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Abbreviations 

Materials/Chemicals 

ABG: Autologous bone graft 

Al2O3: Alumina 

β-TCP: β-tricalcium phosphate Ca3(PO4)2 

BCA: Bicinchoninic acid 

BCP: Biphasic calcium phosphate  

BGS: Bone graft substitute 

EDC: 1-Ethyl-3-(3-dimethylamino-propyl) 

carbodiimide 

FITC: Fluorescein isothiocyanate 
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HAP: Hydroxyapatite (Ca10(PO4)6(OH)2) 

HEPES: 4-(2-Hydroxyethyl)-1-piperazine 

ethane sulfonic acid 

PBS: Phosphate buffered saline 

PCL: Polycaprolactone  

PDMS: Polydimethylsiloxane 

PE: Polyethylene 

PEEK: Polyetheretherketone 

PEI: Poly(ethylene imine) 

PEM: Polyelectrolyte multilayer films  

PLGA: Poly(lactic-co-glycolic) acid 

PLL: Poly(L-lysine) 

PMMA: Polymethylmethacrylate 

pNP: p-nitrophenol 

pNPP: p-nitrophenylphosphate 

S-NHS: N-hydroxysulfo succinimide 

TCP: Tri-calcium phosphate 

Ti: Titanium  

Ti-6Al-4V: Titanium-aluminium-vanadium 

alloy containing 6% of Al and 4% of V 

TiN: Titanium nitride 

ZrN: Zirconium nitride 

ZrO2: Zirconia 

 

 

 

 

 

Techniques and equipment 

AM: Additive manufacturing 

CAD: Computed aided design 

CVD: Chemical vapour deposition 

CT: Computed tomography 

DLC: Diamond-like carbon 

EBM: Electron beam melting 

EDM: Electrical discharge machining 

LbL: Layer-by-layer 

PM: Powder metallurgy 

PVD: Physical vapour deposition 

SEM: Scanning electron microscopy 

SLM: Selective laser beam melting 

 

Proteins and cells 

ALP: Alkaline phosphatase  

BMP: Bone morphogenetic protein  

BSA: Bovine serum albumin 

CCL2: Chemokine ligand 2 

DM: Differentiation medium 

ECM: Extracellular matrix 

FGF: Fibroblast growth factors 

GM: Growth medium 

HSC: Haematopoietic stem cells 

IGF-1: Insulin like growth factor 1 

IL-6: Interleukin-6 

IL1β: Interleukin 1 beta 

MMTV: Mouse mammary tumour virus 

MP: Mesenchymal progenitor 

MSC: Mesenchymal stem cells 

PDSC: Periosteum-derived cells 

PDGF: Platelet-derived growth factor 

PTH: Parathyroid hormone 

SDF-1α: Stromal derived factor-1α 

TGF-β: Transforming growth factor-beta 

TNF-α: Tumour necrosis factor alpha 

VEGF: Vascular endothelial growth factor 

Wnt: Wingless/Integrated protein 
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Glossary 

Architectured: product of an ingenious combination of two or more materials or, a 

combination of materials and space arranged in a way to obtain properties not attainable by 

any material on its own 

Growth factor: natural molecule that regulates the growth and development of an organism. 

They are secreted by the cells and bind to transmembrane growth factor receptors to 

stimulate cell signalling cascades that promote proliferation, apoptosis and differentiation 

Osteoconduction: term used for any material triggering the bone growth at its surface, 

supporting bone growth and encouraging the ingrowth of surrounding bone. This is generally 

achieved with materials of similar composition to bone tissue 

Osteoinduction: term used for any material triggering osteogenesis, with the cells recruitment 

and differentiation into bone progenitor cells, leading eventually to bone tissue formation. 

This is generally achieved with the addition of a bioactive molecule 

Osseointegration: stable anchorage of an implant achieved by new bone formation resulting 

in a direct bone-to-implant contact 

Scaffold: 3D structure made of stacking or meshes of any material used as support 
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 Introduction 

1.1 Bone tissue 

In the human body, bones have important functions which require them to have specific 

structures at different scales, and an intricate relationship with other anatomic systems. An 

overview of their functions, their constituents, their structure, their mechanisms of formation 

and the existing strategies to repair them will be presented as the first part of this manuscript.    

1.1.1 Multiscale bone structure 

1.1.1.1 Human skeleton: overview and functions 

The human skeleton is made of 270 different bones at birth, 206 at the adulthood, and brings 

to human body the structural support against gravity. In addition to this crucial function, the 

skeletal system protects soft internal organs, acts as lever for the muscles actions, serves as 

storage for calcium and fat, and is also implicated in the blood cells production. In fact, the 

skeletal system is dependent on other anatomic systems, receives biological signals from them 

and adapts constantly depending on them. The anatomic systems acting on bones are 

represented in Figure 1 and their interactions are detailed in Table 1.  

 

Figure 1: Anatomic systems involved in the formation and regulation of bone tissue1 
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Anatomic system Effects on bones Actions of bones 

Integumentary  

 

Synthesize vitamin D3 
(calcium absorption promoter) 

Structural support 

Muscular 

 

Stabilizes bone position 
Stimulates bone growth 

Calcium for muscle 
contractions 

Levers for body 
movements 

Nervous 

 

Regulates bone position by muscle 
contractions 

Calcium for neural function 
Brain and spinal cord 

protection 

Endocrine 

 
 
 

Provides hormones: 

 calcitonin (growth hormone) 

 PTH (parathyroid hormone) 

 oestrogen (sex hormone) 
Regulates bone growth, calcium 

absorption and mobilisation 

Endocrine organs 
protection 

Cardiovascular 

 

Provides O2, nutrients, hormones and 
blood cells 

Removes waste products and CO2 

Calcium for 
cardiac muscle 

contractions 
Blood cells produced and 
stored in bone marrow 

Lymphatic 

 

Lymphocytes assist in the defence and 
repair of bone injuries 

Cells of the immune 
response 

produced and stored in 
bone marrow 

Respiratory 

 

Provides O2 and eliminates CO2 
Ribs movements for 

breathing 
Lungs protection 

Digestive 

 

Provides nutrients, calcium and 
phosphate 

Portions of liver, stomach, 
and intestines protection 

Urinary 

 

Conserves calcium and phosphate  
Disposes of waste products 

Kidneys, ureters, urinary 
bladder and proximal 

urethra protection 

Reproductive 

 

 Provides sex hormones 
Stimulates bone growth and maintenance 

Reproductive organs 
protection 

 
Table 1: Effects and action of bone on the different anatomic systems2 
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Bones are hard and highly mineralized living tissues composed at 75% of an inorganic phase 

mainly containing hydroxyapatite (HAP) mineral crystals (Ca10(PO4)6(OH)2). Those crystals 

constituting bones store 99% of the calcium of the human body. Calcium ion is a necessary 

element for important basic biological functions such as transmission of nerve impulses, 

muscle contractions, blood coagulation and cell division.  

 
Figure 2: Composition of human bones. Bones are composed of two main phases: an organic phase of 
25wt% and an inorganic phase at 75w%. The inorganic phase is mainly composed of hydroxyapatite 
(HAP) crystals3 

The remaining 30% part of the bone is the organic phase composed of several proteins, such 

as type I collagen, osteopontin, osteocalcin, bone morphogenetic proteins (BMPs), and bones 

cells (osteoblasts, osteoclasts and osteocytes). All those components are highly entangled and 

organised at the macro, micro and nano scales, as represented in Figure 3. 

 
Figure 3: Multiscale structural organization of bones. At the macroscale, bones have cortical (dense) 
and trabecular (porous) areas. At the microscale, bone cells are tightly organized in osteons which are 
crossed by blood vessels and nerves. At the nanoscale and sub-nanoscale, hydroxyapatite crystals are 
distributed into collagen fibrils4 
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At the macroscale, bone displays two types of architecture:  

 a dense and compact part often located on their outer parts, called the cortical bone   

 a porous and spongy part often located inside, called the trabecular bone 

At the tips and inside bones, an important component is stored: the bone marrows. Bones 

contain two types of bone marrow, the yellow marrow which is composed of fat (adipose 

tissue) and the red marrow composed of mesenchymal stem cells (MSCs) and blood cells. The 

yellow marrow is mostly located inside long bones and is used as a source of energy. Whereas 

the red bone barrow, mostly located in trabeculae spaces of bones, is the place where red 

blood cells, white blood cells and platelets are produced (haematopoiesis). As a consequence, 

bones have a close interaction with the vascular system and are full of blood vessels but also 

nerves. Blood vessels supply to bones O2, nutrients, hormones and cells while bones and bone 

marrows produce and store blood cells, and supply calcium ions through blood vessels for 

other organs.  

1.1.1.2 Cellular environment 

In any biological environment, cells are inside a 3D environment commonly called the 

extracellular matrix (ECM, Figure 4). In their ECM, cells are subjected to several chemical and 

mechanical factors that dictate their replication, differentiation (specialisation), migration or 

apoptosis (death). The ECM is the principal extracellular component of all tissues and organs, 

and provides a physical support to the cells. At the molecular scale, its principal components 

are collagens, elastins, proteoglycans (chondroitin and heparan sulfates, hyaluronic acid …), 

fibronectin, vitronectin and laminin5. Those molecules contain cellular binding sites and also 

small amino acids chains (cryptic peptides, Figure 4) storing information for cells. 

 
Figure 4: Schematic representation of a cell surrounded by the extracellular matrix. The extracellular 
matrix (ECM) provides to cells physical support, mechanical and biological signals (cryptic peptides, 
vesicles and growth factors) to dictate their behaviour. The ECM is constantly remodelled by matrix 
metalloproteinases and new ECM secretion from cells. Mechanical stimulus are transmitted to cells via 
integrins while biological signals are sensed via either endocytosis (vesicular uptake) or growth factor 
receptors at the cellular membrane (adapted from6) 
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In addition to its structural role, the ECM is able to store external bioactive products (growth 

factors or vesicles, Figure 4), deliver mechanical information (compression, tension, fluid 

shear stress and hydrostatic pressure) and control their presentations to the cells5. The ECM 

organization is dynamic, evolving and remodelled through a balance between the secretion of 

new ECM components by the cells and its degradation by matrix metalloproteinases and 

enzymes (such as lysyl oxidase, collagen/elastin cross linker)5. This reorganization releases 

bioactive products, which are then presented to cells (growth factor receptor, Figure 4) and 

changes the ECM mechanical properties. The physical and chemical signals are translated to 

the cells nuclei via intracellular signalling reactions (signalling pathways, Figure 5). These 

signalling cascades activate gene transcription and synthesis, which induce secretion of new 

ECM components and new cellular behaviours6. 

 
Figure 5: Schematic representation of a signalling pathway induced by an activated cell receptor at 

the cellular plasma membrane5 

In order to sense those physical and chemical signals, cells possess surface receptors located 

in their membranes which interacts with external (ECM) and internal (cytoplasm) molecules. 

Among all cell surface receptors, integrins are considered as the cellular mechano-sensor. 

They are responsible of the cellular binding to the ECM via focal adhesion sites (focal adhesion, 

Figure 6) and are composed of two sub-units α and β. Cadherins are responsible of adherens 

junctions between cells and participate to the intracellular communication (adherens 

junctions, Figure 6). And finally, growth factor receptors (tyrosine kinases receptors) are 

activated by specific growth factors and activate associated signalling pathways (growth factor 

receptor, Figure 4)7.  
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Figure 6: Schematic representation of the cellular interactions with the ECM and neighbouring cells. 
Cells are bound to their ECM via focal adhesion sites comprised of integrins proteins complexes (α, β, 
SRC, FAK, talin, vinculin and p130Cas). Cells are adhering to each other via adherens junction sites 
comprised of cadherins proteins complexes (E-cadherin, β-catenin, α-catenin and vinculin, adapted 
from5) 

Integrins and cadherins proteins complexes are respectively located at focal adhesion and 

adherens junction sites. Both proteins complexes are bound to actin filaments via SRC (proto-

oncogene tyrosine-protein kinase), FAK (focal adhesion kinase), talin, vinculin and p130Cas 

proteins in the case of integrins, and via β-catenin, α-catenin and vinculin in the case of 

cadherins (Figure 6). Actin is one of the main component of the cellular skeleton, the 

cytoskeleton, and forms a network of filaments with microtubules and others intermediates 

filaments. The cytoskeleton with motors molecules, such as myosin II (focal adhesion, Figure 

6), is responsible for the cell structure, motility and contractility5. Through integrins 

complexes, the cytoskeleton is mechanically linked to the ECM and acts as a sensor of external 

physical forces. 

1.1.1.3 Signal transduction 

Signal transduction is the molecular mechanism to transmit the information given by any 

external signals (chemical or physical) to induce cellular responses. This mechanism often 

consists in a series of protein phosphorylation (addition of phosphate groups on the protein 

side chain) which induces a cascade of molecular reactions that ultimately changes gene 

transcription, protein conformation and location. A specific series of molecular events linked 
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to one signal is called a signalling pathway (signal transduction pathway) and several pathways 

can induce a unique cellular effect.  

In the case of BMPs, the growth factor receptor is the combination of two types of receptors. 

The type I receptor is either ALK1, 2, 3 or 6 proteins depending on the BMP, while the type II 

receptor (BMPR2, Figure 7) is common to all BMPs8. The canonical BMPs signalling pathway is 

shown in Figure 7. 

 
Figure 7: Example of the canonical signal transduction of BMPs family members. When BMP binds to 
a type of BMPs receptors, the second one is recruited. The type I receptor is phosphorylated and 
activated to phosphorylate Smad1/5/8. Phosphorylated Smads are associated to Smad4 to form a 
heteromeric complex translocated into the cell nucleus. In the nucleus, the complex associates with a 
transcription factor (coactivators or corepressors) to regulate gene expression (adapted from8) 

Once a BMP binds to a type of BMPs receptors, the second one is recruited. Upon the complex 

formation, the type I receptor is phosphorylated and activated to phosphorylate in turn 

receptor regulated proteins Smads. The Smads involved in the canonical BMPs signalling 

pathways are Smad1, 5 and 8. They are phosphorylated and associated to the common 

mediator Smad4 to form a heteromeric complex that will be translocated into the cell nucleus. 

Other smads, such as Smad6, have an inhibitory role in the signalling pathway. Once in the 

nucleus, the complex associates with transcription factor (coactivators or corepressors) to 

regulate gene expression (Figure 7)8,9.  
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The interaction of BMPs with their growth factors receptors is considered as a chemical 

signalling. Signalling pathways induced by physical signals such as compressive, tensile, fluid 

shear stresses and hydrostatic pressure are defined as mechanotransducted signals. The 

mechanotransduction relates to how mechanical signals are sensed and interpreted by cells 

through signalling pathways5. Integrins are the first receptors to sense them and also, it was 

found that crosstalks between integrins and growth factors receptors can also mediate some 

signalling pathways10. 

1.1.1.4 Cellular bone organization 

At the microscale, bone tissue is organized in lamellae of mineralized matrix containing 

canaliculi to allow bones cells to communicate, have access to O2, nutrients and evacuate 

waste products and CO2 through blood vessels. There are 4 types of cells contained in bones: 

osteoblasts, bone-lining cells (periosteum cells), osteocytes and osteoclasts (Figure 8). Each 

of them have a different role in bone tissue growth, maintenance and evolution. 

 
Cell type Function 

Osteoblasts 
Secrete osteoid, the organic bone matrix mainly composed of type I 

collagen 

Bone-lining cells Inactive non-remodelling form of osteoblasts, found in the periosteum 

Osteocytes 
Previously osteoblasts, mechanical and hormonal sensors to regulate 

bone deposition/resorption 

Osteoclasts Resorb bone matrix 

Figure 8: Different types of bone cells and their functions. Osteoblasts are derived from mesenchymal 
progenitors (MPs) while osteoclasts are derived from macrophages differentiated from haematopoietic 
stem cells (HSCs). Osteoblasts and osteoclasts mutually control their production and functions11 

The matrix secreted by osteoblasts named osteoid, is crucial for the mineralization of bone 

tissues. Osteoid is mainly composed of type I collagen, proteoglycans and specific bone 

extracellular matrix proteins (osteopontin, osteocalcin, bone sialoprotein…). The 

mineralization of this matrix occurs through the nucleation and growth of hydroxyapatite 

crystals. The crystals formation is induced by the local release of phosphate ions due to an 

enzymatic action from phosphatases, (such as alkaline phosphatase) present in osteoblast-
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generated vesicles, and calcium ions available in the extracellular fluids12. The actual shape 

and structure of those hydroxyapatite crystals is illustrated in Figure 9.  

 
Figure 9: Chemical formula, structure and shape of hydroxyapatite crystals. The left scheme 
represents the spatial distribution of a hydroxyapatite element and its global crystalline structure. 
Scanning electron microscopy images at the right represent the lateral (a, red) and cross section (b, 
blue) views of a hydroxyapatite crystal (adapted by Bala from13) 

Scaling down to the nanoscale, hydroxyapatite crystals are distributed into collagen fibrils 

which form collagen fibres (Figure 10). Mineral crystals in fibrils are bound to osteocalcin 

proteins which are themselves bound to osteopontin proteins. Those osteocalcin-

osteopontin-osteocalcin complexes unfold and elongate when the fibre is under tension and 

thus protect hydroxyapatite crystals14.  

 
Figure 10: Structural organization of hydroxyapatite crystals into the collagenous matrix. From left 
to right: hydroxyapatite crystals are distributed into collagen fibrils (1) which form bone lamella as seen 
on scanning electron microscopy images (2,3). Hydroxyapatite minerals are linked between themselves 
into fibrils with interfibrillar matrix composed of osteopontin-osteocalcin complexes (adapted from14,15) 
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This structural organization of minerals and organic matrix confers to bones enough strength 

and stiffness to sustain the body, while maintaining some lightness and flexibility. Those 

contradictories properties are achievable by the appropriate combination and spatial 

arrangement of organic and inorganic matter depending on the hormonal and mechanical 

signals received by bone tissues.  

1.1.1.5 Bone formation 

In human development, bone formation starts at the fifth week of the embryonic life period. 

Embryonic mesenchymal stem cells (MSC) constituting the mesoderm in the foetus are at the 

origin of the first bone tissues via two different bone formation mechanisms: the 

intramembranous ossification and endochondral ossification.  

In intramembranous ossification, MSCs located in the collagenous and fibrous matrix directly 

differentiate into osteoblast cells.  The osteoblasts condense and secrete an organic matrix, 

the osteoid, mainly composed of type I collagen (Figure 11a). The secreted matrix mineralizes 

and gives birth to entrapped osteocytes, former osteoblasts, which are stored in the bone 

matrix (Figure 11b). After several sites of mineralization, the bone tissue forms a network 

called the trabeculae (Figure 11c). Near blood vessels, the remaining non-mineralized matrix 

condenses blood vessels and creates red bone marrow. And finally, external MSCs and 

fibroblast cells surround the newly formed bone tissue and form the periosteum (Figure 11d). 

This first mechanism of bone formation is at the origin of the clavicle formation. Between the 

ninth and twelfth week of the foetal life, the clavicle continues to grow by endochondral 

ossification16,17. 

 
Figure 11: Stages of the intramembranous ossification. Mesenchymal stem cells differentiate into 
osteoblasts. Those osteoblasts condense and secrete osteoid to form an ossification center (a). 
Entrapped osteoblasts become osteocytes and the osteoid mineralizes (b). Several mineralization sites 
give rise to the trabeculae bone tissue network (c). Entrapped blood vessels condense and form the 
spongy bone marrow (d)18 
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In endochondral ossification, which is the mechanism at the origin of axial vertebras and limb 

bones, MSCs condense in compact nodules and differentiate into cartilaginous cells called 

chondrocytes. Chondrocytes produce the hyaline cartilage matrix composed of type II collagen 

and chondroitin sulphate (Figure 12a). Among those chondrocytes, some are hypertrophied 

during this matrix production process. Those hypertrophied chondrocytes are at the origin of 

the calcified matrix (Figure 12b) which will be later the primary ossification center (Figure 12c). 

In this ossification center, late stages of the intramembranous ossification occur. More 

specifically, an artery invades the ossification center and brings osteogenic cells that will 

become osteoblasts and form the spongy bone. With the ongoing mineralization, internal 

nutrients can no longer reach the surrounding chondrocytes and induces the cartilage 

disintegration. A denser bone is formed inside, more blood vessels invade the resulting spaces, 

enlarge the cavities which will then form the medullary cavity (Figure 12d). Then, a second 

ossification center forms at the newly formed bone heads (Figure 12e). Finally trabeculae are 

formed into the bone heads, former hyaline cartilage remains in the epiphyseal plate and 

articular cartilage is formed at the bone head external parts (Figure 12f). 

 
Figure 12: Different stages of endochondral ossification. Chondrocytes differentiated from 
mesenchymal stem cells aggregate and produce the hyaline cartilage (a). Hypertrophied chondrocytes 
generate the calcified matrix at the center of the cartilage (b) which then become the primary 
ossification center (c). The center evolves into a medullary cavity (d) and a second ossification center 
forms in the bone heads (e). Spongy bone is formed at this location and articular cartilage forms at the 
bone head external parts (f)18 
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This second mechanism of bone formation begins at the sixth week of the embryonic life. Limb 

buds in the embryo are formed from MSC condensation and are then constituted of 

chondrocytes and hyaline cartilage. At the seventh week, the primary ossification center forms 

and limbs rotate. At the eighth week, further vascularisation of the limbs starts. At birth, all 

bones are formed but not completely ossified, their growth continues until the 25 years-old 

and they evolve during all our life time.  

1.1.1.6 Bone growth 

Bone growth in length starts at the epiphyseal plate (Figure 12f), Figure 13 top part displays a 

zoomed view of this plate. In reserve zone, chondrocytes produce a cartilaginous matrix which 

induce the storage of some of them. Then in the proliferative zone, stacks of chondrocytes are 

formed by cellular division (mitosis). Older chondrocytes, located in the maturation zone, 

accumulate and the surrounding matrix mineralizes and causes their hypertrophy. In the end, 

the calcified cartilaginous matrix induces their death and the left space is invaded by capillaries 

and osteoblasts from the medullary cavity (bottom part, Figure 13) for further mineralization. 

Osteoblasts generate new bone tissue on the ossification zone which leads to the global bone 

growth.    

 
Figure 13: Epiphyseal long bone growth. The growth starts at the epiphyseal plate and remaining 
chrondocytes produce cartilaginous matrix to form a reserve zone. At this zone extremity, they 
proliferate (proliferative zone) to finally mature and become hypertrophied in the calcified matrix. Dead 
chrondocytes leave space for the invasion of capillaries and osteoblasts from the medullary cavity 
leading to new bone tissue (ossification zone)18 
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At the end of the bone growth, chondrocytes stop proliferating and die, and only a layer of 

cartilage called the epiphyseal line remains. This mechanism of bone growth explains their 

growth in length, however bones also grow in diameter. Their diameter evolves by 

appositional growth through bone remodelling.  

1.1.1.7 Bone remodelling cycle 

After their formation, bones evolve constantly in response to external stresses applied either 

during basic activities (such as sitting, standing or walking) or exercises. The adaptation of the 

bone tissue is possible through the bone remodelling process, as represented in Figure 14. 

The bone remodelling cycle is based on the removal and reformation of bone tissue depending 

on hormonal and mechanical stimuli. 

 
Figure 14: Representation of the bone remodelling cycle. Osteocytes sense micro damages or 
mechanical stresses and release growth factors to trigger the remodelling process (1). Haematopoietic 
stem cells are recruited and differentiated into osteoclast cells which resorb bone matrix (2). Hormonal 
regulation triggers the osteoclasts death (3) and osteoblast progenitor cells differentiate into 
osteoblast cells and secrete the new bone matrix (4), adapted from12 

First, osteocytes within the organic bone matrix sense either micro damages or mechanical 

stresses and release growth factors to trigger the remodelling process (1, Figure 14). Second, 

haematopoietic stem cells and stem cells from blood vessels are recruited and differentiated 

into osteoclast cells at the remodelling site. Osteoclasts are activated to resorb bone matrix 

and secrete enzymes and acids to respectively digest the organic matrix and solubilize 

hydroxyapatite crystals. The dissolution by-products are then transported (transcytosed) by 

osteoclasts and secreted into interstitial fluids and blood vessels (2, Figure 14). As a 

consequence to the increasing level of calcium in blood, hormonal regulation triggers the 

osteoclasts death (apoptosis, 3, Figure 14). The growth factors previously released from the 

dissolved matrix or secreted by osteoclasts (Figure 15), attract osteoblast progenitor cells (4, 

Figure 14). Finally, those cells differentiate into osteoblasts and secrete new bone matrix (4, 

Figure 14)12,19.  
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Figure 15: Simplified representation of the growth factors role in the bone remodelling process. 
Transforming growth factor beta (TGF-β), insulin-like growth factor-1 (IGF-1), bone morphogenetic 
proteins (BMP) growth factors produced by bone lining cells guide the mesenchymal, osteoprogenitor 
and bone lining cells differentiation. Receptor activator of nuclear factor kappa-B ligand (RANKL), 
macrophage colony-stimulating factor (M-CSF)  and osteoprotegerin (OPG) growth factors are involved 
in osteoclastic differentiation19 

Thus, the bone remodelling regulation relies on growth factors production (Figure 15), 

hormonal and mechanical controlling loops through calcium homeostasis in blood and the 

required skeleton resistance to mechanical and gravitational forces. 

1.1.1.8 Mechanical loads in bone 

Mechanical forces are known to play an important role in the bone remodelling process, which 

adjusts the bone structure to ensure the fulfilment of its load-bearing functions (Wolff’s law). 

In daily activities such as standing and walking, bones are subjected to tensile and compressive 

stresses (Figure 16). 
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Figure 16: Representation of the tensile and compressive stresses distribution in a femur subjected 

to mechanical load (Pearson Education) 

Depending on their location and the specific structural function to fulfil, bones have different 

shapes and are subjected to different types of loads. Those loads are generated from the body 

weight subjected to gravity and from muscular contractions. They are applied in different 

directions which in total generate 5 types of different mechanical loads namely: compression, 

tension, shear, torsion and bending (Figure 17). 

 

Figure 17: Illustration of mechanical loads applied to a femur20 
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As the bone structure is highly anisotropic, with cortical and trabecular areas in different 

directions, the resulting mechanical properties are also anisotropic and strongly depend on 

the loading directions. 

1.1.1.9 Bone fracture (adapted from Biomaterial review 21) 

Bone fractures are one of the most common organ injuries that can result from high energy 

trauma such as car and motorbike accidents or sport injuries (rugby, mountain bike, 

paraglide...). In developing countries, due to the boom of economic activity and the resulting 

working conditions, work accidents are also an important cause of fractures22.  

 

Figure 18: Human skeleton and common sites of bone fractures in the body where strategies using 
synthetic bone graft substitutes, bioactive molecules and/or stem cells are needed to repair bones in 
difficult clinical situations21 
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Typically, bone defects can be segmented into different subfields depending on their location: 

long bones and spine, maxillofacial and craniofacial. The most common bone fracture sites are 

(Figure 18): the femur, shoulder (mostly humerus), hip (femoral neck), wrist (radius/ulna), 

tibia (distal third), ankle (above the joint, distal tibia/fibula fractures) together with vertebral 

fractures, maxillo and cranio facial (jawbone, calvaria). Depending on bones and mechanical 

stresses, there are different types of fracture. The common types of fractures are illustrated 

and detailed in Figure 19. 

 

Figure 19: Common types of bone fractures. Spiral fractures refer to a ragged break and occur when 
bone is excessively twisted which is common for sports injuries. Greenstick fractures refer to an 
incomplete fracture when one side broke and the other side bent, this is common for children fractures. 
Communited fractures refer to the case where bone fragments are into three or more pieces, commonly 
found in elderly fractures. Depressed fractures refer to broken bone portions pressed inward, common 
for skull fractures. Epiphysal fractures refer to the epiphysis separation from diaphysis along the 
epiphyseal line, commonly found in dead cartilage areas. Compression fractures refer to bone crushing 
which is common in porous bones23 

Under healthy circumstances, bone has a unique healing capacity without inducing scar tissue 

formation. However, complex or compromised bone fractures (i.e. fractures of critical size, 

severely damaged surrounding environment) can fail to heal, leading to a non-union fracture 

(Figure 20A).  

1.1.2 Mechanism of bone repair (from Biomaterial review21) 

Bone fracture healing is a complex, orchestrated, regenerative process that involves a crucial 

number of progenitor cells as well as inflammatory, endothelial and haematopoietic cells. The 

cellular and molecular events are strictly regulated during the healing cascade which includes 

the initial inflammatory phase, hematoma formation and progenitor cell recruitment (Figure 

20A), formation of an intermediate callus (Figure 20B), maturation of the callus (Figure 20C) 

and the final remodelling of the bony callus to the original bone’s structure and shape (Figure 

20D)24.  
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Figure 20: Healing of a non-stabilized long bone fracture through the formation of a cartilaginous 
callus. The major biological phases during healthy fracture healing go through the chronological stages 
of inflammation, the formation of a cartilaginous callus and remodelling of the callus into bone. The 
primary cell types that are found at each stage include inflammatory cells, chondrocytes, osteoblasts, 
osteoclasts, hematopoietic cells and osteocytes. (A) Upon fracture, the hematoma forms, associated 
with reduced O2 and pH levels as well as increased lactate. At this stage, the inflammatory cells remove 
injured tissue and secrete stimulatory factors to recruit cells from the environment including the 
periosteum. (B) A callus forms due to the massive progenitor cell expansion leading to cellular 
condensation and initiation of chondrogenic differentiation. (C) Hypertrophic chondrocytes in the callus 
mineralize and osteoblasts enter to subsequently form woven bone. The woven bone remodels through 
osteoclast-osteoblast coupling and the lamellar bone eventually bridges the fracture (D)21 

The concerted action of the cells is strictly regulated by a crucial interplay of biochemical, 

physical and mechanical factors25, and largely recapitulating phenomenological events of 

endochondral ossification during embryogenesis26. As a result, many of the homeotic genes 

and primary morphogenetic pathways that are active during skeletal development also play a 

role during fracture healing27. 

