N

N
N

HAL

open science

Quasi optimal model checking for concurrent systems
Thi Thanh Huyen Nguyen

» To cite this version:

Thi Thanh Huyen Nguyen. Quasi optimal model checking for concurrent systems. Data Structures
and Algorithms [cs.DS]. Université Sorbonne Paris Cité, 2018. English. NNT: 2018USPCDO087 .

tel-02888087v1

HAL Id: tel-02888087
https://theses.hal.science/tel-02888087v1
Submitted on 2 Jul 2020 (v1), last revised 2 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02888087v1
https://hal.archives-ouvertes.fr

universie PA R 3&3 w

Quasi optimal model checking

for concurrent systems

NGUYEN Thi Thanh Huyen
LIPN, CNRS UMR 7030, University Paris 13

Jury:

Benoit BARBOT MCF, LACL, Université Paris Est Créteil Member
Thomas CHATAIN Ass. Prof, HAR, LSV, ENS Cachan Reviewer
Camille COTI Ass. Prof, LIPN, Université Paris 13 Co-advisor
Fabrice KORDON Prof, LIP6, Sorbonne Université Member
Laure PETRUCCI Prof, LIPN, Université Paris 13 Director
Franck POMMEREAU Prof, IBISC, Université d’Evry Reviewer
César RODRIGUEZ Ass. Prof, LIPN, Université Paris 13 Co-advisor
Tayssir TOUILI DR, CNRS, LIPN President

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

Villetaneuse 2018

Acknowledgements

First of all, I would like to extend my great thanks to Fabrice Kordon,
Benoit Barbot, Tayssir Touili for their acceptance to be members of the
committee and Thomas Chatain, Franck Pommereau for their reviews of

my thesis. I appreciate all their comments to make my thesis better.

I would like to express my great gratitude to my supervisor, Laure Petrucci,
for all her guides and supports during the past over three years. From

her, I have learned the serious working manner and attitude.

[am particularly grateful to César Rodriguez, my co-advisor, for the pa-
tience when he taught me unfolding, model checking and many other
things from the scratch. I owe him for his kindness and carefulness to my
work and my daily life. He was always a person I could come to when I

had problems.

[would like to extend my deepest thanks to Camille Coti, another advisor
who gave me plenty of guidances and suggestions to new interesting extent
of parallelism. From my first day in France, she has been considerate and

willing to help me whenever I need.

My special thanks are extended to Marcelo Sousa and Hoang-Gia Nguyen.
Marcelo’s cooperation plays an important part on the success of my re-
search. Sharings and advices received from Hoang-Gia, not also a fellow
doctoral student but also a brother as well, have been a great help in
overcoming many problems during my research. I truly appreciate Gia’s

friendship and kindness.

Vietnam Ministry of Education and Training who funds my whole the
study in France receives from me great thanks. My Ph.D study is also
made possible thank to Hanoi University of Education, Vietnam, partic-
ularly the Faculty of Information Technology (FIT) where I have been
working as a lecturer. I would like to thank my colleagues at FIT for their

hard work to offer me the time for my study aboard.

I would like to thank all members of LIPN who have made my time in
the laboratory remembering. My sincere thanks are towards to Brigitte
Guevenuex who is so kind to help me with all complex administrative
procedures from the first day in France and other hard time with accom-
modation searching. I would like to thank to fellow doctoral students in

LIPN whose sharings help me a lot improve my presentation skills.

Outside LIPN, I would like to express my warming thanks to my viet-
namese friends in University of Paris 13: Phuong, Viet, Nga, Hoang,
Hieu, Thuy, Hoa, Thai, Thi, Tram, Quang and many others that I cannot
list all. They really made my time in the university full of joys, funs and
warmth. I will remember their considerateness and sharings as well as all

travels and parties we made together.

My warmest appreciations goes to my parents, in-law parents, uncles,
aunts, brothers and sisters who are always care of me and encourage me

along my far-way living.

Finally, from the bottom of my heart, my love and gratitude go to my
husband Le Hoan who is always by my side, encourages and supports me
in the good as well as hard time of my life. My daughter Hoang-Ngan
and my little son Hai-Phong are appreciated for their understanding and

being good for me to throw myself in work.

Villetaneuse, December 2018

Huyen Nguyen

Abstract

Formal methods have been widely used for design and verification of com-
plex systems. Among the proposals in the field, model checking gains
more attractivity as it can perform automatically and give counterexam-
ples when there is any defect. However, by exhaustively exploring all
possible behaviours of the system, i.e. generating the statestate space,

model checking has to face the state space explosion problem.

Partial Order Reduction (POR) and unfolding are two of approaches that
deal with state space explosion. PORs exploit the commutativity of con-
current transitions to reduce the state space while unfolding algorithms

gain reduction by using a compact graph based on true concurrency.

We target the verification of concurrent programs which are a rich source
of concurrency. Dynamic partial-order reduction (DPOR), a branch of
POR, is a mature approach to mitigate the state explosion problem in
stateless model checking of multithreaded programs based on Mazurkiewicz
trace theory, whereas unfolding, which is originally for Petri nets, is still

at an initial state for targetting programs.

We propose to combine DPOR and unfolding into an algorithm called
Unfolding based POR that optimally explores the state space. The ex-
ploration is optimal when it explores each Mazurkiewicz trace only once.
However, in order to obtain optimality, the algorithm is forced to compute
sequences of transitions that avoid visiting a previously visited Mazurkiewicz

trace known as alternatives.

In this thesis, we formally address the cost of optimality in a DPOR. algo-
rithm. We prove that computing alternatives in optimal DPOR, Unfolding
based POR in particular, is an NP-complete problem.

As a trade-off solution between solving this NP-complete problem and
potentially explore an exponential number of redundant schedules, we
propose a hybrid approach called Quasi-Optimal POR (QPOR). In par-

ticular, we provide a new notion of k-partial alternative and a polynomial

algorithm to compute alternative executions that can arbitrarily approx-

imate the optimal solution based on a user-defined constant k.

Finding k-partial alternatives requires decision procedures for the causal-
ity and conflict relations in the unfolding. Another main algorithmic con-
tribution is to represent these relations as a set of trees where events are
encoded as one or two nodes in two different trees. We show that checking
causality and conflict between events amounts to an efficient traversal in

one of these trees. We also use a skip list to quickly traverse the tree.

We also implement the algorithm and data structures in a new tool using

a specialized data structure.

Besides the algorithmic improvements guaranteed by QPOR, paralleliza-
tion is another way to speed up the unfolding exploration by taking ad-
vantage of multiple processor hardware and parallel models. Therefore,

we propose a parallel algorithm based on parallelizing QPOR.

Finally, we conduct experiments on the sequential implementation of QPOR
and compare the results with other state-of-art testing and verification
tools to evaluate the efficiency of our algorithms. The analysis shows that

our tool outperforms them.

Résumé

Les méthodes formelles sont utilisées largement pour la vérification de la concep-
tion de systemes complexes. Parmi les solutions proposées par ce domaine, le model
checking, ou vérification de modeles, suscite de l'intérét car il s’effectue de maniere
automatique et fournit un contre-exemple en cas d’anomalie. Cependant, en effec-
tuant une exploration exhaustive de tous les comportements possibles du systeme,
c’est-a-dire de l'espace d’états, le model checking fait face au probleme de 'explosion
de cet espace d’états.

La réduction d’ordre partiel (POR) et le dépliage (unfolding) sont deux approches
qui permettent de faire face a l'explosion de l'espace d’états. Les techniques de
réduction d’ordre partiel exploitent la commutativité des transitions concurrentes
pour réduire 'espace d’états, tandis que les algorithmes de dépliage le réduisent en
utilisant un graphe compact basé sur la vraie concurrence. Notre but est de vérifier
des programmes concurrents qui sont riches en sources de concurrence. La réduction
d’ordre partiel dynamique (DPOR), qui est un type de réduction d’ordre partiel,
est une approche mature pour réduire le probleme de 'explosion de 'espace d’états
dans le model checking sans état de programmes multithreadés en se basant sur la
théorie des traces de Mazurkiewicz, tandis que les dépliages, congus a 1’origine pour
les réseaux de Petri, sont encore une nouveauté pour les programmes. Nous avons
proposé de combiner la DPOR et le dépliage dans un algorithme appelé POR basée sur
le dépliage et qui effectue une exploration optimale de 'espace d’états. L’exploration
est optimale quand elle explore chaque trace de Mazurkiewicz exactement une fois.
Cependant, afin d’obtenir cette propriété d’optimalité, I’algorithme doit calculer des
séquences de transitions qui permettent d’éviter d’explorer une trace de Mazurkiewicz
déja précédemment explorée : c’est ce que l'on appelle les alternatives. Dans cette
these, nous abordons de maniere formelle le cout de 'optimalité d’'un algorithme de
DPOR. Nous prouvons que le calcul des alternatives dans une DPOR optimale et,
en particulier, dans l'algorithme de DPOR basée sur les dépliages, est un probleme
NP-complet.

En compromis entre la résolution d’'un probleme NP-complet et I'exploration po-
tentielle d'un nombre exponentiel d’ordonnancements redondants, nous proposons
une approche hybride appelée réduction d’ordre partiel quasi-optimale (QPOR). En
particulier, nous proposons une nouvelle notion d’alternative k-partielle et un al-
gorithme en temps polynomial qui calcule des exécutions alternatives qui peuvent

approcher arbitrairement la solution optimale, paramétré par une constante k définie

par l'utilisateur. Trouver des alternatives k-partielles nécessite des procédures de
décision pour les relations de causalité et de conflit dans le dépliage. Une autre con-
tribution algorithmique de cette these est la représentation de ces relations comme
un ensemble d’arbres dans lequel les événements sont encodés comme un ou deux
nceuds dans deux arbres différents. Nous montrons que vérifier la causalité et le con-
flit entre deux événements revient a une traversée efficace d’'un des deux arbres. Nous
utilisons également une skip list pour traverser rapidement 'arbre. Nous détaillons
I'implémentation de I'algorithme et les structures de données utilisées dans un nou-
vel outil qui utilise une structure de données spécialisée. Outre les améliorations
algorithmiques garanties par QPOR, la parallélisation est un autre moyen d’accélérer
I’exploration en tirant parti des avantages des architectures matérielles multi-processeurs
et multi-coeurs grace aux modeles de parallélisme. Par conséquent, nous proposons
un algorithme de QPOR parallele.

Enfin, nous présentons des expériences sur 'implémentation séquentielle de QPOR
et comparons les résultats avec d’autres outils de test et de vérification a la pointe
de I’état de 'art afin d’évaluer I'efficacité de nos algorithmes. L’analyse des résultats

montre que notre outil présente de meilleures performances que ceux-ci.

Contents

1 Introduction 1
1.1 Imtroduction 1
1.2 Formal methods 2
1.3 Model checking 3

1.3.1 Model checking process 3
1.3.2 State Space Explosion (SSE) problem 4
1.3.3 Unfolding 5
1.3.4 Partial order reduction 6
1.3.5 Challenges and objectives 8
1.4 Parallel and distributed verification 9
1.4.1 Parallel and distributed hardware and software 9
1.4.2 Parallel and distributed verification 10
1.4.3 Opportunities and objectives 10
1.5 Contributions 11
1.6 Thesisoutline 12

2 Preliminaries 13
2.1 Imtroduction 13
2.2 Computation model 14

2.2.1 Labelled transition systems 14
2.2.2 Concurrent systems 15
2.3 Dependence and Independence Relation. 18
2.3.1 Independence for Petri Nets 19
2.3.2 Independence for concurrent programs 19
2.4 Labelled Prime Event Structures 20
2.4.1 Definition 20

2.4.2 Configurations

243 Extensions
2.5 Unfolding semantics of program
2.6 Conclusions

Quasi Optimal Partial Order Reduction

3.1 Introduction
3.2 Unfolding-based POR
3.2.1 Unfolding exploration algorithm
3.2.2 Algorithm correctness L.
3.3 Partial alternativeso Lo
3.3.1 Complexity of computing alternatives
3.3.2 Motivating exampleo
3.3.3 k-partial alternatives
3.4 Conflicting extensions L.
3.4.1 Conflicting extension algorithm
3.4.2 Complexity
3.5 Conflict and Causality
3.6 Sequential tree
3.6.1 Causality and Conflict of nodes
3.6.2 Data structure and efficient tree navigation
3.6.3 Causality and Conflict for events
3.7 Conclusions

QPOR Parallelization

4.1 Introduction
4.2 Motivations
4.2.1 Technology for parallelism
4.2.2 Challenges and opportunities for QPOR parallelization
4.2.3 Ourobjectives
4.3 Parallelization design for QPOR
4.3.1 Parallel computing oL
4.3.2 Generalidea Lo
4.3.3 Data structure
4.3.4 Overall algorithm
4.3.5 Parallel exploration process
4.3.6 Avoiding redundant exploration

i

27
27
28
28
32
35
35
39
41
43
43
11
47
50
50
52
52
53

4.3.7 Algorithm termination

4.3.8 Synchronization mechanism

4.4 Conclusions

5 Implementation and experiments

5.1 Introduction

5.2 DPU - Dynamic Program Unfolder

52.1 Front-end
522 Back-end
5.3 Sequential implementationo

5.4 Parallel implementation
54.1 OpenMP

5.4.2 Algorithm implementation

5.5 Experiments

5.5.1 Comparison to SDPOR

5.5.2 Evaluation of the Tree-based Algorithms
5.5.3 Evaluation Against the State-of-the-art on System Code

5.5.4 Profiling a Stateless POR

5.6 Conclusions

6 Conclusions and Perspectives

6.1 Conclusions

6.2 Perspectives L

Bibliography

il

67
67
68
69
69
71
72
74
76
77
7
79
81
83
83

85
85
36

89

v

List of Figures

2.1
2.2
2.3

3.1

3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
9.3
5.4
9.5
5.6

A Petrinet
A multithreaded program

A labelled prime event structure L.

Unfolding example. (a): a program P; (b): its unfolding semantics
Up o o o o o
Example of encoding a 3-SAT formula.
Program unfolding encoding a 3-SAT formula.
Motivating example. (a): Programs; (b): Partially-ordered executions;
Petri Net encoding a 3-SAT formula.

Multiple trees for a process. a

%

; 1s node indexed j at the depth ¢

Example: (a) Program; (b) All maximal configurations; (c¢) Unfolding

Parallel exploration

DPU architecture
Unfolding memory alignment
Dpu class diagram for sequential implementation
OpenMP execution model
Execution of tasks oo

Part of class diagram for parallel implemention.

vi

List of Tables

5.1

5.2

5.3

Comparing QPOR and SDPOR. Machine: Linux, Intel Xeon 2.4GHz.
TO: timeout after 8 min. Columns are: Th: nr. of threads; Confs:
maximal configurations; Time in seconds, Memory in MB; SSB: Sleep-
set blocked executions. N/A: analysis with lower % yielded 0 SSBs.

(a), (b): depths of variable/thread trees; (c), (d): frequency of depth
distances on causality /conflict queries.
Comparing DPU with Maple (same machine). LOC: lines of code;
Execs: nr. of executions; R: safe or unsafe. Other columns as before.

Timeout: 8 min.

vil

78

viil

Chapter 1

Introduction

Contents

1.1 Introduction

1.2 Formalmethods,

1.3 Modelcheckingo
1.3.1 Model checking process 3
1.3.2 State Space Explosion (SSE) problem 4
1.3.3 Unfolding o 5
1.3.4 Partial order reduction 6
1.3.5 Challenges and objectives 8

1.4 Parallel and distributed verification 9
1.4.1 Parallel and distributed hardware and software 9
1.4.2 Parallel and distributed verification 10
1.4.3 Opportunities and objectives 10

1.5 Contributions 000000 o 11

1.6 Thesisoutline. 12

1.1 Introduction

Complex systems require intensive verification and validation to assure reliable opera-
tions in the real world. Design is a critical part that determines system quality, design
verification is hence an important work. Design verification should start early in the
development process, thus help reduce significantly the cost and efforts to detect and
fix bugs. Many design verification techniques have been proposed such as testing [91],
simulation [5], deductive verification [50, 23] and formal methods [25, 34, 101]. Sim-

ulation works on an abstract model of the design while testing works on the actual

product, but these two conventional techniques have the same paradigm: providing
prepared inputs and then observing and analyzing the outputs. They may be cost-
efficient but risk to leave some fatal errors unfound. Moreover, working on manually
designed and selected test cases and data, testing cannot certify there is no bug or
how many bugs still remain in the software. Deductive verification [50] exploits the
axioms and rules to prove the correctness of system, but it requires mathematicians
or logic experts to manually construct proofs, so the verification process cannot be
automatic. Formal methods are based on mathematical models to verify systems.
Contrary to testing and simulations, the answer of formal methods is always sound
since it relies on mathematical foundation. When a system model is declared cor-
rect by formal verification, it does mean that: the system is proper and there is no
bugs left with a certain specification of the expected behaviours. This chapter will
give introduction to formal methods and a short survey of techniques that have been

proposed over the years in the field.

1.2 Formal methods

Formal methods [101, 103] are based on mathematical analysis to enhance the relia-
bility and robustness of system design. It is described as the application of theoretical
computer science fundamentals such as logic calculus [52], formal languages, automata
theory [62], etc. in software specification and verification. Among the variety of re-
cent proposed approaches, theorem provers, proof checkers and model checking have
attracted many researches.

Theorem provers [70, 40] and proof checkers [13] require expert knowledge in
mathematics to prove a mathematical model to be correct. Moreover, proof con-
struction must be done by hand and require expertise that cannot be easily found in
development team, it is hence time-consuming and effort-costly. Model checking is a
good candidate for solving most of the aforementioned problems.

This method is based on exhaustive exploration of all possible behaviours of sys-

tem. Compared with others, it has several strengths:

o Automatic: As long as model and specification are provided, the verification
process is performed automatically. It is almost a push-button technique where
users just provide input data, then get the answer while all the process is a

black-box to them. Hence, it is also called automated verification.

e Counterexample given: When detecting an unsatisfied property, model checkers

are able to provide the counterexample and even the source of the errors.

How does model checking work? In the context of automatic verification for con-
current programs, we discuss in the following sections the principles of the model
checking method and provide a short overview of its various techniques. We also
point out some shortcomings of existing model checking approaches and then pro-

pose our improvements.

1.3 Model checking

Model checking [25, 34] is automated verification that means the checking process can
be done without users’” manipulation. The main idea of model checking is to explore
a directed graph representing all the possible behaviours of a transition systems,
called state space, to find out reachability errors, such as deadlock, violations, etc.
We witness plenty of model checking tools like SPIN [59], Divine [19], Uppaal [97],
ITS-tools [93], etc.

By exhaustive exploration of the state space, model checking insures the complete
coverage of system behaviours and produces reliable and sound output, unlike testing.
But also arises the problem called state space explosion [37], which is the situation
when the number of states to be explored increases combinatorially. The question
is how to transform an actual system to a transition one, how to explore the state
space efficiently and how to mitigate state space explosion, etc. This section details

the model checking process and a survey of several techniques proposed recently to
deal with SSE.

1.3.1 Model checking process

The process of verifying a system with model checking includes three steps:

e Modeling: This is a process of investigation and abstraction from the actual sys-
tem into an acceptable formalism for model checkers. One of the most popular
representations is transition systems that will be discussed in detail in Chap-
ter 2. The aim of modeling is trying to reduce the number of computations and
limit the computational resources to obtain a model as simple as possible but

still representing completely the critical properties of the system.

e Specification: Relevant properties are extracted from system design and de-
scribed in a suitable logic formalism, usually temporal logic [55, 33] (for in-
stance, Linear Temporal Logic, Computation Tree Logic) to keep track of time
in system operations. This stage also discards irrelevant details, so that verifi-
cation determines if the model satisfies the specification but is often impossible
to tell if the specification covers all necessary properties or not. It is essential

for designer to insure the completeness and soundness of the specification.

e Verification: Verification is exploring algorithmically the system model to check
if specified properties are satisfied or not. If it results in an error, counterexam-
ples should be given to trace back to the source, which probably corresponds
to bugs in the system itself or in the specification. Sometimes, we possibly get
a time-out meaning that there is something wrong in the system or algorithms.
It is then necessary to adjust parameters or review model and do experiments

again to get a clear answer.

1.3.2 State Space Explosion (SSE) problem

Exploring all reachable states of a system guarantees the full coverage of the system
behaviours but makes state space explosion [35, 37] happen as well. Assume that
we have a system composed of m sequential components, each of which can be in
n possible states, so the system reaches m x n states in total. In another case, if
these m components are independent (concurrent and non-communicating), the state
space will be calculated by n™, exponential in m. It is obvious that even a moderate
concurrent system can produce an enormous state space, leading to a problem called
state space explosion, SSE for short. As a consequence, naive model checking may
take a huge amount of time for small and simple systems, so that it limits the range
of systems. Approaches recently proposed to tackle SSE can be divided into three

main groups:

e Reduction techniques or Partial Order Reduction (POR) family [83, 51, 27, 16]:
The main idea of POR methods is trying to reduce the number of states to
explore and transitions to execute by exploiting commutativity or independence
relations. We can avoid exploring interleavingly independent transitions which

leads to an exponential reduction in the state space.

e Compression [53]: Compressing methods aim at constructing a compact repre-

sentation for the reachability graph. Binary Decision Diagrams have been used

in [30, 31, 32] for a clever encoding of state spaces which exhibit some kind of
regularity. The compact graph is obtained by removing redundant nodes and
merging equal branches and subtrees. Symbolic execution [82, 68] can be seen
as a compression approach constructing representation by partitioning the in-
put values into equivalence classes such that some symbolic values can present
all possible values. Similarly, unfolding [42, 43, 44, 87| is based on concurrency
to construct a symbolic representation of possible interleavings of the original

system.

o Abstraction [36, 90]: These approaches compute an abstract system that is finite
and relatively small but still infer to the properties of the actual system. These
involve transition or reactive systems that have data paths. The abstraction
is generally specified by mapping a set of actual data values to a smaller set
of abstract values, so that we apply it to states and transitions in transition
systems to get a much reduced abstract system for more simple verification.

Predicate abstraction is a typical instance of abstraction methods.

Each approach has its own pros and cons, we are interested in POR and unfolding.
POR methods make use of independence relation to greatly reduce the number of
states explored as well as transitions to fire, hence, gain exponentially compact state
space while the unfolding method proposes an efficient representation for the state
space. Moreover, unfolding is a partial order based technique, then it is convenient
to combine it with POR. In the light of these findings, we can combine these two
approaches to better tackle the SSE problem, and aim at dealing with a wider range

of systems. We will discuss in details these two techniques in the following sections.

1.3.3 Unfolding

The unfolding [58, 45] method is a POR technique dealing with the state space ex-
plosion problem and based on the theory of true concurrency to replace full labeled
transition systems by special partially ordered graphs.

Although their nodes are not actually reachable states themselves, these graphs
contain full information about the reachable states of the system through configura-
tion, a set of conflict-free and causal-closed events.

