
HAL Id: tel-02888512
https://theses.hal.science/tel-02888512v1

Submitted on 3 Jul 2020 (v1), last revised 7 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lossy trapdoor primitives, zero-knowledge proofs and
applications

Chen Qian

To cite this version:
Chen Qian. Lossy trapdoor primitives, zero-knowledge proofs and applications. Cryptography and
Security [cs.CR]. Université Rennes 1, 2019. English. �NNT : 2019REN1S088�. �tel-02888512v1�

https://theses.hal.science/tel-02888512v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N°601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Chen QIAN
Lossy trapdoor primitives, zero- knowledge proofs and appli-
cations.

Thèse présentée et soutenue à Rennes, le 4 octobre 2019
Unité de recherche : IRISA
Thèse N°:

Rapporteurs avant soutenance :
Javier HERRANZ Senior Lecturer Université Polytechnique de Catalogne, Barcelone, Espagne
Damien VERGNAUD Professeur Sorbonne Université, Paris, France

Composition du Jury :
Examinateurs : Adeline ROUX- LANGLOIS Chargée de Recherche CNRS IRISA, France, encadrante

Michel ABDALLA Directeur de Recherche,
Ecole normale supérieure, France

Olivier PEREIRA Professeur,
Université Catholique de Louvain- la- Neuve, Belgique

Carla RAFOLS Postdoc,
Université Pompeu Fabra, Espagne

Dir. de thèse : Pierre- Alain FOUQUE Professeur Université de Rennes 1, France
Benoît LIBERT Directeur de Recherche CNRS,

Ecole normale supérieure de Lyon, France, encadrant









Remerciements

En premier lieu, je remercie mes encadrants de thèse Pierre-Alain Fouque, Benoît Libert et
Adeline Roux-Langlois. Merci de m’avoir accompagné pendant ces trois années de thèse.
Pierre-Alain, merci de m’introduire le monde de la cryptographie en master et puis de
m’encadrer en thèse, merci pour ton enthousiasme, tes disponibilité, tes vaste connaissance
scienti�que, sans toi, je n’aurais sans doute pas la chance de découvrir autant de possibilité
dans la recherche de la cryptographie. Benoît, merci de ta disponibilité quand je visite Lyon
et aussi avec les mails, j’ai particulièrement apprécié ton esprit scienti�que, les critiques
vraiment utiles et des idées magni�ques dans la recherche. J’ai beaucoup pro�té de ta vision
de la recherche et ton goût scienti�que, tout cela me sert comme un exemplaire idéal dans
mon future. Adeline, merci pour tes disponibilité, merci pour m’accompagné pas à pas, pour
les soumissions, les préparation des exposées, et aussi les discussions régulières vraiment
constructives qui m’a donné beaucoup d’idées. Merci à vous trois pour votre encadrement,
qui m’a beaucoup appris, non seulement dans le monde scienti�que mais aussi dans la vie
quotidienne.

I would also like to thank Javier Herranz and Damien Vergnaud, who accepted to review
this thesis during summer in a relatively short time, and in general for their interest in my
work. I also thank the rest the of the committee: Michel Abdalla, Olivier Pereira and Carla
Ràfols.

I deeply thank my co-authors for your ideas and discussions: Benoît Libert, Pierre-Alain
Fouque, Adeline Roux-Langlois, Thomas Peters, Alain Passelègue.

Merci beaucoup à tous les membres de l’équipe EMSEC à Rennes, Pauline et Guillaume,
qui ont toléré de partager le bureau avec moi et m’ont supporté pendant ces trois ans.
Baptiste et Claire, qui mont partagé des idées des cryptographie symmétrique et de l’algèbre
linéaire. Weiqiang , merci pour le temps que tu as dépensé de discuter avec moi. Alban
l’expert de la statistique qui me montre souvent une autre vision des choses. Et aussi
pendant les pauses de café les humours de Florant et Angèle. Alexandre, avec qui j’ai gagné
le champion de badminton de l’équipe. Je n’oublie évidemment pas les autre doctorants et
post-docs que j’ai eu la chance de rencontré dans l’èquipe: Raphael, Pierre (Karpman et
Lestringant), Adela, Yang, Wojciech, Loïc, Céline, Adina, Paul, Katharina, Solène, Victor,
Gautier, Oliver, Guillaume, Joshua et Thomas.

Et je remercie aux personnes que j’ai renconté lorsque mes passages à Lyon surtout les
personnes de la partie cryptographique de l’équipe Aric de ENS Lyon. Merci à Fabrice qui
est mon frère scienti�que, et également Alonso, Changmin, Adel, Alice, Miruna, Radu, Ida,
Shi, Sanjay, Chitchanok, Junqing, Gottfried, Elena, Jiangtao, Alexandre, Somindu.



iv

Je ne peux pas terminer ces remerciments sans penser à ma famille, mes parents qui
m’a accompagné depuis mon enfance et qui m’a donné l’envie de de faire la recherche en
informatique avec les programmation de Basic quand j’étais petit.

En�n, merci Siyu pour ta patiance avec moi, pour m’avoir supporté quand je suis en
mauvais humeur. Tu es pour beaucoup dans cette thèse.







Résumé en Français

Au cours des vingt dernières années, avec le développement rapide d’objets connectés
et le large déploiement d’Internet à haut débit dans notre vie quotidienne, une énorme
quantité d’informations est transférée par les réseaux, y compris les secrets commerciaux
et les données privées. Par conséquent, la sécurité de la communication ne concerne pas
seulement les domaines militaires mais aussi les activités commerciales et notre vie privé.

La cryptologie est précisément la science qui étudie la sécurité des communications.
Par dé�nition, donnée dans le Handbook of Applied Cryptography [MOV96, Page 15],
la cryptologie est l’étude de la cryptographie et de la cryptanalyse. La di�érence entre
ces deux directions est que la cryptographie est l’étude des outils mathématiques liés à
la con�dentialité, l’authenticité et l’intégrité de la communication. La cryptanalyse, en
revanche, vise à attaquer les propriétés ci-dessus et trouver les défaillances de la sécurité
avant les vrais adversaires.

Du côté des fonctionnalités, depuis la dernière décennie, la vitesse d’Internet a été
considérablement améliorée, très récemment la 5G (la technologie de réseau cellulaire de
cinquième génération) porte la vitesse de téléchargement jusqu’à 10 gigabits par seconde
en théorie. Les services cloud, y compris les calculs et le stockage, deviennent très populaire
dans notre vie. L’idée est de télécharger nos données dans un serveur cloud, nous pouvons
ensuite les récupérer quand nous voulons, et nous pouvons même e�ectuer des calculs
complexes avec ces données sur le cloud. Grâce à cette approche, nous ne sommes plus
limités par l’espace de stockage local et les ressources de calcul. Cependant, ce nouveau
mode de vie nous pose de nombreux dé�s dans la protection de notre vie privée. Par
exemple, l’exécution d’opérations sur les données privées, même les recherches qui sont les
requêtes les plus simples, semble être en contradiction avec la con�dentialité des données.
En utilisant le système de chi�rement cherchable, nous pouvons atteindre cet objectif. En
outre, Gentry a donné la première construction d’un système de chi�rement complètement
homomorphe en 2009 [Gen09], qui nous permet d’e�ectuer n’importe quelle opération sur
le cloud avec une quantité minimale de fuite d’informations.

Aujourd’hui, en réalisant des fonctionnalités de plus en plus complexes telles que les
signatures d’anneaux et les systèmes de vote. Les nouvelles conceptions de cryptosystèmes
deviennent de plus en plus complexes. Par conséquent, il est également plus di�cile de
protéger le système contre toutes sortes d’attaques. Pour résoudre ce problème, nous intro-
duisons la preuve de sécurité, qui tente de modéliser tous les types possibles d’adversaires
(par exemple, IND-CPA (Indistinguishability Chosen-Plaintext Attack) ou IND-CCA (In-
distinguishability Chosen-Ciphertext Attack) pour les chi�rements), puis formellement
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prouver que ces attaquants ne peuvent pas briser les propriétés de sécurité du système.

1. Sécurité prouvable et hypothèses cryptographiques
Une approche commune pour fournir une preuve de sécurité consiste à montrer que
si un attaquant peut attaquer la construction, alors il peut résoudre certains problèmes
durs en mathématiques et bien étudiés, tels que le problème RSA dû à Rivest, Shamir
and Adleman [RSA78], Decisional Di�e-Hellman (DDH) [DH76], Decisional Composite
Residuosity (DCR) [Pai99] ou Learning With Errors (LWE) [Reg05]. Certaines de ces
hypothèses nous amènent à des primitives cryptographiques très e�caces qui fonctionnent
même sur les plates-formes avec des ressources minimales telles que la carte de crédit ou le
passeport électronique. Depuis quelques années, il y a eu d’une part la percée algorithmique
quantique de Shor [Sho94] qui peut résoudre le problème du logarithme discret avec
ordinateur quantique. D’autre part, il y a eu un développement rapide récent d’ordinateurs
quantiques, y compris le système D-Wave (annoncé en 2011), IBM Q (annoncé par IBM
en 2017) et beaucoup d’autres réalisations de l’ordinateur quantique. Ainsi, beaucoup
de problèmes présumés durs (y compris RSA, DCR, DDH . . . ) deviennent faciles avec
l’ordinateur quantique et seuls quelques problèmes restent di�ciles (par exemple LWE)
dans le monde post-quantique. Cependant, en utilisant ces hypothèses post-quantiques,
les constructions sont souvent moins e�caces et ne sont pas tout à fait utilisable dans la
pratique pour le moment. Ainsi, les recherches sur l’amélioration de l’e�cacité des primitives
cryptographiques classiques et des primitives post-quantiques sont très importante.

DDH, RSA et DCR. Les hypothèses cryptographiques classiques telles que DDH, RSA et
DCR impliquent que les problèmes correspondants sont durs en mathématiques et bien
étudiés. Depuis leur introduction, elles sont devenues des hypothèses essentielles dans les
constructions cryptographiques.

DDH - Etant donné un groupe cyclique G d’ordre premier p, il est calculatoirement
di�cile de distinguer les distributions g, ga, gb, gab et g, ga, gb, gc, où g est un élément dans
G et a, b, c sont des nombres aléatoires dans Zp.

RSA - Etant donné deux grands nombres premiers p, q, soit N = pq, et un entier e tel
que 2 < e < N , tel que e co-premier avec φ(N), et C un entier tel que 0 ≤ C < N , il est
calculatoirement di�cile de calculer M tel que C = M e mod N .

DCR - Etant donné un nombre composé n, il est calculatoirement di�cile de décider si z
est un nombre aléatoire ou un n-résidu modulo n2 (i.e. déterminer s’il existe un y tel que
z = yn mod n2).

Le principal avantage de l’utilisation de ces trois hypothèses est leur e�cacité. Par
conséquent, dans cette thèse, nous donnons des constructions plus e�caces basées sur ces
trois hypothèses de schémas cryptographiques existants comme les signatures d’anneau et
les chi�rements KDM-CCA (Key-Dependent-Message Chosen-Ciphertext-Attack).

LWE. Dans cette thèse, nous étudions également les hypothèses post-quantiques. Au
cours de la dernière décennie, avec l’investissement �nancier pour construire l’ordinateur
quantique, il semble nécessaire de construire de nouvelles primitives cryptographiques
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dans le monde post-quantique. Les hypothèses liées aux réseaux Euclidiens semblent être
les plus prometteuses et fournir le plus de fonctionnalités pour le moment.

Formellement, un réseau Euclidien est un sous-groupe discret de Rn. Apprendre-avec-
erreur (Learning-With-Errors ou LWE) est un problème di�cile dans les réseaux Euclidiens
que nous avons utilisé dans les constructions cryptographiques basées sur les réseaux.
Etant donné d’un nombre premier q, deux entiers m,n ∈ N et une matrice A ∈ Zn×mq , le
problème LWE indique qu’il est calculatoirement di�cile de décider si un vecteur b ∈ Zn
est de la forme de A · s + e mod q , où s et e sont deux vecteurs de Zmq tirés selon une
distribution Gaussienne discrète. Du point de vue du réseau Euclidien, nous pouvons voir
l’hypothèse LWE comme il est di�cile de déterminer si un point est assez proche d’un
point du réseau à condition que l’écart-type de la Gaussienne soit petit devant le plus petit
écart de points du réseau.

Sécurité étroite. Lorsque nous parlons de l’e�cacité des primitives cryptographiques,
nous parlons généralement du nombre d’éléments dans la structure algébrique sous-jacente
(par exemple groupe G dans l’hypothèse DDH ou Zq dans l’hypothèse LWE). Cependant, la
taille de la structure sous-jacente est également essentielle. Habituellement, les preuves de
sécurité transforment l’adversaire en un attaquant contre un problème di�cile spéci�que
dans la structure algébrique sous-jacente avec certains facteurs. Ainsi, un facteur de réduc-
tion plus petit nous conduit à des éléments plus petits, donc des primitives cryptographiques
plus e�caces. Si ce facteur devient constant, nous appelons une telle primitive étroitement
sécurisée.

Pour parvenir à un monde protégé par des méthodes prouvés. Depuis plus de 20 ans,
la cryptographie ne se contente pas seulement de chi�rer et déchi�rer. De plus en plus de
fonctionnalités qui ont été créées, des chi�rements aux signatures en passant par les preuves
de connaissance à divulgation nulle de connaissance, et les chi�rements entièrement homo-
morphes. Certains protocoles sont exclusifs ou plus e�caces sous di�érentes hypothèses.
Savoir si certains schémas sont possible à construire restent encore un problème ouvert.
Pour construire un protocole cryptographique fonctionnel complexe, la manière �able est
de les construire en combinant des primitives plus petites prouvées. Ainsi, la compacité des
blocs de construction a un impact énorme sur l’e�cacité de l’ensemble du protocole. Dans
cette thèse, nous nous intéressons à la fois à la construction de nouvelles fonctionnalités et
à l’amélioration de l’e�cacité des systèmes existants.

2. Contributions : Les primitives Lossy Trapdoor
Lossy Trapdoor Function (LTF) est une notion relativement nouvelle introduite par Peikert
et Waters [PW08], qui généralise l’idée de trappes à sens unique. Depuis lors, cette notion a
été trouvée utile pour la construction de primitives cryptographiques plus complexes. Une
Lossy Trapdoor Function est composée de deux fonctions, une injective et une autre à perte.
La propriété de sécurité d’une telle primitive est que pour tout adversaire calculatoirement
borné, la fonction injective est indistinguable de la fonction lossy. Cette stratégie capture
les besoins de nombreuses constructions cryptographiques. Par exemple, pour les systèmes
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de chi�rement, l’utilisateur peut déchi�rer le texte chi�ré en utilisant le mode injectif et la
clé d’inversion, mais dans la preuve de sécurité, nous pouvons passer en mode lossy, qui
ne peut pas être remarqué par l’adversaire. En�n, le mode lossy cache statistiquement le
message de l’adversaire.

Nous dé�nissons maintenant une notion dérivée de la LTF et décrivons les contributions.

2.1. Filtre algébrique à perte (LAF)

Le �ltre algébrique à perte (LAF) est une variante de la LTF. Au lieu d’avoir seulement deux
fonctions, le LAF est une famille de fonctions qui sont soit lossy, soit injectives. Chaque
fonction est associée à une étiquette, qui détermine s’il s’agit d’une fonction lossy ou d’une
fonction injective. Dans l’espace des étiquettes, il n’y a qu’un petit nombre d’étiquettes lossy,
et toutes les autres sont injectives. Un LAF est associé à un espace d’étiquettes T = Ta ∪ Tc
qui est séparé en deux ensembles Ta étiquettes auxiliaires et Tc étiquettes de base. LAF doit
aussi véri�e les propriétés suivantes :

• En mode injective, la fonction n’est pas nécessairement invertible, mais elle doit être
injective.

• L’information divulguée par le mode lossy est pré�xée par la clé d’évaluation et le
message. A savoir, même lorsque la sortie de la fonction lossy est indépendante de
l’étiquette t.

Dans cette thèse, nous donnons une construction plus e�cace de �ltre algébrique à perte,
la taille de l’étiquette de notre construction est réduite de Θ(n2) à O(n) éléments de groupe
où l’espace d’entrée est Znp . En tant qu’applications, en utilisant notre nouveau LAF, nous
pouvons améliorer la construction des systèmes de chi�rement sécurisé KDM-CCA de
Hofheinz [Hof13] et les extracteurs �ous proposés par Wen et Liu [WL18]. Ce travail a été
accepté à PKC2019 et est présenté dans le chapitre 3.

3. Contributions : Systèmes de preuve à divulgation
nulle de connaissance et applications

La deuxième partie de cette thèse vise à développer de nouvelles primitives cryptographiques
et à améliorer l’e�cacité des protocoles existants avec des systèmes de preuve à divulgation
nulle de connaissance.

La preuve à divulgation nulle de connaissance est une très puissante primitive crypto-
graphique. Elle permet au prouveur de convaincre le véri�eur sur une déclaration sans
divulguer d’informations sur le témoin. Formellement, la preuve à divulgation nulle de
connaissance exige l’exhaustivité, la signi�cativité et les propriétés de divulgation nulle de
connaissance.
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3.1. Signatures d’anneau de taille logarithmique étroitement
sécurisées

Les signatures d’anneau sont introduites par Rivest, Shamir et Tauman [RST01]. Elles
permettent au signataire de signer un message anonymement tout en convainquant les
autres qu’il appartient à un certain anneau d’utilisateurs. Contrairement à la signature de
groupe, la signature d’anneau n’a pas la phase de registre ou d’autorité de traçage. Malgré
15 ans de recherche, la plupart des constructions ont une signature de taille linéaire, mais
deux signatures récentes donnent une signature anneau de taille logarithmique [GK15 ;
LLNW16], elles utilisent toutes les deux forking lemma, par conséquent, elles sou�rent
toutes les deux de la perte de sécurité.

Dans cette thèse, nous contrevenons cette limitation en fournissant une signature d’an-
neau de taille logarithmique étroitement sécurisée dans le modèle de l’oracle aléatoire. Nous
combinons le Groth-Kohlweiss Σ-protocol [GK15] avec les schémas de chi�rement en mode
dual. Ce travail est accepté à ESORICS2018 et présenté dans le chapitre 4.

3.2. Preuves à divulgation nulle de connaissance non-intéractive et
à véri�eur désigné et système de vote

Les preuves à divulgation nulle de connaissance non-intéractives et à véri�eur désigné
(DVNIZK) sont une variante des systèmes de preuve à divulgation nulle de connaissance.
Dans cette variante, le véri�eur ne peut véri�er la preuve qu’à l’aide d’une clé de véri�cation
secrète. Une telle primitive semble déjà utile dans de nombreuses applications : nous pouvons
construire un système de chi�rement CCA ou un système de vote. En 2006, Fazio et Nicolosi
ont proposé la construction de DVNIZK dans le modèle standard à l’aide des chi�rements
homomorphes. En 2015, Chaidos et Groth ont proposé une construction e�cace [CG15] à
l’aide du système de chi�rement Okamoto-Uchiyama.

Dans cette thèse, nous poussons cette approche un peu plus loin en fournissant une
construction reposant sur les réseaux Euclidiens de DVNIZK dans le modèle standard et
nous avons aussi donné une construction d’un système de vote post-quantique dans le
modèle standard. Ce travail est en soumission et presenté dans le chapitre 5.

4. Liste de publications

• [LQ19] Lossy Algebraic Filters with Short Tags. Benoît Libert and Chen Qian.(PKC2019)

• [LPQ18] Logarithmic-Size Ring Signatures With Tight Security from the DDH As-
sumption. Benoît Libert and Thomas Peters and Chen Qian.(ESORICS 2018)

Publications qi ne sont pas dans cette thèse

• [QTG18] Universal Witness Signatures. Chen Qian and Mehdi Tibouchi and Rémi
Géraud. (IWSEC 2018)



xii Résumé en Français

• [LPQ17] Structure-Preserving Chosen-Ciphertext Security with Shorter Veri�able
Ciphertexts. Benoît Libert and Thomas Peters and Chen Qian. (PKC 2017)

• [FQ16] Fault Attacks on E�cient Pairing Implementations. Pierre-Alain Fouque and
Chen Qian. (AsiaCCS 2016)

• [AFQ+14] Binary Elligator Squared. Diego F. Aranha and Pierre-Alain Fouque and
Chen Qian and Mehdi Tibouchi and Jean-Christophe Zapalowicz. (SAC 2015)







Contents

Remerciements iii
1. Sécurité prouvable et hypothèses cryptographiques . . . . . . . . . . . . . viii
2. Contributions : Les primitives Lossy Trapdoor . . . . . . . . . . . . . . . . ix

2.1. Filtre algébrique à perte (LAF) . . . . . . . . . . . . . . . . . . . . . x
3. Contributions : Systèmes de preuve à divulgation nulle de connaissance et

applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
3.1. Signatures d’anneau de taille logarithmique étroitement sécurisées xi
3.2. Preuves à divulgation nulle de connaissance non-intéractive et à

véri�eur désigné et système de vote . . . . . . . . . . . . . . . . . xi
4. Liste de publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. Introduction 3
1.1. Provable security and cryptographic assumptions . . . . . . . . . . . . . . 4
1.2. My contributions: Lossy trapdoor primitives . . . . . . . . . . . . . . . . . 5

1.2.1. Lossy Algebraic Filter (LAF) . . . . . . . . . . . . . . . . . . . . . . 5
1.3. Contributions: zero-knowledge proof systems and its applications . . . . . 6

1.3.1. Logarithmic-size tightly-secure ring signatures . . . . . . . . . . . 6
1.3.2. Designated-Veri�er Zero-Knowledge proof and voting scheme . . . 6

1.4. Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Primitives and Assumptions 9
2.1. Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Lossy Trapdoor Function. . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Chameleon Hash Functions . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3. Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4. Σ-Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5. Zero-knowledge proof systems . . . . . . . . . . . . . . . . . . . . 11

2.2. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1. DDH assumptions and its variant. . . . . . . . . . . . . . . . . . . . 12



xvi Contents

I. Lossy trapdoor functions and their applications 15

3. Lossy Algebraic Filters With Short Tags 19
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1. Lossy Algebraic Filters . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. A Lossy Algebraic Filter With Linear-Size Tags . . . . . . . . . . . . . . . . 25

3.3.1. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3. Towards All-But-Many Lossy Trapdoor Functions . . . . . . . . . . 34

3.4. A Lossy Algebraic Filter With Tight Security . . . . . . . . . . . . . . . . . 35
3.4.1. A Variant of the BKP MAC . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2. The LAF Construction . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II. Homomorphic encryptions and zero-knowledge arguments 51

4. Logarithmic-Size Ring SignaturesWith Tight Security from the DDHAs-
sumption 57
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1. Syntax and Security De�nitions for Ring Signatures . . . . . . . . 61
4.2.2. Σ-protocol Showing that a Commitment Opens to 0 or 1 . . . . . . 62
4.2.3. Σ-protocol for One-out-of-N Commitments Containing 0 . . . . . 63
4.2.4. A Note on the Application to Ring Signatures . . . . . . . . . . . . 64

4.3. A Fully Tight Construction from the DDH Assumption . . . . . . . . . . . 64
4.3.1. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2. Security Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. Lattice-based Designated-Veri�able NIZK Argument and Application to
a Voting Scheme 77
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1. Choice of the ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2. Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3. Ring Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.4. RLWE commitment scheme [LPR13a] . . . . . . . . . . . . . . . . 82
5.2.5. Ring-GSW encryption scheme [KGV16] . . . . . . . . . . . . . . . 84

5.3. DV-NIZK Argument for an OR-gate . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1. Σ-protocol to prove a OR-gate for a RLWE commitment . . . . . . 85
5.3.2. Construction of a DVNIZK for encryption of 0 or 1 . . . . . . . . . 87

5.4. Application to Voting Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1. De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents xvii

5.4.2. Our Voting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6. Conclusion 95
6.1. Summary of our contributions . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2. Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

List of Figures 107

List of Tables 109

List of Algorithms 111









1

Introduction 1
Over the last twenty years, with the quick developments of connected objects and wide
deployment of the internet, a huge amount of information is transferred through the
internet, including commercial secrets and private data. Therefore, the communication
security concerns not only the military area but also the commercial activities and our daily
life.

The cryptology is the science studying the security of communications. By de�nition
given in the Handbook of Applied Cryptography [MOV96, Page 15], the cryptology is the
study of cryptography and cryptanalysis. The di�erence between these two directions
is that the cryptography is the study of mathematical tools related to the con�dentiality,
authenticity, and integrity of the communications. The cryptanalysis, on the other hand,
aims at attacking the above properties and �nding security vulnerabilities before the real
adversaries.

On the functionality side, from the last decade, the internet speed has been dramatically
improved and very recently the 5G (the �fth generation cellular network technology) brings
the download speed up to 10 gigabits per second in theory. Cloud computing and cloud
storage became very popular in our life. The idea is to upload our data into a cloud server, and
later we can retrieve the data when we want. We can also perform complex computations
with these data on the cloud without needing to download all of them. Using this approach,
we are no longer limited by local storage space and computation resources. However,
this new fashion of life gives us many challenges to protect our privacy. For example,
performing operations over the private data, even the simplest search queries, seems to
be contradicting with the con�dentiality of the data. Using the searchable encryption
scheme, we can achieve the goal. Moreover, Gentry has given the �rst construction of
a fully homomorphic encryption scheme in 2009 [Gen09], which allows to perform any
operation on the cloud with a minimum amount of information leakage.

Nowadays, we can achieve more and more complex functionalities such as ring signatures
and voting schemes and new cryptosystem designs become more and more complex.
Therefore it is even harder to protect the system against all kinds of attacks. To solve this
issue, cryptographers introduced the security proof, which try to model every possible
type of adversary (for example, IND-CPA (Indistinguishability Chosen-Plaintext Attack)
or IND-CCA (Indistinguishability Chosen-Ciphertext Attack) adversary for encryption
schemes), then formally prove that these attackers cannot break the security properties of
the system.
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1.1. Provable security and cryptographic assumptions

A common approach in proving the security is to reduce the adversary against the primitive
into a solver of some classical well-studied hard mathematical problems such as the RSA
problem proposed by Rivest, Shamir and Adleman (RSA) [RSA78], Decisional Di�e-Hellman
(DDH) [DH76], Decisional Composite Residuosity (DCR) [Pai99], and Learning With Errors
(LWE) [Reg05]. Some of these assumptions lead us to very e�cient cryptographic primitives
that work even on platforms with minimal resources such as credit card or e-passport. With
the quantum algorithmic breakthrough by Shor [Sho94], and the recent quick development
of quantum computers including D-Wave system (annonced in 2011), IBM Q (annonced
by IBM in 2017) and many more other realisations of quantum computer, many of these
assumed hard problems (including RSA, DCR, DDH . . . ) are becoming easy for quantum
computers and only a few problems remain hard (for example LWE) in the post-quantum
world. However, using those post-quantum assumptions, we can only achieve less e�cient
cryptographic primitives which are not entirely practical for the moment. Thus, the research
both on improving the e�ciency of classical cryptographic primitives and post-quantum
ones are very attracting.

DDH, RSA and DCR. The classical cryptographic assumptions such as DDH, RSA, and
DCR correspond to well-studied hard mathematical problems. Since their introduction,
they become essential assumptions to construct cryptographic primitives.

DDH - Given a cyclic group G of prime order p, it is computationally hard to distinguish
the distributions of g, ga, gb, gab and of g, ga, gb, gc, where g ∈ G and a, b, c are random
elements in Zp.

RSA - Given two large primes p, q, let N = pq, and e an integer that 2 < e < N , that e
be coprime with φ(N), and C an integer that 0 ≤ C < N , it is computationally hard to
compute M such that C = M e mod N .

DCR - Given a composite number n, it is computationally hard to decide whether z is a
random number modulo n2 or a n-residue modulo n2 (i.e. whether there exists a y such
that z = yn mod n2).

The main advantage of using these three assumptions is their e�ciency. Therefore, in this
thesis, we give more e�cient constructions based on these three assumptions of existing
cryptographic primitives such as selective opening CCA secure encryption schemes, ring
signatures, KDM-CCA secure encryptions, and deterministic encryptions.

LWE. In this thesis, we also use post-quantum assumptions to construct cryptosystems.
During the last decade, with the �nancial investment of quantum computer, it seems neces-
sary to build new cryptographic primitives in the post-quantum world. The assumptions
based on lattice problems seem to be the most promising in term of security and e�ciency
and provide the most functionalities for the moment.

Formally, a lattice is a discrete subgroup of Rn. Learning-With-Error is a hard problem
over lattices we used to construct lattice-based cryptography. The LWE problem states that
it is computationally hard to decide whether a vector b equals to A · s + e or a complete
random vector, where A is a random matrix and both s and e are two vectors of Zq drew
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from a discrete Gaussian distribution. From a lattice point of view, we can see the LWE
assumption as it is hard to determine if a point is close enough to a lattice point.

Tight security. When we talk about the e�ciency of the cryptographic primitives, we
are usually considering about the number of elements in the underlying algebraic structure
used in the primitive. However, the size of the underlying structure (for example, G in
case of DDH or Zq in case of LWE) is also essential. Since the security proofs transform
the adversary into an attacker against a speci�c hard problem in the underlying algebraic
structure upon some factors, smaller reduction factor leads to smaller elements and therefore
more e�cient cryptographic primitives. If this factor becomes constant, we call such a
primitive tightly secure.

Towards a provable protected world. During the last 20 years, the cryptography deals
with more and more features beyond encryptions such as: signatures to zero-knowledge
proofs, fully homomorphic encryptions. Some of these protocols are only constructed in
some assumptions or more e�cient in certain ones. There are still some possibility results
remaining as open problems.

To construct a complex functional cryptographic protocol, the reliable way is to construct
them by combining the smaller proven secure primitives. Thus, the compactness of building
blocks has a huge impact on the e�ciency of the entire protocol. In this thesis, we are
interested in providing new functionalities and improving the e�ciency of existing schemes.

1.2. My contributions: Lossy trapdoor primitives
A lossy trapdoor function (LTF) is a relatively new notion introduced by Peikert and
Waters [PW08]. It generalizes the idea of trapdoor one-way functions. Since then, it has
been found useful for building more complex cryptographic primitives. A lossy trapdoor
function is composed of two functions, an injective one and a lossy one. The security
property of such a primitive is that for any computational adversary, the injective function is
indistinguishable from the lossy one. This strategy captures the need in many cryptographic
proofs. For example, for encryption schemes, the user can decrypt the ciphertext using
the injective mode and the inversion key, but in the security proof, we can switch into the
lossy mode, which can not be noticed by the adversary. Besides, the lossy mode statistically
hides the message from the adversary.

We now de�ne a notion derived from LTF and describe our contributions.

1.2.1. Lossy Algebraic Filter (LAF)
A Lossy Algebraic Filter (LAF) is a variant of a LTF. Instead of having only two functions, a
lossy algebraic �lter is a family of functions that are either lossy or injective. Each LAF
is associated with a tag, which determines whether it is a lossy function or an injective
function. In the tag space, there are only a few numbers of lossy tags, and all other functions
are injective ones. A LAF is also associated with a tag space T = Ta ∪ Tc which is split into
two sets Ta auxiliary tags and Tc core tags. The LAF veri�es the following properties:
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• In the injective mode, the function is not necessarily invertible but still injective.

• The information leaked through the lossy mode is pre�xed by the evaluation key.
Namely, even when the output of the lossy function is independent of the tag t.