1.1.2.1 Initial inflammatory phase and hematoma formation 

The initial fracture causes a local disruption of the vascular network and surrounding tissues, 

which leads to hematoma formation and this is closely followed by the acute inflammatory 

phase28. The hematoma forms by cells from the peripheral blood and the intramedullary 

hematopoietic compartment29. This process occurs due to the plasma coagulation and platelet 

exposure to the extravascular environment, which together provide a fibrin network as a first 

provisional matrix. As a result, the hematoma has a high concentration of angiogenic growth 

factors, explaining its strong pro-angiogenic activity. The importance of the hematoma has 

been confirmed; its removal attenuates repair, whereas transplantation stimulates new bone 

formation30. The soft matrix of the hematoma allows recruitment and infiltration of the first 

inflammatory cells, neutrophils, within 24 h post fracture. By secreting inflammatory and 

chemotactic mediators such as Interleukin (IL)-6 and Chemokine ligand 2 (CCL2), the 
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neutrophils recruit the second wave of inflammatory cells, the monocytes and 

macrophages26,28,31. From this inflammatory environment, macrophages are polarized to a 

predominantly pro-inflammatory M1 phenotype, a specific type of macrophages32. 

Next, the inflammatory cells that migrated to the site function remove the provisional fibrin 

matrix and necrotic cells, as well as to resorb necrotic bone fragments. In addition, 

macrophages, increasingly assuming the anti-inflammatory phenotype, known as M2 

macrophages32, secrete a repertoire of inflammatory, chemotactic and progenitor mediators 

including stromal derived factor-1α (SDF-1α), tumor necrosis factor alpha (TNF-α), IL1β, IL-6, 

CCL2, bone morphogenetic protein (BMP)s, fibroblast growth factors (FGF)s and Wingless-

type MMTV integration site family of proteins (Wnt)s to initiate the recruitment of progenitor 

cells from the bone marrow, periosteum and the cortical bone26.  

As a result, the hematoma and the acute inflammatory reaction are cleared after a week and 

the hematoma is then replaced by granulation tissue, which consists of proliferating 

progenitor cells and neovasculature embedded in an unorganized ECM. Of note, a balanced 

acute inflammatory response has been shown to be crucial for healthy fracture healing, since 

macrophage depletion or knock out of inflammatory cytokines impairs the healing cascade32–

35. In addition, the important switch between the pro-inflammatory M1 and anti-inflammatory 

M2 macrophages phenotypes is likely mediated by both macrophage autocrine signalling as 

well as paracrine signalling from other cells at the fracture site, including the recruited 

progenitors32. 

1.1.2.2 Callus formation 

After the inflammatory stage, the following fracture healing process largely recapitulates the 

process of long bone development in the embryo, including: 1) migration of skeletal 

precursors to the site of skeletogenesis followed by 2) cellular condensation, leading to the 

subsequent 3) differentiation towards chondrocytes and/or osteoblasts36–38. Skeletal 

progenitor cells have been found to be recruited locally and concurrently from periosteum, 

bone marrow/endosteum and/or dura mater during bone repair. All tissue sources give rise 

to osteoblasts, whereas the periosteum is the major source of chondrocytes39,40. 

Importantly, intrinsic and environmental signals modulate cell fate decisions within these 

tissues. It is believed that depending on the relative distance to the blood vessels, combined 

with the release profiles of cytokines and growth factors, progenitor cells either first 

differentiate into chondrocytes, or directly mature into bone-forming osteoblasts. Due to the 

adapted metabolism in chondrocytes, designed to survive and function in poorly vascularized 

environments, these cells are located furthest away from the blood vessels26,41. The local 

hypoxia at the fracture site induces production of angiogenic factors such as VEGF to stimulate 

neo-angiogenesis42. Osteoblasts are dependent on oxidative metabolism and require a 

constant and substantial supply of oxygen and nutrients. Therefore, they accumulate in the 

vicinity of the newly formed blood vessels near the fracture extremities43. 
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1.1.2.3 Intramembranous and endochondral ossification 

The success of fracture healing, bone integration and remodelling is also highly dependent on 

the biomechanics of the fracture site. Stabilized fractures in which the bone ends are closely 

opposed, mechanically stabilized and with limited vascular disruption, mainly heal through 

intramembranous ossification (Figure 21A) 44. 

 

Figure 21: Healing mechanism of compromised long-bone fracture and calvarial fracture. (A) A 
compromised calvarial fracture in a mechanically stable environment mainly heals through direct 
ossification. In this process, cells from the periosteum, bone marrow (long bones) and dura mater 
(calvarial) contribute to the defect healing21. (B) A mechanically unstable long bone fracture heals 
through the formation of an intermediate cartilaginous callus that subsequently remodels into bone 
and the native bone structure and shape. The initial cartilaginous callus is mainly formed by cells 
recruited from the periosteum, and provides initial stabilization to the fracture. This allows blood vessel 
ingrowth closely followed by remodelling by cartilage-resorbing chondroclasts. Thereafter, progenitor 
cells recruited from the periosteum and bone marrow differentiate into osteoblasts that deposit new 
bone21 

Partially stabilized or non-stabilized fractures on the other hand, with damaged vasculature, 

heal through rapid formation of a cartilaginous intermediate to provide initial stabilization 

(Figure 21B). This stabilization allows sufficient rigidity for blood vessel ingrowth, closely 

followed by invasion of bone forming osteoblasts that transform the soft callus into bone in 

collaboration with chondroclasts45. 

1.1.2.4 Growth factors involved in fracture healing 

Similarly to embryonic bone development, fracture healing is directly regulated by crucial 

factors from - and related to - the bone morphogenetic proteins (BMPs), transforming growth 

factor-beta (TGF-β), fibroblast growth factors (FGFs), parathyroid hormone (PTH), protein 
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wingless morphogenetic factors (Wnt), platelet-derived growth factors (PDGFs) and insulin 

like growth factor 1 (IGF-1) families27.  

During the fracture healing cascade, TGF-β and BMPs are secreted to help recruit progenitor 

cells. Thereafter, together with FGF, PDGF and IGF, they induce proliferation that is followed 

by cell differentiation, the latter being largely driven by BMPs42,45–48.  

Several of these morphogenetic processes form interactive feedback loops, including co-

regulation and regulation between different cell and tissue types during fracture repair. This 

elegant balance of complex interplay can be interrupted in a compromised biological 

environment due to severe damage, co-morbidities or the large size of the defect. This 

impaired signalling and or lack of progenitors leads to insufficient regenerative potential and 

the need to boost bone repair using other means. 

1.1.3 Current strategies to repair bone (adapted from Biomaterial review21) 

1.1.3.1 Autograft, allograft and xenograft 

Currently, the “gold standard” treatment of patients suffering from slow or incomplete bone 

healing is to perform bone grafting, using either an autograft or an allograft (Figure 22). 

However, there are drawbacks to bone grafting. Autograft treatment is limited by the volume 

of bone that can be harvested from the iliac crest and subsequently transplanted to the defect 

site. Complications include morbidity at the harvest site, local hematoma and remodelling 

issues of the implanted bone49,50. Allograft is hampered by bone tissue integration from the 

host and vascularization issues. 

 
Figure 22: Schematic representation of the different types of grafts. Autograft represents a graft from 
another body area of the same patient while allograft is harvested from another patient and xenograft 
from a different species51 

A last resort treatment strategy is distraction osteogenesis, which is a largely successful, but 

long, painful and dependent on the availability of a competent medical team. This technique 

has also been associated with poor healing and re-fracture52,53.  
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1.1.3.2 Bone graft substitutes 

Consequently, a more sustainable, long term treatment strategy is required. To that end, bone 

graft substitutes (BGS) are being engineered to help impaired fracture healing. Depending on 

the trauma severity, we can distinguish three main strategies for bone repair (Figure 23): i) 

synthetic scaffolds alone, ii) scaffolds combined with active molecules and iii) cell-based 

combination products with cells from various sources. 

 
Figure 23: The three major strategies currently used and developed to repair bone. The first (left 
column) relies on using only synthetic bone graft substitutes (BGS). The second (middle column) relies 
on combining bioactive molecules with a carrier that is mostly an extracellular matrix protein or a 
ceramic-based carrier. The third (right column) consists of combining stem cells with a carrier, possibly 
with the use of additional bioactive molecules. Each of these approaches is more appropriate for the 
healing of bone defects depending on their severity. When the healing of a defect is compromised, there 
is a need to have a biological functionality in addition to the BGS, which is provided either by bioactive 
molecules, stem cells, or a combination of both21 
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Once implanted, the different types of BGS can either lead to osteoconduction, the growth of 

bone tissue at their surface, or osteoinduction, the cells recruitment and differentiation into 

bone progenitor cells leading to bone tissue formation. In both case, the BGS osseointegration 

is the main objective with the stable anchorage of the BGS with a direct bone-BGS contact54.  

The first generation of these strategies are currently in clinical trials at different phases (I, II, 

or III) and some have even made it to the clinic. In addition, the next generation of implants 

are currently being developed at the pre-clinical stage. Traditionally, scaffolds are used in 

trauma or spine fusion markets, while the combination of scaffolds with active molecules 

and/or stem cells is typically classified in the “orthobiologics” field. 

1.1.3.3 Industrial market 

In terms of industrial markets, fracture treatments and bone bridging/repair solutions are 

classified in different application fields generating important revenues. The worldwide 

orthopaedic product sales are segmented as fracture repair, a market estimated at $5.5 billion 

that includes all products used to repair fractures internally or externally: plates, screws, 

intramedullary nails, pins, wires, staples, and external fixators; spinal implant and 

instrumentation at ~$7 billion market that includes spinal fusion; and orthobiologics at $4.7 

billion market that includes different strategies used to repair bone or fuse joints22. To note, 

orthobiologics are biological substances, either active molecules, stem cells or demineralized 

bone grafts that are used to help bone defects heal more quickly. The term orthobiologics is 

specific to bone, while tissue engineering is a more generic term that can be applied to the 

repair of all tissues, including bones. 

1.2 Biomaterials for bone graft substitutes 

As described in the section 1.1, bone tissue is mainly composed of hydroxyapatite crystals and 

collagen, organized in a specific manner to reach the biological and mechanical requirements. 

Materials used for bone graft substitutes are first selected for their biocompatibility, which is 

why they are named after biomaterials, but should also substitute as much as possible the 

bone functions there are aimed at. In general, the different types of biomaterials used in 

orthopaedics are combined to fit the target bones that are substituted. 

1.2.1 Ceramics  

Ceramics are solid materials composed of inorganic and non-metallic elements linked together 

via ionic and covalent bonds. There are generally formed and processed at high temperature 

and their structures can either be highly crystalline, semi-crystalline (porcelain) or completely 

amorphous (glass). In terms of mechanical properties, ceramics are generally hard and brittle 

materials with high compressive strength and low tensile strength. Moreover, they possess a 

higher elastic modulus compared to bone55. For bone graft substitutes, two types of ceramics 

are being employed: bio inert and bioactive/biodegradable ceramics.  

Among bio inert ceramics, alumina (Al2O3) and zirconia (ZrO2) are the most used for clinical 

applications. When implanted, they are not directly bound to surrounding bone tissue due to 

their high chemical inertness and induce the formation of a non-adherent fibrous connective 
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tissue. Their main applications as biomaterials in bone graft substitutes are for dental implants 

and for articular surfaces of joint replacements (Figure 24) as they also exhibit a high wear 

resistance56. 

 
Figure 24: Example of alumina use for hip prosthesis head. Renovis® surgical hip prosthesis 
represented in a total hip replacement configuration (left). The acetabular cup, polyethylene liner, 
ceramic head and femoral stem constituting Renovis® hip prosthesis are represented (right)57 

Bioactive ceramics are osteoconductive ceramics that have the capability to form direct bonds 

with the surrounding bone tissues58. Among them, 45S5 Bioglass® (45wt% SiO2, 24.5wt% CaO, 

6wt% P2O5 and 24.5wt% Na2O), hydroxyapatite (HAP, Ca10(PO4)6(OH)2), β-tricalcium 

phosphate (β-TCP, Ca3(PO4)2) or composite of both, biphasic calcium phosphate (BCP), are the 

most used bioactive ceramics. Those ceramics are also generally biodegradable and are thus 

resorbed and replaced gradually by new bone tissue. Despite having a real bond with the 

surrounding bone tissue, those ceramics remain brittle and thus are mostly employed as bone 

void filler in form of injectable pastes, granules (Figure 25), or as surface treatment59.   

 

Figure 25: Examples of commercialized ceramics. Ceramics composed of β-TCP, Cerasorb and ChronOs 
commercialized by Curasan AG1 and Synthes2 companies. Hydroxyapatite-based materials, P-15 Putty 
and Bio-Oss commercialized by PepGen®3 and Geistlich60 

1.2.2 Polymers 

Polymers are made by controlled polymerisation of small molecular units, the monomers. The 

polymers physico-chemical properties as well as mechanical properties depend on their 

molecular structure, weight and dispersity as well as their synthesis route. Polymers can either 

be natural (ie made of natural biomolecules such as type I collagen or fibrin) or synthetic. In 

this later case, they can either be degradable or non-degradable. In the case of biodegradable 

polymers, the main degradation mechanism is the chemical hydrolysis of monomers bonds. 



34 
 

Those kind of polymers are interesting for short term applications such as drug delivery or for 

mechanical stabilization until the body regenerates on its own. When the body is not able to 

restore the damaged area, non-degradable polymers are employed as a long term strategy61. 

All types of polymers are employed in bone graft substitutes either as a part, entirely or also 

as cement around bone substitutes, to enhance their anchorage to the surrounding tissue. 

Among non-degradable polymers, synthetic polymers such as polyethylene (PE) and 

polyetheretherketone (PEEK) are used as liner in acetabular cups (Figure 24) or as a spacers in 

intervertebral disc replacement (Figure 26). Polymethylmethacrylate (PMMA), silicon rubber 

(such as PDMS), acrylic resins and polyurethanes are often used as bone cements (Figure 26)62. 

 

Figure 26: PEEK Clydesdale™ Spinal System (left, Medtronic) and CEMFIX® 1 PMMA bone cement 
(right, Teknimed) 

Among biodegradable polymers, synthetic polymers such as poly(lactic-co-glycolic acid) 
(PLGA), polylactic acid (PLA), polycaprolactone (PCL) or polyethylene glycol (PEG) are mostly 
used as pins, sutures wires, membranes, plates or screws to provide mechanical strength near 
newly implanted bone substitutes62,63.  
 
Natural polymers, such as type I collagen, fibrin, hyaluronic acid and chitosan have lower 
mechanical stability. Thus, they are rather used as space filler, lubricant or matrix carrying HAP 
or bioactive molecules (Figure 27)21,64.  
 

 
Figure 27: Monovisc® Acid hyaluronic lubricant for knee joint (left, DePuy Synthes) and Bio-Oss ® 

Collagen for dental bone substitute (right, Geistlich) 

Composites materials made of polymers and bioactive ceramics are interesting for bone graft 
substitutes since they can mimic bone composition (mostly HAP and type I collagen) and 
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combine the properties of each materials, notably biodegradability, mechanical stability and 
better osteoconductivity in the case of bioactive ceramics65. 
 

1.2.3 Metals 

Metals are all elements forming an attractive electrostatic bond between themselves with 

clouds of free electrons (valence shell electrons) and their positively charged ionic form. This 

metallic bond gives to metals specific physical properties such as high thermal and electrical 

conductivity, opacity and ductility66. 

For load-bearing applications, metallic materials remain the first choice for bone graft 

substitutes in view of their high compressive strength (Table 2) and fatigue resistance. The 

main metallic materials used as bone graft substitutes are stainless steel, cobalt-chromium-

based and titanium-based alloys67. 

Table 2: Average mechanical properties of bones and metallic materials used for bone graft 
substitutes. The elastic modulus, compressive, shear and tensile strengths and Poisson’s ratio of 
compact and trabecular bones, stainless steel, cobalt-chromium-molybdenum and titanium-
aluminium-vanadium alloys (adapted from62,68) 

The first metallic materials successfully used in orthopaedic applications were the 316L 

stainless steel (316LSS, composed mainly of Fe, C <0.03wt%, Cr 17-20wt%, Ni 12-14 wt%) and 

cobalt–chromium (Co-Cr) alloys. Those alloys exhibit a good corrosion resistance due to their 

high Cr content (more than 12wt%) allowing the formation of a corrosion resistant coating 

oxide of Cr2O3
62. However, Cr and Co released from those alloys were proven to have toxic 

effects on the body, in addition to their relatively high elastic modulus (respectively 210 GPa 

and 240 GPa, Figure 28) compared to bone, inducing higher stress shielding effect67.  
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Figure 28: Elastic modulus of alloys used for bone implant67 

The stress shielding effect refers to the bone resorption occurring when there is insufficient 

transfer of stresses in bone (Figure 29). The decrease of stresses in the surrounding bone 

around the implant leads to its resorption and can eventually cause the substitute loosening 

in the following years after implantation67. 

 
Figure 29: Illustration of the load distribution in presence of metallic bone fixation which can induce 
a stress shielding effect. Elastic modulus of cortical bone and the possible different material that can 
be used as metallic fixation are listed in GPa69 

Titanium (Ti) and its alloys were originally developed and used for aeronautic applications. 

Because of their remarkable properties in terms of strength, low density, moderate elastic 

modulus (110 GPa, Figure 28), corrosion resistance and complete inertness to biological 

environments, they were introduced in the biomedical field67. 

Other alloys, such as the nickel-titanium (NiTi) shape memory alloy and biodegradable alloys 

(magnesium, iron and zinc-based) are also investigated as potential metallic materials for 
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medical devices. In the case of NiTi alloy, unsolved allergenic effect of Ni has hampered its 

use62 whereas for biodegradable metals, the control of their corrosion rate still remains a 

crucial safety issue70. 

1.2.4 Titanium alloys for bone graft substitutes 

Ti and Ti based alloys are lightweight materials with high strength and corrosion resistance 

with higher melting point than iron, nickel and aluminium (Al) based alloys, which made them 

at first, the best candidates for aeronautics application despite their high price. Due to their 

low electrical conductivity, Ti and Ti based alloys are subjected to electrochemical oxidation 

leading to the formation of a thin passive oxide layer71. In addition to contribute to their 

corrosion resistance, this protective oxide layer is stable at physiological pH with an isoelectric 

point around 5-6. The latter gives to Ti materials a low tendency to form ions in aqueous 

environment which make them biocompatible72. After the discovery of the Ti biocompatibility 

and especially osseointegration, the tight integration of the material around bone tissue by 

Branemark, the interest for Ti and its alloys for dental and orthopaedics implants started62. 

Commercially pure Ti (CP Ti) was first used for cardiovascular stents, lead wires and 

spinal/trauma fixation devices. To increase its mechanical performances (yield strength), four 

different grades of CP Ti were developed with increasing oxygen content. However, even if CP 

Ti (grade 1-4) mechanical properties were suitable for dental applications, they were below 

the requirements for orthopaedic applications73. 

This need led to the introduction of Ti–6Al–4V ELI (Extra Low interstitial oxygen) alloy 

composed of aluminium (Al, hexagonal crystallographic structure α stabilizer, ~6wt%) and 

vanadium (V, body centered cubic crystallographic structure β phase stabilizer,~4%wt) which 

presents a higher tensile strength than CP Ti, as shown in Table 3. Today, Ti-6Al-4V remains 

the largest titanium alloy used for biomedical devices such as hip joints, bone screws, knee 

joints, bone plates, dental implants and surgical devices, but health and safety concerns are 

raising from the release of Al and V ions. Those ions were found to be associated with long-

term health problems, such as Alzheimer disease, neuropathy and osteomalacia67. To answer 

this issue, other Ti alloys such as Ti–6Al–7Nb or Ti-5Al-2.5Fe were developed by substituting 

vanadium with niobium or iron while keeping the same α/β phase microstructure of Ti-6Al-

4V. 
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Table 3: Main titanium alloys and their mechanical properties used in the biomedical field. The first 
generation of titanium alloy exhibit relatively higher elastic modulus than the second generation which 
composition has been modified to reduce the elastic modulus67 

Additional concerns to have an elastic modulus lower and closer to human bone led to the 

development of low modulus β Ti alloy such as Ti–13Nb–13Zr or Ti-35Nb-7Zr-5Ta, while using 

only biocompatible alloying elements (niobium Nb, zirconium Zr, tantalum Ta) and keeping 

strength properties comparable to Ti–6Al–4V73. Another limitations of Ti materials are their 

poor shear strength and their high coefficient of friction which can lead to the wear debris 

formation. Wear debris are known to trigger an acute inflammatory reaction causing pain and 

the implants loosening by osteolysis. Those limitations are the reasons why the time service 

period of Ti implants has been restricted to 10–15 years67 but still, Ti and its alloys remain the 

most used metallic materials for load-bearing bone graft substitutes. 

1.2.5 Manufacturing processes of titanium bone graft substitutes  

1.2.5.1 Wrought and cast 

Wrought manufacturing processes consist in the shaping of metals with compressive 

mechanical pressures provided either by hammers, rolls or presses. Wrought is either applied 

in hot or cold working conditions. In contrast, cast consists in melting raw material to obtain 

a liquid, pour it into a hollow mould and let the material solidify inside it. The solidified part is 

the final object and is recovered from the mould for eventual post-treatments. 

The starting material form of Ti for bone graft substitutes are annealed bar stock, which are 

derived from wrought and annealed Ti ingots as detailed in Figure 30. First, Ti sponge are 

compacted and made into consumable electrodes with alloying elements for the vacuum arc 

furnace. Vacuum is applied in the furnace and the atmosphere is filled with argon to prevent 

contamination. Then, the Ti electrode is remelted into this furnace with an electric arc to form 

an ingot, which is further manufactured (hot rolled and annealed) to obtain bars74.   
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Figure 30: Manufacturing processes to obtain Titanium bar stocks. Titanium sponge are mixed with 
alloying elements and prepared as electrodes for their melting. The obtained ingot is further processed 
with hot rolling and annealing steps to obtain titanium bars (adapted from74) 

Dental implants are machined by computer numerical controlled (CNC) multi-axis machine 

tools directly from Ti bars, hip stems are generally wrought, machined and polished, cranial 

plates implants are produced from Ti sheets that are reshaped around the patient model and 

pressed with a hydraulic press75–77. 

Still both types of processes require relatively long product-cycle time and complex post-

treatments, without mentioning the loss of material. Moreover, bulk Ti parts still have higher 

elastic modulus than bone which can lead to stress shielding effects at the implantation site. 

To solve this issue, interconnected porous structures in Ti bone substitutes are a promising 

solution to lower their elastic modulus and better match the local osseous environment. As a 

result, research efforts have been directed towards developing fabrication technologies able 

to produce porous Ti implants78. 

1.2.5.2 Powder metallurgy 

Powder metallurgy (PM) is a manufacturing process that uses metallic powders as starting 

material. Pure metallic elements or alloy powders are mixed and compacted into a designed 

mould. This mould is heated to partially or totally sinter powders in a controlled atmosphere 

to bind the particles (Figure 31). 
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Figure 31: Representation of powder metallurgy manufacturing process. Powders are mixed and 
pressed into a designed mould. Moulds are heated to sinter powders before obtaining the finished 
product79 

This manufacturing process has the advantage to allow a low-cost fabrication of Ti parts while 

achieving a nearly waste-free and net-shape forming. In addition, those parts can be produced 

with the combination of small and large pores by adjusting processing parameters such as the 

powder size, the temperature and pressure. Porous structures do not only decrease the elastic 

modulus but also increase the bone substitute surface area. This last feature allows a higher 

cells and blood vessels penetration which can induce a better implant integration than 

wrought or cast substitutes78. 

The use of PM on Ti and its alloys began in the mid-1970s. The PM technique not only helped 

to lower the fabrication costs but was also found to produce fine-grained structures which 

contribute to better fatigue properties. In addition, higher porosities in Ti substitutes enhance 

their corrosion resistance with higher internal supply of oxygen for the passivation of their 

surface. However, limitations for manufacturing orthopaedic implants with PM remain. The 

size limitation due to the press, the high energy consumption to compact the powder mixture 

or the non-avoidable post-fabrication processes such as polishing are some of them78. 

1.2.5.3 Additive manufacturing (AM) 

Additive manufacturing (AM) technologies emerged in the 1980s and are defined by the 

American Society for Testing and Materials (ASTM) as processes consisting in building 

materials layer by layer, to create an object from 3D model data, as opposed to subtractive 

manufacturing methodologies (ASTM F2792). Among AM technologies, two main types of 

processes are available: powder bed fusion systems (Figure 32A) and wire fed systems (Figure 
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32B). The energy source to melt the starting material can either be a laser, an electron beam 

or a plasma arc. 

 
Figure 32: Schematic representation of powder bed fusion (A) and wire based (B) additive 
manufacturing systems. In powder bed fusion systems, the starting material is a powder that is 
deposited on the build platform for further melting. In wire based systems, the starting material is a 
wire directly deposited and melted after deposition80 

In powder bed fusion systems, the starting material is in powder form. First, a powder bed is 

deposited for each layer by a raking delivery system. Then, the energy source melts locally the 

powder according to the 3D model and a new powder bed is added and melted for each layer 

until building the complete object. Whereas in wire fed systems, the starting material, which 

is a wire, is directly deposited and melted after its deposition80.  

In the case of titanium-based bone substitutes, two powder bed techniques are used: the 

electron beam melting (EBM) and selective laser beam melting (SLM). Their main 

characteristics are described in Table 4. Both techniques have been commercialized  at the 

same time and proven to be efficient for the building of Ti-6Al-4V orthopaedic implants81. Even 

if SLM allows a better control of the spatial resolution and surface features (Table 4), the EBM 

technique stands out in terms of production rates (80 cm3/h over 40 cm3/h for SLM), control 

of the alloy microstructure (α/β over α’) and purity (vacuum in the build atmosphere)68.  

 

In terms of mechanical properties, Ti-6Al-4V built by SLM and EBM have enhanced mechanical 

strengths compared to cast alloys (typical values for EBM vs casting: 950 MPa vs 800 MPa for 

yield strength, 1020 MPa vs 850 MPa for Ultimate Tensile Strength (data given by ARCAM). 

Compared to SLM, the EBM process allows to obtain a more ductile material as demonstrated 

by the elongation (14 % over7-8% for SLM or casting)81. 
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Table 4: Comparison of the EBM and SLM additive manufacturing techniques82 

The main advantages of AM techniques for bone graft substitutes are: the possibility to easily 

produce at once highly porous or dense parts in a unique construct, the ability to build 

customized substitutes according to the patient anatomical data and the saving of material 

compared to conventional manufacturing processes. More specifically in the case of EBM, a 

high temperature is used during the build process. As a consequence, no residual stresses 

accumulate in the structure, which allow to avoid post treatment such as annealing. However, 

the production volumes are low compared to conventional manufacturing techniques and 

surface finishing processes, such as grinding or polishing, are still required especially with the 

inherent roughness which ranges between 30 to 40 µm78,81.   
 

The first bone graft substitute part built by AM technique was an acetabular cup produced by 

Lima Corporate and Arcam with EBM and the Ti-6Al-4V alloy in 2007. Nowadays, several 

interbody cages built by EBM have been approved by the USA Food and Drug Administration 

(FDA) and used in more than 10 000 patients in 15 different countries (Figure 33)68. Despite 

this increasing use of Ti-6Al-4V alloy with AM processes for bone graft substitutes, several 

challenges remain in this manufacturing field such as: the reproducibility of each built part, 

the control of the mechanical properties to avoid the stress shielding effect and increase the 

substitute life expectancy or more, the optimization of the structure and surface to ensure an 

efficient implant integration and bone ingrowth. 
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Figure 33: Examples of Food and Drug Administration (FDA) approved Ti-6Al-4V bone graft 
substitutes manufactured by EBM. (a) By EIT, Germany. (b) By Renovis, USA (c) By 4WEB Medical, USA. 
(d) By Joimax, Germany. (e) By K2M, USA. (f) By Solidscape, USA68 

1.3 Structural optimization of bone graft substitutes 

The first strategy to improve the integration of bone substitutes is to use 3D geometries that 

favour bone ingrowth, while being as close as possible to the target bone and without 

impeding the natural bone regeneration and remodelling process. Currently, the identified 

structural features recognized as crucial in bone tissue regeneration and substitutes 

osseointegration are: mechanical properties, porosity, surface curvature and topography83,84.  

1.3.1.1 Mechanical properties 

Mechanical properties of human bones are highly dependent on the age, gender and the 

specific bone in either its cortical or trabecular areas. The main mechanical properties 

measured for bones in the literature are: tensile yield strength, ultimate tensile and 

compressive strengths, tensile and compressive elastic moduli, ultimate strain and density.  

