
HAL Id: tel-02887092
https://theses.hal.science/tel-02887092

Submitted on 2 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A guide book for the traveller on graphs full of blockages
Pierre Bergé

To cite this version:
Pierre Bergé. A guide book for the traveller on graphs full of blockages. Computational Complexity
[cs.CC]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLS480�. �tel-02887092�

https://theses.hal.science/tel-02887092
https://hal.archives-ouvertes.fr

aaa

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LS
48

0

Algorithmes pour voyager sur un graphe
contenant des blocages
Thèse de doctorat de l’Université Paris-Saclay

préparée à Université Paris-Sud

École doctorale n◦580 Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Gif-sur-Yvette, le 3 décembre 2019, par

M. PIERRE BERGÉ

Composition du Jury :

Cristina Bazgan
Professeur, LAMSADE/Université Paris-Dauphine Président du jury

Bruno Escoffier
Professeur, LIP6/Sorbonne Université Rapporteur

Ignasi Sau Valls
Chargé de recherche, LIRMM/Université de Montpellier Rapporteur

Stephan Westphal
Professeur, TU Clausthal Rapporteur

Olivier Bournez
Professeur, LIX/Ecole Polytechnique Examinateur

Yannis Manoussakis
Professeur, LRI/Université Paris-Sud Examinateur

Joanna Tomasik
Professeur, LRI/CentraleSupélec Directeur de thèse

Arpad Rimmel
Professeur assistant, LRI/CentraleSupélec Encadrant

aaa

Title : A guide book for the traveller on graphs full of blockages

Keywords : multi-terminal cuts, parameterized complexity, Canadian Traveller Problem, competitive
analysis

Abstract : We study graphs with blockages seen as models of networks which are exposed to risk of
failures. Among a large variety of graph-theoretic problems dealing with obstacles, we are interested in
two particular categories. The problems of the first category consist in seeking the smallest blockage set
which meets a certain criterion. Those in the second category aim at minimizing the distance traversed
by a traveller on a graph where blockages may occur.

On the one hand, cut problems ask for the minimum set of vertices/edges which splits some elements
of the graph. Their solutions, i.e. cuts, provide the optimal way to put blockages on a graph in order to
produce a certain separation.

On the other hand, the Canadian Traveller Problem (CTP) looks for the optimal (s, t)-path in a
weighted graph, where s and t are two distinct vertices, knowing that some edges of the graph may
be obstructed. The traveller discovers that an edge is blocked when he visits one of its endpoints. The
solutions for the CTP are online algorithms (strategies) which guide the traveller during his trip.

The first part of our work concerns cut problems. We perform a static analysis of the connectivity in
undirected graphs. Then, a dynamic study is provided in the second part as we focus on the competi-
tiveness of strategies for the CTP.

We study cut problems via the parameterized complexity framework. The cutset size p is taken as a
parameter. Given a set of sources {s1, . . . , sk} and a target t, we propose an algorithm which builds a
small edge cut of size p separating at least r sources from t. This NP-complete problem is called Partial
One-Target Cut. It belongs to the family of multiterminal cut problems. Our algorithm is fixed-parameter
tractable (FPT) as its execution takes 2O(p2)nO(1), where n is the input size. We also prove that the vertex
version of this problem, which imposes cuts to contain vertices instead of edges, is W[1]-hard. Then,
we design an FPT algorithm for the counting of minimum (S, T)-cuts, where S and T are two disjoint
sets of vertices. It counts the minimum vertex (S, T)-cuts in time 2O(p log p)nO(1). After using a polynomial
reduction which transforms edge cuts into vertex ones, it counts minimum edge (S, T)-cuts as well.

We provide numerous results on the competitive ratio of both deterministic and randomized strategies
for the CTP. The optimal ratio obtained for the deterministic strategies on general graphs is 2k+1, where
k is a given upper bound on the number of blockages. No randomized strategy performs better for now.
We show that randomized strategies which do not use memory cannot improve the bound 2k + 1. In
addition, we discuss the tightness of lower bounds on the competitiveness of randomized strategies. To
complete the CTP analysis, we study a group of travellers, possibly equipped with telecommunication
devices. We compute the distance competitive ratio for the team. Our deterministic strategy with full
communication between travellers is optimal. Eventually, we focus on two families of graphs. A strategy
dedicated to equal-weight chordal graphs is proposed while another one is built for graphs with small
maximum (s, t)-cuts. Both strategies outperform the ratio 2k + 1.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

aaa

Résumé : Nous étudions des problèmes NP-difficiles portant sur les graphes contenant
des blocages. L’objectif est d’analyser la résilience des graphes face à de potentielles
défaillances impactant un faible nombre d’arêtes ou de nœuds.
Dans un premier temps, nous nous demandons si des terminaux, i.e. certains noeuds du
graphe fournis en entrée, peuvent être déconnectés avec un nombre d’éléments p. Cette
question est formalisée en informatique théorique par des problèmes de coupes que l’on
étudie via la complexité paramétrée. Concrètement, on souhaite mettre en places des
algorithmes FPT pour ce type de problèmes, c’est-à-dire des algorithmes retournant une
solution exacte en temps f(p)nO(1), où f est une fonction arbitraire, donc potentiellement
exponentielle. Ce type d’algorithmes offre un temps d’exécution raisonnable lorsque le
paramètre p prend de faibles valeurs.
Dans un second temps, nous évaluons l’impact d’éventuels blocages sur le graphe lorsque
l’objectif est de relier deux nœuds, une source s et une cible t, avec une distance minimale.
Cette problématique est modélisée par le problème du voyageur canadien. Au moment de
s’élancer depuis la source s, le voyageur ne connaît pas l’identité des arêtes bloquées.
Il les découvre en visitant une de leur extrémité. Ainsi, nous concevons des algorithmes
on-line qui s’adaptent à la découverte d’arêtes bloquées lors du trajet.
Nous traitons les problèmes de coupes du point de vue de la complexité paramétrée. La
taille p de la coupe est le paramètre. Étant donné un ensemble de sources {s1, . . . , sk}
et une cible t, nous proposons un algorithme qui construit une coupe de taille au plus p
séparant au moins r sources de t. Nous nommons ce problème NP-complet Partial One-
Target Cut (POTC).
On propose un algorithme FPT pour ce problème. Il se base sur diverses techniques util-
isées dans le contexte de la complexité paramétrée : coupes importantes, codage couleur
et dérandomisation. Son temps d’exécution est 2O(p2)nO(1). Nous prouvons également que
la variante de POTC, où la coupe est composée de noeuds, est W[1]-difficile. De même,
POTC paramétré par r est W[1]-difficile.
Notre seconde contribution est la construction d’un algorithme qui compte les coupes min-
imums entre deux ensembles S et T en temps 2O(p log p)nO(1). Il améliore nettement le
meilleur temps d’exécution connu jusqu’alors, en 2O(2p)nO(1). Une procédure basée sur
la programmation dynamique est proposée sur une structure appelée drainage, qui car-
actérise l’ensemble des coupes minimums entre S et T . L’algorithme compte les coupes
minimums composées de nœuds. Cependant, une réduction arête-nœud montre qu’il peut
facilement s’adapter au comptage de coupes composées d’arêtes. Nous mettons en évi-
dence une borne inférieure en 2o(p) qui montre que cet algorithme est dans le pire des cas
très proche du temps d’exécution optimal.
Nous présentons ensuite plusieurs résultats sur le ratio de compétitivité des stratégies

Titre : Algorithmes pour voyager sur un graphe contenant des blocages

Keywords : problèmes de coupes, complexité paramétrée, problème du voyageur
canadien, algorithmes on-line

déterministes et randomisées pour le problème du voyageur canadien.
Nos premiers résultats concernent les stratégies randomisées. Nous prouvons d’abord que
celles n’utilisant pas de mémoire ne peuvent pas améliorer le ratio 2k + 1, qui est optimal
pour les stratégies déterministes. Pour cela, nous construisons un ensemble d’instances
graphe-blocages sur lesquelles la mémoire est nécessaire si l’on souhaite être plus perfor-
mant que l’algorithme déterministe optimal.
Nous apportons également des éléments concernant les bornes inférieures de compéti-
tivité de l’ensemble des stratégies randomisées : celles-ci ne peuvent atteindre le ratio
|E∗|+ 1 où E∗ est l’ensemble des blocages.
Puis, nous étudions la compétitivité en distance d’un groupe de voyageurs avec et sans
communication. Nous mettons en évidence l’impact de la communication qui permet
d’améliorer le ratio 2k+1 avec un groupe de voyageurs. Cela montre qu’il vaut mieux utiliser
une flotte de voyageurs communiquant tous entre eux, plutôt qu’un unique voyageur.
Enfin, nous nous penchons sur le ratio de compétitivité des stratégies déterministes pour
certaines familles de graphes. Deux stratégies, avec un ratio inférieur à 2k + 1 sont pro-
posées: une pour les graphes cordaux avec poids uniformes et l’autre pour les graphes où
la taille de la plus grande coupe minimale séparant s et t est au plus k. La seconde a un
ratio de compétitivité en

√
2k+O(1) lorsque la taille de la plus graphe (s, t)-coupe minimale

est supposée constante.
Ce dernier résultat apporte une lecture différente sur les bornes inférieures de compétitivité
pour les stratégies déterministes. En effet, alors que la borne 2k + 1 suggère que chaque
blocage coûte un ratio de 2, notre algorithme prouve que lorsque le nombre de blocages
excède la taille des (s, t)-coupes minimales, ce coût diminue à

√
2.

4

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Contents

1 Introduction 9

2 Identifying small blockage sets in graphs 13
2.1 State of the art . 13

2.1.1 Parameterized complexity . 13
Decision problems . 14
Counting problems . 15

2.1.2 Results on cut problems . 15
Multi-terminal cut problems . 15
Counting minimum (S, T)-cuts . 16

2.1.3 Methods to solve cut problems . 17
Cuts and paths . 17
Menger’s theorem and its consequences 18
Important cuts . 19
Relationship between edge and vertex (S, T)-cuts 20

2.2 Separating certain sources from a single target 21
2.2.1 Cut size p as a parameter . 21

Relationship between important cuts and solutions of Edge POTC . . 21
Definition of edge passes . 23
Derandomization . 25

2.2.2 Hardness results . 27
Hardness of Edge Partial One-Target Cut for parameter r only 27
Hardness of Vertex Partial One-Target Cut 28

2.2.3 Summary . 30
2.3 Counting minimum (S, T)-cuts . 31

2.3.1 Counting minimum edge (S, T)-cuts with exponential factor 2O(p2) . . . 31
Construction of the drainage . 31
Dry instances and closest dams . 33
Description of the algorithm . 40
Sampling minimum edge (S, T)-cuts 42

2.3.2 Counting minimum vertex (S, T)-cuts with exponential factor 2O(p log p) 43
Properties of minimum vertex (S, T)-cuts 43
Drainage for the minimum vertex (S, T)-cuts 45
Dry and enclosed instances . 50
Dynamic programming to count minimum vertex (S, T)-cuts 55

2.4 Conclusion . 65

3 Bypassing blockages in graphs 67
3.1 State of the art . 67

3.1.1 The CTP and the competitive ratio . 67
Definition of the CTP . 68

5

Competitive ratio . 68
3.1.2 Results from the literature . 69

Related problems . 69
Survey of the competitiveness . 70

3.2 Global and local approaches for the competitiveness of strategies 72
3.3 Global competitive analysis . 73

3.3.1 Randomized memoryless strategies 73
Road atlases Rk . 74
Competitiveness of randomized memoryless strategies 76

3.3.2 Absence of (|E∗|+ 1)-competitive strategy 79
Apex trees . 79
Farkas’ lemma . 80

3.3.3 Distance competitive ratio for multiple travellers 82
Communication levels . 83
Bounds of competitiveness: deterministic strategies 85
Bounds of competitiveness: randomized strategies 89
Summary . 91

3.4 Local competitive analysis . 91
3.4.1 The k-CTP on graphs with small max-(s, t)-cut size 91

Parameter µmax . 92
Competitive ratio of REPOSITION/COMPARISON when µmax < k 92
Description of the DETOUR strategy 94
Competitive analysis of the DETOUR strategy 95
Discussion . 99

3.4.2 The k-CTP on chordal graphs . 100
Vertex max-(s, t)-cut size as an indicator of competitiveness 100
Description of the CHORD-WALK strategy 101
Competitive ratio of the CHORD-WALK strategy 103
Upper bound on the number of stamped edges 104

3.5 Conclusion . 110

4 Conclusion 111
4.1 Contributions on the parameterized complexity of cut problems 111
4.2 Contributions on the Canadian Traveller Problem 112

5 Further research 115
5.1 Deeper exploration of the parameterized complexity of cut problems 115

5.1.1 Polynomial kernels and lower bounds 115
5.1.2 Generalization of MULTICUT . 118
5.1.3 Cut problems for directed graphs . 119

5.2 Novel insights for the local competitiveness of the k-CTP strategies 120
5.2.1 Relationship between the k-CTP and minimal (s, t)-cuts size 120
5.2.2 Apex trees as a key to decrypt the global behavior of randomized

strategies . 121

Bibliography 123

6

Symbols
• ∅: the empty set.

• N: the set of natural numbers.

• N∗: the set of positive natural numbers.

• |S|: the cardinality of a finite set S.

• f(p) = o(g(p)): lim
p→+∞

f(p)
g(p) = 0.

• f(p) = O(g(p)): there are constants N,C ≥ 0 such that f(p) ≤ Cg(p) when p ≥ N .

• f(p) = Ω(g(p)): there are constants N,C ≥ 0 such that g(p) ≤ Cf(p) when p ≥ N .

• f(n, p) = O∗(g(p)): there is a polynomial function poly such that f(p) = O (poly(n, p)g(p)).

7

(a) Hondius Jocodus, Freti Magellanici ac novi freti vulgo Le Maire exactissima delineatio, 1635

(b) Schrämbl Franz Anton, Karte der Magellanischen Strasse, 1787

Figure 1: Evolution of the map of Magellan’s strait from 1635 to 1787: the gradual discovery
of blockages on maritime routes.a

aThese maps are listed in the book of Mateo Martinic, Cartografiía magallánica, VIII, 1999. They can be
freely retrieved on the website of the library of Princeton University: https://libweb5.princeton.edu.

8

Chapter 1

Introduction

Graph-theoretic concepts have many applications in different fields, such as telecommu-
nication systems or transportation networks. A graph G = (V,E) is a structure involving
vertices V and edges E ⊆ V × V connecting pairs of vertices. The vertices may repre-
sent a set of items while the edges put in evidence a relationship between these items.
For example, a graph may model a map where the vertices correspond to different loca-
tions. The existence of an edge (u, v) ∈ E means that a street connects locations u and
v. The concept of graph captures the information provided by a road map. Practical situ-
ations are characterized thanks to the diversity of graph types. Oriented edges (directed
graphs) model one-way streets in this case. Weighted edges (weighted graphs) associate
a distance with any edge/street.
We focus on the handling of blockages in graphs. Our study gathers the connectivity prob-
lems which ask for the number of blocking elements we need to put on a graph in order to
obtain isolated subgraphs satisfying certain properties. For example, some questions are
related to the minimum number of elements in the graph we need to remove to separate
certain of its vertices. Such connectivity problems are very important as they allow us to
assess the resilience of a network, i.e. its vulnerability to the blockages or failures that may
appear on it. The results related to these problems have consequences on the study of
real-world networks robustness.
Another question covered by the handling of blockages is the navigation of a traveller on
graphs in which he may run across an obstacle. For example, one can imagine that some
edges of a graph are blocked and any of these blockages is discovered when the traveller
visits one of its endpoints. In this case, the objective would be then to perform the shortest
walk between two different vertices, knowing that blockages can occur.
We treat these two facets in the handling of blockages in graphs. The first facet consists
in seeking the smallest sets of edges/vertices to remove from graph G in order to meet
a certain criterion on the components produced. From a practical point of view, this is
equivalent to looking for the optimal blockage configuration which separates some vertices.
In brief, we focus on cut problems and study their computational complexity. To do this, we
devise exact algorithms and propose hardness proofs.
The second facet is the design of algorithms which bypass the blockages occurring on a
weighted graph G. These algorithms are online, as they adapt to the discovery of block-
ages. Concretely, the traveller goes from a source s to a target t and discovers a blocked
edge when he meets one of its endpoints. This situation is modeled by the Canadian Trav-
eller Problem (CTP) [70]. More precisely speaking, we study not only the identification
of the optimal blockages configurations to separate some vertices in a graph but also the
minimization of the distance traversed by a traveller on a weighted graph full of obstacles.
Now, we detail our contributions on these two aspects, beginning with an overview of our
work on cut problems. The classical MINIMUM (s, t)-CUT problem is solved in polynomial-
time [49]. This is the decision problem asking for the smallest set of edges whose removal

9

separates vertices s and t. However, a large number of cut problems are NP-complete.
As no polynomial-time exact algorithm may exist for such problems, their parameterized
complexity stands as a natural question [45]. Indeed, many fixed-parameter tractable (FPT)
algorithms have been proposed, i.e. exact algorithms with execution time f(q)nO(1), where
q is a parameter, n the instance size, and f an arbitrary function.
The parameterized complexity of cut problems is treated in Chapter 2 which we start by
reminding the state of the art on this topic (Section 2.1) before presenting our complexity
results for two problems, introduced below.
The fixed-parameter tractability of multi-terminal cut problems has been intensively inves-
tigated over the years. The MULTICUT problem asks for the smallest set of edges which
separates k pairs of terminals, i.e. (s1, t1), (s2, t2),. . .,(sk, tk). It has been proven FPT pa-
rameterized by the solution size [27, 63]. In this study, we analyze the complexity of one of
its natural variants, PARTIAL ONE-TARGET CUT (POTC) which consists in finding the smallest
set of edges separating a number r of sources among set {s1, . . . , sk} ⊆ V from a single
target t. The parameterized complexity of POTC for several parameters combinations is
given in Section 2.2. Our main contribution to this problem is an FPT algorithm executed
in time O∗

(
2O(p2)

)
, where p is the solution size [17]. It mixes different techniques: the

sampling of important cuts and color-coding techniques associated with edge passes, a
concept we devised.
Then, we worked on the counting version of MINIMUM (s, t)-CUT, i.e. computing the num-
ber of minimum (s, t)-cuts in a graph G. Our objective was to propose an efficient FPT
algorithm for this problem, parameterized by the size p of the minimum (s, t)-cuts, as it is
#P-complete. First, we built a O∗

(
2O(p2)

)
-time algorithm for the counting of minimum edge

(s, t)-cuts [16]. Second, we proposed another algorithm extending and outperforming the
first one [12], as it not only counts both minimum edge and vertex (s, t)-cuts but also runs in
time O∗

(
2O(p log p)

)
. Both algorithms use the concepts we define, such as the drainage and

the dry instances which characterize minimum (s, t)-cuts. We believe they can be reused
for other problems involving minimum (s, t)-cuts. The vertex cut problem required the de-
velopment of the local drainage concept. Incidentally, this concept made the algorithm
complexity decrease. The details of these contributions are provided in Section 2.3.
Chapter 3 of this study deals with the design of online algorithms for the CTP. The CTP
is PSPACE-complete [70]. The objective is to make a traveller walk from s to t on an
undirected weighted graph G = (V,E, ω) in the most efficient way despite the existence of
blocked edges E∗ (E. Edge weights are given by the function ω : E → Q+. There is a
parameterized version k-CTP, where k is an upper bound of the number of blocked edges:
|E∗| ≤ k. The traveller does not know which edges are blocked when he begins his walk. He
discovers a blocked edge when he visits one of its endpoints. A solution to the k-CTP is an
online algorithm, called a strategy. The quality of any online algorithm is usually assessed
via the competitive analysis [2]. Indeed, the competitive ratio of a strategy is the quotient
between its performance and the performance of an offline optimal algorithm. For the k-
CTP, it is known from the literature that no deterministic strategy achieves a competitive
ratio better than 2k + 1 for general graphs [75].
We begin Chapter 3 with the state of the art on the CTP (Section 3.1). The competitive
ratio of strategies for general graphs is first studied and, second, we propose competitive
strategies for certain families of graphs. We present our proposition to divide the results
on the competitive ratio for the CTP in two parts (Section 3.2). A distinction is made be-
tween global competitiveness (Section 3.3), where the competitive ratio on general graphs
is discussed, and local competitiveness (Section 3.4), where we study certain families of
graphs.
As the global competitiveness of deterministic strategies has been completely treated in
the literature, we focus on the competitive ratio of randomized strategies for general graphs.

10

Our main result is that no randomized memoryless strategy can defeat the optimal ratio 2k+
1 of deterministic strategies for the k-CTP [14]. A memoryless strategy makes decisions
which do not depend on its previous trip. A major open question is whether a randomized
strategy can go below ratio 2k + 1 for general graphs, a consequence of this result is that
such a strategy would not be memoryless. Our second contribution concerns the initial
CTP version without parameter k given. It is known that no randomized strategy has a
competitive ratio less than |E∗|+1. We prove that this bound cannot be reached [15], using
linear inequality systems and Farkas’ lemma.
Eventually, we focus on the global distance competitiveness of strategies guiding multiple
travellers on the graph [13]. The objective is to measure the benefits from communication
between several Canadians. As the travellers may send and receive messages from their
teammates, we treat different communication levels. An optimal deterministic strategy,
MULTI-ALTERNATING, is proposed when the travellers are authorized to share information
about the blocked edges discovered at any moment of the trip.
Then, we devise two deterministic strategies for the k-CTP dedicated to families of graphs.
The first one, DETOUR, is customized for graphs, where value k is greater than the size µmax
of the largest minimal (s, t)-cut [19]. The competitive ratio of DETOUR, when µmax < k, is
2µmax +

√
2(k− µmax) + 1, strictly less than 2k+ 1. We also prove that the competitive ratio

of the best existing strategies, REPOSITION and COMPARISON, is 2k + 1 in this situation.
Furthermore, the competitive ratio of DETOUR when µmax ≥ k is 2k+ 1. Therefore, DETOUR

offers better guarantees than the deterministic strategies known up to now.
The second one, CHORD-REP [18], has a competitive ratio

2k+ωopt
ωopt

on equal-weight chordal

graphs, where ωopt is the optimal offline cost. All edges are weighted with one on equal-
weight graphs. The case ωopt = 1 being trivial, the competitive ratio of CHORD-REP goes
below k + 1 when ωopt ≥ 2. It becomes a constant ratio, O(1), for values ωopt = Ω(k).
After the summary of our contributions (Chapter 4), possible lines for future research are
discussed in Chapter 5. The advances presented in this study for both the parameterized
complexity of cut problems and the CTP are just waiting to be improved or extended.
Many questions emerge from our FPT results on cut problems: for example, the existence
of a polynomial kernel for POTC or an FPT algorithm for the more general problem PARTIAL

MULTICUT.
One of our objectives for the CTP has not been met: we do not know whether a randomized
strategy can outperform the competitive ratio 2k + 1 for general graphs. We explain how
local assessments could help us to answer this question in the future.

11

12

Chapter 2

Identifying small blockage sets in
graphs

This chapter introduces our contributions on NP-hard cut problems. Our objective is to iden-
tify the smallest sets of either edges or vertices which separate terminals in the graph. Ter-
minals are certain vertices in the input of these problems. Assuming P 6=NP, no polynomial-
time exact algorithm can be designed for such problems. This is why we focus on their
parameterized complexity and design FPT algorithms. Concretely, we assume that the size
of the cuts which we are seeking is small, so that the running time of these FPT algorithms
is reasonable, even for instances of large size.
In Section 2.1, we introduce the parameterized complexity of decision and counting cut
problems. All problems we study are defined there. An overview of the results reported in
the literature for these problems is also provided. In Section 2.2, we introduce the PARTIAL

ONE-TARGET CUT problem, which asks for one of the smallest set of edges separating
certain sources from a single target [17]. We give our contribution to this problem: its
complexity for different parametrizations is analyzed. In particular, we propose an FPT
algorithm, parameterized by the cutset size. In Section 2.3, we work on the counting of
both minimum edge and vertex (S, T)-cuts. In particular, we propose an FPT algorithm
parameterized by the size of the minimum (S, T)-cuts improving the running time obtained
up to now [12, 16].

2.1 State of the art

The parameterized complexity framework is summarized in Section 2.1.1. The definitions
of the complexity classes FPT, W[1]-hard, and XP are reminded and commented for both
decision and counting problems. Then, we highlight parameterized results on cut problems
in Section 2.1.2 which are related to our contributions. Eventually, in Section 2.1.3, we
present the crucial concepts associated with the notions of cuts and connectivity: Menger’s
and min-cut max-flow theorems, source and target sides, and important separators.

2.1.1 Parameterized complexity

Downey and Fellows [45] formulated the foundations of the parameterized complexity in
1999. Our summary below is also based on the more recent books of Cygan et al. [37]
and Niedermeier [68]. We distinguish decision and counting problems, as their respective
parameterized complexity classes do not have necessarily the same name and the same
definition.
The idea behind the parameterized framework is to refine the classical complexity analysis
as it introduces a hierarchy of the NP-complete problems in function of parameters. For

13

example, the parameter can be the maximum degree of the input graph, or the solution
size, etc. Given a parameter p, some problems are FPT parameterized by p, while some of
them are W[1]-hard, i.e. unlikely to be FPT.

Decision problems

Under the hypothesis P 6=NP, NP-hard problems cannot be solved in time expressed as a
polynomial function of the instance size. Nevertheless, if some parameters are associ-
ated with problem instances and their values are small, efficient algorithms solving these
problems may be designed.
A fixed parameter tractable (FPT) algorithm solves a parameterized decision problem in
time O

(
f(p)nO(1)

)
= O∗(f(p)), where n is the instance size, p is a parameter of the prob-

lem, and f is an arbitrary function. A problem is FPT if an exact solution can be found with
an FPT algorithm. A problem may be studied for different parameters p1, p2, . . . , p`. To dis-
ambiguate notations, a problem is FPT〈p1〉 if it can be solved with running time O∗ (f(p1)).
A problem may be FPT for one parameter, but not FPT for another one. For example, there
is an FPT algorithm solving CLIQUE parameterized by the maximum degree of the input
graph [68]. Nevertheless, CLIQUE is unlikely FPT parameterized by the solution size, i.e.
the size of the clique we are looking for [68].
From the parameterized point of view, a problem Q1 with parameter p1 can be reduced to
problem Q2 with parameter p2 if and only if (iff) there is an FPT〈p1〉 algorithm g such that:

• for any instance I1 of Q1, algorithm g builds an instance (I2, p2) = g(I1, p1) of Q2,

• instance (I2, p2) verifies |I2| ≤ f (p1) |I1|O(1) and p2 ≤ f̂(p1), with arbitrary f and f̂ ,

• pair (I1, p1) is a yes-instance for Q1 iff (I2, p2) is a yes-instance for Q2.

The fact that Q1 reduces to Q2 in the parameterized way is written Q1 ≤fpt Q2. If Q2 has
been proven FPT, then Q1 is also FPT.
As FPT is in a certain sense the parameterized version of class P, the equivalent of NP is
denoted W[1]. Formally, class W[1] contains all problems that can be reduced to WEIGHTED

2-CNF SAT (Definition 2.1 below), which is a parameterized variant of SAT.

Definition 2.1 (Weighted 2-CNF-SAT [68]).
Input: Boolean formula F in CNF with at most two variables per clause, parameter k.
Question: Is there a truth assignment with exactly k variables that are set true?

Any FPT problem is necessarily in W[1]. The equation FPT 6=W[1] is generally admitted, as
its opposite FPT=W[1] would imply that 3-SAT is solvable in time 2o(n) and would contradict
the Exponential Time Hypothesis (ETH) [68]. A problem Q is W[1]-hard if:

WEIGHTED 2-CNF SAT ≤fpt Q.

Under the hypothesis FPT6=W[1], a problem Q is not FPT if we reduce a W[1]-hard problem
to it. CLIQUE and INDEPENDENT SET are two well-known W[1]-hard problems parameterized
by the solution size [37, 68]. Given a NP-hard problem and a parameter, a natural question
is whether either an FPT algorithm exists or a W[1]-hardness reduction is identified.
A problem is XP if it can be solved in time O(nf(p)) with parameter p. Obviously, any
FPT problem is XP. Generally, problems parameterized by the solution size admit an XP
algorithm, as BRUTE FORCE enumerates at most

(
n
p

)
= O(np) solutions.

14

Counting problems

The counting version of a decision problem aims to determine the number of solutions.
For example, VERTEX COVER asks whether there is a vertex cover of size k. Its counting
version asks how many vertex covers of size k exist.
Class #P contains the counting problems such that their decision version is in NP [74]. No
#P-complete problem can be solved in polynomial time unless P=NP. The complexity of
counting problems is also studied via the parameterized framework [36, 47]. A relevant
question about a #P-complete problem is whether an FPT algorithm counts all its solu-
tions. For example, with graphs G and H as input, FPT algorithms counting the number of
occurrences of H as a subgraph of G have been devised [4, 55, 76].
The complexity class #W[1] points out the parameter intractability of a counting problem.
A problem is #W[1]-hard if there is a parameterized counting reduction (a parameterized
reduction preserving the number of solutions) from a known #W[1]-hard problem to it, i.e.
a parameterized reduction preserving the number of solutions. As we suppose FPT 6=W[1],
#W[1]-hard problems are unlikely solvable in FPT time. Even if a decision problem is FPT,
its counting version may be #W[1]-hard [36]. For example, counting the number of match-
ings of size p in an undirected graph is #W[1]-hard [35].

2.1.2 Results on cut problems

Many results dealing with the classical and the parameterized complexity of cut problems
are listed. We remind the definition of the well-known problem MIN-(S, T)-CUT, asking
for the smallest set of edges separating sets S and T . We also present NP-complete
multi-terminal cut problems, which are more general. We specify some problems for which
questions on their parameterized complexity are still open. As announced, our contributions
in Section 2.2 concern one of these problems, PARTIAL ONE-TARGET CUT [17].
Then, we outline the state of the art for the counting of minimum (S, T)-cuts. We list the
parameters for which the complexity of this counting problem has been determined. We
focus on parameter p, the size of the minimum (S, T)-cuts. Two algorithms are examined:
the natural brute force algorithm which is XP for parameter p and an FPT〈p〉 one deduced
from the following works [20, 62]. Our contribution, presented in Section 2.3, is the design
of an algorithm improving the running time of these two methods [12].

Multi-terminal cut problems

Cuts in graphs have been fervently studied since Menger’s theorem [65], reminded in Sec-
tion 2.1.3, and Ford-Fulkerson’s algorithm [49]. Problem MIN-(S, T)-CUT consists in deter-
mining the minimum number of edges needed to separate sets S and T (Definition 2.2 be-
low). Min-cut max-flow theorem states that the minimum (S, T)-cut size and the maximum
flow of a network are equal. The computation of a maximum flow with the polynomial-time
Ford-Fulkerson’s algorithm uncovers one of the minimum (S, T)-cuts, regardless of whether
the graph is directed or not, weighted or not.

Definition 2.2 (Min-(S, T)-cut [49]).
Input: Graph G = (V,E), sets S, T ⊆ V , S ∩ T = ∅, positive integer p.
Question: Is there a cutset X ⊆ E, |X| ≤ p such that no path connects S and T in graph
G deprived of edges X?

Many generalizations of MIN-(S, T)-CUT have been proposed and proven NP-complete.
One of them is MULTICUT [40] which aims to separate k pairs of terminals, (s1, t1), . . . , (sk, tk),
in an undirected graph with a minimum cut. There are two versions of this problem: EDGE

MULTICUT when the cut is made of edges and VERTEX MULTICUT when it is made of ver-
tices. The edge version is given in the following definition.

15

Definition 2.3 (Edge Multicut [40]).
Input: Graph G = (V,E), pairs of terminals (s1, t1) , . . . , (sk, tk), positive integer p.
Question: Is there a cutsetX ⊆ E, |X| ≤ p, which disconnects all pairs of terminals (si, ti),
i ∈ {1, . . . , k}?

Both versions have been studied with the parameterized complexity tools [45]. Marx and
Razgon [63] and also Bousquet et al. [27] proved that VERTEX MULTICUT is FPT parameter-
ized by the cutset size, i.e. FPT〈p〉. EDGE MULTICUT is also FPT〈p〉, as it can be reduced to
VERTEX MULTICUT [63]. On directed graphs, MULTICUT is unlikely to be FPT parameterized
by the cutset size [63], even when the number of pairs k is fixed and greater than four [71].
For two terminal pairs (k = 2), MULTICUT is FPT〈p〉 on directed graphs [34]. The case of
three terminal pairs remains open.
A generalization of MULTICUT is called PARTIAL MULTICUT [59]. Its objective is to find one
of the smallest sets of edges/vertices separating at least r pairs of terminals among k
pairs. We distinguish EDGE PARTIAL MULTICUT (Definition 2.4 below) and VERTEX PARTIAL

MULTICUT. The edge version can be reduced to the vertex one, as for MULTICUT.

Definition 2.4 (Edge Partial Multicut [59]).
Input: Graph G = (V,E), pairs of terminals (s1, t1) , . . . , (sk, tk), positive integers p and r,
r ≤ k.
Question: Is there a cutset X ⊆ E, |X| ≤ p, which disconnects at least r pairs of termi-
nals?

PARTIAL MULTICUT is naturally NP-complete as it becomes MULTICUT for r = k. It was
defined in [59] whose authors proposed an algorithm on trees with approximation factor
8
3 + ε for any ε > 0. For general graphs, an algorithm with factor O(log2(n) log log n) was
designed [54]. An open question is whether PARTIAL MULTICUT is FPT, for parametrizations
involving p, r, and k.
PARTIAL MULTICUT models a transportation problem. Each vehicle of a fleet counting k
of them, initially located in si, heads off to its target ti. The fleet operator wants to know
whether p blocked edges (or vertices) may prevent r among these vehicles from reaching
their targets, where 0 ≤ p and 0 ≤ r ≤ k. We define (as we did in [17]) a special case of
this problem, called PARTIAL ONE-TARGET CUT (POTC), where all vehicles have the same
target, i.e. ti = t. Its edge version is described below.

Definition 2.5 (Edge Partial One-Target Cut [17]).
Input: Graph G = (V,E), sources S = {s1, . . . , sk}, target t, positive integers p and r ≤ k.
Question: Is there a cutset X ⊆ E, |X| ≤ p, which disconnects at least r sources from
target t?

When r = k, POTC is solvable in polynomial time as a minimum (S, t)-cut of size less than
p is a solution. In Section 2.2, we prove the NP-completeness of this problem in general
and study its parameterized complexity for all combinations involving p, r, and k.

Counting minimum (S, T)-cuts

The issue of counting minimum cuts in graphs has several practical applications. In-
deed, the number of minimum cuts is an important factor for the network reliability anal-
ysis [5, 6, 8, 66]. Thereby, the probability that a stochastic graph is connected is related to
the number of minimum cuts [6]. Furthermore, cuts on planar graphs are used for image
segmentation [28]. An image is seen as a planar graph where vertices represent pixels and
edges connect two neighboring pixels if they are similar. Counting minimum cuts provides
an estimation of the number of segmentations.
We focus on the problem of counting minimum edge (S, T)-cuts in undirected graphs
G = (V,E), S, T ⊆ V . We call it COUNTING MIN-(S, T)-CUTS (Definition 2.6 below) as it

16

is the counting variant of MIN-(S, T)-CUT. Ball and Provan showed in [7] that COUNTING

MIN-(S, T)-CUTS is unlikely solvable in polynomial time as it is #P-complete. They also
devised a polynomial-time algorithm for COUNTING MIN-(S, T)-CUTS on planar graphs [6].
Bezáková and Friedlander [21] generalized it with an O(nµ + n log n)-time algorithm on
weighted planar graphs, where µ is the length of the shortest (s, t)-paths. For general
graphs, some upper bounds on the number of minimum cuts have been given [31] in func-
tion of parameters such as the radius, the maximum degree, etc. Two fixed-parameter
tractable (FPT) algorithms have been proposed for COUNTING MIN-(S, T)-CUTS. Bezáková
et al. [20] built an algorithm for both directed and undirected graphs with small treewidth λ;
its time complexity is O(23λλn). Moreover, Chambers et al. [29] designed an algorithm for
directed graphs embedded on orientable surfaces of genus g: its execution time is O(2gn2).

Definition 2.6 (Counting min-(S, T)-cuts).
Input: Undirected graph G = (V,E), sets of vertices S, T (V , S ∩ T = ∅.
Output: The number of minimum edge (S, T)-cuts.

Now let us discuss the complexity of COUNTING MIN-(S, T)-CUTS, parameterized by the size
p of minimum (S, T)-cuts. A trivial brute force XP algorithm computes the number C(I) of
minimum (S, T)-cuts in time nO(p) by enumerating all edge sets of size p and picking up
those which are (S, T)-cuts. More efficient exponential algorithms exist, as the one of
Nagamochi et al. [66], in time O

(
pn2 + pnC(I)

)
.

An FPT〈p〉 algorithm can be deduced from the results in two articles [20, 62] and its exe-
cution time is O∗

(
2H(p)

)
, where H(p) = Ω

(
2p√
p

)
. The treewidth reduction theorem estab-

lished by Marx et al. in [62] says that there is a linear-time reduction transforming graph
G into another graph G′ which preserves the (s, t)-cuts of size p and its treewidth τ(G′)
verifies τ(G′) = 2O(p). After this transformation, the number of minimum (S, T)-cuts of G′

is obtained thanks to the algorithm given in [20]. The overall time taken with this method
is O∗

(
22

O(p)
)

. In Section 2.3, we design FPT〈p〉 algorithms for COUNTING MIN-(S, T)-CUTS

which improve this exponential factor.

2.1.3 Methods to solve cut problems

We introduce combinatorial concepts commonly used to treat cuts, as we refer to them in
the following sections.
First, we put in evidence notation and definitions. Second, we remind Menger’s theorem
and its consequences. We also explain why the important cuts are a powerful tool to tackle
cut problems. Eventually, we show how to reduce in polynomial time an edge cut problem
to its vertex version.

Cuts and paths

Our work mainly concerns undirected graphs G = (V,E), where n = |V | and m = |E|. For
any set of vertices U ⊆ V , we denote by E [U] the set of edges of G with two endpoints in
U . Let G [U] be the subgraph of G induced by U , G [U] = (U,E [U]). We denote by G\U
the graph deprived of vertices in U : G\U = G [V \U]. Similarly, for any set of edges E′ ⊆ E,
the graph G deprived of E′ is denoted by G\E′ = (V,E\E′).
A simple path is a sequence of pairwise different vertices v1 · v2 · v3 · · · vi · vi+1 · · · vN , where
two successive vertices (vi, vi+1) are adjacent in G: (vi, vi+1) ∈ E. To improve readability,
we abuse notations: v1 ∈ Q and (v1, v2) ∈ Q mean that vertex v1 and edge (v1, v2) are on
path Q, respectively. Any (S, T)-path Q = v1 ·v2 · · · vi ·vi+1 · · · vN , v1 ∈ S and vN ∈ T , has a
natural orientation from S to T . Therefore, we say that the ancestors of vi are the vertices
v1, . . . , vi−1 and its descendants are vi+1, . . . , vN . Its predecessor is vi−1 and its successor
is vi+1. These notions are also naturally defined for edges: the ancestors of (vi, vi+1) are

17

all the edges between vi+1 and t, following the orientation of the (S, T)-path. Two paths P
and Q are vertex-disjoint if there is no vertex v such that v ∈ P and v ∈ Q.
Cut problems usually consist in finding the smallest set of edges/vertices X which sepa-
rates vertices of the graph G\X in a certain way. Given a set of sources S and targets T ,
set X ⊆ V is a vertex (S, T)-cut if no path connects a vertex from S with a vertex from T in
G\X. An (S, T)-cut X is said minimal if there is no (S, T)-cut X ′ (X. It is minimum if there
is no (S, T)-cut X ′ such that |X ′| < |X|. Any minimum (S, T)-cut is minimal. From now on,
we focus only on the (S, T)-cuts which are minimal. So, the minimality of (S, T)-cuts is
implicit later on.
For U ⊆ V , we denote by δ(U) the set of edges with exactly one endpoint in U . For any
(S, T)-cut X, let R(X,S) contains the source side of X, i.e. the vertices reachable from
S in G\X. Its target side R(X,T) contains the vertices reachable from T in G\X. One
observes that δ(R(X,S)) = X = δ(R(X,T)). We also fix R+(X,S) = R(X,S) ∪ X and
R+(X,T) = R(X,T) ∪X, the augmented source and target sides of X.

Menger’s theorem and its consequences

Menger’s theorem [65] states that the size of the minimum edge (S, T)-cuts in an undirected
graph is equal to the cardinality of the largest set containing edge-disjoint (S, T)-paths.

Theorem 2.1 (Menger’s theorem for edge (S, T)-cuts [65]). If p denotes the size of the
minimum edge (S, T)-cuts in G, then the largest set of edge-disjoint simple (S, T)-paths of
G contains p paths.

The vertex version of Theorem 2.1 says that the sizes of the minimum vertex (S, T)-cut and
of the largest set of vertex-disjoint (S, T)-paths are equal. However, we pursue this intro-
ductory paragraph by considering the edge version only, as our overview can be extended
in a straightforward manner to the vertex version.
Menger’s theorem is generalized by the min-cut max-flow theorem [49]. For this reason,
a set of edge-disjoint (S, T)-paths of size p is computed in time O(mp) with p rounds of
Ford-Fulkerson’s algorithm. LetQ = {Q1, Q2, ..., Qp} denote an arbitrary collection of edge-
disjoint (S, T)-paths. Paths Qi, i ∈ {1, . . . , p}, are called Menger’s paths.
We present helpful consequences of Menger’s theorem. These observations will be used
to design our algorithms. The first one is stated in the following lemma. We prove that an
edge of any minimum (S, T)-cut belongs to a single Menger’s path.

Lemma 2.1. Let X be a minimum (S, T)-cut. For any edge x ∈ X, there is a unique path
Qj ∈ Q such that x ∈ Qj . Conversely, each Menger’s path contains exactly one edge from
X. All ancestors of x on Qj belong to R(X,S) while its descendants belong to R(X,T).

Proof. We suppose ad absurdum that X is a minimum (S, T)-cut and one of its edges
x ∈ X does not belong to any Menger’s path. As |Q| = p, at least one Menger’s path is not
interrupted inG\X and connects S to T . So, X is not an (S, T)-cut, which is a contradiction.
Now, we suppose that X contains two edges x1 and x2 which are on the same Menger’s
path, say Qj . As |X| = |Q|, this means that another path Qi in Q has no element of X.
The same contradiction occurs.
As path Qj only contains x ∈ X, none of the edge ancestors of x can be in cut X. There-
fore, all vertices from S to x are reachable from S in G\X. For the same reason, the vertex
descendants of x are reachable from T in G\X.

For a minimum (S, T)-cut X and one of its edges x ∈ X, we denote by σ(x) the signature
of x, i.e. the path in Q which contains x. Lemma 2.1 ensures that this path exists and is
unique. We abuse notations: for any B ⊆ X, notation σ(B) refers to the set of Menger’s
paths which contain edges in B, σ(B) = {Qi ∈ Q : B ∩Qi 6= ∅}.

18

An arbitrary collection of Menger’s paths Q can also be determined in time O(mp) for the
minimum vertex (S, T)-cuts. Lemma 2.1 is valid for vertex cuts X ′ too, so the signature
σ(x′) refers to the Menger’s path containing x′ ∈ X ′.

Important cuts

In 2006, Marx [61] put in evidence a certain set of (S, T)-cuts called important cuts. For two
(S, T)-cuts X and X ′, we say that X ′ dominates X if |X ′| ≤ |X| and R(X,S) (R(X ′, S).
Conversely, cut X ′ is closer than X if |X ′| ≤ |X| and R(X ′, S) (R(X,S). An (S, T)-cut X
is important if there is no other (S, T)-cut X ′ which dominates X.

Definition 2.7. An (S, T)-cut X is important if there is no other (S, T)-cut X ′ such that
|X ′| ≤ |X| and R(X,S) (R(X ′, S).

Intuitively, an important (S, T)-cut is such that there is no other cut smaller in size which is
closer to T . Letter Y is generally used to denote important cuts.
For any S, T , the important (S, T)-cuts satisfy a powerful property: the number of important
(S, T)-cuts of size at most p depends only on p, not on the input size n [33]. Logically, this
concept sounds as an efficient tool for identifying FPT algorithms on cut problems.

Lemma 2.2 (Important cuts enumeration [33]). For disjoint sets of vertices S and T , there
are at most 4p important cuts Y with |Y | ≤ p and they can all be listed in time 4pnO(1).

Closest (S, T)-cuts refer to the reverse definition of important (S, T)-cuts. As mentioned
in [58], an (S, T)-cut X is closest if there is no other (S, T)-cut X ′ closer than X. Letter Z
is generally used to denote closest cuts. On undirected graphs, a closest (S, T)-cut is also
an important (T, S)-cut. Both the minimum important (S, T)-cut and the minimum closest
(S, T)-cut are unique. Figure 2.1 gives an example of graph G with two (S, T)-cuts X1 and
X2, where S = {s1, s2} and T = {t}. Cut X1 is not closest as the edges incident to S form
a cut Z1 smaller than X1 and R(Z1, S) ⊆ R(X1, S). Cut X2 is closest because there is no
cut with at most three edges whose reachable set of vertices is contained in R(X2, S).

s2

s1

t

Z1 X1 X2

Figure 2.1: Illustration of closest (S, T)-cuts: X2 is closest whereas X1 is not.

Lemma 2.3 (Unicity of minimum important and closest cuts [58, 61]). There is a unique
minimum important (S, T)-cut Y and a unique minimum closest (S, T)-cut Z.

Lemmas 2.2 and 2.3 are valid for both edge and vertex (S, T)-cuts. The computation of both
the minimum important (S, T)-cut and the minimum closest (S, T)-cut consists in executing
p rounds of Ford-Fulkerson’s algorithm [34]. Indeed, they are obtained from the residual
graph. It follows:

Lemma 2.4 (Computation time of minimum important/closest cuts [34]). The minimum im-
portant (S, T)-cut and the minimum closest (S, T)-cut are obtained in O(mp), where p is
the size of minimum (S, T)-cuts.

The minimum important and closest (S, T)-cuts are essential tools of our FPT algorithms
dedicated to cut problems.

19

Relationship between edge and vertex (S, T)-cuts

We develop an approach to reduce in polynomial time edge cut problems to their vertex
versions, both of them parameterized by the cutset size. Indeed, there is a transformation
ψ : (G,S, T) → (G′, S′, T ′) such that all edge (S, T)-cuts in G become vertex (S, T)-cuts
of the same size in G′, and conversely. Then, a vertex cut problem may be harder than its
edge version. If an FPT algorithm exists for a vertex cut problem, then its edge version is
FPT as well.
Function ψ : (G,S, T) → (G′, S′, T ′) is clarified below. Given a size q ≥ 1, it transforms all
edge (S, T)-cuts X, |X| ≤ q into vertex (S′, T ′)-cuts X ′ of size |X ′| = |X|. We begin with
the graph transformation:

• for each vertex u ∈ V , we add q + 1 vertices called the duplicates of u in V ′:
u′1, u

′
2, ..., u

′
p+1 ∈ V ′,

• for each edge e = (u, v) ∈ E, we define a corresponding vertex v′e = ψ(e) in V ′ and
next we add edges between it and the duplicates of u and v: (u′1, v

′
e), . . . , (u

′
p+1, v

′
e), (v

′
1, v
′
e),

. . . , (v′p+1, v
′
e) ∈ E′.

Set of sources S′ contains the duplicates of sources from S. Similarly, set of targets T ′ is
composed of the duplicates of targets from T . Abusing notations, for any edge (S, T)-cut X
ofG, set ψ(X) is defined as ψ(X) = {v′e ∈ V ′ : e ∈ X}. We have |X| = |ψ(X)| by definition.
Figure 2.2a provides a graph G while its image G′ = ψ(G) is represented in Figure 2.2b.
Sets of duplicates in I ′ = (G′, S′, T ′) are encircled. Edge (v1, v2) is the minimum (S, T)-cut
of G and vertex ψ((v1, v2)) is the minimum vertex (S, T)-cut of G′.

s1 t1

s2 t2

v1 v2
S T

(a) Instance I = (G,S, T)

ψ((v1, v2))

S′ T ′

(b) Instance I ′ = (G′, S′, T ′)

Figure 2.2: Reduction ψ: instance I transformed into instance I ′

Let M and M′ be the sets of (S, T)-cuts for the triplet (G,S, T) and (S′, T ′)-cuts for
(G′, S′, T ′) of size q, respectively. It follows:

Theorem 2.2. Function ψ :M→M′ is bijective.

Proof. Let us suppose that ψ(X) is not a vertex (S′, T ′)-cut for a certain edge (S, T)-cut X.
There is a path P ′ from S′ to T ′ which bypasses ψ(X). Path P ′ passes through vertices v′e
on G′, i.e. vertices v′ such that ψ−1(v′) ∈ E. By collecting edges e ∈ E such that v′e ∈ P ′,
we form a simple (S, T)-path in G which bypasses edges in X. This contradicts that X is
an (S, T)-cut. Therefore, its image, ψ(X), is a vertex (S′, T ′)-cut.
Conversely, let X ′ be a vertex (S′, T ′)-cut of G′ of size at most q. Cut X ′ cannot contain
duplicates. Indeed, given a vertex u ∈ V , if X ′ contains at most q duplicates of u, this
does not compromise the connectivity in G′, so X ′ is not minimal. Furthermore, the entire
set of duplicates of u cannot be in X ′, otherwise |X ′| > q. Thus, cut X ′ contains vertices
v′ ∈ V ′ only, where ψ−1(v′) ∈ E and ψ−1(X ′) ⊆ E. Set ψ−1(X ′) forms naturally an (S, T)-
cut, according to the argument used previously: an (S, T)-path bypassing ψ−1(X ′) in G
implies that there is an (S′, T ′)-path avoiding X ′ in G′. In a nutshell, set ψ−1(X ′) is an edge
(S, T)-cut of size |X ′| = |X|.

