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Foreword

"The mere formulation of a problem is far more often essential than its solution, which may be merely a matter of mathematical or experimental skill. To raise new questions, new possibilities, to regard old problems from a new angle requires creative imagination and marks real advances in science." -Albert Einstein I was a graduated master on chemical engineering and ambitious to have a rational plastic packaging design for various products in the fields of food, pharmaceuticals and cosmetics based on my educational background, initially. As broadening my knowledge and widening my horizons in multidisciplinary progressively, I realized scientific knowledge could not have solved rational design without a clarification and integration of the problems. A rational design of plastic packaging should insist mainly three predominant issues: the environmental impact (plastic wastes, marine litters, global warming, etc.), the social impact (food consumption and food wastes, human health, circular economic, etc.) and industrial effects (benefits and responsibilities, etc.). After integration of the constraints, I found the complicated problems for rational design might not be solved by studying merely the mass transfer and thermodynamics. Therefore, I would like to imagine and build a general engineering approach:

[E]valuation, [D]ecision, and [S]olving, so-called [E][D][S] approach. According to the linked [D]ecisions as the integration of constraints, a simple model with ideal hypothesis will be established, simulated, and optimized to have a fast prototype design. [E]valuation could be considered as the further and more profound investigation of the transport and thermodynamic mechanisms on derived problems, such as safety, shelf-life, and packaging weight. [S]olving the problems should encompass the calculation, optimization, and reverse engineering upon on the [E]valuation and the [D]ecision. This thesis is in cooperation with the group of Pernod Ricard, and the objective is to build a rational design of plastic packaging for alcoholic beverages, which could validate and improve my general [E][D][S] approach for safe-by-design. I may not be an expert in one of the domains, such as food, polymer, computer science, and the environment. However, I think it's of importance to focus on how to design rationally within a complex problem system in an interdisciplinary filed considering the organization of knowledge, engineering and engineering management. I hope this thesis could deliver some ideas, acquired knowledge, and methodologies to further related research topics and projects. .2.1. Preamble and scope ............................................................................................................ II.2.2. Principles of tiered migration modeling for risk assessment ............................................... II.2.3. Common assumptions used in migration modeling ............................................................. II.2.4. Diffusion properties in polymers ......................................................................................... II.2.5. Sorption properties and partition coefficients ..................................................................... II.2.6. Probabilistic modeling of the migration .............................................................................. II.2.7. Generalized migration modeling and holistic approaches .................................................. 3.1. A short history ..................................................................................................................... II.3.2. Sustainability and the difficult transition to sustainable food supply chain ........................ II.3.3. From legal frameworks to packaging wastes ...................................................................... II.3.4. Life cycle assessment (LCA) ................................................................................................ II.3.5. Applications of LCA to beverage packaging ..................................................................... II.4 . Approximations [1] and [2] are given by Eqs.
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(II.17 Indexing rule of a material including m layers (total thickness lP) in contact with a food indexed 0. The left and right external boundaries are considered impervious (no mass loss). The concepts of "functional barrier" and "reservoir" assume that layer j is the source (with non-zero initial concentration). It is used in §II.2. 3.5.5. and §II.2.3.5.6 D or a D , of n-alkanes (n-A), 1-alcohols (1-O) and alkyl-acetates (a-A) with the molecular mass of the alkyl chain, M in: (a) PET, (b) PA6, (c) PS and (d) PVAc. Continuous and dotted lines correspond to the regression lines for regular solutes (n-alkanes) and their generalization to anchored ones (1-alcohols and alkyl acetates) via Eq. (V.39), respectively. blob M was estimated the common intersection of all regression lines of ln lin D vs ln M (see its interpretation in Eqs.(V.19) and (V.30)). ........................... 215 predicted by Eq. (V.20)(continuous lines) and by Eq.(V.15) using either specific (dashed lines) or generic (dotted lines) WLF constants. The corresponding FV parameters are listed in Table V-2. All models are plotted for three typical r values at glassy state (0.5, 0.25 and 0.1) leading to three branches when g T T -<0. As constant thermal expansion is assumed at rubber and glassy states, the diagrams are limited by the inequalities:

( ) (V.30)and parameters listed in Table V-2 for n-alkanes in PVAc (bold continuous lines), PA6 (continuous lines), PET (dashed-dotted lines), PS (dashed lines) and PEN (dotted lines). The dashed vertical line represents the g T value of the polymer for the corresponding set of data.
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The predictions assume the inequality: ............................................................................................. 36 Table II- Table II-15. Overview of typical packaging materials for beverages (after [START_REF] Marsh | Food Packaging-Roles, Materials, and Environmental Issues[END_REF]Welle,2011;[START_REF] Ramos | New Trends in Beverage Packaging Systems: A Review[END_REF] The solutes incorporated in the contacting phase (gas, liquid, solution) are listed in Table IV-2. Water and ethanol, alone or in mixtures were the main solutes. The composition of hydroalcoholic mixtures were denoted by their alcohol-by-volume ( 𝑎𝑎𝑏𝑏𝑎𝑎 ), defined as the number of liter (L) of pure ethanol present in 1 L of solution at 20 °C (pure ethanol: 𝑎𝑎𝑏𝑏𝑎𝑎 = 1).

Other aromatic solutes were surrogate molecules chosen with double purposes: comparison with literature data on similar PET materials and naturally fluorescent molecules consisting of linearly repeated jumping units. Toluene was preferred to benzene (single jumping unit) due to its high toxicity. . 

NOMENCLATURE

The symbols are listed in alphabetic order and grouped by similarities. Redundant definitions are given on independent lines. When the definitions may be ambiguous, reference equations are indicated. All units are in SI.

Roman symbols

%𝐴𝐴,%𝐵𝐵 volume fractions of saturated gas on the co-sorption microbalance (-)

𝑎𝑎𝑏𝑏𝑎𝑎 alcohol-by-volume (volume of ethanol at 20°C, number of mL of pure ethanol in 1 mL of mixture)

𝑎𝑎 𝑖𝑖 activity of solute 𝑖𝑖 (-)

𝑎𝑎 𝑙𝑙𝑖𝑖𝑙𝑙 constant equal to 0.24 in the extended FVT (Eq. V.17) 𝑚𝑚 𝑖𝑖 ,𝑚𝑚 𝐹𝐹 , %Δ𝑚𝑚 𝐹𝐹 , 𝑚𝑚 𝑝𝑝 residual mass of compound 𝑖𝑖, mass of the food (kg), relative weight variation tolerance (-), mass of the empty packaging unit (kg)

𝐴𝐴
𝑀𝑀, 𝑀𝑀 𝑖𝑖 , 𝑀𝑀 𝑗𝑗 molecular mass (kg⋅mol -3 ), molecular mass of substance 𝑖𝑖, amount transferred from layer/material 𝑗𝑗 𝑀𝑀 𝑎𝑎𝑙𝑙𝑎𝑎ℎ𝑏𝑏𝑜𝑜 ,𝑀𝑀 𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 ,Δ𝑀𝑀 𝑒𝑒𝑒𝑒 𝑎𝑎 molecular masses of the terminal rigid units (different of the repeated blob) and the repeated pattern (kg⋅mol -3 ), equivalent molecular associated to the anchor to reach the same diffusion coefficient as in a regular linear solute 𝑀𝑀 𝑝𝑝 accumulated mass of the packaging units corresponding to a consumption rate (kg) 𝑖𝑖 exponent associated to the system of coordinates (𝑖𝑖 = 0: Cartesian, 𝑖𝑖 = 1: cylindrical, 𝑖𝑖 = 2: spherical)

𝑖𝑖 𝑖𝑖 𝑔𝑔 ,𝑖𝑖 𝑎𝑎 number of molecules 𝑖𝑖 in the gas phase (Eq. IV.13), initial number of molecules of dry air in the headspace (Eq. IV. 

XXIII Γ = 1 + ∂lnγ 𝑣𝑣
𝜕𝜕𝑙𝑙𝑙𝑙𝜕𝜕 thermodynamic factor associated to mutual diffusion coefficients (-) Δ𝑎𝑎 𝑤𝑤 , Δ𝑎𝑎 𝑒𝑒 tolerances of the co-sorption microbalance on the variation of activities of water and ethanol (-) Δ𝑗𝑗 fluctuation of mass flux (kg⋅s -1 ) Δ𝑠𝑠 difference of partial pressure responsible of permeation (Pa), fluctuation of partial pressure 𝜖𝜖, 𝜖𝜖 𝐴𝐴+𝐵𝐵 small variation or porosity, pair contact energy (J or J⋅mol -1 ), pair contact energy between 𝐴𝐴 and 𝐵𝐵 𝜁𝜁,𝜁𝜁 𝑡𝑡𝑜𝑜𝑎𝑎𝑎𝑎𝑒𝑒 ,𝜁𝜁 𝑚𝑚𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑙𝑙 friction coefficient (J⋅s⋅mol -1 ⋅ m -2 ), at infinite dilution and higher concentration, respectively 𝜅𝜅 preexponential factor in Eq. II.6 (Hz) 𝜆𝜆 arbitrary weight in Eq. II.3, parameter related to the thermal expansion of the polymer in the FVT of Vrentas and Duda (Eq. V.12) 𝜇𝜇, 𝜇𝜇 𝑖𝑖,𝑘𝑘 chemical potential (J⋅mol -1 ), chemical potential of solute 𝑖𝑖 in phase

𝑘𝑘 𝜉𝜉 = 𝑉𝑉 � 1 * 𝑉𝑉 � 2 * (𝑇𝑇 𝑔𝑔 )
, 𝜉𝜉 𝑀𝑀 ratio of the critical volume of the solute jumping unit to the critical volume of the polymer jumping unit in the FVT of Vrentas and Duda (-), value of 𝜉𝜉 associated with molecular mass 𝑀𝑀 𝜌𝜌, 𝜌𝜌 𝑘𝑘 molar density (mol⋅m -3 ) or probability density (m -3 ), density of phase 𝑘𝑘 (kg⋅m , 2018). According to the dominant point of view, food packaging provides the solution of delivering food to urban and aging populations, living distantly from production areas, and wishing read-to-eat meals, consumer convenience, and experience. In this perspective, food packaging contributes to reducing food waste [START_REF] Williams | Environmental impact of packaging and food losses in a life cycle perspective: a comparative analysis of five food items[END_REF][START_REF] Williams | Reasons for household food waste with special attention to packaging[END_REF]. All choices need to be sustainable and efficient: first on the market, cost competitive, enhancing consumer experience, and minimizing environmental impacts [START_REF] Coles | Food and Beverage Packaging Technology[END_REF]. Food safety issues are envisioned as a trade-off between the food protection and hygiene brought by the packaging and the risk of contamination associated with their use.

Alternative opinions on food packaging have evolved progressively from beneficial to significantly negative [START_REF] Hamaide | Environmental Impact of Polymers[END_REF]. They have been sucessively associated with potential sources of harmful substances, wastes, greenhouse gases, etc. During the last meeting of the Food Packaging Forum [START_REF] Stieger | Predicting the safety of food contact articles: New science and digital opportunities[END_REF], experts concluded that materials in contact with food (plastics, elastomers, varnishes, adhesives, printing inks, paper, and board) are likely to be the main source of chemical contaminants in food. Among them, plastic materials have the largest market share for food contact applications [START_REF] Geueke | Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials[END_REF]. They are responsible for 80-85% of the total marine litter affecting all the world's oceans [START_REF] Bergmann | Sea change for plastic pollution[END_REF], including the deep seafloor [START_REF] Pierdomenico | Massive benthic litter funnelled to deep sea by flash-flood generated hyperpycnal flows[END_REF]. The use of plastics in multimaterialmultilayer systems possibly printed and coated complicate the identification, collect and recycling of these materials (PlasticsEurope, 2018), with a growing contribution of ready-to-eat foods [START_REF] Silberbauer | Packaging Concepts for Ready-to-Eat Food: Recent Progress[END_REF]. Additionally, new raising concerns are brought by plastic debris [START_REF] Pierdomenico | Massive benthic litter funnelled to deep sea by flash-flood generated hyperpycnal flows[END_REF], microplastics [START_REF] Lusher | Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and im-plications for aquatic organisms and food safety[END_REF], and nanoplastics (EFSA, 2016) with possible impacts on the wildlife and the whole food chain.

I.1. Context

3

• Food packaging design should obey to a large corpus of rules in the EU Among developed countries, the EU is equipped with the strictest arsenal of rules on both environmental and safety issues (Rijk and Veraart, 2010). The reduction of the environmental impact of packaging and its wastes has been enforced since twenty-five years ago in EU with the Directive 94/62/EC [START_REF] Eec | COUNCIL DIRECTIVE of 20 January 1976 on the approximation of the laws of the Member States relating to the making-up by weight or by volume of certain prepackaged products[END_REF] and its successive amendments (EC, 2004a[START_REF] Ec | and articles intended to come into contact with food ([END_REF][START_REF] Ec | 62/EC as regards reducing the consumption of lightweight plastic carrier bags ([END_REF]. Its annex II imposes that any "packaging shall be so manufactured that the packaging volume and weight be limited to the minimum adequate amount to maintain the necessary level of safety, hygiene, and acceptance for the packed product and for the consumer".

Since foods are not explicitly mentioned, no association has been made between barrier prop- the production and handling for each of the seventeen groups materials and their combinations accepted for food contact.

• Relationship between food packaging design and food wastes

The environmental impacts of packaging are relatively small compared with the foods they contain. Ten million tons of food is wasted in France annually with 14% during distribution and 33% during consumption stage [START_REF] Matamoros | How is food waste regulated in Europe?[END_REF]; it represents 173 kg food waste per person each year in the EU [START_REF] Schweitzer | Overpackaging. Briefing for the report: Unwrapped: How throwaway plastic is failing to solve Europe's food waste problem (and what we need to do instead)[END_REF]. Current EU regulations manage exclusively plastic wastes. Designing fit-for-purpose packaging can, however, both i) reduce environmental impacts by eliminating or light-weighting packaging components and ii) minimize the risk of packaging failure and product damage in transport and handling. The Australian industry [START_REF] Verghese | The role of packaging in minimising food waste in the supply chain of the future[END_REF] recommends barrier, and mechanical performances need to be distributed through the three levels of the packaging: primary in contact with food (portion), secondary (e.g., bag, box, plastic crate) and tertiary food packaging used for transit (e.g., pallets, large boxes, sacks). Consumers are, hence, increasingly looking for convenience and ready-to-eat foods, while processors and retailers are looking to extend product shelf life. The challenge is to balance product waste, shelf-life, and packaging design. The study of [START_REF] Williams | Reasons for household food waste with special attention to packaging[END_REF] reports three technical reasons associated with the packaging and responsible for food waste: an oversized packaging, a packaging difficult to empty and a too short "best before date". Pre-prepared or pre-packed food products offer a solution to the first problem. This solution increases the demand for packaging disposal and recycling at the household level, but this negative impact is offset by food preparation waste shifted from the home or food service establishments to the manufacturing sector, where they can be more easily recovered. The LiquiGlide surface treatment developed by the Massachusetts Institute of Technology in the United States is an example of a solution to the second problem for thixotropic and viscoplastic products. It enables sauces and other liquid products (e.g., mayonnaise, ketchup, yogurt) to be completely dispensed from a bottle or jar [START_REF] Yirka | LiquiGlide poised to market superhydrophobic coating for wide range of products[END_REF].

When shelf-life is dominated by mass transfer (water vapor or oxygen) across packaging walls, a Zeno paradox is usually reached: shelf-life cannot be extended without increasing food packaging waste. Several alternative exists, however, as reviewed in Robertson (2009a):

adapting finely the packaging size, its shape to the mass transfer mechanism, redistributing the plastic material between rigidity and barrier regions, combining several materials, changing distribution and storage conditions, using a modified atmosphere [START_REF] Zhang | Recent Developments in Film and Gas Research in Modified Atmosphere Packaging of Fresh Foods[END_REF] or adding some active components [START_REF] Ozdemir | Active Food Packaging Technologies[END_REF].

I.2. Rational design

Continuing innovation in packaging materials and packaging design can contribute to tackling global challenges posed by food packaging, the transformation, and distribution of food. A systematic methodology is nevertheless required to meet on the short and long term environmental and safety goals. Rational design is usually a word applied in biology to describe the modifications at the molecular level of cells, genes, peptides, proteins, and other macromolecules to reach therapeutic or technological effects. These orientations led to new engineering approaches, including structure drug design or discovery, computational drug design. In this thesis, the concept of "rational design" with the same intent: supporting the discovery and the exploration of packaging concepts with lower impacts for the environment and human health. Because the design aspects of food packaging are poorly analyzed in the open literature [START_REF] Azzi | Packaging Design: General Framework and Research Agenda[END_REF], the concepts of rational design for food packaging remains highly immature. Little works have been carried out to develop a systematic problem-solving methodology to tackle through designs global challenges. Some premises have been introduced as corrective actions in the packaging design process [START_REF] Grönman | Framework for Sustainable Food Packaging Design[END_REF] and via the Best Worst Method [START_REF] Rezaei | Sustainable product-package design in a food supply chain: A multi-criteria life cycle approach[END_REF]. They remain quantitative, and they do integrate complex I.3. Organization of the manuscript 5 criteria such as shelf-life or safety. The most cited papers address the prediction of equilibrium modified atmospheres (Jacxsens et al., 2002), but not their optimization to reach a particular shelf-life [START_REF] Belay | Modelling approaches for designing and evaluating the performance of modified atmosphere packaging (MAP) systems for fresh produce: A review[END_REF][START_REF] Giannoulis | 3D numerical simulations as optimization tool for the design of novel EMAP systems[END_REF]Jalali et al., 2017). Non-technical factors related to design, including aesthetics, functionality, and emotional factors, are usually omitted, whereas they shape the expectations and color the attitude of the consumers [START_REF] Lockwood | Design Thinking: Integrating Innovation, Customer Experience and Brand Value[END_REF]. As an example of the interactions between senses, some results suggest that the shape of the packaging can be associated to the taste of the food it contains [START_REF] Becker | Tough package, strong taste: The influence of packaging design on taste impressions and product evaluations[END_REF][START_REF] Velasco | Predictive packaging design: Tasting shapes, typefaces, names, and sounds[END_REF]. Design thinking, engineering systems thinking, conceptualization, and prototyping should also be included in the proposed "rational design" framework along with tailored calculations of barrier and mechanical performances.

Virtualizing time-consuming steps of packaging design such as conceptualization, prototyping, packaging optimization, and shelf-life validation can accelerate exploration of many alternative solutions while offering some chances of fruitful feedbacks. Coding complex technical details in mechanistic models or artificial intelligence can change even the entire paradigm of food packaging design. The designer is free from the complex engineering and can connect his work seamlessly to engineering, manufacturing, and processing steps. As a result, most of the design effort can be redirected to consumer expectations and impact reduction rather than on production parameters. The approach is revisable and augmentable to integrate future evolutions of regulations, food supply chain, and new materials. Similar ambitions have been applied successfully to safe-by-design approaches for food contact materials [START_REF] Nguyen | A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems[END_REF]Zhu et al., 2019a). It is proposed to derive the foundation of "rational design" concepts from the safe-by-design methodology. The expected outcome is to reach a unique computational framework capable of integrating both environmental and safety issues separately or within the same global minimization problem. Alcoholic beverages are proposed in this work as an application study of these developments.

I.3. Organization of the manuscript

The manuscript is organized into five sections. Section two reviews the methodologies supporting computer-aided decision making and how they have been transposed to the concepts of safe-by-design. Contrarily to safety issues managed by international standards and organizations, the evaluation of environmental impacts remains essentially retrospective and somewhat subjective. The concept of shelf-life is presented in a very simplified manner as a mass transfer problem. It is acceptable for beverages, but it is not sufficient when microbiological safety must also be considered. The "rational design" framework combines two major "ecodesign" problem at tier 0 and its solutions are used to justify the goals and approaches followed in this work. Additionally, they demonstrate that even a coarse model can stimulate and orient packaging design to more effective solutions. The studied conditions and the numerical developments followed in this work are detailed in the fourth section, "Materials and Methods". The results and discussion are presented in the next section with a progressive modeling complexity. The whole packaging design problem is firstly presented for liquors when the physics of mass transfer is essentially linear (tiers 1 and 2) and without restrictions on the shape of the packaging, the conditions of storage and alcoholic strength. Non-linear and more complex physics of glassy polymers are progressively introduced at higher tiers (tiers 3 and 4).

The main findings and perspectives are summarized in the last section.

Chapter II. Literature review

Chapter II. Literature review

This is the whole point of technology. It creates an appetite for immortality on the one hand. It threatens universal extinction on the other. Technology is lust removed from nature.

-Don DeLillo, White Noise

The thesis adopts three vantage points, which are justified and detailed from a critical review of the scientific and legal literature. One is that common engineering techniques are not sufficient to tackle the main challenges of the 21 st century: global warming, environmental degradation, life-long exposure to chemicals, etc. The old-fashioned engineering was in some ways responsible for the current problems, to meet the demand of consumers without considering the consequences. Contrarily to the dominant opinions in the Engineering Ethics literature, the current problems are, however, not associated with wrongdoing and the solution is not its avoidance and its prevention [START_REF] Pritchard | Responsible engineering: The importance of character and imagination[END_REF]. With the economy and challenges becoming more global, corporates and industry are facing continuously increasing complexity, which cannot be resolved anymore with conventional engineering [START_REF] Alexiou | Embracing Complexity in Design[END_REF]. An overview of the interplaying factors in food packaging design are summarized in The second viewpoint is that computers and automatic algorithms could help to support the burden for managing complexity met in food packaging design. Three-dimensional geometry and design optimization can be currently carried out with simple laptops [START_REF] Zuo | A simple and compact Python code for complex 3D topology optimization[END_REF], using a push-pull approach [START_REF] Zou | Push-pull direct modeling of solid CAD models[END_REF] and without strong expertise in materials science [START_REF] Khosravani | Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach[END_REF]. Combined with augmented reality and rapid prototyping [START_REF] Liu | A survey of manufacturing oriented topology optimization methods[END_REF], new concepts of food packaging could rapidly emerge and being adapted to the consumer, the supply chain and the considered food. The two first viewpoints are central to this ideal of post-industrial civilization where creative technologists would be replacing progressively engineers specialized only in some fields. The technical constraints (manufacturability, suitability, flexibility) would be considered with the help of automatic tools used partial or without supervision. The feasibility of the principles of augmented engineering for food packaging design is reviewed in the first section within a mathematical perspective emphasizing optimal decision making. The prevalence of computers in decision making implies that the impact of human activities can be evaluated with cardinal numbers. Reusing such numbers retroactively in algorithms to explore alternative packaging designs could appear even more controversial. What if predictors were biased, misguided or simply wrong? Optimizing design presupposes that the new solution is objectively better than the original one.

The third vantage point is epistemic and almost philosophical; the evaluation (assessment) should be neutral and separated from the decision process (management) to keep its rationality. This principle was central in the white paper on the EU "White Paper on Food and Feed" (EC, 1999) encouraging the creation of the European Food Safety Authority, and in the US doctrine to manage technological risks at federal level (NRC, 1983). Following the same logic, section two describes how hierarchical modeling of mass transfer can be used to

Chapter II. Literature review evaluate the risk of migration of packaging substances into foodstuffs under uncertainty. The general methodology to derive deterministic numbers (overestimates) or probabilities from a mechanistic model is proposed as a template for more general estimates, which could be transposed in methods targeting environmental impacts associated with food and packaging.

Though environmental impacts mirror food safety indices; their definitions remain comparatively more subjective. Associated indices do not represent a natural tendency of an impact to occur, but the measures of how strongly one believes they will occur. The corresponding probabilities and therefore any measure of uncertainty cannot be seen as evidential, but as propensities [START_REF] Belnap | Propensities and probabilities[END_REF] instead. From a strictly mathematical point of view, there is a peril in using relative probabilities (or propensities) to describe systems out-of-equilibrium in the long term [START_REF] Runde | On Popper, Probabilities, and Propensities[END_REF]. In the absence of some stationary trends in the environment, there is no guarantee that any improved solution in the present time will be optimal in the future. The capacity to integrate environment indices in semi-supervised design optimization is discussed in the last section from a critical review of environment impacts.

II.1. Beyond engineering: computer-aided decision making

The Merriam-Webster dictionary defines engineering as "the application of science and mathematics by which the properties of matter and the sources of energy in nature are made useful to people". As an illustration, the first Ph.D. degree in engineering was awarded in the US to Williard Gibbs at Yale College in 1863 after his work "On the Form of the Teeth of Wheels in Spur Gearing". His subsequent contribution to the foundation of statistical mechanics was immense. In his contribution as in the work of many framers of modern engineering, there was no clear mention of the necessity to protect human health, well-being and the environment. Simplifications are indeed very common in engineering. The mother nature was thought simultaneously as an infinite reservoir of resources and as a perfect sink with an infinite capacity to dilute and dissolve wastes. In this perfect thermodynamic cycle, the environment was thought falsely at equilibrium with no entropy change. A recent application of statistical mechanics revealed that the approximation was abusive; there is an entropy change [START_REF] Mahbub | Describing environmental phenomena variation using entropy theory[END_REF]. Simplifications are inherent to the art of the engineer, they are required to solve the problem, but they should not be excessive and misrepresent the impacts of the final assessment or decision. In this section on the extensions of engineering, we agree with the point of view from Kleingeld M. ( 2010) "Engineers need to guard against focusing solely on the technical content of their work". Some sorts of simplifications could be even beneficial to apprehend holistically the consequences of linked decisions at the largest scale. The computer and proper mathematical algorithms could support innovation while addressing the immense challenges of the 21 st century of sustainability.

II.1.1. Problems which can be solved today with a computer

The computer overpasses humans for brute-force calculations and has been used extensively in many engineering fields. Using supported decisions made unsupervised or partly supervised is a logical step for our societies facing global challenges. By removing the need for strong technical expertise, the evolution could aid large groups in the industry to make quantitative choices in a near real-time in one sitting. Such developments look very appealing to resolve complex linked decisions delaying the innovation process and access to the market.

The thesis addresses three kinds of global constraints, which could be summarized as follows.

• Technical constraints inherent to packaging and beverage specifications (shelf-life, mechanical constraints)

• Environmental constraints (e.g., amount of non-recycled material)

• Food safety constraints associated with the mass of recycled material.

With our current knowledge, no solution or optimization could be employed as a deus ex machina. A solution is only a compromise between alternatives and not "the best of all possible worlds" as expressed by the Pangloss's optimistic philosophy, criticized by Voltaire in his famous book Candid. Global issues, such as sea littering, microplastics, chemicals in food, occur not because "God" created the world and humans, but the other way around, because humans created plastic containers. The obviousness of the conclusion lies in the separation of causes and effects. Any enlighten algorithm, such as trivial truth (trivial falsity) and backtracking optimization algorithms, will reach a similar conclusion: by removing the source, we remove and solve the problem. In this thesis, we propose to orient the exploration of creative alternatives by adding a large number of constraints and rules so that the solutions may:

• have acceptable tradeoffs (successful solution)

• meet constraints (successful solution)

• be acceptable to users (successful solution)

• exhibit good cost/benefit ratio (efficient solution)

• be practical (efficient solution)

• be reliable (efficient solution)

• be new or original (innovative solution)

• be different from the ordinary belief/surprising (innovative solution)

• be seminal or universal (innovative solution)

• be unified (coherent solution for many problems)

• be esthetic or refined (coherent and innovative solution).

II.1.2. Decision-based on utility theory

The art of solving complex global problems has been extensively discussed in the literature by decision scientists since the seventies with variable success. Quoting [START_REF] Keeney | Decisions with Multiple Objectives: Preferences and Value Trade-Offs[END_REF], "Decision analysis is widely recognized as sound prescriptive theory". The usual approach for Decision making in the presence of conflicting objectives is initiated after suitable modeling has been done (Evaluation step) and it involves two distinctive features:

uncertainty analysis and preference (or value or utility) analysis. A variant of the utility theory has been developed by [START_REF] Nguyen | A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems[END_REF] in their approaches of safe-by-design of packaging. The authors used the adapted the methodology of Failure Mode Effects and Criticality Analysis (FMECA) to mass transfer problems to avoid human biases: favoring authority opinions, false causality bias, certainty effect causing aversion for losses [START_REF] Kahneman | Prospect Theory: An Analysis of Decision under Risk[END_REF]. Even if the tool FMECAengine [START_REF] Vitrac | FMECAengine: FMECA software developed in the framework of the project SafeFoodPack Design[END_REF] includes a powerful inference engine to derive new properties from existing packaging designs, the whole approach of [START_REF] Nguyen | A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems[END_REF] 

II.1.3. Problem-solving methods in engineering

Quoting [START_REF] Akeel | Discourses of systems engineering[END_REF], "Systems engineering is unique in being characterized by its methods rather than its artefacts. Consequently, the scope of systems engineering is difficult to define. While some systems engineers contend that systems engineering is capable of addressing socio-technical problems, including climate change and terrorism, others argue that it is strictly a technical field". We can dispute the arguments, but it may be difficult for engineers to be judge and defendant of the same cause: justifying they can continue to do business as usual. We review in this section the engineering tools available in the industry to stimulate creativity and innovation. Common approaches such as brainstorming, and trial and error become useless when they reach contradictions and when they involve linked decisions and complex scenarios which cannot be explored in real time.

II.1.3.1. Overview of methods

Problem-solving methods gather several empirical strategies aiming at stimulating the search of solutions while fluidifying creativity. The approaches tend to be generic and rational, but they can include some subjectivity in their premises (Mair et al., 2009). Common implicit assumptions include: the sum collective and cooperative human intelligence is greater than individual ones, stimulation of thoughts does not require the subjects to be aware of the procedural methodology followed (synectic); human can learn from analogies and comparisons (imitation); solutions are usually thought within the space of current knowledge (futurology is an exception); the problems present some invariance so that the same type of solution can be applied to several problems (principle of self-similarities or case-based reasoning) [START_REF] Engel | Problem-Solving Strategies[END_REF]. Recent studies in behavioral sciences showed that innovation and problem solving obeyed to the same cognitive dynamics (abstraction, searching, learning, inference, decision making) and should not be separated [START_REF] Griffin | Innovation and problem solving: A review of common mechanisms[END_REF]. The main methodologies and corresponding strategies are reviewed in Table II-1 according to an early classification proposed by [START_REF] Wang | On the cognitive process of human problem solving[END_REF]. The five main categories correspond to:

• a procedural evaluation of facts and beliefs (analysis);

• a collective evaluation and sharing experience (group solving);

• exploration of solutions according to some sets of prescribed (heuristic);

• prospective exploration (thought experiments);

• theory of problem-solving developed by Genrikh Saulovich Altshulle, a Soviet scientist and engineer, based on its own experience as a clerk in patent office.

Chapter II. Literature review Contrarily to intuition and according to literature, digital technologies look to play a minor role in the act of inventing itself. In its theory of diffusion and innovations, Rogers (see p. 11 of [START_REF] Rogers | Diffusion of Innovations, 5th Edition[END_REF] defines innovation as "an idea, practice, or object that is perceived as new by an individual or other unit of adoption. It matters little, so far as human behavior is concerned, whether or not an idea is 'objectively' new as measured by the lapse of time since its first use or discovery". Five stages are indeed required to transform an idea into a recognized innovation (knowledge, persuasion, decision, implementation and confirmation) and computers participate mainly to one: implementation. Their role is, however, increasingly dominant in some strategies of problem-solving, as acknowledged by the conferences SocPros "Soft Computing for Problem Solving" [START_REF] Bansal | Soft Computing for Problem Solving: SocProS[END_REF], which address under the umbrella "soft computing": fuzzy logic, neural networks, evolutionary algorithms, swarm intelligence algorithms. Despite a broad variability between methods, combinatory algorithms are the common denominator (Jain, 2016;[START_REF] Bansal | Soft Computing for Problem Solving: SocProS[END_REF].

II.1.3.2. The TRIZ methodology

• Short history

In its preface to Lean Triz [START_REF] Harrington | Lean TRIZ: How to Dramatically Reduce Product-Development Costs with This Innovative Problem-Solving Tool[END_REF], Thoreau noted that Quality management procedures such as Six Sigma, Lean, supply chain, error proofing are considered best practices today. In 1910 without any computer and customer relationship management system, Henry Ford Sr. developed a cycle of production of a car in seven days from iron ore to the completed car, the car was delivered to the dealer within the next seven days, the payment was sent back to Ford's industries 10 days before they had to pay the part-suppliers. Ford had one single motto "Simplify, simplify, simplify". The different evolutions of the TRIZ "theory of the resolution of invention-related tasks" [START_REF] Savransky | Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving[END_REF], as systematic inventive thinking [START_REF] Goldenberg | The Idea Itself and the Circumstances of Its Emergence as Predictors of New Product Success[END_REF], is the methodology of choice for many organizations to conduct all phases of product and process design and redesign. Comparatively to other techniques such as evolutionary design, the superiority of the TRIZ approach initiated in 1946 relies upon its capacity to bring rapidly improvements and to offset contradictions embedded in the proposed design.
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• The analogy between the complexity invention level and TRL scale

Genrich Altshuller based upon his study of over 200,000 patents and technological systems, he identified five levels of invention, which can be compared to the maturation index of technology, coined as Technology Readiness Level and initially proposed by NASA with seven or nine levels [START_REF] Héder | From NASA to EU: the evolution of the TRL scale in Public Sector Innovation[END_REF]. The scales as reverse and both can be initiated starting from any level up to the state "ready to flight". At the scale of the society, most of the discovery and research effort is applied where the complexity is maximum (low TRL), where the risk of losing effort is maximum. The TRIZ methodology has been devised to target levels 1-3 (i.e., from TRL 3-9), which correspond to the main needs of companies. Major improvements: inventions include fundamental improvements to a system involving methods known outside of the domain. This involves applying an idea to the domain that has never been used in the domain previously. Actual system is proven in an operational environment (competitive manufacturing in the case of key enabling technologies or in space)

• Anticipating the evolution of technical systems

The TRIZ methodology proposes a holistic decomposition of any technological system into three main laws and principles [START_REF] Cavallucci | TRIZ -The Theory of Inventive Problem Solving: Current Research and Trends in French Academic Institutions[END_REF]. They are sketched with the case of food packaging in mind.

1) Static laws describing the viability of the solution

a. Completeness of the parts of the system (e.g., the packaging should protect all aspects of food shelf-life, contribute to the transport, retailing and preparation of food, etc.); 

II.1.4. Multicriteria optimization

Previous techniques rely on preexisting inventories of recipes and solutions. They require strong human expertise and cannot be performed automatically. Operational research developed several techniques of multi-objective optimization, also known as multi-objective programming, vector optimization, multicriteria optimization, multiattribute optimization or Pareto optimization. They have extensively used in chemical engineering [START_REF] Rangaiah | Multi-Objective Optimization: Techniques and Applications in Chemical Engineering[END_REF].

II.1.4.1. Overview

Research in optimization started once significant advances in linear programming, and its subclasses became a mature technology. The general problem multicriteria optimization obeys to: x and subject to equality and/or inequality constraints.

( ) ( ) ( ) ( ) 1 
Chapter II. Literature review The classification of optimization problems depend on the linearity and convexity of the functions

( ) { } 1.. k k m f = x
, and ( ) They are the most complex to solve as they may be associated with no-minimum or more than one minimum. Optimization problems without any particular structure are less amenable to 

g x , as summarized in

II.1.4.2. From linear problems to nonconvex structures

All linear problems and more generally problem with strictly monotonic goals subjected to convex constraints are convex. The minimum lies exclusively at an extreme point (vertex) or a boundary (edge). In linear programming, the solution -when it exists -is obtained by the intersection of the goal function with the convex polytope (feasible region). The algorithm of resolution using successive pivots was popularized by George B. [START_REF] Dantzig | Linear Programming and Extensions[END_REF], who developed the simplex method. For single goal functions, the numerical strategy of exploring extreme vertices and walking along edges always terminate in finite time.

As an application of the principle of maximum entropy, impacts intended to be minimized are likely to be monotonic functions. The canonical problem reads:

( ) ( ) ( ) ( ) { } 1 2 1.
. minimize , minimize ,...with respect to subject to 0

j j n f f g h x = ≤ ≤ ≥ x x x x x x (II.2)
It is easily demonstrated that if ℱ denotes the family of increasing impacts on ℝ 𝑙𝑙 + (𝑖𝑖 1 (𝒙𝒙), 𝑖𝑖 2 (𝒙𝒙), … ∈ ℱ), 𝑚𝑚𝑖𝑖𝑖𝑖{𝑖𝑖 1 (𝒙𝒙), 𝑖𝑖 2 (𝒙𝒙), … } ∈ ℱ belong also to the family of increasing impacts, so that the minimization of impacts can be obtained iteratively from a nested optimization strategy. Similarly the linear combination of impacts ( )

1 m i i i f ω = ∑ x , with positive weights { } 1.. 0 i i m ω = ≥
is also an impact function and justify evaluations such as Life Cycle Assessment (LCA, see §II.3.4. ). Similar considerations have been expressed for utility functions in mathematics economics under the assumptions that all goods are useful, that is when they are associated to nonnegative coefficients ( see chapter 11 of Tuy,2016).

The problem loses triviality on non-convex polytopes end/or when the feasible domain is disjoint. One useful strategy is to enclose the solution in an extended feasible and convex set. To avoid a too large sensitivity to noise and uncertainty, the solution should be sought in a neighborhood (𝜖𝜖-optimal solution, see Chapter II. Literature review

II.1.4.3. Convexity and convexification

Convex analysis is an emerging calculus of inequalities while convex optimization is its application. Analysis is inherently the domain of a mathematician while optimization belongs to the engineer. Because many non-convex goals and convex sets can be "convexified" by adding a cost function, splitting the feasible region into small convex ones or by extending the feasibility region, the study of convex problems is of general interest for resolving engineering problems under constraints. The properties of convexity and the strategies to extend them to non-convex problems or sets are illustrated in A convex optimization problem is conventionally regarded as minimization of a convex objective function subject to an artificial convex domain imposed upon it by the problem constraints. The constraints comprise equalities and inequalities of convex functions whose simultaneous solution set generally constitutes the imposed convex domain: called feasible set.

• Definitions

A function 𝑖𝑖(𝑥𝑥) is called convex if it verifies the following inequality for all 𝒙𝒙, 𝒚𝒚 ∈ ℝ 𝑙𝑙 respectively to any weight 0 ≤ 𝜆𝜆 ≤ 1 :

( ) ( ) ( ) ( ) ( ) 1 1 f f f λ λ λ λ + - - + ≤ x y x y (II.3)
Eq. (II.3) generalizes the restrictive concept of linear functions for some particular affine sets.

The equality At this stage, it is worth noticing that the roles of constraints and goals tend to have symmetric roles as the feasible solutions lie at their intersections. According to the type of problem, either the goals or the constraints can be more expensive to calculate.

( ) ( ) ( ) ( ) ( ) 1 1 f f f λ λ λ λ + - - = + x
For monotonic goals and in the absence of an optimal solution, an acceptable solution can be proposed as a compromise between many constraints. f. [START_REF] Tawarmalani | Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications[END_REF]; g. [START_REF] Rangaiah | Multi-Objective Optimization: Techniques and Applications in Chemical Engineering[END_REF].

II.1.5. Ecodesign concepts and tools

The concepts of green technology or clean technology and green chemistry are not standardized, but they strive to meet consumer and citizen expectations through sustainable technology. The presumption is that industrial design applied in the 19 th century and a significant part of the 20 th century damaged the quality of air, created marine litters, increased the number of chemicals to which we are exposed. Ecodesign targets new products and technologies which are intended to mitigate or reverse the effects of human activities. The orientation is complementary to the life cycle initiative (see §II. Ecodesign aims at reducing these impacts without prescribing all technical details. The EU directive 2009/125/EC (2009), so-called "Ecodesign Directive" established a framework for the setting of eco-design requirements for all "energy-related products" in the EU, where "'energy-related product', (a 'product'), means any good that has an impact on energy consumption during use which is placed on the market and/or put into service". Though the directive targets the reduction of energy use, it includes additional considerations such as water use, polluting emissions, and waste and recyclability issues. The working plan is ongoing, it mentions packaging but not food production, and does not set a minimum of ecological requirements.

II.1. Beyond engineering: computer-aided decision making 23 Figure II-4. How environmental impact is created along the decision chain supporting product development (after Lewis et al., 2001).

II.1.5.1. Overview

The "ecodesign" or "eco-design" literature is relatively recent and rapidly growing to reach 972 peer-reviewed articles published during the last decade (WOS). This number may look large, but it covers all applications of ecodesign. The first review on ecodesign was published in 1994 [START_REF] Roy | The evolution of ecodesign[END_REF]. The first similar work on food packaging was proposed by Gordon Robertson (2009b) fifteen years later as a chapter in the "Handbook of waste management and co-product recovery in food processing -Volume 2".

All publications on ecodesign are contemporary of the groundbreaking manual "Ecodesign: A Promising Approach to Sustainable Production and Consumption" published in 1997 by the United Nations Environment Programme [START_REF] Brezet | Ecodesign: A promising approach to sustainable production and consumption[END_REF]. It was built upon the work carried out mainly at the Dutch Delft University of Technology. As quoted from the 2009 report [START_REF] Crul | Design for Sustainability a step-by-step approach[END_REF] of UNEP "Design for sustainability: a step-by-step approach": "The concept of product re-design has since then spread as seen in the number of manuals and sector-specific supporting materials now produced in many languages. As a result, and based on experience gained, ecodesign has evolved through Design for Environment (DfE) to the broader concept of D4S-which encompasses issues such the social component of sustainability and the need to develop new ways to meet consumer needs in a less resource intensive way. D4S goes beyond how to make a 'green' product -and now strives to meet consumer needs through sustainability in a systematic and systemic way".
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II.1.5.2. Definitions and example

Various environment-related terms and definitions have been used to highlight the importance of sustainable development in the packaging field, such as eco, green, environmentally sustainable, friendly, conscious, and extra, all of which reflect a desire to "protect our environment for the future." (see chapter 12 of Han,2014). The standardization committee ISO/TC 207/SC 1 (ISO, 1993), created in 1993 to work on Environmental management systems, introduced the concepts of ecodesign in the standard ISO 14006 (2011) with the following definitions:

• design and development: "set of processes that transforms requirements into specified characteristics or the specification of a product, process or system";

• ecodesign: "integration of environmental aspects into product design and development, to reduce adverse environmental impacts throughout a product's life cycle";

• products: "any good or service".

Additionally, it is stated that "Ecodesign can be understood as a process integrated within the design and development that aims to reduce environmental impacts and continually to improve the environmental performance of the products, throughout their life cycle from raw material extraction to end of life. In order to be of benefit to the organization and to ensure that the organization achieves its environmental objectives, it is intended that ecodesign be carried out as an integral part of the business operations of the organization.

Ecodesign might have implications for all functions of an organization." According to [START_REF] Karlsson | EcoDesign: what's happening? An overview of the subject area of EcoDesign and of the papers in this special issue[END_REF], engineering and design should be reinvented with EcoDesign as foundation with a significant place given to environmental sciences in engineering cursus. 

An example of the aspects covered by ecodesign is shown in

II.1.5.3. Ecodesign methodologies: a critical review

The methodologies of ecodesign are evolving with the appropriation of the concepts by the different branches of the industry. They mutate progressively from TRIZ-derived and ranking approaches suggested by pioneers to new hybrid methods including computational engineering. Despite the forest of methods, they can be classified by their degree of quantification and their ability to be prospective and to be integrated into the design process. An overview of the trends is shown in Figure II-6. It is notable that the tools and approaches follow an evolution different from the one followed with engineering and detailed design approaches.

The lack of integration is apparent, and the software in ecodesign and life cycle analysis start to generate their own ecosystem with their own logic, vocabulary, and concepts.

The pro and con of the different methodologies have been significantly discussed in the literature, with the notable references [START_REF] Karlsson | EcoDesign: what's happening? An overview of the subject area of EcoDesign and of the papers in this special issue[END_REF][START_REF] Sakao | A QFD-centred design methodology for environmentally conscious product design[END_REF][START_REF] Ramani | Integrated Sustainable Life Cycle Design: A Review[END_REF][START_REF] Bovea | A taxonomy of ecodesign tools for integrating environmental requirements into the product design process[END_REF][START_REF] Dufrene | An engineering platform to support a practical integrated eco-design methodology[END_REF][START_REF] Vallet | Using ecodesign tools: An overview of experts' practices[END_REF][START_REF] Rossi | Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies[END_REF][START_REF] Brones | Reviews, action and learning on change management for ecodesign transition[END_REF][START_REF] Buchert | Target-driven selection and scheduling of methods for sustainable product development[END_REF]. The analysis from the open literature has; however, inherent limits, it does not enable to establish which method is effectively used in the industry. The main barriers that limit their implementations are rarely reported, but they include the need of specific knowledge, time-consuming efforts and personnel efforts, the large number of tools and the over-formalization [START_REF] Rossi | Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies[END_REF].

Chapter II. Literature review A non-inclusive classification of main methodologies is proposed in Table II-5 with an intent of showing that they can be understood as a special case of solving problem strategies listed in Table II-1. The classification of ecodesign tools is derived from a prior categorization by [START_REF] Baumann | Mapping the green product development field: engineering, policy and business perspectives[END_REF] and subsequently discussed by [START_REF] Buchert | Target-driven selection and scheduling of methods for sustainable product development[END_REF]. Ecodesign methods were initially split into five first categories "frameworks, checklists and guidelines, rating and ranking tools, analytical tools, software, and expert systems, and organizing tools" to which computer-aided design approaches, not available at the time, need to be appended.

The whole framework for ecodesign tools remains immature without common standards and interoperability. No significant collaborative and interdisciplinary project organize the numeric implementation of eco-concepts. The applicability of presented tools to hybrid systems such as food and packaging remains challenging and without specific guidance. [START_REF] Crul | Design for Sustainability: A Practical Approach for Developing Economies[END_REF]; b. [START_REF] Buchert | Target-driven selection and scheduling of methods for sustainable product development[END_REF];Charter and Tischner (2017); c. [START_REF] Kobayashi | A systematic approach to eco-innovative product design based on life cycle planning[END_REF]d. Yu et al. (2017); e. [START_REF] Finkbeiner | Towards Life Cycle Sustainability Assessment[END_REF]; f. [START_REF] Lewis | Design + Environment: A Global Guide to Designing Greener Goods[END_REF]; Luttropp and Lagerstedt (2006);g. Hoffmann (2007); h. [START_REF] Dong | Integration of Green Quality Function Deployment and Fuzzy Multi-Attribute Utility Theory-Based Cost Estimation for Environmentally Conscious Product Development[END_REF]; i. [START_REF] Kolsch | How to measure social impacts? A socio-eco-efficiency analysis by the SEEBALANCE® method[END_REF]; j. [START_REF] Morrison | Axiomatic Design for eco-design: eAD+[END_REF]): k. Shuaib et al. (2014); l. [START_REF] Thurston | Constrained Optimization for Green Engineering Decision-Making[END_REF]; [START_REF] Khan | Life cycle iNdeX (LInX): a new indexing procedure for process and product design and decision-making[END_REF]m. Hermann et al. (2007); n. [START_REF] Dufrene | An engineering platform to support a practical integrated eco-design methodology[END_REF]o. thinkstep (2019);p. (simapro, 2019); q. (ecoinvent, 2019): r. (GreenDelta, 2019); s. [START_REF] Romli | Integrated eco-design decision-making for sustainable product development[END_REF]; t. [START_REF] Leibrecht | Fundamental Principles for CAD-based Ecological Assessments (9 pp)[END_REF]; u. [START_REF] Cappelli | Design for disassembly: a methodology for identifying the optimal disassembly sequence[END_REF]v. Hatcher et al. (2011).
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Key points of II.1. Beyond engineering: computer-aided decision making

Facing numerous challenges which could affect the survivability of mankind on our planet, all industries should turn their practices to more environment-friendly approaches. No industry can avoid the effort, either the food or the packaging industries. They face together simultaneous challenges including food security, food safety, and environmental challenges.

Decisions need to be made by anticipation and integrated at the early stages of the development of products. The methodologies to take objective decisions in the presence of contradictory goals (e.g., profit, sustainability, performance, etc.) exist as well as the methods to find Pareto optimums.

Ecodesign initiated a special branch of approaches merging engineering methodologies and environmental design. The nascent formalization of ecodesign methodologies is similar to the situation met by innovators before the industrialization era. Each master and country created a school of thoughts but without granting that both safety and environmental principles are mastered at all stages. As an example, the role of the supply chain for food packaging is not documented. On the one hand, smaller packaged food portions contribute to reducing food wastes, but they increase packaging wastes. On the other hand, exporting small portions with large surface areas to distant markets increase the dependence on high barrier materials.

The next sections will discuss how chemical and environmental risks can be evaluated independently the way they are managed along the value chain.

II.2. Evaluation of the migration from packaging materials 29

II.2. Evaluation of the migration from packaging materials

II.2.1. Preamble and scope

The evaluation of the migration has been subjected to an extensive review as a chapter in curated reference collection in Food Science of Elsevier. [START_REF] Zhu | Risk assessment of migration from packaging materials into food[END_REF] The chapter has been designed to serve as in depth and comprehensive compendium of the methods available to assess the risk of migration. Migration is a generic term belonging to the jargon used by several communities dealing with packaging, food, medical, pharmaceutical and biotechnological applications. In the context of food packaging, it encompasses all mass transfer phenomena associated to the chemical contamination of food by any material (thermoplastics, elastomer, timber, printing ink, glue, varnish, etc.) intended to be in contact (primary packaging) without excluding contaminations by secondary and ternary packaging. The underlying phenomena include diffusion, sorption and desorption from or to a condensed phase (liquid or solid) and from/to a gas phase. Migration problems present several similarities with outgassing phenomena met in ultra-vacuum and spatial applications (NASA, 2018). In porous media, outgassing is usually associated to the release of trapped gas and the evaporation of water. In dense thermoplastics and thermosets subjected to strong temperature variations, outgassing phenomena cover the desorption of any chemical substance and usually its condensation on another material or a colder surface. In closed automobiles and rooms, outgassing is responsible for the smell of the air inside.

The risk of migration is one important step in the risk assessment methodology aiming at evaluating the exposure of consumers (by ingestion) to substances originating from food contact materials. In simpler words, the methodology assesses whether the mass transfer of a given substance in one or several modalities is tolerable regarding some thresholds: maximum concentration in food, maximum amount transferable to food, maximum concentration acceptable in the original material, tolerable daily intake, threshold of concern based on toxicological considerations. In quantitative risk analysis, the concept of risk is associated with the probability to have a given threshold value to be exceeded. The final decision to accept or reject the risk is based on the value of this probability and not on the extent of the mass transfer. The final probability includes both the variability of the results (which could be measured but not reduced) and the uncertainty in the knowledge of the phenomena (which could not be measured but which could be reduced with additional expertise).

This section reproduces the aspects of the chapter related to the description of mass transfer between a thermoplastic and a liquid food from molecular to macroscopic scales. The Chapter II. Literature review concepts enabling to generalize results obtained in constant conditions to variable ones (e.g. temperatures) are presented as well as the mathematical framework required to evaluable objective probabilities associated to these mass transfer. Many results have been specifically developed for the needs of risk assessment, but they can be seen as fundamental for any mass transfer involving molecular diffusion, monotonic operators (contamination is evaluated as a cumulant).

The full content of this section is available in:

Zhu, Y., Nguyen, P.M., Vitrac, O. 2019. Risk assessment of migration from packaging materials into food. In "Reference Module in Food Science". Volume In Press. Elsevier. Amsterdam. https://doi.org/10.1016/B978-0-08-100596-5.22501-8. 64p.

II.2.2. Principles of tiered migration modeling for risk assessment

II.2.2.1. Verifiable and auditable modeling to support decisions about safety

Migration modeling has been developed to enable a rapid demonstration of the compliance of materials in contact with food. It follows good practices in modeling stated by Marc [START_REF] Spiegelman | Myths and Methods in Modeling[END_REF]: (i) work on right decision problem, (ii) specify your objectives, (iii) create imaginative alternatives, (iv) understand the consequences, (v) grapple with tradeoffs, (vi) clarify your uncertainties, (vii) think hard about risk tolerance, (viii) Consider linked decisions.

In the field of risk assessment, the following rule should be added: modeling should be verifiable and auditable as modeling is to take decision with legal consequences. Tiered modeling is a methodology enabling to create a confidence in modeling among stakeholders. Sophisticated modeling with complex reasoning and computational power should be limited to situations, where simple conservative scenarios cannot demonstrate the safety of considered application. As a result, tiered modeling is not seen as one single step simulation, but as iterative process with enriched hypotheses and mechanisms at each step.

II.2.2.2. Principles of tiered modeling

• Overview

From an epistemological point of view, the exact value of the contamination of the food is never achievable because the conditions of contact are variable (time, temperature) between comparable products and because knowledge of molecular mechanisms is not perfect. The concept of successive approximations is shown in Figure II-7. At the first tier, the estimation is very coarse and connected with the highest overestimation factor. If the determined concentration at tier n is higher than the threshold of concern, the next tier is triggered by intro- ducing substantial refinements and details, and so on. The process stops when no additional information can be introduced (experiments need to be preferred) or when the calculated concentration is lower than the threshold of concern. The lowest tier within the threshold of concern defines the proper level of knowledge required to demonstrate compliance or to guarantee the safe use of a material, substance, or process. There is no systematic procedure to identify the minimum tier to reach the goal, and only the needed information can be listed.

In Europe, the Joint Research Centre (Ispra, Italy) of the European Commission updated regularly a guide exemplifying the principles of tier modeling and application under "Plastics" regulation 10/2011/EC (2011a). It is thought that the compliance of ca. two thirds of all food contact in materials on plastics is verified by modeling. Compliance is demonstrated as soon as the estimated concentration is greater than the threshold of concern. Tier 1 is usually associated with total migration (see Eq. (II.4)).

• First tier model

The possibilities and prerequisites for using migration modeling in compliance testing are reviewed in Table 3 of [START_REF] Zhu | Risk assessment of migration from packaging materials into food[END_REF], which reproduced succinctly in Table II-6. The first tier is usually coined "total migration" and corresponds to the total transfer of substances into food. The corresponding concentration in food,

1 tier F C , is determined by a "dilution" model: 1 0 / tier F P F P C L C = (II.4)
where 0 P C is the initial concentration in the material (regardless of its distribution) ex- pressed in mass per volume (preferred in this work) or in mass per mass (industrial practice).

/ P F L is the material-to-food volume or mass ratio. When one-dimensional representations are used, / P F L is also the ratio between the thickness of packaging walls, denoted p l , and the char- acteristic dimension of the food, denoted

F F V l A =
, where A is the effective surface area in

Chapter II. Literature review contact, counting usually the total surface area in contact with the food and the headspace. By contrast, the food volume F V is restricted to the condensed part of the food (solid or liquid). 

II.2.3. Common assumptions used in migration modeling

II.2.3.1. Underlying microscopic assumptions

Substances non-covalently bound to the polymer are subjected to thermal agitation, which causes in return a random translation of their center-of-mass. Each additive, monomer, or residue jumps or walks randomly in the polymer matrix from one accessible void to the next.

The substances eventually reach the interface with the food, where the same hopping process is repeated, usually at a higher pace. When volatile substances meet a gas phase, their skew trajectories are governed by the collision with gas molecules. In all cases, random walks occur in three-dimensions, but a concentration gradient develops only at leaching interfaces, in a x l x l > +

) without any significant concentration gradient (e.g., assumption of a perfectly mixed medium). Choosing BL p x l as a free parameter enables covering almost all contacting phases (gas, liquid food or simulant, solid and semi-solid food) with reasonable complexity.

Figure II-8 plots simulation results using the concepts of statistical physics (i.e., the molecules jump randomly vertically and horizontally without "knowing" where the interface is located) and by using the concept of continuum mechanics (i.e., balance on populations and macroscopic fluxes on elementary volumes). The stochastic and deterministic point of views are equivalent and highlight that the observed macroscopic gradients are the consequence of the evolution of the distributions of solutes with time and not its cause. In the upward direction, the random displacements are compensated by the same and opposite microscopic flux in the downward direction. The net balance is zero, and no concentration gradient can develop.

The substances translate at the same frequency in the horizontal direction (i.e., isotropic diffusion), but since no solute comes to compensate the flux from left to right at the beginning of the contact, a net flux develops from left to right, resulting in the spreading of a concentration gradient from the source (the polymer: P ) to the food (the food: F ). Statistical physics and continuum mechanics counts molecules in a very similar fashion, via the concepts of probability density,

0 N N V ρ = and of volume concentration 0 C N ρ =
, respectively. 0 N is the total number of migrating substances in the whole system and N the number of molecules in an elemental volume V . The concentration at the interface between F and P (denoted P-F) requires specific treatment and analysis. Since the principle zero of thermodynamics does not hold for mass transfer, both density and concentration are discontinuous at the P-F interface.

If no reaction occurs at the interface, the mass balance is kept across the interface (i.e., no substance is lost). Additionally, the principle of microscopic reversibility entails that the amount of substances crossing the interface per time unit from left to right (denoted P→F) is exactly matched by the amount of substances crossing the interface in the opposite direction

Chapter II. Literature review (denoted F→P). In other words, any substance located exactly at the interface p x l = has the same probability to go in P and F, irrespective of its origin. This principle of microscopic mass balance reads:

F P P P F F f f ρ ρ → → = (II.5)
where B A f → is the frequency of translating from the compartment A to the compartment B .

The concept of local chemical equilibrium developed among others by Henry Eyring provides a robust framework to express the frequencies of passage from one state to another without justifying the details on how the change in conformations and local velocities affect the passage from A to B. The frequency of passage is written as:

‡ exp A A B G G RT f κ →   - -   =   (II.6) with ‡
G the free energy associated with the transition state and A G the free energy of sorption of the solute in A. The preexponential factor κ is independent of temperature; its expression depends on the statistical ensemble used to express probabilities. By combining Eqs (II.5) and

(II.6), the molecules distribute across the interface with a ratio of probabilities equal to:

( ) ( ) / , exp , P P F F P P F P C x l t G G K C x l t RT ρ ρ = + -   = = = -   = -     with 0 →  and 0 t > (II.7)
where x and t indicate the position and time; the food-packaging interface is located at

P x l = .
The concentration profiles are, therefore, continuous across the P-F interface only when the free sorption energies are similar in both compartments. In the general case, the concentration profile is discontinuous across the interface. Figure II-8 plots cases for an apparent partition coefficient / F P K of 0.5. In other words, the substance has double the chemical affinity for P than for F, as expected for plastic additives and monomers. For conservative migration modeling, values of / F P K higher than unity are preferred to maximize the gradient and consequently the amount transferred to the food. When the release of a substance does not modify the properties of the polymer (e.g. polymer densification, or a shift in the glass transition temperature g T ), the ratio of concentrations is likely to be constant at the interface. Fo and Bi correspond to dimensionless time and ratio internal-to-external mass transfer resistance, which are both defined in Table II-7.

II.2.3.2. Migration modeling and similitude properties

Under the assumption of uniform and constant transport and thermodynamic properties in each compartment (polymer: P, boundary layer: BL, bulk contacting phase or food: F), the mass transfer problem is similar according to a small number of dimensionless parameters Chapter II. Literature review or ratios. According to the principle of similitude, a real problem can be compared to a theoretical case without dimensions if all independent dimensionless quantities are similar. The key dimensionless quantities are reviewed in Table II-8. x q l = Dimensionless position P l is characteristic food dimension, usually the thickness or the ratio P V A if the geometry is complex, with P V the volume of the material and A the surface area in contact with F . It is recommended to maximize A by also including the headspace in the calculations of A . 

P P F F F l V A L l V A = = Dilution ra- tio
This number is defined as the ratio of characteristic lengths and controls how the substances are diluted in the food, usually much larger than the packaging.

II.2.3.3. Explicit vs implicit food representation

It would be logical that migration models describe explicitly how the migrants distribute in the food. Solid foods, such as a chicken or a pizza, are not expected to have all parts contaminated similarly. For risk assessment, all the parts that are intended to be ingested, including the most contaminated sauce in contact with the packaging are considered. As a result, only a global estimate of the food contamination is required, as measured with a liquid simulating the entire food. Replacing a solid by a liquid or vice-versa has a consequence on the rates of mass transfer. This section discusses the differences between explicit and implicit representations of the food and the risk of underestimating the real migration.

