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Thèse présentée et soutenue à Saint-Louis (Haut-Rhin), le 8 janvier 2020, par

LOUISE SARRABEZOLLES

Composition du Jury :

Alain Dieterlen
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Nicolas Hueber
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“Del Spooner: So, Dr. Calvin, what exactly do you do around here?
Dr. Susan Calvin: My general fields are advanced robotics and psychiatry. Al-
though, I specialize in hardware-to-wetware interfaces in an effort to advance
U.S.R.’s robotic ahthropomorphization program.
Del Spooner: So, what exactly do you do around here?
Dr. Susan Calvin: I make the robots seem more human.
Del Spooner: Now wasn’t that easier to say?
Dr. Susan Calvin: Not really. No.”

I, Robot, directed by Alex Proyas, 2004.
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Chapter 1

Introduction

The autonomous surveillance agent concept B-SAVED (Hueber et al., 2015), which
was at the origin of the thesis research project, intends to help the soldiers in difficult
surveillance tasks. In such military context, the area covered are often on sensitive
sites and large area. Any soldier present on the site is thus exposed to an elevated
level of danger. Moreover, the communication of any device is strongly limited to
avoid all risk of message interception. The autonomous surveillance agent would
thus have to be discrete in its form and its information communication.

As in several embedded vision applications (e.g. drones, autonomous cars, un-
manned robots), the system should be minimized in Size, Weight and Power con-
sumption (SWaP), while performing real-time detection, recognition and identifica-
tion of events of interest (e.g. locations, actions, behaviors, situations of danger).
This can involve different types of objects (humans, animals, cars, drones, etc.) and
different sceneries (public places, mountains, rainy days, nights, etc.).

FIGURE 1.1 – The autonomous surveillance agent concept B-SAVED
1st generation developed by (Hueber et al., 2015) is at the origin of

the thesis research project.

Building efficient, versatile and evolving algorithms under embedded constraints
is one of today’s challenges of Computer Vision. In such context, the bio-inspired and
close to hardware approaches have been chosen as a guide for new and improved
computer vision processes. The Bio-inspired Perception Sensor (BIPS) component
and its Dynamic Attractor (DA) processing modules more specifically interested us
and are at the center of this thesis work.
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In this introductory Chapter, we present the scope and the objective of this study
in respectively Section 1.1 and Section 1.2, before resuming our contributions in
Section 1.3 and presenting the thesis outline in Section 1.4.

1.1 Embedded Computer Vision constraints

The significant progresses in computer vision at the beginning of this decade con-
ducted to a growing interest in the artificial intelligence (AI) field. The proliferation
of public researches on the subject and quick progression in the methods and re-
sults obtained led to the integration of the field as one of the eleven axes in the late
innovation for Defense orientation document of the French government (Document
d’orientation de l’innovation de Défense (DOID) 2019). The use of AI for the De-
fense, however, presents different specifications and constraints, which are far from
being solved. The ministry of the Armies, thus, points out several research chal-
lenges, among which: (1) the robustness, (2) the simplification, (3) the versatility, (4)
the embedded implementation and (5) the performance. Those challenges are also
present in several computer vision applications, like the three following examples:
surveillance, flying drone and autonomous driving (Fig 1.2).

(A) (B)

(C)

FIGURE 1.2 – Examples of embedded computer vision applications
implying multiple constraints on the mechanic, hardware and software
developments as well as on the high-level process they must be able
to perform. (A) Surveillance cameras (Hustvedt, 2008); (B) Drone
Phantom (Sorenson, 2018); (C) Waymo autonomous car (Dllu, 2017)
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Surveillance and Intelligence

Surveillance is mostly performed online by human operators on video streams and
sometimes on recorded video data (e.g. for forensic uses). Such conditions of anal-
ysis require high concentrations from the operators, which have to detect and react
quickly to potential threats after hours, even days of observation.

The most recent generation of surveillance systems (3GSSs) integrates com-
puter vision algorithms in order to reduce the data redundancy overload on the op-
erators and the storage devices. The survey of (Kim et al., 2010) and the thesis
introduction of (Ghorayeb, 2007) present the objectives of this new generation. The
new systems tend on using more and more multimodal sensors to obtain higher level
of information for threat detection and forensic analysis. Thus, the computer vision
systems have to manage a large amount of information, to correlate extracted data
from different sensors, to transmit the alert in real-time for online surveillance or to
give forensic analysis results in good time. Moreover, the transmitted data have to be
reduced to only high level information to avoid overloading the network bandwidth.
On edge computing is then necessary. Meanwhile, the sensors are expected to be
minimal in size, weight and power consumption for its discretion, portability and long
autonomy.

Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAV) are mostly used in observation tasks during flight,
having to face changeable environment and unforeseeable obstacles. Thus, their
crash risk is growing up. Any error coming from the inertial measure unit (IMU),
the control or the image analysis can lead to an unpredictable and uncontrolled be-
haviours, which eventually end in crash.

The survey (Kanellakis and Nikolakopoulos, 2017) underlines the need of real-
time, further, highly sophisticated and robust control schemes in close loop with the
perception information. The perception is, in fact, performed by numerous sensors
(e.g. single, stereo, IR or RGB-D cameras, IMU sensors, GPS), and implies a very
large amount of data to merge and to process, while the dynamics of the UAV re-
quires real-time action. Moreover, the drone mechanics is size and weight limited.
Thus, highly limiting the energy and hardware modules that can be embedded.

Autonomous driving

In autonomous driving and driving assistance, the implemented systems are con-
fronted to multiple situations (e.g. lightning, pedestrian, sudden crossing of animals,
unpredictable driver behaviours), multiple scene contexts (e.g. highway, country
road, rain, snow, fuzz). The high-level information extracted must then be relevant
for multiple tasks, thus highly increasing the computational cost and complexity of
the computer vision algorithms.

As we can see through the different surveys on the subject -e.g. (Horgan et al.,
2015), (Ranft and Stiller, 2016)-, the autonomous driving task is confronted to similar
issues as the UAVs: data fusion, high-level information extraction, robustness, real-
time and low power consumption, but with a more important need in the multi-tasking
capacity and long autonomy. The implemented algorithms must also be able to
evolve along the scenery changes, which can be abrupt like in raining cases or
crowded places.
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1.2 Objective

Close to hardware development

The Computer vision community proposes today elaborate visual processing algo-
rithms that reach an interesting level of efficiency and robustness. However, as it is
pointed out in the surveys cited above, the majority of those algorithms can not be
integrated directly in the systems due to the limitations imposed by their architecture
and their processing power.

The research project that encompasses this thesis aims to conceive, to validate
and to optimize a hardware-software design improving the detection and recognition
processes for embedded computer vision under highly constrained conditions. As
shown by the three application examples, such design development will try to reach
the five following points:

– Size, Weight and Power (SWaP) optimization

– Real-time (RT)

– Efficiency and Robustness

– Versatility

– Evolutivity

In this thesis project, we choose to follow a close to hardware approach for
our design. As explained in (Ehsan and McDonald-Maier, 2015), in the context of
UAV’s computer vision developments, the pure algorithmic approach is confronted to
many implementation difficulties and almost never reach the hardware implementa-
tion level. The choice of a close to hardware approach thus favors the RT and SWaP
mitigation of the developed design.

A peculiar processor

In the overview of existing computer vision components, the processor BIPS (Bio-
inspired Perception Sensor) (Pirim, 2015) caught our intention with its biologically
inspired aspect, its embedded properties and its promising computer vision results.

FIGURE 1.3 – BIPS processor developed by BVS-Tech (Pirim, 2015).
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The processor results of a peculiar development process, which was purely hard-
ware. Thus, no formalization or software simulator of the method behind it were
available. The objective of this thesis became then to highlight the community on
the functioning of the BIPS processor, to validate its properties and to evaluate its
performance on academic conditions.

1.3 Contributions

This thesis contributes to the formalization and simulation of the original bio-inspired
on-chip concept: the BIPS (Bio-inspired Perception Sensor), which presents inter-
esting results on different industrial vision applications (e.g. traffic analysis, driving
assistance, object tracking). The BIPS is a small and low-power component, and
proposes interesting and uncommon bio-inspired ways to perform multiple percep-
tion tasks. The thesis contributes also in the experimental analysis of the formalized
BIPS-based method, which helps in the understanding of its behavior and its param-
eters setting. Finally, the thesis proposes two extensions of the implemented method
to improve its efficiency: one by temporal prediction and the other by adaptation of
the detection process to the orientation of the input.

This work led to several publications, oral presentations and poster presentations
in French and international conferences and workshops.

Publications

Sarrabezolles, Louise, Antoine Manzanera, and Nicolas Hueber (2019). “Bio-Inspired
Perception Sensor (BIPS) Concept Analysis for Embedded Applications”. In: Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Ed.
by Ruben Vera-Rodriguez, Julian Fierrez, and Aythami Morales. Lecture Notes
in Computer Science. Springer International Publishing, pp. 428–435. ISBN: 978-
3-030-13469-3.

Sarrabezolles, Louise et al. (2017). “Dual field combination for unmanned video
surveillance”. In: vol. 10223. Anaheim, California, USA: International Society
for Optics and Photonics, 102230A. DOI: 10 . 1117 / 12 . 2262696. (Visited on
12/12/2017).

Oral Presentation

Sarrabezolles, Louise (2017a). Bio-inspired and multi-modal smart sensor for real-
time detection and recognition of visual events. ISL, French-German Research
Institute of Saint-Louis, Saint-Louis, France.

— (2017b). Dual field combination for unmanned video surveillance. Anaheim, Cal-
ifornia, USA.

— (2018a). Bio-Inspired Perception Sensor (BIPS) concept analysis and applica-
tion to real-time detection. ISL, French-German Research Institute of Saint-Louis,
Saint-Louis, France.

— (2018b). Bio-inspired Perception Sensor (BIPS) Concept Analysis for Embedded
Applications. Madrid, Spain.

http://dx.doi.org/10.1117/12.2262696
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Poster Presentation

Sarrabezolles, Louise (2016). Bio-Inspired and Multi-Modal Smart Sensor for Real-
Time Detection and Recognition of Visual Events. ISL, Saint-Louis, France.

— (2017). Bio-inspired object representation method for real-time detection and
recognition of visual events. Lincoln, UK.

— (2018a). Bio-inspired perception sensor (BIPS) concept analysis and application
to real-time object detection. Bordeaux, France.

— (2018b). Bio-inspired Perception Sensor (BIPS) Concept Analysis for Embedded
Applications. Madrid, Spain.

— (2019a). An extented bio-inspired perception sensor (BIPS) concept for embed-
ded tracking applications. ISL, French-German Research Institute of Saint-Louis,
Saint-Louis, France.

— (2019b). Bio-inspired perception sensor (BIPS) extensions for real-time detection
and tracking. Lille, France.

1.4 Thesis outline

The thesis manuscript is composed of 7 chapters following linearly the steps of our
research project, at the exception of the simulator presented in Chapter 4, which has
been developed and improved along the whole study.

Chapter 2 presents the motivations of the BIPS (Bio-inspired Perception Sensor)
component study. It firstly highlights on today’s embedded computer vision bottle-
neck, which led us to follow close to hardware and bio-inspired approaches. Then,
this Chapter gives an overview on the principal parts of the biological visual pathway,
which have been a source of inspiration in many computer vision developments and
are used by the BIPS component. This overview tries to highlight on the possible
use of such biological mechanisms, but also on the limitation of their reproduction in
software and hardware implementations. Finally, this Chapter introduces the BIPS
component, its attractive properties and its lack of formalization and academic anal-
ysis, which this thesis tries to fill in.

Chapter 3 presents the mathematical formalization of the BIPS component and
its processing modules. A first part performs local feature extractions of tonal, struc-
tural and dynamic types, but can be formalized as generic perceptive features. The
second part performs detection of object of interests, using the particular modules
called Dynamic Attractors (DAs). The formalization brings forward several parame-
ters whose setting is not automatized. Experimental studies of their influence is then
necessary.

Chapter 4 presents the simulator, which I developed during this thesis work. It
permits to illustrate the BIPS module behaviors, to easily adapt its parameters to the
different set of experiments and finally it allows to modify and extend the method
for our improvement proposals. The simulator has been developed along the whole
thesis work and thus integrates the different steps of formalization and extensions of
the method.

Chapter 5 presents the experimental study of the BIPS in the context of the road
lane detection application. This first academical experiment permits to evaluate its
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performance and the influence of several of its internal parameters. The chosen
application allows to reduce the parameters of influence to only four. Using the
caltech-lanes dataset, we have been able to propose an automatic setting of two of
those parameters, which led us to results at the level of the reference (Aly, 2008).

Then Chapter 6 proposes two extensions of the BIPS in order to improve its de-
tection performances and widen its field of applications. The first one integrates time
prediction with a Kalman filter to obtain better framings of the objects in a reduced
computational time. The second one automatically reorients the input features space
to obtain a better framing.

Finally, Chapter 7 summarizes the contributions of this thesis, then discusses
the different advantages and drawbacks of the studied method, and presents the
expected future works.

At the end, the Appendix A gives mathematical proofs of the BIPS expected
behaviour expressed in Chapter 3.
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Chapter 2

The Bio-inspired Approach

2.1 Introduction

The Bio-Inspired Perception Sensor (BIPS), on which this thesis focuses, results
from a peculiar development process. It has been created directly from hardware
blocks implementation trying to follow several bio-inspired principles. The lack of
mathematical formalization of its processes makes it difficult to understand the con-
cept and mechanisms behind it. But its embedded characteristics and industrial re-
sults make it an interesting and potential solution for the embedded computer vision
systems.

This Chapter introduces the hardware/hybrid and bio-inspired approach that led
us to the study of this peculiar component. Section 2.2 presents the hardware and
algorithmic limitations that oriented part of the bio-inspired embedded vision com-
munity toward close-to-hardware developments rather than pure algorithmic devel-
opments. Then Section 2.3 gives an overview of today’s knowledge on the human
visual systems, which is at the origin of many computer vision methods and permits
to better understand the implementation proposed by the BIPS. Finally, Section 2.4
introduces the component, its history and its industrial results.

2.2 Approach motivations

The increase in precision and quality of the sensors as well as the acceleration of
the computation capacities enable the development of new detection and recognition
algorithms with remarkable performances and thereby open new horizon for artificial
intelligence. Unfortunately, in the current state, the most promising computer vision
algorithms are still using too much computational resources and power to achieve
the RT and SWaP constraints of embedded and autonomous visual systems.

To overcome this issue, the bio-inspired computer vision community follows a
strategy which leans on the hardware limitation knowledge to build adapted bio-
inspired methods. In this Section, we explain the deep gap between the high-level
computer vision concepts and their specific hardware integration, which induces us
in the choice of bio-inspired and close-to-hardware approaches.

2.2.1 Adequacy between theoretical and engineer approaches

During the last fifty years, the computer vision community relied on Moore’s law for
a rapid computational performance improvement of their implemented algorithms.
However, the size and power consumption reduction have now reached its limitation
and new approaches should be followed (Markov, 2014).
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Some approaches will concentrate on new hardware development as presented
in (Schuman et al., 2017). However, associated software support is not ensured and
results for our constrained applications may never come. Another set of approaches
will focus on new and improved computer vision algorithms compatible with the cur-
rent hardware platforms.

A current state of hardware platforms can be found in (Shi et al., 2017) and
(Velez and Otaegui, 2016). They describe the advantages and drawbacks of the
Central Processing Unit (CPU), the Graphics Processing Unit (GPU), the Field-
Programmable Gate Array (FPGA), the Application-Specific Integrated Circuit (ASIC)
and the Digital Signal Processor (DSP) for embedded driving assistance applica-
tions. We summarized it in Table 2.1.

Hardware platform Power consumption Process level Flexibility

CPU high high modifiable

GPU very high high modifiable

FPGA very low mid modifiable

ASIC low mid specific

DSP low low specific

TABLE 2.1 – Hardware platform principal advantages and drawbacks.

The description given in the surveys highlights the difficulty of developing high
level processing for limited computational resources. Low power components are
often not suited for intensive computing as required by high-level processes and
versatile algorithms. Moreover good knowledge on their internal functioning is nec-
essary for an optimized implementation. This digs the gap between mathematical
concepts and low level hardware developments with the solution providers having
to adapt the most promising emerging concepts at the hardware level. As it is
explained in (Ehsan and McDonald-Maier, 2015), an hardware/hybrid solution ap-
proach -meaning hardware-software co-design- has therefore better potential than
pure software approach to fit in the limitations of small UAVs, and by extension of
any highly constrained embedded computer vision applications.

2.2.2 Algorithms limitations

The current most efficient algorithms for computer vision tasks are, according to the
academic datasets and challenges -e.g. (KITTI), (PASCAL VOC)-, deep learning
methods. These methods appeared in the last decades as a universal solution in
the domain. However, as G. Marcus points out in his critical appraisal (Marcus,
2018), one must not be fooled. The method excels at solving close-end classifica-
tion problems, but is soon limited with generalizing challenges dealing with limited
amount of training data, with novelty, or that can not be expressed as a classification
problem. Moreover, most of the deep learning algorithms are tested on multi-GPU
environments and yet, few of them are close to real-time. The four best algorithms
on road detection according to KITTI challenge (KITTI) are all running in between 5
and 10 frame/s, only the fifth is able to perform in real-time (Fig. 2.1). The required
energy remains the main drawback for embedded application.



2.3. Human vision 11

FIGURE 2.1 – Five best algorithms on road detection according to
KITTI challenge (KITTI). They are all deep learning based methods.
They run on highly consuming platforms, but still only one is able to

perform in more than 10 frames/s

There are several attempts to integrate simplified deep networks on low power
system-on-chip, but these are at their infancy and present much loss in the method
efficiency, evolving and real-time capacity (Ota et al., 2017). Thus, one must look
at different kinds of solutions. Among them, the neuromimetic solution, drawn on
cognitive and psychological studies, has been of constant interest in the computer
vision community and still today we have much to learn from the brain and how
it processes and extracts information from the noisy and challenging world of our
environment (Cristóbal, Perrinet, and Keil, 2015).

Estimation of the brain energy consumption, when the body is at rest is of about
20W (Power of a Human Brain - The Physics Factbook ). This energy is sufficient for
all cognitive tasks among which the visual attention tasks. However, human made
system still cannot perform such tasks even with the most efficient hardware plat-
forms. Even if the comparison between hardware system and biological system can
not be done that easily, this energy argument encourages to a better understanding
on how visual mechanisms can be so energy frugal and how we could reproduce
them on hardware platforms.

2.3 Human vision

Since the works of Hermann von Helmholtz at the end of 19th century showing that
the eyes only couldn’t make the vision possible (Cahan, 1993), psychophysicists,
neurophysicists and physiologists have continually improved the knowledge on the
primate vision. This makes it today’s most understood biological visual system and
then the most used for bio-inspired computer vision.

In this Section, we present a short overview of the current knowledge on Human
Vision to have a better understanding on the existing bio-inspired solutions and their
possible use in embedded context. This overview is concentrated on the biological
functioning of the visual system. The bio-inspiration that emerged from it will be
discussed in Section 2.4. The following description is based on several books of
Biology, among which: the Introduction to the VISUAL SYSTEM of (Tovée, 2008),
the Eye, Brain and Vision book of Nobel prized David Hubel (Hubel, 1995), the online
book of Kolb et al. (Webvision – The Organization of the Retina and Visual System)
and the Neuroscience book of (Purves et al., 2018).
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Schematically, the human visual system can be decomposed into three process-
ing parts, which form the visual pathway as represented in Figure 2.2: the retina at
the bottom of the eyes; the lateral geniculate nucleus (LGN) placed in the thalamus;
and the visual cortex. Through electrical and chemical actions of nerve cells, the
retina translates the incoming light into neural signals, which are processed a first
time in the LGN and then sent into the visual cortex for higher level processing.

FIGURE 2.2 – Schema representing the principal parts of the human
visual pathway: the retina, the LGN (visual area of the thalamus) and

the visual cortex (Visual pathway ).

2.3.1 Nerve cells

The nerve cells, also called neurons, are the main elements of the brain. They enable
the generation of action potential and the transmission of nerve impulses (Gautam,
2017). They are composed of a body called the soma; dentrites and axon attached
to the soma; and myelin sheath covering the axon, secreted by Schwann cells and
separated by nodes of Ranvier as shown in Figure 2.3.

FIGURE 2.3 – Simple schema representing the neuron (Dhp1080,
2019)
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There is between one hundred and one thousand types of nerve cells in the hu-
man brain. It is difficult for biologist and neuroscientific to put straight limits between
the different types of cells: their constitutions can differ a lot and their functions in
the brain can be totally different as it can be observed in the three parts of the visual
pathway.

2.3.2 The retina

The eyes have the function to capture and focus light on to the retina. They manage
the pupil aperture and the lens size, while maintaining good state and correct orien-
tation of the whole. Moreover, they are controlled by six extra-ocular muscles, which
orient the eyeball and trigger microsaccades whose function might also be for the
perception of motion and spatial information (Martinez-Conde, Macknik, and Hubel,
2000) (Yablonski et al., 2017).

The retina takes place at the bottom of the eye and corresponds to the first neu-
ronal layers, it is even often considered as a part of the brain (Webvision – The
Organization of the Retina and Visual System). The retina is composed of three lay-
ers of nerve cells. The outer layer composed of the cones and rods photoreceptors;
the inner layer composed of amacrine, bipolar and horizontal cells; and the ganglion
cells layer as shown in Figure 2.4.

FIGURE 2.4 – Diagram representation of the retina and its three layers
of cells (The Retina with Its Specialized Cells).
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The photoreceptors are the first cells of the process: they receive the light and
transform it into a first neural signal. The rods are sensitive to the brightness,
whereas the cones are sensitive to the colors. It has been observed that there
are three types of cones in the primate retinas: one reacts more to the red, one to
the green and one to the blue. Their distribution on the retina is unequal: most of
the cones are placed in the fovea, whereas rods are more in the close periphery as
shown in Figure 2.5.

FIGURE 2.5 – Left: Wavelength sensitivity of the cones and rods cells
(English). Right: Distribution of the cones and rods cells on the retina

(Color Sensitivity ).