Unfolding was proposed by Nielsen [79] originally applied to Petri nets [4, 39]
where a net is unfolded into an infinite acyclic occurrence net. It stops when there is

no transition to fire. This process basically relies on the dependence relation (called

causality) where a transition can only fire if all its predecessors with respect to causal-
ity have already fired. The unfolding procedure starts at the initial state (marking),
finds all possible enabled transitions whose inputs places hold tokens, then extends
the graph by adding an instance of an enabled transition if it has no conflict in the
local configuration (the configuration leads to a transition occurrence). With all these
notions, the unfolding of a net is easy to construct but it is still infinite and has a lot
of repeated parts. In his doctoral thesis [75], McMillan proposed to construct a finite
graph called prefiz, an initial part of the unfolding that covers all reachable markings
of the net. With the introduction of prefix, the size of the graph associated to a
Petri net is greatly reduced, thus simplifies the exploration. The unfolding procedure
terminates at cutoff points that are a set of transitions such that: any configuration
containing a cutoff point must be equivalent in term of final state to a configuration
containing no cutoff points.

Although the proposal of cutoff points dramatically reduces the size of the unfold-
ing, prefixes still have redundant information and sometimes McMillan’s algorithm
produces such prefixes that are much larger than necessary. In [45], Ezparza proposes
an algorithm that generates a minimal prefix that is usually smaller than that in
McMillan’s one by using an adequate order. On the other hand, unfolding tradition-
ally developed as partial order semantics for Petri nets has been used for analysis
multithreaded programs [90, 87, 66]. However, existing unfolding based technique

has also some disadvantages that will be addressed in Section 1.3.5.

1.3.4 Partial order reduction

As mentioned above, concurrency is one of the causes of state space explosion. Partial
order reduction [84, 85] are best suited for asynchronous systems where concurrent ac-
tions must be interleaved i.e. at a time only one transition is executed. This approach
exploits the commutativity of concurrent transitions to avoid exploring all orderings
of independent statements, so that the state space reduction is achieved. At every
state, only a sufficient subset of transitions enabled at that state is executed. To
apply POR, firstly, we construct a reduced graph based on the original system. In
fact, it is unnecessary to build the full graph of reachable states because the reduced
one can represent complete behaviours of system.

The reduced graph is generated by selecting one representative for an equivalence
class, so-called a Mazukiewicz trace. Two or more interleaving sequences that start
from a state and return in a single state are considered equivalent and POR only

takes one as representative, thus remarkably reduces the state space.

The partial order reduction approach [84, 54| is based on an observation that the
arbitrary interleaving of concurrent actions returns the same state. Consequently, the
identification of concurrency between two actions a and b, i.e. “a can occur before b
and b can occur before a”, greatly contributes to solve the state explosion problem.
A family of POR methods has been proposed including persistent set, sleep set,
unfolding and many other extended POR methods.

Persistent set methods: These methods [54] try to reduce the number of states
explored by computing a persistent set at every state. At a state s, the persistent
set is a subset T of the transitions enabled at s such that any transition not in 7' is
independent with all transitions in 7', i.e. no transition outside 7' is able to interact
or affect those inside. Exploring only transitions in the persistent set of each state is
sufficient to detect all reachability errors, such as deadlock and assertion violations
[54]. Persistent sets can be implemented by stubborn sets and ample sets.

Stubborn set: This approach basically works on a subset of successors that can
fire at a state, exploiting the commutativity between concurrent transitions in a
concurrent system [98]. Roughly speaking, a stubborn set is a closed set of transitions
with respect to mutual interactions that means all transitions intervening with the
transitions in the set must belong to the set. At every state, a stubborn set, a subset
of the enabled set, is computed and only those transitions in this set will be chosen
to fire for the next steps.

Ample sel: At every state, an ample set [54] is computed using static analysis.
The most important condition in the method is that if a transition a is dependent on
transition b which is in the ample set, a should not be invoked until b fires.

It is sufficient to detect all deadlocks if they exists in the reduced state space.

Sleep set This technique [51] aims at reducing transitions fired by exploiting the
dependence between transitions and its past of the exploration, based on the idea: if
two transitions are independent and their firings in any order lead to the same state,
we can sufficiently take one of these sequences. Therefore, at every state s, a subset
of the enabled set is computed such that transitions in this subset will not be invoked

at s.

Extended partial order reduction methods Dynamic Partial Order Reduction,
DPOR for short, extends classic POR in the sense that all subsets such as persistent
set and sleep set are computed dynamically [51]. On the way of exploring a path, the

algorithm simultaneously keeps track of relations between threads to identify back-
tracking points that might lead to other execution traces that are not “equivalent”
to the current one. It is guaranteed that all deadlocks and failures of the system
are detected when the exploration finishes. Many extensions of the original DPOR
have been proposed including the use of vector clocks [80], Monotonic POR [67],
TransDPOR [92], source set DPOR [2] and unfolding based POR [87].

We point out in this thesis two DPORs: source set based DPOR which is consid-
ered the state-of-art non-optimal DPOR [2] and unfolding based POR [87, 88] as one
of the state-of-art Optimal DPORs. Source set based DPOR presents a new DPOR
algorithm which is optimal in the sense that it always explores the minimal number
of executions based on a novel class of sets, called source sets. Source set replace the
role of persistent sets in previous algorithms and is smaller but sufficient to guarantee
exploration of all Mazurkiewicz traces [74]. Moreover, those events in the persistent
set but not in the source set will initiate sleep-set blocked explorations in the future
which we should avoid as much as possible. They also extend the algorithm with a
novel mechanism, called wakeup trees, that allows to achieve optimality.

For optimality, unfolding based POR [87] use the concept alternatives to imply
the sequences of actions that avoid visiting a previously visited Mazurkiewicz trace.
Computing these sequences thus amounts to deciding whether the DPOR needs to
visit yet another Mazurkiewicz trace (or all have already been seen).

However, both these DPORs still have algorithmic shortcomings. They have to
solve an NP-complete problem when computing wakeup trees or alternative executions
(another execution rather than the current one at a node of exploration tree) during
the state space exploration. In the meanwhile, for some programs, SDPOR, expected
to explore polynomial executions, will explore ((2") while optimal POR explore O(n)

executions.

1.3.5 Challenges and objectives

Despite intensive improvements in model checking methods over the years, both POR

and unfolding still suffer from some challenges as follows:

1. Computing alternatives or wakeup tree in optimal DPOR algorithms is a NP-

complete problem.

2. Many states are visited repeatedly, making DPOR unoptimal.

3. Both optimal DPOR of [87] and [1] leave the problem of computing alternatives
open. Efficient algorithms for deciding causality and conflict which are essential

in computing alternatives are also required.

4. Current stateless POR algorithms have not efficiently exploited memory for fast

memory accesses.

The aforementioned are challenges but opportunities for computer scientists for
a better verification. We see that partial order reduction or unfolding alone has not
been able to sufficiently cope with the state space explosion problem. Our objectives
in this thesis are to obtain a significant reduction of the state space. To target the

objectives, our approaches are as follows:

e Algorithm: We aim to combine partial order reduction and unfolding to achieve

an algorithm that explores the state space efficiently.

e Implementation: We aim to find a data structure to organize unfolding in mem-
ory in an efficient way. Together with combined algorithm, we aim at imple-

menting a tool available to the public.

1.4 Parallel and distributed verification

Users demand information systems to run faster and faster while the power of hard-
ware is physically limited. Increasing physical power of computers is truly difficult, so
instead of making more powerful processors, people try to have more processors in a
computer system to increase its computational power. Thanks to multiple processor
computers, parallel and distributed computing have gained attention from researchers
as well. Parallel/distributed verification is to use parallel/distributed computing to
perform the verification. The success of parallel/distributed verification depends on
the development of hardware and software engineering as well as the verifying algo-

rithms.

1.4.1 Parallel and distributed hardware and software

The past decades witness a rapid development of hardware and software so that par-
allel and distributed computers become more and more familiar. Parallel computers
are those that have multiple cores (processing units) or multiple functional units
(Graphic Processing Unit - GPU) on a single chip. Distributed computers, so-called

supercomputers, even have multiple CPUs in different locations and each of them

may have several cores. That provide them extremely huge computational power.
Having several independent processors allows new-generation computers to execute
their works concurrently. Software programming needs to take advantages of this
feature to speed up the execution. Parallel and distributed computing are models
that use multiple resources of computer systems to perform a computational work
simultaneously to reduce the execution time. To apply parallel/distributed comput-
ing, the computation problem must be broken into separate sub-problems that can
be executed concurrently and each of the sub-problems is solved by a processing unit.
The partition of work should be done in such a way that they are as independent as
possible to avoid communication overhead. A communication mechanism, e.g. shared
memory or message passing, also needs to be established to control the interaction

among processing units.

1.4.2 Parallel and distributed verification

Automated verification (model checking) verifies a system by exploring its state space.
For large scale systems, most of which are concurrent as well, the state space is ex-
tremely enormous, so the exploration is surely a huge computation. Beside researches
conducted to reduce the state space, parallelism is one of the solutions to speed up the
exploration using multiple processing units. Distributing the work over several nodes
and cores increases the computational power, so that the execution time decreases.

We have witnessed a plenty of researches on parallel model checking algorithms
such as parallel nested depth-first search (NDFS) algorithms [69, 47, 71], parallel
BFS-based LTL model checking [102], Cartesian POR [57], POR for GPU [94, 7] and
distributed work such as distributed POR [29, 105, 89], etc. We also witness some
parallelization in the field of unfolding such as [18, 49] These works have obtained
significant speedup in state space exploration.

On the other hand, many other works parallelize existing sequential model checkers
to achieve parallel or distributed one with better performance. We have seen SPIN [59,
60] and distributed SPIN [21, 61] Helena [46] and multi-core Helena [48], distributed
Helena [38], IMITATOR [10] and distributed IMITATOR [11, 12]. These distributed
model checkers have obtained better performance than the original ones, so it is

reasonable to parallelize a sequential tool.

1.4.3 Opportunities and objectives

In respect to parallelism, we can see opportunities as follows:

10

e Parallel and distributed computers and programming models are available for

developers to exploit to gain speedup.

e As the nature of unfolding, branches are independent i.e. it is possible to explore
them concurrently, in other words, an unfolding is naturally suitable to be

parallelized.

These opportunities mentioned above urge us to design and implement a parallel /dis-

tributed model checker. Our objectives are:

e To algorithm aspect: In addition to the efficiency achieved by the algorithm, we
aim at parallelizing the algorithm to enforce its strength in execution time. We
would design a parallel algorithm that partitions the exploration into sub-works

that can be executed concurrently.

e To implementation aspect: In scope of this research, we target to use a parallel

programming model to implement proposed parallel algorithm.

We believe that parallelism at both algorithm and implementation levels will gain

expected speedup.

1.5 Contributions

In our thesis, we address the verification of multithreaded C/C++ programs which
is practical for software industry but still in initial state of research. Our main

contributions are:

e We prove that computing alternative in optimal exploration is an NP-complete
problem for both Petri nets and concurrent programs. This is the first formal

proof of complexity in the literature of DPOR.

e We propose a trade-off solution called Quasi Optimal Partial Order Reduction
(QPOR) with a new notion of partial alternative that can be computed in poly-
nomial time (addressing the challenge 1) and explore less redundant schedules
than non-optimal DPOR (addressing the challenge 2). This is the main result
in our paper published in 30th International Conference on Computer Aided
Verification in 2018 (CAV’18) [77].

e We also propose an efficient data structure to decide causality and conflict

(addressing the challenge 3).

11

e We propose a parallel algorithm for unfolding exploration by parallelizing the
sequential one based on the relative independence between branches in an un-

folding. That is the prerequisite for parallel implementation.

e We implement the sequential algorithm in a new tool DPU with a specific data
structure addressing challenge 4. Parallel implementation is in experimental

level.

Finally, we conducted experiments on a collection of benchmarks using sequential
implementation to illustrate the efficiency of our algorithms and tools compared to

some other testing and verification tools.

1.6 Thesis outline

The following parts of this thesis are organized as follows:
e Chapter 2 provides preliminary concepts necessary for the following chapters.

e Chapter 3 presents our algorithm QPOR combining partial order reduction and
unfolding to achieve a quasi optimal exploration in verifying multithreaded C
programs. This chapter also details the new concept of k-partial alternative for
computing alternatives and an efficient data structure to compute structural

relations between events.

e Chapter 4 discusses the challenges and opportunities for parallelization underly-
ing the nature of the exploration. We present in detail a new parallel algorithm

achieved by parallelizing the sequential QPOR.

e Chapter 5 provides details of both sequential and parallel implementation of
corresponding algorithms. Experimental results on selected benchmarks are
also shown together with evaluations of the efficiency of proposed algorithms

against some state-of-art testing and verification tools.

e Finally, we summarize our contributions in the thesis and present works in

perspective.

12

Chapter 2

Preliminaries

Contents
2.1 Introduction 0 ... 13
2.2 Computationmodel 14
2.2.1 Labelled transition systems 14
2.2.2 Concurrent systems 15
2.3 Dependence and Independence Relation 18
2.3.1 Independence for Petri Nets 19
2.3.2 Independence for concurrent programs 19
2.4 Labelled Prime Event Structures 20
2.4.1 Definition 20
2.4.2 Configurations L. 21
2.4.3 Extensions oo 22
2.5 Unfolding semantics of program. 22
2.6 Conclusionst ittt it e e 25

2.1 Introduction

This chapter provides some basic notions that are necessary for the rest of the thesis.
First, we mention two main models of behaviour, Petri nets and multithreaded pro-
grams as concurrent systems, and their suitable representation for formal verification

of programs. Finally, the unfolding semantics of concurrent programs is presented.

13

2.2 Computation model

Model checkers do not take real programs as input but finite state systems, so we need
abstraction to provide a suitable notation and divide the state space into manageable

segments.

2.2.1 Labelled transition systems

Automated verification for concurrent systems is based on the state space exploration
of their associated transition systems. A transition system is a graph composed of
reachable states of the system as nodes and transitions between states as edges. The
original system in terms of Petri nets or concurrent programs needs to be transformed
into a transition system whose nodes and edges are labelled with states and actions
of the original models.

Generally, a labelled transition system (LT'S) is a structure M = (X, —, A, so),
where ¥ is the set of states, A is the set of actions, — C ¥ x A x ¥ is the transition

relation, and sq is the initial state.

Firing actions and Enabledness If s % s is a transition, the action a is enabled
at s, and a can fire at s to produce s'. Let enabl(s) denote the set of actions enabled
at s. A sequence 0 :=ay ...a, € A*is a run when there are states s, ..., s, satisfying
S0 My s1... 2 s,. For such a sequence o, we define state(o) := s,. We let runs(M)
denote the set of all runs of M, and reach(M) := {state(c) € ¥: 0 € runs(M)} the
set of all reachable states of M.

Determinism An LTS is deterministic if at every state s, at a time, only one
transition can fire, e.g. a, and there exists a state s’ such that s & s, then ¢ is
unique. All actions are also deterministic that means firing an action produces only

one state s’.

Local transition When studying the behaviour of the whole system, we are inter-
ested in communication actions that affect the state of global variables, e.g. actions
on shared memory in multithreaded programs. Local transitions, denoted by a type
local, are those that affect merely local variables, hence do not have any influence on

other processes.

14

pi(— —(ps ml— . ~Ars
Y [
P2 > s_/P4 P2 > »_~ P4
to to
a) Initial state b) Firing to

Figure 2.1: A Petri net

2.2.2 Concurrent systems

There are various models of system behaviour, we mention here two of them: Petri

nets and concurrent programs.

Petri nets A Petri net [76] is a model of a concurrent system. It is a specification
language to model system behaviour based on a strong mathematical foundation. It

is well suited to model concurrency and synchronization in distributed systems.

Definition 1. A Petri net is a tuple N := (P, T, F,mq), where P and T are disjoint
finite sets of places and transitions, F' C (P x T)U (T x P) is the flow relation, and
mgo: P — N is the initial marking.

Roughly speaking, a Petri net is a diagram consisting of places (denoted by circles),
transitions (denoted by rectangles) and arcs for connecting places to transitions and
vice versa. We illustrate a simple Petri net N := (P, T, F,mg) in Fig. 2.1 where a
set of places P = {p1,p2, s, pa}, set of transitions T = {t,t2}, the flow relation
F = {{p1,t1), (p2, t1), (t1,p3), (t1,pa), (P2, t2), (t2,p4)} and the initial marking mo =
(p1=1,p2=1,p3=0,ps = 0).

A Petri net N is called finite if P and T are finite. The unfolding approach is
applicable for finite nets. For x € PUT, let *z := {y € PUT: (y,z) € F'} be the
preset - the input, and z* := {y € PUT": (z,y) € F'} the postset, the output, of z. In
the example, *t; = {p1,p2} and t§ = {ps, ps}. The state of a net is represented by a
marking. A marking of N is a function m: P — N that assigns tokens to every place.
Graphically, places in a Petri net may contain a number of marks called tokens, a
unity of some resource of the system. In Fig. 2.1, py, p2 hold one token, ps3, ps do not
have any token. The maximum number of tokens a place can hold decides the level
of safety of a Petri net. For example, a 1-safe Petri net is a net in which each place

can only contain 0 or 1 token. The net in Figure 2.1 is 1-safe as places holds at most

15

1 token. Any distribution of tokens over the places will represent a configuration of
the net, a marking which is a state of the Petri net. A transition t is enabled at a
marking m iff for any p € *¢ we have m(p) > 1.

Firing a transition consists in consuming tokens from its input places and pro-
ducing tokens in its output places. Hence, a transition can only be fired, called
enabled, at a marking m if there are enough tokens in its input places. t is enabled iff
Vp € *t:m(p) > 1 (we work on 1-safe Petri nets). In the example, both ¢; and ¢, are
enabled at the initial state (Figure 2.1.a). Firing a transition produces a new reach-
able marking corresponding to a reachable state of the system. Firing ¢; produces
the marking in Figure 2.1.b.

We give semantics to nets using transition systems. We associate N with a tran-
sition system My := (X,—, A,mo) where ¥ := P — N is the set of markings,
A = T is the set of transitions, and — C ¥ x A x X contains a triple m Ly m’
exactly when, for any p € °t we have m(p) > 1, and for any p € P we have
m/(p) = m(p) — [{p} N *t| + [{p} Nt*|. We call N k-safe when for any reachable
marking m € reach(My) we have m(p) < k, for p € P.

Concurrent programs Concurrent programs are programs composed of a number
of threads or processes that are simultanecously executable. Process and threads
in a concurrent program communicate with each other via message passing, shared
memory or both. Each thread is a finite sequence of program statements. Statements
touching shared variables are wvisible, otherwise they are considered to be inuvisible.
Concurrent programs are often non-deterministic because at an execution step, there
might be multiple concurrent actions that can take place at the next step. We are
interested in data deterministic (in the sense that with certain input data, it produces
a unique output) and shared memory concurrent programs. Moreover, threads are
assumed data race free implying that no action or thread in a single process accesses

the shared memory concurrently and all threads are synchronized using mutexes.

Definition 2. A concurrent program is a structure P := (M, L, T, my,lo), where
M is the set of memory states (values of program variables, including instruction
pointers), L is the set of mutexes, mg is the initial state of memory, ly is the initial

state of mutexes and T is the set of thread states.

We define a corresponding structure Py := (M, L, T, my,ly) for the program in

Figure 2.2 as follows:

e Set of memory (variables) M = {z,y, 2}

16

| ThreadO Threadil Thread?2 |

| x :=0 lock(m) lock(m’) |
| lock(m) y =1 z =3 I
| if (y == 0) unlock(m) wunlock(m’)|
| unlock(m) |
| else |
| lock(m’) |
| z := 2 |
| |

Figure 2.2: A multithreaded program

e Set of mutexes £ = {m,m’}

e Initial state of memory mg = {x =0,y =0,z = 0}
e Initial state of mutexes lp = {m = 0,m' = 0}

e Pool of threads T' = {T'hread0, Threadl, Thread2}

We now define a LTS Mp := (S, —, A, sq) of given program P. Let S := M X
(L — {0,1}) be the set of states of program P, where each state s € S is a pair of
the form (m,v) where m is the state of the memory and v indicates when a mutex
is locked (1) or unlocked (0). Actions in A C N x A are pairs (p,b) where p is
the identifier of the thread that executes some statement and b is the effect of the
statement.

The relation — contains a triple (m,v) 2 (m/ ') exactly when there is some

thread statement (p, f) € T such that f(m) = (m’,b) and either

1. b=1local and v = v, or
2. b= (lock,z) and v(z) = 0 and v' = V|31, OF
3. b= (unlock, z) and v' = Vjg0.

The initial state is sp := (mog,lp). We use the function p: A — N to retrieve the
thread identifier associated with an action.

The previous conditions ensure that a local transition does not change the mu-
texes values and model the behaviour of the lock and unlock operations. Note that

they also ensure that the set of enabled transitions cannot contain two transitions

17

whose effect is a lock and a unlock over the same mutex. Also note that it is pos-
sible for two actions enabled at a state to be labelled with the same function. We

assume the function f is computable in polynomial time.
We define a LTS Mp, := (S, —, A, sq) for program P as follows:

e S={{z=y=2=0m=0m=0),(z=0y=12=3,m=1,m=1),..}

o v ={{x=y=2=0,m=m'=0)
e so=(mg,lp) =(x=0,y=0,2=0,m=0,m' =0)

Furthermore, if s % ¢ is a transition, the action a is enabled at s. Let enabl(s) de-
note the set of actions enabled at s. A sequence o :=ay...a, € A" isa run when there
are states sq,...,s, satisfying sg 24 s;... 22 s,. We define state(o) := s,. We let
runs(Mp) denote the set of all runs and reach(Mp) = {state(c) € S: 0 € runs(Mp)}

the set of all reachable states.

2.3 Dependence and Independence Relation

Partial-order reduction methods are described as model checking selecting represen-
tatives from equivalence class of behaviours. Commutativity is exploited to identify
these equivalence classes, and then eliminate unnecessary interleavings as much as
possible. We recall a standard notion of commutativity [54].

Two actions a,a’ of a transition system M are considered to commute at a state s
ifft

e if a € enabl(s) and s & &', then o’ € enabl(s) iff a’ € enabl(s'); and

e if a,a’ € enabl(s), then there is a state s’ such that s =%y &' and s 2% .

where enabl(s) is the set of transitions enabled at state s and s 7y ¢ is firing a

sequence of transitions o at state s to get to the next state s'.

Independence between transitions is an underapproximation of commutativity. A
relation { C Ax A is an independence for M if it is symmetric, irreflexive, and satisfies
that every (a,a’) € { commutes at every reachable state of M. In general, M has
multiple independence relations, forming a set I; clearly) is always one of them. If
(a,a") & I, they are dependent.

18

2.3.1 Independence for Petri Nets

We specify the independence relation for a Petri Net via the dependence among
transitions. For a Petri net N, the dependence relation of N, denoted <&y, is defined
as follows:

Given two transitions ¢t and ¢,
t©yt it (N £0) or (*N°t#£0) or (*t'N°t#0D),

where °t and t* are respectively the preset and postset of t.

The dependence relation in Petri nets is fixed, hence, the independence relation,
denoted <, given by the complement of dependence relation &, defined above is
also unique and fixed.

In the example in Figure 2.1, T' = {t;, 15} but *t; Nty = py # 0, so t; & ty, that

means y= 0.