With the emergence of AM technologies for metallic materials, several open-cells porous 

structures have been constructed and characterized in view to match bone mechanical 

properties. More particularly, a focus has been made on lattice structures built from 

repetitions of a unit cell. The four mostly investigated lattice structures were built by EBM 

using the cubic, dodecahedron, diamond and hexagonal unit cells (Figure 34). Parameters such 

as the unit cell type, porosity/density, elastic modulus and strengths (tensile, compressive or 
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fatigue) are measured to characterize lattice structures and then compared to human bones 

properties68.   

 
Figure 34: Unit cells and corresponding lattices built by EBM with Ti-6Al-4V alloy. Obtained lattices 
densities are close to human bone average densities which range from 0.19 to 1.99 g.cm-3 (adapted 
from68) 

Due to the fact that the used unit cells are open cells, built lattices can reach very low densities 

(from 0.1 to 2.3 g.cm-3, translated in terms of porosities from 96% to 50%) close to the human 

bones average density ranging from 0.19 to 1.99 g.cm-3 and with porosities ranging from 3% 

to 95% depending on the bone type. The different distributions of void and matter in those 

structures enable the tuning of the global properties and mechanical behaviour of the lattice. 

For instance, considering the compressive strength (≈ 156 MPa), elastic modulus (≈ 15 GPa) 

and fatigue strength (≈ 105.106 MPa) of a cubic lattice with a 63% porosity, the Ti-6Al-4V cubic 

lattice can successfully replace human cortical tibia and femur68. 

 

Knowing that ultimate strengths and elastic modulus of cortical areas are much higher than 

those from trabecular areas, bi-structural bone implant could be accurately subjected to 

stresses as native bones. This bi-structural architecture is currently achievable with the EBM 

process (Figure 35).  
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Figure 35: Illustration of multi-structural stem with dense (1.06 g.cm-3) and less dense (0.58 g.cm-3) 
areas for femoral implantation. The CAD (b) and EBM-built prototype (c) were derived from femoral 
model (a). Scale bars of (a), (c) = 2 cm and (b) = 1 cm from85 

However, simply mimicking native bones structures and translating it to Ti-6Al-4V scaffolds 

might raise some mechanical issues. Indeed, highly porous structures derived from trabecular 

bones might not reach the very low trabecular elastic modulus (0.02 to 0.65 GPa)68 but also 

display very poor fatigue strength86,87. Currently, porous Ti-6Al-4V lattices have been well 

characterized by compression tests. However, few tensile data are now available in the 

literature. Knowing the fact that human bones experiences both compressive and tensile 

stresses, deeper mechanical characterization in tension is needed to obtain the tensile 

properties68. 

1.3.1.2 Porosity 

According to the porous architecture of native bones, the effect of porosity on bone formation 

was assessed in vitro and in vivo with various pore sizes and shapes. The first study 

demonstrating the necessity to use pores for bone regeneration was done with three types of 

hydroxyapatite ceramics (solid, porous, coral-replicated porous tablets) in a rat ectopic bone 

model88. New bone only formed in porous scaffolds while no bone formed on the solid 

particles. In another major study where investigators used porous ceramics granules, the 

effect of pore sizes on the bone formation was investigated in dog femur89. For small granules 

(10 - 44 µm and 44 - 75 µm) no bone tissue was able to grow inside the ceramics, while it was 
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the case for larger pores (100 - 150 µm). From those two major studies, resulted other studies 

focused on the effect of the global porosity and the pore sizes of implants on bone 

regeneration. 

Currently, the commonly approved minimum pore size for bone regeneration in a porous 

material is set at 100 µm83. At the research stage, pores between 150-250 µm were found to 

be favourable for the expression and production of collagen and aggrecan, and for oxygen 

supply90. While larger pores < 300-400 µm were reported to be more suitable for blood vessels 

formation and bone ingrowth88. With the EBM process, the minimum pore size reached until 

now is at 450 µm, which is slightly greater than most pores in human bone (from 50 µm to 

300 µm in trabecular human femur for instance)91. 

Pore sizes requirements for in vitro and in vivo studies are different. Indeed, in vitro 

investigations need to be adapted to the cellular scale. This means that the investigated 

structural parameters should make possible to fulfil essential requirements such as cellular 

aggregation or low fluid velocity, for the appropriate cellular proliferation and viability84. 

While in vivo, there is a need for the implant to be sufficiently invaded by body fluids in order 

to have clots formation and stem cells recruitment for future bone formation83. Also, the 

introduction of porosities into a material decreases its mechanical performances. A 

compromise between high porosity and mechanical properties of the selected material should 

be done in regards to the target bone to be replaced.   

1.3.1.3 Surface curvature 

Surface curvature was found to guide and control tissue formation in vitro. One of the major 

study conducted by Rumpler and co-workers, with long term cultures of murine pre-

osteoblastic cells (MC3T3-E1) into 2 mm thick hydroxyapatite plates of 4 different types of 

shapes (triangular, square, hexagonal and circular), revealed this curvature dependency 

(Figure 36)92. Even though the total amount of new tissue was independent of the shape, the 

tissue formation kinetic was affected by the local curvature. Indeed, in the case of triangular, 

square and hexagonal plates, tissue formation started in the corners while it was directly 

uniform for circular ones. After, all the corners were filled with tissue, tissues formed a 

uniform concentric opening occurred in all shape types. 
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Figure 36: Actin stress fibres of MC3T3-E1 cells after 21 days (i-iii) and 30 days (iv) of cell culture (a) 
and the corresponding numerical simulation of tissue formation with a linear curvature dependant 
theoretical model (b). The fibres were stained with phalloidin-FITC and visualized under confocal laser 
scanning microscopy (from92) 

This in vitro study confirmed that tissue formation occurs preferentially on concave surfaces 

instead of flat or convex ones, and that the rate of this formation increases almost linearly 

with curvature. This curvature driven tissue formation was also confirmed in vivo with mPCL-

β-TCP scaffolds in 30 mm segmental defect in sheep tibia mid-diaphysis93. The employed 

scaffolds contained regions with two different mean surface curvatures (Figure 37). The first 

type of regions had concave curvature (negative, -0.0295 µm-1) and were located at the 

intersection of two struts (Figure 37B & C, red lines). The second type of regions displayed 

convex curvature (positive, 0.0055 µm-1) and were located on the strut surfaces (Figure 37B 

& C, blue lines). 

After 12 months, implanted scaffolds were retrieved and the ECM formation was analysed, in 

regards to the simulated tissue formation obtained from a 3D curvature-driven model. The 

input geometry was a micro tomography representation of the initial scaffold. Histological and 

second-harmonic generation images revealed a high density of collagen fibres in regions of 

concave curvature and this ECM formation matched with the simulated tissue growth93. In this 

same study, they also used this 3D curvature-driven model to investigate the effect of pore 

size (300 x 300, 600 x 600 and 1200 x 1200 µm²) and shape (0/90° and 0/60° strut laydown 

patterns) on tissue growth. The model predicted pore filling for the smallest pore size of 300 

µm while no differences in the tissue rate formation were observed between the two types of 

pore shapes93.   
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Figure 37: Representation of mPCL-β-TCP scaffolds with 0/90° strut laydown pattern (A) and the 
corresponding mean surface curvature estimations (B) and zoom (C) in a unit volume of those 
scaffolds (adapted from93) 

Bone graft substitutes with optimized surface curvature could accelerate the bone tissue 

regeneration within them. However, other structural parameters such as mechanical 

properties and pore size should not be omitted while designing the substitute.  

1.3.1.4 Topography 

Topography relates to all different geometrical features that a surface can display. In regards 

to the cellular environment, a given surface can have four types of topographical features: 

macroscale (>100 µm) that mainly affects cells at the colony level, microscale and 

submicroscale (0.1 – 100 µm) that can influence a single cell, and nanoscale (1 – 100 nm) which 

may interact with individual cell receptors (Figure 38)94,95.  
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Figure 38: Schematic representation of the topographical scales and their interactions with bone 
tissue constituents.  The macroscale (>100 µm) mainly affects cells at the colony level. The microscale 
and submicroscale topographies (0.1 – 100 µm) can influence a single cell while the nanoscale (1 – 100 
nm) topography may interact with individual cell receptors (from95) 

At the nanoscale, topographical effects are translated to the cells via the ECM distribution and 

the adsorbed proteins orientation and conformation in regards to the topography96. In vivo, 

the native ECM contains pits, pores, protrusions and fibres in the length scale of 5 to 200 nm97. 

Cell surface receptors such as integrins or growth factor receptors, are responsible for the 

cellular adhesion and response to the surrounding environment. The presentation of binding 

and signalling sites of adsorbed biomolecules to the cells is dependent on the effects of the 

nanofeature on the biomolecule, but also on the biomolecule size96.  

Indeed, several studies on nano-rough surfaces highlighted the fact that proteins with 

dimensions in the same order of the roughness did not experience conformational changes. 

While proteins with much smaller or larger dimensions than the roughness experienced 

conformational alterations96. Conformational changes in proteins might interfere in their 

interaction with other molecules such as cellular receptors. With possible binding sites being 

hidden or more exposed with the nanotopography. The general trend is that nanotopography 

mainly influences the cellular adhesion, orientation and short and medium term responses96.  
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Figure 39: Schematic representation of the relationship between nanopillar height and osteogenic 
marker expression, focal adhesion site and cell spreading area. Derived from 20 articles (10 reviews 
and 10 singles studies investigating the effects of nanofeatures on the hMSCs osteogenic differentiation 
without osteogenic supplements in the culture medium (from94) 

In the case of human mesenchymal stem cells (hMSCs), nanopatterns recognized to have the 

highest effect on their osteogenic differentiation was 15 nm high pillars compared to smaller 

(8 nm) and higher pillars (55 nm, 90 nm and 100 nm)94. As seen in Figure 39, this nanopattern 

induced osteogenic potential is correlated with a high focal adhesion size and cell spreading 

area. Those results, derived from the analysis of 10 reviews and 10 singles studies which 

investigated the effects of nanofeatures on the hMSCs osteogenic differentiation, suggest that 

this osteogenic induction might be partly regulated via cellular tension and 

mechanotransduction94.  

In native ECM, microscale organization is known to influence cell morphology, migration and 

tissue organization. To study the effect of microscale topographies on cellular behaviour, the 

most commonly fabricated and employed micro patterns are grooves and pits with various 

width and depth98 (Figure 40). Cellular migration is driven by asymmetrical chemical, 

mechanical or electrical external signals. In response to asymmetrical signals, cell morphology 

adapts and displays a leading and trailing edge.   
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Figure 40: Representation of native topography of neural, cardiac and embryonic tissues and the 
associated in vitro biomimetic topography approaches. The embryo scale bar is at 20 µm and the pits 
scale bar at 500 µm (adapted from98) 

Even if the microscale topography effects are highly dependent on the cell type, fibroblast, 

neuron, epithelial, endothelial and smooth muscle cells presented a higher average migration 

speed on grooved substrates than on flat ones. With a majority of cell types aligning and 

migrating along the major axis of the grooves98. In the case of osteoblasts, two studies using 

microscales grooves with widths between 10 to 76 µm showed that only grooves with widths 

between 10 to 30 µm influenced osteoblasts migration along the long axis. For bigger widths, 

no significant differences were seen on their orientation and migration. However in both 

cases, their osteogenic capacities were not affected99,100.      

Pillars are another type of microscale topographical pattern used to study cellular behaviour. 

By modulating their spatial organization and dimensions, it is possible to generate a substrate 

with mechanical gradient (from softer to stiffer surface)98. A study using pillars of fixed 

diameter (2 µm) and increasing heights (0.97, 6.1 and 12.9 µm) on human MSCs, highlighted 

the fact that MSCs differentiation can be regulated with the substrate stiffness101. In an 

osteogenic and adipogenic bipotential medium, the osteogenic differentiation of hMSCs was 

favoured on rigid pillars (1566 nN.µm-2, 483 kPa) after 14 days of culture. While the adipogenic 

differentiation was favoured on soft pillars (1.90 nN.µm-2, 7 kPa)101. Well defined microscale 

topographies are great in vitro tools to study the adhesion, migration and differentiation of 

one cell type. In the case of bone substitutes, microscale topographies are the most 

investigated and used. There are produced through various surface treatments. 
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1.3.1.5 Surface treatment of metallic bone graft substitutes 

The second important strategy to improve metallic bone substitute integration is the use of 

surface treatment. Those 2D treatments consist in modifying the surface reactivity to guide 

the material interactions with the surrounding living matter. Once implanted, implants are 

subjected to non-specific protein adsorption. In some cases, this adsorption can induce an 

excessive fibroblast recruitment and action, which can lead to a fibrous encapsulation 

process102. To avoid this fibrous encapsulation scenario, several surface treatment processes 

have been developed and are divided into two main categories: dry and wet processes (Figure 

41). The surface can be mechanically modified to act as an anchoring layer, or chemically 

modified to form an additional layer with specific chemical properties.   

 
Figure 41: Overview of the existing surface treatment processes used for metallic bone substitutes  

at the research and clinical stages69 

Thermal spray, physical vapour deposition (PVD) and ion implantation are physical methods 

that enable the surface roughness modification and the deposition of inorganic layers such as 

hydroxyapatite (HAP) or additional TiO2. Chemical methods such as chemical vapour 

deposition (CVD) of HAP or “Diamond like Carbon” (DLC) allow the deposition of HAP or carbon 

layers. Acid etching (using HCl), alkaline solution immersion (using NaOH), heat treatment and 

anodic oxidation modify the surface roughness but more specifically change the chemical 

composition with the introduction of OH groups. Those hydroxyls groups with their negative 

charges, are known to improve the surface hydrophilicity, attract calcium and phosphate ions 

and thus favouring proteins adsorption, bone tissue formation and mineralization at the 

surface103.  
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In the case of titanium alloys, they are naturally covered by a 3 to 7 nm layer of TiO2, which 

provides them their chemical inertness and corrosion resistance. Nevertheless, surface 

treatments are still employed to tune the microscale topography and increase the surface 

roughness. The surface roughness is commonly measured with a parameter called Ra. This 

parameter represents an arithmetic average of the roughness profile in height. Surfaces with 

Ra < 0.5 µm are considered as smooth, while minimally rough surfaces have Ra between 0.5 to 

1 µm. Moderately rough surfaces have a Ra between 1 to 2 µm and those with a Ra > 2 µm are 

strictly rough104.  

This is done mostly via surface modification techniques such as acid etching, sand blasting, 

heat treatments and anodic oxidation (Figure 42)105. The aim of those modifications is to 

reduce the fibrous encapsulation that can occur at the implantation site, increase the bone-

to-implant contact (BIC) and finally obtain a tightly fused and osseointegrated implant.  

 
Figure 42: Schematic representation and corresponding SEM images of three main surface 
modification techniques applied to titanium implants to increase the surface roughness: acid-
etching, grit-blasting, heat-treatment. Scale bar = 3 µm from105 

1.3.1.6 Surface treatment on AM-built titanium bone graft substitutes 

At the research stage, various surface treatments have been tested on EBM-built Ti-6Al-4V 

structures to improve their osteoconduction. Heinl et al built two types of Ti-6Al-4V lattice 

structure (diamond and hatched, Figure 43) by EBM and modified their surfaces with two 

chemical treatment, an acid etching in 37% HCl and an alkaline immersion in 10 M NaOH. They 

tested their bioactivity in simulated body fluid (SBF) dynamic immersion for 6 days (Figure 

43)106. Both structure were successfully treated and the successive chemical surface 
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modification using HCl and NaOH induced in vitro apatite formation, as seen on the second 

EDX spectrum with the calcium and phosphate peaks (2, Figure 43). 

Similar results were obtained in the study of Li et al on Ti-6Al-4V lattices built by EBM with 

honeycomb-like, orthogonal and layer structures after an alkali treatment in 10 M NaOH for 

24h, a heat treatment at 600°C for 1h and an immersion in SBF for 14 days107. The 

osteoconductivity of treated lattices was then evaluated in vitro with the culture of osteoblast 

cells for 14 days and in vivo during 12 weeks in a cranial calvaria defect in rabbits107.  

Unfortunately in this case, non-statistical differences in cell morphology, viability and bone 

formation were observed between bare and apatite coated titanium implants. 

 
Figure 43: Representation of the EBM built Ti-6Al-4V hatched lattice. Scanning electron microscopy 
images of non-treated, acid treated (HCl), acid and alkali treated (NaOH) and simulated body fluid 
treated (SBF) surfaces and the corresponding EDX analysis for HCl/NaOH treated (1) and SBF treated 
(2) surface (adapted from106)   

Amin Yavari et al also investigated the effects of different surface treatments on Ti-6Al-4V 

porous structures by comparing in vitro and in vivo bone regeneration performance of three 

surface treatments: acid-alkali (AcAl, c and g Figure 44), alkali-acid-heat (AlAcH, b and f Figure 

44) and anodizing-heat treatments (AnH, d and h Figure 44). The treatment effects on the 

apatite forming ability, human periosteum-derived cell (hPDC) attachment, proliferation, 

osteogenic gene expression and bone regeneration were evaluated using an apatite forming 

ability test, cell culture assays and a critical-size femoral bone defect in rats108.  

 

They found that AcAl improved the apatite forming ability even if it did not have any positive 

effect on cell attachment, proliferation and osteogenic gene expression. In contrast, AnH did 

not improve the apatite forming ability but showed significantly better cell attachment, cell 

proliferation and expression of osteogenic markers. The AlAcH treated scaffolds were 
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between AnH and non-coated scaffolds in terms of apatite forming ability and cell responses. 

In vivo, AcAl resulted in significantly larger volumes of newly formed bone within the pores as 

compared to AnH (bone volume, b Figure 44). After 12 weeks of implantation (bone volume, 

a Figure 44), no differences were seen between the three surface treatments suggesting that 

the applied surface treatment are important for the early stages of the bone regeneration. 

 
Figure 44: As manufactured SLM built Ti-6Al-4V implants (a). Scanning electron microscopy images 
of acid-alkali (AcAl, c and g), alkali-acid-heat (AlAcH, b and f) and anodizing-heat (AnH, d and h) 
surface treated samples.  In vivo total bone volume (a) and porous bone volume (b) of surface treated 
Ti-6Al-4V scaffolds (adapted from108)  

A coating made of tantalum by chemical vapor deposition (CVD) was also tested on EBM-built 

porous Ti-6Al-4V scaffolds by Li et al109. The biocompabibility and bone ingrowth of Ta-coated 

scaffolds were evaluated using mesenchymal stem cells (MSCs) in vitro and a goat 

implantation model in vivo. As illustrated in Figure 45, the Ta coating was successfully 

deposited at the scaffold surface (left panel, Figure 45). More cells were present on Ta-coated 

scaffolds compared to non-coated ones (proliferation, Figure 45) and the new bone formation 

percentage (bone volume/pore volume, Figure 45) in Ta-coated scaffolds was significantly 

higher than in porous Ti-6Al-4V scaffolds (24% over 20%) after 12 weeks109. EBM-built 

scaffolds combined with this surface treatment could be potentially used for clinical 

application in orthopaedics. 
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Figure 45: Picture of non-coated and Ta-coated EBM-built Ti-6Al-4V scaffolds and their respective 
surface microscopic images (left panels). Control of the mesenchymal stem cells proliferation on bare 
and Ta-coated scaffolds after 1, 4 and 7 days (right). Quantitative analysis of the bone formation on 
Ta-coated and bare scaffolds 12 weeks post-implantation in goat iliac crests (adapted from109) 

A coating made of magnesium (Mg) deposited by arc ion plating was also investigated for the 

osteoconduction of porous Ti-6Al-4V implants110. The magnesium coating was successfully 

fabricated on porous Ti-6Al-4V scaffolds, in vitro studies on scaffolds of the cytotoxicity and 

proliferation of MC3T3-E1 cells showed that the coating is biocompatible and induces a 

significant increase of proliferation at 7 days (CCK8 assay, Figure 46). And finally, in vivo studies 

in rabbit femoral condylar defects proved that the coating could significantly promote bone 

regeneration after implantation for 4 and 8 weeks, compared to bare porous Ti-6Al-4V 

(A1,B1,C1 and D1, bone volume fraction, Figure 46)110.  
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Figure 46: Control of MC3T3 cells proliferation with CCK8 assay on magnesium (Mg) coated and bare 
Ti-6Al-4V scaffolds (left). Bone volume fraction on bare and magnesium coated Ti-6Al-4V scaffolds 
implanted for 4 and 8 week in rabbit femoral condylar defects: micro CT representation (right) and 
the corresponding quantification (bone volume/total volume, BV/TV) (bottom, adapted from110) 

At the clinical and market stages, surface treatments without bioactive molecules that are 

investigated or used, are in the same range as the studies detailed in this part. Clinical trials 

with micro and nanostructured surface roughness, with metallic bone graft substitutes coated 

with ceramic or another metallic layer, or with morphological changes through acid etching or 

alkali and heat treatments (to improve and promote the apatite layer formation) are on-

going21. Plasma, PVD and anodization surface treatment techniques are already used for 

either HAP, TiN, ZrN or DLC layers deposition on commercialized medical devices and implants 

(Ceramed©, DOT medical implant solutions)111,112. 
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1.4 Bioactive molecules used in bone graft substitutes 

The mechanism of bone repair is complex and involves several important growth factors. As 

presented in the last two previous sections (1.3.1.5, 1.3.1.6), structural optimization and 

surface properties modification are employed to enhance the integration of titanium bone 

graft substitutes. In order to actively trigger bone regeneration, specific bioactive molecules 

can be used. These bioactive molecules can interact with stem cells and inflammatory cells 

that are at the origin of the bone formation and regeneration via cell surface receptors. The 

interaction of the bioactive molecules with the cell surface receptors trigger biochemical 

signalling. In this part, the bioactive molecules currently used, the strategies to incorporate 

them and deliver them through bone substitutes will be detailed.  

1.4.1 BMP-2 (adapted from Biomaterials review21) 

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF) β 

superfamily of proteins and are synthesized by osteoprogenitor cells, osteoblasts, 

chondrocytes and platelets. BMPs, and other growth factors used for bone repair, are 

obtained through protein purification, using cDNA cloning and protein expression in bacterial 

or mammalian cells113.  

 

BMP-2 is an important osteogenic factor that induces endochondral and intramembranous 

ossification, chondrogenesis and triggers mesenchymal stem cells differentiation towards the 

osteoblastic lineage. This protein is critical for the maintenance of the skeleton integrity and 

for bone fracture healing. BMPs are dimeric molecules constituted by two polypeptides chains 

of about 120 amino acids.  

More particularly, BMP-2 has two polypeptides chains of 115 amino acids with a total 

molecular weight of 44kDa. This protein has an isoelectric point is at 9.15 and is soluble at pH 

below 6113. The BMP-2 protein monomer is stabilized by three disulphide bonds, represented 

by white and yellow bridges in the tertiary structure (Figure 47) and more generally, BMPs are 

naturally found in their dimeric form113,114. 
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Figure 47: BMP-2 monomer protein tertiary structure (top) and its schematic diagram representation 
(bottom). The protein structure is stabilized by three disulphides bonds, represented in white and yellow 
in the tertiary structure and by S-S links in the corresponding schematic diagram113,114  

A large amount of literature has already been published on BMP-2 combined with a type I 

collagen sponge as carrier, for uses in open tibial shaft fractures and in spinal fusion. In this 

case, BMP-2 is associated with a titanium or PEEK cage for interbody fusion use (Figure 48). A 

controversy related to this product emerged in 2011 after adverse effects were reported in 

response to the supra-physiological doses delivered (1/5 mg/mL of BMP-2 for human use), 

and off-label use (~ 85%), including inflammation and pain115,116. It is now known that bone 

repair in response to BMP-2 is dose-dependent117 and that high doses can lead to osteolysis.  

 

However, to date, it is also acknowledged that BMP-2 remains a powerful activator of bone 

repair, whose delivery needs to be further optimized. Alternative sources of BMP-2 combined 

with ceramics are emerging, such as those produced in CHO-cells118 or in E-coli119,120. 
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Figure 48: Commercial use of BMP-2 in infuse® Bone Graft in combination with LT-CAGE® for anterior 
lumbar interbody fusion (ALIF) procedure. Illustration of the interbody fusion procedure (left) and the 
infuse ® Bone Graft in combination with LT-CAGE® (right, adapted from Medtronic) 

At the research stage, intensive studies are carried out in order to better understand how 

growth factors, especially BMP-2, can be efficiently trapped by materials or immobilized at 

their surface121 and how they interact122, in order to improve the in vivo delivery and release 

profiles. Once in vivo, the pathophysiological context can greatly influence the release of 

bioactive molecules from the biomaterial123. 

1.4.2 BMP-7 (adapted from Biomaterials review21) 

BMP-7 is the second bone morphogenetic protein used as an osteoinductive growth factor in 

bone repair and is especially active in mature osteoblasts. BMP-7 has two polypeptides chains 

of 139 amino acids subunits with a total molecular weight of 49kDa. This protein has an 

isoelectric point at 7.74 and is soluble in acidic conditions124. 
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Figure 49: Tertiary structure of the BMP-7 monomer (a) and dimer (b). As BMP-2, BMP-7 monomer is 
stabilized by three disulphides bonds located at the listed cysteine-knots (a)125 

As BMP-2, BMP-7 has also been investigated for clinical trials in bone reconstruction. BMP-7 

was associated with type I collagen in the form of a paste (OP-1 putty, Olympus Biotech) and 

used under a humanitary device exemption (< 4000 patients) for recalcitrant long bone non-

unions and spine surgery. When the production stopped, the reports about its efficacy and 

safety were satisfactory126. Interestingly, a recent review highlighted the important role of 

kidneys in bone metabolism and BMP-7 emerged as one of the important active molecules 

produced in the kidneys that is involved in different pathways associated with bone 

formation127. Experiments in a sheep model showed that the BMP-7 paste can be combined 

with an architectured scaffold to trigger efficiently the repair of long bones (Figure 50)128. 
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Figure 50: Evaluation of the bone regeneration in mPCL-TCP scaffold filled with collagen containing 
BMP-7 after 3 months in a critical size sheep bone defect. (A to E) Representative x-ray images 
showing an empty control defect (A) Defect reconstructed with cancellous bone graft from the iliac 
crest (B) Defect treated with the mPCL-TCP scaffold only (C) Defects augmented with scaffold + rhBMP-
7 (D) or scaffold + MSCs (E). Scale bar, 1 cm. (F) Median bone volumes were determined by CT (adapted 
from128) 

1.4.3 PDGF (from Biomaterials review21) 

Recombinant human platelet-derived growth factor BB (rhPDGF-BB), also known as 

becaplermin, stimulates the recruitment and proliferation of osteoblastic cells and 

mesenchymal stem cells129. It also promotes the formation of new blood vessels at the site of 

healing by increasing vascular endothelial cells, pericytes and smooth muscle cells responses. 

rhPDGF-BB was approved as a Class III combination medical device/drug product in 2015 for 

hindfoot and ankle fusion in specific categories of patients suffering from different types of 

arthritis with operative evidence indicating the need for a supplemental graft material. 

Currently, a solution of PDGF is associated to β-TCP particles, a scaffold that provides 

osteoconductivity for new bone formation.  
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Figure 51: Clinical use of PDGF-BB in Augment® Bone Graft. Augment® bone graft is composed of β-
TCP particles and recombinant human PDGF-BB in solution (Wright Medical Group) 

A recent clinical study on 434 patients dedicated to hindfoot or ankle arthrodesis, treated with 

rhPDGF-BB/β-TCP, resulted in comparable fusion rates, less pain, and fewer side effects as 

compared with treatment with autograft130. In particular, the safety profile was improved and 

compared to autograft due to the elimination of harvest site pain and morbidity, since there 

is no need to graft bone. More recently, a comparative study between PDGF-BB/β-TCP and 

autograft showed that there is a relation between the amount of graft material and successful 

hindfoot and ankle arthrodesis. Graft material filling > 50% of the fusion space at 9 weeks, 

regardless of type or origin, was associated with significantly higher fusion rates at 24 

weeks131. 

1.4.4 Parathyroid hormone PTH (from Biomaterials review21) 

Parathyroid hormone (PTH) plays a central role in regulating calcium-phosphate metabolism. 

Its production increases in response to low serum calcium levels. Moreover PTH enhances the 

Wnt-beta catenin pathway that is central to osteogenesis and bone formation. It is also used 

as a drug to treat osteoporosis. The products developed by Kuros (KUR-111/112/113) contains 

PTH trapped in a natural fibrin matrix combined with a structural ceramic component 

(HAP/TCP granules), to provide mechanical stability during healing. To date, only their 

MagnetOs granules (granules containing magnetic particles) have obtained CE mark approval 

in the EU and 510(k) approval in the US. The bioactive products are based on an engineered 

active fragment of human parathyroid hormone (PTH(1-34)), linked to a transglutaminase 

substrate for binding to fibrin as a delivery mechanism, and cell-invasion matrix with an 

intervening plasmin-sensitive link. It was initially tested in femur and humerus defects of 

female sheep132, where it was both osteoconductive and osteoinductive. KUR-111 is a bone 

graft substitute and was initially developed for the treatment of tibial plateau fractures, where 

success was reported in a Phase IIb clinical study (NCT00533793, ended in 2011).  
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Figure 52: Fracture treatment with KUR-111. KUR-111 is composed of a fibrin matrix and HA/TCP 
granules with a paste of parathyroid hormone (PTH) (Kuros133) 

This study assessed the safety and efficacy of KUR-111 in 183 patients across 30 centers in 

Europe and Australia. At 16 weeks, 84% of autograft treated patients and 84% of patients 

treated with the higher dose of KUR-111 had radiological fracture healing, but no results were 

published in a peer-reviewed article. KUR-113 was developed for fractures at risk for 

incomplete healing. It was initially tested in tibial shaft fractures in a Phase II clinical study and 

is now being tested for spinal fusion in patients with degenerative disc disease. KUR-112 is a 

candidate product for patients with solitary bone cysts and was tested pre-clinically in horse 

model134. 