20

In accordance with Theorem 2.2, for any edge (S, T)-cut in G, there is a “twin” vertex
(S′, T ′)-cut ψ(X) in G′, both of the same size. As a consequence, a problem as EDGE

POTC can be reduced to VERTEX POTC as any of its solution in G becomes a vertex solution
in G′. The property EDGE POTC ≤fptVERTEX POTC is used in Section 2.2. In Section 2.3,
this reduction allows us to affirm that an algorithm solving the counting of minimum vertex
(S, T)-cuts also computes the number of minimum edge (S, T)-cuts. Indeed, the number
of minimum (S, T)-cuts in G is equal to the number of minimum (S′, T ′)-cuts in G′.

2.2 Separating certain sources from a single target

After having set the background in the introductory section, we present our contributions
concerning cut problems.
The results described in this section were published in our article [17]. We study the pa-
rameterized complexity of POTC: the objective is to know whether a cut of size p separates
r sources of the set S = {s1, . . . , sk} from a single target t. We prove the fixed-parameter
tractability of EDGE POTC parameterized by p in Section 2.2.1. Then, we provide two hard-
ness proofs in Section 2.2.2: one showing that EDGE POTC is W[1]-hard parameterized by r
and another one showing that VERTEX POTC is W[1]-hard for all parametrizations involving
p and r. The design of FPT algorithms for EDGE POTC is motivated by the fact that this
problem is necessarily NP-complete, as it is W[1]-hard for parameter r.

2.2.1 Cut size p as a parameter

We characterize the solutions of EDGE POTC with important cuts. We show that at least one
of them is the union of important (S(i), t)-cuts, where all sets S(i) ⊆ S. Using this property
and a result on the parameterized problem PARTIAL SET COVER [22], we obtain that EDGE

POTC is FPT〈r, p〉. To achieve our initial goal, i.e. the construction of an FPT〈p〉 algorithm,
we devise an efficient sampling of important cuts, also based on our characterization. We
define the concept of edge passes, which are certain edges of the graph defined in function
of our solution made up of important cuts. Color-coding and derandomization techniques
finally allow us to generate a solution in FPT〈p〉 time.

Relationship between important cuts and solutions of Edge POTC

We focus on important (S′, t)-cuts Y with S′ ⊆ S such that vertices in S′ stay pairwise
connected despite cut Y , in other words G [R(Y, S′)] remains connected. Such important
cuts are said single-component. The following lemma is an intermediary result for the proof
that a solution of EDGE POTC is the union of single-component important cuts.

Lemma 2.5. Let Y be a single-component important (S′, t)-cut. For any S′′ ⊆ S′, Y is also
an important (S′′, t)-cut.

Proof. As Y is an (S′, t)-cut, it necessarily separates S′′ ⊆ S′ from t. Any vertex reachable
from S′′ in G\Y is also reachable from S′: R(Y, S′′) ⊆ R(Y, S′). Conversely, let vertex v be
reachable from S′ in G\Y . Any source in S′′ is connected to sources in S′\S′′ as R(Y, S′)
is connected. Consequently, vertex v is reachable from S′′: R(Y, S′′) = R(Y, S′). Then, Y
is a minimal (S′′, t)-cut otherwise it would not be a minimal (S′, t)-cut.
If Y is not an important (S′′, t)-cut, there is an (S′′, t)-cut Ŷ with

∣∣∣Ŷ ∣∣∣ ≤ |Y | and R(Y, S′′) (

R(Ŷ , S′′). Therefore, R(Y, S′) (R(Ŷ , S′′) and Ŷ is an (S′, t)-cut as S′ ⊆ R(Y, S′). Cutset
Y is no longer important for (S′, t), which is a contradiction.

Let Y1, Y2, . . . , YMp denote all the important (s, t)-cuts with size at most p, where s is a
source: s ∈ S and value Mp indicates their number. From Lemma 2.2, we know that

21

Mp ≤ k4p. These cuts are single-component. Indeed, let us suppose that one important
(s, t)-cut Yj is not: the separated vertices of Yj form at least two connected components.
One of these two components does not contain s, so some edges of Yj do not separate
s from t. In other words, cut Yj is not minimal for terminals (s, t) which is a contradiction.
For any Yj , we denote by Sj the set of sources that are separated from t in G\Yj , and
Rj = R(Yj , Sj). We prove that at least one solution of EDGE POTC is the union of certain of
these important (s, t)-cuts.

Theorem 2.3. If (G,S, t, r, p) is a feasible instance for EDGE POTC, there is a solution Y ∗

which is the union of some single-component important cuts among Y1, . . . , YMp : Y ∗ =⋃
1≤i≤` Yσ(i), where

• value ` ≤ p is the number of connected components in G[R(Y ∗, S′)], where set S′

stands for the set of sources separated from t in G\Y ∗,

• injective function σ : {1, . . . , `} → {1, . . . ,Mp} indexes cuts Yj which build up Y ∗,

• cuts Yσ(i) have no edge in common,
⋂

1≤i≤` Yσ(i) = ∅ and they separate different
vertices,

⋂
1≤i≤`Rσ(i) = ∅.

Proof. Let X be a minimum solution for this instance: no solution X ′ fulfils |X ′| < |X|. We
use cutset X to build Y ∗. We denote S′ ⊆ S the set of sources that are separated from
t in G\X. Obviously, |S′| ≥ r. After writing R = R(X,S′), set R is naturally partitioned
R =

⋃
1≤i≤`R

(i), where each R(i) corresponds to a connected component of subgraph
G [R]. In other words, for (vi, vq) ∈ R(i) × R(q), i 6= q, vertices vi and vq are not only
separated from t by X but pairwise separated as well. We partition set S′ in a similar way:
S′ =

⋃
1≤i≤` S

(i), where S(i) = S′ ∩R(i).
We prove that X =

⋃
1≤i≤`Xi, where Xi = δ(R(i)) and

⋂
1≤i≤`Xi = ∅. If e = (u, v) ∈ X

with u ∈ R and v ∈ V (G)\R, then there is always R(i) such that u ∈ R(i), so e ∈ δ
(
R(i)

)
.

As the statement holds for all e ∈ X, we deduce X ⊆
⋃

1≤i≤`Xi.
Conversely, let e = (u, v) ∈ Xi with u ∈ R(i) and v ∈ V (G)\R(i): if v ∈ V (G)\R then
e ∈ X. Otherwise, if v ∈ R\R(i), then cut X\ {e} also disconnects sources S′ from t which
is a contradiction as X is supposed to be minimum. Therefore, we obtain X =

⋃
1≤i≤`Xi.

Moreover, if e = (u, v) ∈ Xi ∩ Xq with u ∈ Ri and v ∈ Rq, the same argument yields
a contradiction as X\ {e} separates R from t. We thus have

⋂
1≤i≤`Xi = ∅ and |X| =∑

1≤i≤` |Xi|. As any Xi contains at least one edge and |X| ≤ p, we have ` ≤ p.
For any 1 ≤ i ≤ `, we compute the minimum important (R(i), t)-cut Y (i) and we study cutset
Y ∗ =

⋃
1≤i≤` Y

(i). It is illustrated on an example in Figure 2.3: reachable vertices R(i) (in
blue areas) separated by edges in Xi (leaving R(i)), important cuts Y (i) (black edges),
and sources (red vertices). All Y (i) are single-component: if u and v are reachable from
a vertex of R(i) in graph G\Y (i), there is a (u, v)-path as G[R(i)] is connected. According
to Lemma 2.5, Y (i) is an important (s, t)-cut for all s ∈ S(i). Consequently, Y (i) is one of
the Y1, . . . , YMp cuts and its index is given by σ(i). In summary, Y (i) = Yσ(i) and Y ∗ =⋃

1≤i≤` Yσ(i).
Now we prove that Y ∗ is a solution. Cutset Y ∗ separates from t at least r sources which
belong to R. As X is minimum, |X| ≤ |Y ∗|. Conversely, as Yσ(i) is a minimum (R(i), t)-cut,
we have

∣∣Yσ(i)∣∣ ≤ |Xi| and, finally,

|Y ∗| ≤
∑̀
i=1

∣∣Yσ(i)∣∣ ≤ ∑̀
i=1

|Xi| = |X| .

This means that |Y ∗| ≤ p. Eventually, the argument used above to prove
⋂

1≤i≤`Xi = ∅, is
still valid as Y ∗ is also a minimum solution:

⋂
1≤i≤` Yσ(i) = ∅. For the same reason, cutsets

22

t

R(1)

R(2)

R(3)

Y (1)

Y (2)= X2

Y (3)

X1
X3

S(1)

S(2)

S(3)

Figure 2.3: Cutsets Xi, Y (i) = Yσ(i) and vertex sets S(i) and R(i).

Yσ(i) separate disjoint parts:
⋂

1≤i≤`Rσ(i) = ∅. Indeed, if Rσ(i) ∩ Rσ(i′) 6= ∅ ad absurdum
for i 6= i′, there is at least one edge leaving Rσ(i) ∩ Rσ(i′):

∣∣δ(Rσ(i) ∩Rσ(i′))∣∣ > 0. The
submodularity of cut-function δ (evoked in [48, 63]) gives:∣∣δ(Rσ(i) ∪Rσ(i′))∣∣ < ∣∣δ(Rσ(i))∣∣+

∣∣δ(Rσ(i′))∣∣ =
∣∣Yσ(i)∣∣+

∣∣Yσ(i′)∣∣ .
As cutset Yσ(i)∪Yσ(i′) is not minimum for separating Sσ(i)∪Sσ(i′) from t, Y ∗ is not minimum,
which terminates the proof.

Theorem 2.3 ensures the existence of a particular solution of EDGE POTC for any feasible
instance. We will prove that it can be identified either in time 2O(r)4p (Theorem 2.4) or 2O(p2)

(Theorem 2.7). For the former, we show that Y ∗ is produced by the solution of the partial
set cover problem [22].

Definition 2.8 (Partial Set Cover).
Input: Universe U , sets Aj ⊆ U of weights ωj , positive integers p and r ≤ |U |.
Question: Is there a collection C of sets Aj which covers at least r elements in U such that∑

Aj∈C ωj ≤ p?

A partial set cover is computed in time O∗
(
2O(r)

)
multiplied by the number of sets Aj of the

instance [22].

Theorem 2.4. EDGE POTC can be solved in time O∗
(
2O(r)4p

)
.

Proof. We reduce EDGE POTC to PARTIAL SET COVER. Collection C∗ =
{
Sσ(i)

}
is a solution

for the partial set cover instance U = S, Aj = Sj , ωj = |Yj |. It contains more than r
elements of the “universe” of sources S and its total weight is smaller than p.
Any solution for this instance produces a solution for EDGE POTC satisfying the property
given in Theorem 2.3. All cuts Yj are enumerated in time O∗ (4p). The number of covering
sets Aj = Sj is Mp ≤ k4p. The running time obtained is O∗

(
2O(r)4p

)
.

As a consequence, EDGE POTC is FPT〈r, p〉. We focus now on its complexity when it is
parameterized by p only.

Definition of edge passes

We prove that there is a tractable algorithm for EDGE POTC when only p is small. To do so,
we make use of combinatorial properties specific to important cuts Yj .
There are three kinds of relationships which exist between two important cuts Yj and Yq:

• these cuts can be disjoint (Rj ∩Rq = ∅),

• one can be included into another (either Rj ⊆ Rq or Rq ⊆ Rj),

23

Rσ(i)
Rh

Rq

Rw

Rz

Figure 2.4: Painted cutset Yσ(i) with secant cuts Yh, Yq, Yw and included in Yz.

• they are secant if they do not fulfil any of the previous cases. In other words, Yj and
Yq are secant if Rj ∩Rq 6= ∅ ∧Rj\Rq 6= ∅ ∧Rq\Rj 6= ∅. We use notation (Yj , Yq) ∈ Π
to express this relationship.

Cut Yj is characterized by its edge passes:

Definition 2.9 (Edge passes). Edge e = (u, v) is a pass of Yj if:

• vertices u and v are both in Rj : u, v ∈ Rj ,

• there is a secant cut Yq, (Yj , Yq) ∈ Π, such that e ∈ Yq.

Edge passes of cut Yj , assembled in set Pj , are contained in the subgraph G[Rj] of G
separated from t by Yj . Each edge contained in Pj is in at least one of the secant cuts of
Yj .
We prove that under a certain hypothesis, EDGE POTC is FPT〈p〉. This hypothesis is that
edges of G are colored either in blue or in red in a particular way. Here, colorings must not
be understood in the classical sense of edge coloring problems (they are not proper edge
colorings). Thanks to derandomization tools, we get rid of this hypothesis later as for any
j, the number of edge passes Pj is small.

Definition 2.10. We say that an important cut Yj is painted if:

• all edges in cut Yj are blue,

• all edge passes Pj of Yj are red,

• for any 1 ≤ q ≤Mp, if Rj (Rq, then edges in Yq\Yj are red.

We remind that Y ∗ denotes the solution satisfying properties listed in Theorem 2.3.
We say that graph G is cut-painted for solution Y ∗ if all cuts Yσ(i) are painted. Figure 2.4
illustrates a cut Yσ(i) (blue edges and dashed line) with three secant cuts Yh, Yq, Yw (red
dashed lines), and it is included in Yz (green dashed line). Edge passes of Yσ(i) and edges
in Yz\Yσ(i) are in red. Any color put on black edges makes cutset Yσ(i) be painted. The
following theorem says that if we only know to cut-paint graph G for Y ∗ in FPT〈p〉 time,
EDGE POTC is FPT〈p〉.

24

Theorem 2.5. If graph G is cut-painted for Y ∗, a solution of EDGE POTC can be found in
time O∗

(
42p
)
.

Proof. Among cuts Y1, . . . , YMp , we pick up cuts Yj that are painted and we obtain a collec-
tion D. For two different painted cuts Yj , Yq, no source can be separated from t by both of
them: Sj ∩ Sq = ∅. Otherwise, cuts Yj , Yq are either one included into another or secant.
The first case (Rj (Rq, for example) leads to a contradiction because edges in Yq\Yj must
be red as Yj ∈ D and blue as Yq ∈ D. The second case, if Yj and Yq are secant, edges
in Yq must be blue (Yq ∈ D) but, if some of them are edge passes of Yj , they must also be
in red (Yj ∈ D). We prove that there is at least one edge which must be colored with two
colors in the same time. As Yj is single-component, some edges connect the two parts of
Rj , Rj ∩Rq and Rj\Rq. Consequently, there is necessarily an edge leaving Rq with its two
endpoints in Rj : an edge pass of Yj . This argument brings the contradiction for the second
case. In summary, cuts in D are disjoint (Rj ∩Rq = ∅ and Sj ∩ Sq = ∅).
As G is cut-painted for Y ∗, which is composed only of single-component important cuts, all
cutsets Yσ(i) belong to collection D. Solution Y ∗ is the union of ` ≤ p cutsets from D. The
cardinality of D is at most k, as each cutset Yj in D separates its own set of sources Sj .
As cutsets in D are disjoint, finding a subset of D of cardinality at most p that separates
the maximum number of sources is equivalent to solving the 0-1 KNAPSACK problem. Each
Yj ∈ D can be seen as a knapsack item of utility value |Sj | (number of sources separated)
and weight |Yj | (the cut size). With the knapsack capacity equal to p, an optimal solution is
made up of these cutsets from D which separate from t the maximum number of sources.
Thanks to cutset Y ∗, at least one solution is found and reaches a value greater or equal
to r. Consequently, the optimal knapsack is a solution of EDGE POTC as it separates more
than r sources with less than p edges.
Evaluating the execution time, we observe that the most expensive operation consists in
computing collection D. For each important cut Yj , we determine its relationship with other
cutsets and check whether it is painted or not. This consists in a double loop enumerating
all pairs of cuts (Yj , Yq) and checking for any of them whether colors are correct (execution
time O∗(M2

p) = O∗
(
42p
)
). A standard dynamic programming produces in our case the

knapsack packing in O(kp) with the number of items k and capacity p, which is negligible
compared to the computation of collection D.

We show a manner to cut-paint graph G for solution Y ∗ in FPT〈p〉 time. In this way, an
FPT〈p〉 algorithm becomes apparent naturally thanks to Theorem 2.5.

Derandomization

We present a way to generate a list of colorings for G such that at least one of them paints
Y ∗. For any feasible instance, computing the knapsack packing algorithm for each of these
colorings necessarily finds a solution as graph G is cut-painted for Y ∗ with one of them.
Our reasoning begins with the proof that the cardinality of edge passes is bounded by p
only, which allows us to produce this list of colorings in FPT〈p〉 time.

Theorem 2.6 (Cardinality of secant cuts and edge passes). For any cutset Yj , there are at
most p4p secant cuts Yq, (Yj , Yq) ∈ Π, which implies that |Pj | ≤ p24p.

Proof. For a vertex v ∈ V (G), we focus on cutsets Yq separating it from t, i.e. v ∈ Rq. Such
a cutset Yq is an important (v, t)-cut as Yq is single-component and {v} ⊆ Rq (Lemma 2.5).
Therefore, there are at most 4p sets Rq covering vertex v (Lemma 2.2).
Let Bj be the border of set Rj , i.e. vertices in Rj which are endpoints of cut edges in Yj :
Bj = {v ∈ Rj : (u, v) ∈ Yj}. Border Bj contains at most p vertices. For any secant cut Yq,
(Yj , Yq) ∈ Π, there is an edge of Yj with both its endpoints in Rq. Indeed, sets Rj ∩Rq and

25

Rq\Rj have to be connected as Yq is single-component. So, an edge (u, v) ∈ Yj verifies
u ∈ Rj ∩Rq and v ∈ Rq\Rj . Thus, at least one vertex in the border Bj belongs to Rq.
In summary, secant cuts Yq, (Yj , Yq) ∈ Π, verify:

• set Rq covers at least one border vertex vj,q of Yj : Rq ∩Bj 6= ∅,

• there are at most 4p sets covering vj,q as Rq.

Consequently, the cardinality of secant cuts is bounded by 4p |Bj | ≤ p4p. It follows that
there are at most p24p edge passes because |Yq| ≤ p.

The number of edges with the same color (either blue or red) obligatorily assigned is
bounded from above for G which is cut-painted for Y ∗. These bounds depend on p only.
Only edges of cutset Y ∗ have to be blue (Definition 2.10). As |Y ∗| ≤ p, at most p edges
have to be blue. They are denoted by EY ∗,blue. Theorem 2.6 allows us to obtain an upper
bound for red edges in function of p only. As the number of border vertices in Y ∗ is less
than p, there are less than p24p edge passes for Y ∗. Furthermore, for any 1 ≤ i ≤ `, there
are at most 4p − 1 cuts Yq with Rσ(i) (Rq because any vertex of Rσ(i) has at most 4p

important cuts separating it from t. As a consequence, the number of edges belonging to
a set Yq\Yσ(i) with Rσ(i) (Rq is less than `p(4p− 1), which can be upper-bounded by p24p.
In a nutshell, at most 2p24p edges must be colored in red. They are denoted by EY ∗,red.
We define ϕblue(p) = p, ϕred(p) = 2p24p as upper bounds of

∣∣EY ∗,blue
∣∣ and

∣∣EY ∗,red
∣∣, re-

spectively. Value ϕ(p) = ϕblue(p) + ϕred(p) = O
(
p24p

)
bounds from above the number of

edges obligatorily colored with a certain color: |EY ∗ | ≤ ϕ(p).
When colors are assigned to edges uniformly, the probability to get G cut-painted for Y ∗

is greater than
(
1
2

)ϕ(p). In other words, there is an FPT〈p〉 algorithm solving EDGE POTC

with probability
(
1
2

)ϕ(p). We derandomize this algorithm by using a result [67] on (n, a, a2)-
splitters.

Definition 2.11 (from [67]). A (n, a, a2)-splitter is a collection H of functions h : {1, . . . , n}
→
{

1, . . . , a2
}

such that, for any subset A ({1, . . . , n}, |A| = a, there is a function h ∈ H
which is injective over A.

Naor et al. [67] showed that there is a (n, a, a2)-splitter with a6 log n log a functions, listed in
time linear to its cardinality.
We compute the (m,ϕ(p), ϕ(p)2)-splitter HG,p, where m = |E(G)|. We order edges of
G with indices from {1, . . . ,m} arbitrarily. Any pair (h, Iblue) with h ∈ HG,p and Iblue ({

1, . . . , ϕ(p)2
}

, |Iblue| = p is interpreted as an edge-coloring of G: edges of index in
h−1(Iblue) are colored in blue, otherwise in red. The following lemma establishes a rela-
tionship between splitters and cut paintings of graph G.

Lemma 2.6. There is a pair (h, Iblue) with h ∈ HG,p and Iblue (
{

1, . . . , ϕ(p)2
}

, |Iblue| = p
which paints graph G for cut Y ∗.

Proof. Set EY ∗ contains edges that have to be colored either in blue or in red: EY ∗ =
EY ∗,blue ∪EY ∗,red. By Definition 2.11, there is h ∈ HG,p such that h is injective over EY ∗ . As
EY ∗,blue∩EY ∗,red = ∅, the image of these sets is also disjoint for h: h(EY ∗,blue)∩h(EY ∗,red) =
∅. Let Iblue = h(EY ∗,blue). As h is injective over EY ∗,blue (EY ∗ , we have |Iblue| = p. It comes
that edges of h−1(Iblue) = EY ∗,blue are colored in blue. As h(EY ∗,red) is disjoint from Iblue,
edges of EY ∗,red are colored in red.

Lemma 2.6 ensures us that graph G is cut-painted for Y ∗ for at least one pair (h, Iblue).
There are O∗

(
ϕ(p)6

)
= O∗

(
46p
)

functions h ∈ HG,p. Then, there are exactly
(
ϕ(p)2

p

)
=

O∗
(

42p
2
)

sets Iblue of size p in
{

1, . . . , ϕ(p)2
}

. In summary, the total number of such pairs

is upper-bounded by O∗
(

2O(p2)
)

. Therefore, the algorithm presented below is FPT〈p〉:

26

Theorem 2.7. EDGE POTC can be solved in time O∗
(

2O(p2)
)

.

Proof. We summarize the steps to obtain a solution for EDGE POTC:

• Step 1: Compute all the important (s, t)-cuts of size at most p for any source s ∈ S,

• Step 2: Generate an (m,ϕ(p), ϕ(p)2)-splitter HG,p,

• Step 3: For any pair (h, Iblue) with h ∈ HG,p and Iblue (
{

1, . . . , ϕ(p)2
}

, |Iblue| = p,
color graph G in line with it and find a solution among painted cuts (Theorem 2.5).

For a feasible EDGE POTC instance, solution Y ∗ exists. Therefore, at least one pair (h, Iblue)
paints Y ∗ and a solution is necessarily found in Step 3. If the instance is not feasible, Step
3 cannot produce a solution, despite colors assigned to edges of G.
The execution time is O∗ (4p) for Step 1, O∗

(
2O(p)

)
for Step 2, and O∗

(
2O(p2)42p

)
for Step

3. The overall complexity is O∗
(

2O(p2)
)

.

In summary, we proposed two algorithms to solve EDGE POTC. The first one is FPT〈r, p〉 and
its execution time is O∗

(
2O(r)4p

)
. The second one implies a stronger result as it is FPT〈p〉.

Its running time is O∗
(

2O(p2)
)

. Our objective is now to show whether EDGE POTC is FPT
or W[1]-hard for parameter r only. Moreover, we focus on the parameterized complexity of
VERTEX POTC.

2.2.2 Hardness results

We provide two W[1]-hardness proofs: one for EDGE POTC parameterized by r only and
another one for the vertex version of POTC, VERTEX POTC, parameterized by p+ r.

Hardness of Edge Partial One-Target Cut for parameter r only

The problem of finding the minimum edge (r, n− r)-cut in a graph G which separates a set
of vertices V ∗ from V (G)\V ∗, with |V ∗| = r is called CUTTING r VERTICES in [44].

Definition 2.12 (Cutting r vertices).
Input: Undirected graph G, parameters r and p.
Question: Is there an edge cutset X and a set of vertices V ∗ such that X disconnects V ∗

from V (G)\V ∗ with |X| ≤ p and |V ∗| = r?

Downey et al. [44] proved that CUTTING r VERTICES〈r〉 is W[1]-hard with a reduction from
CLIQUE.1 We show that EDGE POTC is W[1]-hard for parameter r.

Theorem 2.8. EDGE POTC is W[1]-hard parameterized by r.

Proof. We reduce CUTTING r VERTICES (abbreviated to r-CV) to EDGE POTC. We construct
an instance of EDGE POTC

(
Ĝ, Ŝ, t̂, r̂, p̂

)
from an instance of r-CV, which is composed of

graph G, parameter r, and cutset size p.
We index the vertices of G, V (G) = {vi}1≤i≤n. Set V (Ĝ) contains n sources Ŝ = {ŝi}
(which are copies of vertices vi) and target t̂. We also duplicate edges of G on Ĝ: for any
(vi, vj) ∈ E(G), there is (ŝi, ŝj) ∈ E(Ĝ). We connect all vertices ŝi to target t̂ with p + 1

edge-disjoint (ŝi, t̂)-paths which belong to a set Q̂i. Figure 2.5 illustrates sets Q̂i and Q̂h
for vertices ŝi, ŝh ∈ Ŝ. All paths in Q̂i are composed of two edges:

Q̂i = {ŝi · v̂i,j · t : 1 ≤ j ≤ p+ 1} .

27

Ŝ

ŝi ŝh

. . .
v̂i,1 v̂i,p+1

. . .
v̂h,1 v̂h,p+1

t

Ŝ

Q̂i Q̂h

Figure 2.5: Structure of the graph Ĝ with edge-disjoint paths.

We put p̂ = r(p+1)+p and r̂ = r. Let us suppose that there is a cutX inG with size at most
p that separates some vertices V ∗, |V ∗| = r, from the others. We define X̂ = X̂

Ŝ→t∪X̂Ŝ→Ŝ ,
where:

X̂
Ŝ→t = {(ŝi, v̂i,j) : vi ∈ V ∗, 1 ≤ j ≤ p+ 1} and X̂

Ŝ→Ŝ = {(ŝi, ŝj) : (vi, vj) ∈ X} .

By definition,
∣∣∣X̂∣∣∣ ≤ p̂. We show that edges in X̂ separate set Ŝ′ = {ŝi : vi ∈ V ∗},

∣∣∣Ŝ′∣∣∣ = r,

from t. Ignoring edges (ŝi, t̂) in graph Ĝ makes set Ŝ′ be isolated because of X̂
Ŝ→Ŝ . Cut

X̂
Ŝ→t disconnects Ŝ′ from t̂, so no path from any source in Ŝ′ to t̂ exists because of X̂.

Conversely, we suppose that there is a cut X̂ (E(Ĝ) and a set Ŝ′ (Ŝ,
∣∣∣Ŝ′∣∣∣ ≥ r, such

that Ŝ′ is separated from t̂, and the size of X̂ is less than p̂. Each path in Q̂i with ŝi ∈ Ŝ′
necessarily contains an edge of X̂, otherwise ŝi and t̂ are connected. On the contrary,
vertices ŝh /∈ Ŝ′ and t̂ are connected via at least one path of Q̂h, otherwise

∣∣∣X̂∣∣∣ ≥ (r +

1)(p + 1) > p̂. For the same reason,
∣∣∣Ŝ′∣∣∣ = r. The edges of X̂ on the edge-disjoint paths

are denoted by X̂
Ŝ′→t̂. We can split X̂ into two sets X̂

Ŝ′→t̂ and X̂
Ŝ′→Ŝ′ , where X̂

Ŝ′→Ŝ′

contain edges from Ŝ × Ŝ and its size is at most p. We write:

X =
{

(vi, vj) ∈ E(G) : (ŝi, ŝj) ∈ X̂Ŝ′→Ŝ′

}
.

Let vi, vj ∈ V (G) be such that ŝi ∈ Ŝ′ and ŝj /∈ Ŝ′. We prove that no (vi, vj)-path in G\X
exists. We suppose ad absurdum that vi and vj are connected. As a consequence, ŝi
and ŝj are also connected in Ĝ\X̂. As at least one edge is not removed from paths Q̂j
in Ĝ\X̂, one can build a (ŝi, t̂)-path traversing ŝj which is a contradiction as ŝi ∈ Ŝ′. So,
vertices V ∗ =

{
vi : ŝi ∈ Ŝ′

}
are separated from other vertices of G: cutset X is a solution

for r-CV.

We observe that Theorem 2.8 also shows the NP-completeness of EDGE POTC. Indeed, its
proof is a polynomial reduction from a NP-hard problem to it.
Let us introduce a W[1]-hardness proof for VERTEX POTC now.

Hardness of Vertex Partial One-Target Cut

The definition of the vertex version of POTC is given below. Naturally, terminal t is excluded
from cuts, otherwise the trivial solution X = {t} would separate all sources from the target.

1Even if CUTTING r VERTICES was originally defined for undirected weighted graphs, the reduction from
CLIQUE in [44] only uses edges with unitary weights.

28

Definition 2.13 (Vertex Partial One-Target Cut).
Input: Graph G, sources S = {s1, . . . , sk}, target t, positive integers p and r ≤ k.
Question: Is there a cutset X ⊆ V \ {t}, |X| ≤ p, which disconnects at least r sources
from target t?

We prove that CLIQUE parameterized by the size of the solution reduces to VERTEX POTC〈r, p〉,
as formulated in the following theorem.

Theorem 2.9. VERTEX POTC〈r, p〉 is W[1]-hard.

Proof. When solving the CLIQUE problem, we look for a subgraph of G which is a clique
of size c ≥ 0. From graph G, we build an instance of POTC composed of graph G′ with
k = |E(G)| sources, one target t, and parameters r = c(c−1)

2 and p = c + c(c−1)
2 . We

arbitrarily attribute identifiers from {1, 2, . . . , n} to vertices of G. For any x, y ∈ V (G), we
say that x < y if the identifier of x is less than the identifier of y. Set V (G′) consists of four
parts: V (G′) = S ∪ {t} ∪ V1 ∪ V2 (see Figure 2.6), where:

• set S contains vertices indexed by edges (x, y) of G which play the role of sources:
S = {sx,y : (x, y) ∈ E(G), x < y},

• vertex t is the common target,

• set V1 contains vertices indexed by vertices x of G: V1 = {vx : x ∈ V (G)},

• set V2 is the duplicate of S: V2 = {vx,y : (x, y) ∈ E(G), x < y}.

sx,y

sx,z

t

vx

vy

vz

vx,y

vx,z

S V1

V2

Figure 2.6: Construction of the VERTEX POTC instance: vertex sets S, V1, V2, and target t.

We connect a source sx,y to vx, vy ∈ V1 and vx,y ∈ V2. Then, we connect all vertices of V1
and V2 to t. We suppose that there is a clique K of size c in graph G. The following cut X,
with |X| = p = c+ c(c−1)

2 , disconnects r = c(c−1)
2 sources:

X = {vx : x ∈ K} ∪
{
vx,y : (x, y) ∈ K2, x < y

}
. (2.1)

No source sx,y such that (x, y) ∈ K2 and x < y is connected to t when vertices from X are
deleted. No path exists between sx,y and t iff vertices vx, vy, and vx,y are removed.
Conversely, let us suppose that there is a vertex cut X ′ in G′, |X ′| = p, such that sources
SX′ , |SX′ | = r, are not connected to t. We write K ′ = {x ∈ V (G) : vx ∈ X ′} and |K ′| = a.
Our objective is to prove that K ′ is indeed a clique of size c.

• If a < c: any source sx,y, such that at least one of two vertices vx, vy is not in X ′, is
still connected to t. In other words, if sx,y ∈ SX′ then both vx, vy ∈ X ′. We provide an

29

upper bound of |SX′ | as function of a. At best, for any pair (vx, vy) ∈ X ′2, source sx,y
is separated from t. By definition, the number |X ′ ∩ V1| of vertices removed from V1
is equal to |K ′| = a < c, so there are at most

(
a
2

)
= a(a−1)

2 < r sources in SX , which
is a contradiction.

• If a > c: we write B′ = {(x, y) ∈ E(G) : vx,y ∈ X ′, x < y} and b = |B′| = |X ′ ∩ V2|.
We have a+b = |X ′|, so b < c(c−1)

2 . If source sx,y is in SX′ , then necessarily vx,y ∈ X ′.
Consequently, as r sources have to be separated from t, set B′ shall contain at least
r = c(c−1)

2 elements which yields a contradiction.

Therefore, a = c and b = c(c−1)
2 . Now we prove that K ′ is a clique, i.e. if (x, y) ∈ K ′2, then

(x, y) ∈ E(G). As |X ′ ∩ V1| = c, then there are at most c(c−1)2 sources disconnected from t
(one source sx,y for any pair (vx, vy) ∈ X ′2). In summary, if (x, y) ∈ K ′2 then (vx, vy) ∈ X ′2
and sx,y ∈ SX′ which is only possible if (x, y) ∈ E(G).

Minor changes in the above proof lead to the conclusion that DIRECTED POTC〈r, p〉 (POTC〈r, p〉
on directed graphs) is W[1]-hard for both edge and vertex versions. For VERTEX DIRECTED

POTC, it suffices to orient all edges towards the target and the proof does not change. For
EDGE DIRECTED POTC, an extra modification consists in replacing all vertices in V1 ∪ V2 by
arcs and replacing all edges by p arcs in parallel in order to obtain W[1]-hardness.

2.2.3 Summary

We have not discussed the complexity of POTC for parameter k yet. In fact, a trivial FPT〈k〉
algorithm exists. For small k and r < k, it is sufficient to enumerate all sets of sources S′ ⊆
S with cardinality |S′| ≥ r and compute the minimum (S′, t)-cut for all of them. Therefore,
POTC is solvable in time O∗(2k) for its vertex and edge versions. Table 2.1 summarizes the
complexity results we established for POTC.

Parameters EDGE POTC VERTEX POTC

k FPT: 2k FPT: 2k

r W[1]-hard, Theorem 2.8 W[1]-hard, Theorem 2.9

p FPT: 2O(p2), Theorem 2.7 W[1]-hard, Theorem 2.9

r, p FPTa: 2O(p2), Theorem 2.7 W[1]-hard, Theorem 2.9

aAnother FPT algorithm designed specifically for both parameters r and p performs 2O(r)4p, see Theo-
rem 2.4

Table 2.1: Overview on the complexity of POTC regarding the parameters k, r, p and p+ r.

This table summarizing the results on POTC for parametrizations involving k, p, and r is
complete. We observe a difference between the complexity of EDGE POTC and VERTEX

POTC when p is a parameter. Such a complexity gap on cut problems also exists for the
problem called MINIMUM BISECTION [39]. Given a graph and parameter p, it asks for two
sets A,B partitioning V such that |A| = bn2 c, |B| = d

n
2 e, and the number of edges between

A and B is at most p. Our results confirm that the complexity of edge and vertex cut
problems may differ. Perhaps this is also the case for PARTIAL MULTICUT, which is more
general than POTC. A consequence of our hardness result for VERTEX POTC is that VERTEX

PARTIAL MULTICUT is W[1]-hard for parameter p only. However, the complexity of EDGE

PARTIAL MULTICUT parameterized by p remains open.

30

2.3 Counting minimum (S, T)-cuts

After the study of the cut decision problem POTC, we focus on one of the most natural
counting cut problems, COUNTING MIN-(S, T)-CUTS, to find the exact number of minimum
(S, T)-cuts in an undirected graph G. As it is #P-complete [7] and thus unlikely solvable in
polynomial time, we study its fixed-parameter tractability. The size of the minimum (S, T)-
cuts p is chosen as a parameter.
As with cut decision problems, the vertex version of this counting problem may be harder
than the edge one (Theorem 2.2, page 20). Said differently, an FPT〈p〉 algorithm for the
counting of minimum vertex (S, T)-cuts can be used to solve the counting of minimum edge
(S, T)-cuts in time FPT〈p〉 as well.
COUNTING MIN-(S, T)-CUTS is FPT〈p〉 because an algorithm can be deduced from two
results reported in the literature [20, 62]. It performs in running timeO∗

(
22

p)
. Unfortunately,

this double exponential makes it intractable even for small values of p. Our objective is to
devise an algorithm which counts the minimum (S, T)-cuts in time O∗(2poly(p)), where poly
is a polynomial function.
First, in Section 2.3.1, we propose an algorithm counting only the minimum edge (S, T)-
cuts in O∗

(
2O(p2)

)
[16]. It uses the concepts of drainages and dry instances that we

defined. Second, in Section 2.3.2, we refined this algorithm in order to count minimum
vertex (S, T)-cuts in a reasonable time. The concepts used to deal with edge cuts have
been adapted to vertex (S, T)-cuts. Moreover, new concepts, as the local drainage, have
been introduced for the second algorithm which counts the minimum vertex (S, T)-cuts in
time O∗

(
2O(p log p)

)
[12]. We lower the time complexity dedicated to the edge cut counting,

as the edge-to-vertex reduction allows us to count the minimum edge (S, T)-cuts with this
new contribution.

2.3.1 Counting minimum edge (S, T)-cuts with exponential factor 2O(p2)

The first part of this section details the tools needed to design our algorithm counting mini-
mum edge (S, T)-cuts in time O∗

(
2O(p2)

)
. The two fundamental concepts we introduce are

the drainage and the dry instances. Then, we present our recursive algorithm and provide
elements proving its FPT〈p〉 complexity.

Construction of the drainage

We build the drainage, a collection of minimum cuts Zi, i ∈ {1, . . . , k}, where k < n,
such that at least one edge of any minimum (S, T)-cut X belongs to

⋃k
i=1 Zi. First, we

list the properties of the drainage. Second, we present the method to find this structure in
polynomial time. In particular, we will construct cuts Zi as the successive closest cuts of
instance I = (G,S, T).
The drainage Z (I) = (Z1, . . . , Zk) of an instance I = (G,S, T) is a collection of disjoint
minimum (S, T)-cuts Zi, |Zi| = p, satisfying the following properties:

• there are less than n cuts Zi, i.e. 1 ≤ k < n,

• the source sides of cuts Zi fulfil R(Zi, S) (R(Zi+1, S) for i ∈ {1, . . . , k − 1},

• for any minimum (S, T)-cut X, there is at least one cut Zi which has edges with X in
common: X ∩ Zi 6= ∅.

Observe that a similar tool was devised by Marx et al. in [62]. It is also a succession of cuts
Xi satisfying R(Xi, S) (R(Xi+1, S). Given an integer ` ≥ p, they compute in polynomial
time a collection of (S, T)-cuts X1, . . . , Xq, q ≤ n, such that any edge of a minimal (S, T)-
cut of size at most ` is in ∪qi=1Xi. It characterizes all minimal (S, T)-cuts of size at most `,

31

R1 R2 R3 R4

s1

s2

s3

t1

t2

Z1
Z2

Z3

Figure 2.7: The drainage (cuts Zi, sets Si and Ri) for an instance containing graph G,
sources S = {s1, s2, s3} and targets T = {t1, t2}. Here, S1 = R1 (in general, S1 ⊆ R1).

not only the minimum ones, although it may contain cuts Xi, Xi+1 which are not disjoint,
Xi ∩ Xi+1 6= ∅. Our drainage, however, is such that any edge is in at most one cut Zi.
For this reason, our drainage not only characterizes minimum (S, T)-cuts but contains less
cuts than the structure defined in [62] as well. The drainage property Zi ∩Zi+1 = ∅, for any
i ∈ {1, . . . , k}, is a necessary condition as our algorithm benefits from it.
We construct the drainage iteratively. Let S1 = S and Z1 be the minimum closest (S1, T)-
cut. We fix R1 = R(Z1, S). Let S2 be the set of vertices incident to edges of Z1 inside
R(Z1, T): S2 = V T (Z1) = {v /∈ R1, (u, v) ∈ Z1}.
Next, we construct Z2 which is the minimum closest (S2, T)-cut in G\R(Z1, S). If |Z2| > p,
the drainage construction stops. Otherwise, if |Z2| = p, set R2 follows the same scheme as
R1, R2 = R(Z2, S2) in graph G\R(Z1, S). We repeat the process until no more minimum
(Si, T)-cut Zi of size p can be found. We denote by k the number of cuts Zi produced and
fix Rk+1 = R(Zk, T). Cuts Zi form the minimum drainage cuts of I.
Figure 2.7 provides us with an example of graph G with S = {s1, s2, s3} and T = {t1, t2}
and indicates its drainage. The size of minimum (S, T)-cuts is p = 4. Blue, red, and green
edges represent minimum drainage cuts Z1, Z2, and Z3, respectively. Similarly, blue, red,
green, and yellow vertices represent sets S1 = S, S2, S3, and S4. Source sides R1, R2, R3,
and R4 are also appropriately colored. As the size of the minimum cut between S4 (yellow
vertices) and T in graph G\R(Z3, S) is greater than p, we have k = 3.
We emphasize that set Ri, which is R(Zi, Si) taken in G\R(Zi−1, S), and set R(Zi, S)
are different for i 6= 1. On the one hand, set R(Zi, S) =

⋃i
`=1R` contains the vertices

reachable from S in graph G deprived of Zi. On the other hand, set Ri can be written
Ri = R(Zi, S)\R(Zi−1, S). Sets Ri and Ri+1 are disjoint and nonempty, as Si ⊆ Ri and
Si+1 ⊆ Ri+1. Another crucial property is that the minimum drainage cuts are disjoint:
Zi ∩ Zj = ∅. The number k of minimum drainage cuts is less than n. The running time
needed to construct the drainage is in O(mnp).

Theorem 2.10. The drainage Z(I) is obtained in time O(mnp).

Proof. According to Lemma 2.4, the minimum closest cut of any instance is computed
in O(mp). As there are less than n drainage cuts in Z(I), all cuts Zi are retrieved in
O(mnp).

The source sides of cuts Zi are included one into another: R(Zi, S) (R(Zi+1, S). The
following theorem shows that, for any minimum (S, T)-cut X, there is a cut Zi containing
edges of X. Among cuts Zi sharing edges with X, we are interested in the one with the
smallest index.

Definition 2.14 (Front of X). The front of a minimum (S, T)-cut X, i(X), 1 ≤ i(X) ≤ k is
the smallest index i such that Zi ∩X 6= ∅.

32

R1 R2 R3 R4

s1

s2

s3

t1

t2

Figure 2.8: Menger’s paths in graph G with sources S = {s1, s2, s3}, targets T = {t1, t2}.

The next theorem states the properties of i(X) for any minimum (S, T)-cut.

Theorem 2.11. Any minimum (S, T)-cut X admits a front i(X) and verifies
X ∩ E

[
R(Zi(X), S)

]
= ∅.

Proof. First, cut X cannot be entirely included in E [Rk+1]. If it was, it would be a minimum
(Sk+1, T)-cut of size p, which contradicts the drainage definition. So, some edges of X are
incident to R(Zk, S).
Second, no edge of X belongs to E [R(Z1, S)] as cut Z1 is the minimum closest (S, T)-cut.
Therefore, there is an index i ≥ 1 such that no edge of X belongs to E [R(Zi, S)] but at
least one has an endpoint in Ri+1.
Obviously, if an edge of X belongs to Zi, the theorem holds: i = i(X). We study the case
where no edge of X belongs to Zi and there is an edge e of X, e ∈ E [Ri+1]. According to
the definition of index i, no edge of X belongs to E [R(Zi, S)], and therefore all edges of X
have to be on the target side E [R(Zi, T)]. Therefore, X is a minimum (Si+1, T)-cut in graph
G\R(Zi, S). Either cut X is a minimum closest (Si+1, T)-cut (and then we fix Z = X) or the
minimum closest (Si+1, T)-cut Z is different than X and it fulfils R(Z, Si+1) (R(X,Si+1).
Since there is an edge e ∈ X ∩ E [Ri+1], then one of its endpoints v ∈ Ri+1 belongs
to R(X,T). Consequently, v /∈ R(Z, Si+1). This brings a contradiction: cutset Zi+1 is
the unique minimum closest (Si+1, T)-cut and R(Zi+1, Si+1) = Ri+1. As vertex v can be
reached from Si+1 after the removal of Zi+1 but not after the removal of Z, cuts Z and Zi+1

differ. Thus, cut Z cannot be the minimum closest (Si+1, T)-cut.
In summary, there is an index i such that no edge of X belongs to E [R(Zi, S)] and, more-
over,X∩Zi 6= ∅. This means that there is no index ` < i such thatX∩Z` 6= ∅. Consequently,
index i is the front of X: i = i(X).

The reader can verify that any minimum (S, T)-cut of G contains some edges of at least
one cut Z1, Z2, Z3 in Figure 2.7.

Dry instances and closest dams

For any minimum edge (S, T)-cut X, we know that some of its edges of X also belong
to one of the minimum drainage cuts Zi. We introduce a concept called the dry instance
which characterizes the edges of X which are not in Zi but in its target side. The definition
of the dry instance requires a certain preliminary effort.
We said in Section 2.1.3 that an arbitrary collection of p edge-disjoint (S, T)-paths Q =
{Q1, . . . , Qp} can be computed in timeO(mp). PathsQ1, . . . , Qp, called Menger’s paths, are
used to devise our algorithm. In Figure 2.8, Menger’s paths are indicated in the instance
(G,S, T) depicted in Figure 2.7.
We begin by the definition of dams which are subsets of cuts Zi of the drainage of G.

Definition 2.15 (Dam). A dam Bi is a nonempty subset of a minimum drainage cut Zi, i.e.
Bi ⊆ Zi, Bi 6= ∅.

33

Thanks to this definition, Theorem 2.11 together with the concept of the front makes us
observe that any minimum (S, T)-cut X contains a front dam:

Definition 2.16 (Front dam). The front dam of a minimum (S, T)-cutX is Bi(X) = X∩Zi(X).

We know that all edges in X\Bi(X) belong to the target side of Zi(X), E
[
R(Zi(X), T)

]
, and

the source side of Zi(X) is empty, X ∩E
[
R(Zi(X), S)

]
= ∅. If X\Bi(X) = ∅, then X = Zi(X).

A dam Bi is characterized by:

• its level, i.e. the index i of the cut Zi it belongs to,

• its signature σ(Bi) = {Qj : Bi ∩Qj 6= ∅}, i.e. the set of Menger’s paths passing
through it.

Choking graph G with dam Bi(X) puts in evidence a subgraph which still connects S and T
through X\Bi(X). Our idea is to dam a graph gradually in order to dry it completely.
The description of the method we devised to reach this goal requires a transformation of
G into GD which is actually G with certain edges directed (GD is a mixed graph). If edge
e does not belong to a Menger’s path, it stays undirected. For path Qj : v

(j)
1 · v

(j)
2 · v

(j)
3 · · ·

, edges (v
(j)
i , v

(j)
i+1) become arcs (v

(j)
i , v

(j)
i+1), respecting the natural flow from sources to

targets.
Figure 2.8 illustrates graph GD. Arrows indicate the arcs while bare segments represent its
edges. According to our preliminary work on Menger’s paths in Lemma 2.1, any minimum
(S, T)-cut of G is made up of arcs in GD. Minimum drainage cuts Zi are thus composed of
arcs, directed from Ri to Ri+1. We insist on the fact that graph GD is only used to define
the notion of dry area, we do not count minimum cuts in it.

Definition 2.17 (Dry area). The dry area of Bi is the set A∗(Bi) which contains the vertices
of G which are not reachable from S in graph GD deprived of Bi, i.e. GD\Bi.

In a less formal way, set A∗(Bi) keeps vertices which are dried as Bi is the only means to
irrigate them. The definition of the dry instance follows.

R1 R2 R3 R4

s1

s2

s3

t1

t2

B2S∗(B2)

A∗(B2)

T ∗(B2)

Figure 2.9: An example of dam B2 and its dry instance D (I, B2) =
(G∗(B2), S

∗(B2), T
∗(B2))

Definition 2.18 (Dry instance). The dry instance induced by a dam Bi is an instance
D (I, Bi) = (G∗(Bi), S

∗(Bi), T
∗(Bi)) with graph G∗(Bi) = (V ∗(Bi), E

∗(Bi)). In particular,

• set S∗(Bi) keeps vertices reachable from S “just before” dam Bi. Formally, it contains
the tails of arcs in Bi: S∗(Bi) = {u : (u, v) ∈ Bi},

• set T ∗(Bi) keeps vertices placed “after” dam Bi which become irrigated in GD\Bi.
Formally, it contains the heads of arcs which have their tail either inside S∗(Bi) or in-
sideA∗(Bi) and their head outside: T ∗(Bi) = {v /∈ A∗(Bi) : (u, v) ∈ E, u ∈ S∗(Bi) ∪A∗(Bi)},

34

• set V ∗(Bi) is the union: V ∗(Bi) = S∗(Bi) ∪A∗(Bi) ∪ T ∗(Bi),

• set E∗(Bi) stores edges of G which lie inside the dry area of Bi or on its border (one
endpoint is outside) in GD. Formally, it is composed of edges with two endpoints in
V ∗(Bi) and at least one of them inA∗(Bi): E∗(Bi) = {(u, v) ∈ E : u ∈ A∗(Bi), v ∈ V ∗(Bi)}.