2.3.2 Independence for concurrent programs

In contrast to classic unfolding of Petri nets, the unfolding for a program is parametric
which means it depends on the independence relation defined by model checkers.
Given a program P := (M, L, T, mg,ly) and its associated transition system Mp :=
(S,—, A, s9), we now define the independence relation {p on the set of actions A.
First, let a thread transition ¢ := (p, f) be a pair where p € N is the thread identifier
associated with the thread and f: M — (M xA) is a partial function that models the
transformation of the memory as well as the effect A := {local} U ({lock,unlock} x
L) of the state with respect to thread synchronisation. local models code of a
program thread that cannot potentially affect the enabledness of actions in another
thread with respect to mutexes. (lock,z) or (unlock,z) model lock and unlock of
a mutex r. We assume the function f to be decidable in polynomial time. The

independence relation <p is defined as follows.

Definition 3. The relation p is the largest irreflexive, symmetric relation where for

two arbitrary actions a:= (p,b) and a’ := (P, ') in A, a Spd if p#p and
1. b= local or
2. b= lock (z) and V/ & {lock (x),unlock (x)}.

& p identifies a set of actions whose complement is the dependence relation. In
the example with program P, ((0,lock m), (1, lock m')) or ((0,local), (1,1lock m’))

are part of independence relation.

19

(1,1ock m) l_@ (2,1ock m')

1
1

(1,local) B

1
’

(1, unlock ni)

(2,1ocal)
(0,1ock m) -

(2,unlock m’)

(1,1local) (0,1ock m’)
(0,1ocal)

Figure 2.3: A labelled prime event structure

Definition 4. A program P is well-formed when relation $p is an independence

relation on Mp.

In this thesis, we assume that programs are well-formed, i.e. the modeling of
program statements via the statement functions is consistent with the labels generated

by the function.

2.4 Labelled Prime Event Structures

Standard dynamic partial order reduction methods are based on the interleaving
semantics of LTS Mp, i.e. they operate over executions of the program. We will
operate over a non-interleaving, partial order based semantics known as labelled prime
event structure. Intuitively, a prime event structure is a structure that compactly

represents a set of partial orders.

2.4.1 Definition

Let X be a set. An X-labelled prime event structure [78] (X-LPES, or PES in short)
is a tuple € := (E, <,#, h) where < C F x F' is a strict partial order, # C F' x E is

a symmetric, irreflexive relation, and h: F — X is a labelling function satisfying:
e foralle € F, {¢' € E: ¢ < e} is finite, and (1)
o foralle e, ¢’ € E,if e # ¢ and ¢ < ¢”, then e # €. (2)

We refer to elements of F as events, < as causality and # as conflict. The

conflict respects the causality, i.e. if e; # es and ey < e, then e; # e3. Figure 2.3

20

illustrates a PES where events are boxes with numbers which are their identifiers,
causality is denoted by arrows and conflict is denoted by red dashed lines. Set of
events £ = {1,2..,19}, labeling function A is such that h(6) = (1, local). It is obvious
that 2 < 3 and 8 #° 2, then 3 # 8.

History The history of an event e € E is the unique set [e| := {¢’ € E: ¢’ < e}
representing the set of events that must not be fired before firing e. For example,
[11] = {1,8,9,10} and [5] = {1,2,3,4}.

2.4.2 Configurations

The notion of state in a PES &£ is captured by the concept of configuration. A config-
uration of £ is any finite set C' C E satisfying:

e (causally closed): for all e € C' we have [e]| C C (3)
o (conflict free) for all e, ¢’ € C, it holds that —(e # ¢€’). (4)

Let conf (&) denote the set of all configurations of £. Given a configuration C,
we define the interleavings of C' as inter(C) := {h(e1), ..., h(e,)} such that Ve;, e; €
C:e <e = 1< j. An interleaving corresponds to the sequence labelling any
topological sorting (sequentialisation) of the events in the configuration. We say that

€ is finite iff £ is finite. state(C') denotes state reached by executing any interleaving
of C.

Maximal configuration: A maximal configuration is a configuration where no
transition is enabled at its state. Each maximal configuration corresponds to a run
or an execution of a program. A PES has a fixed number of maximal configurations.

In Figure 2.3, the set {1,3,4,5,6,7} is an C-maximal configuration.

Local configuration: A local configuration is a configuration associated with an
event which implies the history of the event including itself. For any e € E, the local
configuration of e is defined as [e] := [e| U{e}. In Figure 2.3, the local configuration
of 4is {1,2,3,4}.

Immediate conflict: Two events e, ¢’ are in immediate conflict, e # ¢, iff e # €’
and both [e] U [¢/] and [e] U [¢'] are configurations. In the example in Figure 2.3, we
can see 2 #° 8 and 13 #¢ 15 depicted by a dashed line. For each event e in the PES,
we also define a set of direct conflicting events #'(e) := {¢' € E: e #' ¢'}.

21

2.4.3 Extensions

Given a configuration C, the eztensions of C, written ez(C), are all those events

outside C' whose causes are included in C'. Formally, we define:
ex(C):={e€ E:e¢g CAle] CC}

We let en(C') denote the set of events enabled by C, which intuitively correspond
to the transitions enabled at state(C'), defined as:

en(C) :={e € ex(C): CU{e} € conf(€)}

Conflicting extensions cex(C') are events that are enabled at some subconfigura-

tion C” C C' but conflicts with at least one event in C'\ C’. Formally, we define:
cex(C) :={e€ex(C): I’ € C, e #' €'}

Clearly, all events in ez(C) which are not in en(C) are in cex(C) and en(C)
and cex(C') partition the set ex(C). For example, in Figure 2.3, C' = {1,2} then
ex(C) = {3,8} where en(C) = {3} and cex(C) = {8} as 2 #' 8.

Event structures are naturally (partially) ordered by a prefiz relation <. Given
two PESs € := (E, <,#,h) and & := (F', </, #', 1), we say that £ is a prefiz of &',
written £ < &', when £ C E’', < and # are the projections of <" and #' on E, and
ED{d e F:¢ <enNee E}. The set of prefixes of a given PES € equipped with <

forms a complete lattice.

2.5 Unfolding semantics of program

Unfolding is originally a partial order semantics for a Petri net constructed by ex-
ploiting concurrency. Thanks to the similarity between programs and Petri nets in
terms of concurrency, we can give semantics to concurrent programs using labelled
transition systems. On the other hand, as a partial order technique, the unfolding
technique first needs to define the independence relation over the program.

Given a program P := (M, L, T, my, ly), we first identify a LT'S Mp := (S, —, A, so)
and the independence relation as in Definition 3. Assume that a well-defined relation
¢ p is an independence relation on Mp, i.e. the modeling of program statements via
the statement functions is consistent with the labels generated by the function.

We use, in this thesis, labelled prime event structures (LPES or PES for short)
to represent unfolding semantics. Building the unfolding U, ¢, for model M based

on independence relation <p is a process of identifying events whose canonical name

22

of the form e := (a, H), where a € A is an action of M and H is a configuration of

Unr - Intuitively, e represents the action a after the history (or the causes) H := [e].

Definition 5 (Histories of an action). The set He . of candidate histories for an

action a in a PES is the mazimal set of configurations H of £ such that:

e action a is enabled at state(H), and

e cither H = { L} or all <-mazimal events e in H satisfy that h(e) & a,
where h is the labeling function in £.

Once an event e has been identified, its associated transition h(e) may be depen-
dent with h(e’) for some ¢’ already present and outside the history of e. Since the
order of occurrence of e and ¢’ matters, we prevent their occurrence within the same

configuration by introducing a conflict between e and ¢’.

Definition 6 (Conflicting set). The set Kg . of events conflicting with e := (a, H)

is the mazimal set of events ¢’ in € such that €' ¢ [e¢] and e & [€/] and a & h(e).

The definition of the unfolding Uy, ¢ is inductive. The base case inserts into the
unfolding a special bottom event L on which every event causally depends. The
inductive case extends the unfolding with one event. The unfolding is the <-maximal
element in the collection of unfolding prefixes generated by the inductive procedure of
Definition 7. Therefore, the process of defining unfolding includes two steps: firstly,
constructing the set of unfolding prefixes and then, defining the unfolding is the

maximal prefix with respect to the < relation.

Definition 7 (Finite unfolding prefixes). The set of finite unfolding prefixes of M
under the independence relation { is the smallest set of PESs that satisfies the fol-

lowing conditions:

1. The PES having exactly one event L, empty causality and conflict relations,

and h(L) := € is an unfolding prefiz.

2. Let € be an unfolding prefix containing a history H € Hg 4 for some action a €
A. The extension of £ with a new event e := (a, H) is the LES (E,<,#,h)
satisfying:

e forall ¢ € H, we have €’ < ¢;

o for all ¢ € K¢, we have e # €'; and h(e) := a.

23

Intuitively, each unfolding prefix contains the dependence graph (configuration)
of one or more executions of M (of finite length). The unfolding starts from L, the
“root” of the tree, and then iteratively adds events enabled by some configuration
until saturation, i.e. when no more events can be added. Observe that the number of
unfolding prefixes is finite if and only if all runs of M terminate.

The actual unfolding is infinite, but it is sufficient to consider it equivalent to a
finite unfolding prefix that covers all reachable states of the system. We define the
unfolding Uy, as in Definition 8.

Definition 8. The unfolding Uy ¢ is the unique <-mazimal element in the set of
unfolding prefizes of M under .

Theorem 1. The unfolding Uys o exists and is unique. Furthermore, for any non-
empty run o of M, there exists a unique configuration C of Upre, such that o €
inter(C).

Proof. Let F be the set of all, finite or infinite, unfolding prefixes of Uys . We have
that Uy = union(F') is an unfolding prefix, <-maximal and unique. Observe that
for a run that fires no transition, i.e. 0 = ¢ € T we may find the empty configuration
@ or the configuration { L}, and in both cases o is an interleaving of the configuration.
Hence the restriction to non-empty runs. Assume that o fires at least one transition.
The proof is by induction on the length |o| of the run.

Base Case: If o fires a transition ¢, then ¢ is enabled at s, the initial state of M.
Then, {1} is a history for ¢, as necessarily state({L}) enables ¢. This means that
e := (t,{L}) is an event of Uy ¢ and clearly o € inter({L,e}). It is easy to see
that no other event ¢’ different than e but such that h(e) = h(e') can exist in Uy e
and satisfy that the history [¢/] of €’ equals the singleton {L}. The representative
configuration for o is therefore unique.

Inductive Step: Consider o = o'ty with o’ = ty.t5..t;. By the induction hypoth-
esis, we assume that there exists a unique configuration C” such that ¢’ € inter(C").
All runs in inter(C") reach the same state s and ¢’ is such a run, 5, is hence enabled
at state s. If there is a <-maximal event e € max(C") such that h(e) interferes with
tr+1, then C” is a valid configuration H and by construction (second condition of Def-
inition 5) there is a configuration C' = C" U {¢'} with ¢’ = ({y41, H). Otherwise, we
construct a valid H by considering subconfigurations of C’ removing a maximal event
e € max(C") such that h(e) does not interfere with #x,1. We always reach a valid
H since €' is a finite set and {1} is always a valid H. Considering C = H U {€}

with e = (¢, H), by construction (second condition of Definition 5) we have that

24

Vey € H: = (e# ey) and Vey € C'"\ H : = (e # eyr) (otherwise these events would
be in H). Hence, C'U {e} is a configuration. O

2.6 Conclusions

In this chapter, we have provided notions and definitions necessary to transform
a concurrent program into a labelled transition system, a representation suitable for
exploration by a POR algorithm. Having all these premilinaries, the next chapter will
detail our main contribution that is an algorithm for constructing as well as exploring

unfolding of concurrent programs called Quasi Optimal Partial Order Reduction.

25

26

Chapter 3

Quasi Optimal Partial Order
Reduction

Contents
3.1 Introduction00 0000, 27
3.2 Unfolding-based POR, 28
3.2.1 Unfolding exploration algorithm 28
3.2.2 Algorithm correctness 32
3.3 Partial alternatives 00, 35
3.3.1 Complexity of computing alternatives 35
3.3.2 Motivating exampleo 39
3.3.3 k-partial alternatives L 41
3.4 Conflicting extensions 43
3.4.1 Conflicting extension algorithm 43
342 Complexity 44
3.5 Conflict and Causality 47
3.6 Sequentialtree 50
3.6.1 Causality and Conflict of nodes 50
3.6.2 Data structure and efficient tree navigation 52
3.6.3 Causality and Conflict for events 52
3.7 Conclusionst i i ittt e e e e 53

3.1 Introduction

POR techniques have gained great success in coping with SSE by exploiting com-

mutativity and/or independence relation to reduce the state space to explore. On

27

the other hand, with labelled event structures, the unfolding technique provides a
compact acyclic representation to program executions. Therefore, combining these
two techniques results in an optimal algorithm that explores exactly each execution
of the program once. Despite of the optimality, unfolding based POR still faces the
challenge of solving a hard problem of computing alternatives. Several proposals in-
cluding new notions, data structures are introduced to improve this algorithm. In

this chapter, we focus on our contributions as follows:

e We detail in Section 3.2 the unfolding based algorithm to verify a concurrent

program and provide our proofs for the algorithm soundness and termination.

e We also prove that computing alternatives in optimal exploration for both Petri

nets and concurrent programs is NP-complete.

e We present a new concept of partial alternative and additional data structures

as a trade-off solution between optimal and non-optimal DPORs in Section 3.3.

e Procedures and data structures to efficiently compute structural relations, causal-

ity and conflict, are also provided in Sections 3.5 and 3.6.

3.2 Unfolding-based POR

3.2.1 Unfolding exploration algorithm

In this section, we present a DPOR algorithm that does not explore sequential ex-
ecutions in PES. Instead, it considers only one single configuration at a time and
organises the exploration into a binary tree where each deadlocking execution corre-
sponds to a path from the root of the tree to some leaf [87]. The tree is explored
using a depth-first search. During the exploration, when it is unable to move on the
tree, the algorithm backtracks to a node n and it needs to decide whether another ex-
ecution stemming from n shall be explored. We call such an execution an alternative,
and refer to the decision procedure for finding whether such an alternative execution
exists as computing alternatives.

The POR algorithm to explore the unfolding is described in Algorithm 1.

Explore(C, D, A) uses aset U that represents all events already discovered through-

out the exploration. The parameters passed to the function include:

e a configuration C' which has already been explored.

28

Algorithm 1: An unfolding-based POR exploration algorithm.
1 Initially, set U := { L}, and call Explore({_L}, 0, 0).

> Procedure Explore(C, D, A)
3 | Add ex(C) to U

| if en(C) =0 return

5 | if ena(C) = return

6 if A=10
7 ‘ Choose e from ena(C)
8 else

9 | | Choose e from AN ena(C)
10 | Explore(CU{e}, D, A\ {e})
1| if there exists a J € A1t (C, D U {e})
2 | | Explore(C,DU{e},J\O)

e a set of events D (for disabled) that represents the conflicts which can be used

to avoid repeated explorations in Explore().

e a set of events A (for add) which is used to partially navigate the exploration

in order to justify an event in D.

The key intuition in Algorithm 1 is to visit all maximal configurations of ¢ which
contain C' and do not contain D; and it should always include A.

In detail, the algorithm first updates U with all extensions (including enabled and
conflicting extensions) of C' (Line 3). If C'is a maximal configuration, i.e. there is no
event enabled, then there is nothing to do and it backtracks (Line 4). Otherwise, it
picks an enabled event that is available ena(C) := en(C')\ D. If there is no available
event, the algorithm cannot progress in the exploration, then it has to backtrack
(Line 5). This situation is known in the literature of PORs (that use sleep sets) as
a sleep-set blocked exploration (SSB). Otherwise, if A is empty, any enabled event
available can be taken (Line 7). If not, A needs to be explored and e must come
from the intersection (Line 9). Then, it makes a recursive call (left subtree), where
it explores all configurations containing all events in C'U {e} and no event from D.
Since Explore(C, D, A) visited all maximal configurations containing C' and e, it
remains to visit those containing C' but not e. Thus, we determine whether &/ has a
maximal configuration that contains C' and does not contain D U {e}.

At Line 11 we determine if any such configuration exists. Function Alt returns a
set of configurations, so-called clues. A clue is a witness that a C-maximal configu-

ration exists in Up, which contains C' and not D U {e}.

29

Definition 9 (Clue). Let D and U be sets of events, and C' a configuration such that
CND=0. Aclue to D after C in U is a configuration J C U such that C'U J is a
configuration and D N J = ().

Definition 10 (Alt function). Function Alt denotes any function such that A1t (B, F')
returns a set of clues to F' after B in U, and the set is non-empty if Up has at least

one mazimal configuration C where B C C' and C N F = .

When Alt returns a clue J, the clue is passed in the second recursive call (Line 12)
to “mark the way” (using set A) in the subsequent recursive calls at Line 10, and
guide the exploration towards the maximal configuration that .J witnesses. Defini-
tion 10 does not identify a concrete implementation of Alt. It rather indicates how to
implement Alt so that Algorithm 1 terminates and is complete (see below). Different
PORs in the literature can be reframed in terms of Algorithm 1. SDPOR [2] uses
clues that mark the way with only one event ahead (|/ \ C| = 1) and can hit SSBs.
Optimal DPORs [2, 87] use size-varying clues that guide the exploration provably
guaranteeing that any SSB will be avoided.

Algorithm 1 is optimal when it does not explore a SSB. To make Algorithm 1
optimal Alt needs to return clues that are alternatives [87], which satisfy stronger
constraints. When that happens, Algorithm 1 is equivalent to the DPOR in [87] and

becomes optimal (see [88] for a proof).

Definition 11 (Alternative [87]). Let D and U be sets of events and C' a configuration
such that CND = . An alternative to D after C' in U is a clue J to D after C' in U
such that Ve € D : 3¢’ € J, e # €.

The simple example in Figure 3.1.(a) shows a concurrent program P := (M, L, T, my, lo)
where the set of mutexes £ = {m,m'} are initially unlocked. T is the set of three
threads Thready, Thread, and Thread, communicating via two mutexes m and m'.
The associated LTS with P is Mp := (S, —, A, so) with set of actions A:

A = {(0,1ock m), (0,unlock my), (0, lock m’), (1, lock m), (1,unlock m),

(2,1ock m'), (2,unlock m), (0,local), (1,1local), (2, local)}
and the transition relation — C S x A x 8. At the initial state sq, all variables are
set to 0 and mutexes are unlocked.

Based on the LTS, we have set of independence relation set I:

I ={((0,1ock m), (1,lock m')), ({0, lock m), (2, lock m’))),

((0,unlock m), (2,lock m'))), ((1,1lock m),---}

30

(a) Thready: Thread;: Threads:

x :=0 lock(m) lock(m’)
lock(m) y =1 z := 3

if (y == 0) unlock(m) wunlock(m’)
unlock (m)

else

lock(m’)

z =2

(1,1ock m) [i%](Q,lock m’)

(1,1ocal) ‘

1
’

(1, unlock ni)

(2,1ocal)

’

(0,1ock m) -

(2,unlock m’)

(1,local (0,1ock m/)

(b) (1,unlock m) (0,1ocal)

Figure 3.1: Unfolding example. (a): a program P; (b): its unfolding semantics Up s ..

where lock and unlock events touching different variables are independent. The de-
pendence set D =A x A\ I.

The PES construction procedure shown in Definition 7 leads to the unfolding in
Figure 3.1.(b). The unfolding events are named by numbers which are actually the vis-
iting order and labeled with corresponding actions in A. Conflicts and causalities are
denoted by dashed red and solid black lines respectively. A Mazurkiewicz trace of exe-
cution is represented by a maximal configuration. There are a total of 4 maximal con-
figurations in the unfolding of the program. The run (0, local), (0, lock m), (0, local),
(0,unlock m), (1,lock m),(1,1ocal), (1,unlock m) yields a maximal configuration
{1,2,3,4,5,6,7}. Similarly, the run (0, local), (1, lock m), (1,1local), (1,unlock m),
(0,1ock m), (0,1local), (0,1ock m'), (0, local) yields {1,8,9,10,11,12,13,14}. Let
P be an unfolding prefix { L}. We can extend it with possible events 1, 8 or 15 by Def-
inition 8. Assume that we extend the unfolding prefix with 1 whose canonical name
is ((0,local), {L}), then produce the new prefix {_L,1}. To continue, let us consider
the action (0,lock m) and an extension event 2 = ((0,1lock m),{L,1}). Two L and
1 satisfy L < 2 and 1 < 2. Let us take (0,lock m) to produce 2 with cononical

31

name ((0,lock m),{L,1}) in the prefix. Since ((0,lock m) & (1,1lock m)), Kp.s.a
results in event 8 with the canonical name ((1, lock m),{L}) in the unfolding prefix.

When continuing the process with other actions, we obtain the unfolding shown in
Figure 3.1.(b).

3.2.2 Algorithm correctness

We now discuss the correctness of this algorithm. First we introduce some general

lemmas as a basis for correctness theorems.

Lemma 1. Let (C, D, A, e) is a node of the call tree. We have the following:

-DNA= (1)

- e € ena(C) (2)

- C is a configuration (3)

- C'U A is configuration and CNA = () (4)
Proof.

(3.1): Base case: D = A =1, so clearly DN A =10
Step: Assume D. By Definition 9, DNJ = and A = J\ C, then A C J,
clearly AN D = (.

(3.2): Observe that e is picked from ena(C') at Line 7 or ena(C) N A at Line 9, it is
definitely the case that e € ena(C).

(3.3) Base case: n =0and C' = {L}. Theset {L} isa configuration. Assume C,,_; is
a configuration and b,,_; > b,, (either left or right subtree), then C' = C,,_;U{e}.
As stated in (3.2), e € en(C"), so by definition of the enable set, C" U {e} is a

configuration, equivalently C' is a configuration.

(3.4) Base case: n =0, C = {L}, and A = 0, so clearly C'U A is a configuration
and CNA=0.

Step: Now assume C,,_; U A,,_; is a configuration and C,,_; N A,,_; = 0. There

are two cases:

32

e b, 1> b, If A, 1is empty and then A is also empty. Certainly, C'U A is
a configuration and CNA = 0. If A,,_; is not empty, then C' = C,,_; U{e}
where e is taken from ena(C,,_1) N A,,—1) and A = A, \ {e}. We have
CUA=(Ch1U{e})U(A_1\{e}) =C1UA,_;. Since C,,_1UA,_;1isa
configuration, so is definitely C'U A. Similarily, CNA=C,_1NA,_; =0.

® b, 1>, b, C=0C,_1and A= J\C,_ for some J € A1t(C,,—1, DU {e}).
We have:

CUA=C,1UJ\Cho1 =Cp1UJ
By definition of clue Definition 9, C,,_; U J is a configuration, so C'U J

is also configuration. On the other hand, by construction of A, it is clear
that C N A= 0.

O

Lemma 2. If C C (' are two finite configurations, then en(C) N (C'\ C) = @ iff
C'\C=ga.

Proof. 1f there is some e € en(C) N (C"\ C), then e € C" and e ¢ C, so C"\ C' is not
empty. If there is some ¢’ € C'\ C, then there is some event €’ that is <-minimal
in C"\ C. As a result, [¢"] C C. Since ¢” ¢ C and C U {e} is a configuration (as
C U{e} C C), we have that ¢’ € en(C), then en(C) N (C"\ C) is not empty. O

Lemma 3. Let b= (C, D, A,e) and b = (C', D', A’,€') be two nodes in the call tree
such that b >V, then: C C C" and D C D' and

o if b AU then C C C'

e ifb AV then D C D'

Proof. 1If b A; b/ then Explore (C,D,A) is called at Line 10, then ¢ = C'U {e} and
D" = D, so clearly C' C (C".