1.4.5 Bioactive molecules in AM-built titanium bone graft substitutes  

At the research stage, several strategies are investigated to incorporate and then deliver 

bioactive molecules directly from bone graft substitutes in order to help the bone repair and 

regeneration at the implantation site. For instance, bioactive molecules can be adsorbed at 

the surface by dip coating. In this case, the rate of adsorption and release will depend on the 

molecule affinity with the surface. They can also be co-precipitated in mineral materials, in 

this case they are released by the material degradation. Another strategy is to encapsulate 

the molecules in natural or synthetic degradable polymers. Similarly, natural extracellular 

matrix molecules (such as fibronectin, fibrin or acid hyaluronic), which can have natural 

binding sites with some of the bioactive molecules, are also used either as carrier or as coating 

on the substitute. And finally, chemical immobilization with covalent tethering is also 

investigated even though, in some cases, this method reduced the molecule bioactivity123. In 

the case of porous titanium bone graft substitutes, the incorporation of bioactive molecules 

is either done by adsorption or by the use of natural ECM molecules.  

For instance, in the study of Van der Stok et al.135, they investigated the osteoinductivity of 

porous Ti-6Al-4V scaffolds with incorporated gelatine gels containing either BMP-2, fibroblast 

growth factor-2 (FGF-2) or both growth factors in critical femoral bone defects in rats (A, B, C 

and D, Figure 53). Scaffolds with BMP-2 gels gave an early increase of the bone regeneration 

(0–4 weeks) whereas those with FGF-2 gels gave a late increase (8–12 weeks, not shown here). 

They observed that stimulatory effects of 0.6 µg FGF-2 were similar to a fivefold higher dose 

of BMP-2 (3 µg) and that BMP-2/FGF-2 gels gave more bone outside the porous titanium 

scaffolds than gels with only BMP-2 or FGF-2 (E, Figure 53). 
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Figure 53: Evaluation of the bone regeneration 12 weeks after implantation in critical size rat femoral 
bone defect into Ti-6Al-4V scaffolds with FGF-2 and BMP-2 growth factors incorporated into gelatine 
gel. Photographs of porous titanium scaffolds in the shape of the 6-mm bone segment that was 
replaced during the animal experiment before (A) and after (B) incorporation with colloidal gelatine 
gels. Micro-CT images of perpendicular (C) and horizontal (D) cross sections of porous titanium scaffold 
(black) incorporated with colloidal gelatine gels containing iodine-based radiographic contrast agent 
ioxaglate (gray). Scale bar = 1mm. Representative 3D micro-CT images of bone bridging the porous 
titanium scaffolds containing unloaded (F), FGF-2 (G), BMP-2 (H), or BMP-2/FGF-2 (I) gels after 12 
weeks. Ex vivo micro-CT quantification of total BV after 12 weeks ( p < 0.05) (adapted from135) 

In another work, they studied the bone regeneration into porous titanium scaffolds coated 

with osteostatin, an osteoinductive peptide composed of the 107–111 domain of the 

parathyroid hormone (PTH)-related protein (PTHrP)136. The scaffolds where built by SLM, their 

surface were treated with an alkali-acid-heat treatment and then coated with osteostatin 

through soaking in a 100nM solution for 24h. Osteostatin-coated scaffolds contained 0.1 µg 

peptide/g of titanium and 81% of the protein was released in vitro within 24h (A, Figure 54). 

In vivo experiments showed that the osteostatin-coated porous titanium scaffolds enhanced 

early bone regeneration in critical-sized rat femoral bone defects (B, Figure 54). 
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Figure 54: Evaluation of the in vitro osteostatin release and in vivo bone regeneration of osteostatin-
coated Ti-6Al-4V scaffolds 12 week after implantation in critical size rat femoral bone defect. In vitro 
osteostatin release after loading femur-shaped titanium implants for 24 h in 100nM osteostatin in 
phosphate-buffered saline solution (A). Total bone volume on in vivo microcomputed tomography 
(mCT) scans made after 4, 8, and 12 weeks (B) (adapted from136) 

In a more recent study, Van der stok et al. used a physiologically concentrated fibrin gel loaded 

with bone morphogenetic protein-2 (3 µg of BMP-2) in porous titanium scaffolds137. The 

implants were used in a critical size femoral bone defect in rat and as a control, some implants 

were either left empty or filled with fibrin gels without BMP-2 (Figure 55). The bioactive bone 

substitute completely regenerated and bridged the critical-sized bone defects within 8 weeks. 

After 12 weeks, femora were anatomically re-shaped and revealed open medullary cavities in 

the case of the implants containing BMP-2137. 
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Figure 55: Evaluation of the bone regeneration of porous Ti-6Al-4V scaffolds filled with fibrin 
containing BMP-2 after a 12 week implantation in critical size femoral bone defect in rat. 
Representative transversal ex vivo µCT images of grafted segmental femur defects and the 
corresponding 3D µCT images showing the average extend of bone bridging of the empty (a), 
unfractionated fibrin (UNF-Fb, b), high molecular weight fibrin (HMW-Fb, c), as well as the HMW-Fb-
BMP-2 (d) group (adapted from137) 

1.4.6 Bioactive molecules on bone graft substitutes in the team  

1.4.6.1 Polyelectrolyte multilayer (PEM) films 

Polyelectrolytes are a subclass of polymers made of macromolecules containing in their repeat 

unit an electrolyte group. Like electrolytes, when polyelectrolytes are dissolved into an 

aqueous solution, they dissociate into charged polymers. The resulting solution is electrically 

conductive even though it remains electrically neutral from the presence of counter ions 

either positively or negatively charged138. The formation of polyelectrolyte multilayer (PEM) 

films is based on the successive adsorption of polyelectrolyte layers that are positively charged 

(polycation) or negatively charged (polyanion) on a charged substrate (Figure 56).  
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Figure 56: Schematic representation of PEM film formation. The polyanion is represented in blue and 

the polycation is represented in red139 

The film self-assembles and self-organizes through mainly electrostatic (ionic) interactions  as 

well as non-electrostatic interactions such as hydrophobicity140, hydrogen bonds141 or Van der 

Waals forces142. The layer-by-layer (LbL) method to build PEM films was introduced more than 

20 years ago by Möhwald143, Decher139 and Lvov144. This technique can be applied with various 

polyelectrolytes, the number of layers can be varied and the film can be deposited on top of 

multiple substrates such as plastic, glass, ceramics and metals145. 

c Their respective structures are presented in Figure 57A and Figure 57B.  

EDC is a molecule containing a carbodiimide group (RN=C=NR), this group causes amide bonds 

formation by activating carboxyl groups (-COOH) reaction with primary amine (-NH2). Sulfo-

NHS is a sodium salt that forms amine-reactive sulfo-NHS esters in presence of carboxyl-

containing molecules. Those sulfo-NHS esters also react with primary amines to form stable 

covalent amide bonds. In our case, the sulfo-NHS is added to the crosslinking reaction to 

enhance the formation of amide bonds146. 

 
Figure 57: Chemical structures of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide EDC (A) and N-

hydroxysulfosuccinimide sulfo-NHS (B)147 

As schematically represented in Figure 58, the cross-linking reaction starts with the EDC 

carbodiimide group reaction with the carboxyl group formed previously by the ionic link 

between the polyanion (1, carboxylic acid) and the polycation (2, primary amine).  

The ionic link is broken to form the unstable o-Acylisourea intermediate compound. This 

compound can react directly with the primary amine (polycation) to form the amide bond. It 

can also react with sulfo-NHS and create amine reactive sulfo-NHS ester which bond to the 

primary amine. In the end, a stable conjugate made of polycation and polyanion chains is 

formed with covalent amide bonds via two different mechanisms.  
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Figure 58: EDC and Sulfo-NHS chemical cross-linking reaction. EDC reacts with carboxylic groups to 
form o-Acylisourcea intermediate compound. This compounds reacts either directly with primary 
amines or with sulfo-NHS to form sulfo-NHS ester. In both cases, a covalent bond will be formed with 
the primary amine groups147 

PEM films present the advantages to be versatile, easy to use and tune depending on the 

desired properties. Their layer-by-layer deposition can be used for various polyelectrolytes, 

but also for proteins such as collagen148, and be carried out in aqueous solutions with mild 

conditions of pH and temperature. Their thickness can be adjusted by the number of bilayers, 

the pH or the ionic strength of the build-up solution (Figure 59A)149. And finally, their stiffness 

can also be tuned over 100 kPa to 400 kPa depending on their crosslinking levels (Figure 

59B)145. In addition to those intrinsic properties, previous studies have demonstrated their 

ability to store nanomaterials and biomolecules such as proteins150.  

 
Figure 59: Evolution of thickness as a function of the number of poly-L-Lysine and hyaluronic (PLL/HA) 
bilayers (A) Evolution the (PLL/HA) film stiffness as a function of the EDC cross linker concentration 
(B) from146,151 
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1.4.6.2 Osteoinductive coating with BMP-2 and BMP-7 in PEM films 

In order to deliver bioactive molecules, the IMBM team at LMGP has developed during the 

past years a polyelectrolyte multilayer film (PEM) made of poly-L-Lysine (PLL) and acid 

hyaluronic (HA). Those films assemble in a layer-by-layer manner, can be deposited on various 

type of surfaces and bioactive molecules can be incorporated into them to make them 

osteoinductive.   

The loaded amount of bioactive molecules was optimized with BMP-2 by modulating the pH 

and ionic strength of the loading solution150. Also, loaded and released amounts have been 

tuned by varying the film thickness and crosslinking level152. BMP-2 and BMP-7 were 

successfully incorporated into those films and induced the osteogenic differentiation of BMP-

responsive skeletal muscle cells (C2C12 cells)153. In the case of bone graft substitutes, the 

coating technique was employed with BMP-2 on different types of bone graft substitutes, 

including porous ceramics154, titanium155 or polymers152, and its osteoinductive capacity was 

evaluated in different bone regeneration models. 

In the PhD thesis of Thomas Crouzier (defence in 2010), the loading condition of BMP-2 was 

optimized150 and the bioactivity of BMP-2 either by direct adsorption on TCP/HAP porous 

granules or loaded into PEM film on the ceramic substitute were compared154. The BMP-2 

adsorbed onto PEM-coated and on bare granules, in a lesser extent, could be stored and 

remained bioactive over at least 3 weeks (A, Figure 60). The BMP-2 bioactivity in the PEM-

coated granules was confirmed in vitro with the alkaline phosphatase activity expression on 

C2C12 cells (B, Figure 60). In vivo, both uncoated and PEM-coated TCP/HAP granules loaded 

with rhBMP-2 exhibited both osteoconductive and osteoinductive properties (C, D and E, 

Figure 60)154. 
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Figure 60: Evaluation of the BMP-2 bioactivity on bare and film-coated TCP/HAP granule in vitro and 
in vivo in an ectopic rat bone model after 4 weeks. The luciferase activity of C2C12 was measured after 
1 day of culture on granules that were loaded with rhBMP-2, then air-dried and stored up to 3 weeks 
(A). Quantification of alkaline phosphatase activity of C2C12 cells cultured for 3 days on the different 
surfaces (B). Box-and-whisker plot of bone volume (normalized over the total implant volume) 
determined by micro-CT analysis (C). Histological analysis. Bone tissue cross sections of TCP/HAP 
granules coated with film@EDC50 without rhBMP-2 (D) and coated with film@EDC10 with rhBMP-2 
(E) at 6 weeks post-implantation (X20) (adapted from154) 

The team begun to work on titanium implants in 2011 and designed a custom-made porous 

Ti-6Al-4V implant with the help of TIMET Savoie S.A (Ugine, France) with open and 

communicating pores of 500 µm in diameter (B, Figure 61)155. 
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Figure 61: Illustration of the PEM film coating of porous titanium implant under scanning electron 
microscopy and macrofluorescence loup. Schematic of porous Ti-6Al-4V scaffold with 500 µm pore size 
(B). SEM micrograph of the uncoated Ti-6Al-4V surface imaged at the implant surface (B’). SEM 
micrographs of (PLL/HA)24 film-coated surface of the Ti-6Al-4V scaffold either (C) inside a pore channel 
or (C’) at the outer surface. Observation of a PEM-film deposited on the Ti-6Al-4V scaffold by a 
macroscope: (D) top view and (D’) side view155 

The amount of BMP-2 loaded into these films was tuned over a large range depending on the 

cross-linking extent of the film and the BMP-2 initial concentration. The stability of the BMP-

2 into the film was tested upon one year storage and after sterilization in vitro, using C2C12 

cells (A and B, Figure 62), and in vivo with a rat ectopic model for the perspective of industrial 

and clinical development (D, Figure 62).  BMP-2 loaded in dried PEM films exhibited shelf-life 

stability over one year (B, Figure 62). However, their bioactivity in vitro decreased from 50 to 

80% after irradiation depending on the g-irradiation dose (C, Figure 62). Nevertheless, the in 

vivo studies showed that the osteoinductive potential of BMP-2 contained in PEM-coated Ti 

implants was fully preserved after air-drying of the implants and sterilization at 25 kGy. Finally, 

the film drying or irradiation did not affect the amount of new bone tissue formation (D, Figure 

62)155. 
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Figure 62: Evaluation of the bioactivity and stability of BMP-2 loaded into PEM film coated on porous 
titanium implant in vitro and in vivo in an ectopic rat bone model after 6 weeks. ALP activity of C2C12 
myoblasts cultured for 3 days on either bare or on PEM film coated Ti substrates loaded with BMP-2 at 
20 µg/mL (films@EDC10, 30 and 70) (A). Kinetics of ALP activity of BMP-2-loaded PEM films stored in 
dry state for up to 1 year (B). ALP activity of C2C12 cells cultured on BMP-2-loaded PEM that had been 
air-dried and g-irradiated at either 25 or 50 kGy (C). Box-and-whisker plots of bone formation area 
given as a % of the “available area” (D, adapted from155) 

In a more recent study conducted by Michael Bouyer during his PhD (2015-ongoing. Clinician, 

plastic and maxilla-facial surgery service in the University Hospital of Grenoble, France), the 

film containing BMP-2 was deposited on a polymeric hollow tube made of commercially-

available PLGA and used for the repair of a critical size femoral bone defect in rat152. The 

amount of BMP-2 loaded was tuned and released from the film over a large extent by 

controlling the film crosslinking level and initial concentration of BMP-2 in solution. With 

microcomputed tomography (µCT) and quantitative analysis of the regenerated bone growth 

kinetics, they showed that the amount of newly formed bone and kinetics could be modulated 

(Figure 63). They obtained an effective and fast repair in the first 1-2 weeks in the best 

conditions with complete defect bridging, formation of vascularized and mineralized bone 

tissue. Further analysis with histological staining and high-resolution computed tomography 

also revealed the presence of bone regeneration inside and around the tube with spatially 

distinct organization for trabecular-like and cortical bones. Finally, the amount of cortical bone 

and its thickness was found to be increasing with the BMP-2 dose152. 
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Figure 63: Quantitative analysis by µCT of the bone regeneration on BMP-2 loaded tube at 8 weeks 
after implantation. Representative 3D µCT reconstructions taken at 8 weeks after implantation for EDC 
with increasing doses of BMP-2 (BMP5 to BMP100) and control PLGA (A). Box plot representation of 
the bone volume ratio at 8 weeks (n = 8, except for BMP5/EDC10 with n = 2) for the EDC10 and EDC30 
films with increasing BMP-2 doses from 5 to 100 µg/mL (BMP5 to BMP100, B)152 

In summary, several bioactive molecules are being used to enhance bone repair. Even though 
most of the studies focused on BMP-2, other growth factors such as BMP-7, PDGF-BB or FGF-
2 also appear promising as shown by the on-going clinical assessments. In the case of porous 
titanium substitutes, carriers used so far to deliver these bioactive molecules are mainly extra-
cellular matrix proteins (collagen, fibrin gels), or biomimetic calcium phosphate, which 
provides osteoconduction and better mechanical support than ECM proteins on their own. 
The use of film coating such as PEM film seems promising in terms of convenience, stability 
and storage of the bioactive molecule, without neglecting the ability to tune the delivery 
amount. 
 
In fact, the PEM film coating developed by the IMBM team is now involved into a start-up 

company project to translate this solution to the clinic.  The APIOS project aims at offering the 

PEM coating solution made of PLL and HA to deliver bioactive molecules for critical size bone 

defects in patients. Preclinical trials were performed on animals studies, as illustrated with the 

published articles presented above, and market studies were undertaken to identify the 

position and the need for this coating. In total, 800k€ was raised for this project and 2 patents 

were secured for the coating preparation. The APIOS start-up is still on incubation and 

preclinical trials are still on-going for further translation to the clinical stage.   

1.5 Remaining challenges for clinical translation of bone graft substitutes (from 

Biomaterials review21) 

Researchers and scientists face many barriers for the translation of innovative bone healing 

strategies to clinical and commercial applications. In this section, the main important steps for 

clinical translation are presented and remaining limitations and challenges are discussed. 

1.5.1 Important steps in clinical translation 

The most challenging point for effective translation is understanding the complex regulatory 

environment, medical device classification and advanced therapeutic medical products. In fact 

different agencies, especially in the USA versus EU, have different classification systems.  



75 
 

In the USA, a medical device product must receive authorization by the Food and Drug 

administration (FDA) prior to being marketed. The FDA classifies medical devices in three 

categories: Class I, Class II, Class III depending on the risks associated with the devices. For 

instance, a medical device combined with a drug belong to class III. For combination devices, 

i.e. devices that contain drugs and/or stem cells, the FDA determines which of three centers, 

namely the Center for Devices and Radiological Health (CDRH), the Center for Drug Evaluation 

and Research (CDER) or the Center for Biologics Evaluation and Research (CBER), has primary 

jurisdiction on the authorization process. The FDA has a specific regulation for Human Cellular 

and Tissue Products (HCTP). Generally, the CBER has primary jurisdiction on Regenerative 

Medicine Advanced Therapy (RMAT) products when cells are used.  

In Europe, the situation is different. Medical devices do not need to be evaluated by a 

regulatory agency. Classified as class I, II and III depending on their intended use and risk level, 

they are simply CE marked by certified notification bodies, a CE mark being the manufacturer’s 

declaration that the product meets the requirement of a European directive. In contrast, drugs 

are considered as pharmaceutical products and need to have authorization from the European 

Medicine Agency (EMA). Stem cells also belong to a specific category, the advanced 

therapeutic medicinal products (ATMP). The more complex the product, the longer the path 

toward clinical translation and the higher the product will cost. The most complex products 

are by far the stem-cell based products. 

There is a need to define the specific clinical application to address. Who is the patient to be 

treated? The answer to this question will guide the clinical development steps including 

implantation site and animal model. Select the most appropriate animal models for the pre-

clinical experiments is also an issue. Pre-clinical trials require animal care facilities and 

veterinary schools or labs. Later, clinical trials of course involve patients in clinics and 

hospitals. There are several recent reviews on animal models for bone repair from ectopic 

bone induction (mice), small bone defects (rats) and larger bone defects (rabbit, dog, sheep, 

goat, mini-pigs and pigs)156–158.The selection criteria need to be carefully considered, since 

each model has pros and cons159 and each study uses a specific set of parameters for bone 

scaffold design, which makes comparisons between studies difficult. Furthermore, there is no 

current consensus about the pre-clinical assessment strategies, including animal implantation 

site160. The efficacy of bone repair, including the amount of regenerated bone, the kinetics of 

bone formation and mechanical properties of regenerated bone, needs to be assessed as well 

as, importantly, the safety of the product, including the possible presence of toxic degradation 

products in the different organs, and the possibility of chronic inflammatory reaction, as 

examples. 

The cost effectiveness of the product and the potential reimbursement by medical care 
systems should be considered and depend on the specific country. Of note, in Europe, a large 
part of medical expenses is paid by government bodies, while in the USA, it is paid by private 
insurances. In view of industrialization, aspects such as large-scale manufacturing, sterilization 
processes, and mode of storage need to be considered. Last but not least, the quality of both 
the process and the product needs to be assessed. This includes the sourcing of the raw 
components, good manufacturing practice (GMP) grade, batch-to-batch reproducibility, the 
manufacturing process and the respect of standards for production (ISO norms). 
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1.5.2 Optimization of the bone graft substitute mechanical properties 

The optimization of the mechanical properties of BGS is important to restore mechanical 

function by matching, or mimicking, the mechanical properties of the natural tissues. Also, the 

closer the mechanical properties of the BGS are to those of the natural tissue, the higher the 

chances of avoiding adverse effects to the surrounding anatomy. Indeed, bone tissue 

surrounding a metallic implant, such as a hip prosthesis, degrade over time due to stress 

shielding161. This is due to the redistribution of mechanical loads after implantation, whereby 

the stiffer metal implant bears most of the mechanical stresses, while the surrounding bone 

tissue is not mechanically loaded, which inhibits the integration and regenerative potential. 

Similarly, if the BGS material properties are weaker than the surrounding tissue, the tissue will 

compensate, which may hinder bone regeneration in the BGS and/or cause damage and 

fatigue to the surrounding tissue. 

1.5.3 Better understanding the biological mechanisms 

Regarding the active biomolecules, it is clear that there is a need to precisely understand what 

their modes of action are and whether they affect inflammatory or bone precursor cell 

response. As already suggested by Martino162, the role of inflammatory cytokines and immune 

cells regulated in bone regeneration should be further investigated and exploited. The action 

of bioactive molecules on osteoblasts versus osteoclasts should also be better understood. In 

the future, combined strategies targeting growth factor receptors and cellular adhesion 

receptors may be developed to induce cooperative signalling and optimize bone repair. The 

specificity of the mechanism of action is key.   

1.5.4 Controlling the dose and delivery of bioactive molecules 

It is also important to precisely control and confine the bioactive molecules in vivo to avoid 
undesirable side effects. Their dose should be optimized to avoid over-dosing, in order to 
attain a safe but efficient working range to form new bone. Of note, a major difficulty arises 
from the fact that bioactive molecule delivery is not an intrinsic parameter, but depends on 
the biodegradability (i.e. kinetics and degradation products) of the biomaterial carrier. Ideally, 
these two parameters should be uncoupled. 
 

1.5.5 Modulating the material/bioactivity couple 

To date, the carriers used to deliver the bioactive molecules have typically been biodegradable 

(matrix proteins, HAP/β-TCP). In the future, it may be beneficial to take advantage of the 

mechanical properties of the engineered scaffold, which can be non-biodegradable polymeric 

materials such as PEEK or biodegradable such as PCL and PLGA. Metallic lattices made of 

titanium may also benefit from an added bioactivity. Depending on each specific clinical 

situation, the coupled material/bioactive molecule may be adapted in order to provide proper 

structural, biodegradable and surface characteristics depending on the indication. As 

mentioned in the section 1.1.2, the stability of the bone regeneration site is also crucial for 

long bone healing. Improvement in scaffold design and production techniques, such as 3D 
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printing and fixation techniques, may improve the bone repair efficiency. Such developments 

require collaborative work between clinicians, engineers and biologists/biochemists to 

improve the scaffold, the efficacy of incorporated drugs and the surgical procedure itself. 

In the field of vascular stents, the combination of metallic or polymeric scaffolds and active 

molecules has already been implemented in clinics since 2003, where the tubular mesh 

provides a mechanical support and the anti-proliferative drug embedded in a surface coating, 

acts on the cells in the vascular wall163. Thus, it will be interesting, by taking examples from 

the vascular field, to further expand the potential of material carriers. For instance, instead of 

adding ceramic granules inside a PEEK cage, as done currently in clinics, the bioactive 

molecules may directly be coated at the surface of the carrier, using a spacer or a “cushion”.  

Among the numerous technical strategies that are currently developed by academic teams to 

trap BMPs at the surface of materials, some may well emerge in the near future, provided that 

they are sufficiently robust to meet the industrial requirements (large-scale industrialization, 

sterilization, storage…). In terms of regulation and development time, combining an already 

approved medical device with an already approved active molecule could speed up the 

translation to clinic. 

1.6 PhD Objectives 

As presented in this first chapter, bone is a complex tissue that fulfils important biological 

functions of the human body. This tissue is able to remodel and repair itself in case of small 

fractures. However, for complex or compromised fractures, the use of bone graft substitutes 

remains the safest way to help the repair and replace temporary or permanently the damaged 

bones. Numerous research works and clinical trials investigate how to optimize the material 

composition and structure, the associated biocompatibility and bioactivity those substitutes 

can have depending on the specific bone repair application. 

Emerging additive manufacturing technologies such as EBM, have enabled the generation of 

highly porous architectures with an already used biocompatible material such as Ti-6Al-4V 

alloy. With this manufacturing process, it is now possible to mimic the macro scale structural 

organization of the bone tissue while optimizing the substitute mechanical properties. Several 

surface treatments, based on the mechanical modification or the addition of calcium 

phosphate or hydroxyls groups, enhance the biocompatibility of titanium substitutes to make 

them osteoconductive.  

More than osteoconductive, the next generation of bone graft substitutes could also be 

osteoinductive. The incorporation of bioactive molecules, especially BMP-2 and BMP-7, is a 

promising option in the field to help the bone repair and regeneration. On-going clinical trials 

and numerous research studies on osteoinductive bone graft substitutes are the proof of their 

potential effectiveness and faster regenerative capacities. In the case of metallic and porous 

bone graft substitutes, most investigated solutions to incorporate and deliver bioactive 

molecules are using ECM gels filling the porous structure. The latter reduces the available 

space provided by the porous structures, does not ensure a controlled delivery of the bioactive 

molecules and may introduce more inflammatory responses. 
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In this PhD project, the objective was to develop 3D architectured and osteoinductive 

titanium-based scaffolds presenting at the same time a high porosity and a bioactive surface 

coating. To this end, my project was divided in three parts (Figure 64) and conducted with the 

following objectives: 

i. Build titanium-based architectured scaffolds and control their structures: 

architectured scaffolds were built by EBM with medical grade Ti-6Al-4V alloy and 

structurally characterized (Figure 64, part I) 

 

ii. Obtain an osteoinductive surface coating with BMP-7: the osteoinductive coating was 

obtained by incorporating BMP-7 into a polyelectrolytes multilayers (PEM) film made 

of (PLL/HA) bilayers. Its releasing capacity was evaluated in vitro (Figure 64, part II) 

 

iii. Assess the coating osteoinductive capacity: the coating ability and its osteoinductive 

capacity were studied in vitro on 2D plastic surfaces and on 3D scaffolds with murine 

mesenchymal stem cells (Figure 64, part III). 
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Figure 64: Schematic representation of the PhD objectives divided into three parts. Part 1: 
architectured Ti-6Al-4V scaffolds scaffold by EBM. Part 2: osteoinductive coating with (PLL/HA) films 
loaded with BMP-7. Part 3: osteoinductive capacity in vitro on 2D substrates and 3D scaffolds with 
murine mesenchymal stem cells 
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 Materials and methods 

2.1 Building and characterization of Ti-6Al-4V architectured scaffolds 

Architectured structures are the product of an ingenious combination of two or more 

materials or, a combination of materials and space arranged in a way to obtain properties not 

attainable by any material on its own164. This type of structure requires specific starting 

material and manufacturing process, as well as specific structural characterization methods. 

The material, the building method and the characterization techniques used in this thesis will 

be described in this part. 

2.1.1 Ti-6Al-4V alloy 

Originally, the Ti-6Al-4V alloy was developed for aerospace applications requiring materials 

with remarkable properties such as high strength for a low density, high corrosion resistance 

or significant fracture toughness. For medical applications, the selected metals also need to 

have those properties in addition to a low modulus, to better match the surrounding biological 

environment, and more importantly a good biocompatibility. The Ti-6Al-4V alloy gathers all 

those properties which made it currently the most commonly used metallic materials for 

implants67.  

In this thesis, we used the extra low interstitial (ELI) Ti-6Al-4V titanium alloy (grade 23) which 

composition is detailed in Table 5. The name ELI refers to the fact that, comparing to the Ti-

6Al-4V alloy (grade 5), the ELI alloy contains lower amount of interstitial elements such as 

mainly oxygen, but also carbon, nitrogen or hydrogen, which improves its ductile behaviour165.       

Element Aluminium  
Al 

Vanadium  
V 

Iron  
Fe 

Carbon  
C 

Oxygen 
O 

Titanium 
Ti 

Content 
(%wt) 

5.5 - 6.5 3.5 – 4.5  <0.25 <0.08 <0.13 Balance 

Table 5: Composition of Ti-6Al-4V alloy according to the standard American Society for Testing and 
Materials (ASTM) F136 

This alloy has generally an α (hexagonal)  + β (cubic)  crystallographic microstructure at room 

temperature, which can change depending on the applied thermo-mechanical treatment69. 

Indeed, depending on heating temperatures and cooling rates, this material can either have 

an α + β microstructure, or α + α’ microstructure with the α’ martensitic phase. Figure 65 

shows a typical α + β microstructure inherited from EBM process. The different possible 

microstructures of Ti-6Al-4V have a non-negligible effect on the macroscale properties of the 

material.  
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Figure 65:  Micrograph (right) and schematic representation (left) of the typical microstructure of Ti-
6Al-4V obtained by EBM, exhibiting the α (hexagonal) + β (cubic) microstructure (scale bar = 50 µm, 
from85,166) 

2.1.2 Scaffolds building by electron beam melting (EBM) 

2.1.2.1 Electron beam melting manufacturing process 

The electron beam melting (EBM) is an additive manufacturing process using an electron beam 

as source of energy to selectively melt layers of metallic powders in order to generate a 3D 

structure from a 3D model data167. 