In this thesis, we give a more e�cient construction of lossy algebraic �lter, the tag size
of our construction is reduced from Θ(n2) down to O(n) group elements where the input
space is Znp . As applications, by using our new LAF, we can improve the construction of
Hofheinz’s KDM-CCA secure encryption schemes [Hof13] and fuzzy extractors proposed by
Wen and Liu [WL18].This work was published in PKC2019 and presented in the chapter 3.

1.3. Contributions: zero-knowledge proof systems and
its applications

The second part of this thesis aims at developing new cryptographic primitives and improv-
ing the e�ciency of existing protocols with zero-knowledge proof systems.

Zero-knowledge proofs are very powerful cryptographic primitives. It allows the prover
to convince the veri�er on a statement without leaking information about the witness.
Formally, the ZK proofs require completeness, soundness and zero-knowledge properties.

1.3.1. Logarithmic-size tightly-secure ring signatures

Ring Signatures are �rstly introduced by Rivest, Shamir and Tauman [RST01]. It allows
the signer to sign a message anonymously while convincing others that he belongs to a
certain ring of users. Unlike Group Signatures, Ring Signatures do not have the registration
phase or tracing authority. Despite 15 years of research, most of the constructions have
linear-size signature, but two recent signatures give logarithmic size ring signature [GK15;
LLNW16], they both use the Fiat-Shamir transformation, therefore, they both su�er from
the security loss.

In this thesis, we bypass this limitation by providing a logarithmic-size tightly secure ring
signature in the random oracle model. We combine the Groth-Kohlweiss Σ-protocol [GK15]
with the dual mode encryption schemes. This work was accepted in ESORICS 2018 and
presented in the chapter 4.

1.3.2. Designated-Veri�er Zero-Knowledge proof and voting
scheme

Designated-Veri�er Non-Interactive Zero-Knowledge argument system (DVNIZK) is a
variant of a zero-knowledge proof system. In this setting, the veri�er can only verify
the proof by using a secret veri�cation key. Such setting seems already useful in many
applications, to construct CCA-secure encryption scheme or voting scheme. In 2006,
Damgård, Fazio and Nicolosi proposed a construction of DVNIZK in the standard model
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using the homomorphic encryptions. In 2015, Chaidos and Groth have proposed an e�cient
construction [CG15] using Okamoto-Uchiyama encryption scheme.

In this thesis, we push this approach a little further by providing a lattice-based construc-
tion of DVNIZK in the standard model. This work is in submission and is presented in the
chapter 5
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2.1. Primitives

2.1.1. Lossy Trapdoor Function.

Firstly introduced by Peikert and Waters [PW08] is a generalization trapdoor function.

De�nition 2.1 ([PW08]). Let λ ∈ N be a security parameter and n : N→ N, l : N→ N be
functions of λ. A collection of (n, l)-lossy trapdoor functions (LTFs) consists of PPT algorithms
(InjGen, LossyGen,Eval, Invert) with the following speci�cations.

Sampling an injective function. Given a security parameter λ and an input length n, the
randomized algorithm InjGen(1λ, 1n) outputs the index ek of an injective function of
the family and an inversion key ik.

Sampling a lossy function. Given λ and the input length n, the probabilistic algorithm
LossyGen(1λ, 1n) outputs the index ek of a lossy function.

Evaluation. Given the index of a function ek (produced by InjGen or LossyGen) and an input
X ∈ {0, 1}n, algorithm Eval outputs Fek(X) such that:

- If ek is an output of InjGen, then Fek(·) is an injective function.

- If ek was produced by LossyGen, then Fek(·) has image size 2n−l. In this case, the
value n− l is called the residual leakage.

Moreover, we require the two following properties:

Inversion Correctness. For any pair (ek, ik)← InjGen(1λ, 1n) and any inputX ∈ {0, 1}n,
algorithm Invert returns Invert(ik, Fek(X)) = X .

Indistinguishability. The two ensembles {ek | (ek, ik)← InjGen(1λ)}λ∈N and {ek | ek ←
LossyGen(1λ)}λ∈N are computationally indistinguishable.

In the construction of lossy algebraic �lters in the section 3 we need the chameleon hash
function.
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2.1.2. Chameleon Hash Functions
A chameleon hash function [KR00] is a tuple of algorithms CMH = (CMKg,CMhash,
CMswitch) which contains an algorithm CMKg that, given a security parameter 1λ, out-
puts a key pair (hk, td) ← G(1λ). The randomized hashing algorithm outputs y =
CMhash(hk,m, r) given the public key hk, a message m and random coins r ∈ Rhash. On
input of messagesm,m′, random coins r ∈ Rhash and the trapdoor key td, the switching al-
gorithm r′ ← CMswitch(td,m, r,m′) computes r′ ∈ Rhash such that CMhash(hk,m, r) =
CMhash(hk,m′, r′). The collision-resistance property mandates that it be infeasible to
come up with pairs (m′, r′) 6= (m, r) such that CMhash(hk,m, r) = CMhash(hk,m′, r′)
without knowing the trapdoor key tk. Uniformity guarantees that the distribution of hash
values is independent of the messagem: in particular, for all hk, and all messagesm,m′, the
distributions {r ← Rhash : CMHash(hk,m, r)} and {r ← Rhash : CMHash(hk,m′, r)}
are identical.

2.1.3. Commitment Schemes
A non-interactive commitment scheme allows a sender to commit to a message m by
sending a commitment string to the receiver. Later on the sender can convince the receiver
that the committed value was really m. A commitment scheme must satisfy two security
properties called hiding and binding. The former captures that the commitment hides any
partial information about the message. The latter requires that the sender be unable to
open the commitment to two distinct messages. Formally, a non-interactive commitment
scheme is a pair of PPT algorithms (Setup,Com). The setup algorithm ck ← Setup(1λ)
generates a commitment key ck, which speci�es a message spaceMck, a randomness space
Rck and a commitment space Cck. The commitment algorithm Com de�nes a function
Comck :Mck ×Rck → Cck. On input of m ∈Mck, the sender randomly chooses r R← Rck

and computes a commitment string c = Comck(m, r) ∈ Cck.
A commitment is perfectly hiding if, for any m ∈Mck, the distribution {Comck(m, r) |

r R← Rck} is statistically independent of m. It is perfectly binding if any element of the
commitment space Cck uniquely determines the message. Groth and Kohlweiss [GK15] use
the following additional properties.

De�nition 2.2. A commitment scheme (Setup,Com) is strongly binding if, for any PPT
adversary A, there exists a negligible function ε(λ) such that

|Pr[ck ← Setup(1λ); (c,m1, r1,m2, r2)← A(PK) :

Comck(m1; r1) = c ∧ Comck(m2; r2) = c ∧ (m1, r1) 6= (m2, r2)]| < ε(λ).

We consider a prime q > 2λ speci�ed in the commitment key ck. The message space and
the randomness space are bothMck = Rck = Zq.

De�nition 2.3. A commitment scheme (Setup,Com) is additively homomorphic if for all
messages m1,m2 ∈ Mck and all random coins r1, r2 ∈ Rck, we have Comck(m1; r1) ·
Comck(m2; r2) = Comck(m1 +m2; r1 + r2).
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2.1.4. Σ-Protocols
De�nition 2.4 ([Cra96]). Let a prover P and a veri�er V, which are PPT algorithms, and a
binary relationR. A protocol (P,V) is a Σ-protocol w.r.t. R, the challenge set C, the public
input u and the private input w, if it satis�es the following:

• 3-move form: The protocol is of the following form:

– P compute commitments {ci}ji=0, where j ∈ N, and sends {ci}ji=0 to V.

– The veri�er V generates a random challenge x R← C and sends c to P.
– The prover P sends a response s to V.

– On input of a transcript ({ci}ji=0, x, s), V outputs 1 or 0.

• Completeness: If (u,w) ∈ R and the prover P honestly generates the transcript

({ci}ji=0, x, s)

for a random challenge x R← C sent by V, there is a negligible function ε(λ) such that V
accepts with probability 1− ε(λ).

• 2-Special soundness: There exists a PPT knowledge extractor E that, for any public
input u, on input of two accepting transcripts ({ci}ji=0, x, s) and ({ci}ji=0, x

′, s′) with
x 6= x′, outputs a witness w′ such that (u,w′) ∈ R.

• Special Honest Veri�er Zero-Knowledge (SHVZK): There is a PPT simulator S that,
given u and a random x ∈ C, outputs a simulated transcript ({c′i}

j
i=0, x, s

′) which is
computationally indistinguishable from a real one.

2.1.5. Zero-knowledge proof systems
De�nition 2.5 (Non-Interactive Zero-Knowledge proof). A non-interactive zero-knowledge
proof system for a binary relationR = {(x,w) | X ×W} is a pair of probabilistic polynomial
time (PPT) algorithms (P, V ) such that P takes as input x and w, outputs a proof π, V takes
as input x and π. outputs a bit b.

Completeness. For all (x,w) ∈ R, we have Pr[V (x, P (x,w)) = 1] > 1− negl(|x|).

Soundness. For all x ∈ X andw 6∈ W , for any PPT adversaryA,Pr[V (x, mathcalA(x)) =
1] < negl(|x|).

Zero-Knowledge. There exits a PPT simulator S such that the probability distribution
{x, P (x,w)}(x,w∈R) and {x, S(x)}(x,w∈R) are computationally indistinguishable.

In this thesis, we constructed a zero-knowledge argument system. The di�erence between
a ZK proof system and a ZK argument system is that in argument system, the soundness is
computational while in proof system the soundness is statistical.
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2.2. Assumptions
In this section, we give di�erent assumptions we will use during this thesis.

2.2.1. DDH assumptions and its variant.

The Decisional Di�e-Hellman (DDH) assumption has been proposed by Di�e and Hell-
man [DH76], and states that

De�nition 2.6. In a cyclic group G of prime order q, the Decision Di�e-Hellman (DDH)
problem is to distinguish the distributions

D0 = {(g, ga, gb, gab) | g R← G, a, b R← Zq}

and D1 = {(g, ga, gb, gc) | g R← G, a, b, c R← Zq}.

Pairing In the construction of lossy algebraic �lters in chapter 3, we need to use the pairing
as a building block. A pairing is a bilinear function e(·, ·) that maps two groups G, Ĝ to a
�nite subgroup GT of a �nite �eld that must verify the following two properties:

• For all P ∈ G, Q ∈ Ĝ and a, b ∈ Z, we have e(P a, Qb) = e(P,Q)ab.

• For all P ∈ G, Q ∈ Ĝ, if e(P,Q) = 1 then either P = 1 or Q = 1.

In the presence of pairing, we need the following variant of DDH.

De�nition 2.7. Let (G, Ĝ,GT ) be bilinear groups of order p. The First Decision 3-Party Di�e-
Hellman (D3DH1) assumption holds in (G, Ĝ,GT ) if no PPT distinguisher can distinguish the
distribution

D1 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, gabc) | g R← G, ĝ R← Ĝ, a, b, c R← Zp}
D0 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, gz) | g R← G, ĝ R← Ĝ, a, b, c, z R← Zp}.

The D3DH1 assumption has a natural analogue where the pseudorandom value lives in
Ĝ instead of G.

De�nition 2.8. The Second Decision 3-Party Di�e-Hellman (D3DH2) assumption holds in
(G, Ĝ,GT ) if no PPT algorithm can distinguish between the distribution

D1 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, ĝabc) | g R← G, ĝ R← Ĝ, a, b, c R← Zp}
D0 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, ĝz) | g R← G, ĝ R← Ĝ, a, b, c, z R← Zp}.

We also need a computational assumption which is implied by D3DH2. The 2-3-CDH
was initially introduced [KP06] in ordinary (i.e., non-pairing-friendly) discrete-logarithm
hard groups. Here, we extend it to asymmetric bilinear groups.
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De�nition 2.9 ([KP06]). Let (G, Ĝ) be a bilinear groups of order p with generators g ∈ G
and ĝ ∈ Ĝ. The 2-out-of-3 Computational Di�e-Hellman (2-3-CDH) assumption says
that, given (g, ga, ĝa, gb, ĝb) for randomly chosen a, b R← Zp, no PPT algorithm can �nd a pair
(gr, gr·ab) such that r 6= 0.

It is known (see, e.g., [LV08]) that any algorithm for solving the 2-3-CDH problem can be
used to break the D3DH2 assumption. On input of (g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, ĝz), where z =
abc or z ∈R Zp, the reduction can simply run a 2-3-CDH solver on input of (g, ga, gb, ĝa, ĝb).
If the solver outputs a non-trivial pair of the form (R1, R2) = (gr, gr·ab), the D3DH2
distinguisher decides that z = abc if and only if e(R1, ĝ

z) = e(R2, ĝ
c).

In the construction of lossy algebraic function in chapter 3, we actually rely on a weaker
variant of D3HD1, called wD3HD1, where ĝa is not given. In our tightly secure construction
(which requires asymmetric pairings), we need to rely on the following variant of wD3HD1.

De�nition 2.10. Let (G, Ĝ,GT ) be bilinear groups of order p. TheRandomized weak Decision
3-Party Di�e-Hellman (R-wD3DH1) assumption holds in (G, Ĝ,GT ) if no PPT distinguisher
can distinguish the distribution

D1 :=
{
{(g, ĝ, gai , gb, gc, ĝb, ĝc, gaibc)}Qi=1 | g

R← G, ĝ R← Ĝ,

a1, . . . , aQ, b, c
R← Zp}

}
D0 :=

{
{(g, ĝ, gai , gb, gc, ĝb, ĝc, gzi)}Qi=1 | g

R← G, ĝ R← Ĝ,

a1, . . . , aQ, z1, . . . , zQ, b, c
R← Zp}

}
.

We do not know if D3DH1 or wD3DH1 can be tightly reduced to R-wD3DH1 (the
only reduction we are aware of proceeds via a hybrid argument). In asymmetric pairings,
however, we can give a tight reduction between R-wD3DH1 and a combination of wD3DH1
and SXDH.

Lemma 2.1. There is a tight reduction from the wD3DH1 assumption and the DDH assumption
in G to the R-wD3DH1 assumption. More precisely, for any R-wD3DH1 adversary B, there
exist distinguishers B1 and B2 that run in about the same time as B and such that

AdvR-wD3DH1
B (λ) ≤ AdvwD3DH1

B1 (λ) + AdvDDH1
B2 (λ),

where the second term denotes B2’s advantage as a DDH distinguisher in G.

Proof. To prove the result, we consider the following distribution:

Dint :=
{
{(g, ĝ, ga·αi , gb, gc, ĝb, ĝc, gz·αi)}Qi=1 | g

R← G, ĝ R← Ĝ,

α1, . . . , αQ, b, c, z
R← Zp, a R← Z?p}

}
A straightforward reduction shows that, under the wD3DH1 assumption, D1 is computa-
tionally indistinguishable from Dint. We show that, under the DDH assumption in G, Dint



14 Chapter 2. Primitives and Assumptions

is computationally indistinguishable from D0. Moreover, the reduction is tight in that the
two distinguishers have the same advantage.

First, we show that, under the wD3DH1 assumption, Dint is computationally indistin-
guishable from D1.

We can build a wD3DH1 distinguisher B1 from any distinguisher for D1 and Dint. With
(g, ĝ, ga, gb, gc, ĝb, ĝc, T ) as input where g R← G, ĝ R← Ĝ and a, b, c R← Zp, B1 uniformly
draws αi, . . . , αQ R← Zp and computes

DB1 :=
{
{(g, ĝ, ga·αi , gb, gc, ĝb, ĝc, Tαi)}Qi=1 | α1, . . . , αQ

R← Zp
}
.

It is easy to see that if T = gabc, then DB1 is identical to D1. If T ∈R G, then DB1 is
distributed as Dint. Hence, any distinguisher between D1 and Dint with DB1 implies a
distinguisher B1 for the wD3DH1 problem.

Next, we show that, under the DDH assumption in G, Dint is computationally indistin-
guishable from D0. In order to build a DDH distinguisher B2 out of a distinguisher between
Dint and D0, we use the random self-reducibility of the DDH assumption.
Lemma 2.2 (Random Self-Reducibility [NR97]). LettingG be a group of prime order p, there
exists a PPT algorithm R that takes as input (g, ga, gb, gc) ∈ G4, for any a, b, c ∈ Zp, and
returns a triple (ga, gb

′
, gc

′
) ∈ G3 such that:

• If c = ab mod q, then b′ is uniformly random in Zp and c′ = ab′.

• If c 6= ab mod q, then b′, c′ ∈R Zp are independent and uniformly random.

On input of (g, gz, gα, T ) ∈ G4, where g R← G and z, α R← Zp, B2 uses algorithm R to
generate Q instances {(gz, gαi , Ti)}Qi=1. Next, B2 draws ĝ R← Ĝ, a, b, c R← Zp and de�nes
the following distribution:

DB2 :=
{
{(g, ĝ, (gαi)a, gb, gc, ĝb, ĝc, Ti)}Qi=1 | ĝ

R← Ĝ, a, b, c R← Zp
}
.

We observe that, if T = gz·α, we have Ti = gz·αi for all i ∈ [Q]. In this case, DB2
is identical to Dint. In contrast, if T ∈R G, the random self-reducibility ensures that
T1, . . . , TQ ∈R G are i.i.d, meaning that DB2 is identical to D0. Using a distinguisher
between Dint and D0 and feeding it with DB2 , we obtain a distinguisher B2 for the DDH
problem in G.
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Part I.

Lossy trapdoor functions and their
applications



L
ossy Trapdoor Functions (LTF), which is introduced by Peikert and Waters [PW08],
are function families in which injective functions are computationally indistin-
guishable from many-to-one functions. Since their introduction, they drew a lot

of attention [FGK+10; HO12; Hof12; Wee12; Zha16] and have been found very useful in
constructions of many more advanced cryptographic primitives, such as chosen-ciphertext
(IND-CCA) secure encryption schemes [PW08], as well as deterministic public-key encryp-
tion schemes [BFO08; BS11; RSV13].

In order to construct di�erent cryptographic primitives, many variants of LTF have been
introduced. In this part, we will study a di�erent variant of lossy trapdoor functions (lossy
algebraic �lters) and provide more e�cient constructions of this variant of LTF.

We provide a more e�cient construction of LAF on DDH and corresponds to the following
article published in PKC2019 by Benoît Libert, Chen Qian: Lossy Algebraic Filters with
Short Tags.
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Lossy Algebraic Filters With
Short Tags 3

3.1. Introduction

Lossy Algebraic Filters. Lossy algebraic �lters (LAFs) are a variant LTFs introduced by
Hofheinz [Hof13] as a tool enabling the design of chosen-ciphertext-secure encryption
schemes with key-dependent message (KDM-CCA) security [BRS02]. Recently, they were
also used by Wen and Liu [WL18] in the construction of robustly reusable fuzzy extractors.
In LAF families, each function takes as arguments an input x and a tag t, which determines
if the function behaves as a lossy or an injective function. More speci�cally, each tag
t = (tc, ta) is comprised of an auxiliary component ta, which may consist of any public data,
and a core component tc. For any auxiliary component ta, there should exist at least one tc
such that t = (tc, ta) induces a lossy function fLAF(t, ·). LAFs strengthen the requirements
of lossy trapdoor functions in that, for any lossy tag t, the function fLAF(t, x) always reveals
the same information about the input x, regardless of which tag is used. In particular,
for a given evaluation key ek, multiple evaluations fLAF(t1, x), . . . , fLAF(tn, x) for distinct
lossy tags do not reveal any more information about x than a single evaluation. On the
other hand, LAFs depart from lossy trapdoor functions in that they need not be e�ciently
invertible using a trapdoor. For their applications to KDM-CCA security [Hof13] and fuzzy
extractors [WL18], lossy algebraic �lters are expected to satisfy two security properties.
The �rst one, called indistinguishability, requires that lossy tags be indistinguishable from
random tags. The second one, named evasiveness, captures that lossy tags should be hard
to come by without a trapdoor.

So far, the only known LAF realization is a candidate, suggested by Hofheinz [Hof13],
which relies on the Decision Linear assumption (DLIN) [BBS04] in groups with a bilinear
map. While e�cient and based on a standard assumption, it incurs relatively large tags
comprised of a quadratic number of group elements in the number of input symbols. More
precisely, for functions admitting inputs x = (x1, . . . , xn)> ∈ Znp , where p is the order of a
pairing-friendly G, the core components tc contain Θ(n2) elements of G. For the application
to KDM-CCA security [Hof13] (where tc should be part of ciphertexts), quadratic-size tags
are not prohibitively expensive as the encryption scheme of [Hof13, Section 4] can make
do with a constant n (typically, n = 6). In the application to fuzzy extractors [WL18],
however, it is desirable to reduce the tag length. In the robustly reusable fuzzy extractor
of [WL18], the core tag component tc is included in the public helper string P that allows
reconstructing a secret key from a noisy biometric reading w. The latter lives in a metric
space that should be small enough to �t in the input space Znp of the underlying LAF family.
Even if p is exponentially large in the security parameter λ, a constant n would restrict
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biometric readings to have linear length in λ. Handling biometric readings of polynomial
length thus incurs n = ω(1), which results in large tags and longer public helper strings.
This motivates the design of new LAF candidates with smaller tags.
Our Results. The contribution of this chapter is two-fold. We �rst construct a new
LAF with linear-size tags and prove it secure under simple, constant-size assumptions (as
opposed to q-type assumptions, which are described using a linear number of elements
in the number of adversarial queries) in bilinear groups. The indistinguishability and
evasiveness properties of our scheme are implied by the Decision 3-party Di�e-Hellman
assumption (more precisely, its natural analogue in asymmetric bilinear maps), which posits
the pseudorandomness of tuples (g, ga, gb, gc, gabc), for random a, b, c ∈R Zp. For inputs
in Znp , where p is the group order, our core tag components only consist of O(n) group
elements. These shorter tags are obtained without in�ating evaluation keys, which remain
of length O(n) (as in [Hof13]).

As a second contribution, we provide a second LAF realization withO(n)-size tags where
the indistinguishability and evasiveness properties are both almost tightly related to the
underlying hardness assumption. Namely, our security proofs are tight – or almost tight
in the terminology of Chen and Wee [CW13] – in that the gap between the advantages
of the adversary and the reduction only depends on the security parameter, and not on
the number of adversarial queries. In the LAF suggested by Hofheinz [Hof13], the proof
of evasiveness relies on the unforgeability of Waters signatures [Wat05]. As a result, the
reduction loses a linear factor in the number of lossy tags obtained by the adversary. In
our second construction, we obtain tight reductions by replacing Waters signatures with (a
variant of) a message authentication code (MAC) due to Blazy, Kiltz and Pan [BKP14]. As
a result, our proof of evasiveness only loses a factor O(λ) with respect to the Symmetric
eXternal Di�e-Hellman assumption (SXDH). If our scheme is plugged into the robustly
reusable fuzzy extractor of Wen and Liu [WL18], it immediately translates into a tight proof
of robustness in the sense of the de�nition of [WL18]. While directly using our second LAF
in the KDM-CCA-secure scheme of [Hof13] does not seem su�cient to achieve tight key-
dependent message security, it may still provide a building block for future constructions
of tightly KDM-CCA-secure encryption schemes with short ciphertexts.
Techniqes. Like the DLIN-based solution given by Hofheinz [Hof13], our evaluation
algorithms proceed by computing a matrix-vector product in the exponent, where the
matrix is obtained by pairing group elements taken from the core tag tc with elements of
the evaluation key. Here, we reduce the size of tc from O(n2) to O(n) group elements using
a technique suggested by Boyen and Waters [BW10] in order to compress the evaluation
keys of DDH-based lossy trapdoor functions.

In the pairing-based LTF of [BW10], the evaluation key contains group elements {(Ri, Si) =
(gri , (hi · u)ri)}ni=1, {(Vj = gvj , Hj = (hj · u)vj)}nj=1. Using a symmetric bilinear maps
e : G×G→ GT , these make it possible to compute the o�-diagonal elements of a matrix

Mi,j = e(g, h)ri·vj =
(e(Ri, Hj)

e(Si, Vj)

)1/(j−i)
∀(i, j) ∈ [n]× [n] \ {(i, i)}ni=1 (3.1)

via a “two equation” technique borrowed from the revocation system of Lewko, Sahai and
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Waters [LSW10]. By including {Di = e(g, g)ri·vi · e(g, g)}ni=1 in the evaluation key, the LTF
of [BW10] allows the evaluator to compute a matrix (Mi,j)i,j∈[n] such thatMi,j = e(g, g)ri·vj

if i 6= j andMi,i = e(g, g)ri·vi ·e(g, g)mi and for whichmi = 1 (resp. mi = 0), for all i ∈ [n],
in injective (resp. lossy) functions. The indistinguishability of lossy and injective evaluation
keys relies on the fact that (3.1) is only computable when i 6= j, making it infeasible to
distinguish {Di = e(g, h)ri·vi · e(g, g)}ni=1 from {Di = e(g, h)ri·vi}ni=1.

Our �rst LAF construction relies on the “two equation” technique of [LSW10] in a similar
way with the di�erence that we include {(Vj = gvj , Hj = (hj · u)vj}nj=1 in the evaluation
key ek, but {(Ri, Si) = (gri , (hi · u)ri)}ni=1 is now part of the core tag components tc. This
makes it possible to compute o�-diagonal elements of (Mi,j)i,j∈[n] by pairing elements of
ek with those of tc. To enable the computation of diagonal elements {Mi,i}ni=1, we augment
core tag components by introducing pairs (Di, Ei) ∈ G2, which play the same role as
{Di = e(g, g)ri·vi · e(g, g)}ni=1 in the LTF of [BW10]. In lossy tags, {(Di, Ei)}ni=1 are of the
form

(Di, Ei) = (hri·vi ·HG(τ)ρi , gρi), (3.2)

for a random ρi ∈R Zp, where τ is a chameleon hashing of all tag components. Such pairs
{(Di, Ei)}ni=1 allow the evaluator to compute

Mi,i =
e(Di, g)

e(HG(τ), Ei)
= e(g, h)ri·vi ∀i ∈ [n],

which results in a rank-one matrix (Mi,j)i,j∈[n], where Mi,j = e(g, h)ri·vj . When computed
as per (3.2), {(Di, Ei)}ni=1 can be seen as “blinded” Waters signatures [Wat05]. Namely,
(g, h, Vi = gvi) can be seen as a veri�cation key; hvi is the corresponding secret key; and
ri ∈ Zp serves as a blinding factor that ensures the indistinguishability of (Di, Ei) from
random pairs. Indeed, the Decision 3-party Di�e-Hellman (D3DH) assumption allows
proving that hri·vi is computationally indistinguishable from random given (g, h, gvi , gri).
In our proof of indistinguishability, however, we need to rely on the proof technique of
the Boneh-Boyen IBE [BB04] in order to apply a hybrid argument that allows gradually
replacing pairs {(Di, Ei)}ni=1 by random group elements.

In our proof of evasiveness, we rely on the fact that forging a pair of the form (Di, Ei) =
(hri·vi · HG(τ)ρi , gρi) on input of (g, h, gvi) is as hard as solving the 2-3-Di�e-Hellman
problem [KP06], which consist in �nding a non-trivial pair (gr, gr·ab) ∈ G∗ ×G∗ on input
of (g, ga, gb). In turn, this problem is known to be at least as hard as breaking the Decision
3-party Di�e-Hellman assumption.

The above techniques allow us to construct a LAF with O(n)-size tags and evaluation
keys made of O(n + λ) group elements under a standard assumption. Our �rst LAF is
actually described in terms of asymmetric pairings, but it can be instantiated in all types
(i.e., symmetric or asymmetric) of bilinear groups. Our second LAF construction requires
asymmetric pairing con�gurations and the Symmetric eXternal Di�e-Hellman (SXDH)
assumption. It is very similar to our �rst construction with the di�erence that we obtain a
tight proof of evasiveness by replacing Waters signatures with a variant of a MAC proposed
by Blazy, Kiltz and Pan [BKP14]. In order for the proofs to go through, we need to include
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n MAC instances (each with its own keys) in lossy tags, which incurs evaluation keys made
of O(n · λ) group elements. We leave it is an interesting open problem to achieve tight
security using shorter evaluation keys.

Related Work. All-but-one lossy trapdoor functions (ABO-LTFs) [PW08] are similar to
LAFs in that they are lossy function families where each function is parametrized by a
tag that determines if the function is injective or lossy. They di�er from LAFs in two
aspects: (i) They should be e�ciently invertible using a trapdoor; (ii) For a given evaluation
key ek, there exists only one tag for which the function is lossy. The main motivation of
ABO-LTFs is the construction of chosen-ciphertext [RS91] encryption schemes. All-but-
many lossy trapdoor functions (ABM-LTFs) are an extension of ABO-LTFs introduced by
Hofheinz [Hof12]. They are very similar to LAFs in that a trapdoor makes it possible to
dynamically create arbitrarily many lossy tags using. In particular, each tag t = (tc, ta)
consists of an auxiliary component ta and a core component tc so that, by computing tc as
a suitable function of ta, the pair t = (tc, ta) can be made lossy, but still random-looking.
The motivation of ABM-LTFs is the construction chosen-ciphertext-secure public-key
encryption schemes in scenarios, such as the selective-opening setting [DNRS99; BHY09],
which involve multiple challenge ciphertexts [Hof12]. They also found applications in the
design of universally composable commitments [Fuj14]. Lossy algebraic �lters di�er from
ABM-LTFs in that they may not have a trapdoor enabling e�cient inversion but, for any
lossy tag t = (tc, ta), the information revealed by fLAF(t, x) is always the same (i.e., it is
completely determined by x and the evaluation key ek).

LAFs were �rst introduced by Hofheinz [Hof13] as a building block for KDM-CCA-secure
encryption schemes, where they enable some form of “plaintext awareness”. In the security
proofs of KDM-secure encryption schemes (e.g., [BHHO08]), the reduction must be able
to simulate encryptions of (functions of) the secret key. When the adversary is equipped
with a decryption oracle, the ability to publicly compute encryptions of the decryption key
may be a problem as decryption queries could end up revealing that key. LAFs provide
a way reconcile the con�icting requirements of KDM and CCA2-security by introducing
in each ciphertext a LAF-evaluation of the secret key. By having the simulator encrypt a
lossy function of the secret key, one can keep encryption queries from leaking too much
secret information. At the same time, adversarially-generated ciphertexts always contain
an injective function of the key, which prevents the adversary from learning the secret key
by publicly generating encryptions of that key.

Recently, Wen and Liu [WL18] appealed to LAFs in the design of robustly reusable fuzzy
extractors. As de�ned by Dodis et al. [DRS04], fuzzy extractors allow one to generate a
random cryptographic key R – together with some public helper string P – out of a noisy
biometric reading w. The key R need not be stored as it can be reproduced from the public
helper string P and a biometric reading w′ which is su�ciently close to w. Reusable fuzzy
extractors [Boy04] make it possible to safely generate multiple keys R1, . . . , Rt (each with
its own public helper string Pi) from correlated readings w1, . . . , wt of the same biometric
source. Wen and Liu [WL18] considered the problem of achieving robustness in reusable
fuzzy extractors. In short, robustness prevents adversaries from covertly tampering with the
public helper stringPi in order to a�ect the reproducibility ofRi. The Wen-Liu [WL18] fuzzy
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extractor relies on LAFs to simultaneously achieve reusability and robustness assuming a
common reference string. Their solution requires the LAF to be homomorphic, meaning
that function outputs should live in a group and, for any tag t and inputs x1, x2, we have
fLAF(t, x1 + x2) = fLAF(t, x1) · fLAF(t, x2). The candidate proposed by Hofheinz [Hof13]
and ours are both usable in robustly reusable fuzzy extractors as they both satisfy this
homomorphic property. Our scheme o�ers the bene�t of shorter public helper strings P
since these have to contain a LAF tag in the fuzzy extractor of [WL18].

