
HAL Id: tel-02888604
https://theses.hal.science/tel-02888604v1

Submitted on 3 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural Learning of Neural Networks
Pierre Wolinski

To cite this version:
Pierre Wolinski. Structural Learning of Neural Networks. Neural and Evolutionary Computing
[cs.NE]. Université Paris-Saclay, 2020. English. �NNT : 2020UPASS026�. �tel-02888604�

https://theses.hal.science/tel-02888604v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T
:
2
0
2
0
U
PA

S
S
0
2
6

Structural Learning of Neural
Networks

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de
l’Information et de la Communication (STIC)

Spécialité de doctorat : Informatique
Unité de recherche : Laboratoire de Recherche en Informatique

(LRI, UMR8623)
Référent : Faculté des sciences

Thèse présentée et soutenue à Gif-sur-Yvette, le 06/03/2020,
par

Pierre WOLINSKI

Composition du jury :

Florent KRZAKALA Président
Professeur, Sorbonne Universités & École Normale
Supérieure (SPHINX team)
Stéphane CANU Rapporteur & Examinateur
Professeur, Insa Rouen (Laboratoire d’Informatique, du
Traitement de l’Information et des Systèmes)
Mathieu SALZMANN Rapporteur & Examinateur
Chargé de recherche, École Polytechnique Fédérale de
Lausanne (Computer Vision Laboratory)
Florence D’ALCHÉ-BUC Examinatrice
Professeure, Télécom ParisTech (DigiCosme)

Guillaume CHARPIAT Directeur
Chargé de recherche, Inria (Laboratoire de Recherche en
Informatique)
Yann OLLIVIER Co-encadrant & Examinateur
Chercheur, Facebook

Résumé

La structure d’un réseau de neurones détermine dans une large mesure son coût
d’entraînement et d’utilisation, ainsi que sa capacité à apprendre. Ces deux aspects
sont habituellement en compétition : plus un réseau de neurones est grand, mieux il
remplira la tâche qui lui a été assignée, mais plus son entraînement nécessitera des
ressources en mémoire et en temps de calcul. Trouver une structure de réseau de
taille raisonnable et qui remplisse néanmoins son rôle est donc l’un des problèmes
majeurs à résoudre dans ce domaine.

L’objectif de la thèse est d’apporter des solutions à plusieurs problèmes qui se
posent dans la recherche d’une bonne structure de réseau de neurones. La première
contribution est une méthode d’entraînement de réseau qui fonctionne dans un vaste
périmètre de structures de réseaux et de tâches à accomplir, sans nécessité de régler
le taux d’apprentissage. La deuxième contribution est une technique d’entraînement
et d’élagage de réseau, conçue pour être insensible à la largeur initiale de celui-ci.
La dernière contribution est principalement un théorème qui permet de traduire une
pénalité d’entraînement empirique en a priori bayésien, théoriquement bien fondé.

Taux d’apprentissage variés. La première contribution est la description et le
test d’une nouvelle technique d’entraînement de réseau de neurones, baptisée Alrao
(All Learning Rates At Once, « tous les taux d’apprentissage à la fois »).

La méthode standard d’entraînement de réseau de neurones est l’application
d’une Descente de Gradient Stochastique (SGD) sur ses paramètres. En alternant
les cycles d’envoi de données d’entraînement dans le réseau et d’application de la
SGD, le réseau s’améliore dans la résolution de la tâche qui lui a été assignée. Or, la
SGD ne fonctionne efficacement que si son taux d’apprentissage est bien réglé : un
taux d’apprentissage trop grand déstabilise le processus d’entraînement et peut faire
diverger les poids du réseau (qui devient alors inutilisable), et un taux d’apprentissage
trop petit ralentit le processus d’apprentissage. Le taux d’apprentissage est donc
une hyperparamètre qu’il faut régler a priori. La façon la plus simple de le régler
consiste à faire une grid search, c’est-à-dire lancer plusieurs entraînements de réseau
avec différents taux d’apprentissage, puis sélectionner celui qui aboutit au meilleur
réseau de neurones. Cette méthode est donc coûteuse en temps de calcul : il faut
procéder à autant d’entraînements qu’il y a de taux d’apprentissage à tester !

Avec Alrao, il est possible d’éviter ce surcoût. Au lieu de fixer un taux d’apprentis-
sage bien précis et identique pour l’apprentissage de tous les neurones, Alrao consiste

3

4 Chapitre 0 –

à attribuer à chaque neurone un taux d’apprentissage différent, initialement tiré
aléatoirement dans un intervalle assez large. Les résultats expérimentaux montrent
que, pour l’entraînement d’un même réseau, Alrao et la SGD avec un taux d’appren-
tissage optimisé aboutissent à des réseaux aux performances voisines, et ce pour
un ensemble de tâches et d’architectures de réseau très varié. Même si la meilleure
performance est souvent atteinte avec la SGD munie d’un taux d’apprentissage
optimisé plutôt qu’avec Alrao, ce dernier est certainement utile pour le test rapide
de nouvelles architectures.

Élagage de réseaux de taille arbitrairement grande. La deuxième contribu-
tion est la description de deux techniques nouvelles, ScaLa et ScaLP, respectivement
Scaling Layers (« couches de mise à l’échelle ») et Scaling Layers for Pruning
(« couches de mise à l’échelle pour élagage »).

Pour résoudre une tâche donnée, le choix d’une architecture de réseau de neu-
rones en particulier résulte le plus souvent d’un compromis entre deux critères : la
performance du réseau une fois entraîné au regard de la tâche à accomplir, et le
coût en temps de calcul de son entraînement et de son utilisation. Une méthode de
construction de réseaux de neurones à l’architecture plus légère consiste à élaguer
un réseau de neurones de grand taille (i.e. supprimer des neurones) au cours de son
entraînement.

ScaLP est une technique d’élagage de réseau vérifiant certains critères de stabilité :
le réseau de neurones élagué est toujours le même lors de la reproduction d’une
même expérience, et reste le même si l’on augmente le nombre de neurones par
couche dans le réseau initial. Pour construire ScaLP, la technique ScaLa a été créée.
ScaLa consiste à intercaler une scaling layer entre chaque couche du réseau, de sorte
que la dynamique du début de l’entraînement soit stable lorsque la taille des couches
tend vers l’infini.

Interprétation bayésienne de la pénalité dans le cadre de l’inférence varia-
tionnelle. La troisième contribution décrit comment, dans le cadre de l’inférence
variationnelle, une pénalité peut être interprétée comme un a priori bayésien.

L’inférence bayésienne consiste à estimer les paramètres d’un modèle par des
distributions de probabilité a posteriori, à partir de données d’entraînement et
d’une distribution a priori sur les paramètres. Cette façon de procéder provient
directement de la formule de Bayes, qui permet de calculer la distribution des
paramètres sachant les données, à partir de la distribution des données sachant les
paramètres. Outre le fait d’être mathématiquement justifiée, l’inférence bayésienne
offre la possibilité de calculer, non seulement les paramètres optimaux d’un modèle,
mais aussi l’incertitude liée à cette estimation.

Pour des modèles aussi complexes que des réseaux de neurones, l’inférence
bayésienne est bien souvent inutilisable, et il faut se contenter d’une approximation,
par exemple l’inférence variationnelle. L’inférence variationnelle consiste à fixer une

famille de distributions a posteriori, et à sélectionner au sein de cette famille la
distribution qui approche le plus l’a posteriori bayésien.

Dans cette contribution, on se place dans un cadre général où l’on cherche à
optimiser une distribution sur les paramètres d’un réseau de neurones, et où l’on
veut favoriser certaines distributions via une pénalité. On établit une condition sous
laquelle cette pénalité peut être interprétée comme un a priori bayésien dans le cadre
de l’inférence variationnelle ; et, si c’est le cas, une formule permettant de calculer
cette distribution a priori est proposée. Ces résultats sont utiles pour comprendre
quelle incertitude sur les paramètres est implicitement encouragée par une pénalité
donnée.

Remerciements

Je remercie mes directeurs de thèse Guillaume Charpiat et Yann Ollivier, qui ont
accepté de superviser ma thèse. Leurs points de vue très différents sur les réseaux de
neurones m’ont été extrêmement utiles dans mes recherches. Je leur suis également
reconnaissants d’avoir été disponibles tout au long de ma thèse. Enfin, je les remercie
de la confiance qu’ils m’ont témoignée en me laissant explorer mon sujet de recherche.

Je remercie Mathieu Salzmann, Stéphane Canu, Florence d’Alché-Buc et Florent
Krzakala d’avoir accepté de faire partie de mon jury de thèse. En particulier, je les
remercie pour leurs remarques et les conseils qu’ils m’ont apportés pour finaliser
mon manuscrit.

Je remercie Marc Schoenauer et Michèle Sebag ainsi que toute l’équipe Tau pour
l’organisation des séminaires, des groupes de travail, ainsi que pour les discussions
techniques ou philosophiques sur l’apprentissage automatique. Tous ces moments
furent pour moi instructifs et formateurs, et ont contribué à rendre vivant le travail
de recherche.

Je remercie évidemment ma famille, mes amis, mes camarades. La thèse est une
période éprouvante, et leur présence à mes côtés fut indispensable pour soutenir cet
effort dans la durée.

Enfin, je souhaite émettre quelques remerciements supplémentaires : à Yann,
qui m’a transmis le point de vue de Solomonoff sur l’apprentissage automatique ; à
Victor, avec qui j’ai eu de fructueuses discussions sur Bayes ; à Michèle et Zhengying,
pour le groupe de travail sur AutoML ; à Léonard, pour la rédaction de l’article
sur Alrao ; à Jean, pour les discussions philosophiques sur de nombreux sujets ; à
mes parents et à mon frère, à Pierre, à Pierre-Yves, Salim, Aurore, Julien, Raphaël,
Virgile, à Claire, à Anaïs, pour leur soutien moral.

Contents

1 Introduction 13
1.1 Feedforward Neural Networks . 15
1.2 Initialization of a Neural Network 16
1.3 Variational Inference . 17

1.3.1 General Framework . 18
1.3.2 Application to Neural Networks 21

1.4 Contributions . 23
1.4.1 Facilitate Architecture Selection with Alrao 23
1.4.2 Stable Neural Network Training and Pruning with ScaLP . . 25
1.4.3 Interpreting an Empirical Penalty as the Influence of a Prior

in a Variational Inference Setup 25

2 Learning with Random Learning Rates 29
2.1 Introduction . 29
2.2 Related Work . 30
2.3 Motivation and Outline . 31
2.4 All Learning Rates At Once: Description 33

2.4.1 Notation . 33
2.4.2 Alrao Architecture . 33
2.4.3 Alrao Update for the Internal Layers: A Random Learning

Rate for Each Unit . 34
2.4.4 Alrao Update for the Output Layer: Model Averaging from

Output Layers Trained with Different Learning Rates 35
2.5 Experimental Setup . 38

2.5.1 Image Classification on ImageNet and CIFAR10 38
2.5.2 Other Tasks: Text Prediction, Reinforcement Learning . . . 38

2.6 Performance and Robustness of Alrao 40
2.6.1 Alrao Compared to SGD with Optimal Learning Rate 40
2.6.2 Robustness of Alrao, and Comparison to Default Adam . . . 40
2.6.3 Sensitivity Study to [ηmin; ηmax] 41
2.6.4 Pruning Layers after Training 42

2.7 Discussion, Limitations, and Perspectives 44
2.8 Conclusion . 46

9

10 Chapter 0 – Contents

2.9 Appendix . 46
2.9.1 Model Averaging with the Switch 46
2.9.2 Influence of Model Averaging in Alrao 47
2.9.3 Additional Experimental Details and Results 48
2.9.4 Alrao with Adam . 48
2.9.5 Number of Parameters . 49
2.9.6 Frozen Features Do Not Hurt Training 49

3 Asymmetrical Scaling Layers for Stable Network Pruning 55
3.1 Introduction . 55
3.2 Related Work . 56
3.3 ScaLa: Scaling the Weights for Width-Independent Training 57

3.3.1 Two Problems with Infinitely Wide Layers 58
3.3.2 Training a Layer with an Infinite Number of Inputs 58
3.3.3 Neurons and Convolutional Filters with ScaLa 61
3.3.4 Normalizing the Activations 62