The other cells perform the first combinations and higher level extraction of the
image information. Amacrine cells help inhibiting other neurons; horizontal cells help
regulate by region the photoreceptor inputs; and bipolar cells help in transmitting the
signals to the ganglion cells. Finally, the ganglion cells are at 99% composed of M-
cells and P-cells. The P-cells are selective for wavelength and high spatial frequen-
cies and have tonic responses -slow and possibly graded-. The M-cells sensitive to
low spatial frequencies and have phasic responses -fast and discontinuous-. Those
ganglion cells axons are directly linked to the visual part of the thalamus, called the
Lateral Geniculate Nucleus (or Body), and thus transmit the early processed image
to the brain. It is important to notice that the retinal cells activity is performed asyn-
chronously.

2.3.3 The Lateral Geniculate Nucleus (LGN)

The Lateral Geniculate Nucleus (LGN) can be found on each side of the brain inside
the thalamus. It consists of six layers of cells: layers 2, 3 and 5 receive signals from
the same side as the LGN and layers 1, 4 and 6 from the opposite side. The two first
layers, called magnocellular layers, receive input from the M-cells; the four others,
called parvocellular layers, receive input from the P-cells. Between those layers,
there are koniocellular cells. It has been observed that the topographic disposition
of the retinal ganglion cells were preserved within the LGN, letting suppose that the
retina map was globally maintained.

The LGN receives 90% of the signals projected from the retina, the majority of
inputs (90%) is coming from other parts of the brain, including the first layers of
the visual cortex V1 (30%) It has been suggested that the LGN did not only play
modulation and filter roles in the visual pathway, but that it had a broader role in
cognition and perception (Saalmann and Kastner, 2011).
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2.3.4 The visual cortex

Most of the knowledge on the human visual cortex derives from experiments on
monkeys, cats or rats and from psychophysical studies. They help constructing
a schematic organisation of the visual cortex, decomposed into several areas as
shown in Figure 2.6. Some areas have been identified as working mostly on motion,
form or color information.

FIGURE 2.6 – Schema representative of the human visual cortex and
its different areas (Visual cortices)

However, today’s understanding of the visual processing does not permit to give
a full description of these areas and their inner signal processes. We concentrate
here in two principal elements, on which the BIPS component based its bio-inspired
model: the primary visual cortex V1 and the dorsal and ventral streams.

The primary visual cortex

The primary visual cortex, also known as the striate cortex, corresponds to the area
V1. It is the principal receptor of the LGN cells and mostly sends computed infor-
mation to the V2 area. The work of Hubel and Wiesel in the late 70s, awarded with
the Nobel prize in 1981 (Hubel, 1982)(Wiesel, 1982), permits to reveal the colum-
nial organization of V1 and to identify that neurons from this area were responding
to edges and light-dark bars and that they were associated to specific orientations.
Further work have shown that other stimulus features (e.g. color, motion direction,
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spatial frequency) are also distributed iteratively in the columns. It is thought to-
day that the primary visual cortex performs simple filtering to enhance contours and
edges information, which are then organized such that they reach more easily the
appropriate areas of the cortex (e.g. MT for the movement, V4 for the color).

The dorsal and ventral streams

The neuron responses in some regions of the cortex suggest that they are highly
specialized in some visual processes. For example the middle temporal area (MT) is
known to react to motion stimuli, whereas the area V4 is known to react to color stim-
uli. The existence of two pathways of information processes have been hypothetized
for the primate brains: the ventral pathway ("What"), which processes identification
of an object and the dorsal pathway ("Where"), which processes the spatial localiza-
tion of the object (Weller, 1988).

FIGURE 2.7 – Schema representing the dorsal and ventral streams
(Bourne, 2010).

The M and P pathways in the cortex, coming from the LGN magno- and parvo-
cellular layers, are thought to be at the origin of these two streams. As the first type
of cells are more concerned with the motion, stereopsis and form linked to motion,
the second type of cells are more concerned with the colour and shape (Livingstone
and Hubel, 1987). The two pathways are often considered as working independently
to each others, but several elements tend to indicate that they are working together
on the object visualisation (Wang et al., 1999).

2.3.5 The brain systems

The BIPS component is also inspired by two features of the brain system: the plas-
ticity of the cortex and the attractor network.

The cortex plasticity

For decades, researchers assumed that each part of the brain acquired its specific
task in early childhood, but recent works showed that they could adapt to new tasks
even in the adult age (Gilbert and Li, 2012). Experimentation done on subjects hav-
ing neural lesion, showed that other parts of the cortex were able, after a short time,
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to replace the deficient neuronal region. Also, experiments done by (Rita, Tyler, and
Kaczmarek, 2003) showed that regions associated to a type of sensory input could
adapt to another type of sensory input. It is then thought that the mechanisms used
in the visual pathway are similar to the mechanisms of other sensors pathway (au-
ditory, touch, etc.), and could be used to do high level processing of the perception
inputs.

Attractor networks

One model of the brain systems sees it as attractor networks (Knierim and Zhang,
2012). The attractor is a mathematical concept describing a state, or a collection of
states, which attract all their neighboring states. This concept is especially thought
to exist in the hyppocampus, for patterns memory (Rennó-Costa, Lisman, and Ver-
schure, 2014), but yet its has been difficult for the biologist to prove the existence of
neural circuits performing that task.

2.3.6 Conclusion

This Section presented several biological model of the brain vision and systems. Part
of those models are well known today (e.g. retina, LGN), but most of them are still
at the state of hypothetical models (e.g. visual cortex, plasticity, attractor networks).
The understanding of those biological models helps to understand the bio-inspired
computer vision algorithms and to foresee the difficulties they might encounter. In
the specific case of the BIPS component, this biological overview helps to formalize
the concept hidden behind the existing hardware implementation.

2.4 The BIPS on-chip

2.4.1 Related bio-inspired developments

David Marr’s book Vision (Marr, Ullman, and Poggio, 2010) is one of the most ref-
erenced work in the bio-inspired computer vision domain. In fact, Marr did a ma-
jor work trying to unify neurobiology, psychophysics and computer vision domains.
Unfortunately, as (Medathati et al., 2016) points it out, the study of biological and
artificial systems have, since then, drifted apart. We have to admit that the transcrip-
tion of biological systems can not be straight forward to the hardware, as the former
works asynchronously on complex chemical actions in 3D wiring networks, whereas
the latter is limited by its clock frequency, its 2D structure and its elementary silicon
logic.

The questions are: where does the bio-inspiration start and where does it stop?
There are plenty of computer vision developments considering themselves as bio-
inspired. Some are trying to build new hardware components closer to biological
neuronal systems. Others use the visual pathway model as a working step reference,
but don’t really care of the real capacity of each internal process.

In order, not to disperse ourselves we will discuss only of two bio-inspired devel-
opments: the light perception and the feature extraction process, as they are both
based on the most known parts of the visual pathway and they are both relevant for
the BIPS method.
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2.4.2 Light perception

The cameras are the first bio-inspired systems. The use of a shutter, a lens and a
sensor is inspired from the mechanics of the eye and the first retina layer: the pho-
toreceptors. The CMOS sensor, most used nowadays, tries to reproduce the Red,
Green and Blue sensitivities of the cones and compute the brightness sensitivity of
the rods from the intensity of each color. These form the RGB input. Other colori-
metric systems have also been developed to better represent the actual incoming
light, like the CIE standard system, the Yuv system and the different types of HSV
(Hue, Saturation, Value) systems (Ohta and Robertson, 2006).

The incoming light is captured on a matrix of receptive cells, which are evenly
distributed. This does not correspond well to the biological system, which perceive
the light asynchronously, with a very specific distribution of cones and rods. Some
research development are looking into new asynchronous event-based cameras, like
(Posch et al., 2014). Although their design is not new (Delbruck, 1993), their devel-
opment and use are still at their beginning. Mechanical bio-inspired organisations
have also been developed like dual vision systems (Hueber et al., 2015)(Hengstler
et al., 2007). In the BIPS, the camera input used is a classic Yuv system based on
the BT601 norm (BT.601).

2.4.3 Feature extraction

The extraction of information from the incoming light, called feature extraction, corre-
sponds to the different layers of process in respectively the retina, the LGN, and the
primary visual cortex. The feature extraction is commonly used in classical computer
vision methods before the higher level processing (detection, tracking, recognition).
The process performed in the retina and the LGN could be associated to Laplacian
of Gaussian filtering (Marr, Ullman, and Poggio, 2010), showing that low level fea-
tures could already have an impact on the vision interpretation. The organisation of
the V1 area also showed that there were three main types of features: those related
to the motion, those related to the contours and shapes and those related to the
brightness and color. This organisation is represented in the BIPS also.

2.4.4 the Bio-Inspired Perception Sensor

FIGURE 2.8 – Products of BVS-Tech based on the BIPS processor.
Left: BIPcam (BIPcam); Right: BIPeye (BIPeye).
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During our research on existing bio-inspired visual processing systems, the pro-
cessor developed by BVS-Tech (Pirim, 2015) drew our attention. Its development
began thirty years ago with the first implementation made by its inventor P. Pirim.
Since then, it went up following a bio-inspired approach using the last technological
and biological discoveries. Among them, the vision functions described by Hubel and
Wiesel (Hubel, 1995), the two streams completion (Wang et al., 1999), the principle
of cortex plasticity demonstrated by Bach-y-Rita (Rita, Tyler, and Kaczmarek, 2003)
and the attractor networks studied by Rennó-Costa et al. (Rennó-Costa, Lisman,
and Verschure, 2014). The last one inspired the peculiar module called "Dynamic
Attractor", which permits the convergence to the combined information of the "what"
and "where" streams. The module, however, is not directly related to the mathemati-
cal attractor concept, except for its expected convergence behavior. Its implementa-
tion, formalized in the next Chapter (Chap. 3), uses histograms on local features to
converge to description and localization of objects in the scene.

(A)

(B)
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(C)

FIGURE 2.9 – Examples of BIPS industrial applications: (A) traffic
management, (B) road lanes detection, (C) tracking with robotic eyes

(BVS-Tech website).

The processor has been used in different industrial applications, like road lane
tracking, robotic binocular vision, traffic management (Fig. 2.9) This diversity demon-
strated a certain versatility of the system, which is low-power (3W). The combination
of these properties widens the application range. However, there is still no formal-
ization of the system enabling an efficient integration within a full visual system.
This formalization will help the understanding and therefore the integration in our
processing model, while keeping its interesting computational performances. This
mathematical formalisation is part of the challenge of this PhD work. The second
challenge is the identification of the parameters having to be tuned to get a correct
response.
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Chapter 3

BIPS formalization

3.1 Introduction

As introduced in the previous chapter (Sec. 2.4), the Bio-Inspired Perception Sensor
(BIPS) developed by Patrick Pirim (Fig. 3.1), is expected to have interesting real-
time performances on several detection, tracking and recognition applications and is
well optimized for autonomous embedded systems (real-time, low power). Moreover
this component is presented as a bio-inspired and generic component that could be
adapted to a large set of computer vision applications (Pirim, 2015). The chip has
caught the attention of the bio-inspired and hardware computer vision community
(BioComp 2016 – GDR BioComp) (Journées NeuroSTIC 2017 | ISIS | NeuroSTIC)
and several entities like the French Directorate General of Armaments (DGA) and
the French-German Research Institute of Saint-Louis (ISL), which decided to initiate
a PhD work on this subject in order to understand how it works and to investigate
its true potential for Defense and security projects. The lack of documentation and
scientific explanation about this concept and the absence of a software simulator
hinder the use of this method for academic computer vision applications.

FIGURE 3.1 – Image representing the BIPS component in a BVS-
Tech embedded system (Pirim, 2013). 1- Block description of the

BIPS; 2- 2013 chip; 3- Complete BVS product.
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The development history of the component can explain this situation. The BIPS
component has been developed without prior academic mathematical formalization.
Its first implementation was made in 1987 (Thuries and Pirim, 1988), then improved
along the years with bio-inspired mechanisms directly transcripted into hardware im-
plementation by P. Pirim. The existing literature on the BIPS (Pirim, 2013) (Pirim,
2015)(Pirim, 2016) focuses on the bio-inspired aspects of the component but does
not provide any formalization. My discussions with Patrick Pirim and my work on
his articles and patents allowed me to establish a mathematical formalization of
the methods used, to highlight their properties and to reproduce the BIPS behav-
ior through my own simulator.

The given representations of the BIPS component and its concept -also called
USER (Universal SEmantic Representation) concept in (Pirim, 2016)- show its struc-
ture into two main parts as presented in Figure 3.2: 1- a set of feature extractions,
2- a simultaneous description and localization of objects of interest. The second
process can itself be split into multiple similar modules called Dynamic Attractors
(DAs) -also called EMPAs (Electronic Models of Population Activities)-. Each DA
processes the description and the localization of one object in the scene. The mul-
tiplication of this module with different inputs and combination rules establishes the
complete BIPS second part as represented in Figure 3.3.

FIGURE 3.2 – Diagram representative of the BIPS’s two main pro-
cesses. Firstly, the feature extractions, which produce a set of local
features from the input image. Secondly, the description and localiza-
tion part, which detects objects of interest in the given feature space

and provides a representation of them.

This Chapter investigates the mathematical formalization of the BIPS parts and
modules with the goal of bringing to the academic community a complete reusable
expression of the method and proofs on its capacities and limits. The chapter is or-
ganized as follows. Section 3.2 focuses on the current main feature extractions used
by the component and their generic formalization. Section 3.3 presents the basic
functions used for the description and localization of one object. Then Section 3.4
investigates the complete description and localization process. Finally, Section 3.5
discusses the highlighted properties and parameters of the BIPS concept.
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FIGURE 3.3 – Diagram representative of the Description and Local-
ization part and its modules: the Dynamic Attractors (DAs).

3.2 Feature extraction

This Section focuses on the mathematical formalization of the first BIPS processing
part, which performs in parallel several feature extractions. A generic description of
this part is presented in (Pirim, 2013), (Pirim, 2015), and more details can be found
in the patents (Pirim, 1998), (Pirim, 2005).

The BIPS extracts nine local features. They are gathered, depending on their
nature, into three groups of extractors (see Fig. 3.1). These extractions correspond
to early visual features used to construct pre-attentive saliency maps, like in the work
of (Itti and Koch, 2000). The first group, deceptively called ’Global’, includes the lu-
minance, the saturation and the hue features. To avoid any misunderstanding we
change its name to ’Tonal’ features. The second group, called ’Dynamic’, includes a
peculiar estimation of the luminance temporal variation and its corresponding optic
flow. Finally, the third group, called ’Structural’, includes the gradient and the cur-
vature features. However, in the concept proposed by the inventor this part may
process all kinds of perception: vision, audio, touch and other senses. Its formal-
ization is thus not restricted to its current implementation, but needs to embrace a
larger panel of feature extractors.

The Sections 3.2.1, 3.2.2 and 3.2.3 investigates respectively the Tonal, the Dy-
namic and the Structural feature extractions proposed by the BIPS on-chip imple-
mentation. A more generic formalization of the extractors is then discussed in Sec-
tion 3.2.4, before concluding in Section 3.2.5.
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3.2.1 Tonal features

In the BIPS, the implemented Tonal features correspond to one of the cylindrical
representation of the luminance and chroma (Fig. 3.4). It is based on the (Y, Cb, Cr)
Cartesian representation and the polar transformation of its chroma coordinates to
find the corresponding hue Hu and saturation Sa (Eq. 3.1, 3.2, 3.3). A threshold τsat
conditions the hue and allows to associate a group of validated pixels Ohue with the
feature (Eq. 3.4).

Definition. Luminance
L = Y (3.1)

Definition. Saturation
Sa =

b

C2
b + C2

r (3.2)

Definition. Hue

Hu =

$

&

%

2 arctan
(

Cr

Cb+
?

C2
b+C2

r

)
, if Sa ą τsat

unde f ined , if Sa ď τsat

(3.3)

Definition. Hue validated pixels

valhue : Iˆ J ÝÑ t0, 1u

p ÞÝÑ valhue(p) =
"

1 , if Sa ą τsat
0 , if Sa ď τsat

Ohue = val´1
hue(1)

(3.4)

FIGURE 3.4 – Representation of the Tonal values, based on the
Y, Cb, Cr color space.

The light and tone are the most common features used. A multitude of bright-
ness and color spaces have been modeled, a description of them can be found in
(Malacara, 2011). Even though the computation of these color spaces comes from
the signal analysis domain, their foundation lies on the cones and rods perception in
the retina, which plays a major role in the visual perception (Sec. 2.3.2).
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FIGURE 3.5 – Extraction of the tonal features on a Magnolia image
(Wikimedia, 2006). Screen-shot of our simulator, the threshold τsat is
set at 20. Upper-left: original RGB image; Upper-middle: luminance;
Upper-right: hue; Bottom-middle: saturation; Bottom-right: group of

validated pixels associated with the hue.

3.2.2 Dynamic features

In the BIPS, the implemented Dynamic features correspond to a peculiar background
estimation and an associated temporal variation extraction, followed by an unusual
optical flow extraction. The background estimation pL is based on an exponential
smoothing of the luminance using an evolving smoothing factor α = 1/2D(t). Thus,
the temporal variation dt = 2D(t) locally adapts to the level of luminance variation
(Eq. 3.5, 3.6). A threshold τlum on this variation allows to associate a group of
validated pixels OD(t) with the feature D (Eq. 3.7) and to increase (resp. decrease)
its value by a unity u up to its maximum (resp. minimum) value Dmax (resp. 0).

Definition. Background estimation

pL(t) = pL(t´ 1) +
L(t)´ pL(t´ 1)

2D(t´1)
(3.5)

Definition. Temporal variation

D(0) = Dmax

D(t) =

#

max(D(t´ 1)´ u, 0) , if |pL(t)´ L(t)| ą τlum

min(D(t´ 1) + u, Dmax) , if |pL(t)´ L(t)| ď τlum

(3.6)
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Definition. Temporal variation validated pixels

valD(0) : Iˆ J ÝÑ t0, 1u
p ÞÝÑ valD(0)(p) = 0

valD(t) : Iˆ J ÝÑ t0, 1u

p ÞÝÑ valD(t)(p) =

#

1 , if |pL(t)´ L(t)| ą τlum

0 , if |pL(t)´ L(t)| ď τlum

OD(t) = val´1
D(t)(1)

(3.7)

FIGURE 3.6 – Extraction of the dynamic features on the "traffic.mj2"
video (MATLAB and Image Processing Toolbox Release R2018a).
Screen-shot of our simulator, the threshold τlum is set at 50, the
step unit u at 1 and the maximum temporal variation at Dmax =
8. Upper-left: original RGB image; Upper-middle: estimated lumi-
nance; Upper-right: temporal variation; Bootom-left: velocity module;
Bottom-middle: velocity direction; Bottom-right: group of validated

pixels associated with the temporal variation.

In the biological point of view, even though studies showed which parts of the
brain play an important role in processing motion information, it is not known today
which exact form of features they use. The choice of specific dynamic extraction
is just one of many possibilities helping in motion processing (Burr and Thomp-
son, 2011). Among them, the optical flow is a well-known feature in computer vi-
sion (Agarwal, Gupta, and Singh, 2016), but the chosen implementation of it in the
BIPS does not correspond to the classical and academic approaches. The pro-
posed method is quite empirical and limited by the peculiar movement model, which
is based on the spatial variation of the specific time parameter D. Moreover the Dy-
namic feature extracted have a small range of possible values -represented by 3bits
only-, which led us to put aside these features in our future experiments.



3.2. Feature extraction 27

3.2.3 Structural features

In the BIPS, the implemented Structural features correspond to the gradient module
Mo and angle An resulting from the convolution of the luminance and the chosen
edge filter kernel W followed by a polar transformation (Eq. 3.8, 3.9, 3.10). A thresh-
old τmo conditions the angle and allows to associate a group of validated pixels Oang
to the feature (Eq. 3.11). An empirical extraction of the angle variation is also pro-
posed and roughly associated to the curvature.

FIGURE 3.7 – Representation of the gradient coordinates. For a bet-
ter visualization, the values are associated with colors.

Definition. Gradient

BL
Bj

= conv (W, L) and
BL
Bi

= conv
(
Wt, L

)
(3.8)

Definition. Gradient module

Mo =
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BL
Bj
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+
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Bi

)2

(3.9)

Definition. Gradient angle

An =
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 , if Mo ą τmo

unde f ined , if Mo ď τmo

(3.10)

Definition. Gradient angle validated pixels

valang : Iˆ J ÝÑ t0, 1u

p ÞÝÑ valang(p) =
"

1 , if Mo ą τmo
0 , if Mo ď τmo

Oang = val´1
ang(1)

(3.11)
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FIGURE 3.8 – Extraction of the structural features on a road signs
image (Commons, 2012). Screen-shot of our simulator, the threshold
τmo is set at 4% of the maximum possible value. Upper-left: original
RGB image; Upper-middle: gradient module; Upper-right: gradient
angle; Bottom-left: pixel validation associated with the angle varia-
tion; Bottom-middle: angle variation; Bottom-right: validated pixels

associated with the gradient angle.

The edge extraction is performed in the visual cortex by cells of the first layer,
which have been identified by (Wiesel, 1982) and (Hubel, 1982). Even though the
work of (Marĉelja, 1980) and (Daugman, 1980) showed that the Gabor kernels gives
a better reproduction of the cells activities, the Gaussian kernels model has long
being used. Just as the Canny edge detector (Canny, 1986), the BIPS edge extrac-
tion uses the first derivative of a 2D Gaussian steerable filter (Eq. 3.12). However,
the given matrix in the patent (Eq. 3.13) does not exactly correspond to the value
of such filter. With a comparative analysis of the given values and the filter model
values while varying its parameters, we are able to give its closest representation,
which corresponds to n = 3, K = 15.1 and σ = 1.44.