The starting material is a gas-atomized powder of Ti-6Al-4V with a particle size ranging from 

45 to 100 µm as illustrated in Figure 66. After one building cycle, the non-melted particles are 

recovered and re-used for next buildings. The latter can alter their spherical shape and 

introduce flatter areas corresponding to sintered necks (white arrows, Figure 66).     

 
Figure 66: Gas-atomized Ti-6Al-4V powder visualized under scanning electron microscopy. The 

white arrows represent the necks from previous building uses166 

The first step of the EBM process is the design of the part aimed to be built. This part is a 

geometric model generated in a 3D Computer Aided Design (CAD) file, which is then converted 

in the STL file format, a format that stores only surface features. This file is then imported into 

a specific software, Magics® (Materialise, Belgium) in our case, in order to position the part 
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and add if needed supporting structures on the building scene. Once the building scene is 

complete, the 3D model is sliced and converted into trajectories for the layer by layer melting. 

Figure 67 represents a schematic view of the EBM device. The machine can be divided into 

two parts: the electron beam column and the build chamber. 

In the electron beam column, an electron beam is generated by applying a 60 kV accelerating 

electric field between a tungsten filament heated at 2600°C and an anode. Then, accelerated 

electrons forming the beam pass through different electro-magnetic coils. Those coils play a 

role of 3 different lenses:   

- An astigmatism lens to reshape and concentrate the beam and obtain a spot  

- A focus lens to focus the beam on a given plan 

- A deflection lens to control the beam trajectory 

The electron beam column is under a strong secondary vacuum of 10-7 mbar to avoid the 

interaction of air particles with the beam. A secondary vacuum is also applied into the build 

chamber (around 10-4 mbar) for the same motive and besides, to prevent the titanium 

oxidation with the high temperature. 

Afterwards, the electron beam enters the build chamber. The build chamber is composed of 

two powder hoppers, a heat shield and a rake at the upper part of the build tank which 

contains the build platform. The hoppers store the powder, while the heat shield protects 

thermally and prevents the metallisation of the rest of the chamber. The translating rake 

deposits the powder on the build platform. Prior to the building start, the plate level is 

adjusted and the rake is activated in order to put a first layer of powder. When a layer is fused, 

the plate goes down at typically 50 µm and a new layer of powder is deposited and the process 

is repeated until the building scene completion.  

At the end of the process, the chamber is cooled down with Helium and the entire block of 

powder is transferred into the Powder Recovery System (PRS). In this hermetic chamber, the 

powder block is blasted at 8 bars with the building raw material. This last step allows to break 

necks between sintered particles and to take out the melted parts. The left particles are sieved 

and reused in the next buildings. The sieving allows the recycling of particles from 20 to 140 

µm. 
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Figure 67: Schematic presentation of the EBM machine. The upper part is the electron beam 

column and the bottom part represents the build chamber168 

In this project, we used the ARCAM A1 EBM machine (ARCAM, Sweden) whose characteristics 

are represented into Table 6. The height of a layer was defined and kept to the minimum 

possible distance of 50 µm.  

Power 50 – 3000 W 

Build temperature ~ 700°C 

Deflection rate Up to 8000 m/s 

Maximum build size 200 x 200 x 180 mm 

Beam spot size 0.2 – 1mm 

Chamber pressure 10-4 mbar 

Table 6: Main characteristics of the ARCAM A1 EBM machine169 
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2.1.2.2 Scaffolds design by Computer Aided Design (CAD) 

As explained above, the manufacturing of 3D structures using EBM technique requires a 3D 

CAD file. More particularly in the orthopaedic field, the two main strategies employed to 

generate this 3D file are:  

- the use of computed tomography (CT) scans from the patient bone defect  

- the use of geometrical structures available in the CAD software database 

As illustrated in Table 7, we focused our investigations on geometric structures made of 

periodic cubic unit cells with 3 different porosities (73%, 80% and 85%) with the minimal strut 

size achievable of 600 µm. For in vitro assay, disk-shaped scaffolds (Ø 10 mm x L 7 mm) were 

designed to fit into 24 well plate cell culture wells, whereas cubic scaffolds (2 cm x 2 cm) were 

specifically manufactured to obtain a representative volume of the selected architectures for 

the mechanical tests. 

CAD representation 

   

Pore size 830 µm 1070 µm 1400 µm 

Porosity 73% 80% 85% 

Table 7: CAD representation, pore sizes and targeted porosities of Ti-6Al-4V architectured scaffolds 

The scaffolds were generated using a previously homemade software from GPM2 team 

allowing the generation of lattice structures with periodic or random cells166. In a first step, a 

network of points is described by a connectivity table. In a second step, the lattices formed by 

the connected points were given specific dimensions and volume with the software Paraview 

(Kitware Inc, Sandia National Laboratories). Then, the scaffolds were nested on the computed 

building platform and the whole was sliced for the beam trajectory with the software Magics 

(Materialise, Belgium). To avoid the use of supports and make easier the scaffold removal 

from the plate, the scaffolds were manufactured on an edge with a 45° angle with respect to 

the build platform (Figure 68)170. 

 
Figure 68: Representation of the scaffolds placement into the build platform with a 45° angle 
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2.1.2.3 Cleaning procedure 

After the scaffolds building and de-powdering into the PRS, some powder remained in the 

structures, especially for scaffolds with the smallest pore sizes.  

Prior to their use, scaffolds were further de-powdered and cleaned with a first sonicating 

phase (sonicator ultrasonic processors 130W, Branson processors, USA) at 20 kHz into water 

for 20 min. After total powder removal, the scaffolds were cleaned with isopropanol in an 

ultrasonic bath at the maximum frequency (FB 15051 ultrasonic bath 37 kHz 280 W, Fisher 

Scientific, USA) for 10 min. And finally, there were rinsed into ultrapure water and dried with 

Argon flux171.      

2.1.3 Dimensional characterization  

2.1.3.1 Porosity measurement by hydrostatic weight  

The porosity was determined by hydrostatic weight based on Archimedes’ method. First, the 

scaffolds weight was measured successively in air and in ethanol, in order to determine the 

volume of the displaced fluid 𝑉𝑓𝑙𝑢𝑖𝑑. 

𝑉𝑓𝑙𝑢𝑖𝑑 =
𝑚𝑎𝑖𝑟− 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝜌𝑒𝑡ℎ𝑎𝑛𝑜𝑙
  𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 −  

𝑉𝑓𝑙𝑢𝑖𝑑

𝑉𝑑𝑒𝑛𝑠𝑒
 

By dividing the displaced fluid volume with the volume of a fully dense cylindrical structure 

with the scaffold’s dimensions, we have access to the relative density and thus the porosity.  

 
Figure 69: Weighting scale equipped with a hydrostatic weight platform 

Figure 69 displays the weighting scale used for the measurement. The weighting scale was 

equipped with a hydrostatic weighting platform and a beaker with ethanol to make possible 

the measurement procedure. 
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2.1.3.2 Structural characterization with X-ray tomography 

X-ray tomography is a non-destructive method allowing the visualisation of the core structure 

of any materials or objects in 3D from cross-section images. This method is based on the 

measurement of X-rays attenuation (absorption, scattering) when X-rays pass through a 

section of matter. This absorption is related to the atomic number and the volumetric density 

of the crossed material. The principle of this technique is presented in Figure 70. 

 

Figure 70: Principle of the X-ray tomography imaging technique (adapted from172) 

X-rays are directed to the sample which was previously placed on a rotating platform. The 

absorption of X-rays on each projection is acquired in grayscale with a planar detector (CCD 

camera). Projections of the sample are obtained step by step at each rotation of the platform. 

By acquiring several 2D projections on different plans of the sample, it is possible to obtain a 

3D reconstruction of the object using reconstruction algorithms and image segmentation173.   

In this study, we used the EASYTOM XL tomography device (RX-solution®, France) available at 

the CMTC platform (“Consortium des Moyens Technologiques Communs” supported by the 

Centre of Excellence of Multifunctional Architectured Materials “CEMAM”, Grenoble). The 

internal view of the tomograph chamber is exposed in Figure 71.  

 
Figure 71: Internal view of the EASYTOM XL tomograph (adapted from174) 
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In order to obtain 3D reconstruction of EBM-built titanium scaffolds, scaffolds were scanned 

with a 140 kV tube voltage and 900 projections over a range of 360° for a voxel size of 11 µm. 

The 3D images were reconstructed using a standard filtered back-projection algorithm with 

the software X-act (RX-solution®, France).  

In order to design a custom-made implant for a critical size femoral bone defect reconstruction 

in rat, a rat bone femur was kindly donated by M.Bouyer (clinician, plastic and maxilla-facial 

surgery service in the University Hospital of Grenoble, PhD student at the LMGP team) and 

scanned by X-ray tomography. The images were acquired with a 50 kV tube voltage and 1600 

projections with a voxel size of 3 µm. 

2.1.4 Mechanical characterization by uniaxial compression test 

Mechanical properties of bone implants play an important role in their appropriate 

integration, lifespan and in the viability of the surrounding bone tissue. The main mechanical 

property that describes the stiffness of any material or structure is the elastic modulus 

(Young’s Modulus, E).  

 

In this study, we measured the Young’s modulus of architectured Ti-6Al-4V scaffolds by 

uniaxial compression using a MTS 810 testing machine equipped with a 100 kN load sensor 

(MTS System Corporation, USA). The testing machine and the uniaxial compression test 

procedure were previously optimized in the frame of the PhD thesis of M.Suard175. A view of 

the machine is shown in Figure 72. 

 
Figure 72: Compression device used to perform mechanical tests on architectured scaffolds166 

EBM build cubes of 2 cm x 2 cm and with the three different porosities of 73%, 80% and 85% 

were tested in this project. Cycles of loading-unloading were applied to the samples with a 

displacement rate v = 1 mm/min, as illustrated in Figure 73.  



88 
 

 
Figure 73: Example of the stress-strain cycles applied to architectured Ti-6Al-4V scaffolds (left panel) 
and the corresponding representation of the unloading elastic modulus versus strain (right panel). 
The global elastic modulus was determined as the maximum value of the curve (adapted from 166) 

At each 0.02% of strain, the samples were unloaded until reaching 60% of the previous 

maximum load. The values of each unloading slope were then represented as a function of 

the strain and the global elastic modulus E of each structure was defined as the maximum 

value of the curve unloading slope vs strain (Figure 73). 

2.2 Deposition of the polyelectrolyte multilayer (PEM) film 

In this section, materials and methods used to obtain the osteoinductive coating will be 

presented and described. 

2.2.1 PEM film deposition methods 

2.2.1.1 Film building and crosslinking  

The PEM film used in this study is composed of 3 polyelectrolytes: poly (ethyleneimine) as the 

polycation anchoring layer, poly (L-Lysine) hydrobromide as the polycation and hyaluronic acid 

as the polyanion. Their characteristics are described in Table 8. 
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PE Abv Charge pI Structure 
Working 

Concentration 
Provider 

 
Poly (ethylene 

imine) 
 
 

PEI + 10.8 

 

[PEI] = 5 
mg/mL 

Sigma-
Aldrich  

 
France 

 
Poly (L-Lysine) 
hydrobromide 

 

PLL + 9 

 

[PLL] = 0.5 
mg/mL 

Sigma-
Aldrich 

 
France 

 
Hyaluronic 

acid 
 

HA - 2.5 

 

[HA] = 1 
mg/mL 

Lifecore 
 

USA 

Table 8: Detailed characteristics of the polyelectrolytes used (PE: polyelectrolytes, Abv: abbreviation, 
pI: isoelectric point)176,177 

Prior to the film buildup, hyaluronic acid (HA) and poly (L-Lysine) PLL were dissolved 

respectively at 1 mg/mL and 0.5 mg/mL into a HEPES-NaCl buffer composed of 20 mM HEPES 

at pH 7.4 and 0.15 M NaCl.  

The film buildup starts with the deposition of an anchoring layer of polyethyleneimine at 

5mg/mL (PEI, P3143, Sigma-Aldrich, France) dissolved in NaCl solution (0.15M NaCl at pH 6.5) 

for 20 min, followed by a layer of hyaluronic acid at 1 mg/mL (HA, 360 kDa, 02159933, Lifecore 

Biomedicals, USA) for 6 min.  

Then, the successive bilayers deposition was made with poly(L-Lysine) hydrobromide at 0.5 

mg/mL (PLL, 55 kDa, P2636, Sigma-Aldrich, France) and hyaluronic acid successively155. For 

each layer, the polyelectrolytes were left at rest for 6 min to allow their adsorption and then 

were rinsed (one quick rinsing and a 3 min rinsing) with a rinsing solution made of salt (0.15M 

NaCl at pH 6.4).   

The (PLL/HA)x film (x corresponding to the number of layer pairs in the film, also called here 

bilayers) were crosslinked as previously described178 using concentrations of EDC at 10 mg/mL, 

30 mg/mL or 70 mg/mL (noted respectively EDC10, EDC30 and EDC70) and sulfo-NHS 

concentration was fixed at 11 mg/mL by incubation overnight (about 18h) at -4°C. Finally, the 

crosslinking agents were removed by rinsing thoroughly the film at room temperature with 6 

washing steps of 20 min with HEPES-NaCl buffer (pH 7.4). The film was then stored in the 

fridge in HEPES-NaCl buffer. 

2.2.1.2 Film deposition in cell culture plates using an automated liquid 

handling robot 

For 2D in vitro cellular assays, we built 12 and 24 bilayers of (PLL/HA)12/24 into 96 well plate 

(Greiner Bio-One, Germany) in order to screen several conditions at the same time. The 

(PLL/HA)12/24 film were automatically deposited into each well of the 96 well plate using an 
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automated liquid handling machine (TECAN Freedom EVO 100, France). This machine is 

equipped with liquid containers and tips to aspirate and dispense the polyelectrolytes on well 

plates that are disposed on a plate tilter, as described in the machine working table (Figure 

74). 

 
Figure 74: Working table of the automated liquid handling machine used for the film deposition in 
cell culture well plates. The polyelectrolyte solutions are in reservoirs, the tips on tip holders while the 
well plates are placed on a tilting plate carrier. The reservoir containing the rinsing solutions are placed 
on the right side of the working table. 

The film buildup sequence is the same as previously described in 2.2.1.1. First the plates were 

tilted (Figure 75), the polyelectrolyte solutions were dispensed and the plates were set back 

in planar position for the incubation period. For the following polyelectrolyte removal and 

aspiration, the plates were tilted again to avoid the contact of the tip with the film. The 

remaining non-adsorbed polyelectrolyte was rinsed twice (2 min rinsing) following the same 

procedure. The sequence was then repeated until reaching the targeted number of bilayers179. 

 
Figure 75: Schematic of layer-by-layer film deposit using the automated liquid handling machine 

into 96 well plates179 

The film was then crosslinked manually by disposing 50 µL of EDC/NHS solution into each well 

with a multichannel pipette as previously described in 2.2.1.1. 
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2.2.1.3 Film deposition on 3D scaffolds by automated dipping method 

The films were deposited on 3D titanium scaffolds using the dip coating method150 with an 

automated dipping machine (Dipping Robot DR3, Kirstein GmbH, Germany). The internal view 

of the DR3 is displayed in Figure 76. 

 

Figure 76: Picture of the automated dipping robot DR3 for the film deposition on 3D architectured 
scaffolds. The polyelectrolytes and rinsing solutions are in beakers, where the robot arm is successively 
dipped into following a custom-made procedure. The total duration for the deposition of 12 layer pairs 
is about 8 h.  

Instead of depositing a fixed amount of polyelectrolytes as for the 2D configuration, the 

scaffolds were placed into glass slides holders equipped with a homemade 3D printed crown 

(courtesy of C. Masse De La Huerta, PhD student at LMGP) and dipped into 13 mL of PLL or HA 

polyelectrolytes solutions, followed by rinsing steps into 150 mL and then 30 mL of rinsing 

solution after each adsorption of a polyelectrolyte layer (Figure 77).  

 
Figure 77: Schematic representation of the automated dipping method for the PEM film deposition 

into 3D architectured scaffolds 

At the end of the deposition, scaffolds were individually put into wells of a cell culture plate 

of 24 wells for the film crosslinking. The scaffolds (Ø 10 mm x L 7 mm) were either coated with 

12 and 24 bilayers of (PLL/HA) films respectively depending on their following use. 
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2.2.2 Loading of BMP-7 into PEM film 

2.2.2.1 BMP-7 storage  

In order to avoid a loss of bioactivity through protein aggregation or denaturation, BMP-7 (gift 

from Olympus Biotech, USA) was provided and stored in an acidic buffer composed of 

trehalose and acid lactic (trehalose 9% in acid lactic at pH 3) at the concentration of 1 mg/mL. 

It was stored at -20°C into 0.5 mL low-binding tubes (Eppendorf LoBind microcentrifuge tubes, 

Z666491, Sigma-Aldrich, France) and aliquoted at 500 µL. 

Prior each use of the protein, an aliquot of BMP-7 (tub containing small amount of the protein) 

was thawed out slowly at room temperature and then gently agitated for the following 

recovery.   

2.2.2.2 Loading procedure 

The concentrated solution of BMP-7 was diluted into 1 mM HCl solution (filtered with a 20 µm 

filter) at pH 3. The concentration of the BMP-7 loading solution was varied between 2.5, 5, 10, 

25, 50, 100 and 150 µg/mL. The BMP-7 loaded into the film will be thereafter designed as b-

BMP-7.  

After crosslinking, the films were kept in wet conditions into HEPES-NaCl buffer at pH 7.4. To 

load the protein, the left HEPES-NaCl at the top of the films was completely removed and the 

films were directly soaked with BMP-7 loading solutions for 1h30 at 37°C. Finally, films were 

rinsed with HEPES-NaCl buffer, for 1h every 10 min at room temperature, to remove any 

unbounded BMP-7 and were stored in HEPES-NaCL buffer153.  

2.3 Characterization of the film deposition and the BMP-7 loading 

After deposition, the osteoinductive film is hardly visible by eye. In this section, the different 

tools and equipment used for the film characterization and parts of the cellular studies will be 

detailed. 

2.3.1 Film labelling with Rhodamine and FITC 

2.3.1.1 Fluorophores  

Fluorophores are fluorescent molecules able to adsorb light and that re-emit it with a higher 

wavelength (Stokes shift). Those molecules can be used on their own as a tracer in fluids or as 

a dye for staining cells, tissues or materials and can as well be employed as a labelling tool for 

antibodies or proteins180. 

The 3 fluorophores used to label the PEM films or the BMP-7 were:  

- FITC (fluorescein 5-isothiocyanate, ref 3326-32-7, Sigma-Aldrich) 

- NHS-fluorescein (5(6)-carboxyfluorescein N-hydroxysuccinimide ester, ref 21878, 

Sigma-Aldrich) 

- Rhodamine (rhodamine B isothiocyanate, ref 36877-69-7, Sigma-Aldrich)  
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Their characteristics are described in Table 9. 

Abbreviation 
Complete 

name 
Structure 

Molecular 
weight 
(g/mol) 

Excitation 
wavelength 

 𝝀𝒆𝒙,𝒎𝒂𝒙 

Emission 
wavelength 

𝝀𝒆𝒎,𝒎𝒂𝒙 

FITC 
fluorescein 5-
isothiocyanate 

 
 

389  492 nm 518 nm 

NHS-
fluorescein 

5(6)-
carboxyfluores

cein  
N-

hydroxysuccini
mide ester  

473 494 nm 518 nm 

Rhodamine 
rhodamine B 

isothiocyanate 

 

536  543 nm 580 nm 

Table 9: Rhodamine, FITC and NHS-Fluorescein fluorophores main characteristics 

2.3.1.2 PEM film labelling with labelled PLL 

Our strategy to verify the film deposition was to build the film with fluorescently labelled PLL 

or to add manually a last layer of PLLFITC or PLLrhod before the crosslinking step. To do so, the 

PLL was dissolved at 5 mg/mL in a sodium bicarbonate buffer (50 mM, pH 8.4) and the dye 

was added in the solution with a molecular ratio of 1/2.5 (PLL molecule/dye). The labelling 

reaction was performed under slow agitation and protected from light at room temperature 

for 2 h. Then, the free dye was removed by dialysis in 400 mL of HEPES/NaCl buffer at 4°C 

using a membrane with a 6-8 kDa cut off under gentle agitation. Then, the buffer was changed 

at least 4 times over 48 h and finally the labelled PLL was stored at -20°C.    

2.3.2 BMP-7 labelling with NHS-fluorescein  

In order to tag the BMP-7 protein, we used a previously establish protocol using the NHS-

fluorescein (5(6)-carboxyfluorescein N-hydroxysuccinimide ester, ref 21878, Sigma-Aldrich) 

whose characteristics are given in Table 9150,153.  

To allow the grafting of the NHS-fluorescein on the BMP-7, the initial pH of 3.5 was raised at 

pH 7.5 with the sodium bicarbonate buffer (50 mM, pH 8.4). Then, the dye was directly added 

to the BMP-7 solution with a molecular ratio of 1:20 (BMP-7/dye) and slowly agitated for 2h 

at room temperature protected from light. Afterwards, the free NHS-fluorescein was removed 
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by dialysis in 2 x 1 L of 1mM HCl at 4°C using a membrane with a 6-8 kDa cut off under gentle 

agitation for 2h, with a renewal of the HCl solution after 1 h. The labelled BMP-7 was then 

stored at -20°C.  

2.3.3 Spectrophotometry 

The spectrophotometry consists in the quantitative measurement of the monochromatic light 

absorption or emission of a material as a function of the light wavelength in the visible light, 

near ultraviolet and near infrared ranges (Figure 78). 

 
Figure 78: Physical electromagnetic light spectrum181 

The associated apparatus for those measurements is called a spectrophotometer, a simplified 

overview of a spectrophotometer configuration is shown in Figure 79. 

 

Figure 79: General principle and components of a spectrophotometer. The light is produced by a 
source light and travels through the monochromator and an adjustable aperture to illuminate the 
sample. The transmitted light is detected through a photoresistor181 
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First, the light from the source passes through a monochromator in order to select the desired 

wavelength. Then, the monochromatic light is directed to the probed sample and the 

transmitted light is detected through a photoresistor. The decreasing resistance with the 

increasing light intensity is detected and compared to the value from the original light source. 

In this study, the spectrophotometer we used was a TECAN Infinite M1000 microplate reader 

(Tecan France, Lyon). 

2.3.4 BMP-7 quantification with BCA assay 

The bicinchoninic acid (BCA) assay is a colorimetric technique used to measure proteins 

concentrations in a given volume. This assay is based on the alkaline reduction of Cu2+ ions 

into Cu+ ions by proteins and the following formation of a purple coloured complex derived 

from the reaction of the bicinchoninic acid with Cu+ ions (Figure 80).  

 

Figure 80: Bicinchoninic acid BCA assay principle. Available proteins reduce Cu2+ ions into Cu+ ions 
which reacts with bicinchoninic acid and form [Cu+-2BCA] purple complex. The absorbance is then 
measured to quantify the amount of proteins182 

The absorbance of the complex is then measured by spectrophotometry at 562 ± 10 nm and 

a calibration curve, derived from successive dilutions of bovine serum albumin protein (BSA) 

at a fixed and known concentration, gives the corresponding protein concentration. Knowing 

the volume and concentration of proteins, it is possible to estimate the total protein mass. 

The amount of BMP-7 loaded into the PEM film was quantified using QuantiPro™ micro BCA 

assay kit (Sigma-Aldrich, France) as previously done179. To this end, 96 well plates (Greiner Bio-

One, Germany) were coated with PEM film and loaded with increasing BMP-7 concentrations 

from 2.5 to 100 µg/mL.  

To evaluate the mass of BMP-7 adsorbed in the film, the mass of BMP-7 in the loading solution 

before and after the loading were measured and subtracted to each other to determine the 

mass loss. Then, the adsorbed amount was obtained by dividing this mass by the surface area 

of the well (0.34 cm²). 

2.3.5 Fluorescence macroscopy and microscopy 

2.3.5.1 Fluorescence macroscopy 

Fluorescence macroscopy combines the high resolution photography of reflected light, with 

relatively low enlargement zoom (0.5X to 10X), with the acquisition of fluorescent light. The 
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fluorescent sample is excited with a mercury halide external lamp (EL6000, Leica, France) and 

its fluorescent emitted light is acquired with a CCD digital camera directly located at the top 

of the observation column (Figure 81). 

 

Figure 81: Illustration of the macroscope Leica Z16 and the external mercury halide lamp. The 
fluorescence macroscopy system used was the combination of the macroscope and the external lamp 
with a CDD digital camera (not represented here)183 

In this study, we used a Leica Macrofluo (Z16 Apo, Leica, France) equipped with the external 

lamp for the fluorescence detection (at the objective 0.8X) available at the IAB (Institute for 

Advance Biosciences, Grenoble). The film was observed with a last layer of (PLLFITC/HA) 

deposited on Ti-6Al-4V scaffolds with an excitation wavelength at 492 nm. 

2.3.5.2 Epifluorescence microscopy 

Epifluorescence microscopy is based on the detection of fluorescent light emitted by the 

observed sample, with the particular optical configuration where the excitation and emitted 

lights travel back through the same objective to the detector (either in the eyes through the 

ocular port or the camera). 

Figure 82 illustrates the working principle of epifluorescence microscopy. First, the light 

source is filtered through an excitation filter and guided to the sample by reflection on the 

dichroic mirror. Then, the excitation light is condensed by the objective and illuminates the 

sample. The emitted light from the sample passes by the same objective (“epi” meaning 

“same” in Greek) and the dichroic mirror, who reflects the excitation light and simultaneously 

transmits the emitted light to the emission filter before being detected by the camera or the 

eyes184. 
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Figure 82: Schematic presentation of the principle of epifluorescence microscopy (A) and the 
associated inverted fluorescence microscope (B). The source light crosses the dichroic mirror and the 
objective to illuminate the sample. The light emitted by the sample passes through the same objective 
and mirror until reaching the emission filter184 

In this project, we used the Zeiss Axio-observer 7 inverted microscope (Carl Zeiss, France) 

equipped with a LED light source (light-emitting diode, Solid-State Source light 7 Colibri). The 

5X and 10X objectives were employed either in bright field, phase contrast or wide-field 

epifluorescence configuration to monitor and acquire images for 2D and 3D cell cultures.   

2.3.5.3 Confocal microscopy 

In epifluorescence microscopy, the fluorescent signal obtained from a sample is emitted from 

the entire field exposed to the microscope objective. However, those samples are generally 

3D which means that the measured light is a volumetric contribution of the signals whether in 

or out of the focal plane of the objective. The latter raises issues in terms of resolution with a 

possible loss of finer details in the focal plane.  

Confocal microscopy was developed to overcome this limitation and uses lasers sources 

combined with two pinhole apertures specifically located, as shown in Figure 83.  

A B 
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Figure 83: Schematic representation of the confocal microscopy principle. Pinholes are specifically 
placed after the laser source and before the detector on conjugate planes to the focal plan observed on 
the probed sample to increase the images resolution185 

The first aperture is positioned directly after the excitation source in a conjugate plane 

(confocal) of the focal plan observed on the sample. The second aperture is also placed in a 

conjugate plane but located in front of the detector. This configuration allows the recovery of 

the emitted fluorescence light only generated by the selected focal plan. To obtain the global 

planar image and scan the focal plan, the focused laser beam is moved in the X, Y directions 

via motorized mirrors disposed on the optical path of the laser beam. The Z direction is also 

scanned by moving the objective along the optical axe with a stepper motor. Thus, it is possible 

to obtain images from different focal planes and to generate a 3D structure from the 

fluorescent light186.       

LMGP laboratory is equipped with a confocal microscope Zeiss LSM 700 (Carl Zeiss, France) 

and more particularly in this study, the confocal microscopy was used to visualize the BMP-7 

diffusion inside the PEM film with the 63X objective. 

2.3.6 Scanning electron microscopy 

Scanning electron microscopy (SEM) is a high resolution type of microscopy using the 

interaction of an electron beam with the atoms of the materials constituting the probed 

sample. The electron beam is scanned over the sample surface and the resulting signals 

emitted from the electrons/matter interaction are collected to obtain topographical and 

structural information.  

In the case of SEM, three type of electron/matter interactions are measured: the secondary 

electrons (SE), the backscattered electrons (BSE) and the characteristic X-ray emitted from the 

atoms of the surface (Figure 84).  

Secondary electrons (SE) enable the visualization of the topography. Backscattered electrons 

(BSE) allow the detection of the different sample phases at the surface depending on the 

atomic number. And finally, characteristic X-rays emitted enable the measurement of the 

atomic composition.  
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Figure 84: The different physical phenomena resulting from the electron/matter interaction detected 
by the scanning electron microscope. Secondary, backscattered electrons and characteristic X-rays are 
detected to image and analyse the sample composition187 

Figure 85 represents a schematic view of the internal elements constituting a scanning 

electron microscope. First in the column, electrons are thermally generated from the electron 

source by applying a high voltage between a filament cathode (generally tungsten) and an 

anode. The formed electron beam, whom energy can vary from 0.2 keV to 40 keV, is focused 

by two condenser lenses and its trajectory is controlled by the x, y scanning coils. The objective 

lens allows to focus the electron beam at the sample surface. Then, the electron beam enters 

the chamber and interacts with the sample and the emitted signals are measured by the 3 

different detectors.  