3.4 ScaLP: Pruning with Non-Uniform Weight Scaling 63
3.4.1 The L2 Penalty for ScaLP 63
3.4.2 ScaLP Pruning Rule . 65
3.4.3 Choice of (σk)k . 66

3.5 Experiments . 68
3.5.1 Influence of the Variable Change w→ w̃ 69
3.5.2 Pruning: Results and Comparison 71
3.5.3 Existing Penalties . 71
3.5.4 Pruning Experiments . 72
3.5.5 Stability of the Final Architecture with Respect to Initial Width 78
3.5.6 Discussion . 81

3.6 Conclusion . 82
3.7 Appendix . 82

3.7.1 Proof of Proposition 1 . 82

4 Interpreting the Penalty as the Influence of a Bayesian Prior 87
4.1 Introduction . 87
4.2 Related Work . 88
4.3 Variational Inference . 89
4.4 Bayesian Interpretation of Penalties 90

4.4.1 When Can a Penalty Be Interpreted as a Prior? 90
4.4.2 Example 4.3.1: Gaussian Distributions with L2 Penalty . . . 93
4.4.3 Example 4.3.2: Deterministic Posteriors and the MAP . . . 93

4.5 Application to Neural Networks: Choosing the Penalty Factor . . . 94
4.5.1 A Reasonable Condition over the Prior α 95
4.5.2 Examples: L2, L1, and Group-Lasso Penalties 95

4.6 Experiments . 97

Chapter 0 – Contents 11

4.7 Conclusion . 102
4.8 Appendix . 103

4.8.1 Training and Pruning: Details 103
4.8.2 Experimental Procedure . 103
4.8.3 Reminder of Distribution Theory 104
4.8.4 Proof of Theorem 1 . 106
4.8.5 Note on Remark 4 . 110
4.8.6 Proof of Corollary 6 . 110
4.8.7 Proof of Corollary 7 . 111

5 Conclusion 115

A Proofs 127
A.1 He’s Initialization Rule: Details of Example 1.2.2 127
A.2 Variational Inference: Proof of Equation (1.4) 128

Chapter 1

Introduction

Over the last decade, deep neural networks have progressively beaten state of the
art models in many fields: in computer vision, in automatic translation, and even in
problems like winning at the go game against the world’s best players, which was
considered very difficult.

In all these tasks, deep neural networks have the same elementary brick: the
artificial neuron. The neuron has a very simple design: it takes some inputs, performs
an operation by using its own trainable parameters (its weights), and outputs a
result that can be sent to another neuron. However, the ways to arrange them, that
is the architecture of the network, are unlimited: this may refer to the high-level
design of a deep neural network (does the network contain cycles?) as well as the
low-level design (what is the elementary operation performed by the neurons? Are
they “fully connected” of “convolutional”?). And between them, it may refer to the
number of neurons, the depth of the network, the connectivity of each neuron, the
existence or absence of links between layers of neurons, etc.

When tackling a problem, the choice of architecture determines in a large extent
the final performance of the neural network. For instance, it has been empirically
proven that convolutional neurons are adapted to problems of image classification,
while the Long Short-Term Memory (LSTM) units are very useful to problems of
text prediction. The number of neurons impacts the performance too: large neural
networks tend to perform better than smaller ones. Besides, the architecture also
determines the necessary amount of computational resources: the larger a neural
network is, the more computational power is needed to train and use it. Therefore,
selecting an architecture is about a trade-off between performance and computational
cost.

Architecture search strategies. In order to find the architecture that leads
to the best results at minimal cost, several strategies have been developed. As a
first step, a standard empirical architecture search can be performed: a human
expert proposes, trains and tests a set of architectures, and selects the best one.
Despite the performance and the wide use of the resulting architectures (VGG,

13

14 Chapter 1 – Introduction

Inception networks, ResNets), this strategy is not fully satisfactory. First, it requires
much computational time, since each proposed architecture should be independently
trained and tested. Second, experts’ knowledge is implicitly embedded in the search,
which prevents from automating it.

As a second step, compressing neural networks during or after training was
envisaged. According to this strategy, an expert proposes an architecture, and, at
some point, modifies it in order to reduce its size. For instance, the user can prune
useless neurons, approximate tensors of weights by low-rank tensors, or quantize the
weights (that is approximating them by values lying in a very small set). As a result,
the final architecture is less computationally intensive than the initial one, while
being complex enough to perform roughly as well. However, experts’ knowledge is
still needed, since the resulting architecture is very close to the initial one.

In order to perform a wider architecture search, a more sophisticated strategy
is being developed: instead of fixing an initial architecture to reduce, the space of
architectures is automatically explored by adding or removing neurons, connections,
layers, etc. In this category, the main difficulties lie in the structure of the space
of architectures: it is impossible to perform an extensive search because of its size,
while its discreteness makes impossible a direct gradient descent. Therefore, each
proposed algorithm relies on its own topology defined on this space: each new
tested architecture is supposed to be a good proxy to estimate the performance of
“close” architectures. This way, exploration is guided and computationally feasible.
Among existing techniques, there are genetic algorithms, where individuals are
neural networks and mutations are slight architecture changes, or a meta-approach
where a recurrent neural network which learns to generate architectures.

Present approach of the problem. In this third strategy, one point is com-
putationally critical: each generated architecture should be trained and tested in
order to rate it and then refine the direction of exploration of the architecture space.
Moreover, they should be trained with their optimal learning rate in order to be
compared them fairly. In order to address this problem, we propose the Alrao
method, which is designed to train any given neural network without fine-tuning
the learning rate.

However, usual techniques designed according to the third strategy are very
difficult to study theoretically. Therefore, we focused two works on neuron pruning.
In the first one, we propose theoretically well-founded techniques for training and
pruning a neural network. Notably, we claim that they are insensitive to the initial
width of the network, which is not the case for usual training and pruning procedures.

The second work on neuron pruning is a theoretical study of the constraint
(namely the penalty) used to push the parameters of the neurons towards zero, in
order to prune them. We establish a link between this constraint, which is usually
empirically fixed, and the concept of prior distribution used in the well-founded
framework of Bayesian inference. The link between these is very general, and can
be used to find heuristics for the penalty hyperparameters.

Chapter 1 – Introduction 15

Outline. In the introduction, I recall the fundamental concepts used in the present
work and expose the main contributions. In the next chapters, I develop them along
three axes. Finally, I summarize them and propose further research topics in the
conclusion.

1.1 Feedforward Neural Networks
Initially developed to model biological neurons, artificial neurons are nowadays one
fundamental brick in the edifice of machine learning. On one side, they are far more
simple than their biological version, which makes their implementation easy and
allows us to manipulate millions of them; on the other side, they are also sufficiently
complex to be combined to complete a large variety of tasks.

One of the most popular way to combine neurons consists in stacking alternatively
layers of neurons and non-linear functions, to form a multi-layer perceptron. In
this design, each layer is composed of a list of neurons taking the same vector as
input, and outputting a vector of pre-activations whose coordinates are the output
of each neuron. This vector is then coordinate-wise transformed by the activation
function to become the vector of activations, which is finally taken as input by the
next layer of neurons. Despite its rough design, a multi-layer perceptron can be seen
as a universal approximator: with a well-chosen activation function, an arbitrarily
wide two-layer perceptron is able to approximate any continuous function [12].

This result shows that any continuous function can be approximated by such
neural network, but does not show how to tune it to fit a given function. Hopefully,
the algorithm of backward propagation of the error, called backpropagation, can
be used to compute the influence of each network parameter over the network
output [54]. Thus, it is possible to tune them in order to make the network fit some
user-defined property, as approximating a target function.

For instance, let us consider the vector of weights w of a neural network fw.
We want to optimize w such that, for a given input x, the network outputs y∗. To
perform such optimization, we can define a function L to minimize with respect to
w, the loss function:

L(w) = ‖fw(x)− y∗‖2.

Thus, the vector of weights w can be tuned in order to minimize the loss L by
Stochastic Gradient Descent (SGD) [87], that is repeating the following step until w
converges:

w← w− η∂wL, (1.1)

where η > 0 and decreases over time, and ∂wL is computed by backpropagation. In
theory, the loss function L should be convex to ensure the convergence of w to a
global minimizer of L. In the case of neural networks, this condition is not verified.
Still, SGD leads empirically to acceptable results.

16 Chapter 1 – Introduction

1.2 Initialization of a Neural Network
Now that a training procedure is defined for neural networks, arises the question of
its initialization. In fact, naive initialization procedures make the initial network
very hard to train at the beginning. For example, initializing all weights to zero
prevents from transmitting any information of the input to the output. Thus, the
last layers are initially trained independently from the input, which is a waste of
time. More generally, all layers should be initialized such that the global output of
the network does not explode and depends on the input data.

Therefore, some heuristics have been found and are widely used to initialize
neural networks. An usual initialization heuristic, proposed by Glorot et al. [22], is
based on the transmission of the information across the network in both directions.
Glorot proposes to build an initialization distribution such that, given random inputs
and outputs: the variance of the activations remains the same along the network
during propagation, and the variance of the computed gradients remains the same
during backpropagation. That is, respectively, and for an activation function with
average slope 1, the weights wl· of each layer l should be randomly drawn such that
(see Appendix A.1):

nl−1 Var(wl·) = 1 (1.2)
nl Var(wl·) = 1, (1.3)

where Var(wl·) is the variance of the initialization for a weight wl· in the l-th layer,
nl−1 is the number of weights in one neuron of the l-th layer, and nl its number of
outputs. Since both conditions are incompatible, Glorot proposes a compromise to
fix the variance:

Var(wl·) = 2
nl−1 + nl

,

and also proposes to draw the weights from a uniform distribution on [−b, b], where
b is chosen such that its variance is the same as above. This initialization procedure
is known as the “Glorot’s initialization” or “Xavier initialization”.

Most initialization procedures are also based on considerations on the variance
of the activations or the backpropagated gradients, or both.

Example 1.2.1 (Glorot’s initialization with uniform distribution). In the seminal
paper, the proposed initialization distribution is:

wl· ∼ U
(
− 6
nl−1 + nl

,
6

nl−1 + nl

)
,

so that Var(wl·) = 2
nl−1+nl

.

Example 1.2.2 (He’s initialization with normal distribution). A refinement of this
technique has been found by considering the slope of the activation function: in

Chapter 1 – Introduction 17

Glorot’s initialization, the slope of the activation function is assumed to be 1. When
initializing a network according to Glorot, if an activation function increases very
slowly, then the variance of its outputs would be very small. Thus, the output of a
deep network composed of such stacked layers would have a variance close to zero.
Therefore, the slope of the activation function has to be taken into account [30].

For instance, if the activation function is the Rectified Linear Unit (ReLU):
ReLU(·) = max(0, ·), then the variance of the initialization distribution has to be
scaled by a factor 2. Therefore, the normal He initialization for deep ReLU networks
can be written (see Appendix A.1):

wl· ∼ N
(

0, 2
nl−1

)
,

in order to preserve the variance of the activations along the network in the propa-
gation phase.

Besides, He proves that considerations about the variance of the backpropagated
gradient are superfluous when initializing weights as indicated above.

The heuristic for Var(wl·) given in Equation (1.2) is used in Chapters 3 and 4. In
Chapter 3, we use the same considerations as Glorot: we assume that the weights of
a neuron should be such that the variance of its output is the same as its inputs.
Notably, we obtain more general results than the initialization procedure presented
above: the weights may not be i.i.d. and their learning rates can be scaled with
respect to their initial order of magnitude. In Chapter 4, we use Equation (1.2)
to get a reasonable order of magnitude of wl· during training. This allows us to
compute a distribution around which the weights are likely to lie, a kind of “default
distribution” of the weights.

1.3 Variational Inference
We have seen that a neural network is a model, whose parameters are tuned according
to training data in order to minimize a loss L. Therefore, we are able to provide
a minimizer ŵ, but we do not have further information about the distribution of
possible ŵ. In particular, when we want to store a trained neural network, we do
not know the precision with which each component of ŵ should be stored.

Luckily, the framework of Bayesian inference allows us to compute a posterior
distribution, which contains both information about the optimal parameter ŵ and
about the error margin around it. Despite the intractability of the Bayesian posterior
within the context of deep non-linear neural network, it is still possible to approximate
it through variational inference. The following presentation is based on Graves’
paper [24].

