− 4 exp(−c0N),
∥∥t̂ERM − t∗∥∥

2
≥ ‖t∗‖2 /4.

When N � d, from Theorem 2.2 with K � d, minmax MOM estimators yields, with probability

at least 1 − 2 exp(−cd),
∥∥t̂MOM − t∗

∥∥
2
. d/N on the same dataset as the one used by ERM in

Proposition 2.1. If ‖t∗‖ & 1 then the ERM is suboptimal compared with the minmax MOM

estimator.

Proof. To show that t̂ERM is outside B = B2(t∗, (1/4) ‖t∗‖2) = {t ∈ Rd : ‖t− t∗‖2 ≤
(1/4) ‖t∗‖2}, it is enough to show that PN`0 is smaller than the smallest value of t→ PN`t over B.

It follows from Gaussian concentration that, with probability at least 1− exp(−c0N),

PN`0 =
1

N

N∑
i=1

|
〈
Xi, t

∗〉| ≤ 3

2

√
2

π
‖t∗‖2 . (2.14)

Let us now bound from bellow the empirical loss function t → PN`t uniformly over all t in B.

First,

|
〈
v, t
〉
| ≥ |

〈
v, t∗

〉
| − |

〈
v, t− t∗

〉
| ≥ ‖v‖2 (‖t∗‖2 /2− ‖t− t∗‖2) ≥ ‖v‖2 ‖t∗‖2 /4. (2.15)
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Then, it follows from Borell-TIS inequality (see Theorem 7.1 in (Ledoux, 2001) or pages 56-57 in

(Ledoux and Talagrand, 2013)) that with probability at least 1− 2 exp(−c1N), ‖X1‖2 ≤ E ‖X1‖2 +√
2c1N ≤ c3

√
N + d. Therefore, P(Ω1) ≥ 1− 2 exp(−c1N), where

Ω1 = {∀t ∈ Rd, |
〈
X1, t− t∗

〉
| ≤ c3

√
N + d ‖t− t∗‖2} .

On Ω1, we have for all t ∈ B that |
〈
X1, t

∗ − t
〉
| ≤ c3

√
N + d ‖t− t∗‖2 ≤ (c3/4)

√
N + d ‖t∗‖2.

Therefore, using (2.15) and ‖v‖2 ≥ c2N for a large enough constant c2,

PN`t =
1

N
|
〈
X1, t

∗ − t
〉
−
〈
v, t
〉
|+ 1

N

N∑
i=2

|
〈
Xi, t

∗ − t
〉
| ≥ 1

N
|
〈
v, t
〉
| − 1

N
|
〈
X1, t

∗ − t
〉
|

≥ 1

4N
‖v‖2 ‖t∗‖2 −

c3 ‖t∗‖2

4
√
N

>
3

2

√
2

π
‖t∗‖2 . (2.16)

It follows from Proposition 2.1 that ERM is not consistant when there is even a single outlier

among the Xi. By comparison, the minmax MOM has optimal performance even when the dataset

has been corrupted by up to d outliers when N & d. This shows a first advantage of the minmax

MOM approach.

Now, we prove a second advantage of the minmax MOM over the ERM by considering heavy-

tailed design. We also consider the absolute L1-loss function as in the previous example and suppose

that data are generated from a linear model in dimension d = 1: Y = Xt∗ + ζ where X and ζ are

independent mean zero random variables and t∗ ∈ R (we choose d = 1 so that we have access to

a canonical definition of median which simplifies the proof). Our aim is to show that if the design

X has only a second moment then the ERM t̂ERM cannot achieve the optimal rate
√
x/N with a

sub-Gaussian deviation that is 1− exp(−c0x) as does the minmax MOM for all x ∈ [1, N ].

Proposition 2.2. Let N ≥ 8000 and 10 ≤ x ≤ N/800. There exist X and ζ two symmetric

and independent random variables such that EX2 ∈ [1, 16], Eζ2 ≤ 5x2 and, for any t∗ ∈ R and

Y = Xt∗+ ζ, we have {t∗} = argmint∈R E|Y −Xt|. Let (Xi, Yi)
N
i=1 be N i.i.d. copies of (X, Y ) such

that Y = Xt∗ + ζ for some t∗ ∈ R. Let t̂ERM ∈ argmint∈R
∑N

i=1 |Yi −Xit|. Then, with probability

at least 3/(5x), √
E[(X(t̂ERM − t∗))2] ≥ (1/5)

√
x/N .

Proof. Let δ′ = (1/8)
√
x/(2N) and let ζ be uniformly distributed over [−x− 1/2 + δ′,−x] ∪

[−δ′, δ′] ∪ [x, x + 1/2− δ′]. Let ε denote a Rademacher variable, let η be a Bernoulli variable with

parameter δ = 1/(xN) and R = 4/
√
δ = 4

√
xN . We assume that ζ, ε and η are independent and

let X = ε(1 + Rη). Let t∗ ∈ R and let DN = (Xi, Yi)
N
i=1 be a dataset of N i.i.d. copies of (X, Y ),

where Y = Xt∗ + ζ.

Since the median of ζ is 0, for all u ∈ R,E|u−ζ| ≥ E|ζ| with equality iff u = 0. As a consequence,

for all t ∈ R,E|Y −Xt| = EXEζ |ζ−X(t∗− t)| ≥ E|ζ| and the only minimizer of t ∈ R→ E|Y −Xt|
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is t∗. In other words, t∗ is the oracle. For all t ∈ R,

E[(X(t− t∗))2] = E[X2](t− t∗)2 = (1 + 2Rδ +R2δ)(t− t∗)2 .

Since R2δ = 16 and 2Rδ ≤
√

8/100 ≤ 1, we have (t − t∗)2 ≤ E(X(t − t∗))2 ≤ 18(t − t∗)2, that is,

the L2(µ)-norm is equivalent to the absolute value.

Observe that t̂ERM − t∗ is solution of the minimization problem

(t̂ERM − t∗) ∈ argmin
u∈R

N∑
i=1

|Xi|
∣∣∣∣ ζiXi

− u
∣∣∣∣ = argmin

u∈R
E[|W − u||DN ] .

Here, defining ζ ′i = εiζi, i ∈ [N ], W is a random variable such that

P
[
W =

ζ ′i
|Xi|
|DN

]
=

|Xi|∑N
i=1 |Xi|

.

Notice that, almost surely, all ζ ′i/|Xi| are different. In particular, |t̂ERM − t∗| is the absolute value

of the empirical median |Median(W )|. Therefore, |t̂ERM − t∗| ≥ c1

√
x/N when the median of

W does not belong to (−c1

√
x/N, c1

√
x/N). This holds when P[W ≤ −c1

√
x/N |DN ] > 1/2 or

P[W ≥ c1

√
x/N |DN ] > 1/2. Introduce the following sets

I≤−x := {i ∈ [N ] : ζ ′i ≤ −x} , Iδ′ := {i ∈ [N ] : |ζ ′i| ≤ δ′} and I≥x := {i ∈ [N ] : ζ ′i ≥ x} .

Define also the following events

Ω0 :=
{
|Iδ′| ≤

√
2xN,

∣∣|I≤−x| − |I≥x|∣∣ ≤ √2xN
}

,

Ω1 := {∀i ∈ Iδ : ηi = 0 and |{i ∈ [N ] : ηi = 1}| = 1} .

By Hoeffding’s inequality (see Chapter 2 in (Boucheron et al., 2013)), as (ζ ′i)
N
i=1 is a family of i.i.d.

random variables distributed like ζ1, with probability at least 1− exp(−x/4),

|Iδ′ | =
N∑
i=1

I(|ζ ′i| ≤ δ′) ≤ NP[|ζ ′1| ≤ δ′] +

√
xN

2
= 2δ′N +

√
xN

2
≤
√

2xN .

Since P[ζ ′1 ≤ −x] = P[ζ ′1 ≥ x], I(ζ ′i ≤ −x)− I(ζ ′i ≥ x) are independent, centered random variables

taking values in [−1, 1]. By Hoeffding’s inequality, with probability at least 1− 2 exp(−x/2),

∣∣|I≤−x| − |I≥x|∣∣ =

∣∣∣∣∣
N∑
i=1

I(ζ ′i ≤ −x)− I(ζ ′i ≥ x)

∣∣∣∣∣ ≤ √2xN.

Using a union bound, we have P[Ω0] ≥ 1− 2 exp(−x/2)− exp(−x/4) ≥ 1− 1/(10x) when x ≥ 10.

Since the ζ ′i’s and the ηi’s are independent, on the event Ω0, we have

P[∀i ∈ Iδ′ : ηi = 0|DN ] = (1− δ)|Iδ′ | ≥ (1− δ)
√

2xN ≥ 1− 2δ
√

2xN = 1− 2
√

2√
xN
≥ 1− 1

10x
.
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The last inequality holds since x ≤ N/800. Moreover,

P[|{i ∈ [N ] : ηi = 1}| = 1] = Nδ(1− δ)N−1 ≥ 1− 2/x

x
.

When x ≥ 10, this implies

P[|{i ∈ [N ] : ηi = 1}| = 1] ≥ 4

5x
.

Therefore, on the event Ω0, P[Ω1|DN ] ≥ 7/(10x) and so

P[Ω0 ∩ Ω1] = E[1Ω0E[1Ω1|DN ] ≥ 4

5x

(
1− 1

10x

)
≥ 3/(5x) .

We want to show that |Median(W )| ≥ c1

√
x/N on the event Ω0 ∩ Ω1, for some well-chosen

constant c1 > 0. We have P[W ≤ −c1

√
x/N |DN ] > 1/2 if and only if

N∑
i=1

I

(
ζ ′i
|Xi|

≤ −c1

√
x/N

)
|Xi| ≥

1

2

N∑
i=1

|Xi| .

In particular, if ∑
i∈I≤−x

|Xi| ≥
1

2

N∑
i=1

|Xi| or
∑
i∈I≥x

|Xi| ≥
1

2

N∑
i=1

|Xi| (2.17)

then the median of W takes value in {ζ ′i/|Xi| : i ∈ I≤−x}, resp. in {ζ ′i/|Xi| : i ∈ I≥x}. Since, for all

i ∈ I≤−x, ζi/|Xi| ≤ −x/(1 + R) < −δ′ and for all i ∈ I≥x, ζi/|Xi| ≥ x/(1 + R) > δ′, in these cases,

|Median(W )| ≥ x/(1 + R) = x/(1 + 4
√
xN) ≥ (1/5)

√
x/N . Since |t̂ERM − t∗| = |Median(W )|, the

proof is finished if (2.17) is proved.

Let us now prove that (2.17) holds on the event Ω0 ∩Ω1. On this event, only one ηi equals to 1.

Therefore only one |Xi| equals to 1 +R and all the others equal 1. Moreover, ηi = 0 for all i ∈ Iδ′ .
Therefore, if i∗ ∈ [N ] denotes the only index such that ηi∗ = 1, then either i∗ ∈ I≤−x or i∗ ∈ I≥x. If

i∗ ∈ I≤−x, on Ω0 ∩ Ω1,

∑
i∈I≤−x

|Xi| = |I≤x|−1+(1+R) = |I≤−x|+4
√
xN ≥ |I≥x|−

√
xN

2
+|Iδ′ |−

√
2xN+4

√
xN ≥ |I≥x|+|Iδ′ | .

Moreover, all the |Xi| equal 1 when i ∈ I≥x ∪ Iδ′ . Therefore, |I≥x|+ |Iδ′ | =
∑

i∈I≥x∪Iδ′
|Xi|. Overall,∑

i∈I≤−x |Xi| ≥
∑

i∈I≥x∪Iδ′
|Xi| which is equivalent to

∑
i∈I≤−x |Xi| ≥ (1/2)

∑N
i=1 |Xi|. Likewise, if

i∗ ∈ I≥x then
∑

i∈I≥x |Xi| ≥ (1/2)
∑N

i=1 |Xi|. Therefore, on the event Ω0 ∩ Ω1 (2.17) holds.

Proposition 2.2 shows that the distance between the ERM and t∗ is larger than (1/5)
√
x/N

with probability at least 3/(5x). This probability is larger than 1− exp(−x/2016) for large values

of x, which shows that the ERM does not have sub-Gaussian deviations. Let us now show that,

using the same data and a number of blocks K � x (or using the adaptive estimator (2.12)), the

minmax MOM estimators achieve the rate
√
x/N with probability at least 1− exp(−x/2016). This
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will show a second advantage of minmax MOM estimators compared with ERM for heavy-tailed

designs.

To apply Theorem 2.2 (or Theorem 2.3 for the adaptive estimator), we show that the local

Bernstein condition is satisfied for the example of Proposition 2.2 and compute the complexity

parameter r̃2(γ). We have

E sup
t∈R:E[(X(t−t∗))2]≤r2

∣∣∣∣∣
N∑
i=1

σiXi(t− t∗)
∣∣∣∣∣ =

r√
EX2

E

∣∣∣∣∣
N∑
i=1

σiεi(1 +Rηi)

∣∣∣∣∣
≤ r
√

2

17

E

(
N∑
i=1

σiεi

)2

+R2E

(
N∑
i=1

σiεiηi

)2
1/2

≤ r
√

2

17

√
N +R2Nδ = r

√
2N

17
.

As a consequence, r̃2(γ) = (1/γ)
√

2/(17N) satisfies (2.6). We now prove Assumption 2.6 in this

particular example. Let K ∈ [N ] be such that K ≥ 2(575)2/(17× 865) so that, for CK,r is defined

in (2.7) with L = 1 and A defined later,

CK,r = A2 max

(
2(575)2

17N
,
865K

N

)
=
A2865K

N
,

Let t ∈ R be such that E[(X(t − t∗))2] = CK,r. We have to show that PLt ≥ AE[(X(t − t∗))2]

for some well chosen A and PLt = E[|Y − Xt| − |Y − Xt∗|]. It follows from (2.39) that PLt =

E[g(X,Xt) − g(X,Xt∗)] where g : (x, a) ∈ R2 7→
∫

1y≥a(1 − FY |X=x(y))dy + (1/2)a and FY |X=x is

the cdf of Y given X = x. Therefore, if we denote by F the cdf of ζ, we have

PLt = E
∫ Xt∗

Xt

(1− FY |X=X(y))dy =
1− δ

2

∫ 0

t−t∗
(1− F (y))dy +

1− δ
2

∫ 0

t∗−t
(1− F (y))dy

+
δ

2

∫ 0

(1+R)(t−t∗)
(1− F (y))dy +

δ

2

∫ 0

(1+R)(t∗−t)
(1− F (y))dy.

Let us choose K such that
√
CK,r ≤

√
EX2δ′ (which holds for instance when 865A2K ≤ 17x/128).

In that case, |t− t∗| ≤ δ′ and so (1− F (y)) = (1/2− y) for all y ∈ [−|t− t∗|, |t− t∗|]. We therefore

have
1− δ

2

∫ 0

t−t∗
(1− F (y))dy +

1− δ
2

∫ 0

t∗−t
(1− F (y))dy =

(1− δ)(t− t∗)2

2
.

Moreover, since (1 +R)|t− t∗| = (1 + 4
√
xN)

√
CK,r/EX2 ≤ 5

√
xNδ′ = 5x/(8

√
2), we have

δ

2

∫ 0

(1+R)(t−t∗)
(1− F (y))dy +

δ

2

∫ 0

(1+R)(t∗−t)
(1− F (y))dy ≥ −10xδ

8
√

2
=
−5

4
√

2N
.

Assume that (1/16)2865K ≥ 18 ∗ 40/
√

2, so |t− t∗| ≥ CK,r/18 ≥ 40/(
√

2N). Then, we have

PLt ≥ (1− δ)(t− t∗)2/2− 5/(4
√

2N) ≥ (t− t∗)2/16 .

For A = 1/(16× 18), this yields PLt ≥ AE[X(t− t∗)2], which concludes the proof of the Berntein’s

assumption.
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2.7 Simulation study

This section provides a short simulation study that illustrates our theoretical findings for the min-

max MOM estimators. Let us consider the following setup: X = (ξ1, · · · , ξd), where (ξj)
d
j=1 are

independent and identically distributed, with ξ1 ∼ T (5), and

log

(
P(Y = 1|X)

P(Y = −1|X)

)
=
〈
X, t∗

〉
+ ε

where ε ∼ LN (0, 1). Let (Xi, Yi)
N
i=1 be i.i.d with the same distribution as (X, Y ). We the study the

minmax MOM estimator defined as:

t̂MOM
K ∈ arg min

t∈Rp
sup
t̃∈Rp

MOMK(`t − `t̃) . (2.18)

Following (Lecué and Lerasle, 2019), a gradient ascent-descent step is performed on the empirical

incremental risk (t, t̃) → PBk(`t − `t̃) constructed on the block Bk of data realizing the median

of the empirical incremental risk. Initial points t0 ∈ Rd and t̃0 ∈ Rd are taken at random. In

logistic regression, the step sizes η and η̃ are usually chosen equal to ‖XX>‖op/4N , where X is the

N × d matrix with row vectors equal to X>1 , · · · , X>N and ‖ · ‖op denotes the operator norm. In a

corrupted environment, this choice might lead to disastrous performance. This is why η and η̃ are

computed at each iteration using only data in the median block: let Bk denote the median block

at the current step, then one chooses η = η̃ = ‖X(k)X>(k)‖op/4|Bk| where X(k) is the |Bk| × p matrix

with rows given by XT
i for i ∈ Bk. In practice, K is chosen by robust cross-validation choice as in

(Lecué and Lerasle, 2019).

In a first approach and according to our theoretical results, the blocks are chosen at the beginning

of the algorithm. As illustrated in Figure 2.2, this first strategy has some limitations. To understand

the problem, for all k = 1, . . . , K, let Ck denote the following set

Ck =
{
t ∈ Rd : PBk`t = Median {PB1`t, . . . , PBK`t}

}
.

If the minimum of t → PBk`t lies in Ck, the algorithm typically converges to this minimum if one

iteration enters Ck. As a consequence, when the minmax MOM estimator (2.18) lies in another

cell, the algorithm does not converge to this estimator.

To bypass this issue, the partition is changed at every ascent/descent steps of the algorithm, it

is chosen uniformly at random among all equipartition of the dataset. This alternative algorithm

is described in Algorithm 1. In practice, changing the partition seems to widely accelerate the

convergence (see Figure 2.2).

Simulation results are gathered in Figure 2.2. In these simulations, there is no outlier, N =

1000 and d = 100 with (Xi, Yi)
1000
i=1 i.i.d with the same distribution as (X, Y ). Minmax MOM

estimators (2.18) are compared with the Logistic Regression algorithm from the scikit-learn library

of (Pedregosa et al., 2011).
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Input: The number of block K, initial points t0 and t̃0 in Rp and the stopping criterion ε > 0

Output: An estimator of t∗

1 while ‖ti − t̃i‖2 ≥ ε do

2 Split the data into K disjoint blocks (Bk)k∈{1,··· ,K} of equal sizes chosen at random:

B1 ∪ · · · ∪BK = {1, · · · , N}.
3 Find k ∈ [K] such that MOMK`ti = PBk`ti .

4 Compute η = η̃ = ‖XT
(k)X(k)‖op/4N .

5 Update ti+1 = ti − 1
η
∇t(PBk`t)|t=ti and t̃i+1 = t̃i − 1

η̃
∇t̃(PBk`t̃)|t̃=t̃i .

6 end

Algorithm 1: Descent-ascent gradient method with blocks of data chosen at random at every

steps.

The upper pictures compare performance of MOM ascent/descent algorithms with fixed and

changing blocks. These pictures give an example where the fixed block algorithm is stuck into local

minima and another one where it does not converge. In both cases, the changing blocks version

converges to t∗.

Running times of logistic regression (LR) and its MOM version (MOM LR) are compared in the

lower picture of Figure 2.2 in a dataset free from outliers. LR and MOM LR are coded with the

same algorithm in this example, meaning that MOM gradient descent-ascent and simple gradient

descent are performed with the same descent algorithm. As illustrated in Figure 2.2, running each

step of the gradient descent on one block only and not on the whole dataset accelerates the running

time. The larger the dataset, the bigger the benefit is expected.

The resistance to outliers of logistic regression and its minmax MOM alternative are depicted in

Figure 2.1 in the introduction. We added an increasing number of outliers to the dataset. Outliers

{(Xi, Yi), i ∈ O} in this simulation are such that Xi ∼ LN (0, 5) and Yi = −sign(
〈
Xi, t

〉
+ εi), with

εi ∼ ε as above. Figure 2.1 shows that logistic classification is mislead by a single outlier while

MOM version maintains reasonable performance with up to 50 outliers (i.e 5% of the database is

corrupted).

A byproduct of Algorithm 1 is an outlier detection algorithm. Each data receives a score equal

to the number of times it is selected in a median block in the random choice of block version of

the algorithm. The first iterations may be misleading: before convergence, the empirical loss at

the current point may not reveal the centrality of the data because the current point may be far

from t∗. Simulations are run with N = 100, d = 10 and 5000 iterations and therefore only the

score obtained by each data in the last 4000 iterations are displayed. 3 outliers (Xi, Yi)i∈{1,2,3} with

Xi = (10)dj=1 and Yi = −sign(
〈
Xi, t

〉
) have been introduced at number 42, 62 and 66. Figure 2.3

shows that these are not selected once.



64 CHAPTER 2. ROBUST ERM AND MINMAX-MOM

Figure 2.2: Top left and right: Comparizon of the algorithm with fixed and changing blocks.

Bottom: Comparizon of running time between classical gradient descent and algorithm 1. In all

simulation N = 1000, p = 100 and there is no outliers.

2.8 Conclusion

The paper introduces a new homogenity argument for learning problems with convex and Lips-

chitz losses. This argument allows to obtain estimation rates and oracle inequalities for ERM and

minmax MOM estimators improving existing results. The ERM requires sub-Gaussian hypotheses

on the class F with respect to the distribution of the design and a local Bernstein condition (see

Theorem 2.1), both assumptions can be removed for minmax MOM estimators (see Theorem 2.5).

The local Bernstein conditions provided in this article can be verified in several learning problems.

In particular, it allows to derive optimal risk bounds in examples where analyses based on the small

ball hypothesis fail. Minmax MOM estimators applied to convex and Lipschitz losses are efficient

under weak assumptions on the outputs Y , under minimal L2 assumptions on the class F with

respect to the distribution of the design and the results are robust to the presence of few outliers

in the dataset. A modification of these estimators can be implemented efficiently and confirm all

these conclusions.
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Figure 2.3: Outliers Detection Procedure for N = 100, p = 10 and outliers are i = 42, 62, 66

2.9 Proof of main Theorems

2.9.1 Proof of Theorem 2.1

The proof is split in two parts. First, we identify an event where the statistical behavior of the

regularized estimator f̂ERM can be controlled. Then, we prove that this event holds with probability

at least (2.3). Introduce θ = 1/(2A) and define the following event:

Ω :=
{
∀f ∈ F ∩ (f ∗ + r2(θ)BL2),

∣∣(P − PN)Lf
∣∣ ≤ θr2

2(θ)
}

where θ is a parameter appearing in the definition of r2 in Definition 2.3.

Proposition 2.3. On the event Ω, one has

‖f̂ERM − f ∗‖L2 ≤ r2(θ) and PLf̂ERM ≤ θr2
2(θ).

Proof. By construction, f̂ERM satisfies PNLf̂ERM ≤ 0. Therefore, it is sufficient to show that, on

Ω, if ‖f − f ∗‖L2 > r2(θ), then PNLf > 0. Let f ∈ F be such that ‖f − f ∗‖L2 > r2(θ). By convexity

of F , there exists f0 ∈ F ∩ (f ∗ + r2(θ)SL2) and α > 1 such that

f = f ∗ + α(f0 − f ∗) . (2.19)

For all i ∈ {1, · · · , N}, let ψi : R→ R be defined for all u ∈ R by

ψi(u) = `(u+ f ∗(Xi), Yi)− `(f ∗(Xi), Yi). (2.20)
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The functions ψi are such that ψi(0) = 0, they are convex because ` is, in particular αψi(u) ≤ ψi(αu)

for all u ∈ R and α ≥ 1 and ψi(f(Xi)− f ∗(Xi)) = `(f(Xi), Yi)− `(f ∗(Xi), Yi) so that the following

holds:

PNLf =
1

N

N∑
i=1

ψi
(
f(Xi)− f ∗(Xi)

)
=

1

N

N∑
i=1

ψi(α(f0(Xi)− f ∗(Xi)))

≥ α

N

N∑
i=1

ψi((f0(Xi)− f ∗(Xi))) = αPNLf0 . (2.21)

Until the end of the proof, the event Ω is assumed to hold. Since f0 ∈ F ∩ (f ∗ + r2(θ)SL2),

PNLf0 ≥ PLf0 − θr2
2(θ). Moreover, by Assumption 2.4, PLf0 ≥ A−1‖f0 − f ∗‖2

L2
= A−1r2

2(θ), thus

PNLf0 ≥ (A−1 − θ)r2
2(θ). (2.22)

From Eq. (2.21) and (2.22), PNLf > 0 since A−1 > θ. Therefore, ‖f̂ERM − f ∗‖L2 ≤ r2
2(θ). This

proves the L2-bound.

Now, as ‖f̂ERM − f ∗‖L2 ≤ r2
2(θ), |(P − PN)Lf̂ERM | ≤ θr2

2(θ). Since PNLf̂ERM ≤ 0,

PLf̂ERM = PNLf̂ERM + (P − PN)Lf̂ERM ≤ θr2
2(θ) .

This show the excess risk bound.

Proposition 2.3 shows that f̂ERM has the risk bounds given in Theorem 2.1 on the event Ω. To

show that Ω holds with probability (2.3), recall the following results from (Alquier et al., 2019).

Lemma 2.2. (Alquier et al., 2019) [Lemma 8.1] Grant Assumptions 2.1 and 2.3. Let F ′ ⊂ F with

finite L2-diameter dL2(F ′). For every u > 0, with probability at least 1− 2 exp(−u2),

sup
f,g∈F ′

|(P − PN)(Lf − Lg)| ≤
16L√
N

(w(F ′) + udL2(F ′)) .

It follows from Lemma 2.2 that for any u > 0, with probability larger that 1− 2 exp(−u2),

sup
f∈F∩(f∗+r2(θ)BL2

)

∣∣(P − PN)Lf
∣∣ ≤ sup

f,g∈F∩(f∗+r2(θ)BL2
)

∣∣(P − PN)(Lf − Lg)
∣∣

≤ 16L√
N

(
w((F − f ∗) ∩ r2(θ)BL2) + udL2((F − f ∗) ∩ r2(θ)BL2)

)
where dL2((F − f ∗)∩ r2(θ)BL2) ≤ r2(θ). By definition of the complexity parameter (see Eq. (2.3)),

for u = θ
√
Nr2(θ)/(64L), with probability at least

1− 2 exp
(
− θ2Nr2

2(θ)/(163L2)
)
, (2.23)

for every f in F ∩ (f ∗ + r2(θ)BL2), ∣∣(P − PN)Lf
∣∣ ≤ θr2

2(θ). (2.24)

Together with Proposition 2.3, this concludes the proof of Theorem 2.1.
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2.9.2 Proof of Theorem 2.2

The proof is split in two parts. First, we identify an event ΩK where the statistical properties of f̂

from Theorem 2.2 can be established. Next, we prove that this event holds with probability (2.8).

Let α, θ and γ be positive numbers to be chosen later. Define

CK,r = max

(
4L2K

θ2αN
, r̃2

2(γ)

)
where the exact form of α, θ and γ are given in Equation (2.33). Set the event ΩK to be such that

ΩK =

{
∀f ∈ F∩

(
f ∗ +

√
CK,rBL2

)
,∃J ⊂ {1, . . . , K} : |J | > K/2 and ∀k ∈ J, |(PBk − P )Lf | ≤ θCK,r

}
.

(2.25)

Deterministic argument

The goal of this section is to show that, on the event ΩK , ‖f̂ − f ∗‖2
L2
≤ CK,r and PLf̂ ≤ 2θCK,r.

Lemma 2.3. If there exists η > 0 such that

sup
f∈F\(f∗+

√
CK,rBL2)

MOMK

(
`f∗ − `f

)
< −η and sup

f∈F∩(f∗+
√
CK,rBL2)

MOMK

(
`f∗ − `f

)
≤ η ,

(2.26)

then ‖f̂ − f ∗‖2
L2
≤ CK,r.

Proof. Assume that (2.26) holds, then

inf
f∈F\(f∗+

√
CK,rBL2)

MOMK [`f − `f∗ ] > η . (2.27)

Moreover, if TK(f) = supg∈F MOMK [`f − `g] for all f ∈ F , then

TK(f ∗) = sup
f∈F∩(f∗+

√
CK,rBL2)

MOMK [`f∗ − `f ] ∨ sup
f∈F\(f∗+

√
CK,rBL2)

MOMK [`f∗ − `f ] 6 η . (2.28)

By definition of f̂ and (2.28), TK(f̂) 6 TK(f ∗) 6 η. Moreover, by (2.27), any f ∈ F\
(
f ∗ +

√
CK,rBL2

)
satisfies TK(f) > MOMK [`f − `f∗ ] > η. Therefore f̂ ∈ F ∩ (f ∗ +

√
CK,rBL2).

Lemma 2.4. Grant Assumption 2.6 and assume that θ−A−1 < −θ. On the event ΩK, (2.26) holds

with η = θCK,r.

Proof. Let f ∈ F be such that ‖f − f ∗‖L2 > CK,r. By convexity of F , there exists f0 ∈ F ∩(
f ∗ +

√
CK,rSL2

)
and α > 1 such that f = f ∗ + α(f0 − f ∗). For all i ∈ {1, . . . , N}, let ψi : R→ R

be defined for all u ∈ R by

ψi(u) = `(u+ f ∗(Xi), Yi)− `(f ∗(Xi), Yi). (2.29)
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The functions ψi are convex because ` is and such that ψi(0) = 0, so αψi(u) ≤ ψi(αu) for all u ∈ R
and α ≥ 1. As ψi(f(Xi)− f ∗(Xi)) = `(f(Xi), Yi)− `(f ∗(Xi), Yi), for any block Bk,

PBkLf =
1

|Bk|
∑
i∈Bk

ψi
(
f(Xi)− f ∗(Xi)

)
=

1

|Bk|
∑
i∈Bk

ψi(α(f0(Xi)− f ∗(Xi)))

≥ α

|Bk|
∑
i∈Bk

ψi((f0(Xi)− f ∗(Xi))) = αPBkLf0 . (2.30)

As f0 ∈ F ∩ (f ∗ +
√
CK,rSL2), on ΩK , there are strictly more than K/2 blocks Bk where

PBkLf0 ≥ PLf0 − θCK,r. Moreover, from Assumption 2.6, PLf0 ≥ A−1‖f0 − f ∗‖2
L2

= A−1CK,r.

Therefore, on strictly more than K/2 blocks Bk,

PBkLf0 ≥ (A−1 − θ)CK,r. (2.31)

From Eq. (2.30) and (2.31), there are strictly more than K/2 blocks Bk where PBkLf ≥ (A−1 −
θ)CK,r. Therefore, on ΩK , as (θ − A−1) < −θ,

sup
f∈F\(f∗+

√
CK,rBL2)

MOMK

(
`f∗ − `f

)
< (θ − A−1)CK,r < −θCK,r .

In addition, on the event ΩK , for all f ∈ F ∩ (f ∗ +
√
CK,rBL2), there are strictly more than

K/2 blocks Bk where |(PBk − P )Lf | ≤ θCK,r. Therefore

MOMK

(
`f∗ − `f

)
≤ θCK,r − PLf ≤ θCK,r.

Lemma 2.5. Grant Assumption 2.6 and assume that θ − A−1 < −θ. On the event ΩK, PLf̂ ≤
2θCK,r.

Proof. Assume that ΩK holds. From Lemmas 2.3 and 2.4, ‖f̂ − f ∗‖L2 ≤
√
CK,r. Therefore, on

strictly more than K/2 blocks Bk, PLf̂ ≤ PBkLf̂ + θCK,r. In addition, by definition of f̂ and (2.28)

(for η = θCK,r),

MOMK(`f̂ − `f∗) ≤ sup
f∈F

MOMK(`f∗ − `f ) ≤ θCK,r.

As a consequence, there exist at least K/2 blocks Bk where PBkLf̂ ≤ θCK,r. Therefore, there exists

at least one block Bk where both PLf̂ ≤ PBkLf̂ + θCK,r and PBkLf̂ ≤ θCK,r. Hence PLf̂ ≤ 2θCK,r.

Stochastic argument

This section shows that ΩK holds with probability at least (2.8).
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Proposition 2.4. Grant Assumptions 2.1, 2.2, 2.5 and 2.6 and assume that (1− β)K ≥ |O|. Let

x > 0 and assume that β(1 − α − x − 8γL/θ) > 1/2. Then ΩK holds with probability larger than

1− exp(−x2βK/2).

Proof. Let F = F ∩
(
f ∗ +

√
CK,rBL2

)
and set φ : t ∈ R → I{t ≥ 2} + (t− 1)I{1 ≤ t ≤ 2} so, for

all t ∈ R, I{t ≥ 2} ≤ φ(t) ≤ I{t ≥ 1}. Let Wk = ((Xi, Yi))i∈Bk , Gf (Wk) = (PBk − P )Lf . Let

z(f) =
K∑
k=1

I{|Gf (Wk)| ≤ θCK,r}.

Let K denote the set of indices of blocks which have not been corrupted by outliers, K = {k ∈
{1, · · · , K} : Bk ⊂ I} and let f ∈ F . Basic algebraic manipulations show that

z(f) ≥ |K|−sup
f∈F

∑
k∈K

(
φ(2θ−1C−1

K,r|Gf (Wk)|)−Eφ(2θ−1C−1
K,r|Gf (Wk)|)

)
−
∑
k∈K

Eφ(2θ−1C−1
K,r|Gf (Wk)|) .

By Assumptions 2.1 and 2.5, using that C2
K,r ≥ ‖f − f ∗‖2

L2
[(4L2K)/(θ2αN)],

Eφ(2θ−1C−1
K,r|Gf (Wk)|) ≤ P

(
|Gf (Wk)| ≥

θCK,r
2

)
≤ 4

θ2C2
K,r

EGf (Wk)
2 =

4

θ2C2
K,r

Var(PBkLf )

≤ 4K2

θ2C2
K,rN

2

∑
i∈Bk

E[L2
f (Xi, Yi)] ≤

4L2K

θ2C2
K,rN

‖f − f ∗‖2
L2
≤ α .

Therefore,

z(f) ≥ |K|(1− α)− sup
f∈F

∑
k∈K

(
φ(2θ−1C−1

K,r|Gf (Wk)|)− Eφ(2θ−1C−1
K,r|Gf (Wk)|)

)
. (2.32)

Using Mc Diarmid’s inequality (Boucheron et al., 2013, Theorem 6.2), for all x > 0, with probability

larger than 1− exp(−x2|K|/2),

sup
f∈F

∑
k∈K

(
φ(2θ−1C−1

K,r|Gf (Wk)|)− Eφ(2θ−1C−1
K,r|Gf (Wk)|)

)
≤ x|K|+ E sup

f∈F

∑
k∈K

(
φ(2θ−1C−1

K,r|Gf (Wk)|)− Eφ(2θ−1θ−1C−1
K,r|Gf (Wk)|)

)
.

Let ε1, . . . , εK denote independent Rademacher variables independent of the (Xi, Yi), i ∈ I. By

Giné-Zinn symmetrization argument,

sup
f∈F

∑
k∈K

(
φ(2θ−1C−1

K,r|Gf (Wk)|)− Eφ(2θ−1C−1
K,r|Gf (Wk)|)

)
≤ x|K|+ 2E sup

f∈F

∑
k∈K

εkφ(2θ−1C−1
K,r|Gf (Wk)|)
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As φ is 1-Lipschitz with φ(0) = 0, using the contraction lemma (Ledoux and Talagrand, 2013,

Chapter 4),

E sup
f∈F

∑
k∈K

εkφ(2θ−1C−1
K,r|Gf (Wk)|) ≤ 2E sup

f∈F

∑
k∈K

εk
Gf (Wk)

θCK,r
= 2E sup

f∈F

∑
k∈K

εk
(PBk − P )Lf

θCK,r
.

Let (σi : i ∈ ∪k∈KBk) be a family of independent Rademacher variables independent of (εk)k∈K and

(Xi, Yi)i∈I . It follows from the Giné-Zinn symmetrization argument that

E sup
f∈F

∑
k∈K

εk
(PBk − P )Lf

CK,r
≤ 2E sup

f∈F

K

N

∑
i∈∪k∈KBk

σi
Lf (Xi, Yi)

CK,r
.

By the Lipschitz property of the loss, the contraction principle applies and

E sup
f∈F

∑
i∈∪k∈KBk

σi
Lf (Xi, Yi)

CK,r
≤ LE sup

f∈F

∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r
.

To bound from above the right-hand side in the last inequality, consider two cases 1) CK,r = r̃2
2(γ)

or 2) CK,r = 4L2K/(αθ2N). In the first case, by definition of the complexity parameter r̃2(γ) in

(2.6),

E sup
f∈F

∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r
= E sup

f∈F :‖f−f∗‖L2
≤r̃2(γ)

1

r̃2
2(γ)

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣ ≤ γ|K|N
K

.

In the second case,

E sup
f∈F

∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

CK,r

≤ E
[

sup
f∈F :

‖f−f∗‖L2
≤r̃2(γ)

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

r̃2
2(γ)

∣∣∣∣ ∨ sup
f∈F :

r̃2(γ)≤‖f−f∗‖L2
≤
√

4L2K
αθ2N

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

4L2K
αθ2N

∣∣∣∣] .

Let f ∈ F be such that r̃2(γ) ≤ ‖f − f ∗‖L2
≤
√

[4L2K]/[αθ2N ]; by convexity of F , there exists

f0 ∈ F such that ‖f0 − f ∗‖L2
= r̃2(γ) and f = f ∗ + α(f0 − f ∗) with α = ‖f − f ∗‖L2

/r̃2(γ) ≥ 1.

Therefore,∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

4L2K
αθ2N

∣∣∣∣ ≤ 1

r̃2(γ)

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

‖f − f ∗‖L2

∣∣∣∣ =
1

r̃2
2(γ)

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f0 − f ∗)(Xi)

∣∣∣∣
and so

sup
f∈F :

r̃2(γ)≤‖f−f∗‖L2
≤
√

4L2K
αθ2N

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

4L2K
αθ2N

∣∣∣∣ ≤ 1

r̃2
2(γ)

sup
f∈F :

‖f−f∗‖L2
=r̃2(γ)

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣.
By definition of r̃2(γ), it follows that

E sup
f∈F

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r

∣∣∣∣ ≤ γ|K|N
K

.
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Therefore, as |K| ≥ K − |O| ≥ βK, with probability larger than 1− exp(−x2βK/2), for all f ∈ F
such that ‖f − f ∗‖L2

≤
√
CK,r,

z(f) ≥ |K|
(

1− α− x− 8γL

θ

)
>
K

2
. (2.33)

End of the proof of Theorem 2.2

Theorem 2.2 follows from Lemmas 2.3, 2.4, 2.5 and Proposition 2.4 for the choice of constant

θ = 1/(3A) α = 1/24, x = 1/24, β = 4/7 and γ = 1/(575AL).

2.9.3 Proof of Theorem 2.3

Let K ∈
[
7|O|/3, N

]
and consider the event ΩK defined in (2.25). It follows from the proof of

Lemmas 2.3 and 2.4 that TK(f ∗) ≤ θCK,r on ΩK . Setting θ = 1/(3A), on ∩NJ=KΩJ , f ∗ ∈ R̂J for all

J = K, . . . , N , so ∩NJ=KR̂J 6= ∅. By definition of K̂, it follows that K̂ ≤ K and by definition of f̃ ,

f̃ ∈ R̂K which means that TK(f̃) ≤ θCK,r. It is proved in Lemmas 2.3 and 2.4 that on ΩK , if f ∈ F
satisfies ‖f − f ∗‖L2

≥
√
CK,r then TK(f) > θCK,r. Therefore,

∥∥∥f̃ − f ∗∥∥∥
L2

≤
√
CK,r. On ΩK , since∥∥∥f̃ − f ∗∥∥∥

L2

≤
√
CK,r, PLf̃ ≤ 2θCK,r. Hence, on ∩NJ=KΩJ , the conclusions of Theorem 2.3 hold.

Finally, by Proposition 2.4,

P
[
∩NJ=KΩJ

]
≥ 1−

N∑
J=K

exp(−K/2016) ≥ 1− 4 exp(−K/2016).

2.9.4 Proof of Theorem 2.4

The proof of Theorem 2.4 follows the same path as the one of Theorem 2.2. We only sketch the

different arguments needed because of the localization by the excess loss and the lack of Bernstein

condition.

Define the event Ω′K in the same way as ΩK in (2.25) where CK,r is replaced by r̄2
2(γ) and the

L2 localization is replaced by the “excess loss localization”:

Ω′K =

{
∀f ∈ (LF )r̄2

2(γ),∃J ⊂ {1, . . . , K} : |J | > K/2 and ∀k ∈ J, |(PBk − P )Lf | ≤ (1/4)r̄2
2(γ)

}
(2.34)

where (LF )r̄2
2(γ) = {f ∈ F : PLf ≤ r̄2

2(γ)}. Our first goal is to show that on the event Ω′K ,

PLf̂ ≤ (1/4)r̄2
2(γ). We will then handle P[Ω′K ].

Lemma 2.6. Grant Assumptions 2.1 and 2.2. For every r ≥ 0, the set (LF )r := {f ∈ F : PLf ≤ r}
is convex and relatively closed to F in L1(µ). Moreover, if f ∈ F is such that PLf > r then there

exists f0 ∈ F and (PLf/r) ≥ α > 1 such that (f − f ∗) = α(f0 − f ∗) and PLf0 = r.
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Proof. Let f and g be in (LF )r and 0 ≤ α ≤ 1. We have αf + (1 − α)g ∈ F because F is convex

and for all x ∈ X and y ∈ R, using the convexity of u→ ¯̀(u+ f ∗(x), y), we have

`αf+(1−α)g(x, y)− `f∗(x, y) = ¯̀(α(f − f ∗)(x) + (1− α)(g − f ∗)(x) + f ∗(x), y)− ¯̀(f ∗(x), y)

≤ α
(
¯̀((f − f ∗)(x) + f ∗(x), y)− ¯̀(f ∗(x), y)

)
+ (1− α)

(
¯̀((g − f ∗)(x) + f ∗(x), y)− ¯̀(f ∗(x), y)

)
= α(`f − `f∗) + (1− α)(`g − `f∗)

and so PLαf+(1−α)g ≤ αPLf +(1−α)PLg. Given that PLf , PLg ≤ r we also have PLαf+(1−α)g ≤ r.

Therefore, αf + (1− α)g ∈ (LF )r and (LF )r is convex.

For all f, g ∈ F , |PLf − PLg| ≤ ‖f − f ∗‖L1(µ) so that f ∈ F → PLf is continuous onto F in

L1(µ) and therefore its level sets, such as (LF )r, are relatively closed to F in L1(µ).

Finally, let f ∈ F be such that PLf > r. Define α0 = sup{α ≥ 0 : f ∗ + α(f − f ∗) ∈ (LF )r}.
Note that PLf∗+α(f−f∗) ≤ αPLf = r for α = r/PLf so that α0 ≥ r/PLf . Since (LF )r is relatively

closed to F in L1(µ), we have f ∗ + α0(f − f ∗) ∈ (LF )r and in particular α0 < 1 otherwise, by

convexity of (LF )r, we would have f ∈ (LF )r. Moreover, by maximality of α0, f0 = f ∗+α0(f − f ∗)
is such that PLf0 = r and the results follows for α = α−1

0 .

Lemma 2.7. Grant Assumptions 2.1 and 2.2. On the event Ω′K, PLf̂ ≤ r̄2
2(γ).

Proof. Let f ∈ F be such that PLf > r̄2
2(γ). It follows from Lemma 2.6 that there exists α ≥ 1

and f0 ∈ F such that PLf0 = r̄2
2(γ) and f −f ∗ = α(f0−f ∗). According to (2.30), we have for every

k ∈ {1, . . . , K}, PBkLf ≥ αPBkLf0 . Since f0 ∈ (LF )r̄2
2(γ), on the event Ω′K , there are strictly more

than K/2 blocks Bk such that PBkLf0 ≥ PLf0−(1/4)r̄2
2(γ) = (3/4)r̄2

2(γ) and so PBkLf ≥ (3/4)r̄2
2(γ).

As a consequence, we have

sup
f∈F\(LF )

r̄22(γ)

MOMK

(
`f∗ − `f

)
≤ (−3/4)r̄2

2(γ) . (2.35)

Moreover, on the event Ω′K , for all f ∈ (LF )r̄2
2(γ), there are strictly more than K/2 blocks Bk such

that PBk(−Lf ) ≤ (1/4)r̄2
2(γ)− PLf ≤ (1/4)r̄2

2(γ). Therefore,

sup
f∈(LF )

r̄22(γ)

MOMK

(
`f∗ − `f

)
≤ (1/4)r̄2

2(γ) . (2.36)

We conclude from (2.35) and (2.36) that supf∈F MOMK

(
`f∗ − `f

)
≤ (1/4)r̄2

2(γ) and that every

f ∈ F such that PLf > r̄2
2(γ) satisfies MOMK

(
`f − `f∗

)
≥ (3/4)r̄2

2(γ). But, by definition of f̂ , we

have

MOMK

(
`f̂ − `f∗

)
≤ sup

f∈F
MOMK

(
`f∗ − `f

)
≤ (1/4)r̄2

2(γ) .

Therefore, we necessarily have PLf̂ ≤ r̄2
2(γ).

Now, we prove that Ω′K is an exponentially large event using similar argument as in Proposi-

tion 2.4.
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Proposition 2.5. Grant Assumptions 2.1, 2.2 and 2.7 and assume that (1 − β)K ≥ |O| and

β(1− 1/12− 32γL) > 1/2. Then Ω′K holds with probability larger than 1− exp(−βK/1152).

Sketch of proof. The proof of Proposition 2.5 follows the same line as the one of Propo-

sition 2.4. Let us precise the main differences. We set F ′ = (LF )r̄2
2(γ) and for all f ∈ F ′,

z′(f) =
∑K

k=1 I{|Gf (Wk)| ≤ (1/4)r̄2
2(γ)} where Gf (Wk) is the same quantity as in the proof of

Proposition 2.5. Let us consider the contraction φ introduced in Proposition 2.5. By definition of

r̄2
2(γ) and VK(·), we have

Eφ(8(r̄2
2(γ))−1|Gf (Wk)|) ≤ P

(
|Gf (Wk)| ≥

r̄2
2(γ)

8

)
≤ 64

(r̄2
2(γ))2

EGf (Wk)
2 =

64

(r̄2
2(γ))2

Var(PBkLf )

≤ 64K2

(r̄2
2(γ))2N2

∑
i∈Bk

VarPi(Lf ) ≤
64K

(r̄2
2(γ))2N

sup{VarPi(Lf ) : f ∈ F ′, i ∈ I}

≤ 64K

(r̄2
2(γ))2N

sup{VarPi(Lf ) : PLf ≤ r̄2
2(γ), i ∈ I} ≤ 1

24
.

Using Mc Diarmid’s inequality, the Giné-Zinn symmetrization argument and the contraction lemma

twice and the Lipschitz property of the loss function, such as in the proof of Proposition 2.4, we

obtain with probability larger than 1− exp(−|K|/1152), for all f ∈ F ′,

z(f) ≥ |K|(1− 1/12)− 32LK

N
E sup
f∈F ′

1

r̄2
2(γ)

∣∣∣∣∣∣
∑

i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣∣∣ . (2.37)

Now, it remains to use the definition of r̄2
2(γ) to bound the expected supremum in the right-hand

side of (2.37) to get

E sup
f∈F ′

1

r̄2(γ)2

∣∣∣∣∣∣
∑

i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣∣∣ ≤ γ|K|N
K

. (2.38)

Proof of Theorem 2.4. The proof of Theorem 2.4 follows from Lemma 2.7 and Proposition 2.5

for β = 4/7 and γ = 1/(768L).

2.10 Other proofs

2.10.1 Proof of Lemma 2.1

Proof. We have

1√
N
E sup
f∈F :‖f−f∗‖L2

≤r

N∑
i=1

σi(f − f ∗)(Xi) = E sup

t∈Rd:E
〈
t,X
〉2

≤r2

〈
t,

1√
N

N∑
i=1

σiXi

〉
.
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Let Σ = EXTX denote the covariance matrix of X and consider its SVD, Σ = QDQT where

Q = [Q1| · · · |Qd] ∈ Rd×d is an orthogonal matrix and D is a diagonal d × d matrix with non-

negative entries. For all t ∈ Rd, we have E
〈
X, t

〉2
= tTΣt =

∑d
j=1 dj

〈
t, Qj

〉2
. Then

E sup

t∈Rd:

√
E
〈
t,X
〉2

≤r

〈
t,

1√
N

N∑
i=1

σiXi

〉
= E sup

t∈Rd:

√
E
〈
t,X
〉2

≤r

〈 d∑
j=1

〈
t, Qj

〉
Qj,

1√
N

N∑
i=1

σiXi

〉

= E sup

t∈Rd:

√∑d
j=1 dj

〈
t,Qj

〉2

≤r

d∑
j=1:dj 6=0

√
dj
〈
t, Qj

〉〈 Qj√
dj
,

1√
N

N∑
i=1

σiXi

〉

≤ rE

√√√√ d∑
j=1:dj 6=0

〈 Qj√
dj
,

1√
N

N∑
i=1

σiXi

〉2 ≤ r

√√√√E
d∑

j=1:dj 6=0

〈 Qj√
dj
,

1√
N

N∑
i=1

σiXi

〉2
.

Moreover, for any j such that dj 6= 0,

E
〈 Qj√

dj
,

1√
N

N∑
i=1

σiXi

〉2
= E

1

N

N∑
k,l=1

σlσk
〈 Qj√

dj
, Xk

〉〈 Qj√
dj
, Xl

〉
=

1

N

N∑
k=1

E
〈 Qj√

dj
, Xk

〉2

=
1

N

N∑
k=1

(
Qj√
dj

)T
EXT

k Xk

(
Qj√
dj

)
=

1

N

N∑
k=1

(
Qj√
dj

)T
Σ

(
Qj√
dj

)
By orthonormality, QTQj = ej and QT

j Q = eTj , then, for any j such that dj 6= 0,

E
〈 Qj√

dj
,

1√
N

N∑
i=1

σiXi

〉2
=

1

N

N∑
k=1

1

dj
eTj Dej = 1 .

Finally, we obtain

1√
N
E sup
f∈F :‖f−f∗‖L2

≤r

N∑
i=1

σi(f − f ∗)(Xi) ≤ r

√√√√ d∑
j=1

1{dj 6=0} = r
√

Rank(Σ)

and therefore the fixed point r̃2(γ) is such that

r̃2(γ) = inf

{
r > 0,∀J ∈ I : |J | ≥ N/2, E sup

t∈Rd:

√
E
〈
t−t∗,X

〉2

≤r

∑
i∈J

σi
〈
Xi, t− t∗

〉
≤ r2|J |γ

}

≤ inf

{
r > 0,∀J ∈ I : |J | ≥ N/2, r

√
Rank(Σ) ≤ r2

√
|J |γ

}
≤
√

Rank(Σ)

2γ2N
.

2.10.2 Proofs of the results of Section 2.5

We begin this Section with a simple Lemma coming from the convexity of F .
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Lemma 2.8. For any f ∈ F ,

lim
t→0+

R(f ∗ + t(f − f ∗))−R(f ∗)

t
≥ 0

where we recall that R(f) = E(X,Y )∼P [`f (X, Y )].

Proof. Let t ∈ (0, 1). By convexity of F , f ∗ + t(f − f ∗) ∈ F and R(f ∗ + t(f − f ∗)) − R(f ∗) ≥ 0

because f ∗ minimizes the risk over F .

Proof of Theorem 2.6

Let r > 0. Let f ∈ F be such that ‖f − f ∗‖L2
≤ r. For all x ∈ X denote by FY |X=x the conditional

c.d.f. of Y given X = x. We have

E
[
`f (X, Y )|X = x

]
= (τ − 1)

∫
1y≤f(x)(y − f(x))FY |X=x(dy) + τ

∫
1y>f(x)(y − f(x))FY |X=x(dy)

=

∫
1y>f(x)(y − f(x))FY |X=x(dy) + (τ − 1)

∫
1R(y − f(x))FY |X=x(dy) .

By Fubini’s theorem,∫
1z≥f(x)(1− FY |X=x(z))dz =

∫
1z≥f(x)

(
1− P(Y ≤ z|X = x)

)
dz =

∫
1z≥f(x)E[1Y >z|X = x]dz

=

∫ ∫
1y>z≥f(x)fY |X=x(y)dydz =

∫
1y>f(x)(y − f(x))fY |X=x(y)dy

=

∫
1y>f(x)(y − f(x))FY |X=x(dy) .

Therefore,

E
[
`f (X, Y )|X = x

]
=

∫
1y≥f(x)(1− FY |X=x(y))dy + (τ − 1)

(∫
R
yFY |X=x(dy)− f(x)

)
= g(x, f(x)) + (τ − 1)

∫
R
yFY |X=x(dy)

where g : (x, a) ∈ X × R→
∫

1y≥a(1− FY |X=x(y))dy + (1− τ)a. It follows that

PLf = E[g(X, f(X))− g(X, f ∗(X))] . (2.39)

Since for all x ∈ X , a 7→ g(x, a) is twice differentiable, from a second order Taylor expansion we get

PLf = E
[
g(X, f(X))− g(X, f ∗(X))

]
= E

[
∂g(X, a)

∂a
(f ∗(X))(f(X)− f ∗(X))

]
+

1

2

∫
x∈X

∂2g(x, a)

∂a2
(zx)(f(x)− f ∗(x))2dPX(x)
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where for all x ∈ X , zx is some point in
[

min(f(x), f ∗(x)),max(f(x), f ∗(x))
]
. For the first order

term, we have

E
[
∂g(X, a)

∂a
(f ∗(X))(f(X)− f ∗(X))

]
= E lim

t→0+

g(X, f ∗(X) + t(f(X)− f ∗(X))− g(X, f ∗(X))

t
.

For all x ∈ X , we have [g(x, f ∗(x) + t(f(x)− f ∗(x)))− g(x, f ∗(x))]/t ≤ (2− τ)|f ∗(x)− f(x)| which

is integrable with respect to PX . Thus, by the dominated convergence theorem, it is possible to

interchange integral and limit and therefore using Lemma 2.8, we obtian

E
[
∂g(X, a)

∂a
(f ∗(X))(f(X)− f ∗(X))

]
= lim

t→0+
E
g(X, f ∗(X) + t(f(X)− f ∗(X))− g(X, f ∗(X))

t

= lim
t→0+

R(f ∗ + t(f − f ∗))−R(f ∗)

t
≥ 0.

Given that for all x ∈ X , ∂2g(x,a)
∂a2 (z) = fY |X=x(z) for all z ∈ R it follows that

PLf ≥
1

2

∫
x∈X

fY |X=x(zx)(f(x)− f ∗(x))2dPX(x).

Consider A = {x ∈ X , |f(x)−f ∗(x)| ≤ (
√

2C ′)(2+ε)/εr}. Given that ‖f−f ∗‖L2 ≤ r, by Markov’s

inequality, P (X ∈ A) > 1− 1/(
√

2C ′)(4+2ε)/ε. From Assumption 2.10 we get

2PLf
α
> E[IA(X)(f(X)− f ∗(X))2] = ‖f − f ∗‖2

L2
− E[IAc(X)(f(X)− f ∗(X))2] . (2.40)

By Holder and Markov’s inequalities,

E[IAc(X)(f(X)− f ∗(X))2] 6
(
E[IAc(X)]

)ε/(2+ε)(E[(f(X)− f ∗(X))2+ε]
)2/(2+ε)

6
‖f − f ∗‖2

L2+ε

2(C ′)2
.

By Assumption 2.9, it follows that E[IAc(X)(f(X) − f ∗(X))2] 6 ‖f − f ∗‖2
L2
/2 and we conclude

with (2.40).

Proof of Theorem 2.7

Let r > 0. Let f ∈ F be such that ‖f − f ∗‖L2
≤ r. We have

PLf = EXE
[
ρH(Y − f(x))− ρH(Y − f ∗(x))|X = x

]
= E

[
g(X, f(X))− g(X, f ∗(X))

]
where g : (x, a) ∈ X × R = E[ρH(Y − a)|X = x]. Let FY |X=x denote the c.d.f. of Y given X = x.