Definition. First derivative of a 2D Gaussian steerable filter of size 2n + 1

@ i P J´n, nK,@ j P J´n, nK,

W(i, j) =
BG
Bj

(i, j) = K
´j

2πσ4 exp
(
´

i2 + j2

2σ2

)
(3.12)

Definition. Fixed kernel from the patent (Pirim, 2001)

W =



0.022 0.049 0.050 0.0 ´0.050 ´0.049 ´0.022
0.074 0.163 0.167 0.0 ´0.167 ´0.163 ´0.074
0.0151 0.334 0.342 0.0 ´0.342 ´0.334 ´0.151
0.192 0.424 0.434 0.0 ´0.434 ´0.424 ´0.192
0.0151 0.334 0.342 0.0 ´0.342 ´0.334 ´0.151
0.074 0.163 0.167 0.0 ´0.167 ´0.163 ´0.074
0.022 0.049 0.050 0.0 ´0.050 ´0.049 ´0.022


(3.13)
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For our experiments, we chose to use the generic kernel construction rather than
using the fix kernel of the chip, as this gives us more flexibility on the choice of the
matrix size and variance used.

3.2.4 Formalization

The BIPS first processing part, according to (Pirim, 2015), should be able to provide
a wider panel of features (e.g. visual, sound) However it is not said which conditions
they must fulfill to maintain the BIPS properties.

Based on our BIPS concept study (see Sec. 3.3, 3.4), we are able to propose a
formalized definition of the extracted features (Eq. 3.14), such that the BIPS com-
putation and detection properties are preserved. The feature is represented by an
application from a domain P to a feature space Ω.

Definition. Feature
F : P ÝÑ Ω

p ÞÝÑ f = F(p), (3.14)

To ensure the histogram computation and convergence performed by the follow-
ing processing part of the BIPS, the definition must respect the following conditions:

– The set P must be the same for all connected features in the Dynamic
Attractor (DA) modules

– The space Ω must be represented by a finite and totally ordered set
of values

Visual feature example

In the case of visual local features, the set P can be the pixel set Iˆ J = v0;Hw ˆ
v0;Ww, where H and W are the height and width of the input image. For the lumi-
nance, the set representing Ω can be t16, 17, . . . , 235u and the corresponding ap-
plication L(i, j) = floor (Y(i, j)). For more precision on the luminance the chosen
set could be t16, 16.25, . . . , 234.75, 235u and the corresponding application L(i, j) =
floor(Y(i,j)˚4)

4 .

Cyclic space case

The feature space can be cyclic as for the hue or the gradient angle, in this case
if the representing set is G = tg0, . . . , gn´1u the selection performed by the Feature
Mode Detectors (FMD), presented in the following Section (3.2) would separate g0
and above from gn´1 and beneath whereas they correspond to the same object.

FIGURE 3.9 – Boundaries selection in the cyclic case, when the se-
lection is around the upper values of the set.
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To avoid such cut we propose an extension of the BIPS: the chosen representing
set for Ω is

!

g´(n´1), . . . , g2n+1

)

. The points of the initial set G are repeated three
times allowing to detect the right boundaries around a peak of the feature histogram
without changing the algorithm as shown in Figure 3.9. Only the histogram mode
fmax is still chosen in G.

3.2.5 Conclusion

The BIPS first part presented in this Section tries to mimic the perception and infor-
mation extraction of the human senses. In its current implementation, several local
visual feature extractions can be performed in parallel and on the fly.

The luminance is directly extracted from the input (Y, Cb, Cr). The hue, the sat-
uration and the temporal variation are extracted pixel wise and without delay as the
polar transform -computed with the CORDIC method (Volder, 1959)- and the back-
ground estimation can be obtained on the fly. The gradient module and angle ex-
tractions depends on the size of the convolution kernel, as well as the velocity and
the angle variation extractions depend on the size of the surrounding matrix used for
their computation. In the BIPS the convolution kernel is a 7ˆ 7 matrix, the velocity
uses a 17ˆ 17 matrix, and the angle variation uses a 3ˆ 3 matrix, it implies respec-
tively a 3 lines delay, and 8 lines delay and a single line delay for their computation.
This is summarized in Table 3.1.

Extraction Computation Dependency

Tonal no delay input pixel (Y, Cb, Cr)

Temporal variation no delay luminance pixel L = Y

Velocity 8 lines delay
temporal variation 17ˆ 17

surrounding matrix

Gradient 3 lines delay
luminance 7ˆ 7 surrounding

matrix

Angle variation 1 line delay
gradient angle 3ˆ 3 surrounding

matrix

TABLE 3.1 – Implemented feature extractions computation time and
dependency to other pixels and features.

Some of the experimental features proposed by the BIPS inventor P. Pirim can
be linked to well-known extractions like the HLS and the gradient extractions. But,
others like the dynamic features are unique and peculiar. Moreover, these peculiar
features present a lack of dynamic -only 3bit-, which does not allow much segmenta-
tion possibilities. The proposed concept, though, allows to implement other features.

We have been able to build, based on our formalization of the BIPS detection
process presented in the following Section (Sec. 3.3), a generic model of the feature
extraction usable in the BIPS. This model can be filled by any kind of sensory fea-
tures as long as they are represented by a finite and totally ordered set of values.
The extractions performed in this first part of the BIPS build a set of features, which
will become the inputs of the second part of the BIPS.
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3.3 Description and Localization: DA module

This Section focuses on the formalization and simulation of the Dynamic Attractor
(DA), which is the main module of the BIPS second part. It performs, in the visual
case, the simultaneous description and localization of an object in the image, which
is in the generic case of sensory features the result of a detection in the DA associ-
ated feature space.

Its first description appears in the patent (Thuries and Pirim, 1988), with a more
detailed description in the patent (Pirim, 2001). Then several similar definitions have
been presented: in (Pirim, 2013) under the name EMPA (Electronic Models of Popu-
lation Activities); in (Pirim, 2015) and (Pirim, 2016) under its current name Dynamic
Attractor (DA). All these descriptions show its decomposition into three identical sub-
modules (see Fig. 3.10). We called them Feature Mode Detectors (FMDs), based
on their actual function.

Firstly, the Feature Mode Detector (FMD) is presented in Section 3.3.1, then
these equations are extended for the Dynamic Attractor (DA) formalization in Sec-
tion 3.3.2 with an analysis of its computational capacities. The expected behavior of
the method is then illustrated on synthetic images in Section 3.3.3, before concluding
in Section 3.3.4.

FIGURE 3.10 – Image representing the Dynamic Attractor (DA) and
its decomposition into three identical sub-modules (Pirim, 2013).
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3.3.1 Feature Mode Detector (FMD)

Module description

A description of the Feature Mode Detector (FMD) is presented in (Pirim, 2013) and
summarized in the article by the Figure 3.11-Left. But we propose a simplified model
in Figure 3.11-Right based on our understanding of its operation.

The FMD receives two synchronized data flows: one coming from the data fea-
ture extractions (referred to as "Criterion"), the other coming from a bus connected
with other FMDs, which validated or not the computation for the incoming pixel
("Val."). This validation forms a mask on the analyzed data. Then the FMD per-
forms two principal operations: firstly, the selected feature histogram is computed
under the mask condition ("Histogram" block); then, boundaries selecting the max-
imum or all maximum peaks are computed ("Automatic classification"), to which a
value of shift prediction can be added ("Anticipation"). A third operation is performed
in parallel: the median of the histogram computation. The FMD has two distinctive
sets of outputs: first the validation (binary value per pixel) obtained through the limi-
tation of its boundaries ("Classification" block), then the registered data ("Registers"
block).

FIGURE 3.11 – Image representing the FMD. Left: Schema from
(Pirim, 2013); Right: Simplified diagram.

Inputs

The feature input can be formalized by the generic application F defined in Sec-
tion 3.2.4 (Eq. 3.14) and the validation can be formalized by the following application
val (Eq. 3.15).

Definition. Validation
val : Iˆ J ÝÑ t0, 1u

p ÞÝÑ val(p) (3.15)
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Histogram computation

The FMD operation begins with the construction of the conditioned feature histogram
H. It is computed on the fly and conditioned by the validation coming from the other
FMDs and the two already existing boundaries of the feature values, A the minimum
and B the maximum (Eq. 3.16). The histogram mode can be stored while doing this
computation, its value qmax and its corresponding feature value fmax are then used in
the boundary update computation. As several f P Ω can be fmax , we chose the same
definition as in the chip, that is the minimal one. But we must keep in mind that the
choice could be made different to improve the mode detection.

Definition. Conditioned feature histogram

H : Ω ÝÑ N

f ÞÝÑ H( f ) = card

$

&

%

p P Iˆ J

/ val(p) = 1,
F(p) = f ,
A ď f ď B

,

.

-

(3.16)

Definition. Histogram maximum

qmax = max
fPΩ

(H( f )) (3.17)

Definition. Maximum associated feature

fmax = min(argmax
fPΩ

(H( f ))) = min(H´1 (qmax)) (3.18)

Boundaries update

Once the feature histogram and its maximum are computed, the boundaries A and B
can be updated. There are two ways of computing the new boundaries. One way, the
Mode 1, gives a surrounding of the maximal peak of the histogram (Eq. 3.19). The
other way, the Mode 2, gives a surrounding of all histogram peaks above a threshold
(Eq. 3.20).

In Mode 1, the research of the new boundaries starts from the maximum asso-
ciated feature fmax then looks for them by increasing (resp. decreasing) the feature
value as long as the associated number of pixels per feature H( f ) stays above the
chosen threshold τ.

In Mode 2, the research starts from the minimum (resp. the maximum) feature
value and looks for the boundaries by increasing (resp. decreasing) the feature value
as long as the associated number of pixels per feature H( f ) is under the chosen
threshold τ. The Mode 2 definition, however, does not work with cyclic features.

There are two definitions of the updated boundaries that can be chosen, one is
inclusive, the other exclusive. We choose to work with the first one, but for informa-
tion the second one will be given in Section A.1.3 and reminded for the definitions
and proofs for which this choice has an impact.

Definition. Mode 1

Anew = min
!

f P Ω, f ď fmax

/
@ f

1

P [ f ; fmax ], H( f
1

) ą τ
)

Bnew = max
!

f P Ω, f ě fmax

/
@ f

1

P [ fmax ; f ], H( f
1

) ą τ
) (3.19)
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Definition. Mode 2

Anew = max
!

f P Ω
/
@ f

1

P [min(Ω); f [ , H( f
1

) ď τ
)

Bnew = min
!

f P Ω
/
@ f

1

P ] f ; max(Ω)], H( f
1

) ď τ
) (3.20)

Remark. For the new boundaries to exist, the threshold must verify the following con-
straints: qmax ą τ ě 0. This is always verified in the chip as the chosen threshold is a
fraction of qmax , which can not be null.

Outputs

The FMD has two kinds of outputs: firstly, the validation of each pixel (Eq. 3.21),
then a set of data representing the feature mode. It is composed of the computed
histogram values qmax and fmax (Eq. 3.17 and Eq; 3.18), as well as the number of
histogram pixels N (Eq. 3.23), and the updated boundaries Anew and Bnew. This
selection can be summarized by the Figure 3.12. In the chip, the median is also
computed and used in the boundaries update to anticipate the distribution variation
of the histogram when the dynamic process is done on a video stream and not only
on a static image, this aspect of the method will be explained in Section 6.2.

Definition. FMD validation

valFMD(p) : P ÝÑ t0, 1u
p ÞÝÑ valFMD(p) = (A ď F(p) ď B)

(3.21)

Definition. Validated pixel set

O = F´1 ([A, B])X val´1 (1) (3.22)

Definition. Number of pixels

N =
ÿ

fPΩ

H ( f ) = card (O) (3.23)

FIGURE 3.12 – Histogram computation and new boundaries selection
by a FMD on the gradient angle of a road image. Left: the Mode 1
selects the maximum peak ( fmax , qmax ); Right: the Mode 2 selects all

peaks above the threshold τ.
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3.3.2 Dynamic Attractor (DA)

Module description

In the chip, the Dynamic Attractor (DA) corresponds to a group of three FMDs
(Fig. 3.10). Their validation outputs ("Classification" blocks) and information coming
from other DAs ("Dynamic Area" block) are associated ("Association AND" block)
and re-injected as the validation inputs ("Val."). The feature inputs are chosen as
follows: two of them are spatial features ("X" and "Y") and one is a descriptive fea-
ture ("Criterion") (luminance, hue, etc.). This association is inspired from the "What"
and "Where" cortex processes and the hypothesis implies that both streams are in-
terconnected and work simultaneously (Sec. 2.3.4). The "What" stream is computed
by the FMDs working on descriptive features, the "Where" stream is computed by
the FMDs working on spatial features. And each of them is dependent of the other
outputs. A simplified representation of the module can be seen in Figure 3.13.

FIGURE 3.13 – Diagram representative of the Dynamic Attractor (DA).
Its current implementation is composed of three FMDs, one on a de-
scriptive feature ("What") and two on the spatial features ("Where").

Inputs

The choice of only three features inputs is arbitrary and could be done differently.
The operation of the DA leads to the detection of a group of points in the multidimen-
sional feature input space. This detection is the result of the iteration of the FMD
processes on the same scene. The input set of features can be formalized by the
vector of applications F (Eq. 3.24) selected from the feature extraction part (X and
Y included). The validation input coming from other DAs and/or external conditions
can be formalized like the application val (Eq. 3.15).

Definition. Features set input

F = (F1, . . . , FM) : Iˆ J ÝÑ Ω = (Ω1, . . . , ΩM)
(i, j) ÞÝÑ f = F(i, j),

( f1 , . . . , fM) = (F1(i, j), . . . , FM(i, j))
(3.24)
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Iterative process

The sequential and cyclic application of the FMDs operations allows to converge
to a stable framing P Ă Ω (Eq. 3.29). This framing gives a representation in the
multidimensional space of one of the object in the input image. The iterative process
implies small changes in the Histogram computation and the Boundaries update
formalization (Eq. 3.25, 3.26, 3.27 and 3.28).

Algorithm step. Initialization k = 0

@m P J1, MK, A0
m = min(Ωm)

B0
m = max(Ωm)

(3.25)

Algorithm step. Histogram computation, n P J1, MK, k ” n (mod M)

Hk
n : Ωn ÝÑ N

f ÞÝÑ Hk
n( f ) = card

$

’

’

&

’

’

%

p P Iˆ J

/ val(p) = 1,
Fn(p) = f ,
@m P J1, MK,

Ak
m ď Fm(p) ď Bk

m

,

/

/

.

/

/

-

qn,k
max

= max
fPΩn

(
Hk

n( f )
)

f n,k
max

= min(argmax
fPΩn

(
Hk

n( f )
)
) = min((Hk

n)
´1 (qn,k

max

)
)

(3.26)

Algorithm step. Boundaries update: Mode 1, n P J1, MK, k ” n (mod M)

Ak+1
n = min

"

f P Ωn, f ď f n,k
max

/
@ f

1

P [ f ; f n,k
max

],
Hk

n( f
1

) ą τk
n

*

Bk+1
n = max

"

f P Ωn, f ě f n,k
max

/
@ f

1

P [ f n,k
max

; f ],
Hk

n( f
1

) ą τk
n

*

and @m P J1, MK, m ‰ n,
Ak+1

m = Ak
m

Bk+1
m = Bk

m

(3.27)

Algorithm step. Boundaries update: Mode 2, n P J1, MK, k ” n (mod M)

Ak+1
n = max

"

f P Ωn

/
@ f

1

P [min(Ωn); f [ ,
Hk

n( f
1

) ď τk
n

*

Bk+1
n = min

"

f P Ωn

/
@ f

1

P ] f ; max(Ωn)],
Hk

n( f
1

) ď τk
n

*

@m P J1, MK, m ‰ n,
Ak+1

m = Ak
m,

Bk+1
m = Bk

m,

(3.28)

Definition. Framing

P = lim
kÑ+8

M
ź

m=1

[
Ak

m, Bk
m

]
(3.29)
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FIGURE 3.14 – Diagram representing the steps of the DA iterative
process and the evolution of its elements.

DA breakpoint

The framing Pk =
M
ś

m=1

[
Ak

m, Bk
m
]

is decreasing and converges to P in finite time.

However in the chip, the convergence breakpoint does not necessarily corresponds
to the DA breakpoint. In fact, when there is nothing to detect but noise the DA could
be running for a long time before detecting a noisy object. Consequently, a threshold
τN on the object size is added. The number of selected pixels Nk (Eq. 3.32) is used
to avoid these cases. While Nk ą τN, the detected object is considered interesting,
but once Nk ď τN the object is considered to be irrelevant and the DA is re-initialized
(Eq. 3.25) for a run in another part of the feature space.

Definition. DA validation

valk
DA

: P ÝÑ t0, 1u

p ÞÝÑ valk
DA
(p) =

M
Ź

m=1
(Ak

m ď Fm(p) ď Bk
m)

(3.30)



38 Chapter 3. BIPS formalization

Definition. Validated pixel set

Ok = F´1

(
M
ź

m=1

[
Ak

m, Bk
m

])
č

val´1(1) (3.31)

@m P J1, MK,@ k P N,
Nk =

ř

fPΩm

Hk
m( f )

= card (Ok)

(3.32)

Outputs

The DA outputs at iteration k can be decomposed in two parts: first the association
of the FMD validation outputs valk

DA
(Eq. 3.30), then the data outputs of each FMD

(Nk, f m,k
max

, qm,k
max

, Ak
m, Bk

m).
An additional output can be taken into account: the validation of the convergence,

which is reached in finite time as proved in Appendix A.2. To validate the conver-
gence the comparison of the framing before and after going through all M FMDs can
be used (Eq. 3.33).

Definition. Convergence validation

M
ľ

m=1

(
Ak

m == Ak´M
m

)
^

(
Bk

m == Bk´M
m

)
. (3.33)

Computational costs

The mathematical formalization of the DA processes allows us to give an evaluation
of their computational costs.

The DA iterative process consists of a sequential use of the FMD processes.
Therefore, as the first step needs to go all over the image, the following step can
not be working on the fly and the feature images must be stored. The computational
cost of the DA is the multiplication of one FMD computational cost by the number of
iterations before reaching the DA breakpoint. This is summarized in Table 3.2.

The time cost for each Histogram computation is of complexity O (HˆW) (image
size) and the memory cost is rF ˆHˆW bits, where rF is the chosen resolution of
the feature (8 or 10bits in the chip). The boundaries update needs to go through
all the histogram values implying a computational cost of complexity O (card tΩu)
and a memory use of rH ˆ card tΩu bits, where rH is the chosen resolution of the
histogram values (8, 10, 16 or even 32bits can be needed). Other elements like fmax ,
qmax , N, A and B also need to be stored for each FMD.

Finally, the number of iterations k f inal is finite but depends on the description of
the object in the feature space. In the best case scenario k f inal = M, only one FMD
detection per feature is enough to obtain the convergence point. In the worst case
k f inal would be under MˆHˆW/2 -at least two FMDs must change their bound-
aries and reduce the number of validated pixels when going through all M FMDs-,
but such case is not realistic when looking for an object described by the chosen
features and with a threshold proportional to the maximum value of the histogram.
In most cases, multiple runs over all the FMD are necessary to separate objects
sharing similar feature values.
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Function Computation cost

Histogram computation O(image size)

Boundaries update O(histograms bins)

DA complete process O(k f inal˚(image size + histogram bins))

TABLE 3.2 – DA computation cost per function

3.3.3 DA process illustration

In order to illustrate the behavior of one Dynamic Attractor, we tested it on synthetic
images with different configurations (type of features, update modes and threshold
rules). Three aspects of the DA process are illustrated here. First the DAs iterative
steps, then the influence of the update mode and finally, the influence of the his-
togram threshold. The experiments have been performed with our BIPS simulator,
presented in Chapter 4. A specified script has been made to run the following ex-
amples using the classes and tools we developed and the display was made with
Matlab (MATLAB and Image Processing Toolbox Release R2018a). The parameters
used in those examples have been chosen manually.

Experimentation 1: DA steps

The first test is done on the synthetic image of a green disk. The DA works on the
hue feature, with a chosen threshold τsat = 15, and on the spatial coordinates X and
Y. The histogram thresholds are set to τk

m = qm,k
max

/2. Figure 3.15 shows the different
steps of the DA process from k = 0 to k = 3, its convergence state. We can observe
the evolution of the valid pixels, the framing and the conditioned feature histograms.

(A) (B)

FIGURE 3.15 – (A) Green spot image. (B) Hue extraction.
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Ok Pk

k = 0

k = 1

k = 2

k = 3

FIGURE 3.15 – Validated pixels set Ok and framing Pk evolution along
the iteration steps k.
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Hhue HX HY

k = 0

k = 1

k = 2

k = 3

FIGURE 3.15 – Feature histograms evolution along the iteration
steps k.

Illustration 2: the two modes

The second test is done on the synthetic image of dashed lanes. The DA works
on the gradient angle extracted with a derivative Gaussian kernel chosen of size 9,
of standard value σ = 1.5 and with a chosen threshold τmo = 4% of the possible
maximum; and on the coordinates X and Y. The histogram threshold is still set to
τk

m = qm,k
max

/2. Figure 3.16 shows the results obtained when using Mode 1 or Mode 2
on the X axis. The former selects only one of the dashes, whereas the latter selects
the complete line.
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(A) (B)

FIGURE 3.16 – (A) Dashed lanes image. (B) Gradient angle extrac-
tion.

Mode 1 Mode 2

Ok

Pk

Hk
X

FIGURE 3.16 – Results obtained with Mode 1 or Mode 2 on the
feature X.
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Illustration 3: the histogram threshold

The third test is done on the synthetic image of green sun draw. The DA works on the
hue, with a chosen threshold τsat = 15, and on the coordinates X and Y. Figure 3.17
shows the results obtained with different thresholds τk

m. This puts forward one of the
complexity of the Cartesian framing: if the threshold is too high, part of the object
might be cut and excluded, if it is too low it might include too much noise.

(A) (B)

FIGURE 3.17 – (A) Green sun draw image. (B) Hue extraction.

τk
m=

qm,k
max
2 τk

m=
qm,k

max
4 τk

m=
qm,k

max
16

Ok

Pk

FIGURE 3.18 – Results obtained on a green sun draw with different
histogram thresholds: 1/2, 1/4 and 1/16 of the histogram maximum.

3.3.4 Conclusion

The formalization of the Dynamic Attractor (DA) shows that this detection method is
based on an iterative process of histogram computation and their peak selection. It
is proved in Appendix A that the method, used on static images, converges in limited
time to a high density set of pixels in the defined feature space. The combination of
descriptive and spatial features, following the "What" and "Where" biologic hypoth-
esis (Sec. 2.3.4), allows to obtain the simultaneous description and localization of
elements of interest.