Variational inference is mainly used in Chapter 4, in order to better understand
the meaning of empirically-defined penalized losses. However, the theoretical content
of Chapter 3 can be interpreted in variational terms as well. For the sake of clarity,
and since it is not necessary, I will not detail this relation.

18 Chapter 1 – Introduction

1.3.1 General Framework
We introduce step by step the general framework of variational inference. We start
from a simple parameter optimization, then we introduce Bayesian inference, and
finally we show how to approximate the Bayesian posterior through variational
inference.

Deterministic parameters. In a very general framework, we want to model a
dataset D with a modelMw. The dataset is defined by:

D = {(x1, y1), · · · , (xn, yn)} ∈ (X × Y)n,

where n is the size of the dataset.
The modelMw, parametrized by a vector w ∈ RN , takes an input x ∈ X and

returns a distribution over Y , denoted by pw(·|x). Thus, given a pair (x, y) ∈ X ×Y ,
pw(y|x) measures the likelihood of y given x, according to the model w. By abuse
of notation, we will write:

pw(D) =
n∏
i=1

pw(yi|xi).

Within this framework, it is very common to consider w as a deterministic vector
of parameters, which has to be tuned to maximize the likelihood pw(D), or minimize
the negative log-likelihood:

L(w) = − ln pw(D).

Equivalently, L(w) is the loss of a minimization problem over w.

Example 1.3.1 (Binary classification problem). Our goal is to use the modelMw
to classify inputs x ∈ X into classes of Y = {0, 1}. For a given input x, the model
outputs a distribution over the discrete set Y, that is:

pw(0|x) and pw(1|x),

such that pw(0|x) + pw(1|x) = 1 with pw(0|x) ≥ 0 and pw(1|x) ≥ 0.
Thus, we can consider that the model classifies x in the class y∗ =

arg maxy pw(y|x).

Example 1.3.2 (Regression problem). Our goal is to useMw to model a function
f : X → Y. For a given input x, we assume that the model outputs a Gaussian
distribution N (µ(x), 1). In practice,Mw returns µ(x), which is then interpreted as
the mean of a Gaussian distribution of variance 1.

Thus, given an input x, we can consider that the model estimates f(x) by µ(x).

Chapter 1 – Introduction 19

Bayesian inference. From now, we suppose that both the vector of parameters
w and any pair (x, y) of the training set D are random variables. Given x and w,
we model y by sampling it from the distributionMw(x) = pw(·|x). Then, we can
use Bayes’ theorem to compute the distribution of w given (x, y). Applied to the
whole dataset D, this distribution can be expressed as follows:

πD(w) = pw(D)α(w)
P(D) ,

where α is a known fixed distribution, and P is the distribution from which the
dataset D is sampled. α is called the prior distribution of the random variable w,
and πD is the posterior distribution of w given the dataset D.

This formula allows us to compute the posterior distribution πD, which indicates
which parameters w are the most likely to generate the dataset D. The next step
consists in finding an acceptable value for w.

There are several ways to do this, notably sample a vector ŵ from the distribution
πD or compute the Maximum A Posteriori (MAP) estimator ŵMAP, which is defined
by: ŵMAP = arg maxw πD(w). Equivalently, ŵMAP can be computed by minimizing
the loss LMAP defined by:

LMAP(w) = − ln πD(w) = − ln pw(D)− lnα(w).

To summarize, the MAP estimator ŵMAP is the most likely value of w, given the
dataset D.

Example 1.3.3 (linear model with Gaussian noise). We are looking for one real
parameter b ∈ R such that the distribution of y ∈ R given (b, x) ∈ R2 has a density:

pb(y|x) = 1√
2πσ2

exp
(
−(y − bx)2

2σ2

)
,

which corresponds to a linear model of y given x with centered Gaussian noise of
given variance σ2. In other words, according to this model, y is generated with the
formula:

y = bx+ σξ where ξ ∼ N (0, 1).

We want to estimate b from a given dataset D = {(x1, y1), · · · , (xn, yn)}, where
the data points (xi, yi) are supposed to be independent and identically distributed
(i.i.d.). Then, the Bayes formula gives:

πD(b) = pb(D)α(b)
P(D) .

It is sufficient to compute the numerator of the fraction, since the denominator does
not depend on b, and the density πD(b) has integral one. Then:

πD(b) ∝ pb(D)α(b).

20 Chapter 1 – Introduction

Since the data points are supposed to be i.i.d., we have:

πD(b) ∝
n∏
i=1

pb(yi|xi)α(b)

∝ (2πσ2)−n/2
n∏
i=1

exp
(
−(yi − bxi)2

2σ2

)
α(b)

∝ (2πσ2)−n/2 exp
(
−

n∑
i=1

(yi − bxi)2

2σ2

)
α(b)

If we choose the prior over b as a product of centered Gaussian distributions, i.e.:
α = N (0, σ2

b), then we have:

πD(b) ∝ (2πσ2)−n/2(2πσ2
b)−1/2 exp

(
−

n∑
i=1

(yi − bxi)2

2σ2 − b2

2σ2
b

)
,

which achieves the computation of the posterior distribution given D.
In order to compute the MAP estimator b̂MAP, it is sufficient to compute the

maximum of the density πD, which is equivalent to compute the maximum of the
log-density:

ln πD(b) = −
n∑
i=1

(yi − bxi)2

2σ2 − b2

2σ2
b

+ constant.

Then, it is easy to prove that this log-density has exactly one maximum:

b̂MAP =
∑n
i=1 xiyi

σ2

σ2
b

+∑n
i=1 x

2
i

.

In this example, the model is simple enough to compute analytically the posterior.
However, the posterior is intractable if the model is too complex, like in the case of
deep non-linear neural networks. Therefore, variational inference has been developed
in order to approximate the Bayesian posterior for complex models.

Variational inference. Variational inference is a technique of approximation of
the posterior πD by expressing the distance between πD and any distribution β in
an operable way (see appendix A.2):

KL(πD‖β) = −Ew∼β ln pw(D) + KL(α‖β) + lnP(D), (1.4)

where KL(α‖β) is the Kullback-Leibler divergence between α and β, defined by:

KL(α‖β) = Ew∼β ln β(w)
α(w) .

Since the Kullback-Leibler divergence between πD and β is minimal when the
tested distribution β and the target distribution πD are equal, KL(πD‖β) can

Chapter 1 – Introduction 21

be seen as a loss to minimize with respect to β. Therefore, it is possible to
approximate πD by minimizing KL(πD‖β) over a parametrized family of distributions
B = {βu : u ∈ U ⊂ RP}. Then, equation (1.4) can be turned into a loss over u:

LVI(u) = −Ew∼βu ln pw(D) + KL(α‖βu), (1.5)

where the constant term lnP(D) has been removed. In short, the Bayesian
posterior πD is approximated by the so-called variational posterior βu∗ , where
u∗ = arg minu∈U LVI(u).

1.3.2 Application to Neural Networks
In variational neural networks, the vector of weights w is indirectly trained by
optimizing u, the vector of parameters of the current posterior βu of w. Usually, this
is done by applying the following procedure: each time data is sent to the network,
the weights w are drawn from their current posterior distribution βu; then, a forward
and a backward pass are performed; finally, the computed gradients ∂w[− ln(pw(D))]
are used to compute ∂uLVI, which is then used to update the parameters u by SGD.

In order to train such a network, one has to choose the family B of posterior
distributions βu, the parametrization U of this family, and the prior distribution
α. Moreover, one should provide a way to compute ∂uLVI from the gradient
∂w[− ln(pw(D))].

Family of variational posteriors and its parametrization. When the model
Mw is a neural network, the vector of weights and biases w ∈ RN is randomly
sampled from a distribution βu. It is then necessary to choose the family of posterior
distributions B = {βu : u ∈ U} and its parameter space U .

Within the context of neural networks, the parameters are usually learned
independently: for a given parameter w, w is individually learned by SGD:

w ← w − η ∂L
∂w

.

Therefore, it is reasonable to sample independently each component of the vector w:
each wk is drawn from its own distribution βuk parametrized by a vector uk ∈ Rq.
Thus, we can write:

w ∼ β(u1,··· ,uN) = βu1 ⊗ · · · ⊗ βuN
u = (u1, · · · , uN) ∈ RN×q.

To summarize, instead of learning each parameter wk directly, each wk is randomly
drawn from a distribution βuk with learned vector of parameters uk ∈ Rq.

Since the distributions βu over w are products of distributions over its components
wk, we say that βu is a diagonal distribution.

22 Chapter 1 – Introduction

Prior. Since we consider a family of diagonal posteriors, we propose a diagonal
prior, that is:

α = α1 ⊗ · · · ⊗ αN .

This way, the KL-divergence term of (1.5) can be rewritten as a sum of independent
terms:

KL(α‖βu) =
N∑
k=1

KL(αk‖βuk),

that is a individual penalization of each parameter uk.

Learning the parameters of the variational posterior. As such, the vector
of parameters u is difficult to learn by SGD in a general framework. However,
Kingma et al. proposed the reparameterization trick [49], which is designed to
trace back easily ∂uLVI from ∂w[− ln(pw(D))]. The latter can easily be computed
backpropagation of the error through the network.

The reparameterization trick consists in drawing each weight wk indirectly from
its posterior distribution βuk : a random variable ξk is drawn from a fixed distribution,
then ξk is transformed by a function fuk such that fuk(ξk) ∼ βuk . Finally, wk is set
to fuk(ξk). This way, ∂ukLVI can easily be computed from ∂wk [− ln(pw(D))]:

∂ukLVI(u) = Eξ [∂wk [− ln(pw(D))] · ∂ukfuk(ξk)] + ∂ukKL(α‖βu),

where ξ = (ξ1, · · · , ξN).

Example 1.3.4 (Diagonal Gaussian posterior and prior distributions). A very
common choice for the family of posterior distributions is the family of diagonal
Gaussian distributions: each component wk of w is independently drawn from its
own Gaussian distribution βµk,σ2

k
= N (µk, σ2

k). Then, we can write:

w ∼ β(µ1,σ2
1 ,··· ,µN ,σ

2
N) = N (µ1, σ

2
1)⊗ · · · ⊗ N (µN , σ2

N)
u = (µ1, σ

2
1, · · · , µN , σ2

N) ∈ (R× R+
∗)N ⊂ R2N .

That is:

∀k ∈ {1, · · · , N}, wk ∼ N (µk, σ2
k),

where µk and σ2
k are learned parameters. Intuitively, µk and σk can be seen respec-

tively as the theoretical value of wk and the acceptable error margin between wk and
µk.

The prior distribution is also a diagonal Gaussian distribution:

α = N (0, σ2
0,1)⊗ · · · ⊗ N (0, σ2

0,N),

Chapter 1 – Introduction 23

where (σ2
0,k)k are fixed hyperparameters. Since we are agnostic about the sign of wk,

all the priors are centered in 0.
Finally, the reparameterization trick consists in drawing each parameter wk this

way:

wk = µk + σk · ξk, where ξk ∼ N (0, 1).

Then, the gradients with respect to µk and σ2
k can easily be computed:

∂µkLVI = Eξ∂wk [− ln(pw(D))] + ∂µkKL(α‖βu)

∂σ2
k
LVI = Eξ

[
∂wk [− ln(pw(D))] · ξk2σk

]
+ ∂σ2

k
KL(α‖βu).

1.4 Contributions

1.4.1 Facilitate Architecture Selection with Alrao
Outline. Usually, the learning rate is an hyperparameter to optimize each time
a new combination task/neural network is tested. The same network is trained
several times with different learning rates, and the best final neural network is
selected, which is time-consuming. Therefore, I present in Chapter 2 the Alrao
training technique, in which the learning rate has been removed from the set of
hyperparameters to optimize. Notably, we claim that, for a wide range of neural
networks and tasks, Alrao outputs in a single run a neural network that performs
almost as well as the same network trained by SGD with optimized learning rate.

The intuition behind Alrao was to replace learning rate optimization by learning
rate diversity inside each considered neural network. To summarize, each neuron
is trained by SGD with its own learning rate, which is randomly sampled before
training from some fixed distribution. This distribution is chosen such that it spans
several orders of magnitude. So, for a large set of tasks and initial architectures, the
training process is supposed to work at least for a fraction of the neurons.

