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Résumé substantiel

Le monde est actuellement en pleine mutation. Beaucoup de transformations majeures des
dernieres décennies sont directement ou indirectement liées a l'apprentissage statistique. Dans
divers secteurs, dont la santé, les sciences, I’éducation et la publicité, les statistiques permettent de
résoudre des problemes qui étaient jusqu’alors inatteignables. Cependant, beaucoup de méthodes
statistiques ont été imaginées dans un cadre ancien, ou les bases de données étaient de petites tailles.
La grande dimension, maintenant omniprésente, apporte de nouveaux challenges. Premierement, il
essentiel de verifier si une méthode est “scalable”, c¢’est-a-dire, applicable a des jeux de données de
grandes tailles. Ensuite, les bases de données de grandes dimensions sont susceptibles d’étre tres
corrompues. Dans ce cas, il est essentiel de construire une procédure “robuste, c’est-a-dire fiable
lorsque des données aberrantes peuvent contaminer I'information disponible. Plus généralement, la
robustesse peut étre défini comme la résistance d’une procédure aux hypotheses. Par example, il
est souvent commun de supposer que les données sont toutes indépendantes et identiquement dis-
tribuées. Que se passe t-il si certaines données sont corrompues ? D’autre part, le cadre théorique
de 'apprentissage statistique est basé sur la théorie des probabilités. Les données sont supposées
aléatoires. Que ce passe t-il lorsque la variance des données est grande ? Peut-on tout de méme
en tirer une certaine information 7 L’objectif de cette these est d’apporter une réponse aux ques-
tions précédentes. Nous développons et étudions les propriétés théoriques de différents estimateurs

robustes.

Soit (X,Y) € X x ) un vecteur aléatoire distribué selon P, supposée inconnue. Soit F une classe
de prédicteurs, c’est-a-dire, une classe de fonctions mesurables f : X — ). L’objectif principal de
I'apprentissage statistique est de prédire la sortie Y & partir de f(X), pour f dans F. Pour mesurer
la qualité de prédiction d’un prédicteur f, nous introduisons une fonction de perte £: Y x YV — R,
ou {(f(X),Y) quantifie I'erreur de prédire f(X) alors que le vrai label est Y. Une regle naturelle
est de chercher la fonction fr dans F minimisant le risque intégré, c’est-a-dire I’erreur moyenne de
((f(X),Y) par rapport a la distribution P

fre arjg;en]nrin Rp(f), ou Rp(f)=Exy)r [E(f(X),Y)].

P étant inconnue, l'oracle f7 ne peut étre seulement qu’approximé. Pour cela le statisticien dispose
d'un jeu de données D = (X, Y;)icp1,n de n observations supposées indépendantes et identiquement
distribuées selon P. Une approche tres répandue, consiste a remplacer le risque par sa version

empirique et la minimiser dans F. Cela se nomme la minimisation du risque empirique

fo€argmin R, (f), ot R,(f) = lzé(f(Xi),Yi)-

feF n



La principale contribution de cette these est la demonstration mathématique que, lorsque la fonc-
tion de perte ¢ est Lipschitz, le minimiseur du risque empirique fn est robuste au “bruit“ du
probleme Y — f5(X) et a un nombre non négligeable de données aberrantes contaminant les vari-
ables aléatoires (Y;)icp,n). L’analyse est étendue au minimiseur du risque empirique pénalisé, tres
répandu chez les praticiens (elastic-net, support-vector-machine, Lasso). Nous développons un nou-
vel argument d’homogénéité, permettant de localiser ’analyse autour de la solution que I'on cherche
a approximer: l'oracle f. Notre approche est générale et permet d’obtenir des résultats optimaux

pour de nombreux problemes bien connues en statistiques.

Cependant le minimiseur du risque empirique n’est pas fiable lorsque la classe de prédicteurs F

n’est pas bornée. Lorsque F et £ ne sont pas bornées, il est nécessaire d’imposer de fortes conditions
sur enveloppe {{(f(X),Y),f € F} et la distribution P des données. Ces hypotheses sont trop
contraignantes et souvent non vérifiées en pratique.
Pour relacher ces hypotheses sur l'enveloppe {¢(f(X),Y), f € F}, nous étudions les estimateurs
minmax-Median Of Means. Soit K un entier tel que K divise n (pour simplifier). Soit By, -, Bx
une partition de [1,n] en K blocks de méme taille n/K. Pour tout k dans [1, K] et f € F, soit
Pply = (K/n) Y icp, U(f(Xi),Y:) le risque empririque sur le block By. L’estimateur minmax-MOM
est défini comme

FMOM ¢ argmin sup Med(Ppg, (¢f — 4y), -+ , P (ly — ),
feF geF

ou Med(-) est 'opérateur médiane. Ces estimateurs ne nécessitent aucune hypothese sur I’'enveloppe
{{(f(X),Y), f € F}. De plus, par construction, ils sont également robustes a K /2 outliers contam-

inant les labels (Y;)icpi,n], les entrées (X;)icqi,np, ou les deux a la fois.

L’argument d’homogénéité, applicable pour le minimiseur du risque empirique et 1’esimateur
minmax-MOM), permet d’établir des vitesses rapides, c’est-a-dire de 1'ordre O(1/n), ou n est le
nombre d’observations. De telles vitesses ne sont pas toujours atteignables. Pour cela, nous intro-
duisons le concept d’hypothese de Bernstein locale. Moralement, la condition de Bernstein signifie
que la variance du probleme n’est pas trop grande. Notre analyse permet d’établir des résultats
sous une hypothese de Bernstein, seulement locale. Cette condition relache I'hypothese de Bernstein
globale et permet d’obtenir des vitesses rapides pour des problemes ou la variance est importante, ce
qui n’était pas le cas des analyses précédentes. Si la distribution du bruit est symétrique et “met un
peu de masse“ autour de 0, alors I’hypothese de Bernstein locale est vérifiée. Par example, lorsque
le bruit est de Cauchy. De plus, notre analyse est simple et permet d’éviter tous les arguments de

“peeling” ; normalement utilisés.

Nous utilisons également des arguments de localisation pour étudier des problemes d’interpolations.

En apprentissage statistique, on dit qu'un estimateur fn interpole, lorsque ce dernier prédit parfaite-
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ment sur un jeu d’entrainement, c’est-a-dire fn(Xi) =Y, pourn=1,---,n. En grande dimension,
beaucoup de fonctions peuvent interpoler, et certaines d’entre elles sont bonnes. Dans cette these,
nous étudions le modele linéaire Gaussien. Soient (X, Y;)ie[[l,n]] des vecteurs aléatoires indépendants
et vérifiant

ou X; ~N(0,%), & ~ N(0,0?%), pour o > 0 et 3* € RP. La dimension p est supposé plus grande que
la taille de I’échantillon n. On se place donc dans le cadre de la grande dimension. Nous montrons

que l'estimateur interpolant les données de plus petite norme

By = argmin {||Blla: B €RY, (B, X;) =Y;,i=1--- ,n} |

est consistant et atteint méme des vitesses rapides sous certaines hypotheses sur le spectre de la
matrice de variance-covariance ¥ et le bruit 0. Cette méthode souligne qu'une analyse générale,
comme pour le minimiseur du risque empirique, peut étre imaginée pour les solutions interpolantes.
L’idée est simplement de considérer des estimateurs interpolant les données avec une certaines

structure, et d’utiliser cette structure pour localiser les estimateurs.
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Chapter 1

Introduction

The purpose of this introduction is to describe the main concepts developed in this thesis:

Localization arguments (Section [1.3). We present general techniques to obtain fast rates of

convergence. The main idea consists in localizing the analysis around one function of interest,

namely, the oracle.

Regularization (Section [1.4]). Regularizations are techniques used to reduce the error and

reduce the overfitting phenomenon.

Robustness (Section .Robustness in learning can be defined as “the insensitivity to small
deviations from the assumptions® (Huber and Ronchetti, 2011). The goal consists in building

and analysing estimators under as few assumptions as possible.

Figure [1.1| summarizes the key areas and their interplay in this thesis.

Chapter 2 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5
Localizati -
ocalization ar % v v v v
guments
Regularization v v v v
Robustness v v v v

Table 1.1: Schematic interplay of localization arguments, regularization, and robustness in the main

chapters of this thesis.




2 CHAPTER 1. INTRODUCTION

1.1 Statistical learning

Machine learning (ML) is a scientific domain at the interface between applied mathematics, opti-
mization and computer science. It focuses on the study of algorithms and statistical models that
computer systems use to perform a specific task. The process of learning begins with observations
or data, such as examples, direct experience, or instruction, in order to look for patterns in data and
make better decisions in the future based on the examples that we provide. ML has various applica-
tions such as email filtering, recommendation systems, natural language processing, bio-informatics,
economics, computer vision or even fraud detection. For example, based on a dataset of items and
ratings, a recommendation system seeks to predict the “rating” or “preference” a user would give
to an new item given its previous preferences. Another example is image classification. The learner
received different types of labeled images (dogs or cats for instance). Given this dataset, the goal
is to automatically label a new image occurring in the process. This is an example of supervized
Learning. On the other hand, in community detection, the learner aims to identify communities
interacting with each other. This is an example of unsupervised learning.

The main focus of this thesis is supervized learning. More precisely, we will be interested in robust
supervized learning. Although robust unsupervised learning also exists, it is out the scope of this

thesis.

Some definitions In this chapter, we present and use many tools borrowed from empirical pro-

cesses. Here, are some very useful definitions and notations that we will use all along this chapter.

—| Definition 1.1: Empirical measure, empirical process

Let X, X3, -+, X,, be independent random variables taking values in a measurable space (F, )
with common distribution P. The empirical measure based on the sample (Xi,---,X,) is
defined as

1 n
Pn :E;(;Xl y

where ¢, denotes the Dirac’s measure. For a class F of measurable functions f : £ — R we

write

Pf=Bf(X)] and Pf =537 (X))

The empirical process indexed by F is defined by {(P — P,)(f) : f € F}, see (Van Der Vaart
and Wellner, (1996).
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In supervized machine learning (Vapnik, 2000; [Friedman et al., 2001} Shalev-Shwartz and Ben-
David} 2014; Bishop, [2006), the goal is to predict an output Y in ) based on features X in X,
that is to say, to understand the relationship between an ouput Y and inputs X. The set ) can be
either finite (typically {0,1}) or infinite (Y C R), leading to two important problems in supervized

machine learning;:

e Classification, when ) is finite. If |Y| = 2, where | - | denotes the cardinality of ), the

problems is binary classification.
e Regression, when )Y is a continuous subset of R.
Typically X = RP, where p is large and denotes the dimension of the problem. For example:

e For binary classification: X = RP can correspond to a set of images encoded with their p

pixels and Y = {0, 1}, if the label is 1, the image is labelled as a dog, otherwise as a cat.

e For a regression problem, X’ can summarize socioeconomic factors and ) = [0, 100] depicts

the score of the left-wing during the next presidential election.

The output Y € )Y is not always a deterministic function of an input X € X due to random factors
such as measurement errors. Thus, the couple (X,Y) is modeled as a random variable with a
certain unknown distribution P. Let Px denote the marginal distribution of X. The goal becomes
to predict the output Y with the input X given that (X,Y") is sampled from P. To do so, we define
a predictor as a measurable function f : X +— ). The random variable f(X) serves to predict Y.
The set of possible predictors (i.e measurable functions from X to )) is denoted by F(X,)). To

measure the quality of a predictor f in F(X,)), we introduce a loss function
0:YxY—R,

such that ¢(f(X),Y) measures the error of predicting f(X) while the true answer is Y. It is always

assumed that ¢(y,y) = 0, for every y € V. Two important examples are:

e Example of classification: let Y = {—1,1} and {(y,v') = 1{y # ¢'}. Thus, {(y,y') = 1 if
y # vy and {(y,y’) otherwise. This loss function is often replaced by convex surrogates for
computation purposes such as the Hinge loss, ¢(f(X),Y) = max(0,1 —Y f(X)) or the logistic
loss, £(f(X),Y) =log(l +exp(—Y f(X))).

e Example of regression: let ) be a continuous subset of R and £(y,v') = (y — )?/2. It is also

called least squares regression.

Given a random couple (X, Y") with distribution P, the quality of a prediction function is measured
by its risk, or generalization error, defined as the averaged loss under the distribution P of the

observations:

R(f) = Eceyynplt(f(X), V)]
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Adopting the notations in Definition , we also write R(f) = P{y. The optimal predictor f3" is

defined, when it exists, as the minimizer of the risk over the set of all measurable functions F(X,))

&€ argmin R(f) .
feF(xy)

Although the function f;* may not exist, it does for standard loss functions used in practice.
In this case, fp* is called a Bayes predictor. For example, in regression with the square loss,

5(X) = Ex,y)~pY|X]. However, the distribution P being unknown, the Bayes predictor fz*
is also unknown and must be approximated. To do so, a training dataset of n independent and
indentically observations D = (X;,Y;)icpiny in (X, Y)" with the same distribution P as (X,Y), is
given. One would like to use the dataset D to predict the output Y associated with the input X.
We can formalize the problem through the notion of learning rule Z : U2 (X x V)" +— F(X,Y)
defined as a measurable function that maps the set of observations to an estimator f . Note that
the observations (X;,Y;)icpi,n) are random. Consequently, the predictor f =Z ((XZ-,Y,-)@-G[[M]]) and
its risk are also random. One of our main goal, is to find learning rules with a risk close to the one
of f5* with high probability. In a non informative way, we search for learning rules such that with

large probability R(Z((X;,Yi)iep1.n)) ~ R(f#"). Such results can also be derived in expectation

]E(Xi,Yi)ie[[Ln]]NPQ@"R(Z((Xi7n>i€[[1,n]]) ~ R( 1*3*) .

In this thesis, we propose results holding with exponentially large probability. In fact, it turns out
that such results often imply bounds in expectation (see Section for an example).

1.2 Empirical Risk Minimization (ERM)

1.2.1 Definition and properties

Since the risk R(+) is unknown, the most common and wide-spread learning rule consists in replacing
the expectation with respect to P by the empirical measure and minimize it. This method is known
as Empirical Risk Minimization (ERM) and is defined as

Z((XZ-,Y;)iG[[Ln]]) € argmin R,(f) with R,(f)= 1

feF(x.Y) ne4

Adopting the notations in Definition we write R, (f) = P,{;. This natural idea dates back to
works of Gauss in the early 19th-century who introduced the least-squares estimator, which is the
ERM for linear predictors with the square loss function. Many important methods of statistical
estimation such as maximum likelihood or more general M-estimation (Van de Geer} 2000) are
versions of empirical risk minimization. The general theory of empirical risk minimization began
with the works of Vapnik and Chervonenkis (Vapnik, [2000) in the late 1970s and the early 1980s.

Their main idea was to relate the quality of prediction of the empirical risk minimizer with the
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accuracy of approximation of the true distribution P by it empirical counterpart P,, uniformly over
a well-chosen class of functions. Their approach necessitates a uniform control the empirical process
{(P—P,)(f), f € F}, for F a well-chosen class of functions (see below in this section). The authors
introduced a number of natural and important measures of complexity of class of functions, such

as entropy and VC-dimension (VC standing for Vapnik-Chervonenkis ).

This intuitive learning rules raises a natural question: how does a minimizer of the empirical
risk R, performs, that is, how does its risk behave compared with the one of f7* 7 Although a
prediction rule works well on observed points, it does not guarantee that its risk is small. Indeed,
the set of all measurable functions is very large, and it is easy to find a prediction function f such
that f(X;) =Y, for every ¢ = 1,--- ,n. Such a predictor f is a minimizer of the empirical risk.
However, fitting perfectly the dataset yields in general to poor generalization properties (Shalev-
Shwartz and Ben-David|, [2014), a phenomenon known as over-fitting. A standard tool to avoid such

pathological situations is to use reqularization methods. There are two equivalent formulations.

e Restriction to a small class of functions: let 7 C F(&X,)) be a class of functions, large
enough to reasonably approximate any measurable function, but not too large to avoid the
over-fitting phenomenon. The minimization of the empirical risk is restricted to the class of
functions F

f; € argmin P, (.
feF

e Introduction of a penalization: Let ¥ : F(X,)) — R, be a function penalizing the least
regular measurable functions and A > 0. We define
fr € argmin {P,0; + \U(f)} .

feF(xY)
Since these two approaches are equiv-
alent, we will focus on the first one, when
the minimization of the empirical risk is
restricted to a sub-class of measurable

functions F. Let fr be the minimizer of
the risk over F.

Estimation
error

f7 € argmin R(f) .
fer Approximation

With these definitions in mind, we have erer

A

R(fr) =z R(f¥) = R(fp) -

Let R(ff) — R(fp’) be the excess risk. Figure 1.1: Risk decomposition
This quantity is always non-negative and the smaller it is, the better fr predicts. The excess
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risk can be decomposed in two terms: the estimation error and approximation error.
R(f5) - R(fF) = R(f5) — R(f3) + R(f3) - RUF) -
Estima?ign error Approxin:;;ion error

We illustrate this error decomposition in Figure[I.1] The estimation error comes from the fact that
f; minimizes the empirical risk instead of the true risk. It increases with the complexit of 7. On
the other hand, an increasing number of observations makes the empirical risk closer to the true risk
and thus reduces the estimation error. The approximation error is due to the fact that f7 minimizes
the risk only on a subset of all measurable functions. It decreases with the size of F. Consequently,
there is a trade-off to find, to optimize the choice of F. It is known as the bias-variance trade-off
where the variance is due to the estimation error while the bias is due to the approximation error.
In this thesis, we will only focus on the estimation error of a given estimator. We want to relate
the risk of f with the one of f7, the best risk one can hope using functions in the class F. Taking
the point of view of Vapnik and Chervonenkis, we relate the estimation error R( f]—‘) — R(f5) with
the empirical process {(P, — P)({s), f € F}, indexed by the class F. In particular, we have the
following upper bound for the estimation error

R(fr) = R(f) = R(f) = Ra([¥) + Bu(fr) — Ru(f3) + Ru(f3) — R(f3)

N

TV VvV TV
Ssupfe}—\PZf—PnZH <0 <supyez |Ply—Pnly|

S 2sup|P€f — Pn€f| = ||Pn — PHg]__
fer

To derive upper bounds for the estimation error, it is sufficient to uniformly control the empirical
process {(P.ly — Ply),f € F} over the class F. Thus, by analysing deviations between the
risk and its empirical version it is possible to control the estimation error R(fr) — R(f%). Such
deviations are at the heart of the theory of empirical processes (Van Der Vaart and Wellner, [1996;
Pollard et al.| [1989; [Van de Geer} [2000). Concentration results coupled with powerful tools from
empirical processes theory allow to prove many non-trivial and deep results in statistical learning.
In particular, in the 1990s, Talagrand proved a uniform version of Bernstein’s inequality allowing
to concentrate || P, — P||¢, around its expectation (Talagrand,|1996). This result had a huge impact
on the theory of empirical processes and empirical risk minimizer. We will present in Section

an example of application of this outstanding concentration inequality.

1.2.2 General analysis of the statistical error

In this section, we present standard arguments to bound sup .z [Pl — Pls| = || P, — P||¢,-. Results
are derived with high probability and in expectation. The main tools are concentration inequalities
and Rademacher complexities. The first step consists in quantifying the deviation of || P, — P||s,

around its expectation E|| P, — P||s-. To do so, it is necessary to impose strong assumptions over

Isee Rademacher and Gaussian complexities below.
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the class {7, where {r = {é(f(), ),f € F}. For a long time (Devroye et al., 2013; Koltchinskii,
2001; Bartlett, 1998)), it has been assumed that the class £ was bounded, that is, there exists a
constant ¢ > 0 such that |((f(z),y)| < ¢, for every f € F and (z,y) € X x ). The main reason
is that no concentration results were available to handle unbounded class /7. Even if more general

results are now available, we focus here on bounded classes /x. Two common examples are:
Example 1: if ((y,y') = 1{y # ¢’} then ¢ = 1.

Example 2: if y — £(-,y) is convex and L-Lipschitz (|¢(y1,y) — €(y2,y)| < L|y1 — vz, for
every y1,y in V) and F = {(B,®(-)), 8 € RP s.t ||8]|» < B}, where ®(-) is a bounded feature
map i.e ||®(x)]2 < D for every x € X. In this case, ¢ = LBD because for every 5 in RP such
that [|5]|2 < B and (z,y) € X x Y

({8, ®(x)),y)| = 1€((B, ®(x)),y) — €(0,0)] < LI{B, ®(x))| < L||Bll2|®(x)]|2 < LBD .

In this example, the minimizer of the empirical risk minimizer is unique and defined as

B = argmin Zﬁ <<I> 5>,Y}) , (1.1)

BERP:||B]l2<B T
where the loss is L-Lipschitz.
This boundedness assumption allows to control the deviations of || P, — P||,, around its expectation

with high probability. To do so, we use Theorem [I.1, known as Mc¢ Diarmid’s inequality that we

recall here.

— Theorem 1.1: McDiarmid’s inequality

Consider independent random variables X;,--- , X,, € ' and a mapping ¢ : E™ — R. If for all
i € [1,n] and for all y,--- ,z,, 2}

‘w('xla"' y Ly ot 75En)—¢(513'1,"‘ TR 7xn)‘ Sci )

then for every ¢t > 0,

IP’(W(X1,..- X)) —E[p(Xy, - 7Xn)” > t) < exp (_ Zzt 02>

=1 "1

For all, zy,--- ,x, in X and yy, -+ ,y, in Y, let ¢ : (X x V)" — R be defined as

Ze (), ;) ]Eé(f(X),Y)‘.

w((‘rhyl)u'“ 7<1’n73/n = sup

fer
From the boundedness assumption, for all i € [1,n] and (z1,v1), -, (Tn, Yn), (¢}, v;) in X X Y,
’w((l‘hyl)a ) (xia yz)7 ) (l‘na yn)) - 77Z)(('9317 yl)a T (xgvy;)a T (xTuyn))}
1 2c
< —sup |[0(f (x:), ) — €(f (), 9)| < =,

n fe_/—- n
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and from Theorem [L.1| with probability larger than 1 — exp(—t)

. 8t
R(fr) — R(fr) <2sup |Ply — Pls| < 2Esup|Ply — Ply| +cy/ —
feF feF n

N J/
-~

(*)

Consequently, controlling the estimation error requires to control (x). A common approach is based

on Rademacher complexity that we introduce now.

— Definition 1.2: Rademacher complexity

Let X1, -+, X, be independent random variables taking values in a measurable space (F, &)
with common distribution P. Let F be a class of functions from E to R. The Rademacher

complexity of the class F is defined as

Ru(F) =& s (13- mrx))]

fer i=1
where the variables o1, -+, 0, are i.i.d Rademacher random variables (P(o; = 1) = P(0y =
—1) = 1/2) independent of Xi,---,X,. The expectation is taken with respect to both the
Rademacher random variables and the data Xi,--- , X,,.

The Rademacher complexity of a class F quantifies the extent to which some functions in F can be
correlated with a Bernoulli noise sequence. Such a quantity is large if there exists f in F for which
f(X;) fits well the noise in expectation. Using such a class is very likely to result in over-fitting. This
idea could serve as an intuitive explanation why R, (F) can be used as a notion of complexity of a
class of functions in the analysis of empirical risk minimization. Another reason why Rademacher
complexities are very used in practice relies on its appealing properties such as Lemmas and [T.2]
In particular, the symmetrization Lemma |l.1| gives (x) < 2R,,(¢x) and with probability larger than

1—exp(—t))

R(fr) — R(f%) < AR, (l5) + C\/g . (1.2)

Although Lemmal[I.1]is known for a long time, Rademacher complexities were proposed as a measure
of the complexity for the first time only in the early 2000s in (Bartlett et al., 2002a; |Koltchinskii,
2001; Mendelson, 2002).

—| Lemma 1.1: Symmetrization

Let F be a class of functions from E to R. Then,

]E{sup ] < 9R,(F) .

ferF

B - - 3 £(X)
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Equation (1.2)) shows that up to a term of order 1/4/n the estimation error can be bounded by the
Rademacher complexity of £z, with an exponentially large probability. The computation of R,,(¢5)

depends on the problem. In the case of Example 2, from Lemma we have
Z O-Z <t (I) Z)
— P (X

- ; 0,0 (X;)

Ru(lr) =E [ Sup

teRP:||t]|2<B | T
— (X
- ;a (X2)

and the following result holds

} < 2LE[ sup

teRP:| \t||2<B

2) 2 9orLBD

< 2LBE <

S

< 2LB<
2

PRt - R < 22 4 e 21 e (13)

n

— Lemma 1.2: Contraction lemma

Let F be a class of functions from E to R and ¢ : R — R a L-Lipschitz function

[sup( ZW )]QLE[sup( Zaz )]

fer fer

Equation ([1.3)) states that the estimation error of f# defined in Equation (1.1) is controlled with
high probability by a term of order O(1/y/n) Pl Since the estimation error of fr is always non-
negative, using the integrated tail probability expectation formula we can deduce from (1.3 an

upper bound in expectation

N +OO N
B(RUz) ~ RUR) = [ PUR(ER) = RO = 0

where the expectation is taken with respect to the i.i.d sample (X;,Y])icp1,n] With common distri-

bution P, and straightforward computations give

A(L,B,D,c)
\/ﬁ Y

where the constant A depends on L, B, D and c¢. The expected estimation error is also of order

E(R(fr) — R(f3)) <

O(1/+/n). This example reveals that results holding with high probability are more appealing and
should be preferred. However, they are usually harder to prove and require the development of

concentration inequalities.

2The notation O means that there exists an absolute constant M > 0 big enough such that the excess risk is
bounded by M/+/n, for n sufficiently large.
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The approach we used is based on a global analysis. The estimation error depends on the
complexity of the entire class F, measured here by the Rademacher complexity of /. This approach
has been used for example in (Bartlett and Mendelson, 2002; Bartlett et al., 2002a; Koltchinskii

et al., 2002). Despite its simplicity and generality, this analysis presents two main drawbacks.

1. Global Rademacher complexities are too large. In the example of linear functionals with
bounded features it leads to an estimation error of order O(1/4/n) while it is possible to
obtain rates of order O(1/n), see Section [1.2.3]

2. To obtain results holding with high probability we assumed that the whole class £# is bounded.

Consequently, a general analysis of the estimation error based on global complexity parameters is
not satisfactory. In this thesis, we will present localization arguments allowing to obtain faster
rates. We will also develop other approaches to handle unbounded classes £ r.

We presented a general approach based on the Rademacher complexity R,,(¢z). There exist other

classical complexities that we will explore in the sequel.

1.2.3 Linear least-squares regression

In Section , we obtained an upper bound on the expected statistical error of order O(1/y/n). In
this section, we present the example of least-square regression and derive the upper bound O(o?p/n)
on the estimation error holding in expectation, where o2 > 0 is the variance of the noise and p is
the dimension. We also briefly present the minimax paradigm and claim that the rate O(o?p/n) is

minimax-rate-optimal for the problem of least-square regression in a Gaussian setting.

Let (X,Y) be such that Y|X ~ N(<X, B*>,02), for f* € RP and X ~ N(0,1,). Equivalently,
Y = (X,3*) + & where g* € R?, X ~ N(0,1,) and £ ~ N(0,0?) is independent of X. Let F =
{(B,-), B € RP} be the class of linear functionals in RP. For every y,y' in Y let {(y,v') = (y —y')/2
be the quadratic loss function. Let (Xj,Y;)icpi,n) be i.i.d random variables distributed as (X,Y").
The risk associated with £ in R? is defined as

R(8) = SE[(X.8) ~ V)] .

The parameter $* minimizes the risk over R? and for every g € RP

R(8) ~ R(5) = SE[((X.8) ~Y)] — SE[((X.5") ~ Y]

=B =) GBI (%)
1

1
= SE[(X.8 -5 =5l - 515



1.2. EMPIRICAL RISK MINIMIZATION (ERM) 11

where we used the first order condition to have E[(Y — <X, ﬁ*>)<6 - B, Xﬂ = 0. Let B be the

minimizer of the empirical risk of RP:

n

~

1 2 1
B = angmin o 3 (X, ) ~ ¥ = anguin 21 X6 - YR |

n
BeR? i—1

where X € R™? denotes the feature matrix whose lines are given by X!, i = 1,--- n and
Y = (Yi,---,Y,) € R". When X7 X is assumed to be invertible, § = (X7X)~'X7Y /n, which
is the case only if p < n. This corresponds to a low dimensional regime, when the number of
observations n is bigger than the number of covariates p. In (Lecué and Mendelson) 2016)), the
authors establish that )

E[R() - R(8")] < e~
where the expectation is taking with respect to the data (X;,Y;)icpi,n) and ¢ > 0 is an absolute

constant. A natural question is now the following: is a rate of order O(o?p/n) optimal, and in

which sense 7 The next paragraph gives some elements to answer this question.

Minimax rates of convergence In (Lecué and Mendelson, [2016)), the authors provide an up-
per bound of order O(c?p/n) for the estimation error of the empirical risk minimizer. A large
upper bound does not necessarily reflect a bad mathematical analysis. This may be an inevitable
consequence of the difficulty of the problem. To study the optimality of a rate, we use the no-
tion of minimax risk, see (Tsybakov, 2008; Massart), [2007)) for good references. A statistical model
{Py,0 € ©}, is a set of probability measures indexed by a parameter # in ©. The minimax risk
associated with the statistical model {Py, § € O} is defined as

A; = inf sup Eq[d(0,0,,)]
0, 6€O

where the infimum is taken over all estimators 0,,, d(-,-) is a distance and Ey denotes the expectation
with respect to Fy. A} is the best possible rate associated with a statistical model and a distance,
one can expect. Given A’ it is now possible to claim that an estimator is optimal. We say that

0,, is minimaz-rate-optimal for the model {P,6 € ©} and the distance d is there exists a constant
¢ > 0 such that

supEg[d(H,én)] <c¥v, |,
0co

where W, is the optimal rate of convergence i.e the rate ¥, such that there exists two constants
0 < ¢ < C such that
¢ <liminf AV, <limsup A'¥, < C .

n—oo n—oo

In (Tsybakov, 2003), the authors provide a lower bound of order Q(o?p/n)f for the problem of

least-squares regression when the design and the noise are Gaussians. Consequently, the empirical

3The notation  means that there exists an absolute constant m > 0 small enough such that the lower bound is

larger than ma?p/n
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risk minimizer is minimax-rate-optimal for the problem of least square regression in a Gaussian
model.

The analysis presented in Section leads to rates of order O(1/4/n) while the right order is
O(1/n). Thus, an analysis based on global estimates of the complexity of the class of functions is
not satisfactory and more involved arguments have to be used. In section we present a new
analysis based on local measures of complexity.

In Chapter [6], we will consider the same model when the dimension p may be larger than n and
X ~N(0,%).

1.3 Localization methods for ERM

We established upper bounds on the statistical error. In particular, we observed that the general
analysis developed in Section based on global measures of complexity leads to error rates of
order O(1/4/n). From (Lecué and Mendelson, 2016)), the empirical risk minimizer in the problem of
least-squares in the Gaussian setting attains an error rate of order O(1/n). Thus, we would like to
derive a general analysis of the empirical risk minimizer leading to error rates of order 1/n (when

it is possible).

Due to the symmetrization Lemma Rademacher complexities have been proposed as an
effective notion of complexity measure in (Bartlett et al., [2002a; Koltchinskii, [2001; Bartlett and
Mendelson, [2002; Mendelson, [2002)). In these papers, the analysis is based on global estimates of
the complexity of the class of functions. No further information is used. However, since the risk
of the empirical risk minimizer is expected to be small, the complexity of a small neighborhood of
the oracle may be sufficient to describe its behavior. It is the main intuition behind localization
methods. They appeared first in (Koltchinskii and Panchenko, [2000)) for noiseless problems, i.e
R(f5) = 0. In (Bousquet et al., 2002) the authors performed localization techniques around 0,
assumed to belong to F. See also (Lugosi et al., |2004) for localization methods applied to Boolean
classes. The first localization around the minimizer of the risk, f7 in the class F, was presented
by Massart in (Massart, [2000), and then extensively studied in (Bartlett et al.| 2005; Bartlett and
Mendelson), 2006alb) for model selection and empirical risk minimization. In their first versions,
localization methods were developed for general bounded classes of functions. In this thesis, we will
focus on convex classes of functions. We say that the class F is convex, if for every f, ¢ in F and
a € [0,1], the function a.f 4+ (1 — a)g belongs to F. The role of convexity if twofold. First, from the
practitioner’s point of view, minimizing the empirical risk is much easier when both the class F and
the loss ¢ are convex. Performing simple gradient descent-based methods allows to converge toward
the empirical risk minimizer (Boyd et al., |2004). Secondly, from the theoretical standpoint, it is

well known that convexity plays a key role in statistical learning (Lee et al.,|1998; Mendelson, 2001]).
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1.3.1 A general approach of localization in a bounded setting.

The estimation error R(fr) — R( f5), that we will call ezcess risk now, is a natural measure of ac-
curacy of the approximation of f% by f;. The goal is to find tight upper bounds on the excess risk
of ff holding with an exponentially large probability. This bound depends on various measures of
complexity that drives the accuracy of approximating the true risk P/¢; by its empirical counterpart
P,ls. Hereafter, we present a simple and general approach to derive upper bounds on the excess

risk of the empirical risk minimizer associated with convex loss functions.

For every f € F let us recall that Ply = R(f) = Exy)~p[l(f(X),Y)] and P.ly = R,(f) =
n~t Y A(f(X5),Ys). We will also denote by PLy := Ply — Plyx and by P, Ly := Ply — Plyx.
Since fr minimizes the empirical risk over F, we have P,l; < P,y for every f in F and in
particular P,L; < 0. Therefore, to control the excess risk of fz, it is enough to show that
with large probability for every f in F such that PL; > r* we have PyL; > 0. With the same
probability the excess risk PL;_ will be bounded by r*. Clearly, the choice of r* is an important
(and complicated) task.

Let f € F such that PL; > r*. The following “homogeneity lemma” shows that risk bounds for
the empirical risk minimizer estimators follow from a concentration of (P — P,)L; over sub-classes

of F around the oracle f7.

Lemma 1.3: Homogeneity Lemma (Chinot et al., 2019b)

For every f in F such that PL; > r* there exists PL;/r* > a > 1, f; in F such that
a(fo—f*)=f—f"and PLy ="

From Lemma [[.3] we obtain

n n

Pty = 3 30 (U0 -3 X0.) ) = 2 3 (H(afirt 1-0) )06, ¥) (15X, 75 )

i=1 i=1

where PLy = r* and o > 1. Since, the function y — ¢(y,y’) is convex for all ¢’ in ) we have for
every (z,y) € X x Y,

6((O‘f0 + (1 - Oé)f;-)(l’),y) > Oég(f()(x)ay) + (1 - a)ﬁ(f}(x),y) )
and it follows that P,Ls > aP,Ly, for f, in F such that PLy = r*. Thus

P.L; > aP, Ly = a(P£f0+(Pn—P)£f0) = a(r*—(P—Pn)Efo) > a(r*— sup |(Pn—P)(€f—€f;)
fE]-'T*

) -
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where F.« = {f € F : PLy = r*}. Thus, the rest of the analysis consists in finding the smallest
r > 0 such that with high probability

sup (B, = P)((y = {pz)] <7 .

feFr

Let A, (r) be such that, with high probability

sup |(P, — P)(€y — L53)| < An(r) -
fEF,

Then with the same probability PL;_ < inf{r >0: A4,(r) <r}.

So far, we have not used any concentration results. There are many different ways to construct
upper bounds A, (r) on the supremum of empirical processes. A very general and common approach
is based on Talagrand’s inequality. In particular we can use the bounds proved by Bousquet
quet, and Klein (Klein| 2002} [Klein et all [2005) that we recall here.

— Theorem 1.2: Bousquet and Rio-Klein inequalities

Let F be a class of measurable functions from F into [0, 1] and

op(F) = sup (Pf* — (Pf)?)
feF

1. Bousquet bound (Bousquet,[2002)): for all ¢ > 0, with probability larger than 1—exp(—t)

sup (P, — P)(f)| < Esup|(P, ~ P)(f)| + \/23(o%<f> +2Bsup (P, ~ PO + 51
feFr feF n feF n

2. Rio-Klein bound (Klein, 2002} Klein et al., 2005): for all ¢ > 0, with probability larger
than 1 — exp(—t)

t
fer fer n

sup (P, — P)(1| = Bsup|(P, = P)(1)] - \/% (o3 7) + 2msup (P, = P -

The interval [0, 1] can be replaced by any bounded interval by a simple re-scaling argument. Theo-
rem states that the supremum of an empirical process over a bounded class of functions concen-
trates well around its expectation. While Mc Diarmid’s inequality provides a uniform version
of Hoeffding’s inequality for bounded classes, Talagrand’s inequality depends on the variance of the

functions class and can be seen a uniform version of Bernstein’s inequality.

If the loss function is 1-Lipschitz and (z — (s = {t; — bps, | € F} is bounded by 1, from
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Theorem and Lemma , with probability larger than 1 — exp(—t)

ot t
sup |(Pu— Pty — ()] < 2Ro(lr,) + \/ 2t ( ; mn(m) I
fEF: n 2n

and the following theorem easily follows.

—| Theorem 1.3: Excess risk for ERM associated with bounded classes /r

Let ¢ be a 1-Lipschitz loss function. Let F C Lo(Px) be a closed convex class of functions such
that £z — £y is bounded by 1. There exists constant, ¢1, ¢z, ¢3 > 0 such that the following holds:
for every ¢t > 0, with probability larger than 1 — exp(—cyt) the minimizer of the empirical risk

over F satisfies

R(fr) - R(f}) < cymax ((r*f, 3) |

n
where
1 n
r*=E sup |- Z%(f — [F)(X)| <csr
feFPLi<r |
for oy, -+, 0, independent symmetric {—1, 1}-valued random variables that are independent of
Xi,--+,X,. The expectation is taken with respect to both the Rademacher random variables

and the inliers (X, -+, X,,).

The excess risk of the empirical risk minimizer f; is expressed as a fixed-point parameter depending
on local Rademacher complexities. Thank to the localization, it is not necessary to assume that
whole the class £z — £+ is bounded but only that the sub-class (. — = {{; — Ly : PLy = 1"}

is bounded.

Let us come back to Example 2 presented in Section and assume that Y is bounded by
1. Under this assumption, the quadratic loss function is 2-Lipschitz and ¢z is bounded by 2BD.
Let us also assume that Ay (E[®(X)T®(X)]) > ~, for v > 0 an absolute constant, where Ay, (%)

denotes the smallest eigenvalue of a symmetric matrix ¥. For r > 0

n

E s |~ 3 oi(f - f)(X)

feEF:PLp<r |T =1

<E sup %ZUKﬁ—ﬁ*aq)(X»‘

serrE(p—p (X)) <or | i=L

n

1
<E sup — Ui<5 - 5*7®(X>>'
BERP:||B—B*|3<2r ”zzl
2r |1 & 2
<\ 2= aex)| <Dy
TS 2 v

and with probability larger than 1 — exp(—t),

R(3) - R(8") = E(f — 5", B(X))° < max <M7 i) |

n n
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where ¢(y, D) > 0 is a constant depending on D and . Using localization arguments we obtain

fast rates of convergence i.e rates of order O(1/n).

1.3.2 Toward a more general analysis

Theorem relies heavily on the fact that the class £z is bounded. This setting excludes many
natural and common problems in statistics. For example, in Section we considered F =
{<-,t>,t € RP}, the class of linear functional indexed by RP. As soon as X has not a compact
support the class F and thus 7 are unbounded. Consequently, Theorem does not cover the case
where the design X is Gaussian, yet extensively studied in statistics. Moreover, for the quadratic
loss function, the noise was also assumed to be bounded. Thus, the Gaussian model is excluded
from the analysis of Theorem [I.3] The Gaussian model is when Y = f5(X) + W, for some f%
in F and W is a centered Gaussian variable with variance o?. The target Y consists in noisy
measurements of f7 corrupted by a Gaussian noise. Despite the fact that boundedness assumptions
cannot be used for very standard statistical problems, it has been used very frequently in Learning
Theory (Bartlett and Mendelson, 2002; Bartlett et al., 2002a; Massart, 2000) and (Koltchinskii,

2011b) for a good survey. There are two main reasons:

1. Concentration inequalities: Versions of Talagrand’s inequality such as Theorem [I.2]were exten-
sively used in Learning Theory. Local Rademacher complexities naturally appear as measures

of the complexity.
2. When the class F and the target are both bounded, the loss function £(y, ') = (y — v')?/2 is

Lispchitz and one can use contraction argument to show that

=~ oi((E(f(X0), i) = U(f3(X0). Y7)

n

< cE sup
feF

Esup
feF

Y

1 — ‘

LS olf - X

n -
1=

=1

for ¢ > 0 an absolute constant.

Lecué and Mendelson (Lecué and Mendelson, 2013) studied learning problems with the quadratic
loss function without boundedness assumption on the envelope of {{(f(X),Y) : f € F}. They
were interested in the most natural setting extending bounded classes: the subgaussian framework
(see Definition [1.3). It covers the case of regression with Gaussian noise. Their analysis follows the

“isomorphic method” based on the following idea. Let r* such that with large probability
. 1 3
VfE.FIPﬁfZT’, §P,Cf§Pn£f§§P£f,
then, with the same probability, the empirical risk minimizer f; satisfies

PEf}_ST >
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because P,L; < 0. The idea of the isomorphic method is to identify the right level * such that
with large probability

sup  |(Pn — P)(ly — lgs)
feF:PLy>r*

<-PL; .

N | —

Under the assumption that the noiseﬂ Y — f5(X) is o-subgaussian and that the class F — f* =
{f—f*: f € F}is B-subgaussian (see Definition , the authors derived optimal bounds for the
excess risk holding with an exponentially large probability. Their bounds are fixed-points depending
on another notion of complexity measure: The Gaussian complexity (see Section for a precise
definition).

Definition 1.3: Subgaussian random variable and subgaussian class

Let Px be a probability measure on (F,¢) and let X be distributed according to Py.

1. We say that X is o-subgaussian if for every A > 0

)\2 2
Eexp ()\X) < exp ( 20 )
2. We say that a class F C Lo(Px) is B-subgaussian with respect to Py if for every f, g in

Fand A >0 % 2R
Eexp (AM) < exp (—)
[RAITAEENS 2

In a path-breaking paper (Mendelson| |2014)), Mendelson presented a new general analysis for the
quadratic loss function, £(y,vy') = (y — y')?/2 allowing to handle general classes of functions (not
necessarily subgaussian). His starting point is that the isomorphic method consisting in showing
that

VfeFstPLy>rw, %Pﬁf < P.L;< gPﬁf ,

for a well chosen parameter r*, is too restrictive. Only the lower estimate (1/2)PL; < P,L;
is actually required. The key assumption leading to the lower bound is the following small-ball

condition stating that there exist u,y > 0 such that

inf P(|f(X) (0| = ullf - glle(Px)) > 50
f,9eF

Note that if || f||L,(py) < K| fllzacpy) for every fin F, then by the Paley-Zygmund inequality, for
every f,gin F

(1100 = 0001 2 ulf = gl ) = (* ‘“) |

K

4we use the terminology of (Lecué and Mendelson), [2013).
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Thus, the small-ball assumption can be understood as an equivalence norm assumption. Note
that for subgaussian classes, we have || f||z,py) < Kv/Dlfllzo(py) for every p > 0 and thus the
small-ball assumption is automatically satisfied. Under this assumption, Mendelson derives upper
bounds on the excess risk depending on fixed-point complexity parameters defined with Rademacher

complexities, holding with large probability.

1.4 Localization methods for regularized procedures

1.4.1 Regularized empirical risk minimizer

In Section [1.3] we presented localization arguments to derive fast rates of convergence for the
empirical risk minimizer. When the class I is too large, the localization is not sufficient to obtain
small excess risk. A regularization term, promoting an expected behavior of the oracle, can be added
to enforce a similar structural property of the estimator. This approach is called the regularization
method.

Example 1 : Promoting sparsity. Let F = {<B, ->, f € RP} be the class of linear func-
tionals in R? and set 3* to be the minimizer of the risk R(8) = E(x,y)~p[l({8,X),Y)] in R?,
where ¢ denotes a convex function. The celebrated LASSO estimator (Tibshirani, 1996) is

defined as
. R
3} € argmin — Zﬁ((ﬁ,Xi>,Yi) + M8l
perr T
where ||B]l1 = Y5, |Bi], and A > 0 is a parameters that has to be chosen carefully. Re-

markably, for a well chosen parameter A > 0, under some conditions on X and Y, with high
probability (Bellec et al., 2018; |[Van de Geer et al. 2008; Bickel et al., 2009; Bunea et al.
2007, one can show that

A * lOg p
132 - 13 < 5282
n
where s = [|8*lo = >_b_, 1{B8; # 0} denotes the sparsity of the oracle *. In this example,

the penalization ||]|; promotes sparse solutions.

Example 2 : Promoting low rank matrices. Let F = {<M,->,M € R™T} where
<A, B> = Tr(A” B) for any matrices A, B in R™*T. For A € R™7 set (0;(A))ic[1,min(m,1)] its
singular values arranged in a non-increasing order. The 1-Schatten norm is simply the trace-
norm i.e ||[A|; = Tr(m) = Z?j?(m’ﬂ 0;(A). The trace norm regularization procedure is

defined as following

A e argmian€(<A,Xi>,Yi) + AJA]L -

AcRmXxT n i—1

This procedure was introduced for low-rank reconstruction of high-dimensional matrices (Gross,
2011; |Candes and Plan) 2011; Recht et al. 2010; Rohde et al. 2011). The trace norm has
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similar properties as the ¢;-norm. In this example, the penalization ||Al|; promotes low rank

solutions.

Example 3 : Promoting smooth solutions. Consider a set X and let H C RY be a
Hilbert space of real valued functions on X with the inner product <~, >H The function

K : X x X~ Ris called a reproducing kernel of H if

— For any x in X’ the space H contains the functions K, : X — R s.t K,(y) = K(z,v).
— For any z € X and f € H, (K,, f) = f(z), called the reproducing property.

If a reproducing kernel exists, the space H is called reproducing kernel Hilbert space (RKHS).
A positive definite kernel K is a symmetric function K : X x X — R such that for any n € N*
and z1,- -+ , 2, in X the matrix (K (z;, ;) : (z,7) € [1,n]?) is positive definite. In (Aronszajn,
1950), the author established that for any positive definite kernel K, there exists a unique
reproducing kernel Hilbert space reproducing K. Thus, for a positive definite kernel K, let
Hx be the unique RKHS associated with K and let F = Hg. A very popular approach is

the Tikhonov regularization procedure defined as following

R 1 &
[ =argmin = L(f(X:), Vi) + Al f I3, -
i 32040, ¥) + Al
where || - ||%, denotes the norm derived from the inner product in Hg. From the reproducing

property and Cauchy-Schwarz inequality, for every z,y € X and f € Hg

(@) = FW = [(Ke = Ky £y, L < W e 1y = Kallaw,e -

The norm of a function in the RKHS controls how fast the function varies over X with respect
to the geometry defined by the kernel. In this example, the penalization || f||3, promotes

smoothness with respect to the metric induced by the kernel K on X.

The first two examples and the third one are very different in nature. ¢; and S; penalizations are
used to expose the sparse nature of the oracle f} (sparse of low rank oracle). Although the ¢; norm
does not appear to be directly connected to the notion of sparsity, surprisingly, it promotes sparse
solution. This “modern” approach of regularization has been extensively studied in the statistical
community since the early 2000s.

Example 3 deals with the “classical” point of view in regularization. One may think that the oracle
f> has a certain substructure (smooth for example) and that W(f%) is not too big (¥(-) being the
penalization function). The regularized procedure is expected to produce estimates f;z\ for which
W(f2) is of the order of W(f%) and its excess risk should depend on W(f%).

More formally, let E be a vector space such that 7 C E and ¥ : £ +— R, be a penalty function.

It is often assumed that the penalty is a norm (Lecué and Mendelson, [2018)) (as in examples 1 and
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2). However, in this thesis we adopt a more general point of view and assume that the penalty is
only a convex function. For F a convex class of functions and A > 0, the reqularized empirical risk
minimizer (RERM) is defined as

fa= argmm—Zﬁ ), Y:) + AU(f) , (1.4)

fer 1N

where ¢ denotes any convex loss function and (X, Yz‘)ie[u,n]] are i.i.d random variables sampled from
P. For A = 0, we recover the non-penalized empirical risk minimizer. Small values of A imply that
the dominating term in is the empirical risk, while large values of A encourage solutions such
that W( f]’\r) is small, even if its empirical risk may be large. The tuning parameter A has to be
chosen carefully. Since in our case the loss function ¢, the class of functions F and the penalization
U are convex, the estimator f]’\: is unique and can be easily computed in practice, using tools from

convex optimization (Boyd et al., [2004) such as proximal gradient methods (Schmidt et al., 2011)).

1.4.2 General approach of localization for regularized procedures

The penalization term AW(f) added to the empirical risk brings a new information that has to be
included in the analysis. Since the penalization term ¥(-) promotes estimators f3 such that U(f3)
is small, a simple and natural idea is to add a localization term taking into account the fact that f}
should be close to f7 with respect to the metric induced by W. We can derive an analysis similar
as the one developed in Section [I.3] For the sake of simplicity we will assume that ¥ is norm. The

analysis could be extended to more general convex penalization, see Chapter

Let PMy=n"t>0" ((f(X;),Y;) + AU(f) and P)L; = Py — (y+). By definition, Pﬁ\ﬁf} >
PM s+ and the proof consists in showing that with high probability, for every f € F such that
U(f—fx) > p*or PL; > r* we have P)L; > 0. Automatically, with the same probability, we have

\Il(f}—f}) < p* and Pﬁf; <r

Let f € F such that ¥(f — f5) > p* or PL; > r*. As for the analysis of the empirical risk
minimizer in Section [I.3, we want to use the homogeneity Lemma to reduce the analysis onto
the set {f € F : PL; = r*}. Because of the localization with respect to the regularization norm,
the situation is more delicate (see Figure for a geometric representation of the problem) and

two cases appear:

1. Conel:{feF :PL;<r*}C{feF VU(f—fr) <p}
Use the homogeneity lemma[1.3] There exist @ > 1 and fo in F s.t o(fo — f5) = f — [+ with
PL; = r*. Automatically VU(fy — f5) < p*. By convexity of the penalization term and the

loss function it follows that

PLy=PoLy +A(U(f) = W(fF) = aPLy,
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where fj satisfies PLy, = r* and ¥(fy — fF) < p*.

2. Cone 2: {feF:V(f—fr)<p'}C{feF:PLy<r*}
Take a = U(f — f5)/p* > 1 and fy defined by a(fo — f5) = f — [+ Thus V(fo — f5) = p*
and automatically PLy, < r*. As for the first case we have

PYLy=PoLy+MW(f) = U(f3) > aPLy, |

where this time, fy satisfies PLy, < r* and V(fy — f5) = p*.

W(f - ;) < p*
P(ﬁf — Ef}) = I’*

Figure 1.2: Localization cones for regularized empirical risk minimizer

Define B(p*,1*) = {f € F: PLy < r*}nN{f € F: U(f — fr) < p*}. The rest of the proof

consists in proving that P)C; > 0 for every f in OB(p*,r*), where B(p*,r*) denotes the border
of B(p*,r*).

Analysis in the cone 1: Let fy in F such that PLy = r* and U(fy, — f5) < p*

PyLy, = PoLyy + A(¥(fo) = U(f7))
>t — ?’lel.g{MPn —P)(ly —Lyy)

L PLy =17 W(f — f3) < py = Mo

> 5 —sup {|(Pa = P)(ty — )| : PLy =" W(f = [3) < p}
feF

for X < r*/(2p*). The rest of the analysis is devoted to find the smallest r > 0 such that, with large
probability

P, —P)({y — 0
?}eljlg{\( )by — Lys)

PPLy =1, 0(f = f7) <p'} <7r/2.
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Analysis in cone 2: the sparsity equation In (Lecué and Mendelson) 2018), Lecué and
Mendelson studied the RERM associated with the quadratic loss function. The authors developed
the notion of “sparsity equation“ allowing to obtain tight bounds on the excess risk, depending on
the structure of the oracle f3 such as its sparsity or its rank. Their intuition is based on the fact
that the LASSO procedure promotes sparsity because of the large subdifferential of the ¢;-norm in

sparse vectors. We recall that the subdifferential of ¥ in a point f is defined as
(00), ={z" € E*: U(f +h) = V() > 2*(h), VheE},
where E* is the dual space of the normed space (E, V). Let t € RP,

@1 1h), ={g € R : llglles < 1,{t,9) = IItll1}

and the subdifferential of || - ||; is larger for sparse than non-sparse vectors. The penalization would
shift the estimates toward subspaces with large subdifferentials. This phenomenon can be extended

to other penalization functions. Let

Srip)=A{feF:PLy<rin{feF :V(f-fr)=p},

and

A(p,r) = inf sup  Z°(f—fr) .
fES(T',p) Z*G(a‘lf)f}

It is expected that A(p,r) will be large if the subdifferential in the oracle f% is large. Let fy €
S(r*, p*) From the subdifferential definition, for any 2* in (OV) s

U(fo) =¥ (fr) = 2" (fo— fr) = _inf )Z*(f - fF)

T feS(prr*

and since it holds for any z* in (OW)y it follows that W(fo) — W(f%) > A(r*, p*) and

PaLyy = PuLy, + A(¥(fo) — Y (fF))

> —sup {|(B, — P)({y — l5y)
fer

If A(r*, p*) > p*/2, A =1r"/(2p*) and

P, — P)(ly — (s
f}elg{l( )y —Lp2)

cPLy <1r*U(f = f5)=p"} + AA@, pY) .

cPLy <r*,U(f = fr)=p"} <r*/4,

then P)L;, > 0. It shows why the subdifferential of f3 must be large.

— Theorem 1.4: Deterministic results for RERM

Let r* and p* be chosen such that

P, — P)({; — (s
3161]13{\( )y — Lyz)

cPLy <7 W(f - fr) < p*} <r*/4
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and
A, p7) > 52,

Then for A = r*/(2p*) we have

V(fr—f5)<p" and PLpy <o

Theorem is completely deterministic. Thus, to obtain upper bound on the excess risk it is
sufficient to construct a tight upper bound A, (r, p) such that with high probability.

f}elg{\(Pn — P)(ly —lys)| : PLy <7, U(f — f5) < p} < An(r,p)

and with the same probability, »* and p* defined as
* : * p* * r*
r* = inf T>O:A(T,p)2§andAn(r,p)<Z ,
satisfy the requirements of Theorem [I.4]

Remark 1.1. If the norm WV is “smooth”, in the sense that the subdifferential of U in f is small for
any f, then there is little hope to have A(r,p) > p/2. In this case we can always take p* = 3V(f3)
and for fo in the second cone (i.e PLy < 1r* U(fy— f3) = p*) we have

U(fo) =V (fr) = V(fo— fr) —29(fF) = ¥(fF) .

and by chosing r* such that

sup {[(By = Pty — )| - PLy < 7°, (7 = [3) < BU(3)} <7°/4

with A = r*/(6V(fF)) we have
V(fr = f7) <3U(f5) and PLp <7
This method can be applied systematically to obtain error bounds depending on V(f¥).
1.4.3 Advantages of localization methods for regularized empirical risk
minimizers

Using homogeneity arguments, the analysis is reduced to the uniform control of |(Pn —P)(ly—Lys)

over “localized” sub-classes of F. There are several advantages:

1. It leads to smaller error rates than the approach based on global complexity parameters. In
addition, the regularization adds another localization around the oracle f7, often essential to
show that the RERM is minimax-rate-optimal (Lecué and Mendelson, [2018]).
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2. Some proofs are substantially simplified since we no longer use a peeling argument.

3. The localization W(f— f5) < p* may imply that the class {f € F: PL; <r* and ¥(f—f}) <
p*} is bounded. For example, let F = Hx be a RKHS associated with a bounded kernel K
(|IK(z,y)] <1 for any z,y € X). Let us define the penalization by V(f) = || f||#,, Where
|||, denotes the norm in the RKHS associated with K. Take p* = 3| f*||, as in Remark[L.1]
Let f in F be such that ¥(f — f5) < p* and z € X. From the reproducing property

[f(@)] = (K, £y, ] < f bt < 1 = Frllaue + 1 e < 41 FF Mt -

In this example, the control of (P, — P)(¢;—{ss) uniformly over {f € F : PL; <7* and ¥(f—
f») < p*} can be done using Talagrand’s concentration inequality (see Theorem , inde-
pendently from the distribution of X. Note that bounded kernels are very common in machine
learning (Shawe-Taylor et al., 2004; Scholkopf and Smola, [2001)).

1.5 Complexity parameters in statistical learning

As presented in Sections[1.2]and [1.3] bounding the excess risk of the (R)ERM reduces to the uniform
control of (P, — P)({; — {s+) over a sub-class F C F (the whole class F for slow-rates or sub-classes
when using localization arguments). When the class of functions (7 — fz = {{; — {y= : f € F}
is bounded, it is possible to show that the supremum of the empirical process indexed by {7z — f*

concentrates well around its expectation (see Theorem . Informally, with large probability

sup (P — P)(ly — Ly )| = E sup (P — P)(y = Lys)
feFr ferF

From the symmetrization principle (see Lemma [L.1)), Esup .z [(P, — P)(¢ — {s2)
bounded by the Rademacher complexity of £z — {y- and thus, the performances of the (R)ERM

can be upper

directly depend on the Rademacher complexity R,({z — ¢ f;). Thus, Rademacher complexities
naturally appear when considering bounded classes of functions. However, there exist other ways
of measuring the complexity of a class of functions F. This section is devoted to present one of
these alternatives: The Gaussian complexity. Since the computation of Gaussian and Rademacher
complexities may be involved sometimes, we also present some tools to bound these quantities in

practice.

1.5.1 Another examples of complexity: the Gaussian complexity

Definition presents the notion of subgaussian classes extending the one of bounded classes. A
natural way of measuring the complexity of subgaussian classes is via the Gaussian complexity of

F that we introduce now.
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Let {Gy : f € F} be the canonical Gaussian process indexed by F C Lo(Px) i.e E[Gy] = 0 for
all f in F and the covariance function is given by the inner product in Lo(Px) that is E[G ;G| =
< f, h> La(Px) for every g, h in F. The Gaussian complexity of F is defined as

E| G| 7 := sup {]E supGp : H € Fis ﬁnite}
heH

In (Lecué and Mendelson, [2018)), the authors studied ERM associated with subgaussian classes and

obtained error rates expressed as fixed point of localized Gaussian complexities defined as
inf{r > 0: E||G|z <~rvn} ,

where v > 0 is an absolute constant, n is the number of observations and F, = {f € F : || f||z,(p¢) <
r}. The main reason why Gaussian complexities appear naturally when learning subgaussian classes
will be given at the very end of Section[1.5.2] The quantity E||G||» may look complicated at a first
glance but for many applications it has a simple form. For example let F = {<t, > :teT C R}
be the class of linear functionals in R? indexed by T and let X be a random vector in R? with a

covariance matrix >, then
E||G]5 = Esup(G,t) = w(SY2T)
teT

where G ~ N(0,%) and V2T = {SV2t : t € T}. The quantity w*(T') = Esupy(G,t), where
G ~ N(0,1,), is called the Gaussian mean-width of the set T'. It is a well-known quantity, appearing
in many phenomena in geometric functional analysis, (Vershynin| [2018; Holmes, 2012)). One can
think the Gaussian mean-width as one of the basic geometric quantities associated with subsets of
T C RP such as volume, surface area... The Gaussian mean-width of various sets 7' is known, see
for example (Vershynin, 2018; |Chatterjee and Goswami, 2019)). The Gaussian complexity is also

easily computable on several finite dimensional classes of functions such as
1. F= {<t, > :t € T'C RP} the class of linear functionals in RP.

2. F={(A,-): A€ ACR™T} the class of linear functionals in R™*”" (Lecué and Mendelson,
2018).

Sometimes, the computation of Gaussian complexities is more involved. In Section we present

different tools to bound the expectation of the supremum of a (sub-)Gaussian process and thus

E[|GlF -

1.5.2 Tools to control Rademacher and (Gaussian complexities

Rachemacher and Gaussian complexities measure the richness of class of functions. Empirical risk
minimizer and its regularized versions can be analyzed with fixed-point complexity parameters de-

pending on Rademacher or Gaussian complexities. Building upper bounds for these quantities is
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thus an important question. In this section we present some basic and more advanced tools to
bound the expected suprema of stochastic processes (and obtain upper bounds on the Rademacher

and Gaussian complexities).

Definition presents the notion of subgaussian class of functions. This definition can be
extended to other pseudo-distances. Let (T, d) be a pseudo-metric space and (X;);er be a stochastic
process indexed by T'. The process (X;);er is called subgaussian with respect to the pseudo-metric

d if for any ¢,s in T the increments X; — X; are d(t, s)-subgaussian i.e for any A > 0

Eexp (A(X: — X,)) < exp (%) |

Note that for T = F C Ly(Px) and d(f,g) = ||f — gllL.py) We recover Definition [1.3] Such
stochastic processes have very remarkable properties. Let N(T',d, ) be the e- covering number of
(T,d), that is, the minimal number of balls (defined with the metric d) with radius € needed to
completely covers T. The e-entropy of (T, d) is defined as

H(T,d,e) =log N(T,d,e) .

The supremum of a subgaussian process is bounded from above by Dudley’s entropy integral.

Theorem 1.5: Dudley integral

Let (X})ier be a subgaussian random process with respect to the pseudo-metric d. Then, for

every to in T, there exists an absolute constant ¢ > 0 such that

D(T)

D(T)
Esupthc/ VH(T,d,e)de and Esup|Xt—Xt0|§c VH(T,d,e)de ,
0 teT

teT

where D(T') = sup{d(t, s) : t,s € T'} is the diameter of (7', d).

Theorem is derived from chaining techniques (Talagrand, |2006]) and is very useful to compute
the Rademacher complexity R, (F) of a class of functions F. Conditional on X, - -+ , X,,, the process
VNR,(F) is subgaussian with respect to the pseudo-distance Ls(F,) and it follows that

Dn
R, ( <—]E/ \/H}"Lg ,e)de |

where D,,(F) = sup;cx P, f?. Note that both the diameter D, (F) and the entropy with respect
to the pseudo metric Ly(P,) are random. Following the approach developed in (Giné et al., |2006]),
it is possible to derive upper bounds on the right term under entropy conditions. Roughly, the

idea consists in showing that Ly(F,) and Lo(Px) are close to each other in a certain sense, and use
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bounds on the entropy defined with respect to the metric Ly(Px).

Theorem is very useful to obtain upper bounds on Rademacher and Gaussian complexities.
However, a close look at the proof reveals a potential source of looseness. To circumvent this
problem, Talagrand developed the idea of generic chaining and introduced the so called Talagrand’s
2 functional introduced in Definition [I.4]

Definition 1.4: Talagrand’s v,

Let (7,d) be a metric space. A sequence (Ts)s>p of subsets of T is said to be admissible if
|To| =1 and 1 < |Ty| < 2% for every s > 1. The ~y,-functional of (T, d) is defined as

o)

72(T,d) = inf sup Y~ 2°%d(t, T.)

T
(Ts) teT =5

where the infimum is with respect to all admissible sequences (75s)s>0 and d(t, Ts) = minger, d(t, ).

The ~o-functional is a refinement of the Dudley’s integral. In particular we have

D(T)
Y (T, d) < C/ VH(T,d e)de ,
0

and the following theorem holds:

Theorem 1.6: Generic chaining

Let (X;)ier be a subgaussian process with respect to the pseudo-metric d. Then, for every ty

in T', there exists an absolute constant ¢ > 0 such that

Esup X; < ey(T,d) and Esup|X; — X, | < eyo(T,d) .

teT teT

Moreover,

]P(sup | Xi — Xoo| > c(92(T,d) + uD(T))) < exp(—u?) ,
teT

where D(T) denotes the diameter of (7, d)

In practice, the yo-functional is often harder to compute that the Dudley’s integral. The main
advantage of this quantity comes from Talagrand’s majorizing measure Theorem, saying that the

~vo-functional gives an optimal bound on Gaussian processes.

Theorem 1.7: Majorizing measure theorem

Let (X})ier be a Gaussian process with respect to the pseudo-metric d defined as d(t,s) =
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VE(X: — X;)2. Then, there exist two absolute constants ¢, C' > 0 such that

(T, d) < Esup X; < Cy(T,d) .

teT

Theorems and explain why the Gaussian complexity appears naturally when learning sub-

and relate it

gaussian classes. With large probability we can control sup;cz (P, — P)((; — {s3)

with its diameter and the Talagrand’s v, which is equivalent to the Gaussian complexity.