Figure 2.9 gives an example of dam B2 ⊆ Z2 and the dry instance it induces in G. Its arcs
are drawn in red, arcs of Z2\B2 are red and dashed. Blue vertices represent the vertices
unreachable from S in GD\B2, i.e. set A∗(B2). Sets S∗(B2) and T ∗(B2) are drawn in
green and purple, respectively. Set E∗(B2) is composed of dam B2 (red arcs) and blue
edges/arcs.
An important property of dry areas is that there is no arc (u, v) of GD “entering” in the dry
area A∗(Bi), except for arcs in Bi.

Lemma 2.7. For any dam Bi, there is no arc (u, v) in GD such that u /∈ A∗(Bi) and v ∈
A∗(Bi), except for arcs in Bi. Moreover, there is no undirected edge with exactly one
endpoint in A∗(Bi).

Proof. Suppose that such an arc (u, v) /∈ Bi exists. As u /∈ A∗(Bi), it is reachable from
S in GD\Bi. Therefore, v can be reached too: this contradicts v ∈ A∗(Bi). For the same
reason, there is no undirected edge (u, v) with only endpoint in A∗(Bi) as the existence of
this edge makes both its endpoints be reachable from S in GD\Bi.

In Theorem 2.12 (page 37), we provide a characterization of any minimum (S, T)-cut which
is based on dry instances and on closest dams. We start by:

Definition 2.19. A dam Bh is closer than dam Bi if:

• h < i,

• σ(Bh) = σ(Bi),

• edges in Bi are the only edges of level i inside the dry instance of Bh: E∗(Bh)∩Zi =
Bi.

As a consequence, the dry area of Bi is included in the dry area of Bh when Bh is closer
than Bi: A∗(Bi) (A∗(Bh). Indeed, if a vertex is unreachable from S in GD\Bi, then it
is also unreachable from S in GD\Bh as arcs of Bi cannot be attained from S in GD\Bh
according to Definition 2.19.

Definition 2.20 (Closest dam). Dam Bi is a closest dam if no dam Bh, h < i is closer than
Bi.

For any dam Bi, either Bi is a closest dam or there is a closest dam Bh 6= Bi, closer than
Bi. Each dam Bi admits a closest dam (itself or Bh) which is unique.

Lemma 2.8. Any dam Bi has a unique closest dam.

Proof. If Bi is already a closest dam, then it is its own unique closest dam.
Now, we suppose that there are two closest dams of Bi, denoted by Bh1 and Bh2 . Neces-
sarily, h1 6= h2, otherwise Bh1 = Bh2 as, according to Definition 2.19, they have the same
signature.
We prove that under the hypothesis h1 < h2, dam Bh1 is closer than Bh2 . Suppose, to-
wards a contradiction, that there is an arc e2 = (u2, v2) ∈ Bh2 which does not belong to
set E∗(Bh1). As e2 /∈ E∗(Bh1), vertex u2 is not inside A∗(Bh1), otherwise, according to
Definition 2.19, e2 would belong to E∗(Bh1). So, there is a path Q̂ connecting sources from

35

S with u2, which avoids arcs in Bh1 . Arc e2 belongs to a Menger’s path Qj . A section of this
path, denoted by Q̂′j , connects u2 with a tail u3 of an arc (u3, v3) in Bi, because Qj passes
through Bi: σ(Bi) = σ(Bh2). The concatenated path Q̂ · Q̂′j connects S with Bi while
avoiding Bh1 : this is a contradiction as Bi ⊆ E∗(Bh1). Consequently, Bh2 ⊆ E∗(Bh1)∩Zh2 .
The equality Bh2 = E∗(Bh1) ∩ Zh2 comes from the fact that Bh1 and Bh2 have the same
signature σ(Bi). Arcs in dam E∗(Bh1) ∩ Zh2 belong to different Menger’s paths. If Bh2 6=
E∗(Bh1) ∩ Zh2 , then we have: |σ(Bh2)| < |σ (E∗(Bh1) ∩ Zh2)| ≤ |σ(Bh1)|. Therefore, Bh2 =
E∗(Bh1) ∩ Zh2 , so Bh1 is closer than Bh2 which is contradictory to our assumption that Bh2
is a closest dam.

Moreover, if Bh is a closest dam then its complement Bh = Zh\Bh is also a closest dam.
This property will be used to prove the fixed-parameter tractability of our algorithm.

Lemma 2.9. If Bh is a closest dam, then Bh = Zh\Bh is also a closest dam.

Proof. Suppose that Bh is closest and Bh is not: let Bα denote the closest dam of Bh,
α < h.
First, we focus on the dry instance of dam Bα between levels α and h. We prove that
no edge/arc (u, v), with the exception of arcs from dam Bα, has one endpoint inside the
dry instance of Bα before level h (i.e. in the source side of cut Zh) and one outside. We
distinguish two cases:

• Case 1: If arc (u, v) is such that u /∈ A∗
(
Bα

)
and v ∈ A∗

(
Bα

)
, then Lemma 2.7

brings the contradiction. This argument also holds when (u, v) is undirected.

• Case 2: If arc (u, v) is such that u ∈ A∗
(
Bα

)
is before level h and v /∈ A∗

(
Bα

)
,

then a Menger’s path Qj leaves the dry instance of Bα through this arc. However,
dams Bα and Bh have the same signature, so path Qj also contains an arc of Bh

placed after arc (u, v). Consequently, there exists an arc (u′, v′), u′ /∈ A∗
(
Bα

)
and

v′ ∈ A∗
(
Bα

)
, to make path Qj go back inside D(I, Bα). This contradicts Case 1.

Figure 2.10 illustrates the explanations given in Case 2 on a graph G with dams Bh,
Bh, Bα, and Bα. In this example, vertices u′ and v are identical.

s1

s2

s3

u

v = u′

v′
t1

t2Bα Bh

BαQj Bh

E∗(Bh)E∗(Bα))R(Zα, S)

Figure 2.10: Illustration of the contradiction we arose for Case 2 in the proof of Lemma 2.9.

Second, we show that any vertex of V S(Bh) is unreachable from S in GD\Bα, where Bα =
Zα\Bα. We suppose that a path Q inside graph GD\Bα connects a source s ∈ S with a
vertex w ∈ V S(Bh). Path Q necessarily traverses level α, so it contains an arc (u, v) of Bα,
as the complement dam Bα has been removed. As dam Bα is closer than Bh, vertices of
V T (Bα) form a subset of A∗

(
Bα

)
, otherwise one vertex of V T (Bα) is reachable in GD\Bα

and Menger’s paths make a vertex in V S(Bh) be reachable too, which is impossible. For
this reason, path Q must contain a vertex v ∈ A∗

(
Bα

)
. Therefore, it connects a vertex

v inside the dry instance of Bα with vertex w which is outside. As a consequence, there

36

is an edge/arc leaving the dry instance of Bα on path Q, which is a contradiction with our
reasoning in Case 2.
Eventually, all vertices of V S(Bh) are unreachable from S in GD\Bα, so arcs of Bh be-
long to the dry instance of Bα. Conversely, arcs of Bh do not belong to E∗ (Bα), as the
Menger’s paths containing arcs of Bα connect S with Bh despite the removal of Bα. There-
fore, E∗ (Bα) ∩ Zh = Bh. Moreover, σ

(
Bα

)
= σ

(
Bh

)
as Bα is closer than Bh, so their

complement dams also have the same signature: σ (Bα) = σ (Bh). Dam Bα is thus closer
than Bh, which is a contradiction because Bh is supposed to be a closest dam.

Observe that the dry areas of a dam Bi and of its complement Bi, A∗(Bi) and A∗(Bi)
respectively, are disjoint because any vertex is reachable from S either in G\Bi or in G\Bi

or in both of them.
Theorem 2.12 provides us with the keystone to build our FPT〈p〉 algorithm. It combines
the concepts of dry instance and closest dam: given a minimum (S, T)-cut X and its front
dam Bi(X), either X\Bi(X) = ∅ and X = Zi(X) or edges in X\Bi(X) 6= ∅ belong to the dry
instance of the dam Bh(X) = Zh(X)\Bh(X), where Bh(X) is the closest dam of Bi(X).

Theorem 2.12. If X 6= Zi(X) is a minimum cut for I, Bi(X) its front dam, and Bh(X) the
closest dam of Bi(X), then set X\Bi(X) is a minimum cut for the dry instance of Bh(X) =

Zh(X)\Bh(X), i.e. D
(
I, Bh(X)

)
.

Proof. We prove that all edges in X\Bi(X) belong to the dry instance of Bh(X). Let us
suppose ad absurdum that an edge e = (u, v) ∈ X\Bi(X) is reachable from S in graph
GD deprived of the dam Bh(X). Edge e is an arc (u, v) in GD. We denote by Pe a path
in GD starting from a source s ∈ S and terminating with (u, v), deprived of arcs of Bh(X),
Pe : s · · ·u · v.
Due to the iterative construction of cuts Zi, path Pe necessarily contains one edge eh =
(uh, vh) of level h(X) when it arrives at a level greater than i(X) ≥ h(X). We know that this
edge eh does not belong to Bh(X), so eh ∈ Bh(X) and Pe : s · · ·uh · vh · · ·u · v. From now on,

we focus on the segment of path Pe, denoted by P (h)
e , which contains all edges between eh

and e, i.e. P (h)
e : uh · vh · · ·u · v. The proof goes in two steps:

Step 1: Path P (h)
e contains an arc of Bi(X).

Step 2: The existence of a path in GD containing both an arc of Bi(X) (proven in Step 1)
and arc e contradicts the definition of cut X.
For Step 1, let us suppose that the path P (h)

e does not contain arcs of Bi(X). This means

that path P (h)
e passes by the dry instance ofBh(X) between levels h(X) and i(X), otherwise

it would necessarily contain an arc of Bi(X). So, there is an edge/arc of this path, ẽ = (ũ, ṽ),
where ũ is in the dry area of Bh(X) but not in the dry area of Bi(X), and ṽ lies outside the
dry area of Bh(X). In brief, ũ ∈ A∗(Bh(X))\A∗(Bi(X)) and ṽ /∈ A∗(Bh(X)). Edge ẽ must
be an arc (ũ, ṽ) in GD according to Lemma 2.7. Arc ẽ belongs to a Menger’s path Qj(ẽ)
passing through Bh(X), i.e. Qj(ẽ) ∈ σ(Bh(X)). Path Qj(ẽ) must traverse an arc of Bi(X) as
σ(Bi(X)) = σ(Bh(X)). As a consequence, path Qj(ẽ) connects a vertex ṽ outside the dry
area of Bh(X) with the tail u′i of an arc e′i = (u′i, v

′
i) of Bi(X). This is a contradiction, as

vertex u′i is supposed not to be reachable from S in GD deprived of cut Bh(X). Path P
(h)
e

thus contains an arc of Bi(X) denoted by ei = (ui, vi).

For Step 2, let ê = (û, v̂) 6= ei be the first arc of cut X in path P (h)
e which arrives after ei on

this path (Figure 2.11). In this way, we ensure that no edge of X lies on path P (h)
e between

vertices vi and û. Arc ê exists as e is a potential candidate to be one.
As vertex vi is the head of ei in graph GD, vi ∈ R(X,T) according to Lemma 2.1 in page 18.
For the same reason, vertex û ∈ R(X,S) as it is the tail of arc ê ∈ X. We know that path
P

(h)
e in GD connects these two vertices and there is no arc of X on the segment of P (h)

e

37

s1

s2

s3

û

v̂

uh vh

ui vi
ei

ê t1

t2Bh(X)

Bh(X)

Bi(X)

E∗(Bh(X))

E∗(Bi(X))

E∗(Bh(X)))
R(Zh(X), S)

Figure 2.11: Illustration of the segment of path Pe between S and ê, traversing dams Bh
and Bi.

connecting them. Let us go back now to the initial undirected graph G. In graph G\X,
vertices vi ∈ R(X,T) and û ∈ R(X,S) are connected whereas they must be separated by
X. The presence of an edge (u, v) of X outside E∗(Bh(X)) yields a contradiction.
In summary, all edges in X\Bi(X) belong to the dry instance of Bh(X). They necessarily
form a cut in instance D

(
I, Bh(X)

)
, otherwise X would not separate S and T in I. The

p−
∣∣Bh(X)

∣∣ Menger’s paths in signature σ(Bh(X)) are edge-disjoint inside D
(
I, Bh(X)

)
, so

the minimum cut size of this instance is greater than p −
∣∣Bh(X)

∣∣. As X\Bi(X) contains
p−

∣∣Bi(X)

∣∣ = p−
∣∣Bh(X)

∣∣ edges, we conclude that it is a minimum cut of D
(
I, Bh(X)

)
.

Therefore, any minimum (S, T)-cut X, which is not a minimum drainage cut Zi(X) itself, can
be partitioned into two sets, Bi(X) and X\Bi(X), such that:

• Bi(X) is a minimum cut of instance D
(
I, Bh(X)

)
and a dam of I,

• X\Bi(X) is a minimum cut of instance D
(
I, Bh(X)

)
and all its edges belong to the

target side of Zi(X), E
[
R(Zi(X), T)

]
.

Conversely, given a closest dam Bh and its complement Bh = Zh\Bh, the union Bi ∪XBh
,

where the closest dam of Bi is Bh and XBh
is a minimum cut of D

(
I, Bh

)
, separates S

from T .

Theorem 2.13. Let Bh be a closest dam of Z(I) and Bh = Zh\Bh. Let Bi be a dam
such that Bh is closer than Bi and XBh

a minimum cut of D
(
I, Bh

)
. Then, Bi ∪XBh

is a
minimum (S, T)-cut for instance I.

Proof. As dam Bh is closer than Bi, the edges of Bi form a minimum cut of D (I, Bh).
Indeed, they are the edges of level i insideD (I, Bh), so they separate S∗(Bh) from T ∗(Bh).
Moreover, we know there is a set of |σ(Bh)| edge-disjoint paths from S∗(Bh) to T ∗(Bh) in
D (I, Bh). As |σ(Bh)| = |σ(Bi)| = |Bi|, set Bi is a minimum cut of instance D (I, Bh).
We suppose that there is an open (S, T)-path Q in undirected graph G deprived of edges
Bi ∪XBh

. Path Q cannot avoid level h of the drainage and passes through one edge of Zh.
As Bh ∪ Bh = Zh, some edges of path Q belong either to the dry instance of Bh or to the
dry instance of Bh, or to both of them.
First, from Lemma 2.7 we know that no edge of graph G has one endpoint in the dry area
A∗(Bh) of Bh and the another one in the dry area A∗(Bh) of Bh.
Second, we show that the existence of path Q yields a contradiction with the definition of
the dry instance. As sets A∗(Bh) and A∗(Bh) cannot be connected by an edge of G, path
Q “traverses” completely at least one of the dry instances D (I, Bh) or D

(
I, Bh

)
, with no

38

S

S∗(Bh)

S∗(Bh)

A∗(Bh)

A∗(Bh)

A∗(Bi)

Levels of
D(I, Bh)

i− h+ 11

T

T ∗(Bh)

T ∗(Bh)

Bh

Bh

Bi

Bi

Figure 2.12: Illustration of Theorem 2.14: for any minimum cut with the front dam Bi, the
tails of arcs in X\Bi belong to the yellow zone.

loss of generality we say D (I, Bh). In other words, a segment of Q connects S∗(Bh) and
T ∗(Bh). This is not possible because dam Bi separates these two sets of vertices. With
the dry instance D

(
I, Bh

)
, we obtain the same contradiction as XBh

separates S∗(Bh)

and T ∗(Bh). Therefore, Bi ∪XBh
separates S from T with p edges, as

∣∣∣XBh

∣∣∣ =
∣∣σ(Bh)

∣∣ =

p− |Bi|.

We now prove a stronger result for set X\Bi(X). In fact, edges of set X\Bi(X) lie in the
target side of level i(X)−h(X)+1 in the drainage of instance D

(
I, Bh(X)

)
. This statement

is formulated in the theorem below.

Theorem 2.14. Let X be a minimum (S, T)-cut of G and let (Z ′1, . . . , Z
′
k′) be the drainage of

instance D
(
I, Bh(X)

)
. Then, set Z ′i(X)−h(X)+1 is equal to Bi(X) = Zi(X)\Bi(X) and edges

X\Bi(X) belong to the target side of Z ′i(X)−h(X)+1 inside instance D
(
I, Bh(X)

)
.

Proof. According to Theorem 2.12, we know that edges of X\Bi(X) belong to the dry in-
stance of Bh(X), i.e. E∗(Bh(X)). Moreover, they are also in the target side of Zi(X), as
Bi(X) (Zi(X) is the front dam of X. We denote by Bi(X) the complement of Bi(X) in Zi(X),
Bi(X) = Zi(X)\Bi(X). We want to prove that dam Bi(X) is the minimum drainage cut of
level i(X)− h(X) + 1 in instance D

(
I, Bh(X)

)
. For this purpose, we first prove that Bh(X)

is closer than Bi(X).
Dam Bi(X) has the same signature as Bh(X) because their respective complement fulfil
σ(Bi(X)) = σ(Bh(X)). Moreover, we prove that arcs of Bi(X) are in the dry instance of
Bh(X). Suppose an arc ei = (ui, vi) of Bi(X) does not belong to E∗

(
Bh(X)

)
. Let Qj be the

Menger’s path containing arc ei. Then, no arc of Qj after ei is inside instance D
(
I, Bh(X)

)
.

This is a contradiction as path Qj must contain an edge of cut X. Indeed, path Qj contains
neither an arc of Bi(X) as σ(Bi(X))∩σ(Bi(X)) = ∅ nor an arc of X\Bi(X) as all its arcs after
level i(X) do not belong to D

(
I, Bh(X)

)
(contradiction with Theorem 2.12). In summary,

dam Bh(X) is closer than Bi(X).
All dams B` such that σ(Bh(X)) = σ(B`) and h(X) < ` < i(X) have a common closest
dam: Bh(X). Indeed, if it is not the case for a dam B`, there is an arc (u`, v`) ∈ B` where
u` /∈ A∗

(
Bh(X)

)
. As a consequence, dam Bi(X) is not contained in E∗(Bh(X)), as arc

(u`, v`) belongs to a Menger’s path containing an arc of Bi(X).
We focus now on the drainage of instance D

(
I, Bh(X)

)
. The minimum drainage cut of level

one in this instance is Bh(X) itself, as it is the minimum closest
(
S∗(Bh(X)), T

∗(Bh(X))
)
-cut.

39

Let Bh(X)+1 be the dam of level h(X) + 1 in I fulfilling σ(Bh(X)) = σ(Bh(X)+1) and
Bh(X)+1 its complement. We prove that Bh(X)+1 is the minimum drainage cut of level
two in D

(
I, Bh(X)

)
, i.e. it is the minimum closest cut between V T (Bh(X)) and T ∗(Bh(X))

in graph G∗(Bh(X)) deprived of R
(
Bh(X), S

∗(Bh(X))
)
. Suppose that there is another mini-

mum closest cut ZBh(X)
6= Bh(X)+1. Set XBh(X)

= ZBh(X)
∪ Bh(X)+1 is a minimum (S, T)-

cut of instance I according to Theorem 2.13. As its edges belong to the target side of
Zh(X), it is a minimum (Sh(X)+1, T)-cut. Based on the definition of ZBh(X)

, the source side

XBh(X)
is necessarily included into the source side of Zh(X)+1 = Bh(X)+1∪Bh(X)+1 in graph

G\R(Zh(X), S). This is a contradiction to the construction of the drainage, as Zh(X)+1 is the
unique minimum closest (Sh(X)+1, T)-cut in graph G\R(Zh(X), S). Consequently, Bh(X)+1

is the minimum drainage cut of level two inside D
(
I, Bh(X)

)
.

We can iterate these arguments on dams Bh(X)+2, Bh(X)+3, etc. For example, dam
Bh(X)+2, σ(Bh(X)+2) = σ(Bh(X)), is the minimum closest

(
V T (Bh(X)+1), T

)
-cut when

graph G∗(Bh(X)) is deprived of R
(
Bh(X)+1, S

∗(Bh(X))
)
. Otherwise, it would imply that

Zh(X)+2 is not the minimum closest (Sh(X)+2, T)-cut in graph G\R(Zh(X)+1, S), which con-
tradicts the construction of the drainage. Eventually, dam Bh(X)+2 is the minimum drainage
cut of level three inside D

(
I, Bh(X)

)
, dam Bh(X)+3 of level four, etc. Then, dam Bi(X) is

the minimum drainage cut of level i(X)− h(X) + 1 in instance D
(
I, Bh(X)

)
.

Coming back to Theorem 2.12, the edges of X\Bi(X) belong to both sets E∗(Bh(X)) and
E
[
R(Zi(X), T)

]
. They are in the target side of dam Bi(X) inside instance D

(
I, Bh(X)

)
.

Description of the algorithm

Our algorithm starts by computing the drainage Z(I) and the Menger’s paths of input in-
stance I. For all dams Bi, it counts the minimum cuts of size p in I which admit the front
dam Bi. If Bi 6= Zi, it does this recursively by counting the minimum cuts in instance
D
(
I, Bh

)
which only contains edges from the target side of the internal level i − h + 1 of

D
(
I, Bh

)
, where Bh is the closest dam of Bi. The minimum cut size in D(I, Bh) is at most

p− 1.
We denote by C0(I) = C(I) the total number of minimum (S, T)-cuts of instance I. We
define C`(I) as the number of minimum cuts of instance I which are composed of edges
from E [R(Z`, T)] only. For example, C2(I) gives the number of minimum (S, T)-cuts in
instance I without edges of Z1 ∪ Z2. Value C`(I), 0 ≤ ` ≤ k − 1, can be written:

C`(I) = k − `+
∑

Closest
dam Bh(Zh

∑
i : i>`,
∃Bi:Bh

closer than Bi

Ci−h+1

(
D
(
I, Bh

))
. (2.2)

The first k − ` cuts are the minimum drainage cuts of I with level greater than `, i.e. cuts
Z`+1, . . . , Zk. The second term counts cuts taking edges only from E [R(Z`, T)] and ad-
mitting a front dam Bi(X) 6= Zi(X). Theorems 2.12 and 2.14 guarantee that any of these
minimum (S, T)-cuts is counted at least once. Indeed, for any front dam Bi and its closest
dam Bh, we compute the number of cuts in instance D

(
I, Bh

)
such that all their edges

belong to the target side of Bi, which is the internal level i−h+ 1 in D
(
I, Bh

)
. In the event

that the drainage of D
(
I, Bh

)
has less than i− h + 1 levels, then Ci−h+1

(
D
(
I, Bh

))
= 0,

as it means no minimum cut of I has the front dam Bi.
Conversely, the unicity of a closest dam ensures us that each minimum cut is counted
exactly once. A minimum (S, T)-cut X 6= Zi(X) has a unique front dam Bi(X) and the
closest dam Bh(X) of Bi(X) is unique (Lemma 2.8). Finally, Theorem 2.13 guarantees that
all cuts counted with Eq. (2.2) are minimum (S, T)-cuts.

40

Value C0(I) is computed thanks to recursive calls on multiple instances D
(
I, Bh

)
. From

now on, we distinguish the input instance I (for which we want to compute C0(I)) with other
instances (denoted by J later on) of the recursive tree. The base cases of the recursion,
i.e. the leaves of the recursive tree, are the computation of values C`(J) either in instances
J where the minimum cut size is one or in instances where no minimum cut admits a
front dam Bi 6= Zi, i > `. In both cases, the only minimum cuts of J are its minimum
drainage cuts. Each recursive call of the algorithm makes the minimum cut size decrease:
for example, if the minimum cut size of J is q, then it is

∣∣Bh

∣∣ < q for an instance D
(
J , Bh

)
.

Therefore, the recursive tree is not deeper than p− 1.
Figure 2.13 illustrates the recursive scheme of our algorithm with a tree describing the
relationship between the instances. Three instances I, J , and J ′ of the recursive tree are
represented. For example, instance J = D

(
I, Bh

)
is the son of instance I in the tree as it

is one of its dry instances.
In parallel, another graph (black dashed arcs in Figure 2.13) contains arcs with endpoints
C` (J). An arc connects two “compartments” C` (J) and C`′ (J ′) when the computation of
C` (J) depends on C`′ (J ′). The minimum (S, T)-cut size of J ′ is smaller than the one of
J . This is why the graph made of arcs between compartments is a DAG, i.e. a directed
graph without oriented cycles.

87 81 · · · 67 · · · 2

16 15 · · · 11 · · · 1

4 2 · · · 1 · · · 0

C0 (I) C1 (I) C` (I) Ck−1 (I)

C0 (J) C1 (J) C` (J) Ck−1 (J)

C0 (J ′) C1 (J ′) C` (J ′) Ck−1 (J ′)

Instance I

Instance
J = D

(
I, Bh

)

Instance
J ′ = D

(
J , Bh′

)

Depth 0

Depth 1

Depth 2

· · ·

· · ·

Figure 2.13: Recursive calls used to compute values C` (I).

Then, we present the proof of Theorem 2.15 which allows us to declare the fixed-parameter
tractability of COUNTING MIN-(S, T)-CUTS.

Theorem 2.15. There are at most 2p
2
m instances in the recursive tree.

Proof. The depth of instance I in the recursive tree is zero, we say ∆(I) = 0. For any
closest dam Bh of Z(I), the depth of the dry instance of Bh is one: ∆

(
D
(
I, Bh

))
= 1.

More generally, if J is an instance of depth d ≥ 0 and Bh a closest dam of Z(J), then
instance D (J , Bh) is at depth d+ 1.
We prove that, for any edge e in graph G, there are at most 2pd instances J of depth d such
that edge e belongs to the graph of J . This fact makes the total number of instances in the
recursive tree be upper-bounded by 2p

2
m.

We proceed by induction. There is one instance defined for depth d = 0: it is I and it
obviously contains edge e, so the number of instances with depth d = 0 containing e is thus
2pd = 1. Let d ≥ 1 and J ′ be an instance of depth d containing edge e: there is an instance
J of depth d− 1 and one of its closest dam Bh such that J ′ = D

(
J , Bh

)
. As the graph of

instance J ′ is a subgraph of those of J , the latter contains edge e.

41

Using the induction hypothesis, there are at most 2p(d−1) instances J of depth d−1 contain-
ing edge e. Now, given an instance J with ∆(J) = d−1, we bound the number of dams Bh

(they are closest dams according to Lemma 2.9) of J such that D
(
J , Bh

)
contains edge

e. We distinguish two cases:

• Case 1: edge e belongs to a minimum drainage cut Zi of instance J . We focus on the
dams Bi of level i containing edge e. Their cardinality is bounded by 2p. The edges
of level i belonging to the dry instance of Bh, D

(
J , Bh

)
, form one of these dams Bi.

As each dam Bi admits a unique closest dam (Lemma 2.8), there cannot be more
than 2p closest dams Bh such that D

(
J , Bh

)
contains edge e.

• Case 2: edge e is located between two minimum drainage cuts Zi and Zi+1, e ∈ Ri+1.
Consequently, the level of any closest dam Bh such that D

(
J , Bh

)
contains e is less

than i: i ≥ h. Therefore, the edges of level i belonging to the dry instance of Bh form
a dam Bi. Thus, the argument used in Case 1 arises the same conclusion: there
cannot be more than 2p closest dams such that D

(
J , Bh

)
contains edge e.

Finally, the number of instances written as J ′ = D
(
J , Bh

)
where ∆(J) = d − 1 and J ′

contains e, is upper-bounded by 2p(d−1)2p = 2pd. We conclude that there are less than 2pd

instances of depth d containing edge e. The total number of instances is thus smaller than∑p−1
d=0 2pdm ≤ 2p

2
m.

For any instance J of the recursive tree, the algorithm computes its drainage Z (J), its
Menger’s paths and all instances D(J , Bh) where Bh is a closest dam of Z (J). This third
operation is done by enumerating all dams Bi of Z(J), verifying whether there is another
dam Bh which is closer than Bi, and (if Bi is a closest dam) identifying the vertices/edges of
D(J , Bi) thanks to a depth-first search in GD\Bi. As there are at most 2pn dams in Z (J),
its execution time is O(22pn3). As the drainage of any instance is obtained in O(mnp)

(Theorem 2.10), the overall complexity is O
(

2p
2
m(mnp+ 22pn3)

)
= O

(
2p(p+2)pmn3

)
.

Theorem 2.16. The counting of minimum edge (S, T)-cuts can be solved in time
O(2p(p+2)pmn3) on undirected graphs.

This counting algorithm is actually more powerful than needed. It can be used to sample
the minimum (S, T)-cuts, i.e. to pick up a minimum (S, T)-cut at random.

Sampling minimum edge (S, T)-cuts

The resilience analysis of a network issued from a practical application would be exhaus-
tive when all minimum (S, T)-cuts were enumerated. However, this might be infeasible as
the number C(I) of minimum (S, T)-cuts might be exponential. An alternative consists in
selecting only one or several of these cuts without bias. The selection of several “typical”
minimum (S, T)-cuts can be made through a sampling procedure. In other words, an al-
gorithm sampling the minimum (S, T)-cuts returns one of these cuts following the uniform
distribution.
We sketch the algorithm which produces one of the minimum (S, T)-cuts according to the
uniform distribution over all minimum (S, T)-cuts. We run our counting algorithm and exe-
cute a post-processing, described below.
We distinguish the input instance I from the other instances J of the recursive tree. Our
method to sample minimum cuts consists in searching in the recursive tree, already filled
out with values C`(J) during the counting. A minimum cut of I is extracted thanks to a
randomly driven descent in the recursive tree.
We start at root C0(I). With probability k

C0(I) , the sampling algorithm returns one of the
minimum drainage cuts of Z(I) taken uniformly over them. Said differently, each cut

42

Zi has probability 1
C0(I) to be produced. With probability 1 − k

C0(I) , we will go one step
down the tree. Concretely, for any dam Bi of Z(I) and its closest dam Bh, we visit node

Ci−h+1

(
D(I, Bh)

)
of depth 1 with probability

Ci−h+1(D(I,Bh))
C0(I) . The sampling algorithm re-

turns the union of Bi with the cut obtained by a recursive call on Ci−h+1(D(I, Bh)). The al-
gorithm applied on Ci−h+1(D(I, Bh)) either selects a minimum drainage cut of level greater
than i− h+ 1 in D(I, Bh) (uniform selection among these cuts) or visits a node at depth 2,
etc.
In this way, we ensure that the minimum (S, T)-cuts are sampled uniformly. Indeed, a cut

with front dam Bi is chosen with probability
Ci−h+1(D(I,Bh))

C0(I) which is the ratio of the number
Ci−h+1

(
D(I, Bh)

)
of minimum cuts with front damBi by the total number C0(I) of minimum

cuts in instance I.

2.3.2 Counting minimum vertex (S, T)-cuts with exponential factor 2O(p log p)

After an algorithm which counts the minimum edge (S, T)-cuts, we propose another one
which counts the minimum vertex (S, T)-cuts in time O∗(2O(p log p)). It outperforms the algo-
rithm issued from the treewidth reduction whose running time is O∗(22

p
) [20, 62]. Moreover,

it improves our algorithm devised specifically for the edge cut counting and executed in time
O∗(2O(p2)), as the new one can also be used to count the minimum edge (S, T)-cuts thanks
to the edge-to-vertex reduction shown in Section 2.1.3.
This second algorithm also benefits from the structures exploited by the first one: the
drainage and the dry instances. The specificity of the vertex cuts is that some edges,
called leaks, leave the dry instance, while they do not exist for edge cuts. They disrupt the
recursivity (Figure 2.13, page 41) put in place to count minimum edge (S, T)-cuts. We thus
designed new concepts for vertex cuts in order to catch the undesired phenomena caused
by the leaks: the local drainage and the enclosed instances.
We introduce properties distinctive for the minimum vertex (S, T)-cuts. Then, we propose
a vertex version of the drainage defined for edges in Section 2.3.1. We extend it with
the local drainage, a drainage which only contains cuts inside the source side of a given
frontier. The definition of the dry instance is also adapted to vertex (S, T)-cuts and we
present its generalization, the enclosed instance. Eventually, we describe our algorithm
based on all these notions and show that its running time is O∗(2(p log p)).

Properties of minimum vertex (S, T)-cuts

We state a property concerning two distinct minimum (S, T)-cuts X1 and X2. According
to Lemma 2.1, each of their edges belongs to exactly one Menger’s path. We denote by
X

(c)
1 ⊆ X1 the set containing the ancestors of X2 on paths σ(X

(c)
1). Then, let X(d)

1 denote
the edges of X1 which are the descendants of X2 on paths σ(X

(d)
1). Cut X1 can be seen,

in presence of X2, as a sum of disjoint vertex sets:

X1 = X
(c)
1 ∪ (X1 ∩X2) ∪X(d)

1 .

The similar construction is applied to X2 to produce sets X(c)
2 and X

(d)
2 . If X(c)

1 is empty,
then X2 is closer than X1. In Figure 2.14, red vertices belong to X(c)

1 and X(d)
1 while green

ones belong to X
(c)
2 and X

(d)
2 . The black vertex is in X1 ∩ X2. Black arrows illustrate the

natural orientation of the Menger’s paths, despite the fact that graph G is undirected.
We define the closer-cut product (CCP) Πc of X1 and X2 as the union of “source-side” sets
X

(c)
1 , X(c)

2 , and X1 ∩X2.

Definition 2.21. The CCP of cuts X1 and X2 is: Πc(X1, X2) = X
(c)
1 ∪X

(c)
2 ∪ (X1 ∩X2).

43

S T

X
(c)
1

X
(d)
1

X
(d)
2

X
(c)
2

Figure 2.14: Sets X(c)
i and X(d)

i for two minimum Xi, i ∈ {1, 2}

The dominating-cut product (DCP) Πd of X1 and X2 is the union of “target-side” sets X(d)
1 ,

X
(d)
2 , and (X1 ∩X2).

Definition 2.22. The DCP of cuts X1 and X2 is: Πd(X1, X2) = X
(d)
1 ∪X(d)

2 ∪ (X1 ∩X2).

Using these two terms we write the following property:

Lemma 2.10. For two minimum (S, T)-cuts X1 and X2, sets Πc(X1, X2) and Πd(X1, X2)
are minimum (S, T)-cuts.

Proof. Suppose, towards a contradiction, that set Πc(X1, X2) is not an (S, T)-cut. There is
a simple (S, T)-path P which does not go either through X(c)

1 , or through X(c)
2 , or through

X1 ∩X2. The initial vertex of P is thus in both R(X1, S) and R(X2, S) while its final vertex
is in both R(X1, T) and R(X2, T). As X1 and X2 are (S, T)-cuts, path P must pass through
at least one vertex of X1 and at least one vertex of X2. So, a vertex of X(d)

1 and a vertex of
X

(d)
2 are in P .

We go along path P from its start and “catch” the first vertex v of P which also is in X(d)
1 ∪

X
(d)
2 . We say, without loss of generality, that v ∈ X

(d)
1 . According to Lemma 2.1, the

vertices of X(d)
1 are in the target side R(X2, T) of cut X2. Therefore, the section of path P

going from S to vertex v connects R(X2, S) and R(X2, T) without going through any vertex
of X2. This is a contradiction as X2 is an (S, T)-cut.
Swapping sets S and T and inverting the direction of Menger’s paths suffices to prove that
Πd(X1, X2) is an (S, T)-cut too as the graph is undirected. The size of cuts Πc(X1, X2) and
Πd(X1, X2) is naturally at least p. As |X1|+ |X2| = |Πc(X1, X2)|+ |Πd(X1, X2)| = 2p, then
these cuts are necessarily minimum.

The second property captures the difference between minimum edge and vertex (S, T)-
cuts. An edge (S, T)-cut X, not necessarily minimum, splits a connected graph into con-
nected components which necessarily contain elements of S ∪ T . The definition of X
forbids, however, any of these connected components to contain vertices from both source
and target sets.
For a vertex (S, T)-cut, connected components which do not contain vertices either from
S or T can emerge in G\X. We call unreachable areas all the connected components of
G\X without any vertex from S ∪ T . Their union is denoted by R∗(X). With this definition,
we have R(X,S) ∪R(X,T) ∪R∗(X) ∪X = V . Without loss of generality, we assume later
on that R∗(X) is actually a single connected component. Figure 2.15 illustrates such an
inaccessible set R∗(X). Our objective is to prove that, for any minimum vertex (S, T)-cut
X, no Menger’s path traverses an unreachable area of X. Consequently, according to
Lemma 2.1, no other minimum (S, T)-cut X ′ 6= X shares vertices with R∗(X). This result
allows us to neglect sets R∗(X) in the study of minimum vertex cuts.

44

X

R(X,S) R(X,T)

R∗(X)

Figure 2.15: An example of single-component unreachable area R∗(X)

Lemma 2.11. Let X be a minimum (S, T)-cut. No Menger’s path of Q passes through the
unreachable areas R∗(X) of cut X.

Proof. The neighborhood of set R∗(X), i.e. the set N(R∗(X)) of vertices adjacent to
R∗(X), is made of vertices in X. A Menger’s path Qj passing through R∗(X) must en-
ter through a vertex of N(R∗(X)) ⊆ X and leave through another vertex of N(R∗(X))
as Qj is a simple path. For this reason, |N(R∗(X))| ≥ 2. Therefore, there are two ver-
tices x1, x2 ∈ X such that (x1, u), (v, x2) ∈ Qj and u, v ∈ R∗(X). Observe that Qj , which
traverses R∗(X), cannot actually be a Menger’s path as it contains two elements of X.

In summary, for any minimum vertex (S, T)-cut X, the vertices of any other minimum vertex
cut X ′ belong either to R(X,S) or to R(X,T).

Drainage for the minimum vertex (S, T)-cuts

The notion of drainage for minimum vertex (S, T)-cuts is inspired by the edge version given
in Section 2.3.1. For now, we call it the global drainage and keep its prior notation Z(I)
as in Section 2.3.1. The local drainage Z(I, U) is a new concept where the drainage
construction is limited in function of a minimum (S, T)-cut U , called the frontier. All drainage
cuts of the local drainage are in the augmented source side of U , i.e. R+(U, S) = R(U, S)∪
U . The local drainage characterizes exclusively the minimum (S, T)-cuts with at least one
vertex in R+(U, S). It is used by our algorithm in the remainder to point out the minimum
cuts which are located in a certain area of the dry instance.

Global drainage. The global drainage Z (I) = (Z1, . . . , Zk) of an instance I = (G,S, T) is
a collection of minimum vertex (S, T)-cuts Zi, |Zi| = p. It satisfies the properties listed for
the edge case. These cuts are disjoint: Zi ∩ Zj = ∅ when i 6= j. As a consequence, the
collection Z (I) contains at most np cuts Zi, i.e. k ≤ n

p . Moreover, the source sides of these
cuts are included one into another: R(Zi, S) (R(Zi+1, S).
We construct it iteratively: let S1 = S, Z1 be the minimum closest (S1, T)-cut and R1 =
R(Z1, S). Then, we remove set R1 from the graph and define a new set of sources S2 = Z1.
The minimum closest (S2, T)-cut is computed again and is denoted by Z2. We remove R2,
the source side of Z2 on the current graph, and fix S3 = Z2. At iteration i + 1, we work
on graph Gi+1 = G\R(Zi, S): Si+1 = Zi and Zi+1 is the minimum closest (Si+1, T)-cut
in graph Gi+1. The construction terminates when the size of the minimum (Si+1, T)-cut is
greater than p. The minimum (S, T)-cuts Zi are called minimum drainage cuts. Eventually,
we naturally fix Sk+1 = Zk and Rk+1 = R(Zk, T). Figure 2.16 illustrates the drainage of
an instance I = (G,S, T) with S = {s1, s2, s3} and T = {t1, t2, t3, t4}. There are k = 3
minimum drainage cuts of size p = 3. Each color in the drawing refers to indices: blue for
1, etc.
SetsRi are disjoint: when setRi+1 is deduced from the computation of Zi+1, setsR1, . . . , Ri
have been already removed from the original graphG. For any minimum drainage cut Zi, its

45

R1 R2 R3 R4

s1

s2

s3

t1

t2

t3

t4

Z1

Z2 Z3

Figure 2.16: Drainage of an instance I = (G,S, T)

source side R(Zi, S) inG is the union
⋃i
`=1R`. The construction of the global drainage con-

sists in k computations of minimum closest cuts, so its execution time is O(mpk) = O(mn)
according to Lemma 2.4. As for edges, the global drainage puts in evidence certain ele-
ments of any minimum (S, T)-cut. Now, the front dam is made up of vertices.

Theorem 2.17. For any minimum (S, T)-cut X, there is a unique minimum drainage cut Zi
such that X ∩ Zi 6= ∅ and X ∩R(Zi, S) = ∅.

Proof. First, cut X cannot be entirely included in Rk+1. If it was, it would be a minimum
(Sk+1, T)-cut of size p, which contradicts the drainage construction ending. As a conse-
quence, some vertices of X belong to either Zk or its source side R(Zk, S).
Second, no vertex of X belongs to R(Z1, S) as cut Z1 is the minimum closest (S, T)-cut
and is unique (Lemma 2.3). Therefore, there is an index i ≥ 1 such that no vertex of X
belongs to the source side of Zi in G, i.e. R(Zi, S), but at least one is in Ri+1.
If a vertex of X belongs to Zi, the theorem holds. We examine the case where no vertex
of X belongs to Zi but at least one is in Ri+1\Zi. According to the definition of index i, no
vertex of X belongs to R(Zi, S). Therefore, X is a minimum (Si+1, T)-cut in graph Gi+1.
Either cut X is the minimum closest (Si+1, T)-cut (and then we fix Z = X) or the minimum
closest (Si+1, T)-cut Z is different than X and it fulfils R(Z, Si+1) (R(X,Si+1) in Gi+1.
However, we know that Zi+1 is the minimum closest (Si+1, T)-cut in Gi+1. In brief, we must
have Z = Zi+1. As at least one vertex x ∈ X is in the source side of Zi+1 in Gi+1, i.e. Ri+1.
this contradicts the fact that Z is closer than X in graph Gi+1.
In summary, there is an index i such that no vertex of X belongs to R(Zi, S) and, moreover,
X ∩ Zi 6= ∅. This index is unique because Zi and Zj , i < j, are disjoint: X ∩ R(Zj , S) 6= ∅
as Zi ⊆ R(Zj , S) and X ∩ Zi 6= ∅.

We associate the notion of dam with the concept of global drainage. It follows:

Definition 2.23 (Dam of Z(I)). A dam Bi is a nonempty subset of a minimum drainage cut
Zi, i.e. Bi ⊆ Zi, Bi 6= ∅.

For any minimum (S, T)-cut X, the set X ∩ Zi mentioned in Theorem 2.17 is either Zi (in
this case, X = Zi is a minimum drainage cut) or is a dam Bi (Zi. For the latter, the front
index of X, denoted by i(X), is the index such that X ∩Zi(X) 6= ∅ and X ∩R(Zi(X), S) = ∅.
The definition of the front dam follows.

Definition 2.24 (Front dam in Z(I)). The front dam of a minimum (S, T)-cut X is Bi(X) =
X ∩ Zi(X).

From Theorem 2.17, we have that any minimum (S, T)-cut which is not a drainage cut
admits a unique front dam.
Eventually, we list the properties of the global drainage presented so far.

46

Summary 1 (Properties of the global drainage). Collection Z(I), composed of the mini-
mum drainage cuts Zi, fulfils:

• cuts Zi are disjoint: for any i, j ∈ {1, . . . , k}, i 6= j, Zi ∩ Zj = ∅,

• there are less than n
p cuts Zi: k ≤ n

p ,

• the reachable sets of cuts Zi fulfil R(Zi, S) (R(Zi+1, S) for i ∈ {1, . . . , k − 1},

• for any minimum (S, T)-cut X, there is a unique Zi such that X ∩ Zi 6= ∅ and X ∩
R(Zi, S) = ∅. Set Bi = X ∩ Zi is called the front dam of X when Bi (Zi.

The existence of the unique front dam for any minimum (S, T)-cut X 6= Zi is the key for
our algorithm. In brief, the vertex version of the global drainage has the same properties
as the edge version. One difference is that value k is at most n

p as the drainage cuts are
now made up of vertices. However, the number of minimum edge drainage cuts was only
upper-bounded by n or m

p .

Local drainage. The notion of drainage is generalized to a local drainage which depends
not only on an instance I but also an arbitrary minimum (S, T)-cut U . We denote by Z(I, U)
the local drainage of I truncated on U , i.e. a collection of minimum (S, T)-cuts ZU1 , . . . , Z

U
k

that characterizes the minimum cuts of I which contain at least one vertex in R+(U, S) =
R(U, S) ∪ U .
Cuts ZUi verify R(ZUi , S) ⊆ R(U, S). Any minimum (S, T)-cut X with at least one vertex in
R+(U, S) has a front dam: it contains vertices in a minimum drainage cut of Z(I, U). The
idea is to use the local drainage to count the minimum (S, T)-cuts present in different areas
of a dry instance. On the one hand, the minimum (S, T)-cuts with a vertex in R+(U, S)
are put in evidence by the local drainage. On the other hand, the minimum (S, T)-cuts
included in R(U, T) are counted in another instance, obtained after removing R+(U, S) and
considering U as the new source set. This separation is the keystone of our algorithm. It
allows us to obtain a slightly super-exponential time O∗(2O(p log p)).

UR(U, S) R(U, T)

X

R(X,S)

S T

Figure 2.17: A frontier U and a minimum (S, T)-cut X, whose vertices are in red, where
X ∩R+(U, S) 6= ∅.

We call set U the frontier of the local drainage Z(I, U). Figure 2.17 presents a structural
view of an instance I with a frontier U and a cut X fulfilling X ∩ R+(U, S) 6= ∅. The local
drainage Z(I, U) is built to put in evidence the minimum (S, T)-cuts with at least one vertex
in R+(U, S).
The tactic consists in computing the successive minimum closest (S, T)-cuts until one ZUi
intersects U . When it happens, we force the vertices of U present in the drainage, i.e.
ZUi ∩ U , to be contained in all the next drainage cuts: ZUi+1, Z

U
i+2, etc. So, the construction

starts as for the global drainage: we compute the successive minimum closest (Si, T)-
cut ZUi , but also sets SUi , RUi , and graph GUi in the same way than Zi, Si, Ri, and Gi,
respectively. This process changes when a cut ZUi contains at least one vertex of U .

47

RU1 RU2

RU3

R(U, T)

s1

s2

s3

t1

t2

t3

t4

ZU1

ZU2 ZU3 ZU4 U = ZU5

RU4 RU5

Figure 2.18: Local drainage Z(I, U).

Suppose that ZUi ∩U 6= ∅. We fix SUi+1 = ZUi \U and remove ZUi ∩U from the graph. Graph
GUi+1 is obtained from GUi after the removal of vertices in sets RUi and ZUi ∩ U . Cut ZUi+1 is
the union of the minimum closest (SUi+1, T)-cut with ZUi ∩ U , if its size is p, otherwise the
construction terminates. Naturally, the last drainage cut is the frontier, as we seek the cuts
as close as possible from U : ZUk = U (Lemma 2.12). In brief, the definition of sets SUi and
RUi is: SUi+1 = ZUi \U and RUi+1 = R(ZUi+1, S)\R(ZUi , S).
The cuts in Z(I, U) are not necessarily disjoint and, moreover, ZUi ∩ ZUj ⊆ U for i 6= j.
Their source sides are included one into others: R(ZUi , S) (R(ZUi+1, S). For this reason,
there are at most n minimum drainage cuts in Z(I, U). No minimum drainage cut arrives
after U , i.e. R(ZUi , S) ∩ U = ∅ for every i ∈ {1, . . . , k}. The following lemma states that the
last drainage cut ZUk is exactly the frontier U : ZUk = U .

Lemma 2.12. No vertex of the minimum drainage cuts in Z(I, U) belongs to the target side
R(U, T) of U . Moreover, the last drainage cut of Z(I, U) is the frontier U : ZUk = U .

Proof. As ZU1 is the minimum closest (S, T)-cut in G, all its vertices are in R+(U, S) by
definition. Inductively, we suppose that ZUi is in R+(U, S) and we focus on cut ZUi+1. As
Si+1 = ZUi \U , set U\ZUi separates Si+1 from T , otherwise U would not be an (S, T)-cut.
The minimum closest (Si+1, T)-cut in Gi+1, denoted by ẐUi+1, is closer than U\ZUi . Con-
sequently, no vertex of ẐUi+1 ⊆ ZUi+1 is in R(U, T). The other vertices of cut ZUi+1, i.e. in
set ZUi ∩ U are also not in R(U, T). Finally, no drainage cut in Z(I, U) contains vertices of
R(U, T).
Suppose that ZUk 6= U . Vertices ZUk ∩ U are removed from the graph GUk+1. Its non-empty
source set is ZUk \(ZUk ∩ U). Set U\(ZUk ∩ U) is a source-free minimum cut for graph GUk+1.
As ZUk is supposed to be the last drainage cut, this is a contradiction.

We give an example of local drainage in Figure 2.18. The frontier U is represented with
yellow vertices. Cut ZU2 contains not only the red vertices but also the yellow one of U just
below. Cuts ZU3 and ZU4 also contain this vertex which was not drawn in their respective
colors to keep the figure readable. Cut ZU2 is the first drainage cut in Z(I, U) to intersect
the frontier U . In this illustration, k = 5 and ZU5 = U .
Finally, we prove that any minimum (S, T)-cut X such that X ∩R+(U, S) 6= ∅ admits a front
dam in Z(I, U).