Figure II-8 represents explicitly mass transfer in the food, that is the concentration profiles in the food are also calculated. The depicted cases correspond to a characteristic food length

F F V l A =
of 12 p l (i.e., thin food to make the boundary layer visible). The total domain has a length of 13 p l . When the food is represented explicitly, the amount transferred to the food is defined as:

( ) ( ) 1 , p F P x l l F F x l C t C x t dx l = + = = ∫ (II.8)
Eq. (II.8) accumulates substances in the boundary layer (round symbols) and in the food bulk (square symbols). Implicit food representation will describe mass transfer only in the packaging and apply a proper boundary condition between the food and the packaging at the position p x l = . With the help of Eq.(II.7), the flux at the interface, denoted j , can be ex- pressed only with concentrations taken inside the packaging or in the food far from the interface, ( )

, C x t → ∞ .
This assumption opens the way for an implicit representation of the food via a boundary condition relating the diffusion at the packaging-food interface with the flux entering into the food:

( ) ( ) ( ) ( ) ( ) ( ) ( ) / , , , , , P x l F 
P p t C C x t C x t x K C x t C x t j t D h h = - ∂ + - → ∞ ∂ - - = = = ∞ - →    with 0 →  and 0 t > (II.9)
Eq. (II.9) offers a good approximation of the explicit representation when the contact time is sufficient to reach a fully developed concentration profile (linear, so-called Prandtl approximation) inside the boundary layer. ) and an implicit Chapter II. Literature review representation can be used. Its main advantage is the dramatic reduction in the problem complexity and the computational time. In very thin or low barrier films and in solid foods, the implicit food representation may severely underestimate the contamination of the food. The amounts in the boundary layer reported in Figure II-8a reach 9%, 18% and 22% for Bi = 10,5,1 respectively. When an implicit representation is used, calculating the concentration in the food from the mass balance in the packaging between 0 t = and t does not solve the issue as the closure equalities are enforced at any time:

( ) ( ) ( ) 0 , , p l F dC x dC d C x t dx j t d t t dt dt   = = =     → ∞   ∫ for 0 t > (II.11)
The amount present in the boundary layer is always neglected in migration representing the food implicitly. Only by choosing artificially Bi → ∞ as a worst-case scenario makes this amount negligible at the price of migration much faster than that expected in the real conditions.

• Other assumptions

In this section the constitutive equations to describe mass transfer from monolayer and multilayer materials, when the food is represented implicitly via the boundary condition (II.9) and the food mass balance (II.11) are presented. The total packaging thickness is denoted

1 m p i i l l = =
∑ for a packaging (e.g. laminate) consisting of m layers. At the position 0

x = (usually the surface exposed to the ambient environment), an impervious boundary layer is assumed so that the amount transferred to the food is maximized. All substances are assumed to be well dispersed where they have been incorporated (e.g., no blooming effect) and below their concentration at saturation (i.e., no supersaturation).

II.2.3.4. Governing equations for monolayer materials

II.2.3.4.1. Overview

The full set of equations for monolayer materials including the initial condition (IC), the transport equation (TE), the boundary conditions (BC) and the mass balance on the food compartment (MB) are: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
IC C C x C C TE D C x x t x x x C BC j t D h K C C t x C t x A MB C t C t j d V l l t τ τ = = = - = - = ≤ ≤ ≤ ≤ > →   =   ∂ ∂   ∂  =     ∂ ∂ ∂     ∂      = - =-        ∂     ∂  = >  ∂ = =  ≥   +  ∫    (II.12)
where n is an exponent controlling the system of coordinates ( 0 n = : Cartesian,

1 n = : cylindrical; 2 n = : spherical); ( ) ( ) , P x t D C
is the diffusion coefficient that possibly varies with concentration (e.g., in the case of plasticizers used at high concentrations).

When the diffusion coefficient in the packaging is considered constant along with ( )

0 0 F C t = =
,Table II-8 and system (II.12) yield the following dimensionless formulation for Cartesian coordinates: q Fo q Fo q Fo F F P q Fo t P q q Fo q Fo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
F P F t P IC u u u TE q Fo q u C t BC j Fo Bi K u q C u t q C t MB L q Fo j d C τ τ = = - = = - = =   =   ∂ ∂  =  ∂ ∂   ∂    = ≤ ≤ ≤ ≤ > → - = -    ∂     ∂  = >  ∂    =   ≥ ∫    (II.13)
When Bi → ∞ , the third type boundary condition at 1 q = (Robin boundary condi- tion) can be replaced by a simple coupling with the mass balance. Differentiating BM with respect to Fo , yields:

( ) ( ) ( ) ( ) , 1, * / 0 / / 1 1 q Fo q Fo F F P t P F P P F q u u dC t K j Fo q Fo L C dFo L = = = - ∂ = - = = ∂ ∂ ∂  (II.14) Chapter II. Literature review
The worst-case scenario when Bi → ∞ and

/ F P K → ∞ corresponds to the Dirichlet boundary condition ( ) 1, 0 q Fo u = = .

II.2.3.4.2. Concentration in the contact phase at thermodynamic equilibrium

According to Eq. (II.13), the maximum concentration in food is obtained at thermodynamic equilibrium ( * 0 j → ):

( )

0 0 / / 1 1 1 eq F F t t P P P F F P C Fo C C C L K = = = ∞ = + → (II.15)
In practice it is convenient to express the kinetics of desorption in food as a function of the fraction of the equilibrium value: 

( ) ( ) 
( ) 0 / / / /
C C Fo Bi K L Fo Bi K L L K C Fo Bi K v v L = = + = (II.16)

II.2.3.4.3. Dimensionless migration kinetics and their analytical approximations

The dimensionless migration kinetics ( )

* / /
, , ,

F P P F v Fo Bi K L are plotted in Figure II-9.
The analytical solution associated with the Dirichlet condition ( )

, 0 p C x l t = =
is given by Eq. 4.18 in Crank's book (1975) and reads:

( ) ( ) ( ) * 2 8 1 lim F n eq n F C Fo Fo S Fo v C π →∞ = = - with ( ) ( ) ( ) ( ) 2 2 4 2 0 exp 2 1 2 1 n n i i Fo S Fo i π = - + = + ∑ (II.17)
For small Fo values, the approximation (II.17) requires n to be very large (10 3 or 10 4 ) and a more efficient approximation can be obtained by combining an approximation of Eq 4.20 in Crank's book (1975) with Eq. (II.17) for

0 i = as: ( ) 2 * 2 2 2 2 min ,1 exp min ,1 4 Fo Fo Fo Fo v π π π π       = - - ≤             (II.18)
Approximations (II.17 v is overestimated) and Eq. (II.18) can be used safely for compliance testing. However, when 100 F   (e.g., small food volume, low chemical affinity for the food), Eq. (II.18) must be avoided due to a significant risk of underestimation of low Fo values. The equilibrium is, indeed, reached much faster due to a much smaller amount to transfer and because the concentration at the F-P interface never vanishes. An accurate estimation of migration requires ad-hoc numerical solutions or special analytical solutions. In mathematical terms, finite volume effects cause the propagation of shockwaves between the polymer and the contacting phase: the addition of substances to F modifies instantaneously the capacity of P to transfer additional substances, and so on for the next substances creating positive and destructive interference across the mass transfer boundary layer when it exists.

One practical consequence is that analytical solutions are without closed-forms and therefore more complex than Eq. (II.18).

For Bi → ∞ [START_REF] Sagiv | Exact solution of mass diffusion into a finite volume[END_REF][START_REF] Sagiv | Theoretical formulation of the diffusion through a slab-theory validation[END_REF][START_REF] Vitrac | Identification of Diffusion Transport Properties from Desorption/Sorption Kinetics: An Analysis Based on a New Approximation of Fick Equation during Solid-Liquid Contact[END_REF][START_REF] Goujot | Extension to nonlinear adsorption isotherms of exact analytical solutions to mass diffusion problems[END_REF]. Shorttime and long-time solutions were optimized for efficiency and to integrate more complex physics such as non-linear sorption isotherms or for boundary conditions variable in time.

The general solutions are not detailed here as their expressions exceed the scope of the work. When Bi → ∞ , the Eq. 4. 37 in Crank's book (1975) reads:

( ) ( ) ( ) 2 2 1 * 2 1 1 2 exp 1 F F F n n F n v Fo q Fo q ∞ = + = - + + - ∑    
where n q are zeros of tan n

F n q q = - (II.19)
The zeros of the transcendental equation, n q , increase with n and also when F  de- creases. This behavior demonstrates that ( ) * v Fo converges exponentially and more rapidly to equilibrium when F  values are low. The linearization with Fo ceases to be correct earlier and is associated to slopes varying with F  . As the values of n q are usually not tabulated be- yond 6 n = in reference text books (see Table 4.1, p. 379 in Crank, 1975) 

II.2.3.5.1. Thermodynamic assumptions

The case of materials consisting of m materials or layers ( 1 m > ) can be seen as a gen- eralization of the monolayer case ( 1 m = ) at the expense of a few additional assumptions and conventions. Because monolayer systems were dominating in the 20 th century, the reasoning supporting US and EU regulations was, therefore, devised based on an assumption of migration without delay and obeying a scaling proportional to the square root of time. The conventional condition of ten days at 40°C was thus thought to be equivalent to a test of one hundred days with a factor comprised between unity (equilibrium) and 100 days 10 days

≈

( 1) Fo  . Moving the substances away from the P-F interface delays substantially the mass transfer to the contacting phase. This behavior is central to the concept of functional barrier [START_REF] Feigenbaum | Functional barriers: Properties and evaluation AU -Feigenbaum[END_REF]; it was initially explored to promote the incorporation of recycled material -possibly contaminated due to post-consumer misuse or mixing with non-food grade materials -in co-extrudates. The recycled polymer is sandwiched within two layers of virgin polymers. Similar problems can be resolved only by adapting the initial condition ( )

, 0 C x t = in the equation system (II.12) to the need instead of using a uniform distribution.

When the materials are different in nature, a contact condition similar to Eq. (II.7) needs to be considered. The proposed description relies on an assumption of a linear and reversible sorption of substances in each layer so that a linear sorption isotherm is assumed in any layer, including in the food. By denoting ( ) , p x t the partial pressure of the migrating sub- stance, the isotherm associated with the Henry constant { } 0.. j j m k = for each layer is:

( ) ( ) , , j p x t k C x t = for 1 0 j j L x L - ≤ ≤ < and 0 t > ; with 1 j j i i L l = = ∑ and 0 j m ≤ ≤ (II.20)
For the sake of generalization, the layers including the food are indexed from 0 j = (food: F) to j m = (layer the most distant to F), with 1 j = being the contact layer, as shown in Figure II-10. The residual concentration in each layer is

( ) ( ) 1 1 , , j j L j j L C x t C x t dt l - = ∫ for 1 j m ≤ ≤ and ( ) ( ) 0 F C t C t = .
Chapter II. Literature review Figure II-10. Indexing rule of a material including m layers (total thickness lP) in contact with a food indexed 0. The left and right external boundaries are considered impervious (no mass loss). The concepts of "functional barrier" and "reservoir" assume that layer j is the source (with non-zero initial concentration). It is used in §II.2.3.5.5. and §II.2.3.5.6. .

II.2.3.5.2. Concentration in the contact phase at thermodynamic equilibrium

The Henry sorption isotherm defined in Eq. (II.20) offers a robust but simplified thermodynamic representation of the variation of the chemical potential with the local composition in the system. The validity of the model and its generalization are discussed in §II.2.5.2.

Partial pressure ( ) , p x t is a continuous potential, and thermodynamic equilibrium is achieved when its value is uniform across the structure. By neglecting mass losses, Eq. (II.20) and the mass balance between

0 t = and t → ∞ 0 0 0 m m t t j j j j j j C l C l = →∞ = = = ∑ ∑
enables generalization of Eq. (II.15):

0 0 0 0 0 1 0 1 m j t j j eq t F m j j J l C l C C l k k l ∞ = = = → = = + ∑ ∑ (II.21) where 0 0 t t j j k k C C →∞ →∞ =
is the partition coefficient between the layer j and the food.

II.2.3.5.3. Transport equations

Transport equations are unchanged and are defined as:

( ) ( ) 2 2 , , j C x t C t t D x x = ∂ ∂ ∂ ∂ for 1 0 j j L x L - ≤ ≤ < and 1 j m ≤ ≤ (II.22)
and connected at internal interfaces via the double conditions of mass conservation and local thermodynamic equilibrium:

( ) ( ) ( ) ( ) 1 1 , , for , , fo 1 r 0 j j x L x L j j j j j j C x t C x t j m x x k C x L t k C x L t j m D D = - = + + + ∂ ∂ = ≤ < ∂ ∂ = - = = - ≤ <     and 0 →  , 0 t > (II.23)

II.2.3.5.4. Limiting mass transfer resistance

A dimensionless formulation of Eqs (II.9), (II.22) and (II.23) is achievable at the expense of choosing a reference layer, 1 ref j m ≤ ≤ , and setting the reference time scale as

2 ref ref j j l D .
In numerical algorithms, where stability and convergence are very stringent, it is convenient to choose as a reference layer, the layer associated with the highest mass transfer resistance (lowest permeability) is the best choice:

1.. such that max ref ref ref j j j r j ef j j j m l k l k j D D =         =           (II.24)
If several conditions need to be compared, a natural choice is to choose the contact layer as the reference layer (

1 ref j = ).

II.2.3.5.5. Typologies of migration behaviors

The main behaviors, which can be observed with multilayers, are illustrated in simple configurations corresponding to a bilayer structure (each layer has a thickness

2 p l
) in contact with a liquid phase with a characteristic thickness 50 p l and associated with 0 1 k = . The five considered cases are summarized in Table II-9 and were associated with a similar initial amount and comparable final concentration in the contacting phase ca. ( )

0 j C j k interpretation code 1 j = 2 j = 1 j = 2 j = 1 1 1 1 uniform distribution (equivalent to a monolayer) [1,1]×[1,1] 0 2 1 1 functional barrier (barrier to diffusion only) [0,2]×[1,1] 2 0 1 1 reservoir layer (same capacity) [2,0]×[1,1]
j M t (amount transferred to F at the time t ), is maximized (denoted ( ) j M t    
) if the following properties are fulfilled: is replaced by >D for 1 and is replaced by for 0 is replaced by <D and is replaced by for indexed 1,2,3). They are scalar when the contribution of each layer as a source is considered in combination with others (the three sources are considered at once). The contributions of individual sources are indicated by 3×1 vectors mentioning the properties of all layers considered as a source or not. contribution of the j th layer Eq. (II.25) provides a numerical procedure to devise conservative scenarios for multilayer structures. A similar procedure has been detailed in section 4.2 of the European guidance document [START_REF] Hoekstra | Practical guidelines on the application of migration modelling for the estimation of specific migration -EUR 27529 EN[END_REF]. Here the procedure for the sole overestimation of the chemical affinity effects is repeated by keeping the diffusion coefficients to their "likely" values. The core idea is to prevent or hinder the diffusion of the substances in the j th layer to the right (by assuming that the food is on the left) and to facilitate their desorption to the left, to bring the contaminants closer to the food. The "conservative scenario" of Table II- In practice, any uncertainty on the internal partitioning between layers can be converted into a conservative scenario by forcing mass transfer to the food and by relocating "artificially" the content from layer j to layer 1 j -. The iterative procedure is illustrated in layer problem, until reaching tier 1 (total migration). The first iteration applied to the casestudy is denoted "worst-case" scenario in Table II-10. The procedure may overestimate dramatically the real migration, but it keeps the applicability of conservative calculations to demonstrate safety at low cost. For risk assessment, the procedure may be applied with caution as it may lead to unrealistic consumer exposure. 

i i i i i i i i i i i i D D i k k k j j i D D k k k j m i ≤ ≤ ≤ <         > ≤ <        ≤  (II.
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 0, 0, where is the number of profiles, 0 , 0, , 0, , 0, , 0, , 0 1 
, p j j p p F F j j j F F p j j j F C t x C t x p x M t C t x M t C t x C t C t x V V M t C t x C C t x V l t = = = = = = = = = = =   = ≥ ≤   =    ≤ ≤ =  ∑ ∑ ∑ (II.
1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 2 3 j likely likely likely l l l l + + 0.2 0.5 0.3 0.2 0.5 0.3 0.2 0.5 none 0 0, 1 likely j C C 1 1 1 [1,0,0] [0,1,0] [0,0,1] 3.5 0.6 none 1 likely j D D 1 1 1 [1,10 -3 ,10 -3 ] [1,1,10 -3 ] [1,10,10] 1 1 none 0 likely j k k 0.3 0.8 2.0 [10,10,10] [1,10,10] [1,1,10]

II.2.3.6. Strategies and equations to simulate multiple steps and conditions

This part discusses the invariance of migration estimates, namely ( ) F C t , with the or- der of contact and the thermodynamic conditions met by the components of the packaging before and during food contact.

II.2.3.6.1. Problem formulation

Mass transfer between components and materials occur insidiously along the supply chain. Figure II-15 illustrates conditions triggering or altering migration from printed materials. Many uncontrolled factors may affect the extent of mass transfer: i) variable contact or exposure times, ii) random combinations of storage and transportation steps for intermediate, finished packaging materials and packaged foods, iii) changes in temperature and relative humidity (e.g., seasonal, diurnal, international transportation), iv) modifications of boundary conditions during any stage of materials lifetime and product shelf life. The redistribution of migrants between materials, layers, and components deserve special attention as it usually remains ignored by end-users. In practice, cross-contamination occurrences can also be considered indirectly (i.e., without causailty) as impurities and non-intentionally added substances. Without being exhaustive, cross-contamination is highly likely from cured adhesives and printing inks, recycled materials and any material with rich volatile organic compounds.

Packaging and materials stored in stacks and reels ease cross contaminations by contacting 52Chapter II. Literature review internal and external layers, regardless of the presence of a functional barrier (absolute such as a metallic layer or relative such as a barrier polymer) in the structure. Due to periodic conditions, the inner layer can act as a reservoir of contaminants before the food is put in contact.

Figure II-15. Illustration of the redistribution of the migrants from UV-cured printing ink and their subsequent migration in food for long shelf life products. The depicted cases cover hot-filled or aseptically filled products (e.g., soups, pasteurized juices, sterilized dairy products), and dry or ready-toeat products stored in cardboard boxes.

From a mathematical viewpoint, the succession of steps and temperature variations can be seen as a sequence of constant conditions occurring in variable order. In the presence of steps n conditions occurring at time 1, 2 0, ,..., steps n t t t t = , the composite solution is obtained by integrating the coupled system (II.12) via the Chasles' relation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 0 0 0 , 0 , 0 0 0 0 0 , , , , , , , , ( , ) , 
i P F i i F t t n n i C x t C x t t t t t n t t F n P F i t C C C C F F C x t C x t dt C x t dt C t C x t C t C x t C t C C dt dt t t d dt dt d + + = = = = = = = = = = = ∂ ∂ ∂ ∂ = = = ∑ ∫ ∫ ∑ ∫ ∫ (II.27)
Determining the duration of each step { }

1 i i i i t t t + = - ∆
and their corresponding temperatures are critical. Representing all diurnal and seasonal temperature variations shown on the timeline of Figure II-15 would require 2×450=900 successive simulations (one every 12 hours). On the one hand, a rigorous approach suggests that the congruence of all the steps should be strictly preserved to get reliable conclusions. In this case, how to identify the worst-case combination of conditions or steps? If the temperature variations are uncontrolled, how to build a conservative sequence? On the other hand, a naïve approach would suggest that the times series in Eq. (II.27) could be built from mutually independent steps assembled as the sum of a series of standard and well-controlled steps (e.g., cold, moderate and warm days), and one series with stochastic contributions, representing an extra safety margin.

II.2.3.6.2. A first intuitive approach

The variations of F C between steps are not factorizable but the dimensionless times are. Their effects are additive and commutative ( ) ( )

1 2 2 1 F F C Fo Fo C Fo Fo = ∆ + ∆ ∆ + ∆ (see Eq.
(II.13) for the demonstration). If the diffusion coefficient is the only quantity varying with temperature and the plasticizer content (i.e., no change in the partitioning, and the packaging dimensions), the effects of steps n is captured via the generalized Fourier number: Eq. (II.28) is equivalent to the low of the composition of velocities along a curvilinear coordinate system tangent to the trajectory going from A ( ( )

( ) ( ) ( ) ( ) 0 
* 0 0 v t = = ) to B ( ( ) * 1 v t → ∞ = ).
The analogy between spatial translation along a winding road and the translation along the curve * v vs. Fo is illustrated in Figure II-16 by comparing the travel via three modes of transport (each of duration { } 1,2,3

i i t = ∆ at a speed: { } 1,2,3 i i v = ) with the cumulative contamination after three steps (of duration { } 1,2,3 i i t = ∆ at temperature { } 1,2,3 i i T = . The total distance is 1 1 2 2 3 3 v v t t v t ∆ ∆ ∆ + + , and the cumulative migration is ( ) ( ) ( ) ( ) ( ) * 1 1 1 2 3 3 2 D T D T v t t D T l t ∆ ∆ ∆ + +
independent of the order of the steps. Replacing the physical time by cumulatively measuring the total arc-length of the curve or the road makes it possible to use endpoint estimates (one simulation) instead of chained simulations ( steps n simulations). In this new space, the residence times -represented by the density of markers on the curves -are not uniform. They are distributed more densely at departure and destination, but more sparsely in the middle region where the studied system follows different routes.

Chapter II. Literature review Eq. (II.28) suffers, however, from a lack of generality as it applies only to the limiting mass transfer resistance and not to all layers. As a rule of thumb, it offers an acceptable solution if the function * v is monotone with Fo (i.e., ( ) ( )

* * 1 2 v o v F Fo ≤ when 1 2

Fo Fo ≤

. A simple counterexample can be, however, constructed by noting that the concentration at equilibrium eq F C depends only on the initial and final states, but not on intermediate steps.

The conditions of exchangeability of steps (which is more generic than Eq. (II.28)) is discussed hereafter in more general terms. Two conditions are analyzed: i) when the effect of the mass transfer resistance is considered (explicit representation) and the number of molecules does not change, and ii) when an implicit food representation is used (i.e., Eqs. (II.12), (II.13) and (II.23)). The distinction between explicit and implicit food representation is relevant, as the boundary layer delays the effects of perturbations and may contain a significant amount of contaminants, which are ignored at low Bi values in implicit representations (see §II.2.3.3. ).
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II.2.3.6.3. Strict conditions of exchangeability with explicit food models • Microscopic description of the random walk of molecules between P and F

The visited distance by a deterministic system is

1 2 3 ∆ ∆ + + ∆ = +      and is invar-
iant with the order of the visits. At a microscopic scale (i.e., at a scale where they can be separated), the trajectories of migrants in materials and the food verify this property (distances are additives), but with a different relationship with time (displacements are proportional with time). The random displacements of additives and residues shares, instead, notable features with random walks and continuous stochastic paths. In a loose sense, substances jump randomly at discrete times (random walks) or as continuous events (stochastic paths). Their skewed trajectories are nowhere differentiable, and velocities cannot be defined in a classical sense. Under a hypothesis of stationarity of the microscopic random process (the quantity ( ) X t has the same statistics as ( ) X t +  for any  ), a law of composition can be justified for the mean-square-distances, denoted 2  , visited by the molecules:

2  = 1 2 1 2 3 3 t t D D D t + ∆ ∆ + ∆ + . 2  is mathematically defined as ( ) ( ) 2 2
x t

x t -, where ( )

x t is the average distance (first moment) and ( )

2
x t the square distance to the food- packaging interface located at

0 x = : ( ) ( ) ( ) ( ) 2 2 , , x t x x t dx x t x x t dx ρ ρ ∞ ∞ + ∞ - -∞ + = = ∫ ∫ (II.29)
The one-dimensional space approximation with explicit food representation is defined on the domain

p F l x l
-≤ ≤ so that the probability density ( )

, x t ρ verifies: ( ) , 1 p F l l x t dx ρ - = ∫ and ( ) , 0 x t ρ = for F x l < -or p x l > . A differential form of the growth of ( ) 2
x t with time is inferred from a special case of the Fokker-Planck equation

( ) ( ) 2 2 , , x t x t t x D ρ ρ ∂ ∂ ∂ = ∂ (similar to
Eq. (II.12)). By multiplying both sides by 2

x and by integrating over the entire domain, gives:

( ) ( ) 2 2 2 2
with when 0 and otherwis , , e

p F x t x t x dx x D dx D D x D D t x ρ ρ +∞ +∞ -∞ -∞ ≥ ∂ ∂ ∂ ∂ = = = ∫ ∫ (II.30) 56
Chapter II. Literature review with p D and F D being the diffusion coefficients in P and F, respectively. The left-hand side is equivalent to ( )

2 t t x ∂ ∂
. The right-hand side requires two successive integration by parts along with the impervious boundary conditions at x = . The simplifications associated with the compact support of ( )

, x t ρ leads to: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 2 2 2 2 2 0 0 0 0 0 0 2 0 , , , , , 0 , 2 2 0 0 , , 2 2 0 2 2 , , 2 2 F p F p F P F P l F P P F P l x t Dx dx D x D x D x dx D x t x t x t t x x x dx D dx D dx D dx D dx D D x x t x t x x x t x t x t t D x x t x d ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ +∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ + - - + - + - + - - ∂ ∂ ∂     = = +         ∂ ∂ - -     = + - - - -         = + = + - ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ( ) 0 2 F l eff D t = ∫ (II.31)
For any initial distribution of substances ( )

, 0 x t ρ = (single molecule or a collection of molecules), Eq. (II.31) describes the evolution of the mean-square distance ( )

2
x t to the FP interface. Since equations do not include any thermodynamic consideration, Eq. (II.7) was not enforced, Eq. (II.31) is valid while

( ) 2 2 2 p f l l x t +   <    
(beyond this length scale, finite size effects dominate and

( ) 0 eff D t → ). It shows that ( ) 2 x t increases as 2 p D t , when the con- centration in F ( ( ) 0 0 , F p F P F l l C C dx l x t ρ - = ∫
) is low. When the amount of substances in F becomes larger and because the molecules diffuse faster in F than in P, ( )

2
x t increases more rapidly.

( ) 

eff

• Condition of invariance of the dispersion of solutes with the properties of the contacting phase

Eq. (II.31) shows that the composition ( )

2
x t is independent of F D and of the amount already transferred to the food only if the inequality

( ) 0 , dx x t ρ -∞ ∫  ( ) 0 , P F x t D dx D ρ +∞ ∫ is verified.
The dispersion of contaminants is, hence, independent of the order of variations of P D with time when: ( )

0 0 0 / / p P P P F P P F P P F P F P F P F F l D D D C t C L C L C l D D D D D ≈ = + +  (II.32)
By noting that 0 / P F P L C is the total migration (see Eq. (II.4)) and that the diffusion in polymers is 1:100 or less lower than in the food , it can be seen that the invariance with the order of the steps hold only at the beginning of the migration process or when the chemical affinity for the food is very low. Eq. (II.32) could be justified with the example of a large food volume submitted to a cold condition during 0 t ∆ , denoted ( ) 1 0 , t T ∆ followed by a warm condition during the same time, denoted ( )

0 2 , t T with 2 1 T T > . The normal order ( ) ( ) 0 1 0 2 , , t T t T ∆ × ∆
would lead to a small mass transfer during ( )

1 0 , t T ∆
and a very strong one during ( ) 2 0 , t T ∆ . Performing the transfer in the reverse order ( ) ( )

2 0 0 1 , , t T t T ∆ × ∆
will cause an even higher mass transfer during the first step. If the food is large, the extra number of molecules transferred to the food during the first step ( ) 2 0 , t T ∆ will not have enough time to be transferred back to the packaging. As the food-packaging contact is not symmetrical F P D D  and F p l l  , the two orders might not lead to similar irreversible behaviors: the food is con- taminated in both cases but not to the same extent.

• Discussion on the limits introduced by implicit models

The fundamental results exposed here rely on an explicit representation of the food, where molecules displace at a finite velocity. This subtle detail is not reproduced in implicit representations, which assume a perfect mixing outside the mass transfer boundary layer (the velocity of molecules). Only a delay is considered in the boundary assuming a linear profile instead of a parabolic one (see the distribution of molecules depicted by green symbols in Fig- ure II-8). The next paragraph reviews the conditions of commutativity of implicit models under variable conditions. The condition of commutativity is less severe as the back flux from the contacted phase is immediately compensated in the numerical scheme. But as shown here, the condition of commutativity is expected to be verified in real life, only when condition Chapter II. Literature review (II.32) is met. The equivalence between time and temperature is acceptable only far from the equilibrium ( * 0 v → ), but it is unacceptable closer to equilibrium ( * 1 v → ), where the effec- tive mass transfer is governed by an effective partition coefficient across the P-F interface.

From Eq. (II.7), partitioning coefficients are independent of the temperature only if the difference of free sorption energies between P and F are kept constant ( P F G G = ) when the temper- ature is raised.

II.2.3.6.4. Conditions of exchangeability in food implicit models • Overview of implicit numerical models and their solutions

Food implicit models are by far the most used. They are more flexible to accommodate variable conditions and chained conditions. They have been implemented with various numerical models using different spatial discretization schemes. The finite difference method is the dominant approach in one-dimension problems, but it loses accuracy at interfaces when large jumps in concentrations and diffusion coefficients occur. The finite element method is the standard in the industry as it enables integration of any partial differential equation system on arbitrary geometrical domains, using a grid approximation (consisting of triangles, quadrangles, and curvilinear polygons). The finite volume method is in essence similar (values are calculated on a meshed geometry), but the equations are integrated on small, but not infinitesimal, volumes. By positioning the interface between volumes at the exact location where thermodynamic constraints such as Eq. (II.7) need to be strictly verified, the method enables maintenance of the exact mass balances and the continuity of chemical potentials between materials. The pros and cons of each method are discussed in [START_REF] Nguyen | A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems[END_REF]. The three methods can be put in a matrix form, with coding for a system of ordinary differential equation:

( ) ( )

t t t ∂ ∂ = M C C (II.33)
The common practice is to include the concentration in P discretized nodes n and the concentration in F in ( ) t C . Since the food is represented implicitly, one node is sufficient for the food and ( )

t C is a ( ) 1 1 nodes n + × vector mapping its continuous version ( ) , C x t . M is a triband ma- trix ( ) ( ) 1 1 nodes nodes n n × +
+ for a discretization scheme at order 1 and pentaband matrix for quadratic finite elements techniques.
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When the transport and thermodynamic properties are constant, the solution of Eq.

(II.33) with respect to the initial condition

( ) 0 t = C is ( ) ( ) exp 0 t t - = M C , with ( ) ( ) 0 exp ! k k k t t k ∞ = - - = ∑ M M .
• Composition rules when chained simulations are used (example with three steps)

The solution of the mass transfer associated with three conditions:

( ) ( ) ( ) 1 3 1 2 3 2 , , , t t t ∆ × ∆ × ∆ M M M , with { } 1..3 i i=

M

the stiffness matrix for the i th step (e.g., coding the effect of temperature on diffusion and partition coefficients) is:

( ) ( ) ( ) ( ) ( ) 1 2 3 3 2 2 1 3 1 exp exp exp 0 t t t t t t t ∆ ∆ ∆ ∆ ∆ ∆ + + = - - - = C M M M C (II.34)
The steps are exchangeable if the equality (II.34) satisfies also:

( ) ( ) ( ) 1 2 3 2 1 2 3 1 3 exp 0 t t t t t t t ∆ ∆ ∆ ∆ ∆ ∆ + + = - - - = C M M M C (II.35) which is verified only if { } 1..3, i i j i = ≠ M and { } 1..3, j j j i = ≠ M commutes (meaning that i j j i = M M M M for i j ≠ ).
• Conditions of exchangeability imposed by the physical chemistry [START_REF] Nguyen | A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems[END_REF] demonstrated that a necessary and sufficient condition to have solution (II.35) applicable is that the ratios of the Henry coefficients

( ) ( ) , 0... , m v u v u v u k t k t = ≠          
(see their definitions in Eq. (II.20)) remain constant with time between all considered steps. As a result, adding or removing a material/layer/food (i.e., changing u k from ∞ to 0 or the re- verse) breaks the condition of exchangeability of steps. The condition of exchangeability is also likely to be lost for polar solutes dispersed between polar and apolar phases. As shown in §II.2.5.2.2. (see (II.50) at infinite dilution when 0 i φ → ), the excess enthalpies of mixing are negative for the firsts and positive for the lasts. In this particular case, the apparent activation energy of the partition coefficient between u and v is maximal, and the effect of temperature needs to be simulated by respecting the order of the temperature variations (i.e., by using Eq.

(II.34) of Eq. (II.35)). For apolar solutes, the activation of u k is, conversely, almost compen- sated by a symmetrical variation of v k , when the temperature is changed.
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II.2.4. Diffusion properties in polymers

II.2.4.1. Definitions of diffusion coefficients

Diffusion coefficients in the polymer, P D , are essential properties to calculate migra- tion according to Eqs. (II.12) and (II.22). Reference textbooks (see chapter 11 of [START_REF] Crank | The Mathematics of Diffusion Bristol[END_REF]Vrentas and Vrentas,2013) have proposed several definitions of diffusion coefficients including overestimations [START_REF] Piringer | Plastic Packaging Interactions with Food and Pharmaceuticals[END_REF]. In this section the definitions which are relevant in macroscopic migration models and which can incorporate the effects of the molecular structure of the migrants and the polymer are reviewed.

II.2.4.1.1. Self-and trace-diffusion coefficients

As a starting point, it is worth noticing that the random walk of migrants (without gradient) does not occur in an empty space but among other molecules (polymer segments and other solutes, such as plasticizers). By reusing the illustrations of Figure II-8, the net flux density perpendicular to a cross section located at a position x is proportional to the differ- ence of the net velocities between the solutes (i.e., molecules of the migrant of interest),

( )

, u x t and the Stokesian velocity of the surrounding molecules ( )

0 , u x t : ( ) ( ) ( ) ( ) ( ) 0 , , , , , P x 
J x t C x t u x t u x t D C x t x = - = -    ∂ ∂  (II.36)
In the limiting case where the migrant is of the same nature as the surrounding molecules (e.g., pure liquid plasticizers, pure solvents), ( ) ( ) 0 , , u x t u x t =

, there is no net flux ( ( ) , 0 J x t = ) and no macroscopic gradient

( ) 0 , x C x t x ∂ ∂ = .
The diffusion coefficient is still de- fined and is called the self-diffusion coefficient but is not correlated to any macroscopic gradients.

The opposite limiting case corresponding to infinite dilution ( ( ) 

, 0 C x t → ) and a solid behavior ( ( ) 0 , 0 u x t → ) also leads to an extremely low net flux ( ( ) , 0 J x t → ),
( ) ( ) ( ) 2 1 0 migrants N CM CM CM i i migrants i g t t t N = = -= ∑ r r is calculated
accordingly from the 3D positions of the center-of-mass of all migrants,

( ) { } 1.. migrants CM i i N t = r
and averaged over all possible initial positions

( ) { } 1.. 0 migrants CM i i N t = = r
. The definition (II.38) is used to calculate diffusion coefficients by molecular dynamics simulations in polymers [START_REF] Vitrac | Effect of the distribution of sorption sites on transport diffusivities: A contribution to the transport of medium-weight-molecules in polymeric materials[END_REF][START_REF] Durand | Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix[END_REF]. In practice and to remove any uncontrolled drift (i.e., 0 0 u > ) due to the displacement of surrounding molecules, the positions are not absolute but taken respectively to the center-of-mass of the whole system.

II.2.4.1.2. Mutual diffusion coefficients

Section II.2.4.1.1. describes diffusion either in a stream or when there is only one diffusing species. Diffusion in a medium with variable composition generates fluctuations in 0 u (see Eq. (II.36)) and changes the nature of the interactions with the surrounding molecules.

The picture is complete if consideration is given to the point of view of the surrounding molecules whose diffusion is also affected. An example could be the diffusion of an antioxidant (or any large molecule) in a heterogeneously plasticized polymer [START_REF] Courgneau | Local demixion in plasticized polylactide probed by electron spin resonance[END_REF], where the local mobility of the antioxidant is strongly enhanced by the local amount of plasticizer in the ternary system (migrant+plasticizer+polymer). Similarly, the diffusion of the plasticizer increases the mobility of polymer segments. Strictly speaking, all these effects cannot be described by the sole shift of the glass transition temperature and the increase of free volumes presented in §II.2.4.3. (see also discussion in chapters 5 and 6 of the reference textbook [START_REF] Vrentas | Diffusion and Mass Transfer[END_REF]. As the diffusion of one species affects the diffusion of all other species and reciprocally, self-and trace diffusion coefficients cannot be used. The correct description requires the use of Onsager's theory and generalized forces. The entire system (pol-ymer+solutes) reorganizes to minimize its total free energy. A cationic surfactant will, for example, accumulate at the surface of the material to minimize its interaction with the polymer.
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A poorly soluble colorant or pigment will do the same at high concentration. The resulting concentration profiles therefore evolve spontaneously from an initial uniform distribution after processing to a highly heterogeneous one. Such evolutions with matter moving from low to high concentrated regions cannot be predicted with concentration gradients as effective driving forces. The gradients of chemical potentials need to be used as an effective driving force.

For the sake of simplicity and to avoid a tensor definition of the diffusion coefficient, only the effect of the chemical potential of the migrant, denoted ( )

, x t µ
, as the driving force is considered. Rigorously, a linear relationship should be considered between the flux of the migrating substance and the driving forces associated with all species in the mixture. The generalized driving force, f , induced by the local variation of the chemical potential of the migrant in the mixture is:

( ) ( ) ( ) ( ) ( ) 0 , , ,
, ,

mutual mutual t x t J x t f u x t u x t x C x t µ ζ ζ ∂ = - = - =     ∂ (II.39) where 0 ζ is a friction coefficient; and ( ) ( ) 0 , ln v x t RT µ µ γ φ = +
is the chemical potential of the migrant defined respectively to its volume fraction φ and activity coefficient v γ . The rela- tionship between the gradient of chemical potential and the concentration gradient is given by:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ln , , , , , ln , , 1 , , ln 
,

v t t t t t v t t t x t x t x t x t x t RT x x x C x t C x t RT RT C x t x C x t x x t γ φ µ µ φ φ φ φ γ φ ∂ ∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ ∂   ∂ ∂ ∂   = + = Γ ∂ ∂ ∂     (II.40) with ( ) ( ) ( ) ( ) l n , 1 n l v t x t γ φ φ Γ = ∂ + ∂
being the thermodynamic factor depending on the composition, whose dependence with concentration can be determined from the expression of the sorption isotherm see §II.2.5.2. ). An effective diffusion coefficient,

mutual P D , related to the flux ( ) ( ) , , mutual P t C x t J t D x x ∂ ∂ = -
is identified from Eqs. (II.39) and (II.40) as:

( ) ( ) ( ) ( ) ( ) mutual P mutua trace trace P mutu l al RT D D ζ φ φ φ φ ζ φ ζ Γ Γ = = (II.41)
where subscripts trace and mutual refer to the value of the property at infinite dilution and in mixture, respectively. For binary solvent-polymer mixtures, [START_REF] Vrentas | A new equation relating self-diffusion and mutual diffusion coefficients in polymer-solvent systems[END_REF] proposed the following evolution of the friction coefficient:

( ) ( )( ) 2 1 1 2 mutual trace ζ φ αφ φ φ ζ + - + = (II.42) with pure self solvent solvent trace dissolved dissolved polymer polymer V D D V α =
and X V the molar volume of X. Eq. (II.42) is not thought to be gen- eral for non-solvent or not plasticizing molecules such as hindered phenols or aromatic amines.

The fundamental reason is that such migrants are crystalline (solids) at high concentration. ( )

It is worth noting that

ln 1 mutual P mutual P r ref ef C C D C D C β   -    =   -  (II.43)
with β a concentration to be determined experimentally.

II.2.4.2. Effect of the geometry of migrants on 𝑫𝑫 𝑫𝑫 values

Migrants from polymers are not gas molecules such as water, oxygen, and carbon dioxide, but heavy molecules larger than voids in the polymer. The smallest additives are monomer residues and solvents commensurable to one or several monomers. At the concentration of use of most of additives and residues (i.e., except plasticizers which are used at concentration ranges from 10 w% to 50 w%), the many pair contacts between the segments of the polymer and the migrant control the rate of the translation of the most mobile species (the migrant). This configuration is very different from the situation in food or liquid food simulants, where the food constituents (water, oil, ethanol, etc.) are much smaller than the polymer chains and are usually packed less densely. The correct picture is to consider that the trace diffusion of the migrant in the polymer is smaller than the self-diffusion of food constituents (typically 10 -9 -10-10 m 2 ⋅s -1 ), but much larger than the self-diffusion of the polymer itself (<10 - 22 m 2 ⋅s -1 ).

The exact mechanism of translation of molecules larger than voids in solid polymers has not been fully elucidated yet. They have been investigated independently by two communities: the community of free-volume-theory was interested in the mutual-diffusion of polymer solvents whereas the food packaging community was focused on the development of practical overestimate models for compliance testing. Due to the different nature of the considered substances and the type of considered diffusion coefficients (mutual diffusion measured in 1 H spin-echo nuclear magnetic resonance and trace diffusion coefficients measured via desorption kinetics), the interactions between the two communities have been limited. Based

Chapter II. Literature review on the works of [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] and [START_REF] Fang | Predicting diffusion coefficients of chemicals in and through packaging materials[END_REF], a unified approach has been sketched and is summarized in Figure II-17. Early works (Vitrac et al., 2006;[START_REF] Ewender | Determination of the activation energies of diffusion of organic molecules in poly(ethylene terephthalate)[END_REF][START_REF] Welle | A new method for the prediction of diffusion coefficients in poly(ethylene terephthalate)[END_REF]Ewender andWelle, 2014, 2018a) suggested that the volume of the entire molecule or its rough estimate the molecular mass (see the discussion in [START_REF] Zhao | Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds[END_REF] offered a proper scaling parameter of diffusivities, at least, at the first tier. The use of the entire mass or volume of the migrant is misleading as it covers very different realities for rigid and flexible solutes. Flexible migrants, possibly with large masses, can benefit from the translation of smaller rigid units; whereas a large rigid migrant rarely requires free volumes matching the shape and size of a larger rigid block. Without paying attention, both the effects of block sizes and their numbers combine, giving an apparent correlation of the logarithm of D values with the number of rigid blocks and the almost invariance of P D with the exact shape and flexibility of the solute. The concept of invariance considers here that there is no visible effect if the induced variation is lower than the uncertainty associated with the measurement of P D . As an illustration, Vitrac et al. (2006) showed that the group of substances denoted A and B presented differences in diffusivities which could not be explained by the differences between molecules. Three parameters were considered: the van der Waals volume

Figure II-17. Scaling of diffusion coefficients between rigid and connected blocks with molar mass and van der Waals volume in a thermoplastic polymer (groups A and B refer to substances defined in

( vdW V in Å 3 )
, the gyration radius and the shape factor. Linear alkanes scaled as a power law are reported in the EU report [START_REF] Hoekstra | Practical guidelines on the application of migration modelling for the estimation of specific migration -EUR 27529 EN[END_REF]. The model of Piringer provides only a variable overestimation ranging from a factor 0.63 (underestimation) to 100 (see the inset

Figure II-18a).

Chapter II. Literature review [START_REF] Hinrichs | Evaluation of Migration Models to Be Used Under Directive 90/128/EEC[END_REF];NIST (2019). [B]; 36: 2,6-di-t-butylphenol [B]; 37: 4-(2,6,6-trimethyl-2-cyclohexen-1-yle)-3-methyl-3-buten-2-one (methylionone-gamma) [B]; 38: 5-(2,6,6trimethyl-2-cyclohexen-1-yle)-3-methyl-3-buten-2-one (methylionone-alpha) [B]; 39: 4-[4-methyl-4-hydroxyamyl]-3-cyclohexen-carboxaldehyde (lyral) [B];41: 2,42: 2,43: 2, [B]; 44: phenylethylphenylacetate [B]; 45: nonane-1, 3-dioldiacetate (jasmelia) [B]; 46: 2-hydroxy-4-ethanediolbenzophenone [B]; 47: 2,6-dinitro-1-methyl-3-methoxy-4-tert,-butylbenzole (moschus ambrette) [B]; 48: 2-hydroxy-4-butoxybenzophenone [B]; 49: 2,4,6-trinitro-1,3-dimethyl-5-tert,-butylbenzene (moschus xylol) 

Figure II-18. Scaling of diffusion coefficients of 49 substances (n-alkanes, two groups of molecules A and B with similar 𝑫𝑫 𝑫𝑫 values) in LDPE at 23°C with molar mass, M, and the van der Waals volume.

Data from: [1] Flynn (1982), [2]

1: methane [1]; 2: ethane [1]; 3: propane [1]; 4: n-pentane [1,2]; 5: n-hexane [1,2]; 6: n-heptane [1,2]; 7: n-octane [1,2]; 8: ndecane [1,2,A]; 9: n-octadecane [1]; 10: n-dodecane [2,A]; 11: 2-trans-3,7-dimethyl-2,6-octadien-8-ole (geraniol) [A]; 12: 3,7dimethyl-6-octen-1-ol (citronellol) [A]; 13: n-decylaldehyde or n-decanal (aldehyd c10) [A]; 14: 3,7-dimethyl-1-octanol [A]; 15: decylalcohol or 1-decanol [A]; 16: cis-undecen-8-al (aldehyd c11 inter) [A]; 17: n-undecen-2-al (aldehyd c11) (2-undecenal) [A]; 18: n-undecylaldehyde (aldehyde c11) [A]; 19: ethyloctanoate [A]; 20: 2-methoxy-4-propenylanisol (methylisoeugenol) [A]; 21: citronellyl formate or 6-octen-1-ol, 3,7-dimethyl-, formate [A]; 22: 2-methyl-3-(4-isopropyl)phenylpropanal (cyclamen aldehyde) [A]; 23: 2,6-octadien-1-ol, 3,7-dimethyl-, acetate, (2e)-(geranyl acetate) [A]; 24: 3,7-dimethyl-1,6-octadien-3-ylacetate (linalylacetate) [A]; 25: allyl-3-cyclohexylpropionate [A]; 26: amylcinnamicaldehyde or 2-phenylmethylene-heptanal [A]; 27: 3methyl-3-phenylglycidate (aldehyde c16) [A]; 28: iso-amylsalicilate [A]; 29: benzylbenzoate [A]; 30: diethylphthalate (dep) [A]; 31: 2-hydroxy-4-methoxybenzophenone (chimassorb 90) [A]; 32: 2-methyl-undecanal (aldehyde c12 mna) [B]; 33: 3,7-dimethyl-6-octen-1-ylacetate [B]; 34: 3-[4-tert,-buthylphenyl]-2-methylpropanale (lilial) [B]; 35: 2,4-di-t-butylphenol

[B]

II.2.4.3. Effect of the polymer

The effects of the polymer on the diffusion of migrants are twofold: i) the relaxation of polymer segments affects the renewal of free volumes around the solute and ii) specific interactions between rigid blocks and the polymer may increase the release time of rigid blocks. In the original free-volume theory of Vrentras and Duda (1996;1998), the translation of rigid blocks is assumed to be associated with the local reorganization of special free-volumes, socalled hole free-volume (hFV), whose redistribution is not activated by temperature. As an approximation of the thermal expansion of polymers, the amount of hFV available for the diffusion of migrants is proportional to

g T T K β -+
, where g T is the glass transition temperature and K β a constant possibly dependent on the polymer and the shape of the translating block.

This interpretation is illustrated in the diffusion of various migrants in rubber ( ( )

1 g g K T T T T K α β α - = + + - with g T K T β > + (II.45)
with K α essentially a polymer-dependent constant and K β a positive constant for rigid blocks smaller than the cross-section of polymer segments and otherwise negative. 

II.2.4.4. Activation of diffusion by temperature

Increasing temperature affects firstly the structure of the polymer, which, in return, facilitates the translation of the migrants. Temperature activation is consequently higher in polymers with high thermal expansion coefficients (higher in rubber state than in glassy state, higher in plasticized than in non-plasticized polymer, higher in thermoplastics than in thermosets). Below or near g T , apparent activation energies [START_REF] Ewender | Determination and Prediction of the Lag Times of Hydrocarbons through a Polyethylene Terephthalate Film[END_REF], 2016, 2018a).
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II.2.5. Sorption properties and partition coefficients

As shown in §II.2. 3.1. and §II.2.4.1.2. ,sorption properties and partitioning between materials, food and polymer affect both the kinetics of migration and the distribution of migrants at thermodynamic equilibrium. Previous descriptions were essentially counting the number of substances in a representative elementary volume or a compartment (material, food). The present description will show explicitly the role of pair interactions between the migrant indexed i and all other constituents ( P for the polymer, F for the contact phase, e for ethanol, w for water). Generic phases in equilibrium (in contact or not) are denoted α , β and δ regardless of whether they are a solid (polymer or solid food), a liquid contact phase or a gas (headspace, storage environment).

II.2.5.1. Some definitions

II.2.5.1.1. Chemical potentials, fugacities, and activities

Two phases, α and β , are said to be at thermodynamic equilibrium if they are at the same temperature T , pressure P and the same chemical potential for any migrant i :

( ) ( ) , ,
, ,

i i T P T P α β µ µ =
. The concept of thermodynamic potential was proposed by G. N. Lewis, with initially in mind pure ideal gases, verifying that

, T i i V P α µ ∂ ∂ = , where i V RT P =
is the molar volume of the gas i . After integration at a constant temperature, the change in chemical po- ( )

, i sat p T , , , , , v v i i i i i i i sat C p V p α α α α γ φ γ = = with , v i α
γ the activity coefficient of the sub- stance i in the phase α relatively to its vol- ume fraction , i α φ .

At saturation, one gets: , ,

1 sat i v i i C V α α γ =
As above but with a solid reference state partial pressure (equivalent partial pressure in the theoretical gas phase δ in equilibrium with α ): i p Partial pressure at the surface of the crystal expressed as:

( ) ( ) , , , S i pure i sat L i pure T f p T f         with ( ) , , S i pure L i pure T f f        
being the ratios of fugacities of the pure solute between solid (pure crystalline) and molten (pure amorphous) state.

( ) , , , , , , , i S i pure i sat L i pure T v v i i i i i p f p f V C α α α α γ φ γ =      =   
Migrants with a reference solid state in the conditions of migration are very common in plastics and thermosets. They encompass almost all antioxidants, colorants and pigments.

They are liquid in conditions of processing of the polymer (e.g., above 160°C), but solid in the conditions of service of the finished material (at T and P ). The partial pressures are lower in this case but non-zero. The variation of fugacities between a pure crystal and its pure amorphous state depends on the temperature difference between T and its melting temperature, It is worth noting that thermodynamic models and simulation calculations may use different reference states (e.g., amorphous reference states even if the reference one is solid).

The choices presented here are consistent with the definition of the molar solvation energy:

( ) ( ) , , , , , , , , , / ln ln 
v i sat i i i i solvatation ideal gas i solvated in i i i i sat i i p T V G RT RT C p T V RT K RT α α δ α α δ δ α δ γ φ µ µ =   ∆ = - =         =     (II.47)
with / , i K α δ being the effective partition coefficient between the condensed phase α and the theoretical ideal gas phase δ . With respect to mass transfer, the use of partition coefficients should be preferred to solvation energies. Free energies need to be preferred to analyze and interpret quantitatively the nature of the interactions (van der Waals, electrostatic, hydrogen bonding) in the phase α . Thermodynamic integration at molecular scale offers direct access to 

II.2.5.1.2. Effective partition coefficients between P and F

From relationships presented in Table II-11, effective partition coefficients between a material P and the contacting phase is given by the ratio of activity coefficients. For semi-crystalline polymers, it is well accepted that crystallites and crystalline phases are impenetrable to migrants. By assuming that no migrating substance has been trapped during processing in the crystalline phase, the effective partition coefficient reads:

( )( ) ( )( ) , , , , / , 1 1 1 1 1 1 eq v i i F i P eq v i i P i F i F P V K c c V φ γ φ γ = = - - - -   (II.48)
where , eq i P φ refers to the volume fraction in the amorphous phase of the material (possibly po- rous and semi-crystalline); c and  are the volume crystallinity and porosity of the material.

Thermoplastics are not porous materials and

1 =  .
For very porous materials such as papers, it is preferable not to homogenize concentration between all phases (solid crystalline, solid amorphous and gas) and to choose the fibers as P and to adapt the exchange surface area to the shape of the fibers. The characteristic dimension of the material should be chosen accordingly and be commensurable to the half-diameter of fibers.

II.2.5.2. Sorption isotherms

Sorption isotherms are experimental or theoretical curves, which relate the amounts absorbed by a condensed phase in relationship to an applied activity at constant temperature.

Their use is more general than partition coefficients, when the values of { } , ,

v i k k P F γ =
depend on concentrations. In this section, we call isotherm a curve relating the activity coefficient or the excess chemical potential (i.e., in excess respectively to the ideal contribution

ln i RT φ ) with
the composition in the mixture.

II.2.5.2.1. Linear isotherms

For most applications at infinite dilution, activity coefficients can be assumed independent of composition. The relationship between mass uptake and partial pressure is linear and governed by a Henry isotherm (see Eq.(II.20)). The relationship between the Henry con-

stant { } , , i k k P F k = and { } , , v i k k P F γ = is given by: ( ) , , , i sa v k i i t i k k V p T γ = for , k P F = (II.49)
It is worth noting that if the condition of infinite dilution is well verified in foods regardless of the considered substance (migrations are expected to be low), it may not be verified in the material for substances used close to saturation (e.g., pigments) and for plasticizing substances (e.g. used at weight fractions up to 50%). The proposed description assumes that the substances are well mixed and exclude, by definition, surfactants and substances causing blooming.

II.2.5.2.2. Binary Flory isotherms

• General formulation

The Flory-Huggins theory offers a robust framework to account for concentration effects. The theory extends the regular solution theory for liquid mixtures to mixtures with molecules with dissimilar sizes such as solutes mixed with segments of polymers or large additives dispersed in a food simulant. Enthalpic and entropic interactions are calculated on a lattice assuming that the mixture is incompressible and that molecules fill space commensurably to their molar volumes. For binary mixtures, i P + or i F + , the activity coefficient is given by:

( ) ( ) ( ) ( ) 2 , , , , , , 1 ln , 1 1 1 T compressible i k k around i i i k k i k i k i k T n r φ γ φ χ φ     = - - - + -             (II.50)
where , i k r is the size of the host molecule with respect to the size of the solute i . In a polymer, the chain is considered infinitely long , i P r → ∞ . In foods and a liquid simulating food,

1 , i F r -
represents the number of molecules of F displaced by the insertion of the substance i in F. For most of the migrants, 1 , i F r -is expected to be larger than unity in water and ethanol and lower than unity in oil. , 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , / , , , , , , , , compressible correctio exp 1 n 1 1 exp 1 exp compressible correction T v i P i P v T i F i F T T i P i F T i F P i F i F c K r r χ γ γ χ χ χ + - - = - + = - ≈ + - +  (II.51)
• Effect of temperature on partitioning According to Eq. (II.51), the variation of , / i F P K with temperature depends on the variation of the difference ( ) ( )

, ,

T T i P i F χ χ - with T . When ( ) , T i P χ and ( ) , T i F
χ have the same sign, their var- iations with T are similar and compensate each other. When ( ) ( ) , , 0

T T i P i F χ χ ⋅ <
, there is no compensation and the effect of temperature is maximal (case of polar solute distributed between a polar and an apolar phase). In both cases, the absolute values of { } , , i k k P F χ = tend to decrease with temperature, so each mixture becomes progressively ideal (i.e., with no enthalpy of mixing). The temperature dependence is predicted via Eqs. (II.55)-(II.57).

II.2.5.2.3. Ternary Flory isotherms

Eq. (II.50) can be generalized to ternary mixtures with two practical applications: i) the estimation of activity coefficients in polar polymers which contain some amount of water, and ii) the estimation of activity coefficients in water-ethanol mixtures.

The activity coefficient in a wet polymer associated with a volume fraction of water w φ , depends on the three pairs of Flory-Huggins coefficients, , i P χ , , w P χ (water in dry P), , i w χ (so- lute in water), as (see Eq.9a in [START_REF] Fornasiero | Solubilities of nonvolatile solutes in polymers from molecular thermodynamics[END_REF]:

( ) ( ) ( ) ( ) ( ) , , , , , 1 ln 1 1 1 1 1 wet i i w w i P i w i w w i j i P i w i i P w P w w i w i V V V V V V r γ φ φ φ φ χ φ χ φ φ φ χ φ φ φ   = -- --- + + -- -     - -- (II.52)
The activity coefficient in water-ethanol mixtures or in any mixture of two miscible liquids F1 and F2 can be estimated similarly [START_REF] Gillet | Prediction of Partition Coefficients of Plastic Additives between Packaging Materials and Food Simulants[END_REF]:

( ) ( )( ) 1 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 1 2 2 2 1 2 2 2 2 1 1 1 1 2 1 1 1 , , , , , , , , , , 2 2 ln 1 
F F v i F F i i F F i F F i F F i F F F F vdw i F i F i F F F F i F F i F F P F F F i F i F i i F F r r d V V d φ φ γ φ φ φ χ φ χ φ φ φ χ χ χ φ φ φ φφ φ φ χ χ φ φ φ φ φ φ φ - - +   = -- - + + +         ∂ - - -             ∂           ∂ ∂ - -        ∂ ∂     ( ) 1 2 1 2 2 2 1 2 1 2 1 2 1 1 2 2 2 1 2 1 1 2 1 2 1 2 , 2 , , , , , 2 2 2 , , 1 2 F F F F vdw F F i F P F F vdw F F i F F i F F i F i F i F P F F F F i F F F F i V V V V χ φ φ φ χ χ χ φ φ φ φ φ φ φ φ φ φ φ χ φ φ φ     ∂ -         ∂             ∂ ∂ ∂ - - -                 ∂ ∂ ∂         - - (II.53) with 1 2
, , i F F χ being a ternary Flory-Huggins coefficient whose contribution can be neglected in the absence of a specific ternary complex in the solution. The binary Flory-Huggins coefficient Chapter II. Literature review between water (F1) and ethanol (F2) is obtained from the molar heat of mixing of the mixture,

1 2 molar F F H + ∆ , as ( ) 1 2 2 1 2 2 , 1 molar F F F F F y R H T φ χ + ∆ = -
, using the polynomial approximation proposed for water-ethanol mixtures in [START_REF] Boyne | Enthalpies of mixture of ethanol and water at 25.degree[END_REF]. Eq. ( 12) in [START_REF] Fornasiero | Solubilities of nonvolatile solutes in polymers from molecular thermodynamics[END_REF] was acceptable for copolymers consisting of repeated blocks shorter than the persistence length of polymer segments. Beyond its persistence length, the polymer losses memory of its configuration and a block polymer can be treated as a polymer blend. The corresponding Flory-Huggins interaction coefficient in a copolymer AB, ( )

(%) 10°C 20°C 30°C 40°C 60°C 𝝆𝝆 𝒎𝒎𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎𝒓𝒓𝒎𝒎 (𝑘𝑘𝑇𝑇 ⋅ m -3 ) ∅ 𝒎𝒎𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝝆𝝆 𝒎𝒎𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎𝒓𝒓𝒎𝒎 (𝑘𝑘𝑇𝑇 ⋅ 𝑚𝑚 -3 ) 𝝓𝝓 𝒎𝒎𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝝆𝝆 𝒎𝒎𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎𝒓𝒓𝒎𝒎 (𝑘𝑘𝑇𝑇 ⋅ 𝑚𝑚 -3 ) 𝝓𝝓 𝒎𝒎𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝝆𝝆 𝒎𝒎𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎𝒓𝒓𝒎𝒎 (𝑘𝑘𝑇𝑇 ⋅ 𝑚𝑚 -3 ) 𝝓𝝓 𝒎𝒎𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝝆𝝆 𝒎𝒎𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎𝒓𝒓𝒎𝒎 (𝑘𝑘𝑇𝑇 ⋅ 𝑚𝑚 -3 ) 𝝓𝝓 𝒎𝒎𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 5 
, i AB χ , reads: ( ) , , , i A A i B AB A B B i AB χ χ φ χ φ χ φ φ + - = (II.54)
Eq. (II.54) is based on an averaging of all possible contacts between i A and i B -, where the term AB A B χ φ φ represents the additional cohesion energy brought about by the interactions between A and B. It can be generalized to more complex copolymers while the contacts can be assumed perfectly random (i.e., no macro-or microphase separation).

II.2.5.3. High throughput calculations of Flory-Huggins coefficients at atomistic scale

II.2.5.3.1. Justification and limitations

Molecular modeling offers a good alternative to time-consuming and complex experiments to estimate Flory-Huggins coefficients for various substances: monomers, oligomers, solvent, additives, residues, breakdown products, and non-intentionally added substances.

The results can be tabulated in advance and used directly with Eqs. (II.50)-(II.54) for a broad range of applications. In this respect, they are more intrinsic than partition coefficients. In detail, molecular modeling can be seen as an alternative to earlier group contribution methods relying on estimating Flory-Huggins coefficients from solubility parameters [START_REF] Hansen | Hansen Solubility Parameters: A User's Handbook, Second Edition[END_REF][START_REF] Van Krevelen | Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions[END_REF]. The limits of the approach have been discussed

in [START_REF] Gillet | Prediction of Solute Partition Coefficients between Polyolefins and Alcohols Using a Generalized Flory-Huggins Approach[END_REF] and compared with calculations at the atomistic scale. In short, group contribution methods provide only an average picture of the interactions. The real conformation of molecules and the distance between interacting chemical groups are, in particular, not preserved. The principles of calculation of ( )

, T i P χ and ( ) , T i F
χ have been reviewed [START_REF] Gillet | Prediction of Solute Partition Coefficients between Polyolefins and Alcohols Using a Generalized Flory-Huggins Approach[END_REF][START_REF] Gillet | Prediction of Partition Coefficients of Plastic Additives between Packaging Materials and Food Simulants[END_REF][START_REF] Vitrac | An Off-Lattice Flory-Huggins Approach of the Partitioning of Bulky Solutes between Polymers and Interacting Liquids[END_REF][START_REF] Nguyen | Molecular thermodynamics for food science and engineering[END_REF][START_REF] Nguyen | Off-lattice Flory-Huggins approximations for the tailored calculation of activity coefficients of organic solutes in random and block copolymers[END_REF]. They apply to any homo-and copolymer as well as almost any solute while no net charge is present on the polymer, on the food simulant or the solute. The main limitations are intrinsic to the Flory approximation itself: no energetic barrier should exist in the host system (P and F) so that all states are accessible. It is not true in glassy polymers where hysteresis is frequent.
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The contribution of the subcooling and accumulated elastic energy can be introduced a posteriori by combining Flory and free-volume theories [START_REF] Krüger | Fickian and Non-Fickian Sorption Kinetics of Toluene in Glassy Polystyrene[END_REF][START_REF] Kadam | Sorption of n-hexane in amorphous polystyrene[END_REF]. These extensions are beyond the scope of this work.