1.6 Robustness in learning theory

Statistical learning is based on assumptions one makes on the observations. It can be an implicit
or an explicit assumption about the randomness and the independence of the data. For example,
in Sections and we assumed that (X;,Y;)icpi,n) were i.i.d and (often) well concentrated.
The robustness in learning can be defined as “the insensitivity to small deviations from the as-
sumptions“ (Huber and Ronchetti, 2011). The goal of robust learning is to build estimators under
minimal hypotheses. Robustness issues have become popular because collected data are often con-
taminated, a situation that can be modeled by heavy-tailed distribution or the adjunction of outliers
to the dataset. With bigger datasets, this corruption is even more likely. Informally, we say that
an estimator is robust if it deviates moderately from its target even when data are not i.i.d and
subgaussian. We will give more precise definitions in the sequel.

We begin by presenting the notion of robustness in the problem of mean estimation. Besides giving
good insights on the notion of robustness, it will serve as the starting point for the construction of

more advanced estimators.

1.6.1 The problem of mean estimation

Univariate case The most simple, yet fundamental problem in statistics, is the mean estimation.
Let Xy, , X, beii.d real random variables with distribution Px and mean py. The goal is to

estimate the mean pux. To do so, one can naturally use the empirical mean

X 1<
Mn:E;Xi .

From the law of large number, we know that fi,, converges almost surely to pux and the goal is to
obtain non-asymptotic results, for a fixed number of observations n. When the distribution Py is
well concentrated around its expectation px, the empirical mean is a “good* estimator of the mean
px. For example, let X, -, X, be i.i.d N(0,0?) random variables. Straightforward computations
show that the empirical mean estimator satisfies defined as

log(1/9)

V8 € (0,1), P(|ux—ﬂx|200 T) <6
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This result easily extends when (X;);c[i,) are i.i.d o-subgaussian random variables. An important
problem in statistics is to build estimators of the mean achieving the same performance as the
empirical mean when the subgaussian assumption is relaxed and some outliers may have corrupted
the dataset.

Problem 1: Is it possible to relax the assumption that (X;);c[1,») are subgaussian and assume

2nd

only the existence of a moment 7

Problem 2: What if O outliers corrupt the data ?

The works (Devroye et all [2016; [Lerasle and Oliveira, 2011) answer the problem 1 in the uni-
variate case. The authors define level-dependent estimators as estimators depending on the level
of confidence ¢, and show that there is no estimator independent of the confidence level with the
optimal deviations o4/log(1/d)/n when the data are only assumed to have a second-order moment.
Thus, under the only assumption of a second-order moment, it is possible to obtain the deviation
o+/1og(1/8)/n only if the estimator ji(§) depends on the confidence level § € (0,1). Once we ac-
cept that the estimator depends on the confidence level ¢, different constructions exist (Catoni,
2012; Nemirovsky and Yudin, 1983). The Median Of Means (MOM) scheme (Lerasle and Oliveiral,
2011; Nemirovsky and Yudin, 1983) is probably the most natural and widespread construction of
level-dependent estimator. Let By, --- , Bx be a partition of [1,n] into K blocks of same size (for
the sake of simplicity, it is here assumed that K divides n). For each block By, k € [1, K], let
Pp, X := (n/K)~' 3 ,cp, Xi be the empirical mean in the block By. The MOM-estimator of jix is
defined as

(OM = Median(Pg, X, - -, Pp, X) .

K

Easy computations (see (Lerasle and Oliveira, 2011; Devroye et al., [2016) for example) show that

OM with K = clog(1/6) is a level-dependent subgaussian estimator of the mean when only
assuming that X;,---, X, have a second-order moment: for § € (0,1) the estimator g}M with

K = clog(1/9) verifies

Pl - @) 2 e[ EL) <5

where ¢ > (0 is an absolute constant.

Problem 2 is related to the notion of breakdown points (Donoho and Huber, 1983), which has
been repeatedly investigated in the statistical community. The “Median step“ allows to handle a
number of outliers O < c¢K. Thus, MOM-estimators are particularly interesting because they can

simultaneously solve problems 1 (heavy-tailed distributions) and 2 (corruption by outliers).

Multivariate case The extension of the median to the multivariate case is an interesting problem.

In the past few years, this generalization has received a lot of attention. In particular, two different
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communities with different notions of robustness have tried to tackle the problem of multivariate

robust mean estimation

The statistical community is interested in constructing reliable estimators when the data
(Xi)iep1,n] might be heavy-tailed (Lugosi et al., 2019b; Depersin and Lecué, 2019; [Minsker
et al., 2015, 2018; (Cherapanamjeri et al., [2019; [Hopkins, |2018; |(Chen et al) 2018)). Formally,
let (X;)icpng be ii.d random vectors in R? with mean px € RP and covariance matrix 3.

We say that fi(d) is a subgaussian-estimator (Lugosi et al. [2019b) of the mean px at level

6 €(0,1)if
IP>(H/LX — fn(9)[2 > 01\/@—1—@2 w> <5,

where ¢y, ¢y > 0 are two absolute constants and ||%|| denotes the operator norm of 3.

The computer science community considers a very different notion of robustness. The
goal is to construct robust procedures when O outliers may contaminate the dataset (Di-
akonikolas et al| |[2019a; Cheng et al., 2019)). It covers the Huber e-contamination model (Hu-
ber and Ronchetti, |2011) but also adversarial corrupted data. They want to construct esti-
mators, computable in a polynomial time, with the optimal dependence with respect to the
number of outliers O. These results are also different in nature from the previous because the

bounds only hold with constant probability p < 1.

Recently, combining ideas from (Diakonikolas et al., [2019a)) and (Lugosi et al. 2019b), (Depersin
and Lecué, [2019) showed that a single algorithm (computable in a nearly-linear time) solves both

problems 1 and 2. This estimator is based on MOM ideas.

The construction of robust estimators of the mean can be used to build estimators solving more

involved learning tasks.

1.6.2 The notion of robustness in supervized learning

In this section, we come back to the context of supervized learning. Let (X,Y) be distributed as P.
Let Px be the marginal distribution of X and D = (X, Y;)icqi,n be a dataset of n (not necessarily
independent) random variables. As explained in Section , given a convex class of functions F
and a loss £ : Y x Y — R, the goal is to use the dataset D to approximate/compute the oracle f5
defined as

f7 = argmin Ply := argmin E x y).p [K(f(X),Y)} .
feF feF

Recall that the empirical risk minimizer is defined as

R 1
= argmin P,/; := argmin — O f(X5),Y;) .
I ;ge]-' f ;SE; n; (f( ) )



1.6. ROBUSTNESS IN LEARNING THEORY 31

We presented different results on the excess risk for the empirical risk minimizer and its regularized
versions. The analysis strongly relies on concentration inequalities (see Section and . In
particular, the use of Talagrand inequality requires the boundedness of ¢z while the framework
developed in (Lecué and Mendelson|, 2013) focuses on the case when the class of functions (z is
subgaussian and thus possesses finite exponential moments. We always assumed that the data were
independent and identically distributed as P. We would like to relax these two assumptions. It

leads to two different notions of robustness in supervized learning

1. Robustness with respect to outliers: Let Z and O be such that Z + O = n. Let Dz be
a set containing Z informative data (Xi,Y7), - (Xz, Yz). These data are supposed to be i.i.d
with distribution P. Let Dy be a set containing O outliers (Xl,f/l), e (f(o, ffo). On these

data, nothing is assumed. We say that an estimator fn is robust with respect to O outliers if

P(R(ﬁ) — R(f3) > G|Dz N %) = P(R(ﬂ) — R(f3) > c<n|D> ,

where ¢ > 0 is an absolute constant, ¢, > 0 and D = (X;,Y;)icpi,n] is a dataset containing
n i.i.d random variables distributed as P. In other words, an estimators fn is robust to O
outliers if (up to an absolute constant) its risk remains unchanged while introducing at most
O outliers in the dataset.

It is also possible to consider variants of this setting. For example, let Xy, ---, X, be
i.i.d random variables distributed as Py and Y7,---,Y7 be i.i.d random variables such that
(X1,Y1),- -+, (Xz,Y7) are i.i.d with common distribution P. Nothing is assumed on the O
outliers Yz.1,---,Y, and let D = (X3, Yi)iepg U (X5, ﬁ)ie[[um]]. This case covers situations

where only the labels are corrupted by outliers.

2. Robustness with respect to heavy-tailed: We say that an estimator fn is robust to

heavy-tailed distribution at the order k if

P(RU — R 2 0w ) = B(RU) - RUS) 2 D)

where ¢ > 0 is an absolute constant, Dp, = (X, Y;)z‘e[[l,n]] is a dataset of i.i.d random variables
with common distribution P, and Dp« = (X, Yi)ie[u,n]] is a dataset of i1.i.d random variables
with common distribution P*. These distributions are such that, for (X,Y) ~ Py, the class
{¢(f(X),Y), f € F} is subgaussian and for (X,Y) ~ P the class {¢(f(X),Y), f € F} has
only k-th order moments. In words, an estimator fn is robust with respect to heavy-tailed
distribution if one can prove rates of convergence for its excess risk which are as good if the

class {E( f(X), Y) , | € F} is subgaussian or if it only satisfies moment conditions.

1.6.3 The limitations of the empirical risk minimizer

The empirical risk minimizer and its regularized counterpart are widespread in machine learning

and statistics. They are used for various of real-world applications. Since large datasets are the
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most vulnerable to corruption, it is a very important question to know whether ERM and RERM

are reliable in such settings.

Let {(y — y') = (v — ¥')*/2 be the quadratic loss function and F = {(¢,-),t € RP} be the
class of linear functions indexed by RP. Neither the loss nor the class F are bounded. Let D =
(Xi,Yi)icpn) € (R? x R)™ be a dataset of n random variables. The empirical risk minimizer is
defined as

n

Bn = argmimQi Z (<Xi,5> - Yi)2 .

n
BeERP i1

In this case, it is clear that a single outlier (X,,Y,) can break down performance of the (R)ERM.
This phenomenon occurs if outliers contaminate only the labels (Yi),-e[[lvn]], only the inputs (Xi)ie[[lvn]],
or both. Thus, (R)ERM with the quadratic loss function is not robust with respect to outliers at
all. In addition, it is quite obvious to see that the estimator Bn is not robust to heavy-tailed
distributions. For heavy-tailed distributions the empirical risk can be very far from the true risk
and the empirical risk minimizer is not reliable in such cases. Indeed, let us come back to the
problem of univariate mean estimation. Given i.i.d random variables (X;);c[i,») sampled from Py,
the goal is to estimate ux = E[X;]. Let F = R and {(y,y’) = (y — ¢')/2, for any v,y in R. We
have

n

. 1 1<
* —argmin E(f — X)?/2 = and f,, = argmin — —X)?=- X;
f5 = argminE(f — X)*/2 = px fu = argm o 2\ = X0) n;

and if Py is heavy-tailed, the estimator fn =n1tY " X, is very far from the oracle f3 = ux.
Consequently, there is hope to obtain general results of robustness for the (R)ERM associated with
the quadratic loss function (Mendelson, 2014} Lecué and Mendelsonl, 2018)).

Now, let F be a general class of functions and let ¢ denote the quadratic loss. As presented in
Section [1.3] the (R)ERM achieves good performances when P, (¢; — ;) concentrated well around

its expectation P(¢f — {+) uniformly over sub-classes of F. From the following decomposition

f(Xi) = Y= f(Xi) = [7(X0) + f2(Xe) = Yi=(f = fA) (X)) =& ,
for f € F and where & =Y; — f5(X;), it follows that

Pyl —Lyy) = Z(f [ (X3) Z&f fR(X)

NV TV
quadratic process multiplier process

Consequently, the process (Pn(€ F—=4 f;)) feF concentrates well around its expectation, if and only
if, both the quadratic and the multiplier processes concentrate well. It is clear that the quadratic
process behaves nicely only when the class F' — f* = {f — f5, f € F} concentrates well. The

concentration of the multiplier process (Mendelson, 2016}, |2017) involves both the random variables
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(f(X3) — f}(Xi))ie[[l,n]] and (V; — f;:(Xi))ie[[l,n]]' The random variable Y; — f5(X;) can be seen as
the noise of the problem | As these processes don’t concentrate well under moments conditions,
the excess risk of the (R)ERM deteriorates when the noise Y — f5(X) and the class F — f5 are
not assumed subgaussian. Thus, even when the class 7 — f5 is bounded, there is no hope for the
(R)ERM with the quadratic loss to be reliable if the noise Y — f%(X) is heavy-tailed.

Consider an unbounded loss function ¢. Several examples of such functions are given below.
The concentration of P, (¢; —{ f}) requires a subgaussian assumption on the class F — f7. However,
contrary to the quadratic loss function, the noise does not need to be subgaussian if the loss satisfies
the following Lipschitz condition: There exists L > 0 such that for every f,g € F and (z,y) € X x Y

€(F(x),y) — L(9(x).y)| < L|f(x) - g(x)| -

Here are some examples of Lipschitz (and convex) losses

e The logistic loss defined, for any u € R and y € Y = {—1,1}, by {(u,y) = log(1+exp(—yu))
is 1-Lipschitz.

e The hinge loss defined, for any v € R and y € Y = {—1,1}, by {(u,y) = max(1l — uy,0) is
1-Lipschitz.

e The Huber loss defined, for any § > 0, u,y € R, by

3y —w)? if [u—y <6

Ou,y) =< 2 ,
Sly—ul—% ifju—yl>0

is 0-Lipschitz.

e The quantile loss defined, for any 7 € (0,1), v,y € R, by (u,y) = p,(u — y) where, for any
z € R, p-(2) = 2(t — I{z < 0}) is 1-Lipschitz. For 7 = 1/2, the quantile loss is the absolute

loss.

From the Lipschitz assumption, a concentration of { P, (¢;—(y: ), f € F} follows from a concentration
of F — fr without assumptions on (Y;),c1,,). The (R)ERM is robust with respect to heavy-tailed
labels (Y;)icpi,n) and to outliers in the labels. This is a standard idea in the theory of robust M-
estimators (Huber and Ronchetti, |2011). This intuition is developed in Chapters , and . We
show that heavy-tailed target Y does not affect the performances of the (R)ERM when the loss
function is simultaneously convex and Lipschitz. We also demonstrate that the (R)ERM exhibits the
minimax-optimal rate when O outliers corrupt only the labels. Table summarizes the robustness

results achieved by the empirical risk minimizer and its regularized versions.

5Using the terminology of (Mendelson, |2014)
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Heavy-tailed | Heavy-tailed . .
Robustness . Outliers (X,)o | Outliers (Y,)o
F—f noise Y — f5(X)

(R)ERM  with @ @ @ @

Lipschitz loss

(R)ERM  with @ @ @ @

quadratic loss

Table 1.2: Summary robust properties of the (R)ERM with different loss functions.

1.6.4 More advanced robust estimators

As presented in Section[1.6.3] the (R)ERM with unbounded loss is not robust to heavy-tailed classes
of functions £ — ¢ 2 Or to outliers contaminating the inputs (X;);cp,n). Thus, one would like a
systematic construction to get reliable estimators when the class 7 — f7 may be heavy-tailed or
when outliers corrupt the inputs (X;)icpi,n). Here, we present a simple construction based on the
Median Of Means scheme. It relaxes the assumptions on the class F — f* and the i.i.d assumption
on the data (X;,Y;)icpn]-

The setting is the following. Let Z and O be such than Z+ O = n and D7z U Dy is a partition of
D = (X;,Yi)icpi,n) into two datasets, where Dy is composed of 7 i.i.d informative data distributed
as (X,Y) and Do is composed of O outliers for which nothing is assumed.
In Section [1.6.1, we presented the Median Of Means estimator of the mean. This estimator is
robust to outliers and it achieves subgaussian deviations from the mean even if data only have two
moments. Thus, one would like to apply a similar construction for supervized learning problems.
Recall that the oracle f% is defined as

fr € argmin Eox yyp [((f(X),Y)]
feF

where the distribution P is unknown. A first approach is to replace the expectation by the empirical
mean and minimize this empirical risk. However, as presented in Section [1.6.3] when the class
F — f7 is heavy-tailed, there is no hope to prove deviations of this estimator as good as under
subgaussian assumptions. Instead, we estimate the expectation with the (level-dependent) MOM
estimator of the mean. Let K € [1,n] assumed to divide n for simplicity. For any k& € [1, K] and
feF let Pply=(K/n)) icp ((f(X;),Y;). The MOM-estimator of the risk P¢; is defined as
MOMk(f) = Median(PBlff, e ,PBKEf). Although being attractive, minimizing MOMgk (f) over
F is not sufficient to obtain fast-rates of convergence. A simple explanation comes from the lack
of linearity of such a procedure. Recall that the linearity of the empirical process {(F, — P)(f)}
is important to use localisation techniques and derive “fast rates” of convergence for ERM (see
Section . Comparing the minimizer of MOMg (f) over F and f5 requires to compare differences

of median, which does not concentrate as well as the median of the differences. To bypass this issue
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of non linearity, the authors in (Lecué and Lerasle, 2019) noticed that the oracle f3 also verifies

[ € argminsup E(x yyop [((f(X),Y) = £(9(X),Y)] .
feF geF

Replacing the expectation by the MOM-estimator we finally get the minmax-MOM estimators and
their penalized versions defined as

FMOM 4 rgmin sup Median(Pg, (€y =€), -+, Pp, ({; — {,))
fEF geF

A%?M argmin sup Median(PB1 (bp—4Ly), -, Pp.(lf — Kg)) + )\(\Il(f) — \I/(g)) ,
feF geF
where U : ' +— R, denotes a penalty function and A > 0 is a tuning parameter. From these defini-
tions, it is clear that both f}\(/IOM and f%?M are robust to at least K /2 outliers. These outliers, can
corrupt both the inputs and the outputs (X;, Y;)icqi,n). Such estimators, have been studied in (Lecué

and Lerasle, 2019) for the quadratic loss. The following theorem summarizes their principal results.

—| Theorem 1.8: MOM with quadratic loss (Lecué and Lerasle), 2019)

Let
. 2 \
rQ:mf{r>o:\1JcI,\J| >~ E sup 1> oilf = f3)(X)] §C|J|7’}
n FEFf=FFllLy(P) ST e
: 2 * 2
ry=inf{r>0:YJCZ|J|>= E sup 1> oil&ilf = )| <}
n FEFNf~F3llLyp) ST iy

where (0;)icq1,n) are i.i.d Rademacher random variables independent of (X Y;);cpn) and & =

Y: — f5(X;). Let K € [1,n] be such that K > ¢O. With probability larger than 1 — exp(cK),

the estimator fMOM satisfies

. K A K
Hf}\(/IOM _ f;—'H%Q(PX) < cmax (ré,r%@ E) and R( }\(/IOM> . R(f}) < cmax (7"2377”12\/17 ﬁ)

The rates of convergence of f}\{/IOM depend on two fixed-point complexity parameters. From The-
orems and [1.7, when both the class F — f3 and the noise Y — f3(X) are subgaussian, the
Rademacher complexities can be replaced by Gaussian complexities. Therefore, this results shows
that minimax MOM-estimators achieve the performance of the ERM in the subgaussian case proved
in (Lecué and Mendelson) 2013), even when up to cK outliers have corrupted the dataset. When the
class F — f5 and the noise Y — f5(X) are heavy-tailed, the computation of Rademacher complexi-
ties may be involved (Mendelson, 2016, 2017). In particular, for heavy-tailed noise Y — f5(X) the
complexity parameter r;; may be very large which is not entirely satisfactory. To bypass this issue,
it is possible to consider robust Lipschitz loss function. From the Lipschitz property, we remove

the dependence to the noise. Consequently, the minmax-MOM estimators with Lipschitz loss are
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robust to outliers and to heavy-tailed class of functions F — f%. It is also possible to obtain similar
results for regularized minmax-MOM estimators f}\é{?M

Section [1.3.2

using the sparsity equation developed in

Heavy-tailed | Heavy-tailed ) )
Robustness _ Outliers (X,)o | Outliers (Y,)o
F—f noise Y — f3(X)

Minmax MOM with @ @ @ @

Lipschitz loss

Minmax MOM with @ @ @ @

quadratic loss

Table 1.3: Summary robust properties of the minmax-MOM estimators different loss functions.

This general approach allows to construct reliable estimators when the data are corrupted and
heavy-tailed. There exist other constructions. For example, in (Loh and Wainwright, [2015; [Loh
et al, 2017) the authors proposed robust generalized penalized M-estimators. They establish error
rates for every stationary points around the oracle f>. However, they obtain results only with poly-
nomial probability and for the linear model in RP. Another line of works investigated robust versions
of the gradient descent, based on variants of the multivariate median-of-means technique (Alistarh
et al., 2018; Chen et al., 2017 [Yin et al., [2018; Prasad et al., [2018). The works (Audibert and
Catoni, 2011; Brownlees et al| 2015; Holland and Ikedal 2017) systematically use the Catoni’s ap-
proach (Catoni, 2012)) to construct robust estimators. Very recently, (Minsker and Mathieu, 2019)
presented a “hybrid” approach between the Catoni’s and the median-of-means estimators. Their
theoretical analysis is accompanied by very encouraging simulations. However, as for the minmax-
MOM estimators, there is still no available algorithm able to compute these estimators. It remains

an open question.

1.7 Summary of the contributions

Some arguments presented so far are borrowed from Chapters [2] to [6l We provide here a short

summary of the results obtained in this thesis chapter by chapter.

Chapter We introduced the homogeneity Lemma to study the empirical risk minimizer
associated with Lipschitz and convex loss function when the class F — f7 is assumed to be sub-
gaussian. Under a local Bernstein condition we derived fast rates with no assumption on the noise
Y — f5(X). We also provide precise results to know when this new local Bernstein condition is

verified. Very informly, if the distribution of the noise Y — f5(X) puts some mass around 0, then
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the local Bernstein condition is granted. This results show that the empirical risk minimizer is ro-
bust with respect to heavy-tailed noise Y — f3(X). We obtain minimax-rate-optimal results when

applying our main theorem to practical problems.

— Theorem 1.9: Robustness of ERM to heavy tailed noise

Let ¢ be a convex and Lipschitz loss function. Let (Xi,Yz‘)ie[[Ln]] be i.i.d random variable
distributed as (X,Y). Let us assume that the class F — f5 is a convex l-subgaussian class,
that the distribution of the noise Y — f5(X) is symmetric and puts some mass around 0 (see

chapter [2| for a more precise definition). Define

r*:inf{'r’>0: E sup ‘Xn:az(f—f})(Xl)‘ Scm’2}

FEFf—F5llLyp) ST 2

Then with probability larger than 1 — exp ( — cn(r*)?), any minimizer of the empirical risk fu

verifies

Ifo = frllz <7* and  R(f,) — R(fF) < c(r*)?

Then, we study theoretical properties of minmax-MOM estimators associated with Lipschitz and
convex loss function. Such estimators allow to relax the subgaussian assumption on the class 7 — fr

and the i.i.d assumption.

— Theorem 1.10: Minmax-MOM estimators with Lipschitz losses

Let F be a convex class of functions and ¢ be a Lipschitz loss function. Let Z and O be such
that Z + O = n and Dz U Dy be a partition of D = (X, Yi)ie[u,n]] into two datasets, where Dz
is composed of Z i.i.d informative data distributed as (X,Y’). Assume that the distribution of
Y — f5(X) is symmetric and puts some mass around 0 (as for the ERM) and that K > cO.
Then, with probability 1 — exp(—cK), the minmax-MOM estimator fMOM verifies

A % * K o * * K
Hfll\(/[OM _ finz(Px) < cmax ((r )2’g> and R( Il\éIOM) — R(f3) < cmax ((7, )2’ g) ’

where

2
T*:inf{r>O:VJCI,\J]2— E sup }Zai(f—f})(Xiﬂgc\Jyr?} :

n FeFN=F5llLy i) ST ey

Chapter This chapter extends the results obtained in Chapter [2| to regularized problems. We

study the estimators

£ = argmin P04+ AU (f) and  fEQM = Median(Pp, (€r—€,), -+ , P (L—£,))+X(T(f)—¥(g)) ,
feF
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when the penalization ¥ is a norm. We develop the analysis presented in Section to derive
general results for the RERM when the class 7 — f7 is subgaussian and the loss is simultaneously
convex and Lipschitz. We study the sparsity equation for many regularization norms and obtain
minimax-rate-optimal results when applying our main theorems. As for the ERM, the RERM
associated to Lipschitz loss function is robust with respect to the noise Y — fx(X).

The regularized minmax MOM estimators are studied under the same setting as the RERM except
that the i.i.d assumption is relaxed and that the class 7 — f7 is no longer assumed to be subgaussian.
Similar results are also obtained under refinement of the local Bernstein condition introduced in
Chapter

Chapter This chapter considers RERM estimators when the regularization is not necessarily a
norm. This setting covers important examples such as the elastic net regularization and the Ridge
regularization. We derive complexity-dependent bounds i.e depending on W(f5), in a setting close
to the one studied in Chapter

We also use the homogeneity Lemma to show that the subgaussian assumption of F — f7 is
not always required. We present the example of Support Vector Machine (SVM) associated with a
bounded kernel K. As explained in Section the homogeneity Lemma reduces the proof to an
upper bound of the empirical process on a bounded subspace of F'. In this situation, Talagrand’s
inequality applies without assuming that the class is subgaussian. In particular, no assumption
is necessary on the input (X;)icpi,nj. We also generalize the results for regularized minmax-MOM

when the penalization is not a norm

Chapter This chapter focuses only the ERM and it regularization counterpart. We show that
the (R)ERM is robust when O outliers may contaminate the labels. The main theorem of this
chapter is the following.

— Theorem 1.11: Robustness of (R)ERM to outliers in the labels

Let Z and O be such that Z + O = n. Let ¢ be a convex and Lipschitz loss function. Let
(Xi)iep1,n) be i.i.d random variable distributed as X and let (Y;);cpi,7; be i.i.d random variables
distributed as Y. Then with probability larger than 1 — exp ( — cn(r*)z), the minimizer of the
(regularized) empirical risk f, verifies

o=l e(r+2) and R - ru) < o007+ 2)

n

where 7* denotes the error rate in a non-contaminated setting, that is when (X;,Y);cp,n) are

1.i.d random variables.

From Theorem [1.11], as long as less than nr* outliers contaminate the labels, the performances of

the (R)ERM remain unchanged. When r* is minimax-rate-optimal, these bounds are also minimax-
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rate-optmal in a setting where O outliers corrupt only the labels. Since in Chapters [2] and |3 we
obtain minimax-rate-optimal for many regularized (or not) problems, we show that the (R)ERM is

often minimax-rate-optimal when the class F — f7 is subgaussian and O outliers corrupt the labels.

Chapter [6] Contrary to Chapters [2] 3] [4 and [5 this chapter does not focus on robustness. We
study the linear model in the Gaussian setting when the dimension p may be much larger than
the number of observations n. Let (X;, X;)icpi,n) be i.i.d random variables distributed as (X,Y)
verifying

Y=X"8"+¢ X~NOX), €~N(0,0%),

for 5* € RP. We study the interpolating estimator with minimum norm defined as
B = argmin{||8||2 : X[ B =Y i € [1,n]} .

Using localization methods, we investigate the benign overtting phenomenon in the large deviation
regime, that is when the bounds on the excess risk hold with probability 1 —exp(—cn). Localization
with respect to the Euclidean norm allows to obtain fast rates O(1/n) when the signal-to-noise ratio
is large enough. When the signal-to-noise ratio is too low, we also recover the optimal rates at a

deviation level 1 — exp(—cn), showing the optimality of our results in this setting.
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Chapter 2

Robust Statistical learning with

Lipschitz and convex loss functions

In this chapter, we obtain estimation and excess risk bounds for Empirical Risk Minimizers (ERM)
and minmax Median-Of-Means (MOM) estimators based on loss functions that are both Lipschitz
and convex. Results for the ERM are derived under weak assumptions on the outputs and sub-
gaussian assumptions on the design as in (Alquier et al., [2019)). The difference with (Alquier et al.|
2019)) is that the global Bernstein condition of this chapter is relaxed here into a local assumption.
We also obtain estimation and excess risk bounds for minmax MOM estimators under similar as-
sumptions on the output and only moment assumptions on the design. Moreover, the dataset may
also contains outliers in both inputs and outputs variables without deteriorating the performance
of the minmax MOM estimators.

Unlike alternatives based on MOM'’s principle (Lecué and Lerasle), |2019; Lugosi and Mendelson),
2016), the analysis of minmax MOM estimators is not based on the small ball assumption (SBA) of
(Koltchinskii and Mendelson, 2015). In particular, the basic example of non parametric statistics
where the learning class is the linear span of localized bases, that does not satisfy SBA (Saumard,
2018)) can now be handled. Finally, minmax MOM estimators are analysed in a setting where
the local Bernstein condition is also dropped out. It is shown to achieve excess risk bounds with

exponentially large probability under minimal assumptions insuring only the existence of all objects.
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2.1 Introduction

In this chapter, we study learning problems where the loss function is simultaneously Lipschitz and
convex. This situation happens in classical examples such as quantile, Huber and L; regression
or logistic and hinge classification (van de Geer, 2016)). As the Lipschitz property allows to make
only weak assumptions on the outputs, these losses have been quite popular in robust statistics
(Huber and Ronchetti, 2011)). Empirical risk minimizers (ERM) based on Lipschitz losses such as
the Huber loss have received recently an important attention (Zhou et al.,|2018; |Elsener and van de
Geer, 2018; |Alquier et al., [2019)).

Based on a dataset {(X;,Y;) : 4 =1,...,N} of points in X x ), a class F' of functions and a
risk function R(-) defined on F', the statistician want to estimate an oracle f* € argmin;.p R(f)
or to predict an output Y at least as good as f*(X). The risk function R(-) is often defined as the
expectation of a loss function ¢ : (f,z,y) € F x X x Y — {4(z,y) € R with respect to the unknown
distribution P of a random variable (X,Y) € X x V: R(f) = El;(X,Y). Hereafter, the risk is
assumed to have this form for a loss function £ such that, for any (f,z,y), {;(z,y) = {(f(z),y), for
some function £: Y x Y — R, where the set ) is a convex set containing all possible values of f(x).

The loss function /¢ is said Lipschitz and convex when the following assumption holds.
Assumption 2.1. There exists L > 0 such that, for anyy € Y, {(-,y) is L-Lipschitz and convex.
Many classical loss functions satisfy Assumption and we recall some of them below.

e The logistic loss defined, for any v € Y = Rand y € Y = {—1,1}, by £(u,y) = log(1 +
exp(—yu)) satisfies Assumption 2.1] with L = 1.

e The hinge loss defined, for any u € Y =R and y € Y = {~1,1}, by £(u, y) = max(1 — uy, 0)
satisfies Assumption [2.1] with L = 1.

e The Huber loss defined, for any § > 0, u,y € Y =Y =R, by

_ Ly — u)? if lu—y| <o
y—u) if Ju —y| <
Uu,y) =42 o
Sly —u|—% iflu—y| >4

satisfies Assumption [2.1| with L = 4.

e The quantile loss is defined, for any 7 € (0,1), u,y € Y =Y = R, by {(u,y) = p-(u — y)
where, for any z € R, p.(2) = 2(7 — I{z < 0}). It satisfies Assumption [2.1| with L = 1. For
7 = 1/2, the quantile loss is the L; loss.

All along the paper, the following assumption is also granted.

Assumption 2.2. The class F' is convez.



2.1. INTRODUCTION 43

When (X,Y) and the data ((X;,Y;))Y, are independent and identically distributed (i.i.d.), for
any f € F, the empirical risk Ry(f) = (1/N)S, £;(X;,Y;) is a natural estimator of R(f).
The empirical risk minimizers (ERM) (Vapnik|, 2000) obtained by minimizing f € F — Ry(f)
are expected to be close to the oracle f*. This procedure and its regularized versions have been
extensively studied in learning theory (Koltchinskii, 2011al). When the loss is both convex and
Lipschitz, results have been obtained in practice (Bach et all [2012; |Bubeckl [2015) and theory
(van de Geer, [2016). Risk bounds with exponential deviation inequalities for the ERM can be
obtained under weak assumptions on the outputs Y, but stronger assumptions on the design X.
Moreover, fast rates of convergence (T'sybakov, 2004) can only be obtained under margin type

assumptions such as the Bernstein condition (Bartlett and Mendelson), 2006a} van de Geer;, [2016)).

The Lipschitz assumption and global Bernstein conditions (that hold over the entire F' as in
(Alquier et al.l 2019)) imply boundedness in Ly-norm of the class F', see the discussion preceding
Assumption for details. This boundedness is not satisfied in linear regression with unbounded
design so the results of (Alquier et al., 2019) don’t apply to this basic example such as linear
regression with a Gaussian design. To bypass this restriction, the global condition is relaxed into a
“local” one as in (Elsener and van de Geer, |2018} van de Geer|, 2016), see Assumption below.

The main constraint in our results on ERM is the assumption on the design. This constraint can
be relaxed by considering alternative estimators based on the “median-of-means” (MOM) principle
of (Nemirovsky and Yudin) |1983; Birgé, 1984; |Jerrum et al. 1986; Alon et al., 1999) and the
minmax procedure of (Audibert and Catoni, 2011} Baraud et al., [2017). The resulting minmax
MOM estimators have been introduced in (Lecué and Lerasle, 2019) for least-squares regression as
an alternative to other MOM based procedures (Lugosi and Mendelson), 2016; [Lugosi et al., 2019a;
Lecué and Lerasle, 2017)). In the case of convex and Lipschitz loss functions, these estimators satisfy
the following properties 1) as the ERM, they are efficient under weak assumptions on the noise 2)
they achieve optimal rates of convergence under weak stochastic assumptions on the design and 3)

the rates are not downgraded by the presence of some outliers in the dataset.

These improvements of MOM estimators upon ERM are not surprising. For univariate mean
estimation, rate optimal sub-Gaussian deviation bounds can be shown under minimal L, moment
assumptions for MOM estimators (Devroye et al., 2016)) while the empirical mean needs each data to
have sub-Gaussian tails to achieve such bounds (Catoni, [2012). In least-squares regression, MOM-
based estimators (Lugosi and Mendelson, 2016} |Lugosi et al., 2019a} |Lecué and Lerasle, |2017], 2019)
inherit these properties, whereas the ERM has downgraded statistical properties under moment
assumptions (see Proposition 1.5 in (Lecué and Mendelson, 2016))). Furthermore, MOM procedures
are resistant to outliers: results hold in the “O UZ” framework of (Lecué and Lerasle, 2017} 2019),
where inliers or informative data (indexed by Z) only satisfy weak moments assumptions and the
dataset may contain outliers (indexed by O) on which no assumption is made, see Section [2.3] This

robustness, that almost comes for free from a technical point of view is another important advantage
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of MOM estimators compared to ERM in practice. Figure E| illustrates this fact, showing that
statistical performance of the standard logistic regression are strongly affected by a single corrupted
observation, while the minmax MOM estimator maintains good statistical performance even with

5% of corrupted data.

LR from Sklearn WS MOM logistic
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Figure 2.1: MOM Logistic Regression VS Logistic regression from Sklearn (p = 50 and N = 1000)

Compared to (Lugosi and Mendelson, 2016} Lecué and Lerasle, 2019), considering convex-
Lipschitz losses instead of the square loss allows to simplify simultaneously some assumptions
and the presentation of the results for MOM estimators: Lo-assumptions on the noise in (Lu-
gosi and Mendelson, 2016; Lecué and Lerasle, 2019)) can be removed and complexity parameters
driving risk of ERM and MOM estimators only involve a single stochastic linear process, see
Eq. and below. Also, contrary to the analysis in least-squares regression, the small
ball assumption (Koltchinskii and Mendelson) 2015; Mendelson, 2014)) is not required here. Recall
that this assumption states that there are absolute constants x and [ such that, for all f € F,
PlIA(X) = (X)) =& |lf = fll;,] = B. It is interesting as it involves only moments of order 1 and
2 of the functions in F'. However, it does not hold with absolute constants in classical frameworks
such as histograms, see (Saumard, [2018; |[Han and Wellner, 2017)) and Section .

Finally, minmax MOM estimators are studied in a framework where the Bernstein condition
is dropped out. In this setting, they are shown to achieve an oracle inequality with exponentially
large probability (see Section . The results are slightly weaker in this relaxed setting: the excess
risk is bounded but not the L, risk and the rates of convergence are “slow” in 1/ VN in general.
Fast rates of convergence in 1/N can still be recovered from this general result if a local Bernstein
type condition is satisfied though, see Section for details. This last result shows that minmax
MOM estimators can be safely used with Lipschitz and convex losses, assuming only that inliers

data are independent with enough finite moments to give sense to the results. To approximate

LAll figures can be reproduced from the code available at https://github.com/lecueguillaume/MOMpower
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minmax MOM estimators, an algorithm inspired from (Lecué and Lerasle, 2019; |Lecué et al. |2018)
is also proposed. Asymptotic convergence of this algorithm has been proved in (Lecué et al., |2018)
under strong assumptions, but, to the best of our knowledge, convergence rates have not been
established. Nevertheless, the simulation study presented in Section shows that it has good
robustness performances.

The paper is organized as follows. Optimal results for the ERM are presented in Section [2.2]
Minmax MOM estimators are introduced and analysed in Section under a local Bernstein
condition and in Section [2.4] without the Bernstein condition. A discussion of the main assumptions
is provided in Section 2.5 Section presents the theoretical limits of the ERM compared to
the minmax MOM estimators. Finally, Section provides a simulation study where a natural
algorithm associated to the minmax MOM estimator for logistic loss is presented. The proofs of
the main theorems are gathered in Sections [2.10.1 and [2.10.2]

Notations Let X', ) be measurable spaces and let Y denote a convex set Y O ). Let F be a class
of measurable functions f : X — ) and let (X,Y) € X x Y be arandom variable with distribution
P. Let p denote the marginal distribution of X. For any probability measure () on X x ), and any
function g € L1(Q), let Qg = [ g(z,y)dQ(z,y). Let £ : Fx X xY — R, (f,z,y) — {;(x,y) denote
a loss function measuring the error made when predicting y by f(z). It is always assumed that
there exists a function £ : J) x Y — R such that, for any (f,z,y) € F x X x Y, {(f(x),y) = {;(z,y).
Let R(f) = Ply = El¢(X,Y) for f in F denote the risk and let £; = ¢; — {4+ denote the excess
loss. If FF C Ly(P) := L; and Assumption holds, an equivalent risk can be defined even if
Y ¢ L;. Actually, for any fy € F, {; — (s, € L, so one can define R(f) = P({; — {y,). W.lo.g.
the set of risk minimizers is assumed to be reduced to a singleton argmin, . R(f) = {f*}. f* is
called the oracle as f*(X) provides the prediction of ¥ with minimal risk among functions in F.
For any f and p > 0, let ||f|z, = (P|f|P)V/?, for any r > 0, let By, = {f € F : || f|lr, < r} and
rSp, ={f € F:|fllz, =r}. For any set H for which it makes sense, H 4+ f* = {h+ f* st h € H},
H—f*={h—f*s.t h € H}. For any real numbers a, b, we write a < b when there exists a positive

constant ¢ such that a < ¢b, when a < b and b < a, we write a < b.

2.2 ERM in the sub-Gaussian framework

This section studies the ERM, improving some results from (Alquier et al.; 2019). In particular, the
global Bernstein condition in (Alquier et al.| 2019) is relaxed into a local hypothesis following (van de
Geer, [2016). All along this section, data (X;, Y;)Y, are independent and identically distributed with
common distribution P. The ERM is defined for f € F — Pyl; = (1/N) 2N, ¢,(X;,Y;) by

FERM — argmin Py, . (2.1)

fer

The results for the ERM are shown under a sub-Gaussian assumption on the class F' — I’ with
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respect to the distribution of X. This result is the benchmark for the following minmax MOM

estimators.

Definition 2.1. Let B > 1. F is called B-sub-Gaussian (with respect to X ) when for all f € F
and all A > 1

Eexp(Alf(X)I/1f]lz.) < exp(A*B*/2) .

Assumption 2.3. The class F — F is B-sub-Gaussian with respect to X, where F — F = {f1 — fo :
fi, fo € F}.

Under this sub-Gaussian assumption, statistical complexity can be measured via Gaussian mean-
widths.

Definition 2.2. Let H C L. Let (Gp)nen be the canonical centered Gaussian process indexed by H
(in particular, the covariance structure of (Gp)nem is given by (E(Gp, — Gh2)2)1/2 = (E(hi(X) — hQ(X))2)1/2
for all hy,hy € H). The Gaussian mean-width of H is w(H) = Esupycy Gi.

The complexity parameter driving the performance of fERM ig bresented in the following defi-

nition.
Definition 2.3. The complexity parameter is defined as

ro(0) > inf{r > 0: 32Lw((F — f*)NrB,) < 0r’V/N}
where L > 0 is the Lipschitz constant from Assumption [2.1]

Let A > 0. In (Bartlett and Mendelson, |2006a), the class F' is called (1, A)-Bernstein if, for
all f e F, Pﬁfc < APLy. Under Assumption , F is (1, AL*)-Bernstein if the following stronger

assumption is satisfied
If = fI7, < APL; . (2.2)

This stronger version was used, for example in (Alquier et al.; 2019) to study ERM. However, under
Assumption 2.1 Eq (2.2)) implies that

1f = fIIZ, < APLy S AL|f — f*[lz, < AL = f7llz, -

Therefore, || f — f*||z, < AL for any f € F. The class F is bounded in L?-norm, which is restrictive
as this assumption is not verified by the class of linear functions for example. To bypass this issue,

the following condition is introduced.

Assumption 2.4. There exists a constant A > 0 such that, for all f € F satisfying || f — f*|,, =
r2(1/(24)), we have || f — f*[|7, < APL;.
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In Assumption [2.4] Bernstein condition is granted in a Lg-sphere centered in f* only. Outside
of this sphere, there is no restriction on the excess loss. From the previous remark, it is clear that
we necessarily have 75(1/(24)) < AL (as long as there exists some f € F such that ||f — f*|, >
ro(1/2A)). This relaxed assumption is satisfied for many Lipschitz-convex loss functions under
moment assumptions and weak assumptions on the noise as it will be checked in Section 2.5 The

following theorem is the main result of this section.

Theorem 2.1. Grant Assumptions and fERM defined in (2.1) satisfies, with

probability larger than

1—2exp (—C%) : (2.3)
75— 1, < 7301/(24)) ond PLjsi, < 2B 2.4

where C' is an absolute constant.

Theorem is proved in Section [2.9.1] It shows deviation bounds both in L, norm and for the
excess risk, which are both minimax optimal as proved in (Alquier et al., 2019). As in (Alquier
et al., 2019), a similar result can be derived if the sub-Gaussian Assumption is replaced by a
boundedness in L., assumption. An extension of Theorem can be shown, where Assumption [2.4
is replaced by the following hypothesis: there exists x such that for all f € F'in a Ly-shpere centered
in f*, ||f — f*I75 < APLy. The case k = 1 is the most classical and its analysis contains all the
ingredients for the study of the general case with any parameter x > 1. More general Bernstein
conditions can also be considered as in (van de Geer, 2016, Chapter 7). These extensions are left
to the interested reader.

Notice that none of the assumptions 2.2 and involve the output Y directly. All
assumptions on Y are done through the oracle f*. Yet, as will become transparent in the applications
in Section [2.5] some assumptions on the distributions of Y are required to check the assumptions
of Theorem [2.1] These assumptions are not very restrictive though and Lipschitz losses have been

quite popular in robust statistics for this reason.

2.3 Minmax MOM estimators

This section presents and studies minmax MOM estimators, comparing them to ERM. We relax

the sub-Gaussian assumption on the class F' — F and the i.i.d assumption on the data (X;,Y;)N,.

2.3.1 The estimators

The framework of this section is a relaxed version of the i.i.d. setup considered in Section [2.2]
Following (Lecué and Lerasle, 2017, 2019), there exists a partition O UZ of {1,---, N} in two

subsets unknown to the statistician. No assumption is granted on the set of “outliers” (X;,Y):co-
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“Inliers”, (X;,Y;)icz, are only assumed to satisfy the following assumption. For all i € Z, (X, Y;)
has distribution P;, X; has distribution p; and for any p > 0 and any function g for which it makes

sense [|gllz, (. = (Pilgl?)'/”.

Assumption 2.5. (X;,Y;)icz are independent and, for any i € L, ||f — f*|l1, = ||f — [ £a(u) and
PL; = PLy.

Assumption holds in the i.i.d case but it covers other situations where informative data
(X, Y:)iez may have different distributions. Typically, when F' is the class of linear functions on
RY, F = {(t,-),t € R?} and (X;);ez are vectors with independent coordinates (X ;);1
Assumption is met if the coordinates (X; ;)icz have the same first and second moments for all
j=1,....,d.

Recall the definition of MOM estimators of univariate means. Let (By)g=1

77777

,,,,, Kk denote a partition of
{1,..., N} into blocks By, of equal size N/K (if N is not a multiple of K, just remove some data).
For any function f: X xY — Rand k € {1,..., K}, let Pp, f = (K/N)}_,cp f(X;,Yi). MOM

estimator is the median of these empirical means:
MOMK(f) = Med(PBlf, s ’PBKf) .

The estimator MOM g ( f ) achieves rate optimal sub-Gaussian deviation bounds, assuming only that
P f? < oo, see for example (Devroye et al.,[2016). The number K is a tuning parameter. The larger
K, the more outliers are allowed. When K =1, MOMg ( f) is the empirical mean, when K = N,
the empirical median.

Following (Lecué and Lerasle, 2019), remark that the oracle is also solution of the following
minmax problem:

f* € argmin Ply = argminsup P({; — {,) .
feF fEF geF

Minmax MOM estimators are obtained by plugging MOM estimators of the unknown expectations
P(ly — ;) in this formula:

f € argmin sup MOM (Ef — Eg) . (2.5)
feEF g€eF

The minmax MOM construction can be applied systematically as an alternative to ERM. For
instance, it yields a robust version of logistic classifiers. The minmax MOM estimator with K =1
is the ERM.

The linearity of the empirical process Py is important to use localisation technics and derive
“fast rates” of convergence for ERM (Koltchinskii, 2011b), improving “slow rates” derived with the
approach of (Vapnik, 1998), see (Tsybakov, [2004)) for details on “fast and slow rates”. The idea
of the minmax reformulation comes from (Audibert and Catoni, 2011), where this strategy allows
to overcome the lack of linearity of some alternative robust mean estimators. (Lecué and Lerasle,

2017)) introduced minmax MOM estimators to least-squares regression.
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2.3.2 Theoretical results

Setting

The assumptions required for the study of estimator are essentially those of Section except
for Assumption [2.3] which is relaxed into Assumption 2.5 Instead of Gaussian mean width, the
complexity parameter is expressed as a fixed point of local Rademacher complexities (Bartlett et al.,
2005} Boucheron et al. 2005, Bartlett et al., 2005)). Let (0;);=1,..
variables (uniformly distributed on {—1,1}), independent from (X;,Y;);er. Let

~ denote i.i.d. Rademacher random

S ailf - £)(X)

icJ

N
fg(y)Zinf{r>O,VJCI:|J|2—,E sup
2 feRs-frl,sr

<rlhf . 2o

The outputs do not appear in the complexity parameter. This is an interesting feature of

Lipschitz losses. It is necessary to adapt the Bernstein assumption to this framework.

Assumption 2.6. There exists a constant A > 0 such that for all f € F if |f — f*||7, = Ck, then
If = N7, < APLy where

K
Cr, = max (f§(1 /(BT5AL)), 864A2L2N> : (2.7)

Assumptions and have a similar flavor as both require the Bernstein condition in a Lo-
sphere centered in f* with radius given by the rate of convergence of the associated estimator (see
Theorems [2.1] and 2.2). For K < (73(575/(AL))N)/(846A2L?) the sphere {f € F : ||f — f*||1, =
V/Cr,} is a Ly-sphere centered in f* of radius 7(575/(AL)) which can be of order 1/v/N (see
Section . As a consequence, Assumptionholds in examples where the small ball assumption
does not (see discussion after Assumption [2.9).

Main results

We are now in position to state the main result regarding the statistical properties of estimator (2.5))

under a local Bernstein condition.

Theorem 2.2. Grant Assumptions and [2.6] and assume that |O| < 3N/7. Let v =

1/(575AL) and K € [7|0|/3,N|. The minmaz MOM estimator f defined in satisfies, with
probability at least

1 — exp(—K/2016), (2.8)

If = £, < Ck,r and PL; < S%CK’T . (2.9)

Suppose that K = 72(y)N, which is possible as long as |O| < N72(y). The deviation bound is

then of order 73(y) and the probability estimate 1 —exp(—N72(y)/2016). Therefore, minmax MOM

estimators achieve the same statistical bound with the same deviation as the ERM as long as 73(7)

and r9(0) are of the same order. Using generic chaining (Talagrand, 2014), this comparison is true
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under Assumption . It can also be shown under weaker moment assumption, see (Mendelson),
2017) or the example of Section [2.3.2]

When 72(7y) < r9(), the bounds are rate optimal as shown in (Alquier et al., 2019). This is why
these bounds are called rate optimal sub-Gaussian deviation bounds. While these hold for ERM in
the i.i.d. setup with sub-Gaussian design in the absence of outliers (see Theorem , they hold for
minmax MOM estimators in a setup where inliers may not be i.i.d., nor have sub-Gaussian design
and up to N73(7) outliers may have contaminated the dataset.

This section is concluded by presenting an estimator achieving simultaneously for all K.
Forall K € {1,...,N} and f € F, define Tx(f) = sup,cp MOMg (¢; — ;) and let

Rix ={ge€F :Tklg) <(1/34)Ck,} . (2.10)

Now, building on the Lepskii’s method, define a data-driven number of blocks

N
K:inf<Ke{1,...,N}:ﬂRﬂé®> (2.11)
J=K
and let f be such that
N
fe() R - (2.12)
J=K

Theorem 2.3. Grant Assumptions and [2.6] and assume that |O| < 3N/7. Let v =
1/(575AL). The estimator f defined in ([2.12) is such that for all K € [7|01/3, N], with probability

at least
1 —4exp(—K/2016),

I1F ~ £, < Cxy and PL; < -Crcy

Theorem [2.3|states that f achieves the results of Theorem simultaneously for all K > 7]|0|/3.
This extension is useful as the number |O| of outliers is typically unknown in practice. However,
contrary to f , the estimator f requires the knowledge of A and 7 (7). These parameters allow to build
confidence regions for f*, which is necessary to apply Lepski’s method. Similar limitations appear in
least-squares regression (Lecué and Lerasle, 2019) and even in the basic problem of univariate mean
estimation. In this simpler problem, it can be shown that one can build sub-Gaussian estimators
depending on the confidence level (through K') under only a second moment assumption. On the
other hand, to build estimators achieving the same risk bounds simultaneously for all K, more
informations on the distribution of the data are required, see (Devroye et al., 2016, Theorem 3.2).
In particular, the knowledge of the variance, which allows to build confidence intervals for the
unknown univariate mean, is sufficient. The necessity of extra-information to obtain adaptivity

with respect to K is therefore not surprising here.
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Some basic examples

The following example illustrates the optimality of the rates provided in Theorem even under a

simple Ls-moment assumption.

Lemma 2.1 ((Koltchinskii, 2006)). In the O UZ framework with F = {(t,-) : t € R}, we have
73(y) < Rank(X)/(2v2N), where ¥ = E[X XT] is the d x d covariance matriz of X.

The proof of Lemma [2.1] is recalled in Section for the sake of completeness. Lemma [2.1
grants only the existence of a second moment for X even though the rate obtained Rank(3) /(272N
is the same as the one we would get under a sub-Gaussian assumption given that r5(f) ~ Rank(X)/(26%N).
Moreover, Section [2.5 shows that Assumptions and are satisfied when F' = {(t,-) : t € R%}
and X is a vector with i.i.d. entries having only a few finite moments. Theorem applies therefore
in this setting and the Minmax MOM estimator achieves the optimal fast rate of convergence
Rank(X)/N. This shows that when the model is the entire space R?, the results for the ERM from
Theorem obtained under a sub-Gaussian assumption is the same as the one for the minmax
MOM from Theorem under only weak moment assumption.

However, Lemma does not describe a typical situation. Having 73(7) of the same order as
r3(0) under only a second moment assumption is mainly happening on large models such as the
entire space R?. For smaller size models such as the B¢-ball (the unit ball of the ¢{-norm), the
picture is different: 73(y) should be bigger than 73(6) unless X has enough moment. To make this
statement simple let us consider the case N = 1. In that case, we have 73() ~ \/logd. Let us now
describe 72(v) under various moment assumptions on X to see when 73(7) compares with /log d.

Let X = (z;)7_, be a random vector. It follows from Equation (3.1) in (Mendelson et al., 2007)
that

rE (Z;l:l x?) i if r < 1/\/c_l
E sup |<t,X>| < F (Zfl(ﬁ)g>1/2 . 1/\/8 <r<i

teB{NrBY J
Emax;_1, 4|7, if r > 1.
where k = [1/r*] and 2} > ... > z} is a non-increasing rearrangement of the absolute values of
the coordinates x;,7 = 1,...,d of X. Assume that xy,...,z4 are i.i.d. distributed like z such that
Ez = 0 and Ez? = 1. Assume that z has 2p moments, for p > 1 and let ¢y be such that E[z?] < ¢.

Then, using Jensen’s inequality, we obtain

k 1/2 1/(2p) 1/(2p)
ier]) ()= () s
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Hence,

rvd if r < 1/v/d
E sup [(t,X)| S (cdr)V/®) if1/V/d<r<1
d r d
teB{nrBY (Cod)l/(2p) it r>1.

Assume that f* = <t*, ->, with ¢t* = 0. Then,

72(y) = inf {7" >0:E sup [{t,X)| < »yﬁ} < (cod) /) ) /7

teB{nrBg

In particular,

Ta(y) <1 when p > log(cod),
1 <ry(y) SVlogd when log(cod)/loglogd < p < log(cod),
Fa(y) =< dM/ ) when p < log(cod)/ loglog d.

Let us now show that these estimates are sharp by considering = = €(1+ Rn) where € is a Rademacher
variable, 77 is a Bernouilli variable (independent of ¢) with mean § = 1/d and R = d"/*?). We have
Ex = 0 and E2? = 1 + R§ < 2 because R0 < 1 when p > 1. Let z; = ¢;(1+ Rn;),j = 1,...,d be
i.i.d. copies of z. We have

E max |z;] > (1+ R)P | max |z;] > 1+ R
j=1,...d j=1,....d

E sup [{t,X)|=FE max |z;| >
teBinrBg J=1d
and so 72(y) = d/(P). As a consequence, under only a Ly, moment assumption one cannot have
72(v) better than d/ (P,
As a consequence, 75(7) can be much larger than r9(f) when z has less than log(cod)/ log(log d)
moments, for instance, 72(7) can be of the order of d'/® when z has only 2 moments. This picture
is different from the one given by Lemma where we were able to get equivalence between 75(7)

and r9(0) only under a second moment assumption.

2.4 Relaxing the Bernstein condition

This section shows that minmax MOM estimators satisfy sharp oracle inequalities with exponen-
tially large deviation under minimal stochastic assumptions insuring the existence of all objects.
These results are slightly weaker than those of the previous section: the L, risk is not controlled

and only slow rates of convergence hold in this relaxed setting. However, the bounds are sufficiently
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precise to imply fast rates of convergence for the excess risk as in Theorems if a slightly stronger
Bernstein condition holds.
Given that data may not have the same distribution as (X,Y), the following relaxed version of

Assumption [2.5|is introduced.

Assumption 2.7. (X;,Y;);cr are independent and for alli € Z, (X;,Y;) has distribution P;, X; has
distribution p;. For any i € T, F C Lo(w;) and P,Ly = PLy for all f € F.

When Assumption does not necessary hold, the localization argument has to be modified.
Instead of the Lo-norm, the excess risk f € F' — PLy is used to define neighborhoods around f*.
The associated complexity is then defined for all v > 0 and K € {1,--- , N} by

To(7y) > inf {7’ > 0 : max (@, \/%VK(@ < 7‘2} (2.13)
where

E(ry=sup E sup
JCT:|J|>N/2  feF:PL;<r?

K
and Vi (r) = max su VYarp (L — .
K =max sy Vorn (L)

There are two important differences between 75(y) on one side and r5(6) in Definition [2.2] or 75(7)
in (2.6) on the other side. The first one is the extra variance term Vi (r). Under the Bernstein

condition, this term is negligible in front of the “expectation term” E(r) see (Bartlett and Mendel-

b

o el = (%)

son), 2006a)). In the general setting considered here, the variance term is handled in the complexity
parameter. The second important consequence is that 75 is a fixed point of the complexity of F
localized around f* with respect to the excess risk rather than with respect to the Lo-norm. An
important consequence is that this quantity is harder to compute in practical examples. As a

consequence, the results of this section are more of theoretical importance.

Theorem 2.4. Grant Assumptions [2.1] and assume that |O| < 3N/7. Let v = 1/(768L)
and K € [7|/0|/3,N]. The minmaz MOM estimator f defined in (2.5)) satisfies, with probability at
least 1 — exp(—K/2016), PL; < 75(7).

Recall that Assumptions [2.1] and are only meaning that the loss function is convex and
Lipschitz and that the class F' is convex. Assumption says that inliers are independent and
define the same excess risk as (X,Y) over F. In particular, Theorem holds, as Theorem ,
without assumptions on the outliers (X;,Y;);co and with weak assumptions on the outputs (Y;);ez
of the inliers (we remrak that excess loss function f — PL; is well-defined under no assumption
onY —even if Y ¢ Ly — because |Ls| < L|f — f*|). Moreover, the excess risk bound holds

with exponentially large probability without assuming sub-Gaussian design, a small ball hypothesis
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or a Bernstein condition. This generality can be achieved by combining MOM estimators with
convex-Lipschitz loss functions.
The following result discuss relationships between Theorems[2.2]and Introduce the following

modification of the Bernstein condition.

Assumption 2.8. Let v = 1/(768L). There exists a constant A > 0 such that for all f € F if
PLy = Cy, then || f — f*||7, < APLy where, for 75(7y) defined in (2.6),

, 72(v/A) 1536 ALK
CKW:maX(Q(A/ ), N )

Assumption [2.8]is slightly stronger than Assumption [2.4] since the Lo-metric to define the sphere
is replaced by the excess risk metric. If Assumption holds then Theorem implies the same
statistical bounds for (2.5)) as Theorem up to constants, as shown by the following result.

Theorem 2.5. Grant Assumptions and assume that |O| < 3N/7. Assume that the
local Bernstein condition Assumption holds. Let v = 1/(768L) and K € [7|O|/3,N]. The
minmax MOM estimatorf defined in (2.5)) satisfies, with probability at least 1 — exp(—K/2016),

|- r

1536 L2A’K F2(v/A) 1536L2AK
< max (fg('y/A), T) and PL; < max (TZ(ZX/ ), N ) .

2
Lo

Proof. First, Vi (r) < LVi(r) for allr > 0 where Vi (r) = /K/N maxiez subsep.pr, < |1f = [l 1000
Moreover, r — E(r)/r? and r — V}.(r)/r? are non-increasing, therefore by Assumption [2.8/and the
definition of 79(y), Vi (r),

1 (F(y/A) _ 72(v/A) , AK\ _ 1536A2LK
— < —_— <
7E( i) <4 and V1536V ( VIS36L\/ ) < ——

Hence, 73(7y) < max(73(v/A)/A, 1536 L>A(K/N)). m

2.5 Bernstein’s assumption

This section shows that the local Bernstein condition holds for various loss functions and design
X. In Assumption and , the comparizon between PLy and || f — f*||7, is only required on
a Lo-sphere. In this section, we prove that the local Bernstein assumption can be verified over the
entire Lo-ball and not only on the sphere under mild moment conditions. The class F' — {f*} is

assumed to satisfy a “ Lo, ./Ls-norm equivalence assumption”, for € > 0.

Assumption 2.9. Let ¢ > 0. There exists C' > 0 such that for all f € F, ||f — f*|1.. <
N = Fr Iz
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Assumption is a “La,./Ly” norm equivalence assumption over F' — {f*}. A “L,/Ly” norm
equivalence assumption over F' — {f*} has been used for the study of MOM estimators (see (Lu-
gosi and Mendelson, 2016)). Examples of distributions satisfying Assumption can be found in
(Mendelson, 2014}, 2015)).

There are situations where the constant C’ depends on the dimension d of the model. In that
case, the results in (Lugosi and Mendelson, 2016; |Lecué and Lerasle, [2019) provide sub-optimal
statistical upper bounds. For instance, if X is uniformly distributed on [0, 1] and F' = {ijl ajly; :
(a;)_, € R?} where Iy, is the indicator of A; = [(j —1)/d, j/d] then for all f € F, || f — .. <
d=/ 2 || f — f*||,, so O = d¥/4F29) This dependence with respect to the dimension d is inevitable.
For instance, in (Lugosi and Mendelson, [2016; Lecué and Lerasle, 2019)), a L,/ Ly norm equivalence
is required. In this case, C’ = d"/* which ultimately yields sub-optimal rates in this example. On
the other hand, as will become clear in this section, the rates given in Theorem or Theorem
are not deteriorated in this example. This improvement is possible since the Bernstein condition is

only required in a neighborhood of f*.

2.5.1 Quantile loss

The proof is based on (Elsener and van de Geer} 2018, Lemma 2.2) and is postponed to Sec-
tion [2.10.2l Recall that {f(z,y) = (y — f(2))(7 — I{y — f(x) <0}).

Assumption 2.10. Let C’ be the constant defined in Assumption |2.9. There exist o > 0 and
r > 0 such that, for all v € X and for all z in R such that |z — f*(x)| < r(v/20")+)/e we have

fyix=2(2) > a, where fy|x—s is the conditional density function of Y given X = x.

Theorem 2.6. Grant Assumptions (with constant C') and (with parameter r and ).
Then, for all f € F satisfying || f — f*|l, < v, [|f = |7, < (4/a)PLy.

Consider the example from Section [2.3.2) assume that K < Rank(X) and let r? = Ck, =
72(y) < Rank(X)/(272N). If C" = d°/+29) Assumption holds for r and an associated o 2 1
as long as d'/2\/Rank(X)/N < 1 and, for all z € X and for all z in R such that |z — f*(z)| < 1,
fyix=s(z) 2 1. As Rank(X) < d, the first condition reduces to N 2 d?. In this situation, the rates
given in Theorems and are still Rank(X)/N. This gives a partial answer, in our setting, to

the issue raised in (Saumard, 2018) regarding results based on the small ball method.

2.5.2 Huber Loss

Consider the Huber loss function defined, for all f € F',x € X andy € R, by {4(z,y) = pu(y— f(x))
where pg(t) = t2/2if |t| < § and pg(t) = 6|t| — §?/2 otherwise. Introduce the following assumption.

Assumption 2.11. Let C" be the constant defined in Assumption[2.9. There exist a > 0 and r > 0
such that for all v € X and all z in R such that |z — f*(z)| < (vV20")*9/er, Fyix_o(z + 0) —

Fy|x=¢(2 — 0) > a, where Fy|x—, is the conditional cumulative function of Y given X = x.
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Under this assumption and a “Ly,./Ls” assumption, the local Bernstein condition is proved to
be satisfied in the following result whose proof is postponed to Section [2.10.2

Theorem 2.7. Grant Assumptions (with constant C') and (with parameter r and ).
Then, for all f € F satisfying || f — f*||1, < r, there exists a > 0 (given by Assumption such
that | = J*I2, < (4/a)PL;.

2.5.3 Logistic classification

In this section we consider the logistic loss function.

Assumption 2.12. There exists ¢y > 0 such that

1

P XON < ) 21— ey

where C' is defined in Assumption [2.9

The following result is proved in Section [2.10.2

Theorem 2.8. Grant Assumptions and [2.19. Then, for all r > 0 and all f € F such that
1f =l <7,

670077“(20’)(2'*'6)/6 ,
PLy > 2(1+6c0+7"(20’)<2+6>/6)2||f_f Iz, -

The proof is postponed to Section [2.10.2] As for the Huber Loss and the Hinge Loss, the rates
of convergence are not deteriorated when C’ may depend on the dimension as long as r x (C")(2+¢)/¢

is smaller than some absolute constant.

2.5.4 Hinge loss

In this section, we show that the local Bernstein condition holds for various design X for the Hinge
loss function. We obtain the result under the assumption that the oracle f* is actually the Bayes
rules which is the function minimizing the risk f +— R(f) over all measurable functions from X" to
R. Recall that, under this assumption, f*(x) = sign(2n(z) — 1) where n(X) = P(Y = 1|X). In
that case, the Bernstein condition (see (Bartlett and Mendelson, 2006al)) coincides with the margin
assumption (see (Tsybakov, 2004; Mammen and Tsybakov, 1999)).

Assumption 2.13. Let C' be the constant defined in Assumption [2.9 There exist « > 0 and
0 <r < (V20" "+ such that for all x € X, for all z € R, |z — f*(z)| < (vV2C")*Fe)/ep

min (n(az‘), 1 —n(x), |1 - 277(:c)|) > .

Assumption [2.13|is also local and has the same flavor as Assumptions and [2.11]
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Theorem 2.9. Grant Assumptions (with constant C') and (with parameter r and o).
Assume that the oracle f* is the Bayes estimator i.e. f*(x) = sign(2n(x) — 1) for allx € X. Then,
for all f € F such that ||f — f*||, <7, || f — f*||7, < 2PL;y.