Since for all x ∈ X , a 7→ g(x, a) is twice differentiable in its second argument (see Lemma 2.1 in

(Elsener and van de Geer, 2018)), a second Taylor expansion yields

PLf = E
[
∂g(X, a)

∂a
(f ∗(X))(f(X)− f ∗(X))

]
+

1

2

∫
x∈X

(f(x)− f ∗(x))2∂
2g(x, a)

∂a2
(zx)dPX(x)
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where for all x ∈ X , zx is some point in [min(f(x), f ∗(x)),max(f(x), f ∗(x))]. By Lemma 2.8, with

the same reasoning as the one in Section 2.10.2, we get

PLf ≥
1

2

∫
x∈X

(f(x)− f ∗(x))2∂
2g(x, a)

∂a2
(zx)dPX(x) .

Moreover, for all z ∈ R,

∂2g(x, a)

∂a2
(z) = FY |X=x(z + δ)− FY |X=x(z − δ).

Now, let A = {x ∈ X : |f(x) − f ∗(x)| ≤ (
√

2C ′)(2+ε)/εr}. It follows from Assumption 2.10 that

PLf ≥ (α/2)E[(f(X)−f ∗(X))2IA(X)]. Since ‖f−f ∗‖L2 ≤ r, by Markov’s inequality, P (X ∈ A) >

1− 1/(
√

2C ′)(4+2ε)/ε. By Holder and Markov’s inequalities,

E[IAc(X)(f(X)− f ∗(X))2] 6
(
E[IAc(X)]

)ε/(2+ε)(E[(f(X)− f ∗(X))2+ε]
)2/(2+ε)

6
‖f − f ∗‖2

L2+ε

2(C ′)2
.

By Assumption 2.9, it follows that E[IAc(X)(f(X) − f ∗(X))2] 6
‖f−f∗‖2L2

2
, which concludes the

proof.

Proof of Theorem 2.8

Let r > 0. Let f ∈ F be such that ‖f − f ∗‖L2
≤ r. Let η(x) = P (Y = 1|X = x). Write first

that PLf = E
[
g(X, f(X)) − g(X, f ∗(X))

]
where for all x ∈ X and a ∈ R, g(x, a) = η(x) log(1 +

exp(−a))+(1−η(x)) log(1+exp(a)). From Lemma 2.8 and the same reasoning as in Section 2.10.2

and 2.10.2 we get

PLf ≥
∫
x∈X

∂2
2g(x, a)

∂a2
(zx)

(f(x)− f ∗(x))2

2
dPX(x) =

∫
x∈X

ezx

(1 + ezx)2

(f(x)− f ∗(x))2

2
dPX(x)

for some zx ∈ [min(f(x), f ∗(x)),max(f(x), f ∗(x))]. Now, let

A =
{
x ∈ X : |f ∗(x)| ≤ c0, |f(x)− f ∗(x)| ≤ (2C ′)(2+ε)/εr

}
.

On the event A we have

PLf ≥
e−c0−(2C′)(2+ε)/εr

2
(
1 + ec0+(2C′)(2+ε)/εr

)2E[IA(X)(f(X)− f ∗(X))2]

Using the fact that P (X /∈ A) ≤ P (|f ∗(X)| > c0) + P (|f(X) − f ∗(X| > (2C ′)(2+ε)/εr) ≤
2/(2C ′)(4+ε)/ε, we conclude with Assumption 2.9 and the same analysis as in the two previous

proofs.



78 CHAPTER 2. ROBUST ERM AND MINMAX-MOM

Proof of Theorem 2.9

Let r > 0 such that r(
√

2C ′)(2+ε)/ε ≤ 1. Let f be in F such that ‖f − f ∗‖L2 ≤ r. For all x in X let

us denote η(x) = P(Y = 1|X = x). It is easy to verify that the Bayes estimator (which is equal to

the oracle) is defined as f ∗(x) = sign(2η(x) − 1). Consider the set A = {x ∈ X , |f(x) − f ∗(x)| ≤
r(
√

2C ′)(2+ε)/ε}. Since ‖f − f ∗‖L2 ≤ r, by Markov’s inequality P(X ∈ A) ≥ 1 − 1/(
√

2C ′)(4+2ε)/ε.

Let x be in A. If f ∗(x) = −1 (i.e 2η(x) ≤ 1) and f(x) ≤ f ∗(x) = −1 we obtain

E
[
`f (X, Y )|X = x

]
−E
[
`f∗(X, Y )|X = x

]
= η(x)(1−f(x))−η(x)(1−f ∗(x)) ≥ η(x)

(
f(x)−f ∗(x)

)2

where we used the fact that on A, |f(x)− f ∗(x)| ≤ r(
√

2C ′)(2+ε)/ε ≤ 1. Using the same analysis for

the other cases we get that

E
[
`f (X, Y )|X = x

]
− E

[
`f∗(X, Y )|X = x

]
≥ min

(
η(x), 1− η(x), |1− 2η(x)|

)(
f(x)− f ∗(x)

)2

≥ α
(
f(x)− f ∗(x)

)2

Therefore,

PLf
α
> E[IA(X)(f(X)− f ∗(X))2] = ‖f − f ∗‖2

L2
− E[IAc(X)(f(X)− f ∗(X))2] . (2.41)

By Holder and Markov’s inequalities,

E[IAc(X)(f(X)− f ∗(X))2] 6
(
E[IAc(X)]

)ε/(2+ε)(E[(f(X)− f ∗(X))2+ε]
)2/(2+ε)

6
‖f − f ∗‖2

L2+ε

2(C ′)2
.

By Assumption 2.9, it follows that E[IAc(X)(f(X) − f ∗(X))2] 6
‖f−f∗‖2L2

2
and we conclude with

(2.41).



Chapter 3

Robust high dimensional learning for

Lipschitz and convex losses

In this chapter, we establish risk bounds for Regularized Empirical Risk Minimizers (RERM) when

the loss is Lipschitz and convex and the regularization function is a norm. In a first part, we obtain

these results in the i.i.d. setup under subgaussian assumptions on the design. In a second part, a

more general framework where the design might have heavier tails and data may be corrupted by

outliers both in the design and the response variables is considered. In this situation, RERM per-

forms poorly in general. We analyse an alternative procedure based on median-of-means principles

and called “minmax MOM”. We show optimal subgaussian deviation rates for these estimators in

the relaxed setting. The main results are meta-theorems allowing a wide-range of applications to

various problems in learning theory. To show a non-exhaustive sample of these potential applica-

tions, it is applied to classification problems with logistic loss functions regularized by LASSO and

SLOPE, to regression problems with Huber loss regularized by Group LASSO. Another advantage

of the minmax MOM formulation is that it suggests a systematic way to slightly modify descent

based algorithms used in high-dimensional statistics to make them robust to outliers (Lecué and

Lerasle, 2019). We illustrate this principle in a Simulations section where a “ minmax MOM”

version of classical proximal descent algorithms are turned into robust to outliers algorithms.

79
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3.1 Introduction

Regularized empirical risk minimizers (RERM) are standard estimators in high dimensional clas-

sification and regression problems. They are solutions of minimization problems of a regularized

empirical risk functions for a given loss and regularization functions. In regression, the quadratic

loss of linear functionals regularized by the `1-norm (LASSO) (Tibshirani, 1996) is probably the

most famous example of RERM, see for example (Koltchinskii, 2011b; Bühlmann and van de Geer,

2011; Giraud, 2015) for overviews. Recent results and references, including more general regular-

ization functions can be found, for example in (Lecué and Mendelson, 2018; Bellec et al., 2017;

Bach et al., 2012; Bhaskar et al., 2013; Argyriou et al., 2013). RERM based on the quadratic loss

function are highly unstable when data have heavy-tails or when the dataset has been corrupted

by outliers. These problems have attracted a lot of attention in robust statistics, see for example

(Huber and Ronchetti, 2011) for an overview. By considering alternative losses, one can efficiently

solve these problems when heavy-tails or corruption happen in the output variable Y . There is a

growing literature analyzing performance of some of these alternatives in learning theory. In regres-

sion problems, among others, one can mention the L1 absolute loss (Shalev-Shwartz and Tewari,

2011), the Huber loss (Zhou et al., 2018; Elsener and van de Geer, 2018) and the quantile loss

(Alquier et al., 2019) that is popular in finance and econometrics. In classification, besides the 0/1

loss function which is known to lead to computationally intractable RERM, the logistic loss and

the hinge loss are among the most popular convex surrogates (Zhang, 2004; Bartlett et al., 2006).

Quantile, L1, Huber loss functions for regression and Logistic, Hinge loss functions for classification

are all Lipschitz and convex loss functions (in their first variable, see Assumption 3.2 for a formal

definition). This remark motivated (Alquier et al., 2019) to study systematically RERM based on

Lipschitz loss functions. A remarkable feature of Lipschitz losses proved in (Alquier et al., 2019) is

that optimal results can be proved with almost no assumption on the response variable Y .

This paper is built on the approach initiated in (Chinot et al., 2019b). Compared with (Alquier

et al., 2019), the approach of (Chinot et al., 2019b) improves the results by deriving risk bounds

depending on a localized complexity parameters rather than global ones and by considering a more

flexible setting where a global Bernstein condition is relaxed into a local one, see Assumption 3.5

and the following discussion for details. The paper (Chinot et al., 2019b) only considers estimators

that are not regularized and that can therefore only be efficient in small dimensional settings.

The first main result of this paper is a high dimensional extension of the results in (Chinot et al.,

2019b) that is achieved by analyzing estimators (based on the empirical risk or a Median-of-Means

version) regularized by a norm. The main results are two meta-theorem allowing to study a broad

range of estimators including LASSO, SLOPE, group LASSO and their minmax MOM version.

Section 3.6 provides applications of the main results to some examples among these.

While RERM is studied without assumption on the output variables, somehow strong, albeit

classical, hypotheses are granted on the design X in our first main result. We assume actually in this
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analysis subgaussian assumptions on the input variables as in (Alquier et al., 2019). The necessity

of this assumption to derive optimal exponential deviation bounds for RERM is not surprising as

RERM have downgraded performance when the design is heavy tailed (see (Mendelson, 2014) or

(Chinot et al., 2019b) for instance).

In a second part, we study an alternative to RERM in a framework with less stringent as-

sumptions on the data. These estimators are based on the Median-Of-Means (MOM) principle

(Nemirovsky and Yudin, 1983; Birgé, 1984; Jerrum et al., 1986; Alon et al., 1999) and the minmax

approach (Audibert and Catoni, 2011; Baraud et al., 2017). They are called minmax MOM estima-

tors as in (Lecué and Lerasle, 2019). A non-regularized version of these estimators was analyzed in

(Chinot et al., 2019b). The second main and most important result of the paper shows that min-

max MOM estimators achieve optimal subgaussian deviation bounds in the relaxed setting where

RERM perform poorly because of outliers and heavy-tailed data. This result is obtained under a

local Bernstein condition as for the RERM. It allows to derive fast rates of convergence in a large set

of applications where typically, subgaussian assumptions on the design X are replaced by moment

assumptions. Minmax MOM estimators are then analysed without the local Bernstein condition.

Oracle inequalities holding with exponentially large probability are proved in this case. Compared

with results under Bernstein’s assumption, an extra variance term appears in the convergence rate.

This extra term typically would yield to slow rates of convergence in the applications, which are

known to be minimax in the case where no Bernstein assumption holds. However, the variance

term disappears under the Bernstein’s condition, which shows that fast rates can be recovered from

the general results. In addition, all results on minmax MOM estimators, both with or without

Bernstein condition, are shown in the “O∪I” framework – where O stands for “outliers” and I for

“informative”– see Section 3.4.1 or (Lecué and Lerasle, 2017, 2019) for details. In this framework,

all assumptions (such as the Bernstein’s condition) are granted on “inliers” (Xi, Yi)i∈I . These inliers

may have different distributions but the oracles of these distributions should match. On the other

hand, no assumption are granted on outliers (Xi, Yi)i∈O, which is to the best of our knowledge the

strongest form of aggressive/adversarial outliers (it includes, in particular, Huber’s ε-contamination

setup). The minmax MOM estimators perform well in this setting, it means that the accuracy of

their predictions is not downgraded by the presence of outliers in the dataset. Mathematically, this

robustness is not surprising as it is a byproduct of the median step used in the MOM principle.

However, in practice, it is an important advantage of MOM estimators compared to RERM.

The main results on minmax MOM estimators are also meta-theorems that can be applied to

the same examples as RERM. Each of these examples provide a new (to the best of our knowledge)

estimator that reach performance that RERM could not typically achieve. For example, when the

class of classifiers/regressors is the class of linear functions on Rp, minmax MOM estimators have

a risk bounded by the minimax rate with optimal exponential probability of deviation even if the

inputs X only satisfy weak moment assumptions and/or have been corrupted by outliers. These

applications are also discussed in Section 3.6.
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Finally, in Section 3.7, we consider the modification of standard algorithms suggested by the

minmax MOM formulation introduced in (Lecué and Lerasle, 2019) to construct robust algorithms.

The paper is organized as follows. Section 3.2 presents the formal setting. Section 3.3 presents

results for RERM and Section 3.4 those for minmax MOM estimators under a local Bernstein con-

dition and in Section 3.5 without this condition. Section 3.6 details several examples of applications

of the main results. A short simulation study illustrating our theoretical findings is presented in

Section 3.7. The proofs are postponed to Sections 3.9.1- 3.9.3.

3.2 Mathematical background and notations

Let (Z,A, P ) denote a probability space, where Z = X ×Y is a product space such that X denotes

a measurable space of inputs and Y ⊂ R is the set of values taken by the outputs. Let Z = (X, Y )

denote a random variable taking values in Z with distribution P and let µ denote the marginal

distribution of the design X.

Let Y ⊂ R denote a convex set such that Y ⊂ Y and let F denote a class of functions f :

X → Y . The set Y is typically the co,vex hull of Y . As such, it will always contain Y . Let

` : Y ×Y → R denote a loss function such that `(f(x), y) measures the error made when predicting

y by f(x). For any distribution Q on Z and any function g : Z → R for which it makes sense, let

Qg = EZ∼Q[g(Z)] denote the expectation of the function g under the distribution Q and, for any

p > 1, let ‖g‖Lp(Q) := (Q[|g|p])1/p and ‖g‖Lp := ‖g‖Lp(P ). The risk of any f ∈ F is given by P`f ,

where `f (x, y) := `(f(x), y). The prediction of Y with minimal risk is given by f ∗(X), where f ∗,

called oracle, is defined as any function such that

f ∗ ∈ argmin
f∈F

P`f .

Hereafter, for simplicity, it is assumed that f ∗ exists and is uniquely defined. The oracle is unknown

to the statistician that has only access to a dataset (Xi, Yi)i∈{1,...,N} of random variables taking values

in X × Y . The goal is to build a data-driven estimator f̂ of f ∗ that predicts almost as well as f ∗.

The quality of an estimator f̂ is measured by the error rate ‖f̂ − f ∗‖2
L2

and the excess risk PLf̂ ,
where, respectively,

‖f̂ − f ∗‖2
L2

= P [(f̂ − f)2] = E
[(
f̂(X)− f ∗(X)

)2

|(Xi, Yi)
N
i=1

]
and Lf̂ := `f̂ − `f∗ . (3.1)

Let PN denote the empirical measure i.e PN(A) = (1/N)
∑N

i=1 I(Zi ∈ A) for all A ∈ A. A

natural candidate for the estimation of f ∗ is the Empirical Risk Minimizer (ERM) of (Vapnik and

Červonenkis, 1971), see also (Vapnik, 1998) for an overview, which is defined by

f̂ERM ∈ argmin
f∈F

PN`f . (3.2)
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The choice of F is a central issue: enlarging the space F deteriorates the quality of the oracle

estimation but improves its predictive performance. It is possible to use large classes F without

significantly altering the quality estimation if certain structural properties of the oracle f ∗ are known

a priori from the statistician. In that case, a widely spread approach is to add to the empirical loss

a regularization term promoting this structural property. In this paper, we consider this problem

when the regularization term is a norm. Formally, let E be a linear space such that F ⊂ E ⊂ L2(µ)

and let ‖ · ‖ : E 7→ R+ denote a norm on E. For any λ ≥ 0, the regularized ERM (RERM) is

defined by

f̂RERMλ ∈ argmin
f∈F

PN`
λ
f , where `λf (x, y) = `f (x, y) + λ‖f‖ . (3.3)

In regression, one can mention Thikonov regularization which promotes smoothness (Golub et al.,

1999) and `1 regularization which promotes sparsity (Tibshirani, 1996). Likewise, for matrix recon-

struction, the 1-Schatten norm S1 promotes low rank solutions (see (Koltchinskii et al., 2011; Cai

et al., 2016)).

In the remaining of the paper, the following notations will be used repeatedly: for any r > 0,

let

rBL2 = {f ∈ L2(µ) : ‖f‖L2 6 r}, rSL2 = {f ∈ L2(µ) : ‖f‖L2 = r} .
Let rB = {f ∈ E : ‖f‖ ≤ r} and rS = {f ∈ E : ‖f‖ = r}. For any set H for which it makes sense,

let H + f ∗ = {h+ f ∗ : h ∈ H}, H− f ∗ = {h− f ∗ : h ∈ H}. Let (ei)
p
i=1 be the canonical basis of Rp.

Let c denote an absolute constant whose value might change from line to line and let c(A) denote

a function depending on the parameters A whose value may also change from line to line.

3.3 Regularized ERM with Lipschitz and convex loss func-

tions

This section presents and improves results from (Alquier et al., 2019). A local Bernstein assumption,

holding in a neighborhood of the oracle f ∗ is introduced in the spirit of (Chinot et al., 2019b). This

assumption does not imply boundedness of F in L2-norm unlike the global Bernstein condition

considered in (Alquier et al., 2019). New rates of convergence are obtained, depending on localized

complexity parameters improving the global ones from (Alquier et al., 2019).

3.3.1 Main assumptions

We start with a set of assumptions sufficient to prove exponential deviation bounds for the error rate

and excess risk of RERM for general convex and Lipschitz loss functions and for any regularization

norm. In this section, we consider the classical i.i.d. assumption (we will relax this assumption in

the next sections in order to consider corrupted databases).

Assumption 3.1. (Xi, Yi)
N
i=1 are independent and identically distributed with distribution P .
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All along the paper, we consider Lipschitz and convex loss functions.

Assumption 3.2. There exists L > 0 such that, for any y ∈ Y, `(·, y) is L-Lipschitz i.e for every

f and g in F , x ∈ X and y ∈ Y, |`(f(x), y) − `(g(x), y)| ≤ L|f(x) − g(x)| and convex i.e for all

α ∈ [0, 1], `(αf(x) + (1− α)g(x), y) ≤ α`(f(x), y) + (1− α)`(g(x), y).

There are many examples of loss functions satisfying Assumption 3.2. The two examples studied

in this work (see Section 3.6) are

• the logistic loss function defined for any u ∈ R and y ∈ Y = {−1, 1}, by `(u, y) =

log(1 + exp(−yu)). It satisfies Assumption 3.2 for L = 1.

• Tte Huber loss function with parameter δ > 0 is defined for all u, y ∈ R, by

`(u, y) =

1
2
(y − u)2 if |u− y| ≤ δ

δ|y − u| − δ2

2
if |u− y| > δ

.

It satisfies Assumption 3.2 for L = δ.

We will also assume that the functions class F is convex.

Assumption 3.3. The class F is convex.

In particular, Assumption 3.3 holds in the important case considered in high-dimensional statis-

tics when F is the class of all linear functions indexed by Rp, F = {
〈
t, ·
〉

: t ∈ Rp}. This example

is studied in great details in Section 3.6.

RERM performs well when the empirical excess risk f ∈ F → PNLf is uniformly concentrated

around the excess risk f ∈ F → PLf . This requires strong concentration properties of the class of

random variables {Lf (X) : f ∈ F}, which is implied by concentration properties of {(f − f ∗)(X) :

f ∈ F} thanks to the Lipschitz assumption on the loss function. Here, we study RERM under

a subgaussian assumption on the design. We first recall the definition of a subgaussian class of

functions.

Definition 3.1. A class F is called L0-subgaussian (with respect to X), where L0 ≥ 1, when for all

f in F and for all λ > 1, E exp(λ|f(X)|/‖f‖L2) ≤ exp(λ2L2
0/2).

Assumption 3.4. The class F − f ∗ is L0-subgaussian with respect to X.

Assumptions 3.1-3.4 are also granted in (Alquier et al., 2019). In this setup, a natural way to

measure the statistical complexity of the problem is via Gaussian mean widths (of some subsets of

F ). We recall the definition of this measure of complexity.

Definition 3.2. Let H ⊂ L2(µ) and (Gh)h∈H be the canonical centered Gaussian process indexed by

H, with covariance structure given by (E(Gh1 −Gh2)2)
1/2

= (E(h1(X)− h2(X))2)
1/2

for all h1, h2 ∈
H. The Gaussian mean-width of H is w(H) = E suph∈H Gh.
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Gaussian mean widths of various sets have been computed in (Amelunxen et al., 2014), (C Bellec,

2019), (Chatterjee and Goswami, 2019) or (Gordon et al., 2007) for example. Risk bounds for f̂RERMλ

are driven by fixed point solutions of a Gaussian mean width of regularization balls (F − f ∗)∩ ρB,

which measure the local complexity of F around f ∗ .

Definition 3.3. For all A > 0, the complexity function is a non-decreasing function r(A, ·),

such that for every ρ ≥ 0,

r(A, ρ) ≥ inf{r > 0 : 96AL0Lw
(
F ∩ (f ∗ + ρB ∩ rBL2)

)
≤ r2
√
N} .

Here, L is the Lipschitz constant in Assumption 3.2 and L0 is the subgaussian constant from As-

sumption 3.4.

The last tool and assumption comes from (Lecué and Mendelson, 2018). A key observation is

that the regularization norm ‖ · ‖ promoting some sparsity structure has large subdifferentials at

sparse functions (see, for instance, atomic norms in (Bhaskar et al., 2013)). The subdifferential of

‖ · ‖ in f is defined as

(∂‖.‖)f = {z∗ ∈ E∗ : ‖f + h‖ − ‖f‖ ≥ z∗(h) for every h ∈ E} , (3.4)

where E∗ is the dual space of the normed space (E, ‖ · ‖). Let

Γf∗(ρ) =
⋃

f∈f∗+ ρ
20
B

(∂‖ · ‖)f

be the union of all subdifferentials of the regularization norm ‖·‖ of functions f close to the oracle

f ∗. We expect Γf∗(ρ) to be a “large” subset of the unit dual sphere of ‖·‖ when f ∗ is “sparse” – for

the notion of sparsity associated with ‖·‖. This intuition is formalized in the following definition

from (Lecué and Mendelson, 2018)

Definition 3.4 ((Lecué and Mendelson, 2018)). For any A > 0 and ρ > 0, let

Hρ,A = {f ∈ F : ‖f ∗ − f‖ = ρ and ‖f ∗ − f‖L2 ≤ r(A, ρ), . . . , }.

Let

∆(ρ,A) = inf
h∈Hρ,A

sup
z∗∈Γf∗ (ρ)

z∗(h− f ∗) . (3.5)

A real number ρ > 0 satisfies the (A-)sparsity equation if ∆(ρ,A) ≥ 4ρ/5.

Any constant in (0, 1) could replace 4/5 in Definition 3.4 as can be seen from a close inspection

of the proof of Theorem 3.1. If the norm ‖ ·‖ is “smooth” in f , the subdifferential of ‖ ·‖ in f is just

the gradient of ‖ · ‖ in f . In that case, (∂ ‖·‖)f is not rich (it is a singleton) and the regularization

norm has only a low “sparsity inducing power” unless the variety of gradients of ‖·‖ at f in the

neighborhood f ∗ + (ρ/20)B is rich enough (the latter case can be seen as ‖·‖ being “almost not
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differentiable” in f ∗). However, any norm has a subdifferential in 0 equal to the entire unit dual

ball associated with ‖·‖. Therefore, when 0 belongs to f ∗+(ρ/20)B, for example when ρ ≥ 20‖f ∗‖,
the sparsity equation is satisfied since, in that case, ∆(ρ) = ρ. We can use this fact to obtain

“complexity dependent” rates of convergence – i.e. rates depending on ‖f ∗‖. In high-dimensional

setups, we also look for statistical bounds depending on the sparsity of f ∗ enforced by ‖·‖ (see (Lecué

and Mendelson, 2017, 2018) for details regarding the difference between “complexity and sparsity”

dependent bounds). Hereafter, we focus on norms ‖ · ‖ promoting some sparsity structure and we

establish sparsity dependent rates of convergence and sparse oracle inequalities in Section 3.6.

Margin assumptions (Mammen and Tsybakov, 1999; Tsybakov, 2004; van de Geer, 2016) such as

the Bernstein conditions from (Bartlett and Mendelson, 2006a) have been widely used in statistics

and learning theory to prove fast convergence rates of RERM. Here, we use a local Bernstein

condition in the spirit of (Chinot et al., 2019b).

Assumption 3.5. There exist constants A > 0 and ρ∗ such that ρ∗ satisfies the A-sparsity equation

and for all f ∈ F satisfying ‖f − f ∗‖L2 = r(A, ρ∗) and ‖f − f ∗‖ ≤ ρ∗, then ‖f − f ∗‖2
L2
≤ APLf .

Hereafter, whenever Assumption 3.5 is granted, we assume that the constant A is fixed satisfying

this assumption and write r(ρ) instead of r(A, ρ). As explained in (Chinot et al., 2019b), the local

Bernstein condition holds in examples where F is not bounded in L2-norm. It allows to cover the

class of all linear functions on Rd where the global Bernstein condition of (Alquier et al., 2019) –

‖f − f ∗‖2
L2
6 APLf for all f ∈ F– does not hold.

Remark 3.1. From Assumption 3.2 it follows that if the local Bernstein condition is granted as in

Assumption 3.5 that is for all functions f in F such that ‖f − f ∗‖L2 = r(A, ρ∗) and ‖f − f ∗‖ ≤ ρ∗

(and if there exists such an f) then we necessary have r(A, ρ∗) ≤ AL. Indeed, if there is an f in

F ∩ (f ∗ + r(A, ρ∗)SL2 ∩ ρ∗B), it follows from the Lipschitz property of the loss function that

r2(A, ρ∗) = ‖f − f ∗‖2
L2
≤ APLf ≤ AL‖f − f ∗‖L2 = ALr(A, ρ∗)

and so r(A, ρ∗) ≤ AL. The latter condition will be always satisfied as soon as N is large enough. For

example, for the LASSO regularization, we recover from the latter restriction, the classical condition

“N & s log(ep/s)” where s is the oracle’s sparsity.

3.3.2 Main theorem for the RERM

The following theorem gives the main result on the statistical performance of RERM.

Theorem 3.1. Grant Assumptions 3.1, 3.2, 3.3, 3.4. Suppose that Assumption 3.5 holds with

ρ = ρ∗ satisfying the A-sparsity equation from Definition 3.4. With this value of A, let r(·) := r(A, ·)
denote the complexity function from Definition 3.3. Assume that

10

21A

r2(ρ∗)

ρ∗
< λ <

2

3A

r2(ρ∗)

ρ∗
. (3.6)
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Then, with probability larger than

1− 2 exp
(
− c(A,L, L0)r2(ρ∗)N

)
, (3.7)

the following bounds hold

‖f̂RERMλ − f ∗‖ ≤ ρ∗, ‖f̂RERMλ − f ∗‖L2 ≤ r(ρ∗) and PLf̂RERMλ
≤ r2(ρ∗)

A
.

Remark 3.2. A remarkable feature of Theorem 3.1 is that it holds without assumption on Y . We

do not even need Y to be in L1 since one can always fix some f0 ∈ F and work with `f − `f0 to

define all the object. In that case we have |`f − `f0| ≤ L|f − f 0| and so (`f − `f0)(Z) ∈ L1 when

F ⊂ L1(µ) even when Y /∈ L1. So we can define f ∗ such that f ∗ ∈ argminf∈F P (`f − `f0) with

no assumption on Y . This is an important consequence of the Lipschitz property which has been

widely used in robust statistics because it implies robustness to heavy-tailed noise without any strong

technical difficulty.

Remark 3.3. Theorem 3.1 holds for subgaussian classes of functions F . As in (Alquier et al.,

2019), it is possible to extend this result under boundedness assumptions.

Theorem 3.1 improves (Alquier et al., 2019, Theorem 2.1) in two directions: First, the complexity

function r(·) measures the (Gaussian mean width) complexity of the local set (F −f ∗)∩ρB∩ rBL2

and not the global gaussian mean width of (F − f ∗)∩ ρB such as in (Alquier et al., 2019). Second,

Theorem 3.1 holds in a setting where F can be unbounded in L2-norm. The proof of Theorem 3.1

is postponed to Section 3.9.1. The proof relies on the convexity of the loss function (and F ) which

allows to use an homogeneity argument as in (Chinot et al., 2019b) for Lipshitz and convex loss

functions and in (Lecué and Mendelson, 2013) for the quadratic loss function, simplifying the peeling

step of (Alquier et al., 2019). Theorem 3.1 is a general result which is applied in various applications

in Section 3.6.

3.4 Minmax MOM estimators

Even if the results of Section 3.3 are interesting on their own (because the i.i.d. sub-gaussian frame-

work is one of the most considered setup in Statistics and Learning theory), the setup considered

in Section 3.3 can be restrictive in some applications. It does not cover more realistic situations

where data are heavy-tailed and/or corrupted. In this section, we consider a more general setup

beyond the i.i.d. subgaussian setup in order to cover these more realistic frameworks. The results

from Section 3.3 will serve as benchmarks: we show that similar bounds can be achieved in a more

realistic framework by alternative estimators. These estimators use the median-of-means principles

instead of empirical means.
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3.4.1 Definition

Recall the definition of MOM estimators of univariate means from (Alon et al., 1999; Jerrum et al.,

1986; Nemirovsky and Yudin, 1983). Let (Bk)k=1,...,K denote a partition of {1, . . . , N} into blocks

Bk of equal size N/K (it is implicitly assumed that K divides N . An extension to blocks with

almost equal size is possible (see (Minsker et al., 2019)). It is not considered here to simplify the

presentation of the results, the extension is thus left to the interested reader). For any function

f : X × Y → R and k ∈ {1, . . . , K}, let PBkf = (K/N)
∑

i∈Bk f(Xi, Yi) denote the empirical mean

on the block Bk. The MOM estimator based on this partition is the empirical median of the latter

empirical means:

MOMK

(
f
)

= Med(PB1f, · · · , PBKf) . (3.8)

The estimator MOMK

(
f
)

of Pf achieves subgaussian deviation tails if (f(Xi, Yi))
N
i=1 have 2 mo-

ments, see (Devroye et al., 2016). The number of blocks K is a tuning parameter of the procedure.

The larger K, the more outliers are allowed. When K = 1, MOMK

(
f
)

is the empirical mean, when

K = N , it is the empirical median.

Building on ideas introduced in (Audibert and Catoni, 2011; Baraud et al., 2017), (Lecué and

Lerasle, 2019) proposed the following strategy to use MOM estimators in learning problems. Since

the oracle f ∗ is also solution of the following minmax problem

f ∗ = argmin
f∈F

P`f = argmin
f∈F

sup
g∈F

P (`f − `g) ,

minmax MOM estimators are obtained by plugging MOM estimators of the unknown expectations

P (`f − `g) in this minmax formulation. Applying this principle to regularized procedures yields the

following “minmax MOM version” of RERM that we study in this paper:

f̂K,λ ∈ argmin
f∈F

sup
g∈F

MOMK

(
`f − `g

)
+ λ
(
‖f‖ − ‖g‖

)
. (3.9)

The linearity of the empirical process PN is important to use localization techniques in the

analysis of RERM to derive fast rates of convergence for these estimators improving upon the

slow rates of (Vapnik, 1998), see (Tsybakov, 2004; Koltchinskii, 2011b) for example. The minmax

reformulation comes from (Audibert and Catoni, 2011), it allows to overcome the lack of linearity

of robust mean estimators and obtain fast rates of convergence for robust estimators based on

nonlinear estimators of univariate expectations.

3.4.2 Assumptions and main results

To highlight robustness properties of minmax MOM estimators with respect to outliers in the

dataset, their analysis is performed in the following framework. Let I ∪ O denote a partition of

{1, · · · , N} that is unknown to the statistician. Data (Xi, Yi)i∈O are considered as outliers. No

assumption on the distribution of these data is made, they can be dependent or adversarial. Data
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(Xi, Yi)i∈I bring information on f ∗ and are called informative or inliers. Assumptions are made

uniquely on these informative data (and not on the outliers). They have to induce the same L2

geometries on F and the same excess risks.

Assumption 3.6. (Xi, Yi)i∈I are independent and for all i ∈ I : Pi(f − f ∗)2 = P (f − f ∗)2 and

PiLf = PLf .

Assumption 3.6 holds in the i.i.d case, it also covers situations where informative data (Xi, Yi)i∈I

may have different distributions. It implies in particular that f ∗ is also the oracle in F w.r.t. all

the distributions Pi for i ∈ I.

Several quantities introduced to study RERM have to be modified to state the results for minmax

MOM estimators. First, the complexity function is no longer based on Gaussian mean width,

it is now defined as a fixed point of local Rademacher complexities (Koltchinskii, 2011a, 2006;

Bartlett et al., 2002b, 2005). Let (σi)i∈I denote i.i.d. Rademacher random variables (i.e. uniformly

distributed on {−1, 1}), independent from (Xi, Yi)i∈I . The complexity function ρ → r2(γ, ρ) is

a non-decreasing function such that for all ρ > 0

r2(γ, ρ) ≥ inf

{
r > 0 : ∀J ⊂ I s.t |J | > N/2, E

{
sup

f∈(F−f∗)∩ρB∩rBL2

∣∣∣∣∑
i∈J

σif(Xi)

∣∣∣∣
}
≤ γr2|J |

}
.

(3.10)

As in Theorem 3.1, parameter r2(γ, ρ) measures the statistical complexity of the sub-model F ∩
(f ∗ + ρB) locally in a L2-neighborhood of f ∗. It only involves the distribution of informative data

and does not depend on the distribution of the outputs (Yi)i∈I . The local Bernstein condition,

Assumption 3.5, as well as the sparsity equation have now to be extended to this new definition of

complexity. We start with the sparsity equation.

Definition 3.5. For any A > 0 and ρ > 0, let

CK,r(ρ,A) = max

(
r2

2(γ, ρ), c(A,L)
K

N

)
(3.11)

and H̃ρ,A = {f ∈ F : ‖f ∗ − f‖ = ρ and ‖f ∗ − f‖L2 ≤
√
CK,r(ρ,A), . . . ,}. Let

∆̃(ρ,A) = inf
h∈H̃ρ,A

sup
z∗∈Γf∗ (ρ)

z∗(h− f ∗) . (3.12)

A real number ρ > 0 satisfies the A-sparsity equation if ∆̃(ρ,A) ≥ 4ρ/5.

The value of c(A,L) in Definition 3.5 is made explicit in Section 3.9.2. To simplify the presenta-

tion we write c(A,L) as it is an absolute constant depending only on A and L. With this definition

in mind, one can extend the local Bernstein assumption.

Assumption 3.7. There exist a constant A > 0 and ρ∗ such that ρ∗ satisfies the A-sparsity equation

from Definition 3.5 and, for all f ∈ F such that ‖f − f ∗‖2
L2

= CK,r(2ρ
∗, A) and ‖f − f ∗‖ ≤ 2ρ∗,

‖f − f ∗‖2
L2
6 APLf .
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As in Assumption 3.5, the link between ‖f−f ∗‖2
L2

and the excess risk PLf in Assumption 3.7 is

only granted in a L2(µ)-sphere around the oracle f ∗ whose radius is proportional to the rate of con-

vergence of the estimators (see Theorems 3.1 and 3.2). The local Bernstein assumption is somehow

“minimal” since it is only granted on the smallest set of the form F ∩ (f ∗ + 2ρ∗B ∩ r2(γ, 2ρ∗)BL2)

centered in f ∗ that can be proved to contain f̂K,λ (when K is such that
√
CK,r(2ρ∗, A) = r2(γ, 2ρ∗)).

Remark 3.4. As in Remark 3.1 we necessary have
√
CK,r(2ρ∗, A) ≤ AL under Assumption 3.7

and the Lipschitz assumption from Assumption 3.2. This is also this condition which requires a

minimal number of observations to hold out of which we recover the classical conditions such as

N & s log(ep/s) when one wants to reconstruct a s-sparse vector.

We are now in position to state our main result on the statistical performances of the regularized

minmax MOM estimator.

Theorem 3.2. Grant Assumptions 3.2, 3.3, 3.6 and 3.7 for ρ∗ satisfying the A-sparsity equation

from Definition 3.5. Let K ≥ 7|O|/3, γ = 1/(6528L), and define

λ =
5

17A

CK,r(2ρ
∗, A)

ρ∗
.

Then, with probability larger than 1 − 2 exp(−cK), the minmax MOM estimator f̂K,λ defined in

(3.9) satisfies

‖f̂K,λ − f ∗‖ ≤ 2ρ∗, ‖f̂K,λ − f ∗‖2
L2
≤ CK,r(2ρ

∗, A) and PLf̂K,λ ≤
1

A
CK,r(2ρ

∗, A) .

Suppose that K = c(A,L)r2
2(γ, 2ρ∗)N , which is possible as long as |O| ≤ c(A,L)Nr2

2(γ, 2ρ∗).

The L2-estimation bound obtained in Theorem 3.2 is then r2
2(γ, 2ρ∗) and the probability that this

bound holds is 1− exp(−c(A,L)Nr2
2(γ, 2ρ∗)). Up to absolute constants, regularized minmax MOM

estimators achieve the same bounds as RERM with the same probability when the inlier data

satisfy the subgaussian assumption as in the framework of Theorem 3.1. Indeed, in that case, a

straightforward chaining argument shows that the Rademacher complexity from (3.10) is upper

bounded by the Gaussian mean width. The difference with Theorem 3.1 is that the estimator

depends on K. On the other hand, the results from Theorem 3.2 hold in a setting beyond the

subgaussian assumption on F and the data may not be identically distributed and may have been

corrupted by outliers. In Section 3.6.2, we consider an example where rate optimal bounds can

be derived from this general result under weak moment assumptions while still achieving the same

rate as in the sub-gaussian framework. It is also possible to adapt in a data-driven way to the

best K and λ by using a Lepski’s adaptation method such as in (Devroye et al., 2016; Lecué and

Lerasle, 2017, 2019; Chinot et al., 2019b; Chinot, 2019b). This step is now well understood, it

is not reproduced here. Theorem 3.2 is general result in the sense that it allows to handle many

applications where a convex and Lipschitz loss function and a regularization norm are used (some

examples are presented in Section 3.6).
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3.5 Relaxing the Bernstein condition

In this section, we study minmax MOM estimators when the Bernstein assumption 3.7 is relaxed.

The price to pay for this relaxation is that, on one hand, the L2-risk is not controlled and on the

other hand an extra variance term appears in the excess risk PLf̂λK . Nevertheless, under a slightly

stronger local Bernstein’s condition, the extra variance term can be controled and the bounds

from Theorem 3.2 can be recovered. We consider the following assumption which is weaker than

Assumption 3.6 since it does not require that the distribution of the Xi’s, for i ∈ I induce the same

L2 structure as the one of L2(µ).

Assumption 3.8. (Xi, Yi)i∈I are independent and for all i ∈ I, (Xi, Yi) has distribution Pi, Xi has

distribution µi. We assume that, for any i ∈ I, F ⊂ L1(µi) and PiLf = PLf for all f ∈ F .

Since the local Bernstein Assumption 3.7 does not hold, the localization argument has to be

modified. Instead of using the L2-norm to define neighborhoods of f ∗ as in the previous section,

we use the excess loss f ∈ F → PLf as proximity function defining the neighborhoods. The new

fixed point is defined for all γ, ρ > 0 and K ∈ {1, · · · , N}:

r̄(γ, ρ) = inf

{
r > 0 : max

(
E(r, ρ)

γ
,
√
cVK(r, ρ)

)
≤ r2

}
, where (3.13)

E(r, ρ) = sup
J⊂I:|J |≥N/2

E sup
f∈F :PLf≤r2, ‖f−f∗‖≤ρ

∣∣∣∣ 1

|J |
∑
i∈J

σi(f − f ∗)(Xi)

∣∣∣∣ ,
VK(r, ρ) = max

i∈I
sup

f∈F :PLf≤r2, ‖f−f∗‖≤ρ

(√
VarPi(Lf )

)√
K

N
,

and (σi)i∈I are i.i.d. Rademacher random variables independent from (Xi, Yi)i∈I . The value of c

in Equation (3.13) can be found in Section 3.9.3. The main differences between r2(γ, ρ) in (3.10)

and r̄(γ, ρ) in (3.13) are the extra variance VK term and the L2 localization which is replaced by an

”excess of risk” localization. Under the local Bernstein Assumption 3.9 below, this extra variance

term VK(r, ρ) becomes negligible in front of the complexity term E(r, ρ). In that case, the fixed

point r̄(γ, r) matches the r2(γ, ρ) used in Theorem 3.2. As in Section 3.4, the sparsity equation has

to be modified according to this new definition of fixed point.

Definition 3.6. For any ρ > 0, let

H̄ρ = {f ∈ F : ‖f ∗ − f‖ = ρ and PLf ≤ r̄2(γ, ρ), . . . , }. (3.14)

Let

∆̄(ρ) = inf
h∈H̄ρ

sup
z∗∈Γf∗ (ρ)

z∗(h− f ∗) . (3.15)

A real number ρ > 0 satisfies the sparsity equation if ∆̄(ρ) ≥ 4ρ/5.
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We are now in position to state the main result of this section.

Theorem 3.3. Grant Assumptions 3.2, 3.3, 3.8 and assume that |O| ≤ 3N/7. Let ρ∗ satisfying

the sparsity equation from Definition 3.6. Let γ = 1/(3840L) and K ∈
[
7|O|/3, N

]
. Define

λ =
11

40

r̄2(γ, 2ρ∗)

ρ∗

The minmax MOM estimator f̂K,λ defined in (3.9) satisfies, with probability at least 1−2 exp(−cK),

PLf̂K,λ ≤ r̄2(γ, 2ρ∗) and ‖f̂K,λ − f ∗‖ ≤ 2ρ∗ .

In Theorem 3.3, the only stochastic assumption is Assumption 3.8 which says that the inliers

data are independent and define the same excess risk as (X, Y ) over F . In particular, Theorem 3.3

does not assume anything on the outliers (Xi, Yi)i∈O nor on the outputs of the inliers (Yi)i∈I like

in the previous section but it also does not require any other assumption than the existence of all

the considered objects. It follows from Theorem 3.3 that all the difficulty of the problem is now

contained in the computation of the local Rademacher complexities E(r, ρ).

To conclude the section, let us show that Theorem 3.2 can be recovered from Theorem 3.3

under the following local Bernstein assumption which is slightly stronger than the one assumed in

Theorem 3.3.

Assumption 3.9. There exist a constant Ā > 0 and ρ∗ satisfying the sparsity equation from

Definition 3.6 such that, for all f ∈ F , if PLf 6 C̄K,r(ρ
∗, Ā) and ‖f−f ∗‖ ≤ 2ρ∗, then ‖f−f ∗‖2

L2
6

ĀPLf , where

C̄K,r(ρ,A) = max

(
r2

2(γ/A, 2ρ)√
A

, c(A,L)
K

N

)
and γ = 1/(3840L) . (3.16)

Up to constants, C̄K,r is equivalent to CK,r given in Definition 3.5. Assumption 3.9 is a condition

on all functions f ∈ F such that PLf ≤ C̄K,r(ρ
∗, Ā) which is a slightly stronger condition than

being in the L2-sphere as in Assumption 3.7.

Theorem 3.4. Grant Assumptions 3.2, 3.3, 3.6 and assume that |O| ≤ 3N/7. Assume that the

local Bernstein condition Assumption 3.9 holds with ρ∗ satisfying the Ā-sparsity equation from

Definition 3.6. Let γ = 1/(3840L) and K ∈
[
7|O|/3, N

]
. Define

λ =
11

40

r̄2(γ, 2ρ∗)

ρ∗
.

The minmax MOM estimator f̂K,λ defined in (3.9) satisfies, with probability at least 1−2 exp(−cK),

||f̂K,λ − f ∗||2L2
≤ C̄K,r(ρ

∗, Ā), PLf̂K,λ ≤ C̄K,r(ρ
∗, Ā) and ‖f̂K,λ − f ∗‖ ≤ 2ρ∗ .

Theorem 3.4 is proved in Section 3.9.4.

Remark 3.5. Under Assumption 3.9 and a slight modification in the constants, ρ∗ satisfies the

sparsity equation of Definition 3.6 if it verifies the sparsity equation of Definition 3.5.
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3.6 Applications

This section presents some applications of Theorem 3.2 to derive statistical properties of regularized

minmax MOM estimators for various choices of loss functions and regularization norm. To check

the assumptions of the Theorem 3.2, the following routine is applied:

1. Check Assumptions 3.2, 3.3, 3.6.

2. Compute the local rademacher complexity r2(γ, ρ).

3. Solve the sparsity equation from Definition 3.5: find ρ∗ such that ∆(ρ∗, A) ≥ 4ρ∗/5.

4. Check the local Bernstein condition from Assumption 3.7.

In this section, we focus on high dimensional statistical problems with sparsity inducing regular-

ization norms (Bach et al., 2012) such as the `1 norm (Tibshirani, 1996), the SLOPE norm (Bogdan

et al., 2015), the group LASSO norm (Simon et al., 2013). We consider the class of linear functions

F = {
〈
t, ·
〉

: t ∈ Rp} indexed by Rp. We denote by t∗ ∈ Rp the vector such that f ∗(·) =
〈
t∗, ·
〉
. We

consider the logistic loss function for the LASSO and the SLOPE, with data (Xi, Yi)
N
i=1 taking val-

ues in Rp×{−1, 1} and the Huber loss function for the Group LASSO, with data (Xi, Yi)
N
i=1 taking

values in Rp×R. In particular, the results of this section extend results on the logistic LASSO and

logistic SLOPE from (Alquier et al., 2019) and present new results for the Group Lasso.

3.6.1 Preliminary tools and results

In this section, we recall some tools to check the Local Bernstein condition, compute the local

Rademacher complexity and verify the sparsity equation.

Local Bernstein conditions for the logistic and Huber loss functions

In this section, we recall some results from (Chinot et al., 2019b) on the local Bernstein condition

for the logistic and Huber loss functions.

For the logistic loss function (i.e. `f : (x, y) ∈ Rp × {±1} → log(1 + exp(−yf(x)))), we first

introduce the following assumption. Note that we do not use the full strength of the approach since

we check the inequality ‖f − f ∗‖2
L2
6 APLf for all f ∈ F ∩ (f ∗+ rBL2) instead of just all functions

in F ∩ (f ∗ + rSL2 ∩ ρB).

Assumption 3.10. Let ε > 0, there are constants C ′ and c0 > 0 such that

a) for all f in F , ‖f − f ∗‖L2+ε ≤ C ′‖f − f ∗‖L2

b) P(|f ∗(X)| ≤ c0) ≥ 1− 1/(2C ′)(4+2ε)/ε
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Under Assumption 3.10, we check the Bernstein condition on the entire L2-ball of radius r

around f ∗.

Proposition 3.1 ((Chinot et al., 2019b), Theorem 9). Grant Assumption 3.10. Let r > 0. The

local Bernstein condition holds for the logistic loss function: for all f ∈ F if ‖f − f ∗‖L2 6 r then

‖f − f ∗‖2
L2
6 APLf for

A =
exp

(
− c0 − r(2C ′)(2+ε)/ε)

)
2

(
1 + exp

(
c0 + r(2C ′)(2+ε)/ε

))2 .

Note that if r is larger than the order of a constant then A is no longer a constant and the

convergence rates are deteriorated (see the link with Remark 3.1). So that we will assume that

r(2C ′)(2+ε)/ε ≤ c0/2 in order to keep A like an absolute constant. The price to pay for assuming

this latter condition is on the number of observations: we will for instance recover the classical

assumption N & s log(ep/s) for the reconstruction of a s-sparse vector.

For the Huber loss function with parameter δ > 0 (i.e. `f (x, y) = ρδ(y−f(x)) where ρδ(t) = t2/2

if |t| ≤ δ and ρδ(t) = δ|t| − δ2/2 if |t| ≥ δ), we use the following result also borrowed from (Chinot

et al., 2019b). Let us introduce the following assumption.

Assumption 3.11. Let ε > 0 and let FY |X=x be the conditional cumulative function of Y given

X = x.

a) There exists a constant C ′ such that, for all f in F , ‖f − f ∗‖L2+ε ≤ C ′‖f − f ∗‖L2.

b) Let C ′ be the constant defined in a). There exist r > 0 and α > 0 such that, for all x ∈ X
and all z ∈ R satisfying |z − f ∗(x)| ≤ r(

√
2C ′)(2+ε)/ε, FY |X=x(z + δ)− FY |X=x(z − δ) > α.

Note that if r is larger than the order of a constant the point b) can be verified only if δ, the

Lipschitz constant, is large enough and α is small enough. In that case, convergence rates would

be degraded. To avoid this situation we assume that r(
√

2C ′)(2+ε)/ε ≤ c where c is some absolute

constant. In that case, δ and α can be considered like constants. Again the price we pay for that

assumption will be on the number of observations such as the classical one N & s log(ep/s) for the

reconstruction of a s-sparse vector.

Proposition 3.2 ((Chinot et al., 2019b), Theorem 7). Grant Assumption 3.11 for r > 0. The

Huber loss function with parameter δ > 0 satisfies the Bernstein condition: for all f ∈ F , if

‖f − f ∗‖L2
≤ r then (4/α)PLf ≥ ‖f − f ∗‖2

L2
.

Local Rademacher complexities and Gaussian mean widths

The computation of r2(γ, ρ) may be involved, but can sometimes be reduced to the computation of

Gaussian mean widths. A typical result in that direction is the one from (Mendelson, 2017). The

results of (Mendelson, 2017) are based on the concepts of unconditional norm and isotropic random

vectors.
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Definition 3.7. For a given vector x = (xi)
p
i=1, let (x∗i )

p
i=1 be the non-increasing rearrangement of

(|xi|)pi=1. The norm ‖ · ‖ in Rp is said κ-unconditional with respect to the canonical basis (ei)
p
i=1 if,

for every x in Rp and every permutation π of {1, · · · , p},∥∥∥∥∥
p∑
i=1

xiei

∥∥∥∥∥ ≤ κ

∥∥∥∥∥
p∑
i=1

xπ(i)ei

∥∥∥∥∥ ,

and, for any y ∈ Rp such that, for all 1 ≤ i ≤ p, x∗i ≤ y∗i , then∥∥∥∥∥
p∑
i=1

xiei

∥∥∥∥∥ ≤ κ

∥∥∥∥∥
p∑
i=1

yiei

∥∥∥∥∥ .

Typical examples of κ-unconditional norms can be found in (Mendelson, 2017). In the following

we use the fact that the dual norms of the `1 and SLOPE norms are 1-unconditional.

Definition 3.8. A random vector X in Rp is isotropic if E[
〈
t,X

〉2
] = ‖t‖2

2, for all t ∈ Rp, where

‖ · ‖2 is the Euclidean norm in Rp.

Recall the main result of (Mendelson, 2017).

Theorem 3.5. (Mendelson, 2017, Theorem 1.6) Let C0, κ and M be real numbers. Let V ⊂ Rp be

such that supv∈V |
〈
v, ·
〉
| is κ-unconditional with respect to (ei)

p
i=1. Assume that X ∈ Rp is isotropic

and satisfies, for all 1 ≤ j ≤ p and 1 ≤ q ≤ C0 log(p),∥∥〈X, ej〉∥∥Lq ≤M
√
q . (3.17)

Let X1, . . . , XN denote independent copies of X, then there exists a constant c2 depending only on

C0 and M such that

E

{
sup
v∈V

N∑
i=1

σi
〈
Xi, v

〉}
≤ c2κ

√
Nw(V )

where w(V ) is the Gaussian mean width of V .

Recall that a real valued random variable Z is L0-subgaussian if and only if for all q ≥ 1, ‖Z‖Lq ≤
c0L0
√
q, for some absolute constant c0, see Theorem 1.1.5 in (Chafäı et al., 2012). Hence, Theo-

rem 3.5 shows that C0 log(p) “subgaussian” moments for the coordinates of the design X are enough

to upper bound the Rademacher complexity by the Gaussian mean width. Such a result is useful

to show that minmax MOM estimators can achieve the same rate as the ERM (in the subgaussian

framework) even when the data are heavy-tailed data.

Sub-differential of a norm

To solve the sparsity equation – find ρ∗ such that ∆̃(ρ∗, A) ≥ 4ρ∗/5 – from Definition 3.5, we use

the following classical result on the sub-differential of a norm: if ‖·‖ is a norm on Rp, then, for all

t ∈ Rp, we have

(∂ ‖·‖)t =

{
{z∗ ∈ S∗ :

〈
z∗, t

〉
= ‖t‖} if t 6= 0

B∗ if t = 0
. (3.18)
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Here, B∗ is the unit ball of the dual norm associated with ‖·‖, i.e. t ∈ Rp → ‖t‖∗ = sup‖v‖≤1

〈
v, t
〉

and S∗ is its unit sphere. In other words, when t 6= 0, the sub-differential of ‖·‖ in t is the set of all

vectors z∗ in the unit dual sphere S∗ which are norming for t (i.e. z∗ is such that
〈
z∗, t

〉
= ‖t‖). In

particular, when t 6= 0, (∂ ‖·‖)t is a subset of the dual sphere S∗.

In the following, understanding the sub-differentials of the regularization norm is a key point for

solving the sparsity equation. If one is only interested in proving “complexity” dependent bounds

– which are bounds depending on ‖t∗‖ and not on the sparsity of t∗ – then one can simply take

ρ∗ = 20 ‖t∗‖. Actually, in this case, 0 ∈ Γt∗(ρ), so ∆̃(ρ∗, A) = ρ∗ ≥ 4ρ∗/5 (because B∗ = (∂ ‖·‖)0 =

Γt∗(ρ) according to (3.18)). Therefore, understanding the sub-differential of the regularization

norm matters when one wants to derive statistical bounds depending on the dimension of the

low-dimensional structure that contains t∗. This is something expected since a norm has sparsity

inducing power if its sub-differential is a “large” subset of the dual sphere at vectors having the

sparse structure (see, for instance, the construction of atomic norms in (Bhaskar et al., 2013)).

We now have all the necessary tools to derive statistical bounds for many procedures by applying

Theorem 3.2. In each example (given by a convex and Lipschitz loss function and a regularization

norm), we just have to compute the complexity function r2, solve a sparsity equation and check the

local Bernstein condition.

3.6.2 The minmax MOM logistic LASSO procedure

When the dimension p of the problem is large and ‖t∗‖0 = |{i ∈ {1, · · · , p} : t∗i 6= 0}| is small, it is

possible to derive error rate depending on the size of the support of t∗ instead of the dimension p by

using a `1 regularization norm. It leads to the well-known LASSO estimators, see (Tibshirani, 1996;

Bickel et al., 2009). For the logistic loss function, its minmax MOM formulation is the following.

For a given K ∈ {1, . . . , N} and λ > 0, the minmax MOM logistic LASSO procedure is defined by

t̂λ,K ∈ argmin
t∈Rp

sup
t̃∈Rp

(
MOMK

(
`t − `t̃

)
+ λ(‖t‖1 − ‖t̃‖1)

)
,

with the logistic loss function defined as `t(x, y) = log(1 + exp(−y
〈
x, t
〉
)) for all t, x ∈ Rp and

y ∈ {±1}, and with the `1 regularization norm defined for all t ∈ Rp by ‖t‖1 =
∑p

i=1 |ti|.
We first compute the complexity function r2. Theorem 3.5 can be applied to upper bound

the Rademacher complexities from (3.10) in that case because the dual norm of `1-norm (i.e the

`∞-norm) is 1-unconditional with respect to (ei)
p
i=1. Then, if X is an isotropic random vector

satisfying (3.17), Theorem 3.5 holds and

E sup
t∈ρBp1∩rB

p
2

∣∣∣∣∑
j∈J

σj
〈
t,Xj

〉∣∣∣∣ ≤ c(C0,M)
√
|J |w(ρBp

1 ∩ rBp
2) ,

where Bp
1 denote the unit ball of the `1 norm. From (Lecué and Mendelson, 2018, Lemma 5.3), we
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have

w(ρBp
1 ∩ rBp

2) ≤ c

{
r
√
p if r ≤ ρ/

√
p

ρ
√

log(epmin(r2/ρ2, 1)) if r ≥ ρ/
√
p

. (3.19)

Therefore, one can take

r2
2(γ, ρ) = c(γ, C0,M)


p
N

if Nρ2 ≥ c(γ, C0,M)γp2

ρ

√
1
N

log
(
ep2

ρ2N

)
if log p ≤ c(γ, C0,M)Nρ2 ≤ c(γ, C0,M)p2

ρ
√

log p
N

if log p ≥ c(γ, C0,M)Nρ2.