Related work. Since Saxe [88], several works have been published around the
importance of diversity inside the neural networks. Saxe studied partially trained
neural networks made of an untrained convolutional hidden layer followed by a
trained classifier. Surprisingly, the resulting neural networks achieved good results
in relation to their size. Moreover, the author observed a performance correlation
between these partially trained neural networks and their fully trained counterpart.
He proposed to use it for fast architecture selection: in order to compare the relative
performances of one-layered convolutional neural networks with different filter sizes,
pooling sizes or filter strides, it is sufficient to compare their partially trained version,
which are fast to obtain. Once the winning architecture is selected, all that remains
is to fully train it.

24 Chapter 1 – Introduction

This work of Saxe is highly interesting in its methodology, which can be summed
up in the words: “diversity–proxy–selection”. First, he showed empirically and
proved theoretically that diversity in the weights is sufficient to compute meaningful
features, that are easily usable for classification. Secondly, he showed that the
performance of such raw networks is a good proxy for the performance of their
fully trained counterpart. Finally, he used this observation to perform architecture
selection. In a sense, we followed the same approach as Saxe with its random weights
by proposing Alrao with random learning rates. But, unlike Saxe’s method, Alrao is
applicable to a far wider range of tasks and models, like deep and recurrent neural
networks, and regression tasks.

More recently, Frankle et al. [20] showed that, given an untrained neural network,
a subnetwork can be extracted and trained separately such that the resulting network
performs closely to the trained whole network. This subnetwork is called the winning
ticket, since its weights have been –by chance– well sampled. This observation
can only be made if the whole network is initially composed of diverse neurons.
Therefore, the authors propose to extract lottery tickets in order to get a better
intuition of the working architectures, and then guide an architecture search.

With Alrao, we hope that, among the sampled learning rates, some are very well
adapted to the architecture and will make the neural network learn to perform the
task. Hence, it can be seen as an adaptation of [20], where the well sampled learning
rates take the place of the well sampled neurons.

Personal contribution. This work has been made in collaboration with Léonard
Blier and Yann Ollivier (facebook AI Research). My personal contribution lies
mainly in the implementation of the main algorithm Alrao (in PyTorch), its front-
end design, and experiments in the context of Natural Language Processing (NLP).
Notably, I worked on the library design and I implemented the “switch” part of
Alrao, which is the Bayesian ensemble method applied on the final layers of the
network, in the case of classification and regression tasks, and for feedforward and
recurrent neural networks. These parts were necessary in order to test Alrao in such
many tasks and models, and thus ensure its robustness.

Moreover, I designed the code front-end to be easily used by other re-
searchers, in a few lines of code. The final code is available on GitHub
(https://github.com/leonardblier/alrao) and comes with a tutorial. This part
ensures the reproducibility of our research and its diffusion in the Deep Learning
community.

The experiments that I ran on NLP tasks with Recurrent Neural Networks are
part of the main results of Alrao and contributed to demonstrate the stability of
Alrao. In some extent, they were also useful to detect a limitation of Alrao: when
performing word prediction, the computational cost of Alrao increases dramatically.

Chapter 1 – Introduction 25

1.4.2 Stable Neural Network Training and Pruning with
ScaLP

Outline. When training and pruning alternatively a neural network in order to
find a good trade-off between final accuracy and number of parameters, the training
algorithm (basically, the SGD) should be resilient to width change, since the width
of the layers can change dramatically during the pruning phases. Moreover, the
whole pruning strategy should output roughly the same network architecture at
the end of each run. In the standard setup, I show that these stability issues are
not addressed. Therefore, I present in Chapter 3 the techniques ScaLa and ScaLP,
respectively to make the training algorithm resilient to width change, and to make
the pruning strategy stable between runs.

Both ScaLa and ScaLP consist in inserting a fixed scaling layer before each layer
of neurons: each of its inputs is scaled by a factor verifying a property that we
detail later. In short, if this property is verified and the parameters are initialized
according to N (0, 1), then we can ensure that the neural network will output a
reasonable value at initialization and just after one update. In practice, we observe
that ScaLa can be used to train neural networks of various widths without changing
the learning rate, which is set to 1 in our experiments. In the same way, when
pruning a neural network with ScaLP, the resulting network does not depend on
the initial layer widths, provided that they are wide enough.

Related work and approach of the problem. The theoretical part of this
work is mainly inspired by the work of Glorot about the initialization procedure for
the weights of a neural network. According to Glorot, the weights should be initially
drawn from a distribution with specific variance in order to preserve the variance of
the activations along the network during the first forward pass. In the present work,
this consideration is extended to the activations after one update and in the case
where the width of each layer tends to infinity.

To some extent, the initial intuition about variance preservation is tested in a
framework for which it has not been designed. This way, we are able to extract
valuable information about the relevance of this intuition, and we discover that
we can refine it with ScaLa. In the process, the new pruning setup ScaLP arises
naturally, and can be used to perform stable pruning: each time a given neural
network is pruned with ScaLP, the resulting network architecture is approximately
the same.

1.4.3 Interpreting an Empirical Penalty as the Influence of
a Prior in a Variational Inference Setup

Outline. In machine learning, the loss can usually be decomposed into two terms:
the error term, which evaluates the quality of the model regarding the data, and the
penalty term, which is usually set to make the model fit some user-defined property.

26 Chapter 1 – Introduction

For instance, the user might want to restrain the number of non-zero parameters in
the model, which can be done by designing a penalty that pushes towards zero the
parameters.

Besides, the framework of variational inference provides a loss composed of two
terms:

LVI(u) = −Ew∼βu ln pw(D)︸ ︷︷ ︸
error term

+ KL(βu‖α)︸ ︷︷ ︸
penalty term

.

The variational loss can easily be interpreted as a combination of an error term (the
negative log-likelihood) and a penalty term (the influence of a prior distribution),
which matches the empirical way to build a loss. Conversely, we ask the questions:
“Given a penalty, is there always a way to interpret it as the influence of a prior? In
that case, how can we compute this prior?”

Answering these theoretical questions for a given penalty has two implications.
First, we are able to check whether a given optimization problem is in fact a way to
approximate a Bayesian posterior. Second, if the penalty is parametrized by some
hyperparameters, we are able to provide a necessary and sufficient condition over
them in a dense case for the Bayesian interpretation of the penalty to be possible.
The main theoretical result we provide is a formula allowing us to compute the
corresponding prior α of a given penalty r(·).

As an application, given a penalty rλ(·) parametrized by λ, we propose a way
to compute a heuristic for λ in the case of neural networks. This heuristic is
a combination of the formula mentioned above and Glorot’s intuition about the
variance of initialization distributions: assuming that a Bayesian prior should be
usable to initialize the parameters of a neural network, we constrain its variance. So,
if a parametrized penalty rλ can be interpreted as the influence of a parametrized
prior αλ, and we impose a condition over the variance of αλ, then we impose a
condition over the penalty rλ itself, that is over its parameter λ.

Related work and approach of the problem. In the Bayesian framework, the
prior knowledge of the user, or equivalently its goal, is explicitly embedded into
the prior distribution and nowhere else. On the contrary, in empirically designed
training methods, the prior knowledge of the user is spread out over the penalty terms,
its hyperparameters and other regularization tricks (as the drop-out). Therefore,
interpreting a regularization method as the influence of a prior in a Bayesian
framework is a way of isolating the prior knowledge, which is then expressed as a
probability distribution.

Since the variational inference framework provides a standardized way to translate
regularization methods in Bayesian terms, some work has already been done to
interpret regularization methods in variational terms. For example, the drop-out
method has been studied from a variational point of view [80], which led to several
interesting results including a pruning technique. The theoretical results presented

Chapter 1 – Introduction 27

here are a further investigation of the relation regularization–prior in the case where
the regularization is in fact a penalization of the loss.

At this point, such reduction of several regularization techniques to the same
object may appear as mostly theoretical and limited to a question of aesthetics.
However, seeing a penalty as the influence of a prior distribution allows us to
constrain it through unintended heuristics, as Glorot’s condition. The latter is
usually used to constrain the initialization distribution, but we can now use it to
constrain the penalty through its corresponding prior distribution.

Chapter 2

Learning with Random Learning
Rates

Based on a paper written in collaboration with Léonard Blier and Yann Ollivier.
Published and presented at ECML PKDD 2019.

2.1 Introduction
Deep learning models require delicate hyperparameter tuning [113]: when facing new
data or new model architectures, finding a configuration that enables fast learning
requires both expert knowledge and extensive testing. This prevents deep learning
models from working out-of-the-box on new problems without human intervention
(AutoML setup, [25]). One of the most critical hyperparameters is the learning rate
of the gradient descent [100, p. 892]. With too large learning rates, the model does
not learn; with too small learning rates, optimization is slow and can lead to local
minima and poor generalization [42, 53, 68, 98].

Efficient methods with no learning rate tuning are a necessary step towards more
robust learning algorithms, ideally working out of the box. Many methods were
designed to directly set optimal per-parameter learning rates [103, 17, 48, 90, 55],
such as the popular Adam optimizer. The latter comes with default hyperparameters
which reach good performance on many problems and architectures; yet fine-tuning
and scheduling of its learning rate is still frequently needed [15], and the default
setting is specific to current problems and architecture sizes. Indeed Adam’s default
hyperparameters fail in some natural setups (Section 2.6.2). This makes it unfit in
an out-of-the-box scenario.

We propose All Learning Rates At Once (Alrao), a gradient descent method for
deep learning models that leverages redundancy in the network. Alrao uses multiple
learning rates at the same time in the same network, spread across several orders of
magnitude. This creates a mixture of slow and fast learning units. Alrao departs
from the usual philosophy of trying to find the “right” learning rates; instead we
take advantage of the overparameterization of network-based models to produce a

29

30 Chapter 2 – Learning with Random Learning Rates

diversity of behaviors from which good network outputs can be built. The width of
the architecture may optionally be increased to get enough units within a suitable
learning rate range, but surprisingly, performance was largely satisfying even without
increasing width.

Our contributions are as follows:

• We introduce Alrao, a gradient descent method for deep learning models with
no learning rate tuning, leveraging redundancy in deep learning models via a
range of learning rates in the same network. Surprisingly, Alrao does manage
to learn well over a range of problems from image classification, text prediction,
and reinforcement learning.

• In our tests, Alrao’s performance is always close to that of SGD with the
optimal learning rate, without any tuning.

• Alrao combines performance with robustness: not a single run failed to learn
with the default learning rate range we used. In contrast, our parameter-free
baseline, Adam with default hyperparameters, is not reliable across the board.

• Alrao vindicates the role of redundancy in deep learning: having enough units
with a suitable learning rate is sufficient for learning.

Acknowledgments. We would like to thank Corentin Tallec for his technical help
and extensive remarks. We thank Olivier Teytaud for pointing useful references,
Hervé Jégou for advice on the text, and Léon Bottou, Guillaume Charpiat, and
Michèle Sebag for their remarks on our ideas.

2.2 Related Work
Redundancy in deep learning. Alrao specifically exploits the redundancy of
units in network-like models. Several lines of work underline the importance of
such redundancy in deep learning. For instance, dropout [95] relies on redundancy
between units. Similarly, many units can be pruned after training without affecting
accuracy [56, 26, 28, 92]. Wider networks have been found to make training easier
[7, 33, 111], even if not all units are useful a posteriori.

The lottery ticket hypothesis [19, 20] posits that “large networks that train
successfully contain subnetworks that—when trained in isolation—converge in a
comparable number of iterations to comparable accuracy’. This subnetwork is
the lottery ticket winner : the one which had the best initial values. In this view,
redundancy helps because a larger network has a larger probability to contain a
suitable subnetwork. Alrao extends this principle to the learning rate.

Chapter 2 – Learning with Random Learning Rates 31

Learning rate tuning. Automatically using the “right” learning rate for each
parameter was one motivation behind “adaptive” methods such as RMSProp [103],
AdaGrad [17] or Adam [48]. Adam with its default setting is currently considered the
default method in many works [109]. However, further global adjustment of the Adam
learning rate is common [63]. Other heuristics for setting the learning rate have been
proposed [90]; these heuristics often start with the idea of approximating a second-
order Newton step to define an optimal learning rate [55]. Indeed, asymptotically, an
arguably optimal preconditioner is either the Hessian of the loss (Newton method) or
the Fisher information matrix [2]. Another approach is to perform gradient descent
on the learning rate itself through the whole training procedure [40, 91, 74, 73, 77, 5].
Despite being around since the 80’s [40], this has not been widely adopted, because of
sensitivity to hyperparameters such as the meta-learning rate or the initial learning
rate [18]. Of all these methods, Adam is probably the most widespread at present
[109], and we use it as a baseline.