Theorem 2.18. For any minimum (S, T)-cut X such that X ∩ R+(U, S) 6= ∅, there is a
minimum drainage cut ZUi such that X ∩ ZUi 6= ∅ and X ∩R(ZUi , S) = ∅.

Proof. Set U is a minimum (S, T)-cut and we know that ZUk = U (Lemma 2.12). For any
minimum (S, T)-cut X such that U * R(X,S), no vertex of X can be in set RUk+1 = R(U, T).
Said differently, at least one vertex of X belongs to R+(ZUk , S) = R+(U, S).

48

Moreover, no vertex of X is inside R(ZU1 , S) because of the unicity of the minimum closest
(S, T)-cut in G. There is an index i ≥ 1 such that no vertex of X belongs to the source
side of ZUi but at least one belongs to RUi+1. We examine the case where no vertex of X
is in ZUi but one vertex x ∈ X belongs to RUi+1\ZUi . Vertices in ZUi ∩ U are not in graph
GUi+1. The minimum closest (SUi+1, T)-cut in GUi+1, denoted by ẐUi+1, is set ZUi+1 deprived of
vertices ZUi ∩ U . Vertex x is located between ZUi \U and ẐUi+1.
We show that ẐUi+1 cannot be the minimum closest (SUi+1, T)-cut because of the identified
vertex x. To meet this goal, we form another minimum closest cut which contradicts the
unicity.
Let X̂U be the CCP Πc(U,X) in graph G. Cut X̂U is closer than U and contains vertex x.
As X̂U is made up of vertices of U and X, there is no vertex of X̂U in set R(ZUi , S). As a
consequence, ZUi ∩U (X̂U because the vertices of X̂U on the Menger’s paths σ(ZUi ∩U)

can be neither descendants of U nor ancestors of ZUi . Set X̂U ∩ (ZUi ∩ U) thus forms a
minimum (SUi+1, T)-cut in GUi+1. This is a contradiction as vertex x is the ancestor of a vertex
of ẐUi+1 on path σ(x). Although ẐUi+1 is supposed to be the closest (SUi+1, T)-cut, vertex x is
in its source side.

Theorem 2.18 highlights the existence of a drainage cut ZUi such that X ∩ ZUi 6= ∅ and
X ∩ R(ZUi , S) = ∅. But this drainage cut is not necessarily unique as the cuts in Z(I, U)
are not disjoint. We would like to identify on Z(I, U) a unique front dam Bi = X ∩ ZUi for
any minimum (S, T)-cut X fulfilling X ∩R+(U, S) 6= ∅ and X 6= ZUi . This property allows us
to justify that each minimum (S, T)-cut is counted exactly once by our algorithm. For this
reason, Definition 2.15 in page 33 has to be modified to capture the notion of dam in the
local drainage.

Definition 2.25 (Dam of Z(I, U)). A dam Bi is a nonempty subset of a minimum drainage
cut ZUi , i.e. Bi ⊆ ZUi , Bi 6= ∅. Furthermore, for any h < i, that there is no subset Bh of ZUh
such that Bh ⊆ Bi.

Let us consider the minimum drainage cut ZUi with the smallest index i such thatX∩ZUi 6= ∅
and X ∩ R(ZUi , S) = ∅. Suppose Bi = X ∩ ZUi is not a dam: there is a dam Bh ⊆ Bi with
h < i. Consequently, Bh (X and the drainage cut ZUh verifies X ∩ R(ZUh , S) = ∅, as
R(ZUh , S) (R(ZUi , S). This is a contradiction because the index of cut ZUh is smaller than
i. So, set Bi is a dam of Z(I, U). When X 6= ZUi , we say the front index of X in this case
is i(X) = i. The definition of the front dam follows.

Definition 2.26 (Front dam in Z(I, U)). The front dam of a minimum (S, T)-cut X such that
X ∩R+(U, S) 6= ∅ is Bi(X) = X ∩ ZUi(X).

As X ∩ R(U, S) 6= ∅ in Figure 2.17, cut X admits a front dam which is necessarily the only
vertex of X in R(U, S). We list the properties of the local drainage Z(I, U).

Summary 2 (Properties of the local drainage). Collection Z(I, U), composed of the mini-
mum drainage cuts ZUi , fulfils:

• the intersection of any cuts ZUi and ZUj , i 6= j, lies in U , i.e. ZUi ∩ ZUj ⊆ U ,

• there are less than n cuts ZUi ,

• the reachable sets of cuts ZUi fulfil R(ZUi , S) (R(ZUi+1, S) for i ∈ {1, . . . , k − 1},

• for any minimum (S, T)-cut X, there is a unique drainage cut ZUi(X) such that X ∩
ZUi(X) 6= ∅, X ∩R(ZUi(X), S) = ∅, and no drainage cut ZUh , h < i(X) fulfils X ∩ZUh = ∅.

49

The computation of both drainages Z(I) and Z(I, U) consists in a succession of at most
n executions of Ford-Fulkerson’s algorithm to obtain closest cuts. As with the edge-cut
drainage, they are retrieved in time O(mnp).

Theorem 2.19. The global and local vertex drainages of I are computed in time O(mnp).

Proof. There are at most np drainage cuts in global Z(I) because the cuts Zi are pairwise
disjoint. For the local drainage Z(I, U), sets R+(ZUi+1, S)\R+(ZUi , S), 1 ≤ i ≤ k are pair-
wise disjoint and nonempty as R(ZUi , S) (R(ZUi+1, S). So, there are at most n drainage
cuts in Z(I, U). Finally, both drainages are obtained by computing at most n closest cuts
in different graphs. The overall running time of such an operation is O(mnp).

From now on, we considered an arbitrary cut U to define the local drainage Z(I, U). We
explain in the remainder which frontiers are relevant to make the number of recursive calls
of our algorithm be only FPT〈p〉.

Dry and enclosed instances

As in Section 2.3.1, we associate with any dam of Z(I) or Z(I, U) a dry instance which
covers all sets X\Bi, where X is a minimum (S, T)-cut of I and Bi is its front dam.
We focus on a global drainage Z(I) to illustrate the concept of dry instance, without any
loss of generality, as all arguments remain valid for Z(I, U).
Any dam Bi is characterized by its level, i.e. the index i of the cut Zi (or ZUi) it belongs to,
but also its signature σ(Bi) = {Qj : Bi ∩Qj 6= ∅}.

s1

s2

s3

t1

t2

t3

t4

Z1

D(I, B2)

B2

B2

Y ∗(B2)

Figure 2.19: Dry instance D(I, B2)

Choking graph G with dam Bi puts in evidence a sub-instance of I, denoted by D(I, Bi).
Dam Bi is the complementary of Bi in Z(I), i.e. Bi = Zi\Bi. It is the source of the dry
instance D(I, Bi). The definition of D(I, Bi) follows:

Definition 2.27 (Dry instance D(I, Bi)). Let Y ∗(Bi) be the minimum important (S, T)-cut
obtained in graphG\Bi. The dry instanceD(I, Bi) is a triplet

(
G∗(Bi), S

∗(Bi), T
∗(Bi)

)
with

graph G∗(Bi) =
(
V ∗(Bi), E

∗(Bi)
)
. In particular,

• graph G∗(Bi) is made up of the vertices of the augmented source side R+(Y ∗(Bi), S)
inG\Bi which are located either on damBi or in its target side: V ∗(Bi) = R+(Y ∗(Bi), S)∩
R+(Bi, T). Indeed, dam Bi is a minimum (S, T)-cut in G\Bi. Its edges are induced
by set V ∗(Bi): E∗(Bi) = E

[
V ∗(Bi)

]
,

• source S∗(Bi) is the set Bi: S∗(Bi) = Bi,

• target T ∗(Bi) is made up of the important cut Y ∗(Bi): T ∗(Bi) = Y ∗(Bi).

50

Figure 2.19 provides an example of dam B2 (Z2 and a dry instance D(I, B2) on the global
drainage already given in Figure 2.16.
The target side of Zi in G, R(Zi, T), can be divided into three parts relative to cut Y ∗(Bi)
and its source and target sides. Its vertices are either in R(Y ∗(Bi), S), in cut Y ∗(Bi), or in
R(Y ∗(Bi), T).
The Menger’s paths in σ(Bi) traverse the dry instanceD(I, Bi): they enter inBi and leave it
through Y ∗(Bi) as no edge connects R(Y ∗(Bi), S) and R(Y ∗(Bi), T). As a consequence,
the sections of all paths in σ(Bi) going from the source Bi to the target Y ∗(Bi) form a
collection of vertex-disjoint paths for the instance D(I, Bi).
The main property of the dry instance D(I, Bi) is the bijective relationship between the
cuts of I with front dam Bi and the cuts of D(I, Bi). Indeed, for any minimum (S, T)-cut
X with front dam Bi, set X\Bi is a minimum cut for the instance D(I, Bi). Conversely, all
minimum cuts of D(I, Bi) assembled with dam Bi form a minimum cut of I. We begin with
the proof of the latter.

Theorem 2.20. If X̂ is a minimum cut for instance D(I, Bi), then X = Bi∪ X̂ is a minimum
cut for I.

Proof. We suppose that X is not an (S, T)-cut: there is a simple (S, T)-path P in G\X.
Path P necessarily traverses the drainage cut Zi, more particularly dam Bi as Bi (X.
Therefore, a section P̂ of path P goes from Bi to T . Path P̂ must traverse the cut Y ∗(Bi)
of graph G\Bi. As X̂ is a cut of instance D(I, Bi), it separates its source Bi from its target
Y ∗(Bi). As a consequence, section P̂ passes through cut X̂ which is a contradiction.

The converse result is stated in the following theorem.

Theorem 2.21. If X is a minimum (S, T)-cut with front dam Bi, then set X\Bi is a minimum
cut for instance D(I, Bi).

Proof. The minimum (S, T)-cut with front dam Bi which admits the largest source side
is Y = Bi ∪ Y ∗(Bi) by definition and it is unique. Therefore, R(X,S) ⊆ R(Y, S), so X
is an (S, Y)-cut. As Bi is the front dam of X, we know that Bi (X and set X\Bi is
included in R(Zi, T). Consequently, set X\Bi separates Bi and Y ∗(Bi) in graph G\Bi,
otherwise X would not be an (S, Y)-cut. As each of its vertices belongs to exactly one path
in σ(Bi) (Lemma 2.1), set X\Bi is inside instance D(I, Bi). In summary, X\Bi is a cut for
instanceD(I, Bi). Suppose thatX\Bi is not minimum: there is a cut X̂ inD(I, Bi) verifying∣∣∣X̂∣∣∣ < |X\Bi|. According to Theorem 2.20, X̂ ∪ Bi is a cut for I and

∣∣∣X̂ ∪Bi∣∣∣ < |X|. This
is incoherent as X is a minimum (S, T)-cut.

In summary, a set X̂ is a minimum cut for D(I, Bi) iff Bi ∪ X̂ is a minimum cut for I. We
observed previously that the sections of paths σ(Bi) from Bi to Y ∗(Bi) are vertex-disjoint
paths for the instance D(I, Bi). In fact, this collection forms a set of Menger’s paths for
D(I, Bi). According to Theorem 2.21, dam Bi is a minimum cut of D(I, Bi) as Bi∪Bi = Zi
is minimum for I. So,

∣∣σ(Bi)
∣∣ =

∣∣Bi

∣∣ is equal to the minimum cut size of this instance. In
brief, there is no need to launch new computations in order to obtain the Menger’s paths of
D(I, Bi): they can be deduced directly from the subset σ(Bi) of Q.
There is a relationship between the number of minimum cuts of an instance I and the
number of minimum cuts in its dry instances.

Corollary 2.1. The number of minimum (S, T)-cuts in I with front dam Bi is equal to the
number of minimum

(
S∗(Bi), T

∗(Bi)
)
-cuts in D(I, Bi). The total number C [I] of minimum

(S, T)-cuts in I can be thus written:

51

C [I] = |Z(I)|+
∑

dam Bi of Z(I)
1≤i≤|Z(I)|

C
[
D(I, Bi)

]
. (2.3)

Proof. According to Theorems 2.20 and 2.21, the number of minimum cuts in I with front
dam Bi is equal to the number of minimum cuts in D(I, Bi). There are |Z(I)| minimum
drainage cuts and the other ones admit a front dam. In this way, we naturally obtain
Eq. (2.3).

A recursive algorithm counting the minimum (S, T)-cuts is a direct consequence of Eq. (2.3).
It consists in computing the global drainage of the input instance I. Then, it counts its mini-
mum drainage cuts, enumerates all dams Bi and is applied recursively on the dry instances
D(I, Bi) for each Bi. Unfortunately, its execution time is not FPT〈p〉 as the number of dry
instances computed throughout the recursion is Ω(np) in certain cases. We should intro-
duce additional concepts which allow us to decrease considerably this running time.
As the unicity of the front dam is also ensured on a local drainage Z(I, U), a setX = Bi∪X̂
is a minimum cut of I fulfilling X ∩ R+(U, S) 6= ∅, with front dam Bi, iff X̂ is a minimum
cut of D(I, Bi). Corollary 2.1 should be tailored to fit local drainages. The proof uses the
same arguments as above. Let C [I, U] be the number of minimum (S, T)-cuts X such that
X ∩R+(U, S) 6= ∅. We have:

Corollary 2.2. The number of minimum (S, T)-cuts in I with front dam Bi is equal to the
number of minimum

(
S∗(Bi), T

∗(Bi)
)
-cuts in D(I, Bi). Value C [I, U] can be written:

C [I, U] = |Z(I, U)|+
∑

dam Bi of Z(I,U)
1≤i≤|Z(I,U)|

C
[
D(I, Bi)

]
. (2.4)

We present a structural property of the dry instances. It states that the set of edges with
one endpoint inside D(I, Bi) and one outside is limited to the ones incident to either Bi,
Bi, or Y ∗(Bi). This allows us to explain how a path can pass through the dry instance as
only a few edges are the entry and exit points for D(I, Bi).

Theorem 2.22. Let Bi be a dam of Z(I), or Z(I, U), and D(I, Bi) be the dry instance of
its complementary Bi. We focus on the edges with one endpoint in V ∗(Bi) and another
one in V \V ∗(Bi). They can be divided into three families:

• the entry edges with one endpoint in R(Zi, S) and another one in Bi,

• the exit edges with one endpoint in Y ∗(Bi) and another one in R(Zi, T),

• the leaks with one endpoint in V ∗(Bi) and another one in Bi.

Proof. First, we focus on edges e = (u, v) leaving D(I, Bi) with an endpoint u ∈ V ∗(Bi)
which is neither in Bi nor in Y ∗(Bi). If v ∈ R(Zi, S) in graph G, then Zi is not an (S, T)-cut
anymore as u ∈ R(Zi, T): a contradiction. Now suppose that v ∈ R(Zi, T). In graph G\Bi,
vertex v belongs necessarily to R

(
Y ∗(Bi), T

)
because v /∈ V ∗(Bi). This is a contradiction

as edge e overpasses cut Y ∗(Bi). The only possibility is to have v ∈ Zi: therefore, v ∈ Bi
as Bi ⊆ V ∗(Bi). Such edges are leaks of the dry instance D(I, Bi).
Second, we treat edges e = (u, v) with u ∈ Bi and v /∈ V ∗(Bi). Vertex v does not belong
to set R

(
Y ∗(Bi), T

)
because Y ∗(Bi) is an (S, T)-cut in G\Bi. So, either v is in R(Zi, S)

(edge e is an entry edge) or v is in Bi (edge e is a leak).
Eventually, let us suppose that u ∈ Y ∗(Bi) and v /∈ V ∗(Bi). As previously, vertex v is not
in R(Zi, S) otherwise edge e overpasses cut Zi. Consequently, either v ∈ R

(
Y ∗(Bi), T

)
in

G\Bi (edge e is an exit edge) or v ∈ Bi (edge e is a leak).

52

S T

V ∗(Bi)

Bi

Bi Y ∗(Bi)

R(Zi, S) R(Zi, T)\V ∗(Bi)

entry exit

leaks

Figure 2.20: Entry, exit edges and leaks of the dry instance D(I, Bi)

The proof of Theorem 2.22 only uses the property that Zi is an (S, T)-cut in G and Y ∗(Bi)
an (S, T)-cut in G\Bi. It thus can be generalized to a dry instance of the local drainage
Z(I, U). Figure 2.20 illustrates the edges enumerated in Theorem 2.22. The setR(Zi, T)\V ∗(Bi)
corresponds to the target side R

(
Y ∗(Bi), T

)
in G\Bi, which is mentioned in the proof

above.
The notion of dry instances is now generalized. Enclosed instances D(I, Bi, Hi) are de-
rived from the dry instances D(I, Bi). They are defined not only for a certain dam Bi but
also for a subset Hi ⊆ Bi of its complementary Bi. They are obtained from D(I, Bi) by
forbidding a subset of its leaks.

Definition 2.28 (Enclosed instances D(I, Bi, Hi)). We consider graph Gi+1, i.e. graph G
after the removal ofR(Zi, S). Let Y ∗(Bi, Hi) be the minimum important (Bi, T)-cut obtained
in graph Gi+1\Hi. The enclosed instance D(I, Bi, Hi) is a triplet containing:

• graph G∗(Bi, Hi) =
(
V ∗(Bi, Hi), E

∗(Bi, Hi)
)

is made up of the vertices of the source
side R+(Y ∗(Bi, Hi), Bi): V ∗(Bi, Hi) = R+(Y ∗(Bi), Bi). Its edges are obtained from
the induced set: E∗(Bi, Hi) = E

[
V ∗(Bi, Hi)

]
,

• source S∗(Bi, Hi) = Bi,

• target T ∗(Bi, Hi) = Y ∗(Bi, Hi).

All the enclosed instances of Bi have the same source S∗(Bi, Hi) = Bi. The particular
enclosed instance D(I, Bi, Bi) is identical to the dry instance D(I, Bi) defined earlier:
D(I, Bi, Bi) = D(I, Bi). Indeed, an equivalent formulation of Definition 2.18 is that cut
Y ∗(Bi) is the minimum important (Bi, T)-cut in the graph Gi+1\Bi.
Theorem 2.22 can be generalized for the enclosed instances. Enclosed instances also
admit entry and exit edges. In contrast, the leaks of the enclosed instance D(I, Bi, Hi)
only connect Bi\Hi and V ∗(Bi, Hi). Said differently, there is no edge with one endpoint in
Bi\Hi and the other in V ∗(Bi, Hi), as stated below. The smaller set Hi is, the more difficult
it is to escape from the instance D(I, Bi, Hi).

Theorem 2.23. There is no edge in graph G between sets Bi\Hi and V ∗(Bi, Hi)

Proof. Sections of paths σ(Bi) from Bi to T form a set of vertex-disjoint paths in Gi+1\Hi.
As
∣∣σ(Bi)

∣∣ =
∣∣Y ∗(Bi, Hi)

∣∣, they are Menger’s paths and each vertex of Y ∗(Bi, Hi) belongs
to a path in σ(Bi).
Suppose that an edge e connects Bi\Hi and V ∗(Bi, Hi). Thanks ot this edge, a path
can be formed between source Bi and Bi\Hi. This path can be extended to T with a
path of σ(Bi\Hi) which is vertex-disjoint with any path in σ(Bi), and consequently with cut

53

S T

V ∗(Bi, Hi)

Hi

Bi\Hi

Bi Y ∗(Bi, Hi)

R(Zi, S) R(Zi, T)\V ∗(Bi, Hi)

entry exit
leaks

Figure 2.21: Entry, exit edges and leaks of the enclosed instance D(I, Bi, Hi)

Y ∗(Bi, Hi), too. The existence of a path between Bi and T which avoids Y ∗(Bi, Hi) is a
contradiction.

In summary, as shown in Figure 2.21, the edges leaving the enclosed instanceD(I, Bi, Hi),
i.e. belonging to V ∗(Bi, Hi) × V \V ∗(Bi, Hi), can be divided into three families: the entry,
exit edges, and the leaks connecting Hi with V ∗(Bi, Hi) according to Theorem 2.23. This
observation is the key to prove a major result, Theorem 2.24, which highlights a relationship
between the enclosed instances of dams Bi and Bi+1, where σ(Bi) = σ(Bi+1).
We suppose that Bi+1 is inside the enclosed instance D(I, Bi, Hi), i.e. Bi+1 ⊆ V ∗(Bi, Hi).
Independently from the nature of the drainage, set Bi+1 is in this case a minimum cut for
D(I, Bi, Hi), according to the following lemma.

Lemma 2.13. If Bi+1 ⊆ V ∗(Bi, Hi), then Bi+1 is a minimum cut for instance D(I, Bi, Hi).

Proof. If set Bi+1 is not a cut in D(I, Bi, Hi), then a path Q connects Bi with Y ∗(Bi, Hi)
and bypasses Bi+1. Let u ∈ Bi and v ∈ Y ∗(Bi, Hi) be the two extremities of path Q. Then,
path Q can be extended to an (S, T)-path which bypasses Zi+1 (or ZUi+1) by glueing to it
both an (S, u)-path and an (v, T)-path taken from the Menger’s paths. Indeed, a Menger’s
path in σ(Bi) connects a vertex of S with u and another Menger’s path connects v with T ,
as σ(Bi) is the signature of the vertices in Y ∗(Bi, Hi). As a consequence, an (S, T)-path
bypasses the drainage cut of level i, which is a contradiction.

We focus on the part of instance D(I, Bi, Hi) which is in the target side of its cut Bi+1.
In fact, the set in question coincides with an enclosed instance of Bi+1. Formally, the set
V ∗(Bi, Hi) ∩R(ZUi+1, T) is equal to a certain V ∗(Bi+1, Hi+1). It follows:

Theorem 2.24. If Bi+1 ⊆ V ∗(Bi, Hi), then set V ∗(Bi, Hi)∩R(ZUi+1, T) inG contains exactly
the vertices of the enclosed instance D(I, Bi+1, Hi+1), where Hi+1 = Hi ∩ Bi+1 and Bi+1

is the complementary of Bi+1:

V ∗(Bi, Hi) ∩R(ZUi+1, T) = V ∗(Bi+1, Hi+1).

Proof. We begin with the proof that dam Bi+1 is a cut for graph Gi+1\Hi, based upon both
the nature of the edges leaving the enclosed instances (Theorem 2.23) and the fact that
Bi+1 is a cut for D(I, Bi, Hi) (Lemma 2.13). The leaks of D(I, Bi, Hi) are withdrawn from
graph Gi+1\Hi as they admit an endpoint in Hi. Therefore, a path connecting Bi and T
in Gi+1\Hi necessarily leaves the enclosed instance D(I, Bi, Hi) via the exit edges. No
path can both attain these edges and bypass dam Bi+1 which is a cut of D(I, Bi, Hi). The
absence of such path implies that Bi+1 is a cut for graph Gi+1\Hi.

54

S T

V ∗(Bi, Hi)

V ∗(Bi+1, Hi+1)

Bi Bi+1

Bi Bi+1

Hi

Hi+1

R(ZUi , S)

Figure 2.22: Instance D(I, Bi+1, Hi+1) coincides with the target side of Bi+1 in
D(I, Bi, Hi).

Cut Y ∗(Bi, Hi) dominates cut Bi+1 in graph Gi+1\Hi. So, set Y ∗(Bi, Hi) is the minimum
important (Bi+1, T)-cut in graph Gi+1\Hi.
If we limit our attention on the target side of ZUi+1 in this graph, then Y ∗(Bi, Hi) is also the
minimum important (Bi+1, T)-cut in graph Gi+2 deprived of the vertices Hi. The vertices in
Hi ∩ R(ZUi+1, S) have been already removed from graph Gi+2 but the vertices in Hi ∩ Bi+1

remain in Gi+2. Therefore, the target sets of instances D(I, Bi, Hi) and D(I, Bi+1, Hi+1)
are equal and they coincide with each other.

This statement has been presented for dams Bi and Bi+1 belonging to a local drainage
Z(I, U). It also holds for a global drainage. In this case, the set Hi+1 = Hi ∩ Bi+1 is
necessarily empty as Hi ⊆ Bi and Bi+1 are disjoint. In brief, set V ∗(Bi, Hi)∩R(ZUi+1, T) in
G contains exclusively all vertices of the enclosed instance D(I, Bi+1, ∅).
Figure 2.22 illustrates the relationship between instancesD(I, Bi, Hi) andD(I, Bi+1, Hi+1)
when dam Bi+1 is included in set V ∗(Bi, Hi). The thick dotted lines represent dams Bi, Bi,
Bi+1, and Bi+1. We suppose these dams belong to a local drainage Z(I, U), so the set
ZUi ∩ZUi+1 is not necessarily empty. Set Hi+1 = Bi+1∩Hi is a single vertex in this example:
this is the blue vertex in Bi+1.
Thanks to Theorem 2.24, we see that any minimum cut in D(I, Bi+1, Hi+1) with Hi+1 =
Hi ∩Bi+1 is also a minimum cut in D(I, Bi, Hi). The converse is not necessarily true. This
property is exploited by our algorithm as it allows us to limit the number of recursive calls
with an FPT〈p〉 function.

Dynamic programming to count minimum vertex (S, T)-cuts

We are now ready to design the algorithm that counts minimum vertex (S, T)-cuts. It uses
the dynamic programming principle: the computation of the number C(I) of minimum cuts
in I depends on the number of minimum cuts of certain of its dry instances, and so on. We
prove that its execution time is O∗(2O(p log p)).

Description of the algorithm. From now on, letter I denotes the input instance only: our
objective is to compute C(I). Other instances mentioned in the description are denoted by
letters J or H. The number returned by our algorithm is given by function count. It goes
without saying that we prove later: count(I) = C(I).
We define a Menger’s sequence as a sequence of sets which forms a partition of Menger’s
paths Q.

Definition 2.29 (Menger’s sequence). LetK = K1 ·K2 · · ·Kr be a sequence of setsKi con-
taining Menger’s paths. We say that K is a Menger’s sequence if the collection K1, . . . ,Kr

55

1: Input: Instance I = (G,S, T)
2: res← 0;
3: p← minimum (S, T)-cut size of G;
4: Z(I) = (Z1, . . . , Zk)← global drainage of I;
5: K(2) ← K2 · · ·Kr;
6: for all Menger’s sequences K = K1 · · ·Kr do
7: if K1 = Kr =

⋃p
j=1Qi then

8: res← res + k;
else

9: for all dams Bi such that σ(Bi) = K1 do
10: Bi ← Zi\Bi;
11: res← res + count_encl(I,null, Bi, Bi,K(2));
12: endfor

endif
13: /* The value added to variable res during each loop is count(I,K). */
14: endfor
15: return res;

Algorithm 1: The count algorithm

is a partition of Q:
⋃r
j=1Kj =

⋃p
j=1Qj and Kh ∩K` = ∅ for any h, ` ∈ {1, . . . , r}, h 6= `.

Given a partition (K1, . . . ,Kr) of Q, there are at most r! Menger’s sequences composed of
these sets. Furthermore, r ≤ p as |Q| = p. Therefore, as the number of partitions of Q is
equal to the Bell number Bp = O(pp), the total number of Menger’s sequences is O(2p log p).
We begin with an overview of the algorithm. Later, we specify the manner of associating to
any minimum (S, T)-cut X a unique Menger’s sequence KX . Without going into details at
the moment, K1 ·K2 · · · is the Menger’s sequence of cut X if K1 is the signature of the front
dam Bi of X, then K2 is the signature of the front dam of X\Bi in the dry instance D(I, Bi),
and so on. Our algorithm executes O(2p log p) independent tasks. Put differently, the compu-
tation of count(I) consists in launching one execution for each Menger’s sequence. Each
“thread” returns a value count(I,K) which is the number of minimum (S, T)-cuts X such
that KX = K. The “global” algorithm returns the sum of values count(I,K). Written for-
mally,

count(I) =
∑
K

count(I,K).

From now on, we give the description of the counting algorithm with two inputs: an instance
I and a Menger’s sequenceK = K1 ·K2 · · ·Kr. We show how value count(I,K) is obtained
(Algorithm 1).
We define a recursive routine count_encl. It determines the number of minimum cuts of
enclosed instances, and consequently dry instances, as D(J , Bi) = D(J , Bi, Bi) for any
instance J and dam Bi. The algorithm count calls count_encl on the dry instances of I.
Algorithm count_encl has five arguments: an instance H with a frontier U , a dam Bi of the
local drainage Z(H, U), a subset Hi of its complementary Bi, and a Menger’s sequence
K. Value count_encl(H, U,Bi, Hi,K) gives the number of minimum cuts of the enclosed
instance D(H, Bi, Hi) associated with Menger’s sequence K. Argument U is optional: if
U = null, then Bi is a dam of the global drainage Z(H). Algorithm count_encl uses the
dynamic programming (DP) principle: it makes recursive calls to instances with a smaller
minimum (S, T)-cut size and stores the result obtained for any input 5-uplet considered to
avoid multiple calls for the same data.
A special case occurs when computing value count(I,K). A sequence K made up of a
single set K1 =

⋃p
j=1Qj (line 7 of Algorithm 1). In this situation, value count(I,K) is the

56

number of minimum drainage cuts |Z(I)| (line 8). Otherwise, we enumerate all dams Bi of
the drainage Z(I) satisfying σ(Bi) = K1. For each of them, we compute the dry instance
of their complementary Bi. The idea is to determine the number of minimum cuts with front
damBi, i.e. the number of minimum cuts for the instancesD(I, Bi). To do so, we call the al-
gorithm count_encl. More precisely speaking, we compute count_encl(I,null, Bi, Bi,K(2)),
where K(2) = K2 · · ·Kr for any dam Bi of Z(I) with a signature K1 (line 11).
The following equation reveals how value count(I,K) is computed. This can be seen as a
revised version of Eq. (2.3) in Corollary 2.1 which expressed C(I) as a function of values
C(D(I, Bi)).

count(I,K) =


|Z(I)| = k, if r = 1∑

dam Bi
σ(Bi)=K1

count_encl(I,null, Bi, Bi,K(2)), otherwise

We now begin the description of the algorithm count_encl. Its pseudocode is given in Algo-
rithm 2. Before giving its general formulation, we explain how the number count_encl(I,null,
Bi, Bi,K(2)) of minimum cuts of a dry instanceD(I, Bi) of I is calculated in order to provide
the intuition behind this algorithm.
For any dry instance D(I, Bi), no recursive call is made and the result is returned directly
if the Menger’s sequence K(2) contains only one element, i.e. K2 = Kr.

count_encl(I,null, Bi, Bi,K(2)) = |Z (J)| , where J = D(I, Bi).

Otherwise, the algorithm verifies whether the vertices of Bi+1 are in the dry instance J =
D(I, Bi), where Bi+1 has the same signature as Bi but is on the next level, Bi+1 (Zi+1.
We distinguish three cases depending on the position of the vertices in Bi+1.

• Case 1: No vertex of dam Bi+1 is inside the dry instance D(I, Bi), i.e. Bi+1 ∩
V ∗(Bi) = ∅. Figure 2.23 provides a schematic view of a dam Bi satisfying this case.
In this example, the signature of both dams Bi and Bi+1 is {Q1, Q2}.

S T

V ∗(Bi)

Bi

Zi Zi+1

Bi Bi+1Y ∗(Bi)

R(Zi, S) R(Zi, T)\V ∗(Bi)

Q1

Q2

Figure 2.23: Illustration of Case 1: dam Bi+1 arrives after Y ∗(Bi).

When Case 1 occurs, we compute the global drainageZ(J) of instance J = D(I, Bi).
Set σ(Bi) =

⋃r
j=2Kj contains the Menger’s paths of D(I, Bi). For any dam B`,

where σ(B`) = K2, the algorithm is applied recursively for the dry instance of its
complementary B` in Z(J). The sum of these recursive calls is returned. Formally,

count_encl
(
I,null, Bi, Bi,K(2)

)
=

∑
dam B`∈Z(J)
σ(B`)=K2

count_encl(J ,null, B`, B`,K(3)),

(2.5)

57

where K(3) = K3 · · ·Kr. In the general case, a frontier U and a subset Hi (Bi
may be given as arguments. We consider an instance H and two dams Bi, Bi of the
local drainage Z(H, U). Let K(j) = Kj ·Kj+1 · · ·Kr be the input Menger’s sequence.
Eq. (2.5) becomes:

count_encl
(
H, U,Bi, Hi,K(j)

)
=

∑
dam B`∈Z(H,U)

σ(B`)=Kj

count_encl
(
H′,null, B`, B`,K(j+1)

)
,

(2.6)
where H′ = D(H, Bi, Hi) and K(j+1) = Kj+1 · · ·Kr. Line 13 in Algorithm 2 computes
value count_encl

(
H, U,Bi, Hi,K(j)

)
following this formula.

• Case 2: Entire dam Bi+1 is included in the dry instance D(I, Bi), i.e. Bi+1 ⊆ V ∗(Bi).
An illustration of this case is given in Figure 2.24.

S T

V ∗(Bi)

Bi

Zi Zi+1

Bi Bi+1 Y ∗(Bi)

R(Zi, S) R(Zi, T)\V ∗(Bi)

Q1

Q2

Figure 2.24: Illustration of Case 2: dam Bi+1 is in V ∗(Bi).

In this case, the dam Bi+1 is a minimum cut for instance D(I, Bi) according to
Lemma 2.13. We compute the local drainage of instance J = D(I, Bi) with fron-
tier Bi+1. There are two types of minimum cuts in instance J . Some of them contain
at least one vertex in the source side of Bi+1 and admit a front dam in the local
drainage Z(J , Bi+1) (Theorem 2.18). The other dams entirely belong to the target
side of Bi+1. We know from Theorem 2.24 that these cuts are the cuts of an en-
closed instance of Bi+1. We exploit these two theorems to determine the functioning
of count_encl for Case 2. A recursive call is executed on the enclosed instance of
Bi+1 highlighted in Theorem 2.24. Moreover, we enumerate all dams B` with the
signature K2 of the local drainage Z(J , Bi+1) (line 18). For each of them, the dry
instance of their complementary is computed, i.e. instance D(J , B`). We make a
recursive call on these instances and add up the values returned:

count_encl
(
I,null, Bi, Bi,K(2)

)
= count_encl

(
I,null, Bi+1, Hi+1,K(2)

)
+∑

dam B`∈Z(J ,Bi+1)
σ(B`)=K2

count_encl(J , Bi+1, B`, B`,K(3)),

(2.7)

where Hi+1 = Bi ∩ Bi+1, in accordance with Theorem 2.24. For the general case

58

(line 19), Eq. (2.7) becomes:

count_encl
(
H, U,Bi, Hi,K(j)

)
= count_encl

(
H, U,Bi+1, Hi+1,K(j)

)
+∑

dam B`∈Z(H,Bi+1)
σ(B`)=Kj

count_encl(H′, Bi+1, B`, B`,K(j+1)).

(2.8)

Here, set Hi+1 ⊆ Bi+1 is equal to Hi∩Bi+1 in order to be relevant with Theorem 2.24.

• Case 3: Some vertices of dam Bi+1 are in the dry instance D(I, Bi), i.e. Bi+1 ∩
V ∗(Bi) 6= ∅ and Bi+1 * V ∗(Bi). Figure 2.25 provides an example of dry instance of
this case. A vertex of Bi+1 is in V ∗(Bi), while another one is outside.

We associate a frontier F with the dry instance D(I, Bi). Contrary to Case 2, dam
Bi cannot be chosen as it does not lie entirely in V ∗(Bi). We define F as:

F =
[
Bi+1 ∩ V ∗(Bi)

]
∪
[
Y ∗(Bi) ∩R(Zi+1, S)

]
(2.9)

In Figure 2.25, the vertices in F are drawn in orange. We prove that set F is a cut for
instance D(I, Bi). No edge jumps over the vertices of Bi+1 ∩V ∗(Bi), otherwise Zi+1

would not be an (S, T)-cut. Therefore, no path bypassing F goes from Bi to Y ∗(Bi)
in the instance D(I, Bi).

As cut F contains some vertices of the target set Y ∗(Bi), the Menger’s paths σ(Y ∗(Bi)∩
R(Zi+1, S)) 6= ∅ arrive at target Y ∗(Bi) before meeting the frontier F . The minimum
cuts of D(I, Bi) contain one vertex of these paths. So, any minimum cut has a vertex
inside F or its source side. According to Theorem 2.18, all minimum cuts of D(I, Bi)
in Case 3 admit a front dam in the local drainage Z(J , F), where J = D(I, Bi).

S T

V ∗(Bi)

Bi

Zi Zi+1

Bi Bi+1

R(Zi, S) R(Zi, T)\V ∗(Bi)

Q1

Q2

F

Figure 2.25: Illustration of Case 3: some vertices of dam Bi+1 are in V ∗(Bi).

Algorithm count_encl consists thus in computing the local drainage Z(J , F) (line 24)
and enumerating its dams B` (ZF` fulfilling σ(B`) = K2 (line 27). For each of them,
we determine the dry instance of their complementary D(J , B`). We terminate by
making a recursive call for any of these instances and adding up the values returned:

count_encl
(
I,null, Bi, Bi,K(2)

)
=

∑
dam B`∈Z(J ,F)

σ(B`)=K2

count_encl(J , F,B`, B`,K(3)).

(2.10)

59

1: Input: Instance H = (G,S, T), its frontier U , dam Bi, dam Hi ⊆ Bi, and Menger’s
sequence K(j) = Kj · · ·Kr where j ≤ r. /* U can be null */

2: res← 0;
3: p← minimum (S, T)-cut size of G;
4: Z(H, U)← local drainage of H with frontier U ;
5: /* If U = null, then Z(H, U) = Z(H) is a global drainage. */
6: H′ ← D(H, Bi, Hi);
7: Bi+1 ← dam of Z(H, U) with level i+ 1 and signature σ(Bi+1) = σ(Bi);
8: K(j+1) ← Kj+1 · · ·Kr;

case 1 do
9: Z(H′)← global drainage of instance H′;

10: if j = r then
11: return |Z(H′)|;

else
12: for all dams B` of Z(H′) such that σ(B`) = Kj do
13: res← res + count_encl(H′,null, B`, B`,K(j+1));
14: endfor

endif
end
case 2 do

15: Z(H′, Bi+1)← local drainage of instance H′ with frontier Bi+1;
16: if j = r then
17: return

∣∣Z(H′, Bi+1)
∣∣+ count_encl

(
H, U,Bi+1, Hi+1,K(j)

)
;

else
18: for all dams B` of Z(H′, Bi+1) such that σ(B`) = Kj do
19: res← res + count_encl(H′, Bi+1, B`, B`,K(j+1));
20: endfor
21: Hi+1 ← Hi ∩Bi+1;
22: res← res + count_encl

(
H, U,Bi+1, Hi+1,K(j)

)
;

endif
end
case 3 do

23: F ←
[
Bi+1 ∩ V ∗(Bi)

]
∪
[
Y ∗(Bi) ∩R(Zi+1, S)

]
;

24: Z(H′, F)← local drainage of instance H′ with frontier F ;
25: if j = r then
26: return |Z(H′, F)|;

else
27: for all dams B` of Z(H′, F) such that σ(B`) = Kj do
28: res← res + count_encl(H′, F,B`, B`,K(j+1));
29: endfor

endif
end

30: return res;
Algorithm 2: The count_encl algorithm

When the input is made up of an enclosed instance D(H, Bi, Hi) where dam Bi

belongs to the local drainage Z(H, U) (line 28), Eq. (2.10) becomes:

count_encl
(
H, U,Bi, Hi,K(j)

)
=

∑
dam B`∈Z(H′,F)

σ(B`)=Kj

count_encl(H′, F,B`, B`,K(j+1)).

(2.11)

60

Frontier F is still defined as in Eq. (2.9). Now, set Bi+1 is dam of the local drainage
Z(H, U) with the same signature as Bi and located on the next level.

The description of our DP-based algorithm is now complete. We will now prove not only
that it returns the number of minimum (S, T)-cuts of the input graph G but also that it does
it in FPT〈p〉 time.

Analysis of the algorithm. We justify that the value count(I) returned by the algorithm is
equal to the number C(I) of minimum cuts of instance I.
The minimum drainage cuts of instance I are counted with the Menger’s sequence com-
posed of a single set, i.e. K = K1, K1 =

⋃p
j=1Qj (line 8 in Algorithm 1). A consequence

of Theorem 2.17 is that any other cut X 6= Zi admits a unique front dam Bi (X (Defi-
nition 2.24). Moreover, the remaining vertices X\Bi of cut X form a minimum cut of the
dry instance D(I, Bi) (Theorems 2.21 and 2.20). Supposing that count_encl allows us to
obtain the number of minimum cuts for any dry instance D(I, Bi), value count(I) is equal
to C(I), as Algorithm 1 computes C(I) by following Eq. (2.3).
Then, we focus on the algorithm count_encl. Value count_encl

(
H, U,Bi, Hi,K(j)

)
is sup-

posed to be the number of minimum cuts of the enclosed instance D(H, Bi, Hi) with its
successive front dams having the signatures given by sequence K(j) = Kj · · ·Kr. If j = r,
no recursive call is executed for Cases 1 and 3: the algorithm count_encl returns the num-
ber of minimum drainage cuts of the instance D(H, Bi, Hi). This is not as direct for Case
2, because H′ = D(H, Bi, Hi) coincides with an enclosed instance D(H, Bi+1, Hi+1): we
add up the number of cuts in Z(H′, Bi+1) with the value count_encl

(
H, U,Bi+1, Hi+1,K(j)

)
returned for the instance D(H, Bi+1, Hi+1) on the next level. In this way, we count for all
Cases the minimum cuts of the instance D(H, Bi, Hi) which do not admit a front dam.
If j < r, the algorithm count_encl uses recursive calls on instances with a smaller minimum
cut size.

• For Case 1, the algorithm count_encl computes the global drainage of H′, enumer-
ates all damsB`, σ(B`) = Kj and computes values count_encl

(
H′,null, B`, B`,K(j+1)

)
which are supposed to be the number of minimum cuts of the dry instancesD(H′, B`).
Adding up the results obtained recursively, we obtain the number of minimum cuts
which admit a front dam with signature Kj , according to Theorems 2.20 and 2.21.

• For Case 2, cut Bi+1 separates the vertex set of instance H′ into two parts. Accord-
ing to Theorem 2.24, the target side of Bi+1 coincides with the enclosed instance
D(H, Bi+1, Hi+1) where Hi+1 = Hi ∩ Bi+1. Our objective is to count the minimum
cuts of D(H, Bi, Hi) such that the signature of its successive front dams follows se-
quenceK(j). Certain minimum cuts ofD(H, Bi, Hi) have at least one vertex inBi+1 or
its source side: in this case, they admit a front dam of the local drainage Z(H′, Bi+1).
Otherwise, they are fully included in the target side of Bi+1 and are also minimum
cuts of the enclosed instance D(H, Bi+1, Hi+1). This explains that the algorithm
count_encl computes value count_encl(H, U,Bi+1, Hi+1,K(j)) in addition to the re-
cursive calls count_encl(H′, Bi+1,
B`, B`,K(j+1)) to the dry instances D(H′, B`, B`), see Eq. (2.8).

• For Case 3, the dams of the local drainage Z(H′, F) are enumerated, where F is
a frontier of H′ containing vertices of both Bi+1 and Y ∗(Bi). As at least one vertex
of any minimum cut of H′ belongs to frontier F or its source side, all minimum cuts
admit a front dam in Z(H′, F), according to Theorem 2.18. So, algorithm count_encl
consists in making recursive calls to the dry instances of B`, where σ(B`) = Kj . In
this way, no minimum cut of H′ admitting a front dam with signature Kj is forgotten.

Another important property ensuring that the algorithms count and count_encl return a
correct result is the unicity of the front dam, obtained from Theorems 2.17 and 2.18 and

61

mentioned explicitly in Definitions 2.24 and 2.26. Thanks to it, any minimum cut can-
not be counted twice. In particular, a minimum cut X of the enclosed instance H′ =
D(H, Bi, Hi) is associated with only one Menger’s sequence. Concretely, cut X is counted
in count_encl(H, U,Bi, Hi,K(j)), whereK(j) = KX , but not in count_encl(H, U,Bi, Hi, K̂(j)),
if K̂(j) 6= KX . First, cut X admits a unique front dam B` in H′ and the signature of B` is
Kj , the first set of sequence K(j). Second, the recursive call for dam B` formulated in
Eqs. (2.6), (2.8), and (2.11) aims at counting the cuts X\B` in the dry/enclosed instances
of H′. Such cuts also admit a unique front dam, with a signature Kj+1, the second set of
sequence K(j), and so on. In summary, a minimum cut X of H′ cannot be associated with
two Menger’s sequences because of the unicity of the front dam for both global and local
drainages.
Eventually, we say that any minimum cut is associated with a single Menger’s sequence.
Moreover, we showed that the value count_encl

(
H, U,Bi, Hi,K(j)

)
returns the number of

minimum cuts X in instance D(H, Bi, Hi) with a Menger’s sequence KX = K(j). Conse-
quently, the execution of algorithm count allows us to count the number C(I) = count(I)
of minimum (S, T)-cuts in the input instance I.
We determine the running time of our algorithm. We prove that the execution time to
obtain count(I,K) for any Menger’s sequence K is at most O∗(2p). As there are O(2p log p)
Menger’s sequences, computing value count(I) takes O∗(2O(p log p)).
The recursive calls executed by the algorithm count_encl can be represented with a di-
rected graph without oriented cycles (DAG). Each vertex of the DAG is a 5-uplet formed
by arguments of the recursive call. For example, if Case 1 is fulfilled for the 5-uplet(
H, U,Bi, Hi,K(j)

)
, some arcs go from

(
H, U,Bi, Hi,K(j)

)
to
(
H′,null, B`, B`,K(j+1)

)
.

Figure 2.26 shows a fragment of the DAG: a 5-uplet
(
I,null, Bi, Bi,K(2)

)
, where K(2) =

K2 · · ·Kr and some of its descendants. The 5-uplet
(
I,null, Bi, Bi,K(2)

)
has no predeces-

sor as it is called by the head algorithm count (line 11 of Algorithm 1). Dam Bi belongs
to the drainage Z(I) and verifies σ(Bi) = K1. In this example,

(
I,null, Bi, Bi,K(2)

)
fulfils

the conditions of Case 3. Its descendants thus contain the instance J = D(I, Bi) with
the frontier F , Eq. (2.10). One of them,

(
J , F,B`, B`,K(3)

)
, is represented in the figure.

Dam B` belongs to the drainage Z(J , F) and verifies σ(B`) = K2. Case 2 is satisfied: one
of its successors is the enclosed instance

(
J , F,B`+1, H`+1,K(3)

)
containing the same

Menger’s sequence K(3), where H`+1 = B` ∩B`+1, Eq. (2.8). Its other successors look like(
J ′, B`+1, Bq, Bq,K(4)

)
, where J ′ = D(J , B`). They contain a dam Bq of Z(J ′, B`+1) and

sequence K(4). The boxed numbers represent the values returned by function count_encl.
In this figure, they are chosen arbitrarily.
For each 5-uplet of the DAG, our DP algorithm computes the dry instance D(H, Bi, Hi)
and its drainage which depends on the Case satisfied. The dry instance D(H, Bi, Hi) is
obtained by identifying the important cut Y ∗(Bi, Hi) (in running time O(mp) according to
Lemma 2.4) and then determining its source side with a depth-first search (running time
O(n)). Consequently, the time to retrieve both D(H, Bi, Hi) and its drainage is O(mnp).
It finally determines value count_encl(H, U,Bi, Hi,K(j)) which is a function of the results
stored by its successors in the DAG. All these operations are done in polynomial time. Our
objective is to show that the number of vertices in the DAG is FPT〈p〉. More precisely, we
prove that the number of 5-uplets considered by our algorithm is at most 2pn.
This upper bound is obtained thanks to the notion of core. For the 5-uplet

(
H, U,Bi, Hi,K(j)

)
,

we say that its core is the set of vertices of instanceD(H, Bi, Hi) which are also in the “aug-
mented” source side of cut ZUi+1 in H, i.e. R+(ZUi+1, S). An equivalent formulation follows.

Definition 2.30 (Core of
(
H, U,Bi, Hi,K(j)

)
). Let SH denote the sources of H. The core of(

H, U,Bi, Hi,K(j)
)

contains the vertices of V ∗(Bi, Hi) which are also in the source side of
ZUi+1 in instance H: V ∗(Bi, Hi) ∩R+(ZUi+1, S).

62

87

16 7

4

(
I,null, Bi, Bi,K(2)

)

(
J , F,B`, B`,K(3)

) (
J , F,B`+1, H`+1,K(3)

)

(
J ′, B`+1, Bq, Bq,K(4)

)

K(2) = K2 ·K3 ·K4 · · ·Kr

K(3) = K3 ·K4 · · ·Kr

K(4) = K4 · · ·Kr

· · ·

· · · · · ·

Figure 2.26: Illustration of the DAG describing the recursive calls to compute count(I,K)

Figure 2.27 represents an instance H and the core of (H, U,Bi, Hi,K(j)) is highlighted by
a crosshatched blue area inside set V ∗(Bi, Hi).
We remind that sequence K(j) is equal to K without its first j − 1 sets. Let value pj−1 be
the cardinality of the union

⋃j−1
h=1Kh of sets withdrawn to obtain K(j):

pj−1 =

∣∣∣∣∣
j−1⋃
h=1

Kh

∣∣∣∣∣ =

j−1∑
h=1

|Kh| . (2.12)

We have pr = p. For any vertex v of the input instance I, we prove that v belongs to at
most 2pj−1 cores of 5-uplets in the DAG which contain the sequence K(j).