The real-time and low power property of the BIPS seems to be confirmed by the
functions used in the FMDs, which have very low computational and memory costs.
The sequential use of these FMDs might, however, hinder this property when a high
number of steps are needed before converging to the object.
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The first experiments confirm the detection of specific object by the DA and the
real-time property on the chosen synthetic images, but also show the strong influ-
ence of several parameters, like the update selection mode or the histogram thresh-
old.

3.4 Multiple detection

This Section completes the formalization and analysis of the second part of the BIPS:
the Description and Localization part (Fig. 3.3), which is the connected composi-
tion of multiple DAs for multiple and/or more specific objects. The connections are
presented in (Pirim, 2015) as association or inhibition of DAs. Based on our for-
malization and the observation of the industrial chip results, we established that the
connections are logical associations or inhibitions of FMDs pixel validation outputs,
which provide the pixel validation inputs valext of the DAs.

The different connections and their limitations are presented in Section 3.4.1.
Then the behavior of the method is illustrated on static images in Section 3.4.2.
This bring forward several complexities in the use of the BIPS method such as the
influence of its architecture and its parameter settings on the detected objects and
thus on its real-time, generic and efficient properties. The list of these parameters is
summarized in Section 3.4.3, before concluding in Section 3.4.4.

3.4.1 Connections of DAs

Architecture

The Description and Localization part corresponds to different sets of connected
DAs. To formalize it and understand the influence of those connections we focus
on the qth DA of one set

(
DA1 , . . . , DAQ

)
. The Mq features input of the qth DA is

a subset of the extracted features (F1, . . . , FM). To differentiate them, we introduce
the application sq which associates the DA input feature indices to their indices in the
global set of features as in Eq. 3.34. The validation input, in another hand, is the
association of the feature masks and a combination of the validation outputs from
FMDs of the other DAs. This combination corresponds to associated and inhibited
connections of the FMDs validation outputs.

Definition. Feature set input of the qth DA

Fq =
(

Fsq (m)

)
mPJ1,MnDA

K
(3.34)

Association

The association consists in the restriction of the qth DA on a part of the feature space
already selected by another DA, or only by a set of FMDs. For example, a DA that
detected a tennis ground using the hue feature can restrict another DA with only the
spatial pixel validation (AX ď X ď BX) X (AY ď Y ď BY) to let a second DA find a
lane within this ground.

In the case of association, the boundaries updates of the connected DAs must
not be done in parallel with the risk of two of them converging to separate objects,
which would lead to an empty set of pixels. Thus, such connection must be done on
DAs working sequentially.
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Inhibition

The inhibition consists in the suppression for the qth DA of a part of the feature space
selected by another DA, or a set of FMDs. For example, to detect multiple objects of
the same nature, like tennis balls on a training field, one needs to use identical DAs
and inhibit the spatial framing the other DAs converged to.

In the case of inhibition, the boundaries update can be done in parallel, but an
order of priority of the DAs must be imposed. This order must be updated in case one
of the prioritized DA is reinitialized Pq,0 = Ω, to avoid it to empty the following DAs.
The boundaries update can also be done sequentially. In this case, if one of the DAs
converge to an object smaller than the chosen threshold τN, it must be reinitialized
with a different valext, otherwise it will loop indefinitely to the same element.

3.4.2 Observations

In order to illustrate the behavior of the method, we test it on several static images
with different configurations: first to show the influence of the chosen configuration
on the detection of multiple objects; then to describe the effects of transformation on
an image like rotation, noise addition or change of resolution; finally, to highlight the
influence of the Cartesian framing and thus the importance of the chosen features
and the DAs combinations.

The different experiments have been done with our BIPS simulator presented
in Chapter 4. A specified script has been developed to run the following examples
using the Feature, FeatModeDetector, DynamicAttractor classes and the display
was made with Matlab (MATLAB and Image Processing Toolbox Release R2018a).
The parameters have been chosen based on our knowledge of the input image and
the behavior to illustrate.

Illustration 1: Multiple detection

The first experiment is done on the colored chips image of Matlab. We use 30 DAs
working on the hue feature with a chosen threshold τsat = 30, and the two Cartesian
coordinates X and Y (Figure 3.19). The histogram thresholds are set to τk

m = 0.30ˆ
qm,k

max
and Mode 1 is used for all FMDs. The object size threshold is set to τN = 0,

allowing all objects even pixel size objects to be detected.
The DAs are linked to each other by inhibition allowing the detection of multiple

objects. The results presented in Figure 3.20 are obtained with (A) a sequential
and (B) a parallel running of the DAs. We observe that the detected objects are
mostly the same, even when it corresponds to just a border of a colored chip, but
the order of detection differs. The small framing detection -22, 23, 24, 26 in (A) or
4, 13, 22, 24, 26, 29 in (B)- are due to the null size object threshold. Some detected
objects are cut -11, 17 in (A) or 14, 25 in (B)- , this might result from two things:
firstly the threshold on the features is too high, secondly the histogram maximum
regroups aligned objects leading to a higher threshold. In order to correct such
problems, it would be interesting to find an automatic setting of the feature threshold.
An extension of the boundaries during each step of the iterative process could also
be used, but the convergence property of the DAs might no more be ensured.
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(A) (B)

FIGURE 3.19 – (A) Colored chips image (MATLAB and Image Pro-
cessing Toolbox Release R2018a). (B) Hue extraction.

(A) (B)

FIGURE 3.20 – (A) Results with 30 DAs running sequentially. (B)
Results with 30 DAs running in parallel.

Illustration 2: Image transformation impact

The second experiment is also done on the colored chips image of Matlab. We ob-
serve here, using only 5 DAs working in parallel, the impact of image transformation
to the BIPS output. The DAs parameters are the same: τsat = 30, τk

m = 0.30ˆ qm,k
max

and τN = 0. The experiment has been conducted on the original image (A), with
white noise added to the image using the Matlab imnoise function (B), after rotating
the image of 90˝ (C) and on a reduced resolution at 1/5 of the image using the Matlab
imresize function (D). The results are presented in Figure 3.21. The convergence to
the colored chips is maintained during those transformations. However, the order of
detection differs.

(A) (B)
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(C) (D)

FIGURE 3.21 – (A) Results on the original image. (B) Results on the
noisy image. (C) Results on the rotated image. (D) Results on the

low resolution image.

Illustration 3: Detection of transversal objects

The third experiment is done on a road image (Road). We run 5 DAs working on the
gradient angle feature, with a chosen threshold τmo = 887, and the two Cartesian
coordinates X and Y (Figure 3.22). The histogram thresholds are set to τk

m = 0.30ˆ
qmax and Mode 1 is used for all FMDs. The object threshold is set to τN = 0, allowing
to detect all objects, even single pixel sized.

In Figure 3.23, the results obtained by the second and third DAs are shown. They
spotlight the limitation of the Cartesian coordinates features: for the second DA, the
object is aligned with X so the spatial framing is well suited, but for the third DAs,
the object is not aligned with neither X or Y, which gives a large spatial framing.
Even though the selected pixels correspond to the lanes, the associated bounding
box does not fit well the sought object. Moreover, in case of a combination using
inhibition on the spatial features, such framing will suppress too much pixels for the
other DAs. For his chip, P. Pirim proposes a way to keep a close framing of object by
computing several rotated coordinates (Pirim, 2005). This extension of the method
will be discussed in Chapter 5 and a more generic extension will be proposed in
Chapter 6.

(A) (B)

FIGURE 3.22 – (A) Road image (Road). (B) Angle extraction.
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FIGURE 3.23 – Results showing the limits of the Cartesian
coordinates feature for an object framing.

3.4.3 Parameters

The study of the BIPS concept brought forward several parameters that can have a
strong impact on its results. Here I remind each of these parameters and present
our analysis of their impact.

Features parameters

The input features (F1, . . . , FM) comes from extraction applications whose results de-
pend on the input image and the application parameters -for example the threshold
used for the hue or the gradient angle computation-. The objects representation in
the feature space is then influenced by the input features selection and their param-
eters.

Architecture

The chosen sequences of DAs (DA1, . . . , DAQ), their chosen input features (Fsq (m))mPJ1,Mq K

and their connections can give different outputs when they are changed. The archi-
tecture of the BIPS might be application-specific. Our current knowledge of object
representations in computer vision and our formalization of the method does not
allow us to establish a new BIPS architecture which could adapt to different applica-
tions.

Object size threshold

The object size threshold τN determines whether or not a group of pixels selected
by a DA corresponds to a relevant object. If its value is too high, some objects of
the scene might not be detected, whereas if it is too small too much DAs might
converge to noise in the image. The choice of its value can be established based on
the application and the object representation by the chosen features, however for a
more generic use of the BIPS it would be interesting to find an automatic setting of
this value.
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Histogram threshold

The histogram threshold τk
m defines the selection of the histogram peak(s). If it is

too high, it might cut parts of the detected object, if it is too small it might not sep-
arate different objects close to each other in the histogram representation or even
integrate noise to the selection. This parameter is often chosen as a percentage of
the maximum histogram value qmax . However, depending on the application and the
step of the iterative process the adequate percentage may differ.

Mode

The Mode of selection 1 or 2 may be taken as part of the Architecture section. If the
Mode 1 is chosen, only the principal peak is selected and any obstruction, diminution
of values in the histogram may result in the detection of only a part of an object. If
the Mode 2 is chosen, all the peaks of the histogram are selected and two different
objects may be detected as one. The choice of this Mode is application dependent.

3.4.4 Conclusion

The formalization of the Description and Localization part shows how the BIPS
method allows to detect multiple objects in a scene. The combination of DAs through
pixel validation association or inhibition brings an extension of its detection property,
but also new complexity issues to the method.

Through the associations, the method can sequentially perform hierarchical de-
tection and through the inhibitions, the method can perform multiple detections. But,
the architecture is not easily adapted for generic applications. The choice of features,
the sets of DAs, their combinations, their object size thresholds, their FMDs Modes
and histogram thresholds, all have an impact on the detection result. Moreover, the
computation time can be strongly increased as the association can not be run in
parallel and a bad choice in the parameters can lead to longer time of convergence
for the DAs.

The first illustrations conducted on static images with application dedicated ar-
chitecture show constancy of the detection method at the exception of the order of
object detection.

3.5 Discussion

In this Chapter we have presented our formalization of the Bio-Inspired Perception
Sensor (BIPS) concept, whose on-chip implementation showed interesting real-time
and low power performances on several computer vision applications, but whose
mathematical model was missing. The method can be decomposed into two main
parts: a Feature extractions part and a Description and Localization part.

The first one currently corresponds to ten implemented local and visual feature
extractions with real-time and low consumption properties. It could perform any kind
of perceptive feature extractions as long as their domain can be shared with other
features and their codomain can be represented by a finite and ordered set, to ensure
the functioning of the BIPS method. The latter performs a simultaneous description
and localization of objects in a scene based on the combination of several origi-
nal modules called Dynamic Attractors (DAs), which are inspired from the "What"
and "Where" visual cortex processes. It looks for combined neuronal responses on
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descriptive features and spatial features through the use of joined histograms pro-
jections.

Our formalization of the method permits henceforth to reproduce and evaluate
the BIPS behavior and confirms its convergence to multiple objects of interest, but
whose characteristics might be influenced by our choice of parameters. Their impact
on the result is difficult to establish in a generic way mainly for two reasons: firstly,
the relation between a real object and its generic feature representation is still an
open computer vision problematic; secondly, in an application-specific analysis, the
number of BIPS parameters to set brings a high level of complexity in the analysis.
The realization of experiments on academic datasets will permit us to visualize the
method behavior, to evaluate its detection performances and to propose different
automatic setting methods of the parameters.
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Chapter 4

The BIPS simulator

As mentioned in the Section 3.1 no mathematical formalization and no simulator of
the method exist, but the interesting results obtained by the on-chip implementation
motivates us into filling those gaps. On the basis of my mathematical formalization,
I have been able to develop tools and classes simulating the method in the image
analysis case. This simulator allows to modify several parameters, to adapt and run
the method on different academic applications and to easily test foreseen extended
versions of the method.

The simulator has been developed using the C++ language with (Qt 5.7 2016)
and (OpenCV 2.4 release). The implementation is object oriented. A user inter-
face has also been developed using the Qt frameworks allowing to visualize the
outputs. However, for the analysis of the BIPS behavior, the dataset results obtained
through the simulator have been evaluated with Matlab (MATLAB and Image Pro-
cessing Toolbox Release R2018a).

This Chapter is structured as follows. Section 4.1 presents the Feature class
developed to keep a unique format input for the FMD while being able to change
the type of feature used. The feature images are obtained using extractors repro-
duced from the BIPS on-chip, their implementation is detailed in the same Section.
Then the FeatModeDetector class representing the FMD attributes and internal
processes is presented in Section 4.2. The DAs are represented by the class Dy-
namicAttractor managing several FMDs and input Features. Their attributes and
functions, but also their adaptations for different BIPS extensions are presented in
Section 4.3. Finally, Section 4.4 introduces the complete process management and
the user interface developed in order to observe the BIPS blocks behavior.

This simulator has been upgraded along my thesis work. Some of the functions
implemented and presented in this Chapter play a role which will be introduced in
the following chapters.
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4.1 Feature

4.1.1 The Feature class

The Feature class has been created to uniformize the outputs of each feature extrac-
tors, which are used as input for different FMDs. The class represents the outputs of
the application F, defined in Section 3.2.4, as well as the necessary parameters for
its use in the Dynamic Attractor (DA) process.

FIGURE 4.1 – The Feature class.

The class is composed of seven attributes:

– the set of possible feature values (i.e. the domain, denoted Ω), which
is used to build the feature histogram

– the min, max and step values representing Ω

– the feature extraction output values (matF), given by the extractor

– the associated validation mask (valF), also given by the extractor

– the attribute mytype, which differentiate the descriptive features from
the spatial features, as the latter do not have a corresponding extrac-
tor

– the attribute isCyclic, which indicates if the features values are in a
cyclic set

The class has also three main functions:

– getValue, which obtains the feature value corresponding to the pixel
p = (i, j). It is matF(i, j) for a descriptive feature, j for the X feature
and i for the Y feature

– getValidF, which gives the validation output valF(i, j) associated to
the feature

– updateF, which actualizes the feature values and the associated vali-
dation mask

Each Feature is initialized at the beginning of the process and corresponds to
one video flow and one feature extraction. Only the parameters matF and valF can
be updated at each new video frame.
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4.1.2 Simulator implemented features

The feature values and the associated mask (matF, valF) are obtained through fea-
ture extraction that must be implemented and called at each update. Several of them
have already been developed for the BIPS and reproduced in our simulator. Diagram
representations of the different groups of features (Tonal, Dynamic and Structural)
are given below. The corresponding equations were presented in Section 3.2.

To reproduce at best the chip process, the BGR images obtained with OpenCV
from the camera stream or the input files are first transformed into YCbCr images
following the BT601 digital norm (BT.601) (Fig. 4.2).

FIGURE 4.2 – Transformation of the input into Y, Cb, Cr image.

Tonal features

The Tonal features extraction, presented in Section 3.2.1, works directly on the
YCbCr image and produces the luminance L, the saturation S, the hue H and its
associated mask valhue. Their extraction process is summarized in Figure 4.3.

FIGURE 4.3 – Tonal features extraction diagram.
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Dynamic features

The Dynamic features extraction, presented in Section 3.2.2, works on the extracted
luminance L, the memorized values of the background estimation pL and the tem-
poral variation D, which are computed along with the associated mask valD. Using
the computed temporal variation, the application also extracts the module V and
direction θ of the peculiar optical flow developed by P. Pirim. However, the optical
flow used in the time integration proposal of Chapter 6 is based on the calcOpti-
calFlowFarneback function of (OpenCV 2.4 release). Their extraction process is
summarized in Figure 4.4.

FIGURE 4.4 – Dynamic features extraction diagram.

Structural features

The Structural features extraction, presented in Section 3.2.3, also works on the ex-
tracted luminance L and the predefined filter kernel W. They produce the module
Mo and angle An of the gradient along with the associated mask valang. Using the
extracted angle, its variation ∆An and associated mask val∆An are also produced.
Their extraction process is summarized in Figure 4.5. The diagram Figure 4.6 gives
more details on the gradient extraction, which was used for our experiments in Chap-
ter 5 and 6.

FIGURE 4.5 – Structural features extraction diagram.
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FIGURE 4.6 – Gradient features extraction diagram.

4.2 Feature Mode Detector

4.2.1 The FeatModeDetector class

The FeatModeDetector class allows to regroup the variables and functions man-
aged by one FMD and described in Section 3.3.1.

The class is composed of seven main attributes:

– the map structure representing the histogram (Ω,H)

– the histogram maximum qmax

– the histogram mode fmax

– the boundaries A and B

– the threshold τ

– the chosen update Mode

Six supplementary attributes are given to the class corresponding to several pro-
posed extensions:

– the angle αFMD, which is memorized in the spatial axes rotation case
in Chapter 5

– the vector uFMD, which is memorized in the feature space reorienta-
tion case in Chapter 6

– the imposed minimum and maximum limits Amin, Bmax, which can be
used for the initialization of the FMD

– the cyclic value δ, which corresponds to the cyclic order of the feature.
It is null when the corresponding feature is not cyclic

– the percentage τper used to compute the histogram threshold, which
is negative when the chosen threshold is a fixed value
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FIGURE 4.7 – Representation of the FeatModeDetector class.

Each FMD is initialized by a DA at the beginning of the process. The map keys
are fixed and correspond to the set Ω representing the feature values, the map
values are set to 0, also is qmax , the boundaries are set to the minimum and the
maximum keys and fmax is set to the minimum key, as it has been defined as the
minimum in Eq. 3.18. The map keys stay unchanged, but the other parameters are
updated along the process.

Remark. In the case of the alternative equations (See App. A.1.3), the boundaries are
set to the minimum minus one and the maximum plus one.

The FMD has three principal methods:

– getValidFMD validates or not the given key using the pixel validation
valFMD (Eq. 3.21)

– addToMap constructs the histogram with the validated pixels

– updateBoundaries updates A and B for their next use

The validation and the histogram computation are processed along the pixel flow,
but the update parts is performed only when the histogram computation is complete.

The FMD has also three important methods:

– computeThreshold allows to adapt the threshold to the obtained his-
togram maximum

– cleanMap empties the map before the histogram computation

– reinitFMD brings back the FMD to its initial values when the DA itself
is being reinitialized

Finally two supplementary functions can be used for our tests: computeMeanNMedian
and computeEpsilon. Those functions are explained in the following Sections.
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4.2.2 FMD pixel validation

The FMD pixel validation is computed using the boundaries A and B and the given
feature value. For a better framing of the object, a parameter ε obtained with the
function computeEpsilon can be used to enlarge the set of validated pixels.

(A) (B)

(C) (D)

FIGURE 4.8 – Pixel validation (A) (resp. C) and its alternate version
(B) (resp. D) in the classic case (resp. in the cyclic case without any

rotation).

The specific case of cyclic features implies to do this test on several features
values. In the classic version of the method, the test is performed on three feature
values: f , f ´ δ and f + δ where δ is the order of the cyclic group. The validation
is obtained if the test is positive for at least one of the three values. I don’t treat
the cyclic case in the multidimensional rotation extension as the number of tests to
perform quickly gets high and too complicated to be represented.
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4.2.3 Histogram construction

When the pixel is validated, the feature value is added to the histogram map. The
histogram construction uses the given feature value to increment the map values H
and updates fmax and qmax . The cyclic case in the classic version implies to add two
other feature values f + δ and f ´ δ to the histogram as proposed in Section 3.2.4.

(A) (B)

FIGURE 4.9 – Histogram computation diagram (A) and its version in
the cyclic case without any rotation (B).
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4.2.4 Update boundaries

The boundaries update is based on the chosen Mode, the obtained histogram map
(Ω, H), the feature mode fmax , and the given threshold τ, which must be under the
maximum qmax . The threshold can be chosen fixed or a percentage of the histogram
maximum. To do so two attributes can be added isPercent and percent, such that if
isPercent is true, then τ = (qmax ˚ percent)/100.

(A)

(B)

FIGURE 4.10 – Boundaries update Mode 1 (A) and Mode 2 (B). In the
alternate version the outputs selected are f´ and f+.
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4.3 Dynamic Attractor

4.3.1 The DynamicAttractor class

FIGURE 4.11 – Representation of the DA class

The master class DynamicAttractor has been created to generate and manip-
ulate more easily the associations of FMDs. This class is composed of five main
attributes:

– a set of Features ((Fm)mPJ1,MK)

– a set of ordered FeatModeDetectors ((FMDm)mPJ1,MK)

– an iteration step counter k

– the number of validated pixels N

– the threshold τN on the detected object size

The extensions proposed in Chapter 5 and Chapter 6 imply the use of eight other
attributes:

– the rotation angle α

– the corresponding geometric variation ∆α

– the FMDs axes (um)mPJ1,MK

– the number of features to be rotated Mc

– the corresponding mean µ

– the covariance matrix Σ

– the medians pµ

– the Kalman filter K
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The DA performs its iterative process and manages the FMDs through eight
methods:

– getKey, which computes the feature values

– ValidNHisto, which computes the validation of the pixel and con-
structs the histogram on the fly

– updateDA, which updates the boundaries of the FMDs and the differ-
ent parameters used for the rotation

– hasConverged, which validates the convergence of the DA

– reinitDA, which is used when the DA converged to something too
small

– cleanDA, which calls the cleanMap function of the FMDs

– prediction and timeUpdate, which performs the time integration for
the tracking proposal in Chapter 6

4.3.2 Feature value

The Feature value for each pixel corresponds in the classic version of the method
to the associated Feature getValue. But in the rotated version of Chapter 5, this
value is dependent of the parameter α and in the extended version of Chapter 6 it is
dependent of the unit vector axis u associated to the FMD or given by the DA. The
DynamicAttractor class integrates the different ways of computing this value.

(A) (B) (C)

FIGURE 4.12 – Selection of the feature values. (A) In the classic
version. (B) With the α rotation of the spatial axes. (C) With the

generic feature space rotation.
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4.3.3 Pixel validation

The pixel validation is in fact the result of the association of three functions: getValidF,
which combines the Features validation maps; getValidext, which recovers the val-
idation information coming from external DAs and FMDs; and getValidDA, which
combines the FMD pixel validations (Fig. 4.13).