The proof is postponed to Section [2.10.2]

2.6 Comparison between ERM and minmax MOM

In this section, we show that robustness properties with respect to heavy-tailed data and to outliers
of the minmax MOM estimator in Theorem [2.2|cannot be achieved by the ERM. We prove two lower
bounds on the statistical risk of ERM. First, we show that ERM is not robust to contamination in
the design X and second that ERM cannot achieve the optimal rate with a sub-Gaussian deviation
under only moment assumptions.

We first show the absence of robustness of ERM w.r.t. contamination by even a single in-
put variable. We consider the absolute loss function of linear functionals (z,y) = |y — (z,t)|.
Let Xi,..., Xy denote i.i.d. Gaussian vectors, and suppose that there exists ¢* such that Y¥; =
<X,~,t*>,i =1,...,N. Assume that a vector v € R? was added to X; (and that this is the only
corrupted data). Hence, we are given the dataset (X; + v,Y7), (X, Y2), -+, (Xu,Yn). Consider
the ERM constructed on this dataset i.e tE#8M ¢ argmin, ga Pn{; where Pyl = (1/N)|Y; — <X1 +
v, t)| + (1/N) SV, - (X;,t)]. In this context, the following lower bound holds.

Proposition 2.1. There exist absolute constants ¢y and co such that the following holds. If the
contamination vector v satisfies |(v,t*)| > (1/2) |||l [|t*[|5, with |[v]l, > 2N, then with probability
at least 1 — 4dexp(—coN), ||[£PFM — t*H2 > ||, /4.

When N = d, from Theorem with K =< d, minmax MOM estimators yields, with probability
at least 1 — 2exp(—cd), ||{M9Y —t*||, < d/N on the same dataset as the one used by ERM in
Proposition If [t*]] = 1 then the ERM is suboptimal compared with the minmax MOM
estimator.

Proof. To show that t£8M is outside B = By(t*, (1/4) ||[t*]l,) = {t € R? : [t —t*, <
(1/4) |It*]|,}, it is enough to show that Py{y is smaller than the smallest value of t — Py{; over B.

It follows from Gaussian concentration that, with probability at least 1 — exp(—cyN),

1 & 3 /2
Pyly = — Xi, ) < 24/ 21 2.14
o = 5 o) < 3y 2 e, 21

Let us now bound from bellow the empirical loss function ¢ — Py/; uniformly over all ¢ in B.
First,

{0, )1 = [ )] = [{vst = )] = Nlolly (18711, /2 = 1t = £7110) = vl 1711, /4. (2.15)
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Then, it follows from Borell-TIS inequality (see Theorem 7.1 in (Ledoux, 2001) or pages 56-57 in
(Ledoux and Talagrand, 2013)) that with probability at least 1 —2exp(—c1N), || X1]l, < E || X4, +
V2e1N < ¢35/ N +d. Therefore, P(€2;) > 1 — 2exp(—c;N), where

QO ={vteR? [Xi,t—t") <csVN+d|t—t*,} .

On Q, we have for all ¢ € B that [(X1,t* — )] < csv/N +d|[t —t*|, < (es/)VN +d |t
Therefore, using (2.15)) and |jv]|, > c2N for a large enough constant c,,

1 . 1 & . 1 1 .
PN€t=N|<X17t —t>—<U7t>|+N;|<Xi,t —t>|ZN|<U7t>|—N|<X1,t — )]

1 es 1l 3\/5
> — |, — > /= |It7l, - 2.16
> o Wl el = 202 > 20 2 el (216)

It follows from Proposition that ERM is not consistant when there is even a single outlier
among the X;. By comparison, the minmax MOM has optimal performance even when the dataset
has been corrupted by up to d outliers when N 2 d. This shows a first advantage of the minmax
MOM approach.

Now, we prove a second advantage of the minmax MOM over the ERM by considering heavy-
tailed design. We also consider the absolute L;-loss function as in the previous example and suppose
that data are generated from a linear model in dimension d = 1: Y = Xt* 4+ ( where X and ( are
independent mean zero random variables and t* € R (we choose d = 1 so that we have access to
a canonical definition of median which simplifies the proof). Our aim is to show that if the design
X has only a second moment then the ERM ##%#M cannot achieve the optimal rate /z/N with a
sub-Gaussian deviation that is 1 — exp(—cox) as does the minmax MOM for all = € [1, N].

Proposition 2.2. Let N > 8000 and 10 < x < N/800. There exist X and { two symmetric
and independent random variables such that EX? € [1,16], EC? < 52% and, for any t* € R and
Y = Xt*+(, we have {t*} = argmin,.g E|Y — Xt|. Let (X;,Y;)N, be N i.i.d. copies of (X,Y) such
that Y = Xt* + ¢ for some t* € R. Let t¥8M ¢ argmin, g Zf\il Y; — Xit|. Then, with probability
at least 3/(5x),

VEIGC @R — ))2) > (1/5)/a]N |

Proof. Let ¢’ = (1/8)y/z/(2N) and let ¢ be uniformly distributed over [~z — 1/2 + ¢, —2] U
(=", 8| U [x,x+ 1/2 — §']. Let € denote a Rademacher variable, let 7 be a Bernoulli variable with
parameter § = 1/(zN) and R = 4/v/5 = 4/xN. We assume that ¢, e and 7 are independent and
let X = ¢(1+ Rn). Let t* € R and let Dy = (X;,Y;)Y, be a dataset of N i.i.d. copies of (X,Y),
where Y = Xt* + (.

Since the median of ( is 0, for all u € R, E|u—(| > E|(| with equality iff u = 0. As a consequence,
for all t € R,E|Y — Xt| = ExE(|¢ — X (¢t —t)| > E|(| and the only minimizer of t € R — E|Y — X{|
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is t*. In other words, t* is the oracle. For all £ € R,
E[(X(t —t%)?] = E[X?|(t — t*)* = (1 + 2R6 + R*§)(t — t*)* .

Since R%6 = 16 and 2R6 < 4/8/100 < 1, we have (t — t*)? < E(X(t — t*))? < 18(¢ — t*)?, that is,
the L?(p)-norm is equivalent to the absolute value.

Observe that t#8M — t* is solution of the minimization problem

Gi
- —u

N
PR 1) € argmin 3 |X,
( ) € argmin Zl | X X

u€R

= argmin E[|WW — u||Dy] .
u€eR

Here, defining (] = €;(;,i € [N], W is a random variable such that

G _
P{W—m“ﬂ -

| X
-~ -
Zi:l ‘Xz,

Notice that, almost surely, all ¢!/|X;| are different. In particular, [t"FM — t*| is the absolute value
of the empirical median [Median(1W)|. Therefore, [{#FM — ¢*| > ¢;\/x/N when the median of
W does not belong to (—c1y/2/N,c1\/x/N). This holds when P[W < —c;/x/N|Dy] > 1/2 or
P[W > ¢14/x/N|Dy] > 1/2. Introduce the following sets

I« . ={ie€e[N]: (< -z}, Iy :={i€[N]:|¢]| <} and Is, :={i € [N]: (] >z} .
Define also the following events
Qo= {Is| S V22N,  |llcal — || < V22N }
O ={viely:np,=0and |[{i € [N]:np; =1} =1} .

!

By Hoeffding’s inequality (see Chapter 2 in (Boucheron et al., 2013)), as (¢/)Y, is a family of i.i.d.
random variables distributed like (;, with probability at least 1 — exp(—z/4),

N
N N
Iy = Y 1(G) < &) < NP < 8]+ 5 = 20N + 1/ < V2N
1=1

Since P[¢] < —z] = P[(] > z], I(¢] < —x) — I((] > x) are independent, centered random variables
taking values in [—1, 1]. By Hoeffding’s inequality, with probability at least 1 — 2 exp(—z/2),

[I<_s] — Isa]] = < v2zN.

Using a union bound, we have P[] > 1 — 2exp(—z/2) — exp(—z/4) > 1 — 1/(10x) when = > 10.

Since the (/’s and the 7,;’s are independent, on the event €2y, we have

2v/2 1

>1

P[Vi € Iy : m; = 0|Dn] = (1 — )Tl > (1 — §)V>*N > 1 - 26V/22N =1 — -
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The last inequality holds since x < N/800. Moreover,

1-2/x
-

P[{i € [N]:nm; =1} =1 = N6(1 = &)V ' >

When z > 10, this implies
4
iV m=1}=1]>+
Therefore, on the event Qg, P[Q;|Dy] > 7/(10z) and so

P N ] = E[1o,E[10, [Dx] > % (1 _ ﬁ) > 3/(52) .

We want to show that |Median(W)| > ¢14/2/N on the event Qy N €, for some well-chosen
constant ¢; > 0. We have P[WW < —¢;\/x/N|Dy] > 1/2 if and only if

(G L
;[ <|Xi| = _Cl\/x/_N> [Xi] = §;|X¢! :

In particular, if

N N
Sz g S Xl 31K 5 YUK (2.17)
i€l _, i=1 i€l5, i=1

then the median of W takes value in {(]/|X;| : i € I<_,}, resp. in {(]/|X;| : i € Is,}. Since, for all
i€ lc 0, G/|Xi] < —2/(1+ R) < —¢" and for all i € Is,, (/| Xi| > z/(1 4+ R) > ¢, in these cases,
[Median(W)| > z/(1+ R) = z/(1 + 4VxN) > (1/5)\/x/N. Since [{PFM — *| = [Median(W)|, the
proof is finished if is proved.

Let us now prove that holds on the event 2o N €. On this event, only one 7; equals to 1.
Therefore only one | X;| equals to 1 + R and all the others equal 1. Moreover, n; = 0 for all i € I.
Therefore, if i* € [N] denotes the only index such that 7« = 1, then either i* € I«_, or i* € I5,. If
1" € I<_y, on Qo N Oy,

N
> IXi| = |I<g| -1+ (14R) = |I<_,|[+4VzN > |IZ;E|—\/T+|Iy|—\/2xN+4\/xN > Iy |41y -

iGIS_m

Moreover, all the | X;| equal 1 when i € I, U Iy. Therefore, [I>.|+ |Is| = > ;e op, [Xi|. Overall,
Diero, 1 Xil > Ziel>xul(;/ | Xi| which is equivalent to >, |Xi| > (1/2) Zfil | X;|. Likewise, if
i* € I, then > X, > (1/2) 2, | X;|. Therefore, on the event Qo N, (2.17) holds. n

i€ls,

Proposition shows that the distance between the ERM and t* is larger than (1/5)/z/N
with probability at least 3/(5z). This probability is larger than 1 — exp(—x/2016) for large values
of z, which shows that the ERM does not have sub-Gaussian deviations. Let us now show that,
using the same data and a number of blocks K = z (or using the adaptive estimator ), the
minmax MOM estimators achieve the rate y/z/N with probability at least 1 — exp(—2/2016). This
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will show a second advantage of minmax MOM estimators compared with ERM for heavy-tailed
designs.

To apply Theorem (or Theorem for the adaptive estimator), we show that the local
Bernstein condition is satisfied for the example of Proposition and compute the complexity

parameter 75(y). We have

N

i=1
al i al A\ f /2N
E (Z O‘i€i> + R’E (Z aiemi) \/N + RN =r
i=1 1=1

As a consequence, To(y) = (1/7)v/2/(17N) satisfies (2.6). We now prove Assumption in this
particular example. Let K € [N] be such that K > 2(575)/(17 x 865) so that, for Ck . is defined

in (2.7) with L = 1 and A defined later,

E sup
teRE[(X (t—t*))2]<r?

" _E
VEX?

2(575)% 865K\  A865K
Crr max( 17N ° N ) N

Let t € R be such that E[(X (¢t — t*))?] = Ck,. We have to show that PL, > AE[(X (¢t — t*))?]
for some well chosen A and PL; = E[|Y — Xt| — |Y — Xt*|]. It follows from that PL, =
Elg(X, Xt) — g(X, Xt*)] where g : (z,a) € R? = [1,5,(1 — Fy|x—(y))dy + (1/2)a and Fy|x_, is
the cdf of Y given X = x. Therefore, if we denote by F' the cdf of (, we have

Xt* 1-46 0
Pﬁt:E/ (1= Fyix=x@)dy =—— [ (1-Fly dy+—/ 1-F

Xt 2 t—t*

5[ Ry [ - P

14+R)(t—t*) (I+R)(t*—1)

Let us choose K such that \/Ck, < VEX2§' (which holds for instance when 86542K < 17x/128).
In that case, |t —t*| < 6" and so (1 — F(y)) = (1/2 —y) for all y € [—|t — t*|,|t — t*|]. We therefore

have

1-0 ([° 1-4 ([° 1—6)(t —t)?
L0 rayay+ 20 [ - Fyay = LD
2 t—t* 2 et 2
Moreover, since (14 R)|t — t*| = (1 + 4v2N)/Ck,/EX2 < 5vVaN§ = 52/(8v/2), we have
0 /0 5 [0 ~10z6 -5
— 1—F(y))dy + —/ 1—F(y))dy > .
2 (1+R)(t—t*)( ) 2 (1+R)(t*—t)( ) 8v/2 4\/§N

Assume that (1/16)?865K > 18+ 40/v/2, so [t — t*| > Ck,/18 > 40/(v/2N). Then, we have
PL, > (1=06)(t—1t)%/2—5/(4V2N) > (t — t")?/16 .

For A =1/(16 x 18), this yields PL; > AE[X (t — ¢*)?], which concludes the proof of the Berntein’s

assumption.
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2.7 Simulation study

This section provides a short simulation study that illustrates our theoretical findings for the min-
max MOM estimators. Let us consider the following setup: X = (&, -+ ,&), where (§)%, are
independent and identically distributed, with & ~ T (5), and

PY =1|X)\ _ .
log (P(Y: —1|X)) = <X,t >+6

where € ~ LN(0,1). Let (X;,Y;)Y, be i.i.d with the same distribution as (X,Y). We the study the

minmax MOM estimator defined as:

"MOM

ty € argminsup MOMg (4 — 6;) . (2.18)

teRP fcRP

Following (Lecué and Lerasle, 2019), a gradient ascent-descent step is performed on the empirical
incremental risk (t,f) — P, (¢; — ¢;) constructed on the block By of data realizing the median
of the empirical incremental risk. Initial points ¢, € R? and ¢, € R? are taken at random. In
logistic regression, the step sizes  and 7 are usually chosen equal to || XX ||,,/4N, where X is the
N x d matrix with row vectors equal to X',---, X and || - ||op denotes the operator norm. In a
corrupted environment, this choice might lead to disastrous performance. This is why 7 and 7 are
computed at each iteration using only data in the median block: let By denote the median block
at the current step, then one chooses n =17 = |]X(k)X(Tk)H0p/4]Bk| where X is the | By| x p matrix
with rows given by X for i € By. In practice, K is chosen by robust cross-validation choice as in
(Lecué and Leraslel 2019).

In a first approach and according to our theoretical results, the blocks are chosen at the beginning
of the algorithm. As illustrated in Figure[2.2] this first strategy has some limitations. To understand

the problem, for all k =1,..., K, let C} denote the following set
Cr = {t € R: Pg {, = Median { Py, {,, ..., Pp, 0} } .

If the minimum of ¢t — Pp, ¢, lies in C}, the algorithm typically converges to this minimum if one
iteration enters Cj. As a consequence, when the minmax MOM estimator lies in another
cell, the algorithm does not converge to this estimator.

To bypass this issue, the partition is changed at every ascent/descent steps of the algorithm, it
is chosen uniformly at random among all equipartition of the dataset. This alternative algorithm
is described in Algorithm [I] In practice, changing the partition seems to widely accelerate the
convergence (see Figure [2.2)).

Simulation results are gathered in Figure In these simulations, there is no outlier, N =
1000 and d = 100 with (X;, ;)% i.i.d with the same distribution as (X,Y). Minmax MOM
estimators are compared with the Logistic Regression algorithm from the scikit-learn library
of (Pedregosa et al., [2011)).
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Input: The number of block K, initial points ¢y and %, in R? and the stopping criterion ¢ > 0
Output: An estimator of t*

while [|t; — ;]2 > € do

2 Split the data into K disjoint blocks (Bj)kef1,. k3 of equal sizes chosen at random:
BiU---UBg={1,--- ,N}.

3 Find k € [K] such that MOM g/, = Pp, {4,.

4 Compute n =7 = HX%X(,@HOP/ALN.

5 Update t;11 =t; — %Vt(PBk&)ﬁ:ti and t; 1, =t; —

6 end

[y

Vi(Pp, L) =,

1
7

Algorithm 1: Descent-ascent gradient method with blocks of data chosen at random at every

steps.

The upper pictures compare performance of MOM ascent/descent algorithms with fixed and
changing blocks. These pictures give an example where the fixed block algorithm is stuck into local
minima and another one where it does not converge. In both cases, the changing blocks version

converges to t*.

Running times of logistic regression (LR) and its MOM version (MOM LR) are compared in the
lower picture of Figure in a dataset free from outliers. LR and MOM LR are coded with the
same algorithm in this example, meaning that MOM gradient descent-ascent and simple gradient
descent are performed with the same descent algorithm. As illustrated in Figure 2.2 running each
step of the gradient descent on one block only and not on the whole dataset accelerates the running

time. The larger the dataset, the bigger the benefit is expected.

The resistance to outliers of logistic regression and its minmax MOM alternative are depicted in
Figure in the introduction. We added an increasing number of outliers to the dataset. Outliers
{(X;,Y;),i € O} in this simulation are such that X; ~ LN(0,5) and Y; = —sign((X;,t) + ¢;), with
e; ~ € as above. Figure [2.1] shows that logistic classification is mislead by a single outlier while
MOM version maintains reasonable performance with up to 50 outliers (i.e 5% of the database is

corrupted).

A byproduct of Algorithm [I]is an outlier detection algorithm. Each data receives a score equal
to the number of times it is selected in a median block in the random choice of block version of
the algorithm. The first iterations may be misleading: before convergence, the empirical loss at
the current point may not reveal the centrality of the data because the current point may be far
from t*. Simulations are run with N = 100, d = 10 and 5000 iterations and therefore only the
score obtained by each data in the last 4000 iterations are displayed. 3 outliers (X, Yi)ieq1,2,3y With
X; = (10)4, and Y; = —sign((X;,t)) have been introduced at number 42, 62 and 66. Figure

shows that these are not selected once.
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Figure 2.2: Top left and right: Comparizon of the algorithm with fixed and changing blocks.
Bottom: Comparizon of running time between classical gradient descent and algorithm [1 In all

simulation N = 1000, p = 100 and there is no outliers.

2.8 Conclusion

The paper introduces a new homogenity argument for learning problems with convex and Lips-
chitz losses. This argument allows to obtain estimation rates and oracle inequalities for ERM and
minmax MOM estimators improving existing results. The ERM requires sub-Gaussian hypotheses
on the class F' with respect to the distribution of the design and a local Bernstein condition (see
Theorem , both assumptions can be removed for minmax MOM estimators (see Theorem [2.5)).
The local Bernstein conditions provided in this article can be verified in several learning problems.
In particular, it allows to derive optimal risk bounds in examples where analyses based on the small
ball hypothesis fail. Minmax MOM estimators applied to convex and Lipschitz losses are efficient
under weak assumptions on the outputs Y, under minimal L, assumptions on the class I with
respect to the distribution of the design and the results are robust to the presence of few outliers
in the dataset. A modification of these estimators can be implemented efficiently and confirm all

these conclusions.
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Figure 2.3: Outliers Detection Procedure for N = 100, p = 10 and outliers are i = 42,62, 66

2.9 Proof of main Theorems

2.9.1 Proof of Theorem 2.1]

The proof is split in two parts. First, we identify an event where the statistical behavior of the
regularized estimator f ERM can be controlled. Then, we prove that this event holds with probability
at least ([2.3]). Introduce § = 1/(2A) and define the following event:

Q:= {¥f € FN(f* +7a(0)Br,), |(P— Px)Ls| <0r3(6)}
where 6 is a parameter appearing in the definition of 75 in Definition [2.3]
Proposition 2.3. On the event 2, one has
£ — )1, < 72(0) and PLjorn < 0r3(6).

Proof. By construction, fERM satisfies PxLipru < 0. Therefore, it is sufficient to show that, on
Qif || f — f*]lL, > 72(8), then PyLy > 0. Let f € F be such that || f — f*||z, > m2(0). By convexity
of F, there exists fo € F'N(f* +13(0)SL,) and o > 1 such that

f=rr+alfo—f" . (2.19)
For alli € {1,---, N}, let ¢, : R — R be defined for all v € R by

i(u) = Uu + f*(X3), V) — 0(f*(X,), V). (2.20)
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The functions 1; are such that ;(0) = 0, they are convex because / is, in particular a);(u) < 9;(au)
for all u € R and a > 1 and ¥;(f(X;) — f*(X;)) = 0(f(X;),Y;) — £(f*(X), Y:) so that the following
holds:

PyLy = D il (X0) = F1(X0) = 7 D_ vila(fo(Xi) = f7(X2)))
> 5 2 Ui(fo(X0) — (X)) = aPyLy, (2.21)

Until the end of the proof, the event 2 is assumed to hold. Since fo € F N (f* + r2(0)SL,),
PxLy, > PLy, — 0r3(0). Moreover, by Assumption PL > A7 fo— f*II7, = A7'r3(6), thus

PyLi > (A7 = 0)r3(0). (2.22)

From Eq. (2.21) and ([222), PvL; > 0 since A" > 0. Therefore, || fZFM — f*|., < 73(d). This
proves the Lo-bound.

Now, as || fEEM — ||, < r2(6), |(P — PN)L jpru| < Or2(6). Since PNLppr <0,
PEfERAI = PN£f'E‘RJVI + (P - PN)EJEERJ\/I < 97’%(9) .

This show the excess risk bound. ]

Proposition shows that f ERM has the risk bounds given in Theorem on the event €. To
show that €2 holds with probability (2.3)), recall the following results from (Alquier et al., |2019).

Lemma 2.2. (Alquier et al.,|2019) [Lemma 8.1] Grant Assumptions and[2.5 Let F' C F with
finite Lo-diameter dr,(F"). For every u > 0, with probability at least 1 — 2 exp(—u?),

16L
sup (P — Pn)(Ls— L)] < — (w(F") +udy, (F")) .
f,gell?*“’|< N)( ! g)’ \/N( ( ) Lz( ))
It follows from Lemma that for any u > 0, with probability larger that 1 — 2 exp(—u?),
sup |(P — PN)Ef‘ < sup ’(P — Pn)(Lf — [,g)’
FeFN(f*+r2(0)BL,) f,9€FN(f*+r2(0)BL,)
16L

< \/_N(w((F — )N ra(0)Br,) + udp,((F — f*) Nra(6)Br,))

where dp,((F — f*) Nry(0)Br,) < r2(0). By definition of the complexity parameter (see Eq. (2.3))),
for u = 0v/Nry(0)/(64L), with probability at least

1—2exp (—6°Nr3(0)/(16°L?)) , (2.23)
for every fin F'N (f* + rq(0)By,),
|(P — Py)LCy| < 0r3(6). (2.24)

Together with Proposition [2.3], this concludes the proof of Theorem [2.1]
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2.9.2 Proof of Theorem [2.2

The proof is split in two parts. First, we identify an event {2 where the statistical properties of f
from Theorem can be established. Next, we prove that this event holds with probability (2.8)).

Let a, 0 and v be positive numbers to be chosen later. Define

41°K
Ck, = max (mﬂ’g@))

where the exact form of «, § and ~ are given in Equation (2.33)). Set the event {2x to be such that

QO = {Vf € Fm(f* + ,/CK,TBM) 3JC{l,....K}:|J| > K/2 and Vk € J,|(Pp, — P)L;| < HCK,T} .
(2.25)

Deterministic argument
The goal of this section is to show that, on the event Qg || f — fH7, < Cxpand PL; < 200K,

Lemma 2.3. If there exists n > 0 such that

sup MOMjy (Cp — ;) < —n  and sup MOMy (U= — Cy) <1,
FEF\(f*++/Cx.rBL,) FEFN(f*++/Crx.Br,)
(2.26)

then ||f — f*|, < Cx,.

Proof. Assume that (2.26|) holds, then

FeR\(£*+/Cr.rBr,)
Moreover, if Ty (f) = sup,ep MOMg €y — £,] for all f € F, then
TK(f*> = sup MOMK[EJC* — Ef] vV sup MOMK[gf* — Ef] < n . (228)
fGFﬂ<f*+\/CK,rBL2) fEF\(f*J"\/CK,TBLQ)
By definition of f and [2.28), Tk (f) < T (f*) < 1. Moreover, by (2.27), any f € F\ (f*++/Ck,BL,)
satisfies T (f) = MOMgl[¢; — €;+] > n. Therefore f € F N (f* + \/Ck,BL,). n

Lemma 2.4. Grant Assumptz'on and assume that 0 — A~' < —0. On the event Qp, (2.26]) holds
with n = 0Ck .

Proof. Let f € F be such that ||f — f*||z, > Ck,. By convexity of F, there exists fo € F'N
(f*+ /Ck,S1,) and @ > 1 such that f = f*+ a(fo — f*). Foralli € {1,...,N}, let ¢, : R - R
be defined for all © € R by

Yi(u) = L(u+ f*(X;), V) — 0(f*(X,),Y5). (2.29)
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The functions 1); are convex because £ is and such that ;(0) = 0, so a);(u) < ¥;(au) for all u € R
and o > 1. As ¢,(f(X3) = J*(X3)) = 0(f(X.), i) = €6(f*(X), Y7), for any block By,

Pty — ,Zwl X))~ f1(X0) k@m a(fo(X:) = F1(X1)))

1€By, 1€EBy
|Bk| ZB wl fO ( ))) = aPBkﬁfO‘ (230)

As fo € FN(f*+ \/Ck,SL,), on Q, there are strictly more than K/2 blocks By where
Pp, Lys > PLy — 0Ck,. Moreover, from Assumption , PL; > A7 fo— f*5, = A0k,
Therefore, on strictly more than K/2 blocks By,

P L > (A1 = 0)Cx,. (2.31)

From Eq. (2.30) and (2.31), there are strictly more than K/2 blocks By where P Ly > (A7! —
0)Ck . Therefore, on Q, as (6 — A™') < —0,

sup MOMK(gf* — ﬁf) < ((9 — A71>CK7T < —QCKJ« .
fEF\<f*+\/CK,rBL2)

In addition, on the event Q, for all f € F N (f*+ \/Ck,BL,), there are strictly more than
K /2 blocks By, where |(Pp, — P)Ls| < 0Ck,. Therefore

MOMy (€5 — ly) < 0Ck, — PLy < 0Ck .

Lemma 2.5. Grant Assumption and assume that 0 — A~ < —0. On the event Q, Pﬁf <
20CK .

Proof. Assume that 2 holds. From Lemmas and H, If = f*lle, < \/Ck,. Therefore, on
strictly more than K/2 blocks By, PL 7 < Pp,L;+0Ck,. In addition, by definition of f and (2.28)
(for n = 0Ck,),

MOMK(EJQ —éf*) S ?clelgMOMK(gf* —ﬂf) S QCK’T.

As a consequence, there exist at least K /2 blocks By, where Pp, L S 0Ck,. Therefore, there exists
at least one block B;, where both Pﬁf < PBkﬁf—l—GCK’T and PBk/Jf < 0Ck,. Hence Pﬁf < 20CKk,.

Stochastic argument

This section shows that Qi holds with probability at least (2.8]).
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Proposition 2.4. Grant Assumptions and[2.6 and assume that (1 — B)K > |O|. Let
x > 0 and assume that f(1 — o —x — 8yL/0) > 1/2. Then Qg holds with probability larger than

1 —exp(—2?8K/2).
Proof. Let F = FN (f*+/Ck,Br,) andset ¢ : t € R — I{t > 2} + (¢t — 1)I{1 <t < 2} so, for
all t € R, I{t > 2} < qb(t) < I{t > 1} Let W), = ((XiaYz’))iEBw Gf(Wk) = (PBk — P),Cf Let

()= HIG;(W)| < 0Ck.}.

Let K denote the set of indices of blocks which have not been corrupted by outliers, K = {k €
{1,--- ,K}: By CZ} and let f € F. Basic algebraic manipulations show that

f) > IK|- supZ( 2910K}T|Gf<wk>|>—E¢<201OK}T|Gf<Wk>|>)—ZE¢<2eICK}TlGAWk)D.

kel ke

By Assumptions [2.1{ and ﬁ, using that C% . > ||f — f*||i2 [(4L*K)/(6*aN))],

E¢(207 O |Gy (Wi)l) < P(|Gf(Wk:)| > GC;K) < é}z{rEGf(Wk) gz Var(PaLy)
< ot 2 B I < gt el = Pl <
i€ By,
Therefore,
AN Z K1 —a _f};}'i;( (2671 Ccl |G (W) —E¢(2910K}T\Gf<wk)l)) S (232

Using Mc Diarmid’s inequality (Boucheron et al.| 2013, Theorem 6.2), for all x > 0, with probability
larger than 1 — exp(—2?|K]|/2),

sup » ( (2071 C |Gy (W)]) — Ecﬁ(?@_lcz},lr!Gf(Wk)D)
FeF pex

< a|K|+Esup > ( ¢(207'Ci, |Gy (Wi)]) — E¢(2‘9—19_10I_(1r|Gf(Wk)|)) :
Te7 kek 7 7
Let €,...,ex denote independent Rademacher variables independent of the (X;,Y;),i € Z. By

Giné-Zinn symmetrization argument,

wpy ( (207 C G (W)]) — E¢<2@10K}T\Gf<wk>|>)

FeF ek

< z|K| + 2Esup26kq§ (207 CL |Gy (Wh)])
FeF Lex
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As ¢ is 1-Lipschitz with ¢(0) = 0, using the contraction lemma (Ledoux and Talagrand, 2013,
Chapter 4),

Gy(W, (P, — P)Ly
E sup exd(2071CLL |Gy (Wh)]) < 2Esup Y e —Q]Esup € - )
fe]-'gc g |GVl fefkezzc g GCKT fefkezzc 00k, 0Ck
Let (0; : i € UpexcBi) be a family of independent Rademacher variables independent of (e )gex and

(Xi,Y:)iez. Tt follows from the Giné-Zinn symmetrization argument that

(Pg, — P)C K L(X:, Y
]Esupz B’“ f<2Esup Z JZM

C
fer keK fer 1€Ukexc Br Kr

By the Lipschitz property of the loss, the contraction principle applies and

LX) e S U

E sup E O;
C C
K,r fEIzGUke;ch K,r

fer 1€Ukex Bk

To bound from above the right-hand side in the last inequality, consider two cases 1) Ck, = 75(7)
or 2) Ok, = 4L>K/(a#*N). In the first case, by definition of the complexity parameter 75(7) in

(2.6).

X; 1 K|N
ESUP Z % =K sup ) Z oi(f = )X < %
Fieln, Ko serl i~y <ran T2 | i 5=,
In the second case,
7 -/ Xz
E sup Z oi(f — [)(Xi)
f . CK,T‘
1€Ukex Bk
oi(f — /)X S =X
<E sup ‘ Z ( — )(X3) V sup Z Ui% :
feF: 3 i€Urex Br TQ(’Y) feF: i€Unex Bi Q2N
1= F" ey <7alr) =08 RO~ f <y

Let f € F be such that 75(y) < ||f — f*[|;, < V/[4L*K]/[a#?N]; by convexity of F, there exists

fo € F such that ||fo— f*[[;, = 72(7) and f = f* + a(fo — f*) with o = ||f = f*||,, /T2(7) = 1.
Therefore,

(= )| 1 (= £ P
ieukze,:gBk % = fZ(Py) iEUkZelCBk 7 ”f - f*HLQ f%(’ﬁ iEUkze}:ch Uz(fo f )( 7,)
and so
J = )X 1 .
?2}? iEUkze):CBk Ui( iﬁig | : 73y SIGIPE ieuk%,:ch 7S = )

If=r HLQ—Tz(V)

PN F—F* Ny <y 2L7E
By definition of 75(7), it follows that

< KV
- K

(f = [ )(Xy)
Eswp| D, on—g

1€Ukex By
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Therefore, as |K| > K — |0O] > K, with probability larger than 1 — exp(—z?8K/2), for all f € F
such that ||f — f*]|,, < v/Ckp,

(f) > K] (1—04—1;—%) >§ (2.33)

End of the proof of Theorem

Theorem [2.2] follows from Lemmas 2.3] 2.4] and Proposition 2.4 for the choice of constant

0=1/(3A) a=1/24, x=1/24, B=4/7and v=1/(575AL).

2.9.3 Proof of Theorem 2.3

Let K € [7|0]/3,N] and consider the event Q defined in (2.25). It follows from the proof of
Lemmas and [2.4) that Tx (f*) < 0Ck.. on Q. Setting § = 1/(3A), on N)_;Q,, f* € Ry for all
J=K,...,N, so m{,V:KRJ £ (). By definition of K, it follows that K < K and by definition of f,
f € R which means that TK(f) < 0Ck,. 1t is proved in Lemmas and [2.4{ that on Q. if f € F
satisfies || f — f*||,, > +/Ck.r then Tk (f) > 0Ck,. Therefore, f—r . < /Ck,. On Qy, since

Hf_ f* . < /Ck., Pﬁf < 20Ck,. Hence, on ﬂjf:KQJ, the conclusions of Theorem hold.
Finally, by Proposition [2.4

N
PN Q] > 1) exp(—K/2016) > 1 — dexp(—K/2016).
J=K

2.9.4 Proof of Theorem [2.4]

The proof of Theorem follows the same path as the one of Theorem We only sketch the
different arguments needed because of the localization by the excess loss and the lack of Bernstein
condition.

Define the event 2 in the same way as Q in (2.25) where Ck,, is replaced by 73(7) and the

L, localization is replaced by the “excess loss localization”:

O = {Vf € (Lr)szyy 3T C {1, K} : |J| > K/2 and Vk € J,|(Pg, — P)Ly| < (1/4)7«3(7)}
(2:34)

where (Lr)i3) = {f € F : PLy < 75(y)}. Our first goal is to show that on the event
PL; < (1/4)73(7). We will then handle P[Q].

Lemma 2.6. Grant Assumptions[2.1 and[2.2 For everyr > 0, the set (Lp), == {f € F: PL; <1}
is convex and relatively closed to F in Ly(p). Moreover, if f € F is such that PL; > r then there
exists fo € F' and (PLy/r) > o> 1 such that (f — f*) = a(fo — f*) and PLy, =r.
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Proof. Let f and g be in (Lp), and 0 < o < 1. We have af + (1 — a)g € F because F' is convex
and for all z € X and y € R, using the convexity of u — ¢(u + f*(x),y), we have

lapr-ayg(@,y) = lp=(2,y) = Ua(f = f)(2) + (1 = a)(g = f) (@) + f*(2),y) — {(f*(2),9)
a(U((f = ) @) + (@), y) = 60(f(2),9) + (1= ) (U(g = f) (@) + (), y) = U(f*(2),))
=a(ly = Lp) + (1= a)(ly = L)

and so PLojy(1-a)yg < aPLi+(1—a)PL,. Given that PLy, PL, < r we also have PLyf1(1-a)yg < T-
Therefore, af + (1 — a)g € (Lp), and (LF), is convex.

Forall f,g € F, [PLy — PLy| < ||f = f*[l1,(u so that f € F' — PLy is continuous onto F in
Li(p) and therefore its level sets, such as (Lr),, are relatively closed to F'in Li(u).

Finally, let f € F' be such that PL; > r. Define oy = sup{av > 0: f*+ a(f — f*) € (Lr), }.
Note that PLjq(r— ) < aPLy =1 for « = r/PLy so that o > r/PLy. Since (Lp), is relatively
closed to F'in Li(p), we have f*+ ao(f — f*) € (Lr), and in particular ay < 1 otherwise, by
convexity of (Lr),, we would have f € (Lg),. Moreover, by maximality of ag, fo = f*+ ao(f — f*)

is such that PL;, = r and the results follows for o = ag . n

Lemma 2.7. Grant Assumptions|2.1] and|2.2. On the event Qy., PL; < 73 (7).
K I 2

Proof. Let f € F be such that PL; > 73(7). It follows from Lemma [2.6] that there exists o > 1
and fo € F such that PLy, = 73(v) and f — f* = a(fo— f*). According to (2.30), we have for every
ke{l,...,K}, Pg,Ls > aPp Ly, Since fy € (LF)s2(y), on the event (., there are strictly more
than K /2 blocks By, such that Pg, L, > PLy,—(1/4)73(y) = (3/4)r3() and so P, L > (3/4)73(7).
As a consequence, we have

sup MOMg (€p — £5) < (=3/4)75(y) . (2.35)

feF\(EF)Fg(,y)
Moreover, on the event Q. for all f € (Lr)r(,), there are strictly more than K/2 blocks By, such
that Pp, (—L;) < (1/4)73(y) — PL; < (1/4)73(v). Therefore,
sup MOMK(Ef* —ly) < (1/)75(7) - (2.36)
We conclude from (2.35) and (2.36) that sup ., MOMk (¢« — €;) < (1/4)73(7) and that every
f € F such that PL; > 73(v) satisfies MOM (¢; — €+) > (3/4)73(7). But, by definition of f, we
have
MOMK(Ef — p+) < sup MOM (0 — £y) < (1/4)75(7) -

fer

Therefore, we necessarily have PL; < 75(7). n

Now, we prove that 2} is an exponentially large event using similar argument as in Proposi-

tion 241
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Proposition 2.5. Grant Assumptions and and assume that (1 — B)K > |O| and
B(1—1/12 —32vL) > 1/2. Then Yy holds with probability larger than 1 — exp(—FK/1152).

Sketch of proof. The proof of Proposition follows the same line as the one of Propo-
sition . Let us precise the main differences. We set 7' = (Lrp)r(,) and for all f € F,
Z(f) = S H{IG(We)| < (1/4)73(7)} where G4(W,,) is the same quantity as in the proof of
Proposition Let us consider the contraction ¢ introduced in Proposition [2.5l By definition of

72(y) and Vi (-), we have

E¢<8<r%<v>>-1|af<wk>|>SP(|Gf<Wk>|z_2;’”)< I EG (W) = o Var(Py, L)

~ (13(7))? (73(7))?
64[(2 64K .
2N2 ZEZBk Varp, (£ W sup{Varp, (Ls): f € F,i€I}
64K .

< Wsnp{Varpi(ﬁf) :PLy <75(v),i €T} < o

Using Mc Diarmid’s inequality, the Giné-Zinn symmetrization argument and the contraction lemma
twice and the Lipschitz property of the loss function, such as in the proof of Proposition [2.4] we
obtain with probability larger than 1 — exp(—|K|/1152), for all f € F,

() > K0 -1/12) - P E sy | ST e - (X0 (2.37)

N er73(v) e p,

Now, it remains to use the definition of 75(7) to bound the expected supremum in the right-hand

side of ([2.37) to get

S ot | < Y (2.38)

1€Ukex B

Esup ———
feF 7"2(”7>2

Proof of Theorem [2.4] The proof of Theorem [2.4] follows from Lemma[2.7]and Proposition
for $ =4/7 and v = 1/(768L).

2.10 Other proofs

2.10.1 Proof of Lemma 2.1

Proof. We have

1 Al 1«
——=E  suwp oil(f = [)(X;)=E  sup t—o=)p oiXi) .
\/N feF:|f- f*||L2<7'z‘Zl tGRd:E<t,X>2§T2< \/N Zzl >
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Let ¥ = EXTX denote the covariance matrix of X and consider its SVD, ¥ = QDQ? where
Q = [Qi1]--+]Qq4] € R™ is an orthogonal matrix and D is a diagonal d x d matrix with non-
negative entries. For all ¢t € R?, we have E<X, t>2 =Tt = ijl dj<t, Q]->2. Then

1N d
E sup 2 <t, \/_N 201)(0 =K sup 2 <Zl<t Q] Qj, —= Zoz
teRd;\/E@Tgr ¢ teRd:\/E<t,X> <r J

d N

Q; 1
=K sup Z v/d'<t,Q < J 7_20
teRd: Z;i: <tQJ> ] 1:d;#0 J J ,/d] VN e

rE Z <\/_ \/_ZUZ)Q <r|E Y <Qj',\/%zmx ’

j=1:d;#0 j=1:d;#0 i=1

—_

IN

<

Moreover, for any j such that d; # 0,

G e o by Y oo G xS ) = 1 SRS iy

=

%\

k;: ]

=%Z( %) ngk(j?;_j) :@(%) E(%)

By orthonormality, Q7Q; = e; and QTQ = e , then, for any j such that d; # 0,

Finally, we obtain

1

d
sup 1{a,20; = 7/ Rank(X)
\/_ FERN = Iy <r z; 2

i=1

oi(f = )X <
and therefore the fixed point 75(7y) is such that

fg(y):inf{r>0,VJ€I:|J\2N/2, E sup Z%‘<Xi,t—t*> §7“2|J|fy}
te]Rd:\/]E<t7t*,X>2§r ieJ

Rank(2
< inf {r >0,VJe€T:|J|>N/2, ryRank(Z)<r’ |J|*y} < —;:2;\, )

2.10.2 Proofs of the results of Section 2.5

We begin this Section with a simple Lemma coming from the convexity of F'.
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Lemma 2.8. For any f € F,

Lo BUT U = ) = RUY)

t—0+ t

>0

where we recall that R(f) = Ex y)~p[ls(X,Y)].
Proof. Let t € (0,1). By convexity of F', f*+t(f — f*) € F and R(f* +t(f — f*)) — R(f*) > 0

because f* minimizes the risk over F. [ |

Proof of Theorem [2.6

Let 7 > 0. Let f € I be such that ||f — f*[|,, <r. Forall z € X’ denote by Fy|x—, the conditional
c.d.f. of Y given X = x. We have

E{@(X,Y)\X:x} = (T—l)/1y<f Wy — f(x ))FYX=m(dy)+7/1y>f Wy — f(2)Fyx=(dy)
- / Lo s (5 — F(@) Fyxoa(dy) + (7 — 1) / 1a(y — £(2)) Fyix—a(dy) -

By Fubini’s theorem,

/1z>f(z)<1 — Fy|X:x(Z))dZ = /1z>f(x) (1 — P(Y S Z|X = x))dz = /1z>f(x)E[1y>z|X = CL’]dZ
= [ [t frixeainte = [ 10— 1) el
- / 1 ey (5 — F(2)) Fy s (dy) -

Therefore,

e = 2] = [ 101 = Pty + = 0 [ oFriaeatin) - 1)
— gl @) + (7= 1) [ yFvieald)
where g : (z,a) € X x R = [1,5,(1 — Fy|x=(y))dy + (1 — 7)a. It follows that
PL; = Elg(X, (X)) — g(X. /" (X))] . (2:39)

Since for all x € X, a — g(z, a) is twice differentiable, from a second order Taylor expansion we get

09(X,a)

PL;=E g(X,f(X))—g(X,f*(X))] :E{ da

w3 [ )@ - @) drs(e)
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where for all z € X, z, is some point in [min(f(z), f*(z)), max(f(z), f*(x))]. For the first order

term, we have

E[ag(;;, a)

(F XN - f*(X)ﬂ R i 2GS HHAX) = X)) = (X X))

t—0t t

For all z € X, we have [g(xz, f*(x) +t(f () — f*(2))) — g(x, f*(2))]/t < (2—7)|f*(x) — f(x)] which
is integrable with respect to Px. Thus, by the dominated convergence theorem, it is possible to

interchange integral and limit and therefore using Lemma [2.8] we obtian

B[22 ) )| =t B OO =0 =X,
_ oy BUTHHS ) - RO
t—0+ t -

Given that for all x € X, ang,a) (2) = fyix=z(2) for all z € R it follows that

P> [ Frxedea(fe) = £0)PdPx (o)

Consider A = {x € X, |f(z)— f*(z)| < (v2C")?*9)/er}. Given that || f — f*||z, < r, by Markov’s
inequality, P(X € A) > 1 — 1/(v/2C")**+?9)/¢ From Assumption we get

2PL,

— 2 E[L((X)(f(X) = (X)) = 1] = FlIz, = ElLac(X)(F(X) = f7(X))] - (2.40)

By Holder and Markov’s inequalities,

E[[Ac(X)(f(X) — f*(X))2] < (E[[AC<X)])5/(2+5) (E[(f(X) . f*(X))2+s])2/(2+s) < %

By Assumption it follows that E[I4(X)(f(X) — f*(X))?] < |If — f*||7,/2 and we conclude
with (2.40).

Proof of Theorem 2.7

Let r > 0. Let f € F be such that ||f — f*||,, <r. We have

PL; = ExE [pH@f — F(@) = pu(Y = f*(@)|X = } — E[g(X, f(X)) - g(X. [*(X))]

where ¢ : (z,a) € X x R =E[py(Y —a)|X = z]|. Let Fy|x—, denote the c.d.f. of Y given X = x.
Since for all z € X, a — g(z,a) is twice differentiable in its second argument (see Lemma 2.1 in
(Elsener and van de Geer, |2018))), a second Taylor expansion yields

9g(X, a) 1 ,3%9(x,a)

PL;=E {Tu*m)(ﬂm - f*(X))] ‘s / @) = PP G Py ()
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where for all z € X, 2, is some point in [min(f(z), f*(z)), max(f(z), f*(z))]. By Lemma[2.8, with
the same reasoning as the one in Section [2.10.2}, we get

1 2 dg(@,a)
Pz [ (@ - @t ean)

Moreover, for all z € R,

9%g(z, a)

a2 (2) = Fy|x=2(2 +0) — Fy|x=2(2 — 9).

Now, let A = {z € X : |f(z) — f*(z)| < (V/2C")**+)/er}. Tt follows from Assumption m that
PL; > (a/2)E[(f(X)— f*(X))*[a(X)]. Since || f — f*|lr, <7, by Markov’s inequality, P(X € A) >
1 —1/(v/2C")#+2)/¢. By Holder and Markov’s inequalities,

E[Li(X)(f(X) — f*(X))?] < (E[]AC(X)])E/(“E) (]E[(f(X) - f*(X))2+s])2/(2+5) < w

2(0/)2
. . o 12 .
By Assumption , it follows that E[14.(X)(f(X) — f*(X))?] < 5—2, which concludes the
proof.
Proof of Theorem [2.8

Let r > 0. Let f € F be such that |[f — f*||,, < r. Let n(x) = P(Y = 1|X = x). Write first
that PL; = E[g(X,f(X)) —9(X, f*(X))} where for all z € X and a € R, g(z,a) = n(x)log(1l +

exp(—a))+ (1 —n(x))log(1+exp(a)). From Lemmal[2.8 and the same reasoning as in Section [2.10.2
and [2.10.2| we get

P,Cf > /ZGX a2ga<527 a) (zx) (f(.’ll') _Qf*(x)) dpx(l‘) — /xeX (1 EZ;ZIV (f(l‘) —2f*($)) dpx(l‘)

for some z, € [min(f(x), f*(x)), max(f(x), f*(z))]. Now, let

A={z X | (@)] < co, (&) — ()] < (2C)E9Vr}

On the event A we have

e—co—(QC’)<2+5)/5r

2(1 + ecot(20)E/er)

PLy > FE[L4(X) (f(X) = f1(X))?)
Using the fact that P(X ¢ A) < P(|f*(X)| > c) + P(f(X) — f*(X| > (2C")*9/er) <
2/(2C")4+9)/e  we conclude with Assumption and the same analysis as in the two previous

proofs.
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Proof of Theorem 2.9

Let 7 > 0 such that r(v/2C")?*9)/¢ < 1. Let f be in F such that ||f — f*||;, < r. For all x in X let
us denote n(z) = P(Y = 1|X = x). It is easy to verify that the Bayes estimator (which is equal to
the oracle) is defined as f*(z) = sign(2n(z) — 1). Consider the set A = {x € X,|f(x) — f*(z)]| <
r(v/20")@+9)/=)  Since || f — f*|lz, < 7, by Markov’s inequality P(X € A) > 1 — 1/(y/2C")4+2e)/5,
Let z be in A. If f*(z) = —1 (i.e 2n(x) < 1) and f(z) < f*(x) = —1 we obtain

2

E[p(X, V)X = 2] —E[(;(X,Y)|X = z] = n(2)(1- f(2)) —n(z)(1— f*(2)) = n(z)(f(z) - f"(z))
where we used the fact that on A, |f(x) — f*(x)| < r(v/2C")?+9)/ < 1. Using the same analysis for
the other cases we get that

2

E[0(X,Y)|X = 2] —E[(;(X,Y)|X = 2] > min (n(x),1 - n(z), |1 - 25(2)|) (f(z) — [*(x))
> a(f(x) — f(2))’

Therefore,

PL;

«

> E[L(X)(f(X) = (X)) = IIf = £117, — Ellac(X)(f(X) = f(X))] - (2.41)
By Holder and Markov’s inequalities,

E[L(X)(f(X) — f*(X))?] < (E[IAC(X)])E/(QJFE) (EI(f(X) - f*(X))2+e])2/(2+5) < %

17513,
2

By Assumption 2.9} it follows that E[L (X)(f(X) — f*(X))?] <
@),

and we conclude with



Chapter 3

Robust high dimensional learning for

Lipschitz and convex losses

In this chapter, we establish risk bounds for Regularized Empirical Risk Minimizers (RERM) when
the loss is Lipschitz and convex and the regularization function is a norm. In a first part, we obtain
these results in the i.i.d. setup under subgaussian assumptions on the design. In a second part, a
more general framework where the design might have heavier tails and data may be corrupted by
outliers both in the design and the response variables is considered. In this situation, RERM per-
forms poorly in general. We analyse an alternative procedure based on median-of-means principles
and called “minmax MOM”. We show optimal subgaussian deviation rates for these estimators in
the relaxed setting. The main results are meta-theorems allowing a wide-range of applications to
various problems in learning theory. To show a non-exhaustive sample of these potential applica-
tions, it is applied to classification problems with logistic loss functions regularized by LASSO and
SLOPE, to regression problems with Huber loss regularized by Group LASSO. Another advantage
of the minmax MOM formulation is that it suggests a systematic way to slightly modify descent
based algorithms used in high-dimensional statistics to make them robust to outliers (Lecué and
Lerasle, 2019)). We illustrate this principle in a Simulations section where a ¢ minmax MOM”

version of classical proximal descent algorithms are turned into robust to outliers algorithms.

79
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3.1 Introduction

Regularized empirical risk minimizers (RERM) are standard estimators in high dimensional clas-
sification and regression problems. They are solutions of minimization problems of a regularized
empirical risk functions for a given loss and regularization functions. In regression, the quadratic
loss of linear functionals regularized by the ¢;-norm (LASSO) (Tibshirani, [1996)) is probably the
most famous example of RERM, see for example (Koltchinskii, 2011b; |[Bithlmann and van de Geer,
2011; Giraud} 2015) for overviews. Recent results and references, including more general regular-
ization functions can be found, for example in (Lecué and Mendelson, [2018; Bellec et al. 2017
Bach et al., [2012; [Bhaskar et al., [2013; |Argyriou et al., [2013). RERM based on the quadratic loss
function are highly unstable when data have heavy-tails or when the dataset has been corrupted
by outliers. These problems have attracted a lot of attention in robust statistics, see for example
(Huber and Ronchetti, |2011)) for an overview. By considering alternative losses, one can efficiently
solve these problems when heavy-tails or corruption happen in the output variable Y. There is a
growing literature analyzing performance of some of these alternatives in learning theory. In regres-
sion problems, among others; one can mention the L; absolute loss (Shalev-Shwartz and Tewari,
2011)), the Huber loss (Zhou et al., 2018; |[Elsener and van de Geer, |2018) and the quantile loss
(Alquier et al., |2019) that is popular in finance and econometrics. In classification, besides the 0/1
loss function which is known to lead to computationally intractable RERM, the logistic loss and
the hinge loss are among the most popular convex surrogates (Zhang, 2004; Bartlett et al., 2006).
Quantile, Li, Huber loss functions for regression and Logistic, Hinge loss functions for classification
are all Lipschitz and convex loss functions (in their first variable, see Assumption for a formal
definition). This remark motivated (Alquier et all) 2019) to study systematically RERM based on
Lipschitz loss functions. A remarkable feature of Lipschitz losses proved in (Alquier et al., [2019) is

that optimal results can be proved with almost no assumption on the response variable Y.

This paper is built on the approach initiated in (Chinot et al. |2019b). Compared with (Alquier
et al., 2019), the approach of (Chinot et al., 2019b) improves the results by deriving risk bounds
depending on a localized complexity parameters rather than global ones and by considering a more
flexible setting where a global Bernstein condition is relaxed into a local one, see Assumption
and the following discussion for details. The paper (Chinot et al., 2019b)) only considers estimators

that are not regularized and that can therefore only be efficient in small dimensional settings.

The first main result of this paper is a high dimensional extension of the results in (Chinot et al.,
2019b) that is achieved by analyzing estimators (based on the empirical risk or a Median-of-Means
version) regularized by a norm. The main results are two meta-theorem allowing to study a broad
range of estimators including LASSO, SLOPE, group LASSO and their minmax MOM version.

Section provides applications of the main results to some examples among these.

While RERM is studied without assumption on the output variables, somehow strong, albeit

classical, hypotheses are granted on the design X in our first main result. We assume actually in this



3.1. INTRODUCTION 81

analysis subgaussian assumptions on the input variables as in (Alquier et al., [2019). The necessity
of this assumption to derive optimal exponential deviation bounds for RERM is not surprising as
RERM have downgraded performance when the design is heavy tailed (see (Mendelson|, 2014)) or
(Chinot et al., [2019b)) for instance).

In a second part, we study an alternative to RERM in a framework with less stringent as-
sumptions on the data. These estimators are based on the Median-Of-Means (MOM) principle
(Nemirovsky and Yudin, [1983; |Birgé, 1984; |Jerrum et al.| [1986; |Alon et al.; [1999) and the minmax
approach (Audibert and Catoni, 2011; Baraud et al., [2017). They are called minmax MOM estima-
tors as in (Lecué and Lerasle, 2019)). A non-regularized version of these estimators was analyzed in
(Chinot et al., 2019b). The second main and most important result of the paper shows that min-
max MOM estimators achieve optimal subgaussian deviation bounds in the relaxed setting where
RERM perform poorly because of outliers and heavy-tailed data. This result is obtained under a
local Bernstein condition as for the RERM. It allows to derive fast rates of convergence in a large set
of applications where typically, subgaussian assumptions on the design X are replaced by moment
assumptions. Minmax MOM estimators are then analysed without the local Bernstein condition.
Oracle inequalities holding with exponentially large probability are proved in this case. Compared
with results under Bernstein’s assumption, an extra variance term appears in the convergence rate.
This extra term typically would yield to slow rates of convergence in the applications, which are
known to be minimax in the case where no Bernstein assumption holds. However, the variance
term disappears under the Bernstein’s condition, which shows that fast rates can be recovered from
the general results. In addition, all results on minmax MOM estimators, both with or without
Bernstein condition, are shown in the “OUZ” framework — where O stands for “outliers” and Z for
“informative”— see Section or (Lecué and Lerasle, 2017, 2019) for details. In this framework,
all assumptions (such as the Bernstein’s condition) are granted on “inliers” (X;,Y;);ez. These inliers
may have different distributions but the oracles of these distributions should match. On the other
hand, no assumption are granted on outliers (X;,Y;);co, which is to the best of our knowledge the
strongest form of aggressive/adversarial outliers (it includes, in particular, Huber’s e-contamination
setup). The minmax MOM estimators perform well in this setting, it means that the accuracy of
their predictions is not downgraded by the presence of outliers in the dataset. Mathematically, this
robustness is not surprising as it is a byproduct of the median step used in the MOM principle.

However, in practice, it is an important advantage of MOM estimators compared to RERM.

The main results on minmax MOM estimators are also meta-theorems that can be applied to
the same examples as RERM. Each of these examples provide a new (to the best of our knowledge)
estimator that reach performance that RERM could not typically achieve. For example, when the
class of classifiers/regressors is the class of linear functions on R, minmax MOM estimators have
a risk bounded by the minimax rate with optimal exponential probability of deviation even if the
inputs X only satisfy weak moment assumptions and/or have been corrupted by outliers. These

applications are also discussed in Section [3.6]
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Finally, in Section [3.7, we consider the modification of standard algorithms suggested by the
minmax MOM formulation introduced in (Lecué and Lerasle, 2019)) to construct robust algorithms.
The paper is organized as follows. Section presents the formal setting. Section presents
results for RERM and Section [3.4] those for minmax MOM estimators under a local Bernstein con-
dition and in Section without this condition. Section details several examples of applications

of the main results. A short simulation study illustrating our theoretical findings is presented in

Section The proofs are postponed to Sections

3.2 Mathematical background and notations

Let (Z,A, P) denote a probability space, where Z = X x ) is a product space such that X denotes
a measurable space of inputs and ) C R is the set of values taken by the outputs. Let Z = (X,Y)
denote a random variable taking values in Z with distribution P and let p denote the marginal
distribution of the design X.

Let ) C R denote a convex set such that ) € ) and let F denote a class of functions f:
X — Y. The set Y is typically the co,vex hull of . As such, it will always contain ). Let
¢:Y xY — R denote a loss function such that £(f(z),y) measures the error made when predicting
y by f(x). For any distribution @ on Z and any function g : Z — R for which it makes sense, let
Qg = Ez.g[g9(Z)] denote the expectation of the function g under the distribution @ and, for any
p =1, let |9z, = (Qlg!)*? and |\g||z, := ||lgllz,p). The risk of any f € F is given by P(y,
where (f(x,y) := {(f(z),y). The prediction of ¥ with minimal risk is given by f*(X), where f*,

called oracle, is defined as any function such that

f* € argmin Ply .
fer

Hereafter, for simplicity, it is assumed that f* exists and is uniquely defined. The oracle is unknown
in X x ). The goal is to build a data-driven estimator f of f* that predicts almost as well as f*.
The quality of an estimator f is measured by the error rate I f- f*|17, and the excess risk PL 2

where, respectively,
2
1f = FI2, = PI(F — )7 =E[(f<X> - f*(X)) |<Xi,mﬁil} and L= — (5 . (31)

Let Py denote the empirical measure i.e Py(A) = (1/N)S.N I(Z; € A) for all A € A. A
natural candidate for the estimation of f* is the Empirical Risk Minimizer (ERM) of (Vapnik and
Cervonenkis, [1971), see also (Vapnik, 1998) for an overview, which is defined by

FEEM ¢ argmin Pyl; . (3.2)

fer
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The choice of F'is a central issue: enlarging the space F' deteriorates the quality of the oracle
estimation but improves its predictive performance. It is possible to use large classes F' without
significantly altering the quality estimation if certain structural properties of the oracle f* are known
a priori from the statistician. In that case, a widely spread approach is to add to the empirical loss
a regularization term promoting this structural property. In this paper, we consider this problem

when the regularization term is a norm. Formally, let £ be a linear space such that F' C E C Ly(u)

and let || - || : F — R" denote a norm on E. For any A\ > 0, the regularized ERM (RERM) is
defined by
FRERM ¢ argmin PN@, where E?(:p,y) =le(z,y) + A|f] - (3.3)
fer

In regression, one can mention Thikonov regularization which promotes smoothness (Golub et al.
1999)) and ¢; regularization which promotes sparsity (Tibshirani, [1996). Likewise, for matrix recon-
struction, the 1-Schatten norm S; promotes low rank solutions (see (Koltchinskii et al., 2011; |Cai
et al., 2016)).

In the remaining of the paper, the following notations will be used repeatedly: for any r > 0,
let

rBr, ={f € La(p) : | flleo <7}, 7Sp, ={f € La(p) : [ fllz. =1} -

Let rB={fe€eE:||f||<r}andrS={f€ E:|f|=r} Foranyset H for which it makes sense,
let H+ f*={h+f*:he H}, H—f*={h—f*: he€ H}. Let (¢;)'_; be the canonical basis of R?.
Let ¢ denote an absolute constant whose value might change from line to line and let ¢(A) denote

a function depending on the parameters A whose value may also change from line to line.

3.3 Regularized ERM with Lipschitz and convex loss func-

tions

This section presents and improves results from (Alquier et al.2019)). A local Bernstein assumption,
holding in a neighborhood of the oracle f* is introduced in the spirit of (Chinot et al.| [2019b). This
assumption does not imply boundedness of F in L?-norm unlike the global Bernstein condition
considered in (Alquier et al.;|[2019). New rates of convergence are obtained, depending on localized

complexity parameters improving the global ones from (Alquier et al., [2019).

3.3.1 Main assumptions

We start with a set of assumptions sufficient to prove exponential deviation bounds for the error rate
and excess risk of RERM for general convex and Lipschitz loss functions and for any regularization
norm. In this section, we consider the classical i.i.d. assumption (we will relax this assumption in

the next sections in order to consider corrupted databases).

Assumption 3.1. (X;, Y)Y, are independent and identically distributed with distribution P.
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All along the paper, we consider Lipschitz and convex loss functions.

Assumption 3.2. There exists L > 0 such that, for anyy € Y, {(-,y) is L-Lipschitz i.e for every
fandgin F,z € X andy € Y, [((f(x),y) —l(g(z),y)| < L|f(x) — g(z)| and convex i.e for all

There are many examples of loss functions satisfying Assumption The two examples studied
in this work (see Section are

e the logistic loss function defined for any v € R and y € Y = {—1,1}, by {(u,y) =
log(1 + exp(—yu)). It satisfies Assumption [3.2]for L = 1.

e Tte Huber loss function with parameter ¢ > 0 is defined for all u,y € R, by

Lo — )2 i —ul <
(. y) = 3(y —u) 2 if [u —y| <6
Sly—ul—% ifju—yl>0

It satisfies Assumption [3.2] for L = 4.
We will also assume that the functions class F' is convex.
Assumption 3.3. The class F' is convex.

In particular, Assumption holds in the important case considered in high-dimensional statis-
tics when F is the class of all linear functions indexed by R?, F' = {(¢,-) : t € RP}. This example
is studied in great details in Section [3.6]

RERM performs well when the empirical excess risk f € F' — PyL; is uniformly concentrated
around the excess risk f € F' — PLy. This requires strong concentration properties of the class of
random variables {L;(X) : f € F'}, which is implied by concentration properties of {(f — f*)(X) :
f € F} thanks to the Lipschitz assumption on the loss function. Here, we study RERM under
a subgaussian assumption on the design. We first recall the definition of a subgaussian class of

functions.

Definition 3.1. A class F is called Ly-subgaussian (with respect to X ), where Ly > 1, when for all
fin F and for all A > 1, Eexp Al f(X)|/||fllz,) < exp(A2L3/2).

Assumption 3.4. The class F' — f* is Lg-subgaussian with respect to X.

Assumptions 3.1 are also granted in (Alquier et al.| 2019)). In this setup, a natural way to
measure the statistical complexity of the problem is via Gaussian mean widths (of some subsets of

F). We recall the definition of this measure of complexity.

Definition 3.2. Let H C Lo(p) and (Gp)nen be the canonical centered Gaussian process indexed by
H, with covariance structure given by (E(Gp, — Gn,)?)""* = (E(h1(X) — ha(X)2)"? for all by, hs €
H. The Gaussian mean-width of H is w(H) = Esupycy Gi.



3.3. REGULARIZED ERM WITH LIPSCHITZ AND CONVEX LOSS FUNCTIONS 85

Gaussian mean widths of various sets have been computed in (Amelunxen et al., 2014)), (C Belled,
2019), (Chatterjee and Goswami, 2019) or (Gordon et al.,[2007) for example. Risk bounds for fRERM
are driven by fixed point solutions of a Gaussian mean width of regularization balls (F' — f*) N pB,

which measure the local complexity of F' around f* .

Definition 3.3. For all A > 0, the complexity function is a non-decreasing function r(A,-),

such that for every p > 0,
r(A, p) > inf{r > 0: 96ALoLw(F N (f*+ pBNrBy,)) < N} .

Here, L is the Lipschitz constant in Assumption and Lq is the subgaussian constant from As-
sumption [3.4).

The last tool and assumption comes from (Lecué and Mendelson) 2018). A key observation is
that the regularization norm || - || promoting some sparsity structure has large subdifferentials at
sparse functions (see, for instance, atomic norms in (Bhaskar et al., 2013)). The subdifferential of
| - || in f is defined as

OllNg ={z" € E* = [If +hll = [lfl = 2°(h) for every h € E} | (3.4)

where E* is the dual space of the normed space (E, || - ||). Let

L= U @Iy

fef*+45B

be the union of all subdifferentials of the regularization norm ||-|| of functions f close to the oracle
f*. We expect I'«(p) to be a “large” subset of the unit dual sphere of ||-|| when f* is “sparse” — for
the notion of sparsity associated with ||-||. This intuition is formalized in the following definition
from (Lecué and Mendelson, 2018)

Definition 3.4 ((Lecué and Mendelson| 2018)). For any A >0 and p > 0, let

HP»A:{fEF : Hf*_fH:p and ||f*_f||L2§T(A7p)7"'7 }

Let
A(p,A)= inf sup z2*(h—f") . (3.5)

heHp, A 2*€l ¢+ (p)

A real number p > 0 satisfies the (A-)sparsity equation if A(p, A) > 4p/5.