Theorem 2.25. Let v be a vertex of the instance I. There are at most 2pj−1 5-uplets of the
DAG containing the sequence K(j) such that vertex v belongs to their core.

Proof. We proceed inductively. Referring to line 11 of Algorithm 1, the 5-uplets of the DAG
containing the sequence K(2) = K2 · · ·Kr are necessarily like (I,null, Bi, Bi,K(2)). There
is one 5-uplet for each damBi ofZ(I), where σ(Bi) = K1. The core of (I,null, Bi, Bi,K(2))
contains the vertices between Bi and Bi+1. So, the cores of all these 5-uplets are pairwise
disjoint. Vertex v is in at most one of them, which is less than 2p1 ≥ 2.
We suppose that the property holds for sequenceK(j) and prove it forK(j+1). We focus on a
5-uplet (H, U,Bi, Hi,K(j)). Vertex v belongs to its core. We try to identify the descendants
of (H, U,Bi, Hi,K(j)) in the DAG such that their core also contains v and their Menger’s
sequence is K(j+1).
According to Eqs. (2.6), (2.8), and (2.11), the descendants of (H, U,Bi, Hi,K(j)) composed
of the Menger’s sequence K(j+1) contain the instance H′ = D(H, Bi, Hi). Their frontier
depends on the Case satisfied by the 5-uplet (H, U,Bi, Hi,K(j)): we denote it by U ′ (U ′ =
null for Case 1 for example).
There is a single drainage cut ZU` in Z(H, U) such that v is in R+(ZU`+1, SH)\R+(ZU` , SH)
because the source side of the drainage cuts are included one into another. Therefore,
dam B` is in the descendants we are looking for. This is a necessary condition to have v in
the core of these 5-uplets.
We know that these descendants are composed of instance H′, a frontier U ′ depending
only on their ancestor (H, U,Bi, Hi,K(j)), dam B`, and sequence K(j+1). Only the fourth
component H` ⊆ B` of these 5-uplets is unknown. As set B` is made up of exactly |Kj |

63

SH TH

V ∗(Bi, Hi)ZUi ZUi+1

Bi

R(ZUi , SH)

Figure 2.27: Instance H and core of a 5-uplet (H, U,Bi, Hi,K(j))

vertices, there are 2|Kj | possible sets H`. In other words, at most 2|Kj | descendants of the
5-uplet (H, U,Bi, Hi,K(j)) with sequence K(j+1) have a core containing v.
Conversely, if the core of a 5-uplet with sequence K(j+1) contains v, then we prove that at
least one ancestor of this 5-uplet admits sequence K(j) and has a core also containing v.
Suppose that vertex v is in the core of (H′, U ′, B`, H`,K(j+1)). According to Eqs. (2.6), (2.8),
and (2.11), at least one ancestor of this 5-uplet is composed of an instance H, a dam
Bi of the drainage Z(H, U) and a set Hi such that H′ = D(H, Bi, Hi). For all Cases,
all the dams enumerated for the computation of count_encl(H, U,Bi, Hi,K(j)), as B`, are
located between dams Bi and Bi+1. Indeed, the instance H′ lies entirely between ZUi and
ZUi+1 for Case 1 while the frontier chosen for Cases 2 and 3 does not go beyond Bi+1.
Consequently, vertex v is also between dams Bi and Bi+1. Said differently, it belongs to
the core of (H, U,Bi, Hi,K(j)).
In a nutshell, we know that each 5-uplet with sequence K(j+1) such that v is in its core
admits at least one ancestor with sequence K(j) whose core also contains v. According to
the induction hypothesis, at most 2pj−1 of these ancestors exist. As each of them admits
at most 2|Kj | descendants with sequence K(j+1) and a core containing v, the total number
of 5-uplets with a sequence K(j+1) satisfying the desired property is upper-bounded by
2pj−12|Kj | = 2pj . The induction process is thus completed.

We have an upper bound on the number of 5-uplets with sequence K(j) and a core contain-
ing a given vertex v, for any j ∈ {1, . . . , r}. We deduce that the total number of instances
in the DAG is FPT〈p〉.

Theorem 2.26. There are at most 2pn 5-uplets in the DAG describing the recursive calls of
the algorithm count_encl.

Proof. Let v ∈ V . Sequence (pj)1≤j≤r, defined in Eq. (2.12), takes values in {1, . . . , p} and
is strictly increasing. The number of 5-uplets such that their core contains v is less than:

r∑
j=1

2pj−1 ≤
p−1∑
j=1

2j ≤ 2p

Any 5-uplet admits a nonempty core. As there are n vertices in the graph, the total number
of 5-uplets is at most 2pn.

The time complexity of our algorithm depends on the operations made for the 5-uplets
of the DAG which represents the recursive calls. We already explained that each 5-uplet
requires a polynomial running time. The overall running time to compute count(I,K) is
thus O(2pmn2p). Due to the number of Menger’s sequences, the execution time to obtain
count(I) is O(2O(p log p)mn2).

64

Theorem 2.27. The number of minimum vertex (S, T)-cuts is obtained in O(2O(p log p)mn2).

The sampling of minimum vertex (S, T)-cuts is naturally deduced from the technique used
to sample edge (S, T)-cuts in Section 2.3.1. Our algorithm counting the minimum vertex
(S, T)-cuts is executed. First, each minimum drainage cut Zi has a probability 1

C(I) to be se-
lected. Second, for the minimum cuts admitting a front dam, each 5-uplet (I,null, Bi, Bi,K(2))

is associated with a probability count_encl(I,null,Bi,Bi,K(2))
C(I) . One of these 5-uplets is selected

in accordance with this probability distribution. As in Section 2.3.1, we go down the DAG,
associating with each 5-uplet the probability distributed uniformly.

2.4 Conclusion

We identified two cut problems on undirected graphs which we solved in time O∗(2poly(p)),
where poly is a polynomial function. The first one, called POTC, is a decision problem
asking for a small separation between r sources and a single target. The second one is
the counting of minimum edge/vertex (S, T)-cuts.
The complexity of POTC parameterized by k, r, and p is now fully determined (Table 2.1).
Our main result is the design of an FPT〈p〉 algorithm computing a solution for EDGE POTC

in time O∗(2O(p2)). It uses important cuts, color-coding techniques, and edge passes, a
concept we devised. Parameterized by r only, EDGE POTC is W[1]-hard. Furthermore, we
proved that VERTEX POTC is W[1]-hard for all parametrizations involving r or p.
These results have an impact on the more general problem PARTIAL MULTICUT, which asks
for a cut X, |X| = p, separating r pairs of terminals (si, ti) among k. The consequence is
that VERTEX PARTIAL MULTICUT is W[1]-hard parameterized by r and p. This highlights an
interesting complexity gap, as its sub-problem VERTEX MULTICUT is FPT〈p〉 [63]. However,
the parameterized complexity of EDGE PARTIAL MULTICUT remains open.
We built two algorithms to tackle the counting of minimum (S, T)-cuts in FPT〈p〉 time, where
p is the size of the minimum cuts. The first one is dedicated to edge (S, T)-cuts. It uses
our concept, the drainage, which characterizes all minimum (S, T)-cuts of a graph G. This
succession of at most n disjoint minimum cuts Zi is such that any minimum (S, T)-cut X
has a nonempty intersection with one of the drainage cuts. The recursion benefitting from
this construction returns the number of minimum (S, T)-cuts in time O∗(2O(p2)).
The edge cut counting inspired us to count the minimum vertex (S, T)-cuts, which is a
more general problem. For this occasion, we not only generalize the concepts used for
the counting of edge cuts but also introduce new ones which shorten the execution time
obtained before. We define the local drainage, a succession of minimum (S, T)-cuts ZUi
such that all minimum (S, T)-cuts with at least one vertex in the source side of the frontier-
cut U intersect one ZUi . This tool, in addition to structures devised to characterize minimum
vertex (S, T)-cuts, make possible the design of a dynamic programming algorithm. Its
running time, proportional to the number of recursive calls executed, is in O∗(2O(p log p)).
The sampling of minimum (S, T)-cuts, which consists in returning one of the minimum
(S, T)-cuts with the uniform distribution, can be solved with these algorithms after minor
changes. Therefore, we exhibit a method to sample minimum edge/vertex (S, T)-cuts in
time O∗(2O(p log p)).
The counting of minimum (S, T)-cuts in directed graphs is more general than the counting
of minimum vertex (S, T)-cuts in undirected graphs. As a consequence, we believe that the
techniques introduced to count cuts in undirected graphs can help us to find an efficient
FPT〈p〉 algorithm for directed graphs. For the moment, the treewidth reduction from [62]
provides an algorithm in O∗(22

p
) for such graphs.

65

66

Chapter 3

Bypassing blockages in graphs

We investigated the parameterized complexity of certain cut problems to detect blockages
which split a graph in disjoint components. The objective was to identify small blockage
sets in a reasonable time.
This chapter deals with another facet of the handling of blockages in a graph. We focus
on the problem where a traveller wants to go from s to t with the minimum cost, knowing
that some edges of the graph may be blocked. These edges are hidden from the traveller.
He discovers them when visiting one of their endpoints. This problem is known under the
name of the Canadian Traveller Problem (CTP) [70]. A solution to the CTP is an online
algorithm, also called a strategy, guiding the traveller during his trip. We provide the reader
with our results on the competitive analysis of strategies for the CTP.
In Section 3.1, the state of the art for the CTP is given. We list the problems which, as the
CTP, are generalizations of the SHORTEST PATH problem with uncertainty on graphs. Then,
we remind results about the competitive ratio of deterministic and randomized strategies for
the CTP known up to now. In the following sections, we describe our contributions on the
competitive ratio of strategies for the CTP.
In Section 3.2, we justify our idea of splitting our results into two parts and discussing them
separately. The contributions of the first group concern the competitiveness of strategies
on the entire set of instances (global competitiveness). Those categorized in the second
group deal with strategies dedicated to certain families of graphs (local competitiveness).
First, we introduce the results [13, 15, 14] on the global competitiveness of both determin-
istic and randomized strategies (Section 3.3). Second, we treat the local competitiveness
side [18, 19], where the goal is to devise competitive strategies for certain types of graphs
(Section 3.4). In Section 3.5 we draw conclusions on our contributions.

3.1 State of the art

We remind the definition of the CTP and one of its variants, k-CTP. The definition of the
competitive ratio is also cited. We introduce the relationship between the CTP and other
problems asking for shortest paths in graphs given with incomplete information. To com-
plete this overview, certain variants of the CTP are evoked.
Then, we focus on the results from the literature related to our work. The state of the art
for both global and local competitiveness is presented. We examine particularly the global
competitiveness of deterministic strategies which has been fully treated. We also give the
intuition of the most important strategies already proposed.

3.1.1 The CTP and the competitive ratio

We begin with the definition of the CTP before introducing the performance evaluation of
strategies with the competitive ratio.

67

Definition of the CTP

The Canadian Traveller Problem (CTP) was introduced by Papadimitriou and Yannakakis
and proven PSPACE-complete [70]. Given an undirected weighted graph G = (V,E, ω),
ω : E → Q+, and two vertices s, t ∈ V , the objective is to make a traveller walk from s to t
on graphG in the most efficient way despite the fact that certain edges may be blocked. The
traveller does not know which edges are blocked when he begins his walk and discovers
them when he visits an endpoint of these edges. The set of blocked edges is denoted by
E∗ (E. Let G\E∗ denote graph G deprived of the blocked edges. The pair (G,E∗) is
called a road map. Any road map considered in this study is feasible: there is an (s, t)-path
in graph G\E∗. In other words, the blocked edges do not separate source s from target t.

Definition 3.1 (The Canadian Traveller Problem).
Input: Undirected weighted graph G = (V,E, ω), ω : E→ Q+, vertices s, t
Hidden input: Blocked edges E∗ (E.
Objective: Traverse graph G from s to t with the minimum cost.

s t

1

1

1

1

1 1

11

2

2

1
2

3

4

5

Figure 3.1: An example of trip bypassing two blocked edges (these in red).

Figure 3.1 illustrates a trip (blue arcs) of the traveller on a feasible road map. Blocked edges
are drawn in red. The black numbers are the edge weights. The blue encircled numbers
indicate the order in which the traveller may traverse edges.
The k-Canadian Traveller Problem (k-CTP) is the parameterized version of CTP, where k
is an upper bound on the total number of blocked edges. The k-CTP is also PSPACE-
complete [9, 70].

Definition 3.2 (The k-Canadian Traveller Problem).
Input: Undirected weighted graph G = (V,E, ω), ω : E→ Q+, vertices s, t, integer k ≥ 1
Hidden input: Blocked edges E∗ (E, |E∗| ≤ k
Objective: Traverse graph G from s to t with the minimum cost.

Online algorithms, also called strategies, guide the traveller during his trip. The competitive
ratio is a way to assess their performance. Strategies are either deterministic or random-
ized, if the decisions made depend on a random draw.

Competitive ratio

We remind the definition of the competitive ratio introduced in [26], in the context of the CTP.
Letter A denotes a deterministic strategy. Let ωA (G,E∗) be the distance traversed by the
traveller from s to t guided by a strategy A on graph G with blocked edges E∗. The shortest
(s, t)-path in graph G\E∗ is called the optimal offline path of map (G,E∗) and its cost, noted
ωopt = ωmin (G,E∗), is the optimal offline cost of map (G,E∗). The competitive ratio of a
deterministic strategy A over a road map (G,E∗) is the value cA(G,E∗) = ωA(G,E∗)

ωopt
. The

competitive ratio cA of strategy A is thus the maximum value cA(G,E∗) taken over all road
maps (G,E∗). We have:

68

cA = max
(G,E∗)

cA (G,E∗) = max
(G,E∗)

ωA (G,E∗)

ωopt
.

For randomized strategies, the measure is based on the expected distance traversed by the
traveller. It corresponds to the mean distance traversed by the traveller against an oblivious
adversary setting down the blocked edges on the graph. This adversary is not able to
guess the result of the random draws computed by the traveller. The competitive ratio of a
randomized strategy A′ over a road map (G,E∗) is the value cA′(G,E∗) =

E[ωA′ (G,E∗)]
ωopt

. The

competitive ratio cA′ of strategy A′ follows:

cA′ = max
(G,E∗)

cA′ (G,E∗) = max
(G,E∗)

E [ωA′ (G,E∗)]

ωopt
.

For both deterministic and randomized strategies, the competitive ratio refers to these def-
initions in the literature. In this study, we call it the global competitive ratio because we aim
at defining another way to measure the performance of strategies. Indeed, the definition of
the competitive ratio can be adapted to a set R of road maps. This is what we call a local
competitive ratio. Put formally, strategy A is cA,R-competitive if cA,R = max

(G,E∗)∈R
cA (G,E∗).

Although our contributions concern the competitive ratio of strategies, we remark that an-
other way to evaluate the performance of online algorithms is the worst-case criterion [10].
To the best of our knowledge, no past work deals with the worst-case performance of
strategies for the CTP.

3.1.2 Results from the literature

The following paragraph summarizes the results reported in the scientific literature on the
generalizations of the SHORTEST PATH problem with uncertainty on the input graph. The
CTP and its variants, which are presented, belong to this class of problems. Then, we
provide a detailed description of the results known for the CTP, related to our contributions.

Related problems

Both the CTP and the k-CTP belong to a class of problems generalizing the SHORTEST

PATH problem where some information of the input graph is unknown. In our case, the
uncertainty is that we do not know where the blocked edges are placed. We begin with the
state-of-the art of problems for which the lack of information does not lie in the location of
the blockages.
For a problem called DOUBLE-VALUED GRAPH, we do not know the weight function ω.
DOUBLE-VALUED GRAPH is PSPACE-complete and was also introduced by Papadimitriou
and Yannakakis [70]. It asks for the shortest trip from s to t on a graph where two possible
costs are associated with some edges, called traffic jams in [60]. The traveller discovers the
real weight of an edge when visiting one of its endpoints. Liao and Huang [60] studied the
competitive ratio of deterministic and randomized strategies for DOUBLE-VALUED GRAPH.
Their main result was to identify a deterministic strategy achieving the optimal competitive
ratio min(r, k+1), where k is the number of traffic jams and r is the worst-case performance
ratio. A generalization of this problem associates a cost distribution to any edge [69, 70].
Another problem related to the CTP is the OBSTACLE NEUTRALIZATION problem [3]. It mod-
els the navigation of a traveller from s to t on a plane with obstacles that can be neutralized
at a cost added to the traversal length. A well-performing algorithm of weak time complexity,
called Penalty Search Algorithm, is proposed in [3].
Let us recenter now on the variants derived directly from the CTP. On the one hand, the
Stochastic CTP [70] associates to any edge e a probability q(e) that e is blocked. The ob-
jective is to minimize the expected cost of the trip from s to t. The PSPACE-hardness of the

69

Stochastic CTP has been proven recently [51]. Bnaya et al. identified a polynomial-time
optimal strategy for graphs made up only of disjoint paths [23]. Computational experiments
were proposed on the U.S. Navy minefield dataset COBRA [1]. In this context, the Cana-
dian traveller is a robot trying to reach t and avoiding land mines. Different algorithms using
a Markov decision process formulation of the problem were compared: they compute the
shortest expected walk in exponential time.
A variant of the Stochastic CTP with remote-sensing was also studied [23, 51]. Remote-
sensing actions are used to reveal the status of a non-incident edge. Given the position v
of the traveller and an edge e, a cost sc(v, e) is associated with the pair (v, e). With a cost
sc(v, e), the traveller on vertex v knows whether edge e is blocked. It was proven that this
variant is NP-hard even for graphs made up of vertex-disjoint (s, t)-paths [51].
On the other hand, the Recoverable CTP allows the traveller to clear the blockages incident
to his position. This is possible with a certain cost, depending on both the position of the
traveller and the blocked edge considered. This variant was studied in [9]. In the case
where the recovery times are not long compared to the travel times, a polynomial-time
strategy guarantees the shortest worst-case travel time [9].
Our work concerns the problems CTP, k-CTP, and k-CTP for multiple travellers. In the next
paragraph, we go into details with the results already established for these problems.

Survey of the competitiveness

First, we present a survey for the CTP and the k-CTP with L = 1 traveller. The open
questions on the competitive ratio of deterministic strategies for general graphs have been
totally answered. We begin with an overview of the deterministic case. Then, we introduce
the state of the art for randomized strategies.
Westphal [75] proved that no deterministic strategy for the k-CTP achieves a competitive
ratio better than 2k+1. This ratio is obtained by considering graphs made up of k+1 simple
vertex-disjoint (s, t)-paths of similar cost, where k of them are blocked. In such an instance
(Figure 3.2), the traveller has no choice but traversing successively the (s, t)-paths and
hoping that they are open. When he is blocked, he comes to back to s and tries to traverse
another path. He potentially traverses the open path at the latest, which produces the ratio
2k + 1. The distance traversed on GW is 2k + 1 + ε while the optimal offline cost is 1 + ε.
Making ε tend to zero terminates the proof. In fact, as these instances verify |E∗| = k, this
also proves that no deterministic strategy drops below competitive ratio 2 |E∗| + 1 for the
CTP.

s t

1

1

1

1

1

ε

ε

ε

ε

ε

Figure 3.2: Graph GW proposed in [75] to obtain the lower bound 2k + 1.

The polynomial-time REPOSITION strategy [75] attains ratios 2 |E∗|+1 for the CTP and 2k+1
for the k-CTP. It makes the traveller traverse the shortest (s, t)-path of the input graph. If
there is a blocked edge (u, v) on this path, the traveller discovers it when he visits vertex u.
Then, he comes back to s passing through the same path. The process restarts on G\E′∗,
graph G deprived of the blocked edges E′∗ ⊆ E∗ identified until now. With this strategy, the
traveller may be blocked k times. This is why he potentially achieves k trips, one for each

70

blockage, in both directions (towards t, then towards s) with an extra open trip to reach t in
only one direction (towards t). Ratio 2 |E∗|+ 1 comes from this worst-case scenario.
The GREEDY strategy [77] is also a polynomial-time deterministic strategy. It is certainly
the most intuitive one: it consists in choosing at each step of the walk the first edge of
the shortest path between the current position of the traveller and the target t. However,
its competitive ratio is 2k+1 − 1 for the k-CTP. Figure 3.3 provides the road map for k = 4
on which GREEDY strategy attains this competitive ratio. The red edges are blocked. The
GREEDY strategy makes the traveller traverse the edges with exponentially increasing costs.

s
t

1

1

2 4

8

ε

2ε

ε

ε

ε

Figure 3.3: The road map for which the competitive ratio of GREEDY is 2k+1 − 1.

Another strategy called COMPARISON [77] is as competitive as REPOSITION. COMPARISON

mixes the two previous strategies REPOSITION and GREEDY. When the traveller discovers
a blockage (u, v) and stands on vertex u, he compares the shortest (u, t)-path P (u,t)

min (cost
ω
(u,t)
min) of G\E′∗ with its shortest (s, t)-path P (s,t)

min (cost ω(s,t)
min). If ω(s,t)

min ≤ ω
(u,t)
min , the traveller

moves as in REPOSITION: he comes back to s and traverses P (s,t)
min . If ω(s,t)

min > ω
(u,t)
min , the trav-

eller traverses the path P (u,t)
min as he does with the GREEDY strategy. COMPARISON ensures

that the “greedy option” is chosen only when it improves the performance of REPOSITION.
As COMPARISON behaves as REPOSITION on graphs with vertex-disjoint (s, t)-paths, its
competitive ratios are 2 |E∗|+ 1 for the CTP and 2k + 1 for the k-CTP.
In the literature, no distinction was made between the results on the CTP and the k-CTP.
All the articles [11, 42, 72, 75, 79] provide results with the competitive ratio expressed as a
function of k. However, in the original CTP, parameter k is absent. So, the competitive ratio
must depend on |E∗| as the strategies cannot make decisions depending on k here.
We observed that all the results given for the k-CTP can be extended to the classic CTP
version after replacing k by the number of blocked edges |E∗|. In theory, differences of
competitiveness between the CTP and the k-CTP might occur. In our work, all results pre-
sented for the k-CTP can also be extended to the CTP. However, we highlight this distinction
as one of our results holds only for the CTP, not the k-CTP.
Westphal [75] proved, using graph GW once again (Figure 3.2), that no randomized strat-
egy attains a ratio smaller than k + 1 for the k-CTP. Let us suppose that the traveller walks
on GW . All k + 1 (s, t)-paths of GW are indistinguishable. As a consequence, the most
competitive randomized strategy for this graph consists necessarily in selecting succes-
sively one of the (s, t)-paths with uniform distribution. The probability to select the open
(s, t)-path with the first draw is 1

k+1 . In this case, the total distance traversed is 1 + ε. The
probability to be blocked on the path selected first and to traverse the open one during the
second draw is k

k+1
1
k = 1

k+1 . In this case, the total distance traversed is 3 + ε. Eventually,
considering ε negligible compared to 1, the mean distance traversed is written:

k∑
i=0

1

k + 1
(2i+ 1) = k + 1.

This reasoning shows that no randomized strategy can defeat the competitive ratio k + 1
on such a road map. Therefore, value k + 1 is a lower bound for the competitive ratio of
any randomized strategy. As the proof consists in studying the same instance as in the

71

deterministic case, it implies that any randomized strategy is at best (|E∗|+ 1)-competitive
for the CTP.
However, the identification of an (|E∗|+ 1)-competitive randomized strategy for CTP (and
a k + 1-competitive randomized strategy for k-CTP) has not been achieved yet. Table 3.1
summarizes the state of the art of CTP and k-CTP and formulates two open questions.

Deterministic strategies
CTP k-CTP

Result REPOSITION strategy REPOSITION strategy
is optimal and is optimal and
(2(|E∗|) + 1)-competitive. (2k + 1)-competitive.

Randomized strategies
CTP k-CTP

Result Any randomized strategy A is Any randomized strategy A is
cA-competitive with cA ≥ |E∗|+ 1. cA-competitive with cA ≥ k + 1.

Open Can we find a strategy which Can we find a strategy which
Question is (|E∗|+ 1)-competitive? is (k + 1)-competitive?

Table 3.1: state of the art [11, 75] and open questions for the CTP and k-CTP

In fact, no strategy with competitive ratio βk +O(1) with β < 2 has been proposed yet. We
do not know whether a polynomial-time randomized strategy defeats REPOSITION in this
way.
Two randomized strategies have been proposed for certain families of graphs. Demaine et
al. [42] designed a strategy with a ratio

(
1 +

√
2
2

)
k + 1, executed in time of O

(
kλ2 |E|2

)
,

where parameter λ may be exponential. It is dedicated to graphs that can be transformed
into apex trees using a polynomial-time process they devised. Apex trees are graphs com-
posed of a tree rooted in t and edges connecting s with the vertices of the tree. Bender
et al. studied in [11] the competitivenes of randomized strategies for the k-CTP on graphs
composed of vertex-disjoint (s, t)-paths. They proposed a polynomial-time strategy with
ratio k + 1, which is optimal. Some details of the proof are added in [73].
For multiple travellers (L > 1), two criteria may orientate the definition of the competitive
ratio: time and distance. Two articles [72, 79] presented the first results on the time com-
petitive ratio of strategies for the k-CTP. Their authors assume that all the travellers’ speed
is the same and constant. On the one hand, the time competitive ratio of a strategy with
L ≥ 1 travellers is the ratio of the time taken by the travellers to reach t with this strategy
and the optimal offline cost, which is the time which would have been taken by one traveller
if blocked edges had been known in advance. On the other hand, the distance competitive
ratio is the ratio of the distance traversed by all travellers and the distance traversed by one
traveller knowing which edges are blocked.
For L = 2, the ALTERNATING strategy [79] reaches the optimal time ratio k+1. For L ≥ 3, we
only know that no deterministic strategy can drop below time ratio 2b kLc+ 1 but no strategy
reaching this bound has been identified yet. To the best of our knowledge, no result on the
distance competitive ratio was established either.

3.2 Global and local approaches for the competitiveness of strate-
gies

Most of the results for the CTP and the k-CTP introduced in the previous section concern
the competitive ratio of strategies for general graphs. We also mentioned two results on
the competitive ratio of strategies for certain families of graphs [11, 42]. Any result on

72

a specific family of graphs has no consequence on the competitive ratio of strategies for
general graphs. Moreover, certain graphs obtained from real-world applications belong to
a well-known family of graphs. As a consequence, focusing locally on the competitive ratio
can make emerge strategies to be used in practice, even if they are not optimal for the
entire set of instances. For these two reasons, we believe that the global and the local
perspectives should be separated.
We propose to divide the results on the competitive ratio in two classes. On the one hand,
the global competitiveness refers to the results on the competitive ratio of both deterministic
and randomized strategies for general graphs, which is the classic definition [26]. For
example, the statement formulated in [75] that no randomized strategy defeats ratio k + 1
for the k-CTP is global. In this context, the competitive ratio of a strategy is the maximum
competitive ratio over all existing road maps (G,E∗), where |E∗| ≤ k. On the other hand,
the local competitiveness includes all results about the competitive ratio of strategies on a
certain family of graphs. The statement formulated in [11] that a randomized strategy is (k+
1)-competitive for graphs made up of vertex-disjoint (s, t)-paths is local. The competitive
ratio of a strategy on a family F of graphs is the maximum competitive ratio over all road
maps satisfying G ∈ F and |E∗| ≤ k.
The global competitiveness of deterministic strategies for the k-CTP was fully treated as we
know both a lower bound, 2k+1, for the global competitive ratio and strategies, REPOSITION

and COMPARISON, achieving this limit.
The main open question related to the global competitiveness of strategies for the CTP and
the k-CTP is whether a randomized strategy defeats the deterministic ones, i.e. admits a
competitive ratio less than 2k + 1. Two of our contributions try to answer this question. We
show in [14] that the randomized memoryless strategies cannot drop below the competitive
ratio 2k + O(1). Then, we prove that no randomized strategy reaches ratio |E∗|+ 1 for the
CTP only [15]. Moreover, a possible line of research is to pursue the study of the global
competitiveness for multiple travellers [13]. We assess the distance competitive ratio of
deterministic and randomized strategies with L > 1 travellers. Section 3.3 describes the
over-mentioned studies.
Our last two contributions for the CTP deal with the local competitiveness for a single trav-
eller (Section 3.4). We show how the traveller benefits from the maximum edge (s, t)-
cut size. Concretely, we design a deterministic strategy achieving the competitive ratio
2µmax +

√
2(k − µmax) + 1, where µmax is the size of the largest minimal (s, t)-cut. Ratio

2k + 1 is thus defeated as soon as parameter k drops above µmax [19]. Then, we study the
competitiveness of deterministic strategies on chordal graphs [18]. In particular, we devise
a strategy with ratio

2k+ωopt
ωopt

for equal-weight chordal graphs.

3.3 Global competitive analysis

First, we focus on the competitive ratio of randomized strategies for general graphs. We
prove that a randomized memoryless strategy cannot be more competitive than a deter-
ministic strategy. Second, we show that the bound |E∗|+ 1 for the CTP (Table 3.1) cannot
be attained. Eventually, we evaluate the distance competitive ratio of both deterministic
and randomized strategies for the k-CTP with multiple travellers.

3.3.1 Randomized memoryless strategies

We center on memoryless strategies (MS) [14]. More precisely speaking, we suppose that
the traveller forgets the vertices he has already seen. In other words, a decision of an
MS is independent of the vertices already visited. The term memoryless was used in the
context of online algorithms (e.g. LIST UPDATE PROBLEM [2], PAGING PROBLEM [26]) which

73

make decisions according to the current state, ignoring past events. An MS can be either
deterministic or randomized. MSes are easy to be implemented as they do not need to
memorize the edges already visited by the traveller. The only information they use is the
graph G\E′∗, which is the graph G deprived of the blocked edges discovered E′∗ ⊆ E∗.

Definition 3.3 (Memoryless Strategies for the k-CTP). A deterministic strategy A is an MS
if the next vertex w the traveller visits depends only on graph G deprived of blocked edges
already discovered E′∗ and the current traveller position v: w = A (G\E′∗, v). Similarly, a
randomized strategy A is an MS if vertex w is the realization of a discrete random variable
X = A (G\E′∗, v).

For example, the GREEDY strategy is a deterministic MS as it never makes decisions in
function of the previous trips. In contrast, the REPOSITION strategy is not an MS as the
past moves of the traveller allow him to know whether he shall go towards s or t. The
polynomial-time strategies proposed in the literature do not use much memory information
in the decision-making process. Either they are memoryless or they use a small amount of
memory. As an illustration, REPOSITION can be implemented with one bit memory as the
only information to retain is whether the traveller tries to reach t or returns to s.
The following process allows us to identify whether a deterministic strategy A is an MS. Let
us suppose that a traveller T1 follows strategy A: he has already visited certain vertices of
the graph, he is currently at vertex v but he has not reached target t yet. Let us imagine a
second traveller T2 who is airdropped on vertex v of graph G\E′∗ and is guided by strategy
A. If the traveller T2 always follows the same path as T1 until reaching t, A is a deterministic
MS. If T1 and T2 may follow different paths, then A is not an MS. Formally, proving that a
strategy is a MS consists in finding the function which transforms the pair (G\E′∗, v) into
vertex w = A (G\E′∗, v).
Let us define the competitive ratio cMS of MSes as the minimum over competitive ratios of
any MSes: cMS = min

A MS
cA. Our goal is to prove that randomized memoryless strategies

are not more competitive asymptotically than REPOSITION: cMS ≥ 2k + O(1). To do this,
we compute a lower bound ck = 2k + O (1) on the competitive ratio of any randomized
memoryless strategy for a certain set Rk of road maps. For any value k ≥ 1, set Rk is
called a road atlas. Road maps in atlas Rk contain exactly k blocked edges. The idea is to
build a road atlasRk so that the randomized MSes cannot perform well on it. We know that
if a randomized MS admits a ratio 2k+O(1) on setRk, then its competitive ratio for general
graphs is necessarily larger, so cMS ≥ ck = 2k + O(1). Before specifying road atlases Rk,
we need to introduce the concepts used in their definition.

Road atlases Rk

We define recursively a sequence of graphsGi for i ≥ 1 with weights from {1, ε}, 0 < ε� 1.
Graphs G1 and Gi+1 are represented in Figures 3.4a and 3.4b, graphs G2 and G3 are
shown in Figures 3.4c and 3.4d. Edges with weight 1 are thicker than edges with weight ε
(weights ε are omitted in Figures 3.4c and 3.4d). For any graph Gi, axis ∆vert is its vertical
axis of symmetry (Figures 3.4c and 3.4d).
We focus on road maps (Gi, E∗) composed of graph Gi but also at most i blocked edges
which are on the right side of axis ∆vert. Indeed, blocking edges on the left side of ∆vert
in Gi would affect negligibly the total distance traversed by a traveller. Let us suppose that
a traveller traverses graph Gi and has already discovered some blocked edges E′∗ ⊆ E∗.
Then, he considers graph Gi\E′∗ and tries to reach t, being unaware of the identity of the
undiscovered blocked edges.
We denote by G the set of all the subgraphs of Gi, i.e. graphs Gi\E′∗ with at most i edges in
E′∗ on the right side of ∆vert, for any i ≥ 1. We call them diamond graphs because of their
appearance, diamonds joined together. Formally, we write G =

⋃+∞
i=1 {Gi\E′∗ : |E′∗| ≤ i}.

74

ts

1 ε

1 ε

t

t

(a) Graph G1

Gi

Gi

s t

ε ε

ε ε

(b) Graph Gi+1

∆vert

s

1

1

1

1

t

t

t

(c) Graph G2 and axis ∆vert

∆vert

s

1

1
1

1
1

1
1

1

t

(d) Graph G3 and axis ∆vert

Figure 3.4: Recursive construction of graphs Gi

For any graph G ∈ G, we partition its edges, denoted by EG, into two sets EG,left (on the left
side of axis ∆vert) and EG,right (on the right side of axis ∆vert).
To any diamond graph G of G, we associate a diamond binary tree (DBT), denoted by TG.
Tree TG, rooted in t, is obtained from the right half of graph G (on the right side of axis
∆vert) by successive contractions of edges: any vertex with a single son is merged with its
father (in Figure 3.5a: edge (t, v2) is contracted, v2 merges with t). We denote by T∅ the
empty tree. Any nonempty tree is a triplet (v, Ta, Tb) with a root v ∈ V and trees Ta and Tb.
Figures 3.5a and 3.5b illustrate the construction of the DBT.

∆vert

v3
v1

v4

v2

s t

(a) Graph G ∈ G, subgraph of G3.

v3

v1 v4

t

(b) The DBT TG

Figure 3.5: An example of graph G ∈ G and its DBT TG.

To put the definition of DBTs, let L (v) denote the set of sons of vertex v which is only
defined for the vertices on the right side of ∆vert. For all v ∈ ∆vert, we have L (v) = ∅. For
graph G of Figure 3.5a, L (t) = {v1, v2}, L (v2) = {v4}, for example.
Function BIN-TREE gives the construction of tree TG, which is BIN-TREE (t):

BIN-TREE (v) =


T∅ if L(v) = ∅,
BIN-TREE (vnext) if L(v) = {vnext} ,
(v, BIN-TREE(vup), BIN-TREE(vdown)) if L(v) = {vup, vdown} .

We say that the depth of a vertex v in a DBT T , denoted by d(v), is equal to the number of
edges separating it from the root. We denote by dmin(T) the minimum depth of all T leaves.
For example, for DBT TG in Figure 3.5b, dmin(TG) = 2.

75

The depth of an edge (u, v), D(u, v), is defined as D(u, v) = max {d(u), d(v)}. We say that
edge e′ is the mother of edge e if these two edges share one endpoint andD(e′) = D(e)−1,
putting it shortly e′ = P (e). Conversely, we say e is the daughter of P (e). Edge e∗ is the
aunt of edge e if e∗ and P (e) share one endpoint and D (P (e)) = D(e∗). We indicate this
fact as e∗ = U(e). We observe that the aunt of e and its mother share the same ancestor.
For example, in Figure 3.5b, edge (t, v4) is the aunt of (v1, v3).
Now we define the graphs contained in the road maps of atlas Rk.

Definition 3.4 (Sets Dk). Infinite set Dk contains graphs of G such that their DBT TG fulfils
dmin (TG) ≥ k: Dk = {G ∈ G : dmin(TG) ≥ k}.

In other words, if graph G belongs to Dk, then its DBT TG induced on vertices of depth less
than k forms a complete binary tree. For example, the DBT TG in Figure 3.5b contains a
complete binary tree of depth 2, so G ∈ D2. Finally, we define road atlases Rk.

Definition 3.5 (Road atlas Rk). Road atlas Rk is composed of road maps (G,E∗), where:

• Graph G belongs to Dk: G ∈ Dk,

• Set E∗ becomes
{
ê, U(ê), U2(ê), . . . , Uk−1(ê)

}
in the DBT TG, with D(ê) = k.

∆vert

v3
v1

v4

v2

s t

(a) Graph G ∈ D2 and its blocked edges.

v3

v1 v4

t

(b) The DBT TG

Figure 3.6: An example of road map (G,E∗) ∈ R2, edges of E∗ are dashed and blue.

In Figure 3.6a, we give an example of road map (G,E∗) inR2, where G is the graph initially
drawn in Figure 3.5a and edges of E∗ are dashed and in blue. In Figure 3.6b, we provide
the corresponding DBT to see that the road map fulfils Definition 3.5 for k = 2.
For road map (G,E∗) ∈ Rk, set E∗ (EG,right contains k edges and there is no two of them
with the same depth in TG. Moreover, there is a unique vertex vk,j among all vertices of
depth k such that there is an open (s, t)-path containing vk,j in G\E∗. In brief, any traveller
on road map (G,E∗) ∈ Rk must traverse this vertex in order to reach t directly.

Competitiveness of randomized memoryless strategies

We study the competitiveness of randomized MSes for road atlases Rk. The MS perfor-
mance is determined by properties of the corresponding DBTs TG. These properties result
from relations which exist between DBT edges.
The following theorem states that cutting one edge from G ∈ Dk produces G\ {e} ∈ Dk−1.

Theorem 3.1. For any G ∈ Dk and edge e ∈ EG,right, graph G\ {e} ∈ Dk−1.

Proof. Let G ∈ Dk and e be an edge in EG,right. There is an edge eT in TG for which
TG\{e} is obtained by removing eT and its descendants from TG and next applying the edge
contraction, if necessary. For example, if e = (t, v2) in Figure 3.5b, then eT = (t, v4). Let v
be the "shallower" endpoint of edge eT = {u, v}, i.e. d(v) < d(u). Edge eT and its mother
have this vertex in common, v ∈ P (eT). We distinguish two cases:

76

• The depth of vertex u is greater or equal to dmin (TG): If u is the unique leaf of
depth dmin (TG), the depth of leaves of the DBT TG\{e} is dmin (TG) − 1 ≥ k − 1.
Otherwise, in DBT TG\{e}, the depth of leaves is still equal to dmin (TG) ≥ k. In both
cases, G\ {e} ∈ Dk−1.

• The depth of vertex u is strictly inferior to dmin (TG): Let Tv be the subtree of TG
with root v. We denote by w the brother of vertex u, i.e. the other son of vertex v
(Figure 3.7b). When edge e is removed from G, edge eT and its descendants are
withdrawn in the DBT (in the DBT in Figure 3.7b, edge e has not been contracted, so
e = eT). Consequently, after the contraction, Tv becomes Tw, the subtree rooted in w.
All the leaves of Tw have initially a depth greater than k, so by removing e from G, all
the leaves of Tw have a depth greater than k− 1. All leaves outside Tv, preserve their
depth which is greater than k. Therefore, the depth of all leaves of TG\{e} is greater
than k − 1.

After examining these two cases, we conclude that G\ {e} belongs to Dk−1.

e
u

w

z

s t = v

(a) Example of graph G ∈ D2.
Edge e (red) is about to be re-
moved from this graph.

t = v

eT = e

u w

(b) The DBT TG. Blue frame
covers vertices of depth 0 to
2. Two leaves are at depth 2.

w

(c) The DBT TG\{e}. Vertices
of depth 0 to 1 are framed.
Graph G\ {e} belongs to D1.

Figure 3.7: Illustration of the proof of Theorem 3.1 on a subgraph of G3.

Corollary 3.1. For any road map (G,E∗) ∈ Rk and edge e ∈ E∗, we have:

(G\ {e} , E∗\ {e}) ∈ Rk−1.

Proof. Let e = (u, v) and v be the shallowest endpoint of e. As e ∈ E∗, its depth is less than
k. We know that E∗ =

{
ê, U(ê), . . . , Uk−1(ê)

}
with D(ê) = k. We denote edge e by U j(ê)

with 0 ≤ j ≤ k − 1. As a consequence, the depth of edge e is k − j: D(e) = k − j.
As G ∈ Dk, any edge of depth less than k − 1 has two daughters. In graph G\ {e}, edge
P (e) has only one daughter as edge e disappeared. Consequently, vertices v and the
sibling vertex of u are merged in the DBT of graph G\ {e}.
Now we prove that U j+1(ê) becomes the aunt of U j−1(ê) in the DBT TG\{e}, i.e. after the
removal of e = U j(ê). Indeed, the daughters of the sibling edge of e in TG are now the
daughters of P (e) in TG\{e}. So, edge U j+1(ê) which used to be the aunt of e is the aunt of
U j−1(ê) in TG\{e}. Therefore, set E∗\ {e} can be written

{
ê, U(ê), . . . , Uk−2(ê)

}
in G\ {e}.

Thanks to Theorem 3.1, we have G\ {e} ∈ Dk−1 which terminates the proof.

We denote by ck the competitive ratio of the best memoryless strategy for road atlases Rk,
k ≥ 1. Formally:

ck = min
A∈ MS

cA,Rk
.

Our objective is to show that ck = 2k + O(1). As value ck gives the competitiveness
of MSes over a specific set of instances, it is a lower bound of cMS. If our objective is
achieved, then we are sure that randomized MSes are not asymptotically more competitive
than deterministic strategies.

77

Theorem 3.2. Any randomized MS competitive ratio is at least 2k +O(1) over atlas Rk.

Proof. We prove by induction that ck = 2k + 1 − ψ(k − 1), where ψ(k − 1) =
∑k−1

j=0

cj + 1

2j+1

is a convergent series bounded by a constant. Let A be the best MS over all road atlases
Rk, k ≥ 1. We show that it achieves the same competitive ratio for a given k over any road
map (G,E∗) ∈ Rk: cA (G,E∗) = ck.
If k = 0, there is no blocked edge. The best MS for k = 0 consists in traversing an (s, t)-path
of cost 1. So, c0 = 1 and this competitive ratio is achieved for any road map in R0.
We assume that the induction hypothesis holds for index k − 1. Let (G,E∗) be a road map
of Rk. As G ∈ Dk, all leaves of TG are at least at depth k. So, TG is complete up to
depth k and has 2k vertices of depth k. We suppose that the traveller, guided by the most
competitive MS A over atlas Rk, is standing at source s and starts his walk on a road map
(G,E∗) ∈ Rk. We focus on value cA(G,E∗).
As strategy A is the most competitive, the traveller using it either reaches t directly with
distance 1 or meets a blocked edge and thus traverses a total distance less than 2 + ck−1:
distance 1 to reach the blockage, distance 1 to go back to a vertex on the left-hand side
of ∆vert, and at most distance ck−1 to reach t on the new road map which belongs to Rk−1
(Corollary 3.1).
Indeed, we remember that when the traveller meets a blockage e∗ for the first time, the
only information taken into account by the MS A after this moment is the position of the
traveller and the current graph G\ {e∗}. This fact justifies the use of the inductive term ck−1,
as strategy A is not influenced by the past and guides the traveller independently of its
previous trips. The traveller, who necessarily returns to s after being blocked in an instance
from Rk, faces now an instance of Rk−1.
For any 1 ≤ j ≤ 2k, let pAk,j signify the probability that the traveller visits the jth vertex at
depth k, denoted by vk,j (index j passes from left to right in the DBT representation).
We denote by j∗ the index of the only vertex vk,j∗ such that there is an open (s, t)-path
containing it. Obviously, the traveller does not know the identity of vertex vk,j∗ as he is
unaware of E∗. If he chooses luckily to walk on a simple (s, t)-path containing vk,j∗ , then
he reaches t with distance 1. Otherwise, if he chooses an (s, t)-path traversing vertex vk,j
with j 6= j∗, he meets a certain blocked edge ek,j . We have:

cA(G,E∗) = pAk,j∗ +
∑
j 6=j∗

pAk,j (2 + cA(G\ {ek,j} , E∗\ {ek,j})) . (3.1)

According to Yao’s principle [78], probabilities pAk,j necessarily follow the uniform distribution
and are all equal to 1

2k
. From the traveller point of view, all vertices vk,j are indistinguish-

able. A strategy with a non-uniform distribution necessarily puts some vertices vk,j at a
disadvantage, with pAk,j <

1
2k

. Moreover, strategy A has to be competitive on any instance
of Rk. Applied on a road map of Rk where one of these penalized vertices is vk,j∗ , such
a strategy makes the probability to reach t with distance 1 decrease and, therefore, the
competitive ratio increases. Consequently, the best MS A fulfils pAk,j = 1

2k
for any vertex

vk,j .
According to the induction hypothesis, the best MS for road atlas Rk−1 performs ratio ck−1
for any road map in Rk−1. Thanks to this observation and the previous remark on the
probability values pk,j , we obtain from Eq. (3.1) that the competitive ratio of A is the same
for all road maps of Rk:

cA (G,E∗) =
1

2k
+

(
1−

1

2k

)
(2 + ck−1) = ck.

78

We observe that ck − ck−1 = 2 − 1
2k
− ck−1

2k
and we obtain the following iterative formula

thanks to the induction hypothesis:

ck = 2− 1

2k
− ck−1

2k
+ 2(k − 1) + 1−

k−2∑
j=0

cj + 1

2j+1
= 2k + 1−

k−1∑
j=0

cj + 1

2j+1
.

As ck ≤ 2k + 1,
∑+∞

j=0

cj + 1

2j+1
converges and ck = 2k + O(1). For k = 104, the numerical

computations give ψ(104) =
∑104

j=0

cj + 1

2j+1
= 3.213, so value ck is larger than 2k − 2.22.

In summary, cMS ≥ ck ≥ 2k − 2.22. As ck represents the competitive ratio of the best com-
petitive MS over road atlasRk, no MS can go below 2k+O (1) in terms of competitiveness.
If we aim at designing a randomized strategy with competitive ratio βk + O (1), β < 2, this
result is important in our opinion. Indeed, it shows that such a randomized strategy is not
memoryless. We shall focus on strategies which are not only randomized but use memory
as well. Moreover, the more a strategy uses memory, the more difficult its competitive
analysis is.

3.3.2 Absence of (|E∗|+ 1)-competitive strategy

We expose our second contribution on the global competitiveness of randomized strate-
gies [15]. We focus on the classic version CTP, without parameter k. An open question
stated in Table 3.1 is whether a strategy reaches the competitive ratio |E∗|+ 1 for the CTP.
We answer it with the proof that no randomized strategy is (|E∗|+ 1)-competitive on a cer-
tain graph Gα. As a consequence, the competitive ratio of the best randomized strategy is
above value |E∗|+ 1: the bound deduced from [75] is not tight.

Apex trees

This family of apex trees has already been mentioned in [42]. An apex tree is a graph
composed of a tree rooted in t and vertex-disjoint paths that connect s to vertices of the
tree. In fact, the over-mentioned graph Gα is an apex tree. As optimal strategies have been
established for graphs with exclusively vertex-disjoint (s, t)-paths [11, 75], the question of
the competitiveness of randomized strategies over apex trees, which represent a more
general family of graphs, is of interest.
We work on a narrower family of graphs we define ourselves, called ε-apex trees (ε-ATs).
Graph Gα, illustrated in Figure 3.8, is an ε-AT. An ε-AT is composed of a tree rooted in t
whose all edges are of weight ε. Starting point s is connected to leaves of this tree with
vertex-disjoint paths of arbitrary cost. We suppose that the traveller traverses an ε-AT G
with blocked edges in E∗ which all belong to the tree rooted in t (their weight is thus ε).

s t
ε

ε
ε

ε

ε

ε

Tree rooted in t

Figure 3.8: An example of ε-AT with four simple (s, t)-paths

79

Let P be the set of simple (s, t)-paths of G. There is a bijective relation between paths in
P and the leaves of the tree: for any leaf of the tree, there is exactly one simple (s, t)-path
passing through it.
We call the memory of the traveller the ordered set:

M = {(e∗a, Qa) , (e∗b , Qb) , . . . , (e∗z, Qz)} ,

which indicates the blocked edges that the traveller discovered successively (e∗a then e∗b ,
etc.) and the simple (s, t)-path he was traversing at these moments (he was traversing
Qa when he discovered blockage e∗a). The most competitive manner to traverse an ε-AT is
to follow the randomized REPOSITION strategy guided by the distribution of the adequate
discrete random variable X which, given the traveller memoryM, assigns a probability to
remaining open paths in P. In short:

1. Draw an open (s, t)-path Q ∈ P according to the distribution of X.

2. If the traveller discovers at vertex v of Q a blocked edge e∗, append pair (e∗, Q) to
memoryM, go back to s on the shortest (v, s)-path and restart the process, otherwise
terminate.