II.2.5.3.2. Principles

The Flory-Higgins coefficient { }

, , k i k P F χ =
is defined as the dimensionless mixing energy (enthalpy) in excess relative to pure compounds:

( ) , , 2 k k k k i i T n T T T i k n n n i k k i k k T h h h h RT χ + + + + + - = - for , k P F = (II.55)
where T X represents an ensemble-average of X , P n is the length used in the ap- proximation of the polymer and

1 F n = .
In agreement with the original  is calculated by choosing an orientation randomly for the contact molecule and by translating it along a random line until at least one point of contact is established between the van der Waals surfaces of the contact and seed molecules. The process is repeated for all conformers and stereoisomers considered. Finally, A B h + is estimated as the product of contact energies and the number of neighbors AB z (number of B molecules surrounding A):

A B cooperative AB AB cooperative AB AB T T T h n z n z ε ε + = ≈ (II.56)
Eq. (II.56) assumes that AB  and AB z are statically independent (zero covariance). For poly- mers, the property of independence is achieved from a sufficiently large P n value so that the surface of contact of the polymer is independent of the length of the considered polymer. The main advantage of the whole approach is that there is no need to represent entanglements in the polymer and free-volume. 

B  : ( ) ( ) ( ) ( ) AB T p p d r B r B d ε ε ε ε ε ε ε ε +∞ -∞ +∞ -∞ = ∫ ∫ with ( ) ( ) ( ) B exp RT ε ε = - (II.57)
At the price of calculating two integrals, Eq. (II.57) can be used to estimate 

II.2.6. Probabilistic modeling of the migration

II.2.6.1. Beyond intuition

Any risk assessment procedure needs to account for the possible variabilities in the considered scenario (e.g. variable temperature, contact time) and the numerous sources of uncertainties inherent in the limitations of our knowledge and oversimplifications. Variability and uncertainty can be easily recognized and separated by noticing that only uncertainty can be reduced by bringing additional knowledge or refinement. By contrast, variability represents multiple values of several instances (lots, compositions, final use), storage conditions, etc. For compliance testing, conservative assumptions are mandatory, but the relationship between the maximization of parameters (or their minimization depending on the case) and the maximization of the amount transferred is straightforward only in simple configurations: one material or one single layer, one step, and no variable conditions. The intuitive approach is illustrated in Figure II-9 for a single component and monolayer packaging in contact with food. When the whole food-packaging system is perfectly impervious (no loss to the outside), the cumulative amount leaving the packaging-food interface is a monotonic function of the time, the initial concentration, the diffusion coefficient in the polymer, the chemical affinity for food, the temperature, etc. As a result, choosing a conservative or upper bound for all inputs guarantees an overestimation of the food contamination. In the presence of multiple materials or steps, the property of monotonicity between parameters and inputs is not mathematically verified anymore. In particular, food contamination can be Chapter II. Literature review maximal before reaching equilibrium. For example, overestimating all diffusion coefficients or partition coefficients in laminates will spread migrants everywhere instead of bringing them faster to the contacting phase. For laminates, methods described in §II.2.3.5.6. and theorized in Vitrac and Hayert (2007a) It is worthwhile noting that the scenario described is also conservative if it is assumed that the substance has been distributed between A and B before being put in contact with the food. It also covers the case when i is initially located in A and not in B (see Figure II-11), but with a higher safety margin.

II.2.6.2. Epistemic uncertainty

In systems engineering, reliability and safety are quantified with respect to some safety margins, defined as the differences between reference values accepted by the regulating body and calculated values. A system is considered safe when the differences calculated for a set of postulated scenarios verify a minimum distance or when the probability of the distance being zero or negative is lower than some prescribed value. Introducing conservatism randomly by mixing worst-case bounds may propagate uncertainty and lead to uncontrolled overestimation of the amount transferred to the food. At the beginning of the supply chain, the chemical industry and compounders face mainly variability with the different applications of their chemicals and raw materials. On the opposite side of the supply chain, the packaging filler and the retailers face a more different situation with strong uncertainties on the nature of the materials, their thicknesses, and their composition. In 2009 and despite the possibilities offered by EU directive 2002/72/EC (2002), migration modeling was evaluated to see if it could be helpful to demonstrate compliance in finished products; it was only in less than 5% of cases [START_REF] Gillet | Prediction of Solute Partition Coefficients between Polyolefins and Alcohols Using a Generalized Flory-Huggins Approach[END_REF]. The chief reason was the loss of compositional information along the supply chain.

Calculations could be done on part supplies and compounds to produce certificates of food contact compliance, but not on the full system assembled in the intended conditions of use of the packaging. Compositional information is currently better shared in the EU and new II.2. Evaluation of the migration from packaging materials 81 deformulation techniques provide grounds for spreading calculation practices from the chemical industry to the food industry [START_REF] Nguyen | A two-scale pursuit method for the tailored identification and quantification of unknown polymer additives and contaminants by 1H NMR[END_REF]. and realistic overestimates are used. It is worth noting that the location of the "real" value is not usually known so that the overestimation factor cannot be guessed a priori. Only the safety margin is directly accessible to calculations. The definition of the safety margin and its use in various technical guides and supporting risk assessment documents can be inconsistent and confusing. In particular, the concept of safety margin is frequently confused with the concept of overestimation. The definition of safety margin used here is applied in medicine to evaluate drugs, in structural engineering, and in nuclear engineering, The concept of overestimation applied to some factors including diffusion ( P D ) and partition coefficients ( / F P K )can be mis- leading. Indeed, their overestimation by a factor X Q causes an overestimation of the concen- tration in the medium in contact which is not proportional. For the layer in contact, it varies from P D Q (short contact times) down to 0 (equilibrium) for diffusion ( )

P X D = . For / F P X K =
, it increases from 0 to a value which depends on the volume of the food.

By evaluating the uncertainty associated with realistic estimates, probabilistic modeling offers a robust methodology to assess the effects of the combined sources of uncertainties and finally to have no safety margin at all. The example depicted shows that the upper limit of

Chapter II. Literature review likely overestimates including uncertainty (95 th percentile) offers a higher safety margin than the very conservative overestimate. The distinction between overestimations and realistic conservative estimates can be exemplified by considering a long contact at a variable temperature (e.g. due to transportation). A conservative estimate will calculate migration at the highest temperature, whereas a realistic conservative value will be provided by replacing time with its integral dimensionless version, Fourier number,

( ) ( ) 2 2 1 t D T t dt l t Fo = ∫
. The proposed approximation does not introduce any significant approximation and can be carried out at the same cost as standard simulations (see §II.2.3.6. and Eq. (II.28)).

II.2.6.3. Sensitivity analysis of migration models

II.2.6.3.1. Local sensitivity analysis

Deterministic modeling and simulation yield the same output (concentration in food, concentration profile in the packaging material) for the same set of inputs. The analysis of the sensitivity to input parameters entails evaluating the effect of a modification of each parameter

{ } ¨1.. k k N p = (initial concentration, diffusion coefficient, partition coefficient, etc.
) on the safety margin, SM . Since the parameters have different units, it is convenient to calculate the deriv- atives of SM with respect to the logarithm of each parameter: 

  = =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        =     J p J    (II.58) ( )
J p is the Jacobian matrix of the migration model and it can be used to evaluate a linear approximation of the safety margin when inputs are changed from 0 p to p : ( )

( ) 0 / 0 0 * , / / / / , 2 min , 1 1 1 1 2 F P p p p K C Fo F P P F F P F P F F o C C v Fo K L K L C π π        ≈ ≤         +  + (II.60)
When the input values are changed to

0 / 2 , , F P P p P K C D t Fo l   =     from an initial set 0 / 2 , , F P P p P K C D t Fo l   =    
, the safety margin

( ) ( ) 0 0 / / , ,
, ,

F P p F P p F Fo Fo K C K C SM SML C -    ≈ becomes: ( ) ( ) ( ) ( ) 0 0 / / , , 2 / / / , / / , 0 0 2 1 min , Fo 1 1 1 ln ln ln 1 1 2 min , Fo F P p F P p K C K C F F F F P F P F P Fo F P o F P P F P SM SM C C C C K K K L K C π π     ≈ -                       = - + +                 +       - (II.61) with Fo ( ) 0 2 / / min , Fo 2 1 1 F P F F P P C C L K π π =       +     .
Besides showing the interactions and additivity of the different sources of uncertainty, it offers a rapid methodology to identify the main influencing parameters without requiring any simulation or software. Eq. (II.58) also applies to numerical simulations, but it requires 1 N + sim- ulations (the reference one and N variations). When the number of inputs increases, it is preferable to reduce the computational effort by using similitude principles and dimensionless numbers. In the detailed example, the use of a dimensionless time 

II.2.6.3.2. Global sensitivity analysis via stochastic simulation

When the number of variables becomes large as well as the intervals to be explored, the statistical sampling of inputs is preferable. Statistical analysis of the outputs can be used to extract the influence of each variable and the probability to have the prescribed threshold exceeded. Each component of the vector p needs to be sampled randomly and uniformly over its interval of interest. The technique is the so-called Monte-Carlo trials and its numerical implementation stochastic simulation. By denoting { } , 1..

k i i M = p 
M samples chosen around the Chapter II. Literature review likely vector p so that only the parameter { } 1.. k k N p = is modified at a time, and by denoting

( ) { } , 1.. k i ï M SM = p 
the corresponding safety margins, the sample covariance is given by:

( ) ( ) ( ) ( ) ( ) ( ) , , , , 1 1 1 M T k i k i k i k i i SM SM SM SM M = = - - -∑ SM V p p p p     (II.62) where ( ) ( ) , , 1 1 M k i k i i SM SM M = = ∑ p p  
is the average safety margin, which does not coincide with ( )

SM p in the general case.

( )

SM p represents the prediction associated with the 50 th percentile.

Eq. (II.62) generalizes the local sensitivity analysis performed in Eq. (II.58), based on small variations and partial derivatives. The concept of covariance enables screening of the whole input spectrum to identify the interaction and dependency structure on all parameters including the analysis. If the geometry, temperature and contact time are introduced, the design and conditions of use can also be explored.

A probabilistic interpretation is achievable but, as means and covariances provide only the first and second moments, a likely distribution of the safety margin or the concentration in food is required. If the concentration in food is normally distributed, the problem is fully determined with the first and second moments. This assumption is valid only in the presence of a low range of variabilities and uncertainties. Indeed, the Gaussian distribution is unbounded, and it implies, even with very low probabilities, that the concentration in food could also be negative and the amount transferred could be higher than the amount in the material.

The next section removes these limitations for risk assessment and the evaluation of consumer exposure.

II.2.6.4. Principles of the probabilistic interpretation of mass transfer

Global sensitivity analysis presented in II.2.6.3.2. introduces the first interpretation of mass transfer with a marginal distribution on each input variable, which is assumed to be uniform. The combination of these variables and its interpretation is known as a copula in probability theory and statistics. Copulas describe well the dependence between inputs on the output(s) of a model, but they fail to describe the joint distribution of contamination in realistic situations. The diffusion and partition coefficients, as well as the initial concentration in food, are not distributed uniformly. The industry is not applying randomly any concentration value or the molecules do not have random properties. It is because of limited knowledge and the variability of practices that spread the inputs around a likely value. In short, the sensitivity analysis is a perfect tool to optimize the geometry, formulation, etc. but it is not appropriate to get a reliable estimate of the probability to have a concentration threshold exceeded.
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The principles of probabilistic modeling of migration have been described in [START_REF] Vitrac | Risk assessment of migration from packaging materials into foodstuffs[END_REF] and applied to various cases (Vitrac et al., 2007a;Vitrac and Leblanc, 2007).

The central idea is to combine a dimensionless formulation (with a reduced number of input variables) along with random numbers. For the same reason as invoked for the local decomposition in §II.2.6.3.1. , each quantity X is written as the product of a scaling value (with units), denoted X (usually the likeliest value), and a random dimensionless number * X dis- tributed around unity. As an illustration, the dimensionless time reads:

( )( ) ( ) * * * * * 2 2 *2 * DD tt Dt D t Fo FoFo l l ll = = = (II.63)

II.2.6.4.1. Input distributions

The distributions of * X can be chosen either from experimental measurements or from prior guesses or beliefs. In this second alternative, distributions which have a shape factor and are non-negative, denoted ( )

1, X X
f s , should be preferred (beta, Erlang, exponentially modified Gaussian, exponential, gamma, inverse-gamma, inverse-Gaussian, lognormal, Weibull, etc.).

For some quantities, such as concentrations or thicknesses, symmetric distributions are more realistic; truncated normal distributions can be used for this purpose. A non-exhaustive list of practical distributions is given in Table II-13. 

, D Norm O s 0.1 D s = 0.5 D s = contact time * t ( ) 1, t Weib s † t s to be determined initial concentration 0* P C ( ) 0 1, C Norm s truncated † 0 1 5 C s ≤ ≤ thickness * l ( ) 1, l Norm s l s to be determined mass Biot number * 10 log Bi ( ) , Bi Norm O s 0 Bi s → 0 Bi s → partition coefficient * 10 / log F P K ( ) , K Norm O s 0.2 < 0.2 < Fourier number , Gamma a b Γ Γ , a b : to be calculated concentration in food * v ( ) β β , Beta a b β β
, a b : to be calculated † to be normalized to get a unitary expectation.
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II.2.6.4.2. Estimation of probabilities via Monte-Carlo sampling

Probabilistic modeling aims at determining the cumulative density function (cdf), which can be written for monolayer materials as the probability to get a value of F C lower than an arbitrary number x : ,,, ,

( ) ( ) / , 0 , , ,
F P K i C F B P pr C F Fo Bi K C a x b s s s Γ Γ = ≤ (II.64)
For the sake of efficiency, Fo (see Eq. (II.63)) was used instead of ( ) , , , , , The cumulated probability ( )

F pr C x ≤ (or its complement ( ) F pr C x >
) can be estimated by repeating the simulations for different values of input parameters and by counting the number of occurrences for which the inequality

F C x ≤ (or F C x > ) is verified. If the in- tent is to demonstrate that ( ) F pr C x >
is low for a sufficiently large x , it might be thought that it suffices to apply some worst-case scenarios (bounds of intervals) and to demonstrate that the value x is never exceeded. This approach is correct only if

( ) 0 F pr C x > = , that
is for a value of x larger than the one corresponding to a total extraction. In the general case, the intervals of all parameters need to be sampled with each value chosen according to its theoretical prescribed distribution. This technique of randomly picking input values and launching the corresponding simulation is known as Monte-Carlo simulation.

In practice, for each input quantity X , a random number g is chosen uniformly be- tween 0 and 1 (function rand() in many programming languages). The specific value to be included in the considered simulation vector will be ( )

1 X F g - , with ( ) ( ) X F x p x r X = ≤
being the cdf of the variable X. Depending on the size of the intervals, 10 3 to 10 5 simulations are required. For multilayer materials, the sampling effort can be even higher. The total cost of simulations can be reduced dramatically by tabulating the results in advance for a significant range of dimensionless numbers and by subsequently interpolating the values of interest.

These concepts are now justified mathematically. They make the cost of probabilistic modeling close to the cost of deterministic modeling.

II.2.6.4.3. Estimation of joint probabilities via the composition theorem

The calculation of probability density functions (pdf) associated with a combination of variables 1 , , n X X  (e.g., Eq. (II.63)) or with the resolution of partial differential equations is particularly expensive computationally and requires a specific treatment of the joint density

( ) ( ) 1 , , 1 1 1 , , , , n X X n n n x x pr X x f X x = = =   
. The composition theorem offers a very efficient computational approach for invertible and differentiable transformations:

( ) (
) 

1 1 1 , , ; 1, , , , ; 1, , i i i n i n Y h X X i n X h Y Y i n - = = = =     (II.65) Mathematical functions { } 1.. i i n h = represent
/ j i x i i h x ≠ ∂ ∂ , denoted g J : ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 
, , 1

1 1 1 1 1 , , 1 1 1 1 1 1 , , , , , , , , , , , , , , n n 
Y Y n X X n n n g n n n y y h y y h y y J h y y h y y - - - - - ⋅ =            (II.66)
Eq. (II.66) can be generalized to non-monotonic functions by splitting the transformation into intervals which are locally monotone. For example, in the special case where the dimensionless concentration in food * v is not a continuous function of Fo (some multilayer or multicompo- nent configurations), the pdf of ( ) * v h Fo = is obtained by the accumulation of the p transfor- mations over p contiguous intervals:

( ) ( ) ( ) ( ) * 1 * 1 * 1 1 k k p Fo v k Fo Y Fo Y d f v f v v v v dv ∈ - - ∈ - = = ∑ (II.67) with { } 1.. k k p Y = the partitions of Fo where ( ) * v h Fo = is piecewise monotonic.

II.2.6.5. Some illustrations

Probabilistic modeling must be envisioned as the generalization of deterministic modeling, but its clear definition depends on how the normalization of * X is performed, how de- 

II.2.6.5.2. Effect of Bi and SD

The overall mass transfer resistance, ℜ , of any compartment (either the food or the packaging layer) is evaluated as

kl D or l D
, whether the chemical affinity of the substance is considered or not. For monolayer materials, the packaging-to-food mass transfer resistance ratio is given by 1 / F P K Bi -and 1 Bi -, respectively. Bi values are expected to be large above 10 3 with well-mixed and low viscous liquids in contact with thick or barrier polymers. Low values ranging between 5 and 10 3 were observed only in polyolefins in contact with liquids (Vitrac et al., 2007b). In semi-solids, solids and dry foods in contact with polyolefins and plasticized polymers, migration kinetics linearize with time [START_REF] Till | Indirect Food Additive Migration from Polymeric Food Packaging Materials[END_REF] and Bi approaches unity. 

II.2.7. Generalized migration modeling and holistic approaches

II.2.7.1. Achievements

During the last decades, the scope of migration expanded to cover emerging risks, more complex conditions representative industrial practices until to consider closed recycling loops.

The evolution of the state of the art is illustrated in Figure II-26. The capability of considering contamination scenarios from materials more distant to the food and occurring at early stages of the supply chain enabled a general review of causalities and critical industrial practices.

Cross-contaminations between materials contributing to the redistribution of migrants between materials at all stages of the value chain are better understood. Many new contamination pathways, which does not require any direct contact, have been identified. A global science started to emerge beyond common mistaken beliefs: migration can be avoided, biosourced materials are safer, biodegradable and recycled materials can be used without a safety assessment. Migration modeling becomes an essential tool for high throughput evaluation of consumer exposure (Vitrac and Leblanc, 2007;[START_REF] Ernstoff | High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools[END_REF]. 

II.2.7.2. Acceptation of migration modeling and restrictions setup by authorities

A robust validation of the macroscopic equations of mass transfer (transport equations and boundary conditions) has been central to the development of the US legal system authorizing migration modeling in the nineties [START_REF] Schwope | Methodology for Estimating the Migration of Additives and Impurities from Polymeric Materials -EPA 560/5-85-015[END_REF]). The European system [START_REF] Hoekstra | Practical guidelines on the application of migration modelling for the estimation of specific migration -EUR 27529 EN[END_REF] focused during the two past decades on diffusion coefficients with much smaller attention on partition coefficients. In the US and EU cases, migration modeling is accepted for compliance testing, only for thermoplastics, as stated in EU regulation 10/2011/EC (2011a). Its application to thermosets, elastomers, paper and board is comparatively supported by a much small number of scientific and technical publications. Recently, Chinese regulation (GB, 2008) adopted migration modeling and equivalent calculations without material restriction. This move is a logical step after the substitution of negative lists by positive ones and the adoption of specific migration limits for a broad range of applications. The noncompliance cannot be determined by modeling and only direct measurements can be used by authorities to trigger a product recall.

II.2.7.3. The promises of multiscale migration modeling

The validations of functional barriers and recycled materials are the success-stories of migration modeling. Migration modeling, including multiscale modeling, offers the only viable solution to evaluate complex problems met by the food industry and the food packaging supply chain: a. NIAS: non-intentionally added substances (no need for standards or analytical methods; hypothetical molecules can be accepted); b. cross-contamination between materials at any stage of the supply chain (all configurations can be included); c. post-consumer contaminations, including misuse d. optimization of decontamination steps in mechanical recycling processes e. materials and articles with repeated use (no need for long experiments) f. materials and devices used with flows (no need for any setup) g. materials subjected to aging and long-term storage.

NIAS include hypothetical and unknown substances (e.g., breakdown products), but also known impurities and substances intentionally present or added to third-party materials (printing inks, adhesives, lacquers, overpackaging, secondary packaging). All the cases can be evaluated by combining molecular and migration modeling. The same approaches can be used to optimize decontamination conditions (solvent choice, temperature, duration) in recycling processes.
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II.2.7.4. Linking risk assessment and LCA

For construction materials, revised LCA methodologies have been proposed to include chronic effects on health [START_REF] Csiszar | Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals[END_REF][START_REF] Huang | Integrating exposure to chemicals in building materials during use stage[END_REF]. This initiative could be extended to food packaging either by integrating some migration modeling into LCA or, in the other way around, by integration some LCA flavors along with migration modeling. Such extensions will have mutual benefits for all applications where the release of chemicals by materials is of concern.
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Key points of II.2. Evaluation of the migration from packaging materials

Migration modeling is a mature subject authorized by law in the US, EU and more recently in China. It benefited the accumulation of data and numeric methods over several decades. Hierarchical modeling in a deterministic or stochastic manner is the best achievement. The nested approach remains transposable to many applications governed by mass transfer and thermodynamic problems. The current implementation remains, however, perfectible: (1) Free-volume theory of diffusion in polymers is originally a predictive theory for rigid solutes translating as a simple jumping unit. Extensions hold only for the same rigid units linearly repeated and in rubber polymers. A new parameterization is required for any new polymers. Several families such as polyesters, polyamides, polyvinyls are poorly or not documented. (2) Current diffusion models, while integrating plasticizing effects in some ways, neglect the interactions between solutes. (3) Mass transfer models are 1D and do not fulfill requirements for models with distributed thicknesses.

Migration modeling is objective and can be introduced in an automatic and semi-supervised decision-making process but at the cost of accepting significant safety margins. The concept of safety-margin is intrinsic to the philosophy of risk assessment. Combining several safety-margins can be carried out through interval algebra or using probabilistic description.

In both cases, the inherent adverse risk to discard a safe solution falsely will exist along the risk to miss hazardous situations. Risk-based reasoning with objective or subjective probabilities could handle both situations. By stating that migration modeling cannot demonstrate that a packaging is neither safe nor compliant, the EU regulation 10/12011/EC introduces an epistemic logic. How to choose between two alternatives in a formal framework? The issue arises due to simplifications applied in the mass transfer model (e.g., constant diffusion coefficient, overestimated chemical affinity), which are made to maximize the amount transferred to the food and not represents its amount with fidelity. The difficulty can be circumvented by applying the tiered approach as a non-monotonic logic: the algorithm generates successive solutions with improved safety (e.g., design) defeasibly when it reserves the possibility to retract some sequences in the light of further information (better description of mass transfer). The tree exploration of solutions can be applied to discrete and continuous variables.

II.3. Evaluation of the environment impacts of food packaging

II.3.1. A short history

Contrary to risk assessment and engineering methods rooting in the nineteenth century, the assessment of environmental impacts flourished recently with specific journals such as Environmental Impact Assessment Review, Environmental Monitoring, and Assessment, Integrated Environmental Assessment and Management, Science of the Total Environment, Journal of Environmental Assessment Policy and Management. Before being one the great popular causes of our time, ecology was an unfamiliar word among engineers and industrialists. In the middle of the space race, the universally acclaimed book Silent Spring of Rachel Carson, firstly published in 1962, brought the issue of pesticides centerstage, with mass scale poisoning and with thousands of farmers committing suicide [START_REF] Carson | Silent Spring[END_REF]. "FOR THE FIRST TIME in the history of the world, every human being is now subjected to contact with dangerous chemicals, from the moment of conception until death. In the less than two decades of their use, the synthetic pesticides have been so thoroughly distributed throughout the animate and inanimate world that they occur virtually everywhere." As a direct result of the message in Silent Spring, President Kennedy asked his Science Advisory Committee to study specifically the problem of pesticides. In the following years, the book motivated the first en- as a systems-based approach that seeks to understand the interactions which exist among environmental, social, and economic pillars to better understand the consequences of human actions [START_REF] Vallero | Sustainable Design: The Science of Sustainability and Green Engineering[END_REF]. Though Sustainable solutions seek to protect the environment, should ideally also strengthen communities and fosters prosperity. Feeding the world requires spanning food distribution chains far beyond production places and require therefore packaging. When food is stabilized (dried, fried, sterilized), packaging extends passively shelf-life without additional energy cost. When food is not stabilized (chilled and frozen), shelf-life is extended actively with the help of packaging and modified atmosphere. Because of food production, its transformation, stabilization and distribution, food consumption is a significant stressor of the environment. The apparent paradox between environment impacts and consumption has been identified by [START_REF] Brower | The Consumer's Guide to Effective Environmental Choices: Practical Advice from The Union of Concerned Scientists[END_REF] 
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The paradox of Eq. (II.68) can be removed by noting that sustainability implies from Figure II-27 feeding the planet safely while minimizing environmental impacts. Sustainability is consequently a complex equation of indexes to fulfill (constraints) and goal indices to achieve. Deciding which index is a constraint or a goal belongs to political choices of the societies.

II.3.3. From legal frameworks to packaging wastes

As shown in §II.2. , the safety of food contact materials is managed through a broad spectrum of laws and good manufacturing practices, which have been progressively built and spread out worldwide during the last three decades. The corresponding research field is still active and aims at minimizing either the exposure to contaminants or their hazards by banning or avoiding some of them. By contrast, the science related to the management of environmental impacts is more recent. The corresponding laws in developed countries are mainly coercive on sustainability practices and do emphasize cooperation [START_REF] Gunningham | Enforcing Environmental Regulation[END_REF][START_REF] Earnhart | Coercive vs. cooperative enforcement: Effect of enforcement approach on environmental management[END_REF] 

II.3.4. Life cycle assessment (LCA)

II.3.4.1. Life cycle thinking

Environmental impact assessment (EIA) is mandatory or recommended in developed countries and aims to identify the impact of specific human activities before their development will occur. It is mainly a tool for decision making and is rooted in the US National Environmental Policy Act (NEPA) enacted in 1969. Life-cycle assessment, also known as life-cycle analysis, ecobalance and cradle-to-grave analysis, is part of the industry-specific methods to evaluate the impact of new products [START_REF] Daniel | Aggregating and evaluating the results of different Environmental Impact Assessment methods[END_REF]. The main goal is to participate to sustainable development by reducing a product's resource use and emissions to the environment as well as improve its socio-economic performance throughout its life cycle [START_REF] Remmen | Life Cycle Management: A Business Guide to Sustainability[END_REF]. As it is directed beyond the traditional focus on the production site and manufacturing processes to include the environmental, social, and economic impact of a product over its entire life cycle, it offers a broader scope than conventional engineering approaches. Additionally, Extended Producer Responsibility and Integrated Product Policies mean that the producers can be held responsible for their products from the cradle to the grave and therefore, should develop products, which have improved performance in all stages of the product life cycle. The methodology is intended to facilitate cooperation within organizations, along a supply chain including the recycling loop and more generally throughout is value chain. (2007) and by integrating the study of [START_REF] Almeida | Emergy as a tool for Ecodesign: evaluating materials selection for beverage packages in Brazil[END_REF].

The final bottle is usually produced by blowing the perform at 85°C, above the glass transition of PET, filled, sealed, distributed and retailed until reaching the final consumer. The bottle itself enables multiple consumptions over several days. After disposal, several options are applicable: solution 1) direct reuse (cleaning and refilling) (Uehara and Ynacay-Nye, 2018), solution 2) mechanical recycling for food contact, solution 3) chemical recycling (see chapters 4-7 edited by [START_REF] Thomas | Recycling of Polyethylene Terephthalate Bottles[END_REF] for food contact, solution 4) recycling for non-food applications such as textile (see chapter 9 edited by [START_REF] Thomas | Recycling of Polyethylene Terephthalate Bottles[END_REF] or construction applications [START_REF] Mansour | Reusing waste plastic bottles as an alternative sustainable building material[END_REF] and solution 5) finally incineration. Solutions 1) and 2) scored equivalently in the study conducted by the independent research organization [START_REF] Delft | Recycling versus refilling of PET bottles: an environmental comparison[END_REF].

The rules for authorizing recycled plastics for food contact has been laid down in regulation 282/2008/EC (2008a). Any recycling process must be evaluated, registered and authorized.

The origin and the quality of the material should be characterized. The environment impact of PET is significantly reduced when a significant amount of recycled PET is introduced in the 100 Chapter II. Literature review primary loop (food contact) or in the secondary loop (other recycling) (see chapter 8 edited by [START_REF] Thomas | Recycling of Polyethylene Terephthalate Bottles[END_REF].

II.3.4.2. Steps in LCA

Though the ecodesign standard (see §II.1.5. ) does not refer explicitly to life cycle assessment (LCA), LCA is the most frequently used tool for determining the environmental profile of mass-manufactured products. Aspects such as socioeconomic considerations are specific to ecodesign. To encourage the reduction of environmental consumption and pollution, the LCA methodology guides the end-user on how to perform a balance of environmental impacts along the entire life-cycle depicted in Figure II.9: from the cradle to the grave. For packaging systems with plastic components, all effects assignable to substances (monomers, polymers, additives…), industrial steps (raw material extraction or production, polymerization, processing, distribution, use, collect, recycling, cleaning, elimination) and consumer practices should be considered [START_REF] Muthu | Environmental Footprints of Packaging[END_REF]. According to the ISO 14040: 2006, LCA framework contains four stages summarized in Table II-14. In thermodynamic terms, LCA is like a mass balance on consumed resources and produced emissions and wastes, applied on the environment at the interface with all operations required to produce, use and eliminate the packaging. All impacts accounted negatively. The impacts are expressed for a functional unit, which can be for food packaging respectively to the mass of food [START_REF] Simon | Life cycle impact assessment of beverage packaging systems: focus on the collection of post-consumer bottles[END_REF] or to the mass of waste (see a review in Table 8.2 of [START_REF] Marathe | 8 -Life Cycle Assessment (LCA) of PET Bottles[END_REF].

Table II-14. Main steps in LCA analysis

Step Goal

Goal and scope definition

Describing the most important (often subjective) choices are described, such as the reason for executing the LCA, a precise definition of the product and its life cycle, and a description of the system boundaries.

Inventory analysis (LCI)

Listing environmental inputs and outputs associated with a product or service, such as the use of raw materials and energy, the emission of pollutants and the waste stream.

Impact assessment (LCIA)

Evaluating and ranking environmental impacts (objectively/subjectively and relatively to the desired targets) and translating them into environmental themes such as global warming or human health.

Interpretation

Checking the substantiation of conclusions: check tests, sensitivity analysis, alternative scenarios.

II.3.4.3. Known limitations

LCA suffers important limitations. As any study using system modeling, LCA thoroughness and accuracy depends on the availability of data. 

II.3.4.4. Complementary thinking to LCA

It could be tempting to associate LCA with comparable approaches analyzing material and energy flows of industrial production. The thermodynamical concept of exergy and the newer concept of emergy, proposed early by H. T. [START_REF] Odum | Environmental Accounting: Emergy and Environmental Decision Making[END_REF], offer indices, which mirror environmental impacts. Exergy and emergy are energetic concepts, which measure the efficiency of fluxes (energy or material) and the energetic cost of a structure, respectively. They cannot replace, however, LCA, because:

i) they are centered on current production and not on the environment, whose resources need to be protected for the next generations;

ii) they focus on management (reducing costs) and not on an independent assessment of impacts;

iii) there is no guarantee that a production system, which reduces its entropy (dissipations), also minimizes its environment impact. from those used to pack their dried content (tee, coffee, chocolate, milk…). This section reviews the impacts of the primary materials used to pack liquids for several weeks, months or years.

Although big bags or tanks enable to pack several cubic meters of liquids, the comparison focus on small formats adapted to the individual consumption and adapted to aseptic treatments applied to beverages (filtration, pasteurization, sterilization, fermentation, distillation). Despite this simplification, the choice of a unique functional unit is not possible. The rate of consumption depends indeed on the considered beverage (the consumption of vinegar is less than milk), and the weight of the packaging depends on the format of the beverage (see the discussion in chapter 1 edited by [START_REF] Vignali | Life-Cycle Assessment of Food-Packaging Systems[END_REF]. The biases are minimum by focusing on bottled water: daily consumption spread over the entire population.

II.3.5.1. A short review of packaging used for long shelf-life liquid beverages

• Overview of materials compatible for long shelf-life liquid beverages

Packaging systems for liquid beverages received many optimizations over the twenty century to meet both industrial, retailing and consumer demand. 

• Polyesters compatible with long shelf-life beverages

Polyethylene terephthalate (PET) is one of the most worldwide used semi-crystalline thermoplastic on food packaging, covering ca. 30% of food contact applications. PET bottles are used for near 70% of all packaging applications for water and soft drinks worldwide [START_REF] Welle | The Facts about PET[END_REF]. Each year, plastic drinking bottles (almost all in PET) are in the top 10 litters in the Mediterranean Sea (12% of collected objects in 2016 according to [START_REF] Hanke | Marine Beach Litter in Europe -Top Items[END_REF]. There is no industrial alternative to PET for long shelf-life and carbonated beverages [START_REF] Mangaraj | Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review[END_REF]. Coca-Cola made this statement: "Plastic has lots of benefits: it's light, easy to use on the go, uses less material than glass and doesn't break easily. One of the biggest advantages is that as long as it's disposed of properly, it can be recycled and turned into new bottles again and again." The Coca-Cola Company (2019) PlantBottle® packaging is a division of Coca-Cola converting sugarcane into ethylene glycol (EG) and replacing synthetic EG in the polymerization process of PET. As purified terephthalic acid (PTA) is still from synthetic origin, the final PET contains ca. 30% of plant-based material. Using biobased 2,5-furandicarboxylic acid (FDCA) in place of PTA opens the way to 100% plant-based polymers, such as polyethylene furanoate (PEF). As aromatic polyesters from EG, that are chemical analogs of PET and polyethylene naphthalate (PEN) [START_REF] Bomgardner | Building a better plastic bottle-DuPont, Corbion, and Synvina pilot furan-based polymers made from sugar but must confront PET's dominance[END_REF]. To capture the full value of furanic polymers produced from different pathways, bottles and other packaging systems will, however, need to be redesigned, and strategies for identification and recycling will require to be revisited.

The monomers and the criteria of purity of initial substances [START_REF] Rosenboom | Bottlegrade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers[END_REF] must be additionally approved by the European Food Safety Authority before being used for food contact.

Before the substitution of PET by alternative polyester is occurring, the global demand of PET is still increasing with at a pace of 4-8% each year [START_REF] Gouissem | The evolution of properties of recycled poly(ethylene terephthalate) as function of chain extenders, the extrusion cycle and heat treatment[END_REF] and rises to 81.5% by weight for beverages across 2016-2017 [START_REF] Pira | The Future of PET Packaging to 2021[END_REF]. PET bottle wastes in EU arise to 1.88 Mt with a concomitant increase of the collection rate to 59% in 2016 and 129Kt more in 2014 (PETCORE EUROPE., 2017).

II.3.5.2. Comparison of environmental performances of PET bottles with alternative materials • Compilation of studies

During the last two decades, the environmental impacts of PET bottles for beverages have been discussed in thirty-eight scientific publications, which have been reviewed recently by [START_REF] Gomes | Life Cycle Assessment of Polyethylene Terephthalate Packaging: An Overview[END_REF]. Earlier studies targeted alternatives to landfill disposal (energy production, fiber valorization), whereas most recent studies seek replacement of PET by recycled PET, glass, aluminum, other polyesters such as poly(lactic acid) or PEF, other plastics such as polystyrene).

• PET impacts vs. those of alternative materials

The first reported LCA study was performed by the Coca-Cola Company in 1969 and concluded that plastic bottles have a less environmental impact than their glass equivalents [START_REF] Gomes | Life Cycle Assessment of Polyethylene Terephthalate Packaging: An Overview[END_REF]. LCA results are not expressed on an absolute scale independent of the geographic area and the period covered Referenced studies: [START_REF] Song | A Life-Cycle Assessment (LCA) study on the various recycle routes of pet bottles[END_REF]Franklin Associates, 2007;[START_REF] Dogan | Life cycle assessment of PET bottle[END_REF][START_REF] Foolmaun | Life Cycle Assessment (LCA) of PET bottles and comparative LCA of three disposal options in Mauritius[END_REF]Franklin Associates, 2009b, a;[START_REF] Romero-Hernández | Environmental implications and market analysis of soft drink packaging systems in Mexico. A waste management approach[END_REF][START_REF] Almeida | Emergy as a tool for Ecodesign: evaluating materials selection for beverage packages in Brazil[END_REF][START_REF] Chilton | A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET[END_REF][START_REF] Fry | Life Cycle Assessment of Example Packaging Systems for Milk[END_REF]PE-Americas and Five International., 2010;[START_REF] Shen | Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling[END_REF][START_REF] Von Falkenstein | LCA Studies Comparing Beverage Cartons And Alternative Packaging: can overall conclusions be drawn?[END_REF][START_REF] Belley | Comparative Life Cycle Assessment Report of Food Packaging Products[END_REF]Franklin Associates, 2011;[START_REF] Gironi | Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water[END_REF][START_REF] Kuczenski | Life Cycle Assessment of Polyethylene Terephthalate (PET) Beverage Bottles Consumed in the State of California[END_REF][START_REF] Amienyo | Life Cycle Sustainability Assessment in the UK Beverage Sector Thesis[END_REF][START_REF] Eerhart | Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance[END_REF][START_REF] Komly | Multiobjective waste management optimization strategy coupling life cycle assessment and genetic algorithms: Application to PET bottles[END_REF][START_REF] Nessi | LCA of waste prevention activities: A case study for drinking water in Italy[END_REF]PE International Inc., 2012;[START_REF] Shen | Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics[END_REF][START_REF] Amienyo | Life cycle environmental impacts of carbonated soft drinks[END_REF][START_REF] Flanigan | An Analysis of Life Cycle Assessment in Packaging for Food & Beverage Applications[END_REF][START_REF] Nogueda | Life cycle assessment of pet bottle recycling: a case study for Mexico Thesis[END_REF][START_REF] Toniolo | Comparative LCA to evaluate how much recycling is environmentally favourable for food packaging[END_REF][START_REF] Papong | Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective[END_REF][START_REF] Accorsi | Glass vs. Plastic: Life Cycle Assessment of Extra-Virgin Olive Oil Bottles across Global Supply Chains[END_REF]ECO Paper Loop, 2015;[START_REF] Flanagan | Glass or Plastic: An Environmental Life Cycle Assessment (LCA) and Related Economic Impact of Contrast Media Packaging[END_REF][START_REF] Kang | Environmental Evaluation of Non-Alcoholic Single-Serve PET Beverage Bottles in the State of California Using Life Cycle Assessment and System Dynamics[END_REF][START_REF] Chen | Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles[END_REF][START_REF] Garfí | Life cycle assessment of drinking water: Comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles[END_REF][START_REF] Saleh | Comparative life cycle assessment of beverages packages in Palestine[END_REF][START_REF] Simon | Life cycle impact assessment of beverage packaging systems: focus on the collection of post-consumer bottles[END_REF][START_REF] Almeida | Material selection for environmental responsibility: the case of soft drinks packaging in Brazil[END_REF][START_REF] Kang | Life cycle assessment of non-alcoholic single-serve polyethylene terephthalate beverage bottles in the state of California[END_REF][START_REF] Lorite | Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging[END_REF][START_REF] Horowitz | Life cycle assessment of bottled water: A case study of Green2O products[END_REF][START_REF] Valentina | Life Cycle Assessment of management options for beverage packaging waste[END_REF][START_REF] Boesen | Environmental sustainability of liquid food packaging: Is there a gap between Danish consumers' perception and learnings from life cycle assessment[END_REF] The main conclusions of the pair-wise comparison of environmental impacts between materials are shown in Table II-16. The studies outscore the good performances of PET against almost any considered material, inorganic as glass or even biosourced as poly(lactic acid), as soon as PET is recycled in open (textile fibers) or closed (food contact) loop. Two recent studies [START_REF] Ashurst | Carbonated Beverages[END_REF][START_REF] Ashurst | Packaging, storage and distribution of soft drinks and fruit juice[END_REF] confirmed that PET bottles have globally similar or fewer Chapter II. Literature review impacts than other options for carbonated beverages. Substantial mitigation of environmental impacts by choosing PET bottles have been uniformly highlighted in all LCA studies of the past decade. Best sustainable strategies comprise increasing recycling rates and the amount of recycling material in PET bottles, minimizing the weight of PET bottles, and shortening the distances of one-way bottled water, preferring bottles with capacities ranging from 0.5 to 2 L. It is noticeable that only beverage cartons outpace PET bottles for climate change, cumulative energy, fossil resource consumption and acidification impacts [START_REF] Von Falkenstein | LCA Studies Comparing Beverage Cartons And Alternative Packaging: can overall conclusions be drawn?[END_REF]. 

. Evaluation of the environment impacts of food packaging

Because the Life-Cycle Initiative focuses on the environment in interactions with the object of concern and not on the object itself, the approach is essentially retrospective and simplified. The details of the design are lost, but it entails such as in the calculation of consumer exposure global reasoning. The format of the packaging, the rate of consumption, the frequency of purchase, the shelf-life of the product become key factors.

The pairwise comparisons of existing materials showed that PET remains the best choice for long shelf-life beverages. It outperforms biobased materials for its good inertia with all beverages and its capacity to be recycled in open or closed loop up to 100%. No plastics or glass reach similar performances. The absence of collection of PET bottles and their caps is responsible for marine litters, but not the bottle itself.

II.4. Additional indices to consider in food packaging design

Environmental impacts of food packaging do not enable to establish an honest presentation of the benefits of food packaging. The role of the primary package is to be in contact with food, to contain it and to protect by being a mechanical, physical, chemical, biological and microbiological barrier. It corresponds either to the retailing or consumption unit. The additional functions of the packaging, convenience and symbolic representation of food, are minor comparatively to the primitive functions of containment and protection. This section addresses three levels of performances affecting the first role of packaging: food shelf-life, mechanical resistance and green chemistry. The corresponding colloquial benefits are a reduction of food waste, logistical efficiency safer and more biodegradable raw materials, and additives.

In their review, [START_REF] Molina-Besch | The environmental impact of packaging in food supply chains-does life cycle assessment of food provide the full picture?[END_REF] refers such benefits as indirect environmental impacts, that is as the consequences of packaging design on the food product's life cycle.

II.4.1. Food shelf-life

II.4.1.1. An attempt of definition

Packaging and food shelf-life are closely related. A product with a long shelf-life will require a higher barrier than a product with a shorter one. Due to the diversity of foodstuffs, the modalities of food transformation and stabilization, shelf-life is not defined by a unique criterion. The EU regulation 1169/2011/EC (2011b) on "food information to consumers" states defines the 'date of minimum durability of a food' as the date until which the food retains its Chapter II. Literature review specific properties when properly stored. Given the variety of definitions including those proposed by the Institute of Food Technologists in the US and in the UK, Robertson (see chapter 12 in Robertson, 2009a) suggested the following definition: "For the majority of foods and beverages in which quality decreases with time, it follows that there will be a finite length of time before the product becomes unacceptable. This time from production to unacceptability is referred to as shelf life."

II.4.1.2. Methodology to estimate food shelf-life

• Principles

Estimating shelf-life is critical as it is related to food safety, nutritional value, appearance, texture, flavor. The task is mainly for new products or new packaging systems when no similar food product or food packaging has been tested before. As a rule of thumb, food shelf- Shelf-life determinations such as "pack date" and "best-before" have been conventionally determined by measuring the rate of change of a given quality attribute [START_REF] Rahman | Handbook of Food Preservation[END_REF].

The nonlinearity between quality loss and storage time does not facilitate the extrapolation of II.4. Additional indices to consider in food packaging design 109 shelf-life. The high sensitivity to the type of food, composition, formulation and storage conditions and packaging prevents the creation of tabulated kinetics [START_REF] Singh | Quality of pack-aged foods[END_REF]. At the first tier, modeling is the feasible viable solution to adjust rapidly food packaging properties (surface area, wall thickness, material) to the desired shelf-life. The details of the calculations are rarely shared in the scientific literature and most incorporated mainly in in-house and commercial software. 

• Relating food quality attributes with mass transfer

The principles linking a quality attribute (texture) and water transfer is illustrated in Robertson (2016a) and in Chapter 2 "Food Quality and Indices of Failure" of Robertson (2009a). The concept of secondary shelf-life justified by [START_REF] Cappuccio | Staling of roasted and ground coffee at different temperatures: combining sensory and GC analysis[END_REF] represents the minimum durable time after the opening of the package Chapter II. Literature review during which the coffee maintains acceptable quality. The depicted case represents the evolution of the glass transition temperature due to a water uptake consecutive to an increase of the humidity in the headspace (see a similar case in [START_REF] Nicoli | Shelf Life Assessment of Food[END_REF]. The key assumptions are:

• water mass transfer across packaging walls are much slower than the equilibration time between the headspace and the product;

• the evolution of texture is well correlated with the glass transition temperature (T g ) of the product;

• the sorption isotherm of water in food and the variation of T g with water content;

• a mass transfer model across packaging combined with a global mass balance can be devised. Considering secondary shelf-life with a technological point of view is a quite new field of investigation [START_REF] Nicoli | Secondary Shelf Life: an Underestimated Issue[END_REF]. The turn follows a dual motive of reducing food loss and waste at a global scale, and of improving the role of the packaging in the shelf-life extension after opening. Secondary shelf-life of liquid food exceeds one week only in rare cases: oil, mayonnaise, syrups, liquors and the main risk are evaporation and oxidation.

II.4.1.3. A 2D revolution simulation to estimate the shelf-life of carbonated beverages in PET bottles

The feasibility to calculate shelf-life from computational fluid dynamics (CFD) has been discussed by [START_REF] Carrieri | Modeling and experimental validation of mass transfer from carbonated beverages in polyethylene terephthalate bottles[END_REF] 

II.4.2. Mechanical resistance of PET bottles

The shape of the PET bottles and the thickness of the wall must be adapted to the stacking of bottles during transportation and storage in pallets. The resistance to vertical compression by axial load is essential. The observed rigidity in a closed bottle is associated with cylindrical symmetry of bottle sidewalls. According to shell stability theory, the loss of symmetry modifies the equilibrium position of vertical walls and causes a loss of carrying capacity [START_REF] Hu | Structural Optimization and Lightweight Design of PET Bottle Based on ABAQUS[END_REF]. The maximum capacity, so-called buckling load, is affected by the structure and the distribution of the mass in the final blown bottle. All these phenomena can be studied It is significant that none of the simulations consider explicitly the beverage, the resistance induced by the headspace pressure and consequently its loss caused by weight loss due to permeation.

II.4.3. Sustainable and green chemistry

The safety and ecodesign of food packaging should benefit from the growing paradigm of sustainable and green chemistry. The paradigm could be a game changer by offering a systematic substitution of the most impacting polymers and substances.

II.4.3.1. Motivation

The Organization for Economic Co-operation and Development (OECD) defines "Sustainable chemistry as a scientific concept that seeks to improve the efficiency with which natural resources are used to meet human needs for chemical products and services. Sustainable chemistry encompasses the design, manufacture, and use of efficient, effective, safe and more environmentally benign chemical products and processes" (OECD, 2017). The twelve concepts of green chemistry formulated twenty-five years ago [START_REF] Anastas | Green Chemistry: Theory and Practice[END_REF] 

Chemistry of waste management and recycling

Recycling materials free of contaminants

Separating the streams of synthetic and biodegradable polymers in the waste stream controlling the flux of paper, board, plastics, avoiding multimaterials, recycling polyester at dry state to prevent hydrolysis reorienting biodegradable polymers to food applications with short shelf-life and finally compost them together.

Energy and the environment

Use microwave in the processing of plastics possibility to process by-products of the food industry to produce polymer blends Environmental economics Green accounting: include the value of natural support in consideration of profit and loss Uniform application to all materials intended to be in contact with food or not.

The greening of the society

Example of a problem addressed to undergraduate students: They are looking for a new name for the company, for example, "Sustainability Unlimited," or perhaps "Innovation Plus." They are considering slogans that will market the new image, for example, "The future is now. Make more money with Innovation Plus." Your job is to make the announced policy come true. How can you possibly do this? be imaginative

Key points 0f II.4. Additional indices to consider in food packaging design

Shelf-life and mechanical constraints are additional goals or constraints, which need to be considered in packaging design along with safety and environmental ones. The choice to consider them as targets to maximize or as minimal constraints to fulfill depends on the emphasis put on environmental impacts and safety. As a rule of thumb, it could be suggested that the constraint on shelf-life and mechanical resistance can be relaxed if the distribution and retailing chains are adapted accordingly. As finite-element analysis requires computer intensive calculations, it is logical to imagine the integration of shelf-life, safety and some environmental aspected into a single computer-aided framework. The immediate adding value will be a global minimum instead of disconnected local minima. The level of coupling will determine the computational cost of the entire approach. A tiered approach can, again, help to manage uncertainties in non-critical (low coupling) and critical (high coupling) situations straightforwardly.

II.5. Conclusions of the literature review

This chapter reviewed the strategies to evaluate and mitigate negative impacts of food packaging. The initial intent was to show that [S]olving the global challenge could be thought as a minimization problem that engineering and mathematical concepts could handle. The review does not elaborate on the merit or on the negative side of technology; objectivity is shown to be one of the founding principles of any independent [E]valuation supporting the [D]ecisionmaking process. The final [D]ecision based on the [E]valuation conclusions or not will impact in any case both humans and the environment. Semi-supervised and automatic reasoning can help to produce a discrete or continuous list of Pareto optima. According to the context (food product, market, availability of technology, social environment), one solution or another close to the Pareto front could be preferable. This final decision will always belong to humans. A corollary is that the exploration of the Pareto front may benefit the more general concept of sustainability and may support product and service innovation.

Theoretically, one solution identified by following an optimization methodology could strive to meet several challenges linked to social expectations, safety and well-being, planet and equitable profit along the global value chain. This description appears, however, too idyllic by several aspects. The first limitation is how to identify the direction of progress. At the expense of overestimations and worst-case scenarios, it has been shown that semi-supervised decisions were possible. Increasing safety margins such as excess of precaution principles can eliminate some alternative solutions, but it should not preclude innovative packaging design and formulation. By comparison, environmental impacts do not fit within the scheme. The contours of any LCA or equivalent study result from specific choices and no specific guidance has been proposed for food packaging. LCA is to the environment what the first law of thermodynamics is to chemical engineering. Raw resources are converted into effluents and gas emissions, but we are interested in the secondary consequences of these primary impacts and how they the future viability of the planet. The underlying process runs only in one sense and it is not reversible energy flows. Due to entropy production and because ecosystems are continually changing, the concept of "balance of nature" is not enough robust and accurate to support detailed industrial decisions. The margin of uncertainty can be too high. In its attempt to link thermodynamics and ecological considerations [START_REF] Jorgensen | Principles of Environmental Science and Technology[END_REF], more general concepts such as disruption of the natural control and homeostasis of the biosphere should be considered instead. This approach would require sophistication and knowledges, which are not accessible even today. More realistically, [START_REF] Valsaraj | Principles of Environmental Thermodynamics and Kinetics, Fourth Edition[END_REF] suggested that thermodynamics should be still applied to engineered and designed systems with an environmental balance focused on quantities chosen to be extensive, verifiable and auditable. As a result, Figure II-37. does not apply, however, directly to food packaging. Food packaging is a special case of product with only a temporary value, during the time it is in contact with food. After this period, it is losing any value and it will become exclusively a waste when it is not recycled.

Introducing the food in the equation change the perspective, the packaging should protect the food the time needed to process, distribute, retail and consume food. For beverages, one of the best choices remain PET bottles, which can be partly biosourced and are fully recyclable. The technology is mature and relaxing mechanical and shelf-life constraints could offer new opportunities to reduce its impact. The generalized replacement of glass by recycled PET bottles open additionally new challenges: safety of the closed loop, interactions between bottle walls and its content, validation of the shelf-life, shifting consumer experience. Not all the approaches are available to make computer-aided ecodesign available to food companies wishing to explore rapidly all alternatives to glass.
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III.1. Preamble

Chapter II. reviewed some methodological arguments to suggest how the food, the packaging and the chemical industry could tackle the incommensurable challenges that mankind is facing in the 21 st century. The solution with zero packaging is currently not viable as the food needs to be protected from its production or transformation place to its consumption place. The human population became mainly urban, partly disconnected from nature but it should protect it. The solution for now should be a GLOBAL MINIMIZATION problem: less material, less effects of materials on human, less impacts, less food loss. Due to the many linked decisions and the broad range of expertise required to adapt each packaging to each food, to each distribution chain, to each market or consumer, the task looks immense and noneconomically viable. Decision making assisted with proper computer calculations could accelerate the process of exploration and validation of alternative solutions. Only the substitution of mass market applications of food packaging will have a significant benefit on human health and the environment. The chief difficulty is the validation of any massive substitution more than its implementation (i.e. design, marketing, upscaling production): how to guarantee that the new solution is objectively better than the previous one, adapted to existing recovery loops and regulations, without adverse effects not thought at the first place. Even if the replacement process is assisted by computers, it should be inspired by the state of the art in decision-making and problem-solving. The conclusions of Chapter II. emphasized the letters E, D and S for [E]valuation, [D]ecision and [S]olving, respectively. They correspond to the three individual steps, which should be carried-out during the exploration and validation of any solution:

• Step [E] guarantees a neutral (mechanistic) evaluation of well-known phenomena independent of any social, economic, legal acceptation rule;

• Step [D] introduces "human" rules supporting the acceptation or rejection of any choice or alternative;

• Step [S] is a mathematical process enabling to explore in a neutral manner contradictory goals under uncertainty. III.2. General goal and case-study 121

III.2. General goal and case-study The general goal of the thesis is to devise, implement and evaluate the feasibility of the [E][D][S] approach for the rapid prototyping of new food packaging sys-

tems for alcoholic beverages. The entire approach is intended to be generic, incrementable and support the rationale design of any safe and environmentfriendly food packaging or related systems. The food, the packaging, the materials, the substances and the supply chain are parts of the equation.

III.2.1. Towards holistic food-packaging engineering

Comparatively to previous works aiming at reducing environmental impacts, the thesis does not study the solution (new polymer, new use, new recycling etc.), but the cognitive process which will create new solutions optimal in some sense according to the market demand, food requirements, etc. Even the best polymer, the best bottle, the best supply chain and the best recovery/recycling loop needs to be optimized together to get a global solution for each pair of food and packaging, each market segment, etc. By updating regularly packaging to market needs rather than expecting a Holy Grail packaging, impacts could be minimized in an ongoing process following the evolution of food supply chains and its governance. Additionally, linked decisions such as food safety could be managed with the same approach and without additional cost.

Premises of holistic engineering already exist in chemical engineering, which, as a meta-discipline, links physical understanding, mathematical modeling and technical skills.

The best example is process design and development. The application to food and packaging is at this stage very primitive. The priority research directions are not well established. The ecodesign strategy proposed initially by [START_REF] Brezet | Ecodesign: A promising approach to sustainable production and consumption[END_REF] is taken consequently as a template. The authors split the problem of "ecodesign" into seven subproblems, denoted in this work from P1 to P7. They can be addressed with the proposed scheme [E][D][S] as:

• [E]valuating the impact of materials (common to subproblems P1 to P7)

• Preferring materials with lower impacts ([D]ecision) (subproblem P1)

• [S]olving the problems P2 to P7: reduction of material use (subproblem P2), optimization of production techniques (P3), optimization distribution system (subproblem P4), reduction of impact during use (P5), optimization of product lifetime or shelf-life (subproblem P6), optimization of the end of life systems (subproblem P7).
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A translation the seven subproblems to food packaging is proposed as follows. The impact could be mass of waste or the mass of the depletion created by the packaging itself, that is the mass of non-recycled or non-recyclable material for the same purpose (food contact).

The subproblems P2 to P7 could correspond hence to: the minimization of the mass (P2), the optimization of the shape (P3), the optimization transportation and retailing conditions (P4), updating to the volume consumed (P5), the optimization of the food shelf-life (P6), optimization its collect and recycling (P7).

III.2.2. Epistemology of mathematical-computational instruments

Epistemology is not part of the [E][D]

[S] framework, but it encourages the development of a critical view of all optimization and automatic decision methods. A thoughtful example is proposed here to illustrate how being uncertain can have dramatic consequences and may lead to cognitive biases. By using a non or semi-supervised decision algorithm, an important question is raised:

Is there enough rationality to put our faith or thrust in an algorithm, which could not be verified by a human expert or by an independent experiment? A common example chosen in epistemology to separate knowledge and belief is to suppose that a person thinks (or use the result of a computer algorithm) that a particular bridge is safe, and attempts to cross it; unfortunately, the bridge collapses under her weight. One might say that she believed that the bridge was safe (she believed in the algorithm), but that her belief (the algorithm) was mistaken. Alternatively, if the bridge had supported her weight, we would have said that she knew that the bridge was safe (the algorithm was predictive). In fact, this example teaches us that only the experience of crossing the bridge brings us the proof. In the same vein, our predecessors did not believe that our industrial practices could damage permanently our planet, only the next generations could observe that it was not true.

III.2.3. Case-study at tier zero

A tier (pronounced TEE-er) is coming from the medieval French tire and meant the rank in a line of soldiers. By extension, it is the row or layer in a series of similarly arranged objects. A four-tier approach is proposed for the design of food packaging. Tier zero is proposed as conceptual engineering to serve to identify the principles and feasibility of more sophisticated approaches at higher tiers. III.2. General goal and case-study 123

III.2.3.1. Justification

As early discussed by [START_REF] Dufrene | An engineering platform to support a practical integrated eco-design methodology[END_REF], ecodesign tends to be idiographic, casecentric, without easy generalization and without standards. The thesis proposes to resolve automatically or in a semi-supervised manner the subproblems P2 to P6 with an evidence-based approach. The feasibility and difficulty are illustrated on a toy model offering a parallel with real cost and objective functions. The subproblems P1 and P7 are excluded because they are assumed to be resolved independently using, for example, life-cycle assessment tools: glass vs plastics, biodegradable vs recyclable materials, reusable vs recyclable systems… At this point, it is worth noting that goals corresponding to P2 to P6 are essentially monotonic and mutually correlated, for example: more materials (subproblem P2) is needed to reach a longer shelf-life (subproblem P6). Without a loss of generality, the case-study is simplified to reach a global optimization problem solvable with linear programming, with many fundamental results rooting from the pioneer work of Joseph Fourier. Important results will be, however, demonstrated, such as the possibility to eliminate some subproblems or constraints (inequalities) to check whether the whole problem (S2-S5) accepts a feasible solution.

When several solutions are possible, enumeration or iso-impact contours can be used to find the best solution or to meet some Pareto optimality (Pareto front or Pareto set). When there is no feasible solution due to either too restrictive or contradictory constraints, a least infeasible solution will be sought.

III.2.3.2. Description of the case study

• Formulation of the problems Q1, Q2, Q3

A vodka-type beverage (40% alcohol-by-volume) is packed in containers with simple geometries, shown in Figure III-1 : a regular parallelepiped shape (design 𝐷𝐷 1 ) with an edge 𝑎𝑎 and of height 𝑏𝑏; a cylinder of diameter 𝑎𝑎 and height 𝑏𝑏 (design 𝐷𝐷 2 ); a cube with an edge 𝑎𝑎 (design 𝐷𝐷 3 ); a sphere of diameter 𝑎𝑎 (design 𝐷𝐷 4 ). Each design is equipped with an opening of two centimeters width. The walls are assumed to be in plastics (for example in PET). The ecodesign problem can be translated in different questions:

-Q1 (concurrent design alternative): What is the shape minimizing the amount of waste if a minimum shelf-life of two years is enforced at ambient temperature for a capacity of -Q2 (optimal design and supply chain): What is the best shape and capacity (between 0.05 L and 0.75 L) minimizing impacts for average consumer with a consumption rate of one glass per week and adapted to low consumer with a consumption rate of one glass per month? The shelf-life is not imposed and can be adjusted.
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Though the spherical shapes exhibit the lowest surface-to-volume ratio, the proposed solutions should include innovative alternative with performances similar to 𝐷𝐷 4 with a shelf-life of two years.