If If b A, b then Explore (C,D,A) is called at Line 12, then ¢" = C' and D" =
D U {e}, so clearly D C D'. O

Theorem 2 (Termination). Let U be the set of events, C C U a configuration of Uns ¢
and two sets of events D, A C U, a recursive call of the function Explore (C,D,A)

always terminates in finite time.

33

Proof. By contradiction. Assume that there is an infinite path (infinite recursive call
of Explore (C,D,A)) by > by > ..b,—1 > b, in the call tree. Let b; = (C;, D;, A;, €;)
with ¢ > 0. Since U has finitely many events, all configurations in ¢/ are finite.
It is observed that C; and C;,; are related finite times because each time Explore
(C,D,A) is called at Line 7 and Line 9, only one event is added to C;. Formally,
L:={ieN:C;A Ci}is a finite set. Assume k = max(L) + 1 to be the index
of the path such that Vi > k : C; >, C;1;. We then have C; = C} with Vi > k and
D; C ex(Cy). Recall that ex(CY) is finite and by Lemma 3, so we have: Dy C Dy C
Do C ...

This is a contradiction as we can have Dy, larger than ex(C}) with some large

enough j. O

Lemma 4. Let b := (C,D,A,e) € B be a node in the call tree and C' an arbitrary
maximal configuration of U such that C' C C and DNC =0, then one of the following

statements holds:
e C' is a mazimal configuration of U or
e ccC andb has a left subtree or
o c¢ C and b has a right subtree.

Proof. If C'is maximal, the first statement holds, so we are done. So assume that C
is not maximal, since C' C C , then b has at least one left child. If e € C , then we
are done, as the second statement holds. Now assume that e ¢ C’, we need to show
that the third statement holds, i.e. that b has right child. In particular we show that
there exists some clue .JJ C (' such that J € A1t(C, D U {e}). By definition, if such .J
exists, then J N (DU {e}) =0 and J U C is a configuration. We define now the set:

F:={e,...en} == (C\ C)N (ena(C) \ {e}

By Lemma 2, it is obvious that F # () unless C' is maximal. By definition,
FcCandCND=0,s0 FN1D=0. Plus,e ¢ C and F C C, so e ¢ F. Thus,
Fn(DU{e}) = 0. On the other hand, we observe that ena(C) \ {e} # (), because
C c C and e ¢ C. Therefore, there is some ¢ € ena(C) such that {¢'} U C is a
configuration (by definition of ena(C) and en(C)). Therefore, it is possible to find a
configuration J C F (at least J = {€'}) such that JUC is a configuration. Summarily,
with e ¢ C, there exists a configuration J such that J € Alt(C, DU{e}) which means
the third statement holds. O

34

Lemma 5. For any node b = (C,D,A,e) € B in the call tree and any mazimal
configuration C of U, if C' C C and DNC =0 and Lemma 4 holds for all nodes of
subtrees rooted from b, there is a node b’ = (C', D', A’,.) € B such that b A* V' and

~

C'=C.

Proof. Assume that Lemma 4 holds for all nodes " in subtrees of b. Since C' C C
and DNC = (), we can apply Lemma 4 to b and C. If Cis maximal, then clearly
C = C. If not, by Lemma 4, if e € C then b has a left child by, otherwise, e ¢ C,b
has a right child b; with b; = (Cy, Dy, A1, e1). In any case, we observe that C; C C
and D; N C = 0.

If ¢, is a maximal configuration, then necessarily C; = C, so ¥/ := b; is what we
need. If not, continue to apply Lemma 4 to b; or maybe its children until we reach a
node b, = (C,,, .,.,.) where C,, = C'is a maximal configuration. Because all paths in

the call tree are finite, so this repeat process terminates. We can take b’ := b,,. O

Theorem 3 (Soundness). Let C be a C-mazimal configuration of Upr o Algorithm 1
calls the function Explore(C, D, A) at least once with C' = C.

Proof. 1t is necessary to prove that for each maximal configuration é, we can find
a node b = (C’, .+ -). This is an immediate result of Lemma 5. Take the root node
by =(C,D,A, L) withC ={L}and D = A = @. Clearly C ¢ C'and DNC = () and
Lemma 4 holds for all nodes of the call tree. Therefore, apply Lemma 5 to C and bo,

which insures such a node b exists. O

3.3 Partial alternatives

In the algorithm described in Algorithm 1, an alternative is computed by Alt(C, D)
which is intuitively defined but not instantiated. In our research, we aim to find an
efficient algorithm to implement it. We prove first that the problem of computing an

alternative is NP-complete.

3.3.1 Complexity of computing alternatives

We prove this complexity bound for a general model of computation (Petri nets), and
show that it remains NP-hard for a more restrictive model of computation (multi-

threaded programs with mutexes).

Theorem 4. Let £ := (E, <,#,h) be a finite PES, C C E a configuration, and D C
ex(C') a set of events. Deciding whether there is an alternative to D after C in E is

NP-complete.

35

Proof. We first prove that the problem is in NP. Let us non-deterministically choose
a configuration J C E. We then check that .J is an alternative to D after C":

e J U C is a configuration can be checked in linear time: The first condition
for J U C to be a configuration is that Ye € JUC : [e] € JUC. Since
J is a configuration, this condition holds for all e € J. Similarly, as C' is a
configuration, it also holds for all e € C. The second condition is that Ve;, ey €
JUC : =(ey # e3). This is true for eq,eq € J and ey,e5 € C. If e; € JAeg € C
(or the converse), we have to effectively check that —(e; # e2). Checking if two

events e; and ey are in conflict is linear on the size of [e1] U [es].

e Every event e; € D must be in immediate conflict with an event ey € J. Thus,
there are at most |D| - |J| checks to perform, each in linear time on the size of
[e1] U [es]. Hence, this is in O(n?).

We now prove that the problem is NP-hard, by reduction from the 3-SAT problem.
Let {v1,...,v,} be a set of Boolean variables. Let ¢ := ¢; A ... A ¢, be a 3-SAT
formula, where each clause ¢; ;== [; V I} V I comprises three literals. A literal is either
a Boolean variable v; or its negation vj.

Formula ¢ can be modelled by a PES &, := (E, <, #, h) constructed as follows:

e For each variable v; we create two events ¢; and f; in F, and put them in imme-

diate conflict, as they correspond to the satisfaction of v; and v;, respectively.

e The set D of events to disable contains one event d; per clause ¢;. Such a d;
has to be in immediate conflict with the events modelling the literals in clause

c;. Hence it is in conflict with 1, 2, or 3 ¢ or f events.
e There is no causality: <:= ().

e The labelling function shows the correspondence between the events and the
elements of formula ¢, ie. Vt; € E : h(t;) = v, Vfi € E : h(f;) = 7; and
Vdj ck: h(d]) = Cj.

We now show that ¢ is satisfiable iff there exists an alternative J to D after C' := ()
in £. This alternative is constructed by selecting for each event d; € D and event
e in immediate conflict. By construction of &, h(e) is a literal in clause h(d;) = c;.
Moreover, C'UJ = J must be a configuration. The causal closure is trivially satisfied
since <:= (). The conflict-freeness implies that if ¢; € J then f; € J and vice-versa.

Therefore, formula ¢ is satisfiable iff an alternative J to D exists.

36

The construction of &, is illustrated in Figure 3.2 for:

¢:=(x, VT3V x3) ATTVTZ) A (2, V T3)
| R S S —

Cc1 €2 C3

t f1 lo f2 ls f3

Figure 3.2: Example of encoding a 3-SAT formula.
O

Theorem 4 assumes that the input PES is an arbitrary PES, rather than the un-
folding semantics of a program. One may ask if the cost of computing alternatives
is reduced by assuming that the PES is the unfoling of a program. The answer is

negative:

Theorem 5. Let P be a program, < an independence relation on Mp, and U a
causally-closed set of events from Uy, . Let C C U be a configuration and D C
ex(C') a set of events. Deciding whether there is an alternative to D after C in U is

NP-complete.

Proof. Observe that the only difference between the statement of this theorem and
that of Theorem 4 is that here we assume the PES to be the unfolding of a given
program P.

As a result, the problem is obviously in NP, as restricting the class of PESs that
we have as input cannot make the problem more complex.

However, showing that the problem is NP-hard requires a new encoding, as the
(simple) encoding given for Theorem 4 generates PESs that may not be the unfolding
of any program. Recall that two events in the unfolding of a program are in immediate
conflict only if they are lock statements on the same variable. So, in Figure 3.2, for
instance, since t; # f; and f; # ds, then necessarily we should have t; # ds, as all
the three events should be locks to the same variable.

For this reason we give a new encoding of the 3-SAT problem into our problem.
As before, let V' = {vy,...,v,} be a set of Boolean variables. Let ¢ :==c; A ... Acy,

37

be a 3-SAT formula, where each clause ¢; := [; V I} vV [! comprises three literals. A
literal is either a Boolean variable v; or its negation v;. As before, for a variable v,
let pos(v) denote the set of clauses where v appears positively and neg(v) the set
of clauses where it appears negated. We assume that every variable either appears
positively or negatively in a clause (or does not appear at all), as clauses where a
variable happens both positively and negatively can be removed from ¢. As a result
pos(v) N neg(v) = O for every variable v.

Let us define a program P; as follows:

e For each Boolean variable v; we have two threads in P, t; corresponding to v;

(true), and f; corresponding to T; (false). We also have one lock [,,.

e Immediately after starting, both threads ¢; and f; lock on [,,. This scheme
corresponds to choosing a Boolean value for variable v;: the thread that locks

first chooses the value of v;.

e Lor each clause ¢; € ¢, we have a thread d; and a lock [.;. The thread contains

only one statement which is locking ...

e For each clause ¢; € pos(v;) U neg(v;), the program contains one thread 7, ;)
(run for variable v; in clause ¢;). This thread contains only one statement which

is locking I,
o After locking on [,,, thread ¢; starts in a loop all threads T(v;,e;)> 10T ¢j € pos(v;).

e Similarly, after locking on [,,, thread f; starts in a loop all threads r,, ., for

¢; € neg(v;).

When Py is unfolded, each statement of the program gives rise to exactly one event
in the unfolding. Indeed, by construction, each t; or f; thread starts by a lock event
and then causally leads to one r event per clause the variable v; appears in. Any two
of them concern different clauses and thus different locks, and they are independent.

Let C' := () be an empty configuration, D := {ds,...,d,}, and U the set of all
events in the unfolding of the program.

We now show that ¢ is satisfiable iff there exists an alternative J to D after C' := ()
in Up,. This alternative is constructed by selecting for each event d; € D and event
e in immediate conflict. By construction of Py, it is a r,, .,y where v; is a literal in
clause h(d;) = ¢;. Moreover, C'U J = J must be a configuration. In order to satisfy

the causal closure, since <:= {(t;,7(v,¢,)) : ¢; € pos(vi)} U{{fi:T(wic;)) : ¢j € meg(vi)},

38

J must also contain the ¢; or f; preceding r(,, .,y The conflict-freeness implies that if
t; € J then f; ¢ J and vice-versa. Therefore, formula ¢ is satisfiable iff an alternative
J to D exists.

There are at most 2|V| + |¢|(|]V]| + 1) events, so the construction can be achieved
in polynomial time.

Therefore our problem is NP-hard.

The construction of Up, is illustrated in Figure 3.3 for:

¢:=(x1 VT Va3) AN (T1 VT2) A (21 VT3)
———— —— N—-—

C1 Cc2 C3

ds
€3
Fzr,eaN T(xg,es) T{xq,c2) F{za,eiN. T(zd,c2) F(zd,e1) T(xg,c3)
xl l 'CC_]- x2 l x_2 x3 l 'CC_3
th ta 7 fo ts " fs

Figure 3.3: Program unfolding encoding a 3-SAT formula.

These complexity results lead us to consider new approaches that avoid the com-

binatorial explosion of a NP-complete problem.

3.3.2 DMotivating example

In the previous section, we have proved that computing alternatives in an optimal
DPOR is an NP-complete problem. However, on the other hand, the non-optimal,
state-of-the-art SDPOR algorithm [2] suffers from exploring exponential number of
redundant executions. The program shown in Figure 3.4 (a) illustrates a practical
consequence of this result: SDPOR can explore here ©O(2") interleavings but the

program has only @(n) Mazurkiewicz traces.

39

Wy w1 wWo count master

(a) xg=7 1 =38 o =9 c=1 1=c
c=2 z; =0

wWo w1 w3 =0 w1 w2 =0 w1 w3 c¢=1
l I/@
11 10|2=1
xle
c=2112
c—l Wo w2 c¢=1

TIRNEIRNE

5132:0 16 0—2 14

Figure 3.4: Motivating example. (a): Programs; (b): Partially-ordered executions;

The program contains n := 3 writer threads wg, wy, wo, each writing to a differ-
ent variable. The thread count increments n — 1 times a zero-initialized counter c.
Thread master reads ¢ into variable ¢ and writes to z;.

The statements o =7 and x; = 8 are independent because they produce the
same state regardless of their execution order. Statements ¢ = ¢ and any statement
in the count thread are dependent or interfering: their execution orders result in
different states. Similarly, x; = 0 interferes with exactly one writer thread, depending
on the value of 7.

Using this independence relation, the set of executions of this program can be par-
titioned into six Mazurkiewicz traces, corresponding to the six partial orders shown
in Figure 3.4 (b). Thus, an optimal DPOR explores six executions (2n-executions
for n writers). We now show why SDPOR explores @(2") in the general case. Con-
ceptually, SDPOR is a loop that (1) runs the program, (2) identifies two dependent
statements that can be swapped, and (3) reverses them and re-executes the program.
It terminates when no more dependent statements can be swapped.

Consider the interference on the counter variable ¢ between the master and the count

40

thread. Their execution order determines which writer thread interferes with the mas-
ter statement x; = 0. If ¢ = 1 is executed just before i = ¢, then x; = 0 interferes
with wy. However, if ¢ = ¢ is executed before, then x; = 0 interferes with wy. Since
SDPOR does not track relations between dependent statements, it will naively try
to reverse the race between x; = 0 and all writer threads, which results in explor-
ing O(2") executions. In this program, exploring only six traces requires understand-
ing the entanglement between both interferences as the order in which the first is
reversed determines the second.

In the light of these findings, it becomes clear that existing unoptimal PORs
avoid the NP-hard combinatorial explosion when computing alternatives using an
inexpensive procedure whose actual price is to explore up to exponentially redundant
executions. On the other hand, optimal PORs are necessarily subject to the potential
combinatorial explosion arising from having to solve a NP-hard problem on every node
of the tree. These two observations motivate the need for specialised algorithms and
data structures for computing alternatives. What we ideally need here is a solution
in the middle: a polynomial algorithm for computing unoptimal alternatives (i.e., the
resulting POR will be unoptimal) which can approximate the result of an optimal

algorithm.

3.3.3 k-partial alternatives

In this section, we propose a polynomial time algorithm Alt,; to compute clues con-
sidering a subset of D of size k. A k-partial alternative may not be an alternative
but a clue that might lead us to an actual alternative. Thus, sometimes we explore
a fault alternative but even in that case, we can backtrack and select another clue
to continue. We here trade some redundant explorations for complexity reduction.
It is clear that there is a certain threshold £y in which Alts,, produces alternatives
and when kg holds, we are finding the alternative for the full size of D which can be
called optimal alternative.

The main contribution here is the formalisation of the polynomial time algorithm
of clues. This algorithm and the computation of extensions of a configuration funda-
mentally rely on efficient procedures to check causality and conflict. Thus, a second
contribution of this section are specialised algorithms for checking general causality
and conflict between events.

The algorithm Alt,; computes k—partial alternatives.

41

Definition 12 (k-partial alternative). Let U be a set of events, C C U a configura-
tion, D C U a set of events, and k € N a non-negative integer. A configuration J is
a k-partial alternative to D after C' if there is some D C D such that |D| =k and J

is a alternative to D after C.

A k-partial alternative is a straightforward restriction of alternatives that considers
a subset of D of size k. We compute k-partial alternatives using a data structure that
we call comb. Intuitively, the comb is the space of combinations for candidate k-partial

alternatives.

Definition 13 (Comb). Let A be a set. An A-comb ¢ of size n € N is an ordered
collection of spikes (si,...,$,), where s; € A* is a sequence of elements over A.
Furthermore, a combination over ¢ is any tuple {(ay,...,a,) where a; € s; is an

element of the spike.

The problem of finding a k-partial alternative J in the resulting comb amounts
to find a combination of events that is conflict free and causally closed. Hence, it
is possible to compute k-partial alternatives (and by extension optimal alternatives)

to D after C in U using a comb, as follows:
1. Select k (or |D|, whatever is smaller) arbitrary events ey, ..., e, from D.

2. Build a U-comb (sq,. .., sg) of size k, where spike s; contains all events in U in

(immediate) conflict with e;.

3. Remove from s; any event é such that either [¢] U C is not a configuration or

el N D # 0.

4. Find some combination (e},...,e}) in the comb satisfying that —(e; # ¢}) for

i

5. For any such combination the set J := [¢]] U...U[e}] is a k-partial alternative.

Step 3 guarantees that the set .J is a clue. Steps 1 and 2 guarantee that it will conflict
with at least k events from D, ensuring that it will be a k-partial alternative.

Steps 2, 3, and 4 require to decide whether a given pair of events is in conflict.
Computing k-partial alternatives thus reduces to computing conflicts between events.
The key problem remaining in computing a k-partial alternative is then how to effi-

ciently check conflict and causality among events.

42

3.4 Conflicting extensions

Another important function in Algorithm 1 is ex(C') at Line 3, which computes all
events that are enabled at some subset of C. ex(C') is clearly partitioned into en(C)
and cex(C). While en(C) is trivially computed, cex(C') is unfortunately much more
complicated. We recall that conflicting extensions is a set of events enabled at some
sub-configuration of C' but conflicts with at least one event in C'. We discuss the

algorithm of computing conflicting extensions of a configuration and its complexity.

3.4.1 Conflicting extension algorithm

Conflicting extension algorithm cex(C') returns a set of events that are enable at C'
but conflict with one of events in C'. To compute conflicting extension cex(C) for a
configuration C', we compute all conflicting events resulted by cex(e) for each event
e in C'. We exploit that fact that in concurrent programs, only mutex locks touch
shared variables, so we necessarily compute conflicting events for lock events with the

algorithm described in Algorithm 2 and ignore the others:

Algorithm 2: Compute conflicting events for a mutex lock

1 Given an event e with h(e) = ¢, a mutex transition
2 Set ep := pp(e), em := pm(e).

3 Procedure cez(e)

i | while =(em <ep) do

5 Set em = pm(pm(em))

6 Create (or retrieve) an event ex such that:
7 h(ex) =1t

8 pp(ex) :=ep

9 pm(ex) :=em

10 Add ex to cex(C)

11| end

12 return

In Algorithm 2, pp(e) returns the maximal event for the thread of e in e’s local
configuration: Ve € E : pp(e) = ¢ € E such as p(e) = p(¢/) and ¢ < e and
Be” i p(e”) = p(¢') and €’ < €” where p(e) returns the thread of e. pm(e) returns the
maximal event related to mutex in e’s local configuration: Ve € E : pm(e) = ¢ € E
such as v(e) = v(¢') and €’ < e and Be” : ¢’ < €” and v(e”) = v(e’) where v(e) returns
the mutex which is modified by e.

New conflict events ex are generated by combining the labelling transition ¢

(Line 7), thread maximal predecessor ep (Line 8) and one of the lock events found in

43

the trace of the variable predecessor from the maximal one to the root identified by
pm(pm(em)) in Line 5. The procedure possibly terminates before reaching the root
when we reach the predecessor that is also predecessor of ep (Line 4).

This algorithm guarantees that we find out all possible conflicting events for all
lock events in the configuration. It is also sufficient to apply the algorithm to maximal
configurations C', since it assures that the resulting conflicting extension covers all

subsets for all sub-configuration of C'.

3.4.2 Complexity

The computation of conflicts is NP-complete for an arbitrary independence relation

in a Petri net.

Theorem 6. Let N be a Petri net, t a transition of N, { an independence relation
on N, and C' € conf(Uny.¢) a configuration. Deciding whether h='(t) N cex(C) = 0
1s NP-complete.

Proof. We first prove that the problem is in NP. This is achieved using a guess and
check non-deterministic algorithm to decide the problem. Let us non-deterministically
choose a configuration ¢/ C C', in linear time on the input. A linearisation of C" is
chosen and used to compute the marking m reached. We check that m enables ¢ and
that for any <-maximal event e of C, h(e) € ¢ holds. Both tests can be done in
polynomial time. If both tests succeed then we answer yes, otherwise we answer no.

We now prove that the problem is NP-hard, by reduction from the 3-SAT problem.
Let V = {vy,...,v,} be a set of Boolean variables. Let ¢ :== ¢y A...A¢,, be a 3-SAT
formula, where each clause ¢; :=[; V I} V [!' comprises three literals. A literal is either
a Boolean variable v; or its negation 7;. For a variable v, pos(v) denotes the set of
clauses where v appears positively and neg(v) the set of clauses where it appears
negated.

Given ¢, we construct a 3-safe net N,, an independence relation <), a configura-
tion C' € conf (Z/{MNWQ), and a transition ¢ from Ny such that ¢ is satisfiable iff some
event in ex(C') is labelled by ¢ :

e The net contains one place d; per clause ¢;, initially empty.

e For each variable v; are two places s; and s,. Places s; initially contain 1 token

while places s; are empty.

44

e For each variable v;, a transition p; takes into account positive values of the
variable. It takes a token from s;, puts one in s, (to move on to the other
possibility for this variable) and puts one token in all places associated with
clauses ¢; € pos(v;). This transition mimics the validation of clauses where the

variable appears as positive.

e For each variable v;, a transition n; takes into account negative values of the
variable. It takes a token from s, and puts one token in all places associated
with clauses ¢; € neg(v;). It also removes one token from all places associated
with clauses ¢; € pos(v;), that have been marked by some pj transition. This
transition n; mimics the validation of clauses where the variable appears as

negative.

e Finally, a transition ¢ is added that takes a token from all d;. Thus, it can only

be fired when all clauses are satisfied, i.e. formula ¢ is satisfied.

The independence relation < is the smallest binary, symmetric, irreflexive relation
such that p; ¢ p; exactly when i # j and p; & n; exactly when ¢ # j. Recall that
pi, n; correspond to respectively to the positive and negative valuations of variable v;.

In other words, € is the reflexive closure of the set
{pi,ni): 1 <i<n}U{{t,p): 1 <i<n}U{{t,n;): 1 <i<n}
Relation <) is an independence relation because:
e Vi # j, transitions p; and p; do not share any input place ;

e Vi # j, the intersection between p$ and *n; might not be empty, but n; is always
preceded by (and thus enabled after) p; (and not p;). So firing p; cannot enable,

nor disable, p;, and firing p; and n; in any order reaches the same state.

Finally, configuration C' contains exactly one event per p; and one per n;, hence
2|V| events. This is because transition n; is dependent only with p;, and independent
(thus concurrent) to any other transition in C'. Thus formula ¢ has a model iff there
is an event e € en(C) labelled by t. Indeed, initially only positive transitions p; are
enabled that assign a positive value to their corresponding variable v;. They add a
token in all places d; such that ¢; € pos(v;). Then, when a negative transition n,
fires, it deletes the tokens from these d; that had been created by p; since the variable
cannot allow for validating these clauses anymore. It also adds tokens in the dj such

that c¢x € neg(v;) since the clauses involving 7; now hold. Therefore, the number of

45

tokens in a place d; is the number of variables (or their negation) that validate the
associated clause. Formula ¢ is satisfied when all clauses hold at the same time, i.e.
each clause is validated by at least one variable. Thus all places d must contain at
least one token (and enable t) for ¢ satisfaction.