Indeed, the traveller has no alternative because of the structure of an ε-AT: each time the
traveller meets a blockage, the only manner to reach t with minimum distance is to make
a detour via vertex s. For this reason, the randomized REPOSITION strategy is the best
for ε-ATs. Consequently, the optimal randomized strategy over ε-ATs is determined by the
optimality of the distribution of random variable X. We prove next that no random variable
X makes the randomized REPOSITION have competitive ratio |E∗|+ 1 on Gα.

Farkas’ lemma

We define the ε-AT Gα which depends on parameter α. It is an ε-AT composed of three
simple (s, t)-paths, noted Qa, Qb, and Qc (Figure 3.9).
We propose a road atlas R composed of maps with graph Gα and different sets of blocked
edges. Our idea is to build an inequality system Bx ≤ d such that it has a nonnegative
solution iff there is a strategy which is (|E∗|+ 1)-competitive over R. We prove that this
system has no nonnegative solution thanks to Farkas’ lemma [46, 64].

s t
ε1

α
2

α
2

ε

ε

1 ε

v1

v2

v3 v4

v5

(a) Graph Gα

Path Sequence of vertices

Qa s→ v1 → v2 → v4 → t

Qb s→ v3 → v4 → t

Qc s→ v5 → t

(b) Paths Qa, Qb, and Qc

Figure 3.9: Graph Gα and its three simple paths Qa, Qb, and Qc

Proposition 3.1 (Farkas’ lemma, Proposition 6.4.3 in [64]). Let B ∈ Rm×l be a matrix and
d ∈ Rm be a vector. The system Bx ≤ d has a nonnegative solution iff every nonnegative
vector y ∈ Rm with yTB ≥ 0T also satisfies yTd ≥ 0.

We prove that ratio |E∗|+ 1 cannot be attained. First, the road atlas R is defined. Second,
we compute the system Bx ≤ d such that it has no nonnegative solution iff bound |E∗|+ 1
is not tight. After putting this system in its canonical form, we show it has no solution using
Farkas’ lemma.

80

Theorem 3.3. There is no randomized strategy with competitive ratio |E∗| + 1 on ε-ATs
even with three simple (s, t)-paths.

Proof. We focus on a road atlasRmade for Gα composed of all feasible road maps, where
only edges with weight ε� 1 can be blocked. First, we put two road maps into set R, each
one containing one blocked edge which is either (v4, t) or (v5, t).

{(Gα, E∗) : |E∗| = 1, E∗ ⊂ {((v4, t), (v5, t)}} ⊂ R,

Second, we put three road maps intoR, where two blocked edges are taken among (v2, v4),
(v3, v4), and (v5, t):

{(Gα, E∗) : |E∗| = 2, E∗ ⊂ {(v2, v4), (v3, v4), (v5, t)}} ⊂ R.

In the remainder of the proof, we neglect ε � 1 involved in calculations (weights in a CTP
instance must be positive, this is why ε replaces zero). We make parameter α be in the
interval

[√
2, 32
[
.

Let A be a randomized REPOSITION strategy. We note pa, pb, and pc the probabilities for the
traveller to choose pathQa, Qb, andQc at the departure from s with strategy A, respectively.
They obviously fulfil pa+pb+pc = 1. Let p (Qb| (v2, v4) , Qa) be the probability to select path
Qb after discovering blockage (v2, v4) on path Qa. In other words, set {(v2, v4) , Qa} is the
memory of the traveller. We define similarly probabilities p (Qc| (v2, v4) , Qa), p (Qa| (v3, v4) , Qb),
p (Qc| (v3, v4) , Qb), p (Qa| (v5, t) , Qc), and p(Qb|(v5
, t), Qc). The sum of probabilities with the same condition is equal to 1, for example:
p (Qb| (v2, v4) , Qa) + p (Qc| (v2, v4) , Qa) = 1.
In Table 3.2, we define six variables x.,. resulting from the conditional probabilities pre-
sented above, arranged in a vector xA = [xa,b xa,c xb,a xb,c xc,a xc,b]

T .

Variable Definition
xa,b p (Qb| (v2, v4) , Qa) pa
xa,c p (Qc| (v2, v4) , Qa) pa
xb,a p (Qa| (v3, v4) , Qb) pb
xb,c p (Qc| (v3, v4) , Qb) pb
xc,a p (Qa| (v5, t) , Qc) pc
xc,b p (Qb| (v5, t) , Qc) pc

Table 3.2: Definition of coordinates of xA

After supposing that the competitive ratio of strategy A is |E∗| + 1, we produce the conse-
quence of this assumption for each road map fromR. For road map (Gα, {(v2, v4), (v3, v4)}),
the optimal offline path is Qa with cost α. If the traveller chooses Qa (he does this with the
probability xa,b + xa,c), he reaches t without discovering any blockage so the competitive
ratio is 1. If he first chooses either path Qb or Qc and then Qa (probability xb,a + xc,a),
the competitive ratio is 2+α

α . If the traveller traverses path Qa after trying both Qb and Qc
(probability xb,c + xc,b), the competitive ratio is 4+α

α . Vector xA thus fulfils:

(xa,b + xa,c) + (xb,a + xc,a)
2 + α

α
+ (xb,c + xc,b)

4 + α

α
≤ 3.

Similar linear inequalities can be written for all other road maps in R and vector xA is a
solution of an inequality system B′x ≤ d′, with x ≥ 0:

1 1 2+α
α

4+α
α

2+α
α

4+α
α

2α+ 1 2α+ 3 1 1 2α+ 3 3
2α+ 3 2α+ 1 2α+ 3 3 1 1
α+ 2 α+ 2 3 3 1 1
α α 1 1 2 + α 3





xa,b
xa,c
xb,a
xb,c
xc,a
xc,b

 ≤


3
3
3
2
2

 . (3.2)

81

Then, we write this system of inequalities in the canonical form and eliminate one redundant
variable: we take xc,b = 1−

∑
i,j 6=c,b xi,j . However, we must preserve the condition xc,b ≥ 0

which is equivalent to
∑

i,j 6=c,b xi,j ≤ 1. Finally, as strategy A is (|E∗|+ 1)-competitive on
road atlas R, vector xcA = [xa,b xa,c xb,a xb,c xc,a]

T is a solution of the canonical system
Bx ≤ d, x ≥ 0 (with B ∈ R6×5, d ∈ R6):

− 4
α − 4

α − 2
α 0 − 2

α
2(α− 1) 2α −2 −2 2α
2(α+ 1) 2α 2(α+ 1) 2 0
α+ 1 α+ 1 2 2 0
α− 3 α− 3 −2 −2 α− 1

1 1 1 1 1




xa,b
xa,c
xb,a
xb,c
xc,a

 ≤


2− 4
α

0
2
1
−1
1

 .

We define vector y such that yT =
[
α(α− 1), 0, 0, α+ 1, 2, F (α, δ)

]
, where F (α, δ) =

−2α2 + 5α − 3 − δ(α − 1). Polynomial −2α2 + 5α − 3 is positive for any 1 < α < 3
2 . We

set δ > 0 small enough to guarantee F (α, δ) > 0. Therefore, vector y is nonnegative. We
check that yTB ≥ 0T. For this purpose, we note as b1, . . . ,b5 the column vectors of matrix
B. We have, indeed

yTb1 = − 4
αα(α− 1) + (1 + α)2 + 2(α− 3) + F (α, δ) = α2 − 2 + F (α, δ) ≥ 0

yTb2 = − 4
αα(α− 1) + (1 + α)2 + 2(α− 3) + F (α, δ) = α2 − 2 + F (α, δ) ≥ 0

yTb3 = − 2
αα(α− 1) + 2α(1 + α)− 4 + F (α, δ) = F (α, δ) ≥ 0

yTb4 = 2(1 + α)− 4 + F (α, δ) = 2(α− 1) + F (α, δ) ≥ 0
yTb5 = − 2

αα(α− 1) + 2(α− 1) + F (α, δ) = F (α, δ) ≥ 0

Eventually, we obtain that yTd < 0, as:

yTd = α(α− 1)(2− 4
α) + 1 + α− 2 + F (α, δ)

= 2α2 − 6α+ 4 + 1 + α− 2− 2α2 + 5α− 3− δ(α− 1) = −δ(α− 1).

Farkas’ lemma yields a contradiction: no vector xA is a solution of our system Bx ≤ d. So,
no randomized strategy is (|E∗|+ 1)-competitive.

As no strategy reaches ratio |E∗|+ 1 for the road atlas R issued from graph Gα, we affirm
that no randomized strategy is (|E∗|+1)-competitive for general graphs. The open question
for the parameterized variant k-CTP in Table 3.1 remains however unanswered. In other
words, we do not know whether there is (or not) a (k + 1)-competitive strategy for general
graphs. Indeed, our proof is not valid for the parameterized case as vector d′ in Eq. (3.2)
contains values |E∗|+ 1, not k+ 1 which would be all equal: k+ 1 = 3. The linear inequality
with only a vector d′ filled up with 3 has a solution.
All our results on the global competitiveness of randomized strategies for a single traveller
have been introduced. In the next paragraph, we treat the case where there are several
travellers (L > 1).

3.3.3 Distance competitive ratio for multiple travellers

We study the distance competitive ratio for the k-CTP with multiple travellers. For L = 1,
the Canadian traveller can be seen as a vehicle traversing a map with blocked edges. The
case L ≥ 2 models a fleet of vehicles: our objective is to minimize the distance traversed
by all vehicles. Therefore, we can consider ourselves as the manager of a transportation
company who wants to limit the spendings on gasoline.
As no work has existed until now for the distance competitiveness, our objective is to
give the bounds of competitiveness as tight as possible. Both deterministic and random-
ized strategies are treated. The travellers potentially communicate, so we compute these
bounds for different communication levels.

82

Two scenarii can be distinguished when solving the k-CTP with multiple travellers, each
one corresponding to a different practical application.
In the first one, a repair tool must absolutely be brought to a mechanical device on target t
and therefore, several are sent at the same time.
In the second one, vehicles bring to t several pieces of a puzzle. In brief, the objective can
be either to make one traveller reach t (at instant Tfirst) or all travellers reach t (at instant
Tlast). As expected, the ratio value depends upon the option chosen.
A group of travellers identified by indices from {1, . . . , L} starts its walk at source s ∈ V .
The travellers’ objective is to reach target t ∈ V with a minimum cost (also called distance),
which is the sum of the weights of edges traversed by each of them. On the timeline of
an execution, three points are clearly marked: when the first traveller leaves s (Tdep = 0),
when the first traveller reaches t (Tfirst), and when all travellers are standing on t (Tlast).

Tdep = 0 Tfirst Tlast

The distance traversed by the travellers with strategy A on road map (G,E∗) at instant Tfirst,
i.e. between Tdep and Tfirst, is denoted by ωA,first (G,E∗). Naturally, value ωA,last (G,E∗)
denotes the distance traversed at instant Tlast. Strategy A is (cA,first, cA,last)-competitive if,
for any road map (G,E∗) and some constant η:

ωA,first (G,E∗) ≤ cA,firstωmin (G,E∗) + η ∧ ωA,last (G,E∗) ≤ cA,lastωmin (G,E∗) + η.

On the one hand, the competitive ratio cA,first is used to compare the trip of the fleet, until
one traveller arrives at destination, with the optimal trip of a single traveller. Therefore,
the inequality cA,first < cA means that multiple travellers perform better than a single one
when the objective is to make only one traveller arrive at target t. On the other hand, the
competitive ratio cA,last is used to compare the trip of the fleet until all travellers arrive at
destination with the optimal trip of a single traveller.
We could also have defined value cA,last as the maximum ratio, over all road maps, of
ωA,first (G,E∗) with the cost Lωmin (G,E∗) of the optimal trip of the fleet, instead of the cost
ωmin (G,E∗) of the optimal trip of a single traveller. It would allow us to compare the trip of
a fleet following A with the trip of a fleet knowing set E∗ in advance. However, we keep the
version involving the denominator ωmin (G,E∗) for two reasons. First, the second version
is directly obtained by dividing the version cA,last we selected by L. Second, the current
version allows us to compare the competitive ratio of strategies, depending on the instant
(Tfirst or Tlast) which is considered as the end of the trip.

Communication levels

Our goal is to find the optimal competitive ratios for different communication levels and to
measure their impact on the quality of strategies. We suppose that the communication time
is negligible. We focus on four levels:

• Complete communication Pcomplete (initially noted P1 in [79] but we rename it to im-
prove readability of our text) authorizes each traveller to send and receive information
to his teammates. They share all information about the blocked edges they discover,
their location, etc.

• Partial communication Ppartial (initially noted P2 in [79]) uses an extra parameter 1 ≤
L1 ≤ L because L1 travellers can send and receive information, whereas L − L1

can only receive. Case L1 = L corresponds to Pcomplete. We often obtain the same
results with this communication level and with Pcomplete, except that variable L is re-
placed by L1. To avoid repetitions, Ppartial does not appear in the recapitulation charts
(Table 3.3).

83

L > 1
L = 1 Scale Tfirst Tlast

Pnone Pinitial Pcomplete Pnone Pinitial Pcomplete

D
et

er
m

in
is

tic

0

2kL

2k + 1

0

k + 1

2k + 1

kL

2kL

2(k + 1)−min {k + 1, L}

2k + 1

(2k + 1)L

0

2kL2kL

2k + L

(2k + 1)L

(k + 1)L

(2k + 1)L

R
an

do
m

iz
ed

0

2kL

k + 1

2k + 1

0

k + 1

2k + 1

kL

2kL

0

2kL2kL

k+2
2

2(k + 1)−min {k + 1, L}

k + 1

2k + 1

(2k + 1)L

(k + 1)L

0

2kL2kL

3k
2 + L

2k + L

(2k + 1)L

(k + 1)L

(2k + 1)L

(k + 1)L

Table 3.3: Our results on the distance competitiveness for k-CTP with L travellers

• Initial communication Pinitial is the first of the schemes we propose. The travellers are
authorized to organize their journey before one of them leaves s but not to communi-
cate after this moment. This level models drivers which communicate orally as long
as they are parked in their base s. They cannot share information when they move
because they do not have telecommunication equipment or the area is not covered
by a cellular network.

• No communication Pnone is the second one we add. The travellers do not communi-
cate at all. We introduced this level to have a reference in our study of the impact of
communication on the competitive ratio of the fleet.

Table 3.3 summarizes our results obtained at instants Tfirst and Tlast for different commu-
nication levels. Case Tfirst is marked in blue, case Tlast in red. Diamonds indicate that
we obtained the optimal deterministic strategy and give its ratio. Intervals provide a lower
bound such that a better ratio cannot be obtained and an upper bound which is the compet-
itive ratio of the best strategy we have for now. For the deterministic case Tfirst, the dashed
line was drawn to put in evidence that the lower bound for Pinitial is equal to the exact value
for Pcomplete.

84

1: Input: graph G, source s, target t, positive integers k, L
2: i← 1 \\ counter of travellers
3: E′∗ ← ∅ \\ set of blocked edges discovered
4: while all travellers have not reached target t do
5: if traveller i was informed of an open (s, t)-path Qopen then
6: he returns to s following the shortest path from his location and traverses

Qopen
7: i← (i mod L) + 1

8: else
9: if he is not on s, he goes to s following the shortest path from his location

10: he computes the shortest (s, t)-path in G\E′∗ and tries to traverse it
11: if a blocked edge e is on the path then
12: E′∗ ← E′∗ ∪ {e}
13: else
14: he sends to other travellers the open (s, t)-path just traversed
15: endif
16: i← (i mod L) + 1

17: endif
end

Algorithm 3: The MULTI-ALTERNATING strategy

Bounds of competitiveness: deterministic strategies

For all communication levels presented above, we provide either the optimal deterministic
strategy together with its ratio or an interval containing the competitive ratio of the optimal
strategy.
We start with complete communication Pcomplete and propose a deterministic strategy called
MULTI-ALTERNATING (Algorithm 3). Only one traveller moves at a time. Traveller 1 computes
the shortest (s, t)-path and traverses it. If he meets a blocked edge, he stops and hands
over to traveller 2. Traveller 2 updates the graph by deleting the blocked edge discov-
ered by traveller 1, computes the shortest (s, t)-path and so on. When traveller L finds a
blocked edge, the algorithm continues by making the first traveller go back to s. Eventually,
a traveller traverses an open (s, t)-path noted Qopen and alerts his teammates about his
discovery.
The following theorem determines the competitive ratio of MULTI-ALTERNATING.

Theorem 3.4. The competitive ratio of MULTI-ALTERNATING strategy cM-A is:

2(k + 1)−min(k + 1, L) for Tfirst, 2k + L for Tlast.

Proof. Traveller 1 traverses the shortest (s, t)-path of G, its cost is denoted ω1. If he dis-
covers a blocked edge e, he stays where he is and traveller 2 starts traversing the shortest
(s, t)-path of G\ {e}, its cost is denoted ω2, etc. At worst, the cost of the first open (s, t)-path
traversed by a traveller is ωk+1. Moreover, we obviously have ω1 ≤ ω2 ≤ . . . ≤ ωk+1.

• Case Tfirst and k + 1 ≤ L: before traveller k + 1 reaches t, travellers with index in
{1, . . . , k} tried to pass through a graph but have been stopped by a blocked edge they
discovered. Travellers with index greater than k + 1 are still at source s. Therefore,
the total distance traversed is less than

∑
1≤i≤k+1 ωi and the competitive ratio fulfils:

cM-A,first(G,E∗) ≤
1

ωk+1

 ∑
1≤i≤k+1

ωi

 ≤ k + 1.

85

• Case Tfirst and k + 1 > L: MULTI-ALTERNATING makes all (s, t)-paths of cost ωi,
1 ≤ i ≤ k + 1, be traversed once from s to t. At the time one traveller reaches t first,
L− 1 travellers are still standing on blocked paths (there are k blocked paths, as one
path among k + 1 is open), which have not been traversed in direction t→ s yet:

cM-A,first(G,E∗) ≤
1

ωk+1

 ∑
1≤i≤k+1

ωi +
∑

1≤i≤k−(L−1)

ωi

 ≤ 2(k + 1)− L.

• Case Tlast and k + 1 ≤ L: We know that when a traveller reaches t first, the total
distance traversed is less than

∑
1≤i≤k+1 ωi. At this moment, the traveller arrived at

t sends the open path he found to his k teammates stopped on a blocked path and
those L − (k + 1) standing on s. So, the blocked travellers come back to s and all
traverse Qopen. It is not surprising to obtain finally 2k + L, as paths of cost ω1, . . . , ωk
are traversed one in each direction and the open path Qopen of cost ωk+1 is traversed
L times. We have:

cM-A,last(G,E∗) ≤ k + 1 +
1

ωk+1

 ∑
1≤i≤k

ωi + kωk+1

+ L− (k + 1) ≤ 2k + L.

• Case Tlast and k + 1 > L: There are L− 1 travellers stopped by blocked edges when
the first traveller arrives at t. They all need to come back to s and traverse the open
path discovered by their teammate. In summary, each (s, t)-path of cost ωi with i ≤ k
is traversed once in each direction and the (s, t)-path of cost ωk+1 is traversed by the
L travellers in direction s→ t:

cM-A,last(G,E∗) ≤
1

ωk+1

 ∑
1≤i≤k

2ωi + Lωk+1

 ≤ 2k + L.

The competitiveness of MULTI-ALTERNATING under complete communication is summa-
rized in Table 3.4. The competitive ratio for case Tfirst can be written 2(k+1)−min(k+1, L)
in order to omit the discontinuity between k + 1 ≤ L and k + 1 > L.

at instant Tfirst at instant Tlast
k + 1 ≤ L k + 1 2k + L

k + 1 > L 2(k + 1)− L 2k + L

Table 3.4: Competitive ratio of MULTI-ALTERNATING strategy for Pcomplete

We prove that on a certain road map, no strategy defeats MULTI-ALTERNATING. This road
map instance is composed of graph GW (Figure 3.2, page 70) and a set EW∗ of blocked
edges containing k arbitrary edges of weight ε, so only one (s, t)-path of GW is open.
As a consequence, no deterministic strategy has a better competitive ratio than MULTI-
ALTERNATING for general graphs.

Theorem 3.5. MULTI-ALTERNATING is the best deterministic strategy for road map
(
GW , EW∗

)
.

Proof. The simple (s, t)-paths of graphGW are denotedQ1, . . . , Qk+1. We need to consider
three cases:

86

• Case Tfirst and k + 1 ≤ L: The travellers must try to traverse paths Qi successively
to reach t. For any deterministic strategy, the worst scenario occurs when all blocked
paths have been traversed before finding out that Qk+1 is open. The distance tra-
versed is at least k+ 1 and the optimal offline cost is 1 + ε. As ε→ 0, no deterministic
strategy can drop below ratio k + 1.

• Case Tfirst and k + 1 > L: As above, the (s, t)-paths are traversed successively and
the open path may come last. In this scenario, all (s, t)-paths are traversed once
in direction s → t, which results in distance k + 1. As there are fewer travellers
than paths, they sometimes must come back to s in order to visit the next (s, t)-
path. When one traveller reaches t, at most L− 1 blocked (s, t)-paths have not been
traversed in direction t → s yet. Otherwise, this would mean that L travellers are
stopped in front of a blocked edge, which is a contradiction because one traveller
reached t. Furthermore, the open path is only traversed in one direction. Therefore,
no deterministic strategy drops below the ratio k + 1 + (k + 1− L) = 2(k + 1)− L.

• Case Tlast: The worst scenario occurs when the open path is traversed last. For any
blocked path Qi, at least one traveller traverses it, then he is forced to come back
to s as he must arrive at t. Moreover, all travellers traverse necessarily path Qk+1.
Therefore, the distance traversed with any deterministic strategy is at least 2k + L,
which terminates the proof.

These lower bounds correspond to the competitive ratio of MULTI-ALTERNATING.

The MULTI-ALTERNATING strategy is designed for Pcomplete communication. However, it can
be adapted to Ppartial communication. Indeed, the L1 travellers who can receive and send
messages follow the MULTI-ALTERNATING strategy as described in Algorithm 3. The L−L1

travellers, who only receive messages, are waiting on s for information about the open path.
Table 3.5 provides the competitive ratio of MULTI-ALTERNATING adapted to communication
level Ppartial.

at instant Tfirst at instant Tlast
k + 1 ≤ L1 k + 1 2k + L

k + 1 > L1 2(k + 1)− L1 2k + L

Table 3.5: Competitive ratio of MULTI-ALTERNATING strategy for Ppartial

When the competitive ratio is calculated for Tlast, MULTI-ALTERNATING is not only the optimal
deterministic strategy for level Pcomplete but also for Ppartial with ratio 2k + L. We also know
that the competitive ratio of the optimal strategy for Tfirst is larger than 2(k+1)−min(k+1, L)
but cannot exceed 2(k + 1)−min(k + 1, L1).
We focus on the communication level Pinitial where travellers are authorized to communi-
cate before leaving s but not after their departure. Before starting their trip, the travellers
decide together how to explore the map. They cannot inform their colleagues about the
blocked edges discovered when being on the road towards t. We prove that under Pinitial
no deterministic strategy defeats the competitive ratio presented in Table 3.6.

Theorem 3.6. No deterministic strategy for Pinitial has a competitive ratio smaller than:

2(k + 1)−min(k + 1, L) for Tfirst, L(k + 1) for Tlast.

Proof. We show that this is the case on road map
(
GW , EW∗

)
. We treat three cases:

87

• Case Tfirst: As no strategy has a ratio less than k + 1 for Pcomplete when k + 1 ≤ L,
this is also true for Pinitial which is more restrictive. No strategy has a ratio less than
2(k + 1) − L for Pcomplete when k + 1 > L, so this is also true for Pinitial. The lack of
communication in this case does not allow us to obtain a lower bound which is greater
than the one for Pcomplete. In brief, the lower bound we establish for Tfirst follows from
Theorem 3.5 and is 2(k + 1)−min(k + 1, L).

• Case Tlast and k+1 ≤ L: The only degree of freedom offered by initial communication
is on the spread of travellers over the (s, t)-paths at the beginning. This distribution
is optimal when it is uniform, i.e. the same number of travellers is assigned to each
path. Otherwise, we take the risk to lead more travellers to blocked (s, t)-paths. The
best option on (GW , EW∗) is to make b L

k+1c travellers traverse each path. The re-
maining travellers are arbitrarily sent on different paths of GW . Then, each traveller
cannot do better than obeying the optimal deterministic strategy REPOSITION [75],
independently of his teammates: he traverses (s, t)-paths in the ascending order of
path indices (and traversing Q1 after being blocked on Qk+1). Indeed, REPOSITION

is the optimal strategy that each traveller can apply as no communication is allowed
after the departure. If b L

k+1c = L
k+1 , the mean distance traversed by the travellers

is 1
k+1

(∑k
i=0 2i

)
+ 1 = k + 1, so the competitive ratio of the optimal strategy for(

GW , EW∗
)

is at least L(k + 1).

• Case Tlast and k + 1 > L: As previously, after starting their walk, travellers can-
not communicate, so they follow the REPOSITION strategy. As there are more (s, t)-
paths than travellers, only some of these paths have been assigned to travellers.
The distribution of travellers on (s, t)-paths at departure must be as uniform as pos-
sible, otherwise the travellers visit the same (s, t)-paths and the distance traversed
increases. For example, the paths assigned to travellers at the beginning could be
Q1, Qb k+1

L
c+1, Q2b k+1

L
c+1, etc. In this way, the number of travellers traversing a given

path Qi is minimum. Figure 3.10 illustrates how the distribution looks like when k+1
L

is an integer. At best, the mean distance traversed by the travellers is k+ 1. Thus, no
strategy drops below ratio L(k + 1).

s t

...

...

...

Q1

Q k+1
L

Q k+1
L

+1

Q2 k+1
L

Q2 k+1
L

+1

Qk+1

Tra
ve

lle
r 1

Traveller 2

Traveller 3

Figure 3.10: Dispatching of travellers at departure over the graph GW when L = 3 and
k+1
L ∈ N

As no deterministic strategy can defeat these ratios on
(
GW , EW∗

)
, we obtain lower bounds

of the competitiveness of deterministic strategies for communication level Pinitial.

The lower bounds established in Theorem 3.6 for Pinitial are summarized in Table 3.6.

88

at instant Tfirst at instant Tlast
k + 1 ≤ L k + 1 L(k + 1)

k + 1 > L 2(k + 1)− L L(k + 1)

Table 3.6: Lower bound of the deterministic competitive ratio for Pinitial.

Under communication level Pnone, travellers cannot communicate with their teammates and
they make decisions independently. The optimal competitive ratio for L = 1 is 2k+1 with the
REPOSITION strategy [75]. Consequently, for L > 1, the best strategy consists in making
each traveller apply REPOSITION, so the optimal competitive ratio is (2k + 1)L.
The impact of communication on the quality of strategies is significant. For example, when
L ≥ k + 1, the competitive ratio of the best strategy under Pcomplete is k + 1 at instant Tfirst,
whereas it is (2k + 1)L without communication. Furthermore, at instant Tlast, it becomes
2k + L under Pcomplete. This represents an improvement of the competitiveness by factor
2L and L, respectively. Then, it seems that initial communication improves the competitive
ratio for some instances, especially on graphs with vertex-disjoint (s, t)-paths, as GW . The
question remains open when we consider all instances: does a strategy achieve a ratio
less than 2k + 1 at instant Tfirst for Pinitial?
Zhang et al. [79] put in evidence the interest of the map exploration with two travellers
instead of one from the time point of view by proposing the (k+1)-competitive ALTERNATING

strategy. Our appraisal from the distance point of view shows that the competitive ratio of
the optimal strategy MULTI-ALTERNATING for complete communication tends to k + 1 when
L increases.

Bounds of competitiveness: randomized strategies

We focus our attention upon randomized strategies and give lower and upper bounds on
their competitiveness in function of communication levels.
We first study competitive ratios for complete communication. We prove that no randomized
strategy has a ratio less than k+2

2 at instant Tfirst, when k + 1 ≤ L.

Theorem 3.7. No randomized strategy under Pcomplete has a competitive ratio smaller than:

at instant Tfirst at instant Tlast

k + 1 ≤ L k+2
2 k + L

k + 1 > L k + 2− L k + L

Table 3.7: Lower bounds of the competitive ratio of randomized strategies for Pcomplete

Proof. We provide these lower bounds for road map (GW , EW∗). Four cases are distin-
guished:

• Case Tfirst and k + 1 ≤ L: Travellers are obliged to traverse certain vertex-disjoint
(s, t)-paths of GW to reach t. As all these paths are indistinguishable, it is impossible
to perform better than choosing a path uniformly. In other words, the optimal strategy
consists in making traveller select a path with a uniform random draw (probability 1

k+1

for all paths). Thus, the probability that target t is reached during the first try is 1
k+1 .

If he is blocked, he stops, traveller 2 selects a path among the k remaining. The
probability that traveller 2 reaches t during the second try is also k

k+1
1
k = 1

k+1 , etc.
The competitive ratio of this strategy is:

lim
ε→0

k+1∑
i=1

1

k + 1
(i+ ε) =

k + 2

2
.

89

• Case Tfirst and k + 1 > L: As previously, the best random draw to find the open
path with minimum distance is uniform. Given that there are more (s, t)-paths than
travellers, some of these paths are also traversed in direction t→ s to allow travellers
to come back to s and explore other paths. All (s, t)-paths traversed in direction
s → t are also traversed in the opposite direction with exception to L − 1 of them
potentially on which travellers are standing when a traveller reaches t. In brief, the
mean distance traversed is at best the same as the one for L = 1 minus L− 1 return
trips. Thus, a lower bound of the competitive ratio is in this case:

(k + 1)− (L− 1) = k + 2− L.

• Case Tlast and k + 1 ≤ L: We know that the optimal mean distance traversed before
a traveller reaches t is k+2

2 . If the open path is found on the ith attempt, this implies
that i − 1 blocked (s, t)-paths have been traversed in direction s → t. These paths
are necessarily traversed in direction t → s, otherwise at least one traveller would
be stopped on it and would never reach t. Moreover, all travellers traverse the open
path. Finally, the optimal competitive ratio for this case cannot drop below the value:

lim
ε→0

k + 2

2
+

(
k+1∑
i=1

1

k + 1
(i− 1)

)
+ (L− 1)(1 + ε) = k + L.

• Case Tlast and k + 1 > L: We know that the optimal mean distance traversed before
a traveller reaches t is k + 2 − L. If the open path is found on the ith attempt, then
the i− 1 blocked (s, t)-paths have been traversed in both directions s→ t and t→ s,
except at most L − 1 of them. Moreover, the L − 1 travellers who did not arrive at t
have to traverse the open path. Finally, the optimal competitive ratio for this case is
necessarily larger than:

lim
ε→0

k + 2− L+ L− 1 + (L− 1)(1 + ε) = k + L.

All those results are summarized in Table 3.7.

The MULTI-ALTERNATING strategy produces an upper bound on the optimal competitive
ratio of randomized strategies for Pcomplete. Indeed, any deterministic strategy, as MULTI-
ALTERNATING, can be seen as a randomized one, designed only with probabilities 1 or 0.
Therefore, one can say MULTI-ALTERNATING is a randomized strategy for level Pcomplete with
competitive ratio 2(k + 1)−min(k + 1, L) for Tfirst and 2k + L for Tlast. This provides upper
bounds for the level Pcomplete, as the best randomized strategy may be more competitive
than MULTI-ALTERNATING.
We discuss the competitiveness of randomized strategies with multiple travellers for Pnone
and Pinitial. Let us recapitulate the state of the art for a single traveller. We know that no
randomized strategy does better than ratio k + 1. However, no randomized strategy more
competitive than REPOSITION has been proposed so far. In a nutshell, the competitive ratio
of the best randomized strategy (which is still unknown) for one traveller is between k+1 and
2k+ 1. Perhaps, no randomized strategy goes below ratio 2k+ 1. In this case, REPOSITION

would be the best randomized strategy as well because any deterministic strategy can be
seen as a randomized one.
As for Pnone travellers cannot communicate, they cannot decide which of them either start
moving or stay waiting on s. Because all of them try to reach t, the competitive ratio of
the best strategy lies between (k + 1)L and (2k + 1)L. This interval is deduced from the
competitive bounds for L = 1 given above.
For Pinitial, we give an upper bound on the competitive ratio at instant Tfirst with the follow-
ing trivial strategy: we choose one traveller who moves while the others remain on s. The

90

moving traveller follows the REPOSITION strategy whose competitive ratio is 2k + 1. Fur-
thermore, this ratio cannot be better than k+2

2 . As with deterministic strategies, the initial
communication makes algorithms perform better than when no communication is allowed.
At instant Tlast, the strategy which consists in making all travellers apply REPOSITION inde-
pendently is ((2k + 1)L)-competitive. An interesting question is whether this strategy can
be outperformed.

Summary

To summarize our work for multiple travellers, we remind our two main results which con-
cern the communication level Pcomplete. With no restriction on the communication allowed,
we devised an optimal deterministic strategy called MULTI-ALTERNATING. As REPOSITION

for a single traveller, there is no hope of finding a deterministic strategy better than MULTI-
ALTERNATING on general graphs. Then, we proposed a lower bound for randomized strate-
gies. Under Pcomplete, no randomized strategy can drop below the competitive ratio k+2

2 ,
which is smaller than the bound established for L = 1. As for L = 1 traveller, the main re-
maining open question is the identification optimal competitive ratio for randomized strate-
gies, as we only pointed out an interval bounding this optimal ratio.

3.4 Local competitive analysis

We present our contributions on the local competitiveness of the k-CTP. Our objective was
to identify families of graphs for which the local competitive ratio drops below ratio 2k +
1. Locally, we may have a chance to design deterministic strategies which offer better
guarantees than REPOSITION. We put in evidence two of them.
First, we study the relationship between the competitive ratio of deterministic strategies and
the size µmax of the largest minimal (s, t)-cut [19] (Section 3.4.1). A deterministic strategy,
DETOUR, with a competitive ratio 2µmax +

√
2(k − µmax) + 1, is devised for graphs where

µmax < k. When µmax ≥ k, its competitive ratio is 2k + 1, as REPOSITION.
Second, we focus on chordal graphs [18] (Section 3.4.2). Without putting restrictions on
weights, we prove that no deterministic strategy can defeat ratio 2k + 1. However, we
propose a deterministic strategy, CHORD-WALK, with a competitive ratio

2k+ωopt
ωopt

for equal-
weight chordal graphs.

3.4.1 The k-CTP on graphs with small max-(s, t)-cut size

We establish a relationship between the size µmax of the largest minimal (s, t)-cut of a
graph G and the competitive ratio that can be obtained on G, for any configuration of
blocked edges. Concretely, the competitive ratio of deterministic strategies on graphs,
where µmax < k is studied.
According to the proof of Lemma 2.1 in [75], for any value µ ∈ N∗, there is at least one
graph, made up of vertex-disjoint (s, t)-paths only, such that µmax = µ and no deterministic
strategy has a competitive ratio less than 2k + 1 on it if µmax ≥ k. We focus on graphs
fulfilling µmax < k: we assess the competitive ratio of the strategies REPOSITION and COM-
PARISON under this condition. We devise a more competitive strategy called DETOUR. In
brief:

• for any value µmax ≥ 4, we prove that there is at least one graph with µmax < k for
which both REPOSITION/COMPARISON strategies are (2k + 1)-competitive,

• we propose a polynomial-time strategy DETOUR with competitive ratio 2µmax +
√

2(k−
µmax) + 1, when µmax < k. It outperforms the competitive ratio of the existing deter-

91

ministic strategies. Put differently, ratio 2k + 1 is defeated by a deterministic strategy
on graphs G satisfying µmax < k.

The strategy DETOUR is also (2k + 1)-competitive, when µmax ≥ k.

Parameter µmax

As said in Chapter 2, an (s, t)-cut X is minimal if none of its proper subsets X ′ (X is an
(s, t)-cut. Let µmax be the maximum cardinality of a minimal (s, t)-cut:

µmax = max
X minimal
(s,t)−cut

|X| . (3.3)

Any (s, t)-cut X, where |X| > µmax, is not minimal. Parameter µmax is smaller than the
size of the commonly called maximum (s, t)-cut [52, 53], which is the largest set of edges
separating two sets S and V \S in graphG, where s ∈ S and t ∈ V \S. Indeed, the maximum
(s, t)-cut is not necessarily minimal.
We remind that, if X is a minimal (s, t)-cut, graph G\X contains exactly two connected
components: one, denoted R(X, s), contains all vertices reachable from s and another one,
denoted R(X, t), all vertices reachable from t. Largest minimal (s, t)-cuts Xmax, |Xmax| =
µmax, are called max-(s, t)-cuts.

Competitive ratio of REPOSITION/COMPARISON when µmax < k

We study the family of graphs satisfying µmax < k. On such instances, we assess the com-
petitiveness of the two best deterministic strategies known for now. Indeed, REPOSITION

and COMPARISON [75, 77] are (2k + 1)-competitive for general graphs. We prove that they
do not benefit from the inequality µmax < k. We begin with the REPOSITION strategy.

Theorem 3.8. For any k > 4, there is a road map (Gk, E∗,k), µmax = 4, such that the
competitive ratio of REPOSITION on (Gk, E∗,k) is 2k + 1: crep (Gk, E∗,k) = 2k + 1.

Proof. The road map (Gk, E∗,k) is drawn in Figure 3.11. Graph Gk has a horizontal axis of
symmetry ∆. On each side, there are dk2e squares, i.e. cycles of length 4, put in series.
They are surrounded by two edges, one of weight 1 incident to s and one of weight ε � 1
incident to t. For any square above ∆, three of its edges are weighted with ε and the bottom
left one is weighted with 3ε. All the top right edges are blocked (red edges in Figure 3.11).
All squares below ∆ are identical, except for the one closest to s (weights 2ε, ε, 4ε, and ε,
see Figure 3.11). If k is even, as in Figure 3.11, the top edges on the right-hand side of
all squares are blocked. If k is odd, there is no blockage on the square below ∆ which is
the closest to t. In this way, there are always k blocked edges in E∗,k and the max-(s, t)-cut
size of Gk is µmax = 4. Let g(k) = 2dk2e ∈ {k, k + 1} be the total number of squares. The
cost of the shortest (s, t)-path in Gk is 1 + (g(k) + 1)ε.

s t

∆

1

1

ε

3ε

ε

ε

ε

3ε

ε

ε

ε

3ε

ε

ε

4ε

2ε

ε

ε

3ε

ε

ε

ε

3ε

ε

ε

ε

ε

ε

Figure 3.11: Graph G6 and blocked edges E∗,6 in red

Guided by REPOSITION, the traveller traverses the shortest (s, t)-path which is above ∆ and
is blocked in the first square (distance 1+ε). Set E′∗ denotes the blocked edges discovered

92

during the execution: for now, |E′∗| = 1. The traveller comes back to s (distance 1 + ε). The
shortest (s, t)-path in graph G\E′∗ is now below axis ∆ and its cost is 1 + (g(k) + 2)ε as it
contains an edge of weight 2ε. The traveller traverses this path and is blocked in the first
square below ∆ (distance 1 + 2ε). Then, the current shortest (s, t)-path in G\E∗ is above
∆ and its cost is 1 + (g(k) + 3)ε, etc. In summary, the traveller is blocked k times traversing
paths with cost larger than 1 + ε in two directions. The total distance traversed drep satisfies
drep ≥ 2k (1 + ε) + ωopt ≥ (2k + 1)(1 + ε). As ωopt = 1 + (2g(k) + 1)ε, the competitive ratio
of REPOSITION crep is thus:

crep ≥ (2k + 1)
1 + ε

1 + (2g(k) + 1)ε

ε→0−→ 2k + 1.

With ε → 0, there is always a road map on which REPOSITION achieves a ratio 2k + 1 − δ
for any arbitrarily small value δ > 0.

This result remains true for any value µmax > 4 as we can artificially add (s, t)-paths disjoint
from Gk making µmax increase. It suffices to assign a sufficiently large cost to these paths
to make REPOSITION never guide the traveller to traverse them. Now, we examine the
COMPARISON strategy.

Theorem 3.9. For any k > 3, there is a road map (G′k, E
′
∗,k), µmax = 3, such that the

competitive ratio of COMPARISON on (G′k, E
′
∗,k) is 2k + 1: ccomp(G′k, E

′
∗,k) = 2k + 1.

Proof. Road map (G′k, E
′
∗,k) is drawn in Figure 3.12. Axis ∆′ is represented to facilitate the

description of G′k. Above ∆′, k − 1 squares are put in series and are surrounded as in Gk
(see Theorem 3.8). On each square, the edge weights are ε, except for the bottom edges
on the left-hand side weighted with value 1. The top left edges are blocked. Moreover,
the edge incident to t above ∆′ is also blocked, so

∣∣∣E′∗,k∣∣∣ = k. Below ∆′, there is an open
(s, t)-path with cost 1 + 2kε. The shortest (s, t)-path in G′k, above ∆′, costs 1 + (2k − 1)ε.
Graph G′k is such that µmax = 3.

s t

∆′
1

1

ε

1

ε

ε

ε

1

ε

ε

ε

1

ε

ε

7ε

ε

ε

Figure 3.12: Graph G′4 and blocked edges E′∗,4 in red

Guided by COMPARISON, the traveller traverses the shortest (s, t)-path and is blocked when
he arrives on the first square (distance 1). Then, the cost of the shortest (s, t)-path in G\E′∗,
i.e. 1 + 2kε, is compared with the shortest distance between the current position of the
traveller and t, i.e. 1 + (2k − 2)ε. Since 1 + (2k − 2)ε < 1 + 2kε, the traveller chooses the
shortest path between its current position and t, which is above ∆′. He meets a second
blockage when arriving on the second square (distance 1 + ε). Then, he makes the same
decision and traverses the squares above ∆′. Eventually, when he meets the last blockage
incident to t, he travels back to s and finally passes through the optimal offline path, below
∆′. The total distance traversed is dcomp = 2 + 2(k − 1)(1 + ε) + 1 + 2kε. The competitive
ratio ccomp of the COMPARISON strategy on the road map (G′k, E

′
∗,k) follows:

ccomp =
2 + 2(k − 1)(1 + ε) + 1 + 2kε

1 + 2kε

ε→0−→ 2k + 1.

Making ε tend to zero terminates the proof.

93

The existence of a deterministic strategy achieving a ratio less than 2k+1 on graphs fulfilling
µmax < k is still an open question after the results established in Theorems 3.8 and 3.9.
Indeed, we showed that the existing strategies cannot defeat their global competitive ratio
on this particular family of graphs. In the remainder, we devise a strategy outperforming
REPOSITION and COMPARISON when µmax < k.

Description of the DETOUR strategy

We introduce a parameterized strategy called α-DETOUR. It takes as input graph G, source
s, target t, and a parameter α, 0 ≤ α ≤ 1. We provide an upper bound of its competitive
ratio when µmax < k. This bound is minimized for α =

√
2
2 and is 2µmax +

√
2(k − µmax) + 1.

The strategy DETOUR corresponds to
√
2
2 -DETOUR.

The α-DETOUR strategy is inspired by the COMPARISON strategy. In brief, the traveller
traverses successively the shortest (s, t)-paths of the updated graph G\E′∗, where E′∗ is
the set of discovered blocked edges. But when he backtracks towards source s, he verifies
whether he can traverse a “short” detour from his position to t.
We present the α-DETOUR strategy in Algorithm 4. Variable pos keeps track of the traveller’s
current position. The idea is to perform successively two phases: an exploration followed
by a detour-backtracking. The exploration starts when the traveller is on source s (line 10).
He traverses the shortest (s, t)-path P

(s,t)
min called the exploration path. Its cost ω(s,t)

min =
ωmin(G,E′∗) is stored in ωexp (line 9). At this point, there are two possibilities:

1. The traveller reaches t and the execution terminates (line 15).

2. The traveller arrives at pos = u and discovers a blocked edge (u, v) ∈ P (s,t)
min . Then,

the detour-backtracking phase begins.

Each exploration followed by a detour-backtracking phase can be seen as a depth-first
search (DFS). When the traveller is blocked on P (s,t)

min , we ask whether an α-detour, i.e. a
(pos, t)-path with cost at most αωexp, exists. If an α-detour exists, the traveller traverses the
shortest path P (pos,t)

min from the current position pos to target t (line 11). Obviously, its cost
satisfies ω(pos,t)

min ≤ αωexp. Otherwise, the traveller backtracks to the vertex before pos = u
on the exploration path (lines 16-18).
As in a DFS, we use a stack to store the previous vertices for backtracking. We denote by
Vstack the set of vertices in the stack. We do not allow an α-detour P (pos,t)

min to pass through
any vertex v ∈ Vstack, since the section P

(v,t)
min will be considered later on when pos = v.

The vertices of an exploration path traversed by the traveller are naturally put into stack.
Moreover, when the traveller is blocked on an α-detour P (pos,t)

min , the vertices of P (pos,t)
min from

pos to the endpoint of the blocked edge are put in stack. Finally, if the traveller backtracks
to s, the algorithm goes back to the exploration phase. At this moment, the stack is empty.
Variable G′ contains the graph G deprived of the discovered blockages E′∗ at any moment
of the execution. At each iteration of the while loop, the variables are updated as follows:
if the path P (u0,t)

min currently traversed (lines 10–11) does not contain any blockage, then the
traveller reaches t, i.e. pos← t. In this case, the algorithm terminates since the destination
is reached. Otherwise, let P (u0,t)

min = u0 · · ·ui ·ui+1 · · ·ur ·t, where (ui, ui+1) is its first blocked
edge. The traveller’s position is updated from u0 to ui (line 12). Then, we update E′∗ with the
newly discovered blockages including (ui, ui+1), and G′ ← G\E′∗ (line 14). In addition, we
push the traversed vertices u0, . . . , ui−1 on the stack (except ui) and update it accordingly
Vstack ← Vstack∪{u0, . . . , ui−1}. In case there is no α-detour P (ui,t)

min inG′\Vstack, the algorithm
backtracks by popping ui−1 from the stack and setting pos← ui−1 (lines 16–18).
If α = 0, the algorithm does not take any detour. As a consequence, 0-DETOUR is equivalent
to REPOSITION, as both procedures perform an exploration phase followed by backtracking

94

1: Input: graph G, source s, target t, parameter α ∈ (0, 1)
2: E′∗ ← ∅; G′ ← G\E′∗;
3: pos← s; u0 ← s;
4: ωexp ← ωmin(G, ∅);
5: stack← Empty Stack; Vstack ← ∅;
6: while true do
7: u0 ← pos;
8: if u0 = s then
9: ωexp ← ωmin(G,E′∗);

10: traverse the shortest (s, t)-path P (u0,t)
min in G′;

else
11: traverse the shortest (u0, t)-path P (u0,t)

min in G′\Vstack;
endif

12: update pos;
13: push the vertices visited in P (u0,t)

min except pos on stack;
14: update E′∗, G′, and Vstack;
15: if pos = t then break;
16: while pos 6= s and there is no P (pos,t)

min in G′\Vstack such that ω(pos,t)
min ≤ αωexp do

17: pos← pop(stack);
18: Vstack ← Vstack\{pos};

end
end

Algorithm 4: The α-DETOUR strategy

without taking any detour. In the following, we provide an upper bound of α-DETOUR’s
competitive ratio.

Competitive analysis of the DETOUR strategy

We denote by P1, . . . , P` the exploration paths P (s,t)
min such that the distance from s to the

blocked edge discovered on it is greater than α multiplied by their own cost, i.e. αωi. In
other words, the distance di traversed by the traveller on the exploration paths Pi, 1 ≤ i ≤ `,
satisfies di ≥ αωi. Paths Pi are sorted in order to fulfil ω1 ≤ · · · ≤ ω`. The exploration paths
P1,. . . ,P`−1 are blocked, while path P` can be open. If P` does not contain any blockage,
then the algorithm terminates after traversing P`.
Let us split P1, . . . , P` into two sequences S1 = P1, . . . , Ph−1 and S2 = Ph, . . . , P` such that
2αωh−1 < ω` ≤ 2αωh. In the particular case where ω` ≤ 2αω1, then h = 1 and the two
sets are defined as S1 = ∅ and S2 = P1, . . . , P`. We denote by G [Ph, . . . , P`] the subgraph
of G induced by paths Ph, . . . , P`, i.e. containing only the vertices and edges of paths Pi,
h ≤ i ≤ `.

Theorem 3.10. The max-(s, t)-cut size induced on graph G [Ph, . . . , P`] is at least `−h+ 1.

Proof. We denote by bi the blocked edge discovered on Pi, for i ∈ {h, . . . , `}. We construct
by induction a set {eh, . . . , e`} of edges satisfying the following induction hypotheses, for all
i ∈ {h, . . . , `}:

H1(i): {eh, . . . , ei} is a minimal (s, t)-cut of G [Ph, . . . , Pi],

H2(i): Either ei = bi or ei is an ancestor of bi in Pi,

H3(i): For j ∈ {i+ 1, . . . , `}, Pj does not pass through ei.

