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This section has been articulated into two parts. In the first one, the general elements on cell division 

will be presented, highlighting the crucial contribution of cytoskeletal elements and membrane 

reorganization for the success of cytokinesis. Secondly, it will be described specifically the cytokinesis in 

fission yeast, the model system used in this study. 

1. The cell division cycle: progression and machinery 

The cell cycle is a key process used by all cellular life forms to proliferate or self-renew. It is an ordered 

set of events, culminating in the division of the mother cell into two daughter cells. The cell cycle 

comprises two main stages: interphase composed of G1, S and G2 phases, where cells grow and 

duplicate their genetic material, and mitosis, during which chromosome segregation is driven by the 

mitotic spindle. Cytokinesis is the subsequent and final step that leads to the physical separation of the 

two daughter cells.  

The proper succession of the different cell cycle steps is regulated by cyclin-dependent kinases (Cdks) 

and phosphatases that specifically counteract their actions. Cdk activity is dependent on the association 

with activating proteins, the cyclins whose expression vary during the cell cycle to modulate Cdk activity. 

Multiple Cdk and cyclins exist and interact differentially in diverse phases of the cell cycle (Fig1). The G1 

cyclins in complex with CDK4, CDK6, and CDK2, establish entry into the cell cycle, whereas S-phase 

events and the G2/M transition are primarily regulated by CDK1 bound to members of the B-type family 

of cyclins (Hochegger et al., 2008; Rhind and Russell, 2012).    

 

 

 

 

 

 

 

Figure 1 (Adapted from Rhind and Russell 2012): The regulation of the major events of the cell cycle. Waves 

of kinases and ubiquitine ligase activity are involved: G1-cyclin-CDK1 initiates the cell cycle and activate B-type 

cyclin-CDK1 activity. Low levels of B-type-cyclin–CDK activity are sufficient to trigger S phase, but tyrosine 

phosphorylation by Wee1 prevents full activation, preventing premature mitosis. Full CDK activation triggers 

mitosis and activates APC, which triggers anaphase and feeds back to inactivate CDK activity. Inactivation of 

CDK allows exit from mitosis and the establishment of interphase chromosome and nuclear structure in G1 

phase.  
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The progression of cells through the cell cycle is also critically controlled by checkpoints operating at the 

G1/S the G2/M and the metaphase to anaphase transitions. They act as surveillance mechanisms that 

check the order, integrity, and fidelity of the major events of the cell cycle. Checkpoint dysfunction can 

have severe outcomes ranging from cell death to aneuploidy, which can result in cancer onset in 

metazoans (Fujiwara et al., 2005; Hayashi and Karlseder, 2013; Lacroix and Maddox, 2012; Storchova 

and Pellman, 2004).  

1.1 Interphase: getting ready to divide 

In order to maintain cell size and guarantee that each daughter cell will receive an appropriate amount 

of genetic and cytoplasmic material, cells need to double their content before division. This doubling 

takes places during the three sub-phases of interphase G1, S and G2 (Fig2).  In G1 the cells grow and 

synthetize the mRNAs and proteins required to execute the future steps, but it is also the time of an 

important decision: enter and complete another cell cycle or stay in a resting phase also known as G0. 

During S phase the genetic information is copied and the centrosome, the main microtubule (MT) 

organizing center that directs chromosome movements during mitosis, is duplicated. In G2 the cells 

undergo additional growth, refill energy supplies and prepare themselves to reorganize the cytoplasmic 

components for division (Barnum and O'Connell, 2014; Rhind and Russell, 2012). Multiple surveillance 

mechanisms operate during interphase to monitor that a cell is fully committed to division, that it grows 

to an appropriate cell size and that the genetic material is accurately replicated and its integrity 

preserved. In particular, DNA damage correction strategies that maintain Cdk1 inactive can be engaged 

throughout interphase to allow DNA repair pathways to correct the lesions before entry into S phase or 

mitosis.  

 

 
Figure 2: Scheme of the eukaryotic cell cycle. 
Representation of the main cell cycle phases with the key events highlighted. 
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1.2 Mitosis: segregating cellular components in two equal sets 

Entry into mitosis requires the activation of the Cdk1-Cyclin B complex, also known as Mitosis Promoting 

Factor (MPF), whose activity is maintained low during G2. This is achieved by multiple regulatory loops 

operating in parallel that promote the activation of the phosphatase Cdc25, which counteracts the 

inhibitory activity of the kinase Wee1 and the inhibition of the phosphatase PP2A, which antagonizes 

Cdk1 activity (Bollen et al., 2009; Wurzenberger and Gerlich, 2011). Once activated, this molecular 

machinery acts as a master regulator of mitosis by activating a plethora of downstream effectors. This 

leads to a general reorganization of the entire cell structure. 

Mitosis is conventionally divided into four phases: prophase, metaphase, anaphase and telophase (Fig3). 

Prophase is characterized by the initiation of chromosome condensation and separation of the 

duplicated centrosomes, leading to the assembly of the mitotic spindle, a bipolar apparatus based on 

microtubules (MTs), microtubule-associated proteins and molecular motors that provides the 

mechanical forces necessary for the segregation of the sister chromatids. Bipolar spindle formation is 

completed in prometaphase, in concert with nuclear envelope breakdown and complete condensation 

of chromosomes. During metaphase, the MTs of the mitotic spindle bind to the kinetochores of 

condensed chromosomes in a bi-oriented manner. The kinetochores of sister chromatids attach to MTs 

emanating from opposite poles of the spindle. The chromosomes move back and forth until they 

eventually align on the metaphase plane in the center of the spindle. The spindle assembly checkpoint 

(SAC) monitors chromosome alignment preventing metaphase/anaphase transition in presence of 

unattached kinetochores. Once all chromosome are aligned on the metaphase plane, anaphase is 

triggered by activation of the anaphase promoting complex or Cyclosome (APC/C). The APC is an E3 

ubiquitin ligase subunit that inactivates CDK1 by degradation of cyclin B and by activating phosphatases 

(Cdc14 in yeasts; PP1 and PP2A-B55 in animals) that oppose CDK1 activity (Clifford et al., 2008; 

Wurzenberger and Gerlich, 2011). It is activated by phosphorylation by CDK1 and by interaction with 

two regulatory subunits: Cdc20 at the metaphase/anaphase transition and Cdh1 during telophase and 

G1 phase. Upon activation, the APC targets the inhibitor of sister chromatid disjunction, securin, leading 

to the activation of the protease separase which cleaves the cohesin proteins that hold sister chromatids 

together and allows the separation of chromosomes in two movements: anaphase A, during which 

chromosomes are pulled toward the spindle poles by shortening of kinetochore MTs; and anaphase B, 

during which the spindles are further separated by elongation of interpolar MTs.  

As anaphase progresses, the mitotic spindle re-organizes to generate an antiparallel microtubule bundle 

structure between segregating chromosomes, which is known as the central spindle or spindle midzone. 

Mitosis ends with telophase, during which nuclear envelope reassembles while the chromosomes start 

to decondense (Cross and McAinsh, 2014; Rhind and Russell, 2012; Sacristan and Kops, 2014).    

https://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A2977/
https://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3381/
https://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A2977/
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1.3 Cytokinesis: making two independent cellular entities 

Cytokinesis begins during late anaphase and is usually completed in G1. It is a critical and irreversible 

step resulting in the formation of two independent daughter cells. It is therefore under the control of 

very tight regulatory mechanisms. In fact, cytokinesis is strictly coordinated with mitotic exit and 

chromosome separation to ensure an equal repartition of the genetic material in the newborn cells 

(Cullati and Gould, 2019). 

Four major events can be distinguished during cytokinesis (Fig4). First, the position of the division plane 

is defined. In most organisms, this step involves signaling by the central spindle to allow cell division to 

occur in between the two sets of segregated chromosomes. Second, an actomyosin-based contractile 

ring (CR) assembles at the division site on the inner face of the plasma membrane. The third step is 

represented by the constriction of this structure that leads to the formation of the cleavage furrow that 

Figure 3 (Adapted from Wurzenberg and Gerlich 2011): Cellular reorganization during mitotic entry 

and exit. Schematic representation of centrosomes, chromatin, microtubules, nuclear envelope and 

Golgi for a cell progressing through mitosis. Attachment of all chromosomes to opposite spindle poles 

satisfies the spindle assembly checkpoint and initiates mitotic exit. Key events that occur at each stage 

of the cell cycle are indicated.  
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partitions the cell into two. The closure of the CR is well synchronized with membrane trafficking 

pathways so that new membranes are generated to match the increased surface area of the two 

daughter cells, which are physically separated in two distinct entities in the last step of cytokinesis called 

abscission.   

 

 

 

 

 

 

Figure 4 (Adapted from Wu and Pollard 2010): Strategies for cytokinesis in animal cells. In fission yeast, 

the cell division plane is selected by the nucleus specifying the position of nodes around the equator, 

whereas in animals, spindle and astral microtubules specify the position of the contractile ring. Fission 

yeast and animal cells assemble a contractile ring of actin filaments and myosin II around the equator of 

the cell between the chromosomes, which are separated by microtubules of the mitotic apparatus. The 

ring constricts and the daughter cells separate by membrane fusion. 
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2. Major cytoskeletal elements involved in cytokinesis  

The cytoskeleton is composed of protein monomers that polymerize into polarized (actin, MTs) or non-

polarized filaments (intermediate filaments), with key roles in cell spatial organization. Septin filaments 

have been recognized as the fourth element of the cytoskeleton (Mostowy and Cossart, 2012). The 

cytoskeleton forms complex three-dimensional networks which control a number of basic cellular 

functions including cell polarity, cell migration, vesicle transport and cell division. In particular, the 

cytoskeleton is subject to massive reorganizations during cell division to promote the segregation of 

chromosomes with the assembly of the mitotic spindle and to drive cytokinesis with the assembly of an 

acto-myosin-based contractile apparatus. Septins and their partner anillin also contribute to contractile 

ring assembly and contraction, while MTs, except in plants, do not take directly part into cytokinesis 

progression, although they participate in signaling the division plane.  Their basic properties will not be 

described here. 

2.1 F-actin networks 

Actin is a largely conserved protein throughout eukaryotes which exists in two different forms: soluble 

monomers (G-actin) and filaments (F-actin). These filaments are composed of two strands that 

intertwine in a double helix, with a diameter of about 7 nm. F-actin networks are highly dynamic and 

provide mechanical support and forces to accomplish a very large variety of biological functions such as 

cell morphogenesis, cell motility or cytokinesis  (Pollard and Cooper, 2009).   

Actin filaments are polar, with a plus end (also known as the barbed end), where monomers 

preferentially assemble and a minus end (also known as the pointed end), where monomers 

preferentially disassemble, resulting in net growth, shrinkage or a steady state known as treadmilling 

(Kueh and Mitchison, 2009). F-actin dynamics is driven by ATP hydrolysis. Actin monomers polymerize 

preferentially via ATP binding at the barbed end. Although they can polymerize also without ATP by 

interacting with ADP, they accomplish this process much faster in its presence. Shortly after 

polymerization, F-actin filaments hydrolyze ATP, releasing phosphate and retaining ADP in the polymer. 

The resultant ADP-bound polymer is weaker than an ATP-bound polymer and consequently 

depolymerizes at the pointed end, releasing individual subunits for another round of polymerization and 

depolymerization. 

The assembly and disassembly of actin filaments, their crosslinking into bundles and their association 

with other cell structures are regulated by a large numbers of actin-binding proteins (Fig5).  

Actin nucleation is the critical first step in actin filament assembly since the constitution of actin dimers 

and trimers is thermodynamically unfavourable, which causes a kinetic barrier to filament formation 

(Chang and Peter, 2002). To overcome this issue, cells use two distinct classes of nucleators: the Arp2/3 
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complex, which nucleates branched actin networks, and formins, which are responsible for the 

organization of linear actin structures (Fig5). They are able to induce the de novo formation of actin 

filaments in response to cellular signaling pathways, allowing precise spatio-temporal control of the 

initiation of the actin filament. 

  

Arp2/3 is conserved in all eukaryotes and in mammals and forms a complex of seven subunits where 

two are actin-related subunits (Arp2 and Arp3), while the other five components stabilize this dimeric 

stable core in an inactive state. It is a unique nucleator since it can imitate an actin dimer or trimer and 

act as a template for the initiation of a new actin filament that branches off of an existing filament with 

an angle of 70◦, generating branched actin networks. 

Since Arp2/3 is intrinsically inactive, it requires the binding of one or more nucleation-promoting factors 

(NPFs). The WASp/Scar family of proteins are the ones which have been mainly studied: they present a 

characteristic C-terminal VCA domain sufficient to activate the Arp2/3 complex. This domain contains 

three segments with different functions: the V region (verprolin homology; also called WH2 for WASp 

homology 2 domain) binds actin monomers and makes them available in the cytoplasm so that 

nucleation can start, while in parallel the C and A motifs (central and acidic) bind to two sites on Arp2/3 

complex inducing conformational changes that contribute to its activation.  

However, in turn also NPFs are autoinhibited and their activity is cooperatively controlled by multiple 

inputs such as the Rho family GTPase Cdc42, phosphatidylinositol 4, 5-bisphosphate (from now on 

named PIP2) and proteins containing SH3 domain like the profilin (Higgs and Pollard, 2001; Pollard, 

2007; Pollard and Cooper, 2009).  

Arp2/3 plays roles in different processes from membrane trafficking and phagocytosis to cell migration 

and adhesion such as in extensions of lamellipodia (Goley and Welch, 2006; May et al., 2000; Pollard and 

Borisy, 2003).   

 
Conversely, formins are multiple-domain proteins characterized by two internal formin homology (FH) 

domains: FH1 motif binds to the profilin bound to actin monomers and transfers this complex to the FH2 

domain that stimulates the elongation of linear actin filaments (Kovar, 2006; Vavylonis et al., 2006). A 

third FH3 domain is instead involved in the localization of formin within the cell (Kato et al., 2001). 

Formin activity is mediated by the dimerization of the FH2 domain that assumes a ring-like structure, 

surrounding the barbed end of the elongating actin filament (Otomo et al., 2005; Xu et al., 2004): 

mutations that abolish dimerization abrogates the FH2 mediated function (Moseley et al., 2004).  

Differently from the Arp2/3 complex, which remains bound at the pointed end, the FH2 domain act as a 

processive cap at the barbed end, shielding it from other capping proteins since they may interrupt 
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elongation, while permitting the rapid addition of new subunits (Pruyne et al., 2002; Romero et al., 

2004; Zigmond, 2004). 

In addition, regulation of formins frequently occurs through autoinhibition, as described for the 

diaphanous related formins. This relies on an intramolecular interaction between its N-terminal DID 

(Diaphanous Inhibitory Domain) and C-terminal DAD (Diaphanous Autoregolatory Domain) domains (Li 

and Higgs, 2003). To overcome this self-regulation mechanism, the N-terminal GTPase binding domain 

(GBD) of formins binds to small Rho GTPases (Alberts, 2001; Lammers et al., 2005; Wallar et al., 2006). 

However, additional modes of regulation have also been reported, such as phosphorylation or 

interactions with other proteins or lipids (Buttery et al., 2012; Matheos et al., 2004; Moseley et al., 2004; 

Ramalingam et al., 2010; Takeya et al., 2008; Wang et al., 2009). 

Formins have key roles in the assembly of various actin-related processes, ranging from polarity to 

adhesion and cytokinesis (Hotulainen and Lappalainen, 2006; Kobielak et al., 2004; Watanabe et al., 

2008). Despite a huge variability in the number of formin genes in different organisms, its structure and 

function are largely conserved (Chalkia et al., 2008; Chesarone et al., 2010). For instance, formins from 

singled cell yeast to multicellular organisms are implicated in the generation of F-actin meshworks for 

the organization of the contractile ring that separates daughter cells during cytokinesis (Bohnert et al., 

2013b).  

 

 

 

Figure 5 (Adapted from Pollard and 

Cooper 2009): Structures of actin and 

diagrams of fundamental reactions. 

(A) Reactions of actin filaments. 

Capping proteins bind to and block 

barbed ends; cofilin sever filaments; 

cross-linking proteins assemble 

networks and bundles of actin 

filaments (B) Nucleation by Arp2/3 

complex. Nucleation-promoting 

factors such as WASp bind an actin 

monomer and Arp2/3 complex. 

Binding to the side of a filament 

completes activation, and the barbed 

end of the daughter filament grows 

from Arp2/3 complex (C) Nucleation 

and elongation by formins. Formins 

initiate polymerization from free actin 

monomers and remain associated 

with the growing barbed end. Profilin-

actin binds to formin and transfers 

actin onto the barbed end of the 

filament.  
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Once assembled, F-actin filaments are submitted to a number of reactions including capping, severing 

and crosslinking with impact on their organization. 

In particular, while profilin facilitates formin-dependent F-actin assembly by stimulating the exchange of 

ADP for ATP bound monomers and carrying them at the barbed ends (Wolven et al., 2000; Yarmola and 

Bubb, 2006), capping proteins bind to free barbed ends to prevent the addition and loss of actin 

monomers at the end, therefore limiting actin filament elongation (Edwards et al., 2014).    

Cofilin regulates actin disassembly in two ways: 1) by enhancing the rate of dissociation of actin 

monomers from the minus end, increasing the pool of G-actin available (Carlier et al., 1997) and 2) by 

severing F-actin creating more free ends further enhancing filament disassembly (Andrianantoandro and 

Pollard, 2006).  

Tropomyosin is a conserved α-helical coiled-coiled protein, which is required for the stabilization and 

maintenance of actin filaments. By dimerizing through end to end contacts, this protein curls around 

actin filaments to regulate their function (Perry, 2001). Beside this, in specialized structures such as 

muscle, tropomyosin plays a key role in regulating F-actin interactions with myosin (Lehman et al., 1995; 

McKillop and Geeves, 1991; McKillop and Geeves, 1993; Perry, 2001). Moreover, it has been reported 

that N-terminal acetylation of this protein strengthens its ability to regulate acto-myosin activity (East et 

al., 2011; Monteiro et al., 1994; Skoumpla et al., 2007). 

 Actin- based motors: Myosin II 

Besides playing structural roles, actin filaments also function as tracks for molecular motors that, by 

converting ATP in mechanical energy, exert tension and drive short range movement of several cargoes 

such as vesicles and organelles. Myosins are the only described proteins that perform this activity along 

actin filaments with recognized function in membrane trafficking, cell polarity and motility and 

cytokinesis (Hartman and Spudich, 2012; Krendel and Mooseker, 2005; Ross et al., 2008). The myosin 

superfamily is composed of at least 25 different classes. The myosin II subfamily, which includes skeletal, 

cardiac and smooth muscle myosins, as well as nonmuscle conventional myosin II, is the one with the 

highest number of members. All myosin II molecules are hexamers consisting of two heavy chains and 

two pairs of essential and regulatory light chains. Myosin heavy chains are organized in three distinct 

domains: the N-terminal head catalytic motor domain that mediates actin binding and ATP hydrolysis, 

the lever arm linker region with IQ motifs interacting with its own light chains or those of regulatory 

proteins that can regulate myosin motor function (i.e. calmodulin) and the C-terminal tail with an α-

helical coiled-coil structure responsible for dimerization and/or cargo binding (Masters et al., 2016).  

Myosin II forms bipolar filaments that are formed by several myosin molecules that face opposite 

directions from the midzone of the filament: these thick structures provide the force required to induce 



Arbizzani Federica- Thèse de doctorat- 2019                     
 

 

14 
 

contraction of muscles and to form the contractile ring that separates daughter cells during cytokinesis 

(Hartman and Spudich, 2012; Vicente-Manzanares et al., 2009). In metazoans, the activity of the 

nonmuscle myosin II is regulated by phosphorylation by multiple kinases including the myosin light chain 

kinases (MLCK) and the ROCK kinases, downstream effectors of RhoA (Somlyo and Somlyo, 2003) (see 

chapter 2.3 and Fig15 for details). These modifications activate the motor catalytic domain of myosin II, 

which in turn promotes its ability to cross-link and slide actin filaments, ensuring the force necessary for 

cytokinetic furrow contraction (Bresnick, 1999; Matsumura, 2005). 

 

2.2 Septins 

2.2.1 Septins structure and filament organization 

Septins were discovered 40 years ago in the budding yeast Saccharomyces cerevisiae through a 

temperature sensitive screen to identify cell division mutants: cdc3ts, cdc10ts, cdc11ts and cdc12ts 

mutants fail to undergo division at the restrictive temperature, resulting in multinucleated and 

multibudded cells (Hartwell, 1971). In the following years, three related gene products were identified 

by sequence homology: Shs1, which is also expressed in mitotic cells and Spr3 and Spr28, which are 

expressed only in cells undergoing meiosis and sporulation (De Virgilio et al., 1996; Mino et al., 1998; 

Ozsarac et al., 1995). In this model system, the five mitotic septins localize to the presumptive budding 

site, to the bud tip and to the neck of budding cells: their deletion is lethal for the cell and result in a 

complete block of cytokinesis. 

 Later on, phylogenetic analysis identified septin genes in all eukaryotes except higher plants (Pan et al., 

2007) and it has been shown that their number is highly variable ranging from two in Caenorhabditis 

elegans to 13 in humans (Fung et al., 2014). To date, mammalian septins display complex expression 

patterns with tissue-specific or ubiquitous expression and can produce a considerable number of 

splicing variants. Based on the sequence homology, four different classes have been distinguished: 

SEPT2, SEPT3, SEPT6 and SEPT7 (Hall et al., 2008; Kinoshita, 2003a).   

Septins are conserved GTP-binding proteins of 30-65 kDa and possess a central core characterized by a 

polybasic region which mediates their interaction with phosphoinositides (PIP2) of membrane surfaces, 

a GTP-binding domain, which is key in the organization of septin filaments and a conserved region of 53 

aminoacids called the Septin Unique Element (SUE) with an unknown role. The N-terminus and C-

terminus domains contain respectively a proline-rich domain and a variable α-helical coiled-coil domain 

that are essential for homo-typic and hetero-typic interactions (Marttinen et al., 2015) (Fig6). 
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Septins are known to polymerize into hetero-oligomeric complexes by lateral associations between the 

G interface, that imply interactions through the GTP-binding domain, and the NC interface, that instead 

requires associations between the N and C-terminal regions (Bertin et al., 2008; Mostowy and Cossart, 

2012).  Structural studies have revealed that septins associate in linear apolar rods: single particle EM 

analysis of the four essential mitotic septins in budding yeast have described that the septin complex is 

an octameric rod, consisting of two tetramers with a mirror symmetry: Cdc11–Cdc12–Cdc3–Cdc10–

Cdc10–Cdc3–Cdc12–Cdc11 (Bertin et al., 2008). Likewise, X-Ray crystallography techniques provided the 

first proof that also mammalian septins exist as hexameric or octameric complexes with the order: 

SEPT7–SEPT6–SEPT2–SEPT2–SEPT6–SEPT7 (Sirajuddin et al., 2007), with the septin SEPT9 placed at the 

terminal position of octameric complexes (Kim et al., 2011; Sellin et al., 2011). Recently, by using Flp-In 

systems to express septins in HeLa cells, the existing model of septin organization has been found to be 

inverted with SEPT9 playing a role at the center of heteroligomers (Soroor et al.,  bioRxiv 2019). This 

new prediction is not only consistent with the currently known yeast complex but it would also 

provide compatible ends that would permit hexamers and octamers to co-polymerize. 

By end-on and lateral association of hetero-oligomers, septin filaments can pair together and this leads 

to the formation of higher order structures such as rings and filaments (DeMay et al., 2011)(Fig7). 

 

Figure 7 (From Mostowy and Cossart 2012): 

Septin cytoskeleton dynamics. Septin monomers 

interact via their G and NC interfaces to form 

ordered oligomeric complexes, which further 

assemble into large filamentous structures by end 

to end or lateral associations. Septins from 

different groups are depicted in different colors. 

Figure 6 (Adapted from Fung et al 2014): Schematic showing the primary common structure of septin 

protein family. See text for details. 
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2.2.2 Septin-membrane association 

Septins are found in intimate association with membranes and are implicated in processes where 

membrane remodeling occurs. For instance, in S. cerevisiae, septins assemble at the bud neck which 

represents the future division site and delineate where plasma membrane inward pinching takes place.  

 

It has been well established that septins are able to distinguish specific lipid domains and sense micron 

scale PM curvature. In vitro studies have demonstrated that septins bind preferentially to PIP2 which in 

turn influences filament organization and reinforces their polymerization (Bertin et al., 2010). 

Reciprocally, another study has revealed that septins affect phospholipid membranes, inducing a higher 

rate of tubulation in liposomes enriched in PIP2 (Tanaka-Takiguchi et al., 2009). 

In addition, it has been shown that both fungal and human septins are enriched at the sites of positive 

curvature and that the degree of PM curvature correlates with the amount of septins (Bridges et al., 

2016). The authors provide two hypotheses to explain the preferential interaction of septins with curved 

platforms: 1) the septin–lipid association is geometrically favorable when membranes are bended 2) 

interacting with a curved membrane promotes an energetically favorable septin complex conformation.  

 

In the last year, it has been demonstrated that septins association with curved membranes is 

cooperative and it has been clarified how septins sense PM curvature: an evolutionary conserved C-

terminus alpha helix flanked by a polybasic motif orchestrate membrane association (Cannon et al., 

2019; McMurray, 2019).  

To date, a theoretical model has proposed that septin filaments do not display a curvature sensitivity per 

se, but they adopt different configuration according to the degree of membrane curvature, thus the 

geometry and curvature of PM have a key role in tuning septins organization (Beber et al., 2019). This 

suggests that membrane bending may contribute to regulate septin reorganization occurring during 

cytokinesis. 

 

   2.2.3 Septin interaction with other elements of the cytoskeleton 

In addition to membrane association, septins interact with, respond to, and organize the actin and 

microtubule cytoskeletons. Since septins dynamics is slower compared to MTs and actin (Bridges et al., 

2014; Hagiwara et al., 2011), they may constitute a spatial framework for the coordinated organization 

of other cytoskeleton components.  

Septins have been reported to co-localize with MTs in different cell types at different cell cycle stages. 

Septins are involved in MTs stability by associating with the microtubule associating protein MAP4 and 

also affect MT organization and post-translational modifications, including regulating MTs 
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polyglutamylation and acetylation (Spiliotis, 2018). However, it is still not clear if septins interact directly 

with MTs or if they require adaptor proteins. So far only SEPT9 is known to be a direct interactor, playing 

key roles in regulating MTs dynamics (Nakos et al., 2018).  

It is also well known that F-actin and septins are interdependent: disruption of F-actin organization by 

treatments with cytochalasin D or latrunculin B leads to alterations in the structure of septin filaments 

(Fung et al., 2014). Multiple works have established that septins concentrate both to the sites of actin 

formation and/or reorganization: in interphase, septins are mainly found in actin stress fibers, while in 

dividing cells they localize to the cleavage furrow. However, similarly to microtubule-associated septins, 

actin-bound septins only localize to specific subset or to discrete domains of individual filaments, rather 

than match uniformly the distribution of their cytoskeletal partner (Spiliotis, 2018). This can be 

explained considering that septins may interact preferentially with polymers characterized by a peculiar 

orientation, charge or post-translational modification. 

Moreover, it has been described that septins are also present in sites that contains branched actin 

filaments like lamellipodia, filopodia and site of phagocytosis and in vitro experiments have revealed 

that SEPT6 binds to Arp2/3-nucleated filaments better than to linear actin filaments (Hu et al., 2012). 

Therefore, it is possible that septins interact with Arp2/3 complex directly or indirectly as actin cross-

linkers. 

Interestingly, a work combining in vivo analysis in Drosophila and in vitro reconstitution assays has 

revealed that septins are required to maintain cell shape during embryogenesis and that they are able 

alone to cross-link and bundle actin filaments into ring-like structures (Mavrakis et al., 2014).   

                               2.2.4 Post-translational modifications 

Septins filaments rearrangement through the cell cycle needs to be strictly controlled both in space and 

time: different post-translational modifications, including phosphorylation, sumoylation and acetylation 

play key regulatory roles in this process (Marquardt et al., 2018) (Fig9).  

 

Phosphorylation is the most abundant septin modification: 59 phosphorylation events have been found 

to occur in budding yeast septins. Phosphorylation is mainly restricted to the variable N- and C-termini 

and  the not essential Shs1 is the most heavily phosphorylated (Hernandez-Rodriguez and Momany, 

2012). Shs1 modifications seem to have an essential role in driving septins ring higher-order 

rearrangements throughout the cell cycle (Garcia et al., 2011; McQuilken et al., 2017). This complex 

phosphorylation pattern influences septin localization and function (see chapter 2.2.5 for more details). 

 

Sumoylation is a modification characterized by the covalent attachment of the SUMO moiety, a small 

ubiquitin-like modifier, to lysines of target proteins. There are four SUMO paralogs in humans (SUMO1-
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4); but only one in budding yeast (Smt3) and one in fission yeast (Pmt3)  (Alonso et al., 2015; Tanaka et 

al., 1999). Septins were the first substrates of SUMO identified in yeast. It has been described that just 

before anaphase, Cdc3, Cdc11 and Shs1 are sumoylated, but only at the mother side of the bud neck, 

and then desumoylation occurs sharply at cytokinesis (Johnson and Blobel, 1999; Takahashi et al., 1999). 

Mutants lacking sumoylation sites in all the three septins mentioned displayed ectopic septin rings 

associated with the previous cell division site, suggesting defects in septin ring disassembly process. 

Similarly, it has recently been discovered that all four human septin groups can be sumoylated in their C- 

and N-termini domains and non sumoylatable versions of SEPT6 and SEPT7 lead to the formation of 

bundles with aberrant morphology and dynamics. This leads to defects in late stages of cytokinesis since 

cells with abnormally thick septin bundles are not able to maintain a stable intercellular bridges and 

become multinucleated (Ribet et al., 2017). In both systems, sumoylation might work as an initiation 

signal, allowing the recruitment of other proteins that trigger septin reorganization during and after 

cytokinesis. 

 

Regulation of septins by acetylation is the less investigated post-translational modification. All budding 

yeast mitotic septins except Cdc11 are acetylated by the lysine acetyltransferase complex NuA4. In NuA4 

deletion mutant strains, septins have been shown to mislocalize during the ring-to-hourglass transition, 

suggesting that acetylation of septins may regulate septin hourglass formation or its stability (Mitchell et 

al., 2011). 

 

Altogether these data indicate that a complex network of post-translational modifications orchestrate 

the organization of the septin cytoskeleton (see chapter 2.2.5).  

    2.2.5 Septins functions 

Septins are multi-functional proteins. They function as cellular scaffolds to regulate many biological 

processes, acting as dynamic platforms to recruit cytoplasmic and cytoskeleton components or as 

diffusion barriers (Bridges and Gladfelter, 2015; Caudron and Barral, 2009; Mostowy and Cossart, 2012).  

This is best exemplified in budding yeast where septins have been thoroughly studied. As mentioned 

above, in this organism, septins localize at the presumptive division site. This localization is highly 

dynamic through the cell cycle and undergoes multiple transitions: in early G1, septins initially assemble 

as a patch-like structure at the presumptive bud site. Upon bud emergence, septins narrow to form a 

single ring marking the future site of bud growth. Once the bud has formed, the septin ring extends into 

an hourglass-shaped collar present at the bud neck until the mitotic entry. Before cytokinesis, the septin 

hourglass splits into two distinct rings that sandwich the CR (Gladfelter et al., 2001). After cell division, 

the old septin ring is disassembled and the septin subunits are partially replaced and recycled for a new 
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cycle to begin (McMurray and Thorner, 2009). A haploid yeast cell forms its new bud adjacent to the site 

of the preceding cell division, following an axial symmetry, and there is evidence that septins play a key 

role in marking the future division site (Balasubramanian et al., 2004). Evidences show that septin 

filaments globally reorient by 90° at the onset of cytokinesis: initially found parallel to the mother–bud 

axis in the hourglass conformation, septins rearrange during splitting adopting a circumferential 

organization (McQuilken et al., 2017; Ong et al., 2014) (Fig8).  

 

 

The initial recruitment of septins to the future bud site, together with the final disassembly of the 

previous septin ring, depend on the small GTPase Cdc42 and the action of the G1-cyclin-dependent 

kinases Cdc28 and Pho85 (Egelhofer et al., 2008; Li et al., 2012; Okada et al., 2013; Tang and Reed, 

2002). Phosphorylation by the p21-activated Cla4 kinase is required for the ring assembly (Kadota et al., 

2004) and mediates the transition to the hourglass collar stage (Versele and Thorner, 2004). 

Subsequently, the ring splitting is mediated by the Gin4 kinase, which phosphorylates Shs1 at residues 

different from the ones regulated in G1 (McQuilken et al., 2017; Mortensen et al., 2002). The remnant 

bud site marks are removed at the end of mitosis by the Rts1-bound PP2A phosphatase, which 

dephosphorylates Shs1 (Dobbelaere et al., 2003).  

 

Besides this, other kinases have been identified as septin interactors such as Kcc4, Ste20, Hsl1, Elm1 and 

Kin2 (Glomb and Gronemeyer, 2016). However, the exact window of activity and the biological 

relevance of the associated modification remain unclear. A first attempt in the identification of septin-

associated proteins in specific cell cycle stages of budding yeast has been performed by combining cell 

synchronization and quantitative mass-spectrometry (Renz et al., 2016). In this study, the kinase Hsl1 

was found exclusively in S phase; Gin4 and Bud4 both in S phase and anaphase; the kinase Ste20 

together with the SUMO enzyme Smt3 in cells with split rings. 

Figure 8 (From Juanes and Piatti 2016): Representation of septin behaviour in the main steps of budding yeast 

cytokinesis. See text for details. 
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Regarding their function, S. cerevisiae septins are essential for cytokinesis for two reasons: 1) they are 

involved in the recruitment and maintenance of the actomyosin ring and of the protein machinery 

required for septation fulfilling their function as a platform to recruit cytoskeletal elements and 2) they 

establish a diffusion barrier between the mother cell and the daughter bud that helps maintain cell 

polarity and asymmetry, fulfilling in this way the second function of septins.  

Indeed, septins create selectively permeable boundaries at the mother-bud neck both at the PM and at 

the ER that restrict the diffusion of cortical and morphogenesis factors, such as the exocyst and the 

polarizome complex, which is specifically involved in the regulation of actin dynamics. Additionally, 

septins play another function at the ER and at the nuclear envelope level: they retain in the mother cell 

stress and ageing factors, preventing them from entering in the daughter cells. In this way, they control 

cellular longevity and reset age in newborn cells (Clay et al., 2014; Luedeke et al., 2005; Shcheprova et 

al., 2008) (Fig10). Altogether, this highlights a key role for septins in S. cerevisiae in integrating cell cycle 

regulation and morphogenesis (Gladfelter et al., 2001; Juanes and Piatti, 2016; McMurray and Thorner, 

2009; Oh and Bi, 2011; Versele and Thorner, 2005). 
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Similarly, in mammalian systems, septins contribute to recruit the cytokinetic apparatus to the site of 

cell division together with the actin-binding protein anillin (see 2.3), and to regulate its contraction  

(Kinoshita et al., 1997; Maddox et al., 2007; Mavrakis et al., 2014). Later on, septins are also important 

for the maturation of the intercellular bridge and the midbody formation and eventually for the 

abscission event in animal cells (Echard et al., 2004; El Amine et al., 2013; Estey et al., 2010; Karasmanis 

et al., 2019; Renshaw et al., 2014). 

In addition, in higher eukaryotes, septins localize to the cortex at boundaries between cell 

compartments,  with pleiotropic roles (Caudron and Barral, 2009; Saarikangas and Barral, 2011) (Fig10): 

i.e. in the annulus separating the tail from the midbody in spermatozoa, which is key for spermiogenesis 

and reproduction (Ihara et al., 2005; Kuo et al., 2015); at the base of cilia where they are required for a 

correct cilium formation and function (Hu et al., 2010); in cage-like structures to respond to microbial 

infections in Listeria monocytogenes and Shigella flexneri (Krokowski et al., 2018; Mostowy et al., 2010) 

and at the base of dendritic protrusions in neurons where septins are key for spine and dendrite 

maturation (Ewers et al., 2014; Tada et al., 2007).  

Moreover, septins, by associating with membranes and cytoskeleton components, have been shown to 

confer rigidity to the cell: using Atomic Force Microscopy, it has been demonstrated that septins 

depletion leads to a decrease in cortical stiffness (Mostowy et al., 2011).  

By acting as scaffold and signaling platforms at the PM, septins also regulate vesicle trafficking and play 

two roles in exocytosis: by interacting with the exocyst complex they may act as additional tethering or 

targeting agents, while as a partner of the SNARE protein syntaxin they can be involved in membrane 

fusion events (Kartmann and Roth, 2001).  

Figure 9 (From Marquardt et al 2018): The septin cycle in yeast: architecture, remodeling, and function 

starting from the upper left and going clockwise: the nascent septin ring forms in late G1 phase, after the 

launch of a new cell cycle, through Cdc42-controlled septin recruitment. The exact filament structure is 

unknown, but most likely is composed of double filaments formed by Cdc11-capped octamers (green rods) and 

possibly single Shs1-capped octamers (yellow rods). Then, as the bud emerges and grows in S/G2, the septin 

structure expands to form an hourglass comprised of double filaments (green rods) that are potentially linked 

laterally by Shs1-capped octamers (yellow rods). This structure is regulated by phosphorylation by Cla4, and 

acetylation (green stars). Subsequently, as the cell enters anaphase, the septin hourglass exhibits a transitional 

structure that consists of double filaments (green rods in the cartoon and in the EM image) interwoven with 

single filaments (yellow rods in the cartoon and in the EM image) akin to a gauze-like structure. This transition 

is regulated by phosphorylation of Shs1 by Gin4 and sumoylation (blue triangles). Finally, the septins adopt a 

double ring architecture at the onset of cytokinesis comprised of both double and single filaments arranged 

circumferentially at the bud neck. This organization is accompanied by a loss of sumoylation and 

phosphorylation of septins. 
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    2.2.6 Septins involvement in human disease 

Given their broad spectrum of function, it is not surprising that septins dysfunctions have been linked to 

many pathologies such as cancer, neurodegenerative disorders, infections and reproductive disease 

(Fig11). 

Of note, septin expression levels are largely altered in almost every cancer type (Dolat et al., 2014). In 

the Catalog of Somatic Mutations in Cancer (COSMIC) database, many septins missense mutations 

occurring especially in the GTP-binding pocket and in the dimerization interfaces were reported after 

the analysis of different types of solid tumors (Angelis and Spiliotis, 2016). Multiple work has highlighted 

septins involvement in cellular processes linked to cancer cells such as metastasis, angiogenesis and 

apoptosis failure (Pous et al., 2016). 

Alterations in septin expression were also reported in neurodevelopmental disorders (e.g., Down 

syndrome, schizophrenia) and septins have been found in the neurofibrillary tangles and Lewy bodies of 

Alzheimer’s and Parkinson’s brains (Dolat et al., 2014; Marttinen et al., 2015). 

Specific deletions and mutations of SEPT4 and SEPT12, whose expression is fundamental for sperm 

differentiation and motility, have been linked to male infertility (Lhuillier et al., 2009; Lin et al., 2009). 