The construction of Ny is illustrated in Figure 3.5 for:

¢:=(xy VT3V x3) ATTVTZ) A (21 V T3)
| S \——

c1 [c3

Figure 3.5: Petri Net encoding a 3-SAT formula.
O

This might be alleviated in the case of specific independence relations. Fortu-
nately, for multithreaded programs, cex(C') can be computed linearly. We observe
that programs are deterministic i.e. at a time, in a thread, only one statement can be
executed, and mutexes prevent from outside all conflicts with their inside statements.
Therefore, only those in PES touching mutex variables might have conflict events.
Consequently, in computing cex(C), instead of finding possible conflict events for all
events in C', we simply compute conflicting events for lock ones. Unlock events are
also excluded since they must always follow the lock of the same variable in the same
thread, hence do not have any conflicting events. The cex(C') computation is linear
to the number of lock events in C' and now depends on the complexity of Cex(e) al-
gorithm (Algorithm 2) to find all possible conflicting events for an lock event, which
is also O(n) where n is the number of lock events on the same mutex as e in C. Its
efficiency now mainly depends on the causality deciding algorithm between ep and

em in Line 4 which will be discussed in Section 3.5.

46

3.5 Conflict and Causality

Causality and conflict deciding queries are intensively requested in algorithms to
compute alternatives (Algorithm 1) and conflicting extensions (Algorithm 2), so it is
critical to solve these efficiently. We now propose a new data structure and algorithms
to efficiently answer these queries when the underlying PES is the semantics of a
program with locks.

Given two events in a PES, they are definitely in one of the relations: concurrent,
causality or conflict. In Figure 3.1 (c), we can see 7 # 3, 5 || 3 and 7 < 10. However,
consider events in a single thread, they can not be concurrent, but either in causality
or conflict. Take Thread, as an example, its four events {1,5,8,9} are all in conflict
pairwise (this is rather a special example where there is only one statement per thread,
so we cannot see the causality). It is similarly obvious for events that lock/unlock
the same mutex variable.

In the light of these findings, representing events in a thread or touching a single
mutex variable in a sequential tree explicitly preserves the structural relation. Events
in the same branch are in causality and otherwise, those in different branches are in
conflict. We store in memory a sequential tree per thread/variable. Consequently,
an event in the unfolding belongs to one or two sequential trees corresponding to its
thread and/or mutex. Using tree structures to represent causality and conflict follows
the perspective that the unfolding is regarded as a synchronization of trees. We will
discuss this structure in detail in Section 3.6.

Come back now to the causality and conflict relation between events in PES.

Given two arbitrary events in the unfolding, they fall in one of the following cases:

e They are in the same thread if they modify the same mutex. (5)
e They modify the same mutex if they are in the same thread. (6)
e They neither are in the same thread nor modify the same mutex. (7)

An event in the unfolding belongs to one or two sequential trees in respect of its
thread and mutex, so we store for each event one or two parents depending on its
type where the second is only relevant for variable related ones.

As mentioned above, events in the same thread are definitely in the same sequential
tree and so are those touching the same mutex. Assuming that an efficient algorithm
is available for answering causality/conflict queries in a sequential tree, the cases

(3.5) and (3.6) are simple to solve. In case (3.7), events are not in the same thread or

A7

related to the same mutex, they necessarily do not belong to the same tree. We now
need to store more data in order to apply the sequential tree algorithm. Observe that
every event depends primarily on its local configuration, for example, if there exists
any two conflicting events in local configurations of e and €', e surely conflicts with
¢’. Therefore, we annotate every event e with two sets of events, denoted by pcut(e)
and vcut(e).

The set pcut(e) stores, for every thread of the program, the only <-maximal event
in [e]| of that thread. Formally, pcut(e) := {ey,..,e,} where Vi € [1,n] : e; € [e] and
ple;) = p; and Pe’ € [e] 1 e; < € and p(e¢/) = p; with p : U — P indicating the
process identifier the event belongs to. Let vcut(e) denote the map from mutex to
the maximal event associated with that mutex in the local configuration of e. More
formally, vcut(e) := {eq,..,ex} where k < m and Vi € [1,k] : e; € [e] and v(e;) = v;
and Be’ € [e] 1 e; < ¢ and v(e') = v; with v : U — V U {null} mapping the event to
the variable it touches or null otherwise.

An event in PES belongs to a thread and/or locks a mutex and in no other case, so
these two sets assure full coverage of events in one’s local configuration. With these

two sets, we have the following propositions:

Proposition 1 (Causality). Let e, e’ be two different events, then e < €' iff there is
some e" € peut(e') such that p(e”) = p(e) and (e =" ore < €”).

Proof. We prove the proposition by proving the necessary and sufficient conditions

as follows:

(=) Assume that e, ¢’ are two different events, e < ¢’ then there is some ¢’ € pcut(e’)

such that p(e”) = p(e) and e = €” or e < €”.
Let e < ¢/, it means that e € [¢/] and there must exist e” € pcut(e’) such that
pe(e”) = pe(e). Since €’ is the maximal event of process p(e) in [¢/], it is definite

that €’ =e or e < €”.
(<) Assume there are two events e and ¢’ and there exists ¢” € pcut(e’) such that
pe(e”) = pe(e) and (e = ¢”) or (e < €”), then e < ¢’

Since €’ € peut(e’), it means e” € [¢'], equivalently ¢” < €’. As in the assumption
we already have: e < ¢’ or e = ¢€”, so e < €” < ¢ that transitively implies that

e <e.

48

Using Proposition 1, given two events, deciding whether e < ¢’ reduces to finding
certain event ¢” in pcut(e’) in the same thread of e and checking if e < €”, which is a
much simpler task because e and ¢’ belong to the same thread.

We can prove a similar results for checking conflicts:

Proposition 2 (Conflict). Let e, e’ be two different events. Then e # €' iff there is

some ey € veut(e) and some ey € veut(e') such that v(er) = v(ea) and eq # es.
Proof. We prove the proposition by proving the necessity and sufficiency as follows:

(=) Having e # €, there exists €] € [¢/] and €}, € [e] such that €] #' €}. Because
of the fact that only mutex events touching the same variable are able to be in
immediate conflict, we obviously know that v(e}) = v(e}). Assume e; € veut(e)
such that v(e;) = v(e)) and es € veut(€') : v(ez) = v(eh), then v(e;) = v(e)) =
v(eh) = v(ea).

Moreover, €] < e; or e; = €} and similarly, e; < €, or e; = €}, while the conflict

relation is inherited, so e; # es. Summarily, we have v(e;) = v(es) and €1 # ey

(<) Assume e; € veut(e) and ey € veut(e’) such that ve(ey) = ve(es) and ey # es.
Since e; € wcut(e), then it is obvious that e; € [e], implying that e; < e.
Similarly, es € [¢/] i.e. e < €. The conflict is inherited and e; # eg, so it is

definite e # ¢’.
Ul

Thanks to Proposition 2, deciding whether e # ¢’ holds reduces to finding events
in veut(e) and veut(e’) that lock or unlock on the same variable and are in conflict.
Events e and ¢’ are in conflict iff such events can be found. As before, this reduces
the checking two events that modify the same mutex variable, which is much simpler
than for arbitrary events.

Using the sets pcut, vcut and the two propositions above, deciding conflict and
causality reduces to checking structural relations of two nodes in a sequential tree.
Hence, we denote event’s possible appearances in two sequential tree by two nodes
no = (do, po, So) and ny := (dy,p1, S1) representing those in thread and mutex tree
respectively. Sequential tree and structural relations between nodes are discussed in
detail in Section 3.6.

49

a;y a}
1 7N
ait---aj a3 af af a3 d}
) | | |
aj ay ---- aj aj .
| | | a1 %
al a3 aj (b). 2! skip tree
| | o0

aj dj 0

| | af a3

8 8
a a .

1 2 (). 22 skip tree

(a). Original tree

Figure 3.6: Multiple trees for a process. aj- is node indexed j at the depth

3.6 Sequential tree

We know that an event in the unfolding always belongs to at least one tree and at
most two trees. The causality and conflict between events are decided based on their
positions in these trees. We exploit here a tree structure to present events that are

process or variable related.

3.6.1 Causality and Conflict of nodes

We let a partial order set 7' := (N, prt) denote the sequential tree where N is a set
of nodes, prt C N x N its parent relation where a = prt(b) if there is an edge from a
to b.

A node n € N is a tuple n := < d,p,S > where d is the distance from the root,
p = prt(n) and S = {Vs € N :n = prt(s)} indicates the set of right-after coming

nodes, called successors.

Definition 14 (Ancestor relation). Given two nodes ny, ny, then ny is an ancestor
of ny, denoted ny < ng, if there exists a sequence of nodes S := (81, .., 8,) withn > 1

such that ny = prit(sy), s1 = pri(sa), .., sn, = pri(ng).

Consequently, it is obvious that n; is an ancestor of ns, then its depth must be

smaller than that of ny. In the example of Figure 3.6 (a), node a} is an ancestor

50

(actually immediate ancestor or parent) of a3. Also, a3 is an ancestor of a5 because

there is a sequence of nodes (a3, a3, a3, a3, a5, as) connecting them together.

Definition 15 (Conflict). Two nodes ny and ny are conflict related iff neither “ny is

ancestor of ny” nor “ny is ancestor of ny” holds.

We recall that nodes at the same depth and having the same parent are definitely
in immediate conflict. The conflict is inherited in the sense that if two events are in
conflict, all successors of one are in conflict with those of the other. Consequently,
two events belonging to different branches are surely in conflict.

Based on these observations, we propose an algorithm to check conflict and an-
cestor relations between two nodes in a sequential tree as follows:

Given two nodes n and n’ having depths d and d’ respectively, in a sequential tree,
either process or variable one. Without loss of generality, assume that we need to
decide if n is an ancestor of n’ or not. It is definite that if depth(n’) < depth(n), n
will never be ancestor of n’. Otherwise, use a skip list to go from n’ to its predecessor
at the depth depth(n) (Algorithm 4.), so-called n”. If n = n”, we have n is ancestor

of n', otherwise they are in conflict (Algorithm 3).

Algorithm 3: Deciding conflict in a sequential tree

Input: ny, ny at the depths d; and ds respectively
Output: true if ny # ng, otherwise false

1 if ((77,1 ?é ng) VAN (dl = dg))

2 ’ return true;

3 else

4 if d; < ds

5 ‘ find n’, an ancestor of ny at depth d;

6 | else

7 ‘ find n’, an ancestor of ny at depth ds

s if (' =mny) V (0" = ng)

9 | return false ;

10 else

11 ‘ return true;

Backtracking through a tree can be simply performed by tracing back by its parent
one by one which is linear to the depth of the node but it is not efficient enough when
we get a deep tree of the depth of millions. We are ambitious to find out an algorithm
to explore the ancestor with a tiny complexity, so the new data structure called skip

list will be applied.

o1

3.6.2 Data structure and efficient tree navigation

Skip list (ny, .., ny,) for anode n is a sequence of references to its ancestors at different
depths based on skip step ss where ss is given by developers indicating the number
of ancestor to skip over and n; is an ancestor of n at the depth ss’ such that ss® <
depth(n). In our very simple example in Figure 3.6, ss = 2 and event a3 has a skip
list (a$, a3, 0).

As stated in Algorithm 4, to find an ancestor of node n at a specific depth d, we try
to find the best skip step bss to jump as far as possible. bss := max {j € N : ss’ < dis}
where dis = depth(n) —d. Repeat this procedure until the best ancestor has depth d.
In the example shown in Figure 3.6, we need to decide the relation between nodes a3
(at depth 8) and a? (at depth 2). Skip step ss = 2, event a5 has a skip list (a?, a3, a3)
while that of a3 is (a,a2). With these, we find a sequence of best ancestors to reach
depth 2 from a3: a — a3 — a3 where we encounter a2 at depth 2. Since a2 # a?, it
is necessary that af conflicts with a3.

The complexity of the algorithm now is @(log N), much better than O(N) if we

explore the tree sequentially through nodes’ parents.

Algorithm 4: Find ancestor at defined depth
Input: a node n, an depth d
Output: only one node n': depth(n) = d and n’ is an ancestor of n
i Initially, let p point to e;
> while (depth(p) > d) do
3 | dis = depth(p) —d
. | Find the best skip step bss = max {i € N: dis mod ss' = 0}
5 | p= skiptablms|(p)
¢ end
7 return p

3.6.3 Causality and Conflict for events

Algorithm 3 decides causality and conflict between two nodes in a tree. How about
the problem with events in the unfolding? Back to Section 3.5, two arbitrary events
in unfolding exist in three situations: in the same thread tree, in the same variable
tree or neither. Each event associates with two nodes corresponding its appearances
in two trees. In cases (3.5) and (3.6), their relation is the same as that between
their corresponding nodes. In case (3.7), based on Proposition 1 and Proposition 2,

we decide the relation between corresponding nodes of maximal events where there

52

exists any two nodes are in conflict or causality, these events have the corresponding

relation.

3.7 Conclusions

This chapter introduced our new algorithm QPOR where we propose the new con-
cept of k-partial alternative, a quasi-optimal solution that computes alternatives in
polynomial time and reduces redundant executions as well. We also used the data
structure sequential tree to efficiently check conflict and causality between events
which are required in computing alternatives.

In the next chapter, we will present our work on parallelization to take advantage
of available multi-core and multi-CPU computers. We will detail the parallel algo-
rithm achieved by partitioning the unfolding exploration into sub-works that explore

maximal configurations independently.

53

o4

Chapter 4

QPOR Parallelization

Contents
4.1 Introduction, 55
4.2 DMotivations o L e e e 56
4.2.1 Technology for parallelism 56
4.2.2 Challenges and opportunities for QPOR parallelization . . . 56
4.2.3 Our objectiveso 58
4.3 Parallelization design for QPOR 58
4.3.1 Parallel computing L. 58
4.3.2 Generalidea 59
4.3.3 Datastructureo 59
4.3.4 Overall algorithm 61
4.3.5 Parallel exploration process 62
4.3.6 Avoiding redundant exploration. 64
4.3.7 Algorithm termination 64
4.3.8 Synchronization mechanism 65
4.4 Conclusions o i i e e e 65

4.1 Introduction

Although QPOR described in Chapter 3 has proposed algorithms and data structures
to efficiently explore the execution tree, we can exploit its natural structure to take

advantage of current hardware features to execute quickly. Therefore, parallelization

is a promising solution for QPOR to speed up the exploration.

In this chapter, we detail how the algorithm can be parallelized including work

partition, parallel exploration process and synchronization mechanism.

95

4.2 Motivations

The parallelization of our algorithm QPOR is motivated by the natural parallelism
underlying the unfolding exploration, the availability of multiple processor computers

and existing works on parallelization.

4.2.1 Technology for parallelism

Most of nowadays computers have multi-core processors (several cores integrated in
a single chip) [100] and supercomputers [96] even have multiple CPUs (several multi-
core CPUs in multiple chips) on the same machine where each core or CPU handles
a separate computation task participating to a global computation. Thanks to these
features, computational work can be done by several cores in parallel to get a good
performance. This hardware requires software to recognize and take advantage of
these parallel processing capabilities, in other words, programs need to be parallel.

Parallel programming implements software by breaking its work into multiple
chunks of work and assigning them to two or more cores (processing units) or several
nodes. Many parallel programming models are also introduced: Bulk Synchronous
Parallel (BSP) [6], directive models[81] or task models [64, 65, 63].

Multi-core features are exploited together with parallel programming to distribute
many model checkers such as Divine [22, 20], SPIN [21, 61], multi-core Helena [48],
distributed Helena [38] and distributed IMITATOR [11, 12].

4.2.2 Challenges and opportunities for QPOR parallelization

Using depth first search to explore the execution tree, QPOR might suffer a reduction
in performance when the tree is deep since they have to sink down the deepest path
and backtrack event by event to search for another branch, i.e. computing alternatives.
The deeper the tree is, the more nodes there are to compute alternatives.

Moreover, computing alternatives in Algorithm 1, either k-partial alternative or
alternative in an optimal algorithm, is time-consuming when there is a large number
of conflicts between events. This is because the comb defined in Definition 13 built in
the alternative computing procedure composes of spikes that is the set of immediate
conflicting events of an event. The greater the size of comb (the number and the
length of spikes) is, the harder enumerating combinations is. Therefore, for those
that have many direct conflicting events, it is complex to compute alternatives. We

are hence motivated to speed up the alternative computation.

56

an
21

Figure 4.1: Example: (a) Program; (b) All maximal configurations; (¢) Unfolding

On the other hand, we witness plenty of works that distribute POR such as POR
for GPU [94, 7], Cartesian POR [57] and distributed POR [105, 89, 29, 104] and
distribute unfolding such as [18, 49].

Yang et al [105] parallelize DPOR by assigning different works of exploration to
different workers to execute concurrently. Each work is a depth first search in the
execution tree so that the entire execution tree is organized as a collection of depth
first searches. However, this algorithm faces two problems: (1) different workers may
explore the same part, and (2) it has to deal with load-balancing when the size of the
execution tree is big. They addressed (1) by adding nodes to the exploration frontier
cagerly and (2) by simulating a central load-balancer to keep track of workers and
distribute work load among them.

Simsa et al [89] propose a design called n-partitioned depth first search that parti-
tions the exploration into n fragments with an user-defined constant n. Each of these
segments is separately explored by the depth first search algorithm. The strong point
of this work is that the number of fragments is a constant, thus it is possible to apply
the algorithm to a large scale system.

These works on DPOR provide motivations as well as a base for us to parallelize
our algorithm.

To parallelize QPOR, we aim to decompose the exploration into a collection of
independent chunks of work. We observe that the exploration is organized in a tree-
like structure (see Figure 4.1) where two arbitrary branches are either totally separate
from each other such as {7,9,10} and {4,5,6} or share a prefix and start a new
independent branch at the point an alternative is found, like {4,5,6} and {4,7,8}.
Despite some overlap that can be explored twice, two branches can still be explored

separately without problems. Two branches {4, 5,6} and {4, 7,8}, for instance, share

27

4. As 5 is in immediate conflict with 7 (5 #' 7), all successors of these events are
totally different or in other words, their successors have no relation with each other.
Therefore, these two branches can be explored in any order despite the fact that they
explore 4 twice.

In another case, let us assume that the branch (configuration) {4, 7,8} is first ex-
plored, backtracking along this branch finds {4,5} at 7 and {7,9} at 4 as two possible
alternatives. These two alternatives lead to configurations {4,5,6} and {7,9,10} re-
spectively. Since all their events are totally different and have only conflicts, they can
be built from the root independently from each other. This observation shows that
it is possible to subdivide the exploration into multiple work units, each of which is
responsible of exploring one branch corresponding to a maximal configuration of the
unfolding and the most important is that they can be executed in parallel.

Based on the natural concurrency in the unfolding exploration and plenty of par-
allel programming models aforementioned in Section 4.2.1, it is feasible to achieve a
parallelization of QPOR.

4.2.3 Our objectives

Our goals are to speed up the unfolding exploration using parallelism in a suitable
parallel programming model among available models and then parallelize our sequen-
tial algorithm to obtain a parallel QPOR. The following part describes in details our

parallelization.

4.3 Parallelization design for QPOR

This section first discusses briefly parallel computing as the context of our paralleliza-
tion. Next, we detail the algorithm and data structure of parallel QPOR.

4.3.1 Parallel computing

Parallel computing is to use computer’s resources e.g. processors, memory simulta-
neously to execute a computational work. The work is subdivided into independent
parts that can be executed concurrently called processing units. In general, a pro-
cessing unit is a set of instructions to perform a part of the overall work to achieve a
subgoal (a part of the overall goal). They can be implemented as thread or process.

Processing units in a program have to co-operate to produce its expected output.

o8

Therefore, coordinating mechanisms need to be established to guarantee all process-
ing units interact in proper manner.

Among available parallel models are shared memory and message passing. We
choose shared memory for our parallelization since it is facilitated by operating sys-
tems. If the program works on shared memory in a node, then data in shared memory
are directly accessible to all processing units of the system. Otherwise, if on a dis-
tributed memory system, processing units need to exchange data by sending and
receiving messages over the network. It is obvious that message exchanges take more
time than access to shared memory. Benchmarks MAGI [73] show a persuasive evi-
dence where the latency on shared memory is only 0.7s while over Ethernet, that of
message passing is 26.5s, even with wide bandwidth network, it is still over double of

that on shared memory. Therefore, at the moment, we would use shared memory.

4.3.2 General idea

We parallelize the sequential algorithm by partitioning the unfolding exploration into
subworks. Intuitively, a subwork is a set of instructions to explore a maximal con-
figuration. As previously mentioned in Section 4.2.2, maximal configurations in the
unfolding can be executed separately and in any order, such decomposition of explo-
ration allows multiple subworks to be performed concurrently.

During the exploration of a branch, corresponding to a maximal configuration, a
subwork also searches for alternatives to switch the exploration to new branches, so
it might produce new subworks. Unlike the sequential Algorithm 1 which switches
to a new branch immediately once it finds an alternative and stops backtracking the
current branch, the parallel algorithm creates a new subwork to explore a branch
whenever it finds an alternative and continues backtracking to search for others until
hitting the root. As a result, a subwork might spawn many other subworks and
these subworks can be executed by other processing units if any of them is idle.
Thus, subworks are generated and removed continuously, so we need to manage them
efficiently. The exploration terminates when there is no more subwork to execute.

In the next part, we detail data structures and mechanisms to manage subworks

efficiently.

4.3.3 Data structure

In addition to data structures introduced in the sequential algorithm in Chapter 3,

for parallelization we first introduce subwork structure.

29

Front Queue Back

'S v

| tp=<0,0,0> | t=<0,{1},{4}> | t=<@L{L5L{T}> | t3=<bot,{4,1},{7,9}> |
\
/
7
8]
A
-
Thread 0 Thread 1 Thread 2

Figure 4.2: Parallel exploration

Subwork A subwork is a set of data necessary to produce a maximal configuration.

It mainly contains the following:

e Configuration C: a set of events as the prefix of maximal configuration that has

been explored.
e Disable set D: a set of events should be excluded from the execution.
e To-add set A: Set of events that should be included in the new configuration.

The tuple composed of C, D and A is sufficient to explore a new maximal con-
figuration as described in Algorithm 1. Beside these data, a subwork contains other
information that is useful to its execution such as trail (the sequence in which events
are added to the configuration), replay (set of events that is included in the max-
imal configuration), etc. Subworks are generated and removed continuously during
the exploration, so we use another data struture queue of subworks to manage them

efficiently. Tuples ¢; with ¢ € [0..3] in Figure 4.2 are some examples of subworks.

Queue of subworks The collection of subworks of exploration needs to be managed

in such a way that processing units can easily take out a subwork to perform or push a

60

new one in. Among various data structures available such as stack, linked list, queue,
etc., we choose to use queue, the container of objects conforming to first-in-first-out
(FIFO) principle.