Any constant in (0, 1) could replace 4/5 in Definition as can be seen from a close inspection
of the proof of Theorem [3.1} If the norm || - || is “smooth” in f, the subdifferential of ||-|| in f is just
the gradient of || - || in f. In that case, (O|-]])s is not rich (it is a singleton) and the regularization
norm has only a low “sparsity inducing power” unless the variety of gradients of ||-|| at f in the

neighborhood f* + (p/20)B is rich enough (the latter case can be seen as ||-|| being “almost not
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differentiable” in f*). However, any norm has a subdifferential in 0 equal to the entire unit dual
ball associated with ||-||. Therefore, when 0 belongs to f*+ (p/20)B, for example when p > 20| f*||,
the sparsity equation is satisfied since, in that case, A(p) = p. We can use this fact to obtain
“complexity dependent” rates of convergence — i.e. rates depending on ||f*||. In high-dimensional
setups, we also look for statistical bounds depending on the sparsity of f* enforced by ||-|| (see (Lecué
and Mendelson, 2017, [2018) for details regarding the difference between “complexity and sparsity”
dependent bounds). Hereafter, we focus on norms || - || promoting some sparsity structure and we

establish sparsity dependent rates of convergence and sparse oracle inequalities in Section |3.6|

Margin assumptions (Mammen and Tsybakov, 1999; Tsybakov, 2004; van de Geer), 2016)) such as
the Bernstein conditions from (Bartlett and Mendelson|, 2006a)) have been widely used in statistics
and learning theory to prove fast convergence rates of RERM. Here, we use a local Bernstein
condition in the spirit of (Chinot et al., [2019b).

Assumption 3.5. There exist constants A > 0 and p* such that p* satisfies the A-sparsity equation
and for all f € F satisfying ||f — f*||, = r(A, p*) and |[f — f*|| < p*, then ||f — f*||7, < APL;.

Hereafter, whenever Assumption [3.5]is granted, we assume that the constant A is fixed satisfying
this assumption and write r(p) instead of (A, p). As explained in (Chinot et al., 2019b), the local
Bernstein condition holds in examples where F'is not bounded in Ly-norm. It allows to cover the
class of all linear functions on R? where the global Bernstein condition of (Alquier et al., [2019) —
If = [*]17, < APLy for all f € F- does not hold.

Remark 3.1. From Assumption[3.9 it follows that if the local Bernstein condition is granted as in
Assumption 3.5 that is for all functions f in F such that ||f — f*||1, = r(A,p*) and ||f — f*|| < p*
(and if there exists such an f) then we necessary have r(A, p*) < AL. Indeed, if there is an f in
Fn(f*+r(A, p*)SL, Np*B), it follows from the Lipschitz property of the loss function that

r’(A,0") = If = fIlL, < APL; < AL|f — f*||z, = ALr(A, p")

and sor(A, p*) < AL. The latter condition will be always satisfied as soon as N is large enough. For
example, for the LASSO reqularization, we recover from the latter restriction, the classical condition

“N 2 slog(ep/s)” where s is the oracle’s sparsity.

3.3.2 Main theorem for the RERM

The following theorem gives the main result on the statistical performance of RERM.

Theorem 3.1. Grant Assumptions (5.4 Suppose that Assumption holds with

p = p* satisfying the A-sparsity equation from Definition[3.4) With this value of A, let r(-) :=r(A, ")

denote the complezity function from Definition[3.5 Assume that
10 2( % 2 2( %

21A  p* 3A p* (36)
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Then, with probability larger than
1—2exp (—c(A, L, Lo)r*(p")N) , (3.7)

the following bounds hold

P * * r * * T2(p*)
LA = <ot M = Flle, < 7(p") and PLjpen0 < —1

Remark 3.2. A remarkable feature of Theorem[3.1] is that it holds without assumption on'Y . We
do not even need Y to be in Ly since one can always fiz some fo € F' and work with £y — lg, to
define all the object. In that case we have [y — Ly < L|f — f°] and so (€; — £;,)(Z) € L' when
F C L' () even whenY ¢ L. So we can define f* such that f* € argmingcp P((y — lg,) with
no assumption on Y. This is an important consequence of the Lipschitz property which has been
widely used in robust statistics because it implies robustness to heavy-tailed noise without any strong
technical difficulty.

Remark 3.3. Theorem holds for subgaussian classes of functions F. As in (Alquier et al.,

2019), it is possible to extend this result under boundedness assumptions.

Theorem [3.1]improves (Alquier et al}, 2019, Theorem 2.1) in two directions: First, the complexity
function r(-) measures the (Gaussian mean width) complexity of the local set (F'— f*)NpBNrBy,
and not the global gaussian mean width of (F'— f*) N pB such as in (Alquier et al., [2019)). Second,
Theorem holds in a setting where F' can be unbounded in Ly-norm. The proof of Theorem
is postponed to Section m The proof relies on the convexity of the loss function (and F') which
allows to use an homogeneity argument as in (Chinot et al., 2019b)) for Lipshitz and convex loss
functions and in (Lecué and Mendelson, 2013) for the quadratic loss function, simplifying the peeling
step of (Alquier et al.|2019)). Theorem is a general result which is applied in various applications
in Section

3.4 Minmax MOM estimators

Even if the results of Section are interesting on their own (because the i.i.d. sub-gaussian frame-
work is one of the most considered setup in Statistics and Learning theory), the setup considered
in Section can be restrictive in some applications. It does not cover more realistic situations
where data are heavy-tailed and/or corrupted. In this section, we consider a more general setup
beyond the i.i.d. subgaussian setup in order to cover these more realistic frameworks. The results
from Section 3.3l will serve as benchmarks: we show that similar bounds can be achieved in a more
realistic framework by alternative estimators. These estimators use the median-of-means principles

instead of empirical means.
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3.4.1 Definition

Recall the definition of MOM estimators of univariate means from (Alon et al., 1999; |[Jerrum et al.,
1986 Nemirovsky and Yudin, |1983)). Let (By)g=1
By, of equal size N/K (it is implicitly assumed that K divides N. An extension to blocks with

,,,,, k denote a partition of {1,..., N} into blocks
almost equal size is possible (see (Minsker et al., 2019)). It is not considered here to simplify the
presentation of the results, the extension is thus left to the interested reader). For any function
frXxY—>Rand ke {l,...,K}, let Pp, f=(K/N)> ,p f(Xi,Y;) denote the empirical mean
on the block Bi. The MOM estimator based on this partition is the empirical median of the latter
empirical means:

MOM (f) = Med(Pg, f,--- , Ps,. f) - (3.8)

The estimator MOM (f) of Pf achieves subgaussian deviation tails if (f(X;,Y;))~, have 2 mo-
ments, see (Devroye et al., 2016). The number of blocks K is a tuning parameter of the procedure.
The larger K, the more outliers are allowed. When K =1, MOMg ( f ) is the empirical mean, when
K = N, it is the empirical median.

Building on ideas introduced in (Audibert and Catoni, 2011; Baraud et al. 2017), (Lecué and
Lerasle, 2019) proposed the following strategy to use MOM estimators in learning problems. Since

the oracle f* is also solution of the following minmax problem

f* = argmin P{; = argminsup P({; — {,) ,
fer feEF geF
minmax MOM estimators are obtained by plugging MOM estimators of the unknown expectations
P(l;—{,) in this minmax formulation. Applying this principle to regularized procedures yields the
following “minmax MOM version” of RERM that we study in this paper:

fx. € argminsup MOMg (¢ — £4) + X(ILFI = Ngll) - (3.9)
fEF g€eF

The linearity of the empirical process Py is important to use localization techniques in the
analysis of RERM to derive fast rates of convergence for these estimators improving upon the
slow rates of (Vapnik, [1998), see (Tsybakov, 2004; Koltchinskii, 2011b) for example. The minmax
reformulation comes from (Audibert and Catoni, 2011)), it allows to overcome the lack of linearity
of robust mean estimators and obtain fast rates of convergence for robust estimators based on

nonlinear estimators of univariate expectations.

3.4.2 Assumptions and main results

To highlight robustness properties of minmax MOM estimators with respect to outliers in the
dataset, their analysis is performed in the following framework. Let Z U O denote a partition of
{1,---, N} that is unknown to the statistician. Data (X;,Y;);co are considered as outliers. No

assumption on the distribution of these data is made, they can be dependent or adversarial. Data
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(X;,Y;)iez bring information on f* and are called informative or inliers. Assumptions are made
uniquely on these informative data (and not on the outliers). They have to induce the same Lo

geometries on F' and the same excess risks.

Assumption 3.6. (X;,Y;);cz are independent and for alli € I : Pi(f — f*)* = P(f — f*)? and
PLy=PL;

Assumption holds in the i.i.d case, it also covers situations where informative data (X, Y;)cs
may have different distributions. It implies in particular that f* is also the oracle in ' w.r.t. all
the distributions P; for ¢ € Z.

Several quantities introduced to study RERM have to be modified to state the results for minmax
MOM estimators. First, the complexity function is no longer based on Gaussian mean width,
it is now defined as a fixed point of local Rademacher complexities (Koltchinskii, [2011a, 2006;
Bartlett et al., [2002b} |2005). Let (0;);er denote i.i.d. Rademacher random variables (i.e. uniformly
distributed on {—1,1}), independent from (Xj,Y;);cz. The complexity function p — 75(7v, p) is

} < w2|J|} :

(3.10)
As in Theorem , parameter 7o(7y, p) measures the statistical complexity of the sub-model F' N

a non-decreasing function such that for all p > 0

Z Uif(Xi)

icJ

rg(v,p)Zinf{r>0:VJCIs.t |J| = N/2, E{ sup

fe(F—f*)NpBNrBL,

(f*+ pB) locally in a Ly-neighborhood of f*. It only involves the distribution of informative data
and does not depend on the distribution of the outputs (Y;);ez. The local Bernstein condition,
Assumption [3.5] as well as the sparsity equation have now to be extended to this new definition of
complexity. We start with the sparsity equation.

Definition 3.5. For any A >0 and p > 0, let

K

Crkr(p, A) = max <r§(7, p), c(A, L)N> (3.11)

and Hya={f € F : |f* = fll=p and |[f* = fll. < /Crs(p. A),....}. Let

A(p,A)= inf sup 2*(h—f") . (3.12)

hEHp,A Z*EFf* (p)
A real number p > 0 satisfies the A-sparsity equation if A(p, A) > 4p/5.

The value of ¢(A, L) in Definition [3.5]is made explicit in Section [3.9.2l To simplify the presenta-
tion we write c(A, L) as it is an absolute constant depending only on A and L. With this definition

in mind, one can extend the local Bernstein assumption.

Assumption 3.7. There exist a constant A > 0 and p* such that p* satisfies the A-sparsity equation
from Deﬁmtion and, for all f € F such that || f — f*||7, = Ckr(2p*, A) and ||f — f*|| < 2p*,
1f = 117, < APL;.
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As in Assumption the link between || f — f*||7, and the excess risk PL in Assumption [3.7]is
only granted in a Lo(pu)-sphere around the oracle f* whose radius is proportional to the rate of con-
vergence of the estimators (see Theorems and . The local Bernstein assumption is somehow
“minimal” since it is only granted on the smallest set of the form F N (f* + 2p*B N ra(y, 2p*)BL,)

centered in f* that can be proved to contain fK7,\ (when K is such that /Cg . (2p*, A) = ra(7, 2p)).

Remark 3.4. As in Remark we necessary have \/Cr,(2p*, A) < AL under Assumption

and the Lipschitz assumption from Assumption |3.2. This is also this condition which requires a
manimal number of observations to hold out of which we recover the classical conditions such as

N 2 slog(ep/s) when one wants to reconstruct a s-sparse vector.

We are now in position to state our main result on the statistical performances of the regularized

minmax MOM estimator.

Theorem 3.2. Grant Assumptions and [3.7 for p* satisfying the A-sparsity equation
from Definition[3.5, Let K > 7|0|/3, v = 1/(6528L), and define

5 CKjr(Qp*, A)

A=A o

Then, with probability larger than 1 — 2exp(—cK), the minmax MOM estimator fK,/\ defined in
(3.9) satisfies

¢ * * ¢ * * 1 *
Ifrex =l <20% |lfxa—f “%2 < Ck.(20",A) and Pﬁf}“ < ZCK,T(QP ,A)

Suppose that K = c(A, L)r3(~,2p*)N, which is possible as long as |O| < ¢(A, L)Nr3(y,2p*).
The Ls-estimation bound obtained in Theorem is then 73(7,2p*) and the probability that this
bound holds is 1 — exp(—c(A, L)Nr3(vy,2p*)). Up to absolute constants, regularized minmax MOM
estimators achieve the same bounds as RERM with the same probability when the inlier data
satisfy the subgaussian assumption as in the framework of Theorem [3.1] Indeed, in that case, a
straightforward chaining argument shows that the Rademacher complexity from is upper
bounded by the Gaussian mean width. The difference with Theorem is that the estimator
depends on K. On the other hand, the results from Theorem hold in a setting beyond the
subgaussian assumption on £’ and the data may not be identically distributed and may have been
corrupted by outliers. In Section [3.6.2] we consider an example where rate optimal bounds can
be derived from this general result under weak moment assumptions while still achieving the same
rate as in the sub-gaussian framework. It is also possible to adapt in a data-driven way to the
best K and A by using a Lepski’s adaptation method such as in (Devroye et al., 2016; Lecué and
Lerasle, 2017, 2019; |Chinot et al. 2019b; |Chinot|, |2019b). This step is now well understood, it
is not reproduced here. Theorem is general result in the sense that it allows to handle many
applications where a convex and Lipschitz loss function and a regularization norm are used (some
examples are presented in Section .
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3.5 Relaxing the Bernstein condition

In this section, we study minmax MOM estimators when the Bernstein assumption is relaxed.
The price to pay for this relaxation is that, on one hand, the Ls-risk is not controlled and on the
other hand an extra variance term appears in the excess risk PL £ Nevertheless, under a slightly
stronger local Bernstein’s condition, the extra variance term can be controled and the bounds
from Theorem can be recovered. We consider the following assumption which is weaker than
Assumption |3.6 since it does not require that the distribution of the X;’s, for ¢ € Z induce the same

Ly structure as the one of Lo(u).

Assumption 3.8. (X;,Y;).cr are independent and for alli € Z, (X;,Y;) has distribution P;, X; has
distribution p;. We assume that, for any i € T, F C Ly(p;) and P,Ly = PLy for all f € F.

Since the local Bernstein Assumption does not hold, the localization argument has to be
modified. Instead of using the Lo-norm to define neighborhoods of f* as in the previous section,
we use the excess loss f € F' — PL; as proximity function defining the neighborhoods. The new
fixed point is defined for all v,p > 0 and K € {1,--- , N}:

E
7(7, p) = inf {r > 0 : max ( (r.p) Vi (r, p)) < 7’2}, where (3.13)
Y
1 *
E(r,p)= sup E sup = oilf = )X
JCI:|J|>N/2  feF:PLy<r? | f—f*|I<p ‘J| ic)

Vi (r, p) ( Varp, (£ )> B
% (r, p) = max sup arp, —

€T feFPLp<r?, |f—f*|<p ! N

and (0;);e7 are i.i.d. Rademacher random variables independent from (Xj,Y;);ez. The value of ¢
in Equation can be found in Section m The main differences between r5(7, p) in ((3.10)
and 7(v, p) in are the extra variance Vi term and the L, localization which is replaced by an
"excess of risk” localization. Under the local Bernstein Assumption below, this extra variance
term Vi (r, p) becomes negligible in front of the complexity term E(r,p). In that case, the fixed
point 7(v, r) matches the (7, p) used in Theorem As in Section , the sparsity equation has

to be modified according to this new definition of fixed point.

Definition 3.6. For any p > 0, let
H,={feF : |f*=fll=p and PL; <7(v,p),..., } (3.14)

Let

A(p) = inf sup z"(h—[f") . (3.15)

heH, 2*€l ¢ (p)

A real number p > 0 satisfies the sparsity equation if A(p) > 4p/5.
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We are now in position to state the main result of this section.

Theorem 3.3. Grant Assumptions and assume that |O| < 3N/7. Let p* satisfying
the sparsity equation from Definition . Let v =1/(3840L) and K € [7|0|/3,N]. Define

yo U (v, 2p%)
40 P

The minmax MOM estimator fK,)\ defined in (3.9) satisfies, with probability at least 1 —2exp(—cK),
PLy | < 7(v,20") and || — [T < 20"

In Theorem [3.3] the only stochastic assumption is Assumption [3.8 which says that the inliers
data are independent and define the same excess risk as (X,Y") over F. In particular, Theorem
does not assume anything on the outliers (X;,Y;);co nor on the outputs of the inliers (Y;);cz like
in the previous section but it also does not require any other assumption than the existence of all
the considered objects. It follows from Theorem that all the difficulty of the problem is now
contained in the computation of the local Rademacher complexities E(r, p).

To conclude the section, let us show that Theorem can be recovered from Theorem
under the following local Bernstein assumption which is slightly stronger than the one assumed in
Theorem [3.3]

Assumption 3.9. There exist a constant A > 0 and p* satisfying the sparsity equation from
Deﬁm’tz’on such that, for all f € F, if PL; < Cr,(p*, A) and || f — f*|| < 2p%, then || f— f*|7, <
APL;, where

Crr(p, A) = max (@L\/I%Qp),c(/l, L)%) and v =1/(3840L) . (3.16)

Up to constants, Ck, is equivalent to C, given in Definition . Assumption is a condition
on all functions f € F such that PL; < Ck,(p*, A) which is a slightly stronger condition than

being in the Lo-sphere as in Assumption 3.7}

Theorem 3.4. Grant Assumptions and assume that |O| < 3N/7. Assume that the
local Bernstein condition Assumption holds with p* satisfying the A-sparsity equation from
Definition . Let v =1/(3840L) and K € [7|0|/3,N]. Define

\ 177,27
40 pr '

The minmazx MOM estimator fK,)\ defined in (3.9) satisfies, with probability at least 1 —2 exp(—cK),
1fxn = f117, < Crr(p™, A), PL; < Cku(p",A) and I fen — £ <207
Theorem [3.4] is proved in Section [3.9.4

Remark 3.5. Under Assumption and a slight modification in the constants, p* satisfies the
sparsity equation of Definition if it verifies the sparsity equation of Definition |3.4.
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3.6 Applications

This section presents some applications of Theorem to derive statistical properties of regularized
minmax MOM estimators for various choices of loss functions and regularization norm. To check

the assumptions of the Theorem the following routine is applied:

1. Check Assumptions [3.6]

2. Compute the local rademacher complexity 7o(7, p).
3. Solve the sparsity equation from Definition find p* such that A(p*, A) > 4p* /5.
4. Check the local Bernstein condition from Assumption [3.7]

In this section, we focus on high dimensional statistical problems with sparsity inducing regular-
ization norms (Bach et al.,[2012]) such as the ¢; norm (Tibshirani, [1996)), the SLOPE norm (Bogdan
et al} 2015), the group LASSO norm (Simon et al., 2013). We consider the class of linear functions
F ={(t,-) : t € R’} indexed by RP. We denote by ¢* € R the vector such that f*(-) = (¢*,-). We
consider the logistic loss function for the LASSO and the SLOPE, with data (X;,Y;)¥, taking val-
ues in R? x {—1,1} and the Huber loss function for the Group LASSO, with data (X;,Y;)Y, taking
values in R? x R. In particular, the results of this section extend results on the logistic LASSO and

logistic SLOPE from (Alquier et al., 2019) and present new results for the Group Lasso.

3.6.1 Preliminary tools and results

In this section, we recall some tools to check the Local Bernstein condition, compute the local

Rademacher complexity and verify the sparsity equation.

Local Bernstein conditions for the logistic and Huber loss functions

In this section, we recall some results from (Chinot et al.; 2019b) on the local Bernstein condition
for the logistic and Huber loss functions.

For the logistic loss function (i.e. ¢; : (z,y) € RP x {£1} — log(1 + exp(—yf(z)))), we first
introduce the following assumption. Note that we do not use the full strength of the approach since
we check the inequality || f — f*||7, < APLy for all f € FN(f*+7rBy,) instead of just all functions
in F'N(f*+rSy, NpB).

Assumption 3.10. Let € > 0, there are constants C' and ¢y > 0 such that

CL) for all f in F; ||f_f*||L2+a < C/Hf_f*”LQ

b) P(|f*(X)]| <o) >1—1/(2C")14+2)/e
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Under Assumption [3.10, we check the Bernstein condition on the entire Ls-ball of radius r

around f*.

Proposition 3.1 ((Chinot et al. [2019b), Theorem 9). Grant Assumption |3.10. Let r > 0. The
local Bernstein condition holds for the logistic loss function: for all f € F if ||f — f*||L, < r then
If = f*IIz, < APLy for

g oD (= co — r(2C")Fe)/e))

5
2 (1 + exp (co + T(2C”)<2+5)/5))

Note that if r is larger than the order of a constant then A is no longer a constant and the
convergence rates are deteriorated (see the link with Remark [3.1)). So that we will assume that
7(207)2+9)/2 < ¢y/2 in order to keep A like an absolute constant. The price to pay for assuming
this latter condition is on the number of observations: we will for instance recover the classical
assumption N 2 slog(ep/s) for the reconstruction of a s-sparse vector.

For the Huber loss function with parameter > 0 (i.e. £;(x,y) = ps(y— f(x)) where p;(t) = t?/2
if [t] <6 and ps(t) = 0]t| — 6%/2 if |[t| > §), we use the following result also borrowed from (Chinot
et al., [2019b)). Let us introduce the following assumption.

Assumption 3.11. Let € > 0 and let Fy|x—, be the conditional cumulative function of Y given
X =ux.

a) There exists a constant C' such that, for all f in F, || f — f*|lror. < CNf = flLo-

b) Let C" be the constant defined in a). There exist r > 0 and a > 0 such that, for all x € X
and all z € R satisfying |z — f*(x)] < r(vV2C")*9/E Fyix_o(2 4 6) — Fyjx—.(2 — 6) > a.

Note that if r is larger than the order of a constant the point b) can be verified only if §, the
Lipschitz constant, is large enough and « is small enough. In that case, convergence rates would
be degraded. To avoid this situation we assume that r(1/2C")?*€)/¢ < ¢ where ¢ is some absolute
constant. In that case, § and « can be considered like constants. Again the price we pay for that
assumption will be on the number of observations such as the classical one N 2 slog(ep/s) for the

reconstruction of a s-sparse vector.

Proposition 3.2 ((Chinot et al., [2019b), Theorem 7). Grant Assumption forr > 0. The
Huber loss function with parameter 6 > 0 satisfies the Bernstein condition: for all f € F, if

If = f*ll,, <7 then (4/a)PL; > ||f — f*]13,.

Local Rademacher complexities and Gaussian mean widths

The computation of ro(y, p) may be involved, but can sometimes be reduced to the computation of
Gaussian mean widths. A typical result in that direction is the one from (Mendelson, 2017). The
results of (Mendelson, 2017)) are based on the concepts of unconditional norm and isotropic random

vectors.
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Definition 3.7. For a given vector x = (x;)_,, let (x)?_, be the non-increasing rearrangement of
(|zi))i_y. The norm || - || in RP is said k-unconditional with respect to the canonical basis (e;)t_; if,

for every x in RP and every permutation © of {1,--- ,p},

p D
E Ti€; E Tr(i)€i
i=1 =1

and, for any y € RP such that, for all 1 <1 <p, xf <y}, then

P P
g Ti€; E Yi€;
i=1 i=1

Typical examples of k-unconditional norms can be found in (Mendelson|,[2017)). In the following

<K

)

<K

we use the fact that the dual norms of the ¢; and SLOPE norms are 1-unconditional.

Definition 3.8. A random vector X in RP is isotropic if ]E[<t,X>2] = ||t||3, for all t € RP, where

| - |l2 s the Euclidean norm in RP.
Recall the main result of (Mendelson, [2017)).

Theorem 3.5. (Mendelson, |2017, Theorem 1.6) Let Cy, k and M be real numbers. Let V' C RP be
such that sup,ey [(v, )| is k-unconditional with respect to (e;)!_,. Assume that X € RP is isotropic
and satisfies, for all1 < j <p and 1 < q < Cylog(p),

(X enll,, < Myva - (3.17)

Let X4, ..., Xy denote independent copies of X, then there exists a constant co depending only on
Co and M such that

veV i—1

E {supZoi<Xi,U>} < copVNuw(V)

where w(V') is the Gaussian mean width of V.

Recall that a real valued random variable Z is Lo-subgaussian if and only if for all ¢ > 1, | Z]|, <
coLo+/q, for some absolute constant ¢y, see Theorem 1.1.5 in (Chafal et al., 2012). Hence, Theo-
rem shows that Cjlog(p) “subgaussian” moments for the coordinates of the design X are enough
to upper bound the Rademacher complexity by the Gaussian mean width. Such a result is useful
to show that minmax MOM estimators can achieve the same rate as the ERM (in the subgaussian

framework) even when the data are heavy-tailed data.

Sub-differential of a norm

To solve the sparsity equation — find p* such that A(p*, A) > 4p*/5 — from Definition , we use
the following classical result on the sub-differential of a norm: if ||-|| is a norm on RP, then, for all
t € RP, we have

oy iz es () =t} it#0
@ H)t—{ - oo (3.18)
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Here, B* is the unit ball of the dual norm associated with ||-||, i.e. t € R? — [[t||" = supHvH§1<v,t>
and S* is its unit sphere. In other words, when ¢ # 0, the sub-differential of ||-|| in ¢ is the set of all
vectors z* in the unit dual sphere S* which are norming for ¢ (i.e. z* is such that (z*,¢) = [|¢[|). In
particular, when t # 0, (9]-]|): is a subset of the dual sphere S*.

In the following, understanding the sub-differentials of the regularization norm is a key point for
solving the sparsity equation. If one is only interested in proving “complexity” dependent bounds
— which are bounds depending on ||t*|| and not on the sparsity of ¢* — then one can simply take
p* =20 ||t*]|. Actually, in this case, 0 € I';+(p), so A(p*, A) = p* > 4p*/5 (because B* = (9-]|)o =
[y (p) according to (3.18))). Therefore, understanding the sub-differential of the regularization
norm matters when one wants to derive statistical bounds depending on the dimension of the
low-dimensional structure that contains ¢*. This is something expected since a norm has sparsity
inducing power if its sub-differential is a “large” subset of the dual sphere at vectors having the
sparse structure (see, for instance, the construction of atomic norms in (Bhaskar et al., [2013])).

We now have all the necessary tools to derive statistical bounds for many procedures by applying
Theorem . In each example (given by a convex and Lipschitz loss function and a regularization
norm), we just have to compute the complexity function ry, solve a sparsity equation and check the

local Bernstein condition.

3.6.2 The minmax MOM logistic LASSO procedure

When the dimension p of the problem is large and |[t*|lo = [{i € {1,---,p} : t; # 0}| is small, it is
possible to derive error rate depending on the size of the support of t* instead of the dimension p by
using a /1 regularization norm. It leads to the well-known LASSO estimators, see (Tibshirani, 1996;
Bickel et al., 2009). For the logistic loss function, its minmax MOM formulation is the following.
For a given K € {1,..., N} and A > 0, the minmax MOM logistic LASSO procedure is defined by

ty\x € argmin sup (MOMK(& — €t~) + M|t — ||f||1)> ,
teRP  {cRp
with the logistic loss function defined as ¢, (z,y) = log(1 + exp(—y(z,t))) for all t,z € R” and
y € {£1}, and with the ¢; regularization norm defined for all ¢ € R? by ||t]l; = > 7_, |ti].
We first compute the complexity function r,. Theorem can be applied to upper bound
the Rademacher complexities from in that case because the dual norm of ¢;-norm (i.e the

ls-norm) is l-unconditional with respect to (e;)?_;. Then, if X is an isotropic random vector

satisfying (3.17)), Theorem [3.5 holds and
> ot X;)

jed

E sSup < C(CO7M) |J|w(prﬂrB§) )

tepBYNrBY

where BY denote the unit ball of the ¢; norm. From (Lecué and Mendelson, 2018, Lemma 5.3), we
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have

wipB? (1B . /D if r <p/\/p
PRI = {pwog@pmin(r?/p?,l» itr>p/p 319

Therefore, one can take

z if Np2 > c(v, Co, M)yp?
r2(v,p) = c(v, Co, M) { py/ % log (p?;,) if logp < ¢(v,Co, M)Np® < c(v,Co, M)p* . (3.20)
P 10% if logp > ¢(v, Co, M)Np®.

Let us turn to the local Bernstein assumption. We need to verify Assumption Let ¢ > 0.
If X is an isotropic random vector satisfying (3.17) and Cylog(p) > 2+ ¢, where Cj is the constant
appearing in Theorem then the point a) of Assumption is verified with C’ = ¢(M, Cy). For

any x € RP| let us write f*(z) = <x, t*>, where t* € RP. Let us assume that the oracle is such that

1

P < o) 21 = ey

(3.21)
Therefore, if Equation (3.21]) holds, the local Bernstein Assumption is verified for a constant A
depending on M, Cy and ¢ given in Proposition (since the latter formula is rather complicated,
we will keep the notation A all along this section).

Finally, let us turn to a solution to the sparsity equation for the ¢} norm . The result can be
found in (Lecué and Mendelson, [2018]).

Lemma 3.1. (Lecué and Mendelson|, (2018, Lemma 4.2) . Let us assume that X is isotropic. If the
oracle t* can be decomposed as t* = v + u with u € (p/20)B} and 100s < (p/+/Ck(p, A))2 then
A(p) = (4/5)p, where s = |supp(v)|.

Assume that t* is a s-sparse vector, so Lemma [3.1] applies. We consider two cases depend-
ing on the values of K and N73(v,p*). When Ck,.(p*, A) = r3(v, p*) — which holds when K <

c(co, Co, M)NT3(7, p*) — Lemma 3.1/ shows that p* = c¢(co, M, Cy)s+/log (ep/s)/N satisfies the spar-
sity equation. For these values, the value of ry given in ({3.20]) yields

slog(ep/s)

r5(7, p*) = cco, M, Co, ) N

Now, if Ck,(p, A) = ¢(A,L)K/N — which holds when K > c¢(cg, Co, M)Nri(7y, p*)— we can take
p* = c(co, M,Cy)\/sK/N. Therefore, Theorem applies with

p* = c(co, M, Cy) max(s\/log (ep/s)/N,\/sK/N) .

Finally from Remark note that is necessary to have N > clog(ep/s), where ¢ > 0 is an absolute

constant in order to have A like a constant in Proposition [3.1]
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Theorem 3.6. Let € > 0 and (X,Y) be a random variable taking values in R x {£1}, where X is
<X> 6J'>HLq <Myq
with Colog(p) > 2 +¢e. Let f*: z € RP — <x,t*> be the oracle where t* € RP s s-sparse.
Assume also that the oracle satisfies (3.21)). Assume that (X,Y), (X;,Y;)iez are i.i.d distributed
and N > cslog(ep/s). Let K > 7|O|/3. With probability larger than 1 — 2 exp(—cK), the minmaz
MOM logistic LASSO estimator tAM( with

A = ¢(co, M, Co) max (\/%’ \/SEN)

] 1
lixke — £ < e(co, M, Cy) max <S\/W f\/*)

K 1
liax — |2 < e(co, M, Cp) max (N 8%) ,

K log(ep/s
< ¢(eo, M, Cp) max (N,s%) :

an isotropic random vector such that for all 1 < j <p and 1 < q < Cylog(p),

satisfies

PLf

For K < ¢(co, M, Cy)slog(ep/s), the upper bound on the estimation risk and excess risk matches
the minimax rates of convergence for s-sparse vectors in RP. It is also possible to adapt in a data-
driven way to the best K and A by using a Lepski’s adaptation method such as in (Devroye et al.,
2016; Lecué and Lerasle, 2017, 2019; (Chinot et al., 2019b; (Chinot, 2019b). This step is now well

understood, it is not reproduced here.

3.6.3 The minmax MOM logistic SLOPE

In this section, we study the minmax MOM estimator with the logistic loss function and the SLOPE
regularization norm. Given f; > o > --- > 3, > 0, the SLOPE norm (see (Bogdan et al., 2015))
is defined for all t € R? by

[llsLoPr = Zﬁz i

where (tf)Y_; denotes the non-increasing re-arrangement of (|¢;])%_;. The SLOPE norm coincides
with the ¢; norm when 8; =1 forall j =1,---,p
Given K € {1,..., N} and A > 0, the minmax MOM logistic SLOPE procedure is

£>\,K < argmin sup (MOMK (gt — E{) —+ )‘<||t||SLOPE — ||£||SLOPE)) s (322)

teRP  {cRp

where £, : (z,y) € R? x {—1,1} = log(1 + exp(—y(z,))) for all t € RP.
Let us first compute the complexity function ro. If V' C RP is closed under permutations and
reflections (sign-changes)— which is the case for BY; ,pp, the unit ball of the SLOPE norm — then

sup,cy | (-, v)| is 1-unconditional. Therefore, the dual norm of || - ||s,oppe is 1-unconditional and
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Theorem applies provided that X is isotropic and verifies (3.17)). By (Lecué and Mendelson,
2018, Lemma 5.3), we have

E sup

P P
t€pBsropprBs

S0 (X, t>\ < (Co. M)/TTTew(pBlyope N1BY)

e

< e(Co, MIVTT] { f e Z“ﬂf (3.23)

It follows that
L if p < ¢(Co,y, M)pV'N
rg(VaP) :C<CU7’77M) ][\)7 . \/—
v ifp=c(Coy, M)pVN.
Let us turn to the local Bernstein Assumption. Since the loss function is the same as the one
used in Section [3.6.2] the local Bernstein assumption holds if there exists ¢y > 0 such that

1

P < o) 21— oy

(3.24)

where C" = ¢(M, Cy) is a function of M and Cj only. The constant A in the Bernstein condition
depends on ¢y, Cy and M. As for the LASSO, since the formula of A is complicated (given in
Proposition , we write A all along this section but we assume that ry(7y, p*)(2C")2+9)/e < ¢ /2
so that A can be considered like an absolute constant (depending only on ¢g). This condition is
equivalent to assuming N 2 slog(ep/s).

A solution to the sparsity equation relative to the SLOPE norm can be found in (Lecué and
Mendelson|, 2018). We recall this result here.

Lemma 3.2. (Lecué¢ and Mendelson, |2018, Lemma 4.3) Let 1 < s <p and set B; =, Bi/ V.
If t* can be decomposed as t* = u + v with u € (p/20)BY; opp and v is s-sparse and if 408, <

p// Crr(p; A) then Alp) = 4p/5.

Assume that t* is exactly s-sparse, so that Lemma 3.2 applies. We consider two cases depending

on K. Consider the case where K < c(co, Co, M)NT3(7, p*), so /Ck.(p*, A) = ra(y,p*). For
B; = cy/log(ep/j), one may show that B, = cy/slog(ep/s) (see (Bellec et al., 2018 Lecué and
Mendelson) [2018)). From (3.23) and Lemma [3.2] it follows that we can choose

log(ep/s)

VN

For Ck .(p, A) = ¢(co, M, Co) K/N holding when K > ¢(co, Co, M)Nr3(7, p*), we take p* = c¢(co, Co, M)+/sK
satisfying the sparsity equation. We can therefore apply Theorem for

p* = c(co, M, Cy) max(s+/log (ep/s)/N,VsK/VN) .

Theorem 3.7. Let e > 0 and (X,Y') be random variable with values in R x {£1} such that X is
(X, €j>HLq <Myq

slog(en/s)

p" = clco, M,Co)s N

and thus 73(7, p*) = ¢(co, M, Cp) (3.25)

an isotropic random vector such that for all 1 < j <p and 1 < ¢ < Cylog(p),
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with Colog(p) > 2+ ¢e. Let f* 1z € RP <x,t*> be the oracle where t* € RP s s-sparse.
Assume also that the oracle satisfies (3.21)). Assume that (X,Y),(X;,Y;)ier are ii.d and N >
cslog(ep/s). Let K > 7|0|/3. Let tyx be the minmaz MOM logistic Slope procedure introduced
in for the choice of weights B; = \/log(ep/j),j = 1,...,p and regularization parameter
A = c(co, M, Co) max(1/V/'N,\/K/(sN)). With probability larger than 1 — 2 exp(—cK),

3 log(ep/s [K
ltax — t*||sLore < c(co, M, Cy) max (S\/W Vs >

K 1
Itz — t*]12 < e(co, M, Co)maX(N s%) :

K log(ep/s
PL;, . < c(co, M, Cp) max (N’ s#) :
For K < ¢(co, M, Cy)slog(ep/s)/N, the parameter \ is independent from the unknown sparsity
s and these bounds match the minimax rates of convergence over the class of s-sparse vectors in
R? without any restriction on s (Bellec et al.; 2018)). Ultimately, one can use a Lepski’s adaptation
method to chose in a data-driven way the number of blocks K as in (Lecué and Lerasle, 2019) to

achieve these optimal rates without prior knowledge on the sparsity s.

3.6.4 The minmax MOM Huber Group-Lasso

In this section, we consider regression problems where ) = R. We consider group sparsity as notion
of low-dimensionality for ¢*. This setup is particularly useful when features (i.e. coordinates of X)
are organized by blocks, as when one constructs dummy variables from a categorical variable.

The regularization norm used to induce this type of “structured sparsity” is called the Group
LASSO (see, for example (Yang and Zou, 2015) and (Meier et al., |2008))). It is built as follows: let
G1,- -+, Gy be a partition of {1,--- ,p} and define, for any ¢t € R?

M
Il =Y lltc,l2 - (3.26)
k=1

Here, forall k = 1,..., M, t¢, denotes the orthogonal projection of ¢ onto the linear Span(e;,i € Gy)
— (e1,...,ep,) being the canonical basis of R?.

The estimator we consider is the minmax MOM Huber Group-LASSO defined, for all K €
{1,--- N} and A > 0, by

I?A,K € argmin sup (MOMK(& - Eg) + M||tller — ||t~HGL)) ,
teRP  {cRp

where t € RP — /¢, is the Huber loss function with parameter o > 0 defined as

Ly, — (X, t))? if |V, — (X, t)| <§
2(1 <Z7>) |Z <za>|_

E(Xu)/;): 5
t 51 — (Xt = & i Vi~ (X, 8] > 6
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In particular, it is a Lipschitz loss function with L = §. Estimation bounds and oracle inequalities
satisfied by 7, i follow from Theorem as long as we can compute the complexity function ro, we
verify the local Bernstein Assumption and we find a radius p* satisfying the sparsity equation. We
now handle these problems starting with the computation of the complexity function rs.

The dual norm of || - ||gr is z € R? — ||z||&, = maxi<k<m |26, |2, it is not k-unconditional with
respect to the canonical basis (e;)!_; of R for some absolute constant x, so Theorem does not
apply directly. Therefore, in order to avoid long and technical materials on the rearrangement of
empirical means under weak moment assumptions for the computation of the local Rademacher
complexity from (3.10)), we simply assume that the design vectors (X;);ez are Lo-subgaussian and
isotropic: for alli € Z, all t € RP and all ¢ > 1

(% t)l,, < Lov (e8], and (X8}, = It (327

In that case, a direct chaining argument allows to bound Rademacher processes by the Gaussian

processes (see (Talagrand, 2014) for chaining methods):

> ot X;)

jed

E  sup < e(Lo)VJw(pBYy N BY) .

tepBE NrBY

Here, BY; is the unit ball of || - ||qL, w(pBg;, NrBY) is the Gaussian mean width of the interpolated
body pB&; NrBS. Tt follows from the proof of Proposition 6.7 in (Bellec et al., [2017) that when
the M groups Gj,...,G) are all of same size p/M we have

P (M> if 0 < p<rvM
w(pBey, NrBy) < Cp\/M loeGr) RUsesr

cry/p if p>rvM
This yields

= L—l—log(M’”Q) if 0 < c(d, Lo, v)2 < VM
r5(v,p) = (8, Lo, 7) W\/M r* (0 Lo, )z

VP if ¢(d, Lo,7)2 > VM

(3.28)

Let us now turn to the local Bernstein Assumption. We need to verify Assumption 3.11} As we
assumed that the design vectors (X;);er are isotropic and Lg-subgaussian, it is clear that the point
a) in Assumption holds with C’" = L. Let us take ¢ = 2 (another choice would only change
the constant). For the point b), we assume that there exists o > 0 such that, for all z € X and all
z € Rsatisfying |z — f*(x)] < 2L3\/Ckr(p,4/a), Fy|x=z(z +0) — Fy|x—s(z — ) > a. Under these
conditons, the local Bernstein Assumption is verified for A = 4/« according to Proposition . We
will assume that Cg ,(p*,4/a) < ¢ for some absolute constant ¢ so that ¢ and «a can be taken like
absolute constant. Condition “Ck ,(p*,4/a) < ¢” is satisfied when N 2 cslog(ep/s).

Finally, we turn to the sparsity equation. The following lemma is an extension of Lemma to

the Group Lasso norm.
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Lemma 3.3. Assume that X is isotropic. Assume that t* = u + v where ||u|lqgr < p/20 and v is
group-sparse i.e vg, = 0 for all k & I for some I C {1,...,M}. If100|I| < (p/\/Cr.r(p,4/a))?
then A(p) > 4p/5.

Proof. Let us define r(p) := /Ck,(p,4/a) and recall that

B = om0
Here, Sy, is the unit sphere of |||, and I';+(p) is the union of all sub-differentials (0 |||/, )v for
all v € t* + (p/20)BY,. We want to find a condition on p > 0 insuring that A(p,4/a) > 4p/5.

Let w be a vector in R? such that |w||qr, = p and ||w]|2 < r(p). We construct z* € RP such that
28 = we/ |[we, ||y if k & I (so that (25 ,we, ) = |lwg, |2 for all k ¢ I) and 25, = ve,/ |lvg, |, if
k € I (so that (zg,, va, ) = [|vg,|l, for all k € I). We have || 2§, }2 =1forallk € [M],so ||z*|lg, =1
(i.e. z* is in the dual sphere of ||-||;) and (z*,v) = ||v[|5;, (i-e. z* is norming for v). Therefore, it
follows from that z* € (0 ||| o1)v- Moreover, |Jul|qr < p/20 hence v € t* + (p/20)Bg,;, and so

z* € I'«(p). Furthermore, for this choice of sub-gradient z*, we have

<Z*7w> = Z<Z*Gk’ ka> + Z<Zékv ka> > — Z ”kaH? + Z HkaHQ

kel kgl kel kI
M

= llwalla =2 lwella > p =23/ (p) -
k=1 kel

In the last inequality, we used that ||w]||,; = p and that

Do lwell < VI D lwe, 3 < VT wlly < /117 (p)-

kel kel

Then (z*,w) > 4p/5 when p—2+/|I|r(p) > 4p/5 which happens to be true when 100[1] < (p/r(p))?.

Assume that t* is exactly s-group sparse, so Lemmal[3.3|applies. We consider two cases depending

on the value of K. When K < ¢(Lo,a, 6)Nr3(7y, p*), \/Crr(p*,4/a) = ro(7, p*). By Lemma
and (3.28)), it follows that (for equal size blocks), one can choose

S p

NV M

This result has a similar flavor as the one for the Lasso. The term s’ = sp/M equals block sparsity

p* = c(Ly,a,d)

+log M and thus 7%(v,p*) = c(Lo, @, 5)% (% + log M) . (3.29)

x size of each blocks, i.e to the total number of non-zero coordinates in t*: s = ||t*||,. Replacing
the sparsity s’ by sp/M in Theorem , we would have obtained p* = ¢(Lg, o, 0)(sp/M)+/log(p)/N
which is larger than the bound obtained for the Group Lasso in Equation . It is therefore better
to induce the sparsity by blocks instead of just coordinate-wise when we are aware of such block-
structured sparsity. In the other case, when K < ¢(Lg, o, 0)N73(7, p*), we have /Cr,(p*,4/a) =
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c(Ly, a,0)y/ K /N and so one can take p* = ¢(Lg, a, 0)/sK/N. We can therefore apply Theorem

with
. s P | K
p* = ¢(Lo, a, §) max (_\/N v + log(M), /s _N) .

Theorem 3.8. Let (X,Y) be a random variables with values in RP x R such thatY € Ly and X 1is
an isotropic and Lo-subgaussian random vector in RP. Assume that (X,Y), (X;, Yi)iez are i.i.d. Let
() = <t*, > for some t* € RP which is s-group sparse with respect to equal-size groups (Gy)iL,. Let
K >7|0]/3 and N > cs(p/M + log(M)). Assume that there exists o > 0 such that, for all x € RP
and all z € R satisfying |z — (t*,2)| < 2L%\/Ck(2p*,4/), Fyix=2(0 + 2) — Fy|x=a(z — 8) > «
(where Fy|x—y is the cumulative ditribution function of Y given X = x). With probability larger
than 1 — 2exp(—cK), the MOM Huber group-LASSO estimator ty i for

1 K
A = ¢(Lo, @, 9) max (\/—NU%%—lOgM,Vw)

satisfies

- . s K
ltxx — ]| ar < ¢(Lo, o, §) max (\/_N % + log(M), /s /N)

N * S P K
s = #18 < c(Los 8y max (- (£ + 1ox(00)) 7 )

L log(]\/[)) ,5) :

s
PL;, . < c(Lo, @, 0) max (— (M I

N
For K < ¢(Lg,a,0)s(p/M + log M), the regularization parameter X is independent from the
unknown group sparsity s (the choice of K can be done in data-driven way using either a Lepski
method or a MOM cross validation as in (Lecué¢ and Lerasle, 2019)). In the ideal i.i.d. setup (with no
outliers), the same result holds for the RERM as we assumed that the class F'— f* is Ly-subgaussian
and for the choice of regularization parameter A = ¢(Lg, ,6)(v/p/(NM) + /log(M)/N). The
minmax MOM estimator has the advantage to be robust up to ¢(Lo, a, 0)s(p/M + log M) outliers
in the dataset.

3.7 Simulations

This section provides a simulation study to illustrate our theoretical findings. Minmax MOM
estimators are approximated using an alternating proximal block gradient descent/ascent with a
wisely chosen block of data as in (Lecué and Lerasle, 2019)). At each iteration, the block on which
the descent/ascent is performed is chosen according to its “centrality” (see algorithm [2| below).
Two examples from high-dimensional statistics are considered 1) Logistic classification with a ¢;

penalization and 2) Huber regression with a Group-Lasso penalization.



104 CHAPTER 3. ROBUST RERM AND MINMAX-MOM

3.7.1 Presentation of the algorithm

Let X = RP and let F = {(¢,-),t € RP}. The oracle f* = argmin,p P{;(X,Y) is such that
f*(-) = (t,-) for some ¢* € RP. The minmax MOM estimator is defined as

tyx € argminsup MOMg (¢, — £7) + X(||t]| — |I£]) (3.30)
teRP  {cRp
where £ is a convex and Lipschitz loss function and || - || is a norm in RP.

Following the idea of (Lecué and Lerasle, 2019), the minmax problem ({3.30) is approximated by
a proximal block gradient ascent-descent algorithm, see Algorithm [2] At each step, one considers
the block of data realizing the median and perform an ascent/descent step onto this block. The

regularization step is obtained via the proximal operator

1
prox, . : ¢ € R” — argmin {§||CU —yll3+ /\H?JH} :
yEeRP

Algorithm 2: Proximal Descent-Ascent gradient method with median blocks

Input: A number of blocks K, initial points ¢, and #, in R?, two sequences of step sizes (7))
and (7;); and T a number of epochs
Output: An approximating solution of the minimax problem (3.30)
1fori=1,---,T do

2 Construct a random equipartition By LI ---U B of {1,--- | N}
3 Find k € [K] such that MOMg (¢, — ¢;.) = Pp, (€, — (3,)
4 Update:

5 tip1 = proxy (ti — mVe(t = Pp L)y,

6 £i+1 = pI'OX)\H.” ('EZ - 'F]ZVE(E — PBkgf)‘~:£1)

7 end

To make the presentation simple in Algorithm 2| we have not perform any line search or any so-
phisticated stopping rule (see, (Lecué and Lerasle, 2019) for more involved line search and stopping
rules in the setup of minmax MOM algorithms). To compare the statistical and robustness perfor-
mances of the minmax MOM and RERM, we perform a proximal gradient descent to approximate
the RERM, see Algorithm [3] below.

The number of blocks K is chosen by MOM cross-validation (see (Lecué and Lerasle, [2019) for more
precision on that procedure). The sequences of stepsizes are constant along the algorithm (1,); := 7

and (7;); = 7 and are also chosen by MOM cross-validation.
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Algorithm 3: Proximal gradient descent algorithm

Input: Initial points ¢y in R? and a sequence of stepsizes (n;);
Output: Approximating solution to the RERM estimator.
1 fori=1,---,T do
2 tit1 = prox, (ti —n;Vi(t — PNﬁt)‘t:ti)

3 end

3.7.2 Organisation of the results

In all simulations, the links between inputs and outputs are given in the regression and classification

problems in R? respectively by the following model:
in regression: Y = (X, t*) + ¢; in classification: ¥ = sign((X, ") + () (3.31)
where the distribution of X and { depend on the considered framework:

e First framework: X is a standard Gaussian random vector in RP and ( is a real-valued

standard Gaussian variable independent of X with variance o2.

e Second framework: X is a standard Gaussian random vector in R? and ¢ ~ 7T (2) (student
distribution with 2 degrees of freedom). This framework is used to verify the robustness w.r.t

the noise.

e Third framework: X = (z1,---,2,) withzy,..., 2, RS 7 (2) and ( is a real-valued standard
Gaussian variable independent of X with variance o?. Here we want to test the robustness

w.r.t heavy-tailed design (X;);.

e Fourth framework: X = (z1,---,z,) with z1,..., 2, g T(2) and ¢ ~ T(2). We also
corrupt the database with |O] outliers which are such that for all i € O, X; = (10°)!_, and

Y = 1. Here we verify the robustness w.r.t possible outliers in the dataset.

In a both first and second frameworks, the RERM and minmax MOM estimators are expected to
perform well according to Theorem [3.1|and Theorem [3.2]even though the noise ¢ can be heavy-tailed.
In the third framework, the design vector X is no longer subgaussian, as a consequence Theorem [3.1]
does not apply and we have no guarantee for the RERM. On the contrary, Theorem provides
statistical guarantees for the minmax MOM estimators. Nevertheless, it should also be noticed that
the study of RERM under moment assumptions on the design can also be performed, see for instance
(Lecué and Mendelson, 2017). In that case, the rates of convergence are still the same but the
deviation is only polynomial whereas it is exponential for the minmax MOM estimators. Therefore,
in the third example, we may expect similar performance for both estimators but with a larger
variance in the results for the RERM. In the fourth framework, the database has been corrupted
by outliers (in both outputs Y; and inputs X;); in that case, only minmax MOM estimators are

expected to perform well as long as |O| is not too large compare with K, the number of blocks.
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3.7.3 Sparse Logistic regression

Let ¢ denote the Logistic loss (i.e. ¢ € R? — {(z,y) = log(1 + exp(—y(z,t))),Vz € RP,y € Y =
{#£1}), and let the ¢; norm in R? be the regularization norm. Figure [3.1| presents the results of our
simulations for N = 1000, p = 400 and s = 30. In subfigures (a), (b) and (c) the error is the Ly
01 between the output ffm of the algorithm and the true t* € RP.

error, which is here ||ff<)\ -t
In subfigure (d), an increasing number of outliers is added. The error rate is the proportion of
misclassification on a test dataset. The stepsizes, the number of block and the parameteter of
regularization are all chosen by MOM cross-validation (see (Lecué and Lerasle, 2019) for more
details on the MOM cross-validation procedure) Subfigure (a) shows convergence of the error for
both algorithms in the first framework. Similar performances are observed for both algorithms but
Algorithm [2| converges faster than Algorithm [3] It may be because the computation of the gradient
on a smaller batch of data in step 5 and 6 of Algorithm [2] is faster than the one on the entire
database in step 2 of Algorithm |3| and that the choice of the median blocks at each descent/ascent
step is particularly good in Algorithm [2] Subfigure (b) shows the results in the second framework.
The convergence for the alternating gradient ascent/descent algorithm is a bit faster than the one
from Algorithm , but the performances are the same. Subfigure (¢) shows results in the third setup
where ( is Gaussian and the feature vector X = (xy,--- ,x,) is heavy-tailed, i.e. xy,...,x, are i.i.d.
with 21 ~ 7 (2) — a Student with degree 2. Minmax MOM estimators perform better than RERM.
It highlights the fact that minmax MOM estimators have optimal subgaussian performance even
without the sub-gaussian assumption on the design while RERM are expected to have downgraded
statistical properties in heavy-tailed scenariis. Subfigure (d) shows result in the fourth setup where
an increasing number of outliers is added in the dataset. Outliers are X = (10°)} and V; = 1
a.s.. While RERM has deteriorated performance just after one outliers was added to the dataset,

minmax MOM estimators maintains good performances up to 10% of outliers.

3.7.4 Huber regression with a Group Lasso penalty

Let ¢ denote the Huber loss function ¢t € R — {(z,y) = (y — (x,t))?/2 if |y — (z, )| < 6§
and ((z,y) = bly — (z,t)| — 62/2 other wise for all z € R? and y € Y = R. Let Gy,--- ,Gy
be a partition of {1,---,p}, |t|l = [[tller = Sony llte,ll2. Figure presents the results of our
simulation for N = 1000, p = 400 for 30 blocks with a block-sparsity parameter s = 5. In subfigures
(a), (b) and (c), the error is the Lo-error between the output of the algorithm and the oracle ¢* —
which corresponds here to a ¢4 estimation error, given that the design in all cases is isotropic. In
subfigure (d) the prediction error on a (non-corrupted) test set of both the RERM and the minmax
MOM estimators are depicted.

The conclusion are the same as for the Lasso Logistic regression: Algorithm [2] (regularized
minmax MOM) has better performances than algorithm (3{ (RERM) in case of heavy-tailed inliers

and when outliers pollute the dataset while both are robust w.r.t heavy-tailed noise.
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Figure 3.1: ¢5 estimation error rates of RERM and minmax MOM proximal descent algorithms (for
the logistic loss and the ¢; regularization norm) versus time in (a), (b) and (c¢) and versus number
of outliers in (d) in the classification model (3.31)) for N = 1000, p = 400 and s = 30.

3.8 Conclusion

We obtain estimation and prediction results for RERM and regularized minmax MOM estimators for
any Lipschitz and convex loss functions and for any regularization norm. When the norm has some
sparsity inducing properties the statistical bounds depend on the dimension of the low-dimensional
structure where the oracle belongs. We develop a systematic way to analyze both estimators by
identifying three key idea 1) the local complexity function ro 2) the sparsity equation 3) the local
Bernstein condition. All these quantities and condition depend only on the structure and complexity

of a local set around the oracle. This local set is ultimately proved to be the smallest set containing
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Figure 3.2: Results for the Huber regression with Group-Lasso penalization

our estimators. We show the versatility of our main meta-theorems on several applications covering
two different loss functions and four sparsity inducing regularization norms. Some of them inducing

highly structured sparsity concept such as the Group Lasso norm.

On top of these results, we show that the minmax MOM approach is robust to outliers and to
heavy-tailed data and that the computation of the key objects such as the complexity functions ry
and a radius p* satisfying the sparsity equation can be done in this corrupted heavy-tailed scenario.
Moreover, we show in a simulation section that they can be computed by a simple modification of
existing proximal gradient descent algorithms by simply adding a selection step of the central block
of data in these algorithms. The resulting algorithms are robust to heavy-tailed data and to few

outliers (in both input and output variables) for the examples in Section [3.7]
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3.9 Proof main theorems

3.9.1 Proof Theorem [3.1]

All along this section we will write r(p) for (A4, p). Let 6 = 1/(3A). The proof is divided into two
parts. First, we identify an event where the RERM f = fARERM is controlled. Then, we prove that
this event holds with large probability. Let p* satisfying the A-sparsity Equation from Definition
and let B = p*B Nr(p*)Br, and consider

Q:={VfeFN(f +B), |[(P—Py)Lf <"} .

Proposition 3.3. Let \ be as in (3.6) and let p* satisfy the A- sparsity from Definition . On

Q, one has
If = F <o I = flle. <7(p*) and PL; < A7 (p")
Proof. Prove first that f € f* + B. Recall that
VieF,  Ly=Lr+MIS= 10D -

Since f satisfies PNE} < 0, it is sufficient to prove that PNE} > 0 for all f € F\(f*+ B) to get
the result. The proof relies on the following homogeneity argument. If PyLy > 0 on the border of
f*+ B, then PyLy >0 for all f e F\ {f*+ B}.

Let f € F\{f*+ B}. By convexity of {f*+ B} N F, there exists fy € F and a > 1 such that
f—=f*=alfo— f*) and fo € O(f* + B) where O(f* 4+ B) denotes the border of f*+ B.

Figure 3.3: Construction of fj.

For all i € {1,--- N}, let ¢, : R — R be the random function defined for all u € R by

Pi(u) = Lu+ f7(X5),Y5) — (7 (X3), Vi) (3.32)
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By construction, for any 4, 1;(0) = 0 and ); is convex because ¢ is. Hence, at;(u) < ¢;(au) for all

u € R and a > 1. In addition, ¥;(f(X;) — f*(X})) = 0(f(X,),Y;) — 0(f*(X;),Y;). Therefore,
PyLy= %Zwi(f(Xi) - [1(X3) = %Z%(a(fO(Xi) — [1(X3))
> 5 2 Uilh(X) = f1(X0) = aPyLy, - (3:33)

For the regularization term, by the triangular inequality,

A=W =11+ alfo = SO = 11771 = adlfoll = 1771 -
From the latter inequality, together with (3.33)), it follows that
PyL} > aPyLCh, (3.34)

As a consequence, if PyL} > 0 for all fo € F'NO(f* + B) then PyL} > 0 for all f € F\(f* + B).

In the remaining of the proof, assume that © holds and let fo € FNO(f*+B). As fo € FN(f*+B),

on ),
|(P — Py)Ly,| < 6r%(p") . (3.35)
By definition of B, as fo € O(f* + B), either: 1) ||fo — f*|| = p* and ||fo — f*||;, < r(p*) so
a=|lf=f/p or2) [fo—flly, =r(p") and [|fo = f*]| < p" so a = ||f = f*|l, /r(p"). We treat

these cases independently.
Assume first that [|fo — f*|| = p* and [[fo — f*||;, < 7(p*). Let v € E be such that | f* —v| <
p*/20 and g € O||-]| (v). We have

Lfoll = W= W foll = ol = If* =l = Cg. fo = v) = [LF* =

As the latter result holds for all v € f*+ (p*/20)B and g € 9 ||-|| (v), since fo— f* € p*SNr(p*)BL,,
it yields
[foll = 1771l = A(p") = p*/10 = 7p"/10 . (3.36)

Here, the last inequality holds because p* satisfies the sparsity equation. Hence,
PyLy=PyLy+ A(IF = I1F°]) > a(PyLy, +TAp*/10) . (3.37)
Thus, on ©, since A > 100r%(p*)?/(7p*),

PxLiy + TAp* /10 = PLy + (Py — P)Ly, + TAp* /10 > —0r*(p*) + TAp* /10 > 0 .
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Assume now that || fo — f*||,, = 7(p*) and | fo — f*|| < p*. By Assumption on ,
PyL} > PyLy, = M| fo— ¥l = PLs, + (Px — P)Lys, — Ap*
> A7 I fo = Nz, = 0r%(0") = A" = (AT = 0)r(p") — A"
From (B.6), A < (A™' — 0)r*(p*)*/p*, thus PyL} > 0. Together with (8.37), this proves that
f € f*+ B. Now, on , this implies that (P — Pn)Ls| < 0r?(p*), so by definition of 1,
PL; = PyLy+ (P = Pa)Li + AN = I1F1) < 0r%(07) + Ap" < A7%(p7)
u

To prove that € holds with large probability, the following result from (Alquier et al., 2019) is

useful.

Lemma 3.4. (Alquier et al|, 2019, Lemma 9.1) Grant Assumptions cmd. Let F' C F denote
a subset with finite Ly-diameter dy,(F'). For every u > 0, with probability at least 1 — 2 exp(—u?)

16L L,
su P—Py)(Lr— L) <
f,geII)W |( N)( f g)| = \/N

It follows from Lemma that for any u > 0, with probability larger that 1 — 2 exp(—u?),

(w(F") +udp,(F")) .

sup {(P - PN)£f| < sup ‘(P — Py)(Ly — Eg)‘
fEFN(f*+B) fL9EFN(f*+B)

16L Ly ) ;
< N (w(EN(f*+B)) +ud,(FN(f*+B))) .

It is clear that dp,(F N (f* + B)) < r(p*). By definition of the complexity function (3.3)), for
u = 0v/Nr(p*)/(32LLg), we have with probability at least 1 — 2exp (— 6> Nr?(p*)/(32LLo)?),

Vf S Fﬁ(f*—i‘B), ‘(P—PN>£}C‘ < 97’2([)*) .

3.9.2 Proof Theorem 3.2

All along the proof, the following notations will be used repeatedly.
1 A
34A’ v=0/(192L) f= frxa
The proof is divided into two parts. First, we identify an event where the minmax MOM

A~

estimator f is controlled. Then, we prove that this event holds with large probability. Let K >
710|/3, and k € {1,2} let

7

Ckr
—’Tg(%“p*)) and A= 100252
p*

Let B, = \/CkrxBr, N kp*B. Consider the following event

K
QO = {vﬁ; €{1,2}, Vf € Fn f +B, Z[(‘(PBk —P)(t; - ef*)’ < ecK,r,n) > g} (3.38)
k=1
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Deterministic argument

Lemma 3.5. f— f* € By if there exists n > 0 such that

sup MOMyc (Lg- = L5) + AN = MA1) <= (3.39)
fEf*+F\By
up MOMic (Cg- = Lg) + AN = 1IFI) < (3.40)

Proof. For any f € F, denote by S(f) = sup,cp MOMg [y — £g] + X([| fI| — [lg]l)- If (B-39) holds,
by homogeneity of MOMy, any f € f* + F\B, satisfies

S()z | inf  MOMglf — (] + A= 1LF1) > (3.41)

On the other hand, if (3.40) holds,

S(f7) :ilelgMOMKVf* =L+ AU =A<

Thus, by definition of f and (3.40)),
S(f)<S(f)<n .
Therefore, if (3.39) and (3.40) hold, f € f* + B,. n

It remains to show that, on Qf, Equations (3.39)) and ([3.40) hold for x = 2.

Let k € {1,2} and f € F'N B,. On Qg, there exist more than K/2 blocks By such that
(PBk - P)(gf - gf*) S QCK,T,H . (342)

It follows that

sup  MOMg (Ef* — Ef) < 0Ckrx
FEF*+FNBy

In addition, ||f]| — ||f*]] < kp*. Therefore, from the choice of A, on Qg, one has

sup MOMpg (£p- — £5) + A1/ = If]]) < (14 108)0CK 1 - (3.43)
feEf*+FnNBg

Assume that f belongs to F\B,. By convexity of F', there exists fy € f*+ FN B, and a > 1
such that

f=r+alfo—f) . (3.44)
For alli € {1,---, N}, let ¢ : R — R be the random function defined for all v € R by

Yi(u) = u+ f7(Xy), Vi) — 0(f*(X3), V) . (3.45)
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The functions 1; are convex and satisfy 1;(0) = 0. Thus at);(u) < ¥;(au) for all w € R and a > 1
and ¢;(f(X;) — f*(Xi)) = ((f(X:),Yi) = £(f*(X;),Y:). Hence, for any block By,

Py Ly = sz Xi) — f*(X) |B|Z¢Z alfo(X:) = f1(X2)))

ZEB 1€By,
|Bk| ZB Vi(fo(Xi) = £7(Xi)) = aPp, Ly, . (3.46)
1EDY,

By the triangular inequality,

A=l =17+ elfo = SO = 1771 = el foll = 171D
Together with (3.46]), this yields, for all block B
Py, L} > aPp L} . (3.47)

As fo S FQBK, on QK,
(P — Pp,)Ls| <O0Ck k. (3.48)
As fo can be chosen in O(f* + B,), either: 1) || fo — f*|| = xp* and || fo — f*||;, < v/Ckrx o1 2)

1fo = F*llz, = V/Crrw and [[fo = [*]| < kp".
Assume first that ||fo — f*|| = xp* and ||fo — f*||;, < /Ckrx- Since the sparsity equation is
satisfied for p = p*, it is also satisfied for kp*. By (13.36]),

AW foll = [LF11) = TARp* /10 = ThClra - (3.49)

Therefore, on Q, there are more than K/2 blocks By where

TRAp®
Pp, L} > aPy L} > a( —OC ey + “1 Op ) > Tk — 1)0CK s . (3.50)
It follows that
MOMK(EJ‘ - gf*) + )\(Hf” 1/ H) 049(7/€CKr2 CK,T,I{)CK,T,Q . (3.51)

Assume that [|fo — f*[|,, = \/Ckrx and ||fo — f*|| < kp*. By Assumption , on Qp, there
exist more than K /2 blocks By where

PBkﬁ? > PBk£f0 — A HfO - f*H > P£f0 + (PBk - P)ﬁfo - /\/ip*
> A7 fo— £7NI7, = 0Ck . — 6AP" = 0(33CK 1 — 106C2) -

It follows that

MOME (€7 — £p+) + A(ILF = 1F71]) = af(33Ck,rn — 106C2) - (3.52)
From Equations (3.43)), (3.51)) and (3.52)) with x = 1, it follows that
sup MOM (5= — £7) + A(IIF*I = | f]]) < 116Ck,2 (3.53)

fer
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Therefore, (3.40) holds with n = 110Ck , . Now, Equations (3.51) and (3.52) with x = 2 yield

sup MOMK(EJC* — éf) + >\(||f*|| - Hf”) < —13CYGCK,T’2 < —11001(771,2 .
fef*+F\B2
Therefore, Equation (3.39)) holds with n = 110Ck 5. Overall, Lemma shows that f € By. On
Q, this implies that there exist more than K /2 blocks B where P,Cf < PBk/jf + 0Ck 2. In
addition, by definition of f and (3.53),

MOM (£ — €5-) + AIFI = 171 < SupMOMK(ﬁf — L) + ML= N1 < 110Ck 2 -

This means that there exist at least K/2 blocks By where Pp, L; + A= 1721 < 110CKk 2. As
£l = 11751l = =IIf = f*Il = —2p*, on these blocks, Pp, L < 310Ck o. Therefore, there exists at
least one block By for which simultaneously PL i< Pg L it 0Ck 2 and Pp, L i< 310Ck ;. This
shows that PL; < 320Ck ,» < A 1Cx o

Control of the stochastic event

Proposition 3.4. Grant Assumptions and[3.7. Let K > 7|0|/3. Then Q holds with
probability larger than 1 — 2 exp(—K/504).