The tightness of cryptographic security proofs was �rst considered by Bellare and
Rogaway [BR96] in the random oracle model [BR93]. In the standard model, it drew a
lot of attention in digital signatures and public-key encryption the recent years (see, e.g.,
[HJ12; CW13; BKP14; LJYP14; LPJY15; Hof16; GHKW16; Hof17; GHK17]). In the context of
all-but-many lossy trapdoor functions, a construction with tight evasiveness was put forth
by Hofheinz [Hof12]. A tightly secure lattice-based ABM-LTF was described by Libert et al.
[LSSS17] as a tool enabling tight chosen-ciphertext security from lattice assumptions. To
our knowledge, the only other prior work considering tight reductions for lossy trapdoor
functions is a recent result of Hofheinz and Nguyen [HN19]. In particular, tight security
has never been obtained in the context of LAFs, nor in fuzzy extractors based on public-key
techniques.

3.2. Background

3.2.1. Lossy Algebraic Filters
We recall the de�nition of Lossy Algebraic Filter (LAF) from [Hof13], in which the distribu-
tion over the function domain may not be the uniform one.

De�nition 3.1. For integers `LAF(λ), n(λ) > 0, an (`LAF, n)-lossy algebraic �lter (LAF) with
security parameter λ consists of the following ppt algorithms:

Key generation. LAF.Gen(1λ) outputs an evaluation key ek and a trapdoor key tk. The
evaluation key ek speci�es an `LAF-bit prime p as well as the description of a tag space
T = Tc × Ta, where Tc is e�ciently samplable. The disjoint sets of injective and non-
injective tags tags are called Tinj and Tnon-inj = T \ Tinj, respectively. We also de�ne the
subset of lossy tags Tloss to be a subset of Tnon-inj, which induce very lossy functions. A
tag t = (tc, ta) is described by a core part tc ∈ Tc and an auxiliary part ta ∈ Ta. A tag
may be injective, or lossy, or neither. The trapdoor tk allows sampling lossy tags.

Evaluation. LAF.Eval(ek, t,X) takes as inputs an evaluation key ek, a tag t ∈ T and a
function input X ∈ Znp . It outputs an image Y = fek,t(X).

Lossy tag generation. LAF.LTag(tk, ta) takes as input the trapdoor key tk, an auxiliary
part ta ∈ Ta and outputs a core part tc such that t = (tc, ta) ∈ Tloss forms a lossy tag.

In addition, LAF has to meet the following requirements:

Lossiness. For any (ek, tk) R← LAF.Gen(1λ), the following conditions should be satis�ed.
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a. For any t ∈ Tinj, fek,t(.) should behave as an injective function (note that f−1
ek,t(.) is

not required to be e�ciently computable given tk).

b. For any auxiliary tag ta ∈ Ta and any tc
R← LAF.LTag(tk, ta), we have t =

(tc, ta) ∈ Tloss, meaning that fek,t(.) is a lossy function. Moreover, for any input
X = (x1, . . . , xn) ∈ Znp and any t = (tc, ta) ∈ Tloss, fek,t(X) is completely
determined by

∑n
i=1 vi · xi mod p for coe�cients {vi}ni=1 that only depend on ek.

Indistinguishability. Multiple lossy tags are computationally indistinguishable from ran-
dom tags, namely:

AdvA,indQ (λ) :=
∣∣Pr[A(1λ, ek)LAF.LTag(tk,·) = 1]− Pr[A(1λ, ek)OTc (·) = 1]

∣∣
is negligible for any PPT algorithm A, where (ek, tk) R← LAF.Gen(1λ) and OTc(·) is an
oracle that assigns a random core tag tc

R← Tc to each auxiliary tag ta ∈ Ta (rather than
a core tag that makes t = (tc, ta) lossy). Here Q denotes the number of oracle queries
made by A.

Evasiveness. Non-injective tags are computationally hard to �nd, even with access to an
oracle outputting multiple lossy tags, namely:

AdvA,evaQ1,Q2
(λ) := Pr[A(1λ, ek)LAF.LTag(tk,·), LAF.IsLossy(tk,·) ∈ Tnon-inj]

is negligible for legitimate adversary A, where (ek, ik, tk) R← LAF.Gen(1λ) and A is
given access to the following oracle:

- LAF.LTag(tk, ·) which acts exactly as the lossy tag generation algorithm.

- LAF.IsLossy(tk, ·) that takes as input a tag t = (tc, ta). It outputs 0 if t ∈ Tnon-inj =
T \Tinj and 1 if t ∈ Tinj. If t 6∈ T , the oracle outputs ⊥.

We denote byQ1 andQ2 the number of queries to LAF.LTag(tk, ·) and LAF.IsLossy(tk, ·),
respectively. By “legitimate adversary”, we mean that A is PPT and never outputs a tag
t = (tc, ta) such that tc was obtained by invoking the LAF.LTag oracle on ta.

In our construction, the tag space T will not be dense (i.e., not all elements of the
ambient algebraic structure are potential tags). However, elements of the tag space T will
be e�ciently recognizable given ek.

We note that the above de�nition of evasiveness departs from the one used by Hofheinz
[Hof13] in that it uses an additional LAF.IsLossy(tk, ·) oracle that uses the trapdoor tk to
decide whether a given tag is injective or not. However, this oracle will only be used in
our tightly secure LAF (and not in our �rst construction). Its only purpose is to enable a
modular use of our tightly evasive LAF in applications to KDM security [Hof13] or robustly
reusable fuzzy extractors [WL18]. Speci�cally, by invoking the LAF.IsLossy(tk, ·) oracle,
the reduction from the security of a primitive to the underlying LAF’s evasiveness does not
have to guess which adversarial query involves a non-lossy tag.
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3.3. A Lossy Algebraic Filter With Linear-Size Tags

We present a LAF based on DDH-like assumptions with tags of size O(n), where n is the
number of input symbols when the input is viewed as a vector over Zp. Our tags are
comprised of 4n elements of G, which outperforms the construction of [Hof13] for n > 4.
In his application to KDM-CCA security [Hof13], Hofheinz uses a LAF scheme with n = 6,
in which case we decrease the tag size from 43 to 24 group elements1 and thus shorten
ciphertexts by 19 group elements.

The construction is inspired by the lossy TDF of [BW10] and relies on the revocation
technique of Lewko, Sahai and Waters [LSW10] (LSW) in the same way. In asymmetric
pairings e : G × Ĝ → GT , the evaluation key contains a set of LSW ciphertexts {(V̂j =

ĝvj , Ĥj = (ĥj · û)vj)}nj=1, while each core tag component tc can be seen as containing a
set of LSW secret keys {(Ri, Si) = (gri , (hi · u)ri)}ni=1, allowing the evaluator compute
Mi,j = e(g, ĥ)ri·vj for any pairwise distinct indices i 6= j. In lossy tags (tc, ta), diagonal
elements {Mi,i}ni=1 are handled by having tc contain Waters signatures (Di, Ei) = (hri·vi ·
HG(τ)ρi , gρi), where ρi ∈R Zp andHG : {0, 1}L → G is an algebraic hash function mapping
the output τ of a chameleon hash function to the group G. For indistinguishability purposes,
pairs {(Di, Ei)}ni=1 are not immediately recognizable as Waters signatures because the
underlying secret key hvi is blinded by a random exponent ri = logg(Ri). Still, running
the veri�cation algorithm of Waters signatures on (Di, Ei) allows the evaluation algorithm
to derive Mi,i = e(g, ĥ)ri·vi , so that (Mi,j)i,j∈[n] forms a rank-1 matrix. In injective tags,
{(Di, Ei)}ni=1 are uniformly distributed in G, so that (Mi,j)i,j∈[n] is the sum of a rank-1
matrix and a diagonal matrix.

3.3.1. Description

Key generation. LAF.Gen(1λ) conducts the following steps.

1. Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with random genera-
tors g, h, u R← G and ĝ, ĥ, û R← Ĝ subject to the constraints logg(h) = logĝ(ĥ)
and logg(u) = logĝ(û).

2. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch), where
the hashing algorithm CMhash : {0, 1}∗ ×Rhash → {0, 1}L has output length
L ∈ poly(λ). Generate a pair (hkCMH, tdCMH)← CMKg(1λ) made of a hashing
key hkCMH and a trapdoor tdCMH.

3. Choose random exponents w0, . . . , wL
R← Zp and de�ne

Wk = gwk , Ŵk = ĝwk ∀k ∈ [0, L]

that will be used to instantiate two hash functions HG : {0, 1}L → G, HĜ :

1The LAF of [Hof13] was described in terms of symmetric pairings but it extends to asymmetric pairings
e : G× Ĝ→ GT where tags are comprised of elements in G.
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{0, 1}L → Ĝ which map any string m ∈ {0, 1}L to

HG(m) = W0 ·
L∏
k=1

W
m[k]
k , HĜ(m) = Ŵ0 ·

L∏
k=1

Ŵ
m[k]
k ,

respectively. Note that e(g,HĜ(m)) = e(HG(m), ĝ) for any m ∈ {0, 1}L.
4. Let n ∈ poly(n) be the desired input length. For each j ∈ [n], choose vj R← Zp

and de�ne

V̂j = ĝvj , Ĥj = (ĥj · û)vj ∀j ∈ [n].

5. Output the evaluation key ek and the lossy tag generation key tk, which consist
of

ek :=
(
hkCMH, g, h, u, ĝ, ĥ, û, {Wk, Ŵk}Lk=0, {V̂j, Ĥj}nj=1

)
,

tk :=
(
tdCMH, {vj}nj=1

)
.

The tag space T = Tc × Taux is de�ned as a product of Ta = {0, 1}∗ and

Tc := {
(
{Ri, Si, Di, Ei}ni=1, rhash

)
| rhash ∈ RCMH ∧

∀i ∈ [n] : (Ri, Si, Di, Ei) ∈ G∗4 ∧ e(Ri, ĥ
i · û) = e(Si, ĝ)},

where G∗ := G \ {1G}. The range of the function family is Rngλ = Gn+1
T and its

domain is Znp .

Lossy tag generation. LAF.LTag(tk, ta) takes in an auxiliary tag component ta ∈ {0, 1}∗
and uses tk =

(
tdCMH, {vj}nj=1, {wk}Lk=0

)
to generate a lossy tag as follows.

1. For each i ∈ [n], choose ri R← Z∗p and compute

Ri = gri , Si = (hi · u)ri ∀i ∈ [n]. (3.3)

2. For each i ∈ [n], choose ρi R← Zp and compute

Di = hri·vi ·HG(τ)ρi , Ei = gρi ∀i ∈ [n],

where τ ∈ {0, 1}L is chosen uniformly in the range of CMhash.
3. Use the trapdoor tdCMH to �nd rhash ∈ Rhash such that

τ = CMhash
(
hkhash, (ta, {Ri, Si, Di, Ei}ni=1), rhash

)
∈ {0, 1}L

and output the tag t = (tc, ta), where tc = ({Ri, Si, Di, Ei}ni=1, rhash).
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Each lossy tag is associated with a matrix
(
Mi,j

)
i,j∈[n]

=
(
e(g, ĥ)ri·vj

)
i,j

, which is a
rank-1 matrix in the exponent. Its diagonal entries consist of

Mi,i =
e(Di, ĝ)

e(Ei, HĜ(τ))
= e(g, ĥ)ri·vi ∀i ∈ [n], (3.4)

while its non-diagonal entries

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)
= e(g, ĥ)ri·vj ∀(i, j) ∈ [n]× [n] \ {(i, i)}ni=1,

(3.5)

are obtained by pairing tag component (Ri, Si) with evaluation key components
(V̂j, Ĥj).

Random Tags. A random tag can be publicly sampled as follows.

1. For each i ∈ [n], choose ri R← Z∗p and compute {Ri, Si}ni=1 as in (3.3).

2. For each i ∈ [n], choose (Di, Ei)
R← G∗ ×G∗ uniformly at random.

3. Choose rhash R← Rhash.

Finally, output the tag t = (tc, ta), where tc = ({Ri, Si, Di, Ei}ni=1, rhash).

We note that, in both random and lossy tags, we have e(Ri, û
i · ĥ) = e(Si, ĝ) for all i ∈ [n],

so that elements of T are publicly recognizable.

Evaluation. LAF.Eval(ek, t,x) takes in the input x ∈ Znp and the tag t = (tc, ta). It parses
tc as ({Ri, Si, Di, Ei}ni=1, rhash) and proceeds as follows.

1. Return ⊥ if there exists i ∈ [n] such that e(Ri, ĥ
i · û) 6= e(Si, ĝ).

2. Compute the matrix
(
Mi,j

)
i,j∈[n]

∈ Gn×n
T as

Mi,i =
e(Di, ĝ)

e(Ei, HĜ(τ))
∀i ∈ [n] , (3.6)

where τ = CMhash
(
hkhash, (ta, {Ri, Si, Di, Ei}ni=1), rhash

)
, and

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)
∀(i, j) ∈ [n]× [n] \ {(i, i)}ni=1, (3.7)

Note that, since Ri = gri and Si = (hi · u)ri for some ri ∈ Zq, we have

Mi,i = e(g, ĥ)ri·vi+ωi , ∀i ∈ [n] (3.8)
Mi,j = e(g, ĥ)ri·vj , ∀i 6= j,

for some vector (ω1, . . . , ωn)> ∈ Znp that only contains non-zero entries if t =
(tc, ta) is injective.
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3. Compute
(
VT,j

)
j∈[n]

as VT,j = e(h, V̂j) = e(g, ĥ)vj for each j ∈ [n].

4. Use the input x = (x1, . . . , xn)> ∈ Znp to compute

Y0 =
n∏
j=1

V
xj
T,j (3.9)

Yi =
n∏
j=1

M
xj
i,j ∀i ∈ [n]

and output Y = (Y0, Y1, . . . , Yn)> ∈ Gn+1
T .

While the above construction inherits the Θ(λ)-size public keys of Waters signatures
[Wat05], we believe that it can be adapted to other signature schemes in the standard model
(e.g., [BHJ+13; JR13]) so as to obtain shorter evaluation keys.

Injectivity and lossiness. For any injective tag, all entries of the vector (ω1, . . . , ωn)> are
non-zero in (3.8). We can use Y0 to ensure that the function is injective. As long as ωi 6= 0
for all i ∈ [n], the evaluation algorithm (3.9) yields a vector Y = (Y0, Y1, . . . , Yn) ∈ Gn+1

T

of the form

Y0 = e(g, ĥ)
∑n
j=1 vj ·xj

Yi = e(g, ĥ)ωi·xi+ri·
∑n
j=1 vj ·xj ∀i ∈ [n],

meaning that xi ∈ Zp is uniquely determined by (Y0, Yi) and (Ri, Di, Ei) (note that the
triple (Ri, Di, Ei) uniquely de�nes ωi).

For any lossy tag, the evaluation outputs Y = (Y0, Y1, . . . , Yn) ∈ Gn+1
T such that

Y0 = e(g, ĥ)
∑n
j=1 vj ·xj

Yi = e(g, ĥ)ri·
∑n
j=1 vj ·xj ∀i ∈ [n],

which always reveals the same information
∑n

j=1 vj · xj mod p about the input vector
x = (x1, . . . , xn)>, no matter which tag is used.

3.3.2. Security
The proof of indistinguishability relies on the wD3DH1 assumption via a hybrid argument
over the queries to the LAF.LTag(tk, ·) oracle and over the pairs {(Di, Ei)}ni=1 produced by
LAF.LTag(tk, ·) at each query. Using the R-wD3DH1 assumption, it is possible to modify
the proof so as to use a hybrid argument over the pairs {(Di, Ei)}ni=1 only (meaning that all
queries to LAF.LTag(tk, ·) are processed in parallel at each game transition). However, this
proof would require the SXDH assumption – which only holds in asymmetric pairings – to
apply the result of Lemma 2.1. In contrast, the proof of Theorem 3.1 allows instantiations
in all bilinear group con�gurations, even in symmetric pairings.
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The proof of Theorem 3.1 uses a hybrid argument to gradually replace pairs {(Di, Ei)}ni=1

by truly random group elements in outputs of the lossy tag generation oracle. To this end,
it relies on the proof technique of the Boneh-Boyen IBE [BB04] in the proof of Lemma 3.2.
Namely, in order to embed a D3DH1 instance (g, h, gvk , grk , T

?
= hrk·vk) in the k-th pair

(Dk, Ek), for indexes i > k, the reduction has to simulate hri·vk for a known ri ∈ Zp and
an unknown hvk .

Theorem 3.1. The above LAF provides indistinguishability under the wD3DH1 assumption
in (G, Ĝ,GT ).

Proof. We �rst recall that, for any injective or non-injective tag t = (tc, ta), the core
component tc = ({Ri, Si, Di, Ei}ni=1, rhash) imply a matrix

(
Mi,j

)
i,j∈[n]

where the o�-
diagonal entries are Mi,j = e(g, ĥ)ri·vj and the diagonal entries are of the form (3.8). In
injective tags, the vector (ω1, . . . , ωn)> ∈ Znp only contains non-zero entries. In lossy tags,
we have (ω1, . . . , ωn)> = 0n. We de�ne a sequence of hybrid games. In Game(0,0), the
adversary has access to the real oracle LAF.LTag(tk, .) oracle that always outputs lossy
tags. In Game(Q,n), the adversary is given access to an oracle OTc(.) that always outputs
random tags.

Game(`,k) (1 ≤ ` ≤ Q, 1 ≤ k ≤ n): In this game, the adversary interacts with a hybrid
oracle LAF.LTag(`,k)(tk, .). At the µ-th query, this oracle outputs tags t(µ) = (t

(µ)
c , t

(µ)
a )

such that
- If µ < `, the tag t(µ)

c = ({Ri, Si, Di, Ei}ni=1, rhash) implies a matrix
(
M

(µ)
i,j

)
i,j∈[n]

of the form (3.8) where (ω
(µ)
1 , . . . , ω

(µ)
n )> is uniform over Znp

- If µ = `, t(µ)
c = ({Ri, Si, Di, Ei}ni=1, rhash) implies a matrix

(
M

(µ)
i,j

)
i,j∈[n]

of the
form (3.8) where the �rst k entries of (ω

(µ)
1 , . . . , ω

(µ)
n )> are uniform over Zp and

its last n− k entries are zeroes.
- If µ > `, the matrix

(
M

(µ)
i,j

)
i,j∈[n]

implied by the core tag component

t(µ)
c = ({Ri, Si, Di, Ei}ni=1, rhash)

is a rank-1 matrix in the exponent since (ω
(µ)
1 , . . . , ω

(µ)
n )> = 0n.

Lemma 3.2 shows that, for all pairs (`, k) ∈ [Q] × [n], these games are computationally
indistinguishable from one another, which yields the stated result.

Lemma 3.2. For each k ∈ [n] and ` ∈ [Q], Game(`,k) is computationally indistinguishable
from Game(`,k−1) if the wD3DH1 assumption holds. Under the same assumption, Game(`,1) is
computationally indistinguishable from Game(`−1,n).

Proof. For the sake of contradiction, assume that there exists ` ∈ [Q], k ∈ [n] such that the
adversary A can distinguish Game(`,k) from Game(`,k−1) with noticeable advantage (the
indistinguishability of Game(`−1,n) and Game(`,1) can be proved in a completely similar
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way). We build a wD3DH1 distinguisher B that inputs (g, ĝ, ga, gb, gc, ĝb, ĝc, T ) with the
goal of deciding if T = gabc or T ∈R G.

To this end, B de�nes h = gb, ĥ = ĝb and V̂k = ĝc. It picks α R← Zp and de�nes
û = ĥ−k · ĝα as well as u = h−k · gα, which implicitly sets vk = c. This allows de�ning

Ĥk = (ĥk · û)c = (ĝc)α,

In addition, B de�nes (W0,W1, . . . ,WL) ∈ GL+1 and (Ŵ0, Ŵ1, . . . , ŴL) ∈ ĜL+1 by setting

Wi = (gb)αi · gβi , Ŵi = (ĝb)αi · ĝβi ∀i ∈ {0, . . . , L}

for randomly chosen α0, . . . , αL
R← Zp, β0, . . . , βL

R← Zp. Then, B chooses vi R← Zp for
each i ∈ [n] \ {k} and de�nes the rest of the evaluation key ek by setting

V̂i = ĝvi , Ĥi = (ĥi · û)vi , ∀i ∈ [n] \ {k}

Then, at each invocation of the LAF.LTag(tk, .) oracle, B responds as follows. At the
µ-th query t(µ)

a , it generates a core tag t(µ)
c such that

- If µ < `, t(µ)
c = ({Ri, Si, Di, Ei}ni=1, rhash) contains {D̂i, Êi}ni=1 uniformly random

pairs whereas {Ri, Ŝi}ni=1 are chosen as in the real algorithm sampling random tags.

- If µ = `, t(µ)
c = ({Ri, Si, Di, Ei}ni=1, rhash) is generated as follows. It sets

Rk = ga, Sk = (ga)α.

As for indexes i 6= k, it chooses r1, . . . , rk−1, rk+1, . . . , rn
R← Zp and sets

Ri = gri , Si = (hi · u)ri ∀i ∈ [n] \ {k}.

It generates the pairs {Di, Ei}ni=1 by choosing (Di, Ei)
R← G2 at random for each

i ∈ [k − 1]. The k-th pair (Dk, Ek) is de�ned as

Dk = T ·HG(τ)ρk , Ek = gρk . (3.10)

for a randomly chosen ρk R← Zp. As for {Di, Ei}ni=k+1, they are obtained by choosing
a random τ = τ [1] . . . τ [L] ∈ {0, 1}L in the range of CMhash and choosing ρi R← Zp
before setting

Di = HG(τ)ρi · (gc)
−ri·

β0+
∑L
i=1 βi·τ [i]

α0+
∑L
i=1

αi·τ [i] (3.11)

Ei = gρi · (gc)
− ri
α0+

∑L
i=1

αi·τ [i]

which can be written

Di = gbc·ri ·HG(τ)ρ̃i = hvk·ri ·HG(τ)ρ̃i

Ei = gρ̃i



3

3.3. A Lossy Algebraic Filter With Linear-Size Tags 31

if we de�ne ρ̃i = ρi − c·ri
α0+

∑L
i=1 αi·τ [i]

. Note that the reduction B fails if α0 +
∑L

i=1 αi ·
τ [i] = 0 but this only occurs with negligible chance since the coordinates (α0, . . . , αL) ∈
ZLp are independent of A’s view. Finally, B uses the trapdoor tdCMH of the chameleon
hash function to �nd coins rhash ∈ RCMH such that

τ = CMhash
(
hkhash, (ta, {Ri, Si, Di, Ei}ni=1), rhash

)
.

- If µ > `, the tags are generated as lossy tags. To this end, B proceeds as in the
previous case, except that all elements {Di, Ei}ni=1 (and not only the last n− k ones)
are generated as per (3.11).

It is easy to see that, if T = gabc, the pair (Dk, Ek) of (3.10) can be written

Dk = hvk·rk ·HG(τ)ρk , Ek = gρk ,

meaning that A’s view is the same as in Game(`,k−1). In contrast, if T ∈R G, then (Dk, Ek)
can be written

Dk = hωk+vk·rk ·HG(τ)ρk , Ek = gρk ,

for some uniformly random ωk ∈R Zp. In this case,A’s view corresponds to Game(`,k).

The evasiveness property is established by Theorem 3.3.

Theorem 3.3. The above LAF provides evasiveness assuming that: (i) CMH is a collision-
resistant chameleon hash function; (ii) The wD3DH1 and 2-3-CDH assumptions both hold in
(G, Ĝ,GT ).

Proof. Let us assume that a PPT adversary A can break the evasiveness property with
noticeable advantage. We show that it contradicts either: (i) The indistinguishability of
the scheme; (ii) The collision-resistance of the chameleon hash function; (iii) The 2-3-CDH
assumption. We will prove this claim via a sequence of hybrid games.

In Game0, the adversary A proceeds as in the real evasiveness security experiment. In
the �nal game, we show that, if the adversary can output a lossy tag, we can easily construct
an algorithm breaking the 2-3-CDH assumption with non-negligible advantage.

For each i, we denote by badi the event that A manages to output a non-trivial lossy tag
in Gamei.

Game0: In this game, the adversary A has access to the lossy tag generation oracle
LAF.LTag(tk, ·) that always outputs lossy tags. By de�nition,

Pr[bad0] = Pr[A(1λ, ek)LAF.LTag(tk,·)]. (3.12)

Game1: In this game, we de�ne badhash to be the event that the adversary A outputs a
tag t = (({Ri, Si, Di, Ei}ni=1, rhash)) for which the corresponding chameleon hash
collides with that of some tag produced by the oracle LAF.LTag(tk, ·). The only
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di�erence between Game1 and Game0 is that Game1 aborts when badhash occurs. It
is straightforward that

|Pr[bad1]− Pr[bad0]| = Pr[badhash in Game1]. (3.13)

We want to use the collision resistance property of the underlying chameleon hash
function to bound the probability Pr[badhash in Game1]. However, the lossy key
generation oracle uses the trapdoor tdCMH to create lossy tags. To avoid a circularity,
we consider Game′1, where the lossy key generation oracle always outputs injective
tags instead of lossy ones. Using the indistinguishability between lossy and injective
tags (established by Theorem 3.1), we have

|Pr[badhash in Game1]− Pr[badhash in Game′1]| = nQ ·AdvwD3DH1(λ). (3.14)

Since Game0 and Game1 only di�er when badhash occurs in Game1, we can bound
the probability (3.13) as

|Pr[bad1]− Pr[bad0]| = |Pr[badhash in Game1]|
≤ |Pr[badhash in Game′1]|+ nQ ·AdvwD3DH1(λ)

In Game′1, we clearly have Pr[badhash in Game′1] ≤ AdvCR
CMH(λ): since the trapdoor

of CMH is not used, we can readily build a reduction that breaks the collision-resistance
of CMH out of an adversary for which badhash occurs with noticeable probability. This
immediately implies

|Pr[bad1]− Pr[bad0]| ≤ AdvCR
CMH(λ) + nQ ·AdvwD3DH1(λ)

We now proceed to bound Pr[bad1] by showing that, using the adversary A in Game1, we
can build an algorithm B breaking the 2-3-CDH assumption.

AlgorithmB takes as input (ga, gb, ĝa, ĝb) with the goal of computing gr, gr·ab. To this end,
B de�nes h = ga. It randomly chooses a J R← [n] and sets VJ = gb, which implicitly sets
vJ = b. In addition, B de�nes (W0,W1, . . . ,WL) ∈ GL+1 and (Ŵ0, Ŵi, . . . , ŴL) ∈ ĜL+1

as

Wi = (ga)αi · gβi Ŵi = (ĝa)αi · ĝβi

where α0 = −1 and α1, . . . , αL
R← {−1, 0, 1} and β0, . . . , βL

R← Zp.
In order to simulate the LAF.LTag oracle on input of ta, B proceeds as follows:

1. For each i ∈ [n], B uniformly samples ri R← Z?p and computes {Ri, Si}ni=1 as in (3.3).

2. B samples a random τ in the range of CMhash. For each i ∈ [n]\{J}, it chooses
ρi

R← Zp and computes

Di = hri·vi ·HG(τ)ρi , Ei = gρi .
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3. For i = J , B aborts if α0 +
∑L

k=1 αk · τ [k] = 0. Otherwise, B chooses ρJ R← Zp and
computes (DJ , EJ) as in (3.11):

DJ = HG(τ)ρJ · (VJ)
−rJ ·

β0+
∑L
k=1 βk·τ [k]

α0+
∑L
k=1

αk·τ [k]

EJ = gρJ · (VJ)
− rJ
α0+

∑L
k=1

αk·τ [k] (3.15)

4. Next, B uses the trapdoor tdCMH of the chameleon hash function in order to �nd
random coins rhash ∈ RCMH such that

τ = CMhash(hkhash, (ta, {Ri, Si, Di, Ei}ni=1), rhash).

5. Finally, B outputs (tc, ta) with tc = ({Ri, Si, Di, Ei}ni=1, rhash).

As in (3.11), if we de�ne ρ̃J = ρJ − b·rJ
α0+

∑L
k=1 αk·τ [k]

, we observe that (3.15) can be written
as DJ = hb·rJ · HG(τ)ρ̃J and EJ = gρ̃J . Hence, if B does not abort in any query to
LAF.LTag, the output distribution of B is identical to that of the real LAF.LTag oracle.
We denote by abortk the event that B aborts at the k-th query to the LAF.LTag oracle
for k ∈ [Q]. Letting t? = (t?c, t

?
a) denote the lossy tag generated by A, we parse t?c as

t?c = ({R?
i , S

?
i , D

?
i , E

?
i }ni=1, r

?
hash) and compute

τ ? = CMhash(hkhash, (t
?
a, {R?

i , S
?
i , D

?
i , E

?
i }ni=1), r?hash).

In the event that α0 +
∑L

k=1 αk · τ ?[k] 6= 0, B aborts. We denote the latter event by abortch.
If B did not abort (which implies α0 +

∑L
k=1 αk · τ ?[k] = 0), we have

D?
J = hb·r

?
J ·HG(τ ?)ρ̃

?
J

= gab·r
?
J · g(a·(α0+

∑L
k=1 αk·τ?[k])+(β0+

∑L
k=1 βk·τ?[k]))·ρ̃?J

= gab·rJ · E?
J
β0+

∑L
k=1 βk·τ?[k],

where E?
J = gρ̃

?
J . Finally, B outputs

(
R?
J ,

D?J

E?J
β0+

∑L
k=1

βk·τ?[k]

)
.

Clearly, if B did not abort, its output (RJ , DJ/E
β0+

∑L
k=1 βk·τ [k]

J ) is a valid 2-3-CDH chal-
lenge. We are left with evaluating the probability that B aborts.

If we de�ne the function α : {0, 1}L → Z that maps the string m = m[1] . . .m[L] ∈
{0, 1}L to α(m) = α0 +

∑L
k=1 αi ·m[i], the probability that B does not abort is given by

Pr[¬abortch ∧ ¬abort1 ∧ . . . ∧ ¬abortQ]

= Pr[α(τ ?) = 0 ∧ α(τ1), . . . , α(τQ) 6= 0], (3.16)

where Q is the number of queries to LAF.LTag. and τi denotes the output of the chameleon
hash function produced at the i-th LAF.LTag query. By applying known results on pro-
grammable hash functions [HK08], our choice of α0, α1, . . . , αL ensures that

Pr[¬abortch ∧ ¬abort1 ∧ . . . ∧ ¬abortQ] ≥ δ, (3.17)
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where δ = Ω(Q ·
√
L). Putting the above altogether, we can conclude that

Adveva(1λ) ≤ AdvCR
CMH(λ) + nQ ·AdvwD3DH1(λ) +O(Q ·

√
L) ·Adv2-3-CDH(λ),

which yields the statement of the theorem.

Recall that the wD3DH1 and 2-3-CDH assumptions are implied by the D3DH1 and
D3DH2 assumptions, respectively. Theorem 3.1 and Theorem 3.3 thus guarantee the
D3DH1 and D3DH2 assumptions su�ce to ensure the indistinguishability and evasiveness
properties of our LAF construction (indeed, chameleon hash functions also exist under
these assumptions).