The learning rate can also be optimized within the framework of architecture or
hyperparameter search, using methods from from reinforcement learning [113, 4, 61],
evolutionary algorithms [96, 45, 86], Bayesian optimization [8], or differentiable
architecture search [64]. Such methods are resource-intensive and do not allow us to
find a good learning rate in a single run.

2.3 Motivation and Outline
We first introduce the general ideas behind Alrao. The detailed algorithm is explained
in Section 2.4 and in Algorithm 1. We also release a Pytorch [84] implementation,
including tutorials: http://github.com/leonardblier/alrao.

Different learning rates for different units. Instead of using a single learning
rate for the model, Alrao samples once and for all a learning rate for each unit in
the network. These rates are taken from a log-uniform distribution in an interval
[ηmin; ηmax]. The log-uniform distribution produces learning rates spread over several
order of magnitudes, mimicking the log-uniform grids used in standard grid searches
on the learning rate.

A unit corresponds for example to a feature or neuron for fully connected
networks, or to a channel for convolutional networks. Thus we build “slow-learning”
and “fast-learning” units. In contrast, with per-parameter learning rates, every unit
would have a few incoming weights with very large learning rates, and possibly
diverge.

Intuition. Alrao is inspired by the fact that not all units in a neural network end
up being useful. Our idea is that in a large enough network with learning rates
sampled randomly per unit, a sub-network made of units with a good learning rate
will learn well, while the units with a wrong learning rate will produce useless values

http://github.com/leonardblier/alrao

32 Chapter 2 – Learning with Random Learning Rates

In
te

rn
a
l
la

y
er

s
C

la
ss

if
ie

r
la

y
er

Input

Output

...

...

Softmax

In
te

rn
a
l
la

y
er

s
C

la
ss

if
ie

r
la

y
er

Input

Output

Softmax Softmax Softmax

Model Averaging

...

...

...

Figure 2.1 – Left: a standard fully connected neural network for a classification task
with three classes, made of several internal layers and an output layer. Right: Alrao
version of the same network. The single classifier layer is replaced with a set of
parallel copies of the original classifier, averaged with a model averaging method.
Each unit uses its own learning rate for its incoming weights (represented by different
styles of arrows).

and just be ignored by the rest of the network. Units with too small learning rates will
not learn anything and stay close to their initial values; this does not hurt training
(indeed, even leaving some weights at their initial values, corresponding to a learning
rate 0, does not hurt training). Units with a too large learning rate may produce large
activation values, but those will be mitigated by subsequent normalizing mechanisms
in the computational graph, such as sigmoid/tanh activations or BatchNorm.

Alrao can be interpreted within the lottery ticket hypothesis [19]: viewing the
per-unit learning rates of Alrao as part of the initialization, this hypothesis suggests
that in a wide enough network, there will be a sub-network whose initialization
(both values and learning rate) leads to good convergence.

Slow and fast learning units for the output layer. Sampling a learning rate
per unit at random in the last layer would not make sense. For classification, each
unit in the last layer represents a single category: using different learning rates
for these units would favor some categories during learning. Moreover for scalar
regression tasks there is only one output unit, thus we would be back to selecting a
single learning rate.

The simplest way to obtain the best of several learning rates for the last layer,

Chapter 2 – Learning with Random Learning Rates 33

without relying on heuristics to guess an optimal value, is to use model averaging
over several copies of the output layer (Fig. 2.1), each copy trained with its own
learning rate from the interval [ηmin; ηmax]. All these untied copies of the output
layer share the same Alrao internal layers (Fig. 2.1). This can be seen as a smooth
form of model selection or grid-search over the output layer learning rate; actually,
this part of the architecture can even be dropped after a few epochs, as the model
averaging quickly concentrates on one model.

Increasing network width. With Alrao, neurons with unsuitable learning rates
will not learn: those with too large learning rates might learn no useful signal, while
those with too small learning rates will learn too slowly. Thus, Alrao may reduce
the effective width of the network to only a fraction of the actual architecture width,
depending on [ηmin; ηmax]. This may be compensated by multiplying the width of
the network by a factor γ. Our first intuition was that γ > 1 would be necessary;
still Alrao turns out to work well even without width augmentation.

2.4 All Learning Rates At Once: Description

2.4.1 Notation
We now describe Alrao more precisely for deep learning models with softmax output,
on classification tasks; the case of regression is similar.

Let D = {(x1, y1), ..., (xn, yn)}, with yi ∈ {1, ..., K}, be a classification dataset.
The goal is to predict the yi given the xi, using a deep learning model Φθ. For each
input x, Φθ(x) is a probability distribution over {1, ..., K}, and we want to minimize
the categorical cross-entropy loss ` over the dataset: 1

n

∑
i `(Φθ(xi), yi).

We denote log-U(·; ηmin, ηmax) the log-uniform probability distribution on an
interval [ηmin; ηmax]. Namely, if η ∼ log-U(·; ηmin, ηmax), then log η is uniformly dis-
tributed between log ηmin and log ηmax. Its density function is log-U(η; ηmin, ηmax) =
1
η

1ηmin≤η≤ηmax
log(ηmax)−log(ηmin) .

2.4.2 Alrao Architecture
Multiple Alrao output layers. A deep learning model Φθ for classification
can be decomposed into two parts: first, internal layers compute some function
z = φθint(x) of the inputs x, fed to a final output (classifier) layer Cθout , so that the
overall network output is Φθ(x) := Cθout(φθint(x)). For a classification task with K
categories, the output layer Cθout is defined by Cθout(z) := softmax

(
W T z + b

)
with

θout := (W, b), and softmax(u1, ..., uK)k := euk/ (∑i e
ui).

In Alrao, we build multiple copies of the original output layer, with different
learning rates for each, and then use a model averaging method among them. The

34 Chapter 2 – Learning with Random Learning Rates

Algorithm 1 Alrao-SGD for model Φθ = Cθout(φθr(·)) with Nout classifiers
and learning rates in [ηmin; ηmax]
1: aj ← 1/Nout for each 1 ≤ j ≤ Nout . Init. the Nout model averaging weights aj
2: ΦAlrao

θ (x) := ∑Nout
j=1 aj Cθout

j
(φθint(x)) . Define the Alrao architecture

3: for all layers l, for all unit i in layer l do
4: Sample ηl,i ∼ log-U(.; ηmin, ηmax). . Sample a learning rate for each unit
5: for all Classifiers j, 1 ≤ j ≤ Nout do
6: Define log ηj = log ηmin + j−1

Nout−1 log ηmax
ηmin

. . Set a learning rate per classifier
7: while Stopping criterion is False do
8: zt ← φθint(xt) . Store the output of the last internal layer
9: for all layers l, for all unit i in layer l do
10: θl,i ← θl,i − ηl,i∇θl,i`(ΦAlrao

θ (xt), yt) . Update the repr. netw. weights
11: for all Classifier j do
12: θout

j ← θout
j − ηj∇θout

j
`(Cθout

j
(zt), yt) . Update the classifiers’ weights

13: a← ModelAveraging(a, (Cθout
i

(zt))i, yt) . Update the mdl. averaging weights
14: t← t+ 1 mod N

averaged classifier and the overall Alrao model are:

CAlrao
θout (z) :=

Nout∑
j=1

aj Cθout
j

(z), ΦAlrao
θ (x) := CAlrao

θout (φθint(x)), (2.1)

where the Cθout
j

are copies of the original classifier layer, with non-tied parameters,
and θout := (θout

1 , ..., θout
Nout). The aj are the parameters of the model averaging, with

0 ≤ aj ≤ 1 and ∑j aj = 1. The aj are not updated by gradient descent, but via a
model averaging method from the literature (see below).

Increasing the width of internal layers. As explained in Section 2.3, we may
compensate the effective width reduction in Alrao by multiplying the width of the
network by a factor γ. This means multiplying the number of units (or filters for a
convolutional layer) of all internal layers by γ.

2.4.3 Alrao Update for the Internal Layers: A Random
Learning Rate for Each Unit

In the internal layers, for each unit i in each layer l, a learning rate ηl,i is sampled
from the probability distribution log-U(.; ηmin, ηmax), once and for all at the beginning
of training. 1

1With learning rates resampled at each time, each step would be, in expectation, an ordinary
SGD step with learning rate Eηl,i, thus just yielding an ordinary SGD trajectory with more
variance.

Chapter 2 – Learning with Random Learning Rates 35

The incoming parameters of each unit in the internal layers are updated in the
usual SGD way, only with per-unit learning rates (Eq. 2.2): for each unit i in each
layer l, its incoming parameters are updated as:

θl,i ← θl,i − ηl,i · ∇θl,i`(ΦAlrao
θ (x), y), (2.2)

where ΦAlrao
θ is the Alrao loss (2.1) defined above.

What constitutes a unit depends on the type of layers in the model. In a fully
connected layer, each component of a layer is considered as a unit for Alrao: all
incoming weights of the same unit share the same Alrao learning rate. On the other
hand, in a convolutional layer we consider each convolution filter as constituting a
unit: there is one learning rate per filter (or channel), thus preserving translation-
invariance over the input image. In LSTMs, we apply the same learning rate to all
components in each LSTM cell (thus the vector of learning rates is the same for
input gates, for forget gates, etc.).

We set a learning rate per unit, rather than per parameter. Otherwise, every
unit would have some parameters with large learning rates, and we would expect
even a few large incoming weights to be able to derail a unit. Having diverging
parameters within every unit is hurtful, while having diverging units in a layer is
not necessarily hurtful since the next layer can learn to disregard them.

2.4.4 Alrao Update for the Output Layer: Model Averaging
from Output Layers Trained with Different Learning
Rates

Learning the output layers. The j-th copy Cθout
j

of the classifier layer is at-
tributed a learning rate ηj defined by log ηj := log ηmin + j−1

Nout−1 log
(
ηmax
ηmin

)
, so that

the classifiers’ learning rates are log-uniformly spread on the interval [ηmin; ηmax].
Then the parameters θout

j of each classifier j are updated as if this classifier alone
was the only output of the model:

θout
j ← θout

j − ηj · ∇θout
j
`(Cθout

j
(φθint(x)), y), (2.3)

(still sharing the same internal layers φθint). This ensures that classifiers with low
weights aj still learn, and is consistent with model averaging philosophy. Algorith-
mically this requires differentiating the loss Nout times with respect to the last layer,
but no additional backpropagations through the internal layers.

Model averaging. To set the weights aj, several model averaging techniques
are available, such as Bayesian Model Averaging [107]. We use the Switch model
averaging [104] (details provided in Section 2.9.1), a Bayesian method which is both
simple, principled, and very responsive to changes in performance of the various
models. After each mini-batch, the switch computes a modified posterior distribution
(aj) over the classifiers. This computation is directly taken from [104].

36 Chapter 2 – Learning with Random Learning Rates

Additional experiments show that the model averaging method acts like a
smooth model selection procedure: after only a few hundreds gradient steps, a single
output layer is selected, with its parameter aj very close to 1 (details provided in
Section 2.9.2). Actually, Alrao’s performance is unchanged if the extraneous output
layer copies are thrown away when the posterior weight aj of one of the copies gets
close to 1.

Chapter 2 – Learning with Random Learning Rates 37
Ta

bl
e
2.
1
–
Pe

rfo
rm

an
ce

of
A
lra

o,
SG

D
w
ith

tu
ne

d
le
ar
ni
ng

ra
te
,a

nd
A
da

m
w
ith

its
de

fa
ul
t
se
tt
in
g.

T
hr
ee

co
nv

ol
ut
io
na

l
m
od

el
s
ar
e
re
po

rt
ed

fo
r
im

ag
e
cl
as
sifi

ca
tio

n
on

C
IF
A
R
10
,t

hr
ee

ot
he
rs

fo
r
Im

ag
eN

et
,o

ne
re
cu
rr
en
t
m
od

el
fo
r
ch
ar
ac
te
r

pr
ed

ict
io
n
(P

en
n
Tr

ee
ba

nk
),

an
d
tw

o
ex
pe

rim
en
ts

on
R
L
pr
ob

lem
s.