Proof. Let F = F N (f*+ B,) and let ¢(t) = W¥{t > 2} + (t — ¥{1l < ¢t < 2}. This function
satisfies Vt € RT W{t > 2} < ¢(t) < W{t > 1}. Let Wy, = ((X;,Y:))ien, and, for any f € F, let
G(Wy) = (Pg, — P)(¢; — €4+). Let also Ck,, = max (96L2K/(92N), ra (v, f{p*)). For any f € F,
let

K
2(f) =D G (Wi)| < 0Ckn} -
k=1
Proposition 3.4 will be proved if z(f) > K /2 with probability larger than 1 —e /594, Let IC denote
the set of indices of blocks which have not been corrupted by outliers, K = {k € {1,--- | K} : By C

T}, where we recall that Z is the set of informative data. Basic algebraic manipulations show that

() |/C|—sup2( 20Cs ) \wavk)r)—E¢<2<90K7r,5>—1|cf<wk>|>)

kel

= > Ed(2(0CKk ) G H(Wi)]) - (3.54)

kek
The last term in (3.54)) can be bounded from below as follows. Let f € F and k € K,

0CK ARG +(W,,)?
Ep(2(0CK ) |G r(Wi)]) < P( |G (W) > —R0E ) /( kg
2 (GCKT‘K)

4K2 4L2

WZE (U =P V] < ol = 1l

1€ By
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The last inequality follows from Assumption . Since || f — |, < /Ckorr,

412K
E¢(2(0CK )~ |Gy(Wi)]) < S POV
As Crrn > 96L°K/(6°N),
1
Plugging this inequality in (3.54]) yields
) 2 KI(1 - )~ sup Y ( 20Ci )Gy (W) —E¢<2<90K,r,n>1|Gf<wk>\>) . (35)
& kek

Using the Mc Diarmid’s inequality, with probability larger than 1 — exp(—|K|/288),we get

sup 3 (6020601165 Wi)) ~ BA2(0Cicrn) G (W)) )

feF pex

< B + s Y (6(2(6Ck,) G W]) ~ B6(2(6Ci, ) G

By the symmetrization lemma, it follows that, with probability larger than 1 — exp(—|K|/288),

sup 3 (6020011016 W) ~ Bo(2(6Cics,) 1G5 )

FEF kex
K
< ’24| +2Esup » 04 d(2(0CKk re) G (W)]) -
FEF ke

As ¢ is 1-Lipschitz with ¢(0) = 0, the contraction lemma from (Ledoux and Talagrand, [2013)and
yields

sup 3 (¢<2<60K,r,ﬁ>1|Gf<wk>|>—E¢<2<ecK,r,n>1|Gf<wk>\>)

fe€F ek

Kl 4 G(
< u+—]Esup Zak (W

240 jer (K

K 4 P, — PY(lr — Ve

||+ 4B sup Zak(Bk )y = Ly+)
0 feF kek CK,’I’,K

For any k € IC, let (0;)iep, independent from (o} )kex, (X;)iez and (Y;)iez. The vectors (o;0% (¢ —
Cp)(X5,Y))i s and (0;(€; — €5+ ) (X5, Y:))s, s have the same distribution. Thus, by the symmetrization
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and contraction lemmas, with probability larger than 1 — exp(—|K|/288),

— U)X, Y,
<M—|—§E8up ZLZO’Z(&I gf )( i z)

- 24 0 feF ek | k| i€B, CK;rﬁ
K| 8K by — ) (X5, Y))
= —+ —FEsup 0
24 ON ferF iGUkZeKBk CK,’!’K
K] 8LK (f = fX)
< —+4+ —FEsup lof) 3.56
24 ON feF iEUkze}:ch OK,T,H ( )

Now either 1) K < 62r3(vy, kp*)N/(96L?) or 2) K > 0*r3(vy,kp*)N/(96L?). Assume first that
K < 6%r3(v,kp*)N/(96L?), so Ck... = r5(7y, kp*) and by definition of the complexity parameter

SR WIE0] .

< VKN
CK,’!’,H feF T% (77 Hp*)

Y ailf - X)) < 7

1€Ukexc Bk

E sup
feFr

1€Ukexc B

If K > 60*r3(v, kp*)N/(96L?), Ckrre = 96L2K/(0*N). Write F = F; U Fa, where

Fum AL €F I = Pl <ralvme)y Fo=F\Fi .

Then,
— (X,
E sup Z O_i(f Cf )(Xi)
FeF 1 ieUrex By Kk
1
B[ | ¥ ag-me|van| 3 atr- ||
CK’T’K Jen 1€Ukex Bk fer2 1€Ukex Bk

FOI' any f € f27 g = f* + (f - f*)r2(%/€/)*)/ \V/ CK,’I‘,I{ S fl and

Y CK,T‘,K/

Z oi(f = [)(X)| = ro(7y, Kp*)

1€Ukex B

S ailg— (X

1€Ukex Bg

It follows that

* \V CK,r,n .
sup Z Ui<f_f )(Xz>‘ <msu Ui(f_f )(Xz) '
fE‘FQ ieUkGKBk 2 ,77 p fe]-—l iGUkG’CBk
Hence,
(f — [)(X3) 1
ESUp g; < ]Esup UZ(f_f*)(Xl> .
i iEUkZez:ch Cirn r2(7, 60" )N/ Crre e Z-eukze;Bk

By definition of 75, this implies

— (X,
3 U'(f f)(X5)

7
CK,?",H

< 120, P ) VKN KN

E < S
j CK,r,n K K

feFr

1€Ukexc Bi
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Plugging this bound in (3.56)) yields, with probability larger than 1 — e~1<I/288

_ _ 1 8Ly K
sup » [ 6205, |G (Wi)]) — E¢(2CK, G (Wi)]) ) < IKI( o+ —— ) = I<l
D 21" 9 12
T€7 kex
Plugging this inequality into (3.55]) shows that, with probability at least 1 — e~ I*I/288
71K]
> 02
>
As K > 7|10]/3, |[K| 2 K — |O| > 4K/7, hence, z(f) > K/2 holds with probability at least
1 — e %/3504Since it has to hold for any  in {1,2}, the final probablity is 1 — 2e~%/504, n

3.9.3 Proof Theorem 3.3

The proof is very similar to the one of Theorem [3.2] We only present the different arguments we
use coming from the localization with the excess risk. The proof is split into two parts. First we
identify an event Qx in the same way is Qx in ([3.38)) where the Ls-localization is replaced by the
excess risk localization. For k € {1,2} let B, ={f € E: PL; <7(v,kp*), || — [*|| < kp*} and

K
QO = {\m €{1,2},Vf € FNB., Y I{|(Ps, — P)Ls| < %ﬂ(% 20")} > K/2}

k=1

Let us us the following notations,

_ 117%(y,2p")

A
40p* 7

f=/fr and ~=1/3840L

Finally recal that the complexity parameter is defined as

E
7(vy, p) = inf {r > 0 : max ( (:’ ) , V384000V (r, p)) < 7“2}

where
1 *
Birnp)= sp E s Sl - ()
JCTAI=N/2  feF:PLr<r?, |f—fI<p | |] ey
Vie(r,p) ( Varn (L >) K
K T,p = maX Sup G/'I"Pi -
i€l FEF:PL<r2, ||f—f*|I<p d N

First, we show that on the event Q, PL; <7(7y,2p") and || f — f*|| < 2p*. Then we will control
the probability of Q.

Lemma 3.6. Grant Assumptions and [3.5. Let p* satisfy the sparsity equation from Defini-
tion . On the event Qr, PL; <72(7,2p*) and ||f — f*|| < 2p*.
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Proof. Let f € F\B,. From Lemma 6 in (Chinot et al) 2019b) there exist fo € F and a > 0
such that f — f* = a(fo — f*) and fy € 9B,. By definition of By, either 1)PL;, = (v, kp*) and
1fo = 71l < rp* or 2) PL, <72(y, p%) and || fo — f*|| = rp*.

Assume that PLj, = 7?(v, kp*) and || fo — f*|| < rkp*. On Qf, there exist at least K/2 blocks By,
such that P L, > PLy, — (1/20)7%(y, kp*) = (19/20)72(v, kp*). It follows that, on at least K/2
blocks By,

Py, L} > aPp L}, = o(Po,Lgy + M foll = 1£71)) = (19/20)72(, ") — 1187(7,207) 40 (3.57)

Assume that PLy, < 7(v,kp*) and ||fo — f*|| = xp*. From the sparsity equation defined in
Definition [3.6| we get || fol| — [|f*]| > 7rp*/10. And on more than K/2 blocks By

Pp L} > —(1/20)7 (v, kp*) + TAkp™ /10 = —(1/20)7 (v, kp*) + TT7>(7,2p") /400 (3.58)
Now let us consider f € F N B,. On Qp, there exist at least K /2 blocks By, such that

Pp L} > —(1/20)7 (v, kp*) — Asp® = —(1/20)7 (7, kp") — 11672 (7, 2p") /40 (3.59)

As Equations , and hold for more than K/2 blocks it follows for x = 1 that

Sup MOM (€p= = €5) + M = IF) < (13/40)7 (v, 2p7) - (3.60)

From Equations (3.57)), (3.58) and (3.59) with k = 2 we get

sup  MOMg ((p- — L) + A(LF = I£1) < (13/40)7*(v,2p%) . (3.61)

fEF\B2
From Equations ([3.60) and ([3.61)) and a slight modification of Lemma [3.5]it easy to see that on Qy,
PL; <7(7,2p") and ||f — f*]| < p*. m

Proposition 3.5. Grant Assumptions|3.4 and[3.8 Then Qx holds with probability larger than
1 —2exp(—cK)

Sketch of proof. The proof of Proposition follows the same line as the one of Proposition [3.4}
Let us precise the main differences. For all f € F N B, we set, 2/(f) = S, I{|G;(Wy)| <
(1/20)72(v, kp*)} where G (W) is the same quantity as in the proof of Proposition Let us
consider the contraction ¢ introduced in Proposition [3.40 By definition of Vi (r) and 72(v, kp*) we
have

(40)°
(v, kp*)

EG;(Wy)?

EO(0]G (W)|/i2(y. ")) < P('G“W’f)' > p*)) =7

IN
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Using Mc Diarmid’s inequality, the Giné-Zinn symmetrization argument and the contraction
lemma twice and the Lipschitz property of the loss function, such as in the proof of Proposition [3.4]
we obtain for all z > 0, with probability larger than 1 — exp(—|K|/288), for all f € F,

60LK 1 S el - ). (3.62)

ON fEFNB, 72 (% KP*) i€Unex Br

2(f) = 11[K]/12 -

From the definition of 7(7, xp*) it follows that E sup e prp, ’Zieuke}CBk oi(f — f*)(X@)‘ < NP2 (v, kp*)
and 2/(f) > |K|(11/12 — 160L?~y) = 7|K]|/8. The rest of the proof is totally similar.

3.9.4 Proof of Theorem [3.4]

From Assumption [3.2] it holds Vi (r) < LV/.(r), where for all r > 0,

Vi (r) = /K/N max sup If = fllz, -
€1 feF:PLi<r2, ||f—f*|I<p

[AK AK
\/EVK< 384000L W’Zp*> < 384000L2W .

From the definition of 73(vy,2p*) and Assumption it follows

1 (ra(v/A 20%)\ _ r3(v/A, 2p%)
aE( Vi >§ i

Hence, 7(7,2p*) < max (rj(y/A4,2p*)/V'A, 384000L>AK/N) and the proof is complete.

By Assumption [3.9]
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Chapter 4

Robust learning and complexity
dependent bounds for regularized

problems

We study Regularized Empirical Risk Minimizers (RERM) and minmax Median-Of-Means (MOM)
estimators where the regularization function ¢(-) is an even convex function. We obtain bounds
on the Lo-estimation error and the excess risk that depend on ¢(f*), where f* is the minimizer
of the risk over a class F'. The estimators are based on loss functions that are both Lipschitz and
convex. Results for the RERM are derived under weak assumptions on the outputs and a sub-
Gaussian assumption on the class {(f — f*)(X), f € F}. Similar results are shown for minmax
MOM estimators in a close setting where outliers may have corrupted the dataset and where the
class {(f — f*)(X), f € F'} is only supposed to satisfy weak moment assumptions, relaxing the sub-
Gaussian and the i.i.d hypothesis necessary for RERM. The analysis of RERM and minmax MOM
estimators with Lipschitz and convex loss functions is based on a weak local Bernstein Assumption.
We obtain two “meta theorems” that we use to study linear estimators regularized by the Elastic
Net. We also examine Support Vector Machines (SVM), where no sub-Gaussian assumption is

required and when the target Y can be heavy-tailed, improving the existing literature.

121
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4.1 Introduction

On one hand, real world data analysis problems require nonlinear methods to model complex
dependencies between random variables. On the other hand, linear models are well-understood and
easy to implement, even in high dimension (Bishop, 2006)). Over the last two decades, learning with
positive definite kernels have become very popular in machine learning (Shawe-Taylor et al., 2004;
Scholkopf et al., [1999; Steinwart and Christmann, 2008). This popularity can be explained because
kernel methods combine these advantages. Kernels can be used to model non linear dependencies,
mapping them to a (usually high-dimensional) feature space. In this space, the estimation is linear.
In this sense, kernel methods extend well-understood, linear statistical learning technics to real-
world, complicated, structured, high-dimensional data based on a rigorous mathematical framework
leading to practical modelling tools and algorithms. They have been used in many different fields
such as finance (Chalup and Mitschele], 2008]), biology (Scholkopf et al., 2004; |Ben-Hur and Noble,
2005; Noble et al., [2004)), econometric (Li and Racine, [2007)), computer vision (Yang et al., |2000).
Let (X,Y) be a random variable with distribution P and Hy a reproducing Kernel Hilbert Space
(RKHS) associated to a positive definite kernel K. Kernel methods consist in computing f* in Hg
such that the risk R(f) := Ex y)~p[l(f(X),Y)] is minimized in f*, where ¢(f(X),Y) measures
the error of predicting f(X) while the true answer is Y. However, the distribution P is unknown
and the minimization of the risk, necessary to compute f*, is impossible in practice. To proceed,
one is given a dataset D = (X;,Y;)Y, of random variables. Using the dataset D, kernel methods

compute f3 in Hy such that

N
A 1
A - 2
€ argmin Lf(X:),Y)+ A , 4.1
R € argmin 370039 + ATy (4.1)

where || f||#, is the norm of f in Hx and A > 0 is an hyper-parameter to be tuned. The regu-
larization term Al f]|7,, controls the smoothness of f2 through the value of X. This regularization
term is introduced to avoid “overfitting” since kernels provide enough flexibility to fit training data
exactly. The value of A balance the bias and the variance of fﬁ[ Theoritical properties of kernel
methods have been widely studied (Shawe-Taylor et al., 2004; |Scholkopf et al., [1999; [Steinwart and
Christmann, 2008). Non-asymptotic bounds on the Ly (y)-error rate || f*— f3 | La(n), Where p denotes
the marginal distribution of X, have been obtained for the quadratic loss function in (Mendelson
et al., [2010; Smale and Zhou|,[2007). These bounds depend on the decay of eigenvalues of the kernel
(at the population level) and are obtained for bounded continuous kernels but under the restrictive
assumption that the random variable Y € [-M, M| almost surely. In (Caponnetto and De Vito),
2007)), also for the quadratic loss function, the authors do not assume that |Y| is bounded but that
Y — f*(X) admits a Laplace transform. In this paper, we recover the same error rates as (Mendelson
et al., [2010; (Caponnetto and De Vito, 2007) when the loss function ¢ is simultaneously Lipschitz
and convex. We do not assume that Y is bounded or Y — f*(X) is light-tailed. Our analysis uses

a new localization technique developed in (Chinot et al., [2019b) taking advantage of the convexity
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of the loss function ¢. Theorem |4.1| presents an informal result when ¢ is the absolute loss function.

Theorem 4.1 (Informal). Let K be a bounded kernel. Assume that Y = f*(X)+ W with W a
Cauchy random variable and f* € Hy, the RKHS associated with K. With probability larger than
1 —exp ( - C’le/(p“)), for a well chosen value of A the estimatorf associated to the absolute loss
function defined in (4.1)) satisifies:

N C
A * (12 2
v = g < N

where Cy and Cy are functions of the kernel and ||f*||3,. The value of p € (0,1) represents how

fast the eigenvalues of the Kernel matriz decrease (see Section[{.4.9 for more precise arguments).

Theorem deals with a Cauchy noise but many different distributions can be handled with
our analysis (see Theorem . We obtain the same bounds as (Mendelson et al., 2010; Capon-
netto and De Vito, [2007). This is a first important contribution of this work. Fast rates for Kernel
methods are derived even when the noise is heavy-tailed. Note also that nothing is assumed on the

design X.

Kernel methods belong to the more general class of regularized methods, widespread in statis-
tics and machine learning. These procedures date back to Tikhonov (Golub et al.; [1979), and have
been widely used in non-parametric statistics (Marsh and Cormier, [2001; Huang et al., [2003)) to
smooth estimators. For example, the regularization ¢(f) = [(f”)? for spline estimators promotes
smoothness by imposing regularity on the estimate. In kernel methods, the norm of a function in
the RKHS controls how fast the function varies with respect to the geometry defined by the kernel.
Consequently, the norm of regularization || - ||, is related with its degree of smoothness w.r.t.
the metric defined by the kernel. Following the approach of (Chinot et al., 2019b), we present an
analysis for RERM with loss functions that are simultaneously Lipchitz and convex. The penaliza-
tion function is not assumed to be a norm. It is simply required to be an even convex function.
We derive bounds on the Lo-error and the excess loss for these general procedures. As far as we
know, the only article considering a generic analysis of the RERM (with the quadratic loss) with
a convex penalization is (Lecué and Mendelson, 2017). However, their analysis does not hold for
the square of a norm (see Assumption 5.1), which is a classical regularization methods in RKHS,
see for instance (Steinwart and Christmann, [2008). By contrast, the new analysis presented in this
paper covers many well-known methods such as kernel methods regularized by the square of a norm
or the elastic net procedure (Zou and Hastie, [2005). The restriction here is that the loss function
must be Lipschitz and convex. Both regression and classification problems can be addressed with

our analysis.

Let X, ) be two measurable spaces such that ) C R and (X,Y) € X x ) be random variables
with joint distribution P. Let p be the marginal distribution of X. For E a linear subset of
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Ly(X), let F C E be a class of measurable functions f : X + Y where ) C R is convex (we
do not have necessarily J) = ) for classification problems). In the standard learning framework,
one would like to identify the best approximation to Y using functions f in the class F. To do
so, let ¢ be a loss function, £ : F x X x Y = R, (f,z,y) — {s(z,y) = {(f(z),y) measuring the
error made when predicting y by f(x), for £ : Y x Y — R. Let f* € argmin . R(f) where
R(f) .= Pl; :=Ep[l;(X,Y)]. The oracle f* provides the prediction of ¥ with minimal risk among
functions in F'. Obviously, the distribution P is unknown and minimizing the risk R(f) over f in F
is impossible in practice. Instead, one is given a dataset D = (X;, Y;)¥, of random variables taking
values in X x ). Using D, the objective is to construct an estimator fN such that the Ly(u)-error

rate
Vv — £y = E [(me) - f*<X>)2|D]

and the excess risk

PL

fo = (Ptg, = PP = B | {7 (0.Y) = €7 (0), V)ID)

are small. While PL;  specifies the quality of prediction of the estimator Iy iy = £ La(u)
quantifies the Ls(p) approximation of the oracle f* by the estimator fy. These two quantities
being random, the results are derived with exponentially large probability. All along the paper, the

following geometric Assumption is also granted.
Assumption 4.1. The class F' is convex.

Assumption imposes a geometric structure on the class F'. This assumption is essential to
use our “projection trick” and derive our main results. For example Assumption holds when F
is a Hilbert space or the set of linear functionals in RP, F' = {<t, > : t € RP}. As in (Chinot et al.|

2019b), we consider Lipschitz and convex loss functions.

Assumption 4.2. There exists L > 0 such that, for anyy € Y, ((-,y) is L-Lipschitz (see (4.2))
and convex i.e for all « € [0,1],(z,y) € X x Y and f,g € F, l(af(x) + (1 — a)g(x),y) <

Assumption is satisfied in several examples, let us provide a short list of some of them.

e The logistic loss defined, for any u € Y = Rand y € Y = {—1,1}, by £(u,y) = log(1 +
exp(—yu)) satisfies Assumption 4.2 with L = 1.

e The hinge loss defined, forany u € Y =R and y € Y = {—1,1}, by {(u,y) = max(1 — uy, 0)
satisfies Assumption [4.2) with L = 1.

In those examples, the sets ) and Y are different. The fact that every function f in F' maps to the
convex set ) is crucial for the computation of the estimator fN in practice (Zhang, [2004; Bartlett
et al., 20006)
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e The Huber loss defined, for any § > 0, u,y € Y =Y =R, by

L — )2 i —ul <
(. y) = 3(y —u) 2 if [u —y| <6
Sly—ul—% ifju—yl>0

satisfies Assumption [4.2] with L = 4.

e The quantile loss is defined, for any 7 € (0,1), u,y € Y =Y =R, by L(u,y) = p;(u — y)
where, for any z € R, p,(2) = z(7 — I{z < 0}). It satisfies Assumption 4.2{ with L = 1. For
7 = 1/2, the quantile loss is the L, loss.

e The Hinge loss for regression is defined for any u,y € ¥ =Y = R, by £(u,y) = max(y —
u,0). It satisfies Assumption [4.2] with L = 1. Note that the Hinge loss function is modified

for regression problems.

Classical results on the RERM in learning theory consider the quadratic loss function (Mendelson,
2014; [Lecué and Mendelson, 2017, [2018). In this case £(u,v) = (u — v)?/2 for any (u,v) € Y x V.

The starting point of their analysis is the following multiplier/quadratic decomposition
Li(X,Y)=(f(X)=Y)? = (f(X) = Y)* = (f(X) = f(X))* +2(f*(X) = V)(f(X) = f"(X))

for any f in F. While the quadratic process f — (f(X) — f*(X))? does not depend on the target
Y, the multiplier process f — (f*(X) —Y)(f(X) — f*(X)) depends on the “noise” Y — f*(X). It
can only be controlled under some restriction on this “noise”. For example, when Y = g(X) + W,
where g : X — R is a function in ' and W is a random variable independent to X, we have g = f*
and thus Y — f*(X) = W. In this problem, bounding the multiplier process requires strong moment
assumptions on the noise W (see Theorem 1.2 in (Mendelson, 2017)). If we replace the quadratic
loss function by the absolute loss and if the noise is symmetric and independent to X we also have

f* = g. In this case, from the Lipschitz property,

V(z,y) € X x YVand f.g€ F. |l(f(2),y) — Ug(x),y)| < LIf(2) —g(z)] for L>0, (42)

the multiplier process disappears. It becomes possible to handle heavy-tailed symmetric noise W.
From (4.2)), note also that the random variable Y does not need to be integrable. For instance, W

can be a Cauchy distribution.

To get fast rates of convergence, our analysis is based on the following local Bernstein condition

Vi€ F:|If = [l =rand ¢(f — f*) <p, APLy > ||f — [lI7,0

where r,p > 0. In the sequel, we have respectively r and p of the order of the error rate and

o(f*), where we recall that ¢(-) is the regularization function and f* the oracle. This condition
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states that the excess risk f — PL; is 1/A-strongly convex in a neighborhood of the oracle f*.
This new local Bernstein condition introduced in (Chinot et al., 2019b) is the cornerstone to
obtain fast rates of convergence for settings where the noise may be heavy-tailed. Contrary to the
analysis for the quadratic loss function, no Small Ball assumption is required (Mendelson| 2014;
Lecué and Mendelson,, 2017). In addition to handle heavy-tailed noise, the use of Lipschitz function
significantly simplifies the proof since only one process has to be considered. The main argument
of the proof is a new “projection trick” (see the sketch of proof in Section making the proof
simpler. For example, no peeling technic is required. To summarize, the contributions of our new
analysis for the RERM are the following

e We consider very general convex regularization functions ¢(-).
e For Lipschitz and convex loss function, heavy-tailed noise can be handled.

e Our proof relies on a convex argument simple to understand.

The RERM are robust with respect to the noise of the problem as long as the loss function is Lips-
chitz. However a single outlier in the X; may make the RERM really bad. In addition, the RERM
performs well only when the empirical excess of risk f — PyL; uniformly concentrates around its
expectation f — PL;. To do so, it is necessary to impose a strong concentration assumption on
the class {£¢(X,Y), f € F}. From Assumption it is implied by a concentration assumption
on the class {(f — f*)(X), f € F}. Consequently, sub-Gaussian or boundedness assumptions are
necessary on the class {(f — f*)(X), f € F'} to obtain an exponentially large confidence for RERM.

RERM serves as benchmark for more advanced estimators. In a second time, we study regular-
ized minmax MOM-estimators introduced in (Lecué and Lerasle, [2019)) for least-squares regression
as an alternative to other MOM-based procedures (Lugosi and Mendelson, 2016; Lugosi et al.,
2019alb; [Lecué and Lerasle, 2017). In the case of convex and Lipschitz loss functions, these esti-
mators satisfy the following properties 1) as the RERM, they are efficient under weak assumptions
on the noise 2) they achieve optimal rates of convergence under weak stochastic assumptions on
the class {L;(X,Y), f € F'} and 3) the rates are not downgraded by the presence of some outliers
in the dataset. These results are not surprising since it has already been observed in (Lecué and
Leraslel 2019; (Chinot et al., 2019b)). Although attractive, mimmax MOM-estimators present some
drawbacks. Their construction depends on the confidence level (through K). Under stronger mo-
ment assumptions, (Minsker} |2018)) proposed a construction of MOM-based estimators independent
to the confidence level. The implementation of MOM-based estimators is still an open question
even if good empirical results have been obtained in (Lecué and Lerasle) [2019; |Lecué et al., 2018;
Chinot et al., 2019b).

The main theorems (for the RERM and the Minmax MOM estimators) are general and can be

applied for different applications. In particular, we study 1) the Elastic net regularization for linear
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estimators in R? and 2) kernel methods in RKHS associated to a bounded kernel. In particular, we
extend the results from (Mendelson et al.; 2010; Smale and Zhou, 2007; [Wu et al., [2006; |Caponnetto
and De Vito, 2007) for heavy-tailed noise.

To summarize, the contributions of this paper are the following:

e We obtain an analysis for the RERM for general convex regularization functions under weak
assumptions on the noise. This analysis is based on a local Bernstein assumption and holds
under a strong concentration assumption on the class {(f — f*)(X), f € F'}.

e Under the same local Bernstein assumption, we study Minmax MOM estimators and show
that 1) as the RERM, they are efficient under weak assumptions on the noise 2) they achieve
optimal rates of convergence under weak stochastic assumptions on the class {(f— f*)(X), f €
F'} and 3) the rates are not downgraded by the presence of some outliers in the dataset

e We apply this analysis to linear estimators regularized with elastic net.

e Under the same local Bernstein assumption, with a slightly different concentration argument,
we study regularized learning problems in RKHS. The noise can be heavy-tailed and no sub-

Gaussian on {(f — f*)(X), f € F'} is required to get fast rates of convergence.

The paper is organized as follow. In Section and we respectively present general results
for RERM and minmax MOM estimators. Section is devoted to the application of our main
theorems for the problems of linear estimators regularized with elastic net and Support vector
machines. Section gather the proofs of the main theorems.

Notations: In the remaining of the paper, the following notations will be used repeatedly. We
will write Lo instead of Lo(u), let r > 0,

rBr, = {f € F:|[f (X))o <7} 750, ={f € F - [f(X)lLagw =7} -

For any set H for which it makes sense, let H+f* = {h+f*st he H}, H—f*={h—f*st he€ H}.

The notations a V b and a A b, will denote respectively max(a, b) and min(a,b).

4.2 Regularized Empirical Risk Minimization (RERM)

All along this section, data (X;,Y;)Y, are independent and identically distributed with com-
mon distribution P. The unknown risks are estimated by their empirical counterparts, and the
oracle is estimated by the empirical risk minimizer (ERM) (see (Koltchinskii, 2011b)), defined by

N
. 1 _
ERM .
= argmin Py{; := — ((f(X;),Y;) .
f guin Pl N;l (f(Xi), Y2)

Clearly, if the class F' is too small, there is no hope that f*(X) is close to Y. One has to consider

large classes leading to large error rates. To bypass the fact that F' may be very large, we can use



128 CHAPTER 4. COMPLEXITY DEPENDENT BOUNDS

the classical approach of regularization where the penalization function emphasizes the belief we
may have on the oracle f*. It leads to the Regularized Empirical Risk Minimizer (RERM) defined
as
FRERM _ ar]gn;in Pyl + A1, (4.3)
€

where || - || : E — R is a norm. However, the estimators fFFEM defined in (£.3) are rather
restrictive since it does not cover penalizations which are not a norm such as || f[|3,,. (i.e the square
of the norm in a reproducing Kernel Hilbert space) or the Elastic net procedure (see (Zou and
Hastie, [2005)). To bypass this limitation, the estimator defined in Equation (4.3) will be replaced
by

f? = argmin Pyl; + A¢(f) := argmin PyL} (4.4)
fer fer

where ¢ : E — RT is a function satisfying the following Assumption.
Assumption 4.3. Let ¢ : E — R" be a real function such that

e ¢ is even, conver and ¢(0) =0

o There exists a constant n > 0 such that for all f,g € F

o(f +9) <n(e(f) + ¢(g)) (4.5)

Assumption holds for any norm but also for the square of a norm (with n = 2), the elastic
net penalization (with 7 = 2) defined for any ¢ in R? as ¢(t) = (1 — «)||t]|: + «||t]|3, where a € [0, 1],
1t]ln = D20, [t:] and ||£]|3 = D°F_, ¢7. To control the Lo-error rates for the RERM, it is necessary to
impose a concentration assumption on the class {L¢(X,Y), f € F'}. From Assumption it is
implied by a concentration assumption on the class {(f — f*)(X), f € F'} (this assumption will be

relaxed using MOM-type estimators in Section .

Definition 4.1. A class F' is called B sub-Gaussian (with respect to X ) for some constant B > 0
when for all f in F and for all A > 1

Eexp(\Lf(X)|/1f]la) < exp(A2B/2) .

Assumption 4.4. The class F' — f* is B sub-Gaussian.

For example, when F' is the class of linear functionals in RP, F' = {<-,t>, t €T} for T C RP,
F — f*is 1 sub-Gaussian if X ~ N(0,%) or if X = (;)}_, has independent coordinates that are 1
sub-Gaussian. In the sub-Gaussian framework, a natural way to measure the statistical complezity

of the class of functions F' is via the Gaussian mean-width that we introduce now.

Definition 4.2. Let H C Ly and (Gp)pen be the canonical centered Gaussian process indexed by
H, with covariance structure

1/2

Vhi, hy € H, (E(Gh, — Ghny)?)" = (E(hi(X) — ho(X))?)

1/2

The Gaussian mean-width of H is w(H) = Esup,cy G-
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For example, when F = {(-,t), t € R}, and X ~ N(0,%), w(T) = Esup,er(G,t), where
T is a subset of R? and G ~ N(0,%). The Gaussian mean-width is closely related with metric
complexities such as the entropy through the Sudakov’s inequality, see Chapter 1 in (Chafai et al.
2012)) for precise inequalities.
Following ideas developed in (Lecué and Lerasle, 2017 |Lecué and Mendelson, 2017|,2018; Mendelson,
2014)), the complexity parameter driving the statistical behavior of the estimator ff is defined as a

fixed point depending on the Gaussian mean-width:

Definition 4.3. The complezity is measured via a non-decreasing function r(-) such that for every

A>0,
) = {T >0 82LBw(F N By pynym () 0 (f7 +7BL)) < (2A)1\/Nr2}

where BY(g) = {f € F: ¢(f —g) <&}, L is the Lipschitz constant of Assumption B is the
sub-Gaussian constant defined in Assumption [{.4) and n is defined in Assumption [{.3

Note that when ¢ is a norm, B?(g) simply corresponds to the ball of regularization centered in
g with radius . We are now in position to introduce the local Bernstein condition allowing to

derive fast rates of convergence for heavy-tailed problem.

Assumption 4.5. There erists a constant A* > 0 such that for all f € F if [|[f — f*||,, = 7(A")
and ¢(f — f*) < n(4+2(A)")e(f*) then ||f — f*|I7, < A*PL;.

In the sequel of this section we will write 7* instead of r(A*). Condition states that
f — PL; is 1/A*-strongly convex in a subset of the Lj-sphere centered in f* with radius r*.
As explained in (Chinot et al., |2019b)), this local Bernstein condition holds in examples where F
is not bounded in Ly-norm, and therefore, where the global Bernstein condition of (Alquier et al.,
2019)( ||f — f*]I7, < A*PL; for all f € F) does not hold. Assumption replaces the small-ball
Assumption (see (Mendelson, 2014) for instance) for learning problems with Lipschitz and con-
vex loss functions. In (Chinot et al., 2019b)), the authors consider non-regularized problems where
the local Bernstein condition is required over the whole Ls-sphere of radius r*. For regularized-
procedure, this condition is required only for functions f in this Ls-sphere of radius r* such that
O(f — f*) < n(4+2(A*)"Hé(f*). For instance, in the case of RKHS associated to a bounded kernel
K, the condition ¢(f — f*) < p, for p > 0 implies that the function f— f* are bounded by +/p|| K|
(see Section . This localization with respect to the regularization norm is essential to verify
the local Bernstein Assumption in practice and obtain fast rates of convergence (see Section .

We are now in position to present the main theorems of this section.

Theorem 4.2. Grant Assumptions[{.3, 4.3, [4-4) and [4.5. With probability larger than

N(r*)?
1—2exp ( — m) (4.6)
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for all regularization parameters X\ > \g = (r*)*/¢(f*) the estimator ff defined in Equation (4.4)

satisfies

12— £, < (4+6A%)
and gb(ff — 1) < (4+2/A o (f*).

Xl

Remark 4.1. Theorem holds for an exponentially large probability (4.6) simultaneously for all
A > XNo. As a consequence it can be used with a random choice of reqularization parameter \ as
long as {5\ > Xo} hold with large probability. For example, we could use a cross validation scheme

to generate A

Note that for A = Ao, we obtain ||f{ — f*||., < (4 + 6A*)r*, which is the minimax rate into
the class {f € F': ¢(f) < &(f*)} (see (Lecué and Mendelson, 2017)). Since we do not have access
to ¢(f*), taking Ao is impossible. To bypass this issue we use a Lepski’s adaptation method (see
(Lepskii, 1992, 1993; [Birgé, 2001)). To do so, the following assumption is required.

Assumption 4.6. There exists M > 0 such that ¢(f*) < M.

Assumption is natural since regularization procedures are used when one believes that ¢(f*)
is small. Since Theorem holds with the same probability for all A > )\, one can choose M very
large in the Lepski’s method without deteriorating the probability of the event.

For j =1,---,J = M+ [logy(M)], let us define ¢; = 27/2 ¢y = 0 and \; = r?/¢; where

rj=inf{r >0: 32LBw(FNB),,,

(A%) )¢, (fHNf+ TBLQ)) < (ZA*)_l\/NTQ}
Moreover for all A > 0 let us define
T(f) = Px(ly = L) + M0 = 0(F)), By ={f € F T, (f) < (A7 +2)N05}
k*=inf{k e {1,---,J}: ﬂ}-]ZkRj #0} and set fe m}']zk*]%j :

Using the Lepski’s method we are in position to state to following theorem.

Theorem 4.3. Assumptions[.2, 4.3, [4.4), [4.9 and[{.6, with probability larger than

N(’I“*)Z )
(64A*LB(8 + 124%))?

1—26Xp(—4

1f =l < B+ 124", o(f — f7) < (4+2/Ano(f)
and PL; < (4+ 3/AN)(r*)? .

Note that such a procedure required the knowledge of A* and M. Complete proofs of Theo-
rem and Theorem are presentend in Section [4.6.1] Here we present a simple sketch of the
proof of Theorem [4.2] Our proof relies on a homogeneity argument allowing to study the empirical
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excess risk only in neighborhood around the oracle f*.

Sketch of the proof : The main arguments are presented up to some constants depending on
A*, L and 7. The proof is split into two parts. First, we identify a random event onto which the
statistical behavior of ff can be studied using deterministic arguments. Next, we prove that this
event holds with large probability. Here we will only focus on the deterministic argument (see
Section for the stochastic control).

Let By ={f € F: |f =, < 2o(f*)/r* and o(f — f*) < ¢(f*)} and the stochastic event is
defined as

Qi {forall f € FN (7" +1°Bu) N Bl (f). |(P— Pyty| < ()}

By definition, the estimator ff satisfies PNﬁ}f < 0. Therefore, to prove Theorem it is sufficient
to show that on €, PNE} > 0 for all functions f in F'\B). The proof follows from an homogeneity
argument saying that for all functions f € F\B,, there exist f; in the frontier of By and a > 1
such that PyL} > aPyL}. On the frontier of By, either we have 1) ¢(fo — f*) = ¢(f*) and
[fo = f"llz, < AQ(f)/r* or 2) [[fo — f*[l,, = A@(f*)/r* and ¢(fo — f7) < &(f7).

The homogeneity argument linking the empirical excess risk of f to the one of fj is the following.
For alli e {1,--- N}, let ¢, : R — R be defined for all u € R by

biu) = L(u+ f7(X5),Y) — £(f*(X3),Y5). (4.7)

The functions 1; are such that 1;(0) = 0, they are convex because £ is, in particular a;(u) < 9;(au)
for all u € R and a > 1 and ¥;(f(X;) — f*(X;)) = 0(f(X;),Y;) — £(f*(X5), Ys) so that the following

holds:
PyLy =5 S (I = £1(0X)) = 1 D whlalh(X) - £(X0)
> 5 2 Ui (Jo(X0) = F*(X)) = aPyLy, (48)

For the regularization part, since o > 1, the same homogeneity arguments holds.

o(f) = o(f) = o (f +alfo— 1)) — o(f*) = a(s(fo) — o(f))

It remains to control PN£?O in the two cases 1) and 2). Up to technicalities, in case 1), we use
Assumption [4.3]to showing that ¢(fo)—¢(f*) > ¢(f*) (up to constants). Using the event 2, we show
that PyLys, > —0A¢(f*) for 6 > 0 small enough. In case 2), we use that ¢(fo) — ¢(f*) > —o(f*)
and the local Bernstein Assumption to prove that PyLg > vA¢(f*) for v > 0 large enough

which concludes the deterministic argument. W
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4.3 Robustness to outliers and heavy-tailed data via Min-

max MOM estimators

In Section [4.2] we assumed that the class {(f — f*)(X), f € F}. is sub-Gaussian and that the data
(X;, V)X | are i.i.d with the same distribution P. In this section, we relax these assumptions using
minmax-MOM type estimators. For any i € {1,--- , N}, let P, be the distribution of (X;,Y;).
Let Z U O denote an unknown partition of {1,--- N}. The cardinality of O is denoted |O|. Data
(Xi,Yi)ico are considered as outliers. No assumption on the distribution P; for ¢ € O is made

and can be dependent or even adversarial. The informative random variables (X, Y;);e7 satisfy:

Assumption 4.7. The data (X;,Y;)icr are independent and for all i € T : Pi(f — f*)*(X;) =
P(f — f*)*(X) and P.L; = PL; where we recall that P is the distribution of (X,Y)

Assumption [4.7holds in the i.i.d framework but it covers other situations where informative data
(Xi,Y;)iez may not have the same distribution. It is only required to induce the same Ly-structure

on the class I' and the same excess risk.

Let (Bs)s=1...s denote a partition of {1,..., N} into blocks By of equal size N/S (if N is not

a multiple of S, just remove some data). Following (Lecué and Lerasle, 2019) the minmax MOM-

estimators are defined as

f3 = argminsup MOMs(£y — £y) + A(S(f) — 6(9)), (4.9)

fer geF

where MOMs(gf—fg) = Med(PBl (ff—gg), ety PBS (gf—fg)) with PBS (ﬁf—fg) = (1/|BSD EieBs gf(Xi, Y;)—
Cy(X5,Y5).
Since we no longer consider the sub-Gaussian framework, we have to adapt the complexity param-

eter to this new setup. The complexity is measured via a function 7(-) defined as

f(A):inf{r>O:VJCI:|J|>N/2,

E sup > ol = (X §(384AL)‘17~2\J]} (4.10)
JEFN(*+rBLy)NBY g1y ) Vi

where (o), are i.i.d Rademacher random variables independent from (X, Y;);cz.

This complexity function is very close to the one in the sub-Gaussian case from Section expect
that the Rademacher-complexity replaces the Gaussian mean-width. When the class F' — f* is
B-sub-Gaussian, a standard chaining argument (Talagrand, 2006) shows that 7(-) and r(-) are
equivalent. However, when only L, conditions are granted on the class F' — f*, 7(-) may be larger
than r(+), see (Chinot et al., 2019b), for instance. It is also necessary to adapt the local Bernstein
condition from Assumption to the MOM-framework
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Assumption 4.8. There exists a constant A > 0 such that, for all f in F satisfying ||f — f*||1, =
Csr(A) and 6(f — f*) < n(4+2/A)o(f*), then |f — f*|, < APL; where

Cs.,(A) = max (f2(A), 368A2L2%> . (4.11)

As Assumption [£.5] Assumption [£.8]is only granted on a subset of the Lo-sphere centered in the
oracle f* where the radius is proportional to the rate of convergence of the estimators. We are now

in position to state our main results for the minmax MOM estimators.

Theorem 4.4. Grant Assumptions and[{.8 Let S > 7|0|/3, Then, with prob-
ability larger than 1 — 2exp(—S/504), for any regularization parameter X > Cs,.(A)/d(f*), the

estimator fg‘ defined in Equation (4.9) satisfies
o(f")

CS,T (A)

o(f3— ) <nd+2/A)6(f), 15— flle. < (4+64)A

It is also possible to use the Lepski’s method to get an adaptive estimator as the one in Theo-
rem[£.3] For the sake of brevity, we do not present this result here. There is a tradeoff between con-
fidence and accuracy and an optimal choice of S would be S < 7#(A)N. In that case, Cg,.(A) =< 7(A).
For this value of S, the optimal X is 72(A)/¢(f*) and we would obtain ||f3 — f*|2, < C(A)F(A).
With S =< #(A)N and A == 7#2(A)/¢(f*), we recover the same result as the one in the sub-Gaussian
setting as long as Rademacher complexity and Gaussian-mean width are equivalent. We will see
in Section that it is the case for the precise example of RKHS associated to bounded kernel.
Moreover, by construction, the estimator fg‘ is robust to 35/7 outliers in the dataset.

Therefore, using minmax-MOM estimators, we have relaxed two strong Assumptions 1) the i.i.d
setting and 2) the sub-Gaussian Assumption on the class F'— f*. Properly calibrated minmax-MOM
estimators are not affected if the number of outliers is less than number of observations x square

of the optimal rate in the i.i.d setup (when S < 7(A)N and r(A) < 7(A)).

4.4 Applications

Our results are very general and may be applied to various examples. To do so, it is necessary to:

e Verify Assumptions [4.2] and [4.3]

e If the RERM is studied, check Assumption and compute the Gaussian-mean-width w (F N

B;f(4+2(m),1)¢j(f*) N (f*rBy,)) to deduce r(A) for every A > 0.

e [f the minmax MOM-estimators is considerer, compute the Rademacher complexity to deduce
7(A) for every A > 0.

e Find A satisfying the local Bernstein condition (the Ls-radius depends on the estimator we

consider).



134 CHAPTER 4. COMPLEXITY DEPENDENT BOUNDS

As an illustration, we study in the sequel RERM and minmax MOM-estimators for linear estimators
in R? regularized by the elastic net and for regularized kernel methods. It turns out that the sub-
Gaussian assumption over the class F' — f* is not required by using the reproducing property of
RKHS. Instead we develop another general analysis to study RERM in RKHS associated with
bounded kernel (see Section [£.4.2).

4.4.1 Application to Elastic net with Huber loss function

In (Zou and Hastie, [2005)), the authors noticed that the performance of the LASSO is not as good
as the one of Ridge regression when the variables are highly correlated. Theoretically, it is now
known that the covariance matrix of the design X must satisfy the Restricted Eigenvalue condition
to obtain fast rates of convergence for the LASSO (Bellec et al., 2018; Bickel et al.| [2009). To bypass

this limitation, the authors introduced in (Zou and Hastie, 2005) the Elastic net regularization.

Regularized Empirical Risk Minimizers Let F be the class of linear functionals in R?, F' =
{(-,t), t € RP} which satisfies Assumption [4.1] Let (X;,Y;)Y, be random variables valued in
RP x Y. As the oracle is denoted f*, we introduce ¢* such that f*(-) = (¢*,-). Let a € [0, 1], for

any t in RP, the elastic net penalization is defined as
o(t) = (1 = a)lt]l + allt]3 (4.12)

where ||t]y = D>, |t;] and [|t]|3 = DF_,¢7. For @ = 1 and a = 0 we recover respectively the

ridge and the Lasso penalizations (these cases will not be studied in the sequel). Clearly ¢ defined
in Equation (4.12)) satisfies Assumption with n = 2. Let £° be the huber loss function with
parameter 6 > 0 (which is 0-Lipschiz), the estimator RERM is defined as

teRP

- 1K
i e argmin — ;£5(<Xi,t>,Yi) +A((L =)t + allt]l3) - (4.13)

Theorems and require the computation of the Gaussian mean-width w(F N Bz’(t*) N
(f*+rBy,)) for r,p > 0. To do so, let us assume that the design X is isotropic i.e for all ¢ € R?,
E(X, t>;p = ||t|3. It means that the Ly(p) norm coincides with the natural Euclidean structure on

the space £5. Thus, for all p,r > 0, under the isotropic assumption, we have

w(FNBYE) N (f* +7rBr,)) =w(BI(0)NrBY) =E sup (G,t)y, , (4.14)

teR: (1=a)|lt|1+alltl3<p, [t2<r

where G is a standard Gaussian random vector in R? and B} denotes the unit ball in (R?, || - ||;),
for [ > 0. Let o € (0,1). We have,

—

w(Bz’(O) NrBr,) < min (w(1 P BY NrBY), w(min(r, \/g)Bg)) : (4.15)



4.4. APPLICATIONS 135

Let us introduce

ri=inf{r>0: 64(58A*w<(8 i le/A*)(b(f*)Bf N 7’35) < \/NTQ} :

—

ry=inf {r>0: 6453A*w<min (r, \/(8 i 4/A*)¢(f*))35)) < \/NTQ} :

!
From Equation (4.15) and the definition of r* it is clear that »* < min(r},r3). Using the com-
putations of w(pr N ng) for all r,p > 0 presented in (Lecué and Mendelson) 2017)), it follows
that

(8+4/A*)(f*) | 646BA* _ep(l-a) o (8+4/A%)2¢%(f*)N 2
(TI)Q _ -« \/ N log (\/ﬁ(8+4/14*)q5(f*)) if (1—)2645 BA* B p
640 BA* o (844/A%)2¢%(f*)N 2
B if (1-a)261sBA* =P
646BA*p . 646 BA*ap
AT R i N 2 Gamamerm
2/ 640 B(8+4/A*)o(f*)p - 646 BA* ap
\/ aN EN < wraane(m

For the sake of presentation, the dependence with respect to the dimension and the sample size is
presented in bold. Since r* < min(rj,r3), it is clear that r* captures the best situation between the

LASSO (complexity parameter r7) and the Ridge regression (complexity parameter r3).

To apply Theorems and it remains to verify the local Bernstein condition. Results on the
local Bernstein Assumption (see Assumptions and can be found in (Chinot et al., [2019b))
for the quantile and Huber losses for regression problems and for the logistic and the Hinge loss for
classification. For the sake of brevity, we only present the results for the Huber loss function with
parameter § > 0 (absolute loss function will be studied in Section [£.4.2). Note that § must be of

the order of a constant. Let us introduce the following assumption.

Assumption 4.9. Let r,p,e > 0.

e a) There exists C' > 0 such that, for all f € F such that ||f — f*||1, =7 and ¢o(f — f*) < p,
”f - f*||L2+a < C/”f - f*||L2'

e b) Let C' be the constant defined above. There exists vy > 0 such that, for all x € X and for
all z in R such that |z — f*(z)| < (vV2C")#9)/5r we have Fy|x—u(2 +8) — Fy|x—(z — ) > 7,

where Fy|x—, is the conditional cumulative function of Y given X = .

When the class F' — f* is 1-sub-Gaussian, it is clear that the point a) of Assumption holds
with an absolute constant C” for € = 2 (see theorem 1.1.5 in (Chafal et al,[2012)). For the point b),
it Y = <t, X > + W, where W is a symmetric random variable independent from X and ¢t € RP, we
have t* = ¢. In this case, the point b) holds if Fy (6 — 2(C")?r) — Fyw (2(C")*r — 6) > v, where Fyy
denotes the cdf of W. It simply means that the noise puts enough mass around 0. In particular,
point b) holds when W is Cauchy. In this case, Y is not integrable and yet we are able to verify

the Bernstein condition and derive fast rates of convergence.



136 CHAPTER 4. COMPLEXITY DEPENDENT BOUNDS

Theorem 4.5 ((Chinot et al. [2019b)). Grant Assumptions|[4.9 (with parameter r, p and ~). Then,
for all f € F satisfying ||f — f*||L, = r and 6(f — f*) < p. |f = f*lL, < (4/7)PL;.

Note that in (Chinot et al., |2019b)), the proof holds for any f in F' such that ||f — f*||z, = 7.
The proof of Theorem is exactly the same as the one in (Chinot et al., [2019b]) with simple
modifications taking into account the new localization with respect to the regularization.

We are now in position to state the main theorem for the elastic net procedure.

Theorem 4.6. Let r* = min(r},r3). Let (X;,Y;)Y, be i.i.d random variables distributed as (X,Y)
where Y = <X, t*> + W, where t* € RP, X = (x1,--- ,x,) is a sub-Gaussian random vector. Let us
assume that the noise W is a symmetric random variable independent from X such that there exists
v >0 for which Fy (6 — 2(C")*r*) — Fyw (2(C")*r* — §) >~ . Let A= (r*)?/o(f*). With probability
larger than 1 — 2 exp ( — WN(T*)Q), the estimator tAi’a associated with the Huber loss function
defined in Equation (4.13|) satisfies

13" = ]|z < (4+24/7)r" G — 1) < B+7)e(t) and PLya < (44 37/49() .

In Theorem we set A = (r*)2/¢(f*) which is evidently unknown. However it is possible to
use Theorem to get an adaptive estimator for the Elastic net achieving the same rates. When
1 — « is close to 1 that is when the penalization ¢; is dominant we have r* = r} and we recover
the result for the Lasso (see (Lecué and Mendelson, 2017)). When « is close to 1 the elastic net is
almost equivalent to ridge regression and r* = r;. We recover the results for the ridge regression.
In Theorem [4.6|it is not clear if there exists v such that Fy (§ — 2(C")*r*) — Fy (2(C")*r* —68) > 7.
It turns out that this condition is very weak. It simply means that the noise W puts enough mass
around 0. For instance let TV be a standard Cauchy distribution. The condition Fy (§ —2(C")%*r*) —
Fw(2(C")?*r* — §) > v can be rewritten as 6 — 2(C")?r* > tan(yr/2). If r* < 1 we can take vy =1
and 6 = 4(C")?+1. The condition 7* < 1 means that enough data are given to the statistican which
corresponds to interesting learning problems. Consequently, even for non-integrable noise such as

a Cauchy distribution we are able to derive fast rates of convergence.

Minmax MOM-estimators Now, let us turn to the robust minmax MOM-estimator associated
with the Huber loss function for the elastic net procedure defined as
et . ~ ~
i\ € argminsup MOMg (€, — €3) + A((1 = a)([ltll — [[Eh) + a([ltl]3 — [17]13)) (4.16)
teERP  fcRp
where ¢° denotes the Huber loss function with parameter §. To study these estimators, is necessary to
compute the rademacher complexity given in the definition of 7#(-). From Theorem 1.6 in (Mendelson),

2017)), it is possible to link Rademacher complexity and Gaussian mean-width for the Elastic-net

regularization as long as X is isotropic (i.e for all ¢ in R?, E(X, t>2 = ||t]|3 ) and satisfies

V1<g<eclog(p),1<i<p, (X e, <ev/q , (4.17)
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for ¢1, 2 > 0 two absolute constants and where (e;)?_; denotes the canonical basis of R?. Since any
a real valued random variable Z is Lo-sub-Gaussian if and only if for all ¢ > 1, || Z]|z, < c3Lo+/q, for
c3 > 0 an absolute constant, the condition imposes “c; log(p) sub-Gaussian moments“ on the
design X. From Theorem 1.6 in (Mendelson| 2017), if condition holds, we get #(A) < cyr(A)

for ¢4 > 0 an absolute constant and the following theorem holds:

Theorem 4.7. Let 7 = camin(r},r3). Let (X,Y) be a random variable such that Y = (X, t*) + W,
where t* € RP and W a symmetric random variable independent from X such that there exists
v > 0 with Fyy (6 — 2(C")?F) — Fw (2(C")?F — §) > 7. X is assumed to be an isotropic random vector
satisfying condition ([4.17). Assume that (X;,Y;);ez are independent and distributed as (X,Y). Let
S > 7|/0|/3. With probability larger than 1 — exp(—S/504), the estimators fiog defined in (4.16))
with

max ((7)?, %252%)

o(t*)

satisfies

, 55886% S b
N ¢(

20, * ~ * *
165 - 7713 < 8+ )% ( (%, 85— ) < (4 3/00()
When S < N(7)2, Theorem [4.7|improves Theorem by relaxing the sub-Gaussian Assumption.
Moreover, for S =< N(7)? up to 3N (7)?/7 outliers can be present in the dataset without affecting
the error rate. Note also that it is possible to adapt the estimator in a data-driven way to the best

S and A by using a Lepski’s adaptation as we have done in Theorem

Remark 4.2. In Theorems[4.0 and[{.7, we assumed that the design X is isotropic. This assumption
1s only used for the computation of the Gaussian mean-with of the intersection of the {1 ball with
the ¢y ball. Using the recent work from (C Bellec, 2019) it is possible to extend the result for more

general covariance matrices.

4.4.2 Application to RKHS

In this section, we consider regularization methods in some general Reproducing Kernel Hilbert
Space (RKHS) (cf. (Steinwart and Christmann, 2008) for a specific analysis on RKHS). The reg-
ularization function ¢(-) is defined as ¢(-) = || - |13, Where || - ||l is the norm in the space Hg
associated to a kernel K. This section is inspired from the work in (Alquier et al., [2019). The
authors established convergence rates when ¢(-) = || - ||, and F' = RBy;,, for R > 0, for classifica-
tion problems under a much stronger global Margin assumption. We improve their work in many
aspects 1) heavy-tailed noise can be handled, 2) the margin assumption is replaced by the weaker
local Bernstein condition, 3) we can analyse the regularization ¢(-) = | - ||3,, and 4) there is no
restriction on the class F' = Hg, we do not restrict F' to be a regularization ball in H .

Using Theorems we derive explicit bounds on the error rates depending on ||f*||3, for the
minmax-MOM estimators. For the RERM, we could use Theorem [£.2] However, it turns out that
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the sub-Gaussian Assumption [£.4on the class F' — f* is complicated to verify for RKHS and the ap-
plication of Theorem may be tricky. Instead, we derive another analysis where no sub-Gaussian
assumption is required. In the precise example of RKHS, our homogeneity argument implies that we
can restrict ourselves to a bounded class of functions. As a consequence, we can use concentration
tools such as Talagrand’s inequality instead of results from the sub-Gaussian theory. Nothing has

to be assumed on the design X.

We are given N pairs (X;, Y)Y, of random variables where the X;’s take their values in some
measurable space X and Y; € ) where ) = {—1, 1} for binary classification problems and ) = R
for regression problems. We introduce a kernel K : X x X — R measuring a similarity between
elements of X i.e K(x1,x5) is small if 21,29 € X are “similar”. The main idea of kernel methods
is to transport the design data X;’s from the set X to a certain Hilbert space via the application
x — K(z,-) := K,(-) and construct a statistical procedure in this ”transported” and structured
space. The kernel K is used to generate an Hilbert space known as Reproducing Kernel Hilbert
Space (RKHS). Recall that if K is a positive definite function i.e for all n € N*| 2y, |z, € X and
iy e € R YT DT cici K (i, ;) > 0, then by Mercer’s theorem there exists an orthonormal
basis (¢;)$2, of Lo(p) such that p x p almost surely, K(z,y) = > .0y \i¢i(x)¢i(y), where (X)52 is
the sequence of eigenvalues (arranged in a non-increasing order) of Tk and ¢; is the eigenvector

corresponding to \; where
Ty - LQ( ) — LQ

(T f) (@ /K 2, 9)f(W)du(y) - (4.18)

The Reproducing Kernel Hilbert Space Hp is the set of all functions of the form > 7 a; K (z;,-)

where x; € X and a; € R converging in Ls(u) endowed with the inner product

<Z a; K (z;, ')azbiK(yu )> = Z a;bi K (i, i) -
i=1 i=1 i,j=1

An alternative way to define a RKHS is via the feature map ® : X +— {5 such that ®(z) =
(\/_qbz( )) . Since (®g)72, is an orthogonal basis of Hg, it is easy to see that the unit ball of

Hi can be expressed as

= {fs(-) = (8,2()),,. IBll2 <1} , (4.19)

where <~, > f is the standard inner product in the Hilbert space £5. In other words, the feature map
® can the used to define an isometry between the two Hilbert spaces Hy and /5.

The RKHS Hy is therefore a convex class of functions from & to R that can be used as a learning
class F'. Let the oracle f* be defined as

f* € argmin E[((f(X),Y)] .
feHK
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Let f be in Hg, by the reproducing property and Cauchy-Schwarz we have for all z,y in X

(@) = fW)l = (f Ke = Ky) < [l 1Ko = Kyl - (4.20)

From Equation ([#£.20)), it is clear that the norm of a function in the RKHS controls how fast the
function varies over X’ with respect to the geometry defined by the kernel (Lipschitz with constant
| fll2,)- As a consequence the norm of regularization ||- ||, is related with its degree of smoothness
w.r.t. the metric defined by the kernel on X. Let £ be any loss function satisfying Assumption [4.2]
the estimators f{ and ff s defined respectively in Equation and are given by

N
R 1 _
f¢:argmin— U(F(X0),Y:) + M| flI2 4.21
{ = angmin 3 S SE04). 0 + AW (a21)
and

JRs = argmin sup MOMs(£y — tg) + A(|I 115, — lgll3,)- (4.22)

feHKk geEHK
It is clear that ¢(-) = || - [|3, verifies Assumption |4.3| with 7 = 2 We establish oracle inequalities

for f¢ and ff ¢ respectively defined in Equation and when the loss satisfies Assump-
tion . In (Mendelson et al., [2010; Meister and Steinwart, [2016; Wu et al., [2006; Smale and Zhou,
2007)) for the quadratic loss function and (Eberts et al. 2013} Farooq and Steinwart, |2019) for
the pinball loss (which is Lipschitz), the authors establish error bounds for when the target Y is
assumed to satisfy Y € [—M, M] almost surely which is a really strong Assumption. Our analysis
applies when the target Y is unbounded and may even be heavy-tailed which is, as far as we know,
a new result. In (Caponnetto and De Vito, 2007) the authors do not assume that the target Y is
bounded. However, their analysis requires to control the Laplace transform of the noise Y — f*(X)
(see Assumption 2 in (Caponnetto and De Vito, 2007)). As a consequence they cannot consider
heavy-tailed noise. In (Eberts et al., [2013; Farooq and Steinwart|, 2019) the authors are also in-
terested in the approximation error of kernel methods and compare ourselves with their results is
a complicated task. We obtain the same error rate as (Mendelson et al., [2010; Caponnetto and
De Vito, [2007) when the eigenvalues of the integral operator Tk satisfies A, < Bn~/P for some
0 <p<1and > 0 an absolute constant when Y may be unbounded and heavy-tailed. The
value of p is related with the smoothness of the space Hg. Different kinds of spectrum could be
analysis. It would only change the computation of the complexity fixed-points. For the sake of
simplicity we only focus on this example as it has been studied in (Caponnetto and De Vito, 2007

Mendelson et al., 2010) for instance.

New general analysis for the RERM

Since every RKHS are convex, Assumption holds. Therefore, when the loss function satisfies
Assumption [4.2] to use Theorem it is necessary to verify Assumptions and [£.5] However, it
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turns out that the sub-Gaussian Assumption on the class F'— f* cannot be verified in practice except
for very precise Kernels. Our analysis (see Section requires the sub-Gaussian Assumption to
show that with an exponentially large probability for all f in F' such that ||f — f*||z, < r(A*) and
o(f = f7) < n@2+2/A")o(f):
r?(A*)
2A*
where A* satisfies Assumption and r(-) is the complexity parameter defined in Definition
However, when F' = Hy we have {f € F : ¢(f—f*) < n(2+2/A")o(f*)} ={f € Hr : ||f—[* HHK <
24/1 4 1/A*| f*||2, }- Moreover, from the reproducing property, for all z € X and all f in Hx such

that [|f = f*[lax < 2¢/1 4 1/A*|[f*[l3;c we have

[f(@) = [ @) = (f = F By, S I = b Kol
= 1f = fllre VE (2,2) < 20/ (1 + 1/AE oo lLf* 130

Therefore, when F' = Hy, for K a bounded Kernel, the control of (4.23)) is over a bounded class

of functions. As a consequence, the sub-Gaussian Assumption is no longer necessary. Instead

(P — Py)Ly| < (4.23)

we develop another analysis based of the Bousquet’s version of Talagrand’s inquality (Bousquet,
2002)). Since no sub-Gaussian assumption is required we use another complexity parameter where

the Rademacher complexity replaces the Gaussian mean-width.

N
Nr?
7(A) = inf {r >0, E sup oi(f = f)(Xi) < } (4.24)
JEF:|f=f" Iy <r, ; 64AL

= f* 12 g <24/ 241/ Al f " 12

We also adapt the local Bernstein assumption to the Definition (4.24)).

Assumption 4.10. There exists a constant A > 1 such that for all f € Hy if

1f = fll, = 2LV 2+ YA K|l £ 7(A) and |[f = [l < 202+ 1/ Al f e then ||If —
Flli, < APLy.

Theorem 4.8. Let (X;,Y;)Y, be i.i.d random variables with common distribution P. Let { be a loss
function satisfying Assumption[{.q with L > 1. Let Hx be a RKHS associated to a bounded Kernel
K. Grant Assumption such that A > 1. Let U = 2L/ (2 + 1/A)||K||o. With probability larger

than _
N7(A) )
64(LA)?

1—2exp(—

for all regularization parameters A > Ao = max(1, U|| f*|l,c )72 (A) /|| f*|I3,,. the estimators 12 defined

in Equation (4.21)) satisfies

1113,
max (1, /Ul f*|l3, )7 (A)
and || f{ = [l < 8+ 4/ )| llos-

18 = fFll, < (44 64A)\
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The proof can be find in Section Theorem [4.§] is similar to Theorem [4.2] for RKHS when

the sub-Gaussian assumption is relaxed. By taking A = \g we get
£ = £ llee < (4+ 64) max(1, /U f* [l )7(A) -

When ||f*|l3, < M, we obtain the same bounds as the one in Theorem (up to a constant
depending on A and ||K||s) and a Lespki’s procedure as in Theorem yields to an adaptive
estimator. Note that the assumption that || K|, < oo is really weak since any continuous kernel on
a compact space is bounded. Moreover many results in RKHS are derived for the Gaussian Kernel

with is bounded by 1, (Farooq and Steinwart|, 2019; [Steinwart and Christmann, |2008)).