(A)

(B)
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(C)

FIGURE 4.13 – Pixel validation. (A) In the classic version. (B) With
the α rotation of the spatial axes. (C) With the generic feature space

rotation.

4.3.4 Histogram computation

The histogram computation consists in the use of the addToMap function in the con-
cerned FMDs for the validated pixels. Depending on the version of the method the
computation performed differs.

(A) (B) (C)

FIGURE 4.14 – Histogram computation. (A) In the classic version. (B)
With the rotation of the spatial axes. (C) With the generic rotation.



64 Chapter 4. The BIPS simulator

4.3.5 Update

The update of the DA is a combination between the update of the FMDs boundaries
and the rotation parameters update.

Firstly, the FMD boundaries update is decomposed into two steps:

1. the computation of the threshold τ

2. the FMD updateBoundaries function

Secondly, the rotation parameters update consists in two steps:

1. the FMD parameter memorization αFMD or uFMD is updated to the
current parameter value in the DA

2. the DA parameter is updated for the next iteration

Depending on the rotation chosen, the parameters are updated differently: in the
spatial rotation used in Chapter 5, the angle mode is used to update the rotation
angle α; in the generic rotation presented in Chapter 6, the covariance matrix, com-
puted on the fly, is used to find the principal axes of the detected object um0 , . . . , uM.

(A) (B) (C)

FIGURE 4.15 – Update of the rotation parameters. (A) Proposition of
P. Pirim. (B) Smoothed version. (C) Generic feature space rotation.



4.3. Dynamic Attractor 65

4.3.6 Iterative process

The iterative process of the DA permits to converge iteratively to one object of the
image. Three different versions of this process have been implemented. The first
one corresponds to the classical formalization of the BIPS, the second to the spatial
axes rotation proposed in Chapter 5 and the third to the features space reorientation
proposed in Chapter 6. The different versions of the iterative process are extensively
represented in the following pages (Figure 4.16).

(A)
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(B)
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(C)

FIGURE 4.16 – DA iterative process. (A) In the classic version. (B)
With the spatial rotation. (C) With the generic feature space rotation.



68 Chapter 4. The BIPS simulator

4.3.7 Time integration

The time integration proposed in Chapter 6 uses two functions: prediction, which
performs the prediction of the boundaries for the next image; and updateTime, which
corrects the result obtained with the DA before the prediction in the case of the
Kalman filter use. The KalmanFilter class of (OpenCV 2.4 release) is used for a
simplified code. The rules used to initiate the prediction and reinitialize it or not are
not fixed yet and will depend on the chosen application.

(A) (B)

FIGURE 4.17 – Prediction implementation performed with the median
(A) and with the Kalman filter (B).

FIGURE 4.18 – Update of the Kalman filter parameters as used in the
simulator.



4.4. Application and Visualization 69

4.4 Application and Visualization

4.4.1 Process

The complete process is presented in Figure 4.19. The inhibition rules have to be
defined in the process script. The multiple parameters of the DAs are defined during
the initialization step: the features used F; their support Ωm; the parameters of their
extraction; the number of DAs nDA; the associated features to each DA; the threshold
on object size τN; the threshold on each FMD histogram τF; the Mode of each FMD;
the enlargement for each FMD εF; the number of rotated features Mc; the rotation
rule; the prediction rule; and the limit number of iterations.

FIGURE 4.19 – Diagram of the complete process.
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4.4.2 Images class

An Images class has been created to control the complete process, the different
DAs and the change we might impose to the parameters through the User Interface.
The User Interface itself is controled by the class MainWindow, descendent of the
Qt class QMainWindow.

FIGURE 4.20 – Screenshots of the three visualization tabs of the User
Interface.
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4.5 Conclusion

In this Chapter we presented the simulator developed to reproduce the BIPS mech-
anisms that we formalized (Chap. 3). To do so, three main classes have been imple-
mented: the Feature class, the FeatModeDetector class and the DynamicAttrac-
tor class. All three permit to manage the different parameters of the method. Most of
the parameters of influence are thus integrated inside the classes and there setting
can be changed without reimplementing the entire process. Only the architecture of
the multiple DAs system could not be generalized. Thus, specific scripts have to be
implemented for each new application.

The simulator integrates also the different versions of the method: the strict and
non strict versions; the different rotation and reorientation of the feature space ver-
sions; and the different prediction versions. This tool allows to more easily implement
the BIPS method in different applications and with different settings. It finally allows
to improve and extend the functionalities of the method.
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Chapter 5

Application to road lane detection

5.1 Introduction

The formalization of the Bio-Inspired Perception Sensor (BIPS) concept presented in
Chapter 3 has highlighted several parameters of the method that can have a strong
influence on its results: the input features chosen, the connections between Dynamic
Attractors (DAs), the chosen detection mode, on one peak or on a group of peaks,
and the different thresholds on features, on object sizes and on feature histograms.
Neither the choice of these parameters for a practical application nor their level of
influence on the whole concept is made explicit by the inventor. The formalization,
although it provides many answers to the understanding of the concept, does not
give a direct answer to this problematic. Thus, we decided to illustrate the behavior
of the method and the possible influence of its parameters, using a specific computer
vision application.

The road lane detection application, which was one of the industrial application
of the BIPS (Pirim, 2013), is appropriate for a first analysis and demonstration of the
BIPS concept behavior, since the lanes are distinguished by their gradient angle and
their position in the image. It allows to set the architecture of the DAs, i.e. the choice
of the features, the DAs connections and the mode of detection and thus to focus
on the threshold parameters. Moreover it enforces the axes rotation extension of
the BIPS concept -introduced in Section. 3.4.2-, which permits to improve the spatial
framing.

This Chapter investigates the BIPS behavior and performances in the context of
the road lane detection application. Section 5.2 gives an overview of the chosen
application, its related issues and the existing solutions. Section 5.3 establishes
the adapted architecture of the BIPS based on the two straight lines model of the
road lane and permits to develop the spatial axes rotation extension. Using the
caltech-lanes database (Aly, 2008), we were able to compare the performances of
the method and to illustrate the influence of some of its parameters in Section 5.4.
The promising results consolidate the focusing of our research on this method and
its possible improvements, as well as its potential adaptation to different computer
vision applications, as discussed in Section 5.5.

5.2 Lane detection

The road lane detection is a specific application related to advanced driver assis-
tance systems (ADAS) and autonomous driving fields of research. Both fields are
driven by the need of reducing the high mortality rate on road and the willing of
improving the driver comfort, which makes them a hot research topic nowadays.
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This Section gives an understanding of the road lane detection application and
its current issues, in order to suitably adapt the BIPS method. The context and dif-
ficult conditions of the application are presented in Section 5.2.1. Then, the existing
methods and models are discussed in Section 5.2.2. Finally, Section 5.2.3 presents
the available databases for evaluation, before concluding in Section 5.2.4.

5.2.1 Application context

The road lane detection is part of several applications like the Lane Departure Iden-
tification (LDI) and Lane Departure Warning (LDW), the Lane Keeping Assist (LKA)
and the Adaptive Cruise Control (ACC). The purpose can be to wake up a falling
asleep or distracted driver; to control the vehicle direction; and also to help the con-
trol system in its road scene understanding. Such purposes go with a high reliability
demand from the vehicle manufacturers under multiple conditions.

In fact, the aspect of the lanes and the road strongly differ from a time and place
to another. Rainy, snowy or foggy weather lowers the visibility. Night strongly reduces
the visibility. Day light adds multiple artifacts like shadows, sun facing, change of
colors and luminance. Moreover, the road type does not follow a unique road model:
on highway there are few artifacts and the lanes are easily described by pair of lines
or curves, but the detection must work at long distance as the speed of the vehicle
is high. On rural environment lanes and signs can even not exist at all. On urban
environment multiple disturbing objects can obscure the road and the lane model
must take into account a wider range of existing signs on the road like pedestrian
lanes, merging and splitting lanes, bike lane, writings, stop lane, etc. The differences
existing from one country to another also add difficulties to the task. Figure 5.1
shows different aspects of the road the vehicle might be confronted to.

FIGURE 5.1 – Road images under different conditions presented in
(Bar Hillel et al., 2014). The red circles and lines are markers from

the initial database.
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FIGURE 5.1 – Road images under different conditions presented in
(McCall and Trivedi, 2006).

The bibliographic references survey (Bar Hillel et al., 2014) and (McCall and
Trivedi, 2006) show that researchers have been using different kinds of sensors to
address this task: monocular visible camera, stereo cameras, LiDAR, GPS, internal
vehicle state sensors and radar. The three latter are used to enhance the results
obtained with the others. Even though there is obvious benefit from the fusion of
those sensor’s data, the monocular visible camera, robust for a cheap price and the
closer to the actual human driver main modality, is the most used sensor.

5.2.2 Methods and Models

In their survey (Bar Hillel et al., 2014) propose a generic road lane detection method
based on the state-of-the-art of the task. The method is decomposed as follows:
1-Image pre-processing, 2-Feature extraction, 3-Model fitting, 4-Time integration,
5-Image to world correspondence, as shown in Figure 5.2. A similar framework
composed of three blocks was also proposed in the survey of (McCall and Trivedi,
2006): the first block (road feature extraction) is a combination of 1 and 2, the second
block (post-processing/outlier removal) corresponds to 3 and the third block (track-
ing/filtering/data fusion) corresponds to 4 and 5. The numerous feedback arrows
coming from the last processes bring forward the duality between the bottom-up ex-
traction of the lane and the top-down influence of the model and real-world measures
in this method.

FIGURE 5.2 – Generic method for road lane detection proposed by
(Bar Hillel et al., 2014).



76 Chapter 5. Application to road lane detection

Pre-processing

The pre-processing part consists of cleaning the input image from all misleading
artifacts like illumination variation -as in (Son et al., 2015)- or shadows -as in (Hoang
et al., 2017)- and of removing irrelevant parts. The latter can correspond to the sky
or the road border, which are discarded using a region of interest (ROI) selection.
Most of the time a fixed mask is used like in (Aly, 2008), but some authors also use
an adaptive ROI, as for example (Cáceres Hernández et al., 2016) who propose a
geometrical adaptation of the ROI. Other vehicles or pedestrians present on the road
can also be considered as irrelevant parts of the image and removed as for example
in (Jung and Bae, 2018), where the LiDAR information is used to distinguish them.
The pre-processing part must be chosen in a good balance between the brought
improvements and the consequent computational costs.

Feature extraction

The bottom-up feature extraction part is predominantly done using steerable filters
to obtain the gradient and curve information (McCall and Trivedi, 2006). Inverse-
perspective as well as other features like colors, texture, road boundaries or vanish-
ing points have also been used to enhance the results (Andrade et al., 2019)(Felisa
and Zani, 2010)(Borkar, Hayes, and Smith, 2009)(Audibert and Ponce, 2009)(Aly,
2008).

Model fitting

The top-down model fitting part uses associated lane models divided by (Bar Hillel
et al., 2014) into three categories: the parametric, the semi-parametric and the non-
parametric models. The first one corresponds to the research of straight lines, which
is mostly done using a Hough transform or a least square optimization (Gaikwad and
Lokhande, 2015). The second model corresponds to splines and poly-lines, which
can be found using piece-wise Hough transform results or RANSAC results (Andrade
et al., 2019)(Son, Lee, and Kum, 2019). Finally, the third model corresponds to con-
tinuous, but not necessarily smooth boundaries, which have been addressed using
Ant Colony optimization, Hierarchical Bayesian network or particle filters (Broggi,
1995)(Nefian and Bradski, 2006). This last model essentially corresponds to off-
road boundaries search and is rarely chosen. Recently, some authors also try to
enhance the obtained results in complex scenes, where the lines or splines models
strongly failed, with a trained neural networks (Zhang et al., 2018).

Time integration

The time integration part permits the readjustment and the robustness improvement
of the method and model chosen, while theoretically reducing the computational cost
per frame. The methods mostly use the Kalman filter or the Particle filters (Borkar,
Hayes, and Smith, 2009)(Kim et al., 2007), but interesting propositions integrate
also the time directly in the feature extraction, searching the line in a spatiotemporal
representation space (Jung, Youn, and Sull, 2016).
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5.2.3 Databases

The evaluation of the different methods is quite difficult as (Bar Hillel et al., 2014)
raise in their conclusive remarks. In fact, most of the proposed methods are only
qualitatively evaluated due to the lack of annotated datasets and generalized eval-
uation metrics. Several databases showing images of road lane exist (KITTI)(Veit
et al., 2008)(Wu and Ranganathan, 2012) and tools for manually labelling the data
have been provided by (Borkar, Hayes, and Smith, 2012) and (Aly, 2008), but it
seems that only the caltech-lanes dataset of Aly provides a joint ground truth and
metrics with which tests and comparison can directly be made. However, as for
example in (Hoang et al., 2017), the authors often prefer to relabel themselves the
database, without making their labeled data public.

5.2.4 Conclusion

The overview of the road lane detection task brings forward the complexity and vari-
ety of the road scene to analyze, but also the multitude of models and methods used
over the last twenty years. The generic method formalization proposed by Hillel et
al. gives however a tool for the adaptation and the comparison of the BIPS method,
which in its current state corresponds to the second and third block of the generic
method: the feature extraction and the model fitting. It helps us in the choice of the
lane model to follow and in the method extension possibilities using pre-processing
or time integration. A comparative analysis of the BIPS results is possible using the
caltech-lanes dataset and its ground truth. A broader study comparing the method
on multiple datasets and multiple existing methods would, however, require much
more workforce due to the lack of unified ground-truths and metrics for the road lane
detection task.

5.3 BIPS adaptation

In this study, we choose to adapt the BIPS method to the road lane detection appli-
cation using the visible camera input and the straight lines model of the lane. This
Section demonstrates how such adaptation can be made and how several of the
unset parameters can be automatically chosen.

Section 5.3.1 develops the choice of the descriptive and spatial features in this
context, especially the use of rotated spatial coordinates. Then Section 5.3.2 defines
the FMDs parameters adapted for one line detection and the adapted connections
between DAs to ensure the detection of all the road lanes and only them, before
concluding in Section 5.3.3.

5.3.1 Features space

Gradient angle

The straight lines model of the road lane allows to distinguish each lane by their
gradient angle. The proposed extraction in the chip (Sec. 3.2.3) could be used for
this application. However, we prefer its generalized version, using the derivative of
a 2D Gaussian steerable filter (Eq. 5.1), for which the standard deviation σ can be
chosen depending on the input image. The kernel size (2n + 1) is often chosen
depending on σ to restrict the kernel to the significant values of the Gaussian. In this
study we always choose n = t3σu, and more specifically σ = 1.5 and n = 4.
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The threshold τmo (Eq. 3.11) can then be chosen depending on the maximum
possible value of the gradient module allowing to automatize and normalize the gra-
dient angle extraction.

Definition. Gaussian kernel W

W =
BG
Bj
9
´j

2πσ4 exp
(
´

i2 + j2

2σ2

)
, @ (i, j) P J´n, nK2 (5.1)

In Figure 5.3, we can visualize the concordance between a road lane and a gra-
dient angle. The road images angle extraction has been performed with a threshold
for the angle validation at 5.5% of the possible maximum. We can observe on the
two images (Aly, 2008)(Road) that the lanes are distinguishable from the rest. Each
of them corresponds to a thin peak of the gradient angle histogram.

(A)

(B)

FIGURE 5.3 – Extraction of the gradient angle on road images from
(A) (Aly, 2008), (B) (Road) showing how the lanes are distinguished
by this feature. The numbering of the lanes gives the correspondence
in the four representations. Upper-left: the original image; Upper-
right: gradient angle extraction; Bottom-left: gradient angle histogram;

Bottom-right: 3D feature space representation.



5.3. BIPS adaptation 79

Spatial features

As shown in 3.4.2, the Cartesian spatial coordinates can give a poor framing of the
lines, whereas the use of rotated axes X and Y in the direction of the detected line
would fit better. The rotation equation of the clockwise oriented axes is reminded in
Eq. 5.2. The difficulty of such change is that the rotation angle α is not initially known.
Several solutions have been proposed in (Pirim, 2001) and (Pirim, 2005), implying
adaptation of the DA iterative process and possible mismatch of its convergence
property. Here we present our study of those propositions and our extension for a
better implementation in our simulator (App. 4.3).

Definition. Rotated spatial axes(
x
y

)
=

(
cos α sin α
´ sin α cos α

)(
j
i

)
(5.2)

Proposition 1. Multiple framing computation
The first and early proposition was to run simultaneously several pairs of FMDs, each
of them on different spatial axes corresponding to a different rotation, then to select
the axes obtaining the highest histogram peak on X. This can be done also by using
identical DAs running simultaneously on the same set of pixels, but with different
spatial axes inputs. This adaptation brings numerous unnecessary computations
due to the multitude of FMDs. Moreover, the selected rotation is not precise if not
enough pairs of FMDs are used.

Figure 5.4 presents the obtained results with this method on the road image
(Road). In this example, four sets of FMDs are running simultaneously using respec-
tively the rotated axis at 0˝, 45˝, 90˝ and 135˝. The comparison of the X coordinate
histograms shows that the chosen framing could be either at 0˝ or 45˝ as they have
the highest peaks (43 pixels compare to 15 and 24 pixels). However none fits well the
lane. It shows the limitation of the method, which needs a highest number of FMDs
to be able to find a suitable rotation of the spatial axes.

Proposition 2. Successive framing computation
A first adaptation of the DA process keeps only a pair of FMDs for the spatial co-
ordinates and computes the rotation α during the DA iterative process. After a few
steps with the Cartesian axes (J, I), the rotated axes X and Y are defined using
the gradient angle histogram mode f ang

max
as the estimated rotation angle value. In

(Pirim, 2005), it is also proposed to use the median of the gradient angle histogram.
Then, the input features of the second and third FMDs which were the pixel coor-
dinates j and i, become the rotated coordinates x and y. This can also be done
using two DAs running successively, the first one working on the Cartesian axes, the
second working on the rotated axes and conditioned by the framing of the first DA.
This adaptation, however, might select an incorrect rotation angle, as the Cartesian
framing can be corrupted by noise or close lines.

Figure 5.5 compares the results obtained using the successive framing compu-
tation (Proposition 2) and the iterative angle selection (Proposition 3). The gradient
extraction is made with a threshold at 4% of the possible maximum and 40 DAs are
running successively. The object size threshold is set at τN = 30 pixels. The DAs
inhibit each other using their gradient angle selection valFMDang (Eq. 3.21). We can
observe that the successive framing computation results are often deviated when
two lanes are close to each other: the DAs number 11, 17 and 26 for example are all
corrected when using the iterative angle selection.
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FIGURE 5.4 – Representation of the obtained framing on a road im-
age (Road) for a set of 4 rotation angles as proposed in (Pirim, 2005)
and the corresponding histograms on the spatial coordinate X. This
brings forward: (1) the variation of the axes histograms depending on
the orientation and (2) the difficulty of finding a suitable orientation
with the multiple framing computation (Proposition 1). From up to

bottom: α = 0˝, α = 45˝, α = 90˝, α = 135˝.
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(A) (B)

FIGURE 5.5 – (A) Road image (Aly, 2008). (B) Angle extraction.

(C) Successive framing computation (Proposition 2)

(D) Iterative angle selection (Proposition 3)

FIGURE 5.5 – Comparison of the results obtained with (C) the suc-
cessive framing computation (Proposition 2) and (D) the iterative an-
gle selection (Proposition 3). It shows the deviated framings -11, 17,
26- obtained with Proposition 2 and corrected by Proposition 3. 40
DAs are running successively and linked by inhibition of their gradient

angle selection.

Proposition 3. Iterative angle selection
In this proposition, the gradient angle histogram mode f ang,k

max
is used at each step

of the DA iterative process to better estimate the rotation angle αk and avoid the
incorrect selection observed with the Proposition 2. Then, the new coordinates X and
Y evolve at each step of the process. Therefore, the boundaries of the second FMDs
-framing the X coordinate and computed at step k ” 2 (mod 3)- and the boundaries
of the third FMDs -framing the Y coordinates and computed at step k ” 3 (mod 3)-
does not necessarily correspond to the same pair of rotated coordinates.

Supplementary parameters (αFMDm)m=t2,3u are then necessary to compute the
pixel validation of the FMDs 2 and 3. They correspond to a memorization of the αk
parameter used at their last boundaries update. This proposition implies a change
in the iterative process represented in Figure 5.7.

This new iterative process does not guarantee the decreasing of the framing Pk.
Nevertheless, we could observe a conservation of the objects detection during our
experiments, along with, in some cases, an oscillation around the best rotation an-
gle value. Such oscillation prevents the detection to be validated in our algorithm
(Eq. 3.33). Figure 5.6 shows an example of the oscillation obtained when using the
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iterative angle selection (Proposition 3) in comparison with the iterative angle estima-
tion (Proposition 4), which smooths the rotation for a better framing adapted to our
algorithm.

(A) (B)

FIGURE 5.6 – (A) Road image (Aly, 2008). (B) Gradient angle extrac-
tion.

(C) Iterative angle selection (Proposition 3)

(D) Iterative angle estimation (Proposition 4)

FIGURE 5.6 – Comparison of the results obtained with (C) the
iterative selection (Proposition 3) and (D) the iterative estimation
(Proposition 3). Although the obtained framing are similar and close
to the lanes, the iterative selection of lane 1 (green) oscillates and

does not validate the convergence test.

Proposition 4. Iterative angle estimation
In this last proposition, we modified the iterative angle selection, such that the oscil-
lation observed would be slowed down by smoothing the rotation angle estimation
with a geometrical approximation (Eq. 5.3). By doing so, the estimated αk is influ-
enced by its last values and can be stabilized for several steps at the same value. It
allows the algorithm to validate the convergence of the DA.

Definition. Geometrical approximation of αk

αk+1 = αk +
f n,k

max
´ αk

2∆k
(5.3)

∆k+1 =

"

max(∆k ´ 1, 0) , if |αk ´ f n,k
max
| ą τα

min(∆k + 1, 8) , if |αk ´ f n,k
max
| ď τα
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FIGURE 5.7 – Representation of the DA iterative process integrating
the axes rotation. This diagram is valid for Proposition 3 and Proposi-

tion 4.