The electron beam requires to work under high vacuum to precisely control the electron beam 

trajectory. In the column, the vacuum is generally higher than in the chamber with values 

around 1 mPa for SEM equipped with tungsten filament. In the chamber, the pressure can 

vary between 1 and 0.01 mPa.  

The SEM makes possible to observe areas ranging from approximately 1 to 5 µm in width and 

the magnification is ranging from 20X to approximately 30 000X with a spatial resolution of 50 

to 100 nm. 
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Figure 85: Scheme of the scanning electron microscope. The scanning electron beam is generated and 
controlled in the column, the emitted signals from the electrons/matter interaction are detected in the 
chamber (adapted from188) 

In this thesis, we used the FEI-Quanta 250 SEM-FEG (Thermo Fisher, USA) in topography and 

chemical contrast modes (SE and BSE detections) for the film coating and cell morphology 

visualization at the scaffolds surface. Our imaging condition was settled at a low accelerating 

tension of 5 keV which is recommended for non-conductive materials.   

2.4 Cell culture and biological investigations 

In order to assess the osteoinductive capacity of the coating, in vitro cell cultures were 

performed on films and scaffolds. This section will described the type of cells used in this 

project and the associated biological assays.  
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2.4.1 D1 cell culture  

2.4.1.1 D1 cell line 

Among the stem cell population, mesenchymal stem cells (MSC) are known to be at the origin 

of the bone formation process through aggregation, condensation and chondrogenic and 

osteogenic differentiation, leading to the endochondral ossification189. In this project, we 

chose to use the D1 cell line as cellular model. D1 cells are murine mesenchymal stem cells 

that were isolated from mouse bone-marrow cells and cloned to obtain a cell line190 .  

The cells were obtained frozen in suspension from the American Type Culture Collection (D1 

ORL UVA, < 16 passages, ATCC)191. D1 cells are adherent cells and thus need planar surfaces 

to be cultured. In this study, D1 cells were cultured either in Cellstar® 75cm² flasks (T-75 flask, 

Greiner Bio-One, Germany) for their amplification, or in 24 and 96 well plates (Greiner Bio-

One, Germany) for the different experiments (Figure 86). 

 
Figure 86: Illustration of the different types of cell culture plates used in experiments. From left to 
right: 75 cm² flasks used for cellular amplification, 24 and 96 well plates used to run experiments192 

In our body, cells are constantly surrounded by an adjustable extracellular matrix which 

provides the supply of nutrients, allows the removal of waste and that provides the 

appropriate mechanical stability. To recreate this environment and maintain alive the cells, 

their culture is done in an aqueous environment at a physiological pH and temperature. The 

aqueous solution used is commonly called the cell culture medium.  

The growth medium (GM) used in this study was composed of Minimum Essential Medium 

Eagle (αMEM, Sigma-Aldrich, France) supplemented with 10% foetal bovine serum (FBS, PAA 

Laboratories, France), 1% GlutaMAX 100X (Gibco, ThemoFisher, France) and 100 U/mL 

penicillin and 100 µg/mL streptomycin (Gibco, ThermoFisher, France). The GM was changed 

every 2 days to ensure the supply of nutrients and to maintain the pH. The temperature and 

also the pH were maintained at physiological levels (pH 7.4, 37°C) thanks to the cell incubator. 

The cell incubator is a hermetic and humid chamber which regulates the temperature and the 

CO2 level (5% for mammalian cells). To avoid possible microorganisms (bacteria, fungi, yeast 

and virus) contaminations in the culture, all solutions, containers and disposable materials 
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used are sterile (directly bought sterilized or sterilized by the team with an autoclave) and the 

cell culture work was executed in a laminar flow hood (cell culture hood, Figure 87).      

 
Figure 87: Picture of the cell culture hood with laminar flow available at the LMGP laboratory 193 

Cellular amplification does not only requires the change of the culture medium. Indeed, when 

cells divide and cover all the available surface of a cell culture dish (100% confluence), they 

stop replicating and can even lose their ability to proliferate. For those reasons, cells were sub 

cultured (transferred into new dishes at low density) prior reaching 60-70% confluence, 

approximately every 2 days (Figure 88). 

 
Figure 88: Phase contrast microscopy images of D1 cells at 20% (left) and 70% (right) confluence in 

75 cm² flask in growth medium 

2.4.1.2 Culture procedure in 3D 

To assess the osteoinductive capacity of coated scaffolds, D1 cells were also cultured in vitro 

into 3D scaffolds. To this end, the cell seeding and culture procedure in 3D conditions was 

adapted from a protocol published in the literature194. Prior to each 3D culture, scaffolds were 

sterilized with UV at 100 kJ/cm2 (CL-1000 ultraviolet cross linker, UVP, USA) in Hepes/NaCl, 10 

min by side (top-bottom-left-right) in a 24 well plate. The 360° multi-functional tube rotator 

(PTR-35, Grant-Bio, USA) and 3D multi-function rotator (PS-M3D, Grant-Bio, USA) required for 

the cell seeding and culture were cleaned with ethanol and UV sterilized into the cell culture 

hood 20 min per sides and kept in the hood until their use in the incubator. The cell seeding 

and culture procedure is represented in Figure 89.  



103 
 

 
Figure 89: 3D cell seeding and culture procedure on 3D architectured titanium scaffolds. Step 1: dry 

cell seeding. Step 2: homogenization of cell distribution. Step 3: dynamic cell culture. 

First (step 1 in Figure 32), sterilized scaffolds were placed into sterile 5mL Eppendorf low 

binding tubes, which were previously placed into the 360° rotator. Then, a highly concentrated 

cells suspension was prepared at 5x106 cells/mL and 100 µL of this suspension was drop-

seeded randomly at the top of the scaffold, in order to obtain 5x105 cells per scaffold. The 360° 

rotator holding the tubes with the cells seeded scaffolds was placed into the incubator without 

additional medium for a static incubation of 30 min to allow cell adhesion.  

Secondly (step 2 in Figure 32), 500 µL of GM was added into each tube and the 360° rotator 

was activated for 30 min into the incubator to allow unattached cells to penetrate the 

scaffolds. Finally (step 3 in Figure 32), the scaffolds containing cells were recovered, placed 

into a 24 well plate. 1 mL of GM was added and the set was put back into the incubator on the 

planar rotator with an orbital rotation (30 rpm, PS-M3D Grant Bio) for long term culture.    

2.4.2 Cell quantification with DNA-based cell proliferation assay  

The strategy used to evaluate the cell proliferation was to count the number of cells at 

different time point. To this end, we used the CyQuant® Cell Proliferation assay kit (Molecular 

Probes, Invitrogen, France)195. This assay is based on the quantification of the total DNA 

amount by fluorescence associated with a cell number calibration curve. The procedure is 

detailed in Figure 90. 

 
Figure 90: Cell quantification with DNA-based cell proliferation assay. After reaching the final time 
point, cells are frozen and lysed to obtain their DNA in the lysate. Then, the provided fluorescent dye in 
the kit binds to the available DNA195 

At the corresponding time point (step 1), cell culture medium was removed (step 2) and cells 

were frozen at – 80°C overnight to damage their membrane and freeze their state (step 3). 

Then, they were thawed and the mix of lysis buffer and the green fluorescent dye (provided 
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in the kit) were added onto the cells (step 4). The aim of this buffer is to lyse (dissolve) the cell 

membrane and to allow the dye binding to DNA molecules. Once the dye is bound to nucleic 

acids, its exhibits an enhanced fluorescent light (step 5) which can then be compared to a cell 

number calibration curve (fluorescence as a function of the cell number) prepared with the 

same procedure. The fluorescence is then measured with an excitation light at 485 nm ± 10 

nm and a detection of the emission light at 530 nm ± 10 nm by spectrophotometry. The range 

of this assay is generally linear from 50 to 50 000 cells per 200 µL.  

The proliferation of D1 cells on PEM film loaded with BMP-7 was determined in 2D using the 

kit as previously described178. To this end, 8500 cells/mL (5000 cells/cm2) in GM were seeded 

into 96 well plate loaded with BMP-7 and cultured for 1, 2 and 7 days. For each time points, 

the cells were washed twice with PBS and frozen at -80°C overnight. The cell number was 

determined by fluorescent spectrophotometry (TECAN Infinite 1000, France) after doing a cell 

number standard calibration curve (Figure 91). 

 
Figure 91: Calibration curve of D1 cells number according to the DNA fluorescent intensity with 

Cyquant® kit (n=1) 

2.4.3 Qualitative cell colonization evaluation with epifluorescence microscopy 

In order to evaluate qualitatively the cell colonization after the 3D cell seeding and long term 

cell culture, D1 cells were seeded onto bare, only film-coated and film-coated and b-BMP-7 

film coated scaffolds with 5x105 cells per scaffolds and cultured for 3 days. Then, cells nuclei 

were stained by incubating Hoechst labelling (H3570, Invitrogen) into a serum-free medium 

(1:5000) for 10 min and visualized by epifluorescence microscopy with the 5X objective. 

2.4.4 Cell morphology with scanning electron microscopy 

Due to the titanium non-transparent nature, we chose to observe D1 cellular morphology for 

cells cultured onto the 3D scaffolds with scanning electron microscopy (SEM). To maintain the 

cells structure and ensure appropriate visualization conditions under the SEM, the cells 

containing scaffolds were prepared using a dedicated protocol of the IMBM team (MODOP-

110-022, I. Paintrand).   
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After evaluating cellular colonization by epifluorescence microscopy, cells onto scaffolds were 

chemically fixed with 2.5% glutaraldehyde in cacodylate buffer (0.1 M cacodylate-HCl, 0.1 M 

sucrose, pH 7.2) for 1 h at room temperature, followed by several rinsing steps in the same 

buffer. Then, the samples were slowly dehydrated to avoid cell membranes disruptions using 

a graded ethanol series from 30 to 100% and air-dried. Finally, to ensure the electron 

conduction at the cells surfaces, samples were sputtered with a thin layer of platinum (tilt 30°, 

30 rpm, V=6kV, Precision Etching Coating System 682 (PECS) Gatan, “CMTC” facilities, 

Grenoble) for the imaging at 5 kV under the SEM. 

2.4.5 Evaluation of BMP-7 osteoinductivity with ALP expression  

2.4.5.1 Alkaline phosphatase (ALP) expression and activity 

The alkaline phosphatase (ALP) is a metalloenzyme that hydrolyses phosphate monoester (-

O-PO3) at alkaline (basic) pH environments. This enzyme contains two zinc ions and one 

magnesium ion which are known to participate actively in its catalytic activity (Figure 92). The 

ALP is located at the outer side of the cellular membrane and on matrix vesicles (lipid bilayers 

particles) in many tissues (intestine, placenta, liver, bone and kidney)196.  

 
Figure 92: Chemical structure of the alkaline phosphatase (ALP). The ALP contains two zinc and one 
magnesium ions known to actively participate in its enzymatic catalytic activity197 

In the case of bone tissue, ALP is expressed (produced) by bone progenitor cells and 

osteoblasts among other expressed proteins (Figure 93) and is also known to be involved in 

the extracellular mineralization. The ALP hydrolysing activity induces an increase of the local 

concentration of phosphate ions, which are essential for the calcium phosphate formation. 

This ALP induced hydrolyse decreases also the concentration of pyrophosphates which are 

inhibitors of the mineral formation196.  

To identify whether a cell type starts its differentiation through bone progenitor, the ALP 

activity is commonly measured and considered as an important osteogenic differentiation 

marker198.  
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Figure 93: Different stages of osteoblastic differentiation from mesenchymal stem cells to the 
formation of osteocytes. Below are given the associated protein markers: membrane markers (CD105, 
CD73, CD90, CD271) as well as bone tissue markers (alkaline phosphatase ALP, osteopontin OPN, runt-
related transcription factor 2 Runx2, osterix OSX, bone sialo protein BSP, adapted from199) 

In this project, the BMP-7 loaded films bioactivity was assessed with D1 cells by quantifying 

the alkaline phosphatase (ALP) expression using two different methods adapted to 2D and 3D 

experiments.  

2.4.5.2 ALP staining assay for 2D experiments  

The first method used to measure the ALP was a colorimetric staining. The staining is based 

on the hydrolysis of Naphtol AS-MX phosphate by the ALP. When associated with fast blue RR 

salt, the hydrolysed Naphtol AS-MX phosphate forms an insoluble blue product (Figure 94). 

The insoluble Azo blue product is produced where the ALP enzymes are located in the 

extracellular environment. This ALP staining technique was developed by the Sigma-Aldrich 

company (Leukocyte Alkaline Phosphatase Kit, 85L1 Sigma, France). This technique is done 

after cell fixation. 
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Figure 94: ALP staining chemical reaction. Naphtol AS-MX phosphate is hydrolysed by ALP and forms 

in presence of fast blue RR salt an insoluble azo blue end product at the ALP locations (adapted from200) 

For 2D investigations, D1 cells were cultured into 96 well plate with BMP-7 loaded films and 

the ALP expression was measured using the previously described colorimetric staining179. For 

that, cells were seeded at 18 000 cells/mL in GM into each well containing a BMP-7 loaded 

film. After 3 days of culture, cells were washed with PBS and fixed with 3.7% 

paraformaldehyde in PBS. The expressed ALP was stained with Naphtol AS-MX phosphate kit 

(Sigma-Aldrich, France) and cells nuclei were labelled with 1:5000 DAPI (Invitrogen, France) in 

Tris buffer solid containing 0.2% of gelatine (Sigma-Aldrich, France). The ALP absorbance at 

570 nm ± 10 nm was measured 5 times per well by spectrophotometry using the TECAN 

Infinite 1000. It was normalized by the nuclei fluorescence signal (𝜆𝑒𝑥,𝑚𝑎𝑥 = 358 nm, 𝜆𝑒𝑚,𝑚𝑎𝑥 

= 461 nm) to account for the possible differences in cell number. 

2.4.5.3 ALP activity assay for 3D experiments 

The method described above cannot be applied for 3D non-transparent substrate.  The second 

used method was based on the kinetics of the ALP hydrolysis reaction of p-

nitrophenylphosphate (pNPP) into p-nitrophenol (pNP) which is a yellow soluble compound. 

The reaction is shown in Figure 95. 
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Figure 95: ALP activity assay with pNPP hydrolysis into pN. The kinetic of the pNP yellow insoluble 
coumpound formation is followed to determine the ALP enzymatic activity (adapted from201) 

To quantify the ALP produced by the cells, cells are first lysed in 0.4% Triton-X100 in PBS. A 

buffer containing pNPP at basic pH is prepared to induce the reaction with the ALP contained 

into the cells lysate (mixture of proteins, DNA, lipids …). After adding the buffer to the lysate, 

the kinetic of the pNPP → pNP reaction is followed by measuring the absorbance at 405 nm 

every 30 s during 10 min. The ALP activity is expressed as µmoles of pNP produced per minute 

per milligram of the total amount of protein (1). 

𝐴𝐿𝑃𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝛼

𝜀×𝑙×𝑚𝑡𝑜𝑡,𝑝𝑟𝑜𝑡
   (1) 

Where: 

α = slope (DO.min-1) 

ε = molar attenuation coefficient of the pNP (18.75mM-1.cm-1) 

l = light pathlenght (cm) 

mtot,prot = total protein amount (mg) 

 

The ALP activity of D1 cells cultured on BMP-7 loaded architectured scaffolds was quantified 

with the pNPP colorimetric method (MODOP-110-030, R.Guillot). To this end, 5x105 cells in 

100 µL of GM were seeded on the scaffolds. After 3 days of culture, GM was removed and 

cells on scaffolds were washed with PBS and lysed with a 10 min agitation on a plate agitator 

followed by 10 s of sonication into each well (20% intensity, ultrasonic processors 130W, 

Branson processors, USA) in 1mL of 0.4% Triton-X100 in PBS. 20 µL of the cell lysates were 

placed into wells of transparent 96 well plate and 180 µL of the buffer, containing 0.1M of 2-

amino-2-methyl-l-propanol (Sigma-Aldrich, France), 1mM of MgCl2 and 9mM of pNPP 

(Euromedex, France) adjusted to pH 10 with HCl, was added to the cell lysates to follow the 

pNPP → pNP reaction. The absorbance at 405 nm was measured with the spectrophotometer 

every 30 s during 10 min and the total protein contents of the cell lysates was determined by 

BCA assay (previously described in the 2.3.4 section)154.  
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2.4.6 Evaluation of the mineralization of the D1 cells extracellular matrix 

2.4.6.1 Principle of the extracellular matrix mineralization  

The extracellular matrix (ECM) mineralization consists in the formation of mineral compounds, 

mainly hydroxyapatite, into the ECM whether in extracellular fluids or into collagen fibres. The 

mineralization process is mediated by matrix vesicles released from osteogenic cells, as 

illustrated in Figure 96.  

 
Figure 96: Calcium and phosphate ions accumulation into matrix vesicle during the mineralization 
process. Calcium and phosphate ions are attracted into matrix vesicles and form minerals within the 
vesicles (adapted from202) 

At the membrane of the vesicles, molecules such as annexin, phosphatidylserine (PS) are 

attracting calcium ions Ca2+ into the vesicles. ALP are also found at the vesicles membrane and 

hydrolyse pyrophosphate (PPi) into phosphate ions (PO4
3-, referred as Pi) which are then 

introduced into the vesicles by type III Na/Pi transporters. Due to the Pi introduction into 

vesicles, PS- Ca2+-Pi complexes form and are at the origin of mineralization sites202. 

Then, the mineralized vesicles membranes break and the preformed hydroxyapatite (HAP) 

crystals are exposed to extracellular fluids. At this stage, extracellular fluids contain 

homeostatically maintained levels of Ca2+ and PO4
3- sufficient enough to support the 

propagation of new HAP crystals on the preformed HA crystals203. 

2.4.6.2 Osteogenic differentiation medium 

To induce the extracellular mineralization of mesenchymal stem cells in vitro, the composition 

of the cell culture medium has to be adapted to ensure the supply of crucial molecules 

involved in the mineralization process.  
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The common molecules added to trigger the osteogenic differentiation of multipotent stem 

cells are dexamethasone, ascorbic acid and β-Glycerophosphate (β-GP)204. Dexamethasone is 

known to induce the osteogenic differentiation by increasing the production of Runx2, an 

important transcription factor protein and bone marker involved in the osteogenic 

differentiation signalling pathway204. The ascorbic acid increases the secretion of collagen by 

cells and β-GP provides the phosphate required for the HAP crystals formation and the ECM 

mineralization204.    

In our case, we were interested in the osteogenic differentiation of D1 cells, their ECM 

mineralization and how the osteoinductive film containing BMP-7 could affect this biological 

process. The osteogenic differentiation medium (DM) used in this project was directly derived 

from the GM supplemented with 50 µg/mL L-Ascorbic acid-2-phosphate (A8960 Sigma-

Aldrich, France) and with various concentration of β-Glycerol phosphate disodium salt 

pentahydrate (50020 Sigma-Aldrich, France) from 0.5 to 10 mM. 

2.4.6.3 Evaluation of the ECM mineralization by Alizarin Red S staining 

To quantify the ECM mineralization in vitro, we used the Alizarin Red S staining. Alizarin Red S 

(3, 4-Dihydroxy-9, 10-dioxo-2-anthracenesulfonic acid sodium salt, A5533, Sigma-Aldrich) is a 

red dye that reacts with calcium salts and forms a calcium-alizarin red S product in a chelation 

process, their chemical structures are represented in Figure 97.  

 

Figure 97: Alizarin Red S and calcium-alizarin red S complex chemical structures. The calcium-alizarin 
red S compound is formed at calcium salts locations and can be found in salt or chelate forms (adapted 
from205) 
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The final calcium-alizarin red S compound is also red and formed at calcium salts locations. 

This compound can be dissolved in an acidic solution and quantified by absorbance 

measurements with spectrophotometry.   

For 2D studies of the ECM mineralization, D1 cells were cultured either into 24 or 96 well 

plates and quantified with ALZ staining. The cell density, the number of days of culture and 

the β-GP concentration in DM were varied as described in Table 10. After reaching the wanted 

number of days, cells were fixed in 3.7% formaldehyde in PBS for 15 min at room temperature. 

 The Alizarin Red S staining solution was prepared with 40 mM of Alizarin Red S in MilliQ water 

and the pH adjusted at 4.2 with 10 % NH4OH. After fixation, cells were rinsed twice with PBS 

and incubated with the Alizarin Red S staining solution for 20 min at room temperature. Then, 

the staining solution was rinsed intensely with MilliQ water until all the unbound dye was 

removed and the absorbance was measured directly into wells at 470 nm ± 10 nm by 

spectrophotometry. 

βGP  
(mM) 

10 8 6 5 4 2 1 0.5 

Days of culture  14 12 10 9  

Cell density 
(cell/cm²) 

25000 10000 5000 

 
BMP-7 

presentation 
Film Solution 

Table 10: Varied experimental parameters for the optimization of the osteogenic differentiation 
medium for D1 cell cultures in presence of BMP-7 

For 3D investigations, a preliminary experiment was done using bare titanium scaffolds. To 

this end, 2x105 D1 stem cells were seeded and cultured on scaffolds for 14 days in a DM 

containing 10 mM of β-GP and was changed every 3 days. The calcium was stained following 

the same procedure as the 2D configuration. 

After the last rinsing, calcium stained scaffolds were visualized under SEM at 5 keV to observe 

the ECM distribution. Finally, the ALZ staining on scaffolds was dissolved using a working 

solution of 0.5 M HCl with 5% SDS (Sodium Lauryl Sulfate, 151-21-3, Euromedex) in water and 

a 30 min incubation at room temperature. The absorbance of the resulting solution was 

measured at 415 nm ± 10 nm by spectrophotometry.   

2.4.7 Statistical analysis 

Origin Pro 2016 9.3.2.303 (OriginLab Corporation, USA) was used for statistical analysis. All 

numerical values are expressed as means ± standard deviation (SD). The means of continuous 

numerical variables were compared by one-way analysis of variance (ANOVA) with Kruskal-
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Wallis test or Tukey-Kramer post-hoc test. For all analyses, levels of statistical significance 

were set at *p < 0.05. 
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 Results: Osteoinductive coating on architectured Ti-6Al-4V 

implants for bone regeneration (research article in preparation) 

3.1 Preamble 

Chapter 3 is written in the form of a research article that is in preparation. 

By Antalya Ho-Shui-Ling 1,2,3, Amandine Arnould 1,2,3, Carole Fournier 1,2, Paul Machillot 1,2, Raphael 

Guillot 1,2, Mathieu Suard 3, Pierre Lhuissier 3, Michael Bouyer 4, Sanela Morand 4, Georges Bettega 5, 

Remy Dendievel 3, Catherine Picart 1,2 

Affiliations: 

1 Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France 
2 LMGP, University Grenoble Alpes & CNRS, F-38000 Grenoble, France 
3 SIMaP, University Grenoble Alpes & CNRS, F-38000 Grenoble, France 
4 CHU Service de chirurgie plastique et maxillo-faciale, Centre Hospitalier Universitaire de Grenoble, France 
5  Service de chirurgie maxillo-faciale, Centre Hospitalier Annecy Genevois, 1 avenue de l'hôpital, 74370, Epagny 
Metz-Tessy, France 

3.2 Abstract 

Bone cannot self-repair when there is a too severe injury and a large bone defect. Thus, there 

is a need for bone implants able to provide a mechanical support and a hosting structure to 

replace the damaged bone, and receive the new bone tissue. To date, titanium (Ti) based 

alloys remain the most used materials in bone implants for load-bearing applications. 

Emerging additive manufacturing processes such as electron beam melting (EBM) enable to 

custom-build Ti based alloys architectured scaffolds. The main other strategy that entered the 

field one decade ago is the addition of biologic molecules to boost bone repair. Osteoinductive 

molecules such as bone morphogenetic proteins (BMPs) are currently employed for that 

purpose. However, one of the main limitations in their use is their appropriate delivery. 

Surface coatings made of biopolymers such as (PLL/HA) films have been successfully loaded 

with the bone morphogenetic proteins 2 and 7 (BMP-2,7)152–155 and reached the pre-clinical 

stage. In this study, we aimed to develop architectured and osteoinductive 3D titanium-based 

scaffolds as innovative bioactive bone implants using the EBM additive manufacturing 

technique and bone morphogenetic protein 7 (BMP-7). To this end, we built by EBM 3D porous 

Ti-6Al-4V scaffolds made of periodic cubic unit-cells with three different porosities. The 

porosity was well controlled with difference from CAD models of less than 1%. (PLL/HA) 

polyelectrolytes film were used to deliver the BMP-7. Their osteoinductive capacity was 

assessed on 2D surfaces with murine mesenchymal stem cells (MSCs) by quantifying their 

early ALP expression. The ALP expression of MSCs cultured on the BMP-7 loaded (PLL/HA) 

films increased in a dose-dependent manner. The bioactive film was effectively deposited on 

3D architectured scaffolds and MSCs cultured on BMP-7 loaded and film coated scaffolds also 

expressed ALP, proving the early osteoinductive capacity of functionalized scaffolds in vitro. 
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3.3 Introduction 

Titanium and its alloys are currently the most widely used metallic materials in the 

orthopaedics field for their adequate properties for load-bearing applications. Presenting high 

strength with a low density, good corrosion resistance and improved osseointegration, their 

main limitations in use originate from their processing and their lack of osteoconduction and 

osteoinduction62,67. 

Furthermore, in regards to the trabecular and cortical bone elastic modulus (from 0.01 to 30 

GPa)206, the higher stiffness of titanium implants is known to induce the stress shielding 

effect207. As the mechanotransduction plays an important role in the bone regeneration and 

maintenance208, this effect might lead at long term to bone resorption at the surroundings 

and could eventually cause the implants loosening and failure207.   

To reduce this effect, improve the implants integration and their lifespan, two main strategies 

are currently being explored in the orthopaedic field: the first strategy involves the modulation 

of the implant architecture84 while the second strategy is focused on adding bioactive 

properties to the implant, mostly via surface coatings65. 

Inspired by the structural organization of bones, intensive investigations on porous implant 

architectures are currently undertaken. They aim at reducing the implant high mechanical 

properties in regards to bone tissue and at understanding which structural features, such as 

surface curvature, pore shape, pore size, favour the implant integration and the bone 

regeneration84. Emerging metallic additive manufacturing processes such as Electron Beam 

Melting (EBM) and selective laser melting (SLM), allow to build highly porous titanium 

architectures with closer properties to bones in terms of mechanical matching and 

permeability, promoting mass transport and giving more space for the formation and 

vascularisation of the new bone tissue206.  

Similarly, biomimetic strategies employed for the architecture at the macro scale (> 100 µm) 

and micro scale (< 100 µm) are translated to the cells levels through the addition of 

osteoinductive biomolecules. From large proteins or glycosaminoglycan, to growth factors, 

peptides, mass bone regulating and DNA molecules, biomolecules for bone repair are 

currently used at the research or clinical stages209. Some of the large proteins already 

approved for medical use, such as collagen or hyaluronic acid (HA) that are also part of the 

natural extracellular matrix, are currently used as material carriers for bioactive molecules210. 

The aim is to mimic the natural ECM and to act as carrier for active proteins such as growth 

factors. However in the case of active proteins, issues regarding the efficient loading, the 

controlled release and stability are of first importance and remain issues to tackle in order to 

obtain appropriate and controlled osteoinduction121.  

Several techniques are used to store and deliver those molecules from metallic implants 

including surface functionalization with thiols or siloxane anchored to self-assembled 

monolayers69, RGD peptides immobilization211 or using hydrogel carriers212. Among the 

available surface coating techniques employed to attach and deliver bioactive proteins at the 

implant surface, the layer-by-layer assembly of the polyelectrolytes (PEM) films appears  
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promising in terms of versatility and delivery capacities145. Several studies using those films, 

with either BMP-2 or BMP-7 incorporated, have proven that they can be effectively deposited 

on plastic153, ceramics154 and metallic substrates155. PEM films sustained the growth factors 

osteoinductivity in vitro for both factors153,179. To date at the in vivo stage, only BMP-2 loaded 

PEM films have been tested and showed enhanced bone regenerative capacities152.    

In this study, we aimed at developing porous Ti-6Al-4V implants with an osteoinductive 

capacity provided by a coating able to deliver various doses of BMP-7. The porous titanium 

scaffolds were built by EBM and coated with polyelectrolytes multilayer film containing the 

bioactive BMP-7. The scaffold architecture and BMP-7 amount were controlled to evaluate 

the scaffold osteoinductivity in vitro. Future in vivo investigations will be done with custom-

made Ti-6Al-4V implants coated with the BMP-7 osteoinductive film in a critical-size femoral 

bone defect in rat. 

3.4 Results 

3.4.1 Architectured Ti-6Al-4V scaffolds built by EBM additive manufacturing process 

For in vitro cell studies, we chose to build architectured scaffolds with periodic cubic unit-cell 

(UC). Other architecture with unit-cells such as diamond, dodecahedron, tetrahedron or octet-

truss unit-cells were also already built by EBM and mechanically investigated4. For this study, 

scaffolds with cubic unit-cell were advantageous since pores are aligned and thus facilitate the 

UV sterilization, cell culture into well plates and imaging conditions. With this fixed geometry, 

our first goal was to test the EBM capacity to build ranges of cubic unit-cell porous scaffolds. 