Explicit bounds for the ERM and the minmax MOM estimators

To obtain explicit bounds in Theorems and it is necessary to calculate the complexity

parameters 7(A) and 7(A). To do so, we have to compute the Rademacher complexity of the set
{feHx: |f = 5. <o IIf = ffllL, <7} for any p,r > 0. From Theorem 2.1 in (Mendelson,
2003)), if K is a bounded kernel, then for all p,r > 0

N ) 1/2
1
E sup —— D oilf - (X)) < \/§||K||oo( > (PP A7 )
SEHKN(f*+rBryNpBry) N i=1 k:l( )

Remark 4.3. Since the feature map ® defines an isometry between Hy and Uy, the computation of
the Gaussian mean-width of the set {f € Mg = |If — [, < oo If — f*lle, <} ois equivalent to
the computation of the Gaussian mean-width of an ellipsoid in €y. Consequently, it is easy to show

that Rademacher complexity and Gaussian mean-width (and thus 7(A) and r(A) ) are equivalent.

In the case where the eigenvalues A\, < Bk~/P for all k € N* and 0 < p < 1, where 8 > 0 is an

absolute constant and p/r > 1, straightforward computations give

i(Q/\/\ 2 1/2< pp
P’ A7) —Brp—l

k=1

It follows that for any bounded kernel K such that the eigenvalues assoicated to Tk satisfy A\ <
Bk~ forallke N*and0<p<land A >0

w12 +1
1]/ D

7(A) = C(A, B, L,p) = 67"(A)

N1/(p+1)
where C(A,B,L,p) = (384A5L)2/(p+1) (4(2 I 1/A))2p/(p+1)

Now, let us turn to Bernstein condition. We use the results from (Chinot et al., 2019b) where the
local Bernstein condition has been extensively studied for many convex and Lipschitz loss functions.
In Section we studied the Huber loss function. Here, we consider the absolute loss (which is
the quantile loss for 7 = 1/2). Let us present the Assumptions required to study the Bernstein

condition for the quantile loss function.
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Assumption 4.11. Let r,p,e > 0.

e a) There exists C' > 0 such that for all f € F such that | f — f*||l, =7 and ||f — f*||ne < p,
1f = o S CNF = FrlLs

e b) Let C' be the constant defined above. There exists a > 0 such that, for all v € X and for
all z in R such that |z — f*(z)] < (V2C")@+9)/er, we have fy|x—z(2) > 7, where fy|x—; is the

conditional density function of Y given X = .
Assumption and are very similar. When Y = f*(X) + W, for f* in Hx and W is a
symmetric noise, condition b) simply means that the noise W puts enough mass around 0.

Theorem 4.9 ((Chinot et al.,2019b)). Grant Assumptions (with parameter r, p and ). Then,
for all f € F satisfying ||f — [*l|r, = r and |[f = f*lac < p. | = f7IL, < (4/70)PLy.

For kernel methods, the point a) of Assumption is a Lo, ./Ls-norm equivalence which is
only required in the ball defined by the norm in the RKHS. Let f in F such that ||f — f*[|x, < p

and || f — f*||z, = r, we have

If = Iz, = /(f(fv) — f*(@))* " dPx(z) < (ol Klloo)*ILf = fFIIZ,

Since || f — f*||r, = r, it follows that

e/ (2+4¢)
T T e R

Therefore, the point a) holds with ¢’ = (p||K||s/r)¥/?). Let us turn to the point b). From
the fact that C" = (p|| K||s0/r)¥/?**%), we have v/ 207
Y = g(X)+ W, where g € Hg : X — R and W is symetric and independent from X, it is easy to

= 202+9)/2¢ || {|| . For example, when

see that f* = g. In this case the second point of Assumption can be rewritten as fy (z) > ~ for
all z € R such that |z| < 2%+9)/2p|| K ||, where fir denotes the density function of W. It simply
means that the noise puts enough mass around 0.

We are now in position to state our main Theorems in a RKHS associated with a bounded kernel

when the absolute loss function is considered for the RERM and the minmax MOM estimators.

Theorem 4.10. Let X be some measurable space and K : X x X — R be a positive definite
bounded kernel where Hy denote its associated RKHS. Let (A\,)52, be the sequence of eigenvalues
associated to Ty in Lo(p) such that \y < Bk~YP for all k € N* and 0 < p < 1, where 8 > 0 is an
absolute constant. For any v € X, let fy|x—, denote the conditional density function of Y given
X = x. Let us assume that there exists v > 0 such that, for all x € X and for all z in R such
that |z — f*(2)] < 28+ Y f* x| Kloos we have fyix—.(z) > 7. Let (X;,Y;), be i.i.d random
variables distributed as (X,Y'). Then with probability larger than

vC(4/v,8,1,p .
1 —exp ( — ( /256 )Np/(p+1)||f ||3rﬁ/((1?+1) ’
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when T
1[5,

A= C4/y. 8,1, p) max(L, (8 + N Kllooll f ) =i

the estimator ff associated to the absolute loss function defined in Equation (4.21)) satisfies

£ * . ||f*||2/§(p+1)
152 = f¥117, < (4+3/@N))C(4/7, 8,1, p) max(L, (8 + DK ool f o) ~5a7557

and ||f7 = e < S+ NI

The error rate in Theorem is the same as in (Mendelson et al., 2010). However our analysis
do not require that the target Y is bounded. It can even be heavy-tailed. Note also that

nothing is assumed on the design X.

Remark 4.4. When Y = f*(X) + W, where W is a standard Cauchy distribution, the condition
fyix=z(2) =7y for z in R such that |z — [*(2)] < 2v/8+ || [*|lux |1 K|l is satisfied as long as there

ezists v € (0, 1] such that
1

T(L+ 468+ 13, N K%
which holds for v = min(1,1/(m(1 + 36| f*||?|| K|2,))). Consequently the analysis holds for heavy-

tailed distribution.

>Z’Y

Let us turn to the MOM-estimators.

Theorem 4.11. Let X be some measurable space and K : X x X — R be a positive definite
bounded kernel where Hy denote its associated RKHS. Let (\)72, be the sequence of eigenvalues
associated to Ty in Lo(p) such that \y < Bk™Y? for all k € N* and 0 < p < 1, where 8 > 0 is an
absolute constant. For any v € X, let fy|x—, denote the conditional density function of Y given
X = x. Let us assume that there exist v > 0 such that, for all x € X and for all z in R such that
|z — 5 (2)] < 28+ [ luxll K|l we have fy|x—y(z) > ~. Let us assume that (X;,Y;);ez are
independent and distributed as (X,Y). Let S > 7|O|/3. Let:

[Fall e 138885)

OS,N = max (60(4/’77 B’ 17p) N+ ~ N

Then with probability larger than 1 — exp(—S/504) when
Cs.n

= 7
1% 1343,

the estimator f:\ﬁs associated to the absolute loss function defined in Equation (4.22) satisfies

A

1f2s = FiII7, < 4+3/@N))Csn and || fRs = Il < @+ NIF

When S < Np/(p“)||f*||gff()/(p+1) we recover the bounds from Theorem [4.10, However for the

minmax MOM-estimators, up to 35/7 outliers can contaminate the dataset without deteriorated

the error rate.
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4.5 Conclusion

We have presented two general results for the RERM and minmax-MOM estimators describing
the statistical properties of regularization in learning theory. For those two estimators we do not
assume that the regularization is a norm which is, as far as we know a new general result for
Lipschitz and convex loss functions. Under the local Bernstein Assumption, we can obtain rates of
convergence depending on ¢(f*). Results for the RERM have been derived under the i.i.d and the
sub-Gaussian Assumptions on the class F' — f* while no concentration Assumption is required for
minmax MOM-estimators. For MOM-estimators, a number of outliers smaller than square of the
rate of convergence in a non-contaminated setting X number of observations does not deteriorate the
learning procedure. We studied the particular example of SVM where no sub-Gaussian assumption
on the class F'is required and when the target Y may be heavy-tailed, widely improving the existing
results in the literature.

There are a number of interesting directions in which this work can be extended. One relevant
and closely related problem is to obtain sparsity bounds, i.e bounds depending on an underlying
structure of the oracle f* such as the sparsity or the rank of the oracle f*. It has been partially done
(under a really strong Assumption) in (Alquier et al.,|2019; |(Chinot|, 2019b)) when the regularization
function if a norm. However without this Assumption, the proofs no longer hold and a new analysis

has to be developed.

4.6 Proof main theorems

4.6.1 Proof of Theorems 4.2}, RERM

In the remaining of the proof we shall use repeatedly the following notations

_ L5243 o220
o4 °T 12 TEAT A

A=A" 0
Proof Theorem (4.2]

Proof of Theorem is split into two parts. First, we identify an event onto which the statistical
behavior of the regularized estimator f \ = f f can be controlled using only deterministic arguments.
Then, we prove that this event holds with a probability at least as large as the one in . Let us
define p* = (2 4+ v)no(f*). We first introduce this event:

Q= {for all f € FO(f 4 Bp,)NBL(f), |(P— Py)Ly| < 9(1"*)2}
where we recall that r* = r(A*) and Bf*(f*) ={feF: o(f—f)<p}
Lemma 4.1. Let A > (r*)?/¢(f*), on the event Q we have

e Forall f € F\By, PyL} > 2(0 + 1)Ao(f*)
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o Forall f € F N\ By, PxL} > —2(0+ D)Ag(f*)

Proposition 4.1. Let A\ > Xy := (r*)?/¢(f*), on the event Q, one has

0¢(f*)

d(Hr—f) <o, Ih—Fll < Am

Proof. Let A > Ao, we denote By = (f* + (Nop(f*)/((A™ — 9)r*))BL2> N Bf*(f*). We want to

prove that f,\ € B,.We recall that the regularized empirical excess loss function is defined for all
f € F by

PyLh = PnLy + A(éb(f) - ¢(f*))
Since f,\ is such that PNE}A < 0, it is enough to prove that PNE} > ( for all f € F\B, to get that
fA € B,. In fact, for the adaptive procedure it will be necessary to use the results from Lemma
which is equivalent (up to the choice of the constants) to show than PyL} > 0 for all f € F\B,.
From Lemma it follows immediately that ¢(fx — f*) < p* and || fx — f*||l, < A Aéqi(fe)

Proof. Lemma

The proof follows from an homogeneity argument saying that if Py£L} > 2(6 + 1)Aé(f*) on the
border of By then we also have PyL} > 2(6 4+ 1)A¢(f*) for all f € F outside By. Inside By the
arguments are similar.
Let f in F' be outside of By. By convexity of F', there exists fo € F and a > 1 such that
f—=f*=alfo— f*) and fy € 0B, where we denote by 9B, the border of By. By definition, we ei-
ther have: 1) ¢(fo— f*) = p* and || fo — f*||,, < (Aoo(f*))/((A~' —6)r*) in that case, o is such that
1<a<o(f—f*)/p* (see Lemmaln Sectlon or 2) [[fo = f*ll,, = (Me(f*)/ (A~ = 0)r*)
and ¢(fo — f*) < p* and, in that case, o = || f — f*||,, /(Aoo(f*))/((A™F — 0)r*)). We will treat

the two cases independently.

Let us first explain the role of the convexity of the loss function by writing down an homogeneity

argument linking the empirical excess risk of f to the one of f,. For all i € {1,--- N}, let
1¥; : R — R be defined for all ©w € R by

vilu) = 0w+ f7(X3), ) = ((f*(X0), Y2). (4.25)
The functions 1; are such that 1;(0) = 0, they are convex because / is, in particular a;(u) < 9;(au)

for all uw € R and o > 1 and ;(f(X;) — f*(X3)) = 0(f(X3),Y:) — £(f*(X;),Y;) so that the following
holds:

Pty = 5 20100 = 1(X0) = 5 D wilalho(X) - £(X))

> 5 2 Uil(fo(X0) = f(X0)) = aPyLy,. (4.26)
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For the regularization part the same homogeneity arguments holds.

O(f) = o(f) = o(f* + alfo — f7) = (f") = a(é(fo) — &(f))
where we used Lemma (see Section . Therefore
PyL} > aPnLj)

Let us now place ourselves on the event 2 up to the end of the proof and let fy € F'NoBy. We
explore two cases depending on the localization of fy on the border of By: 1) ¢(fo — f*) = p* and
1fo — f*ll., < (A0o(f*))/((A~F —6)r*) which is the case where the regularization part helps to show
that PyL3, > 2(0+1)Ae(f*) or 2) [[fo — I, = (A (f*))/ (A7 =0)r*) and ¢(fo— f*) < p* which
is where the Bernstein’s condition helps. We consider the first case which is when ¢(fy — f*) = p*

Figure 4.1: Construction of f.

and [[fo — f*[l,, < (Ao(f*))/((A™1 — 6)r*). There are two cases, either |fo — f*||,, < r* or
Ifo—f*ll,, > r*. In both cases, from the fact that ¢(fo — f*) < n(¢(fo) + ¢(f*)) we have
o(fo) — o(f*) = ~vo(f*). If || fo — f*||L2 < r*, on Q we have |(P — Py)Ly,| < 0(r*)? and we get

PyL} = PyLy+M(0(f) = &(f*) = a(PnLp, +Xy(f) ) = a = 007)* +9A0(f7) )
= (=0 +7)A0(f7) > 2(0 + 1)Ad(f7)

where we used the facts that X > (r*)?/¢(f*) and PLyg, > 0. Ifr* < || fo — f*[|, < Aoo(f*)/((A~ =

0)r*) we use the same projection trick. Let oy = || fo — f*|l,/r* and set f; in F' be such that

fo—f*=aq1(fr — f*). We have ||fi — f*||z, = 7* and ¢(fi1 — f*) < p*. Therefore on Q we have
PnLY > aPyLy, +9A6(f7) ) = a(anPyLy +9A6(f7) ) = yAd(f7) > 2(0 + 1)AS(f7)

Since, on Q, PxLy, > PLy —0(r*)? > A7 fi — ¥, —0(r*)? = (A~ = 0)(r*)* > 0 where we used
Assumption [4.5]
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We now turn to the second case where || fo — f*||,, = Mo(f*)/((A™"=0)r*) and ¢(fo— f*) < p*.
Remember that in this case oo = || f — f*||, /((A6p(f*))/((A™" — 0)r*)). The regularization part

no longer helps. However, by the Bernstein Assumption 4.5/ and using the same projection trick we

get
1 = Flles = Fle o Fll
PeLs 2 56U AT — 0y 550 2 Bsaf /(A — o) vEn
> Hf _{ ||L2 (A—l _ 9)(7,*)2

r

where f; is such that fy — f* = (||f0 — f*||L2/(7~*))(f1 — f*). We have ||fi — f*||lz, = r* and
o(fr — f*) < p*. Since ||f — f*[|,, = Aoo(f*)/((A™" = 8)r*), we finally get

Pecy z LS (4 gy~ aa(r) = 65— Dpolr) > 26+ 1)Ao(F)

We conclude the proof by studying PNE} for f € FNBy. One more time there are two cases, either
N f = f*lle, <r*or ||f — f*||L, > r*. In the first case, since PLy,, on € we get that

PnL} > =0(r")" = Ao(f*) > —(0 + D)Ao(f7)

For || f — f*||z, > r* using the projection trick, there exists o > 1 such that PyL; > aPyLy, where
fo satisfies ||fo — f*||z, = 7" and ¢(fo — f*) < p*. Therefore on €2, using Assumption we get
PyLyp > (A7 —0)(r*)? > —0A¢(f*). Finally in that case

PyLy > —(0+ 1)Ao(f*)

Next, we prove that €2 holds with large probability. To that end, we use the results from (Alquier
et al., 2019).

Lemma 4.2. (Alquier et al., 2019) Assume that Assumption and Assumption hold. Let
F' C F then for every u > 0, with probability at least 1 — 2 exp(—u?)

16LB
su P—Py)(Ly— L) < ——
f,geli“”( N)( f 9)| = \/N

where dy, is the Ly metric, dr,(F") is the Ly diameter of F'.

(w(F") + udp, (F"))

It follows from Lemma that for any u > 0, with probability larger that 1 — 2 exp(—u?),

sup (P — Pyn)Ly| < sup (P — Py)(Ly = L,)]

FEFN(f*+r*Bry)NBY. (f*) F9EFN(f*+1* BLy)NBo. (f7)
16LB
<

<% (w(F N (f*+7*Br,) N BY(f*)) +udp, (F N (f*+7r*Br,) N B;f’*(f*))) :
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We have dp, (F N (f*+1r*Bg,) ﬂBZZ(f*)) <r*and w(FN(f*+r*By,) ﬂBz’*(f*)) =w(FNr*Br, N
Bf*(())), By definition of the complexity parameter (see Equation (&.3)), for u = v/ Nr*/(32LB),
with probability at least

1—2exp (—6°N(r*)?/(32°L*B?)) (4.27)

for every fin F'N(f*+r*Br,) N Bf)’*(f*),

(P~ Po)Ly| < 6 (4.28)
Proof Theorem [4.3]
In this section we work on the event
e * 25 * * *
Q= {for all f e FN (f + " BLQ) NBL(f*), |(P—Pyx)Ls| <0(r )2}

Using the same proof as the one for Q, it easy to show that  holds with probability larger than

(0(A1 = 0))° N (r+)>
L= 2exp < N (64LB5)? )

Note that  C Q and then Lemma still holds.

Let us assume that (X;)7_, = (r7/¢;)]_, is non increasing. From the choice of (¢;);.

§=0;
k such that o5, < ¢(f*) < 2¢;. Note that if ()\j)}]:() is non decreasing, it is enough to use the same
proof with & such that (1/2)¢; < 6(f*) < ¢;.

Moreover, from Lemma , for all A > Ao, Ta(f*) = —PNL',j;A < (@+1)AP(f*) < 2(0+1)A\¢y. Since
o5, < ¢(f*) it follows that Ay > Ag. And finally

there exists

PyLy < 2(0 + 1)ggh; < 2(0+ 1)gi for all k> k (4.29)

From the definition of £* and Equation (4.29) it follows that k* < k and thus, f € fik As a
consequence, PNE}’; < Ty (f) and we get

Ak
f
From Lemmait follows that f satisfies || f — f*||5, < Aido(f*)/ (A~ —0)r*) < 2X\;06;/ (A1 —
0)*) < (26/(A — 0))r* and 6(F — %) < 02+ 1))

PyLF <2(0 + 1)Aio < 200 + 1)Ao(f7)

We finish this section by showing a oracle inequality for f. From the fact that ||f — f*||5, <

(26/(A7" — 6))r* and o(f — f*) < (24 7)e(f*), it follows, on Q that (P — Py)Ly < 6(r*)?. For
all A >0

PL; = PxLi+ (P = Px)L; < PyLy+ A(S(f%) — 6(f) +6(r)* < PuLE+M6(f*) +6(r)* .

In particular for A = A; one has PN/J}’; < 20+ 2)pp A < 2(0 + 1)(r*)? and A\io(f*) < 2(r*)2
Finally
PL; < (4+30)(r*)?
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4.6.2 Proof Theorem 4.4 minmax MOM estimators

Let 7 and Cg, design respectively 7(A) and C’SW(A). Moreover, all along the proof, the following

notations will be used repeatedly.

- 1 2 2
A=A bO=—, 0=—+3 7y=—=4+2, pu=

2A° A A 192L °

The proof is divided into two parts. First, we identify an event where the minmax MOM estimators
fé\ .= fg is controlled. Then, we prove that this event holds with large probability. Let S > 7|0]/3,

and

96L2%S _ . .
Cs, = max <—92N ,7”2> and  p" =n(2+7)o(f")
Let Bys ={f€E: ||f—fw, < A,‘f_g)‘"ﬁg*) and o(f* — f*) < p*}. Consider the following
event ’
> S
Qg = {Vf € FN\/Cs,Br, N B/‘f*(f*), Z[(’(PBS — P)(ly — Ef*)’ < HCS,T) > 5} . (4.30)
s=1
Deterministic argument
Lemma 4.3. fg € By.s if the following inequalities holds
sup  MOMs(Lp — €y) + Xo(f) — o(f)) < =2(6 + 1)Ad(f) , (4.31)
feF\B)\,s
sup MOMg(Cpe — L) + MNo(f*) — o(f)) < (0 +D)Ao(f7) . (4.32)
fEFNBy,s

Proof. For any f € F, denote by S(f) = supyep MOMs(lr —Ly) + Mo(f) — ¢(g)). If (£31) holds,
by homogeneity of MOMsg, any f € F\B, s satisfies

S(f) = MOMs(ly — £5-) + X(o(f) — (f*)) > 2(60 + DAe(f7) -
On the other hand, if and hold,

S(f*) =sup MOMs(Ly — Ly) + M(&(f7) — ¢(f)) < (6 + 1)AS(f")

fer

Thus, by definition of fs and (@.32)),

S(fs) < S(f7) < (0+D)Ao(f) -
Therefore, if ({#.31) and (&.32) hold, f, € By.s. n

Lemma 4.4. For all S > 7|0|/3 and X\ > Cs,/¢(f*), inequalities (4.31) and (4.32)) holds on Q.
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Proof. The arguments are exactly the same as the one in the proof of Lemma[4.T} For all functions
f € F\Bygs and for each block B; there exist « > 1 and fy € F in the border of B) g such
that Pg Ly > aPp,Ly. We present here only one case (the others are trivial applications of
the arguments in the proof of Lemma . In the case where ¢(fy — f*) = p* and /Cg, <

1fo— £*llu, < (A66(F))/ (A1 = 0)/Ts,). We still have A(¢(fo) — 3((f*)) > Mé(f*). Using the
projection trick, there exists a; > 1 such that on each block B, Pp Ly, > o1 Pp Ly for fi such
that || f1 — f*||z, = v/Cs, and ¢(f1 — f*) < p* and then, on the event {2g, one more than S/2 blocks
B

Py, L} > a(Pp,Lgy + 7M(F7) ) > a(an P, Ly, +7A6(f7) ) 2 1A6(f7) > 200+ DAG(f7)  (4.33)

where we used the fact that on Qg, there are at least S/2 blocks By such that, Pg Ly > PLy —
0Cs, > A7 fr — f*||7, —0Cs, = (A1 — 0)Cs, > 0 and Assumption
As Equation (4.33)) holds on more than S/2 blocks we get that

MOMs((y — () + A(@(f) — 6(f*)) = 200 + D)AS(f*)

From the same arguments as the one in the proof of Lemma we finally obtain

sup  MOMs((y- — Lp) + M(f7) = o(f)) < =200+ DAS(f")

FEF\B) s

sup  MOMs(p- — Lp) + A(o(f7) — o(f)) < (0 + DAd(f7)

feFﬂBNs

which concludes to proof. [ ]

Control of the stochastic event

Contrary to the deterministic argument, the control of the stochastic event is very different from
the one for the RERM.

Proposition 4.2. Grant Assumptions and[{.8 Let S > 7|0|/3. Then Qg holds
with probability larger than 1 — 2exp(—S/504).

Proof. Let F={f e F: |[f=f"1, < /Csr, ¢(f—f) <p*}andlet h(t) = I{t > 2}+(t—1)I{1 <
t < 2}. This function satisfies V¢t € R*, I{t > 2} < h(t) < I{t > 1}. Let Wy = ((X;,Y:))ien, and,

for any f € F, let Gy(W,) = (P, — P)({; — {;+). Let also Cs, = max (96LQS/(02N),f2). For
any f € F, let

S
2(f) =Y HIG;(W,)| < 6Cs,} .
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Proposition will be proved if P(z(f) > 5/2) > 1 — e /%", Let S denote the set of indices of
blocks which have not been corrupted by outliers, S = {s € {1,--- ,S} : B, C Z}. Basic algebraic

manipulations show that

() |&—am§j( (206C5,) |Gy (W. )D—Eﬂﬂﬂ&»*WAWMO

fer SES

— > ER(2(0Cs,) NG (W)) . (4.34)

SES

The last term in (4.34)) can be bounded from below since for all f € F and s € S,

Eh(2(6Cs,) " |GH(Wy)]) < P(]Gf(WS)| > 96;5,1«) < 41%%5?)/3)

452 4128
HQCngQ ZE gf_gf*) (XHY;)] = 92C§TNH]C I ||L2 :

The last inequality follows from Assumption . Since ||f — |, < /Csyr,

4125

Eh(2(6Cs,) "G (WL)]) < P20 N

As Cs, > 96L2S/(0°N),
Eh(2(0Cs,) |Gy (Wy)]) < =— .

Plugging this inequality in (4.34]) yields

2(f) =z ISI(l—— —supZ( 2(0Cs,)~ IGf(Ws)I)—Eh@(@CS,r)_lle(Ws)l)) - (439)

seS

Using the Mc Diarmid’s inequality, with probability larger than 1 — exp(—|S|/288) we get

mmgj( 26Cs,) W%()D—EM%MhJ*WAWMU

fer

< B Baup 37 ((@6Cs,) " 1G5V.)) - BH(2(6C5,) GOV )

fer seS

By the symmetrization lemma, it follows that

cup S (H(20Cs) 16, (W)) ~ ER(2(005,) G,V

fer seS
| > NG (W
24 +2E?1€l£ £ O'kh 9057«) |Gf( 5)|) .
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As ¢ is 1-Lipschitz with ¢(0) = 0, the contraction Lemma from (Ledoux and Talagrand, 2013) and
yields

supz( 20Cs,)" \Gf<ws>r)—Eh(2<ecs,r>1rGf<Ws>\))

feFr

seS
S| | 4 G (W)
< —+ =-Esu O
2470 jer Zses 5
S| | 4 (P, — P)({y — £y+)
= — + -Esu O u
TN R ADD Cs.

For any s € S, let (0;)iep, independent from (0;)ses, (Xi)ier and (Y;);ez. The vectors (o;0,(¢f —
() (X5, Y;))ir and (o;(€p — 05 ) (X, Y;))s, r have the same distribution. Thus, by the symmetrization
and contraction lemmas, with probability larger than 1 — exp(—|S|/288),

sup ) ( (2C5, |G (Wi)]) —Eh(2C§i|Gf(WS)|)>

fer seS

sl 8 ~Esup Z Z o b = ) (X3, Vi)

T 24 fer ZeB Cs,
S| | 85 (L = €p) (X3, Y5)
= — 4+ —[Esup lof
GN feF i€Us§‘Bs CST
S| 8LS (f = ()
< — 4+ —FEsu oj——" 4.36
- 24 ON feF zeusgsBs CS,r ( )

Now either 1) S < 0*/2N/(96L?) or 2) S > 6*7F2N/(96L?). Assume first that S < 0*7?N/(96L?), so
Cs, = 7 and by definition of the complexity parameter

X 1 1|S|IN
Bap| 3 o) pay LS - o) < M55
Fe7 1iel esBs 1eF T ieles By
If S > 6272 N/(9612), Cs, = 96L25/(6>N). Then,
f)(X3)
E
sup Z oz CST
1€UgesBs
SE[— aw | Y el
fGFﬂBj*(f*)ﬂ(f*JrfBLQ) i€Uses Bs
(f = f)(X) }
V sup Oic T araa Ny
feFﬂB¢( RPN f= 41y <A/ 96L2S/(02N) | icU e s Bs 9L S/(9 N)
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By an homogeneity argument we obtain

(f = f)(X3)

i 7196125/ (62N

FEFNBL. (f*): #<| = f* ]| Ly <1/96L25/ (62 N)
1
<

1€Uses Bs

sup

" FEFNB. (7%): 7<) F~ 1|1y <\/96L25/ (62N)
Ui(f - f*)(Xi)

ieusESBs

iEUSGSBS

< sup

FEFNBL(f*): If =1+ L, =7

%zl
o

Finally, in the second case 2) we also have

i€Uses Bs maX(aGQN’

(| S|IN
S

E sup
feFr

Plugging this bound in (4.36)) yields, with probability larger than 1 — e~S51/288

— 1 8Lp S
up) ( (205, 1Gr(WL)]) = Eh(?OS,HGf(Ws)D) <8 (i + T) - % |

fer seS

Plugging this inequality into (4.35]) shows that, with probability at least 1 — e~151/288,

z(f)>%.

As S > 70|/3,|S| = S —|0O| = 4S5/7, hence, z(f) > S/2 holds with probability at least 1 —e=5/504,
]

4.6.3 Proof Theorem [4.§]

As for the proof of Theorem presented in Section the proof is split into two parts. While
we develop another stochastic argument the deterministic part from Proposition is exactly the
same.

In the example of RKHS, the sub-Gaussian Assumption is not necessary. Instead the tools from

bounded class of functions such as the Bousquet’s inequality that we recall here can be used.

Theorem 4.12 (Theorem 2.6, (Koltchinskii, 2011a)). Let F be a class of functions bounded by M.
For all t > 0, with probability larger than 1 — exp(—t)

t tM
sup |(Py — P)f| < Esup|(Py — P)f| + 2—(supr2 + 2MEsup |(Py — P)f\) + — (4.37)
feF feF N\ jer feF 3N

Let us define

(Q:= {Vf €F | f = fllr, < max(L, VU f* o )7 (A), I1f = £l < 42+ 1/ AN 5

max(1, UHf*_HHK)fQ(A) }
2A

(P = Pn)Ly| <
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where we recall that U = 2L+/(2 + 1/A)||K| . By taking r* = max(1, \/U||f*[Js,)7(A) in the
proof of Proposition it is clear that the deterministic argument is exactly the same.
Let us show that © holds with probability larger than 1 — exp ( — (N72(A))/(64(AL)?)). Let

F={f €M, IIf = I, < max(1, VU T )7(A), If = F*Il3, < p*}. From Assumption [4.2
forallz,ye X x YV and f € F

(€ = Ly=) (2, y)| < LIf(2) = f7(2)] < max(L, U[|f*[|5)

We can Therefore use Theorem with M = max(1,U||f*||3,)- From the definition of F it
follows that supcr P((y — (5-)? < L*max(1, U|| f*|l4,)7*(A). Let (0;)X, be iid Rademacher
random variables independent from (X;,Y;);=1, from the symmetrization and contraction Lemmas
(Ledoux and Talagrand, [2013) we get

(4)

N
1 . .
Esup|(Py — P)Ly| < 4LE§161]13 ~ ;fn(f = £)(X0) < max(L U o) 7o 1

feFr
where we used the Definition of r(-). For any ¢t > 0, it follows from Theorem that for any
function f in F

72(A) | max(L,U| f*|lp, )t
16A 3N

(P = P)Ly| <max(1, U] f*[l)

8A
Take t = N72(A)/(64(LA)?) and use the fact that A, L > 1 conclude the proof.

2 (1 U2 A1 + )

4.7 Supplementary lemmas
Lemma 4.5. Let v > 0 and f in F such that ¢(f — f*) > ~. Then, there exist fo in F and
1<a<o(f—f")/y such that f = f*+ a(fo— f*) and ¢(fo— f*) =7

Proof. Let ag = sup{a > 0, ¢(a(f — f*)) <~} For a=~/¢(f — f*) <1 we have ¢(a(f — f*)) <
ad(f — f*) = v so that ag > v/o(f — f*). By convexity of F', fo := f*+ ao(f — f*) € F and
ap < 1 otherwise, by convexity of ¢ we would have agp(f — f*) < gb(ao(f — f*)) < 7. Moreover, by
maximality of ag, fo is such that ¢(a(f — f*)) = ¢(fo — f*) = 7. The result follows for a = ;' =

Lemma 4.6. Let f: R +— R be a convex function. Then for all A > 1 and z,y in R:

Oz + (1 =Ny) =2 Af(z) + (1= AN f(y) (4.38)

Proof. Let A > 1, by convexity of f, for all z,y in R:

F(Fe+ =) < 30@+ 0= 5w

It suffice to take x = Az + (1 — A\)y to get the result. u



Chapter 5

ERM and RERM are optimal estimators
for regression problems when malicious

outliers corrupt the labels

In this chapter, we study Empirical Risk Minimizers (ERM) and Regularized Empirical Risk Min-
imizers (RERM) for regression problems with convex and L-Lipschitz loss functions. We consider
a setting where |O| malicious outliers may contaminate the labels. In that case, we show that
the Lo-error rate is bounded by ry + L|O|/N, where N is the total number of observations and
ry is the Lo-error rate in the non-contaminated setting. When ry is minimax-rate-optimal in a
non-contaminated setting, the rate ry + L|O|/N is also minimax-rate-optimal when |O| outliers
contaminate the label. The main results of the paper can be used for many non-regularized and
regularized procedures under weak assumptions on the noise. For instance, we present results for
Huber’s M-estimators (without penalization or regularized by the ¢;-norm) and for general regular-

ized learning problems in reproducing kernel Hilbert spaces.

155
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5.1 Introdution

Let (X;,Y;)i=1,.. n be random variables taking values in X x R, where X’ is a measurable space.
Given a new input X € X, one wants to predict its associated label Y € R. To proceed, we
consider (X,Y’) as a random variable valued in X x R and given a class of predictors F of functions
f: X — R, the goal is to predict/approximate the oracle f* defined as
f* € argmin E[((£(X),Y)] .
feF

where ¢(f(X),Y) measures the error of predicting f(X) while the true label is Y. To esti-
mate/approximate the function f*, we use the dataset (X;,Y;);=1.. n. Regularized empirical risk
minimization is the most widespread strategy in machine learning to estimate f*. There exists
an extensive literature on its generalization capabilities (Vapnik, |1998; |Koltchinskii et al., 2006;
Koltchinskii, 2011b; Lecué and Mendelson, 2018; |Chinot et al) 2019b). However, in the recent
years, many papers highlighted its severe limitations. One main drawback, is that a single outlier
(X,,Y,) (in the sense that nothing is assumed on (X,,Y,)) may deteriorate the performances of
RERM. Consequently, RERM is in general, not robust to outliers. However, what happens if only
the labels (Y;);—1.. v are contaminated ? In (Dalalyan and Thompson| [2019); the authors raised
the question whether it is possible to attain optimal rates of convergence in outlier-robust sparse re-
gression using regularized empirical risk minimization. They consider the model, Y; = <Xi, t*> + €,
where X; is a Gaussian random vector in RP with a covariance matrix satisfying the Restricted
Eigenvalue condition (Van De Geer et al., [2009) and t* is s-sparse. For non-contaminated data
they suppose that €; ~ N(0,0?%), while it can be anything when malicious outliers contaminate the
sample. The authors prove that the ¢;-penalized empirical risk minimizer based on the Huber’s loss

function has an error rate of the order

log(p) O]
ST + W (51)

where |O] is the number of outliers contaminating the labels. Consequently, they showed that
RERM associated with the Huber loss function is minimax-rate-optimal when |O| malicious outliers

corrupt the labels.

5.1.1 Setting

Let (€2, A,P) be a probability space where Q = X x V. X denotes the measurable space of the
inputs and ) C R the measurable space of the outputs. Let (X,Y) be a random variable taking
values in €2 with joint distribution P and let u be the marginal distribution of X. Let F' denote a
class of functions f : X — ). A function f in F' is named a predictor. The function £ : ) x ) — R*
is a loss function such that ¢(f(z),y) measures the quality of predicting f(x) while the true answer

is y. For any function f in F' we write {¢(x,y) := ¢(f(z),y). For any distribution () on Q and any
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funtion f: X x Y = R we write Qf = Exy)~p[f(X,Y)]. Let f € F, the risk of f is defined as
R(f) := Ply = Exy)~p[l(f(X),Y)]. A prediction function with minimal risk is called an oracle
and is defined as f* € argming.r Ply. For the sake of simplicity, it is assumed that the oracle f*
exists and is unique. The joint distribution P of (X, Y’) being unknown, computing f* is impossible.
Instead one is given a dataset D = (X;,Y;)¥, of N random variables taking values in X x ). In
this paper, we consider a setup where |O| outputs may be contaminated. More precisely, let Z U O
denote an unknown partition of {1,--- , N} where Z is the set of informative data and O the set

of outliers. It is assumed that:

Assumption 5.1. (X;,Y)ier are i.i.d with a common distribution P. The random variables (X;)XY,

are 1.1.d with law p.

Nothing is assumed on the labels (Y;);co. They can even be adversial outliers making the learning
as hard as possible. The goal is, without knowing the partition Z U O, to use the informative
data (Xj,Y;)ier to construct an estimator f that approximates/estimates the oracle f*. A way
of measuring the quality of an estimator is via the error rate ||f — f| Lo(u) OF the excess risk
PL; = Pl; — Ply.. We assume the following:

Assumption 5.2. The class F' is convex.

A natural idea to construct robust estimators when the labels might be contaminated is to
consider Lipschitz loss functions (Huber, [1992; [Huber and Ronchetti, 2011). Moreover, for compu-

tational purposes we will also focus on convex loss functions (van de Geer, [2016)).
Assumption 5.3. There exists L > 0 such that, for anyy € Y, £(-,y) is L-Lipschitz and conver.

Recall that the Empirical Risk Minimizer (ERM) and the Regularized Empirical Risk Minimizer
(RERM) are respectively defined as

N N

N . 1 /\)\ . 1

i € argmin D Uf(Xi),Y;), and fie argmin DAY+ AL
=1 i=1

where A > 0 is a tuning parameter and || - || is a norm. Under Assumptions and the ERM

and RERM are computable using tools from convex optimization.

5.1.2 Our contributions

As exposed in (Dalalyan and Thompson, 2019)), in a setting where |O| outliers contaminate only the
labels, RERM with the Huber loss function is minimax-optimal for the sparse-regression problem
when the noise and design of non-contaminated data are both Gaussian. It leads to the following

question:
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1. Are the RERM optimal for other loss functions and other regresssion problems than the sparse-

regression problem when malicious outliers corrupt the labels ?

Based on previous works (Chinot et al 2019b} |Chinot, [2019b; |Chinot et al.| 2019a; |Alquier et al.|
2019), we study ERM and RERM for regression problems when the penalization is a norm and the

loss function is simultaneously convex and Lipschitz and show that:

e D

In a framework where |O| outliers may contaminate the labels, with weak assumptions on
the noise, the excess risk and the square of the error rate for both ERM and RERM can be

bounded by
O
N2

where NV is the total number of observations, L is the Lipschitz constant from Assumption [5.3

r3 + L? (5.2)

and ry is the error rate in a non-contaminated setting.

When the proportion of outliers |O|/N is smaller than the error rate normalized by the Lips-
chitz constant ry/L, both ERM and RERM behave as if there was no contamination. The result
holds for any loss function that is simultaneously convex and Lipschitz and not only for the Huber
loss function. We obtain theorems that can be used for many well-known regression problems in-
cluding structured high-dimensional regression (see Section , non-parametric regression (see
Section and matrix trace regression (using the results from (Alquier et al., [2019))).

The next question one may ask is the following:

2. Is the general bound ([5.2) minimaz-rate-optimal when |O| malicious outliers may have cor-
rupted the labels ¢

To answer question 2, we use the results from (Chen et al., 2018). The authors established a
general minimax theory for the e-contamination model defined as P(. g.q) = (1 — )Py + £Q given a
general statistical experiment { P, 0 € ©}. A deterministic proportion € of outliers with same the
distribution @) contaminates Pp. When Y = f3(X) 4+ ¢, 6 € © , in Section we show that the

lower minimax bounds for regression problems in the e-contamination model are the same when

e Both the design X and the response variable Y are contaminated.

e Only the response variable Y is contaminated.

Moreover, it is clear that a lower bound on the risk in the e-contamination model implies a lower
bound when |O| = eN arbritrary outliers contaminate the dataset since in our setting, outliers do
not necessarily have the same distribution (). As a consequence, for regression problems, minimax-
rate-optimal bounds in the e-contamination model are also optimal when Ne malicious outliers

corrupt the labels.



5.1. INTRODUTION 159

When the bound ([5.2)) is minimax-rate-optimal for regression problems in the e-contamination
model with ¢ = |O]/N, then it is also minimax-rate-optimal when |O| malicious outliers

corrupt the labels.

In particular, we recover and generalize the results from (Dalalyan and Thompson, [2019) when

the noise of non-contaminated data is not necessarily Gaussian but may be heavy-tailed.

The results are derived under the local Bernstein condition introduced in (Chinot et al., 2019b)).
This condition enables to obtain fast rates of convergence when the noise is heavy-tailed. As a proof
of concept, we study Huber’s M-estimators in R” (non-penalized or regularized by the ¢;-norm) when
the noise may be heavy-tailed. In these cases, the error rates are respectively \/Tr(Z)/N + |O|/N
and /slog(p)/N +|O|/N, where X is the covariance matrix of the design X. We also study learning
problems in general reproducing Kernel Hilbert Space (RKHS). We derive error rates depending
on the spectrum of the integral operator as in (Smale and Zhoul 2007; Mendelson et al., 2010;
Caponnetto and De Vitol 2007) without assumption on the design and when the noise has heavy
tails (see section [5.3.3)).

5.1.3 Related Litterature

Regression problems with possibly heavy-tailed data or outliers cannot be handled by classical
least-squares estimators. This lack of robustness of least-squares estimators gave birth to the the-
ory of robust statistics developed by Peter Huber (Huber, |1992; [Huber and Ronchetti, 2011} Huber
et al., |1967) , John Tukey (Tukey, 1960, 1962)) and Frank Hampel (Hampel, 1971, 1974)). The
most classical alternatives to least-squares estimators are M-estimators which consist in replacing
the quadratic loss function by another one, less sensitive to outliers (Maronna, 1976; Yohai and
Maronnay, (1979).

Robust statistics has attracted a lot of attention in the past few years both in the computer science
and the statistical communities. For example, although estimating the mean of a random vector in
R? is one of the oldest and fundamental problems in robust statistics, it is still a very active research
area. Surprisingly, optimal bounds for heavy-tailed data have been obtained only recently (Lugosi
et al., 2019b). The estimator in (Lugosi et al) 2019b) cannot be computed in practice. Using
SDP, (Hopkins, [2018) obtained optimal bounds achievable in polynomial time. In recent works,
still using SDP, (Lecué and Depersin) 2019 designed an algorithm computable in nearly linear
time, while (Lei et al., [2019) developed the first tractable optimal algorithm not based on the SDP.
In the meantime, another recent trend in robust statistics is to focus on finite sample risk bounds that
are minimax-rate-optimal when |O] outliers contaminate the dataset. For example, for the problem

of mean estimation, when |O| malicious outliers contaminate the dataset and the non-contaminated
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data are assumed to be sub-Gaussian, the optimal rate of the estimation error measured in Euclidean
norm scales as y/p/N + |O|/N. In (Chen et al.,[2018), the authors developed a general analysis for
the e-contamination model. In (Chen et al., 2016, the same authors proposed an optimal estimator
when |O| outliers with the same distribution contaminate the data. In (Diakonikolas et al., 2019b)),
the authors focused on the problem of high-dimensional linear regression in a robust model where
an e-fraction of the samples can be adversarially corrupted. Robust regression problems have also
been studied in (Cheng et al., 2019; Diakonikolas et al., [2019a; Liu et al., 2018} |Bhatia et al., 2015).
Above-mentioned articles assume corruption both in the design and the label. In such a corruption
setting ERM and RERM are known to be poor estimators. In (Dalalyan and Thompson, 2019), the
authors raised the question whether it is possible to attain optimal rates of convergence in sparse
regression using regularized empirical risk minimization when a proportion of malicious outliers
contaminate only the labels. They studied ¢; penalized Huber’s M-estimators. This work is the
closest to our setting and reveals that when only the labels are contaminated, simple procedures,
such as penalized Huber’s M estimators, still perform well and are minimax-rate-optimal. Their
proofs rely on the fact that non-contaminated data are Gaussian. Our approach is different and
more general.

Other alternatives to be robust both for heavy-tailed data and outliers in regression have been pro-
posed in the literature such as Median Of Means (MOM) based methods (Lecué and Lerasle, |2019;
Lecué et al., 2018; |Chinot et al., [2019b)). However such estimators are difficult to compute in prac-
tice and can lead to sub-optimal rates. For instance, for sparse-linear regressions in R? with a sub-
Gaussian design, MOM-based estimators have an error rate of the order \/W + L\/W
(see (Chinot et al., 2019b))) while the optimal dependence with respect to the number of outliers
is y/slog(p)/N + L|O|/N. Finally, there was a recent interest in robust iterative algorithms. Tt
was shown that robustness of stochastic approximation algorithms can be enhanced by using robust
stochastic gradients. For example, based on the geometric median (Minsker et al., 2015)), (Chen
et al, 2017)) designed a robust gradient descent scheme. More recently, (Nazin et al., [2019) showed
that a simple truncation of the gradient enhances the robutness of the stochastic mirror descent

algorithm.

The paper is organized as follows. In Section we present general results for non-regularized
procedures with a focus on the example of the Huber’s M-estimator in RP. Section gives general
results for RERM that we apply to ¢;-penalized Huber’s M-estimators with isotropic design and
regularized learning in RKHS. Section presents simple simulations to illustrate our theoritical
findings. In section [5.6] we show that the minimax lower bounds for regression problems in the
e-contamination model are the same when 1) both the design X and the labels are contaminated
and 2) when only the labels are contaminated. Section [5.7|shows that we can extend the results for
(1-penalized Huber’s M-estimator when the covariance matrix of the design X satisfies a Restricted

Eigenvalue condition. Finally, the proofs of the main theorems are presented in Section [5.8|
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Notations All along the paper, for any f in F, || f||z, will be written instead of || f| 1, where
1£11Z, = J f?du. The letter ¢ will denote an absolute constant. For a set T’ its cardinality is
denoted |T'|. For two real numbers a,b, a Vb and a A b denote respectively max(a, b) and min(a,b).
For any set H for which it makes sense, let H+ f* = {h+f*st he H}, H—f*={h—f*st h€ H}.

5.2 Non-regularized procedures

In this section we study the Empirical Risk Minimizer (ERM) where we recall the definition below:
L

_ in— S 0(f(X,).Y) . 5.3

fiv = argmin - ;:1 (f(X:), i) (5:3)

We establish bounds on the error rate ||fy — f*||z, and the excess risk PL; = Pl; — Plp in
two different settings 1) when F' — f* is sub-Gaussian, and 2) when F' — f* is locallly bounded. We

derive fast rates of convergence under very weak assumptions.

5.2.1 General results in the sub-Gaussian framework

The ERM performs well when the empirical excess risk f +— PyLy uniformly concentrates around
its expectation f — PL;. Thus, it is necessary to impose a strong concentration assumption on
the class {L;(X,Y), f € F'}. From assumption it is implied by a concentration assumption on

the class {(f — [*)(X), f € F}.

Assumption 5.4. The class F' — [* is B sub-Gaussian i.e for all f € F' and all A >0

EexpA(f — f)YX)/Nf = F¥llz.) < exp(A*B?/2) .

See (Lecué and Mendelson, |2013) for many examples of sub-Gaussian classes. In this context,
we use the Gaussian mean-width as a measure of the complexity of the class function F' that we

introduce here

Definition 5.1. Let H C Lo(p). Let (Gp)ren be the canonical centered Gaussian process in-
dexed by H (in particular, the covariance structure of (Gp)pen s given by (E(Gp, — Gh2)2)1/2 =
(B(h(X) — ha(X))2)"? for all hy,hy € H). The Gaussian mean-width of H is w(H) =

Esup,cy Gh.

For example, when F' = {<t, ->,t € T} and the covariance matrix of X is 3, we have w(F') =
EsupteT<t,G>, where G ~ N(0,X). Similarly to (Lecué and Mendelson, [2018; (Chinot et al.,
2019b,a; |Alquier et all 2019), the error rate and the excess risk are driven by fixed point solutions

of a Gaussian mean-width:
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Definition 5.2. Let By, denote the unit ball induced by Lo(p). The complexity parameter rz(-)
1s defined as
r7(A) = inf{r > 0: ALB(L + D)w(F N (f*+1rByL,)) < cr’*\/|Z|}

where ¢ > 0 denotes an absolute constant, L is the Lipschitz constant from assumption and B

is the sub-Gaussian constant from assumption[5.4)

To obtain fast rates of convergence it is necessary to impose assumptions on the distribution
P. For instance, the margin assumptions (Mammen and Tsybakov, [1999; Tsybakov} 2004; van de
Geer, [2016) and the Bernstein conditions from (Bartlett and Mendelson, 2006a) have been widely
used in statistics and learning theory to prove fast convergence rates for the ERM. In the spirit

of (Chinot et al., 2019b)) we introduce a weaker local Bernstein assumption.

Assumption 5.5. Let r(-) be a complexity parameter s.t for all A > 0, r(A) > rz(A). There exists
a constant A > 0 such that for all f € F if ||f — f*||r, = 7(A) we have ||f — f*||7, < APLy.

Note that assumption [5.5| holds locally around the oracle f*. The smallest radius corresponds to
rz(A). The bigger r(-) the stronger assumption [5.5/is. Assumption [5.5| has been extensively studied
in (Chinot et al., 2019blla)) for different Lipschitz and convex loss functions. For the sake of brevity,

in applications we will only focus on the Huber loss function in this paper.

We are now in position to state the main theorem for the ERM.

Theorem 5.1. Let ZU O be a partition of {1,---, N} where |O| < |Z|. Let r(-) be a complezity
parameter such that for all A >0, r(A) > rz(A). Grant Assumptions with L > 1,
and with v(-) for A > 1. As long as |O| < |Z|r(A)/(2AL), with probability larger that 1 —
2exp (— c[Z|r*(A)/(ALB(1 + L))), the estimator fn defined in Equation (5.3) satisfies

r*(4)

v = f . <7(A)  and PL; < Y

The partition ZU O is unknown: no one knows which observations are outliers. In Theorem [5.1],
we can always take r(A) = max(rz(A),2AL|O|/|Z|). With such a choice of complexity parameter,
we necessarily have |O| < (|Z|r(A))/(2AL) and with probability larger that

1-2 S —— \I|2(A)@
P\ T ALBr ) T\ g

the estimator fy defined in Equation (5.3) satisfies

Ifn = £l < cAL(r;r(A) + ’%’) :

Theorem holds if the local Bernstein condition [0.9] is satisfied for all functions f in F' such
that || f — f*||L, = cAL(rz(A) + |O|/N), that is on an Ls-sphere with a radius equal to the rate of

convergence. The bound on the error rate can be decomposed as the sum of the error rate in the
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non-contaminated setting and the proportion of outliers |O|/N. As long as the proportion of outliers
is smaller than the error rate in the non-contaminated setting, the error rate remains constant. On
the other hand, when the proportion of outliers exceeds the error rate in the non-contaminated
setting, the error rate in the contaminated setting becomes linear with respect to the proportion
of outliers. When 77 is minimax optimal in a non-contaminated setting, we obtain that the ERM
is minimax optimal when less that Nrz outliers contaminate the labels. In Section [5.2.3] we show

that this dependence with respect to the number of outliers is minimax optimal for linear regression

in RP.

5.2.2 General results in the bounded framework

In Section we considered sub-Gaussian class of functions to derive fast rates of convergence.
In this section, we derive a general result when the localized class F' — f* is bounded (localized
around the oracle f* with respect to the Lj(p)-norm, see Assumption [5.6). Since the Gaussian
mean-width no longer appears naturally, it is necessary to define a new measure of the complexity
of the class F. A way to measure the complexity a class of functions F' is via Rademacher
complexities (Koltchinskii et al, 2006 Koltchinskii, 2011b).

Definition 5.3. The complexity parameter in the bounded setting r5(-) is defined as

b . * |I|T2
T(A):mf{r>():E sup o(f—f (XZ-)S—}
: FEFN(f*+rBLy) zezz ( ) 32A(L +1)L
where (0;)iez are i.i.d Rademacher random variables independent to (X;)iez, L is the Lipschitz
constant from assumption[5.3 and By, denote the unit ball with respect to Lo(u).

To obtain fast rates, we need to adapt the local Bernstein condition to this new complexity

parameter and introduce the local boundedness assumption

Assumption 5.6. Let r°(-) be a complexity parameter such that for every A > 0, r°(A) > r2(A).
There exist constants A > 1, M > 0 such that for all f € F if |f — f*||z, = max(1,V/LM)rb(A)
we have

If = £, < APLy and Vo € X,|(f — f)(z)| < M (5.4)

The second part of Equation requires Lo.-boundedness only in the Ly-neighborhood around
the oracle f* where the radius is proportional to the rate of convergence r°(A). For example,
let us consider the case when F = {(t,-),t € RF} and X is isotropic (i.e E<X,t>2 = ||¢||3 for
all t € RP). Let f(-) = (t,-) be such that ||f — f*||r, = ||t — t*[]2 < max(1,v/LM)r*(A) and
((f = f)(@)] = [{t =", 2)| < ||t — t*]2]|z]|2 < [|z]|s max(L, vVLM)rb(A). Without loss of generality
we can assume that M > 1 and the condition becomes, there exists M > 1 such that for all x in
X CRP 2|2 < M/(L(r*(A)?). Simple computations (see (Koltchinskii et al., 2006))) show that
when 7°(A) = 7%(A), the complexity parameter r°(A) is of the order /p/|Z| and the condition
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become ||z||3 < (M|Z|)/(pL). The more informative data we have, the larger the euclidean radius
of X can be.

Assumptionis local around the oracle f*. The smallest radius corresponds to max (1, v LM )rb(A).
The bigger r°(-) the stronger assumption is. We are now in position to state the main theorem
for the ERM in the bounded setting.

Theorem 5.2. Let ZU O be a partition of {1,--- , N} where |O] < |Z|. Let r°(-) be a complexity
parameter such that for all A > 0, r°(A) > r5(A). Grant Assumptions with L > 1,
and |5.6/ with r°(-) for A>1 and M > 0. As long as |O| < (|Z|r(A))/(2AL), with probability larger
than 1 — 2exp (— c|Z|r?(A)/(L + 1)>42)), the estimator fy defined in Equation (5.3) satisfies

r’(4)
A

= F N za(uy < max(1,VLM)r*(A) and PL; < max(l,LM)

In Theorem we can always take 7°(A) = max(r}(A),2AL|O|/|Z|). With such a choice of
r%(+) we necessarily have |O| < (|Z|r°(A))/(2AL) and with probability larger that

1 —2exp ( - m fnax (|I|(T%<A))2’ %>)

the estimator fy defined in Equation (5.3)) satisfies

||fN — [N o £ cALmax(1,vLM) (r%(A) + %) )

As in the sub-Gaussian setting there is a tradeoff between confidence and accuracy. When the
number of outliers is smaller than N7%(A), confidence and accuracy are constant. When |O| becomes
larger than the threshold N7%(A) the confidence is improved while the accuracy is deteriorated. The
conclusion is the same as in the bounded case. The error rate in the contaminated setting is the

maximum between the error rate in the non-contaminated setting and the proportion of outliers.

5.2.3 A concrete example: the class of linear functional in R?” with
Huber loss function

To put into perspective the results obtained in Sections [5.2.1, we apply Theorem for linear

regression in RP. For the sake of brevity we do no present the result for Theorem [5.2 In the

vocabulary of Section , the class F' of predictors is defined as ' = {<t, ->, t € RP} which satisfies
assumption [5.2] Let (X;,Y;)¥, be random variables defined by the following linear model:

where (X;)¥, are i.i.d Gaussian random vectors in R? with zero mean and covariance matrix .

The random variables (¢;);ez are centered and independent to X;. For the moment, nothing more
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is assumed for (€;);ez. It is clear that assumption holds. The Empirical Risk Minimizer with

the Huber loss function is defined as

- 1

N
ty = art%%;in N ;ﬁ(@(i, t),Y;) (5.6)

where °(-,-) is the Huber loss function defined for any § > 0, u,y € Y = R, by

Bluy) 3y —u)? if ju—y| <0
5|y—u|—§ if lu—y| >0
which satisfies assumption for L = 6. All along this section, ¢ will be considered as a constant
(i.e independent to the sample size N and the dimension p). Let t,v € RP such that f(-) = <t, >
and g(-) = (v,-). Since pu = N(0,X), we have | f — g||3, = E{t — U,X1>2 = (t —v)TX(t —v) and
Af(X1) = g(XN/If =9l = (A (E=v)TS(t—v)) (t—v)" X1 ~ N (0, X?) and assumption [5.4] holds
with B = 1. To apply Theorem [5.1} it remains to study the local Bernstein assumption for the
Huber loss function. We recall the result from (Chinot et al., [2019b). Let us introduce the following

assumption.

Assumption 5.7. Let Fy|x—, be the conditional cumulative function of Y gwen X = x. Let us

assume that the following holds.

a) There exist e,C" > 0 such that, for all f in F, ||f — f*||lr... < C'|f — [,

b) Let €,C" be the constants defined in a). There exists o > 0 such that, for all x € RP and all
z € R satisfying |z — f*()| < (V2(C")) 9 er Fyx_p(2 4+ 0) — Fy|x=.(2 — 6) > a.

Proposition 5.1 ((Chinot et al} [2019b),Theorem 7). Grant assumption [5.7. The Huber loss
function with parameter 6 > 0 satisfies the Bernstein condition for A = 4/a: for all f € F, if
If = f7llp, = 7 then (4/a)PLy > || f = f*I[7,-

Since = N (0,X), the point a) holds with C” = 3. Moreover, from the model (5.5)), the point
b) can be rewritten as: for all x € RP, for all z € R such that |z — <x, t*>| < 18r,

P(z—5§ <x,t*>+e§z+6> =F. (246 — (2, 1) — F(z =6 — (z,t")) > «

which is satisfied if
F.(0 —18r) — F.(18r — 0) > « (5.7)

where F, denotes the cumulative distribution of € distributed as ¢; for any ¢ € Z. The sufficient
condition implies that the noise puts enough mass around zero. To finish, we need to com-
pute complexity parameter r7(4/a). For an absolute constant ¢ > 0, well-known computations
(see (Talagrand, 2014))) give:

5(1+0) [Tr(Y)

w(FN(f"+rBr,w)) <ry/Tr(X) and rz(4/a) =c - N
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where we used the fact that [Z| > N/2 and L = .

We are now in position to apply Theorem for Huber’s M-estimator in R? with r(4/a) =
c2 max ((1+6)\/Tr(X)/N,|O|/N).
Theorem 5.3. Let ZU O denote a partition of {1,--- , N} such that |Z| > |O|. Let (X;,Y:)X, be
random variables valued in R? x R such that (X;)Y., are i.i.d random variable with X, ~ N(0,X)
and for alli € {1,--- ,N}

Vi ={(X;,t") +¢ ,
where (€;)icr are i.i.d centered random variables independent to (X;);er such that there exists o > 0
such that
) Tr(¥) |O 4] Tr(¥%) |O
F. ((5 — ¢ max ((1 +9) %, %)) — F, (ca max <(1 +9) %, %) - 5) >a (5.8)

where F, denotes the cdf of € distributed as €; for v in Z, 0 is the hyperparameter of the Huber loss
function. Nothing is assumed on (€;)ico. Then with probability larger than

§ 1<k
_ 14 0)*Tr(Y), — .
i e (e opr ) (5.9)

the estimator 1% defined in Equation (5.6) satisfies

. 1 Tr(X
I/ = )l < o2 e (1 2L )

1—26Xp(—c

N ' N
5%(1 4 6)? Tr(2) |0)?
and Pﬁg%gc%max (#”N_L)

In Theorem [5.3| there is no assumption on |O| as long as |O| < |Z|. There are two situations: 1)
the number of outliers |O| is smaller than \/m . We obtain the optimal rate of convergence
W for linear regression in R? with an exponentially large probability, 2) the number of
outliers exceeds \/m . In this case, the error rate and the excess risk are deteriorated but
the confidence is improved. According to (Chen et all [2018)), this rate is minimax optimal in the
e-contamination model for ¢ = |O|/N. It follows that Theorem is minimax-optimal for the
problem of linear regression in R? when malicious outliers contaminate the labels (Chen et al.,
2018).

In Section [5.5 we run simple simulations to illustrate the linear dependence between the error rate

and the proportion of outliers.

Theorem handles many different distributions for the noise as long as Equation (5.8)) is
satisfied. It is not necessary to impose that the noise is sub-Gaussian neither integrable. For
instance, when € ~ C(1) is a standard Cauchy distribution, for all ¢ € R, we have F.(t) = 1/2 +

arctan(t)/m. With straightforward computations, Equation (5.7)) can be rewritten as

187 <6 — tan(ga) (5.10)
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From Equation (5.10), Equation (5.8) is satisfied if

Tr(%2) 0|

) T
— - 7 < — —
¢ max ((1 +9) N N ) <0 tan(za)

Let us fix 6 > 0 to be a quantity independent of the dimension p and the number of observations
N. Take a = 2arctan(6/2)/m. When VN > ¢\/p(1 + 0)/a and |O] < caN the condition defined
in Equation (5.8) holds and the local Bernstein condition is verified for A = 4/a. We get the

following corollary.

Corollary 5.1. Let ZU O denote a partition of {1,---, N} such that |Z| > |O|. Let (X;,Y:)X, be
random variables valued in RP x R such that (X;)Y., are i.i.d random variables with X, ~ N(0, %)
and for alli € {1,--- N}

Y, = (Xi,t") + & ,
where (€;)ic; are i.i.d standard Cauchy random variables independent to (X;)iez. Consider the

Huber loss function with a parameter § > 0. Assume that /N > cy/Tr(2)(1 +6)/ arctan(5/2) and
|O| < carctan(d/2)N. Then with probability larger than

1 —2exp ( ) aritan(6/2) max ((1 +6)°Tr(%), %)) : (5.11)

the estimator t defined in Equation (5.6) satisfies

A 5(1+6) [Tr(Z) |0
1/2/76 4% ™~
[ = 1)l = “arctan 5/2 N N)
0|

0%(140)? r(X) |
s < o—me—— ' &~
and  PLy, < arctan(é/?) Hax ( N ' N2 )

5.3 High dimensional setting

In Section we studied non-regularized procedures. If the class of predictors F' is too small there
is no hope to approximate Y with f*(X). It is thus necessary to consider large classes of functions
leading to a large error rate unless some extra low-dimensional structure is expected on f*. Adding
a regularization term to the empirical loss is a wide-spread method to induce this low-dimensional
structure. The regularization term highlights the belief the statistician may have on the oracle f*.
More formally, let ' C E C La(p) and || - || = R* be a norm defined on the linear space E. For
any A > 0, the regularized empirical risk minimizer (RERM) is defined as

fA = argmin — ZE Y + A Sl (5.12)

fer

For high dimensional statistics, it is possible to impose a low dimensional structure. For instance,

the use of the ¢; norm promotes sparsity (Tibshirani, 1996)) for regression and classification problems
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in R? while the 1-Schatten norm promotes low rank solutions for matrix reconstructions. Up to
some technicalities the main result for the RERM is the same as the one in Section the excess
risk and the square of the error rate will be of the order

OF

7’]2\, + _N2

where ry denote the (sparse or low-dimensional) error rate in the non-contaminated setting. As

long as the proportion of outliers is smaller than the error rate the RERM behaves as if there was

no contamination.

5.3.1 General result in the sub-Gaussian framework
To analyze regularized procedures, we first need to redefine the complexity parameter.

Definition 5.4. Let B be the unit ball induced by the reqularization norm || - ||. The complexity

parameter 77(-,-) is defined as
7z(A, p) = inf{r > 0: cALB(L + 1)w(F N (f* + 7B, N pB)) < r*\/|Z|}

where ¢ > 0 denotes an absolute constant, L is the Lipschitz constant from assumption and B,
the sub-Gaussian constant from assumption[5.4).

The main difference between r7(A) from Definition and 77(A, p) is that 77(A, p) measures
the local complexity of F'N (f*+ pB) whereas rz(A) measures the local complexity of the entire set
F around f*. The regularization shifts the estimator towards a neighborhood of the oracle f* with
respect to the regularization norm.

To deal with the regularization part, we use the tools from (Lecué and Mendelson, 2018)). The idea
is the following: the ¢; norm induces sparsity properties because it has large subdifferentials at
sparse vectors. Therefore to obtain “sparsity depedendent bounds”, i.e bounds depending on the
unknown sparsity of the oracle f*, a natural tool is to look at the size of the subdifferential of || - ||

in f* where we recall that the subdifferential of || - || in f is defined as

OllNg =A{=" € E* = [lf + Al = [lf| = 2°(h) for every h € E} |

where E* is the dual space of the normed space (E, || - ||). The subdifferential can be also written
as
{zres () =Iry Hf#0
@11y = \ . (5.13)
B if f=0
where B* is the unit ball of the dual norm associated with ||-||, i.e. 2* € E* — ||2*[|" = supj <, 2*(f)

and S* is its unit sphere. In other words, when f # 0, the subdifferential of ||-|| in f is the set of
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all vectors z* in the unit dual sphere S* which are norming for f. For any p > 0, let

Lp(p) = U @I -1y -
fEF:|f—f*l1<p/20
Instead of looking at the subdifferential of ||-|| exactly in f* we consider subdifferentials for functions
f € F “close enough” to the oracle f*. It enables to handle oracles f* that are not exactly sparse
but approximatively sparse. The main technical tool to analyze regularization procedures is the

following sparsity equation (Lecué and Mendelson|, 2018)).