5.3.2 Architecture

DA parameters

The architecture of DA we choose concentrates on detecting a line. In the chosen
feature space (F1 = ang, F2 = X, F3 = Y), a line corresponds to one mode of the
gradient angle and a position on the rotated axis X. The parameters setting of the
DA is, thus, facilitated by the chosen feature space. As it has already been shown in
the examples, the DA is composed of three FMDs, one working on the gradient angle
feature, one on the rotated X axis, and one on the rotated Y axis. Mode 1 is used for
both the gradient angle and the position X to find the line defining values and Mode
2 is used on the axis Y to regroup the aligned dashed lanes into one detection. The
threshold on the Y axis is chosen null τY = 0 to regroup all the aligned pixels of the
lines. The boundaries AY and BY gives information on the lane endpoints, especially
if it is shorter than the view of the road. The threshold on the gradient angle τang,
the position τX and the size of the line τN are left unset and their influence will be
analyzed in Section 5.4.3.
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Multiple lanes detection

A series of such DAs, connected by inhibition should allow to detect all the lines in
the frame. However, the classic inhibition performed based on the valDA applica-
tions (Eq. 3.30) only inhibits the pixels in the three features framing of the DAs. As
we already observed in Section 3.4.2, this framing can cut the detected lines and
then leaves several pixels corresponding to the same line uninhibited. Moreover, the
context of road lane detection allows to define a spatial region around each detected
lane where no other lanes should be looked for and to associate only one gradient
angle per detected lane. The spatial region can be defined by the combined spatial
FMD pixel validations with an extension of their boundaries as proposed in Eq. 5.4
and the inhibition of the selected gradient angle can be defined as in Eq. 5.5. The
extension represented by the parameter ε can be chosen manually or proportional to
the width of the selected histogram mode |B´ A|, allowing a more adapted setting
of this parameter.

Definition. Spatial inhibition coming from one DA

valk
ext : P ÝÑ t0, 1u

p ÞÝÑ NOT
(

valk
FMDX

(p, εX)^ valk
FMDY

(p, εY)
) (5.4)

Definition. Gradient angle inhibition coming from one DA

valk
ext : P ÝÑ t0, 1u

p ÞÝÑ NOT
(

valk
FMDang

(p, εang)
) (5.5)

Definition. FMD pixel validation extension

valFMD(p, ε) = (A´ ε ď F(p) ď B + ε)

5.3.3 Conclusion

Through the road lane detection application, we have been able to set and automa-
tize multiple BIPS parameters: the gradient angle extraction can be adapted to the
input image through the selection of the Gaussian variance; the spatial axes are
rotated to always fit the same alignment with the detected line; the DAs used are
identical and linked by spatial inhibition; and the update modes of their three FMDs
are defined.

This setting process allowed to develop the first extension of the BIPS method,
the iterative rotation of the axes and to reduce the number of parameters of influence
to four: the threshold on the descriptive feature, the position and the line size, as well
as the number of DAs.

5.4 Experimental results

This Section presents the results obtained on the caltech-lanes dataset (Aly, 2008).
The experimentation allows to compare our BIPS-based approach to a known aca-
demic method and to illustrate the impact of the unset parameters on its perfor-
mances.
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The chosen dataset is described in Section 5.4.1, along with the evaluation
method of the BIPS results. Then in Section 5.4.2, we use the connection between
the object size and the number of DAs to reduce the number of parameters and to
improve the performance of the method. Finally, in Section 5.4.3, we illustrate the
impact of the two left threshold parameters, before concluding in Section 5.4.4.

5.4.1 The caltech-lanes dataset

The caltech-lanes dataset, developed by Aly et al., is composed of four sets of videos
taken from a car. The clips contain several difficulties: curve lanes, writing on the
street, sun facing, strong shadows, passing cars, street crossing, etc. The associ-
ated ground truth concentrates only on visible road lanes from the car and provides
a 3rd degree Bezier spline description of them as shown in Figure. 5.8.

FIGURE 5.8 – (A) Images and Ground truths from the caltech-lanes
dataset showing the encountered conditions. (B) Associated gradient

angle.



86 Chapter 5. Application to road lane detection

In (Aly, 2008), the RANSAC method is used to fit the lanes. In a pre-processing
step, a fixed mask selects the road part of the image and an inverse perspective
mapping (IPM) provides a nadir ("birdeye") view of the road, assumed as being flat.
The descriptive features of the lanes are extracted from the IPM images using a
2D second degree filter. Its convolution with the image allows to enhance points
corresponding to the lanes which are then extracted using a threshold. From this
set of points the detection of the lanes is first performed using the histogram on
the number of extracted pixels per longitudinal coordinate. The local maxima of the
histogram gives the positions of the lanes. The RANSAC method is used a first time
here to fit the lines. From this detection Aly et al. extract bounding boxes of the
lanes, which are used to perform the RANSAC method again, but this time to fit the
3rd degree Bezier splines.

The metric used for the validation of their detection is the minimum distance be-
tween the detected spline s and each ground truth spline sGT (Eq. 5.6). The validation
of the detection corresponds to dmean ă 20 pixels and dmedian ă 15 pixels.

Definition. Detection validation metric

dmean = min
(

mean
pPs

(dist(p, sGT)) , mean
pPsGT

(dist(p, s))
)

dmedian = min
(

median
pPs

(dist(p, sGT)) , median
pPsGT

(dist(p, s))
) (5.6)

BIPS settings

The BIPS settings proposed in Section 5.3 are still valid for this experiment and
this dataset. The Gaussian standard deviation for the gradient extraction is set to
σ = 1.5, the threshold for the angle validation is set at τmo = 4% of the maximum
possible value and the angle minimum and maximum values have been restricted
to avoid the horizon detection. As the dashed lane are represented by one spline
in the ground, the mode 2 is used on the axis Y (see Sec. 3.3.3 for an illustration
of the mode 2 effect). The inhibition connection corresponds to the spatial framing
exclusion on one hand and the feature exclusion on the other hand, as, thanks to
the perspective, every lane corresponds to a different gradient angle and lies in a
different area of the image (Eq. 5.4 and 5.5). The validation extensions are set to
εX = 3/2|BX ´ AX|, εY = 0 and εang = 2|Bang ´ Aang|, from empirical observations
made on the cordova1 clip. In this experiment, the DAs are running successivily and
not pipelined as for our first implementation of the process. When a DA converged
to a small size object (noise), our algorithm does not reinitialize this DA and uses its
gradient angle mode to inhibit the following DAs (Eq. 5.7).

Definition. Feature mode inhibition

valext : P ÝÑ t0, 1u
p ÞÝÑ

(
F(p) ‰ f ang,k f inal

max

) (5.7)

A pre-processing step, selecting a fixed ROI concentrated on the visible road
lanes, is also done under the form of an input mask selecting this part of the image
and used as pixel validation input (Eq. 5.8).

Definition. Mask input

valmask(i, j) = t54 ă j ă 575u ^ t170 ă i ă 343u (5.8)
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Evaluation metrics

In order to evaluate our BIPS-based method and compare its results to the refer-
ence, we added a post-processing step transforming the DAs output into a 1st de-
gree spline s. Two knots describe this spline p1 and p2, they correspond to the de-
tected line extremities (Eq. 5.9). Therefore, the same metric as Aly can be used
to validate the lane detection. The Matlab functions ccvCheckMergeSplines and
ccvEvalBezSpline (with a 0.01 step for the splines points), which are part of the code
of (Aly, 2008), have been used to perform the validation.

Definition. Spline knots
$

’

’

&

’

’

%

p1 = RαDA

(
xmax

AY

)
p2 = RαDA

(
xmax

BY

) (5.9)

with

Rα =

(
cos α ´ sin α
sin α cos α

)
Only one DA per lane is validated. The first DA converging on the lane is consid-

ered as true positive (TP), but the following DAs close enough to represent the lane
are considered as false positives (FP), as well as the converging DAs not associated
with any lanes. The DAs that did not converge are considered as true negative (TN).
Finally, the lane that haven’t been detected by any DAs are considered as false neg-
ative (FN). The false positive rate (FPR) Eq. 5.10 and the true positive rate (TPR)
Eq. 5.11 are used to compare the results.

FPR =
FP

TN + FP
(5.10)

TPR =
TP

TP + FN
(5.11)

5.4.2 Number of DAs and object size impact

In the first step of the experimentation, we set the values of the feature thresholds
to τang = 30% and τX = 50%, as we estimate that the noise in both features is very
low and the objects well separated in the joint histogram projection. The threshold
on the object size is kept variable to form the ROC curve. In fact, a lower value of
this threshold implies an augmentation of the number of DAs converging, thus an
augmentation of true and false positives, whereas a higher value of the threshold
restrain the convergence of the DAs until none of them converges at all. There is
one parameter left free: the number of DAs used.

Fixed number of DAs

The first set of experiments have been done using a fixed number of DAs on the four
videos of caltech-lanes. Three values have been used: nDA = 10, nDA = 25 and
nDA = 40. We chose such high number of DAs, because by using them sequentially
without reinitialization, in this experimentation, many can be attracted by noise or
small unsignificant lines before all the lanes are detected.
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FIGURE 5.9 – ROC curves obtained with 10 DAs (dashed lines), 25
DAs (dotted lines), 40 DAs (plain lines) on each video set.

Figure 5.9 shows the ROC curves obtained. The experiments have been run with
τN = 0, 1, 3, 5, 10, 25, 50, 100, and 500 pixels. For a large object size threshold the
true positive rate (TPR) and the false positive rate (FPR) are low and both increase
when the object size threshold is reduced. Higher is the number of DAs used, better
are the results as we can observe by comparing the area under the curve (AUC).
This can be explained by the fact that a high number of DAs significantly increases
the number of TN (DAs that did not converge), whereas the number of FP (DAs that
converged, but are not validated) is limited and stabilized. The number of TP is also
increased until all the lanes are detected (FN is null). Thus a high number of DAs
reduces the FPR and increases the TPR.

However, in the context of our research, it is required to use the smallest number
of not converging DAs to reduce the computational needs of the system. We choose
to use the relation between the numbers of DAs nDA and the object size threshold
τN to find the best amount of DAs for a better performance with less unused DAs.
Indeed, the two parameters are linked by the number of sought objects in the image
nobj: when τN is high, the number of sought objects is low and thus is the number
of DAs needed; whereas when τN is low, the number of sought objects is high and
therefore the number of needed DAs too.

In order to find a relation that could rule our parameters for all the four clips of
caltech-lanes, we proceed in two steps: first we looked for the relation between the
objects size threshold and the number of sought objects in the image; then we linked
this number to the number of DAs needed to detect them all.
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Number of object per image

In order to quickly estimate the relation between the number of sought objects and
the objects size threshold, we use the results obtained by running sequentially 100
DAs over the video set cordova1 with a threshold τN = 0, so each of them detects
an object in each image. The mean size of the objects detected per each DA, shown
in Figure 5.10, gives a representation of the sought lanes in caltech-lanes images.

The objects of size inferior to 5 pixels can be considered as noise and ignored in
the following analysis. The representation permits to roughly estimate the size of the
lanes and thus the number of sought lanes depending on the objects size threshold.

FIGURE 5.10 – Mean size of detected objects per each DA on the
cordova1 images set. This gives a representation of the lane sizes
and number per image: there is about five to six big lanes per images
(size above 50 pixels) and about 15 elements that could be part of a

lane or a small lane (size above 5 pixels).

We observe that the number of sought lanes is proportional to a negative power
of the objects size threshold. The regression on several power values τ´2

N , τ´1
N ,

τ´1/2
N and τ´1/3

N , visible on Figure 5.11, allows to estimate the following relation:

nobj =
1

0.02
?

τN
. (5.12)
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FIGURE 5.11 – Relation between the number of sought lanes and the
objects size threshold for different power values.

The same experiment has been run on the other videos (cordova2, washington1
and washington2) and confirmed the estimated relation. The four sets had their best
regression value on τ´1/2

N , and an experimental coefficient between 0.022 and 0.029.

Necessary number of DAs

The number of DAs needed is not necessarily equal to the number of sought objects.
Even though the representation of the detected object for each DA (Fig. 5.10) shows
that the first DAs have a tendency to detect bigger objects first, we could observe
through each image result that this property is not always verified.

Figure 5.12 shows the necessary number of DAs to detect all sought lanes for dif-
ferent values of τN -10, 20, 30, 50, 100 and 200pixels- and for each image of cordova1.
This is based on the results obtained with 100 DAs and looking in each image for the
last DA detecting an object of size superior to τN. It permits to conclude that the
number of necessary DAs is between one time and 2.5 times the number of sought
objects.

The same results have been obtained when running this experiment on the other
videos, which validates the estimated relation for the caltech-lanes datasets. The
2.5 factor can seem very high, but it is a consequence of our implementation using a
sequential running of the DAs with no reinitialization. To obtain the best results, we
chose the upper factor:

nDA = 2.5ˆ nobj (5.13)
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FIGURE 5.12 – Number of necessary DAs to detect all the sought
lanes depending on the number of sought lanes in the image. Each
circle corresponds to the result on one of the 250 images of cordova1

and one object size threshold value (10, 20, 30, 50, 100 or 200).

This analysis permits to obtain the final relation estimation, which is presented in
Equation 5.14, based only on one experiment with the following settings: 100 DAs
run successively with a threshold at τN = 0. The estimation is a little bit rough, but
running only one scenario allowed us to optimize the computational time, which is
not yet optimized for our CPU plateform.

Definition. Relation between nDA and τN

nDA =
2.5

0.02
?

τN
(5.14)
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Comparison to the fixed number of DAs

The third set of experiments has been done using the automatic setting of nDA,
based on the estimated relation, on the four videos of caltech-lanes. Figure 5.13
shows the new ROC curves obtained in comparison to the previous curves. There
is an improvement of the results, as it reduces the FPR and increases the TPR for
small thresholds, while keeping stabilized results for high thresholds.

A shifting of the curves can be observed for the high values of the threshold.
This can be explained by the small number of DAs used for high threshold. In fact, in
images like cross road or pedestrian crossing lanes, the DAs might easily converge
to one of the lane or road border which are not considered by the ground truth. Thus,
the number of false positive is important compare to the total number of DAs.

FIGURE 5.13 – ROC curves obtained with the automatic setting in
comparison to the curves obtained with a fixed number of DAs on
each video. Plain lines: Automatic setting; Dashed lines: nDA = 10;
Dotted lines: nDA = 25; Dashed and dotted lines: nDA = 40. τN =
500, 100, 50, 25, 10, 5, 3, 1 and 0 (the null value is not used for the

automatic setting).
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Comparison to the reference

The inflexion point of each curve corresponds to the same setting: τN = 10 and
nDA = 39. Using those selected values, we compare the performances of our BIPS-
based approach to the method used by Aly.

As shown in Table 5.1, the BIPS reaches the level of the reference. We can
observe that the method performed better for the cordova2 set, where there is sun
facing and road work conditions, but performed worse for the washington sets, where
shadows and street markings are more important.

Clip correct rate false pos. rate

[Aly] [BIPS] [Aly] [BIPS]

cordova1 91.62% 91.06% 5.66% 6.99%

cordova2 85.5% 89.55% 40.64% 11.95%

washington1 92.78% 79.89% 13.11% 12.35%

washington2 93.66% 89.86% 8.59% 10.42%

TABLE 5.1 – Performance comparison between the method used by
(Aly, 2008) and our BIPS-based method.

5.4.3 Histogram feature thresholds impact

The experiments were all performed using fixed values of the histogram threshold
parameters τang = 30% and τX = 50%, that we empirically chose based on gradi-
ent images from cordova1. In the second step of our experimentation, we evaluate
separately the impact of these two thresholds.

Figure 5.14 and Figure 5.15 show the variation of the FPR, the TPR and the
number of detections depending on the value of the threshold τang first, then the
threshold τX for each video of the caltech-lanes dataset. The results have been
obtained for τang = 0, 20, 30, 40, 50, 60, 80 and 99 percent and for τX = 0, 10, 20,
30, 40, 50, 60, 70, 80, 90 and 99 percent. We observe that the results are not much
influenced by the threshold in a large domain of values: 0.2´ 0.5 for τang and 0.4´ 0.7
for τX.

As expected, a low value of the threshold allows noise or close lanes (either
spatially or by angle) to be in the detection framing, thus reducing the number of
detections and then the TPR and the FPR. And a high value of the threshold looses
too much pixels from the detected lane leading to an insufficient object size for the
detection, thus reducing the TPR and the FPR.
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FIGURE 5.14 – Variation of the FPR, the TPR and the number of
detected objects as a function of the threshold τang. The dashed line

represents the fixed value used in previous settings.
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FIGURE 5.15 – Variation of the FPR, the TPR and the number of
detected objects as a function of the threshold τX. The dashed line

represents the fixed value used in previous settings.

5.4.4 Conclusion

The caltech-lanes dataset conditions allow to set several parameters of the method,
leaving only four free: the number of Dynamic Attractors (DAs), the thresholds on
the object size, the gradient angle histogram and the X coordinate histogram. The
bevahior and performance analysis of the method has been conducted in two steps.
First, the impact of the number of DAs used has been evaluated, leading to the
implementation of a size-dependent-selection of this parameter. The defined rela-
tion both automates the parametrization and improves the obtained results on the
caltech-lanes database. This relation also optimizes the number of DAs engaged,
thus minimizing the computation time and resources. In a second step, it has been
verified that the estimated thresholds on the gradient angle and X histogram had not
a strong impact on the results.

The BIPS results are at the level of the reference (Aly, 2008), however the rate of
false positives remains high. In fact, in the ground truth the centered two lanes are
considered as only one lane but they are mostly detected by two DAs, the ground
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writings and pedestrian lanes are not taken into account but are often detected and
the road borders are sometimes selected as lanes in the ground truth, sometimes
not, but often correspond to the lane model chosen for the DA detection. The config-
uration of our architecture also has its impact on the true and false positive rate. The
chosen model is focused on straight lanes leading to partial, multiple or nonexistent
lanes detection. And the choice of a sequential running without reinitialization of the
DAs reduces the number of detections and increases the false positive rate when a
small number of DAs are used.

5.5 Discussion

In this Chapter we have adapted the BIPS approach to a specific application in order
to evaluate its behavior and to compare its performance to known academic meth-
ods. All these proof of concept have been established with the BIPS SDK specifically
developed for this PhD work and described in Chapter 4. It enables to understand
the BIPS behavior and to evaluate the influence of all the parameters on its response
and performance analysis. The road lane detection application has been chosen, as
it corresponds to one of the industrial application of the BIPS on-chip and it is part of
the autonomous driving hot research topic.

For this application most of the DAs architecture settings can be generalized and
automatized, allowing to reduce this study to only four of the BIPS parameters: the
number of DAs used and the object size, the gradient angle histogram and the X co-
ordinate histogram thresholds. An extension of the BIPS method is however neces-
sary, consisting in rotating the spatial axes during the iterative DA process to obtain a
better framing of the detected lanes. The experimentation performed on the caltech-
lanes datasets allowed to fit our BIPS-based approach for the straight lines model
and to validate the weak influence of the histograms thresholds on the road lane
detection application. Moreover, it permitted us to establish an automatic setting of
the number of DAs allowing computation and resources optimization. The obtained
results are promising as they reached the level of the reference (Aly, 2008), while
relying only on the BIPS method without supplementary pre- or post-processings.

Our first implementation of the BIPS approach has, however, its flaws, that could
be improved. Firstly, the DAs sequential runnnig without reinitialization causes a high
increase of nDA, thereby increasing the computational cost. Secondly, the multi-
modal capacity of the BIPS, which we could formalize through the input definition
(Sec. 3.2.4), has not yet be taken into account. The method could be adapted for
more complex models than the straight lines model and could integrate more percep-
tual inputs (like LIDAR, IMU). The rotated spatial features selection could even be
done in a more generic way and on a larger set of features. Thirdly, the time informa-
tion could be integrated into the process to improve the detection results, to track the
detected objects and to reduce the computational time of the BIPS by pre-selecting
the region of interest where each DA is likely to converge. The ground-truth of the
caltech-lane dataset has it flaws too, as the team of Aly focused more on the right
and left first lanes leaving the labelization of the other lanes unconsistent. It would be
then interesting to establish a well defined labelization of this database completed by
other datasets with different road conditions and to compare the performances of the
BIPS-approach to more known road lane methods tuned for the chosen labelization
rules.
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Chapter 6

Extension proposals

6.1 Introduction

The study of the BIPS method in the specific application of road lane detection pre-
sented in Chapter 5 allowed to confirm its convergence behavior toward objects of
interests and its at-the-reference-level performances when its settings are adapted in
a top-down manner (i.e. based on a model of the objects). However, the study failed
to bring out an answer concerning its generic and evolutive capacities, neither its
efficiency in other applications. The real-time computation property might be broken
by the multiple sequential processes of the method. Moreover, it seems complicated
to automatically tune all the parameters to get the expected BIPS result. Mainly for
this reason, it was decided to develop a software simulator. Even if this approach
is far from the BIPS real time aspects, it enabled a precise comprehension of the
different processing units of the BIPS and their cross-interaction. It can now also
help in the improvement and extension of its functionalities.

The biological model, on which the BIPS concept is based, supposes that the
association of the same process working on the few sets of first and second or-
der features (e.g. brightness, color, edges) computed in the first layers of the visual
pathway is enough to perform detection and recognition tasks in the brain (see Chap-
ter 2). It implies that the right combination of FMD processes on a set of first and
second order features should allow us to perform different and more complex visual
tasks. The experimentation and evaluation of this hypothesis is not straightforward
as our understanding of the FMD processes combination effect must be further in-
vestigated. As a first step toward it, we can already propose some extensions of the
DA process, which will open the method to a larger set of applications.