Currently, the minimum strut size achievable with the EBM manufacturing process is about 

600 µm. In order to obtain the finest structures as possible with this process, we fixed the 

strut size of the scaffolds to 600 µm. Due to these two structural requirements and our design 

methodology, we were able to generate three types of porous cubic unit-cell scaffolds with 

three different porosities of 73%, 80% and 85%. Those porosities are linked to the repetition 

number of unit-cells (either 7, 6 or 5) along the scaffold diameter. The CAD and EBM built 

corresponding scaffolds are represented in Figure 98.  
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Figure 98: CAD (A) and EBM built (B) Ti-6Al-4V architectured scaffolds with the expected porosities 
of 73%, 80% and 85%. Respectively corresponding to 7, 6 and 5 repeated unit-cells along the scaffold 
diameter 

As seen on Figure 98B and Figure 99, EBM built scaffolds were inherently rough due two 

different effects. The first one is related to non-melted powders stuck or partially sintered at 

the scaffold surface. The second effect is due to irregularities in the layer stacking during the 

building. Those irregularities are the combined results of the spatial beam control and the 

local thermal history. It is called plate-pile like stacking defect and was described for example 

by Suard166.  

 

Figure 99: Rough surface of Ti-6Al-4V scaffolds built by EBM. The image was acquired by scanning 
electron microscopy166 

Porosities of EBM-built scaffolds were measured by the hydrostatic weight method (Table 11). 

The obtained values were close to those from the CAD with differences equal or less than 1%. 

However, even if we were able to reach the expected porosities, we noticed a shape 

anisotropy on EBM-built scaffolds at the scale of the struts. This anisotropy was also previously 

described and was found to be dependent on the struts orientation during the build (Figure 

100)166. Here, we built our scaffold with a 45° angle according to the build platform. With this 

setup, struts were either at 45° or 90° with respect to the build direction, which could explain 

this structural anisotropy. The fact that global porosities values were not affected might be 

due to a non-controlled compensation.  
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Table 11: Structural characteristics of CAD and EBM-built architectured Ti-6Al-4V scaffolds (n = 3 
samples for porosities; n = 1 per unit-cells scaffold type for compressive tests) 

 
Figure 100: Comparison of CAD (blue) and EBM built (green) struts as function of the strut 

orientation, either (i) 0°, (ii) 45° or (iii) 90° with respect to the build direction (Z+)166 

The elastic modulus was determined for larger cubic scaffolds (2 cm x 2 cm) with the same 

previous porosities in order to be sure to measure the representative mechanical behaviour. 

The range of the Young’s modulus was between 2 to 4.4 GPa which is between 50  to 25 times 

lower than the modulus of the bulk Ti-6Al-4V known to be around 110 GPa4. The elastic 

modulus of bone varies from 0.44 to 30 GPa depending on the bone nature and loading 

direction4. In regards to those values, architectured structures possess a great potential in 

reducing stress shielding effects at the bone-implant interfaces207. The elastic modulus values 

obtained are consistent with the measured scaffold porosities. Indeed, if we consider that 

loads are transferred only in the axial compression direction, we can roughly estimate the 

elastic modulus with the equation (2).  

𝐸𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑 = 𝐸𝑇𝑖−6𝐴𝑙−4𝑉 × (1 − 𝑝) ×
1

3 
    (2) 

Where Escaffold represents the Young’s Modulus of porous scaffolds, ETi-6Al-4V the Young’s 

Modulus of bulk Ti-6Al-4V and p the porosity. Elastic modulus estimated from this equation 

are two fold higher than the measured values. Due to the surface roughness, only an “efficient 

material” contributes to the mechanical properties of the EBM built structures (Figure 101). 

This phenomenon was described in the previous PhD work of M.Suard166 where the concept 

of “mechanical equivalent diameter” was introduced to better predict the mechanical 

properties of such architectured structures.  
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Figure 101: Concept of mechanical equivalent diameter of EBM built struts. The effective material  
involved in the mechanical response of EBM struts (represented by an equivalent cylinder of diameter 
DEQ

NUM) is lower than the total volume of the EBM built material (adapted from Suard175) 

A down scaling factor was derived in order to estimate more accurately the mechanical 

properties of architectured structures built by EBM. In the case of 600 µm strut size, this down 

scaling down factor was about 2, which could explain the two fold higher values than the ones 

measured here170.  

3.4.2 2D in vitro osteoinductive capacity of PEM film loaded with BMP-7 

The osteoinductive strategy of this study consisted in combining layer-by-layer 

polyelectrolytes film with the osteogenic factor BMP-7113. PEM film were made either of 12 or 

24 layer pairs of negatively charged PLL and positively charged HA which formed the film 

mainly by electrostatic interactions145. In order to mechanically reinforce the films, they were 

covalently cross-linked using an established protocol based on the carbodiimide chemistry, 

creating amine bonds between HA carboxylic groups and PLL ammonium groups146. Since films 

crosslinked at low EDC carbodiimide concentrations showed an higher stability upon 

storage155, we selected the two lowest EDC carbodiimide concentrations previously studied, 

namely 10 mg/mL (EDC10) and 30 mg/mL (EDC30). After cross-linking, the films were loaded 

with BMP-7 in the same manner as BMP-2 was loaded into (PLL/HA)12/24  film in a previous 

study152.  

In order to observe the BMP-7 loading into the films, cross-sections of (PLL/HA)
 24 films built 

with red-labelled PLL and loaded with green-labelled BMP-7 were observed by confocal 

microscopy (Figure 102A). From these observations, the film thickness was evaluated at 5.4 

µm and the BMP-7 was distributed only at the top of the films. This phenomenon might be 

due to a limited diffusion of the BMP-7 into the film. It was also previously observed with 

labelled BMP-2213 and might also be due to a structural anisotropy in the film depth.      
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Figure 102: Amount of BMP-7 loaded in (PLL/HA)24 films. (A) The diffusion of BMP-7 inside the films 
(PLL/HA)24 PEM films was visualized using confocal microscopy and imaging transverse section. PLLRho 
appears in red and BMP-7 FNHS in green. (B) BMP7 adsorbed amount as a function of the initial BMP-7 
loading concentration into (PLL/HA)24 PEM films measured by micro BCA assay (n=3 samples per 
condition in each experiment, with 3 independent experiments). 

Then, the adsorbed amount of BMP-7 was quantified as a function of the initial BMP-7 loading 

concentration and the film crosslinking by micro BCA assay (Figure 102B). At low BMP-7 

loading concentration ([BMP-7] ≤ 25 µg/mL), the film crosslinking did not affect the adsorbed 

amount of protein. However for [BMP-7] > 50 µg/mL, more BMP-7 adsorbed into the less 

crosslinked film with an absorbed amount of 12 µg/cm² for EDC10 over 9 µg/cm² for EDC30. 

This might be due to the fact that higher crosslinked films are less permeable and have less 

space for the protein diffusion. In the following, only PEM film crosslinked at EDC10 were used. 

(PLL/HA) films have already been shown to act as reservoir for BMP-7 and trigger ALP 

expression of C2C12 cells153. In terms of bone repair, this BMP-2 and BMP-7 responsive 

myoblast cellular model is interesting for in vitro experiments but cannot mimic a physiological 

situation since myoblast cells are not directly involved in the repair process25. After the initial 

inflammatory phase and hematoma formation, skeletal progenitor cells are recruited from the 

cortical bone, periosteum and bone marrow26. D1 mesenchymal stem cells are isolated from 

mouse bone marrow and known to differentiate into adipocyte, chondrocyte and osteoblast 

cells lineage191. Thus, in regards to the bone repair mechanism, we decided in this study to 

use the D1 stem cells line. 

Prior to the evaluation of polyelectrolyte films containing BMP-7 with D1 cells, we investigated 

their response to soluble BMP-7 by quantifying their ALP expression after 3 days of culture on 

plastic (Figure 103). Their ALP expression in response to soluble BMP-2 was also assessed a 

reference osteogenic protein. D1 cells responded to both BMPs, with BMP-2 being more 
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potent than BMP-7, since a lowest concentration of BMP-2 was required to reach the 

maximum ALP level reached with BMP-7.  

  
Figure 103: D1 cells ALP expression in response to increasing soluble BMP-2 and BMP-7 

concentrations after 3 days of culture in growth medium on plastic (n = 3, replicated 2 times) 

To investigate D1 cells behaviour in contact with the polyelectrolyte films containing BMP-7, 

their proliferation was measured after 1, 2 and 7 days of culture (Figure 104A). The cells 

adhered to PEM films and their number remained stable regardless of BMP-7 absence or 

presence. The presence of BMP-7 in the films did not affect the proliferation of D1 cells.  

In order to evaluate the osteoinductive capacity of the PEM film loaded with BMP-7, we 

measured the ALP expression after 3 days of culture, this enzyme expression being widely 

recognised as an important marker of the osteogenic differentiation (Figure 104B). D1 cells 

expressed ALP in a BMP-7 dose-dependent manner, the highest expression being obtained for 

the highest BMP-7 loading concentration of 25 µg/mL.  
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Figure 104: Cell proliferation and osteoinduction with BMP-7 loaded into (PLL/HA)12 films at [2.5, 5, 
10 and 25 µg/mL] and at 800 ng/mL in solution (sBMP) as a positive control on 2D surfaces. (A) 
Proliferation of D1 cells on (PLL/HA)12 film loaded with BMP-7 measured by quantifying the cell number 
after 1, 2 and 7 days culture in growth medium (B) Alkaline Phosphatase expression of D1 murine 
mesenchymal stem cells in response to increasing BMP-7 loading concentration after 3 days culture in 
growth medium. (B1) ALP staining representation into 96 well-plates (B2) Corresponding signal of 
absorbance measure normalized by the cells nuclei fluorescence signal from ALP staining into 96 well-
plates (n =5 sample per experimental condition, experiments done 3 times,*p < 0.05 with one-way 
analysis of variance (ANOVA) with Kruskal-Wallis test). 

According to the adsorbed amount measurements, the loading BMP-7 concentration = 10 

µg/mL gives an adsorbed amount of 2 µg/cm² into EDC10 films. Here, we loaded EDC10 films 

into 96 well plate having a surface of 0.34 cm². Thus, the total amount of BMP-7 into the film 

for the 10 µg/mL loading condition can be estimated to be at 680 ng. The BMP-7 concentration 

of the positive control was settled at 800 ng/mL. Knowing that we used 200 µL of growth 

medium per well, the starting amount of BMP-7 presented to the cells can be estimated at 

160 ng.  
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With a 6-fold higher quantity of BMP-7 available in the film, we induced the same level of ALP 

expression than the soluble positive control. This result proves that the film delivered BMP-7 

in a slower and more controlled manner. Moreover, the fact that the highest loading 

concentration induced a higher ALP expression shows that this delivered amount depend on 

the initially loaded amount. Altogether, those results show that the (PLL/HA) films loaded with 

BMP-7 are osteoinductive and this capacity increases with increasing concentrations of the 

BMP-7 loading solution. 

3.4.3 Extracellular matrix mineralization of D1 cells in response to BMP-7 

To further investigate the osteoinductive capacity of BMP-7 loaded (PLL/HA) films, we 

measured the mineralization of the extracellular matrix (ECM) produced by D1 cells in vitro. 

In vitro mineralization requires a specific cell culture medium, the osteogenic differentiation 

medium (DM). This medium ensures the phosphate supply for the formation of HA crystals. 

According to the literature, the standard composition of an osteogenic medium is the basal 

growth medium (GM) supplemented by dexamethasone (Dex), ascorbic acid and β-

glycerophosphate (βGP)204. Our strategy was to use a minimal DM in order to minimise the 

possible interactions between the different substances and BMP-7 and thus highlighting the 

osteoinductive capacity of the film.   

The first in vitro mineralization trial was conducted into a 96 well plate coated with (PLL/HA)12 

film, crosslinked at EDC10 and increasing concentrations of BMP-7: 2.5, 5, 10, and 25 µg/mL. 

D1 cells were first cultured 2 days in growth medium (GM) prior changing to DM. In this 

medium, cells were cultured for 14 days, the standard time period for in vitro mineralization 

assessment (Figure 105, Figure 106, Figure 108, plate 1). 
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Figure 105: Phase contrast microscopic images of D1 cells after 2 days in growth medium GM, 7 days 
and 14 days in differentiation medium DM on (PLL/HA)12  films crosslinked at EDC 10 and loaded with 
BMP-7 at [2.5, 5, 10, 25 µg/mL] and at 150 ng/mL in solution (sBMP) as positive control (Figure 108, 
plate 1) 

In cultures on EDC10 films, cells first adhered and proliferated after 2 days in growth medium 

(GM). After changing to the differentiation medium (DM), cells gathered and aggregated 

(Figure 105). In the condition without BMP-7, they even formed an aggregation network. Black 

spots indicating the ECM mineralization were mostly located on the aggregates. However in 

the case of plastic substrates (Figure 106), cells were more spread in growth medium and kept 

their shapes after the medium changing. Signs of ECM mineralization were strongly appearing 

after 14 days of culture, as observed with dark areas on Figure 106. By optical microscopy, it 

was not possible to notice a difference between the different concentrations of loaded BMP-

7 into films (not shown here). 
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Figure 106: Phase contrast microscopic images of D1 cells after 2 days in growth medium GM, 7 days 
and 14 days in differentiation medium DM on plastic without and with BMP-7 at 150 ng/mL in 
solution as positive control (Figure 108, plate 1) 

After 14 days of culture in DM, minerals from the ECM of D1 cells were stained by Alizarin Red 

S staining, the actual staining representation in a 96 well plate and the obtained absorbance 

values are shown in Figure 107. Unexpectedly, the mineralization was the strongest on plastic 

without BMP-7 (P No BMP, Figure 107) while on EDC10 films, the absorbance was the 

strongest in presence of BMP-7 in solution (sBMP, Figure 107). Those preliminary results 

indicated that BMP-7 may have an effect when presented in solution on soft substrates such 

as EDC10 but not when presented by the films. 
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Figure 107: Alizarin Red S Staining of the extracellular matrix of D1 cells cultured on (PLL/HA)12 films 
crosslinked at EDC10 loaded with BMP-7 at [2.5, 5, 10, 25 µg/mL] and on plastic P, with 150 ng/mL 
of BMP-7 in solution as positive control in differentiation medium for 14 days (A) and the 
corresponding absorbance at 470 nm (B) (*p < 0.05 with one-way analysis of variance (ANOVA) with 
Tukey-Kramer post-hoc test, Figure 108, plate 1) 

Following those first results, we decided to investigate how we could highlight the BMP-7 

effect on the mineralization process. To this end, we varied several cell culture parameters 

(cell density, days of culture, b-glycerolphosphate concentrations and BMP-7 presentation) in 

an incremental approach which chronology is detailed in Figure 108. 

Figure 108: Experimental chronology of the ECM mineralization experiments. D: days - wp: well plate - 
bBMP7: bounded BMP7 - sBMP-7: soluble BMP-7 - parameters in red indicate the incremental changes 
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According to the previous enhanced ALP expression after 3 days of culture for only BMP-7 

conditions (Figure 104), we hypothesized that the BMP-7 effect on the mineralization might 

be a competitive kinetic effect, namely that BMP-7 might induce an acceleration of the ECM 

mineralization. To verify this hypothesis, we first decided to reduce the cell culture time to an 

earlier time point of 12 days (Figure 109, plate 2 Figure 108). Also, we increased the soluble 

BMP-7 concentration from 150 ng/mL to 800 ng/mL, based on the higher ALP level that we 

obtained from the D1 cells response to soluble BMP-7 (Figure 103). 

 
Figure 109: Alizarin Red S staining of the extracellular mineralization of D1 cells seeded at 
25000c/cm² cultured on (PLL/HA)12 films crosslinked at EDC10 loaded with BMP-7 at [2.5, 5, 10, 25 
µg/mL] and at 150 ng/mL in solution as positive control, in differentiation medium for 12 days (Figure 
108, plate 2) 

Unfortunately, increasing the soluble BMP-7 concentration induced the cells carpet 

detachment on plastic (plastic, Figure 109), as we started to observe on the first experiment 

(plastic, Figure 107. Figure 108, plate 1). On EDC10 film loaded with BMP-7 conditions (EDC10 

+ bBMP7, Figure 109), we experienced a massive cell detachment and apoptosis. While on 

EDC10 film without loaded BMP-7, weak signals of mineralization were observed for wells with 

soluble BMP-7 (EDC10, Figure 109), with a negative control in absence of BMP-7. 
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In this experiment, the cell seeding density was settled at 25 000 cells/cm². Observing the high 

rate of cells detachment, we reduced the cell seeding density at 10 000 cells/cm² and repeated 

the result obtained on EDC10 film with soluble BMP-7 (Figure 108, plate 3). Unfortunately, 

either after 10 and 12 days of culture (Figure 108, plate 4 and 5), we were not able to 

reproduce the result showing enhanced mineralization only in the case of soluble BMP-7 

presentation on EDC10 film. 

Then, to decouple as much as possible the parameters, we changed other cell culture 

parameters. First, we chose to work only on plastic substrates. Also, in view to offer more 

surface to cells and limit cellular detachment over time, we switched well plates from 96 to 

24 well plates. Finally, we decided to decrease the β-glycerophosphate concentration to 

highlight the possible BMP-7 effect (Figure 110, plate 6 Figure 108). 
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Figure 110: Alizarin Red S staining of the extracellular mineralization of D1 cells cultured 2 days in 
growth medium and 10 days in differentiation medium with decreasing β-glycerophosphate 
concentrations of [10, 5, 2.5 mM] (A) and the corresponding absorbance measurement at 470 nm (B) 
(*p < 0.05 with one-way analysis of variance (ANOVA) with Tukey-Kramer post-hoc test, Figure 107, 
plate 6) 

From this additional trial, we observed very few cell detachment after 10 days of culture and 

a significantly higher ECM mineralization for the classic β-glycerophosphate concentration of 

10 mM, nevertheless the effect of BMP-7 was still not noticeable. Other trials with BMP-2, 

which was known to be more potent than BMP-7 for D1 cells (Figure 103), were conducted 

without real success (Figure 108, plates 9 to 12).  

We concluded that the D1 cells model presented a strong mineralization with solely the 

osteogenic differentiation medium. As a consequence and to prove the film osteoinductivity 

with BMP-7, we only focused on early stages of D1 cells osteogenic differentiation.  
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3.4.4 3D in vitro osteoinductivity of Ti-6Al-4V scaffolds coated with BMP-7 

The ability to coat the Ti-6Al-4V scaffolds with (PLL/HA) films was investigated at the macro 

scale (> 1 cm) and micro scale (> 100 µm). For macro scale observations, the film deposition 

was slightly modified by the addition of a last layer of fluorescent FITC green-labelled PLL. The 

coated scaffolds were visualized using a fluorescence macroscopy system. Figure 111 shows 

the film deposition in 73% porosity EBM built Ti-6Al-4V architectured scaffold. 

 

Figure 111: Coating of architectured Ti-6Al-4V scaffolds with (PLL/HA)24 PEM film. Ti-6Al-4V 
architectured scaffolds coated with (PLL/HA) 24 + (PLL-FITC/HA) observed by fluorescence macroscopy 
with (a) top view, (b) tilted, (c) lateral view, (d) rotated 

From a qualitative point of view, the film was homogeneously deposited along the entire 

scaffold length and inside the pores. For micro scale observations, the top surface of bare and 

coated scaffolds were intentionally scratched with a needle in some areas (Figure 112), in 

order to introduce chemical contrast between the damaged zone and the film itself. Both 

types of scaffolds were visualized by SEM with the topographical (secondary electrons, Figure 

112a, c) and the chemical contrast modes (back scattered electrons, Figure 112b, d). Both bare 

and film coated scaffolds are inherently rough due to stuck or partially sintered powders, as 

clearly seen on Figure 112. In comparison to the bare scaffold surfaces, film coated scaffolds 

presented a smoother surface. Notably, the Ti-6Al-4V surfaces were homogeneously coated 

by the film as seen with all partially melted beads entirely covered by the film. 
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Figure 112: Coating of architectured Ti-6Al-4V scaffolds with (PLL/HA)24 PEM film. Ti-6Al-4V 
architectured scaffolds bare and coated with (PLL/HA)24 observed under scanning electron microscopy 
(SEM) in topography mode (secondary electrons, a and c panels) and chemical contrast mode 
(backscattered electrons, b and d panels). The red arrows show scratched and uncovered areas of the 
scaffold surface 

Some of the film coated scaffolds were loaded with BMP-7 and the cellular adhesion and 

osteoinductive capacity of the bioactive implants were investigated in vitro. To this end, D1 

cells were seeded into bare, only film coated and film coated and BMP-7 loaded Ti-6Al-4V 

scaffolds. Then, the cellular morphology was observed after 3 days of culture by phase 

contrast microscopy (Figure 113A), epifluorescence microscopy (Figure 113B), with the cells 

nuclei stained with DAPI (blue), and by SEM (Figure 113C).  
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Figure 113: Cell morphology on bare, film-coated and BMP-7-film coated Ti-6Al-4V architectured 
scaffolds after 3 days of culture in growth medium observed by phase contrast microscopy (A) 
fluorescence with cell nuclei stained with DAPI as fluorescent dye (B) and by SEM in topography mode 
(C). The red circles indicates cells at the surface of the scaffold.  

In both bare (Ti) and BMP-7 loaded and film coated scaffolds (Ti + bBMP-7@25), cells colonized 

and spread at the surface with long protrusions (Figure 113C) while on film coated only (Ti + 

film), few cells are seen and aggregated, as seen on SEM observations. On fluorescence images 

(Figure 113B), the difference of nuclei number at the top and inside the scaffolds is noticeable 

with less fluorescent signal for the only film coated scaffold (Ti + film, Figure 113B). This 

observation is consistent with bright field microscopy and SEM images where on only film 

coated scaffolds (Ti + film), the few remaining cells aggregated and presented a round shape 

(Ti + film, Figure 113A and C). This might be due to the fact that EDC10 soft films solely are not 

sufficient enough to maintain the cellular adhesion. And then in order to survive, cells 

preferentially promote the cell-to-cell junctions. This survival mechanism indicates that BMP-

7 loaded into films also increased the cellular adhesion at the scaffold surface.  

 

Following those qualitative observations, the ALP expression was also measured after 3 days 

of culture (Figure 114). As shown by ALP levels expression, only D1 cells cultured on the BMP-

7 loaded and film coated scaffolds exhibited a significant level of expression (Ti + bBMP-7@25, 
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Figure 114). This results proves that the bioactive implant can effectively trigger the 

osteogenic differentiation of murine stem cells. 

 
Figure 114: ALP activity of D1 cells on osteoinductive and architectured Ti-6Al-4V scaffolds. Alkaline 
Phosphatase expression of D1 cells cultured onto osteoinductive and architectured Ti-6Al-4V scaffolds 
after 3 days of culture in growth medium (n=3, replicated twice, *p < 0.05 with one-way analysis of 
variance (ANOVA) with Kruskal-Wallis test) 

The BMP-7 protein delivery was possible with the (PLL/HA) film surface coating into the 3D 

porous and architectured structure without using additional filling material. Those in vitro 

results support the fact that BMP-7 loaded film coating Ti-6Al-4V scaffolds may accelerate 

bone regeneration in vivo while providing a hosting structure.  

3.4.5 3D in vitro extracellular matrix mineralization on bare Ti-6Al-4V scaffolds  

To assess long term cell cultures on architectured scaffolds, D1 cells were cultured on bare Ti-

6Al-4V scaffolds and the ECM mineralization of D1 cells was investigated by Alizarin Red S 

staining after 14 days of culture. Stained scaffolds were observed under SEM to visualize the 

cellular morphology and ECM deposition at the top of the scaffolds (Figure 115A).  

From SEM images, we were able to distinguish a slight difference in the ECM deposition 

between the differentiation medium over the growth medium culture condition. In 

differentiation medium, more ECM was deposited by the cells compared the growth medium. 

From SEM chemical contrast observations, we noticed that the scaffold surfaces in DM were 

more homogeneously covered by organic material than in GM (chemical contrast BSE, Figure 

115). This difference in the ECM deposition was confirmed by macroscopic observations with 

the red staining perceptible only for scaffolds with cells cultured in DM (Figure 115B). After 

staining, the red dye bound to the ECM deposited on scaffolds was dissolved to measure the 

corresponding absorbance values (Figure 115C). The results were positive only for scaffolds 

with cells cultured in DM even if we observed a high standard deviation among the samples. 

The latter was due to cells death in one of the samples, resulting in a negative result.   
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Figure 115: Alizarin Red S staining of the extracellular mineralization of D1 cells cultured on bare Ti-
6Al-4V scaffolds for 14 days in growth and differentiation medium. Observed under scanning electron 
microscopy in topography and chemical contrast modes (A), macroscopic loupe (B) and the 
corresponding extracted absorbance at 405 nm from the dye solubilisation (C)  
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Those preliminary results demonstrated the effective ECM mineralization of D1 cells on bare 

Ti-6Al-4V scaffolds in DM, as previously demonstrated in 2D investigations (Figure 116). This 

experiment proved that we were able to maintain long term cell culture into 3D scaffolds in 

vitro. 

 

3.4.1 Design strategy for in vivo architectured and osteoinductive Ti-6Al-4V implant for a 

critical size femoral bone defect in rat  

For future investigations, we aimed to set up an in vivo experiment to repair a femoral bone 

defect in rat. According to the rat femoral critical size bone defect established in the 

literature152,160, the design of an architectured titanium implant had to be specific for this bone 

Figure 116: Main results obtained from 2D and 3D in vitro osteoinductive investigations. The ALP 
expression was studied in 2D on plastic, film coated and BMP-7 loaded substrates and in 3D on bare, 
film coated and film coated and BMP-7 loaded Ti-6Al-4V scaffolds. The ALP expression was induced by 
BMP-7 loaded (PLL/HA) film in 2D substrates and in 3D BMP-7 loaded and film coated scaffolds. The 
mineralization was studied in 2D on the three types of substrates and on bare Ti-6Al-4V scaffolds in 3D. 
The ECM mineralization obtained in 2D solely with the differentiation medium was also reproduced in 
3D scaffolds  



135 
 

defect. To this end, a section of rat femur was scanned by X-ray micro tomography (Figure 117 

A and B). The femur cross section dimensions were measured with ImageJ software214 and 

used to design two types of in vivo architectured implants in Solid Edge software (Siemens©, 

USA).  

In regards to the bone defect size fixed at 6 mm, the femur cross section dimensions and fixing 

requirements for the back of the implants (plate and screws), implants were designed with an 

elliptical cross section (3 mm x 4 mm) and a height of 6 mm. The CAD design of the first type 

of implants and the EBM-built implant are represented in Figure 117 C and D. 

 

Figure 117: Design strategy for in vivo experiments using an architectured Ti-6Al-4V implant adapted 
for a critical size femoral bone defects in rat. (A) Representation of the rat femur and one of the EBM 
built Ti-6Al-4V implant for implantation (B) Cross and lateral sections of the rat femur obtained by X-
ray tomography prior implantation (C) Computed Aided Design of one of the Ti-6Al-4V implant (D) 3D 
representation of EBM built Ti-6Al-4V implant obtained by X-ray tomography 

The surface of the first type of in vivo implant (Figure 117C) was estimated to be at 1 cm² 

according to the CAD. In order to increase the surface area and thus deliver a higher amount 

of BMP-7 in the same bone defect model, the second type of implants were designed and built 

with the same structure by adding two crossing struts at each levels of the first previous 

implant (Figure 118). This addition of material increased the implant surface at 1.5 cm² 

according to its CAD representation.   

 

Figure 118: CAD representation of in vivo Ti-6Al-4V implants for critical size femoral bone defect in 
rat. The two type of implants with a 1 cm² (A) and 1.5 cm² (B) total surface areas are respectively 
represented 
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In order to know which amount of BMP-7 triggers an efficient bone repair in mouse and rat 

bone defects, a bibliographic research on the repair of bone defects using BMP-7 was 

undertaken (Table 12). The BMP-7 amounts are in the range of 1 to 100 µg depending on the 

animal species. Beside, BMP-7 was always either delivered directly via injection or using a 

collagen carrier. For our preliminary trial, we decided to use a high BMP-7 concentration for 

the loading in order to reach a total amount of 20 µg.  

Animal Model 
Carrier 

material 
Amount of 
BMP-7 (µg) 

Main results Ref 

Mouse 

Muscle pouch assay 
Collagen 
granules 

 
52.5 Bone formation 215 

Closed transverse 
mid-diaphyseal 

fractures of the tibia 
 

10% 
lactose 
solution 

 

10, 50 
Repair and 

vascularization 
216 

Rat 

Bilateral full-
thickness diaphyseal 

segmental defects 

Nanofiber 
mesh 
tubes 

5 Bone repair 217 

Subcutaneously 
Intramuscular 

Collagen 
sponge 

0, 1, 3,  
5, 10, 20 

Inflammatory 
reaction and 

edema formation 

218 

6-mm critical size 
defect 

Collagen 
sponge 

25, 50,  
75, 100 

100% union rate 
for 50, 75, and 100 

25 too low 

219 

Mid-diaphyseal 
closed transverse 

fracture 
Collagen  50 

At 4 week, 63% 
had healed 

At 6 weeks, 100% 
had healed 

220 

Table 12: Literature research on appropriate BMP-7 amount for bone repair in mouse and rat bone 
defect models 

Thus, the two types of implants were coated with (PLL/HA)24 film and loaded with BMP-7 in 

sterile conditions at the concentration of 150 µg/mL for future in vivo implantation. The two 

architectures were loaded with the same BMP-7 concentration and have different surface 

area, of 1 and 1.5 cm² respectively. Since with a loading concentration of 100 µg/mL, the 

delivered amount of BMP-7 is at 12 µg/cm², we expect to deliver for the two implants at least 

more than 12 and 18 µg of BMP-7 respectively, and see different bone regeneration kinetics. 