As defined previously, data enclosed in a subwork are sufficient to generate a
maximal configuration, that means a subwork does not need any information from
other peers for its execution. Therefore, one subwork can be taken and executed
before, after or even at the same time as others, that means the order of executing
subworks does not matter in the parallel algorithm. That also means that a processing
unit can take an arbitrary subwork in the collection to execute. Linked lists allow
random access but each node of the list has to maintain links to its neighbours which
is unnecessary.

On the other hand, both queue and stack are sequential access structures, the
principle of FIFO of queue, i.e. inserting at the front and removing at the back, helps
reduce access conflicts between processing units. The front and the back only unify
when the queue has a unique element or is empty which are easy to handle cases.

With all above reasons, we have chosen a queue to maintain the collection of
subworks of the exploration in our algorithm. In the example in Figure 4.2, the

queue has four subworks in total: %g, ;1,1 and ts.

4.3.4 Overall algorithm

Algorithm 5: General parallel unfolding-based POR exploration

1 Create N processing units with an user-defined constant V.

2 Q = {to}

3 Procedure Explore()

+ | while @ is not empty or there is at least one working thread do
5 Find an available processing unit thd

6 if @ is not empty

7 tsk <+ front(Q)

8 pop(Q)

9 Assign tsk to thd

10 thd calls ExploreOneMC (tsk)
11 end

12 | end

Algorithm 5 presents the main procedure to explore the execution tree in a parallel
manner. At the beginning, a number of processing units are spawned and queue @)
is initialized with subwork ¢ = (L, 0, (). While there is at least one subwork in the

61

queue, an idle processing unit takes the first element in the queue (Line 7) and calls
function ExploreOneMC() to explore one maximal configuration (Line 10). To be
sure that while one processing unit is taking, other processing units do not take the
last element in the queue, the emptiness needs to be checked again (Line 6). The
exploration terminates when there is no subwork anymore. Checking whether the
queue is empty or not is not enough. If the queue is empty but some processing unit
is working, potential subworks are probably generated. Therefore, to assure there is
no subwork, the algorithm verifies that the queue is empty and all processing units
are idle (Line 4).

The worker function ExploreOneMC() in Algorithm 6 explores one maximal con-
figuration and generates new subworks if an alternative exists. It takes parameters
C, D, A from the subwork to produce the configuration. First, it adds all extensions
to the unfolding (Line 4). Then, it chooses an event (Line 9 or Line 7) to extend the
configuration by a recursive call to ExploreOneMC (Line 11) until there is none en-
abled. It then backtracks along the trail of events by returning to the calling function
(Line 5) to search for alternatives by A1t (C,D) (Line 12). We recall that only lock
events could have conflicting events, so it is uniquely possible to find an alternative at
a lock event. At the event e, the function A1t (C,D U {e}) uses either k-partial alter-
natives defined in Definition 12 or alternatives defined in Definition 11. At most one
alternative is chosen although there are several potential ones. Any alternative found
leads to another maximal configuration, so a new subwork is generated (Line 13) and

pushed to the shared queue of waiting subworks (Line 14).

4.3.5 Parallel exploration process

The parallel unfolding exploration is executed as follows:

1. Initialize the queue @ with the first subwork: to = (L, (), 0).

2. t at the front of () is taken by a thread, executes the worker function ExploreOneMC().

ExploreOneMC() finds a enable event to extend. When there is no more enabled

events, it stops. This produces the first maximal configuration.

3. Backtrack along the trail of the current maximal configuration: At each event
e; in the trail, if an alternative is found, A; = A1t(C;, D; U {e;}), a subwork
t; = (Cy, Dy, A;) is created and pushed to the queue Q.

4. The backtracking stops when it meets the root.

62

Algorithm 6: One maximal configuration exploration

1 Input: A subwork = (C, D, A) with C: current configuration, D: disable set,
A: add set, U: overall unfolding

2> Qutput: One maximal configuration explored. A subwork is probably
generated and added to Q.

3 Procedure ExploreOneMC(C, D, A)

1| Add ez (C) to U

5 | if ena(C) =0 return

6 if A=0

7 ‘ Choose e from ena(C)

8 else

9 ‘ Choose e from A Nena(C)

10 end

11 | ExploreOneMC(C U {e}, D, A\ {e})
| if 37 € A1t (C, D U {e})
.
1

3 Create new subwork t; = (C, DU {e}, J \ C)
{ Push #; to @

5. In the meantime, another thread looks for a subwork in @ if it is idle. If there

exists one subwork, it takes it for processing.
6. The whole exploration stops when () is empty and all the threads are idle.

Let us take the program in Figure 4.1 to illustrate the process. Its parallel ex-
ploration is shown in Figure 4.2. Assume that the program has a pool of three
threads. The queue of subworks is initialized by o = (L, 0,). At the beginning, all
threads are idle, so assume Thread(takes t; and discovers the first maximal config-
uration {1,2,3}. Backtracking this configuration, a new alternative {4} is found by
A1t (L, {1}), so a subwork t; = (L, {1},{4}) is spawned and pushed to the queue.
ty is then taken by Threadl to produce the configuration {4,5,6}. From {4,5, 6},
two alternatives are found at 5 and 4, generating two subworks t5 = ({4}, {1,5},{7})
and t3 = (L, {1,4},{7,9}) respectively. These subworks are concurrently taken by
Thread2 and Thread0 (Thread0 has finished working on subwork #, earlier and now
is idle). Executing ¢, and ¢3 produces corresponding two maximal configurations
{4,7,8} and {7,9,10}. Backtracking these two configurations finds no alternative,
which means there is no new subwork. By the time Thread0 and Thread2 finish
executing configurations, all the threads are idle and the queue is also empty, so the

exploration terminates.

63

It is obvious that the first subwork (¢ in this example) must be executed first by
one thread to produce the first configuration. The exploration is only able to continue
if backtracking this configuration results at least one alternative. Otherwise, there is
nothing to continue. We observe that producing the first maximal configuration (done
by font-end Steroids) and backtracking it to find alternatives are sequential work that
programmers cannot do anything to speed up (certainly, except some algorithmic
improvements). According to Amdhal’s law [9], the overall execution time cannot be
less than the amount spent doing these works. We might gain speedup in exploring
the next configurations. Amdhal’s law also states that the more cores we have, the
less time is spent on doing parallel works. But in our case, the parallelization only
makes sense when backtracking configurations results in more than one alternative,
i.e. there is more than one subwork in the queue. If we have fewer subworks than
cores, the speed up is not as much as expected. In the above example, we only have
threads working concurrently when the queue has two subworks ¢, and t3. Before

that, as there is only one subwork in the queue at a time, it works sequentially.

4.3.6 Avoiding redundant exploration

In the example of Figure 4.1, two branches {4, 5,6} and {4, 7,8} share a prefix {4}, so
the two corresponding subworks search for alternatives at 4 two times, which means
they risk to find the same alternative twice. To prevent duplication, we propose to
use replay. A replay is a set of references to events in C' and A of a subwork that
represents the prefix of the branch to be explored. If two subworks tsk; and tsks
have two prefixes rpl; and rpls respectively, such that rpl; = rpls, they definitely
explore the same branch. We maintain a set replays of all replays of the exploration
that is referred whenever there are new alternatives. Once an alternative is found, a
replay is computed based on its C' and A. This replay is then checked for existence by
comparing it to all existing replays in the set replays. If the replay already existed,
no new subwork is generated. The function continues to search for other subworks.
This set should be shared among all threads, so it is necessary to install a lock for

this data structure.

4.3.7 Algorithm termination

The exploration terminates if the number of subworks is finite and there is no dead-

lock, e.g. a task executes a subwork infinitely while the queue is empty. As we assume

64

that all input programs are terminating, all executions of the program must termi-
nate. Each subwork corresponds to one execution of program, so it is finite. Thus,
we can be sure that there is no deadlock caused by infinite subworks. Moreover, we
observe that the number of mutex locks in a multithreaded program is finite, so is the
number of mutex locks in a maximal configuration, which implies that the process of
backtracking terminates and produces a finite number of new subworks. If no max-
imal configuration is duplicated, the whole exploration terminates. The duplication

checking algorithm in Section 4.3.6 guarantees the termination.

4.3.8 Synchronization mechanism

Synchronization is essential for parallel programs that make concurrent accesses to
shared memory to avoid race condition. Race condition happens when more than one
thread (one of them is a write operation) is accessing the same memory location at
a particular point of time. In our algorithm, there are two shared segments of data:
the queue of subworks () and the unfolding U.

@ is retrieved when a processing unit requires a subwork (pop out the queue)
or creates a new subwork (push back to the queue). The easiest way to control the
access to @) is to implement a lock although some lockless queues exist and can also
be chosen.

The shared unfolding is continuously accessed by tasks to add events and update
their data. Events in the unfolding are grouped into processes and amending an event
to a process has no dependence to any others, so it is sufficient to use a lock for each
process. This lock is a read-write lock that allows read operations access the process

simultaneously and excludes all others if the operation is a write.

4.4 Conclusions

In this chapter, we have specified the concurrency underlying the execution tree that
is the independence among branches. This property allows us to parallelize our se-
quential algorithm QPOR by exploring maximal configurations concurrently. The
multi-core and multiple CPUs features in computers and the availability of parallel
programming models facilitates the parallelization. We presented as the main part
our parallel algorithm based on a shared memory model which partitions the unfold-
ing exploration into subworks. Each subwork is responsible for exploring different
maximal configurations concurrently to others. An algorithm of checking duplication

are also designed to assure the termination of the parallel algorithm.

65

The next chapter will describe how we implement both of our sequential and paral-
lel algorithms and experiments that have been conducted to evaluate the performance

of the algorithm as well as our new tool.

66

Chapter 5

Implementation and experiments

Contents
5.1 Introduction 000000 67
5.2 DPU - Dynamic Program Unfolder 68
5.2.1 Front-end 69
522 Back-end Lo 69
5.3 Sequential implementation 71
5.4 Parallel implementation 72
5.4.1 OpenMP 74
5.4.2 Algorithm implementation 76
5.5 Experiments 77
5.5.1 Comparison to SDPOR 7
5.5.2 Evaluation of the Tree-based Algorithms 79
5.5.3 Evaluation Against the State-of-the-art on System Code . . 81
5.5.4 Profiling a Stateless POR 83
5.6 Conclusions v v v v v v vt vttt e e e 83
5.1 Introduction

The goal of this chapter is to provide implementation details for sequential and parallel

QPOR algorithms. Our main contributions are as follows:

e We implement sequential QPOR described in Chapter 3 into a tool called DPU

using specialized data structures.

e We implement the parallel algorithm described in Chapter 4 as a parallel version

of DpU using OpenMP API.

67

pTe
A\J ' '&
' LY
| Bugs
0D
|

Front-end :
'9_’ Clang _)I H H I_> SRS

T k-partial alternative
Program Sequence of Actions

ROOE
-

¥

Figure 5.1: DPU architecture

e We also conduct experiments on selected benchmarks to evaluate the efficiency

of the approaches and compare them with some testing and verification tools.

5.2 DPU - Dynamic Program Unfolder

We introduce in this section the general structure our new tool called DPU ! (Dynamic
Program Unfolder).

The input of DPU is multi-threaded C programs that are assumed to be data-
deterministic. Data-deterministic programs are those that always produce the same
output from given input and resources. That means the only source of non-determinism
in the program’s execution is the order in which concurrent thread statements are in-
terleaved. As a result, all sources of non-deterministic execution (e.g., command-line
arguments, input files) need to be fixed before running the tool.

We also assume that all input programs are data race free. For fair comparison
against other tools that take programs with data race, we implemented a module that
detects data races before being processed by DPU. That is out of scope of this thesis.

To pre-process input programs, we aim to make use of existing compiler frame-
works to get an optimized and more easy-to-analyze representation, so LLVM is used.

As shown in Figure 5.1, our tool is composed of two parts: Front-end called
Steroids and Back-end. Steroids JIT-compiles the input program and collects its
information to produce a stream of actions to pass to the back-end. The back-end
in turn converts that stream to events, then performs unfolding exploration to detect

any defect if it exists.

https://github.com/cesaro/dpu

68

5.2.1 Front-end

The front end, called Steroids ?, is a library for dynamic analysis of POSIX C pro-
grams. It takes LLVM compilation (IR) produced by JIT compiler and optimizer
as input, then analyzes it to get information about program execution to produce
a stream of actions that describe that execution. The actions involved are thread
operations such as thread creation, lock and unlock mutex, assertion violations and

calls to abort. An action of the stream is described as follows:
type: Type of operations executed by the program such as:
e THCREAT: a call to pthread_create

e THJOIN: a call to pthread_join
e THEXIT: a call to pthread_exit

MTXLOCK: a call to pthread_mutex_lock

MTXUNLK: a call to pthread_mutex_unlock
e THSTART: the beginning of a thread execution.

Addr: The address of memory allocated to store its values, usually called variable.

Val: The values stored in addr at a time.

Actions with these information are passed to the back-end for more operations.

5.2.2 Back-end

Dpu back-end is the model checker that explores the unfolding to detect any existing
defects. It provides options corresponding to the alternative algorithms based on

user-provided constant k where:
e ik = 0: optimal algorithm that implements the algorithm in Rodriguez et al
[87].
e k= —1: SDPOR that implements the non-optimal algorithm in Abdulla et al
2].

e k= 1: 1-partial alternative algorithm that finds a clue of alternative to the last

event in the disable set D.

e k> 2: k-partial alternative algorithm (Definition 12) in Algorithm 1 that finds

a clue of alternative to k events in disable set D.

Zhttps://github.com/cesaro/steroids

69

Unfolding

Process 2

||||||||||||r—)Event
Process 1
[t)
........... oH—> Event
}_)EventBox
Process 0O }_)EventBox

Event > EventBox
A

Figure 5.2: Unfolding memory alignment

Data structure An Unfolding is a set of events explored during the exploration,
each of which belongs to a process. The number of events of an unfolding is potentially
huge while accesses to events are frequent, so we propose a specialized alignment of
memory to organize events in an unfolding for easy retrievals.

As illustrated in Figure 5.2, the address space allocated to an unfolding is divided
into same-size segments (size of proc_size) based on a given maximal number of
process. Each segment is for a Process which also subdivided into boxes called
EventBox. An EventBox is a container that has the same fixed size and event boxes
in a process are filled with events one by one from the starting address of the process.
This division is based on process and event size. Events have a pointer linking to the
next one in the EventBox and the last event in a box points to the first in the next
EventBox. The address of a process or EventBox is the location of its first event.

With this memory alignment, each Process, EventBox or Event has a unique
address so that it is easily located in the memory. For example, given the address of
the allocated space for the unfolding is X, the size of Process is P.S, of EventBox is
EBS, of Event is ES, event e;;, event j of process 4, has the address X +j*ES+ixPS.

That means we can trivially retrieve any event in any process.

70

Process Unfolding
| 1.0.0.1 — -
+ last : Event* - procs : char
-nrp:int
- lockroots : map<Addr, Event™>
+ add_event_Op(creat: Event) : Event* T e AT e e
+ add_event_Op(ac: Action, p: Event*) : Event* =g _:. B évem‘ ’
+ add_event_Op(ac: Action, p: Event®, m: Event*) : Event® g (e g & =
T N e +find1 {ac:Action, p: Event”®) : Event
‘! +find2 (ac:Action, p: Event* , m: Event) : Event*
0.1 0.1]
Event
PR StreamConverter
- ac: Action
- pre_proc: Event* - u: Unfolding
- pre_mem: Event* - pidpool: Pidpool
- cone: Primecon 0.1 — _ pidmap: Pidmap
: 3).
& !s_p;]ed_.c;;[(e. i"e”tt})' ?JOOII + convert (stid::action_streamt &s, Config &c)
L 1.+ L+ in_cfl_with(e: Event*): bool

+ icfls(v: Event[]): void

x

isa

Unfolder

C15unfolder

- exec : stid::Executor
- path: string
- m: livm::Module

has a
——P| —config: stid::ExecutorConfig

- report: Defect
- unfolder: Unfolder

+ get_por_analysis: std::unigue_ptr<C15unfolder>

+ explore{) : void
+ compute_cex () : void
+ find_alternative (conf, dis, add) : void

+ load_bitcode() : bool
+ set_argv {) : void
+ set_env(): void

+ stream_to_event () : vold

Figure 5.3: DpPU class diagram for sequential implementation

5.3 Sequential implementation

We have implemented the sequential algorithm in C and C++ using the specialized

data structure described in Section 5.2.2 and released a tool available on github ®.

Main algorithm As shown in Section 5.3, the exploration algorithm in Algorithm 1
is mainly implemented in an object C15unfolder. This uses an Unfolder that has
an executor from the front-end Steroids to produce program executions. By gener-
ating an execution, the Unfolder produces a complete maximal configuration, so it is
unnecessary to compute the enable set (en(C) in Algorithm 1). Having a maximal
configuration, conflicting extensions and alternatives are computed. Both of these
computations requires backtracking. To easily backtrack along the configuration, we

store a trail that is the sequence of events added to the configuration in a way that

3https://github.com/cesaro/dpu

71

the last event added to the configuration is at the top of the trail. The recursive calls
of Explore() in Algorithm 1 are realized by a loop that stops when no alternative is

found.

Computing alternatives We implemented both optimal and k-partial alternative
algorithms. With & = 1, the algorithm computes the 1-partial alternative in Defini-
tion 12 to the last event added to the disable set, instead of choosing randomly one
event in D. k = 0 is for the optimal algorithm that computes alternative as in Defini-
tion 11. A Comb (Definition 13) is simply implemented as a set of spikes which is also
a set of events. Finding alternatives is enumerating over spikes to find a conflict-free
and causal-closed combination. If such a combination exists, the resulting alternative
is a merge of configuration C' and .J where J is an union of local configurations of all

events in the combination.

Conflicting extensions Our tool computes conflicting extensions by finding events
in immediate conflict with each event in the maximal configuration. Thanks to the
fact that only mutex lock events are in conflict with each other (when they request
a lock), we apply Algorithm 2 to only mutex events. To compute conflicting events
for a lock event e, we use a while loop to visit all lock and unlock events in e’s local
configuration to find a predecessor that is able to combine with e’s predecessor in the
process to form a new event. The new event shares the predecessor in the process

with e, so it is in conflict with e.

Sequential tree The data structure sequential tree described in Section 3.6 is im-
plemented in MultiNode, an array of two Nodes corresponding to references to ap-
pearances of an event in thread and mutex trees. Since only lock/unlock events
(MTXLOCK and MTXUNLK) involved in mutexes, only lock/unlock events have
two nodes, others have only one Node for their thread reference. Each Node stores a
reference to its immediate ancestor and its position in the tree (the depth) to compute
the ancestor relation and conflict.

The skip list used to jump over the tree is implemented as a list of Nodes at a

skip step based distance. The size of this list depends on the depth of node.

5.4 Parallel implementation

As discussed in Chapter 4, we chose the shared memory model for our parallel imple-

mentation. A variety of shared memory parallel programming languages or libraries

72

are available such as Pthread (POSIX thread) [86], OpenMP [81] or Cilk++ [64] and
TBB [64] .

Pthread [86] or POSIX thread library is an thread API for C/C++. It provides
operations to create, destroy, schedule threads and data management and synchro-
nization. A mechanism to manage a pool of threads must be implemented by pro-
grammers.

OpenMP [81] is an APT for multithreaded applications with a set of library rou-
tines, compiler directives and environment variables that support shared memory
parallel programming in Fortran, C and C++. Interactions between threads are
realized via write/read operations to the shared address space.

Intel Cilk [64] is an extension of C/C++ language supporting data and task paral-
lelism. It provides automatic management of parallel execution such as load balancing
by its own runtime environment.

TBB [65] is a data and task based shared memory programming library for C++
applications. It provides generic parallel algorithms, concurrent containers, local stor-
age, synchronization primitives, etc. Thanks to generic parallel algorithms, developers
avoid starting parallel application from scratch.

StarPU [15] is a middleware to schedule tasks over multi-core GPUs and dis-
tributed systems. It infers the dependency graphs between the tasks statically or
dynamically.

We chose to use OpenMP for the following features:

e The language used in our sequential tool DPU is C/C++, so the selected library
or API should be compatible with this language so that we can modify the
existing code rather than write it from scratch. All of the libraries and API
support C/C++, StarPU allows modification of sequential code but it would
require significant modification and restructuration to define codelets. With
OpenMP, it takes less effort to create a parallel program from a sequential one
by embedding OpenMP directives in C/C++ code.

e The interface provided by OpenMP is richer than the one provided by Cilk

which is simple and less flexible.

e OpenMP is highly portable as it is supported by almost all compilers, for
C/C++ compilers such as GCC, Clang, etc.

73

Main thread

-

Fork

Parallel region Worker thread omp_set_num_threads(5);

#pragma omp parallel firstprivate(tsk)

€

{
|
Join explore_one_maxconfig(tsk);
}
// do something
Fork omp_set_num_threads(4);
' #pragma omp parallel
: {
Parallel region l Worker thread explore_maxconfig();
b

Join

G

Figure 5.4: OpenMP execution model

e OpenMP is also flexible since its compiler’s #pragma can be ignored if OpenMP
is not supported by the compiler and then the program still behaves correctly,

certainly without any parallelism.

The following part discusses more details about OpenMP and its features we are going

to exploit in our parallel tool.

5.4.1 OpenMP

A program with OpenMP code works in fork-and-join model since it has interleav-
ing sequential and parallel sequences of instructions. An OpenMP [99] program starts
as a single thread, so-called master thread. The master thread executes sequentially
until it encounters the first parallel region.

A parallel region is a block of code starting by parallel directive #pragma omp parallel.
The code in this region can be executed simultaneously by multiple threads. It op-
erates in a mechanism of fork-and-join as demonstrated in Figure 5.4. A thread
pool is created at the beginning of the program, or just before the parallel region. At
fork, all statements enclosed by the parallel region are executed by these threads in

parallel. join is considered a implicit barrier where all threads finish their executions

74

Threadl ~ Thread2 _ Thread3 _ Thread4

I 1 1 1 i

w0 1 1 1 1 1

void explore_one_maxconfig(tsk) 1 Tgs';° 1 1

1 1 1 v 1 1

I 1 1 1 1
swi

ntsk = new Task(d,c,a); 1 1 1o 1 1

#pragma omp task firstprivate(ntsk) I T L 1 1

sw2 1] ¥ ! l* 1 1 1

explore_one_maxconfig(ntsk); 1 _ 1 1 I

} o e - 1 1 1

} — I Nl el 1 1

void main() : : : A 4 : :

{ 4 ! ! ! Task3 ! 1

) . W 1 I 1 | swa 1| Taska |

#pragma omp parallel firstprivate(tsk) ' '] 1| swa I

[1 VY _ | [[

#pragma omp single sw5] A 4 . . i . ¢ .

1 1 Taské | 1 1 1

explore_one_maxconfig(tsk); i T;:,';s 1| sws | I I

} sw6 [1 I [1

: ! Ty 11K

} 1 1 1 1 1

sSW7 1 1 1 1 1

1 1 1 I o

1 1 1 1 1

Figure 5.5: Execution of tasks

of the statements in the region, then synchronize and terminate. The execution comes
back to the master thread.

This execution model allows us to easily embed parallel regions to the source code
of the sequential implementation to achieve a parallel one.

As pointed out in Algorithm 5, threads in our program execute the whole work (a
block of code) multiple times, rather than execute different parts of a block concur-
rently. They also access a shared data frequently. Therefore, low level synchronization

using locks is suitable for our implementation.