-Q3 (innovative design solution): Where is the pareto front corresponding to the evolutive geometry linking continuously designs from 𝐷𝐷 1 to 𝐷𝐷 4 . What would be the alternative geometries with a resemblance to 𝐷𝐷 2 and with performances close to the ones of 𝐷𝐷 4 ? 

• Assumptions and simplifications

To keep the problem feasible with simple reasoning, vodka will be assumed to be pure water with density F ρ and molecular mass M (ethanol content is neglected in this case- study). The shelf-life will be assumed to be governed only by the loss of water. The thickness of the walls is assumed to be uniform and equal to p l (weight of the bottle:

p p p m Al ρ = , with
A the surface area of contact and p ρ the density). The transport properties are also uniform and governed by constant diffusion coefficient p D and Henry coefficient p k . The partial pres- sure across the walls p ∆ is assumed to be constant and controlling the mass leak. The mass absorbed in the walls is neglected as the contribution of the headspace. The parameter b is fixed to 0.15 m and only the parameter a is adjustable for all designs. Design 𝐷𝐷 1 is chosen as reference and is subjected to the presented optimization problem.
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III.2.3.3. [E][D][S] resolution procedure

The with notations detailed hereafter. The remaining mass of the food is defined as

t t F V F m V ρ =
and the shelf-life is defined relatively to tolerable weigh loss % F m ∆

.

Figure III-2. Principle of the iterative resolution of the ecodesign problems using the [E][D][S] framework

• Mass transfer model of used in [E]valuation step

By assuming a mass loss by permeation at steady state, the mass flux reads:

p F p p D dm p J A M dt k l ∆ = - =⋅ ⋅ ⋅ (III.1)
•

Conditions and assumptions added to the [D]ecision step

The simple mass transfer model (III.1) incorporates all the details of the design. Its integration with time enables to construct an estimator of shelf-life:

0 0 0 2 % % % t t p p p t F F F F F shelf F F p F p p p k k m m V V t m m l m J A M p D A M p D ρ ρ ρ = = = ∆ = = ∆ = ∆ ⋅ ⋅ ∆ ⋅ ⋅ ∆ (III.2)
or of the packaging weight:
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p p P p p shelf t F p F F D A M p m A l A t k V m ρ ρ ρ = ∆ = = ⋅ ∆ (III.3)

• Goals and constraints considered in the [S]olving step

Eq. (III.3) demonstrates that the best shape must have the lowest 0 t F A V = ratio, which is obtained for a sphere. Arbitrary shapes can be interpolated or extrapolated from designs 𝐷𝐷 1 to 𝐷𝐷 4 by using the concept of sphericity [START_REF] Wadell | Volume, Shape, and Roundness of Quartz Particles[END_REF] In first approximation, the impact of the packaging, denoted p M , is proportional to the number of units to reach an average consumption consumption V :

2 3 0 0 2 36 1 % consumption p p P P shelf consumption t t F F F p F V D M p M m t V V V k m ρ π ρ = =   ∆ = =   Ψ ∆   (III.4)
Eq. (III.4) does not consider the obsolescence (concept of secondary shelf-life shown in II.4.1. ), when the primary shelf-life is too short. The number of bottle units to meet consumption V must account also for the time needed to finish the bottle, consumption t .

( )

0 0 max , consumption consumpti t on P P t F she F lf V t M m V t V = =     =     (III.5)
The impact results are respectively to a bottle of 1 L with a shelf-life of one year chosen to be outside the explored domain. Finally, the polytope encompassing all feasible solutions obeys to the following convex set of constraints: 

III.2.3.4. Solutions

The When the bottle capacity is imposed, all solutions lie between 𝐴𝐴′𝐷𝐷′𝐷𝐷𝐴𝐴. Contrary to intuition, the weight of packaging increases slowly with the capacity of the bottle when the shelf-life is fixed. Due to their larger specific area, walls are indeed thicker in small bottles. Due to the longer time to drink the content of a large bottle, the viability domain is consequently reduced with large bottles. In all cases, 𝐷𝐷 4 bottles are more than twice lighter than 𝐷𝐷 1 ones.

Relaxing the shelf-life constraint enables to generate solutions for problem Q2, which are as efficient as point 𝐷𝐷 (same weight) but at the expense of a reduced shelf-life. They are denoted 𝛼𝛼 , 𝛽𝛽, 𝛾𝛾 , respectively to designs 𝐷𝐷 1 , 𝐷𝐷 2 and 𝐷𝐷 3 . As an illustration for a 0.25 L bottle, substituting solution 𝐴𝐴 by solution 𝐵𝐵 reduces weight by 19% whereas substituting by solution 𝛽𝛽 offers a weight gain of -55%, for a shelf-life loss of -42%. Such optimizations are viable for bottles with capacities equal or smaller than 0.5 L. Beyond 0.5 L, low consumers waste beverages. Problem Q2 accepts a variant formulation with a prescribed weight (e.g. 20 g), the solutions are 𝑎𝑎, 𝑏𝑏 and 𝛼𝛼. Imposing a too low weight is acceptable only for small bottles offering the best compromise between weight and enough consumption time.

Problems Q1 and Q2 seek solutions with the bottle as a functional unit. Choosing a yearly intake instead changes the perspective. Parameterizing the bottle shape with a single scalar Ψ enables to shift continuously from one shape to another one. The functional ( ) 0 , ,

t p F shelf M V t =
Ψ offers a continuous strategy to resolve Q3. The impacts of the largest bottle (0.75 L) is one magnitude order smaller than with the smallest one (0.05 L). This effect is mainly related to the larger number of bottles to reach the same consumption. According to Eq. (III.4), p M decreases as 2 -Ψ suggesting that ellipsoidal shapes (large and small radii set to b and a , respectively) could improve slightly the results by approaching the sphere as soon 128

Chapter III. Goals and Approaches as b a ≈ . Since the impact for a same consumption is independent of shelf-life for a same consumption rate, the problems of shelf-life and weight of packaging appears decoupled (horizontal isop M values). One important consequence is that in presence of various consumers, the optimal solution should propose various formats adapted to the consumption: one large format for high consumers and much smaller ones for low consumers. The design offer (format, shape) should be enough flexible to adapt the demand to minimize environmental impacts and not only the consumer convenience. Packaging formats and shapes need to be revised regularly to adapt to the evolution of the supply chain and consumer practices. The generalization of these calculations for real beverages and packaging is at the core of the proposed research work.

III.3. Specific objectives and approaches

• List of specific objectives: 𝑂𝑂 1 … 𝑂𝑂 11

The [E][D][S] framework is enough generic to resolve many types of mass transfer problems and their consequences on packaging design. Its development and consolidation beyond the presented case-study focused on the linked technological problems listed in Table III-1. Each optimization goal was translated into eleven scientific questions or specific objectives (𝑂𝑂 1 … 𝑂𝑂 11 ), which could be resolved with the tools of research. Alcoholic beverages were chosen as a template of optimization problems involving packaging materials in contact with interacting liquids facilitating mass transfer from the food to the surrounding (mass loss, change in composition) and from the packaging to the food (migration). Polyethylene terephthalate (PET) was chosen as reference model material. The modular structure of the framework enabled to build and extend progressively the number of goals considered in the global multicriteria optimization problem. The approach involves theory, modeling, simulation, coding and different validation experiments to guarantee the robustness of the choices for alcoholic beverages in contact with PET. Without a loss of generality, water-ethanol mixtures were used as food simulants instead of real beverages. 

Integration of all goals together

[S] software integration and robustness analysis O10/ Looping evaluation, decision and solving steps into a seamless formulation with prioritization of assumptions and scenarios.

O11/ Sensitivity analysis and risk assessment O10-O11/ Integration within an expandable toolbox written in mainly in Matlab language and object-oriented.

The mutiobjective optimization problem is an ill-posed problem without clear meaning when all goals cannot be achieved simultaneously. The sequential optimization enables to introduce interactions and to combine several methods (active set method, goal achievement). † comparatively to the case-study presented in §III.2.3.

• Overview of targeted capabilities and extensions of the [E][D][S] framework

The properties. The validity and limits of these choices are discussed in §V.3.

Figure III-5. Main capabilities (this work) and foreseen evolutions (considered by construction) in the considered [E][D][S] framework • A multi-resolution [E][D][S] framework

The framework as the superposition of independent steps 

Chapter IV. Materials and Methods

This chapter summarizes the main materials and methods used in this study. The work was both experimental and theoretical using modeling and simulations. The framework 

IV.1.1. Studied PET materials • Overview

Experimental approaches on PET provided reference values (e.g. kinetics, equilibrium curves) for estimating specific properties and for validating assumptions and predictions. The different PET materials are reviewed in Two kinds of PET materials were considered:

1. Twelve micrometers thick biaxially oriented PET films with uniform thickness and good thermal stability due to biorientation 2. PET bottles with heterogeneous orientation, crystallinity and thickness (from hundreds of micrometers to several millimeters).

The microstructures of the two PET materials were not identical and the transposition of the results from one to the other required proper assessment. Thin films were preferred for all thermodynamical and mass transport characterization. Bottles were used for validation and IV.1. Materials 135 deformulation. It is thought, nevertheless, that the structure rigidity of bottles blocks lateral thermal expansion and swelling as in biaxially oriented PET films with thermal expansion lower than 1% between ambient and 100°C. As a result, transport and thermodynamic obtained on bottles and films were thought to be a priori exchangeable at the first tiers. [START_REF] Wunderlich | Thermal Analysis of Polymeric Materials[END_REF]; ‡ value was inferred from DSC measurements (model DSC Q100, TA Instruments, USA) with a heating rate of 10 °C⋅min -1 .

• Miniature bottles (M)

PET miniatures play a significant role as they were used for validating the capacity to predict shelf-life in variable storage conditions. The geometry model determined over 10 bottles is shown in investigating by adding a sleeve (thermo-shrinking PET film, reference PET sleeve label, Fuji Seal France SAS, France) to some bottles after a prescribed storage time. It is worth noticing that the sleeve and studied films in Table IV-1 are different. Sleeves are strongly subcooled PET, which crystallize during heating whereas PET films F1-F3 include biaxially oriented crystallites blocking thermal expansion.
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Figure IV-1. Bottle geometry: (a) radius profile (the arrows indicate the top and bottom position of the sleeve and the vertical line indicate the level of liquid for pure water); (b) 3D-representation assuming a revolution geometry; (c) thickness profile (the shadow indicates the variation range of measurements among 10 bottles); (d) filled and sealed bottle; (e) bottle equipped with a shrink sleeve label.

• New project of PET miniature bottle (X) Shape optimization was illustrated on bottles homothetic to the 3D shape presented in 

IV.1.2. Reference data and properties

The [E]valuation step relies on a tiered approach. The "tiers" used in this work are essentially mass transfer models that progress in complexity and data requirements, intended to produce gradually more robust estimations of the mass transfer contributions: sorption, desorption and diffusion. The comparison between the current and refined scenarios was used to estimate the uncertainty associated to the considered idealization. This approach is expected to bring more insights than the direct comparison with macroscopic experiments, which spread the uncertainty over all considered phenomena. Since the iterative process was stopped when no further refinement was obtained, computational resources and algorithmic complexity was focused on essential phenomena, whose identifications were also part of the ambition of this work.

At the first tier (see Table III-2), diffusion and solubilities are assumed constant and to depend only on temperature. These assumptions were formulated for water and ethanol in PET, but they were enough general for other polymers and conditions of mutual diffusion (see §II.2.4. ). More general descriptions at higher tiers were devised by collecting reference data to parameterize general ternary Flory-Huggins isotherms of water and ethanol in PET at arbitrary temperatures and an extended free-volume blob-model for trace diffusion in arbitrary polymers.

IV.1.2.1. Properties of water-ethanol mixtures

The thermodynamical properties of water, ethanol pure or in mixtures are required to parameterize the driven forces applied at the boundaries of the packaging walls. Alcohol-byvolume denoted 𝑎𝑎𝑏𝑏𝑎𝑎, was chosen as intensive value was chosen as intensive value to describe the composition of hydroalcoholic solutions. It is legally defined in EU as "the ratio of the volume of pure alcohol present in the product in question at 20°C to the total volume of that product at the same temperature" (see Annex I of EU Regulation 110/2008/EC).

• Vapor saturation pressures

Saturation pressures of water and ethanol were approximated with a good accuracy via the modified Goff and Gratch equation (see Eq.(III.7) in [START_REF] Goff | Low-pressure properties of water from -160 to 212[END_REF][START_REF] Goff | Saturation pressure of water on the new Kelvin temperature scale[END_REF] . Values in vacuum have been initially tabulated by [START_REF] Oiml | International Alcoholometric Tables[END_REF] ranging from -20°C up to 40°C, with factual errors discussed in [START_REF] Chanson | Traceability and computerization of alcoholometric tables[END_REF] to include the revised formula proposed by [START_REF] Bettin | A Revised Formula for the Calculation of Alcoholometric Tables[END_REF]. The upper limit of 40°C was imposed by the decrease of the boiling point of ethanol at low pressures. In this study, an extensive database was compiled by assembling the OIML data and by extending them with the predictions of the commercial software AlcoDens (version 3.3, Katmar Software, USA) above 40°C. The slight compressibility of the mixture at atmospheric pressure was based on the compressibility values was corrected from the values reported by the US National Bureau of Standards in Table 6 of CFR (2006) originated from [START_REF] Osborne | Density and thermal expansion of ethyl alcohol and of its mixtures with water[END_REF].

        - -     - -       - -+               - ⋅ -+ ⋅ -+             = (IV.

• Activity coefficients in hydroalcoholic solutions

Vapor-liquid equilibria of hydroalcoholic mixtures were calculated from the UNIFAC contribution method [START_REF] Wittig | Vapor-Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension[END_REF].

IV.1.2.2. Reference diffusion and Henry coefficients of water and ethanol in PET at tiers 1,2

At the first tier, diffusion and sorption in PET are assumed to be independent of crystallinity, orientation, subcooling effects, aging and to remain constant with time and concentration. These assumptions are acceptable for diffusivity of water but look restrictive for ethanol. The corresponding properties at tiers 1 and 2 are reported in � calculated for a characteristic thickness 𝑙𝑙 according to [START_REF] Billovits | Penetrant transport in semicrystalline poly(ethylene terephthalate)[END_REF].

IV.1.2.3. Reference mutual sorption properties of water and ethanol in PET at higher tiers

At higher tiers, concentration effects and possible effects of physical and chemical ageing need to be accounted. The sophistications capable to describe hysteresis are important but the number of supporting data is limited. 

IV.1.2.4. Database of trace diffusion coefficients of rigid, linear and anchored solutes in seven polymers

Trace diffusion coefficients (𝐷𝐷) are essential properties to [E]valuate shelf-life and migration. They are scarce in many polymers relevant for food applications polyesters, polyvinyls and polyamides. These barrier polymers are glassy at room temperature and 𝐷𝐷 values are particularly difficult to estimate. In this work, a general model of diffusion involving rigid blobs connected or not, with similar shape or not, with similar size or not is intended to be developed and extended from rubber to glassy state. Its design and validation require large data sets of 𝐷𝐷 values on homologous solutes collected at different temperatures on the same material and with the same methodology of measurement. A database of 433 𝐷𝐷 values in seven polymers with various chemical structures and polarities was assembled. As the blobs of the solute need to be discussed according to their resemblance with the blobs of the polymers, three polymer families were considered.

• aliphatic polymers: low-density polyethylene (PE), polystyrene (PS); polyvinyl acetate (PVAc); poly (methyl methacrylate) (PMMA), polyamide 6 (PA6);

• semi-aromatic polymers: poly (ethylene terephthalate) (PET); poly(ethylene naphthalate) (PEN);

• aromatic polymer: polystyrene (PS).

The content of the database is summarized in (c) gravimetric sorption after immersion in a liquid, (d) gravimetric sorption in the gas phase, (e) capillary column inverse gas chromatography, (f) FTIR-ATR method, (g) values calculated from molecular dynamics simulation, (h) from concentration profiles using solid-solid contact, (i) pulsed-gradient spin-echo NMR technique. ‡ blob M is the molar mass of the rigid repeated unit: -CH2-CH2-or -CH2-; ‡ anchor M is the molar mass of functional group as anchor in non-regulated solutes: -OH, -CH3COO -., C6H5-and CH3(CH2)CCOO -.

IV.1.3. Studied solutes • Overview

The solutes incorporated in the contacting phase (gas, liquid, solution) 

• Safety considerations on the manipulation of large volume of water-ethanol mixtures in closed oven

The manipulation of large amounts of ethanol above its flash point (13, 21, 26, 36°C for pure ethanol, 0.7, 0.4 and 0.2 𝑎𝑎𝑏𝑏𝑎𝑎, respectively) in soaking (films soaked in hydroalcoholic solutions) and permeation (bottles filled with hydroalcoholic solutions) experiments required specific precautions to reduce flammability hazards and the exposure of operators. Hazard analysis and risk assessment via modeling were systematically applied to assess whether the lower flammable limit (𝑥𝑥𝐹𝐹𝑥𝑥) of ethanol (ca. 3.3%)(NFPA, 1994) could be exceeded. An example of risk calculations for miniature bottles stored in a closed oven for several weeks is shown in the maximum duration the experiment could be ran without proceeding to an introduction of fresh air. For mixtures with 70% 𝑎𝑎𝑏𝑏𝑎𝑎 stored at 50°C, this duration was as low as 3 days; air was therefore renewed therefore three times per week at least. 
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IV.2. Experimental methods

Experiments fell in three categories: validation experiments of predictions at first tiers (1 or 2), identification of non-linear binary and ternary sorption and diffusion properties (tiers 3 and 4) and identification of chemical or structural modifications in PET at molecular level (tier 5). Additional experiments were carried out to identify the common migrants of PET from a significant sample of PET bottles used worldwide by the group Pernod-Ricard.

IV.2.1. Mutual permeation of water and ethanol in real bottles

IV.2.1.1. Principles

Mutual permeation was assessed indirectly from non-destructive measurement of mass loss of sealed bottles; and from the destructive determination of 𝑎𝑎𝑏𝑏𝑎𝑎 variations. The measurements were repeated for a large set of bottles to achieve a uniform sampling over a period up to 7 months. To minimize disturbances in the storage rooms and to bring consistent determinations, a full random design was applied (ten non-destructive measurements and three destructive ones per week) and updated regularly to account for leaking bottles.

IV.2. Experimental methods

145

IV.2.1.2. Tested conditions

A challenge test with 425 flasks was carried out on four model beverages (𝑎𝑎𝑏𝑏𝑎𝑎=0, 0.2, 0.4, 0.7) stored in bottles M stored in three conditions summarized in Mass transfer was monitored regularly by weighing the whole bottles (bottle, content and sealing) with an electronic precision balance (±0.001g, PE160, Mettler Toledo, USA). At regular times, some bottles were sacrificed (opened) randomly to enable ethanol content determinations. The contents of the tested bottles were transferred to glass measurement tubes.

Alcohol strength by volume of each sample was subsequently determined at three different depths in the tube using an automatic densimeter (model DMA 5000, Anton Paar GmbH, Austria; accuracy of 10-5 % with pure water-ethanol mixtures) equipped with an accurate temperature controller and an autosampler. Ultrapure water was used as reference. 
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IV.2.1.3. Extension of the test with sleeve

The capacity to predict the effect of the PET thickness was tested by adding a sleeve surrounding the flask main body for condition RH=20% at 35°C. The initial test was prolonged for beverages B3 and B4 stored in condition S4 shown in 

IV.2.2. Gravimetric measurements of water and ethanol sorption and diffusion (F1-F5, M)

• Overview

Binary and ternary sorption/desorption properties of PET were assessed using gravimetric measurements at 4°C, 25°C, 40°C, 50°C, 57°C and 60°C. UK; accuracy ±0.2 µg) at atmospheric pressure equipped with a capacitive detector (RH 0-98%) and operating at 298 K with nitrogen as gas carrier (gas flow rate up 200 mL⋅min -1 ); B. Co-sorption/desorption microbralance model DVS Resolution at atmospheric pressure equipped with two saturators (water and organic solute, two organic solutes, operating temperature 25°C-85°C), a reference cell and two ultrasonic sensors measuring the gas composition at the outlet of each saturator (Surface Measurement System, UK; ; accuracy ±0.1 µg).

• Principle of the cosorption microbalance (B)

The cosorption microbalance (B) associated in parallel two saturators fed with dry nitrogen to generate ternary gas mixtures (nitrogen as a gas carrier, water and ethanol) as shown in As in conventional microbalances at atmospheric pressures, the activity measured by the sensor (ultrasonic on ways A and B) is given by the fraction of flowrate of saturated or wet Chapter IV. Materials and Methods gas, denoted % A and %B , respectively. As both gas lines A and B are mixed together, the activity is subsequently reduced before reaching the sample cell. The values of %A and %B should be adjusted to reach the desired activity values temperature T , { } , T i ï w e a = . By assuming that water ( i w = ) is located in way A and that ethanol ( i e = ) is in B, one gets the follow- ing dilution rules:

1 % 1 1 % 1 1 1 T A B w A w T A B e B e Q Q A a Q a Q Q B a Q a + = -∆ + = -∆ ≤ ≤ (IV.3)
where A Q and B Q are the total flow rates on ways A and B, respectively. w a ∆ and e a ∆ are de- viations to idealities to consider because the saturators are not perfect (the residence time in the saturator is finite) and because the ethanol at 99% is not pure.

Since % A and %B are necessary lower than unity, not all activities are achievable when both water and ethanol were combined together. Increasing A Q and B Q improved the hydrodynamic conditions around the sample but provoked also higher evaporation rates. The corresponding evaporation rates reads: 

( ) ( ) ( ) ( )
M AQ M Q Q a RT RT p p q a M BQ M Q Q a RT RT = -∆ = + = -∆ = + (IV.4)
• Principle of concentration measurements in a gas phase with ultrasonic sensors

The speed of sound in an ideal gas depends only on its temperature and composition.

From the Newton-Laplace equation, the square speed of the sound, 2 c , is given by the ratio of the gas bulk elasticity and of its density. Ultrasonic sensors use the relationships between 2 c and the ratio of adiabatic heat capacities as well as the molecular densities of gas compo- nents to reach an estimate of the gas composition before the sample cell. The non-linear relationship between 2 c and the molar fraction of solute i x reads: 

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 1 1 1 1 1 1 N i p N i p i i N i N i i i v N i v i i C M x C M x RT c M x M x C M x C M x -+ - = -+ - -+ - (IV.

• Control loop during long-term experiments

The sensor could be used in a control loop to estimate a regular times w a ∆ and e a ∆ , or to introduce a periodic variation with controlled amplitude. This strategy was used to anticipate the delays when the organic composition of gases was changed.

IV.3. Computational methods

Computer aided approach is significant for [E][D][S] framework with the complexity issues and linked decisions as shown in case-study in §III.2. . In this section, the importance of computational methods mainly focuses on [E]valuation of mechanism on thermodynamic and transport properties applicable to the packaging design and optimization in this thesis.

IV.3.1. Mass transfer modeling of water and ethanol at tiers 1 and 2

At first tiers, mass transfer across the walls of the container are described in simplified but not oversimplified calculations. No assumption of steady state is required. Only the modifications of the polymer induced caused by the sorption of water and ethanol are neglected.

In the case of PET, polymer relaxation effects are triggered by critical temperatures and relative humidities (see the pseudo state diagram 5 in Dubelley et al., 2017a), but they do not modify the diffusion coefficients of water in PET significantly (see Figure 14 in Burgess et al., 2014a).

IV.3.1.1. Transport equations at bottle walls

The internal side of the container (e.g., bottle) is exposed to the vapors of the waterethanol mixture, denoted with subscripts w and e , whereas the external side is exposed only to the relative humidity of the storage place or room at the same temperature. In this description, the beverage is assumed to be macroscopically at thermal equilibrium with the surroundings and that the storage place does not accumulate ethanol (i.e., good ventilation and extraction).

Without distinguishing whether the mass transfer was initiated in the liquid or in the headspace compartment (they are both at thermodynamical equilibrium), the diffusive fluxes at the interfaces in contact with polymer walls are described satisfactorily within the thin film approximation. On the internal side, denoted int ∂Ω and its normal vector 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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where { } 

( ) ( ) ( ) ( ) ( ) ( ) ( ) int int int , , , , , , , , , , , , 0 2 
∂Ω =         = =                   ∫∫ ∫  (IV.7)
where ( ) r z is the radial profile of the bottle along the vertical coordinate z .

IV.3.1.2. Transport equations within bottle walls

Since the thickness of bottle walls is several magnitude orders smaller than the height of the bottle, mass transfer through bottle walls can be therefore assumed one-dimensional without a significant loss of accuracy. By neglecting the contribution of the polymer relaxation as driving force, the mutual diffusion of water and ethanol in polymer walls reads: 

( ) ( ) [ ] ( ) [ ] ( ) ( ) ( ) , , ', , , , , , , , , , , ' 
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where

( ) { } , , , i T C z i i w e D =
is the diffusion coefficient in the normal direction of the walls. The dependence with the vertical position z and with the local solute concentration accounts for non- uniform drawing and plasticizing effects.

Eq. (IV.8) can be solved efficiently for any arbitrary initial solution

( ) ( ) ' , , 0 , , 0 , r z t r z t e w C C = =    
along with boundary condition (IV.6) by decomposing the bottle into vertical sections with similar thickness and transport properties. In other words, mass transfer across container walls can be factorized into 1 n ≥ boundary conditions between the beverage and n equivalent sections coupled via mass balance Eq. (IV.7). By assuming that container walls are at equilibrium with the storage atmosphere at a relative humidity 0 RH and a temperature 0 T , and which is not contaminated by ethanol vapors, the corresponding initial condition is:

( ) ( ) ( ) 0 , , 0 , 0 , , 0 0 r z t e r z T t P w w C C f RH = =        =        (IV.9)
Equations (IV.6)-(IV.9) have been implemented by following the finite-volume formulation of [START_REF] Nguyen | A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems[END_REF] and the opensource project FMECAengine [START_REF] Vitrac | FMECAengine: FMECA software developed in the framework of the project SafeFoodPack Design[END_REF].

IV.3.2. Mechanical constraints: risk of overpressure and collapse in the headspace

Water and ethanol mass transfer are controlled by two driving forces: partial pressure gradients across walls and the difference of total pressure on both sides of the closure system. By neglecting internal mass transfer in the beverage and the heat transfer required for the vaporization or the condensation of water and ethanol at the liquid-gas interface, the driving potentials on the beverage side are set by the total pressure and the partial pressures in the headspace. with T the absolute temperature in Kelvin but expressed in °C in the description of storage conditions.
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IV.3.2.1. Practical approximations of partial pressures: { }

Eq. (IV.10) is exact when the interactions between water (and also ethanol in a less extent) and the other beverage constituents (pectins, proteins, aroma…) can be neglected.

When the real alcoholic beverage is replaced by an equivalent hydroalcoholic solution, one gets: ρ °= the densities of pure components at 20°C.

IV.3.2.2. Practical approximation of the total pressure in the headspace in equilibrium with the beverage.

The total pressure in the headspace head P results from several equilibria: i) the chemi- cal equilibrium between the liquid and the headspace, ii) the thermal equilibrium with the gas and liquid phase and iii) the balance of forces on the sides of the wall. All equilibria are connected, changing temperature or changing the volume of the headspace affect both the total pressure and the composition of the headspace (and corollary the composition of the liquid).

The presence of air or an inert gas affect these equilibria. An efficient procedure to calculate IV.3. Computational methods 153 the final total pressure and composition of the headspace has been devised. It takes into account the internal volume of the bottle bottle V , the initial temperature 0 T , the initial total pres- sure 0 P , the initial composition of the beverage 0 abv and the initial headspace volume

0 t head V = .
Without a loss of generality, some simplifications are introduced. The deformations of the wall are not considered (the total volume of the gas and liquid is constant), the leaks and mass transfer across the walls are discarded (the equilibration is faster than permeation), the headspace behaves as an ideal gas, air or inert gas cannot dissolve in the liquid and is incondensable.

At any time t , the number of solutes , i w e = in the gas phase, { } ,

g i i w e n =
, is derived by combining Eq. (IV.10) and the ideal gas law as:

( ) ( ) , , T T abv i sat i i head g head i i P x V V n p RT RT γ = = (IV.13)
where head V is the volume of headspace and R is the ideal gas constant.

Since air (or the inert gas) is assumed to be incondensable, insoluble and initially dry (no water inside), the number of air molecules, a n , is given by the initial amount of air in the headspace:

0 0 0 t head a P n T V R = = (IV.14)
Eq. (IV.14) and subsequent mass balance on air assumes that nitrogen and oxygen are not exchanged between the beverage and the headspace. The assumption is reasonable with nitrogen (low solubility), but questionable for oxygen. At atmospheric conditions, the solubility of oxygen in water is very low, about eight parts of oxygen per million at 25°C [START_REF] Truesdale | Solubility of Oxygen in Water[END_REF]. Its solubility increases slightly with ethanol content to reach a value of 3.5% higher than in pure water for 0.15 abv = (see Table 1 and Figure 1 of [START_REF] Kutsche | Oxygen solubilities in aqueous alcohol solutions[END_REF].

The total desorption or sorption of oxygen in a headspace representing 1:15 of the volume beverage will cause a variation of the total pressure lower than ±0.02 %. Comparatively to the risk associated with ethanol and water, the contribution of oxygen on the risk of collapse was therefore neglected. In the absence of an inert gas, the beverage is additionally assumed to be already at or close to the equilibrium with the earth atmosphere, so that significant desorption or sorption of oxygen is unlikely.

By assuming that the headspace does not contain ethanol initially before the bottle is filled, the total number of ethanol molecules in the bottle is hence given by: ( ) 

0
V x V n n V n V = = = - + - - = (IV.19)
Finally, the total pressure in the headspace at equilibrium is given by: wall bottom top neck l l l l to adjust the barrier properties of the bottle. Without a loss of generality, the general problem is solved using a multiresolution method [START_REF] Amaran | Simulation optimization: a review of algorithms and applications[END_REF] for a review of applicable algorithms 

mass X l l X shelf life l X abv V T X V W D d h l l l V V V     = ≥       = -   ≥ = (IV.22)
where the shelf-life function is defined as: 

( ) ( ) ( ) ( ) ( ) 0 0 0 - ,
shelf life l X abv V T abv t l X abv V T m t l X abv V T =   ≥     ≥     (IV.23)
and where the height of the bottle is found by adding the complementary constraint:

( ) ( ) internal , arg min , , beverage wall wall bottle beverage H V l V H l V V   = -   (IV.24)
As a result, the internal loop manages implicitly design and product constraints in a conventional simulation framework. All input parameters are set conventionally except H

Chapter IV. Materials and Methods and wall l , which are optimized by resolving successively the capacity and the shelf-life problem via a golden-section search method (see section 10.1 in [START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF]. Additional degrees of freedom controlling the shape of the bottle are introduced at a higher tier by resolving again the elementary problem. The current implementation is sufficiently efficient to screen hundreds or thousands of geometries/designs under constraints. The global optimization when W and D are released has been explored on a 30×30 grid (i.e. 900 hundred bottle geometries were optimized).

Chapter V. Results and Discussion
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V.1. Scope of tiered modeling

The sale proposed framework [E]valuation, [D]ecision, and [S]olving has been implemented in a multitiered approach comprising four major tiers as illustrated in Figure V-1.

The decomposition in tiers is somewhat arbitrary and correspond to a progressive strategy to develop and to use simulation. The first tier incorporates all important features to evaluate mass transfer on real geometries, with dynamic storage conditions and unlimited diffusiondissolution mass transport equations in single or multilayer structures. The limitations are, however, important:

• non-linear coupling is accepted for water-ethanol and at the boundary with the beverage;

• fluxes within the packaging are not coupled and obey strictly to binary diffusion; all sorption isotherms are linear;

• all properties are uniform. 

V.2. Optimization of the design of PET bottles at tiers 1-2

Polyethylene terephthalate (PET) is the dominant material used to produce bottles for water and carbonated beverages (see §II. 3.5.1. ). Fruit juices can also be packed in PET bottles, but the temperature of filling cannot exceed 62°C to prevent deformation of the bottles, and its mechanical resistance needs to be adapted to accommodate the strong risk of collapse during cooling. The filling temperature limit makes PET bottles acceptable in the EU for storage at room temperature only for low-acid fruit juices (e.g., orange juice). For other fruit juices in the EU and all fruit juices in the US, the risk of spoilage should be prevented by keeping the bottles at chilled temperature or by using aseptic packaging such as carton packages (bricks, pouches) or glass containers. PET bottles are attractive containers for other beverages such as liquors; they are light, more cost-effective and environment-friendly that glass (see discussion in §II. 3.5.1. ), they can be used to bring a broad variety of shapes, aspects, and colors. They can be, for example, assembled in refillable or recyclable cartridges and incorporated in semi-automatic cocktail or delivery machines [START_REF] Pernod | Innovation] Discover the Gutenberg Project[END_REF]. The presence of ethanol reduces dramatically the risk of microbiological spoilage, and hot filling is not required. The containers need, however, to fulfill severe requirements to guarantee a shelf-life for the consumer.

This section reports the principles of optimization of such packaging containers for liquors similarly as the problem Q1 discussed in §III.3. The developed method is very generic and can also solve problems Q2 and Q3, but at the expense of a wider exploration of geometry parameters. The optimization focused on the design of miniature bottles consumed in airplanes. The design denoted "M" in Table IV-1 already exists and was used as a reference for validation. Optimization targeted shelf-life extension and minimization of the fire hazard associated with ethanol loss, both critical features for aerial transportation. A case study is proposed for larger bottles with a more original shape, denoted "X".

V.2.1. Overview of the [E][D][S] implementation and choices

Shelf-life plays a significant role as it an essential constraint to verify (minimum shelflife) or goal to maximize. The geometry of bottles brings additional constraints (capacity, shape) or goals to achieve (weight), but also the degree of freedoms to get substantial gains on weight and shelf-life. The first challenge test was to demonstrate that such a tool could [E]valuate equivalent shelf-life of hydroalcoholic solutions stored in real bottles in controlled conditions.

[S]olving ecodesign principles for such bottles was subsequently explored with the intent of introducing new original shapes and capacities.

V.2.1.1. The legal definition of shelf-life for liquors

Packaging for long shelf-life products is designed to offer significant barrier properties to gases from the ambiance (water vapor, oxygen) and to food constituents. Aside from oxidation issues in oxygen-sensitive products, the reduction of shelf-life of beverages is primarily caused by mass loss (usually water content) and by the loss of both aroma and sapid compounds. Weight loss occurs as the balance of all mass transfer across container walls and the closure system. As an example, water bottles stored in a dry place are losing weight due to a net permeation rate of water from the inside to the outside. The loss of aroma is usually slower and associated to reversible sorption in the walls, coined "scalping" process [START_REF] Ducruet | Sorption of aroma compounds in PET and PVC during the storage of a strawberry syrup[END_REF][START_REF] Dombre | The use of active PET to package rosé wine: Changes of aromatic profile by chemical evolution and by transfers[END_REF]; and which dominates over the mass loss by permeation. Predicting the rates of each mass transfer requires a proper characterization of diffusion and sorption properties in the considered polymer, usually a polyester material such as polyethylene terephthalate (PET), at the different stages of transportation, retailing, storage and final consumption. In this study, the non-linear behavior of water-ethanol mixtures stored in PET bottles is thought to represent the properties of real alcoholic beverages such as ciders, beer, wines, and spirits realistically. Since only water and ethanol are considered, the type of beverage is defined by its alcoholic strength by volume, denoted 𝑎𝑎𝑏𝑏𝑎𝑎. It is legally defined in EU as "the ratio of the volume of pure alcohol present in the product in question at 20°C to the total volume of that product at the same temperature" (see Annex I of EU Regulation 110/2008; EC). The case of bottled water is a special case corresponding to abv=0. Tolerances setting the shelf-life of alcoholic beverages are also relative to the variation of abv during storage and transportation, denoted abv ∆

. EU regulation 1169/2011/EC (2011b) sets out a stringent tolerance of ± 0.3% for non-beer related beverages with abv values larger than 1.2%. Finally, the EU applies a tolerable negative error of 1.5% for the weight of prepackaged liquids, w ∆ , with volumes equal or larger than 1 L (see Annex I of Directive 76/211/EEC; 1976). In the context of plastic containers, it should be interpreted as the maximum allowable variation from the weight labeled on the package according to unavoidable variations in weighing, measuring and mass transfer across packaging walls.

In this work, only concepts of primary shelf-life (see §II.4.1. ) consecutive to regular mass transfer through bottle walls have been implemented. Any mass transfer through the opening and the closure system is not considered. In future versions, the capacity to change V.2. Optimization of the design of PET bottles at tiers 1-2 161 headspace dynamically and capacity volumes could be used to mimic bottle opening and to introduce secondary shelf-life concepts.

V.2.2. Dual bottle geometry models

Increasing shelf-life based on bottle geometry parameters or minimizing weight at constant shelf-life for one or several beverages requires to generate virtually a large number of bottle prototypes (from thousands to millions) and to evaluate all of them in a sequence (e.g., grid variation, downhill simplex method or other direct search techniques). The geometry models require to be exact to enable a [D]ecision based on packaging weight. They can be updated in almost in real time for any condition.

[E]valuating mass transfer on each bottle requires conversely much more computational power. A dual geometry model was introduced to symmetrize the costs of the two steps: a detailed 3D geometry model using field evaluations to assess weight, verify the capacity of the bottle, and an equivalent geometry in curvilinear coordinates to simulate mass transfer.

V.2.2.1. Example: dual geometry of bottle M

The principles of the transformation are shown in The dual geometry involves three ingredients: i) smooth 3D parameterized manifolds, ii) a description of mass transfer in curvilinear coordinates (one or several) and iii) a factorization of sections in curvilinear coordinates to reduces the total cost. The whole scheme is V.2. Optimization of the design of PET bottles at tiers 1-2 163 freely inspired from higher order of grid convergence methods, which have been designed to provide higher resolution than the classical second-order accuracy implemented in most industrial grade codes. For the bottle 𝑀𝑀, mass transfer equations are 2D with the cost of resolution of 1D systems. This approach is computationally more efficient that the one described in [START_REF] Carrieri | Modeling and experimental validation of mass transfer from carbonated beverages in polyethylene terephthalate bottles[END_REF] Non-axisymmetric designs such as bottle 𝑋𝑋 are implemented similarly by adding partitions on different curvilinear coordinates. In all cases, the discretization should be chosen to preserve exactly the total surface area of the primary 3D model. A loss information is known to occur only in the corners where impervious boundary conditions are applied. As the overall calculation cost is linear with the number of sections, there is a partial decoupling between the complexity of the original 3D design and the complexity of mass transfer calculations.

V.2.2.2. Discussion on the possibility to extends additional simplifications

It is straightforward to demonstrate that introducing additional simplifications lead to more harm than any substantial gain. Replacing the different cross-sections shown in Additionally, such simplification does not authorize a coupling of fluxes and non-linear behaviors. As a rule of thumb, it was shown that water permeation on a period longer than several days could be described at steady state, but it was not the case for ethanol. Such
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simplifications already used in the case-study presented in §III.2. were not used in the remaining part of the work. The considered thicknesses were obtained from a geometry decomposition, which converged in distribution to the real distribution of thicknesses. The term distribution was interpreted as the joint distribution along all wall normal vectors. This description in curvilinear coordinates is physically very acceptable as:

• it is more general and accurate than cartesian or cylindrical coordinates for the 1D approximation of mass transfer (gyration radii need not to be too large);

• there is no need on the composition of mass transfer resistances (in series or in parallel);

• there is no need to decide which surface is in contact with the liquid

• thickness variability or safety margins can be easily added on distributions;

• the overall cost of calculations can be easily adjusted by increasing or reducing the number of sections.

V.2.3. Driving forces controlling primary shelf-life of liquors

As reviewed in [START_REF] Herstein | Chemistry and Technology of Wines & Liquors[END_REF], liquors are produced by distillation and reach therefore high abv values, generally ranged between 0.35 and 0.9 (denoted 35-90% in volume on commercial products). The origin of the process of distillation itself, in the fifteenth century, is rooted in the production of brandy (𝑎𝑎𝑏𝑏𝑎𝑎: 0.36-0.), obtained by distilling wine. This sub-section analyzes the relationships between the alcohol-strength, the ratio headspace volume-to-beverage volume, temperature (filling and storage), partial and total pressures.

V.2.3.1. Partial pressures

By noting that PET is not a porous material, water and ethanol mass transfer across bottle walls occur prior dissolution in the polymer and obey to the general sorption-diffusiondesorption model. The main driving forces are the partial pressure differences between the beverage and the surrounding. The variations of binary properties of water-ethanol mixtures with abv between 10°C and 70°C: mixture density ( ) 

,

V.2.3.2. Total pressure in bottles M

• Overview

Bottles are commonly filled with air at atmospheric pressure and a temperature lower than the storage temperature. These conditions provoke significant evaporation of ethanol and in a less extent of water, as well as thermal expansion of the mixture (see Figure V-4b and 4c). According to the volume of headspace, head V , the pressure difference between the headspace, head P , and the surrounding, atm P = 100 kPa, can be much higher than theoretical total p . Total

Pressures were calculated in bottles M with a total capacity of 55 mL by varying the headspace volume from 0.5 mL to 35 mL, and by assuming that the walls of the bottle are rigid. The When the filling temperature is equal to the storage temperature T , the internal overpressure, 
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Temperatures greater than 0 T provoke strong overpressures heavily dependent on head V and on abv values. Small headspace volumes more than temperature contrast can lead to strong overpressures up to 300 kPa or more. They can be responsible for additional mass transfer (leaks) across the closure system. Such mass transfer driven by total pressure difference instead of partial pressure gradients across bottle walls were not considered in the modeling part. As a result, bottles expected to have leaked during the tests were discarded from the comparison with simulation. Collapse is known to occur as the consequence of mass transfer, but calculations demonstrated that thermal contraction after hot filling could also cause collapse. Its maximum intensity was of a few kPa, that is slightly above the natural variation of the atmospheric pressure but lower than the variation of pressure with elevation. Finally, it is worth noticing that the effect of the headspace pressure on activity coefficients in the beverage was not considered.

• Theoretical overpressures in our experimental conditions

In our experimental conditions, head V ≈11 mL and 0 20 IV -3), the sleeve was thought to bring indirectly an assessment of a supplementary mass transfer resistance on its permeation.

T C = °
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V.2.4.1. Permeation and sorption kinetics

The methodology of measurements did not enable to separate directly the fluxes of water and ethanol as well as the fluxes crossing the walls from the amounts absorbed in the walls. Bottles filled with pure water were not subjected to typical leaks and were used as a reference baseline for comparison with hydroalcoholic solutions. The simulated results were recast to be comparable with experimental results: i) the net mass variation of the filled bottle was associated with the cumulated permeation fluxes of water and ethanol; ii) the 𝑎𝑎𝑏𝑏𝑎𝑎 variation combined the effects of ethanol loss (by sorption or permeation) and concentration due to water loss (by sorption or permeation). Temperature and RH variations were not accounted, and the average of recorded values in the storage chambers were applied in the simulations.

A significant total pressure difference across the lid existed for all tested storage conditions and beverages, including when the bottles were filled with pure water. For abv greater than 0.4, the internal pressure was estimated 86 % higher in the presence of ethanol than without and made the risk of leaking through the more likely. Leaking was detected by a rapid mass loss during the week of storage. The number of leaking bottles reached 48% at 50°C and 23% at 35°C for 0.4 abv ≥ (see Table IV-6). For low abv values (0.15), the number of leaking bottles dropped down to 9.4% and was reduced to zero in the case of pure water. After discarding leaking bottles, 1889 mass measurements and 286 abv determinations were collected on 358 bottles for all tested conditions (see Table IV-7 Experimental losses were also standardized to the same filling weight to remove the initial dispersion of data. To facilitate the interpretation of coupled water-ethanol mass transfer, the permeation curve of water alone is shown as reference for all tested conditions. The variations of abv corrected from water loss are also presented by assuming that the permeation of water was proportional to the applied driving forces. Weight differences between bottles filled with water and hydroalcoholic mixtures were small and controlled by the differences in water activities, and justified the apparent steady state of weight losses and abv variations. The water content in bottle walls evolved in a non-linear manner with desorption dominating in very dry conditions (condition S1). At high (S2) and intermediate (S3) relative humidities, the rapid water sorption is followed by a slow drying when the surrounding RH during storage is lower than the equilibration RH before the experimentation starts (Figure V-7a). Ethanol diffuses slowly through PET without reaching a steady state. Lag-times beyond which permeation of ethanol may reach a steady state are evaluated ca. 1.4 and 3.6 years, at 50°C and 35°C, respectively. any beverage containing more than 1.2% vol); * shelf-life extrapolated for 50 mL bottles according to EU Directive 72/211/EEC. a. shelf-life on average days (min, max); b. shelf-life in days ± 95% confidence interval.

V.2.4.2. Flux reduction brought by the addition of a sleeve

The results presented a significant variability between bottles, which could not be reduced experimentally, and which could not be reproduced by simulation. The sealing was identified as the source of major leaks and defects, but the contribution of a weak gas leak, which could be confused with permeation, could not be tested directly along with other sources of variabilities: variable plasticizing of PET and variable distribution of PET material at injection-blowing time. It is worth noticing that possible heterogeneities in hydrodynamic, temperature and humidity conditions around bottles cannot be invoked to explain variabilities, as all climatic chambers were equipped with an efficient air recirculation and renewal. Further insights were brought by adding a shrinking 60 µm biaxially oriented PET film (sleeve) around V.2. Optimization of the design of PET bottles at tiers 1-2 173 the thinnest part of the bottle (cylindrical section of the bottle as seen in Figure IV-1), which was thought to contribute the most to the overall permeation rate. The sleeve was added to bottles of B3 (

abv =

) and B4 (water only) at the end of storage S3 (see Table IV-7); it covered ca. 80% of the total surface area. Since ethanol could not significantly cross the ca. 800 µm thick bottle walls, the external film reduced mainly the flux of water. Mass losses before and after the addition of the sleeve are analyzed individually for twenty bottles containing ethanol (10) or not (10) in Figure V-8. The results were not normalized to highlight the different evolutions of the bottles. Before the addition of the sleeve, the "trajectories" followed by the bottles diverged (different permeation rates). Adding a sleeve inflected all permeation rates in a very similar way and made all permeation kinetics looking very similar with almost parallel slopes. This trend confirmed the prevalence of the body of the bottle and water permeation on overall mass transfer. Since the thickness of the sleeve was commensurable to the thickness fluctuations in the body region (see Figure IV-1c), the dispersion of permeation rates between bottles was associated to the slight variations of the distribution of weight after injection-blowing (see similar analyses in Figures 3456and Figure 10 of [START_REF] Daver | An integrative simulation approach to weight reduction in poly(ethylene terephthalate) bottles[END_REF]Demirel and Daver, 2012, respectively). The flux reduction followed approximately the rules of serial association of mass transfer resistances: ( )

1 1 1 wall sleeve l l - - - +
, with wall l and sleeve l the thicknesses of the wall and the sleeve, respectively. V.2.5. Optimal design of packaging systems for liquors: bottles X as a case study

• Justification of the design template of bottle X

The design of a new packaging can be seen either as a problem of a relationship between wall thickness and shelf-life or as a more global problem seeking the maximization of shelf-life while minimizing the mass of plastic material. As previously shown on bottles M, wall thickness and shelf-life are not independent parameters as soon as a steady regime is reached. Under a strict permeation control, doubling shelf-life requires twice the initial thickness and doubles the weight of plastics. Substantial gain can be achieved without damaging weight only if some non-linearities can be introduced in the original engineering problem.

They appear spontaneously if the shape and, in particular, the surface-to-volume ratio is also a degree of freedom. Its contribution was investigated by analyzing the effects of parameters W and D on the weight of bottles matching the design X (see Figure IV-2).

• Optimization procedure

For each value of W and D , the wall thickness of the main sides was optimized to grant a minimum shelf-life of 6 months for a vodka-type product stored in tempered conditions (25°C at 50% RH). The full explored domain covered a 30×30 grid describing a uniform variation of both parameters between 30 mm and 120 mm. All other properties were recovered by simulation-optimization. It is worth noticing that only wall l was updated for each bottle.

The other constraints were managed by mathematical constraints applied to the bottle geometry. For efficiency and robustness in particular close to edges, all bottles were modeled as cylindrical B-spline surfaces rather than swept surfaces. All integrations (masses, fluxes) were integrated accordingly. The corresponding space of explored shapes is shown in 

• Generated solutions

The optimization procedure generates two families of solutions for the same final capacity 150 mL and shelf-life but with weights varying in a ratio 1:2. Flat geometries associated with large W and D values led to heavy bottles and large weights. On the contrary square shape interpolation process from one shape where the curvature is on the smallest side to a final shape where the curvature dominates the largest side. As the bottle is not symmetric, the transformation is not equivalent to a swap of sides. The optimal shape is closer to the cylinder shape and offers as expected the minimum surface-to-volume ratio. V.2. Optimization of the design of PET bottles at tiers 1-2 177 V.2.6. Main directions and limits of the optimization of PET bottles with fixed shelf-life

• Contribution of the [E][D][S] approach

This section generalized the case-study presented in §III.2. to simultaneous mass transfer of water and ethanol and real bottles geometries. It provides solid grounds for more systematic methodologies to solve the problems defined in §III.2.1. :

-P2: minimizing packaging weight (S2);

-P3: optimizing shape;

-P6: optimizing food shelf-life (considered here as a minimum value).

Problem P4 "mitigating transportation and retailing conditions, including the risk of overpressure and collapse" was indirectly addressed in §V.2.3.2. but not optimized. Problem P5 "updating the packaging format to the food volume consumed" could be addressed using the last review of alcoholic beverage preference and dietary habits [START_REF] Sluik | Alcoholic Beverage Preference and Dietary Habits: A Systematic Literature Review[END_REF].

• Validation of the shelf-life criterion/constraint at tiers 1,2

The dual geometry and the thermodynamical coupling were able to provide comparable performances to experimental tests running over several months. The principles of in-silico determinations of mass transfer are well established. In details, the exact rates of sorption and permeation of ethanol could not be guessed from experiments. They were too noisy to offer reliable estimates. More specific measurements are required to validate the principles of the description of the cosorption of water and ethanol at various temperatures.

• Adding other [E]valuation steps and its generalization to other polymers

Step [E] can be extended to a broad range of mass transfer phenomena (aroma scalping, migration of plastic additives). With this respect, safe-by-design and ecodesign approaches can be treated in parallel without substantial additional cost and by adding rows to Eq.(IV.6) -(IV.9). The only limit is the availability of diffusion and partition coefficients for the considered solutes and polymers.

• Directions for optimizing the design of bottles M

The detailed case-study demonstrate that very small formats (miniatures) cannot compete with larger PET bottles for storing alcoholic beverages. Similar tolerance on mass loss and alcohol strength by combining two strategies: increasing wall thicknesses and changing their shapes. Additionally, the main stressors have been identified and are associated contrary to intuition to the difference of partial pressure of water across the walls and not the one of Chapter V. Results and Discussion ethanol. As the thickening of the wall is beneficial only for water permeation, keeping miniatures in a humid place or even immersed in water can contribute to extending shelf-life without producing additional waste.

V.3. Ternary isotherms of water and ethanol in PET at tiers 2,3

The condition of local thermodynamical equilibrium, LTE, (see definition in §II.2.3.5. ) between the liquid content of the bottle and the surface of PET walls is an essential property to enable the integration of transport equations in simulations (see §.II.2.3. LTE controls the intensity of the incoming flux (sorption) on the inner side and sets the outcoming flux (desorption) on the opposite side. At tier 1, mass uptake was thought linear with partial pressure and without interactions between water and ethanol in PET. Water and ethanol non-ideal behaviors were accounted on the liquid side. At tier 2, the equivalent Henry constants or saturation concentrations were authorized to increase with 𝑎𝑎𝑏𝑏𝑎𝑎 (see Table IV -3).

At tier 3, the effects of composition and temperature are thought to be integrated into a continuous single ternary isotherm (PET+water+ethanol) governed by the activity of water, ethanol, and temperature. Additional driving forces created by the gradient of elastic energy are assumed negligible at this level of details in thick bottle walls, but they should be considered when the ternary model is calibrated from thin films results. Replacing direct liquid contact by successive step-changes of partial pressure is a known source of artifacts in the presence of non-reversible polymer swelling.

The distinction between diffusion in a solid with an elastic behavior (coined "elastic diffusion") or with a viscoelastic behavior (coined "viscoelastic diffusion") is fundamental. Indeed, the linear theory of diffusion, so-called Fickian diffusion and controlled by the random walk of solutes, applies only when the reorganization of the surrounding environment is faster than the translation of the solutes or when it is much slower. When the time scales of the two processes are not separable, a coupling may exist and may complicate the definition of the equilibrium: chemical equilibrium for one single or multiple components, mechanical equilibrium, a combination of both.

The relaxation of a glassy polymer is associated with various time scales in the function of its degree of subcooling, its history, temperature, solute, and concentration ranges. According to the duration of the sorption experiment and the thickness of the sample, some relaxations are observed or not. These interactions undermine our capacity to observe true binary The experimental difficulties inherent to PET at glassy state are firstly illustrated for the transport of water using both a new interpretation of the results of Dubelley et al. (2017a) and of those obtained in this work. The basis for deriving a Flory-type ternary isotherm is subsequently justified, parameterized, and validated.
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It is emphasized that due to the difficulty of validation and implementation history and non-local effects in a numerical code, their effects on mass transfer are not considered at tier . A discrepancy between the interfacial and macroscopic value is known to occur when i) the time to reach equilibrium is not accessible or ii) the material itself is subjected to important macroscopic modifications during the sorption process. 

V.3.1.1. Diffusion vs. polymer relaxation time scales

For walls of thickness 𝑙𝑙 𝑃𝑃 , the typical diffusion time for solute 𝑖𝑖 is given by

𝑙𝑙 𝑝𝑝 2 𝐷𝐷 𝑖𝑖,𝑃𝑃 (single- 
sided contact), whereas the longest relaxation time of the polymer is associated to an apparent first-order rate 𝛽𝛽, independent of the solute. Phenomenologically, the volume relaxation process causes an extra mass transfer, which can be written in a non-causal manner as:

( ) ( ) ( ) , , , x t x t i i eq i C C C t β ∂ = - ∂ with , i w e = (V.1) with ( ) , x t i C
the local concentration expressed here in kg⋅m -3 along the coordinate x at time t .

Eq. (V.1) written in 1D adds a source term, which is not entirely satisfactory as it does not explain how the solute is not accessing to the position 𝑥𝑥, but at least it describes how the concentration at the interface may increase with time and may subsequently provoke an acceleration of mass transfer, beyond the time scale of diffusion. As shown in [START_REF] Kadam | Sorption of n-hexane in amorphous polystyrene[END_REF], Magnitude orders of 𝛽𝛽 for PET can be determined directly by measuring stress and creep relaxation. [START_REF] Billovits | Penetrant transport in semicrystalline poly(ethylene terephthalate)[END_REF] determined that the longest relaxation time of PET, denoted 𝜏𝜏 0 , was about 10 12 s. From time-temperature superposition principles, the authors suggested a double activation by temperature, 𝑇𝑇, and plasticizing (𝑇𝑇 𝑔𝑔 shift) as follows:

t i i e x t i i e i i C C C C Fo Deb ∂ = - ∂ with , i w e = (V 181 ( ) ( ) ( ) ( ) , , , , 1 1 x 
( ) ( ) 0 17.74 1 exp 5 , 1.6 i PET g i PE mix g T g T T T T T T β τ + +   -   =   + -   with , i w e = (V.3)
where 𝑇𝑇 𝑔𝑔 𝑖𝑖+𝑃𝑃𝑃𝑃𝑇𝑇 is the glass transition temperature of the mixture, 17.74 (-) and 51.6 K are the "universal" constants of the Williams-Landel-Ferry model.

Corresponding 𝐷𝐷𝐷𝐷𝑏𝑏 values are reported in Table IV -3 for 12 µm thin PET films and 760 µm thick PET bottle walls. Viscoelastic diffusion (relaxation times ca. 3-4 days) controls the kinetics water uptake in thin films on the long term (𝐷𝐷𝐷𝐷𝑏𝑏>10 3 ) but is entangled with diffusional transport in thick walls (𝐷𝐷𝐷𝐷𝑏𝑏~2). Due to the lower diffusion rate of ethanol, diffusion Deborah numbers are closer to unity for ethanol transport.

V.3.1.2. Sorption-induced changes in PET

• A simple formulation of the coupling between Fickian and viscoelastic diffusion Equilibration times are not only particularly long in PET, but they are also coupled to the physical aging of the polymer itself. Aging includes polymer relaxation [START_REF] Billovits | Penetrant transport in semicrystalline poly(ethylene terephthalate)[END_REF], morphological alterations [START_REF] Vieth | Detection of stress-induced morphological alterations of polyethylene terephthalate by gas permeation[END_REF], densification, and finally, a cold crystallization [START_REF] Ouyang | The mass transport in poly(ethylene terephthalate) and related induced-crystallization[END_REF]. These phenomena have been frequently reported for the sorption of water in PET, but they occur during the sorption of ethanol (Chandra and Koros, 2009b) and toluene [START_REF] Van Lune | Absorption of methanol and toluene by polyester-based bottles[END_REF]. Dubelley et al. (2017a) proposed recently a state diagram showing that the conditions of plasticizing and densification processes were Chapter V. Results and Discussion related to relative humidity and temperature. Without theoretical justification, it has been suggested that the limits between the different behaviors were controlled by the partial pressure of water, an intrinsic property of water, and not by the polymer itself. We propose a different interpretation of the extensive data collected by Dubelley et al. (2017a) on 280 µm thick PET materials, with an independent validation on 12 µm thin films at the temperature minimizing relaxation effects (50°C, justified hereafter). Decreasing thickness is indeed the most efficient method to evidence the asymptotic behavior of non-Fickian relaxations.

Mass uptake of samples subjected to water vapor was thought to be the linear superposition of a non-Fickian (see Eq. (V.1)) and Fickian (see Eq. (II.17)) contribution, as follows: In the conditions more representative of liquors (RH>85%), relaxation times are commensurable to the shelf-life of beverages at room temperature and would be responsible for a slightly higher sorption than the one expected for short-time contacts. For 1/𝛽𝛽 values shorter than one month, it could be expected that the sorption of water could be doubled after six months. This scenario of doubling water uptake at high water activity has been also suggested by [START_REF] Burgess | Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 1: Equilibrium sorption[END_REF] (see Table 3 herein) with a swelling up to 2.4%±0.6% in value. As the swelling was assumed isotropic, this value might be three times smaller in bottles, where swelling is enabled essentially across the walls. 

[ ] ( )[ ] ( ) ( ) ( ) 2 2 2 2 0 8 1 1 exp 1 1 exp 2 1 1 4 2 1 e i t n i i i i non Fickian uptake Fic m m Fo n Fo kian u Deb k n pta e π π φ φ φ φ ∞ = =           = - - + - - - +         +      -   + -    ∑ (V.4) with , , 2 4 T RH i P i p F D o l =

V.3.1.3. Independent validation of non-Fickian relaxations in PET

Relaxation times are independent of thickness, but diffusion times are not. Independent validation of Dubelley et al. (2017a) behaviors was sought by analyzing the water sorption kinetics of 12 µm thick PET films and 629±33 µm.

• Non-Fickian relaxation in 12 µm thick PET films

Studying relaxations with a microbalance requires either short steps or a small number of steps to prevent relaxation from occurring during the first steps and not to be visible beyond.

To prevent artifacts, the films were studied fresh (equilibrated at ~40% RH) without prelimi- Eq. (V.4) does not explicit the origin of the driving force (i.e., the variation of free energy) controlling mass transfer. Strong temperature effects could suggest an enthalpic nature (chemical interactions), but also an entropic control governed by free-volume variations. The distinction between both alternative descriptions is required to justify a ternary formulation of the sorption isotherm.

V.3. Ternary isotherms of water and ethanol in PET at tiers 2,3
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V.3.2. Interpretation of swelling in ternary isotherms of PET

In the experimental work of Dubelley et al. (2017a), the authors use "swelling" as a generic term without separating entropic and osmotic causes. The distinction is crucial to building a ternary isotherm with water and ethanol, which are both well-known plasticizing substances of PET. In an incompressible polymer, adding more solutes will cause entropic constraints in the polymer network, and the polymer will start swelling beyond a threshold value (see molecular dynamics simulations in (see molecular dynamics simulations in [START_REF] Nguyen | Molecular thermodynamics for food science and engineering[END_REF]. Cooperative hydrogen bonding may accelerate the process by promoting clusters in the polymer.