Finally, multiple works have shown that septins play a role in host-pathogen interactions: during Listeria 

monocytogenes and Shigella flexneri infections, septins form a cage that surrounds the actin tails 

assembled by the bacteria and target them for autophagy (Mostowy and Cossart, 2012). Recent 

Figure 10 (From Mostowy and Cossart 2012): Septins in several biological processes. Septins can act as 

scaffolds or diffusion barriers in several biological processes in mammalian cells. (a) Cytokinetic cells have two 

daughter domains and a cytokinetic domain at the cleavage plane. Septin rings may form a diffusion barrier at 

the cleavage furrow and act as a scaffold for cytokinesis proteins. (b) Non-dividing cells have septin assemblies 

at the plasma membrane, which provide rigidity to the cell and act as a scaffold to restrain membrane-bound 

proteins, including membrane receptors and transporters. (c) The annulus of the mammalian spermatozoon 

separates the anterior and posterior of the tail. A septin ring forms a diffusion barrier at the annulus, where it 

is required for mechanical and structural integrity. (d) To separate the ciliary membrane from the plasma 

membrane, a septin ring forms a diffusion barrier at the base of the cilium, and this is required for cilium 

formation. 
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evidences have discovered that septins are recruited to regions of micrometer-scale membrane 

curvature of dividing cells where the phosholipid cardiolipin is particularly enriched. Indeed, bacteria 

mutated for cardiolipin show reduced level of entrapment in septin cages (Krokowski et al., 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 (From Dolat et al 2014): Septin functions in organ systems and their connection to human disease 

The schematic diagram depicts the main organ systems of the human body and outlines organ- and cell type-

specific structures and processes that require septins. Color codes indicate the intracellular involvement of septins, 

which includes septin functions in the organization of actin (red), microtubules (green) and cell membranes (gray), 

vesicle fusion (blue), and apoptosis (yellow). Human diseases are listed based on genetic, histological, genomic, 

and proteomic evidence that implicates septins in the pathology of various organ disorders.  
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2.3 Anillin 

Besides the F-actin and septin networks described above, cytokinesis also involves anillin, which belongs 

to a third family of conserved multi-domain proteins that act both as a scaffold and regulatory platform 

to position and assemble the cytokinetic apparatus and connect it to the underlying PM.  

Anillin was first discovered in Drosophila as an F-actin interacting protein (Miller et al., 1989) and 

afterwards homologues have been identified in vertebrates (Oegema et al., 2000; Straight et al., 2005), 

yeast (Berlin et al., 2003; Paoletti and Chang, 2000; Sohrmann et al., 1996; Tasto et al., 2003) and C. 

elegans (Maddox et al., 2005).  The human genome encodes one anillin which contains an N-terminal 

SH3 domain that binds to proline-rich motifs, separate regions that recognize formin (FBD), F-actin 

(ABD) and phosphorylated myosin II (MBD) and two nuclear localization sequences (NLS). Anillin C-

terminus includes the evolutionary conserved anillin homology domain (AHD), which contains a 

conserved coiled-coil Rho-binding domain (RBD) and a PH domain at the very end of the protein 

(D'Avino, 2009; Paoletti and Chang, 2005; Piekny and Maddox, 2010; Watanabe et al., 2010) (Fig12). It 

has been shown that the PH domain is involved in two functions: 1) recruit anillin to the furrow by a 

preferential interaction with PIP2, facilitating the accumulation of actin and actin-binding proteins in this 

area 2) target septins to the division site (Liu et al., 2012). 

 

 

 

 

Recently, structural studies have revealed that the AHD, downstream of the RBD, contains a β-sandwich 

structure adopting a C2 like domain organization which preferentially interacts with negatively charged 

lipids such as PIP2 and PS thanks to a long L3 loop, which is amphipathic and positively charged. The 

authors have identified that a cooperative action of the RBD, which induces a specific orientation of the 

C-terminal lipidated tail of RhoA, C2 and PH domains anchors anillin at the PM around the cleavage 

furrow (Fig13). Indeed mutations or deletion of any of this membrane-binding domains prevent 

association of anillin to the cleavage furrow. Moreover, in vitro assays provided the functional proof that 

anillin acts as a linker between the components of the CR and the PM at the division site: only in 

presence of anillin, F-actin is able to interact with membrane structures of GUVs and the addition of 

lipidated RhoA to the mix enhanced this phenomenon (Sun et al., 2015).  

Figure 12: The structure of human Anillin is shown, illustrating all the protein domains characterized. At the N-

terminus are present a FBD= formin binding domain, a MBD=myosin II binding domain, a ABD=actin binding 

domain and SH3= Src-homology-3-binding consensus sequences. The two NLS sequences are shown as black 

bars in the N-terminus. In the C-terminus the Anillin homology domain (AHD) with the Rho-binding domain 

(RBD) and the pleckstrin-homology domain (PH). 
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Fly and vertebrate anillins show a dynamic localization: they accumulate in the nucleus in interphase, 

relocalize on the cortex in metaphase, concentrate at the cleavage furrow in anaphase and at the 

midbody region in telophase (Field and Alberts, 1995; Oegema et al., 2000)(Fig14). This peculiar 

distribution indicates that anillin distribution is controlled in a cell–cycle dependent fashion and 

regulation by phosphorylation has been recently confirmed. Of the many phosphorylation sites 

identified in the anillin sequence by phosphoproteomics analysis (Gnad et al., 2011; Hornbeck et al., 

2012), only one (S635), adjacent to the AH domain, has been found to be critical for its localization and 

function to perform a correct cytokinesis. Indeed, this phosphorylation regulates the timing of its 

accumulation at the cell equator and it is key to maintain a stable cytokinetic furrow (Kim et al., 2017). 

However, the kinase responsible for this modification remains still obscure. Phosphorylation could be 

important to mediate its function influencing its capacity to adopt a particular conformation/orientation 

and interact with other proteins. 

Anillin perturbation in Drosophila or human cultured cells have revealed that it acts as a multi-functional 

linker interacting with PM, septins, formin, actin and myosin II and coordinating the CR organization 

during the cleavage furrow formation. Interestingly, anillin is not required for the ingression of the 

cytokinetic furrow, but it is essential to maintain it stable afterwards to avoid cytokinesis regression. 

Indeed, loss of function of anillin results in oscillation of the CR along the spindle axis with slow and 

abortive furrowing (Field et al., 2005a; Golbach et al., 2010; Hickson and O'Farrell, 2008a; Kinoshita et 

Figure 13 (Adapted from Sun et al. 

2015): Model for the Anchorage of 

Contractile Ring at Division Plane 

through Anillin. The plasma 

membranes are schematically 

shown as double lines. The L3 loop 

of the C2 domain and the 

amphipathic sequence are shown 

as a dotted line and a cylinder, 

respectively. The C-terminal tail of 

RhoA is indicated by a red line. The 

N-terminal domain of anillin 

(orange oval) interacts with actin 

filament (green line) and myosin 

(blue). Additional contractile ring 

components (gray ovals). 
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al., 2002; Oegema et al., 2000; Piekny and Maddox, 2010; Straight et al., 2005; Watanabe et al., 2010; 

Zhao and Fang, 2005). 

 

 

 

Besides this, RNAi in Drosophila cultured cells have showed that anillin plays also key roles in late 

cytokinesis stabilizing the intercellular bridge to avoid membrane blebbing around the cleavage zone 

and other defects in the distribution and integrity of cytoskeleton components that would result in 

cytokinesis failure (Echard et al., 2004; Kechad et al., 2012; Somma et al., 2002). 

In addition, a role for human anillin in early cytokinetic stages has been discovered: in absence of a 

central spindle, anillin become essential for the furrow assembly. This suggest that both of them work 

redundantly to regulate furrow formation either by restricting the recruitment of cytoskeleton 

components to a limited zone at the cell equator or regulating the ability to contract (Piekny and 

Glotzer, 2008). 

Moreover, it has been demonstrated that anillin is not only necessary for the organization and/or 

recruitment of structural components of the ring, but it also links the cytokinetic machinery to signaling 

factors that control cytokinesis (Clifford et al., 2008; Gregory et al., 2008; Piekny and Glotzer, 2008). In 

metazoans, the position of the division plane is dictated by the orientation of the mitotic spindle in early 

anaphase.The central spindle acts as a positive regulator of furrow ingression by delivering the 

centralspindlin complex, which is composed of two proteins: a kinesin-like protein, MKLP1, and a Rho 

GTPase activating protein (RhoGAP), CYK-4 (White and Glotzer, 2012). The latter subunit activates RhoA, 

a fundamental regulator of furrow ingression, by relieving its Rho GDP–GTP exchange factor (GEF)-Ect2 

from its auto-inhibition. Besides promoting actin polymerization and myosin II activation (Almonacid 

and Paoletti, 2010; Glotzer, 2005), RhoA recruits anillin at the cell equator, which is crucial for the 

organization of the structural components of the contractile ring (Piekny and Glotzer, 2008; Piekny and 

Maddox, 2010) (Fig15). In parallel, in Drosophila, it has been shown that the GTPase Rho1, 

Figure 14 (Adapted from D’Avino et al. 2009): Localization of anillin during the cell cycle in Drosophila and 

vertebrates. The distribution of Anillin-related proteins is depicted in red, nuclei in grey, chromosomes in 

black, and microtubules, centrosomes and spindle-pole bodies in blue. 
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independently of F-actin, is able to induce anillin accumulation at the medial cortex promoting its 

interaction with the plasma membrane and septins (Hickson and O'Farrell, 2008b). Interestingly, 

overexpression of anillin increases Rho activation, suggesting that anillin functions in the regulation of 

Rho during cytokinesis (Suzuki et al., 2005). Indeed, recent evidences have revealed that anillin 

enhances Rho signaling at the cell equator reinforcing the dwell time of active Rho bound to the plasma 

membrane in a PIP2 dependent way (Budnar et al., 2019). In this way, anillin influences Rho binding 

kinetics and its ability to interact with downstream effectors, regulating cell contractility. Additionally, 

anillin is regulated by the APC complex, which directs chromosome separation and mitotic exit (Zhao 

and Fang, 2005). Accordingly, the authors found that the levels of anillin fluctuate in the cell cycle, 

peaking in mitosis, and decrease drastically when cells enter in G1.  

 

Figure 15 (Adapted from Glotzer 2017 and Almonacid and Paoletti 2010): Cytokinesis in metazoa. (A) Graphic 

representation of the spatial distribution of key proteins involved in the regulation of cytokinesis in animal cells (B) 

The scheme represents the pathways that induce activation and accumulation of contractile ring components. 

Proteins conserved between metazoa and yeast are highlighted in blue. 

 

Anillin has also been shown to bind septins in vitro and recruit them to the actomyosin ring during cell 

division, thus playing a spatial control in organizing septin filaments (Field et al., 2005a; Kinoshita et al., 

2002; Oegema et al., 2000). It is well documented that anillin interacts with septins through a C-terminal 

region that comprehends the anillin homology (AH) domain upstream of the terminal PH domain 

(Kinoshita et al., 2002; Piekny and Maddox, 2010). The C-terminal anillin related region of Bud4, the 

anillin-like protein in budding yeast, in cooperation with central domains, is crucial to direct septin 

organization during bud growth and bud site selection and to preserve the integrity of the septin ring 
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during cytokinesis (Kang et al., 2013; Wu et al., 2015). Indeed, in bud4Δ mutants the septin double ring 

disassembles during cytokinesis (Eluere et al., 2012; Kang et al., 2013; Wloka et al., 2011), whereas the 

overexpression of bud4 leads to the formation of extra septins structures (Kang et al., 2013). Recently, 

polarized fluorescence microscopy studies have described a key role of Bud4 in the reorientation of 

septin filaments in the hourglass to double ring transition (McQuilken et al., 2017).  In turn septins have 

a role in marking the landmark of the future bud site in S. cerevisiae by localizing Bud4 to this region: 

evidences show that in septins mutants Bud4 is not properly localized to the mother/bud neck (Frazier 

et al., 1998; Sanders and Herskowitz, 1996).  

Since anillin has a pivotal role in cytokinesis, it is not surprising that it has been associated to cancer. 

Anillin has been found to be upregulated in diverse human cancers and increased levels of expression 

have been linked to a higher rate of metastasis (Hall et al., 2005; O`Leary et al., 2013; Olakowski et al., 

2009; Suzuki et al., 2005). Anillin knockdown by lentivirus mediated RNAi has revealed a strong 

inhibition of the proliferation index and of the migration ability of breast cancer cells with a higher 

population blocked at the G2/M phase (Zhou et al., 2015a).  Altogether these data indicate that anillin 

could be used as a new biomarker of cancer onset and progression that could be targeted as a potential 

candidate for its treatment. The pathogenic effects of anillin deregulation could be explained 

considering that an abnormal nuclear or cytosolic amount of anillin could lead to alteration of the 

reproducibility of the cytokinetic process.  

Besides its recognized role in cytokinesis, many other functions are emerging. Interestingly, recent 

reports have demonstrated that anillin play a critical role in interphase in the regulation of integrity and 

remodeling of cell-cell junctions in Xenopus laevis and in human epithelial cells. In both systems, anillin 

knockdown leads to a collapse of both adherent and tight junctions and disrupt the apical actomyosin 

belt, resulting in abnormal cell conformation and strongly disorganized intercellular contact areas (Reyes 

et al., 2014; Wang et al., 2015).  

Moreover, anillin has been found to be essential for neuroblast development in C. elegans. By taking 

advantage of the CRISPR-Cas9 technique, a new role for anillin was uncovered in regulating neuron 

migration and neurite growth by linking Rho signaling to the actin cytoskeleton. Biochemical analysis 

demonstrated that RhoG recruits anillin to the leading edge of the Q neuroblast where this scaffold 

protein stabilizes the actin cytoskeleton by counteracting the activity of cofilin (Tian et al., 2015). 

In parallel, a role for anillin in concert with septins has been identified in a late stage of myelin 

maturation in scaffolding the axon/myelin unit of the central nervous system (CNS), a process which is 

also PIP2 dependent. By using mice mutated for components or interactors of the CNS myelin, the 
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authors propose that pathological or aging-linked depletion of the septin/anillin scaffold results in 

myelin outfoldings that strongly reduces the velocity of impulses propagation (Patzig et al., 2016). 

Conversely, no roles for anillin have been identified in the nucleus yet. However, it has been discovered 

that an importin β2 dependent sequestration in this organelle avoids its cytoplasmic enrichment in 

interphase, which would otherwise disrupt cell shape by increasing F-actin assembly. Thus, its nuclear 

confiscation is required to regulate spatially and temporally anillin activity (Chen et al., 2015). 

Overall, these evidences suggest that beyond cytokinesis, anillin is also important for several aspects of 

development in metazoans, in link with the actin and septin cytoskeleton.  

 

3. Reorganization of membrane lipids during cytokinesis 

Cytokinesis is accompanied by massive cell shape rearrangement with changes in membrane 

composition and in the dynamics of trafficking pathways within the cell (Fremont and Echard, 2018; 

Gerien and Wu, 2018; Neto et al., 2011).  

Several technics have been developed to study membrane lipids during cell division. By using high-

resolution Atomic Force Microscopy (AFM), it has been discovered that the forces required to penetrate 

the membrane of dividing cells are substantially greater than those of non-dividing cells. Recently, 

innovative techniques for lipid analysis and quantification have shown that the lipid composition 

changes both in space and time during the cell cycle (Muro et al., 2014; Shevchenko and Simons, 2010). 

By using liquid chromatography coupled to mass spectrometry (LC-MS), it was reported that 11 specific 

lipid families were enriched more than 4 times in dividing HeLa cells: they include a novel sterol 

derivative and an ether/ester-linked phosphatidic acid with yet to be determined biological roles and 

derivatives of sphingolipids, strengthening their already described role in cytokinesis. These techniques 

have revealed that cells are able to control and modify their lipid composition and distribution during 

cell division, with both informative and mechanical roles (Atilla-Gokcumen et al., 2014; Echard and 

Burgess, 2014; Storck et al., 2018). Indeed, multiple evidences have shown that some lipid species form 

signaling membrane frameworks by interacting with other lipids and/or proteins to regulate the 

transport and regulation of key proteins, while others provide structural support in membrane curvature 

remodeling (Albertson et al., 2005; Montagnac et al., 2008; van Meer et al., 2008). In agreement with 

these results, genome-wide ribosomal analysis have demonstrated that many genes that are involved in 

lipid metabolism are translationally activated in mitosis both in Saccharomyces cerevisiae (Blank et al., 

2017) and mammalian cells (Stumpf et al., 2013) and recent evidences have suggested that lipid 

metabolic reprogramming is a hallmark of cancer cells (Beloribi-Djefaflia et al., 2016).  
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These data suggest that membrane lipids play an important role during cell division and may regulate 

cytokinesis. Accordingly, an RNAi screen in HeLa cells has identified 23 genes involved in lipid 

biosynthesis that lead to cytokinesis failure (Atilla-Gokcumen et al., 2014). In the same work, it has been 

shown that lipids can impact directly or indirectly on cell mechanical properties. 

It is also known that the composition of the plasma membrane (PM) lipids is very specific at the level of 

the division plane with an enrichment in cholesterol and the sphingolipid Gm1. Cholesterol is composed 

of a four ring carbon structure and an aliphatic tail, while sphingolipids are characterized by a ceramide 

hydrophobic backbone and long saturated acyl chains. Due to their chemical structures, these classes of 

lipids pack together in a favorable manner giving rise to liquid ordered microdomains, also known as 

lipid rafts, which organize platforms for proteins involved in membrane sorting and trafficking, cell 

polarization, and signal transduction pathways (Pike, 2003; Rajendran and Simons, 2005)(Fig16). 

 

 

 

Interestingly, multiple studies have revealed that cholesterol depletion or inhibition of its synthesis 

results in cytokinesis inhibition in many systems (Feng et al., 2002; Fernandez et al., 2004). Indeed, the 

addition of filipin, an agent that binds and sequesters sterols, during the formation of the cleavage 

furrow results in furrow retraction (Ng et al., 2005). In parallel, old studies revealed that the inhibition 

by Myriocin of the serine palmitoyl transferase (SPT), that catalyzes the first reaction during sphingolipid 

biosynthesis leads to cytokinetic defects, which can be rescued by the addition of sphingosine (Miyake 

et al., 1995; Nakamura et al., 1996). More recently, it has been discovered that sphingolipids reduction 

Figure 16 (Adapted from Alvarez 

et al. 2007 and Roux et al. 2005): 

Lipids interaction and phase 

separation. (A) Comparison of 

cholesterol and sphingolipid 

structure. (B) Fluorescent image 

of a GUV, characterized by a 3:1:3 

ratio in the order of brain 

sphingomielin (BSM), cholesterol 

and dioleylphospatidiylcholine 

(DOPC) showing the segregation 

of BODIPYFL-C5-hexadecanoyl 

phosphatidylcholine (BODIPYFL-C5-

HPC) and the ganglioside GM1 

here stained with Cy3-cholera 

toxin, which segregate specifically 

in the liquid disordered (Ld) and 

liquid ordered (Lo) phase 

respectively.  
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affects cytokinesis completion by altering the localization and thus the role of the PIP2 at the cleavage 

furrow, resulting in defective cytokinesis (Abe et al., 2012). In addition, it has been shown that 

inactivation of the glucosyl ceramide synthase by RNAi or by the use of the inhibitor PPMP(1-phenyl-2-

hexadecanoylamino-3-morpholino-1-propanol), causes cytokinesis failure with an increase in 

binucleated cells (Atilla-Gokcumen et al., 2011). These data suggest an involvement of cholesterol and 

sphingolipids in cytokinesis, but their precise role has not been clarified yet. This may be due to the fact 

that lipids behave both biosynthetically and structurally as ensembles, making it difficult to identify the 

role of a single lipid (Klose et al., 2013).  

Another type of lipid that plays a crucial role in cytokinesis is that of phospho-inositides (PIs). PIs are 

intermediates of phosphatidylinositol obtained by phosphorylation of the inositol group in position 3, 4 

or 5 and they can be reversibly phosphorylated once, twice or three times. Multiple kinases and 

phosphatases regulate the synthesis of different types of PIs with a precise temporal and spatial control 

(Fig17).  

Four PIs have been reported to play roles in cytokinesis: PIP2, PI 3, 4, 5-trisphosphate (PIP3), PI4P and 

PI3P. PIP2 is a major phosphoinositide at the PM and is the only one within its group that is strongly 

enriched at the cytokinetic furrow (Echard, 2008). PIP2 accomplishes multiple functions during 

cytokinesis progression due to its capability of interacting with Pleckstrin Homology (PH) and/or basic 

domains of different cytokinetic elements such as F-actin, anillin and septins, ensuring stability of the 

furrow after ingression and the solidity of the intercellular bridge (Cauvin and Echard, 2015). One of the 

main functions of PIP2 is indeed the regulation of the dynamic behaviour of the actin cytoskeleton: it 

cooperates with various actin-crosslinkers and regulatory proteins such as the Arp2/3 complex, profilin 

and cofilin stimulating F-actin polymerization when it is present at high levels (Logan and Mandato, 

2006; Saarikangas et al., 2010). Indeed it has been found that the overexpression of a GFP-PLC-PH 

probe, that can be used to follow PIP2 localization, sequesters PIP2, leading to a detachment of actin 

from the PM with the formation of binucleated cells (Emoto et al., 2005; Field et al., 2005b). 

Interestingly, PIP2 is also involved in exocytosis and endocytosis processes, which play an essential role 

throughout cytokinesis in delivering specific cargoes to appropriate targets in proximity of the 

cytokinetic furrow and of the intercellular bridge (Echard, 2012; Neto et al., 2011; Schiel et al., 2013). 

Later on, PIP2 hydrolysis by the PIP2 5-phosphatase OCRL is critical for normal abscission in mammalian 

cells since it remodels the F-actin cytoskeleton preventing its accumulation at the intercellular bridge, 

where it would act as a physical barrier blocking bridge resolution and the following abscission 

(Dambournet et al., 2011). Loss of function of OCRL results in oculocerebrorenal syndrome of Lowe and 

Dent 2 disease in humans (Pirruccello and De Camilli, 2012), marking the importance of a strict PIP2 

levels regulation.  
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The catabolism of PIP2 also depends on another PIP2 5-phosphatase: the synaptojanines. 

Overexpression of these proteins diminishes the amounts of PIP2 at the cytokinetic membrane furrow, 

causing an increased number of multinucleated cells (Janetopoulos and Devreotes, 2006).  

Of note, another category of enzymes that regulate PIP2 hydrolysis is the phospholipase C (PLC), which 

converts PIP2 in diacylglicerol (DAG) and inositol 1, 4, 5-triphosphate (IP3). Multiple studies have shown 

Figure 17 (Adapted from Echard 2012):  Phosphoinositides structure and turnover (A) Representation 

of the phosphatidylinositol 3, 4, 5-trisphsophate (PIP3). The two acyl chains (18:0 and 20:4 in this case) 

esterified to glycerol are inserted in the hydrophobic region of the cytoplasmic leaflet of membranes. (B) 

Interconversions between phosphoinositides by kinases (green arrows) and phosphatases (blue arrows). 

Enzymes involved in cytokinesis are indicated in red. Pathways not demonstrated in vivo are indicated 

with dash arrows. 
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that PLC function is required for the success of cytokinesis in multiple systems and that several PLC 

isoforms localize at the cleavage furrow in mammalian cells (Echard, 2012).  

The correct localization and turnover of PIP2 and of another PI, PIP3, has a pivotal role in cytokinesis 

progression. PIP2 is localized at the equator (Field et al., 2005b), while PIP3 at the extremities of the 

daughter cells (Janetopoulos et al., 2005). Accordingly the PI3-phosphatase PTEN, which 

dephosphorilates PIP3 in PIP2 is found at the division site, while the PI3-kinase, that catalyzes the 

opposite reaction, is restricted at the cell poles (Janetopoulos et al., 2005). 

Moreover, PIP2 formation can be also obtained by the action of PI-5 kinases that add a phosphate at 

PI4P. It has been shown that these kinases also localize at the division plane in many systems (Brill et al., 

2011; Echard, 2012).  

Besides, the PI-4 kinase, another enzyme involved in the PIs pathway, together with its product PI4P, 

play roles in cytokinesis after furrow ingression in Drosophila male germline: in the mutant 

spermatocytes the furrow ingresses normally, but later on the cleavage furrow regresses due to 

instability of the intercellular bridge that leads to multinucleated cells (Brill et al., 2000).  

Additionally, PI3P is also important for cytokinesis. Indeed, PI3P depletion results in cytokinesis collapse 

after furrow organization with multinucleated cells. Interestingly, this PI is involved in membrane 

trafficking by delivering key factors that control intercellular bridge stability and abscission (Brill et al., 

2011; Cauvin and Echard, 2015; Nezis et al., 2010).       

These data altogether shows that a specific PIs distribution is required for proper cell division. 

In parallel, the repartition of another glycerophospholipid, the phosphatidylethanolamine (PE), is largely 

modified during cytokinesis progression: in interphase it is localized in the internal leaflet of the PM, 

while it moves to the external one in the division site (Emoto and Umeda, 2000). Reductions in PE levels 

or its confinement in the external leaflet leads to defects in the abscission event, which can be reversed 

by the addition of PE or its precursor ethanolamine (Emoto et al., 2005).  

These findings suggest that lipids are not passive constituents of the cellular membranes, but thanks to 

their peculiar geometry, hydrophobicity and charge, they play active roles in regulating membrane 

shape and function. A unique membrane framework with a specific lipid composition is dynamically 

assembled throughout the cell cycle (Fig18) and it contributes to key functions for the fidelity of 

cytokinesis including membrane trafficking, membrane insertion, cytoskeleton dynamic remodeling and 

signaling.       
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Figure 18 (From Storck et al 2018): Mammalian cells undergo massive membrane rearrangements during cell 

division. In metaphase (2), chromosomes align along the metaphase plate. PI (3,4,5)P3 accumulates at the 

polar cortex and is required to correctly position the mitotic spindle, which separates the sister chromatids 

during anaphase (3). A contractile ring then forms, which drives cleavage furrow ingression. Several lipids are 

enriched at the cleavage furrow. PI(4,5)P2 on the inner membrane leaflet is required to tether the contractile 

machinery to the membrane. Cholesterol-dependent sphingomyelin (SM) clustering on the outer membrane 

leaflet is required for PI(4,5)P2 enrichment. Ganglioside GM1 is also enriched at the cytokinetic furrow. Once 

fully ingressed, the furrow forms a stable midbody bridge during late telophase (4). Several phosphatidylinositol 

phosphates, including PI(3)P, PI(4)P, and PI(4,5)P2, are present at the midbody. Abscission, the final step of cell 

division, physically cleaves the intercellular bridge, completing formation of two daughter cells. PE enrichment 

on the outer membrane leaflet of the furrow is required for abscission.  
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4. Fission yeast cytokinesis  

4.1 Fission yeast cell cycle and morphogenesis 

Fission yeast is a simple single cell eukaryotic organism which has been extensively used to study how 

eukaryotic cells grow and divide because of its stereotyped shape, its easy genetics and short generation 

time (Almonacid and Paoletti, 2010; Goyal et al., 2011; Hayles and Nurse, 2001; Hayles and Nurse, 2018; 

Martin, 2009; Pollard and Wu, 2010). This rod-shaped organism exhibits a tight coordination between 

cell growth and cell cycle progression: cells grow by cell tip extension during a long G2 phase, a 

peculiarity of fission yeast cell cycle, and stop growing at a critical length of 14 μm to undergo mitosis 

and divide by medial fission. During this process, they assemble in parallel a MT spindle to segregate 

chromosomes and an acto-myosin-based contractile ring that drives the division of the cell in two 

daughter cells of equal size (7μm in length). The constriction of the CR guides plasma membrane 

invagination and septum formation. Indeed, fungal cells have a rigid external cell wall that antagonizes a 

high intracellular turgor pressure. Synthesis of septum material at the cell equator produces the force 

necessary for the membrane rearrangements and cleavage furrow ingression (Fig19). Once cell 

separation occurs through the digestion of the innermost septum layer by glucanases, fission yeast 

growth resumes in a monopolar manner from its old cell pole, until it reaches the size of 9 μm in length, 

when NETO (New End take Off) takes place, allowing the switch to bipolar growth (Garcia et al., 2005; 

Mitchison and Nurse, 1985; Rincon and Paoletti, 2012).  

  

 

 

 

 

 

 

 

 

 

 

Figure 19: Scheme of the S. pombe cell cycle. The cell cycle last between 2 and 3 hours and is characterized by 

several steps. After the cell division (G1/S) phase, the cells grow only from the old tip (black arrow) where the actin 

patches are localized (red dots). During G2, the NETO process take place and the cell start to grow also at the new tip. 

At mitotic entry, the cell stops growing and a contractile ring is assembled at the cell middle. Once the ring constricts, 

the secretory apparatus is redirected towards the center of the cell to support septum formation, whose cleavage 

leads to cell division. 
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Figure 20 (Adapted from Chang and Martin 2009): Actin 

organization during cell cycle in fission yeast. In interphase, S. 

pombe, F-actin forms two distinct filamentous structures: actin 

patches, actin cables. Actin patches are assembled at the 

endocytotic sites, and their distribution is correlated with region 

of polarized growth. Actin patches appear at the cell growth 

zones during interphase and the cell division site during late 

mitosis. Actin cables run along the length of the cell, and are 

involved in intracellular cargo transport. Actin patches (dots) and 

cables are noted in brown and microtubules tracks are in green, 

while sites of active growth are marked in light blue.  

Fission yeast morphogenesis relies on the one hand on the establishment of cell polarity by the actin 

and microtubule cytoskeletons during interphase, which defines the cell tips as exclusive growing zones, 

and on  the other hand on mitotic commitment, which regulates cell size at division and controls cell size 

homeostasis. 

In fission yeast there is only one actin isoform (Shortle et al., 1982) that can be polymerized into three 

different structures: actin patches, actin cables and the actin ring (Kovar et al., 2011; Mishra et al., 2014) 

(Fig20). Actin patches are short branched polymers, localized to regions of polarized cell growth, where 

they play key roles in endocytosis contributing to membrane remodeling and cell wall synthesis. 

However, the identity of cargoes endocytosed at actin patches in fission yeast has not been clarified yet. 

Actin patches are nucleated by the Arp2/3 complex (Pelham and Chang, 2001),  whose activation is 

stimulated by the fission yeast WASP-like protein Wsp1 and Myo1, which play overlapping roles in actin 

patches formation (Lee et al., 2000; Sirotkin et al., 2005). 

Conversely, actin cables are straight long bundles of short parallel filaments nucleated by the formin 

For3, running along the long axis of the cell that play roles in intracellular cargo transport throughout 

the overall cell cycle. They are nucleated by the formin For3 and are used as directional tracks by myosin 

V to deliver cargoes at actin barbed ends to direct polarized growth (Feierbach and Chang, 2001).   

Fission yeast actin cables are a clear example of cytoskeletal crosstalk since their nucleation is 

established by the sites of cortical contact of interphase MTs plus ends. The polarity complex Tea1-4 is 

delivered to the cell tips by microtubule plus ends transport. Once the Tea1-Tea4 complex has been 

anchored to the cortex via the support of the membrane receptor Mod5, it recruits actin-regulating 

proteins, namely the formin For3 together with its activators: the Rho GTPase Cdc42, Bud6 and Pob1 

(Martin, 2009; Martin et al., 2007; Rincon et al., 2009).  

 

  

 

 

It has been estimated that fission yeast cells may contain ~1 million actin molecules per cell. ~35 to 50% 

are evenly distributed between 30 to 50 actin patches, ~10% are incorporated into the CR, and about 

15% are estimated to be organized in actin cables (Sirotkin et al., 2010; Wu and Pollard, 2005). 
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Multiple evidences have revealed that actin nucleators compete for the limiting supply of actin 

monomers available (Burke et al., 2014; Moseley, 2014) (Fig21). In particular, depletion of either Arp2/3 

complex- or formin-dependent F-actin structures leads to increased F-actin assembly by the other: cells 

treated with the Arp2/3 inhibitor CK-666 rapidly lose actin patches and organize an extra number of 

actin cables, whereas formins depletion led to an increased number of Arp2/3 dependent actin patches 

where the quantity of actin per individual patch is unchanged. In addition, it has been discovered that 

formins prevail when actin concentration is limited. Indeed, enhancing actin levels favors Arp2/3 

activity, whereas decreasing actin levels favors formins (Burke et al., 2014; Moseley, 2014). More recent 

evidence show that profilin also plays a role in the regulation of F-actin network homeostasis by 

inhibiting the association of Arp2/3 complex with its activator WASP (Suarez et al., 2015), favoring 

formin-dependent assembly of F-actin networks.  

 

 

   

One feature of fission yeast morphogenesis, is that growth is a continuous process, only interrupted by 

mitotic entry. Therefore, any delay in mitotic entry affects cell size at division. This makes of mitotic 

commitment a morphogenetic tool subject to many physiological inputs controlling cell size homeostasis 

in addition to DNA damage and replication checkpoints that block mitotic progression to activate 

mechanisms of reparation at the G2/M transition. 

The first one is the stress response pathway (SRP), mediated by TOR (target of rapamicin) signaling, 

which regulates mitosis commitment in response to osmotic stress and nutrients availability. 

Rapamycin-induced inhibition of TOR signaling advances mitotic onset, mimicking the reduction in cell 

size at division seen after nitrogen deprivation. This stimulates the stress Spc1/Sty1 mitogen-activated 

protein (MAP) kinase pathway, which promotes Polo kinase recruitment at the spindle pole body (SPB), 

and, in turn, reinforces in a positive feedback the activity of the MPF complex, represented in fission 

yeast by the Cdc2 kinase (known as Cdk1 in all organisms) and the mitotic cyclin Cdc13. Plo1 

phosphorylation by Spc1/Sty1 favors its association with the SPB component Cut12 (Davie and Petersen, 

2012; Petersen and Hagan, 2005; Petersen and Nurse, 2007). This interaction is negatively regulated by 

Figure 21 (From Moseley et al 2014): Homeostasis between different actin networks is fueled by competition. 
Formins and Arp2/3 complex compete for a limiting pool of actin monomers, leading to homeostatic levels of 

formin-generated actin cables and Arp2/3- assembled actin patches.  
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the phosphatase Dis2, but during G2, Cdc2 and the NIMA kinase Fin1 phosphorylate Cut12 impairing 

Dis2 activity and allowing Plo1 to bind to the SPB and induce mitotic entry (Grallert et al., 2013). 

The second one is a Wee1 regulatory pathway directly modulating mitotic entry according to cell length. 

In fission yeast indeed, like in other eukaryotes, Cdc2 is inhibited by the Wee1 kinase and activated by 

the Cdc25 phosphatase (Gautier et al., 1991; Gould and Nurse, 1989; Russell and Nurse, 1986; Russell 

and Nurse, 1987). Therefore, mutations in Wee1 and Cdc25 lead to changes in cell size with wee1-50 

and cdc25-22 mutants dividing respectively at an abnormally short and long cell lengths compared to 

wild type cells (Nurse and Thuriaux, 1980; Russell and Nurse, 1986).  The dual-specificity tyrosine-

regulated kinase (DYRK) family kinase Pom1 plays a key role in the transduction of cell size information 

to Wee1, in order to modulate Cdc2 activity (Martin and Berthelot-Grosjean, 2009; Moseley et al., 

2009). 

Pom1 forms a polar cortical gradient of decreasing concentration towards the cell middle. Pom1 

associates directly with negatively charged phospholipids at the PM through a polybasic domain. 

Autophosphorylation of this motif results in decreased affinity for the PM. MT-dependent delivery of 

Tea1-Tea4 protein complex, assisted by the prenylated protein Mod5 and the protein Tea3, promote the 

association of the PP1 phosphatase Dis2 at the cell tips, where it stimulates Pom1 association with the 

PM, by de-phosphorylation of Pom1 polybasic domain (Bahler and Pringle, 1998; Celton-Morizur et al., 

2006; Hachet et al., 2011; Huang et al., 2007; Martin, 2009; Padte et al., 2006).  

Pom1 negatively regulates the position and function of the Wee1 inhibitory kinase Cdr2 (Bhatia et al., 

2014; Deng et al., 2014; Rincon et al., 2014), a conserved member of the Brsk/SAD (synapses of the 

amphid defective) kinases. Cdr2 forms punctuate oligomeric structures called nodes that assemble at 

the cortical cell equator (Martin and Berthelot-Grosjean, 2009; Morrell et al., 2004a; Moseley et al., 

2009). In small cells, Pom1 clusters can easily reach Cdr2 nodes, inhibiting them. Once cells become 

longer, the inhibition by Pom1 on Cdr2 is alleviated in the medial region of the cell leading to Wee1 

inactivation, Cdk1 activation and entry into mitosis (Fig22).  

Since the interplay between Pom1 and Cdr2 links cell length and mitotic entry, this pathway has been 

defined as the Cell Geometry Network (CGN) (Martin and Berthelot-Grosjean, 2009; Moseley et al., 

2009).  

 

 

 

 

 

Figure 22 (From Martin and Berthelot-Grosjean 2009): Pom1 

overlaps with Cdr2 and prevents mitosis in small cells. Model 

for how fission yeast cells monitor their length to control entry 

into mitosis. A gradient of Pom1 from cell ends overlaps 

significantly with Cdr2 at the middle of small cells, leading to 

Cdr2 inhibition and cell cycle delay. Once the cells reach a 

longer size, the concentration of Pom1 at the cell middle is no 

longer sufficient for significant Cdr2 inhibition, allowing cell 

cycle progression. 
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In the last years, this important regulatory network has been better characterized. By using live-cell total 

internal reflection fluorescence (TIRF) microscopy, it has been shown that endogenous Wee1 transiently 

interacts with cortical Cdr2 nodes in bursts. Since Cdr2 interaction with Wee1 depends on Cdr2 activity 

(Guzman-Vendrell et al., 2015), burst frequency is negatively regulated by Pom1. Once cells double in 

size, Pom1 inhibition is relieved, Cdr2 activity increases and thus the frequency and duration of these 

Wee1 bursts, leading to Wee1 inhibition by the second Sad1 kinase Cdr1 associated with the nodes and 

promoting mitotic entry (Allard et al., 2018; Guzman-Vendrell et al., 2015). 

Moreover, it has been recently shown that Pom1 forms very dynamic cortical clusters that bind more 

frequently at the cell tips than in the cell middle where they overlap with Cdr2 nodes. The density of 

Pom1 clusters in the cell middle decreases with cell growth, while the density of Cdr2 nodes doubles. 

This confirms that Pom1 can act as a tool to actively measure cell size and transmit this information to 

Cdr2 nodes to prevent short cells from dividing too soon (Allard et al., 2019; Gerganova et al., 2019). 

Additionally, the density of Pom1 gradient is regulated by nutrient availability. Under glucose 

deprivation Pom1 redistributes to the medial cortex, disrupting Wee1 bursting, and preventing Wee1 

inhibition by Cdr2 (Allard et al., 2019). As a consequence, Pom1 buffers the length at which cells divide, 

balancing the mitosis-promoting effect of the MAPK pathway (Kelkar and Martin, 2015). 

4.2 From early genetic screens to a detailed molecular understanding of cytokinesis 

Fission yeast has emerged has a key model system to study cell division upon isolation in the 70s by 

Nurse and his collaborators (Nurse and Thuriaux, 1980; Nurse et al., 1976) of cell division cycle mutants 

(termed cdc) that kept elongating instead of dividing. This both allowed the discovery of the main 

components controlling the biochemical clock of the cell cycle such as the cyclin dependent kinase Cdc2 

(Cdk1), the cyclin Cdc13 (cyclin B) or the Cdc25 phosphatase, and those of the cytokinetic apparatus, 

Cdc3 (profilin), Cdc4 (myosin light chain), Cdc8 (tropomyosin), Cdc12 (formin), Cdc15 (F-BAR protein) 

and of the Septation Initiation Network (SIN) that induces its constriction upon mitotic exit (Cdc7, Cdc11, 

Cdc14, Cdc16). Additional screens in the 90s have managed to identify total of about 130 genes involved 

in cytokinesis (Gould and Simanis, 1997; Guertin et al., 2002a).   