. (3.20)

Let us turn to the local Bernstein assumption. We need to verify Assumption 3.10. Let ε > 0.

If X is an isotropic random vector satisfying (3.17) and C0 log(p) ≥ 2 + ε, where C0 is the constant

appearing in Theorem 3.5, then the point a) of Assumption 3.10 is verified with C ′ = c(M,C0). For

any x ∈ Rp, let us write f ∗(x) =
〈
x, t∗

〉
, where t∗ ∈ Rp. Let us assume that the oracle is such that

P
(
|
〈
X, t∗

〉
| ≤ c0

)
≥ 1− 1

2(C ′)(4+2ε)/ε
. (3.21)

Therefore, if Equation (3.21) holds, the local Bernstein Assumption is verified for a constant A

depending on M,C0 and c0 given in Proposition 3.1 (since the latter formula is rather complicated,

we will keep the notation A all along this section).

Finally, let us turn to a solution to the sparsity equation for the `p1 norm . The result can be

found in (Lecué and Mendelson, 2018).

Lemma 3.1. (Lecué and Mendelson, 2018, Lemma 4.2) . Let us assume that X is isotropic. If the

oracle t∗ can be decomposed as t∗ = v + u with u ∈ (ρ/20)Bp
1 and 100s ≤

(
ρ/
√
CK,r(ρ,A)

)2
then

∆(ρ) ≥ (4/5)ρ, where s = |supp(v)|.

Assume that t∗ is a s-sparse vector, so Lemma 3.1 applies. We consider two cases depend-

ing on the values of K and Nr2
2(γ, ρ∗). When CK,r(ρ

∗, A) = r2
2(γ, ρ∗) – which holds when K ≤

c(c0, C0,M)Nr2
2(γ, ρ∗) – Lemma 3.1 shows that ρ∗ = c(c0,M,C0)s

√
log (ep/s)/N satisfies the spar-

sity equation. For these values, the value of r2 given in (3.20) yields

r2
2(γ, ρ∗) = c(c0,M,C0, γ)

s log(ep/s)

N
.

Now, if CK,r(ρ,A) = c(A,L)K/N – which holds when K ≥ c(c0, C0,M)Nr2
2(γ, ρ∗)– we can take

ρ∗ = c(c0,M,C0)
√
sK/N . Therefore, Theorem 3.2 applies with

ρ∗ = c(c0,M,C0) max(s
√

log (ep/s)/N,
√
sK/N) .

Finally from Remark 3.1, note that is necessary to have N ≥ c log(ep/s), where c > 0 is an absolute

constant in order to have A like a constant in Proposition 3.1.
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Theorem 3.6. Let ε > 0 and (X, Y ) be a random variable taking values in Rp×{±1}, where X is

an isotropic random vector such that for all 1 ≤ j ≤ p and 1 ≤ q ≤ C0 log(p),
∥∥〈X, ej〉∥∥Lq ≤M

√
q

with C0 log(p) ≥ 2 + ε. Let f ∗ : x ∈ Rp 7→
〈
x, t∗

〉
be the oracle where t∗ ∈ Rp is s-sparse.

Assume also that the oracle satisfies (3.21). Assume that (X, Y ), (Xi, Yi)i∈I are i.i.d distributed

and N ≥ cs log(ep/s). Let K ≥ 7|O|/3. With probability larger than 1− 2 exp(−cK), the minmax

MOM logistic LASSO estimator t̂λ,K with

λ = c(c0,M,C0) max

(√
log(ep/s)

N
,

√
K

sN

)
satisfies

‖t̂λ,K − t∗‖1 ≤ c(c0,M,C0) max

(
s

√
log(ep/s)

N
,
√
s

√
K

N

)
,

‖t̂λ,K − t∗‖2
2 ≤ c(c0,M,C0) max

(
K

N
, s

log(ep/s)

N

)
,

PLf̂λ,K ≤ c(c0,M,C0) max

(
K

N
, s

log(ep/s)

N

)
.

For K ≤ c(c0,M,C0)s log(ep/s), the upper bound on the estimation risk and excess risk matches

the minimax rates of convergence for s-sparse vectors in Rp. It is also possible to adapt in a data-

driven way to the best K and λ by using a Lepski’s adaptation method such as in (Devroye et al.,

2016; Lecué and Lerasle, 2017, 2019; Chinot et al., 2019b; Chinot, 2019b). This step is now well

understood, it is not reproduced here.

3.6.3 The minmax MOM logistic SLOPE

In this section, we study the minmax MOM estimator with the logistic loss function and the SLOPE

regularization norm. Given β1 ≥ β2 ≥ · · · ≥ βp > 0, the SLOPE norm (see (Bogdan et al., 2015))

is defined for all t ∈ Rp by

‖t‖SLOPE =

p∑
i=1

βit
∗
i ,

where (t∗i )
p
i=1 denotes the non-increasing re-arrangement of (|ti|)pi=1. The SLOPE norm coincides

with the `1 norm when βj = 1 for all j = 1, · · · , p.
Given K ∈ {1, . . . , N} and λ > 0, the minmax MOM logistic SLOPE procedure is

t̂λ,K ∈ argmin
t∈Rp

sup
t̃∈Rp

(
MOMK

(
`t − `t̃

)
+ λ(‖t‖SLOPE − ‖t̃‖SLOPE)

)
, (3.22)

where `t : (x, y) ∈ Rp × {−1, 1} = log(1 + exp(−y
〈
x, t
〉
)) for all t ∈ Rp.

Let us first compute the complexity function r2. If V ⊂ Rp is closed under permutations and

reflections (sign-changes)– which is the case for Bp
SLOPE, the unit ball of the SLOPE norm – then

supv∈V |
〈
·, v
〉
| is 1-unconditional. Therefore, the dual norm of ‖ · ‖SLOPE is 1-unconditional and
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Theorem 3.5 applies provided that X is isotropic and verifies (3.17). By (Lecué and Mendelson,

2018, Lemma 5.3), we have

E sup
t∈ρBpSLOPE∩rB

p
2

∣∣∣∣∑
i∈J

σi
〈
Xi, t

〉∣∣∣∣ ≤ c(C0,M)
√
|J |w(ρBp

SLOPE ∩ rBp
2)

≤ c(C0,M)
√
|J |
{
r
√
p if r ≤ ρ/

√
p

ρ if r ≥ ρ/
√
p

(3.23)

It follows that

r2
2(γ, ρ) = c(C0, γ,M)

{
p
N

if p ≤ c(C0, γ,M)ρ
√
N

ρ√
N

if p ≥ c(C0, γ,M)ρ
√
N.

Let us turn to the local Bernstein Assumption. Since the loss function is the same as the one

used in Section 3.6.2, the local Bernstein assumption holds if there exists c0 > 0 such that

P
(
|
〈
X, t∗

〉
| ≤ c0

)
≥ 1− 1

2(C ′)(2+2ε)/ε
(3.24)

where C ′ = c(M,C0) is a function of M and C0 only. The constant A in the Bernstein condition

depends on c0, C0 and M . As for the LASSO, since the formula of A is complicated (given in

Proposition 3.1), we write A all along this section but we assume that r2(γ, ρ∗)(2C ′)(2+ε)/ε ≤ c0/2

so that A can be considered like an absolute constant (depending only on c0). This condition is

equivalent to assuming N & s log(ep/s).

A solution to the sparsity equation relative to the SLOPE norm can be found in (Lecué and

Mendelson, 2018). We recall this result here.

Lemma 3.2. (Lecué and Mendelson, 2018, Lemma 4.3) Let 1 ≤ s ≤ p and set Bs =
∑

i≤s βi/
√
i.

If t∗ can be decomposed as t∗ = u + v with u ∈ (ρ/20)Bp
SLOPE and v is s-sparse and if 40Bs ≤

ρ/
√
CK,r(ρ,A) then ∆(ρ) ≥ 4ρ/5.

Assume that t∗ is exactly s-sparse, so that Lemma 3.2 applies. We consider two cases depending

on K. Consider the case where K ≤ c(c0, C0,M)Nr2
2(γ, ρ∗), so

√
CK,r(ρ∗, A) = r2(γ, ρ∗). For

βj = c
√

log(ep/j), one may show that Bs = c
√
s log(ep/s) (see (Bellec et al., 2018; Lecué and

Mendelson, 2018)). From (3.23) and Lemma 3.2, it follows that we can choose

ρ∗ = c(c0,M,C0)s
log(ep/s)√

N
and thus r2

2(γ, ρ∗) = c(c0,M,C0)
s log(ep/s)

N
. (3.25)

For CK,r(ρ,A) = c(c0,M,C0)K/N holding whenK ≥ c(c0, C0,M)Nr2
2(γ, ρ∗), we take ρ∗ = c(c0, C0,M)

√
sK/N

satisfying the sparsity equation. We can therefore apply Theorem 3.2 for

ρ∗ = c(c0,M,C0) max(s
√

log (ep/s)/N,
√
sK/
√
N) .

Theorem 3.7. Let ε > 0 and (X, Y ) be random variable with values in Rp × {±1} such that X is

an isotropic random vector such that for all 1 ≤ j ≤ p and 1 ≤ q ≤ C0 log(p),
∥∥〈X, ej〉∥∥Lq ≤M

√
q
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with C0 log(p) ≥ 2 + ε. Let f ∗ : x ∈ Rp 7→
〈
x, t∗

〉
be the oracle where t∗ ∈ Rp is s-sparse.

Assume also that the oracle satisfies (3.21). Assume that (X, Y ), (Xi, Yi)i∈I are i.i.d and N ≥
cs log(ep/s). Let K ≥ 7|O|/3. Let t̂λ,K be the minmax MOM logistic Slope procedure introduced

in (3.22) for the choice of weights βj =
√

log(ep/j), j = 1, . . . , p and regularization parameter

λ = c(c0,M,C0) max(1/
√
N,
√
K/(sN)). With probability larger than 1− 2 exp(−cK),

‖t̂λ,K − t∗‖SLOPE ≤ c(c0,M,C0) max

(
s

√
log(ep/s)

N
,
√
s

√
K

N

)
,

‖t̂λ,K − t∗‖2
2 ≤ c(c0,M,C0) max

(
K

N
, s

log(ep/s)

N

)
,

PLt̂λ,K ≤ c(c0,M,C0) max

(
K

N
, s

log(ep/s)

N

)
.

For K ≤ c(c0,M,C0)s log(ep/s)/N , the parameter λ is independent from the unknown sparsity

s and these bounds match the minimax rates of convergence over the class of s-sparse vectors in

Rp without any restriction on s (Bellec et al., 2018). Ultimately, one can use a Lepski’s adaptation

method to chose in a data-driven way the number of blocks K as in (Lecué and Lerasle, 2019) to

achieve these optimal rates without prior knowledge on the sparsity s.

3.6.4 The minmax MOM Huber Group-Lasso

In this section, we consider regression problems where Y = R. We consider group sparsity as notion

of low-dimensionality for t∗. This setup is particularly useful when features (i.e. coordinates of X)

are organized by blocks, as when one constructs dummy variables from a categorical variable.

The regularization norm used to induce this type of “structured sparsity” is called the Group

LASSO (see, for example (Yang and Zou, 2015) and (Meier et al., 2008)). It is built as follows: let

G1, · · · , GM be a partition of {1, · · · , p} and define, for any t ∈ Rp

‖t‖GL =
M∑
k=1

‖tGk‖2 . (3.26)

Here, for all k = 1, . . . ,M , tGk denotes the orthogonal projection of t onto the linear Span(ei, i ∈ Gk)

– (e1, . . . , ep) being the canonical basis of Rp.

The estimator we consider is the minmax MOM Huber Group-LASSO defined, for all K ∈
{1, · · · , N} and λ > 0, by

t̂λ,K ∈ argmin
t∈Rp

sup
t̃∈Rp

(
MOMK

(
`t − `t̃

)
+ λ(‖t‖GL − ‖t̃‖GL)

)
,

where t ∈ Rp → `t is the Huber loss function with parameter δ > 0 defined as

`t(Xi, Yi) =

1
2
(Yi −

〈
Xi, t

〉
)2 if |Yi −

〈
Xi, t

〉
| ≤ δ

δ|Yi −
〈
Xi, t

〉
| − δ2

2
if |Yi −

〈
Xi, t

〉
| > δ

.
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In particular, it is a Lipschitz loss function with L = δ. Estimation bounds and oracle inequalities

satisfied by t̂λ,K follow from Theorem 3.2 as long as we can compute the complexity function r2, we

verify the local Bernstein Assumption and we find a radius ρ∗ satisfying the sparsity equation. We

now handle these problems starting with the computation of the complexity function r2.

The dual norm of ‖ · ‖GL is z ∈ Rp → ‖z‖∗GL = max1≤k≤M ‖zGk‖2, it is not κ-unconditional with

respect to the canonical basis (ei)
p
i=1 of Rp for some absolute constant κ, so Theorem 3.5 does not

apply directly. Therefore, in order to avoid long and technical materials on the rearrangement of

empirical means under weak moment assumptions for the computation of the local Rademacher

complexity from (3.10), we simply assume that the design vectors (Xi)i∈I are L0-subgaussian and

isotropic: for all i ∈ I, all t ∈ Rp and all q ≥ 1∥∥〈Xi, t
〉∥∥

Lq
≤ L0

√
q
∥∥〈Xi, t

〉∥∥
L2

and
∥∥〈Xi, t

〉∥∥
L2

= ‖t‖2 . (3.27)

In that case, a direct chaining argument allows to bound Rademacher processes by the Gaussian

processes (see (Talagrand, 2014) for chaining methods):

E sup
t∈ρBpGL∩rB

p
2

∣∣∣∣∑
j∈J

σj
〈
t,Xj

〉∣∣∣∣ ≤ c(L0)
√
Jw(ρBp

GL ∩ rBp
2) .

Here, Bp
GL is the unit ball of ‖ · ‖GL, w(ρBp

GL∩ rBp
2) is the Gaussian mean width of the interpolated

body ρBp
GL ∩ rBp

2 . It follows from the proof of Proposition 6.7 in (Bellec et al., 2017) that when

the M groups G1, . . . , GM are all of same size p/M we have

w(ρBp
GL ∩ rBp

2) ≤

 cρ

√
p
M

+ log
(
Mr2

ρ2

)
if 0 < ρ ≤ r

√
M

cr
√
p if ρ ≥ r

√
M

.

This yields

r2
2(γ, ρ) = c(δ, L0, γ)


ρ√
N

√
p
M

+ log
(
Mr2

ρ2

)
if 0 < c(δ, L0, γ)ρ

r
≤
√
M

r√
N

√
p if c(δ, L0, γ)ρ

r
≥
√
M

. (3.28)

Let us now turn to the local Bernstein Assumption. We need to verify Assumption 3.11. As we

assumed that the design vectors (Xi)i∈I are isotropic and L0-subgaussian, it is clear that the point

a) in Assumption 3.11 holds with C ′ = L0. Let us take ε = 2 (another choice would only change

the constant). For the point b), we assume that there exists α > 0 such that, for all x ∈ X and all

z ∈ R satisfying |z − f ∗(x)| ≤ 2L2
0

√
CK,r(ρ, 4/α), FY |X=x(z + δ)− FY |X=x(z − δ) > α. Under these

conditons, the local Bernstein Assumption is verified for A = 4/α according to Proposition 3.2. We

will assume that CK,r(ρ
∗, 4/α) ≤ c for some absolute constant c so that δ and α can be taken like

absolute constant. Condition “CK,r(ρ
∗, 4/α) ≤ c” is satisfied when N & cs log(ep/s).

Finally, we turn to the sparsity equation. The following lemma is an extension of Lemma 3.1 to

the Group Lasso norm.
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Lemma 3.3. Assume that X is isotropic. Assume that t∗ = u + v where ‖u‖GL ≤ ρ/20 and v is

group-sparse i.e vGk = 0 for all k /∈ I for some I ⊂ {1, . . . ,M}. If 100|I| ≤ (ρ/
√
CK,r(ρ, 4/α))2,

then ∆(ρ) ≥ 4ρ/5.

Proof. Let us define r(ρ) :=
√
CK,r(ρ, 4/α) and recall that

∆̃(ρ, 4/α) = inf
w∈ρSGL∩r(ρ)Bp2

sup
z∗∈Γt∗ (ρ)

〈
z∗, w

〉
.

Here, SGL is the unit sphere of ‖·‖GL and Γt∗(ρ) is the union of all sub-differentials (∂ ‖·‖GL)v for

all v ∈ t∗ + (ρ/20)Bp
GL. We want to find a condition on ρ > 0 insuring that ∆̃(ρ, 4/α) ≥ 4ρ/5.

Let w be a vector in Rp such that ‖w‖GL = ρ and ‖w‖2 ≤ r(ρ). We construct z∗ ∈ Rp such that

z∗Gk = wGk/ ‖wGk‖2 if k /∈ I (so that
〈
z∗Gk , wGk

〉
= ‖wGk‖2 for all k /∈ I) and z∗Gk = vGk/ ‖vGk‖2 if

k ∈ I (so that
〈
zGk , vGk

〉
= ‖vGk‖2 for all k ∈ I). We have

∥∥z∗Gk∥∥2
= 1 for all k ∈ [M ], so ‖z∗‖∗GL = 1

(i.e. z∗ is in the dual sphere of ‖·‖GL) and
〈
z∗, v

〉
= ‖v‖GL (i.e. z∗ is norming for v). Therefore, it

follows from (3.18) that z∗ ∈ (∂ ‖·‖GL)v. Moreover, ‖u‖GL ≤ ρ/20 hence v ∈ t∗+ (ρ/20)Bp
GL and so

z∗ ∈ Γt∗(ρ). Furthermore, for this choice of sub-gradient z∗, we have〈
z∗, w

〉
=
∑
k∈I

〈
z∗Gk , wGk

〉
+
∑
k/∈I

〈
z∗Gk , wGk

〉
≥ −

∑
k∈I

‖wGk‖2 +
∑
k/∈I

‖wGk‖2

=
M∑
k=1

‖wGk‖2 − 2
∑
k∈I

‖wGk‖2 ≥ ρ− 2
√
|I|r(ρ) .

In the last inequality, we used that ‖w‖GL = ρ and that

∑
k∈I

‖wGk‖2 ≤
√
|I|
√∑

k∈I

‖wGk‖2
2 ≤

√
|I| ‖w‖2 ≤

√
|I|r(ρ).

Then
〈
z∗, w

〉
≥ 4ρ/5 when ρ−2

√
|I|r(ρ) ≥ 4ρ/5 which happens to be true when 100|I| ≤ (ρ/r(ρ))2.

Assume that t∗ is exactly s-group sparse, so Lemma 3.3 applies. We consider two cases depending

on the value of K. When K ≤ c(L0, α, δ)Nr
2
2(γ, ρ∗),

√
CK,r(ρ∗, 4/α) = r2(γ, ρ∗). By Lemma 3.3

and (3.28), it follows that (for equal size blocks), one can choose

ρ∗ = c(L0, α, δ)
s√
N

√
p

M
+ logM and thus r2(γ, ρ∗) = c(L0, α, δ)

s

N

(
p

M
+ logM

)
. (3.29)

This result has a similar flavor as the one for the Lasso. The term s′ = sp/M equals block sparsity

× size of each blocks, i.e to the total number of non-zero coordinates in t∗: s′ = ‖t∗‖0. Replacing

the sparsity s′ by sp/M in Theorem 3.6, we would have obtained ρ∗ = c(L0, α, δ)(sp/M)
√

log(p)/N

which is larger than the bound obtained for the Group Lasso in Equation (3.29). It is therefore better

to induce the sparsity by blocks instead of just coordinate-wise when we are aware of such block-

structured sparsity. In the other case, when K ≤ c(L0, α, δ)Nr
2
2(γ, ρ∗), we have

√
CK,r(ρ∗, 4/α) =
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c(L0, α, δ)
√
K/N and so one can take ρ∗ = c(L0, α, δ)

√
sK/N . We can therefore apply Theorem 3.2

with

ρ∗ = c(L0, α, δ) max

(
s√
N

√
p

M
+ log(M),

√
s

√
K

N

)
.

Theorem 3.8. Let (X, Y ) be a random variables with values in Rp×R such that Y ∈ L1 and X is

an isotropic and L0-subgaussian random vector in Rp. Assume that (X, Y ), (Xi, Yi)i∈I are i.i.d. Let

f ∗(·) =
〈
t∗, ·
〉

for some t∗ ∈ Rp which is s-group sparse with respect to equal-size groups (Gk)
M
k=1. Let

K ≥ 7|O|/3 and N ≥ cs(p/M + log(M)). Assume that there exists α > 0 such that, for all x ∈ Rp

and all z ∈ R satisfying |z −
〈
t∗, x

〉
| ≤ 2L2

0

√
CK,r(2ρ∗, 4/α), FY |X=x(δ + z) − FY |X=x(z − δ) ≥ α

(where FY |X=x is the cumulative ditribution function of Y given X = x). With probability larger

than 1− 2 exp(−cK), the MOM Huber group-LASSO estimator t̂λ,K for

λ = c(L0, α, δ) max

(
1√
N

√
p

M
+ logM,

√
K

sN

)
satisfies

‖t̂λ,K − t∗‖GL ≤ c(L0, α, δ) max

(
s√
N

√
p

M
+ log(M),

√
s

√
K

N

)
,

‖t̂λ,K − t∗‖2
2 ≤ c(L0, α, δ) max

(
s

N

( p
M

+ log(M)
)
,
K

N

)
,

PLt̂λ,K ≤ c(L0, α, δ) max

(
s

N

( p
M

+ log(M)
)
,
K

N

)
.

For K ≤ c(L0, α, δ)s(p/M + logM), the regularization parameter λ is independent from the

unknown group sparsity s (the choice of K can be done in data-driven way using either a Lepski

method or a MOM cross validation as in (Lecué and Lerasle, 2019)). In the ideal i.i.d. setup (with no

outliers), the same result holds for the RERM as we assumed that the class F−f ∗ is L0-subgaussian

and for the choice of regularization parameter λ = c(L0, α, δ)(
√
p/(NM) +

√
log(M)/N). The

minmax MOM estimator has the advantage to be robust up to c(L0, α, δ)s(p/M + logM) outliers

in the dataset.

3.7 Simulations

This section provides a simulation study to illustrate our theoretical findings. Minmax MOM

estimators are approximated using an alternating proximal block gradient descent/ascent with a

wisely chosen block of data as in (Lecué and Lerasle, 2019). At each iteration, the block on which

the descent/ascent is performed is chosen according to its “centrality” (see algorithm 2 below).

Two examples from high-dimensional statistics are considered 1) Logistic classification with a `1

penalization and 2) Huber regression with a Group-Lasso penalization.
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3.7.1 Presentation of the algorithm

Let X = Rp and let F = {
〈
t, ·
〉
, t ∈ Rp}. The oracle f ∗ = argminf∈F P`f (X, Y ) is such that

f ∗(·) =
〈
t∗, ·
〉

for some t∗ ∈ Rp. The minmax MOM estimator is defined as

t̂λ,K ∈ argmin
t∈Rp

sup
t̃∈Rp

MOMK(`t − `t̃) + λ(‖t‖ − ‖t̃‖) (3.30)

where ` is a convex and Lipschitz loss function and ‖ · ‖ is a norm in Rp.

Following the idea of (Lecué and Lerasle, 2019), the minmax problem (3.30) is approximated by

a proximal block gradient ascent-descent algorithm, see Algorithm 2. At each step, one considers

the block of data realizing the median and perform an ascent/descent step onto this block. The

regularization step is obtained via the proximal operator

proxλ‖·‖ : x ∈ Rp → argmin
y∈Rp

{
1

2
‖x− y‖2

2 + λ‖y‖
}
.

Algorithm 2: Proximal Descent-Ascent gradient method with median blocks

Input: A number of blocks K, initial points t0 and t̃0 in Rp, two sequences of step sizes (ηt)t

and (η̃t)t and T a number of epochs

Output: An approximating solution of the minimax problem (3.30)

1 for i = 1, · · · , T do

2 Construct a random equipartition B1 t · · · tBK of {1, · · · , N}
3 Find k ∈ [K] such that MOMK(`ti − `t̃i) = PBk(`ti − `t̃i)
4 Update:

5 ti+1 = proxλ‖·‖
(
ti − ηi∇t(t→ PBk`t)|t=ti

)
6 t̃i+1 = proxλ‖·‖

(
t̃i − η̃i∇t̃(t̃→ PBk`t̃)|t̃=t̃i

)
7 end

To make the presentation simple in Algorithm 2, we have not perform any line search or any so-

phisticated stopping rule (see, (Lecué and Lerasle, 2019) for more involved line search and stopping

rules in the setup of minmax MOM algorithms). To compare the statistical and robustness perfor-

mances of the minmax MOM and RERM, we perform a proximal gradient descent to approximate

the RERM, see Algorithm 3 below.

The number of blocks K is chosen by MOM cross-validation (see (Lecué and Lerasle, 2019) for more

precision on that procedure). The sequences of stepsizes are constant along the algorithm (ηt)t := η

and (η̃t)t = η̃ and are also chosen by MOM cross-validation.
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Algorithm 3: Proximal gradient descent algorithm

Input: Initial points t0 in Rp and a sequence of stepsizes (ηt)t

Output: Approximating solution to the RERM estimator.

1 for i = 1, · · · , T do

2 ti+1 = proxλ‖·‖
(
ti − ηi∇t(t→ PN`t)|t=ti

)
3 end

3.7.2 Organisation of the results

In all simulations, the links between inputs and outputs are given in the regression and classification

problems in Rp respectively by the following model:

in regression: Y =
〈
X, t∗

〉
+ ζ; in classification: Y = sign

(〈
X, t∗

〉
+ ζ
)

(3.31)

where the distribution of X and ζ depend on the considered framework:

• First framework: X is a standard Gaussian random vector in Rp and ζ is a real-valued

standard Gaussian variable independent of X with variance σ2.

• Second framework: X is a standard Gaussian random vector in Rp and ζ ∼ T (2) (student

distribution with 2 degrees of freedom). This framework is used to verify the robustness w.r.t

the noise.

• Third framework: X = (x1, · · · , xp) with x1, . . . , xp
i.i.d.∼ T (2) and ζ is a real-valued standard

Gaussian variable independent of X with variance σ2. Here we want to test the robustness

w.r.t heavy-tailed design (Xi)i.

• Fourth framework: X = (x1, · · · , xp) with x1, . . . , xp
i.i.d.∼ T (2) and ζ ∼ T (2). We also

corrupt the database with |O| outliers which are such that for all i ∈ O, Xi = (105)pi=1 and

Y = 1. Here we verify the robustness w.r.t possible outliers in the dataset.

In a both first and second frameworks, the RERM and minmax MOM estimators are expected to

perform well according to Theorem 3.1 and Theorem 3.2 even though the noise ζ can be heavy-tailed.

In the third framework, the design vector X is no longer subgaussian, as a consequence Theorem 3.1

does not apply and we have no guarantee for the RERM. On the contrary, Theorem 3.2 provides

statistical guarantees for the minmax MOM estimators. Nevertheless, it should also be noticed that

the study of RERM under moment assumptions on the design can also be performed, see for instance

(Lecué and Mendelson, 2017). In that case, the rates of convergence are still the same but the

deviation is only polynomial whereas it is exponential for the minmax MOM estimators. Therefore,

in the third example, we may expect similar performance for both estimators but with a larger

variance in the results for the RERM. In the fourth framework, the database has been corrupted

by outliers (in both outputs Yi and inputs Xi); in that case, only minmax MOM estimators are

expected to perform well as long as |O| is not too large compare with K, the number of blocks.
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3.7.3 Sparse Logistic regression

Let ` denote the Logistic loss (i.e. t ∈ Rp → `t(x, y) = log(1 + exp(−y
〈
x, t
〉
)),∀x ∈ Rp, y ∈ Y =

{±1}), and let the `1 norm in Rp be the regularization norm. Figure 3.1 presents the results of our

simulations for N = 1000, p = 400 and s = 30. In subfigures (a), (b) and (c) the error is the L2

error, which is here
∥∥t̂TK,λ − t∗∥∥2

, between the output t̂TK,λ of the algorithm and the true t∗ ∈ Rp.

In subfigure (d), an increasing number of outliers is added. The error rate is the proportion of

misclassification on a test dataset. The stepsizes, the number of block and the parameteter of

regularization are all chosen by MOM cross-validation (see (Lecué and Lerasle, 2019) for more

details on the MOM cross-validation procedure) Subfigure (a) shows convergence of the error for

both algorithms in the first framework. Similar performances are observed for both algorithms but

Algorithm 2 converges faster than Algorithm 3. It may be because the computation of the gradient

on a smaller batch of data in step 5 and 6 of Algorithm 2 is faster than the one on the entire

database in step 2 of Algorithm 3 and that the choice of the median blocks at each descent/ascent

step is particularly good in Algorithm 2. Subfigure (b) shows the results in the second framework.

The convergence for the alternating gradient ascent/descent algorithm is a bit faster than the one

from Algorithm 3, but the performances are the same. Subfigure (c) shows results in the third setup

where ζ is Gaussian and the feature vector X = (x1, · · · , xp) is heavy-tailed, i.e. x1, . . . , xp are i.i.d.

with x1 ∼ T (2) – a Student with degree 2. Minmax MOM estimators perform better than RERM.

It highlights the fact that minmax MOM estimators have optimal subgaussian performance even

without the sub-gaussian assumption on the design while RERM are expected to have downgraded

statistical properties in heavy-tailed scenariis. Subfigure (d) shows result in the fourth setup where

an increasing number of outliers is added in the dataset. Outliers are X = (105)p1 and Yi = 1

a.s.. While RERM has deteriorated performance just after one outliers was added to the dataset,

minmax MOM estimators maintains good performances up to 10% of outliers.

3.7.4 Huber regression with a Group Lasso penalty

Let ` denote the Huber loss function t ∈ Rd → `t(x, y) = (y −
〈
x, t
〉
)2/2 if |y −

〈
x, t
〉
| ≤ δ

and `t(x, y) = δ|y −
〈
x, t
〉
| − δ2/2 other wise for all x ∈ Rp and y ∈ Y = R. Let G1, · · · , GM

be a partition of {1, · · · , p}, ‖t‖ = ‖t‖GL =
∑M

k=1 ‖tGk‖2. Figure 3.1 presents the results of our

simulation for N = 1000, p = 400 for 30 blocks with a block-sparsity parameter s = 5. In subfigures

(a), (b) and (c), the error is the L2-error between the output of the algorithm and the oracle t∗ –

which corresponds here to a `p2 estimation error, given that the design in all cases is isotropic. In

subfigure (d) the prediction error on a (non-corrupted) test set of both the RERM and the minmax

MOM estimators are depicted.

The conclusion are the same as for the Lasso Logistic regression: Algorithm 2 (regularized

minmax MOM) has better performances than algorithm 3 (RERM) in case of heavy-tailed inliers

and when outliers pollute the dataset while both are robust w.r.t heavy-tailed noise.
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(a) Gaussian design and Gaus-

sian noise.

(b) Heavy-tailed noise ζ (Stu-

dent distribution of order 2) and

standard Gaussian design.

(c) Gaussian noise and heavy-

tailed design (Student distribu-

tion of order 2).

(d) Student of order 2 design and noise corrupted by outliers.

Figure 3.1: `2 estimation error rates of RERM and minmax MOM proximal descent algorithms (for

the logistic loss and the `1 regularization norm) versus time in (a), (b) and (c) and versus number

of outliers in (d) in the classification model (3.31) for N = 1000, p = 400 and s = 30.

3.8 Conclusion

We obtain estimation and prediction results for RERM and regularized minmax MOM estimators for

any Lipschitz and convex loss functions and for any regularization norm. When the norm has some

sparsity inducing properties the statistical bounds depend on the dimension of the low-dimensional

structure where the oracle belongs. We develop a systematic way to analyze both estimators by

identifying three key idea 1) the local complexity function r2 2) the sparsity equation 3) the local

Bernstein condition. All these quantities and condition depend only on the structure and complexity

of a local set around the oracle. This local set is ultimately proved to be the smallest set containing
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(a) Simulations from

model (3.31) with standard

Gaussian design and Gaussian

noise

(b) Simulation with heavy-

tailed noise ζ and standard

Gaussian design

(c) Simulations with Gaussian

noise heavy tailed design (Stu-

dent distribution)

(d) Error of prediction in function of the number of outliers in the dataset

Figure 3.2: Results for the Huber regression with Group-Lasso penalization

our estimators. We show the versatility of our main meta-theorems on several applications covering

two different loss functions and four sparsity inducing regularization norms. Some of them inducing

highly structured sparsity concept such as the Group Lasso norm.

On top of these results, we show that the minmax MOM approach is robust to outliers and to

heavy-tailed data and that the computation of the key objects such as the complexity functions r2

and a radius ρ∗ satisfying the sparsity equation can be done in this corrupted heavy-tailed scenario.

Moreover, we show in a simulation section that they can be computed by a simple modification of

existing proximal gradient descent algorithms by simply adding a selection step of the central block

of data in these algorithms. The resulting algorithms are robust to heavy-tailed data and to few

outliers (in both input and output variables) for the examples in Section 3.7.
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3.9 Proof main theorems

3.9.1 Proof Theorem 3.1

All along this section we will write r(ρ) for r(A, ρ). Let θ = 1/(3A). The proof is divided into two

parts. First, we identify an event where the RERM f̂ := f̂RERMλ is controlled. Then, we prove that

this event holds with large probability. Let ρ∗ satisfying the A-sparsity Equation from Definition 3.4

and let B = ρ∗B ∩ r(ρ∗)BL2 and consider

Ω :=
{
∀f ∈ F ∩ (f ∗ + B),

∣∣(P − PN)Lf
∣∣ ≤ θr2(ρ∗)

}
.

Proposition 3.3. Let λ be as in (3.6) and let ρ∗ satisfy the A- sparsity from Definition 3.4. On

Ω, one has

‖f̂ − f ∗‖ ≤ ρ∗, ‖f̂ − f ∗‖L2 ≤ r(ρ∗) and PLf̂ ≤ A−1r2(ρ∗) .

Proof. Prove first that f̂ ∈ f ∗ + B. Recall that

∀f ∈ F, Lλf = Lf + λ(‖f‖ − ‖f ∗‖) .

Since f̂ satisfies PNLλf̂ 6 0, it is sufficient to prove that PNLλf > 0 for all f ∈ F\(f ∗ + B) to get

the result. The proof relies on the following homogeneity argument. If PNLf0 > 0 on the border of

f ∗ + B, then PNLf > 0 for all f ∈ F \ {f ∗ + B}.
Let f ∈ F \ {f ∗ + B}. By convexity of {f ∗ + B} ∩ F , there exists f0 ∈ F and α > 1 such that

f − f ∗ = α(f0 − f ∗) and f0 ∈ ∂(f ∗ + B) where ∂(f ∗ + B) denotes the border of f ∗ + B.

f ∗ ρ∗B

r(ρ∗)BL2

ρ∗B ∩ r(ρ∗)BL2

f

f0

Figure 3.3: Construction of f0.

For all i ∈ {1, · · · , N}, let ψi : R→ R be the random function defined for all u ∈ R by

ψi(u) = `(u+ f ∗(Xi), Yi)− `(f ∗(Xi), Yi) . (3.32)
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By construction, for any i, ψi(0) = 0 and ψi is convex because ` is. Hence, αψi(u) ≤ ψi(αu) for all

u ∈ R and α ≥ 1. In addition, ψi(f(Xi)− f ∗(Xi)) = `(f(Xi), Yi)− `(f ∗(Xi), Yi). Therefore,

PNLf =
1

N

N∑
i=1

ψi
(
f(Xi)− f ∗(Xi)

)
=

1

N

N∑
i=1

ψi
(
α(f0(Xi)− f ∗(Xi))

)
≥ α

N

N∑
i=1

ψi(f0(Xi)− f ∗(Xi)) = αPNLf0 . (3.33)

For the regularization term, by the triangular inequality,

‖f‖ − ‖f ∗‖ = ‖f ∗ + α(f0 − f ∗)‖ − ‖f ∗‖ ≥ α(‖f0‖ − ‖f ∗‖) .

From the latter inequality, together with (3.33), it follows that

PNLλf ≥ αPNLλf0
. (3.34)

As a consequence, if PNLλf0
> 0 for all f0 ∈ F ∩ ∂(f ∗ + B) then PNLλf > 0 for all f ∈ F\(f ∗ + B).

In the remaining of the proof, assume that Ω holds and let f0 ∈ F∩∂(f ∗+B). As f0 ∈ F∩(f ∗+B),

on Ω,

|(P − PN)Lf0| ≤ θr2(ρ∗) . (3.35)

By definition of B, as f0 ∈ ∂(f ∗ + B), either: 1) ‖f0 − f ∗‖ = ρ∗ and ‖f0 − f ∗‖L2
≤ r(ρ∗) so

α = ‖f − f ∗‖ /ρ∗ or 2) ‖f0 − f ∗‖L2
= r(ρ∗) and ‖f0 − f ∗‖ ≤ ρ∗ so α = ‖f − f ∗‖L2

/r(ρ∗). We treat

these cases independently.

Assume first that ‖f0 − f ∗‖ = ρ∗ and ‖f0 − f ∗‖L2
≤ r(ρ∗). Let v ∈ E be such that ‖f ∗ − v‖ ≤

ρ∗/20 and g ∈ ∂ ‖·‖ (v). We have

‖f0‖ − ‖f ∗‖ ≥ ‖f0‖ − ‖v‖ − ‖f ∗ − v‖ ≥
〈
g, f0 − v

〉
− ‖f ∗ − v‖

>
〈
g, f0 − f ∗

〉
− 2 ‖f ∗ − v‖ >

〈
g, f0 − f ∗

〉
− ρ∗/10 .

As the latter result holds for all v ∈ f ∗+(ρ∗/20)B and g ∈ ∂ ‖·‖ (v), since f0−f ∗ ∈ ρ∗S∩r(ρ∗)BL2 ,

it yields

‖f0‖ − ‖f ∗‖ ≥ ∆(ρ∗)− ρ∗/10 ≥ 7ρ∗/10 . (3.36)

Here, the last inequality holds because ρ∗ satisfies the sparsity equation. Hence,

PNLλf = PNLf + λ (‖f‖ − ‖f ∗‖) ≥ α(PNLf0 + 7λρ∗/10) . (3.37)

Thus, on Ω, since λ > 10θr2(ρ∗)2/(7ρ∗),

PNLf0 + 7λρ∗/10 = PLf0 + (PN − P )Lf0 + 7λρ∗/10 ≥ −θr2(ρ∗) + 7λρ∗/10 > 0 .
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Assume now that ‖f0 − f ∗‖L2
= r(ρ∗) and ‖f0 − f ∗‖ ≤ ρ∗. By Assumption 3.5, on Ω,

PNLλf > PNLf0 − λ ‖f0 − f ∗‖ > PLf0 + (PN − P )Lf0 − λρ∗

> A−1 ‖f0 − f ∗‖2
L2
− θr2(ρ∗)− λρ∗ > (A−1 − θ)r2(ρ∗)− λρ∗ .

From (3.6), λ < (A−1 − θ)r2(ρ∗)2/ρ∗, thus PNLλf > 0. Together with (3.37), this proves that

f̂ ∈ f ∗ + B. Now, on Ω, this implies that |(P − PN)Lf̂ | ≤ θr2(ρ∗), so by definition of f̂ ,

PLf̂ = PNLλf̂ + (P − PN)Lf̂ + λ(‖f ∗‖ − ‖f̂‖) 6 θr2(ρ∗) + λρ∗ 6 A−1r2(ρ∗) .

To prove that Ω holds with large probability, the following result from (Alquier et al., 2019) is

useful.

Lemma 3.4. (Alquier et al., 2019, Lemma 9.1) Grant Assumptions 3.2 and 3.4. Let F ′ ⊂ F denote

a subset with finite L2-diameter dL2(F ′). For every u > 0, with probability at least 1− 2 exp(−u2)

sup
f,g∈F ′

|(P − PN)(Lf − Lg)| ≤
16LL0√

N
(w(F ′) + udL2(F ′)) .

It follows from Lemma 3.4 that for any u > 0, with probability larger that 1− 2 exp(−u2),

sup
f∈F∩(f∗+B)

∣∣(P − PN)Lf
∣∣ 6 sup

f,g∈F∩(f∗+B)

∣∣(P − PN)(Lf − Lg)
∣∣

6
16LL0√

N

(
w(F ∩ (f ∗ + B)) + udL2(F ∩ (f ∗ + B))

)
.

It is clear that dL2(F ∩ (f ∗ + B)) 6 r(ρ∗). By definition of the complexity function (3.3), for

u = θ
√
Nr(ρ∗)/(32LL0), we have with probability at least 1− 2 exp

(
− θ2Nr2(ρ∗)/(32LL0)2

)
,

∀f ∈ F ∩ (f ∗ + B),
∣∣(P − PN)Lf

∣∣ ≤ θr2(ρ∗) .

3.9.2 Proof Theorem 3.2

All along the proof, the following notations will be used repeatedly.

θ =
1

34A
, γ = θ/(192L) f̂ = f̂K,λ .

The proof is divided into two parts. First, we identify an event where the minmax MOM

estimator f̂ is controlled. Then, we prove that this event holds with large probability. Let K >

7|O|/3, and κ ∈ {1, 2} let

CK,r,κ = max

(
96L2K

θ2N
, r2

2(γ, κρ∗)

)
and λ = 10θ

CK,r,2
ρ∗

.

Let Bκ =
√
CK,r,κBL2 ∩ κρ∗B. Consider the following event

ΩK =

{
∀κ ∈ {1, 2}, ∀f ∈ F ∩ f ∗ + Bκ,

K∑
k=1

I

(∣∣∣∣(PBk − P )(`f − `f∗)
∣∣∣∣ ≤ θCK,r,κ

)
>
K

2

}
(3.38)
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Deterministic argument

Lemma 3.5. f̂ − f ∗ ∈ Bκ if there exists η > 0 such that

sup
f∈f∗+F\Bκ

MOMK

(
`f∗ − `f

)
+ λ
(
‖f ∗‖ − ‖f‖

)
< −η , (3.39)

sup
f∈F

MOMK

(
`f∗ − `f

)
+ λ
(
‖f ∗‖ − ‖f‖

)
≤ η . (3.40)

Proof. For any f ∈ F , denote by S(f) = supg∈F MOMK [`f − `g] + λ
(
‖f‖ − ‖g‖

)
. If (3.39) holds,

by homogeneity of MOMK , any f ∈ f ∗ + F\Bκ satisfies

S(f) > inf
f∈f∗+F\Bκ

MOMK [`f − `f∗ ] + λ
(
‖f‖ − ‖f ∗‖

)
> η . (3.41)

On the other hand, if (3.40) holds,

S(f ∗) = sup
f∈F

MOMK [`f∗ − `f ] + λ
(
‖f ∗‖ − ‖f‖

)
6 η .

Thus, by definition of f̂ and (3.40),

S(f̂) 6 S(f ∗) 6 η .

Therefore, if (3.39) and (3.40) hold, f̂ ∈ f ∗ + Bκ.

It remains to show that, on ΩK , Equations (3.39) and (3.40) hold for κ = 2.

Let κ ∈ {1, 2} and f ∈ F ∩ Bκ. On ΩK , there exist more than K/2 blocks Bk such that∣∣∣∣(PBk − P )(`f − `f∗)
∣∣∣∣ ≤ θCK,r,κ . (3.42)

It follows that

sup
f∈f∗+F∩Bκ

MOMK

(
`f∗ − `f

)
≤ θCK,r,κ

In addition, ‖f‖ − ‖f ∗‖ ≤ κρ∗. Therefore, from the choice of λ, on ΩK , one has

sup
f∈f∗+F∩Bκ

MOMK

(
`f∗ − `f

)
+ λ
(
‖f ∗‖ − ‖f‖

)
≤ (1 + 10κ)θCK,r,κ . (3.43)

Assume that f belongs to F\Bκ. By convexity of F , there exists f0 ∈ f ∗ + F ∩ Bκ and α > 1

such that

f = f ∗ + α(f0 − f ∗) . (3.44)

For all i ∈ {1, · · · , N}, let ψi : R→ R be the random function defined for all u ∈ R by

ψi(u) = `(u+ f ∗(Xi), Yi)− `(f ∗(Xi), Yi) . (3.45)
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The functions ψi are convex and satisfy ψi(0) = 0. Thus αψi(u) ≤ ψi(αu) for all u ∈ R and α > 1

and ψi(f(Xi)− f ∗(Xi)) = `(f(Xi), Yi)− `(f ∗(Xi), Yi). Hence, for any block Bk,

PBkLf =
1

|Bk|
∑
i∈Bk

ψi
(
f(Xi)− f ∗(Xi)

)
=

1

|Bk|
∑
i∈Bk

ψi
(
α(f0(Xi)− f ∗(Xi))

)
≥ α

|Bk|
∑
i∈Bk

ψi
(
f0(Xi)− f ∗(Xi)

)
= αPBkLf0 . (3.46)

By the triangular inequality,

‖f‖ − ‖f ∗‖ = ‖f ∗ + α(f0 − f ∗)‖ − ‖f ∗‖ ≥ α(‖f0‖ − ‖f ∗‖).

Together with (3.46), this yields, for all block Bk

PBkLλf ≥ αPBkLλf0
. (3.47)

As f0 ∈ F ∩ Bκ, on ΩK ,

|(P − PBk)Lf0| ≤ θCK,r,κ. (3.48)

As f0 can be chosen in ∂(f ∗ + Bκ), either: 1) ‖f0 − f ∗‖ = κρ∗ and ‖f0 − f ∗‖L2
≤
√
CK,r,κ or 2)

‖f0 − f ∗‖L2
=
√
CK,r,κ and ‖f0 − f ∗‖ ≤ κρ∗.

Assume first that ‖f0 − f ∗‖ = κρ∗ and ‖f0 − f ∗‖L2
≤
√
CK,r,κ. Since the sparsity equation is

satisfied for ρ = ρ∗, it is also satisfied for κρ∗. By (3.36),

λ
(
‖f0‖ − ‖f ∗‖

)
≥ 7λκρ∗/10 = 7κCK,r,2 . (3.49)

Therefore, on ΩK , there are more than K/2 blocks Bk where

PBkLλf ≥ αPBkLλf0
≥ α

(
− θCK,r,κ +

7κλρ∗

10

)
> α(7κ− 1)θCK,r,2 . (3.50)

It follows that

MOMK

(
`f − `f∗

)
+ λ
(
‖f‖ − ‖f ∗‖

)
> αθ

(
7κCK,r,2 − CK,r,κ

)
CK,r,2 . (3.51)

Assume that ‖f0 − f ∗‖L2
=
√
CK,r,κ and ‖f0 − f ∗‖ ≤ κρ∗. By Assumption 3.7, on ΩK , there

exist more than K/2 blocks Bk where

PBkLλf > PBkLf0 − λ ‖f0 − f ∗‖ ≥ PLf0 + (PBk − P )Lf0 − λκρ∗

≥ A−1 ‖f0 − f ∗‖2
L2
− θCK,r,κ − κλρ∗ = θ(33CK,r,κ − 10κCK,r,2) .

It follows that

MOMK

(
`f − `f∗

)
+ λ
(
‖f‖ − ‖f ∗‖

)
> αθ(33CK,r,κ − 10κCK,r,2) . (3.52)

From Equations (3.43), (3.51) and (3.52) with κ = 1, it follows that

sup
f∈F

MOMK

(
`f∗ − `f

)
+ λ
(
‖f ∗‖ − ‖f‖

)
≤ 11θCK,r,2 . (3.53)
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Therefore, (3.40) holds with η = 11θCK,r,2. Now, Equations (3.51) and (3.52) with κ = 2 yield

sup
f∈f∗+F\B2

MOMK

(
`f∗ − `f

)
+ λ
(
‖f ∗‖ − ‖f‖

)
6 −13αθCK,r,2 < −11θCK,r,2 .

Therefore, Equation (3.39) holds with η = 11θCK,r,2. Overall, Lemma 3.5 shows that f̂ ∈ B2. On

ΩK , this implies that there exist more than K/2 blocks Bk where PLf̂ ≤ PBkLf̂ + θCK,r,2. In

addition, by definition of f̂ and (3.53),

MOMK

(
`f̂ − `f∗

)
+ λ(‖f̂‖ − ‖f ∗‖) 6 sup

f∈F
MOMK

(
`f∗ − `f

)
+ λ(‖f ∗‖ − ‖f‖) ≤ 11θCK,r,2 .

This means that there exist at least K/2 blocks Bk where PBkLf̂ + λ(‖f̂‖ − ‖f ∗‖) 6 11θCK,r,2. As

‖f̂‖ − ‖f ∗‖ > −‖f̂ − f ∗‖ > −2ρ∗, on these blocks, PBkLf̂ ≤ 31θCK,r,2. Therefore, there exists at

least one block Bk for which simultaneously PLf̂ ≤ PBkLf̂ + θCK,r,2 and PBkLf̂ ≤ 31θCK,r,2. This

shows that PLf̂ ≤ 32θCK,r,2 ≤ A−1CK,r,2.

Control of the stochastic event

Proposition 3.4. Grant Assumptions 3.2, 3.3, 3.6 and 3.7. Let K ≥ 7|O|/3. Then ΩK holds with

probability larger than 1− 2 exp(−K/504).

Proof. Let F = F ∩ (f ∗ + Bκ) and let φ(t) = 1{t ≥ 2} + (t − 1)1{1 ≤ t ≤ 2}. This function

satisfies ∀t ∈ R+ 1{t ≥ 2} ≤ φ(t) ≤ 1{t ≥ 1}. Let Wk = ((Xi, Yi))i∈Bk and, for any f ∈ F , let

Gf (Wk) = (PBk −P )(`f − `f∗). Let also CK,r,κ = max

(
96L2K/(θ2N), r2

2(γ, κρ∗)

)
. For any f ∈ F ,

let

z(f) =
K∑
k=1

1{|Gf (Wk)| ≤ θCK,r,κ} .

Proposition 3.4 will be proved if z(f) > K/2 with probability larger than 1−e−K/504. Let K denote

the set of indices of blocks which have not been corrupted by outliers, K = {k ∈ {1, · · · , K} : Bk ⊂
I}, where we recall that I is the set of informative data. Basic algebraic manipulations show that

z(f) > |K| − sup
f∈F

∑
k∈K

(
φ(2(θCK,r,κ)

−1|Gf (Wk)|)− Eφ(2(θCK,r,κ)
−1|Gf (Wk)|)

)
−
∑
k∈K

Eφ(2(θCK,r,κ)
−1|Gf (Wk)|) . (3.54)

The last term in (3.54) can be bounded from below as follows. Let f ∈ F and k ∈ K,

Eφ(2(θCK,r,κ)
−1|Gf (Wk)|) 6 P

(
|Gf (Wk)| ≥

θCK,r,κ
2

)
6

4EGf (Wk)
2

(θCK,r,κ)2

6
4K2

θ2C2
K,r,κN

2

∑
i∈Bk

E[(`f − `f∗)2(Xi, Yi)] ≤
4L2K

θ2C2
K,r,κN

‖f − f ∗‖2
L2

.
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The last inequality follows from Assumption 3.6. Since ‖f − f ∗‖L2 ≤
√
CK,r,κ,

Eφ(2(θCK,r,κ)
−1|Gf (Wk)|) 6

4L2K

θ2CK,r,κN
.

As CK,r,κ > 96L2K/(θ2N),

Eφ(2(θCK,r,κ)
−1|Gf (Wk)|) ≤

1

24
.

Plugging this inequality in (3.54) yields

z(f) ≥ |K|(1− 1

24
)− sup

f∈F

∑
k∈K

(
φ(2(θCK,r,κ)

−1|Gf (Wk)|)− Eφ(2(θCK,r,κ)
−1|Gf (Wk)|)

)
. (3.55)

Using the Mc Diarmid’s inequality, with probability larger than 1− exp(−|K|/288),we get

sup
f∈F

∑
k∈K

(
φ(2(θCK,r,κ)

−1|Gf (Wk)|)− Eφ(2(θCK,r,κ)
−1|Gf (Wk)|)

)
≤ |K|

24
+ E sup

f∈F

∑
k∈K

(
φ(2(θCK,r,κ)

−1|Gf (Wk)|)− Eφ(2(θCK,r,κ)
−1|Gf (Wk)|)

)
.

By the symmetrization lemma, it follows that, with probability larger than 1− exp(−|K|/288),

sup
f∈F

∑
k∈K

(
φ(2(θCK,r,κ)

−1|Gf (Wk)|)− Eφ(2(θCK,r,κ)
−1|Gf (Wk)|)

)
6
|K|
24

+ 2E sup
f∈F

∑
k∈K

σkφ(2(θCK,r,κ)
−1|Gf (Wk)|) .

As φ is 1-Lipschitz with φ(0) = 0, the contraction lemma from (Ledoux and Talagrand, 2013)and

yields

sup
f∈F

∑
k∈K

(
φ(2(θCK,r,κ)

−1|Gf (Wk)|)−Eφ(2(θCK,r,κ)
−1|Gf (Wk)|)

)
6
|K|
24

+
4

θ
E sup
f∈F

∑
k∈K

σk
Gf (Wk)

CK,r,κ

=
|K|
24

+
4

θ
E sup
f∈F

∑
k∈K

σk
(PBk − P )(`f − `f∗)

CK,r,κ

For any k ∈ K, let (σi)i∈Bk independent from (σk)k∈K, (Xi)i∈I and (Yi)i∈I . The vectors (σiσk(`f −
`f∗)(Xi, Yi))i,f and (σi(`f−`f∗)(Xi, Yi))i,f have the same distribution. Thus, by the symmetrization
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and contraction lemmas, with probability larger than 1− exp(−|K|/288),

sup
f∈F

∑
k∈K

(
φ(2C−1

K,r,κ|Gf (Wk)|)− Eφ(2C−1
K,r,κ|Gf (Wk)|)

)
≤ |K|

24
+

8

θ
E sup
f∈F

∑
k∈K

1

|Bk|
∑
i∈Bk

σi
(`f − `f∗)(Xi, Yi)

CK,r,κ

=
|K|
24

+
8K

θN
E sup
f∈F

∑
i∈∪k∈KBk

σi
(`f − `f∗)(Xi, Yi)

CK,r,κ

≤ |K|
24

+
8LK

θN
E sup
f∈F

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r,κ

∣∣∣∣ . (3.56)

Now either 1) K ≤ θ2r2
2(γ, κρ∗)N/(96L2) or 2) K > θ2r2

2(γ, κρ∗)N/(96L2). Assume first that

K ≤ θ2r2
2(γ, κρ∗)N/(96L2), so CK,r,κ = r2

2(γ, κρ∗) and by definition of the complexity parameter

E sup
f∈F

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r,κ

∣∣∣∣ = E sup
f∈F

1

r2
2(γ, κρ∗)

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣ ≤ γ|K|N
K

.

If K > θ2r2
2(γ, κρ∗)N/(96L2), CK,r,κ = 96L2K/(θ2N). Write F = F1 ∪ F2, where

F1 := {f ∈ F : ‖f − f ∗‖L2
6 r2(γ, κρ∗)}, F2 = F \ F1 .

Then,

E sup
f∈F

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r,κ

∣∣∣∣
=

1

CK,r,κ
E
[

sup
f∈F1

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣ ∨ sup
f∈F2

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣] .

For any f ∈ F2, g = f ∗ + (f − f ∗)r2(γ, κρ∗)/
√
CK,r,κ ∈ F1 and∣∣∣∣ ∑

i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣ =

√
CK,r,κ

r2(γ, κρ∗)

∣∣∣∣ ∑
i∈∪k∈KBk

σi(g − f ∗)(Xi)

∣∣∣∣ .
It follows that

sup
f∈F2

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣ 6
√
CK,r,κ

r2(γ, κρ∗)
sup
f∈F1

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣ .
Hence,

E sup
f∈F

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r,κ

∣∣∣∣ 6 1

r2(γ, κρ∗)
√
CK,r,κ

E sup
f∈F1

∣∣∣∣ ∑
i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣ .
By definition of r2, this implies

E sup
f∈F

∣∣∣∣ ∑
i∈∪k∈KBk

σi
(f − f ∗)(Xi)

CK,r,κ

∣∣∣∣ 6 r2(γ, κρ∗)√
CK,r,κ

γ|K|N
K

6
γ|K|N
K

.
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Plugging this bound in (3.56) yields, with probability larger than 1− e−|K|/288

sup
f∈F

∑
k∈K

(
φ(2C−1

K,r,κ|Gf (Wk)|)− Eφ(2C−1
K,r,κ|Gf (Wk)|)

)
6 |K|

(
1

24
+

8Lγ

θ

)
=
|K|
12

.

Plugging this inequality into (3.55) shows that, with probability at least 1− e−|K|/288,

z(f) >
7|K|

8
.

As K > 7|O|/3, |K| > K − |O| > 4K/7, hence, z(f) > K/2 holds with probability at least

1− e−K/504. Since it has to hold for any κ in {1, 2}, the final probablity is 1− 2e−K/504.

3.9.3 Proof Theorem 3.3

The proof is very similar to the one of Theorem 3.2. We only present the different arguments we

use coming from the localization with the excess risk. The proof is split into two parts. First we

identify an event Ω̄K in the same way is ΩK in (3.38) where the L2-localization is replaced by the

excess risk localization. For κ ∈ {1, 2} let Bκ = {f ∈ E : PLf ≤ r̄2(γ, κρ∗), ‖f − f ∗‖ ≤ κρ∗} and

Ω̄K =

{
∀κ ∈ {1, 2},∀f ∈ F ∩ Bκ,

K∑
k=1

I
{
|(PBk − P )Lf | ≤

1

20
r̄2(γ, 2ρ∗)

}
≥ K/2

}

Let us us the following notations,

λ =
11r̄2(γ, 2ρ∗)

40ρ∗
, f̂ = f̂λK and γ = 1/3840L

Finally recal that the complexity parameter is defined as

r̄(γ, ρ) = inf

{
r > 0 : max

(
E(r, ρ)

γ
,
√

384000VK(r, ρ)

)
≤ r2

}
where

E(r, ρ) = sup
J⊂I:|J |≥N/2

E sup
f∈F :PLf≤r2, ‖f−f∗‖≤ρ

∣∣∣∣ 1

|J |
∑
i∈J

σi(f − f ∗)(Xi)

∣∣∣∣
VK(r, ρ) = max

i∈I
sup

f∈F :PLf≤r2, ‖f−f∗‖≤ρ

(√
VarPi(Lf )

)√
K

N

First, we show that on the event Ω̄K , PLf̂ ≤ r̄2(γ, 2ρ∗) and ‖f − f ∗‖ ≤ 2ρ∗. Then we will control

the probability of Ω̄K .

Lemma 3.6. Grant Assumptions 3.2 and 3.3. Let ρ∗ satisfy the sparsity equation from Defini-

tion 3.6. On the event Ω̄K, PLf̂ ≤ r̄2(γ, 2ρ∗) and ‖f − f ∗‖ ≤ 2ρ∗.
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Proof. Let f ∈ F\Bκ. From Lemma 6 in (Chinot et al., 2019b) there exist f0 ∈ F and α > 0

such that f − f ∗ = α(f0 − f ∗) and f0 ∈ ∂Bκ. By definition of Bκ, either 1)PLf0 = r̄2(γ, κρ∗) and

‖f0 − f ∗‖ ≤ κρ∗ or 2) PLf0 ≤ r̄2(γ, κρ∗) and ‖f0 − f ∗‖ = κρ∗.

Assume that PLf0 = r̄2(γ, κρ∗) and ‖f0−f ∗‖ ≤ κρ∗. On Ω̄K , there exist at least K/2 blocks Bk

such that PBkLf0 ≥ PLf0 − (1/20)r̄2(γ, κρ∗) = (19/20)r̄2(γ, κρ∗). It follows that, on at least K/2

blocks Bk

PBkLλf ≥ αPBkLλf0
= α

(
PBkLf0 + λ(‖f0‖ − ‖f ∗‖)

)
≥ (19/20)r̄2(γ, κρ∗)− 11κr̄2(γ, 2ρ∗)/40 (3.57)

Assume that PLf0 ≤ r̄2(γ, κρ∗) and ‖f0 − f ∗‖ = κρ∗. From the sparsity equation defined in

Definition 3.6 we get ‖f0‖ − ‖f ∗‖ ≥ 7κρ∗/10. And on more than K/2 blocks Bk

PBkLλf ≥ −(1/20)r̄2(γ, κρ∗) + 7λκρ∗/10 = −(1/20)r̄2(γ, κρ∗) + 77κr̄2(γ, 2ρ∗)/400 (3.58)

Now let us consider f ∈ F ∩ Bκ. On Ω̄K , there exist at least K/2 blocks Bk such that

PBkLλf ≥ −(1/20)r̄2(γ, κρ∗)− λκρ∗ = −(1/20)r̄2(γ, κρ∗)− 11κr̄2(γ, 2ρ∗)/40 (3.59)

As Equations (3.57), (3.58) and (3.59) hold for more than K/2 blocks it follows for κ = 1 that

sup
f∈F

MOMK

(
`f∗ − `f

)
+ λ(‖f ∗‖ − ‖f‖) ≤ (13/40)r̄2(γ, 2ρ∗) . (3.60)

From Equations (3.57), (3.58) and (3.59) with κ = 2 we get

sup
f∈F\B2

MOMK

(
`f∗ − `f

)
+ λ(‖f ∗‖ − ‖f‖) < (13/40)r̄2(γ, 2ρ∗) . (3.61)

From Equations (3.60) and (3.61) and a slight modification of Lemma 3.5 it easy to see that on Ω̄K ,

PLf̂ ≤ r̄2(γ, 2ρ∗) and ‖f − f ∗‖ ≤ ρ∗.

Proposition 3.5. Grant Assumptions 3.2, 3.3 and 3.8. Then Ω̄K holds with probability larger than

1− 2 exp(−cK)

Sketch of proof. The proof of Proposition 3.5 follows the same line as the one of Proposition 3.4.

Let us precise the main differences. For all f ∈ F ∩ Bκ we set, z′(f) =
∑K

k=1 I{|Gf (Wk)| ≤
(1/20)r̄2(γ, κρ∗)} where Gf (Wk) is the same quantity as in the proof of Proposition 3.4. Let us

consider the contraction φ introduced in Proposition 3.4. By definition of VK(r) and r̄2(γ, κρ∗) we

have

Eφ(40|Gf (Wk)|/r̄2(γ, κρ∗)) ≤ P
(
|Gf (Wk)| ≥

r̄2(γ, κρ∗)

40

)
≤ (40)2

r̄4(γ, κρ∗)
EGf (Wk)

2

=
(40)2

r̄4(γ, κρ∗)
Var(PBkLf ) ≤

(40)2K2

r̄4(γ, κρ∗)N2

∑
i∈Bk

VarPi(Lf )

≤ (40)2K

r̄4(γ, κρ∗)N
sup{VarPi(Lf ) : f ∈ F ∩ Bκ, i ∈ I} ≤ 1/24 .
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Using Mc Diarmid’s inequality, the Giné-Zinn symmetrization argument and the contraction

lemma twice and the Lipschitz property of the loss function, such as in the proof of Proposition 3.4,

we obtain for all x > 0, with probability larger than 1− exp(−|K|/288), for all f ∈ F ′,

z′(f) ≥ 11|K|/12− 160LK

θN
E sup
f∈F∩Bκ

1

r̄2(γ, κρ∗)

∣∣∣∣∣∣
∑

i∈∪k∈KBk

σi(f − f ∗)(Xi)

∣∣∣∣∣∣ . (3.62)

From the definition of r̄2(γ, κρ∗) it follows that E supf∈F∩Bκ

∣∣∣∑i∈∪k∈KBk σi(f − f ∗)(Xi)
∣∣∣ ≤ γr̄2(γ, κρ∗)

and z′(f) ≥ |K|(11/12− 160L2γ) = 7|K|/8. The rest of the proof is totally similar.

3.9.4 Proof of Theorem 3.4

From Assumption 3.2, it holds VK(r) ≤ LV ′K(r), where for all r > 0,

V ′K(r) =
√
K/N max

i∈I
sup

f∈F :PLf≤r2, ‖f−f∗‖≤ρ
‖f − f ∗‖L2 .

By Assumption 3.9,
√
cVK

(√
384000L

√
ĀK

N
, 2ρ∗

)
≤ 384000L2 ĀK

N
.

From the definition of r2
2(γ, 2ρ∗) and Assumption 3.9, it follows

1

γ
E

(
r2(γ/Ā, 2ρ∗)√

Ā

)
≤ r2

2(γ/Ā, 2ρ∗)

Ā
.

Hence, r̄2(γ, 2ρ∗) ≤ max
(
r2

2(γ/Ā, 2ρ∗)/
√
Ā, 384000L2ĀK/N

)
and the proof is complete.
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Chapter 4

Robust learning and complexity

dependent bounds for regularized

problems

We study Regularized Empirical Risk Minimizers (RERM) and minmax Median-Of-Means (MOM)

estimators where the regularization function φ(·) is an even convex function. We obtain bounds

on the L2-estimation error and the excess risk that depend on φ(f ∗), where f ∗ is the minimizer

of the risk over a class F . The estimators are based on loss functions that are both Lipschitz and

convex. Results for the RERM are derived under weak assumptions on the outputs and a sub-

Gaussian assumption on the class {(f − f ∗)(X), f ∈ F}. Similar results are shown for minmax

MOM estimators in a close setting where outliers may have corrupted the dataset and where the

class {(f − f ∗)(X), f ∈ F} is only supposed to satisfy weak moment assumptions, relaxing the sub-

Gaussian and the i.i.d hypothesis necessary for RERM. The analysis of RERM and minmax MOM

estimators with Lipschitz and convex loss functions is based on a weak local Bernstein Assumption.

We obtain two “meta theorems” that we use to study linear estimators regularized by the Elastic

Net. We also examine Support Vector Machines (SVM), where no sub-Gaussian assumption is

required and when the target Y can be heavy-tailed, improving the existing literature.

121
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4.1 Introduction

On one hand, real world data analysis problems require nonlinear methods to model complex

dependencies between random variables. On the other hand, linear models are well-understood and

easy to implement, even in high dimension (Bishop, 2006). Over the last two decades, learning with

positive definite kernels have become very popular in machine learning (Shawe-Taylor et al., 2004;

Schölkopf et al., 1999; Steinwart and Christmann, 2008). This popularity can be explained because

kernel methods combine these advantages. Kernels can be used to model non linear dependencies,

mapping them to a (usually high-dimensional) feature space. In this space, the estimation is linear.

In this sense, kernel methods extend well-understood, linear statistical learning technics to real-

world, complicated, structured, high-dimensional data based on a rigorous mathematical framework

leading to practical modelling tools and algorithms. They have been used in many different fields

such as finance (Chalup and Mitschele, 2008), biology (Schölkopf et al., 2004; Ben-Hur and Noble,

2005; Noble et al., 2004), econometric (Li and Racine, 2007), computer vision (Yang et al., 2000).

Let (X, Y ) be a random variable with distribution P and HK a reproducing Kernel Hilbert Space

(RKHS) associated to a positive definite kernel K. Kernel methods consist in computing f ∗ in HK

such that the risk R(f) := E(X,Y )∼P [`(f(X), Y )] is minimized in f ∗, where `(f(X), Y ) measures

the error of predicting f(X) while the true answer is Y . However, the distribution P is unknown

and the minimization of the risk, necessary to compute f ∗, is impossible in practice. To proceed,

one is given a dataset D = (Xi, Yi)
N
i=1 of random variables. Using the dataset D, kernel methods

compute f̂λN in HK such that

f̂λN ∈ argmin
f∈HK

1

N

N∑
i=1

`(f(Xi), Yi) + λ‖f‖2
HK , (4.1)

where ‖f‖HK is the norm of f in HK and λ ≥ 0 is an hyper-parameter to be tuned. The regu-

larization term λ‖f‖2
HK controls the smoothness of f̂λN through the value of λ. This regularization

term is introduced to avoid “overfitting” since kernels provide enough flexibility to fit training data

exactly. The value of λ balance the bias and the variance of f̂λN . Theoritical properties of kernel

methods have been widely studied (Shawe-Taylor et al., 2004; Schölkopf et al., 1999; Steinwart and

Christmann, 2008). Non-asymptotic bounds on the L2(µ)-error rate ‖f ∗−f̂λN‖L2(µ), where µ denotes

the marginal distribution of X, have been obtained for the quadratic loss function in (Mendelson

et al., 2010; Smale and Zhou, 2007). These bounds depend on the decay of eigenvalues of the kernel

(at the population level) and are obtained for bounded continuous kernels but under the restrictive

assumption that the random variable Y ∈ [−M,M ] almost surely. In (Caponnetto and De Vito,

2007), also for the quadratic loss function, the authors do not assume that |Y | is bounded but that

Y −f ∗(X) admits a Laplace transform. In this paper, we recover the same error rates as (Mendelson

et al., 2010; Caponnetto and De Vito, 2007) when the loss function ` is simultaneously Lipschitz

and convex. We do not assume that Y is bounded or Y − f ∗(X) is light-tailed. Our analysis uses

a new localization technique developed in (Chinot et al., 2019b) taking advantage of the convexity
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of the loss function `. Theorem 4.1 presents an informal result when ` is the absolute loss function.

Theorem 4.1 (Informal). Let K be a bounded kernel. Assume that Y = f ∗(X) + W with W a

Cauchy random variable and f ∗ ∈ HK, the RKHS associated with K. With probability larger than

1− exp
(
−C1N

p/(p+1)
)
, for a well chosen value of λ the estimator f̂ associated to the absolute loss

function defined in (4.1) satisifies:

‖f̂λN − f ∗‖2
L2(µ) ≤

C2

N1/(1+p)
,

where C1 and C2 are functions of the kernel and ‖f ∗‖HK . The value of p ∈ (0, 1) represents how

fast the eigenvalues of the Kernel matrix decrease (see Section 4.4.2 for more precise arguments).

Theorem 4.1 deals with a Cauchy noise but many different distributions can be handled with

our analysis (see Theorem 4.10). We obtain the same bounds as (Mendelson et al., 2010; Capon-

netto and De Vito, 2007). This is a first important contribution of this work. Fast rates for Kernel

methods are derived even when the noise is heavy-tailed. Note also that nothing is assumed on the

design X.

Kernel methods belong to the more general class of regularized methods, widespread in statis-

tics and machine learning. These procedures date back to Tikhonov (Golub et al., 1979), and have

been widely used in non-parametric statistics (Marsh and Cormier, 2001; Huang et al., 2003) to

smooth estimators. For example, the regularization φ(f) =
∫

(f ′′)2 for spline estimators promotes

smoothness by imposing regularity on the estimate. In kernel methods, the norm of a function in

the RKHS controls how fast the function varies with respect to the geometry defined by the kernel.

Consequently, the norm of regularization ‖ · ‖HK is related with its degree of smoothness w.r.t.

the metric defined by the kernel. Following the approach of (Chinot et al., 2019b), we present an

analysis for RERM with loss functions that are simultaneously Lipchitz and convex. The penaliza-

tion function is not assumed to be a norm. It is simply required to be an even convex function.

We derive bounds on the L2-error and the excess loss for these general procedures. As far as we

know, the only article considering a generic analysis of the RERM (with the quadratic loss) with

a convex penalization is (Lecué and Mendelson, 2017). However, their analysis does not hold for

the square of a norm (see Assumption 5.1), which is a classical regularization methods in RKHS,

see for instance (Steinwart and Christmann, 2008). By contrast, the new analysis presented in this

paper covers many well-known methods such as kernel methods regularized by the square of a norm

or the elastic net procedure (Zou and Hastie, 2005). The restriction here is that the loss function

must be Lipschitz and convex. Both regression and classification problems can be addressed with

our analysis.

Let X ,Y be two measurable spaces such that Y ⊂ R and (X, Y ) ∈ X × Y be random variables

with joint distribution P . Let µ be the marginal distribution of X. For E a linear subset of
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L2(X), let F ⊂ E be a class of measurable functions f : X 7→ Ȳ where Ȳ ⊂ R is convex (we

do not have necessarily Y = Ȳ for classification problems). In the standard learning framework,

one would like to identify the best approximation to Y using functions f in the class F . To do

so, let ` be a loss function, ` : F × X × Y 7→ R, (f, x, y) 7→ `f (x, y) = ¯̀(f(x), y) measuring the

error made when predicting y by f(x), for ¯̀ : Ȳ × Y 7→ R. Let f ∗ ∈ argminf∈F R(f) where

R(f) := P`f := EP [`f (X, Y )]. The oracle f ∗ provides the prediction of Y with minimal risk among

functions in F . Obviously, the distribution P is unknown and minimizing the risk R(f) over f in F

is impossible in practice. Instead, one is given a dataset D = (Xi, Yi)
N
i=1 of random variables taking

values in X ×Y . Using D, the objective is to construct an estimator f̂N such that the L2(µ)-error

rate

‖f̂N − f ∗‖2
L2(µ) = E

[(
f̂N(X)− f ∗(X)

)2|D
]

and the excess risk

PLf̂N := (P`f̂N − P`f∗)|D = EP
[

¯̀(f̂N(X), Y )− ¯̀(f ∗(X), Y )|D
]

are small. While PLf̂N specifies the quality of prediction of the estimator f̂N , ‖f̂N − f ∗‖L2(µ)

quantifies the L2(µ) approximation of the oracle f ∗ by the estimator f̂N . These two quantities

being random, the results are derived with exponentially large probability. All along the paper, the

following geometric Assumption is also granted.

Assumption 4.1. The class F is convex.

Assumption 4.1 imposes a geometric structure on the class F . This assumption is essential to

use our “projection trick” and derive our main results. For example Assumption 4.1 holds when F

is a Hilbert space or the set of linear functionals in Rp, F = {
〈
t, ·
〉

: t ∈ Rp}. As in (Chinot et al.,

2019b), we consider Lipschitz and convex loss functions.

Assumption 4.2. There exists L > 0 such that, for any y ∈ Y, ¯̀(·, y) is L-Lipschitz (see (4.2))

and convex i.e for all α ∈ [0, 1], (x, y) ∈ X × Y and f, g ∈ F , ¯̀(αf(x) + (1 − α)g(x), y) ≤
α ¯̀(f(x), y) + (1− α)¯̀(g(x), y)

Assumption 4.2 is satisfied in several examples, let us provide a short list of some of them.

• The logistic loss defined, for any u ∈ Ȳ = R and y ∈ Y = {−1, 1}, by `(u, y) = log(1 +

exp(−yu)) satisfies Assumption 4.2 with L = 1.

• The hinge loss defined, for any u ∈ Ȳ = R and y ∈ Y = {−1, 1}, by `(u, y) = max(1−uy, 0)

satisfies Assumption 4.2 with L = 1.

In those examples, the sets Y and Ȳ are different. The fact that every function f in F maps to the

convex set Ȳ is crucial for the computation of the estimator f̂N in practice (Zhang, 2004; Bartlett

et al., 2006)
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• The Huber loss defined, for any δ > 0, u, y ∈ Y = Ȳ = R, by

`(u, y) =

1
2
(y − u)2 if |u− y| ≤ δ

δ|y − u| − δ2

2
if |u− y| > δ

,

satisfies Assumption 4.2 with L = δ.

• The quantile loss is defined, for any τ ∈ (0, 1), u, y ∈ Y = Ȳ = R, by `(u, y) = ρτ (u − y)

where, for any z ∈ R, ρτ (z) = z(τ − I{z ≤ 0}). It satisfies Assumption 4.2 with L = 1. For

τ = 1/2, the quantile loss is the L1 loss.

• The Hinge loss for regression is defined for any u, y ∈ Y = Ȳ = R, by `(u, y) = max(y −
u, 0). It satisfies Assumption 4.2 with L = 1. Note that the Hinge loss function is modified

for regression problems.

Classical results on the RERM in learning theory consider the quadratic loss function (Mendelson,

2014; Lecué and Mendelson, 2017, 2018). In this case ¯̀(u, v) = (u− v)2/2 for any (u, v) ∈ Ȳ × Y .

The starting point of their analysis is the following multiplier/quadratic decomposition

Lf (X, Y ) = (f(X)− Y )2 − (f ∗(X)− Y )2 = (f(X)− f ∗(X))2 + 2(f ∗(X)− Y )(f(X)− f ∗(X))

for any f in F . While the quadratic process f 7→ (f(X)− f ∗(X))2 does not depend on the target

Y , the multiplier process f 7→ (f ∗(X)− Y )(f(X)− f ∗(X)) depends on the “noise” Y − f ∗(X). It

can only be controlled under some restriction on this “noise”. For example, when Y = g(X) +W ,

where g : X 7→ R is a function in F and W is a random variable independent to X, we have g = f ∗

and thus Y −f ∗(X) = W . In this problem, bounding the multiplier process requires strong moment

assumptions on the noise W (see Theorem 1.2 in (Mendelson, 2017)). If we replace the quadratic

loss function by the absolute loss and if the noise is symmetric and independent to X we also have

f ∗ = g. In this case, from the Lipschitz property,

∀(x, y) ∈ X × Y and f, g ∈ F, |¯̀(f(x), y)− ¯̀(g(x), y)| ≤ L|f(x)− g(x)| for L > 0 , (4.2)

the multiplier process disappears. It becomes possible to handle heavy-tailed symmetric noise W .

From (4.2), note also that the random variable Y does not need to be integrable. For instance, W

can be a Cauchy distribution.

To get fast rates of convergence, our analysis is based on the following local Bernstein condition

∀f ∈ F : ‖f − f ∗‖L2(µ) = r and φ(f − f ∗) ≤ ρ, APLf ≥ ‖f − f ∗‖2
L2(µ)

where r, ρ > 0. In the sequel, we have respectively r and ρ of the order of the error rate and

φ(f ∗), where we recall that φ(·) is the regularization function and f ∗ the oracle. This condition
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states that the excess risk f 7→ PLf is 1/A-strongly convex in a neighborhood of the oracle f ∗.

This new local Bernstein condition introduced in (Chinot et al., 2019b) is the cornerstone to

obtain fast rates of convergence for settings where the noise may be heavy-tailed. Contrary to the

analysis for the quadratic loss function, no Small Ball assumption is required (Mendelson, 2014;

Lecué and Mendelson, 2017). In addition to handle heavy-tailed noise, the use of Lipschitz function

significantly simplifies the proof since only one process has to be considered. The main argument

of the proof is a new “projection trick” (see the sketch of proof in Section 4.2) making the proof

simpler. For example, no peeling technic is required. To summarize, the contributions of our new

analysis for the RERM are the following

• We consider very general convex regularization functions φ(·).
• For Lipschitz and convex loss function, heavy-tailed noise can be handled.

• Our proof relies on a convex argument simple to understand.

The RERM are robust with respect to the noise of the problem as long as the loss function is Lips-

chitz. However a single outlier in the Xi may make the RERM really bad. In addition, the RERM

performs well only when the empirical excess of risk f 7→ PNLf uniformly concentrates around its

expectation f 7→ PLf . To do so, it is necessary to impose a strong concentration assumption on

the class {Lf (X, Y ), f ∈ F}. From Assumption 4.2 it is implied by a concentration assumption

on the class {(f − f ∗)(X), f ∈ F}. Consequently, sub-Gaussian or boundedness assumptions are

necessary on the class {(f −f ∗)(X), f ∈ F} to obtain an exponentially large confidence for RERM.

RERM serves as benchmark for more advanced estimators. In a second time, we study regular-

ized minmax MOM-estimators introduced in (Lecué and Lerasle, 2019) for least-squares regression

as an alternative to other MOM-based procedures (Lugosi and Mendelson, 2016; Lugosi et al.,

2019a,b; Lecué and Lerasle, 2017). In the case of convex and Lipschitz loss functions, these esti-

mators satisfy the following properties 1) as the RERM, they are efficient under weak assumptions

on the noise 2) they achieve optimal rates of convergence under weak stochastic assumptions on

the class {Lf (X, Y ), f ∈ F} and 3) the rates are not downgraded by the presence of some outliers

in the dataset. These results are not surprising since it has already been observed in (Lecué and

Lerasle, 2019; Chinot et al., 2019b). Although attractive, mimmax MOM-estimators present some

drawbacks. Their construction depends on the confidence level (through K). Under stronger mo-

ment assumptions, (Minsker, 2018) proposed a construction of MOM-based estimators independent

to the confidence level. The implementation of MOM-based estimators is still an open question

even if good empirical results have been obtained in (Lecué and Lerasle, 2019; Lecué et al., 2018;

Chinot et al., 2019b).

The main theorems (for the RERM and the Minmax MOM estimators) are general and can be

applied for different applications. In particular, we study 1) the Elastic net regularization for linear
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estimators in Rp and 2) kernel methods in RKHS associated to a bounded kernel. In particular, we

extend the results from (Mendelson et al., 2010; Smale and Zhou, 2007; Wu et al., 2006; Caponnetto

and De Vito, 2007) for heavy-tailed noise.

To summarize, the contributions of this paper are the following:

• We obtain an analysis for the RERM for general convex regularization functions under weak

assumptions on the noise. This analysis is based on a local Bernstein assumption and holds

under a strong concentration assumption on the class {(f − f ∗)(X), f ∈ F}.
• Under the same local Bernstein assumption, we study Minmax MOM estimators and show

that 1) as the RERM, they are efficient under weak assumptions on the noise 2) they achieve

optimal rates of convergence under weak stochastic assumptions on the class {(f−f ∗)(X), f ∈
F} and 3) the rates are not downgraded by the presence of some outliers in the dataset

• We apply this analysis to linear estimators regularized with elastic net.

• Under the same local Bernstein assumption, with a slightly different concentration argument,

we study regularized learning problems in RKHS. The noise can be heavy-tailed and no sub-

Gaussian on {(f − f ∗)(X), f ∈ F} is required to get fast rates of convergence.

The paper is organized as follow. In Section 4.2 and 4.3 we respectively present general results

for RERM and minmax MOM estimators. Section 4.4 is devoted to the application of our main

theorems for the problems of linear estimators regularized with elastic net and Support vector

machines. Section 4.6.1- 4.7 gather the proofs of the main theorems.

Notations: In the remaining of the paper, the following notations will be used repeatedly. We

will write L2 instead of L2(µ), let r > 0,

rBL2 = {f ∈ F : ‖f(X)‖L2(µ) 6 r}, rSL2 = {f ∈ F : ‖f(X)‖L2(µ) = r} .

For any set H for which it makes sense, let H+f ∗ = {h+f ∗ s.t h ∈ H}, H−f ∗ = {h−f ∗ s.t h ∈ H}.
The notations a ∨ b and a ∧ b, will denote respectively max(a, b) and min(a, b).

4.2 Regularized Empirical Risk Minimization (RERM)

All along this section, data (Xi, Yi)
N
i=1 are independent and identically distributed with com-

mon distribution P . The unknown risks are estimated by their empirical counterparts, and the

oracle is estimated by the empirical risk minimizer (ERM) (see (Koltchinskii, 2011b)), defined by

f̂ERM = argmin
f∈F

PN`f :=
1

N

N∑
i=1

¯̀(f(Xi), Yi) .

Clearly, if the class F is too small, there is no hope that f ∗(X) is close to Y . One has to consider

large classes leading to large error rates. To bypass the fact that F may be very large, we can use
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the classical approach of regularization where the penalization function emphasizes the belief we

may have on the oracle f ∗. It leads to the Regularized Empirical Risk Minimizer (RERM) defined

as

f̂RERMλ = argmin
f∈F

PN`f + λ‖f‖ , (4.3)

where ‖ · ‖ : E 7→ R+ is a norm. However, the estimators f̂RERMλ defined in (4.3) are rather

restrictive since it does not cover penalizations which are not a norm such as ‖f‖2
HK (i.e the square

of the norm in a reproducing Kernel Hilbert space) or the Elastic net procedure (see (Zou and

Hastie, 2005)). To bypass this limitation, the estimator defined in Equation (4.3) will be replaced

by

f̂φλ = argmin
f∈F

PN`f + λφ(f) := argmin
f∈F

PNLλf (4.4)

where φ : E 7→ R+ is a function satisfying the following Assumption.

Assumption 4.3. Let φ : E 7→ R+ be a real function such that

• φ is even, convex and φ(0) = 0

• There exists a constant η > 0 such that for all f, g ∈ F

φ(f + g) ≤ η
(
φ(f) + φ(g)

)
(4.5)

Assumption 4.3 holds for any norm but also for the square of a norm (with η = 2), the elastic

net penalization (with η = 2) defined for any t in Rp as φ(t) = (1−α)‖t‖1 +α‖t‖2
2, where α ∈ [0, 1],

‖t‖1 =
∑p

i=1 |ti| and ‖t‖2
2 =

∑p
i=1 t

2
i . To control the L2-error rates for the RERM, it is necessary to

impose a concentration assumption on the class {Lf (X, Y ), f ∈ F}. From Assumption 4.2 it is

implied by a concentration assumption on the class {(f − f ∗)(X), f ∈ F} (this assumption will be

relaxed using MOM-type estimators in Section 4.3).

Definition 4.1. A class F is called B sub-Gaussian (with respect to X) for some constant B ≥ 0

when for all f in F and for all λ > 1

E exp(λ|f(X)|/‖f‖L2) ≤ exp(λ2B2/2) .

Assumption 4.4. The class F − f ∗ is B sub-Gaussian.

For example, when F is the class of linear functionals in Rp, F = {
〈
·, t
〉
, t ∈ T} for T ⊂ Rp,

F − f ∗ is 1 sub-Gaussian if X ∼ N (0,Σ) or if X = (xj)
p
j=1 has independent coordinates that are 1

sub-Gaussian. In the sub-Gaussian framework, a natural way to measure the statistical complexity

of the class of functions F is via the Gaussian mean-width that we introduce now.

Definition 4.2. Let H ⊂ L2 and (Gh)h∈H be the canonical centered Gaussian process indexed by

H, with covariance structure

∀h1, h2 ∈ H,
(
E(Gh1 −Gh2)2

)1/2
=
(
E(h1(X)− h2(X))2

)1/2
.

The Gaussian mean-width of H is w(H) = E suph∈H Gh.
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For example, when F = {
〈
·, t
〉
, t ∈ Rp}, and X ∼ N (0,Σ), w(T ) = E supt∈T

〈
G, t
〉
, where

T is a subset of Rp and G ∼ N (0,Σ). The Gaussian mean-width is closely related with metric

complexities such as the entropy through the Sudakov’s inequality, see Chapter 1 in (Chafäı et al.,

2012) for precise inequalities.

Following ideas developed in (Lecué and Lerasle, 2017; Lecué and Mendelson, 2017, 2018; Mendelson,

2014), the complexity parameter driving the statistical behavior of the estimator f̂φλ is defined as a

fixed point depending on the Gaussian mean-width:

Definition 4.3. The complexity is measured via a non-decreasing function r(·) such that for every

A > 0,

r(A) = inf

{
r > 0 : 32LBw

(
F ∩Bφ

η(4+2A−1)φ(f∗)(f
∗) ∩ (f ∗ + rBL2)

)
≤ (2A)−1

√
Nr2

}
where Bφ

δ (g) = {f ∈ F : φ(f − g) ≤ δ} , L is the Lipschitz constant of Assumption 4.2, B is the

sub-Gaussian constant defined in Assumption 4.4 and η is defined in Assumption 4.3.

Note that when φ is a norm, Bφ
δ (g) simply corresponds to the ball of regularization centered in

g with radius δ. We are now in position to introduce the local Bernstein condition allowing to

derive fast rates of convergence for heavy-tailed problem.

Assumption 4.5. There exists a constant A∗ > 0 such that for all f ∈ F if ‖f − f ∗‖L2
= r(A∗)

and φ(f − f ∗) ≤ η(4 + 2(A∗)−1)φ(f ∗) then ‖f − f ∗‖2
L2
6 A∗PLf .

In the sequel of this section we will write r∗ instead of r(A∗). Condition 4.5 states that

f 7→ PLf is 1/A∗-strongly convex in a subset of the L2-sphere centered in f ∗ with radius r∗.

As explained in (Chinot et al., 2019b), this local Bernstein condition holds in examples where F

is not bounded in L2-norm, and therefore, where the global Bernstein condition of (Alquier et al.,

2019)( ‖f − f ∗‖2
L2
6 A∗PLf for all f ∈ F ) does not hold. Assumption 4.5 replaces the small-ball

Assumption (see (Mendelson, 2014) for instance) for learning problems with Lipschitz and con-

vex loss functions. In (Chinot et al., 2019b), the authors consider non-regularized problems where

the local Bernstein condition is required over the whole L2-sphere of radius r∗. For regularized-

procedure, this condition is required only for functions f in this L2-sphere of radius r∗ such that

φ(f −f ∗) ≤ η(4+2(A∗)−1)φ(f ∗). For instance, in the case of RKHS associated to a bounded kernel

K, the condition φ(f−f ∗) ≤ ρ, for ρ > 0 implies that the function f−f ∗ are bounded by
√
ρ‖K‖∞

(see Section 4.4.2). This localization with respect to the regularization norm is essential to verify

the local Bernstein Assumption in practice and obtain fast rates of convergence (see Section 4.4.2).

We are now in position to present the main theorems of this section.

Theorem 4.2. Grant Assumptions 4.2, 4.1, 4.3, 4.4 and 4.5. With probability larger than

1− 2 exp

(
− N(r∗)2

4(32A∗LB)2

)
(4.6)



130 CHAPTER 4. COMPLEXITY DEPENDENT BOUNDS

for all regularization parameters λ ≥ λ0 = (r∗)2/φ(f ∗) the estimator f̂φλ defined in Equation (4.4)

satisfies

‖f̂φλ − f ∗‖L2 ≤ (4 + 6A∗)λ
φ(f ∗)

r∗

and φ(f̂φλ − f ∗) ≤ (4 + 2/A∗)ηφ(f ∗).

Remark 4.1. Theorem 4.2 holds for an exponentially large probability (4.6) simultaneously for all

λ ≥ λ0. As a consequence it can be used with a random choice of regularization parameter λ̂ as

long as {λ̂ ≥ λ0} hold with large probability. For example, we could use a cross validation scheme

to generate λ̂.

Note that for λ = λ0, we obtain ‖f̂φλ − f ∗‖L2 ≤ (4 + 6A∗)r∗, which is the minimax rate into

the class {f ∈ F : φ(f) ≤ φ(f ∗)} (see (Lecué and Mendelson, 2017)). Since we do not have access

to φ(f ∗), taking λ0 is impossible. To bypass this issue we use a Lepski’s adaptation method (see

(Lepskii, 1992, 1993; Birgé, 2001)). To do so, the following assumption is required.

Assumption 4.6. There exists M > 0 such that φ(f ∗) ≤M .

Assumption 4.6 is natural since regularization procedures are used when one believes that φ(f ∗)

is small. Since Theorem 4.2 holds with the same probability for all λ ≥ λ0, one can choose M very

large in the Lepski’s method without deteriorating the probability of the event.

For j = 1, · · · , J = M + dlog2(M)e, let us define φj = 2j/2M , φ0 = 0 and λj = r2
j/φj where

rj = inf
{
r > 0 : 32LBw

(
F ∩Bφ

η(4+2(A∗)−1)φj
(f ∗) ∩ (f ∗ + rBL2)

)
≤ (2A∗)−1

√
Nr2

}
Moreover for all λ > 0 let us define

Tλ(f) = PN(`f − `f̂φλ ) + λ
(
φ(f)− φ(f̂φλ )

)
, R̂j = {f ∈ F : Tλj(f) ≤

(
(A∗)−1 + 2

)
λjφj}

k∗ = inf{k ∈
{

1, · · · , J} : ∩Jj≥kR̂j 6= ∅
}

and set f̃ ∈ ∩Jj≥k∗R̂j .

Using the Lepski’s method we are in position to state to following theorem.

Theorem 4.3. Assumptions 4.2, 4.1, 4.3, 4.4, 4.5 and 4.6, with probability larger than

1− 2 exp
(
− N(r∗)2

4(64A∗LB(8 + 12A∗))2

)

‖f̃ − f ∗‖L2 ≤ (8 + 12A∗)r∗, φ(f̃ − f ∗) ≤ (4 + 2/A∗)ηφ(f ∗)

and PLf̃ ≤ (4 + 3/A∗)(r∗)2 .

Note that such a procedure required the knowledge of A∗ and M . Complete proofs of Theo-

rem 4.3 and Theorem 4.2 are presentend in Section 4.6.1. Here we present a simple sketch of the

proof of Theorem 4.2. Our proof relies on a homogeneity argument allowing to study the empirical
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excess risk only in neighborhood around the oracle f ∗.

Sketch of the proof : The main arguments are presented up to some constants depending on

A∗, L and η. The proof is split into two parts. First, we identify a random event onto which the

statistical behavior of f̂φλ can be studied using deterministic arguments. Next, we prove that this

event holds with large probability. Here we will only focus on the deterministic argument (see

Section 4.6.1 for the stochastic control).

Let Bλ = {f ∈ F : ‖f − f ∗‖L2 ≤ λφ(f ∗)/r∗ and φ(f − f ∗) ≤ φ(f ∗)} and the stochastic event is

defined as

Ω :=
{

for all f ∈ F ∩ (f ∗ + r∗BL2) ∩Bφ
φ(f∗)(f

∗),
∣∣(P − PN)Lf

∣∣ ≤ (r∗)2
}

By definition, the estimator f̂φλ satisfies PNLλf̂φλ ≤ 0. Therefore, to prove Theorem 4.2 it is sufficient

to show that on Ω, PNLλf > 0 for all functions f in F\Bλ. The proof follows from an homogeneity

argument saying that for all functions f ∈ F\Bλ, there exist f0 in the frontier of Bλ and α ≥ 1

such that PNLλf ≥ αPNLλf0
. On the frontier of Bλ, either we have 1) φ(f0 − f ∗) = φ(f ∗) and

‖f0 − f ∗‖L2
≤ λφ(f ∗)/r∗ or 2) ‖f0 − f ∗‖L2

= λφ(f ∗)/r∗ and φ(f0 − f ∗) ≤ φ(f ∗).

The homogeneity argument linking the empirical excess risk of f to the one of f0 is the following.

For all i ∈ {1, · · · , N}, let ψi : R→ R be defined for all u ∈ R by

ψi(u) = ¯̀(u+ f ∗(Xi), Yi)− ¯̀(f ∗(Xi), Yi). (4.7)

The functions ψi are such that ψi(0) = 0, they are convex because ¯̀ is, in particular αψi(u) ≤ ψi(αu)

for all u ∈ R and α ≥ 1 and ψi(f(Xi)− f ∗(Xi)) = ¯̀(f(Xi), Yi)− ¯̀(f ∗(Xi), Yi) so that the following

holds:

PNLf =
1

N

N∑
i=1

ψi
(
f(Xi)− f ∗(Xi)

)
=

1

N

N∑
i=1

ψi(α(f0(Xi)− f ∗(Xi)))

≥ α

N

N∑
i=1

ψi((f0(Xi)− f ∗(Xi))) = αPNLf0 . (4.8)

For the regularization part, since α ≥ 1, the same homogeneity arguments holds.

φ(f)− φ(f ∗) = φ
(
f ∗ + α(f0 − f ∗)

)
− φ(f ∗) ≥ α

(
φ(f0)− φ(f ∗)

)
It remains to control PNLλf0

in the two cases 1) and 2). Up to technicalities, in case 1), we use

Assumption 4.3 to showing that φ(f0)−φ(f ∗) ≥ φ(f ∗) (up to constants). Using the event Ω, we show

that PNLf0 ≥ −θλφ(f ∗) for θ > 0 small enough. In case 2), we use that φ(f0) − φ(f ∗) ≥ −φ(f ∗)

and the local Bernstein Assumption 4.5 to prove that PNLf0 ≥ γλφ(f ∗) for γ > 0 large enough

which concludes the deterministic argument. �
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4.3 Robustness to outliers and heavy-tailed data via Min-

max MOM estimators

In Section 4.2, we assumed that the class {(f − f ∗)(X), f ∈ F}. is sub-Gaussian and that the data

(Xi, Yi)
N
i=1 are i.i.d with the same distribution P . In this section, we relax these assumptions using

minmax-MOM type estimators. For any i ∈ {1, · · · , N}, let Pi be the distribution of (Xi, Yi).

Let I ∪ O denote an unknown partition of {1, · · ·N}. The cardinality of O is denoted |O|. Data

(Xi, Yi)i∈O are considered as outliers. No assumption on the distribution Pi for i ∈ O is made

and can be dependent or even adversarial. The informative random variables (Xi, Yi)i∈I satisfy:

Assumption 4.7. The data (Xi, Yi)i∈I are independent and for all i ∈ I : Pi(f − f ∗)2(Xi) =

P (f − f ∗)2(X) and PiLf = PLf where we recall that P is the distribution of (X, Y ) .

Assumption 4.7 holds in the i.i.d framework but it covers other situations where informative data

(Xi, Yi)i∈I may not have the same distribution. It is only required to induce the same L2-structure

on the class F and the same excess risk.

Let (Bs)s=1,...,S denote a partition of {1, . . . , N} into blocks Bs of equal size N/S (if N is not

a multiple of S, just remove some data). Following (Lecué and Lerasle, 2019) the minmax MOM-

estimators are defined as

f̂λS = argmin
f∈F

sup
g∈F

MOMS(`f − `g) + λ
(
φ(f)− φ(g)

)
, (4.9)

whereMOMS(`f−`g) = Med
(
PB1(`f−`g), · · · , PBS(`f−`g)

)
with PBs(`f−`g) = (1/|Bs|)

∑
i∈Bs `f (Xi, Yi)−

`g(Xi, Yi).

Since we no longer consider the sub-Gaussian framework, we have to adapt the complexity param-

eter to this new setup. The complexity is measured via a function r̃(·) defined as

r̃(A) = inf

{
r > 0 : ∀J ⊂ I : |J | > N/2,

E sup
f∈F∩(f∗+rBL2

)∩Bφ
η(4+2A−1)φ(f∗)

(f∗)

∣∣∣∣∑
i∈J

σi(f − f ∗)(Xi)

∣∣∣∣ ≤ (384AL)−1r2|J |
}

(4.10)

where (σi)
N
i=1 are i.i.d Rademacher random variables independent from (Xi, Yi)i∈I .

This complexity function is very close to the one in the sub-Gaussian case from Section 4.2 expect

that the Rademacher-complexity replaces the Gaussian mean-width. When the class F − f ∗ is

B-sub-Gaussian, a standard chaining argument (Talagrand, 2006) shows that r̃(·) and r(·) are

equivalent. However, when only Lp conditions are granted on the class F − f ∗, r̃(·) may be larger

than r(·), see (Chinot et al., 2019b), for instance. It is also necessary to adapt the local Bernstein

condition from Assumption 4.5 to the MOM-framework
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Assumption 4.8. There exists a constant Ã > 0 such that, for all f in F satisfying ‖f − f ∗‖L2 =√
CS,r(Ã) and φ(f − f ∗) ≤ η(4 + 2/Ã)φ(f ∗), then ‖f − f ∗‖2

L2
6 ÃPLf where

CS,r(A) = max

(
r̃2(A), 368A2L2 S

N

)
. (4.11)

As Assumption 4.5, Assumption 4.8 is only granted on a subset of the L2-sphere centered in the

oracle f ∗ where the radius is proportional to the rate of convergence of the estimators. We are now

in position to state our main results for the minmax MOM estimators.

Theorem 4.4. Grant Assumptions 4.2, 4.1, 4.3, 4.7 and 4.8. Let S ≥ 7|O|/3, Then, with prob-

ability larger than 1 − 2 exp(−S/504), for any regularization parameter λ > CS,r(Ã)/φ(f ∗), the

estimator f̂λS defined in Equation (4.9) satisfies

φ(f̂λS − f ∗) ≤ η(4 + 2/Ã)φ(f ∗), ‖f̂λS − f ∗‖L2 ≤ (4 + 6Ã)λ
φ(f ∗)√
CS,r(Ã)

It is also possible to use the Lepski’s method to get an adaptive estimator as the one in Theo-

rem 4.3. For the sake of brevity, we do not present this result here. There is a tradeoff between con-

fidence and accuracy and an optimal choice of S would be S � r̃(Ã)N . In that case, CS,r(Ã) � r̃(Ã).

For this value of S, the optimal λ is r̃2(Ã)/φ(f ∗) and we would obtain ‖f̂λS − f ∗‖2
L2
. C(Ã)r̃(Ã).

With S � r̃(Ã)N and λ =� r̃2(Ã)/φ(f ∗), we recover the same result as the one in the sub-Gaussian

setting as long as Rademacher complexity and Gaussian-mean width are equivalent. We will see

in Section 4.4.2 that it is the case for the precise example of RKHS associated to bounded kernel.

Moreover, by construction, the estimator f̂λS is robust to 3S/7 outliers in the dataset.

Therefore, using minmax-MOM estimators, we have relaxed two strong Assumptions 1) the i.i.d

setting and 2) the sub-Gaussian Assumption on the class F−f ∗. Properly calibrated minmax-MOM

estimators are not affected if the number of outliers is less than number of observations × square

of the optimal rate in the i.i.d setup (when S � r̃(Ã)N and r(A) � r̃(A)).

4.4 Applications

Our results are very general and may be applied to various examples. To do so, it is necessary to:

• Verify Assumptions 4.2, 4.1 and 4.3.

• If the RERM is studied, check Assumption 4.4 and compute the Gaussian-mean-width w
(
F ∩

Bφ
η(4+2(A∗)−1)φj

(f ∗) ∩ (f ∗rBL2)
)

to deduce r(A) for every A > 0.

• If the minmax MOM-estimators is considerer, compute the Rademacher complexity to deduce

r̃(A) for every A > 0.

• Find A satisfying the local Bernstein condition (the L2-radius depends on the estimator we

consider).
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As an illustration, we study in the sequel RERM and minmax MOM-estimators for linear estimators

in Rp regularized by the elastic net and for regularized kernel methods. It turns out that the sub-

Gaussian assumption over the class F − f ∗ is not required by using the reproducing property of

RKHS. Instead we develop another general analysis to study RERM in RKHS associated with

bounded kernel (see Section 4.4.2).

4.4.1 Application to Elastic net with Huber loss function

In (Zou and Hastie, 2005), the authors noticed that the performance of the LASSO is not as good

as the one of Ridge regression when the variables are highly correlated. Theoretically, it is now

known that the covariance matrix of the design X must satisfy the Restricted Eigenvalue condition

to obtain fast rates of convergence for the LASSO (Bellec et al., 2018; Bickel et al., 2009). To bypass

this limitation, the authors introduced in (Zou and Hastie, 2005) the Elastic net regularization.

Regularized Empirical Risk Minimizers Let F be the class of linear functionals in Rp, F =

{
〈
·, t
〉
, t ∈ Rp} which satisfies Assumption 4.1. Let (Xi, Yi)

N
i=1 be random variables valued in

Rp × Y . As the oracle is denoted f ∗, we introduce t∗ such that f ∗(·) =
〈
t∗, ·
〉
. Let α ∈ [0, 1], for

any t in Rp, the elastic net penalization is defined as

φ(t) = (1− α)‖t‖1 + α‖t‖2
2 , (4.12)

where ‖t‖1 =
∑p

i=1 |ti| and ‖t‖2
2 =

∑p
i=1 t

2
i . For α = 1 and α = 0 we recover respectively the

ridge and the Lasso penalizations (these cases will not be studied in the sequel). Clearly φ defined

in Equation (4.12) satisfies Assumption 4.3 with η = 2. Let ¯̀δ be the huber loss function with

parameter δ > 0 (which is δ-Lipschiz), the estimator RERM is defined as

t̂δ,αλ ∈ argmin
t∈Rp

1

N

N∑
i=1

¯̀δ
(〈
Xi, t

〉
, Yi
)

+ λ
(
(1− α)‖t‖1 + α‖t‖2

2

)
. (4.13)

Theorems 4.2 and 4.3 require the computation of the Gaussian mean-width w
(
F ∩ Bφ

ρ (t∗) ∩
(f ∗ + rBL2)

)
for r, ρ > 0. To do so, let us assume that the design X is isotropic i.e for all t ∈ Rp,

E
〈
X, t

〉2

Rp = ‖t‖2
2. It means that the L2(µ) norm coincides with the natural Euclidean structure on

the space `p2. Thus, for all ρ, r > 0, under the isotropic assumption, we have

w
(
F ∩Bφ

ρ (t∗) ∩ (f ∗ + rBL2)
)

= w(Bφ
ρ (0) ∩ rBp

2) = E sup
t∈R: (1−α)‖t‖1+α‖t‖22≤ρ, ‖t‖2≤r

〈
G, t

〉
Rp , (4.14)

where G is a standard Gaussian random vector in Rp and Bp
l denotes the unit ball in (Rp, ‖ · ‖l),

for l ≥ 0. Let α ∈ (0, 1). We have,

w(Bφ
ρ (0) ∩ rBL2) ≤ min

(
w
( ρ

1− αB
p
1 ∩ rBp

2

)
, w
(

min(r,

√
ρ

α
)Bp

2

))
. (4.15)
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Let us introduce

r∗1 = inf
{
r > 0 : 64δBA∗w

(
(8 + 4/A∗)φ(f ∗)

1− α Bp
1 ∩ rBp

2

)
≤
√
Nr2

}
.

r∗2 = inf
{
r > 0 : 64δBA∗w

(
min

(
r,

√
(8 + 4/A∗)φ(f ∗)

α
)Bp

2

))
≤
√
Nr2

}
.

From Equation (4.15) and the definition of r∗ it is clear that r∗ ≤ min(r∗1, r
∗
2). Using the com-

putations of w
(
ρBp

1 ∩ rBp
2

)
for all r, ρ > 0 presented in (Lecué and Mendelson, 2017), it follows

that

(r∗1)2 =


(8+4/A∗)φ(f∗)

1−α

√
64δBA∗

NNN
log

(
eppp(1−α)√

NNN(8+4/A∗)φ(f∗)

)
if (8+4/A∗)2φ2(f∗)NNN

(1−α)264δBA∗
≤ ppp2

64δBA∗ppp
NNN

if (8+4/A∗)2φ2(f∗)NNN
(1−α)264δBA∗

≥ ppp2

(r∗2)2 =


64δBA∗ppp

NNN
if NNN ≥ 64δBA∗αppp

(8+4/A∗)φ(f∗)√
64δB(8+4/A∗)φ(f∗)ppp

αNNN
if NNN ≤ 64δBA∗αppp

(8+4/A∗)φ(f∗)

For the sake of presentation, the dependence with respect to the dimension and the sample size is

presented in bold. Since r∗ ≤ min(r∗1, r
∗
2), it is clear that r∗ captures the best situation between the

LASSO (complexity parameter r∗1) and the Ridge regression (complexity parameter r∗2).

To apply Theorems 4.2 and 4.3, it remains to verify the local Bernstein condition. Results on the

local Bernstein Assumption (see Assumptions 4.5 and 4.8) can be found in (Chinot et al., 2019b)

for the quantile and Huber losses for regression problems and for the logistic and the Hinge loss for

classification. For the sake of brevity, we only present the results for the Huber loss function with

parameter δ > 0 (absolute loss function will be studied in Section 4.4.2). Note that δ must be of

the order of a constant. Let us introduce the following assumption.

Assumption 4.9. Let r, ρ, ε > 0.

• a) There exists C ′ > 0 such that, for all f ∈ F such that ‖f − f ∗‖L2 = r and φ(f − f ∗) ≤ ρ,

‖f − f ∗‖L2+ε ≤ C ′‖f − f ∗‖L2.

• b) Let C ′ be the constant defined above. There exists γ > 0 such that, for all x ∈ X and for

all z in R such that |z− f ∗(x)| ≤ (
√

2C ′)(2+ε)/εr, we have FY |X=x(z+ δ)−FY |X=x(z− δ) ≥ γ,

where FY |X=x is the conditional cumulative function of Y given X = x.

When the class F − f ∗ is 1-sub-Gaussian, it is clear that the point a) of Assumption 4.9 holds

with an absolute constant C ′ for ε = 2 (see theorem 1.1.5 in (Chafäı et al., 2012)). For the point b),

if Y =
〈
t,X

〉
+ W , where W is a symmetric random variable independent from X and t ∈ Rp, we

have t∗ = t. In this case, the point b) holds if FW (δ − 2(C ′)2r)− FW (2(C ′)2r − δ) ≥ γ, where FW

denotes the cdf of W . It simply means that the noise puts enough mass around 0. In particular,

point b) holds when W is Cauchy. In this case, Y is not integrable and yet we are able to verify

the Bernstein condition and derive fast rates of convergence.
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Theorem 4.5 ((Chinot et al., 2019b)). Grant Assumptions 4.9 (with parameter r, ρ and γ). Then,

for all f ∈ F satisfying ‖f − f ∗‖L2 = r and φ(f − f ∗) ≤ ρ, ‖f − f ∗‖2
L2
6 (4/γ)PLf .

Note that in (Chinot et al., 2019b), the proof holds for any f in F such that ‖f − f ∗‖L2 = r.

The proof of Theorem 4.5 is exactly the same as the one in (Chinot et al., 2019b) with simple

modifications taking into account the new localization with respect to the regularization.

We are now in position to state the main theorem for the elastic net procedure.

Theorem 4.6. Let r∗ = min(r∗1, r
∗
2). Let (Xi, Yi)

N
i=1 be i.i.d random variables distributed as (X, Y )

where Y =
〈
X, t∗

〉
+W , where t∗ ∈ Rp, X = (x1, · · · , xp) is a sub-Gaussian random vector. Let us

assume that the noise W is a symmetric random variable independent from X such that there exists

γ > 0 for which FW (δ − 2(C ′)2r∗)− FW (2(C ′)2r∗ − δ) ≥ γ . Let λ = (r∗)2/φ(f ∗). With probability

larger than 1− 2 exp
(
− γ2

4(128)2δ2N(r∗)2
)
, the estimator t̂δ,αλ associated with the Huber loss function

defined in Equation (4.13) satisfies

‖t̂δ,αλ − t∗‖2 ≤ (4 + 24/γ)r∗ φ(t̂δ,αλ − f ∗) ≤ (8 + γ)φ(t∗) and PLt̂δ,αλ ≤ (4 + 3γ/4)(r∗)2 .

In Theorem 4.6 we set λ = (r∗)2/φ(f ∗) which is evidently unknown. However it is possible to

use Theorem 4.3 to get an adaptive estimator for the Elastic net achieving the same rates. When

1 − α is close to 1 that is when the penalization `1 is dominant we have r∗ = r∗1 and we recover

the result for the Lasso (see (Lecué and Mendelson, 2017)). When α is close to 1 the elastic net is

almost equivalent to ridge regression and r∗ = r∗2. We recover the results for the ridge regression.

In Theorem 4.6 it is not clear if there exists γ such that FW (δ− 2(C ′)2r∗)− FW (2(C ′)2r∗ − δ) ≥ γ.

It turns out that this condition is very weak. It simply means that the noise W puts enough mass

around 0. For instance let W be a standard Cauchy distribution. The condition FW (δ−2(C ′)2r∗)−
FW (2(C ′)2r∗ − δ) ≥ γ can be rewritten as δ − 2(C ′)2r∗ ≥ tan(γπ/2). If r∗ ≤ 1 we can take γ = 1

and δ = 4(C ′)2 +1. The condition r∗ ≤ 1 means that enough data are given to the statistican which

corresponds to interesting learning problems. Consequently, even for non-integrable noise such as

a Cauchy distribution we are able to derive fast rates of convergence.