If swelling were opposed by an external hydrostatic pressure, which acts on the polymer but not on the contacting medium, solute sorption would require an external work and Chapter V. Results and Discussion therefore a pressure change. The local dilation of the polymer looks hence caused by an apparent osmotic or mechanical pressure 𝜋𝜋, defined locally or non-locally [START_REF] Edwards | A spatially nonlocal model for polymer-penetrant diffusion[END_REF]. By following the same arguments of [START_REF] Thomas | A theory of case II diffusion[END_REF], Eq. (V.1) can be rewritten as a simple viscous constitutive equation involving the simultaneous sorption of two solutes. The phenomenological is not solute-specific and reads: 

( ) ( ) ( ) ( ) ( ) ( ) , , , , , x t 
M V M V k t t φ φ π η φ φ ∂ + ∂ + = ∂ ∂ (V.5)
where ( )

, x t i i i i M V C φ =
is the volume fraction in solute 𝑖𝑖 with 𝑀𝑀 𝑖𝑖 its molecular weight and 𝑉𝑉 𝑖𝑖 its molecular volume . P φ is the volume fraction in polymer with et al., 2000;[START_REF] Burgess | Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 1: Equilibrium sorption[END_REF]Dubelley et al., 2017a) and shift to Flory-Huggins model beyond.

V.3.3. Ternary Flory-Huggins model with temperature and composition effects

At tier 3, the risk of non-Fickian relaxations in the long term are acknowledged but not considered explicitly. The concept of onset between two sorption mechanisms across 50-60%

RH is also not physically satisfactory. The analysis with diffusion Deborah numbers suggested that it could be interpreted more like a kinetic transition between slow and fast relaxation rather than a brusque change in the topology of accessible voids. Similar considerations of a possible deviation to a perfect mixing have been early discussed by [START_REF] Zimm | Sorption of Vapors by High Polymers[END_REF], 

as
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where 𝜒𝜒 𝑤𝑤+𝑃𝑃 𝑇𝑇 and 𝜒𝜒 𝑒𝑒+𝑃𝑃 𝑇𝑇 are the binary Flory-Huggins interaction parameters of water-PET and ethanol-PET, respectively (see their definitions in §II.2.5.2.2. ). They may depend on temperature and of the state of the polymer. By following the same approach as in [START_REF] Gillet | Prediction of Partition Coefficients of Plastic Additives between Packaging Materials and Food Simulants[END_REF], 𝜒𝜒 𝑤𝑤+𝑒𝑒 (𝜕𝜕 𝑤𝑤 ,𝜕𝜕 𝑟𝑟 ) < 0 is the binary Flory-Huggins parameter for water-ethanol mixtures taken at the equivalent composition of the liquid mixture

𝜕𝜕 𝑟𝑟 𝜕𝜕 𝑤𝑤 +𝜕𝜕 𝑟𝑟 (see Figure II-22).
Eq. (V.6) is derived from the lattice theory of Flory (mean-field approximation) and assumes that the ternary mixture is an incompressible model and swells as soon as water and ethanol are introduced. The effect is however very minor at low concentrations, and the solution coincides with the superposition of two Henry isotherms (approximation used at tiers 1 and 2). The absorptions of water and ethanol are cooperative and promote plasticizing by decreasing the number of contacts between polymer blobs and therefore the cohesion energy of the polymer (nota-bene: the variation of the chemical potential of the polymer is not shown).

Free-volume effects and hence, thermal expansion is not considered.

V.3.3.3. Known limitations for interacting liquids

The application of Flory-Huggins theory to ternary systems has been seriously questioned for polar liquids in amorphous and semi-crystalline polymers (see discussions in [START_REF] Favre | Application of Flory-Huggins theory to ternary polymer-solvents equilibria: A case study[END_REF][START_REF] Fornasiero | Solubilities of nonvolatile solutes in polymers from molecular thermodynamics[END_REF]. The discrepancies with experiments were mainly associated with the nonconstancy of interactions parameters and possible effects of the local composition (i.e., different radial distributions). [START_REF] Nguyen | Off-lattice Flory-Huggins approximations for the tailored calculation of activity coefficients of organic solutes in random and block copolymers[END_REF] demonstrated that the substitution of partial molar volumes by molar volumes in lattice models was responsible for the deviations observed with atomistic (compressible) models.

To avoid previous limitations, the binary coefficients 𝜒𝜒 𝑤𝑤+𝑃𝑃 𝑇𝑇 and 𝜒𝜒 𝑒𝑒+𝑃𝑃 𝑇𝑇 were allowed to vary with temperature not only to describe a less importance of hydrogen-bonding at higher temperatures (see the thermal averaging of Flory-Huggins coefficients in §II.2.5.3. ), but also to account for kinetic effects shown in Figure V-12. The point of view expressed here is that the observed effect of RH on swelling is captured (with overestimation) within the Flory theory whereas the temperature effect on swelling is associated to the initial delay before polymer relaxation ceases to be the limiting factor. This strategy is an ersatz to replace the lack of ergodicity of the system; that is the solute-polymer configurations deviate from their equilibrium distributions due to the presence of residual energy barriers. Densification effects are not considered but could be incorporated a posteriori by considering that crystallites are inaccessible to solutes (see Eq. (II.48)). Effects of composition were added only to the water-ethanol binary term 𝜒𝜒 𝑤𝑤+𝑒𝑒 𝑇𝑇 ; it was negative as expected for exothermic mixtures (see Mass uptakes were obtained by drying the samples in vacuum or dry nitrogen at the same temperature before applying a stepwise ramp of partial pressure. All kinetics exhibited non-Fickian relaxations, but as the sample thicknesses, the number of steps and their durations were different, the cumulated relaxation times were not comparable. Additionally, since relaxation times are much longer at low relative humidity, total relaxation times were longer at high activities rather at low and intermediate activities. All these phenomena justified the variabilities observed between data sources. Fitted FH2 reproduced only an averaged behavior with errors about 10% at low activities. mum 𝑇𝑇 𝑔𝑔 value of PET swollen by water (ca. 60°C see in [START_REF] Langevin | Moisture sorption in pet influence on the thermokinetic parameters[END_REF]. The corresponding fork shape mirrors the variation of free volumes between equilibrated and subcooled polymers [START_REF] White | Polymer Free Volume and Its Connection to the Glass Transition[END_REF]. Extra-free volumes brought in subcooled polymers enable a sorption more similar to the one observed at rubber state. The trend was also observed with pure ethanol, but with a lower effect than water due to the largest steric of ethanol molecules.

Chapter V. Results and Discussion

V.3. Ternary isotherms of water and ethanol in PET at tiers 2,3
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for water varies between -14±2 kJ⋅mol -1 at 20°C and -8±3°C at 60°C. For ethanol, sorption energy varied from -2±0.3 kJ⋅mol -1 at 20°C up to -0.1 kJ⋅mol -1 at 60°C. Magnitude orders for ethanol are similar to endothermic sorption heat measured by DSC with values ranging from ~0 and -2.3 kJ⋅mol -1 between undrawn and drawn PET filaments [START_REF] Khanum | Crystallization of poly(ethylene terephthalate) filaments by infusion of ethanol upon cold drawing[END_REF]. Because the energy required to insert water molecules in bulk PET is significantly lower than the energy required to adsorb water molecules at the surface of PET materials and reported -38 kJ⋅mol -1 from [START_REF] Sancaktar | Adsorption-desorption of water on poly(ethylene terephthalate)[END_REF], entropic forces (capacity to disperse water) are governing sorption. The lower sorption energy required to insert a larger penetrant confirmed the weakness of the interactions in PET and the existence of large free-volumes accessible to PET. Densification and cold crystallization reduce accordingly the capacity to pack water molecules and therefore, sorption.

V.3.4.3. Sensitivity analysis: long-term effects and cold crystallization

�𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 values used to set �𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 ones are not perfectly defined as a chemical equilibrium is assumed without having necessarily the polymer also at mechanical equilibrium.

𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 (𝑡𝑡) estimates tend consequently to be a function of experimental time in subcooled polymers. Most of the authors choose the sorption at a prescribed time (e.g., 48 hours for Dubelley et al., 2017a) as a reference value. The true equilibrium is expected to be achieve in the absence of concentration gradients when the subcooled polymer reaches a more stable crystalline form.

During this very slow transition, �𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 decreases and consequently �𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 increases.

The maximum extent of this shift is not reported in the literature.

Water sorption in worst-case conditions accelerating densification (97% 𝑥𝑥𝐻𝐻 at 60°C, see Sorption of ethanol looked Fickian for all films, but long exposures were followed by an additional increase of absorbed amounts suggesting an effect of polymer relaxation beyond 30-45 days. Drawing low-oriented amorphous PET filaments in ethanol has been shown to enhance sorption and to cause crystallization as water do [START_REF] Khanum | Crystallization of poly(ethylene terephthalate) filaments by infusion of ethanol upon cold drawing[END_REF]. Drawing stresses are lower in ethanol confirming that ethanol is a better plasticizer of PET than water.

a. Fresh films F1-3 exposed to 97% RH at 57°C for 4.5 months b. Fresh film F2 immersed in 99% ethanol for 2-3 months Glassy polymers exhibit a tremendous complexity with non-linearities, memory effects and coupling between fluxes, stresses and strains. Densification and the slow cold crystallization make even the evolution of uptake not monotonic.

The typical evolution of glassy polymers during differential sorption has been summarized by [START_REF] Vrentas | Viscoelastic diffusion[END_REF] into a single scheme, adapted to the context of PET in Figure V-19. On the very long term, any glassy polymer exposed to vapors or pure liquids is subjected to two major transitions: i) from glassy to rubber state (associated with 𝐷𝐷𝐷𝐷𝑏𝑏 1 ) and ii) from rubber behavior to a viscous liquid or gel (𝐷𝐷𝐷𝐷𝑏𝑏 2 ). In the case of PET, only the first kind of transition has been observed either in the presence of water or ethanol. The maximum sorption concentrations were approached on very thin materials for different partial pressures and used as estimates of �𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 � 𝑖𝑖=𝑤𝑤,𝑒𝑒

. By identification with abacus plotted in Figure V-19, sorption of water at 57°C is associated to a 𝐷𝐷𝐷𝐷𝑏𝑏 1 value ranged between 5 and 10. For ethanol, contact times are not enough long to provide an accurate estimation of a 𝐷𝐷𝐷𝐷𝑏𝑏 1 . Since relaxation effects were more detectable at low that at high temperature, 𝐷𝐷𝐷𝐷𝑏𝑏 1 was thought to be much greater than unity with a much faster relaxation in ethanol than water.

As a result, the binary interaction coefficients �𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 derived from experimental determinations of �𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 were assumed to be representative of PET close to equilibrium state for both water and ethanol (see It is worth noticing that descriptions on thin films subjected to symmetric sorption cannot be extrapolated to thick bottle walls. After bottle filling, only one side of the bottle is exposed to high 𝑥𝑥𝐻𝐻 whereas the other remain close to their initial conditions. Viscoelastic diffusion plays consequently a minor role in this case. Storing PET films, preforms and bottles in wet conditions and high temperature will, however, cause densification after few weeks.

V.3.5. Experimental validation of ternary isotherms

The capacity to predict the equilibrium mass uptake of PET in contact with hydroalcoholic solutions was tested at 35°C on 12 µm PET films (F1) for contacts up to five months. The films were not subjected to any initial drying to prevent any densification or change in structure. Absolute water and ethanol content were obtained by drying the samples at the end of the experiment at high temperature (85°C). A similar determination was also carried out by thermogravimetry analysis (TGA). Due to the overlapping of ethanol and water losses in TGA measurements, the separation of water and ethanol content was thought not reliable, and the results are presented as total mass uptake. The ternary isotherm offers a separation of both contributions.

V. 

V.3.6. Ternary FH3 isotherms from 20°C to 50°C

In binary mixtures, water sorption is significantly more activated by temperature than ethanol. In ternary isotherms and despite the almost absence of dependence of 𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 with temperature, higher sorption of water at higher temperature will cause also higher sorption of ethanol. The same cooperation between water and ethanol occurs when the activity of water [START_REF] Vrentas | Diffusion and Mass Transfer[END_REF]. Each transition is assumed to be controlled by the time scale of relaxation 𝐷𝐷𝐷𝐷𝑏𝑏 1 ≫ 1 and 𝐷𝐷𝐷𝐷𝑏𝑏 2 ≪ 1. In both cases, the dispersion of non-covalently bonded substances is controlled by their random walk in polymer even if the mechanism obeys to different diffusion coefficients, 𝐷𝐷 𝑖𝑖,𝑃𝑃 𝑇𝑇,𝑇𝑇 𝑔𝑔 . This section discusses the construction of a general framework to predict diffusion coefficients of arbitrary solutes in arbitrary polymers from one side to other (from glassy to rubber states or vice-versa). The chief difficulty is that no general model exists, but only attempts.

• Generalizing free-volume theory

Although it is incomplete and it has been questioned, the free-volume theory (FVT) of Vrentas and Duda (first formulation: (first formulation: [START_REF] Vrentas | Diffusion in polymer-solvent systems. I. Reexamination of the free-volume theory[END_REF] is the most advanced (see the discussion in II.2.4. ). It generalizes the early mechanistic interpretation of the translation of the center-of-mass (𝐶𝐶𝑀𝑀) of rigid solutes in liquids due to the rearrangement of the empty voids (free-volumes, FV) around them [START_REF] Cohen | Molecular Transport in Liquids and Glasses[END_REF]. FV in glassy and rubber polymers exist also, they include both empty spaces and partly occupied voids due to the vibration of atoms [START_REF] White | Polymer Free Volume and Its Connection to the Glass Transition[END_REF] for general discussion on the nature of FV). The analogy between liquids and polymers ceases, when the ergodicity of the voids is V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers 3-4 201 considered. In a liquid, the all voids can be redistributed in the whole volume at a rate equal or higher than the translation of the solute 𝐶𝐶𝑀𝑀. In the polymer, only a particular and hypothetical type of free-volumes, coined hole-FV, could be redistributed without any energy barrier. The nature of these FV is unknown, and their parameterization is indirect and has been proposed only for a limited number of polymers and only for rigid solutes. As the theory of Flory-Huggins, it is a somewhat mean-field theory, which does not capture atomistic details.

A different route is proposed here by using the scaling relationships of Fang for linear solutes to reach three purposes:

1) parameterizing undocumented polymers (e.g., polyesters including PET);

2) extending the scaling to glassy polymer;

3) bridging the original theory of rigid and flexible solutes by introducing the concept of anchored solutes.

The strategy fills mainly gaps between existing FV theories and their extensions, as . Although the concept of hFV has been widely accepted as well as its linear increase with T , its quantitative determination remains a challenge. The amount of free space, which participates effectively to the translation of organic solutes, is unknown. We address the issue in two different manners: firstly, from the perspective of Vrentas and Duda when the concentration in solutes approaches zero, and secondly, from the scaling of diffusion coefficients of linear probes, namely linear alkanes taken as generic a generic blob model probing accessible hole free volumes.
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V.4.2.1. The original theory of Vrentas and Duda at infinite dilution

The theory of Vrentas and Duda has been elaborated initially for polymer solvent-mixtures. It has been tested extensively on mutual diffusion coefficients when solvent concentrations are sufficient for plasticizing or swelling the polymer. Comparatively, the theory has been far less examined at infinite dilution when only the polymer contributes to free volumes and when solute geometry effects dominate. For solute trace diffusion coefficients, the indices of the solute (1) and of the polymer (2) can be dropped in all places, where no confusion is expected. The interested reader could refer to the review [START_REF] Ramesh | Application of Free-Volume Theory to Self Diffusion of Solvents in Polymers Below the Glass Transition Temperature: A Review[END_REF] and the seminal summary of the free volume methods in [START_REF] Vrentas | Predictive methods for self-diffusion and mutual diffusion coefficients in polymer-solvent systems[END_REF].

In the limit of trace amount, the solute diffusion coefficient reads:

( ) * * 2 0 2 êxp ex , p FH g V V T E D RT T D ξ γ       = - -         (V.8)
where * 2 V is the specific hole free volume of the polymer required for a jump;

( ) 2 ˆ, FH g V T T is
the specific hole free volume of the equilibrium liquid polymer; γ is an overlap factor, which is introduced because the same free volume is available for several jumping units.

( )

2 ˆ, FH g V
T T is strongly related to the thermal expansion of the polymer as (Vrentas and Duda, 1979;Vrentas and Vrentas, 1994b):

( ) ( )( )

2 12 22
ˆ, 1 when , with 1 otherwise

FH g g g g V T T T T K K T T T T λ λ γ γ λ = ≥    = + -    <  (V.9)
where new constants 12 K and 22 K can be related to the WLF constants as:

( )( )

* 12 2 12 22 2.303 K V C C γ = (V.10) 22 22 K C = (V.11)
At glassy state, the parameter λ accounts for the deviation of the polymer to an equil- ibrated liquid. This effect can be related to the change in the thermal expansion coefficient of the polymer with temperature at rubber state, 2 α and at glassy state 2 g α . By considering that thermal expansion coefficients on both sides of g T being constant, [START_REF] Vrentas | Diffusion of large penetrant molecules in amorphous polymers[END_REF] proposed the following approximation:

1 for

g g g V T T T K α α λ     - = - < (V.12)
ξ , * E and 0 D are the parameters related to the solute.

( )

~* 1 ~* 2 g V V T ξ =
is the most cryptic parameter and is associated with the ratio of the critical (i.e., minimum) volume of the solute jumping unit to the critical (minimum) volume of the polymer jumping unit required for a jump. For small and rigid solutes, this number has values between 0.10 and 1.3 [START_REF] Vrentas | Effect of solvent size on diffusion in polymersolvent systems[END_REF][START_REF] Vrentas | Effect of Solvent Size on Solvent Self-Diffusion in Polymer-Solvent Systems[END_REF]. Empirically, linear relationships in the form of ( )

~* 2 g g V T u vT = +
have been proposed [START_REF] Zielinski | Predicting polymer/solvent diffusion coefficients using free-volume theory[END_REF][START_REF] Hong | Prediction of Polymer/Solvent Diffusion Behavior Using Free-Volume Theory[END_REF]:

( ) 

T T T V T T - + + < ≥   =    (V.13)
As a rule of thumb, it is worthy noticing that the critical polymer jumping unit is roughly 1.5 the monomer unit [START_REF] Zielinski | Predicting polymer/solvent diffusion coefficients using free-volume theory[END_REF].The choice of two branches according to g T is justified in Figure 2 of [START_REF] Shapiro | Part II. Models for Properties. Chapter 9. Diffusion in muulticompenent mixtures[END_REF] and the approximation herein E is a solute-specific energy barrier, which is very often neglected near g T , when most of temperature effects are driven by free volume effects. In this study, we will show that it is an essential quantity for polar solutes in polar polymers. In the limit of a pure solvent, the pre-exponential factor 0 D can be compared to the self-diffusion coefficient of the solute or its viscosity. In the context of trace diffusion in a polymer, the interpretation can be different and can be related to the solute entropy of translation in the polymer (see [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] for details).

By referring polymer effects to g T and solute ones to ξ , the trace diffusion coefficients between an unknown solute associated to ξ and a reference one associated to 0 ξ scales as: where the so-called polymer function, ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) * * 0 * * 2 0 0 0 0 0 2 ~0 * * 1 1 0 0 * 0 0 exp exp exp , , , , , exp , g g g FH g g T T V T D D E E D RT D D E E D RT T T V T T V V P T T ξ ξ ξ ξ ξ ξ ξ ξ γ ξ ξ ξ ξ ξ ξ     -   = - -           -     = - -         -     - (V.
, g P T T lumps all polymer parameters (see Eqs. (V.9) -(V.13)). It is defined as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) * * 2 2 ~* * 12 2 22 2 2 2 12 22 22 ˆ1 1 , ˆ, 2.303 1 , g g g FH g g g g g g g V T V T P T T K V T T K T T V T V T C C u vT C T T T T γ γ λ = = + - = ⋅ +   + -   (V.15)
The original FVT formulation assumes that expression (V.14) assumes that ( )

* E ξ
does not contain any substantial polymer effect. In practice, ( ) * E ξ is usually discarded in apolar polymers whereas a value greater than zero is suspected in the presence of hydrogen bonding between the solute and the polymer [START_REF] Hall | Translational and Rotational Diffusion of Probe Molecules in Polymer Films near Tg: Effect of Hydrogen Bonding[END_REF]. Tonge and Gilbert (2001a) concluded that this parameter is critical to estimate D values in new polymers. For molecules with repeated patterns, we will show later that ( ) * E ξ can be recast in Eq. (V.14), so that it is associated with the energy barrier of one single rigid pattern or blob rather than the total energy barrier for the entire molecule.

At this stage, the applicability of Eq. (V.14) is very limited, but it exemplifies that scaling the diffusion of solutes with their sizes may have a sound mechanistic basis. Nevertheless, the ratio of diffusivities alone does not remove polymer effects. Eq. (V.14) assumes, in particular, that small ( 0 ξ ) and large (ξ ) solutes translate as single jumping units, even when the large solute consists of repeated patterns commensurable to 0 ξ . The next section will intro- duce the concept of scaling law between ξ and the molecular mass, M for solutes with line- arly repeated patterns to justify that the diffusion coefficient associated to the center-of-mass of N connected blobs or patterns can be recovered from the diffusion behavior of one single blob or pattern. As such scaling is thought to be "universal", it can be used to estimate the function ( )

, g P T T for either new polymers or for polymers with undocumented FV parame- ters. [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] showed that ξ was proportional to the logarithm of M for linear solutes, including n-alkanes and p-oligophenyls regardless the considered polymer. It was shown that the diffusion of solutes with linearly repeated patterns proceeds by the independent displacements of rigid units or blobs. The jump dynamics of each blob is very slow and Chapter V. Results and Discussion controlled by the strong coupling between the displacements of the blob itself and of the surrounding atoms. In this study, we follow the same ideas and assume that the displacements of one single blob obey to FVT and that the diffusion of the entire molecule still verify Eqs. (V.14) and (V.15). As a consequence of Eq. ( 7) of [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] or of any similar equation, short and long-lived contacts can be factorized so that the displacements of connected blobs can be separated from the displacements of one single blob. Besides, it is worth noticing that not only ξ scales with M (denoted M ξ ), but also the pre-exponential factor ( ) 0 M D ξ . The apparent complication can be resolved by applying once again the original FV theory, which covers "in theory" the whole solute concentration range: from infinite dilution (trace diffusion, this work)

V.4.2.2. Scaling of the diffusion for linear probes

to pure solute (self-diffusion, assuming that the solute is still at liquid state). According to [START_REF] Vrentas | A new equation relating self-diffusion and mutual diffusion coefficients in polymer-solvent systems[END_REF],

( )

0 M
D ξ , which appears in both expressions of trace and self- diffusion coefficients, is related to its reciprocal viscosity and should reasonably scale as a power law for linear solutes. By appending the subscript "lin" to diffusion coefficients associated with linear probes, one gets:

( ) ( ) 0, 0 blob lin lin M blo M b M D D M β ξ ξ   =     (V.16)
where M ξ and blob M ξ are the values of ξ for the chain of length M and blob M , respectively.

According to the Rouse model [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF], lin β is expected to be close to unity for solutes with linearly repeated patterns (blob model). A justification of the unique definition of ( ) 0 M D ξ , independent the of polymer, can be found in Figure 4 of [START_REF] Vagias | Molecular Tracer Diffusion in Nondilute Polymer Solutions: Universal Master Curve and Glass Transition Effects[END_REF].

From Figure 2 of [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] based on data obtained on polyvinyl acetate (PVAc), ( ) ( ) ( )

~* * 1 2 , g g V M M T V T ξ =
scales for linear solutes as:

( ) ( ) ~* * 1, 1, ln lin lin blo n ob b bl li M V M V M a M  = +      (V.17)
where the approximation ), the behavior of ( )

D M M M a T M M T T P T T T T M D β β ξ ξ ⋅ -       = - =             (V.
, g P T T is guessed from the asymptotic scaling of lin α by assuming that the translation of all connected blobs obeys to the Rouse dy- namics ( 1 lin α → ). Eq. (V.20) is, however, not applicable to glassy state without a proper ex- tension of Eq. (V.19) when g T T < .

Eq. (V.19) can be prolonged to glassy state by replacing K α and K β by similar con- stants g K α and g K β , respectively. The new constants are identified by noticing that both ex- pressions of lin α on both sides of require to be continuous at g T T = and by assuming that the change in apparent activation energy across g T must be similar to the one met in the original FVT:

ln 1/ 2 ln 2 1/ g g D g T T T D T T T α α < > ∂ ∂ → ∂ ∂ → = (V.21) Such reasoning leads to 2 2 2 2 1 g g g K K α α α α α α   = -     and 2 2 2 2 1 g g g K K β β α α α α   = -    
. In the general case, the scaling exponent becomes: Eq. (V.22) provides a practical approximation of the polymer function ( )

( ) ( ) 2 
, g P T T ,
where free volumes are probed by the scaling law of the trace diffusion of any linear solutes:

( ) ( ) ( ) .2 , 2 0 4 1 g g g K u vT r T T P T T K α β     +    ≈ + ⋅  + - (V.23)
At this stage, it is important to note that Eq. (V.23) is physically valid while the ine- The existence or not of a polymer function ( )

, g P T T , universal and independent of the polymer, can be sought by equating Eqs. (V.15) and (V.23):

( )( ) ( )( ) ( ) 12 22 22 1 2.303 2 0.24 , g g g C C K r T T C T T T T K α β λ ≈ +   ⋅ - + -       +     (V.24)
By identification, the following estimates of scaling parameters are obtained for g T T ≥ :

( ) ( ) ( ) , whereas α values were reported to range between 5 and 6 near g T in linear polymers [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF].

12 22 2 0.553 g K C C T T α ≈ - --     and ( ) 22 K C β ≈ . At
The magnitude orders predicted by the so-called WLF constants and FV theory are realistic, but they tend to overestimate the real mass dependence for flexible solutes. [START_REF] White | Polymer Free Volume and Its Connection to the Glass Transition[END_REF] provided, recently, an elegant justification why the WLF constants are not as universal as it could be expected. The main argument is that these values assume that the whole free volume contributes to the transport properties instead of the excess free volume or hole free volume.

In the absence of a universal polymer function, introducing realistic estimates of K α and K β from the trace diffusion of linear probes offer a better alternative to predict D for arbitrary solutes, irrespectively the availability of FV parameters for the considered polymer.

Introducing either Eq. (V.20), or its approximation (V.23), in Eq. (V.8) gives the general formulation for an arbitrary solute in an arbitrary polymer:
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where is chosen equal to unity above g T and lower than unity below . g T For man r y small solutes such as solvents, the solute parameters 0,lin

D , * E and ~* 1 V or ( ) g u vT ξ ⋅ +
have been tabulated in the literature with some discussions on how to derive them in [START_REF] Zielinski | Predicting polymer/solvent diffusion coefficients using free-volume theory[END_REF] and their shortcomings in [START_REF] Vrentas | Evaluation of the free-volume theory of diffusion[END_REF]. For solutes with repeated patterns, Eq. (V.18) can be used instead. The approach will be extended in §V.4.3.2. to linear solutes including an anchor.

V.4.2.3. Parameterization of hole FV parameters from linear probes

(V.26)

The new FVT formulation requires a determination of parameters from linear molecules. Diffusion data needs to be collected at solid state, but it can be at any temperature irrespectively the temperature to which Eq. (V.25) will be used. Using determinations at rubber state, when D values are faster to measure, is particularly promising for polymers, which are glassy in conditions of use. In some respect, the proposed strategy is analogous to previous attempts, where D values at zero concentration were extrapolated from mutual diffusion co- efficients in plasticized polymers.

Eqs. (V.19) and (V.22) express that ( )

, , activated by temperature due to a loss of mass dependence when temperature is increasing. In other words, diffusion of long solutes is more activated by temperature than the diffusion of short solutes. This effect is related to the coupling between the displacements of the blobs in the solute and surrounding atoms [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF]. Indeed, increasing temperature contributes to make the release of solute-polymer constraints more likely for long solutes. This effect is controlled by FV and two constants: K α and K β . In this description, an additional energy barrier,

* blob E , independent of the polymer, can occur due to the internal reorganization of the degrees of freedom inside the blob. Its effect is included in the apparent activation energy of the blob itself and denoted

( )

a blob E M .

• Constants: K α and K β K α and K β can be determined either i) by fitting The first method is described in [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF]. The optimal parameter identification strategy consists in noticing that 1 lin αis linear with K α , so that K β can be guessed with the golden section search technique. The second methodology is detailed hereafter.

Due to FV effects, the activation energy is not constant over the temperature range

1 2
T T T ≤ ≤ used to assess it. As a result, only an average value, denoted tions also showed a transition from rod-like (our Eq. (V.19) and Eq. ( 3) in [START_REF] Jeong | Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains[END_REF] to coiled chain configuration occurring for a number n (number of carbon atoms in the original study) close to 17. However, the analogy cannot be analyzed further as the authors studied self-diffusion coefficients instead of trace diffusion coefficients at a constant bulk density (i.e., in the presence of the same amount of hole FV), as we consider here in the discussion on density effects (Von [START_REF] Meerwall | Diffusion of liquid nalkanes: Free-volume and density effects[END_REF][START_REF] Durand | Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix[END_REF].

) ( ) ( ) ( ) ( ) 2 1 2 2 2 1 l , 1 n T a a blob blob l T in g R T M E M E M r T T dT K T M T T α α -   - =   - ∫ (V.
• Estimation of the blob size or equivalently the mass of the rigid unit: blob

M

In essence, the scaling model proposed for n-alkanes is different from the original free volume one, because the solute is envisioned as a collection of connected jumping units. The corresponding diffusion coefficients are found by combining Eqs (V.19) and (V.25):

( ) ( ) ( ) ( ) ( ) ( ) , ~* 1 * 0 , , exp e , xp lin g blob blob T T blob g g blob M M V M P T T E D M T T D RT M M α -   = -         -       ×   (V.30) When blob M M →
and temperature increases, the apparent activation energy vanishes apparently to approach the residual value of ( )

* blob E M
, which is assumed to be close to 0: should be identified to be commensurable to -CH2-CH2-, that is 28 g⋅mol -1 .

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 ~* 2 2 1 1 * , 1 bl T a blob T lin ob blob lin g g R E M E r T T dT a T K V M M T T T T α α   = +   - - ∫ (V.
• Subcooling ratio ( ) , g r T T at glassy state The subcooling ratio ( ) , g r T T is a crucial parameter to extend previous relationships to glassy state. It is formally defined as 2 2 g α α and it can be independently determined. When it is not possible or because D values from the literature are used, it must be identified from Eq. (V.22). Using apparent activation energies is not recommended as there are averaged over the temperature range, which smooth the transition when g T is crossed. It deserves to note that ( ) , g r T T and ( ) , g T T λ (see Eq. (V.12)) originate from different roots. A closer definition of ( )

, g T T λ
is proposed in Eq (29) of [START_REF] Ramesh | Application of Free-Volume Theory to Self Diffusion of Solvents in Polymers Below the Glass Transition Temperature: A Review[END_REF] from an integral description of the thermal expansion (see (Vrentas and Vrentas, 1994a) for details): This view is discussed by [START_REF] White | Polymer Free Volume and Its Connection to the Glass Transition[END_REF]. We do not take a position in the present study, and we prefer to identify the subcooling ratio r from the comparison of diffusion coef- ficients above and below g T for one particular solute. This particular solute can be any diffusant and not necessarily n-alkanes. Additionally, the use of linear molecular probes at rubber state removes the difficulty of an explicit definition of hole FV and their variations with temperature. Only Eq. (V.21) would be affected by the exact nature of FV when g T is crossed.

( ) 2 2 2 , g g c g T T α α λ α - = (V.

V.4.3. Experimental validation for linear probes

Rigorously, the relationship between FVT (see Eq. (V.8)) and scaling properties (see Eqs. (V.19) and (V.30)) has been established only for linear and regular solutes consisting in similar blobs, such as n-alkanes. The same equations cannot be used without an extension for blob M V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers [3][4] 213 solutes presenting differences in blob size or exhibiting significant interactions with the polymer. The experimental verifications of Eqs. (V.19) and (V.30) are discussed, firstly, on n-alkanes, while highlighting the scaling differences observed with equivalent solutes series, but including a terminal "anchor" such as an alcohol or an acetate functional group. To avoid any confusion, diffusion coefficients of linear solutes are denoted, lin D when the solutes are regu- lar and a D when they include a different terminal blob (anchor). With an initial intent of using indifferently regular and anchored solutes as molecular probes of free volume (FV) effects, the relationship between the scaling exponents of lin D and with the length of the solute alkyl chain M , denoted lin α and a α respectively, will be established. Intuitively, we could expect that a short alkyl chain attached to a heavy/rigid head (with an anchor) has a diffusivity comparable to a longer n-alkane (without anchor). That is, a large anchor would be equivalent to several ethyl blobs. Such equivalences are analyzed in Figures 123by comparing successively the scaling associated to n-alkanes (denoted n-A), 1-alcohols (denoted 1-O) and alkyl-alkanes (a-A) in various polymers near g T , when FV effects dominate. Results far from g T have been reported elsewhere in [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF]. In all cases, the selection of diffusion data was particularly important. The conditions of measurements are detailed in Table 1. Scaling exponents and apparent activation energies were extracted exclusively from diffusion coefficients estimated using the same experimental methodology and polymer. Measurements at infinite dilution were preferable. When it was impossible (e.g. PS data in [START_REF] Bernardo | Diffusivity of alkanes in polystyrene[END_REF][START_REF] Bernardo | Diffusivity of alcohols in amorphous polystyrene[END_REF] obtained by immersing the polymer directly in the solute solution), it was verified that no plasticization effect affected diffusion determinations.

V.4.3.1. n-alkanes as homogeneous blob models

N-alkanes starting from ethane and beyond are the most natural homologous solute series to probe FV. The pattern CH2CH2 also represents the largest available rigid blob. In this study, the slight difference in size between terminal CH3 and CH2 is assumed to be insignificant. The scaling of diffusion coefficients of n-alkanes, lin D , with molecular mass, M , are T ), the intersection is poorly defined and the found value ca. 8.5 g⋅mol -1 underestimates the real blob size. If significant, it could be interpreted by the higher difficulty for the polymer to trap a rigid pattern far from g T for long pe- riods as justified in [START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF].

plotted for PET (-11 K ≤ g T T -≤ +39 K), polyamide 6 (+11 K ≤ g T T -≤ +31 K), polystyrene (- 25 K ≤ g T T -≤ +45 K)
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V.4.3.2. Anchored probes as heterogeneous solutes: 1-alcohols and n-alkyl acetates

Diffusion coefficients, a D , of linear solutes including an anchor of mass anchor M and an alkyl chain of mass M scales also as a power law with the total molecular mass: 

D D M M M T M T T M M M M M M M D M T T M M M α α = - = = -     = -+ +        ∂ ∂ ∂  ∂ + + ∂ ≈ ∂ (V.34)
When the length of the alkyl chain is varied from 1 M to 2 M , the apparent slope of a D

vs.

anchor M M +

gives only an average estimate of ( ) lin T α , which can be approached as: 

( ) ( ) ( ) 2 1 2 2 1 2 1 1 1 ln 1 M a anchor anchor lin a anchor anchor M M M M dM T M M M M M M M T T M α α α   + = = -   - - +   + ∫ (V.
M T M M M D M T D M T M M M D M T M M D M T M M α α α α   +       - > > - > > - -   +       +       → →   +   ≈ (V.36)
For the particular case 

M M M D M T M M M D M T α -   +   +        ≈         +    (V.
M M M M E T M M M RT D M M M T α -   +   +     +     ≈ - ×   +               (V.39)
By analogy, the term ( )

exp anchor a anchor anchor E T M M M RT   -   +  
represents the dimensionless frequency of a translational event of CM respectively to the frequency translation of an isolated alkyl chain. In practice, . Relatedly, the slowdown of the diffusion due to the presence of any pattern larger the considered blob (entropic effect) and due a specific interaction with the polymer (enthalpic effect) is predicted regardless its position along the linear chain. This mechanism has been already observed in model simulations with beads of different sizes [START_REF] Budzien | Effects of chain stiffness and penetrant size on penetrant diffusion in simple polymers: deduced relations from simulation and PRISM theory[END_REF]. It is emphasized that the additional barrier brought by 

E

or * E ) are different from their counterparts in the original FV theory (Hall et al., 1999). All experimental results on anchored series were fitted acceptably with Eq. (V.39).

It confirmed the consistency of the whole scaling approach for both regular and irregular solutes including various chemical groups acting as anchors in representative polymers: aliphatic, semi-aromatic, aromatic, polar/apolar ones. Because the independence of blob trapping/release kinetics is a sufficient condition for the proposed description, the linear connectivity of the blobs is not required, and the description could also be valid for branched solutes. Practically, each anchored solute series should verify the inequality 2 anchor M M > to offer FV probing capabilities similar to regular ones. Such a condition was not fulfilled with nalkyl acetates in PVAc but was partly verified for 1-alcohols in PS (see Table IV-5).

V.4.3.3. Apparent activation energies of linear probes

Eq. (V.29) captures that the variation of scaling exponents with temperature has an enthalpic origin, but not Arrhenian in nature. The dependence of apparent activation energies,

( ) M a E
, with alkyl chain length, M , offers, consequently, a possible alternative to parameter- ize FV effects. , T T . In particular, temperature ranges were strongly disconnected between the smallest and the largest probes in PS (Table IV-5). As a whole, good correlations with ln M were observed for all polymers except for PS, where slopes looked randomly positive or negative. straight lines: one with a slope of 4.55 kJ⋅mol -1 ± 0.42 kJ⋅mol -1 and another one with a slope near zero: 0.036 kJ⋅mol -1 ± 0.318 kJ⋅mol -1 . They bounded the two extreme diffusive behaviors whether the activation of diffusion increases with the length of the alkyl chain or not.

The linearity of ( ) a E M I with ln M was predicted for regular solutes (no anchor) in rubber polymers by Eq. (V.27), with a slope equals to RK α . The estimated K α value of 547 K ± 50 K was found close to the one reported in §2.2 of [START_REF] Zhu | A blob model to parameterize polymer hole free volumes and solute diffusion[END_REF] by direct comparison with the original FVT. The method cannot, however, be considered accurate, since data with very variable qualities and originating from different polymers were mixed. For PET alone, a similar crude approach gave K α values ranging from 345 K to 420 K, depending on the value of the cooling ratio r chosen for the summation of I (see Eq. (V.28)). For PA6, the likely value of K α lied between 158 K and 169 K, and was very close to the value found for PVAc:

160 ± 2 K. The data of PS were not exploitable by this method. Additionally, an empirical correlation was found between all estimates of K α and K β : 42 11.46 K K α β

≈ -+

, demonstrating that both quantities could not be determined independently (for justification, see Eq. , was estimated between 12 and 26 kJ⋅mol -1 in PET, between 9 and 12 kJ⋅mol -1 in PA6 and finally between 8 and 12 kJ⋅mol -1 in PVAc. is universal in homopolymers [START_REF] Fang | Predicting diffusion coefficients of chemicals in and through packaging materials[END_REF] and it has been recently shown to be also true in block copolymers [START_REF] Janes | Predicting the Effects of Composition, Molecular Size and Shape, Plasticization, and Swelling on the Diffusion of Aromatic Additives in Block Copolymers[END_REF]. Apart from of 1-alcohols close to g T (PA6 data), scaling exponents of anchored series appeared significantly below the master curve of regular solutes and was even closer to unity.
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The global fit for anchored solutes underestimated both K α and K β values consequently, with rough guesses of 37 ± 6 K and 22 ± 8 K, respectively. The ratio r was estimated close to 0 at glassy state as a significant increase of scaling exponents could be detected below g T . The lack of sensitivity to the mass of the alkyl chain ( M ) offered by anchored probes is captured by Eq. (V.40) and is consistent with the review of apparent activation energies presented in Figure 

E

were estimated roughly from the difference between the behavior of regular and irregular solutes in the same polymer via Eq. (V.40). The estimates at rubber state are ranging between 20 and 70 kJ⋅mol -1 in PS, and between 15 and 30 kJ⋅mol -1 in PVAc. Such interactions less weak than usually thought have been discussed in [START_REF] Gierszal | π-Hydrogen Bonding in Liquid Water[END_REF][START_REF] Sasaki | Comparable Strength of OH-O versus OH-π Hydrogen Bonds in Hydrogen-Bonded 2,3-Benzofuran Clusters with Water and Methanol[END_REF][START_REF] Feng | π-Hydrogen Bonding of Aromatics on the Surface of Aerosols: Insights from Ab Initio and Molecular Dynamics Simulation[END_REF]. For comparison, the extrapolation of data of Figure 1 in [START_REF] Meyer | Cohesive energies in polar organic liquids. 4. n-Alkyl acetates[END_REF] to an equivalent number of five carbons gives a magnitude order of 35 kJ⋅mol -1 , which is also comparable to the rough estimate of ( 1 lin α = ), only if the displacements of all blobs are independent (i.e. blobs are chosen ran- domly with replacement). On the opposite, when the blobs along the main chain are blocked successively after their translations (no replacement), their displacements are dependent and are associated with a negative covariance

1 blob D N - -
. When the translation of CM involves 1 N n ≤ ≤ constrained blobs (no replacement) and N n blobs, which can displace freely (re- placement), the composition of variances yields a diffusion coefficient scaling as:

( ) The choice of solute dynamics to probe hole free volume (hFV) contrasts with other alternatives such as polymer cell theories, which considers the whole hole fraction [START_REF] Simha | On the Statistical Thermodynamics of Spherical and Chain Molecule Fluids[END_REF] and its dependence with temperature [START_REF] Tseng | Hole Theory of the Liquid State[END_REF]. We propose, instead, to capture hFV effects through constants K α and K β specifically adjusted to the diffusion be- havior of linear homologous solutes in each considered polymer at equilibrium. Scaling exponents and apparent activation energies used to infer K α and K β cannot, however, be considered as error-free regressors. As a result, the uncertainties in K α and K β estimates are strongly dependent upon the quality of D values. For example, narrowing the range of lin α values induces significant correlations between K α and K β estimates. From data collected at rubber state, the correlation reads: The identified values of K α and K β as well as their uncertainties are reported in Ta- ble V-2 for all tested polymers. The corresponding values of ( , ) WLF predictions only in aliphatic polymers (PVAc and PA6). Deviations were strongly negative in aromatic polymers and all the higher than g T was higher. The two behaviors would suggest different definitions of free volumes according to the polymer jumping units are larger or not than the ethyl group (blob) used to probe free volumes. b value assigned by default (data at glassy state are particularly noisy) c Broudin et al. (2015) d Table 3 in [START_REF] Zielinski | Predicting polymer/solvent diffusion coefficients using free-volume theory[END_REF] e by assuming that the blob matches -CH2-CH2f from the linear regression of ( )

2 1 1 1 blob n n N D N N -   -   -   . When n is approaching N in a
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~* 1

V M with M for n-alkanes as reported in Table 4 of [START_REF] Hong | Prediction of Polymer/Solvent Diffusion Behavior Using Free-Volume Theory[END_REF] g from the linear regression of lnD01with M for n-alkanes as reported in Table 4 of [START_REF] Hong | Prediction of Polymer/Solvent Diffusion Behavior Using Free-Volume Theory[END_REF] h by assuming that the anchor corresponds to a hydroxy functional group HOi by assuming that the pattern matches the acetate functional group CH3COO-V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers [3][4] 229 According to Eq. (V.25), a rigid solute with a bulky jumping unit of volume would require larger hole free volumes than smaller solutes and would have, consequently, a higher probability of translation in aromatic polymers, with also large jumping units, than in aliphatic ones with a similar g T . Substituting n-alkanes as molecular probes by anchored solutes did not change the trend, but provided poorer estimates of ( , ) blobs are hindered more efficiently by small blob segments. When solute and polymer blobs are perfectly exchangeable (polymer and solutes considered as pure random coils), no blocking can occur whatever the applied density and the scaling exponent remains unitary, as shown in coarse-grained simulations [START_REF] Durand | Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix[END_REF]. WLF constants (universal or specific) capture only the situation, where the role of solute and polymer blobs are symmetric. In this case, the same kind of hole free volumes participates to the translation of all blobs. It is not the case when the blobs are dissimilar; holes controlling polymer relaxation and g T are differ- ent from those enabling solute blob displacements. At this stage, the consistency of free volume definitions to predict diffusion coefficients needs to be challenged according to predictions are required for solutes similar or not to the ones used to probe them. ( ) 
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1 , 1 g g K T T T T K r α β α     -> -    -  and 

V.4.5. Prediction of diffusion coefficients

V.4.5.1. Flexible and linear solutes in various polymers

Scaling relationship introduced in FVT enables the direct estimation of diffusion coefficients for any linear solutes from Eq. (V.30) in homopolymers either they resemble polymer segments (oligomers) or not (e.g. mineral oils in aromatic polymers). Eq. (V.39) generalizes it for anchored solutes. For alkyl chains, the necessary solute constants ( )

0 blob D M
was estimated from the scaling of n-alkanes in Table 4 of [START_REF] Hong | Prediction of Polymer/Solvent Diffusion Behavior Using Free-Volume Theory[END_REF]. 

( ) g r T T T K β -     - +        
for a likely value 0.32 r = (applied to all polymers) when E , K α and K β were expected to be constant between regular and their irregular (an- chored) counterparts. All identified parameters are reported in Table V-2 with energy barriers ranged between 0 and 36 kJ⋅mol -1 . Only the estimations from PA6 data could not fulfill all rules. Significantly different K α and K β values were obtained between regular and irregular solutes. The situation was particular and was associated with a possible underestimation of K α in correlation with an overestimation of * E (see Eq. (V.30)). with apparent activation energies up to 140 kJ⋅mol -1 for alkylbenzene (see Fig. S2). In the same vein, weak hydrogen bonding between 1-alcohols and PS appears to slow down diffusion only at glassy state:

anchor a E is non-zero only at glassy state and almost zero at rubber state. 

V.4.5.2. Water and toluene at infinite dilution in PET

Eq. (V.25) connects scaling laws [START_REF] Vrentas | Predictive capabilities of a free-volume theory for solvent self-diffusion coefficients[END_REF][START_REF] Griffiths | Measurement of Diffusion Coefficients of Oligomeric Penetrants in Rubbery Polymer Matrixes[END_REF][START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] of linear and regular probes back to conventional FVT. Because all polymer-related FV parameters are lumped within a simpler function ( )

, g P T T , the revised FVT formulation can be applied to polymers irrespectively the availability of FV parameters. Though the current formulation targets solute trace diffusion coefficients (i.e. without significant concentration gradient and -at infinite dilution) and analyses only the effects of hFV brought by the polymer alone, it can be prolonged to add the concentration dependence of D and generalized to mu- tual diffusion coefficients. Such extensions have been already discussed elsewhere (Vrentas and Duda, 1977b, a, c;[START_REF] Duda | An Equation Relating Self-Diffusion and Mutual Diffusion Coefficients in Polymer-Solvent Systems[END_REF].

Nevertheless, the ability of FVT to predict diffusion of small penetrants in new polymers has been strongly questioned in both rubbery (Tonge and Gilbert, 2001a) and glassy polymers [START_REF] Tonge | Testing models for penetrant diffusion in glassy polymers[END_REF]. When tested by independent groups, diffusion coefficients were shown to be significantly overestimated and their corresponding activation energies underestimated. [START_REF] Vrentas | Evaluation of the free-volume theory of diffusion[END_REF] Eq.( 12) of [START_REF] Costa | Self-diffusion of small molecules into rubbery polymers: A lattice free-volume theory[END_REF]Noorjahan and Choi, 2015b,respectively) and more global correlative approaches [START_REF] Thornton | New relation between diffusion and free volume: II. Predicting vacancy diffusion[END_REF] do not resolve the issue and still require specific regressions.

We illustrate the capabilities of Eq. (V.25) to estimate D values of two rigid solutes, water, and toluene, in amorphous PET over a broad range of temperatures (from 5 to 180°C)

in Figure V-32. The two external validation tests are particularly challenging. Water must be regarded as a single jumping unit with specific interactions with PET. In this section and due to the limitations of Eq. (V.25), toluene is also envisioned as a rigid solute, although it is also described as a limit case of a short-anchored solute in the Supplementary Information. The estimated ( )

, g P T T function depicted in Figure V-29 is used in both cases with a subcooling factor, r , which was set independently in both validation tests. Solute dependent properties, * E and 0 D , were extracted either from the literature or fitted from reference D values. The applied strategy is summarized in Table V-3. For toluene, several estimates of 0 D have been proposed in the literature consistently along with an assumption * 0 E ≈ . We chose the value of 0 D = 1.87⋅10 -8 m 2 ⋅s -1 proposed in Table 4 of Hong (1995) as a test value, but the set * E = 0 and 0 D = 8.55•10 -8 m 2 ⋅s -1 , also reported in the same reference, was considered unacceptable for water in a polyester. 0 D , * E and r value at glassy state were, therefore, considered as free parameters for water in amorphous PET. They were fitted on the diffusivities reported by [START_REF] Launay | Water sorption in amorphous poly(ethylene terephthalate)[END_REF] over a broad range of temperature crossing g T . The corresponding con- tinuous model is labeled "fit" in Figure V-32a and is associated with a value r of 0.34 similar to one reported in Table 2 for PET. External validation was sought by comparing the predictions with independent D values obtained in carefully controlled conditions. Data from the literature were introduced for validation. They were chosen to originate from strictly reversible 8b).

The predictions for water were compared successfully with diffusion data from seven independent various sources (see details in D and * E , respectively, enable to predict the diffusion coefficients of water at all temperatures with a reasonable guess for a subcooling ratio r of 0.34. It is worth noticing that the value ~* 1 V for water was from [START_REF] Kontogeorgis | Computer Aided Property Estimation for Process and Product Design: Computers Aided Chemical Engineering[END_REF] and was not adjusted. The estimated value of * E is comparable with the sorption energies of water, ca. about 27 kJ⋅mol -1 , as reported from sorption experiments [START_REF] Schmalz | [END_REF][START_REF] Launay | Water sorption in amorphous poly(ethylene terephthalate)[END_REF][START_REF] Eslami | Water permeability of poly(ethylene terephthalate): A grand canonical ensemble molecular dynamics simulation study[END_REF] and grand-canonical molecular dynamics simulations [START_REF] Eslami | Water permeability of poly(ethylene terephthalate): A grand canonical ensemble molecular dynamics simulation study[END_REF]. As the specific energy barrier to diffusion is identical with the one required for water to translate from an absorbed state in the polymer to the gas phase, it is hinted that each water molecule would require the break of all hydrogen bonds created with the polymer before translating to a new sorption site. After the translation, a new set of hydrogen bonds would be created. The infrequent hoping mechanism from one void to the next was captured and confirmed by the molecular dynamic simulations of Eslami and Müller-Plathe (2009) (see Figure 7 herein). The deviation to an Arrhenian behavior is not significant at glassy state and gives an apparent activation energy of 51 ±6 kJ⋅mol -1 (uncertainty is associated to the strength of FV effects considered temperature range), which is close to the value of 47 kJ⋅mol -1 reported in Burgess et al. (2014a) As a result, the dominance of electrostatic interactions over FV effects is confirmed at glassy state and a fortiori at rubber state. We attract the attention of the reader to the fact that the proposed FV description assumes that all hole FV are distributed uniformly in PET and equally accessible V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers 3-4 237 to water, which is not necessarily the case when PET swells or in strongly semi-crystalline PET [START_REF] Billovits | Penetrant transport in semicrystalline poly(ethylene terephthalate)[END_REF].

D values of toluene in PET are scarcer in the literature and often biased: water content not equilibrated with the ambiance or possible plasticization by the toluene solution. To enable a direct comparison, two extreme states, so-called "dry" and "swollen" PET are presented. The "dry" state was defined in Eq. (V.25) by using a g T value of 76°C, whereas the "swollen" state was associated with the lowest g T value of 60°C reported in [START_REF] Langevin | Moisture sorption in pet influence on the thermokinetic parameters[END_REF]. Corre- sponding subcooling ratios r were adjusted independently on each dataset ("dry" or "swol- len"). The details are reported in D values estimated generically on other polymers hold without impacting predictions whatever the polymer is plasticized or not. The determination of the subcooling ratio r remains critical and cannot be guessed from first principles.

Because D is invariant with the product ( )

g r T T ⋅ -
, overestimating g T leads to a systematic underestimation of r at glassy state. As their errors were strongly correlated, the loss of barrier properties to toluene from dry to swollen PET was connected to a significant decrease of r at glassy state. The estimated r value may be uncertain but not the trend. a reference experimental values of water from [START_REF] Launay | Water sorption in amorphous poly(ethylene terephthalate)[END_REF] (including also the data of (including also the data of [START_REF] Schmalz | [END_REF] and used to estimate D0, E*, and r (the identified value of r is noted "fit"); Substantial complications deserve additionally to be noticed in polymers far from equilibrium: i) gravimetric measurements on swollen PET at glassy state [START_REF] Pennarun | Functional barriers in PET recycled bottles. Part I. Determination of diffusion coefficients in bioriented PET with and without contact with food simulants[END_REF][START_REF] Franz | Migration measurement and modelling from poly(ethylene terephthalate) (PET) into soft drinks and fruit juices in comparison with food simulants[END_REF] demonstrated that polymer relaxation could overcome concentration gradients effects on sorption kinetics, as described in Chandra andKoros (2009a, 2009b); ii) diffusion coefficients obtained in sorption and desorption experiments may differ significantly (Burgess et al., 2014a). A FV extension has been proposed by [START_REF] Wang | Solvent diffusion in amorphous glassy polymers[END_REF] to overcome some of the previous complications, but its integration in the presented FVT for flexible and rigid solutes would require a special treatment beyond of the initial scope of this study.

The conclusions drawn in this study from the comparison of the diffusion behaviors of water (with specific intermolecular interactions) and toluene (without intermolecular interactions) in a polar polymer (PET) are very similar to those reached by comparing the mechanisms of diffusion of water and benzene in poly(vinyl alcohol) in molecular dynamics simulations (Noorjahan and Choi, 2015a). Additional blind validations of Eq. (V.25) and its parameterization from the D predictions for toluene in all tested polymers with a neutral subcooling ratio of 0.5.

Reference D values at infinite dilution were extracted from various sources (Zielinski and Duda, 1992;Vrentas and Vrentas, 1994b;Lutzow et al., 1999;Pennarun et al., 2004;Franz and Welle, 2008;Ewender and Welle, 2013, 2018a) and were extrapolated from higher solute concentrations down to 0 when necessary. Without fitting, the predictions were commensurable to experimental errors in the whole range of tested values from 2⋅10 -18 to 3⋅10 -11 m 2 ⋅s -1 . It is remarkable that the polymer function ( )

, g P T T probed with n-alkanes applies to the diffusion of aromatic solutes irrespectively to the considered polymer and temperature range. The same conclusion was also achieved with water and confirms the reliability of Eq. (V.25) regardless the chosen values for u and v .

V.5. General discussion on tiered packaging design

Integrating tiers above 2 ( §V.1. ) into the approach presented in §V.2. is the best way to evaluate the safety margins (see Figure II-23) of the proposed estimates at low tiers. Both possibilities, "the safety margins are either too high or too low", have negative impacts. They should be minimized while keeping the risks of having a defective quality as minimal as possible. The concept of risk should be here envisioned through two scenarios:

• a dramatic loss of mechanical resistance of the bottle due to premature aging of the polymer;

• an uncertain shelf-life value due to variable conditions of storage and transportation.

The first scenario or acute risk of mechanical rupture was examined experimentally by examining the consequences of a cumulated exposure to water, ethanol, and aromatic solutes in PET. The second scenario was considered mathematically by replacing likely estimates by probabilistic ones in a similar fashion as it used in migration modeling.

Why uncertainty and safety margins cannot be introduced in multicriteria optimization. The scientific community accepted that the safety of food contact materials could be determined by algebraic equations. In other words, the causation is accepted due to the presence of safety margins and an exhaustive list of conditions restraining the domain of validity of the approach. A very similar agreement is expected for shelf-life (no leak from the closure, no external chock, no exposure light, etc.). However, as for safety assessment, the lack of shelf-life cannot be proved alternatively by calculations (many causes not included in the model can also affect shelf-life). The lack of bijectivity justifies a monotonic sophistication of the approach as initially shown in Figure II-7. One practical consequence is that minimizing the overestimation of shelf-life cannot be introduced as an additional goal at the step [S]olving.

It is the responsibility of the end-user to bring external knowledge initially ignored by the algorithm.

V.5.1. Critical interactions between PET and solutes

Specific interactions between PET and solutes relevant of liquors (water or ethanol) can be readily evidenced by observing the cross-sections of thin films exposed to prolonged contact with pure water and ethanol. Typical observations are shown in Figure V-34. Biaxially oriented PET film exhibit a layered structure in phase-contrast microscopy due to the alignment of the rigid crystalline structure with the plane of the film. After exposure to water V.5. General discussion on tiered packaging design 243 or ethanol, some oblique cracks can be observed, as already reported for many solutes by [START_REF] Billovits | Penetrant transport in semicrystalline poly(ethylene terephthalate)[END_REF]. They are always disconnected from the outside and do not constitute preferential penetration routes in the film. They evidence the effects of the constraint release in the material either during sorption stage or during cutting. 

V.5.2. The rule of the maximum driving force

Any glassy polymer used for producing bottles is initially in thermodynamical equilibrium with the storage conditions or production conditions, typically at low relative humidity: 30% or 50%. Exposing it to liquor triggers sorption and permeation of water, ethanol and any solute. Water is the smallest substances and therefore diffusing the fastest, activating the transfer of ethanol (see §V. 3.5.1. ). Polymer relaxation is an additional complication. It has been shown by transmission infrared linear dichroism that the thickness of the sample from 30 to 500 µm does not affect the relaxation kinetics of the gauche and tans conformers [START_REF] Pellerin | Orientation and Relaxation in Thick Poly(ethylene terephthalate) Films by Transmission Infrared Linear Dichroism[END_REF]. The same results were verified on samples M, F1, and F2 using attenuated total reflectance and front-surface reflectance at synchrotron Soleil (beamline SMIS, results not shown). As relaxation times are much longer than mass transfer (diffusion Deborah numbers greater than unity), PET exhibits:

Chapter V. Results and Discussion

• a strict Fickian behavior when it is subjected mass transfer replacing one solute by another one;

• a stress-dependent mass transfer when the polymer is subjected to a differential step of partial pressure;

• strong memory effects when the polymer is dried before sorption.

The persistence of relaxations prevents considering rapid variable humidity conditions (diurnal) as a stationary random process (invariant with a shift in time) as assumed for temperature variations (see V.5.4.2. ). Only seasonal variations of relative humidities longer than polymer relaxation can be introduced through time-dependent boundary conditions or sequential simulations. To minimize the risk of underestimation of real sorption, permeation rates and finally shelf-life, the "rule of the maximum driving force" must be applied in the boundary condition: the lowest relative humidity during storage and transportation should be enforced. The linear and the deviations to the linear behavior are reported through three independent experiments.

V.5.2.1. Mutual diffusion and sorption

Ternary FH3 isotherms (see §V. 3.5. and V.3.6. ) demonstrate that the local composition in water and ethanol affects non-linearly the activity coefficients of each solute. This condition is sufficient to justify that the transport of water and ethanol are interacting together and should obey to mutual diffusion coefficients concepts as stated in Eq. (II.41). The effects of concentrations can be antagonist according to plasticizing or swelling effects dominate on local mobility. In the presence of strong plasticizing effects, the drop of friction coefficients causes an increase of diffusivities. In the presence of strong swelling effects, local composition effects decrease activity coefficients and finally lower diffusivities.

The effects of mutual diffusion were evidenced by studying the simultaneous desorption of water and ethanol on the side of the PET walls in contact with the beverage. Controlled 

V.5.2.2. Linear behavior when ethanol can replace water in bottle walls

When the mutual diffusion is linear and reversible, the fluxes of each species are additive and independent of the order in which they occur. This assumption has been tested during a typical challenge test of bottles walls 𝑀𝑀 equilibrated at 50°C at 50% RH and subsequently submitted to a gas mixture of water with activities of water and ethanol of 0.512 and 0.385, respectively. The transfer of each solute, simulated independently (using parameters listed in No difference can be detected between experiment and simulation if the diffusivity of ethanol is substantially overestimated comparatively to the value reported in Table IV -3. The asymmetry between the decreasing and increasing branches is associated with the differential rates of mass transfer between water and ethanol. In this particular experiment, greater asymmetry would have been expected, but ethanol is thought to replace water whereas drying would have cause shrinkage and a partial collapse of voids. The departure of water facilitates the sorption of ethanol by one magnitude order. The competition between the driving fluxes appear more outstanding when the value of the diffusivity of ethanol in this ternary configuration is compared with other binary estimates or determinations in Table V-4.