Since then, a wealth of studies combining molecular genetics to live cell imaging have allowed an in-

depth understanding of the network of molecular interactions leading to cytokinetic ring assembly and 

of the spatial and temporal regulatory mechanisms controlling fission yeast cytokinesis (Lee et al., 2012; 

Mangione and Gould, 2019; Pollard and O'Shaughnessy, 2019; Pollard and Wu, 2010; Rincon and 

Paoletti, 2012; Rincon and Paoletti, 2016). 

Even if multiple works have revealed that basic cytokinetic players are conserved from yeast to humans, 

the regulation of their assembly into activated complexes shows species-specific peculiarities 
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(Balasubramanian et al., 2004). One of the main differences of S. pombe versus animal cells is the 

presence of a closed mitosis where the nuclear envelope does not break down before chromosome 

segregation: this event has effects in the mechanisms they adopt to establish the division plane within 

the cell (Yam et al., 2011). Moreover, while in metazoans the specification of the division plane occurs at 

anaphase onset, while chromosome segregate, and is dependent on the position of the spindle, in 

fission yeast this process starts in interphase during G2 with the organization of cytokinetic precursors in 

the cell middle around the nucleus that pre-establish the position of the division plane (Glotzer, 2017).  

4.3 Definition of the division site 

In fission yeast, a combination of negative and positive cues sets the position of the division plane in the 

cell middle to promote symmetrical division. Both mechanisms contribute to the distribution of the 

anillin-like protein Mid1 to the medial cortex (Almonacid and Paoletti, 2010; Rincon and Paoletti, 2012; 

Saha and Pollard, 2012). mid1Δ cells show strong defects in CR organization with disorganized 

actomyosin strands assembled in random locations within the cell, which results in the formation of 

aberrant and offset septa (Huang et al., 2008; Sohrmann et al., 1996).  

The CGN predefines the division plane in interphase 

Besides its role in regulating mitotic entry (see 4.1), the CGN has a pivotal role in the pre-definition of 

the division plane during interphase (Almonacid et al., 2009; Celton-Morizur et al., 2006; Moseley et al., 

2009; Padte et al., 2006; Rincon et al., 2014; Rincon and Paoletti, 2012). The negative regulation exerted 

by the Pom1 gradient on the activity and localization of Cdr2 ensures the medial position of its nodes 

which function as precursors for the assembly of the CR. Indeed, Cdr2 acts as a receptor for Mid1, 

which, at mitotic entry, initiates CR assembly in the cell middle by the recruitment of essential CR 

components (Fig23). Defective Cdr2 position results in division plane positioning defects. Moreover, in 

the absence of Pom1, cells only grow in a monopolar fashion and Cdr2 cortical domain extends towards 

the non-growing tip, resulting in the asymmetric recruitment of CR precursors and eventual asymmetric 

cell division (Bahler and Pringle, 1998).  Cdr2 has been shown to be the major protein responsible for 

node assembly (Moseley et al., 2009; Rincon and Paoletti, 2012). The molecular details of how Pom1 

inhibits Cdr2 and therefore the mechanism underlying the initial assembly of medial cortical nodes have 

been uncovered: 1) Pom1 reduces Cdr2 affinity for the PM by phosphorylating its C-terminal region 

characterized by a KA-1 domain and a proximal basic fragment that establish electrostatic interactions 

with acidic phospholipids 2) it restrains Cdr2 clustering properties by diminishing the association 

between Cdr2 N-terminal region and Mid1, affecting at the same time the activation of Cdr2 kinase 

activity by the CaMKK Ssp1 (Deng et al., 2014; Rincon et al., 2014). 
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Of note, in the absence of Pom1, medial cortical nodes are still excluded from the growing cell tip by an 

unknown mechanism (Celton-Morizur et al., 2006). We can speculate that it may either involve factors 

associated with the cell polarity or growth or be linked to a specific lipid environment at growing cell tips 

that could restrict node assembly. 

Positive signaling of the division plane by the nucleus is exerted by Mid1 export from the nucleus  

A second mechanism links the position of the division site to the position of the nucleus at mitotic entry. 

In physiological conditions, the nucleus is actively maintained in the cell center by opposing pushing 

forces exerted by nuclear-anchored antiparallel MTs, whose plus ends grow towards the cell tips (Tran 

et al., 2001). However, mutants in MTs organization that present delocalized nuclei also display 

delocalized septa (Radcliffe et al., 1998; Toda et al., 1983). Additional experiments have confirmed that 

nuclear displacement in early mitosis in the absence of MTs or by micromanipulation results in the 

formation of CR and septa in the new position assumed by the nucleus (Daga and Chang, 2005; Tolic-

Norrelykke et al., 2005). 

This second mechanism for division plane positioning also involves Mid1: in interphase Mid1 mainly 

remains nuclear and associated to a small extent with Cdr2 cortical nodes at the cell equator 

surrounding the nucleus (Almonacid et al., 2009; Moseley et al., 2009; Paoletti and Chang, 2000; 

Sohrmann et al., 1996). At mitotic onset, a massive export of Mid1 from the nucleus induced by 

phosphorylation of Mid1 by the polo-like kinase Plo1, enriches its medial cortical pool (Fig23) 

(Almonacid et al., 2011; Almonacid et al., 2009; Bahler et al., 1998a). It was shown that the position of 

the nucleus at the time of mitosis entry dictates the region of the cortex where Mid1 will be delivered, 

and eventually, the position of CR assembly. Accordingly, Mid1 mutants defective for nuclear 

localization are not able to readjust the division plane to the new nuclear location, once it has been 

displaced by centrifugation (Almonacid et al., 2009). Altogether, this proves the positive influence of the 

nucleus in the specification of the division plane at mitosis onset and its dominance over the 

prepositioning of the division plane by the CGN during interphase. 

Importantly, in mutants defective for nuclear shuttling (Mid1nsm) the negative regulation exerted by the 

cell tips through the CGN restricts Mid1 position in the cell middle, leading to a symmetrical division. 

Similarly, in absence of Cdr2, cells are still able to achieve a medial division thanks to the nuclear 

positive signaling. In contrast, the combination of cdr2Δ and Mid1nsm leads to an abnormal Mid1 

spreading all over the cortex, resulting in division plane positioning defects or to the formation of 

multiple rings (Rincon and Paoletti, 2012).  
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To conclude, these two overlapping mechanisms ensure that cytokinesis takes place both at the cell 

geometrical center to produce cells of equal size and at the position where the genetic material sits 

before anaphase to ensure its equal segregation in daughter cells.  

 

 

 

 

 

 

Additional elements influence Mid1 localization and therefore division plane positioning. 

In addition to binding to Cdr2 cortical nodes, Mid1 is able on its own to interact with membrane lipids 

via an amphipathic helix and a basic cluster, which are part of a cryptic C2 domain, which by 

dimerization, strengthen Mid1 affinity for PIP2 (Celton-Morizur et al., 2004; Sun et al., 2015). This 

structural organization places the PH domain of Mid1 in an opposite orientation with respect to the C2 

domain, excluding its involvement in PM binding. This might explains why the PH domain is not essential 

for Mid1 membrane association in vivo (Lee and Wu, 2012; Paoletti and Chang, 2000). 

Figure 23 (From Rincon and Paoletti 2012) Major pathways regulating division plane position and mitotic entry. 

During interphase, negative signals emanating from the cell tips (Pom1 gradient and cell growth) exclude medial 

cortical nodes containing Cdr2 and Mid1 from the cell tips, predefining the position of the division plane in the cell 

middle. When cells grow in length, Pom1 inhibition is gradually relieved in the cell middle, allowing Cdr2 activation 

and mitotic entry. At this stage, positive signaling from the nucleus, mediated by Plo1-dependent nuclear export of 

Mid1, couples the position of the contractile ring to nuclear position. Concomitantly, Mid1 activation by Plo1 initiates 

the recruitment of contractile ring components such as Rng2 or Cdc15 to medial cortical nodes, leading to the 

assembly of a medially-placed contractile ring upon compaction of the cortical nodes. This double signaling 

mechanism favors an equal division of the cytoplasm as well as proper segregation of the chromosomes in the two 

daughter cells.  
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Besides, Cdr2 and Mid1 interact within medial cortical nodes with several non-essential CR components  

that remain associated with the CR until full constriction such as Blt1, the RhoGEF Gef2, the kinesin-like 

Klp8 and Nod1 (Allard et al., 2018; Guzman-Vendrell et al., 2013; Guzman-Vendrell et al., 2015; Jourdain 

et al., 2013; Martin and Berthelot-Grosjean, 2009; Morrell et al., 2004a; Moseley et al., 2009; Paoletti 

and Chang, 2000; Ye et al., 2012; Zhu et al., 2013). All of them could be involved in Mid1 stabilization at 

the cell cortex, although the precise contribution of each of them is difficult to identify since they form a 

complex with redundancy between interactions.  

Among them, Blt1 possesses a C-terminus enriched in basic residues that preferentially binds to PIPs in 

vitro (Guzman-Vendrell et al., 2013). There are evidences showing that this protein can tetramerize 

(Goss et al., 2014) which could enhance its affinity for membrane lipids. Blt1 N-terminus interacts with 

Mid1N-terminus in a Gef2-dependent manner suggesting Blt1 and Mid1 play overlapping roles as 

scaffolds and PM cortical anchors. It was shown accordingly that these interactions are key to stabilize 

the cortical nodes in early stages of CR assembly. In fact, when membrane-anchoring of both Mid1 and 

Blt1 is impaired, the nodes detach from the cortex and abnormally placed cytokinetic rings are formed 

(Guzman-Vendrell et al., 2013). Additionally, Mid1 could also be influenced by the Rho GTPase Gef2 

since it has been noticed that the combination of plo1-18 ts mutant with gef2Δ or with its interacting 

partner, nod1Δ, show severe division plane positioning defects (Jourdain et al., 2013; Ye et al., 2012; Zhu 

et al., 2013).     

In fact, live cell imaging of node proteins has recently led to the conclusion that two distinct type of 

nodes exist: type I, characterized by Cdr2, Cdr1 and Mid1 that form a broad band around the nucleus 

and type II with Blt1, Gef2, Klp8 and Nod1 deriving from the remnants of the disassembling CR at the 

end of cytokinesis. It has been proposed that type II nodes diffuse away from the division site toward 

the medial cell cortex where they may fuse with the type I nodes to form the cytokinetic nodes 

(Akamatsu et al., 2014; Akamatsu et al., 2017). However long range movements of type II nodes have 

not been documented. Therefore an alternative hypothesis is that the components of type II nodes may 

slowly dissociate from the CR remnants at the cell tips and reassociate with type I nodes.  

Additionally, Cdr2 dissociates from the cortex at mitotic entry in a SIN-dependent fashion (Morrell et al., 

2004a; Rincon et al., 2017). This event was shown to facilitate the repositioning of nodes in the middle 

of the new-born daughter cells in the next cell cycle.  

Links between division plane positioning and ER organization 

Besides mid1 deletion, a second mutant background combining the deletion of three reticulon-like 

proteins can lead to random division plane positioning:  these proteins are important for the formation 

of cortical endoplasmic reticulum (ER) tubules. Their absence leads to the transformation of cortical ER 
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in flat cisternae, which shield the plasma membrane, preventing contractile ring assembly from medial 

cortical nodes. The authors indeed showed that removing ER-PM interaction by deleting vesicle-

associated membrane-protein-associated proteins (VAMPs) restored division plane positioning (Zhang et 

al., 2010; Zhang et al., 2012). 

4.4 Assembly of the contractile ring 

In S. pombe CR formation begins immediately at mitotic onset by maturation of the medial cortical 

nodes. Mid1 is the critical protein necessary for the hierarchical recruitment and scaffolding of CR 

components (Coffman et al., 2009; Laporte et al., 2011; Lee et al., 2012; Padmanabhan et al., 2011; Wu 

et al., 2003; Wu et al., 2006). Mid1 is activated at mitotic entry by the Polo kinase Plo1 in a dual manner: 

on the one hand, it phosphorylates Mid1 to drive its export from the nucleus at mitosis onset with 

impact on division plane position (see 4.3); on the other, it promotes the recruitment of other 

cytokinetic proteins, resulting in medial cortical node maturation (Almonacid et al., 2011; Lee and Wu, 

2012; Padmanabhan et al., 2011). Plo1 effect is mediated by phosphorylation of several residues in the 

N-terminal region of Mid1 which activates its first nuclear export sequence (NES1) (Paoletti and Chang, 

2000), and favors its interaction with the IQGAP protein Rng2 (Almonacid et al., 2011). 

Additional time lapse microscopy and genetic analysis have revealed that Mid1 organizes two 

independent recruitment modules: the first one includes the IQGAP protein Rng2 and the myosin II light 

chain Cdc4, which cooperate to recruit the myosin II heavy chain Myo2 and the regulatory myosin II 

subunit Rlc1; the second one contains the F-BAR protein Cdc15. Together they recruit the formin Cdc12, 

which nucleates F-actin filaments for the organization of the CR (Laporte et al., 2011) (Fig24). Of note, 

the recruitment of all these components is actin independent (Takaine et al., 2014; Wu et al., 2003; Wu 

et al., 2006). 

 

Spindle pole bodies (SPBs) are the yeast orthologs of metazoan centrosomes. Their separation at mitotic 

entry is commonly used as a reference for mitotic entry, and has allowed defining a timeline for 

cytokinetic protein recruitment during cortical node maturation. Using this timer, Rng2 and Myo2 are 

Figure 24 (From Laporte et al 2011): The 

localization hierarchy for cytokinesis node 

assembly. The complete and partial 

dependencies of node localization on a specific 

protein are depicted by solid and dashed lines, 

respectively. The two modules are colored 

differently. 
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recruited by Mid1 around 10 minutes before SPB separation; while Cdc12 and Cd15 accumulate at time 

0 (Willet et al., 2015b; Wu et al., 2003; Wu et al., 2006). 

Recently, the importance of the hierarchical recruitment has been tested and it has been observed that, 

in absence of Mid1, an artificial targeting of Rng2, myosin II and Cdc12 to Cdr2 medial cortical nodes 

restores division plane specification in the cell middle. However, in this case CR assembly was strongly 

delayed and the cells lost their ability to relocalize the position of the division plane upon movement of 

the nucleus (Tao et al., 2014).  

This highlights the importance of Mid1-dependent medial cortical nodes organization in functioning not 

only as spatial cues to predefine division plane positioning, but also as an efficient recruitment platform 

for the assembly of the CR.  

Super-resolution analysis of live cells expressing cytokinetic fluorescent proteins has revealed novel 

quantitative data about their initial recruitment. At mitotic entry Mid1 distributes in a large cortical 

band of about 75 punctuate structures around the cell middle. A single node comprehends a cluster of 

about 20 Mid1 proteins that interact with approximately 20 dimers each of Rng2, Cdc15, and myosin-II 

Myo2 and with about 2 dimers of Cdc12 (Pollard and O'Shaughnessy, 2019; Wu et al., 2006).  

Multiple studies have analyzed molecular interactions between CR components. Besides interacting with 

the Mid1 1-100 N-terminus upon Plo1-dependent phosphorylation (Almonacid et al., 2011; 

Padmanabhan et al., 2011), the IQ motifs of Rng2 interact with Cdc4, which in turn associates with Myo2 

and Rlc1 and this is known to act as a positive feedback loop for Mid1 recruitment (Eng et al., 1998; 

Laporte et al., 2011; Le Goff et al., 2000). Interestingly, the recruitment of Cdc15 and Cdc12 are known 

to be interdependent and in absence of their interaction, defects in F-actin accumulation and delay in CR 

formation have been described (Willet et al., 2015a).   

Besides, the activity of Cdc15 is regulated by phosphorylation/dephosphorylation. The Cdc14 family 

phosphatase Clp1, which is activated by the SIN during anaphase, dephosphorylates Cdc15 (Chen et al., 

2008; Hachet and Simanis, 2008; Trautmann et al., 2001). Cdc15 modification guides a transition from a 

closed to an open state that promotes its oligomerization and scaffolding activity (Clifford et al., 2008; 

Roberts-Galbraith et al., 2010). Accordingly, a mutant of Cdc15 with reduced phosphorylation appears 

before mitotic entry at the division site in filamentous structures containing most of the CR components, 

except for Mid1, suggesting an important role for this protein in CR organization (Roberts-Galbraith et 

al., 2010). 

The F-actin network of the CR is assembled by the formin Cdc12, an atypical formin, not regulated by 

Rho-type GTPases or by autoinhibitory domains interaction (Bohnert et al., 2013a; Yonetani et al., 2008). 
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Yet, Cdc12 hyperactivity is lethal (Kovar et al., 2003), indicating that its function needs to be strictly 

controlled. Indeed, Cdc12 is subject to SIN-dependent regulation: the kinase Sid2 phosphorylates a C-

terminal oligomerization domain of Cdc12 that also participates in F-actin bundling, inhibiting Cdc12 

multimerization, to render it active for CR assembly (Bohnert et al., 2013a; Willet et al., 2015b). Of note, 

a Cdc12 fragment carrying a C-terminal deletion and lacking sequences distal to the FH2 and the DAD 

domains, induces the formation of normal rings in interphase cells when overexpressed (Yonetani and 

Chang, 2010). This is suggestive of the existence of an intramolecular inhibitory mechanism in Cdc12 

that remains to be characterized.  

F-actin is nucleated de novo at the division site by the formin Cdc12, which is essential for cell survival 

(Wu et al., 2006), but transport of existing filaments to the medial region may also support CR formation 

(Huang et al., 2012). Interestingly, it has been shown that For3 becomes essential in cells expressing N-

terminal truncations of Cdc12: these activated alleles retain the ability to nucleate actin filaments, but in 

the absence of For3 they cannot get properly localized to the division site (Coffman et al., 2013). This 

implies that both formins cooperate to orchestrate CR assembly at the cell equator, with Cdc12 being 

responsible for CR F-actin nucleation.   

Genetic screens in S. pombe allowed the identification of genes involved in actin organization: mutants 

of profilin cdc3 and of tropomyosin cdc8 display strong aberrations in actin organization, with severe 

impacts both on the actin ring and on the interphase patches and cables, suggesting that they play 

essential roles in orchestrating actin organization in all phases of the cell cycle (Balasubramanian et al., 

1992; Balasubramanian et al., 1994; Chang et al., 1996).  

The ability of profilin to increase Cdc12-mediated F-actin assembly for the CR is essential in fission yeast 

(Bestul et al., 2015; Kovar et al., 2003). Indeed, profilin helps to regulate spatially and temporally the 

controlled growth of actin filaments by binding to G-actin and then to the proline-rich FH1 domains of 

formins. Profilin depletion leads to clumps of cytokinetic precursor nodes, suggesting that Cdc12 is not 

able to elongate F-actin fast enough to connect them successfully (Vavylonis et al., 2008). Interestingly, 

when present in excess, profilin acts as a G-actin sequestering protein: in vivo analysis of cdc3 

overexpressing cells leads to elongated and abnormally shaped cells arrested at cytokinesis with no 

detectable F-actin structures (Balasubramanian et al., 1994).   

Besides opposing the cofilin-mediated severing activity and controlling myosin II binding to F-actin 

(Nakano and Mabuchi, 2006; Skoumpla et al., 2007), tropomyosin Cdc8 plays key roles in actin 

organization at the division site: 1) it doubles the elongation rate of Cdc12-nucleated actin filaments by 

avoiding monomer dissociation 2) it cross-links actin filaments end-to-end 3) and it limits the time of 
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Cdc12-mediated elongation activity at the barbed ends, regulating the length of actin filaments (Skau et 

al., 2009). 

Cdc15, the founding member of the Pombe Cdc15 Homology (PCH) family of proteins, which is able to 

bind membranes without deforming them via its Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) 

domain, is also linked to actin assembly (Lippincott and Li, 2000; McDonald et al., 2015; Roberts-

Galbraith et al., 2010). cdc15 mutants show defects in actin ring formation and they are necessary for 

Cdc12 localization to the CR (Chang et al., 1997; Chang et al., 1996). In addition, overexpression of cdc15 

leads to the assembly of ectopic actin rings in interphase (Fankhauser et al., 1995), similarly to a 

cdc12ΔC truncation overexpression (Yonetani and Chang, 2010). Altogether, these results indicate that 

Cdc15 plays a key role in the establishment of the CR, in close association with Cdc12. Indeed, a direct 

interaction between their N-terminal regions has been discovered. In addition, a direct contact of the N-

terminus of Cdc15 with the C-terminus of Myo1, activator of the Arp2/3 complex has been found 

(Carnahan and Gould, 2003). This places Cdc15 at a convergence point for the coordinated organization 

of different F-actin structures at the PM in S. pombe. Interestingly, the oligomeric state of Cdc15, 

regulated by phosphorylation, affects its function: when phosphorylated is it proficient for endocytosis, 

whereas when dephosphorylated it is proficient for cytokinesis (Arasada and Pollard, 2011; Roberts-

Galbraith et al., 2010).  

In addition, the IQGAP protein Rng2 has been proposed to contribute to CR organization: it participates 

both to the generation of F-actin and in its arrangement into a ring structure, while at the same time it 

bundles actin filaments and regulate their dynamics by antagonizing Adf1-dependent F-actin 

depolymerization (Takaine et al., 2009). Interestingly, by creating mutants of Rng2 domains, it has been 

discovered that IQ motifs are key for ring constriction and septum assembly, while the C-terminal of the 

protein is involved in its localization to the cortical nodes and in the formation of the ring (Tebbs and 

Pollard, 2013). Besides this, Rng2 is also involved in the assembly and maintenance of the F-actin 

independent ring fraction of myosin-II at the CR (Takaine et al., 2014). Indeed, rng2 mutants show a 

reduced, uneven and unstable concentration of myosin II in the ring, often leading to cytokinesis failure. 

4.5 Compaction of the contractile ring 

Once all the CR components have been recruited to the medial nodes, cytokinesis nodes start to 

coalescence into a continuous ring about 10 minutes after SPBs separation. Live-cell imaging studies 

combined with mathematical simulations have led to the elaboration of a model for this compaction 

process called Search, Capture, Pull and Release (SCPR). It proposes that Cdc12-nucleated F-actin may 

be captured by myosin II associated with a neighboring node. The force generated by the myosin motor 

on the actin filament pulls the nodes together and then, filaments are released. Consecutive rounds of 
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this event lead to the compaction of the nodes into a thin band. The release of this interaction happens 

with a constant rate and it is critical for this interaction since a permanent association results in a series 

of clumps instead of a ring at the equator (Ojkic et al., 2011; Vavylonis et al., 2008).  

Of note, two other factors are essential in this model. First, the activity of myosin II, regulated by the 

UCS chaperon Rng3, which ensures the activity of intrinsically unstable myosin II motors, thus 

supporting actin filament organization and cytokinesis (Lord and Pollard, 2004; Stark et al., 2013). 

Second, the presence of F-actin cross-linkers such as α-actinin Ain1 and fimbrin Fim1, which stabilize the 

actin cytoskeleton and contributes to compaction by aligning actin filaments (Laporte et al., 2012; Wu et 

al., 2001). Indeed, a double deletion of ain1 and fim1 leads to the formation of F-actin clumps instead of 

a contractile ring (Laporte et al., 2012). 

Besides, an alternative way of CR assembly has been reported in mid1Δ cells where medial precursor 

nodes do not form. This backup pathway is entirely dependent on the Septation Initiation Network (SIN) 

(see chapter 4.7) and on the F-BAR protein Cdc15. The hyperactivation of the SIN leads to the formation 

of contractile acto-myosin structures in interphase cells (Fig25). In this case, the ring is formed by a 

leading cable-like process. Strands of CR proteins (including Myo2, actin, Cdc12 and Cdc15) are 

dispersed along the cortex and sometimes they can condense into a functional acto-myosin filament 

that organizes in random positions within the cell. These misplaced and mis-oriented rings have been 

shown to contract slower compared to the ring formed in wild type cells, indicating that they function 

less efficiently (Hachet and Simanis, 2008; Huang et al., 2008). Although CRs can form in single mutants 

of mid1 and the SIN, analysis of ring formation in the double mutants shows that both pathways act in 

parallel, since no acto-myosin structure can be formed, and eventually cells die (Hachet and Simanis, 

2008). This indicates that Mid1 and the SIN cooperate to orchestrate spatially and temporally CR 

assembly in fission yeast. 
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In wild type cells, once Mid1 has left the ring, the maintenance of the ring is also dependent on the SIN 

and Cdc15: indeed in SIN and cdc15 mutants the CR assembles normally, but after Mid1 leaves the ring, 

it collapses, showing clumps and gaps of ring components (Hachet and Simanis, 2008). Additionally, 

when high SIN activity persists far longer than normal in cdc16-116 temperature sensitive mutants, 

contractile rings assemble and constrict normally, but disassemble slowly, delaying cell separation (Dey 

and Pollard, 2018). Altogether, this indicates that SIN activity is required to activate and recruit Cdc15 

and to build a mechanically stable contractile ring capable of full constriction.  

4.6 Maturation of the contractile ring 

Once compaction has occurred, the CR maintains a constant diameter for a period of about 15-20 

minutes before ring constriction begins (Rincon and Paoletti 2016). Meanwhile, it matures by the 

addition and removal of several factors, which altogether provide structural integrity to the contractile 

ring, in order to avoid its disruption at the time of its constriction. Among them, one major player in CR 

constriction that is recruited is the unconventional myosin II Myp2 (Laplante et al., 2015; Wu et al., 

2003). Indeed, it has been found that in its absence the CR ring persisted longer in the contracting state, 

occasionally splitting into two separate rings (Mulvihill and Hyams, 2003). Conversely, Mid1 leaves the 

ring before its constriction in a SIN-dependent process. Indeed recent finding have shown that Mid1 

phosphorylation by the SIN kinase Sid2 (see 4.7) contributes to the proper timing of CR assembly and 

constriction (Willet et al., 2019). 

In parallel, it has been suggested that the SIN pathway (see 4.6) is also responsible of a 10 fold increase 

in Cdc15 amounts in the CR during maturation (Wu and Pollard, 2005). This protein contributes to ring 

stability and integrity during ring constriction by interacting with other factors that join the ring such as 

the F-BAR protein Imp2, the paxillin-like protein Pxl1 and the C2 domain protein Fic1 (Ge and 

Balasubramanian, 2008; Pinar et al., 2008; Roberts-Galbraith et al., 2009). Imp2 and Cdc15 bind to the 

PM via their F-BAR domains, while interacting with Fic1 and Pxl1 by their SH3 domains. Pxl1, in turn, 

recruits the phosphatase calcineurin, Ppb1, to control Cdc15 phosphorylation status and, possibly, other 

related proteins (Martın-Garcıa et al., 2018). Interestingly, it has been found that when Cdc15 is 

mutated or depleted or in pxl1Δ cells, defects in CR anchoring are observed with Myp2-dependent ring 

Figure 25 (Adapted from Hachet and Simanis 2008): Models for contractile ring assembly. (A) In wild-type 

mitosis, ring assembly is initiated by the formation of a cortical network of ring components that undergoes 

lateral condensation, giving rise to a nonhomogeneous ring precursor. This structure eventually matures by 

recruitment of additional factors such as Cdc15p, displaying the uniform distribution of ring components 

distribution that characterizes a functional ring. (B) When the SIN is activated in interphase, ring assembly is 

initiated by the formation of a Mid1p-independent filamentous actomyosin structure that eventually forms a 

ring structure. This structure is then competent for contraction, although it contracts more slowly. This mode of 

assembly is also observed in mid1 mutants in mitosis. 
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sliding along the long axis of the cell, resulting in a mis-localization of the division site (Arasada and 

Pollard, 2014). Moreover, these proteins coordinate ring constriction with septum formation, two key 

steps which are necessary for the completion of cytokinesis in fission yeast (Fig26).  

Imp2 and Cdc15 also recruit the RhoGEF Rgf3 (Ren et al., 2015), which activates specifically the GTPase 

Rho1 involved in the activation of the β-glucan synthases Bgs1 and Bgs4, enzymes that participate in 

septum formation (Tajadura et al., 2004). Further work has identified another F-BAR protein, Rga7, 

which is recruited to the CR during its maturation phase and associates with Cdc15 and Imp2 (Martin-

Garcia et al., 2014). Rga7 contains a Rho GTPase activating domain and negatively regulates Rho2 

(Martin-Garcia et al., 2014). Rga7 and Cdc15 support septum formation by targeting Bgs enzymes from 

late Golgi compartments to the site of cell division on the PM (Arasada and Pollard, 2014; Arasada and 

Pollard, 2015).  

Finally, septins and subsequently the anillin-like protein Mid2 start to accumulate in proximity of the CR, 

while it undergoes maturation (An et al., 2004; Berlin et al., 2003; Wu et al., 2003) (see chapter 4.8 for 

details). 

 

 

 

 

 

 

 

Figure 26 (From Rincon and Paoletti 2016): Regulation of contractile ring constriction and septum synthesis. 

After its assembly, the ring undergoes a maturation process during which the F‐BAR protein Cdc15 accumulates 

to higher levels in the ring. At this stage, the contractile ring can still slide laterally in a Myp2‐dependent manner. 

The F‐BAR protein Cdc15 promotes the transfer of the β‐glucan synthase Bgs1 responsible for primary septum 

formation from late Golgi compartments to the plasma membrane underneath the contractile ring. In 

conjunction with the F‐bar protein Imp2, Cdc15 recruits the paxillin Pxl1 that also contributes to Bgs1 

accumulation, as well as the RhoGef Rgf3 which activates Bgs1 through Rho1. Furrow ingression requires to 

overcome the strong turgor pressure of fission yeast cells. The tension exerted by the contractile ring may be a 

very minor force contributor compared to septum formation to counter‐act turgor pressure. Contractile ring 

tension may act as a local guide regulating septum synthesis to allow its circular synthesis. 
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4.7 Constriction of the contractile ring and septum formation 

CR constriction 

CR constriction has been reported to start approximately 35 minutes after SPBs separation and lasts 

about 30 minutes (Wu et al 2003). It was classically thought to start at the end of anaphase in concert 

with the initiation of septum synthesis in order to maintain cell integrity during cell division. However, a 

recent electron microscopy study revealed that septum assembly may start slowly in early anaphase B 

and then speeds up in telophase (Cortes et al., 2018). This suggests that CR constriction and cleavage 

furrow formation may in fact be initiated during spindle elongation, while the CR undergoes maturation. 

Two phases of cytokinesis, maturation and constriction would then overlap. 

In vitro experiments in permeabilized spheroplasts produced by digestion of the cell wall, have 

demonstrated that ring constriction proceeds in an ATP and myosin-II-dependent manner in the absence 

of other cytoplasmic constituents. Surprisingly, neither actin polymerization nor its disassembly are 

required for contraction, while the addition of actin cross-linkers can block it (Mishra et al., 2013).  

A combination of in vivo and in vitro studies have also revealed that three myosins are implicated in this 

process where Myp2 plays the leading role while Myo2, which is critical for CR assembly, has a 

redundant role with Myp2 during constriction and can partially compensate its absence. In addition, the 

myosin V Myo51, even if it is not sufficient to drive ring constriction by itself, also contributes to ring 

constriction if either Myp2 or Myo2 are lacking (Laplante et al., 2015).   

Additionally, it has been recently shown that Myp2 is immobile during cytokinesis whereas Myo2 is 

highly dynamic and that both myosins II play essential roles in guiding septum formation (Okada et al., 

2019). 

Of note, myosin II function is regulated by phosphorylation that targets both Myo2 and Rlc1 with 

impacts on the velocity of ring constriction (Loo and Balasubramanian, 2008; Sladewski et al., 2009). In 

particular, Pak-related protein Pak1 kinase phosphorylates Rlc1 to inhibit ring constriction until 

completion of chromosome segregation. 

Further studies in yeast protoplasts have led to the development of a mathematical model proposing 

that actin filaments and myosin II clusters are able to self-assemble into a ring that produces tension and 

their fast turnover progressively reshape the ring during its constriction. A remarkable conclusion is that 

the CR constricting rate has to be set up by other cellular process, like, for instance, the septum 

synthesis pushing force (Stachowiak et al., 2014).  
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Septum synthesis 

The fission yeast septum, like its cell wall, is composed of polysaccharides mainly represented by glucans 

and mannoproteins (Garcia Cortes et al., 2016; Perez et al., 2016). EM studies revealed that it is a three- 

layered structure with a central primary septum flanked at both sides by a secondary septa, which are 

synthetized in concert in a centripetal manner (Johnson et al., 1973). All the three layers contain 

branched β(1,3) glucans and linear α(1,3)glucans. Additionally, the primary septum comprehends a small 

portion of linear β(1,3) glucans, while the secondary septa contain branched β(1,6) glucans that could 

have a role in cross-linking the different sugar components of the cell wall (Garcia Cortes et al., 2016; 

Perez et al., 2016). 

The enzymes responsible for the biosynthesis of these polymers have been characterized. The Bgs 

enzymes (β-glucan synthase) are transmembrane proteins which localize to the growing poles, to the 

division area and at the sites of wall synthesis (Roncero and Sanchez, 2010). Among them, Bgs1 

produces linear β(1,3) glucans and Bgs4 generates branched β(1,3) glucans (Cortes et al., 2005; Cortes et 

al., 2007). In parallel, Ags1 is responsible for the synthesis of α(1,3)glucans (Cortes et al., 2012). It is a 

large membrane protein which also localizes to the growing poles and around the septum (Cortes et al., 

2016; Katayama et al., 1999).  

Rho GTPases are known regulators of glucan synthases: in S. pombe Bgs1 and Bgs4 are activated by 

Rho1 (Arellano et al., 1996), while Ags1 activation is triggered by Rho2 (Calonge et al., 2000).  

Since the CR is not needed for the resolution of the septum, once septum synthesis has advanced to a 

certain extent, the CR becomes dispensable. Therefore, it has been suggested that the role of the CR is 

mainly to target and organize the septum machinery at the cleavage site, which in turn will produce the 

forces required to oppose the high turgor pressure of yeast cells (Proctor et al., 2012). Accordingly, two 

studies have detected that septum formation is mechanosensitive and linked to the tension exerted by 

the CR. Indeed, they show that septum growth is increased in the zone of higher curvature of the 

cleavage furrow controlled by ring tension, resulting in the creation of circular septum edges when the 

structure closes. If CR integrity is affected, the septum completion cannot occur normally and its shape 

is also compromised (Thiyagarajan et al., 2015; Zhou et al., 2015b). 

Conversely, it has been shown that the loss of Bgs1 and Bgs4 result in CR sliding and instability, further 

supporting the idea that septum ensures the forces to complete the last steps of cytokinesis (Cortes et 

al., 2015; Munoz et al., 2013).  
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Signalling of CR constriction and septum synthesis by the SIN pathway 

The temporal coordination of mitosis and cytokinesis is mediated by the SIN, a signaling pathway related 

to the budding yeast mitotic exit network (MEN) and the metazoan Hippo pathway (Hergovich et al., 

2006).  

The SIN pathway is a GTPase induced kinase cascade that culminates with the activation of the Sid2 

kinase (Fig27). Genetic screens have identified that this signaling network is composed of 13 elements. 

Two scaffold proteins (Sid4 and Cdc11) mediate its anchorage to the SPB, a coordinator hub for cell cycle 

regulation (Hagan and Grallert, 2013). All two proteins have extensive regions of coiled structure that 

mediate their interactions with one another. The other SIN  components are signaling proteins that bind 

to the N-terminus of Cdc11 (Krapp et al., 2004b). 

SIN activation is regulated by the GTPase Spg1, whose nucleotide status is in turn modulated by the 

balance of spontaneous nucleotide exchange, a putative GEF, Etd1p and the bipartite GAP containing a 

catalytic subunit Cdc16 and a scaffold protein Byr4. At the time of SPBs separation, Spg1 activation 

triggers the recruitment to the SPB of the STE-20 family kinase Cdc7. The signal is then transduced to the 

downstream PAK-GC kinase Sid1 associated with its activator Cdc14 and finally to the NDR-family kinase 

Sid2 associated with its activator Mob1. The kinase Sid2, the final effector of the SIN pathway, moves 

from the SPB to the cell division site, initiating medial ring constriction and septation (Simanis, 2015).   

In interphase, only the Spg1-GAP complex and the scaffolding elements localize to the SPBs, while the 

kinases associate with the SPB only during mitosis. Interestingly, once cells undergo the anaphase 

transition the SIN components interact asymmetrically with the SPBs:  Cdc7p and Sid1-Cdc14 associate 

preferentially with the new SPB, while the Cdc16-Byr4 GAP reorganize on the old one (Krapp and 

Simanis, 2008). Failure in the asymmetric distribution of SIN components results in defective SIN 

signaling and silencing at the end of cytokinesis (Johnson et al., 2012). 

 

Figure 27 (Adapted from Simanis 2015): 

The essential components of the SIN. 

Schematic representation of the key 

components of the SIN. Protein kinases 

required for signaling are shown in dark 

green and their regulatory subunits in light 

green. Scaffold proteins are shown in blue. 

Ppc89p (a SPB component) links the other 

scaffold proteins to the SPB. All of these 

proteins, as well as Etd1p, are required for 

signal transmission and loss of function of 

any of them produces a SIN phenotype. 

Byr4p and Cdc16p are shown in red to 

represent their inhibitory activity towards 

SIN signaling. 
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Multiple evidences have shown that SIN signaling is essential for CR maintenance and constriction and 

septum formation during cytokinesis (Cortes et al., 2002; Hachet and Simanis, 2008; Jin et al., 2006; 

Krapp et al., 2004b; Liu et al., 2002; Simanis, 2003). 

Mutants in core elements of the SIN display two different phenotypes (Krapp and Simanis, 2008; 

McCollum and Gould, 2001). Loss of function mutations in activator components including Cdc7, Cdc11, 

Cdc14, Etd1, Mob1, Sid2, Sid1, Sid4 and Spg1 lead to multiple rounds of nuclear division without 

septation, resulting in long and multinucleated cells that will eventually lyse (Balasubramanian et al., 

1998; Fankhauser and Simanis, 1994; Guertin et al., 2000; Jimenez and Oballe, 1994; Nurse et al., 1976; 

Salimova et al., 2000; Schmidt et al., 1997; Sparks et al., 1999). Conversely, mutations in one of the GAP 

components, Cdc16 and Byr4, promote continuous rounds of septation in absence of nuclear division 

cycle and cell cleavage, leading to multiseptated cells (Fankhauser et al., 1993; Minet et al., 1979; Song 

et al., 1996). 

Recent works have started to identify targets of the SIN, which include cytoskeletal regulators and 

signaling proteins. Among them, Cdc2 and many CR component have been identified such as Mid1, 

Cdc15 and Cdc12 (Bohnert et al., 2013a; Chen et al., 2008; Rincon et al., 2017; Willet et al., 2019). This 

indicates that the SIN is key to remodel the CR organization to ensure the success of cytokinesis. 

An important SIN-regulated factor is the Cdc14-like phosphatase Clp1/Flp1 (Le Goff et al., 1999; 

McCollum and Gould, 2001; Mishra et al., 2004; Trautmann et al., 2001). In interphase, Clp1 is 

sequestered in the nucleolus. At mitotic entry, Clp1 moves from the nucleolus to SPBs and to the 

division site, where it is recruited by Mid1  (Clifford et al., 2008). The SIN is required to avoid Clp1 re-

confinement in the nucleolus until the end of cytokinesis. In return, Clp1 transduces SIN activation by 

dephosphorylating Cdk1 targets, ensuring that cytokinesis is completed before a new cell cycle starts 

(Trautmann et al., 2001).  