Minmax MOM-estimators Now, let us turn to the robust minmax MOM-estimator associated

with the Huber loss function for the elastic net procedure defined as

t̂δ,αλ,S ∈ argmin
t∈Rp

sup
t̃∈Rp

MOMS

(
`δt − `δt̃

)
+ λ
(
(1− α)(‖t‖1 − ‖t̃‖1) + α(‖t‖2

2 − ‖t̃‖2
2)
)

(4.16)

where `δ denotes the Huber loss function with parameter δ. To study these estimators, is necessary to

compute the rademacher complexity given in the definition of r̃(·). From Theorem 1.6 in (Mendelson,

2017), it is possible to link Rademacher complexity and Gaussian mean-width for the Elastic-net

regularization as long as X is isotropic (i.e for all t in Rp, E
〈
X, t

〉2
= ‖t‖2

2 ) and satisfies

∀1 ≤ q ≤ c1 log(p), 1 ≤ i ≤ p, ‖
〈
X, ei

〉
‖Lq ≤ c1

√
q , (4.17)
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for c1, c2 > 0 two absolute constants and where (ei)
p
i=1 denotes the canonical basis of Rp. Since any

a real valued random variable Z is L0-sub-Gaussian if and only if for all q ≥ 1, ‖Z‖Lq ≤ c3L0
√
q, for

c3 > 0 an absolute constant, the condition (4.17) imposes “c1 log(p) sub-Gaussian moments“ on the

design X. From Theorem 1.6 in (Mendelson, 2017), if condition (4.17) holds, we get r̃(Ã) ≤ c4r(Ã)

for c4 > 0 an absolute constant and the following theorem holds:

Theorem 4.7. Let r̃ = c4 min(r∗1, r
∗
2). Let (X, Y ) be a random variable such that Y =

〈
X, t∗

〉
+W ,

where t∗ ∈ Rp and W a symmetric random variable independent from X such that there exists

γ > 0 with FW (δ− 2(C ′)2r̃)−FW (2(C ′)2r̃− δ) ≥ γ. X is assumed to be an isotropic random vector

satisfying condition (4.17). Assume that (Xi, Yi)i∈I are independent and distributed as (X, Y ). Let

S ≥ 7|O|/3. With probability larger than 1 − exp(−S/504), the estimators t̂δ,αλ,S defined in (4.16)

with

λ =
max

(
(r̃)2, 5588δ2

γ2
S
N

)
φ(t∗)

satisfies

‖t̂δ,αλ,S − f ∗‖2
2 ≤ (8 + γ)2 max

(
(r̃)2,

5588δ2

γ2

S

N

)
φ(t̂δ,αλ,S − f ∗) ≤ (4 + 3γ/4)φ(t∗) .

When S . N(r̃)2, Theorem 4.7 improves Theorem 4.6 by relaxing the sub-Gaussian Assumption.

Moreover, for S � N(r̃)2 up to 3N(r̃)2/7 outliers can be present in the dataset without affecting

the error rate. Note also that it is possible to adapt the estimator in a data-driven way to the best

S and λ by using a Lepski’s adaptation as we have done in Theorem 4.3.

Remark 4.2. In Theorems 4.6 and 4.7, we assumed that the design X is isotropic. This assumption

is only used for the computation of the Gaussian mean-with of the intersection of the `1 ball with

the `2 ball. Using the recent work from (C Bellec, 2019) it is possible to extend the result for more

general covariance matrices.

4.4.2 Application to RKHS

In this section, we consider regularization methods in some general Reproducing Kernel Hilbert

Space (RKHS) (cf. (Steinwart and Christmann, 2008) for a specific analysis on RKHS). The reg-

ularization function φ(·) is defined as φ(·) = ‖ · ‖2
HK where ‖ · ‖HK is the norm in the space HK

associated to a kernel K. This section is inspired from the work in (Alquier et al., 2019). The

authors established convergence rates when φ(·) = ‖ · ‖Hk and F = RBHK , for R > 0, for classifica-

tion problems under a much stronger global Margin assumption. We improve their work in many

aspects 1) heavy-tailed noise can be handled, 2) the margin assumption is replaced by the weaker

local Bernstein condition, 3) we can analyse the regularization φ(·) = ‖ · ‖2
HK and 4) there is no

restriction on the class F = HK , we do not restrict F to be a regularization ball in HK .

Using Theorems 4.4 we derive explicit bounds on the error rates depending on ‖f ∗‖HK for the

minmax-MOM estimators. For the RERM, we could use Theorem 4.2. However, it turns out that
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the sub-Gaussian Assumption 4.4 on the class F −f ∗ is complicated to verify for RKHS and the ap-

plication of Theorem 4.2 may be tricky. Instead, we derive another analysis where no sub-Gaussian

assumption is required. In the precise example of RKHS, our homogeneity argument implies that we

can restrict ourselves to a bounded class of functions. As a consequence, we can use concentration

tools such as Talagrand’s inequality instead of results from the sub-Gaussian theory. Nothing has

to be assumed on the design X.

We are given N pairs (Xi, Yi)
N
i=1 of random variables where the Xi’s take their values in some

measurable space X and Yi ∈ Y where Y = {−1, 1} for binary classification problems and Y = R
for regression problems. We introduce a kernel K : X × X 7→ R measuring a similarity between

elements of X i.e K(x1, x2) is small if x1, x2 ∈ X are “similar”. The main idea of kernel methods

is to transport the design data Xi’s from the set X to a certain Hilbert space via the application

x 7→ K(x, ·) := Kx(·) and construct a statistical procedure in this ”transported” and structured

space. The kernel K is used to generate an Hilbert space known as Reproducing Kernel Hilbert

Space (RKHS). Recall that if K is a positive definite function i.e for all n ∈ N∗, x1, · · · , xn ∈ X and

c1, · · · , cn ∈ R,
∑n

i=1

∑n
j=1 cicjK(xi, xj) ≥ 0, then by Mercer’s theorem there exists an orthonormal

basis (φi)
∞
i=1 of L2(µ) such that µ × µ almost surely, K(x, y) =

∑∞
i=1 λiφi(x)φi(y), where (λ)∞i=1 is

the sequence of eigenvalues (arranged in a non-increasing order) of TK and φi is the eigenvector

corresponding to λi where

TK : L2(µ)→ L2(µ)

(TKf)(x) =

∫
K(x, y)f(y)dµ(y) . (4.18)

The Reproducing Kernel Hilbert Space HK is the set of all functions of the form
∑∞

i=1 aiK(xi, ·)
where xi ∈ X and ai ∈ R converging in L2(µ) endowed with the inner product

〈 ∞∑
i=1

aiK(xi, ·),
∞∑
i=1

biK(yi, ·)
〉

=
∞∑

i,j=1

aibjK(xi, yi) .

An alternative way to define a RKHS is via the feature map Φ : X 7→ `2 such that Φ(x) =(√
λiφi(x)

)∞
i=1

. Since (Φk)
∞
k=1 is an orthogonal basis of HK , it is easy to see that the unit ball of

HK can be expressed as

BHK = {fβ(·) =
〈
β,Φ(·)

〉
`2
, ‖β‖2 ≤ 1} , (4.19)

where
〈
·, ·
〉
`2

is the standard inner product in the Hilbert space `2. In other words, the feature map

Φ can the used to define an isometry between the two Hilbert spaces HK and `2.

The RKHS HK is therefore a convex class of functions from X to R that can be used as a learning

class F . Let the oracle f ∗ be defined as

f ∗ ∈ argmin
f∈HK

E[¯̀(f(X), Y )] .
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Let f be in HK , by the reproducing property and Cauchy-Schwarz we have for all x, y in X

|f(x)− f(y)| =
〈
f,Kx −Ky

〉
≤ ‖f‖HK‖Kx −Ky‖HK . (4.20)

From Equation (4.20), it is clear that the norm of a function in the RKHS controls how fast the

function varies over X with respect to the geometry defined by the kernel (Lipschitz with constant

‖f‖HK ). As a consequence the norm of regularization ‖·‖HK is related with its degree of smoothness

w.r.t. the metric defined by the kernel on X . Let ¯̀ be any loss function satisfying Assumption 4.2,

the estimators f̂φλ and f̂φλ,S defined respectively in Equation (4.4) and (4.9) are given by

f̂φλ = argmin
f∈HK

1

N

N∑
i=1

¯̀(f(Xi), Yi) + λ‖f‖2
HK (4.21)

and

f̂φλ,S = argmin
f∈HK

sup
g∈HK

MOMS(`f − `g) + λ
(
‖f‖2

HK − ‖g‖2
HK

)
. (4.22)

It is clear that φ(·) = ‖ · ‖2
HK verifies Assumption 4.3 with η = 2 We establish oracle inequalities

for f̂φλ and f̂φλ,S respectively defined in Equation (4.21) and (4.22) when the loss satisfies Assump-

tion 4.2. In (Mendelson et al., 2010; Meister and Steinwart, 2016; Wu et al., 2006; Smale and Zhou,

2007) for the quadratic loss function and (Eberts et al., 2013; Farooq and Steinwart, 2019) for

the pinball loss (which is Lipschitz), the authors establish error bounds for when the target Y is

assumed to satisfy Y ∈ [−M,M ] almost surely which is a really strong Assumption. Our analysis

applies when the target Y is unbounded and may even be heavy-tailed which is, as far as we know,

a new result. In (Caponnetto and De Vito, 2007) the authors do not assume that the target Y is

bounded. However, their analysis requires to control the Laplace transform of the noise Y − f ∗(X)

(see Assumption 2 in (Caponnetto and De Vito, 2007)). As a consequence they cannot consider

heavy-tailed noise. In (Eberts et al., 2013; Farooq and Steinwart, 2019) the authors are also in-

terested in the approximation error of kernel methods and compare ourselves with their results is

a complicated task. We obtain the same error rate as (Mendelson et al., 2010; Caponnetto and

De Vito, 2007) when the eigenvalues of the integral operator TK satisfies λn ≤ βn−1/p for some

0 < p < 1 and β > 0 an absolute constant when Y may be unbounded and heavy-tailed. The

value of p is related with the smoothness of the space HK . Different kinds of spectrum could be

analysis. It would only change the computation of the complexity fixed-points. For the sake of

simplicity we only focus on this example as it has been studied in (Caponnetto and De Vito, 2007;

Mendelson et al., 2010) for instance.

New general analysis for the RERM

Since every RKHS are convex, Assumption 4.1 holds. Therefore, when the loss function satisfies

Assumption 4.2, to use Theorem 4.2 it is necessary to verify Assumptions 4.4 and 4.5. However, it
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turns out that the sub-Gaussian Assumption on the class F−f ∗ cannot be verified in practice except

for very precise Kernels. Our analysis (see Section 4.6.1) requires the sub-Gaussian Assumption to

show that with an exponentially large probability for all f in F such that ‖f − f ∗‖L2 ≤ r(A∗) and

φ(f − f ∗) ≤ η(2 + 2/A∗)φ(f ∗): ∣∣(P − PN)Lf
∣∣ ≤ r2(A∗)

2A∗
, (4.23)

where A∗ satisfies Assumption 4.5 and r(·) is the complexity parameter defined in Definition 4.3.

However, when F = HK we have {f ∈ F : φ(f−f ∗) ≤ η(2+2/A∗)φ(f ∗)} = {f ∈ HK : ‖f−f ∗‖HK ≤
2
√

1 + 1/A∗‖f ∗‖HK}. Moreover, from the reproducing property, for all x ∈ X and all f in HK such

that ‖f − f ∗‖HK ≤ 2
√

1 + 1/A∗‖f ∗‖HK we have

|f(x)− f ∗(x)| =
〈
f − f ∗, Kx

〉
HK
≤ ‖f − f ∗‖HK‖Kx‖HK
= ‖f − f ∗‖HK

√
K(x, x) ≤ 2

√
(1 + 1/A∗)‖K‖∞‖f ∗‖HK

Therefore, when F = HK , for K a bounded Kernel, the control of (4.23) is over a bounded class

of functions. As a consequence, the sub-Gaussian Assumption is no longer necessary. Instead

we develop another analysis based of the Bousquet’s version of Talagrand’s inquality (Bousquet,

2002). Since no sub-Gaussian assumption is required we use another complexity parameter where

the Rademacher complexity replaces the Gaussian mean-width.

r̄(A) = inf

{
r > 0, E sup

f∈F :‖f−f∗‖L2
≤r,

‖f−f∗‖HK≤2
√

2+1/A‖f∗‖HK

N∑
i=1

σi(f − f ∗)(Xi) ≤
Nr2

64AL

}
(4.24)

We also adapt the local Bernstein assumption to the Definition (4.24).

Assumption 4.10. There exists a constant Ā ≥ 1 such that for all f ∈ HK if

‖f − f ∗‖L2
= 2L

√
(2 + 1/Ā)‖K‖∞‖f ∗‖HK r̄(Ā) and ‖f − f ∗‖HK ≤ 2

√
2 + 1/Ā‖f ∗‖HK then ‖f −

f ∗‖2
L2
6 ĀPLf .

Theorem 4.8. Let (Xi, Yi)
N
i=1 be i.i.d random variables with common distribution P . Let ` be a loss

function satisfying Assumption 4.2 with L ≥ 1. Let HK be a RKHS associated to a bounded Kernel

K. Grant Assumption 4.10 such that Ā ≥ 1. Let U = 2L
√

(2 + 1/Ā)‖K‖∞. With probability larger

than

1− 2 exp

(
− Nr̄2(Ā)

64(LĀ)2

)
for all regularization parameters λ ≥ λ0 = max(1, U‖f ∗‖HK )r̄2(Ā)/‖f ∗‖2

HK the estimators f̂φλ defined

in Equation (4.21) satisfies

‖f̂φλ − f ∗‖L2 ≤ (4 + 6Ā)λ
‖f ∗‖2

HK

max(1,
√
U‖f ∗‖HK )r̄(Ā)

and ‖f̂φλ − f ∗‖HK ≤ (8 + 4/Ā)‖f ∗‖HK .
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The proof can be find in Section 4.6.3. Theorem 4.8 is similar to Theorem 4.2 for RKHS when

the sub-Gaussian assumption is relaxed. By taking λ = λ0 we get

‖f̂φλ − f ∗‖L2 ≤ (4 + 6Ā) max(1,
√
U‖f ∗‖HK )r̄(Ā) .

When ‖f ∗‖HK ≤ M , we obtain the same bounds as the one in Theorem 4.2 (up to a constant

depending on Ā and ‖K‖∞) and a Lespki’s procedure as in Theorem 4.3 yields to an adaptive

estimator. Note that the assumption that ‖K‖∞ <∞ is really weak since any continuous kernel on

a compact space is bounded. Moreover many results in RKHS are derived for the Gaussian Kernel

with is bounded by 1, (Farooq and Steinwart, 2019; Steinwart and Christmann, 2008).

Explicit bounds for the ERM and the minmax MOM estimators

To obtain explicit bounds in Theorems 4.4 and 4.8 it is necessary to calculate the complexity

parameters r̄(Ā) and r̃(Ã). To do so, we have to compute the Rademacher complexity of the set

{f ∈ HK : ‖f − f ∗‖2
HK ≤ ρ, ‖f − f ∗‖L2 ≤ r} for any ρ, r > 0. From Theorem 2.1 in (Mendelson,

2003), if K is a bounded kernel, then for all ρ, r > 0

E sup
f∈HK∩(f∗+rBL2

∩ρBHK )

1√
N

∣∣∣∣ N∑
i=1

σi(f − f ∗)(Xi)

∣∣∣∣ ≤ √2‖K‖∞
( ∞∑

k=1

(
ρ2λk ∧ r2

))1/2

Remark 4.3. Since the feature map Φ defines an isometry between HK and `2, the computation of

the Gaussian mean-width of the set {f ∈ HK : ‖f − f ∗‖2
HK ≤ ρ, ‖f − f ∗‖L2 ≤ r} is equivalent to

the computation of the Gaussian mean-width of an ellipsoid in `2. Consequently, it is easy to show

that Rademacher complexity and Gaussian mean-width (and thus r̄(A) and r(A) ) are equivalent.

In the case where the eigenvalues λk ≤ βk−1/p for all k ∈ N∗ and 0 < p < 1, where β > 0 is an

absolute constant and ρ/r ≥ 1, straightforward computations give( ∞∑
k=1

(
ρ2λk ∧ r2

))1/2

≤ β
ρp

rp−1

It follows that for any bounded kernel K such that the eigenvalues assoicated to TK satisfy λk ≤
βk−1/p for all k ∈ N∗ and 0 < p < 1 and A > 0

r̃2(A) = C(A, β, L, p)
‖f ∗‖(2p)/(p+1)

HK
N1/(p+1)

= 6r̄2(A)

where C(A, β, L, p) =
(
384AβL

)2/(p+1)(
4(2 + 1/A)

)2p/(p+1)

Now, let us turn to Bernstein condition. We use the results from (Chinot et al., 2019b) where the

local Bernstein condition has been extensively studied for many convex and Lipschitz loss functions.

In Section 4.4.1 we studied the Huber loss function. Here, we consider the absolute loss (which is

the quantile loss for τ = 1/2). Let us present the Assumptions required to study the Bernstein

condition for the quantile loss function.
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Assumption 4.11. Let r, ρ, ε > 0.

• a) There exists C ′ > 0 such that for all f ∈ F such that ‖f − f ∗‖L2 = r and ‖f − f ∗‖HK ≤ ρ,

‖f − f ∗‖L2+ε ≤ C ′‖f − f ∗‖L2

• b) Let C ′ be the constant defined above. There exists α > 0 such that, for all x ∈ X and for

all z in R such that |z− f ∗(x)| ≤ (
√

2C ′)(2+ε)/εr, we have fY |X=x(z) ≥ γ, where fY |X=x is the

conditional density function of Y given X = x.

Assumption 4.11 and 4.9 are very similar. When Y = f ∗(X) + W , for f ∗ in HK and W is a

symmetric noise, condition b) simply means that the noise W puts enough mass around 0.

Theorem 4.9 ((Chinot et al., 2019b)). Grant Assumptions 4.11 (with parameter r, ρ and γ). Then,

for all f ∈ F satisfying ‖f − f ∗‖L2 = r and ‖f − f ∗‖HK ≤ ρ, ‖f − f ∗‖2
L2
6 (4/γ)PLf .

For kernel methods, the point a) of Assumption 4.11 is a L2+ε/L2-norm equivalence which is

only required in the ball defined by the norm in the RKHS. Let f in F such that ‖f − f ∗‖HK ≤ ρ

and ‖f − f ∗‖L2 = r, we have

‖f − f ∗‖2+ε
L2+ε

=

∫
(f(x)− f ∗(x))2+εdPX(x) ≤ (ρ‖K‖∞)ε‖f − f ∗‖2

L2

Since ‖f − f ∗‖L2 = r, it follows that

‖f − f ∗‖L2+ε ≤
(
ρ‖K‖∞

r

)ε/(2+ε)

‖f − f ∗‖L2 .

Therefore, the point a) holds with C ′ = (ρ‖K‖∞/r)ε/(2+ε). Let us turn to the point b). From

the fact that C ′ = (ρ‖K‖∞/r)ε/(2+ε), we have
√

2C ′
(2+ε)/ε

r = 2(2+ε)/2ερ‖K‖∞. For example, when

Y = g(X) +W , where g ∈ HK : X 7→ R and W is symetric and independent from X, it is easy to

see that f ∗ = g. In this case the second point of Assumption 4.11 can be rewritten as fW (z) ≥ γ for

all z ∈ R such that |z| ≤ 2(2+ε)/2ερ‖K‖∞, where fW denotes the density function of W . It simply

means that the noise puts enough mass around 0.

We are now in position to state our main Theorems in a RKHS associated with a bounded kernel

when the absolute loss function is considered for the RERM and the minmax MOM estimators.

Theorem 4.10. Let X be some measurable space and K : X × X 7→ R be a positive definite

bounded kernel where HK denote its associated RKHS. Let (λk)
∞
k=1 be the sequence of eigenvalues

associated to TK in L2(µ) such that λk ≤ βk−1/p for all k ∈ N∗ and 0 < p < 1, where β > 0 is an

absolute constant. For any x ∈ X , let fY |X=x denote the conditional density function of Y given

X = x. Let us assume that there exists γ > 0 such that, for all x ∈ X and for all z in R such

that |z − f ∗(x)| ≤ 2
√

8 + γ‖f ∗‖HK‖K‖∞, we have fY |X=x(z) ≥ γ. Let (Xi, Yi)
N
i=1 be i.i.d random

variables distributed as (X, Y ). Then with probability larger than

1− exp

(
− γC(4/γ, β, 1, p)

256
Np/(p+1)‖f ∗‖2p/(p+1)

HK

)
,
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when

λ = C(4/γ, β, 1, p) max(1, (8 + γ)‖K‖∞‖f ∗‖HK )
‖f ∗‖2/(p+1)

HK
N1/(1+p)

,

the estimator f̂φλ associated to the absolute loss function defined in Equation (4.21) satisfies

‖f̂φλ − f ∗‖2
L2
≤ (4 + 3/(2γ))C(4/γ, β, 1, p) max(1, (8 + γ)‖K‖∞‖f ∗‖HK )

‖f ∗‖2/(p+1)
HK

N1/(1+p)

and ‖f̂φλ − f ∗‖HK ≤ (8 + γ)‖f ∗‖HK

The error rate in Theorem 4.10 is the same as in (Mendelson et al., 2010). However our analysis

do not require that the target Y is bounded. It can even be heavy-tailed. Note also that

nothing is assumed on the design X.

Remark 4.4. When Y = f ∗(X) + W , where W is a standard Cauchy distribution, the condition

fY |X=x(z) ≥ γ for z in R such that |z− f ∗(x)| ≤ 2
√

8 + γ‖f ∗‖HK‖K‖∞ is satisfied as long as there

exists γ ∈ (0, 1] such that
1

π
(
1 + 4(8 + γ)‖f ∗‖2

HK‖K‖2
∞
) ≥ γ

which holds for γ = min(1, 1/(π(1 + 36‖f ∗‖2‖K‖2
∞))). Consequently the analysis holds for heavy-

tailed distribution.

Let us turn to the MOM-estimators.

Theorem 4.11. Let X be some measurable space and K : X × X 7→ R be a positive definite

bounded kernel where HK denote its associated RKHS. Let (λk)
∞
k=1 be the sequence of eigenvalues

associated to TK in L2(µ) such that λk ≤ βk−1/p for all k ∈ N∗ and 0 < p < 1, where β > 0 is an

absolute constant. For any x ∈ X , let fY |X=x denote the conditional density function of Y given

X = x. Let us assume that there exist γ > 0 such that, for all x ∈ X and for all z in R such that

|z − f ∗(x)| ≤ 2
√

8 + γ‖f ∗‖HK‖K‖∞, we have fY |X=x(z) ≥ γ. Let us assume that (Xi, Yi)i∈I are

independent and distributed as (X, Y ). Let S ≥ 7|O|/3. Let:

CS,N = max

(
6C(4/γ, β, 1, p)

‖f ∗‖(2p)/(p+1)
HK

N1/(p+1)
,
13888

γ

S

N

)
Then with probability larger than 1− exp(−S/504) when

λ =
CS,N
‖f ∗‖H2

K

,

the estimator f̂φλ,S associated to the absolute loss function defined in Equation (4.22) satisfies

‖f̂φλ,S − f ∗‖2
L2
≤ (4 + 3/(2γ))CS,N and ‖f̂φλ,S − f ∗‖HK ≤ (8 + γ)‖f ∗‖HK

When S . Np/(p+1)‖f ∗‖(2p)/(p+1)
HK we recover the bounds from Theorem 4.10. However for the

minmax MOM-estimators, up to 3S/7 outliers can contaminate the dataset without deteriorated

the error rate.
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4.5 Conclusion

We have presented two general results for the RERM and minmax-MOM estimators describing

the statistical properties of regularization in learning theory. For those two estimators we do not

assume that the regularization is a norm which is, as far as we know a new general result for

Lipschitz and convex loss functions. Under the local Bernstein Assumption, we can obtain rates of

convergence depending on φ(f ∗). Results for the RERM have been derived under the i.i.d and the

sub-Gaussian Assumptions on the class F − f ∗ while no concentration Assumption is required for

minmax MOM-estimators. For MOM-estimators, a number of outliers smaller than square of the

rate of convergence in a non-contaminated setting × number of observations does not deteriorate the

learning procedure. We studied the particular example of SVM where no sub-Gaussian assumption

on the class F is required and when the target Y may be heavy-tailed, widely improving the existing

results in the literature.

There are a number of interesting directions in which this work can be extended. One relevant

and closely related problem is to obtain sparsity bounds, i.e bounds depending on an underlying

structure of the oracle f ∗ such as the sparsity or the rank of the oracle f ∗. It has been partially done

(under a really strong Assumption) in (Alquier et al., 2019; Chinot, 2019b) when the regularization

function if a norm. However without this Assumption, the proofs no longer hold and a new analysis

has to be developed.

4.6 Proof main theorems

4.6.1 Proof of Theorems 4.2, 4.3 RERM

In the remaining of the proof we shall use repeatedly the following notations

A = A∗, θ =
1

2A
, δ =

2

A
+ 3 γ =

2

A
+ 2 .

Proof Theorem 4.2

Proof of Theorem 4.2 is split into two parts. First, we identify an event onto which the statistical

behavior of the regularized estimator f̂λ := f̂φλ can be controlled using only deterministic arguments.

Then, we prove that this event holds with a probability at least as large as the one in (4.6). Let us

define ρ∗ = (2 + γ)ηφ(f ∗). We first introduce this event:

Ω :=
{

for all f ∈ F ∩ (f ∗ + r∗BL2) ∩Bφ
ρ∗(f

∗),
∣∣(P − PN)Lf

∣∣ ≤ θ(r∗)2
}

where we recall that r∗ = r(A∗) and Bφ
ρ∗(f

∗) = {f ∈ F : φ(f − f ∗) ≤ ρ∗}.

Lemma 4.1. Let λ ≥ (r∗)2/φ(f ∗), on the event Ω we have

• For all f ∈ F\Bλ, PNLλf > 2(θ + 1)λφ(f ∗)



4.6. PROOF MAIN THEOREMS 145

• For all f ∈ F ∩ Bλ, PNLλf ≥ −2(θ + 1)λφ(f ∗)

Proposition 4.1. Let λ ≥ λ0 := (r∗)2/φ(f ∗), on the event Ω, one has

φ(f̂λ − f ∗) ≤ ρ∗, ‖f̂λ − f ∗‖L2 ≤ λ
δφ(f ∗)

(A−1 − θ)r∗

Proof. Let λ ≥ λ0, we denote Bλ =

(
f ∗ +

(
λδφ(f ∗)/((A−1 − θ)r∗)

)
BL2

)
∩ Bφ

ρ∗(f
∗). We want to

prove that f̂λ ∈ Bλ.We recall that the regularized empirical excess loss function is defined for all

f ∈ F by

PNLλf = PNLf + λ
(
φ(f)− φ(f ∗)

)
.

Since f̂λ is such that PNLλf̂λ ≤ 0, it is enough to prove that PNLλf > 0 for all f ∈ F\Bλ to get that

f̂λ ∈ Bλ. In fact, for the adaptive procedure it will be necessary to use the results from Lemma 4.1

which is equivalent (up to the choice of the constants) to show than PNLλf > 0 for all f ∈ F\Bλ.
From Lemma 4.1 it follows immediately that φ(f̂λ − f ∗) ≤ ρ∗ and ‖f̂λ − f ∗‖L2 ≤ λ δφ(f∗)

(A−1−θ)r∗

Proof. Lemma 4.1

The proof follows from an homogeneity argument saying that if PNLλf0
> 2(θ+ 1)λφ(f ∗) on the

border of Bλ then we also have PNLλf > 2(θ + 1)λφ(f ∗) for all f ∈ F outside Bλ. Inside Bλ the

arguments are similar.

Let f in F be outside of Bλ. By convexity of F , there exists f0 ∈ F and α > 1 such that

f − f ∗ = α(f0 − f ∗) and f0 ∈ ∂Bλ where we denote by ∂Bλ the border of Bλ. By definition, we ei-

ther have: 1) φ(f0−f ∗) = ρ∗ and ‖f0 − f ∗‖L2
≤ (λδφ(f ∗))/((A−1−θ)r∗) in that case, α is such that

1 ≤ α ≤ φ(f − f ∗)/ρ∗ (see Lemma 4.5 in Section 4.7) or 2) ‖f0 − f ∗‖L2
= (λδφ(f ∗))/((A−1 − θ)r∗)

and φ(f0 − f ∗) ≤ ρ∗ and, in that case, α = ‖f − f ∗‖L2
/
(
(λδφ(f ∗))/((A−1 − θ)r∗)

)
. We will treat

the two cases independently.

Let us first explain the role of the convexity of the loss function by writing down an homogeneity

argument linking the empirical excess risk of f to the one of f0. For all i ∈ {1, · · · , N}, let

ψi : R→ R be defined for all u ∈ R by

ψi(u) = ¯̀(u+ f ∗(Xi), Yi)− ¯̀(f ∗(Xi), Yi). (4.25)

The functions ψi are such that ψi(0) = 0, they are convex because ¯̀ is, in particular αψi(u) ≤ ψi(αu)

for all u ∈ R and α ≥ 1 and ψi(f(Xi)− f ∗(Xi)) = ¯̀(f(Xi), Yi)− ¯̀(f ∗(Xi), Yi) so that the following

holds:

PNLf =
1

N

N∑
i=1

ψi
(
f(Xi)− f ∗(Xi)

)
=

1

N

N∑
i=1

ψi(α(f0(Xi)− f ∗(Xi)))

≥ α

N

N∑
i=1

ψi((f0(Xi)− f ∗(Xi))) = αPNLf0 . (4.26)
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For the regularization part the same homogeneity arguments holds.

φ(f)− φ(f ∗) = φ
(
f ∗ + α(f0 − f ∗)

)
− φ(f ∗) ≥ α

(
φ(f0)− φ(f ∗)

)
where we used Lemma 4.6 (see Section 4.7). Therefore

PNLλf ≥ αPNLλf0

Let us now place ourselves on the event Ω up to the end of the proof and let f0 ∈ F ∩ ∂Bλ. We

explore two cases depending on the localization of f0 on the border of Bλ: 1) φ(f0 − f ∗) = ρ∗ and

‖f0 − f ∗‖L2
≤ (λδφ(f ∗))/((A−1−θ)r∗) which is the case where the regularization part helps to show

that PNLλf0
> 2(θ+1)λφ(f ∗) or 2) ‖f0 − f ∗‖L2

= (λδφ(f ∗))/((A−1−θ)r∗) and φ(f0−f ∗) ≤ ρ∗ which

is where the Bernstein’s condition helps. We consider the first case which is when φ(f0 − f ∗) = ρ∗

f ∗ ρ∗B

r(ρ∗)BL2

ρ∗B ∩ r(ρ∗)BL2

f

f0

Figure 4.1: Construction of f0.

and ‖f0 − f ∗‖L2
≤ (λδφ(f ∗))/((A−1 − θ)r∗). There are two cases, either ‖f0 − f ∗‖L2

≤ r∗ or

‖f0 − f ∗‖L2
≥ r∗. In both cases, from the fact that φ(f0 − f ∗) ≤ η

(
φ(f0) + φ(f ∗)

)
we have

φ(f0)− φ(f ∗) ≥ γφ(f ∗). If ‖f0 − f ∗‖L2
≤ r∗, on Ω we have |(P − PN)Lf0| ≤ θ(r∗)2 and we get

PNLλf = PNLf + λ (φ(f)− φ(f ∗)) ≥ α
(
PNLf0 + λγφ(f ∗)

)
≥ α

(
− θ(r∗)2 + γλφ(f ∗)

)
≥ (−θ + γ)λφ(f ∗) > 2(θ + 1)λφ(f ∗)

where we used the facts that λ ≥ (r∗)2/φ(f ∗) and PLf0 ≥ 0 . If r∗ ≤ ‖f0 − f ∗‖L2
≤ λδφ(f ∗)/((A−1−

θ)r∗) we use the same projection trick. Let α1 = ‖f0 − f ∗‖L2/r
∗ and set f1 in F be such that

f0 − f ∗ = α1(f1 − f ∗). We have ‖f1 − f ∗‖L2 = r∗ and φ(f1 − f ∗) ≤ ρ∗. Therefore on Ω we have

PNLλf ≥ α
(
PNLf0 + γλφ(f ∗)

)
≥ α

(
α1PNLf1 + γλφ(f ∗)

)
≥ γλφ(f ∗) > 2(θ + 1)λφ(f ∗)

Since, on Ω, PNLf1 ≥ PLf1− θ(r∗)2 ≥ A−1‖f1− f ∗‖L2− θ(r∗)2 = (A−1− θ)(r∗)2 > 0 where we used

Assumption 4.5.
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We now turn to the second case where ‖f0 − f ∗‖L2
= λδφ(f ∗)/((A−1−θ)r∗) and φ(f0−f ∗) ≤ ρ∗.

Remember that in this case α = ‖f − f ∗‖L2
/
(
(λδφ(f ∗))/((A−1 − θ)r∗)

)
. The regularization part

no longer helps. However, by the Bernstein Assumption 4.5 and using the same projection trick we

get

PNLf ≥
‖f − f ∗‖L2

(λδφ(f ∗))/((A−1 − θ)r∗)PNLf0 ≥
‖f − f ∗‖L2

(λδφ(f ∗))/((A−1 − θ)r∗)
‖f0 − f ∗‖L2

r∗
PNLf1

≥ ‖f − f
∗‖L2

r∗
(A−1 − θ)(r∗)2

where f1 is such that f0 − f ∗ =
(
‖f0 − f ∗‖L2/(r

∗)
)
(f1 − f ∗). We have ‖f1 − f ∗‖L2 = r∗ and

φ(f1 − f ∗) ≤ ρ∗. Since ‖f − f ∗‖L2
≥ λδφ(f ∗)/((A−1 − θ)r∗), we finally get

PNLλf ≥
‖f − f ∗‖L2

r∗
(A−1 − θ)(r∗)2 − λφ(f ∗) ≥ (δ − 1)λφ(f ∗) > 2(θ + 1)λφ(f ∗)

We conclude the proof by studying PNLλf for f ∈ F ∩Bλ. One more time there are two cases, either

‖f − f ∗‖L2 ≤ r∗ or ‖f − f ∗‖L2 ≥ r∗. In the first case, since PLf0 , on Ω we get that

PNLλf ≥ −θ(r∗)2 − λφ(f ∗) ≥ −(θ + 1)λφ(f ∗)

For ‖f − f ∗‖L2 ≥ r∗ using the projection trick, there exists α ≥ 1 such that PNLf ≥ αPNLf0 where

f0 satisfies ‖f0 − f ∗‖L2 = r∗ and φ(f0 − f ∗) ≤ ρ∗. Therefore on Ω, using Assumption 4.5, we get

PNLf ≥ α(A−1 − θ)(r∗)2 ≥ −θλφ(f ∗). Finally in that case

PNLλf ≥ −(θ + 1)λφ(f ∗)

Next, we prove that Ω holds with large probability. To that end, we use the results from (Alquier

et al., 2019).

Lemma 4.2. (Alquier et al., 2019) Assume that Assumption 4.2 and Assumption 4.4 hold. Let

F ′ ⊂ F then for every u > 0, with probability at least 1− 2 exp(−u2)

sup
f,g∈F ′

|(P − PN)(Lf − Lg)| ≤
16LB√
N

(w(F ′) + udL2(F ′))

where dL2 is the L2 metric, dL2(F ′) is the L2 diameter of F ′.

It follows from Lemma 4.2 that for any u > 0, with probability larger that 1− 2 exp(−u2),

sup
f∈F∩(f∗+r∗BL2

)∩Bφ
ρ∗ (f∗)

∣∣(P − PN)Lf
∣∣ ≤ sup

f,g∈F∩(f∗+r∗BL2
)∩Bφ

ρ∗ (f∗)

∣∣(P − PN)(Lf − Lg)
∣∣

≤ 16LB√
N

(
w
(
F ∩ (f ∗ + r∗BL2) ∩Bφ

ρ∗(f
∗)
)

+ udL2

(
F ∩ (f ∗ + r∗BL2) ∩Bφ

ρ∗(f
∗)
))

.
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We have dL2

(
F ∩ (f ∗+ r∗BL2)∩Bφ

ρ∗(f
∗)
)
≤ r∗ and w

(
F ∩ (f ∗+ r∗BL2)∩Bφ

ρ∗(f
∗)
)

= w
(
F ∩ r∗BL2 ∩

Bφ
ρ∗(0)

)
, By definition of the complexity parameter (see Equation (4.3)), for u = θ

√
Nr∗/(32LB),

with probability at least

1− 2 exp
(
− θ2N(r∗)2/(322L2B2)

)
(4.27)

for every f in F ∩ (f ∗ + r∗BL2) ∩Bφ
ρ∗(f

∗),∣∣(P − PN)Lf
∣∣ ≤ θ(r∗)2 (4.28)

Proof Theorem 4.3

In this section we work on the event

Ω̃ :=

{
for all f ∈ F ∩

(
f ∗ +

2δ

A−1 − θr
∗BL2

)
∩Bφ

ρ∗(f
∗),

∣∣(P − PN)Lf
∣∣ ≤ θ(r∗)2

}
Using the same proof as the one for Ω, it easy to show that Ω̃ holds with probability larger than

1− 2 exp

(
−
(
θ(A−1 − θ)

)2
N(r∗)2

(64LBδ)2

)
Note that Ω ⊂ Ω̃ and then Lemma 4.1 still holds.

Let us assume that (λj)
J
j=0 = (r2

j/φj)
J
j=0 is non increasing. From the choice of (φj)

J
j=0, there exists

k̃ such that φk̃ ≤ φ(f ∗) ≤ 2φk̃. Note that if (λj)
J
j=0 is non decreasing, it is enough to use the same

proof with k̃ such that (1/2)φk̃ ≤ φ(f ∗) ≤ φk̃.

Moreover, from Lemma 4.1, for all λ ≥ λ0, Tλ(f
∗) = −PNLλf̂λ ≤ (θ+ 1)λφ(f ∗) ≤ 2(θ+ 1)λφk̃. Since

φk̃ ≤ φ(f ∗) it follows that λk̃ ≥ λ0. And finally

PNLλf̂λ ≤ 2(θ + 1)φk̃λk̃ ≤ 2(θ + 1)φkλk for all k ≥ k̃ (4.29)

From the definition of k∗ and Equation (4.29) it follows that k∗ ≤ k̃ and thus, f̃ ∈ R̂k̃. As a

consequence, PNLλk̃f̃ ≤ Tλk̃(f̃) and we get

PNLλk̃f̃ ≤ 2(θ + 1)λk̃φk̃ ≤ 2(θ + 1)λk̃φ(f ∗)

From Lemma 4.1 it follows that f̃ satisfies ‖f̃ − f ∗‖L2 ≤ λk̃δφ(f ∗)/((A−1− θ)r∗) ≤ 2λk̃δφk̃/((A
−1−

θ)r∗) ≤
(
2δ/(A−1 − θ)

)
r∗ and φ(f̃ − f ∗) ≤ η(2 + γ)φ(f ∗).

We finish this section by showing a oracle inequality for f̃ . From the fact that ‖f̃ − f ∗‖L2 ≤(
2δ/(A−1 − θ)

)
r∗ and φ(f̃ − f ∗) ≤ η(2 + γ)φ(f ∗), it follows, on Ω̃ that (P − PN)Lf̃ ≤ θ(r∗)2. For

all λ > 0

PLf̃ = PNLf̃ + (P − PN)Lf̃ ≤ PNLλf̃ + λ
(
φ(f ∗)− φ(f̃)

)
+ θ(r∗)2 ≤ PNLλf̃ + λφ(f ∗) + θ(r∗)2 .

In particular for λ = λk̃ one has PNLλk̃f̃ ≤ 2(θ + 2)φk̃λk̃ ≤ 2(θ + 1)(r∗)2 and λk̃φ(f ∗) ≤ 2(r∗)2.

Finally

PLf̃ ≤ (4 + 3θ)(r∗)2
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4.6.2 Proof Theorem 4.4 minmax MOM estimators

Let r̃ and CS,r design respectively r̃(Ã) and Cs,r(Ã). Moreover, all along the proof, the following

notations will be used repeatedly.

A = Ã, θ =
1

2A
, δ =

2

A
+ 3 γ =

2

A
+ 2, µ =

θ

192L
.

The proof is divided into two parts. First, we identify an event where the minmax MOM estimators

f̂λS := f̂S is controlled. Then, we prove that this event holds with large probability. Let S > 7|O|/3,

and

Cs,r = max

(
96L2S

θ2N
, r̃2

)
and ρ∗ = η(2 + γ)φ(f ∗)

Let Bλ,S = {f ∈ E : ‖f − f ∗‖L2 ≤ δ
A−1−θ

λφ(f∗)√
Cs,r

and φ(f ∗ − f ∗) ≤ ρ∗}. Consider the following

event

ΩS =

{
∀f ∈ F ∩

√
CS,rBL2 ∩Bφ

ρ∗(f
∗),

S∑
s=1

I

(∣∣∣∣(PBs − P )(`f − `f∗)
∣∣∣∣ ≤ θCs,r

)
>
S

2

}
. (4.30)

Deterministic argument

Lemma 4.3. f̂S ∈ Bλ,S if the following inequalities holds

sup
f∈F\Bλ,s

MOMS(`f∗ − `f ) + λ
(
φ(f ∗)− φ(f)

)
≤ −2(θ + 1)λφ(f ∗) , (4.31)

sup
f∈F∩Bλ,S

MOMS(`f∗ − `f ) + λ
(
φ(f ∗)− φ(f)

)
≤ (θ + 1)λφ(f ∗) . (4.32)

Proof. For any f ∈ F , denote by S(f) = supg∈F MOMS(`f − `g) + λ
(
φ(f)− φ(g)

)
. If (4.31) holds,

by homogeneity of MOMS, any f ∈ F\Bλ,S satisfies

S(f) >MOMS(`f − `f∗) + λ
(
φ(f)− φ(f ∗)

)
> 2(θ + 1)λφ(f ∗) .

On the other hand, if (4.32) and (4.31) hold,

S(f ∗) = sup
f∈F

MOMS(`f∗ − `f ) + λ
(
φ(f ∗)− φ(f)

)
6 (θ + 1)λφ(f ∗) .

Thus, by definition of f̂S and (4.32),

S(f̂S) 6 S(f ∗) 6 (θ + 1)λφ(f ∗) .

Therefore, if (4.31) and (4.32) hold, f̂s ∈ Bλ,S.

Lemma 4.4. For all S ≥ 7|O|/3 and λ ≥ CS,r/φ(f ∗), inequalities (4.31) and (4.32) holds on ΩS.
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Proof. The arguments are exactly the same as the one in the proof of Lemma 4.1. For all functions

f ∈ F\Bλ,S and for each block Bs there exist α ≥ 1 and f0 ∈ F in the border of Bλ,S such

that PBsLf ≥ αPBsLf0 . We present here only one case (the others are trivial applications of

the arguments in the proof of Lemma 4.1). In the case where φ(f0 − f ∗) = ρ∗ and
√
CS,r ≤

‖f0 − f ∗‖L2
≤ (λδφ(f ∗))/((A−1 − θ)

√
CS,r). We still have λ

(
φ(f0)− φ((f ∗)

)
≥ λγφ(f ∗). Using the

projection trick, there exists α1 > 1 such that on each block Bs, PBsLf0 ≥ α1PBsLf1 for f1 such

that ‖f1−f ∗‖L2 =
√
CS,r and φ(f1−f ∗) ≤ ρ∗ and then, on the event ΩS, one more than S/2 blocks

Bs

PBsLλf ≥ α
(
PBsLf0 + γλφ(f ∗)

)
≥ α

(
α1PBsLf1 + γλφ(f ∗)

)
≥ γλφ(f ∗) > 2(θ + 1)λφ(f ∗) (4.33)

where we used the fact that on ΩS, there are at least S/2 blocks Bs such that, PBsLf1 ≥ PLf1 −
θCS,r ≥ A−1‖f1 − f ∗‖2

L2
− θCS,r = (A−1 − θ)CS,r > 0 and Assumption 4.8.

As Equation (4.33) holds on more than S/2 blocks we get that

MOMS(`f − `f∗) + λ
(
φ(f)− φ(f ∗)

)
≥ 2(θ + 1)λφ(f ∗)

From the same arguments as the one in the proof of Lemma 4.1 we finally obtain

sup
f∈F\Bλ,S

MOMS(`f∗ − `f ) + λ
(
φ(f ∗)− φ(f)

)
< −2(θ + 1)λφ(f ∗) ,

sup
f∈F∩Bλ,S

MOMS(`f∗ − `f ) + λ
(
φ(f ∗)− φ(f)

)
≤ (θ + 1)λφ(f ∗)

which concludes to proof.

Control of the stochastic event

Contrary to the deterministic argument, the control of the stochastic event is very different from

the one for the RERM.

Proposition 4.2. Grant Assumptions 4.2, 4.1, 4.3, 4.7 and 4.8. Let S ≥ 7|O|/3. Then ΩS holds

with probability larger than 1− 2 exp(−S/504).

Proof. Let F = {f ∈ F : ‖f−f ∗‖L2 ≤
√
CS,r, φ(f−f ∗) ≤ ρ∗} and let h(t) = I{t ≥ 2}+(t−1)I{1 ≤

t ≤ 2}. This function satisfies ∀t ∈ R+, I{t ≥ 2} ≤ h(t) ≤ I{t ≥ 1}. Let Ws = ((Xi, Yi))i∈Bs and,

for any f ∈ F , let Gf (Ws) = (PBs − P )(`f − `f∗). Let also CS,r = max

(
96L2S/(θ2N), r̃2

)
. For

any f ∈ F , let

z(f) =
S∑
s=1

I{|Gf (Ws)| ≤ θCS,r} .
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Proposition 4.2 will be proved if P
(
z(f) ≥ S/2) > 1 − e−S/504. Let S denote the set of indices of

blocks which have not been corrupted by outliers, S = {s ∈ {1, · · · , S} : Bs ⊂ I}. Basic algebraic

manipulations show that

z(f) > |S| − sup
f∈F

∑
s∈S

(
h
(
2(θCS,r)

−1|Gf (Ws)|
)
− Eh

(
2(θCS,r)

−1|Gf (Ws)|
))

−
∑
s∈S

Eh
(
2(θCS,r)

−1|Gf (Ws)|
)
. (4.34)

The last term in (4.34) can be bounded from below since for all f ∈ F and s ∈ S,

Eh
(
2(θCS,r)

−1|Gf (Ws)|
)
6 P

(
|Gf (Ws)| ≥

θCS,r
2

)
6

4EGf (Ws)
2

(θCS,r)2

6
4S2

θ2C2
S,rN

2

∑
i∈Bs

E[(`f − `f∗)2(Xi, Yi)] ≤
4L2S

θ2C2
S,rN
‖f − f ∗‖2

L2
.

The last inequality follows from Assumption 4.7. Since ‖f − f ∗‖L2 ≤
√
CS,r,

Eh
(
2(θCS,r)

−1|Gf (Ws)|
)
6

4L2S

θ2CS,rN
.

As CS,r > 96L2S/(θ2N),

Eh
(
2(θCS,r)

−1|Gf (Ws)|
)
≤ 1

24
.

Plugging this inequality in (4.34) yields

z(f) ≥ |S|(1− 1

24
)− sup

f∈F

∑
s∈S

(
h
(
2(θCS,r)

−1|Gf (Ws)|
)
− Eh

(
2(θCS,r)

−1|Gf (Ws)|
))

. (4.35)

Using the Mc Diarmid’s inequality, with probability larger than 1− exp(−|S|/288) we get

sup
f∈F

∑
s∈S

(
h
(
2(θCS,r)

−1|Gf (Ws)|
)
− Eh

(
2(θCS,r)

−1|Gf (Ws)|
))

≤ |S|
24

+ E sup
f∈F

∑
s∈S

(
h
(
2(θCS,r)

−1|Gf (Ws)|
)
− Eh

(
2(θCS,r)

−1|Gf (Ws)|
))

.

By the symmetrization lemma, it follows that

sup
f∈F

∑
s∈S

(
h
(
2(θCS,r)

−1|Gf (Ws)|
)
− Eh

(
2(θCS,r)

−1|Gf (Ws)|
))

6
|S|
24

+ 2E sup
f∈F

∑
s∈S

σkh
(
2(θCS,r)

−1|Gf (Ws)|
)
.
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As φ is 1-Lipschitz with φ(0) = 0, the contraction Lemma from (Ledoux and Talagrand, 2013) and

yields

sup
f∈F

∑
s∈S

(
h
(
2(θCS,r)

−1|Gf (Ws)|
)
−Eh

(
2(θCS,r)

−1|Gf (Ws)|
))

6
|S|
24

+
4

θ
E sup
f∈F

∑
s∈S

σs
Gf (Ws)

CS,r

=
|S|
24

+
4

θ
E sup
f∈F

∑
s∈S

σs
(PBs − P )(`f − `f∗)

CS,r

For any s ∈ S, let (σi)i∈Bs independent from (σs)s∈S , (Xi)i∈I and (Yi)i∈I . The vectors (σiσs(`f −
`f∗)(Xi, Yi))i,f and (σi(`f−`f∗)(Xi, Yi))i,f have the same distribution. Thus, by the symmetrization

and contraction lemmas, with probability larger than 1− exp(−|S|/288),

sup
f∈F

∑
s∈S

(
h
(
2C−1

S,r|Gf (Wk)|
)
− Eh

(
2C−1

S,r|Gf (Ws)|
))

≤ |S|
24

+
8

θ
E sup
f∈F

∑
s∈S

1

|Bs|
∑
i∈Bs

σi
(`f − `f∗)(Xi, Yi)

CS,r

=
|S|
24

+
8S

θN
E sup
f∈F

∑
i∈∪s∈SBs

σi
(`f − `f∗)(Xi, Yi)

CS,r

≤ |S|
24

+
8LS

θN
E sup
f∈F

∣∣∣∣ ∑
i∈∪s∈SBs

σi
(f − f ∗)(Xi)

CS,r

∣∣∣∣ . (4.36)

Now either 1) S ≤ θ2r̃2N/(96L2) or 2) S > θ2r̃2N/(96L2). Assume first that S ≤ θ2r̃2N/(96L2), so

CS,r = r̃2 and by definition of the complexity parameter

E sup
f∈F

∣∣∣∣ ∑
i∈∪s∈SBs

σi
(f − f ∗)(Xi)

CS,r

∣∣∣∣ = E sup
f∈F

1

r̃2

∣∣∣∣ ∑
i∈∪s∈SBs

σi(f − f ∗)(Xi)

∣∣∣∣ ≤ µ|S|N
S

.

If S > θ2r̃2N/(96L2), CS,r = 96L2S/(θ2N). Then,

E sup
f∈F

∣∣∣∣ ∑
i∈∪k∈SBs

σi
(f − f ∗)(Xi)

CS,r

∣∣∣∣
≤ E

[
1

r̃2
sup

f∈F∩Bφ
ρ∗ (f∗)∩

(
f∗+r̃BL2

) ∣∣∣∣ ∑
i∈∪s∈SBs

σi(f − f ∗)(Xi)

∣∣∣∣
∨ sup
f∈F∩Bφ

ρ∗ (f∗): r̃≤‖f−f∗‖L2
≤
√

96L2S/(θ2N)

∣∣∣∣ ∑
i∈∪s∈SBs

σi
(f − f ∗)(Xi)

96L2S/(θ2N)

∣∣∣∣]
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By an homogeneity argument we obtain

sup
f∈F∩Bφ

ρ∗ (f∗): r̃≤‖f−f∗‖L2
≤
√

96L2S/(θ2N)

∣∣∣∣ ∑
i∈∪s∈SBs

σi
(f − f ∗)(Xi)

96L2S/(θ2N)

∣∣∣∣]

≤ 1

r̃
sup

f∈F∩Bφ
ρ∗ (f∗): r̃≤‖f−f∗‖L2

≤
√

96L2S/(θ2N)

∣∣∣∣ ∑
i∈∪s∈SBs

σi
(f − f ∗)(Xi)

‖f − f ∗‖

∣∣∣∣
≤ 1

r̃2
sup

f∈F∩Bφ
ρ∗ (f∗): ‖f−f∗‖L2

=r̃

∣∣∣∣ ∑
i∈∪s∈SBs

σi(f − f ∗)(Xi)

∣∣∣∣
Finally, in the second case 2) we also have

E sup
f∈F

∣∣∣∣ ∑
i∈∪s∈SBs

σi
(f − f ∗)(Xi)

max( 4L2S
αθ2N

, r̃2)

∣∣∣∣ ≤ µ|S|N
S

Plugging this bound in (4.36) yields, with probability larger than 1− e−|S|/288

sup
f∈F

∑
s∈S

(
h
(
2C−1

S,r|Gf (Ws)|
)
− Eh

(
2C−1

S,r|Gf (Ws)|
))
6 |S|

(
1

24
+

8Lµ

θ

)
=
|S|
12

.

Plugging this inequality into (4.35) shows that, with probability at least 1− e−|S|/288,

z(f) >
7|S|

8
.

As S > 7|O|/3, |S| > S−|O| > 4S/7, hence, z(f) > S/2 holds with probability at least 1−e−S/504.

4.6.3 Proof Theorem 4.8

As for the proof of Theorem 4.2 presented in Section 4.6.1 the proof is split into two parts. While

we develop another stochastic argument the deterministic part from Proposition 4.1 is exactly the

same.

In the example of RKHS, the sub-Gaussian Assumption is not necessary. Instead the tools from

bounded class of functions such as the Bousquet’s inequality that we recall here can be used.

Theorem 4.12 (Theorem 2.6, (Koltchinskii, 2011a)). Let F be a class of functions bounded by M .

For all t > 0, with probability larger than 1− exp(−t)

sup
f∈F
|(PN − P )f | ≤ E sup

f∈F
|(PN − P )f |+

√
2
t

N

(
sup
f∈F

Pf 2 + 2ME sup
f∈F
|(PN − P )f |

)
+
tM

3N
(4.37)

Let us define

Ω :=

{
∀f ∈ F : ‖f − f ∗‖L2 ≤ max(1,

√
U‖f ∗‖HK )r̄(Ā), ‖f − f ∗‖2

HK ≤ 4(2 + 1/Ā)‖f ∗‖2
HK ,∣∣(P − PN)Lf

∣∣ ≤ max(1, U‖f ∗‖HK )r̄2(Ā)

2Ā

}
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where we recall that U = 2L
√

(2 + 1/Ā)‖K‖∞. By taking r∗ = max(1,
√
U‖f ∗‖HK )r̄(Ā) in the

proof of Proposition 4.1 it is clear that the deterministic argument is exactly the same.

Let us show that Ω holds with probability larger than 1 − exp
(
− (Nr̄2(Ā))/(64(ĀL)2)

)
. Let

F = {f ∈ HK , ‖f − f ∗‖L2 ≤ max(1,
√
U‖f ∗‖HK )r̄(Ā), ‖f − f ∗‖2

HK ≤ ρ∗}. From Assumption 4.2

for all x, y ∈ X × Y and f ∈ F

|(`f − `f∗)(x, y)| ≤ L|f(x)− f ∗(x)| ≤ max(1, U‖f ∗‖HK )

We can Therefore use Theorem 4.12 with M = max(1, U‖f ∗‖HK ). From the definition of F it

follows that supf∈F P (`f − `f∗)
2 ≤ L2 max(1, U‖f ∗‖HK )r̄2(Ā). Let (σi)

N
i=1 be i.i.d Rademacher

random variables independent from (Xi, Yi)i=1, from the symmetrization and contraction Lemmas

(Ledoux and Talagrand, 2013) we get

E sup
f∈F
|(PN − P )Lf | ≤ 4LE sup

f∈F

1

N

N∑
i=1

σi(f − f ∗)(Xi) ≤ max(1, U‖f ∗‖HK )
r̄2(Ā)

16Ā

where we used the Definition 4.24 of r(·). For any t > 0, it follows from Theorem 4.12 that for any

function f in F

|(PN − P )Lf | ≤max(1, U‖f ∗‖HK )
r̄2(Ā)

16Ā
+

max(1, U‖f ∗‖HK )t

3N

+

√
2t

N
max(1, U2‖f ∗‖2

HK )r̄2(Ā)(L2 +
1

8Ā
) .

Take t = Nr̄2(Ā)/(64(LĀ)2) and use the fact that Ā, L ≥ 1 conclude the proof.

4.7 Supplementary lemmas

Lemma 4.5. Let γ > 0 and f in F such that φ(f − f ∗) ≥ γ. Then, there exist f0 in F and

1 ≤ α ≤ φ(f − f ∗)/γ such that f = f ∗ + α(f0 − f ∗) and φ(f0 − f ∗) = γ

Proof. Let α0 = sup{α > 0, φ
(
α(f − f ∗)

)
≤ γ}. For α = γ/φ(f − f ∗) ≤ 1 we have φ

(
α(f − f ∗)

)
≤

αφ(f − f ∗) = γ so that α0 ≥ γ/φ(f − f ∗). By convexity of F , f0 := f ∗ + α0(f − f ∗) ∈ F and

α0 ≤ 1 otherwise, by convexity of φ we would have α0φ(f −f ∗) ≤ φ
(
α0(f −f ∗)

)
≤ γ. Moreover, by

maximality of α0, f0 is such that φ
(
α(f − f ∗)

)
= φ(f0 − f ∗) = γ. The result follows for α = α−1

0

Lemma 4.6. Let f : R 7→ R be a convex function. Then for all λ ≥ 1 and x, y in R:

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (4.38)

Proof. Let λ ≥ 1, by convexity of f , for all x, y in R:

f

(
1

λ
x+ (1− 1

λ
)y

)
≤ 1

λ
f(x) + (1− 1

λ
)f(y)

It suffice to take x = λx+ (1− λ)y to get the result.