In this Chapter, we present two DA extension proposals. The first one, presented
in Section 6.2 permits to reduce computational time, to improve detection results
and to perform object tracking by integrating time into the process. We suggest
an improvement of the method using a Kalman filter to perform a more robust and
smooth object tracking while reducing the computational time of the DA process.
The second proposal, presented in Section 6.3 permits to obtain a better framing of
the objects and opens the method to automatic and evolutive selection of the input
features. The proposal is inspired from the spatial axes rotation used in the road
lane detection application for improvement of the framing. Same issue happens in
cases where the gradient angle can not be used to find the new axes. Thus, we
propose an integration of the principal directions of the sought objects into the DAs
to permit a reorientation of their input feature space. Finally, the contribution of these
first proposals and their limitations will be discussed in Section 6.4.
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6.2 Time integration proposal

In (Pirim, 2013), the presentation of the Dynamic Attractor (DA) process mentioned
the use of the median value of features in previous images to estimate the displace-
ment of the object framing P and predict it for the next image. In this Section, we
study how time can, in fact, be integrated into the BIPS method and which improve-
ments this extension brings in terms of computation and applications.

Section 6.2.1 presents a quick overview of the existing tracking methods and the
advantages time integration could bring to the classical BIPS method. Then, our
time integration proposal, using the Kalman filter, is presented in Section 6.2.2. Illus-
tration and first analysis of the BIPS method integrating our extension has been run
on the view001 video from PETS 2009 benchmark (PETS 2009) and is presented in
Section 6.2.3. The obtained results confort us in the BIPS capacity to obtain better
detection and tracking information in a limited number of iterations, thanks to the
smoothed and robust process of the Kalman filter. But on the other hand, as dis-
cussed in Section 6.2.4, it also increases number of parameters, which complicates
the generic and evolutive implementation of the BIPS concept.

6.2.1 Time integration overview

Time integration in the BIPS

The proposed road lane detection framework of (Bar Hillel et al., 2014), followed
in Section 5.2.2, presents a fourth block named "Time integration". Its purpose is
to correct the detection using the previous frames information. In our formalization
of the BIPS, we did not integrate this information yet, but this has been considered
by the inventor P. Pirim, when he proposed to use the median displacement to shift
the new boundaries (Anew, Bnew) (Pirim, 2013). The idea is to predict the sought
object framing Pt+1 based on the framing Pt,k f inal (Eq. 3.29) obtained at the end of the
iterative process (or when it is stopped) and uses this predicted framing to accelerate
the DA convergence process on the next image.

Such time information can improve the BIPS in several ways. Firstly, as it was
observed in Section 3.4.2, the correspondence between a DA and an object is not
consistent from one image to another in the classical method, but time integration
could help maintain a DA on the same object, thus enlarging the domain of applica-
tion of the BIPS to tracking applications. Secondly, the DAs linked by inhibition can
not completely work in a parallel way, as each of them have to wait for the preceding
DAs to leave them some pixels in the frame to work on. Moreover, the order of detec-
tion is strongly influenced by the feature order and does not necessarily correspond
to the order of importance of the object, as we could observe in the experiments
Section 5.4.2. But, with time integration, it can be expected that the DAs will be
directly launched on different well chosen areas of the feature space, based on the
previous detection. Computation is thus also improved as the number of iterations in
the DA process can be strongly reduced.

Existing methods

There is a multitude of tracking methods that could be used to perform the new fram-
ing Pt+1,0 prediction. The survey of Yilmaz et al. (Yilmaz, Javed, and Shah, 2006)
gives an overview and a useful classification of the tracking methods, even though
most of them are more concentrated in finding the path of the object rather than
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predicting its next position. The tracking implementation of the framing belongs to
the point tracker family, as its position is computed at each frame by the DA process
and its representation corresponds to a set of points. Among the gathered methods
for this class, the most appropriated are the statistical methods (Kalman filter and
Particle filter), which are more robust to occlusions and model uncertainties than the
deterministic methods. They are less complex than the probabilistic methods. Bar
Hillel et al. also pointed out those two methods as the two most used methods for
time integration in road lane detection.

For our time integration extension, we choose the Kalman filter as it showed
several interesting results in robotic application (Chen, 2012), it is well-known and
easily implemented in its linear version.

6.2.2 Method proposal

Validation framing enlargement

First and foremost, we use an enlargement of the detected framing P for the pixel
validation (Eq. 3.21) allowing the DAs to look for bigger objects when their predicted
framing initialization is too small. The enlargement is integrated to the iterative pro-
cess and allows also to reconstruct framing that had been cut due to the inhibition
and the parallel running of DAs, as mentioned in Section 3.4.2. However, this en-
largement might alter the DA convergence property (see App. ??). The principle is
to set manually or automatically an offset εF for each feature F, such that the pixels
validated for the histogram computation are in the enlarged framing Pε

t,k as defined
below.

Definition. Enlarged framing

Pε
t,k =

M
ź

m=1

[
At,k

m ´ εm, Bt,k
m + εm

]
(6.1)

Chosen model

The Kalman filter is used in each DA to update and estimate the framing P described
by its center C = (Cm)mPJ1,MK and its widths (∆m)mPJ1,MK.

For this first extension trial of the time integration into the BIPS, the chosen model
of the framing displacement is the translation at constant speed (vm)mPJ1,MK, and
constant widths. The corresponding transition matrix is defined by Eq. 6.4. The ob-
servation of the state is based on the obtained boundaries at the end of the iterative
process (or when it is stopped), the corresponding observation matrix is defined by
Eq. 6.5. The Kalman filter linear equations used are reminded in Eq. 6.6 for the
definition part, Eq. 6.7 for the update part and Eq. 6.8 for the prediction part. Finally,
the update framing is used to re-calibrate the DA output and the predicted framing
is used as initialization of the DA iterative process on the next image. A flowchart
representing the integration of the Kalman filters into the BIPS process is presented
in Figure 6.1.

Definition. State vector

x = (C1, . . . , CM, ∆1, . . . , ∆M, v1, . . . , vM) (6.2)
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Definition. Measure vector

zt =
(

A
t,k f inal
1 , . . . , B

t,k f inal
M , B

t,k f inal
1 , . . . , B

t,k f inal
M

)
(6.3)

Definition. State transition matrix

F =

 IM 0 IM
0 IM 0
0 0 IM

 (6.4)

Definition. Observation matrix

H =

(
IM ´1

2 IM 0
IM + 1

2 IM 0

)
(6.5)

Definition. Kalman definitions

pxt|t : a posteriori state estimate
pxt+1|t : a priori state estimate

zt : measurement
Pt|t : a posteriori error covariance matrix

Pt+1|t : a priori error covariance matrix
Ft : state transition model

Ht : observation model
Qt : covariance of the transition noise
Rt : covariance of the observation noise
Kt : gain

I : identity matrix

(6.6)

Definition. Kalman update

Kt = Pt|t´1HT
t
(
HtPt|t´1HT

t + Rt
)´1

pxt|t = pxt|t´1 + Kt
(
zt ´Htpxt|t´1

)
Pt|t = (I´KtHt)Pt|t´1

(6.7)

Definition. Kalman prediction

pxt+1|t = Ftpxt|t
Pt+1|t = FtPt|tFT

t + Qt
(6.8)

Algorithm step. Update t, k f inal

@m P J1, MK At
m = pCt|t ´

p∆t|t
2

Bt
m = pCt|t +

p∆t|t
2

(6.9)

Algorithm step. Prediction t Ñ t + 1, k = 0

@m P J1, MK At+1,0
m = pCt+1|t ´

p∆t+1|t
2

Bt+1,0
m = pCt+1|t +

p∆t+1|t
2

(6.10)
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FIGURE 6.1 – Represention of the BIPS process when using a
Kalman filter.

6.2.3 Illustration

We illustrated the proposed method and initiated a comparison to the medians dis-
placement shifting proposed by the author on the video view001 from the PETS
2009 benchmark (PETS 2009). The video presents moving pedestrians with a static
point of view. The experiments have been done with our BIPS simulator presented
in Chapter 4 and the display was made with Matlab (MATLAB and Image Processing
Toolbox Release R2018a).

We ran only one DA to not be disturbed by the chosen inhibition rules. The optical
flow direction is used as the descriptive feature and the Cartesian spatial axes X
and Y as space features. We use the optical flow obtained with the Farnebäck
method (Farnebäck, 2003) and the function developed for OpenCV (OpenCV 2.4
release), with a threshold τvelo = 2 pixels/frame for the validation of the direction
value. The histogram thresholds are set to τdir = 0.10ˆ qdir

max
, τX = 0.20ˆ qX

max
and

τY = 0.10ˆ qY
max

. The mode 1 is used for all FMDs and the object size threshold is
set to τN = 100 pixels. Those values have been chosen based on the observation of
the features extraction results. The threshold on Y is kept low to avoid the cut of the
heads and legs of the tracked pedestrian.

Four configurations are illustrated: (1) no tracking is used and the DA is reini-
tialized for each frame; (2) the obtained framing is reused with enlargement; (3) the
medians displacement is used to predict movement of the framing between two im-
ages; (4) our extension proposal: the Kalman filter updates and predicts the framing
between two images.
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1. Without tracking

In this first configuration, the DA is reinitialized for each frame and the classical BIPS
method is used. In Figure 6.2, we can observe that from one image to another the
DA does not detect the same person.

(A) t0 (B) t1

(C) t2 (D) t3

FIGURE 6.2 – DA detection on successive images without tracking.
The detection performed by the first DA (direction-related-colored
framing) is not maintained on the same person along the four suc-

cessive frames.
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2. Using the enlarged framing

In this configuration, the boundaries are directly reused for the next image with an
enlarged framing of εdir = 10˝, εX = 10 pixels and εY = 10 pixels. If we look at
the same four frames sequence, we can observe that the enlargment helps main-
taining the DA on the same person (Fig. 6.3). But also, as shown in Figure 6.4, this
enlargement can cause a change of detection, when two persons are close to each
other.

(A) t0 (B) t1

(C) t2 (D) t3

FIGURE 6.3 – DA detection on successive images with an enlarged
framing tracking. The detection performed by the first DA (direction-
related-colored framing) is now maintained on the same person along

the four successive frames.
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(A) t1

(B) t2

(C) t3

FIGURE 6.4 – Switched detection observed when two pedestrians are
close on three successive images with an enlarged framing tracking.
Left: direction extraction - white framing for detection; Right: image -

direction-related-colored framing for detection.
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3. Using the Median

This configuration, based on the proposal of P. Pirim (Pirim, 2013), uses the displace-
ment of the different feature medians to shift the boundaries. The enlarge framing
defined above is still used to avoid a reinitialization of the DA due to a too small
predicted framing. The displacement is initialized to zero after the first detection of
the DA, then it corresponds to the difference between the current detection medians
and the preceding images detection medians.

The method permits to maintain the DA on the same person, but it can be ob-
served that the predicted framing is often too much shifted. (Fig. 6.5).

(A) t1

(B) t2

FIGURE 6.5 – Shifted predicted framing observed on two successive
images with a tracking using the medians. It is due to the strong vari-
ation of the features. Left: direction extraction - white framing for de-
tection; Right: image - direction-related-colored framing for detection

- black framing for prediction.
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4. Using the Kalman filter

This configuration, based on our proposal, uses the Kalman filter. The covariance
matrices of noise are to be set according to the chosen application and video. The
model noises are supposed Gaussian and independent with a standard-deviation of
1˝ for the angle center, width and displacement between two images; and 1 pixel
for the position center, framing widths and axes displacements between two images.
The measure noises are also supposed Gaussian and with a standard deviation of
10˝. The enlarge framing defined above is still used to avoid a reinitialization of the
DA due to a too small predicted framing. Initialization of the values is performed at
the first detection of the DA, then corresponds to the Kalman outputs.

The method maintains the detection of one person even when it passes behind
the pole, which was not the case for the two previous configurations (Fig. 6.6). The
detection seems smoother and more consistent, as we expected. The number of
reinitialization of the DA is also reduced (Tab. 6.1). However it can still be observed
that two close persons can deviate the detection (Fig 6.7).

Method Number of DA reinitialization

No tracking 91

Enlarged framing 3

Using the medians 8

Using Kalman 2

TABLE 6.1 – Number of DA reinitialization along the sequence of 91
images from PETS 2009 video view001.
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(A) t1

(B) t2

(C) t3

FIGURE 6.6 – Smoothed tracking of a person walking behind the pole
on three successive images with a tracking using the Kalman filter.
Left: direction extraction - white framing for detection; Right: image -
direction-related-colored framing for detection - black framing for pre-

diction.



108 Chapter 6. Extension proposals

(A) t1

(B) t2

FIGURE 6.7 – Switched detection observed when two persons are
close on two successive images with a tracking using the Kalman
filter. Left: direction extraction - white framing for detection; Right:
image - direction-related-colored framing for detection - black framing

for prediction.
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Number of iterations

A look at the number of iterations for a DA to converge shows also how the smoothed
tracking of the Kalman filter accelerates the convergence time compared to only
the enlarge framing used, whereas the medians tracking slows it down (Tab. 6.2
and 6.3). Moreover, when limiting the number of iterations per image to only three
iterations (i.e. one iteration per feature), whereas the medians methods can not keep
track of the target at all, the Kalman filter gives similar results as when waiting for
the convergence of the DA (Fig. 6.8 and Table 6.4). This allows to strongly reduce
the number of iterations per image and per DA, thus the computational cost of the
method.

Method Mean number of iterations

No tracking 9.87

Enlarged framing 11.82

Using the medians 12.93

Using Kalman 10.91

TABLE 6.2 – Mean number of iterations of the DA on a sequence of
the video view001 from (PETS 2009).

Method 7 iterations 10 iterations 13 iterations 16 iterations

No tracking 0% 40.7% 91.2% 100%

Enlarged framing 4.4% 57.1% 73.6% 76.9%

Using the medians 2.2% 44.0% 63.7% 71.4%

Using Kalman 1.1% 49.4% 76.9% 84.6%

TABLE 6.3 – Percentage of convergence per number of iterations.
Results obtained when running one DA in a sequence of the video

view001 from (PETS 2009).

Method Number of DA reinitialization

No tracking 91

Enlarged framing 4

Using the medians 58

Using Kalman 2

TABLE 6.4 – Number of DA reinitializations along the sequence of 91
images from PETS 2009 video view001 when stopping the iterative

process at three iterations.
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(A) t1

(B) t2

FIGURE 6.8 – Tracking results on successive images obtained with
the Kalman filter when stopping the iterative process after three iter-
ations. Left: direction extraction - white framing for detection; Right:
image - direction-related-colored framing for detection - black framing

for prediction.
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6.2.4 Conclusion

In this Section, we gave a first look at the possible time integration extensions of
the BIPS. The purposes are to maintain the association DA-sought object, to reduce
the number of iterations specially when using multiple DAs and to enlarge the BIPS
range of applications. An implementation of the Kalman filter into the BIPS process
has been proposed. It allows to correct and predict the sought object framing de-
tected by the DA. Thus, the detection results are improved, each DA keeps track of
its detected object and the computational cost can be reduced.

The preliminary experiments made on the video view001 from (PETS 2009) en-
courages our choice as the obtained results give a smoothed track of the sought
objects even with limited number of iterations, which is maintained even in the oc-
clusion test. It also encourages us in keeping a statistical tracking method, as the
strategy proposed by the author P. Pirim seems strongly affected by the descriptive
feature artifacts and even more by the limited number of iterations. However, the
proposed time integration brings even more parameters into the BIPS method: the
enlargement values, the number of iterations per image and the noise covariance
matrices of the Kalman filter. Their settings, which have been made manually for
our experiment, is dependent to the chosen application and the chosen dataset.
The automation of their value for a more generic implementation of the BIPS con-
cept implies therefore supplementary internal processes, which could increase the
computational needs. Moreover, it is not certain that such automation is possible.

6.3 Feature space reorientation

In the context of road lane detection, improvement of the results were obtained using
rotation of the spatial axes during the DA iterative process. This extension of the
method allowed to find a better spatial framing of the sought objects (Sec. 5.3.1).
The issue was that, even if the selection of pixels in the feature space corresponds
well to the object, the projection of the framing into the spatial coordinates could
give an inadequate localization of the object bounding box. Moreover, in the case
where connections between DAs were only based on the spatial framing, this would
inhibit other lanes to be detected. The same issue exists for objects which are not
described by a unique gradient angle, in those cases the same method for rotating
the axes can not work.

This Section presents our second extension proposal, which extends the axes
rotation solution to generic cases. The objective is to rotate the DA input features
during its iterative process so that the obtained framing better fits the object it is
converging to. The proposal is based on the covariance of the validated pixels data.
As the number of features used should not be much increased (3 features currently
in our tests), the computational needs of such extension should respects the con-
straints of autonomous embedded systems. Section 6.3.1 presents the algorithm
and modifications of the DA iterative process for the computation of the axes and the
reorientation of the feature space. Then, Section 6.3.2 gives a visualization of the ex-
tension effect by experimenting it on an example image. The obtained results tends
to confirm the improvement of the detections with a closer framing. Our proposed
rotation hence allows the BIPS method to perform in a wider set of applications and
gives a tool for a more versatile and evolving implementation of the BIPS method as
discussed in Section 6.3.3.
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6.3.1 Reorientation proposal

Algorithm

In a DA working on the feature set F1, . . . , FM, we define a first set of objects defining
features F1, . . . , Fm0´1 and the reorientation will be performed in a subset Fm0 , . . . , FM.
A vector unit um is associated to each FMD and updated at each iteration in order
to change and adapt the features on which the DA is working. The pixel validation
(Eq. 6.11) and the conditioned histogram computation (Eq. 6.12) are slightly modified
as the feature value used becomes the projected value of the feature vector F on the
vector unit um. Similarly to the space rotation, in order to keep consistency in the set
of pixels surrounded, the pixel validation is performed using the memorized vector
(uFMDm) corresponding to the last boundary update, whereas the one used for the
histogram is the new one ut,k

m .
The principal component analysis is performed on the validated pixels data, more

specifically on their value in the feature sub-space formed by (Fm0 , . . . , FM). The
covariance matrix is estimated at each iterative step using the feature values of the
validated pixels (Eq. 6.13, 6.14, 6.15, 6.16, 6.17). This can be performed on the fly
during the histogram computation. The eigen vectors (em)mPJ1,McK of the covariance
matrix give the main directions of the selected object and then the new axes of the
feature space (Eq. 6.18 and 6.19). The iterative process of the DA is then modified
and must integrate the computation of the covariance and the eigen vectors, then
the memorization and update of the axes. The modified DA iterative process is
presented in Figure 6.9.

Definition. FMD pixel validation

valk
FMDm

: P ÝÑ 0, 1
p ÞÝÑ valk

FMDm
(p) = (Ak
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(6.11)

Definition. Conditioned feature histogram
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Definition. Validated pixel set

Ok =

(
M
č

m=1

(
valk

FMDm

)´1
(1)

)
č

(
valk

ext

)´1
(1) (6.13)

@m P J1, MK,@ k P N,
Nk =

ř

fPΩ
Hk

m( f )

= card (Ok)

(6.14)

Definition. Sample for mean and covariance estimation

s(p) = (Fm0(p) ¨ ¨ ¨ FM(p)) (6.15)
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FIGURE 6.9 – Representation of the DA iterative process with the
multidimensional feature space rotation extension.

Definition. Mean vector estimation

µk =
1

Nk

ÿ

pPOk

s(p) (6.16)

Definition. Covariance matrix estimation

Σk =
1

Nk

 ÿ

pPOk

s(p)Ts(p)

´ µT
k µk (6.17)

Algorithm step. Feature space axes: Initialization with the canonical basis

@m P J1, MK,
u0

m P RM

@ n P J1, MK, u0
m(n) = δnm

(6.18)
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Algorithm step. Feature spaces axes: Update of the rotated axes

@ k ą 0,@m P J1, m0 ´ 1K
uk

m P RM

@ n P J1, MK, uk
m(n) = δnm

@ k ą 0,@m P Jm0, MK
uk

m P RM

@ n P J1, m0 ´ 1K, uk
m(n) = 0

@ n P Jm0, MK, uk
m(n) = ek

m(n´m0 + 1)

(6.19)

Consequences on the parameters settings

Several parameters of the DAs are strongly dependent of the chosen input features.
The new iterative computation of those inputs have therefore consequences on the
setting of those parameters.

In each FMD, the feature set Ω, the enlarge framing value ε, the histogram thresh-
old τ, and the boundaries update mode should evolve with their corresponding fea-
ture. However, implementation of these evolutive behaviors can be resources con-
suming. Modification of the feature set Ω implies to change the support set of the
histogram at each iteration, which generally implies a high computational cost. In our
simulator, we choose to fix the support set, such that every possible new features
would fit in this support. This was easily done for the two spatial axes as they have
similar sets. The task becomes more complex when the rotation is done on several
features of different precision and width. The chosen support set must be adapted
to keep a good precision of the values without creating holes in the histogram repre-
sentation of the feature. Modification of the framing enlargement ε and the histogram
threshold τ can be automatized using the values of the histogram mode and framing
width. This can be done using percentage value as we did in our simulator, but we
could observe that even the percentage needed to be adapted to the object the DA
was converging to and thus needed to evolve along the iterative process. Finally,
the boundaries update Mode has such impact on the object detection, it is difficult to
establish when and how it must be changed. Especially when the object represen-
tation in the feature space is not a priori known, like in pre-attention application. In
the case of the road lane detection, the axis Y was associated with the Mode 2 as it
was expected to be parallel with the sought lane. Similarly, the object principal axes
can be associated with the Mode 2 when it is expected that the object will expand on
those directions.

Moreover this extension, like the rotation proposed in Chapter 5, distords enough
the framing Pk to break its decreasing property. The convergence is therefore no
more guaranteed, however we could observe that the detection was preserved, but
oscillating. In the road lane detection, we used a smoothing of the rotation to sta-
bilize the new axis long enough to be validated by the algorithm. Here, we simplify
this by defining an accepted error for each boundary value to validate the conver-
gence (Eq. 6.20). This, however, add supplementary parameters to the method: the
accepted error errm for each feature Fm.

Algorithm step. Convergence validation with accepted error
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6.3.2 Illustration

We illustrated the proposed method on the colored image from rawpixels.com show-
ing multiple colored animals toys in different orientations. The experiments have
been done with our BIPS simulator presented in Chapter 4 and the display was
made with Matlab (MATLAB and Image Processing Toolbox Release R2018a).