Several SPB-associated kinases and phosphatases have been identified as SIN regulators: besides its role 

as Mid1 activator, Plo1 kinase is an upstream regulator of the SIN. Indeed plo1 mutants do not form a 

septum (Tanaka et al., 2001), while an increased plo1 expression causes septation in interphase cells 

(Ohkura et al., 1995). In particular, Plo1 binds to Sid4 and it is known to be involved in the 

phosphorylation of Cdc11 during anaphase at the time of septum formation (Krapp et al., 2004a; Morrell 

et al., 2004b).  

In addition, Cdk1 activity can impact SIN signaling both positively and negatively. Once the cell enters 

mitosis, Cdk1 cooperates with Plo1 to promote the removal of the SIN inhibitor Byr4 from the SPBs and 

the inhibition of the GAP Byr4-Cdc16, inducing SIN activation and cytokinesis induction in anaphase 

(Rachfall et al., 2014). On the other side, in early anaphase full activation of the SIN requires Cdk1 
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inactivation, delaying cytokinesis until the chromosomes have been properly segregated (Bohnert and 

Gould, 2011). This is in agreement with the identification of two separable SIN states during mitosis: an 

early state with a reduced activity and a late state where SIN becomes fully active (Wachowicz et al., 

2015). 

Conversely, several phosphatases have been shown to negatively regulate the SIN by dephosphorylating 

Cdc11 at the end of mitosis including the aforementioned Clp1, PP2A and the PP2A-related SIN-

inhibitory phosphatase (SIP) complex. Mutants in PP2A and in its regulators as well as SIP mutants lead 

to a cytokinesis failure due to a symmetrical distribution of the SIN components (Chen et al., 2013; Goyal 

and Simanis, 2012; Singh et al., 2011).  

The ubiquitin ligase Dma1 has a role in inhibiting SIN activity in mitotically arrested cells, operating in a 

cytokinetic checkpoint that works in parallel to the spindle checkpoint. By ubiquitinating Sid4, Dma1 

prevents Plo1 localization to the SPBs and therefore SIN activation, preventing Cdk1 inactivation, mitotic 

exit and cytokinesis in absence of chromosome segregation (Guertin et al., 2002b). 

Additionally, a role has been proposed for the medial node component Blt1 in regulating the SIN: Blt1 

controls the recruitment of the complex Sid2-Mob1, which, in turn, regulates the accumulation of the 

Clp1 phosphatase and of Bgs1, enzyme necessary for septum synthesis (Goss et al., 2014). 

Altogether this indicates that a finely tuned regulation of this signaling network is critical to ensure that 

each step of cytokinesis occurs accurately. 

 

4.8 Cell separation 

Inner cell wall digestion by glucanases 

Cell separation is a critical moment of the cell cycle for cell integrity. It requires the precise and 

controlled digestion of the primary septum by the β(1,3)glucanase Eng1 and the degradation of the 

lateral cell wall surrounding the septum by the α(1,3)glucanases Agn1 and Agn2, which together result 

in the physical separation of the two daughter cells (Dekker et al., 2004; Martin-Cuadrado et al., 2003).  

Moreover, it has been demonstrated that both Bgs4 and Ags1 are essential for cell integrity and to 

ensure a proper cell-cell division since their depletion leads to cell lysis upon cell separation (Cortes et 

al., 2012; Munoz et al., 2013). 

The molecular machinery responsible for the delivery of the glucanases enzymes to the division site is 

complex and involves several genes, including some involved in the cell wall organization such as Agn1 
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or Cfh4 and others with still uncharacterized function (adg1-3 genes), whose expression is regulated by 

the transcription factor cascade Sep1-Ace2 (Alonso-Nunez et al., 2005). 

Besides, one of the major factor involved is the exocyst complex, an octameric complex that is localized 

to zones of active exocytosis and has the role to tether secretory vesicles to the PM. Compromised 

exocyst function leads to defects in the localization of Agn1 and Eng1 (Martin-Cuadrado et al., 2005; 

Wang et al., 2002). 

Septins and the anillin-like protein Mid2 

Septins and the anillin-like protein Mid2 are also involved in cell separation (see chapters 2.2 and 2.3 for 

a general introduction on septins and anillins). They assemble into ring structures that delineate the 

boundaries of the cleavage furrow and the recruitment site of the inner septum hydrolytic enzymes: in 

their absence the localization of Eng1 and Agn1 is disorganized and more dispersed (Martin-Cuadrado et 

al., 2005) and cell separation is delayed inducing the formation of cell chains. 

S. pombe genome contains seven genes encoding septins (Kinoshita, 2003b; Longtine et al., 1996; Pan et 

al., 2007; Wu et al., 2010). Spn1-4 are expressed in vegetatively growing cells, whereas Spn5-7 are 

exclusively expressed during sporulation where they are important for the formation of the forespore 

membrane (Onishi et al., 2010). Fission yeast mitotic septins mutants are viable, but show defects in 

cell-cell separation, resulting in the formation of multiseptated chains of cells (Longtine et al., 1996). 

By combining proteomic and genetic approaches, it has been revealed that the structure of the septin 

complex organizes similarly to the one discovered in budding yeast. Two copies of a Spn3–Spn4–Spn1–

Spn2 subunit are proposed to array in a linear order to form an octameric complex, in which Spn1 and 

Spn4 appear to be the core members, with Spn2 and Spn3 as auxiliary subunits (Fig28). Since Spn1 and 4 

localize to the center of the complex, it is not surprising that their deletion leads to much more severe 

cell division defects compared to deletion of the other two septins (An et al., 2004).  

 

Figure 28 (Adapted from Hall, Russell and Pringle 2008): 

Comparison of the septins heteroligomeric complexes in the 

indicated species. In both cases they assemble in linear and 

apolar octameric rods made of two tetramers with a mirror 

symmetry. 
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Unlike in S. cerevisiae where septins are necessary for CR formation, fission yeast septins are recruited 

after the CR has been fully assembled. Septins organize late in mitosis and form first a single ring which 

splits in two during CR constriction and septum formation (Fig29). This double ring does not contract 

together with the contractile ring, but it remains on the cell surface to delineate the boundaries of the 

cleavage furrow and it dissociates after cell separation. So, conversely to septins in budding yeast, 

fission yeast septins are not essential for cell viability and may work mainly in the late stages of 

cytokinesis (An et al., 2004; Berlin et al., 2003; Juanes and Piatti, 2016; Wu et al., 2003). 

 

 

 

Indeed, it has been shown that septin mutants have defects in cell-cell separation since they have a key 

role, in concert with the exocyst complex and Mid2, in delivering the two hydrolytic enzymes (Agn1 and 

Eng1) in the area around the septum, regulating the step that finishes cytokinesis (Alonso-Nunez et al., 

2005; Martin-Cuadrado et al., 2005). 

Interestingly, a recent work has highlighted that septins may play a role in earlier cytokinetic events: 

they appear to regulate CR assembly and constriction by controlling the equatorial dynamics of the SIN 

kinase Sid2 and glucan synthases Bgs1 and Ags1 in the septum region (Zheng et al., 2018). 

One important factor for septin ring organization is the conserved protein anillin whose disruption leads 

to defects in cytokinesis in animal cells (see chapter 2.3). S. pombe genome codes two anillin-related 

proteins: Mid1 (described in 4.3), and Mid2. Genetic tests have excluded any overlapping functions 

between them, thus they work independently in separate phases of the cell cycle (Berlin et al., 2003).  

The anillin-like protein Mid2 was identified in a genome-wide analysis for its sequence homology with 

Mid1. Mid2 shows a moderate sequence similarity with Mid1 (24.3%), human anillin (19.5%), S. 

cerevisiae Bud4 (14.9%) and Candida albicans Int1 (12.8%): they share a C-terminus fragment that 

Figure 29: Schematic representation of septin behaviour in the main steps of fission yeast cytokinesis. 

See text for details. 
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contains a PH domain and an upstream common region. This overall portion is known to mediate 

interaction with septins, suggesting that all these proteins have in common this function (Berlin et al., 

2003; Paoletti and Chang, 2005; Tasto et al., 2003) (Fig30).  

 

 

 

In an attempt to identify Mid2 functional domains, a structure-function study was performed, 

concluding that the PH domain is necessary but not sufficient to drive Mid2 localization and function, 

suggesting that it might not mediate PM interaction, but rather interaction with other proteins (Tasto et 

al., 2003). mid2Δ cells display the same phenotype as septin-deleted cells. Moreover, Mid2 co-localizes 

with septins, probably arriving just after septin ring formation since its localization is not only F-actin but 

also septin-dependent. Similar to septins, Mid2 appears as a single ring, then splits into two in 

concomitance with septum formation and disassemble when cells divide (Berlin et al., 2003; Tasto et al., 

2003) (Fig31). These observations suggest that Mid2 interacts with septins. 

Additionally,  FRAP analysis has revealed that in absence of Mid2 septins are much more dynamic (30-

fold more) in comparison with wild type cells and are largely misorganized, invading the cleavage furrow 

(Berlin et al., 2003).  

Mid2 protein levels are tightly controlled during the cell cycle, peaking during septation. Two layers of 

regulation control Mid2 levels: Mid2 expression is under the control of the late cytokinesis transcription 

wave regulated by Sep1-Ace2; additionally Mid2 is degraded through ubiquitination by SCF–dependent 

proteolysis. Indeed, Mid2 contains three PEST sequences, one in a medial region and two at the N-

terminus, that could act as signal for protein degradation (Alonso-Nunez et al., 2005; Petit et al., 2005; 

Tasto et al., 2003). 

Figure 30 (Adapted from Paoletti and Chang 2005): Domain structure of human Anillin and anilin-like 

proteins in different Fungi. 
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Overexpression of a non-degradable form of Mid2 let septin filaments persist in the next cell cycle, 

indicating that the degradation of Mid2 is required for the proper disassembly of septins rings (An et al., 

2004; Tasto et al., 2003). 

Interestingly, by using a temperature sensitive mutant strain (cdc16-116) where septation can occur 

before mitosis (Minet et al., 1979), septin and Mid2 rings were not detected in interphase cells except in 

the ones which underwent mitosis before septation. A mild overproduction of Mid2 under a constitutive 

promoter to allow its presence during interphase rescued septin ring organization in this context (An et 

al., 2004). This suggests that septin ring organization during interphase requires the presence of Mid2. 

Altogether these data imply that Mid2 impacts on septin ring organization and stability: septins alone 

are able to accumulate at the cell middle, but then Mid2 directly or indirectly seems to be necessary to 

form a compact and stable septin ring in late mitosis (Berlin et al., 2003; Tasto et al., 2003).  

Role of Rho GTPases 

Rho GTPases are also involved in the regulation of these final events of cell division. In particular, the 

RhoGEF Gef3 is recruited by septins to the division site, where it regulates the RhoGTPase Rho3 and 

Figure 31 (Adapted from Berlin et al 2003): Potential functional interaction between anillin Mid2 and septins 

Spn4. (A) mid2Δ and spn4Δ cells have similar cell–cell separation defects. DIC images of representative wild-

type, mid2Δ, and spn4Δ mutant cells grown in rich medium at 30◦ C to the exponential phase of growth. (B) 

Mid2p colocalizes with Spn4p. Cells expressing Mid2p-YFP (green) and Spn4p-CFP (red) were imaged by 

fluorescence microscopy. (Top) Cells in late mitosis just after initial assembly of the single septin ring. Some of 

these cells exhibit septin but not Mid2p staining (left cell). (Middle) Cells during septation with double septin 

rings. (Bottom) Cells during cell–cell separation and during interphase. Scale bars, 5μm. 
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Rho4, for a precise delivery of the glucanases at the cytokinetic furrow through the exocyst (Munoz et 

al., 2014; Perez et al., 2015; Santos et al., 2005; Wang et al., 2003; Wang et al., 2014).  

During this process, a gradual curvature of the secondary septa occurs, which will represent the new 

ends of the two daughter cells (Fig32). The combination of laser cut experiments of fully septated cells 

and mathematical simulations unraveled that this remodeling process is not dependent on actin or new 

cell wall synthesis, but it is driven by mechanical forces. The turgor pressure inflates the elastic cell wall, 

creating the round shape of the new edges and it may also support the separation and detachment of 

the daughter cells (Atilgan et al., 2015).  

When septum synthesis is completed, the CR remnants needs to be removed to permit polarized growth 

at the new daughter cell ends (Bohnert and Gould, 2012). Indeed, the closure of CR constriction and the 

conclusion of septum formation induce SIN inactivation, allowing the Morphogenesis Orb6 Network 

(MOR) to become active and initiate cell separation and establish interphase polarity (Garcia-Cortes and 

McCollum, 2009). The MOR signaling pathway is hindered during cytokinesis by SIN-dependent 

phosphorylation since an improper MOR activation would cause cell lysis in the septum region due to an 

early initiation of cell separation (Gupta et al., 2014; Ray et al., 2010). This antagonistic balance between 

the SIN and MOR is key to orchestrate cytoskeleton remodeling between mitosis and interphase thus 

avoiding polar growth until the end of cytokinesis and cytokinesis events occurring in interphase. 

 

 

 

Figure 32 (adapted from Perez et al 

2016): Model of cell separation at the 

end of cytokinesis. Transmission 

electron micrograph showing how 

degradation of the lateral cell wall (B) 

and primary septum (C) leaves the 

secondary septum that, upon 

separation, changes from flat to round 

shape. 
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Interplay between the end of cytokinesis and cell repolarization 

When septum cleavage is completed, polarized growth at the new daughter cell ends resumes.  

In addition, division site signaling by Fic1 was shown to impact on CR remnants clearance from the 

division site and on the re-establishment of bipolar cell growth in the following cell cycle (Bohnert and 

Gould, 2012). Interestingly, other genes involved in cell separation like septins or Mid2 display a similar 

phenotype as well as genes encoding ESCRT-III components Vps2 and Vps24 or ESCRT-III-associated Sst2. 

Since ESCRT-III are key proteins for abscission in animal cells, this opens the question on whether PM 

membrane remodeling and scission upon full constriction of the ring is actively controlled in fission yeast 

like in animal cells and participates in the signaling events controlling growth resumption at the division 

site. 

 

 

4.9 Role of membrane lipids in fission yeast cytokinesis 

Lipids act as essential structural and regulatory components of cellular membranes dynamic 

reorganization during cytokinesis, but a comprehensive understanding of the specific roles that lipids 

may play to regulate this multistep process has not yet been obtained in fission yeast. Only sparse data 

are available, based on the analysis of a limited series of mutants in lipid biosynthetic pathways 

identified in various genetic screens.  

To date, the major part of the studies in this field has focused on phosphoinositides, which play key 

roles in membrane and cytoskeleton remodeling, although representing less than 1% of the total cellular 

lipids (Cauvin and Echard, 2015; Echard, 2012). By using specific probes to detect PIP2, it has been 

observed that this PI, together with Ptn1, the homologue of the phosphatase PTEN, which 

dephosphorylates PIP3 to PIP2, and the functional homologue of the PI4P5-kinase, Its3, which catalyzes 

PIP2 production, are localized to the division plane in the cell middle (Mitra et al., 2004; Zhang et al., 

2000). In addition, a temperature sensitive mutant of its3, at the restrictive temperature was no longer 

present at the cell equator and resulted in late cytokinetic defects with an increased number of septated 

cells and mis-localization of Bgs1 (Deng et al., 2005; Zhang et al., 2000). One possible explanation for this 

phenotype is that PIP2 has a role in recruiting proteins responsible for septation. Indeed, PIP2 has been 

found to interact in vitro with two of the exocyst subunits (Sec3 and Exo70) in S. cerevisiae (He et al., 

2007) and with septins. In fission yeast the exocyst is essential for cell division (Martin-Cuadrado et al., 

2005) and PIP2 lipid domains may be key for the completion of this process. 

In S. pombe, as in other yeasts, specific cortical compartments, known as eisosomes, organized as 

membrane invaginations, have been linked to PIP2 turnover. Pil1, a BAR-protein which is the core 
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component of eisosomes, binds and tubulates preferentially PIP-enriched membranes and when 

overexpressed leads to the formation of long cytoplasmic filamentous invaginations that cause defects 

in cell polarity and cytokinesis (Douglas and Konopka, 2014; Kabeche et al., 2011; Kabeche et al., 2014). 

Interestingly, the PI4-kinase PIK1, involved in the generation of the PI4-phosphate, which acts as 

precursor of other important PIs, is also necessary for septation and cell separation (Park et al., 2009) 

and an association with the myosin II-light chain Cdc4 has been described (Desautels et al., 2001). When 

the interaction between them is prevented, cytokinesis was severely impaired, suggesting that PIK1 may 

be critical for the ring assembly and function. 

Recently, it has been demonstrated that the PM lipid composition determines the proper anchoring of 

the CR, and it is critical for the success of cell division and the equal distribution of the genetic material 

into the two daughter cells (Snider et al., 2017). The authors discovered that in absence of a correct 

localization of the phosphatidylinositol-4 kinase Stt4, due to the deletion of its scaffold subunit Efr3, the 

CR, first organized in the middle of the cell, slides toward one cell tip during anaphase (Baird et al., 

2008). A similar phenotype is obtained in the its3-1 temperature sensitive mutant, where the decrease 

in PIP2 amount leads to the generation of large vacuoles that prevent the nucleus from localizing around 

the cell center, leading to CR defects in anchoring and positioning (Snider et al., 2018) (Fig33). These 

evidences support the fact that PIP2, the kinases that catalyze its production and its precursor PI4-

Phosphate are important for securing CR attachment at the PM, its stability and proper septa 

organization in the cell middle. 

Besides, PIPs, also other types of lipids have been reported to play functional roles in cytokinesis. 

Mutants in the fission yeast Pps1, which encodes a predicted phosphatidylserine (PS) synthase, exhibit 

defects in cell morphology, cell wall organization and cytokinesis (Matsuo et al., 2007). Recent findings 

have revealed that PS is localized to the sites of active growth and cell division in an actin-dependent 

endocytosis manner, creating a polarized gradient of negative charges throughout the PM with key 

impacts on cell polarity and morphogenesis (Haupt and Minc, 2016).   

Moreover, Css1 (can`t stop synthesizing cell wall), an essential protein related to mammals neutral 

sphingomyelinases, when mutated, presented defects in cell wall formation, due to the accumulation of 

α- and β-glucans in the periplasmic space, with cell division arrest and a lethal outcome (Feoktistova et 

al., 2001). Css1 mutants are defective in the hydrolysis of sphingolipids that produces ceramide, which 

has been proposed to act as signal transducer in cell growth and death, senescence and in many stress 

responses pathways (Matmati and Hannun, 2008). 



Arbizzani Federica- Thèse de doctorat- 2019                     
 

 

63 
 

Additionally, sterol-rich domains (SRDs) have been shown to be distributed in a cell-cycle dependent 

manner at growing tips in interphase cells and at the cell middle during cytokinesis and a functional 

secretory pathway is required for their localization, since it was disrupted in presence of brefeldin A 

(Wachtler et al., 2003). Interestingly, it has also been demonstrated that they act as scaffolds for the 

localization of the growth machinery and polarity factors in establishing de novo cell polarity during 

starvation exit (Makushok et al., 2016).  

Ergosterols, the equivalent of cholesterol in Fungi, form liquid-ordered domains by interacting 

preferentially with sphingolipids with recognized roles in signal transduction, vesicular sorting and 

polarity (Rajendran and Simons, 2005; Wachtler and Balasubramanian, 2006).  

Key elements for the formation of SRDs have been identified in S. pombe: the F-BAR protein Cdc15 and 

type I myosin Myo1. It has been described that cdc15 mutants form SRDs with spiral configuration in the 

PM, whereas its over-expression leads to abnormal lipid rafts domains organization (Takeda et al., 

2004). Similarly, a myo1 mutant without the TH1 domain, which includes a putative binding site for 

phospholipids, displays a uniform spreading of SRDs domains and its overproduction produces the 

formation of ectopic SRDs (Takeda and Chang, 2005). Cdc15 and Myo1 are known to interact (Carnahan 

and Gould, 2003) and it has been proposed that, by binding preferentially with acidic phospholipids, 

these proteins could shape the lipid composition of the PM, creating, directly or indirectly, functional 

and structural frameworks to facilitate connections between proteins involved in cell polarity, 

endocytosis and cytokinesis (Alvarez et al., 2007).  

Finally, it has been found that the overexpression of Erg25, a C-4 sterol methyl oxidase of the ergosterol 

synthesis pathway alters ergosterol distribution within the cell and disrupts contractile ring positioning, 

leading to random septum assembly (Wachtler et al., 2003) (Fig33). This phenotype recapitulates that of 

mid1 cells, although a possible connection between both is missing (Almonacid et al., 2009; Celton-

Morizur et al., 2006; Daga and Chang, 2005; Paoletti and Chang, 2000; Sohrmann et al., 1996).  

Altogether, these evidences indicate that lipid composition may be key to regulate the assembly, 

distribution and/or function of several elements that control and orchestrate cytokinesis.   
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Figure 33 (Adapted from Snider 

et al 2017; Snider et al 2018 and 

Wachtler et al 2003): CRs form 

off-center in mutants of PIP2 

and ergosterol phenotypes. (A) 

Live-cell imaging comparison of 

wild type and efr3Δ grown at 

25°C. Bars, 2 μm. Numbers 

indicate minutes elapsed; 

magenta line indicates the cell 

center. (B) Montages of time-

lapse imaging of wild type and 

its3-1 grown at 25°C and shifted 

to 32°C for 2 h before imaging. 

Bars, 2 μm. Numbers indicate 

minutes elapsed; magenta line 

indicates the cell center.  (C) 

Defects in cdc4-GFP organization 

in cells overexpressing Erg25 

under the nmt1-promoter (upper 

panel) and incubated with filipin 

for 1 minutes (bottom panel). 
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II. THESIS OUTLINE 

The “leitmotiv” of my PhD project has been cytokinesis, which has been studied in the fission yeast 

model system, from two different perspectives. My work has first focused on the first step of 

cytokinesis, division plane positioning, and has addressed the role of a membrane lipid in this process. 

The second part of my project has been devoted to late cytokinesis, analyzing septin ring assembly at 

the division site. 

In the first part, the aim of my work was to understand the role of ergosterol levels in division plane 

positioning. Overexpression of a protein involved in ergosterol biosynthesis resulted in random 

positioning of the contractile ring (CR). Combining fission yeast genetics and live-cell imaging of CR 

components,  I have found that increased ergosterol levels do not disrupt the cytokinetic precursor 

nodes that define the position of the division plane, but specifically inhibits F-actin assembly from 

cytokinetic precursor nodes by the formin Cdc12, preventing their compaction into a medially placed CR. 

This suggests that ergosterol may negatively regulate Cdc12 activity in a direct or indirect manner.  

In the second part of my PhD, my project focused on the dynamic behavior of septins during cytokinesis 

and the regulatory mechanisms that control their assembly into rings defining the borders of the 

cleavage furrow. This part was approached in three ways: 1) Description of the recruitment, assembly 

and disassembly of septins and the anillin-like protein Mid2 by live cell imaging using precise cell cycle 

timers 2) Determining how Mid2 impacts on septin ring assembly using a combination of molecular 

genetics and biochemistry approaches 3) Identification of the key regulators controlling the major 

transitions observed in septins and Mid2 organization. I have found first that septins are initially 

recruited as a diffuse meshwork to a 1.5 μm wide region of the cortex surrounding the CR in anaphase, 

at time of maximum spindle elongation, before compacting into rings when constriction of the CR is 

initiated. Second, my work provides evidence that the anillin-like protein Mid2 may act as a bundler for 

septins that promotes this new compaction step as well as further accumulation of septins at the 

division site. Third, looking at cell cycle regulators, I found that high Cdk activity allows for septins and 

Mid2 recruitment but not for their compaction, whereas the SIN pathway is crucial for septin and Mid2 

accumulation at the division site and compaction. Finally, PIP2 levels were found to be critical to initiate 

septin recruitment to the plasma membrane, before Mid2 becomes available at the initiation of CR 

constriction, with impact on the maximum amount of septins at the division site. This work highlights 

the complex regulations that allow the coordination between septin ring assembly and cell cycle 

progression.  

These results are presented in two manuscripts. The first one was published in July 2019 in the Journal 

of Cell Science, while the second on septins and mid2 is currently in preparation.  
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Increasing ergosterol levels delays formin-dependent assembly
of F-actin cables and disrupts division plane positioning in
fission yeast
Federica Arbizzani1, Sergio A. Rincon1,2,*,‡ and Anne Paoletti1,*,‡

ABSTRACT
In most eukaryotes, cytokinesis is mediated by the constriction of a
contractile acto-myosin ring (CR), which promotes the ingression of
the cleavage furrow. Many components of the CR interact with
plasma membrane lipids suggesting that lipids may regulate CR
assembly and function. Although there is clear evidence that
phosphoinositides play an important role in cytokinesis, much less
is known about the role of sterols in this process. Here, we studied
how sterols influence division plane positioning and CR assembly in
fission yeast. We show that increasing ergosterol levels in the plasma
membrane blocks the assembly of F-actin cables from cytokinetic
precursor nodes, preventing their compaction into a ring. Abnormal
F-actin cables form after a delay, leading to randomly placed septa.
Since the formin Cdc12 was detected on cytokinetic precursors and
the phenotype can be partially rescued by inhibiting the Arp2/3
complex, which competes with formins for F-actin nucleation, we
propose that ergosterol may inhibit formin dependent assembly of
F-actin cables from cytokinetic precursors.

KEY WORDS: Actin, Contractile ring, Cytokinesis, Fission yeast,
Formin, Sterol-rich domain

INTRODUCTION
Cell division is an essential process required for the proliferation
of unicellular organisms as well as for the development of
multicellular organisms and cell renewal within tissues. Its final
step, cytokinesis, ensures the physical separation of the two
daughter cells. Defective control of this step can either lead to cell
death or to aneuploidy, and can contribute to cancer progression
(Fujiwara et al., 2005; Lacroix and Maddox, 2012; Storchova and
Pellman, 2004). Cytokinesis is therefore under the control of very
tight spatial and temporal regulatory mechanisms.
In most eukaryotes, cytokinesis relies on an acto-myosin based

contractile ring (CR), which assembles at the division site and
constricts to cause the invagination of the plasma membrane and
promote the ingression of the cleavage furrow between the two sets of
segregating chromosomes. Fission yeast (Schizosaccharomyces
pombe) has provided crucial insights into the molecular
mechanisms of CR assembly. In this model organism, CR

assembly is initiated by cytokinetic precursors organized since
interphase on the medial cortex of the cell by the SAD kinase Cdr2
(Akamatsu et al., 2017; Moseley et al., 2009; Pollard and Wu, 2010;
Rincon and Paoletti, 2016; Willet et al., 2015b; Wu et al., 2006).
Medial positioning of these nodes contributes to division plane
positioning and is ensured by negative signalling by the gradient of
the DYRKkinase Pom1 emanating from the cell tips (Celton-Morizur
et al., 2006; Martin and Berthelot-Grosjean, 2009; Moseley et al.,
2009; Padte et al., 2006; Rincon et al., 2014). These cytokinetic
precursors contain several non-essential cytokinetic ring components,
such as the anillin-like protein Mid1, Blt1, Gef2, Klp8 and Nod1
(Goss et al., 2014; Guzman-Vendrell et al., 2013; Jourdain et al.,
2013; Martin and Berthelot-Grosjean, 2009; Moseley et al., 2009; Ye
et al., 2012; Zhu et al., 2013). Upon mitotic entry, positive signalling
from the medially placed nucleus, mediated by the polo-like kinase
Plo1-induced export from the nucleus of the anillin-like proteinMid1,
reinforces division plane positioning in the cell middle (Almonacid
et al., 2009), while Cdr2 dissociates from the cytokinetic precursors
in a septation initiation network (SIN)-dependent manner (Akamatsu
et al., 2014; Rincon et al., 2017). Plo1 also activates Mid1, which
becomes competent for the sequential recruitment of essential ring
components (Almonacid et al., 2011): Mid1 first engages the IQGAP
protein Rng2 and myosin II light chain Cdc4, heavy chain Myo2 and
regulatory light chain Rlc1. Mid1 also contributes directly to the
recruitment of the F-BAR protein Cdc15 (Laporte et al., 2011). Rng2
and myosin II, together with Cdc15 collaborate in the recruitment of
the formin Cdc12, which nucleates F-actin cables required for CR
assembly (Coffman et al., 2009, 2013; Laporte et al., 2011;
Padmanabhan et al., 2011; Willet et al., 2015a; Wu et al., 2003,
2006). This step is necessary for myosin II-dependent node
compaction into a tight acto-myosin ring in a mechanism modeled
under the name of search-capture-pull-release (Ojkic et al., 2011;
Vavylonis et al., 2008).

In parallel to CR assembly, modifications in the lipid composition
of the plasma membrane take place at the division site with a
functional impact on cytokinesis (Atilla-Gokcumen et al., 2014;
Echard and Burgess, 2014). So far, major studies have focused on
phosphoinositides, which play key roles in membrane trafficking and
cytoskeleton rearrangements. In particular, in human cells,
phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] enrichment at the
cytokinesis furrow and early intercellular bridges is crucial for F-actin
remodeling by RhoA, anillin and septins, whereas its hydrolysis by
the PIP2 phosphatase OCRL is necessary for abscission, avoiding
abnormal F-actin accumulation at cytokinesis bridges (Cauvin and
Echard, 2015; Dambournet et al., 2011; Echard, 2012).

In fission yeast, only sparse data are available on the role of
membrane lipids in cytokinesis. First, the correct localization of the
PI4 kinase Stt4 by its scaffolding subunit Efr3 (Baird et al., 2008)
was recently shown to play a role in the spatial regulation ofReceived 2 November 2018; Accepted 31 May 2019
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Consejo Superior de Investigaciones Cientıf́icas (CSIC)/Universidad de
Salamanca, Salamanca 37007, Spain.
*These authors contributed equally to this work

‡Authors for correspondence (anne.paoletti@curie.fr; sarpadilla@usal.es)

S.A.R., 0000-0002-7169-2097; A.P., 0000-0002-9004-559X

1

© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs227447. doi:10.1242/jcs.227447

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

mailto:anne.paoletti@curie.fr
mailto:sarpadilla@usal.es
http://orcid.org/0000-0002-7169-2097
http://orcid.org/0000-0002-9004-559X


cytokinesis by preventing the CR sliding toward one cell tip during
anaphase (Snider et al., 2017). Similarly, defects in the spatial
regulation of cytokinesis at the beginning of mitosis have been
reported in the PI-5 kinase its3-1 mutant, characterized by reduced
levels of phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] (Snider
et al., 2018). Second, defects in cytokinesis as well as cell
morphology and cell wall organization were observed in a mutant of
Pps1, involved in phosphatidylserine (PS) synthesis (Matsuo et al.,
2007). Third, defects in sphingolipid hydrolysis into ceramide in
css1 mutant were shown to induce defects in cell wall and septum
formation, due to the accumulation of α- and β-glucans in the
periplasmic space, with cell division arrest and a lethal outcome
(Feoktistova et al., 2001).
Some data also point out a role for sterols in the regulation of

cytokinesis (Wachtler et al., 2003). Sterols are synthesized andmature
in the ER by a cascade of coupled enzymatic reactions. The final
metabolic product, cholesterol in the case of animal cells and
ergosterol in fungi, is then transported to the plasmamembranewhere
it forms liquid-ordered domains by interacting preferentially with
sphingolipids, which have recognized roles in signal transduction,
vesicular sorting and polarity (Rajendran and Simons, 2005). Key
factors for the formation of sterol-rich domains (SRDs) are the
F-BAR protein Cdc15 and the type I myosin Myo1, which interact
with one another, binding preferentially to acidic phospholipids
(Alvarez et al., 2007; Carnahan and Gould, 2003; Takeda and Chang,
2005; Takeda et al., 2004). Besides, SRDs redistribute from growing
cell tips in interphase, where they act as scaffolds for polarity factors
and the growth machinery (Makushok et al., 2016), to the division
site in mitosis (Wachtler et al., 2003).
Interestingly, Wachtler et al. (2003) found that the overexpression

of Erg25, a C-4 sterol-methyl-oxidase of the ergosterol synthesis
pathway, could alter ergosterol distribution within the cell and
disrupt CR positioning, leading to the formation of random
positioned and misshapen septa (Wachtler et al., 2003). This
phenotype is strikingly similar to the phenotype produced by the
deletion of the main division plane position factor Mid1, which is
associated with the cytokinetic precursors described above.
Here, by combining fission yeast genetics with live-cell imaging

of CR assembly from cytokinetic precursors, we show that
increasing ergosterol levels does not affect the assembly or
distribution of cytokinetic precursors, nor the recruitment of the
IQGAP protein Rng2, myosin II or the F-BAR protein Cdc15, at
mitotic entry. Instead, it inhibits the assembly of medial F-actin
cables from cytokinetic precursors preventing node compaction into
a tight ring. Randomly positioned F-actin cables finally emerge,
with a long delay compared to the wild-type situation, leading to
abnormally placed septa. Analysis of the formin Cdc12 that
nucleates F-actin cables from cytokinetic precursors revealed that
its recruitment to the medial cortex is not abolished in these
circumstances, although we cannot exclude the possibility that its
amount is reduced. Since the stability of F-actin cables was not
altered altogether and the phenotype could be partially rescued by
inhibition of Arp2/3, which competes with formins, we propose that
increasing ergosterol levels in the plasma membrane may inhibit the
activity of the formin Cdc12.

RESULTS
To understand how ergosterol homeostasis may influence division
plane positioning, we decided to reproduce Erg25 overexpression
(denoted Erg25 OE) from a multicopy plasmid under the control of
the thiamine-repressible nmt1 promoter (Maundrell, 1993). Septum
organization was analysed by staining cells with the cell wall dye

Calcofluor after thiamine removal to induce Erg25 OE (Fig. 1A).
We found that 85.6±4.3% (mean±s.d.) of cells overexpressing
Erg25 had abnormal septa compared to 1.9±0.2% of control cells
(Fig. 1B).

To determine the ergosterol distribution pattern in this context,
cells were stained with the ergosterol-specific dye filipin. As
expected, an altered pattern of distribution of ergosterol was
observed upon Erg25 OE, with increased levels of ergosterol not
only at the cell tips where it normally accumulates (Takeda et al.,
2004;Wachtler et al., 2003), but also around thewhole-cell periphery,
including at the medial cell cortex (Fig. 1C). Accordingly, the
intensity of filipin staining in late G2 cells, ranging from 11.5 to
13.5 μm, in length showed a 1.7-fold increase of sterols at the cell
tips, and a 1.5-fold increase of sterols in the cell middle, compared to
the wild-type situation (n=15 for both control and Erg25 OE cells;
Fig. 1D). Finally, in dividing cells, filipin was concentrated at the
division site, which was abnormally shaped upon Erg25 OE. These
data confirms that ergosterol levels are increased in the plasma
membrane upon Erg25 OE, including in the medial region of the cell
where CR assembly takes place at mitotic entry.

Next, in order to verify whether the defects in division plane
position were due to ergosterol enrichment, we treated control and
Erg25 overexpressing cells with miconazole. This drug inhibits
Erg11, a lanosterol 14-α demethylase that functions immediately
upstream of Erg25 in the ergosterol synthesis pathway (Fig. S1A)
(Löffler et al., 1997; Marichal et al., 1999; Rippon and Fromtling,
1993; Sanglard et al., 1998; Sheehan et al., 1999). Miconazole
induced a reduction of ∼80% in the number of abnormally shaped
septa upon Erg25 OE (Fig. 1E; Fig. S1B). In parallel, we also
overexpressed Erg25 in cells lacking erg6 (erg6Δ), which encodes a
protein acting immediately downstream of Erg25 in the ergosterol
synthesis pathway (Fig. S1A) (Bard et al., 1996; Iwaki et al., 2008).
The number of abnormally shaped septa was reduced from ∼85% in
Erg25 OE cells to less than 40% in the erg6Δ mutant (Fig. S1C),
consistent with the suppression of the phenotype induced by
miconazole. The partial suppression seen in the erg6Δmutant might
be due to alternative biosynthetic pathway allowing ergosterol
production from zymosterol independently of erg6. From these
experiments, we conclude that ring positioning defects produced by
Erg25 OE require an active sterol synthesis pathway and are
effectively related to sterol overproduction, excluding other
unrelated functional defects that Erg25 OE might have caused.

We next determined the localization of Erg25 by fusing it to
the green fluorescent tag ENVY (Slubowski et al., 2015) at its
C-terminus. Fluorescence microscopy revealed that Erg25 has both a
perinuclear and a peripheral distribution around the cell (Fig. S1D),
reminiscent of the endoplasmic reticulum (ER) distribution.
Accordingly, when Erg25–ENVY was expressed together with the
ER marker Elo2, a fatty acid elongase (labelled as ER-mCherry in
Fig. S1D), we found that the two proteins perfectly colocalized. This
result is in agreement with the fact that sterol metabolism takes place
in this organelle (Jacquier and Schneiter, 2012).

We next wanted to determine whether the distribution of Erg25
was altered upon its overexpression. To do so, we ectopically
overexpressed Erg25 in the endogenously producing Erg25–ENVY
strain. In interphase cells, the protein lost its strong enrichment
around the nucleus and the cell surface, and formed irregular
patterns in a medial cytoplasmic zone (Fig. S1E). Quantification
of this phenotype showed that 82.6±3.3% of interphase cells
overexpressing Erg25 displayed an abnormal distribution of Erg25
in comparison to none in the control (Fig. S1F). This result indicates
that Erg25 OE alters the organization of the ER.
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This phenotype was reminiscent of the triple deletion mutant of
the reticulon-like proteins Tts1, Rtn1, and Yop1 (hereafter called
tryΔ), which displays alteration of the subcortical reticular ER into
abnormal cisternae, associated with severe defects in division plane
positioning (Zhang et al., 2010). This phenotype has been shown to
be suppressed by the deletion of the two vesicle-associated
membrane protein-associated proteins (VAPs) genes scs2 and
scs22, which link the cortical ER to the plasma membrane. This led
to the proposal that abnormal ER cisternae could shield the plasma
membrane, preventing normal CR assembly (Zhang et al., 2012).
Since Erg25 OE alters ER organization, we wondered if the septum
positioning defects it generates could result from the same
phenomenon. To test this, Erg25 OE was induced in the VAP
single and double deletion mutants. Septum staining with
Calcofluor showed that deletion of VAPs only had a minor impact
on the effect of Erg25 OE on division plane positioning (∼10%
reduction in abnormal positioning; Fig. S1G). From this
experiment, we conclude that membrane shielding by the ER only

has a minor role in the division plane positioning defects produced
by Erg25 OE. This result points toward a more direct effect of
ergosterol on CR positioning and assembly mechanisms.

To determine how Erg25 OE affects CR assembly, we performed
live imaging of Cdr2, the main organizer of cytokinetic precursors,
and of Blt1, a component of cytokinetic precursors that remains in the
CR until its full constriction (Moseley et al., 2009). These proteins
were visualized after fusion to EGFP and mEGFP, respectively, in
cells expressing the regulatory light chain of myosin II fused to
mCherry (Rlc1–mCherry) in order to follow CR assembly. These
cells also expressed the spindle pole body (SPB) component Sid4,
also fused to mCherry (Sid4-mCherry), to use SPB separation as a
timer for mitosis onset.