95

Basis: For i = h, G [Ph, . . . , Pi] contains one path Ph only. We choose eh = bh, which
fulfils H2(h). Since any edge of Ph is a max-(s, t)-cut of G [Ph], it satisfies H1(h). State-
ment H3(h) is also true, as eh is blocked.
Inductive step: Assume that H1(i), H2(i), and H3(i) are true, for i ∈ {h, . . . , ` − 1}. We
construct ei+1 and prove the induction hypotheses H1(i + 1) to H3(i + 1). For simplicity,
we denote sets R({eh, . . . , ei}, s) and R({eh, . . . , ei}, t) in graph G [Ph, . . . , Pi] by Ri(s) and
Ri(t), respectively.
Let P (v0,vp)

i+1 = v0 · v1 · · · vp be the longest section in Pi+1, starting from v0 = s, such that

v0, . . . , vp ∈ Ri(s) and p ∈ N. Section P
(v0,vp)
i+1 contains at least vertex v0 = s. For j ∈

{h, . . . , i}, all ancestors of ej in Pj belong to Ri(s), and all descendants belong to Ri(t).
Therefore, according to H2(i), all exploration paths’ sections of the form P

(s,u)
j are equal to

the shortest open path from s to u, for u ∈ Ri(s)∩Pj and j ∈ {h, . . . , i}. In particular, since
P

(v0,vp)
i+1 is the shortest (v0, vp)-path, we deduce that it is open.

According to H3(i), P
(vp,t)
i+1 is a new path connecting Ri(s) to Ri(t), which does not tra-

verse any edge of the cut {eh, . . . , ei}. Furthermore, no vertex in P (vp+1,t)
i+1 belongs to Ri(s).

Indeed, suppose for the sake of contradiction that u ∈ P
(vp+1,t)
i+1 and u ∈ Ri(s). There

would exist j ∈ {h, . . . , i}, such that P (s,u)
j is the shortest (s, u)-path, and all its vertices

belong to Ri(s). This contradicts with the fact that P (s,u)
i+1 is also the shortest (s, u)-path

and vp+1 /∈ Ri(s), by definition. Let vp′ be the first vertex of Pi+1 belonging to Ri(t), i.e.

vp′ ∈ Ri(t) and p < p′. Such a vertex exists as t is a candidate. We derive that P
(vp,vp′)

i+1 is
the only path connecting Ri(s) to Ri(t). Figure 3.13 represents cut {eh, . . . , ei}, path Pi+1

and its vertices vp and vp′ .

s t

vp vp′

vp′−1

Pi+1

X

Ri(s) Ri(t)

Figure 3.13: Cut X = {eh, . . . , ei}, path Pi+1, and vertices vp, vp′−1, vp′

We fix ei+1 differently, depending on the position of bi+1. We already proved that bi+1 /∈
P

(v0,vp)
i+1 , the remaining cases are:

• If bi+1 ∈ P
(vp,vp′)

i+1 , then we set ei+1 = bi+1. As ei+1 ∈ E∗, H3(i+ 1) is true.

• Otherwise, if bi+1 ∈ P
(vp′ ,t)

i+1 , we choose ei+1 = (vp′−1, vp′). We prove that the cost

of the current shortest (s, vp′)-path, P
(s,vp′)

i+1 , is at least αωh. Indeed, as vertex vp′

belongs to a certain path Pj′ , j′ ∈ {h, . . . , i}, the cost of P
(s,vp′)

i+1 is at least the cost

of P
(s,vp′)

j′ . If we have ω
(s,vp′)

i+1 ≤ αωh, the distance traversed by the traveller on Pj′ is
less than αωh ≤ αωj′ , as vp′ ∈ Ri(t). This contradicts the fact that Pj′ ∈ {Ph, . . . , P`}.
Moreover, after the (i+ 1)-th detour-backtracking phase, all remaining open (vp′ , t)-
paths are longer than αωi+1 ≥ αωh. Therefore, the cost of any exploration (s, t)-path
passing through vp′ is greater than 2αωh. This is impossible since the last exploration
path P` satisfies ω` ≤ 2αωh. As a consequence, statement H3(i+ 1) is true.

96

Both cases fulfil H2(i + 1). It only remains to prove statement H1(i + 1). We showed that

P
(vp,vp′)

i+1 is the only path connecting Ri(s) to Ri(t), and ei+1 ∈ P
(vp,vp′)

i+1 . Thus, {eh, . . . , ei+1}
is an (s, t)-cut of G [Ph, . . . , Pi+1]. If we reopen edge ei+1, path P

(vp,vp′)

i+1 connects Ri(s) to
Ri(t). If we reopen ej , j < i + 1, there is a path in G [Ph, . . . , Pi] which connects Ri(s)

to Ri(t) independently of P
(vp,vp′)

i+1 , according to the minimality of {eh, . . . , ei} in H1(i). As
a consequence, no proper subset of {eh, . . . , ei+1} is an (s, t)-cut. Cut {eh, . . . , ei+1} is
minimal.
In summary, we derive by induction that {eh, . . . , e`} is a minimal (s, t)-cut of G [Ph, . . . , P`].
The size of the max-(s, t)-cut is at least `− h+ 1.

The following lemma states that the max-(s, t)-cut size of graph G [Ph, . . . , P`] cannot ex-
ceed the max-(s, t)-cut size of its super-graph G.

Lemma 3.1. The max-(s, t)-cut size on graph G [Ph, . . . , P`] is less than or equal to the
max-(s, t)-cut size µmax of the original graph G.

Proof. Let X be one of the max-(s, t)-cuts in graph G [Ph, . . . , P`]. Cut X is minimal, so no
subset X ′ (X is an (s, t)-cut. If X is an (s, t)-cut in G, then it is also minimal in G as none
of its subsets can be an (s, t)-cut. Therefore, |X| ≤ µmax.
Now, let us suppose that X is not an (s, t)-cut in G. We denote by Y the max-(s, t)-cut in
graph G deprived of edges X, i.e. G\X. Set X ∪ Y is thus a minimal (s, t)-cut in graph G
as Y is minimal in G\X. So, |X| ≤ |X ∪ Y | ≤ µmax. In both cases, the max-(s, t)-cut size
in G [Ph, . . . , P`] is at most µmax.

According to Theorem 3.10 and Lemma 3.1, a relationship exists between values `, h, and
µmax, which is `−h+1 ≤ µmax. After traversing an exploration path Pi, the traveller performs
a detour-backtracking phase. The number of blockages discovered during this i-th detour-
backtracking phase is denoted by qi. We analyse the cost of traversing Pi and performing
the i-th detour-backtracking phase in Lemma 3.2.

Lemma 3.2. The total cost of both the i-th exploration phase and the i-th detour-backtracking
phase is not greater than (2 + 2αqi)ωi.

Proof. The filling of stack in Algorithm 4 ensures that each edge is traversed only twice:
once when moving towards t on an exploration path or a detour, and once when back-
tracking. The exploration path costs ωi and each detour costs no more than αωi. Besides,
the number of detours is at most qi. Hence, the total cost is at most 2ωi + qi2αωi, which
concludes the proof.

We denote by k1 the number of blocked edges discovered during the exploration and
detour-backtracking phases associated with paths P1, . . . , Ph−1 (respectively Ph, . . . , P`).
Similarly, the number of blocked edges discovered during the exploration and detour-backtracking
phases associated with paths Ph, . . . , P` is k2. Let k3 be the number of blockages discov-
ered during the other phases, so that k1 + k2 + k3 = k. We derive in Theorem 3.11 an
upper-bound on the competitive ratio as a function of k1, k2, k3, and α.

Theorem 3.11. The competitive ratio of α-DETOUR is upper-bounded by

k1
α

+ 2µmax + 2α(k2 + k3 − µmax) + 1. (3.4)

Proof. Since path P` is the shortest (s, t)-path in a certain graph G\E′∗, where E′∗ ⊆ E∗,
the optimal offline cost satisfies

ωopt ≥ ω`. (3.5)

97

According to Lemma 3.2, the distance travelled during the exploration and detour-backtracking
phases of P1, . . . , Ph−1 is not greater than

h−1∑
j=1

(2 + 2αqj)ωj ≤ 2ωh−1

h−1∑
j=1

(1 + qj) = 2k1ωh−1. (3.6)

Inequality (3.6) comes from the fact that ω1 ≤ · · · ≤ ωh−1 and
∑h−1

j=1 (1 + qj) = k1.
We evaluate the cost of the phases associated with Ph, . . . , P`. Path P` is either open and
traversed in one direction only (Case 1) or blocked and the traveller reaches t via a detour
(Case 2).
Case 1: If P` does not contain any blockage, then the algorithm terminates after traversing
it. This final exploration phase costs ω`. We have q` = 0 and k2 =

∑`−1
j=h (1 + qj). Given

Lemma 3.2, the cost of phases from the h-th to the `-th is less than:

`−1∑
j=h

(2 + 2αqj)ωj + ω` =
`−1∑
j=h

(2α+ 2αqj)ωj +
`−1∑
j=h

(2− 2α)ωj + ω`

≤ 2αk2ω` + (2− 2α)(`− h)ω` + ω` (3.7)
< 2αk2ω` + (2− 2α)µmaxω` + ω` (3.8)
= 2α(k2 − µmax)ω` + 2µmaxω` + ω`.

We deduce Inequality (3.7) from ωh ≤ · · · ≤ ω`. By applying Theorem 3.10 and Lemma 3.1
on S2 = Ph, . . . , P`, we conclude that `− h ≤ µmax − 1 < µmax in Inequality (3.8).
Case 2: Suppose that P` is blocked. The `-th exploration and detour-backtracking phases
cost at most (2 + 2αq`)ω` + αω`. Moreover, we have k2 =

∑`
j=h (1 + qj). The distance

traversed during the phases from the h-th to the `-th is not greater than:

`−1∑
j=h

(2 + 2αqj)ωj + (2 + 2αq` + α)ω` =
∑̀
j=h

(2 + 2αqj)ωj + αω`

≤ 2αk2ω` + (2− 2α)(`− h+ 1)ω` + αω` (3.9)
≤ 2αk2ω` + (2− 2α)µmaxω` + αω` (3.10)
≤ 2α(k2 − µmax)ω` + 2µmaxω` + ω`. (3.11)

Inequality (3.9) follows from ωh ≤ · · · ≤ ω`. We obtain Eq. (3.10) from ` − h + 1 ≤ µmax.
Finally, α ≤ 1 implies Eq. (3.11).
Contrary to P1, . . . , P`, some exploration paths P̂ may be such that the distance traversed
on them is at most α multiplied by their own cost ω̂. The distance traversed during the
phases which are not associated with P1, . . . , P` is the cost of these exploration paths P̂
and their α-detours. As ω̂ ≤ ωopt, it is at most 2αk3ωopt. Applying Eq. (3.5), the competitive
ratio of α-DETOUR admits the following upper-bound:

ωα−DETOUR

ωopt
≤

2k1ωh−1 + 2α(k2 + k3 − µmax)ωopt + 2µmaxωopt + ωopt

ωopt

≤ k1ω`
αωopt

+ 2µmax + 2α(k2 + k3 − µmax) + 1 (3.12)

≤ k1
α

+ 2µmax + 2α(k2 + k3 − µmax) + 1. (3.13)

Inequality (3.12) follows from the splitting {S1, S2} which imposes 2αωh−1 < ω`.

98

Let cdet(k1, k2, k3, α) denote the value in Eq. (3.13). Parameters k1, k2, and k3 depend
on the road map (G,E∗), so only α ∈ (0, 1) can be tuned. Value α =

√
2
2 minimizes

cdet(k1, k2, k3, α) under the condition k1 + k2 + k3 = k for any k > µmax. Formally,
√

2

2
= argmin

0≤α≤1
max

k1,k2,k3∈N
k1+k2+k3=k

cdet(k1, k2, k3, α).

Corollary 3.2. The competitive ratio of DETOUR is at most 2µmax +
√

2(k − µmax) + 1.

Proof. We obtain this ratio by setting α =
√
2
2 and k1 + k2 + k3 = k in Eq. (3.4).

Discussion

Even if the global competitiveness of deterministic strategies for the k-CTP was fully treated
by Westphal [75], families of graphs for which a competitive ratio better than 2k + 1 can be
achieved, can be identified. In this context, we designed the DETOUR strategy to improve
significantly the competitive ratio on graphs satisfying µmax < k. Its competitive ratio is
2µmax +

√
2(k − µmax) + 1.

The strategy DETOUR is as competitive as REPOSITION/COMPARISON for the range µmax ≥ k
but better for the range 1 ≤ µmax < k. The slope of the competitive ratio of DETOUR when
k varies is only

√
2 for µmax < k. Figure 3.14 gives the shape of the competitive ratios of

REPOSITION (in blue) and DETOUR (in red) as a function of k.
The DETOUR strategy identifies the shortest (s, t)-paths and (pos, t)-paths at any moment of
its execution. These paths are established by a single execution of Dijkstra’s algorithm [43],
performed between two discoveries of blockages with t as the starting point. Hence, the
running time of DETOUR is O(k(m+ n log n)).

k

comp. ratio

µmax

2µmax + 1

0

2

1

√
2

1

Figure 3.14: Competitive ratio of REPOSITION (blue) and DETOUR (red) in function of k

As for REPOSITION and COMPARISON, the DETOUR strategy can be launched when no
upper bound k on the number of blockages is known and its competitive ratio becomes
2µmax +

√
2(|E∗| − µmax) + 1.

The DETOUR strategy can be executed without knowing the value µmax. Indeed, its com-
petitive ratio depends on µmax but no decision is based on µmax in Algorithm 4.
One may wonder whether the estimation of a possible gain of competitiveness can be
determined without launching our strategy. To answer this question, we need to verify
whether µmax < k. From [56] we know that finding one of the largest minimal (s, t)-cuts is
NP-hard even for planar graphs. Therefore, we cannot predict the quality of DETOUR for
any input G in polynomial time.
A constant approximation ratio for the computation of µmax would allow us, however, to
obtain an upper bound of the competitive ratio of DETOUR in polynomial time. A linear time

99

algorithm computing µmax exists for series-parallel graphs [32], so the competitive ratio of
DETOUR can be estimated efficiently for this family of graphs.

3.4.2 The k-CTP on chordal graphs

The graphs which allow us to defeat ratio 2k + 1 may contain many detours. Intuitively,
when the traveller is blocked on a vertex u by edge (u, v), there shall be a certain number
of short (u, t)-paths to bypass the blockage. In this case, we are not forced to return to
s every time and to accomplish a trip similar to REPOSITION’s one. The family of chordal
graphs seems to offer such a possibility. Chordal graphs do not contain any induced cycle
of size greater or equal than four. Said differently, any cycle of size at least four in G has
a chord, i.e. an edge between two vertices which are not adjacent in the cycle. Chords
seem to offer lots of detours to a traveller placed in front of a blocked edge. This is why we
believe we can benefit from their structure to design a competitive strategy. We study the
local competitiveness of deterministic strategies on chordal graphs, reporting the results
in [18].
First, we prove that no deterministic strategy achieves a competitive ratio smaller than
2k + 1 on the family of chordal graphs. We use the size of the largest minimal vertex
(s, t)-cut, µVmax, as a factor involved in the competitive ratio of deterministic strategies. This
statement can be extended to planar, bipartite graphs, and more generally the well-known
families of graphs without any weight restrictions.
Second, we thus study chordal graphs when all edge weights are unitary: in equal-weight
graphs [30]. The strategy CHORD-WALK we proposed, achieves the competitive ratio

2k+ωopt
ωopt

.
As a trivial polynomial-time strategy handles the case ωopt = 1 with a competitive ratio 1,

ratio
2k+ωopt
ωopt

is less than k + 1 when ωopt ≥ 2. It becomes constant, O(1), for values

ωopt = Ω(k).

Vertex max-(s, t)-cut size as an indicator of competitiveness

We establish a relationship between the competitive ratio of strategies and value µVmax.
Ratio 2k + 1 is a lower bound for all graphs verifying k < µVmax.

Theorem 3.12. Let G be an undirected graph with a maximum vertex (s, t)-cut X such that
k < |X| = µVmax. For any ε > 0, there is a weighting ωε such that any deterministic strategy
is at least (2k+1

1+ε)-competitive on graph (G,ωε).

Proof. We define weights ωε. For all e ∈ E [R(X, s)]∪E [R(X, t)], we put ωε(e) = ε
n . As cut

X is minimal, any vertex x ∈ X is adjacent to R(X, s) and R(X, t), otherwise x would be
useless for the separation of s and t. For any x ∈ X, an arbitrary edge from R(X, s)× {x}
has the unitary weight. In contrast, for an arbitrary edge e of {x}×R(X, t), we put ωε(e) = ε

n .
All other edges have the infinite weight: to be more rigorous, assigning weight (2k+1)n+1
is equivalent to put a weight +∞ as traversing such edges becomes necessarily unefficient.
Consequently, we can remove them and obtain a graph (Figure 3.15) corresponding to the
one with vertex-disjoint paths proposed by Westphal in [75].
Suppose that set E∗ only contains (εn)-weighted edges from X × R(X, t). The traveller
must pass through X at some point to arrive at t. At worst, each attempt to go through
vertex x ∈ X ends with a blockage (x, y) with y ∈ R(X, t). As k < µVmax, this can occur
k times. The distance traversed between each blockage discovery is longer than 2. After
discovering the kth blocked edge and returning to set R(X, s), the traveller goes to t with a
distance longer than 1. So, the total distance traversed is at least 2k+1 and no deterministic
strategy has a competitive ratio lower than 2k+1

ωopt
. With the weight function ωε, we have

ωopt ≤ 1 + ε. Therefore, the obtained lower bound is 2k+1
1+ε .

100

s tε
n

ε
n

ε
n

ε
n

ε
n

1

1

1

Xmax
R(Xmax, s) R(Xmax, t)

Figure 3.15: Structure of the graph obtained with weight function ωε

With ε → 0, there is no deterministic strategy with ratio less than 2k + 1 for any family of
graphs such that:

• no restriction is given for the weight function,

• it contains at least one road map with k < µVmax.

Corollary 3.3. There is no deterministic strategy with competitive ratio lower than 2k + 1
for the family of chordal graphs: {((G,ω), E∗) : G chordal}.

This statement remains valid for planar, bipartite graphs, and more generally any family
containing graphs with k < µVmax. Taking advantage of Corollary 3.3, we draw our attention
on a smaller family of graphs: chordal graphs where all edge weights are equal.

Description of the CHORD-WALK strategy

We study equal-weight graphs ω(e) = 1 for any edge e ∈ E. This is equivalent to setting
all weights ω(e) equal to any other value a 6= 1, from the competitive analysis point of view.
We consider that ωopt ≥ 2 because the case ωopt = 1 is trivial: there is an open edge (s, t),
the traveller sees it, and traverses it. The competitive ratio obtained must be 1.
We propose a deterministic strategy, called CHORD-WALK, dedicated to equal-weight chordal
graphs. Its competitive ratio,

2k+ωopt
ωopt

, is asymptotically optimal. As ωopt ≥ 2, we observe

that
2k+ωopt
ωopt

≤ k + 1. CHORD-WALK is very efficient for a large value ωopt: ratio O(1) is
obtained when ωopt ≥ k.
We introduce the notation used to depict CHORD-WALK. At any moment of the traveller trip,
Gvis denotes the subgraph of G composed of the vertices and edges that the traveller has
already visited since his departure from source s. Set E′∗ keeps a record of the blocked
edges already discovered: E′∗ = {e1, e2, . . .}.
The particularity of the strategy CHORD-WALK is that any edge (u, v) ∈ E in graph G is
traversed at most twice. If an edge is traversed twice, it is done once in each direction:
u→ v and v → u.
CHORD-WALK proceeds iteratively. Let Pi be the shortest (s, t)-path in graph G deprived
of the blocked edges discovered during the previous iterations, i.e. graph G\E′∗, when
iteration i begins. Let the length of Pi be ωi. We define the memory Mi as the subgraph of
Gvis induced on edges which have been traversed once since the traveller has started his
trip from s. The memory is a stack, updated step-by-step, for edges which can be traversed
at most once. The top edge of the stack is incident to the traveller’s position.
CHORD-WALK operates according to the following principle: at iteration i + 1, the traveller
looks for a vertex h ∈ Mi which may be a starting point of a path arriving at t and built
of unvisited vertices only. In other words, the traveller seeks a path Qh : h · · · t such that
all vertices but the starting point h have not been visited yet. When such a path exists,
he traverses it and checks any of its intermediary vertex x, whether there is an open edge
(x, ri+1) between x and ri+1 ∈ Pi+1. When this happens, he abandons path Qh, passes

101

through (x, ri+1) and traverses section P (ri+1,t)
i+1 . Iteration i + 1 terminates when either the

traveller reaches target t or discovers a blockage on Pi+1.
The detailed description provided below is accompanied by a pseudocode (Algorithm 5).
First of all, CHORD-WALK computes the shortest (s, t)-path P1 in G. The traveller starts to
traverse it and may discover a blocked edge e`(1) = e∗1 = (u∗1, v

∗
1) on P1, where `(1) ≥ 1.

The traveller stores in set E′∗ all blocked edges incident to the vertices visited on P
(s,u∗1)
1 .

Being stopped by e`(1) = e∗1, he finally inserts it to E′∗: E′∗ =
{
e1, . . . , e`(1)

}
.

Iteration i terminates when the traveller either reaches t or is blocked (in u∗i) by an edge
e`(i) = e∗i = (u∗i , v

∗
i) on Pi. We denote E(i)

∗ the set of blockages discovered on all iterations,

from the very beginning: E(i)
∗ =

{
e1, . . . , e`(i)

}
.

1: Input: graph G, source s, target t, positive integer k
2: E′∗ ← ∅; i← 1; Gvis ← ({s} , ∅)
3: Pi ← shortest (s, t)-path in G\E′∗; traverse Pi;
4: if the traveller is blocked by an edge e∗i = (u∗i , v

∗
i) on Pi then

5: Mi ← P
(s,u∗i)
i ;

6: update E′∗ and Gvis;
endif

7: while true do
8: compute (Pi+1, si+1), where Pi+1 is a shortest (s, t)-path in G\E′∗ and si+1 is the

closest vertex to u∗i belonging to both M (s,u∗i)
i and Pi+1;

9: Ri+1 ←M
(u∗i ,si+1)
i ; h← u∗i ;

10: while h 6= si+1 or the traveller is not blocked on Pi+1 do
11: if a path between h and t is made up of unvisited vertices then
12: Qh ← shortest (h, t)-path with unvisited vertices;
13: x← successor of h on Qh; go to x;
14: if there is an open edge (x, ri+1) with ri+1 ∈ Pi+1 then
15: xi+1 ← x; traverse xi+1 · P (ri+1,t)

i+1 ;
else

16: Ri+1 ← x ·Ri+1; h← x;
endif

else
17: h← successor of h on Ri+1;

endif
18: update u∗i+1 and Mi+1;

end
19: if h = si+1 then
20: traverse path P (si+1,t)

i+1 ;
21: update u∗i+1 and Mi+1;

endif
22: if the traveller reaches t then break;

else
23: i← i+ 1;
24: update E′∗ and Gvis;

end
Algorithm 5: The CHORD-WALK strategy

We assume at this moment that Mi is a simple (s, u∗i)-path for all i ≥ 1. We will prove
later that this assumption is true (see the last paragraph of this section). At iteration i + 1,
we compute the shortest (s, t)-path Pi+1 in G\E∗ and next determine the vertex si+1 in
both path Pi+1 and memory Mi which is as close as possible to the current position u∗i of

102

the traveller. Such a vertex exists as source s is always a candidate. If there are several
shortest (s, t)-paths, we select the path Pi+1 with the vertex si+1 closest to u∗i . Section
Ri+1 = M

(u∗i ,si+1)
i , the reverse of M (si+1,u

∗
i)

i , is called the trip back. It represents the edges
of Mi which have to be traversed to go back to vertex si+1. We go over Ri+1: each edge of
the memory which is traversed back is removed from it. We check whether, for any vertex
h ∈ Ri+1, it is possible to reach t by going through vertices which are not in Gvis. Such a
section of unvisited vertices is called a shortcut. We thus distinguish two scenarii:

• Scenario 1: no shortcut is found on Ri+1. The traveller returns to vertex si+1 and
traverses P (si+1,t)

i+1 (line 20 of Algorithm 5). If he is blocked, he stops on u∗i+1 and the

memory is updated Mi+1 ←M
(s,si+1)
i · P (si+1,u

∗
i+1)

i+1 (line 20).

• Scenario 2: there is at least one shortcut, i.e. an (h, t)-path made of vertices which
have not been visited yet (except h). We denote by Qh the shortest of them (line 12).
We fix Mi+1 ← M

(s,h)
i for now: the memory will be updated as we go along. The

traveller traverses Qh little by little: at any vertex x of this shortcut, he verifies whether
there is an open edge (x, ri+1), where ri+1 ∈ P

(si+1,t)
i+1 is as close as possible to t

(line 14). If such an edge exists, the traveller goes to ri+1 and next traverses section
P

(ri+1,t)
i+1 (line 15). We denote by xi+1 the vertex of the shortcut for which (xi+1, ri+1) is

open. Figure 3.16 illustrates the situation described. Iteration i + 1 terminates when
the traveller either reaches t or is blocked by an edge e∗i+1 (line 10). In the latter,

memory for iteration i+ 1 becomes Mi+1 ←Mi+1 ·Q(h,xi+1)
h · P (ri+1,u

∗
i+1)

i+1 .

If the traveller is blocked on x of Qh before reaching a vertex ri+1 ∈ P
(si+1,t)
i+1 , the

memory is updated, Mi+1 ←Mi+1 ·Q(h,x)
h (line 18). As he did not reach path P (si+1,t)

i+1

yet, iteration i+ 1 goes on. This iterative process, including the shortcut computation
and the memory update, is restarted over the new trip back Ri+1 ←M

(x,si+1)
i+1 as long

as the traveller does not arrive at a vertex of P (si+1,t)
i+1 . In this situation, he may be

blocked many times on shortcuts before reaching P (si+1,t)
i+1 . The memory is frequently

updated to ensure that it stores the edges visited only once.

s tPi+1

Mi si+1

h

Qh

u∗i
xi+1

v∗i

ri+1

Figure 3.16: Situation evoked in Scenario 2 with a shortcut (red path)

To complete the description, we prove inductively that memory Mi+1 is a simple (s, u∗i+1)-

path, as assumed at the opening. At the beginning, M1 = P
(s,u∗1)
1 . Shortcuts contain

vertices which have not been visited yet, so they are not memorized in Mi. For the same
reason, vertices on P

(si+1,t)
i+1 are not in Mi (except the starting point si+1) when iteration

i + 1 begins. In a nutshell, for both scenarii, the traveller traverses back edges of Mi

and passes through “brand new” vertices which have not been memorized on the previous
steps. Therefore, Mi+1 does not form any cycle and is a simple (s, u∗i+1)-path.

Competitive ratio of the CHORD-WALK strategy

We provide the reader with elements of our competitive analysis producing the competitive
ratio of CHORD-WALK.

103

At any moment of the execution of CHORD-WALK, the vertices of G are split into three parts:
those which have not been visited yet, those which are memorized, and the others that we
call dead ends. A vertex v becomes a dead end when there is no (v, t)-path made up of
unvisited vertices in G\E′∗. Consequently, a dead end v with one of its incident edges are
withdrawn from the current memory as they will not be used by the traveller anymore.
The main idea is to stamp certain blocked edges during the traveller’s trip and to bound the
distance traversed in function of the number of stamps. We denote by κi the number of
edges stamped on iteration i and before: κi ≤ κi+1. Each blocked edge can be stamped at
most twice. We distinguish two types of stamps: A and B. We stamp a blocked edge when
one of its endpoints is in P (si+1,t)

i+1 and the other one:

• is in a shortcut and is visited for the first time (type A),

• becomes a dead end (type B).

No edge can be stamped with A and B in the same time. Consequently, κi = κAi + κBi ≤ k.
A-stamped edges are incident to memory Mi. A blocked edge can at the beginning be
A-stamped and become B-stamped. The restamping of an edge of type B is impossible.
For Scenario 1, all blocked edges which are incident to both M (si+1,u

∗
i)

i and P (si+1,t)
i+1 are B-

stamped when the traveller goes through the vertices of the trip back, as they then become
dead ends.
For Scenario 2, all blockages incident to both shortcut Qh and section P

(si+1,t)
i+1 are A-

stamped. As in Scenario 1, we B-stamp the blockages incident to vertices of Mi becoming
dead ends.
Let Di be the total distance traversed by the traveller from his departure to vertex u∗i .
Theorem 3.13 announces that the stamps put in place make the distance traversed Di

on equal-weight chordal graphs be at most κAi + 2κBi + ω
(s,u∗i)
i , where ω(s,u∗i)

i is the length
of section P (s,u∗i)

i .

Theorem 3.13. The distance traversed verifies: Di ≤ κAi + 2κBi + ω
(s,u∗i)
i .

The proof of Theorem 3.13 is deferred to the next paragraph because of its length. The
competitive ratio of CHORD-WALK follows.

Theorem 3.14. The competitive ratio of CHORD-WALK on equal-weight chordal graphs is
2k+ωopt
ωopt

.

Proof. There is an iteration i ≤ k + 1 where the traveller reaches t (u∗i = t). If i = 1, then
the shortest (s, t)-path of G is open, so the traveller traverses the optimal offline path and
the competitive ratio is 1.
If i ≥ 2, then ωopt ≥ ωi because Pi is the shortest (s, t)-path in G\E′∗ while the optimal
offline path is the shortest (s, t)-path in G\E∗ and E′∗ ⊆ E∗.
As κAi + 2κBi ≤ 2κi ≤ 2k, we have Di ≤ 2k + ω

(s,u∗i)
i from Theorem 3.13. The distance

traversed from the departure to the moment the traveller arrives at t is at most 2k + ωi ≤
2k + ωopt. The competitive ratio of CHORD-WALK is upper-bounded by

2k+ωopt
ωopt

.

Upper bound on the number of stamped edges

Before starting, we introduce the notation. For vertices a, b ∈ Mi, let ω(a,b)
Mi

be the length

of section M
(a,b)
i and κAi [a, b] be the number of stamped edges incident to M

(a,b)
i . Theo-

rem 3.15, formulated below, generalizes Theorem 3.13. We remind that memory Mi is a
simple (s, u∗i)-path.

104

Theorem 3.15. Distance Di verifies Di ≤ 2κBi + ω
(s,u∗i)
Mi

and the length of memory Mi

fulfils ω(s,u∗i)
Mi

≤ κAi + ω
(s,u∗i)
i . For any a ∈ Mi such that a ∈ Pj , j ≤ i, we have ω

(s,a)
Mi

≤
ω
(i)
min [s, a] + κAi [s, a], where ω(i)

min [s, a] is the length of the shortest (s, a)-path in G\E(i)
∗ .

Two cases are distinguished:

• Case 1: the concatenation M (si+1,u
∗
i)

i+1 · P (u∗i ,t)
i is induced,

• Case 2: it is not.

Certain details of the proof of Theorem 3.15 change depending on these cases. For this
reason, we split the proof into two chapters. The notion of quasi-induced path, charac-
terizing our trip guided by CHORD-WALK, is explained before and transitional lemmas are
proven.

Quasi-induced paths. The following lemma puts in evidence the adjacency of two (u, v)-
paths P and Q, u, v ∈ V , where P is induced. In the remainder, “induced” means implicitly
induced in the original graph G, not in G\E′∗.

Lemma 3.3. Let P and Q be two simple (u, v)-paths in G. Suppose that P is induced. As
G is chordal, any vertex of P is either in Q or adjacent to Q.

Proof. Let y ∈ P : if vertex y or its neighbors on P belong to path Q, then the lemma holds.
We suppose that y /∈ Q and is not adjacent to Q. We denote by y− and y+ the predecessor
and the successor of y on path P , respectively: y−, y+ /∈ Q. Let x be the vertex both in P
and Q which arrives before y on path P and is as close as possible to y. Similarly, vertex
z ∈ P ∩Q arrives after y as close as possible from it. The concatenation P (x,z) ·Q(z,x) form
a cycle C and y−, y, y+ ∈ C (see Figure 3.17). As y−, y+ /∈ Q, we have x 6= y− and y+ 6= z.
The length of C is at least five as it contains vertices x, y−, y, y+, and z. Cycle C admits
chords because G is chordal. There is no chord (y, ŷ) where ŷ ∈ P as path P is induced.
Moreover, ŷ /∈ Q because y is not adjacent to Q. In summary, no chord is incident to y.

x z

y− y
y+

Figure 3.17: Illustration of cycles C and C∗

As y− and y+ are the neighbors of y, vertices y−, y, and y+ necessarily belong to an
induced cycle C∗ obtained from certain edges of C and chords. The induced cycle C∗

cannot be composed only with these three vertices as (y−, y+) /∈ E (path P is induced).
As a consequence, its size is at least four, which contradicts the chordal graph property. In
Figure 3.17, edges in blue form the induced cycle C∗.

We define the notion of quasi-induced paths. As we will see it later, many paths traversed
by the traveller can be quasi-induced.

Definition 3.6 (Quasi-induced paths). Let P be a simple (u, v)-path of G (oriented from u
to v). We denote by u1 and u2 the first two successors of vertex u, P : u · u1 · u2 · · · v. We
say that P is quasi-induced if there is an edge (u, u2) ∈ E and P (u1,v) is induced.

The following lemma is equivalent to Lemma 3.3 for the quasi-induced property.

105

Lemma 3.4. Let P and Q be two simple (u, v)-paths of G. Suppose P is quasi-induced.
As G is chordal, all vertices of P , except the successor of u, are either in Q or adjacent to
Q.

Proof. We denote by u1 the successor of u and by u2 the successor of u1 in path P , i.e.
P : u · u1 · u2 · · · v. The path P ′ defined by u · u2 · · · v is induced. Applying Lemma 3.3, all
vertices of P ′ (which means all vertices of P except u1) are either in Q or adjacent to Q.

Any shortest path containing vertices which have not been visited yet, except the departure,
is either induced or quasi-induced. This is the case not only for shortcuts but also section
P

(si+1,t)
i+1 .

Lemma 3.5. Let h ∈ Ri+1 and let P be one of the shortest (h, t)-path of G\E′∗ passing
through unvisited vertices. Path P is either induced or quasi-induced.

Proof. We fix P : h ·h1 ·h2 · · · t. We prove that section P (h1,t) is induced. It contains vertices
which have not been visited yet (outside of Gvis). If an edge jumps over section P (h1,t), the
traveller sees it open, i.e. in G\E′∗. There is an (h1, t)-path shorter than P (h1,t) as the
edge weights are unitary. We obtain a contradiction: P is not a shortest (h, t)-path. As a
consequence, path P (h1,t) is necessarily induced.
Suppose that j ≥ 3 is the minimum index such that (h, hj) ∈ E. This edge is blocked,
otherwise P is not a shortest (h, t)-path anymore. However, the cycle h·h1 · · ·hj ·h does not
admit chords and its length is at least four. In summary, either P is induced or (h, h2) ∈ E
(P is quasi-induced).

Proof for Case 1. We are now ready for the proof of Theorem 3.15. We proceed inductively.
The base case i = 1: the distance traversed when the traveller reaches vertex u∗1 on path
P1 is D1 = ω

(s,u∗1)
1 = ω

(s,u∗1)
1 + κA1 + 2κB1 , as κA1 = κB1 = 0 (no shortcut, no dead end at

the first iteration). Moreover, for a ∈ M1, path M (s,a)
1 = P

(s,a)
1 is the shortest (s, a)-path in

G\E(1)
∗ . So, ω(s,a)

M1
= ω

(1)
min [s, a].

The induction step: the result is assumed for iteration i and we prove it for i+ 1. The proof
differs depending on shortcuts. We proceed by treating the two scenarii (see page 103)
separately.
Scenario 1 (no shortcut). The induction hypothesis says that Di ≤ 2κBi + ω

(s,u∗i)
Mi

. We

remind that memory Mi+1 is the concatenation of section M
(s,si+1)
i with P

(si+1,u
∗
i+1)

i+1 . At

iteration i+ 1, sections Ri+1 = M
(u∗i ,si+1)
i and P

(si+1,u
∗
i+1)

i+1 are traversed. The distance Di+1

can be thus written:

Di+1 = Di + ω
(si+1,u

∗
i)

Mi
+ ω

(si+1,u
∗
i+1)

i+1

≤ 2κBi + ω
(s,si+1)
Mi

+ 2ω
(si+1,u

∗
i)

Mi
+ ω

(si+1,u
∗
i+1)

i+1

≤ 2κBi + 2ω
(si+1,u

∗
i)

Mi
+ ω

(s,u∗i+1)

Mi+1
.

t
Pi+1

Mi

si+1

u∗i v∗i

Figure 3.18: Illustration of B-stamped edges (in green) for Scenario 1

106

We apply Lemma 3.3 to (si+1, t)-paths P = M
(si+1,u

∗
i)

i · P (u∗i ,t)
i and Q = P

(si+1,t)
i+1 , as P is

induced (Case 1). Any vertex of the trip back, except si+1, is adjacent to P
(si+1,t)
i+1 . The

number of B-stamped blockages (illustrated in Figure 3.18) at iteration i + 1 is at least of
the length of the trip back: κBi+1 − κBi ≥ ω

(si+1,u
∗
i)

Mi
:

Di+1 ≤ 2κBi+1 + ω
(s,u∗i+1)

Mi+1
.

The A-stamped edges are divided into two groups: they are either incident to M (s,si+1)
i or

to M (si+1,u
∗
i)

i : κAi = κAi [s, si+1] + κAi]si+1, u
∗
i]. The A-stamped edges incident to M (si+1,u

∗
i)

i

will be restamped with B-type as the traveller traverses the trip back. Therefore, κAi+1 =

κAi [s, si+1] as no edge is A-stamped when the traveller traverses section P
(si+1,u

∗
i+1)

i+1 . Ac-
cording to the induction hypothesis, ω(s,si+1)

Mi+1
= ω

(s,si+1)
Mi

≤ κAi+1 + ω
(i)
min [s, si+1]. The shortest

(s, si+1)-path in G\E(i)
∗ is necessarily P

(s,si+1)
i+1 , otherwise Pi+1 would not be the current

shortest (s, t)-path in G\E′∗: ω
(i)
min [s, si+1] = ω

(s,si+1)
i+1 . In summary,

ω
(s,u∗i+1)

Mi+1
= ω

(s,si+1)
Mi+1

+ ω
(si+1,u

∗
i+1)

i+1 ≤ κAi+1 + ω
(s,u∗i+1)

i+1 .

This inequality will hold if we restrict the interval
[
s, u∗i+1

]
to [s, a]: for a ∈ Mi+1 ∩ Pj ,

ω
(s,a)
Mi+1

≤ κAi+1 [s, a] + ω
(i+1)
min [s, a]. If a ∈ M

(s,si+1)
i+1 , the induction hypothesis over M (s,a)

i

produces the result. As no edge incident to M
(si+1,u

∗
i+1)

i+1 is A-stamped, ω(s,a)
Mi+1

= ω
(i+1)
min [s, a]

when a ∈ P (si+1,u
∗
i+1)

i+1 = Mi+1 ∩ Pi+1.
Scenario 2 (at least one shortcut). As above, our first objective is to obtain the inequality
Di+1 ≤ 2κBi+1 + ω

(s,u∗i+1)

Mi+1
. Lemma 3.3 still implies that each vertex of the trip back, except

si+1, is adjacent to P (si+1,t)
i+1 . Let rh be the vertex of P (si+1,t)

i+1 which is adjacent to the starting
point h 6= si+1 of shortcut Qh and as close as possible to t. We prove that rh 6= si+1. If h is
the successor of si+1 in section M (si+1,t)

i , then h must have a neighbor rh 6= si+1, otherwise
it belongs to an induced cycle longer than four containing si+1, itself and its successor. If
h is located after the successor of si+1, an edge (si+1, h) would yield a contradiction with
Case 1.
We compute the distance traversed between u∗i and xi+1. For any shortcut Qh traversed,
we apply Lemma 3.4 to paths P ′ = Qh and Q′ = h · P (rh,t)

i+1 , as Lemma 3.5 says that Qh
is either quasi-induced or induced. Vertex h2 and all its descendants on Qh are adjacent
to Q′. Path Qh is either induced or quasi-induced which means that there is an edge
(h, h2). Edge (h, h2) is blocked, otherwise path h · Q(h2,t)

h would be shorter than Qh. If h1
is not adjacent to P (rh,t)

i+1 , we decide to A-stamp the blockage (h, h2) (instead of a potential
blockage (h1, rh1)). In this way, we ensure that value κBi+1 is incremented when an edge is
traversed a second time.
We remind that no edge is A-stamped on the trip between ri+1 and u∗i+1. Let ω̂i+1 be
the number of edges traversed during iteration i + 1 which remain in memory Mi+1 when
the iteration terminates. The distance traversed on iteration i + 1 can be thus written:
Di+1 −Di = ω̂i+1 + κBi+1 − κBi .
The length of memory Mi+1 decreases when the traveller passes through dead ends, so
ω
(s,u∗i+1)

Mi+1
− ω(s,u∗i)

Mi
= ω̂i+1 −

(
κBi+1 − κBi

)
. Combining these equations:

Di+1 = Di + ω
(s,u∗i+1)

Mi+1
− ω(s,u∗i)

Mi
+ 2

(
κBi+1 − κBi

)
≤ 2κBi + ω

(s,u∗i+1)

Mi+1
+ 2

(
κBi+1 − κBi

)
≤ 2κBi+1 + ω

(s,u∗i+1)

Mi+1
.

107

A deeper analysis is needed to deal with A-stamps. We have already indicated that all
vertices of shortcuts are adjacent to a blocked edge (except h1 but this can be compensated
with the A-stamped edge (h, h2)). These edges are A-stamped when the traveller traverses
a shortcut Qh for the first time.

t
Pi+1

Mi

si+1

h u∗i
xi+1

v∗i

ri+1

Figure 3.19: Illustration of A-stamped edges (in green) for Scenario 2

The collection of A-stamped edges when iteration i + 1 terminates is composed of those
incident to M

(s,h)
i (κAi [s, h[edges) and those incident to M

(h,ri+1)
i+1 (κAi+1 edges, drawn in

Figure 3.19), as no blockage is stamped on M
(ri+1,u

∗
i+1)

i+1 in any manner:

ω
(h,ri+1)
Mi+1

= κAi+1 − κAi [s, h[. (3.14)

We denote by b the vertex of Mi as close as possible to h which was on a certain Pj ,
j ≤ i+ 1. Indeed, vertex h may have been visited via a shortcut and not the shortest (s, t)-
path. Eq. (3.14) can be generalized, as all edges of M (b,h)

i = M
(b,h)
i+1 share an endpoint with

A-stamped edges:

ω
(b,ri+1)
Mi+1

= κAi+1 − κAi [s, b[.

As h, vertex b has a neighbor in section P (si+1,t)
i+1 according to Lemma 3.3: we denote it by rb.

We prove that vertex ri+1 arrives after rb on path Pi+1, i.e. ri+1 ∈ P (rh,t)
i+1 . Section M (b,ri+1)

i+1

is made up of shortcuts. We consider the shortcut the traveller traverses when he passes
through xi+1, denoted by Qh′ . We apply Lemma 3.4 for paths P = M

(b,xi+1)
i+1 ·Q(xi+1,t)

h′ and
Q = b · P (rb,t)

i+1 . Vertex xi+1 has at least one neighbor on P (rb,t)
i+1 . We know that one of these

neighbors, ri+1, is as close as possible to t. So, ri+1 arrives after rb. The length of memory
Mi+1 can be decomposed as:

ω
(s,u∗i+1)

Mi+1
= ω

(s,b)
Mi

+ ω
(b,ri+1)
Mi+1

+ ω
(ri+1,u

∗
i+1)

i+1

≤ κAi [s, b] + ω
(i)
min [s, b] +

(
κAi+1 − κAi [s, b]

)
+ ω

(ri+1,u
∗
i+1)

i+1

≤ κAi+1 + ω
(i)
min [s, b] + ω

(ri+1,u
∗
i+1)

i+1 .

Edge (b, rb) was considered open when path Pj was computed. The length of the (s, rb)-
paths P (s,b)

j ·rb and P (s,rb)
i+1 , both open at this moment, can be compared: ω(s,rb)

i+1 ≥ ω(j)
min [s, b]−

1. As no blockage is on the previous trip Pj , then ω(j)
min [s, b] = ω

(i)
min [s, b]. We write ω(s,rb)

i+1 ≥
ω
(i)
min [s, b] − 1. The equality ω(s,rb)

i+1 = ω
(i)
min [s, b] − 1 would yield a contradiction. Let b̂ be the

successor of b on the (s, t)-path Pj , it follows:

• there is no edge (rb, b̂) ∈ E, otherwise Pj would have been longer than P (s,rb)
i+1 · P (̂b,t)

j

at iteration j,

• there is no edge between b and the successor of rb on Pi+1 as rb is taken as close as
possible from t.

108

Vertices b̂, b, rb, and its successor belong to a cycle formed by paths P
(b,t)
j and P

(rb,t)
i+1 .

They necessarily belong to a cycle of size at least four and without chords between these
vertices. Therefore, ω(s,rb)

i+1 ≥ ω(i)
min [s, b]. Finally, as ri+1 arrives after rb,

ω
(s,u∗i+1)

Mi+1
≤ κAi+1 + ω

(i+1)
min [s, rb] + ω

(ri+1,u
∗
i+1)

i+1 ≤ κAi+1 + ω
(s,u∗i+1)

i+1 .

The same argument makes the “local” inequality ω(s,a)
Mi+1

≤ κAi+1 [s, a] + ωi+1
min [s, a] valid for all

a ∈Mi+1 ∩ Pj , j ≤ i+ 1. First, if a ∈M (s,h)
i+1 = M

(s,h)
i , the induction hypothesis provides us

with this formula. Second, if a ∈ M (h,ri+1)
i+1 , then we replace Eq. (3.14) by its local version:

ω
(h,a)
Mi+1

= κAi+1 [s, a] − κAi [s, h[. Decomposing the length of the memory into ω
(s,b)
Mi

+ ω
(b,a)
Mi+1

allows us to conclude. Eventually, if a ∈ P (ri+1,u
∗
i+1)

i+1 , we simply replace u∗i+1 by vertex a in
the whole reasoning for Scenario 2 and terminate the proof.
Proof for Case 2. The proof for Case 1 is based on the property that any vertex of the trip
back Ri+1 = M

(u∗i ,si+1)
i is adjacent to section P (si+1,t)

i+1 . Thanks to it, there is a relationship

between the number of stamps and the distance ω(si+1,u
∗
i)

Mi
. As far as path M (si+1,u

∗
i)

i ·P (v∗i ,t)
i

is induced, this property is true. In the general case, however, certain vertices of Ri+1 can
have no neighbor in P (si+1,t)

i+1 and are not incident to a potentially B-stamped edge. Our idea
is to compensate for the absence of such edges. We also introduce slight modifications of
the strategy CHORD-WALK to adapt it to Case 2.
We B-stamp certain blockages which were not taken into account before. If a vertex h ∈
M

(si+1,u
∗
i)

i is not adjacent to P (si+1,t)
i+1 , there is at least one jump going from an ancestor y 6= h

of h to one of its descendants z 6= h on path M (si+1,u
∗
i)

i · P (v∗i ,t)
i . According to Lemma 3.3,

we know that in the absence of such jumps, then either h has a neighbor in P (si+1,t)
i+1 or G is

not chordal.
We distinguish two kinds of jumps for h ∈ M

(si+1,u
∗
i)

i : these having an endpoint in P
(v∗i ,t)
i

(long jumps), others have two endpoints in M (si+1,u
∗
i)

i (short jumps). Long jumps (y, z) are
necessarily blocked: when the traveller visits y for the first time, he aims at reaching t by
the shortest unvisited (y, t)-path (via a shortcut or the current shortest (s, t)-path). As z
is closer to t than y, the traveller would have gone to z directly in order to reach t in the
shortest way if (y, z) had been open.
Short jumps can be either blocked or not. We transform our memory M

(si+1,u
∗
i)

i into a
shorter one N

(si+1,u
∗
i)

i such that any short jump on section N
(si+1,u

∗
i)

i is blocked. Memory
N

(si+1,u
∗
i)

i is obtained with a greedy procedure: while the current memory admits an open
short jump, we take one arbitrarily, say (y, z), and replace section M (y,z)

i by the edge (y, z).
Finally, memory N (si+1,u

∗
i)

i contains vertices of M (si+1,u
∗
i)

i and is shorter: the distance tra-
versed by the traveller leaving u∗i on the trip back is consequently smaller than the former
one. Naturally, the trip back becomes Ri+1 ← N

(u∗i ,si+1)
i .

From now on, we denote P = N
(si+1,u

∗
i)

i · P (v∗i ,t)
i . In this situation, all jumps regardless of

their type are blocked. Formally, we define a function ϕ which, given a vertex h ∈ N (si+1,u
∗
i)

i

not adjacent to P (si+1,t)
i+1 , computes a jump ϕ(h) of path P . Then, we prove that function ϕ

is injective: h 6= h′ ⇒ ϕ(h) 6= ϕ(h′). The idea is to replace B-stamped blockages by edges
ϕ(h).
Among the jumps over h, we take one of them, ϕ(h) = (y, z), such that no other jump
(y′, z′) verifies y′ ∈ P (y,h) and z′ ∈ P (h,z). Intuitively, jump (y, z) does not “cover” another
jump. Supposing that h 6= h′ and ϕ(h) = ϕ(h′), we obtain a contradiction. Section P (y,z)

contains at least four vertices because y, h, h′, and z are supposed to be all different. At
the same time, it forms an induced cycle with edge (y, z): the existence of a chord would
imply that another jump is covered by (y, z). As G is chordal, function ϕ is injective.