Table V-4), is shown in
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V.5.2.3. A resistance to mass transfer induced by stress gradients

The existence of non-chemical driving force in sorption experiments was revealed by applying a differential step humidity followed by periodic variations as shown in The final curve is close to the first Fick law (the flux is proportional and of the same sign of the pressure variation) with noticeable differences. Sorption is faster than desorption for both steps. The flux is not zero when the partial pressure difference is zero; a residual mass transfer (desorption) is evidenced and associated with a constant rate of 247+10 days. A significant sorption occurs when the difference in partial pressure is greater than 2-4 kPa. This threshold corresponds to the intensity of osmotic pressure opposing to sorption in the polymer. Viscosity effects were studied by analyzing the same behavior on longer time scales by comparing the effects of a sorption sequence was the film sample was previously dried or not. During the first step, all samples initially equilibrated ~50% RH followed the evolution imposed by the change in relative humidity (drying or sorption). After the second and third steps, almost all samples ceased to follow the evolution imposed by the external RH and continued to last one or several days of their initiated behavior during the first step. The remanence was all the higher than the samples were brought far from their initial equilibrium state. These results generalize the trends shown in Figure V-40b: i) a threshold oppose to sorption from dry state not only at the surface but also in the bulk, ii) desorption is much slower than sorption. After successive steps and in the presence of non-uniform concentration profiles, the different regions of the polymer are not in the state, and the whole same can exhibit chaotic behavior (i.e., sensitive to initial conditions). 

V.5.3. Estimation of the uncertainty in diffusivities

Apparent diffusion coefficients in glassy polymers at a given temperature can be variable for several reasons: • a contribution of polymer relaxation on apparent diffusion coefficients • mechanical ruptures.

Chapter V. Results and Discussion

The developed free-volume theory (FVT) can cover the three first points, but only the first was detailed and analyzed in the manuscript. The case 𝑀𝑀 = 0 and 𝑇𝑇 𝑔𝑔 =60°C was the worst case for the applied FVT. All other aspects can be studied by performing differential sorption experiments at different temperatures and on samples with different thicknesses. Diffusivities at low intermediate and high Deborah numbers are expected to offer the broader variability. An illustration of the dispersion is shown in Table V-4. Experimental diffusivities of water and toluene were remarkably bounded by the predictions of FVT. The values for ethanol are typically much higher than the FV worst case. The activation by temperature at glassy state is much higher than the one for water (see. 

Level of details

𝑫𝑫 𝒘𝒘 (m 2 ⋅s -1 ) 𝑫𝑫 𝒎𝒎 (m 2 ⋅s -1 ) 𝑫𝑫 𝑻𝑻 (m 2 ⋅s -1 ) Without requiring time-consuming Monte-Carlo calculations, the methodology described in §II.2.3.6. can be used to estimate shelf-life from Eq.(V.42) with the same computational cost as a deterministic case. The principles are illustrated hereafter in a simplified but realistic case study.

V.5.4.2. An illustrative case-study

The principles of calculations of 𝑡𝑡 𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑟𝑟 are shown for a vodka-type beverage (𝑎𝑎𝑏𝑏𝑎𝑎 = 0.4) stored in a PET bottle of 650 mL and subjected to two steps: a transportation step in severe conditions and a storage step in more moderated conditions. The relative humidity in the storage room is assumed to be maintained at 30% (rule of the maximum driving force). The calculations for a given bottle geometry and wall thickness are plotted in The depicted example corresponds to an average transportation time of one months and a storage time of four months. Due to the variation of temperatures, the total time at 25°C is of 7.25 months, with 95% of cases varying between 4.28 and 12.9 months. In these conditions, there is 8.4 % to exceed a weight loss of 3% and a probability of 50.6% to exceed a variation of 𝑎𝑎𝑏𝑏𝑎𝑎 of 0.003. In the context of optimization, the current design guarantees the compliance only in 50% of cases under combined storage and transportation conditions, and above 97% for the sole transportation conditions. The same approach can be used iteratively to optimize the design, the shelf-life or the conditions of transportations and storage.

V.5. General discussion on tiered packaging design 255 The research work was devoted to the construction of a global computational framework where important contributions of food packaging design could be evaluated and optimized. The three targeted contributions shelf-life, environmental impacts, and the chemical food safety were chosen for their substantial impacts on the food and the environment, but they were paradoxically the less studied and explored through numerical calculations. The work was therefore initiated from an almost white page. The backbone was a large and ambitious software project, which could benefit the numerical approaches and modeling assumptions already used in migration modeling. The motto was "imperfect models can be used for decision making if they are built in a conservative way for that". As migration models are built rationally, they are accepted both by law and scientists, which contrast dramatically with the more subjective concepts of ecodesign and life cycle assessment. Polyethylene terephthalate (PET) bottles for alcoholic beverages were chosen as a template to build the concept, to write a specific computational code (more than 65 Klines of Matlab/Octave), to validate and extend the different refinements. Despite inherent mathematical and physical simplifications at intermediate steps, the input and final outputs of the numerical project were designed to be compatible with industrial standards of product design, engineering and rapid prototyping (augmented reality, 3D printing).

• The 3D simulation engine for the rational design of beverage bottles

The first cornerstone was to use tier modeling, which offers the double capability of progressive enrichment and multiscale modeling. A limit was, however, rapidly reached. Existing previous opensource projects focused only on the one-dimensional description of mass transfer. They could manage non-linear behaviors, but they not describe the differential of sorption and permeation across the different parts of the packaging. This kind of numerical problems is quite well-known for the calculation of the mechanical resistance of thin walls and packaging. They require 3D modeling and a very refined and expensive meshing across the walls. This solution was definitively not applicable to optimize thousands or more different kind of packaging. The difficulty was circumvented by using a dual geometry model: one for design and another one to calculate mass transfer. In the dual space, calculations were simpli-VI.1. Conclusions 259 fied and dramatically accelerated by the use of curvilinear coordinates and contour integrations. In more technical terms, the food representation is implicit, and mass transfer may be inaccurate in regions with low gyration radii. Other details, such as the distribution of the mass and the total surface area are well preserved. This technical choice was our vehicle or simulation engine, where the physics of mass transfer, physical chemistry and thermodynamics can be installed and configured. By choosing a multicomponent formulation, the number of simultaneous mass transfers is not limited, and the approach could be extended to situations with chemical or biochemical reactions. Dynamic storage conditions of temperature and relative humidity are applicable if needed.

• The tier [E][D][S] approach for packaging design optimization

The description of alcoholic beverages as hydroalcoholic solutions was crude, but remained realistic for liquors such as vodka, with low aromatic content. The considered environmental impacts were also simplistic: the mass of the packaging for a given consumption unit or given intake, chosen as a functional unit. The adding value was, however, elsewhere.

Can we put all mass transfer problems (with arbitrary complexity) related to food shelf-life, environmental and safety issues within a single mathematical formalism, that standards algorithms and methodologies can optimize efficiently. An iterative process involving thee steps: 

• Multiscale extensions to the main engine

The capacity to extend the computational framework to new criteria (e.g., amount of recycled material), to new mass transfer (migration, aroma scalping) and to reduce the safety margins for optimized designs depends heavily on the quality of the [E]valuation step. Glassy polymers, such as PET, are chosen for their excellent barrier properties, but like any material far from their equilibrium state, they evolve rapidly in the presence of small molecules. Polymer relaxation hampers dramatically our capacity to access to intrinsic properties: final equilibrium state (sorption and mutual sorption), diffusion properties (trace or mutual, activation by temperature). Two complementary were followed directions: i) removing the difficulty by the FVT theory equipped with its extensions is still not fully complete, it covers all major polymer families (polyolefins, polyesters, polyvinlys, polyamides, polyacrylics), their oligomers, water, ethanol, any combination of rigid and flexible solutes.

• The non-linear behaviors of PET PET is the preference thermoplastic material for one-third of all food packaging applications. It can be partly biosourced and is fully recyclable. The diffusion and sorption properties or many important molecules (water, ethanol and noble alcohols, aroma, oligomers and residues, non-initially added substances including post-consumer contaminants) can be derived from quantitative structure relationships. Polymer relaxations can, however, modify profoundly the nominal performances of PET (biaxially oriented or not) especially at high temperature, high relative humidity or in the presence of high organic content such as ethanol or aromatic solutes. They were not directly studied, but their consequences on mass transfer were considered for the interpretation of stepwise sorption. Additional results, not shown, were obtained on the synchrotron SOLEIL using the beamline DISCO (intrinsic fluorescence microspectroscopy) and SMIS (FTIR-ATR microspectroscopy and imaging, Raman microspectroscopy). They show that the interactions between mass transfer, structural changes and chemical interactions (e.g., π-π interactions between terephthalic groups, between them and organic solutes) are driven by local gradients (non-local interactions not evidenced), but were very heterogeneous due to the spatial organization of crystallites.

VI.2. Perspectives
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The interactions between non-linear behaviors of PET and mass transfer were understood and tabulated by the dimensionless diffusion Deborah number. For solutes diffusing fast (water) or in thick materials, initial sorption and permeation rates obey well to FV and FH theories. On the very long term, polymer relaxations generate an additional driving force promoting or opposing mass transfer according to the history of the material. The magnitude order of the induced driving force is equivalent to several kPa. It cannot be ignored, but its effect can be managed by overestimating the value of the diffusion coefficients at low tiers. This approach was shown to be viable for thick bottle walls with asymmetric contact even after several months. With symmetric contacts, a high diffusion coefficient would be necessary. As the uncertainty in diffusion coefficients is ranged between a factor 1 and 4 according to the considered conditions (temperature, relative humidity: RH, thickness), the [E][D][S] approach cannot be used without safety margins by assuming that the benefit of packaging weight reduction is linearly correlated with shelf-life. For critical applications, probabilistic modeling to manage the effects of temperature conservatively and with overestimations the effects of RH.

VI.2. Perspectives

• It is thought that the same approaches are readily available for any beverage stored in PET bottles, including mineral water. Aroma scalping (i.e., sorption of aroma) is the mass transfer phenomena symmetric to migration issues, it is available for evaluation and optimization if the partition coefficients between the beverage and the polymer have been previously tabulated. In the case of PET, it is preferable to use a free-volume formulation including concentration effects (not considered explicitly in this work) to account for the cumulate plasticizing effects brought by multiple solutes.

• How to integrate other mass transfer and reactions affecting shelf-life

The current developments do not enable the estimation of the shelf-life of products sensitive to oxidation (e.g., vegetable oil, sensitive fruit juice, mayonnaise). The whole

[E][D]

[S] framework remains, however, fully applicable. Adding an evaluation of the risk of oxidation and related collapse requires a small number of extensions. The oxygen permeability of PET is well known, and predictive oxidation models have been already developed by the group [START_REF] Patsioura | Effects of oxygenation and process conditions on thermo-oxidation of oil during deep-frying[END_REF][START_REF] Touffet | Online reconstruction of oil oxidation kinetics and reaction schemes during deep-frying by deconvolution of ATR-FTIR spectra[END_REF]. Simulation with an implicit food model is not acceptable for semi-solid and solid food products, but the approach could be used as preoptimizer of a more detailed optimization step (at a high tier) considering mass transfer and reactions in structured foods. Other phenomena such as leaks in sealing and closure systems should be integrated also.

• The global challenge posed by the interactions between PET containers and its content

Plasticizing, swelling, and polymer relaxation effects bring large uncertainty not only in the values of diffusivities and solubilities but also in the driving forces controlling mass transfer. Bottle walls are consequently not at the same mechanical state according to their thickness. Important safety margins need to be preserved to keep the determination of shelflife robust and not to damage the whole mechanical resistance of the bottle. These effects are highly non-linear, the consequences associated to a too large thinning of walls can be studied with a finite element technique. We propose, however, a better solution by exploring a broader "safe harbor region" integrating both shelf-life, packaging weight, packaging format, packaging shape, storage, and transport conditions as goals to optimize rather than strict requirements to reach. It is preferable to use PET at its nominal performance rather than in extreme conditions. Too high sorption of food constituents in disposed bottles can preclude the capability of recycling mechanically PET, that is decontamination by washing with solvents.

• Hydrolysis of PET and its consequences in severe conditions Physical and chemical aging of PET is a global issue, in particular, in the context, where more recycled PET will be used with time. The industry reported difficulties in processing recycled PET in the same way as virgin PET. PET sorption and mechanical properties are known to be affected by hydrolysis [START_REF] Hosseini | Hydrolytic degradation of poly(ethylene terephthalate)[END_REF]. Hydrolysis occurs in the time frame of a few months and can lead to variation in local crystallinity from ~30% to ~40% in a few weeks.

Recycling recycled PET will accelerate degradation and related issues. It has been tested that the whole approach was extendable to other polymers including PEN and PLA, offering additional alternatives for some specific applications. It is highly desirable to integrate the

[E][D]

[S] in a broader perspective integrating polymer alternatives and the pro and con associated with recycling loops and collection circuits. By diverting the concepts of multiscale modeling (VITRac and Touffet, 2019) and by reusing massive numerical strategies used for the evaluation of consumer exposure (Vitrac et al., 2007a;Vitrac and Leblanc, 2007), it could be possible to integrate the [E][D][S] approach in a context of multiple sourcing and food. The VI.2. Perspectives 263 global goal could be to optimize the design of many packaging at once to facilitate their collection and promote their sustainable recycling and to minimize food waste.

• Towards integrated engineering

This work exemplifies the need of integrated engineering and expertise to address global challenges. Chemical engineering can bridge many domains that no specific science and related technology can solve alone (polymer, material, mechanical or food science and technology). Global engineering will contribute to reduce human impacts only if the methodologies and principles are stated and taught. More effort is needed in education and training to initiate and support large collaborative projects on the long term with reusable pieces of software and databases. The robustness of computational tools and approaches is essential when human decisions are transferred to automatic algorithms subjected to various sources of uncertainty.

Some standardization and reporting should be invented in the future to facilitate interoperability, maintenance and reuse.

Finally, there is a solution to the Zeno paradox: more human, more food, more packaging, more waste, more impact. We do not have the solution but have the tool to find it. (see

Figure V-41)

• More personally, I acquired not only scientific knowledge, but also learnt and enabled to build and manage a general EDS approach with multiobjectives and multidisciplinary. I would like to transfer these knowledge, methodologies and approaches with complexities into reasonable, understandable and applicable numerical tools and make them more robust and sophisticated through further study and collaborative works. Selon le point de vue dominant, les emballages alimentaires offriraient une solution à la distribution des denrées alimentaires aux populations urbaines et vieillissantes. Ces populations, qui vivent loin des zones de production, privilégient la commodité de préparation et l'expérience de consommation. Dans cette logique, les emballages alimentaires permettraient une réduction des déchets alimentaires [START_REF] Williams | Environmental impact of packaging and food losses in a life cycle perspective: a comparative analysis of five food items[END_REF][START_REF] Williams | Reasons for household food waste with special attention to packaging[END_REF].

Tous les choix devraient donc être durables et efficaces : premier sur le marché, à des coûts compétitifs, avec une expérience de consommation améliorée, minimisation les impacts environnementaux [START_REF] Coles | Food and Beverage Packaging Technology[END_REF]. La sécurité alimentaire serait introduite comme un compromis entre la protection des aliments, l'hygiène apportée par l'emballage et le risque de contamination associé à leur utilisation.

Des avis alternatifs significativement négatifs sur les emballages alimentaires sont progressivement apparus [START_REF] Hamaide | Environmental Impact of Polymers[END_REF]. Ils ont été associés successivement à des sources potentielles de substances toxiques, de déchets, de gaz à effet de serre, etc. Lors du dernier forum du Food Packaging Forum [START_REF] Stieger | Predicting the safety of food contact articles: New science and digital opportunities[END_REF], les experts ont conclu que les matériaux en contact avec les aliments (plastiques, élastomères, vernis, adhésifs, encres d'impression, papier et carton) représentaient la principale source de contaminants chimiques dans les aliments. Parmi eux, les matériaux plastiques occupent la plus grande part du marché des applications au contact des aliments [START_REF] Geueke | Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials[END_REF]. Ils sont responsables de 80 à 85% du total des déchets marins sur la planète [START_REF] Bergmann | Sea change for plastic pollution[END_REF][START_REF] Pierdomenico | Massive benthic litter funnelled to deep sea by flash-flood generated hyperpycnal flows[END_REF] et d'une partie des microplastiques qui contaminent l'environnement [START_REF] Efsa | Presence of microplastics and nanoplastics in food, with particular focus on seafood[END_REF][START_REF] Lusher | Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and im-plications for aquatic organisms and food safety[END_REF][START_REF] Silberbauer | Packaging Concepts for Ready-to-Eat Food: Recent Progress[END_REF][START_REF] Pierdomenico | Massive benthic litter funnelled to deep sea by flash-flood generated hyperpycnal flows[END_REF].

• L'objectif général des travaux : conception raisonnée des emballages pour les boissons alcoolisées L'innovation continue dans les matériaux et la conception des emballages peut contribuer à relever les défis mondiaux que posent l'emballage, la transformation et la distribution d'aliments. La virtualisation des étapes fastidieuses de la conception des emballages telles que la conceptualisation, le prototypage, l'optimisation des emballages et la validation de la durée de conservation peut accélérer l'exploration de solutions alternatives. Une méthode d'ingénierie concurrente a été développée pour concevoir des emballages sûrs [START_REF] Nguyen | A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems[END_REF].

L'approche est en deux étapes. La première consiste à [E]valuer les transferts de toutes les substances qui peuvent être désorbées par les composants de l'emballage. La seconde réutilise les concepts de l'Analyse des Modes de Défaillance, de leurs Effets et de leur Criticité (AMDEC) pour prendre classer les combinaisons (substances, composants, designs) et ainsi prendre une

[D]écision sur l'acceptabilité des risques. Si la criticité cible n'est pas obtenue, la méthode ne permet toutefois pas d'explorer de solutions alternatives. Les travaux visent à généraliser l'approche pour les boissons alcoolisées en introduisant i) une étape de ré[S]olution sous contraintes (ex. durée de vie, géométrie), ii) les impacts environnements, iii) une géométrie 3D paramétrable compatible avec les logiciels de conception assistée par ordinateur.

• Une illustration de l''étape de résolution L'analyse de cycle de vie, définis dans les normes ISO 14040 (2006a) and ISO 14044(2006b), est une technique bien établie, mais elle reste rétrospective et encourage principalement l'utilisation de matériaux biosourcés, recyclables ou biodégradables. Des éléments d'ingénierie sont introduits dans la démarche d'écoconception [START_REF] Brezet | Ecodesign: A promising approach to sustainable production and consumption[END_REF][START_REF] Crul | Design for Sustainability a step-by-step approach[END_REF]. Comme l'a souligné [START_REF] Dufrene | An engineering platform to support a practical integrated eco-design methodology[END_REF] 
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  ingredients: i) tiered modeling and ii) an iterative [E]validation, [D]ecision and [S]olving algorithm. Its formulation is illustrated on an oversimplified case-study in Section 3. This Chapter I. Introduction

Figure II- 1 .

 1 Figure II-1. The complications arise from the spanning of technical problems and societal constraints over several disciplines (material, food, toxicology and environmental sciences), roles (designers, engineers, users, and authorities), processes, length and time scales and the entanglement with many legal and sometimes contradictory requirements. As an example of the heavy legal framework, 6165 legislation, preparatory documents, international agreements, communications on case law are associated with foodstuffs in EU according to the EUROVOC classification(Eur-lex, 2019a). The same classification comprises 3092 documents for "food plastic environment" (Eur-lex, 2019b).

Figure II- 1 .

 1 Figure II-1. Interplaying factors in engineering design: example of food-packaging design (modified from Figure 3.2 of[START_REF] Alexiou | Embracing Complexity in Design[END_REF].

  represent a rare scientific discovery or the pioneering of a new industry altogether 1 Basic principles observed 4 New paradigms: inventions entail the development of an entirely new operating principle and represent radical changes 2 Technology concept formulated 3

  b. Conservation law (e.g., no mass loss); c. Harmony law (e.g., inertia of the packaging: low food-contact interactions, plasticizing, off-flavors); 2) Kinematic laws a. Increasing the system ideality (e.g., preventing harmful effects on health and the environment); b. Uneven developments of parts may lead to technical and physical contradictions (e.g., replacement of some parts of the packaging may affect barrier properties); c. Transition to a super system (e.g. introducing secondary and ternary packaging); 3) Dynamic laws a. The transition from macro to the micro level (e.g., modifying polymers and additives may bring new possibilities and innovations); b. Increasing the Substance field involvement (e.g., increasing or decreasing fluxes).

  by the values L x and U

Figure II- 2 .

 2 Figure II-2. (a-b,d) Illustrations of nonconvex goals; (c) convexification by adding boundaries 𝑥𝑥 𝐵𝐵 ≤ 𝑥𝑥 ≤ 𝑥𝑥 𝑅𝑅 ; (d) nonconvex problem combining a convex problem with Gaussian white noise (𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 𝑟𝑟 * and 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 𝑟𝑟 * are the bounds of the domain where the minimum can occur); (e) composition of two convex goals. The green triangle represents the initial guess and the red square the final solution of a randomized steepest descent algorithm. The intermediate positions are depicted with connected orange circles. In non-convex problems, the final solution may dependent on the initial guess (see (a) and (b)).

  study. Some basic classes have attracted more attention than others and benefit greater developments. Figure II-2d-e exemplifies some useful properties: • the true minimum of a convex functional subjected to white noise (uncorrelated and unbiased errors) is bounded statistically by the positions of the first and last occurrence values (Figure II-2d); • the minimum of a sum of two or more functionals is bounded by the positions of the minima of each functional (Figure II-2e).

  Figure II-2e), within a tolerance on the criterion (𝜂𝜂optimal solution, see Figure II-2d), on by combining both (ϵ,𝜂𝜂-optimal solution).

Figure II- 3

 3 based on geometrical interpretation of the optimization problem.

  any linear function is re- placed by the concept of membership to the epigraph of the curve. Any barycenter between two points of the curve (i.e., the affine or manifold set) should lie above the curve (see Figure II-3a-c) over the entire considered interval. It is verified only for continuous functions with finite and left and right derivatives over the entire interval ( see chapter 2 of Tuy,2016). A set is said convex if it contains any line segment joining two edges or two points belonging to the contour. The kidney shape shown in Figure II-3e is not convex. Convexity can be recovered either by adding an external vertex (Figure II-3j) or by closing the hole (i.e., convex hull, Figure II-3i).

Figure II- 3 .

 3 Figure II-3. Geometric interpretation of multidimensional optimization problem: (a) convex function; (b) nonconvex function; (c) the epigraph of a convex function is convex set; (d) polygonal convex set; (e-f) nonconvex sets; (g) convex hull of discrete points; (h) conic hull of (g); (i) convex hull of (e); (j) conic hull of (e); (k) intersection between a linear goal and a conic hull; (i) nonlinear feasible region associated to a convex goal; (j) idem under integer constraints.

  3. ) and eco-labeling efforts. The definition of the technical report ISO/TR 14062 (ISO, 2002) is more general and includes not only products but also processes all along the entire life cycle of the product. As shown in Figure II-4, most of the impacts are created at early stages in the design and development of new products, by an inappropriate choice of raw materials or performances for the finished product.

  Figure II-5. Aspects to consider in ecodesign of food packaging: (a) hierarchy of packaging waste management, (b) An example of a design guideline for source reduction of horizontal pouches used in the Korean food industry. "Acceptable" and "Optimum" refer to the dimensional allowable ranges (mm) in the design process (after Han, 2014).

Figure

  Figure Overview of the bestiary of eco-design and design process tools from[START_REF] Ramani | Integrated Sustainable Life Cycle Design: A Review[END_REF].BEES=Building for Environmental and EconomicSustainability; EIO-LCA = The Economic Input-Output Life Cycle Assessment; LCA = Life Cycle Assessment, LiDS = Lifecycle Design Strategy; QFD=SLIM=Sustainable and Life Cycle Information-based Manufacturing; QFD = quality Function Deployment; QFDE = quality Function Deployment for Environment; TRIZ= theory of the resolution of invention-related tasks.

Figure II- 7 .

 7 Figure II-7. Principle of the tiered approach to demonstrate compliance for food contact materials.Compliance is demonstrated as soon as the estimated concentration is greater than the threshold of concern. Tier 1 is usually associated with total migration (see Eq. (II.4)).

II. 2 .

 2 Figure II-8. One-dimensional description of solute diffusion (e.g., additive, monomer) from the packaging wall (position: 0 1 p x l ≤ ≤ , individual solutes identified as ×) to the contacting phase (individ- ual solutes identified as ■) via the food boundary layer (individual solutes identified as •): (a) random distribution of solutes and corresponding concentration profile at 0.1 Fo = and (b) after contact times up to 2 Fo = . The percentages in the top part represent the residual amount in each compart-

  p

D

  is the diffusion coefficient in the polymer at the temperature of contact. The integral form is preferred if the diffusion coefficient is variable with time (temperature change)

  ) and (II.18) are plotted along with the results of numerical simulations in Figure II-9. The common assumption of the linearity of * Bi are large. At intermediate Bi values, the Dirichlet condition offers a conservative approximation (i.e., *

  kinetics corresponding to the five scenarios are plotted in Figure II-11.

.

  Monolayers and functional barriers lead to uniformly decreasing concentration profiles. The corresponding desorption kinetics in F are respectively proportional to the square-Chapter II. Literature review root of time and proportional to time after some lag time equal to For the same initial amount in the structure and after the lag time, the functional barrier ceases to operate and leads to a migration proportional to 1 down the desorption durably. Reservoirs behave very differently; they are associated with non-monotonous concentration profiles, accelerated desorption kinetics while converging to a very similar concentration at equilibrium. For the same initial content and when the barrier on the right is higher than the barrier on the left 2 reservoir" configuration overestimates the migration kinetics associated with all other configurations.

Figure

  Figure II-11. Concentration profiles (top) and migration kinetics (bottom) for the bilayer structure and scenarios detailed inTable II-9.

  25) Conditions (II.25) have a mathematical justification in the linear properties of the equations (II.22)-(II.23). The solution of any linear decomposition of the initial concentration profile is equal to the sum of the individual solutions:

26 )•

 26 Example for a trilayer material ABC Eq. (II.26) is particularly significant as it is valid for any partitioning of the source terms in the material, irrespective of the positions of the layers. An application of the additivity Chapter II. Literature review of j M values (concentration profiles and kinetics) is shown in Figure II-12 for a trilayer struc- ture ABC detailed in Table II-10. Table II-10. Parameters used to construct realistic and conservative migration scenarios depicted in Figure II-12 and Figure II-13. Quantities are expressed respectively to the likely values † for the first layer (the three layers ABC are

  Likely value = true value or close to the true value in the considered scenario. The simulation of each layer individually underlines the different mechanisms controlling the contribution of each layer: reservoir effect for source A (scaling of desorption kinetics with the square root of time) and functional barriers for B and C (desorption kinetics linear with time after significant lag-times). The depicted profiles are assumed to the "likely" or "true" ones. They are considered inaccessible to simulation and should be approximated at some tier in a way that the concentration in F is always overestimated (see Figure II-14).

Figure II- 12 .

 12 Figure II-12. Illustration of the additivity of the sources (see Eq. (II.26)) for a trilayer structure ABC associated with the case study detailed in Table II-10: concentration profiles (top), kinetics (bottom). The case "sources ABC" is obtained by simulating the whole structure. The result A+B+C corresponds to the mathematical addition of the contributions of the three sources.

  10 applies a factor ten to the Henry-like coefficient(s) j k of the source and behind. The likely j k and values are kept for the layers between the food and the j th layer. To prevent back diffusion in the reservoir layers the diffusion coefficients were divided arbitrarily by a factor 10 3 . The corresponding kinetics are shown in Figure II-13, with their parameters listed in the section "conservative scenario" of Table II-10. The diffusion coefficients towards the food are overestimated by a factor of 10. At intermediate Fourier numbers below 0.4, the kinetics is not significantlyoverestimated, but a significant conservatism is achieved at larger Fourier numbers when the overall migration is controlled by the second and third layers as sources. This case study scenarios can be finely tuned to decrease the uncertainty related to the behavior of internal layers. The contact layer as a source can always be considered as a single monolayer.

Figure II- 13 .

 13 Figure II-13. Illustration of the conservative scenario of Table II-10 based on the overestimation of the contribution of each source. The reference corresponds to the initial case-study configuration also depicted in Figure II-12.

Figure

  Figure II-14 and can be applied to decrease a m -layer problem into a 1 m -, 2 m -, etc.

II. 2 .

 2 Figure II-14. Principles of the simplification of a m -layer problem (here 3 m = ) into a problem with a lower number of layers and, therefore, easier parameterization. The represented distributions in the packaging correspond to initial conditions at various tiers.

D

  is the diffusion coefficient of the most limiting material, component or layer, and ref j l the one-dimensional equivalent thickness (see Eq. (II.24) to identify ref j ).

Figure II- 16 .

 16 Figure II-16. Illustration of the composition rules (a) for distances and (b) for the migration from a monolayer material, and of their invariance with the order of the steps (see Eqs. (II.28) and (II.35)).

  concentration dependence due to the extra free volumes brought by the solute itself and the possible shift in the glass transition temperature. For most applications and in the absence of a unified theory, the equation of Fujita can be applied to describe the concentration dependence:( )

PD.

  with the logarithm of the molecular mass M (concerted displacements of rigid units or blocks) and with the total volume of the migrant In this description, short n-alkanes are partly rigid since the constraints of torsion prevent blocks from translating independently.

  Figure II-17. Scaling of diffusion coefficients between rigid and connected blocks with molar mass and van der Waals volume in a thermoplastic polymer (groups A and B refer to substances defined inFigure II-18).

  with the molecular mass M , p D M α -∝ with α of 1.58 (range: 1.09-1.68) for [1] NIST data and 1.84 (range: 0.75-2.01) for [2] EC data. For bulky solutes, the large uncertainty in the experimental P D values suggests that diffusivities can be considered significantly different only if the vdWV differences between molecules are larger than 35 Å 3 . The correlation with vol- ume is consistent with the free-volume theory of diffusion[START_REF] Fang | Predicting diffusion coefficients of chemicals in and through packaging materials[END_REF], and as vdW V is also correlated with the number of heavy atoms (see Figure II-18e, the correlation depends on the type of substances), a reasonable upper envelope of P D values has been proposed to overestimate diffusivities[START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF]. The equation is coined the Equation of Piringer: for LDPE. The values for other polymers

  linear solutes,[START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] demonstrated that its general expres- sion was:

.

  Eq. (II.45) and Figure II-19a demonstrate that mass dependence increases rapidly when T approaches or goes below g T . In elastomers and rubbers (with very low g T ) as well as in polymer melts, the mass dependence for linear migrants approaches unity. This theoretical value corresponds to the independent displacements of jumping units. Due to the dependence of K β with the type of rigid blocks, Eq. (II.45) describes different mass dependence (see the three series of linear molecules in Figure II-17) for different molecules. Although approximate, the technique can be used to extrapolate the results of ln P D from one polymer to a new Chapter II. Literature review polymer (denoted R) via the correction ( The principles are illustrated in Figure II-19b by showing that almost any of the presented polymers (except rubbers) can be used to predict the diffusion coefficients of the same substances in polypropylene only by setting the g T of the source and destination polymer. The same correction can be used to predict diffusivities in plasticized polymers from their values in non-plasticized ones.

Figure II- 19 .

 19 Figure II-19. Diffusivities of various substances at 25°C in glassy and rubber polymers: (a) raw values, (b) normalized data to remove polymer effects (standardized to 𝑻𝑻 𝑻𝑻 value of 0°C corresponding to atactic polypropylene PP).Filled symbols correspond to n-alkanes (scaling laws 𝑫𝑫 𝑫𝑫 ∝ 𝑴𝑴 -𝜶𝜶 as dashed lines) and empty symbols to various solutes including gases and plastic additives (scaling laws 𝑫𝑫 𝑫𝑫 ∝ 𝑴𝑴 -𝜶𝜶 as continuous lines). Data from[START_REF] Schwope | Methodology for Estimating the Migration of Additives and Impurities from Polymeric Materials -EPA 560/5-85-015[END_REF].

  free-volume effects and are higher than at higher temperatures. The effects of temperature for linear solutes near g T are shown in Figure II-20. If the behavior was strictly Arrhenian, the depend- ence of ln p D would be linear with 1/ T , which is not obviously the case for large diffusants near g T . Apparent activation energies increase with the size of diffusants as ln a E M ∝ . The interested reader will find a consistent review of free-volume and specific-migrant activation in Fang and Vitrac (2017). In any case, it is not recommended to extrapolate p D values from low temperatures to high temperatures for polymer recycling, as it would overestimate diffusivities and consequently the rate of decontamination of the polymer.

Figure

  Figure II-20. Arrhenius plot of diffusivities of n-alkanes in polyethylene terephthalate. Data from[START_REF] Ewender | Determination and Prediction of the Lag Times of Hydrocarbons through a Polyethylene Terephthalate Film[END_REF], 2016, 2018a).

T

  Figure. Ratio of fugacities between pure solid and amorphous states for 11 model migrants(data fromFornasiero et al., 2002) and its continuous approximation proposed in FigureS1of the Supporting Information of[START_REF] Nguyen | Off-lattice Flory-Huggins approximations for the tailored calculation of activity coefficients of organic solutes in random and block copolymers[END_REF].

  a theoretical separation of enthalpic and entropic effects. II.2. Evaluation of the migration from packaging materials 73

  partial compressibility of the molecules of i and F . Rigorously, partial molar volumes should be used instead of molar volumes.• Approximation at infinite dilutionAt infinite dilution and pending estimations of the Flory-Huggins coefficients (II.50) provides an estimator of activity and partition coefficients in amorphous regions:

  Figure II-22 reports the value of , water ethanol χ with the volume fraction in ethanol as well as the values for common food simulants expressed in alcohol-by-volume (abv) instead of volume fraction. The volume fractions ethanol and water in the mixture are tabulated from their partial molar volumes between 10°C and 60°C in Table II-12.

Figure

  Figure II-22. Variation of the binary Flory-Huggins coefficient in water-ethanol mixtures. Data from Gillet et al. (2010). "abv" values represent the equivalent alcohol strength (alcohol-by-volume at 20°C and atmospheric pressure). Simulant C: 10% ethanol for alcoholic foodstuffs; simulant D1: 50% ethanol for high alcoholic and milk.

  abv

  . Conformers need to be generated in a way that they are representative of their conformations (radial distribution, constraints of torsion) in the corresponding condensed phase. In practice, they are sampled from molecular dynamics simulations of the equivalent condensed phase.

  can be used to recover conservative estimates. The calculation procedure consists of splitting the contribution of n components/materials into m n ≤ independent simulations and in accumulating the concentration in food: for a substance i present simultaneously in the walls (bilayer AB, B is contact) and the cap of the bottle (C). The problem comprises 3 n = materials and requires 2 n = simulations: • One-dimension mass transfer simulation from B to the food (without A and C) to calculate , B i F C • One-dimension mass transfer simulation from C to food (without A and B, i.e.no walls).

Figure II- 23 .

 23 Figure II-23. Illustration of safety margins (SM), overestimation factors (Q) and uncertainty according to the method of calculation: real, likely and very conservative.

  II.59) provides analytical solutions only in simple configurations, but its application is very general. Additionally, implementing the difference of step size known as subtractive cancellation. Its usage is shown for a variant of the realistic but conservative model for monolayer materials presented in §II.2.3.4.(see Eq. (II.18)):

  the effects of t , P D and p l . Eq. (II.58) is a first order approximation and, despite the use of a logarithm scale, it looses accuracy as soon as parameters are tested beyond several factors.

  s s s . Indeed using Eq. (II.13), it can be shown that the distribution a posteriori of * Fo converges in law to a Gamma distribution with parameters ( ) , a b Γ Γ . Nguyen et al. (2015) tabulates their values with t s , D s and l s .

  terministic inputs are set (likeliest values or averaged ones) and how the transformation stretches or contracts the probability space. Deterministic modeling provides the unique solution of the initial-value problem. Probabilistic modeling generates the distributions of outputs (e.g., F C ) for any combination of input parameters and initial conditions. The use of 88 Chapter II. Literature review dimensionless numbers such as a cumulated Fourier number including temperature variainterpretation by including random variations of temperature or uncertainty of diffusion coefficients(Vitrac et al.,2006). In the context of risk assessment, the scaling quantities Fo , Bi and / F P K as acceptable conservative estimates and the effects of uncontrolled variations and uncertainties can be captured with the distributions of * them equal to unity.II.2.6.5.1. Typical probabilistic migration kineticsWithout loss of generality for estimating multivariate distributions of concentrations, the principles of composition are illustrated in Figure II-24 for the dimensionless migration kinetics from monolayer materials (see. §II.2.3.4. ). In this example, * Fo is the only random variable and all other parameters remain fixed (not distributed). The distribution of the dimensionless concentration * v is inferred from Eq (II.67) with 1 p = (strictly monotonic curve). It can be viewed as the projection of the support of transformation is repeated for different values for Fo , the upper and lower percentiles of the migration kinetics can be interpolated continuously with Fo . Such curves are not accessible to the direct simulation and are not parallel to the deterministic or 50 th percentile. The vertical distance between the extreme percentiles represent the resulting uncertainty in the amount transferred according to the original dispersion in Fo values. It is worthwhile noting that dispersion increases with time but that its effect on * v is decreasing after 2 Fo π >. Close to equilibrium, Fo ceases to have a significant effect.

Figure II- 24 .

 24 Figure II-24. Probabilistic modeling of the contamination from a monolayer material via Eqs. (II.13) and (II.63): (a) point distribution for 0.5 Fo = ; (b) corresponding 10 th and 90 th percentile curves. The likeliest migration curve corresponding to the maximum probability (mode) of the Fo distribution appears in bold.

  The effects of Bi and D s are illustrated in Figure II-25. Increasing the mass transfer resistance on the food side (i.e. decreasing Bi ) affects non-linearly the dispersion. As justified Chapter II. Literature review by Eq. (II.67) and because the contamination is strictly increasing, the dispersion of the contamination is weighted by the term Bi values and large Fo ones lead to low slopes of * v vs Fo , the dispersion of concentration values are, as expected, maximal for intermediate concentration values far from the initial and equilibrium states. Increasing D s modifies strongly the shape of the median kinetics, the upper limits and the over- all distribution in food. The depicted example demonstrates that the migration can be overestimated reliably by considering a likely value for p D and by taking for example the 95 th percentile of * v along with a proper value of D s . Doing the reverse, calculating * v from the 95 th percentile of values does not guarantee that the value of the contamination is overestimated in 95% of cases. It is not verified in the case when the slope of * v changes rapidly with Fo . This is true only when 1 Bi → , as shown in Figure II-25a.

Figure

  Figure II-25. (a) Effect of Bi on the dimensionless migration kinetics. (b) Effect for Bi → ∞ (the percentiles are represented as equivalent kinetics; distributions of * v for Fo=0.5, 1,2, 3 and 4. 

Figure

  Figure II-26. Evolution of the scope of migration modeling during the last decades

  vironmental legislation. In 1970, President Nixon consolidated many environmental responsibilities of the federal government under one agency, a new Environmental Protection Agency (EPA). One of the first measures of EPA was to secure a phase-out of dichlorodiphenyltrichloroethane (DDT), an insecticide formalized as a persistent organic pollutant with endocrinedisrupting and potentially carcinogenic effects. Comparatively, the European Environment Agency has been created twenty years later in Copenhagen but with an employee figure (200), which remains far behind the figure of EPA (>14000). National and international agencies maintain and enforce standards, but also supports a wide range of voluntary prevention and energy conservation efforts. In 1972, the United Nations Conference on the Human Environment held in Stockholm created the UN Environment Programme, which oversees with a staff of 300 all environmental problems among United Nations agencies. Additionally, many nongovernmental environmental organizations contribute to raise environmental issues to public knowledge and to influence both the private and public sectors. The most visible association is Greenpeace and was founded in 1971 to protest against underground nuclear tests. Chapter II. Literature review II.3.2. Sustainability and the difficult transition to sustainable food supply chain The move of policies towards more sustainability predates energy crises of 1979 and originates from the U.S. National Environmental Policy Act of 1969 (NEPA), which formulated "create and maintain conditions, under which humans and nature can exist in productive harmony, that permit fulfilling the social, economic, and other requirements of present and future generations." Sustainability relies on three intersecting pillars creating ten priorities presented in Figure II-27, which have been extended to seventeen goals (UN, 2015) by the United Nations. Similar principles can be to transposed to any industrial products (Crul et al., 2009) as sketched in Figure II-27b. Sustainable engineering has been proposed accordingly,

Figure

  Figure. Sustainability defined at the joint intersection of society, economy and environment spheres: (a) original concept from concept of[START_REF] Remmen | Life Cycle Management: A Business Guide to Sustainability[END_REF]; (b) interpretation for food packaging.

  . In the EU, the Polluter Pays Principle based on the extended producer responsibility concept is set out in the Treaty on the Functioning of the European Union (EU, 2008) and Directive 2004/35/EC (2004b) of the European Parliament and of the Council of 21 April 2004. The industry adapted to the regulatory pressure by encouraging standard integration. The ISO standards applicable to food production and food packaging gained during the last decades a maturity into which environmental and safety concepts can be developed and audited. They are summarized in Figure II-28 with standard ISO 14006(2011) as cornerstone. This standard equipped with the unified methodology of life cycle assessment (LCA) defined in ISO 14040 (2006a) and ISO 14044(2006b) offers the most comprehensive principle and guidance for setting an environmental management system in the industry. The three aspects of product development and production are covered: design, management systems and environment. The triple quality in design, production, and environment can be certified according to standards ISO 9001 (2015a), 9002 (2016) and 14001 (2015b), respectively. The certification of designs for the environment exists for some electric and electronic products according to European standard IEC 62430 (2009), but they can be thought for more general products according to the ISO technical report ISO/TR 14062 (2002). For food and packaging applications, the previous ecosystem is compatible with food safety management systems (ISO 22000:2018), good manufacturing practices for food contact materials (2023/2006/EC, 2006) and the preventive methodologies of risk assessment Hazard Analysis and Control Critical Point (HACCP) and Failure Mode Effect and Criticality Analysis (FMECA). Environment Chapter II. Literature review issues including "environmental responsibility" (2004/35/EC, 2004b) and EU waste management laws (2008/98/EC, 2008b) and (2015/720/EC, 2015) are fully enforceable in the described ecosystem.

Figure

  Figure Interpretation of the ISO standards applicable for food production and food packaging management.

II. 3 .

 3 Evaluation of the environment impacts of food packaging 99 An example of life cycle thinking for polyethylene terephthalate (PET) bottles used for retailed beverages is shown in Figure II-29. The bottles are produced from preforms, which are usually designed from a broad range of applications. The same preform (i.e., the same weight of PET, same necks) can be used to produce bottles of different formats by adapting the thickness profile.

Figure II- 29 .

 29 Figure II-29. Life cycle thinking applied to PET bottles for beverages adapted from[START_REF] Remmen | Life Cycle Management: A Business Guide to Sustainability[END_REF] and by integrating the study of[START_REF] Almeida | Emergy as a tool for Ecodesign: evaluating materials selection for beverage packages in Brazil[END_REF].

  photochemical oxidation, eutrophication) offer similar flexibility and can be used as universal "currency" to compare alternative scenarios and to track root causes. This example proves, nevertheless, that environmental considerations can stimulate innovation in engineering and

Figure II- 30 .

 30 Figure II-30. Principles of multiobjective optimization with extensive indices (after[START_REF] Nielsen | A Common Framework for Emergy and Exergy based LCA in accordance with Environ Theory[END_REF].

  . The results of different LCA studies cannot, consequently, be compared together in different contexts. A global image of the environmental performances of PET was reconstructed indirectly from the pair comparisons of PET with alternative materials. An overview of the forty-four comparative studies considered in the analysis is shown in Figure II-31. To increase the statistical significance, reports and theses publicly available were also included. One-third of the studies were carried out in the USA and on behalf of the industry. In Europe, most of the studies were available in academic reports or publications.

Figure II- 31 .

 31 Figure II-31. Review of LCA studies of plastics bottles per country, issuing organization and year.

  (2015); b. Garfí et al. (2016); c. von Falkenstein et al. (2010); d. Shen et al. (2012) Chen et al. (2016); e. Papong et al. (2014); f. Nicoli (2012); g. Madival et al. (2009);Leejarkpai et al. (2016); h. Franklin Associates (2011). II.4. Additional indices to consider in food packaging design 107 Key points of II.3

  Figure II-32. Overview of conditions affecting the shelf-life of packaged food products: (a) main industrial steps (after Figure 1.1 of Rahman, 2007); (b) mass transfer and reactions (after Figure 2.2 of[START_REF] Singh | Food Packaging Materials: Testing & Quality Assurance[END_REF].

Figure

  Figure II-33 for a dry product (biscuit, chips) based on case-studies discussed by Robertson in Chapter 12 "Shelf-Life of Foods" of Robertson (2016a) and in Chapter 2 "Food Quality and

Figure

  Figure II-33. Principle of shelf-life calculations for a dry food product (initial water activity 0.15) stored in a humid atmosphere (75% RH) within a packaging slowing down water permeation: (a) water sorption isotherm and variation of glass transition temperature (𝑇𝑇 𝑔𝑔 ) with water content; (b) variation of texture induced by water uptake. Shelf-life is determined by the tolerance on the shift of 𝑇𝑇 𝑔𝑔 before (primary shelf-life) or after opening (secondary shelf-life).

  Figure II-34. Simulated CO2 depletion in a PET bottle containing a carbonated beverage (Carrieri et al., 2012): (a) simulated 2D wall profile along its axis of revolution; (b) details of the mesh (Lagrange quadratic); (c) diffusion coefficients of CO2 in PET (𝐷𝐷 𝑝𝑝 for preforms W1 and W2), in the headspace (𝐷𝐷 ℎ ) and in water (𝐷𝐷 𝑤𝑤 ); (d) 2D CO2 concentration profiles in bottles (W1) quiver plot showing molar flux superimposed to concentration profiles; (e) evolution of C02 concentration in the bottle in variable temperature conditions.

  Figure II-35. Relationship between bottle geometry, wall thickness distribution and mechanical resistance of PET bottles: (a) typical preform and temperature distribution during blowing; (b) relationship between yield strength and crystallinity; (c) vertical distribution of PET material after blowing for two preforms (40 and 37 g); distribution of buckling stress (compression tests a-c); (e) distribution of stresses in a petaloid shape bottle for carbonated bottles; (f) details of the distribution of stresses at the petaloid bottom (red = maximum stress at the center) (a-c) from Daver et al. (2012) (d) Hu et al. (2012); (e-f) from[START_REF] Demirel | The effects on the properties of PET bottles of changes to bottle-base geometry[END_REF];

  Figure II-36. (a) green chemistry pocket guide of the American Chemical Society; (b) schematic definition of sustainable and green chemistry II.4.3.2. Meaningful examples Sustainable and green chemistry is not yet rocket science, but alternative solutions can be learned and inspired by examples. Some of them are envisioned for food packaging from the thirty meaningful examples detailed by Matlack and Dicks (2015) from his own experience of teaching environmental and industrial chemistry using problem-based learning. Three strategies dominate: elimination, substitution and better control. They are summarized in Table II-18.

II. 5 .

 5 Conclusions of the literature review 117 a feedback on industrial practices can be proposed with a logic of evaluation, optimization and control as shown in Figure II-37.

Figure II- 37 .

 37 Figure II-37. The role of chemical thermodynamics in the objective evaluation of the performance of engineered systems (after Figure 1.5 of[START_REF] Valsaraj | Principles of Environmental Thermodynamics and Kinetics, Fourth Edition[END_REF].

Figure III- 1 .

 1 Figure III-1. Initial designs (𝐷𝐷 1 ..𝐷𝐷 4 ) considered in the global optimization problem. The height 𝑏𝑏 of 𝐷𝐷 1 and 𝐷𝐷 2 is fixed to 15 cm. The black circle on top represents the opening (cap not shown).

  framework [E][D][S] to solve problems Q1, Q2 and Q3 is shown in Figure III-2.

  value significantly lower than 1 for an aspherical design to unity for a perfect sphere. Typical values of Ψ for regular polyhedrons are presented in Figure III-3 and values for designs 𝐷𝐷 1 .. 𝐷𝐷 4 shown in Figure III-2.

Figure III- 3 .

 3 Figure III-3. Typical sphericity values for convex regular polyhedrons.

  feasible solutions matching the constraints (III.6) are shown in Figure III-4. The possible solutions for problem Q1 (maximum shelf-life) are denoted 𝐴𝐴-𝐷𝐷 for the designs 𝐷𝐷 1 .. 𝐷𝐷 4 . The opposite points (minimum shelf-life) are identified by the vertical segment 𝐴𝐴′𝐷𝐷′.

Figure III- 4 .

 4 Figure III-4. Weights of the bottle (counted as 100% waste) versus shelf-life for the designs 𝐷𝐷 1 .. 𝐷𝐷 4 calculated according to Eq. (III.3) for bottle capacities 0 t F V = ranging from 0.05 L to 0.75 L.

3 .

 3 [E][D][S] framework is enough flexible to accommodate future evolutions and extensions. They are reviewed in Figure III-5. All the tools and concepts have been thoughtwith the extensions in mind, even if they are not implemented yet or are available from external modules already developed by the hosting laboratory. The contribution of the thesis is to prepare the "ecosystem" of these new tools by removing the main scientific obstacles. Though the packaging parameterization focused on PET bottles, other materials and kind of packaging could be implemented. Closure systems (sealants, caps) were not considered in this version, as it was admitted that the reproducible mass loss was due to the permeation through the bottle walls. Leaks from closures were by contrast responsible for random and accidental mass losses. PET films and bottles differ due to their biaxially and uniaxially orientation. In first III.Specific objectives and approaches 131 approximation, thin PET films were thought to offer a good prototype of materials with uniform and thin thicknesses to study in a reasonable amount of time diffusion and sorption

[

  E]valuation, [D]ecision and [S]olving is generic and it has been developed to be applicable theoretically to any packaged food product and related systems with proper extensions (see the scope in Figure III-5. Main capabilities (this work) and foreseen evolutions (considered by construction) in the considered [E][D][S] framework). Though its design was general, it was developed with a primarily focus on alcoholic beverages. IV.1. Materials Polyethylene terephthalate (PET) in contact with hydroalcoholic solutions was chosen as reference material to support assumptions and validation of the [E][D][S] framework. The extensions to other materials and to the mass transfer of other solutes were considered by assembling databases of transport and thermodynamic properties from literature and obtained partly from a collaboration with Fraunhofer Institut für Verfahrenstechnik und Verpackung (Freising, Germany).

Figure IV- 1 .

 1 Thicknesses were measured by dissection and with the help of a magnetic wall thickness gauge (model MiniTest 7200 FH with probe FH10, ElektroPhysik GmbH, Germany). As the miniatures are produced directly by injection-blowing (no preform), the distribution of the PET matter is not uniform radially. As a result, the variation of thickness presented in Figure IV-1c (based on more than 2,000 measurements) is mainly associated to internal variations within the same bottles. During permeation tests, miniature bottles were sealed with 21.5 mm diameter pre-cut foils (aluminum-polyester lid, supplier Embatherm, France) as shown in Figure IV-1d. A labscale pneumatic-controlled heat sealer (model TIME 160, Embatherm, France) was used with a set temperature of 180°C and a set pressure of 200 kPa. The capacity to extend shelf-life was

Figure IV- 2

 2 Figure IV-2(non-optimized). For all generated bottles, the geometry was calculated so that the internal volume matched 160 mL for a nominal capacity of

Figure IV- 2 .

 2 Figure IV-2.Example of initial bottle design to be optimized

  are listed in Table IV-5. Water and ethanol, alone or in mixtures were the main solutes. The composition of hydroalcoholic mixtures were denoted by their alcohol-by-volume (𝑎𝑎𝑏𝑏𝑎𝑎), defined as the number of liter (L) of pure ethanol present in 1 L of solution at 20 °C (pure ethanol: 𝑎𝑎𝑏𝑏𝑎𝑎 = 1). IV.1. Materials 143 Other aromatic solutes were surrogate molecules chosen with double purposes: comparison with literature data on similar PET materials and naturally fluorescent molecules consisting of linearly repeated jumping units. Toluene was preferred to benzene (single jumping unit) due to its high toxicity.

Figure

  Figure IV-3. List of studied solutes Solute Chemical structure Phase contacting PET (alcohol-by-volume value) Purpose deionized water (0.01 meq/mL)

Figure IV- 4 .

 4 Figure IV-4. The Monte-Carlo analysis considered an accumulation of ethanol due to permeation across the walls of the bottles and to a fraction of leaking bottles. The decrease of the number of bottles was considered. The time to reach 𝑥𝑥𝐹𝐹𝑥𝑥 in the absence of air renewal gave

Figure IV- 4 .

 4 Figure IV-4. Example of calculations to estimate the risk of exceeding the lower flammability limit (LFL) in large scale experiments.

Figure

  

Figure IV- 5 .

 5 Figure IV-5. Principle of the cosorption microbalance (denoted B in Table IV-8): (a) overview of the gas circuit involving two saturators; (b) the entire microbalance and the anti-vibration platform are placed in the oven. SOS: sensor of sound speed.

  ideal gas constant, T the absolute temperature, heat capacities of pure gases at constant pressure and volume, respectively.

  mass transfer resistance can be considered to account for the vaporization-condensation process associated with the sorption of water and ethanol. By denoting { } isotherms in the walls, the mass flux densities at the internal boundary condition reads

  of solute i absorbed in the walls according to its activity at temperature T ; { } , i i e w h = is the equivalent mass transfer conductance across the boundary layer (SI units in m⋅s -1 ). The molar fraction of ethanol in the mixture e x is derived from its weight fraction

  . (IV.12)) and the global mass balance in water and ethanol over all internal interfaces of the packing. For a bottle of height H and cylindrical symmetry, the rates of variation of the mass in water and ethanol,

=

  In this study, the state of pure components is chosen as reference state of water and ethanol. As a result, the partial pressures, the molar fraction of water or of ethanol in the beverage, { } , i i e w x = and from their pure vapor saturation pressures { }

  abv is defined at 20°C, molar fractions are related to the density of the mixture with the same composition at the same temperature, denoted

  For water, the number of water molecules in the bottle is derived from the density of the initial water-ethanol mixture, volume of the headspace head V , the theoretical density of the liquid mixture, when the density of the mixture matches the equilibrium density of hydroalcoholic mixture as reported in handbooks and denoted

  Figure IV-2, the weight optimization problem was split into a two-step optimization process: i) setting macroscopic dimensions , , , , H W D d h to match the prescribed internal volume and ii) optimizing

Figure V- 1 .

 1 Figure V-1. Overview of four tiers considered for packaging optimization with the proposed [E][D][S] framework.

Figure V- 2

 2 for the bottle M with symmetry of revolution. In the case of the depicted bottle X, the curvilinear coordinate follows the parting line, where the mold halves have been open after injection molding. Since the radial information is not required in food implicit model, the bottle can be idealized as a wrapped shell where thickness, defined as the normal distance between internal and external walls (i.e., perpendicular to the curvilinear coordinate). Since sections with similar thicknesses are expected to offer similar barrier properties, the geometry information along the curvilinear coordinate can be replaced by the distribution of the thickness over the entire surface area of the bottle (Figure V-2c). In this work, this distribution was subsequently discretized into a smaller number of representative sections (seven sections are shown in Figure V-2d) where transport equations could be efficiently resolved in almost one-dimension along the direction normal to the surface. All sections are considered independent (no flux exchange) and conservative of the total surface area. Coupling occurred only the boundary as they were in contact with the same liquid.

Figure V- 2 .

 2 Figure V-2. Dual representation of the geometry of bottle Figure IV-1 in 3D and curvilinear coordinates. The equivalent geometry of the bottles as seven independent sections in contact with the same liquid is shown in d as histograms.

  and shown in Figure II-34. The discretization is, indeed, much more accurate along thickness with hundreds of finite-volume elements were used against few finite elements in the original work. Its implementation in FMECAengine (Vitrac, 2018) enables additional sophistications such as nanometric barrier layers brought by plasma treatments and multilayer structures of arbitrary complexity.

FigureV-

  2d by single one is physically exact but only at steady state (see principles in Figure V-3). Indeed, diffusional transport is scaled with the square visited distance in semi-infinite geometries (see dispersion law in §II.2.3.6.3. ), whereas the fluxes are scale with the thickness at steady state (see Eq. (III.1)).

Figure V- 3 .

 3 Figure V-3. Comparison between (a) an unwrapped hollow 3D geometry and (b) its approximation with uniform thickness. The arrow represents the normal mass flux crossing each geometry. The values of indicated thicknesses are indicative; in real bottles, the thinnest regions exhibit the largest surface area of transfer (see distribution in Figure V-2d)

(

  Figure V-4. Binary properties of water-ethanol mixtures: (a) activities, (b) partial pressures, (c) total pressure in vacuum, (d) liquid density. The symbols depict the tested beverages and storage conditions. Horizontal lines in (a) show the variation of RH when the air temperature is increased from 20°C up to 70°C.

V. 2 .

 2 Optimization of the design of PET bottles at tiers 1

Figure V- 5 .T

 5 Figure V-5. Calculated iso-headspace pressures ( head P ) and iso-headspace volume ( head V ) at equi- librium in the bottle depicted in Figure IV-1 according to the headspace volume ( 0 head V ) and tem-

  . and 91%. Negative pressures (below atm P ) associated with important risk of collapse occurs in the presence of headspace volumes lower than 5 mL and filling temperatures 10°C above the storage temperature ( of simulated and measured water-ethanol mass transfer across bottles 𝑴𝑴 The capacity to simulate mass transfer across bottles M were tested by comparing the mass loss and 𝑎𝑎𝑏𝑏𝑎𝑎 variations during a large challenge test involving 425 bottles as detailed in Table IV-6 and with the sealing system shown in Figure IV-1d. The five-months initial test was prolonged for some bottles by adding a new packaging component (sleeve) in order to validate the capacity of the model to account for an extra mass transfer resistance. As water diffuses faster than ethanol (see Table

  ). Experimental and simulated mass losses and abv values are reported in Figure V-6 with the individual fluxes of water and ethanol reconstructed by simulation detailed in Figure V-7.

Figure V- 6 .

 6 Figure V-6. Comparison of experimental (exp) and simulated (sim) mass loss and abv variations. The dashed lines plot the thresholds used to calculate shelf-life (see text). Empty symbols (triangles) represent the theoretical variation of abv when concentration effects due to water permeation are corrected.

Figure V- 7 .

 7 Figure V-7. Reconstruction of mass losses by sorption and permeation for (a,b) water and (c,d) ethanol.

  both sides of bottle walls. Though water losses dominated in alcoholic beverages, the shelf-life was determined mainly by the variation of the abv criterion in hydroalcoholic mixtures. The maximum stor- ages times fulfilling weight loss and abv criteria are summarized in TableV-1 for the strict- est conditions associated with containers larger than 1 L and extrapolated down to containers of 50 mL. The rapid permeation of water trough bottle walls caused a concomitant fast increase in ethanol strength ( abv ) in conditions S1 and S3 (see FigureV-6a,c-d). Weight losses exceed faster limits only for mixtures with low abv values (Figure V-6e) or when the differ- ence of water activities was low. For both observed criteria ( abv and weight loss), a steady regime was reached within three to six days. Simulations enabled to reconstruct all aspects of mass transfer for all tested conditions and provided a mechanistic interpretation of coupled mass transfer. Figure V-7 decomposes mass losses for water and ethanol into sorption and permeation fluxes. Contact times were much longer than permeation lag-times (Figure V-7b) Chapter V. Results and Discussion

Figure V- 8 .

 8 Figure V-8. Modifications of mass transfer when a sleeve is added to the bottles containing the beverage B3 and B4 after several months of storage: mass loss during condition S3 (dash lines, one line per considered bottle) and S4 (continuous lines, one line per considered bottle).

Figure V- 9

 9 Figure V-9. Space of geometries explored and optimized for a 160 mL bottle (capacity 150 mL) containing a vodka-type beverage: (a) shapes corresponding to a 30×30 combination of W and D , (b) 5×5 combination, (c) weights of bottles optimized to fulfill a shelf-life of 180 days at 25°C.

  sections with intermediate W and D values led to very similar weight reductions, while keep- ing the same shelf-life. The transition between the two regions appears noisy with several maxima. The transition region corresponded to a shift of the shelf-life criterion controlled by abv for heavy bottles and by the mass loss for light bottles. For a given W or D value, a unique bottle minimizes the weight of the PET bottle. The continuous curve connecting all points represents the Pareto front for all the criteria considered: capacity, shelf-life, weight, shape factor. Changing W or D will at the expense of either the shape of the bottle or of its weight. A selec- tion of bottles along the Pareto front is shown in Figure V-10c. The result can be seen as a

Figure V- 10 .

 10 Figure V-10. (a) iso-weight and (b) iso-thickness contours of optimized bottles (minimum shelf-life of 180 days) shown in Figure V-9. The filled symbols locate the sampled Pareto front. A selection of designs sampled along the Pareto front (from left to right) is presented in (c).

V. 3 .

 3 Ternary isotherms of water and ethanol in PET at tiers 2,3 179 equilibrium concentrations, �𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 even after several months. An overview of the constraints is shown in Figure V-11 in relationship with the experimental strategies followed in this work and in the literature. Thick materials (bottle walls) tend to show strict Fickian behavior when they are exposed to a rapid differential step-change of partial pressure. By contrast, thin materials offer the highest flexibility to sample the full spectrum of behaviors with concentration and the duration of exposure. The large rectangle showed the domain explored recently by Dubelley et al. (2017a) for the sorption of water in PET (280 µm thick materials)and which was used in the analysis in the complement of thinner (thickness: 12 µm) and thicker materials (thickness: ~628 µm). Changing thickness is a common strategy to accelerate the obtention of equilibrium before the polymer initiates an irreversible crystallization. Since ethanol is diffusing more slowly than water, direct immersion was preferred for ethanol.