3.3.3. Towards All-But-Many Lossy Trapdoor Functions
Our LAF construction can be modi�ed to construct an all-but-many lossy trapdoor function
[Hof12]. Recall that ABM-LTFs do not require evaluations on lossy tags to always output
the same information about the input: on any lossy tag, the image size is only required
to be much smaller. On the other hand, ABM-LTFs require that, for any injective tag, the
function be e�ciently invertible using a trapdoor.

Our construction can be turned into an ABM-LTF in the following way. In the evaluation
algorithm, a binary input vector x = (x1, . . . , xn)> ∈ {0, 1}n is mapped to the output
(Y0, . . . , Yn) ∈ Gn+1

T , where

Y0 =
n∏
i=1

e(Ri, ĥ)xi

Yj =
n∏
i=1

Mxi
i,j ∀j ∈ [n],

which can be written

Y0 = e(g, ĥ)
∑n
i=1 ri·xi

Yj = e(g, ĥ)ωj ·xj+vj ·
∑n
i=1 ri·xi ∀j ∈ [n].

Using ik = (v1, . . . , vn) ∈ Znp as an inversion key, one can decode the j-th input bit as
xj = 0 (resp. xj = 1) if Yj/Y

vj
0 = 1GT (resp. Yj/Y

vj
0 6= 1GT ).

Unfortunately, the above ABM-LTF does not seem immediately usable in the application
to selective-opening chosen-ciphertext security, which was suggested in [Hof12]. The
reason is that our tags have a special and publicly recognizable structure, where (Ri, Si) both
depend on the same exponent ri ∈ Zp. In the selective-opening setting, the problem arises
when the adversary chooses to corrupt some senders, at which point the reduction should
reveal the random coins used to create lossy/injective tags. In our construction, this would
entail to reveal ri ∈ Zp, which is incompatible with our proofs of indistinguishability and
evasiveness. In the ABM-LTF constructions of [Hof12; LSSS17], lossy tags are explainable
because they are pseudorandom, which allows the reduction to pretend that they have been
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randomly sampled in their ambient space. Here, the special structure of lossy/injective tags
prevents us from explaining the generation of lossy tags in the same way for corrupted
senders. The only apparent way to sample a pair (Ri, Si) satisfying e(Ri, ĥ

i · û) = e(Si, ĝ)
is to choose ri ∈ Zp and compute (Ri, Si) = (gri , (hi · u)ri).

We thus leave it as an open problem to build an ABM-LTF with explainable linear-size
tags under DDH-like assumptions.

3.4. A Lossy Algebraic Filter With Tight Security

In this section, we modify our �rst LAF construction in such a way that we can prove it
tightly secure under constant-size assumptions.2 To this end, we replace Waters signatures
by a variant of the MAC described by Blazy, Kiltz and Pan [BKP14], which is itself inspired
by the Naor-Reingold PRF [NR97].

3.4.1. A Variant of the BKP MAC

The MAC construction below is identical to the signature scheme implied by the IBE scheme
of [BKP14, Appendix D] with two di�erences which prevent public veri�cation in order
to obtain a pseudo-random MAC instead of a digital signature. The signature scheme
of [BKP14] was actually designed by transposing a pseudo-random MAC from standard
DDH-hard groups to bilinear groups in order to enable public veri�cation. Here, we cannot
immediately use the MAC of [BKP14] because we need bilinear maps in the evaluation
algorithm of our LAF.

In order to obtain a pseudo-random MAC, we thus modify the signature scheme of
[BKP14] by introducing an additional randomizer r ∈ Zp and an extra group element h, of
which the discrete logarithm logg(h) serves as a private veri�cation key.

Keygen(1λ, 1L): Given a security parameter λ and a message length L ∈ poly(λ), choose
asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with generators g, h R←
G, ĝ R← Ĝ.

1. Choose θ, α, β R← Zp and compute ĝθ ∈ Ĝ. For each µ ∈ {0, 1}, choose vectors
~xµ = (x1,µ, . . . , xL,µ) R← ZLp , ~yµ = (y1,µ, . . . , yL,µ) R← ZLp .

2. Set v = α + θ · β and ~zµ = ~xµ + θ · ~yµ ∈ ZLp . Compute V̂ = ĝv and, for each
µ ∈ {0, 1}, de�ne ~̂Zµ = (Ẑ1,µ, . . . , ẐL,µ) = ĝ~zµ .

Output a secret key skmac = (α, β, ~x0, ~x1, ~y0, ~y1, η), where η = logg(h), and public
parameters consisting of pp =

(
(G, Ĝ,GT ), g, ĝ, h, ĝθ, (V̂ ,

~̂
Z0,

~̂
Z1)
)
.

2While the assumption of De�nition 2.10 is described using O(Q) group elements, it tightly reduces to
wD3DH1 and DDH which both take a constant number of group elements to describe.
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Mac.Sig(pp, skmac,M): To generate a MAC for M = m[1] . . .m[L] ∈ {0, 1}L using
skmac = (x, y, ~x0, ~x1, ~y0, ~y1, η), choose r, ρ R← Zp and compute

σ1 = hα·r · gρ·(
∑L
k=1 xk,m[k])

σ2 = hβ·r · gρ·(
∑L
k=1 yk,m[k])

σ3 = gρ

σ4 = gr

Mac.Ver(pp, skmac,M, σ): Given skmac = (α, β, ~x0, ~x1, ~y0, ~y1, η) and an L-bit message
M = m[1] . . .m[L], a purported MAC σ = (σ1, σ2, σ3, σ4) is accepted if and only if

e(σ1, ĝ) · e(σ2, ĝ
θ) = e(σ4, V̂ )η · e(σ3,

L∏
k=1

Ẑk,m[k]). (3.18)

We note that the veri�cation algorithm can be modi�ed in such a way that it does not require
any pairing evaluation. The above description is just meant to simplify the presentation of
the security proof of our LAF construction.

The proof is essentially identical to that of [BKP14] but we give it for completeness. We
note that, in the security de�nitions of MACs, the adversary is generally allowed to make
veri�cation queries. Here, for simplicity, we prove unforgeability in a game where the
adversary knows η = logg(h), which allows it to run the veri�cation oracle itself. This
dispenses us with the need for a veri�cation oracle.

Lemma 3.4. The above construction is an unforgeable MAC assuming that the SXDH as-
sumption holds in (G, Ĝ). Namely, any forger A making Q MAC queries and QV veri�cation
queries within running time tA has advantage at most

Advuf-mac
A (λ) ≤ AdvDDH2

B1 (λ) + 2L ·AdvDDH1
B2 (λ),

whereB1 andB2 are PPT distinguishers against the DDH assumption inG1 andG2, respectively,
which run in time tA + (Q+QV ) · poly(λ).

Proof. To prove the result, we consider a sequence of games. For each index i, we call Wi

the event that the challenger outputs 1 in Gamei.

Game0: This is the real game MAC security game, where the adversary A is additionally
given η = logg(h) in such a way that it can run the veri�cation algorithm (and test
whether equation (3.18) holds) by itself. The challenger outputs 1 if and only if A
eventually outputs a pair (M?, σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4)) satisfying

e(σ?1, ĝ) · e(σ?2, ĝθ) = e(σ?4, V̂ )η · e(σ?3,
L∏
k=1

Ẑk,m?[k]), (3.19)

where M? = m?[1] . . .m?[L] ∈ {0, 1}L, although M? was not previously queried to
the MAC oracle. By de�nition, Pr[W0] = Advuf-mac

A (λ).
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Game1: In this game, we modify again the veri�cation oracle as follows. When A outputs
a pair (M?, σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4)) such that M? was not queried to the MAC oracle

but (M?, σ?) still satis�es (3.19), the challenger checks if

σ?1 = σ?4
η·α · σ?3

∑L
k=1 xk,m?[k] (3.20)

σ?2 = σ?4
η·β · σ?3

∑L
k=1 yk,m?[k] .

We call E1 the event that equalities (3.20) are satis�ed. If they are not satis�ed, the
challenger outputs 0. Otherwise, it outputs 1 as it did in Game0. If we denote by E0

the analogue of event E1 in Game0, we have

Pr[W0] = Pr[W0 ∧ E0] + Pr[W0 ∧ ¬E0]

= Pr[W1 ∧ E1] + Pr[W0 ∧ ¬E0] = Pr[W1] + Pr[W0 ∧ ¬E0]

since Pr[W1 ∧ ¬E1] = 0. Lemma 3.5 shows that event W0 ∧ ¬E0 would contradict
the DDH assumption in Ĝ: namely, we have Pr[W0 ∧ ¬E0] ≤ AdvDDH2(λ), which
implies |Pr[W1]− Pr[W0]| ≤ AdvDDH2(λ).

We now use a sub-sequence of L hybrid games over the input bits of queried messages. For
convenience, we de�ne Game2.0 to be identical to Game1.

Game2.i (1 ≤ i ≤ L): In this sub-sequence of games, we modify the key generation phase
and the MAC oracle in the following way.

- At the beginning of the game, the challenge de�nes V̂ = ĝv for a random v R← Zp.
- MAC queries are handled as follows. Let R : {0, 1}i → Zp be a truly random

function mapping i-bit input to Zp. At each message M queried by A, the
challenger computes (σ3, σ4) = (gρ, gr) for random ρ, r R← Zp. Then, it outputs
(σ1, σ2, σ3, σ4), where

σ1 = h(v−θ·R(m[1]...m[i]))·r · gρ·(
∑L
k=1 xk,m[k])

σ2 = hR(m[1]...m[i])·r · gρ·(
∑L
k=1 yk,m[k])

When the adversary outputs (M?, σ? = (σ?1, σ
?
2, σ

?
3, σ

?
4)) satisfying (3.19) for a new

message M?, the challenger checks if the following equalities are satis�ed:

σ?1 = σ?4
η·(v−θ·R(m?[1]...m?[i])) · σ?3

∑L
k=1 xk,m?[k] (3.21)

σ?2 = σ?4
η·R(m?[1]...m?[i]) · σ?3

∑L
k=1 yk,m?[k] .

If so, the challenger outputs 1. Otherwise, it outputs 0. Lemma 3.6 shows that Game2.i

is indistinguishable from Game2.(i−1) under the DDH assumption in G. Namely,
|Pr[W2.i]− Pr[W2.(i−1)]| ≤ AdvDDH1(λ).
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In Game2.L, we claim that Pr[W2.L] = 1/p. Indeed, the equalities (3.21) can only hold
by pure chance when i = L because m?[1] . . .m?[L] was never involved in an output
of the MAC oracle. Hence, the random function output R(m?[1] . . .m?[L]) is perfectly
independent of A’s view. Since Pr[W2.0] = Pr[W1], we obtain the claimed upper bound for
Pr[W0].

Lemma 3.5. In Game0, we have Pr[W0 ∧ ¬E0] ≤ AdvDDH2(λ).

Proof. Towards a contradiction, let us assume that, in Game1, the adversaryA can output a
pair (M?, σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4)) satisfying (3.19) but not (3.20). We construct a distinguisher

B for the DDH assumption in Ĝ. Our distinguisher B takes as input (ĝ, ĝθ, ĝω, T̂ ) ∈ Ĝ4

and decides if T̂ = ĝα·ω or T̂ ∈R Ĝ. To this end, B will compute a pair of the form
(w,wθ) ∈ G2 with w 6= 1G, which allows solving the given DDH instance in Ĝ by testing
if e(w, T̂ ) = e(wθ, ĝω). Indeed, the latter equality holds if and only if T̂ = ĝα·ω.

The reduction B runs the real key generation algorithm and answers all MAC and
veri�cation queries exactly as in Game1. By hypothesis, B has non-negligible probability
of outputting a pair (M?, σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4)) satisfying (3.19) although

σ?1 6= σ?4
η·α · σ?3

∑L
k=1 xk,m?[k] , σ?2 6= σ?4

η·β · σ?3
∑L
k=1 yk,m?[k] .

At this point, B uses skmac to construct a di�erent valid MAC (σ′1, σ
′
2, σ

?
3, σ

?
4) satisfying

(3.19) and such that (σ′1, σ
′
2) 6= (σ?1, σ

?
2). Namely, B computes

σ′1 = σ?4
η·α · σ?3

∑L
k=1 xk,m?[k] , σ′2 = σ?4

η·β · σ?3
∑L
k=1 yk,m?[k] .

By dividing the two veri�cation equations for (σ′1, σ
′
2, σ

?
3, σ

?
4) and (σ?1, σ

?
2, σ

?
3, σ

?
4), we get

e(σ?1/σ
′
1, ĝ) · e(σ?2/σ′2, ĝθ) = 1GT

meaning that σ?1/σ′1 = (σ′2/σ
?
2)θ. Since σ?1 6= σ′1, this provides B with a non-trivial pair

(w,wθ) =
(
σ′2/σ

?
2, σ

?
1/σ

′
1

)
, which is su�cient to solve DDH in Ĝ.

Lemma 3.6. Under the DDH assumption in G, the challenger outputs 1 with about the same
probabilities in Game3.(i−1) and Game3.i. We have

|Pr[W2.i]− Pr[W2.(i−1)]| ≤ 2 ·AdvDDH1(λ).

Proof. Assuming the existence of an adversary A that can distinguish between Game′2.(i−1)

and Game′2.i, we will build a DDH distinguisher B. Our distinguisher B inputs a DDH
instance (g, ga, gb, T ) ∈ G4 and decides whether T = gab or T ∈R G. To do this, B �ips a
random coin γ R← {0, 1} and uses a random function R′ : {0, 1}i−1 → Zp, which is lazily
de�ned as the adversary makes queries. Using R′, B de�nes another random function
R : {0, 1}i → Zp as

R(m[1] . . .m[i]) =

{
R(m[1] . . .m[i− 1]) m[i] = γ

R(m[1] . . .m[i− 1]) +R′(m[1] . . .m[i− 1]) m[i] = 1− γ
.
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We now consider the output of MAC queries. Implicitly, B de�nes xi,1−γ and yi,1−γ as
xi,1−γ = x′i,1−γ + θ(1 − a) · y′i,1−γ and yi,1−γ = a · y′i,1−γ , where x′i,1γ , y

′
i,1−γ

R← Zp. Note
that the only value in public parameter that depends on xi,1−γ and yi,1−γ is

Ẑi,1−γ = ĝxi,1−γ+θ·yi,1−γ = ĝx
′
i,1−γ+θ·y′i,1−γ ,

so that Ẑi,1−γ is computable from (x′i,1−γ, y
′
i,1−γ) ∈ Z2

p. The remaining secret key com-
ponents are chosen as in the real key generation algorithm, by sampling η, α, β R← Zp,
xi,γ, yi,γ

R← Zp and xk,b, yk,b R← Zp for each k ∈ [L] \ {i}, b ∈ {0, 1}.
Then, B simulates the responses to MAC queries in the following way.
1. From (A = ga, B = gb, T ), B uses the random self-reducibili1ty of DDH assumption

to generate a fresh pair (Bm|i−1
, Tm|i−1

) for each value of m|i−1 = m[1] . . .m[i− 1] ∈
{0, 1}i−1 in such a way that, if (A,B, T ) is a DDH tuple, so is (A,Bm|i−1

, Tm|i−1
).

Otherwise,Bm|i−1
∈R G and Tm|i−1

∈R G are i.i.d. For convenience, we may associate
each string m|i−1 ∈ {0, 1}i with a tuple

(A,Bm|i−1
, Tm|i−1

) =
(
ga, gbm|i−1 , ga·bm|i−1

+em|i−1

)
where either em|i−1

= 0 or em|i−1
∈R Zp. Note that the pairs (Bm|i−1

, Tm|i−1
) can be

sampled lazily by having B initially generate Q pairs since at most Q distinct pre�xes
m|i−1 can occur in all MAC queries.

2. For each message M queried by A, B randomly chooses r, d R← Zp and computes σ
in the following way.

σ1 = h(v−θR(m[1]...m[i−1]))·r · (Br
m|i · g

d)x
′
i,m[i]

+θy′
i,m[i]

· (T r · Ad)−θy
′
i,m[i] · (Br

m|i−1
· gd)

∑L
k=1∧k 6=i xk,m[k] ,

σ2 = hR(m[1]...m[i−1])·r · (T r · Ad)y
′
i,m[i] · (Br

m|i−1
· gd)

∑L
k=1∧k 6=i yk,m[k] ,

σ3 = Br
m|i−1

· gd,
σ4 = gr.

We observe that, if we set ρ = bm|i−1
· r + d, the above equations can be written as

σ1 = h(v−θR(m[1]...m[i−1]))·r · gρ·(x
′
i,m[i]

+θ(1−a)·y′
i,m[i]

)

· gρ·
∑L
k=1∧k 6=i xk,m[k] · g−em|i−1

·yi,m[i]·r·θ

= h(v−θ·R(m[1]...m[i−1]))·r · gρ·xi,m[i] · gρ·
∑L
k=1∧k 6=i xk,m[k] · g−em|i−1

·y′
i,m[i]

·r·θ

σ2 = hR(m[1]...m[i−1])·r · gρ·a·y
′
i,m[i] · gρ·

∑L
k=1∧k 6=i yk,m[k] · gem|i−1

·yi,m[i]·r

= hR(m[1]...m[i−1])·r · gρ·yi,m[i] · gρ·
∑L
k=1∧k 6=i yk,m[k] · gem|i−1

·yi,m[i]·r

If (A,Bm|i−1
, Tm|i−1

), is a Di�e-Hellman tuple (i.e., if em|i−1
= 0), the output distribution is

the same as in Game2.(i−1). In contrast, if em|i−1
∈R Zp, we have

σ1 = h(v−θ·R(m[1]...m[i]))·r · gρ·xi,m[i] · gρ·
∑L
k=1∧k 6=i xk,m[k]

σ2 = hR(m[1]...m[i])·r · gρ·yi,m[i] · gρ·
∑L
k=1∧k 6=i yk,m[k]
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where the random function R : {0, 1}i → Zp is de�ned using

R′(m[1] . . .m[i− 1]) = g
em|i−1

·yi,m[i]

η .

In this case, the output distribution of the MAC oracle is identical to that of Game2.i.
If the adversary chooses to forge on a message m?[1] . . .m?[L] such that m?[i] = 1− γ

(which occurs with probability 1/2), then B aborts and outputs a random bit. If m?[i] = γ,
we have

R(m?[1] . . .m?[i]) = R(m?[1] . . .m?[i− 1])

by the de�nition of R. Since B knows yi,m?[i] = yi,γ , it can check if

σ?2 = σ?4
η·R(m?[1]...m?[i−1]) · σ?3

·
∑L
k=1 yk,m?[k]

and return 1 if and only if this equality is satis�ed. We thus conclude that |Pr[W2.i] −
Pr[W2.(i−1)]| ≤ 2 ·AdvDDH1(λ), as claimed.

3.4.2. The LAF Construction
In order to apply a hybrid argument in our proof of indistinguishability, we need to use
n instances of the MAC of Section 3.4.1, each of which has its own secret key skmac,j and
its own set of public parameters ppj =

(
g, ĝ, h, ĝθj , (V̂j,

~̂
Zj,0,

~̂
Zj,1)

)
. As a result, we need

an evaluation key containing Θ(n · L) group elements. We leave it as an open problem to
shorter the evaluation while retaining tight security and short tags.

Key generation. LAF.Gen(1λ) conducts the following steps.

1. Choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with
generators g, h R← G, ĝ R← Ĝ and let η = logg(h).

2. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch), where
the hashing algorithm CMhash : {0, 1}∗ ×Rhash → {0, 1}L has output length
L ∈ poly(λ). Generate a pair (hkCMH, tdCMH)← CMKg(1λ) made of a hashing
key hkCMH and a trapdoor tdCMH.

3. Generate n keys for the MAC of Section 3.4.1 which all share the same parameters
g, h ∈ G, ĝ ∈ Ĝ. Namely, for each j ∈ [n], conduct the following steps.

a. Choose θj R← Zp and compute ĝθj ∈ Ĝ.
b. For each µ ∈ {0, 1}, choose vectors ~xj,µ = (xj,1,µ, . . . , xj,L,µ) R← ZLp and
~yj,µ = (yj,1,µ, . . . , yj,L,µ) R← ZLp .

c. Compute ~zj,µ = ~xj,µ + θj · ~yj,µ and ~̂Zj,µ = ĝ~zj,µ = (ĝzj,1,µ , . . . , gzj,L,µ) for
each µ ∈ {0, 1}.

d. Choose αj, βj R← Zp and compute V̂j = ĝαj+θj ·βj .
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e. De�ne skmac,j = (αj, βj, ~xj,0, ~xj,1, ~yj,0, ~yj,1).

4. Choose u R← G and ĥ, û R← Ĝ subject to the constraints logg(h) = logĝ(ĥ) and
logg(u) = logĝ(û).

5. De�ne

Ĥj = (ĥj · û)αj+θj ·βj ∀j ∈ [n].

6. Output the evaluation key ek and the lossy tag generation key tk, which consist
of

ek :=
(
g, h, u, ĝ, ĥ, û, {ĝθj}nj=1, { ~̂Zj,µ}j∈[n],µ∈{0,1}, {V̂j, Ĥj}nj=1, hkCMH

)
,

tk := ({skmac,j}nj=1, η, tdCMH).

The tag space T = Tc × Taux is de�ned as a product of Ta = {0, 1}∗ and

Tc := {({Ri, Si, Di, Ei, Fi}ni=1, rhash) | rhash ∈ Rhash ∧
∀i ∈ [n] : (Ri, Si, Di, Ei, Fi) ∈ G5 ∧ e(Ri, ĥ

i · û) = e(Si, ĝ)}.

The range of the function family is Rngλ = Gn+1
T and its domain is Znp .

Lossy tag generation. LAF.LTag(tk, ta) takes in an auxiliary tag component ta ∈ {0, 1}∗
and uses tk = ({skmac,j}nj=1, η) to generate a lossy tag as follows.

1. For each i ∈ [n], choose ri R← Zp and compute

Ri = gri , Si = (hi · u)ri ∀i ∈ [n]. (3.22)

2. Choose a random string τ ∈ {0, 1}L in the range of CMhash. Then, for each
i ∈ [n], choose ρi R← Zp and compute

Di = hαi·ri · gρi·(
∑L
k=1 xi,k,τ [k]),

Ei = hβi·ri · gρi·(
∑L
k=1 yi,k,τ [k]), ∀i ∈ [n] (3.23)

Fi = gρi .

3. Use the trapdoor tdCMH of the chameleon hash function to �nd random coins
rhash ∈ Rhash such that

τ = CMhash(hkCMH, (ta, {Ri, Si, Di, Ei, Fi}ni=1), rhash) ∈ {0, 1}L.

4. Output the tag t = (tc, ta), where tc = ({Ri, Si, Di, Ei, Fi}ni=1, rhash).
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Each lossy tag corresponds to a matrix
(
Mi,j

)
i,j∈[n]

=
(
e(g, ĥ)ri·(αj+θj ·βj)

)
i,j

, which
forms a rank-1 matrix in the exponent. Its diagonal entries consist of

Mi,i =
e(Di, ĝ) · e(Ei, ĝθi)
e(Fi,

∏L
k=1 Ẑi,k,τ [k])

= e(g, ĥ)ri·(αi+θi·βi) ∀i ∈ [n], (3.24)

while its non-diagonal entries

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)
(3.25)

= e(g, ĥ)ri·(αj+θj ·βj) ∀(i, j) ∈ [n]× [n] \ {(i, i)}ni=1,

are obtained by pairing tag component (Ri, Si) with evaluation key components
(V̂j, Ĥj).

Random Tags. A random tag can be publicly sampled as follows.

1. For each i ∈ [n], choose ri R← Zp and compute {Ri, Si}ni=1 as in (3.22).
2. For each i ∈ [n], choose (Di, Ei, Fi)

R← G3 uniformly at random.
3. Choose rhash R← Rhash.

Output the tag t = (tc, ta), where tc = ({Ri, Si, Di, Ei, Fi}ni=1, rhash).

We note that, in both random and lossy tags, we have e(Ri, û
i · ĥ) = e(Si, ĝ) for all i ∈ [n],

so that elements of T are publicly recognizable.

Evaluation. LAF.Eval(ek, t,x) takes in the input x ∈ Znp and the tag t = (tc, ta). It parses
tc as ({Ri, Si, Di, Ei, Fi}ni=1, rhash) and does the following.

1. Return ⊥ if there exists i ∈ [n] such that e(Ri, ĥ
i · û) 6= e(Si, ĝ).

2. Compute the matrix
(
Mi,j

)
i,j∈[n]

∈ Gn×n
T as

Mi,i =
e(Di, ĝ) · e(Ei, ĝθi)
e(Fi,

∏L
k=1 Ẑi,k,τ [k])

∀i ∈ [n] , (3.26)

where τ = CMhash(hkCMH, (ta, {Ri, Si, Di, Ei, Fi}ni=1), rhash) ∈ {0, 1}L, and

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)
∀(i, j) ∈ [n]× [n] \ {(i, i)}ni=1, (3.27)

Since Ri = gri and Si = (hi · u)ri for some ri ∈ Zq, we have

Mi,i = e(g, ĥ)ri·(αi+θi·βi)+ωi , ∀i ∈ [n] (3.28)
Mi,j = e(g, ĥ)ri·(αj+θj ·βj), ∀i 6= j,

for some vector (ω1, . . . , ωn)> ∈ Znp that only contains non-zero entries if t =
(tc, ta) is injective.
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3. Compute the vector
(
VT,j

)
j∈[n]

as VT,j = e(h, V̂j) = e(g, ĥ)αj+θj ·βj for each
j ∈ [n].

4. Use the input x = (x1, . . . , xn)> ∈ Znp to compute

Y0 =
n∏
j=1

V
xj
T,j (3.29)

Yi =
n∏
j=1

M
xj
i,j ∀i ∈ [n]

and output Y = (Y0, Y1, . . . , Yn)> ∈ Gn+1
T .

The lossiness/injectivity properties can be analyzed exactly in the same way as in the
construction of Section 3.3. Indeed, by de�ning vj = αj + θj · βj for each j ∈ [n], we �nd
that {V̂ }nj=1 and (Mij)i,j∈[n] are distributed as in Section 3.3.

3.4.3. Security
Theorem 3.7. The above LAF provides indistinguishability assuming that the wD3DH1
assumption holds in (G, Ĝ,GT ) and that the DDH assumptions holds in G. The advantage of
any PPT distinguisher A making Q queries within time tA is bounded by

Advindist(λ) ≤ n · (AdvwD3DH1
B1 (λ) + AdvDDH1

B2 (λ))

for PPT algorithm B1, B2 running in time tA +Q · poly(λ).

Proof. We de�ne a sequence of hybrid games. In Game0, the adversary has access to the
real oracle LAF.LTag(tk, .) oracle that always outputs lossy tags. In Gamen, the adversary
is given access to an oracle OTc(.) that always outputs random tags in the tag space T .

Gameξ’ (1 ≤ ξ ≤ n): The adversary interacts with an oracle LAF.LTag(`,k)(tk, .) that out-
puts tags t = (tc, ta) with the following hybrid distribution. In the core component
tc = ({Ri, Si, Di, Ei, Fi}ni=1, rhash), the �rst ξ − 1 tuples {(Ri, Si, Di, Ei, Fi)}ξi=1 of
tc are random group elements satisfying the equality e(Ri, ĥ

i · û) = e(Si, ĝ). The last
n−ξ tuples {(Ri, Si, Di, Ei, Fi)}ni=ξ+1 are generated exactly as in lossy tags. The ξ-th
tuple (Rξ, Sξ, Dξ, Eξ, Fξ) has a special distribution where e(Rξ, ĥ

ξ · û) = e(Sξ, ĝ), Dξ

is completely random in G and

Eξ = hβξ·logg(Rξ) · gρξ·
∑L
k=1 yξ,k,τ [k] ,

Fξ = gρξ

Gameξ (1 ≤ ξ ≤ n): The adversary interacts with an oracle LAF.LTag(`,k)(tk, .) that out-
puts t = (tc, ta) such that the �rst ξ tuples {(Ri, Si, Di, Ei, Fi)}ξi=1 of tc are random
subject to the constraint e(Ri, ĥ

i · û) = e(Si, ĝ) while {(Ri, Si, Di, Ei, Fi)}ni=ξ+1 are
generated as in lossy tags.
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For each index ξ ∈ [n], Lemma 3.8 shows thatGame′ξ is computationally indistinguishable
from Gameξ−1 if the R-wD3DH1 assumption holds. In a second step, Lemma 3.9 shows
that Game′ξ is indistinguishable from Gameξ under the DDH assumption in G. By applying
Lemma 2.1, we obtain that the scheme provides indistinguishability under tight reductions
from the hardness of wD3DH1 and that of the DDH problem in G.

Lemma3.8. Game′ξ is computationally indistinguishable fromGameξ−1 under the R-wD3DH1
assumption. The advantage of any PPT distinguisher between the two games can be bounded
by Advξ

′-(ξ−1)(λ) ≤ AdvR-wD3DH1(λ).

Proof. Let us assume that there exists ξ ∈ [n] such that the adversary A can distinguish
Game′ξ from Gameξ−1 with non-negligible advantage. We build a R-wD3DH1 distinguisher
B that takes as input {(g, ĝ, gai , gb, gc, ĝb, ĝc, Ti)}Qi=1 with the goal of deciding if Ti = gaibc

for each i ∈ [Q] or if {Ti}Qi=1 are all independent and uniformly distributed over G.
To this end, B de�nes h = gb, ĥ = ĝb. It also picks θ′ξ, β′ξ

R← Zp uniformly and sets

ĝθξ = (ĝb)θ
′
ξ , V̂ξ = (ĝ)c · ĝθ′ξ·β′ξ ,

which implicitly de�nes

αξ = c, βξ = β′ξ/b, θξ = b · θ′ξ.

It chooses ν R← Zp and de�nes û = ĥ−ξ · ĝν as well as u = h−ξ · gν . This allows de�ning

Ĥξ = (ĥξ · û)c+θ
′
ξ·β
′
ξ = (V̂ξ)

ν ,

For all indexes j ∈ [n] \ {ξ}, it chooses αj, βj, θj R← Zp and faithfully computes V̂j =
ĝαj+θj ·βj and

Ĥj = (ĥj · û)αj+θj ·βj .

Then, it constructs the MAC secret keys {~xj,µ, ~yj,µ}nj=1 for randomly chosen vectors ~xj,µ =

(xj,1,µ, . . . , xj,L,µ) R← ZLp , ~yj,µ = (yj,1,µ, . . . , yj,L,µ) R← ZLp . For each j ∈ [n], it de�nes

~̂Yj,µ = (Ŷj,1,µ, . . . , Ŷj,L,µ) = ĝ~yj,µ , ~Yj,µ = (Yj,1,µ, . . . , Yj,L,µ) = g~yj,µ

~̂Xj,µ = (X̂j,1,µ, . . . , X̂j,L,µ) = ĝ~xj,µ , ~Xj,µ = (Xj,1,µ, . . . , Xj,L,µ) = g~xj,µ .

Then, it computes

~̂Zj,µ = ~̂Xj,µ · ~̂Y
θj
j,µ ∀j ∈ [n] \ {ξ}

~̂Zξ,µ = ~̂Xξ,µ · (ĝb)~yξ,µ·θ
′
ξ

At the t-th invocation of the LAF.LTag(tk, .) oracle, B sets

Rξ = gat , Sξ = (gat)ν = (hξ · u)at ,



3

3.4. A Lossy Algebraic Filter With Tight Security 45

where gat is fetched from the t-th input tuple (g, ĝ, gat , gb, gc, ĝb, ĝc, Tt). For all indexes
i 6= ξ, it chooses r1, . . . , rξ−1, rξ+1, . . . , rn

R← Zp and sets

Ri = gri , Si = (hi · u)ri ∀i ∈ [n] \ {ξ}.

It generates the triples {Di, Ei, Fi}ni=1 by choosing (Di, Ei, Fi)
R← G3 at random for each

i ∈ [ξ − 1]. The ξ-th triple (Dk, Ek, Fk) is de�ned as

Dξ = Tt ·
( L∏
k=1

Ŷξ,k,τ [k]

)ρξ ,
Eξ = (gat)β

′
ξ ·
( L∏
k=1

Ŷξ,k,τ [k]

)ρξ ,
Fξ = gρξ .

for a randomly chosen ρξ
R← Zp and τ R← {0, 1}L. As for {Di, Ei, Fi}ni=ξ+1, they are

obtained by choosing choosing ρi, ri R← Zp before setting

Di = (gb)αi·ri
( L∏
k=1

Xξ,k,τ [k]

)ρi , Ei = (gb)βi·ri
( L∏
k=1

Yξ,k,τ [k]

)ρi , Fi = gρi .

Then, it uses the trapdoor tdCMH of the chameleon hash function to �nd coins rhash ∈ Rhash

such that τ = CMhash(hkCMH, (ta, {Ri, Si, Di, Ei, Fi}ni=1), rhash).
It is easy to see that, if Tt = gatbc, the triple (Dξ, Eξ, Fξ) can be written

Dξ = hαξ·rξ ·
( L∏
k=1

X̂ξ,k,τ [k]

)ρξ ,
Eξ = hβξ·rξ ·

( L∏
k=1

Ŷξ,k,τ [k]

)ρξ
Fξ = gρξ ,

meaning that A’s view is the same as in Gameξ−1. In contrast, if Tt ∈R G, it can be written
Tt = gatbc+zt for some uniformly random zt ∈R Zp. In this case, (Dξ, Eξ, Fξ) can be written

Dξ = hzt+αξ·rξ ·
( L∏
k=1

X̂ξ,k,τ [k]

)ρξ ,
Eξ = hβξ·rξ ·

( L∏
k=1

Ŷξ,k,τ [k]

)ρξ ,
Fξ = gρξ ,

for some random zt ∈R Zp that does not appear anywhere else. In this case, A’s view
corresponds to Game′ξ .
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Lemma 3.9. Gameξ is computationally indistinguishable from Game′ξ under the DDH as-
sumption inG. The advantage of any PPT distinguisher between the two games can be bounded
by Advξ-ξ

′
(λ) ≤ AdvDDH1(λ).

Proof. We assume that there exists ξ ∈ [n] such that A can tell apart Game′ξ from Gameξ
with noticeable advantage. We build a distinguisher B that takes as input Q tuples
{(g, gai , gai·b, gb, Ti)}Qi=1 in G5 with the goal of deciding if Ti = gaib for each i ∈ [Q]
or if {Ti}Qi=1 are independent and uniformly distributed over G. This assumption is known
(see, e.g., [NR97, Lemma 4.4]) to have a tight reduction from the DDH assumption.

To this end, B de�nes h = gη, ĥ = ĝη for a random η R← Zp. It also computes ĝθξ for a
randomly chosen θξ R← Zp. Then, it picks vξ R← Zp uniformly and sets

V̂ξ = ĝvξ .

Implicitly, B will de�ne
βξ = b, αξ = vξ − b · θξ

although it does not know (αξ, βξ). It chooses û ∈ Ĝ and u ∈ G by setting u = gν and
û = ĝν for a random ν R← Zp. Then, B de�nes

Ĥξ = (ĥξ · û)vξ .

For all indexes j ∈ [n] \ {ξ}, it chooses αj, βj, θj R← Zp and faithfully computes V̂j =
ĝαj+θj ·βj and

Ĥj = (ĥj · û)αj+θj ·βj .

Then, it constructs the MAC secret keys {~xj,µ, ~yj,µ}nj=1 by for randomly chosen vectors
~xj,µ = (xj,1,µ, . . . , xj,L,µ) R← ZLp , ~yj,µ = (yj,1,µ, . . . , yj,L,µ) R← ZLp . For each j ∈ [n], it
de�nes

~̂Yj,µ = (Ŷj,1,µ, . . . , Ŷj,L,µ) = ĝ~yj,µ , ~Yj,µ = (Yj,1,µ, . . . , Yj,L,µ) = g~yj,µ

~̂Xj,µ = (X̂j,1,µ, . . . , X̂j,L,µ) = ĝ~xj,µ , ~Xj,µ = (Xj,1,µ, . . . , Xj,L,µ) = g~xj,µ .

Then, it computes

~̂Zj,µ = ~̂Xj,µ · ~̂Y
θj
j,µ ∀j ∈ [n].

For each t ∈ [Q], the t-th invocation of the LAF.LTag(tk, .) oracle is handled by setting

Rξ = gat , Sξ = (gat)η·ξ+ν = (hξ · u)at ,

where gat is fetched from the t-th input tuple (g, gat , gat·b, gb, Tt). For all indexes i 6= ξ, it
chooses r1, . . . , rξ−1, rξ+1, . . . , rn

R← Zp and sets

Ri = gri , Si = (hi · u)ri ∀i ∈ [n] \ {ξ}.
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It generates the triples {Di, Ei, Fi}ni=1 by choosing (Di, Ei, Fi)
R← G3 at random for each

i ∈ [ξ − 1]. The ξ-th triple (Dk, Ek, Fk) is de�ned by sampling Dξ
R← G uniformly and

setting

Eξ = T ηt ·
( L∏
k=1

Ŷξ,k,τ [k]

)ρξ ,
Fξ = gρξ .

for randomly chosen ρξ R← Zp and τ R← {0, 1}L. As for {Di, Ei, Fi}ni=ξ+1, they are obtained
by choosing choosing ρi, ri R← Zp before setting

Di = hαi·ri
( L∏
k=1

Xξ,k,τ [k]

)ρi , Ei = hβi·ri
( L∏
k=1

Yξ,k,τ [k]

)ρi , Fi = gρi .

Then, it uses the trapdoor tdCMH of the chameleon hash function to obtain coins rhash ∈
Rhash such that τ = CMhash(hkCMH, (ta, {Ri, Si, Di, Ei, Fi}ni=1), rhash).

We observe that, if Tt = gat·b for each t ∈ [Q], the triples (Dξ, Eξ, Fξ) are distributed as

Dξ ∈R G,

Eξ = hβξ·logg(Rξ) ·
( L∏
k=1

Ŷξ,k,τ [k]

)ρξ
Fξ = gρξ ,

so that A’s view is the same as in Game′ξ . In contrast, if Tt ∈R G, it can be written
Tt = gatb+zt for some uniformly random zt ∈R Zp that does not appear anywhere else. In
this case, (Dξ, Eξ, Fξ) is just a triple of uniformly random group elements, meaning that
A’s view is the same as in Gameξ .
Theorem 3.10. The above LAF provides evasiveness under the SXDH and wD3DH1 assump-
tions, assuming that CMH is a collision-resistant chameleon hash function. Namely, for any
PPT evasiveness adversary, there exist e�cient algorithms B0, B1, B2, B3 with comparable
running time and such that

AdvA,evaQ ≤ AdvCMH-CR
B0 (λ) + n ·AdvwD3DH1

B1 (λ)

+n ·AdvDDH2
B2 (λ) + 2n · (1 + L) ·AdvDDH1

B3 (λ),

Proof. Let us assume that a PPT adversary A can break the evasiveness property with
noticeable advantage. We show that this contradicts either: (i) The indistinguishability of
the scheme; (ii) The collision-resistance of the chameleon hash function; (iii) The SXDH
assumption. We will prove this claim via a sequence of hybrid games:

In Game0, the challenger interacts with the adversary A as in the real evasiveness
experiment. In the �nal game, we show that, if the adversary can output lossy tag with
non-negligible probability, we can create an PPT algorithm breaks SXDH assumption with
noticeable advantage.

For each i, we denote by badi, the event A manages to output a non-trivial lossy tag in
Gamei.



48 Chapter 3. Lossy Algebraic Filters With Short Tags

Game0: In this game, the adversaryA has access to two oracles: (i) the lossy tag generation
oracle LAF.LTag(tk, ·) that always outputs lossy tags; (ii) the lossy tag veri�cation
oracle LAF.IsLossy(·) that uses a trapdoor to decide if a tag is lossy or injective. By
de�nition.

Pr[bad0] = Pr[A(1λ, ek)LAF.LTag(tk,·),LAF.IsLossy(·)]. (3.30)

Game1: In this game, we de�ne badhash to be the event that the adversary A manages to
output a tag t = (ta, tc = ({Ri, Si, Di, Ei, Fi}ni=1, rhash)) for which the corresponding
chameleon hash collides with that of some tags produced by the oracle LAF.LTag(tk, ·).
The only di�erence between Game0 and Game1 is that the latter aborts when badhash
occurs. It is straightforward that

|Pr[bad1]− Pr[bad0]| = Pr[badhash in Game1]. (3.31)

As in the proof of Theorem 3.3, we need to use the collision resistance property of
the CMH to bound the probability Pr[badhash in Game1]. Since the LAF.LTag(tk, ·)
oracle uses the trapdoor tdCMH to create lossy tags, we cannot immediately rely on
the collision-resistance of CMH. Instead, we need to consider Game′1, where the
LAF.LTag(tk, ·) oracle always outputs injective tags instead of lossy ones. Using the
result of Theorem 3.7, we have

|Pr[badhash in Game1]− Pr[badhash in Game′1]|
≤ n · (AdvR-wD3DH1

B1 (λ) + AdvDDH1
B2 (λ)).

Since Game0 and Game1 only di�er when badhash occurs in Game1, we can bound
to probability (3.31) as

|Pr[bad1]− Pr[bad0]| = Pr[badhash in Game1]

≤ Pr[badhash in Game′1] (3.32)
+n · (AdvR-wD3DH1

B1 (λ) + AdvDDH1
B2 (λ)).

Since the trapdoor tdCMH is never been used in Game′1, a straightforward reduction
shows that Pr[badhas in Game1’] ≤ AdvCR

CMH(λ).

We now prove that, if event bad1 occurs with noticeable probability, we can construct a PPT
adversary B that breaks the unforgeability of the MAC of Section 3.4.1. As this property is
proven by Theorem 3.4 under SXDH assumption, this will conclude the proof.

Our MAC adversary B will simulate Game1 using the access to MAC oracle and MAC
veri�cation oracle. Algorithm B receives as input MAC public parameters

pp = ((G, Ĝ,GT ), g, ĝ, h, ĝθ, (V̂ , ~̂Z0, ~̂Z1)).

As mentioned in Game0 of the proof for Lemma 3.4, B additionally obtain the discrete
logarithm η = logg(h) from the MAC challenger, which will allow it to simulate the
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LAF.IsLossy oracle in the evasiveness experiment. Then, B extends these public parameters
into public key of a LAF public key. To this end, B randomly guesses the position i? R← [n]
of the MAC forgery in the non-injective tag it is expected to produce and sets

ppi? = ((G, Ĝ,GT ), g, ĝ, h, ĝθ, (V̂ , ~̂Z0, ~̂Z1))

using the public parameters pp obtained from its challenger. Next, for all i ∈ [n]\{i?}, B
sets ĥ = ĝη and generates n− 1 keys ({ppi, skmac,i)}i∈[n]\{i?} for the MAC of Section 3.4.1
which all share the same g, h ∈ G and ĝ ∈ Ĝ. For each i ∈ [n] \ {i?}, the i-th set of MAC
public parameters thus consist of

ppi = ((G, Ĝ,GT ), g, ĝ, h, ĝθi , (V̂i, ~̂Zi,0, ~̂Zi,1)).

To complete the generation the LAF evaluation key, B chooses a R← Zp, which is used to set
u = ga and û = ĝa. In addition, B computes Ĥi = (V̂ i·η

i · V̂ a
i ) for all i ∈ [n]. It also chooses

a key pair (hkCMH, tdCMH) for the chameleon hash function CMH and includes hkCMH in
the LAF evaluation key.

To simulate the generation of lossy tags at each LAF.LTag-query ta made by A, B
forwards ta to its challenger and obtains a MAC (Ri? , Di? , Ei? , Fi?) of the message ta. Then,
B computes on its own n− 1 MACs {(Ri, Di, Ei, Fi)}i∈[n]\{i?} using the secret MAC keys
{skmac,i}i∈[n]\{i?}. For all i ∈ [n], B also computes Si = Rη·i+a

i . It �nally uses the trapdoor
of the chameleon hash function to generate rhash such that

τ = CMhash(hkCMH, (ta, {Ri, Si, Di, Ei, Fi}ni=1), rhash) ∈ {0, 1}L

and returns t = (ta, tc = ({Ri, Si, Di, Ei, Fi}ni=1, rhash)) to A.
In order to simulate the LAF.IsInjective oracle for an input tag t = (ta, tc) containing

tc = ({Ri, Si, Di, Ei, Fi}ni=1, rhash), B computes the chameleon hash

τ = CMhash(hkCMH, (ta, {Ri, Si, Di, Ei, Fi}ni=1), rhash).

It then uses η to run the MAC veri�cation oracle and check that (Ri? , Di? , Ei? , Fi?) is a
valid MAC. Since B also knows skmac,i for all i ∈ [n]\{i?}, it can e�ciently check that
{(Ri, Di, Ei, Fi)}i∈[n]\{i?} are all valid MACs of ta. If all the MACs are valid, B also checks
that for all i ∈ [n], Si = Rη·i+a

i . If there exists i ∈ [n] such that Si 6= Rη·i+a
i , B returns ⊥ to

indicate that t does not belong to the space T of valid tags. Finally, B outputs 0 (meaning
that the tag t is non-injective) if it contains at least one valid MAC. If the n MACs contained
in tc are all invalid and Si = Rη·i+a

i for all i ∈ [n], it outputs 1 meaning that the tag is
injective.

It remains to show how B can extract a MAC forgery when bad1 occurs in Game1.
Namely, we assume that B outputs a non-injective tag

t = (ta, tc = ({Ri, Si, Di, Ei, Fi}ni=1, rhash))

for which τ = CMhash(hkCMH, (ta, {Ri, Si, Di, Ei, Fi}ni=1), rhash) ∈ {0, 1}L has never
been queried to LAF.LTag. Since B only queries the MAC oracle in the simulation of
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LAF.LTag, τ has never been queried to MAC oracle. Since t is non-injective, the tuples
{(Ri, Si, Di, Ei, Fi)}ni=1 must contain at least one valid MAC. If (Ri? , Di? , Ei? , Fi?) is a valid
MAC (which occurs with probability 1/n since i? was chosen uniformly and independently
of the adversary’s view), B can successfully break the unforgeability of MAC by outputting
(Ri? , Di? , Ei? , Fi?). We thus have

Pr[bad1] ≤ n ·Advuf-mac
A (λ) ≤ n · (AdvDDH2

B1 (λ) + 2L ·AdvDDH1
B2 (λ)).

Putting the above arguments altogether, we obtain

AdvA,evaQ ≤ AdvCMH-CR
B0 (λ) + n · (AdvR-wD3DH1

B1 (λ) + AdvDDH1
B3 (λ)

+AdvDDH2
B2 (λ) + 2L ·AdvDDH1

B3 (λ))

= AdvCMH-CR
B0 (λ) + n ·AdvR-wD3DH1

B1 (λ) (3.33)
+n ·AdvDDH2

B2 (λ) + n · (1 + 2L) ·AdvDDH1
B3 (λ).

By applying Lemma 2.1, we obtained the stated upper bound.
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Part II.

Homomorphic encryptions and
zero-knowledge arguments



N
on-interactive zero-knowledge (NIZK) proof systems have been introduced by
Blum, Feldman and Micali [BFM88] and allow a prover to prove membership of
an NP language without interactions. They can be used to convince anybody

that a statement belongs to the language and their zero-knowledge property ensures that
a proof reveals nothing beyond the membership of the language. NIZK proof systems
are essential building blocks for many more complex cryptographic protocols, such as
ring-signatures [RST01], group signatures [CH91], voting schemes [DJ01].

• The �rst chapter gives the �rst ring signature construction under DDH assumption
achieving both tightly security and logarithmic-size property using a zero-knowledge
proof as building blocks, corresponds to the following paper published at ESORICS2018
by Benoît Libert, Thomas Peters, Chen Qian [LPQ18]: Logarithmic-Size Ring Signa-
tures With Tight Security from the DDH Assumption.

• The second chapter provides a new construction of lattice-based designated-veri�er
zero-knowledge argument systems. As application, we also constructed a lattice-based
voting scheme without random oracle. This work is in submission by Pierre-Alain
Fouque, Chen Qian, and Adeline Roux-Langlois.
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Logarithmic-Size Ring
Signatures With Tight Security

from the DDH Assumption 4
4.1. Introduction

As introduced by Rivest, Shamir and Tauman [RST01], ring signatures make it possible for
a signer to sign messages while hiding his identity within an ad hoc set of users, called a
ring, that includes himself. To this end, the signer only needs to know the public keys of all
ring members (besides his own secret key) in order to generate an anonymous signature on
behalf of the entire ring. Unlike group signatures [CH91], ring signatures do not require any
setup, coordination or registration phase and neither do they involve a tracing authority to
de-anonymize signatures. Whoever has a public key can be appointed as a ring member
without being asked for his agreement or even being aware of it. Moreover, signatures
should ideally provide everlasting anonymity and carry no information as to which ring
member created them. The main motivation of ring signatures is to enable the anonymous
leakage of secrets, by concealing the identity of a source (e.g., a whistleblower in a political
scandal) while simultaneously providing guarantees of its reliability.

In this paper, we consider the exact security of ring signatures in the random oracle
model [BR93]. So far, the only known solutions with logarithmic signature length [GK15;
LLNW16] su�ered from loose reductions: the underlying hard problem could only be solved
with a probability smaller than the adversary’s advantage by a linear factor in the number of
hash queries. Our main result is to give the �rst construction that simultaneously provides
tight security – meaning that there is essentially no gap between the adversary’s probability
of success and the reduction’s advantage in solving a hard problem – and logarithmic
signature size in the number of ring members. In particular, the advantage of our reduction
is not multiplicatively a�ected by the number QH of random oracle queries nor the number
of QV of public veri�cation keys in a ring.

Our Contribution. We describe the �rst logarithmic-size ring signatures with tight
security proofs in the random oracle model. The unforgeability of our construction is
proved under the standard Decision Di�e-Hellman (DDH) assumption in groups without a
bilinear map while anonymity is achieved against unbounded adversaries. Our security
proof eliminates both the linear gap in the number of random oracle queries and the Θ(QV )
security loss. It thus features a f ully tight reduction, meaning that – up to statistically
negligible terms – the reduction’s advantage as a DDH distinguisher is only smaller than
the adversary’s forging probability by a factor 2. To our knowledge, our scheme is the
�rst ring signature for which such a fully tight reduction is reported. It is obtained by
tweaking a construction due to Groth and Kohlweiss [GK15] and achieves tight security
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at the expense of increasing the number of scalars and group elements per signature by a
small constant factor. For the same exact security, our reduction allows smaller key sizes
which essentially decrease the signature length of [GK15] by a logarithmic factor n in the
cardinality N of the ring and the time complexity by a factor ω(n2). For rings of cardinality
N = 26, for example, our signatures can be 36 times faster to compute and 6 times shorter
than [GK15].
Our Techniqes. Our scheme builds on the Groth-Kohlweiss proof system [GK15] that
allows proving that one-out-of-N commitments opens to 0 with a communication com-
plexity O(logN). This proof system was shown to imply logarithmic-size ring signatures
with perfect anonymity assuming that the underlying commitment scheme is perfectly
hiding. At the heart of the protocol of [GK15] is a clever use of a Σ-protocol showing that
a committed value ` is 0 or 1, which proceeds in the following way. In order to prove that
a commitment ~C` ∈ {~Ci}N−1

i=0 opens to 0 without revealing the index ` ∈ {0, . . . , N − 1},
the n-bit indexes `j of the binary representation `1 . . . `n ∈ {0, 1}n of ` ∈ {0, . . . , N − 1}
are committed to and, for each of them, the prover uses the aforementioned Σ-protocol to
prove that `j ∈ {0, 1}. The response fj = aj + `jx of the Σ-protocol is then viewed as a
degree-one polynomial in the challenge x ∈ Zq and used to de�ne polynomials

Pi[Z] =
n∏
j=1

fj,ij = δi,` · Zn +
n−1∑
k=0

pi,k · Zk ∀i ∈ [N ],

where fj,0 = fj and ff,1 = x − fj , which have degree n = logN if i = ` and degree
n − 1 otherwise. In order to prove that one of the polynomials {Pi[Z]}N−1

i=0 has degree
n without revealing which one, Groth and Kohlweiss [GK15] homomorphically compute
the commitment

∏N−1
i=0

~C
Pi(x)
i and multiply it with

∏n−1
k=0

~C−x
k

dk
, for auxiliary homomorphic

commitments {~Cdk =
∏N−1

i=0
~C
pi,k
i }n−1

k=0 , in order to cancel out the terms of degree 0 to n− 1

in the exponent. Then, they prove that the product
∏N−1

i=0
~C
Pi(x)
i ·

∏n−1
k=0

~C−x
k

dk
is indeed a

commitment of 0. The soundness of the proof relies on the Schwartz-Zippel lemma, which
ensures that

∏N−1
i=0

~C
Pi(x)
i ·

∏n−1
k=0

~C−x
k

dk
is unlikely to be a commitment to 0 if ~C` is not.

As an application of their proof system, Groth and Kohlweiss [GK15] obtained logarithmic-
size ring signatures from the discrete logarithm assumption in the random oracle model.
While e�cient and based on a standard assumption, their scheme su�ers from a loose
security reduction incurred by the use of the Forking Lemma [PS96]. In order to extract
a discrete logarithm from a ring signature forger, the adversary has to be run n = logN
times with the same random tape (where N is the ring cardinality), leading to a reduction
with advantage ε′ ≈ εn

QV ·QH
, whereQH is the number of hash queries andQV is the number

of public keys. This means that, if we want to increase the key size so as to compensate for
the concrete security gap, we need to multiply the security parameter by a factor n = logN ,
even without taking into account the factors QH and QV .

In our pursuit of a tight reduction, a �rst idea is to apply the lossy identi�cation paradigm
[KW03; AFLT12] where the security proofs proceed by replacing a well-formed public key
by a so-called lossy public key, with respect to which forging a signature becomes statis-
tically impossible. In particular, the DDH-based instantiation of Katz and Wang [KW03]
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appears as an ideal candidate since, somewhat analogously to [GK15], well-formed public
keys can be seen as homomorphic Elgamal encryptions of 0. However, several di�culties
arise when we try to adapt the techniques of [KW03; AFLT12] to the ring signature setting.

The �rst one is that the Groth-Kohlweiss ring signatures [GK15] rely on perfectly hiding
commitments in order to achieve unconditional anonymity whereas the Elgamal encryption
scheme is a perfectly binding commitment. This fortunately leaves us the hope for compu-
tational anonymity if we trade the perfectly hiding commitments for Elgamal encryptions.
A second di�culty is to determine which public keys should be replaced by lossy keys
in the reduction. At each public key generation query, the reduction has to decide if the
newly generated key will be lossy or injective. Replacing all public keys by lossy keys is
not possible because of corruptions (indeed, lossy public keys have no underlying secret
key) and the reduction does not know in advance which public keys will end up in the
target ringR? of the forgery. Only replacing a randomly chosen key by a lossy key does
not work either: indeed, in the ring signature setting, having one lossy public key PK†
in the target ring R? does not prevent an unbounded adversary from using the secret
key of a well-formed key PK? ∈ R? \ {PK†} to create a forgery. Moreover, as long
as the reduction can only embed the challenge (injective or lossy) key in one output of
the key generation oracle, it remains stuck with an advantage Θ(ε/QV ) if the forger has
advantage ε. Arguably, this bound is the best we can hope for by directly applying the lossy
identi�cation technique.

To obtain a fully tight reduction, we depart from the lossy identi�cation paradigm
[AFLT12] in that, instead of tampering with one user’s public keys at some step, our secu-
rity proof embeds a DDH instance in the public parameters pp of the scheme. This allows
the reduction to have all users’ private keys at disposal and reveal them to the adversary
upon request. In the real system, the set pp contains uniformly random group elements
(g, h, g̃, h̃, U, V ) ∈ G6 and each user’s public key consists of a pair (X, Y ) = (gα ·hβ, g̃α ·h̃β),
where (α, β) ∈ Z2

q is the secret key. The idea of the security proof is that, if (g, h, g̃, h̃) ∈ G4

is not a Di�e-Hellman tuple, the public key PK = (X, Y ) uniquely determines (α, β) ∈ Z2
q .

In the case h̃ = g̃logg(h), the public key (X, Y ) is compatible with q equally likely pairs
(α, β) since it only reveals the information logg(X) = α + logg(h) · β.

The reduction thus builds a DDH distinguisher by forcing the adversary’s forgery to
contain a committed encoding Γ = Uα · V β of the signer’s secret key (α, β) ∈ Z2

q , which
can be extracted using some trapdoor information. So long as (U, V ) is linearly independent
of (g, h), the encoding Γ = Uα · V β is independent of the adversary’s view if (g, h, g̃, h̃) is
a Di�e-Hellman tuple. In contrast, this encoding is uniquely determined by the public key
if h̃ 6= g̃logg(h). This allows the reduction to infer that (g, h, g̃, h̃) is a Di�e-Hellman tuple
whenever it extracts Γ = Uα · V β from the adversary’s forgery. To apply this argument,
however, we need to make sure that signing queries do not leak any more information
about (α, β) than the public key PK = (X, Y ) does. For this purpose, we resort to lossy
encryption schemes [BHY09] (a.k.a. dual-mode encryption/commitments [GS08; PVW08]),
which can either behave as perfectly hiding or perfectly binding commitments depending
on the distribution of the public key. In each signature, we embed a lossy encryption
(T0, T1) = (gθ1 · hθ2 , Uα · V β · Hθ1

1 · Hθ2
2 ) of Γ = Uα · V β , which is computed using the
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DDH-based lossy encryption scheme of [BHY09]. If (H1, H2) ∈ G2 is linearly indepen-
dent of (g, h), then (T0, T1) perfectly hides Γ. At the same time, the reduction should be
able to extract Γ from (T0, T1) in the forgery. To combine these seemingly con�icting
requirements, we derive (H1, H2) from a (pseudo-)random oracle which is programmed
to have (H1, H2) = (gγ, hγ), for some γ ∈R Zq, in the adversary’s forgery and maintain
the uniformity of all pairs (H1, H2) ∈ G2 in all signing queries. By doing so, the witness
indistinguishability of the Groth-Kohlweiss Σ-protocol [GK15] implies that the adversary
only obtains a limited amount of information from uncorrupted users’ private keys. While
the above information theoretic argument is reminiscent of the security proof of Okamoto’s
identi�cation scheme [Oka92], our proof departs from [Oka92] in that we do not rewind
the adversary as it would not enable a tight reduction.

Related Work. The concept of ring signatures was coined by Rivest, Shamir and Tauman
[RST01] who gave constructions based on trapdoor functions and proved their security in
the ideal cipher model. They also mentioned di�erent realizations based on proofs of partial
knowledge [CDS94]. The latter approach was extended by Abe et al. [AOS02] to support
rings containing keys from di�erent underlying signatures and assumptions. Bresson, Stern
and Szydlo [BSS02] modi�ed the scheme of Rivest et al. [RST01] so as to prove it secure in
the random oracle model.

In 2006, Bender, Katz and Morselli [BKM06] provided rigorous security de�nitions and
theoretical constructions without random oracles. In the standard model, the �rst e�cient
instantiations were put forth by Shacham and Waters [SW07] in groups with a bilinear
map. Brakerski and Tauman-Kalai [BK10] gave alternative constructions based on lattice
assumptions. Meanwhile, Boyen [Boy07] suggested a generalization of the primitive with
standard-model instantiations.

The early realizations [RST01; BSS02] had linear size in the cardinality of the ring.
Dodis et al. [DKNS04] mentioned constant-size ring signatures as an application of their
anonymous ad hoc identi�cation protocols. However, their approach requires a setup
phase where an RSA modulus is generated by some trusted entity. Chase and Lysyanskaya
[CL06] suggested a similar construction of constant-size ring signatures from cryptographic
accumulators [BM93]. However, e�ciently instantiating their construction requires setup-
free accumulators which are compatible with zero-knowledge proofs. The hash-based
accumulators of [BLL00; CHKO08] would not provide e�cient solutions as they would incur
proofs of knowledge of hash function pre-images. While the lattice-based construction of
[LLNW16] relies on hash-based accumulators, its security proof is not tight and its e�ciency
is not competitive with discrete-logarithm-based techniques. Sander’s number-theoretic
accumulator [San99] is an alternative candidate to instantiate [CL06] without a setup phase.
However, it is not known to provide practical protocols: as observed in [GK15], it would
involve much larger composite integers than standard RSA moduli (besides zero-knowledge
proofs for double discrete logarithms). Moreover, it is not clear how it would be compatible
with tight security proofs.

Chandran, Groth and Sahai [CGS07] gave sub-linear-size signatures in the standard
model, which were recently improved in [Gon17]. In the random oracle model, Groth and
Kohlweiss [GK15] described an elegant construction of logarithmic-size ring signatures
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based on the discrete logarithm assumption. Libert et al. [LLNW16] obtained logarithmic-
size lattice-based ring signatures in the random oracle model.

The logarithmic-size ring signatures of [GK15; BCC+15; LLNW16] are obtained by
applying the Fiat-Shamir heuristic [FS86] to interactive Σ-protocols. While these solutions
admit security proofs under well-established assumptions in the random oracle model, their
security reductions are pretty loose. In terms of exact security, they are doomed [PV05] to
lose a linear factor in the number QH of random oracle queries as long as they rely on the
Forking Lemma [PS96].

The exact security of digital signatures was �rst considered by Bellare and Rogaway
[BR96] and drew a lot of attention [Cor00; GJ03; KW03; AFLT12; KK12] since then.

4.2. Background

4.2.1. Syntax and Security De�nitions for Ring Signatures
De�nition 4.1. A ring signature scheme consists of a tuple of e�cient algorithms

(Par-Gen,Keygen, Sign,Verify)

with the following speci�cations:

Par-Gen(1λ): Given a security parameter λ, outputs the public parameters pp.

Keygen(pp): Given pp, outputs a key pair (PK, SK) for the user.

Sign(pp, SK,R,M): Given the user’s secret key SK , a ringR and a messageM , outputs
the signature σ of the messageM on behalf of the ringR.

Verify(pp,M,R, σ): Given the message M , a ring R and a candidate signature σ, the
veri�cation algorithm outputs 0 or 1.

These algorithms must also verify the correctness, meaning that for all pp← Par-Gen(1λ),
(PK, SK)← KeyGen(pp), for all M , and for allR such that PK ∈ R, we have w.h.p

Verify(pp,M,R, Sign(pp, SK,R,M)) = 1.

From a security point of view, Bender et al. [BKM06] suggested the following stringent
de�nitions of anonymity and unforgeability.

De�nition 4.2. A ring signature (Par-Gen,Keygen, Sign,Verify) provides statisticalanonymity
under full key exposure if, for any computationally unbounded adversary A, there exists a
negligible function ε(λ) such that

|Pr[pp← Par-Gen(1λ); (M?, i0, i1,R?)← AKeygen(·); b R← {0, 1};

σ? ← Sign(pp, SKib ,R?,M?) : A(σ?) = b]− 1

2
| < ε(λ),

wherePKi0 , PKi1 ∈ R? andKeygen is an oracle that generates a fresh key pair (PK, SK)←
Keygen(pp) at each query and returns both PK and SK to A.
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De�nition 4.3. A ring signature (Par-Gen,Keygen, Sign,Verify) provides unforgeability
w.r.t insider corruption if, for any PPT adversaryA, there exists a negligible function ε(λ) such
that, for any pp← Par-Gen(1λ), we have

Pr[(M,R, σ)← AKeygen(·),Sign(·),Corrupt(·)(pp) : Verify(pp,M,R, σ) = 1] < ε(λ),

• Keygen(): is an oracle that maintains a counter j initialized to 0. At each query, it
increments j, generates (PKj, SKj)← KeyGen(pp) and outputs PKj .

• Sign(i,M,R) is an oracle that returns σ ← Sign(pp, SKi,R,M) if PKi ∈ R and
(PKi, SKi) has been generated by Keygen. Otherwise, it returns ⊥.

• Corrupt(i) returns SKi if (PKi, SKi) was output by Keygen and ⊥ otherwise.

• A is restricted to output a triple (M,R, σ) such that: (i) No query of the form (?,M,R)
has been made to Sign(·, ·, ·); (ii)R only contains public keys PKi produced by Keygen
and for which i was never queried to Corrupt(·).

4.2.2. Σ-protocol Showing that a Commitment Opens to 0 or 1

We recall the Σ-protocol used in [GK15] to prove that a commitment opens to 0 or 1. Let
R = {(ck, c, (m, r)) | c = Comck(m, r) ∧ (m, r) ∈ {0, 1}×Zq} the binary relation, where
ck is the commitment key generated for the underlying commitment scheme, u = c is the
public input and w = (m, r) is the private input. Figure 4.1 gives us a Σ-protocol (P,V) for
R.

Theorem4.1 ([GK15, Theorem 2]). Let (Setup,Com) be a perfectly binding, computationally
hiding, strongly binding and additively homomorphic commitment scheme. The Σ-protocol
presented in �gure 4.1 for the commitment to 0 or to 1 is perfectly complete, perfectly 2-special
sound and perfectly SHVZK.

Prover(ck, c;m, r) Verifier(ck, c)
a, s, t R← Zq

ca = Comck(a; s)
cb = Comck(am; t) (ca,cb)

−−−−−−−−−−−−→
x

←−−−−−−−−−−−−
x← {0, 1}λ

f = mx+ a
za = rx+ s

zb = r(x− f) + t f,za,zb
−−−−−−−−−−−−→

Accept if and only if
ca, cb ∈ Cck, f, za, zb ∈
Zb,

cxca = Comck(f ; za), cx−fcb = Comck(0; zb)

Figure 4.1. – Σ-protocol for commitment to m ∈ {0, 1}
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4.2.3. Σ-protocol for One-out-of-N Commitments Containing 0

Groth and Kohlweiss [GK15] used the Σ-protocol of Section 4.2.2 to build an e�cient
Σ-protocol allowing to prove knowledge of an opening of one-out-of-N commitments
{ci}N−1

i=0 to m = 0. Their protocol outperforms the standard OR-proof approach [CDS94]
in that its communication complexity is only O(logN), instead of O(N). The idea is to see
the responses f = mx+ a of the basic Σ protocol as degree-1 polynomials in x ∈ Zq and
exploit the homomorphism of the commitment.

Prover(ck, (c0, . . . , cN−1); (`, r)) Verifier(ck, (c0, . . . , cN−1))
For j = 1, . . . , n
rj, aj, sj, tj, ρj ← Zq, c`j = Comck(`j, rj)
caj = Comck(aj, sj), cbj = Comck(bj, tj)
with bj = `j · aj
cdj−1

=
∏N−1

i=0 c
pi,j−1

i · Comck(0, ρj−1)
with pi,k de�ned

in (4.1)
{c`j ,caj ,cbj ,cdj−1

}nj=1

−−−−−−−−−−−−−−→
x

←−−−−−−−−−−−−−−
x R← {0, 1}λ

For j = 1, . . . , n
fj = `jx+ aj , zaj = rjx+ sj
zbj = rj(x− fj) + tj

zd = rxn −
∑n−1

k=0 ρkx
k {fj ,zaj ,zbj }

n
j=1,zd

−−−−−−−−−−−−−−→
Accept if and only

if
{c`j , caj , cbj , cdj−1

}nj=1 ∈ Cck, {fj, zaj , zbj}nj=1, zd ∈ Zq
For all j = 1, . . . , n

cx`jcaj = Comck(fj; zaj), cfj−x`j
cbj = Comck(0; zbj)∏N−1

i=0 c
∏n
j=1 fj,ij

i ·
∏n−1

k=0 c
−xk
dk

= Comck(0; zd)
with fj,1 = fj and fj,0 = x− fj

Figure 4.2. – Σ-protocol for one of (c0, . . . , cN−1) commits to 0

Theorem 4.2 ([GK15, Theorem 3]). The Σ-protocol of �gure 4.2 is perfectly complete. It
is (perfectly) (n+ 1)-special sound if the commitment is (perfectly) binding. It is (perfectly)
SHVZK if the commitment scheme is (perfectly) hiding.

In Figure 4.2, for each i, pi,0, . . . , pi,n−1 ∈ Zq are the coe�cients of the polynomial

Pi[Z] =
n∏
j=1

Fj,ij [Z] = δi,` · Zn +
n−1∑
k=0

pi,k · Zk ∀i ∈ {0, . . . , N − 1} (4.1)

obtained by de�ning Fj,1[Z] = `j · Z + aj and Fj,0[Z] = Z − Fj,1[Z] for all j ∈ [n]. Note
that the equality (4.1) stems from the fact that, for each index i = i1 . . . in ∈ {0, . . . , N−1},
we have Fj,ij [Z] = δij ,`j · Z + (−1)δ0,ij · aj for all j ∈ [n], so that the coe�cient of Zn in
(4.1) is non-zero if and only if i = `.
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4.2.4. A Note on the Application to Ring Signatures
In [GK15], Groth and Kohlweiss obtained a ring signature scheme by applying the Fiat-
Shamir paradigm [FS86] to the above Σ-protocol. In short, key pairs are of the form (c, r)
such that c = Com(0; r) and a ring signature associated withR = {c0, . . . , cN} is simply
a proof that the signer knows how to open to 0 one of the N commitments in that ring.
In [GK15], the following theorem states about the security of the resulting construction,
denoted (Setup,KGen, Sign,Vfy).
Theorem 4.3 ([GK15, Theorem 4]). The scheme (Setup,KGen, Sign,Vfy) is a ring signature
scheme with perfect correctness. It has perfect anonymity if the commitment scheme is perfectly
hiding. It is unforgeable in the random oracle model if the commitment scheme is perfectly
hiding and computationally binding.

As the security of the ring signature relies on that of the Σ-protocol, it is interesting
to take a closer look at the computation of commitments {Cdj−1

}nj=1 in Figure 4.2. This
part of the Σ-protocol is the only point where the ring signature generation may involve
adversarially-generated values. In the anonymity game, the signer’s public key may be
one of the only two honestly-generated public keys in the ringR. The security proof of
[GK15] argues that, as long as the commitment is perfectly hiding, the fact that each Cdj−1

contains a (randomizing) factor Com(0; ρj−1), for some uniformly random ρj−1, is su�cient
to guarantee perfect anonymity. We point out an issue that arises whenR = {c0, . . . , cN}
contains maliciously generated keys outside the space of honestly generated commitments
(even if they are perfectly hiding). In short, multiplying a maliciously generated commit-
ment by a fresh commitment may not fully “clean-up" its distribution.

The following example is a perfectly hiding commitment where re-randomizing does not
wipe out maliciously generated commitments components: the setup algorithm outputs
generators ck = (g, h) cyclic group G of prime order q; committing to m ∈ Zq using
randomness ρ = (r, s) R← Z2

q is achieved by computing Comck(m; ρ) = (c1, c2, c3) =
(gmhr, gs, hs) ∈ G3, which is a perfectly hiding commitment since c1 is a Pedersen com-
mitment and the Elgamal encryption (c2, c3) of 0 is independent of c1. If we consider the
maliciously generated commitment (c?1, c

?
2, c

?
3) = (hu, gv, g · hv), multiplying it by any

Comck(0; ρ) does not bring it back in the range of Com. Therefore, in an instantiation with
the above commitment, an unbounded adversary can defeat the anonymity property.

The only missing requirement on behalf of the underlying perfectly hiding commit-
ment is that it should be possible to e�ciently recognize elements in the range of the
commitment algorithm. This assumption is quite natural and satis�ed by schemes like
Pedersen’s commitment. Hence, this observation does not a�ect the perfect anonymity of
the discrete-log-based instantiation of [GK15].

4.3. A Fully Tight Construction from the DDH
Assumption

We modify the scheme of [GK15] so as to prove its unforgeability via a fully tight reduction
from the DDH assumption. The advantage of the DDH distinguisher is only smaller than
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the adversary’s advantage by a (small) constant factor.
The price to pay for this fully tight reduction is relatively small since signatures are only

longer than in [GK15] by roughly 2n group elements. Moreover, as in [GK15], our signing
algorithm requires Θ(N) exponentiations if N is the size of the ring.

4.3.1. Description
We exploit the fact that, in the Σ-protocol of [GK15], not all �rst-round messages should
be computed using the same commitment scheme as the one used to compute the public
key. The second step of the signing algorithm computes perfectly hiding commitments
{~Cdk}n−1

k=0 which are vectors of dimension 4. They live in a di�erent space than public keys
(X, Y ) = (gα · hβ, g̃α · h̃β), which are DDH-based lossy encryptions of (and thus perfectly
hiding commitments to) 0.

The signer generates a commitment (T0, T1) = (gθ1 · hθ2 ,Γ ·Hθ1
1 ·Hθ2

2 ) to Γ = Uα` · V β` ,
which encodes his secret key (α`, β`) ∈ Z2

q . This de�nes a vector ~V` = (X`, Y`, T0, T1) ∈ G4

in the column space of a matrix MH ∈ G4×4, which has full rank in the scheme but not
in the proof of unforgeability. Then, for each key ~Xi = (Xi, Yi) in the ringR, the signer
de�nes ~Vi = (Xi, Yi, T0, T1)> ∈ G4 and, by extending the technique of [GK15], generates a
NIZK proof that one of the vectors {~Vi}N−1

i=0 is in the column span of MH . To prove this
without revealing which ~V` ∈ G4 is used, the commitments {~Cdj−1

}nj=1 are re-randomized
by multiplying them with a random vector in the column space of MH .

Par-Gen(1λ): Given a security parameter λ, choose a cyclic group G of prime order q with
generators g, h, g̃, h̃ R← G and U, V R← G. Choose hash functionsHFS : {0, 1}∗ → Zq
andH : {0, 1}∗ → G2 which will be modeled as random oracles. Output the common
public parameters pp =

(
λ,G, g, h, g̃, h̃, U, V

)
.

Keygen(pp): Given pp, choose a secret key is SK = (α, β) R← Z2
q and compute the public

key PK = ~X = (X, Y ) = (gα · hβ, g̃α · h̃β).

Sign(pp, SK,R,M): To sign M ∈ {0, 1}∗ on behalf of R = { ~X0, . . . , ~XN−1} such that
~Xi = (Xi, Yi) ∈ G2 for each i ∈ [N ], the signer uses SK = (α, β) and PK = ~X =

(X, Y ) = (gα · hβ, g̃α · h̃β) ∈ R as follows. We assume that N = 2n for some n. Let
` ∈ {0, . . . , N−1} the index of PK = ~X inRwhenR is arranged in lexicographical
order and write it as ` = `1 . . . `n ∈ {0, 1}n.

1. Choose θ1, θ2
R← Zq. For all j ∈ [n], choose aj, rj, sj, tj, uj, vj, wj, ρj−1

R← Zq
and compute (T0, T1) =

(
gθ1 · hθ2 , Uα · V β ·Hθ1

1 ·Hθ2
2

)
, as well as

~C`j = (C`j ,0, C`j ,1) =
(
grj · hsj , g`j ·Hrj

1 ·H
sj
2

)
~Caj = (Caj ,0, Caj ,1) =

(
gtj · huj , gaj ·H tj

1 ·H
uj
2

)
(4.2)

~Cbj = (Cbj ,0, Cbj ,1) =
(
gvj · hwj , g`j ·aj ·Hvj

1 ·H
wj
2

)
,
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where (H1, H2) = H
(
M,R, T0, {C`j ,0, Caj ,0, Cbj ,0}nj=1

)
∈ G2. De�ne

MH =


g h 1 1

g̃ h̃ 1 1
1 1 g h
U V H1 H2

 ∈ G4×4 (4.3)

and its corresponding discrete logarithms Lh = logg(MH) matrix

Lh =


1 logg(h) 0 0

logg(g̃) logg(h̃) 0 0
0 0 1 logg(h)

logg(U) logg(V ) logg(H1) logg(H2)

 ∈ Z4×4
q . (4.4)

Note that the signer’s witnesses (α, β, θ1, θ2) ∈ Z4
q satisfy

logg
[
X | Y | T0 | T1

]>
= Lh ·

[
α | β | θ1 | θ2

]>
. (4.5)

In the following, we will sometimes re-write relation (4.5) as
X
Y
T0

T1

 =


g h 1 1

g̃ h̃ 1 1
1 1 g h
U V H1 H2

�

α
β
θ1

θ2

 . (4.6)

For each i ∈ [N ], de�ne the vector ~Vi = (Xi, Yi, T0, T1)> ∈ G4. The next
step is to prove knowledge of witnesses (α`, β`, θ1, θ2) ∈ Z4

q such that ~V` =

(X`, Y`, T0, T1)> = gLh·(α`,β`,θ1,θ2)> , for some ` ∈ [N ].

2. For each j ∈ [n], pick ρj−1,α, ρj−1,β, ρj−1,θ1 , ρj−1,θ2
R← Zq and compute

~Cdj−1
=

N−1∏
i=0

~V
pi,j−1

i · gLh·(ρj−1,α,ρj−1,β ,ρj−1,θ1
,ρj−1,θ2

)> ∈ G4, (4.7)

where, for each i ∈ {0, . . . , N − 1}, pi,0, . . . , pi,n−1 are the coe�cients of

Pi[Z] =
n∏
j=1

Fj,ij [Z] = δi,` · Zn +
n−1∑
k=0

pi,k · Zk ∈ Zq[Z], (4.8)

where Fj,1[Z] = `j · Z + aj and Fj,0[Z] = Z − Fj,1[Z] for all j ∈ [n]. Note that
the coe�cient of Zn in (4.8) is non-zero if and only if i = `.

3. Compute x = HFS(M,R, T0, T1, {~C`j , ~Caj , ~Cbj , ~Cdj−1
}nj=1) ∈ Zq.
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4. For each j ∈ [n], compute (modulo q) fj = `j · x+ aj = Fj,1(x) and

zrj = rj · x+ tj, z̄rj = rj · (x− fj) + vj

zsj = sj · x+ uj, z̄sj = sj · (x− fj) + wj

and

zd,α = α · xn −
n−1∑
k=0

ρk,α · xk, zd,β = β · xn −
n−1∑
k=0

ρk,β · xk

zd,θ1 = θ1 · xn −
n−1∑
k=0

ρk,θ1 · xk, zd,θ2 = θ2 · xn −
n−1∑
k=0

ρk,θ2 · xk

Let Σj =
(
~C`j ,

~Caj ,
~Cbj ,

~Cdj−1
, fj, zrj , zsj , z̄rj , z̄sj

)
for all j ∈ [n] and output

σ =
(
{Σj}nj=1, T0, T1, zd,α, zd,β, zd,θ1 , zd,θ2

)
. (4.9)

Verify(pp,M,R, σ): Given a ringR = { ~X0, . . . , ~XN−1} and a pair (M,σ), parse σ as in
(4.9) and de�ne fj,1 = fj and fj,0 = x− fj for each j ∈ [n].

1. Compute (H1, H2) = H
(
M,R, T0, {C`j ,0, Caj ,0, Cbj ,0}nj=1

)
∈ G2 and, for each

public key ~Xi = (Xi, Yi) ∈ G2 inR, set ~Vi = (Xi, Yi, T0, T1)> ∈ G4.
2. Let x = HFS(M,R, T0, T1, {~C`j , ~Caj , ~Cbj , ~Cdj−1

}nj=1). If the equalities

~Caj · ~Cx
`j

=
(
gzrj · hzsj , gfj ·H

zrj
1 ·H

zsj
2

)
, (4.10)

~Cbj · ~C
x−fj
`j

=
(
gz̄rj · hz̄sj , H

z̄rj
1 ·H

z̄sj
2

)
, ∀j ∈ [n]

are not satis�ed, return 0. Then, return 1 if and only if

N−1∏
i=0

~V
∏n
j=1 fj,ij

i ·
n∏
j=1

~C
−(xj−1)
dj−1

=


g h 1 1

g̃ h̃ 1 1
1 1 g h
U V H1 H2

�

zd,α
zd,β
zd,θ1
zd,θ2

 . (4.11)

Correctness is shown by observing from (4.8) that
∏N−1

i=0
~V

∏n
j=1 fj,ij

i equals
N−1∏
i=0

~V
Pi(x)
i =

N−1∏
i=0

~V
δi,`·xn+

∑n−1
k=0 pi,k·x

k

i = ~V xn

` ·
N−1∏
i=0

~V
∑n−1
k=0 pi,k·x

k

i

= ~V xn

` ·
n−1∏
k=0

·
(N−1∏
i=0

~V
pi,k
i

)xk
= ~V xn

` ·
n−1∏
k=0

·
(
~Cdk · g−Lh·(ρk,α,ρk,β ,ρk,θ1 ,ρk,θ2 )>

)xk
,
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where the last equality follows from (4.7). Since ~V` = gLh·(α`,β`,θ1,θ2)> , we obtain

N−1∏
i=0

~V
∏n
j=1 fj,ij

i ·
n−1∏
k=0

·~C−xkdk
= ~V xn

` ·
n−1∏
k=0

g−Lh·(ρk,α,ρk,β ,ρk,θ1 ,ρk,θ2 )>(xk),

= gLh·(zd,α,zd,β ,zd,θ1 ,zd,θ2 )> .

4.3.2. Security Proofs

Statistical anonymity is achieved because {~Cdj−1
}nj=1 are uniformly distributed. The reason

is that the matrices (4.4) have full rank in the scheme (but not in the proof of unforgeability),
so that computing ~Cdj−1

as per (4.7) makes its distribution uniform over G4.

Theorem4.4. Any unboundedanonymity adversaryA has advantage atmostAdvanon
A (λ) ≤

2
q

+
QHFS

q2
, where QHFS

is the number of hash queries toHFS.

Proof. We consider a sequence of games and, for each i, we call Wi the event that the
challenger outputs 1 in Game i, meaning that the adversary successfully guesses the
challenger’s bit and outputs b′ = b. In each game, we also consider the event Ei by
which the tuple (g, h, g̃, h̃) of the public parameter or the tuple (g, h,H1, H2) de�ned in
the challenge signature forms a Di�e-Hellman tuple.

Game 0: This is the real game where the challenger outputs 1 if and only if A wins. By
de�nition, A’s advantage is Advanon

A (λ) = |Pr[W0]− 1/2|. We assume that, for all
public keys generated by the Keygen(.) oracle, the adversary immediately obtains
the secret keys. Since (g̃, h̃) is uniformly distributed in pp and since (H1, H2) is an
independent random output of the random oracleH, we �nd Pr[E0] = 2/q−1/q2 and
then Pr[W0] ≤ Pr[W0|¬E0] + (2/q − 1/q2). We are left with bounding Pr[W0|¬E0].

Game 1: We modify the generation of the challenge signature. On a challenge query
(M,R, `(0), `(1)), where (0 ≤ `(0), `(1) ≤ |R| − 1), the challenger B parses R as
{ ~X0, . . . , ~XN−1} and returns ⊥ if ~X`(0) and ~X`(1) are not public keys produced by the
Keygen(.) oracle. Otherwise, it �ips a coin b R← {0, 1} and sets (`1, . . . , `n) as the bit
representation of `(b). Then, it chooses x R← Zq as well as zd,α, zd,β, zd,θ1 , zd,θ2

R← Zq
and fj, zrj , zsj , z̄rj , z̄sj

R← Zq for all j ∈ [n]. Then, it picks T0
R← G as well C`j ,0

R← Zq
for all j ∈ [n]. It can now compute

Caj ,0 = gzrj · hzsj · C−x`j ,0, Cbj ,0 = gz̄rj · hz̄sj · Cfj−x
`j ,0

∀j ∈ [n],

so as to de�ne (H1, H2) = H(M,R, T0, {(C`j ,0, Caj ,0, Cbj ,0)}nj=1). Then, B completes
the computation of the dual-mode commitments as follows. First, it picks T1

R← G as
well as C`j ,1

R← G for all j ∈ [n]. Then, it computes

Caj ,1 =
(
gfj ·H

zrj
1 ·H

zsj
2

)
· C−x`j ,1, Cbj ,1 =

(
H
z̄rj
1 ·H

z̄sj
2

)
· Cfj−x

`j ,1
.
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It draws ~Cdj−1

R← G for each j ∈ {2, . . . , n} while, for j = 1, it computes

~Cd0 =
N−1∏
i=0

~V
∏n
j=1 fj,ij

i

n∏
j=2

~̃C
−(xj−1)
dj−1

(
MH � (−zd,α,−zd,β,−zd,θ1 ,−zd,θ2)>

)
,

where ~Vi = (Xi, Yi, T0, T1)>, fj,1 = fj and fj,0 = x− fj for each j ∈ [n]. Finally, the
challenger programs the random oracleHFS to have the equality

x = HFS(M,R, T0, T1, {~C`j , ~Caj , ~Cbj , ~Cdj−1
}nj=1).

IfHFS was already de�ned for this input, the challenger aborts and picks b′ as a random
bit. If the simulation does not fail, the oracle outputs the challenge signature σ =(
{Σj}nj=1, T0, T1, zd,α, zd,β, zd,θ1 , zd,θ2

)
, which is distributed exactly as in W0|¬E0,

assuming thatE1 does not occur. Indeed, if (g, h,H1, H2) is not a Di�e-Hellman tuple
in both games, all the dual-mode commitments are perfectly hiding and if (g, h, g̃, h̃)
is not a Di�e-Hellman tuple as well, the matrix MH has full rank, meaning that
{~Cdj−1

}nj=1 are uniformly distributed over G4. Therefore, as long as no collision occurs
in the simulation of the challenge, A’s view in W1|¬E1 is the same as in W0|¬E0.
If we call F1 the event that a hash collision prevents the correct generation of the
challenge signature, we obtain the inequality |Pr[W1|¬(E1 ∪ F1)]− Pr[W0|¬E0]| ≤
Pr[F1] ≤ QHFS

/q2.

In Game 1, when neither E1 nor F1 occurs, the signature is perfectly independent of
b ∈R {0, 1}, so that Pr[W1|¬(E1 ∪ F1)] = 1/2. All the above observations together thus
implies Advanon

A (λ) ≤ 2/q + (QHFS
− 1)/q2.

Theorem 4.5. The scheme is unforgeable under the DDH assumption in the random oracle
model. For any adversaryA with running time t and makingQV queries to the key generation
oracle, QS signing queries as well as QH and QHFS

queries to the random oraclesH andHFS,
respectively, there is a DDH distinguisher B with running time t′ ≤ t+ poly(λ,QS, QV , QH)
and such that

Adveuf−cma
A (λ) ≤ 2 ·AdvDDH

B (λ) +
QS +QHFS

· (1 + logQV ) + 5

q
(4.12)

+
QS · (QHFS

+ 2QH + 2QS)

q2
.

Proof. We use a sequence of games where, for each i, Wi stands for the event that the
challenger outputs 1 in Game i.

Game 0: This is the real game. At each query i ∈ [QV ] to the key generation oracle
Keygen(·), the challenger B honestly chooses αi, βi R← Zq and returns the public key
PKi = ~Xi = (Xi, Yi) = (gαi · hβi , g̃αi · h̃βi) and retains SKi = (αi, βi) for later
use. If A subsequently submits ~Xi = (Xi, Yi) to the corruption oracle, B reveals
SKi = (αi, βi). Moreover, all signing queries are answered by faithfully running the
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signing algorithm. At the end of the game, A outputs a forgery (M?, σ?,R?), where
R? = { ~X?

0 , . . . ,
~X?
N?−1},

σ? =
(
{Σ?

j}nj=1, T
?
0 , T

?
1 , z

?
d,α, z

?
d,β, z

?
d,θ1

, z?d,θ2
)
, (4.13)

with Σ?
j =

(
~C?
`j
, ~C?

aj
, ~C?

bj
, ~C?

dj−1
, f ?j , z

?
rj
, z?sj , z̄

?
rj
, z̄?sj

)
. At this point, B outputs 1 if

and only if A wins, meaning that: (i) σ? correctly veri�es; (ii) R? only contains
uncorrupted public keys; (iii) No signing query involved a tuple of the form (·,M?,R?)
. By de�nition, we have Adveuf−cma

A (λ) = Pr[W0].

Game 1: This game is like Game 0 but we modify the signing oracle. Note that each
signing query triggers a query to the random oracleH(.) since the challenger B has
to faithfully compute T0 and {C`j ,0, Caj ,0, Cbj ,0}nj=1 before obtaining

H
(
M,R, T0, {C`j ,0, Caj ,0, Cbj ,0}nj=1

)
.

In Game 1, at each signing query, B aborts in the event thatH(·) was already de�ned
for the input

(
M,R, T0, {C`j ,0, Caj ,0, Cbj ,0}nj=1

)
. Since such an input contains uni-

formly random elements, the probability to abort during the entire game is at most
QS · (QS +QH)/q2 and we have |Pr[W1]− Pr[W0]| ≤ QS · (QS +QH)/q2.

Game 2: We modify the random oracle H when it is directly invoked by A (i.e., H-
queries triggered by signing queries are treated as in Game 0). At each H-query(
M,R, T0, {C`j ,0, Caj ,0, Cbj ,0}nj=1

)
, the challenger B returns the previously de�ned

value if it exists. Otherwise, it picks γ R← Zq and de�nes the hash value as (H1, H2) =
H
(
M,R, T0, {C`j ,0, Caj ,0, Cbj ,0}nj=1

)
= (gγ, hγ). Note that H(·) is no longer a truly

random oracle since (g, h,H1, H2) is a Di�e-Hellman tuple. Still, under the DDH
assumption, this modi�cation has no noticeable e�ect on A’s winning probabil-
ity. Lemma 4.6 describes a DDH distinguisher such that |Pr[W2] − Pr[W1]| ≤
AdvDDH

B (λ) + 1/q.

Since (g, h,H1, H2) is a Di�e-Hellman tuple in Game 2, γ ∈ Zq can be used as a
decryption key for the DDH-based dual-mode encryption scheme. Another consequence of
the last transition is that the matrix Lh of (4.3) has no longer full rank since its last row is
linearly dependent with the �rst three rows.

Game 3: We introduce a failure event F3 which causes the challenger B to output 0. When
A outputs its forgery σ?, B parses σ? as in (4.13) and computes

(H?
1 , H

?
2 ) = H

(
M?,R?, T ?0 , {C?

`j ,0
, C?

aj ,0
, C?

bj ,0
}nj=1

)
.

Event F3 is de�ned to be the event that either: (1) The hash value (H?
1 , H

?
2 ) was not

de�ned at any time; (2) It was de�ned but collides with a pair (H1, H2) = H
(
M,R, T0,

{C`j ,0, Caj ,0, Cbj ,0}nj=1

)
de�ned in response to a signing query (`,M,R) for some

index ` ∈ {0, . . . , |R| − 1}, when R is arranged in lexicographic order. Note that
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the probability of case (1) cannot exceed 1/q because H(·) is unpredictable as a
random oracle. Moreover, since a winning adversary must forge a signature on some
(M?,R?) that has never been queried for signature, the probability of case (2) is
bounded by QS/q

2 multiplied by QH since we must consider the probability that a
tuple (g, h,H1, H2) de�ned in a signing query is accidentally a Di�e-Hellman tuple
and collides with the response of a hash query. We �nd |Pr[W3]−Pr[W2]| ≤ Pr[F3] ≤
1/q +QS ·QH/q2.

Game 4: This game is identical to Game 3 with one modi�cation. When the adversary A
outputs its forgery σ?, B parses σ? as in (4.13) and computes

(H?
1 , H

?
2 ) = H

(
M?,R?, T ?0 , {C?

`j ,0
, C?

aj ,0
, C?

bj ,0
}nj=1

)
.

Then, B recalls the previously de�ned exponent γ? ∈ Zq such that (H?
1 , H

?
2 ) =

(gγ
?
, hγ

?
) and uses it to decrypt the dual-mode ciphertexts {~C?

`j
}nj=1. It aborts and

outputs 0 if one of these ciphertexts turns out not to encrypt a bit `?j ∈ {0, 1}. Note
that, if B does not abort, it decodes an n-bit string `? = `?1 . . . `

?
n ∈ {0, 1}n from

{~C?
`j
}nj=1. We claim that we have |Pr[W4]− Pr[W3]| ≤ (1 +QHFS

)/q.

The only situation where Game 4 deviates from Game 3 is the event F4 that either: (i) A
did not queryHFS(·) on the input that the forgery relates to; (ii) A manages to break the
soundness of the proof system showing that each of the ciphertexts {~C?

`j
}nj=1 encrypts a

bit. Lemma 4.7 shows that Pr[F4] ≤ (1 +QHFS
)/q.

Game 5: In this game, we modify the challenger’s behavior when A outputs a forgery
σ?. Having decoded the n-bit string `? = `?1 . . . `

?
n ∈ {0, 1}n from the dual-mode

ciphertexts {~C?
`j
}nj=1, B also runs the decryption algorithm for (T ?0 , T

?
1 ) to compute

Γ? = T ?1 /T
?
0
γ? . At this point, B recalls the secret key SK = (α`? , β`?) of the `?-th

member of the ring R? = { ~X?
0 , . . .

~X?
N?−1} in lexicographical order. If Γ? = Uα`? ·

V β`? ,B outputs 1. Otherwise, it outputs 0. Lemma 4.8 shows that |Pr[W5]−Pr[W4]| ≤
QHFS

· log(QV )/q.

Game 6: This game is identical to Game 5 except that we change the distribution of

pp =
(
λ,G, g, h, g̃, h̃, U, V

)
.

Here, instead of choosing g, h, g̃, h̃ R← G uniformly, we set (g, h, g̃, h̃) = (g, h, gρ, hρ)
for a randomly chosen ρ R← Zq . Clearly, the two distributions of pp are indistinguish-
able under the DDH assumption and B can immediately be turned into an e�cient
DDH distinguisher (the proof is straightforward) such that |Pr[W6] − Pr[W5]| ≤
AdvDDH

B (λ).

Game 7: This game is like Game 6 except that we now simulate the proof of knowledge of
secret keys in all outputs of the signing oracle. On a signing query (M,R, `), where
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(0 ≤ ` ≤ |R|− 1), the challenger parsesR as { ~X0, . . . , ~XN−1} and returns ⊥ if ~X` is
not public keys produced by the Keygen(.) oracle. Otherwise, the challenger chooses
x R← Zq as well as zd,α, zd,β, zd,θ1 , zd,θ2

R← Zq and fj, zrj , zsj , z̄rj , z̄sj
R← Zq, for all

j ∈ [n]. Then, it picks T0
R← G as well as rj, sj R← Zq for all j ∈ [n], and honestly

computes C`j ,0 = grj · hsj for all j ∈ [n]. It can now compute for all j ∈ [n],

Caj ,0 = gzrj · hzsj · C−x`j ,0, Cbj ,0 = gz̄rj · hz̄sj · Cfj−x
`j ,0

,

and de�ne (H1, H2) = H(M,R, T0, {(C`j ,0, Caj ,0, Cbj ,0)}nj=1). Then, it completes the
computation of dual-mode commitments as follows. First, it chooses T1

R← G and
computes C`j ,1 = g`j ·Hrj

1 ·H
sj
2 for all j ∈ [n]. Then, it computes

Caj ,1 =
(
gfj ·H

zrj
1 ·H

zsj
2

)
· C−x`j ,1, Cbj ,1 =

(
H
z̄rj
1 ·H

z̄sj
2

)
· Cfj−x

`j ,1
,

for all j ∈ [n]. Then, for each j ∈ {2, . . . , n}, the challenger faithfully computes
~Cdj−1

as per (4.7) but, for index j = 1, it computes

~Cd0 =
N−1∏
i=0

~V
∏n
j=1 fj,ij

i

n∏
j=2

~C
−(xj−1)
dj−1

(
MH � (−zd,α,−zd,β,−zd,θ1 ,−zd,θ2)>

)
,

where ~Vi = (Xi, Yi, T0, T1)>, fj,1 = fj and fj,0 = x − fj for each j ∈ [n]. Fi-
nally, the challenger B programs the random oracle HFS to have the equality x =
HFS(M,R, T0, T1, {~C`j , ~Caj , ~Cbj , ~Cdj−1

}nj=1). If HFS was already de�ned for this in-
put, B aborts and outputs 0. If the simulation does not fail, the oracle sets Σj =(
~C`j ,

~Caj ,
~Cbj ,

~Cdj−1
, fj, zrj , zsj , z̄rj , z̄sj

)
for all j ∈ [n] and outputs the signature

σ =
(
{Σj}nj=1, T0, T1, zd,α, zd,β, zd,θ1 , zd,θ2

)
, which is distributed exactly as in Game

6 unless (g, h,H1, H2) happens to form a Di�e-Hellman tuple. Indeed, although the
adversary’s signing queries may involve ringsR that contain maliciously generated
keys of the form ~Xi = (Xi, Yi) = (Xi,Ωi · X

logg(g̃)

i ), with Ωi 6= 1G, this does not
prevent the simulated commitments {~Cdj−1

}nj=1 from having the same distribution as
in Game 6. In simulated signatures, we indeed have

~Cdj−1
=

N−1∏
i=0

~V
pi,j−1

i · gLh·~ρj ∀j ∈ {2, . . . , n− 1}

for random ~ρ2, . . . , ~ρn−1 ∈R Z4
q , where pi,0, . . . , pi,n−1 are the coe�cients of

∏n
j=1 fj,ij =

δi,`x
n +

∑n
j=1 pi,j−1x

j−1. Since ~V` = gLh·(α`,β`,θ1,θ2)> and de�ning

~ρ1 = −(zd,α, zd,β, zd,θ1 , zd,θ1)
> −

n∑
j=2

~ρjx
j−1 + (α`, β`, θ1, θ2) · xn,

we have

~Cd0 = ~V xn

` ·
N−1∏
i=0

~V
∑n
j=1 pi,j−1x

j−1

i ·
N−1∏
i=0

~V
−

∑n
j=2 pi,j−1x

j−1

i

·g−Lh·(zd,α,zd,β ,zd,θ1 ,zd,θ1 )>−Lh·
∑n
j=2 ~ρjx

j−1

=
N−1∏
i=0

~V
pi,0
i · gLh·~ρ1
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Note that the Fiat-Shamir proof does not hide which index ` ∈ {0, 1}n the signing
oracle uses (and it does not have to since A knows `): indeed, for any signing query,
the matrix Lh has only rank 3 and ~X` may be the only key of the ringR to be in the
column span of MH . However, the same holds in Game 6. As long as the simulation
does not fail because of a collision onHFS or because (H1, H2) accidentally lands in the
span of (g, h) at some signing query, the simulated proof is perfectly indistinguishable
from a real proof that would be generated as in Game 6. Taking into account the
probability that the signing oracle fails at some query, we obtain the inequality
|Pr[W7]− Pr[W6]| ≤ QS/q +QS · (QHFS

+QS)/q2.

In Game 7, we claim that Pr[W7] = 2/q. To prove this claim, we recall thatB only outputs
1 if (T ?0 , T

?
1 ) decrypts to Γ? = Uα`? · V β`? . We next argue that, except with probability 1/q,

Γ? is independent of A’s view in Game 7.
Indeed, since (g, h, g̃, h̃) is a Di�e-Hellman tuple, the only information that ~X`? =

(X`? , Y`?) = (gα`? · hβ`? , g̃α`? · h̃β`? ) reveals about (α`? , β`?) ∈ Z2
q is logg(X`?) = α`? +

logg(h) · β`? since logg(Y`?) only provides redundant information. Also, in all outputs of
the signing oracle, the pair (T0, T1) R← G2 is chosen independently of Uα`? · V α`? . Finally,
in Game 7, all signing queries are answered by simulating a NIZK proof without using the
witnesses SK`? = (α`? , β`?) ∈ Z2

q at any time. This ensures that no information is leaked
about (α`? , β`?) whatsoever.

Taking into account the event that (U, V ) accidentally falls in the span of (g, h), we �nd
that Γ? remains independent of A’s view until the forgery stage. In this case, (T ?0 , T

?
1 ) only

decrypts to Uα`? · V β`? with probability 1/q, which implies Pr[W7] = 2/q. When counting
probabilities, we obtain the bound (4.12).
Lemma 4.6. There exists an e�cient DDH distinguisher B that bridges between Game 1 and
Game 2 and such that |Pr[W2]− Pr[W1]| ≤ AdvDDH

B (λ) + 1/q.

Proof. We consider a DDH instance (g, ga, gb, gab+c) for which B has to decide if c = 0
or c ∈R Zq. To do this, B initially de�nes h = gb and emulates the random oracle
H(·) at each (direct) query by randomly choosing δ1, δ2

R← Zq and setting (H1, H2) =(
(ga)δ1 · gδ2 , (gab+c)δ1 · (gb)δ2

)
=
(
gaδ1+δ2 , g(aδ1+δ2)b+cδ1

)
. If c = 0, (H1, H2) is distributed

as in Game 2 for γ = aδ1 + δ2. If c ∈R Zq, we have c 6= 0 with probability 1 − 1/q, so
that (H1, H2) are uniform over G2 and independently distributed across distinct queries,
exactly as in Game 1. When A halts, B outputs 1 if A creates a valid forgery and 0
otherwise.
Lemma 4.7. From Game 3 to Game 4, the adversary’s winning probabilities di�er by at most
|Pr[W4]− Pr[W3]| ≤ (1 +QHFS

)/q.

Proof. We bound the probability Pr[F4]. Recall that F4 occurs if A breaks the sound-
ness of the proof that a dual-mode ciphertext encrypts a bit. This implies that σ? =(
{Σ?

j}nj=1, T
?
0 , T

?
1 , z

?
d,α, z

?
d,β, z

?
d,θ1

, z?d,θ2
)

veri�es and there exists k ∈ [n] such that Σ?
k =

(~C?
`k
, ~C?

ak
, ~C?

bk
, ~Cd?k−1

, f ?k , z
?
rk
, z?sk , z̄

?
rk
, z̄?sk) contains a ciphertext ~C?

`k
that decrypts to `k 6∈

{0, 1}. For this index k, σ? contains a NIZK proof(
(~C?

ak
, ~C?

bk
), x, (f ?k , z

?
rk
, z?sk , z̄

?
rk
, z̄?sk)

)
(4.14)
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that ~C?
`k

encrypts `?k ∈ {0, 1}. This proof, which is obtained from the Σ-protocol of [GK15,
Figure 1], is known [GK15, Theorem 2] to provide special soundness with soundness error
1/q. Hence, if the statement is false and ~C?

`k
does not encrypt a bit, for any given pair

(~C?
ak
, ~C?

bk
), only one challenge value x ∈ Zq admits a response (f ?k , z

?
rk
, z?sk , z̄

?
rk
, z̄?sk) that

makes (4.14) into an accepting transcript.
At each queryHFS(M,R, T0, T1, {~C`j , ~Caj , ~Cbj , ~Cdj−1

}nj=1) such that one of the {~C`j}j=1

does not encrypt a binary value, the probability that oracleHFS(·) returns the unique “bad"
x ∈ Zq for which a correct response exists is exactly 1/q. Finally, sinceHFS is simulated by
the challenger B, we may assume that B makes the query

HFS(M?,R?, T ?0 , T
?
1 , {~C?

`j
, ~C?

aj
, ~C?

bj
, ~C?

dj−1
}nj=1)

for itself in case it was not explicitly made by the timeA terminates. Taking a union bound
over allHFS-queries, we obtain |Pr[W4]− Pr[W3]| ≤ Pr[F4] ≤ (1 +QHFS

)/q.
Lemma 4.8. From Game 4 to Game 5, the adversary’s winning probabilities di�er by at most
|Pr[W5]− Pr[W4]| ≤ QHFS

· log(QV )/q.

Proof. The only situation where Game 5 di�ers from Game 4 is the event F5 that extracting
{~C?

`j
}nj=1 leads to a string `? ∈ {0, 1}n but (T ?0 , T

?
1 ) does not decrypt to an encoding

Uα`? · V β`? of the `?-th ring member’s secret key. This implies that ~V`? = (X`? , Y`? , T
?
0 , T

?
1 )

is not in the column space of MH (as de�ned in (4.3)) and we show that this event can only
happen with probability QHFS

· n/q ≤ QHFS
· log(QV )/q, where n = logN?.

Note that (4.10) implies that f ?j equals f ?j = a?j + `?j · x? for all j ∈ [n], where a?j ∈ Zq is
encrypted by ~C?

aj
. De�ning f ?j,1 = f ?j and f ?j,0 = x− f ?j , we know that

n∏
j=1

f ?j,ij = δi,`? · x?n +
n−1∑
k=0

pi,k · x?k ∀i ∈ [N?],

for some p?i,0, . . . , p?i,n−1 ∈ Zq. This implies

N−1∏
i=0

~V

∏n
j=1 f

?
j,ij

i =
N−1∏
i=0

~V
δi,`? ·xn+

∑n−1
k=0 p

?
i,k·x

k

i

= ~V xn

`? ·
N−1∏
i=0

~V
∑n−1
k=0 p

?
i,k·x

k

i = ~V xn

`? ·
n−1∏
k=0

·
(N−1∏
i=0

~V
p?i,k
i

)xk
.

Moreover, the last veri�cation equation (4.11) implies

~V xn

`? ·
n−1∏
k=0

·
(N−1∏
i=0

~V
p?i,k
i

)xk · n−1∏
k=0

~C
−(xk)
dk

= gLh·(z
?
d,α,z

?
d,β ,z

?
d,θ1

,z?d,θ2
)> . (4.15)

By taking the discrete logarithms logg(·) of both members of (4.15), we get

xn · ~v`? +
N−1∑
i=0

n−1∑
k=0

(p?i,k x
k) · ~vi −

n−1∑
k=0

xk · ~cdk = Lh · (z?d,α, z?d,β, z?d,θ1 , z
?
d,θ2

)>. (4.16)
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Since Lh has rank at most 3 due to the modi�cation introduced in Game 2 and Game 3,
assuming that ~v`? = logg(~V`?) ∈ Z4

q is not in the column space of Lh, there exists a non-zero
vector ~t ∈ Z4

q such that ~t> · Lh = 01×4 and ~t> · ~v`? 6= 0. If we multiply both members of
(4.16) on the left by ~t>, we obtain

xn · (~t> · ~v`?) +
N−1∑
i=0

n−1∑
k=0

(p?i,k · xk) · (~t> · ~vi)−
n−1∑
k=0

xk · (~t> · ~cdk) = 0. (4.17)

If ~t> · ~v`? 6= 0, equality (4.17) implies that x is a root of a non-zero polynomial of degree n.
However, x is uniformly distributed over Zq and the Schwartz-Zippel Lemma implies that
(4.17) can only hold with probability n/q < log(QV )/q.

In order to bound the probability Pr[F5], we have to consider all hash queries

HFS(M,R, T0, T1, {~C`j , ~Caj , ~Cbj , ~Cdj−1
}nj=1)

for which R only contains honestly generated keys and (T0, T1) does not decrypt to
an encoding Uα` · V β` of the `-th key of R, where ` ∈ {0, . . . , |R| − 1} is determined
by {~C`j}nj=1. Taking a union bound over all hash queries, we obtain Pr[F5] ≤ QHFS

·
log(QV )/q.
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Lattice-based
Designated-Veri�able NIZK

Argument and Application to a
Voting Scheme 5

5.1. Introduction

Non-interactive zero-knowledge (NIZK) proof systems have been introduced by Blum,
Feldman and Micali [BFM88] and allow a prover to prove membership of an NP language
without interactions. They can be used to convince anybody that a statement belongs to the
language and their zero-knowledge property ensures that a proof reveals nothing beyond
the membership of the language. NIZK proofs are fundamental cryptographic primitives
used to construct public-key encryptions secure against chosen-ciphertext attacks, digital
signatures, voting schemes and other cryptographic protocols.

Designated-veri�er non-interactive zero-knowledge (DVNIZK) argument systems are
argument systems which can only be veri�ed with a secret veri�cation key, the sound-
ness of the system holds only for an adversary who does not know the secret key and
its zero-knowledge property holds for everyone, even for an adversary who knows the
secret key. DVNIZKs have many applications for building more complex cryptographic
protocols including tightly CCA encryption schemes [GHKW16] and electronic voting
systems [CG15].

Damgård, Fazio and Nicolosi [DFN06] have been the �rst to establish a generic trans-
formation from a Σ-protocol, i.e. a 3-move honest zero-knowledge proof, into an e�cient
DVNIZK using an additively homomorphic encryption scheme if the answer can be com-
puted linearly. Their construction is secure for a logarithmic number of proofs but the
soundness relies on an unclassical complexity leveraging assumption. This technique has
been later extended by Chaidos and Groth [CG15] to a variant of designated veri�er ar-
gument, where the soundness is weakened, and called culpable soundness. They use the
Okamoto-Uchiyama encryption scheme [OU98] and require that the original Σ-protocol
is secure with respect to unique identi�able challenge, meaning that for words in a strict
subset of the complementary of the original language, there is at most one challenge that
can be answered with a valid proof. One interesting open problem is how to extend their
idea to construct more general DVNIZK arguments based on other assumptions.
Lattice-based constructions. The possible development of quantum computers would
give e�cient solutions for many classical cryptographic problems. Fortunately, we still
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have some cryptographic problems which remain hard even with quantum computers like
lattice-based problems, code-based problems, isogeny-based problems etc. Lattice-based
constructions are the most prominent ones, and they bene�t from a security based on
worst-case to average-case reductions. They also give us the most possibilities to construct
various functionalities over cryptographic primitives (as fully homomorphic encryption
(FHE) [Gen09; BV11; GSW13]...).

Most lattice-based constructions rely on two fundamental problems, the Learning with
Errors (LWE) problem and the (Inhomogeneous) Small Integer Solution ((I)SIS) problem,
both shown to be as hard as lattices problems with worst-case to average-case reduc-
tions [Ajt96; Reg09]. The ISIS problem is that: given a matrix A uniformly sampled in
Zn×mq (for some m > n), and a uniform vector y ∈ Znq , we can not �nd a small vector
x ∈ Zmq such that Ax = y mod q. Then, in this area, an interesting relation to prove is the
knowledge of an (I)SIS solution for a given matrix A and vector y, i.e. a short vector x such
that Ax = y mod q. There already exists many interactive proofs to show this [MV03;
LNSW13; BCK+14; BKLP15]. One of the main di�culty in building a proof of knowledge
for a lattice problem is that the proof has to be done many times, as it is the case for Stern
proof [LNSW13], since the soundness probability is only 2/3 and extending the challenge
space is a well-known hard problem. Many new results on how to improve the soundness
probability have been published recently [BDOP16; BDLN16; PL17; LS17; BL17; BBC+18].

Usually, when we prove the soundness property of a proof of knowledge, we need to
extract a witness. In the random oracle model, we can use the forking lemma [PS96] that
allows us to rewind the proof and given two transcripts with the same commitment for
two di�erent challenges, we can extract the witness, proving that the proof is a proof
of knowledge. In this case, the di�erence of these two challenges needs to be invertible.
However, in the lattice world, the inverse has not always small coe�cients and when we
work in the e�ciently-computable ring settings, it is possible that this di�erence will not
be invertible, such as Zq[X]/〈Xn + 1〉 for q prime, n a power of 2 and q = 1 mod 2n.
In [BCK+14], Benhamouda et al. showed that 2(X i−Xj) are invertible with coe�cients in
{−1, 0, 1}, but the challenges space is very small and the proof still need to be done many
times.

In [BDOP16; LN17], the authors described a proof of knowledge to approximate zero-
knowledge proofs in one iteration in the random oracle model. The main idea is to build
an approximate zero-knowledge proof since they are not able to prove that we can extract
the witness but only that there exists a small x′ such that Ax′ = cy, where c is a small
number in Zq . This approximate solution is useful for some applications including veri�able
encryption schemes, group signature, key escrow, optimistic fair exchanges and veri�able
secret sharing.
Our Contributions. Our main contributions are the new construction of a lattice-based
DVNIZK argument for the OR relation in the standard model and the �rst lattice-based
voting scheme in the standard model, i.e. both without random oracle. In order to construct
our scheme we will use sub-exponential LWE (i.e. modulus q is sub-exponential w.r.t. the
security parameter n).

• We �rst build a Σ-protocol which proves that a commitment is either a commit-
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Commitment
Section 5.2.4

Σ-protocol
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DVNIZK
Section 5.3.2

Vote
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tion 5.4

Figure 5.1. – Our contributions to build a voting scheme.

ment of 0 or 1. Our protocol is adapted from the Σ-protocol of Benhamouda et al.
in [BKLP15], which shows that the plaintexts satisfy the relation µ3 = µ1µ2 for three
encryptions. Our proof shows a slightly di�erent relation: of the form µ = 0 or 1
if, and only if, µ(µ − 1) = 0. We also prove an additional security property: the
soundness with unique identi�able challenge that is needed to build our DVNIZK
(Section 5.3.1).

• Then, we use similar techniques as in [CG15] to derive a DVNIZK argument from the
previous Σ-protocol. But this transformation does not directly apply and we had to
solve several issues. This is our main contribution, described Section 5.3.2, our scheme
allows to prove an OR relation: that a commitment commits to the message 0 or 1,
and its security is proven under the Ring Learning With Errors assumption [LPR13b].

• Finally, we show how to use our DVNIZK scheme to build a voting schemes. We
construct the �rst lattice-based voting scheme in the standard model in Section 5.4,
but it requires an honest decryption party.

The principal idea of the transformation from a Σ-protocol to a DVNIZK proof is based
on the observation that: in the Σ-protocol, the challenge generated by the veri�er is inde-
pendent from the output sent by the prover. Thus, we can use an decryptable homomorphic
commitment scheme to commit a random challenge, and publish it in the public key at
the beginning. The prover uses the commitment of the challenge and its homomorphic
property to compute an committed proof. Thanks to the decryption key, the veri�er can
decrypt this proof and verify it, as in the Σ-protocol. But applying this transformation to a
lattice-based commitment scheme is not straightforward. The main di�culty is that, in a
lattice-based Σ-protocol, we usually need a rejection sampling procedure to make the proof
independent from the witness. But in this transformation, the prover can only compute
the proof using the ciphertexts, then this makes the rejection sampling on the plaintext
impossible. To solve this issue, we require the message space to be a ring and the challenge
space to be a subset of the message space with only invertible elements. We also need that
the di�erence of two challenges is invertible mod 2, this explains our choice of the ring
R = Z[X]/〈X2·3k +X3k + 1〉 for our constructions (more details in Section 5.2.1).

Finally, we describe a lattice-based voting scheme in the standard model as an application
of our DVNIZK. The main idea of the construction is that each ballot is a valid commitment.
Using our DVNIZK, we can prove that the committed value is either a commitment of 0
or 1. This proof ensures that even an adversary can only vote at most one time during
the voting procedure. However, our voting scheme needs an honest decryption party. The
proof of validity using our DVNIZK is not su�cient to prove the homomorphic property of
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the commitment. Because of this, we require an honest decryption party to add the votes
privately and we cannot publicly add all the ballots together.

Upon our knowledge, there are two existing post-quantum e-voting schemes [CGGI16]
and [PLNS17], both of them are based on the random oracle model.
Open Problems. In the �rst part, we construct a lattice-based DVNIZK argument system
in the standard model. This argument system is only culpable soundness, which requires
the successful attacker to reveal a witness of the fact the attack is in the guilt relation
Rguilt. This weak soundness notion is su�cient in the case of voting scheme as mentioned
in [CG15]. But it would be interesting to build a DVNIZK scheme which achieve the classical
soundness property, in which the adversary cannot construct a proof of a false statement

We construct also the �rst post-quantum voting scheme in the standard model in Sec-
tion 5.4.2. However, this �rst construction needs to have a trusted decryption party. The
post-quantum voting scheme without trusted decryption party in the standard model
remains as an open problem.

5.2. Preliminaries

Notations. Let n > 0 and R be the ring Z[X]/〈f(X)〉 for f(X) an irreducible polynomial
in Rq of degree n. For q > 0, we de�ne Rq = R/qR. The elements of R2 are then
polynomials with coe�cients in {0, 1}. We use bold lower case letter to denote vectors
and bold capital letters to denote matrices. We note [f ]2 the binary rounding for every
coe�cient of the polynomial f . We use ‖x‖1, ‖x‖∞ and ‖x‖ to denote respectively the L1,
L∞ and L2 norm of the vector x.

We de�ne as follows the gadget matrix [MP12]. It was �rst introduced as an e�cient
tool to construct lattice trapdoors. Later on, the gadget matrix is widely used to construct
fully homomorphic encryption schemes like [GSW13].

De�nition 5.1 (Gadget Matrix [MP12]). For a vector g =
[
1 2 . . . 2blog(q)c] and Im the

m×m identity matrix, we de�ne the gadget matrix G = g ⊗ Im. We also use the notation
G−1 for the function which, given a matrix M ∈ Rm×m

q , outputs M̃ ∈ Rmblog2(q)c×m
2 such

that G · M̃ = M.

Notice that we can also see the function G−1 as a decomposition of each coe�cient in
bits and which put them in the same column.

5.2.1. Choice of the ring

In this work, we useR = Z/〈X2·3k +X3k + 1〉. We need this particular ring as we have
constraints on the polynomial Φ3(X3k) = X2·3k + X2k + 1: It needs to be irreducible in
both F2[X] and Fq[X]. In this section, we show that this is indeed the case and give some
properties on the rings R = Z[X]/〈X2·3k +X3k + 1〉.
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Lemma 5.1 ([LN86, Th 3.35]). Let f(X) be an irreducible polynomial in Fq[X] of degree d
and multiplicative order1 r. Let t ≥ 2 be an integer whose prime factors divide r but not q

d−1
r

.
We also need to assume qd = 1 mod 4 if t = 0 mod 4. Then f(X t) is irreducible in Fq[X].

Lemma 5.2 ([LN86, Th 2.47]). In the prime �nite �eld Fq, let n be a positive integer and
r the smallest integer such that qr = 1 mod n. Then all the irreducible factors of the n-th
cyclotomic polynomial have degree r.

Lemma 5.3. Let q = 2 mod 9 be a prime and k ≥ 0 a non-negative integer. The polynomial
X2·3k +X3k + 1 is an irreducible polynomial in both F2[X] and Fq[X].

In the rest of this work, we use the function Φ3(X3k) = X2·3k + X3k + 1 and we
apply the condition q = 2 mod 9 to generate the extension F

q2·3k of Fq. Recall that since
X2·3k + X3k + 1 is irreducible in Fq[X], Rq is a �nite �eld. We denote by n = 2 · 3k the
extension degree of Rq over Fq.

A critical value for the choice of the ring is the expansion factor. It measures how large
the product of two polynomials becomes in the ring. In cases of lattice-based construction,
smaller expansion factor leads to smaller parameters.

De�nition 5.2 (Expansion Factor of Rq [LM06]). The expansion factor of a �nite �eld Rq,
with n the extension degree of Rq over Fq, is de�ned as: EF (Rq) = maxg,h∈Rq min{k ∈
N s.t. ‖g · h‖∞ ≤ k · n · ‖g‖∞ · ‖h‖∞}.

Let f be the de�nition polynomial of the �nite �eld Rq. As showed in [LM06], the
expansion factor EF (Rq) can be bounded by:

EF (Rq) ≤ min
g∈Z[x]

2 · ‖f‖1 · ‖g‖1 · (2 · ‖f · g‖1)d
deg(f)−2
gap(f ·g) e. (5.1)

Where deg(·) is the degree of a polynomial and gap(·) is the di�erence between the poly-
nomial degree and the second highest degree of non-zero term in a polynomial. Using this
bound with g(x) = x3k − 1, we get the following lemma.

Lemma 5.4. If R = Z[X]/〈X2·3k +X3k + 1〉, we have EF (Rq) ≤ 48.

5.2.2. Gaussian distribution
For v ∈ Rq, we de�ne the Gaussian function centered at c with standard deviation σ

as ρσ,c(v) = e
−‖v−c‖2

2σ2 and the discrete Gaussian distribution centered at c over Rq as
DRq ,c,σ(v) = ρσ,c(v)/

∑
w∈Rq ρσ,c(w). If the center is 0, we denote this distribution DRq ,σ.

Lemma 5.5 ([Ban93, Lemma 1.5(i)]). InRq of extension degree n, an element s ∈ Rq sampled
according to DRq ,σ, and parameter σ > 0, we have: Prs←DRq,σ

[‖s‖ > σ
√
n] < 2−Ω(n).

1The multiplicative order of a polynomial f with f(0) 6= 0 is the smallest positive integer r such that f
divides Xr − 1.



82Chapter 5. Lattice-based Designated-Veri�able NIZK Argument and Application to a Voting
Scheme

We denote in the rest of this chapter Bσ = σ
√
n a bound on the discrete Gaussian

distribution which is veri�ed with probability 1− 2−Ω(n), where n is the extension degree
of Rq over Fq.

In our construction, we prove that the distribution of the proof is unrelated to the witness
used by the prover. A common approach with rejection sampling would imply rejections
on the plaintext space which is not possible here without the secret veri�cation key. Thus
we need to use smudging techniques which are based on the following lemma.

Lemma 5.6 (Noise smudging [DGK+10, Theorem B.1]). Let q ∈ Z, σ ∈ R and y ∈ Rq . The
statistical distance between the distribution DRq ,σ and y +DRq ,σ is at most ‖y‖

2σ
.

5.2.3. Ring Learning With Errors
We now recall the Ring Learning With Errors (RLWE) assumption used in the security
proof of our scheme.

De�nition 5.3 (RLWE assumption [PR06; LPR13b]). For the security parameter λ ∈ N, set
a degree parameter n = n(λ), choose the degree n cyclotomic polynomial Φn(X) and a prime
integer q = q(λ) ∈ Z, let the ring R be Z[X]/〈Φn(X)〉, the quotient ring Rq = R/qR and
DZn,σ for σ ≥ ω(

√
log n), a distribution over the ring Rq.

The ring learning with errors assumption RLWERq ,DZn,σ states that for any ` = poly(λ) we
have: {(ai, ai · s + ei)}i∈[`] ≈c {(ai, ui)}i∈[`], where ai and ui are sampled uniformly from
Rq, and (s, ei) from the error distribution DZn,σ.

We note that the polynomial we use in this paper Φ3(X3k) = X2·3k + X2k + 1 is the
2 · 3k-th cyclotomic polynomial. Thus the security of our scheme relies on the RLWE
assumption, recently the relation between RLWE and Polynomial-LWE has been clari�ed
by [RSW18].

We need the following lemma for the construction of the RLWE commitment, which
shows that given one RLWE sample (a, b = as+ e) with the secret s and the noise e, we
can create many other RLWE instances without knowing the secret s.

Lemma 5.7 ([BV11]). Let q, n, σ be the parameters of RLWE, and let σ′ ≥ 2ω(logn) · σ. Then,
under the RLWERq ,DRq

assumption, for s, v, e, e′ ← DRq ,σ, a, a′
R← Rq, e′′ ← DRq ,σ′ and

b = as+ 2e, we have:
(s, (a, b), (av + 2e′, bv + 2e′′)) ≈c (s, (a, b), (a′, a′s+ 2e′′)).

5.2.4. RLWE commitment scheme [LPR13a]
We present in this part a commitment scheme derived from theRLWE encryption of [LPR13a].
Note that it can also be seen as a fully homomorphic encryption scheme from [BV11] with
operations RLWE.Add and RLWE.Mult over the ciphertexts. For clarity, we refer to the
original paper [BV11] for the explicit construction of these two algorithms.

Setup(1λ): Given the security parameter λ, choose parameters n, q, σ, σ′ ≥ 2ω(logn) · σ as
speci�ed in Lemma 5.8. Then, proceed as follows:
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1. Sample polynomials a R← Rq from a uniform distribution and s, e← DRq ,σ from
a discrete Gaussian distribution.

2. Compute b = as+ 2e.

3. Output the commitment key ck = (a, b) and the decryption key dk = s2.

Commit(ck, µ): Given ck = (a, b), commit the message µ ∈ R2 as follows:

1. Sample the error terms (v, e′)← DRq ,σ and e′′ ← DRq ,σ′ .

2. Compute the commitment (c0, c1): c0 = bv + 2e′′ + µ and c1 = av + 2e′.

3. Output the commitment and the opening information:
com = (c0, c1), open = (1, v, e′, e′′).

Verify(com, open, µ): Given the commitment com = (c0, c1), the opening information
open = (γ, v, e′, e′′), and the message µ, the veri�cation algorithm proceeds as follows:

1. Let B = n · EF (Rq)Bσ and B′ = n · EF (Rq)Bσ′ +
n·EF (Rq)

2
verify that all the

vectors in the opening information are small:

‖v‖∞ ≤ B, ‖e′‖∞ ≤ B, ‖e′′‖∞ ≤ B′, γ ∈ R2\{0}.

2. Verify that the following equation is true:[
bv + 2e′′ + [γ · µ]2

av + 2e′

]
= γ ·

[
c0

c1

]
.

In the veri�cation algorithm we relax the acceptance condition, then we can have a small
factor γ both in the commitment and the message i.e. γc = Commit(ck, γµ; r). We note
that this is an honestly generated RLWE commitment scheme that can be seen also as an
encryption scheme, thus we also introduce the following decryption algorithm. In this case,
a decryption key dk = s is de�ned in the Setup algorithm.

Decrypt(ck, dk, com): Given the commitment key ck, the decryption key dk = s and an
honestly generated commitment com = (c0, c1), the decryption algorithm outputs
the message µ = bc0 − c1se2.

In the following lemma, we state that even with the previous relaxation, the commitment
is still binding for the message (the proof is in the full version).

Lemma 5.8. Assume that σ′ > 2ω(logn) ·σ. Then, this commitment is computationally hiding
if the RLWERq ,DRq,σ problem is hard, and is statistically binding.

2In the De�nition ??, there is no decryption key for the commitment scheme. Here the provided decryption
key will used in the construction of Σ-protocol
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5.2.5. Ring-GSW encryption scheme [KGV16]
In this section, we present a construction of a fully homomorphic encryption scheme based
on the Ring-LWE assumption [KGV16], which is a ring version of the GSW scheme [GSW13].
In fact, we only require that it is linearly homomorphic. The advantage of the following
encryption scheme is that the message space Rq is very large, which allows to encrypt the
noise polynomials of the RLWE based commitment in the Σ-protocol.

Setup(1λ): Given λ > 0, the security parameter of the encryption scheme, choose pa-
rameters q, τ , τ ′ as speci�ed in the underlying RLWE assumption, then proceeds as
follows:

1. Sample polynomials t← DRq ,τ , u R← Rq and noise f ← DRq ,τ .
2. Compute w = t · u+ f ∈ Rq.

3. Set SSK = t = [1 − t]T ,PK = u = [w | u]. with tT · u =
[
1 −t

]
·
[
w
u

]
= f .

Encrypt(PK, µ): Given a public key PK = u and a message µ in Rq:
1. Set N = log2(q), sample an uniform (1×N)−matrix R R← R1×N

2 .
2. Sample a (2×N)−noise matrix F← D2×N

(Rq ,τ ′).
3. Compute C the ciphertext of µ ∈ Rq using the gadget matrix G (De�nition 5.1):

C = µ ·G + u ·R + F.

Decrypt(SSK,C): Given the secret key SSK = t and a ciphertext C:
1. Compute the plaintext as follows:

tT ·C = µ · tT ·G + tT · u ·R + tT · F = µ · tT ·G + error.
Then, as the �rst coe�cient of t is 1, we have µ ·

[
1 2 · · · 2`−1

]
+error. Since

our ring is Rq with q not a power of 2, the inversion is not straightforward, but
as explained in [MP12], it is possible to use Babai algorithm [Bab86] to recover
the value µ.

Add(C1,C2): To add two ciphertexts C1 and C2, simply outputs C1 + C2.

Mult(C, k): To multiply a ciphertext C by a scalar k, outputs C ·G−1(k ·G).

This scheme is IND-CPA secure under the RLWERq ,DRq,τ
assumption (and we can set τ ′ =

τ ) [GSW13; KGV16] .

5.3. DV-NIZK Argument for an OR-gate
Our �rst contribution is a DVNIZK argument to show that a given RLWE commitment is a
commitment of either 0 or 1. Note that this relation is non-linear as it can be written as:
given c a commitment of µ, show that the plaintext satis�es the relation µ(µ− 1) = 0. To
the best of our knowledge, only Benhamouda et al. in [BKLP15] described previously a
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non-linear relation Σ-protocol, but there is no such existing argument concerning DVNIZK
constructions.

We present in the �rst part a Σ-protocol which proves that a commitment commits to
either 0 or 1. Then, in the second part, we use similar techniques as in [CG15] to transform
the Σ-protocol into a DVNIZK argument.

5.3.1. Σ-protocol to prove a OR-gate for a RLWE commitment
We �rst show how to construct a Σ-protocol to prove that c = Com.Commit(ck, µ; r)
commits to either µ = 0 or µ = 1. The principle of the protocol is explained in Figure 5.2.
The Σ-protocol conducts the following steps: the prover �rst computes cα, a commitment
of a random element µα ∈ R2, and cβ , a commitment of µβ = −µµα. Then, after receiving
the random challenge δ from the veri�er, the prover computes the proof π = (γ, rγ, r0),
with γ = δµ+ µα, such that:

δc + cα = Com.Commit(ck, γ; rγ), (5.2)
(γ − δ)c + cβ = Com.Commit(ck, 0; r0). (5.3)

To accept the proof, the veri�er checks the above equalities and that (rγ, r0) is smaller than
some given bounds. Intuitively, by the linearity of the commitment scheme, verifying these
two equations implies that δµ+ µα = γ and (γ − δ)µ+ µβ = 0. Combining them together
we have δ(µ2 − µ) + µµα + µβ = 0, which implies the relation we want to prove: that
(µ− 1)µ = 0.

Prover Veri�er
(PP, ck)← Setup (1n)

(cα, cβ)← Prove1 (ck, c, (µ, r))
(cα,cβ)
−→
δ←−

π ← Prove2 (ck, c, (µ, r), δ)
π−→ Verify (ck, c; π)

Figure 5.2. – Σ-protocol to show that c commits to µ ∈ {0, 1}.

As described above, the security of the Σ-protocol is based on the fact that the prover
only have a small probability to correctly guess the value of δ before running Prove2. Thus,
we de�ne the challenge space with size 2ξ , where ξ can be �xed on any positive integer
value smaller than the extension degree n of Rq. The parameter ξ can be consider as the
security parameter of the Σ-protocol.

Setup(1λ): Given the security parameter λ > 0, choose parameters q, σ and σ′ as described
in the RLWE assumption. Then, proceeds as follows:

1. De�ne PPRLWE = (Rq,R2,DRq ,σ,DRq ,σ′).
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2. De�ne σα, σβ and σ′α, σ′β standard deviations super-polynomially larger than σ
and σ′.

3. Generate the commitment key ck = (a, b) and the decryption key dk = s.

Prove1(PP, ck, c, (µ, r)): Given the commitment key ck, the prover generates two commit-
ments for two new elements µα and µβ .

1. Uniformly sample a polynomial µα R← R2 and the randomness (vα, e
′
α, e
′′
α) ←

DRq ,σα ×DRq ,σα ×DRq ,σ′α which will be used to commit µα.
2. Computeµβ = −µµα and similarly as before sample the randomness (vβ, e

′
β, e
′′
β)←

DRq ,σβ ×DRq ,σβ ×DRq ,σ′β which will be used to commit µβ .
3. Compute the commitments:

ca = Com.Commit(ck, µα; (vα, e
′
α, e
′′
α)), cb = Com.Commit(ck, µβ; (vβ, e

′
β, e
′′
β))

=

[
bvα + 2e′′α + µα
avα + 2e′α

]
, =

[
bvβ + 2e′′β + µβ
avβ + 2e′β

]
.

4. Send the commitments cα, cβ to the veri�er.

Prove2(PP, ck, c, (µ, r), δ): After giving the commitments to the veri�er, the prover re-
ceives a challenge δ from the veri�er which is uniformly sampled from all polynomials
with degree less than ξ.

1. Compute γ = δµ+ µα mod 2.
2. Compute also the following randomness: vγ = δv + vα, e

′
γ = δe′ + e′α, e

′′
γ =

δe′′ + e′′α + b δµ+µα
2
e, v0 = (γ − δ)v + vβ, e

′
0 = (γ − δ)e′ + e′β, e

′′
0 = (γ − δ)e′′ +

e′′β + b (γ−δ)µ+µβ
2

e.
3. Output the proof to the veri�er π = (γ, rγ = (vγ, e

′
γ, e
′′
γ), r0 = (v0, e

′
0, e
′′
0)).

Verify(PP, ck, c; π): Given the commitment and its key, the veri�er checks the proof π =
(γ, rγ = (vγ, e

′
γ, e
′′
γ), r0 = (v0, e

′
0, e
′′
0)) as follows:

1. Let B = n · EF (Rq) ·Bσ and B′ = n · EF (Rq) ·Bσ′ +
n·EF (Rq)+1

2
.

Verify that all the randomness are small:
|vγ| ≤ B +Bσα , |e′γ| ≤ B +Bσα , |e′′γ| ≤ B′ +Bσ′α ,
|v0| ≤ 2 ·B +Bσβ , |e′0| ≤ 2 ·B +Bσβ , |e′′0| ≤ 2 ·B′ +Bσ′β

.

2. Verify that the following equations about the ciphertexts are correct: δ ·c+cα =
Com.Commit(ck, γ; rγ),
(γ − δ) · c + cβ = Com.Commit(ck, 0; r0).

3. If the above equations are veri�ed, then output True, otherwise False.
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Theorem 5.9. The above Σ protocol is statistically complete, 2-special sound, statistical
Special Honest Veri�er Zero Knowledge (SHVZK) and almost unique identi�able challenge
with respect to the guilt relation Rguilt = {((c, ck), dk)| KeyVerify(ck, dk) = True ∧ µ 6∈
{0, 1} where µ = Decrypt(ck, dk, c) }, where KeyVerify is an algorithm to verify that the
decryption key is a decryption key w.r.t. the public key, if the underlying commitment is
computationally hiding and statistically binding.

5.3.2. Construction of a DVNIZK for encryption of 0 or 1
We use the [CG15] transformation in the lattice setting to build a DVNIZK scheme which
proves that a commitment commits to the message 0 or 1 under the RLWE assumption.
The main idea behind this transformation is that the veri�er encrypts the challenge of the
Σ-protocol. Since the challenge is independent from the outputs of Prove1, the veri�er can
generate it and publish its encryption in the public key. Then, the prover generates an
encrypted proof using the ciphertext of the challenge (but without knowing the challenge)
and its homomorphic properties, this part is e�cient since there are only linear operations
in Prove2. In the end, the veri�er decrypts everything and runs the veri�cation algorithm
as in the Σ-protocol.

Principle of the construction.

At a high level, the construction is:

Setup(1λ): Given λ, de�ne the parameters of the scheme, then:
1. Generate the commitment key ck.
2. Generate the RGSW public and secret keys: PKRGSW and SSKRGSW.
3. Sample a challenge δ R← {f ∈ R2| deg f < ξ}, compute its encryption

Cδ = RGSW.Encrypt(PKRGSW, δ; rδ).

4. Output the secret veri�cation key SVK = SSKRGSW and the public key

PK = (ck,PKRGSW,Cδ).

Prove (PP,PK, (c, (r, µ))): To prove that c is either a commitment of 0 or 1:
1. Uniformly sample a random message µα R← R2 and µβ = −µµα.
2. ca = Com.Commit(ck, µα; rα) and cb = Com.Commit(ck, µβ; rβ).
3. Homomorphically compute:

• Cγ the RGSW encryption of γ = δµ+ µα,
• Crγ the RGSW encryption of rγ , the randomness of γ = δµ+ µα,
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• Cr0 the RGSW encryption of r0, the randomness of (γ − δ)µ+ µβ .

4. Output the proof Π = (cα, cβ,Cγ,Crγ ,Cr0).

Verify(PK, SVK, c,Π): To verify the proof,

1. Compute γ = RGSW.Decrypt(SSKRGSW,Cγ).

2. Decrypt also Crγ and Cr0 , verify that all the randomness are small.

3. Then, using that δ = RGSW.Decrypt(SSKRGSW,Cδ), verify that:

δ · c + cα = Com.Commit(ck, γ; rγ),

(γ − δ) · c + cβ = Com.Commit(ck, 0; r0).

4. If all the veri�cation are true then return True otherwise return False.

This is the main idea behind the protocol, but two steps in particular are more technical.
We solved the following issues:

• Number of challenges. In the Setup algorithm, we have to encrypt dn/ξe challenges
(δk)k∈[0,dn/ξe) and denote by Cδk their RGSW encryption.
Indeed, we use the extractor of the Σ-protocol to be able to show the culpable sound-
ness property of the DVNIZK scheme. However, the e�ciency of the extractor is
linear in the size of the challenge space of the Σ-protocol, i.e., 2ξ . Then, we cannot
take the same ξ, which was de�ned as the security parameter, we have to choose a
smaller one (as a concrete example we could set ξ as 20). In order to keep the same
security level, we then have to repeat the Σ-protocol dn/ξe times.

• Homomorphic operations on RGSW ciphertexts. In the protocol, we compute
γ = δµ+µα ∈ R2. But we use in our scheme the RGSW encryption scheme, in which
the operations of the plaintexts are in Rq. As a consequence, we need to implement
our own operation [·]2 in Rq, which is not trivial using only the linear operations of
the RGSW encryption scheme. Our main observations are that:

– We can compute the bit addition of two RGSW ciphertexts C1 and C2, we denote
by C1 ⊕C2 = (C1 −C2) ·G−1(C1 −C2).

– Using the special structure of the ring Rq = Zq[X]/〈Xn + Xn/2 + 1〉, for all
polynomial δ with degree less than ξ, given {Cδi}i∈[0,ξ) an RGSW encryption
of the coe�cient of degree i in the polynomial δ, we can easily compute an
encryption of the coe�cient of degree i in the polynomial [δ · Xj]2 that we
denote by Cδi,j .

Using these two ideas together, we compute C[δµ]2[i] =
⊕
∀j∈[0,n)∧µ[j]=1 Cδi,j , it is an

encryption of the i-th coe�cient of [δµ]2 and C[γ]2 = C[δµ]2 ⊕C[µα]2 .
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Detailed DVNIZK construction.

We now describe our full construction:

Setup(1λ): Given the security parameter λ > 0, choose parameters q, q′ > q, σ, σ′ (for
the RLWE commitment scheme), τ and τ ′ (for the RGSW encryption scheme). Then,
proceeds as follows:

1. De�ne: PPRLWE = (DRq ,σ,DRq ,σ′) and PPRGSW = (q′,DRq′ ,τ ,DRq′ ,τ ′).

2. Sample s, e← DRq ,σ and a R← Rq , then generate a commitment key ck = (a, b =
as+ 2e).

3. Sample t, f ← DRq′ ,τ and u R← Rq′ , compute the key pair for the underlying

RGSW scheme: PKRGSW =

[
tu+ f
u

]
, SSKRGSW =

[
1
−t

]
.

4. For all k ∈ [1, dn/ξe], sample δk uniformly at random from the set of all poly-
nomials with degree less than ξ in R2. Then, compute the RGSW encryption
Cδk of δk: Cδk = RGSW.Encrypt(PKRGSW, δ

k; rδk) where rδk is a randomness
generated as speci�ed in the underlying schemes.

5. For all i ∈ [0, ξ), we denote δki the coe�cient of degree i of δk.
6. Compute Cδki

the RGSW encryption of δki for all k ∈ [1, dn/ξe] and for all
i ∈ [0, ξ).

7. Output the secret veri�cation key SVK = SSKRGSW, the public parameter PP =
(PPRLWE,PPRGSW) and the public key
PK = (ck,PKRGSW, {Cδk}k∈[1,dn/ξe], {Cδki

}k∈[1,dn/ξe],i∈[0,ξ)).

Prove (PP,PK, (c, (r, µ))): To prove that c is either a commitment of 0, or a commitment of
1 using (r, µ) as a witness, we run the following proof dn/ξe times with {δk}k∈[1,dn/ξe].
For clarity, we simply describe one proof with δ as follows:

1. Parse the public key asPK = (ck,PKRGSW, {Cδk}k∈[1,dn/ξe], {Cδki
}k∈[1,dn/ξe],i∈[0,ξ)).

2. Parse (r, ck) = ((v, e′, e′′), (a, b)).
3. Uniformly sample a random message µα R← R2 and µβ = −µµα.
4. Sample the randomness vα, e′α, vβ, e′β ← DRq ,σ and e′′α, e′′β ← DRq ,σ′ .
5. Use the above generated randomness to commit µα, µβ w.r.t. ck as follows:

cα =

[
bvα + 2e′′α + µα
avα + 2e′α

]
, cb =

[
bvβ + 2e′′β + µβ
avβ + 2e′β

]
6. Using the homomorphic properties of the RGSW encryption, compute (Cγ,Crγ ,Cr0),

which correspond to the RGSW encryption of δµ+ µα and of the randomness of
the commitments of γ and 0. We also let σsmudge = EF (Rq) ·n ·2λ ·2 log q where
λ is the security parameter. We draw Rγ,R

(i)
vγ ,R

(i)
e′γ
,R

(i)
e′′γ
,R0,R

(i)
v0 ,R

(i)

e′0
,R

(i)

e′′0
←

DR2 log q×2 log q
q ,σsmudge

.
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7. To compute C[γ]2 = C[δµ+µα]2 , as explained in the introduction we can compute
C[γ]2 = C[δµ]2 ⊕C[µα]2 and C[δµ]2[i] =

⊕
∀j∈[0,n)∧µ[j]=1 Cδi,j which is an encryp-

tion of i-th coe�cient of [δµ+ µα]2. We recall that Cδi,j is an encryption of the
coe�cient of degree i in the polynomial [δ · Xj]2. We give the details of the
computation as follows:
a) For j ∈ [0, n) and i ∈ [0, n), we �rst compute Cδi,j . Since δ is a polynomial

of degree less than ξ, and Rq = Zq[X]/〈Xn+Xn/2 +1〉where n = 2 ·3k for
some integer k, there are many coe�cients in [δ ·Xj]2 are 0 only depend on
the degree of δ. We de�ne Cδi,j = 0 if the degree i’s coe�cient of [δ ·Xj]2 is
0 what ever the value of δ is. Then, for all (i, j) ∈ [0, n)2, we compute Cδi,j

as follows Cδi,j = Cδi−j ⊕Cδi+n−j ⊕Cδi+n/2−j , where Cδi with negative i
are all 0.

b) We compute the ciphertext C[γ]2 , which is the encryption of γ mod 2:
i. Compute C[δµ]2[i] =

⊕
∀j∈[0,n)∧µ[j]=1 Cδi,j , which represents the i-th

coe�cient of the polynomial δµ ∈ R2.
ii. Compute C[γ]2 =

∑n−1
i=0 (C(δµ)i⊕(µa)[i]·G)·G−1(X i ·G)+PKRGSW ·Rγ .

8. Then we compute the following elements:

Cγ =Cδ ·G−1(µ ·G) + µa ·G + PKRGSW ·Rγ,

Crγ =(Cδ ·G−1(v ·G) + vα ·G + PKRGSW ·Rvγ ,

Cδ ·G−1(e′ ·G) + e′α ·G + PKRGSW ·Re′γ ,

Cδ ·G−1(2e′′ ·G) + 2e′′α ·G + Cδ ·G−1(µ ·G) + PKRGSW ·Re′′γ ),

Cr0 =(C[γ]2 −Cδ) ·G−1(v ·G) + vβ ·G + PKRGSW ·Rv0,

C[γ]2 −Cδ) ·G−1(e′ ·G) + e′β ·G + PKRGSW ·Re′0
,

C[γ]2 −Cδ) ·G−1(2e′′ ·G) + 2e′′β ·G + (C[γ]2 −Cδ) ·G−1(µ ·G)

+ PKRGSW ·Re′′0
).

9. Output the proof Π = (cα, cβ,Cγ,Crγ ,Cr0).

Verify(PP,PK, SVK, c,Π = {πk}k∈[1,dn/ξe]): To verify the proof π for c using the secret
veri�cation key SVK, we need to proceed as follows for all k ∈ [1, dn/ξe]. For the
clarity of the description, we only describe one with π:

1. Parse the secret veri�cation key SVK = SSKRGSW,
2. Decrypt and set: γ = RGSW.Decrypt(SSKRGSW,Cγ). If γ has coe�cients other

than 0 or 1 then abort.
3. Decrypt also: (vγ, e

′
γ, ē
′′
γ)← RGSW.Decrypt(SSKRGSW,Crγ ),

and (v0, e
′
0, ē
′′
0)← RGSW.Decrypt(SSKRGSW,Cr0),

then set: rγ = (vγ, e
′
γ, bē′′γ/2c) and r0 = (v0, e

′
0, bē′′0/2c).
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4. Let B = n ·EF (Rq) ·Bσ and B′ = n ·EF (Rq) ·Bσ′ +
n·EF (Rq)+1

2
, we verify that

rγ = (vγ, e
′
γ, e
′′
γ) and r0 = (v0, e

′
0, e
′′
0) are all small with the following bounds:

‖vγ‖∞ ≤ B +Bσα , ‖e′γ‖∞ ≤ B +Bσα , ‖e′′γ‖∞ ≤ B′ +Bσ′α ,

‖v0‖∞ ≤ 2 ·B +Bσβ , ‖e′0‖∞ ≤ 2 ·B +Bσβ , ‖e′′0‖∞ ≤ 2 ·B′ +Bσ′β
.

5. Then, using that δ = RGSW.Decrypt(SSKRGSW,Cδ), verify the following equa-
tions:

δ · c + cα = Com.Commit(ck, γ; rγ),

(γ − δ) · c + cβ = Com.Commit(ck, 0; r0).

6. If all the veri�cation are true then return True otherwise return False.

Theorem 5.10. DVNIZK = (Setup,Prove,Verify) is a Designated-Veri�er Non-Interactive
Zero-Knowledge argument which ensures culpable soundness with respect to the guilt language
Rguilt = {((c, ck), dk)|KeyVerify(ck, dk) = True∧µ 6∈ {0, 1}where µ = Decrypt(ck, dk, c)}.

5.4. Application to Voting Schemes
In this section, we show how to use our DVNIZK scheme to build a voting scheme. We
�rst recall the de�nition and the security properties of a voting scheme, then we give our
construction of a voting scheme using our DVNIZK argument.

• Our voting scheme (Section 5.4.2) is the �rst construction of a lattice-based voting
scheme in the standard model. We follow directly the techniques described in [CG15]
to build this scheme. However, we request a stronger model for the voting scheme
as the decryption party can not provide a proof of the tally process. Thus, in this
construction, we need to suppose that the decryption party is honest.

• Note that we also propose a second construction in the full version of the paper, where
we combine our DVNIZK with an amortized zero-knowledge proof system [CDXY17;
PL17] which allows us to run e�ciently many proofs in parallel in the random oracle
model. This gives us a new lattice-based voting scheme, di�erent from the one
described in [PLNS17], as our main building block is in the standard model.

5.4.1. De�nitions
We start with the formal de�nition of a voting scheme and its security properties.

De�nition 5.4 (Voting Scheme[CG15]). A voting scheme Π consists of �ve PPT algorithms
Π = (Setup,Vote, SubmitBallot,CheckBoard, Tally) such that:

Setup(1λ)→ (VSK,VPK,VVK,BB): The setup algorithm takes the security parameter 1λ,
then it produces a secret key VSK, a public key VPK and a veri�cation key VVK, it also
initializes a bulletin board BB.
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ExpCorrectnessπ,A (λ): OHonestVoter(µ ∈ {0, 1}):
(VSK,VPK,VVK,BB)← Setup(1λ) B← Vote(VPK, µ)
(sum, nbmalicious)← (0, 0) SubmitBallot(VPK,B,BB)
AOHonestV oter(·),OMaliciousV oter(·)(VPK) sum← sum+ µ
BB← CheckBoard(VPK,VVK,BB) Return B
result← Tally(BB,VSK) OMaliciousVoter(B):
Outputs (result, sum, nbmalicious) SubmitBallot(VPK,B,BB)

nbmalicious ← nbmalicious + 1

Figure 5.3. – Correctness experiment of the voting scheme

Vote(VPK, µ ∈ {0, 1})→ B: The vote algorithm takes the public key VPK, a message µ ∈
{0, 1} and outputs a ballot encoding the message µ.

SubmitBallot(VPK,B,BB): The ballot submitting algorithm takes a public key VPK, a
ballot B and a bulletin board BB, it updates the bulletin board with submitted ballot B.

CheckBoard(VPK,VVK,BB): The bulletin board checking algorithm CheckBoard takes
the public key VPK, the veri�cation key VVK and the bulletin board BB, it removes all
ballots which can not pass the veri�cation from the bulletin board, then it makes the
bulletin board visible.

Tally(BB,VSK)→ result: The tally algorithm takes the bulletin board BB and the secret
key VSK, then it reveals the voting result.

We also request the voting scheme to verify the correctness and the ballot privacy
property.

The scheme is correct if every vote submitted by an honest voter is counted correctly and
if a malicious voter can not in�uence the voting result more than behave as an honest one.
De�nition 5.5 (Correctness). We de�ne an experiment as in Figure 5.3. A voting scheme is
correct if, and only if, for all PPT adversary, the following probability is negligible

Pr[(result, sum, nbmalicious)← ExpCorrectnessπ,A (λ) :

result ≤ sum OR result ≥ sum+ nbmalicious].

The ballot privacy [CG15, De�nition 10] property ensures that even if the veri�cation key
of the voting scheme becomes public at the same time as the result of the vote, the voters
can not get any other information about the messages included in the ballot submitted by
other voters.

5.4.2. Our Voting Scheme
We build our voting scheme using a DVNIZK = (Setup,Prove,Verify) as described in
Section 5.3.2 and the related BV encryption/commitment scheme Com = (Com.Setup,
Com.Commit, Com.Decrypt) as described in Section 5.2.4.
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Setup(1λ): The decryption party PDec uses Com.Setup to produce the public key PKCom

and the secret key SKCom. The veri�cation partyPVerify usesDVNIZK.Setup to produce
the public parameter PPDVNIZK and the secret veri�cation key VKDVNIZK. The setup
algorithm initializes a bulletin board BB which is hidden and it outputs: VSK =
SKCom,VPK = (PKCom,PPDVNIZK), VVK = VKDVNIZK.

Vote(VPK, µ ∈ {0, 1}): Given the public key VPK = (PKCom,PPDVNIZK), the voter uses
PKCom to compute an encryption c of his vote µ using a random r. He computes also a
DVNIZK proof π that c is a well formed commitment of µ ∈ {0, 1} with randomness
r. The voter outputs B = (c, π).

SubmitBallot(VPK,B,BB): This algorithm submits the ballot to the bulletin board.

CheckBoard(VPK,VVK,BB): The veri�cation party PVerif uses the veri�cation key VVK
to check that all the ballots are commitments of 0 or 1. After the tally algorithm
�nished, we also output VVK to allow everyone to check the bulletin board BB.

Tally(BB,VSK): The decryption party PDec, using the decryption key VSK, computes the
result of the vote result =

∑
B=(cB ,πB)∈BB Decrypt(SKCom, cB). It outputs result of

the vote.

Theorem 5.11. Our voting scheme Π constructed as above is correct, if the DVNIZK argument
is culpable sound.

Proof. We construct an adversary B against the culpable soundness of the underlying
DVNIZK with the adversary A against the correctness experiment of the voting scheme.
B simulates the correctness experiment for A with the PPDVNIZK given by the security

game of the culpable soundness instead of generate his own PPDVNIZK and VKDVNIZK. The
fact that result ≤ sum OR result ≥ sum + nbmalicious implies that at least one of the
ballot submitted for OMaliciousV oter is either a not well formed commitment, either a well
formed commitment of µ 6∈ {0, 1}. B uniformly chooses a ballot submitted to the oracle
OMaliciousV oter and submit it together with the decryption key SKBV as the witness of the
culpable language wguilt. Since the number of requests for the oracle OMaliciousV oter is
polynomial, the advantage of B against the culpable soundness is non-negligible.

Theorem 5.12. Our voting scheme Π constructed as above veri�es the ballot privacy property.

Theorem 5.12 is based on the zero-knowledge property of the underlying DVNIZK and
the IND-CPA security of the underlying BV encryption scheme. As we follow the framework
of [CG15], the proof is the same as in [CG15, Theorem 5].
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Conclusion 6
T

his thesis presents several e�ciency improvement of existing scheme, as well as
some new primitives.

6.1. Summary of our contributions

In this thesis, we focused on improving the e�ciency of existing cryptosystems, as well as
providing new functionalities based on various assumptions.

In the �rst part, we have studied two variants of lossy trapdoor functions. LTFs can
been seen as a generalization of trapdoor one-way function. More speci�cally, the trapdoor
one-way function is the starting point of the asymmetric cryptography. However the direct
construction of encryption scheme using trapdoor one-way function only satis�es the
one-wayness (the adversary cannot easily �nd the message from the ciphertext). For more
advanced indistinguishability based security, the lossy trapdoor function is a more suitable
modelization. Using its injectif mode, the receiver can decrypt the ciphertext with the
trapdoor. On the other side, in the security proof, we can use the indistinguishability type
assumptions to switch the LTF into lossy mode, in which the message is statistically hiding
from the adversary’s point of view. Therefore the lossy trapdoor functions are essential
building blocks for many cryptographic protocols. In this thesis, we studied two variants of
lossy trapdoor functions.

Firstly, We proposed the �rst lossy algebraic �lter (LAF) with linear-size tag. For the
second variant of the LTF, we also proposed di�erent e�cient constructions of R-LTF
using di�erent assumptions as the Decision Composite Residuosity assumption (DCR), the
Decision Di�e-Hellman assumption (DDH), or the semi-smooth RSA subgroup assumption
(ss-RSA). The newR-LTFs can be used to construct more e�cient deterministic encryption
scheme.

In the second part, we have focused on the zero-knowledge proof systems and their
application. Despite importance of zero-knowledge proof in constructing many crypto-
graphic protocols including e-cash, e-voting, CCA (Chosen Ciphertext Attack) encryption
schemes, most the constructions of zero-knowledge proof su�ered from the using of the
random oracle model. The disadvantages is two-fold, on the one hand the random oracle
model is plausible. On the other hand, many construction using the random oracle model
lacks tight security proof (typically the constructions involving Fiat-Shamir transforma-
tion). For these proposes, we studied the zero-knowledge proof in two ways. We try to
make some construction tightly secure and try to build zero-knowledge proof systems
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without random oracle. By combining the Groth-Kholweiss Σ-protocol and the dual mode
encryption scheme, we achieve the �rst tightly secure ring-signature scheme. On the
other side, we are also interested in the construction of non-interactive zero-knowledge
argument system, we proposed a construction of a weaker version: designated-veri�er
zero-knowledge argument in the standard model and as an application we use our DVNIZK
to construct a post-quantum voting scheme in the standard model.

6.2. Open Problems
�estion 1 Can we build lattice-based KDM-CCA encryption scheme?

In this thesis, we give an e�cient construction of lossy algebraic �lter (LAF) which
allows us to construct an e�cient KDM-CCA encryption scheme based on DDH assumption.
However, even if our construction of LAF can be easily constructed based on lattices, the
framework of the KDM-CCA proposed by [Hof13] is not generic, it can not be constructed
using lattice assumptions.

�estion 2 Can we construct DVNIZK in the standard model without size of witness loss?
In this thesis, we give a construction of a lattice-based DVNIZK in the standard model.

However, there is always a gap between the size of the witness and what the veri�er is
convinced of. Concretely, in lattice related problems, we need to prove the knowledge of a
small vector x. In the state-of-the-art of lattice based non-interactive proof system in the
standard model, we can only convince the veri�er that we know a small vector y such that
y is strictly larger than x. By using the lattice interactive proofs like Stern’s protocol, we
can prove the statement, but to prove the statement with an e�cient non-interactive proof
system without random oracle remains as an open problem.

�estion 3 Can we construct a tightly secure logarithmic-size ring signature in the
standard model?

In this thesis, we give a construction of a tightly secure logarithmic-size ring signature.
Despite the fact that, we bypass the security loss in the Fiat-Shamir transformation used
in previous works, we still need a random oracle to construct the primitive. The tightly
secure construction of a such primitive in the standard model remains as an open problem.

�estion 4 Can we an e�cient e-voting scheme in the standard model that pro�t from
the homomorphism of the lattice-based encryption scheme?

Through this thesis, we give an post-quantic e-voting scheme. However, due to the fact
that we can not prove the
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