Fo
ur

of
th
e
im

ag
e
cla

ss
ifi
ca
tio

n
ar
ch
ite

ct
ur
es

ar
e
fu
rt
he

r
te
st
ed

w
ith

a
w
id
th

m
ul
tip

lic
at
io
n
fa
ct
or

γ
=

3.
A
lra

o
le
ar
ni
ng

ra
te
s
ar
e
ta
ke
n
in

a
w
id
e,

a
pr
io
ri

re
as
on

ab
le

in
te
rv
al

[η
m

in
;η

m
ax

]=
[1

0−
5 ;

10
],
an

d
th
e
op

tim
al

le
ar
ni
ng

ra
te

fo
r
SG

D
is

ch
os
en

in
th
e
se
t
{1

0−
5 ,

10
−

4 ,
10
−

3 ,
10
−

2 ,
10
−

1 ,
1.
,1

0.
}.

Ea
ch

ex
pe

rim
en
t
is

ru
n
10

tim
es

(C
IF
A
R
10

an
d
R
L)

,5
tim

es
(P

T
B)

or
1
tim

e
(I
m
ag

eN
et
);

th
e
co
nfi

de
nc

e
in
te
rv
al
s
re
po

rt
th
e
st
an

da
rd

de
vi
at
io
n
ov
er

th
es
e
ru
ns
.
Fo

r
R
L
ta
sk
s,

th
e
re
tu
rn

ha
s
to

be
m
ax

im
iz
ed
,n

ot
m
in
im

iz
ed
.

M
od

el
SG

D
w
ith

op
tim

al
LR

A
da

m
-D

ef
au

lt
A
lra

o
LR

Lo
ss

To
p1

(%
)

Lo
ss

To
p1

(%
)

Lo
ss

To
p1

(%
)

C
IF
A
R
10

M
ob

ile
N
et

0.
1

0.
37
±
.0

1
90
.2
±
.3

1.
01
±
.9

5
78
±

11
0.

42
±
.0

2
88
.1
±
.6

M
ob

ile
N
et
,γ

=
3

0.
1

0.
33
±
.0

1
90
.3
±
.5

0.
32
±
.0

2
90
.8
±
.4

0.
35
±
.0

1
89
.0
±
.6

G
oo

gL
eN

et
0.

01
0.

45
±
.0

5
89
.6
±

1.
0.

47
±
.0

4
89
.8
±
.4

0.
47
±
.0

3
88
.9
±
.8

G
oo

gL
eN

et
,γ

=
3

0.
1

0.
34
±
.0

2
90
.5
±
.8

0.
41
±
.0

2
88
.6
±
.6

0.
37
±
.0

1
89
.8
±
.8

V
G
G
19

0.
1

0.
42
±
.0

2
89
.5
±
.2

0.
43
±
.0

2
88
.9
±
.4

0.
45
±
.0

3
87
.5
±
.4

V
G
G
19
,γ

=
3

0.
1

0.
35
±
.0

1
90
.0
±
.6

0.
37
±
.0

1
89
.5
±
.8

0.
38

1
±
.0

04
88
.4
±
.7

Im
ag
eN

et
A
le
xN

et
0.

01
2.

15
53
.2

6.
91

0.
10

2.
56

43
.2

D
en
se
ne
t1
21

1
1.

35
69
.7

1.
39

67
.9

1.
41

67
.3

R
es
N
et
50

1
1.

49
67
.4

1.
39

67
.1

1.
42

67
.5

R
es
N
et
50
,γ

=
3

-
-

-
1.

99
60
.8

1.
33

70
.9

Pe
nn

Tr
ee
ba
nk

LS
T
M

1
1.

56
6
±
.0

03
66
.1
±
.1

1.
58

7
±
.0

05
65
.6
±
.1

1.
70

6
±
.0

04
63
.4
±
.1

R
L

R
et
ur
n

R
et
ur
n

R
et
ur
n

Pe
nd

ul
um

0.
00

01
−

37
2
±

24
−

41
4
±

64
−

37
1
±

36
Lu

na
rL

an
de
r

0.
1

18
8
±

23
15

5
±

23
18

6
±

45

38 Chapter 2 – Learning with Random Learning Rates

2.5 Experimental Setup
We tested Alrao on various convolutional networks for image classification (Ima-
genet and CIFAR10), on LSTMs for text prediction, and on reinforcement learning
problems. We always use the same learning rate interval [10−5; 10], corresponding to
the values we would have tested in a grid search, and 10 Alrao output layer copies,
for every task.

We compare Alrao to SGD with an optimal learning rate selected in the set
{10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}, and, as a tuning-free baseline, to Adam with
its default setting (η = 10−3, β1 = 0.9, β2 = 0.999), arguably the current default
method [109].

The results are presented in Table 2.1. Fig. 2.2 presents learning curves for
AlexNet and Resnet50 on ImageNet, and additional details are provided in Sec-
tion 2.9.3.

2.5.1 Image Classification on ImageNet and CIFAR10
For image classification, we used the ImageNet [13] and CIFAR10 [51] datasets. The
ImageNet dataset is made of 1,283,166 training and 60,000 testing data; we split the
training set into a smaller training set and a validation set with 60,000 samples. We
do the same on CIFAR10: the 50,000 training samples are split into 40,000 training
samples and 10,000 validation samples.

For each architecture, training was stopped when the validation loss had not
improved for 20 epochs. The epoch with best validation loss was selected and the
corresponding model tested on the test set. The inputs are normalized, and training
used data augmentation: random cropping and random horizontal flipping. For
CIFAR10, each setting was run 10 times: the confidence intervals presented are the
standard deviation over these runs. For ImageNet, because of high computation
time, we performed only a single run per experiment.

We tested Alrao on several standard architectures. On ImageNet, we tested
Resnet50 [31], Densenet121 [37], and Alexnet [52], using the default Pytorch imple-
mentation. On CIFAR10, we tested GoogLeNet [99], VGG19 [93], and MobileNet
[36], as implemented in [47]. We also tested wider architectures, with a width
multiplication factor γ = 3. On the largest model, Resnet50 on ImageNet with
triple width, systematic SGD learning rate grid search was not performed due to
the excessive computational burden, hence the omitted value in Tab. 2.1.

2.5.2 Other Tasks: Text Prediction, Reinforcement Learn-
ing

Text prediction on Penn TreeBank. To test Alrao on other kinds of tasks,
we first used a recurrent neural network for text prediction on the Penn Treebank
(PTB) [76] dataset. The Alrao experimental procedure is the same as above.

Chapter 2 – Learning with Random Learning Rates 39

(a) Resnet50 trained on ImageNet.

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss rain
alrao: (10−5, 101)
alrao, wid h * 3
lr=1e-01
lr=1e-02
lr=1e-03
lr=1e-04
lr=1e-05
Adam
Adam, width * 3

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss test

(b) AlexNet trained on ImageNet.

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss rain
alrao: (10−5, 101)
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01
Adam

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss test

Figure 2.2 – Learning curves for Alrao, SGD with various learning rates, and Adam
with its default setting, on ImageNet. Left: training loss; right: test loss. Curves
are interrupted by the early stopping criterion. Alrao’s performance is comparable
to the optimal SGD learning rate.

The loss in Table 2.1 is given in bits per character and the accuracy is the
proportion of correct character predictions. The model is a two-layer LSTM [35]
with an embedding size of 100, and 100 hidden units. A dropout layer with rate
0.2 is included before the decoder. The training set is divided into 20 minibatchs.
Gradients are computed via truncated backprop through time [108] with truncation
every 70 characters.

The model was trained for character prediction rather than word prediction. This
is technically easier for Alrao implementation: since Alrao uses copies of the output
layer, memory issues arise for models with most parameters on the output layer.
Word prediction (10,000 classes on PTB) requires many more output parameters
than character prediction; see Section 2.7.

40 Chapter 2 – Learning with Random Learning Rates

Reinforcement learning tasks. Next, we tested Alrao on two standard rein-
forcement learning problems: the Pendulum and Lunar Lander environments from
OpenAI Gym [10]. We use standard deep Q-learning [79]. The Q-network is a
standard MLP with 2 hidden layers. The experimental setting is the same as above,
with regressors instead of classifiers on the output layer. For each environment, we
select the best epoch on validation runs, and then report the return of the selected
model on new test runs in that environment.

2.6 Performance and Robustness of Alrao

2.6.1 Alrao Compared to SGD with Optimal Learning Rate
First, Alrao does manage to learn; this was not obvious a priori.

Second, SGD with an optimally tuned learning rate usually performs better than
Alrao. This can be expected when comparing a tuning-free method with a method
that tunes the hyperparameter in hindsight.

Still, the difference between Alrao and optimally-tuned SGD is reasonably
small across every setup, even with wide intervals [ηmin; ηmax], with a somewhat
larger gap in one case (AlexNet on ImageNet). Notably, this occurs even though
SGD achieves good performance only for a few learning rates within the interval
[ηmin; ηmax]. With ηmin = 10−5 and ηmax = 10, among the 7 SGD learning rates
tested (10−5, 10−4, 10−3, 10−2, 10−1, 1, and 10), only three are able to learn with
AlexNet, and only one is better than Alrao (Fig. 2.2b); with ResNet50, only three
are able to learn well, and only two of them achieve performance similar to Alrao
(Fig. 2.2a); on the Pendulum environment, only two are able to learn well, only one
of which converges as fast as Alrao.

Thus, surprisingly, Alrao manages to learn at a nearly optimal rate, even though
most units in the network have learning rates unsuited for SGD.

2.6.2 Robustness of Alrao, and Comparison to Default
Adam

Overall, Alrao learns reliably in every setup in Table 2.1. Moreover, this is quite
stable over the course of learning: Alrao curves shadow optimal SGD curves over
time (Fig. 2.2).

Often, Adam with its default parameters almost matches optimal SGD, but
this is not always the case. Over the 13 setups in Table 2.1, default Adam gives a
significantly poor performance in three cases. One of those is a pure optimization
issue: with AlexNet on ImageNet, optimization does not start with the default
parameters (Fig. 2.2b). The other two cases are due to strong overfit despite good
train performance: MobileNet on CIFAR and ResNet with increased width on
ImageNet.

Chapter 2 – Learning with Random Learning Rates 41

In two further cases, Adam achieves good validation performance in Table 2.1,
but actually overfits shortly after its peak score: ResNet (Fig. 2.2a) and DenseNet,
[109, 46].

Overall, default Adam tends to give slightly better results than Alrao when it
works, but does not learn reliably with its default hyperparameters. It can exhibit
two kinds of lack of robustness: optimization failure, and overfit or non-robustness
over the course of learning. On the other hand, every single run of Alrao reached
reasonably close-to-optimal performance. Alrao also performs steadily over the
course of learning (Fig. 2.2).

2.6.3 Sensitivity Study to [ηmin; ηmax]
We claim to remove a hyperparameter, the learning rate, but replace it with two
hyperparameters ηmin and ηmax. Formally, this is true. But a systematic study of
the impact of these two hyperparameters (Fig. 2.3) shows that the sensitivity to
ηmin and ηmax is much lower than the original sensitivity to the learning rate.

To assess this, we tested every combination of ηmin and ηmax in a grid from
10−9 to 107 on GoogLeNet for CIFAR10 (left plot in Fig. 2.3, with SGD on the
diagonal). The largest satisfactory learning rate for SGD is 1 (diagonal on Fig. 2.3).
Unsurprisingly, if all the learning rates in Alrao are too large, or all too small, then
Alrao fails (rightmost and leftmost zones in Fig. 2.3). Extremely large learning rates
diverge numerically, both for SGD and Alrao.