Cdr2 was not affected by Erg25 OE (Fig. 2A,B): in cells ranging
from 11 to 14 μm in length, neither the length of Cdr2 domain
(Fig. S2A) nor the intensity of Cdr2–EGFP were modified
(Fig. S2B). Similarly, Blt1 behaved normally during interphase,
but at mitotic entry, it started spreading laterally along the cell cortex

Fig. 1. Erg25 OE induces cytokinesis defect
by increasing ergosterol levels. (A) DIC image
(top) and Calcofluor staining of septa (bottom) in
Erg25 OE cells. Orange arrows indicate cells
with abnormal septa. Scale bars: 5 μm.
(B) Quantification of the percentage of defective
septa in Erg25 OE (n=351) and control cells
(n=104). Error bars: s.d. (C) Filipin staining of
ergosterol in control (top panel) and Erg25 OE
cells (bottom panel). Scale bars: 5 μm.
(D) Analysis of filipin intensity along linescans for
control (green, n=15) and Erg25 OE cells
(orange, n=15). The average curves are
displayed in dark green for the control and in dark
red for Erg25 OE cells. (E) Quantification of the
percentage of defective septa in control or Erg25
OE cells grown in the presence or absence of
1 μM miconazole. Error bars: s.d.
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rather than compacting into a ring (Fig. 2C,D). Quantitative analysis
showed that 75.7±1.1% (mean±s.d.) of cells overexpressing Erg25
showed an abnormal behaviour of Blt1 in early mitosis compared to
1.0±0.04% in the control situation (Fig. 2E).
We then analysed the behaviour of the light chain of myosin II,

Rlc1 in the movies. Although recruited to the medial cortex in early
mitosis (Fig. 2A–D; Fig. S3A) to a domain of similar length to that
in control cells (2.83±0.23 μm and 2.63±0.18 μm, respectively;
Fig. S3B), myosin II was recruited to the cytokinetic precursors with
a delay of ∼7 min upon Erg25 OE (Fig. 2G). This delay was
confirmed by monitoring the intensity of myosin II in the cell
middle (Fig. S3C). While in the control cells, Rlc1–mCherry
intensity raised over 30 min before decreasing rapidly at the time of
ring constriction, myosin II intensity stopped increasing 20 min
after SPB separation in Erg25 OE cells. Intensity then fluctuated at
intermediate levels for an extended period of time (Fig. S3C).
Strikingly, and similar to Blt1, Rlc1 never compacted into a ring

after its recruitment to cytokinetic precursors but spread laterally on
the cortex instead (Fig. 2A–D; Fig. S3C, t=10 to 20 min). Some
abnormal myosin II cables were observed at later time points
(Fig. 2A–D; Fig. S3A, t=30–100 min). These cables, which ran
sometimes along the long axis of the cell, were most often unable to
constrict (Fig. 2A,B). Indeed, 76.2±1.1% cells displayed abnormal
myosin II rings upon Erg25 OE compared to 0.3±0.4% in the
control (Fig. 2F). We conclude that upon Erg25 OE, cytokinetic
precursors are well assembled in interphase and competent for
myosin II recruitment with a small delay, but they subsequently fail
to compact into a ring.

Since the compaction of cytokinetic precursors depends on
myosin II-dependent pulling on F-actin filaments nucleated by
adjacent nodes (Ojkic et al., 2011; Vavylonis et al., 2008), we next
analysed F-actin distribution with Lifeact–GFP (Huang et al., 2012;
Riedl et al., 2008). During interphase, Erg25 OE did not alter
F-actin patches at the cell tips nor F-actin cables running along the

Fig. 2. Erg25 OE affects ring assembly, but
not the assembly of cytokinetic precursor
nodes in interphase. (A,B) Time-lapse
analysis (min) of Cdr2–EGFP, Rlc1–mCherry
(mch) and Sid4–mCherry in control (A) and
Erg25 OE cells (B) incubated at 25°C for 2 h.
Medial plane confocal images are shown. Time
0 corresponds tomitotic entry. (C,D) Time-lapse
analysis of Blt1–mEGFP, Rlc1–mCherry and
Sid4–mCherry in control (C) and Erg25OE cells
(D) incubated at 25°C for 2 h. Medial plane
confocal images are shown. Time 0
corresponds to mitotic entry. Scale bars: 5 μm.
(E) Quantification of the percentage of cells
where Blt1 showed a normal and abnormal
pattern (behaviour) for control (n=189) and
Erg25 OE cells (n=218). (F) Quantification of
percentage of cells where myosin II (Rlc1)
showed a normal and abnormal pattern
(behaviour) for control (n=137) and Erg25 OE
cells (n=161). (G) Timing of myosin II
recruitment at cytokinetic precursors after SPB
separation (Time 0) in control (n=30) and Erg25
OE cells (n=35). All error bars represent s.d.
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length of the cell (Fig. 3A,B). However, after SPB separation, cells
failed to accumulate F-actin at the cell middle, indicating that the
cytokinetic precursors were unable to promote F-actin assembly
upon Erg25 OE (Fig. 3A,B; Fig. S4A,B). Delocalized F-actin dots
were detected all over the cell instead, and, after a variable delay,
cells started to form F-actin cables with irregular shapes and random
orientations [37.0±10.2 min (mean±s.d.) after SPB separation as
compared to the appearance of F-actin at the division site 7.3±1.8
min in normal cells; Fig. 3D; see also Movies 1–3]. Quantification
revealed that 75.6±1.7% Erg25 OE cells displayed delayed and
abnormal F-actin cable assembly compared to 0.6±0.9% in control
conditions (Fig. 3C). We conclude that defects in division plane
positioning in Erg25 OE cells result from defective F-actin
nucleation from cytokinetic precursors.
To understand why F-actin assembly from cytokinetic precursors

was abolished in presence of higher ergosterol levels at the medial
cortex, we decided to carefully check the whole pathway of
recruitment of cytokinetic ring components to cytokinetic
precursors (Almonacid et al., 2011; Laporte et al., 2011;

Padmanabhan et al., 2011). We started with the anillin-like protein
Mid1, which triggers the recruitment of CR ring components to
cytokinetic precursors at mitotic onset upon phosphorylation by the
polo kinase Plo1 (Almonacid et al., 2011; Bahler et al., 1998a;
Celton-Morizur et al., 2004; Paoletti and Chang, 2000; Sohrmann
et al., 1996). Similar to Cdr2 and Blt1, and as expected from the fact
that myosin II was recruited to medial nodes, Mid1 co-localized
normally with Cdr2 at cytokinetic precursors during interphase in
Erg25 OE cells (Fig. 4A; Fig. S2C–F). As cells entered mitosis,Mid1
started enriching at the normal timing on the medial cortex upon
export from the nucleus (i.e. 2 to 10 min before SPB separation;
Fig. 4D) and in a domain of similar length to that of normal cells
(Fig. 4E). However, in absence of precursor node compaction, Mid1
then spread along the cell cortex as observed for Blt1 and Rlc1
(Fig. 4A; Fig. S5A).

We next analysed the localization of the IQGAP protein Rng2
(Laporte et al., 2011; Takaine et al., 2014) and of the F-BAR protein
Cdc15 (Arasada and Pollard, 2014; Willet et al., 2015a) whose
recruitments depend on Mid1. Rng2 and Cdc15 were recruited with

Fig. 3. Inhibition of F-actin nucleation from
cytokinetic precursor nodes upon Erg25
OE. Time-lapse imaging (min) of Lifeact–
GFP, Rlc1–mCherry (mch) and Sid4–
mCherry in control (A) and Erg25 OE cells
(B). Maximum projection confocal images are
shown. Time 0 corresponds to mitotic entry.
Scale bars: 5 μm. (C) Percentage of normal
and abnormal contractile rings in control
(n=147) and Erg25 OE cells (n=216). Error
bars: s.d. (D) Timing of medial actin cable
appearance after SPB separation (Time 0) in
control (n=42) and Erg25 OE cells (n=45).
Error bars: s.d.
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normal kinetics (Fig. 4B–D) but again, they did not compact into a
medial ring and spread out after SPB separation (Fig. 4B,C;
Fig. S5B,C). The domain of recruitment was of normal length for
Rng2 but slightly enlarged by 0.5 μm for Cdc15 (2.32±0.38 μm in
the control and 2.82±1.21 μm upon Erg25 OE, mean±s.d.; Fig. 4E).
Since Cdc15 is recruited a few minutes later than Rlc1 or Rng2, the
expansion of the domain of recruitment might be due to the
spreading of cytokinetic precursors observed during the course of
mitosis in Erg25 OE cells.
We finally examined the formin Cdc12, which is responsible for

F-actin nucleation from cytokinetic precursors. Cdc12 recruitment
depends on the recruitment of all other components of the CR
mentioned above (Laporte et al., 2011). Although the Cdc12
signal in fusion to either three YFP tags or three GFP tags was very
faint, we were able to detect its recruitment to cytokinetic
precursors in all cells examined (Fig. 5A,D,E) and to establish
that there was no alteration in the timing of its recruitment upon
Erg25 OE (7.38±1.85 min in the control and 7.22±1.95 min upon
Erg25 OE; Fig. 5B). But Cdc12 was recruited to a larger domain
(2.19±0.19 μm in Erg25 OE cells compared to 0.96±0.12 μm in
control cells; Fig. 5C). The enlargement of the domain could be
due to precursor node spreading over the cortex upon Erg25 OE
instead of compacting as soon as Cdc12 is recruited and promotes
F-actin assembly.

Given the weak signals observed for Cdc12, we also designed a
control experiment to ascertain that the faint signals observed were
genuine: cdc25-22 cells overexpressing Erg25 synchronized by
block in G2 for 2 h at 36°C and released into mitosis at 25°C were
compared to cdc25-22 cells and to mid1Δ cdc25-22 cells, which
cannot recruit Cdc12 on medial cortex in mitosis (Laporte et al.,
2011). While no signal was detected in mid1Δ cells, Erg25 OE cells
showed faint Cdc12 nodes dispersed along the medial cell cortex
upon Erg25 OE (Fig. 5F).

Unfortunately, the low signal of Cdc12, and its dispersion on the
medial cortex upon Erg25 OE prevented us from quantifying the
amounts of Cdc12 recruited to cytokinetic precursors. Therefore,
although we can confirm that Cdc12 is still recruited to cytokinetic
precursors upon Erg25 OE, we cannot exclude quantitative defects
in Cdc12 recruitment in Erg25 OE cells at this stage. In any case,
since F-actin assembly is fully abolished, we conclude that the
molecules of Cdc12 recruited to cytokinetic precursors are unable to
induce the assembly of stable F-actin cables.

We next wondered whether Erg25 OE could result in a general
defect of F-actin cable stability or assembly by formins. To assess
whether this was the case, we analysed F-actin distribution in
interphase cells, in which F-actin cable formation depends exclusively
on the formin For3 (Feierbach and Chang, 2001). Interphase cells
overexpressing Erg25 presented normal For3-nucleated F-actin

Fig. 4. Erg25 OE does not prevent the
recruitment of Mid1, Rng2 and Cdc15 to
cytokinetic precursor nodes.
(A–C) Epifluorescence images of Mid1–
mEGFP (A) or 2mYFP–Rng2 (B) or GFP–
Cdc15 (C) and of Rlc1–mCherry and Sid4–
mCherry in control and Erg25 OE cells in early
mitosis (upper) and late mitosis (bottom).
Scale bars: 2 μm. (D) Timing of Mid1
enrichment and Rng2 and Cdc15 recruitment
to cytokinetic precursors after SPB separation
(time 0) in control (green) and Erg25 OE cells
(orange); n>50. (E) Length of Mid1, Rng2 and
Cd15 domain at initial time of recruitment in
control (green) and Erg25 OE cells (orange);
n>50. ***P<0.001.
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cables, and quantitative analysis did not reveal a reduction in themean
number of F-actin cables per cell (Fig. 6A,B).This implies that F-actin
cable assembly and stability are not impaired altogether in Erg25 OE
cells, and that the formin For3 but also the profilin Cdc3 and the
tropomyosin Cdc8, which are necessary for For3-dependent F-actin
cable assembly (Balasubramanian et al., 1992, 1994), are not affected
by increased ergosterol levels. This suggest that increased ergosterol
levels may specifically inhibit the function of the mitotic formin
Cdc12.
Since the assembly of F-actin cables by Cdc12was shown to be in

competition with the assembly of actin patches mediated by the
Arp2/3 complex (Suarez et al., 2015), we further tested whether
Cdc12 inhibition was responsible for Erg25 OE effects by blocking
Arp2/3 function in Erg25 overexpressing cells with CK666,
reasoning that it should rescue CR assembly. CK666 treatment
was performed in cells expressing Lifeact–GFP as well as Rlc1–
mCherry and Sid4–mCherry. In wild-type and Erg25 OE cells in
interphase, we first observed as expected a fast disappearance of

F-actin patches, and an accumulation of For3-dependent F-actin
cables (Fig. 6A). Next, by looking at cells overexpressing Erg25
entering mitosis within 1 h of CK666 treatment, we observed an
increase in the number of medially placed contractile rings as
compared to what was seen in non-treated cells overexpressing
Erg25 (Fig. 6C). This indicates that Arp2/3 inhibition can rescue the
effect of Erg25 OE. Since Arp2/3 complex inhibition affects
endocytosis, which may in turn alter membrane composition, we
also verified ergosterol levels before and after CK666 treatment.
While a mild reduction of ergosterol levels was detected in the
control, high ergosterol levels were maintained 1 h after CK666
addition in Erg25 OE cells (Fig. S6). This rules out the possibility
that the partial suppression of the Erg25 OE phenotype upon CK666
treatment is due to a reduction in the ergosterol amounts. Rather,
by favouring actin availability for formin, due to the inhibition of
Arp2/3, there is a partial rescue in the ability of Erg25 OE cells to
assemble F-actin from cytokinetic precursors. Likewise, a small
reduction in the number of abnormally placed contractile rings was

Fig. 5. Erg25 OE does not prevent the
recruitment of the formin Cdc12 to
cytokinetic precursor nodes.
(A) Epifluorescence medial plane images of
3YFP–Cdc12, Rlc1–mCherry and Sid4–
mCherry in control and Erg25 OE cells in early
mitosis (upper) and late mitosis (bottom).
Scale bars: 5 μm. (B) Timing of Cdc12–
3×GFP recruitment to cytokinetic precursor
nodes after SPB separation (time 0) in control
(green, n=96) and Erg25 OE cells (orange,
n=115). (C) Length of the Cdc12–3×GFP
domain at initial time of recruitment in control
(green, n=96) and Erg25 OE cells (orange,
n=115). ***P<10−10. (D) Maximum projections
of confocal z-stacks showing the Cdc12–
3×GFP, Rlc1–mCherry and Sid4–mCherry
distribution in control (top) and Erg25 OE cells
(bottom). Scale bars: 2 μm. (E) Time lapse
images (min) of Cdc12–3×GFP in control (top)
and Erg25 OE cells (bottom). Time 0
corresponds to the time of SPB separation.
Scale bar: 5 μm. (F) Epifluorescence images
of 3YFP–Cdc12, Rlc1–mCherry and Sid4–
mCherry at the time of SPB separation in
synchronized cdc25-22 control (left), mid1Δ
(center) and Erg25 OE cells (right). Scale
bars: 5 μm.
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observed in the deletion mutant of Myo1 (Myo1 is known to act as
an activator of Arp2/3 and also to organize sterol-rich domains)
(Fig. 6D) (Lee et al., 2000; Sirotkin et al., 2005; Takeda and Chang,
2005). These experiments are in agreement with our hypothesis that
increased ergosterol levels may inhibit the Cdc12-dependent
assembly of F-actin cables from cytokinetic precursors.

DISCUSSION
Although Erg25 OE results in a similar phenotype to that seen upon
the absence of the anillin-like protein Mid1, which blocks the
recruitment of essential CR components to cytokinetic precursors,
and that seen upon the deletion of reticulon-like proteins (tryΔ
mutant), which transforms the subcortical reticular ER into
cisternae, strikingly enough, neither of these pathways seems to
be strongly affected by Erg25 OE.
Our results show that Erg25 OE results in a moderate delay in

myosin II recruitment. Since neither Mid1 accumulation in medial
nodes upon nuclear export, nor Rng2 recruitment were delayed, we
can exclude that this results from a defect inMid1 activation by Plo1
(Almonacid et al., 2011; Padmanabhan et al., 2011; Laporte et al.,
2011). One hypothesis to explain this delay is that increasing
ergosterol levels may create a lipid environment that alters the
ability of myosin II to interact with Rng2.
Nevertheless, this short delay in myosin II recruitment cannot

account for the strong division plane positioning defects. Accordingly,
we observed another major phenotype upon Erg25 OE, consisting of
an inhibition of Cdc12-dependent F-actin assembly from cytokinetic
precursors in early mitosis.While we cannot exclude a reduction in the
amounts recruited to cytokinetic precursors, the formin Cdc12 was
always recruited to cytokinetic nodes at the proper time, i.e. ∼7 min

after mitotic entry. However, cytokinetic precursors did not generate
F-actin filaments. Importantly, analysing F-actin cables generated by
the formin For3 during interphase ruled out a general effect of Erg25
OE on F-actin cable stability or on formins in general. Furthermore, the
phenotype produced by increased ergosterol levels was partially
rescued by inhibiting Arp2/3, which competes with the formin Cdc12
(Suarez et al., 2015). Taken together, these data suggest that high
ergosterol levels may directly or indirectly affect the activity of the
formin Cdc12.

In contrast to what is observed in cdc12 mutants that only display
randomly organized medial wisps of actin that are not able to
condense into a ring structure (Chang et al., 1997, 1996), Erg25
overexpressing cells sometimes managed to assemble misshapen and
mis-oriented contractile rings after a long delay, ranging from 20 to
40 min. This suggests that Erg25 OE may affect Cdc12 activity only
transiently or partially, or that in late stages of cytokinesis, an
activatory mechanism for Cdc12 can overcome the inhibition
imposed on Cdc12 by increased ergosterol levels.

Cdc12 is an atypical formin that is not regulated by Rho-type
GTPases or an auto-inhibitory domain (Yonetani et al., 2008;
Bohnert et al., 2013). However, Cdc12 hyperactivity is lethal (Kovar
et al., 2003), indicating that its function needs to be strictly controlled.
Cdc12 is also subject to SIN-dependent regulation; the kinase Sid2
inhibits Cdc12 multimerization in order to properly assemble and
maintain the CR (Bohnert et al., 2013; Willet et al., 2015b). Our
results suggest that the lipid environment of Cdc12 at the plasma
membrane could represent a novel mechanism to negatively regulate
Cdc12 activity, and possibly also its level of recruitment.

How could the lipid composition of the plasma membrane regulate
the activity of a formin? Previous work has revealed that the

Fig. 6. Inhibition of the Arp2/3 complex by
CK666 partially rescues the effects of
Erg25 OE. (A) Lifeact–GFP fluorescence in
control and Erg25 OE cells, 10 min after being
treated or not with CK666. Maximum intensity
projections of z-series acquired at 0.3 μm
intervals. Scale bars: 5 μm. (B) Mean number
of F-actin cables per interphase cell measured
from maximum intensity projections in wild-
type (n=102) and Erg25 OE cells (n=111).
(C) Percentage of normal and abnormal rings
assembled within 1 h after the addition or not
of 100 μM CK666, as measured in time-lapse
movies of control (n=298 w/o CK666 and
n=418 with CK666) and Erg25 OE cells
(n=339 w/o CK666 and n=514 with CK666).
(D) Quantification of the percentage of normal
and abnormal septum types as determined
through Calcofluor staining in wild-type
(n=177), Erg25 OE (n=279), myo1Δ (n=351)
and Erg25 OE myo1Δ cells (n=332). All error
bars represent s.d.
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localization and activity of the mammalian formin mDia1 is tuned
by interactions with phospholipids (Ramalingam et al., 2010).
This multidomain protein is able to bind to negatively charged
phospholipids (PIP2 and phosphatidylserine) through a basic domain
located in the N-terminus of the protein, which mediates its
recruitment at the plasma membrane, and an additional membrane-
binding site in the C-terminal region has been shown to inhibit mDia1
F-actin polymerization activity (Ramalingam et al., 2010). This
shows that the recruitment and the activation of formins are two
distinct processes and that lipids can play an active role in both
processes. Our results in fission yeast suggest that ergosterol levels
may exert an inhibitory effect on Cdc12 by affecting its F-actin
nucleation activity and possibly, its full recruitment to the cortex.
From the point of view of the PM composition homeostasis, it is

legitimate to wonder whether increased levels of ergosterols have an
impact in the composition or organization of other plasma
membrane lipids. Indeed, ergosterols preferentially sort to the
outer leaflet of the plasma membrane (Solanko et al., 2018), and
their overproduction may affect the distribution of other membrane
components on the inner leaflet of the plasma membrane. As
mentioned above, PIP2 plays important roles in cytokinesis. In our
experiments using the PH domain of PLC1δ as a molecular probe
for PIP2, no major changes of this phospholipid could be detected
upon Erg25 OE at the moment of ring assembly (our unpublished
results). Although we cannot exclude the possibility that other lipids
might affect cytokinesis, we favour the hypothesis that the defective
ring assembly produced upon Erg25 OE is likely to be due to
increased ergosterol levels per se.
Furthermore, tight-packed sphingolipid–sterol clusters prime

lipid–lipid and lipid–protein interactions by sorting them according
to their length and level of saturation (Simons and Ikonen, 1997;
Simons and Toomre, 2000). In this way, SRDs organize the plasma
membrane in dynamic microdomains that, by concentrating specific
groups of proteins, can contribute to membrane and cytoskeleton
changes. Strikingly, the F-BAR protein Cdc15 is both involved in the
regulation of Cdc12 (Bohnert et al., 2013) and in the organization of a
SRD at the division site in late cytokinesis (Takeda et al., 2004). This
makes of Cdc15 a good candidate to link Cdc12 regulation to sterol
concentration. Further work will then be necessary to determine
whether and how Cdc15 could be involved in this process.
Finally, the physiological relevance of the negative regulation of

cytokinetic F-actin cables assembly by ergosterol levels remains to
be defined.
To conclude, we have shown that ergosterol levels at the plasma

membrane can regulate Cdc12-dependent assembly of F-actin cables
from cytokinetic precursors, a crucial step for the assembly of the
cytokinetic ring. The molecular mechanisms by which ergosterol
levels might regulate Cdc12 remain elusive at this stage. An
interesting approach would be to turn to in vitro studies in presence
of lipids to determinewhether membrane lipids can directly influence
Cdc12 activity. This would help us to understand the impact of
membrane microenvironment on CR assembly. It will also be very
interesting to determine whether our finding are relevant to animal
cells, where formins play a key role in cytokinesis, and in other
cellular processes where SRDs are also involved such as cell polarity
or cell migration (Gomez-Mouton et al., 2001; Head et al., 2014;
Mañes et al., 1999; Seveau et al., 2001).

MATERIALS AND METHODS
Strains and plasmids
Standard S. pombe media and genetic manipulations were used. All strains
used in the study were isogenic to wild-type 972 and are described in

Table S1. Strains from genetic crosses were selected by random spore
germination and replica in plates with appropriate supplements or drugs.

For erg25 overexpression, the plasmid pAF12, a derivative of pREP3x
(Maundrell, 1993) was created by cloning the erg25 open reading frame
(ORF) between the SalI and BamHI sites of the vector polylinker. In
parallel, we created pAF23, a modified pREP42X plasmid (Basi et al., 1993)
in which the weaker nmt1 promoter of pREP42X was replaced by the
strongest nmt1 promoter, by cloning it between SacI and PstI sites, upstream
of the erg25 ORF. All plasmids were checked by diagnostic PCR and
restriction enzyme digestion, and the DNA fragments amplified by PCR
were sequenced.

The erg6, scs2 and scs22 genes were deleted according to the method
described in Bahler et al. (1998b). KanMX6- or NatMX6-resistant
transformants were checked by PCR for correct DNA integration in the
desired locus.

Transformations were performed by using the lithium-DTT method.
20 ml of exponentially growing cells [optical density at 600 nm (OD600)
of 0.5–0.8] were harvested by centrifugation (2500 g for 5 min) and washed
with 10 mM Tris-HCl pH 7.4. After a second centrifugation (600 g for
1 min), they were re-suspended in 100 mM lithium acetate with 10 mMDTT
and were incubated on an orbital wheel at room temperature for 40 min.
100 µl of these cells were mixed with 80 μl of 100 mM lithium acetate, 10 µl
of single-stranded DNA from salmon testes (D9156-5ML, Sigma-Aldrich)
and 2 µg of the desired plasmid or the purified PCR product. After 10 min of
incubation on an orbital wheel, 300 µl of PEG 4000, previously diluted 1:1
in 100 mM lithium acetate, was added. After a second round of 10 min on
the wheel, 15 µl of DMSO were added and the cells were subjected to heat
shock at 42°C for 20 min in a water bath. Cells were then plated on selection
plates. To induce Erg25 OE, cells were grown overnight at 25°C in EMM2S
with 0.5 µg/ml thiamine. The following day, cells were washed three times
with sterile water and were inoculated in EMM2S without thiamine for 24 h.

Live-cell imaging and microscopy
Epifluorescence images were taken on a DMRXA2 upright microscope
(Leica Microsystems), equipped with a 100×1.4NA oil immersion PlanApo
objective and a Coolsnap HQ CCD camera (Photometrics). Exposure times
were 2 s for GFP, 1 s for mCherry and 10 ms for Calcofluor or filipin
staining. To analyse Erg25–ENVY localization an exposure time of 500 ms
for GFP was used.

To measure filipin intensity, a linescan throughout cells ranging from 11.5
to 13.5 μm in length was drawn according to the scheme shown in Fig. 1D.

For time-lapse imaging, 1 ml of exponentially growing cells were
harvested by centrifugation (600 g for 1 min), the supernatant was discarded
and 1 μl of the cells was deposited in a 2% YE5S agar pad at the center of
PDMS slide chambers prepared as described in (Costa et al., 2013).

Time-lapse movies were acquired with an inverted Spinning Disc Confocal
(Roper/Nikon), equippedwith a Plan Apochromat 100×1.4 NA objective lens
(Nikon), a PIFOC (perfect image focus) objective stepper, and a charge-
coupled device camera (EMCCD 512×512 QuantEM; Photometrics). To
analyse Cdr2–EGFP, Blt1–mEGFP, GFP–Cdc15 and F-actin, stacks of seven
planes spaced at 1 μm apart were acquired every 1 min for 3 h (binning 1, 300
EM gain; 200 ms exposure with 6% laser power for GFP and 5.5% laser
power for mCherry). For analysis of recruitment/enrichment of Mid1–
mEGFP, 2mYFP–Rng2 and Cdc12–3XGFP similar movies of 1 h were
acquired with a laser power of 8% for GFP.

All images were acquired and processed with MetaMorph 7.8 (Molecular
Devices).

Analysis of the Cdr2–EGFP domain length was performed on single
medial planes of images acquired with a spinning disc confocal microscope
with 2 s exposure of 7% GFP laser power. The fluorescence intensity of
Cdr2–EGFP was measured on maximal projections of z-stacks of seven
planes spaced at 1 μm apart on a 40-pixel-long line along the medial cortex.
Background fluorescence measured at the cell tips was then deduced.

To determine the Mid1–mEGFP and Cdr2–tagRFP cortical fluorescence
intensity, stacks of seven planes spaced at 1μm apart were acquired (binning
1, 300 EM gain; 2 s exposure with 7% laser power for GFP and 7% laser
power for mCherry). Intensity along a 100-pixel-long line on the medial
cortex was measured on single medial focal planes taken with a spinning
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disc confocal microscope. The percentage of Cdr2 nodes containing Mid1
was derived from linescans as the percentage of Cdr2 peaks corresponding
to a Mid1 peak.

For myosin II intensity measurement, the strain containing Rlc1–mCherry
and Sid4–GFP was imaged with a spinning disc confocal microscope, and
stacks of seven planes spaced at 1 μm apart was acquired every 1 min for 3 h
(binning 1, 300 EMgain; 100 ms exposurewith 10% laser power for GFP and
5.5% laser power for mCherry). The Rlc1–mCherry signal was measured on
maximal projection of 3D-stacks in a rectangle in the cell middle (scheme in
Fig. S4C). Background measured at the cell tips was then deduced.

Calcofluor staining
Cell wall staining was performed by mixing 1 ml of early exponentially
growing cells with 5 μl of 10 mg/ml Calcofluor (Fluorescent Brightener 28,
F3543, Sigma). After washing the cells in 1 ml of PBS, 2 µl of the mix was
deposited on slides for microscopy.

Miconazole treatment
Control and Erg25 OE cells were grown overnight in EMM2S with 15 μM
thiamine to achieve exponential growth. Cells were washed three times with
water and inoculated in EMM2S without thiamine to induce Erg25 OE for
22 h in the presence or absence of miconazole 1 μM before analysing
septum morphology through Calcofluor staining.

Filipin staining
Filipin (F4767, Sigma-Aldrich) was dissolved in DMSO to create a stock at
5 mg/ml. Sterol staining was performed by adding 5 µl of the filipin stock to
1 ml of cell culture, and cells were observed immediately to avoid filipin
internalization (Wachtler et al., 2003).

CK666 treatment
CK666 (SML0006, Sigma-Aldrich) was used at the final concentration of
100 μM from a 500× stock dissolved in DMSO. Cells with Lifeact–GFP
marker were incubated with the drug and immediately imaged for 1 h with a
spinning disc confocal microscopy (z-stacks of seven planes spaced by 1 μm
were acquired every 1 min, binning 1, 300 EM gain; 200 ms exposure with
6% laser power for GFP and 5.5% laser power for mCherry).

The number of actin cables in interphase cells of 10.5 to 12.5 μm in length
was measured 10 min after CK666 treatment from maximum intensity
projections of confocal z-stack spanning the entire cell at 0.3 μm intervals
(binning 1, 100 EM gain, 500 ms exposure with 25.5% laser power for GFP).

Statistical analysis
Sample size (n) is defined in each figure and is derived from three
independent experiments. The error bars correspond to standard deviation
(s.d.) between experiments and are specifically indicated in each figure.
Throughout all figures, two-tailed t-test analysis on homoscedastic
populations were applied: the significance of this statistical test is marked
with asterisks, with *P<0.05, **P<0.01 and ***P<0.001.
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Löffler, J., Kelly, S. L., Hebart, H., Schumacher, U., Lass-Florl, C. and Einsele,
H. (1997). Molecular analysis of cyp51 from fluconazole-resistant Candida
albicans strains. FEMS Microbiol. Lett. 151, 263-268. doi:10.1016/S0378-
1097(97)00172-9

Makushok, T., Alves, P., Huisman, S. M., Kijowski, A. R. and Brunner, D. (2016).
Sterol-rich membrane domains define fission yeast cell polarity. Cell 165,
1182-1196. doi:10.1016/j.cell.2016.04.037
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Table S1. Table of strains used in this study. 

Strain Genotype Source or reference 

Figure 1 

AP240 ade6-M210  ura4-D18  leu1-32  h- Laboratory collection 

AP5400 AP240 + pAF12 (pREP3X-Erg25) ade6-M210  ura4-
D18  leu1-32   

This study 

Figure 2 

AP5507 cdr2-EGFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5511 cdr2-EGFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 + pAF12 (pREP3X-Erg25) ade6-
M210  ura4-D18  leu1-32   

This study 

AP5718 blt1-mEGFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210  ura4-D18  leu1-32  

This study 

AP5741 blt1-mEGFP:kanMX6,  rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 + pAF12 (pREP3X- Erg25) 
ade6-M210  ura4-D18  leu1-32   

This study 

Figure 3 

AP5802 Pact1-lifeact-GFP:leu1+, rlc1-mcherry:Nat, sid4-
mcherry:hphMX6 ade6-M210  ura4-D18  leu1-32 

Laboratory collection 

AP5806 Pact1-lifeact-GFP:leu1+, rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 + pAF23 (pREP42X- Erg25) 
ade6-M210  ura4-D18  leu1-32   

This study 

Figure 4 and Figure S5 

AP5595 mid1-mEGFP:kanMX6, rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 ade6-  ura4-D18  leu1-32  

This study 

AP5621 mid1-mEGFP:kanMX6,  rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 + pAF12 (pREP3X- Erg25) 
ade6-  ura4-D18  leu1-32   

This study 

AP5629 2mYFP-rng2:ura4+, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-  ura4-D18  leu1-32   

This study 

AP5665 2mYFP-rng2:ura4+, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 + pAF12 (pREP3X- Erg25) ade6-  
ura4-D18  leu1-32   

This study 
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AP5598 GFP-cdc15:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-  ura4-D18  leu1-32   

This study 

AP5640 GFP-cdc15:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 + pAF12 (pREP3X- Erg25) ade6-  
ura4-D18  leu1-32   

This study 

Figure 5 

AP5601 cdc12-3YFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210  ura4-D18  leu1-32  

This study 

AP5635 cdc12-3YFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 + pAF12 (pREP3X- Erg25) ade6-
M210  ura4-D18  leu1-32   

This study 

AP6183 cdc12-3XGFP:kanMX6, rlc1-mcherry:kanMX6, 
sid4-mcherry:hphMX6 ade6-M210  ura4-D18  
leu1-32   

From Bohnert et al., 2013 
(KG15568) 

AP6193 cdc12-3XGFP:kanMX6, rlc1-mcherry:kanMX6, 
sid4-mcherry:hphMX6 + pAF12 (pREP3X-
Erg25)ade6-M210  ura4-D18  leu1-32   

This study 

AP6129 cdc12-3YFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 cdc25-22 ade6-M210  ura4-
D18  leu1-32   

This study 

AP6145 cdc12-3YFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 cdc25-22 + pAF12 (pREP3X- 
Erg25) ade6-M210  ura4-D18  leu1-32   

This study 

AP6166 cdc12-3YFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 cdc25-22 mid1::ura4+ ade6-
M210  ura4-D18  leu1-32   

This study 

Figure 6 

AP5802 Pact1-lifeact-GFP:leu1+, rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 ade6-M210  ura4-D18  
leu1-32   

Laboratory collection 

AP5806 Pact1-lifeact-GFP:leu1+, rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 + pAF23 (pREP42X- Erg25) 
ade6-M210  ura4-D18  leu1-32   

This study 

AP240 ade6-M210  ura4-D18  leu1-32   h- Laboratory collection 

AP5400 AP240 + pAF12 (pREP3X- Erg25) ade6-M210  
ura4-D18  leu1-32   

This study 

TP1032 myo1::kanMX6 h- ade6-M210  leu1-32 from Riken Institute 
(FY13570) 

AP5894 myo1::kanMX6 + pAF12 (pREP3X-Erg25) ade6-
M210  leu1-32   

This study 

Figure S1 
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AP240 ade6-M210  ura4-D18  leu1-32  h- Laboratory collection 

AP5400 AP240 + pAF12 (pREP3X-Erg25) ade6-M210 
ura4-D18  leu1-32   

This study 

AP5323 erg6Δ::kanMX6 ade6-M210  ura4-D18  leu1-32  This study 

AP5724 erg6Δ::kanMX6 + pAF12 (pREP3X-Erg25) ade6-
M210  ura4-D18  leu1-32   

This study 

AP5716 erg25-ENVY:kanMX6 ade6-M210  ura4-D18  
leu1-32   

This study 

AP5770 erg25-ENVY:kanMX6, (SPAC1B2.03c)ER-marker-
mcherry:natMX6 ade6-M210  ura4-D18  leu1-32 

This study 

AP5790 erg25-ENVY:kanMX6, rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 + pAF12 (pREP3X-Erg25) 
ade6-M210  ura4-D18  leu1-32   

This study 

AP5808 scs2Δ::kanMX6 ade6-M210  ura4-D18  leu1-32 This study 

AP5843 scs2Δ::kanMX6 + pAF12 (pREP3X-Erg25) ade6-
M210  ura4-D18  leu1-32   

This study 

AP5785 scs22Δ::kanMX6 ade6-M210  ura4-D18  leu1-32  This study 

AP5793 scs22Δ::kanMX6 + pAF12 (pREP3X-Erg25) ade6-
M210  ura4-D18  leu1-32   

This study 

AP5837 scs22Δ::kanMX6, scs2Δ::natMX6 ade6-M210  
ura4-D18  leu1-32   

This study 

AP5847 scs22Δ::kanMx6, scs2Δ::natMX6 + pAF12 
(pREP3X-Erg25) ade6-M210  ura4-D18  leu1-32  

This study 

Figure S2 

AP5507 cdr2-EGFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32  

This study 

AP5511 cdr2-EGFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 + pAF12 (pREP3X-Erg25) ade6-
M210  ura4-D18  leu1-32   

This study 

AP3788 cdr2-tagRFP:natMX6 mid1-mEGFP:kanMX6 
ade6-M210  ura4-D18  leu1-32   

Laboratory collection 

AP6094 cdr2-tagRFP:natMX6 mid1-mEGFP:kanMX6+ 
pAF12 (pREP3X-Erg25) ade6-M210  ura4-D18  
leu1-32   

This study 

Figure S3 

AP6184 sid4-GFP:kanMX6, rlc1-mcherry:NatMX6 ade6-
M210  ura4-D18  leu1-32    

This study 

AP6155 sid4-GFP:kanMX6, rlc1-mcherry:NatMX6 + pAF12 
(pREP3X-Erg25) ade6-M210  ura4-D18  leu1-32    

This study 

Figure S4 and S6 
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AP5802 Pact1-lifeact-GFP:leu1+, rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 ade6-M210  ura4-D18  
leu1-32   

Laboratory collection 

AP5806 Pact1-lifeact-GFP:leu1+, rlc1-mcherry:natMX6, 
sid4-mcherry:hphMX6 + pAF23 (pREP42X- Erg25) 
ade6-M210  ura4-D18  leu1-32   

This study 
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Figure S1. Cytokinetic defects induced by Erg25 OE require an active sterol biosynthetic pathway, 

while Erg25 affects ER organization with little impact on division plane positioning. 

A: Schematic representation of the late stages of ergosterol biosynthetic pathway in S. pombe 

deduced from S. cerevisiae (adapted from Iwaki et al., 2008). The red arrow indicates at which level 

of the pathway miconazole acts. B: Calcofluor staining of control and Erg25 OE cells, treated and 

non-treated with 1μM miconazole. Scale bar, 5μm. C: Quantification of septum defects observed by 

calcofluor staining of control (n=116), Erg25 OE (n=338), erg6Δ (n=477) and Erg25 OE erg6Δ cells 

(n=395). Error bars: SD. D: Epifluorescence images of Erg25-ENVY and of the ER marker Elo2 fused 

to mcherry (ER-mcherry). Scale bars: 5μm. E: Epifluorescence images of Erg25-ENVY in control (top) 

and Erg25 OE cells (bottom) in interphase (left) and in late cytokinesis (right). Scale bars: 5μm. F: 

Quantification of ER shape in interphase in control (n=303) and Erg25 OE cells (n=404). Error bars: 

SD. G: Quantification of septum types in Erg25 OE (n=484), scs22Δ (n=391), scs22Δ Erg25 OE (n=469), 

scs2Δ cells (n=308), scs2Δ Erg25 OE (n=336), scs22Δscs2Δ (n=413) and scs22Δscs2Δ Erg25 OE cells 

(n=377). Error bars: SD. 
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Figure S2. Characterization of Cdr2 and Mid1 domains upon Erg25OE. 