Chapter 5

ERM and RERM are optimal estimators

for regression problems when malicious

outliers corrupt the labels

In this chapter, we study Empirical Risk Minimizers (ERM) and Regularized Empirical Risk Min-

imizers (RERM) for regression problems with convex and L-Lipschitz loss functions. We consider

a setting where |O| malicious outliers may contaminate the labels. In that case, we show that

the L2-error rate is bounded by rN + L|O|/N , where N is the total number of observations and

rN is the L2-error rate in the non-contaminated setting. When rN is minimax-rate-optimal in a

non-contaminated setting, the rate rN + L|O|/N is also minimax-rate-optimal when |O| outliers

contaminate the label. The main results of the paper can be used for many non-regularized and

regularized procedures under weak assumptions on the noise. For instance, we present results for

Huber’s M-estimators (without penalization or regularized by the `1-norm) and for general regular-

ized learning problems in reproducing kernel Hilbert spaces.

155
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5.1 Introdution

Let (Xi, Yi)i=1,··· ,N be random variables taking values in X × R, where X is a measurable space.

Given a new input X ∈ X , one wants to predict its associated label Y ∈ R. To proceed, we

consider (X, Y ) as a random variable valued in X ×R and given a class of predictors F of functions

f : X 7→ R, the goal is to predict/approximate the oracle f ∗ defined as

f ∗ ∈ argmin
f∈F

E [`(f(X), Y )] ,

where `(f(X), Y ) measures the error of predicting f(X) while the true label is Y . To esti-

mate/approximate the function f ∗, we use the dataset (Xi, Yi)i=1,··· ,N . Regularized empirical risk

minimization is the most widespread strategy in machine learning to estimate f ∗. There exists

an extensive literature on its generalization capabilities (Vapnik, 1998; Koltchinskii et al., 2006;

Koltchinskii, 2011b; Lecué and Mendelson, 2018; Chinot et al., 2019b). However, in the recent

years, many papers highlighted its severe limitations. One main drawback, is that a single outlier

(Xo, Yo) (in the sense that nothing is assumed on (Xo, Yo)) may deteriorate the performances of

RERM. Consequently, RERM is in general, not robust to outliers. However, what happens if only

the labels (Yi)i=1,··· ,N are contaminated ? In (Dalalyan and Thompson, 2019); the authors raised

the question whether it is possible to attain optimal rates of convergence in outlier-robust sparse re-

gression using regularized empirical risk minimization. They consider the model, Yi =
〈
Xi, t

∗〉+ εi,

where Xi is a Gaussian random vector in Rp with a covariance matrix satisfying the Restricted

Eigenvalue condition (Van De Geer et al., 2009) and t∗ is s-sparse. For non-contaminated data

they suppose that εi ∼ N (0, σ2), while it can be anything when malicious outliers contaminate the

sample. The authors prove that the `1-penalized empirical risk minimizer based on the Huber’s loss

function has an error rate of the order

σ

√
s

log(p)

N
+
|O|
N

(5.1)

where |O| is the number of outliers contaminating the labels. Consequently, they showed that

RERM associated with the Huber loss function is minimax-rate-optimal when |O| malicious outliers

corrupt the labels.

5.1.1 Setting

Let (Ω,A,P) be a probability space where Ω = X × Y . X denotes the measurable space of the

inputs and Y ⊂ R the measurable space of the outputs. Let (X, Y ) be a random variable taking

values in Ω with joint distribution P and let µ be the marginal distribution of X. Let F denote a

class of functions f : X 7→ Y . A function f in F is named a predictor. The function ` : Y×Y 7→ R+

is a loss function such that `(f(x), y) measures the quality of predicting f(x) while the true answer

is y. For any function f in F we write `f (x, y) := `(f(x), y). For any distribution Q on Ω and any
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funtion f : X × Y 7→ R we write Qf = E(X,Y )∼P [f(X, Y )]. Let f ∈ F , the risk of f is defined as

R(f) := P`f = E(X,Y )∼P [`(f(X), Y )]. A prediction function with minimal risk is called an oracle

and is defined as f ∗ ∈ argminf∈F P`f . For the sake of simplicity, it is assumed that the oracle f ∗

exists and is unique. The joint distribution P of (X, Y ) being unknown, computing f ∗ is impossible.

Instead one is given a dataset D = (Xi, Yi)
N
i=1 of N random variables taking values in X × Y . In

this paper, we consider a setup where |O| outputs may be contaminated. More precisely, let I ∪O
denote an unknown partition of {1, · · · , N} where I is the set of informative data and O the set

of outliers. It is assumed that:

Assumption 5.1. (Xi, Yi)i∈I are i.i.d with a common distribution P . The random variables (Xi)
N
i=1

are i.i.d with law µ.

Nothing is assumed on the labels (Yi)i∈O. They can even be adversial outliers making the learning

as hard as possible. The goal is, without knowing the partition I ∪ O, to use the informative

data (Xi, Yi)i∈I to construct an estimator f̂ that approximates/estimates the oracle f ∗. A way

of measuring the quality of an estimator is via the error rate ‖f̂ − f‖L2(µ) or the excess risk

PLf̂ := P`f̂ − P`f∗ . We assume the following:

Assumption 5.2. The class F is convex.

A natural idea to construct robust estimators when the labels might be contaminated is to

consider Lipschitz loss functions (Huber, 1992; Huber and Ronchetti, 2011). Moreover, for compu-

tational purposes we will also focus on convex loss functions (van de Geer, 2016).

Assumption 5.3. There exists L > 0 such that, for any y ∈ Y, `(·, y) is L-Lipschitz and convex.

Recall that the Empirical Risk Minimizer (ERM) and the Regularized Empirical Risk Minimizer

(RERM) are respectively defined as

f̂N ∈ argmin
f∈F

1

N

N∑
i=1

`(f(Xi), Yi), and f̂λN ∈ argmin
f∈F

1

N

N∑
i=1

`(f(Xi), Yi) + λ‖f‖ ,

where λ > 0 is a tuning parameter and ‖ · ‖ is a norm. Under Assumptions 5.2 and 5.3 the ERM

and RERM are computable using tools from convex optimization.

5.1.2 Our contributions

As exposed in (Dalalyan and Thompson, 2019), in a setting where |O| outliers contaminate only the

labels, RERM with the Huber loss function is minimax-optimal for the sparse-regression problem

when the noise and design of non-contaminated data are both Gaussian. It leads to the following

question:



158 CHAPTER 5. ROBUST RERM: OUTLIERS IN THE LABELS

1. Are the RERM optimal for other loss functions and other regresssion problems than the sparse-

regression problem when malicious outliers corrupt the labels ?

Based on previous works (Chinot et al., 2019b; Chinot, 2019b; Chinot et al., 2019a; Alquier et al.,

2019), we study ERM and RERM for regression problems when the penalization is a norm and the

loss function is simultaneously convex and Lipschitz and show that:

In a framework where |O| outliers may contaminate the labels, with weak assumptions on

the noise, the excess risk and the square of the error rate for both ERM and RERM can be

bounded by

r2
N + L2 |O|2

N2
(5.2)

where N is the total number of observations, L is the Lipschitz constant from Assumption 5.3

and rN is the error rate in a non-contaminated setting.

When the proportion of outliers |O|/N is smaller than the error rate normalized by the Lips-

chitz constant rN/L, both ERM and RERM behave as if there was no contamination. The result

holds for any loss function that is simultaneously convex and Lipschitz and not only for the Huber

loss function. We obtain theorems that can be used for many well-known regression problems in-

cluding structured high-dimensional regression (see Section 5.3.3), non-parametric regression (see

Section 5.3.4) and matrix trace regression (using the results from (Alquier et al., 2019)).

The next question one may ask is the following:

2. Is the general bound (5.2) minimax-rate-optimal when |O| malicious outliers may have cor-

rupted the labels ?

To answer question 2, we use the results from (Chen et al., 2018). The authors established a

general minimax theory for the ε-contamination model defined as P(ε,θ,Q) = (1− ε)Pθ + εQ given a

general statistical experiment {Pθ, θ ∈ Θ}. A deterministic proportion ε of outliers with same the

distribution Q contaminates Pθ. When Y = fθ(X) + ε, θ ∈ Θ , in Section 5.6, we show that the

lower minimax bounds for regression problems in the ε-contamination model are the same when

• Both the design X and the response variable Y are contaminated.

• Only the response variable Y is contaminated.

Moreover, it is clear that a lower bound on the risk in the ε-contamination model implies a lower

bound when |O| = εN arbritrary outliers contaminate the dataset since in our setting, outliers do

not necessarily have the same distribution Q. As a consequence, for regression problems, minimax-

rate-optimal bounds in the ε-contamination model are also optimal when Nε malicious outliers

corrupt the labels.
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When the bound (5.2) is minimax-rate-optimal for regression problems in the ε-contamination

model with ε = |O|/N , then it is also minimax-rate-optimal when |O| malicious outliers

corrupt the labels.

In particular, we recover and generalize the results from (Dalalyan and Thompson, 2019) when

the noise of non-contaminated data is not necessarily Gaussian but may be heavy-tailed.

The results are derived under the local Bernstein condition introduced in (Chinot et al., 2019b).

This condition enables to obtain fast rates of convergence when the noise is heavy-tailed. As a proof

of concept, we study Huber’sM -estimators in Rp (non-penalized or regularized by the `1-norm) when

the noise may be heavy-tailed. In these cases, the error rates are respectively
√
Tr(Σ)/N + |O|/N

and
√
s log(p)/N+|O|/N , where Σ is the covariance matrix of the design X. We also study learning

problems in general reproducing Kernel Hilbert Space (RKHS). We derive error rates depending

on the spectrum of the integral operator as in (Smale and Zhou, 2007; Mendelson et al., 2010;

Caponnetto and De Vito, 2007) without assumption on the design and when the noise has heavy

tails (see section 5.3.3).

5.1.3 Related Litterature

Regression problems with possibly heavy-tailed data or outliers cannot be handled by classical

least-squares estimators. This lack of robustness of least-squares estimators gave birth to the the-

ory of robust statistics developed by Peter Huber (Huber, 1992; Huber and Ronchetti, 2011; Huber

et al., 1967) , John Tukey (Tukey, 1960, 1962) and Frank Hampel (Hampel, 1971, 1974). The

most classical alternatives to least-squares estimators are M-estimators which consist in replacing

the quadratic loss function by another one, less sensitive to outliers (Maronna, 1976; Yohai and

Maronna, 1979).

Robust statistics has attracted a lot of attention in the past few years both in the computer science

and the statistical communities. For example, although estimating the mean of a random vector in

Rp is one of the oldest and fundamental problems in robust statistics, it is still a very active research

area. Surprisingly, optimal bounds for heavy-tailed data have been obtained only recently (Lugosi

et al., 2019b). The estimator in (Lugosi et al., 2019b) cannot be computed in practice. Using

SDP, (Hopkins, 2018) obtained optimal bounds achievable in polynomial time. In recent works,

still using SDP, (Lecué and Depersin, 2019) designed an algorithm computable in nearly linear

time, while (Lei et al., 2019) developed the first tractable optimal algorithm not based on the SDP.

In the meantime, another recent trend in robust statistics is to focus on finite sample risk bounds that

are minimax-rate-optimal when |O| outliers contaminate the dataset. For example, for the problem

of mean estimation, when |O| malicious outliers contaminate the dataset and the non-contaminated
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data are assumed to be sub-Gaussian, the optimal rate of the estimation error measured in Euclidean

norm scales as
√
p/N + |O|/N . In (Chen et al., 2018), the authors developed a general analysis for

the ε-contamination model. In (Chen et al., 2016), the same authors proposed an optimal estimator

when |O| outliers with the same distribution contaminate the data. In (Diakonikolas et al., 2019b),

the authors focused on the problem of high-dimensional linear regression in a robust model where

an ε-fraction of the samples can be adversarially corrupted. Robust regression problems have also

been studied in (Cheng et al., 2019; Diakonikolas et al., 2019a; Liu et al., 2018; Bhatia et al., 2015).

Above-mentioned articles assume corruption both in the design and the label. In such a corruption

setting ERM and RERM are known to be poor estimators. In (Dalalyan and Thompson, 2019), the

authors raised the question whether it is possible to attain optimal rates of convergence in sparse

regression using regularized empirical risk minimization when a proportion of malicious outliers

contaminate only the labels. They studied `1 penalized Huber’s M -estimators. This work is the

closest to our setting and reveals that when only the labels are contaminated, simple procedures,

such as penalized Huber’s M estimators, still perform well and are minimax-rate-optimal. Their

proofs rely on the fact that non-contaminated data are Gaussian. Our approach is different and

more general.

Other alternatives to be robust both for heavy-tailed data and outliers in regression have been pro-

posed in the literature such as Median Of Means (MOM) based methods (Lecué and Lerasle, 2019;

Lecué et al., 2018; Chinot et al., 2019b). However such estimators are difficult to compute in prac-

tice and can lead to sub-optimal rates. For instance, for sparse-linear regressions in Rp with a sub-

Gaussian design, MOM-based estimators have an error rate of the order
√
s log(p)/N + L

√
|O|/N

(see (Chinot et al., 2019b)) while the optimal dependence with respect to the number of outliers

is
√
s log(p)/N + L|O|/N . Finally, there was a recent interest in robust iterative algorithms. It

was shown that robustness of stochastic approximation algorithms can be enhanced by using robust

stochastic gradients. For example, based on the geometric median (Minsker et al., 2015), (Chen

et al., 2017) designed a robust gradient descent scheme. More recently, (Nazin et al., 2019) showed

that a simple truncation of the gradient enhances the robutness of the stochastic mirror descent

algorithm.

The paper is organized as follows. In Section 5.2, we present general results for non-regularized

procedures with a focus on the example of the Huber’s M -estimator in Rp. Section 5.3 gives general

results for RERM that we apply to `1-penalized Huber’s M -estimators with isotropic design and

regularized learning in RKHS. Section 5.5 presents simple simulations to illustrate our theoritical

findings. In section 5.6, we show that the minimax lower bounds for regression problems in the

ε-contamination model are the same when 1) both the design X and the labels are contaminated

and 2) when only the labels are contaminated. Section 5.7 shows that we can extend the results for

`1-penalized Huber’s M -estimator when the covariance matrix of the design X satisfies a Restricted

Eigenvalue condition. Finally, the proofs of the main theorems are presented in Section 5.8.
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Notations All along the paper, for any f in F , ‖f‖L2 will be written instead of ‖f‖L2(µ) where

‖f‖2
L2(µ) =

∫
f 2dµ. The letter c will denote an absolute constant. For a set T , its cardinality is

denoted |T |. For two real numbers a, b, a∨ b and a∧ b denote respectively max(a, b) and min(a, b).

For any set H for which it makes sense, let H+f ∗ = {h+f ∗ s.t h ∈ H}, H−f ∗ = {h−f ∗ s.t h ∈ H}.

5.2 Non-regularized procedures

In this section we study the Empirical Risk Minimizer (ERM) where we recall the definition below:

f̂N = arg min
f∈F

1

N

N∑
i=1

`(f(Xi), Yi) . (5.3)

We establish bounds on the error rate ‖f̂N − f ∗‖L2 and the excess risk PLf̂N := P`f̂N − P`f∗ in

two different settings 1) when F − f ∗ is sub-Gaussian, and 2) when F − f ∗ is locallly bounded. We

derive fast rates of convergence under very weak assumptions.

5.2.1 General results in the sub-Gaussian framework

The ERM performs well when the empirical excess risk f 7→ PNLf uniformly concentrates around

its expectation f 7→ PLf . Thus, it is necessary to impose a strong concentration assumption on

the class {Lf (X, Y ), f ∈ F}. From assumption 5.3 it is implied by a concentration assumption on

the class {(f − f ∗)(X), f ∈ F}.

Assumption 5.4. The class F − f ∗ is B sub-Gaussian i.e for all f ∈ F and all λ > 0

E exp(λ(f − f ∗)(X)/‖f − f ∗‖L2) ≤ exp(λ2B2/2) .

See (Lecué and Mendelson, 2013) for many examples of sub-Gaussian classes. In this context,

we use the Gaussian mean-width as a measure of the complexity of the class function F that we

introduce here

Definition 5.1. Let H ⊂ L2(µ). Let (Gh)h∈H be the canonical centered Gaussian process in-

dexed by H (in particular, the covariance structure of (Gh)h∈H is given by (E(Gh1 −Gh2)2)
1/2

=

(E(h1(X)− h2(X))2)
1/2

for all h1, h2 ∈ H). The Gaussian mean-width of H is w(H) =

E suph∈H Gh.

For example, when F = {
〈
t, ·
〉
, t ∈ T} and the covariance matrix of X is Σ, we have w(F ) =

E supt∈T
〈
t,G

〉
, where G ∼ N (0,Σ). Similarly to (Lecué and Mendelson, 2018; Chinot et al.,

2019b,a; Alquier et al., 2019), the error rate and the excess risk are driven by fixed point solutions

of a Gaussian mean-width:
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Definition 5.2. Let BL2 denote the unit ball induced by L2(µ). The complexity parameter rI(·)
is defined as

rI(A) = inf{r > 0 : ALB(L+ 1)w(F ∩ (f ∗ + rBL2)) ≤ cr2
√
|I|}

where c > 0 denotes an absolute constant, L is the Lipschitz constant from assumption 5.3 and B

is the sub-Gaussian constant from assumption 5.4.

To obtain fast rates of convergence it is necessary to impose assumptions on the distribution

P . For instance, the margin assumptions (Mammen and Tsybakov, 1999; Tsybakov, 2004; van de

Geer, 2016) and the Bernstein conditions from (Bartlett and Mendelson, 2006a) have been widely

used in statistics and learning theory to prove fast convergence rates for the ERM. In the spirit

of (Chinot et al., 2019b) we introduce a weaker local Bernstein assumption.

Assumption 5.5. Let r(·) be a complexity parameter s.t for all A > 0, r(A) ≥ rI(A). There exists

a constant A > 0 such that for all f ∈ F if ‖f − f ∗‖L2 = r(A) we have ‖f − f ∗‖2
L2
≤ APLf .

Note that assumption 5.5 holds locally around the oracle f ∗. The smallest radius corresponds to

rI(A). The bigger r(·) the stronger assumption 5.5 is. Assumption 5.5 has been extensively studied

in (Chinot et al., 2019b,a) for different Lipschitz and convex loss functions. For the sake of brevity,

in applications we will only focus on the Huber loss function in this paper.

We are now in position to state the main theorem for the ERM.

Theorem 5.1. Let I ∪ O be a partition of {1, · · · , N} where |O| ≤ |I|. Let r(·) be a complexity

parameter such that for all A > 0, r(A) ≥ rI(A). Grant Assumptions 5.1, 5.3 with L ≥ 1, 5.2, 5.4

and 5.5 with r(·) for A ≥ 1. As long as |O| < |I|r(A)/(2AL), with probability larger that 1 −
2 exp

(
− c|I|r2(A)/(ALB(1 + L))

)
, the estimator f̂N defined in Equation (5.3) satisfies

‖f̂N − f ∗‖L2 ≤ r(A) and PLf̂N ≤
r2(A)

A

The partition I ∪O is unknown: no one knows which observations are outliers. In Theorem 5.1,

we can always take r(A) = max(rI(A), 2AL|O|/|I|). With such a choice of complexity parameter,

we necessarily have |O| < (|I|r(A))/(2AL) and with probability larger that

1− 2 exp

(
− c

ALB(L+ 1)
max

(
|I|r2

I(A),
|O|2
|I|

))
the estimator f̂N defined in Equation (5.3) satisfies

‖f̂N − f ∗‖L2 ≤ cAL

(
rI(A) +

|O|
N

)
.

Theorem 5.1 holds if the local Bernstein condition 5.5 is satisfied for all functions f in F such

that ‖f − f ∗‖L2 = cAL(rI(A) + |O|/N), that is on an L2-sphere with a radius equal to the rate of

convergence. The bound on the error rate can be decomposed as the sum of the error rate in the
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non-contaminated setting and the proportion of outliers |O|/N . As long as the proportion of outliers

is smaller than the error rate in the non-contaminated setting, the error rate remains constant. On

the other hand, when the proportion of outliers exceeds the error rate in the non-contaminated

setting, the error rate in the contaminated setting becomes linear with respect to the proportion

of outliers. When rI is minimax optimal in a non-contaminated setting, we obtain that the ERM

is minimax optimal when less that NrI outliers contaminate the labels. In Section 5.2.3, we show

that this dependence with respect to the number of outliers is minimax optimal for linear regression

in Rp.

5.2.2 General results in the bounded framework

In Section 5.2.1 we considered sub-Gaussian class of functions to derive fast rates of convergence.

In this section, we derive a general result when the localized class F − f ∗ is bounded (localized

around the oracle f ∗ with respect to the L2(µ)-norm, see Assumption 5.6). Since the Gaussian

mean-width no longer appears naturally, it is necessary to define a new measure of the complexity

of the class F . A way to measure the complexity a class of functions F is via Rademacher

complexities (Koltchinskii et al., 2006; Koltchinskii, 2011b).

Definition 5.3. The complexity parameter in the bounded setting rbI(·) is defined as

rbI(A) = inf

{
r > 0 : E sup

f∈F∩(f∗+rBL2
)

∑
i∈I

σi
(
f − f ∗

)
(Xi) ≤

|I|r2

32A(L+ 1)L

}
where (σi)i∈I are i.i.d Rademacher random variables independent to (Xi)i∈I, L is the Lipschitz

constant from assumption 5.3 and BL2 denote the unit ball with respect to L2(µ).

To obtain fast rates, we need to adapt the local Bernstein condition to this new complexity

parameter and introduce the local boundedness assumption

Assumption 5.6. Let rb(·) be a complexity parameter such that for every A > 0, rb(A) ≥ rbI(A).

There exist constants A ≥ 1, M > 0 such that for all f ∈ F if ‖f − f ∗‖L2 = max(1,
√
LM)rb(A)

we have

‖f − f ∗‖2
L2
≤ APLf and ∀x ∈ X , |(f − f ∗)(x)| ≤M (5.4)

The second part of Equation (5.4) requires L∞-boundedness only in the L2-neighborhood around

the oracle f ∗ where the radius is proportional to the rate of convergence rb(A). For example,

let us consider the case when F = {
〈
t, ·
〉
, t ∈ Rp} and X is isotropic (i.e E

〈
X, t

〉2
= ‖t‖2

2 for

all t ∈ Rp). Let f(·) =
〈
t, ·
〉

be such that ‖f − f ∗‖L2 = ‖t − t∗‖2 ≤ max(1,
√
LM)rb(A) and

|(f − f ∗)(x)| = |
〈
t− t∗, x

〉
| ≤ ‖t− t∗‖2‖x‖2 ≤ ‖x‖2 max(1,

√
LM)rb(A). Without loss of generality

we can assume that M ≥ 1 and the condition becomes, there exists M ≥ 1 such that for all x in

X ⊂ Rp, ‖x‖2
2 ≤ M/(L(rb(A)2). Simple computations (see (Koltchinskii et al., 2006)) show that

when rb(A) = rbI(A), the complexity parameter rb(A) is of the order
√
p/|I| and the condition
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become ‖x‖2
2 ≤ (M |I|)/(pL). The more informative data we have, the larger the euclidean radius

of X can be.

Assumption 5.6 is local around the oracle f ∗. The smallest radius corresponds to max(1,
√
LM)rbI(A).

The bigger rb(·) the stronger assumption 5.5 is. We are now in position to state the main theorem

for the ERM in the bounded setting.

Theorem 5.2. Let I ∪ O be a partition of {1, · · · , N} where |O| ≤ |I|. Let rb(·) be a complexity

parameter such that for all A > 0, rb(A) ≥ rbI(A). Grant Assumptions 5.1, 5.3 with L ≥ 1, 5.2

and 5.6 with rb(·) for A ≥ 1 and M > 0. As long as |O| < (|I|r(A))/(2AL), with probability larger

than 1− 2 exp
(
− c|I|r2(A)/(L+ 1)2A2)

)
, the estimator f̂N defined in Equation (5.3) satisfies

‖f̂N − f ∗‖L2(µ) ≤ max(1,
√
LM)rb(A) and PLf̂N ≤ max(1, LM)

r2(A)

A

In Theorem 5.2 we can always take rb(A) = max(rbI(A), 2AL|O|/|I|). With such a choice of

rb(·) we necessarily have |O| < (|I|rb(A))/(2AL) and with probability larger that

1− 2 exp

(
− c

A2(L+ 1)2
max

(
|I|(rbI(A))2,

|O|2
|I|

))
the estimator f̂N defined in Equation (5.3) satisfies

‖f̂N − f ∗‖L2(µ) ≤ cALmax(1,
√
LM)

(
rbI(A) +

|O|
N

)
.

As in the sub-Gaussian setting there is a tradeoff between confidence and accuracy. When the

number of outliers is smaller thanNrbI(A), confidence and accuracy are constant. When |O| becomes

larger than the threshold NrbI(A) the confidence is improved while the accuracy is deteriorated. The

conclusion is the same as in the bounded case. The error rate in the contaminated setting is the

maximum between the error rate in the non-contaminated setting and the proportion of outliers.

5.2.3 A concrete example: the class of linear functional in Rp with

Huber loss function

To put into perspective the results obtained in Sections 5.2.1, we apply Theorem 5.1 for linear

regression in Rp. For the sake of brevity we do no present the result for Theorem 5.2. In the

vocabulary of Section 5.1, the class F of predictors is defined as F = {
〈
t, ·
〉
, t ∈ Rp} which satisfies

assumption 5.2. Let (Xi, Yi)
N
i=1 be random variables defined by the following linear model:

Yi =
〈
Xi, t

∗〉+ εi , (5.5)

where (Xi)
N
i=1 are i.i.d Gaussian random vectors in Rp with zero mean and covariance matrix Σ.

The random variables (εi)i∈I are centered and independent to Xi. For the moment, nothing more
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is assumed for (εi)i∈I . It is clear that assumption 5.1 holds. The Empirical Risk Minimizer with

the Huber loss function is defined as

t̂δN = argmin
t∈Rp

1

N

N∑
i=1

`δ(
〈
Xi, t

〉
, Yi) (5.6)

where `δ(·, ·) is the Huber loss function defined for any δ > 0, u, y ∈ Y = R, by

`δ(u, y) =

1
2
(y − u)2 if |u− y| ≤ δ

δ|y − u| − δ2

2
if |u− y| > δ

,

which satisfies assumption 5.3 for L = δ. All along this section, δ will be considered as a constant

(i.e independent to the sample size N and the dimension p). Let t, v ∈ Rp such that f(·) =
〈
t, ·
〉

and g(·) =
〈
v, ·
〉
. Since µ = N(0,Σ), we have ‖f − g‖2

L2
= E

〈
t − v,X1

〉2
= (t − v)TΣ(t − v) and

λ(f(X1)−g(X1))/‖f −g‖L2 =
(
λ/(t−v)TΣ(t−v)

)
(t−v)TX1 ∼ N (0, λ2) and assumption 5.4 holds

with B = 1. To apply Theorem 5.1, it remains to study the local Bernstein assumption for the

Huber loss function. We recall the result from (Chinot et al., 2019b). Let us introduce the following

assumption.

Assumption 5.7. Let FY |X=x be the conditional cumulative function of Y given X = x. Let us

assume that the following holds.

a) There exist ε, C ′ > 0 such that, for all f in F , ‖f − f ∗‖L2+ε ≤ C ′‖f − f ∗‖L2.

b) Let ε, C ′ be the constants defined in a). There exists α > 0 such that, for all x ∈ Rp and all

z ∈ R satisfying |z − f ∗(x)| ≤ (
√

2(C ′))(2+ε)/εr, FY |X=x(z + δ)− FY |X=x(z − δ) > α.

Proposition 5.1 ((Chinot et al., 2019b),Theorem 7). Grant assumption 5.7. The Huber loss

function with parameter δ > 0 satisfies the Bernstein condition for A = 4/α: for all f ∈ F , if

‖f − f ∗‖L2
= r then (4/α)PLf ≥ ‖f − f ∗‖2

L2
.

Since µ = N (0,Σ), the point a) holds with C ′ = 3. Moreover, from the model (5.5), the point

b) can be rewritten as: for all x ∈ Rp, for all z ∈ R such that |z −
〈
x, t∗

〉
| ≤ 18r,

P
(
z − δ ≤

〈
x, t∗

〉
+ ε ≤ z + ε

)
= Fε(z + δ −

〈
x, t∗

〉
)− Fε(z − δ −

〈
x, t∗

〉
) ≥ α

which is satisfied if

Fε(δ − 18r)− Fε(18r − δ) ≥ α (5.7)

where Fε denotes the cumulative distribution of ε distributed as εi for any i ∈ I. The sufficient

condition (5.7) implies that the noise puts enough mass around zero. To finish, we need to com-

pute complexity parameter rI(4/α). For an absolute constant c > 0, well-known computations

(see (Talagrand, 2014)) give:

w(F ∩ (f ∗ + rBL2(µ))) ≤ r
√
Tr(Σ) and rI(4/α) = c

δ(1 + δ)

α

√
Tr(Σ)

N
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where we used the fact that |I| ≥ N/2 and L = δ.

We are now in position to apply Theorem 5.1 for Huber’s M -estimator in Rp with r(4/α) =

c δ
α

max
(
(1 + δ)

√
Tr(Σ)/N, |O|/N

)
.

Theorem 5.3. Let I ∪ O denote a partition of {1, · · · , N} such that |I| ≥ |O|. Let (Xi, Yi)
N
i=1 be

random variables valued in Rp × R such that (Xi)
N
i=1 are i.i.d random variable with X1 ∼ N (0,Σ)

and for all i ∈ {1, · · · , N}
Yi =

〈
Xi, t

∗〉+ εi ,

where (εi)i∈I are i.i.d centered random variables independent to (Xi)i∈I such that there exists α > 0

such that

Fε

(
δ − c δ

α
max

(
(1 + δ)

√
Tr(Σ)

N
,
|O|
N

))
− Fε

(
c
δ

α
max

(
(1 + δ)

√
Tr(Σ)

N
,
|O|
N

)
− δ
)
≥ α (5.8)

where Fε denotes the cdf of ε distributed as εi for i in I, δ is the hyperparameter of the Huber loss

function. Nothing is assumed on (εi)i∈O. Then with probability larger than

1− 2 exp

(
− c δ

α(1 + δ)
max

(
(1 + δ)2Tr(Σ),

|O|2
N

))
, (5.9)

the estimator t̂δN defined in Equation (5.6) satisfies

‖Σ1/2(t̂δN − t∗)‖2 ≤ c
δ(1 + δ)

α
max

(√
Tr(Σ)

N
,
|O|
N

)
and PLt̂δN ≤ c

δ2(1 + δ)2

α
max

(
Tr(Σ)

N
,
|O|2
N2

)
In Theorem 5.3 there is no assumption on |O| as long as |O| ≤ |I|. There are two situations: 1)

the number of outliers |O| is smaller than
√
Tr(Σ)N . We obtain the optimal rate of convergence√

Tr(Σ)/N for linear regression in Rp with an exponentially large probability, 2) the number of

outliers exceeds
√
Tr(Σ)N . In this case, the error rate and the excess risk are deteriorated but

the confidence is improved. According to (Chen et al., 2018), this rate is minimax optimal in the

ε-contamination model for ε = |O|/N . It follows that Theorem 5.3 is minimax-optimal for the

problem of linear regression in Rp when malicious outliers contaminate the labels (Chen et al.,

2018).

In Section 5.5, we run simple simulations to illustrate the linear dependence between the error rate

and the proportion of outliers.

Theorem 5.3 handles many different distributions for the noise as long as Equation (5.8) is

satisfied. It is not necessary to impose that the noise is sub-Gaussian neither integrable. For

instance, when ε ∼ C(1) is a standard Cauchy distribution, for all t ∈ R, we have Fε(t) = 1/2 +

arctan(t)/π. With straightforward computations, Equation (5.7) can be rewritten as

18r ≤ δ − tan(
π

2
α) (5.10)
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From Equation (5.10), Equation (5.8) is satisfied if

c
δ

α
max

(
(1 + δ)

√
Tr(Σ)

N
,
|O|
N

)
≤ δ − tan(

π

2
α)

Let us fix δ > 0 to be a quantity independent of the dimension p and the number of observations

N . Take α = 2 arctan(δ/2)/π. When
√
N ≥ c

√
p(1 + δ)/α and |O| ≤ cαN the condition defined

in Equation (5.8) holds and the local Bernstein condition 5.5 is verified for A = 4/α. We get the

following corollary.

Corollary 5.1. Let I ∪ O denote a partition of {1, · · · , N} such that |I| ≥ |O|. Let (Xi, Yi)
N
i=1 be

random variables valued in Rp ×R such that (Xi)
N
i=1 are i.i.d random variables with X1 ∼ N (0,Σ)

and for all i ∈ {1, · · · , N}
Yi =

〈
Xi, t

∗〉+ εi ,

where (εi)i∈I are i.i.d standard Cauchy random variables independent to (Xi)i∈I. Consider the

Huber loss function with a parameter δ > 0. Assume that
√
N ≥ c

√
Tr(Σ)(1 + δ)/ arctan(δ/2) and

|O| ≤ c arctan(δ/2)N . Then with probability larger than

1− 2 exp

(
− c δ

(1 + δ) arctan(δ/2)
max

(
(1 + δ)2Tr(Σ),

|O|2
N

))
, (5.11)

the estimator t̂δN defined in Equation (5.6) satisfies

‖Σ1/2(t̂δN − t∗)‖2 ≤ c
δ(1 + δ)

arctan(δ/2)
max

(√
Tr(Σ)

N
,
|O|
N

)
and PLt̂δN ≤ c

δ2(1 + δ)2

arctan(δ/2)
max

(
Tr(Σ)

N
,
|O|2
N2

)
.

5.3 High dimensional setting

In Section 5.2 we studied non-regularized procedures. If the class of predictors F is too small there

is no hope to approximate Y with f ∗(X). It is thus necessary to consider large classes of functions

leading to a large error rate unless some extra low-dimensional structure is expected on f ∗. Adding

a regularization term to the empirical loss is a wide-spread method to induce this low-dimensional

structure. The regularization term highlights the belief the statistician may have on the oracle f ∗.

More formally, let F ⊂ E ⊂ L2(µ) and ‖ · ‖ 7→ R+ be a norm defined on the linear space E. For

any λ > 0, the regularized empirical risk minimizer (RERM) is defined as

f̂λN = argmin
f∈F

1

N

N∑
i=1

`(f(Xi), Yi) + λ‖f‖ (5.12)

For high dimensional statistics, it is possible to impose a low dimensional structure. For instance,

the use of the `1 norm promotes sparsity (Tibshirani, 1996) for regression and classification problems
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in Rp while the 1-Schatten norm promotes low rank solutions for matrix reconstructions. Up to

some technicalities the main result for the RERM is the same as the one in Section 5.2: the excess

risk and the square of the error rate will be of the order

r2
N +
|O|2
N2

where rN denote the (sparse or low-dimensional) error rate in the non-contaminated setting. As

long as the proportion of outliers is smaller than the error rate the RERM behaves as if there was

no contamination.

5.3.1 General result in the sub-Gaussian framework

To analyze regularized procedures, we first need to redefine the complexity parameter.

Definition 5.4. Let B be the unit ball induced by the regularization norm ‖ · ‖. The complexity

parameter r̃I(·, ·) is defined as

r̃I(A, ρ) = inf{r > 0 : cALB(L+ 1)w(F ∩ (f ∗ + rBL2(µ) ∩ ρB)) ≤ r2
√
|I|}

where c > 0 denotes an absolute constant, L is the Lipschitz constant from assumption 5.3 and B,

the sub-Gaussian constant from assumption 5.4.

The main difference between rI(A) from Definition 5.2 and r̃I(A, ρ) is that r̃I(A, ρ) measures

the local complexity of F ∩ (f ∗+ ρB) whereas rI(A) measures the local complexity of the entire set

F around f ∗. The regularization shifts the estimator towards a neighborhood of the oracle f ∗ with

respect to the regularization norm.

To deal with the regularization part, we use the tools from (Lecué and Mendelson, 2018). The idea

is the following: the `1 norm induces sparsity properties because it has large subdifferentials at

sparse vectors. Therefore to obtain “sparsity depedendent bounds”, i.e bounds depending on the

unknown sparsity of the oracle f ∗, a natural tool is to look at the size of the subdifferential of ‖ · ‖
in f ∗ where we recall that the subdifferential of ‖ · ‖ in f is defined as

(∂‖.‖)f = {z∗ ∈ E∗ : ‖f + h‖ − ‖f‖ ≥ z∗(h) for every h ∈ E} ,

where E∗ is the dual space of the normed space (E, ‖ · ‖). The subdifferential can be also written

as

(∂ ‖·‖)f =

{
{z∗ ∈ S∗ : z∗(f) = ‖f‖} if f 6= 0

B∗ if f = 0
(5.13)

where B∗ is the unit ball of the dual norm associated with ‖·‖, i.e. z∗ ∈ E∗ → ‖z∗‖∗ = sup‖f‖≤1 z
∗(f)

and S∗ is its unit sphere. In other words, when f 6= 0, the subdifferential of ‖·‖ in f is the set of
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all vectors z∗ in the unit dual sphere S∗ which are norming for f . For any ρ > 0, let

Γf∗(ρ) =
⋃

f∈F :‖f−f∗‖≤ρ/20

(∂‖ · ‖)f .

Instead of looking at the subdifferential of ‖·‖ exactly in f ∗ we consider subdifferentials for functions

f ∈ F “close enough” to the oracle f ∗. It enables to handle oracles f ∗ that are not exactly sparse

but approximatively sparse. The main technical tool to analyze regularization procedures is the

following sparsity equation (Lecué and Mendelson, 2018).

Definition 5.5. Let r̃(·, ·) such that for any A > 0 and ρ > 0, r̃(A, ρ) ≥ rI(A, ρ). For any A, ρ > 0,

set

Hρ,A,r̃ = {f ∈ F : ‖f ∗ − f‖ = ρ and ‖f ∗ − f‖L2 ≤ r̃(A, ρ)} ,

and define

∆(ρ,A, r̃) = inf
h∈Hρ,A,r̃

sup
z∗∈Γf∗ (ρ)

z∗(h− f ∗) . (5.14)

A real number ρ > 0 satisfies the A, r̃-sparsity equation if ∆(ρ,A, r̃) ≥ 4ρ/5.

The constant 4/5 in Definition 5.5 could be replaced by any constant in (0, 1). The sparsity

equation is a very general and powerful tool allowing to derive “sparsity dependent bounds” by

taking ρ∗ function of the unknown sparsity (see Section 5.3.3 for a more explicit example or (Chinot

et al., 2019a; Lecué and Mendelson, 2018) for many other illustrations).

Remark 5.1. It can also induce “norm dependent bounds”, i.e bounds depending on the norm of

the oracle ‖f ∗‖. By taking ρ∗ = 20‖f ∗‖, we get that 0 ∈ {f ∈ F : ‖f − f ∗‖ ≤ ρ∗/20} and from

Equation (5.13) it follows that Γf∗(20‖f ∗‖) = B∗ and ∆(20‖f ∗‖, A, r̃) = ρ∗. In other words, the

sparsity equation is always satisified for ρ∗ = 20‖f ∗‖ (see Section 5.3.4 for examples)

Finally, we adapt the local Bernstein assumption to this new framework.

Assumption 5.8. Let r̃(·, ·) be such that for all A, ρ > 0, r̃(A, ρ) ≥ r̃I(A, ρ). There exist A > 0 and

ρ∗ satisfying the A, r̃-sparsity equation from Definition 5.5 such that for all f ∈ F : ‖f − f ∗‖L2(µ) =

r̃(A, ρ∗) and ‖f − f ∗‖ ≤ ρ∗ we have ‖f − f ∗‖2
L2(µ) ≤ APLf .

We are now in position to state the main theorem of this section.

Theorem 5.4. Let I ∪ O denote a partition of {1, · · · , N} such that |O| ≤ |I|. Let r̃(·, ·) be

such that for all A, ρ > 0, r̃(A, ρ) ≥ r̃I(A, ρ). Grant Assumptions 5.1, 5.3, 5.2, 5.4. Suppose that

assumption 5.8 holds with ρ = ρ∗ satisfying the A, r̃-sparsity equation from Definition 5.5. Set:

λ = c
r̃2(A, ρ∗)

Aρ∗
.
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As long as |O| < c|I|r̃(A, ρ∗)/(AL), with probability larger that

1− 2 exp

(
− c |I|r̃

2(A, ρ∗)

ABL(L+ 1)

)
,

the estimator f̂λN defined in Equation (5.12) satisfies

‖f̂λN − f ∗‖L2 ≤ r̃(A, ρ∗) , ‖f̂λN − f ∗‖ ≤ ρ∗ and PLf̂λN ≤ c
r̃2(A, ρ∗)

A
.

By taking r̃(A, ρ∗) = cmax(r̃I(A, ρ
∗), AL|O|/|I|), the condition |O| < c|I|r̃(A, ρ∗)/(AL) is

necessarily satisfied and, with exponentially large probability, we get

‖f̂λN − f ∗‖L2(µ) ≤ cAL

(
r̃I(A, ρ

∗) +
|O|
N

)
.

The error rate can be decomposed as the sum of the error rate in the non-contaminated setting

and the proportion of outliers |O|/N . Theorem 5.4 is a “meta” theorem in the sense that it can

used for many practical problems. We use Theorem 5.4 for `1-penalized Huber’s M-estimator in

Section 5.3.3. It is also possible to use Theorem 5.4 for many other convex and Lipschitz loss

functions and regularization norms as it is done in (Chinot et al., 2019a). It can also be used for

matrix reconstruction problems by penalizing with the 1-Schatten norm (Lecué and Mendelson,

2018).

General routine to apply Theorem 5.4 This small paragraph explains how in practice we can

use Theorem 5.4.

1. Verify assumptions 5.1, 5.3, 5.2, 5.4.

2. Compute the localized Gaussian mean width w
(
F ∩(f ∗+rBL2∩ρB)

)
for any r, ρ > 0. Deduce

the value of r̃I(A, ρ) for any A, ρ > 0.

3. Choose a new complexity parameter such that for every A, ρ > 0, r̃(A, ρ) ≥ r̃I(A, ρ). For in-

stance, to derive results in the contaminated setting we will take r̃(A, ρ) = cmax(r̃I(A, ρ), AL|O|/N).

From the computation of r̃I(A, ρ) deduce the closed form of r̃(A, ρ).

4. For a fixed constant A > 0, find ρ∗ > 0 satisfying the A, r̃- sparsity equation, where r̃(·, ·) is

the complexity parameter chosen in the previous step.

5. From the value of ρ∗, compute r̃(A, ρ∗) for any A > 0.

6. Find a constant A > 0 verifying Assumption 5.8.
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5.3.2 General result in the local bounded framework

In Section 5.3.1, we established a meta theorem to analyze the RERM when the class F − f ∗ is

sub-Gaussian. In this section, we provide another meta theorem when the class F − f ∗ is locally

bounded. Contrary to the main result in the non-regularized case, the neighborhood is now defined

with respect to the L2(µ) norm and the regularization norm.

Definition 5.6. Let B be the unit ball induced by the regularization norm ‖ · ‖. The complexity

parameter r̃bI(·, ·) is defined as

r̃bI(A, ρ) = inf

{
r > 0 : E sup

f∈F (f∗+rBL2
∩ρB)

∑
i∈I

σi(f − f ∗)(Xi) ≤
cr2|I|

AL(L+ 1)

}
where (σi)i∈I are i.i.d Rademacher random variables independent to (Xi)i∈I, c > 0 denotes an

absolute constant and L is the Lipschitz constant from assumption 5.3.

Now, adapt the sparsity equation and the local Bernstein condition to this new complexity

parameter.

Definition 5.7. Let r̃b(·, ·) such that for any A, ρ > 0 and, r̃b(A, ρ) ≥ rbI(A, ρ). For any A, ρ,M >

0, set

Hρ,A,M,r̃b = {f ∈ F : ‖f ∗ − f‖ = ρ and ‖f ∗ − f‖L2 ≤ max(1,
√
LM)r̃b(A, ρ)} ,

and define

∆(ρ,A, r̃b,M) = inf
h∈H

ρ,A,M,r̃b

sup
z∗∈Γf∗ (ρ)

z∗(h− f ∗) . (5.15)

A real number ρ > 0 satisfies the A,M, r̃b-sparsity equation if ∆(ρ,A,M, r̃b) ≥ 4ρ/5.

Finally, the following assumption imposes boundedness and a Bernstein condition in the small

neighborhood around the oracle f ∗.

Assumption 5.9. Let r̃b(·, ·) be such that for all A, ρ > 0, r̃b(A, ρ) ≥ r̃bI(A, ρ). There exist

A,M > 0 and ρ∗ satisfying the A,M, r̃b-sparsity equation from Definition 5.7 such that for all

f ∈ F : ‖f − f ∗‖L2 = max(1,
√
LM)r̃b(A, ρ∗) and ‖f − f ∗‖ ≤ ρ∗ we have:

‖f − f ∗‖2
L2
≤ APLf and ∀x ∈ X , |(f − f ∗)(x)| ≤M

Assumption 5.8 generalizes the local Bernstein condition and the local boundedness assumption

to the regularized case. In this setting, the neighborhood around the oracle f ∗ can be much smaller

than in the non-regularized setting. In particular in Section 5.3.4, the localization with respect to

the norm in the RKHS imposes local boundedness of F − f ∗.
We are now in position to state the main theorem of this section.
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Theorem 5.5. Let I ∪O denote a partition of {1, · · · , N} such that |O| ≤ |I|. Let r̃b(·, ·) be such

that for all A, ρ > 0, r̃b(A, ρ) ≥ r̃bI(A, ρ). Grant Assumptions 5.1, 5.3 with L ≥ 1, 5.2. Suppose

that assumption 5.8 holds with ρ = ρ∗ satisfying the A,M, r̃-sparsity equation from Definition 5.5

with A ≥ 1. Set:

λ = c
(r̃b(A, ρ∗))2

Aρ∗
.

As long as |O| < c|I|r̃b(A, ρ∗)/(AL), with probability larger that

1− 2 exp

(
− c |I|(r̃

b(A, ρ∗))2

A2(L+ 1)2

)
,

the estimator f̂λN defined in Equation (5.12) satisfies

‖f̂λN − f ∗‖L2 ≤ max(1,
√
LM)r̃b(A, ρ∗) , ‖f̂λN − f ∗‖ ≤ ρ∗

and PLf̂λN ≤ cmax(1, LM)
(r̃b(A, ρ∗))2

A
.

By taking r̃b(A, ρ∗) = cmax(r̃bI(A, ρ
∗), AL|O|/|I|), the condition |O| < c|I|r̃b(A, ρ∗)/(AL) is

necessarily satisfied and we get

‖f̂λN − f ∗‖L2 ≤ cAL

(
r̃bI(A, ρ

∗) +
|O|
N

)
.

The error rate can be decomposed as the sum of the error rate in the non-contaminated setting and

the proportion of outliers |O|/N . Theorem 5.5 is a “meta” theorem in the sense that it can used

for many practical problems.

General routine to apply Theorem 5.5 This small paragraph explains how in practice we can

use Theorem 5.5.

1. Verify assumptions 5.1, 5.3, 5.2.

2. Compute the localized Rademacher complexity localized on F ∩ (f ∗ + rBL2 ∩ ρB) for any

r, ρ > 0. Deduce the value of r̃bI(A, ρ) for any A, ρ > 0.

3. Choose a new complexity parameter such that for every A, ρ > 0, r̃b(A, ρ) ≥ r̃bI(A, ρ). For in-

stance, to derive results in the contaminated setting we will take r̃b(A, ρ) = cmax(r̃bI(A, ρ), AL|O|/N).

From the computation of r̃bI(A, ρ) deduce the closed form of r̃b(A, ρ).

4. For fixed constants A,M > 0, find ρ∗ > 0 satisfying the A,M, r̃b- sparsity equation, where

r̃b(·, ·) is the complexity parameter chosen in the previous step.

5. From the value of ρ∗, compute r̃(A, ρ∗) for any A > 0.

6. Find the constants A,M > 0 verifying Assumption 5.9.
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The main difference with the application of Theorem 5.4 in the sub-Gaussian setting is that we

no longer have Assumption 5.4. However it is necessary to verify that the class F − f ∗ is locally

bounded by a constant M .

5.3.3 Application to `1-penalized Huber’s M-estimator with sub-Gaussian

design

In this section we use the routine of Theorem 5.4 to the study of `1-penalized Huber’s M-estimator

when the design X is supposed to be Gaussian.

Let F = {
〈
t, ·
〉
, t ∈ Rp} denote the class of linear functionals in Rp. Let (Xi, Yi)

N
i=1 be random

variables defined by, Yi =
〈
Xi, t

∗〉+ εi, where (Xi)
N
i=1 are i.i.d centered standard Gaussian vectors.

The random variables (εi)i∈I are symmetric independent to (Xi)i∈I . The oracle t∗ is assumed to be

s-sparse i.e ‖t∗‖0 :=
∑p

i=1 I{t∗i 6= 0} ≤ s. `1-penalized Huber’s M-estimator is defined as

t̂δ,λN = argmin
t∈Rp

1

N

N∑
i=1

`δ(
〈
Xi, t

〉
, Yi) + λ‖t‖1 (5.16)

where `δ(·, ·) is the Huber loss function.

Step 1: Under such assumptions, it is clear that Assumptions 5.1, 5.2, 5.3 with L = δ, 5.4 with

B = 1 are verified. All along this section δ will be considered as a constant.

Step 2: Let us turn to the second step, i.e the computation of the local Gaussian-mean width. Since

X is isotropic i.e E
〈
X, t

〉2
= ‖t‖2

2 for every t ∈ Rp, we have w
(
F ∩(f ∗+rBL2∩ρB)

)
= w(rBp

2∩ρBp
1)

for every r, ρ > 0, where Bp
q denotes the `q ball in Rp for q > 0. Well-known computations give

(see (Vershynin, 2018) for example)

w(ρBp
1 ∩ rBp

2) ≤ ρw(Bp
1) ≤ cρ

√
log(p) ,

and consequently,

r̃2
I(A, ρ) = cAδ(1 + δ)ρ

√
log(p)

N
, .

Step 3 : For any A, ρ > 0 let us define r̃(A, ρ) = cmax(r̃I(A, ρ), Aδ|O|/|I|). From step 2, since

|I| ≥ N/2, we easily get:

r̃2(A, ρ) = cAδmax

(
(1 + δ)ρ

√
log(p)

N
,
|O|2
N2

)
.

Step 4 : To verify the A, r̃-sparsity equation from Definition 5.5 for the `1 norm and compute ρ∗

we use a result from (Lecué and Mendelson, 2018).

Lemma 5.1. (Lecué and Mendelson, 2018, Lemma 4.2) . Let Bp
1 denote the unit ball induced

by ‖ · ‖1. Let us assume that the design X is isotropic. If the oracle t∗ is s-sparse and 100s ≤(
ρ/
(
r̃(A, ρ)

)2
then ∆(A, ρ, r̃) ≥ (4/5)ρ.
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Lemma 5.1 implies that the A, r̃-sparsity equation is satisfied by ρ∗ > 0 if the sparsity s is

smaller than
(
ρ∗/
(
r̃(A, ρ∗)

)2
. Since r̃(A, ρ) is the maximum of two quantities, we consider two cases

depending on the value of |O|. When r̃(A, ρ) = r̃I(A, ρ), which holds when |O| ≤ |I|r̃I(A, ρ)/(Aδ),

Lemma 5.1 shows that ρ∗ = c
√
sr̃I(A, ρ

∗) satisfies the A, r̃-sparsity equation. In this case, straight-

forward computations give

ρ∗ = cAδ(1 + δ)s

√
log(p)

N
and r̃2

I(A, ρ
∗) = c

(
Aδ(δ + 1)

)2

s
log(p)

N
.

In the second case, when r̃(A, ρ) = Aδ|O|/|I| which holds when |O| ≥ |I|r̃I(A, ρ∗)/(Aδ) we get

that

ρ∗ = Aδ
√
s
|O|
N

satisfies the A, r̃-sparsity equation. Consequently

ρ∗ = cAδmax

(
(δ + 1)s

√
log(p)

N
,
√
s
|O|
N

)
,

satisfies the A, r̃-sparsity equation.

Step 5: From step 4, Theorem 5.4 can be used with

r̃(A, ρ∗) = cAδmax

(
(δ + 1)

√
s

log(p)

N
,
|O|
N

)
.

Step 6 : We use Proposition 5.1 to show that the local Bernstein condition holds for functions f

in f ∗ + r̃(A, ρ∗)SL2 ∩ ρ∗B ⊂ f ∗ + r̃(A, ρ∗)SL2 . Since X ∼ N (0, Ip), the point a) in Assumption 5.7

is verified. Moreover, the point b) in Assumption 5.7 holds and the local Bernstein condition is

verified with A = 4/α if α > 0 satisfies

Fε

(
δ − cr̃(4/α, ρ∗)

)
− Fε

(
cr̃(4/α, ρ∗)− δ

)
≥ α , (5.17)

where Fε denotes the cdf of ε distributed as εi for i ∈ I.

We are now in position to state the main result for the `1-penalized Huber estimator.

Theorem 5.6. Let I ∪ O denote a partition of {1, · · · , N} such that |I| ≥ |O| and (Xi, Yi)
N
i=1 be

random variables valued in Rp × R such that (Xi)
N
i=1 are i.i.d random variable with X1 ∼ N (0, Ip)

and for all i ∈ {1, · · · , N}
Yi =

〈
Xi, t

∗〉+ εi ,

where t∗ is s-sparse and (εi)i∈I are i.i.d centered random variables independent to (Xi)i∈I such that

there exists α > 0 such that

Fε

(
δ− c δ

α
max

(
(δ+ 1)

√
s

log(p)

N
,
|O|
N

))
−Fε

(
c
δ

α
max

(
(δ+ 1)

√
s

log(p)

N
,
|O|
N

)
− δ
)
≥ α (5.18)
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where Fε denotes the cdf of ε where ε is distributed as εi for i in I, δ is the hyperparameter of the

Huber loss function. Nothing is assumed on (εi)i∈O. Set

λ = c
δ

α
max

(
(δ + 1)

√
log(p)

N
,
|O|√
sN

)
.

Then with probability larger than

1− 2 exp

(
− c δ

α(1 + δ)
max

(
(δ + 1)2s log(p),

|O|2
N

))
(5.19)

the estimator t̂δ,λN defined in Equation (5.16) satisfies

‖t̂δ,λN − t∗‖2 ≤
δ

α
max

(
(δ + 1)

√
s

log(p)

N
,
|O|
N

)
PLt̂δ,λN ≤

δ2

α
max

(
(δ + 1)2s

log(p)

N
,
|O|2
N2

)
and ‖t̂δ,λN − t∗‖1 ≤ c

δ

α
max

(
(δ + 1)s

√
log(p)

N
,
√
s
|O|
N

)
Let us analyze the two different cases. 1) when the number of outliers |O| is smaller than√
s log(p)N , the regularization parameter λ does not depend on the unknown sparsity. We obtain

the (nearly) minimax-optimal rate in sparse linear regression in Rp with an exponentially large

probability (Bellec et al., 2018; Lecué and Mendelson, 2018; Dalalyan et al., 2017). Using more

involved computations and taking a regularization parameter λ depending on the unknown sparsity

we can get the exact minimax rate of convergence s log(p/s)/N . 2) When the number of outliers

exceeds
√
s log(p)N the value of λ depends on the unknown quantities |O| and s. The error rate is

deteriorated (but the confidence is improved) and becomes linear with respect to the proportion of

outliers |O|/N . From (Chen et al., 2018), this error rate is minimax optimal (up to a logarithmic

term) in the ε-contamination problem when ε = |O|/N . It follows that Theorem 5.6 is minimax-

optimal (up to a logarithmic term) when |O| malicious outliers contaminate the labels.

In Section 5.5, we run simple simulations to illustrate the linear dependence between the error rate

and the proportion of outliers.