1e
-9
1e

-8
1e

-7
1e

-6
1e

-5
1e

-4
1e

-3
1e

-2
1e

-11e
0
1e

1
1e

2
1e

3
1e

4
1e

5
1e

6
1e

7

Maximum learning rate ηmax

1e7
1e6
1e5
1e4
1e3
1e2
1e1
1e0
1e-1
1e-2
1e-3
1e-4
1e-5
1e-6
1e-7
1e-8
1e-9

M
in

im
um

 le
ar

ni
ng

 ra
te

 η
m

in

1/8 1/4 1/2 1 2 4 8

Width multiplication factor γ

1e-15;1e7
1e-14;1e6
1e-13;1e5
1e-12;1e4
1e-11;1e3
1e-10;1e2
1e-9;1e1
1e-8;1e0
1e-7;1e-1
1e-6;1e-2
1e-5;1e-3
1e-4;1e-4

Al
ra

o
in

te
rv

al

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.3 – Influence of [ηmin; ηmax] and of network width on Alrao performance,
with GoogLeNet on CIFAR10. Results are reported after 15 epochs, and averaged
on three runs. Left plot: each point with coordinates [ηmin; ηmax] below the diagonal
represents the loss for Alrao with this interval. Points (η, η) on the diagonal represent
standard SGD with learning rate η. Grey squares represent numerical divergence
(NaN). Alrao works as soon as [ηmin; ηmax] contains at least one suitable learning
rate. Right plot: varying network width.

42 Chapter 2 – Learning with Random Learning Rates

On the other hand, Alrao converges as soon as [ηmin; ηmax] contains a reasonable
learning rate (central zone Fig. 2.3), even with values of ηmax for which SGD fails. A
wide range of choices for [ηmin; ηmax] will contain one good learning rate and achieve
close-to-optimal performance. Thus, as a general rule, we recommend to just use
an interval containing all the learning rates that would have been tested in a grid
search, e.g., 10−5 to 10.

For a fixed network size, one might expect Alrao to perform worse with large
intervals [ηmin; ηmax], as most units would become useless. On the other hand, in a
larger network, many units would have extreme learning rates, which might disturb
learning. We tested how increasing or decreasing network width changes Alrao’s
sensitivity to [ηmin; ηmax] (right plot of Fig. 2.3 for Alrao). The sensitivity of Alrao
to [ηmin; ηmax] decreases markedly with network width. For instance, a wide interval
[ηmin; ηmax] = [10−12; 104] works reasonably well with an 8-fold network, even though
most units receive unsuitable learning rates.

So, even if the choice of ηmin and ηmax is important, the results are much more
stable to varying these two hyperparameters than to the original learning rate,
especially with large networks.

2.6.4 Pruning Layers after Training
With Alrao, neurons are trained with learning rates lying in a wide interval. Our
initial intuition is that neurons trained with a too large or too small learning rate
will be progressively ignored by neurons on the next layer.

In this section, we check experimentally this intuition by pruning neurons at the
end of training. For each layer, we try to prune its neurons while the other layers
remain unchanged (see Algorithm 2). The considered layer is sequentially pruned by
progressively removing neurons with the highest or lowest learning rate, and which
affect the performance the least. This way, we delimit the interval of learning rates
with which the most useful neurons have been trained.

In order to understand the behavior of the neurons, we have tested independently
three pruning techniques on VGG16: simply set the weights of the pruned neurons
to zero; replace pruned neurons by Gaussian noise; reinitialize pruned neurons to
their value at initialization.

First, Figures 2.4a and 2.4b differ significantly from Figure 2.4c: reinitializing
neurons leads to better results than simply replacing them with zero or noise. This
observation corroborates the observations made in [112], where it has been shown
than some layers of VGG (in particular the last ones) can be reinitialized with few
accuracy drop. Besides, it is not surprising that reinitializing neurons with small
learning rates does not degrade accuracy much.

Second, according to Figure 2.4a, it is very difficult to simply remove neurons in
most layers, even neurons with a “too large” or “too small” learning rate. At the
very least, we could remove neurons trained with a learning rate greater than 1 or
0.1, but this is feasible only in the five last layers. Results given in Figure 2.4b are

Chapter 2 – Learning with Random Learning Rates 43

5 4 3 2 1 0 1
interval of log-learning rates

0

2

4

6

8

10

12

14

16

pr
un

ed
 la

ye
r

pruning interval by layer (zero)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

(a)

5 4 3 2 1 0 1
interval of log-learning rates

0

2

4

6

8

10

12

14

16

pr
un

ed
 la

ye
r

pruning interval by layer (noise)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

(b)

5 4 3 2 1 0 1
interval of log-learning rates

0

2

4

6

8

10

12

14

16

pr
un

ed
 la

ye
r

pruning interval by layer (reinit)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900
ac

cu
ra

cy

(c)

Figure 2.4 – These figures show how much each layer can be individually pruned,
and how pruning affects the accuracy, which is initially 87.81 %. Each horizontal
bar at ordinate l represents how much the l-th layer can be pruned: the larger a
purple area is, the least the corresponding layer can be pruned without accuracy
loss.

44 Chapter 2 – Learning with Random Learning Rates

Algorithm 2 Pruning the neurons of one layer l in the final neural network.
We denote byM the final neural network, byMl[amin, amax] a copy ofM where all
neurons in layer l trained with a learning rate η /∈ [amin, amax] have been pruned.
1: amin, amax ← ηmin, ηmax
2: da← 2 . rate of growth of ηmin and decay of ηmax
3: while amin < amax do
4: Mmin ←Ml[amin · da, amax]
5: Mmax ←Ml[amin, amax/da] . test narrower intervals of lr
6: if Mmin performs better thanMmax then
7: amin ← amin · da
8: else
9: amax ← amax/da
10: end if
11: report the performance ofMl[amin, amax] (see plots)

even worse: there is no clear intuition about the global usefulness of the learning
rates, even the extreme ones.

In conclusion, our initial intuition is not clearly satisfied experimentally. In
VGG16, neurons trained with an extreme learning rate cannot be pruned in general.
Even if we can replace some of them by their value at initialization, we cannot
simply remove them. This result tends to confirm the importance of diversity in
neural networks: even roughly trained or untrained neurons are useful parts of the
final neural network.

2.7 Discussion, Limitations, and Perspectives
Alrao specifically exploits redundancy between units in deep learning models, relying
on the overall network approach of combining a large number of units built for
diversity of behavior. Alrao would not make sense in a classical convex optimization
setting. That Alrao works at all is already informative about some phenomena at
play in deep neural networks.

Alrao can make lengthy SGD learning rate sweeps unnecessary on large models,
such as the triple-width ResNet50 for ImageNet above. Incidentally, in our exper-
iments, wider networks provided increased performance both for SGD and Alrao
(Table 2.1 and Fig. 2.3): network size is still a limiting factor for the models used,
independently of the algorithm.

Increased number of parameters for the classification layer. Since Alrao
modifies the output layer of the optimized model, the number of parameters in the
classification layer is multiplied by the number of classifier copies. (The number of
parameters in the internal layers is unchanged.) This is a limitation for models with
most parameters in the classifier layer.

Chapter 2 – Learning with Random Learning Rates 45

On CIFAR10 (10 classes), the number of parameters increases by less than 5%
for the models used. On ImageNet (1000 classes), it increases by 50–100% depending
on the architecture. On Penn Treebank, the number of parameters increased by
26% in our setup (at character level); working at word level it would have increased
fivefold. We provide a comparison in Section 2.9.5.

This can be mitigated by handling the copies of the classifiers on distinct comput-
ing units: in Alrao these copies work in parallel given the internal layers. Moreover,
the additional output layer copies may be thrown away early in training. Finally,
models with a large number of output classes usually rely on other parameterizations
than a direct softmax, such as a hierarchical softmax (see references in [44]); Alrao
can be used in conjunction with such methods.

Multiple output layer copies and expressiveness. Using several copies of
the output layer in Alrao formally provides more expressiveness to the model, as
it creates a larger architecture with more parameters. We performed two control
experiments to check that Alrao’s performance does not just stem from this. First,
we performed ablation of the output layer copies in Alrao after one epoch, only
keeping the copy with the highest model averaging weight ai: the learning curves
are identical. Second, we trained default Adam using copies of the output layer
(all with the same Adam default learning rate): the learning curves are identical to
Adam on the unmodified architecture. Thus, the copies of the output layer do not
bring any useful added expressiveness.

Learning rate schedules, other optimizers, other hyperparameters...
Learning rate schedules are often effective [6]. We did not use them here: this
may partially explain why the results in Table 2.1 are worse than the state-of-the-art.
One might have hoped that the diversity of learning rates in Alrao would effortlessly
bring it to par with step size schedules, but the results above do not support this.
Still, nothing prevents using a scheduler together with Alrao, e.g., by dividing all
Alrao learning rates by a time-dependent constant.

The Alrao idea can also be used with other optimizers than SGD, such as Adam.
We tested combining Alrao and Adam, and found the combination less reliable than
standard Alrao: curves on the training set mostly look good, but the method quickly
overfits (see Section 2.9.4).

The Alrao idea could be used on other hyperparameters as well, such as momen-
tum. However, with more hyperparameters initialized randomly for each unit, the
fraction of units having suitable values for all their hyperparameters simultaneously
will quickly decrease.

Finally, we have tested our initial intuition that, with Alrao, some neurons are
correctly trained and are useful, while the other tend to be ignored. This intuition
is weakly confirmed by the results: in general, even the neurons that have been
trained with an extreme learning rate are used by the rest of the network. Still, we
show that many of them can be reinitialized without degrading the performance.

46 Chapter 2 – Learning with Random Learning Rates

2.8 Conclusion
Applying stochastic gradient descent with multiple learning rates for different units
is surprisingly resilient in our experiments, and provides performance close to SGD
with an optimal learning rate, as soon as the range of random learning rates is not
excessive. Alrao could save time when testing deep learning models, opening the
door to more out-of-the-box uses of deep learning.

2.9 Appendix

2.9.1 Model Averaging with the Switch

As explained is Section 2.4, we use a model averaging method on the classifiers
of the output layer. We could have used the Bayesian Model Averaging method
[107]. But one of its main weaknesses is the catch-up phenomenon [104]: plain
Bayesian posteriors are slow to react when the relative performance of models
changes over time. Typically, for instance, some larger-dimensional models need
more training data to reach good performance: at the time they become better than
lower-dimensional models for predicting current data, their Bayesian posterior is so
bad that they are not used right away (their posterior needs to “catch up” on their
bad initial performance). This leads to very conservative model averaging methods.

The solution from [104] against the catch-up phenomenon is to switch between
models. It is based on previous methods for prediction with expert advice (see for
instance [32, 106] and the references in [50, 104]), and is well rooted in information
theory. The switch method maintains a Bayesian posterior distribution, not over the
set of models, but over the set of switching strategies between models. Intuitively,
the model selected can be adapted online to the number of samples seen.

We now give a quick overview of the switch method from [104]: this is how the
model averaging weights aj are chosen in Alrao.

Assume that we have a set of prediction strategiesM = {pj, j ∈ I}. We define
the set of switch sequences, S = {((t1, j1), ..., (tL, jL)), 1 = t1 < t2 < ... < tL , j ∈ I}.
Let s = ((t1, j1), ..., (tL, jL)) be a switch sequence. The associated prediction strategy
ps(y1:n|x1:n) uses model pji on the time interval [ti; ti+1), namely

ps(y1:i+1|x1:i+1, y1:i) = pKi(yi+1|x1:i+1, y1:i) (2.4)

where Ki is such that Ki = jl for tl ≤ i < tl+1. We fix a prior distribution π over
switching sequences. In this work, I = {1, ..., NC} the prior is, for a switch sequence
s = ((t1, j1), ..., (tL, jL)):

π(s) = πL(L)πK(j1)
L∏
i=2

πT (ti|ti > ti−1)πK(ji) (2.5)

Chapter 2 – Learning with Random Learning Rates 47

with πL(L) = θL

1−θ a geometric distribution over the switch sequences lengths,
πK(j) = 1

NC
the uniform distribution over the models (here the classifiers) and

πT (t) = 1
t(t+1) .

This defines a Bayesian mixture distribution:
psw(y1:T |x1:T) =

∑
s∈S

π(s)ps(y1:T |x1:T). (2.6)

Then, the model averaging weight aj for the classifier j after seeing T samples is
the posterior of the switch distribution: π(KT+1 = j|y1:T , x1:T).

aj = psw(KT+1 = j|y1:T , x1:T) (2.7)

= psw(y1:T , KT+1 = j|x1:T)
psw(y1:T |x1:T) . (2.8)

These weights can be computed online exactly in a quick and simple way [104],
thanks to dynamic programming methods from hidden Markov models.

The implementation of the switch used in Alrao exactly follows the pseudo-code
from [105], with hyperparameter θ = 0.999 (allowing for many switches a priori). It
can be found in the accompanying online code.