OpenMP Task construct Task based parallelism has been in since OpenMP 3.0
to allow programmers to parallelize irregular problems such as unbounded loops,
recursive algorithms, etc. A task is a structured block of code along with instructions
for threads to allocate data as they encounter a task. Encapsulating both instructions
and data, tasks are independent units of work, so their executions are possibly in
parallel.

The OpenMP runtime system provides a mechanism to automatically schedule the
set of tasks. They can be executed immediately after being generated or be deferred
until later. A task being executed by a thread can be suspended and continued later

by the same or a different thread.

75

C15unfolder Subwork Unfolder

+ defect: Defect + config: Config + exec: Stid::Executor

+ replays: vector<Replay> + dis: Disset + context: llvm::Context

+ exploreOneMC():void ~ [---- Use--->1{ + add: Cut has% + module: LLVM:Module

+ explore_para():void + trail: Trail + alg: Altalgo

+ stream_to_events():void + replay: Replay + find_alternative(...): void
+ tunfolder: Unfolder + load_bitcode(): bool
Subwork(...)

Figure 5.6: Part of class diagram for parallel implemention

We use OpenMP task to execute subwork of exploring a maximal configuration
in Algorithm 5. Accordingly, the function ExploreOneMC() can be seen as a worker
function while Explore() is the main function. We do not need to handle tasks
management since OpenMP provides an automatic task scheduling mechanism.

The following section shows our parallel implementation details using OpemMP.

5.4.2 Algorithm implementation

This part details the implementation with OpenMP embedded in C/C++ source code
of our parallel algorithm.

We keep the main class C15unfolder from the sequential implementation which
takes the responsibility of getting input and outputing the statistic data to users.
Unfolder is not a part of Clbunfolder any more, that means threads do not share
one Unfolder. Instead, each task is assigned an unfolder that generates an execution
based on the (C, D, A) of the subwork it receives. This is the point that makes
our implementation parallel. Other works such as finding alternatives, computing
conflicting extensions also move from Ci15unfolder to Unfolder because they are all

computed based on the current maximal configuration.

Main algorithm The master thread executes the main algorithm by the function
Explore() in Algorithm 5 that takes care of setting up the parallel environment
and exploring the first maximal configuration. It creates other tasks to continue the
exploration by worker threads. At the beginning, an arbitrary thread out of the

thread pool can be chosen to run the main algorithm.

76

Worker algorithm We use OpenMP task to implement subworks described in
Algorithm 5. Once a new alternative is found, a subwork is created and an OpenMP
task undertaking that subwork is spawned as well. This queue of tasks is implicitly
managed by OpenMP runtime system. Any idle thread can take a task from the
queue and execute ExploreOneMC as its worker function. Ruuning worker function
with the data provided by subwork might produce a lot of new tasks. The more tasks
there are in the queue, the more work can be executed in parallel. Since OpenMP
provides task scheduling mechanism, we do not need to maintain a queue of subworks

as in Algorithm 5.

Synchronization We ensure mutual exclusion to shared unfolding with locks. As
specified in Section 4.3.8, each process of unfolding has a lock, so whenever access to
the unfolding is required to create and update an event, the lock of the corresponding
process is set. Only accesses to events in the same process need to be mutually

excluded.

5.5 Experiments

We have conducted experiments on the sequential implementation to compare the
performance of our QPOR tool against state-of-art model checking and testing tools,
to evaluate the new notion k-partial alternatives as well as the efficiency of the tree

structure for computing conflict and causality.

5.5.1 Comparison to SDPOR

In this section we answer the following experimental questions:
e How does QPOR compare against SDPOR?
e For which values of k do k-partial alternatives yield optimal exploration?

Benchmark selection. We use realistic, data-race free POSIX thread programs that
expose complex thread synchronisation patterns, allowing to highlight the differences
between SDPOR and QPOR. All the benchmarks are put on the same repository
with the tool on github *. The benchmarks include a job dispatcher (dispatcher.c), a
multiple-producer multiple-consumer scheme (mulprodcon.c), parallel computation of

7 (pthread_pi_mutex.c), and a thread pool (poke.c). Each program contains between 2

“https://github.com/cesaro/dpu/tree/master/experiments/cavi8/bench

7

Benchmark Dru (k=1) Dpu (k=2) Dpu (k=3) DPU (optimal) NIDHUGG
Name Th Confs Time SSB Time SSB Time SSB Time Mem Time Mem SSB

Disp(52) 8 137 08 1K 04 43 04 0 0.4 37 12 33 2K
Disp(53) 9 2K 54 11K 13 595 10 1 1.0 37 108 33 13K
Disp(54) 10 15K 58.5 105K 164 6K 10.3 213 10.3 87 109 33 115K
Disp(55) 11 151K TO - 476 53K 280 2K 257 729 TO 33 -
DisP(5.6) 12 ? TO - TO - TO - TO 1131 TO 33 -
MpAT(4) 9 384 05 0 N/A N/A 0.5 37 06 33 0
MpaT(5) 11 4K 24 0 N/A N/A 2.7 37 1.8 33 0
MpatT(6) 13 46K 50.6 0 N/A N/A 73.2 214 215 33 0
MpaT(7) 15 645K TO - TO - TO - TO 660 359 33 0
Mpar(s) 17 ? TO - TO - TO - TO 689 TO 33 -
MPC(25 8 60 0.6 560 04 0 0.4 33 20 34 3K
MPC@35) 9 3K 265 50K 3.0 3K 17 0 1.7 38 70.7 34 90K
MPC(4,5) 10 314K TO - TO - 391 30K 296 239 TO 33 -
MPC(5,5) 11 ? TO - TO - TO - TO 84 TO 34 -
Pi(5) 6 120 0.4 0 N/A N/A 0.5 39 196 35 0
P1(6) 7 720 0.7 0 NJA N/A 0.7 39 123 35 0
P1(7) 8 5K 3.5 0 NJA N/A 4.0 45 TO 34 -
P1(8) 9 40K 481 0 N/A N/A 42.9 246 TO 34 -
PoL(73) 14 3K 485 72K 29 1K 1.9 6 1.9 39 741 33 90K
PoLs3) 15 4K 153 214K 55 3K 3.0 10 3.0 52 251 33 274K
PoL(93) 16 5K 464 592K 9.5 5K 4.8 15 4.8 73 TO 33 -
Por(103) 17 7K TO - 172 9K 6.8 21 7.1 99 TO 33 -
PorL(11,3) 18 10K TO - 272 12K 9.7 28 10.6 138 TO 33 -
PoL(123) 19 12K TO - 463 20K 13.5 36 164 184 TO 33 -

Table 5.1: Comparing QPOR and SDPOR. Machine: Linux, Intel Xeon 2.4GHz. TO:
timeout after 8 min. Columns are: Th: nr. of threads; Confs: maximal configurations;
Time in seconds, Memory in MB; SSB: Sleep-set blocked executions. N/A: analysis
with lower k yielded 0 SSBs.

and 8 assertions, often ensuring invariants of the used data structures. All programs
are safe and have between 90 and 200 lines of code.

We do not use SV-COMP benchmarks because almost all of them contain very
simple synchronization patterns, where QPOR and SDPOR will perform similar ex-
plorations. DPU is able to exhaustively check almost all benchmarks from the SV-
COMP’17 (adapted to remove data-races) and to find all bugs present in them (see
tool website).

Tool selection. In this experiment, we use NIDHUGG [1], an efficient imple-
mentation of SDPOR for multithreaded C programs, that has recently compared
favourably [3] against CBMC [8], a well established verification tool.

Analysis. Table 5.1 presents our experimental results. We run k-partial alterna-
tives with k£ € {1,2,3} and optimal alternatives (k = 0). The number of sleep-set

blocked executions (SSBs) dramatically decreases as k increases. POL benchmark

78

shows the most significant decline in the number of SSBs. Let us take the instance
POL(9.,3) for example. It decreases from 592K with & = 1 to 5K with £ = 2 and
only 15 SSBs with £ = 3. The number of SSBs decreases hundred of thousands
times from & = 1 to k = 3. With & = 3 almost no instance produces SSBs (except
MPC(4,5)). All instances are explored optimally with & = 4 (not shown owing to
space constraints). Programs with simpler synchronisation patterns, e.g., the P1 and
MPAT benchmarks, are explored optimally both with £ = 1 and by SDPOR, while
more complex synchronisation patterns require k > 1.

Overall, if the benchmark exhibits many SSBs (MPC(3,5) for example), the
runtime reduces as k increases, and optimal is the fastest option.

MPC(3,5) takes 26.5 seconds with £ = 1 but only 3 seconds with £ = 2. The
optimal is the fastest with 1.7 seconds. However, when the benchmark contains few
SSBs (cf., MPAT, P1), k-partial alternatives can be slightly faster than optimal POR,
an observation inline with previous literature [2]. Our explanation for this observation
is the fact that when the comb is large and contains many solutions, both optimal
and non-optimal POR will easily find them, but optimal POR will spend additional
time constructing a larger comb. As a result, optimal POR could benefit from a lazy
construction strategy for the comb.

NIDHUGG only outperforms DPU in the benchmark MPAT which uses a simple
synchronization pattern. DPU is faster than NIDHUGG in the majority of the bench-
marks because it can greatly reduce the number of SSBs. In the cases where both
tools explore the same set of executions, DPU is in general faster than NIDHUGG as
it JIT-compiles the program while NIDHUGG interprets it. Since NIDHUGG is aware
of data-races (and attempts to revert them) while DPU assumes the program is data
race free, we enforce that our benchmarks are data-race free for a fair comparison.

In contrast with the observations implied in previous experiments [2, 1], the results
in Table 5.1 show that SSBs can occur in very small benchmarks (Mpc(2,5) and
DISP(5,2)) and can dramatically slow down the operation of SDPOR.

5.5.2 Evaluation of the Tree-based Algorithms

We now evaluate the efficiency of our tree-based algorithms from Section 3.6 answer-

ing:
(a) What are the average/maximal depths of the thread/variable sequential trees?

(b) What is the average depth difference on causality/conflict queries?

79

70
— Variables 80

60 hread — Variables
~~Threads 60 — —+—Threads
= =
B 840
& [
(a]
20
0
Tree Tree
(a) Average depth of the tree nodes (b) Maximum depth of the trees
40%
30% 45%
20% 30%
10% I 15% I
0% - o o - o o - 0% — I 0 m a - -_ —_ - —
1234567 8910111213141516 12345678 91011121314151617181920
(¢) Frequency of depth distances on causality (d) Average depth of the tree nodes

queries nodes

Table 5.2: (a), (b): depths of variable/thread trees; (c), (d): frequency of depth
distances on causality /conflict queries.

(c) What is the best step for branch skip lists?

This experiment aims to demonstrate that causality checking becomes trivial with
the proposed data structures and providing shape information about the trees, highly
valuable for implementers of unfolding-based POR techniques.

Actually, we do not compare against other causality-checking algorithms because
to our best knowledge, there is not any to solve the same problem other than naively
scanning all predecessors of an event.

To evaluate the depth of trees (address (a)), we ran DPU with an optimal explo-
ration over a selection of 15 programs from Table 5.1, whose unfoldings size ranges
from 380 to 204K maximal configurations. The execution time of DPU ranges from
0.2 second to 2 minutes. In total, the 15 unfoldings amount to 246 trees (150 thread
and 96 variable trees) with 5.2M nodes. Table 5.2 displays the (sorted) node depth
averages and maximum depths for the 246 trees.

While the average depth of a node was 22.7, as much as 80% of the trees had
a maximum depth of less than 8 nodes, and 90% of them less than 16 nodes. The
average of 22.7 is however larger because deeper trees contain proportionally more
nodes. The depth of the deepest node of every tree was between 3 and 77. With the
average size of tree is about 21K nodes, the average depth of 22.7 illustrates that the

trees tend to be broad, not very deep.

80

We next evaluate depth differences in the causality and conflict queries over these
trees to address (b). Tables 5.2¢ and 5.2d respectively show a histogram indicating the
frequency of various depth distances associated to causality and conflict queries made
by optimal POR. Surprisingly, depth differences are very small for both causality and
conflict queries. When deciding causality between events, as much as 92% of the
queries were for tree nodes separated by a distance between 1 and 4, and 70% had
a difference of either 1 or 2 nodes. This means that optimal POR, and specifically
the procedure that adds ez (C') to the unfolding (which is the main issuer of causality
queries), systematically performs causality queries which are trivial with the proposed
data structures. When checking conflicts, the situation is similar: 82% of the queries
request information about tree nodes whose depth difference is between 1 and 4. Even
distances are also much more probable than odd distances.

These experiments show that all trees are not very deep and most of the queries
on the causality trees require very short walks, which strongly motivates the use of
the data structure proposed in Section 3.6.

Finally, we chose a (somehow arbitrary) skip step of 4 for all experiments. How-
ever, we observe that other values do not significantly impact the runtime/memory
consumption for most benchmarks owing to the fact that the depth differences on

causality /conflict requests are already very low.

5.5.3 Evaluation Against the State-of-the-art on System Code

We now evaluate the scalability and applicability of DPU on five multithreaded pro-
grams in two Debian packages: blktrace [26], a block layer 1/O tracing mechanism,
and mafft [72], a tool for multiple alignment of amino acid or nucleotide sequences.
The code size of these utilities ranges from 2K to 40K LOC, and mafft is parametric
in the number of threads.

We compared DpPU against MAPLE [106], a state-of-art testing tool for multi-
threaded programs, as the top ranked verification tools from SV-COMP’17 are still
unable to cope with such large and complex multithreaded code. Unfortunately we
could not compare against NIDHUGG because it cannot deal with the (abundant)
C-library calls in these programs.

Table 5.3 presents our experimental results. We use DPU with optimal explo-
ration and the modified version of MAPLE used in [95]. To test the effectiveness of
both approaches in state space coverage and bug finding, we introduce bugs (some

assertion violations) in 4 of the benchmarks (App, DND, MDL, PLA). For the buggy

81

Benchmark Dru MAPLE

Name LOC Th Time Ex R Time Ex R
ADD(2) 40K 3 24.3 2 U 2.7 2 S
ADD@4) 40K 5 25.5 24 U 34.5 24 U
ADD(6) 40K 7 48.1 720 U TO 316 U
ADD(8) 40K 9 TO 14K U TO 329 U
ADD(10) 40K 11 TO 14K U TO 295 U
BLK() 2K 2 0.9 1 S 4.6 1 S
BLK(15) 2K 2 0.9 5 S 23.3 5 S
BLk(18) 2K 2 1.0 180 S TO 105 S
Brk(20) 2K 2 1.5 1147 S TO 106 S
BLK(22) 2K 2 2.6 5424 S TO 108 S
BLK(24) 2K 2 10.0 20K S TO 105 S
DND(24) 16K 3 11.1 80 U 122 80 U
DND(4,2) 16K 5 11.8 96 S 151 96 S
DND(4,4) 16K 5 TO 13K U TO 360 U
DND(6,2) 16K 7 149.3 4320 S TO 388 S
MDL(1.4) 38K 7 26.1 1 U 1.4 1 U
MbDL(2,2) 38K 5 29.2 9 U 13.3 9 U
MDL(2,3) 38K 5 46.2 576 U TO 304 U
MDL(3,2) 38K 7 31.1 256 U 402 256 U
MDL(4,3) 38K 9 TO 14K U TO 329 U
PLA(15) 41K 2 22.8 1 U 1.7 1 U
PLA(24) 41K 3 37.2 80 U 142.4 80 U
Pra@,3) 41K 5 160.5 1368 U TO 266 U
PrA(6,3) 41K 7 TO 4580 U TO 269 U

Table 5.3: Comparing DPU with Maple (same machine). LOC: lines of code; Execs:
nr. of executions; R: safe or unsafe. Other columns as before. Timeout: 8 min.

82

benchmarks, we use the random scheduler of MAPLE, considered to be the best base-
line for bug finding [95]. First, we run DPU to retrieve a bound on the number of
random executions to answer whether both tools are able to find the bug within the
same number of executions. Both DPU and MAPLE found bugs in all buggy programs
(except for one variant in ADD) even though DpPU greatly outperforms and is able to
achieve much more state space coverage.

For the safe benchmark BLK, we perform exhaustive state-space exploration using
MAPLE’s DFS mode. On this benchmark, DPU outperforms MAPLE by several orders
of magnitude: DPU explores up to 20K executions covering the entire state space in

10s, while MAPLE only explores up to 108 executions in 8 min.

5.5.4 Profiling a Stateless POR

In an effort to understand the cost of each component of QPOR, we profiled the
sequential version of DPU on a selection of 7 programs from Table 5.1.

DPU discovers new maximal configurations executing the program until com-
pletion. DPU spends between 30% and 90% of the runtime on this task (65% in
average), depending on the computation workload of the program. The remaining
runtime is spent computing alternatives, distributed as follows: adding events to the
event structure (15% to 30%), building the spikes of a new comb (1% to 50%), search-
ing for solutions in the comb (less than 5%), and computing conflicting extensions
(less than 5%).

Counterintuitively, building the comb is more expensive than exploring it, even in
the optimal case. One of the reasons for this is the fact that filling the spikes with
events is a more memory-intensive operation than exploring the comb, which exploits
locality of data.

Our profiling results show that running the program is often more expensive than
computing alternatives. We parallelized this phase as a part of our parallel version
described in Chapter 4 and its implementation in Section 5.4.2. Moreover, efforts in
reducing the number of redundant executions, even if significantly costly, are likely

to reduce the overall execution time.

5.6 Conclusions

This chapter presented in details both sequential and parallel implementations of
our algorithms. The parallelism requires some additional features from OpenMP, so

we briefly pointed out the advantages that lead us to choose it for parallelizing the

83

sequential implementation in a task-based parallel model. In the second part of the
chapter, we have shown several analyses on selected experiments conducted on various
benchmarks to evaluate our tool and to compare it with state-of-art verification and
testing tools such as Nidhugg and Maple. As a result, DPU has exhibited better

performance than the other tools we compare it with.

84

Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This thesis presents our research on model checking techniques including partial order
reduction and unfolding in Chapter 1. By revealing their strengths and drawbacks, we
combined Dynamic Partial Order Reduction and unfolding techniques into verification
for concurrent programs.

As contributions, in Chapter 3 we first proved that computing alternatives in
optimal exploration of a Petri net or a program is a NP-complete problem (Theorems 4
and 5). To the best of our knowledge this is the first formal complexity result for an
important problem that optimal and non-optimal DPORs need to solve. This finding
raises the demand of an algorithm that can compute alternatives in polynomial time.

Second, we proposed a trade-off solution between exploring redundant schedules
and solving the NP-complete problem of computing alternatives called QPOR pre-
sented as the main content of Chapter 3. QPOR provides a new concept k-partial
alternative (k is a user-defined constant) in Definition 12 that finds a clue to an
alternative execution in polynomial time. It is an approximate algorithm as a clue
does not guarantee an actual alternative. Actually, experiments show that optimal
exploration is achieved with a low value for k. We also propose a new concept of
comb (Definition 13) that facilitates the computation of alternatives.

Third, we presented in Section 3.5 an efficient structure for computing conflict and
causality between events. We organize events in trees for their thread and mutex.
Checking conflict and causality between events turns into checking structural relations
between nodes in a tree. This can be done by simply scanning the tree node by node
but we propose to use a skip list based on a skip step to quickly navigate through these

trees. Experiments show that using this structure, the trees are not very deep and

85

the distance to walk between two nodes are short, so computing structural relations
between nodes becomes simpler.

Four, we implemented all proposed algorithms in a new tool DPU that is a dynamic
analysis unfolder of C multithreaded programs. A specialized data structure is applied
to obtain an easy-to-retrieve unfolding. The tool is now available to the public on
github *.

To speed up a DPOR algorithm, we can either reduce the state space or increase
the amount of data processed at an unit of time. The former is addressed by QPOR
and the latter can be achieved by parallelism.

Our fifth contribution is the parallelization detailed in Chapter 4. We designed
a parallel algorithm (Algorithm 5) that partitions the exploration into concurrent
subworks, each of which produces a maximal configuration of the unfolding and finds
alternatives to that. A parallel program implements the algorithm using OpenMP,
an API for shared memory parallel programming is detailed in Section 5.4.

Finally, we conducted experiments on selected benchmarks. We first used real-
istic C multithreaded programs to compare QPOR (implemented in DpU) against
SDPOR [2] (implemented in Nidhugg). The results show that our tool outperforms
Nidhugg on most of the benchmarks in terms of execution time and the number of
redundant exploration avoided. The second experiment is on system code (packages
from Debian) to compare our tool and Maple [106], a state-of-art testing tool, on the
capability of bug detection. The results have shown that our tool DPU is an efficient
state space exploring model checker as it explores much more executions in much less
time than Maple. The third experiment evaluated the sequential tree proposed to
facilitate the causality and conflict computation. It reveals that the data structure is

efficient as most of the queries on the sequential trees require very short walks.

6.2 Perspectives

This section discusses some future works in the context of automated and distributed

verification.

Improvement in avoiding redundant exploration In Section 4.3.6, to avoid
redundant exploration, we use a naive algorithm to verify the existence of a replay

by comparing it with all existing replays. Perspectively, we would like to store more

lgithub.com/cesaro/dpu

86

information from the parent subwork in a child subwork so that the child may avoid

to explore the path its parents have been visited.

Parallelization improvements We have parallelized the algorithm using shared
memory model on multi-core computers but the speedup is not significant. The reason
is that all subworks refer to events in the shared unfolding frequently. Low level
synchronization using locks forces a lot of computation to be executed in sequence
as well. Even though we have tried to use locks for processes instead of the whole
unfolding, the speedup is not as much as expected. We are about to design subworks
in another way such that each subwork maintains its own partial unfolding which is a
part of unfolding necessary for its work. All operations of a subwork are executed on
its partial unfolding. The shared unfolding is accessed by a task only when it takes
the subwork (copy related events to partial unfolding) and when it finishes (update
new information from partial unfolding to the whole unfolding). Like that, subworks
are more independent and the shared unfolding has less accesses. We believe that

this design will improve the performance of the parallel implementation.

Using another parallel programming model The shared memory model ap-
plied in our parallel tool has shown some drawbacks where the shared unfolding is
too big and accessed too frequently, so it limits the parallel execution. There are
other models available for parallelism such as message passing, data parallel. In the
future, we intend to exploit message passing programming model to have another

implementation of our algorithm, so that we hopefully achieve better performance.

Distributed QPOR Many researches have combined distributed methods with
partial order reduction by distributing the state space among several nodes (worksta-
tion or computers) in a distributed computer system [28, 24]. We would like to design
a distributed memory algorithm and implement it to take advantage of multi-node

computer systems to increase the computational power.

Extend the range of input programs Up to now, our algorithm QPOR and tool
Dpu assume input programs to be terminating to achieve a finite unfolding, so that
the exploration terminates. Non-terminating programs such as server programs are
also interesting to verify but they require more work on infinite executions. Researches
have been conducted to test and verify this class of programs such as [56, 17, 41, 14]

but non-terminating executions are not solved efficiently with existing DPOR. In

87

the future, we also intend to adapt our algorithm to handle with non-terminating
programs. We need to identify and pre-process non-terminating executions to obtain

a finite unfolding.

88

Bibliography

1]

Parosh Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson, and Konstantinos Sagonas. Stateless Model Checking for TSO and
PSO. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), number 9035 in LNCS, pages 353-367. Springer, 2015.