Remark 5.2. In Theorem 5.6 we assumed that µ = N (0, Ip) to apply Lemma 5.1 and compute the

local Gaussian-mean width. It is possible to generalize the result to Gaussian random vectors with

covariance matrices Σ verifying RE(s, 9) (Van De Geer et al., 2009), for s being the sparsity of

t∗. Recall that a matrix Σ is said to satisfy the restricted eigenvalue condition RE(s, c0) with some

constant κ > 0, if ‖Σ1/2v‖2 ≥ κ‖vJ‖2 for any vector v in Rp and any set J ⊂ {1, · · · , p} such that

|J | ≤ s and ‖vJc‖1 ≤ c0‖vJ‖1. When Σ satisfies the RE(s, 9) condition with κ > 0 we get the same

conclusion as Theorem 5.6 modulo an extra term 1/κ in front of the error rate (see Section 5.7 for

a precise result).
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In Theorem 5.6, there is no restriction on the noise as long as there exists α > 0 such that

Equation (5.18) holds. For example when ε is a standard Cauchy random variable, Equation (5.18)

can be rewritten as

c
δ

α
max

(
(δ + 1)

√
s

log(p)

N
,
|O|
N

)
≤ δ − tan

(
πα

2

)
(5.20)

Let δ > 0 be a constant (independent to p, s,N) and take α = (2/π) arctan(δ/2). Equation (5.20)

is equivalent to

cmax

(
(δ + 1)

√
s

log(p)

N
,
|O|
N

)
≤ α =

2

π
arctan

(
δ

2

)
which holds as long as N ≥ c(δ+ 1)

√
s log(p)/ arctan(δ/2) and |O| ≤ c arctan(δ/2)N and the local

Bernstein condition holds for A = 4/α = 2π/(arctan(δ/2)).

5.3.4 Application to RKHS with the huber loss function

This section is mainly inspired from the work (Alquier et al., 2019). We present another example

of application of our main results. In particular, we use the routine associated with Theorem 5.5

for the problem of learning in a reproducing Kernel Hilbert Space (RKHS) HK (Steinwart and

Christmann, 2008) associated to a positive definite kernel K. We improve the results of (Alquier

et al., 2019) in two points 1) we can take F = HK while in (Alquier et al., 2019), the authors restrict

themselves to the case F = RBHK , for R > 0, where BHK denotes the unit ball of HK and 2) the

bayes rule (i.e the minimizer of the risk over all measurable functions) does not have to belong to

RBHK and no margin assumption (Audibert et al., 2007) is required.

We are given N pairs (Xi, Yi)
N
i=1 of random variables where the Xi’s take their values in some

measurable space X and Yi ∈ R. We introduce a kernel K : X × X 7→ R measuring a similarity

between elements of X i.e K(x1, x2) is small if x1, x2 ∈ X are “similar”. The main idea of kernel

methods is to transport the design data Xi’s from the set X to a certain Hilbert space via the

application x 7→ K(x, ·) := Kx(·) and construct a statistical procedure in this ”transported” and

structured space. The kernel K is used to generate a Hilbert space known as Reproducing Kernel

Hilbert Space (RKHS). Recall that if K is a positive definite function i.e for all n ∈ N∗, x1, · · · , xn ∈
X and c1, · · · , cn ∈ R,

∑n
i=1

∑n
j=1 cicjK(xi, xj) ≥ 0, then by Mercer’s theorem there exists an

orthonormal basis (φi)
∞
i=1 of L2(µ) such that µ × µ almost surely, K(x, y) =

∑∞
i=1 λiφi(x)φi(y),

where (λ)∞i=1 is the sequence of eigenvalues (arranged in a non-increasing order) of TK and φi is the

eigenvector corresponding to λi where

TK : L2(µ)→ L2(µ)

(TKf)(x) =

∫
K(x, y)f(y)dµ(y) (5.21)
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The Reproducing Kernel Hilbert Space HK is the set of all functions of the form
∑∞

i=1 aiK(xi, ·)
where xi ∈ X and ai ∈ R converging in L2(µ) endowed with the inner product

〈 ∞∑
i=1

aiK(xi, ·),
∞∑
i=1

biK(yi, ·)
〉

=
∞∑

i,j=1

aibjK(xi, yi)

An alternative way to define a RKHS is via the feature map Φ : X 7→ `2 such that Φ(x) =(√
λiφi(x)

)∞
i=1

. Since (Φk)
∞
k=1 is an orthogonal basis of HK , it is easy to see that the unit ball of

HK can be expressed as

BHK = {fβ(·) =
〈
β,Φ(·)

〉
`2
, ‖β‖2 ≤ 1} (5.22)

where
〈
·, ·
〉
`2

is the standard inner product in the Hilbert space `2. In other words, the feature map

Φ can the used to define an isometry between the two Hilbert spaces HK and `2.

The RKHS HK is therefore a convex class of functions from X to R that can be used as a learning

class F . Let us assume that Yi = f ∗(Xi) + εi where (Xi)
N
i=1 are i.i.d random variables taking values

in X . The random variables (εi)i∈I are symmetric i.i.d random variables independent to (Xi)i∈I

and f ∗ is assumed to belong to HK . It follows that the oracle f ∗ is also defined as

f ∗ ∈ argmin
f∈HK

E[`δ(f(X), Y )]

where `δ is the Huber loss function. Let f be in HK , by the reproducing property and the Cauchy-

Schwarz inequality we have for all x, y in X

|f(x)− f(y)| = |
〈
f,Kx −Ky

〉
| ≤ ‖f‖HK‖Kx −Ky‖HK (5.23)

From Equation (5.23), it is clear that the norm of a function in the RKHS controls how fast the

function varies over X with respect to the geometry defined by the kernel (Lipschitz with constant

‖f‖HK ). As a consequence the norm of regularization ‖·‖HK is related with its degree of smoothness

w.r.t. the metric defined by the kernel on X . The estimators f̂ δ,λN we study in this section is defined

as

f̂ δ,λN = argmin
f∈HK

1

N

N∑
i=1

`δ(f(Xi), Yi) + λ‖f‖HK (5.24)

We obtain error rates depending on spectrum (λi)
∞
i=1 of the integral operator TK .

Assumption 5.10. The eigenvalues (λi)
∞
i=1 of the integral operator TK satisfy λn ≤ cn−1/p for

some 0 < p < 1 and c > 0 an absolute constant.

In Assumption 5.10, the value of p is related with the smoothness of the space HK . Differ-

ent kinds of spectra could be analysis. It would only change the computation of the complexity

fixed-points. For the sake of simplicity we only focus on this example as it has been also studied

in (Caponnetto and De Vito, 2007; Mendelson et al., 2010) to obtain fast rates of convergence.
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Let us use the routine to apply Theorem 5.5.

Step 1: Since every Reprocucible Kernel Hilbert space is convex, it is clear that assump-

tions 5.1, 5.2, 5.3 with L = δ are verified.

Step 2: From Theorem 2.1 in (Mendelson, 2003), if K is a bounded kernel, then for all ρ, r > 0

E sup
f∈HK∩(f∗+rBL2

∩ρBHK )

1√
N

∣∣∣∣ N∑
i=1

σi(f − f ∗)(Xi)

∣∣∣∣ ≤ √2‖K‖∞
( ∞∑

k=1

(
ρ2λk ∧ r2

))1/2

.

Under assumption 5.10, straightforward computations give,( ∞∑
k=1

(
ρ2λk ∧ r2

))1/2

≤ c
ρp

rp−1
,

and thus for any A, ρ > 0

r̃bI(A, ρ) = c
(
Aδ(δ + 1)‖K‖∞

)1/(p+1) ρp/(p+1)

N1/(2(p+1))

Step 3: For any A, ρ > 0, let us define r̃b(A, ρ) = cmax
(
r̃bI(A, ρ), Aδ|O|/|I|

)
. From step 2, since

|I| ≥ N/2, we easily get

r̃b(A, ρ) = cmax

((
Aδ(δ + 1)‖K‖∞

)1/(p+1) ρp/(p+1)

N1/(2(p+1))
, Aδ
|O|
N

)
Step 4: Let A,M > 0. From Remark 5.1, ρ∗ = 20‖f ∗‖HK satisfies the A,M, r̃b-sparsity equation.

Step 5: From step 4, we easily get

r̃b(A, ρ∗) = cmax

((
Aδ(δ + 1)‖K‖∞

)1/(p+1)‖f ∗‖p/(p+1)
HK

N1/(2(p+1))
, Aδ
|O|
N

)
Step 6: In assumption 5.9 there are two conditions to verify 1) the local Bernstein and 2) the

local boundedness. Let us begin by the local Bernstein condition. We use the localized version of

Theorem 5.1.

Assumption 5.11. Let FY |X=x be the conditional cumulative function of Y given X = x. Let us

assume that the following holds.

a) There exist ε, C ′ > 0 such that, for all f in F verifying ‖f − f ∗‖ ≤ ρ and ‖f − f ∗‖L2 = r we

have ‖f − f ∗‖L2+ε ≤ C ′‖f − f ∗‖L2.

b) Let ε, C ′ be the constants defined in a). There exists α > 0 such that, for all x ∈ Rp and all

z ∈ R satisfying |z − f ∗(x)| ≤ (
√

2(C ′))(2+ε)/εr, FY |X=x(z + δ)− FY |X=x(z − δ) > α.

The only difference with Assumption 5.7 is that the point a) is only required for functions f in

F such that ‖f − f ∗‖ ≤ ρ.
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Proposition 5.2. Grant assumption 5.7. The Huber loss function with parameter δ > 0 satisfies

the Bernstein condition for A = 4/α: for all f ∈ F , if ‖f − f ∗‖L2
= r and ‖f − f ∗‖ ≤ ρ then

(4/α)PLf ≥ ‖f − f ∗‖2
L2

.

Proposition 5.2 is a simple refinement of Proposition 5.1. Let f in HK such that ‖f−f ∗‖HK ≤ ρ

and ‖f − f ∗‖L2 = r. Since |f(x)− g(x)| = |
〈
f − g,Kx

〉
| for any f, g ∈ HK , x ∈ X we get

‖f − f ∗‖2+ε
L2+ε

=

∫
(f(x)− f ∗(x))2+εdPX(x) ≤ (ρ‖K‖∞)ε‖f − f ∗‖2

L2

Since ‖f − f ∗‖L2 = r, it follows that

‖f − f ∗‖L2+ε ≤
(
ρ‖K‖∞

r

)ε/(2+ε)

‖f − f ∗‖L2 .

Therefore, the point a) holds with C ′ = (ρ‖K‖∞/r)ε/(2+ε). Let us turn to the point b) of assump-

tion 5.11. From the fact that C ′ = (ρ‖K‖∞/r)ε/(2+ε), we have (
√

2C ′)(2+ε)/εr = 2(2+ε)/2ερ‖K‖∞ and

the point b) can be rewritten as, there exists α > 0 such that

Fε(δ − cρ‖K‖∞)− Fε(cρ‖K‖∞ − δ) ≥ α (5.25)

where Fε denotes the cdf of ε distributed as εi for i ∈ I. Equation (5.25), simply means that the

noise ε puts enough mass around 0. In our problem we have ρ = ρ∗ = c‖f ∗‖HK and Equation (5.25)

becomes,

Fε(δ − c‖f ∗‖HK‖K‖∞)− Fε(c‖f ∗‖HK‖K‖∞ − δ) ≥ α

Let us turn to the local boundedness assumption. Since |f(x) − f ∗(x)| = |
〈
f − f ∗, Kx

〉
| for any

f ∈ HK , x ∈ X , if ‖f − f ∗‖HK ≤ ρ∗ we get |f(x) − f ∗(x)| ≤ ‖K‖∞ρ∗. As a consequence, in our

setting, M = c‖K‖∞‖f ∗‖HK satisfies the local boundedness assumption.

We are now in position to state our main theorem for regularized learning in RKHS with the

Huber loss function.

Theorem 5.7. Let HK be a reproducing kernel Hilbert space associated with a bounded kernel K.

Let I ∪O denote a partition of {1, · · · , N} such that |I| ≥ |O| and (Xi, Yi)
N
i=1 be random variables

valued in X × R such that (Xi)
N
i=1 are i.i.d random variable and for all i ∈ {1, · · · , N}

Yi = f ∗(Xi) + εi ,

where f ∗ belongs to HK and (εi)i∈I are i.i.d symmetric random variables independent to (Xi)i∈I

such that there exists α > 0 such that

Fε
(
δ − c‖f ∗‖HK‖K‖∞

)
− Fε

(
c‖f ∗‖HK‖K‖∞ − δ

)
≥ α (5.26)
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where Fε denotes the cdf of ε where ε is distributed as εi for i in I, δ is the hyperparameter of the

Huber loss function. Nothing is assumed on (εi)i∈O. Grant assumption 5.10 and let

λ = c
α

‖f ∗‖KK
max

((
δ(δ + 1)

α
‖K‖∞

)2/(p+1)‖f ∗‖(2p)/(p+1)
HK

N1/(p+1)
,
δ2

α2

|O|2
N2

)
.

Then with probability larger than

1− 2 exp

(
− c α2

(1 + δ)2
max

((
δ(δ + 1)

α
‖K‖∞

)2/(p+1)

‖f ∗‖(2p)/(p+1)
HK Np/(p+1),

δ2

α2

|O|2
N

))
the estimator f̂ δ,λN defined in Equation (5.24) satisfies

‖f̂ δ,λN − f ∗‖2
2 ≤ cmax

(
1, δ‖f ∗‖HK‖K‖∞

)
max

((
δ(δ + 1)

α
‖K‖∞

)2/(p+1)‖f ∗‖(2p)/(p+1)
HK

N1/(p+1)
,
δ2

α2

|O|2
N2

)
PLf̂δ,λN ≤ cαmax

(
1, δ‖f ∗‖HK‖K‖∞

)
max

((
δ(δ + 1)

α
‖K‖∞

)2/(p+1)‖f ∗‖(2p)/(p+1)
HK

N1/(p+1)
,
δ2

α2

|O|2
N2

)
and ‖f̂ δ,λN − f ∗‖HK ≤ c‖f ∗‖HK

Theorem 5.7 holds with no assumption on the design X. When |O| ≤ (δ/α)NrbI(4α, ‖f ∗‖HK )

we recover the same rates as (Smale and Zhou, 2007; Mendelson et al., 2010) even when the target

Y is heavy-tailed. In (Smale and Zhou, 2007; Mendelson et al., 2010) the authors assume that Y

is bounded while in (Caponnetto and De Vito, 2007) the noise is assumed to be light-tailed. When

|O| ≥ (δ/α)NrbI(4α, ‖f ∗‖HK ) the error rate is deteriorated and becomes linear with respect to the

proportion of outliers.

It is assumed that the noise is symmetric and satisfies Equation (5.26). When the noise ε is a

standard Cauchy random variable Equation (5.26) can be rewritten as

c‖f ∗‖HK‖K‖∞ ≤ δ − tan

(
απ

2

)
which holds for δ = c‖f ∗‖HK‖K‖∞ and α = arctan(δ/2). When δ, ‖K‖∞ and ‖f ∗‖HK are seen as

constants, the error rate is of order N−1/(p+1). Depending on the value of p we obtained fast rates

of convergence for regularized Kernel methods. The faster the spectrum of TK decreases the faster

the rates of convergence.

5.4 Conclusion and perspectives

We have presented general analyses to study ERM and RERM when a number |O| of outliers may

contaminate the labels when 1) the class F−f ∗ is sub-Gaussian or 2) when the class F−f ∗ is locally

bounded. We use these “meta theorems” to study Huber’s M-estimator with no regularization or

penalized with the `1 norm. Under a very weak assumption on the noise (note that it can even not

be integrable), we obtain minimax-optimal rate of convergence for these two examples when |O|
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malicious outliers corrupt the labels. We also obtained fast rates for regularized learning problems

in RKHS when the target Y is unbounded and heavy-tailed.

For the sake of simplicity, we have only presented two examples of applications. Many procedures

can be analysed as it has be done in (Chinot et al., 2019a) such as Group Lasso, SLOPE ... The

results can be easily extented when the sub-Gaussian assumption over F − f ∗ is relaxed. It would

only degrade the confidence in the main Theorems (assuming for example that the class is sub-

exponential). The conclusion would be similar. As long as the proportion of outliers is smaller than

the rate of convergence, both ERM and RERM behave as if there was to contamination. However

in such setting ERM and RERM are known to be sub-optimal which is why such results have not

been presented in this paper.

5.5 Simulations

In this section, we present simple simulations to illustrate our theoritical findings. We consider

regression problems in Rp both non-regularized and penalized with the `1-norm. For i = 1, · · · , N ,

let us consider the following model:

Yi =
〈
Xi, t

∗〉+ εi

where (Xi)
N
i=1 are i.i.d random variables distributed as N (0, Ip), (εi)i∈I are symmetric independent

to X random variables. Nothing is assumed on (εi)i∈O. We consider different distribution for the

noise (εi)i∈I . We consider

• εi ∼ N (0, σ2) Gaussian distribution

• εi ∼ T (2) Student distribution with 2-degree of freedom

• εi ∼ C(1) Cauchy distribution

We study M -Huber’s estimator defined as

t̂δN ∈ argmin
t∈Rp

1

N

N∑
i=1

`δ(f(Xi), Yi)

where `δ : R× R 7→ R+ is the Huber loss function defined as, δ > 0, u, y ∈ R, by

`δ(u, y) =

1
2
(y − u)2 if |u− y| ≤ δ

δ|y − u| − δ2

2
if |u− y| > δ

Note that other loss functions could be considered as the absolute loss function, or more generally,

any quantile loss function. According to Theorem 5.3, we have

‖t̂δN − t∗‖2 ≤ c

(√
p

N
+
|O|
N

)
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where c > 0 is an absolute constant. We add malicious outliers following a uniform distribution over

[−10−5, 105]. We expect to obtain an error rate proportional to the proportion of outliers |O|/N .

We ran our simulations with N = 1000 and p = 50. The only hyperparameter of the problem is

δ. For the sake of simplicity we took δ = 1 for all our simulations. We see on Figure 5.1 that no

matter the noise, the error rate is proportional to the proportion of outliers which is in adequation

with our theoritical findings.

Figure 5.1: Error rate for the M -Huber’s estimator (p = 50 and N = 1000)

In a second experiment, we study `1 penalized M -Huber’s estimator defined as

t̂λ,δN ∈ argmin
t∈Rp

1

N

N∑
i=1

`δ(f(Xi), Yi) + λ‖t‖1

where `δ : R × R 7→ R+ is the Huber loss function and λ > 0 is a hyperparameter. According to

Theorem 5.6 we have

‖t̂δN − t∗‖2 ≤ c

(√
s log(p)

N
+
|O|
N

)
where c > 0 is an absolute constant. We ran our simulations with N = 1000 and p = 1000 and

s = 50. The hyperparameters of the problem are δ and λ. For the sake of simplicity we took δ = 1

and λ = 10−3 for all our simulations. We see on Figure 5.2 that no matter the noise, the error rate

is proportional to the proportion of outliers which is in adequation with our theoritical findings.

The fact that the error rate may be large comes to the fact that we did not optimize the value of λ.

5.6 Lower bound minimax risk in regression where only the

labels are contaminated

This section is built on the work (Chen et al., 2018) where the authors establish a general minimax

theory for the ε-contamination model defined as P(ε,θ,Q) = (1− ε)Pθ + εQ given a general statistical
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Figure 5.2: Error rate for `1 penalized M -Huber’s estimator (p = 1000 and N = 1000 and s = 50)

experiment {Pθ, θ ∈ Θ}. A proportion ε of outliers with same the distribution Q contaminate Pθ.

Given a loss function L(θ1, θ2), the minimax rate for the class {P(ε,θ,Q), θ ∈ Θ, Q} depends on the

modulus of continuity defined as:

w(ε,Θ) = sup

{
L(θ1, θ2) : TV (Pθ1 , Pθ2) ≤ ε

1− ε, θ1, θ2 ∈ Θ

}
(5.27)

where TV (Pθ1 , Pθ2) denotes the total variation distance between Pθ1 and Pθ2 defined as TV (Pθ1 , Pθ2) =

supA∈F |Pθ1(A)− Pθ2(A)|, for F the sigma-algebra onto which Pθ1 and Pθ2 are defined.

Theorem 5.8 (Theorem 5.1 (Chen et al., 2018)). Suppose there is some M(0) such that for ε = 0

inf
θ̂

sup
θ∈Θ

sup
Q

P(ε,θ,Q)

(
L(θ, θ̂) ≥M(ε)

)
≥ c (5.28)

holds. Then, for any ε ∈ [0, 1] (5.28) holds for M(ε) = c
(
M(0) ∨ w(ε,Θ)

)
.

w(ε,Θ) is the price to pay in the minimax rate when a proportion ε of the samples are contam-

inated. To illusrate Theorem 5.8, let us consider the linear regression model:

Yi =
〈
Xi, θ

〉
+ εi

where without contamination Xi ∼ N (0,Σ), εi ∼ N (0, σ2) are independent. In (Chen et al.,

2016), the authors consider a setting when both the design X and the response variable in the

model can be contaminated i.e (X1, Y1), · · · , (XN , YN) ∼ (1− ε)Pθ + εQ, whith Pθ = P (X)P (Y |X),

P (X) = N (0,Σ) and P (Y |X) = N (XT θ, σ2). They establish that the minimax optimal risk over

the class of s-sparse vectors for the metric L(θ1, θ2) = ‖θ1 − θ‖2
2 is given by

s log(p/s)

N
∨ ε2
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The question of main interest in our setting is the following: does the minimax risk for regression

problem in the ε-contamination model remain the same when only the labels are contaminated ?

The following theorem answers to the above question.

Theorem 5.9. Let {Pθ = P θ
(X,Y ) with Y = fθ(X) + ε, θ ∈ Θ} be a statistical regression model. For

any θ ∈ Θ, ε ∈ [0, 1] let

Pθ,ε =

{(
(1− ε)Pθ + εQθ

)⊗Ni=1 , Pθ = P θ
(X,Y ) with Y = fθ(X) + ε

Qθ = P θ
(X,Ỹ )

with Ỹ = fθ(X) + ε̃

}
Suppose there is some M(0) such that for ε = 0

inf
θ̂

sup
Rθ,ε∈Pθ,ε,θ∈Θ

Rθ,ε

(
L(θ, θ̂) ≥M(ε)

)
≥ c (5.29)

holds. Then For any ε ∈ [0, 1] (5.29) holds for M(ε) = c
(
M(0) ∨ w(ε,Θ)

)
Theorem 5.9 states that the minimax optimal rates for regression problems in the ε-contamination

model are the same when

• Both the design X and the response variable Y are contaminated.

• Only the response variable Y is contaminated.

Proof. The case when M(ε) = cM(0) is straightforward. Thus, the goal is to lower bound with a

constant the following quantity

inf
θ̂

sup
Rθ,ε∈Pθ,ε,θ∈Θ

Rθ,ε

(
L(θ, θ̂) ≥ w(ε,Θ)

)
We use Le Cam’s method with two hypotheses. The first goal is to find θ1, θ2 such that L(θ1, θ2) ≥
w(ε,Θ). To do so, let θ1, θ2 be solution of

max
θ1,θ2∈Θ

L(θ1, θ2) s.t TV (Pθ1 , Pθ2) = TV (P θ1
(X,Y ), P

θ2
(X,Y )) ≤

ε

1− ε

Thus there exists ε′ ≤ ε such that TV (Pθ1 , Pθ2) = ε′/(1− ε′) and L(θ1, θ2) = w(ε,Θ). To conclude,

it is enough to find two distributions Rθ1,ε and Rθ2,ε in Pθ1,ε and Pθ2,ε such that Rθ1,ε = Rθ2,ε. It

would imply that θ1 and θ2 are not identifiable from the model and the Le Cam’s method would

complete the proof.

For i ∈ {1, 2} let pθi be a density function defined for all (x, y) ∈ X × Y as

pθi(x, y) =
dP θi

(X,Y )

d
(
P θ1

(X,Y ) + P θ2
(X,Y )

)(x, y) (5.30)
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By conditioning, it is possible to write pθi(x, y) = pX(x)pθiY |X=x(y). Let Rθ1,ε and Rθ2,ε defined

respectively as

Rθ1,ε = (1− ε′)P θ1
(X,Y ) + ε′P θ1

(X,Ỹ )
and Rθ2,ε = (1− ε′)P θ2

(X,Y ) + ε′P θ2
(X,Ỹ )

where P θ1
(X,Ỹ )

and P θ2
(X,Ỹ )

are defined by their density functions

∀(x, y) ∈ X × Y ,
dP θ1

(X,Ỹ )

d
(
P θ1

(X,Y ) + P θ2
(X,Y )

)(x, y) =

(
pθ2(x, y)− pθ1(x, y)

)
I{pθ2(x, y) ≥ pθ1(x, y)}

TV
(
P θ1

(X,Y ), P
θ2
(X,Y )

)
dP θ2

(X,Ỹ )

d
(
P θ2

(X,Y ) + P θ1
(X,Y )

)(x, y) =

(
pθ1(x, y)− pθ2(x, y)

)
I{pθ1(x, y) ≥ pθ2(x, y)}

TV
(
P θ1

(X,Y ), P
θ2
(X,Y )

)
Using Scheffé’s theorem, it is easy to see that P θ1

(X,Ỹ )
and P θ2

(X,Ỹ )
are probability measures. Moreover,

from the facts that pθi(x, y) = pX(x)pθiY |X=x(y), ε′ ≤ ε and Lemma 7.2 in (Chen et al., 2018) we

have Rθ1,ε ∈ Pθ1,ε and Rθ2,ε ∈ Pθ2,ε.
To conclude, it remains to show that Rθ1,ε = Rθ2,ε. For any (x, y) ∈ X × Y . Straightforward

computations give

dRθ1,ε

d
(
P θ1

(X,Y ) + P θ2
(X,Y )

)(x, y) = (1− ε′)pθ1(x, y) + ε′
(
pθ2(x, y)− pθ1(x, y)

)
I{pθ2(x, y) ≥ pθ1(x, y)}

TV
(
P θ1

(X,Y ), P
θ2
(X,Y )

)
= (1− ε′)pθ1(x, y) + ε′

(
pθ2(x, y)− pθ1(x, y)

)
I{pθ2(x, y) ≥ pθ1(x, y)}

ε′/(1− ε′)
= (1− ε′)

(
pθ1(x, y) + (pθ2(x, y)− pθ1(x, y))I{pθ2(x, y) ≥ pθ1(x, y)}

)
(1− ε′)

(
pθ2(x, y) + (pθ1(x, y)− pθ2(x, y))I{pθ1(x, y) ≥ pθ2(x, y)}

)
=

dRθ2,ε

d
(
P θ1

(X,Y ) + P θ2
(X,Y )

)(x, y)

5.7 `1-penalized Huber’s M-estimator with non-isotropic

design

In this section, we relax the isotropic assumption on the design X. Recal that a random variable X

is isotropic if for every t ∈ Rp, E
〈
X, t

〉2
= ‖t‖2

2. Instead, we consider covariance matrices satisfying

a Resticted Eigenvalue condition (RE). A matrix Σ is said to satisfy the restricted eigenvalue

condition RE(s, c0) with some constant κ > 0, if ‖Σ1/2v‖2 ≥ κ‖vJ‖2 for any vector v in Rp and any

set J ⊂ {1, · · · , p} such that |J | ≤ s and ‖vJc‖1 ≤ c0‖vJ‖1. We want to derive a result similar

to Theorem 5.6 when X ∼ N(0,Σ), for Σ satisfying RE(s, c) for c an absolute constant. With

non isotropic design we cannot use Lemma 5.1 and the computation of the Gaussian mean-width

is more involved.
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Lemma 5.2. Let Bp
1 denote the unit ball induced by ‖ · ‖1. Let us assume that the design X

has a covariance matrix satisfying RE(s, 9) with constant κ > 0. If the oracle t∗ is s-sparse and

100s ≤
(
κρ/r

)2
then:

∆(ρ) = inf
w∈ρS1∩rBL2

sup
z∗∈Γt∗ (ρ)

〈
z∗, w

〉
≥ 4ρ/5 .

The difference with Lemma 5.1 is the term κ coming from the RE condition.

Proof. To solve the sparsity equation – find ρ∗ such that ∆(ρ) ≥ (4/5)ρ – , we use the following

classical result on the sub-differential of a norm: if ‖·‖ is a norm on Rp, then, for all t ∈ Rp, we

have

(∂ ‖·‖)t =

{
{z∗ ∈ S∗ :

〈
z∗, t

〉
= ‖t‖} if t 6= 0

B∗ if t = 0
. (5.31)

Here, B∗ is the unit ball of the dual norm associated with ‖·‖, i.e. t ∈ Rp → ‖t‖∗ = sup‖v‖≤1

〈
v, t
〉

and S∗ is its unit sphere. In other words, when t 6= 0, the sub-differential of ‖·‖ in t is the set of all

vectors z∗ in the unit dual sphere S∗ which are norming for t (i.e. z∗ is such that
〈
z∗, t

〉
= ‖t‖). In

particular, when t 6= 0, (∂ ‖·‖)t is a subset of the dual sphere S∗.

Since F = {
〈
t, ·
〉
, t ∈ Rp}, ‖f‖L2 = ‖

〈
t,X

〉
‖L2 = ‖Σ1/2t‖2. Let w be in Rp such that ‖w‖1 = ρ

and ‖Σ1/2w‖2 ≤ r. Let us denote by I the support of t∗ and PIw the projection of w on (ei)i∈I . By

assumption we have |I| ≤ s. Let z in (∂ ‖·‖)t∗such that for every i ∈ I, zi = sign(t∗i ), and for every

i ∈ Ic, zI = sign(wi). It is clear that z is norming for t∗ i.e
〈
z, t∗

〉
= ‖t∗‖1 and z ∈ S∗1 = S∞ and〈

z, w
〉

=
〈
z, PIw

〉
+
〈
z, PIcw

〉
=
〈
z, PIw

〉
+ ‖PIc‖1 ≥ −‖PIw‖1 + ‖PIc‖1 = ρ− 2‖PIw‖1

Let us assume that PIw satisfies ‖PIcw‖1 > 9‖PIw‖1 which can be rewritten as ρ ≥ 10‖PIw‖1. It

follows that 〈
z, w

〉
≥ ρ− 2‖PIw‖1 ≥ ρ− 1

5
ρ ≥ 4ρ/5,

and the sparsity equation is satisfied. Now let us turn to the case when ‖PIcw‖ ≤ 9‖PIw‖1. From

the RE(s, 9) condition we have ‖PIw‖2 ≤ ‖Σ1/2w‖2/κ and it follows〈
z, w

〉
≥ ρ− 2‖PIw‖1 ≥ ρ− 2

√
s‖PIw‖2 ≥ ρ− 2

κ

√
s‖Σ1/2w‖2 ≥ ρ− 2

κ

√
sr ≥ 4ρ/5

Now, let us turn to the computation of the Gaussian-mean width when the design X is not

isotropic. To do so we use the following Proposition.

Proposition 5.3 (Proposition 1 (C Bellec, 2019)). Let p ≥ 1 and M ≥ 2. Let T be the convex hull

of M points in Rp and assume that T ⊂ Bp
2 . Let G ∼ N (0, Ip). Then for all s > 0,

E sup
t∈sBp2∩T

〈
t,G

〉
= w(sBp

2 ∩ T ) ≤ 4
√

log+(4eM(s2 ∧ 1)),

where log+(a) = max(1, log(a)).
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When F = {
〈
t, ·
〉
, t ∈ Rp} and the covariance matrix of X is Σ, for every r, ρ > 0 we have

w
(
F ∩ (f ∗ + rBL2 ∩ ρBp

1

)
= E sup

t∈Rp:‖Σ1/2‖2≤r,‖t‖1≤ρ

〈
Σ1/2t,G

〉
where G ∼ N (0, Ip). If Σ is assumed to be inversible, we get

w
(
F ∩ (f ∗ + rBL2 ∩ ρBp

1

)
= w

(
rBp

2 ∩ ρΣ1/2Bp
1

)
= w

(
rBp

2 ∩ ρT
)

where T := Σ1/2Bp
1 is the convex hull of (±Σ1/2ei)

p
i=1. To apply Proposition 5.3 it is necessary to

assume that for every i = 1, · · · , p, Σ1/2ei ∈ Bp
2 which holds when Σi,i ≤ 1 and we get

Proposition 5.4. Let F = {
〈
t, ·
〉
, t ∈ Rp} and assume that, Σ, the covariance matrix of X is

invertible and satisfies Σi,i ≤ 1 for every i = 1, · · · , p. Then, for every r, ρ > 0

w
(
F ∩ (f ∗ + rBL2 ∩ ρBp

1

)
≤ 4ρ

√
log+(8ep((r/ρ)2 ∧ 1))

Straightforward computations (see (Lecué and Mendelson, 2018) for instance) show that s Steps

3,4,5,6 in Section 5.3.3 are not modified and the following theorem extends Theorem 5.6 for a

non-isotropic design:

Theorem 5.10. Let I ∪ O denote a partition of {1, · · · , N} such that |I| ≥ |O| and (Xi, Yi)
N
i=1 be

random variables valued in Rp × R such that (Xi)
N
i=1 are i.i.d random variable with X1 ∼ N (0,Σ),

where Σ is invertible, satisfies Σi,i ≤ 1 for i = 1, · · · , p and verifies RE(s, 9) for some constant

κ > 0. Assume that for all i ∈ {1, · · · , N}

Yi =
〈
Xi, t

∗〉+ εi ,

where t∗ is s-sparse and (εi)i∈I are i.i.d random variables independent to (Xi)i∈I such that there

exists α > 0 such that

Fε

(
δ−c δ

κα
max

(
(δ+1)

√
s

log(p)

N
,
|O|
N

))
−Fε

(
c
δ

κα
max

(
(δ+1)

√
s

log(p)

N
,
|O|
N

)
−δ
)
≥ α (5.32)

where Fε denotes the cdf of ε where ε is distributed as εi for i in I, δ is the hyperparameter of the

Huber loss function. Nothing is assumed on (εi)i∈O. Set

λ = c
δ

α
max

(
(δ + 1)

√
log(p)

N
,
|O|√
sN

)
.

Then with probability larger than

1− 2 exp

(
− δ

κ2α(1 + δ)
max

(
(δ + 1)2s log(p),

|O|2
N

))
(5.33)

the estimator t̂δ,λN defined in Equation (5.16) satisfies

‖t̂δ,λN − t∗‖2 ≤
δ

κα
max

(
(δ + 1)

√
s

log(p)

N
,
|O|
N

)
PLt̂δ,λN ≤

δ2

κ2α
max

(
(δ + 1)2s

log(p)

N
,
|O|2
N2

)
and ‖t̂δ,λN − t∗‖1 ≤ c

δ

κ2α
max

(
(δ + 1)s

√
log(p)

N
,
√
s
|O|
N

)
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We recover the main result from (Dalalyan and Thompson, 2019) as a special case of our main

theorem. However, we do not assume that the noise is Gaussian. It can be heavy-tailed. It mainly

generalizes their results.

Remark 5.3. When |O| ≤ (δ + 1)
√
s log(p)N , the regularization parameter λ does not depend on

the unknown sparsity s. It is possible to replace log(p) by log(p/s) and recover the exact minimax

rate of convergence. However, the price to pay is that the regularization parameter λ would depend

on the sparisty s.

5.8 Proofs main Theorems

5.8.1 Proof Theorem 5.1

Let r(·) be such that for all A > 0: r(A) ≥ rI(A) and let A satisfying assumption 5.5 with r(·). The

proof is split into two parts. First we identify a stochastic argument holding with large probability.

Then we show on that event that ‖f̂N − f ∗‖L2(µ) ≤ r(A). Finally, at the very end of the proof we

show that PLf̂N ≤ r2(A)/A.

Stochastic arguments First we identifiate the stochastic event onto which the proof easily fol-

lows. Let,

ΩI =

{
∀f ∈ F : ‖f − f ∗‖L2(µ) ≤ r(A) :

∣∣∣∣(P − PI)(`f − `f∗)∣∣∣∣ ≤ 1

2A(1 + L)
r2(A)

}
(5.34)

ΩO =

{
∀f ∈ F : ‖f − f ∗‖L2(µ) ≤ r(A) :

∣∣∣∣(P − PO)|f − f ∗|∣∣∣∣ ≤ 1

2A(1 + L)

√
|I|
|O|r

2(A)

}
(5.35)

where for any K ⊂ {1, · · · , N}, g : X ×Y 7→ R, PKg = 1/(|K|)∑i∈K g(Xi, Yi). Finally let us define

Ω = ΩI ∩ ΩO.

Lemma 5.3. Grant Assumptions 5.1, 5.3, 5.2, 5.4 and 5.5 with r(·). Then there exists an absolute

constant c > 0 such the event Ω holds with probability larger than

1− 2 exp
(
− c|I|r2(A)/(LBA(L+ 1))

)
The proof of Lemma 5.3 necessitates several tools from sub-Gaussian random variables that we

introduce now.

Let ψ2(u) = exp(u2)− 1. The Orlicz space Lψ2 associated to ψ2 is defined as the set of all random

variables Z on a probability space (Ω,A,P) such that ‖Z‖ψ2 <∞ where

‖Z‖ψ2 = inf{c > 0,Eψ2

(
Z

c

)
≤ 1}
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Let (Xt)t∈T denote a stochastic process indexed by a pseudo metric space (T, d) satisfying the

following Lipschitz condition

for all t, s ∈ T, ‖Xt −Xs‖ψ2 ≤ d(t, s) (5.36)

For such a process it is possible to control the deviation of supt∈T Xt in terms of the geometry of

(T, d) trough the Talagrand’s γ-functionals.

Theorem 5.11 ((Ledoux and Talagrand, 2013), Theorem 11.13). Let (Xt)t∈T be a random process

in L1(Ω,A,P) indexed by a pseudo metric space (T, d) such that for all measurable sets A in Ω∫
A

|Xs −Xt|dP ≤ d(s, t)P(A)ψ−1
2

(
1

P(A)

)
, (5.37)

then, there exists an absolute constant c > 0 such that for all u > 0

P
(

sup
s,t∈T
|Xt −Xs| ≥ c(γ2 + u)

)
≤
(
ψ2(u/D(T ))

)−1

where γ2 is the majorizing measure integral γ(T, d, ψ2) and D(T ) is the diameter of (T, d).

First note that Equation (5.36) implies Equation (5.37). By Jensen inequality and the definition

of ‖ · ‖ψ2 we get ∫
A

|Xs −Xt|dP = d(s, t)P(A)

∫
A

ψ−1
2 ◦ ψ2

( |Xs −Xt|
d(s, t)

)
dP
P(A)

≤ d(s, t)P(A)ψ−1
2

(
1

P(A)
Eψ2

( |Xs −Xt|
d(s, t)

))
≤ d(s, t)P(A)ψ−1

2

(
1

P(A)

)
Moreover, from the Majorizing Measure Theorem (Talagrand, 2006)[Theorem 2.1.1], when T is a

subset of L2(µ) and d(s, t) =
√

E(Xs −Xt)2 we have c1w(T ) ≤ γ2(T ) ≤ c2w(T ) for c1, c2 > 0

two absolute constants and w(T ) is the Gaussian mean-width of T defined in Definition 5.1. The

corollary follows:

Corollary 5.2. Let F̃ ⊂ L2(µ) such that (Xf )f∈F̃ is stochastic process indexded by F̃ satisfying for

any f, g ∈ F̃ : ‖Xf −Xg‖ψ2 ≤ L‖f − g‖L2(µ). Then, for any u ≥ log(2), with probability larger than

1− exp(u2)

sup
f,g∈F̃

|Xf −Xg| ≤ cL
(
w(F̃ ) + uDL2(µ)(F̃ )

)
where c > 0 is an absolute constant, w(F̃ ) is the Gaussian mean-width of F̃ and DL2(µ)(F̃ ) its

L2(µ)-diameter.

The following Lemma allows to control the ψ2-norm of a sum of independent centered random

variables.
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Lemma 5.4 ((Chafäı et al., 2012), Theorem 1.2.1). Let X1, · · · , XN be independent real random

variables such that for all i = 1, · · · , N , EXi = 0. Then

‖
N∑
i=1

Xi‖ψ2 ≤ 16

( N∑
i=1

‖Xi‖2
ψ2

)1/2

The following Lemma connects ψ2-bounded random variable with the control of its Laplace

transform.

Lemma 5.5 ((Chafäı et al., 2012), Theorem 1.1.5). Let Z be a real valued random variable. The

following assertions are equivalent

• There exists K > 0 such that ‖Z‖ψ2 ≤ K

• There exist absolute constants c1, c2, c3 > 0 such that for every λ ≥ c1/K

E exp(λ|Z|) ≤ c3 exp(c2λ
2K2) (5.38)

We are now in position to prove Lemma 5.3.

Proof. First we prove that ΩI holds with probability larger than exp
(
− c|I|r2(A)/(ALB(1 +L))

)
.

Let F̃ = {f ∈ F : ‖f − f ∗‖L2(µ) ≤ r(A)}. Let us assume that for any f, g in F̃ , the following

condition holds

‖
(
P − PI

)(
`f − `g

)
‖ψ2 ≤ c(LB/

√
|I|)‖f − g‖L2(µ) (5.39)

then, from Corollary 5.2, for any u ≥ log(2), there exists an absolute constant c > 0 such that with

probability larger that 1− exp(u2)

sup
f∈F̃

∣∣∣∣(P − PI)(`f − `f∗)∣∣∣∣ ≤ sup
f,g∈F̃

∣∣∣∣(P − PI)(`f − `g)∣∣∣∣
≤ c

LB√
|I|
(
w(F̃ ) + uDL2(µ)(F̃ )

)
≤ c

LB√
|I|

(
w
(
F ∩ (f ∗ + r(A)BL2(µ))

)
+ ur(A)

)
As r(A) ≥ rI(A) it follows that w

(
F ∩ (f ∗ + r(A)BL2(µ))

)
≤
√
|I|r2(A)/(ABL(L + 1)).By taking

u = c
√
|I|r(A)/(ABL(L+ 1)) we obtain the result. With the same reasoning if we assume that∥∥(P − PO)|f − g|∥∥ψ2

≤ c(BL)/
√
|O|)‖f − g‖L2(µ) , (5.40)

then, with probability larger that 1− exp
(
− c|I|r2(A)/(ABL(L+ 1))

)
:

sup
f∈F̃

∣∣∣∣(P − PO)|f − f ∗|∣∣∣∣ ≤ 1

2A(L+ 1)

√
|I|
|O|r

2(A)
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To finish the proof it remains to show that Equations (5.39) and (5.40) hold. From Lemma 5.4

we get

‖
(
P − PI

)
(`f − `g)‖ψ2 ≤ 16

(∑
i∈I

‖(`f − `g)(Xi, Yi)− E(`f − `g)(Xi, Yi)‖2
ψ2

|I|2
)1/2

=
16√
|I|
‖(`f − `g)(X, Y )− E(`f − `g)(X, Y )‖ψ2

Thus, it remains to show that ‖(`f − `g)(X, Y ) − E(`f − `g)(X, Y )‖ψ2 ≤ cLB‖f − g‖L2(µ) for

c > 0 an absolute constant. To do so, we use Lemma 5.5. Let λ ≥ cLB/(‖f − g‖L2(µ)). From

the symmetrization principle (Lemma 6.3 in (Ledoux and Talagrand, 2013)) and the contraction

principle (Theorem 2.2 in (Koltchinskii, 2011b)) we get

E exp(λ|(`f − `g)(X, Y )− E(`f − `g)(X, Y )|) ≤ E exp(2λσ(`f − `g)(X, Y ))

≤ E exp(4Lλσ(f − g)(X))

≤ E exp(4Lλ|f − g|(X))

where σ is a Rademacher random variation independent to (X, Y ). From assumption 5.4, we get

E exp(λ|(`f − `g)(X, Y )− E(`f − `g)(X, Y )|) ≤ E exp(162B2λ2L2‖f − g‖2
L2(µ))

which concludes the proof for ΩI with Lemma 5.5. For ΩO, since L ≥ 1 we have

E exp(λ
∣∣|f − g|(X)− E|f − g|(X)

∣∣) ≤ E exp(2λσ(f − g)(X))

≤ E exp(4λL|f − g|(X))

which also concludes the proof for ΩO.

Deterministic argument In this paragraph we place ourselves on the event Ω = ΩI ∩ΩO. The

main argument uses the convexity of the class F with the one of the loss function.

From the definition of f̂N , we have PNLf̂N ≤ 0. To show that ‖f̂N − f ∗‖L2(µ) ≤ r(A) it is sufficient

to show that for all functions f ∈ F such that ‖f − f ∗‖L2(µ) ≥ r(A) we have PNLf > 0. Let

f in F such that ‖f − f ∗‖L2(µ) ≥ r(A). By convexity of F there exists a function f1 such that

‖f1 − f ∗‖L2(µ) = r(A) for which

f − f ∗ = α(f1 − f ∗)

where α =
(
‖f − f ∗‖L2(µ)/r(A)

)
≥ 1. For all i ∈ {1, · · · , N}, let ψi : R → R be defined for all

u ∈ R by

ψi(u) = `(u+ f ∗(Xi), Yi)− `(f ∗(Xi), Yi).

The functions ψi are such that ψi(0) = 0, they are convex under assumption 5.3. In particular

αψi(u) ≤ ψi(αu) for all u ∈ R and α ≥ 1 and ψi(f(Xi)− f ∗(Xi)) = `(f(Xi), Yi)− `(f ∗(Xi), Yi) so
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that the following holds:

PNLf =
1

N

N∑
i=1

ψi
(
f(Xi)− f ∗(Xi)

)
=

1

N

N∑
i=1

ψi(α(f1(Xi)− f ∗(Xi)))

≥ α

N

N∑
i=1

ψi(f1(Xi)− f ∗(Xi)) = αPNLf1 .

From the previous argument it follows that PNLf ≥ αPNLf1 . Therefore it is enough to show that

PNLf1 > 0 for f1 ∈ F ∩ (f ∗ + r(A)SL2(µ)), where SL2(µ) denotes the unit sphere induced by L2(µ).

We have

PNLf1 =
|I|
N
PILf1 +

|O|
N
POLf1

On ΩI (see Equation (5.34)) it follows that

PILf1 ≥ PLf1 −
1

2A(1 + L)
r2(A) ≥

(
A−1 − 1

2A(1 + L)

)
r2(A) (5.41)

where we used assumption 5.5. Moreover, from assumption 5.3, it follows that

POLf1 ≥ −PO|`f1 − `f∗ | ≥ −LPO|f1 − f ∗| .

On ΩO (see Equation (5.35)), we get

POLf1 ≥ −L‖f1 − f ∗‖L1 −
L

2A(1 + L)

√
|I|
|O|r

2(A) ≥ −L‖f1 − f ∗‖L2 −
L

2A(1 + L)

√
|I|
|O|r

2(A)

= −Lr(A)− L

2A(1 + L)

√
|I|
|O|r

2(A) . (5.42)

Since |O| < |I|, from Equations (5.41), (5.42) it follows

PNLf1 ≥
|I|
N

(
A−1 − 1

2A(1 + L)

)
r2(A)− |O|

N

(
Lr(A) +

L

2A(1 + L)

√
|I|
|O|r

2(A)

)
≥ 1

2A

|I|
N
r2(A)− L |O|

N
r(A) > 0

as long as |O| < (1/2AL)|I|r(A). It concludes the proof for the error rate.

We finish the proof by establishing the result for the excess risk. Since ‖f̂N − f ∗‖L2(µ) ≤ r(A), on
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ΩI we have

PLf̂N ≤ PILf̂N +
1

2A(1 + L)
r2(A) =

N

|I|PNLf̂N −
|O|
|I| POLf̂N +

1

2A(1 + L)
r2(A)

≤ −|O||I| POLf̂N +
1

2A(1 + L)
r2(A)

≤ L
|O|
|I| PO|f̂N − f

∗|+ 1

2A(1 + L)
r2(A)

≤ L
|O|
|I|

(
‖f̂N − f ∗‖L2(µ) +

1

2A(1 + L)

√
|I|
|O|r

2(A)

)
+

1

2A(1 + L)
r2(A)

≤ L
|O|
|I|

(
r(A) +

1

2A(1 + L)

√
|I|
|O|r

2(A)

)
+

1

2A(1 + L)
r2(A)

≤ L
|O|
|I| r(A) +

1

2A
r2(A)

<
1

A
r2(A)

where we used the fact that PNLf̂N ≤ 0, that we work on ΩO and the inequality |O| < (1/2AL)|I|r(A).

5.8.2 Proof Theorem 5.2

The proof is very similar to the one of Theorem 5.1. We present only the stochastic argument. The

deterministic argument can be simply obtained by reproducing line by line the proof of Theorem 5.1.

Theorem 5.12 (Theorem 2.6, (Koltchinskii, 2011a)). Let F be a class of functions bounded by M .

For all t > 0, with probability larger than 1− exp(−t)

sup
f∈F
|(PN − P )f | ≤ E sup

f∈F
|(PN − P )f |+

√
2
t

N

(
sup
f∈F

Pf 2 + 2ME sup
f∈F
|(PN − P )f |

)
+
tM

N

Let us define

Ω :=

{
∀f ∈ F : ‖f − f ∗‖L2 ≤ max(1,

√
LM)rb(A),

∣∣(P − PI)Lf ∣∣ ≤ max(1, LM)(rb(A))2

2A(L+ 1)

and
∣∣(P − PO)|f − f ∗|

∣∣ ≤ max(1, LM)(rb(A))2

2A(L+ 1)

}
Lemma 5.6. Grant Assumptions 5.1, 5.3, 5.2 and 5.6 with the complexity parameter rb(·). Then,

the event Ω holds with probability larger than

1− 2 exp

(
− |I|(rb(A))2

36A2(L+ 1)2

)
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Proof. Let F = {f ∈ F, ‖f − f ∗‖L2 ≤ max(1,
√
LM)rb(A)}. Let (σi)

N
i=1 be i.i.d Rademacher

random variables independent to (Xi, Yi)i=1, from the symmetrization and contraction Lemmas

(see (Ledoux and Talagrand, 2013)) we get

E sup
f∈F
|(PI − P )Lf | ≤ 4LE sup

f∈F

1

|I|
∑
i∈I

σi(f − f ∗)(Xi) ≤ max(1, LM)
(rb(A))2

8A(L+ 1)

where we used the Definition 5.3 of rbI(·) and the fact that rb(A) ≥ rbI(A) for all A > 0. From

Assumption 5.6, any function f in F , |Lf (x, y)| ≤ LM for all (x, y) ∈ X × Y . For any t > 0, it

follows from Theorem 5.12 that for any function f in F

|(PI − P )Lf | ≤ max(1, LM)
(rb(A))2

8A(L+ 1)
+
LMt

N

+

√
2t

|I|

(
max(1, LM)(rb(A))2 + 2LM max(1, LM)

(rb(A))2

8A(L+ 1)

)
.

Since A,L ≥ 1, taking t = (|I|(rb(A))2)(36A2(L+ 1)2) concludes the proof for the informative data

I. For the outliers O, we used the same arguments since from Assumption 5.6, any function f in

F , |f(x)− f ∗(x)| ≤M for all x ∈ X .

5.8.3 Proof Theorem 5.4

Let r̃(·, ·) such that for all A, ρ > 0, r̃(A, ρ) ≥ r̃I(A, ρ) and let ρ∗ satisfying the A, r̃-sparsity equation

with A verifying assumption 5.8

The proof is split into two parts and is very similar as the one of Theorem 5.1. First we identify

a stochastic argument holding with large probability. Then, we show on that event that ‖f̂λN −
f ∗‖L2(µ) ≤ r̃(A, ρ∗) and ‖ f̂λN − f ∗‖ ≤ ρ∗. Then, at the very end of the proof we will control the

excess risk PLf̂λN where f̂λN is defined in equation (5.12). Let us fix λ = 41r̃2(A, ρ∗)/(112Aρ∗).

Stochastic arguments The stochastic part is the same as the one in the proof of Theorem 5.1

where a localization with respect to the regularization norm is added. First we identifiate the

stochastic event onto which the proof easily follows. Let,

ΩI =

{
∀f ∈ F ∩

(
f ∗ + ρ∗B ∩ r̃(A, ρ∗)BL2(µ)

)
: (5.43)∣∣∣∣(P − PI)(`f − `f∗)∣∣∣∣ ≤ 1

4A(1 + L)
r̃2(A, ρ∗)

}

ΩO =

{
∀f ∈ F ∩

(
f ∗ + ρ∗B ∩ r̃(A, ρ∗)BL2(µ)

)
: (5.44)∣∣∣∣(P − PO)|f − f ∗|∣∣∣∣ ≤ 1

4A(1 + L)

√
|I|
|O| r̃

2(A, ρ∗)

}
,
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where we recall that B is the unit ball induced by the regularization norm ‖ · ‖. Finally, set

Ω = ΩI ∩ ΩO

Lemma 5.7. Grant Assumptions 5.1, 5.3, 5.2, 5.4 and 5.8 with r̃(·, ·). Then the event Ω holds

with probability larger than

1− 2 exp

(
− c |I|r̃

2(A, ρ∗)

LBA(L+ 1)

)
(5.45)

Proof. The proof is exactlty the same as the one in the non-regularized setup where a localization

with respect to the regularization norm is added. It is enough to adapt the proof with the definition

of r̃I(A, ρ) from Equation (5.4).

Deterministic argument In this paragraph we place ourselves on the event Ω. Let us recall

that for any function f in F

PNLλf = PN(`f − `f∗) + λ(‖f‖ − ‖f ∗‖) (5.46)

Let B = ρ∗B ∩ r̃(A, ρ∗)BL2(µ). From the definition of f̂λN , we have PNLλf̂λN ≤ 0. To show that

f̂λN ∈ F ∩
(
f ∗+B

)
it is sufficient to show that for all functions f ∈ F\

(
f ∗+B

)
we have PNLλf > 0.

Let f in F\
(
f ∗ + B

)
. By convexity of F there exist a function f1 in F and α ≥ 1 such that

α(f1 − f ∗) = f − f ∗ and f1 ∈ ∂(f ∗ + B) where ∂(f ∗ + B) denotes the border of f ∗ + B. Using the

same convex argument as the one in the proof of Theorem 5.1 we obtain:

PNLf ≥ αPNLf1 .

Moreover, by the triangular inequality we obtain

‖f‖ − ‖f ∗‖ ≥ α(‖f1‖ − ‖f ∗‖),

and thus,

PNLλf ≥ αPNLλf1

Therefore it is enough to show that PNLλf1
> 0 for f1 ∈ F ∩ (f ∗ + B). By definition of B, there

are two different cases: 1) ‖f1 − f ∗‖ = ρ∗ and ‖f1 − f ∗‖L2 ≤ r̃(A, ρ∗) and 2) ‖f1 − f ∗‖ ≤ ρ∗

and ‖f1 − f ∗‖L2 = r̃(A, ρ∗). In the first case 1), the sparsity equation will help us to show that

PNLλf1
> 0 while in case 2) it will be the local Bernstein condition. Let us begin by the case where

‖f1 − f ∗‖ = ρ∗ and ‖f1 − f ∗‖L2 ≤ r̃(A, ρ∗).

PNLf1 =
|I|
N
PILf1 +

|O|
N
POLf1

On ΩI (see Equation (5.43)) it follows that

PILf1 ≥ PLf1 −
1

4A(1 + L)
r̃2(A, ρ∗) ≥ − 1

4A(1 + L)
r̃2(A, ρ∗) (5.47)
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Moreover, from assumption 5.3 it follows that

POLf1 ≥ −PO|`f1 − `f∗ | ≥ −LPO|f1 − f ∗| .

On ΩO (see Equation (5.44)), we get

−LPOLf1 ≥ −Lr̃(A, ρ∗)−
L

4A(1 + L)

√
|I|
|O| r̃

2(A, ρ∗) . (5.48)

Since |O| ≤ |I|, from Equations (5.47), (5.48) it follows

PNLf1 ≥ −
1

4A

|I|
N
r̃2(A, ρ∗)− |O|L

N
r̃(A, ρ∗)

Let us turn to the control of λ(‖f1‖ − ‖f ∗‖). Recall that we are in the case where ‖f1 − f ∗‖ = ρ∗

and ‖f1 − f ∗‖L2
≤ r̃(A, ρ∗). Let v ∈ E be such that ‖f ∗ − v‖ ≤ ρ∗/20 and g ∈ ∂(‖·‖)v. We have

‖f1‖ − ‖f ∗‖ ≥ ‖f1‖ − ‖v‖ − ‖f ∗ − v‖ ≥
〈
g, f1 − v

〉
− ‖f ∗ − v‖

>
〈
g, f1 − f ∗

〉
− 2 ‖f ∗ − v‖ >

〈
g, f1 − f ∗

〉
− ρ∗/10 .