Definition 5.5. Let 7(-,-) such that for any A > 0 and p > 0, 7(A, p) > rz(A, p). For any A,p >0,

set

Hopeg=A{f€F : [If"=fll=p and |f* = fll, <7(A p)} ,

and define
A(p,A,7) = inf sup z2*(h—f*) . (5.14)

hEHPvAJ: Z*EFf* (p)

A real number p > 0 satisfies the A, T-sparsity equation if A(p, A,7) > 4p/5.

The constant 4/5 in Definition could be replaced by any constant in (0,1). The sparsity
equation is a very general and powerful tool allowing to derive “sparsity dependent bounds” by
taking p* function of the unknown sparsity (see Section for a more explicit example or (Chinot
et al., 2019a; Lecué and Mendelson, [2018)) for many other illustrations).

Remark 5.1. It can also induce “norm dependent bounds”, i.e bounds depending on the norm of
the oracle ||f*||. By taking p* = 20|/ f*||, we get that 0 € {f € F : || f — f*|| < p*/20} and from
Equation it follows that T« (20| f*||) = B* and A(20] f*||, A,7) = p*. In other words, the
sparsity equation is always satisified for p* = 20| f*|| (see Section [5.5.4] for examples)

Finally, we adapt the local Bernstein assumption to this new framework.

Assumption 5.8. Let 7(-,-) be such that for all A, p > 0, 7(A, p) > 77z(A, p). There exist A > 0 and
p* satisfying the A, T-sparsity equation from Deﬁm’tion such that for all f € F || f = f*|| 1) =
FAp7) and | — £ < g we have [[f — £, < APL;.

We are now in position to state the main theorem of this section.

Theorem 5.4. Let T U O denote a partition of {1,--- , N} such that |O| < |Z|. Let 7(-,-) be

such that for all A,p > 0, 7(A,p) > 77(A, p). Grant Assumptions [5.4 Suppose that
assumption holds with p = p* satisfying the A, 7-sparsity equation from Definition [5.5 Set:

(A, p*)

\ =
c v
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As long as |O| < ¢|Z|F(A, p*)/(AL), with probability larger that

[ Z[7(A, p") )

L= 2exp < " “ABL(L + 1)

the estimator fﬁ‘, defined in Equation (5.12) satisfies

¢ - R2(A o
By taking 7(A, p*) = cmax(7z(A, p*), AL|O|/|Z|), the condition |O| < c|Z|F(A,p*)/(AL) is

necessarily satisfied and, with exponentially large probability, we get

. . ) ) o
Hf]i\f — [ Loy < cAL<rI(A7p ) + %) .

The error rate can be decomposed as the sum of the error rate in the non-contaminated setting
and the proportion of outliers |O|/N. Theorem is a “meta” theorem in the sense that it can
used for many practical problems. We use Theorem for /;-penalized Huber’s M-estimator in
Section It is also possible to use Theorem for many other convex and Lipschitz loss
functions and regularization norms as it is done in (Chinot et al., 2019a)). It can also be used for
matrix reconstruction problems by penalizing with the 1-Schatten norm (Lecué and Mendelson),
2018).

General routine to apply Theorem This small paragraph explains how in practice we can
use Theorem (.41

1. Verify assumptions 5.3 b.2, .4

2. Compute the localized Gaussian mean width w(Fﬁ (f*+rBy, ﬂpB)) for any r, p > 0. Deduce
the value of 77(A, p) for any A, p > 0.

3. Choose a new complexity parameter such that for every A, p > 0, 7(A, p) > 77(A, p). For in-
stance, to derive results in the contaminated setting we will take 7( A, p) = cmax(7z(A, p), AL|O|/N).
From the computation of 77(A, p) deduce the closed form of 7(A, p).

4. For a fixed constant A > 0, find p* > 0 satisfying the A,7- sparsity equation, where 7(-,-) is

the complexity parameter chosen in the previous step.
5. From the value of p*, compute 7(A, p*) for any A > 0.

6. Find a constant A > 0 verifying Assumption [5.8
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5.3.2 General result in the local bounded framework

In Section [5.3.1, we established a meta theorem to analyze the RERM when the class F' — f* is
sub-Gaussian. In this section, we provide another meta theorem when the class F' — f* is locally
bounded. Contrary to the main result in the non-regularized case, the neighborhood is now defined

with respect to the Ly(u) norm and the regularization norm.

Definition 5.6. Let B be the unit ball induced by the regularization norm || - ||. The complexity

parameter 75 (-, -) is defined as

2
" . . cr®|Z]
T (A,p):1nf{r>0:E sup ai(f—f)(Xi)g—}
’ fEF(f*+rBL,NpB) ; AL(L+1)
where (0;)iez are i.i.d Rademacher random wvariables independent to (X;)iez, ¢ > 0 denotes an

absolute constant and L is the Lipschitz constant from assumption [5.3,

Now, adapt the sparsity equation and the local Bernstein condition to this new complexity

parameter.

Definition 5.7. Let 7°(-,-) such that for any A,p > 0 and, 7°(A, p) > r5(A, p). For any A,p, M >
0, set

Hyanizo ={f €F + |f* = fl=p and |f* = fll, < max(1, VLM)7*(A,p)} .

and define

Alp, A,7°, M) = inf sup z"(h— f") . (5.15)

hEHp,A,M,'Fb 2*€l g+ (p)

A real number p > 0 satisfies the A, M, 7’-sparsity equation if A(p, A, M,7) > 4p/5.

Finally, the following assumption imposes boundedness and a Bernstein condition in the small

neighborhood around the oracle f*.

Assumption 5.9. Let 7(-,-) be such that for all A,p > 0, 7°(A,p) > 75(A,p). There emist
A M > 0 and p* satisfying the A, M, #°-sparsity equation from Definition such that for all
feF:|f— fll, =max(1,VLM)(A, p*) and ||f — f*|| < p* we have:

If = I3, < APL; and Vo€ X,|(f - 7)) < M

Assumption generalizes the local Bernstein condition and the local boundedness assumption
to the regularized case. In this setting, the neighborhood around the oracle f* can be much smaller
than in the non-regularized setting. In particular in Section [5.3.4] the localization with respect to
the norm in the RKHS imposes local boundedness of F' — f*.

We are now in position to state the main theorem of this section.
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Theorem 5.5. Let ZU O denote a partition of {1,--+, N} such that |O| < |Z|. Let 7°(-,-) be such
that for all A,p > 0, 7°(A,p) > 75(A,p). Grant Assumptions with L > 1, . Suppose
that assumption holds with p = p* satisfying the A, M, T-sparsity equation from Definition
with A > 1. Set:

(A1)

A=c A

As long as |O| < ¢|Z|7*(A, p*)/(AL), with probability larger that

IZI (7 (4, p))?
1—2exp(—cm),

the estimator fﬁ, defined in Equation (5.12) satisfies

||f]i\l - f*HLz < max(l, v LM)’Fb(A,p*) ) ”f])\\f - f*H < p*
~b A. 0"))?
and PLp Scmax(l,LM)M :

By taking 7°(A, p*) = cmax(75(A4, p*), AL|O|/|Z]), the condition |O| < c|Z|f*(A, p*)/(AL) is

necessarily satisfied and we get

f O
1fx = f*llzs < cAL(fg,(A,p*) + %) .

The error rate can be decomposed as the sum of the error rate in the non-contaminated setting and
the proportion of outliers |O|/N. Theorem is a “meta” theorem in the sense that it can used

for many practical problems.

General routine to apply Theorem This small paragraph explains how in practice we can
use Theorem [5.5

1.

2.

Verify assumptions 5.3 b.2

Compute the localized Rademacher complexity localized on F' N (f* + rBr, N pB) for any
r,p > 0. Deduce the value of 75(A, p) for any A, p > 0.

Choose a new complexity parameter such that for every A, p > 0, 7°(A, p) > 7% (A, p). For in-
stance, to derive results in the contaminated setting we will take 7°( A, p) = cmax(7%(A, p), AL|O|/N).
From the computation of #(A, p) deduce the closed form of 7°(A, p).

For fixed constants A, M > 0, find p* > 0 satisfying the A, M, 7°- sparsity equation, where

7°(+,+) is the complexity parameter chosen in the previous step.
From the value of p*, compute 7(A, p*) for any A > 0.

Find the constants A, M > 0 verifying Assumption [5.9]
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The main difference with the application of Theorem in the sub-Gaussian setting is that we
no longer have Assumption 5.4, However it is necessary to verify that the class F' — f* is locally
bounded by a constant M.

5.3.3 Application to /;-penalized Huber’s M-estimator with sub-Gaussian

design

In this section we use the routine of Theorem [5.4] to the study of ¢;-penalized Huber’s M-estimator
when the design X is supposed to be Gaussian.

Let F = {(t,-),t € RP} denote the class of linear functionals in RP. Let (X;,Y;)X, be random
variables defined by, Y; = <Xi, t*> + €, where (X;)Y, are i.i.d centered standard Gaussian vectors.

The random variables (¢;);c7 are symmetric independent to (X;);ez. The oracle t* is assumed to be

s-sparse 1.e |[t*|lo := D7 I{t} # 0} < s. {1-penalized Huber’s M-estimator is defined as
L
52 :argginNZ£5(<Xi,t>,Yi) + It (5.16)
teky i=1

where °(-,-) is the Huber loss function.

Step 1: Under such assumptions, it is clear that Assumptions [5.1] 5.2 with L =4, with
B =1 are verified. All along this section ¢ will be considered as a constant.

Step 2: Let us turn to the second step, i.e the computation of the local Gaussian-mean width. Since
X is isotropic i.e E{ X, t>2 = [|¢||3 for every ¢ € RP, we have w(FN(f*+rBy,NpB)) = w(rByNpBY)
for every r,p > 0, where Bl denotes the ¢, ball in RP for ¢ > 0. Well-known computations give
(see (Vershynin, [2018]) for example)

w(pBy NrBj) < pw(BY) < cp/log(p)

and consequently,

1
F2(A, p) = cAS(1 + 8)p O%V(p), .

Step 3 : For any A,p > 0 let us define 7(A, p) = cmax(rz(A4, p), A6|O|/|Z|). From step 2, since
|Z| > N/2, we easily get:

i log(p) |OJ?
7,2(A,p) = cAd max ((1+5)p N Nz )

Step 4 : To verify the A, r-sparsity equation from Definition for the ¢; norm and compute p*

we use a result from (Lecué and Mendelson, 2018).

Lemma 5.1. (Lecué and Mendelson|, |2018, Lemma 4.2) . Let B} denote the unit ball induced
by || - ||1. Let us assume that the design X is isotropic. If the oracle t* is s-sparse and 100s <

(0/ (F(A, p))” then A(A, p,7) > (4/5)p.
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Lemma [5.1] implies that the A,7-sparsity equation is satisfied by p* > 0 if the sparsity s is
smaller than (p*/(7(A, p*))2. Since 7(A, p) is the maximum of two quantities, we consider two cases
depending on the value of |O|. When 7(A, p) = 7z(A, p), which holds when |O| < |Z|Fz(A4, p)/(AJ),
Lemma shows that p* = ¢\/st7(A, p*) satisfies the A, F-sparsity equation. In this case, straight-

forward computations give

1 2
pr = cAd(l+0)s %@ and f%(A,p*)zc(Ad((SH)) SO%”) .

In the second case, when 7(A, p) = Ad|O|/|Z| which holds when |O| > |Z|rz(A, p*)/(Ad) we get

that

- 0|
= AN

satisfies the A, 7-sparsity equation. Consequently

* = cAd max ((5 +1)s lo%p) , \/5%),

satisfies the A, F-sparsity equation.
Step 5: From step 4, Theorem [5.4] can be used with

N log(p) |0
A, p*) = cAd o+1 —= ] .
() = cavma (6 + /s 52 2
Step 6 : We use Proposition to show that the local Bernstein condition holds for functions f
in f*+7(A, p*)SL, N p*B C f*+ (A, p*)SL,. Since X ~ N (0, I,), the point a) in Assumption
is verified. Moreover, the point b) in Assumption holds and the local Bernstein condition is
verified with A = 4/« if o > 0 satisfies

F. (5— cf(4/oz,p*)) _F, <cf(4/oz,p*) . 5> >a (5.17)

where F. denotes the cdf of e distributed as ¢; for i € 7.

We are now in position to state the main result for the ¢;-penalized Huber estimator.

Theorem 5.6. Let ZU O denote a partition of {1,--- , N} such that |Z| > |O| and (X;, Y)Y, be
random variables valued in R? x R such that (X;)Y., are i.i.d random variable with X, ~ N(0, I,))
and for alli € {1,--- N}

Vi =(Xi,t") + ¢ ,

where t* is s-sparse and (€;);er are i.i.d centered random variables independent to (X;);ez such that

there exists o > 0 such that

_E(a—cgnmx<@+4) Sb§?X%%>>——E<anmx(@+ﬂ) sb§?2%%>-ﬂggza(51&
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where F, denotes the cdf of € where € is distributed as €; for i in I, § is the hyperparameter of the

Huber loss function. Nothing is assumed on (€;)ico. Set

)\:cgmax(@—l—l) %,%) :

Then with probability larger than
) 0O)?
1-— 2€Xp ( - Cm max ((5 + 1)28 log(p), %)) (519)

the estimator f(]s\’,)‘ defined in Equation (5.16) satisfies

. ) 1 @)
16—l < & mae (54 1y, 121)

N ' N
5 log(p) |O?
Pﬁf}s\}x < ™ max <((5 + 1)25 N W)

and  ||i% —t*]); < cg max ((5 +1)s %, \/5%)

Let us analyze the two different cases. 1) when the number of outliers |O| is smaller than
\/W , the regularization parameter A does not depend on the unknown sparsity. We obtain
the (nearly) minimax-optimal rate in sparse linear regression in RP with an exponentially large
probability (Bellec et al., [2018; Lecué and Mendelson), 2018; Dalalyan et al., |2017). Using more
involved computations and taking a regularization parameter A depending on the unknown sparsity
we can get the exact minimax rate of convergence slog(p/s)/N. 2) When the number of outliers
exceeds /slog(p)N the value of A depends on the unknown quantities |O| and s. The error rate is
deteriorated (but the confidence is improved) and becomes linear with respect to the proportion of
outliers |O|/N . From (Chen et al., |2018]), this error rate is minimax optimal (up to a logarithmic
term) in the e-contamination problem when ¢ = |O|/N. It follows that Theorem [5.6|is minimax-
optimal (up to a logarithmic term) when |O] malicious outliers contaminate the labels.

In Section [5.5 we run simple simulations to illustrate the linear dependence between the error rate

and the proportion of outliers.

Remark 5.2. In Theorem we assumed that = N (0, I,) to apply Lemma and compute the
local Gaussian-mean width. It is possible to generalize the result to Gaussian random vectors with
covariance matrices ¥ verifying RE(s,9) (Van De Geer et al., |2009), for s being the sparsity of
t*. Recall that a matriz X is said to satisfy the restricted eigenvalue condition RE(s, cy) with some
constant k > 0, if |SV%0]ly > k||lvg|l2 for any vector v in RP and any set J C {1,--- ,p} such that
|J| < s and ||vse|ls < collvs||li. When 3 satisfies the RE(s,9) condition with k > 0 we get the same
conclusion as Theorem modulo an extra term 1/k in front of the error rate (see Sectionfor

a precise result).
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In Theorem [5.6] there is no restriction on the noise as long as there exists a > 0 such that
Equation (5.18)) holds. For example when ¢ is a standard Cauchy random variable, Equation (/5.18)

can be rewritten as

cg max ((5 +1) slofv(m , l%) <5 —tan <%> (5.20)

Let § > 0 be a constant (independent to p, s, N) and take o = (2/m) arctan(d/2). Equation (/5.20)

is equivalent to
1 2 )
cmax ((6 +1)4/s O%p), %) <a= - arctan <§>

which holds as long as N > ¢(d 4+ 1)4/slog(p)/ arctan(d/2) and |O| < carctan(d/2)N and the local
Bernstein condition holds for A = 4/a = 27 /(arctan(d/2)).

5.3.4 Application to RKHS with the huber loss function

This section is mainly inspired from the work (Alquier et al., 2019). We present another example
of application of our main results. In particular, we use the routine associated with Theorem
for the problem of learning in a reproducing Kernel Hilbert Space (RKHS) Hy (Steinwart and
Christmann|, 2008) associated to a positive definite kernel K. We improve the results of (Alquier
et al., [2019)) in two points 1) we can take F' = H while in (Alquier et al., 2019), the authors restrict
themselves to the case F' = RBy,., for R > 0, where By, denotes the unit ball of Hx and 2) the
bayes rule (i.e the minimizer of the risk over all measurable functions) does not have to belong to

RBjy,. and no margin assumption (Audibert et al., [2007)) is required.

We are given N pairs (X;,Y;)Y, of random variables where the X;’s take their values in some
measurable space X and Y; € R. We introduce a kernel K : X x X — R measuring a similarity
between elements of X' i.e K(z1,x9) is small if 21,29 € X are “similar”. The main idea of kernel
methods is to transport the design data X;’s from the set X’ to a certain Hilbert space via the
application z — K(z,-) := K,(-) and construct a statistical procedure in this ”transported” and
structured space. The kernel K is used to generate a Hilbert space known as Reproducing Kernel
Hilbert Space (RKHS). Recall that if K is a positive definite function i.e for all n € N* z¢,--- [z, €
X and ¢, 0, € R D00, 300 ciciK (i, ;) > 0, then by Mercer’s theorem there exists an
orthonormal basis (¢;)32; of La(x) such that g x p almost surely, K(z,y) = > oy Nigi(x)di(y),

where (A)2, is the sequence of eigenvalues (arranged in a non-increasing order) of T and ¢; is the

eigenvector corresponding to \; where

Ty : Lo(p) — La(p)

(Tieh)w) = [ Kw)fwiduly (521
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The Reproducing Kernel Hilbert Space Hy is the set of all functions of the form > .~ a; K (z;,-)

where z; € X and a; € R converging in Ly(u) endowed with the inner product

O i (xi,), Y 0K (yi, ) = Y aib K (4, ;)
i=1 i—1 ig—1

An alternative way to define a RKHS is via the feature map ® : X — {5 such that ®(x) =
(\/)\_Zgbz(m))zl Since (Py)%2, is an orthogonal basis of Hp, it is easy to see that the unit ball of

H i can be expressed as
BHK = {fﬁ() = <ﬁ7q)(')>g2> Hﬁ”2 < 1} (5'22>

where <-, > 4 is the standard inner product in the Hilbert space ¢5. In other words, the feature map
® can the used to define an isometry between the two Hilbert spaces Hy and /5.

The RKHS Hy is therefore a convex class of functions from & to R that can be used as a learning
class F. Let us assume that Y; = f*(X;) +¢; where (X;)Y, are i.i.d random variables taking values
in X. The random variables (¢;);cr are symmetric i.i.d random variables independent to (X;)er

and f* is assumed to belong to Hx. It follows that the oracle f* is also defined as
f* € argmin E[°(f(X),Y)]
feHK

where £ is the Huber loss function. Let f be in Hg, by the reproducing property and the Cauchy-

Schwarz inequality we have for all z,y in X

(@) = F)l = I(f, Ko = Kyl < W f b 1Ko = Kyl (5.23)

From Equation , it is clear that the norm of a function in the RKHS controls how fast the
function varies over X with respect to the geometry defined by the kernel (Lipschitz with constant
| fll2,)- As a consequence the norm of regularization || ||y, is related with its degree of smoothness
w.r.t. the metric defined by the kernel on X'. The estimators f]‘i}A we study in this section is defined
as

N
S5 .1 5
= ar mln—g 14 X:),Y)+ A X« 5.24

We obtain error rates depending on spectrum (\;)2, of the integral operator T.

Assumption 5.10. The eigenvalues (\;)32, of the integral operator Ty satisfy A\, < en™'/P for

some 0 <p <1 andc> 0 an absolute constant.

In Assumption [5.10, the value of p is related with the smoothness of the space Hg. Differ-
ent kinds of spectra could be analysis. It would only change the computation of the complexity
fixed-points. For the sake of simplicity we only focus on this example as it has been also studied

in (Caponnetto and De Vito| 2007; Mendelson et al. 2010) to obtain fast rates of convergence.
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Let us use the routine to apply Theorem [5.5
Step 1: Since every Reprocucible Kernel Hilbert space is convex, it is clear that assump-
tions [5.1] with L = ¢ are verified.
Step 2: From Theorem 2.1 in (Mendelson| 2003), if K is a bounded kernel, then for all p,r > 0

< \/§||K||oo(i (0 A 7“2)>1/2 :

k=1

N

Zm(f £)(X0)

E sup
FEHKN(f*+rBry,NpB ) VN

Under assumption [5.10] straightforward computations give,

(i(QA/\2>1/2< i
)] <el

k=1

and thus for any A, p > 0

pp/ (p+1)

3 1(p+1)
(A, p) = c(AS(E + 1) K o)/ ** NUQE)

Step 3: For any A, p > 0, let us define #(A, p) = cmax (75 (4, p), A5|O|/|Z]). From step 2, since
|Z| > N/2, we easily get

N pi1) pP/ D @)
T’b(A,p> = cmax ((A5(5 + 1)||K||oo) /(D) m, A5|_]\/V|)

Step 4: Let A, M > 0. From Remark , p* = 20| f*||n, satisfies the A, M, 7*-sparsity equation.
Step 5: From step 4, we easily get

1)
e 1150 Aéwow)

(A, p*) = cmax ((A(S((S + 1)“[(“00) N/@Qp+1)

Step 6: In assumption there are two conditions to verify 1) the local Bernstein and 2) the
local boundedness. Let us begin by the local Bernstein condition. We use the localized version of
Theorem (.11

Assumption 5.11. Let Fyx—, be the conditional cumulative function of Y given X = x. Let us

assume that the following holds.

a) There exist ,C" > 0 such that, for all f in F verifying || f — f*|| < p and || f — f*||L, = r we
have Hf - f*||L2+€ < C,Hf - f*HLz'

b) Let €,C" be the constants defined in a). There exists o > 0 such that, for all x € RP and all
z € R satisfying |z — f*(z)] < (V2(C")®Her, Fyx_p(z +0) — Fyjx—z(2 — 0) = a.

The only difference with Assumption is that the point a) is only required for functions f in
F such that || f — f*]| < p.
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Proposition 5.2. Grant assumption [5.7. The Huber loss function with parameter § > 0 satisfies
the Bernstein condition for A = 4/a: for all f € F, if |[f — f*[|,, = r and || f — f*]| < p then
1|2
4/a)PLy 2 |[f = f7IIL,-
Proposition |5.2|is a simple refinement of Proposition . Let f in Hy such that || f— f*||lu. < p
and || f — f*||L, = 7. Since |f(z) — g(z)| = |[(f — g, K)| for any f,g € Hg, v € X we get

If = Iz, = /(f(fc) — f*(@))*dPx(z) < (ol Klloo)Ilf — F7IIZ,

Since || f — f*||L, = r, it follows that

e/(2+¢)
17 = e < (P )

Therefore, the point a) holds with C" = (p||K||o/7)/?*9). Let us turn to the point b) of assump-
tion m From the fact that C" = (p|| K||se/7)*/?+9), we have (v/2C") 36/ = 202+€)/2¢ || (|| . and

the point b) can be rewritten as, there exists a > 0 such that
F(d = cpl| Klloo) = Felepl| Klloo —0) > @ (5.25)

where F, denotes the cdf of e distributed as ¢; for i € Z. Equation ([5.25)), simply means that the
noise € puts enough mass around 0. In our problem we have p = p* = ¢|| f*|l%, and Equation (/5.25)

becomes,

Fe(0 = el [l 1K loo) = Felell f e [ K lloo = 0) = @

Let us turn to the local boundedness assumption. Since |f(z) — f*(z)| = |(f — f*, K, )| for any
feHkg, xe X i ||f— f[Flue < pf we get |[f(x) — f*(x)] < || K||p® As a consequence, in our

setting, M = ¢|| K ||oo|| f*||3, satisfies the local boundedness assumption.

We are now in position to state our main theorem for regularized learning in RKHS with the

Huber loss function.

Theorem 5.7. Let Hx be a reproducing kernel Hilbert space associated with a bounded kernel K.
Let ZU O denote a partition of {1,--- , N} such that |Z| > |O] and (X;,Y;)X, be random variables
valued in X x R such that (X;)Y., are i.i.d random variable and for all i € {1,--- ,N}

Yi=f"(Xi)+e

where f* belongs to Hy and (€;)ic; are i.i.d symmetric random variables independent to (X;)ier

such that there exists o > 0 such that

Fo(0 = cllf 1K o) = Fe(ell £ el Kllow = 0) = @ (5.26)
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where F, denotes the cdf of € where € is distributed as €; for i in I, § is the hyperparameter of the
Huber loss function. Nothing is assumed on (€;);co. Grant assumption and let

Ao O 80 +1) g NI 52 jop
K] |

N NG o2 N2

Then with probability larger than

o’ 0(5+1) MO e/ 0% |Of*
- - ' /o) 9”101
1 2exp( c(1+5)2 max(( - ||K||oo) 115, NP/ (P "2 N >)

the estimator f]‘i}’\ defined in Equation (5.24) satisfies

x(1(2p)/ (p+1)
R 5(6+1) 2/(p+1) (Kadl 52 \(’)|2
0, * * H

I3 = 18 < cmax (1,01 [ ma ( (225 ) e S0

e 1
d(d+1) 1K 2/(p+1) If ||§{i)/(p+ ) 5_2|(9|2
o 0 NUp+1) 7 2 N2

«

Pﬁfﬁx < camax (1, 8] |2 | K | o ) max ((
and 5" = F ol < el f 7l

Theorem holds with no assumption on the design X. When |O| < (6/a)Nri(4da, || f*]l#,)
we recover the same rates as (Smale and Zhou, 2007; [Mendelson et al., 2010)) even when the target
Y is heavy-tailed. In (Smale and Zhou, 2007; [Mendelson et al., 2010) the authors assume that Y
is bounded while in (Caponnetto and De Vito, [2007) the noise is assumed to be light-tailed. When
(O] > (6/a)Nr5(4a, || f*]|#, ) the error rate is deteriorated and becomes linear with respect to the
proportion of outliers.

It is assumed that the noise is symmetric and satisfies Equation (5.26). When the noise € is a

standard Cauchy random variable Equation ([5.26]) can be rewritten as

* a7
CHf HHKHKHOO < 0 — tan <7>

which holds for ¢ = ¢|| f*|lux | K| and a = arctan(d/2). When 6, || K| and || f*||3, are seen as
constants, the error rate is of order N=/®*+D Depending on the value of p we obtained fast rates
of convergence for regularized Kernel methods. The faster the spectrum of Ty decreases the faster

the rates of convergence.

5.4 Conclusion and perspectives

We have presented general analyses to study ERM and RERM when a number |O| of outliers may
contaminate the labels when 1) the class F'— f* is sub-Gaussian or 2) when the class F'— f* is locally
bounded. We use these “meta theorems” to study Huber’s M-estimator with no regularization or
penalized with the ¢; norm. Under a very weak assumption on the noise (note that it can even not

be integrable), we obtain minimax-optimal rate of convergence for these two examples when |O|
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malicious outliers corrupt the labels. We also obtained fast rates for regularized learning problems
in RKHS when the target Y is unbounded and heavy-tailed.

For the sake of simplicity, we have only presented two examples of applications. Many procedures
can be analysed as it has be done in (Chinot et al |2019a)) such as Group Lasso, SLOPE ... The
results can be easily extented when the sub-Gaussian assumption over F' — f* is relaxed. It would
only degrade the confidence in the main Theorems (assuming for example that the class is sub-
exponential). The conclusion would be similar. As long as the proportion of outliers is smaller than
the rate of convergence, both ERM and RERM behave as if there was to contamination. However
in such setting ERM and RERM are known to be sub-optimal which is why such results have not

been presented in this paper.

5.5 Simulations

In this section, we present simple simulations to illustrate our theoritical findings. We consider
regression problems in R? both non-regularized and penalized with the /;-norm. For¢=1,--- | N,
let us consider the following model:

where (X;)Y, are i.i.d random variables distributed as N'(0, I,,), (¢;)icz are symmetric independent
to X random variables. Nothing is assumed on (¢;);c0. We consider different distribution for the

noise (¢€;);ezr . We consider

e ¢, ~ N(0,0?) Gaussian distribution
e ¢; ~ T(2) Student distribution with 2-degree of freedom
e ¢; ~ C(1) Cauchy distribution

We study M-Huber’s estimator defined as

~

N
1
6 : E § X.)Y:

teRp

where ¢° : R x R — R is the Huber loss function defined as, § > 0, u,y € R, by

O L
5|y—u|—§ if lu—y| >0

Note that other loss functions could be considered as the absolute loss function, or more generally,

any quantile loss function. According to Theorem [5.3] we have

[#y =2 < C(\/ N W)
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where ¢ > 0 is an absolute constant. We add malicious outliers following a uniform distribution over
[—1075,10°]. We expect to obtain an error rate proportional to the proportion of outliers |O|/N.
We ran our simulations with N = 1000 and p = 50. The only hyperparameter of the problem is
0. For the sake of simplicity we took § = 1 for all our simulations. We see on Figure that no
matter the noise, the error rate is proportional to the proportion of outliers which is in adequation

with our theoritical findings.

Error rate for the M-Huber's estimator

—— Mormal noise
08 1 — Student noise
—— Cauchy noise
0.7 1 1
L 06 J| JI
= | FUTIR |
. , i [
42 05 | . , | Il|
2 Ll )
AL e [
oa ] [AERINY |
0.3

0.00 0.05 0.10 015 020 025 030
Proportion of outliers

Figure 5.1: Error rate for the M-Huber’s estimator (p = 50 and N = 1000)

In a second experiment, we study ¢; penalized M-Huber’s estimator defined as

N
A)\,(S . ]_ S
ty € Argmin — E_l C(f(X0),Y:) + At

teRP

where ¢° : R x R +— R* is the Huber loss function and A > 0 is a hyperparameter. According to

Theorem [5.6] we have
5 slog(p) | [0
18 e < oy 252+ I

where ¢ > 0 is an absolute constant. We ran our simulations with N = 1000 and p = 1000 and
s = 50. The hyperparameters of the problem are 6 and A. For the sake of simplicity we took § = 1
and A = 1073 for all our simulations. We see on Figure [5.2] that no matter the noise, the error rate
is proportional to the proportion of outliers which is in adequation with our theoritical findings.

The fact that the error rate may be large comes to the fact that we did not optimize the value of .

5.6 Lower bound minimax risk in regression where only the

labels are contaminated

This section is built on the work (Chen et al. [2018) where the authors establish a general minimax

theory for the e-contamination model defined as P(. g.q) = (1 — )Py + @ given a general statistical
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Error rate for #;-Huber's estimators

301 — normal noise
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Figure 5.2: Error rate for /1 penalized M-Huber’s estimator (p = 1000 and N = 1000 and s = 50)

experiment {Py,0 € ©}. A proportion ¢ of outliers with same the distribution @) contaminate P.
Given a loss function L(6;,6s), the minimax rate for the class {P 0,0 € ©,Q} depends on the

modulus of continuity defined as:
w(a, @) = sup {L(@l,eg) : TV(P917P92) < %—6’01’02 € @} (527)

where T'V (Py,, Py,) denotes the total variation distance between Py, and Py, defined as TV (Py,, Pp,) =
supacr | Py, (A) — Py, (A)|, for F the sigma-algebra onto which Fp, and P, are defined.

Theorem 5.8 (Theorem 5.1 (Chen et al., 2018)). Suppose there is some M(0) such that for e =0

inf supsup P(. ¢.¢) <L(9, 0) > M(s)) >c (5.28)
0 6co Q

holds. Then, for any € € [0, 1] holds for M(g) = ¢(M(0) V w(e, ©)).

w(e, ©) is the price to pay in the minimax rate when a proportion ¢ of the samples are contam-

inated. To illusrate Theorem [5.8] let us consider the linear regression model:

where without contamination X; ~ N(0,%), ¢ ~ N(0,0?) are independent. In (Chen et all,
, the authors consider a setting when both the design X and the response variable in the
model can be contaminated i.e (X1,Y1), -+, (Xn, Yn) ~ (1 —¢)Py+eQ, whith Py = P(X)P(Y|X),
P(X) =N(0,%) and P(Y|X) = N(XT6,0%). They establish that the minimax optimal risk over

the class of s-sparse vectors for the metric L(0;,6,) = |61 — 0||3 is given by

slog(p/s)

vV e?
N



184 CHAPTER 5. ROBUST RERM: OUTLIERS IN THE LABELS

The question of main interest in our setting is the following: does the minimax risk for regression
problem in the e-contamination model remain the same when only the labels are contaminated ?

The following theorem answers to the above question.

Theorem 5.9. Let {Py = P(Gij) with Y = fo(X) + €6 € O} be a statistical regression model. For
any 8 € ©, € € 10,1] let

N
Po = {((1 —e)Py+2Qo) " Py = Plyy) with Y = fo(X) + €
Qo = Plyy, with Y = fo(X) + g}
Suppose there is some M(0) such that for e =0

inf  sup  Rpe (L(Q, 0) > M(5)> >c (5.29)

0 RQ,EEPQ,E,GQG

holds. Then For any ¢ € [0,1] holds for M(g) = ¢(M(0) V w(e, ©))

Theorem [5.9|states that the minimax optimal rates for regression problems in the e-contamination

model are the same when
e Both the design X and the response variable Y are contaminated.
e Only the response variable Yis contaminated.

Proof. The case when M(e) = ¢ M(0) is straightforward. Thus, the goal is to lower bound with a

constant the following quantity

wt s (10,02 wie.0))
0 Ry.cPp.0c0

We use Le Cam’s method with two hypotheses. The first goal is to find 6y, 65 such that L(6;,0) >
w(e, ©). To do so, let 0y, 6, be solution of

_ 01 02 €
e L(01,02) st TV(Py. Fo) = TV (Pl y) Pl y)) € 7=

€

Thus there exists €' < e such that TV (Py,, Py,) =¢'/(1 —€') and L(0;,6,) = w(e, ©). To conclude,
it is enough to find two distributions Ry, . and Ry, . in Py, . and Py, . such that Ry, . = Ry, .. It
would imply that #; and 6, are not identifiable from the model and the Le Cam’s method would

complete the proof.

For i € {1,2} let py, be a density function defined for all (z,y) € X x Y as

dPY
(X,Y)
po,(T,Y) = —— (z,9) (5.30)
d(P()l(,Y) + P(f(,y))
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By conditioning, it is possible to write py,(z,y) = pX(x)p%X:x(y). Let Ry, . and Ry, . defined
respectively as

Ry, o= (1— )Py + s’P&y) and Ry, .= (1—-&)Py, + 5’P(9)2(y)

where P&,y) and Pf;(y) are defined by their density functions

dP(e)lf,f/) (iL‘ y) _ (p92 (.T, y) — Do, (I’, y))ﬂ{p92 (QZ, y) > Do, (SL’, y)}

i 7 o 7
d(P(X,Y) + P()2(,Y)) TV(P(X,Y)’ P

)
4P o (o) — P (2, 9)) oy (2, ) > poy (1, 9))
(z,y) = )

0 01 01 0
d(P(;(,Y) + P(X,Y)) TV(P(X,Y)7 Py

V(z,y) € X x Y,

Y
)

Using Schefté’s theorem, it is easy to see that P(e;( ) and P(G;( i) are probability measures. Moreover,
from the facts that py,(z,y) = pX(x)pf}'lX:x(y), ¢/ < e and Lemma 7.2 in (Chen et al., 2018) we
have R@l,e S 7)9175 and R9275 S ,Pez’s.

To conclude, it remains to show that Ry, . = Ry,.. For any (z,y) € & x ). Straightforward

computations give

dRy, .
7 7
(P, xv) T Px

, (Do, (2, ) — po, (z, ) I{po, (2, y) > po, (,9)}
TV (P, (G)I(,YV B (9)2(,1/))
(p92 (.17, y) — Po, (1’” y))H{p92 (l’, y) > Do, (ZB7 y)}
/(-2
= (1 =€) (po, (z, y) + (po(x,y) — pa, (z,y)) o, (x,y) > po, (x,)})

(1 - 6/> (p92 <I7 y) + <p91 (‘7;7 y) — Do, (.7}, y)>]1{p91 (JI, y) > Do, <$7 y)}>

dRy, . ( )
= 0, 05 x,y
d(P(X,Y) + P(X,Y))

><C(J,y) = (1 - 5/)p01($ay) +e

= (1 —=¢€")po,(z,y) + ¢

5.7 [(;-penalized Huber’s M-estimator with non-isotropic
design

In this section, we relax the isotropic assumption on the design X. Recal that a random variable X
is isotropic if for every ¢ € R?, E<X , t>2 = ||¢||3. Instead, we consider covariance matrices satisfying
a Resticted Eigenvalue condition (RE). A matrix ¥ is said to satisfy the restricted eigenvalue
condition RE(s, ¢y) with some constant x > 0, if ||XY/2v]]y > &||vy||2 for any vector v in R? and any
set J C {1,---,p} such that |J| < s and |[vse
to Theorem when X ~ N(0,Y), for ¥ satisfying RE(s,c¢) for ¢ an absolute constant. With

non isotropic design we cannot use Lemma [5.1| and the computation of the Gaussian mean-width

1 < ¢ol|vs]]i. We want to derive a result similar

is more involved.
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Lemma 5.2. Let B} denote the unit ball induced by || - ||1. Let us assume that the design X
has a covariance matriz satisfying RE(s,9) with constant k > 0. If the oracle t* is s-sparse and
100s < (/@p/r)2 then:

A(p) =  inf sup (2%, w) >4p/5 .

prSﬂTfBLZ 2*€lx (p)

The difference with Lemma is the term s coming from the RE condition.

Proof. To solve the sparsity equation — find p* such that A(p) > (4/5)p — , we use the following

classical result on the sub-differential of a norm: if ||-|| is a norm on R?, then, for all ¢ € R, we
have
{zreS*: (z5t)=|t|} ift#0
@1H) = A =Y A0 5:31)
B itt=20
Here, B* is the unit ball of the dual norm associated with ||-[|, i.e. ¢ € R? — [[t||" = supy,j<;(v,t)

and S* is its unit sphere. In other words, when ¢ # 0, the sub-differential of ||-|| in ¢ is the set of all
vectors z* in the unit dual sphere S* which are norming for ¢ (i.e. z* is such that (z*,¢) = ||¢[|). In

particular, when ¢ # 0, (9]||)¢ is a subset of the dual sphere S*.

Since F = {(t,-),t € RP}, || fllL, = [I{t, X)||1, = [[Z"?t]|2. Let w be in R? such that [|w]j; = p
and ||[XY2w||y < r. Let us denote by I the support of ¢* and Pyw the projection of w on (e;)ier. By

assumption we have |I| < s. Let z in (9 ||-||)¢such that for every i € I, z; = sign(t}), and for every

i € 1° z; = sign(w;). It is clear that z is norming for ¢* i.e (z,¢*) = ||[t*||; and z € S7 = S and

<z,w> = <z, P1w> + <Z,chw> = <Z,ij> + || Pre

12 =[[Prwlly + [ Prelly = p = 2[| Prwl]y

Let us assume that Pyw satisfies || Prew||; > 9||Pyw||; which can be rewritten as p > 10| Pywl|;. It
follows that

1
(zw) = p=2/|Prwlly = p— =p = 4p/5,

and the sparsity equation is satisfied. Now let us turn to the case when || Prew|| < 9||Prw||;. From
the RE(s, 9) condition we have || Prwl|y < ||SY2w]|2/x and it follows

2 2
(z.w) = p=2/|Prwlly > p = 2v/5|[Prwlla = p = ZV/5[S2wlls > p = =57 > 4p/5
|

Now, let us turn to the computation of the Gaussian-mean width when the design X is not

isotropic. To do so we use the following Proposition.

Proposition 5.3 (Proposition 1 (C Bellec, 2019)). Let p > 1 and M > 2. Let T be the convex hull
of M points in RP and assume that T C BY. Let G ~ N(0,1,). Then for all s >0,

E sup (t,G)=w(sByNT) < 4\/log;+(4€M(s2 A1),

tesBENT

where log, (a) = max(1,log(a)).
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When F = {<t, ->,t € RP} and the covariance matrix of X is X, for every r, p > 0 we have
w(FN(f*+rBy,NpBY)=E sup (SY%, G)

LR |S1/2]|5 < )1 <p
where G ~ N (0, I,,). If ¥ is assumed to be inversible, we get
w(F N (f*+rBr,NpBY) =w(rBy N pE?BY) = w(rBy N pT)
where T := X/2BY is the convex hull of (£X'/2¢;)?_ . To apply Proposition [5.3| it is necessary to
assume that for every i = 1,--- ,p, £1/2¢; € B which holds when Y;; <1 and we get

Proposition 5.4. Let F' = {<t,->,t € RP} and assume that, 3, the covariance matriz of X is
invertible and satisfies ¥;; <1 for everyt=1,--- ,p. Then, for every r,p >0

w(F N (f*+rBy,NpBY) < 4p\/log+(86p((r/p)2 A1)
Straightforward computations (see (Lecué and Mendelson, 2018) for instance) show that s Steps

3,4,5,6 in Section [5.3.3| are not modified and the following theorem extends Theorem for a

non-isotropic design:

Theorem 5.10. Let ZU O denote a partition of {1,--- N} such that |Z| > |O| and (X;,Y;)X, be
random variables valued in RP x R such that (X;)Y, are i.i.d random variable with X, ~ N(0,%),
where 3 is invertible, satisfies ¥;; < 1 for i = 1,--- ,p and verifies RE(s,9) for some constant
k> 0. Assume that for alli € {1,--- N}

Y, = (Xi,t") + & ,

where t* is s-sparse and (€;);e; are i.i.d random variables independent to (X;);er such that there
exists o > 0 such that

Fe(é—c%max ((5+1) 10%() ’2’)) F€<c%max ((5+1) 10%) ‘ff‘) 5) > o (5.32)

where F, denotes the cdf of € where € is distributed as €; for i in I, § is the hyperparameter of the

Huber loss function. Nothing is assumed on (€;)ico. Set

)\:cémax((é—i-l) oelr) |O|).

a "V/sN
Then with probability larger than

1 —2exp ( — m max ((5 +1)%slog(p), %)) (5.33)

the estimator f‘];\’,A defined in Equation (5.16)) satisfies

R . )
185" — 17|, < — max ((5+ 1)

10g( ) 19]
"N

2 1 2
P£<n<5—max((5—|—1) og(p |O| )

N 7 N2

1
and ||5’\—t||1<c—max(5—|—1 54/ og ) %)
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We recover the main result from (Dalalyan and Thompson, 2019) as a special case of our main
theorem. However, we do not assume that the noise is Gaussian. It can be heavy-tailed. It mainly

generalizes their results.

Remark 5.3. When |O| < (6 + 1)+/slog(p)N, the reqularization parameter X does not depend on
the unknown sparsity s. It is possible to replace log(p) by log(p/s) and recover the exact minimaz
rate of convergence. However, the price to pay is that the reqularization parameter X would depend

on the sparisty s.

5.8 Proofs main Theorems

5.8.1 Proof Theorem [5.1]

Let 7(-) be such that for all A > 0: r(A) > rz(A) and let A satisfying assumption 5.5 with r(-). The
proof is split into two parts. First we identify a stochastic argument holding with large probability.

Then we show on that event that || f — T o < 7(A). Finally, at the very end of the proof we
show that PL; < r?(A)/A.

Stochastic arguments First we identifiate the stochastic event onto which the proof easily fol-

lows. Let,
<1y (5.34)
=241+ 1) ‘

1 [zl ,
<saaso\ior (A)} (5.35)

where for any K C {1,--- N}, g: X xY = R, Pgrg = 1/(|K|) ;o 9(X;, Y;). Finally let us define
Q= Q7N Q.

Lemma 5.3. Grant Assumptions and [5.5 with r(-). Then there exists an absolute

constant ¢ > 0 such the event ) holds with probability larger than

Qr = {Vf EFf = fllagn < r(A4) : ‘(P— Pr) (¢ —ty+)

QO:{VfEF:||f—f*||L2(u)§r(A):‘(P_PO>|f_f*|

1 —2exp (= ¢Z|r*(A)/(LBA(L +1)))

The proof of Lemma [5.3| necessitates several tools from sub-Gaussian random variables that we
introduce now.
Let 12(u) = exp(u?) — 1. The Orlicz space Ly, associated to 15 is defined as the set of all random
variables Z on a probability space (2, .A,P) such that ||Z],, < oo where

7
1Zllys = inf{c > o,m( ) <1

Cc
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Let (Xi)ier denote a stochastic process indexed by a pseudo metric space (7,d) satisfying the

following Lipschitz condition
forallt,s e T, || Xy — Xsl|y, < d(t,s) (5.36)
For such a process it is possible to control the deviation of sup,., X; in terms of the geometry of

(T, d) trough the Talagrand’s y-functionals.

Theorem 5.11 ((Ledoux and Talagrand, 2013)), Theorem 11.13). Let (X})ier be a random process
in L1(2, A, P) indezed by a pseudo metric space (T, d) such that for all measurable sets A in

/A | X — X |dP < d(s,t)P(A)py? (ﬁ) , (5.37)

then, there exists an absolute constant ¢ > O such that for all u > 0

P( sup [ X; — Xo| > (72 + U)) < (?ﬁz(U/D(T))) R

s,teT
where 7y is the majorizing measure integral v(T, d,9) and D(T) is the diameter of (T,d).

First note that Equation (5.36)) implies Equation (5.37)). By Jensen inequality and the definition
of [+ fly, we get

/A X, — X,|dP = d(s, )P(A) /Aw,;l 0 ¢2(’)‘;(;§t’) P‘(Zi)

< s (g (=50
< d(s, P(A)y;" (ﬁ)

Moreover, from the Majorizing Measure Theorem (Talagrand, [2006))[Theorem 2.1.1], when 7" is a
subset of Ly(u) and d(s,t) = /E(Xs — X3)? we have c;w(T) < %(T) < cow(T) for ¢1,¢2 > 0
two absolute constants and w(7T) is the Gaussian mean-width of 7" defined in Definition The

corollary follows:

Corollary 5.2. Let F' C Ly(y) such that (Xf) sep 18 stochastic process indexded by F satisfying for
any f,9 € F: | X; = Xyllgs < LIf = gllaquy. Then, for any u > log(2), with probability larger than

1 — exp(u?)
sup | X — X | < cL(w(ﬁ’) + uDLQ(u)(F))
f.9€F
where ¢ > 0 is an absolute constant, w(F) is the Gaussian mean-width of F and Dy, (F) its

Lo(p)-diameter.

The following Lemma allows to control the 1s-norm of a sum of independent centered random

variables.
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Lemma 5.4 ((Chafal et all [2012)), Theorem 1.2.1). Let Xi,---, Xy be independent real random
variables such that for alli=1,--- N, EX; =0. Then

N N 1/2
IS X, < 16(2 HXZ-H?M)
=1 =1

The following Lemma connects 1-bounded random variable with the control of its Laplace

transform.

Lemma 5.5 ((Chafai et al 2012), Theorem 1.1.5). Let Z be a real valued random variable. The

following assertions are equivalent
o There exists K > 0 such that || Z]|y, < K

o There exist absolute constants cy,cq,c3 > 0 such that for every A > ¢/ K

Eexp(AZ]) < czexp(caA?K?) (5.38)

We are now in position to prove Lemma [5.3]

Proof. First we prove that Q7 holds with probability larger than exp ( — c|Z|r*(A)/(ALB(1+ L))).
Let F={fecF:|f- F o < r(A)}. Let us assume that for any f,g in F, the following

condition holds

(P = Pr) (€5 =€) lyw < c(LB/VIZDIF = 9llra (5.39)

then, from Corollary for any u > log(2), there exists an absolute constant ¢ > 0 such that with
probability larger that 1 — exp(u?)

sup (P — PI) (ﬁf — &u)‘ < sup
feF f,geF

LB

VI

LB
VIZ|

As r(A) > rz(A) it follows that w(F N (f* + 7(A)Br,u)) < V/IZ[r*(A)/(ABL(L + 1)).By taking
u=c\/|Z|r(A)/(ABL(L + 1)) we obtain the result. With the same reasoning if we assume that

(P = Pr) (b = 4y)

IN

(w(ﬁ’) -+ UDLQ(M)(F))

C

IN

C

(w(F N+ r(A)BLQ(M))) + ur(A))

[(P = Po)lf = glll,,, < c(BL)/NIODIf = allagm » (5.40)

then, with probability larger that 1 — exp ( — c|[Z|r*(A)/(ABL(L +1))):

1 Z]
S 2AL 1 1)\/%r (4)

sup | (P — Po)|f — [*]
fEF
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To finish the proof it remains to show that Equations (5.39)) and (5.40) hold. From Lemma

we get

o (s — £)(Xe, Vi) — E(ly — ,)(X:, Y |2,\ V2
||(P PI)(gf gg)||w2 < 16(; |I‘2 )
- %Wf —0)(X,Y) — E(ly — )(X, )]s,

Thus, it remains to show that |[({; — €,)(X,Y) — E(ly — €o)(X,Y )|y, < cLB|f — gllzoqn for
¢ > 0 an absolute constant. To do so, we use Lemma [5.5 Let A > ¢LB/(||f — gllzoy)- From
the symmetrization principle (Lemma 6.3 in (Ledoux and Talagrand} [2013))) and the contraction
principle (Theorem 2.2 in (Koltchinskii, 2011b)) we get

Eexp(A|((; — £)(X.Y) = E(ty — £,)(X.Y)]) < Eexp(20(ly — £,)(X.Y)
< Ecxp(LAo(f — g)(X)
< Eexp(LA[f — g](X))

where ¢ is a Rademacher random variation independent to (X,Y’). From assumption [5.4] we get
Eexp(A|(€y = £)(X,Y) = E(ly = ,)(X,Y)]) < Eexp(16°B*NL?||f — gl[1,,)
which concludes the proof for Q7 with Lemma For Qp, since L > 1 we have

Eexp(A|lf — g|(X) = E[f — g|(X)]) < Eexp(2Aa(f — g)(X))
< Eexp(AL[f — g[(X))

which also concludes the proof for Qp. [ ]

Deterministic argument In this paragraph we place ourselves on the event Q2 = Q7 N Qp. The
main argument uses the convexity of the class F' with the one of the loss function.
From the definition of fy, we have PyL; < 0. To show that I fy — T ey < 7(A) it is sufficient
to show that for all functions f € F such that ||f — f*||1, > 7(A) we have PyLy > 0. Let
fin F such that ||f — f*||,n) = r(A). By convexity of F' there exists a function f; such that
1fr = f* Loy = 7(A) for which
f=F=alfi=1)

where a = (||f = f*||lLoq/r(A)) = 1. Foralli € {1,---, N}, let ¢; : R — R be defined for all
u € R by

Pi(u) = Llu+ f7(X5),Y5) — ((f7(X3), 5).

The functions v; are such that 1;(0) = 0, they are convex under assumption . In particular
a;(u) < i(au) for all w € R and a > 1 and ¢;(f(X;) — f*(Xy)) = 0(f(X;),Y:) — 0(f*(X5),Y;) so



192 CHAPTER 5. ROBUST RERM: OUTLIERS IN THE LABELS

that the following holds:

Pty = 5 S 0i(1(X0) = 1(X0) = 5 D wilal(X) - £(X)
> 5 O Ul hi(X0) = £(X) = aPyLy.

From the previous argument it follows that PyL; > aPyLy, . Therefore it is enough to show that
PyLy > 0for fy € FNO(f* +1r(A)SLyu), where Sp,(,) denotes the unit sphere induced by La(u).
We have

1] O]

Pyly = =p ™p
NLfl N I‘Cfl + N (9£f1
On Q7 (see Equation ((5.34))) it follows that
PiLy > Py — —— 24y > (At — L V2 (5.41)
P =20 T 9 A1 + L) = 2A(1 + L) '

where we used assumption [5.5, Moreover, from assumption [5.3] it follows that

P@,Cfl > —P@wfl — Ef*

> —LPolfi — f*| .

On Qo (see Equation ((5.35))), we get

L [z L [T
PO£f1 > —L“fl - f*”Ll - m %TZ(A) > _LHfl _ f*HLQ _ m %H(A)

= —Lr(A) — m\/grw) : (5.42)

Since |O| < |Z|, from Equations ((5.41)), (5.42) it follows

Izl (., 1 ) 0| L Z] »
W(A T 2401 +L)>T (4) - W(LT(A) oAt D) \/%T (A>>

1 7] , O]
2ANT(A) LNT(A)>O

PnLy >

>

as long as |O| < (1/2AL)|Z|r(A). It concludes the proof for the error rate.
We finish the proof by establishing the result for the excess risk. Since || fx — f*||1o(u) < 7(A), on
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Q)7 we have

PLy < PrL; + m#@@ = ENlPNﬁfN — %Poﬁf}v + mﬁm)
< gL+ gy
< L||%| Polfx — f*| + mr%@
||%’ (HfN F Lo + m %TQ(A)) 4+ mrQ(A)
[ 1 1zl 1

=bg ( Wraazo\ e <A)> toaar ) W

O] 1

< Lm r(A) + A" r?(A)

<A

where we used the fact that PyLj < 0, that we work on Q¢ and the inequality |O| < (1/2AL)|Z|r(A).

5.8.2 Proof Theorem 5.2

The proof is very similar to the one of Theorem [5.1] We present only the stochastic argument. The

deterministic argument can be simply obtained by reproducing line by line the proof of Theorem [5.1}

Theorem 5.12 (Theorem 2.6, (Koltchinskii, [2011a))). Let F be a class of functions bounded by M.
For all t > 0, with probability larger than 1 — exp(—t)

t tM
sup |(Py — P)f| <Esup|(Py — P)f] +\/2N(Suppf2+2MESHP|(PN— )f\)
feF feF feF feF

Let us define

= {9r € il = s < max(L VERD (),

max(1, LM)(rb(A))?
2A(L+1)
max(1, LM)(rb(A))?
S ToAL ) }

(P~ Pr)Ly| <

and |(P — Po)

Lemma 5.6. Grant Assumptions|5. 1| n . - and 5.6 with the complexity parameter r°(-). Then,
the event 2 holds with probability larger than

IZ](r*(A))* )

1-2 -
P ( 3642(L 1 1)?
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Proof. Let F = {f € F, ||f — f*||z, < max(1,V/LM)r*(A)}. Let (0;)Y, be ii.d Rademacher
random variables independent to (X;,Y;);=1, from the symmetrization and contraction Lemmas
(see (Ledoux and Talagrand, [2013])) we get

(r’(4))

1
E Pr—P)Ls| <ALE — (f = (X)) < 1, LM)—F——"—
sup|(Pz — )Lyl < 4LEsup o0 S o/ = (%) < max(L, LM) g 1=

fer i€T
where we used the Definition of r4(-) and the fact that r®(A) > r%(A) for all A > 0. From
Assumption any function f in F, |Ls(z,y)| < LM for all (z,y) € X x Y. For any ¢t > 0, it
follows from Theorem that for any function f in F
(r’(A))? LMt

— <

7 2 ((A))?
+\/m (max(l, LM)(rb(A))? + 2L M max(1, LM)m) .

Since A, L > 1, taking t = (|Z|(r*(A))?)(36A*(L +1)?) concludes the proof for the informative data
Z. For the outliers O, we used the same arguments since from Assumption [5.6] any function f in
F, |f(x) = f*(z)] < M for all x € X.

5.8.3 Proof Theorem 5.4

Let 7(-, -) such that for all A, p > 0, 7(A, p) > 77(A, p) and let p* satisfying the A, 7-sparsity equation
with A verifying assumption [5.8

The proof is split into two parts and is very similar as the one of Theorem [5.1. First we identify
a stochastic argument holding with large probability. Then, we show on that event that || ff\‘, —
[ o < 7(A, p*) and || fA = f*Il < p*. Then, at the very end of the proof we will control the
excess risk PLf where f3 is defined in equation (5.12). Let us fix A = 4172(4, p*)/(1124p%).

Stochastic arguments The stochastic part is the same as the one in the proof of Theorem |5.1
where a localization with respect to the regularization norm is added. First we identifiate the

stochastic event onto which the proof easily follows. Let,

Q7 = {Vf e F'n (f* + p*BNT(A, p*)BLQ(“)) : (5.43)

’(P — Pr)(t; — £f*)‘ < me(A’ p*)}

Qo = {Vf € FO(f* +p BNi(A p*)Bry) : (5.44)

B )

- ro)lf - 1 = 1o
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where we recall that B is the unit ball induced by the regularization norm || - ||. Finally, set

Q=0:N0Q
Lemma 5.7. Grant Assumptions and with 7(-,-). Then the event 2 holds

with probability larger than

(5.45)

~2 *

LBA(L+1)
Proof. The proof is exactlty the same as the one in the non-regularized setup where a localization

with respect to the regularization norm is added. It is enough to adapt the proof with the definition
of 7z(A, p) from Equation (5.4)). n

Deterministic argument In this paragraph we place ourselves on the event 2. Let us recall

that for any function f in F
PyL} = Py(Cr = Lp) + AIFI = 1£711) (5.46)

Let B = p*B N 7(A, p*)Br,(). From the definition of fA, we have PNE}?V < 0. To show that
f])\‘, e Fn (f* + B) it is sufficient to show that for all functions f € F'\ (f* + B) we have PNE} > 0.
Let f in F\(f* + B). By convexity of F' there exist a function f; in F' and a > 1 such that
alfi—f*)=f—f"and f; € O(f* + B) where O(f* 4+ B) denotes the border of f*+ B. Using the

same convex argument as the one in the proof of Theorem we obtain:
PNﬁf Z O./PN,Cf1 .

Moreover, by the triangular inequality we obtain

L= 1L = el Al = 171D,

and thus,
PNE? Z OéPN[,?l

Therefore it is enough to show that PNﬁ}l > 0 for f{ € FN(f*+ B). By definition of B, there
are two different cases: 1) ||fi — f*|| = p* and ||fi — f*||, < 7(A4,p*) and 2) || f1 — f*|| < p*
and ||fi — f*|lz, = 7(A, p*). In the first case 1), the sparsity equation will help us to show that

PN£?1 > (0 while in case 2) it will be the local Bernstein condition. Let us begin by the case where
[fr =/l = p" and [|fy = f*]lz, < 7(A, p7).

7 @)
PNﬁfl = %Pzﬁfl + |—]V|Po£fl

On €7 (see Equation ([5.43)) it follows that

1 1,

PrLy > PLy — mf2<147p*) > —MT (A, p") (5.47)
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Moreover, from assumption it follows that

PoLy > —Folly, = ly+| =2 —=LPolfr — f7| .
On Qo (see Equation ((5.44))), we get
. * L VAN
—LFPoLy > —Li(A, p*) — AL+ D) ||O|] (A, p) (5.48)

Since |O| < |Z|, from Equations (5.47)), (5.48) it follows

_olL

Puty >~ a ) - O, )

Let us turn to the control of A(||fi]| — || f*||). Recall that we are in the case where || f; — f*|| = p*
and [|fi — f*||;, < 7(A, p*). Let v € E be such that || f* —v|| < p*/20 and g € I([|-||),. We have

LA = L0 = Al = Il = 1L = ol = (g, fr = v) = If* = v
> (g, fi—f) =20 —vll =g, i = ) —p"/10 .
As the latter result holds for all v € f*+ (p*/20)B and g € 9|| (v), since f; — f* € p*S N
T(A, p*)Bryu), we get
Al =771 = AGp™) = p7/10 = 7p7/10 .

Here, the last inequality holds because p* satisfies the sparsity equation. Finally we have

1 _ . O|L _ o TAP*
Pt > — 4, ) - Tl ) 4 O
From the choice of A\ = 4172(A, p*)/(112Ap*) > 41|Z|7(A, p*)/(112AN p*) we get
L Eay o OIL

when |O| < 1/(160AL)|Z|7(A, p*).

Let us turn to the second case 2) || fi — f*|| < p* and ||fi — f*||lroq = T(A, p*). On Q7 (see
Equation ([5.43)) and from assumption it follows that

1 1
> - - ~2 * .

With the same reasoning as the one in case 1) we get

[@] - L 1zl =2
> [ - ,
PolLy = —L7r(4, p7) A+ o\ o (4, 07)

As O] < [Z] and [|All = [[/7]| = =[lfr = [l = —p, it follows that

3 2] \0\

P A
Ve Z AN

(A,p*) = Ap" = L—=7(A, p") .
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Since |Z| > N/2 we get A < 82|Z|/%(A, p*)/(112ANp*) and thus

PNE)\ > L 2(A p*) |O|

A
1= 564 H(Ap) >0

when |O| < 1/(56AL)|Z|7(A, p*)

We finish the proof by establishing the result for the excess risk. Since || £ — f*||L, w < T(A, p*)
and ||f3 — f*|| < p*, on Q7 we have

1 ~2 *
P,Cf],\\] S P_’[Lfﬁ[ -+ m’/’ (A,p )
Moreover we have
N O] N 0]
Prlp = mPNﬁf}v - mpoﬁfpv = szvﬁ + Am(”f =1/ — 7 |Po£
O R *
<2+ Ll Pol i~ f
| . 1 7| . .
< 2Mp" +L‘|I| Ifx—f ||L2(u)+m |’O‘| (A, p*)

82 L\ 0|
< 204, ") + L4, pr
= (112A+4A(1+L))T (4,07 + LA, )

(2 L ] (A, p*)
1124 " 4A(1+ L) ' 1604)" P

where we used the fact that PNE;\EA < 0 and the inequality |O| < 1/(160AL)|Z|7(A, p*).
N

5.8.4 Proof Theorem [5.5|

The proof consists in taking the stochastic argument from the proof of Theorem (and adding
the localization with respect to the regularization norm) and the deterministic argument from the

proof of Theorem
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Chapter 6

Benign overfitting in the large deviation

regime

In this chapter, we investigate the benign overfitting phenomenon in the large deviation regime
where the bounds on the prediction risk hold with probability 1 — e~¢", for some absolute constant
(. We prove that these bounds can converge to 0 for the quadratic loss. We obtain this result by a
new analysis of the interpolating estimator with minimal Euclidean norm, relying on a preliminary
localization of this estimator with respect to the Euclidean norm. This new analysis complements
and strengthens particular cases obtained in (Bartlett et al.,[2019) for the square loss and is extended
to other loss functions. To illustrate this, we also provide excess risk bounds for the Huber and

absolute losses, two widely spread losses in robust statistics.

199
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6.1 Introduction

In this paper, we consider Gaussian regression problems where one observes a dataset D,, of i.i.d.
random vectors (x;,v;), ¢ € {1,...,n} such that y; = <xi,5*> + &, where 8* € R? is an unknown
vector, z ~ N(0,%) € R and £ ~ N(0,0?) € R are independent random variables. Defining the
matrix X with lines 27 and the vector Y = (yi,...,y.)T € R", the set of least-squares estimators
is defined by
B € argmin Z(yZ — <a:l-, 5>)2 = argmin | X 5* - Y3 .
BeRr = BERP

The solutions of this problem are B = X9Y, where XY is any pseudo-inverse of X. When the
dimension p of 3 is smaller than n, the least-squares estimator is typically unique and has a risk
of order O(o?p/n), which deteriorates with the dimension p. This deterioration is unavoidable in
general, a phenomenon known as the “curse of dimensionality” in statistical textbooks.

To bypass this issue, statisticians have focused on situations where 5* satisfies some sparsity
conditions, meaning that it belongs, or is close, to a known set S of small dimensional subspaces
S C RP. In many of these situations, least-squares estimators can be improved, by considering
minimizers of regularized least-squares criteria of the form || X3 — Y||3 + Q(3). Several examples
of such procedures have been studied in the literature. Among the most popular ones, one can
mention ridge regression (Hoerl and Kennard| [1970; Casella, 1980), the LASSO (Tibshirani, [1996;
Van de Geer et al., 2008 Bickel et al., [2009) and the elastic net (Zou and Hastie, 2005; De Mol
et al., |2009). Regularization ensures that both the prediction risk

E[(z, - 5°)|D.) = (B — 8976 - 87) = [|ZV2(B - 8|2

and the estimation risk |3 — 8|2 = (8 — 8*)T(8 — 8*) are controlled. These results hold even if
p = n provided that g* is close to a linear subspace S C R? with dimension s < n.

When the dimension p > n, the set of least-squares estimators is typically infinite. Actually,
the matrix X in this case has typically full rank (and a non trivial kernel) and any solution in the
set {X9Y}, where X9 describes all pseudo-inverses of X satisfy X X9Y = Y. In other words,
in large dimension, least-squares estimators interpolate data. This kind of behavior is typically
undesirable in statistics, as the estimators clearly overfit the observed dataset, and have usually
poor generalization abilities. However, and perhaps counter-intuitively, it turns out that, when
the dimension p is large in front of n, the risk of prediction can become smaller for some of these
solutions. This interesting phenomenon has given rise to a rapidly growing literature these last
months, see (Belkin et al., 2019al/b, 2018ajb; Bunea et al., 2020; |Feldman, 2019; Liang and Rakhlin,
2018; Mei and Montanari, 2019). This success is not surprising as many algorithms in machine
learning require to fit a huge number of parameters with a smaller number of data. The most famous
examples are neural networks for which it has been repeatedly observed empirically that enlarging

the network, hence, the number of parameters, may help to improve prediction performance (Advani
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and Saxe, [2017; Belkin et al., 2019a; Zhang et al| 2016). Of course, linear regression is much
simpler than neural networks and the results proved here are not sufficient to explain the amazing
prediction properties of these algorithms, but it is interesting to understand when and how high
dimension helps prediction, at least in this simpler example. Moreover, several recent works have
shown that the analysis of linear models can be relevant for over-parametrized neural networks. A
reason is that, when neural networks are trained by gradient descent properly initialized, they are
well approximated by a linear model in a Hilbert space. This method is known as neural tangent
kernel approach (Jacot et al., 2018; Bietti and Mairal, 2019; Arora et al., 2019; Lee et al., 2019)).
Understanding the generalization of over-parametrized linear models could therefore be seen as a

first step in the direction of understanding deep learning.

In this paper, we consider more precisely the problem of (Bartlett et al., |2019) where the least-
squares solution with minimal Euclidean norm is analysed. It is well known that this solution is
B = XY, where X is the Moore-Penrose pseudo inverse of X. Our main results complement
those in (Bartlett et al) 2019) in the following sense. First, our results are derived in the large
deviation regime, meaning that they hold with probability 1 — e~¢", for some absolute constant (.
This regime is considered in (Bartlett et al., 2019) but the bounds there don’t converge to 0 as
n — 0o. On the contrary, our bounds can converge to 0 under proper assumptions on the spectrum
of the covariance matrix ¥ = E[zz?]. These assumptions involve the rest of the series of singular
values of the matrix X, 7+ (2) = Y 7 _,. Mi(X) for a well chosen index k* as in (Bartlett et al., [2019).
The index k* in our result is typically slightly larger than the one in (Bartlett et al., [2019) by a
logarithmic factor, see for a definition of k* and the discussion at the end of Section [6.3.1]
for a precise comparison between the k* in a particular example. Besides considering the large
deviation regime, our new bounds improve those of (Bartlett et all [2019)) in typical examples
where benign overfitting occurs, see the discussion following Corollary [6.1 These improvements are
made possible by a new analysis of the estimator B , that relies on preliminary results showing that
dimension may help to localize this estimator with respect to the estimation norm || — f||,, see
Theorem This localization allows, for example, to prove rates of convergence that can be as
fast as 1/n for this estimator, while the bounds in (Bartlett et al. [2019) only allow to reach 1/+/n.
Our bounds exhibit a phase transition of the rates of convergence when the signal to noise ratio
SNR = ||3*||?/0? becomes larger than a threshold ¢ = n/r«(X) (this threshold typically grows to
infinity in the examples). When SNR > ¢, the prediction risk of the estimator satisfies, in the large
deviation regime, | ZY2(3 — 89|12 < ||8*]|*Tr(X) /n. This rate can be exponentially better than the
one in (Bartlett et al., 2019) for some spectrum of the covariance matrix 3, even if it holds with
probability 1 — e™*" in our result and with constant probability in (Bartlett et al., 2019) (see the
example following Corollary . On the other hand, when the SNR is too low, SNR < ¢, these
rates deteriorate into ||SY2(5— 5%)||2 < 024 k*/n. In this case, our rates improve those of (Bartlett
et al., 2019) which are always larger than o2k* in the large deviation regime and actually met the

optimal rate o2 as proved in (Lecué and Mendelson, 2013, Theorem A’).
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Besides the least-squares loss, our new strategy can be easily applied to analyse the excess risk
of interpolating estimators with respect to other loss functions. This extension was mentioned as a
relevant conjecture in (Bartlett et al., [2019). We illustrate this by providing a short analysis of the
excess risk of B with respect to the Huber loss and the absolute loss, two widely spread methods in
robust statistics. The bounds obtained on the excess risk of B with respect to these losses involve
the same quantities as for the quadratic loss. They are gathered in Theorem [6.2]

The remainder of the paper is decomposed as follows. Section sets the main notations and
recall the construction of the estimator B . Section gathers the main results of the paper, the
upper bounds on the excess risk of the estimator § with respect to the quadratic, absolute and

Huber losses. The proofs of these results are gathered in Section [6.4]

6.2 Setting

Let (x,y), (%, ¥i)icq1,...ny denote i.i.d random vectors generated according to the following Gaussian

linear model,
y=alf"+¢ , (6.1)

where 3* € RP is the signal of interest, the design z is a Gaussian vector z ~ N(0,%) € R? and
the noise ¢ is a Gaussian random variable ¢ ~ N(0,0?), independent of z. Let X € R™*? denote
the matrix with lines z7,--- 2l Let Y = (y1, -+ ,y,)T € R" and € = (&,...,&,)T. Using these

notations, the dataset D,, = {(z1,v1),-.., (Zn,yn)} can be represented in the matrix form as
Y = X +¢ .

The set of interpolating vectors H,, C R? is defined as H, = {f € R? : X5 =Y }. We analyse

the estimator defined as the interpolating vector with minimal Euclidean norm, that is

f = argmin |52 (6.2)
BeHy
where || - ||o denotes the Euclidean norm in RP. This estimator is defined only when the set H,, is

non-empty. In general, this occurs only when X has full rank n, which holds almost surely when
the dimension p is larger than the number of observations n, provided that > has rank at least n.
In the following, we assume therefore that p > 4n and that ¥ has rank at least n. The constant 4
has no particular meaning here, it could be replaced by any constant strictly larger than 1 without
affecting the results.

Our main results give upper bounds on the prediction loss of B . Let £: R x R+~ R* denotes a
loss function such that ¢(y,y) = 0 for all y € R and ¢(y,y’) > 0 if y # ¢/. Tt is also assumed that
the function y — £(y,y’) is convex for any y € R. In the first part of the paper, ¢ will be the square
loss £(y,y') = (y — y')%. Other losses will be considered in Section m For any # € R? and any
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(u,v) € R? x R, let £g(u,v) = {({u, B),v) and let Lg(u,v) = g(u,v) — ls-(u,v). For any function
f:RP xR — R, let Pf =E|[f(x,y)]. The excess risk is then defined as:

E[(&(@,@,y) - €<<x,6*>,y) |Dn} = P(l; — () = PL; . (6.3)

As usual, the expectation is taken over the random variables (z,y) only, so the excess risk is a
random variable. In this paper, we provide risk bounds for the estimator B that hold in the large
deviation regime. This means that we build deterministic upper bounds r, on PEB such that
P(PLj > r,) < —exp(Cn), for some absolute constant (.

For any symmetric matrix A € R™" we denote by A\ (A) > .-+ > A, (A) its eigenvalues in
the non-increasing order and by r,(A4) = >, A\;(A). More generally, for any matrix B € R"*?,
we denote by o1(B) > -+ > 0, (B) > 0, its positive singular values in the non-increasing order.
The operator norm of B is denoted by ||B|| = o1(B). For any symmetric positive semi-definite
matrix A, let ||8]la = /BTAB. Let S(r) (resp. Sa(r)) denote the sphere in RP with radius r
with respect to the Euclidean norm || - |2 (resp. with respect to the semi-norm || - ||4). Define
similarly B(r) and Ba(r) to be the balls with radius r. Let also, for any subset B of R?, denote
by 8+ B ={u € R : v € B such that u = § + v}. All along the paper, ¢ and ¢ denote absolute

positive constants. Typically, ( denotes a small constant while ¢ denotes a large one.

6.3 Main results

This section provides our main contributions. Prediction bounds for the square loss are provided
in Section [6.3.1] and for other loss functions in Section [6.3.2]

6.3.1 Prediction with least-squares loss
The following theorem is the main result of this paper.

Theorem 6.1. Let

k* = inf{k‘ e{l,---,p}: f\];((é)) > 32nlog (1 + %4 %)} . (6.4)

Let ¢ > 0 be an absolute constant. Define the parameter v, the estimation rate p and the prediction

rate * by

() e 32n
s o> A A T

P
r* = inf {7‘ >0: 27’2 AN(X)p? < CnrQ} . (6.6)
i=1




204 CHAPTER 6. BENIGN OVERFITTING IN THE LARGE DEVIATION REGIME

If k* < ¢cn, for ¢ > 0 an absolute constant, then, with probability larger than 1 — Te~(" O™ the
estimator (3 defined in Equation (6.2) satisfies

1B=BN2<p  IZY2B-B) <7 .

Theorem is proved in Section [6.4.2] The estimation bound p does not converge to 0, which
is not surprising in our high dimensional setting, in absence of sparsity assumption. However, it
is interesting to see that it may decrease, up to a certain threshold, with the dimension p. In
particular, when the signal to noise ratio ||3*||2/o? is larger that the threshold n/r (%), |5 — 8%
is at most of order ||*||s when the dimension is large enough.

To discuss the prediction bounds, it is useful to give the following corollary, whose proof is a
direct consequence of Theorem left as an exercise. The corollary shows a phase transition in
the rates of convergence when the signal to noise ratio SNR = ||3*||?/0? becomes larger than the

threshold t = n/rp(X).

Corollary 6.1. Grant the assumptions and notations of Theorem |6.1

e If the signal to noise ratio is large enough, ||3*||2/0% > n/re(X), the estimator § defined in
Equation (6.2) satisfies, with probability larger than 1 — 7e~ ("0,

Tr(X)

1B =8 S 187N =28 = 87115 S 1187113

e On the other hand, if the signal to noise ratio is too small, ||3*3/0* < n/ri-(X2), then, the
estimator@ defined in Equation (6.2)) satisfies, with probability larger than 1 — Te~= (",

. . L
16— Bl S o 128 - B3 < (az N g) |

n
Tk* (2) ’
Corollary can be used to compare our results with those in (Bartlett et al., 2019).

1. The upper bounds in Corollary hold with probability larger than 1 — exp(—(n) and may
converge to 0 while those in (Bartlett et al., 2019) are always larger than a constant at these

confidence levels.

2. For high signal to noise ratios, SNR = ||3*||3/0? > t = n/r-(X), Corollary [6.1] improves the
results provided in (Bartlett et al.| [2019)), since the main term in this case here is || 3*[|3Tr(X) /n

while it is ||3*||31/Tr(X)/n in this paper.

3. For small signal to noise ratios, SNR < ¢, our rates are of order o + k*/n, which improve the
result of (Bartlett et al., 2019) at confidence levels e~*". An interesting feature of the results
in (Bartlett et al., 2019) is that it provides upper bounds that can converge to 0 at smaller
confidence levels. On the other hand, (Lecué and Mendelson, 2013 Theorem A’ ) shows that
0? is the optimal rate that can hold with probability larger than 1 — exp(—(n).
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4. The parameter k£* in Theorem is slightly larger in general than the one in (Bartlett et al.,
2019)), since they only require that r«(3) /A« (X) > cn while we have an extra logarithmic
factor in the definition ((6.4)).

To illustrate the upper bounds, (Bartlett et all [2019) provide several examples of “benign
matrices” where the different quantities of interest in Theorem can easily be computed. We
compute the quantities appearing in one these examples now.

Assume that there exist € = o(1) and 7 = €2(1) such that, for any k,

(D) = e ™ e, with Tlog(1l/e) < m, p = cnlog(1/e) .

In this case, for any k and v =7/(1 —e™7),

re (p—k)e+y(e M —eP/T)

)\_k - e—k/T +€
plIX| p

r(E)  (p—k)ed (e HT —ep/m)

Y

Therefore, for k = 7log(1/€) < p/2 and ¢ large enough,

Tk _ DE/24+ e _p 44\/5 44 [p[|X]]

— > —— >=>32nl 1+ —y/—) >32nl 1+ — .

e 2e 4_3n0g(+3 € = 32nlog +3 ri(2)
Hence, k* < 7log(1/€) < n. Moreover, rp«(3) = O(pe) = O(nelog(1/e)) so the threshold ¢ for
the SNR ratio is t = Q(1/(elog(1/€))). This threshold therefore grow to infinity if ¢ — 0. As
Tr(X) < pe + 7 and the parameter v 2 pe/(ne) 2 1, Corollary shows in this example that, if
184|1?/0? > 1/(elog(1/€)), with probability larger than 1 — e=¢",

oPE+ T
)

925 - )13 5 1 B2 = 16713 (ctogta /0 + )

Our rates of convergence in this example can therefore be, up to logarithmic factors as fast as
eV (1/n), while (Bartlett et al.| 2019, Theorem 6) gives in this setting a rate (1/log(1/¢)) Vv (1/n)
that is exponentially slower. In addition, let us recall that Corollary here shows that the rate
€ V (1/n) holds with probability 1 — e=*" while (Bartlett et al., 2019, Theorem 6) only shows that
the logarithmically slower rate (1/log(1/¢)) V (1/n) holds with constant probability.

6.3.2 Extension to other loss functions

The purpose of this section is to show that the analysis developed to prove the main theorem can be
easily extended and that the excess risk of 5’ with respect to other loss functions can be controlled
with the same arguments. To illustrate this general principle, we consider two losses, namely, the
Huber and absolute losses. Both losses have been used repeatedly in robust statistics. Formally, let

¢:R x R~ RT denote one of the following convex loss function:
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e The Huber loss is defined, for any u,y € R, by

Tu? if |u] <6

U(u,y) = pu(u—1y), where op(u) =
Slu| — 62/2  if |u| >0

Notice that g is d—Lipschitz.

e The absolute loss is defined, for any u,y € R, by £(u,y) = pa(u — y), where @ 4(u) = |u| is
1-Lipschitz.

For both losses, recall that, for any 5 € RP, by PLz = P[lg — (], with {s(z,y) = €(<x, 6>,y).

Theorem 6.2. There exist absolute constants (, ¢, co such that the following holds. Let k*, p, v r*
be defined as in Theorem[0.1]. If k* < cn, then

e if { is the Huber loss with 6 = coo, with probability larger 1 — 106_(CAU)H,
PL; < c(r*)? ,
o if ( is the absolute loss, with probability larger 1 — 86_(“”)",
PEB <ert .

Remark 6.1. Theorem is proved in Section [06.4.3 It shows that the excess risk for the Huber
loss is of the same order as the one for the square loss. It is the square root of these rate for the
absolute loss. Both results are expected as the same phenomenon appear in small dimension also,
see for example (Chinot et al.l,|2019b).

6.4 Proofs of the main results

The remaining of the paper is devoted to the proofs of the main results. Section (resp. [6.4.2))
shows the estimation bound (resp. the prediction bounds) in Theorem .

6.4.1 Proof of the estimation bound of Theorem [6.1]

The following theorem establishes the bound on the estimation error in Theorem|6.1] In the following
section, this preliminary estimate will be used to “localize” the analysis of the prediction risk of B )

This approach is now classical in statistical learning, it has been applied successfully, for example,
in (Koltchinskii and Mendelson, 2015; Mendelson, 2014}, 2016, [2017)).

Theorem 6.3. There exist absolute constants ¢ and ¢ such that the following holds. Let k*, v and
p be defined as in Theorem . If k* < cn, the estimator@ defined in Equation (6.2)) satisfies

P(|6 = 57[l2 < p) = 1 = dexp(—(v A 1/5)n) . (6.7)
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Proof of Theorem [6.3 The proof starts with the following lemma.

Lemma 6.1. With probability conditionally on X larger than 1 — e /2,
. n
— By < 1By + 20, | —— . .
18 =B8Nz < 157]2 + 20 2 (X (6.8)

Proof of Lemma[6.1. Classical results of linear algebra show that
B=XTY =XtXp +X*€
where X denotes the Moore-Penrose pseudo-inverse of X. Therefore,
1B = 5ll2 = [(XFX = 1,)5" — XF€ll2 < [|6"]l2 + | X €]z (6.9)

where the last inequality follows from the triangular inequality and the fact that X *X — I, is the
projection matrix onto the null-space of X. Since || X 1E&|[2 < || X T||||€]|2, the function & — || X T2
is || X *||-Lipschitz with respect to the Euclidean norm. From Borell’s Gaussian concentration

inequality, with probability conditionally on X larger than 1 — exp(—n/2),
| XTEl> < E[| XTE[2]X] + of| XF[]v/n (6.10)
Since rank(X) < n, | X*|| < ¢, }(X). Similarly, rank((X )" X ") < rank(X ") < n. Therefore,
writing E[-] for E[-| X],
E|X ¢l < (BIX*¢)3)"”
_ (EéT(X—&-)Tx—i-é)l/Q _ a(Tr((X+)TX+))1/2

= a(zn; Ai((X+)TX+)) - = a(iaf (X+))1/2

i=1
n 1/2 n
—2
(o) </t
Plugging (6.10) and this bound on E[|| X T£]|2| X] into concludes the proof. u

Lemma provides a random bound on the estimation error of B . To prove Theorem , it
remains to bound from below, with high probability, the smallest eigenvalue o2(X) of X XT. This

control is obtained in the following lemma.
Lemma 6.2. With probability larger than 1 — 2exp(—p/18) — exp(—nv), we have
re=(X)

.

Proof. The matrix X7 is distributed as ©Y/2G, where G € RP*™ is a random matrix with i.i.d
standard Gaussian variables, hence 0,(X) = 0,(X7) is distributed as o,(X2Gr). From the

Courant-Fischer-Weyl min-max principle, we have

on(X) >

o, (2V2Gx) = min [|2V2Gx|,
zesn—1
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Let x € S" ' and A = diag(A(X), -+, \,(X2)). By the spectral theorem, there exists an orthog-
onal matrix P such that ||¥'2Gz|2 = ||PAY2PTGx|j2. Hence, by rotation invariance of Gaus-
sian random vectors, | 2Y2Gz||3 is distributed as [|AY2Gz||3, that is, as ||z]|2 >0, Ai(2) g2, where
g1, -+, gp are i.i.d standard Gaussian random variables. As x € S"71 || XY/2Gz||3 is distributed as
P hi(X)g?. Clearly

P P

S AE)g =D Nl

i=1 i—k*
Elementary computations show that, for any i, \;(X)g? is sub-exponential (see Definition
) with parameters (24/A;(2),4X;(X)). As these variables are independent, by Proposition ,
S Ai(X)g? is sub-exponential with parameters (24/rj+(X), 4\(X)). Therefore, by Proposi-
tion [6.2] with probability 1 — exp(—2nv),

1
|AY2Gz||2 > 5rk*(z) . (6.11)

Equation ([6.11]) holds for any fixed z in the unit sphere S"~!. To obtain uniform deviations, let us
introduce an e-net T'. of S"'. For any x € S"~!, there exists y € T, such that ||z — y||z < e. Thus,

I=Y2Gally > [[V2Gyll: — [5Y2G (@ = y)ll2 > [5Y2Cyll2 — el 226

Since the operator norm is sub-multiplicative, | XY2G/| < +/||Z|||G||. To bound the operator norm

|G||, we use the following result.

Theorem 6.4. (Vershynin|, |2010)[Theorem 5.35]. Let p > n and let G denote a p X n matriz with
independent standard Gaussian entries. For every 0 < 6 < 1, with probability at least 1 — §:

VD — V1 —/210g(2/6) < 0min(G) < 01(G) < D+ V1 +/2log(2/d) . (6.12)
From Theorem [6.4] with probability larger that 1 — 2 exp(—p/18),

2 1 1 11
|!G||s@+ﬁ+,/1_18’<@(1+§+§>: v

It follows that

11
min | 2Y2Gz||, > min |SY2Gyl|s — —</p||2] - (6.13)
zesn—1 yel: 6
Hence, for
e — E Tk*(Z)
a4\ ol
we have
(X))
in [52Gall, > min [SV2Gy|, — Y &) 6.14
min [[212Gal; > min [212Gy|l; 1 (6.14)

Taking a union bound in (6.11]), we get that, for this value of €, with probability at least 1 —exp (—
2nv + log(|FE|)),

, 1 1 T (2)
Y260, > O == — o) >
min, [I42Galle 2 Ve (D) 25— 5 5
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A standard volume argument shows that, for every e > 0, |T.| < (1 + 2/e)". Therefore, the
probability estimate is bounded from bellow by

1 2w+ nlog (14 2, | 2IE]
— eX — ZNU n 1o —_— .
P & 3\ ()

By definition of £*, this probability is bounded from bellow by

1 —exp(—nwv) .
This concludes the proof of Lemma [6.2] n
Theorem [6.3] then follows directly from Lemmas [6.1] and [6.2]

6.4.2 Proof of the prediction bound in Theorem 6.1

Let 8* + B(p) = {B € R? : || — B*[l2 < p}. Let PuLy :=n"' 370 (Us(wi, yi) — Lp+(2i,9i)) denote
the empirical excess-risk. The proof starts with the following elementary result.

Lemma 6.3. With probability larger than 1 — exp(—n/16), P,L; < —(1/2)0*. Moreover, for any

r*, let Q- , denote the following event
Qe , = {VB € R? such that 8 — 8* € B(p)\ Bx(r*), P.Ls > —(1/2)0°} .

On the event
Qs N{B— B € B(p)}N{P.L; < —(1/2)0°} |

~

f — B € Bx(r*), that is
ISV2(8 = Bl < 7

Proof. Since 3 € H,,, <xl,[§’> =y, for any i € {1,...,n}, so FPol; =0 and
1 n
PoLy = Po(ly = lg:) = —Pulye = —— >
i=1

Since & ~ N(0,0?), from Proposition [6.1 °7_, &2 is sub-exponential with parameters (20/n, 40?)
and from Proposition , with probability larger than 1 — exp(—n/16),

PoC, = —% igg < —(1/2)0> . (6.15)
=1

On Q,+ , all 8 such that |3 — *[]2 < p and |3 — 5*||s > r* satisfy P,Lg > —(1/2)0?. Therefore,
on Q. ,, if |3 — 5*]]2 < p and P.L; < —(1/2)0?, 3 cannot satisfy |3 — 8*||s > r*. Hence,

{B— 8" € Bs(r)} D e, N{B—B" € B(p)} N{PL; < —(1/2)0°} .
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By Lemma , to bound the excess risk of B, it is sufficient to show that r* defined in is
such that, with high probability

f P.Ls} > —(1/2)0?% . 6.16
el BaLs} > = (1/2)0 (6.16)

Theorem 6.5. There exists an absolute constant ¢ such that, with probability larger than 1 —2e~<",

inf P.Ls} > —(1/2)0?
b il ooy LT 00} > —(1/2)0

where r* is the complexity parameter defined in .
By Lemma and Theorem this means that, with probability larger than 1 — 6e=" — e~ "™,

1B=Blla<p,  ISY2B-B)la<r . (6.17)

Proof of Theorem[6.9. Let 8 € 5* + B(p) \ Bs(r*) and denote by r = ||SY2(8 — )]z, so r > r*
and
p—p*eH,,=DB(p)NSxs(r) .

Recall that, for any § € RP, as

<90z‘>5> —Yi = <1‘z‘,5 - 5*> + <$z‘,@*> —Yi = <l‘z‘,/3 - 5*> =&,

we have
P.Ls = Z (20, 8) = 95)" = (0, 87) = w)°
* 2 . *
- 5;@,5—5 ) - n 2 Elwn B =) (6.13)
Write now o = 7*/r € (0,1) and Sy = 5* + a(8 — %), so
PuLs=a~ —Z@,ﬁo *—sz,ﬁo 5y (6.19)

By definition, ||SY2(8y— B8%)[l2 = r* and || 8y — 5*|| < ap, that is, Bo— 8* € Hy a0, = Ss(r*) N B(ap).
Define then

1 & 2 2
ro — - i M ) —E (AN ’
Qo= w0 n;&c B—p7) —E(z:, 8- 8"
2 n
Mr = - i\ L5
v ,B—BSPEI;{T,;, n;§<x

By (6.19)), we have thus

inf P > —2 — 2M,.« -1
Bed .., nlp 20 {( R ap] et

>a 2 {( )2 —Q,- p} — 2M, ot (6.20)
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It remains to bound the quadratic process ), , and the multiplier process M, ,. This control is
based on the Gaussian width of the sets H,- ,. Recall that the Gaussian width of a subset H C R?
is defined by

w*(H) = E[sup(G, )], where G ~N(0,1,) .

heH
The useful controls are provided in the following lemma, whose proof is postponed to Section [6.5.2}

Lemma 6.4. Let r,p > 0 and 6,n € (0,1). There exists an absolute constant ¢ such that, with
probability larger than 1 — 9,

Qrp < C[CrQ,p +7rCrp+ r’ (Dé,n \% Dg,n)] )

where the complezity C,, = w*(X'?H,,)/v/n and Ds, = +/log(1/8)/n. Moreover, there exists an

other absolute constant ¢ such that, with probability larger than 1 —n,
M., < co [CW + TDWL] )

We apply Lemma with n =8 = e, r = r* and p. We have D(?,n < Ds,, = ¢ < 1. It shows
that P(2*) > 1 — 2=, where

QO ={Qm, < C[Cf*yp +1rCpe p + C(r*)ﬂ} N{M,, <co [Cmp + r*(]} )
Moreover, from Equation (6.20)) and the fact that o = r*/r, on Q*

2
Cr*,p Cp p

Cre
o T ) — 2co( ~ +7¢)] . (6.21)

inf  P,Lz>[r?(1—cC) —
ety o 200~

It remains to bound the Gaussian width w*(XY2H, ,) to bound the complexity C,- ,. This control
is provided in the following lemma, whose proof is provided in Section [6.5.3]

Lemma 6.5. Let r,p > 0. Then,

P
w (BY2H, ) = \/2W,,, where W,,= Zr2 AX(D)p* .
i=1

From Lemma [6.5],
w (872 e ) < e/ Wiy

The choice of r* ensures that

Wy, < n(Cr*)? SO
Plugging this inequality into (6.21)) shows that, on Q*,
inf  P,Ls>r%(1—3c()—4 )
i - 5 >re( cC) — 4cCor
The inequality ab < (a® + b*)/2 with a = 4cr¢ and b = o shows that, on Q*,

0_2

inf P,z > 1%(1 — 3¢ —82¢%H) — — .
sl s> ¢ —8c°(7) 5

Choosing ( sufficiently small concludes the proof. [ ]
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6.4.3 Proof of Theorem [6.2]

The proof is based on the following lemma, whose proof can be found in (Alquier et al., 2019)
and (Chinot|, 2019a) for example.

Lemma 6.6. Assume that {(u,y) = p(u — y), where p is L-Lipschitz. There exists an absolute
constant ¢ such that, for any positive r, p, with probability larger than 1 — n,

cL

sup (P, = P)(€s = lg+)] < %(w*(Hr,p) +/log(1/n)r) .

BEH,

From Theorem , with probability larger than 1— 7~ ||3—B*|| < p and [|ZY2(B—B%)||, <
r*. Consequently, from Lemmas and , with probability larger than 1 — n — 7e~ (/v

PL; < P,C +CL zp:( 2N N(D)p? 1/2+ Lr* log(1/n)
5 wls+ —— T i clr™\| ———— .
VA P n
By definition of r* this implies that
log(1
P£B<Pn£B+ch*<C+ M) . (6.22)
n

n

For the absolute loss function P,£; <0 and L = 1, so the proof is complete by taking n =e™".
For the Huber loss function, L = cy0 and P, L5 = —Polg- = —(1/n) > 7_, pu(&:). Moreover,

1 - 2 1 - 2 1 & 2
Pl = ;;@1{\54 < o} = 5;@ - ;;sil{\sir > 0}

By (6.15]), with probability larger than 1 — exp(—n/16), (1/n) Y7 & > 0?/2. Similar arguments
show that there exists an absolute constant ¢ such that, with probability 1 — exp(—¢?n),

1
=3 1{j6] > o} < 0*/6+ E[C1{]¢] > er0}] -
i=1
Moreover, from Cauchy-Schwarz and Markov inequalities,

E[§*1{[¢] = 20}] < V30 V/R(E] 2 e20) < \/3202

c
It follows that, with probability 1 — 2e=¢", if ¢y = 64/3,

1 1 V3 o2
P.L:=—PJlg < —c?| = — = - 1= .
A pr = 0(2 6 CQ)

Plugging this estimate into (6.22)) yields, with probability 1 — 10e~ (¢ )",

2

PL; < —% + 2cCor® .

The proof is complete since

2
7 < 1202C2(1"*)2—|—U— .

2cCor* = Z(ECCT*)E 3
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6.5 Supplementary material

6.5.1 Sub-exponential random variables: definitions and properties

The following definition and propositions can be found in (Wainwright| 2019).

Definition 6.1. A random wvariable X with mean E[X| = p is called sub-exponential with non-

negative parameters (v,b) if
E[MX 0] < /2 forall [N <1/b . (6.23)

Proposition 6.1. Let Xy, --- , X, be independent random variables such that X; is sub-exponential

with parameters (v;,b;). ThenY = Y"1 | X; is sub-exponential with parameters ((3_;—, v?)V/? max;_i .. , b;).

i=1Yi

Proposition 6.2 (Sub-exponential tail bound). Suppose that X is sub-exponential with parameters
(v,b). Then

20 /) if0 <t <uv?/b |

BOX — ul > ¢} < 6.24
(| pl = )—{ 271 ift > 12 /b | )

6.5.2 Proof Lemma 6.4

The proof of the control of the quadratic process follows from (Dirksen et al., 2015, Theorem 5.5)
and the majorizing measure theorem (see (Talagrand, 2014, Theorem 2.4.1)).
Let (X;)ier be a stochastic process indexed by a set T of n-tuples t = (t1,...,%,). Let us assume
that the random variables X, : 2; — R are sub-Gaussian. For every ¢ € T, let
1 n
A== (X -EX}) . (6.25)

n <
=1

Define on T the pseudo-distance dy,, by

d¢2 <t75) = ._HllaX Hth - XSi

Wy (6.26)

where, for any real random variable X, || X|y, = inf{C > 0 : Eexp(|X|?/C?) < 2}. The radius
associated to T is defined as
Ay, (T) =sup max || Xy |y, - (6.27)
teT =1, n

Theorem 6.6 (Theorem 5.5 in (Dirksen et al., 2015))). Let (A;)ier be the process of averages defined
in (6.25)). There exists an absolute constant ¢ > 0 such that, for any 6 in (0,1), with probability
larger than 1 — 6,

2

teT n vn n n
where the definition of vo can be found in (Talagrand, 2014, Definition 2.2.19),

1 n 1/2
2 4
d M= - E X )
v A0 or (n — 1% w)

K =sup max | X,
teT =1
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To apply Theorem to bound @, ,, let T' = {(<x1,6>, e <xn,ﬁ>),6 € H,,} and, for any
t= (<$1,5>, . <xn,ﬁ>) eT, let

Xti = <$i7 6>7 S0 Qr,p = sup At .

teT

For any i = 1,...,n, Xy, = {x;,8) ~ N(0,[|ZV28]|3) = N(0,7%). Therefore, || X;, |y, = r, for any
t € T and any i = {1,...,n}, so A7 (T) = K = M = r>. Moreover, in our case dy, = || - |s
and from the majorizing measure theorem, see (Talagrand, 2014, Theorem 2.4.1), there exists an
absolute constant ¢ > 0 such that vo(T',dy,) < w*(3Y2H, ), so, by Theorem [6.6, with probability
1-0

Qrp < C[Czp +7Crp+ (Do V ngn)} '

Let us turn to the control of the multiplier process M, ,. Since the noise § is Gaussian with vari-
ance o2, independent of x, by (Mendelson, 2016, Corollary 1.10), there exists an absolute constant

¢ such that, for any ¢ in (0, 1), with probability larger than 1 — ¢,

nM,, < cy/no(w*(SY2H,,) +r\/log(1/6)) .
6.5.3 Proof of Lemma [6.5]

w*(ElﬂHW):]E sup <G’,t>,

texl/2H,. ,
where G ~ N (0, I,), and
21/2H7“,p _ {21/2t c RP - ||tH < D, "21/2t”2 = T}
={teR: ISV < p,lt]e = r}

p t2 p t2
:{teR”:ZAi(é)pQ <1, ZT—;@}

=1 =1

P 2
tz‘
C{teR”: E —Ai(z)p2Ar2<2} )

=1

The Gaussian mean-width of an ellipsoid is given by (Talagrand 2014, Proposition 2.5.1) and it
follows that

P
w*($Y2H, ) < \/5( Z Ni(2)p% A 7“2)1/2 .
i=1



Bibliography

Advani, M. S. and Saxe, A. M. (2017). High-dimensional dynamics of generalization error in neural networks. arXiv
preprint arXiw:1710.03667.

Alistarh, D., Allen-Zhu, Z., and Li, J. (2018). Byzantine stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, pages 4613-4623.

Alon, N., Matias, Y., and Szegedy, M. (1999). The space complexity of approximating the frequency moments. J.
Comput. System Sci., 58(1, part 2):137-147. Twenty-eighth Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996).

Alquier, P., Cottet, V., Lecué, G., et al. (2019). Estimation bounds and sharp oracle inequalities of regularized
procedures with lipschitz loss functions. The Annals of Statistics, 47(4):2117-2144.

Amelunxen, D., Lotz, M., McCoy, M. B., and Tropp, J. A. (2014). Living on the edge: phase transitions in convex
programs with random data. Inf. Inference, 3(3):224-294.

Argyriou, A., Baldassarre, L., Micchelli, C. A.; and Pontil, M. (2013). On sparsity inducing regularization methods

for machine learning. In Empirical inference, pages 205-216. Springer, Heidelberg.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American mathematical society, 68(3):337—
404.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., and Wang, R. (2019). On exact computation with an

infinitely wide neural net. In Advances in Neural Information Processing Systems, pages 8139-8148.
Audibert, J.-Y. and Catoni, O. (2011). Robust linear least squares regression. Ann. Statist., 39(5):2766-2794.

Audibert, J.-Y., Tsybakov, A. B., et al. (2007). Fast learning rates for plug-in classifiers. The Annals of statistics,
35(2):608-633.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Structured sparsity through convex optimization.
Statist. Sci., 27(4):450-468.

Baraud, Y., Birgé, L., and Sart, M. (2017). A new method for estimation and model selection: p-estimation. Invent.
Math., 207(2):425-517.

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: the size of the weights
is more important than the size of the network. IEEE transactions on Information Theory, 44(2):525-536.

Bartlett, P. L., Boucheron, S., and Lugosi, G. (2002a). Model selection and error estimation. Machine Learning,
48(1-3):85-113.

Bartlett, P. L., Bousquet, O., and Mendelson, S. (2002b). Localized Rademacher complexities. In Computational
learning theory (Sydney, 2002), volume 2375 of Lecture Notes in Comput. Sci., pages 44-58. Springer, Berlin.

Bartlett, P. L., Bousquet, O., and Mendelson, S. (2005). Local Rademacher complexities. Ann. Statist., 33(4):1497—
1537.

215



216 BIBLIOGRAPHY

Bartlett, P. L., Jordan, M. L., and McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. J. Amer.
Statist. Assoc., 101(473):138-156.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A. (2019). Benign overfitting in linear regression. arXiv preprint
arXiv:1906.11300.

Bartlett, P. L. and Mendelson, S. (2002). Rademacher and gaussian complexities: Risk bounds and structural results.
Journal of Machine Learning Research, 3(Nov):463-482.

Bartlett, P. L. and Mendelson, S. (2006a). Empirical minimization. Probab. Theory Related Fields, 135(3):311-334.

Bartlett, P. L. and Mendelson, S. (2006b). Local rademacher complexities and empirical minimization. Annals of
Statistics, 34.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019a). Reconciling modern machine-learning practice and the classical
bias—variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849-15854.

Belkin, M., Hsu, D., and Xu, J. (2019b). Two models of double descent for weak features. arXiv preprint
arXiw:1903.07571.

Belkin, M., Hsu, D. J., and Mitra, P. (2018a). Overfitting or perfect fitting? risk bounds for classification and

regression rules that interpolate. In Advances in neural information processing systems, pages 2300-2311.

Belkin, M., Rakhlin, A., and Tsybakov, A. B. (2018b). Does data interpolation contradict statistical optimality?
arXiww preprint arXiw:1806.09471.

Bellec, P. C., Lecué, G., and Tsybakov, A. B. (2017). Towards the study of least squares estimators with convex

penalty. In Séminaire et Congrés, number 31. Société mathématique de France.

Bellec, P. C., Lecué, G., Tsybakov, A. B., et al. (2018). Slope meets lasso: improved oracle bounds and optimality.
The Annals of Statistics, 46(6B):3603-3642.

Ben-Hur, A. and Noble, W. S. (2005). Kernel methods for predicting protein—protein interactions. Bioinformatics,
21(suppl-1):i38-i46.

Bhaskar, B. N., Tang, G., and Recht, B. (2013). Atomic norm denoising with applications to line spectral estimation.
IEEE Trans. Signal Process., 61(23):5987-5999.

Bhatia, K., Jain, P., and Kar, P. (2015). Robust regression via hard thresholding. In Advances in Neural Information
Processing Systems, pages 721-729.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann.
Statist., 37(4):1705-1732.

Bietti, A. and Mairal, J. (2019). On the inductive bias of neural tangent kernels. In Advances in Neural Information

Processing Systems, pages 12873-12884.

Birgé, L. (1984). Stabilité et instabilité du risque minimax pour des variables indépendantes équidistribuées. Ann.
Inst. H. Poincaré Probab. Statist., 20(3):201-223.

Birgé, L. (2001). An alternative point of view on lepski’s method. Lecture Notes-Monograph Series, pages 113-133.



BIBLIOGRAPHY 217

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bogdan, M. g., van den Berg, E., Sabatti, C., Su;, W., and Candes, E. J. (2015). SLOPE—adaptive variable selection
via convex optimization. Ann. Appl. Stat., 9(3):1103-1140.

Boucheron, S., Bousquet, O., and Lugosi, G. (2005). Theory of classification: a survey of some recent advances.
ESAIM Probab. Stat., 9:323-375.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities. Oxford University Press, Oxford. A
nonasymptotic theory of independence, With a foreword by Michel Ledoux.

Bousquet, O. (2002). A bennett concentration inequality and its application to suprema of empirical processes.
Comptes Rendus Mathematique, 334(6):495-500.

Bousquet, O., Koltchinskii, V., and Panchenko, D. (2002). Some local measures of complexity of convex hulls and

generalization bounds. In International Conference on Computational Learning Theory, pages 59—73. Springer.
Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Brownlees, C., Joly, E., Lugosi, G., et al. (2015). Empirical risk minimization for heavy-tailed losses. The Annals of
Statistics, 43(6):2507-2536.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine Learn-
ing, 8(3-4):231-357.

Bithlmann, P. and van de Geer, S. (2011). Statistics for high-dimensional data. Springer Series in Statistics. Springer,
Heidelberg. Methods, theory and applications.

Bunea, F., Strimas-Mackey, S., and Wegkamp, M. (2020). Interpolation under latent factor regression models. arXiv
preprint arXiv:2002.02525.

Bunea, F., Tsybakov, A., Wegkamp, M., et al. (2007). Sparsity oracle inequalities for the lasso. FElectronic Journal
of Statistics, 1:169-194.

C Bellec, P. (2019). Localized gaussian width of m-convex hulls with applications to lasso and convex aggregation.
Bernoulli, 25(4A):3016-3040.

Cai, T. T., Ren, Z., Zhou, H. H., et al. (2016). Estimating structured high-dimensional covariance and precision

matrices: Optimal rates and adaptive estimation. FElectronic Journal of Statistics, 10(1):1-59.

Candes, E. J. and Plan, Y. (2011). Tight oracle inequalities for low-rank matrix recovery from a minimal number of

noisy random measurements. IEEE Transactions on Information Theory, 57(4):2342-2359.

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. Foundations of
Computational Mathematics, 7(3):331-368.

Casella, G. (1980). Minimax ridge regression estimation. The Annals of Statistics, pages 1036-1056.

Catoni, O. (2012). Challenging the empirical mean and empirical variance: a deviation study. Ann. Inst. Henri
Poincaré Probab. Stat., 48(4):1148-1185.



218 BIBLIOGRAPHY

Chafai, D., Guédon, O., Lecué, G., and Pajor, A. (2012). Interactions between compressed sensing random matrices

and high dimensional geometry. Citeseer.

Chalup, S. K. and Mitschele, A. (2008). Kernel methods in finance. In Handbook on information technology in
finance, pages 655—687. Springer.

Chatterjee, S. and Goswami, S. (2019). New risk bounds for 2d total variation denoising. arXiv preprint
arXi:1902.01215.

Chen, M., Gao, C., Ren, Z., et al. (2016). A general decision theory for huber’s epsilon-contamination model.
Electronic Journal of Statistics, 10(2):3752-3774.

Chen, M., Gao, C., Ren, Z., et al. (2018). Robust covariance and scatter matrix estimation under Huber’s contami-
nation model. The Annals of Statistics, 46(5):1932-1960.

Chen, Y., Su, L., and Xu, J. (2017). Distributed statistical machine learning in adversarial settings: Byzantine
gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 1(2):1-25.

Cheng, Y., Diakonikolas, I., and Ge, R. (2019). High-dimensional robust mean estimation in nearly-linear time. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2755-2771. STAM.

Cherapanamjeri, Y., Flammarion, N., and Bartlett, P. L. (2019). Fast mean estimation with sub-gaussian rates. In
Beygelzimer, A. and Hsu, D., editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99
of Proceedings of Machine Learning Research, pages 786—-806, Phoenix, USA. PMLR.

Chinot, G. (2019a). ERM and RERM are optimal estimators for regression problems when malicious outliers corrupt
the labels. arXiv preprint arXiv:1910.10923.

Chinot, G. (2019b). Robust learning and complexity dependent bounds for regularized problems. arXiv preprint
arXiv:1902.022358.

Chinot, G., Lecué, G., and Lerasle, M. (2019a). Robust high dimensional learning for lipschitz and convex losses.
arXiv:1905.04281.

Chinot, G., Lecué, G., and Lerasle, M. (2019b). Robust statistical learning with lipschitz and convex loss functions.
Probability Theory and Related Fields.

Dalalyan, A. and Thompson, P. (2019). Outlier-robust estimation of a sparse linear model using 11-penalized huber’s

m-estimator. In Advances in Neural Information Processing Systems, pages 13188-13198.

Dalalyan, A. S., Hebiri, M., Lederer, J., et al. (2017). On the prediction performance of the lasso. Bernoulli,
23(1):552-581.

De Mol, C., De Vito, E., and Rosasco, L. (2009). Elastic-net regularization in learning theory. Journal of Complezity,
25(2):201-230.

Depersin, J. and Lecué, G. (2019). Robust subgaussian estimation of a mean vector in nearly linear time. arXiv
preprint arXiv:1906.03058.

Devroye, L., Gyorfi, L., and Lugosi, G. (2013). A probabilistic theory of pattern recognition, volume 31. Springer

Science & Business Media.



BIBLIOGRAPHY 219

Devroye, L., Lerasle, M., Lugosi, G., Oliveira, R. L., et al. (2016). Sub-gaussian mean estimators. The Annals of
Statistics, 44(6):2695-2725.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A., and Stewart, A. (2019a). Robust estimators in high-
dimensions without the computational intractability. STAM Journal on Computing, 48(2):742-864.

Diakonikolas, I., Kong, W., and Stewart, A. (2019b). Efficient algorithms and lower bounds for robust linear
regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2745—
2754. STAM.

Dirksen, S. et al. (2015). Tail bounds via generic chaining. Electronic Journal of Probability, 20.
Donoho, D. L. and Huber, P. J. (1983). The notion of breakdown point. A festschrift for Erich L. Lehmann, 157184.

Eberts, M., Steinwart, I., et al. (2013). Optimal regression rates for svims using gaussian kernels. Electronic Journal
of Statistics, T7:1-42.

Elsener, A. and van de Geer, S. (2018). Robust low-rank matrix estimation. Ann. Statist., 46(6B):3481-3509.

Farooq, M. and Steinwart, I. (2019). Learning rates for kernel-based expectile regression. Machine Learning,
108(2):203-227.

Feldman, V. (2019). Does learning require memorization? a short tale about a long tail. arXiv preprint
arXiv:1906.05271.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning, volume 1. Springer series

in statistics New York.

Giné, E., Koltchinskii, V., et al. (2006). Concentration inequalities and asymptotic results for ratio type empirical
processes. The Annals of Probability, 34(3):1143-1216.

Giraud, C. (2015). Introduction to high-dimensional statistics, volume 139 of Monographs on Statistics and Applied
Probability. CRC Press, Boca Raton, FL.

Golub, G. H., Hansen, P. C., and O’Leary, D. P. (1999). Tikhonov regularization and total least squares. SIAM
Journal on Matriz Analysis and Applications, 21(1):185-194.

Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge
parameter. Technometrics, 21(2):215-223.

Gordon, Y., Litvak, A. E., Mendelson, S., and Pajor, A. (2007). Gaussian averages of interpolated bodies and

applications to approximate reconstruction. Journal of Approzimation Theory, 149(1):59-73.

Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on Information
Theory, 57(3):1548-1566.

Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics, pages
1887-1896.

Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the american statistical
association, 69(346):383-393.



220 BIBLIOGRAPHY

Han, Q. and Wellner, J. A. (2017). Convergence rates of least squares regression estimators with heavy-tailed errors.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Techno-
metrics, 12(1):55-67.

Holland, M. J. and Ikeda, K. (2017). Robust regression using biased objectives. Machine Learning, 106(9-10):1643—
1679.

Holmes, R. B. (2012). Geometric functional analysis and its applications, volume 24. Springer Science & Business
Media.

Hopkins, S. B. (2018). Sub-gaussian mean estimation in polynomial time. arXiv preprint arXiv:1809.07425.

Huang, J. Z. et al. (2003). Local asymptotics for polynomial spline regression. The Annals of Statistics, 31(5):1600—
1635.

Huber, P. J. (1992). Robust estimation of a location parameter. Breakthroughs in statistics, pages 492-518.

Huber, P. J. et al. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Pro-
ceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 221-233.

University of California Press.

Huber, P. J. and Ronchetti, E. (2011). Robust statistics. In International Encyclopedia of Statistical Science, pages
1248-1251. Springer.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural

networks. In Advances in neural information processing systems, pages 8571-8580.

Jerrum, M. R., Valiant, L. G., and Vazirani, V. V. (1986). Random generation of combinatorial structures from a

uniform distribution. Theoretical Computer Science, 43:169-188.

Klein, T. (2002). Une inégalité de concentration & gauche pour les processus empiriques. Comptes Rendus Mathe-
matique, 334(6):501-504.

Klein, T., Rio, E., et al. (2005). Concentration around the mean for maxima of empirical processes. The Annals of
Probability, 33(3):1060-1077.

Koltchinskii, V. (2001). Rademacher penalties and structural risk minimization. IEEFE Transactions on Information
Theory, 47(5):1902-1914.

Koltchinskii, V. (2006). Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Statist.,
34(6):2593-2656.

Koltchinskii, V. (2011a). Empirical and rademacher processes. In Oracle Inequalities in Empirical Risk Minimization

and Sparse Recovery Problems, pages 17-32. Springer.

Koltchinskii, V. (2011b). Oracle inequalities in empirical risk minimization and sparse recovery problems, volume
2033 of Lecture Notes in Mathematics. Springer, Heidelberg. Lectures from the 38th Probability Summer School
held in Saint-Flour, 2008, Ecole d’Eté de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].

Koltchinskii, V. et al. (2006). Local rademacher complexities and oracle inequalities in risk minimization. The Annals
of Statistics, 34(6):2593-2656.



BIBLIOGRAPHY 221

Koltchinskii, V., Lounici, K., and Tsybakov, A. B. (2011). Nuclear-norm penalization and optimal rates for noisy
low-rank matrix completion. Ann. Statist., 39(5):2302-2329.

Koltchinskii, V. and Mendelson, S. (2015). Bounding the smallest singular value of a random matrix without
concentration. Int. Math. Res. Not. IMRN, (23):12991-13008.

Koltchinskii, V. and Panchenko, D. (2000). Rademacher processes and bounding the risk of function learning. In
High dimensional probability II, pages 443—-457. Springer.

Koltchinskii, V., Panchenko, D., et al. (2002). Empirical margin distributions and bounding the generalization error
of combined classifiers. The Annals of Statistics, 30(1):1-50.

Lecué, G. and Depersin, J. (2019). Robust subgaussian estimation of a mean vector in nearly linear time. arXiv
preprint arXiv:1906.03058.

Lecué, G. and Lerasle, M. (2017). Learning from mom’s principles: Le cam’s approach. To appear in Stochastic

processes and their applications.

Lecué, G. and Lerasle, M. (2019). Robust machine learning by median-of-means: theory and practice. to appear in

ann. statist. Annals of Statistics.

Lecué, G., Lerasle, M., and Mathieu, T. (2018). Robust classification via mom minimization. arXiv preprint
arXiw:1808.03106.

Lecué, G. and Mendelson, S. (2013). Learning subgaussian classes: Upper and minimax bounds. Topics in Learning

Theory - Societe Mathématique de France.

Lecué, G. and Mendelson, S. (2016). Performance of empirical risk minimization in linear aggregation. Bernoulli,
22(3):1520-1534.

Lecué, G. and Mendelson, S. (2017). Regularization and the small-ball method II: complexity dependent error rates.
J. Mach. Learn. Res., 18:Paper No. 146, 48.

Lecué, G. and Mendelson, S. (2018). Regularization and the small-ball method I: Sparse recovery. Ann. Statist.,
46(2):611-641.

Ledoux, M. (2001). The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI.

Ledoux, M. and Talagrand, M. (2013). Probability in Banach Spaces: isoperimetry and processes. Springer Science
& Business Media.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J. (2019). Wide neural
networks of any depth evolve as linear models under gradient descent. In Advances in neural information processing

systems, pages 8570-8581.

Lee, W. S., Bartlett, P. L., and Williamson, R. C. (1998). The importance of convexity in learning with squared loss.
IEEE Transactions on Information Theory, 44(5):1974-1980.

Lei, Z., Luh, K., Venkat, P., and Zhang, F. (2019). A fast spectral algorithm for mean estimation with sub-gaussian
rates. arXiv preprint arXiv:1908.04468.



222 BIBLIOGRAPHY

Lepskii (1992). Asymptotically minimax adaptive estimation. i: Upper bounds. optimally adaptive estimates. Theory
of Probability € Its Applications, 36(4):682-697.

Lepskii (1993). Asymptotically minimax adaptive estimation. ii. schemes without optimal adaptation: Adaptive
estimators. Theory of Probability € Its Applications, 37(3):433-448.

Lerasle, M. and Oliveira, R. I. (2011). Robust empirical mean estimators. arXiv preprint arXiv:1112.3914.
Li, Q. and Racine, J. S. (2007). Nonparametric econometrics: theory and practice. Princeton University Press.

Liang, T. and Rakhlin, A. (2018). Just interpolate: Kernel” ridgeless” regression can generalize. arXiv preprint
arXiw:1808.00387.

Liu, L., Shen, Y., Li, T., and Caramanis, C. (2018). High dimensional robust sparse regression. arXiv preprint
arXiw:1805.11643.

Loh, P.-L. et al. (2017). Statistical consistency and asymptotic normality for high-dimensional robust m-estimators.
The Annals of Statistics, 45(2):866-896.

Loh, P.-L. and Wainwright, M. J. (2015). Regularized m-estimators with nonconvexity: Statistical and algorithmic
theory for local optima. The Journal of Machine Learning Research, 16(1):559-616.

Lugosi, G. and Mendelson, S. (2016). Risk minimization by median-of-means tournaments. To appear in JEMS.

Lugosi, G., Mendelson, S., et al. (2019a). Regularization, sparse recovery, and median-of-means tournaments.
Bernoulli, 25(3):2075-2106.

Lugosi, G., Mendelson, S., et al. (2019b). Sub-gaussian estimators of the mean of a random vector. The annals of
statistics, 47(2):783-794.

Lugosi, G., Wegkamp, M., et al. (2004). Complexity regularization via localized random penalties. The Annals of
Statistics, 32(4):1679-1697.

Mammen, E. and Tsybakov, A. B. (1999). Smooth discrimination analysis. Ann. Statist., 27(6):1808-1829.

Maronna, R. A. (1976). Robust m-estimators of multivariate location and scatter. The annals of statistics, pages
51-67.

Marsh, L. C. and Cormier, D. R. (2001). Spline regression models, volume 137. Sage.

Massart, P. (2000). Some applications of concentration inequalities to statistics. In Annales de la Faculté des sciences

de Toulouse: Mathématiques, volume 9, pages 245-303.
Massart, P. (2007). Concentration inequalities and model selection, volume 6. Springer.

Mei, S. and Montanari, A. (2019). The generalization error of random features regression: Precise asymptotics and

double descent curve. arXiv preprint arXiv:1908.05355.

Meier, L., Van De Geer, S., and Bithlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 70(1):53-71.

Meister, M. and Steinwart, I. (2016). Optimal learning rates for localized svms. The Journal of Machine Learning
Research, 17(1):6722-6765.



BIBLIOGRAPHY 223

Mendelson, S. (2001). Learning relatively small classes. In International Conference on Computational Learning

Theory, pages 273—-288. Springer.

Mendelson, S. (2002). Rademacher averages and phase transitions in glivenko-cantelli classes. IEEE transactions on
Information Theory, 48(1):251-263.

Mendelson, S. (2003). On the performance of kernel classes. Journal of Machine Learning Research, 4(Oct):759-771.
Mendelson, S. (2014). Learning without concentration. In Conference on Learning Theory, pages 25-39.
Mendelson, S. (2015). Learning without concentration. J. ACM, 62(3):Art. 21, 25.

Mendelson, S. (2016). Upper bounds on product and multiplier empirical processes. Stochastic Processes and their
Applications, 126(12):3652-3680.

Mendelson, S. (2017). On multiplier processes under weak moment assumptions. In Geometric aspects of functional

analysis, volume 2169 of Lecture Notes in Math., pages 301-318. Springer, Cham.
Mendelson, S., Neeman, J., et al. (2010). Regularization in kernel learning. The Annals of Statistics, 38(1):526-565.

Mendelson, S., Pajor, A., and Tomczak-Jaegermann, N. (2007). Reconstruction and subgaussian operators in asymp-
totic geometric analysis. Geom. Funct. Anal., 17(4):1248-1282.

Minsker, S. (2018). Uniform bounds for robust mean estimators. arXiv preprint arXiv:1812.03523.
Minsker, S. et al. (2015). Geometric median and robust estimation in banach spaces. Bernoulli, 21(4):2308-2335.

Minsker, S. et al. (2018). Sub-gaussian estimators of the mean of a random matrix with heavy-tailed entries. The
Annals of Statistics, 46(6A):2871-2903.

Minsker, S. et al. (2019). Distributed statistical estimation and rates of convergence in normal approximation.
Electronic Journal of Statistics, 13(2):5213-5252.

Minsker, S. and Mathieu, T. (2019). Excess risk bounds in robust empirical risk minimization. arXiv preprint
arXiv:1910.07485.

Nazin, A. V., Nemirovsky, A., Tsybakov, A. B., and Juditsky, A. (2019). Algorithms of robust stochastic optimization
based on mirror descent method. Automation and Remote Control, 80(9):1607-1627.

Nemirovsky, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization. A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York. Translated from the Russian and with a preface by

E. R. Dawson, Wiley-Interscience Series in Discrete Mathematics.

Noble, W. S. et al. (2004). Support vector machine applications in computational biology. Kernel methods in
computational biology, 71:92.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.

Pollard, D. et al. (1989). Asymptotics via empirical processes. Statistical science, 4(4):341-354.



224 BIBLIOGRAPHY

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar, P. (2018). Robust estimation via robust gradient
estimation. arXiv preprint arXiv:1802.06485.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM review, 52(3):471-501.

Rohde, A., Tsybakov, A. B., et al. (2011). Estimation of high-dimensional low-rank matrices. The Annals of Statistics,
30(2):887-930.

Saumard, A. (2018). On optimality of empirical risk minimization in linear aggregation. Bernoulli, 24(3):2176-2203.

Schmidt, M., Roux, N. L., and Bach, F. R. (2011). Convergence rates of inexact proximal-gradient methods for

convex optimization. In Advances in neural information processing systems, pages 1458-1466.

Scholkopf, B., Burges, C. J., Smola, A. J., et al. (1999). Advances in kernel methods: support vector learning. MIT

press.

Scholkopf, B. and Smola, A. J. (2001). Learning with kernels: support vector machines, reqularization, optimization,

and beyond. MIT press.

Scholkopf, B., Tsuda, K., and Vert, J.-P. (2004). Support vector machine applications in computational biology. MIT

press.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cam-

bridge university press.

Shalev-Shwartz, S. and Tewari, A. (2011). Stochastic methods for 11-regularized loss minimization. Journal of
Machine Learning Research, 12(Jun):1865-1892.

Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern analysis. Cambridge university press.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A sparse-group lasso. Journal of Computational and
Graphical Statistics, 22(2):231-245.

Smale, S. and Zhou, D.-X. (2007). Learning theory estimates via integral operators and their approximations.

Constructive approximation, 26(2):153-172.
Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer Science & Business Media.
Talagrand, M. (1996). New concentration inequalities in product spaces. Inventiones mathematicae, 126(3):505-563.

Talagrand, M. (2006). The generic chaining: upper and lower bounds of stochastic processes. Springer Science &

Business Media.

Talagrand, M. (2014). Upper and lower bounds for stochastic processes, volume 60 of Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg. Modern methods and
classical problems.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267-288.



BIBLIOGRAPHY 225

Tsybakov, A. B. (2003). Optimal rates of aggregation. In Learning theory and kernel machines, pages 303-313.
Springer.

Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32(1):135-166.
Tsybakov, A. B. (2008). Introduction to nonparametric estimation. Springer Science & Business Media.

Tukey, J. W. (1960). A survey of sampling from contaminated distributions. Contributions to probability and
statistics, pages 448-485.

Tukey, J. W. (1962). The future of data analysis. The annals of mathematical statistics, 33(1):1-67.

van de Geer, S. (2016). FEstimation and testing under sparsity, volume 2159 of Lecture Notes in Mathematics.
Springer, [Cham]. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, Ecole d’Eté
de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].

Van de Geer, S. A. (2000). Applications of empirical process theory, volume 91. Cambridge University Press
Cambridge.

Van De Geer, S. A., Bithlmann, P., et al. (2009). On the conditions used to prove oracle results for the lasso.
Electronic Journal of Statistics, 3:1360-1392.

Van de Geer, S. A. et al. (2008). High-dimensional generalized linear models and the lasso. The Annals of Statistics,
36(2):614-645.

Van Der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence. In Weak convergence and empirical processes,
pages 16—28. Springer.

Vapnik, V. (1998). Statistical learning theory, volume 1. Wiley New York.

Vapnik, V. N. (2000). The nature of statistical learning theory. Statistics for Engineering and Information Science.

Springer-Verlag, New York, second edition.

Vapnik, V. N. and Cervonenkis, A. J. (1971). The uniform convergence of frequencies of the appearance of events to

their probabilities. Teor. Verojatnost. i Primenen., 16:264-279.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiw:1011.5027.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science, volume 47.

Cambridge university press.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge University

Press.

Wu, Q., Ying, Y., and Zhou, D.-X. (2006). Learning rates of least-square regularized regression. Foundations of
Computational Mathematics, 6(2):171-192.

Yang, M.-H., Ahuja, N., and Kriegman, D. (2000). Face recognition using kernel eigenfaces. In Proceedings 2000
International Conference on Image Processing (Cat. No. 00CH37101), volume 1, pages 37-40. IEEE.



226 BIBLIOGRAPHY
Yang, Y. and Zou, H. (2015). A fast unified algorithm for solving group-lasso penalize learning problems. Statistics
and Computing, 25(6):1129-1141.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P. (2018). Byzantine-robust distributed learning: Towards
optimal statistical rates. arXiv preprint arXiv:1805.01498.

Yohai, V. J. and Maronna, R. A. (1979). Asymptotic behavior of m-estimators for the linear model. The Annals of
Statistics, pages 258-268.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding deep learning requires rethinking
generalization. arXiv preprint arXiw:1611.03530.

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization.
Ann. Statist., 32(1):56-85.

Zhou, W.-X., Bose, K., Fan, J., and Liu, H. (2018). A new perspective on robust M-estimation: finite sample theory
and applications to dependence-adjusted multiple testing. Ann. Statist., 46(5):1904-1931.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(2):301-320.



LYT
<© EC&

TU
9'(\ T

R ., | ECOLE
> | DOCTORALE
. | DE MATHEMATIQUES
4 | HADAMARD
E

Titre : Méthodes de localisation et applications a I'apprentissage robuste et a I'interpolation

Mots clés : Statistique, Machine learning, Robustesse

Résumé : Cette thése de doctorat est centrée sur
I'apprentissage supervisé. Lobjectif principal est I'uti-
lisation de méthodes de localisation pour obtenir des
vitesses rapides de convergence, c’est-a-dire, des vi-
tesse de l'ordre O(1/n), ou n est le nombre d’ob-
servations. Ces vitesses ne sont pas toujours attei-
gnables. Il faut imposer des contraintes sur la va-
riance du probleme comme une condition de Bern-
stein ou de marge. Plus particulierement, dans cette
thése nous tentons d’établir des vitesses rapides de
convergences pour des problémes de robustesse et
d’interpolation.

On dit qu'un estimateur est robuste si ce dernier
présente certaines garanties théoriques, sous le
moins d’hypothéses possibles. Cette problématique
de robustesse devient de plus en plus populaire. La
raison principale est que dans I'ére actuelle du “big
data”, les données sont trés souvent corrompues.
Ainsi, construire des estimateurs fiables dans cette si-

tuation est essentiel. Dans cette thése nous montrons
que le fameux minimiseur du risque empirique (regu-
larisé) associé a une fonction de perte Lipschitz est
robuste a des bruits a queues lourde ainsi qu’'a des
outliers dans les labels. En revanche si la classe de
prédicteurs est a queue lourde, cet estimateur n’est
pas fiable. Dans ce cas, nous construisons des es-
timateurs appelé estimateur minmax-MOM, optimal
lorsque les données sont a queues lourdes et pos-
siblement corrompues.

En apprentissage statistique, on dit qu'un estimateur
interpole, lorsque ce dernier prédit parfaitement sur
un jeu d’entrainement. En grande dimension, cer-
tains estimateurs interpolant les données peuvent
étre bons. En particulier, cette thése nous étudions
le modele linéaire Gaussien en grande dimension et
montrons que I'estimateur interpolant les données de
plus petite norme est consistant et atteint méme des
vitesses rapides.

Title : Localization methods with applications to robust learning and interpolation

Keywords : Statistics, Machine learning, Robustness

Abstract : This PhD thesis deals with supervi-
zed machine learning and statistics. The main goal
is to use localization techniques to derive fast rates
of convergence, with a particular focus on robust lear-
ning and interpolation problems.

Localization methods aim to analyze localized pro-
perties of an estimator to obtain fast rates of conver-
gence, that is rates of order O(1/n), where n is the
number of observations. Under assumptions, such as
the Bernstein condition, such rates are attainable.

A robust estimator is an estimator with good theore-
tical guarantees, under as few assumptions as pos-
sible. This question is getting more and more popu-
lar in the current era of big data. Large dataset are
very likely to be corrupted and one would like to build

reliable estimators in such a setting. We show that
the well-known regularized empirical risk minimizer
(RERM) with Lipschitz-loss function is robust with res-
pect to heavy-tailed noise and outliers in the label.
When the class of predictor is heavy-tailed, RERM
is not reliable. In this setting, we show that minmax
Median of Means estimators can be a solution. By
construction minmax-MOM estimators are also robust
to an adversarial contamination.

Interpolation problems study learning procedure with
zero training error. Surprisingly, in large dimension, in-
terpolating the data does not necessarily implies over-
fitting. We study a high dimensional Gaussian linear
model and show that sometimes the over-fitting may
be benign.

QO TEc,

Institut Polytechnique de Paris ,f "\
91120 Palaiseau, France 2

6‘4, .Q



	Introduction
	Statistical learning
	Empirical Risk Minimization (ERM)
	Localization methods for ERM
	Localization methods for regularized procedures
	Complexity parameters in statistical learning
	Robustness in learning theory
	Summary of the contributions

	Robust ERM and minmax-MOM 
	Introduction
	ERM in the sub-Gaussian framework
	Minmax MOM estimators
	Relaxing the Bernstein condition
	Bernstein's assumption 
	Comparison between ERM and minmax MOM
	Simulation study
	Conclusion
	Proof of main Theorems
	Other proofs

	Robust RERM and minmax-MOM
	Introduction
	Mathematical background and notations
	Regularized ERM with Lipschitz and convex loss functions
	Minmax MOM estimators
	Relaxing the Bernstein condition
	Applications
	Simulations
	Conclusion
	Proof main theorems

	Complexity dependent bounds
	Introduction
	Regularized Empirical Risk Minimization (RERM) 
	Robustness to outliers and heavy-tailed data via Minmax MOM estimators
	Applications
	Conclusion
	Proof main theorems
	Supplementary lemmas

	Robust RERM: outliers in the labels
	Introdution
	Non-regularized procedures
	High dimensional setting
	Conclusion and perspectives
	Simulations
	lower bound
	Non-isotropic design
	Proofs main Theorems

	Benign overfitting in the large deviation regime
	Introduction
	Setting
	Main results
	Proofs of the main results
	Supplementary material