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Optimal dynamic partial order reduction. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’1}).
ACM, ACM, 2014.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl
Leonardsson. Stateless model checking for POWER. In International Con-
ference on Computer Aided Verification, pages 134-156. Springer, 2016.

Parosh Aziz Abdulla, S. Purushothaman Iyer, and Aletta Nylén. Unfoldings of
Unbounded Petri Nets. In Computer Aided Verification, pages 495-507, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

Hussain Al-Asaad and John P. Hayes. Design Verification via Simulation and
Automatic Test Pattern Generation. In Proceedings of the 1995 IEEE/ACM
International Conference on Computer-aided Design, ICCAD ’95, pages 174—
180, Washington, DC, USA, 1995. IEEE Computer Society.

Albert-Jan N. Yzelman. Introduction to the Bulk Synchronous Parallel mode.
http://albert-jan.yzelman.net/education/parcol4/A2.pdf.

Alfons Laarman and Anton Wijs. Partial-Order Reduction for Multi-core LTL
Model Checking. In HVC 2014. LNCS, vol. 8855 Springer, Heidelberg, 2014.

89

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for
efficient bounded model checking of concurrent software. In International Con-

ference on Computer Aided Verification, pages 141-157. Springer, 2013.

Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483-485, New York,
NY, USA, 1967. ACM.

Etienne André. IMITATOR: A Tool for Synthesizing Constraints on Timing
Bounds of Timed Automata. In Theoretical Aspects of Computing - ICTAC
2009, 6th International Colloquium, Kuala Lumpur, Malaysia, August 16-20,
2009. Proceedings, pages 336342, 2009.

Etienne André, Camille Coti, and Sami Evangelista. Distributed behavioral
cartography of timed automata. In Proceedings of the 21st European MPI Users’
Group Meeting, page 109. ACM, 2014.

Etienne André, Camille Coti, and Hoang Gia Nguyen. Enhanced distributed
behavioral cartography of parametric timed automata. In International Con-

ference on Formal Engineering Methods, pages 319-335. Springer, 2015.

Andrew W. Appel, Neophytos Michael, Aaron Stump, and Roberto Virga. A
Trustworthy Proof Checker. Journal of Automated Reasoning, 31(3):231-260,
Nov 2003.

Mohamed Faouzi Atig, Ahmed Bouajjani, Michael Emmi, and Akash Lal. De-
tecting Fair Non-termination in Multithreaded Programs. In Computer Aided
Verification, pages 210-226, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. Starpu: A unified platform for task scheduling on heterogeneous
multicore architectures. Concurr. Comput. : Pract. Exper., 23(2):187-198,
February 2011.

C. Baier, M. Grosser, and F. Ciesinski. Partial order reduction for probabilistic

systems. In First International Conference on the Quantitative Evaluation of
Systems, 2004. QEST 200/. Proceedings., pages 230239, 2004.

90

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Alexey Bakhirkin. Recurrent sets for non-termination and safety of programs.
PhD thesis, University of Leicester, UK, 2016.

Paolo Baldan, Stefan Haar, and Barbara Konig. Distributed unfolding of Petri
nets. In Proc. FoSSaCS, volume 3921 of LNCS, pages 126-141. Springer, March
2006.

Jiti Barnat, Lubos Brim, Vojtéch Havel, Jan Havlicek, Jan Kriho, Milan Lenco,
Petr Rockai, Vladimir Still, and Jifi Weiser. DiVinE 3.0 - An Explicit-State
Model Checker for Multithreaded C & C++ Programs. In Computer Aided
Verification, pages 863-868, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

Jiri Barnat, Lubos Brim, and Petr Rockai. DiVinE Multi-Core — A Parallel
LTL Model-Checker. In International Symposium on Automated Technology
for Verification and Analysis, pages 234-239, 2008.

Jiti Barnat, Lubos Brim, and Jitka Stiibrnd. Distributed LTL model-checking
in SPIN. In International SPIN Workshop on Model Checking of Software
SPIN’01, pages 200-216, 2001.

Jif{ Barnat, Lubos Brim, Ivana Cernd, Pavel Moravec, Petr Rockai, and Pavel
Simeéek. Divine-a tool for distributed verification. In International Conference
on Computer Aided Verification, pages 278281, 2006.

Bernhard Beckert and Michal Moskal. Deductive Verification of System Soft-
ware in the Verisoft XT Project. KI - Kiinstliche Intelligenz, 24(1):57-61, Apr
2010.

Shoham Ben-David, Tamir Heyman, Orna Grumberg, and Assaf Schuster. Scal-
able Distributed On-the-Fly Symbolic Model Checking. In Formal Methods in
Computer-Aided Design, pages 427-441, Berlin, Heidelberg, 2000.

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and
Ph. Schnoebelen. Systems and Software Verification. Model-Checking Tech-
niques and Tools. Springer, 2001.

blktrace. http://brick.kernel.dk/snaps/.

91

[27]

[28]

[29]

[34]

[35]

[36]

[37]

Dragan Bosnacki, Stefan Leue, and Alberto Lluch Lafuente. Partial-Order Re-
duction for General State Exploring Algorithms. In Model Checking Software,
pages 271-287, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

L. Brim, I. Cerna, P. Moravec, and J. Simsa. Distributed Partial Order Re-
duction of State Spaces. FElectronic Notes in Theoretical Computer Science,
128(3):63 — 74, 2005. Proceedings of the 3rd International Workshop on Paral-
lel and Distributed Methods in Verification (PDMC 2004).

L. Brim, I. Cern4, P. Moravec, and J. Simsa. Distributed Partial Order Reduc-
tion of State Spaces. Electron. Notes Theor. Comput. Sci., 128(3):63-74, April
2005.

Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-
tion. ACM Trans. Program. Lang. Syst., 35(8):677-691, 1986.

Randal E. Bryant. Binary Decision Diagrams, pages 191-217. Springer Inter-
national Publishing, Cham, 2018.

Sagar Chaki and Arie Gurfinkel. BDD-Based Symbolic Model Checking, pages
219-245. Springer International Publishing, Cham, 2018.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
state Concurrent Systems Using Temporal Logic Specifications. ACM Trans.
Program. Lang. Syst., 8(2):244-263, April 1986.

E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
1999.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Progress on the State Explosion Problem in Model Checking. In Informatics
- 10 Years Back. 10 Years Ahead., pages 176-194, Berlin, Heidelberg, 2001.
Springer-Verlag.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking and
Abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512-1542, September
1994.

Edmund M. Clarke, William Klieber, Milos Novacek, and Paolo Zuliani. Model
Checking and the State Fxplosion Problem, pages 1-30. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

92

[38]

[39]

[42]

[47]

[48]

Camille Coti, Sami Evangelista, and Laure Petrucci. One-Sided Communica-
tions for More Efficient Parallel State Space Exploration over RDMA Clusters.
In Furopean Conference on Parallel Processing, pages 432-446. Springer, 2018.

Jorg Desel, Gabriel Juhas, and Christian Neumair. Finite Unfoldings of Un-
bounded Petri Nets. In Applications and Theory of Petri Nets 2004, pages
157-176, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover
for Program Checking. J. ACM, 52(3):365-473, May 2005.

Emmi, Michael and Lal, Akash. Finding Non-terminating Executions in Dis-
tributed Asynchronous Programs. In Static Analysis, pages 439-455, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

Javier Esparza and Keijo Heljanko. A New Unfolding Approach to LTL Model
Checking. In Automata, Languages and Programming, pages 475-486, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

Javier Esparza and Keijo Heljanko. Implementing LTL model checking with
net unfoldings. In Proc. SPIN, volume 2057 of LNCS, pages 37-56, 2001.

Javier Esparza and Keijo Heljanko. Unfoldings — A Partial-Order Approach
to Model Checking. EATCS Monographs in Theoretical Computer Science.
Springer, 2008.

Javier Esparza, Stefan Romer, and Walter Vogler. An improvement of McMil-
lan’s unfolding algorithm. Formal Methods in System Design, 20:285-310, 2002.

Sami Evangelista. High Level Petri Nets Analysis with Helena. In Applications
and Theory of Petri Nets 2005, 26th International Conference, ICATPN 2005,
Miami, USA, June 20-25, 2005, Proceedings, pages 455-464, 2005.

Sami Evangelista, Alfons Laarman, Laure Petrucci, and Jaco van de Pol. Im-
proved Multi-Core Nested Depth-First Search. In International Symposium
on Automated Technology for Verification and Analysis ATVA, pages 269-283,
2012.

Sami Evangelista, Laure Petrucci, and Samir Youcef. Parallel nested depth-first
searches for LTL model checking. In International Symposium on Automated

Technology for Verification and Analysis, pages 381-396. Springer, 2011.

93

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Eric Fabre, Albert Benveniste, Stefan Haar, and Claude Jard. Distributed
monitoring of concurrent and asynchronous systems™*. Discrete Event Dynamic
Systems, 15(1):33-84, Mar 2005.

Jean-Christophe Filliatre. Deductive software verification. International Jour-
nal on Software Tools for Technology Transfer, 13(5):397, Aug 2011.

Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In Principles of Programming Languages (POPL),
pages 110-121. ACM, 2005.

A. Galton. Logic As a Formal Method. Comput. J., 35(5):431-440, October
1992.

Y. Gao and X. Li. An effective model extraction method with state space
compression for model checking SystemC TLM designs. In 2013 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation (SAMOS), pages 64-71, 2013.

Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems — An Approach to the State-Explosion Problem, volume 1032 of LNCS.
Springer, 1996.

Valentin Goranko and Antony Galton. Temporal Logic. In The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter
2015 edition, 2015.

A. Gotlieb and M. Petit. Towards a Theory for Testing Non-terminating Pro-
grams. In 2009 33rd Annual IEEE International Computer Software and Ap-
plications Conference, volume 1, pages 160-165, July 20009.

Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv. Cartesian
partial-order reduction. In Model Checking Software (SPIN), volume 4595 of
LNCS, pages 95-112. Springer, 2007.

Frédéric Herbreteau, Grégoire Sutre, and The Quang Tran. Unfolding Con-
current Well-Structured Transition Systems. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 706-720, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

94

[59]

[60]

[61]

[62]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
Addison-Wesley Professional, first edition, 2003.

Gerard J. Holzmann. The Model Checker SPIN. [EFEE Trans. Softw. Eng.,
23(5):279-295, May 1997.

Gerard J. Holzmann. Parallelizing the Spin Model Checker. In International
SPIN Workshop on Model Checking of Software SPIN’12, pages 155-171, 2012.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition) . Prentice Hall,
2006.

Apple Inc. Grand Center Dispatch. https://developer.apple.com/

documentation/dispatch.
Intel. Cilk++. https://www.cilkplus.org/.

Intel. Thread Building Blocks. https://www.threadingbuildingblocks.
org/.

Kari Kahkonen and Keijo Heljanko. Testing multithreaded programs with con-
textual unfoldings and dynamic symbolic execution. In Application of Concur-
rency to System Design (ACSD), pages 142-151. IEEE, June 2014.

Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order re-
duction: An optimal symbolic partial order reduction technique. In Computer
Aided Verification (CAV), volume 5643 of LNCS, pages 398-413. Springer, 2009.

Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized Sym-
bolic Execution for Model Checking and Testing. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 553-568, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

Alfons Laarman, Rom Langerak, Jaco Van De Pol, Michael Weber, and Anton
Wijs. Multi-core Nested Depth-first Search. In Proceedings of the 9th Inter-
national Conference on Automated Technology for Verification and Analysis,
ATVA’11, pages 321-335, Berlin, Heidelberg, 2011. Springer-Verlag.

K. Leino and M. Rustan. Automating Theorem Proving with SMT. In Pro-
ceedings of the 4th International Conference on Interactive Theorem Proving,
ITP’13, pages 2-16, Berlin, Heidelberg, 2013. Springer-Verlag.

95

[71]

[72]

[73]

[74]

[75]

[80]

[81]

[82]

Gavin Lowe. Concurrent Depth-First Search Algorithms. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 202-216, 2014.

MAFFT. http://mafft.cbrc.jp/alignment/software/.

Comparison of the communication performance on the Paris 13 computa-
tion center. http://www.univ-paris13.fr/calcul/wiki/index.php?title=

Benchs:communications.

Antoni Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relation-
ships to Other Models of Concurrency, pages 278-324, Berlin, Heidelberg, 1987.
Springer Berlin Heidelberg.

Kenneth L. McMillan. Trace theoretic verification of asynchronous circuits using
unfoldings. In Pierre Wolper, editor, Proc. CAV, volume 939 of LNCS, pages
180-195. Springer, 1995.

Tadao Murata. Petri nets: Properties, analysis and applications. Proc. of the
IEEE, 77(4):541-580, April 1989.

Huyen T. T. Nguyen, César Rodriguez, Marcelo Sousa, Camille Coti, and Laure
Petrucci. Quasi-Optimal Partial Order Reduction. In Computer Aided Verifi-
cation, pages 354-371, Cham, 2018. Springer International Publishing.

Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event struc-
tures and domains, part 1. Theoretical Computer Science, 13(1):85-108, 1981.

Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event
structures and domains. In Proc. of the International Symposium on Semantics
of Concurrent Computation, volume 70 of LNCS, pages 266—284. Springer, 1979.

Eric Noonan, Eric Mercer, and Neha Rungta. Vector-clock based partial order
reduction for jpf. In ACM SIGSOFT Software Engineering Notes 39(1), pages
1-5, 2014.

OpenMP Application Programming Interface 4.5. https://www.openmp.org/
wp-content/uploads/openmp-4.5.pdf.

Corina S. Pasareanu and Willem Visser. Symbolic Execution and Model Check-
ing for Testing. In Hardware and Software: Verification and Testing, pages
17-18, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

96

[83]

[84]

[85]

[36]

[87]

[92]

Doron Peled. Partial order reduction: Model-checking using representatives.
In Mathematical Foundations of Computer Science 1996, pages 93-112, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

Doron Peled. Partial Order Reduction: Linear and Branching Temporal Logics
and Process Algebras. In Proceedings of the DIMACS Workshop on Partial
Order Methods in Verification, POMIV ’96, pages 233-257, New York, NY,
USA, 1997. AMS Press, Inc.

Doron Peled. Ten years of partial order reduction. In Alan J. Hu and Moshe Y.
Vardi, editors, Computer Aided Verification, pages 17-28, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

Pthreads. https://computing.11lnl.gov/tutorials/pthreads/.

César Rodriguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.
Unfolding-based partial order reduction. In Proc. CONCUR, pages 456469,
2015.

César Rodriguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.
Unfolding-based partial order reduction. CoRR, abs/1507.00980, 2015.

Jiri Simsa, Randy Bryant, Garth Gibson, and Jason Hickey. Scalable Dynamic
Partial Order Reduction. In International Conference on Runtime Verificatione,
2012.

Marcelo Sousa, César Rodriguez, Vijay D’Silva, and Daniel Kroening. Abstract
interpretation with unfoldings. CoRR, abs/1705.00595, 2017.

S. Stoica. System design verification tests - an overview. In International Test
Conference 1999. Proceedings (IEEE Cat. No.99CHS37034), pages 689-697, Sept
1999.

Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko
Marinov, and Gul Agha. TransDPOR: A Novel Dynamic Partial-Order Re-
duction Technique for Testing Actor Programs. In Formal Techniques for Dis-
tributed Systems, pages 219-234, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

97

[93]

[94]

[95]

[96]
[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Yann Thierry-Mieg. Symbolic Model-Checking Using I'TS-Tools. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 231-237, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

Thomas Neele and Anton Wijs and Dragan Bosnacki and Jaco van de Pol.
Partial-Order Reduction for GPU Model Checking. In 14th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA), 2016.

Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency testing
using controlled schedulers: An empirical study. TOPC, 2(4):23:1-23:37, 2016.

Top 500 Supercomputers. https://www.top500.0rg/.
Uppaal Model Checker. http://www.uppaal.org/.

Antti Valmari. Stubborn sets for reduced state space generation. In Advances
in Petri Nets 1990, number 483 in LNCS, pages 491-515. Springer, 1991.

Ruud van de Pas. An introduction into OpenMP. International Workshop,
IWOMP, 2005.

Balaji Venu. Multi-core processors - An overview. arXiv:1110.3535 [cs.AR],
2011.

Nikolaos S. Voros, Wolfgang Mueller, and Colin Snook. An Introduction to
Formal Methods, pages 1-20. Springer US, Boston, MA, 2004.

Anton Wijs. BFS-Based Model Checking of Linear-Time Properties with an
Application on GPUs. In CAV, 2016.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald.
Formal Methods: Practice and Experience. ACM Comput. Surv., 41(4):19:1-
19:36, October 2009.

Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Dis-
tributed Dynamic Partial Order Reduction Based Verification of Threaded Soft-
ware. In International SPIN Workshop on Model Checking of Software, 2007.

Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Dis-
tributed dynamic partial order reduction. International Journal on Software
Tools for Technology Transfer, 12(2):113-122, May 2010.

98

[106] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. Maple: A
coverage-driven testing tool for multithreaded programs. In OOPSLA, pages
485-502, 2012.

99

100

Titre: Vérification de modéle quasi-optimale de systemes concurrents

Mots clés: Dépliage, Réduction d’ordre partiel, Quasi-optimale, Alternative k-partielle, Méthods
formelles

Résumé: En effectuant une exploration exhaustive de tous les comportements possibles du systeme,
le model checking fait face au probleme de I’explosion de cet espace d’états. Notre but est de vérifier
des programmes concurrents. Nous avons proposé de combiner la DPOR et le dépliage dans un
algorithme appelé POR basée sur le dépliage.

Dans cette these, nous prouvons que le calcul des alternatives dans une DPOR optimale est un
probleme NP-complet. Nous proposons une approche hybride appelée réduction d’ordre partiel
quasi-optimale (QPOR). En particulier, nous proposons une nouvelle notion d’alternative k-partielle
et un algorithme en temps polynomial. Une autre contribution algorithmique de cette these est la
représentation des relations de causalité et de conflit dans le dépliage comme un ensemble d’arbres
dans lequel les événements sont encodés comme un ou deux nceuds dans deux arbres différents. Nous
montrons que vérifier la causalité et le conflit entre deux événements revient a une traversée efficace
d’un des deux arbres.

Nous détaillons I’implémentation de 1’algorithme et les structures de données utilisées dans un nouvel
outil. Outre les améliorations algorithmiques garanties par QPOR, la parallélisation est un autre
moyen d’accélérer 1’exploration. Par conséquent, nous proposons un algorithme de QPOR parallele.
Enfin, nous présentons des expériences sur I’implémentation séquentielle de QPOR et comparons les
résultats avec d’autres outils de test et de vérification afin d’évaluer I’efficacité de nos algorithmes.
L’analyse des résultats montre que notre outil présente de meilleures performances que ceux-ci.

Title: Quasi Optimal model checking for concurrent systems.

Keywords: Unfolding, Partial Order Reduction, Formal methods, Model checking, k-partial alterna-
tive

Abstract: By exhaustively exploring all possible behaviours of the system, model checking has to
face the state space explosion problem. We target the verification of concurrent programs. Dynamic
partial-order reduction (DPOR), is a mature approach to mitigate the state explosion problem based
on Mazurkiewicz trace theory, whereas unfolding is still at an initial state for targetting programs.

We propose to combine DPOR and unfolding into an algorithm called Unfolding based POR. In order
to obtain optimality, the algorithm is forced to compute sequences of transitions known as alternatives.
In this thesis, we prove that computing alternatives in optimal DPOR is an NP-complete problem. As
a trade-off solution, we propose a hybrid approach called Quasi-Optimal POR (QPOR). In particular,
we provide a new notion of k-partial alternative and a polynomial algorithm to compute alternative
executions.

Another main algorithmic contribution is to represent causality and conflict as a set of trees where
events are encoded as one or two nodes in two different trees. We show that checking causality and
conflict between events amounts to an efficient traversal in one of these trees. We also implement
the algorithm and data structures in a new tool. Besides the algorithmic improvements guaranteed
by QPOR, parallelization is another way to speed up the unfolding exploration, thus we propose a
parallel algorithm based on parallelizing QPOR. Finally, we conduct experiments on the sequential
implementation of QPOR and compare the results with other state-of-art testing and verification tools
to evaluate the efficiency of our algorithms. The analysis shows that our tool outperforms them.

Laboratoire d’Informatique Paris Nord
CNRS UMR 7030, Université Paris 13, France

	1 Introduction
	1.1 Introduction
	1.2 Formal methods
	1.3 Model checking
	1.3.1 Model checking process
	1.3.2 State Space Explosion (SSE) problem
	1.3.3 Unfolding
	1.3.4 Partial order reduction
	1.3.5 Challenges and objectives

	1.4 Parallel and distributed verification
	1.4.1 Parallel and distributed hardware and software
	1.4.2 Parallel and distributed verification
	1.4.3 Opportunities and objectives

	1.5 Contributions
	1.6 Thesis outline

	2 Preliminaries
	2.1 Introduction
	2.2 Computation model
	2.2.1 Labelled transition systems
	2.2.2 Concurrent systems

	2.3 Dependence and Independence Relation
	2.3.1 Independence for Petri Nets
	2.3.2 Independence for concurrent programs

	2.4 Labelled Prime Event Structures
	2.4.1 Definition
	2.4.2 Configurations
	2.4.3 Extensions

	2.5 Unfolding semantics of program
	2.6 Conclusions

	3 Quasi Optimal Partial Order Reduction
	3.1 Introduction
	3.2 Unfolding-based POR
	3.2.1 Unfolding exploration algorithm
	3.2.2 Algorithm correctness

	3.3 Partial alternatives
	3.3.1 Complexity of computing alternatives
	3.3.2 Motivating example
	3.3.3 k-partial alternatives

	3.4 Conflicting extensions
	3.4.1 Conflicting extension algorithm
	3.4.2 Complexity

	3.5 Conflict and Causality
	3.6 Sequential tree
	3.6.1 Causality and Conflict of nodes
	3.6.2 Data structure and efficient tree navigation
	3.6.3 Causality and Conflict for events

	3.7 Conclusions

	4 QPOR Parallelization
	4.1 Introduction
	4.2 Motivations
	4.2.1 Technology for parallelism
	4.2.2 Challenges and opportunities for QPOR parallelization
	4.2.3 Our objectives

	4.3 Parallelization design for QPOR
	4.3.1 Parallel computing
	4.3.2 General idea
	4.3.3 Data structure
	4.3.4 Overall algorithm
	4.3.5 Parallel exploration process
	4.3.6 Avoiding redundant exploration
	4.3.7 Algorithm termination
	4.3.8 Synchronization mechanism

	4.4 Conclusions

	5 Implementation and experiments
	5.1 Introduction
	5.2 DPU - Dynamic Program Unfolder
	5.2.1 Front-end
	5.2.2 Back-end

	5.3 Sequential implementation
	5.4 Parallel implementation
	5.4.1 OpenMP
	5.4.2 Algorithm implementation

	5.5 Experiments
	5.5.1 Comparison to SDPOR
	5.5.2 Evaluation of the Tree-based Algorithms
	5.5.3 Evaluation Against the State-of-the-art on System Code
	5.5.4 Profiling a Stateless POR

	5.6 Conclusions

	6 Conclusions and Perspectives
	6.1 Conclusions
	6.2 Perspectives

	Bibliography