109

Certain B-stamped blockages are replaced by blocked edges ϕ(h) when a vertex h of the
memory is not adjacent to P

(si+1,t)
i+1 . As ϕ is injective, we preserve the property that each

vertex of N (si+1,u
∗
i)

i visited a second time is associated with one B-stamped edge. For
example, for Scenario 1, ω(si+1,u

∗
i)

Ni
= κBi+1 − κBi .

3.5 Conclusion

Our contributions on the competitive analysis are separated into two categories. Some of
them examine the global competitiveness of the CTP and the k-CTP. These results concern
the competitive ratio of strategies for general graphs. The remaining contributions deal
with the local competitiveness, i.e. results on the competitive ratio of strategies for certain
families of graphs.
For a single traveller, we established that no randomized MS can defeat the optimal com-
petitive ratio 2k+ 1 of deterministic strategies [14]. As a consequence, either a randomized
strategy has a competitive ratio less than 2k + 1 and uses memory, or no randomized
strategy is more competitive than REPOSITION.
For the CTP without parameter k, we identified a graph such that the competitive ratio of
any randomized strategy (memoryless or not) on it is greater than |E∗| + 1 [15]. There-
fore, the most competitive randomized strategy has a competitive ratio inside the interval
]|E∗|+ 1, 2 |E∗|+ 1].
We studied the distance competitive ratio of both deterministic and randomized strategies
for multiple travellers [13]. As for the case L = 1, we identified an optimal deterministic
strategy with competitive ratio 2(k + 1) −min(k + 1, L) for general graphs under complete
communication. This result puts in evidence the impact of communication on the perfor-
mance of the fleet, as the optimal competitive ratio without communication is (2k+1)L. For
randomized strategies, we proved that the competitive ratio k+2

2 cannot be defeated.
Then, we highlighted results for certain families of graphs. When k is at least the size
µmax of the largest minimal (s, t)-cut, strategy DETOUR achieves a competitive ratio 2µmax +√

2(k − µmax) + 1 < 2k + 1 [19]. Contrary to the existing strategies REPOSITION and COM-
PARISON, our strategy benefits from large values of k compared to the edge max-(s, t)-cut
size µmax.
A second strategy, CHORD-WALK, is proposed for equal-weight chordal graphs [18]. Its
competitive ratio is

2k+ωopt
ωopt

. As the case ωopt = 1 can be easily identified and treated with a

competitive ratio 1, we conclude that it improves ratio k + 1 on this family of graphs.

110

Chapter 4

Conclusion

To conclude this study, we remind our contributions for both cut problems and the CTP and
highlight their consequences. The possible lines of research which emerge from our work
will be presented separately in Chapter 5.

4.1 Contributions on the parameterized complexity of cut problems

We investigated the fixed-parameter tractability of cut problems. We devised FPT〈p〉 algo-
rithms, where p is the cutset size. In particular, one solves EDGE POTC in O∗(2O(p2)) and
another one counts the number of minimum (S, T)-cuts in O∗(2O(p log p)).
The parameterized complexity of multi-terminal cut problems has been intensively studied
in the literature. A major result is the fixed-parameter tractability of MULTICUT [63], which
asks for the smallest separation of k pairs of terminals (si, ti). We oriented our research
towards the parameterized complexity of the more general problem PARTIAL MULTICUT,
asking for the smallest cut separating at least r pairs of terminals. We focused on a special
case, where all targets are identical: ti = t for 1 ≤ i ≤ k. We called this problem PARTIAL

ONE-TARGET CUT (POTC).
We studied the complexity of POTC for all parametrizations involving k, r, and p. The edge
and vertex versions, EDGE and VERTEX POTC respectively, have been treated separately
as their parameterized complexity may differ. Any algorithm computing a solution for VER-
TEX POTC also solves EDGE POTC thanks to an edge-to-vertex cut reduction we reminded:
EDGE POTC ≤fpt VERTEX POTC.
If k is a parameter, a trivial FPT〈k〉 algorithm exists for both edge and vertex versions. Then,
we brought to light a relationship between important cuts and the solutions of EDGE POTC:
at least one solution Y ∗ is the union of certain important (si, t)-cuts. Using a reduction
towards PARTIAL SET COVER, we identified an FPT algorithm parameterized by both r and
p. Identifying particular edges of the graph associated with solution Y ∗, called edge passes,
we designed an FPT〈p〉 algorithm based on a color-coding of both edges in Y ∗ and edge
passes. Its running time is O∗(2O(p2)). This result is our main contribution for POTC.
Then, two hardness proofs are provided. EDGE POTC is W[1]-hard for parameter r only and
VERTEX POTC is W[1]-hard for parameters r and p. Consequently, there is no chance that
an FPT〈p〉 algorithm for VERTEX POTC will be identified, contrary to EDGE POTC. In fact,
VERTEX POTC is FPT for a single parametrization: k, p.
Next, we studied the fixed-parameter tractability of the counting of minimum (S, T)-cuts in
undirected graphs. This problem consists in determining the number of minimum (S, T)-
cuts in an input graph G. We designed two FPT〈p〉 algorithms for it, dropping below the
running time O(22

p
) reported in the state of the art. The first one computes the number of

minimum edge (S, T)-cuts in time O∗(2O(p2)). It is improved by the second one which not
only counts minimum vertex (S, T)-cuts but also returns the result in O∗(2O(p log p)). Thanks

111

to the edge-to-vertex reduction, the second algorithm can be used to count minimum edge
(S, T)-cuts in O∗(2O(p log p)) as well.
The first algorithm, counting minimum edge (S, T)-cuts in instance I = (G,S, T), ben-
efited from the drainage, a structure we proposed. It is a succession of at most n dis-
joint minimum (S, T)-cuts Zi such that their source sides are included one into another:
R(Zi, S) (R(Zi+1, S). If a minimum cut X is not a drainage cut, X 6= Zi, then it admits a
unique front dam Bi (X, i.e. a subset of a cut Zi such that no edge of X lies in the source
side of Zi. The algorithm first counts the minimum drainage cuts and then enumerates all
potential front dams in order to count all cuts X\Bi of graph G\Bi recursively. To do so,
we put in evidence for each dam Bi a sub-instance of I in polynomial time, called the dry
instance and denoted D(I, Bi). Cut X admits a front dam Bi iff X\Bi is a minimum cut
for instance D(I, Bi). The fast computation of the dry instances allows us to complete our
recursion in FPT〈p〉 time.
The second algorithm introduces new concepts to count minimum vertex (S, T)-cuts and
decrease the execution time of the first one. The definition of the drainage is transposed to
the minimum vertex (S, T)-cuts. Furthermore, we propose a local drainage which, given an
instance I and frontier U , is a succession of minimum vertex (S, T)-cuts ZUi included in the
source side of U . This allows us to characterize the minimum cuts which have at least one
vertex in R(U, S). Said differently, the minimum vertex (S, T)-cuts X included in the target
side of U do not admit a front dam in this drainage. Compared to the first algorithm, the
number of recursive calls goes down thanks to the local drainage and additional properties
of the dry instance. Our computation based upon the DP principle produces the number of
minimum vertex (S, T)-cuts in O∗(2O(p log p)).
These two algorithms can be easily adapted to sample minimum (S, T)-cuts, i.e. to return
one of them at random, in FPT〈p〉 time. However, they cannot be used to obtain an FPT〈p〉
enumeration of the minimum (S, T)-cuts, as certain graphs contain Ω(np) minimum cuts.

4.2 Contributions on the Canadian Traveller Problem

We were interested in the competitiveness of both deterministic and randomized strategies
for the Canadian Traveller Problem (CTP). Our contributions have been partitioned in two
categories: global and local competitiveness.
The global competitiveness of strategies gathers all results related to the competitive anal-
ysis of strategies for general graphs. For the k-CTP, it was communicated in the literature
that REPOSITION strategy is optimal and its ratio is 2k+ 1. The optimal competitive ratio for
randomized strategies was not identified.
We investigated this question and provided two results on this topic. First, we studied
the impact of memory on the competitiveness of randomized strategies. We proved that
memoryless strategies, which do not use the vertices visited previously by the traveller
to make decisions, admit at best a global competitive ratio 2k + O(1). As a consequence,
randomized memoryless strategies are asymptotically as competitive as REPOSITION in the
best scenario. Suppose that a randomized strategy with competitive ratio βk + 1, where
β < 2, exists: it necessarily uses memory. This is an important indication for the research
of a randomized strategy outperforming the deterministic ones.
Second, we showed that no randomized strategy is (|E∗| + 1)-competitive. It was proven
in [75] that value k + 1 is a lower bound on the competitive ratio of randomized strategies
for the k-CTP, such as |E∗| + 1 for the CTP. The proof that bound |E∗| + 1 is not attained
consists in transforming the problem of finding a (|E∗|+1)-competitive strategy into a linear
inequality system. Farkas’ lemma allowed us to affirm that this system has no solution.
A consequence of this result is that, if a (k + 1)-competitive strategy exists for the k-CTP,
it must make decisions in function of k. Otherwise, it would mean that this strategy is

112

(|E∗|+ 1)-competitive for the CTP.
Our last contribution on the global competitiveness of strategies concerned the k-CTP with
a group of L travellers, L > 1. We provided an overview of the distance competitive ratio
of both deterministic and randomized strategies. In particular, we designed the optimal
deterministic strategy, called MULTI-ALTERNATING, which makes one of the travellers reach
t when the total distance traversed by the fleet is at most 2(k+ 1)−min(k+ 1, L) times the
optimal offline cost.
The global competitive ratio offers a guarantee of performance on general graphs. If our
objective is to guide the traveller on a given family of graphs, this measure might be large
compared to the performance we can get on this particular set of instances. This is why we
focused on the local competitiveness of strategies. We designed deterministic strategies
which defeat the ratio 2k + 1 on two families of graphs: the ones with small minimal (s, t)-
cuts and equal-weight chordal graphs.
We proposed a deterministic strategy DETOUR which achieves a competitive ratio 2µmax +√

2(k−µmax)+1 on graphs where value k is larger than the size µmax of the largest minimal
edge (s, t)-cut. This result puts in evidence a family of graphs for which a better guarantee
than 2k + 1 exists. Moreover, for any graph, the evolution of the best competitive ratio in
function of k changes when k overpasses value µmax.
Eventually, we studied the competitive ratio of deterministic strategies on chordal graphs.
We introduced a relationship between the size µVmax of the largest minimal vertex (s, t)-cut
and the competitive ratio of deterministic strategies. Given a graph G satisfying k < µVmax,
for any ε > 0, there is a weighting ωε for which the competitive ratio of any deterministic
strategy is at least 2k + 1 − ε. As some chordal graphs verify k < µVmax, no deterministic
strategy is more competitive than REPOSITION on the family of chordal graphs. However, we
devised a strategy CHORD-WALK dedicated to equal-weight chordal graphs. Its competitive
ratio is

2k+ωopt
ωopt

. As a trivial strategy admits the competitive ratio 1 for the case ωopt = 1, the

competitive ratio of CHORD-WALK is less than for k + 1 in general. Furthermore, it reaches
a constant competitive ratio, O(1) when values k and ωopt are comparable, i.e. ωopt = Ω(k).

113

114

Chapter 5

Further research

We could not, unfortunately, treat all questions which have been emerged and are of in-
terest to extend or improve our results. We present several possible lines of research that
could be followed.
In Section 5.1, open questions related to the parameterized complexity of cut problems,
more particularly multi-terminal ones, are enumerated. We ask especially whether a poly-
nomial kernel exists for EDGE POTC (Section 5.1.1) and whether an FPT〈p〉 algorithm can
be devised for EDGE PARTIAL MULTICUT (Section 5.1.2). We propose techniques which
could be useful to answer these questions.
As we believe that determining the lowest competitive ratio is a challenging question for
certain families of graphs, we identify two axes of research for the k-CTP in Section 5.2.
Indeed, in its first part, we describe the relationship we detected [18, 19] between the k-
CTP and the size of the minimal (s, t)-cuts. This aspect could be exploited to improve
the performance of deterministic strategies for certain instances. In the second part of
Section 5.2, we discuss the competitive ratio of randomized strategies on apex trees. In
our opinion, they could offer us intuition for the design of a strategy achieving a global
competitive ratio smaller than 2k + 1.

5.1 Deeper exploration of the parameterized complexity of cut prob-
lems

We examine some lines of further research derived from our parameterized complexity
results on the POTC problem and the counting of minimum (S, T)-cuts.
First, we wonder how we could outperform the algorithms proposed in Chapter 2. We are
particularly interested in the notion of polynomial kernels for POTC. Moreover, we investi-
gate the manner to find lower bounds of the time complexity attainable for both POTC and
counting of minimum (S, T)-cuts.
Second, we study the impact of our results for PARTIAL MULTICUT which is a natural gener-
alization of both POTC and MULTICUT.

5.1.1 Polynomial kernels and lower bounds

A powerful technique to design not only efficient FPT algorithms but also approximation
algorithms and heuristics as well is kernelization. Its definition is as follows.

Definition 5.1 (Kernelization). A parameterized problem admits a kernel if there is a polynomial-
time algorithm which transforms an input instance (I, p) into another instance (I ′, p′) of the
same problem, where both the instance size |I ′| and the parameter value p′ depend on
value p only, i.e. |I ′| , p′ ≤ f(p) with an arbitrary function f .

115

Any FPT parameterized problem has a kernel [37]. Conversely, any kernelizable problem
is FPT as the execution time of the brute-force algorithm on the instance (I ′, p′) is FPT.
Consequently, it is worth wondering which FPT parameterized problems admit a polyno-
mial kernel. We say that a parameterized problem has a polynomial kernel if it has a kernel,
where function f is polynomial, i.e. f(p) = pO(1). For example, VERTEX COVER parameter-
ized by the solution size admits a polynomial kernel of size O(p2) [68].
We proved in Section 2.2 that POTC is FPT parameterized by the cutset size p. Looking for
a polynomial kernel of POTC is a possible future work.

Open question 5.1. Does POTC parameterized by p admit a polynomial kernel?

Nevertheless, it was proven in [38] that, unless coNP ⊆ NP/poly, several multi-terminal
cut problems parameterized by the cutset size have no polynomial kernel: EDGE/VERTEX

MULTICUT, DIRECTED MULTIWAY CUT, and k-WAY CUT. For this reason, our first approach
to answer Question 5.1 would consist in producing a similar proof.
Boedlander et al. [24] provided an advanced technique to show that a parameterized prob-
lem does not admit a polynomial kernel. Let L be a parameterized problem and L̃ be its
classical version, without parameters, which is NP-complete. It states that L may have no
polynomial kernel if it admits a composition, which is defined below.

Definition 5.2 (Composition). A composition of a parameterized problem L is an algorithm
which takes as an input a collection ((x1, k), (x2, k), . . . , (xr, k)) of instances of L and out-
puts a single instance (y, k′) of the same problem. It satisfies the following conditions:

• its running time is a polynomial of the size of all xi’s,

(
k +

∑
1≤i≤r

|xi|

)O(1)

,

• (y, k′) is a solution for L iff some (xi, k), 1 ≤ i ≤ r, is a solution,

• value k′ is bounded by a polynomial of k, k′ = kO(1).

Another key notion to understand the framework proposed in [24] is the distillation. It trans-
forms a collection of instances of a classical problem into a single one which is feasible iff
at least one of the instances inside the collection is feasible too.

Definition 5.3 (Distillation). A distillation of a classical problem L̃ is an algorithm which
takes as an input a collection (x̃1, . . . , x̃r) of instances of L̃ and outputs a single instance ỹ
of the same problem. It satisfies the following conditions:

• its running time is a polynomial of the size of all instances,

(∑
1≤i≤r

|xi|

)O(1)

,

• ỹ is a solution for L iff some x̃i, 1 ≤ i ≤ r, is a solution,

• the size of ỹ is a polynomial of the maximum size of the collection, |ỹ| =
(

max
1≤i≤r

|x̃i|
)O(1)

.

If a distillation algorithm exists for any NP-complete problem, then coNP ⊆ NP/poly and the
polynomial hierarchy collapses [50]. So, no NP-complete problems may have a distillation
algorithm. Boedlander et al. [24] showed that, considering a parameterized problem L and
its classical version L̃, a composition followed by a polynomial kernelization on L produces
a distillation algorithm for L̃, which is supposed to be impossible as L̃ is NP-complete. In
summary, the existence of both a composition algorithm and a polynomial kernel may not
occur.

116

Theorem 5.1 (from [24]). Let L admit a composition and L̃ be NP-complete. Then, there
is no polynomial kernel for L, unless coNP ⊆ NP/poly.

This theorem provides us with an idea for the proof that POTC has no polynomial kernel.
The identification of a composition algorithm for POTC suffices. This is an axis to explore, as
this technique was used to prove the absence of polynomial kernels for many well-known
problems [24], such as k-PATH, asking for the existence of an induced path of length k in
an input graph.
However, the proof that MULTICUT has no polynomial kernel [38] does not use this frame-
work, but a slightly different one, proposed in [25]. This new technique, which consists
in finding a cross-composition of the parameterized problem studied, is another serious
candidate if we aim at answering Question 5.1.

Definition 5.4 (Cross-composition). Let L be a parameterized problem and D̃ be a clas-
sical one, which can be different from L̃. We say D̃ cross-composes L if we can find an
equivalence relation R and an algorithm which, given a collection (x̃1, . . . , x̃r) of instances
of D̃ in the same equivalence class for R, returns a single instance (y, k) of L. It satisfies
the following conditions:

• relation R is polynomial: it decides whether R(x, y) in time (|x|+ |y|)O(1),

• the running time of the algorithm is a polynomial of the size of all xi’s,

(∑
1≤i≤r

|xi|

)O(1)

,

• (y, k) is a solution for L iff some x̃i, 1 ≤ i ≤ r, is a solution for D̃,

• value k is bounded by a polynomial in max
1≤i≤r

|x̃i|+ log r.

In fact, designing a cross-composition is weaker than a composition, as only the collections
containing instances of the same equivalence class for R have to be transformed in a
single one. The same characterization as Theorem 5.1 was established in [25] for cross-
compositions.

Theorem 5.2 (from [25]). If a NP-complete problem D̃ cross-composes L, then there is no
polynomial kernel for L, unless coNP ⊆ NP/poly.

The identification of a cross-composition for POTC would allow us to prove that it does not
admit a polynomial kernel. Question 5.1 can thus be reformulated to suggest a research
starting point.

Open question 5.2. Is there a composition algorithm for EDGE POTC? A NP-complete
problem cross-composing it?

This represents, in our opinion, a challenging question for research on POTC.
Another prospect for research is the identification of lower bounds on the best running time
obtainable not only for POTC but also for the counting of minimum (S, T)-cuts. We remind
the usual methodology to find these lower bounds.
For decision parameterized problems, as POTC, the Exponential Time Hypothesis (ETH) is
a tool to show that they do not admit an FPT running time below a certain bound [37]. We
remind the definition of the ETH.

Definition 5.5 (ETH). There is a constant c > 0 such that no algorithm solves 3-SAT in
time O∗(2cn), where n is the number of variables in the Boolean formula.

117

A consequence of the ETH is that there is no algorithm solving 3-SAT in time 2o(n). Some
classical NP-hard problems, as VERTEX COVER, DOMINATING SET, and HAMILTONIAN CY-
CLE, cannot be solved in time 2o(n) either, because a linear reduction transforms 3-SAT into
these problems [37].
We suppose that there is a linear parameterized reduction between 3-SAT (or one of the
problems listed above) and POTC, i.e. a polynomial-time reduction transforming an instance
of size n of the problem satisfying the ETH into an instance of POTC, where p = O(n). If
an algorithm solves POTC in time O∗(2o(p)), this reduction clarifies an algorithm for 3-SAT in
time 2o(n) for 3-SAT and the ETH collapses. Therefore, unless the ETH failed, there would
be no algorithm solving POTC in time O∗(2o(p)). The following question thus arises.

Open question 5.3. Is there a linear parameterized reduction from a problem L to POTC,
where L cannot be solved in time 2o(|L|) assuming the ETH?

For counting parameterized problems, a similar framework exists. It uses the #ETH [41],
the counting version of ETH.

Definition 5.6 (#ETH). There is a constant c > 0 such that no algorithm counts the satis-
fying assignments of a 3-SAT formula in time O∗(2cn).

A counting reduction from either 3-SAT or another problem, admitting no 2o(n)-time algo-
rithm for its counting version under the #ETH, to the counting of minimum (S, T)-cuts could
allow us to prove that our running time O∗(2O(p log p)), obtained in [12], Section 2.3.2, is at
worst very close to the optimal one.

Open question 5.4. Is there a parameterized reduction from a counting problem L to the
counting of minimum (S, T)-cuts preserving the number of solutions, where p = O(|L|) and
L cannot be solved in time 2o(|L|) assuming the #ETH?

Our techniques counting minimum (S, T)-cuts cannot produce a subexponential algorithm
as they are based on the enumeration of dams, all 2p− 1 subsets of the minimum drainage
cuts Zi, |Zi| = p. In other words, we cannot obtain a running timeO∗(2o(p)) by extending our
two algorithms. So, either a subexponential algorithm exists and uses different techniques,
or it does not exist and we should seek an appropriate parameterized reduction to benefit
from the #ETH.

5.1.2 Generalization of MULTICUT

Our contributions have consequences for problems we did not treat explicitly. In particular,
the hardness of PARTIAL MULTICUT for some parametrizations can be deduced from our
results.
We present preliminary results on the complexity of PARTIAL MULTICUT (Definition 2.4,
page 16) in which targets ti can be distinct. A trivial algorithm allows us to affirm that
PARTIAL MULTICUT is FPT〈k, p〉 for both its edge and vertex versions. It consists in enumer-
ating subsets J of indices from {1, . . . , k}, with |J | = r and solving MULTICUT with the FPT
algorithm presented in [63] for the pairs of terminals indexed with J . Its overall execution
time is O∗

(
2k+O(p3)

)
.

However, PARTIAL MULTICUT parameterized by k only is W[1]-hard for edge/vertex cuts
because it generalizes MULTICUT which is NP-hard [40], even when k = 3. As r ≤ k, the
W[1]-hardness holds for parameter r only. Furthermore, as VERTEX POTC〈r, p〉 is W[1]-
hard (Theorem 2.9), its generalization to different targets is not FPT. The complexity of
EDGE PARTIAL MULTICUT parameterized by p and p + r remains, nevertheless, unknown.
Table 5.1 summarizes the current state of the art on PARTIAL MULTICUT.

Open question 5.5. Is EDGE PARTIAL MULTICUT FPT parameterized by p?

118

Parameters EDGE PARTIAL MULT. VERTEX PARTIAL MULT.

k, p FPT: 2k+O(p3) FPT: 2k+O(p3)

k W[1]-hard, [61] W[1]-hard, [61]

r W[1]-hard, [61] W[1]-hard, [61]

p Open W[1]-hard, Theorem 2.9

r, p Open W[1]-hard, Theorem 2.9

Table 5.1: Parameterized classes and complexity of PARTIAL MULTICUT

In our opinion, the techniques proposed in [63] to show the fixed-parameter tractability of
MULTICUT might be useful if we aim at designing an FPT〈p〉 algorithm for EDGE PARTIAL

MULTICUT. Some of them were also relevant to handle POTC in our work, in particular
the random sampling of important separators. Marx and Razgon devised a proof [63]
for MULTICUT based on the iterative compression technique. It consists in proving the
fixed-parameter tractability of a problem for parameter value p, supposing that a solution
W with size |W | > p is given. As the extra input W provides some useful information
for MULTICUT, this approach is a reasonable starting point to the design of an FPT〈p〉 for
PARTIAL MULTICUT.
As for EDGE POTC, an FPT〈p〉 algorithm for EDGE PARTIAL MULTICUT would necessarily
benefit from the fact that the cutset is made up of edges, as VERTEX PARTIAL MULTICUT is
W[1]-hard. This might be the role of edge passes, the notion we proposed for EDGE POTC

to derandomize efficiently the color-coding of edges.

5.1.3 Cut problems for directed graphs

We terminate with several words about open questions concerning the parameterized com-
plexity of cut problems on directed graphs. Two of them draw our attention as they are
strongly related to our contributions.
The first one asks whether an FPT algorithm can be designed for MULTICUT on directed
graphs with parameter p and k = 3 terminal pairs. In other words, we wonder if an FPT〈p〉
algorithm can decide whether a cut of size at most p separate s1 from t1, s2 from t2, and s3
from t3 in any directed graph.

Open question 5.6. Is DIRECTED MULTICUT, parameterized by p, FPT or W[1]-hard with
k = 3 terminal pairs?

This question was formulated in several articles [57, 63, 71]. It is still open for k = 3 terminal
pairs, but an FPT〈p〉 algorithm was found for k = 2 only [34]. The problem becomes W[1]-
hard [71] for any k ≥ 4. Therefore, an answer for the case k = 3 would give us the number
of terminal pairs being the complexity tipping point.
Two approaches can be followed to tackle Question 5.6. We could try a reduction from
CLIQUE to our target problem, DIRECTED MULTICUT with k = 3, in order to show its W[1]-
hardness. If it failed, our second idea would be to find a characterization of a cutset solution
X, perhaps based on directed important cuts [61], specific to the case k = 3.
Another open question deals with the counting of minimum (S, T)-cuts in directed graphs.
We know that an FPT algorithm exists for this problem, parameterized by the size p of the
minimum (S, T)-cuts [20, 62] and its running time is O∗(22

p
). As for undirected graphs,

a natural question is whether we can count these minimum (S, T)-cuts without a tower of
exponentials. Said differently:

119

Open question 5.7. Is there an algorithm counting the minimum (S, T)-cuts in directed
graphs in time O∗(2poly(p)), where poly is a polynomial function?

We believe that the concepts we proposed in [12, 16] (Section 2.3) could also be useful
in this case. The drainage and the dry instances can be naturally generalized to directed
graphs, following the definitions for vertex cuts in Section 2.3.2 (page 46 for the drainage,
Definition 2.27 in page 51 for the dry instances).
The breaking point of our algorithm with directed graphs occurs because the arcs leaving a
dry instance do not necessarily belong to entry, exit arcs or leaks, the three families listed in
Theorem 2.22, page 52. As a consequence, a dry instance does not always coincide with
an enclosed instance, as stated in Theorem 2.24, page 54, which is a key property to prove
the validity of our algorithm. So, there is no doubt that new tools need to be introduced to
handle the directed graphs.

5.2 Novel insights for the local competitiveness of the k-CTP strate-
gies

We present certain families of graph we would like to study in order to pursue our research
on the local competitiveness of strategies for the k-CTP.
First, we explain why we should try to extend our contribution in Section 3.4.1, the DE-
TOUR strategy, in order to understand the real impact of the minimal (s, t)-cuts size on the
competitiveness of deterministic strategies.
Second, we focus on the family of apex trees which have already been mentioned in Sec-
tion 3.3.2. We believe that the competitive ratio on such graphs represents a challenging
issue as it could be an intermediary step to answer the major question of this area, i.e. to
obtain the best global competitive ratio for randomized strategies, as stated below.

Open question 5.8. Is there a randomized strategy which achieves a global competitive
ratio βk +O(1), where β < 2?

In particular, apex trees generalize graphs with vertex-disjoint (s, t)-paths for which a (k+1)-
competitive strategy is known.

5.2.1 Relationship between the k-CTP and minimal (s, t)-cuts size

We provided in [19] (Section 3.4.1) a deterministic strategy DETOUR which achieves a com-
petitive ratio 2µmax +

√
2(k − µmax) + 1 for graphs where k is at least the size µmax of the

largest minimal edge (s, t)-cuts [19]. This significantly improves the ratio 2k + 1 of REPO-
SITION for such graphs. An open question is whether there is a smaller value µ < µmax for
which we can find a deterministic strategy as DETOUR, dropping below ratio 2k + 1, when
k > µ.
A natural candidate for µ is the size µVmax of the largest minimal vertex (s, t)-cuts. This
parameter verifies µVmax ≤ µmax: the largest minimal edge (s, t)-cuts are larger than the
vertex ones. Indeed, for any minimal vertex (s, t)-cut X, the set made up of the edges
betweenX and its source sideR(X,S) form a minimal edge (s, t)-cutX∗, where |X∗| ≥ |X|
because no vertex ofX is isolated from the source sideR(X,S). Figure 5.1a shows a graph
with µVmax = 3 and µmax = 5. One of the minimal vertex (s, t)-cuts X, with |X| = µVmax is
drawn in blue. A minimal edge (s, t)-cut X∗, |X∗| = µmax, is in green.
We proved in [18] (Section 3.4.2) that, for any unweighted graph G fulfilling k < µVmax, at
least one weighting [18] of G prevents from designing a deterministic strategy with a ratio
better than 2k+1. Consequently, for any value k ∈

{
1, . . . , µVmax − 1

}
, at least one weighted

graph with k blocked edges is such that no deterministic strategy can defeat 2k + 1 on it.
In summary, the spectrum of values taken by k can be partitioned into three intervals:

120

• For any input graph where k ∈
{

1, . . . , µVmax − 1
}

, the most competitive strategy
known up to now is REPOSITION. Its competitive ratio is 2k + 1. For certain of these
graphs, a strategy more competitive than REPOSITION cannot be found.

• For any input graph where k ∈
{
µVmax, . . . , µmax − 1

}
, the most competitive strategy

known up to now is REPOSITION. We do not know whether a strategy more competi-
tive than REPOSITION exists for all these graphs.

• For any input graph where k ≥ µmax, the most competitive strategy known up to now
is DETOUR and is better than REPOSITION.

An interesting open question issued from analysis is whether we can identify a deterministic
strategy as DETOUR, more competitive than REPOSITION, for all graphs, where µmax 6= µVmax
and µVmax ≤ k < µmax. The answer is no. Considering the graph drawn in Figure 5.1a,
we determine a weighting in Figure 5.1b which ensures us that no deterministic strategy
is more competitive than REPOSITION. Indeed, REPOSITION is optimal when the road map
contains three blocked edges among the four red edges illustrated in Figure 5.1b.

s t

X X∗

(a) An unweighted graph which satisfies
µVmax < µmax.

s t

1
1

ε

+∞

ε

ε ε

1

1

ε

ε

(b) The optimal ratio for this weighting is 2k + 1,
with k = 3 blocked edges among the red ones.

Figure 5.1: The worst-case weighting of a graph satisfying µVmax ≤ k < µmax.

Can such a weighting be identified for all graphs verifying µVmax ≤ k < µmax? The answer to
this last question would help us to understand the relationship between the competitiveness
of deterministic strategies and the size of minimal (s, t)-cuts. This would put in evidence
the importance of parameter µmax in the evolution of the best competitive ratio depending
on k.

Open question 5.9. Is there a weighting ωε such that no deterministic strategy achieves a
ratio smaller than 2k + 1 − O(ε) for any weighted graph (G,ωε), where G satisfies µVmax ≤
k < µmax,?

5.2.2 Apex trees as a key to decrypt the global behavior of randomized strategies

The optimal randomized strategy, achieving the lowest global competitive ratio, is unknown.
We do not even know whether a randomized strategy performs better than the optimal
deterministic strategy, REPOSITION, with ratio 2k+1. This is by far the most important open
question related to both the CTP and the competitive analysis. We present an approach to
answer this question based on a particular graph structure: apex trees.
An apex tree is a graph such that the removal of at least one vertex v ∈ V produces a
tree. The apex trees that have been studied for the k-CTP are such that the removal of the
source s gives a tree. From now on, the notion of apex trees refers to this second definition,
i.e. G [V \ {s}] is a tree. An equivalent and more tangible definition consists in considering
an apex tree as the union of a tree rooted in target t with vertex-disjoint paths between s
and some vertices of the tree.
To the best of our knowledge, these graphs have been mentioned in two articles:

121

• In [42], the authors propose a randomized strategy, called TRAVERSE-TREE, dedi-
cated to apex trees where the costs of all simple (s, t)-paths only differ from a factor
1 + α, where α ≥ 0. Its competitive ratio is (1 + α)k + 1. In particular, when α = 0,
TRAVERSE-TREE is (k + 1)-competitive on apex trees, where all (s, t)-paths have the
same cost. We know that TRAVERSE-TREE attains the optimal competitive ratio for
such graphs with α = 0, as Westphal [75] proved that we cannot drop below k + 1 on
graph GW (Figure 3.2, page 70), which is an apex tree where all simple (s, t)-paths
cost 1 + ε.

• In [15] (Section 3.3.2), we used an apex tree to prove that ratio |E∗| + 1 cannot be
reached by any randomized strategy for the CTP [15]. In this context, we focused on
ε-ATs, which is a family composed of apex trees which are the union of the tree with
vertex-disjoint paths connecting s with only some leaves of the tree. We showed that
the optimal randomized strategy for ε-ATs is a randomized variant of REPOSITION. In
other words, the best randomized strategy for these graphs consists in selecting a
simple (s, t)-path according to a probability distribution (unknown for now), traversing
the chosen path and coming back to s if a blockage is discovered. Then, the process
restarts on the remaining simple (s, t)-paths.

Apex trees naturally generalize the graphs made up only of vertex-disjoint (s, t)-paths, for
which a (k+1)-competitive strategy was identified [11]. Determining the optimal competitive
ratio of randomized strategies on apex trees, or even the smaller family containing ε-ATs, is
a promising intermediary step before studying the competitive ratio of randomized strate-
gies for general graphs. According to our comments above, we already know the optimal
strategy for apex trees when all simple (s, t)-paths have the same cost. Moreover, we know
how the optimal strategy for ε-ATs looks like. We thus formulate the following question.

Open question 5.10. Is there a randomized strategy which achieves a competitive ratio
βk +O(1) on apex trees, where β < 2?

Demaine et al. provide us with ideas to capture the essential edges of any weighted graph
into an equivalent apex tree [42]. Supposing Question 5.10 was solved, such a technique
might allow us to extend a local result on apex trees into a global one and find the response
to Question 5.8.

122

Bibliography

[1] V. Aksakalli, O. F. Sahin, and I. Ari. An AO* Based Exact Algorithm for the Canadian
Traveler Problem. INFORMS Journal on Computing, 28(1):96–111, 2016.

[2] S. Albers. Online algorithms: a survey. Math. Program., pages 3–26, 2003.

[3] A. F. Alkaya, V. Aksakalli, and C. E. Priebe. A penalty search algorithm for the obstacle
neutralization problem. Computers & OR, 53:165–175, 2015.

[4] V. Arvind and V. Raman. Approximation algorithms for some parameterized counting
problems. In Proc. of ISAAC, pages 453–464, 2002.

[5] M. O. Ball, C. J. Colbourn, and J. S. Provan. Network reliability. volume 7 of Handbooks
in Operations Research and Management Science, pages 673 – 762. Elsevier, 1995.

[6] M. O. Ball and J. S. Provan. Calculating bounds on reachability and connectedness in
stochastic networks. Networks, 13(2):253–278, 1983.

[7] M. O. Ball and J. S. Provan. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983.

[8] M. O. Ball and J. S. Provan. Computing network reliability in time polynomial in the
number of cuts. Operations Research, 32(3):516–526, 1984.

[9] A. Bar-Noy and B. Schieber. The Canadian Traveller Problem. In Proc. of ACM/SIAM
SODA, pages 261–270, 1991.

[10] S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms.
Algorithmica, 11(1):73–91, 1994.

[11] M. Bender and St. Westphal. An optimal randomized online algorithm for the k-
Canadian Traveller Problem on node-disjoint paths. J. Comb. Optim., 30(1):87–96,
2015.

[12] P. Bergé, W. Bouaziz, A. Rimmel, and J. Tomasik. An FPT counting of small minimum
(S, T)-cuts. in preparation for an international journal, 2019.

[13] P. Bergé, J. Desmarchelier, W. Guo, A. Lefevbre, A. Rimmel, and J. Tomasik. Multiple
Canadians on the road: minimizing the distance competitive ratio. Journal of Comb.
Optim., in print, 2019.

[14] P. Bergé, J. Hemery, A. Rimmel, and J. Tomasik. On the Competitiveness of Mem-
oryless Strategies for the k-Canadian Traveller Problem. In Proc. of COCOA, pages
566–576, 2018.

[15] P. Bergé, J. Hemery, A. Rimmel, and J. Tomasik. The Competitiveness of Randomized
Strategies for Canadians via Systems of Linear Inequalities. In Proc. of ISCIS, pages
96–103, 2018.

123

[16] P. Bergé, B. Mouscadet, A. Rimmel, and J. Tomasik. Fixed-parameter tractability of
counting small minimum (S, T)-cuts. In Proc. of WG, 2019.

[17] P. Bergé, A. Rimmel, and J. Tomasik. On the parameterized complexity of separating
certain sources from the target. doi: 10.1016/j.tcs.2019.06.011. Theoretical Computer
Science, 2019.

[18] P. Bergé, A. Rimmel, and J. Tomasik. The Canadian Traveller Problem on chordal
graphs. in preparation for an international journal, 2020.

[19] P. Bergé and L. Salaün. Improved Deterministic Strategy for the Canadian Traveller
Problem Exploiting Small Max-(s, t)-cuts. In Proc. of WAOA, 2019.

[20] I. Bezáková, E. W. Chambers, and K. Fox. Integrating and sampling cuts in bounded
treewidth graphs. In Advances in the Math. Sciences, pages 401–415, 2016.

[21] I. Bezáková and A. J. Friedlander. Counting and sampling minimum (s, t)-cuts in
weighted planar graphs in polynomial time. Theor. Comput. Sci., 417:2–11, 2012.

[22] M. Bläser. Computing small partial coverings. Inf. Process. Lett., 85(6):327–331,
2003.

[23] Z. Bnaya, A. Felner, and S. E. Shimony. Canadian traveler problem with remote sens-
ing. In Proc. of IJCAI, pages 437–442, 2009.

[24] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. In Proc. of ICALP, pages 563–574, 2008.

[25] H L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition: A new tech-
nique for kernelization lower bounds. In Proc. of STACS, pages 165–176, 2011.

[26] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

[27] N. Bousquet, J. Daligault, and S. Thomassé. Multicut is FPT. In Proc. of STOC, pages
459–468, 2011.

[28] Y. Boykov and O. Veksler. Graph cuts in vision and graphics: Theories and applica-
tions. In Handbook of Mathematical Models in Computer Vision, pages 79–96. 2006.

[29] E. W. Chambers, K. Fox, and A. Nayyeri. Counting and sampling minimum cuts in
genus g graphs. In Proc. of SoCG, pages 249–258, 2013.

[30] H. Chan, J. Chang, H. Wu, and T. Wu. The k-Canadian Traveller Problem on Equal-
Weight Graphs. Proc. of WCMCT, pages 135–137, 2015.

[31] L. S. Chandran and L. S. Ram. On the number of minimum cuts in a graph. In Proc.
of COCOON, pages 220–229, 2002.

[32] B. Chaourar. A Linear Time Algorithm for a Variant of the MAX CUT Problem in Series
Parallel Graphs. Adv. Operations Research, 2017.

[33] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

[34] R. Chitnis, M. Hajiaghayi, and D. Marx. Fixed-parameter tractability of directed multi-
way cut parameterized by the size of the cutset. SIAM J. Comput., 42(4):1674–1696,
2013.

124

[35] R. Curticapean. Counting matchings of size k is #W[1]-hard. In Procs of ICALP, pages
352–363, 2013.

[36] R. Curticapean. Counting problems in parameterized complexity. In Proc. of IPEC,
pages 1–18, 2018.

[37] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, Ma. Pilipczuk, Mi. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[38] M. Cygan, S. Kratsch, Ma. Pilipczuk, Mi. Pilipczuk, and M. Wahlström. Clique cover
and graph separation: New incompressibility results. In Proc. of ICALP, pages 254–
265, 2012.

[39] M. Cygan, D. Lokshtanov, Ma. Pilipczuk, Mi. Pilipczuk, and S. Saurabh. Minimum
bisection is fixed parameter tractable. In Proc. of STOC, pages 323–332, 2014.

[40] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

[41] H. Dell, T. Husfeldt, D. Marx, N. Taslaman, and M. Wahlen. Exponential Time
Complexity of the Permanent and the Tutte Polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014.

[42] E. D. Demaine, Y. Huang, C.-S. Liao, and K. Sadakane. Canadians Should Travel
Randomly. Proc. of ICALP, pages 380–391, 2014.

[43] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):269–271, 1959.

[44] R. G. Downey, V. Estivill-Castro, M. R. Fellows, E. Prieto-Rodriguez, and F. A. Rosa-
mond. Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related
Problems. Electr. Notes Theor. Comput. Sci., 78:209–222, 2003.

[45] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Com-
puter Science. Springer, 1999.

[46] J. Farkas. Uber die Theorie der Einfachen Ungleichungen. J. fur die Reine und Ange-
wandte Math., 124:1–27, 1902.

[47] J. Flum and M. Grohe. The parameterized complexity of counting problems. SIAM J.
Comput., 33(4):892–922, 2004.

[48] F. V. Fomin, P. A. Golovach, and J. H. Korhonen. On the parameterized complexity of
cutting a few vertices from a graph. In Proc. of MFCS 2013, pages 421–432, 2013.

[49] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Jour. of
Math., (8):399–404, 1956.

[50] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. In Proc. of STOC, pages 133–142, 2008.

[51] D. Fried, S. E. Shimony, A. Benbassat, and C. Wenner. Complexity of Canadian trav-
eler problem variants. Theor. Comput. Sci., 487:1–16, 2013.

[52] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

125

[53] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Max-
imum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM,
42(6):1115–1145, 1995.

[54] D. Golovin, V. Nagarajan, and M. Singh. Approximating the k -multicut problem. In
Proc. of SODA, pages 621–630, 2006.

[55] S. Guillemot and F. Sikora. Finding and counting vertex-colored subtrees. Algorith-
mica, 65(4):828–844, 2013.

[56] D. J. Haglin and S. M. Venkatesan. Approximation and Intractability Results for the
Maximum Cut Problem and its Variants. IEEE Trans. Computers, 40(1):110–113,
1991.

[57] S. Kratsch, S. Li, D. Marx, Ma. Pilipczuk, and M. Wahlström. Multi-budgeted directed
cuts. In Proc. of IPEC, pages 18:1–18:14, 2018.

[58] S. Kratsch, Ma. Pilipczuk, Mi. Pilipczuk, and M. Wahlström. Fixed-parameter tractabil-
ity of Multicut in directed acyclic graphs. In Proc. of ICALP, pages 581–593, 2012.

[59] A. Levin and D. Segev. Partial multicuts in trees. Theor. Comput. Sci., 369(1-3):384–
395, 2006.

[60] C. Liao and Y. Huang. Generalized Canadian traveller problems. J. Comb. Optim.,
29(4):701–712, 2015.

[61] D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006.

[62] D. Marx, B. O’Sullivan, and I. Razgon. Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms, 9(4):30:1–30:35, 2013.

[63] D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. In Proc. of STOC, pages 469–478, 2011.

[64] J. Matousek and B. Gärtner. Understanding and Using Linear Programming. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[65] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicæ, 10(1):96–
115, 1927.

[66] H. Nagamochi, Z. Sun, and T. Ibaraki. Counting the number of minimum cuts in undi-
rected multigraphs. IEEE Trans. Reliab., 40:610–614, 1991.

[67] M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandomiza-
tion. In FOCS 1995, pages 182–191, 1995.

[68] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Math. and Its Applications. OUP Oxford, 2006.

[69] E. Nikolova and D. R. Karger. Route Planning under Uncertainty: The Canadian Trav-
eller Problem. In Proc. of AAAI, pages 969–974, 2008.

[70] Ch. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theor. Comput.
Sci., 84(1):127–150, 1991.

[71] Ma. Pilipczuk and M. Wahlström. Directed multicut is W [1]-hard, even for four terminal
pairs. In Proc. of SODA, pages 1167–1178, 2016.

126

[72] D. Shiri and F. S. Salman. On the online multi-agent O-D k-Canadian Traveler Prob-
lem. J. Comb. Optim., 34(2):453–461, 2017.

[73] D. Shiri and F. S. Salman. On the randomized online strategies for the k-canadian
traveler problem. J. Comb. Opt., pages 1–14, 2019.

[74] L. G. Valiant. The complexity of counting the permanent. Theor. Comput. Sci., 8:189–
201, 1979.

[75] St. Westphal. A note on the k-Canadian Traveller Problem. Inform. Proces. Lett.,
106(3):87–89, 2008.

[76] V. V. Williams and R. Williams. Finding, minimizing, and counting weighted subgraphs.
SIAM J. Comput., 42(3):831–854, 2013.

[77] Y. Xu, M. Hu, B. Su, B. Zhu, and Z. Zhu. The Canadian traveller problem and its
competitive analysis. J. Comb. Optim., 18(2):195–205, 2009.

[78] A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In
Proc. of FOCS, pages 222–227, 1977.

[79] H. Zhang, Y. Xu, and L. Qin. The k-Canadian Travelers Problem with communication.
J. of Comb. Opt., pages 251–265, 2011.

127

Acknowledgments

First and foremost, I would like to express deep gratitude to my supervisors Prof. Joanna
Tomasik and Dr. Arpad Rimmel. I thank them for accepting nothing less than excellence
from me. We have been working together for five years, through student projects, an in-
ternship and then my Ph.D. Thanks to their help and support, I was able to overcome the
obstacles I have been facing in my research. I am fully convinced that I will take advantage
of their numerous advices throughout my academic career.

I would like to thank Bruno Escoffier, Ignasi Sau, and Stephan Westphal for their very
insightful comments in the reviews of this thesis. I also express my gratitude to the other
members of the jury for attending my Ph.D. defense: Cristina Bazgan, Olivier Bournez and
Yannis Manoussakis.

I am grateful to all co-authors that are part of this work: Julien Hemery, Jean Desmarche-
lier, Wen Guo, Aurélie Lefebvre, Benjamin Mouscadet, Lou Salaün, and Wassim Bouaziz.
I want to say thank you to the co-authors that are part of my previous works: Baptiste
Cavarec, Kaourintin Le Guiban, Ghada Ben Hassine, Gregory Gutin, Jason Crampton, and
Rémi Watrigant.

Eventually, I would like to thank my family, my friends and my colleagues. I will not forget
the great support I received, especially from my mother Marielle, my father Éric, and my
grandfather Henri.

128

Titre : Algorithmes pour voyager sur un graphe contenant des blocages

Mots clefs : problèmes de coupes, complexité paramétrée, problème du voyageur canadien, algorithmes on-line

Résumé : Nous étudions des problèmes NP-difficiles
portant sur les graphes contenant des blocages.
Nous traitons les problèmes de coupes du point de vue
de la complexité paramétrée. La taille p de la coupe
est le paramètre. Étant donné un ensemble de sources
{s1, . . . , sk} et une cible t, nous proposons un algo-
rithme qui construit une coupe de taille au plus p sé-
parant au moins r sources de t. Nous nommons ce
problème NP-complet Partial One-Target Cut. Notre al-
gorithme est FPT. Nous prouvons également que la vari-
ante de Partial One-Target Cut, où la coupe est com-
posée de noeuds, est W[1]-difficile. Notre seconde con-
tribution est la construction d’un algorithme qui compte
les coupes minimums entre deux ensembles S et T en
temps 2O(p log p)nO(1).
Nous présentons ensuite plusieurs résultats sur le ra-

tio de compétitivité des stratégies déterministes et ran-
domisées pour le problème du voyageur canadien. Nous
prouvons que les stratégies randomisées n’utilisant pas
de mémoire ne peuvent pas améliorer le ratio 2k + 1.
Nous apportons également des éléments concernant les
bornes inférieures de compétitivité de l’ensemble des
stratégies randomisées. Puis, nous étudions la com-
pétitivité en distance d’un groupe de voyageurs avec et
sans communication. Enfin, nous nous penchons sur la
competitivité des stratégies déterministes pour certaines
familles de graphes. Deux stratégies, avec un ratio in-
férieur à 2k + 1 sont proposées: une pour les graphes
cordaux avec poids uniformes et l’autre pour les graphes
où la taille de la plus grande coupe minimale séparant s
et t est au plus k.

Title : A guide book for the traveller on graphs full of blockages

Keywords : multi-terminal cuts, parameterized complexity, Canadian Traveller Problem, competitive analysis

Abstract : We study NP-hard problems on graphs with
blockages seen as models of networks which are ex-
posed to risk of failures.
We treat cut problems via the parameterized complex-
ity framework. The cutset size p is taken as a param-
eter. Given a set of sources {s1, . . . , sk} and a target
t, we propose an algorithm which builds a small edge
cut of size p separating at least r sources from t. This
NP-complete problem is called Partial One-Target Cut. It
belongs to the family of multiterminal cut problems. Our
algorithm is fixed-parameter tractable (FPT) as its execu-
tion takes 2O(p2)nO(1). We prove that the vertex version
of this problem, which imposes cuts to contain vertices
instead of edges, is W[1]-hard. Then, we design an FPT
algorithm which counts the minimum vertex (S, T)-cuts

of an undirected graph in time 2O(p log p)nO(1).
We provide numerous results on the competitive ra-
tio of both deterministic and randomized strategies for
the Canadian Traveller Problem. The optimal ratio ob-
tained for the deterministic strategies on general graphs
is 2k+ 1, where k is a given upper bound on the number
of blockages. We show that randomized strategies which
do not use memory cannot improve the bound 2k + 1.
In addition, we discuss the tightness of lower bounds
on the competitiveness of randomized strategies. The
distance competitive ratio for a group of travellers possi-
bly equipped with telecommunication devices is studied.
Eventually, a strategy dedicated to equal-weight chordal
graphs is proposed while another one is built for graphs
with small maximum (s, t)-cuts. Both strategies outper-
form the ratio 2k + 1.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