A: Length of the Cdr2-EGFP domain relative to cell length in control (n=278) and Erg25 OE cells 

(n=418). B: Integrated fluorescence intensity (a.u.) of Cdr2-EGFP domain relative to cell length in 

control (n=278) and Erg25 OE cells (n=418). C: Percentage of Cdr2-tagRFP nodes containing Mid1-

mEGFP in single cells. Error bars: SD (n˃50 cells, top right). D: Medial planes confocal images of 

Mid1-mEGFP and Cdr2-tagRFP in control (left) and Erg25 OE cells (right). Scale bar, 5 μm. E-F: 

Linescan analyzing Mid1-mEGFP and Cdr2-tagRFP intensity along the medial cortex (bottom) along 

the cells shown at the top right. 
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Figure S3. Analysis of myosin II behavior in Erg25 OE cells. 

A: Time-lapse analysis of Sid4-GFP and Rlc1-mcherry in control (top) and Erg25 OE cells (bottom). 

Medial plane confocal images are shown. Time 0 corresponds to mitotic entry. Scale bars: 5 μm. B: 

Measurement of myosin II domain length at the time of its initial recruitment in control and Erg25 

OE cells (n=30). C: Analysis of myosin II intensity (a.u.) in the central region in control and Erg25 OE 

cells (n=5). t=0 corresponds to SPB separation. 
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Figure S4: Inhibition of F-actin nucleation from cytokinetic precursor nodes upon Erg25 OE 

Time-lapse images of control (A) and Erg25 OE cells (B) expressing lifeact-GFP, Rlc1-mcherry and 

Sid4-mcherry. Time 0 corresponds to mitotic entry. Scale bars: 5μm.  
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Figure S5. Analysis of Mid1, Rng2 and Cdc15 by time lapse imaging upon Erg25 OE. 

Time lapse images of Mid1-mEGFP (A), 2mYFP-Rng2 (B) and GFP-Cdc15 (C) in control (top) and Erg25 

OE cells (bottom). Time 0 corresponds to the time of SPB separation. Scale bar, 5 μm. 
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Figure S6. Measurement of Ergosterol levels after treatment with CK666 

A-B: Filipin intensity expressed in a.u. was measured in control and Erg25 OE cells at time 0 (A) and 

after 1h of CK666 treatment (n=30 cells) (B). C:  Graph showing the average curves of filipin intensity 

of control and Erg25 OE cells at time 0 and after 1h treatment with CK666. 
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Movie 1. F-actin dynamic distribution in a representative dividing control cell. 
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Movie 2. F-actin abnormal organization upon Erg25 OE. 
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Movie 3. Multiple examples of F-actin aberrant organization upon Erg25 OE in comparison with 

control cells. 

J. Cell Sci.: doi:10.1242/jcs.227447: Supplementary information

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://movie.biologists.com/video/10.1242/jcs.227447/video-3


Arbizzani Federica- Thèse de doctorat- 2019                     
 

 

68 
 

Article 2: Septin ring assembly by anillin-dependent compaction of a diffuse septin 

meshwork surrounding the acto-myosin contractile ring in fission yeast 
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SUMMARY  

Cell division is a fundamental process for cell proliferation and renewal, ending with cytokinesis that 

allows the physical separation of daughter cells.  Besides the acto-myosin contractile ring, cytokinesis 

most often involves an additional component of the cytoskeleton, the septins, which form rings at the 

division site delineating the edges of the cleavage furrow. These conserved scaffold proteins act as 

macromolecular cortical organizers and are crucial for the success of cell division. Their dynamic 

behavior during cytokinesis progression is known to be regulated by post-translational modification and 

interactions with septin-associated regulators. However, how septins are finely tuned in space and time 

to properly perform their function during cytokinesis is still not well understood. In this study, we used 

fission yeast to explore septin organization throughout the cell cycle and decipher the key factors 

responsible for their regulation. Live-imaging analysis with precise timers to monitor the progression of 

cell division has uncovered that septins are initially recruited in a 1.5 µm-wide diffuse meshwork 

surrounding the CR in late anaphase. This meshwork then undergoes compaction into rings when CR 

constriction is initiated. We found evidence that the anillin-like protein Mid2 is necessary to promote 

this new compaction step and may function as a bundler for septin filaments. We also found that while 

Mid2-driven septin compaction requires mitotic exit, the SIN pathway is necessary for both septin 

meshwork assembly and compaction. Finally, PIP2 levels were found to be critical to initiate septin 

recruitment to the plasma membrane, before Mid2 becomes available at the initiation of CR 

constriction. This work highlights the complex regulations that allow the coordination between septin 

ring assembly and cell cycle progression. 
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INTRODUCTION 

Cytokinesis is an irreversible process which must precisely partition an equal set of the replicated 

chromosomes and organelles to each daughter cell. Defects in this process can lead to chromosome mis-

segregation or aneuploidy, a hallmark of cancer cells (Fujiwara et al., 2005; Lacroix and Maddox, 2012; 

Storchova and Pellman, 2004). Cytokinesis completion requires the participation of different 

components of the cytoskeleton, namely, the actin cytoskeleton at the basis of the contractile ring that 

pinches in the plasma membrane to create the cleavage furrow, microtubules involved in division plane 

signaling in animal cells, as well as septins which are present at the division site from yeast to mammals. 

Septins are unique cytoskeletal components capable of assembling together to form intracellular 

structures of varied shapes such as filaments and rings. Their ability to interact with cellular membranes 

as well as actin filaments and microtubules allow them to participate in many biological processes, 

working as scaffolds for protein-protein interactions and/or as diffusion barriers for protein 

compartmentalization (Bridges and Gladfelter, 2015; Mostowy and Cossart, 2012; Saarikangas and 

Barral, 2011). These conserved GTP binding proteins were initially discovered in budding yeast, where 

they localize at the division site and are essential for cytokinesis (Cauvin and Echard, 2015; El Amine et 

al., 2013; Estey et al., 2010; Gladfelter et al., 2001; Hartwell, 1971; Kim et al., 2011; Kozubowski et al., 

2005; McMurray and Thorner, 2009; Versele and Thorner, 2005; Wu et al., 2010). Septin organization 

undergoes multiple transitions during the cell cycle. In early G1, septins initially assemble as a patch-like 

structure at the presumptive bud site. Upon bud emergence, this patch narrows to form a single ring 

marking the future site of bud growth. Once the bud has formed, the septin ring extends into an 

hourglass-shaped collar present at the bud neck until mitotic entry. At cytokinesis onset, the septin 

hourglass splits into two distinct rings that sandwich the CR (Gladfelter et al., 2001). Finally, after cell 

division, the septin rings are disassembled and the septin subunits are partially replaced and recycled for 

a new cycle to begin (McMurray and Thorner, 2009). This dynamic behavior needs to be strictly 

controlled to ensure a proper cytokinesis, and several post-translational modifications of septins have 

been described. Phosphorylation regulates septins localization and high order rearrangements (Garcia et 

al., 2011; McQuilken et al., 2017); sumoylation seems to play a role in septin disassembly (Johnson and 

Blobel, 1999; Takahashi et al., 1999); and acetylation might control septin hourglass formation and 

stability (Marquardt et al., 2018; Mitchell et al., 2011; Ribet et al., 2017).  

Importantly, septins are the first proteins recruited at the bud neck where they serve as a scaffold for 

the sequential and ordered assembly of the acto-myosin based contractile ring (Bhavsar-Jog and Bi, 

2017; Juanes and Piatti, 2016; Meitinger and Palani, 2016). Among the several proteins that they help 

anchoring at the division site, septins are required for the localization and maintenance of Myo1, the 
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single myosin type II present in budding yeast. Disruption of the septin structure in a temperature 

sensitive mutant leads to the loss of previously formed Myo1 rings and inability to form new ones (Bi et 

al., 1998; Lippincott and Li, 1998). 

Later on, when contractile ring constriction occurs, the septin double ring act as key cortical barriers to 

restrict exocyst components and the chitin synthase II (Chs2) enzyme at the division site (Dobbelaere 

and Barral, 2004). This is crucial to create specialized confined zones where membrane reorganization 

and septum formation at the cleavage furrow happen before cell division.  

Septins are also present in animal cells and localized at the cleavage furrow during cytokinesis. They 

contribute to the recruitment of the cytokinetic apparatus to the site of cell division and to regulate its 

contraction (Kinoshita et al., 1997; Maddox et al., 2007; Mavrakis et al., 2014). Afterwards, septins are 

also important for the maturation of the intercellular bridge and the midbody formation and eventually 

for the abscission event (El Amine et al., 2013; Estey et al., 2010; Karasmanis et al., 2019; Renshaw et al., 

2014). 

In addition, in higher eukaryotes, septins localize at boundaries between cell compartments with 

pleiotropic roles (Caudron and Barral, 2009; Saarikangas and Barral, 2011): i.e. in the annulus separating 

the tail from the midbody in spermatozoa, which is key for spermiogenesis and reproduction (Ihara et 

al., 2005; Kuo et al., 2015); at the base of cilia where they are required for a correct cilium formation 

and function (Hu et al., 2010); in cage-like structures to respond to microbial infections in Listeria 

monocytogenes and Shigella flexneri (Krokowski et al., 2018; Mostowy et al., 2010) and at the base of 

dendritic protrusions in neurons where septins are key for spine and dendrite maturation (Ewers et al., 

2014; Tada et al., 2007).  

 

One important factor in the organization of septins is the conserved protein anillin, whose disruption 

leads to defects in cytokinesis (Echard et al., 2004; Field et al., 2005a; Kechad et al., 2012; Oegema et al., 

2000; Somma et al., 2002; Straight et al., 2005; Zhao and Fang, 2005). In vitro studies have shown that 

anillin can bind septin and actin filaments. Indeed, an important function of anillin is the recruitment of 

septins to the AMR during cell division (Field et al., 2005a; Kinoshita et al., 2002; Oegema et al., 2000). It 

is well documented that anillin interacts with septins through a C-terminal region that comprehends the 

anillin homology (AH) domain upstream of the terminal PH domain (Piekny and Maddox, 2010). The C-

terminal region of Bud4, the anillin-like protein in budding yeast, is important to direct septin 

organization during bud site selection and bud growth and to preserve the integrity of the septin ring 

during cytokinesis (Kang et al., 2013; Wu et al., 2015). Indeed, in bud4Δ mutants the septin double ring 

disassembles during cytokinesis (Eluere et al., 2012; Kang et al., 2013; Wloka et al., 2011), whereas the 

overexpression of Bud4 leads to the formation of extra septins structures (Kang et al., 2013). Recently, 
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polarized fluorescence microscopy studies have described a key role of Bud4 in the reorientation of 

septin filaments in the hourglass to double ring transition (McQuilken et al., 2017). 

The fission yeast Schizosaccharomyces pombe, a model system for cell division studies, divides by the 

assembly and constriction of a medially placed actomyosin-based contractile ring (CR) (Lee et al., 2012; 

Pollard and Wu, 2010; Rincon and Paoletti, 2012; Rincon and Paoletti, 2016). This process is tightly 

regulated both in space and time and occurs in multiple stages: during interphase, contractile ring 

components are first recruited by the anillin-like protein Mid1 to precursor nodes on the medial cortex 

of the cell, before compacting into a tight medial CR. Upon mitotic exit, the Septation Initiation Network 

(SIN), related to the budding yeast mitotic exit network (MEN) and the metazoan Hippo pathway 

(Hergovich et al., 2006), promotes the next steps, represented by constriction of the CR and synthesis of 

an extracellular septum composed of polysaccharides (Krapp et al., 2004b; Simanis, 2003; Simanis, 

2015). Eventually sister cell separation ensues, when the inner layer of the septum is digested by 

glucanases (Cortes et al., 2016; Perez et al., 2016). In contrast to budding yeast, in S. pombe, septins are 

mostly involved in late cytokinetic events.  

The S. pombe genome contains seven genes encoding septins, identified by sequence homology with 

the S. cerevisiae counterparts: Spn1-4 are expressed in vegetatively growing cells, whereas Spn5-7 

exclusively function during sporulation in the formation of the forespore membrane (Hall et al., 2008; 

Onishi et al., 2010). Differently from S. cerevisiae, where septins are necessary for CR formation, fission 

yeast septins are recruited after the contractile ring has been fully assembled. Septins form first a single 

ring in late mitosis which splits in two during CR constriction and septum formation. This double ring 

does not constrict together with the CR, but remains on the cell surface to delineate the boundaries of 

the cleavage furrow and dissociates after cell separation (An et al., 2004; Berlin et al., 2003; Juanes and 

Piatti, 2016; Wu et al., 2003). Septin mutants have defects in cell-cell separation since they have a key 

role, in concert with the exocyst complex, in the delivery of the two septum hydrolytic enzymes (Agn1 

and Eng1) to the area around the septum, regulating thereby the step that finishes cytokinesis (Alonso-

Nunez et al., 2005; Martin-Cuadrado et al., 2005). Recently, it has also been shown that septins play a 

role in driving the proper recruitment and maintenance in the septum region of the SIN effector kinase 

Sid2 and of the glucan synthase enzymes Bgs1 and Ags1, to guarantee a successful cytokinesis (Zheng et 

al., 2018).  

S. pombe genome encodes two anillin related proteins: Mid1 and Mid2. Genetic tests have excluded any 

overlapping functions between them, indicating that they work independently in separate phases of the 

cell cycle (Berlin et al., 2003). Mid2 localizes at the division site in a septin-dependent manner (Berlin et 

al., 2003). Moreover, the fact that a mid2Δ strain displays the same phenotype than Spn4-deleted cells, 

where nuclear division and septum synthesis occur but cell separation is delayed (Berlin et al., 2003) 
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suggests that Mid2 and septins work together in the same process. Indeed, FRAP analysis has revealed 

that, in the absence of Mid2, septins are much more dynamic (30-fold more) compared to a wild type, 

indicating a role of Mid2 in septin organization  (Berlin et al., 2003). Mid2 protein levels are tightly 

controlled during the cell cycle, peaking during septation and decreasing after cell separation. Although 

this might be controlled by phosphorylation, the candidate kinases have not been identified yet (Kim et 

al., 2017; Tasto et al., 2003). Moreover, Mid2 contains three PEST sequences, one in a medial region and 

two at the N-terminus, which could act as signals for protein degradation through ubiquitination and 

SCF-dependent proteolysis (Alonso-Nunez et al., 2005; Petit et al., 2005; Tasto et al., 2003). 

Overexpression of a non-degradable Mid2 mutant let septin filaments persist through the next cell cycle, 

indicating that Mid2 is involved in septin rings maintenance (An et al., 2004; Tasto et al., 2003). 

Altogether these evidences indicate that: 1) septin filaments can organize as a ring in a CR-dependent 

fashion, 2) Mid2 recruitment is septin-dependent and 3) Mid2 contributes to septin ring stability.  

However, how septins and Mid2 are precisely regulated in space and time to properly perform their 

function and how Mid2 contributes to septin ring organization remains elusive. Here, by using live cell 

imaging and precise timers for mitotic progression we describe in details septins and Mid2 behavior in 

fission yeast. Our approach identified a new step in septin ring assembly: septin compaction from a 

loose meshwork surrounding the CR into a tight ring when CR constriction is initiated. We show that this 

step requires Mid2 that has the properties of a bundler for septin filaments promoting their compaction. 

Second, septin compaction is inhibited in cells blocked in mitosis in spite of Mid2 association with 

septins. Since Mid2 is hyperphosphorylated in mitosis, septin compaction may require Mid2 

dephosphorylation at mitotic exit. Third, compaction is also strongly perturbed, together with septin 

accumulation at the division site when the SIN is inactivated. Finally, we show that another important 

regulator of septin ring assembly is PIP2 that acts both on the timing of septin meshwork assembly and 

amounts present at the division site but perturbs their compaction only slightly. We conclude that a 

combination of positive and negative inputs contribute to the precise regulation of septin ring assembly 

by Mid2 at mitotic exit in fission yeast. 

RESULTS 

Septins form a diffuse network in the vicinity of the contractile ring before compacting into a ring 

structure 

Fission yeast septins have been localized to the division site where they form non-contractile rings 

defining the edge of the cleavage furrow while the acto-myosin based contractile ring constricts and the 

septum is built (Berlin et al., 2003; Tasto et al., 2003). However, relatively little is known on how septin 

rings assemble. We therefore decided to characterize by time-lapse imaging the dynamic organization of 
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septins with respect to spindle assembly and elongation, used as a proxy for mitosis progression, and 

contractile ring assembly and constriction.  

To do so, we created a strain expressing the septin Spn1 C-terminally fused to GFP, as well as the 

regulatory light chain of myosin II Rlc1 fused to mCherry to monitor the contractile ring, and the spindle 

pole body (SPB) component Sid4 tagged with mCherry to monitor the mitotic spindle. Indeed, since 

septins interact strictly with each other, imaging Spn1 is sufficient to have an overview of the whole 

septin network (An et al., 2004). In these movies, SPB separation was defined as a timer for mitotic entry 

(t=0 in Fig1). 

Septins appeared on the cortex as a band surrounding the CR about 18 minutes after SPB separation, 

when the SPBs were the further apart, corresponding to maximum spindle elongation in anaphase (Fig 

1A and 1D, t=18.7 ± 2.3). 7 minutes later, septins compacted into a tight ring structure (t=25.6 ± 2.8), 

concomitant with the initiation of CR constriction (t=26.1 ± 2.9). This compaction phenomenon is best 

visualized on enlargements of the medial region of the cell recorded at 1 minute intervals (Fig1C, dark 

green asterisk). About 20 minutes later, by the end of CR constriction (t=48.5 ± 3.6, Fig1C), the septins 

were visualized as a double ring (t= 43.4 ± 6.5, Fig1C, red asterisk). Eventually, septins re-spread to the 

new cell tip generated when the two sister-cells separated from one-another by cleavage of the septum 

(Fig1C, yellow asterisk). 

Quantitative analysis of the septin signal further revealed that septin intensity raised for a period of 

about 15 minutes after they appeared on the cortex. The intensity then stayed roughly constant for 30 

minutes before decreasing rapidly over 10 minutes (Fig 1F). Furthermore, analyzing the width of the 

cortical region on which septins were distributed revealed a two-fold reduction in width, from 1.4 ± 0.1 

μm at their appearance to 0.75 ± 0.1 μm after compaction (n=30, Fig1G light green dots).  

To conclude, this detailed live analysis of septins using the mitotic spindle and the CR as cell cycle timers 

reveals a new step in the process of septin ring assembly that we have named compaction.  

 

The anillin Mid2 is necessary for septin ring compaction 

A similar imaging strategy was taken to define the dynamic organization of the anillin-like protein Mid2, 

known to colocalize with septins and modulate their dynamics (Berlin et al., 2003; Tasto et al., 2003). 

Using a strain expressing Mid2 C-terminally fused to Envy, as well as Rlc1-Cherry and Sid4-mCherry, we 

found that Mid2 appeared 8 minutes later than septins (t=26.9 ± 2.5) at time of septin compaction 

(Fig1C right, light green asterisk and Fig1C left, dark green asterisk, Fig1D-E) and CR constriction (t=25.2 

± 2.4, Fig1B-E). Later on, Mid2 compacted slightly (Fig1C right, dark green asterisk), appeared as two 

rings concomitantly to septins (Fig1C, red asterisk) and spread  out on the newly formed cell tips upon 

daughter cell separation (Fig1C, yellow asterisk).  
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Quantitative analysis of Mid2 signal confirmed the late recruitment of Mid2 compared to septins and 

showed that its intensity raised for about 30 minutes, stayed constant for 10 minutes and decreased 

rapidly, similarly to septins (Fig1F). Moreover, we found that Mid2 was recruited in a narrower region 

than septins and its compaction was limited compared to septins with the width decreasing from 1.1 ± 

0.1 μm at appearance to 0.8 ± 0.1 μm after compaction (Fig1G dark green dots).  

The coincidence between CR constriction, septin compaction and Mid2 recruitment suggested us that 

these events may be coupled. To determine if this was the case, we first tested whether Mid2 was 

involved in septin compaction. To do so we analyzed septin ring assembly in a mid2 deletion mutant 

(Berlin et al., 2003), using the same markers for mitosis and cytokinesis progression as before. Time-

lapse movies showed that in mid2Δ cells, septin initial recruitment occurred normally (Fig2 B, C, E), but 

septin intensity stopped increasing prematurely, about 8 minutes after they appeared, ie at the time 

when Mid2 normally appears (Fig2F). As a consequence, septin maximum intensity was decreased by 3 

fold in mid2Δ compared to control cells (n=6 for both samples) (Fig2F). Furthermore, septin compaction 

was completely abolished (Fig2C, 2G). Instead, septin retained a diffuse distribution around the CR 

(Fig2C and S1A). As a consequence, splitting into two rings did not occur. Finally, whereas the CR 

constriction took normally place (FigS1B), cell separation and Mid2 re-spreading were delayed to the 

next cell cycle, as reported in a mid2 deletion mutant [Fig2 A-E, (Berlin et al., 2003; Tasto et al., 2003)].  

 

Mid2 may function as bundler for septin filaments 

The fact that Mid2 is necessary for septin compaction, suggested us that Mid2 may function as a 

bundling protein for septin filaments promoting their alignment and assembly into a ring structure. To 

perform this activity, Mid2 should be able not only to interact with septins, but also to dimerize or 

multimerize in order to bridge together two or more septin filaments.  

To test this hypothesis, we verified that Mid2 could co-immunoprecipitate with septins (see FigS3C). We 

also designed co-immunoprecipitation assays between differentially tagged versions of Mid2 co-

expressed in the same cells. These experiments were performed in the presence or in the absence of 

Spn1 to exclude bridging by septin filaments of differentially tagged versions of Mid2. Our experiments 

show that Mid2-mEGFP co-immunoprecipitates with Mid2-13Myc regardless of the presence of septin 

filaments (Fig3A-D).  

In order to map the Mid2-Mid2 interaction site, we also performed immunoprecipitations with a 

truncated version of Mid2 lacking the PH domain (Mid2-ΔPH) or with the isolated PH domain (see Fig3E 

for mid2 domains organization). Mid2-ΔPH-mEGFP co-immunoprecipitated with Mid2-13Myc to the 

same extent as Mid2-mEGFP, in the presence or absence of septin filaments (Fig3A-B). Mid2 PH domain 

also showed the ability to self-interact in co-immunoprecipitation assays, even in the absence of septins 
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(Fig3C-D). This altogether indicates that Mid2 has the ability to form structures of higher molecular 

order. Since Mid2 arrival at the cortex also coincides with septin compaction and Mid2 is necessary for 

this step, this suggests that Mid2 may promote compaction by bundling septin filaments.  

 

Septins and Mid2 form wide bands surrounding the CR when cells are blocked in mitosis 

Our work shows that septin filaments appear at a very precise time in mitosis, when the anaphase 

spindle length is maximum, and compact into rings when Mid2 appears and the CR starts constricting. 

This provides evidence for a tight coupling between septin ring assembly and cell cycle progression. To 

get insights into how this coupling is achieved, we first analyzed the localization of Spn1 and Mid2 in 

mutants blocked in mitosis, with a high CDK activity. We first used the cold sensitive β-tubulin mutant 

nda3-KM311 expressing Spn1-GFP or Mid2-Envy together with Sid4-mCherry and Rlc1-mCherry. 

Strikingly, upon cold treatment, cells blocked in mitosis, carrying a CR, formed a large band of septins or 

Mid2 surrounding the CR rather than septin rings in control cells (Fig4A left). Interestingly, Spn1-GFP and 

Rlc1-mCherry intensity measurements by linescan along the cell axis showed a decrease in Spn1-GFP 

signal at the exact position of the CR (Fig4A right and FigS2B-C). Furthermore, imaging these cells at one 

hour intervals after the temperature shift showed that the width of the septin and Mid2 domains 

gradually increased in nda3-KM311 cells (from 1.2 μm ±0.03 after 1 hour at 18ºC to 2.4 μm ± 0.2 after 7 

hours at 18°C), while narrow rings were always present in control cells (0.9 μm ± 0.03, FigS2A). A similar 

situation was observed for Mid2 domain with width increasing from 1.0 μm ± 0.1 after 1 hour at 18ºC to 

2.0 μm ±0.1 after 7 hours in nda3-KM311 cells compared to narrow rings in control cells (0.9 μm ± 0.4, 

FigS2A). Release from the mitotic block by transferring the cells back to 25ºC for 1 hour resulted in a 

compaction of both septin and Mid2 domains with domain width decreasing to 1.2 μm ± 0.1 and 1.3 μm 

± 0.2, respectively (FigS2A).  

We also used the thermo-sensitive kinesin-5 cut7-24 mutant, which forms a monopolar mitotic spindle 

at 36ºC, producing a temporary cell cycle arrest in metaphase with a high Cdk activity (Fu et al., 2009; 

Hagan and Yanagida, 1990; Hagan and Yanagida, 1992). Live cell imaging of the Spn1-GFP Rlc1-mCherry 

Sid4-mCherry strain in the wild-type cells at 36ºC slightly accelerated mitosis progression compared to 

25ºC (Fig4B-C compared to Fig1A, C and D), but septin appearance occurred at time of maximum spindle 

elongation and septin compaction coincided with the initiation of CR constriction, like at 25ºC. In the 

cut7-24 mutant, since no SPB separation could be observed, the time of transfer to 36ºC was defined as 

time 0 for this experiment. In this background septins appeared 9 minutes after the temperature shift in 

a large band (1.7 ± 0.2 μm compared to 1.45 ± 0.1 μm in control cells, Fig4F) and were excluded from 

the CR as seen in nda3-KM311 cells. Unlike in control cells where septin compacted to 0.9 ± 0.05 μm, 

these bands became slightly larger over time in cut7-24 cells (2.0 ± 0.1 μm Fig4D-F), until they escaped 
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the cell cycle arrest 34.4 ± 9.7 min in mean after transfer to 36ºC, as visualized by the initiation of CR 

constriction. Septins compacted at the same time (t=34.1 ± 9.4). Later on, septins were observed as two 

rings at t=50.9 ± 11.9 and re-spread along the cell cortex at t=60.9 ± 13.7(Fig4D-E). Intensity analysis 

displayed that in the cut7-24 mutant the increase in the septin signal occurs before control cells, but 

then it remains rather fixed until the cells escape from the mitotic block, where a faster signal 

enhancement is detected (after the dotted line, Fig4G). However, it never reaches the values measured 

in the control showing a general reduction of about 1.3 fold (Fig4G).  

Live cell imaging of the Mid2-Envy Rlc1-mCherry Sid4-mCherry strain in the wild-type cells at 36ºC 

showed that similar to septins, Mid2 dynamics were accelerated at 36ºC compared to 25ºC (FigS4A-B). 

In the cut7-24 mutant, Mid2-Envy appeared at the same time as in control cells (t=18± 3.9 compared to 

t=17.5 ± 1.2) but formed a faint band surrounding the CR that enlarged slightly over time (FigS4C-E), 

until cells escaped mitosis and CR constriction was initiated (t=33.9 ± 8.5) as well as Mid2 compaction 

(t=33.7± 8.6, FigS4C-E). Ring splitting and re-spreading were strongly delayed (t=46.0 ± 9.8 and t=66.9 ± 

17.0, respectively) (FigS4D).  

Overall, these data suggest that high Cdk activity allows septin and Mid2 recruitment, but inhibits the 

following compaction phase, even if Mid2 is present, suggesting that Mid2 bundling activity is impaired 

in these conditions.  

This prompted us to investigate if Mid2 had still the ability to self-interact in this context. To do so, we 

performed co-immunoprecipitations between Mid2-13Myc and Mid2-GFP, Mid2ΔPH-GFP or the single 

PH domain of Mid2 tagged with GFP in the control or nda3-KM311 mutant cells, after 7 hours of 

incubation at 18◦C to block cells into mitosis (FigS3A-B). This did not reveal any modification in the ability 

of Mid2 to self-interact.   

We then tested if high Cdk activity could reduce the avidity of Mid2 for septins. To test this hypothesis, 

coimmunoprecipitation assays between Spn1-GFP and Mid2-13Myc were performed in control and 

nda3-KM311 cells after 7 hours of incubation at 18°C or after 7 hours at 18°C followed by 1 hour at 25°C 

to release cells from the mitotic block (FigS3C). This did not reveal significant differences in the ability of 

Mid2 to interact with septins (FigS3D).  

This suggests that although Mid2 is necessary for septin compaction, it is not proficient for this function 

when Cdk1 activity is high, independently from its ability to self-interact or to interact with septins. Since 

Mid2 is hyperphosphorylated during mitosis (Tasto et al., 2003), one hypothesis is that Mid2 

phosphorylation prevents septin compaction. Or else, Mid2 is not sufficient to promote septin ring 

compaction on its own.  
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SIN activity is required for normal septin accumulation at the division site and compaction 

Since septin compaction is coincident with CR constriction, an event known to be triggered by the SIN 

pathway (McCollum and Gould, 2001), we next wondered if septins and Mid2 were also under the 

control of this pathway.  

To check this, we analyzed the behavior of septins in the temperature sensitive hypo-active SIN mutant 

sid2-250 at the non-permissive temperature of 36º C (Balasubramanian et al., 1998; Sparks et al., 1999). 

Live cell imaging of cell expressing Spn1-GFP Rlc1-mCherry Sid4-mCherry sid2-250 revealed that in the 

majority of cells septins appeared as a diffuse cortical band at the normal timing controlled to control 

cells (Fig 5A-C, D-E). However, the intensity of the septin signal was diminished by ~ 4.5 fold (Fig5F) and 

compaction failed in 75% cells, while a loose compaction was observed in the remaining 25% (Fig5B-C). 

Indeed, quantification of the extent of compaction showed that while in control cells the width of the 

septin recruitment domain decreased from 1.5 ± 0.1 μm to 0.9 ± 0.1 μm between appearance and 

compaction state, around 5 minutes later, in the majority of sid-250 mutant cells (phenotype 1) the 

initial width of the septin domain went from 1.6 ± 0.1 μm to 1.9 ± 0.1 μm in a similar period of time, 

whereas few sid2-250 cells (phenotype 2) went from 1.6 ± 0.1 μm to 1 ± 0.1 μm around 9 minutes from 

their appearance (Fig5G). Similar observations, except for the fact that only the no compaction 

phenotype was detected, were made for Mid2 in sid2-250 cells at 36ºC (FigS5). 

This data altogether suggests that the SIN pathway is not only required for septin and Mid2 compaction, 

but it is also involved in regulating their assembly and recruitment at the plasma membrane in the cell 

middle.  

A role for PIP2 in controlling septin appearance and accumulation at the division site 

Phosphatidylinositol 4,5-bisphosphate (PIP2), is strongly enriched at the division site during cytokinesis 

(Cauvin and Echard, 2015; Echard, 2012) and is known to promote septin filament assembly (Bertin et 

al., 2010; Tanaka-Takiguchi et al., 2009). We checked how PIP2 affects septin ring assembly in S. pombe 

using the temperature sensitive PI5-kinase mutant its3-1, which is characterized by strongly reduced 

levels of PIP2 (Snider et al., 2018; Zhang et al., 2000). Interestingly, live cell imaging of cells expressing 

Spn1-GFP Rlc1-mCherry Sid4-mCherry at 36º C in this mutant showed a delay of about 4 minutes in 

septins appearance at the medial cortex compared to control cells (t= 16.0 in its3-1 mutant instead of 

t=12.5 in control cells; Fig6A-D), but before CR contraction which is strongly delayed in this mutant (t= 

31.1 in its3-1 mutant instead of 16.8 in control cells). Afterwards, septins did not accumulate as much at 

the division site (about 3 fold reduction, Fig6F) and did not compact properly in the its3-1 mutant. 

Indeed, quantification of the extent of compaction showed that while in control cells the width of the 

septin recruitment domain decreased from 1.5 ± 0.1 μm to 0.9 ± 0.1 μm between appearance and 
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compaction state, around 5 minutes later, in the its3-1 mutant, the initial width of the septin domain 

went from 1.4 ± 0.1 μm to 1.1 ± 0.1 μm only about 7 minutes later (Fig6E). Then, the septin ring split 

coincidently with the delayed initiation of ring constriction (t= 31.1± 5.8 and 30.1 ± 4.3 respectively; 

Fig6A-D). Finally, septins re-spreading was strongly delayed compared to the control cells (Fig6A-D), as 

expected in its3-1 mutant known to bear defects in septum cleavage (Zhang et al., 2000).  

Imaging Mid2-ENVY together with Rlc1-mCherry Sid4-mCherry in its3-1 mutant further revealed that 

similarly to septins, Mid2 appeared with a slight delay of 2 minutes compared to control cells, and after 

the delayed initiation of ring constriction (FigS6A-D). Mid2 maximum intensity was reduced by 3-fold 

compared to control cells (FigS6F). Differently from septins though, Mid2 appeared to compact like in 

control cells (with domain width decreasing from 1.1 ± 0.1 μm at appearance to 0.8 ± 0.1 μm after 

compaction in control cells compared to 1.1 ± 0.05 μm to 0.9 ± 0.05 μm in its3-1 mutant), but with a 

slight delay of about 4 minutes compared to the control (FigS6E). Mid2 ring splitting occurred 14 

minutes after its appearance, with a delay of about 8 minutes compared to the control and Mid2 re-

spreading was strongly delayed as observed for septins (FigS6A-D). Strikingly, the timing of septin 

appearance in its3-1 mutant (t=16.1 ± 2.1) coincides with the initiation of CR constriction and Mid2 

appearance in control cells (t=16.8 ± 1.4 and t=18.1 ± 2.04, Fig 6 B, D) (FigS6). Given that Mid2 

contributes to septin recruitment to the division site, this might suggest that when the concentration of 

PIP2 is reduced, septin recruitment starts only when Mid2 becomes available.  

Overall, these data indicate that PIP2 concentration represents an additional mechanism of control of 

septin ring assembly besides Mid2 and Cdk1 and SIN activities. 

DISCUSSION 

Septins are important cytoskeletal elements that form apolar hetero-oligomeric polymers and higher 

ordered structures, in particular at the site of cell division where they contribute to the success of 

cytokinesis. Despite recent advances, septins remain relatively poorly characterized compared to F-actin 

or microtubule cytoskeletons (Mostowy and Cossart, 2012; Spiliotis, 2018). This is particularly true in 

fission yeast where septins are involved in cytokinesis but are not essential for cell survival. In this 

organism, the assembly of septin rings at the division site was never analyzed in a quantitative manner 

by live cell imaging like the assembly of the mitotic spindle or the CR, limiting the chance to achieve a 

precise molecular understanding of this process.  

In this study, we have used time lapse microscopy with precise cell cycle timers (ie a spindle pole body 

component to monitor mitotic spindle assembly and elongation and myosin II light chain to monitor CR 
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assembly and constriction) to define the spatiotemporal behavior of septins with respect to mitotic and 

cytokinesis progression.  

Our data show for the first time that septins first appear as a diffuse meshwork in a 1.5 m wide region 

surrounding the CR when spindle elongation is maximal. This meshwork then compacts into discrete 

rings when CR constriction is initiated (Fig1 A, C, D, F, G). This process of compaction may be related to 

the transition from the hourglass to split ring organization in budding yeast (Glomb and Gronemeyer, 

2016; Iwase et al., 2006; McQuilken et al., 2017). Indeed septin compaction takes place when CR 

constriction is initiated, itself concomitant to the initiation of septum synthesis, which implies that, 

although spinning-disc confocal microscopy could not resolve them, septins form two rings after 

compaction, located on each side of the incipient septum. Accordingly, the early diffuse septin 

meshwork organized around the CR appears to be physically excluded from it, by a yet-to-define 

mechanism (Fig4A, 4D and FigS2). This suggests that septins are originally recruited in two different 

pools separated by the CR, which are eventually compacted into two rings at each side of it. The 

apparent septin ring splitting that we recorded later in our movies may correspond to the time when the 

two rings are resolved by spinning-disc confocal microscopy upon enlargement of the septum or 

initiation of its cleavage by hydrolytic enzymes. 

Our results also provide new information on the function of the anillin-like protein Mid2 in septin ring 

assembly. We first show that its recruitment is coincident with septin compaction into a tight ring 

(Fig2A, B, C and F). Second, we find that Mid2 deletion limits septin accumulation at the division site at 

the precise time when Mid2 arrives at the division site in control cells. This reduced recruitment may 

result from the fact that Mid2 stabilizes septin filaments, as demonstrated by FRAP (Berlin et al., 2003), 

and is in agreement with the fact that Mid2 mild overproduction in the SIN hyperactive mutant cdc16-

116 can induce septin ring assembly at ectopic cytokinesis sites (An et al., 2004). Third, Mid2 deletion 

also abolishes septin compaction. Finally, we found evidence that Mid2 is able to self-interact through 

different domains, in addition to being able to interact with septins (Fig3A-D). This altogether suggests 

that Mid2 could promote septin compaction by orienting and bundling septin filaments together.  

Such hypothesis would be in agreement with results from polarized fluorescence microscopy in S. 

cerevisiae that identified a differential orientation at 90° of septin filaments between the hourglass and 

split ring stages and showed a role for Mid2 ortholog Bud4 in septin organization at the split ring stage 

(McQuilken et al., 2017; Vrabioiu and Mitchison, 2006). A decrease in septin intensity at the cell cortex is 

observed at this transition though (McQuilken et al., 2017), in contrast to the sharp increase observed in 

S. pombe during compaction. 



Arbizzani Federica- Thèse de doctorat- 2019                     
 

 

81 
 

However, in cells blocked in mitosis (nda3-KM311 cold sensitive or cut7-24 heat-sensitive mutants), 

septins and Mid2 colocalize in a diffuse network, but do not compact, while Mid2 retains its ability to 

interact with septins and to self-interact, pointing towards a more complex situation. Several hypothesis 

can be proposed at this stage to account for these results: 1) post-translational modifications of Mid2 

may inhibit its bundling activity for septins when cells are blocked in mitosis, and/or post-translational 

modifications may be missing at this stage to activate Mid2; 2) Septin bundling by Mid2 may require an 

additional factor, which may not be available or functional when cells are blocked in mitosis; 3) absence 

of compaction in mitosis could result from a combination of the two hypothesis.  

In support of the first hypothesis, it is known that septins are subject to complex phospho-regulations 

(Marquardt et al., 2018; Ribet et al., 2017; Tasto et al., 2003) and Mid2 ortholog in in S. Cerevisiae Bud4 

was shown to be phosphorylated by Cdk1 in vivo with impact on cytokinesis outcome in combination 

with the deletion of the septin kinase Gin4 (Eluère et al, 2012). Mid2 was similarly shown to be 

hyperphosphorylated in mitosis (Tasto et al., 2003; see also Mid2 slow migration profile in nda3-KM311 

blocked cells in FigS3C). We can speculate that this regulation might trigger conformational changes in 

Mid2 or prevent the formation of high order Mid2 oligomers beyond dimers. This might inhibit its 

bundling activity until anaphase is triggered, independently of its ability to interact with itself and 

septins. 

By using temperature sensitive cell cycle mutants (Fig4 and 5 and FigS4 and S5), we started to discover 

the regulatory network controlling septin ring assembly. We found on the one hand that septin and 

Mid2 recruitment can occur in the presence of high Cdk1 activity, but their compaction is then blocked. 

On the other hand, the SIN pathway, which activity antagonizes Cdk1 through the Cdc14 phosphatase 

Clp1/Flp1 at mitotic exit (Cueille et al., 2001; Trautmann et al., 2001), also plays a very important role in 

septin accumulation and compaction.  

These data confirm that septins and Mid2 undergo tightly regulated cell-cycle dependent 

reorganizations, similarly to what has been described in budding yeast (Glomb and Gronemeyer, 2016; 

Hernandez-Rodriguez and Momany, 2012). Mass spectrometry analysis of septins and Mid2 in cell cycle 

mutants led to the identification of a large number of phospho-sites both in Mid2 and septins in mitotic 

blocked and SIN hyperactive mutants (our unpublished results). The production of phospho-inhibitory 

and phospho-mimetic mutants may help elucidate the specific role of mitotic and SIN kinases in 

controlling septin and Mid2 behavior in the future.  