Figure V- 11 .

 11 Figure V-11. Schematic representation (a) of the state of the polymer and (b) the corresponding mechanism of diffusion during a sorption experiment. 𝐷𝐷𝐷𝐷𝑏𝑏 stands for the Deborah number. (modified fromVrentas et al., 1975).

  The best time window to estimate 𝐶𝐶 𝑤𝑤,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 depends on temperature and on the thickness of the material as shown in Figure V-11.

3 .

 3 as Deborah correlation number or diffusion Deborah number, estimates the relaxation time respectively to the diffusion time to reach , Ternary isotherms of water and ethanol in PET at tiers 2,3

  .2) An interpretation of the diffusion Deborah number is shown in Figure V-11b. When 𝐷𝐷𝐷𝐷𝑏𝑏 ≪ 1 (high temperature), polymer relaxation occurs faster than diffusion and LTE is maintained all along the sorption process, , i eq C is a constant. When 𝐷𝐷𝐷𝐷𝑏𝑏 ≫ 1, polymer relaxation occurs after the chemical equilibrium is reached and , i eq C appears increasing slowly with time. In both cases, diffusion scales as the square root of sorption time. At intermediate 𝐷𝐷𝐷𝐷𝑏𝑏 numbers, several time scales are intricate, and no general interpretation rule exists.

  of 𝛽𝛽(𝑇𝑇, 𝑥𝑥𝐻𝐻), 𝐷𝐷𝐷𝐷𝑏𝑏(𝑇𝑇, 𝑥𝑥𝐻𝐻) and the theoretical mass uptake at equilibrium 𝑚𝑚 𝑖𝑖 𝑒𝑒 were estimated by least-square deconvolution of high resolution sorption data obtained by microbalance.• A pseudo-state-diagram of sorption-induced changes inferred fromDubelley et al. (2017a) data (280 µm thick PET film)The values of 𝛽𝛽 and 𝐷𝐷𝐷𝐷𝑏𝑏 were inferred from the step-wise sorption ofDubelley et al. (2017a) data are shown as isocontours in Figure V-12. A good signal-to-noise ratio was obtained by estimating the isocontours from a bivariate regularized spline approximant dropping 2% of the total variance. The sign of 𝛽𝛽 and of was negative (condition of polymer densification) when the uptake kinetics exhibited a maximum before decreasing slowly. In all tested conditions by authors, relaxation-times were much longer than diffusion time (|𝐷𝐷𝑏𝑏| ≫ 1); relaxation times |1/𝛽𝛽| could be estimated with very confidence until 50 days (i.e., 20 times the duration of each kinetics) and with large uncertainty beyond. Similarly, absolute |𝐷𝐷𝑏𝑏| values lower than 70 are judged significant. A positive contribution of relaxation on mass uptake appears when RH>50%. Temperature does not change the trend but shortens relaxation times roughly as predicted by Eq. (V.3). The contribution of relaxation on sorption is negative when the temperature approaches 𝑇𝑇 𝑔𝑔 (75°C in the tested sample) with cold crystallization identified between 60°C and 70°C. The figure shows that PET films stored in room temperature conditions (𝑇𝑇=25°C, 𝑥𝑥𝐻𝐻=50%) are subjected to a slow evolution (Figure V-12a). Minimizing |𝐷𝐷𝑏𝑏| values (Figure V-12b) requires working at 50-55°C and 40-50% RH.

Figure V- 12 .

 12 Figure V-12. Interpretation of water sorption kinetics in 280 µm thick PET of Dubelley et al. (2017a): (a) 1/𝛽𝛽-isocontours in days (continuous lines; 𝛽𝛽>0: positive effect of relaxation on uptake, i.e. swelling; β<0: negative effect of relaxation on uptake, i.e. densification); (b) corresponding iso-Deborah numbers (continuous lines; same sign as β). Dashed lines represent iso-𝑠𝑠 𝑤𝑤 in kPa of the corresponding water vapor.

  nary drying. The two strategies are depicted on two cycles of sorption-desorption in Figure V-13 and Figure V-14, respectively. All kinetics were fitted in a satisfactory manner with Eq. (V.4) even when the absence of a visible equilibrium could question the existence of a uniform concentration profile at the end of the sorption step. In details, the Fickian contribution was clearly visible only during the first step before being overwhelmed by relaxation. Fickian diffusion represented more than half of the total flux during the first step and almost vanished during final desorption steps. Relaxation times were faster in desorption than in sorption but increased again at low 𝑥𝑥𝐻𝐻. Drying from 10% down to 0% RH required theoretically one to three weeks with 1/𝛽𝛽 values up to 4.6 days (see step 16 in Figure V-13). Non-Fickian relaxations exist undoubtfully in thin samples or samples exposed by their both sides. Corresponding time scales are ranging from several hours to days at 50°C, with magnitude orders consistent with determinations shown in Figure V-12a. When sorption is carried out rapidly, the relaxation process was reversible (no densification) in amount but not in time scale. Relaxations appear 30-40 times faster during desorption than during sorption. Viscoelastic and Fickian diffusions are poorly separable when they are associated with comparable time scales (𝐷𝐷𝐷𝐷𝑏𝑏 → 1). Corollary, Eq. (V.4) is acceptable only at intermediate and large diffusion Deborah numbers. Otherwise, a full coupling at microscopic scale should be preferred.

Figure V- 13 .

 13 Figure V-13. Cycle of sorption-desorption of water in 12 µm think PET films (reference F1) involving 16 steps from 50% to 99% RH (steps 1-6) and from 99% down to 0% RH (steps 7-16) at 50°C. Continuous lines are fitted models from Eq. (V.4). Corresponding values of 1/𝛽𝛽 and 𝜙𝜙 are plotted in the lower and upper insets. 𝑀𝑀 𝑛𝑛𝑜𝑜𝑙𝑙 = sample dry mass.

  and 𝑘𝑘 is a constant.According to Eq. (V.5), sorption of water and ethanol due to swelling should be symmetric, and the ratio of water: ethanol saturation concentrations should be proportional to the ratio of densities 𝑀𝑀 𝑤𝑤 𝑉𝑉 𝑤𝑤 𝑀𝑀 𝑟𝑟 𝑉𝑉 𝑟𝑟 ~1.27. Experimental binary sorption shows on opposite a ratio ca. 1:2 invalidating a swelling controlled by the volume of the solute alone. Contrarily to osmotic descriptions, non-idealities (i.e., activity coefficients) would play on the dominant role. Eq. (V.1) observed experimentally should be justified by the indiscernibility of the effects of an osmotic pressure opposing to swelling from the kinetic immobility of the network. Most of the authors describe sorption of water via a dual mode sorption model (DMSM) until RH 60% (Shigetomi

  an attempt of finding a justification to the deviations of Flory-Huggins-Guggenheim theory for the sorption of water in polar polymers. The conservative hypotheses for the construction of ternary isotherm for PET+water+ethanol systems at tier 3 are discussed hereafter.

3 .

 3 Figure II-22), whereas V.Ternary isotherms of water and ethanol in PET at tiers 2,3 191 the calculations of Favre et al. (1996) led to positive values (see Figure 1 herein). Independently the theoretical choices, the authors used FH3 when the experimental sorption of water and ethanol were concave down or subjected to a risk of densification (see Figures 4 involves only binary pair interactions (3 possibilities: 𝐷𝐷 + 𝑃𝑃, 𝐷𝐷 + 𝑃𝑃, 𝐷𝐷 + 𝐷𝐷) and neglect ternary pair interactions (as justified in Nguyen et al., 2017). Only polymer specific parameters 𝜒𝜒 𝑤𝑤+𝑃𝑃 𝑇𝑇 and 𝜒𝜒 𝑒𝑒+𝑃𝑃 𝑇𝑇 required to be determined as water-ethanol interactions 𝜒𝜒 𝑤𝑤+𝑒𝑒 𝑇𝑇 are well established. They were identified by fitting Eq.(II.50) (binary Flory-Huggins isotherm: FH2) to full isotherms from literature or �𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 or inferred from saturation values obtained by contacting thin films F1-F5 (Table IV-1) with pure water or ethanol for periods up to three months. Methanol was added as a control to validate the effects of solute polarity on the estimation of 𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 . Fitted isotherms are compared with experimental values in Figure V-16 by assuming that considered binary mixtures were incompressible (i.e., molar volumes are used instead of partial molar volumes). The direct comparison enabled to validate globally the hypotheses supporting a single FH2 isotherm for the three solutes and the whole activity range. The presence of persistent relaxation questions, however, the risk of underestimation 𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 at low and intermediate activities.

Figure V- 16 .

 16 Figure V-16. Fitted binary Flory-Huggins isotherms for (a) water, (b) ethanol and (c) methanol at temperatures ranging from 20°C to 100°C. Sources: a. Langevin et al. (1994); b. Dubelley et al. (2017a); c. Jabarin and Lofgren (1986); d. Yasuda and Stannett (1962); e. Burgess et al. (2014b); f. Launay et al. (1999); g. Zumailan et al. (2004); h. Rueda and Varkalis (1995) cited in Figure V-17; i. Chandra and Koros (2009b).

Figure V- 17 .

 17 Figure V-17. Effect of temperature on 𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 values. Data sources are shown in Figure V-16. The models for subcooled PET are shown in continuous lines (smoothed cubic spline). The model for densified PET materials are shown as dashed lines (smoothed quintic spline).

  Figure V-12a) has been studied in jars for long periods with saturated salt solutions. A similar experiment has been run by immersing the same fresh films in 99% ethanol. The results are shown in Figure V-18. All films reached an apparent chemical equilibrium in water and ethanol in one month (see the inset of Figure V-18a). The sorption of water was, however, significantly lower than the one observed at 50°C (see Figure V-13 and Figure V-14). After one month, sorption of water decreases before increasing again. The corresponding time constants were 99±34 days for swelling and 19±7 days for densification. The rate constant for densification matches the values shown in Figure V-12a for similar conditions. Densification decreases sorption by 31±2% and Fickian diffusion represents less than 10% of the total mass uptake in this condition. Densification and swelling were not separable and occur concomitantly. The differential of swelling with and without densification could explain the two branches of 𝜒𝜒 𝑤𝑤+𝑃𝑃 𝑇𝑇 shown in Figure V-17.

Figure V- 18 .

 18 Figure V-18. Long-term sorption behavior of 12 µm thick PET films after exposure (a) to 97.5% RH and (b) 99% ethanol. Two repetitions are shown in (a) (denoted r1 and r2); five repetitions are combined in (b). The inset is showing the same kinetics during the first month. The continuous lines describe a sorption model similar to Eq (V.4) (a) with double relaxation (one positive for swelling and one negative to describe densification) and (b) with a single relaxation.

  Figure V-11a). Viscoelastic diffusion is thought to be Chapter V. Results and Discussion maximized as confirmed by the Fickian diffusion behavior recovered from a two-stage sorption mechanism.

Figure V- 19 .

 19 Figure V-19. Typical diffusion behaviors in glassy polymers with penetrant concentration and Deborah numbers for differential step-change sorption experiments. (modified from (modified from[START_REF] Vrentas | Viscoelastic diffusion[END_REF], the dimensionless sorption curves are calculated from Eq. (V.4) for 𝜙𝜙 = 0.7).

  35°C on a 500×500 grid are shown in Figure V-20. The choice of the branch to describe the temperature dependence of �𝜒𝜒 𝑖𝑖+𝑃𝑃 𝑇𝑇 � 𝑖𝑖=𝑤𝑤,𝑒𝑒 with temperature is critical at glassy state (see Figure V-16). Since validation focused mainly on high activities and very long contact, the upper branch was preferred. For conservative shelf-life calculations, the lower branch would have been preferred. Due to the negative value of 𝜒𝜒 𝑤𝑤+𝑒𝑒 𝑇𝑇 , the presence of water promotes the sorption of ethanol and reciprocally.

Figure V- 20 .

 20 Figure V-20. Theoretical iso-mass uptake of water and ethanol in PET at 35°C at equilibrium with a water or ethanol gas mixture (below the liquidus curve), with a hydroalcoholic solution (on the liquidus curve) and at high pressure (above the liquidus curve): (a) 𝑚𝑚 𝑒𝑒 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) (b) 𝑚𝑚 𝑤𝑤 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) and (c) 𝑚𝑚 𝑤𝑤 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) + 𝑚𝑚 𝑒𝑒 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) ). The liquidus curve calculated from Figure V-4a is plotted as a continuous line. The symbols depict the conditions tested experimentally.

Figure V- 21 .

 21 Figure V-21. Comparison of mass uptakes for conditions depicted in Figure V-20 with continuous predictions from ternary isotherms (to be used for equilibriums with hydroalcoholic solutions) and ternary isotherms (to be used for equilibriums with saturated salt solutions).
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 3 Figure V-22. Ternary FH3 isotherm of water and ethanol in PET at 20°C and 50°C.

  shown in Figure V-23. The concept of subcooled polymer is shown as the extra hole free volume available in glass.

Figure V- 23 .

 23 Figure V-23. Inheritance between FV contributions (a) and (b) definitions of free-volumes. The horizontal arrows define the direction of the extensions. 𝛼𝛼 𝑔𝑔 and 𝛼𝛼 𝑎𝑎 are the thermal expansion coefficients at glassy state and at the critical temperature.

Figure V- 24 .

 24 Figure V-24. Illustration of the procedure to calculate arbitrary diffusion coefficients from the proposed blob-FV model a) solute blob model; b) free volume parameterization and 𝐷𝐷 model; c) example of water diffusion prediction in PET

  14)V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers[3][4] 205

  18)V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers 3-4207The power law (V.18) can be directly compared with Eqs (1) and (8) of Fang et al.where K α and K β were suggested to be "universal" scaling constants with values ca. 150 K and 40 K (for n-alkanes), respectively.Equating Eqs. (V.18) and (V.19) leads to capture all polymer-related parameters through the scaling exponent of n-alkanes, lin α . At rubber state (

  . Below this value, the model fails because it assumes a constant thermal expansion at glassy state, which is not reasonable too far below g T . This strategy offers to probe polymer hole free volumes indirectly by studying the trace diffusion of a homologous series of linear solutes (oligomers resembling the host polymer or not).

  probes to Eq. (V.22) or more directly ii) by comparing the apparent activation energies of linear probes, corresponding average value of lin α .

  can be es- timated. From Eqs. (V.19) and (V.22), one gets:where I is a dimensionless temperature capturing the deviation to the Arrhenian behavior: between solutes due to different experimental conditions and I may also be a function of M . of the choice of K β as:

(

  

FV

  29)V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers[3][4] 211The choice of the strategy by fitting either ln D vs ln M data or ( ) a E M vs ln M de- pends on the quality of the set of D values: high resolution in M ( lin α can be determined safely), high resolution in T ( be determined with high accuracy). The span of the considered temperature range is particularly important when Eq. (V.22) is used: the curvature with g T T needs to be observable. Eq. (V.29) demonstrates that Eq. (V.27) offers a better alternative when the melting temperature of the polymer is approached, that is when . (V.27)), has been previously reported for n-alkanes in Jeong and Douglas (2015) (see Figure3aherein). The results obtained by molecular dynamics simula-

  31) In other words, Eq. (V.31) demonstrates that all regression lines ln D vs ln M ob- tained at different temperatures are expected to converge towards a same D value when M approaches blob M . This absence of temperature activation can be used to estimate Chapter V. Results and Discussion experimentally blob M . For n-alkanes,

α

  is the thermal expansion coefficient for the sum of the occupied volume and of the specific interstitial volume. The authors invoke that the change of slope at g T ( 2 2 g α α ) is gov- erned by the change in occupied volume and specific interstitial volume, which is not necessarily true if the hole free volume does not redistribute similarly as the interstitial one.

Figure V- 25 .

 25 Figure V-25. Scaling of diffusion coefficients, lin D or a D , of n-alkanes (n-A), 1-alcohols (1-O) and alkyl-acetates (a-A) with the molecular mass of the alkyl chain, M in: (a) PET, (b) PA6, (c) PS and (d) PVAc. Continuous and dotted lines correspond to the regression lines for regular solutes (n-alkanes) and their generalization to anchored ones (1-alcohols and alkyl acetates) via Eq. (V.39), respectively.

  35)The convergence of the estimator (V.35) is fast as soon as 2 They are expected to approach lin Dvalues, but with a positive mass shift, -1 ) at 100°C (Figure V-25a). As a result, the convergence of diffusion coefficients appeared comparable to experimental errors above M = 250 g⋅mol -1 .Similar shifts were observed in other polymers above g T : ca. 24 ± 3 g⋅mol -1 in PA6 (for ≈ -35 K. The comparison between hydroxy and acetate functional groups con- firmed the complex influence of the anchor on the reduction of diffusion coefficients. In PVAc

  38)Eq. (V.38) and its generalization in Eq. (V.39) fit successfully all diffusion coefficients of solute series with anchors depicted in Figure V-25. The supporting information of[START_REF] Zhu | A blob model to parameterize polymer hole free volumes and solute diffusion[END_REF] discusses the details of the relevance of Eqs (V.38) and (V.39) in more general cases, in particular, when the mass of the anchor is larger than the alkyl chain ( specific interactions (π-π electrostatic and H-bonding ones) with the polymer. It is shown that the blob concept is very flexible and can be reduced either to ethyl or methyl groups (see section 2 of the Supporting Information of[START_REF] Zhu | A blob model to parameterize polymer hole free volumes and solute diffusion[END_REF]. At first sight and by neglecting excluded volume considerations, the specific activation energy of large anchors (e.g. benzyl group), denoted be guessed from the apparent activation energy of the diffusion of the anchor alone (e.g. benzene). Both energy barriers are, however, not equivalent as the latter applies to the center-of-mass of the anchor and not to the centerof-mass of the whole solute, denoted CM. If the displacements of the anchor and of the blobs Chapter V. Results and Discussion are assumed independent on short time scales, the translation of CM is likely to follow a compound Poisson process associated to the combination of trapping times of all blobs and of the anchor. As a result, additional waiting time before entering in the hydrodynamic regime, which decreases with M . When all trapping times are independent and Poisson distributed, Eq. (V.38) becomes:

  be essentially enthalpic and not related to the size of the anchor. As an example, the value for a benzyl group is negligible in a semi-aromatic polymer such as PET (see §2.1.1 of the Supporting Information of[START_REF] Zhu | A blob model to parameterize polymer hole free volumes and solute diffusion[END_REF], but it is large in an aromatic polymer such as PS (see §2.1.2 of the Supporting Information of[START_REF] Zhu | A blob model to parameterize polymer hole free volumes and solute diffusion[END_REF]. For polar solutes in polar homopolymers, it also depends on the number of possible hydrogen-bonds with each monomer. The specific contribution of the hydroxy functional group in 1-alcohols depicted in Figure V-25 was estimated lower than 15 kJ⋅mol -1 and rapidly negligible with increasing M . By contrast, they were found significant and persistent with M for n-alkyl acetates in PVAc, with anchor a E values above 30 kJ⋅mol -1 . It was, consequently, hinted that 1-alcohols were better molecular probes than n-alkyl acetates. The presence of large anchor aEvalues reduces not only the sensitivity of D to M (see Figure V-25d), but also complicates the interpretation of activation energies to extract reliable estimates of K α and consequently, overestimate FV effects; but, strong interactions between the anchor and the polymer would have antagonist effects. Indeed, Eq. (V.39) shows that α when the effects of anchor a E are not dissipated by a large connected alkyl chain; the negative deviation reads:

  be higher in dense and glassy polymers. Because the effects of

  Figure V-25 are plotted against ln M in Fig- ure V-26. Reliable estimates were derived by considering only probes, whose diffusion coefficients have been measured at three temperatures at least. It is, however, important noticing that temperature ranges varied between solutes belonging to the same series, so that the ln M are not plotted for the temperature range [ ] 1 2

Figure V- 26 .

 26 Figure V-26. Apparent activation energies

(

  V.41)). The apparent activation energy associated to a single blob,

Figure V- 27 .

 27 Figure V-27. Normalized activation energies (see Eq. (V.29)) when free volume effects are normalized by the dimensionless temperature I defined in Eq.(V.28). All values are expressed in excess to a theoretical hexyl chain (C6H13). Regression lines with ln M are plotted as continuous and dashed lines, for probes with low and high anchor effects, respectively.

Figure

  Figure V-28. Variation of ( ) lin T α

  Figure V-28 and Eq. (V.23) suggest that a single relationship ( , ) g P T T could exist,

  dense medium, diffusion coefficients tend to 0 and lin α diverges rapidly. This behavior dominates in regular solutes because all blobs are equivalent. Leaving one single blob moving freely ( roughly observed with anchored solutes when the temperature is decreased below g T (see Figure V-28). It would correspond to the transition from independent blob displacements respectively to the anchor (n=0) to a mechanism where all blobs appear frozen except the one connected to the anchor. As the proposed interpretation takes the point of view of the alkyl chain connected to the anchor, this particular blob triggers the translation of CM in the hydrodynamic regime.

V. 4 .

 4 A blob-free-volume model of solute diffusion coefficients in polymers at tiers 3g. solution with minimum norm) and k ∆ is an arbitrary real number. Data at glassy state complicate the identification by adding a aturedegree of freedom, r . As a rule of thumb, better estimates are inferred from isothermal scaling exponents as they are independent of enthalpic contributions,

  g P T T calculated from Eq. (V.20) are plotted in Figure V-29 and compared with those estimated from Eq. (V.15) with specific WLF constants when they have been reported in the literature and universal ones otherwise. Values at glassy state are reported only for three typical subcooling ratios r =0.1, 0.25 and 0.5. The possibility to derive a unique polymer function ( , ) g P T T for the same polymer family (e.g. for aromatic and semi-aromatic polyesters) is tested by comparing the values of PET with those of PEN. Estimates from linear aliphatic probes were in good agreement with

  for the considered polymers (similar results when the parameter is fit globally or independently).

  reaches about -115 K, -85 K and -45 K for PS, PEN, and PET, re- spectively. A similar deviation, but in the opposite direction, was observed in[START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF] when linear aromatic solutes in aliphatic polymers were compared with linear aliphatic solutes in aliphatic polymers; the shift in K β value reached +91 K. Since scaling exponents larger than unity are associated to a random blocking of rigid blobs, aromatic polymer segments fail to trap solutes as efficiently as small blobs for the same value of g T T -. On the opposite, large

Figure

  Figure V-29. Polymer function ( ) , g P T T versus

  Table V-2 along with polymer constants K α and K β .

  K α and K β were in- values for n-alkanes are shown in Figure V-30 and values 1-alcohols, and 1-alkyl acetates are analyzed separately in Figure V-31. Continuous predictions and experimental diffusivities are plotted on a semi-log scale versus the FV term:

  1

  to inherent collinearities between FV and barrier effects, the following parsimony principle was introduced: an energy barrier was introduced only if a strong temperature dependence was noticeable far above g T , when FV effects dissipate. Additionally, the values *

  All trends were reproduced without additional fitting for all polymers and chain lengths. The slopes are controlled by the values of K α with all lines converging approximately to a same preexponential factor at high temperatures. The energy barriers of the alkyl blob, * E , and of the anchor, anchor a E controlled the deviation to linearity. The effects were maximal for n-alkanes in PA6 and alcohols in polyesters (PET or PEN). The results confirmed that energy barriers are not entirely independent of the polymer. They are higher for polar solutes in polar polymers and lower diffusion coefficients for similar g T T value. The current theory is, Chapter V. Results and Discussionhowever, too coarse to explicit the relationship between the interactions and the mechanism of translation, but it demonstrates that energy barriers apply independently on each blob and the anchor, and not on the entire molecule as previously stated in the original FVT.

Figure V- 30 .T

 30 Figure V-30. Experimental (symbols) and predicted (lines) diffusion coefficients via Eq. (V.30)and parameters listed in Table V-2 for n-alkanes in PVAc (bold continuous lines), PA6 (continuous lines), PET (dashed-dotted lines), PS (dashed lines) and PEN (dotted lines). The dashed vertical line represents the g T value of the polymer for the corresponding set of data. The predictions assume the ine-

Figure V- 31 .

 31 Figure V-31. Experimental (symbols) and predicted (lines) diffusion coefficients via Eqs.(V.30) and (V.39) along with parameters in Table IV-5 for (a) 1-alcohols and (b) alkyl acetates in PVAc (bold

  argued that the practicality of FVT on new solutepolymer systems depends on the availability of acceptable values for the polymer dependent parameter ~* 2 V and for the solute dependent ones, * E and 0 D . Linear relationships of ~* 2 V with g T (see coefficients u and v in Eq. (V.13)) received the most cogent criticism as they rely on rigid solutes (e.g., carbon dioxide, methane and benzene) and in a minimal set of polymers. The linear correlation initially depicted in Figure 3 of Zielinski and Duda (1992) and updated Hong (1996) (see Figure 5 herein) contains only three polymers with g T above 295 K. The formulation proposed in this study for arbitrary rigid solutes removes indirectly the influence of poor estimations u and v as their values are used twice: firstly, for the estimation ( , ) g P T T for the "unknown" polymer and, secondly, for the estimation of ~* 1V based on the value of ξ tabulated in a "well documented" polymer. When the same values of u and v are used for both polymers, their contribution is canceled (see the last approximation in Eq. (V.25)). In this regard, the proposed extension of FVT offers an elegant formulation to remove the most elusive elements of V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers 3-4 235 FVT, while keeping the core concept of hole FV. Lattice FV formulations (see Eq.(23) and

Fickian

  sorption kinetics without noticeable swelling or densification. The contribution of polymer relaxation on water diffusion in PET is, indeed, known to be particularly severe, as discussed byBurgess et al. (2014a) at glassy state and byDubelley et al. (2017a) over a broader temperature range, from 23°C to 70°C (see Figure5herein for a discussion of the combined effects of temperature and relative humidity).

  Figure V-32a caption) collected on PET with crystallinities lower than 6 % (Figure V-32a) and a prescribed g T of 76°C. In this work, the values of 2.94•10 -6 m 2 ⋅s -1 and of 26.5 kJ⋅mol -1 , for 0

Figure V- 32 .

 32 Figure V-32. Comparison of experimental diffusion coefficients, ("exp", filled symbols), and simulated ones by molecular dynamics ("sim", open symbols) with values predicted from Eq. (V.25) and parameters reported in Table V-3 for (a) water and (b) toluene in amorphous PET at infinite dilution of not mentioned otherwise. All calculations are performed with a theoretical g T of 349 K (continuous lines).Swollen PET due to a contact with a liquid or measurements at high solute activities is identified as "swollen" and is associated to an indicative g T of 333 K, value from[START_REF] Langevin | Moisture sorption in pet influence on the thermokinetic parameters[END_REF] for PET fully swollen with water; corresponding values are plotted as dashed lines.

Figure V- 34 .

 34 Figure V-34. Microscopic observations in phase contrast of the cross sections of 12µm-thick PET film F1. (a) neat film; (b) film immersed in water at 50°C for 10 hours; (c) film immersed in ethanol at 50°C for 10 hours.

  Figure V-37. Theoretical and experimental mass losses (water and ethanol) in 12 µm thick PET film (F1) at 50°C: (a) theoretical residual ethanol content; (b) theoretical residual water content; (c) cumulated amount of water and ethanol; (d) comparison between experimental and theoretical value along the routes ABEDF and ABCDF.

  Figure V-38. Independent simulation of the mass transfer of water and ethanol associated with a negative step of water activity of 0.51 down to 0.40 and a positive step of ethanol activity to 0.38 at 50°C. Concentration profiles (100 times) are shown for the whole period and are distributed as the square root of time.

Figure V- 39 .

 39 Figure V-39. Comparison between simulated mass uptake and experimental determinations for 680 µm thick bottle walls at 50°C using the cosorption microbalance (experimental conditions and simulated results are shown in Figure V-38 with fitted values for water and ethanol listed in Table V-4).

FigureV

  -40a: from 7 to 47% during the first step and from 43 to 54% during the second step. The low-frequency mass uptake was removed by subtracting the signal averaged over a period 10 times greater than oscillations (period 240 s). The derivative of the residual mass variation was compared with the fluctuations of the partial pressure in Figure V-40b. To enable an interpretation as mass flux versus the variation of partial pressure as driving force, the average lag determined by cross-correlation was removed in the comparison. The sorption and desorption consequently looked almost reversible.

  Figure V-40. Analysis of the fluctuations of mass uptake vs the fluctuations of relative humidity (period 240 s) in 12 µm thick PET bottle (M) at 50°C: (a) raw results, (b) correlation between fluctuations when the average delay between has been removed.

V. 5 .

 5 Figure V-41. Sorption/desorption cycles of 12 µm thick PET films at 25°C from an initial state at 50±10% RH. Cases leading to significant desorption are plotted in dashed lines.

•

  a different subcooling ratio providing a different amount of extra hole free volume (see Figure V-23); • a shift of 𝑇𝑇 𝑔𝑔 due to plasticizing • extra free volumes brought by the solute itself (concentration effects);

  Figure V-35), it is strongly affected by the concentration of both water and ethanol.

  Figure V-42. The probability density functions (𝑠𝑠𝑀𝑀𝑖𝑖) of transportation and storage temperatures were assumed independent, so that the distribution of the equivalent time at 𝑇𝑇 𝑜𝑜𝑒𝑒𝑟𝑟 = 25°C, 𝑡𝑡 𝑒𝑒𝑒𝑒 25 =

Figure V- 42 .

 42 Figure V-42. Principles of the probabilistic determination of shelf-life based on a double criterion on weight loss and 𝑎𝑎𝑏𝑏𝑎𝑎 variation. The input temperature distributions are shown in upper inset. The corresponding transportation, storage and combined distributions are shown horizontally. The distribution of weight loss and abv variations on the left and right, respectively. The tolerances are shown as dashed lines. The filled areas represent the probability to exceed tolerances.

  a first[E]valuation step based on our simulation engine; a[D]ecision step where the expertise on the food and consumption is introduced; and finally, a last [S]olving step exploring the tradeoff between contradictory criteria. The framework is very not specific and modular; it can accommodate any bioproduct and packaging and follow the future demands of the industry and authorities. It was tested successfully at the very first tiers for the optimization of PET bottle miniatures used in airplanes. The loss of ethanol is minimum, and most of the weight loss is related to water permeation. Due to legal requirements, the shelf-life is determined by the concentration of ethanol in the bottle. Alternative shapes and formats were optimized, which much greater performances: longer shelf-life or minimum waste.

  measuring the properties of glassy polymers above their glass transition temperature (𝑇𝑇 𝑔𝑔 ) and by using a molecular theory to extrapolate them below 𝑇𝑇 𝑔𝑔 , where they are used; ii) addressing frontally the complexity by a depth analysis of literature data and acquiring cosorption kinetics for water and ethanol at temperature representing a worst-case for bottle storage. Two theories have been implemented in the engine: a generalized version of the free volume theory (FVT) of Vrentas and Duda for diffusivities, and a temperature-dependent ternary free-Flory-Huggins (FH) formulation. The latter contribution is more a suitable parameterization for water and ethanol in PET rather than a real formulation. The modification of the FVT is more profound and with broader applications behind the scope of this work. Based on the initial formalism of[START_REF] Fang | Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature[END_REF], organic solutes are described as connected blobs, each one obeying to FVT. The scaling exponent 𝛼𝛼 𝑙𝑙𝑖𝑖𝑙𝑙 𝑇𝑇,𝑇𝑇 𝑔𝑔 of the diffusivities of the center-of-mass with the number of blobs carries the information of the rate of the renewal of voids accessible to each blob. 𝛼𝛼 𝑙𝑙𝑖𝑖𝑙𝑙 was used to setup a generic polymer function 𝑃𝑃 𝑇𝑇,𝑇𝑇 𝑔𝑔 enabling to extend existing and modified FVT to any polymer at glassy or rubber state including PET. Additional sophistications of the new blob-FVT enable to manage solutes with similar or dissimilar blobs. Though

  Beverages in PET bottlesThis work finds direct application for alcoholic beverages and the optimization of the design PET bottles. The capacity to calculate shelf-life and the risk of collapse in variable storage and transport conditions is important feature. The optimization of the full design of a real bottle requires more considerations than those presented: marketing, mechanical resistance during stacking, consumer convenience, etc. The optimization framework [E][D][S] found already its application for recommending an amount of recycled PET, which may the risk of migration of NIAS acceptable according to the rules set by the European Food Safety Authority.

•

  Les défis de l'emballage alimentaireAu cours de la dernière décennie, deux points de vue se sont opposés sur les avantages des emballages alimentaires. La population mondiale devrait atteindre 9,8 milliards en 2050, contre 7,6 aujourd'hui (UN, 2017), dont 68% dans des zones urbaines (UN, 2018).

  , la démarche d'écoconception tend à être idiographique, cas dépendant, sans généralisation ni standard. La thèse propose d'introduire une étape d'optimisation multicritère (étape [S]), qui pallie les défauts des deux méthodes précédentes pour résoudre les objectifs contradictoires suivants : augmenter la durée de vie des boissons alcoolisées sans augmenter les impacts environnementaux et les risques de contamination. Le principe général de l'optimisation convexe est illustré sur un exemple de conception mettant en jeu quatre géométries simplifiées de bouteilles (numérotées 𝐷𝐷 1 ..𝐷𝐷 4 ) représentées sur la Figure III-1. La question générale est qu'elle est la(les) géométrie(s) de bouteille (de capacité variable 𝑉𝑉 𝐹𝐹 𝑡𝑡=0 ) parmi les quatre représentées ou issues de leurs généralisations qui permettent d'obtenir le meilleur compromis ? Le raisonnement repose sur liqueur (ex. vodka) pour laquelle la durée de vie est limitée essentiellement par la perte en eau vers l'ambiance de stockage. On suppose que la perméation d'eau au travers des parois (épaisseur uniforme : 𝑙𝑙 𝑝𝑝 ; surface exposée à la boisson et à sa vapeur : 𝐴𝐴) est unidirectionnelle et à l'état stationnaire. Ces hypothèses conduisent à une relation linéaire entre la masse de la bouteille à vide, 𝑚𝑚 𝑃𝑃 , et la durée de vie de la boisson, 𝑡𝑡 𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑟𝑟 : du travail de thèse en français où {𝜌𝜌 𝑘𝑘 } 𝑘𝑘=𝑃𝑃,𝐹𝐹 est la masse volumique des parois de l'emballage (𝑘𝑘 = 𝑃𝑃) et de la boisson (𝑘𝑘 = 𝐹𝐹) ; Δ𝑠𝑠 est la différence de pression partielle de part et d'autre de la paroi ; 𝐷𝐷 𝑝𝑝 et 𝑘𝑘 𝑝𝑝 sont respectivement les coefficients de diffusion et de Henry de la paroi.

Figure VII- 1 .Figure VII- 2 ..

 12 Figure VII-1. Designs simplifiés de bouteilles (𝐷𝐷 1 ..𝐷𝐷 4 ) utilisés pour illustrer la démarche d'optimisation géométrique sous contraintes du matériau et du produit emballé. La hauteur 𝑏𝑏 of 𝐷𝐷 1 and 𝐷𝐷 2 est fixée à 15 cm. Le disque noir (∅ 2 𝛼𝛼𝑚𝑚) représente l'ouverture de la bouteille (le bouchon n'est pas visible).

Figure VII- 3 .

 3 Figure VII-3. Principe du prototypage rapide de bouteilles pour les boissons alcoolisées via l'approche itérative à trois Etapes [E]valuation, [D]écision et ré[S]olution proposée.

Figure VII- 4 .

 4 Figure VII-4. Optimisation de la géométrie d'une mignonnette (capacité 150 mL et un volume d'espace de tête de 10 mL) utilisée pour le transport aérien avec une durée de vie de 180 jours à 25°C pour une boisson de type vodka.

Figure VII- 5 .

 5 Figure VII-5. Principe de l'étude des propriétés de sorption dans le PET (a-b) et isotherme ternaire eau-éthanol déterminée à 50°C (c-f). La courbe en gras représente le « liquidus » et les symboles les conditions utilisées pour la validation présentée dans la Figure V-21.

  {𝑉𝑉 � 𝑖𝑖 } 𝑖𝑖=𝑒𝑒,𝑤𝑤,𝑃𝑃 sont les volumes molaires. Les isothermes de sorption ternaires à 35°C ainsi que leur interprétation pour des boissons alcoolisées sont reproduites sur la Figure VII-5c,f. Dans une boisson alcoolisée, les activités de l'eau et de l'éthanol sont mathématiquement dépendantes. La relation est appelée « liquidus » (c-a-d : mélange en phase condensée) et tracée en trait gras. L'espace sous la courbe représente un mélange gazeux d'eau et d'éthanol à pression atmosphérique explorable avec la VII.2. Principaux résultats 275 microbalance de sorption mise en oeuvre dans ce travail. Les résultats de validation aveugle de l'isotherme ternaire sont présentés sur la Figure V-21. Les mesures ont été obtenues ont été réalisées par immersion à l'aide de la méthode des sels saturés (plusieurs répétitions). La déviation résiduelle a été associée par une relaxation incomplète du PET aux fortes activités en eau.

Figure VII- 6 .

 6 Figure VII-6. Comparaison entre les prédictions de l'isotherme ternaire eau-éthanol dans le PET à 35°C avec les sorptions expérimentales.

Figure VII- 7 .

 7 Figure VII-7. Relations en lois d'échelle, théorie des volumes libres et coefficients de diffusion : (a) comparaison des lois d'échelle avec la masse moléculaire pour des solutés linéaires et encombrés ; (b) filiation de la théorie des volumes libres ; (c) lois d'échelle dans le polyéthylène basse densité à 23°C ; (d) principe du paramétrage de la théorie des volumes libres à partir des coefficients de diffusion de molécules sondes linéaires. L'équation de Piringer utilisée pour démontrer la conformité des matériaux d'emballages alimentaires est représentée enpointillés sur la figure (a) ; elle correspond à un surestimateur empirique qui sous-estime la dépendance réelle à la masse moléculaire 𝑀𝑀. Données des coefficients de diffusion : [1] Flynn (1982), [2] Hinrichs and Piringer (2002);NIST (2019).

Figure VII- 8 .

 8 Figure VII-8. Paramétrisation et prédictions des coefficients de diffusion de l'eau et de l'éthanol dans le PET à l'état caoutchoutique et vitreux : (a) lois d'échelle à l'état caoutchoutique et vitreux pour des molécules sondes linéaires ; (b) modèle générique de coefficients de diffusion et paramétrage du modèle pour l'eau et le toluène ; (c) validation pour l'eau sur la base d'une identification de 𝑀𝑀 à partir des données de Launay et al. (1999) ; (d) validation pour le toluène dans cinq polymères ; (e) dépendance des coefficients de diffusion du toluène à la température ; (f) cinétiques de sorption à 50°C mettant en évidence la relaxation du polymère.

Figure VII- 9 .

 9 Figure VII-9. Analyse des fluctuations du flux de matière en fonction de la fluctuation périodique (période de 240 s) de la pression partielle en vapeur d'eau à 50°C pour un échantillon de 630 µm d'épaisseur.

Figure VII- 10 .

 10 Figure VII-10. Distribution de la perte de poids (droite) et de la variation du titre alcoolique (gauche) en fonction des distributions combinées des températures au cours du transport et du stockage (encart). La figure centrale montre la variation déterministe de la perte de poids et du titre alcoolique (abv) en avec un temps de séjour équivalent à 25°C.
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  surface area of contact or exposed (m 2 ) Pa⋅m 3 ⋅mol -1 or Pa⋅m 3 ⋅kg -1 ), Henry coefficient of layer 𝑗𝑗 𝐾𝐾 12 ,𝐾𝐾 22 constants in the FVT of Vrentas and Duda related to WLF constants (Eqs V.10 and V.11) 𝐾𝐾 𝛼𝛼 , 𝐾𝐾 𝛽𝛽 polymer specific constants in the FVT extended to flexible solutes (K) 𝐾𝐾 𝑖𝑖,𝑗𝑗 1 /𝑗𝑗 2 =

	ℎ,ℎ 𝑖𝑖				mass transfer coefficient through liquid boundary layer (m⋅s -1 ), equivalent conductance for sub-stance 𝑖𝑖
	〈ℎ 𝐴𝐴+𝐵𝐵 〉 𝑇𝑇		ensemble-averaged enthalpy of mixing (J⋅mol -1 )
	𝐻𝐻				bottle height (m)
	Δ𝐻𝐻 𝐹𝐹 1 +𝐹𝐹 2 𝑚𝑚𝑏𝑏𝑙𝑙𝑎𝑎𝑜𝑜		molar enthalpy of the mixing of liquids 𝐹𝐹 1 and 𝐹𝐹 2 (J⋅mol -1 )
	〈I〉				dimensionless temperature defined in Eq. V.27 (-)
	𝑗𝑗,𝐽𝐽				mass flux density (mol⋅m -2 ⋅s -1 or kg⋅m -2 ⋅s -1 ), index of layer/material with the food indexed 𝑗𝑗 = 0
	𝑗𝑗 𝑜𝑜𝑒𝑒𝑟𝑟				reference layer maximizing	𝑙𝑙 𝑗𝑗 𝐷𝐷 𝑗𝑗 𝑘𝑘 𝑗𝑗	(-)
	𝐴𝐴 𝑝𝑝 ′ 𝑘𝑘, 𝑘𝑘 𝑗𝑗			preexponential factor in the Piringer's Equation (Eq. II.44) Henry coefficient (𝐶𝐶 𝑖𝑖,𝑗𝑗 1 𝐶𝐶 𝑖𝑖,𝑗𝑗 2 𝛾𝛾 𝑖𝑖,𝑗𝑗 2 = 𝛾𝛾 𝑖𝑖,𝑗𝑗 1
	𝐵𝐵(𝜖𝜖)				Boltzmann factor (Eq. II.57)
	𝐵𝐵𝑖𝑖 =	ℎ𝑙𝑙 𝑝𝑝 𝐷𝐷 𝑖𝑖,𝑝𝑝	
	𝐷𝐷𝐷𝐷𝑏𝑏 =	𝐷𝐷 𝑖𝑖,𝑝𝑝 𝛽𝛽𝑙𝑙 𝑝𝑝 2	Deborah number or dimensionless relaxation time (-)
	𝐸𝐸 * , 𝐸𝐸 𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 *	* , 𝐸𝐸 𝑎𝑎𝑙𝑙𝑎𝑎ℎ𝑏𝑏𝑜𝑜 eralizations for an individual blob and anchor, respectively specific solute-polymer interaction energy in the FVT of Vrentas and Duda (J⋅mol -1 ), its gen-
	𝐸𝐸 𝑎𝑎 ,〈𝐸𝐸 𝑎𝑎 〉		activation energy (J⋅mol -1 ), apparent activation energy
	𝑖𝑖				frequency (Hz) or arbitrary function, generalized driving force 𝑖𝑖 = -	𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕
	𝑖𝑖 𝑖𝑖,𝑗𝑗				fugacity of substance 𝑖𝑖 in layer/material 𝑗𝑗
	𝐹𝐹𝐹𝐹 =	𝐷𝐷 𝑖𝑖,𝑝𝑝 𝑡𝑡 𝑙𝑙 𝑝𝑝 2	Fourier number or dimensionless time (-)
	𝑇𝑇 𝐶𝐶𝑀𝑀				mean-square displacement
	𝐺𝐺,𝐺𝐺 XXI

dimensionless mass Biot or Sherwood number (-) 𝛼𝛼 crystallinity = volume fraction of crystalline phase (-), celerity of the sound (m⋅s -1 ) 𝐶𝐶, 𝐶𝐶 𝑖𝑖,𝑘𝑘 , 𝑪𝑪 volume concentration (mol⋅m -3 or kg⋅m -3 ), concentration of substance 𝑖𝑖 in the phase/layer 𝑘𝑘, concentration field after discretization 𝐶𝐶 𝑝𝑝 𝑖𝑖 heat capacity of pure substance 𝑖𝑖 (J⋅kg -1 ⋅K -1 ) 𝐶𝐶 12 ,𝐶𝐶 22 universal WLF constants (17.44 and 51.6 K, respectively) 𝐷𝐷 bottle depth (m) 𝐷𝐷,𝐷𝐷 𝑗𝑗 ,𝐷𝐷 𝑖𝑖,𝑘𝑘 diffusion coefficient (m 2 ⋅s -1 ), diffusion coefficient in layer 𝑗𝑗, diffusion coefficient of substance 𝑖𝑖 in the phase/layer 𝑘𝑘 𝐷𝐷 0 preexponential coefficient in the FVT of Vrentas and Duda (m 2 ⋅s -1 ) 𝐷𝐷 𝑙𝑙𝑖𝑖𝑙𝑙 , 𝐷𝐷 𝑎𝑎 diffusion coefficients of homologous solutes with repeated patterns without and with anchors (m 2 ⋅s - 1 ) 𝐷𝐷 𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏 , 𝐷𝐷 𝑎𝑎𝑙𝑙𝑎𝑎ℎ𝑏𝑏𝑜𝑜 diffusion coefficients associated to the isolated blob and anchor (m 2 ⋅s -1 ) ‡ ,𝐺𝐺 𝑘𝑘 molar free energy (J⋅mol -1 ), value at transition state, value for component 𝑘𝑘 Δ𝐺𝐺 𝑖𝑖,𝑗𝑗 𝑠𝑠𝑏𝑏𝑙𝑙𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑏𝑏𝑙𝑙 molar solvation free energy of substance 𝑖𝑖 in phase or layer 𝑗𝑗 (J⋅mol -1 ) partition coefficient of substance 𝑖𝑖 between the phases/layers 𝑗𝑗 1 and 𝑗𝑗 2 (-) 𝑙𝑙, 𝑙𝑙 𝑗𝑗 ,𝑙𝑙 𝑤𝑤𝑎𝑎𝑙𝑙𝑙𝑙 distance or thickness (m), thickness of layer 𝑗𝑗, thickness of walls ℓ visited distance (m) ℓ 𝐹𝐹 = 𝐾𝐾 𝐹𝐹/𝑝𝑝 𝐿𝐿 𝑃𝑃/𝐹𝐹 dimensionless equivalent length of the contacting phase (-) 𝑥𝑥 𝑗𝑗 accumulated distance or thickness up to layer 𝑗𝑗 𝑥𝑥 𝑃𝑃/𝐹𝐹 material-to-food volume or mass ratio (-) 𝑚𝑚 number of layers (-)

  𝑖𝑖 𝑙𝑙𝑏𝑏𝑛𝑛𝑒𝑒𝑠𝑠 ,𝑖𝑖 𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝𝑠𝑠 number of nodes in the discretization scheme, number of steps in the migration scenario 𝑇𝑇, 𝑇𝑇 𝑔𝑔 , 𝑇𝑇 𝑖𝑖,𝑚𝑚 temperature (K), glass transition temperature, melting temperature of pure compound 𝑖𝑖 𝑠𝑠,𝑎𝑎 parameters in the FVT of Vrentas and Duda so that 𝑉𝑉 � 2

	𝑀𝑀 =	𝛼𝛼 𝑔𝑔 𝛼𝛼 𝑐𝑐	subcooling ratio (-)
	𝒓𝒓			position vector
	𝑀𝑀 𝑖𝑖,𝑘𝑘 ≈	𝑉𝑉 � 𝑘𝑘 𝑉𝑉 � 𝑖𝑖	number of molecules of phase 𝑘𝑘 displaced by the insertion of solute 𝑖𝑖
	ℜ			overall mass transfer resistance (s⋅m -1 )
	𝑥𝑥			ideal gas constant (8.314 J⋅K -1 ⋅mol -1 )
	𝑥𝑥𝐻𝐻			relative humidity (%)
	𝑆𝑆 𝑙𝑙			summation term in Eq. II.17
	𝑡𝑡			time (s)
	𝑡𝑡 𝑎𝑎𝑏𝑏𝑙𝑙𝑠𝑠𝑐𝑐𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝑏𝑏𝑙𝑙 time to consume the content of the packaging (s)
	𝑡𝑡 𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑟𝑟		shelf-life (s)
		𝐶𝐶 𝐹𝐹 𝐶𝐶 𝐹𝐹 𝑟𝑟𝑒𝑒	normalized concentration representing the distance to equilibrium (-)
	𝑉𝑉 � 1 𝑉𝑉 � 𝑖𝑖			molar volume (m 3 ⋅mol -1 )
	𝑉𝑉 𝑜𝑜𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛 𝑠𝑠𝑛𝑛𝑣𝑣		volume of the rigid unit (m 3 )
	𝑏𝑏𝑙𝑙𝑏𝑏𝑎𝑎𝑘𝑘	
	𝑊𝑊			bottle width (m)
	𝑥𝑥 𝑖𝑖			molar fraction in compound 𝑖𝑖
	𝑧𝑧			number of neighbors in the off-lattice FH formulation (-)
	Greek symbols
	𝑖𝑖 𝑜𝑜𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛 𝑏𝑏𝑙𝑙𝑏𝑏𝑎𝑎𝑘𝑘𝑠𝑠 𝛼𝛼, 𝛼𝛼 𝑙𝑙𝑖𝑖𝑙𝑙 ,𝛼𝛼 𝑎𝑎 scaling exponents of diffusion coefficients with their molecular mass at infinite dilution (-), idem for , 𝑖𝑖 𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑠𝑠 or 𝑁𝑁 number of rigid jumping units or blobs linear solutes, idem for solutes with anchors
	𝑁𝑁,𝑁𝑁 0 𝛼𝛼 𝑔𝑔 ,𝛼𝛼 𝑎𝑎		number of substances thermal expansion coefficients at glassy state and at the critical temperature 𝑇𝑇 = 𝑇𝑇 𝑔𝑔 (-)
	𝑠𝑠, 𝑠𝑠 𝑖𝑖 ,𝑫𝑫 𝛼𝛼 2 𝑔𝑔 ,𝛼𝛼 2	partial pressure (Pa), partial pressure of solute 𝑖𝑖, parameter vector as above with the original notations of Vrentas and Duda (-)
	𝑃𝑃(𝑇𝑇, 𝑇𝑇 𝑔𝑔 ) 𝛽𝛽	polymer function in the extended FVT (Eqs. V.15, V.20) polymer relaxation rate (s -1 )
	𝑞𝑞 = 𝛽𝛽	𝑙𝑙 𝑝𝑝 𝜕𝜕	
	𝑀𝑀			radius (m)
	XXII		

14) , 𝑞𝑞 𝑙𝑙 dimensionless position (-), zeros of the transcendental equation tan 𝑞𝑞 𝑙𝑙 = -ℓ 𝐹𝐹 𝑞𝑞 𝑙𝑙 (Eq. II.19) 𝑄𝑄 𝐴𝐴 ,𝑄𝑄 𝐵𝐵 total volume flow rates of ways A and B of the co-sorption microbalance (m 3 ⋅s -1 ) * = 𝑠𝑠 + 𝑎𝑎𝑇𝑇 𝑔𝑔 𝑠𝑠 = 𝐶𝐶 (𝑥𝑥,𝑡𝑡) 𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟 dimensionless concentration (-), usually with 𝐶𝐶 𝑜𝑜𝑒𝑒𝑟𝑟 the averaged initial concentration 𝑎𝑎̅ * = * , 𝑉𝑉 � 1 * 𝑙𝑙𝑖𝑖𝑙𝑙 critical volume of the solute jumping unit or of its largest rigid unit (m 3 ), value for linear solutes 𝑉𝑉 𝑎𝑎𝑏𝑏𝑙𝑙𝑠𝑠𝑐𝑐𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝑏𝑏𝑙𝑙 volume of food consumed during a prescribed amount of time (m 3 ) 𝑉𝑉 𝐹𝐹 , 𝑉𝑉 𝐹𝐹 𝑡𝑡=0 ,𝑉𝑉 𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑜𝑜𝑎𝑎𝑔𝑔𝑒𝑒 , 𝑉𝑉 ℎ𝑒𝑒𝑎𝑎𝑛𝑛 food volume (m 3 ), initial food volume, packaging capacity, volume of the headspace 𝑉𝑉 � 2 * specific hole free volume of the equilibrium liquid polymer in the FVT of Vrentas and Duda (m 3 ) 𝑉𝑉 � 2 * critical volume of the polymer jumping unit (m 3 , Eq. V.13) 𝒙𝒙 or 𝒚𝒚, 𝒙𝒙 𝑳𝑳 , 𝒙𝒙 𝑼𝑼 input vectors, lower bounds of 𝒙𝒙, upper bounds of 𝒙𝒙 𝑥𝑥 position (m) 𝑙𝑙𝑖𝑖𝑙𝑙 scaling exponents of self-diffusion coefficients of linear solutes (-) 𝛾𝛾 overlap factor in the FVT of Vrentas and Duda (Eq. V.8) 𝛾𝛾 𝑖𝑖,𝑘𝑘 𝑠𝑠 activity coefficient of solute 𝑖𝑖 in phase 𝑘𝑘 relative to volume fraction 𝜙𝜙 𝑖𝑖,𝑘𝑘 (-)

  𝜒𝜒 𝑖𝑖,𝑘𝑘 or 𝜒𝜒 𝑖𝑖+𝑘𝑘 binary Flory-Huggins coefficient between the components 𝑖𝑖 and 𝑘𝑘 (-) (𝑌𝑌 1 , 𝑌𝑌 2 , … , 𝑌𝑌 𝑙𝑙 ) back-transformation of random variables 𝑌𝑌 1 , 𝑌𝑌 2 ,…,𝑌𝑌 𝑙𝑙 when it exists 𝑌𝑌 𝑖𝑖 = ℎ 𝑖𝑖 (𝑋𝑋 1 , 𝑋𝑋 2 , … , 𝑋𝑋 𝑙𝑙 ) multivariate transformation of random variables 𝑋𝑋 1 , 𝑋𝑋 2 ,…,𝑋𝑋 𝑙𝑙 𝑊𝑊𝐷𝐷𝑖𝑖𝑏𝑏(0, 𝑠𝑠 𝑡𝑡 ) = 𝑠𝑠 𝑡𝑡 𝑥𝑥 𝑠𝑠 𝑡𝑡 -1 𝐷𝐷 -𝜕𝜕 𝑠𝑠 𝑡𝑡 for 𝑥𝑥 ≥ 0 and 0 otherwise: Weibull distribution of parameters 1 and 𝑠𝑠 𝑡𝑡

	〈𝑋𝑋〉 𝑇𝑇 ⌊𝑋𝑋⌋ ⌈𝑋𝑋⌉ 𝑋𝑋 𝑖𝑖 = ℎ 𝑖𝑖 𝑔𝑔 𝑙𝑙𝑖𝑖𝑘𝑘𝑒𝑒𝑙𝑙𝑙𝑙 NFPA NIST 𝐵𝐵 NRC 𝑚𝑚𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑙𝑙 𝑜𝑜𝑒𝑒𝑟𝑟 OECD OIML OML -1 Subscripts ensemble average of 𝑋𝑋 at temperature 𝑇𝑇 lower limit of 𝑋𝑋 (floor) upper limit of 𝑋𝑋 (ceiling) in the gas phase National Fire Protection Association Chapter I. Introduction National Institute of Standards and Technology likely value (probabilistic description) Event Notification Reports liquid state mutual (high concentration) reference value used for normalization Organization for Economic Co-operation and Development International Organization of Legal Metrology overall migration limit 0 initial 𝑠𝑠𝑎𝑎𝑡𝑡 PA6 Polyamide 6 saturation 𝑆𝑆 solid state 𝑡𝑡 PDE partial differential equation 𝑠𝑠𝑀𝑀𝑖𝑖 probability density function I.1. Context at time 𝑡𝑡 PEF polyethylene furanoate 𝑡𝑡ℎ𝑒𝑒𝑏𝑏𝑜𝑜𝑒𝑒𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎𝑙𝑙 theoretical value 𝑡𝑡𝑖𝑖𝑒𝑒𝑜𝑜 𝑖𝑖 evaluation at tier 𝑖𝑖 PEN polyethylene naphthalate PET polyethylene terephthalate • Global challenges for food packaging
	-3 ) During the last decade, two opposite views on the benefits of food packaging have longest polymer relaxation time (s) Rapid Alert System for Food and Feed function of spatial coordinates 𝑥𝑥, 𝑀𝑀, 𝑧𝑧 and time 𝑡𝑡 maximum amount dimensionless excess activation energy in the Piringer's equation (Eq. II.44) solute in Flory notations polymer in Flory notations trace (infinite dilution) at temperature 𝑇𝑇 poly (methyl methacrylate) polypropylene emerged. The world population is projected to reach 9.8 billion in 2050 from 7.6 billion today 𝜏𝜏 𝜏𝜏 0 𝜕𝜕,𝑙𝑙,𝑧𝑧,𝑡𝑡 RASFF QM 1 2 𝑡𝑡𝑜𝑜𝑎𝑎𝑎𝑎𝑒𝑒 𝑇𝑇 𝑠𝑠 PMMA PP PS polystyrene relative to volume fraction 𝑠𝑠𝑛𝑛𝑣𝑣 van-der-Waals PVAc polyvinyl acetate PVC polyvinyl chloride (UN, 2017), with 68% living in urban areas (UN
	RH 𝜙𝜙 𝑖𝑖,𝑘𝑘 SM	relative humidity safety margin
	Ψ = SML 𝜋𝜋 TE TRIZ	1 3 �6𝑉𝑉 𝐹𝐹 𝑡𝑡=0 � 2 3 𝐴𝐴 specific migration limit sphericity of the packaging with a capacity 𝑉𝑉 𝐹𝐹 ABBREVIATIONS transport equation 𝑡𝑡=0 and an exposed surface area 𝐴𝐴 theory of inventive problem solving
	𝜔𝜔 𝑖𝑖 Mathematical operators weights (-) Ω 𝑖𝑖𝑙𝑙𝑡𝑡 internal volume 𝑁𝑁𝐹𝐹𝑀𝑀𝑚𝑚�1, 𝑠𝑠 𝐶𝐶 0 � normal distribution with an unitary expectation and a standard deviation 𝑠𝑠 𝐶𝐶 0 FVT free volume theory 𝑤𝑤𝑎𝑎𝑙𝑙𝑙𝑙 walls FV free volume 𝜕𝜕𝑡𝑡 = 𝑴𝑴𝑪𝑪. 𝑤𝑤 water CM center-of-mass D4S Design for Sustainability DDBST Dortmund Data Bank Software + Separation Technology DfE Design for Environment DVS dynamic vapor sorption EC European Communities EFSA European Food Safety Authority ENR Event Notification Reports EU European Union EUROVOC multilingual, multidisciplinary thesaurus covering the activities of the EU FDA US Food and Drug Administration FDCA 2,5-furandicarboxylic acid FH2 Flory-Huggins theory for binary mixtures FH3 Flory-Huggins theory for ternary mixtures FMECA Failure Mode Effects and Criticality Analysis 𝜕𝜕Ω 𝜕𝜕𝑪𝑪 UN United Nations [E][D][S] Evaluation, Decision, Solving BC boundary condition 𝛼𝛼𝑀𝑀𝑖𝑖 CFD CFDA CFR Code of Federal Regulations WOS Web of Science Chinese Food and Drug Administration WLF William-Landel-Ferry computational fluid dynamics US United States of America cumulated density function UNEP United Nations Environment Programme UNIFAC UNIQUAC Functional-group Activity Coefficients Chapter I. INTRODUCTION
	𝑄𝑄 𝑋𝑋 𝑠𝑠 𝑋𝑋 h-FV Superscripts overestimation factor of 𝑋𝑋 hole Free-Volume IC Initial Condition shape factor associated to the distribution of 𝑋𝑋 * (probabilistic description) 𝑋𝑋 � * dimensionless ISO International Organization for Standardization likely value of 𝑋𝑋 (probabilistic description) 𝑋𝑋 � sample of 𝑋𝑋 (probabilistic description) ‡ LCA life cycle assessment transition state 0 , 𝑡𝑡=0 initial 𝐶𝐶𝑀𝑀 center-of-mass 𝑒𝑒𝑒𝑒 at thermodynamical equilibrium LDPE low-density polyethylene LFL lower flammable limit MB mass balance NASA National Aeronautics and Space Administration 𝑋𝑋 XXIV XXVI Chapter I. Introduction XXV

volume fraction of solute 𝑖𝑖 in phase 𝑘𝑘 (-) 𝑖𝑖𝑙𝑙𝑡𝑡 internal surfaces in contact with the liquid or its vapors 𝑎𝑎𝑀𝑀𝑇𝑇𝑚𝑚𝑖𝑖𝑖𝑖(𝑖𝑖) = 𝑥𝑥 𝑚𝑚𝑖𝑖𝑙𝑙 argument of the minimum (i.e. 𝑖𝑖(𝑥𝑥 𝑚𝑚𝑖𝑖𝑙𝑙 ) is minimum) Δ difference operator 𝑖𝑖 𝑖𝑖,𝑃𝑃 𝑇𝑇 (𝑎𝑎 𝑖𝑖 ) = 𝐷𝐷 𝑖𝑖 , 𝑖𝑖 𝑖𝑖,𝑃𝑃 𝑇𝑇 -1 (𝐷𝐷 𝑖𝑖 ) = 𝑎𝑎 𝑖𝑖 sorption isotherm, its inverse 𝑖𝑖 𝑘𝑘 (𝒙𝒙),𝑇𝑇(𝒙𝒙),ℎ(𝒙𝒙) 𝑘𝑘 𝑡𝑡ℎ goal function of 𝒙𝒙, lower constraints, upper constraints 𝑖𝑖 𝑠𝑠 𝑇𝑇 (… ),𝑇𝑇 𝑠𝑠 𝑇𝑇 (… ) FVT model for rigid solutes and anchors (Figure V.24) 𝑖𝑖 𝑋𝑋 (𝑥𝑥) = 𝑠𝑠𝑀𝑀(𝑋𝑋 = 𝑥𝑥) probability that the random variable 𝑋𝑋 takes the value 𝑥𝑥 (probabilistic description) 𝐹𝐹 𝑋𝑋 (𝑥𝑥) = 𝑠𝑠𝑀𝑀(𝑋𝑋 ≤ 𝑥𝑥) cumulated density function of the random variable 𝑋𝑋 (probabilistic description) 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑎𝑎 Γ , 𝑏𝑏 Γ ) gamma distribution of parameters 𝑎𝑎 Γ and 𝑏𝑏 Γ 𝑱𝑱 Jacobian 𝑴𝑴 diffusion operator matching boundary conditions so that the mass diffusion problem is discretized as * dimensionless random contribution of 𝑋𝑋 so that 𝑋𝑋 = 𝑋𝑋 � 𝑋𝑋 * (probabilistic description) 〈𝑋𝑋〉 arithmetic average of 𝑋𝑋 𝛼𝛼 , 𝛽𝛽 , 𝛿𝛿 arbitrary phases 𝛼𝛼, 𝛽𝛽, 𝛿𝛿 𝑎𝑎 dry air 𝐴𝐴+𝐵𝐵 𝐴𝐴 and 𝐵𝐵 in mixture (random contacts) 𝐴𝐴→𝐵𝐵 transition from 𝐴𝐴 to 𝐵𝐵 (𝐴𝐴𝐵𝐵) copolymer AB 𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑜𝑜𝑎𝑎𝑔𝑔𝑒𝑒 beverage 𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑙𝑙𝑒𝑒 bottle 𝐵𝐵𝐵𝐵 boundary layer 𝑒𝑒 ethanol 𝑒𝑒𝑒𝑒 at equilibrium 𝐹𝐹 food or liquid food simulant ℎ𝑒𝑒𝑎𝑎𝑛𝑛 in the headspace 𝑖𝑖 solute index 𝑖𝑖𝑙𝑙𝑡𝑡 internal domain 𝑗𝑗 material or layer index 𝑘𝑘 component, variable or dimension index 𝑙𝑙𝑖𝑖𝑙𝑙 linear solutes 𝑚𝑚𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑙𝑙 mutual (high concentration) 𝑝𝑝𝑐𝑐𝑜𝑜𝑒𝑒 pure compound 𝑃𝑃 polymer 𝑜𝑜𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛 𝑏𝑏𝑙𝑙𝑏𝑏𝑎𝑎𝑘𝑘 rigid units (blob) 𝑠𝑠𝑎𝑎𝑡𝑡 saturation 𝑡𝑡𝑏𝑏𝑡𝑡𝑎𝑎𝑙𝑙 accumulated (e.g. total partial pressures) 𝑡𝑡𝑜𝑜𝑎𝑎𝑎𝑎𝑒𝑒 trace (infinite dilution)

  erties, shelf-life, and amount of plastic materials and finally wastes. The draft of EU directive 2018/0172(COD) (EC, 2018) will enforce a series of measures for single-use plastic items, in-

cluding beverage containers and bottles, their caps, and lids. The actions will comprise stricter product design requirements, extended producer responsibility, collection objectives, and awareness-raising measures. The directive suggests explicitly changes in packaging design and switch to more sustainable raw materials. Stakeholder and public consultations showed support to legislative requirements to better design as one of the most effective approaches, in particular, for drink bottles and tethered caps, followed by reduction targets. EU framework regulation 1935/2004/EC (2004c) makes a risk assessment and risk management compulsory for the introduction of any new substance, material or industrial practice (active/intelligent packaging system, recycling) regardless the material is in plastics or not. While not mentioning design, EU regulation 2023/2006/EC (2006) encourages the developments of good manufacturing practices and quality assurance systems at all stages of

  Quoting the same authors "Imagine that the problem is so complicated that a computer-based simulation model is designed such that for each policy choice under review, a scenario can be generated that indicates how the future might unfold in time. Now suppose that the analyst effectively summarizes the relative desirability of any future scenario not by a single number but, let us

say, by a dozen well-chosen numbers: some reflecting costs, others reflecting benefits. Since these output performance numbers may simultaneously deal with economic, environmental, social and health concerns, these summarizing indices will, in general, be in incommensurable units. To complicate matters, suppose that stochastic elements are involved in the simulation so that, for a single policy choice being investigated, repeated simulation runs result in different sets of summary performance measures. The joint probability distribution of these performance measures as made manifest through repeated realizations of the simulation will, in general, indicate that these 12 measures are probabilistically dependent. Now assume you are a harassed decision maker sitting in front of an output display device deluged with a mountain of conflicting information. You are confused. What should you do?"