As the latter result holds for all v ∈ f ∗ + (ρ∗/20)B and g ∈ ∂ ‖·‖ (v), since f1 − f ∗ ∈ ρ∗S ∩
r̃(A, ρ∗)BL2(µ), we get

‖f1‖ − ‖f ∗‖ ≥ ∆(ρ∗)− ρ∗/10 ≥ 7ρ∗/10 .

Here, the last inequality holds because ρ∗ satisfies the sparsity equation. Finally we have

PNLλf1
≥ − 1

4A

|I|
N
r̃2(A, ρ∗)− |O|L

N
r̃(A, ρ∗) +

7λρ∗

10

From the choice of λ = 41r̃2(A, ρ∗)/(112Aρ∗) ≥ 41|I|r̃2(A, ρ∗)/(112ANρ∗) we get

PNLλf1
≥ 1

160A

|I|
N
r̃2(A, ρ∗)− |O|L

N
r̃(A, ρ∗) > 0

when |O| < 1/(160AL)|I|r̃(A, ρ∗).

Let us turn to the second case 2) ‖f1 − f ∗‖ ≤ ρ∗ and ‖f1 − f ∗‖L2(µ) = r̃(A, ρ∗). On ΩI (see

Equation (5.43)) and from assumption 5.8 it follows that

PILf1 ≥
(

1

A
− 1

4A(1 + L)

)
r̃2(A, ρ∗) .

With the same reasoning as the one in case 1) we get

POLf1 ≥ −L
|O|
N
r̃(A, ρ∗)− L

4A(1 + L)

√
|I|
|O| r̃

2(A, ρ∗) .

As |O| ≤ |I| and ‖f1‖ − ‖f ∗‖ ≥ −‖f1 − f ∗‖ ≥ −ρ∗, it follows that

PNLλf1
≥ 3

4A

|I|
N
r̃2(A, ρ∗)− λρ∗ − L |O|

N
r̃(A, ρ∗) .
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Since |I| ≥ N/2 we get λ < 82|I|r̃2(A, ρ∗)/(112ANρ∗) and thus

PNLλf1
≥ 1

56A
r̃2(A, ρ∗)− L |O|

N
r̃(A, ρ∗) > 0 .

when |O| < 1/(56AL)|I|r̃(A, ρ∗)

We finish the proof by establishing the result for the excess risk. Since ‖f̂λN −f ∗‖L2(µ) ≤ r̃(A, ρ∗)

and ‖f̂λN − f ∗‖ ≤ ρ∗, on ΩI we have

PLf̂λN ≤ PILf̂λN +
1

4A(1 + L)
r̃2(A, ρ∗)

Moreover we have

PILf̂λN =
N

|I|PNLf̂λN −
|O|
|I| POLf̂λN =

N

|I|PNL
λ
f̂λN

+ λ
N

|I|(‖f
∗‖ − ‖f̂λN‖)−

|O|
|I| POLf̂λN

≤ 2λρ∗ + L
|O|
|I| PO|f̂

λ
N − f ∗|

≤ 2λρ∗ + L
|O|
|I|

(
‖f̂λN − f ∗‖L2(µ) +

1

4A(1 + L)

√
|I|
|O| r̃

2(A, ρ∗)

)
≤
(

82

112A
+

L

4A(1 + L)

)
r̃2(A, ρ∗) + L

|O|
|I| r̃(A, ρ

∗)

<

(
82

112A
+

L

4A(1 + L)
+

1

160A

)
r̃2(A, ρ∗)

where we used the fact that PNLλf̂λN ≤ 0 and the inequality |O| < 1/(160AL)|I|r̃(A, ρ∗).

5.8.4 Proof Theorem 5.5

The proof consists in taking the stochastic argument from the proof of Theorem 5.2 (and adding

the localization with respect to the regularization norm) and the deterministic argument from the

proof of Theorem 5.4
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Chapter 6

Benign overfitting in the large deviation

regime

In this chapter, we investigate the benign overfitting phenomenon in the large deviation regime

where the bounds on the prediction risk hold with probability 1− e−ζn, for some absolute constant

ζ. We prove that these bounds can converge to 0 for the quadratic loss. We obtain this result by a

new analysis of the interpolating estimator with minimal Euclidean norm, relying on a preliminary

localization of this estimator with respect to the Euclidean norm. This new analysis complements

and strengthens particular cases obtained in (Bartlett et al., 2019) for the square loss and is extended

to other loss functions. To illustrate this, we also provide excess risk bounds for the Huber and

absolute losses, two widely spread losses in robust statistics.

199
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6.1 Introduction

In this paper, we consider Gaussian regression problems where one observes a dataset Dn of i.i.d.

random vectors (xi, yi), i ∈ {1, . . . , n} such that yi =
〈
xi, β

∗〉 + ξi, where β∗ ∈ Rp is an unknown

vector, x ∼ N (0,Σ) ∈ Rp and ξ ∼ N (0, σ2) ∈ R are independent random variables. Defining the

matrix X with lines xTi and the vector Y = (y1, . . . , yn)T ∈ Rn, the set of least-squares estimators

is defined by

β̂ ∈ argmin
β∈Rp

n∑
i=1

(yi −
〈
xi, β

〉
)2 = argmin

β∈Rp
‖Xβ∗ − Y ‖2

2 .

The solutions of this problem are β̂ = XgY , where Xg is any pseudo-inverse of X. When the

dimension p of β is smaller than n, the least-squares estimator is typically unique and has a risk

of order O(σ2p/n), which deteriorates with the dimension p. This deterioration is unavoidable in

general, a phenomenon known as the “curse of dimensionality” in statistical textbooks.

To bypass this issue, statisticians have focused on situations where β∗ satisfies some sparsity

conditions, meaning that it belongs, or is close, to a known set S of small dimensional subspaces

S ⊂ Rp. In many of these situations, least-squares estimators can be improved, by considering

minimizers of regularized least-squares criteria of the form ‖Xβ − Y ‖2
2 + Ω(β). Several examples

of such procedures have been studied in the literature. Among the most popular ones, one can

mention ridge regression (Hoerl and Kennard, 1970; Casella, 1980), the LASSO (Tibshirani, 1996;

Van de Geer et al., 2008; Bickel et al., 2009) and the elastic net (Zou and Hastie, 2005; De Mol

et al., 2009). Regularization ensures that both the prediction risk

E[
〈
x, β̂ − β∗

〉2|Dn] = (β̂ − β∗)TΣ(β̂ − β∗) = ‖Σ1/2(β̂ − β∗)‖2
2

and the estimation risk ‖β̂ − β∗‖2
2 = (β̂ − β∗)T (β̂ − β∗) are controlled. These results hold even if

p > n provided that β∗ is close to a linear subspace S ⊂ Rp with dimension s < n.

When the dimension p > n, the set of least-squares estimators is typically infinite. Actually,

the matrix X in this case has typically full rank (and a non trivial kernel) and any solution in the

set {XgY }, where Xg describes all pseudo-inverses of X satisfy XXgY = Y . In other words,

in large dimension, least-squares estimators interpolate data. This kind of behavior is typically

undesirable in statistics, as the estimators clearly overfit the observed dataset, and have usually

poor generalization abilities. However, and perhaps counter-intuitively, it turns out that, when

the dimension p is large in front of n, the risk of prediction can become smaller for some of these

solutions. This interesting phenomenon has given rise to a rapidly growing literature these last

months, see (Belkin et al., 2019a,b, 2018a,b; Bunea et al., 2020; Feldman, 2019; Liang and Rakhlin,

2018; Mei and Montanari, 2019). This success is not surprising as many algorithms in machine

learning require to fit a huge number of parameters with a smaller number of data. The most famous

examples are neural networks for which it has been repeatedly observed empirically that enlarging

the network, hence, the number of parameters, may help to improve prediction performance (Advani
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and Saxe, 2017; Belkin et al., 2019a; Zhang et al., 2016). Of course, linear regression is much

simpler than neural networks and the results proved here are not sufficient to explain the amazing

prediction properties of these algorithms, but it is interesting to understand when and how high

dimension helps prediction, at least in this simpler example. Moreover, several recent works have

shown that the analysis of linear models can be relevant for over-parametrized neural networks. A

reason is that, when neural networks are trained by gradient descent properly initialized, they are

well approximated by a linear model in a Hilbert space. This method is known as neural tangent

kernel approach (Jacot et al., 2018; Bietti and Mairal, 2019; Arora et al., 2019; Lee et al., 2019).

Understanding the generalization of over-parametrized linear models could therefore be seen as a

first step in the direction of understanding deep learning.

In this paper, we consider more precisely the problem of (Bartlett et al., 2019) where the least-

squares solution with minimal Euclidean norm is analysed. It is well known that this solution is

β̂ = X+Y , where X+ is the Moore-Penrose pseudo inverse of X. Our main results complement

those in (Bartlett et al., 2019) in the following sense. First, our results are derived in the large

deviation regime, meaning that they hold with probability 1− e−ζn, for some absolute constant ζ.

This regime is considered in (Bartlett et al., 2019) but the bounds there don’t converge to 0 as

n→∞. On the contrary, our bounds can converge to 0 under proper assumptions on the spectrum

of the covariance matrix Σ = E[xxT ]. These assumptions involve the rest of the series of singular

values of the matrix Σ, rk∗(Σ) =
∑p

k=k∗ λi(Σ) for a well chosen index k∗ as in (Bartlett et al., 2019).

The index k∗ in our result is typically slightly larger than the one in (Bartlett et al., 2019) by a

logarithmic factor, see (6.4) for a definition of k∗ and the discussion at the end of Section 6.3.1

for a precise comparison between the k∗ in a particular example. Besides considering the large

deviation regime, our new bounds improve those of (Bartlett et al., 2019) in typical examples

where benign overfitting occurs, see the discussion following Corollary 6.1. These improvements are

made possible by a new analysis of the estimator β̂, that relies on preliminary results showing that

dimension may help to localize this estimator with respect to the estimation norm ‖β̂ − β‖2, see

Theorem 6.3. This localization allows, for example, to prove rates of convergence that can be as

fast as 1/n for this estimator, while the bounds in (Bartlett et al., 2019) only allow to reach 1/
√
n.

Our bounds exhibit a phase transition of the rates of convergence when the signal to noise ratio

SNR = ‖β∗‖2/σ2 becomes larger than a threshold t = n/rk∗(Σ) (this threshold typically grows to

infinity in the examples). When SNR > t, the prediction risk of the estimator satisfies, in the large

deviation regime, ‖Σ1/2(β̂− β∗)‖2
2 . ‖β∗‖2Tr(Σ)/n. This rate can be exponentially better than the

one in (Bartlett et al., 2019) for some spectrum of the covariance matrix Σ, even if it holds with

probability 1 − e−ζn in our result and with constant probability in (Bartlett et al., 2019) (see the

example following Corollary 6.1). On the other hand, when the SNR is too low, SNR ≤ t, these

rates deteriorate into ‖Σ1/2(β̂−β∗)‖2
2 . σ2 +k∗/n. In this case, our rates improve those of (Bartlett

et al., 2019) which are always larger than σ2k∗ in the large deviation regime and actually met the

optimal rate σ2 as proved in (Lecué and Mendelson, 2013, Theorem A’).
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Besides the least-squares loss, our new strategy can be easily applied to analyse the excess risk

of interpolating estimators with respect to other loss functions. This extension was mentioned as a

relevant conjecture in (Bartlett et al., 2019). We illustrate this by providing a short analysis of the

excess risk of β̂ with respect to the Huber loss and the absolute loss, two widely spread methods in

robust statistics. The bounds obtained on the excess risk of β̂ with respect to these losses involve

the same quantities as for the quadratic loss. They are gathered in Theorem 6.2.

The remainder of the paper is decomposed as follows. Section 6.2 sets the main notations and

recall the construction of the estimator β̂. Section 6.3 gathers the main results of the paper, the

upper bounds on the excess risk of the estimator β with respect to the quadratic, absolute and

Huber losses. The proofs of these results are gathered in Section 6.4.

6.2 Setting

Let (x, y), (xi, yi)i∈{1,...,n} denote i.i.d random vectors generated according to the following Gaussian

linear model,

y = xTβ∗ + ξ , (6.1)

where β∗ ∈ Rp is the signal of interest, the design x is a Gaussian vector x ∼ N (0,Σ) ∈ Rp and

the noise ξ is a Gaussian random variable ξ ∼ N (0, σ2), independent of x. Let X ∈ Rn×p denote

the matrix with lines xT1 , · · · , xTn . Let Y = (y1, · · · , yn)T ∈ Rn and ξ = (ξ1, . . . , ξn)T . Using these

notations, the dataset Dn = {(x1, y1), . . . , (xn, yn)} can be represented in the matrix form as

Y = Xβ∗ + ξ .

The set of interpolating vectors Hn ⊂ Rp is defined as Hn = {β ∈ Rp : Xβ = Y }. We analyse

the estimator defined as the interpolating vector with minimal Euclidean norm, that is

β̂ = argmin
β∈Hn

‖β‖2 , (6.2)

where ‖ · ‖2 denotes the Euclidean norm in Rp. This estimator is defined only when the set Hn is

non-empty. In general, this occurs only when X has full rank n, which holds almost surely when

the dimension p is larger than the number of observations n, provided that Σ has rank at least n.

In the following, we assume therefore that p ≥ 4n and that Σ has rank at least n. The constant 4

has no particular meaning here, it could be replaced by any constant strictly larger than 1 without

affecting the results.

Our main results give upper bounds on the prediction loss of β̂. Let ` : R× R 7→ R+ denotes a

loss function such that `(y, y) = 0 for all y ∈ R and `(y, y′) > 0 if y 6= y′. It is also assumed that

the function y 7→ `(y, y′) is convex for any y ∈ R. In the first part of the paper, ` will be the square

loss `(y, y′) = (y − y′)2. Other losses will be considered in Section 6.3.2. For any β ∈ Rp and any
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(u, v) ∈ Rp × R, let `β(u, v) = `(
〈
u, β

〉
, v) and let Lβ(u, v) = `β(u, v)− `β∗(u, v). For any function

f : Rp × R→ R, let Pf = E[f(x, y)]. The excess risk is then defined as:

E
[
`

(〈
x, β̂

〉
, y

)
− `
(〈
x, β∗

〉
, y

)
|Dn

]
= P (`β̂ − `β∗) = PLβ̂ . (6.3)

As usual, the expectation is taken over the random variables (x, y) only, so the excess risk is a

random variable. In this paper, we provide risk bounds for the estimator β̂ that hold in the large

deviation regime. This means that we build deterministic upper bounds rn on PLβ̂ such that

P(PLβ̂ > rn) 6 − exp(ζn), for some absolute constant ζ.

For any symmetric matrix A ∈ Rn×n, we denote by λ1(A) ≥ · · · ≥ λn(A) its eigenvalues in

the non-increasing order and by rk(A) =
∑n

i=k λi(A). More generally, for any matrix B ∈ Rn×p,

we denote by σ1(B) ≥ · · · ≥ σmin(B) > 0, its positive singular values in the non-increasing order.

The operator norm of B is denoted by ‖B‖ = σ1(B). For any symmetric positive semi-definite

matrix A, let ‖β‖A =
√
βTAβ. Let S(r) (resp. SA(r)) denote the sphere in Rp with radius r

with respect to the Euclidean norm ‖ · ‖2 (resp. with respect to the semi-norm ‖ · ‖A). Define

similarly B(r) and BA(r) to be the balls with radius r. Let also, for any subset B of Rp, denote

by β + B = {u ∈ Rp : ∃v ∈ B such that u = β + v}. All along the paper, c and ζ denote absolute

positive constants. Typically, ζ denotes a small constant while c denotes a large one.

6.3 Main results

This section provides our main contributions. Prediction bounds for the square loss are provided

in Section 6.3.1 and for other loss functions in Section 6.3.2.

6.3.1 Prediction with least-squares loss

The following theorem is the main result of this paper.

Theorem 6.1. Let

k∗ = inf

{
k ∈ {1, · · · , p} :

rk(Σ)

λk(Σ)
≥ 32n log

(
1 +

44

3

√
p‖Σ‖
rk(Σ)

)}
. (6.4)

Let ζ > 0 be an absolute constant. Define the parameter v, the estimation rate ρ and the prediction

rate r∗ by

v =
rk∗(Σ)

32nλk∗(Σ)
, ρ = ‖β∗‖2 + σ

√
32n

rk∗(Σ)
, (6.5)

r∗ = inf

{
r > 0 :

p∑
i=1

r2 ∧ λi(Σ)ρ2 ≤ ζnr2

}
. (6.6)
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If k∗ ≤ cn, for c > 0 an absolute constant, then, with probability larger than 1 − 7e−(v∧ζ)n, the

estimator β̂ defined in Equation (6.2) satisfies

‖β̂ − β∗‖2 ≤ ρ ‖Σ1/2(β̂ − β∗)‖2 ≤ r∗ .

Theorem 6.1 is proved in Section 6.4.2. The estimation bound ρ does not converge to 0, which

is not surprising in our high dimensional setting, in absence of sparsity assumption. However, it

is interesting to see that it may decrease, up to a certain threshold, with the dimension p. In

particular, when the signal to noise ratio ‖β∗‖2/σ2 is larger that the threshold n/rk∗(Σ), ‖β̂ − β∗‖2

is at most of order ‖β∗‖2 when the dimension is large enough.

To discuss the prediction bounds, it is useful to give the following corollary, whose proof is a

direct consequence of Theorem 6.1 left as an exercise. The corollary shows a phase transition in

the rates of convergence when the signal to noise ratio SNR = ‖β∗‖2/σ2 becomes larger than the

threshold t = n/rk∗(Σ).

Corollary 6.1. Grant the assumptions and notations of Theorem 6.1,

• If the signal to noise ratio is large enough, ‖β∗‖2
2/σ

2 ≥ n/rk∗(Σ), the estimator β̂ defined in

Equation (6.2) satisfies, with probability larger than 1− 7e−(v∧ζ)n,

‖β̂ − β∗‖2 . ‖β∗‖2, ‖Σ1/2(β̂ − β∗)‖2
2 . ‖β∗‖2

2

Tr(Σ)

n
.

• On the other hand, if the signal to noise ratio is too small, ‖β∗‖2
2/σ

2 ≤ n/rk∗(Σ), then, the

estimator β̂ defined in Equation (6.2) satisfies, with probability larger than 1− 7e−(v∧ζ)n,

‖β̂ − β∗‖2 . σ

√
n

rk∗(Σ)
, ‖Σ1/2(β̂ − β∗)‖2

2 .

(
σ2 +

k∗

n

)
.

Corollary 6.1 can be used to compare our results with those in (Bartlett et al., 2019).

1. The upper bounds in Corollary 6.1 hold with probability larger than 1− exp(−ζn) and may

converge to 0 while those in (Bartlett et al., 2019) are always larger than a constant at these

confidence levels.

2. For high signal to noise ratios, SNR = ‖β∗‖2
2/σ

2 > t = n/rk∗(Σ), Corollary 6.1 improves the

results provided in (Bartlett et al., 2019), since the main term in this case here is ‖β∗‖2
2Tr(Σ)/n

while it is ‖β∗‖2
2

√
Tr(Σ)/n in this paper.

3. For small signal to noise ratios, SNR < t, our rates are of order σ2 + k∗/n, which improve the

result of (Bartlett et al., 2019) at confidence levels e−ζn. An interesting feature of the results

in (Bartlett et al., 2019) is that it provides upper bounds that can converge to 0 at smaller

confidence levels. On the other hand, (Lecué and Mendelson, 2013, Theorem A’ ) shows that

σ2 is the optimal rate that can hold with probability larger than 1− exp(−ζn).
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4. The parameter k∗ in Theorem 6.1 is slightly larger in general than the one in (Bartlett et al.,

2019), since they only require that rk∗(Σ)/λk∗(Σ) > cn while we have an extra logarithmic

factor in the definition (6.4).

To illustrate the upper bounds, (Bartlett et al., 2019) provide several examples of “benign

matrices” where the different quantities of interest in Theorem 6.1 can easily be computed. We

compute the quantities appearing in one these examples now.

Assume that there exist ε = o(1) and τ = Ω(1) such that, for any k,

λk(Σ) = e−k/τ + ε, with τ log(1/ε) < n, p = cn log(1/ε) .

In this case, for any k and γ = τ/(1− e−τ ),

rk
λk

=
(p− k)ε+ γ(e−k/τ − e−p/τ )

e−k/τ + ε
,

p‖Σ‖
rk(Σ)

=
p

(p− k)ε+ γ(e−k/τ − e−p/τ ) .

Therefore, for k = τ log(1/ε) < p/2 and c large enough,

rk
λk
≥ pε/2 + γε

2ε
≥ p

4
≥ 32n log

(
1 +

44

3

√
2

ε

)
≥ 32n log

(
1 +

44

3

√
p‖Σ‖
rk(Σ)

)
.

Hence, k∗ ≤ τ log(1/ε) < n. Moreover, rk∗(Σ) = Θ(pε) = Θ(nε log(1/ε)) so the threshold t for

the SNR ratio is t = Ω(1/(ε log(1/ε))). This threshold therefore grow to infinity if ε → 0. As

Tr(Σ) ≤ pε + τ and the parameter v & pε/(nε) & 1, Corollary 6.1 shows in this example that, if

‖β∗‖2/σ2 ≥ 1/(ε log(1/ε)), with probability larger than 1− e−ζn,

‖Σ1/2(β̂ − β∗)‖2
2 . ‖β∗‖2

2

pε+ τ

n
= ‖β∗‖2

2

(
ε log(1/ε) +

τ

n

)
.

Our rates of convergence in this example can therefore be, up to logarithmic factors as fast as

ε ∨ (1/n), while (Bartlett et al., 2019, Theorem 6) gives in this setting a rate (1/ log(1/ε)) ∨ (1/n)

that is exponentially slower. In addition, let us recall that Corollary 6.1 here shows that the rate

ε ∨ (1/n) holds with probability 1− e−ζn while (Bartlett et al., 2019, Theorem 6) only shows that

the logarithmically slower rate (1/ log(1/ε)) ∨ (1/n) holds with constant probability.

6.3.2 Extension to other loss functions

The purpose of this section is to show that the analysis developed to prove the main theorem can be

easily extended and that the excess risk of β̂ with respect to other loss functions can be controlled

with the same arguments. To illustrate this general principle, we consider two losses, namely, the

Huber and absolute losses. Both losses have been used repeatedly in robust statistics. Formally, let

` : R× R 7→ R+ denote one of the following convex loss function:
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• The Huber loss is defined, for any u, y ∈ R, by

`(u, y) = ϕH(u− y), where ϕH(u) =

1
2
u2 if |u| ≤ δ

δ|u| − δ2/2 if |u| > δ
.

Notice that ϕH is δ−Lipschitz.

• The absolute loss is defined, for any u, y ∈ R, by `(u, y) = ϕA(u− y), where ϕA(u) = |u| is

1-Lipschitz.

For both losses, recall that, for any β ∈ Rp, by PLβ = P [`β − `β∗ ], with `β(x, y) = `(
〈
x, β

〉
, y).

Theorem 6.2. There exist absolute constants ζ, c, c2 such that the following holds. Let k∗, ρ, v r∗

be defined as in Theorem 6.1. If k∗ ≤ cn, then

• if ` is the Huber loss with δ = c2σ, with probability larger 1− 10e−(ζ∧v)n,

PLβ̂ ≤ c(r∗)2 ,

• if ` is the absolute loss, with probability larger 1− 8e−(ζ∧v)n,

PLβ̂ ≤ cr∗ .

Remark 6.1. Theorem 6.2 is proved in Section 6.4.3. It shows that the excess risk for the Huber

loss is of the same order as the one for the square loss. It is the square root of these rate for the

absolute loss. Both results are expected as the same phenomenon appear in small dimension also,

see for example (Chinot et al., 2019b).

6.4 Proofs of the main results

The remaining of the paper is devoted to the proofs of the main results. Section 6.4.1 (resp. 6.4.2)

shows the estimation bound (resp. the prediction bounds) in Theorem 6.1.

6.4.1 Proof of the estimation bound of Theorem 6.1

The following theorem establishes the bound on the estimation error in Theorem 6.1. In the following

section, this preliminary estimate will be used to “localize” the analysis of the prediction risk of β̂.

This approach is now classical in statistical learning, it has been applied successfully, for example,

in (Koltchinskii and Mendelson, 2015; Mendelson, 2014, 2016, 2017).

Theorem 6.3. There exist absolute constants c and ζ such that the following holds. Let k∗, v and

ρ be defined as in Theorem 6.1. If k∗ ≤ cn, the estimator β̂ defined in Equation (6.2) satisfies

P(‖β̂ − β∗‖2 ≤ ρ) ≥ 1− 4 exp(−(v ∧ 1/5)n) . (6.7)
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Proof of Theorem 6.3. The proof starts with the following lemma.

Lemma 6.1. With probability conditionally on X larger than 1− e−n/2,

‖β̂ − β∗‖2 ≤ ‖β∗‖2 + 2σ

√
n

σ2
n(X)

. (6.8)

Proof of Lemma 6.1. Classical results of linear algebra show that

β̂ = X+Y = X+Xβ∗ +X+ξ ,

where X+ denotes the Moore-Penrose pseudo-inverse of X. Therefore,

‖β̂ − β∗‖2 = ‖(X+X − Ip)β∗ −X+ξ‖2 ≤ ‖β∗‖2 + ‖X+ξ‖2 , (6.9)

where the last inequality follows from the triangular inequality and the fact that X+X − Ip is the

projection matrix onto the null-space ofX. Since ‖X+ξ‖2 ≤ ‖X+‖‖ξ‖2, the function ξ 7→ ‖X+ξ‖2

is ‖X+‖-Lipschitz with respect to the Euclidean norm. From Borell’s Gaussian concentration

inequality, with probability conditionally on X larger than 1− exp(−n/2),

‖X+ξ‖2 ≤ E[‖X+ξ‖2|X] + σ‖X+‖√n . (6.10)

Since rank(X) ≤ n, ‖X+‖ ≤ σ−1
n (X). Similarly, rank

(
(X+)TX+

)
≤ rank(X+) ≤ n. Therefore,

writing E[·] for E[·|X],

E‖X+ξ‖2 ≤
(
E‖X+ξ‖2

2

)1/2

=
(
EξT (X+)TX+ξ

)1/2
= σ

(
Tr
(
(X+)TX+

))1/2

= σ

( n∑
i=1

λi
(
(X+)TX+

))1/2

= σ

( n∑
i=1

σ2
i

(
X+

))1/2

= σ

( n∑
i=1

σ−2
i

(
X
))1/2

≤ σ

√
n

σ2
n(X)

.

Plugging (6.10) and this bound on E[‖X+ξ‖2|X] into (6.9) concludes the proof.

Lemma 6.1 provides a random bound on the estimation error of β̂. To prove Theorem 6.3, it

remains to bound from below, with high probability, the smallest eigenvalue σ2
n(X) of XXT . This

control is obtained in the following lemma.

Lemma 6.2. With probability larger than 1− 2 exp(−p/18)− exp(−nv), we have

σn(X) ≥
√
rk∗(Σ)

8
.

Proof. The matrix XT is distributed as Σ1/2G, where G ∈ Rp×n is a random matrix with i.i.d

standard Gaussian variables, hence σn(X) = σn(XT ) is distributed as σn(Σ1/2Gx). From the

Courant-Fischer-Weyl min-max principle, we have

σn(Σ1/2Gx) = min
x∈Sn−1

‖Σ1/2Gx‖2 .
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Let x ∈ Sn−1 and Λ = diag(λ1(Σ), · · · , λp(Σ)). By the spectral theorem, there exists an orthog-

onal matrix P such that ‖Σ1/2Gx‖2
2 = ‖PΛ1/2P TGx‖2

2. Hence, by rotation invariance of Gaus-

sian random vectors, ‖Σ1/2Gx‖2
2 is distributed as ‖Λ1/2Gx‖2

2, that is, as ‖x‖2
2

∑p
i=1 λi(Σ)g2

i , where

g1, · · · , gp are i.i.d standard Gaussian random variables. As x ∈ Sn−1, ‖Σ1/2Gx‖2
2 is distributed as∑p

i=1 λi(Σ)g2
i . Clearly

p∑
i=1

λi(Σ)g2
i >

p∑
i=k∗

λi(Σ)g2
i .

Elementary computations show that, for any i, λi(Σ)g2
i is sub-exponential (see Definition 6.1

) with parameters (2
√
λi(Σ), 4λi(Σ)). As these variables are independent, by Proposition 6.1,∑p

i=k∗ λi(Σ)g2
i is sub-exponential with parameters

(
2
√
rk∗(Σ), 4λk∗(Σ)

)
. Therefore, by Proposi-

tion 6.2, with probability 1− exp(−2nv),

‖Λ1/2Gx‖2
2 ≥

1

2
rk∗(Σ) . (6.11)

Equation (6.11) holds for any fixed x in the unit sphere Sn−1. To obtain uniform deviations, let us

introduce an ε-net Γε of Sn−1. For any x ∈ Sn−1, there exists y ∈ Γε such that ‖x− y‖2 ≤ ε. Thus,

‖Σ1/2Gx‖2 ≥ ‖Σ1/2Gy‖2 − ‖Σ1/2G(x− y)‖2 ≥ ‖Σ1/2Gy‖2 − ε‖Σ1/2G‖ .

Since the operator norm is sub-multiplicative, ‖Σ1/2G‖ ≤
√
‖Σ‖‖G‖. To bound the operator norm

‖G‖, we use the following result.

Theorem 6.4. (Vershynin, 2010)[Theorem 5.35]. Let p ≥ n and let G denote a p× n matrix with

independent standard Gaussian entries. For every 0 < δ ≤ 1, with probability at least 1− δ:
√
p−√n−

√
2 log(2/δ) ≤ σmin(G) ≤ σ1(G) ≤ √p+

√
n+

√
2 log(2/δ) . (6.12)

From Theorem 6.4, with probability larger that 1− 2 exp(−p/18),

‖G‖ ≤ √p+
√
n+

√
2p

18
6
√
p

(
1 +

1

2
+

1

3

)
=

11
√
p

6
.

It follows that

min
x∈Sn−1

‖Σ1/2Gx‖2 ≥ min
y∈Γε
‖Σ1/2Gy‖2 −

11

6
ε
√
p‖Σ‖ . (6.13)

Hence, for

ε =
6

44

√
rk∗(Σ)

p‖Σ‖ ,

we have

min
x∈Sn−1

‖Σ1/2Gx‖2 ≥ min
y∈Γε
‖Σ1/2Gy‖2 −

√
rk∗(Σ)

4
. (6.14)

Taking a union bound in (6.11), we get that, for this value of ε, with probability at least 1− exp
(
−

2nv + log(|Γε|)
)
,

min
x∈Sn−1

‖Σ1/2Gx‖2 ≥
√
rk∗(Σ)

(
1√
2
− 1

4

)
>

√
rk∗(Σ)

8
.
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A standard volume argument shows that, for every ε > 0, |Γε| ≤ (1 + 2/ε)n. Therefore, the

probability estimate is bounded from bellow by

1− exp

(
− 2nv + n log

(
1 +

44

3

√
p‖Σ‖
rk∗(Σ)

))
.

By definition of k∗, this probability is bounded from bellow by

1− exp(−nv) .

This concludes the proof of Lemma 6.2.

Theorem 6.3 then follows directly from Lemmas 6.1 and 6.2.

6.4.2 Proof of the prediction bound in Theorem 6.1

Let β∗ + B(ρ) = {β ∈ Rp : ‖β − β∗‖2 ≤ ρ}. Let PnLβ := n−1
∑n

i=1(`β(xi, yi) − `β∗(xi, yi)) denote

the empirical excess-risk. The proof starts with the following elementary result.

Lemma 6.3. With probability larger than 1 − exp(−n/16), PnLβ̂ ≤ −(1/2)σ2. Moreover, for any

r∗, let Ωr∗,ρ denote the following event

Ωr∗,ρ = {∀β ∈ Rp such that β − β∗ ∈ B(ρ) \BΣ(r∗), PnLβ > −(1/2)σ2} .

On the event

Ωr∗,δ ∩ {β̂ − β∗ ∈ B(ρ)} ∩ {PnLβ̂ ≤ −(1/2)σ2} ,

β̂ − β ∈ BΣ(r∗), that is

‖Σ1/2(β̂ − β∗)‖2 ≤ r∗ .

Proof. Since β̂ ∈ Hn,
〈
xi, β̂

〉
= yi for any i ∈ {1, . . . , n}, so Pn`β̂ = 0 and

PnLβ̂ = Pn(`β̂ − `β∗) = −Pn`β∗ = − 1

n

n∑
i=1

ξ2
i .

Since ξi ∼ N (0, σ2), from Proposition 6.1,
∑n

i=1 ξ
2
i is sub-exponential with parameters (2σ

√
n, 4σ2)

and from Proposition 6.2, with probability larger than 1− exp(−n/16),

PnLβ̂ = − 1

n

n∑
i=1

ξ2
i ≤ −(1/2)σ2 . (6.15)

On Ωr∗,ρ all β such that ‖β−β∗‖2 6 ρ and ‖β−β∗‖Σ > r∗ satisfy PnLβ > −(1/2)σ2. Therefore,

on Ωr∗,ρ, if ‖β̂ − β∗‖2 6 ρ and PnLβ̂ ≤ −(1/2)σ2, β̂ cannot satisfy ‖β̂ − β∗‖Σ > r∗. Hence,

{β̂ − β∗ ∈ BΣ(r∗)} ⊃ Ωr∗,ρ ∩ {β̂ − β∗ ∈ B(ρ)} ∩ {PnLβ̂ ≤ −(1/2)σ2} .
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By Lemma 6.3, to bound the excess risk of β̂, it is sufficient to show that r∗ defined in (6.6) is

such that, with high probability

inf
β:β−β∗∈B(ρ)\BΣ(r∗)

{PnLβ} > −(1/2)σ2 . (6.16)

Theorem 6.5. There exists an absolute constant ζ such that, with probability larger than 1−2e−ζn,

inf
β:β−β∗∈B(ρ)\BΣ(r∗)

{PnLβ} > −(1/2)σ2 ,

where r∗ is the complexity parameter defined in (6.6).

By Lemma 6.3 and Theorem 6.3, this means that, with probability larger than 1− 6e−ζn − e−vn,

‖β̂ − β∗‖2 ≤ ρ, ‖Σ1/2(β̂ − β∗)‖2 ≤ r∗ . (6.17)

Proof of Theorem 6.5. Let β ∈ β∗ + B(ρ) \ BΣ(r∗) and denote by r = ‖Σ1/2(β − β∗)‖2, so r > r∗

and

β − β∗ ∈ Hr,ρ = B(ρ) ∩ SΣ(r) .

Recall that, for any β ∈ Rp, as〈
xi, β

〉
− yi =

〈
xi, β − β∗

〉
+
〈
xi, β

∗〉− yi =
〈
xi, β − β∗

〉
− ξi ,

we have

PnLβ =
1

n

n∑
i=1

(〈
xi, β

〉
− yi

)2 −
(〈
xi, β

∗〉− yi)2

=
1

n

n∑
i=1

〈
xi, β − β∗

〉2 − 2

n

n∑
i=1

ξi
〈
xi, β − β∗

〉
. (6.18)

Write now α = r∗/r ∈ (0, 1) and β0 = β∗ + α(β − β∗), so

PnLβ = α−2 1

n

n∑
i=1

〈
xi, β0 − β∗

〉2 − α−1 2

n

n∑
i=1

ξi
〈
xi, β0 − β∗

〉
. (6.19)

By definition, ‖Σ1/2(β0−β∗)‖2 = r∗ and ‖β0−β∗‖ ≤ αρ, that is, β0−β∗ ∈ Hr∗,αρ = SΣ(r∗)∩B(αρ).

Define then

Qr,ρ = sup
β−β∗∈Hr,ρ

∣∣∣∣ 1n
n∑
i=1

〈
xi, β − β∗

〉2 − E
〈
xi, β − β∗

〉2

∣∣∣∣ ,
Mr,ρ = sup

β−β∗∈Hr,ρ

∣∣∣∣ 2n
n∑
i=1

ξi
〈
xi, β − β∗

〉∣∣∣∣ .
By (6.19), we have thus

inf
β∈β∗+Hr,ρ

PnLβ ≥α−2

[
(r∗)2 −Qr∗,αρ

]
− 2Mr∗,αρα

−1

≥α−2

[
(r∗)2 −Qr∗,ρ

]
− 2Mr∗,ρα

−1 . (6.20)
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It remains to bound the quadratic process Qr∗,ρ and the multiplier process Mr∗,ρ. This control is

based on the Gaussian width of the sets Hr∗,ρ. Recall that the Gaussian width of a subset H ⊂ Rp

is defined by

w∗(H) = E
[

sup
h∈H

〈
G, h

〉]
, where G ∼ N (0, Ip) .

The useful controls are provided in the following lemma, whose proof is postponed to Section 6.5.2.

Lemma 6.4. Let r, ρ ≥ 0 and δ, η ∈ (0, 1). There exists an absolute constant c such that, with

probability larger than 1− δ,

Qr,ρ ≤ c
[
C2
r,ρ + rCr,ρ + r2(Dδ,n ∨ D2

δ,n)
]
,

where the complexity Cr,ρ = w∗
(
Σ1/2Hr,ρ

)
/
√
n and Dδ,n =

√
log(1/δ)/n. Moreover, there exists an

other absolute constant c such that, with probability larger than 1− η,

Mr,ρ ≤ cσ
[
Cr,ρ + rDη,n

]
.

We apply Lemma 6.4 with η = δ = e−ζ
2n, r = r∗ and ρ. We have D2

δ,n 6 Dδ,n = ζ < 1. It shows

that P(Ω∗) > 1− 2e−ζ
2n, where

Ω∗ = {Qr∗,ρ ≤ c
[
C2
r∗,ρ + r∗Cr∗,ρ + ζ(r∗)2

]
} ∩ {Mr∗,ρ ≤ cσ

[
Cr∗,ρ + r∗ζ

]
} .

Moreover, from Equation (6.20) and the fact that α = r∗/r, on Ω∗

inf
β∈β∗+Hr,ρ

PnLβ ≥
[
r2(1− cζ)− c

(C2
r∗,ρ

α2
+ r
Cr∗,ρ
α

)
− 2cσ(

Cr∗,ρ
α

+ rζ)
]
. (6.21)

It remains to bound the Gaussian width w∗(Σ1/2Hr,ρ) to bound the complexity Cr∗,ρ. This control

is provided in the following lemma, whose proof is provided in Section 6.5.3.

Lemma 6.5. Let r, ρ ≥ 0. Then,

w∗(Σ1/2Hr,ρ) =
√

2Wr,ρ, where Wr,ρ =

p∑
i=1

r2 ∧ λi(Σ)ρ2 .

From Lemma 6.5,

w∗
(
Σ−1/2Hr∗,ρ

)
≤ c
√
Wr∗,ρ .

The choice of r∗ ensures that

Wr∗,ρ ≤ n(ζr∗)2 so
Cr∗,ρ
α
≤ ζr .

Plugging this inequality into (6.21) shows that, on Ω∗,

inf
β∈β∗+Hr,ρ

PnLβ ≥r2(1− 3cζ)− 4cζσr .

The inequality ab ≤ (a2 + b2)/2 with a = 4crζ and b = σ shows that, on Ω∗,

inf
β∈β∗+Hr,ρ

PnLβ ≥ r2(1− 3cζ − 8c2ζ2)− σ2

2
.

Choosing ζ sufficiently small concludes the proof.
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6.4.3 Proof of Theorem 6.2

The proof is based on the following lemma, whose proof can be found in (Alquier et al., 2019)

and (Chinot, 2019a) for example.

Lemma 6.6. Assume that `(u, y) = ρ(u − y), where ρ is L-Lipschitz. There exists an absolute

constant c such that, for any positive r, ρ, with probability larger than 1− η,

sup
β∈Hr,ρ

|(Pn − P )(`β − `β∗)| ≤
cL√
n

(
w∗(Hr,ρ) +

√
log(1/η)r

)
.

From Theorem 6.1, with probability larger than 1−7e−(ζ∧v)n, ‖β̂−β∗‖ ≤ ρ and ‖Σ1/2(β̂−β∗)‖2 ≤
r∗. Consequently, from Lemmas 6.5 and 6.6, with probability larger than 1− η − 7e−(ζ∧v)n,

PLβ̂ ≤ PnLβ̂ +
cL√
n

( p∑
i=1

(r∗)2 ∧ λi(Σ)ρ2

)1/2

+ cLr∗
√

log(1/η)

n
.

By definition of r∗ this implies that

PLβ̂ 6 PnLβ̂ + cLr∗
(
ζ +

√
log(1/η)

n

)
. (6.22)

For the absolute loss function PnLβ̂ ≤ 0 and L = 1, so the proof is complete by taking η = e−n.

For the Huber loss function, L = c2σ and PnLβ̂ = −Pn`β∗ = −(1/n)
∑p

i=1 ρH(ξi). Moreover,

Pn`β∗ ≥
1

n

p∑
i=1

ξ2
i 1{|ξi| ≤ c2σ} =

1

n

p∑
i=1

ξ2
i −

1

n

p∑
i=1

ξ2
i 1{|ξi| ≥ c2σ} .

By (6.15), with probability larger than 1− exp(−n/16), (1/n)
∑p

i=1 ξ
2
i ≥ σ2/2. Similar arguments

show that there exists an absolute constant ζ such that, with probability 1− exp(−ζ2n),

1

n

p∑
i=1

ξ2
i 1{|ξi| ≥ c2σ} ≤ σ2/6 + E[ξ21{|ξ| ≥ c2σ}] .

Moreover, from Cauchy-Schwarz and Markov inequalities,

E[ξ21{|ξ| ≥ c2σ}] ≤
√

3σ2
√
P(|ξ| ≥ c2σ) ≤

√
3σ2

c2

.

It follows that, with probability 1− 2e−ζn, if c2 = 6
√

3,

PnLβ̂ = −Pn`β∗ ≤ −σ2

(
1

2
− 1

6
−
√

3

c2

)
= −σ

2

6
.

Plugging this estimate into (6.22) yields, with probability 1− 10e−(ζ∧v)n,

PLβ̂ ≤ −
σ2

12
+ 2cζσr∗ .

The proof is complete since

2cζσr∗ = 2(
√

12cζr∗)
σ√
12
6 12c2ζ2(r∗)2 +

σ2

12
.
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6.5 Supplementary material

6.5.1 Sub-exponential random variables: definitions and properties

The following definition and propositions can be found in (Wainwright, 2019).

Definition 6.1. A random variable X with mean E[X] = µ is called sub-exponential with non-

negative parameters (ν, b) if

E
[
eλ(X−µ)

]
≤ eν

2λ2/2 for all |λ| ≤ 1/b . (6.23)

Proposition 6.1. Let X1, · · · , Xn be independent random variables such that Xi is sub-exponential

with parameters (νi, bi). Then Y =
∑n

i=1Xi is sub-exponential with parameters
(
(
∑n

i=1 ν
2
i )1/2,maxi=1,··· ,n bi

)
.

Proposition 6.2 (Sub-exponential tail bound). Suppose that X is sub-exponential with parameters

(ν, b). Then

P
(
|X − µ| ≥ t

)
≤
{

2e−t
2/(2ν2) if 0 < t ≤ ν2/b ,

2e−t/(2b) if t ≥ ν2/b .
(6.24)

6.5.2 Proof Lemma 6.4

The proof of the control of the quadratic process follows from (Dirksen et al., 2015, Theorem 5.5)

and the majorizing measure theorem (see (Talagrand, 2014, Theorem 2.4.1)).

Let (Xt)t∈T be a stochastic process indexed by a set T of n-tuples t = (t1, . . . , tn). Let us assume

that the random variables Xti : Ωi 7→ R are sub-Gaussian. For every t ∈ T , let

At =
1

n

n∑
i=1

(
X2
ti
− EX2

ti

)
. (6.25)

Define on T the pseudo-distance dψ2 , by

dψ2(t, s) = max
i=1,··· ,n

‖Xti −Xsi‖ψ2 , (6.26)

where, for any real random variable X, ‖X‖ψ2 = inf{C > 0 : E exp(|X|2/C2) ≤ 2}. The radius

associated to T is defined as

∆ψ2(T ) = sup
t∈T

max
i=1,··· ,n

‖Xti‖ψ2 . (6.27)

Theorem 6.6 (Theorem 5.5 in (Dirksen et al., 2015)). Let (At)t∈T be the process of averages defined

in (6.25). There exists an absolute constant c > 0 such that, for any δ in (0, 1), with probability

larger than 1− δ,

sup
t∈T

At ≤ c

[
γ2

2(T, dψ2)

n
+ ∆ψ2(T )

γ2(T, dψ2)√
n

+K
log(1/δ)

n
+M

√
log(1/δ)

n

]
, (6.28)

where the definition of γ2 can be found in (Talagrand, 2014, Definition 2.2.19),

K = sup
t∈T

max
i=1,··· ,n

‖Xti‖2
ψ2

and M = sup
t∈T

(
1

n

n∑
i=1

‖Xti‖4
ψ2

)1/2

.
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To apply Theorem 6.6 to bound Qr,ρ, let T = {(
〈
x1, β

〉
, . . . ,

〈
xn, β

〉
), β ∈ Hr,ρ} and, for any

t = (
〈
x1, β

〉
, . . . ,

〈
xn, β

〉
) ∈ T , let

Xti =
〈
xi, β

〉
, so Qr,ρ = sup

t∈T
At .

For any i = 1, . . . , n, Xti =
〈
xi, β

〉
∼ N (0, ‖Σ1/2β‖2

2) = N (0, r2). Therefore, ‖Xti‖ψ2 = r, for any

t ∈ T and any i = {1, . . . , n}, so ∆2
ψ2

(T ) = K = M = r2. Moreover, in our case dψ2 = ‖ · ‖Σ

and from the majorizing measure theorem, see (Talagrand, 2014, Theorem 2.4.1), there exists an

absolute constant c > 0 such that γ2(T, dψ2) ≤ w∗(Σ1/2Hr,ρ), so, by Theorem 6.6, with probability

1− δ

Qr,ρ ≤ c
[
C2
r,ρ + rCr,ρ + r2(Dδ,n ∨ D2

δ,n)
]
.

Let us turn to the control of the multiplier process Mr,ρ. Since the noise ξ is Gaussian with vari-

ance σ2, independent of x, by (Mendelson, 2016, Corollary 1.10), there exists an absolute constant

c such that, for any δ in (0, 1), with probability larger than 1− δ,

nMr,ρ ≤ c
√
nσ
(
w∗(Σ1/2Hr,ρ) + r

√
log(1/δ)

)
.

6.5.3 Proof of Lemma 6.5

w∗(Σ1/2Hr,ρ) = E sup
t∈Σ1/2Hr,ρ

〈
G, t
〉
,

where G ∼ N (0, Ip), and

Σ1/2Hr,ρ = {Σ1/2t ∈ Rp : ‖t‖ ≤ ρ, ‖Σ1/2t‖2 = r}
= {t ∈ Rp : ‖Σ−1/2t‖ ≤ ρ, ‖t‖2 = r}

=

{
t ∈ Rp :

p∑
i=1

t2i
λi(Σ)ρ2

6 1,

p∑
i=1

t2i
r2
6 1

}

⊂
{
t ∈ Rp :

p∑
i=1

t2i
λi(Σ)ρ2 ∧ r2

6 2

}
.

The Gaussian mean-width of an ellipsoid is given by (Talagrand, 2014, Proposition 2.5.1) and it

follows that

w∗(Σ1/2Hr,ρ) ≤
√

2
( p∑
i=1

λi(Σ)ρ2 ∧ r2
)1/2

.
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Lecué, G. and Mendelson, S. (2013). Learning subgaussian classes: Upper and minimax bounds. Topics in Learning

Theory - Societe Mathématique de France.
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Meier, L., Van De Geer, S., and Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 70(1):53–71.

Meister, M. and Steinwart, I. (2016). Optimal learning rates for localized svms. The Journal of Machine Learning

Research, 17(1):6722–6765.



BIBLIOGRAPHY 223

Mendelson, S. (2001). Learning relatively small classes. In International Conference on Computational Learning

Theory, pages 273–288. Springer.

Mendelson, S. (2002). Rademacher averages and phase transitions in glivenko-cantelli classes. IEEE transactions on

Information Theory, 48(1):251–263.

Mendelson, S. (2003). On the performance of kernel classes. Journal of Machine Learning Research, 4(Oct):759–771.

Mendelson, S. (2014). Learning without concentration. In Conference on Learning Theory, pages 25–39.

Mendelson, S. (2015). Learning without concentration. J. ACM, 62(3):Art. 21, 25.

Mendelson, S. (2016). Upper bounds on product and multiplier empirical processes. Stochastic Processes and their

Applications, 126(12):3652–3680.

Mendelson, S. (2017). On multiplier processes under weak moment assumptions. In Geometric aspects of functional

analysis, volume 2169 of Lecture Notes in Math., pages 301–318. Springer, Cham.

Mendelson, S., Neeman, J., et al. (2010). Regularization in kernel learning. The Annals of Statistics, 38(1):526–565.

Mendelson, S., Pajor, A., and Tomczak-Jaegermann, N. (2007). Reconstruction and subgaussian operators in asymp-

totic geometric analysis. Geom. Funct. Anal., 17(4):1248–1282.

Minsker, S. (2018). Uniform bounds for robust mean estimators. arXiv preprint arXiv:1812.03523.

Minsker, S. et al. (2015). Geometric median and robust estimation in banach spaces. Bernoulli, 21(4):2308–2335.

Minsker, S. et al. (2018). Sub-gaussian estimators of the mean of a random matrix with heavy-tailed entries. The

Annals of Statistics, 46(6A):2871–2903.

Minsker, S. et al. (2019). Distributed statistical estimation and rates of convergence in normal approximation.

Electronic Journal of Statistics, 13(2):5213–5252.

Minsker, S. and Mathieu, T. (2019). Excess risk bounds in robust empirical risk minimization. arXiv preprint

arXiv:1910.07485.

Nazin, A. V., Nemirovsky, A., Tsybakov, A. B., and Juditsky, A. (2019). Algorithms of robust stochastic optimization

based on mirror descent method. Automation and Remote Control, 80(9):1607–1627.

Nemirovsky, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization. A Wiley-

Interscience Publication. John Wiley & Sons, Inc., New York. Translated from the Russian and with a preface by

E. R. Dawson, Wiley-Interscience Series in Discrete Mathematics.

Noble, W. S. et al. (2004). Support vector machine applications in computational biology. Kernel methods in

computational biology, 71:92.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,

R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011).

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Pollard, D. et al. (1989). Asymptotics via empirical processes. Statistical science, 4(4):341–354.



224 BIBLIOGRAPHY

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar, P. (2018). Robust estimation via robust gradient

estimation. arXiv preprint arXiv:1802.06485.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM review, 52(3):471–501.

Rohde, A., Tsybakov, A. B., et al. (2011). Estimation of high-dimensional low-rank matrices. The Annals of Statistics,

39(2):887–930.

Saumard, A. (2018). On optimality of empirical risk minimization in linear aggregation. Bernoulli, 24(3):2176–2203.

Schmidt, M., Roux, N. L., and Bach, F. R. (2011). Convergence rates of inexact proximal-gradient methods for

convex optimization. In Advances in neural information processing systems, pages 1458–1466.

Schölkopf, B., Burges, C. J., Smola, A. J., et al. (1999). Advances in kernel methods: support vector learning. MIT

press.

Scholkopf, B. and Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, optimization,

and beyond. MIT press.

Schölkopf, B., Tsuda, K., and Vert, J.-P. (2004). Support vector machine applications in computational biology. MIT

press.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cam-

bridge university press.

Shalev-Shwartz, S. and Tewari, A. (2011). Stochastic methods for l1-regularized loss minimization. Journal of

Machine Learning Research, 12(Jun):1865–1892.

Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern analysis. Cambridge university press.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A sparse-group lasso. Journal of Computational and

Graphical Statistics, 22(2):231–245.

Smale, S. and Zhou, D.-X. (2007). Learning theory estimates via integral operators and their approximations.

Constructive approximation, 26(2):153–172.

Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer Science & Business Media.

Talagrand, M. (1996). New concentration inequalities in product spaces. Inventiones mathematicae, 126(3):505–563.

Talagrand, M. (2006). The generic chaining: upper and lower bounds of stochastic processes. Springer Science &

Business Media.

Talagrand, M. (2014). Upper and lower bounds for stochastic processes, volume 60 of Ergebnisse der Mathematik und

ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related

Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg. Modern methods and

classical problems.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.

Series B (Methodological), pages 267–288.



BIBLIOGRAPHY 225

Tsybakov, A. B. (2003). Optimal rates of aggregation. In Learning theory and kernel machines, pages 303–313.

Springer.

Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32(1):135–166.

Tsybakov, A. B. (2008). Introduction to nonparametric estimation. Springer Science & Business Media.

Tukey, J. W. (1960). A survey of sampling from contaminated distributions. Contributions to probability and

statistics, pages 448–485.

Tukey, J. W. (1962). The future of data analysis. The annals of mathematical statistics, 33(1):1–67.

van de Geer, S. (2016). Estimation and testing under sparsity, volume 2159 of Lecture Notes in Mathematics.

Springer, [Cham]. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d’Été
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Résumé : Cette thèse de doctorat est centrée sur
l’apprentissage supervisé. L’objectif principal est l’uti-
lisation de méthodes de localisation pour obtenir des
vitesses rapides de convergence, c’est-à-dire, des vi-
tesse de l’ordre O(1/n), où n est le nombre d’ob-
servations. Ces vitesses ne sont pas toujours attei-
gnables. Il faut imposer des contraintes sur la va-
riance du problème comme une condition de Bern-
stein ou de marge. Plus particulièrement, dans cette
thèse nous tentons d’établir des vitesses rapides de
convergences pour des problèmes de robustesse et
d’interpolation.
On dit qu’un estimateur est robuste si ce dernier
présente certaines garanties théoriques, sous le
moins d’hypothèses possibles. Cette problématique
de robustesse devient de plus en plus populaire. La
raison principale est que dans l’ère actuelle du “big
data”, les données sont très souvent corrompues.
Ainsi, construire des estimateurs fiables dans cette si-

tuation est essentiel. Dans cette thèse nous montrons
que le fameux minimiseur du risque empirique (regu-
larisé) associé à une fonction de perte Lipschitz est
robuste à des bruits à queues lourde ainsi qu’a des
outliers dans les labels. En revanche si la classe de
prédicteurs est à queue lourde, cet estimateur n’est
pas fiable. Dans ce cas, nous construisons des es-
timateurs appelé estimateur minmax-MOM, optimal
lorsque les données sont à queues lourdes et pos-
siblement corrompues.
En apprentissage statistique, on dit qu’un estimateur
interpole, lorsque ce dernier prédit parfaitement sur
un jeu d’entrainement. En grande dimension, cer-
tains estimateurs interpolant les données peuvent
être bons. En particulier, cette thèse nous étudions
le modèle linéaire Gaussien en grande dimension et
montrons que l’estimateur interpolant les données de
plus petite norme est consistant et atteint même des
vitesses rapides.
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Abstract : This PhD thesis deals with supervi-
zed machine learning and statistics. The main goal
is to use localization techniques to derive fast rates
of convergence, with a particular focus on robust lear-
ning and interpolation problems.
Localization methods aim to analyze localized pro-
perties of an estimator to obtain fast rates of conver-
gence, that is rates of order O(1/n), where n is the
number of observations. Under assumptions, such as
the Bernstein condition, such rates are attainable.
A robust estimator is an estimator with good theore-
tical guarantees, under as few assumptions as pos-
sible. This question is getting more and more popu-
lar in the current era of big data. Large dataset are
very likely to be corrupted and one would like to build

reliable estimators in such a setting. We show that
the well-known regularized empirical risk minimizer
(RERM) with Lipschitz-loss function is robust with res-
pect to heavy-tailed noise and outliers in the label.
When the class of predictor is heavy-tailed, RERM
is not reliable. In this setting, we show that minmax
Median of Means estimators can be a solution. By
construction minmax-MOM estimators are also robust
to an adversarial contamination.
Interpolation problems study learning procedure with
zero training error. Surprisingly, in large dimension, in-
terpolating the data does not necessarily implies over-
fitting. We study a high dimensional Gaussian linear
model and show that sometimes the over-fitting may
be benign.
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