Finally, we have uncovered the importance of a PIP2 in the timely recruitment of septins and proper 

accumulation at the cell division site (Fig6 and FigS6). Septins are known to bind membranes, 

particularly to negatively charged lipids such as PIP2 domains through a conserved polybasic region 
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(Bertin et al., 2010; Casamayor and Snyder, 2003; Tanaka-Takiguchi et al., 2009; Zhang et al., 1999). 

Septins ability to associate with lipid bilayers also appears to be influenced by the curvature of the 

membrane (Beber et al., 2019; Bridges et al., 2016; McMurray, 2019), suggesting that septins 

preferentially assemble on membrane surfaces of defined shape and charge. A recent study on S. 

cerevisiae septin Cdc12 demonstrates that this property relies on a C-terminal amphipathic helix, 

necessary and sufficient for micrometer-range curvature sensing, which also exhibits higher affinity for 

PIP2 than PI or PS (Cannon et al., 2019). In addition, anillins contain a C-terminal PH domain which may 

also bind to membrane lipids. In the case of Mid2, the PH domain, is essential for its recruitment at the 

division site and its function (Berlin et al., 2003; Tasto et al., 2003), but lipid binding or specificity was 

never tested. 

In light of the delayed recruitment of septins in its3-1 mutant, at the time of CR constriction and Mid2 

recruitment to the division site, we can propose a model where septin recruitment is first initiated by 

PIP2 when the mitotic spindle reaches its maximum length, followed by a second phase of recruitment 

at time of initiation of CR constriction promoted by Mid2 when it becomes available or activated. In this 

model, Mid2 could partially compensate for defects in PIP2 in its3-1 mutant and allow for septin delayed 

recruitment in limited amounts. An in vitro assessment of fission yeast septins and/or Mid2 association 

with lipid vesicles of different lipid composition or degrees of curvature, would provide additional 

insights about the impact of membrane lipids and curvature in the process of septin ring assembly. 

One important question that remains to be solved is why septins start accumulating in a 1.5 m wide 

region surrounding the CR in late anaphase when the spindle reaches maximum length. Since there is no 

change in membrane curvature at the division site at this stage that could influence septin assembly, but 

the initial phase of septin accumulation requires PIP2, one tempting hypothesis is that the CR may 

locally generate a pool of PIP2 in late anaphase that can diffuse to this 1.5 m wide region to locally 

promote septin recruitment.  

Our results allow us not only to better understand the molecular mechanisms that control the 

organization of the septin network during cytokinesis progression in fission yeast, but due to their 

evolutionary conservation (Nishihama et al., 2011; Pan et al., 2007), they may also help to clarify septin 

behavior in other organisms during cytokinesis or in the plethora of other processes they have been 

proven to participate in (Bridges and Gladfelter, 2015; Caudron and Barral, 2009; Mostowy and Cossart, 

2012; Saarikangas and Barral, 2011). Indeed, mutations or deletions of septins have been reported to 

lead to several pathologies ranging from reproductive diseases and infections to neurodegenerative 

disorders and cancer (Angelis and Spiliotis, 2016; Dolat et al., 2014; Lhuillier et al., 2009; Li et al., 2019; 

Lin et al., 2009; Marttinen et al., 2015; Mostowy and Cossart, 2012; Pous et al., 2016). A better 
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understanding of the detailed regulations controlling the behavior of these multifunctional proteins may 

therefore enable new therapeutic approaches for the treatment of many pathologies in the future. 

MATERIALS AND METHODS 

Yeast genetics and culture 

Standard S. pombe media and genetic manipulations were used (Moreno et al., 1991). All strains used in 

the study were isogenic to wild-type 972 and are described in Supplemental Table S1. Strains from 

genetic crosses were selected by random spore germination and replica in plates with appropriate 

supplements or drugs.  

 

Transformations were performed by using the Lithium-DTT method. 20 ml of exponentially growing cells 

(optical density 0.5-0.8) were harvested by centrifugation and washed with 10 mM Tris HCl pH 7.4. After 

a second centrifugation, they were re-suspended in 100 mM lithium Acetate with 10 mM DTT and were 

incubated on an orbital wheel at room temperature for 40 minutes. 100 l of these cells were mixed 

with 80ul of 100mM lithium acetate, 10 l of single stranded DNA from salmon testes (D9156-5ML, 

Sigma) and 2 g of the desired plasmid or the purified PCR product. After 10 minutes of incubation on 

an orbital wheel, 300 l of PEG 4000, previously diluted 1:1 in 100mM Lithium acetate, were added. 

After a second round of 10 minutes on the wheel, 15 l of DMSO were added and the cells were 

subjected to heat shock at 42°C for 20 minutes in a water bath. Cells were plated on selection plates.  

Production of mutant and tagged strains. 

A mid2 construct tagged with the green fluorescent tag Envy (Slubowski et al., 2015) at its C-terminus 

was created by PCR from the plasmid pFA6a-Envy-kanMX6 as described (Bahler et al., 1998b).   

A mid2 construct fused to the 13XMyc tag at its C-terminus was built by PCR from the plasmid pFA6a-

13Xmyc-natMX6 according to Bahler et al. 1998.  

An integration plasmid for Mid2 constructs was produced by insertion of 1 kb of the mid2 promoter 

(pmid2) and terminator (tmid2) into pFA6a-mEGFP-kanMX6 (Bahler et al 1998) between SalI and BamHI 

sites and PmeI and SacII sites, respectively. The mid2 open reading frame (ORF) was then inserted 

upstream of mEGFP between BamHI and XmaI. Full lenght mid2 was replaced between BamHI and XmaI 

sites by the single PH domain of Mid2 (582–685aa). pFA6a-GFP-kanMX6-derived plasmid was digested 

with NotI before transformation. 

Constructs expressing Mid2-mEGFP full length, Mid2ΔPH-mEGFP (1-581aa) and the C-terminal PH 

domain of Mid2 (aa 582-685) tagged with mEGFP were integrated at the leu1 locus under the control of 
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their own promoter. Briefly, a fragment containing 1 kb of 5` UTR and the ORF of three different mid2 

fragments was amplified from genomic DNA purified from a wild-type strain and cloned between KpnI 

and NotI sites of pSR2 (pJK148 - Pcdr2-cdr2-GFP-Tnmt1) (Keeney and Boeke, 1994). The plasmids 

obtained were circularized by NruI or Tth111 digestion to allow integration in the leu1 locus of a wild-

type strain. 

A construct expressing the single PH domain of Mid2 (582-685aa) was integrated into the leu1 locus 

under the control of their own promoter. Briefly, a fragment containing 1 kb of 5` UTR and the ORF of 

the PH domain of Mid2 (582-685aa) was amplified from genomic DNA purified from a wild-type strain 

and cloned between KpnI and NotI sites of pSR98 (pJK148 Pcdr2-Cdr2-13xmyc). The plasmid obtained 

was circularized by NruI digestion to allow integration in the leu1 locus of a wild-type strain. 

All plasmids were checked by diagnostic PCR and restriction enzyme digestion, and the DNA fragments 

amplified by PCR were sequenced. 

Microscopy and image analysis 

Cells were grown at 25°C in YE5S except for cell cycle temperature sensitive (ts) mutants (cdc7-24, sid2-

250,  its3-1,), which were grown for 3 hours at 36°C or nda3-KM311 cold sensitive (cs) mutants, which 

were grown up to 7h at 18C.  

 

Epifluorescence images were taken on a DMRXA2 upright microscope (Leica Microsystems), equipped 

with a 100×/1.4NA oil immersion PlanApo objective and a Coolsnap HQ CCD camera (Photometrics), 

exposure time: 2s for GFP, 1s for mCherry and 100 ms for DIC light. Quantification in the nda3-KM311 

mutant of Spn1-GFP comparison with the red markers signal were realized by drawing a linescan 

throughout the all cell (Fig4A and FigS2A-B). The average values obtained were detracted of the 

background measured in the same way outside the cell. The curves obtained were then centered 

according to the position of the ring. 

 

For time lapse imaging, 1 ml of exponentially growing cells were harvested after a centrifugation of 60s 

for 3000rpm in a Minispin Eppendorf centrifuge equipped with a F-45-12-11 rotor, the supernatant was 

discarded and 1 μl of the cells was deposited in a 2% YE5S agar pad at the center of PDMS slide 

chambers prepared as described in (Costa et al., 2013). 

Timelapse movies were performed on an inverted Spinning Disk Confocal (Roper/Nikon), equipped with 

Plan Apochromat 100×/1.4 NA objective lens (Nikon), a PIFOC (perfect image focus) objective stepper, 

and a charge-coupled device camera (EMCCD 512x512 QuantEM; Photometrics). To analyze Spn1-GFP 

Rlc1-mCherry Sid4-mCherry wild type as well as Mid2-ENVY Rlc1-mCherry Sid4-mCherry together with 
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the respective cell cycle ts and cs mutants, stacks of 7 planes spaced by 1μm were acquired every 1 min 

for 3h (binning 1, 300 EM gain; 200ms exposure with 6% laser power for GFP and 5.5% laser power for 

mCherry). 

All images were scaled the same to their respective control and analyzed using MetaMorph software 

7.7.8.  

 

Analysis of Spn1-GFP and Mid2-ENVY signals were quantified from the time of mitotic entry (SPBs 

separation) by measuring the average fluorescence intensity of the medial region through linescan 

(Metamorph software 7.7.8) of 5 μm in length and 13μm in width oriented perpendicular to the long 

axis of the cell on maximum projection images. Background values, measured as the average intensity of 

an equivalent region outside of the cell, were then subtracted. 

 

To compare the width of septins and mid2 at the two different data point indicated in the text in control 

and mutant cells, the linescan tool (MetaMorph software 7.7.8.) was oriented parallel to the long axis of 

the cell. The values measured derive from the average of 3 measurements within septin or mid2 band. 

 

Coimmunoprecipitation experiments 

Coimmunoprecipations experiments were performed as described (Guzman-Vendrell et al., 2013).  

Briefly, 200 ml of cells were grown to an optical density at 600 nm of 1 at 25°C in YE5S medium 

concentrated 2 times compared to regular YE5S medium (YE5S2X) and were resuspended in 300 μl of 

NP40 buffer. Extracts were incubated with anti-mouse IgG magnetic beads (M-280 DYNAL, Invitrogen), 

coupled to 6 μg of anti-GFP mAb (Roche). 

Western blots were probed with anti-GFP mAb (1/500, Roche) or anti-myc mAb 9E10 (1/666, Roche). 

Secondary antibodies were coupled to peroxydase (Jackson Immunoresearch). Signal quantification was 

performed with Image Lab 4.0.1 (BioRad). Signals of coimmunoprecipitated proteins were normalized 

relative to the amount of primarily immunoprecipitated protein. 

For nda3-KM311 synchronization experiments, 1 litre of cells was grown overnight to an optical density 

of 0.6.  Cells were synchronized by 8 hours incubation at 18°C before being processed. 

 

Statistical analysis 

Sample size (n) is defined in each figure and derived from 3 independent experiments, except for the 

Coimmunoprecipitations analysis in Figure S3 that were repeated twice. The error bars correspond 

standard deviation (SD) between experiments and are specifically indicated in each figure.  
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FIGURE LEGENDS 

Figure 1: Dynamics of septins and Mid2 during cell division. 

Time lapse imaging of wild type cells expressing Spn1-GFP, Rlc1-mCherry and Sid4-mCherry (A) or Mid2-

ENVY, Rlc1-mCherry and Sid4-mCherry (B) grown at 25◦C. Max projections of confocal images are shown. 

Time 0 corresponds to mitotic entry. Scale bars: 2 μm. C: Kymographs showing the medial region of the 

cell expressing Spn1-GFP Rlc1-mCherry (left) or Mid2-ENVY Rlc1-mCherry (right). Every image 

corresponds to 1-minute interval. The major transitions in their behavior are highlighted at the far right, 

in bigger panels and indicated with a star. D: Plot depicting the timing of Spn1-GFP transitions 

throughout cell division. Mean ± sd are shown. N=51 cells. E: Plot showing the dynamics of Mid2-ENVY 

throughout cell division. Mean ± sd are shown. N=51 cells. F: Analysis of Spn1-GFP (light green) and 

Mid2-ENVY (dark green) intensities from mitotic onset throughout cell division. The average curves ± sd 

are displayed. N=6 cells. G: Quantification of the extent of Spn1-GFP (light green) and Mid2-ENVY (dark 

green) width compaction over the time. N=30 cells 

Figure 2: Defects in septins behavior in the absence of Mid2. 

Time lapse imaging of wild type (A) and mid2∆ cells (B) expressing Spn1-GFP, Rlc1-mCherry and Sid4-

mCherry grown at 25◦C. Max projections of confocal images are shown. Time 0 corresponds to mitotic 

entry. Scale bars: 2 μm. C: Kymographs showing the medial region of wild type (left) or mid2Δ cells 

(right) expressing Spn1-GFP, Rlc1-mCherry and Sid4-mCherry. Each frame corresponds to 1 min interval. 

The major transitions in Spn1-GFP dynamics and the defects observed in absence of mid2 are 

highlighted in bigger panels at the far right and indicated with a star. D: Plot displaying the dynamics of 

Spn1-GFP throughout cell division. Mean ± sd are shown. N=52 cells. E: Plot showing the dynamics of 

Spn1-GFP in mid2Δ cells during cytokinesis. Mean ± sd are shown. N=52 cells. F: Analysis of Spn1-GFP 

intensity in wild type (green) and in mid2Δ cells (orange) from mitotic onset throughout cell division. The 

average curves ± sd are displayed. N=6 cells. G: Quantification of the extent of Spn1-GFP width 

compaction over the time in wild type (green) and in mid2Δ cells (orange). N=20 cells 

Figure 3: Mid2 interacts with other Mid2 molecule from different regions of the protein. 

A: Coimmunoprecipitation assay between Mid2-13XMyc and Mid2_FL-GFP (full length) or Mid2_ΔPH-

GFP in the presence (spn1+) or absence of Spn1 (spn1Δ). B: Quantification of western blot signals from 

three independent experiments. Error bars, SD. C: Coimmunoprecipitation assay between the PH 

domain of Mid2 tagged with 13XMyc and the PH domain of Mid2 tagged with GFP in the presence 

(spn1+) or absence of Spn1 (spn1Δ). D: Quantification of western blot signals from three independent 

experiments. Error bars, SD. E: Diagram showing the structure of the anillin-like protein Mid2 with the 

main domains highlighted. 
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Figure 4: Septins accumulate as a broad band at the cell middle under high Cdk1 activity. 

A: Epifluorescence images of cells expressing Spn1-GFP Rlc1-mCherry Sid4-mCherry (left panels) or 

Mid2-ENVY Rlc1-mCherry Sid4-mCherry (right panels) in wild type or nda3-KM311 cells growing at 18C 

during 4 hours. Fluorescence intensity analysis of Spn1-GFP, Rlc1-mCherry and Sid4-mCherry signals 

along the entire cell length of nda3-KM311 cells incubated for 7 hours at 18◦C. N=10 cells (far right 

panel). Time lapse imaging of wild type (B) or cut7-24 cells (D) expressing Spn1-GFP, Rlc1-mCherry and 

Sid4-mCherry grown at 36◦C. Max projections of confocal images are shown. Time 0 corresponds to 

mitotic entry. Scale bars: 2 μm. Plot showing Spn1-GFP transitions throughout cell division in the wild 

type (C) or the cut7-24 mutant (E). Mean ± sd are shown. N=45 cells in each case. F: Quantification of 

the extent of Spn1-GFP width compaction over the time in wild type (green) and in cut7-24 cells 

(orange). N=20 cells G: Analysis of Spn1-GFP intensity from mitotic onset throughout cell division in 

control (light green) and cut7-24 cells (orange). The average curves ± sd are displayed. N=6 cells 

Figure 5: Septins show defects in compaction and recruitment under low SIN activity. 

Time lapse imaging of wild type (A) and sid2-250 cells showing no compaction (B) or a loose compaction 

(C), expressing Spn1-GFP, Rlc1-mCherry and Sid4-mCherry incubated at 36ºC. Max projections of 

confocal images are shown. Time 0 corresponds to mitotic entry. Scale bars: 2 μm. Plot showing Spn1-

GFP transitions throughout cell division in wild type (D) or sid2-250 cells (E). Mean ± sd are shown. Wild 

type N=58 cells. sid2-250 N=70 cells. F: Analysis of Spn1-GFP intensity from mitotic onset throughout cell 

division in control (light green) and sid2-250 cells (orange). The average curves ± sd are displayed. N=6 

cells. G: Quantification of the extent of Spn1-GFP width compaction over the time in wild type (green) 

and sid2-250 cells displaying the phenotype 1 (orange) or the phenotype 2 (dark yellow). N=20 cells 

Figure 6: Septin appearance and accumulation at the division site are impaired upon reduced PIP2 

levels. 

Time lapse imaging at 36◦C of wild type (A) and its3-1 cells (C) expressing Spn1-GFP, Rlc1-mCherry and 

Sid4-mCherry incubated at 36ºC. Max projections of confocal images are shown. Time 0 corresponds to 

mitotic entry. Scale bars: 2 μm. Plot displaying Spn1-GFP dynamics throughout cell division in control (B) 

and its3-1 cells (D) cells. Mean ± sd are shown. Wild type N=58 cells. its3-1 N=83 cells. E: Quantification 

of the extent of Spn1-GFP width compaction over the time in wild type (green) and in its3-1 cells. N=20 

cells. F: Analysis of Spn1-GFP intensity from mitotic onset throughout cell division in control (light green) 

and its3-1 mutant cells (orange). The average curves ± sd are displayed. N=6 cells. The red arrow 

highlights the delay in Spn1-GFP appearance in the its3-1 mutant. 
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SUPPLEMENTAL INFORMATION 

Table S1. Table of strains used in this study.  

 

Strain Genotype Source or reference 

 Figure 1  

AP5501 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5678 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

 Figure 2 and Figure S1  

AP5501 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5582 spn1-GFP:kanMX6, mid2::kanMX6, rlc1-
mcherry:natMX6, sid4-mcherry:hphMX6 ade6-
M210 ura4-D18  leu1-32   

This study 

 Figure 3  

AP5501 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5582 mid2::kanMX6, spn1-GFP:kanMX6, rlc1-
mcherry:natMX6, sid4-mcherry:hphMX6 ade6-
M210 ura4-D18  leu1-32   

This study 

AP5823 mid2-13xmyc:Nat ade6-M210 ura4-D18  leu1-32   This study 

AP5831 leu1+:Pmid1-mid2-GFP mid2-13xmyc:Nat ade6-
M210 ura4-D18  leu1-32   

This study 

AP5829 leu1+:Pmid1-mid2ΔPH-GFP mid2-13xmyc:Nat 
ade6-M210 ura4-D18  leu1-32   

This study 

AP5918 spn1Δ::ura4+ mid2-13xmyc:Nat ade6-M210 
ura4-D18  leu1-32   

This study 

AP5920 spn1Δ::ura4+ leu1+:Pmid1-mid2-GFP mid2-
13xmyc:Nat ade6-M210 ura4-D18  leu1-32   

This study 

AP5927 spn1Δ::ura4+ leu1+:Pmid1-mid2ΔPH-GFP mid2-
13xmyc:Nat ade6-M210 ura4-D18  leu1-32   

This study 

AP5814 leu1+:Pmid1-PHmid2-13xmyc ade6-M210 ura4-
D18  leu1-32   

This study 

AP5932 PHmid2-GFP:kanMX6, leu1+:Pmid1-PHmid2-
13xmyc ade6-M210 ura4-D18  leu1-32   

This study 

AP5930 spn1Δ::ura4+ leu1+:Pmid1-PHmid2-13xmyc ade6-
M210 ura4-D18  leu1-32   

This study 
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AP5943 spn1Δ::ura4+PHmid2-GFP:kanMX6, leu1+:Pmid1-
PHmid2-13xmyc ade6-M210 ura4-D18  leu1-32   

This study 

 Figure 4  

AP5501 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5515 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 nda3-KM311 ade6-M210 ura4-
D18  leu1-32   

This study 

AP6268 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 cut7-24 ade6-M210 ura4-D18  
leu1-32   

This study 

AP5678 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5514 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 nda3-KM311 ade6-M210 ura4-
D18  leu1-32   

This study 

 Figure 5  

AP5501 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5585 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 sid2-250 ade6-M210 ura4-D18  
leu1-32   

This study 

 Figure 6  

AP5501 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5876 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 its3-1 ade6-M210 ura4-D18  
leu1-32   

This study 

 Figure S2  

AP5501 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5515 spn1-GFP:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 nda3-KM311 ade6-M210 ura4-
D18  leu1-32   

This study 

AP5678 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5514 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 nda3-KM311 ade6-M210 ura4-
D18  leu1-32   

This study 

 Figure S3  
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AP6274 Mid2-13xmyc:natMX6 nda3-KM311 ade6-M210 
ura4-D18  leu1-32   

This study 

AP6069 Mid2FL-GFP:leu1+ Mid2-13xmyc:natMX6 nda3-
KM311 ade6-M210 ura4-D18  leu1-32   

This study 

AP6073 Mid2ΔPH-GFP:leu1+ Mid2-13xmyc:natMX6 
nda3-KM311 ade6-M210 ura4-D18  leu1-32   

This study 

AP6074 PHmid2-GFP:leu1+ Mid2-13myc:NatMX6 nda3-
KM311 ade6-M210 ura4-D18  leu1-32   

This study 

AP5823 mid2-13xmyc:Nat ade6-M210 ura4-D18  leu1-32   This study 

AP6276 Spn1-GFP:KanMX6 Mid2-13XMyc:natMX6 ura4-
D18  leu1-32   

This study 

AP6280 Spn1-GFP:KanMX6 Mid2-13XMyc:natMX6  nda3-
KM311 ura4-D18  leu1-32   

This study 

 Figure S4  

AP5678 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP6271 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 cut7-24 ade6-M210 ura4-D18  
leu1-32   

This study 

 Figure S5  

AP5678 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5564 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 sid2-250 ade6-M210 ura4-D18  
leu1-32   

This study 

 Figure S6  

AP5678 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 ade6-M210 ura4-D18  leu1-32   

This study 

AP5878 mid2-Envy:kanMX6, rlc1-mcherry:natMX6, sid4-
mcherry:hphMX6 its3-1 ade6-M210 ura4-D18  
leu1-32   

This study 
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Supplemental figure legend 

Figure S1: In the absence of Mid2, septins localization is altered, but no effects on acto-myosin ring 

constriction are detected 

A:  Kymographs of the side region of the medial cortex of wild type (left) or mid2∆ cells (right) 

expressing Spn1-GFP, Rlc1-mCherry and Sid4-mCherry. Each frame corresponds to 1 min interval. The 

major transitions in their behavior from mitosis onset and the defects observed in absence of Mid2 are 

highlighted in bigger panels at the far right and indicated with a star. B: Plot showing total ring 

constriction duration in wild type and mid2Δ cells expressing Spn1-GFP, Rlc1-mCherry and Sid4-mCherry. 

Mean ± sd are shown. N=52 cells.  

Figure S2: Under high Cdk1 activity, septins appear as a broad band separated by the acto-myosin 

ring. 

A: Quantification of Spn1-GFP and Mid2-ENVY width over the time inwild type (light green for Spn1-GFP 

and dark green for mid2-ENVY) and nda3-KM311 mutant cells (orange for Spn1-GFP and red for mid2-

ENVY) incubated at 18◦C during 7 hours. The last data point has been taken after switching the cells to 

25◦C for 1 hour. The average curves ± sd are displayed. N>500 cells. Fluorescence intensity analysis of 

Spn1-GFP, Rlc1-mCherry and Sid4-mCherry signal measured along the entire cell in epifluorescence 

images of the nda3-KM311 cold sensitive mutant in a representative cell where the SPBs are aligned (B) 

or not (C) with the ring position.  

Figure S3: Mid2 is able to self-interact and to bind septins in the presence of high Cdk1 activity. 

A: Co-immunoprecipitation assay between Mid2-13XMyc and Mid2_FL-GFP (full length), Mid2_ΔPH-GFP 

or PH_Mid2-GFP in nda3-KM311 cells incubated at 18◦C for 7 hours. B: Quantification of western blot 

signals from two independent experiments. Error bars, SD. C: Co-immunoprecipitation assay between 

Mid2-13XMyc and Spn1-GFP in control and nda3-KM311 cells incubated at 18◦C for 7 hours (lanes 5, 6, 7 

and 8) and released for 1 hour at 25◦C (lanes 1, 2, 3 and 4). D: Quantification of western blot signals from 

two independent experiments. Error bars, SD. 

Figure S4: Mid2 appears as a broad band at the cell middle under high Cdk1 activity. 

Time lapse imaging of cells wild type (A) or cut7-24 cells (C) expressing Mid2-ENVY, Rlc1-mCherry and 

Sid4-mCherry incubated at 36ºC. Max projections of confocal images are shown. Time 0 corresponds to 

mitotic entry. Scale bars: 2 μm. Plot displaying Mid2-ENVY dynamics throughout cell division in control 

(B) and cut7-24 cells (D). Mean ± sd are shown. N=45 cells in each case. E: Quantification of the extent of 

Mid2-ENVY width compaction over the time in wild type (dark green) and cut7-24 cells (red). N=20 cells 

Figure S5: Mid2 shows an aberrant behavior in presence of low SIN activity. 
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Time lapse imaging of wild type (A) and sid2-250 cells (C) expressing Mid2-ENVY, Rlc1-mCherry and Sid4-

mCherry incubated at 36ºC. Max projections of confocal images are shown. Time 0 corresponds to 

mitotic entry. Scale bars: 2 μm. Plot showing Mid2-ENVY transitions throughout cell division in control 

(B) or sid2-250 cells (D). Mean ± sd are shown. Wild type N=57 cells. sid2-250 N=70 cells. E: Analysis of 

Mid2-ENVY intensity from mitotic onset throughout cell division in control (dark green) and sid2-250 

cells (red). The average curves ± sd are displayed. N=6 cells 

Figure S6: Low PIP2 levels influence the timing and amounts of Mid2 recruitment to the division site. 

Time lapse imaging of wild type (A) and its3-1 cells (C) expressing Mid2-ENVY, Rlc1-mCherry and Sid4-

mCherry incubated at 36ºC. Max projections of confocal images are shown. Time 0 corresponds to 

mitotic entry. Scale bars: 2 μm. Plot showing Mid2-ENVY behavior throughout cell division in control (B) 

and its3-1 cells (D). Mean ± sd are shown. Wild type N=57 cells. its3-1 N=64 cells. E: Quantification of the 

extent of Mid2-ENVY width compaction over the time in wild type (dark green) and its3-1 cells (red). 

N=20 cells F: Analysis of Mid2-ENVY intensity from mitotic onset throughout cell division in control (dark 

green) and its3-1 mutant cells (red). The average curves ± sd are displayed. N=6 cells. 
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1. Increasing ergosterol levels delays formin-dependent assembly of F-actin cables and 

disrupts division plane positioning in fission yeast 

Cytokinesis represents the final act of the cell cycle that physically separates one cell into two distinct 

entities. Both fission yeast and animal cells divide in the middle of the cell through the assembly of an 

acto-myosin contractile structure (CR). When the CR constricts inward from the cell cortex, it pinches in 

the plasma membrane leading to the ingression of the cleavage furrow. Defects in the spatio-temporal 

organization of the CR can alter the correct transmission of the genetic and cytoplasmic material, 

impacting several key processes such as cell proliferation, differentiation and morphogenesis. 

Understanding the mechanisms underlying cytokinesis is therefore crucial for our understanding of this 

basic process both in physiological and pathological conditions.  

For successful completion of cell division, the CR must be intimately associated to the plasma membrane 

to allow plasma membrane pinching and furrow ingression while the CR undergoes constriction. It is 

therefore reasonable to imagine that lipid composition at the division site may represent an important 

regulator of cytokinesis. Accordingly, this cortical region requires remarkable remodeling to host the 

division site. Indeed, variations in its lipid composition and membrane trafficking dynamics strongly 

affect this process (Fremont and Echard, 2018; Gerien and Wu, 2018; Neto et al., 2011). Besides, yeasts 

are cell-walled organisms, whose cell wall biosynthetic enzymes are highly associated to the plasma 

membrane. In these systems, the formation of the septum, a specialized cell wall assembled during 

cytokinesis in the cleavage furrow while the CR constricts, represents an essential step for cell division. 

Therefore, the lipid environment at the division site might be utterly important in fission yeast. 

Accordingly, recent studies have shown that a correct phospholipid composition at the middle cortex 

cooperate with Cdc15-, Pxl1-, and cell wall–dependent PM anchoring to promote stable CR placement 

and successful cell division (Snider et al 2017; Snider et al 2018).  

An important category of membrane lipids are sterols. Of note, fission yeast sterol, ergosterol, 

accumulates at the division site (Wachtler et al., 2003), pointing towards a function of those compounds 

in cytokinesis. Interestingly, overexpression of Erg25, an enzyme involved in the sterol biosynthetic 

pathway, leads to a general increased amount of ergosterols with defective positioning of the AMR and 

consequently of the division septum. This phenotype is highly reminiscent to that produced by the 

absence of the anillin-like protein Mid1, which can itself bind to the plasma membrane. However, 

detailed analysis of Mid1 localization by time lapse microscopy ruled out such possibility. Indeed, we 

found that different molecular mechanisms are involved: while in the mid1Δ mutant the division plane 

positioning defects are due to a faulty recruitment of several ring components including myosin II and 

the formin Cdc12 that nucleates the CR F-actin network, upon Erg25 OE the phenotype is the result of a 
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specific inhibition in F-actin assembly from well positioned and properly assembled cytokinetic 

precursor nodes. In parallel, we have excluded, in the observed phenotype, a contribution of an 

abnormal ER organization in presence of high ergosterol levels, suggesting a direct impact of these lipids 

in contractile ring positioning and assembly mechanisms.  

In fission yeast, Mid1 promotes the assembly of the CR through the ordered recruitment of ring 

components to cytokinetic precursor nodes (Almonacid et al., 2011; Laporte et al., 2011; Padmanabhan 

et al., 2011; Wu et al., 2003; Wu et al., 2006). Altered lipid environment might affect Mid1-mediated 

recruitment of CR components. However, our analysis of cytokinetic precursors upon Erg25OE by live-

cell time lapse imaging and quantitative analysis in interphase and mitosis allowed us to conclude that 

early reinforcement or accumulation of these proteins at the medial cortex is not globally affected. The 

only abnormality that we detected was a delay of 7 minutes in myosin II recruitment. Since myosin II 

levels are similar in control cells and Erg25 overexpressing cells during the period of ring assembly and 

no defects in the accumulation of CR precursors nodes were observed, we do not have at the moment a 

clear explanation for this event. It is possible that increasing levels of ergosterols affects myosin II 

capability to associate with Rng2. Nevertheless, this short delay in myosin II recruitment is not sufficient 

to explain the strong defects occurring in division plane position. Indeed, a Mid1 phospho-inhibitory 

mutants in Plo1-dependent sites produced in the laboratory, exhibited a longer delay in Myosin II 

recruitment (10 minutes), but the phenotype was milder compared to Erg25 OE (Almonacid et al 2011).  

Our analysis rather indicates that the major defect produced by Erg25 overexpression is a strong delay 

in the assembly of F-actin cables from cytokinetic precursors. As a consequence, this results in a failure 

in cytokinetic node compaction that disrupts division plane positioning. Cdc12 is timely recruited at the 

cell middle, although to a broader region that makes challenging to conclude if there is a mild defect in 

the total amount of protein to the division site. Given the fact that F-actin cables assembly by the formin 

For3 and their stability are not altered, we propose that increased ergosterol levels may negatively 

regulate the nucleation activity of the formin Cdc12 (and possibly also its recruitment at the cell middle). 

Supporting this hypothesis, the phenotype generated by Erg25OE is partially rescued by using CK666, an 

inhibitor of the Arp2/3 complex, which competes with formins for the free pool of actin monomers 

(Burke et al., 2014; Moseley, 2014), in agreement with a compromised function of Cdc12 under this 

condition.  

In S. pombe a functional secretory pathway is known to be involved in the formation of sterol rich 

domains at the cell equator since brefeldin A treated cells showed a limited filipin staining at the cell 

middle (Wachtler et al., 2003). Thus we have evaluated whether the rescue of Erg25OE phenotype seen 

in presence of CK666 was not due to an indirect effect mediated by endocytosis since CK666 treatment 
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can have effects on membrane composition and trafficking by the inhibition of Arp2/3 complex. By 

checking ergosterol levels through the measure of filipin intensity after CK666 application, we found 

that ergosterols start to decrease after 1 hour of treatment so we performed our analysis during the 

first hour of treatment. Therefore, we could exclude that the partial rescue we detect in presence of 

CK666 is linked to endocytosis. 

In our study we have used filipin to stain sterols. Long exposure to sterol being toxic, we have analyzed 

ergosterols distribution in the external leaflet of the plasma membrane on still pictures of cells exposed 

to filipin few minutes only before imaging but we could not perform movies in presence of filipin. 

Recently, the Martin team has developed a new tool to follow ergosterols in vivo: it is a sterol biosensor 

(D4H) based on Clostridium perfringens theta toxin expressed inside cells and accessing ergosterol pools 

from the inner leaflet of the plasma membrane (abstract by Marek and Martin, 10th International Fission 

yeast Meeting 2019). They identified that the anterograde movement of sterols from internal 

compartments to the PM requires vesicular trafficking components, while retrograde transport is 

mediated by a nonvescicular process dependent on Ltc1 (Lipid transfer on contact site), a stARkin-

domain protein that localizes at the ER-PM contact sites (Gatta et al., 2015; Horenkamp et al., 2018; 

Murley et al., 2015; Tong et al., 2018). In ltc1Δ cells sterols internalization is blocked so they remain at 

the plasma membrane forming extensive invaginations. It could be envisaged to use their probe to 

analyze in vivo the pattern of ergosterol distribution in Erg25 overexpressing cells to better understand 

the effects of sterols during CR assembly and division plane positioning. Moreover, it would be intriguing 

to test the role of ltc1 deletion in combination with Erg25OE and CK666 treatment to check if we would 

still observe a partial rescue effect. Additionally, at the physiological level, it will give a key contribution 

in understanding how the regulation of this transport system controls the accumulation of ergosterol to 

the division site. Understanding this regulation might help unveiling novel roles of these lipids in 

cytokinesis. 

At this stage a detailed understanding of the molecular mechanism underlying Erg25OE phenotype is 

missing. The development of in vitro experiments testing Cdc12 interactions with model membranes 

characterized by different lipid mixtures would permit to obtain important clues on the regulation and 

function of Cdc12 by membrane lipids. For instance, recent in vitro experiments with myosin-II and a 

formin fragment containing formin homology (FH) 2 and FH1 domains led to the confirmation of the 

SPCR model to explain contractile ring assembly in fission yeast (Zimmermann et al., 2017). Interestingly, 

this approach has also revealed that the FH1 domain of Cdc12 is mechano-sensitive and, when 

subjected to the pulling forces applied by myosin II, inhibits Cdc12 elongation activity. This is key to 

provide a proper contractile ring assembly, avoiding the formation of abnormal precursor node clumps 

that would delay this process (Zimmermann et al., 2017). Increased ergosterol levels certainly affect the 
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membrane biophysical parameters, and might inhibit Cdc12 activity in this way. Indeed, sterols behave 

as essential regulatory and structural components of cell membranes, thus affecting their fluidity and 

permeability. In parallel, it is known that different types of stress, including temperature and osmotic 

changes, can have effects on membrane organization (Klose et al., 2012; Leach and Cowen, 2014; Los 

and Murata, 2004). For instance, an abrupt increase in temperature triggers a rapid decrease in the 

molecular order of cellular membranes since the fatty acid tails of the phospholipids become less rigid 

and allow more movement of proteins and other molecules in and through the membrane. It would be 

interesting to test the effect of a high temperature on the Erg25OE phenotype to clarify the role of 

membrane properties in the process of contractile ring assembly and division plane positioning. 

Additionally, to have a comprehensive understanding of the impact of the membrane environment on 

CR assembly, it would be interesting to test the impact of membrane lipids on precursor nodes 

organization and function, considering that many of them possess membrane binding domains and may 

be influenced by lipid composition. Super resolution microscopy studies to image CR components in 

presence of different lipid mixtures could help further understand how these dynamic molecular 

complexes interact with lipid domains. Indeed, the use of super-resolution microscopy in fixed cells 

combined with FRET technique has recently permitted to make exciting progress in understanding the 

organization of the CR. By measuring the distance of CR components with respect to the plasma 

membrane in fixed fission yeast cells just before the beginning of constriction, it has been found that the 

CR is organized in 3 layers (McDonald et al., 2017). Membrane-binding proteins, including Mid1 and F-

bar proteins, but also Cdc12 and Rng2 and the tail of the essential myosin-II have been detected closest 

to the plasma membrane (0–80 nm). The intermediate layer (80–160 nm) is composed by multiple 

signaling components and cytokinesis accessory proteins that are key to maintain ring integrity. The 

most distal zone from the membrane (160–350 nm) contains F-actin, the motor domains of myosins, 

and F-actin crosslinkers. In parallel, another study which has also exploited an high speed single-

molecule super-resolution technique in live cells has revealed that cytokinetic node components are 

organized in clusters in the CR where the C-terminus of Myo2, Mid1, Rng2, Cdc15 and Cdc12 co-localize 

in a compact structure at the plasma membrane, while the head of Myo2 extend in the cytoplasm 

where they can associate with actin filaments to drive AMR formation and constriction (Laplante et al., 

2016). Both these studies provide important insights on the role of functional subdomains crucial for CR 

function. Considering the evolutionary conservation of the main organizers of CR structures, analyzing 

whether any of the features identified in the S. pombe contractile ring are in common with other model 

organisms is another subsequent area of future investigation. 

Additionally, we need to consider whether the defects that we saw after Erg25OE could be linked to the 

accumulation of other downstream intermediates of the ergosterol biosynthetic pathway. This seems 
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unlikely considering that a treatment with the drug miconazole, that blocks the ergosterol pathway right 

upstream of Erg25, blocks almost completely the production of abnormal septa upon Erg25OE.  

However, the deletion of Erg6, a gene located immediately downstream of Erg25 in the ergosterol 

pathway, led to a ~50 % rescue in the number of abnormal septa. The partial suppression seen in the 

latter case could be due to the existence of additional branches in the metabolic pathway for ergosterol 

production that would form sterols independently from Erg6. In fact, lipid biosynthesis presents many 

interconnected feedback loops and this process is poorly understood in fission yeast. Lipidomic analysis 

would be crucial to better define the profile of lipids involved in cytokinesis (Atilla-Gokcumen et al., 

2014; Echard and Burgess, 2014), but also to gather more informations on their spatio-temporal activity 

during fission yeast cell cycle.  

Finally, the physiological relevance of the negative regulation of cytokinetic F-actin cables assembly by 

ergosterol levels remains to be defined. In fission yeast, ergosterol distribution is modified in a cell-cycle 

dependent manner (Makushok et al., 2016; Takeda and Chang, 2005; Takeda et al., 2004; Wachtler et 

al., 2003). This suggests that Cdc12 inhibition by ergosterol levels could be active at other cellular 

locations where sterols are enriched, preventing in particular the assembly of Cdc12-mediated F-actin 

cables at the cell tips. This mechanism could potentially be involved in the tip-occlusion pathway that 

prevents assembly of contractile rings at the very cell tip in the absence of Mid1 (Huang et al., 2007; 

Martin, 2009). The observation that a fusion construct of Tea1 with the N-terminal portion of Cdc12 

localizes to the cell tips where it generates actin cables during interphase in presence of sterol rich 

domains (Johnson et al., 2014) could question the previous hypothesis. However, we have to consider 

that the fusion construct used contains only a N-terminal portion of the protein, excluding the 

membrane-association domain, and could have lost the ability to be regulated by specific lipids or with 

by other membrane binding protein sensitive to such lipids, with crucial effects on Cdc12 activity. 