Table II - 1 .

 II1 Overview of problem-solving methodologies.

	← Examples	Strategies→	Abstraction	Analogy	Brainstorming	Divide and conquer	Hypothesis testing	Lateral thinking	Means-ends analysis	Methods of focal objects	Morphological analysis	Proof	Reduction	Research	Root cause analysis	Trial-and-error	REFERENCES
			Issue trees (Ishikawa diagram, issue map, A3 problem														
			solving), why-because analysis (Five whys, Five/Six		×			×						×		×		a
			Ws, GROW)														
			Criticism			× × × ×				×				×
			Decision analysis														
			(operation research, risk analysis, decision, tree, deci-		× ×		× ×							× ×	b
	Analysis	sion support system) Impacts (environmental, risk, technology), quality, standards Inductive reasoning (generalization, inductive fallacies, inference)	× × × ×		× × × × × × × × × × × × ×
			Knowledge representation (assumption, inductive, de-ductive, automated)	×		×		× × × × × ×		× ×	
			System analysis (feedback, optimization, structure, fault, optimization…)	× × × × × ×					× × × ×
			Finance validation	× ×									×		×	
	Group Solving methods	635 Brainwriting method Brainstorming Crowdsolving, a community of practice Disney method, six thinking hats General group thinking Nominal group technique Organization workshop Socratic debate		× × × × × × × × × × ×			× × × × × × × × × × × × × × × × × ×							c
			Forensics	× × ×							× × × ×		d
	Heuristics	Metaheuristics (nature inspired: stochastic diffusion search, ant colony optimization, particle swarm, boids, evolutionary algorithms, artificial immune systems) Razors principles (parsimony)		× ×		×			× × ×		× × ×	×		e
			Rules of thumb (adages, expert opinions)		× ×							×				×
	Thought Ex-	periments	Futurology, prevention, computational study, technol-ogy assessment, transhumanism, resource and impact evaluation, life extension Artificial intelligence, fuzzy logic theory Paradoxes in utility theory (Allais, Ellsberg, Proebsting, value)	× × × × ×			× × × × × × × × × × × × × × × ×		f
	Theory of In-	ventive Problem	Original TRIZ 40 principles of invention 39 characteristics of a technical system 39×39 TRIZ contradiction matrix Lean TRIZ, Lean Process TRIZ S l i (TRIZ) AIDA (Advanced Innovation Design Approach)		× × ×		× ×		× × × × ×		× × × ×			g h
			Laws of technical systems evolution		×		×			×			× × × ×	
	Five or six Ws: Who, What, Where, When, Why, How; GROW = Good Reality Obstacles Way Forward; 635 Brainwriting = 6 participants
	writing down 3 ideas within 5 minutes; six thinking hats= six distinct directions of critical thinking when exposed to novelty and with assigned

colors: Managing Blue, Information White, Emotions Red, Discernments Black, Optimistic response Yellow, Creativity Green; General group thinking = identifications of antecedents, tendencies, symptoms, defects and outcome; Nominal group technique=introduction, silent generation of ideas, sharing ideas, groups of discussion, voting and ranking.

Table II - 2 .

 II2 Comparison between the complexity level defined by Genrich Altshuller and the TRL.

Table II -

 II 

	Linearity with 𝒙𝒙	convexity	Linearity with 𝒙𝒙	convexity	Type of problem
	linear	convex	linear	convex	linear programming
	nonlinear	-	linear	convex	nonlinear programming
	linear	convex	nonlinear	-	nonlinear programming
	-	convex	-	convex	convex optimization
	-	nonconvex	-	convex	nonconvex optimization
	-	convex	-	nonconvex	nonconvex optimization
	-	nonconvex		nonconvex	nonconvex optimization

3. Typology of optimization problems

Goals: {𝑖𝑖 𝑘𝑘 (𝒙𝒙)} 𝑘𝑘=1..𝑙𝑙 Constraints ℎ(𝒙𝒙), 𝑇𝑇(𝒙𝒙)

Table II -3.

 II 

Table II -4. List

 II of relevant monographies to tackle complex optimization problems (convex or not) met in engineering and related fields.

	Topic	Public	References
	Fundamentals of convex analysis	advanced	a
	Convex optimization and convex geometry	intermediate	b
	Convex optimization	intermediate	c
	Linear and nonlinear programming	intermediate	d
	Convex analysis and global optimization	intermediate	e
	Convexification and global optimization	advanced	f
	Illustrations of multiobjective optimization in chemical engineering	intermediate	g
	a. Hiriart-Urruty and Lemaréchal (2004); b. Dattorro (2005); c. Boyd et al. (2004); d. Luenberger and Ye (2008); e.Tuy (2016);

Table II -5. Classification

 II of ecodesign tools and methodologies and associated problem-solving method (

see Table II-1).

  

	Problem-solving method→				Analysis				Heuristics		Thought	experiments	TRIZ
	Ecodesign tools and methods ↓	Check list, case-based study	Quality Function deployment (QFD)	Failure mode and Effect Analysis (MEA)	Value analysis	Life Cycle Assessment (LCA)	Life Cycle Cost analysis (LCC)	Social Life Cycle Assessment (SLCA)	Diagrams and matrix-based tools	Decision analysis (multicriteria)	Heuristics: multicriteria optimization	Thought Experiments (Simulations)	Artificial intelligence, fuzzy logics	Artificial intelligence, axiomatic	Theory of inventive problem	Typical references
	FRAMEWORKS															
	Design for Sustainability (D4S)					×			×							×	a
	Sustainable Product Development (SPD)		×			× ×		×			×					b
	Life Cycle Planning (LCP)					× ×					×				×	c
	Redesign framework (RF)					×				×		×					d
	Life Cycle Sustainability Assessment (LCSA)					× ×		×								e
	CHECK LIST AND GUIDELINES															
	Many guidelines (Fast Five, Black, Whide and Grey list, Ten Golden Rules, Ecodesign pilot…)	×															f
	Consumer integration in suistainable product devel-opment	×															g
	RATING AND RANKING TOOLS															
	Cost estimation for environmentally conscious product development		× × ×								×			h
	SEEbalance (Socio-Ecoefficiency analysis)					× × ×									i
	Axiomatic design	×			×										×		j
	Product Sustainability Index (ProSi)	×		×		×											k
	ANALYTICAL															

TOOLS (see software) SOFTWARE AND EXPERT SYSTEMS (examples)

  

	Multicriteria optimization		× ×	×	× ×	×	l
	COMPLIMENT: LCA, environment indicators and multicriteria optimization		×	×			m
	Platform G.ENE.SI	×	× × ×				n
	Commercial software: GABI	×	×				o
	Commercial software: Simpro		×				p
	Commercial database: Ecoinvent		×				q
	Opensource software: openLCA	×	×				r
	ORGANIZING TOOLS (example)					
	Integrated ecodesign decision making	× ×	×				s
	CAD INTEGRATED TOOLS AND METHODOLOGIES (examples)				
	Ecologic CAD	× ×	×	×		×	t
	EcoCAD (design for disassembly)	× ×	×			×	u
	Design for remanufacture	× ×	×	×		×	v
	References: a.					

Table II -6.Prerequisites and

 II 

	indicative tiers to be used for compliance testing (R1=most severe,
	R3=most refined)			
	Prerequisites		Type of estimate	tier
	Migration modeling	•	Guidance documents	R1
	or related calculations	•	Reference text books	R2
		•	technical specification	R1
	Identity of material	• •	recycling code measurement	R2 R3
		•	density	R1
	Characteristics of the polymer	• •	glass transition temperature crystallinity	R2 R3
		•	real substance (disclosed by supplier)	R1
	Identity of the substance	• •	chemical structure (spectroscopic technique) chemical descriptors (analogous substance)	R2 R3
		•	1 kg packed in 6 dm 2	R2
	Packaging geometry	• •	1D approximation of real geometry 3D real geometry	R2 R3

Contact conditions (time, temperature, phase in contact…)

  

		•	standard test conditions	R1
		•	accelerated conditions	R2
		•	real conditions	
		•	overestimates (guidance)	R1
	Initial concentration	• •	real values (technical sheet) estimates from brute force deformulation	R2 R3
	Diffusion coefficients Partition coefficients Sorption isotherms	• • • •	overestimates real values molecular theory (e.g. Flory-Huggins, free-volume) molecular modeling (e.g. atomistic calculations)	R1 R2 R3 R3
		•	no resistance	R1
	Mass transfer resistance in the contacting phase	• • •	boundary layer approximation explicit transport in the food (solid and semi-solid food) full Graetz problem with flow	R2 R2 R3
		•	maximum amount in the raw material QM	R1
	Acceptable thresholds	• • •	specific migration limit: SML threshold of regulation toxicological threshold of concern: TTC	R2 R3 R3

Table II -8. Key dimensionless

 II 

					quantities of the migration from monomaterials. Contact is assumed
	to be initiated at	0 t = .							
	Dimensionless quantity	Meaning							Justification
	( ) , u x t	=	( ) , ref C x t C	tion Dimen-sionless concentra-	ref C is a reference concentration, usually the initial concentration in the polymer 0 t P C = .
						At macroscopic equilibrium, it is also defined as
	/ F P it is defined from Eq.(II.7). K	Partition coefficient	K	/ F P	=	( ( C t F P C t	→ ∞ → ∞	) )	with	( ) C t and F	( ) C t the volume-P
						averaged concentrations in F and P, respectively.

The profile plotted in Figure II-8a for

  

					The critical Fourier number is given by
	( = = ) ( ) ( 2 6 critical BL p F P Fo x l D D . 1 ) ( ) 6 BL p x l Bi Bi = and 0.1 Fo = deviates from the assumption above. The critical Fourier number is 1.67
	and the value of ( C x	) → ∞ is close to zero, whereas the food is already contaminated via its , t
	boundary layer.							
	Implicit food representation approximates the concentration in the food,	( ) C t , by F
	its concentration far from the interface. By noting that the flux ( ) j t is taken after the bound-
	ary layer, one gets:						
	( ) ( C C t F = = ≈ ) ( ) , 0 F C t x t → ∞	+	0 t ∫	j	( ) t dt	for	critical t Fo >	2 p P D l	(II.10)
	For	Bi >	50	and if the threshold of concern is not too low, the amount present in the
	boundary layer can be neglected (less than 1%				

in Figure II-8a when

  

	Bi =	50

Chapter II. Literature review Figure II-9. Dimensionless desorption kinetics

  

				( ) v Fo *	=	( ) eq F C Fo F C	for various values of	/ P F L ,
	restrict the use of Eq. (II.19) to / F P K and Bi with / 1/ eq F P F C L = (II.18), respectively.	0 1/ P + C Fo	4 F P 10 / K	, it is recommended to . Approximations [1] and [2] are given by Eqs. (II.17) and

-> . II.2. Evaluation of the migration from packaging

materials 43 II.2.3.5. Governing equations for multilayers

  

Table II -9. Illustration

 II 

of the main behaviors associated with multilayer structures. The concepts of functional barrier and reservoir are illustrated in Figure II-11.

  ,

	nsteps	steps	i	
	steps			
			i	i
	nsteps		steps	i
	steps			
	t P	t		t t	t t

  but with a con- centration gradient. The corresponding diffusion coefficient is called the trace diffusion coefficient. Experimentally, the velocity ( ) II.37) is correct but suffers from a lack of generality for an arbitrary initial distribution of solutes. The approach presented in §II.2.3.6.3. is more general. Eq (II.31) associated

	to F D	=	P D	shows that:												
				P D	=	6	N	1 migrants	lim t →∞	d dt	N	1 migrants i = ∑ r i CM	( ) t	-	CM i r	( ) 0	2	1 6 = l im CM t d g dt →∞	( ) t	≈	g	( ) t 6 CM t	(II.38)
	Factor 6 appears in Eqs. (II.37)-(II.38) instead of factor 2 shown in Eq (II.31), because the
	random walks are considered in three dimensions and not anymore in one dimension. The
	mean-square-displacement										
													, u x t can be determined from the lag-time, lag t ,
	associated with the migration across a functional barrier of thickness fb l . Noting that
	lag t =	2 fb P D l 6	(see §II.2.3.5.5. ) leads to:								
								( u x = = = ) 0, lag t t	( ( J x C x = = 0, 0, t t t t lag lag = = ) ) fb lag l t = =	6	l l	2 fb fb	P D =	6	P fb D l	(II.37)

II.2. Evaluation of the migration from packaging materials 61 Eq. (

  partial pressures in an ideal gas offer an almost universal potential to estimate the potential of transfer of any substance (e.g., a volatile organic compound, a liquid plasticizer, a crystalline pigment or a poorly soluble additive or mineral oil residues). The reference fugacity needs to be adapted accordingly as shown in TableII-11.

	tential from pressure ref P to P is	RT	ln ref P P	for a pure ideal gas. Lewis generalized to phase
	mixtures (ideal or not) by replacing pressure by a function i f , called fugacity and assessing
	the capacity of a substance literally to flee:
				µ	i	, α	-	µ	, r ef i α	ln = RT	, , i ref i f α f α	(II.46)
			Reference values at the temperature T , ref i α µ and , ref i f α are physically related, but the
	choice of the reference chemical potential or the reference fugacity is arbitrary. The ratio
	i a	, α	, , i ref i f α f α						
										f	i	eq α	=	f	, eq β α	) at equilibrium, it is conven-
	ient to choose the same reference state , ref i α µ	=	µ	, ref i β	in both phases. Following the intuition of

=

defines the activity of the solute i in the phase α ; it provides a measure of the difference of the substance(s) chemical potential in α with its reference state. To describe mass transfer between the phases α and β (i.e., with , II.2. Evaluation of the migration from packaging materials 71

Lewis, equivalent 

Table II -

 II 11. Expressions of practical partial pressures and saturation concentrations in relationship with the reference state of the substance in the conditions where its migration its studied.

	Application	Choice for the fugacity: i f	Choice for the reference fugacity: ref i f	Relationship with the concentration of substance i in the phase α : , i C α (SI unit is mol⋅m -3 )
	Volatile substance in a gas phase (α =gas phase)	partial pressure: i p	total pressure: P	, p RTC α i i =
	Dissolved substance in a condensed phase (polymer, liq-or F) erence state (α =P uid) with a liquid ref-	partial pressure (equivalent par-tial pressure in p α ): i equilibrium with gas phase δ in the theoretical	saturation pressure of the pure substance at the same temperature:	

Table II -12. Density

 II 

(kg⋅m -3 

) of water-ethanol mixture and corresponding volume fraction of ethanol ( ethanol φ ) between 10 and 60°C. Volume fractions are calculated from partial molar volumes.

4. Binary Flory-Huggins coefficients in a copolymer AB Based

  on calculations at the molecular scale,[START_REF] Nguyen | Off-lattice Flory-Huggins approximations for the tailored calculation of activity coefficients of organic solutes in random and block copolymers[END_REF] demonstrated that

		992.6087	0.0463	991.0594	0.0465	988.4199	0.0466	984.8805	0.0467	975.3125	0.0473
	7	990.0815	0.0640	988.4460	0.0643	985.7365	0.0646	982.1110	0.0650	972.3164	0.0660
	10	986.5772	0.0903	984.7554	0.0912	981.8636	0.0920	978.0521	0.0928	967.9100	0.0938
	12	984.3969	0.1080	982.3832	0.1092	979.3060	0.1103	975.3416	0.1113	965.0044	0.1125
	15	981.3355	0.1339	978.9701	0.1356	975.5866	0.1372	971.3450	0.1386	960.6287	0.1407
	20	976.6829	0.1773	973.5916	0.1800	969.5825	0.1826	964.7720	0.1847	953.2020	0.1883
	30	967.1218	0.2695	962.2368	0.2739	956.6964	0.2775	950.5944	0.2807	937.1834	0.2857
	40	954.5007	0.3722	948.0405	0.3755	941.2003	0.3789	933.9794	0.3816	918.9400	0.3863
	50	937.5325	0.4773	930.1519	0.4795	922.4957	0.4816	914.5695	0.4837	898.2414	0.4877
	60	917.0055	0.5812	909.1314	0.5828	901.0173	0.5844	892.6443	0.5859	875.3261	0.5894
	70	893.7478	0.6847	885.5598	0.6858	877.1417	0.6869	868.4696	0.6883	850.5234	0.6908
	80	867.6778	0.7889	859.2628	0.7896	850.6228	0.7906	841.7478	0.7915	823.5828	0.7929
	90	837.7669	0.8940	829.2000	0.8946	820.4500	0.8950	811.4700	0.8954	792.9257	0.8971
	95	819.9502	0.9478	811.3845	0.9479	802.6589	0.9481	793.7375	0.9482	774.9002	0.9491
	99	802.7596	0.9900	794.2436	0.9900	785.6217	0.9901	776.8538	0.9901	758.1182	0.9900
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  The shape of the backbone of an infinitely long chain with shorter oligomers prevents head and tail atoms from coming in contact with any van der Waal surface. Cooperative hydrogen bonding is accounted for by using a value of cooperative

					n	greater
	than one. The latent heat of vaporization of water can be correctly approximated by
	water water T h +	using a value of cooperative n	different to unity. This value depends on the type of
	forcefield used to simulate water. As an example, the rigid water model governed by the TIP4P
	forcefield gives an acceptable value with	cooperative n	1 = whereas	4

cooperative n

= is required with the same forcefield but using three-point charges (forcefield TIP3P). The number 4 reinforces II.2. Evaluation of the migration from packaging materials 79 in this case that any water molecule is on average involved in 4 hydrogen bonds of similar strength. Contact energies are calculated irrespective of any temperature consideration. The effect of temperature is recovered by weighting the distribution of contact energies with the Boltzmann factor ( )

Table II -

 II 

	random contribution			distribution	recommendations rubber polymers glassy polymers
	diffusion coefficient	10 log	* P D	(	)

13. Recommended distributions for probabilistic modeling of the migration from monolayer materials. The distributions of * v and * Fo are posterior distributions.

  Other limitations are more systemic and require specific attention. Classic LCA is not holistic and does not incorporate a seek to quantify any specific actual impacts. While seeking to establish a linkage between a system and potential impacts, LCA models are suitable for relative comparisons but may be not enough for absolute predictions of risks.Even for relatively small systems, LCA is a comprehensive task that requires interdisciplinary knowledge in the technical and economic areas. Hence, LCA projects are typically assigned to teams of experts (with accreditations when possible) and can rarely be performed by a single person with enough accuracy. Its incorporation in automatic algorithms is debatable with the current state of the art. The conclusions of the US EPA guidance are very specific: "This valuable information provides a way to account for the full impacts of decisions, especially those that occur outside of the site that are directly influenced by the selection of a product or process. Remember, LCA is a tool to better inform decision-makers and should be included with other decision criteria, such as cost and performance, to make a well-balanced decision." (see p.60 of[START_REF] Saic | Life Cycle Assessment: Principles And Practice[END_REF].

procedure to identify the most impacting (critical) product, process, or technology. Environmental, technical and social metrics need to be combined independently with LCA for comprehensive sustainability analysis. Unlike traditional risk assessment, LCA does not II.3. Evaluation of the environment impacts of food packaging 101 necessarily attempt

  or high-pressure treatments such as pascalization, tolerating high internal gas pressures, easy cleaning and poring, recyclable materials, lightness, mechanical resistance, chemical resistance to alcohols and acids. Due to these constraints, all categories of materials are used for liquid beverages: glass, metals, paperboard, plastics, hybrid systems with plasma treatments or complex, active systems, etc. The different applications of these materials have been reviewed in[START_REF] Coles | Food and Beverage Packaging Technology[END_REF] and are summarized in TableII-15. The technical benefits of each material category are compared with their negative impacts on the environment or food safety.

Technical constraints include filling at high temperature or in aseptic conditions, accepting thermal treatments such II.3. Evaluation of the environment impacts of food packaging 103 as pasteurization

Table II -

 II 15. Overview of typical packaging materials for beverages (after[START_REF] Marsh | Food Packaging-Roles, Materials, and Environmental Issues[END_REF]Welle,2011;[START_REF] Ramos | New Trends in Beverage Packaging Systems: A Review[END_REF] 

	Material type (example)	Main bever-ages	Technical benefits (environmental benefits in bold)	Negative impacts (environment impacts in bold)
			Refillable	
		fruit drinks,	Fully recyclable (in the same color)	
	Glass (bottles)	sparkling wa-ter, car-bonated beverages, beer, wine, liquors…	Reusable and good insulation Odorless, chemically inert Absolute barrier to gases and vapors Accept heat sterilization rigid, transparent, various colors and shapes	
			High resistance to internal pressure.	

High weight High recycling energy Fragile, sensitive to thermal shock Color cannot

  be removed during recycling (colored glasses should be kept for the usage) Minor risks of contamination by heavy metals Closure systems (metallic or cork) are sources of contaminants.

				Fully recyclable and easily separable from non-	Requires an internal varnish or coating: source
	Metal: steel			magnetic metals	of contaminants
	(cans)			Absolute barrier to gases, water vapor, light and	
		soft drinks,	odors	
	Metal: alu-minum	soda, water, lemonade beverages, beer, fruit drinks …	Strong mechanical resistance Fully recyclable Light weight and flexible Absolute barrier to gases, water vapor, light and odors	Difficulty in sorting and separating alumi-num materials from other metals (may pre-clude economically feasible recycling) High cost compared to other metals
	(cans)			Highly resistant to corrosion	Inability to be welded
					Requires an internal varnish or coating: source
					of contaminants
	Paper, pa-	Milk,	soft	Recyclable only for disposable packaging	Not recyclable when combined with other ma-
	perboard	drinks, …		(glass, cup)	terials (plastics, aluminum)
	(aseptic carton, gable top)			Lightweight, good strength to weight characteris-tics Economical compared to other packaging sys-	Migration of mineral oils and printink ink constit-uents, adhesives.
				tems, efficient, low-cost protection	
				Recyclable for non-food contact (textile fibers)	Degradation of PET during recycling
	Plastics (PET bottles )	soft drinks, mineral wa-ter, energy drinks, ice-tea, juice, beer, wine…	and food contact (after mechanical or chemical recycling). Easy processing from preforms final bottles. Light weight and shatter resistance Good barrier to water vapor, oxygen, CO2 Semi-crystalline PET has good strength, ductility, stiffness, and hardness Transparent and high clarity material Functional uses (thermosealable, microwavable,	Risk of plasticizing by ethanol, water, CO2 Rapid loss of barrier properties with high tem-perature during storage and transportation Migration of acetaldehyde, terephthalic acid, and other degradation products of PET, as well as migration from post-consumer contami-nants. Poor reputation, regarded as a potential source of endocrine disrupting substances
				optical properties and unlimited size and shape)	

Table II -

 II 16. Comparative environmental impacts of PET containers vs alternative materials from a selection of studies. Containers are bottles except if mentioned differently. The selection is based on peer-reviewed studies except if indicated otherwise. Considered impacts include the production of containers, transport, disposal of solid waste resulting from packaging and recycling.

	PET vs (application)	LCA study	in favor of PET	In disfavor of PET
			Recycled PET is much better than	Glass is less impactful if recycled at a rate
	glass (extra-virgin olive oil)	a	lower energy consumption of the glass even when recycled due to a	larger than 40%.
			recycling process.	
	glass (mineral water)	b	Light weight packaging with fewer impacts than glass.	Higher impacts for global warming and photochemical oxidation potentials.
			Higher recycling rate (open and	Carton has the lowest impact of green-
	carton box (juice and milk)	c	close loops) and light weight.	house gas emissions, lowest fossil en-ergy consumption and lower acidification
				potential.
			Fossil-based PET has less impact	Recycled and bio-based PET has the
	recycled / bio-	d	on acidification, terrestrial eutroph-	lowest consumption of non-renewable
	based PET		ication potential, ecotoxicity, and	energy use and greenhouse gas emis-
			ozone depletion.	sions.
	poly(lactic) acid		PET has lower eutrophication and	PLA has a lower total greenhouse gas
	(PLA)	e	acidification potentials, as well as	emission and fossil energy demand.
	(mineral water)		lower greenhouse gas emission	
	Polyethylene fu-		Technologies for PET are much	PET has a high consumption of non-re-
	randicarboxylate	f	well developed.	newable energy use and greenhouse gas
	(PEF)			emissions.
	Polystyrene (PS) (boxes)	g	tential as PS. PET has a low global warming po-	Lowest cost.
	high-density poly-ethylene (HDPE)	h	Less energy to recycle PET	More solid wastes and greenhouse gas emission to recycle PET than HDPE
	References: a. Accorsi et al.			

Table II -

 II 17. Main factors affecting food shelf-life or safe life (after Table 2.1 of[START_REF] Singh | Food Packaging Materials: Testing & Quality Assurance[END_REF].

						overall
			Mechanisms	coupled with the following transfer	activation	influence of packaging
						(risk)
			autooxidation of lipids			
	CHEMICAL	MECHANISMS	secondary oxidation (induced by the de-composition of hydroperoxides) color changes of meat, dairy products, beer	permeation of oxygen, dissolution of oxygen from headspace	temperature + UV light transmission	high (food quality)
			Decay of compounds with nutritional			high
			value (vitamins, antioxidants)			(shelf-life)
			water-related texture changes (from			
			glassy to rubber behavior or in the re-verse order)	permeation of water	relative-humidity temperature	
	PHYSICAL	MECHANISMS	water-mediated texture change (in-duced crystallization, physical aging of emulsions and foams) aroma scalping (sorption, permeation) permeation of off-flavors Global water loss (reduction of volume or weights in beverages, dairy products, vegetables, meat, etc.)	heat transfer plasticizing of the packag-ing material, permea-tion/sorption of water, alcohols for polar materials	temperature variations temperature relative-humidity temperature	high (food quality) medium, low (shelf-life)
	BIOTIC	MECHANISMS	Growth of spoilage microorganisms Growth of pathogens, production of toxins Loss of metabolic activities in fresh products due to senescence, softening and staining (fruits, vegetables, mush-	accumulation co2 (bacterio-static, metabolism inhibitor), permeation of oxygen gas transfer water transfer	oxygen temperature relative humidity	medium (food quality) medium (food safety) medium (food quality)
			rooms)			

Table II -

 II 18. Examples of sustainable and green chemistry applicable to food packaging

	Domain	Examples	Application for food packaging
	Toxicity and chemical wastes	Biologically safer chemicals through retrometabolic design	reengineer all substances with endo-crine disruption potential
	Longer ser-vice life	Controlled wear and breakage, durable materials	refillable, reusable packaging

Table III - 1 .

 III1 Specific goals to be extended and the corresponding approach followed in this work

							O6/ Parametric geometry coding (solid of revo-
	Packaging shape optimi-zation (evolu-tive geometry)	[E][S]	(sophisticated	geometry models)	O6/ Parametric geometry models of arbitrary bottle shapes (with cylindrical symmetry or not) defined by a set of constraints (shape, capacity, opening, neck length, additional constraints such as shape feasibility)	lution, projection of arbitrary surface), volume discretization (curvilinear, triangular, quadran-gle). O6/ Geometry solver to verify design con-straints and specifications (internal volume in-
							tegration, regularized splines, etc.)
	Minimization the risk of me-chanical con-straints (overpressure and collapse)	[E][D]	(implicit	model)	O7/ Mass transfer balance on the headspace	O7/ compressible mass transfer model inte-grating the thermal expansion of gases and liq-uids. Oxygen and nitrogen will be assumed insoluble in the beverage.
	Minimization of the migra-tion	[E]	(molecular	model)	O8/ General model of diffusion coef-ficients (other properties such as activ-ity coefficients are expected to be calculated at atomistic scale using the	O8/ parameterization of the general coarse-grained model of diffusion in arbitrary polymers (above and below 𝑇𝑇 𝑔𝑔 )
						methods detailed in §V.4. )
	Maximization of the amount of recycled materials	[D][S]	(linking de-	sign)	O9/ Risk formulation integrating de-sign in alcoholic beverages (see §V.2. )	O9/ Optimization scheme accounting for the bottle capacity and shape, maximum ethanol consumption, ethanol-strength
	Goals to reach "optimal Design"	Step(s) to be	refined †	Scientific objectives 𝑂𝑂 1 … 𝑂𝑂 11	Approaches followed in this work
	Shelf-life maximization	[E]	(filling cognitive gaps)	O1/ Thermodynamics of the beverage O2/ Mutual diffusion and sorption (water-ethanol) in the polymer O3/ Activation of diffusion and sorp-tion by temperature and plasticizing	O1-O3/ Theoretical approach (UNIFAC for wa-ter-ethanol mixtures, free-volume for diffusion, ternary Flory isotherms) O2-O3/ Experimental approach to assess the validity limits of models and uncertainties associ-ated to them on materials with uniform thick-nesses (PET films).
							O4/ 3D simulation scheme with implicit food
							model and section refactorization.
	Packaging weight minimization	[E][D][S]	(extending tools	and validation)	O4/ Water and ethanol sorption and permeation through a "complex" ge-ometry with a thickness profile. O5/ Risk of plasticizing and aging of the structure with a thickness profile.	O4/ Real challenge test on real bottles filled with model hydroalcoholic solutions in controlled conditions. O5/ Identification of polymer relaxations after exposure to water, ethanol on thin and thick films. Microstructure determinations via intrinsic
							fluorescence, Raman and FTIR-ATR microspec-
							troscopy (results not shown)
							Chapter III. Goals and Approaches

Goals and Approaches be

  repeated as necessary within the �𝐸𝐸 𝑇𝑇 𝑖𝑖 𝑡𝑡𝑖𝑖𝑒𝑒𝑜𝑜 [𝐷𝐷][𝑆𝑆]� step. Conversely, the resolution with full coupling over the entire beverage shelf-life (several months) needs to be restricted to feasible solutions or even better to the solutions belonging to the Pareto front.

	Coarse but consistent simulations are sufficient to explore a large domain, whereas
	detailed simulations combined with proper sensitivity analysis are required only for validation
	purposes. As a result, the optimization problem was formulated as a multiresolution (different
	tiers) and multiscale (molecular scale for transport and thermodynamic properties, mass
	transfer at the scale of walls, shelf-life scale) simulation problem. Since there is no general rule
	to define a priori the proper levels of details required to describe the considered mass diffusion
	problems, a systematic comparison with the results obtained with the next tier or experiments
	eral case, the [E]valuation step, involving the resolution of coupled non-linear partial differ-
	ential equations, is the most computationally intensive task, far before the [D]ecision and the
	iterative [S]olving steps. The [E]valuation step itself was constructed by reusing an earlier
	nested modeling library developed by INRA, enabling to couple many simulation steps to-
	gether (see §II.2.3.6. ), as well as deterministic and probabilistic modeling (see §II.2.6. ). Fol-
	lowing the same strategy and by reusing the tier approach shown in §II.2.2. , the steps [D] and
	[S] were nested into the [E]valuation one and calculated as a sequence: �𝐸𝐸 𝑇𝑇1 𝑡𝑡𝑖𝑖𝑒𝑒𝑜𝑜 [𝐷𝐷][𝑆𝑆]� →
	�𝐸𝐸 𝑇𝑇2

[E], [D] and [S]. In the gen-𝑡𝑡𝑖𝑖𝑒𝑒𝑜𝑜 [𝐷𝐷][𝑆𝑆]�→�𝐸𝐸 𝑇𝑇3 𝑡𝑡𝑖𝑖𝑒𝑒𝑜𝑜 [𝐷𝐷][𝑆𝑆]�→ ... For example, parameterizing a 3D geometry to fit a given capacity and bottle shape, followed by the generation of a valid mesh, is a very fast step and can Chapter III.

were considered. Up to five tiers were included as shown in Table

III-2.

Table III -

 III 

			 	i tier T E	D S	 
	tier	Macroscopic description	Transport properties and other phenomena	Strategy to evaluate the
	𝑻𝑻 𝒎𝒎				refinement needs
		Decoupled fluxes in the walls,	Constant and uniform (tabulated data, free-vol-	comparison with T2
	𝑇𝑇 1	ance in the liquid no coupling with the mass bal-	ume theory and Flory-Huggins at infinite dilution)
	𝑇𝑇 2	as T1 with coupling in the liquid Food thermodynamic model		Comparison with experi-ments and T3
		as T2 with plasticizing effects	as T1 and T2 with concentration or volume frac-	Comparison with experi-
	𝑇𝑇 3	(and polymer relaxation)	tion as parameter		ments associated to long-term contact and thin films.
	𝑇𝑇 4	fluxes as T3 with coupling between	Phenomena to be identified firstly.	

2. List of the considered tiers in the nested formulation [ ][ ] Hysteresis

Chapter IV. Materials and Methods

Table IV -1.

 IV 

Table IV -3.

 IV 
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Table IV - 2 .

 IV2 Thermodynamic and transport properties of water and ethanol in PET

	Diffusivities	Values	Tier	Deborah number i 𝑙𝑙=12 µm 𝑙𝑙=628 µm
	35 D = ° w T	C	a 1.5 × 10 -12 m 2 ⋅s -1	1,2	5180	1.89
	50 D = ° w T	C	b 2.6 × 10 -12 m 2 ⋅s -1	1,2	7637	2.79

Table IV-4 collects

  

reference data used in this work to test and parameterize the different level of refinements.

Table IV -3. Consolidated

 IV 

	Sophistication	Solute	Material code or Reference	Activity range (ae or aw)	Temperature range (°C)
	Effects of concentration in binary diffusion	water ethanol	F1,F2,F3,F4,F5,M References see Figure V-16a F1,F2,F3,M References see Figure V-16a	0-1 0-1	20,23,25,35,50,60, 70,80,90,100 4,25,35,40,50,57
		methanol	Chandra and Koros (2009b)	0-0.95	35
	Effects of concentration in ternary isotherm	water, ethanol	F1,M	-	40,50
	Effects of physical aging				
	(polymer plasticization,	water	Dubelley et al., 2017a	0-0.9	23,40,50,60,70
	relaxation, densification)				
	Hysteresis	water	F1,M	0-0.95	25,50
	Solute-specific relaxation	water, ethanol, toluene	F1,M	1	50
	140				
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  Overview of the database for binary diffusion coefficients in PET and in additional pol-

	small integer greater than unity. Additionally, the list of polymers included polymers with pa-
	rameterized FV parameters (PE, PS, PVAc, PMMA) and others without any FV parameteriza-ymers used for validation
	tion (PET, PEN, PA6). The 422 already published values were combined with 11 internal 𝐷𝐷 values in PET from Fraunhofer (IVV, Freising, Germany) in an attempt to fill the most critical gaps: compar-ison of the behavior of n-alkanes with 1-alcohols, completion of the alkylbenzene series. Dif-linear probes including an alkyl chains of mass 𝑴𝑴 range of 𝑴𝑴 (g⋅mol -1 ) 𝑴𝑴 𝒆𝒆𝒆𝒆𝒂𝒂𝒆𝒆𝒆𝒆𝒓𝒓 ‡ (g⋅mol -1 ) 𝑴𝑴 𝒃𝒃𝒆𝒆𝒆𝒆𝒃𝒃 ‡ (g⋅mol -1 ) polymer 𝑻𝑻 𝑻𝑻 (K) experimental 𝑻𝑻 range (K) number of 𝑫𝑫 values Method of de-termination References
	44 -198 fusion coefficients above 𝑇𝑇 𝑔𝑔 were inferred from the lag-times in permeation experiments. 0 28 PET 354 343-373 35 (a) (Ewender and Welle, 2014) (Ewender and Welle, 2014) Values below 𝑇𝑇 𝑔𝑔 were measured using an automatic gravimetric microbalance (see §IV.2.2. ) on film F1. n-alkanes 170-310 0 28 PET 354 393 -452 24 (b) (Ewender and Welle, 2013, 2018) 72 -198 0 28 PA6 342 353 -373 39 (a) (Ewender and Welle, 2016) 114-226 0 28 PS 367 348 -418 24 (c) (Bernardo, 2012) Regular solutes 86 -128 0 28 PVAc 305 363 -383 12 (d) (Arnould and Laurence, 1992)
			16 -170	0	28	PEN	397 383 -413		66	(a)	(Ewender and Welle, 2019)
			43 -113		28	PET	354	373		6	(a)	Fraunhofer Institute †
	Non-regular solutes	1-alchohols alkyl-acetates alkyl-benzenes	43 -113 15 -225 43 -113 15 15 -71 15 15 -225 1 -57	17 59 59 77	28 28 28 14 28 14 14 14	PA6 PS PEN PMMA 393 362 -444 342 343-373 367 328-418 397 383 -413 PVAc 305 333 -383 PMMA 393 398 -434 PS 373 383 -413 PET 354 373		21 32 30 12 25 4 21 5	(a) (c) (a) (e) (e) (e) (e) (a)	(Ewender and Welle, 2016) (Bernardo, 2013) (Ewender and Welle, 2019) (Pawlisch et al., 1988) (Arnould and Laurence, 1992) (Pawlisch et al., 1988) (Pawlisch et al., 1988) Fraunhofer Institute †
		methacrylate	15	85	14	PMMA 393 408 -434		3	(e)	(Pawlisch et al., 1988)
											(Kloppers et al., 1993;Launay
											et al., 1999;Sammon et al.,
		water	-	-	-	PET	349 292 -463		48	(c,d,f,g)	2000;Shigetomi et al., 2000;Eslami and Müller-
	Validation solutes	toluene	-	-	-	70 K -PMMA 354 403 -433 PS 373 383 -451 PET 349 a 333 b 313 -453	K Plathe, 2009;Dubelley et al., 160 2017a) (Zielinski and Duda, 1992) (Zielinski and Duda, 1992;Vrentas and Vrentas, 1994b) (Ewender and Welle, 2013, (a,b,d,h) g T T ≤ -≤ 3 (d) 5 (e,i) 14 2018) (Pennarun et al., 2004;Franz and Welle, 2008)
						PVAc 305 313 -383		3	(d)	(Zielinski and Duda, 1992)
						LDPE 153	343		1	(d)	(Lutzow et al., 1999)
		Total	-	-	-	7 polymers	-	-	433 values	-	21 refs.
										
	The molecular mass of the repeated unit is denoted blob M	whereas the molecular mass of pat-
	tern larger than blob M	is called anchor with a molecular mass denoted anchor M	. The definitions
	of anchors and blobs were not unique, and they corresponded to the somewhat arbitrary def-
	initions of the rigid jumping units in the solute. The power laws associated to the scaling of 𝐷𝐷
	were, nevertheless, shown to be invariant with the replacement of blob M	by	k M ⋅	blob	, with 𝑘𝑘 a
	IV.1. Materials									141

Table IV-5 with the selection procedure detailed in table footnotes. Concentration ranges, polymer plasticization and additional parameters such as polymer crystallinity were common criteria to decide whether 𝐷𝐷 values were introduced or not. The broad temperature range covers , where 𝑇𝑇 is the absolute temperature and 𝑇𝑇 𝑔𝑔 the glass transition temperature. Original Free Volume Theory (FVT, see §II.2.4. ) has been parameterized on mutual diffusivities of small solutes (usually solvents) in amorphous polymers with values typically above 10 -13 m 2 ⋅s -1 . Diffusivities listed in Table IV-5 originated conversely uniquely from larger solutes (e.g. n-alkanes, 1-alcohols) and were collected at infinite dilution and on industrial-thin films at both glassy and rubber states. 142 Chapter IV. Materials and Methods Table IV-4. † Welle (2016); a dry state and b swollen state of PET. Experimental method: (a) permeation experiments, (b) desorption (migration) experiments into a liquid,

Table IV -6 and in Table IV-7.

 IV 

Table IV - 7 .

 IV7 Studied long-term storage conditions

	Storage	T	RH target	RH measured	Indicative equivalent storage/
	condition	(°C)	(%)	(%) †	transportation conditions
	S0	20	50	55 ± 3	initial condition for filling and sealing
	S1	50	10	7 ± 3	e.g. deep-sea container shipping
	S2	35	75	80 ± 3	e.g. storage tropical region
	S3	35	20	12 ± 3	e.g., transport condition corresponding to the air 50% RH at 20°C and heating up to 35°C
	S4	35	20	12 ± 3	following S3 with a sleeve around the bottle shown in the Figure IV-1e
	† RH average value measured during the experiment.	

Table IV

 IV 

-7 by adding a 60 µm thick shrinkable PET sleeve label on remaining bottles as illustrated in Figure IV-1e.

Table V -

 V 1. Comparison of shelf-lives extrapolated from experiments and calculated from simulations.

			Time to reach	Time to reach	Theoretical shelf-life for 50 mL
			1.5% m/m		±0.3%			bottles * (days)
	Storage condition	Beverage	mass loss † (days)	variation of abv ‡ (days) a t	min	  	  	9 1.5	t	m	,    a t    	  
			exp.	sim.	exp.	sim.	exp.					sim.
	S1	B1	18 (16,20) a	21.1	8.5 (8,9) a	7.3	8.5					7
	S1	B4	17±1.5 b	19.2	-	-	102					115
	S2	B1	>140	>730	>140	225	>140				224
	S2	B4	>140	197		-	>140				1182
	S3	B1	64 (63,65) a	67.1	31 (29,33) a	22.9	31					22
	S3	B4	64 (63,65) a	58.6	-	-	384					351
	S3	B2	54±5 b	62.3	38 (36,40) a	33.5	38					33
	S3	B4	66.5 (64,69) a	58.6	-	-	399					351
	S3	B3	69 (64,74) a	60.7	105	82	105					82
	S3	B4	65.5 (64,67) a	58.6	-	-	393					351
	† see Annex 1 of EU Directive 76/211/EEC (class 'B' product with a package capacity over 1 L); ‡ see Annex XII of EU regulation
	1169/2011/EC (applicable for										

m t

3

  (see discussion inKrüger and Sadowski, 2005;[START_REF] Kadam | Sorption of n-hexane in amorphous polystyrene[END_REF]. Free-volume effects and polymer degradation on sorption are neglected at this stage.

	V.3.1. Why is it difficult to estimate {𝑪𝑪 𝒎𝒎,𝒎𝒎𝒆𝒆 𝑻𝑻,𝑻𝑻 𝑻𝑻 } 𝒎𝒎=𝒘𝒘,𝒎𝒎 in PET at glassy state?
	A consistent simulation model should implement the "right" �𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 � 𝑖𝑖=𝑤𝑤,𝑒𝑒	value at its
	boundaries (LTE), but experiments provide only an estimate of the macroscopic version of
	�𝐶𝐶 𝑖𝑖,𝑒𝑒𝑒𝑒 𝑇𝑇,𝑇𝑇 𝑔𝑔 � 𝑖𝑖=𝑤𝑤,𝑒𝑒	

3.5.1. Reconstruction the FH3 isotherm at 35°C Eq

  . (V.6) is implicit in 𝜙𝜙 𝑤𝑤 and 𝜙𝜙 𝑒𝑒 . The full isotherm was reconstructed by tabulating the activities of water and ethanol for the entire domain of 𝜙𝜙 𝑤𝑤 and 𝜙𝜙 𝑒𝑒 values. The corresponding mass uptakes (𝑚𝑚 𝑤𝑤 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) , 𝑚𝑚 𝑒𝑒 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) and 𝑚𝑚 𝑤𝑤 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) + 𝑚𝑚 𝑒𝑒 (𝑎𝑎 𝑤𝑤 ,𝑎𝑎 𝑟𝑟 ) ) was finally analyzed as a two-dimensional manifold of 𝑎𝑎 𝑤𝑤 and 𝑎𝑎 𝑒𝑒 back-mapped onto 𝜙𝜙 𝑤𝑤 and 𝜙𝜙 𝑒𝑒 space. Temperature was added as a third dimension of the final manifold. Typical iso-mass uptake values calculated at
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  ). In all series, data were sensitive to inherent methodological limitations: diffusion coefficients too large or too slow could not be inferred with the same approach. Values collected by desorption/sorption (PET and PS datasets) were scarce (fewer data in the studied series) near or below g T due to very slow diffusion. Data obtained in permeation experiments (PET and PA6 sets) were, conversely, less reliable at high temperatures due to too short lag-times.

	All studied series exhibit good linearity of ln lin D with ln M and with a slope increasing
	sharply when temperature decreases. Mass dependence loss at high temperatures looked
	stronger in PET (Figure V-25a), but it relied only on two determinations at each temperature
	and on two highly volatile solutes (n-propane and n-butane). For the three data sets collected
	near g T (PET, PA6 and PS), trend lines associated with different measurement temperatures
	converge to one common diffusion coefficient, which is almost invariant with temperature and
	whose value is interpreted via Eq. (V.33) as the diffusion coefficient of a single rigid blob. Av-
	eraging of all pair intersections yields a theoretical molecular mass of the blob, blob M , ranging
	from 21 g⋅mol -1 to 35 g⋅mol -1 , in good agreement with an assumption of a blob commensurable
	to an ethyl group. In PVAc (tested far above g
	and, poly(vinyl acetate) (+58 K ≤	g T T -≤ +78K), in Figures 1a, 1b, 1c
	and 1d, respectively. As data on PVAc were collected from Figures 8-9 in Arnould and
	Laurence (1992)at slightly different temperatures, they were subsequently interpolated to the
	same temperatures. The interpolation was carried out by assuming a linear relationship be-
	tween ln lin D and ( 1 1 g T -	2	-	K	22	)	, in agreement with FVT (see Eq.(12) in Vrentas and Duda,

a D 214 Chapter V.

  In details, n-alkyl acetates with mass ratios

								M M	anchor	ranging from 0.25 and 2.5 were
	thought to be too short to dissipate electrostatic interactions in PVAc. By contrast, longer 1-
	alcohols ( 2.5	≤	/ M M	anchor	≤	6.6	) exhibited a more complex behavior, which was interpreted
	as a variable strength of OH-π hydrogen bonds in PS between rubber and glassy states. Values
	of	anchor a					

V.4. A blob-free-volume model of solute diffusion coefficients in polymers at tiers 3-4 225 V-27.

Table V - 2 .

 V2 Main parameters used to predict diffusion coefficients, and free volume effects plotted inFigures5-7.

										PET	PA6	PS	PVAc	PEN
				g T (K)	354	342	373	305	397
		T range (K)	343-452	343-373	328-418	333-393	373-413
	r	when	g T T < (-)	0.32±0.03 a	0.32±0.03 a	1 b	n.d.	0.32±0.03 a
				K α (K)	181	77 (n-alkanes) 171 (1-alcohols)	112	142	117
				K β (K)	47	8 (n-alkanes) 41 (1-alcohols)	90	20 (n-alkanes) 15 (alkyl acetates)	44
			( ) 12 C (-)	n.d.	17.4 c	13.78 d	15.59 d	n.d.
			( ) 22 C (K)	n.d	51.6 c	46 d	46.8 d	n.d
		M	blob	(g⋅mol -1 )	28 e
	( V M ~* 1	blob	)	(cm 3 ⋅g -1 )	39 f
	( D M 0	blob	)	(m 2 ⋅s -1 )	1.55⋅10 -8 g
						β	lin		1
						u			-86.5
	( E M *	v blob	)	(kJ⋅mol -1 )	17	15 (n-alkanes) 13 (1-alcohols)	0.6224 0	0	28
	M	anchor	(g⋅mol -1 )	17 for 1-alcohols h 59 for alkyl-acetates i

  PA6 (continuous lines), PS (dashed lines) and PEN (dotted lines). The dashed vertical line represents the gT value of the polymer for the corresponding set of data; the corresponding.

Table IV-5 for (a) 1-alcohols and (b) alkyl acetates in PVAc (bold 234 Chapter V. Results and Discussion continuous lines), g T values of PVAc and PA6 are out of bounds.

Table V - 3 .

 V3 Main parameters used to predict diffusion coefficients of water and toluene in Figures8 and 9. and r values of water are fitted from D values reported in[START_REF] Launay | Water sorption in amorphous poly(ethylene terephthalate)[END_REF] (see Figure8a); b value from Table2in Shapiro et al. (2004); c value from Hong (1995); d-f fitted from diffusivities of d PS, e mixed polymers (PMMA, PS, PVAc, LDPE) and f PET (see Figure V-33 caption for details), g values fitted from diffusivities in dry and swollen PET (see Figure

	Parameter / solute	water	toluene
				c 1.87•10 -8
	0 D (m 2 ⋅s -1 ) a 2.94•10 -6	d 3.03•10 -8 e 8.09 -8
				f 1.04•10 -8
	* E (kJ⋅mol -1 )	a 26.5	0
	~* 1 V (cm 3 ⋅g -1 )	b 19.3	b 84.48
	r (-) when	g T T ≤	a 0.32±0.03	g 0.70 (dry PET) g 0.28 (swollen PET)

a D0, E *

Table V - 3 .

 V3 Conventional FV parameters predict diffusivities of toluene at both rubber and glassy states in a satisfactory manner with *

	E = 0 (Figure
	V-32b). It is shown, in particular, that 0

  [START_REF] Franz | Migration measurement and modelling from poly(ethylene terephthalate) (PET) into soft drinks and fruit juices in comparison with food simulants[END_REF]; o[START_REF] Pennarun | Functional barriers in PET recycled bottles. Part I. Determination of diffusion coefficients in bioriented PET with and without contact with food simulants[END_REF]; pEwender and Welle (2013, 2018a); q this work measured from lag-times during permeation experiments; r this work measured by gravimetric sorption with activity close to unity.

b Sammon et al. (2000); c Shigetomi et al. (2000); d Rueda and Varkalis (1995); e Kloppers et al. (1993); f molecular simulation data from Eslami and Müller-Plathe (2009); g Dubelley et al. (2017a); h Burgess et al. (2014b). D0 value of toluene i from Table 4 in Hong (1995); value fitted from diffusion coefficients in j PS at rubber state (see Figure V-33 b-d ), in k mixed polymers at rubber state (see Figure V-33

a-d,j,k 

), l,m from plotted diffusion coefficients in non-swollen PET. Continuous models are plotted for i-l r=0.7 (continuous lines) and m r=0.28 (dashed lines). n

Table V - 4 .

 V4 Comparison of diffusion coefficients determined at different tiers and using different methods

*

Fo( )Γ Γ

Chapter II. Literature review

(IV.15) 

Chapter V. RESULTS AND DISCUSSION

Chapter V. Results and Discussion

V.3. Ternary isotherms of water and ethanol in PET at tiers 2,3

† value at 40°C[START_REF] Franz | Migration measurement and modelling from poly(ethylene terephthalate) (PET) into soft drinks and fruit juices in comparison with food simulants[END_REF]. For chlorobenzene, a surrogate larger than toluene,the authors report a value of 3.8×
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Chapter II. LITERATURE REVIEW

V.3.3.1. Justification of a single isotherm over the whole concentration ranges

DMSM combines a Henry and Langmuir isotherms; it is popular to describe the sorption of gases in polymers [START_REF] Paul | Dual Mode Sorption Model[END_REF]. It is usually associated with different mechanisms of sorption between the relaxed and non-relaxed volume of the glass. Despite the absence of ternary formulation for DMSM, its main limitation is a concavity which is opposed to plasticizing effects.

A ternary formulation is preferred at tiers 2 and 3 and is tested in this section. In the perspective of consolidating the prediction of shelf-life for alcoholic beverages at tiers 2-3, the FH3 instead of alternatives could be justified as follows. FH3 model is concave up and will describe well all plasticizing effects (if any) on the inner side of bottle walls. By contrast, it may underestimate the desorption flux on the outer side in contact with dry air. At worse, the permeation flux may be overestimated and will authorize conservative estimations of shelf-life. At best, the desorption rate will be realistic at intermediate relative humidities.

V.3.3.2. FH3 formulation

General formulations of FH3 were proposed by Flory himself [START_REF] Flory | Principles of Polymer Chemistry[END_REF] and used sparingly in the literature [START_REF] Mulder | On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles[END_REF][START_REF] Favre | Application of Flory-Huggins theory to ternary polymer-solvents equilibria: A case study[END_REF][START_REF] Fornasiero | Solubilities of nonvolatile solutes in polymers from molecular thermodynamics[END_REF][START_REF] Yang | Modeling Sorption Behavior for Ethanol/Water Mixtures in a Cross-linked Polydimethylsiloxane Membrane Using the Flory-Huggins Equation[END_REF][START_REF] Godbole | Swelling of Random Copolymer Networks in Pure and Mixed Solvents: Multi-Component Flory-Rehner Theory[END_REF] for apolar and polar liquids in polymers. The cases of the simultaneous or competitive sorption of water and ethanol have been historically studied for pervaporation applications (𝑎𝑎𝑏𝑏𝑎𝑎~0.96). The activity coefficients { } , , 

M M +

) along with Eq. (V.34) to correct the effect of the anchor on the displacement of CM. With an assumption of universal temperature dependence of scaling exponents, Eq.

(V.22) was fitted to scaling exponents irrespectively the considered polymers, but independently for regular and irregular solutes. At glassy state, an indicative r value could be extracted. It was used to extrapolate the continuous models of lin α below g T .

All estimates were noisy, but they were highly consistent when n-alkanes were used as molecular probes. Methods 1 and 2 gave similar results. Noticeable differences were observed only when the number of data in the regression was too low. In PET, the datasets at the highest 

V.4.6. Main findings

The proposed blob free-volume theory bridges the original theory of Vrentas and Duda Extended and conventional free volume theories can be now applied to polymers with non-documented hole free volume parameters, including polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Polymer-related parameters are lumped into two constants K α and K β , involved in the expression of ( ) , g P T T , which can be related to WLF con- stants only when solute blobs resemble polymer blobs. In the general case and for accurate predictions, the constants K α and K β have to be explicitly determined for each polymer.

By construction, the prediction framework applies to large and small solutes including water, ethanol, oligomers, polymer residues and degradation products, non-intentionally added substances. Though it has not been fully verified, concentration and mutual diffusion effects can be added to the expression of ( ) , g P T T as in the original FVT. All tiers up to level 4 can be covered with the current theory, including for polymers not shown here (e.g. polylactide or PLA).

The derived extensions for anchored solutes and solutes with blobs of various size open the way to a more general theory for plastic additives and residues, but it also suggests a strategy to design substances with reduced diffusion coefficients or with controlled behavior with temperature. With this respect, it is worth noticing that the expressions are commutative and do not require the anchor to be connected to any of the solute ends. matically equivalent to a shift of 𝑇𝑇 𝑔𝑔 (plasticizing effect) or to an underestimation of 𝑀𝑀 (system frozen close to its rubbery state). Variability is related to industrial, commercial and consumer practices. They cannot be reduced in a mechanistic description and their linked consequences need to be considered.

V.5.4. Probabilistic estimation of shelf-life

V.5.4.1. Problem description

Shelf

In section §II.2.3.6. , it was suggested that the combination of two steps (e.g., transportation and long-term storage) could be handled via simple cumulants (see Eqs.(II.28), (II.34) and (II.35)). Adding variability on the terms of the sum can be managed by considering the sum of the upper bounds at the expense of large overestimations. A more robust description is required to handle variability while reducing packaging weight. Shelf-life, 𝑡𝑡 𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑟𝑟 , is mathematically defined as an acceptable duration a reference temperature 𝑇𝑇 𝑜𝑜𝑒𝑒𝑟𝑟 even when the temperature conditions are known to be variable. By denoting 𝜖𝜖 the risk to have the criteria weight variation (𝑚𝑚 𝑙𝑙𝑏𝑏𝑠𝑠𝑠𝑠 ) and alcohol-by-volume (𝑎𝑎𝑏𝑏𝑎𝑎) exceeding their tolerances (respectively %Δ𝑚𝑚, %Δ𝑎𝑎𝑏𝑏𝑎𝑎), one probabilistic definition of 𝑡𝑡 𝑠𝑠ℎ𝑒𝑒𝑙𝑙𝑟𝑟 could be:

No tier assumption is needed on the models of 𝑎𝑎𝑏𝑏𝑎𝑎(𝑡𝑡, 𝑇𝑇) and of 𝑚𝑚 𝑙𝑙𝑏𝑏𝑠𝑠𝑠𝑠 (𝑡𝑡, 𝑇𝑇) except that their variations can be extrapolated conservatively from any temperature to 𝑇𝑇 𝑜𝑜𝑒𝑒𝑟𝑟 : 

When temperature acts mainly on diffusion, the activation term is estimated as: