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Sécurité prouvable et hypothèses cryptographiques

Une approche commune pour fournir une preuve de sécurité consiste à montrer que si un attaquant peut attaquer la construction, alors il peut résoudre certains problèmes durs en mathématiques et bien étudiés, tels que le problème RSA dû à Rivest, Shamir and Adleman [START_REF] Rivest | A Method for Obtaining Digital Signatures and Public-Key Cryptosystems[END_REF], Decisional Di e-Hellman (DDH) [START_REF] Hellman | New directions in cryptography[END_REF], Decisional Composite Residuosity (DCR) [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF] ou Learning With Errors (LWE) [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Certaines de ces hypothèses nous amènent à des primitives cryptographiques très e caces qui fonctionnent même sur les plates-formes avec des ressources minimales telles que la carte de crédit ou le passeport électronique. Depuis quelques années, il y a eu d'une part la percée algorithmique quantique de Shor [START_REF] Shor | Algorithms for Quantum Computation: Discrete Logarithms and Factoring[END_REF] qui peut résoudre le problème du logarithme discret avec ordinateur quantique. D'autre part, il y a eu un développement rapide récent d'ordinateurs quantiques, y compris le système D-Wave (annoncé en 2011), IBM Q (annoncé par IBM en 2017) et beaucoup d'autres réalisations de l'ordinateur quantique. Ainsi, beaucoup de problèmes présumés durs (y compris RSA, DCR, DDH . . . ) deviennent faciles avec l'ordinateur quantique et seuls quelques problèmes restent di ciles (par exemple LWE) dans le monde post-quantique. Cependant, en utilisant ces hypothèses post-quantiques, les constructions sont souvent moins e caces et ne sont pas tout à fait utilisable dans la pratique pour le moment. Ainsi, les recherches sur l'amélioration de l'e cacité des primitives cryptographiques classiques et des primitives post-quantiques sont très importante. DDH, RSA DCR. Les hypothèses cryptographiques classiques telles que DDH, RSA et DCR impliquent que les problèmes correspondants sont durs en mathématiques et bien étudiés. Depuis leur introduction, elles sont devenues des hypothèses essentielles dans les constructions cryptographiques.

DDH -Etant donné un groupe cyclique G d'ordre premier p, il est calculatoirement di cile de distinguer les distributions g, g a , g b , g ab et g, g a , g b , g c , où g est un élément dans G et a, b, c sont des nombres aléatoires dans Z p .

RSA -Etant donné deux grands nombres premiers p, q, soit N = pq, et un entier e tel que 2 < e < N , tel que e co-premier avec φ(N ), et C un entier tel que 0 ≤ C < N , il est calculatoirement di cile de calculer M tel que C = M e mod N .

DCR -Etant donné un nombre composé n, il est calculatoirement di cile de décider si z est un nombre aléatoire ou un n-résidu modulo n 2 (i.e. déterminer s'il existe un y tel que z = y n mod n 2 ).

Le principal avantage de l'utilisation de ces trois hypothèses est leur e cacité. Par conséquent, dans cette thèse, nous donnons des constructions plus e caces basées sur ces trois hypothèses de schémas cryptographiques existants comme les signatures d'anneau et les chi rements KDM-CCA (Key-Dependent-Message Chosen-Ciphertext-Attack). LWE. Dans cette thèse, nous étudions également les hypothèses post-quantiques. Au cours de la dernière décennie, avec l'investissement nancier pour construire l'ordinateur quantique, il semble nécessaire de construire de nouvelles primitives cryptographiques Contributions : Les primitives Lossy Trapdoor ix dans le monde post-quantique. Les hypothèses liées aux réseaux Euclidiens semblent être les plus prometteuses et fournir le plus de fonctionnalités pour le moment.

Formellement, un réseau Euclidien est un sous-groupe discret de R n . Apprendre-avecerreur (Learning-With-Errors ou LWE) est un problème di cile dans les réseaux Euclidiens que nous avons utilisé dans les constructions cryptographiques basées sur les réseaux. Etant donné d'un nombre premier q, deux entiers m, n ∈ N et une matrice A ∈ Z n×m q , le problème LWE indique qu'il est calculatoirement di cile de décider si un vecteur b ∈ Z n est de la forme de A • s + e mod q , où s et e sont deux vecteurs de Z m q tirés selon une distribution Gaussienne discrète. Du point de vue du réseau Euclidien, nous pouvons voir l'hypothèse LWE comme il est di cile de déterminer si un point est assez proche d'un point du réseau à condition que l'écart-type de la Gaussienne soit petit devant le plus petit écart de points du réseau.

S

. Lorsque nous parlons de l'e cacité des primitives cryptographiques, nous parlons généralement du nombre d'éléments dans la structure algébrique sous-jacente (par exemple groupe G dans l'hypothèse DDH ou Z q dans l'hypothèse LWE). Cependant, la taille de la structure sous-jacente est également essentielle. Habituellement, les preuves de sécurité transforment l'adversaire en un attaquant contre un problème di cile spéci que dans la structure algébrique sous-jacente avec certains facteurs. Ainsi, un facteur de réduction plus petit nous conduit à des éléments plus petits, donc des primitives cryptographiques plus e caces. Si ce facteur devient constant, nous appelons une telle primitive étroitement sécurisée.

P

. Depuis plus de 20 ans, la cryptographie ne se contente pas seulement de chi rer et déchi rer. De plus en plus de fonctionnalités qui ont été créées, des chi rements aux signatures en passant par les preuves de connaissance à divulgation nulle de connaissance, et les chi rements entièrement homomorphes. Certains protocoles sont exclusifs ou plus e caces sous di érentes hypothèses. Savoir si certains schémas sont possible à construire restent encore un problème ouvert. Pour construire un protocole cryptographique fonctionnel complexe, la manière able est de les construire en combinant des primitives plus petites prouvées. Ainsi, la compacité des blocs de construction a un impact énorme sur l'e cacité de l'ensemble du protocole. Dans cette thèse, nous nous intéressons à la fois à la construction de nouvelles fonctionnalités et à l'amélioration de l'e cacité des systèmes existants.

Contributions : Les primitives Lossy Trapdoor

Lossy Trapdoor Function (LTF) est une notion relativement nouvelle introduite par Peikert et Waters [START_REF] Peikert | Lossy trapdoor functions and their applications[END_REF], qui généralise l'idée de trappes à sens unique. Depuis lors, cette notion a été trouvée utile pour la construction de primitives cryptographiques plus complexes. Une Lossy Trapdoor Function est composée de deux fonctions, une injective et une autre à perte. La propriété de sécurité d'une telle primitive est que pour tout adversaire calculatoirement borné, la fonction injective est indistinguable de la fonction lossy. Cette stratégie capture les besoins de nombreuses constructions cryptographiques. Par exemple, pour les systèmes x Résumé en Français de chi rement, l'utilisateur peut déchi rer le texte chi ré en utilisant le mode injectif et la clé d'inversion, mais dans la preuve de sécurité, nous pouvons passer en mode lossy, qui ne peut pas être remarqué par l'adversaire. En n, le mode lossy cache statistiquement le message de l'adversaire.

Nous dé nissons maintenant une notion dérivée de la LTF et décrivons les contributions.

Filtre algébrique à perte (LAF)

Le ltre algébrique à perte (LAF) est une variante de la LTF. Au lieu d'avoir seulement deux fonctions, le LAF est une famille de fonctions qui sont soit lossy, soit injectives. Chaque fonction est associée à une étiquette, qui détermine s'il s'agit d'une fonction lossy ou d'une fonction injective. Dans l'espace des étiquettes, il n'y a qu'un petit nombre d'étiquettes lossy, et toutes les autres sont injectives. Un LAF est associé à un espace d'étiquettes T = T a ∪ T c qui est séparé en deux ensembles T a étiquettes auxiliaires et T c étiquettes de base. LAF doit aussi véri e les propriétés suivantes :

• En mode injective, la fonction n'est pas nécessairement invertible, mais elle doit être injective.

• L'information divulguée par le mode lossy est pré xée par la clé d'évaluation et le message. A savoir, même lorsque la sortie de la fonction lossy est indépendante de l'étiquette t.

Dans cette thèse, nous donnons une construction plus e cace de ltre algébrique à perte, la taille de l'étiquette de notre construction est réduite de Θ(n 2 ) à O(n) éléments de groupe où l'espace d'entrée est Z n p . En tant qu'applications, en utilisant notre nouveau LAF, nous pouvons améliorer la construction des systèmes de chi rement sécurisé KDM-CCA de Hofheinz [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] et les extracteurs ous proposés par Wen et Liu [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF]. Ce travail a été accepté à PKC2019 et est présenté dans le chapitre 3.

Contributions : Systèmes de preuve à divulgation nulle de connaissance et applications

La deuxième partie de cette thèse vise à développer de nouvelles primitives cryptographiques et à améliorer l'e cacité des protocoles existants avec des systèmes de preuve à divulgation nulle de connaissance. La preuve à divulgation nulle de connaissance est une très puissante primitive cryptographique. Elle permet au prouveur de convaincre le véri eur sur une déclaration sans divulguer d'informations sur le témoin. Formellement, la preuve à divulgation nulle de connaissance exige l'exhaustivité, la signi cativité et les propriétés de divulgation nulle de connaissance. Over the last twenty years, with the quick developments of connected objects and wide deployment of the internet, a huge amount of information is transferred through the internet, including commercial secrets and private data. Therefore, the communication security concerns not only the military area but also the commercial activities and our daily life.

Liste

The cryptology is the science studying the security of communications. By de nition given in the Handbook of Applied Cryptography [MOV96, Page 15], the cryptology is the study of cryptography and cryptanalysis. The di erence between these two directions is that the cryptography is the study of mathematical tools related to the con dentiality, authenticity, and integrity of the communications. The cryptanalysis, on the other hand, aims at attacking the above properties and nding security vulnerabilities before the real adversaries.

On the functionality side, from the last decade, the internet speed has been dramatically improved and very recently the 5G (the fth generation cellular network technology) brings the download speed up to 10 gigabits per second in theory. Cloud computing and cloud storage became very popular in our life. The idea is to upload our data into a cloud server, and later we can retrieve the data when we want. We can also perform complex computations with these data on the cloud without needing to download all of them. Using this approach, we are no longer limited by local storage space and computation resources. However, this new fashion of life gives us many challenges to protect our privacy. For example, performing operations over the private data, even the simplest search queries, seems to be contradicting with the con dentiality of the data. Using the searchable encryption scheme, we can achieve the goal. Moreover, Gentry has given the rst construction of a fully homomorphic encryption scheme in 2009 [START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF], which allows to perform any operation on the cloud with a minimum amount of information leakage.

Nowadays, we can achieve more and more complex functionalities such as ring signatures and voting schemes and new cryptosystem designs become more and more complex. Therefore it is even harder to protect the system against all kinds of attacks. To solve this issue, cryptographers introduced the security proof, which try to model every possible type of adversary (for example, IND-CPA (Indistinguishability Chosen-Plaintext Attack) or IND-CCA (Indistinguishability Chosen-Ciphertext Attack) adversary for encryption schemes), then formally prove that these attackers cannot break the security properties of the system.
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Provable security and cryptographic assumptions

A common approach in proving the security is to reduce the adversary against the primitive into a solver of some classical well-studied hard mathematical problems such as the RSA problem proposed by Rivest, Shamir and Adleman (RSA) [START_REF] Rivest | A Method for Obtaining Digital Signatures and Public-Key Cryptosystems[END_REF], Decisional Di e-Hellman (DDH) [START_REF] Hellman | New directions in cryptography[END_REF], Decisional Composite Residuosity (DCR) [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF], and Learning With Errors (LWE) [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Some of these assumptions lead us to very e cient cryptographic primitives that work even on platforms with minimal resources such as credit card or e-passport. With the quantum algorithmic breakthrough by Shor [START_REF] Shor | Algorithms for Quantum Computation: Discrete Logarithms and Factoring[END_REF], and the recent quick development of quantum computers including D-Wave system (annonced in 2011), IBM Q (annonced by IBM in 2017) and many more other realisations of quantum computer, many of these assumed hard problems (including RSA, DCR, DDH . . . ) are becoming easy for quantum computers and only a few problems remain hard (for example LWE) in the post-quantum world. However, using those post-quantum assumptions, we can only achieve less e cient cryptographic primitives which are not entirely practical for the moment. Thus, the research both on improving the e ciency of classical cryptographic primitives and post-quantum ones are very attracting.

DDH, RSA DCR. The classical cryptographic assumptions such as DDH, RSA, and DCR correspond to well-studied hard mathematical problems. Since their introduction, they become essential assumptions to construct cryptographic primitives.

DDH -Given a cyclic group G of prime order p, it is computationally hard to distinguish the distributions of g, g a , g b , g ab and of g, g a , g b , g c , where g ∈ G and a, b, c are random elements in Z p .

RSA -Given two large primes p, q, let N = pq, and e an integer that 2 < e < N , that e be coprime with φ(N ), and C an integer that 0 ≤ C < N , it is computationally hard to compute M such that C = M e mod N .

DCR -Given a composite number n, it is computationally hard to decide whether z is a random number modulo n 2 or a n-residue modulo n 2 (i.e. whether there exists a y such that z = y n mod n 2 ).

The main advantage of using these three assumptions is their e ciency. Therefore, in this thesis, we give more e cient constructions based on these three assumptions of existing cryptographic primitives such as selective opening CCA secure encryption schemes, ring signatures, KDM-CCA secure encryptions, and deterministic encryptions. LWE. In this thesis, we also use post-quantum assumptions to construct cryptosystems. During the last decade, with the nancial investment of quantum computer, it seems necessary to build new cryptographic primitives in the post-quantum world. The assumptions based on lattice problems seem to be the most promising in term of security and e ciency and provide the most functionalities for the moment.

Formally, a lattice is a discrete subgroup of R n . Learning-With-Error is a hard problem over lattices we used to construct lattice-based cryptography. The LWE problem states that it is computationally hard to decide whether a vector b equals to A • s + e or a complete random vector, where A is a random matrix and both s and e are two vectors of Z q drew from a discrete Gaussian distribution. From a lattice point of view, we can see the LWE assumption as it is hard to determine if a point is close enough to a lattice point.

T

. When we talk about the e ciency of the cryptographic primitives, we are usually considering about the number of elements in the underlying algebraic structure used in the primitive. However, the size of the underlying structure (for example, G in case of DDH or Z q in case of LWE) is also essential. Since the security proofs transform the adversary into an attacker against a speci c hard problem in the underlying algebraic structure upon some factors, smaller reduction factor leads to smaller elements and therefore more e cient cryptographic primitives. If this factor becomes constant, we call such a primitive tightly secure.

T

. During the last 20 years, the cryptography deals with more and more features beyond encryptions such as: signatures to zero-knowledge proofs, fully homomorphic encryptions. Some of these protocols are only constructed in some assumptions or more e cient in certain ones. There are still some possibility results remaining as open problems.

To construct a complex functional cryptographic protocol, the reliable way is to construct them by combining the smaller proven secure primitives. Thus, the compactness of building blocks has a huge impact on the e ciency of the entire protocol. In this thesis, we are interested in providing new functionalities and improving the e ciency of existing schemes.

My contributions: Lossy trapdoor primitives

A lossy trapdoor function (LTF) is a relatively new notion introduced by Peikert and Waters [START_REF] Peikert | Lossy trapdoor functions and their applications[END_REF]. It generalizes the idea of trapdoor one-way functions. Since then, it has been found useful for building more complex cryptographic primitives. A lossy trapdoor function is composed of two functions, an injective one and a lossy one. The security property of such a primitive is that for any computational adversary, the injective function is indistinguishable from the lossy one. This strategy captures the need in many cryptographic proofs. For example, for encryption schemes, the user can decrypt the ciphertext using the injective mode and the inversion key, but in the security proof, we can switch into the lossy mode, which can not be noticed by the adversary. Besides, the lossy mode statistically hides the message from the adversary.

We now de ne a notion derived from LTF and describe our contributions.

Lossy Algebraic Filter (LAF)

A Lossy Algebraic Filter (LAF) is a variant of a LTF. Instead of having only two functions, a lossy algebraic lter is a family of functions that are either lossy or injective. Each LAF is associated with a tag, which determines whether it is a lossy function or an injective function. In the tag space, there are only a few numbers of lossy tags, and all other functions are injective ones. A LAF is also associated with a tag space T = T a ∪ T c which is split into two sets T a auxiliary tags and T c core tags. The LAF veri es the following properties:
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• In the injective mode, the function is not necessarily invertible but still injective.

• The information leaked through the lossy mode is pre xed by the evaluation key. Namely, even when the output of the lossy function is independent of the tag t.

In this thesis, we give a more e cient construction of lossy algebraic lter, the tag size of our construction is reduced from Θ(n 2 ) down to O(n) group elements where the input space is Z n p . As applications, by using our new LAF, we can improve the construction of Hofheinz's KDM-CCA secure encryption schemes [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] and fuzzy extractors proposed by Wen and Liu [WL18].This work was published in PKC2019 and presented in the chapter 3.

Contributions: zero-knowledge proof systems and its applications

The second part of this thesis aims at developing new cryptographic primitives and improving the e ciency of existing protocols with zero-knowledge proof systems. Zero-knowledge proofs are very powerful cryptographic primitives. It allows the prover to convince the veri er on a statement without leaking information about the witness. Formally, the ZK proofs require completeness, soundness and zero-knowledge properties.

Logarithmic-size tightly-secure ring signatures

Ring Signatures are rstly introduced by Rivest, Shamir and Tauman [START_REF] Rivest | How to Leak a Secret[END_REF]. It allows the signer to sign a message anonymously while convincing others that he belongs to a certain ring of users. Unlike Group Signatures, Ring Signatures do not have the registration phase or tracing authority. Despite 15 years of research, most of the constructions have linear-size signature, but two recent signatures give logarithmic size ring signature [GK15; LLNW16], they both use the Fiat-Shamir transformation, therefore, they both su er from the security loss.

In this thesis, we bypass this limitation by providing a logarithmic-size tightly secure ring signature in the random oracle model. We combine the Groth-Kohlweiss Σ-protocol [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] with the dual mode encryption schemes. This work was accepted in ESORICS 2018 and presented in the chapter 4.

Designated-Veri er Zero-Knowledge proof and voting scheme

Designated-Veri er Non-Interactive Zero-Knowledge argument system (DVNIZK) is a variant of a zero-knowledge proof system. In this setting, the veri er can only verify the proof by using a secret veri cation key. Such setting seems already useful in many applications, to construct CCA-secure encryption scheme or voting scheme. In 2006, Damgård, Fazio and Nicolosi proposed a construction of DVNIZK in the standard model 1.4. Publication List 7 using the homomorphic encryptions. In 2015, Chaidos and Groth have proposed an e cient construction [CG15] using Okamoto-Uchiyama encryption scheme.

In this thesis, we push this approach a little further by providing a lattice-based construction of DVNIZK in the standard model. This work is in submission and is presented in the chapter 5 Firstly introduced by Peikert and Waters [START_REF] Peikert | Lossy trapdoor functions and their applications[END_REF] is a generalization trapdoor function.

Publication List

De nition 2.1 ([PW08]

). Let λ ∈ N be a security parameter and n : N → N, l : N → N be functions of λ. A collection of (n, l)-lossy trapdoor functions (LTFs) consists of PPT algorithms (InjGen, LossyGen, Eval, Invert) with the following speci cations.

Sampling an injective function. Given a security parameter λ and an input length n, the randomized algorithm InjGen(1 λ , 1 n ) outputs the index ek of an injective function of the family and an inversion key ik.

Sampling a lossy function. Given λ and the input length n, the probabilistic algorithm LossyGen(1 λ , 1 n ) outputs the index ek of a lossy function.

Evaluation. Given the index of a function ek (produced by InjGen or LossyGen) and an input X ∈ {0, 1} n , algorithm Eval outputs F ek (X) such that:

-If ek is an output of InjGen, then F ek (•) is an injective function.

-If ek was produced by LossyGen, then F ek (•) has image size 2 n-l . In this case, the value n -l is called the residual leakage.

Moreover, we require the two following properties:

Inversion Correctness. For any pair (ek, ik) ← InjGen(1 λ , 1 n ) and any input X ∈ {0, 1} n , algorithm Invert returns Invert(ik, F ek (X)) = X.
Indistinguishability. The two ensembles {ek | (ek, ik) ← InjGen(1 λ )} λ∈N and {ek | ek ← LossyGen(1 λ )} λ∈N are computationally indistinguishable.

In the construction of lossy algebraic lters in the section 3 we need the chameleon hash function.

Σ-Protocols

De nition 2.4 ( [START_REF] Cramer | Modular Design of Secure, yet Practical Cryptographic Protocols[END_REF]). Let a prover P and a veri er V, which are PPT algorithms, and a binary relation R. A protocol (P, V) is a Σ-protocol w.r.t. R, the challenge set C, the public input u and the private input w, if it satis es the following:

• 3-move form: The protocol is of the following form:

-P compute commitments {c i } j i=0
, where j ∈ N, and sends {c i } j i=0 to V. -The veri er V generates a random challenge x R ← C and sends c to P.

-The prover P sends a response s to V.

-On input of a transcript ({c i } j i=0 , x, s), V outputs 1 or 0.

• Completeness: If (u, w) ∈ R and the prover P honestly generates the transcript

({c i } j i=0 , x, s)
for a random challenge x R ← C sent by V, there is a negligible function ε(λ) such that V accepts with probability 1 -ε(λ).

• 2-Special soundness: There exists a PPT knowledge extractor E that, for any public input u, on input of two accepting transcripts ({c i } j i=0 , x, s) and ({c i } j i=0 , x , s ) with x = x , outputs a witness w such that (u, w ) ∈ R.

• Special Honest Veri er Zero-Knowledge (SHVZK): There is a PPT simulator S that, given u and a random x ∈ C, outputs a simulated transcript ({c i } j i=0 , x, s ) which is computationally indistinguishable from a real one.

Zero-knowledge proof systems

De nition 2.5 (Non-Interactive Zero-Knowledge proof). A non-interactive zero-knowledge proof system for a binary relation R = {(x, w) | X × W} is a pair of probabilistic polynomial time (PPT) algorithms (P, V ) such that P takes as input x and w, outputs a proof π, V takes as input x and π. outputs a bit b.

Completeness. For all (x, w) ∈ R, we have Pr[V (x, P (x, w)) = 1] > 1 -negl(|x|).

Soundness. For all x ∈ X and w ∈ W, for any PPT adversary A,

Pr[V (x, mathcalA(x)) = 1] < negl(|x|).
Zero-Knowledge. There exits a PPT simulator S such that the probability distribution {x, P (x, w)} (x,w∈R) and {x, S(x)} (x,w∈R) are computationally indistinguishable.

In this thesis, we constructed a zero-knowledge argument system. The di erence between a ZK proof system and a ZK argument system is that in argument system, the soundness is computational while in proof system the soundness is statistical.

Assumptions

In this section, we give di erent assumptions we will use during this thesis.

DDH assumptions and its variant.

The Decisional Di e-Hellman (DDH) assumption has been proposed by Di e and Hellman [START_REF] Hellman | New directions in cryptography[END_REF], and states that De nition 2.6. In a cyclic group G of prime order q, the Decision Di e-Hellman (DDH) problem is to distinguish the distributions

D 0 = {(g, g a , g b , g ab ) | g R ← G, a, b R ← Z q } and D 1 = {(g, g a , g b , g c ) | g R ← G, a, b, c R ← Z q }.

P

In the construction of lossy algebraic lters in chapter 3, we need to use the pairing as a building block. A pairing is a bilinear function e(•, •) that maps two groups G, Ĝ to a nite subgroup G T of a nite eld that must verify the following two properties:

• For all P ∈ G, Q ∈ Ĝ and a, b ∈ Z, we have e(P a , Q b ) = e(P, Q) ab . • For all P ∈ G, Q ∈ Ĝ, if e(P, Q) = 1 then either P = 1 or Q = 1.
In the presence of pairing, we need the following variant of DDH.

De nition 2.7. Let (G, Ĝ, G T ) be bilinear groups of order p. The First Decision 3-Party Di e-Hellman (D3DH1) assumption holds in (G, Ĝ, G T ) if no PPT distinguisher can distinguish the distribution

D 1 := {(g, ĝ, g a , g b , g c , ĝa , ĝb , ĝc , g abc ) | g R ← G, ĝ R ← Ĝ, a, b, c R ← Z p } D 0 := {(g, ĝ, g a , g b , g c , ĝa , ĝb , ĝc , g z ) | g R ← G, ĝ R ← Ĝ, a, b, c, z R ← Z p }.
The D3DH1 assumption has a natural analogue where the pseudorandom value lives in Ĝ instead of G.

De nition 2.8. The Second Decision 3-Party Di e-Hellman (D3DH2) assumption holds in (G, Ĝ, G T ) if no PPT algorithm can distinguish between the distribution

D 1 := {(g, ĝ, g a , g b , g c , ĝa , ĝb , ĝc , ĝabc ) | g R ← G, ĝ R ← Ĝ, a, b, c R ← Z p } D 0 := {(g, ĝ, g a , g b , g c , ĝa , ĝb , ĝc , ĝz ) | g R ← G, ĝ R ← Ĝ, a, b, c, z R ← Z p }.
We also need a computational assumption which is implied by D3DH2. The 2-3-CDH was initially introduced [START_REF] Kunz | About the Security of MTI/C0 and MQV[END_REF] in ordinary (i.e., non-pairing-friendly) discrete-logarithm hard groups. Here, we extend it to asymmetric bilinear groups.

De nition 2.9 ([KP06]

). Let (G, Ĝ) be a bilinear groups of order p with generators g ∈ G and ĝ ∈ Ĝ. The 2-out-of-3 Computational Di e-Hellman (2-3-CDH) assumption says that, given (g, g a , ĝa , g b , ĝb ) for randomly chosen a, b R ← Z p , no PPT algorithm can nd a pair (g r , g r•ab ) such that r = 0.

It is known (see, e.g., [START_REF] Libert | Multi-use unidirectional proxy re-signatures[END_REF]) that any algorithm for solving the 2-3-CDH problem can be used to break the D3DH2 assumption. On input of (g, ĝ, g a , g b , g c , ĝa , ĝb , ĝc , ĝz ), where z = abc or z ∈ R Z p , the reduction can simply run a 2-3-CDH solver on input of (g, g a , g b , ĝa , ĝb ). If the solver outputs a non-trivial pair of the form (R 1 , R 2 ) = (g r , g r•ab ), the D3DH2 distinguisher decides that z = abc if and only if e(R 1 , ĝz ) = e(R 2 , ĝc ).

In the construction of lossy algebraic function in chapter 3, we actually rely on a weaker variant of D3HD1, called wD3HD1, where ĝa is not given. In our tightly secure construction (which requires asymmetric pairings), we need to rely on the following variant of wD3HD1.

De nition 2.10. Let (G, Ĝ, G T ) be bilinear groups of order p. The Randomized weak Decision 3-Party Di e-Hellman (R-wD3DH1) assumption holds in (G, Ĝ, G T ) if no PPT distinguisher can distinguish the distribution

D 1 := {(g, ĝ, g a i , g b , g c , ĝb , ĝc , g a i bc )} Q i=1 | g R ← G, ĝ R ← Ĝ, a 1 , . . . , a Q , b, c R ← Z p } D 0 := {(g, ĝ, g a i , g b , g c , ĝb , ĝc , g z i )} Q i=1 | g R ← G, ĝ R ← Ĝ, a 1 , . . . , a Q , z 1 , . . . , z Q , b, c R ← Z p } .
We do not know if D3DH1 or wD3DH1 can be tightly reduced to R-wD3DH1 (the only reduction we are aware of proceeds via a hybrid argument). In asymmetric pairings, however, we can give a tight reduction between R-wD3DH1 and a combination of wD3DH1 and SXDH.

Lemma 2.1. There is a tight reduction from the wD3DH1 assumption and the DDH assumption in G to the R-wD3DH1 assumption. More precisely, for any R-wD3DH1 adversary B, there exist distinguishers B 1 and B 2 that run in about the same time as B and such that

Adv R-wD3DH1 B (λ) ≤ Adv wD3DH1 B 1 (λ) + Adv DDH 1 B 2 (λ),
where the second term denotes B 2 's advantage as a DDH distinguisher in G.

Proof. To prove the result, we consider the following distribution:

D int := {(g, ĝ, g a•α i , g b , g c , ĝb , ĝc , g z•α i )} Q i=1 | g R ← G, ĝ R ← Ĝ, α 1 , . . . , α Q , b, c, z R ← Z p , a R ← Z p }
A straightforward reduction shows that, under the wD3DH1 assumption, D 1 is computationally indistinguishable from D int . We show that, under the DDH assumption in G, D int Chapter 2. Primitives and Assumptions is computationally indistinguishable from D 0 . Moreover, the reduction is tight in that the two distinguishers have the same advantage. First, we show that, under the wD3DH1 assumption, D int is computationally indistinguishable from D 1 .

We can build a wD3DH1 distinguisher B 1 from any distinguisher for D 1 and D int . With (g, ĝ, g a , g b , g c , ĝb , ĝc , T ) as input where

g R ← G, ĝ R ← Ĝ and a, b, c R ← Z p , B 1 uniformly draws α i , . . . , α Q R ← Z p and computes D B 1 := {(g, ĝ, g a•α i , g b , g c , ĝb , ĝc , T α i )} Q i=1 | α 1 , . . . , α Q R ← Z p .
It is easy to see that if T = g abc , then

D B 1 is identical to D 1 . If T ∈ R G, then D B 1 is distributed as D int .
Hence, any distinguisher between D 1 and D int with D B 1 implies a distinguisher B 1 for the wD3DH1 problem.

Next, we show that, under the DDH assumption in G, D int is computationally indistinguishable from D 0 . In order to build a DDH distinguisher B 2 out of a distinguisher between D int and D 0 , we use the random self-reducibility of the DDH assumption.

Lemma 2.2 (Random Self-Reducibility [START_REF] Naor | Number-theoretic Constructions of E cient Pseudo-random Functions[END_REF]). Letting G be a group of prime order p, there exists a PPT algorithm R that takes as input (g, g a , g b , g c ) ∈ G 4 , for any a, b, c ∈ Z p , and returns a triple (g a , g b , g c ) ∈ G 3 such that:

• If c = ab mod q, then b is uniformly random in Z p and c = ab .

• If c = ab mod q, then b , c ∈ R Z p are independent and uniformly random.

On input of (g, g z , g α , T ) ∈ G 4 , where g R ← G and z, α R ← Z p , B 2 uses algorithm R to generate Q instances {(g z , g α i , T i )} Q i=1 . Next, B 2 draws ĝ R ← Ĝ, a, b, c R
← Z p and de nes the following distribution:

D B 2 := {(g, ĝ, (g α i ) a , g b , g c , ĝb , ĝc , T i )} Q i=1 | ĝ R ← Ĝ, a, b, c R ← Z p .
We observe that, if T = g z•α , we have

T i = g z•α i for all i ∈ [Q]. In this case, D B 2 is identical to D int . In contrast, if T ∈ R G, the random self-reducibility ensures that T 1 , . . . , T Q ∈ R G are i.i.d, meaning that D B 2 is identical to D 0 .
Using a distinguisher between D int and D 0 and feeding it with D B 2 , we obtain a distinguisher B 2 for the DDH problem in G.

Part I.

Lossy trapdoor functions and their applications L ssy Trapdoor Functions (LTF), which is introduced by Peikert and Waters [START_REF] Peikert | Lossy trapdoor functions and their applications[END_REF], are function families in which injective functions are computationally indistinguishable from many-to-one functions. Since their introduction, they drew a lot of attention [FGK+10; HO12; Hof12; Wee12; Zha16] and have been found very useful in constructions of many more advanced cryptographic primitives, such as chosen-ciphertext (IND-CCA) secure encryption schemes [START_REF] Peikert | Lossy trapdoor functions and their applications[END_REF], as well as deterministic public-key encryption schemes [START_REF] Boldyreva | On Notions of Security for Deterministic Encryption, and E cient Constructions without Random Oracles[END_REF][START_REF] Brakerski | Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting[END_REF][START_REF] Ananth Raghunathan | Deterministic Public-Key Encryption for Adaptively Chosen Plaintext Distributions[END_REF].

In order to construct di erent cryptographic primitives, many variants of LTF have been introduced. In this part, we will study a di erent variant of lossy trapdoor functions (lossy algebraic lters) and provide more e cient constructions of this variant of LTF.

We provide a more e cient construction of LAF on DDH and corresponds to the following article published in PKC2019 by Benoît Libert, Chen Qian: Lossy Algebraic Filters with Short Tags. [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] as a tool enabling the design of chosen-ciphertext-secure encryption schemes with key-dependent message (KDM-CCA) security [START_REF] Black | Encryption-Scheme Security in the Presence of Key-Dependent Messages[END_REF]. Recently, they were also used by Wen and Liu [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF] in the construction of robustly reusable fuzzy extractors. In LAF families, each function takes as arguments an input x and a tag t, which determines if the function behaves as a lossy or an injective function. More speci cally, each tag t = (t c , t a ) is comprised of an auxiliary component t a , which may consist of any public data, and a core component t c . For any auxiliary component t a , there should exist at least one t c such that t = (t c , t a ) induces a lossy function f LAF (t, •). LAFs strengthen the requirements of lossy trapdoor functions in that, for any lossy tag t, the function f LAF (t, x) always reveals the same information about the input x, regardless of which tag is used. In particular, for a given evaluation key ek, multiple evaluations f LAF (t 1 , x), . . . , f LAF (t n , x) for distinct lossy tags do not reveal any more information about x than a single evaluation. On the other hand, LAFs depart from lossy trapdoor functions in that they need not be e ciently invertible using a trapdoor. For their applications to KDM-CCA security [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] and fuzzy extractors [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF], lossy algebraic lters are expected to satisfy two security properties. The rst one, called indistinguishability, requires that lossy tags be indistinguishable from random tags. The second one, named evasiveness, captures that lossy tags should be hard to come by without a trapdoor.

So far, the only known LAF realization is a candidate, suggested by Hofheinz [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF], which relies on the Decision Linear assumption (DLIN) [START_REF] Boneh | Short Group Signatures[END_REF] in groups with a bilinear map. While e cient and based on a standard assumption, it incurs relatively large tags comprised of a quadratic number of group elements in the number of input symbols. More precisely, for functions admitting inputs x = (x 1 , . . . , x n ) ∈ Z n p , where p is the order of a pairing-friendly G, the core components t c contain Θ(n 2 ) elements of G. For the application to KDM-CCA security [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] (where t c should be part of ciphertexts), quadratic-size tags are not prohibitively expensive as the encryption scheme of [Hof13, Section 4] can make do with a constant n (typically, n = 6). In the application to fuzzy extractors [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF], however, it is desirable to reduce the tag length. In the robustly reusable fuzzy extractor of [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF], the core tag component t c is included in the public helper string P that allows reconstructing a secret key from a noisy biometric reading w. The latter lives in a metric space that should be small enough to t in the input space Z n p of the underlying LAF family. Even if p is exponentially large in the security parameter λ, a constant n would restrict Chapter 3. Lossy Algebraic Filters With Short Tags biometric readings to have linear length in λ. Handling biometric readings of polynomial length thus incurs n = ω(1), which results in large tags and longer public helper strings. This motivates the design of new LAF candidates with smaller tags.

O R

. The contribution of this chapter is two-fold. We rst construct a new LAF with linear-size tags and prove it secure under simple, constant-size assumptions (as opposed to q-type assumptions, which are described using a linear number of elements in the number of adversarial queries) in bilinear groups. The indistinguishability and evasiveness properties of our scheme are implied by the Decision 3-party Di e-Hellman assumption (more precisely, its natural analogue in asymmetric bilinear maps), which posits the pseudorandomness of tuples (g, g a , g b , g c , g abc ), for random a, b, c ∈ R Z p . For inputs in Z n p , where p is the group order, our core tag components only consist of O(n) group elements. These shorter tags are obtained without in ating evaluation keys, which remain of length O(n) (as in [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF]).

As a second contribution, we provide a second LAF realization with O(n)-size tags where the indistinguishability and evasiveness properties are both almost tightly related to the underlying hardness assumption. Namely, our security proofs are tight -or almost tight in the terminology of Chen and Wee [START_REF] Chen | Fully, (Almost) Tightly Secure IBE and Dual System Groups[END_REF] -in that the gap between the advantages of the adversary and the reduction only depends on the security parameter, and not on the number of adversarial queries. In the LAF suggested by Hofheinz [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF], the proof of evasiveness relies on the unforgeability of Waters signatures [START_REF] Waters | E cient Identity-Based Encryption Without Random Oracles[END_REF]. As a result, the reduction loses a linear factor in the number of lossy tags obtained by the adversary. In our second construction, we obtain tight reductions by replacing Waters signatures with (a variant of) a message authentication code (MAC) due to Blazy, Kiltz and Pan [START_REF] Blazy | Hierarchical) Identity-Based Encryption from A ne Message Authentication[END_REF]. As a result, our proof of evasiveness only loses a factor O(λ) with respect to the Symmetric eXternal Di e-Hellman assumption (SXDH). If our scheme is plugged into the robustly reusable fuzzy extractor of Wen and Liu [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF], it immediately translates into a tight proof of robustness in the sense of the de nition of [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF]. While directly using our second LAF in the KDM-CCA-secure scheme of [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] does not seem su cient to achieve tight keydependent message security, it may still provide a building block for future constructions of tightly KDM-CCA-secure encryption schemes with short ciphertexts.

T

. Like the DLIN-based solution given by Hofheinz [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF], our evaluation algorithms proceed by computing a matrix-vector product in the exponent, where the matrix is obtained by pairing group elements taken from the core tag t c with elements of the evaluation key. Here, we reduce the size of t c from O(n 2 ) to O(n) group elements using a technique suggested by Boyen and Waters [START_REF] Boyen | Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions[END_REF] in order to compress the evaluation keys of DDH-based lossy trapdoor functions.

In the pairing-based LTF of [START_REF] Boyen | Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions[END_REF], the evaluation key contains group elements

{(R i , S i ) = (g r i , (h i • u) r i )} n i=1 , {(V j = g v j , H j = (h j • u) v j )} n j=1 .
Using a symmetric bilinear maps e : G × G → G T , these make it possible to compute the o -diagonal elements of a matrix

M i,j = e(g, h) r i •v j = e(R i , H j ) e(S i , V j ) 1/(j-i) ∀(i, j) ∈ [n] × [n] \ {(i, i)} n i=1 (3.1)
via a "two equation" technique borrowed from the revocation system of Lewko, Sahai and
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Waters [START_REF] Lewko | Revocation Systems with Very Small Private Keys[END_REF]. By including {D i = e(g, g) r i •v i • e(g, g)} n i=1 in the evaluation key, the LTF of [START_REF] Boyen | Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions[END_REF] allows the evaluator to compute a matrix (M i,j ) i,j∈ [n] such that M i,j = e(g, g) r i •v j if i = j and M i,i = e(g, g) r i •v i • e(g, g) m i and for which m i = 1 (resp. m i = 0), for all i ∈ [n], in injective (resp. lossy) functions. The indistinguishability of lossy and injective evaluation keys relies on the fact that (3.1) is only computable when i = j, making it infeasible to distinguish {D i = e(g, h)

r i •v i • e(g, g)} n i=1 from {D i = e(g, h) r i •v i } n i=1 .
Our rst LAF construction relies on the "two equation" technique of [START_REF] Lewko | Revocation Systems with Very Small Private Keys[END_REF] in a similar way with the di erence that we include

{(V j = g v j , H j = (h j • u) v j } n j=1 in the evaluation key ek, but {(R i , S i ) = (g r i , (h i • u) r i )} n
i=1 is now part of the core tag components t c . This makes it possible to compute o -diagonal elements of (M i,j ) i,j∈[n] by pairing elements of ek with those of t c . To enable the computation of diagonal elements {M i,i } n i=1 , we augment core tag components by introducing pairs (D i , E i ) ∈ G 2 , which play the same role as

{D i = e(g, g) r i •v i • e(g, g)} n
i=1 in the LTF of [START_REF] Boyen | Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions[END_REF]. In lossy tags, {(D i , E i )} n i=1 are of the form

(D i , E i ) = (h r i •v i • H G (τ ) ρ i , g ρ i ), (3.2) 
for a random ρ i ∈ R Z p , where τ is a chameleon hashing of all tag components. Such pairs {(D i , E i )} n i=1 allow the evaluator to compute

M i,i = e(D i , g) e(H G (τ ), E i ) = e(g, h) r i •v i ∀i ∈ [n],
which results in a rank-one matrix (M i,j ) i,j∈ [n] , where M i,j = e(g, h) r i •v j . When computed as per (3.2), {(D i , E i )} n i=1 can be seen as "blinded" Waters signatures [START_REF] Waters | E cient Identity-Based Encryption Without Random Oracles[END_REF]. Namely, (g, h, V i = g v i ) can be seen as a veri cation key; h v i is the corresponding secret key; and r i ∈ Z p serves as a blinding factor that ensures the indistinguishability of (D i , E i ) from random pairs. Indeed, the Decision 3-party Di e-Hellman (D3DH) assumption allows proving that h r i •v i is computationally indistinguishable from random given (g, h, g v i , g r i ).

In our proof of indistinguishability, however, we need to rely on the proof technique of the Boneh-Boyen IBE [START_REF] Boneh | E cient Selective-ID Secure Identity-Based Encryption Without Random Oracles[END_REF] in order to apply a hybrid argument that allows gradually replacing pairs {(D i , E i )} n i=1 by random group elements. In our proof of evasiveness, we rely on the fact that forging a pair of the form

(D i , E i ) = (h r i •v i • H G (τ ) ρ i , g ρ i )
on input of (g, h, g v i ) is as hard as solving the 2-3-Di e-Hellman problem [START_REF] Kunz | About the Security of MTI/C0 and MQV[END_REF], which consist in nding a non-trivial pair (g r , g r•ab ) ∈ G * × G * on input of (g, g a , g b ). In turn, this problem is known to be at least as hard as breaking the Decision 3-party Di e-Hellman assumption.

The above techniques allow us to construct a LAF with O(n)-size tags and evaluation keys made of O(n + λ) group elements under a standard assumption. Our rst LAF is actually described in terms of asymmetric pairings, but it can be instantiated in all types (i.e., symmetric or asymmetric) of bilinear groups. Our second LAF construction requires asymmetric pairing con gurations and the Symmetric eXternal Di e-Hellman (SXDH) assumption. It is very similar to our rst construction with the di erence that we obtain a tight proof of evasiveness by replacing Waters signatures with a variant of a MAC proposed by Blazy, Kiltz and Pan [START_REF] Blazy | Hierarchical) Identity-Based Encryption from A ne Message Authentication[END_REF]. In order for the proofs to go through, we need to include Chapter 3. Lossy Algebraic Filters With Short Tags n MAC instances (each with its own keys) in lossy tags, which incurs evaluation keys made of O(n • λ) group elements. We leave it is an interesting open problem to achieve tight security using shorter evaluation keys. R W . All-but-one lossy trapdoor functions (ABO-LTFs) [START_REF] Peikert | Lossy trapdoor functions and their applications[END_REF] are similar to LAFs in that they are lossy function families where each function is parametrized by a tag that determines if the function is injective or lossy. They di er from LAFs in two aspects: (i) They should be e ciently invertible using a trapdoor; (ii) For a given evaluation key ek, there exists only one tag for which the function is lossy. The main motivation of ABO-LTFs is the construction of chosen-ciphertext [START_REF] Racko | Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack[END_REF] encryption schemes. All-butmany lossy trapdoor functions (ABM-LTFs) are an extension of ABO-LTFs introduced by Hofheinz [START_REF] Hofheinz | All-But-Many Lossy Trapdoor Functions[END_REF]. They are very similar to LAFs in that a trapdoor makes it possible to dynamically create arbitrarily many lossy tags using. In particular, each tag t = (t c , t a ) consists of an auxiliary component t a and a core component t c so that, by computing t c as a suitable function of t a , the pair t = (t c , t a ) can be made lossy, but still random-looking. The motivation of ABM-LTFs is the construction chosen-ciphertext-secure public-key encryption schemes in scenarios, such as the selective-opening setting [DNRS99; BHY09], which involve multiple challenge ciphertexts [START_REF] Hofheinz | All-But-Many Lossy Trapdoor Functions[END_REF]. They also found applications in the design of universally composable commitments [START_REF] Fujisaki | All-But-Many Encryption -A New Framework for Fully-Equipped UC Commitments[END_REF]. Lossy algebraic lters di er from ABM-LTFs in that they may not have a trapdoor enabling e cient inversion but, for any lossy tag t = (t c , t a ), the information revealed by f LAF (t, x) is always the same (i.e., it is completely determined by x and the evaluation key ek).

LAFs were rst introduced by Hofheinz [Hof13] as a building block for KDM-CCA-secure encryption schemes, where they enable some form of "plaintext awareness". In the security proofs of KDM-secure encryption schemes (e.g., [START_REF] Boneh | Circular-Secure Encryption from Decision Di e-Hellman[END_REF]), the reduction must be able to simulate encryptions of (functions of) the secret key. When the adversary is equipped with a decryption oracle, the ability to publicly compute encryptions of the decryption key may be a problem as decryption queries could end up revealing that key. LAFs provide a way reconcile the con icting requirements of KDM and CCA2-security by introducing in each ciphertext a LAF-evaluation of the secret key. By having the simulator encrypt a lossy function of the secret key, one can keep encryption queries from leaking too much secret information. At the same time, adversarially-generated ciphertexts always contain an injective function of the key, which prevents the adversary from learning the secret key by publicly generating encryptions of that key.

Recently, Wen and Liu [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF] appealed to LAFs in the design of robustly reusable fuzzy extractors. As de ned by Dodis et al. [START_REF] Dodis | Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data[END_REF], fuzzy extractors allow one to generate a random cryptographic key R -together with some public helper string P -out of a noisy biometric reading w. The key R need not be stored as it can be reproduced from the public helper string P and a biometric reading w which is su ciently close to w. Reusable fuzzy extractors [START_REF] Boyen | Reusable cryptographic fuzzy extractors[END_REF] make it possible to safely generate multiple keys R 1 , . . . , R t (each with its own public helper string P i ) from correlated readings w 1 , . . . , w t of the same biometric source. Wen and Liu [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF] considered the problem of achieving robustness in reusable fuzzy extractors. In short, robustness prevents adversaries from covertly tampering with the public helper string P i in order to a ect the reproducibility of R i . The Wen-Liu [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF] fuzzy extractor relies on LAFs to simultaneously achieve reusability and robustness assuming a common reference string. Their solution requires the LAF to be homomorphic, meaning that function outputs should live in a group and, for any tag t and inputs x 1 , x 2 , we have

f LAF (t, x 1 + x 2 ) = f LAF (t, x 1 ) • f LAF (t, x 2 ).
The candidate proposed by Hofheinz [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] and ours are both usable in robustly reusable fuzzy extractors as they both satisfy this homomorphic property. Our scheme o ers the bene t of shorter public helper strings P since these have to contain a LAF tag in the fuzzy extractor of [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF].

The tightness of cryptographic security proofs was rst considered by Bellare and Rogaway [START_REF] Bellare | The Exact Security of Digital Signatures -HOw to Sign with RSA and Rabin[END_REF] in the random oracle model [START_REF] Bellare | Random Oracles are Practical: A Paradigm for Designing E cient Protocols[END_REF]. In the standard model, it drew a lot of attention in digital signatures and public-key encryption the recent years (see, e.g., [HJ12; CW13; BKP14; LJYP14; LPJY15; Hof16; GHKW16; Hof17; GHK17]). In the context of all-but-many lossy trapdoor functions, a construction with tight evasiveness was put forth by Hofheinz [START_REF] Hofheinz | All-But-Many Lossy Trapdoor Functions[END_REF]. A tightly secure lattice-based ABM-LTF was described by Libert et al. [START_REF] Libert | All-But-Many Lossy Trapdoor Functions and Selective Opening Chosen-Ciphertext Security from LWE[END_REF] as a tool enabling tight chosen-ciphertext security from lattice assumptions. To our knowledge, the only other prior work considering tight reductions for lossy trapdoor functions is a recent result of Hofheinz and Nguyen [START_REF] Hofheinz | On Tightly Secure Primitives in the Multi-instance Setting[END_REF]. In particular, tight security has never been obtained in the context of LAFs, nor in fuzzy extractors based on public-key techniques.

Background

Lossy Algebraic Filters

We recall the de nition of Lossy Algebraic Filter (LAF) from [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF], in which the distribution over the function domain may not be the uniform one.

De nition 3.1. For integers LAF (λ), n(λ) > 0, an ( LAF , n)-lossy algebraic lter (LAF) with security parameter λ consists of the following ppt algorithms: Key generation. LAF.Gen(1 λ ) outputs an evaluation key ek and a trapdoor key tk. The evaluation key ek speci es an LAF -bit prime p as well as the description of a tag space T = T c × T a , where T c is e ciently samplable. The disjoint sets of injective and noninjective tags tags are called T inj and T non-inj = T \ T inj , respectively. We also de ne the subset of lossy tags T loss to be a subset of T non-inj , which induce very lossy functions. A tag t = (t c , t a ) is described by a core part t c ∈ T c and an auxiliary part t a ∈ T a . A tag may be injective, or lossy, or neither. The trapdoor tk allows sampling lossy tags.

Evaluation. LAF.Eval(ek, t, X) takes as inputs an evaluation key ek, a tag t ∈ T and a function input

X ∈ Z n p . It outputs an image Y = f ek,t (X).
Lossy tag generation. LAF.LTag(tk, t a ) takes as input the trapdoor key tk, an auxiliary part t a ∈ T a and outputs a core part t c such that t = (t c , t a ) ∈ T loss forms a lossy tag.

In addition, LAF has to meet the following requirements:

Lossiness. For any (ek, tk) R ← LAF.Gen(1 λ ), the following conditions should be satis ed.

a. For any t ∈ T inj , f ek,t (.) should behave as an injective function (note that f -1 ek,t (.) is not required to be e ciently computable given tk).

b. For any auxiliary tag t a ∈ T a and any t c R ← LAF.LTag(tk, t a ), we have t = (t c , t a ) ∈ T loss , meaning that f ek,t (.) is a lossy function. Moreover, for any input X = (x 1 , . . . , x n ) ∈ Z n p and any t = (t c , t a ) ∈ T loss , f ek,t (X) is completely determined by n i=1 v i • x i mod p for coe cients {v i } n i=1 that only depend on ek.

Indistinguishability. Multiple lossy tags are computationally indistinguishable from random tags, namely:

Adv A,ind Q (λ) := Pr[A(1 λ , ek) LAF.LTag(tk,•) = 1] -Pr[A(1 λ , ek) O Tc (•) = 1]
is negligible for any PPT algorithm A, where (ek, tk) R ← LAF.Gen(1 λ ) and O Tc (•) is an oracle that assigns a random core tag t c R ← T c to each auxiliary tag t a ∈ T a (rather than a core tag that makes t = (t c , t a ) lossy). Here Q denotes the number of oracle queries made by A.

Evasiveness. Non-injective tags are computationally hard to nd, even with access to an oracle outputting multiple lossy tags, namely:

Adv A,eva Q 1 ,Q 2 (λ) := Pr[A(1 λ , ek) LAF.LTag(tk,•), LAF.IsLossy(tk,•) ∈ T non-inj ]
is negligible for legitimate adversary A, where (ek, ik, tk) R ← LAF.Gen(1 λ ) and A is given access to the following oracle:

-LAF.LTag(tk, •) which acts exactly as the lossy tag generation algorithm.

-LAF.IsLossy(tk, •) that takes as input a tag t = (t c , t a ). It outputs 0 if t ∈ T non-inj = T \T inj and 1 if t ∈ T inj . If t ∈ T , the oracle outputs ⊥.

We denote by Q 1 and Q 2 the number of queries to LAF.LTag(tk, •) and LAF.IsLossy(tk, •), respectively. By "legitimate adversary", we mean that A is PPT and never outputs a tag t = (t c , t a ) such that t c was obtained by invoking the LAF.LTag oracle on t a .

In our construction, the tag space T will not be dense (i.e., not all elements of the ambient algebraic structure are potential tags). However, elements of the tag space T will be e ciently recognizable given ek.

We note that the above de nition of evasiveness departs from the one used by Hofheinz [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] in that it uses an additional LAF.IsLossy(tk, •) oracle that uses the trapdoor tk to decide whether a given tag is injective or not. However, this oracle will only be used in our tightly secure LAF (and not in our rst construction). Its only purpose is to enable a modular use of our tightly evasive LAF in applications to KDM security [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] or robustly reusable fuzzy extractors [START_REF] Wen | Robustly Reusable Fuzzy Extractor from Standard Assumptions[END_REF]. Speci cally, by invoking the LAF.IsLossy(tk, •) oracle, the reduction from the security of a primitive to the underlying LAF's evasiveness does not have to guess which adversarial query involves a non-lossy tag.

A Lossy Algebraic Filter With Linear-Size Tags

We present a LAF based on DDH-like assumptions with tags of size O(n), where n is the number of input symbols when the input is viewed as a vector over Z p . Our tags are comprised of 4n elements of G, which outperforms the construction of [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] for n > 4.

In his application to KDM-CCA security [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF], Hofheinz uses a LAF scheme with n = 6, in which case we decrease the tag size from 43 to 24 group elements1 and thus shorten ciphertexts by 19 group elements.

The construction is inspired by the lossy TDF of [START_REF] Boyen | Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions[END_REF] and relies on the revocation technique of Lewko, Sahai and Waters [START_REF] Lewko | Revocation Systems with Very Small Private Keys[END_REF] (LSW) in the same way. In asymmetric pairings e : G × Ĝ → G T , the evaluation key contains a set of LSW ciphertexts {( Vj = ĝv j , Ĥj = ( ĥj • û) v j )} n j=1 , while each core tag component t c can be seen as containing a set of LSW secret keys

{(R i , S i ) = (g r i , (h i • u) r i )} n i=1
, allowing the evaluator compute M i,j = e(g, ĥ) r i •v j for any pairwise distinct indices i = j. In lossy tags (t c , t a ), diagonal elements {M i,i } n i=1 are handled by having t c contain Waters signatures

(D i , E i ) = (h r i •v i • H G (τ ) ρ i , g ρ i )
, where ρ i ∈ R Z p and H G : {0, 1} L → G is an algebraic hash function mapping the output τ of a chameleon hash function to the group G. For indistinguishability purposes, pairs {(D i , E i )} n i=1 are not immediately recognizable as Waters signatures because the underlying secret key h v i is blinded by a random exponent r i = log g (R i ). Still, running the veri cation algorithm of Waters signatures on (D i , E i ) allows the evaluation algorithm to derive M i,i = e(g, ĥ)

r i •v i , so that (M i,j ) i,j∈[n] forms a rank-1 matrix. In injective tags, {(D i , E i )} n i=1 are uniformly distributed in G, so that (M i,j ) i,j∈[n]
is the sum of a rank-1 matrix and a diagonal matrix.

Description

Key generation. LAF.Gen(1 λ ) conducts the following steps.

1. Choose bilinear groups (G, Ĝ, G T ) of prime order p > 2 λ with random generators g, h, u R ← G and ĝ, ĥ, û R ← Ĝ subject to the constraints log g (h) = log ĝ( ĥ) and log g (u) = log ĝ(û).

2. Choose a chameleon hash function CMH = (CMKg, CMhash, CMswitch), where the hashing algorithm CMhash : {0, 1} * × R hash → {0, 1} L has output length L ∈ poly(λ). Generate a pair (hk CMH , td CMH ) ← CMKg(1 λ ) made of a hashing key hk CMH and a trapdoor td CMH .

3. Choose random exponents w 0 , . . . , w L R ← Z p and de ne

W k = g w k , Ŵk = ĝw k ∀k ∈ [0, L]
that will be used to instantiate two hash functions

H G : {0, 1} L → G, H Ĝ : Chapter 3. Lossy Algebraic Filters With Short Tags {0, 1} L → Ĝ which map any string m ∈ {0, 1} L to H G (m) = W 0 • L k=1 W m[k] k , H Ĝ(m) = Ŵ0 • L k=1 Ŵ m[k] k , respectively. Note that e(g, H Ĝ(m)) = e(H G (m), ĝ) for any m ∈ {0, 1} L . 4. Let n ∈ poly(n) be the desired input length. For each j ∈ [n], choose v j R ← Z p and de ne Vj = ĝv j , Ĥj = ( ĥj • û) v j ∀j ∈ [n].
5. Output the evaluation key ek and the lossy tag generation key tk, which consist of

ek := hk CMH , g, h, u, ĝ, ĥ, û, {W k , Ŵk } L k=0 , { Vj , Ĥj } n j=1 , tk := td CMH , {v j } n j=1 .
The tag space T = T c × T aux is de ned as a product of T a = {0, 1} * and

T c := { {R i , S i , D i , E i } n i=1 , r hash | r hash ∈ R CMH ∧ ∀i ∈ [n] : (R i , S i , D i , E i ) ∈ G * 4 ∧ e(R i , ĥi • û) = e(S i , ĝ)}, where G * := G \ {1 G }. The range of the function family is Rng λ = G n+1 T and its domain is Z n p .
Lossy tag generation. LAF.LTag(tk, t a ) takes in an auxiliary tag component t a ∈ {0, 1} * and uses tk = td CMH , {v j } n j=1 , {w k } L k=0 to generate a lossy tag as follows.

1.

For each i ∈ [n], choose r i R ← Z * p and compute R i = g r i , S i = (h i • u) r i ∀i ∈ [n]. (3.3) 2. For each i ∈ [n], choose ρ i R ← Z p and compute D i = h r i •v i • H G (τ ) ρ i , E i = g ρ i ∀i ∈ [n],
where τ ∈ {0, 1} L is chosen uniformly in the range of CMhash.

Use the trapdoor td

CMH to nd r hash ∈ R hash such that τ = CMhash hk hash , (t a , {R i , S i , D i , E i } n i=1 ), r hash ∈ {0, 1} L
and output the tag t = (t c , t a ), where

t c = ({R i , S i , D i , E i } n i=1 , r hash ).
Each lossy tag is associated with a matrix M i,j i,j∈[n] = e(g, ĥ) r i •v j i,j , which is a rank-1 matrix in the exponent. Its diagonal entries consist of

M i,i = e(D i , ĝ) e(E i , H Ĝ(τ ))
= e(g, ĥ)

r i •v i ∀i ∈ [n], (3.4) 
while its non-diagonal entries

M i,j = e(R i , Ĥj ) e(S i , Vj ) 1/(j-i)
= e(g, ĥ)

r i •v j ∀(i, j) ∈ [n] × [n] \ {(i, i)} n i=1 , (3.5) 
are obtained by pairing tag component (R i , S i ) with evaluation key components ( Vj , Ĥj ).

Random Tags. A random tag can be publicly sampled as follows.

1.

For each i ∈ [n], choose r i R ← Z * p and compute {R i , S i } n i=1 as in (3.3). 2. For each i ∈ [n], choose (D i , E i ) R ← G * × G * uniformly at random. 3. Choose r hash R ← R hash .
Finally, output the tag t = (t c , t a ), where

t c = ({R i , S i , D i , E i } n i=1 , r hash ).
We note that, in both random and lossy tags, we have e(R i , ûi • ĥ) = e(S i , ĝ) for all i ∈ [n], so that elements of T are publicly recognizable.

Evaluation. LAF.Eval(ek, t, x) takes in the input x ∈ Z n p and the tag t = (t c , t a ). It parses t c as ({R i , S i , D i , E i } n i=1 , r hash ) and proceeds as follows. 1. Return ⊥ if there exists i ∈ [n] such that e(R i , ĥi • û) = e(S i , ĝ).

Compute the matrix M

i,j i,j∈[n] ∈ G n×n T as M i,i = e(D i , ĝ) e(E i , H Ĝ(τ )) ∀i ∈ [n] , (3.6) 
where τ = CMhash hk hash , (t a , {R i , S i , D i , E i } n i=1 ), r hash , and

M i,j = e(R i , Ĥj ) e(S i , Vj ) 1/(j-i) ∀(i, j) ∈ [n] × [n] \ {(i, i)} n i=1 , (3.7) Note that, since R i = g r i and S i = (h i • u) r i for some r i ∈ Z q , we have M i,i = e(g, ĥ) r i •v i +ω i , ∀i ∈ [n] (3.8) M i,j = e(g, ĥ) r i •v j , ∀i = j,
for some vector (ω 1 , . . . , ω n ) ∈ Z n p that only contains non-zero entries if t = (t c , t a ) is injective.

Chapter 3. Lossy Algebraic Filters With Short Tags 3. Compute V T,j j∈[n] as V T,j = e(h, Vj ) = e(g, ĥ) v j for each j ∈ [n].

Use the input

x = (x 1 , . . . , x n ) ∈ Z n p to compute Y 0 = n j=1 V x j T,j
(3.9)

Y i = n j=1 M x j i,j ∀i ∈ [n] and output Y = (Y 0 , Y 1 , . . . , Y n ) ∈ G n+1 T .
While the above construction inherits the Θ(λ)-size public keys of Waters signatures [START_REF] Waters | E cient Identity-Based Encryption Without Random Oracles[END_REF], we believe that it can be adapted to other signature schemes in the standard model (e.g., [START_REF] Böhl | Practical Signatures from Standard Assumptions[END_REF][START_REF] Jutla | Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces[END_REF]) so as to obtain shorter evaluation keys.

I

. For any injective tag, all entries of the vector (ω 1 , . . . , ω n ) are non-zero in (3.8). We can use Y 0 to ensure that the function is injective. As long as ω i = 0 for all i ∈ [n], the evaluation algorithm (3.9) yields a vector

Y = (Y 0 , Y 1 , . . . , Y n ) ∈ G n+1 T of the form Y 0 = e(g, ĥ) n j=1 v j •x j Y i = e(g, ĥ) ω i •x i +r i • n j=1 v j •x j ∀i ∈ [n], meaning that x i ∈ Z p is uniquely determined by (Y 0 , Y i ) and (R i , D i , E i ) (note that the triple (R i , D i , E i ) uniquely de nes ω i ).
For any lossy tag, the evaluation outputs

Y = (Y 0 , Y 1 , . . . , Y n ) ∈ G n+1 T such that Y 0 = e(g, ĥ) n j=1 v j •x j Y i = e(g, ĥ) r i • n j=1 v j •x j ∀i ∈ [n],
which always reveals the same information n j=1 v j • x j mod p about the input vector x = (x 1 , . . . , x n ) , no matter which tag is used.

Security

The proof of indistinguishability relies on the wD3DH1 assumption via a hybrid argument over the queries to the LAF.LTag(tk, •) oracle and over the pairs {(D i , E i )} n i=1 produced by LAF.LTag(tk, •) at each query. Using the R-wD3DH1 assumption, it is possible to modify the proof so as to use a hybrid argument over the pairs {(D i , E i )} n i=1 only (meaning that all queries to LAF.LTag(tk, •) are processed in parallel at each game transition). However, this proof would require the SXDH assumption -which only holds in asymmetric pairings -to apply the result of Lemma 2.1. In contrast, the proof of Theorem 3.1 allows instantiations in all bilinear group con gurations, even in symmetric pairings.

The proof of Theorem 3.1 uses a hybrid argument to gradually replace pairs {(D i , E i )} n i=1 by truly random group elements in outputs of the lossy tag generation oracle. To this end, it relies on the proof technique of the Boneh-Boyen IBE [START_REF] Boneh | E cient Selective-ID Secure Identity-Based Encryption Without Random Oracles[END_REF] in the proof of Lemma 3.2. Namely, in order to embed a D3DH1 instance (g, h, g v k , g r k , T

? = h r k •v k ) in the k-th pair (D k , E k ), for indexes i > k, the reduction has to simulate h r i •v k for a known r i ∈ Z p and an unknown h v k .
Theorem 3.1. The above LAF provides indistinguishability under the wD3DH1 assumption in (G, Ĝ, G T ).

Proof. We rst recall that, for any injective or non-injective tag t = (t c , t a ), the core component

t c = ({R i , S i , D i , E i } n i=1 , r hash ) imply a matrix M i,j i,j∈[n]
where the odiagonal entries are M i,j = e(g, ĥ) r i •v j and the diagonal entries are of the form (3.8). In injective tags, the vector (ω 1 , . . . , ω n ) ∈ Z n p only contains non-zero entries. In lossy tags, we have (ω 1 , . . . , ω n ) = 0 n . We de ne a sequence of hybrid games. In Game (0,0) , the adversary has access to the real oracle LAF.LTag(tk, .) oracle that always outputs lossy tags. In Game (Q,n) , the adversary is given access to an oracle O Tc (.) that always outputs random tags.

Game ( ,k) (1 ≤ ≤ Q, 1 ≤ k ≤ n):
In this game, the adversary interacts with a hybrid oracle LAF.LTag ( ,k) (tk, .). At the µ-th query, this oracle outputs tags t (µ) = (t

(µ) c , t (µ) a ) such that -If µ < , the tag t (µ) c = ({R i , S i , D i , E i } n i=1 , r hash ) implies a matrix M (µ) i,j i,j∈[n]
of the form (3.8) where (ω

(µ) 1 , . . . , ω (µ) n ) is uniform over Z n p -If µ = , t (µ) c = ({R i , S i , D i , E i } n i=1 , r hash ) implies a matrix M (µ)
i,j i,j∈[n] of the form (3.8) where the rst k entries of (ω

(µ) 1 , . . . , ω (µ)
n ) are uniform over Z p and its last n -k entries are zeroes.

-If µ > , the matrix M (µ) i,j i,j∈[n] implied by the core tag component

t (µ) c = ({R i , S i , D i , E i } n i=1 , r hash )
is a rank-1 matrix in the exponent since (ω

(µ) 1 , . . . , ω (µ) n ) = 0 n . Lemma 3.2 shows that, for all pairs ( , k) ∈ [Q] × [n]
, these games are computationally indistinguishable from one another, which yields the stated result.

Lemma 3.2. For each k ∈ [n] and ∈ [Q], Game ( ,k) is computationally indistinguishable from Game ( ,k-1)
if the wD3DH1 assumption holds. Under the same assumption, Game ( ,1) is computationally indistinguishable from Game ( -1,n) .

Proof. For the sake of contradiction, assume that there exists

∈ [Q], k ∈ [n]
such that the adversary A can distinguish Game ( ,k) from Game ( ,k-1) with noticeable advantage (the indistinguishability of Game ( -1,n) and Game ( ,1) can be proved in a completely similar Chapter 3. Lossy Algebraic Filters With Short Tags way). We build a wD3DH1 distinguisher B that inputs (g, ĝ, g a , g b , g c , ĝb , ĝc , T ) with the goal of deciding if T = g abc or T ∈ R G.

To this end, B de nes h = g b , ĥ = ĝb and Vk = ĝc . It picks α R ← Z p and de nes û = ĥ-k • ĝα as well as u = h -k • g α , which implicitly sets v k = c. This allows de ning

Ĥk = ( ĥk • û) c = (ĝ c ) α ,
In addition, B de nes (W 0 , W 1 , . . . , W L ) ∈ G L+1 and ( Ŵ0 , Ŵ1 , . . . , ŴL ) ∈ ĜL+1 by setting

W i = (g b ) α i • g β i , Ŵi = (ĝ b ) α i • ĝβ i ∀i ∈ {0, . . . , L} for randomly chosen α 0 , . . . , α L R ← Z p , β 0 , . . . , β L R ← Z p . Then, B chooses v i R ← Z p for each i ∈ [n]
\ {k} and de nes the rest of the evaluation key ek by setting

Vi = ĝv i , Ĥi = ( ĥi • û) v i , ∀i ∈ [n] \ {k}
Then, at each invocation of the LAF.LTag(tk, .) oracle, B responds as follows. At the µ-th query t (µ) a , it generates a core tag t

(µ) c such that -If µ < , t (µ) c = ({R i , S i , D i , E i } n i=1 , r hash ) contains { Di , Êi } n i=1 uniformly random pairs whereas {R i , Ŝi } n
i=1 are chosen as in the real algorithm sampling random tags.

-

If µ = , t (µ) c = ({R i , S i , D i , E i } n i=1 , r hash ) is generated as follows. It sets R k = g a , S k = (g a ) α .
As for indexes i = k, it chooses r 1 , . . . , r k-1 , r k+1 , . . . , r n R ← Z p and sets

R i = g r i , S i = (h i • u) r i ∀i ∈ [n] \ {k}.

It generates the pairs {D

i , E i } n i=1 by choosing (D i , E i ) R ← G 2 at random for each i ∈ [k -1]. The k-th pair (D k , E k ) is de ned as D k = T • H G (τ ) ρ k , E k = g ρ k . (3.10) for a randomly chosen ρ k R ← Z p . As for {D i , E i } n i=k+1 , they are obtained by choosing a random τ = τ [1] . . . τ [L] ∈ {0, 1} L in the range of CMhash and choosing ρ i R ← Z p before setting D i = H G (τ ) ρ i • (g c ) -r i • β 0 + L i=1 β i •τ [i] α 0 + L i=1 α i •τ [i]
(3.11)

E i = g ρ i • (g c ) - r i α 0 + L i=1 α i •τ [i]
which can be written

D i = g bc•r i • H G (τ ) ρi = h v k •r i • H G (τ ) ρi E i = g ρi if we de ne ρi = ρ i - c•r i α 0 + L i=1 α i •τ [i] . Note that the reduction B fails if α 0 + L i=1 α i • τ [i] = 0 but
this only occurs with negligible chance since the coordinates (α 0 , . . . , α L ) ∈ Z L p are independent of A's view. Finally, B uses the trapdoor td CMH of the chameleon hash function to nd coins r hash ∈ R CMH such that τ = CMhash hk hash , (t a , {R i , S i , D i , E i } n i=1 ), r hash .

-If µ > , the tags are generated as lossy tags. To this end, B proceeds as in the previous case, except that all elements {D i , E i } n i=1 (and not only the last n -k ones) are generated as per (3.11).

It is easy to see that, if T = g abc , the pair (D k , E k ) of (3.10) can be written

D k = h v k •r k • H G (τ ) ρ k , E k = g ρ k ,
meaning that A's view is the same as in Game ( ,k-1) . In contrast, if

T ∈ R G, then (D k , E k ) can be written D k = h ω k +v k •r k • H G (τ ) ρ k , E k = g ρ k ,
for some uniformly random ω k ∈ R Z p . In this case, A's view corresponds to Game ( ,k) .

The evasiveness property is established by Theorem 3.3.

Theorem 3.3. The above LAF provides evasiveness assuming that: (i) CMH is a collisionresistant chameleon hash function; (ii) The wD3DH1 and 2-3-CDH assumptions both hold in (G, Ĝ, G T ).

Proof. Let us assume that a PPT adversary A can break the evasiveness property with noticeable advantage. We show that it contradicts either: (i) The indistinguishability of the scheme; (ii) The collision-resistance of the chameleon hash function; (iii) The 2-3-CDH assumption. We will prove this claim via a sequence of hybrid games. In Game 0 , the adversary A proceeds as in the real evasiveness security experiment. In the nal game, we show that, if the adversary can output a lossy tag, we can easily construct an algorithm breaking the 2-3-CDH assumption with non-negligible advantage.

For each i, we denote by bad i the event that A manages to output a non-trivial lossy tag in Game i .

Game 0 : In this game, the adversary A has access to the lossy tag generation oracle LAF.LTag(tk, •) that always outputs lossy tags. By de nition,

Pr[bad 0 ] = Pr[A(1 λ , ek) LAF.LTag(tk,•) ].
(3.12)

Game 1 : In this game, we de ne bad hash to be the event that the adversary A outputs a tag t = (({R i , S i , D i , E i } n i=1 , r hash )) for which the corresponding chameleon hash collides with that of some tag produced by the oracle LAF.LTag(tk, •). The only Chapter 3. Lossy Algebraic Filters With Short Tags di erence between Game 1 and Game 0 is that Game 1 aborts when bad hash occurs. It is straightforward that

| Pr[bad 1 ] -Pr[bad 0 ]| = Pr[bad hash in Game 1 ].
(3.13)

We want to use the collision resistance property of the underlying chameleon hash function to bound the probability Pr[bad hash in Game 1 ]. However, the lossy key generation oracle uses the trapdoor td CMH to create lossy tags. To avoid a circularity, we consider Game 1 , where the lossy key generation oracle always outputs injective tags instead of lossy ones. Using the indistinguishability between lossy and injective tags (established by Theorem 3.1), we have

| Pr[bad hash in Game 1 ] -Pr[bad hash in Game 1 ]| = nQ • Adv wD3DH1 (λ). (3.14)
Since Game 0 and Game 1 only di er when bad hash occurs in Game 1 , we can bound the probability (3.13) as

| Pr[bad 1 ] -Pr[bad 0 ]| = | Pr[bad hash in Game 1 ]| ≤ | Pr[bad hash in Game 1 ]| + nQ • Adv wD3DH1 (λ)
In Game 1 , we clearly have Pr[bad hash in Game 1 ] ≤ Adv CR CMH (λ): since the trapdoor of CMH is not used, we can readily build a reduction that breaks the collision-resistance of CMH out of an adversary for which bad hash occurs with noticeable probability. This immediately implies

| Pr[bad 1 ] -Pr[bad 0 ]| ≤ Adv CR CMH (λ) + nQ • Adv wD3DH1 (λ)
We now proceed to bound Pr[bad 1 ] by showing that, using the adversary A in Game 1 , we can build an algorithm B breaking the 2-3-CDH assumption. Algorithm B takes as input (g a , g b , ĝa , ĝb ) with the goal of computing g r , g r•ab . To this end, B de nes h = g a . It randomly chooses a J R ← [n] and sets V J = g b , which implicitly sets v J = b. In addition, B de nes (W 0 , W 1 , . . . , W L ) ∈ G L+1 and ( Ŵ0 , Ŵi , . . . , ŴL ) ∈ ĜL+1 as

W i = (g a ) α i • g β i Ŵi = (ĝ a ) α i • ĝβ i where α 0 = -1 and α 1 , . . . , α L R ← {-1, 0, 1} and β 0 , . . . , β L R ← Z p .
In order to simulate the LAF.LTag oracle on input of t a , B proceeds as follows:

1. For each i ∈ [n], B uniformly samples r i R ← Z p and computes {R i , S i } n i=1 as in (3.3).
2. B samples a random τ in the range of CMhash.

For each i ∈ [n]\{J}, it chooses ρ i R ← Z p and computes D i = h r i •v i • H G (τ ) ρ i , E i = g ρ i . 3. For i = J, B aborts if α 0 + L k=1 α k • τ [k] = 0. Otherwise, B chooses ρ J R ← Z p and computes (D J , E J ) as in (3.11): D J = H G (τ ) ρ J • (V J ) -r J • β 0 + L k=1 β k •τ [k] α 0 + L k=1 α k •τ [k] E J = g ρ J • (V J ) - r J α 0 + L k=1 α k •τ [k]
(3.15) 4. Next, B uses the trapdoor td CMH of the chameleon hash function in order to nd random coins r hash ∈ R CMH such that

τ = CMhash(hk hash , (t a , {R i , S i , D i , E i } n i=1 ), r hash ). 5. Finally, B outputs (t c , t a ) with t c = ({R i , S i , D i , E i } n i=1 , r hash ).
As in (3.11), if we de ne

ρJ = ρ J - b•r J α 0 + L k=1 α k •τ [k]
, we observe that (3.15) can be written as

D J = h b•r J • H G (τ )
ρJ and E J = g ρJ . Hence, if B does not abort in any query to LAF.LTag, the output distribution of B is identical to that of the real LAF.LTag oracle. We denote by abort k the event that B aborts at the k-th query to the LAF.LTag oracle for k ∈ [Q]. Letting t = (t c , t a ) denote the lossy tag generated by A, we parse t c as

t c = ({R i , S i , D i , E i } n i=1 , r hash ) and compute τ = CMhash(hk hash , (t a , {R i , S i , D i , E i } n i=1 ), r hash ). In the event that α 0 + L k=1 α k • τ [k] = 0, B aborts.
We denote the latter event by abort ch . If B did not abort (which implies

α 0 + L k=1 α k • τ [k] = 0), we have D J = h b•r J • H G (τ ) ρ J = g ab•r J • g (a•(α 0 + L k=1 α k •τ [k])+(β 0 + L k=1 β k •τ [k]))•ρ J = g ab•r J • E J β 0 + L k=1 β k •τ [k]
,

where

E J = g ρ J . Finally, B outputs R J , D J E J β 0 + L k=1 β k •τ [k] . Clearly, if B did not abort, its output (R J , D J /E β 0 + L k=1 β k •τ [k] J
) is a valid 2-3-CDH challenge. We are left with evaluating the probability that B aborts.

If we de ne the function α : {0,

1} L → Z that maps the string m = m[1] . . . m[L] ∈ {0, 1} L to α(m) = α 0 + L k=1 α i • m[i],
the probability that B does not abort is given by

Pr[¬abort ch ∧ ¬abort 1 ∧ . . . ∧ ¬abort Q ] = Pr[α(τ ) = 0 ∧ α(τ 1 ), . . . , α(τ Q ) = 0], (3.16)
where Q is the number of queries to LAF.LTag. and τ i denotes the output of the chameleon hash function produced at the i-th LAF.LTag query. By applying known results on programmable hash functions [START_REF] Hofheinz | Programmable Hash Functions and Their Applications[END_REF], our choice of α 0 , α 1 , . . . , α L ensures that

Pr[¬abort ch ∧ ¬abort 1 ∧ . . . ∧ ¬abort Q ] ≥ δ, (3.17) 
where δ = Ω(Q • √ L). Putting the above altogether, we can conclude that

Adv eva (1 λ ) ≤ Adv CR CMH (λ) + nQ • Adv wD3DH1 (λ) + O(Q • √ L) • Adv 2-3-CDH (λ),
which yields the statement of the theorem.

Recall that the wD3DH1 and 2-3-CDH assumptions are implied by the D3DH1 and D3DH2 assumptions, respectively. Theorem 3.1 and Theorem 3.3 thus guarantee the D3DH1 and D3DH2 assumptions su ce to ensure the indistinguishability and evasiveness properties of our LAF construction (indeed, chameleon hash functions also exist under these assumptions).

Towards All-But-Many Lossy Trapdoor Functions

Our LAF construction can be modi ed to construct an all-but-many lossy trapdoor function [START_REF] Hofheinz | All-But-Many Lossy Trapdoor Functions[END_REF]. Recall that ABM-LTFs do not require evaluations on lossy tags to always output the same information about the input: on any lossy tag, the image size is only required to be much smaller. On the other hand, ABM-LTFs require that, for any injective tag, the function be e ciently invertible using a trapdoor.

Our construction can be turned into an ABM-LTF in the following way. In the evaluation algorithm, a binary input vector

x = (x 1 , . . . , x n ) ∈ {0, 1} n is mapped to the output (Y 0 , . . . , Y n ) ∈ G n+1
T , where

Y 0 = n i=1 e(R i , ĥ) x i Y j = n i=1 M x i i,j ∀j ∈ [n],
which can be written

Y 0 = e(g, ĥ) n i=1 r i •x i Y j = e(g, ĥ) ω j •x j +v j • n i=1 r i •x i ∀j ∈ [n].
Using ik = (v 1 , . . . , v n ) ∈ Z n p as an inversion key, one can decode the j-th input bit as

x j = 0 (resp. x j = 1) if Y j /Y v j 0 = 1 G T (resp. Y j /Y v j 0 = 1 G T ).
Unfortunately, the above ABM-LTF does not seem immediately usable in the application to selective-opening chosen-ciphertext security, which was suggested in [START_REF] Hofheinz | All-But-Many Lossy Trapdoor Functions[END_REF]. The reason is that our tags have a special and publicly recognizable structure, where (R i , S i ) both depend on the same exponent r i ∈ Z p . In the selective-opening setting, the problem arises when the adversary chooses to corrupt some senders, at which point the reduction should reveal the random coins used to create lossy/injective tags. In our construction, this would entail to reveal r i ∈ Z p , which is incompatible with our proofs of indistinguishability and evasiveness. In the ABM-LTF constructions of [Hof12; LSSS17], lossy tags are explainable because they are pseudorandom, which allows the reduction to pretend that they have been randomly sampled in their ambient space. Here, the special structure of lossy/injective tags prevents us from explaining the generation of lossy tags in the same way for corrupted senders. The only apparent way to sample a pair

(R i , S i ) satisfying e(R i , ĥi • û) = e(S i , ĝ) is to choose r i ∈ Z p and compute (R i , S i ) = (g r i , (h i • u) r i ).
We thus leave it as an open problem to build an ABM-LTF with explainable linear-size tags under DDH-like assumptions.

A Lossy Algebraic Filter With Tight Security

In this section, we modify our rst LAF construction in such a way that we can prove it tightly secure under constant-size assumptions. 2 To this end, we replace Waters signatures by a variant of the MAC described by Blazy, Kiltz and Pan [START_REF] Blazy | Hierarchical) Identity-Based Encryption from A ne Message Authentication[END_REF], which is itself inspired by the Naor-Reingold PRF [START_REF] Naor | Number-theoretic Constructions of E cient Pseudo-random Functions[END_REF].

A Variant of the BKP MAC

The MAC construction below is identical to the signature scheme implied by the IBE scheme of [BKP14, Appendix D] with two di erences which prevent public veri cation in order to obtain a pseudo-random MAC instead of a digital signature. The signature scheme of [START_REF] Blazy | Hierarchical) Identity-Based Encryption from A ne Message Authentication[END_REF] was actually designed by transposing a pseudo-random MAC from standard DDH-hard groups to bilinear groups in order to enable public veri cation. Here, we cannot immediately use the MAC of [START_REF] Blazy | Hierarchical) Identity-Based Encryption from A ne Message Authentication[END_REF] because we need bilinear maps in the evaluation algorithm of our LAF.

In order to obtain a pseudo-random MAC, we thus modify the signature scheme of [START_REF] Blazy | Hierarchical) Identity-Based Encryption from A ne Message Authentication[END_REF] by introducing an additional randomizer r ∈ Z p and an extra group element h, of which the discrete logarithm log g (h) serves as a private veri cation key.

Keygen(1 λ , 1 L ): Given a security parameter λ and a message length L ∈ poly(λ), choose asymmetric bilinear groups (G, Ĝ, G T ) of prime order p > 2 λ with generators

g, h R ← G, ĝ R ← Ĝ. 1. Choose θ, α, β R ← Z p and compute ĝθ ∈ Ĝ. For each µ ∈ {0, 1}, choose vectors x µ = (x 1,µ , . . . , x L,µ ) R ← Z L p , y µ = (y 1,µ , . . . , y L,µ ) R ← Z L p . 2. Set v = α + θ • β and z µ = x µ + θ • y µ ∈ Z L p . Compute V = ĝv and, for each µ ∈ {0, 1}, de ne ˆ Z µ = ( Ẑ1,µ , . . . , ẐL,µ ) = ĝ zµ .
Output a secret key sk mac = (α, β, x 0 , x 1 , y 0 , y 1 , η), where η = log g (h), and public parameters consisting of pp = (G, Ĝ, G T ), g, ĝ, h, ĝθ , ( V , Ẑ0 , Ẑ1 ) .
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Mac.Sig(pp, sk mac , M ): To generate a MAC for M = m[1] . . . m[L] ∈ {0, 1} L using sk mac = (x, y, x 0 , x 1 , y 0 , y 1 , η), choose r, ρ R ← Z p and compute σ 1 = h α•r • g ρ•( L k=1 x k,m[k] ) σ 2 = h β•r • g ρ•( L k=1 y k,m[k] ) σ 3 = g ρ σ 4 = g r
Mac.Ver(pp, sk mac , M, σ): Given sk mac = (α, β, x 0 , x 1 , y 0 , y 1 , η) and an L-bit message

M = m[1] . . . m[L], a purported MAC σ = (σ 1 , σ 2 , σ 3 , σ 4 ) is accepted if and only if e(σ 1 , ĝ) • e(σ 2 , ĝθ ) = e(σ 4 , V ) η • e(σ 3 , L k=1 Ẑk,m[k] ). (3.18)
We note that the veri cation algorithm can be modi ed in such a way that it does not require any pairing evaluation. The above description is just meant to simplify the presentation of the security proof of our LAF construction.

The proof is essentially identical to that of [START_REF] Blazy | Hierarchical) Identity-Based Encryption from A ne Message Authentication[END_REF] but we give it for completeness. We note that, in the security de nitions of MACs, the adversary is generally allowed to make veri cation queries. Here, for simplicity, we prove unforgeability in a game where the adversary knows η = log g (h), which allows it to run the veri cation oracle itself. This dispenses us with the need for a veri cation oracle.

Lemma 3.4. The above construction is an unforgeable MAC assuming that the SXDH assumption holds in (G, Ĝ). Namely, any forger A making Q MAC queries and Q V veri cation queries within running time t A has advantage at most

Adv uf-mac A (λ) ≤ Adv DDH 2 B 1 (λ) + 2L • Adv DDH 1 B 2 (λ),
where B 1 and B 2 are PPT distinguishers against the DDH assumption in G 1 and G 2 , respectively, which run in time

t A + (Q + Q V ) • poly(λ).
Proof. To prove the result, we consider a sequence of games. For each index i, we call W i the event that the challenger outputs 1 in Game i .

Game 0 : This is the real game MAC security game, where the adversary A is additionally given η = log g (h) in such a way that it can run the veri cation algorithm (and test whether equation (3.18) holds) by itself. The challenger outputs 1 if and only if A eventually outputs a pair

(M , σ = (σ 1 , σ 2 , σ 3 , σ 4 )) satisfying e(σ 1 , ĝ) • e(σ 2 , ĝθ ) = e(σ 4 , V ) η • e(σ 3 , L k=1 Ẑk,m [k] ), (3.19) 
where Game 1 : In this game, we modify again the veri cation oracle as follows. When A outputs a pair (M , σ = (σ 1 , σ 2 , σ 3 , σ 4 )) such that M was not queried to the MAC oracle but (M , σ ) still satis es (3.19), the challenger checks if

M = m [1] . . . m [L] ∈ {0, 1} L ,
σ 1 = σ 4 η•α • σ 3 L k=1 x k,m [k]
(3.20)

σ 2 = σ 4 η•β • σ 3 L k=1 y k,m [k] .
We call E 1 the event that equalities (3.20) are satis ed. If they are not satis ed, the challenger outputs 0. Otherwise, it outputs 1 as it did in Game 0 . If we denote by E 0 the analogue of event E 1 in Game 0 , we have

Pr[W 0 ] = Pr[W 0 ∧ E 0 ] + Pr[W 0 ∧ ¬E 0 ] = Pr[W 1 ∧ E 1 ] + Pr[W 0 ∧ ¬E 0 ] = Pr[W 1 ] + Pr[W 0 ∧ ¬E 0 ]
since Pr[W 1 ∧ ¬E 1 ] = 0. Lemma 3.5 shows that event W 0 ∧ ¬E 0 would contradict the DDH assumption in Ĝ: namely, we have

Pr[W 0 ∧ ¬E 0 ] ≤ Adv DDH 2 (λ), which implies | Pr[W 1 ] -Pr[W 0 ]| ≤ Adv DDH 2 (λ).
We now use a sub-sequence of L hybrid games over the input bits of queried messages. For convenience, we de ne Game 2.0 to be identical to Game 1 .

Game 2.i (1 ≤ i ≤ L):
In this sub-sequence of games, we modify the key generation phase and the MAC oracle in the following way.

-At the beginning of the game, the challenge de nes V = ĝv for a random v R ← Z p .

-MAC queries are handled as follows. Let R : {0, 1} i → Z p be a truly random function mapping i-bit input to Z p . At each message M queried by A, the challenger computes (σ 3 , σ 4 ) = (g ρ , g r ) for random ρ, r R ← Z p . Then, it outputs (σ 1 , σ 2 , σ 3 , σ 4 ), where

σ 1 = h (v-θ•R(m[1]...m[i]))•r • g ρ•( L k=1 x k,m[k] ) σ 2 = h R(m[1]...m[i])•r • g ρ•( L k=1 y k,m[k] )
When the adversary outputs (M , σ = (σ 1 , σ 2 , σ 3 , σ 4 )) satisfying (3.19) for a new message M , the challenger checks if the following equalities are satis ed:

σ 1 = σ 4 η•(v-θ•R(m [1]...m [i])) • σ 3 L k=1 x k,m [k]
(3.21)

σ 2 = σ 4 η•R(m [1]...m [i]) • σ 3 L k=1 y k,m [k] .
If so, the challenger outputs 1. Otherwise, it outputs 0. Lemma 3.6 shows that Game 2.i is indistinguishable from Game 2.(i-1) under the DDH assumption in G. Namely,

| Pr[W 2.i ] -Pr[W 2.(i-1) ]| ≤ Adv DDH 1 (λ).
In Proof. Towards a contradiction, let us assume that, in Game 1 , the adversary A can output a pair (M , σ = (σ 1 , σ 2 , σ 3 , σ 4 )) satisfying (3.19) but not (3.20). We construct a distinguisher B for the DDH assumption in Ĝ. Our distinguisher B takes as input (ĝ, ĝθ , ĝω , T ) ∈ Ĝ4 and decides if T = ĝα•ω or T ∈ R Ĝ. To this end, B will compute a pair of the form (w, w θ ) ∈ G 2 with w = 1 G , which allows solving the given DDH instance in Ĝ by testing if e(w, T ) = e(w θ , ĝω ). Indeed, the latter equality holds if and only if T = ĝα•ω .

The reduction B runs the real key generation algorithm and answers all MAC and veri cation queries exactly as in Game 1 . By hypothesis, B has non-negligible probability of outputting a pair (M , σ = (σ 1 , σ 2 , σ 3 , σ 4 )) satisfying (3.19) although

σ 1 = σ 4 η•α • σ 3 L k=1 x k,m [k] , σ 2 = σ 4 η•β • σ 3 L k=1 y k,m [k] .
At this point, B uses sk mac to construct a di erent valid MAC (σ 1 , σ 2 , σ 3 , σ 4 ) satisfying (3.19) and such that (σ 1 , σ 2 ) = (σ 1 , σ 2 ). Namely, B computes

σ 1 = σ 4 η•α • σ 3 L k=1 x k,m [k] , σ 2 = σ 4 η•β • σ 3 L k=1 y k,m [k] .
By dividing the two veri cation equations for (σ 1 , σ 2 , σ 3 , σ 4 ) and (σ 1 , σ 2 , σ 3 , σ 4 ), we get

e(σ 1 /σ 1 , ĝ) • e(σ 2 /σ 2 , ĝθ ) = 1 G T meaning that σ 1 /σ 1 = (σ 2 /σ 2 ) θ .
Since σ 1 = σ 1 , this provides B with a non-trivial pair (w, w θ ) = σ 2 /σ 2 , σ 1 /σ 1 , which is su cient to solve DDH in Ĝ.

Lemma 3.6. Under the DDH assumption in G, the challenger outputs 1 with about the same probabilities in Game 3.(i-1) and Game 3.i . We have

| Pr[W 2.i ] -Pr[W 2.(i-1) ]| ≤ 2 • Adv DDH 1 (λ).
Proof. Assuming the existence of an adversary A that can distinguish between Game 2.(i-1) and Game 2.i , we will build a DDH distinguisher B. Our distinguisher B inputs a DDH instance (g, g a , g b , T ) ∈ G 4 and decides whether T = g ab or T ∈ R G. To do this, B ips a random coin γ R ← {0, 1} and uses a random function R : {0, 1} i-1 → Z p , which is lazily de ned as the adversary makes queries. Using R , B de nes another random function

R : {0, 1} i → Z p as R(m[1] . . . m[i]) = R(m[1] . . . m[i -1]) m[i] = γ R(m[1] . . . m[i -1]) + R (m[1] . . . m[i -1]) m[i] = 1 -γ .
We now consider the output of MAC queries. Implicitly, B de nes x i,1-γ and y i,1-γ as x i,1-γ = x i,1-γ + θ(1 -a) • y i,1-γ and y i,1-γ = a • y i,1-γ , where x i,1γ , y i,1-γ R ← Z p . Note that the only value in public parameter that depends on x i,1-γ and y

i,1-γ is Ẑi,1-γ = ĝx i,1-γ +θ•y i,1-γ = ĝx i,1-γ +θ•y i,1-γ , so that Ẑi,1-γ is computable from (x i,1-γ , y i,1-γ ) ∈ Z 2
p . The remaining secret key components are chosen as in the real key generation algorithm, by sampling η, α, β R ← Z p ,

x i,γ , y i,γ R ← Z p and x k,b , y k,b R ← Z p for each k ∈ [L] \ {i}, b ∈ {0, 1}.
Then, B simulates the responses to MAC queries in the following way.

1. From (A = g a , B = g b , T ), B uses the random self-reducibili1ty of DDH assumption to generate a fresh pair (B m| i-1 , T m| i-1 ) for each value of

m| i-1 = m[1] . . . m[i -1] ∈ {0, 1} i-1 in such a way that, if (A, B, T ) is a DDH tuple, so is (A, B m| i-1 , T m| i-1 ). Otherwise, B m| i-1 ∈ R G and T m| i-1 ∈ R G are i.i.d.
For convenience, we may associate each string m| i-1 ∈ {0, 1} i with a tuple

(A, B m| i-1 , T m| i-1 ) = g a , g b m| i-1 , g a•b m| i-1 +e m| i-1
where either e m| i-1 = 0 or e m| i-1 ∈ R Z p . Note that the pairs (B m| i-1 , T m| i-1 ) can be sampled lazily by having B initially generate Q pairs since at most Q distinct pre xes m| i-1 can occur in all MAC queries.

2. For each message M queried by A, B randomly chooses r, d R ← Z p and computes σ in the following way.

σ 1 = h (v-θR(m[1]...m[i-1]))•r • (B r m| i • g d ) x i,m[i] +θy i,m[i] • (T r • A d ) -θy i,m[i] • (B r m| i-1 • g d ) L k=1∧k =i x k,m[k] , σ 2 = h R(m[1]...m[i-1])•r • (T r • A d ) y i,m[i] • (B r m| i-1 • g d ) L k=1∧k =i y k,m[k] , σ 3 = B r m| i-1 • g d , σ 4 = g r .
We observe that, if we set ρ = b m| i-1 • r + d, the above equations can be written as

σ 1 = h (v-θR(m[1]...m[i-1]))•r • g ρ•(x i,m[i] +θ(1-a)•y i,m[i] ) • g ρ• L k=1∧k =i x k,m[k] • g -e m| i-1 •y i,m[i] •r•θ = h (v-θ•R(m[1]...m[i-1]))•r • g ρ•x i,m[i] • g ρ• L k=1∧k =i x k,m[k] • g -e m| i-1 •y i,m[i] •r•θ σ 2 = h R(m[1]...m[i-1])•r • g ρ•a•y i,m[i] • g ρ• L k=1∧k =i y k,m[k] • g e m| i-1 •y i,m[i] •r = h R(m[1]...m[i-1])•r • g ρ•y i,m[i] • g ρ• L k=1∧k =i y k,m[k] • g e m| i-1 •y i,m[i] •r If (A, B m| i-1 , T m| i-1
), is a Di e-Hellman tuple (i.e., if e m| i-1 = 0), the output distribution is the same as in Game 2.(i-1) . In contrast, if e m| i-1 ∈ R Z p , we have

σ 1 = h (v-θ•R(m[1]...m[i]))•r • g ρ•x i,m[i] • g ρ• L k=1∧k =i x k,m[k] σ 2 = h R(m[1]...m[i])•r • g ρ•y i,m[i] • g ρ• L k=1∧k =i y k,m[k]
where the random function R : {0, 1} i → Z p is de ned using

R (m[1] . . . m[i -1]) = g e m| i-1 •y i,m[i] η .
In this case, the output distribution of the MAC oracle is identical to that of Game 2.i .

If the adversary chooses to forge on a message m [1] . . . m [L] such that m [i] = 1 -γ (which occurs with probability 1/2), then B aborts and outputs a random bit. If

m [i] = γ, we have R(m [1] . . . m [i]) = R(m [1] . . . m [i -1])
by the de nition of R. Since B knows y i,m [i] = y i,γ , it can check if

σ 2 = σ 4 η•R(m [1]...m [i-1]) • σ 3 • L k=1 y k,m [k]
and return 1 if and only if this equality is satis ed. We thus conclude that

| Pr[W 2.i ] - Pr[W 2.(i-1) ]| ≤ 2 • Adv DDH 1 (λ), as claimed.

The LAF Construction

In order to apply a hybrid argument in our proof of indistinguishability, we need to use n instances of the MAC of Section 3.4.1, each of which has its own secret key sk mac,j and its own set of public parameters pp j = g, ĝ, h, ĝθ j , ( Vj , Ẑj,0 , Ẑj,1 ) . As a result, we need an evaluation key containing Θ(n • L) group elements. We leave it as an open problem to shorter the evaluation while retaining tight security and short tags.

Key generation. LAF.Gen(1 λ ) conducts the following steps.

1. Choose asymmetric bilinear groups (G, Ĝ, G T ) of prime order p > 2 λ with generators g, h R ← G, ĝ R ← Ĝ and let η = log g (h). b. For each µ ∈ {0, 1}, choose vectors x j,µ = (x j,1,µ , . . . , x j,L,µ ) R ← Z L p and y j,µ = (y j,1,µ , . . . , y j,L,µ ) R ← Z L p .

c. Compute z j,µ = x j,µ + θ j • y j,µ and ˆ Z j,µ = ĝ z j,µ = (ĝ z j,1,µ , . . . , g z j,L,µ ) for each µ ∈ {0, 1}.

d. Choose α j , β j R ← Z p and compute Vj = ĝα j +θ j •β j . e. De ne sk mac,j = (α j , β j , x j,0 , x j,1 , y j,0 , y j,1 ).

Choose u R

← G and ĥ, û R ← Ĝ subject to the constraints log g (h) = log ĝ( ĥ) and log g (u) = log ĝ(û).

De ne

Ĥj = ( ĥj • û) α j +θ j •β j ∀j ∈ [n].
6. Output the evaluation key ek and the lossy tag generation key tk, which consist of ek := g, h, u, ĝ, ĥ, û, {ĝ

θ j } n j=1 , { ˆ Z j,µ } j∈[n],µ∈{0,1} , { Vj , Ĥj } n j=1 , hk CMH , tk := ({sk mac,j } n j=1 , η, td CMH ).
The tag space T = T c × T aux is de ned as a product of T a = {0, 1} * and

T c := {({R i , S i , D i , E i , F i } n i=1 , r hash ) | r hash ∈ R hash ∧ ∀i ∈ [n] : (R i , S i , D i , E i , F i ) ∈ G 5 ∧ e(R i , ĥi • û) = e(S i , ĝ)}.

The range of the function family is Rng

λ = G n+1 T and its domain is Z n p .
Lossy tag generation. LAF.LTag(tk, t a ) takes in an auxiliary tag component t a ∈ {0, 1} * and uses tk = ({sk mac,j } n j=1 , η) to generate a lossy tag as follows.

1. For each i ∈ [n], choose r i R ← Z p and compute

R i = g r i , S i = (h i • u) r i ∀i ∈ [n]. (3.22)
2. Choose a random string τ ∈ {0, 1} L in the range of CMhash. Then, for each i ∈ [n], choose ρ i R ← Z p and compute

D i = h α i •r i • g ρ i •( L k=1 x i,k,τ [k] ) , E i = h β i •r i • g ρ i •( L k=1 y i,k,τ [k] ) , ∀i ∈ [n]
(3.23)

F i = g ρ i .
3. Use the trapdoor td CMH of the chameleon hash function to nd random coins r hash ∈ R hash such that

τ = CMhash(hk CMH , (t a , {R i , S i , D i , E i , F i } n i=1 ), r hash ) ∈ {0, 1} L .
4. Output the tag t = (t c , t a ), where

t c = ({R i , S i , D i , E i , F i } n i=1 , r hash ).
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Each lossy tag corresponds to a matrix M i,j i,j∈[n] = e(g, ĥ) r i •(α j +θ j •β j ) i,j , which forms a rank-1 matrix in the exponent. Its diagonal entries consist of

M i,i = e(D i , ĝ) • e(E i , ĝθ i ) e(F i , L k=1 Ẑi,k,τ[k] )
= e(g, ĥ)

r i •(α i +θ i •β i ) ∀i ∈ [n], (3.24) 
while its non-diagonal entries

M i,j = e(R i , Ĥj ) e(S i , Vj ) 1/(j-i) (3.25)
= e(g, ĥ)

r i •(α j +θ j •β j ) ∀(i, j) ∈ [n] × [n] \ {(i, i)} n i=1
, are obtained by pairing tag component (R i , S i ) with evaluation key components ( Vj , Ĥj ).

Random Tags. A random tag can be publicly sampled as follows.

1. For each i ∈ [n], choose r i R ← Z p and compute {R i , S i } n i=1 as in (3.22). 2. For each i ∈ [n], choose (D i , E i , F i ) R ← G 3 uniformly at random. 3. Choose r hash R ← R hash .
Output the tag t = (t c , t a ), where

t c = ({R i , S i , D i , E i , F i } n i=1 , r hash ).
We note that, in both random and lossy tags, we have e(R i , ûi • ĥ) = e(S i , ĝ) for all i ∈ [n], so that elements of T are publicly recognizable.

Evaluation. LAF.Eval(ek, t, x) takes in the input x ∈ Z n p and the tag t = (t c , t a ). It parses t c as ({R i , S i , D i , E i , F i } n i=1 , r hash ) and does the following. 1. Return ⊥ if there exists i ∈ [n] such that e(R i , ĥi • û) = e(S i , ĝ).

Compute the matrix M

i,j i,j∈[n] ∈ G n×n T as M i,i = e(D i , ĝ) • e(E i , ĝθ i ) e(F i , L k=1 Ẑi,k,τ[k] ) ∀i ∈ [n] , (3.26) 
where τ = CMhash(hk CMH , (t a , {R i , S i , D i , E i , F i } n i=1 ), r hash ) ∈ {0, 1} L , and

M i,j = e(R i , Ĥj ) e(S i , Vj ) 1/(j-i) ∀(i, j) ∈ [n] × [n] \ {(i, i)} n i=1 , (3.27) 
Since R i = g r i and S i = (h i • u) r i for some r i ∈ Z q , we have

M i,i = e(g, ĥ) r i •(α i +θ i •β i )+ω i , ∀i ∈ [n] (3.28)
M i,j = e(g, ĥ) r i •(α j +θ j •β j ) , ∀i = j, for some vector (ω 1 , . . . , ω n ) ∈ Z n p that only contains non-zero entries if t = (t c , t a ) is injective.

3. Compute the vector V T,j j∈[n] as V T,j = e(h, Vj ) = e(g, ĥ) α j +θ j •β j for each j ∈ [n].

Use the input

x = (x 1 , . . . , x n ) ∈ Z n p to compute Y 0 = n j=1 V x j T,j (3.29) 
Y i = n j=1 M x j i,j ∀i ∈ [n] and output Y = (Y 0 , Y 1 , . . . , Y n ) ∈ G n+1 T .
The lossiness/injectivity properties can be analyzed exactly in the same way as in the construction of Section 3.3. Indeed, by de ning v j = α j + θ j • β j for each j ∈ [n], we nd that { V } n j=1 and (M ij ) i,j∈[n] are distributed as in Section 3.3.

Security

Theorem 3.7. The above LAF provides indistinguishability assuming that the wD3DH1 assumption holds in (G, Ĝ, G T ) and that the DDH assumptions holds in G. The advantage of any PPT distinguisher A making Q queries within time t A is bounded by

Adv indist (λ) ≤ n • (Adv wD3DH1 B 1 (λ) + Adv DDH 1 B 2 (λ)) for PPT algorithm B 1 , B 2 running in time t A + Q • poly(λ).
Proof. We de ne a sequence of hybrid games. In Game 0 , the adversary has access to the real oracle LAF.LTag(tk, .) oracle that always outputs lossy tags. In Game n , the adversary is given access to an oracle O Tc (.) that always outputs random tags in the tag space T .

Game ξ ' (1 ≤ ξ ≤ n):
The adversary interacts with an oracle LAF.LTag ( ,k) (tk, .) that outputs tags t = (t c , t a ) with the following hybrid distribution. In the core component

t c = ({R i , S i , D i , E i , F i } n i=1 , r hash ), the rst ξ -1 tuples {(R i , S i , D i , E i , F i )} ξ i=1 of t c are random group elements satisfying the equality e(R i , ĥi • û) = e(S i , ĝ). The last n -ξ tuples {(R i , S i , D i , E i , F i )} n
i=ξ+1 are generated exactly as in lossy tags. The ξ-th tuple (R ξ , S ξ , D ξ , E ξ , F ξ ) has a special distribution where e(R ξ , ĥξ • û) = e(S ξ , ĝ), D ξ is completely random in G and

E ξ = h β ξ •log g (R ξ ) • g ρ ξ • L k=1 y ξ,k,τ [k] , F ξ = g ρ ξ Game ξ (1 ≤ ξ ≤ n):
The adversary interacts with an oracle LAF.LTag ( ,k) (tk, .) that outputs t = (t c , t a ) such that the rst ξ tuples

{(R i , S i , D i , E i , F i )} ξ i=1 of t c are random subject to the constraint e(R i , ĥi • û) = e(S i , ĝ) while {(R i , S i , D i , E i , F i )} n
i=ξ+1 are generated as in lossy tags.

For each index ξ ∈ [n], Lemma 3.8 shows that Game ξ is computationally indistinguishable from Game ξ-1 if the R-wD3DH1 assumption holds. In a second step, Lemma 3.9 shows that Game ξ is indistinguishable from Game ξ under the DDH assumption in G. By applying Lemma 2.1, we obtain that the scheme provides indistinguishability under tight reductions from the hardness of wD3DH1 and that of the DDH problem in G.

Lemma 3.8. Game ξ is computationally indistinguishable from Game ξ-1 under the R-wD3DH1 assumption. The advantage of any PPT distinguisher between the two games can be bounded by Adv ξ -(ξ-1) (λ) ≤ Adv R-wD3DH1 (λ).

Proof. Let us assume that there exists ξ ∈ [n] such that the adversary A can distinguish Game ξ from Game ξ-1 with non-negligible advantage. We build a R-wD3DH1 distinguisher B that takes as input {(g, ĝ, g a i , g b , g c , ĝb , ĝc , T i )} Q i=1 with the goal of deciding if

T i = g a i bc for each i ∈ [Q] or if {T i } Q
i=1 are all independent and uniformly distributed over G. To this end, B de nes h = g b , ĥ = ĝb . It also picks θ ξ , β ξ R ← Z p uniformly and sets

ĝθ ξ = (ĝ b ) θ ξ , Vξ = (ĝ) c • ĝθ ξ •β ξ ,
which implicitly de nes

α ξ = c, β ξ = β ξ /b, θ ξ = b • θ ξ .
It chooses ν R ← Z p and de nes û = ĥ-ξ • ĝν as well as u = h -ξ • g ν . This allows de ning

Ĥξ = ( ĥξ • û) c+θ ξ •β ξ = ( Vξ ) ν ,
For all indexes j ∈ [n] \ {ξ}, it chooses α j , β j , θ j R ← Z p and faithfully computes Vj = ĝα j +θ j •β j and Ĥj = ( ĥj • û) α j +θ j •β j .

Then, it constructs the MAC secret keys { x j,µ , y j,µ } n j=1 for randomly chosen vectors x j,µ = (x j,1,µ , . . . , x j,L,µ ) R ← Z L p , y j,µ = (y j,1,µ , . . . , y j,L,µ ) R ← Z L p . For each j ∈ [n], it de nes ˆ Y j,µ = ( Ŷj,1,µ , . . . , Ŷj,L,µ ) = ĝ y j,µ , Y j,µ = (Y j,1,µ , . . . , Y j,L,µ ) = g y j,µ ˆ X j,µ = ( Xj,1,µ , . . . , Xj,L,µ ) = ĝ x j,µ , X j,µ = (X j,1,µ , . . . , X j,L,µ ) = g x j,µ .

Then, it computes

ˆ Z j,µ = ˆ X j,µ • ˆ Y θ j j,µ ∀j ∈ [n] \ {ξ} ˆ Z ξ,µ = ˆ X ξ,µ • (ĝ b ) y ξ,µ •θ ξ
At the t-th invocation of the LAF.LTag(tk, .) oracle, B sets

R ξ = g at , S ξ = (g at ) ν = (h ξ • u) at ,
where g at is fetched from the t-th input tuple (g, ĝ, g at , g b , g c , ĝb , ĝc , T t ). For all indexes i = ξ, it chooses r 1 , . . . , r ξ-1 , r ξ+1 , . . . , r n R ← Z p and sets

R i = g r i , S i = (h i • u) r i ∀i ∈ [n] \ {ξ}.

It generates the triples {D

i , E i , F i } n i=1 by choosing (D i , E i , F i ) R ← G 3 at random for each i ∈ [ξ -1]. The ξ-th triple (D k , E k , F k ) is de ned as D ξ = T t • L k=1 Ŷξ,k,τ[k] ρ ξ , E ξ = (g at ) β ξ • L k=1 Ŷξ,k,τ[k] ρ ξ , F ξ = g ρ ξ .
for a randomly chosen ρ ξ R ← Z p and τ R ← {0, 1} L . As for {D i , E i , F i } n i=ξ+1 , they are obtained by choosing choosing ρ i , r i R ← Z p before setting

D i = (g b ) α i •r i L k=1 X ξ,k,τ [k] ρ i , E i = (g b ) β i •r i L k=1 Y ξ,k,τ [k] ρ i , F i = g ρ i .
Then, it uses the trapdoor td CMH of the chameleon hash function to nd coins r hash ∈ R hash such that τ = CMhash(hk CMH , (t a , {R i , S i , D i , E i , F i } n i=1 ), r hash ). It is easy to see that, if T t = g atbc , the triple (D ξ , E ξ , F ξ ) can be written

D ξ = h α ξ •r ξ • L k=1 Xξ,k,τ[k] ρ ξ , E ξ = h β ξ •r ξ • L k=1 Ŷξ,k,τ[k] ρ ξ F ξ = g ρ ξ ,
meaning that A's view is the same as in Game ξ-1 . In contrast, if T t ∈ R G, it can be written T t = g atbc+zt for some uniformly random z t ∈ R Z p . In this case, (D ξ , E ξ , F ξ ) can be written

D ξ = h zt+α ξ •r ξ • L k=1 Xξ,k,τ[k] ρ ξ , E ξ = h β ξ •r ξ • L k=1 Ŷξ,k,τ[k] ρ ξ , F ξ = g ρ ξ ,
for some random z t ∈ R Z p that does not appear anywhere else. In this case, A's view corresponds to Game ξ .

Chapter 3. Lossy Algebraic Filters With Short Tags Lemma 3.9. Game ξ is computationally indistinguishable from Game ξ under the DDH assumption in G. The advantage of any PPT distinguisher between the two games can be bounded by Adv ξ-ξ (λ) ≤ Adv DDH 1 (λ).

Proof. We assume that there exists ξ ∈ [n] such that A can tell apart Game ξ from Game ξ with noticeable advantage. We build a distinguisher B that takes as input Q tuples {(g, g a i , g

a i •b , g b , T i )} Q i=1 in G 5 with the goal of deciding if T i = g a i b for each i ∈ [Q] or if {T i } Q
i=1 are independent and uniformly distributed over G. This assumption is known (see, e.g., [NR97, Lemma 4.4]) to have a tight reduction from the DDH assumption.

To this end, B de nes h = g η , ĥ = ĝη for a random η R ← Z p . It also computes ĝθ ξ for a randomly chosen θ ξ R ← Z p . Then, it picks v ξ R ← Z p uniformly and sets Vξ = ĝv ξ .

Implicitly, B will de ne

β ξ = b, α ξ = v ξ -b • θ ξ
although it does not know (α ξ , β ξ ). It chooses û ∈ Ĝ and u ∈ G by setting u = g ν and û = ĝν for a random ν R ← Z p . Then, B de nes

Ĥξ = ( ĥξ • û) v ξ .
For all indexes j ∈ [n] \ {ξ}, it chooses α j , β j , θ j R ← Z p and faithfully computes Vj = ĝα j +θ j •β j and

Ĥj = ( ĥj • û) α j +θ j •β j .
Then, it constructs the MAC secret keys { x j,µ , y j,µ } n j=1 by for randomly chosen vectors x j,µ = (x j,1,µ , . . . , x j,L,µ ) R ← Z L p , y j,µ = (y j,1,µ , . . . , y j,L,µ ) R ← Z L p . For each j ∈ [n], it de nes ˆ Y j,µ = ( Ŷj,1,µ , . . . , Ŷj,L,µ ) = ĝ y j,µ , Y j,µ = (Y j,1,µ , . . . , Y j,L,µ ) = g y j,µ ˆ X j,µ = ( Xj,1,µ , . . . , Xj,L,µ ) = ĝ x j,µ , X j,µ = (X j,1,µ , . . . , X j,L,µ ) = g x j,µ .

Then, it computes

ˆ Z j,µ = ˆ X j,µ • ˆ Y θ j j,µ ∀j ∈ [n].
For each t ∈ [Q], the t-th invocation of the LAF.LTag(tk, .) oracle is handled by setting

R ξ = g at , S ξ = (g at ) η•ξ+ν = (h ξ • u) at ,
where g at is fetched from the t-th input tuple (g, g at , g at•b , g b , T t ). For all indexes i = ξ, it chooses r 1 , . . . , r ξ-1 , r ξ+1 , . . . , r n R ← Z p and sets

R i = g r i , S i = (h i • u) r i ∀i ∈ [n] \ {ξ}.

It generates the triples {D

i , E i , F i } n i=1 by choosing (D i , E i , F i ) R ← G 3 at random for each i ∈ [ξ -1]. The ξ-th triple (D k , E k , F k ) is de ned by sampling D ξ R ← G uniformly and setting E ξ = T η t • L k=1 Ŷξ,k,τ[k] ρ ξ , F ξ = g ρ ξ .
for randomly chosen ρ ξ R ← Z p and τ R ← {0, 1} L . As for {D i , E i , F i } n i=ξ+1 , they are obtained by choosing choosing ρ i , r i R ← Z p before setting

D i = h α i •r i L k=1 X ξ,k,τ [k] ρ i , E i = h β i •r i L k=1 Y ξ,k,τ [k] ρ i , F i = g ρ i .
Then, it uses the trapdoor td CMH of the chameleon hash function to obtain coins r hash ∈ R hash such that τ = CMhash(hk CMH , (t a , {R i , S i , D i , E i , F i } n i=1 ), r hash ). We observe that, if

T t = g at•b for each t ∈ [Q], the triples (D ξ , E ξ , F ξ ) are distributed as D ξ ∈ R G, E ξ = h β ξ •log g (R ξ ) • L k=1 Ŷξ,k,τ[k] ρ ξ F ξ = g ρ ξ ,
so that A's view is the same as in Game ξ . In contrast, if T t ∈ R G, it can be written T t = g atb+zt for some uniformly random z t ∈ R Z p that does not appear anywhere else. In this case, (D ξ , E ξ , F ξ ) is just a triple of uniformly random group elements, meaning that A's view is the same as in Game ξ .

Theorem 3.10. The above LAF provides evasiveness under the SXDH and wD3DH1 assumptions, assuming that CMH is a collision-resistant chameleon hash function. Namely, for any PPT evasiveness adversary, there exist e cient algorithms B 0 , B 1 , B 2 , B 3 with comparable running time and such that

Adv A,eva Q ≤ Adv CMH-CR B 0 (λ) + n • Adv wD3DH1 B 1 (λ) +n • Adv DDH 2 B 2 (λ) + 2n • (1 + L) • Adv DDH 1 B 3 (λ),
Proof. Let us assume that a PPT adversary A can break the evasiveness property with noticeable advantage. We show that this contradicts either: (i) The indistinguishability of the scheme; (ii) The collision-resistance of the chameleon hash function; (iii) The SXDH assumption. We will prove this claim via a sequence of hybrid games:

In Game 0 , the challenger interacts with the adversary A as in the real evasiveness experiment. In the nal game, we show that, if the adversary can output lossy tag with non-negligible probability, we can create an PPT algorithm breaks SXDH assumption with noticeable advantage.

For each i, we denote by bad i , the event A manages to output a non-trivial lossy tag in Game i .

Game 0 : In this game, the adversary A has access to two oracles: (i) the lossy tag generation oracle LAF.LTag(tk, •) that always outputs lossy tags; (ii) the lossy tag veri cation oracle LAF.IsLossy(•) that uses a trapdoor to decide if a tag is lossy or injective. By de nition.

Pr[bad 0 ] = Pr[A(1 λ , ek) LAF.LTag(tk,•),LAF.IsLossy(•) ].

(3.30)

Game 1 : In this game, we de ne bad hash to be the event that the adversary A manages to output a tag t = (t a , t c = ({R i , S i , D i , E i , F i } n i=1 , r hash )) for which the corresponding chameleon hash collides with that of some tags produced by the oracle LAF.LTag(tk, •). The only di erence between Game 0 and Game 1 is that the latter aborts when bad hash occurs. It is straightforward that 

| Pr[bad 1 ] -Pr[bad 0 ]| = Pr[bad hash in Game 1 ]. ( 3 
| Pr[bad hash in Game 1 ] -Pr[bad hash in Game 1 ]| ≤ n • (Adv R-wD3DH1 B 1 (λ) + Adv DDH 1 B 2 (λ)).
Since Game 0 and Game 1 only di er when bad hash occurs in Game 1 , we can bound to probability (3.31) as

| Pr[bad 1 ] -Pr[bad 0 ]| = Pr[bad hash in Game 1 ] ≤ Pr[bad hash in Game 1 ] (3.32) +n • (Adv R-wD3DH1 B 1 (λ) + Adv DDH 1 B 2 (λ)).
Since the trapdoor td CMH is never been used in Game 1 , a straightforward reduction shows that Pr[bad has in Game 1 '] ≤ Adv CR CMH (λ).

We now prove that, if event bad 1 occurs with noticeable probability, we can construct a PPT adversary B that breaks the unforgeability of the MAC of Section 3.4.1. As this property is proven by Theorem 3.4 under SXDH assumption, this will conclude the proof.

Our MAC adversary B will simulate Game 1 using the access to MAC oracle and MAC veri cation oracle. Algorithm B receives as input MAC public parameters

pp = ((G, Ĝ, G T ), g, ĝ, h, ĝθ , ( V , ˆ Z 0 , ˆ Z 1 )).
As mentioned in Game 0 of the proof for Lemma 3.4, B additionally obtain the discrete logarithm η = log g (h) from the MAC challenger, which will allow it to simulate the LAF.IsLossy oracle in the evasiveness experiment. Then, B extends these public parameters into public key of a LAF public key. To this end, B randomly guesses the position i R ← [n] of the MAC forgery in the non-injective tag it is expected to produce and sets

pp i = ((G, Ĝ, G T ), g, ĝ, h, ĝθ , ( V , ˆ Z 0 , ˆ Z 1 ))
using the public parameters pp obtained from its challenger. Next, for all i ∈ [n]\{i }, B sets ĥ = ĝη and generates n -1 keys ({pp i , sk mac,i )} i∈[n]\{i } for the MAC of Section 3.4.1 which all share the same g, h ∈ G and ĝ ∈ Ĝ. For each i ∈ [n] \ {i }, the i-th set of MAC public parameters thus consist of

pp i = ((G, Ĝ, G T ), g, ĝ, h, ĝθ i , ( Vi , ˆ Z i,0 , ˆ Z i,1
)).

To complete the generation the LAF evaluation key, B chooses a R ← Z p , which is used to set u = g a and û = ĝa . In addition,

B computes Ĥi = ( V i•η i • V a i ) for all i ∈ [n].
It also chooses a key pair (hk CMH , td CMH ) for the chameleon hash function CMH and includes hk CMH in the LAF evaluation key.

To simulate the generation of lossy tags at each LAF.LTag-query t a made by A, B forwards t a to its challenger and obtains a MAC (R i , D i , E i , F i ) of the message t a . Then, B computes on its own n -

1 MACs {(R i , D i , E i , F i )} i∈[n]\{i } using the secret MAC keys {sk mac,i } i∈[n]\{i } . For all i ∈ [n], B also computes S i = R η•i+a i
. It nally uses the trapdoor of the chameleon hash function to generate r hash such that

τ = CMhash(hk CMH , (t a , {R i , S i , D i , E i , F i } n i=1 ), r hash ) ∈ {0, 1} L
and returns t = (t a , t c = ({R i , S i , D i , E i , F i } n i=1 , r hash )) to A. In order to simulate the LAF.IsInjective oracle for an input tag t = (t a , t c ) containing t c = ({R i , S i , D i , E i , F i } n i=1 , r hash ), B computes the chameleon hash τ = CMhash(hk CMH , (t a , {R i , S i , D i , E i , F i } n i=1 ), r hash ).

It then uses η to run the MAC veri cation oracle and check that (R i , D i , E i , F i ) is a valid MAC. Since B also knows sk mac,i for all i ∈ [n]\{i }, it can e ciently check that

{(R i , D i , E i , F i )} i∈[n]
\{i } are all valid MACs of t a . If all the MACs are valid, B also checks that for all i ∈ [n],

S i = R η•i+a i . If there exists i ∈ [n] such that S i = R η•i+a i
, B returns ⊥ to indicate that t does not belong to the space T of valid tags. Finally, B outputs 0 (meaning that the tag t is non-injective) if it contains at least one valid MAC. If the n MACs contained in t c are all invalid and S i = R η•i+a i for all i ∈ [n], it outputs 1 meaning that the tag is injective.

It remains to show how B can extract a MAC forgery when bad 1 occurs in Game 1 . Namely, we assume that B outputs a non-injective tag

t = (t a , t c = ({R i , S i , D i , E i , F i } n i=1 , r hash ))
for which τ = CMhash(hk CMH , (t a , {R i , S i , D i , E i , F i } n i=1 ), r hash ) ∈ {0, 1} L has never been queried to LAF.LTag. Since B only queries the MAC oracle in the simulation of Chapter 3. Lossy Algebraic Filters With Short Tags LAF.LTag, τ has never been queried to MAC oracle. Since t is non-injective, the tuples {(R i , S i , D i , E i , F i )} n i=1 must contain at least one valid MAC. If (R i , D i , E i , F i ) is a valid MAC (which occurs with probability 1/n since i was chosen uniformly and independently of the adversary's view), B can successfully break the unforgeability of MAC by outputting (R i , D i , E i , F i ). We thus have

Pr[bad 1 ] ≤ n • Adv uf-mac A (λ) ≤ n • (Adv DDH 2 B 1 (λ) + 2L • Adv DDH 1 B 2 (λ)).
Putting the above arguments altogether, we obtain

Adv A,eva Q ≤ Adv CMH-CR B 0 (λ) + n • (Adv R-wD3DH1 B 1 (λ) + Adv DDH 1 B 3 (λ) +Adv DDH 2 B 2 (λ) + 2L • Adv DDH 1 B 3 (λ)) = Adv CMH-CR B 0 (λ) + n • Adv R-wD3DH1 B 1 (λ) (3.33) +n • Adv DDH 2 B 2 (λ) + n • (1 + 2L) • Adv DDH 1 B 3 (λ).
By applying Lemma 2.1, we obtained the stated upper bound.

Part II.

Homomorphic encryptions and zero-knowledge arguments

N n-interactive zero-knowledge (NIZK) proof systems have been introduced by Blum, Feldman and Micali [START_REF] Blum | Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract)[END_REF] and allow a prover to prove membership of an NP language without interactions. They can be used to convince anybody that a statement belongs to the language and their zero-knowledge property ensures that a proof reveals nothing beyond the membership of the language. NIZK proof systems are essential building blocks for many more complex cryptographic protocols, such as ring-signatures [START_REF] Rivest | How to Leak a Secret[END_REF], group signatures [START_REF] Chaum | Group Signatures[END_REF], voting schemes [START_REF] Damgård | A Generalisation, a Simpli cation and Some Applications of Paillier's Probabilistic Public-Key System[END_REF].

• The rst chapter gives the rst ring signature construction under DDH assumption achieving both tightly security and logarithmic-size property using a zero-knowledge proof as building blocks, corresponds to the following paper published at ESORICS2018 by Benoît Libert, Thomas Peters, Chen Qian [LPQ18]: Logarithmic-Size Ring Signatures With Tight Security from the DDH Assumption.

• The second chapter provides a new construction of lattice-based designated-veri er zero-knowledge argument systems. As application, we also constructed a lattice-based voting scheme without random oracle. This work is in submission by Pierre-Alain Fouque, Chen Qian, and Adeline Roux-Langlois. As introduced by Rivest, Shamir and Tauman [START_REF] Rivest | How to Leak a Secret[END_REF], ring signatures make it possible for a signer to sign messages while hiding his identity within an ad hoc set of users, called a ring, that includes himself. To this end, the signer only needs to know the public keys of all ring members (besides his own secret key) in order to generate an anonymous signature on behalf of the entire ring. Unlike group signatures [START_REF] Chaum | Group Signatures[END_REF], ring signatures do not require any setup, coordination or registration phase and neither do they involve a tracing authority to de-anonymize signatures. Whoever has a public key can be appointed as a ring member without being asked for his agreement or even being aware of it. Moreover, signatures should ideally provide everlasting anonymity and carry no information as to which ring member created them. The main motivation of ring signatures is to enable the anonymous leakage of secrets, by concealing the identity of a source (e.g., a whistleblower in a political scandal) while simultaneously providing guarantees of its reliability.

Table of Contents

In this paper, we consider the exact security of ring signatures in the random oracle model [START_REF] Bellare | Random Oracles are Practical: A Paradigm for Designing E cient Protocols[END_REF]. So far, the only known solutions with logarithmic signature length [GK15; LLNW16] su ered from loose reductions: the underlying hard problem could only be solved with a probability smaller than the adversary's advantage by a linear factor in the number of hash queries. Our main result is to give the rst construction that simultaneously provides tight security -meaning that there is essentially no gap between the adversary's probability of success and the reduction's advantage in solving a hard problem -and logarithmic signature size in the number of ring members. In particular, the advantage of our reduction is not multiplicatively a ected by the number Q H of random oracle queries nor the number of Q V of public veri cation keys in a ring.

O C

. We describe the rst logarithmic-size ring signatures with tight security proofs in the random oracle model. The unforgeability of our construction is proved under the standard Decision Di e-Hellman (DDH) assumption in groups without a bilinear map while anonymity is achieved against unbounded adversaries. Our security proof eliminates both the linear gap in the number of random oracle queries and the Θ(Q V ) security loss. It thus features a f ully tight reduction, meaning that -up to statistically negligible terms -the reduction's advantage as a DDH distinguisher is only smaller than the adversary's forging probability by a factor 2. To our knowledge, our scheme is the rst ring signature for which such a fully tight reduction is reported. It is obtained by tweaking a construction due to Groth and Kohlweiss [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] and achieves tight security at the expense of increasing the number of scalars and group elements per signature by a small constant factor. For the same exact security, our reduction allows smaller key sizes which essentially decrease the signature length of [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] by a logarithmic factor n in the cardinality N of the ring and the time complexity by a factor ω(n 2 ). For rings of cardinality N = 2 6 , for example, our signatures can be 36 times faster to compute and 6 times shorter than [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF]. O T

. Our scheme builds on the Groth-Kohlweiss proof system [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] that allows proving that one-out-of-N commitments opens to 0 with a communication complexity O(log N ). This proof system was shown to imply logarithmic-size ring signatures with perfect anonymity assuming that the underlying commitment scheme is perfectly hiding. At the heart of the protocol of [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] is a clever use of a Σ-protocol showing that a committed value is 0 or 1, which proceeds in the following way. In order to prove that a commitment C ∈ { C i } N -1 i=0 opens to 0 without revealing the index ∈ {0, . . . , N -1}, the n-bit indexes j of the binary representation 1 . . . n ∈ {0, 1} n of ∈ {0, . . . , N -1} are committed to and, for each of them, the prover uses the aforementioned Σ-protocol to prove that j ∈ {0, 1}. The response f j = a j + j x of the Σ-protocol is then viewed as a degree-one polynomial in the challenge x ∈ Z q and used to de ne polynomials

P i [Z] = n j=1 f j,i j = δ i, • Z n + n-1 k=0 p i,k • Z k ∀i ∈ [N ],
where f j,0 = f j and f f,1 = x -f j , which have degree n = log N if i = and degree n -1 otherwise. In order to prove that one of the polynomials {P i [Z]} N -1 i=0 has degree n without revealing which one, Groth and Kohlweiss [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] homomorphically compute the commitment N -1 i=0 C

P i (x) i
and multiply it with n-1 k=0 C -x k d k , for auxiliary homomorphic commitments

{ C d k = N -1 i=0 C p i,k i } n-1 k=0
, in order to cancel out the terms of degree 0 to n -1 in the exponent. Then, they prove that the product N -1 i=0 C

P i (x) i • n-1 k=0 C -x k d k
is indeed a commitment of 0. The soundness of the proof relies on the Schwartz-Zippel lemma, which ensures that N -1 i=0 C

P i (x) i • n-1 k=0 C -x k d k
is unlikely to be a commitment to 0 if C is not. As an application of their proof system, Groth and Kohlweiss [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] obtained logarithmicsize ring signatures from the discrete logarithm assumption in the random oracle model. While e cient and based on a standard assumption, their scheme su ers from a loose security reduction incurred by the use of the Forking Lemma [START_REF] Pointcheval | Security Proofs for Signature Schemes[END_REF]. In order to extract a discrete logarithm from a ring signature forger, the adversary has to be run n = log N times with the same random tape (where N is the ring cardinality), leading to a reduction with advantage ε

≈ ε n Q V •Q H ,
where Q H is the number of hash queries and Q V is the number of public keys. This means that, if we want to increase the key size so as to compensate for the concrete security gap, we need to multiply the security parameter by a factor n = log N , even without taking into account the factors Q H and Q V .

In our pursuit of a tight reduction, a rst idea is to apply the lossy identi cation paradigm [KW03; AFLT12] where the security proofs proceed by replacing a well-formed public key by a so-called lossy public key, with respect to which forging a signature becomes statistically impossible. In particular, the DDH-based instantiation of Katz and Wang [START_REF] Katz | E ciency improvements for signature schemes with tight security reductions[END_REF] 4.1. Introduction 59 appears as an ideal candidate since, somewhat analogously to [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF], well-formed public keys can be seen as homomorphic Elgamal encryptions of 0. However, several di culties arise when we try to adapt the techniques of [KW03; AFLT12] to the ring signature setting. The rst one is that the Groth-Kohlweiss ring signatures [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] rely on perfectly hiding commitments in order to achieve unconditional anonymity whereas the Elgamal encryption scheme is a perfectly binding commitment. This fortunately leaves us the hope for computational anonymity if we trade the perfectly hiding commitments for Elgamal encryptions. A second di culty is to determine which public keys should be replaced by lossy keys in the reduction. At each public key generation query, the reduction has to decide if the newly generated key will be lossy or injective. Replacing all public keys by lossy keys is not possible because of corruptions (indeed, lossy public keys have no underlying secret key) and the reduction does not know in advance which public keys will end up in the target ring R of the forgery. Only replacing a randomly chosen key by a lossy key does not work either: indeed, in the ring signature setting, having one lossy public key P K † in the target ring R does not prevent an unbounded adversary from using the secret key of a well-formed key P K ∈ R \ {P K † } to create a forgery. Moreover, as long as the reduction can only embed the challenge (injective or lossy) key in one output of the key generation oracle, it remains stuck with an advantage Θ(ε/Q V ) if the forger has advantage ε. Arguably, this bound is the best we can hope for by directly applying the lossy identi cation technique.

To obtain a fully tight reduction, we depart from the lossy identi cation paradigm [START_REF] Abdalla | Tightly-Secure Signatures from Lossy Identi cation Schemes[END_REF] in that, instead of tampering with one user's public keys at some step, our security proof embeds a DDH instance in the public parameters pp of the scheme. This allows the reduction to have all users' private keys at disposal and reveal them to the adversary upon request. In the real system, the set pp contains uniformly random group elements (g, h, g, h, U, V ) ∈ G 6 and each user's public key consists of a pair (X, Y ) = (g α •h β , gα • hβ ), where (α, β) ∈ Z 2 q is the secret key. The idea of the security proof is that, if (g, h, g, h) ∈ G 4 is not a Di e-Hellman tuple, the public key P K = (X, Y ) uniquely determines (α, β) ∈ Z 2 q . In the case h = glog g (h) , the public key (X, Y ) is compatible with q equally likely pairs (α, β) since it only reveals the information log g (X) = α + log g (h) • β.

The reduction thus builds a DDH distinguisher by forcing the adversary's forgery to contain a committed encoding Γ = U α • V β of the signer's secret key (α, β) ∈ Z 2 q , which can be extracted using some trapdoor information. So long as (U, V ) is linearly independent of (g, h), the encoding Γ = U α • V β is independent of the adversary's view if (g, h, g, h) is a Di e-Hellman tuple. In contrast, this encoding is uniquely determined by the public key if h = glog g (h) . This allows the reduction to infer that (g, h, g, h) is a Di e-Hellman tuple whenever it extracts Γ = U α • V β from the adversary's forgery. To apply this argument, however, we need to make sure that signing queries do not leak any more information about (α, β) than the public key P K = (X, Y ) does. For this purpose, we resort to lossy encryption schemes [START_REF] Bellare | Possibility and Impossibility Results for Encryption and Commitment Secure under Selective Opening[END_REF] (a.k.a. dual-mode encryption/commitments [GS08; PVW08]), which can either behave as perfectly hiding or perfectly binding commitments depending on the distribution of the public key. In each signature, we embed a lossy encryption

(T 0 , T 1 ) = (g θ 1 • h θ 2 , U α • V β • H θ 1 1 • H θ 2 2 ) of Γ = U α • V β
, which is computed using the 60 Chapter 4. Logarithmic-Size Ring Signatures With Tight Security from the DDH Assumption DDH-based lossy encryption scheme of [START_REF] Bellare | Possibility and Impossibility Results for Encryption and Commitment Secure under Selective Opening[END_REF]. If (H 1 , H 2 ) ∈ G 2 is linearly independent of (g, h), then (T 0 , T 1 ) perfectly hides Γ. At the same time, the reduction should be able to extract Γ from (T 0 , T 1 ) in the forgery. To combine these seemingly con icting requirements, we derive (H 1 , H 2 ) from a (pseudo-)random oracle which is programmed to have (H 1 , H 2 ) = (g γ , h γ ), for some γ ∈ R Z q , in the adversary's forgery and maintain the uniformity of all pairs (H 1 , H 2 ) ∈ G 2 in all signing queries. By doing so, the witness indistinguishability of the Groth-Kohlweiss Σ-protocol [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] implies that the adversary only obtains a limited amount of information from uncorrupted users' private keys. While the above information theoretic argument is reminiscent of the security proof of Okamoto's identi cation scheme [START_REF] Okamoto | Provably Secure and Practical Identi cation Schemes and Corresponding Signature Schemes[END_REF], our proof departs from [START_REF] Okamoto | Provably Secure and Practical Identi cation Schemes and Corresponding Signature Schemes[END_REF] in that we do not rewind the adversary as it would not enable a tight reduction. R W . The concept of ring signatures was coined by Rivest, Shamir and Tauman [START_REF] Rivest | How to Leak a Secret[END_REF] who gave constructions based on trapdoor functions and proved their security in the ideal cipher model. They also mentioned di erent realizations based on proofs of partial knowledge [START_REF] Cramer | Proofs of Partial Knowledge and Simpli ed Design of Witness Hiding Protocols[END_REF]. The latter approach was extended by Abe et al. [START_REF] Abe | 1-out-of-n Signatures from a Variety of Keys[END_REF] to support rings containing keys from di erent underlying signatures and assumptions. Bresson, Stern and Szydlo [START_REF] Bresson | Threshold Ring Signatures and Applications to Ad-hoc Groups[END_REF] modi ed the scheme of Rivest et al. [START_REF] Rivest | How to Leak a Secret[END_REF] so as to prove it secure in the random oracle model.

In 2006, Bender, Katz and Morselli [START_REF] Bender | Ring Signatures: Stronger De nitions, and Constructions Without Random Oracles[END_REF] provided rigorous security de nitions and theoretical constructions without random oracles. In the standard model, the rst e cient instantiations were put forth by Shacham and Waters [START_REF] Shacham | E cient Ring Signatures Without Random Oracles[END_REF] in groups with a bilinear map. Brakerski and Tauman-Kalai [START_REF] Brakerski | A Framework for E cient Signatures, Ring Signatures and Identity Based Encryption in the Standard Model[END_REF] gave alternative constructions based on lattice assumptions. Meanwhile, Boyen [START_REF] Boyen | Mesh Signatures[END_REF] suggested a generalization of the primitive with standard-model instantiations.

The early realizations [RST01; BSS02] had linear size in the cardinality of the ring. Dodis et al. [START_REF] Dodis | Anonymous Identi cation in Ad Hoc Groups[END_REF] mentioned constant-size ring signatures as an application of their anonymous ad hoc identi cation protocols. However, their approach requires a setup phase where an RSA modulus is generated by some trusted entity. Chase and Lysyanskaya [START_REF] Chase | On Signatures of Knowledge[END_REF] suggested a similar construction of constant-size ring signatures from cryptographic accumulators [START_REF] Cohen | One-Way Accumulators: A Decentralized Alternative to Digital Sinatures (Extended Abstract)[END_REF]. However, e ciently instantiating their construction requires setupfree accumulators which are compatible with zero-knowledge proofs. The hash-based accumulators of [BLL00; CHKO08] would not provide e cient solutions as they would incur proofs of knowledge of hash function pre-images. While the lattice-based construction of [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signatures and Group Signatures Without Trapdoors[END_REF] relies on hash-based accumulators, its security proof is not tight and its e ciency is not competitive with discrete-logarithm-based techniques. Sander's number-theoretic accumulator [START_REF] Sander | E cient Accumulators without Trapdoor Extended Abstracts[END_REF] is an alternative candidate to instantiate [START_REF] Chase | On Signatures of Knowledge[END_REF] without a setup phase. However, it is not known to provide practical protocols: as observed in [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF], it would involve much larger composite integers than standard RSA moduli (besides zero-knowledge proofs for double discrete logarithms). Moreover, it is not clear how it would be compatible with tight security proofs.

Chandran, Groth and Sahai [START_REF] Chandran | Ring Signatures of Sub-linear Size Without Random Oracles[END_REF] gave sub-linear-size signatures in the standard model, which were recently improved in [START_REF] González | A Ring Signature of size Θ(sqrt[3]{n}) without Random Oracles[END_REF]. In the random oracle model, Groth and Kohlweiss [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] described an elegant construction of logarithmic-size ring signatures 4.2. Background 61 based on the discrete logarithm assumption. Libert et al. [START_REF] Libert | Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signatures and Group Signatures Without Trapdoors[END_REF] obtained logarithmicsize lattice-based ring signatures in the random oracle model. The logarithmic-size ring signatures of [GK15; BCC+15; LLNW16] are obtained by applying the Fiat-Shamir heuristic [START_REF] Fiat | How to Prove Yourself: Practical Solutions to Identi cation and Signature Problems[END_REF] to interactive Σ-protocols. While these solutions admit security proofs under well-established assumptions in the random oracle model, their security reductions are pretty loose. In terms of exact security, they are doomed [START_REF] Paillier | Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log[END_REF] to lose a linear factor in the number Q H of random oracle queries as long as they rely on the Forking Lemma [START_REF] Pointcheval | Security Proofs for Signature Schemes[END_REF].

The exact security of digital signatures was rst considered by Bellare and Rogaway [START_REF] Bellare | The Exact Security of Digital Signatures -HOw to Sign with RSA and Rabin[END_REF] and drew a lot of attention [Cor00; GJ03; KW03; AFLT12; KK12] since then. Keygen(pp): Given pp, outputs a key pair (P K, SK) for the user.

Background

Sign(pp, SK, R, M ): Given the user's secret key SK, a ring R and a message M , outputs the signature σ of the message M on behalf of the ring R.

Verify(pp, M, R, σ): Given the message M , a ring R and a candidate signature σ, the veri cation algorithm outputs 0 or 1.

These algorithms must also verify the correctness, meaning that for all pp ← Par-Gen(1 λ ), (P K, SK) ← KeyGen(pp), for all M , and for all R such that P K ∈ R, we have w.h.p

Verify(pp, M, R, Sign(pp, SK, R, M )) = 1.
From a security point of view, Bender et al. [START_REF] Bender | Ring Signatures: Stronger De nitions, and Constructions Without Random Oracles[END_REF] suggested the following stringent de nitions of anonymity and unforgeability.

De nition 4.2. A ring signature (Par-Gen, Keygen, Sign, Verify) provides statistical anonymity under full key exposure if, for any computationally unbounded adversary A, there exists a negligible function ε(λ) such that

| Pr[pp ← Par-Gen(1 λ ); (M , i 0 , i 1 , R ) ← A Keygen(•) ; b R ← {0, 1}; σ ← Sign(pp, SK i b , R , M ) : A(σ ) = b] - 1 2 | < ε(λ),
where P K i 0 , P K i 1 ∈ R and Keygen is an oracle that generates a fresh key pair (P K, SK) ← Keygen(pp) at each query and returns both P K and SK to A.

De nition 4.3. A ring signature (Par-Gen, Keygen, Sign, Verify) provides unforgeability w.r.t insider corruption if, for any PPT adversary A, there exists a negligible function ε(λ) such that, for any pp ← Par-Gen(1 λ ), we have

Pr[(M, R, σ) ← A Keygen(•),Sign(•),Corrupt(•) (pp) : Verify(pp, M, R, σ) = 1] < ε(λ),
• Keygen(): is an oracle that maintains a counter j initialized to 0. At each query, it increments j, generates (P K j , SK j ) ← KeyGen(pp) and outputs P K j .

• Sign(i, M, R) is an oracle that returns σ ← Sign(pp, SK i , R, M ) if P K i ∈ R and (P K i , SK i ) has been generated by Keygen. Otherwise, it returns ⊥.

• Corrupt(i) returns SK i if (P K i , SK i ) was output by Keygen and ⊥ otherwise.

• A is restricted to output a triple (M, R, σ) such that: (i) No query of the form ( , M, R) has been made to Sign(•, •, •); (ii) R only contains public keys P K i produced by Keygen and for which i was never queried to Corrupt(•).

Σ-protocol

Showing that a Commitment Opens to 0 or 1

We recall the Σ-protocol used in [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] to prove that a commitment opens to

0 or 1. Let R = {(ck, c, (m, r)) | c = Com ck (m, r) ∧ (m, r) ∈ {0, 1} × Z q } the
binary relation, where ck is the commitment key generated for the underlying commitment scheme, u = c is the public input and w = (m, r) is the private input. Figure 4.1 gives us a Σ-protocol (P, V) for R.

Theorem 4.1 ([GK15, Theorem 2]). Let (Setup, Com) be a perfectly binding, computationally hiding, strongly binding and additively homomorphic commitment scheme. The Σ-protocol presented in gure 4.1 for the commitment to 0 or to 1 is perfectly complete, perfectly 2-special sound and perfectly SHVZK. Groth and Kohlweiss [GK15] used the Σ-protocol of Section 4.2.2 to build an e cient Σ-protocol allowing to prove knowledge of an opening of one-out-of-N commitments {c i } N -1 i=0 to m = 0. Their protocol outperforms the standard OR-proof approach [CDS94] in that its communication complexity is only O(log N ), instead of O(N ). The idea is to see the responses f = mx + a of the basic Σ protocol as degree-1 polynomials in x ∈ Z q and exploit the homomorphism of the commitment.

Prover(ck, c; m, r) Verifier(ck, c) a, s, t R ← Z q c a = Com ck (a; s) c b = Com ck (am; t) (ca,c b ) ------------→ x ←------------ x ← {0, 1} λ f = mx + a z a = rx + s z b = r(x -f ) + t f,za,z b ------------→ Accept if and only if c a , c b ∈ C ck , f, z a , z b ∈ Z b , c x c a = Com ck (f ; z a ), c x-f c b = Com ck (0; z b )
Prover(ck, (c 0 , . . . , c N -1 ); ( , r))

Verifier(ck, (c 0 , . . . , c N -1 )) For j = 1, . . . , n r j , a j , s j , t j , ρ j ← Z q , c j = Com ck ( j , r j )

c aj = Com ck (a j , s j ), c bj = Com ck (b j , t j ) with b j = j • a j c dj-1 = N -1 i=0 c pi,j-1 i
• Com ck (0, ρ j-1 ) with p i,k de ned in (4.1)

{c j ,ca j ,c b j ,c d j-1 } n j=1 --------------→ x ← -------------- x R ← {0, 1} λ For j = 1, . . . , n f j = j x + a j , z aj = r j x + s j z bj = r j (x -f j ) + t j z d = rx n -n-1 k=0 ρ k x k {fj ,za j ,z b j } n j=1 ,z d --------------→ Accept if and only if {c j , c aj , c bj , c dj-1 } n j=1 ∈ C ck , {f j , z aj , z bj } n j=1 , z d ∈ Z q For all j = 1, . . . , n c x j c aj = Com ck (f j ; z aj ), c fj -x j c bj = Com ck (0; z bj ) N -1 i=0 c n j=1 fj,i j i • n-1 k=0 c -x k d k = Com ck (0; z d ) with f j,1 = f j and f j,0 = x -f j Figure 4.2.
-Σ-protocol for one of (c 0 , . . . , c N -1 ) commits to 0 Theorem 4.2 ([GK15, Theorem 3]). The Σ-protocol of gure 4.2 is perfectly complete. It is (perfectly) (n + 1)-special sound if the commitment is (perfectly) binding. It is (perfectly) SHVZK if the commitment scheme is (perfectly) hiding.

In Figure 4.2, for each i, p i,0 , . . . , p i,n-1 ∈ Z q are the coe cients of the polynomial

P i [Z] = n j=1 F j,i j [Z] = δ i, • Z n + n-1 k=0 p i,k • Z k ∀i ∈ {0, . . . , N -1} (4.1)
obtained by de ning

F j,1 [Z] = j • Z + a j and F j,0 [Z] = Z -F j,1 [Z] for all j ∈ [n]
. Note that the equality (4.1) stems from the fact that, for each index i = i 1 . . . i n ∈ {0, . . . , N -1}, we have F j,i j [Z] = δ i j , j • Z + (-1) δ 0,i j • a j for all j ∈ [n], so that the coe cient of Z n in (4.1) is non-zero if and only if i = .

A Note on the Application to Ring Signatures

In [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF], Groth and Kohlweiss obtained a ring signature scheme by applying the Fiat-Shamir paradigm [START_REF] Fiat | How to Prove Yourself: Practical Solutions to Identi cation and Signature Problems[END_REF] to the above Σ-protocol. In short, key pairs are of the form (c, r) such that c = Com(0; r) and a ring signature associated with R = {c 0 , . . . , c N } is simply a proof that the signer knows how to open to 0 one of the N commitments in that ring.

In [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF], the following theorem states about the security of the resulting construction, denoted (Setup, KGen, Sign, Vfy).

Theorem 4.3 ([GK15, Theorem 4]). The scheme (Setup, KGen, Sign, Vfy) is a ring signature scheme with perfect correctness. It has perfect anonymity if the commitment scheme is perfectly hiding. It is unforgeable in the random oracle model if the commitment scheme is perfectly hiding and computationally binding.

As the security of the ring signature relies on that of the Σ-protocol, it is interesting to take a closer look at the computation of commitments {C d j-1 } n j=1 in Figure 4.2. This part of the Σ-protocol is the only point where the ring signature generation may involve adversarially-generated values. In the anonymity game, the signer's public key may be one of the only two honestly-generated public keys in the ring R. The security proof of [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] argues that, as long as the commitment is perfectly hiding, the fact that each C d j-1 contains a (randomizing) factor Com(0; ρ j-1 ), for some uniformly random ρ j-1 , is su cient to guarantee perfect anonymity. We point out an issue that arises when R = {c 0 , . . . , c N } contains maliciously generated keys outside the space of honestly generated commitments (even if they are perfectly hiding). In short, multiplying a maliciously generated commitment by a fresh commitment may not fully "clean-up" its distribution.

The following example is a perfectly hiding commitment where re-randomizing does not wipe out maliciously generated commitments components: the setup algorithm outputs generators ck = (g, h) cyclic group G of prime order q; committing to m ∈ Z q using randomness ρ = (r, s) R ← Z 2 q is achieved by computing Com ck (m; ρ) = (c 1 , c 2 , c 3 ) = (g m h r , g s , h s ) ∈ G 3 , which is a perfectly hiding commitment since c 1 is a Pedersen commitment and the Elgamal encryption (c 2 , c 3 ) of 0 is independent of c 1 . If we consider the maliciously generated commitment (c 1 , c 2 , c 3 ) = (h u , g v , g • h v ), multiplying it by any Com ck (0; ρ) does not bring it back in the range of Com. Therefore, in an instantiation with the above commitment, an unbounded adversary can defeat the anonymity property.

The only missing requirement on behalf of the underlying perfectly hiding commitment is that it should be possible to e ciently recognize elements in the range of the commitment algorithm. This assumption is quite natural and satis ed by schemes like Pedersen's commitment. Hence, this observation does not a ect the perfect anonymity of the discrete-log-based instantiation of [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF].

A Fully Tight Construction from the DDH Assumption

We modify the scheme of [GK15] so as to prove its unforgeability via a fully tight reduction from the DDH assumption. The advantage of the DDH distinguisher is only smaller than 4.3. A Fully Tight Construction from the DDH Assumption 65 the adversary's advantage by a (small) constant factor. The price to pay for this fully tight reduction is relatively small since signatures are only longer than in [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF] by roughly 2n group elements. Moreover, as in [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF], our signing algorithm requires Θ(N ) exponentiations if N is the size of the ring.

Description

We exploit the fact that, in the Σ-protocol of [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF], not all rst-round messages should be computed using the same commitment scheme as the one used to compute the public key. The second step of the signing algorithm computes perfectly hiding commitments

{ C d k } n-1
k=0 which are vectors of dimension 4. They live in a di erent space than public keys (X, Y ) = (g α • h β , gα • hβ ), which are DDH-based lossy encryptions of (and thus perfectly hiding commitments to) 0.

The signer generates a commitment (T 0 , T 1 ) = (g

θ 1 • h θ 2 , Γ • H θ 1 1 • H θ 2 2 ) to Γ = U α • V β , which encodes his secret key (α , β ) ∈ Z 2
q . This de nes a vector V = (X , Y , T 0 , T 1 ) ∈ G 4 in the column space of a matrix M H ∈ G 4×4 , which has full rank in the scheme but not in the proof of unforgeability. Then, for each key X i = (X i , Y i ) in the ring R, the signer de nes V i = (X i , Y i , T 0 , T 1 ) ∈ G 4 and, by extending the technique of [START_REF] Groth | One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin[END_REF], generates a NIZK proof that one of the vectors

{ V i } N -1
i=0 is in the column span of M H . To prove this without revealing which V ∈ G 4 is used, the commitments { C d j-1 } n j=1 are re-randomized by multiplying them with a random vector in the column space of M H .

Par-Gen(1 λ ): Given a security parameter λ, choose a cyclic group G of prime order q with generators g, h, g, h R ← G and U, V R ← G. Choose hash functions H FS : {0, 1} * → Z q and H : {0, 1} * → G 2 which will be modeled as random oracles. Output the common public parameters pp = λ, G, g, h, g, h, U, V .

Keygen(pp):

Given pp, choose a secret key is SK = (α, β) R ← Z 2 q and compute the public key

P K = X = (X, Y ) = (g α • h β , gα • hβ ). Sign(pp, SK, R, M ): To sign M ∈ {0, 1} * on behalf of R = { X 0 , . . . , X N -1 } such that X i = (X i , Y i ) ∈ G 2 for each i ∈ [N ]
, the signer uses SK = (α, β) and

P K = X = (X, Y ) = (g α • h β , gα • hβ ) ∈ R as follows.
We assume that N = 2 n for some n. Let ∈ {0, . . . , N -1} the index of P K = X in R when R is arranged in lexicographical order and write it as

= 1 . . . n ∈ {0, 1} n . 1. Choose θ 1 , θ 2 R ← Z q . For all j ∈ [n], choose a j , r j , s j , t j , u j , v j , w j , ρ j-1 R ← Z q and compute (T 0 , T 1 ) = g θ 1 • h θ 2 , U α • V β • H θ 1 1 • H θ 2 2
, as well as

C j = (C j ,0 , C j ,1 ) = g r j • h s j , g j • H r j 1 • H s j 2 C a j = (C a j ,0 , C a j ,1 ) = g t j • h u j , g a j • H t j 1 • H u j 2 (4.2) C b j = (C b j ,0 , C b j ,1 ) = g v j • h w j , g j •a j • H v j 1 • H w j 2
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where (H 1 , H 2 ) = H M, R, T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 ∈ G 2 . De ne M H =     g h 1 1 g h 1 1 1 1 g h U V H 1 H 2     ∈ G 4×4 (4.3)
and its corresponding discrete logarithms L h = log g (M H ) matrix

L h =     1 log g (h) 0 0 log g (g) log g ( h) 0 0 0 0 1 log g (h) log g (U ) log g (V ) log g (H 1 ) log g (H 2 )     ∈ Z 4×4 q . (4.4)
Note that the signer's witnesses

(α, β, θ 1 , θ 2 ) ∈ Z 4 q satisfy log g X | Y | T 0 | T 1 = L h • α | β | θ 1 | θ 2 . (4.5)
In the following, we will sometimes re-write relation (4.5) as

    X Y T 0 T 1     =     g h 1 1 g h 1 1 1 1 g h U V H 1 H 2         α β θ 1 θ 2     . (4.6) For each i ∈ [N ], de ne the vector V i = (X i , Y i , T 0 , T 1 ) ∈ G 4 . The next step is to prove knowledge of witnesses (α , β , θ 1 , θ 2 ) ∈ Z 4 q such that V = (X , Y , T 0 , T 1 ) = g L h •(α ,β ,θ 1 ,θ 2 ) , for some ∈ [N ]. 2. For each j ∈ [n], pick ρ j-1,α , ρ j-1,β , ρ j-1,θ 1 , ρ j-1,θ 2 R ← Z q and compute C d j-1 = N -1 i=0 V p i,j-1 i • g L h •(ρ j-1,α ,ρ j-1,β ,ρ j-1,θ 1 ,ρ j-1,θ 2 ) ∈ G 4 , (4.7) 
where, for each i ∈ {0, . . . , N -1}, p i,0 , . . . , p i,n-1 are the coe cients of

P i [Z] = n j=1 F j,i j [Z] = δ i, • Z n + n-1 k=0 p i,k • Z k ∈ Z q [Z], (4.8) 
where

F j,1 [Z] = j • Z + a j and F j,0 [Z] = Z -F j,1 [Z] for all j ∈ [n]. Note that the coe cient of Z n in (4.8) is non-zero if and only if i = . 3. Compute x = H FS (M, R, T 0 , T 1 , { C j , C a j , C b j , C d j-1 } n j=1 ) ∈ Z q .
4.3. A Fully Tight Construction from the DDH Assumption 67 4. For each j ∈ [n], compute (modulo q) f j = j • x + a j = F j,1 (x) and

z r j = r j • x + t j , zr j = r j • (x -f j ) + v j z s j = s j • x + u j , zs j = s j • (x -f j ) + w j and z d,α = α • x n - n-1 k=0 ρ k,α • x k , z d,β = β • x n - n-1 k=0 ρ k,β • x k z d,θ 1 = θ 1 • x n - n-1 k=0 ρ k,θ 1 • x k , z d,θ 2 = θ 2 • x n - n-1 k=0 ρ k,θ 2 • x k Let Σ j = C j , C a j , C b j , C d j-1 , f j , z r j , z s j , zr j , zs j for all j ∈ [n] and output σ = {Σ j } n j=1 , T 0 , T 1 , z d,α , z d,β , z d,θ 1 , z d,θ 2 . (4.9)
Verify(pp, M, R, σ): Given a ring R = { X 0 , . . . , X N -1 } and a pair (M, σ), parse σ as in (4.9) and de ne f j,1 = f j and f j,0 = x -f j for each j ∈ [n].

1. Compute (H 1 , H 2 ) = H M, R, T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 ∈ G 2 and, for each public key X i = (X i , Y i ) ∈ G 2 in R, set V i = (X i , Y i , T 0 , T 1 ) ∈ G 4 . 2. Let x = H FS (M, R, T 0 , T 1 , { C j , C a j , C b j , C d j-1 } n j=1 ). If the equalities C a j • C x j = g zr j • h zs j , g f j • H zr j 1 • H zs j 2 , (4.10) 
C b j • C x-f j j = g zr j • h zs j , H zr j 1 • H zs j 2 , ∀j ∈ [n]
are not satis ed, return 0. Then, return 1 if and only if

N -1 i=0 V n j=1 f j,i j i • n j=1 C -(x j-1 ) d j-1 =     g h 1 1 g h 1 1 1 1 g h U V H 1 H 2         z d,α z d,β z d,θ 1 z d,θ 2     . (4.11) Correctness is shown by observing from (4.8) that N -1 i=0 V n j=1 f j,i j i equals N -1 i=0 V P i (x) i = N -1 i=0 V δ i, •x n + n-1 k=0 p i,k •x k i = V x n • N -1 i=0 V n-1 k=0 p i,k •x k i = V x n • n-1 k=0 • N -1 i=0 V p i,k i x k = V x n • n-1 k=0 • C d k • g -L h •(ρ k,α ,ρ k,β ,ρ k,θ 1 ,ρ k,θ 2 ) x k ,
68 Chapter 4. Logarithmic-Size Ring Signatures With Tight Security from the DDH Assumption where the last equality follows from (4.7). Since V = g L h •(α ,β ,θ 1 ,θ 2 ) , we obtain

N -1 i=0 V n j=1 f j,i j i • n-1 k=0 • C -x k d k = V x n • n-1 k=0 g -L h •(ρ k,α ,ρ k,β ,ρ k,θ 1 ,ρ k,θ 2 ) (x k ) , = g L h •(z d,α ,z d,β ,z d,θ 1 ,z d,θ 2 ) .

Security Proofs

Statistical anonymity is achieved because { C d j-1 } n j=1 are uniformly distributed. The reason is that the matrices (4.4) have full rank in the scheme (but not in the proof of unforgeability), so that computing C d j-1 as per (4.7) makes its distribution uniform over G 4 . Theorem 4.4. Any unbounded anonymity adversary A has advantage at most Adv anon A (λ)

≤ 2 q + Q H FS q 2 ,
where Q H FS is the number of hash queries to H FS . Proof. We consider a sequence of games and, for each i, we call W i the event that the challenger outputs 1 in Game i, meaning that the adversary successfully guesses the challenger's bit and outputs b = b. In each game, we also consider the event E i by which the tuple (g, h, g, h) of the public parameter or the tuple (g, h, H 1 , H 2 ) de ned in the challenge signature forms a Di e-Hellman tuple.

Game 0: This is the real game where the challenger outputs 1 if and only if A wins. By de nition, A's advantage is Adv anon A (λ) = | Pr[W 0 ] -1/2|. We assume that, for all public keys generated by the Keygen(.) oracle, the adversary immediately obtains the secret keys. Since (g, h) is uniformly distributed in pp and since (H 1 , H 2 ) is an independent random output of the random oracle H, we nd Pr[E 0 ] = 2/q -1/q 2 and then Pr[W 0 ] ≤ Pr[W 0 |¬E 0 ] + (2/q -1/q 2 ). We are left with bounding Pr[W 0 |¬E 0 ].

Game 1: We modify the generation of the challenge signature. On a challenge query (M, R, (0) , (1) ), where (0 ≤ (0) , (1) ≤ |R| -1), the challenger B parses R as { X 0 , . . . , X N -1 } and returns ⊥ if X (0) and X (1) are not public keys produced by the Keygen(.) oracle. Otherwise, it ips a coin b R ← {0, 1} and sets ( 1 , . . . , n ) as the bit representation of (b) . Then, it chooses x R ← Z q as well as

z d,α , z d,β , z d,θ 1 , z d,θ 2 R ← Z q and f j , z r j , z s j , zr j , zs j R ← Z q for all j ∈ [n]. Then, it picks T 0 R ← G as well C j ,0 R ← Z q for all j ∈ [n]. It can now compute C a j ,0 = g zr j • h zs j • C -x j ,0 , C b j ,0 = g zr j • h zs j • C f j -x j ,0 ∀j ∈ [n],
so as to de ne (H 1 , H 2 ) = H(M, R, T 0 , {(C j ,0 , C a j ,0 , C b j ,0 )} n j=1 ). Then, B completes the computation of the dual-mode commitments as follows. First, it picks

T 1 R ← G as well as C j ,1 R ← G for all j ∈ [n]. Then, it computes C a j ,1 = g f j • H zr j 1 • H zs j 2 • C -x j ,1 , C b j ,1 = H zr j 1 • H zs j 2 • C f j -x j ,1 .
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It draws C d j-1 R ← G for each j ∈ {2, . . . , n} while, for j = 1, it computes

C d 0 = N -1 i=0 V n j=1 f j,i j i n j=2 ˜ C -(x j-1 ) d j-1 M H (-z d,α , -z d,β , -z d,θ 1 , -z d,θ 2 ) ,
where V i = (X i , Y i , T 0 , T 1 ) , f j,1 = f j and f j,0 = x -f j for each j ∈ [n]. Finally, the challenger programs the random oracle H FS to have the equality

x = H FS (M, R, T 0 , T 1 , { C j , C a j , C b j , C d j-1 } n j=1 ).
If H FS was already de ned for this input, the challenger aborts and picks b as a random bit. If the simulation does not fail, the oracle outputs the challenge signature σ = {Σ j } n j=1 , T 0 , T 1 , z d,α , z d,β , z d,θ 1 , z d,θ 2 , which is distributed exactly as in W 0 |¬E 0 , assuming that E 1 does not occur. Indeed, if (g, h, H 1 , H 2 ) is not a Di e-Hellman tuple in both games, all the dual-mode commitments are perfectly hiding and if (g, h, g, h) is not a Di e-Hellman tuple as well, the matrix M H has full rank, meaning that { C d j-1 } n j=1 are uniformly distributed over G 4 . Therefore, as long as no collision occurs in the simulation of the challenge, A's view in W 1 |¬E 1 is the same as in W 0 |¬E 0 . If we call F 1 the event that a hash collision prevents the correct generation of the challenge signature, we obtain the inequality

| Pr[W 1 |¬(E 1 ∪ F 1 )] -Pr[W 0 |¬E 0 ]| ≤ Pr[F 1 ] ≤ Q H FS /q 2 .
In Game 1, when neither E 1 nor F 1 occurs, the signature is perfectly independent of b ∈ R {0, 1}, so that Pr[W 1 |¬(E 1 ∪ F 1 )] = 1/2. All the above observations together thus implies Adv anon A (λ) ≤ 2/q + (Q H FS -1)/q 2 . Theorem 4.5. The scheme is unforgeable under the DDH assumption in the random oracle model. For any adversary A with running time t and making Q V queries to the key generation oracle, Q S signing queries as well as Q H and Q H FS queries to the random oracles H and H FS , respectively, there is a DDH distinguisher B with running time t ≤ t + poly(λ, Q S , Q V , Q H ) and such that

Adv euf-cma A (λ) ≤ 2 • Adv DDH B (λ) + Q S + Q H FS • (1 + log Q V ) + 5 q (4.12) + Q S • (Q H FS + 2Q H + 2Q S ) q 2 .
Proof. We use a sequence of games where, for each i, W i stands for the event that the challenger outputs 1 in Game i.

Game 0: This is the real game. At each query i ∈ [Q V ] to the key generation oracle Keygen(•), the challenger B honestly chooses α i , β i R ← Z q and returns the public key

P K i = X i = (X i , Y i ) = (g α i • h β i , gα i • hβ i )
and retains SK i = (α i , β i ) for later use. If A subsequently submits X i = (X i , Y i ) to the corruption oracle, B reveals SK i = (α i , β i ). Moreover, all signing queries are answered by faithfully running the signing algorithm. At the end of the game, A outputs a forgery (M , σ , R ), where R = { X 0 , . . . , X N -1 },

σ = {Σ j } n j=1 , T 0 , T 1 , z d,α , z d,β , z d,θ 1 , z d,θ 2 , (4.13)
with Σ j = C j , C a j , C b j , C d j-1 , f j , z r j , z s j , z r j , z s j . At this point, B outputs 1 if and only if A wins, meaning that: (i) σ correctly veri es; (ii) R only contains uncorrupted public keys; (iii) No signing query involved a tuple of the form (•, M , R ) . By de nition, we have Adv euf-cma

A (λ) = Pr[W 0 ].
Game 1: This game is like Game 0 but we modify the signing oracle. Note that each signing query triggers a query to the random oracle H(.) since the challenger B has to faithfully compute T 0 and {C j ,0 , C a j ,0 , C b j ,0 } n j=1 before obtaining

H M, R, T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 .
In Game 1, at each signing query, B aborts in the event that H(•) was already de ned for the input M, R, T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 . Since such an input contains uniformly random elements, the probability to abort during the entire game is at most

Q S • (Q S + Q H )/q 2 and we have | Pr[W 1 ] -Pr[W 0 ]| ≤ Q S • (Q S + Q H )/q 2 .
Game 2: We modify the random oracle H when it is directly invoked by A (i.e., Hqueries triggered by signing queries are treated as in Game 0). At each H-query M, R, T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 , the challenger B returns the previously de ned value if it exists. Otherwise, it picks γ R ← Z q and de nes the hash value as (H 1 , H 2 ) = H M, R, T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 = (g γ , h γ ). Note that H(•) is no longer a truly random oracle since (g, h, H 1 , H 2 ) is a Di e-Hellman tuple. Still, under the DDH assumption, this modi cation has no noticeable e ect on A's winning probability. Lemma 4.6 describes a DDH distinguisher such that

| Pr[W 2 ] -Pr[W 1 ]| ≤ Adv DDH B (λ) + 1/q.
Since (g, h, H 1 , H 2 ) is a Di e-Hellman tuple in Game 2, γ ∈ Z q can be used as a decryption key for the DDH-based dual-mode encryption scheme. Another consequence of the last transition is that the matrix L h of (4.3) has no longer full rank since its last row is linearly dependent with the rst three rows.

Game 3: We introduce a failure event F 3 which causes the challenger B to output 0. When A outputs its forgery σ , B parses σ as in (4.13) and computes

(H 1 , H 2 ) = H M , R , T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 .
Event F 3 is de ned to be the event that either: (1) The hash value (H 1 , H 2 ) was not de ned at any time; (2) It was de ned but collides with a pair (H 1 , H 2 ) = H M, R, T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 de ned in response to a signing query ( , M, R) for some index ∈ {0, . . . , |R| -1}, when R is arranged in lexicographic order. Note that the probability of case (1) cannot exceed 1/q because H(•) is unpredictable as a random oracle. Moreover, since a winning adversary must forge a signature on some (M , R ) that has never been queried for signature, the probability of case (2) is bounded by Q S /q 2 multiplied by Q H since we must consider the probability that a tuple (g, h, H 1 , H 2 ) de ned in a signing query is accidentally a Di e-Hellman tuple and collides with the response of a hash query. We nd

| Pr[W 3 ]-Pr[W 2 ]| ≤ Pr[F 3 ] ≤ 1/q + Q S • Q H /q 2 .
Game 4: This game is identical to Game 3 with one modi cation. When the adversary A outputs its forgery σ , B parses σ as in (4.13) and computes

(H 1 , H 2 ) = H M , R , T 0 , {C j ,0 , C a j ,0 , C b j ,0 } n j=1 .
Then, B recalls the previously de ned exponent γ ∈ Z q such that (H 1 , H 2 ) = (g γ , h γ ) and uses it to decrypt the dual-mode ciphertexts { C j } n j=1 . It aborts and outputs 0 if one of these ciphertexts turns out not to encrypt a bit j ∈ {0, 1}. Note that, if B does not abort, it decodes an n-bit string

= 1 . . . n ∈ {0, 1} n from { C j } n j=1 . We claim that we have | Pr[W 4 ] -Pr[W 3 ]| ≤ (1 + Q H FS )/q.
The only situation where Game 4 deviates from Game 3 is the event F 4 that either: (i) A did not query H FS (•) on the input that the forgery relates to; (ii) A manages to break the soundness of the proof system showing that each of the ciphertexts { C j } n j=1 encrypts a bit. Lemma 4.7 shows that Pr

[F 4 ] ≤ (1 + Q H FS )/q.
Game 5: In this game, we modify the challenger's behavior when A outputs a forgery σ . Having decoded the n-bit string = 1 . . . n ∈ {0, 1} n from the dual-mode ciphertexts { C j } n j=1 , B also runs the decryption algorithm for (T 0 , T 1 ) to compute Γ = T 1 /T 0 γ . At this point, B recalls the secret key SK = (α , β ) of the -th member of the ring R = { X 0 , . . . X N -1 } in lexicographical order.

If Γ = U α • V β , B outputs 1. Otherwise, it outputs 0. Lemma 4.8 shows that | Pr[W 5 ]-Pr[W 4 ]| ≤ Q H FS • log(Q V )/q.
Game 6: This game is identical to Game 5 except that we change the distribution of pp = λ, G, g, h, g, h, U, V .

Here, instead of choosing g, h, g, h R ← G uniformly, we set (g, h, g, h) = (g, h, g ρ , h ρ ) for a randomly chosen ρ R ← Z q . Clearly, the two distributions of pp are indistinguishable under the DDH assumption and B can immediately be turned into an e cient DDH distinguisher (the proof is straightforward

) such that | Pr[W 6 ] -Pr[W 5 ]| ≤ Adv DDH B (λ).
Game 7: This game is like Game 6 except that we now simulate the proof of knowledge of secret keys in all outputs of the signing oracle. On a signing query (M, R, ), where 72 Chapter 4. Logarithmic-Size Ring Signatures With Tight Security from the DDH Assumption (0 ≤ ≤ |R| -1), the challenger parses R as { X 0 , . . . , X N -1 } and returns ⊥ if X is not public keys produced by the Keygen(.) oracle. Otherwise, the challenger chooses x R ← Z q as well as z d,α , z d,β , z d,θ 1 , z d,θ 2 R ← Z q and f j , z r j , z s j , zr j , zs j R ← Z q , for all j ∈ [n]. Then, it picks T 0 R ← G as well as r j , s j R ← Z q for all j ∈ [n], and honestly computes C j ,0 = g r j • h s j for all j ∈ [n]. It can now compute for all j ∈ [n], C a j ,0 = g zr j • h zs j • C -x j ,0 , C b j ,0 = g zr j • h zs j • C f j -x j ,0 , and de ne (H 1 , H 2 ) = H(M, R, T 0 , {(C j ,0 , C a j ,0 , C b j ,0 )} n j=1 ). Then, it completes the computation of dual-mode commitments as follows. First, it chooses

T 1 R ← G and computes C j ,1 = g j • H r j 1 • H s j 2 for all j ∈ [n]. Then, it computes C a j ,1 = g f j • H zr j 1 • H zs j 2 • C -x j ,1 , C b j ,1 = H zr j 1 • H zs j 2 • C f j -x j ,1 , for all j ∈ [n].
Then, for each j ∈ {2, . . . , n}, the challenger faithfully computes C d j-1 as per (4.7) but, for index j = 1, it computes

C d 0 = N -1 i=0 V n j=1 f j,i j i n j=2 C -(x j-1 ) d j-1 M H (-z d,α , -z d,β , -z d,θ 1 , -z d,θ 2 ) ,
where V i = (X i , Y i , T 0 , T 1 ) , f j,1 = f j and f j,0 = x -f j for each j ∈ [n]. Finally, the challenger B programs the random oracle H FS to have the equality

x = H FS (M, R, T 0 , T 1 , { C j , C a j , C b j , C d j-1 } n j=1
). If H FS was already de ned for this input, B aborts and outputs 0. If the simulation does not fail, the oracle sets Σ j = C j , C a j , C b j , C d j-1 , f j , z r j , z s j , zr j , zs j for all j ∈ [n] and outputs the signature

σ = {Σ j } n j=1 , T 0 , T 1 , z d,α , z d,β , z d,θ 1 , z d,θ 2
, which is distributed exactly as in Game 6 unless (g, h, H 1 , H 2 ) happens to form a Di e-Hellman tuple. Indeed, although the adversary's signing queries may involve rings R that contain maliciously generated keys of the form

X i = (X i , Y i ) = (X i , Ω i • X log g (g) i
), with Ω i = 1 G , this does not prevent the simulated commitments { C d j-1 } n j=1 from having the same distribution as in Game 6. In simulated signatures, we indeed have

C d j-1 = N -1 i=0 V p i,j-1 i • g L h • ρ j ∀j ∈ {2, . . . , n -1}
for random ρ 2 , . . . , ρ n-1 ∈ R Z 4 q , where p i,0 , . . . , p i,n-1 are the coe cients of n j=1 f j,i j = δ i, x n + n j=1 p i,j-1 x j-1 . Since V = g L h •(α ,β ,θ 1 ,θ 2 ) and de ning

ρ 1 = -(z d,α , z d,β , z d,θ 1 , z d,θ 1 ) - n j=2 ρ j x j-1 + (α , β , θ 1 , θ 2 ) • x n ,
we have

C d 0 = V x n • N -1 i=0 V n j=1 p i,j-1 x j-1 i • N -1 i=0 V -n j=2 p i,j-1 x j-1 i •g -L h •(z d,α ,z d,β ,z d,θ 1 ,z d,θ 1 ) -L h • n j=2 ρ j x j-1 = N -1 i=0 V p i,0 i • g L h • ρ 1 that C k encrypts k ∈ {0, 1}.
This proof, which is obtained from the Σ-protocol of [GK15, Figure 1], is known [GK15, Theorem 2] to provide special soundness with soundness error 1/q. Hence, if the statement is false and C k does not encrypt a bit, for any given pair ( C a k , C b k ), only one challenge value x ∈ Z q admits a response (f k , z r k , z s k , z r k , z s k ) that makes (4.14) into an accepting transcript.

At each query

H FS (M, R, T 0 , T 1 , { C j , C a j , C b j , C d j-1 } n j=1
) such that one of the { C j } j=1 does not encrypt a binary value, the probability that oracle H FS (•) returns the unique "bad" x ∈ Z q for which a correct response exists is exactly 1/q. Finally, since H FS is simulated by the challenger B, we may assume that B makes the query

H FS (M , R , T 0 , T 1 , { C j , C a j , C b j , C d j-1 } n j=1 )
for itself in case it was not explicitly made by the time A terminates. Taking a union bound over all H FS -queries, we obtain | Pr

[W 4 ] -Pr[W 3 ]| ≤ Pr[F 4 ] ≤ (1 + Q H FS )/q.
Lemma 4.8. From Game 4 to Game 5, the adversary's winning probabilities di er by at most

| Pr[W 5 ] -Pr[W 4 ]| ≤ Q H FS • log(Q V )/q.
Proof. The only situation where Game 5 di ers from Game 4 is the event F 5 that extracting { C j } n j=1 leads to a string ∈ {0, 1} n but (T 0 , T 1 ) does not decrypt to an encoding U α • V β of the -th ring member's secret key. This implies that V = (X , Y , T 0 , T 1 ) is not in the column space of M H (as de ned in (4.3)) and we show that this event can only happen with probability

Q H FS • n/q ≤ Q H FS • log(Q V )/q
, where n = log N . Note that (4.10) implies that f j equals f j = a j + j • x for all j ∈ [n], where a j ∈ Z q is encrypted by C a j . De ning f j,1 = f j and f j,0 = x -f j , we know that

n j=1 f j,i j = δ i, • x n + n-1 k=0 p i,k • x k ∀i ∈ [N ],
for some p i,0 , . . . , p i,n-1 ∈ Z q . This implies

N -1 i=0 V n j=1 f j,i j i = N -1 i=0 V δ i, •x n + n-1 k=0 p i,k •x k i = V x n • N -1 i=0 V n-1 k=0 p i,k •x k i = V x n • n-1 k=0 • N -1 i=0 V p i,k i x k .
Moreover, the last veri cation equation (4.11) implies

V x n • n-1 k=0 • N -1 i=0 V p i,k i x k • n-1 k=0 C -(x k ) d k = g L h •(z d,α ,z d,β ,z d,θ 1 ,z d,θ 2 ) .
(4.15)

By taking the discrete logarithms log g (•) of both members of (4.15), we get

x n • v + N -1 i=0 n-1 k=0 (p i,k x k ) • v i - n-1 k=0 x k • c d k = L h • (z d,α , z d,β , z d,θ 1 , z d,θ 2 ) . ( 4 

.16)

Since L h has rank at most 3 due to the modi cation introduced in Game 2 and Game 3, assuming that v = log g ( V ) ∈ Z 4 q is not in the column space of L h , there exists a non-zero vector t ∈ Z 4 q such that t • L h = 0 1×4 and t • v = 0. If we multiply both members of (4.16) on the left by t , we obtain

x n • ( t • v ) + N -1 i=0 n-1 k=0 (p i,k • x k ) • ( t • v i ) - n-1 k=0 x k • ( t • c d k ) = 0.
(4.17)

If t • v = 0, equality (4.17) implies that x is a root of a non-zero polynomial of degree n. However, x is uniformly distributed over Z q and the Schwartz-Zippel Lemma implies that (4.17) can only hold with probability n/q < log(Q V )/q. In order to bound the probability Pr[F 5 ], we have to consider all hash queries

H F S (M, R, T 0 , T 1 , { C j , C a j , C b j , C d j-1 } n j=1 )
for which R only contains honestly generated keys and (T 0 , T 1 ) does not decrypt to an encoding U α • V β of the -th key of R, where ∈ {0, . . . , |R| -1} is determined by { C j } n j=1 . Taking a union bound over all hash queries, we obtain Pr

[F 5 ] ≤ Q H FS • log(Q V )/q.
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Introduction

Non-interactive zero-knowledge (NIZK) proof systems have been introduced by Blum, Feldman and Micali [START_REF] Blum | Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract)[END_REF] and allow a prover to prove membership of an NP language without interactions. They can be used to convince anybody that a statement belongs to the language and their zero-knowledge property ensures that a proof reveals nothing beyond the membership of the language. NIZK proofs are fundamental cryptographic primitives used to construct public-key encryptions secure against chosen-ciphertext attacks, digital signatures, voting schemes and other cryptographic protocols.

Designated-veri er non-interactive zero-knowledge (DVNIZK) argument systems are argument systems which can only be veri ed with a secret veri cation key, the soundness of the system holds only for an adversary who does not know the secret key and its zero-knowledge property holds for everyone, even for an adversary who knows the secret key. DVNIZKs have many applications for building more complex cryptographic protocols including tightly CCA encryption schemes [START_REF] Gay | Tightly CCA-Secure Encryption Without Pairings[END_REF] and electronic voting systems [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF].

Damgård, Fazio and Nicolosi [START_REF] Damgård | Non-interactive Zero-Knowledge from Homomorphic Encryption[END_REF] have been the rst to establish a generic transformation from a Σ-protocol, i.e. a 3-move honest zero-knowledge proof, into an e cient DVNIZK using an additively homomorphic encryption scheme if the answer can be computed linearly. Their construction is secure for a logarithmic number of proofs but the soundness relies on an unclassical complexity leveraging assumption. This technique has been later extended by Chaidos and Groth [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF] to a variant of designated veri er argument, where the soundness is weakened, and called culpable soundness. They use the Okamoto-Uchiyama encryption scheme [START_REF] Okamoto | A New Public-Key Cryptosystem as Secure as Factoring[END_REF] and require that the original Σ-protocol is secure with respect to unique identi able challenge, meaning that for words in a strict subset of the complementary of the original language, there is at most one challenge that can be answered with a valid proof. One interesting open problem is how to extend their idea to construct more general DVNIZK arguments based on other assumptions.

L

. The possible development of quantum computers would give e cient solutions for many classical cryptographic problems. Fortunately, we still Chapter 5. Lattice-based Designated-Veri able NIZK Argument and Application to a Voting Scheme have some cryptographic problems which remain hard even with quantum computers like lattice-based problems, code-based problems, isogeny-based problems etc. Lattice-based constructions are the most prominent ones, and they bene t from a security based on worst-case to average-case reductions. They also give us the most possibilities to construct various functionalities over cryptographic primitives (as fully homomorphic encryption (FHE) [Gen09; BV11; GSW13]...). Most lattice-based constructions rely on two fundamental problems, the Learning with Errors (LWE) problem and the (Inhomogeneous) Small Integer Solution ((I)SIS) problem, both shown to be as hard as lattices problems with worst-case to average-case reductions [START_REF] Ajtai | Generating Hard Instances of Lattice Problems (Extended Abstract)[END_REF][START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. The ISIS problem is that: given a matrix A uniformly sampled in Z n×m q (for some m > n), and a uniform vector y ∈ Z n q , we can not nd a small vector x ∈ Z m q such that Ax = y mod q. Then, in this area, an interesting relation to prove is the knowledge of an (I)SIS solution for a given matrix A and vector y, i.e. a short vector x such that Ax = y mod q. There already exists many interactive proofs to show this [MV03; LNSW13; BCK+14; BKLP15]. One of the main di culty in building a proof of knowledge for a lattice problem is that the proof has to be done many times, as it is the case for Stern proof [START_REF] Ling | Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications[END_REF], since the soundness probability is only 2/3 and extending the challenge space is a well-known hard problem. Many new results on how to improve the soundness probability have been published recently [BDOP16; BDLN16; PL17; LS17; BL17; BBC+18].

Usually, when we prove the soundness property of a proof of knowledge, we need to extract a witness. In the random oracle model, we can use the forking lemma [START_REF] Pointcheval | Security Proofs for Signature Schemes[END_REF] that allows us to rewind the proof and given two transcripts with the same commitment for two di erent challenges, we can extract the witness, proving that the proof is a proof of knowledge. In this case, the di erence of these two challenges needs to be invertible. However, in the lattice world, the inverse has not always small coe cients and when we work in the e ciently-computable ring settings, it is possible that this di erence will not be invertible, such as Z q [X]/ X n + 1 for q prime, n a power of 2 and q = 1 mod 2n. In [BCK+14], Benhamouda et al. showed that 2(X i -X j ) are invertible with coe cients in {-1, 0, 1}, but the challenges space is very small and the proof still need to be done many times.

In [BDOP16; LN17], the authors described a proof of knowledge to approximate zeroknowledge proofs in one iteration in the random oracle model. The main idea is to build an approximate zero-knowledge proof since they are not able to prove that we can extract the witness but only that there exists a small x such that Ax = cy, where c is a small number in Z q . This approximate solution is useful for some applications including veri able encryption schemes, group signature, key escrow, optimistic fair exchanges and veri able secret sharing. O C

. Our main contributions are the new construction of a lattice-based DVNIZK argument for the OR relation in the standard model and the rst lattice-based voting scheme in the standard model, i.e. both without random oracle. In order to construct our scheme we will use sub-exponential LWE (i.e. modulus q is sub-exponential w.r.t. the security parameter n).

• We rst build a Σ-protocol which proves that a commitment is either a commit- ment of 0 or 1. Our protocol is adapted from the Σ-protocol of Benhamouda et al. in [START_REF] Benhamouda | E cient Zero-Knowledge Proofs for Commitments from Learning with Errors over Rings[END_REF], which shows that the plaintexts satisfy the relation µ 3 = µ 1 µ 2 for three encryptions. Our proof shows a slightly di erent relation: of the form µ = 0 or 1 if, and only if, µ(µ -1) = 0. We also prove an additional security property: the soundness with unique identi able challenge that is needed to build our DVNIZK (Section 5.3.1).

• Then, we use similar techniques as in [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF] to derive a DVNIZK argument from the previous Σ-protocol. But this transformation does not directly apply and we had to solve several issues. This is our main contribution, described Section 5.3.2, our scheme allows to prove an OR relation: that a commitment commits to the message 0 or 1, and its security is proven under the Ring Learning With Errors assumption [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF].

• Finally, we show how to use our DVNIZK scheme to build a voting schemes. We construct the rst lattice-based voting scheme in the standard model in Section 5.4, but it requires an honest decryption party.

The principal idea of the transformation from a Σ-protocol to a DVNIZK proof is based on the observation that: in the Σ-protocol, the challenge generated by the veri er is independent from the output sent by the prover. Thus, we can use an decryptable homomorphic commitment scheme to commit a random challenge, and publish it in the public key at the beginning. The prover uses the commitment of the challenge and its homomorphic property to compute an committed proof. Thanks to the decryption key, the veri er can decrypt this proof and verify it, as in the Σ-protocol. But applying this transformation to a lattice-based commitment scheme is not straightforward. The main di culty is that, in a lattice-based Σ-protocol, we usually need a rejection sampling procedure to make the proof independent from the witness. But in this transformation, the prover can only compute the proof using the ciphertexts, then this makes the rejection sampling on the plaintext impossible. To solve this issue, we require the message space to be a ring and the challenge space to be a subset of the message space with only invertible elements. We also need that the di erence of two challenges is invertible mod 2, this explains our choice of the ring R = Z[X]/ X 2•3k + X 3k + 1 for our constructions (more details in Section 5.2.1).

Finally, we describe a lattice-based voting scheme in the standard model as an application of our DVNIZK. The main idea of the construction is that each ballot is a valid commitment. Using our DVNIZK, we can prove that the committed value is either a commitment of 0 or 1. This proof ensures that even an adversary can only vote at most one time during the voting procedure. However, our voting scheme needs an honest decryption party. The proof of validity using our DVNIZK is not su cient to prove the homomorphic property of Chapter 5. Lattice-based Designated-Veri able NIZK Argument and Application to a Voting Scheme the commitment. Because of this, we require an honest decryption party to add the votes privately and we cannot publicly add all the ballots together. Upon our knowledge, there are two existing post-quantum e-voting schemes [CGGI16] and [START_REF] Del Pino | Practical Quantum-Safe Voting from Lattices[END_REF], both of them are based on the random oracle model.

Open Problems. In the rst part, we construct a lattice-based DVNIZK argument system in the standard model. This argument system is only culpable soundness, which requires the successful attacker to reveal a witness of the fact the attack is in the guilt relation R guilt . This weak soundness notion is su cient in the case of voting scheme as mentioned in [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF]. But it would be interesting to build a DVNIZK scheme which achieve the classical soundness property, in which the adversary cannot construct a proof of a false statement

We construct also the rst post-quantum voting scheme in the standard model in Section 5.4.2. However, this rst construction needs to have a trusted decryption party. The post-quantum voting scheme without trusted decryption party in the standard model remains as an open problem.

Preliminaries

N

. Let n > 0 and R be the ring Z[X]/ f (X) for f (X) an irreducible polynomial in R q of degree n. For q > 0, we de ne R q = R/qR. The elements of R 2 are then polynomials with coe cients in {0, 1}. We use bold lower case letter to denote vectors and bold capital letters to denote matrices. We note [f ] 2 the binary rounding for every coe cient of the polynomial f . We use x 1 , x ∞ and x to denote respectively the L 1 , L ∞ and L 2 norm of the vector x.

We de ne as follows the gadget matrix [START_REF] Micciancio | Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller[END_REF]. It was rst introduced as an e cient tool to construct lattice trapdoors. Later on, the gadget matrix is widely used to construct fully homomorphic encryption schemes like [START_REF] Gentry | Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based[END_REF].

De nition 5.1 (Gadget Matrix [MP12]

). For a vector g = 1 2 . . . 2 log(q) and I m the m × m identity matrix, we de ne the gadget matrix G = g ⊗ I m . We also use the notation G -1 for the function which, given a matrix

M ∈ R m×m q , outputs M ∈ R m log 2 (q) ×m 2 such that G • M = M.
Notice that we can also see the function G -1 as a decomposition of each coe cient in bits and which put them in the same column.

Choice of the ring

In this work, we use R = Z/ X 2•3k + X 3k + 1 . We need this particular ring as we have constraints on the polynomial Φ 3 (X 3 k ) = X 2•3k + X 2k + 1: It needs to be irreducible in both F 2 [X] and F q [X]. In this section, we show that this is indeed the case and give some properties on the rings R = Z[X]/ X 2•3 k + X 3 k + 1 .
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1. Sample polynomials a R ← R q from a uniform distribution and s, e ← D Rq,σ from a discrete Gaussian distribution. 1

. Let B = n • EF (R q )B σ and B = n • EF (R q )B σ + n•EF (Rq) 2
verify that all the vectors in the opening information are small:

v ∞ ≤ B, e ∞ ≤ B, e ∞ ≤ B , γ ∈ R 2 \{0}.
2. Verify that the following equation is true:

bv + 2e + [γ • µ] 2 av + 2e = γ • c 0 c 1 .
In the veri cation algorithm we relax the acceptance condition, then we can have a small factor γ both in the commitment and the message i.e. γc = Commit(ck, γµ; r). We note that this is an honestly generated RLWE commitment scheme that can be seen also as an encryption scheme, thus we also introduce the following decryption algorithm. In this case, a decryption key dk = s is de ned in the Setup algorithm.

Decrypt(ck, dk, com): Given the commitment key ck, the decryption key dk = s and an honestly generated commitment com = (c 0 , c 1 ), the decryption algorithm outputs the message µ = c 0 -c 1 s 2 .

In the following lemma, we state that even with the previous relaxation, the commitment is still binding for the message (the proof is in the full version). Lemma 5.8. Assume that σ > 2 ω(log n) • σ. Then, this commitment is computationally hiding if the RLWE Rq,D Rq ,σ problem is hard, and is statistically binding. We present in the rst part a Σ-protocol which proves that a commitment commits to either 0 or 1. Then, in the second part, we use similar techniques as in [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF] to transform the Σ-protocol into a DVNIZK argument.

Σ-protocol to prove a OR-gate for a RLWE commitment

We rst show how to construct a Σ-protocol to prove that c = Com.Commit(ck, µ; r) commits to either µ = 0 or µ = 1. The principle of the protocol is explained in Figure 5.2. The Σ-protocol conducts the following steps: the prover rst computes c α , a commitment of a random element µ α ∈ R 2 , and c β , a commitment of µ β = -µµ α . Then, after receiving the random challenge δ from the veri er, the prover computes the proof π = (γ, r γ , r 0 ), with γ = δµ + µ α , such that:

δc + c α = Com.Commit(ck, γ; r γ ), (5.2) 
(γ -δ)c + c β = Com.Commit(ck, 0; r 0 ).

(5.3)

To accept the proof, the veri er checks the above equalities and that (r γ , r 0 ) is smaller than some given bounds. Intuitively, by the linearity of the commitment scheme, verifying these two equations implies that δµ + µ α = γ and (γ -δ)µ + µ β = 0. Combining them together we have δ(µ 2 -µ) + µµ α + µ β = 0, which implies the relation we want to prove: that (µ -1)µ = 0. As described above, the security of the Σ-protocol is based on the fact that the prover only have a small probability to correctly guess the value of δ before running Prove 2 . Thus, we de ne the challenge space with size 2 ξ , where ξ can be xed on any positive integer value smaller than the extension degree n of R q . The parameter ξ can be consider as the security parameter of the Σ-protocol.

Prover

Setup(1 λ ): Given the security parameter λ > 0, choose parameters q, σ and σ as described in the RLWE assumption. Then, proceeds as follows:

1. De ne PP RLW E = (R q , R 2 , D Rq,σ , D Rq,σ ).
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Theorem 5.9. The above Σ protocol is statistically complete, 2-special sound, statistical Special Honest Veri er Zero Knowledge (SHVZK) and almost unique identi able challenge with respect to the guilt relation R guilt = {((c, ck), dk)| KeyVerify(ck, dk) = True ∧ µ ∈ {0, 1} where µ = Decrypt(ck, dk, c) }, where KeyVerify is an algorithm to verify that the decryption key is a decryption key w.r.t. the public key, if the underlying commitment is computationally hiding and statistically binding.

5.3.2. Construction of a DVNIZK for encryption of 0 or 1

We use the [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF] transformation in the lattice setting to build a DVNIZK scheme which proves that a commitment commits to the message 0 or 1 under the RLWE assumption.

The main idea behind this transformation is that the veri er encrypts the challenge of the Σ-protocol. Since the challenge is independent from the outputs of Prove 1 , the veri er can generate it and publish its encryption in the public key. Then, the prover generates an encrypted proof using the ciphertext of the challenge (but without knowing the challenge) and its homomorphic properties, this part is e cient since there are only linear operations in Prove 2 . In the end, the veri er decrypts everything and runs the veri cation algorithm as in the Σ-protocol.

Principle of the construction.

At a high level, the construction is:

Setup(1 λ ): Given λ, de ne the parameters of the scheme, then:

1. Generate the commitment key ck.

2. Generate the RGSW public and secret keys: PK RGSW and SSK RGSW . 

Homomorphically compute:

• C γ the RGSW encryption of γ = δµ + µ α ,

• C rγ the RGSW encryption of r γ , the randomness of γ = δµ + µ α ,

DV-NIZK Argument for an OR-gate 89

Detailed DVNIZK construction.

We now describe our full construction:

Setup(1 λ ): Given the security parameter λ > 0, choose parameters q, q > q, σ, σ (for the RLWE commitment scheme), τ and τ (for the RGSW encryption scheme). Then, proceeds as follows:

1. De ne: PP RLWE = (D Rq,σ , D Rq,σ ) and PP RGSW = (q , D R q ,τ , D R q ,τ ).

2. Sample s, e ← D Rq,σ and a R ← R q , then generate a commitment key ck = (a, b = as + 2e).

3. Sample t, f ← D R q ,τ and u R ← R q , compute the key pair for the underlying RGSW scheme:

PK RGSW = tu + f u , SSK RGSW = 1 -t .
4. For all k ∈ [1, n/ξ ], sample δ k uniformly at random from the set of all polynomials with degree less than ξ in R 2 . Then, compute the RGSW encryption C δ k of δ k : C δ k = RGSW.Encrypt(PK RGSW , δ k ; r δ k ) where r δ k is a randomness generated as speci ed in the underlying schemes.

5. For all i ∈ [0, ξ), we denote δ k i the coe cient of degree i of δ k . 6. Compute C δ k i the RGSW encryption of δ k i for all k ∈ [1, n/ξ ] and for all i ∈ [0, ξ). 6. Using the homomorphic properties of the RGSW encryption, compute (C γ , C rγ , C r 0 ), which correspond to the RGSW encryption of δµ + µ α and of the randomness of the commitments of γ and 0. We also let σ smudge = EF (R q ) • n • 2 λ • 2 log q where λ is the security parameter. We draw R γ , R

(i) vγ , R (i) e γ , R (i) 
e γ , R 0 , R = ∀j∈[0,n)∧µ[j]=1 C δ i,j which is an encryption of i-th coe cient of [δµ + µ α ] 2 . We recall that C δ i,j is an encryption of the coe cient of degree i in the polynomial [δ • X j ] 2 . We give the details of the computation as follows:

a) For j ∈ [0, n) and i ∈ [0, n), we rst compute C δ i,j . Since δ is a polynomial of degree less than ξ, and R q = Z q [X]/ X n + X n/2 + 1 where n = 2 • 3 k for some integer k, there are many coe cients in [δ • X j ] 2 are 0 only depend on the degree of δ. We de ne C δ i,j = 0 if the degree i's coe cient of [δ • X j ] 2 is 0 what ever the value of δ is. Then, for all (i, j) ∈ [0, n) 2 , we compute C δ i,j as follows C δ i,j = C δ i-j ⊕ C δ i+n-j ⊕ C δ i+n/2-j , where C δ i with negative i are all 0.

b) We compute the ciphertext C [γ] 2 , which is the encryption of γ mod 2:

i. Compute C [δµ] 2 [i] = ∀j∈[0,n)∧µ[j]=1 C δ i,j
, which represents the i-th coe cient of the polynomial δµ ∈ R 2 .

ii. Compute

C [γ] 2 = n-1 i=0 (C (δµ) i ⊕(µ a )[i]•G)•G -1 (X i •G)+PK RGSW •R γ .
8. Then we compute the following elements: 3. Decrypt also: (v γ , e γ , ē γ ) ← RGSW.Decrypt(SSK RGSW , C rγ ), and (v 0 , e 0 , ē 0 ) ← RGSW.Decrypt(SSK RGSW , C r 0 ), then set: r γ = (v γ , e γ , ē γ /2 ) and r 0 = (v 0 , e 0 , ē 0 /2 ). , we verify that r γ = (v γ , e γ , e γ ) and r 0 = (v 0 , e 0 , e 0 ) are all small with the following bounds:

C γ =C δ • G -1 (µ • G) + µ a • G + PK RGSW • R γ , C rγ =(C δ • G -1 (v • G) + v α • G + PK RGSW • R vγ , C δ • G -1 (e • G) + e α • G + PK RGSW • R e γ , C δ • G -1 (2e • G) + 2e α • G + C δ • G -1 (µ • G) + PK RGSW • R e γ ), C r 0 =(C [γ] 2 -C δ ) • G -1 (v • G) + v β • G + PK RGSW • Rv 0 , C [γ] 2 -C δ ) • G -1 (e • G) + e β • G + PK RGSW • R e 0 , C [γ] 2 -C δ ) • G -1 (2e • G) + 2e β • G + (C [γ] 2 -C δ ) • G -1 (µ • G) + PK RGSW • R e 0 ).
v γ ∞ ≤ B + B σα , e γ ∞ ≤ B + B σα , e γ ∞ ≤ B + B σ α , v 0 ∞ ≤ 2 • B + B σ β , e 0 ∞ ≤ 2 • B + B σ β , e 0 ∞ ≤ 2 • B + B σ β .
5. Then, using that δ = RGSW.Decrypt(SSK RGSW , C δ ), verify the following equations: 

Application to Voting Schemes

In this section, we show how to use our DVNIZK scheme to build a voting scheme. We rst recall the de nition and the security properties of a voting scheme, then we give our construction of a voting scheme using our DVNIZK argument.

• Our voting scheme (Section 5.4.2) is the rst construction of a lattice-based voting scheme in the standard model. We follow directly the techniques described in [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF] to build this scheme. However, we request a stronger model for the voting scheme as the decryption party can not provide a proof of the tally process. Thus, in this construction, we need to suppose that the decryption party is honest.

• Note that we also propose a second construction in the full version of the paper, where we combine our DVNIZK with an amortized zero-knowledge proof system [CDXY17; PL17] which allows us to run e ciently many proofs in parallel in the random oracle model. This gives us a new lattice-based voting scheme, di erent from the one described in [START_REF] Del Pino | Practical Quantum-Safe Voting from Lattices[END_REF], as our main building block is in the standard model.

De nitions

We start with the formal de nition of a voting scheme and its security properties.

De nition 5.4 (Voting Scheme[CG15]

). A voting scheme Π consists of ve PPT algorithms Π = (Setup, Vote, SubmitBallot, CheckBoard, Tally) such that:

Setup(1 λ ) → (VSK, VPK, VVK, BB): The setup algorithm takes the security parameter 1 λ , then it produces a secret key VSK, a public key VPK and a veri cation key VVK, it also initializes a bulletin board BB. Theorem 5.11. Our voting scheme Π constructed as above is correct, if the DVNIZK argument is culpable sound.

Proof. We construct an adversary B against the culpable soundness of the underlying DVNIZK with the adversary A against the correctness experiment of the voting scheme. B simulates the correctness experiment for A with the PP DVNIZK given by the security game of the culpable soundness instead of generate his own PP DVNIZK and VK DVNIZK . The fact that result ≤ sum OR result ≥ sum + nb malicious implies that at least one of the ballot submitted for O M aliciousV oter is either a not well formed commitment, either a well formed commitment of µ ∈ {0, 1}. B uniformly chooses a ballot submitted to the oracle O M aliciousV oter and submit it together with the decryption key SK BV as the witness of the culpable language w guilt . Since the number of requests for the oracle O M aliciousV oter is polynomial, the advantage of B against the culpable soundness is non-negligible. Theorem 5.12. Our voting scheme Π constructed as above veri es the ballot privacy property. Theorem 5.12 is based on the zero-knowledge property of the underlying DVNIZK and the IND-CPA security of the underlying BV encryption scheme. As we follow the framework of [START_REF] Chaidos | Making Sigma-Protocols Non-interactive Without Random Oracles[END_REF], the proof is the same as in [CG15, Theorem 5].

Chapter 6. Conclusion without random oracle. By combining the Groth-Kholweiss Σ-protocol and the dual mode encryption scheme, we achieve the rst tightly secure ring-signature scheme. On the other side, we are also interested in the construction of non-interactive zero-knowledge argument system, we proposed a construction of a weaker version: designated-veri er zero-knowledge argument in the standard model and as an application we use our DVNIZK to construct a post-quantum voting scheme in the standard model.

Open Problems

1 Can we build lattice-based KDM-CCA encryption scheme? In this thesis, we give an e cient construction of lossy algebraic lter (LAF) which allows us to construct an e cient KDM-CCA encryption scheme based on DDH assumption. However, even if our construction of LAF can be easily constructed based on lattices, the framework of the KDM-CCA proposed by [START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] is not generic, it can not be constructed using lattice assumptions.

  although M was not previously queried to the MAC oracle. By de nition, Pr[W 0 ] = Adv uf-mac A (λ).

  Game 2.L , we claim that Pr[W 2.L ] = 1/p. Indeed, the equalities (3.21) can only hold by pure chance when i = L because m [1] . . . m [L] was never involved in an output of the MAC oracle. Hence, the random function output R(m [1] . . . m [L]) is perfectly independent of A's view. Since Pr[W 2.0 ] = Pr[W 1 ], we obtain the claimed upper bound for Pr[W 0 ]. Lemma 3.5. In Game 0 , we have Pr[W 0 ∧ ¬E 0 ] ≤ Adv DDH 2 (λ).

2.

  Choose a chameleon hash function CMH = (CMKg, CMhash, CMswitch), where the hashing algorithm CMhash : {0, 1} * × R hash → {0, 1} L has output length L ∈ poly(λ). Generate a pair (hk CMH , td CMH ) ← CMKg(1 λ ) made of a hashing key hk CMH and a trapdoor td CMH .3. Generate n keys for the MAC of Section 3.4.1 which all share the same parameters g, h ∈ G, ĝ ∈ Ĝ. Namely, for each j ∈ [n], conduct the following steps.a. Choose θ j R ← Z p and compute ĝθ j ∈ Ĝ.

  4. Logarithmic-Size Ring Signatures With Tight Security from the DDH Assumption 57 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3. A Fully Tight Construction from the DDH Assumption . . . . . . . . . . . 64 5. Lattice-based Designated-Veri able NIZK Argument and Application to a Voting Scheme 77 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3. DV-NIZK Argument for an OR-gate . . . . . . . . . . . . . . . . . . . . . . 84 5.4. Application to Voting Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 91 6. Conclusion 95 6.1. Summary of our contributions . . . . . . . . . . . . . . . . . . . . . . . . . 95

  4.2.1. Syntax and Security De nitions for Ring SignaturesDe nition 4.1. A ring signature scheme consists of a tuple of e cient algorithms (Par-Gen, Keygen, Sign, Verify) with the following speci cations:Par-Gen(1 λ ): Given a security parameter λ, outputs the public parameters pp.

Figure 4

 4 Figure 4.1. -Σ-protocol for commitment to m ∈ {0, 1}

Figure 5

 5 Figure 5.1. -Our contributions to build a voting scheme.

2.

  Compute b = as + 2e. 3. Output the commitment key ck = (a, b) and the decryption key dk = s 2 . Commit(ck, µ): Given ck = (a, b), commit the message µ ∈ R 2 as follows: 1. Sample the error terms (v, e ) ← D Rq,σ and e ← D Rq,σ . 2. Compute the commitment (c 0 , c 1 ): c 0 = bv + 2e + µ and c 1 = av + 2e . 3. Output the commitment and the opening information: com = (c 0 , c 1 ), open = (1, v, e , e ). Verify(com, open, µ): Given the commitment com = (c 0 , c 1 ), the opening information open = (γ, v, e , e ), and the message µ, the veri cation algorithm proceeds as follows:

5. 3 .

 3 DV-NIZK Argument for an OR-gate 85 non-linear relation Σ-protocol, but there is no such existing argument concerning DVNIZK constructions.

  Figure 5.2. -Σ-protocol to show that c commits to µ ∈ {0, 1}.

3.

  Sample a challenge δ R ← {f ∈ R 2 | deg f < ξ}, compute its encryption C δ = RGSW.Encrypt(PK RGSW , δ; r δ ). 4. Output the secret veri cation key SVK = SSK RGSW and the public key PK = (ck, PK RGSW , C δ ). Prove (PP, PK, (c, (r, µ))): To prove that c is either a commitment of 0 or 1: 1. Uniformly sample a random message µ α R ← R 2 and µ β = -µµ α . 2. c a = Com.Commit(ck, µ α ; r α ) and c b = Com.Commit(ck, µ β ; r β ).

7.

  Output the secret veri cation key SVK = SSK RGSW , the public parameter PP = (PP RLWE , PP RGSW ) and the public keyPK = (ck, PK RGSW , {C δ k } k∈[1, n/ξ ] , {C δ k i } k∈[1, n/ξ ],i∈[0,ξ) ).Prove (PP, PK, (c, (r, µ))): To prove that c is either a commitment of 0, or a commitment of 1 using (r, µ) as a witness, we run the following proof n/ξ times with{δ k } k∈[1, n/ξ ] .For clarity, we simply describe one proof with δ as follows:1. Parse the public key as PK = (ck, PK RGSW ,{C δ k } k∈[1, n/ξ ] , {C δ k i } k∈[1, n/ξ ],i∈[0,ξ)). 2. Parse (r, ck) = ((v, e , e ), (a, b)).

3.

  Uniformly sample a random message µ α R ← R 2 and µ β = -µµ α . 4. Sample the randomness v α , e α , v β , e β ← D Rq,σ and e α , e β ← D Rq,σ . 5. Use the above generated randomness to commit µ α , µ β w.r.t. ck as follows:c α = bv α + 2e α + µ α av α + 2e α , c b = bv β + 2e β + µ β av β + 2e β

  Lattice-based Designated-Veri able NIZK Argument and Application to a Voting Scheme 7. To compute C [γ] 2 = C [δµ+µα] 2 , as explained in the introduction we can compute C [γ] 2 = C [δµ] 2 ⊕ C [µα] 2 and C [δµ] 2 [i]

9.

  Output the proof Π = (c α , c β , C γ , C rγ , C r 0 ). Verify(PP, PK, SVK, c, Π = {π k } k∈[1, n/ξ ] ): To verify the proof π for c using the secret veri cation key SVK, we need to proceed as follows for all k ∈ [1, n/ξ ]. For the clarity of the description, we only describe one with π: 1. Parse the secret veri cation key SVK = SSK RGSW , 2. Decrypt and set: γ = RGSW.Decrypt(SSK RGSW , C γ ). If γ has coe cients other than 0 or 1 then abort.

5. 4 .

 4 Application to Voting Schemes 91 4. Let B = n • EF (R q ) • B σ and B = n • EF (R q ) • B σ + n•EF (Rq)+1 2

δ

  • c + c α = Com.Commit(ck, γ; r γ ), (γ -δ) • c + c β = Com.Commit(ck, 0; r 0 ). 6. If all the veri cation are true then return True otherwise return False. Theorem 5.10. DVNIZK = (Setup, Prove, Verify) is a Designated-Veri er Non-Interactive Zero-Knowledge argument which ensures culpable soundness with respect to the guilt language R guilt = {((c, ck), dk)|KeyVerify(ck, dk) = True∧µ ∈ {0, 1} where µ = Decrypt(ck, dk, c)}.

5. 4 .

 4 Application to Voting Schemes 93 Setup(1 λ ): The decryption party P Dec uses Com.Setup to produce the public key PK Com and the secret key SK Com . The veri cation party P Verify uses DVNIZK.Setup to produce the public parameter PP DVNIZK and the secret veri cation key VK DVNIZK . The setup algorithm initializes a bulletin board BB which is hidden and it outputs: VSK = SK Com , VPK = (PK Com , PP DVNIZK ), VVK = VK DVNIZK . Vote(VPK, µ ∈ {0, 1}): Given the public key VPK = (PK Com , PP DVNIZK ), the voter uses PK Com to compute an encryption c of his vote µ using a random r. He computes also a DVNIZK proof π that c is a well formed commitment of µ ∈ {0, 1} with randomness r. The voter outputs B = (c, π).SubmitBallot(VPK, B, BB):This algorithm submits the ballot to the bulletin board.CheckBoard(VPK, VVK, BB):The veri cation party P Verif uses the veri cation key VVK to check that all the ballots are commitments of 0 or 1. After the tally algorithm nished, we also output VVK to allow everyone to check the bulletin board BB.Tally(BB, VSK): The decryption party P Dec , using the decryption key VSK, computes the result of the vote result = B=(c B ,π B )∈BB Decrypt(SK Com , c B ). It outputs result of the vote.
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3.2. Background

3.3. A Lossy Algebraic Filter With Linear-Size Tags

The LAF of[START_REF] Hofheinz | Circular Chosen-Ciphertext Security with Compact Ciphertexts[END_REF] was described in terms of symmetric pairings but it extends to asymmetric pairings e : G × Ĝ → G T where tags are comprised of elements in G.

While the assumption of De nition 2.10 is described using O(Q) group elements, it tightly reduces to wD3DH1 and DDH which both take a constant number of group elements to describe.

3.4. A Lossy Algebraic Filter With Tight Security

The multiplicative order of a polynomial f with f (0) = 0 is the smallest positive integer r such that f divides X r -1.

In the De nition ??, there is no decryption key for the commitment scheme. Here the provided decryption key will used in the construction of Σ-protocol

Can we construct DVNIZK in the standard model without size of witness loss? In this thesis, we give a construction of a lattice-based DVNIZK in the standard model. However, there is always a gap between the size of the witness and what the veri er is convinced of. Concretely, in lattice related problems, we need to prove the knowledge of a small vector x. In the state-of-the-art of lattice based non-interactive proof system in the standard model, we can only convince the veri er that we know a small vector y such that y is strictly larger than x. By using the lattice interactive proofs like Stern's protocol, we can prove the statement, but to prove the statement with an e cient non-interactive proof system without random oracle remains as an open problem.

Can we construct a tightly secure logarithmic-size ring signature in the standard model?In this thesis, we give a construction of a tightly secure logarithmic-size ring signature. Despite the fact that, we bypass the security loss in the Fiat-Shamir transformation used in previous works, we still need a random oracle to construct the primitive. The tightly secure construction of a such primitive in the standard model remains as an open problem.

Can we an e cient e-voting scheme in the standard model that pro t from the homomorphism of the lattice-based encryption scheme?Through this thesis, we give an post-quantic e-voting scheme. However, due to the fact that we can not prove the

Remerciements

Note that the Fiat-Shamir proof does not hide which index ∈ {0, 1} n the signing oracle uses (and it does not have to since A knows ): indeed, for any signing query, the matrix L h has only rank 3 and X may be the only key of the ring R to be in the column span of M H . However, the same holds in Game 6. As long as the simulation does not fail because of a collision on H FS or because (H 1 , H 2 ) accidentally lands in the span of (g, h) at some signing query, the simulated proof is perfectly indistinguishable from a real proof that would be generated as in Game 6. Taking into account the probability that the signing oracle fails at some query, we obtain the inequality

In Game 7, we claim that Pr[W 7 ] = 2/q. To prove this claim, we recall that B only outputs 1 if (T 0 , T 1 ) decrypts to Γ = U α • V β . We next argue that, except with probability 1/q, Γ is independent of A's view in Game 7.

Indeed, since (g, h, g, h) is a Di e-Hellman tuple, the only information that X = (X , Y ) = (g α • h β , gα • hβ ) reveals about (α , β ) ∈ Z 2 q is log g (X ) = α + log g (h) • β since log g (Y ) only provides redundant information. Also, in all outputs of the signing oracle, the pair (T 0 , T 1 ) R ← G 2 is chosen independently of U α • V α . Finally, in Game 7, all signing queries are answered by simulating a NIZK proof without using the witnesses SK = (α , β ) ∈ Z 2 q at any time. This ensures that no information is leaked about (α , β ) whatsoever.

Taking into account the event that (U, V ) accidentally falls in the span of (g, h), we nd that Γ remains independent of A's view until the forgery stage. In this case, (T 0 , T 1 ) only decrypts to U α • V β with probability 1/q, which implies Pr[W 7 ] = 2/q. When counting probabilities, we obtain the bound (4.12). Lemma 4.6. There exists an e cient DDH distinguisher B that bridges between Game 1 and Game 2 and such that

Proof. We consider a DDH instance (g, g a , g b , g ab+c ) for which B has to decide if c = 0 or c ∈ R Z q . To do this, B initially de nes h = g b and emulates the random oracle H(•) at each (direct) query by randomly choosing

we have c = 0 with probability 1 -1/q, so that (H 1 , H 2 ) are uniform over G 2 and independently distributed across distinct queries, exactly as in Game 1. When A halts, B outputs 1 if A creates a valid forgery and 0 otherwise.

Lemma 4.7. From Game 3 to Game 4, the adversary's winning probabilities di er by at most

Proof. We bound the probability Pr[F 4 ]. Recall that F 4 occurs if A breaks the soundness of the proof that a dual-mode ciphertext encrypts a bit. This implies that σ =
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Lemma 5.1 ([LN86, Th 3.35]). Let f (X) be an irreducible polynomial in F q [X] of degree d and multiplicative order 1 r. Let t ≥ 2 be an integer whose prime factors divide r but not q d -1 r . We also need to assume

Lemma 5.2 ([LN86, Th 2.47]). In the prime nite eld F q , let n be a positive integer and r the smallest integer such that q r = 1 mod n. Then all the irreducible factors of the n-th cyclotomic polynomial have degree r. Lemma 5.3. Let q = 2 mod 9 be a prime and k ≥ 0 a non-negative integer. The polynomial

In the rest of this work, we use the function Φ 3 (X 3 k ) = X 2•3 k + X 3 k + 1 and we apply the condition q = 2 mod 9 to generate the extension F q 2•3 k of F q . Recall that since

], R q is a nite eld. We denote by n = 2 • 3 k the extension degree of R q over F q .

A critical value for the choice of the ring is the expansion factor. It measures how large the product of two polynomials becomes in the ring. In cases of lattice-based construction, smaller expansion factor leads to smaller parameters.

De nition 5.2 (Expansion Factor of R q [START_REF] Lyubashevsky | Generalized Compact Knapsacks Are Collision Resistant[END_REF]). The expansion factor of a nite eld R q , with n the extension degree of R q over F q , is de ned as:

Let f be the de nition polynomial of the nite eld R q . As showed in [START_REF] Lyubashevsky | Generalized Compact Knapsacks Are Collision Resistant[END_REF], the expansion factor EF (R q ) can be bounded by:

(5.1)

Where deg(•) is the degree of a polynomial and gap(•) is the di erence between the polynomial degree and the second highest degree of non-zero term in a polynomial. Using this bound with g(x) = x 3 k -1, we get the following lemma.

Gaussian distribution

For v ∈ R q , we de ne the Gaussian function centered at c with standard deviation σ

and the discrete Gaussian distribution centered at c over R q as D Rq,c,σ (v) = ρ σ,c (v)/ w∈Rq ρ σ,c (w). If the center is 0, we denote this distribution D Rq,σ . Lemma 5.5 ([Ban93, Lemma 1.5(i)]). In R q of extension degree n, an element s ∈ R q sampled according to D Rq,σ , and parameter σ > 0, we have: n) . Chapter 5. Lattice-based Designated-Veri able NIZK Argument and Application to a Voting Scheme

We denote in the rest of this chapter B σ = σ √ n a bound on the discrete Gaussian distribution which is veri ed with probability 1 -2 -Ω(n) , where n is the extension degree of R q over F q .

In our construction, we prove that the distribution of the proof is unrelated to the witness used by the prover. A common approach with rejection sampling would imply rejections on the plaintext space which is not possible here without the secret veri cation key. Thus we need to use smudging techniques which are based on the following lemma.

Lemma 5.6 (Noise smudging [DGK+10, Theorem B.1]). Let q ∈ Z, σ ∈ R and y ∈ R q . The statistical distance between the distribution D Rq,σ and y + D Rq,σ is at most y 2σ .

Ring Learning With Errors

We now recall the Ring Learning With Errors (RLWE) assumption used in the security proof of our scheme.

De nition 5.3 (RLWE assumption [PR06; LPR13b]

). For the security parameter λ ∈ N, set a degree parameter n = n(λ), choose the degree n cyclotomic polynomial Φ n (X) and a prime integer q = q(λ) ∈ Z, let the ring R be Z[X]/ Φ n (X) , the quotient ring R q = R/qR and D Z n ,σ for σ ≥ ω( √ log n), a distribution over the ring R q . The ring learning with errors assumption RLWE Rq,D Z n ,σ states that for any = poly(λ) we have:

where a i and u i are sampled uniformly from R q , and (s, e i ) from the error distribution D Z n ,σ .

We note that the polynomial we use in this paper

Thus the security of our scheme relies on the RLWE assumption, recently the relation between RLWE and Polynomial-LWE has been clari ed by [START_REF] Rosca | On the Ring-LWE and Polynomial-LWE Problems[END_REF].

We need the following lemma for the construction of the RLWE commitment, which shows that given one RLWE sample (a, b = as + e) with the secret s and the noise e, we can create many other RLWE instances without knowing the secret s.

Lemma 5.7 ([BV11]

). Let q, n, σ be the parameters of RLWE, and let σ ≥ 2 ω(log n) • σ. Then, under the RLWE Rq,D Rq assumption, for s, v, e, e ← D Rq,σ , a, a R ← R q , e ← D Rq,σ and b = as + 2e, we have: (s, (a, b), (av + 2e , bv + 2e )) ≈ c (s, (a, b), (a , a s + 2e )).

RLWE commitment scheme [LPR13a]

We present in this part a commitment scheme derived from the RLWE encryption of [START_REF] Lyubashevsky | A Toolkit for Ring-LWE Cryptography[END_REF]. Note that it can also be seen as a fully homomorphic encryption scheme from [START_REF] Brakerski | Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages[END_REF] with operations RLWE.Add and RLWE.Mult over the ciphertexts. For clarity, we refer to the original paper [START_REF] Brakerski | Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages[END_REF] for the explicit construction of these two algorithms.

Setup(1 λ ): Given the security parameter λ, choose parameters n, q, σ, σ ≥ 2 ω(log n) • σ as speci ed in Lemma 5.8. Then, proceed as follows: Chapter 5. Lattice-based Designated-Veri able NIZK Argument and Application to a Voting Scheme

Ring-GSW encryption scheme [KGV16]

In this section, we present a construction of a fully homomorphic encryption scheme based on the Ring-LWE assumption [START_REF] Alhassan Khedr | SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classi ers[END_REF], which is a ring version of the GSW scheme [START_REF] Gentry | Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based[END_REF].

In fact, we only require that it is linearly homomorphic. The advantage of the following encryption scheme is that the message space R q is very large, which allows to encrypt the noise polynomials of the RLWE based commitment in the Σ-protocol.

Setup(1 λ ): Given λ > 0, the security parameter of the encryption scheme, choose parameters q, τ , τ as speci ed in the underlying RLWE assumption, then proceeds as follows:

1. Sample polynomials t ← D Rq,τ , u R ← R q and noise f ← D Rq,τ .

Compute w

Encrypt(PK, µ): Given a public key PK = u and a message µ in R q :

1. Set N = log 2 (q), sample an uniform

2. Sample a (2 × N )-noise matrix F ← D 2×N (Rq,τ ) . 3. Compute C the ciphertext of µ ∈ R q using the gadget matrix G (De nition 5.1):

Decrypt(SSK, C): Given the secret key SSK = t and a ciphertext C:

1. Compute the plaintext as follows:

Then, as the rst coe cient of t is 1, we have µ • 1 2 • • • 2 -1 + error. Since our ring is R q with q not a power of 2, the inversion is not straightforward, but as explained in [START_REF] Micciancio | Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller[END_REF], it is possible to use Babai algorithm [START_REF] Babai | On Lovász' lattice reduction and the nearest lattice point problem[END_REF] to recover the value µ.

Add(C 1 , C 2 ): To add two ciphertexts C 1 and C 2 , simply outputs

This scheme is IND-CPA secure under the RLWE Rq,D Rq ,τ assumption (and we can set τ = τ ) [GSW13; KGV16] .

DV-NIZK Argument for an OR-gate

Our rst contribution is a DVNIZK argument to show that a given RLWE commitment is a commitment of either 0 or 1. Note that this relation is non-linear as it can be written as: given c a commitment of µ, show that the plaintext satis es the relation µ(µ -1) = 0. To the best of our knowledge, only Benhamouda et al. in [START_REF] Benhamouda | E cient Zero-Knowledge Proofs for Commitments from Learning with Errors over Rings[END_REF] described previously a Chapter 5. Lattice-based Designated-Veri able NIZK Argument and Application to a Voting Scheme 2. De ne σ α , σ β and σ α , σ β standard deviations super-polynomially larger than σ and σ .

3. Generate the commitment key ck = (a, b) and the decryption key dk = s.

Prove 1 (PP, ck, c, (µ, r)): Given the commitment key ck, the prover generates two commitments for two new elements µ α and µ β .

1. Uniformly sample a polynomial µ α R ← R 2 and the randomness (v α , e α , e α ) ← D Rq,σα × D Rq,σα × D Rq,σ α which will be used to commit µ α .

2. Compute µ β = -µµ α and similarly as before sample the randomness (v β , e β , e β ) ← D Rq,σ β × D Rq,σ β × D Rq,σ β which will be used to commit µ β .

3. Compute the commitments:

4. Send the commitments c α , c β to the veri er.

Prove 2 (PP, ck, c, (µ, r), δ): After giving the commitments to the veri er, the prover receives a challenge δ from the veri er which is uniformly sampled from all polynomials with degree less than ξ.

1. Compute γ = δµ + µ α mod 2. .

3. Output the proof to the veri er π = (γ, r γ = (v γ , e γ , e γ ), r 0 = (v 0 , e 0 , e 0 )).

Verify(PP, ck, c; π): Given the commitment and its key, the veri er checks the proof π = (γ, r γ = (v γ , e γ , e γ ), r 0 = (v 0 , e 0 , e 0 )) as follows:

. Verify that all the randomness are small:

2. Verify that the following equations about the ciphertexts are correct: 2. Decrypt also C rγ and C r 0 , verify that all the randomness are small.

3. Then, using that δ = RGSW.Decrypt(SSK RGSW , C δ ), verify that:

4. If all the veri cation are true then return True otherwise return False. This is the main idea behind the protocol, but two steps in particular are more technical. We solved the following issues:

• Number of challenges. In the Setup algorithm, we have to encrypt n/ξ challenges (δ k ) k∈[0, n/ξ ) and denote by C δ k their RGSW encryption. Indeed, we use the extractor of the Σ-protocol to be able to show the culpable soundness property of the DVNIZK scheme. However, the e ciency of the extractor is linear in the size of the challenge space of the Σ-protocol, i.e., 2 ξ . Then, we cannot take the same ξ, which was de ned as the security parameter, we have to choose a smaller one (as a concrete example we could set ξ as 20). In order to keep the same security level, we then have to repeat the Σ-protocol n/ξ times.

• Homomorphic operations on RGSW ciphertexts. In the protocol, we compute γ = δµ + µ α ∈ R 2 . But we use in our scheme the RGSW encryption scheme, in which the operations of the plaintexts are in R q . As a consequence, we need to implement our own operation [•] 2 in R q , which is not trivial using only the linear operations of the RGSW encryption scheme. Our main observations are that:

-We can compute the bit addition of two RGSW ciphertexts C 1 and C 2 , we denote by

-Using the special structure of the ring R q = Z q [X]/ X n + X n/2 + 1 , for all polynomial δ with degree less than ξ, given {C δ i } i∈[0,ξ) an RGSW encryption of the coe cient of degree i in the polynomial δ, we can easily compute an encryption of the coe cient of degree i in the polynomial [δ • X j ] 2 that we denote by C δ i,j .

Using these two ideas together, we compute Tally(BB, VSK) → result: The tally algorithm takes the bulletin board BB and the secret key VSK, then it reveals the voting result.

We also request the voting scheme to verify the correctness and the ballot privacy property.

The scheme is correct if every vote submitted by an honest voter is counted correctly and if a malicious voter can not in uence the voting result more than behave as an honest one.

De nition 5.5 (Correctness). We de ne an experiment as in Figure 5.3. A voting scheme is correct if, and only if, for all PPT adversary, the following probability is negligible

The ballot privacy [CG15, De nition 10] property ensures that even if the veri cation key of the voting scheme becomes public at the same time as the result of the vote, the voters can not get any other information about the messages included in the ballot submitted by other voters.

Our Voting Scheme

We build our voting scheme using a DVNIZK = (Setup, Prove, Verify) as described in Section 5.3.2 and the related BV encryption/commitment scheme Com = (Com.Setup, Com.Commit, Com.Decrypt) as described in Section 5.2.4.

Conclusion 6

T presents several e ciency improvement of existing scheme, as well as some new primitives.

Summary of our contributions

In this thesis, we focused on improving the e ciency of existing cryptosystems, as well as providing new functionalities based on various assumptions.

In the rst part, we have studied two variants of lossy trapdoor functions. LTFs can been seen as a generalization of trapdoor one-way function. More speci cally, the trapdoor one-way function is the starting point of the asymmetric cryptography. However the direct construction of encryption scheme using trapdoor one-way function only satis es the one-wayness (the adversary cannot easily nd the message from the ciphertext). For more advanced indistinguishability based security, the lossy trapdoor function is a more suitable modelization. Using its injectif mode, the receiver can decrypt the ciphertext with the trapdoor. On the other side, in the security proof, we can use the indistinguishability type assumptions to switch the LTF into lossy mode, in which the message is statistically hiding from the adversary's point of view. Therefore the lossy trapdoor functions are essential building blocks for many cryptographic protocols. In this thesis, we studied two variants of lossy trapdoor functions.

Firstly, We proposed the rst lossy algebraic lter (LAF) with linear-size tag. For the second variant of the LTF, we also proposed di erent e cient constructions of R-LTF using di erent assumptions as the Decision Composite Residuosity assumption (DCR), the Decision Di e-Hellman assumption (DDH), or the semi-smooth RSA subgroup assumption (ss-RSA). The new R-LTFs can be used to construct more e cient deterministic encryption scheme.

In the second part, we have focused on the zero-knowledge proof systems and their application. Despite importance of zero-knowledge proof in constructing many cryptographic protocols including e-cash, e-voting, CCA (Chosen Ciphertext Attack) encryption schemes, most the constructions of zero-knowledge proof su ered from the using of the random oracle model. The disadvantages is two-fold, on the one hand the random oracle model is plausible. On the other hand, many construction using the random oracle model lacks tight security proof (typically the constructions involving Fiat-Shamir transformation). For these proposes, we studied the zero-knowledge proof in two ways. We try to make some construction tightly secure and try to build zero-knowledge proof systems

List of Figures