Producing a full length Cdc12 protein for in vitro studies may be necessary to evidence sterol-dependent 

regulation of Cdc12. 
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2. Septin ring assembly by anillin-dependent compaction of a diffuse septin meshwork 

surrounding the acto-myosin contractile ring in fission yeast 

Septins are GTP-binding proteins with the ability to form hetero-oligomeric complexes that can 

assemble into non polar filaments. They are considered as an element of the cytoskeleton, connected 

with both the actin and MT cytoskeletons. Septin filaments are also tightly connected to membranes. 

These properties allow septins to accomplish important biological functions such as serving as platforms 

for the recruitment of proteins dedicated to a specific task and/or diffusion barriers to create distinct 

cellular compartments. In particular, septins play key roles during cytokinesis, especially in budding 

yeast where they are involved in the recruitment of components of the CR and contribute to the 

mother-daughter cell asymmetry. In fission yeast, the initial stages of cytokinesis take place 

independently of septins though. Instead, septins are implicated in late stages of this process, ensuring 

cell-cell separation. Therefore, the spatio-temporal control of septins must be significantly different in 

these two evolutionarily distant yeasts.  

A crucial family of factors impacting the properties of septin network is represented by anillin-like 

proteins, highly conserved multidomain proteins that are fundamental for the fidelity of cytokinesis. 

Indeed, in absence of these scaffold proteins, septins are mislocalized and disorganized in both animal 

and fungal cells (Berlin et al., 2003; Field et al., 2005a; Golbach et al., 2010; Maddox et al., 2005; Tasto 

et al., 2003). However, how these structural determinants accomplish this function is not well 

characterized. Given that septins are not essential in fission yeast cytokinesis and are poorly studied, we 

decided to study in details the dynamics and regulation of septins and of the fission yeast anillin-like 

protein Mid2 during cytokinesis. 

Confocal live cell imaging has established the sequence of transitions that septins follow during 

cytokinesis: 1) accumulation of a 1.5 µm wide septin meshwork adjacent to, but excluded from the CR in 

anaphase when the mitotic spindle elongation is maximal; 2) compaction into a ring structure when CR 

constriction is initiated; 3) apparent splitting into a double ring when CR constriction terminates; and 4) 

disassembly of the septin ring and respreading of the meshwork over the new cell pole upon daughter 

cell separation. This dynamic behavior is interesting to compare to the transitions in budding yeast 

septin organization during cell cycle progression: at the time of bud emergence, the incipient septin 

structure appears first as a patch or cap, highly dynamic and unorganized, which transitions during S 

phase into a more stabilized septin ring/collar; this ring extends into an hourglass-shaped collar at the 

bud neck, which splits into two rings during CR constriction and eventually disassembles (Gladfelter et 

al., 2001). Given its timing when CR constriction is initiated, and similarity, we propose that the new 

septin compaction step that we have identified may correspond to the hourglass to split ring transition 
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in S. cerevisiae. In light of this comparison, the major difference between the two yeasts would be the 

much early recruitment of septins to the incipient bud site, associated with its early function in CR 

assembly. 

The regulation of septin remodeling in S. cerevisiae is performed by complex network of 

posttranslational modifications and through the interaction with the anillin-like protein Bud4. Indeed, 

Bud4, in association with Bud3, another protein involved in the establishment of the axial landmark and 

bud site selection in haploid budding yeast cells, mediates and stabilizes septins at the bud neck during 

bud formation (Kang et al., 2013; Wu et al., 2015). Moreover, Bud4, regulated by Cdk1 phosphorylation, 

participates, together with Cla4 and Gin4 kinases, in the formation and disassembly of the septin double 

ring (Eluere et al., 2012). This suggests that similar molecular mechanisms may orchestrate septin 

dynamic organization in fission yeast. 

Analyzing Mid2 dynamics in S. pombe revealed a delayed recruitment of this protein to the division site 

compared to septins, at the time of the initiation of CR constriction. This indicates that, contrary to Bud4 

in S. cerevisiae, Mid2 does not play a role in septin initial recruitment to the division site. Reciprocally, 

the lack of Mid2 has no effect in the timing of septin recruitment. This data point to the existence of an 

anillin-independent mechanism for septin intial recruitment at the division site, in the 1.5 um wide 

region surrounding the CR. Our results in the its3-1 mutant deficient for PIP2 production suggests that 

this initial recruitment could be triggered by PIP2. Indeed, septin organization is known to be influenced 

by specific membrane lipids (Bertin et al., 2010; Zhang et al., 1999).  

It would be interesting to further test in vitro the role of PIP2 in supported lipid bilayers of different lipid 

compositions and degree of curvature on fission yeast septin organization, either alone or in presence of 

Mid2. Another open question is whether PIP2 distribution plays a role in defining the 1.5 um wide region 

where septin filaments accumulate by the end of anaphase. One hypothesis is that PIP2 may be 

produced at the CR and diffuse laterally on the 1.5 um domain. Demonstrating this would require 

tracking of PIP2 itself or PIP2 biosynthesis enzymes in living cells by time-lapse imaging. Use of the PH 

domain of Tubby as a biomarker or PIP2 in the laboratory lead to the identification of the medial domain 

that forms at the division site before septin appearance (Paoletti G and Paoletti A unpublished results), 

but the PH domain of Plc1δdid not identify such a domain, raising the question of the specificity of these 

living dyes.  

 

Interestingly, Mid2 recruitment is coincident with septin filament compaction into a tight ring, and 

mid2∆ cells are not capable of septin ring compaction suggesting that Mid2 may bridge together septin 

filaments, acting as a bundler. For a bundler to work, it requires the ability to form dimers/oligomers, so 

that, on the one hand, each monomer binds a filament and, on the other, the interaction between the 
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monomers links the septin filaments together. By using a combination of molecular genetics and 

biochemistry approaches, we have shown that Mid2 is able to self-interact, and by doing so it could 

cross-link several septin filaments and possibly act as a septin bundler. However, the analysis of septins 

and Mid2 dynamics in cells blocked in mitosis, identified a situation where the septin meshwork does 

not compact although Mid2 retained the ability to interact with septins and with itself. This suggests 

that an additional mechanisms of regulation control septin compaction. 

Mass Spectrometry analysis of Mid2 and septins partners in the mitotic-blocked mutant did not provide 

any hints of additional proteins promoting septin compaction in combination with Mid2 (our 

unpublished results), favoring the hypothesis that Mid2 bundling activity may be regulated by post-

translational modifications independently of its ability to interact with septins and to self-interact. 

Given that the major transitions detected in septins and Mid2 dynamics take place in anaphase and 

telophase, while cells switch from Cdk1 to SIN activation, an obvious approach was to check their 

behavior in mutants affected in those signaling pathways whereas septins and Mid2 can be recruited to 

the division site in presence of high Cdk1 activity but cannot compact, as previously mentioned, the SIN 

pathway is required for the recruitment as well as for the compaction of septins.  

Since Mid2 is hyperphosphorylated in mitosis (Tasto et al., 2003), septin compaction might be driven by 

Mid2 dephosphorylation in anaphase. Interestingly, the mass spectrometry assay provided valuable 

information on the phosphorylation state of septins and Mid2, both in nda3-KM11 mitotic-blocked cells, 

and in the cdc16-116 SIN mutant where septation is uncoupled from mitosis, and several rounds of 

cytokinesis happen during the cell cycle (our unpublished results). Many of the detected sites are 

present in both mutants as well as specific phospho-sites for each mutant. One explanation for this is 

that although Cdk1 activity peaks before the SIN, nda3-KM11 cells do carry some SIN activity, as proved 

by the SIN-dependent dissociation of Cdr2 from the cytokinetic precursor nodes (Rincon et al., 2017).  

The creation of different combination of phospho-inhibitory and phospho-mimetic mutants should 

provide precious hints to elucidate the role of specific kinases in controlling Mid2 bundling activity and 

in clarifying the interplay between septins and Mid2.  

More direct analysis of the role of Mid2 on septin organization could also be provided by in vitro 

reconstitution assays with purified fission yeast septins and full length or truncated forms of wild type or 

phospho-mutants of Mid2. These experiments would permit to study the organization of septin 

filaments in presence or absence of Mid2 and could permit to demonstrate its role as a septin filament 

bundler.  
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Last, we would need to decipher the impact of these phosphorylations in Mid2 oligomerization state or 

on its conformation, as well as to dig into the nanoscale structure of fission yeast septins filaments, 

which is still completely obscure. In S. cerevisiae single-molecule analysis by EM led to the discovery of 

the basic organization of the four essential septins and how these apolar rods associate end-to-end into 

long parallel filaments at low ionic strength (Bertin et al., 2008). The substitution in the octameric rod of 

the terminal subunit with the nonessential fifth septin, Shs1, has been shown to be sufficient to induce a 

different higher-order septin ultrastructure that can be further regulated by phosphorylation (Garcia et 

al., 2011). Additionally, Cryo-EM techniques permitted to visualize septin filaments at the mother/bud 

neck and their abnormal organization in septin mutants (Bertin et al., 2012). Furthermore, platinum-

replica EM on budding yeast cells deprived of their cell wall revealed that septins filaments undergo a 

90° reorientation during the hourglass-to- double ring transition (Ong et al., 2014).  In collaboration with 

Aurelie Bertin, attempts of using EM have been made to gain insights into the dynamic organization of 

septins at different stages of the cell cycle, both in the presence and absence of Mid2, but although 

some filamentous structures were present at the cell division site, we cannot exclude that these were 

other proteins involved in the cytokinetic process. Correlative light and EM (CLEM), which preserves the 

fluorescence of labeled structures to facilitate the identification of septin filaments at the cleavage 

furrow was also tried. However, the experiments were not successful technically so far. This may be due 

to the fact that EM requires extensive manipulations to fix and section the samples, which may result in 

artifacts in cellular and protein morphology. Additionally, in fission yeast, the cytoplasm is really protein-

dense which makes it difficult to recognize univocally specific protein complexes. 

Another approach to gain information about septin organization through the cell cycle in live cells is 

polarized fluorescence microscopy, a technique that permits to gather data about the amount of order 

and the average orientation of proteins of interest tightly linked to fluorescent tags (Vrabioiu and 

Mitchison, 2006). By analyzing septins structures across diverse species, it has been shown that septins 

form paired filaments within higher order structures from yeast to mammals (DeMay et al 2011). 

Additionally, it was confirmed that these ordered ensembles experience a dramatic change in their 

direction at the onset of cytokinesis in budding yeast (Vrabioiu and Mitchison, 2006; Vrabioiu and 

Mitchison, 2007). Furthermore, polarized fluorescence microscopy has been instrumental in a screen to 

identify the Gin4 kinase, Bud4 and phosphorylation on Shs1 as key factors implicated in this structural 

reorientation (McQuilken et al., 2017).  In collaboration with Manos Mavrakis and Sophie Brasselet (Aix-

Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel, 

MOSAIC team, Marseille, France), we have started to explore the configuration adopted by fission yeast 

septins filaments in wild type and mid2Δ cells by polarized fluorescence microscopy to better 

characterize the role of the anillin-like protein as a potential septin bundler. Moreover, to improve our 
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knowledge about the cell-cycle regulation of septin structural rearrangements, we are also assessing 

septins configuration in the nda3-KM311 cold sensitive mutant blocked in mitosis in polarized 

fluorescence microscopy. 

 

Altogether, these advanced microscopy approaches would be fundamental to understand how septins 

are assembled into higher order structures such as rings at a molecular and filament levels and how 

these structures are remodeled in time and space to perform specific functions during fission yeast 

cytokinesis.  

A better molecular knowledge of septins regulation is crucial to advance our understanding of cell 

division and of anomalies in this process leading to cancer. Indeed, multiple evidences have reported 

that septins are deregulated in a variety of tumors, and septins dysfunctions have been also linked to a 

broad number of different pathologies, including male sterility and neurodegenerative diseases or zika-

virus induced microcephaly (Angelis and Spiliotis, 2016; Dolat et al., 2014; Lhuillier et al., 2009; Li et al., 

2019; Lin et al., 2009; Marttinen et al., 2015; Mostowy and Cossart, 2012; Pous et al., 2016). Thus, 

studying how these scaffold proteins function during cytokinesis may also provide hints to understand 

their roles in normal and pathological situations in higher eukaryotes. 
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Model highlighting the sequence of septin filaments transitions during fission yeast cytokinesis and the role of 

Mid2, PIP2 and the cell-cycle in their regulation. (A) At the time of maximum SPBs elongation, when Cdk1 activity is 

high, the initial recruitment of septins to the division site is triggered by PIP2. At this stage, when Mid2 is inactive, 

probably due to hyperphosphorylation, the septin meshwork is disorganized and forms a wide band in a region 

surrounding the contractile acto-myosin ring. (B) When the SIN pathway becomes active, acto-myosin ring 

constriction begins and, septin filaments compact to form a ring, in a process mediated by Mid2, which may act as a 

bundler contributing to septin filaments alignment. This process may involve Mid2 activation upon 

dephosphorylation (1), or the participation of an additional factor (2). (C) Later on, once the acto-myosin ring 

constriction ends, septin are detected as a double ring due to the formation of the septum in between.  

(D) Eventually septins respread over the new cell tip upon daughter cell separation. 
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V. SYNTHÈSE EN FRANÇAIS 
 

 

 

 

  



Arbizzani Federica- Thèse de doctorat- 2019                     
 

 

112 
 

Le cycle cellulaire est un processus clé utilisé par toutes les formes vivantes pour proliférer ou se 

renouveler. Il consiste en un ensemble d'événements ordonnés, aboutissant à la division de la cellule 

mère en deux cellules filles. Le cycle cellulaire comprend deux étapes principales: l'interphase composée 

des phases G1, S et G2, où les cellules font l’objet de croissance et reproduisent leur matériel génétique, 

et la mitose, au cours de laquelle la ségrégation des chromosomes est régie par le fuseau mitotique. La 

cytocinèse est la dernière étape du cycle cellulaire. Elle conduit à la séparation physique des deux 

cellules filles. Il s'agit d'un événement critique et irréversible, étroitement coordonné avec la sortie de la 

mitose et la séparation des chromosomes, afin de garantir une répartition égale du matériel génétique 

dans les cellules filles. Un contrôle défectueux de ce processus peut conduire à la mort cellulaire ou à 

l'aneuploïdie et peut contribuer au processus du cancerisation. Cet événement est donc sous le contrôle 

de mécanismes de régulation spatiaux et temporels très stricts. 

Quatre événements majeurs peuvent être distingués au cours de la cytocinèse (Balasubramanian et al., 

2004; Pollard and Wu, 2010). Tout d'abord, la position du plan de division est définie. Dans la plupart 

des organismes, cette étape implique la signalisation par la zone centrale du fuseau mitotique pour 

permettre à la division cellulaire de se produire entre les deux ensembles de chromosomes ségrégés. 

Deuxièmement, un anneau contractile (AC) à base d'actomyosine est assemblé au site de division sur la 

face interne de la membrane plasmique. La troisième étape est représentée par la contraction de cette 

structure qui conduit à la formation du sillon de division qui sépare la cellule en deux. La fermeture de 

l’AC est bien synchronisée avec les voies de trafic membranaire, de sorte que de nouvelles membranes 

sont synthétisées pour assurer l’extension de surface des deux cellules filles. Celles-ci sont 

physiquement séparées en deux entités distinctes lors de la dernière étape de la cytocinèse appelée 

abscission. 

La cytocinèse s'accompagne d'un réarrangement massif de la forme des cellules avec des modifications 

de la composition membranaire et de la dynamique du trafic membranaire intracellulaire (Fremont and 

Echard, 2018; Gerien and Wu, 2018; Neto et al., 2011). Récemment, des techniques innovantes 

d'analyse et de quantification des lipides ont montré que la composition lipidique change à la fois dans 

l'espace et dans le temps au cours du cycle cellulaire (Muro et al., 2014; Shevchenko and Simons, 2010). 

Elles ont révélé en particulier que les cellules sont capables de contrôler et de modifier la composition et 

la répartition des lipides au cours de la division cellulaire, avec des rôles de signalisation et  de rôles 

mécaniques (Atilla-Gokcumen et al., 2014; Echard and Burgess, 2014; Storck et al., 2018). En effet, de 

nombreuses évidences ont montré que certaines espèces lipidiques forment des plateformes de 

signalisation en interagissant avec d'autres lipides ou protéines pour réguler le transport de protéines 

clés, tandis que d'autres apportent un soutien structurel au remodelage de la courbure de la membrane 

(Albertson et al., 2005; Montagnac et al., 2008; van Meer et al., 2008). 
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Différentes catégories de lipides, notamment le cholestérol, les sphingolipides et les phosphoinositides, 

jouent un rôle important dans le succès de la cytocinèse (Brill et al., 2011; Cauvin and Echard, 2015; 

Storck et al., 2018). Ainsi, les lipides ne sont pas des constituants passifs des membranes cellulaires 

mais, grâce à leur géométrie, leur hydrophobicité et leur charge particulière, ils jouent un rôle actif dans 

la régulation de la forme et de la fonction de la membrane. Une structure membranaire unique avec une 

composition lipidique spécifique est assemblée de manière dynamique tout au long du cycle cellulaire et 

contribue aux fonctions clés pour la fidélité de la cytocinèse, notamment le trafic membranaire, 

l'insertion membranaire, le remodelage dynamique du cytosquelette et la signalisation. 

En outre, l'achèvement de la cytocinèse nécessite la participation de différents composants du 

cytosquelette, à savoir le cytosquelette d'actine à la base de l'AC qui se contracte en tirant sur la 

membrane plasmique pour créer le sillon de clivage ; les microtubules impliqués dans la signalisation du 

plan de division dans les cellules animales ; ainsi que les septines, présentes sur le site de division des 

levures aux mammifères. 

Les septines sont des composants du cytosquelette uniques capables de s'assembler pour former des 

structures intracellulaires de formes variées telles que des filaments et des anneaux (Bertin et al., 2008; 

DeMay et al., 2011; Garcia et al., 2011; Sirajuddin et al., 2007) en association avec des membranes 

cellulaires, ainsi que des filaments et des microtubules d’actine. Ceci leur permet de participer à de 

nombreux processus biologiques, où elles fonctionnent comme des échafaudages pour les interactions 

protéine-protéine et/ou comme des barrières de diffusion pour la compartimentalisation des protéines 

(Bridges and Gladfelter, 2015; Caudron and Barral, 2009; Mostowy and Cossart, 2012; Spiliotis, 2018). 

Ces protéines de liaison au GTP conservées ont été découvertes initialement chez la levure, où elles se 

localisent au site de division et sont essentielles pour la cytocinèse (Cauvin and Echard, 2015; El Amine 

et al., 2013; Estey et al., 2010; Gladfelter et al., 2001; Hartwell, 1971; Kozubowski et al., 2005; 

McMurray and Thorner, 2009; Versele and Thorner, 2005; Wu et al., 2010).  

Les septines sont également présentes dans les cellules animales et localisées au niveau du sillon de 

division au cours de la cytocinèse. Elles contribuent au recrutement de l’anneau contractile sur le site de 

la division cellulaire et à la régulation de sa contraction (Kinoshita et al., 1997; Maddox et al., 2007; 

Mavrakis et al., 2014). Par la suite, les septines jouent également un rôle important dans la maturation 

du pont intercellulaire et de la formation du  « mid-body », puis dans l'abscission (El Amine et al., 2013; 

Estey et al., 2010; Karasmanis et al., 2019; Renshaw et al., 2014). 

On sait que leur comportement dynamique au cours de la progression de la cytocinèse est régulé par 

des modifications post-traductionnelles et des interactions avec des protéines régulatrices qui 

s’associent aux septines (Eluere et al., 2012; Kang et al., 2013; Marquardt et al., 2018; Wu et al., 2015). 
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Un facteur important pour l'organisation des septines est l'anilline, protéine conservée, dont la 

perturbation conduit à des défauts de cytocinèse (Echard et al., 2004; Field et al., 2005a; Kechad et al., 

2012; Oegema et al., 2000; Somma et al., 2002; Straight et al., 2005; Zhao and Fang, 2005). Des études 

in vitro ont montré que l'anilline peut se lier aux filaments de septines et d'actine. En effet, une fonction 

importante de l'anilline est le recrutement des septines lors de la division cellulaire (Field et al., 2005a; 

Kinoshita et al., 2002; Oegema et al., 2000). Il est bien établi que l'anilline interagit avec les septines via 

une région C-terminale comprenant le domaine d'homologie de l'anilline (AH) en amont du domaine PH 

terminal (Piekny and Maddox, 2010). La région C-terminale de Bud4, la protéine analogue à l'anilline 

chez la levure S. Cerevisiae, joue un rôle important dans l'organisation des septines lors de la sélection 

du site de bourgeonnement et de la croissance des bourgeons ainsi que dans la préservation de 

l'intégrité des anneaux de septines lors de la cytocinèse (Kang et al., 2013; Wu et al., 2015). En effet, 

chez les mutants bud4Δ, le double anneau de septines se désassemble au cours de la cytocinèse (Eluere 

et al., 2012; Kang et al., 2013; Wloka et al., 2011), alors que la surexpression de Bud4 conduit à la 

formation de structures additionnelles de septines (Kang et al., 2013). Récemment, des études de 

microscopie à lumière polarisée ont décrit le rôle clé de Bud4 dans la réorientation des filaments de 

septines présents dans le cou joignant la cellule fille à la cellule mère, au moment de  la transition à un 

double anneau (McQuilken et al., 2017). 

La levure à fission est un organisme eucaryote simple unicellulaire qui a été largement utilisé pour 

étudier la division cellulaire en raison de sa forme stéréotypée, de sa génétique facile et de son temps 

de génération court (Hayles and Nurse, 2001; Hayles and Nurse, 2018). En particulier, ce système 

modèle s'est révélé très puissant pour la dissection moléculaire de l'AC (Almonacid and Paoletti, 2010; 

Lee et al., 2012; Pollard and Wu, 2010; Rincon and Paoletti, 2012; Rincon and Paoletti, 2016; Wu et al., 

2003; Wu et al., 2006). C'est un organisme en forme de bâtonnet, qui se divise par l'assemblage et la 

constriction d'un AC à base d'acto-myosine placé en position médiane. Ce processus est étroitement 

régulé dans l'espace et dans le temps et se déroule en plusieurs étapes. 

Une combinaison de signaux négatifs et positifs définit la position du plan de division au milieu de la 

cellule afin de promouvoir une division symétrique. L'assemblage de l’AC est initié par des précurseurs 

cytocinétiques assemblés dès l'interphase sur le cortex médian de la cellule par la SAD kinase Cdr2 

(Akamatsu et al., 2017; Moseley et al., 2009; Pollard and Wu, 2010; Rincon and Paoletti, 2016; Willet et 

al., 2015b; Wu et al., 2006). Ces précurseurs cytocinétiques contiennent plusieurs composants  non 

essentiels de l’AC, tels que la protéine analogue à l'anilline Mid1, Blt1, Gef2, Klp8 et Nod1 (Goss et al., 

2014; Guzman-Vendrell et al., 2013; Jourdain et al., 2013; Martin and Berthelot-Grosjean, 2009; 

Moseley et al., 2009; Ye et al., 2012; Zhu et al., 2013). Le positionnement médial de ces nœuds  est 

assuré par signalisation négative de la DYRK kinase Pom1 qui forme un gradient émanant des extrémités 
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des cellules (Celton-Morizur et al., 2006; Martin and Berthelot-Grosjean, 2009; Moseley et al., 2009; 

Padte et al., 2006; Rincon et al., 2014). Lors de l'entrée en mitose, l'exportation du noyau de la protéine 

de type anilline Mid1 induite par la kinase Plo1 de la famille Polo permet la signalisation positive du plan 

de division par le noyau placé médialement et renforce le positionnement du plan de division au centre 

de la cellule (Almonacid et al., 2009), tandis que Cdr2 se dissocie des précurseurs cytocinétiques d'une 

manière dépendante du SIN (Akamatsu et al., 2014; Rincon et al., 2017). Plo1 active également Mid1, 

qui devient compétent pour le recrutement séquentiel de composants essentiels de l’AC (Almonacid et 

al., 2011): Mid1 commence par recruter la protéine IQGAP Rng2 et Cdc4 la chaîne légère de la myosine 

II, puis sa chaîne lourde Myo2 et sa chaîne légère régulatrice Rlc1. Mid1 contribue également 

directement au recrutement de la protéine F-BAR Cdc15 (Laporte et al., 2011). Enfin, Rng2 et la myosin 

II, ainsi que Cdc15, collaborent au recrutement de la formine Cdc12, qui nuclée les câbles d'actine-F 

nécessaires à l'assemblage de l’AC (Coffman et al., 2009; Coffman et al., 2013; Laporte et al., 2011; 

Padmanabhan et al., 2011; Willet et al., 2015a; Wu et al., 2003; Wu et al., 2006). Cette étape est 

nécessaire à la compaction des nœuds précurseurs cytocinétiques en un anneau fin, par un mécanisme 

modélisé sous le nom de recherche-capture-traction (Ojkic et al., 2011; Vavylonis et al., 2008). Lors de la 

sortie de la mitose, le SIN, relié évolutivement au réseau de sortie de mitose de la levure bourgeonnante 

(MEN) et à la voie hippo des métazoaires (Hergovich et al., 2006), contrôle les étapes suivantes, 

représentées par la constriction de l’AC et la synthèse d'un septum extracellulaire composé de 

polysaccharides (Krapp et al., 2004b; Simanis, 2003; Simanis, 2015). Finalement, la séparation des 

cellules sœurs s'ensuit lorsque la couche interne du septum est digérée par des glucanases (Cortes et al., 

2016; Perez et al., 2016).  

Parallèlement à l'assemblage de l’AC, des modifications de la composition lipidique de la membrane 

plasmique ont lieu au site de division, avec un impact fonctionnel sur la cytocinèse. Cependant, dans la 

levure à fission, on ne dispose que de peu de données sur le rôle des lipides membranaires dans la 

cytocinèse. On sait cependant que la localisation correcte de la PI4 kinase Stt4 par sa sous-unité 

d'échafaudage Efr3 joue un rôle dans la régulation spatiale de la cytocinèse en empêchant l’AC de glisser 

vers l’extrémité de la cellule pendant l'anaphase (Snider et al., 2017). De même, des anomalies de la 

régulation spatiale de la cytocinèse ont été rapportées dans le mutant de la PI-5 kinase its3-1, 

caractérisé par des taux réduits de PI(3,5)P2 (Snider et al., 2018). Deuxièmement, des défauts de 

cytocinèse ainsi que de la morphologie cellulaire et de l'organisation de la paroi cellulaire ont été 

observés dans un mutant de Pps1 impliqué dans la synthèse de la phosphatidylsérine (PS) (Matsuo et al., 

2007). Troisièmement, il a été démontré que les défauts d'hydrolyse des sphingolipides en céramide 

dans le mutant css1 induisent des défauts de formation de la paroi cellulaire et du septum, dus à 

l'accumulation de glucanes α et β dans l'espace périplasmique, avec arrêt de la division cellulaire et 
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issue fatale (Feoktistova et al., 2001). Certaines données indiquent également un rôle des stérols dans la 

régulation de la cytocinèse (Wachtler et al., 2003). Les stérols sont synthétisés et subissent leur 

maturation dans le reticulum endoplasmique par une cascade de réactions enzymatiques couplées. Le 

produit métabolique final, le cholestérol dans le cas des cellules animales et l’ergostérol chez les 

champignons, est ensuite transporté vers la membrane plasmique où il forme des domaines ordonnés 

liquides en interagissant préférentiellement avec les sphingolipides, qui jouent un rôle reconnu dans la 

transduction du signal, le tri vésiculaire et la polarité (Rajendran and Simons, 2005). Les facteurs clés 

pour la formation de domaines riches en stérols (SRD) sont la protéine F-BAR Cdc15 et la myosine Myo1 

de type I, qui interagissent ensemble, et se lient préférentiellement aux phospholipides acides (Alvarez 

et al., 2007; Carnahan and Gould, 2003; Takeda and Chang, 2005; Takeda et al., 2004). De plus, les SRD 

se redistribuent des extrémités de cellules en croissance en interphase, où ils agissent comme des 

échafaudages pour les facteurs de polarité et le mécanisme de croissance (Makushok et al., 2016), vers 

le site de division en mitose (Wachtler et al., 2003). Fait intéressant, Wachtler et al. (2003) ont 

découvert que la surexpression de Erg25, une stérol-méthyl-oxydase C-4 de la voie de synthèse de 

l'ergostérol, pouvait altérer la distribution de l'ergostérol au sein de la cellule et perturber le 

positionnement du CR, conduisant à la formation de septa positionnés aléatoirement et déformés 

(Wachtler et al., 2003). 

En plus de l’AC, la cytocinèse implique les anneaux de septines. Chez la levure de fission, ces protéines 

d'échafaudage interviennent aux derniers stades de la cytocinèse pour favoriser la séparation des 

cellules filles. En effet, contrairement à S. cerevisiae, où les septines sont nécessaires à la formation de 

l’AC, les septines sont recrutées une fois que l'anneau contractile a été complètement assemblé chez S. 

pombe. Les septines forment d'abord un anneau unique à la fin de la mitose, qui se sépare en deux lors 

de la constriction de l’AC et de la formation du septum. Ce double anneau ne se contracte pas avec l’AC, 

mais reste à la surface de la cellule pour délimiter les bords du sillon de division. Puis il se dissocie après 

la séparation des cellules filles (An et al., 2004; Berlin et al., 2003; Juanes and Piatti, 2016; Wu et al., 

2003). Les mutants de septines présentent des défauts de séparation des cellules filles car les septines 

jouent un rôle clé, de concert avec le complexe exocyste, dans la sécrétion des deux enzymes 

hydrolytiques du septum (Agn1 et Eng1) dans la zone autour du septum, régulant ainsi l'étape terminale 

de la cytocinèse (Alonso-Nunez et al., 2005; Martin-Cuadrado et al., 2005). Récemment, il a également 

été démontré que les septines jouent un rôle dans le recrutement et le maintien correct dans la région 

du septum de la kinase Sid2 et des glucan-synthases Bgs1 et Ags1 afin de garantir le succès de la 

cytocinèse (Zheng et al., 2018). 

Le génome de S. pombe code pour deux protéines apparentées à l'anilline: Mid1 et Mid2. Les tests 

génétiques ont exclu tout chevauchement de fonctions entre elles, indiquant qu'elles travaillent 
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indépendamment dans des phases distinctes du cycle cellulaire (Berlin et al., 2003). Mid2 se localise sur 

le site de la division de manière dépendante des septines (Berlin et al., 2003). De plus, le fait qu’une 

souche mid2Δ présente le même phénotype que le mutant Spn4Δ où la division nucléaire et la synthèse 

du septum se produisent mais la séparation cellulaire est retardée (Berlin et al., 2003)  suggère que 

Mid2 et les septines  participent au même processus. En effet, l'analyse par FRAP a révélé qu'en 

l'absence de Mid2, les septines sont beaucoup plus dynamiques (30 fois plus) que dans des cellules de 

type sauvage, ce qui indique un rôle de Mid2 dans l'organisation des septines (Berlin et al., 2003). Les 

niveaux de protéine Mid2 sont étroitement contrôlés pendant le cycle cellulaire, atteignant leur 

maximum pendant la septation et diminuant après la séparation cellulaire. Bien que cela puisse être 

contrôlé par phosphorylation, les kinases candidates n'ont pas encore été identifiées (Kim et al., 2017; 

Tasto et al., 2003). En outre, Mid2 contient trois séquences PEST, une dans une région médiale et deux 

au niveau de l'extrémité N-terminale, qui pourraient servir de signaux pour la dégradation des protéines 

par l'ubiquitination et la protéolyse dépendante du SCF (Alonso-Nunez et al., 2005; Petit et al., 2005; 

Tasto et al., 2003). La surexpression d'un mutant Mid2 non dégradable induit la persistance des 

filaments de septines tout au long du cycle cellulaire suivant, indiquant que Mid2 est impliqué dans la 

maintenance des anneaux de septine (An et al., 2004; Tasto et al., 2003). Globalement, ces évidences 

indiquent que: 1) les filaments de septines peuvent s'organiser en anneau de manière dépendante de 

l’AC, 2) le recrutement de Mid2 est dépendant des septines et 3) Mid2 contribue à la stabilité de cet 

anneau. 

Cependant, la manière dont les septines et Mid2 sont régulées avec précision dans l’espace et dans le 

temps pour s’acquitter correctement de leur fonction et la manière dont Mid2 contribue à l’organisation 

des anneaux de septines reste incomprise. 

J'ai étudié la cytocinèse dans le système modèle de levure à fission sous deux angles différents. Mon 

travail a d'abord porté sur la première étape de la cytocinèse, le positionnement du plan de division, et a 

abordé le rôle d'un lipide membranaire dans ce processus. La deuxième partie de mon projet a été 

consacré à la cytocinèse tardive, en analysant l’assemblage des anneaux de septine sur le site de la 

division. 

La première partie de mon travail visait à comprendre l’impact du niveau d’ergostérol sur le 

positionnement du plan de division. En effet, la surexpression d'Erg25, une protéine impliquée dans la 

biosynthèse de l'ergostérol, entraîne un positionnement aléatoire de l'AC et par conséquent du septum. 

En combinant la génétique de la levure S. pombe et l'imagerie sur cellules vivantes des composants  de 

l’AC, j'ai constaté qu'une augmentation du niveau d'ergostérol ne perturbe pas les noeuds précurseurs 

cytocinétiques qui définissent la position du plan de division, mais inhibe spécifiquement l'assemblage 

de l’actine-F à partir des noeuds précurseurs cytocinétiques par la formine Cdc12, empêchant leur 
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compaction en un AC placé en position médiane. Puisque la stabilité des câbles d'actine-F n’est pas 

complètement modifiée et que le phénotype peut être partiellement sauvé par l'inhibition du complexe 

Arp2/3 qui entre en compétition avec les formines, nous proposons que l'augmentation des niveaux 

d'ergostérol dans la membrane plasmique inhibe l'activité de la formine Cdc12 de manière directe ou 

indirecte. 

Dans la deuxième partie de ma thèse, mon projet portait sur le comportement dynamique des septines 

au cours de la cytocinèse et les mécanismes de régulation qui contrôlent leur assemblage en anneaux 

définissant les limites du sillon de clivage. Cette partie a été abordée de trois manières: 1) Description 

du recrutement, de l’assemblage et du désassemblage des septines et de la protéine de type anilline 

Mid2 par imagerie sur cellules vivantes à l’aide de minuteurs précis de cycle cellulaire 2) Détermination 

de l’impact de Mid2 sur l’assemblage des anneaux de septines en combinant approches de génétique 

moléculaire et de biochimie 3) Identification des principaux régulateurs contrôlant les principales 

transitions d’organisation des septines et de Mid2. J'ai tout d'abord constaté que les septines sont 

initialement recrutées en tant que réseau diffus dans une région du cortex de 1,5 µm de large entourant 

l’AC, au moment de l'élongation maximale du fuseau, avant de se compacter en anneaux lors du 

déclenchement de la constriction de l’AC. Deuxièmement, mes travaux démontrent que la protéine 

Mid2, semblable à l’anilline, pourrait agir comme un « bundler » pour les septines favorisant cette 

nouvelle étape de compaction ainsi que l’accumulation supplémentaire de septines au niveau du site de 

division. Troisièmement, en regardant les régulateurs du cycle cellulaire, j'ai trouvé qu'une activité 

élevée de Cdk1 permettait le recrutement de septines et Mid2 mais pas leur compaction, alors que la 

voie SIN est cruciale pour l'accumulation de septines et Mid2 au site de division et leur compaction. 

Enfin, les niveaux de PIP2 se sont révélés essentiels pour déclencher le recrutement de septines sur la 

membrane plasmique, avant que Mid2 ne soit disponible au début de la constriction de l’AC, et ont un 

impact sur la quantité maximale de septines au site de division. Ce travail met donc en évidence les 

régulations complexes qui permettent la coordination entre l'assemblage des anneaux de septines et la 

progression du cycle cellulaire. 
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ABSTRACT 

 

Cell division is an essential process required for the proliferation of unicellular organisms, for the 

development of multicellular organisms, as well as for cell renewal within tissues and organs. 

Defective control of cell division can either lead to cell death, or to cell hyper-proliferation and 

contribute to cancer progression. Cell division is therefore under the control of very tight 

regulatory mechanisms. In animals and fungi, its final step, cytokinesis, requires an acto-myosin-

based contractile ring that constricts to promote sister cell cleavage. Modifications in the lipid 

composition of the plasma membrane take place during cell division, with functional impact on 

cytokinesis. 

 

Fission yeast is a simple single cell eukaryotic organism which has been extensively used to 

study cell division because of its stereotyped rode shape, easy genetics and short generation 

time. In particular, this model system has proved very powerful for the molecular dissection of 

contractile ring assembly. However remarkably little is known on how membrane lipids regulate 

contractile ring assembly. In the first part of my PhD, my objective was to study how lipids could 

regulate contractile ring positioning in fission yeast. I have combined fission yeast genetics with 

live-cell imaging of contractile ring assembly from precursor nodes to understand how ergosterol 

levels affect division plane positioning. I have found that increased ergosterol levels prevent F-

actin assembly from cytokinetic precursor nodes by the formin Cdc12, avoiding their compaction 

into a medially placed contractile ring. Since the stability of F-actin cables was not altered 

altogether and the phenotype could be partially rescued by inhibition of the Arp2/3 complex which 

competes with formins, we propose that increasing ergosterol levels in the plasma membrane 

may inhibit the activity of the formin Cdc12.  

 

In addition to the contractile ring, cytokinesis involves an additional component of the 

cytoskeleton, the septins, which form filaments at the division site. Septins are a family of 

conserved GTP binding proteins whose deletion leads to cytokinetic defects. They also serve as 

scaffolds for protein-protein interactions and/or as diffusion barriers for protein 

compartmentalization in cytokinesis and beyond. In fission yeast, in contrast to budding yeast, 

septins are late at the division site and are only involved in late stages of cytokinesis, to promote 

sister cell separation. In the second part of my PhD, I decided to explore the dynamic behavior of 

septins and decipher how they are regulated. Using live cell imaging and precise cell cycle timers, 

I have identified a new step in the recruitment of septin to the cell cortex in the proximity of the 

contractile acto-myosin ring, in a broad meshwork that then compacts into a tight ring. I have also 

found evidence that the anillin-like protein Mid2 is necessary to promote this compaction and may 

act as a bundler for septin filaments. However, analysis of mutants blocked in mitosis shows that 

this protein is not sufficient to accomplish this task. Moreover, I have determined that high Cdk 

activity allows septins and Mid2 initial recruitment and assembly, but the SIN pathway also plays 

a role in promoting their recruitment at the cell middle and is then required to drive their 

compaction. Additionally, I have found that PIP2 levels influence not only the amount of septins 

and Mid2 filaments associated at the medial cortex together with their compaction but also the 

timing of septin and mid2 recruitment to the division site. This demonstrates that septin assembly 

relies on complex regulations coordinated by the cell cycle machinery. 
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