This kinetic could either be related to the different architectures or the BMP-7 dose.  
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3.5 Discussion 

3.5.1 Better knowledge of the mechanical properties of EBM built cubic unit cell Ti-

6Al-4V scaffolds 

Thanks to emerging additive manufacturing (AM) processes, customized bone graft substitute 

can be built and structurally and mechanically optimized for a specific bone defect. EBM 

manufacturing process is one of the main AM technique that allows the building of highly 

porous structure with a medical grade metallic material, the Ti-6Al-4V alloy. In this study, we 

showed the versatility of this manufacturing technique by building porous Ti-6Al-4V scaffolds 

made of a repeated cubic unit cell with three different pores sizes and thus reaching different 

global porosities (Figure 98, Table 11). In a recent review establishing a state of the art of all 

the EBM-built Ti-6Al-4V scaffolds, cubic unit-cell scaffolds mechanical properties have been 

investigated for porosities ranging from 49.75% to 70.32%68. The reported values of elastic 

moduli and our measured values as a function of the relative density are presented in Figure 

119. 

 
Figure 119: Representation of the elastic modulus obtained by compression for Ti-6Al-4V cubic unit-
cell scaffolds as a function of the relative density. Red dots represent the values obtained from the 
literature68 

Unexpectedly, reported values are either 10 times lower or 5 times higher than the obtained 

values of this study. This scattering in moduli is not only due the difference in relative density 

but also in the methods employed to measure the elastic modulus. In the reported values, 

only the scaffold with E = 15 GPa was measured with cycles of loading-unloading while for 

others values, they were obtained by one-way compression tests to failure221. This 

demonstrates the remaining uncertainty in mechanical characterization for Ti-6Al-4V 

architectured scaffolds.  
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In this study, we added to the knowledge of mechanical properties of EBM built cubic unit-cell 

scaffolds of porosities from 73% to 85% by measuring their compressive elastic modulus. Cubic 

unit-cell scaffold with 63% porosity (relative density 0.37, E = 14.9 GPa red dot Figure 119) 

was found to be the closest structure, in terms of compressive strength, elastic modulus and 

fatigue strength, to human cortical tibia and femur68. In that sense, we selected a scaffold 

structure which has the potential to be translated to the clinical level in human patient for this 

type of bones. 

3.5.2 BMP-7 incorporation into (PLL/HA) polyelectrolytes films 

Depending on the bone trauma to be repaired, bone grafts are either autograft, allograft or 

synthetic scaffolds. Autograft or allograft treatments are limited in terms of available bone 

volume and possible risks of rejection in the case of allograft. Synthetic scaffolds made from 

biocompatible materials are the most used strategy for bone repair. The next generation of 

bone graft substitutes under development are now incorporating bioactive molecules such as 

BMP-7, in order to help the bone healing process. One of the main challenges to be resolved 

for those substitutes is the incorporation of bioactive molecules, their storage and appropriate 

delivery after implantation. In this study, we used a biopolymeric film made of two 

polyelectrolytes, poly(L-lysine) (PLL) and acid hyaluronic (HA) as a coating to deliver BMP-7, 

with PLL being approved for food application and HA being approved by the US Food and Drug 

Administration and the European Medicine Agencies (EMA) for bone tissue engineering. This 

specific PEM film has been investigated for bioactive molecule delivery of the well-known 

BMP-2 for bone regeneration investigations152,154,155,222. Here, we showed that this specific 

film can also incorporate BMP-7.  

We also studied this incorporation depending on the films crosslinking level (EDC10 and 

EDC30) and on increasing BMP-7 loading concentrations. The quantification of the BMP-7 

incorporated amount into (PLL/HA) film made of 12 bilayers was previously done by our 

team153 for films crosslinked with EDC10: the maximum incorporated amount was 2 µg/cm² 

for an initial concentration of BMP-7 during the loading phase of 100 µg/mL. Here, we showed 

that by doubling the number of bilayers from 12 to 24, the BMP-7 incorporated amount 

increased to 12 µg/cm² for the same loading concentration of 100 µg/mL. Moreover, this 

amount was dependent on the EDC crosslinking level, with 3 µg/cm² less BMP-7 protein 

incorporated in the case of EDC30 films. Finally, EDC10 films with 24 bilayers are able to retain 

and deliver the largest amount of BMP-7. 

3.5.3 (PLL/HA) polyelectrolytes films as BMP-7 carrier for human clinical trials 

According to Reichert et al128, the recommended dose of rhBMP-7 for recalcitrant long bone 

non-union in humans was determined to be 7 mg, independently of the bone defect, size and 

site of fracture 128. In the reported clinical uses, the BMP-7 amount used was more in the order 

of 3 mg223,224. By using a bone graft substitute having a surface area of 250 cm², we would be 

able to deliver the same amount of BMP-7 through our (PLL/HA) PEM film coating of 24 

bilayers and a crosslinking level at [EDC] = 10 mg/mL. However, those doses remain quite high 

comparing to the physiological doses that are in the nanogram range. Through the PEM film 
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coating, we would be able to deliver locally and more effectively smaller amount of BMP-7 

and thus reduce possible adverse effects risks. 

3.5.4 BMP-7 bioactivity preserved into (PLL/HA) films for short term cell culture 

To verify if BMP-7 remained osteoinductive after its incorporation into the PEM film, we 

conducted in vitro cell culture with the D1 cell line (murine mesenchymal stem cells). Their 

proliferation after 1, 2 and 7 days and their ALP expression after 3 days were assessed. BMP-

7 loaded films induced a concentration dependent ALP expression, proving the effective 

osteoinductive capacity of the coating. In a previous study performed by Guillot et al., the 

same PEM film coating containing BMP-2 was proven to be stable at least one year after the 

storage at 4°C. Also, they showed that its osteoinductive capacity was preserved after 

exposure to clinically approved doses of ɣ-irradiation. Given that BMP-7 has very similar 

chemical structure and properties than BMP-2, we can assume that BMP-7 loaded films could 

also be sterilized and stored while preserving its osteoinductive capacity.   

3.5.5 Non BMP-7 dependant extracellular matrix mineralization of D1 cells 

The ECM mineralization of D1 cells in regards to the BMP-7 presentation was assessed. Even 

if BMP-7 could induce the ALP expression at the early stage, the protein did not influence their 

ECM mineralization. In the literature, we found out an article that specifically studied the D1 

cells line and the effects of BMP-2, BMP-4, BMP-6 and BMP-9 on their ECM mineralization225. 

After 7, 14 and 21 days of culture in osteogenic differentiation medium with soluble BMPs 

(BMP-2-4-6-9), they discovered that the mineralization could not be enhanced by BMPs with 

the Alizarin Red S staining. Then, they analysed the osteogenic differentiation by measuring 

the expression of osteogenic transcription factors, namely runX2 and osterix after 7, 14 and 

21 days. The gene expression of transcription factors was also not influenced by the BMPs 

presence, indicating that D1 cells differentiation was mainly triggered by the osteogenic 

differentiation medium. 

 

The D1 cell model we selected for this study was not adapted to highlight the osteoinductive 

effect of the BMP-7 loaded (PLL/HA) film coating for an in vitro ECM mineralization. This was 

specific to this cell line which naturally differentiates to an osteogenic lineage and which ECM 

mineralizes solely in presence of acid ascorbic and β-glycerophosphate, as proven for others 

BMPs225.Those results highlighted the strong dependence of in vitro results on the cellular 

model selected. This is the reason why human MSCs, which represent more physiological 

cellular models, are more and more used for in vitro studies. 

3.5.6 Effect of (PLL/HA) films on the topography of EBM built Ti-6Al-4V implants 

To the best of our knowledge, bare surfaces of our EBM built Ti-6Al-4V scaffolds did not 

displayed any specific nanofeatures. Previous AFM measurements on Ti-6Al-4V casted 

substrates coated with (PLL/HA)24 polyelectrolyte film indicated a smoother surface due the 

film addition193
.  The bare Ti-6Al-4V substrate had a roughness of 8.1 nm that was reduced to 

1.2 nm by the (PLL/HA)24 film coating.  
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In this study, the roughness of EBM built scaffolds was not measured. However, in a previous 

work done with the same EBM machine on single struts, the roughness was estimated at 35 

µm in average226. As we observed in Figure 112, the addition of (PLL/HA) film at the scaffold 

surface induced a surface smoothing. Compared to the actual scaffold roughness, the film 

addition without BMP-7 neither changes significantly the micro-topography roughness nor 

adds significant nano-features affecting the osteogenic differentiation.   

3.5.7 BMP-7 surface delivery from porous and architectured EMB built Ti-6Al-4V 

implants 

Currently, several additive manufactured titanium bone graft substitutes are now available in 

the market for spinal replacement surgeries68. The first bioactive bone implant 

commercialized for spinal fusion surgeries was the Infuse® Bone Graft from Medtronic. This 

bone graft substitute consisted in a titanium cage containing a collagen type I paste in which 

rhBMP-2 was added for the delivery. Due to low-binding affinity of BMPs to collagen, this 

product required the use of supra-physiological dose of BMP-2 (1.5 mg/mL) which caused 

several adverse effects such as inflammation and pain115. Given the increasing use of AM for 

spinal implant and the potential use of bioactive molecule for spinal applications, combining 

our PEM film coating with architectured AM scaffolds could meet the demand for this type of 

bone trauma. Here, we applied the PEM coating to AM cubic unit-cell scaffolds, loaded the 

PEM coating with BMP-7 and verified the osteoinductivity of the whole construct in vitro. The 

murine MSCs adhered and expressed ALP after 3 days of culture in presence of BMP-7 in the 

PEM film coating at the scaffold surface. At the best of our knowledge, we were the first to 

deliver a BMP from Ti-6Al-4V porous scaffolds without using an ECM based gel filling the pores.  

3.5.8 Potential advantages of the combination of our architectured and 

osteoinductive strategies 

Combining 3D porous structures with 2D surface growth factor delivery present the advantage 

to leave enough space for the new bone to invade the structure while the surrounding cells 

are exposed to the growth factor and then performed the wanted biological healing cascade. 

The effectiveness of this 3D porous volume/2D surface delivery strategy was previously 

performed by Bouyer et al.152 on a hollow PLGA tube coated with PEM film containing BMP-2. 

In this work, the bone defect were completely repaired after 2 weeks of implantation in critical 

size femoral bone defect of 6 mm in rat with 6.5 µg of BMP-2 delivered from 1.34 cm² surface 

area. If we make the simplified assumption that BMP-2 is twice more potent than BMP-7 in 

regards to in vitro ALP expression level (Figure 103), we would require in the same 

configuration 13 µg of BMP-7. In human, the critical size of bone defects was estimated to be 

in the order of 2.5 cm or greater227. Assuming that the defect is located in an adult femur with 

a diameter of 4.5 cm, the surface available on a cylindrical implant for a 2.5 cm bone defect 

would be of approximately 35.32 cm², being 25 times more than in femoral critical size bone 

defect in rat. Knowing the fact that we can incorporate 12 µg/cm² of BMP-7 into the PEM film, 

we could easily incorporate 156 µg (25 x 6.5µg) of BMP-7 with the coating at the surface of an 

35.32 cm² EBM built Ti-6Al-4V implant, while the maximum incorporation of BMP-7 would be 

of 423 µg. Furthermore, EBM built parts are known to be inherently rough due to the 
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manufacturing process. The additional developed surface from this inherent roughness could 

be beneficial to increase the loaded amount of protein, especially since we proved that our 

coating fits closely this roughness (Figure 112).  

In our particular case, the next step of this project would be to implant Ti-6Al-4V architectured 

scaffold coated with the PEM film containing BMP-7 in a critical size femoral bone defect in 

rat to understand the dual effect of the architecture and the BMP-7 presentation on the bone 

regeneration. In view to assess this dual effect, architectured Ti-6Al-4V implants were 

designed for in vivo experiments to repair a critical size femoral bone defect in rat.  

3.6 Conclusions 

Using an additive manufacturing process such as EBM, we were able to build highly porous 

cubic unit-cells scaffolds made of the medical grade Ti-6Al-4V alloy. The EBM built scaffolds 

exhibited an elastic modulus close to human cortical bones elastic modulus, showing the 

potential use of this type of architectured structures to reduce the stress shielding effect. 

According to the increasing interest to incorporate and deliver bioactive molecule to help the 

bone regeneration process, we decided to use a surface coating made of (PLL/HA) 

polyelectrolyte films to deliver BMP-7 from the architectured scaffolds. To this end, we 

studied the osteoinductive capacity of the BMP-7 loaded into PEM film with murine MSCs in 

2D before coating the 3D structures. The scaffolds coated with the osteoinductive film showed 

an efficient osteoinductive capacity in vitro at the early stage. The combination of bioactivity 

and porous architecture in bone implants could be successfully translated in clinics and be 

used in patients who need a fast but long-term bone replacement and repair. Future in vivo 

investigations in animal models will bring more elements to assess the long term 

osteoinductivity and validate its potential application.  

3.7 Acknowledgements 

This work was supported by the European Commission under the FP7 program (European 

Research Council grant BIOMIM GA259370 and Proof of Concept REGENERBONE GA790435 

to CP). CP is a senior member of the Institut Universitaire de France, whose support is greatly 

acknowledged. The Picart team is supported by the Fondation Recherche Médicale (Contract 

DEQ20170336746), the Fondation Gueules Cassées (dossier 21-2016) and the Fondation de 

l'Avenir (AP-RM-16-013). The European commission provided financial support in the frame 

of H2020/European Research Council (GA790435). WE acknowledge the Nanoscience 

foundation for support via the Chair of Excellence (FCN-2013-02CE) to Prof Amy Wagoner 

Johnson and the Center of Excellence of Multi-functional Architectured Materials “CEMAM” 

(n° ANR-10-LABX-44-01). We thank A. Wagoner Johnson for her technical information on the 

D1 cells, C. Plettinx for assistance in the mechanical tests, C. Masse De La Huerta for designing 

and building the plastic holders, I. Paintrand, I .Gelard, S. Coindeau and J. Volaire for their 

technical support in optical, electron microscopy and X-ray tomography imaging. 

 

  



142 
 

 Conclusions and perspectives 

4.1 Conclusions 

The aim of this thesis was to develop 3D architectured and osteoinductive titanium-based 

scaffolds for bone regeneration applications, presenting at the same time porosity and 

bioactivity. The project was divided into three main parts constituting the main steps of the 

implant development. First, we had to build the Ti-6Al-4V architectured scaffolds by additive 

manufacturing using the EBM technology. The structural properties of the 3D structures, 

especially their porosities and elastic modulus, were characterized.  

Secondly, we focused on the bioactive surface functionalization technique by working on 

biomimetic films (considered as 2D surfaces) prior to their coating on the 3D scaffolds. To this 

end, we used an osteoinductive coating made of several bilayers of two polyelectrolytes 

(PLL/HA) to form a film that can be loaded with BMP-7. We evaluated the diffusion of BMP-7 

and its incorporation in (PLL/HA)24 films depending on their cross-linking level. After the 

selection of the films trapping the highest amount of BMP-7, we conducted in vitro cellular 

assays using murine MSCs to test their ability to be differentiated in bone cells.  

Finally, after the evaluation of the biomimetic 2D surfaces, we coated the film on 3D scaffolds 

and characterized their coating at the macro (> 1 mm) and micro (> 100 µm) scales. Then, the 

osteoinductive capacity of the 3D architectured and osteoinductive titanium-based scaffolds 

was assessed in vitro with murine MSCs. 

4.1.1  Architectured Ti-6Al-4V scaffolds built by EBM additive manufacturing process 

The EBM process allowed us to build architectured scaffolds with periodic repetitions of cubic 

unit-cells of three different porosities of 73%, 80% and 85%. The porosities of EBM-built 

scaffolds were the same as their CAD representation with differences equal or less than 1%. 

The elastic modulus of the EBM-built structures were obtained by compression test and 

compared to values from the literature68. The modulus values of 2.0 GPa for 73% scaffold 

porosity, 2.7 GPa for 80% and 4.4 GPa for 85%, were between 50 to 25 times lower than the 

modulus of bulk Ti-6Al-4V. This first mechanical characterization suggests the potential of the 

architecture to reduce stress shielding effects. 

4.1.2 2D in vitro osteoinductive capacity of PEM film loaded with BMP-7 

The BMP-7 loading, diffusion and incorporated amount were evaluated in 2D for biomimetic 

films deposited into plastic well plates. The use of fluorescently-labelled PLL and BMP-7 

allowed to observe the BMP-7 diffusion in the (PLL/HA)24 films. The protein only partially 

diffused into the film and was mainly localized at the upper side. The two lowest levels of film 

cross-linking (EDC10 and EDC30) were studied for the BMP-7 incorporation. The film 

crosslinked with EDC10 was able to retain more BMP-7, with an incorporation of 12 µg/cm² 

for the maximum loading concentration of 100 µg/mL. Thus, this film was selected for further 

studies. Then, we evaluated the osteoinductive capacity of BMP-7 loaded films by measuring 
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the early ALP expression of murine MSCs after 3 days of culture. We demonstrated that BMP-

7 loaded films were osteoinductive at the early stages in a dose-dependent manner. 

4.1.3 Extracellular matrix mineralization of D1 cells in response to BMP-7 

The in vitro mineralization of the extracellular matrix is one of the late stage assessment of 

the osteogenic differentiation. We aimed at evaluate the osteoinductive effect of BMP-7 on 

the mineralization process. However, the murine MSCs used in this project strongly 

mineralized even in the presence of minimally osteoinductive differentiation medium. Thus, 

we were not able to highlight the osteoinductive effect of the BMP-7 loaded films on the 

matrix mineralization using those cells. Findings from the literature confirmed that this effect 

was not specific to BMP-7 but was also found out for BMP-2, -4, -6 and -9225.  

4.1.4 3D in vitro osteoinductivity of Ti-6Al-4V scaffolds coated with BMP-7 

The 3D architectured scaffolds were coated with the (PLL/HA) films and fluorescently labelled 

PLL for qualitative microscopic observations. Fluorescence macroscopy and scanning electron 

microscopy images confirmed the homogeneous coating of the film at the surface of the 

scaffolds, even on partially-fused Ti-6Al-4V beads. After the loading of BMP-7, the 

osteoinductive capacity of the 3D architectured scaffold was assessed in vitro with murine 

MSCs after 3 days of culture. Cellular morphology and colonization were qualitatively 

evaluated on scaffolds by epifluorescence and scanning electron microscopies. Cells were well 

spread and distributed on bare and on BMP-7 loaded film-coated scaffolds, while there were 

only little spreading on the film-coated scaffolds (in the absence of BMP-7). The ALP 

expression on film-coated scaffolds was significantly increased in the presence of matrix-

bound BMP-7. This proved that the 3D coated scaffolds were osteoinductive and that they 

properly delivered BMP-7.   

Altogether, our results proved that the titanium-based implant with a 3D porous architecture 

and the bioactive surface was effectively osteoinductive in vitro.  

4.2 Perspectives 

4.2.1 Architectural characterization of EBM-built scaffolds 

The structure of bone implants was found to play an important role in bone regeneration83. 

Mechanical properties, such as elastic modulus, ultimate yield or compressive strengths and 

fatigue strength, are also important to ensure the viability of the surrounding bone tissues and 

implant stability in their lifespan68. In term of architecture, features such as nano-micro 

topographies, pore interconnectivity, size and shape, and surface curvature were identified 

for guiding and controlling the bone tissue formation84. Future strategies to deepen our view 

on those aspects will be presented in this section.  

Additional structural characterization 

To better characterize our structures, it would be interesting to further analyse their structural 

dimensions (pores, surface topography and curvature) with X-ray tomography scans of EBM-
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built scaffolds. Then, additional mechanical tests with different EBM-built specimens such as 

tensile and fatigue tests could be done to complete their mechanical characterization in view 

of future implantation applications. 

Pore size and surface curvature 

In this study, in vitro titanium scaffolds were made of a periodic repetition of cubic unit-cells 

of three different porosities. The longest period of cell culture using the 80% porous scaffold 

was of 14 days. At this time point, the cells did not secrete enough ECM to visualize the pore 

size nor a curvature-dependent tissue formation. However, we could expect a tissue growth 

starting from the corners at the location of crossing struts, as seen in square-shaped 

hydroxyapatite plates92. A way to study pore size or curvature effects on EBM-built scaffolds 

would be to use smaller scaffolds in their height with a cellular model known to secrete large 

amounts of extracellular matrix proteins. 

Prediction of bone regeneration with a curvature-driven tissue growth model  

A discrete model of curvature-driven tissue prediction into 2D228 and 3D structures93,229 was 

previously developed by Cécile Bidan (Team leader at Max Planck Institute in Golm). In 2D, 

this model is a cellular automaton based on the discretization of surfaces with pixels and the 

determination of the local curvature in a defined mask. When the local mean curvature is 

negative (concave surface) voids pixels in the mask are filled and thus simulate the tissue 

growth driven by the curvature. 

This model could be used on EBM-built scaffolds tomographic representations to predict the 

tissue growth and extracellular matrix deposit inside the architectures solely based on the 

local mean curvature. Preliminary trials on in vitro scaffolds were conducted by Pierre 

Lhuissier (CNRS researcher at SIMAP) using this model. However, there are some limitations 

with the definition of the local mean curvature that leads to a null mean curvature, which is 

stopping the growth process. The improvement of this model in 3D is still in progress. In the 

future, it would be interesting to compare in vitro and in vivo tissue formation from explanted 

structures with in vivo formed bone tissue. 

4.2.2 Assessment of the film osteoinductivity  

The osteoinductive capacity of the BMP-7 loaded films was investigated with D1 murine 

mesenchymal stem cells. We measured their early ALP expression in 2D and 3D configurations 

to quantify this capacity. The current limitations and possible future strategies are presented 

in this section.   

Cellular model 

After the second wave of inflammatory cells, next implicated cells at the implantation site are 

progenitor cells. In that sense, stem cells are appropriate cellular model to assess the 

osteoinductive potential of a bioactive molecule. Human MSCs such as marrow stromal cells 

(BMSCs), adipose-derived mesenchymal cells (ASCs) and periosteum-derived stem cells 

(PDSCs) are currently used in pre-clinical and clinical trials for bone repair strategies based on 
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cells21. Those cells represent more physiological models than the murine mesenchymal stem 

cells used here.  

Further experiments with human mesenchymal stem cells or human periosteum stem 

cells230,231 could be done to confirm the long-term osteoinductive effect of the bioactive films. 

Even if those cells are more difficult to harvest and have longer proliferation time than murine 

cells, it would have been interesting to assess our film osteoinductivity with at least one type 

of human MSCs. Since February 2017, the LMGP lab is equipped with a L2 facility that enables 

the culture of human stem cells and has established a partnership with the French blood 

institute “Etablissement Français du Sang” in June 2017 to obtain human MSCs. These MSCs 

are now available at LMGP and preliminary experiences have been done recently.  

2D osteoinductive biological tests  

In order to further assess the osteoinductive capacity of the coating, it would be interesting 

to quantify the expression of early and late genes considered as bone markers, including 

transcription factors and extracellular matrix proteins, using quantitative polymerase chain 

reaction (qPCR). The most commonly investigated markers either at the gene or protein levels 

are:  

- runt-related transcription factor 2 (RunX2) which is considered as the master regulator 

of the osteogenic differentiation232 

- osterix (OSX) transcription factor during preosteoblast progenitor differentiation233 

- alkaline phosphatase (ALP) enzyme, expressed early during differentiation, responsible 

for the ECM mineralization234 

- osteopontin (OPN) non-collagenous bone ECM protein, expressed at early stages235 

- osteocalcin (OCN) non-collagenous bone ECM protein, expressed at late stages235  

These markers could also be visualized using immunofluorescence with appropriate 

antibodies. 

3D cell culture  

In vitro 3D cell culture into scaffolds raises issues in term of cell survival and long term viability. 

In this study, we cultured cells on titanium scaffolds with constant orbital agitation to ensure 

a flow in the culture medium, supply of oxygen and removal of cellular wastes. However, we 

were not sure that cells inside the 3D scaffolds were maintained appropriately. Currently for 

this type of 3D construct, bioreactors are used to maintain a constant medium flow inside 3D 

structures236. 

Another strategy to facilitate 3D in vitro culture, reduce the number of cells and depth issues 

regarding the imaging or the cellular viability, would be to reduce the dimensions of the 

scaffolds, notably their height. Indeed, 3D-mimetic platforms with heights ranging from 0.5 to 

2 mm are already employed for studying the effects of pore shapes on tissue formation in 

vitro92.  
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In vivo experiments in critical -size femoral bone defect 

In view to further assess the osteoinductive potential of our architectured and bioactive 

scaffolds, one of the future steps would be to evaluate them with in vivo investigations. It was 

initiated in a 6 mm critical-size femoral bone defect in rat with two types of porous EBM-built 

implants. Both implants were coated with (PLL/HA)24 film and loaded with BMP-7. Since they 

displayed different surface areas, a higher and lower dose of BMP-7 are presented. We expect 

that these BMP-7 loaded architectured implants will be osteoinductive in vivo and that there 

will be a difference in the bone regeneration kinetics. This kinetic could either be related to 

the different architectures or the BMP-7 dose. One of the next steps could be to compare the 

(experimentally) regenerated bone tissues to the model tissues obtained using the curvature-

driven bone model. This would enable to better understand the distinct effect of the scaffold 

architecture. Alternately, different doses of BMP-7 may be tested. Finally, we could design 

implants for larger animal models such as mini pig, goat or sheep, which are the common 

animal models for large bone defects. 
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Abstract 
To date, titanium-based alloys (Ti) remain the most used implantable materials for load-
bearing applications. Emerging additive manufacturing techniques such as electron beam 
melting (EBM) enable to custom-build architectured scaffolds of controlled macroporosity. In 
very difficult clinical situations, potent bioactive signals are needed to boost stem cells: 
osteoinductive molecules such as bone morphogenetic proteins (BMP-2) are currently used 
for this purpose. However, one of their limitations is their inappropriate delivery with collagen 
sponges. Biomimetic surface coatings made of the biopolymers poly(L-lysine) and hyaluronic 
acid, (PLL/HA) polyelectrolyte films, have recently been engineered as nanoreservoirs for BMP 
proteins. The aim of this PhD thesis was to develop architectured and osteoinductive 3D 
titanium-based scaffolds as innovative synthetic bone grafts. To this end, we used the EBM 
additive manufacturing technique to engineer porous scaffolds with cubit unit-cells. Their 
surface was coated with biomimetic films containing the bone morphogenetic protein 7 (BMP-
7). The porosity was well controlled with a difference from CAD models of less than 1%. The 
osteoinductive capacity of BMP-7 loaded films was assessed using murine mesenchymal stem 
cells (MSCs) by quantifying their alkaline phosphatase (ALP) expression, which increased in a 
dose-dependent manner. The coating of the 3D architectured scaffolds by the bioactive film 
was characterized using optical and electron microscopy techniques. Finally, the 3D 
architectured scaffolds coated with BMP-7-loaded films were proved to be osteoinductive at 
the early stage in vitro. Preliminary experiments are currently done to assess their 
performance in an in vivo model of a critical size femoral bone defect in rat. 

Résumé 
A l’heure actuelle, les alliages à bases de titane sont les matériaux les plus utilisés en 

implantologie osseuse. Les procédés émergents de fabrication additive, tel que la fusion par 

faisceau d’électrons (EBM), permettent de fabriquer des structures architecturées sur-mesure 

en titane. Dans les cas cliniques difficiles, il est nécessaire de stimuler activement les cellules 

souches osseuses pour qu’elles produisent de l’os. Les protéines osseuses morphogénétiques 

(BMP-2, BMP-7) ont cette capacité d’ostéo-induction et sont utilisées en clinique. Cependant, 

leur délivrance par matrice de collagène est très mal contrôlée. Des revêtements de surface à 

base de polymères naturels, tels que la poly(L-lysine) et l’acide hyaluronique (PLL/HA), 

peuvent former des films biomimétiques servant de nanoréservoir pour ces protéines. 

L’objectif de cette thèse était de développer un implant innovant constitué de structures 3D 

en titane à la fois architecturées et ostéo-inductrices. Pour cela, des structures 3D poreuses 

en alliage de titane (Ti-6Al-4V) constituées de cellules cubiques ont été construites par EBM. 

La porosité a été bien contrôlée avec une différence par rapport aux modèles CAO de moins 

de 1%. La BMP-7 a été chargée et quantifiée dans les films biomimétiques. La capacité d’ostéo-

induction des films a été évaluée avec des cellules souches mésenchymateuses de souris par 

leur expression de la phosphatase alcaline. L’expression de cette enzyme a augmenté de façon 

dose-dépendante avec la dose de BMP-7 initialement chargée. Le dépôt du film ostéo-

inducteur sur les structures 3D architecturées a été caractérisé par microscopies optique et 

électronique. Les cellules souches cultivées au sein des structures 3D bioactives se 

différencient en cellules osseuses démontrant ainsi leur capacité ostéo-inductrice sur le court 

terme in vitro. Des tests préliminaires in vivo sont actuellement réalisés pour tester ces 

structures 3D bioactives dans un modèle fémoral de défaut osseux chez le rat.  