We run 40 DAs with the hue as descriptive feature with a validation threshold
τsat = 2 and the rotation only done on the spatial features X and Y. The observation
of the image features helped us in the choice of the histogram thresholds: τhue = 5%,
τF2 = 10%, τF3 = 10%; the framing enlargement: εhue = 2˝, εF2 = 10, εF3 = 10; and
the object size threshold: τN = 3000 pixels. The update Mode = 1 for all FMDs.
The DAs are launched in parallel and linked with inhibition of the three dimensional
framing they detected.

We observe the DA states obtained with the classical method and the reorien-
tation proposal at different iterative steps: 40, 80 and 160 shown in Figure 6.10. As
expected the spatial framing obtained with the reorientation gives a better selection
of the objects. The objects are entirely selected by the DAs and the ratio between
the object size and the framing size is reduced.

(A) (B)

FIGURE 6.10 – (A) Colored animal toys image. (B) Hue extraction.

(C) (D)

FIGURE 6.10 – DAs states at iteration 40 with (C) the classical method
and (D) the reorientation of the spatial axes.
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(E) (F)

FIGURE 6.10 – DAs states at iteration 80 with (E) the classical method
and (F) the reorientation of the spatial axes.

(G) (H)

FIGURE 6.10 – DAs states at iteration 160 with (G) the classical
method and (H) the reorientation of the spatial axes.
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6.3.3 Conclusion

In this Section, we proposed a new and generic way to adapt the FMD input features,
which would allow to obtain better framing of the sought objects. The proposed
method calculates the covariance of the selected features at each iterative steps of
the DA process and uses the obtained orthogonal basis to create the new set of
input features.

The illustration of the extension tends to confirm the expected behavior of the
DAs, thus extending the rotation to application without gradient angle information.
This extension is a first step towards a more generic and evolving way to adapt the
DA features input to the object it is attracted to.

6.4 Discussion

In this Chapter we proposed two extensions of our first BIPS-based implementation
as first steps toward the SWaP, real-time, efficient, generic and evolutive properties
expected from the BIPS bio-inspired concept. Firstly, a time integration is proposed
to reduce the number of iterations, to improve the detection results and to track the
detected objects. The Kalman filter is used to obtain a smooth and robust tracking
of the DA framing even with a minimum number of iterations per image. Secondly,
a reorientation of the input features space in each DA is proposed to improve the
framing results and the inhibition connections between DAs.

The preliminary experiments used to illustrate those two proposals seem to val-
idate the expected behaviors, however it also points out the highly parametric de-
pendency of the method. Firstly, the time integration process implies the use of an
enlarged framing and an error validation, whose enlargement εF and error values
errF need to be set depending on the application, the dataset and the DA architec-
ture. Moreover, this framing can alterate the convergence property of the DA and
its impact on other DAs it inhibits. The same issue happens with the reorientation
of the feature space. Although we observe that the DA stays attracted to an ob-
ject with a small oscillation around it, we have not yet validated that convergence to
intervals. We could also observe that this oscillation, specially at the beginning of
the attraction, had negative effects on the other DAs inhibited. In fact, the iterative
reorientation of the feature space can create a very large parallelepiped framing of
the validated pixels, which crushes all DAs already running in this area and inhibited
by the master DA. This issue reminds the difficulty to set the associations and inhi-
bitions between DAs, either for a specific application (top-down approach) or a more
generic and evolving way (bottom-up approach).

A more complete analysis of the BIPS-based method with extensions is needed
to estimate the influence and possible automation of each of these parameters and
to evaluate the efficiency and real-time capacity of the method in different computer
vision applications. Comparative experimentation on the caltech-lane dataset of
the classical and new reorientation feature space, with and without time integration
would give preliminary answers.
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Chapter 7

Discussion and Perspectives

This thesis provides the formalization, simulation, evaluation on an academic dataset
and extension proposals of the bio-inspired on-chip Dynamic Attractors (DAs), prin-
cipal element of the Bio-Inspired Perception Sensor (BIPS) component.

The BIPS, developed by P. Pirim, is a bio-inspired component of interest for the
embedded computer vision community. Its use in different industrial applications
like detection and tracking, made it a good candidate for embedded computer vision
solutions. However, the component, developed directly with an hardware point of
view, suffers a lack of documentation and scientific publications on its underlying
principles and precise method making it difficult for any academic evaluation. The
thesis tries to fill in this gap.

This conclusive Chapter summarizes the contributions of our work in Section 7.1
and discusses of the benefits and limitations of the method in Section 7.2. Finally,
Section 7.3 presents our conclusions on the BIPS formalized method and gives sug-
gestions for future works.

7.1 Thesis contributions

7.1.1 BIPS formalization

Our first contribution, presented in Chapter 3, is the mathematical formalization of
the method. Based on the patents and the articles of the inventor P. Pirim, we have
been able to explain and to formulate mathematically the component embedded pro-
cesses.

A first part of the BIPS proceeds to a selection of feature extractions, which can
correspond to any kind of sensory perception (e.g. visual, audio). It has been proven
that any feature represented by a finite and totally ordered set of values could be
used without changing the functioning of the BIPS. The current implemented features
are local and have a low computational cost. Some of them correspond to well
known bio-inspired features (e.g. luminance, hue, saturation, gradient), others have
an experimental and very peculiar implementation (e.g. temporal variation, velocity,
angle variation).

The second part of the BIPS proceeds to the detection of objects in selected
feature spaces. The principal element of this part is the Dynamic Attractor (DA).
This element is inspired by several functions of the human brain: the "What" and
"Where" stream computational connection (Wang et al., 1999), the attractor net-
works model (Knierim and Zhang, 2012) and the plasticity of the brain (Rita, Tyler,
and Kaczmarek, 2003). In its concrete implementation, the module is based on the
combination of three feature histogram analysis, performed in modules we called
Feature Mode Detectors (FMDs). One feature is descriptive, the two others spatial.
Our formalization however proves that the number and the type of features doesn’t
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break the convergence property of the DA. The module does an iterative process
and its result is progressively attracted to a descriptive and spatial representation of
one of the object of the scene. The DAs also interact with each other in parallel and
in pipeline in order to either: (1) explore new areas (inhibition rule) or (2) complete
the preceeding detection with another DA descriptor (association rule) for enriching
the object representation or for assessing the representation of an object made of
multiple features.

Even if we were not able to link the DA process to known mathematical meth-
ods, this formalization now provides tools for a better understanding of the BIPS
functioning and its possible use in computer vision applications.

7.1.2 BIPS simulator

The formalization of the DAs brings forward multiple parameters that are not auto-
matically set and must be chosen depending on the application and the dataset.
Moreover, the implementation of the method and the analysis of its behavior in dif-
ferent applications is not straightforward. Thus, the need for a software simulator
became of major importance.

I developed the first BIPS simulator written in C++, using Qt frameworks and
OpenCV. The simulator reproduces the different modules of the BIPS and its inter-
nal processes. Three main classes have been developed: the Feature represents
an extracted feature and its attributes, the FeatModeDetector regroups the tools for
the histogram analysis and the DynamicAttractor controls the FMDs and the itera-
tive detection process. Supplementary tools have been developed: several feature
extractions have been implemented, but also tools for recording or visualizing the re-
sults have been developed. The simulator leave most of the parameters free, so they
could be adapted to the chosen application. Only the multiple DAs architecture has
not been generalized yet and a specific script must be written for each application.

This simulator provides tools to facilitate the implementation of the BIPS method
on specific application and datasets, to vizualise the DAs behavior and to record
the obtained results. It also permits the integration of method extensions like the
reorientation of the feature space axes and the Kalman filter prediction.

7.1.3 First parametric and performance analysis

The two previous contributions allow to set up the first academic analysis of the BIPS
method. This contribution helps in the understanding of the DAs behavior and setting
methodology for a specific application.

The road lane detection application has been chosen for its straightforward choice
of the DAs parameters and architecture. Using the two lines model of the road lanes,
we are able to set the inputs to the gradient angle and the spatial axes. A first ex-
tension of the DAs is then applied to allow the reorientation of the spatial axes and a
better framing of the sought lane. For this application, multiple similar DAs are linked
to each other by inhibition to work on different areas of the image. Only four of their
parameters are not set automatically: the threshold on the gradient angle and the
X axis histograms, the number of DAs and the threshold on the size of the sought
lane. The analysis of the BIPS behavior on the caltech-lanes dataset permits to
link the two last parameters and to validate the weak influence of the two histogram
thresholds.

The study shows that the method is able to reach detection results at the level
of the reference (Aly, 2008). It permits to validate the detection behavior presented
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by the formalization and gives promising results for specific application use of the
method.

7.1.4 Extension proposals

The robustness and evolutive property of the method, which are expected for embed-
ded computer vision under high constraints, are not in adequacy with the application
dependency of several DA parameters. In our last research work, we propose two
extension proposals of the BIPS method. The main goal is to overcome some limi-
tations of the formalized DAs processes.

The first proposal permits the integration of the time information, allowing first to
improve the detection results, then to reduce the DAs iterations and thus to decrease
the computational time of the process. Moreover, this new approach is able to issue
tracking mechanisms in addition to the detected object representation. The second
proposal permits to adapt the feature input space to the different objects orientations
along the DAs iterative process. This gives better representation of the detected
objects and allows finer analysis of the processed image.

7.2 Dynamic Attractors benefits and limits

The formalization and simulation of the method, as well as our experimentations
on the road lane detection, and first experimentations on moving people detection
and tracking highlight the advantages, but also the limitations of such a promising
method.

7.2.1 Advantages

Size, Weight and Power optimized

One determining advantage of this method is that it has already been implemented
on an ASIC component of 50mm size for a power consumption of„ 2W (Pirim, 2015).
The formalization of the method demonstrates that it is solely based on low level
local feature extraction processes and histogram computations. Those processes
are power frugal. The Size, Weight and Power optimisation objective should be then
validated for the new hardware implementations of the BIPS method.

Real-time

Even if the real-time capacity of the method has not been academically proved,
the BIPS formalization, behavior analysis and first tracking experimentations give
promising computational time results. The experiments demonstrated also that only
a few iterative steps where enough to obtain a significant representation of the de-
tected object.

Versatile

The formulation of the method demonstrates that the input feature does not neces-
sarily have to be local visual features. The conditions on the input features consist
in having a common definition domain, and a finite and totally ordered co-domain
set. This construction allows to wide up the spectrum of features. Moreover, the
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number of features does not necessarily have to be set to 3, neither it has to be one
descriptive and two spatial features like in the BIPS component. Thus, multiple ways
of detecting elements can be performed by that same DA process. This property of
the DA opens it to multiple applications and seems to validate the versatile objective
of the embedded computer vision systems.

7.2.2 Parametric limitations

The multiple ways to organize and set the DAs bring, however, limitations in their
capacity to evolve and adapt. At a first glance, the BIPS seems to be a simple and
powerful component for the environment perception. But, its behaviour requires to
tune a set of parameters whose influence is not easy to understand. To simplify this
task, the following table reminds the different parameters of the method and explains
the difficulties to find an automated setting of them.

Parameters Influence Could be automatized with

in the FMDs

Histogram
threshold τk

Fm

the object representation
too high ÝÑ information lost
too low ÝÑ integrate informa-
tion of other objects

the histogram peak qm,k
max

,
the current object size Nk,
the sought object size τN

Update mode the type of object
mode 1 ÝÑ one peak of the
associated feature
mode 2 ÝÑ all the peaks

the FMD associated feature
(which can evolve in the reori-
entation extension)

Enlargement
εk

m

the object representation and
the convergence time
too big ÝÑ integrate informa-
tion of other objects
too small ÝÑ slow down the
convergence

the boundaries distance
(Bk

m ´ Ak
m),

the current object size Nk
the sought object size τN

in the DAs

Features input
set

the type of object and its rep-
resentation

It depends on the applica-
tion. The reorientation exten-
sion allows to adapt the fea-
tures to the detected object

Size threshold
τN

the object representation
too high ÝÑ some objects
might not be detected
too low ÝÑ noises might be
detected as object

the size of previous detection
the size of other DAs detec-
tion
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Number of
iterative steps
k f inal

the object representation and
the computational time
too big ÝÑ increases the
computational time when the
convergence is slow
too small ÝÑ does not yet
represent the object

The time integration exten-
sion with Kalman filter allows
to reduce the influence of this
number

Asymptotic
validation

the object representation and
the computational time
too big ÝÑ validation before
the detection
too small ÝÑ validation im-
possible because of the oscil-
lation

It depends on the application
and the chosen features

Kalman pa-
rameters

the object tracking The chosen model depends
on the application

in the complete process

Number of
DAs nDA

the maximum number of de-
tected object

the object size threshold
the number of validated pixels
It could be changed dynami-
cally

Architecture
(association
and inhibition)

the type of objects and their
representation
the order of detection
the computational time

It depends on the application

TABLE 7.1 – Parameters of influence: what influence do they have
and which information could help automatize their setting.

7.3 Conclusions and Perspectives

7.3.1 Conclusions

At the beginning of this thesis research project, the BIPS component, which had
shown interesting embedded characteristics in industrial applications, was present-
ing a important lack of documentation on its functioning and had never been ana-
lyzed on academic datasets.

Our work brings to community a formalization and a simulator of the BIPS. Both
tools help in the understanding of the method behavior and its use in different appli-
cations. It also confirms its interesting characteristics for embedded computer vision
applications. The key points of this technology lies in its SWaP optimization, its
real-time running and its possible use in different kinds of applications. However, the
number of parameters to set and their strong dependencies to the chosen application
could fail the evolutivity and efficiency expected in highly constrained applications
like autonomous driving, surveillance and drone flying. The method seems more
adapted for specific application or general purpose (low-level) pre-attention tasks.
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The first academic experimentation, we set on the road lane application, high-
lights the setting methodology of the BIPS and shows the promising performance of
the method. Moreover, our work on the prediction and reorientation proposals shows
ways to improve its performance in more complex applications.

7.3.2 Short term perspectives

In a short term perspective, the ongoing works on the BIPS extension would have to
be tested and validated on academic datasets.

• Reorientation improvements analysis:
It is desirable to test the reorientation extension on the caltech-lane dataset
and compare its results to the classic method with rotation and to the reference
(Aly, 2008). Moreover, the framing improvement of the extension has to be
validated on segmented object databases. The ratio between the object area
and the framing area can be used to compare results with and without the
reorientation.

• Tracking performances analysis:
The preliminary tracking results obtained on the PETS benchmark need to
be completed. After implementing the multiple object tracking, a comparative
analysis between the classical method and its extension is expected. More-
over, the detection results for different number of iterations should be analyzed.

7.3.3 Long term perspectives

Parametric study

The biological principle followed by the BIPS suggests that the method should work
for different kinds of perception application similarly to the first layers of the visual
pathway. Keeping this idea implies that a combination of DAs should work for multiple
applications. The current study does not permit to validate this hypothesis. To do
so, a complete parametric analysis of the BIPS method should be run. First, the
illustration of its behavior in different conditions and applications would help propose
automatic way to set the parameters. Then, comparison to academic results would
permit to evaluate the method performance in different applications.

Hardware performances analysis

Since the beginning of this thesis work, new deep-learning hardware implementa-
tions have emerged (Ionica and Gregg, 2015), (Xilinx AI website). Few performance
analysis have been made yet, but this technology should be taken into account for
future experimentations. Firstly, it would be interesting to compare hardware perfor-
mances of the BIPS and these neural networks. But, also, it could be interesting to
combine the two approaches, since the deep neural network could higher the level
of analysis of the BIPS and the BIPS could reduce the number of layers necessary
by performing a pre-processing of the scene.
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The BIPS proofs and alternative
equations

In this Appendix I provide proofs of the results given in Chapter 3, Chapter 5 and
Chapter 6. The values existence and the process convergence assumed in the math-
ematical formalization of the Bio-inspired Perceptive Sensor (BIPS) mechanisms are
proven here.

Section A.1 presents the proofs linked to the FMD, whereas Section A.2 presents
the proofs linked to the iterative process of the DA and the consequences of the
proposed extensions.

.1 Feature Mode Detector

.1.1 Histogram computation

Proof. Existence of qmax

We define the codomain space H = H (Ω), thus by definition qmax = max(H)
(Eq. 3.17).

H Ă N

Ω is a finite set ñ H is a finite set
Ω is not empty ñ H is not empty

,

.

-

ñ qmax exists and is unique.

Proof. Existence of fmax

We define the subset V = H´1(qmax), thus by definition fmax = min(V) (Eq. 3.18).

V Ă Ω
V ‰ H

*

ñ fmax exists and is in Ω

.1.2 Boundaries update

Proof. Existence of A and B: Mode 1
We define the spaces A =

!

f P Ω, f ď fmax

/
@ f

1

P [ f ; fmax ], H( f
1

) ą τ
)

and

B =
!

f P Ω, f ě fmax

/
@ f

1

P [ fmax ; f ], H( f
1

) ą τ
)

, thus by definition A = min(A)
and B = max(B).

A Ă Ω ñ
A is a finite set
A is totally ordered

qmax ą τ ñ fmax P A ñ A ‰ H

,

.

-

ñ A exists and is unique
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B Ă Ω ñ
B is a finite set
B is totally ordered

qmax ą τ ñ fmax P B ñ B ‰ H

,

.

-

ñ B exists and is unique

Besides, @ f P A, f ď fmax , so A ď fmax and @ f P B, fmax ď f , so fmax ď B.

ñ A ď B.

Proof. Existence of A and B: Mode 2 For this proof, we need to add two virtual
values f´8 and f+8 which complete Ω to form the extended group Ω and for which
@ f´ P [ f´8; min(Ω)[ and f+ P ]max(Ω); f+8] , H( f´) = H( f+) = 0. We admit that
such values exist as Ω is most of the time part of Z.

We define the spaces A =
!

f P Ω
/
@ f

1

P [ f´8; f [ H( f
1

) ď τ
)

and

B =
!

f P Ω
/
@ f

1

P ] f ; f+8], H( f
1

) ď τ
)

. The same demonstration is done, except
A = max(A), B = min(B) and the element always in A (resp. B) is min(Ω) (resp.
max(Ω)).

Moreover qmax ą τ implies that @ f ą fmax , f R A and that @ f ă fmax , f R B.

ñ A ď B.

.1.3 Alternative equations

The FMD formalization can be slightly different when using exclusive "ă" or in-
clusive "ď" comparison in the pixel validation (Eq. 3.15). The impact in the soft-
ware/hardware implementation is almost nil, but if using the exclusive comparison
we must adapt the other definitions to keep the convergence property. In this Sec-
tion I present the alternative equations for someone who would use the exclusive
comparison.

Definition. Initialization
A = f´8
B = f+8

Definition. Conditioned feature histogram

H : Ω ÝÑ N

f ÝÑ H( f ) = card

$

&

%

p P Iˆ J

/ val(p) = 1,
F(p) = f ,
A ă f ă B

,

.

-

Definition. Mode 1

A = min
!

f P Ω
/
@ f

1

P ] f ; fmax ], H( f
1

) ą τ
)

B = max
!

f P Ω
/
@ f

1

P [ fmax ; f [ , H( f
1

) ą τ
)
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Definition. Mode 2

A = max
!

f P Ω
/
@ f

1

P [ f´8; f ], H( f
1

) ď τ
)

B = min
!

f P Ω
/
@ f

1

P [ f ; f+8], H( f
1

) ď τ
)

Definition. FMD pixel validation

valFMD(p) : P ÝÑ t0, 1u
p ÞÝÑ valFMD(p) = (A ă F(p) ă B)

Definition. Validated pixel set

O = F´1 (]A, B[)X val´1 (1)

.2 Dynamic Attractor

.2.1 Convergence

The DA iterative process creates a decreasing sequence of object framing (Pk)kPN

and of representing group of pixels (Ok)kPN.

Definition. Pk and Ok
Pk =

ś

mPJ1,MK
[Ak

m, Bk
m]

Ok = F´1(Pk)X val´1(1)

Proof. Decrease of (Pk)kPN and (Ok)kPN

For all k P N,

Pk+1 =
ś

mPJ1,MK

[
Ak+1

m , Bk+1
m
]

ô Pk+1 =

(
ś

mPJ1,n´1K

[
Ak

m, Bk
m
])
ˆ
[
Ak+1

n , Bk+1
n
]
ˆ

(
ś

mPJn+1,MK

[
Ak

m, Bk
m
])

where n is such that k = n´ 1[M].
Moreover,

@ f P Ωn, f ă Ak
n, Hk

n( f ) = 0
@ f P Ωn, f ą Bk

n, Hk
n( f ) = 0.

(due to Eq. 3.26)

Thus by definitions of the Boundaries update (Eq. 3.27 and 3.28),

Ak
n ď Ak+1

n ď Bk+1
n ď Bk

n
ñ Pk+1 Ď Pk
ñ F´1(Pk+1) Ď F´1(Pk)
ñ Ok+1 Ď Ok

Proof. Ok and Pk are not empty, and qn,k
max

is strictly positive
We suppose that the pixel validation input val is not null, otherwise the DA will

not even start to work. P0 = Ω, thus O0 = val´1(1) ‰ H.
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@ k P N,@n P J1, MK,
Nk = card(Ok)

=
ř

fPΩn

Hk
n( f )

@ f P Ωn, Hk
n( f ) = card

"

p P Iˆ J

/
p P Ok
F(p) = f

*

Thus, if Ok ‰ H ñ qn,k
max
ą 0. As defined in Section 3.3.1, the threshold can be

chosen such that qn,k
max
ą τk

n ě 0.

qn,k
max
ą 0 ñ D p,

"

D p P Ok, Fn(p) = f n,k
max

(due to Eq. 3.26)
Ak+1

n ď Fn(p) ď Bk+1
n (due to Eq. 3.27 and 3.28)

ñ Dp P Ok
ñ Dp, Fn(p) P Pk

Proof. (Pk)kPN and (Ok)kPN converge

(Ok)kPN is decreasing
@ k P N,Ok ‰ H

*

ñ Ok ÝÝÝÝÑ
kÑ+8

O

(Pk)kPN is decreasing
@ k P N, Pk ‰ H

*

ñ Pk ÝÝÝÝÑ
kÑ+8

P =
ś

mPJ1,MK

[
lim

kÑ+8
Ak

m, lim
kÑ+8

Bk
m

]

Remark. The two suppositions qn,k
max

ą τk
n and val ‰ 0 are necessary to ensure the

convergence.
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et reproduire le concept du système. La modélisation
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