2.9.2 Influence of Model Averaging in Alrao
We investigated the importance of the model averaging method in Alrao.

Evolution of the model averaging weights. In Figure 2.7a, we represent the
evolution of the model averaging weights aj during training of GoogLeNet with Alrao
on CIFAR10. We can make several observations. First, after only a few gradient
descent steps, the model averaging weights corresponding to the three classifiers with
the largest learning rates go to practically zero. This means that their parameters
are moving too fast, and their loss is getting very large. Next, for a short time, a
classifier with a moderately large learning rate gets the largest posterior weight,
presumably because it is the first to learn a useful model. Finally, after the model
has seen approximately 4,000 samples, a classifier with a slightly smaller learning
rate is assigned a posterior weight aj close to 1, while all the others go to 0. Thus,
after a number of gradient steps, the model averaging method acts like a model
selection method.

Model selection instead of model averaging. This evolution of the model
averaging weights suggests that the averaging in the last layer is acting as a model
selection procedure. Once the weight aj of some classifier j is close to 1, the output
of the full Alrao architecture with model averaging is close to the output of the
original architecture with a single classifier with weights θout

j from this classifier.
We compared Alrao with a modified version of Alrao in which after 1 epoch, the
classifier with largest model averaging weight is selected, and the other classifiers
are dropped (Fig. 2.7b). The behaviors of these two variants are exactly the same.

48 Chapter 2 – Learning with Random Learning Rates

Adam with the Alrao output layer. In order to control the effect of the
increased expressiveness induced by the expanded output layer in the Alrao archi-
tecture, we ran Adam (with its default parameters) on GoogLeNet modified as in
Alrao (namely, with model averaging over 10 classifiers) (Fig. 2.7c). The learning
behavior is exactly the same as Adam on the original architecture. Thus, changing
the architecture by replacing the single classifier layer with an average of classifiers
does not by itself improve training performance.

2.9.3 Additional Experimental Details and Results

In the case of CIFAR-10 and ImageNet, we normalize each input channel xi (1 ≤
i ≤ 3), using its mean and its standard deviation over the training set. Let µi and
σi be respectively the mean and the standard deviation of the i-th channel. Then
each input (x1, x2, x3) is transformed into (x1−µ1

σ1
, x2−µ2

σ2
, x3−µ3

σ3
). This operation is

done over all the data (training, validation and test).
Moreover, we use data augmentation: every time an image of the training set

is sent as input of the NN, this image is randomly cropped and randomly flipped
horizontally. Cropping consists in filling with black a band at the top, bottom, left
and right of the image. The size of this band is randomly chosen between 0 and 4 in
our experiments.

The batch size is: 32 on CIFAR10 for every architecture, 20 on PTB, and 256
on ImageNet for Alexnet and ResNet50, and 128 for Densenet121.

On Reinforcement Learning environments, we use vanilla Q-learning [79] with a
soft target update as in [62] τ = 0.9, and a memory buffer of size 1,000,000. The
architecture for the Q network is a MLP with 2 hidden layers. The learning curves
are in Fig. 2.8d. For the optimization, the switch is used with 10 output layers.
An output layer is a linear layer. Since the switch is a probability model averaging
method, we consider each output layer as a probabilistic model, defined as a Normal
distribution with variance 1 and mean the predicted value by the output layer. The
loss for the Alrao model is the negative log-likelihood of the model mixture.

2.9.4 Alrao with Adam

In Figure 2.9, we report our experiments with Alrao-Adam on CIFAR10. As
explained in Section 2.7, Alrao is much less reliable with Adam than with SGD.

This is especially true for the test performance, which can even diverge while
training performance remains either good or acceptable (Fig. 2.9). Thus Alrao-Adam
seems to send the model into atypical regions of the search space.

We have no definitive explanation for this at present. It might be that changing
Adam’s learning rate requires changing its momentum parameters accordingly. It
might be that Alrao does not work on Adam because Adam is more sensitive to its
hyperparameters.

Chapter 2 – Learning with Random Learning Rates 49

2.9.5 Number of Parameters
As explained in Section 2.7, Alrao increases the number of parameters of a model,
due to output layer copies. The additional number of parameters is approximately
equal to (Nout − 1) ×K × d where Nout is the number of classifier copies used in
Alrao, d is the dimension of the input to the output layer, and K is the number of
classes in the classification task (assuming a standard softmax output; classification
with many classes often uses other kinds of output parameterization instead).

Table 2.2 – Comparison between the number of parameters in models used without
and with Alrao. LSTM (C) is a simple LSTM cell used for character prediction
while LSTM (W) is the same cell used for word prediction.

Model Number of parameters
Without Alrao With Alrao

GoogLeNet 6.166M 6.258M
VGG 20.041M 20.087M
MobileNet 2.297M 2.412M

LSTM (C) 0.172M 0.217M
LSTM (W) 2.171M 11.261M

The number of parameters for the models used, with and without Alrao, are
in Table 2.2. Using Alrao for classification tasks with many classes, such as word
prediction (10,000 classes on PTB), increases the number of parameters noticeably.

For those model with significant parameter increase, the various classifier copies
may be done on parallel GPUs.

2.9.6 Frozen Features Do Not Hurt Training
As explained in the introduction, several works support the idea that not all units
are useful when learning a deep learning model. Additional results supporting this
hypothesis are presented in Figure 2.5. We trained a GoogLeNet architecture on
CIFAR10 with standard SGD with learning rate η0, but learned only a random
fraction p of the features (chosen at startup), and kept the others at their initial
value. This is equivalent to sampling each learning rate η from the probability
distribution P (η = η0) = p and P (η = 0) = 1− p.

We observe that even with a fraction of the weights not being learned, the
model’s performance is close to its performance when fully trained.

When training a model with Alrao, many features might not learn at all, due to
too small learning rates. But Alrao is still able to reach good results. This could be
explained by the resilience of neural networks to partial training.

50 Chapter 2 – Learning with Random Learning Rates

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

test_nll as a function of p

Figure 2.5 – Loss of a model where only a random fraction p of the features are
trained, and the others left at their initial value, as a function of p. The architecture
is GoogLeNet, trained on CIFAR10.

1/8 1/4 1/2 1 2 4
Width multiplication factor

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

Le
ar
ni
ng

 ra
te

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Figure 2.6 – Effect of width with SGD on GoogLeNet trained on CIFAR10, after 15
epochs (average over three runs). Grey means numerical divergence (NaN).

Chapter 2 – Learning with Random Learning Rates 51

(a) Model averaging weights during training of GoogLeNet with Alrao on CIFAR10 with
10 classifiers. We represent the weights aj , depending on the corresponding classifier’s
learning rate.

10−3 10−2 10−1 100 101

Epochs (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 a
ve

ra
gi
ng

 w
ei
gh

ts
 a

j

a1 : η1 = 1.0e-05
a2 : η2 = 4.6e-05
a3 : η3 = 2.2e-04
a4 : η4 = 1.0e-03
a5 : η5 = 4.6e-03
a6 : η6 = 2.2e-02
a7 : η7 = 1.0e-01
a8 : η8 = 4.6e-01
a9 : η9 = 2.2e+00
a10 : η10 = 1.0e+01

(b) Training with standard Alrao and with Alrao with model selection. With model
selection, after one epoch the best classifier is selected according to the model averaging
weights, so that the architecture reverts to the original architecture without model averaging.
The results are averaged on three runs.

0 20 40 60 80 100
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
ss

Loss train
Alrao with model selection
Alrao

0 20 40 60 80 100
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
ss

Loss test

(c) Training with Adam on GoogLeNet, and on the same architecture modified as in Alrao
(with 10 output layer copies). Every classifier copy uses the same default Adam learning
rate. The overall output of the model is, as in Alrao, a switch model averaging over the
classifier. The results are averaged on three runs.

0 20 40 60 80 100
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
ss

Loss train
Adam with 10 output layers
Default Adam

0 20 40 60 80 100
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
ss

Loss test

Figure 2.7 – Experiments on the effect of the model averaging layer in Alrao. In all
experiments, GoogLeNet is trained on CIFAR10.

52 Chapter 2 – Learning with Random Learning Rates

(a) GoogLeNet on CIFAR10 (Average on three runs)

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
Adam default
alrao
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01
lr=1e+02

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(b) Densenet121 trained on ImageNet

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss rain
alrao: (10−5, 101)
lr=1e+01
lr=1e+00
lr=1e-01
lr=1e-02
lr=1e-03
lr=1e-04
lr=1e-05
Adam

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8
lo

ss
Loss test

(c) MobileNetV2 on Cifar10 (average over 3 runs)

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
Adam default
alrao
lr=1e-06
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(d) Reinforcement Learning in the pendulum environment

0 5 10 15 20 25
Steps

−3500

−3000

−2500

−2000

−1500

−1000

−500

Re
tu
rn

Return

Adam
alrao:(1e-5, 1e1)
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01

Figure 2.8 – Additional learning curves for SGD with various learning rates, Alrao,
and Adam with its default setting. Left: training loss; right: test loss.

Chapter 2 – Learning with Random Learning Rates 53

(a) Alrao-Adam with GoogLeNet on CIFAR10: Alrao-Adam compared with standard
Adam with various learning rates. Alrao uses 10 classifiers and learning rates in the
interval (10−6; 1). Each plot is averaged on 10 experiments. We observe that optimization
with Alrao-Adam is efficient, since train loss is comparable to the usual Adam methods.
But the model starkly overfits, as the test loss diverges.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
alrao-adam
adam lr=1e-05
adam lr=1e-04
adam lr=1e-03
adam lr=1e-02

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(b) Alrao-Adam with MobileNet on CIFAR10: Alrao-Adam with two different learning rate
intervals, (10−6; 10−2) for the first one, (10−6; 10−1) for the second one, with 10 classifiers
each. The first one is with ηmin = 10−6. Each plot is averaged on 10 experiments. Exactly
as with GoogLeNet model, optimization itself is efficient (for both intervals). For the
interval with the smallest ηmax, the test loss does not converge and is very unstable. For
the interval with the largest ηmax, the test loss diverges.

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
alrao
alrao

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(c) Alrao-Adam with VGG19 on CIFAR10: Alrao-Adam on the interval (10−6, 1), with 10
classifiers. The 10 plots are 10 runs of the same experiments. While 9 of them do converge
and generalize, the last one exhibits wide oscillations, both in train and test.

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

Figure 2.9 – Alrao-Adam: Experiments with the VGG19, GoogLeNet and MobileNet
networks on CIFAR10.

Chapter 3

Asymmetrical Scaling Layers for
Stable Network Pruning

3.1 Introduction

Neural network architectures are becoming bigger and bigger. From hand-tuned
(VGG [94], GoogLeNet [99], ResNets [31]) to automatically generated architectures
(NAS [113], hypernetworks [9]), they tend to become deeper, structurally more
complex, and wider. As a consequence, the number of weights increases dramatically,
and so does the training time.

The widths of the layers in a neural network are critical hyperparameters,
impacting final accuracy as well as computational cost both at training and test
time. In practice, grid search over the layer sizes is often required. It would be nice
to have an algorithm that works well just by initializing a network to a large width,
in the hope that, if good performance can be achieved by a small network, it can
also be achieved by a larger network that does not use its extra width. Such an
algorithm would also be useful for pruning, by shaving off the extra neurons at the
end or even during training.

Such a training algorithm has other hyperparameters such as the learning rate;
one could wish these hyperparameters to be resilient to width changes. Otherwise, a
new hyperparameter search would be necessary (notably for the learning rate) each
time a new layer width is tested, whether while pruning neurons or for each new
experiment in a grid search.

In particular, we show that the standard Stochastic Gradient Descent (SGD)
is not resilient to a change of widths in a given neural network: the learning rate
has to be adapted accordingly. Consequently, in a network with layers of varied
widths, the SGD learning rate cannot be adapted to all layers simultaneously. To
solve these problems, we introduce the ScaLa (Scaling Layer) trick: every layer is
preceded by a fixed diagonal scaling layer. Instead of training a layer w ∈Mnin,nout ,

55

56 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

we train the tensor w̃ defined by:

w = Sw̃,

where S = Diag(σ1, · · · , σnin). We show that training w̃ instead of w is more resilient
to layer width changes.

Such a rescaling with σk = 1/√nin is often used in theoretical analyses of neural
networks [16]. We emphasize that such layers S can be chosen asymmetrical, i.e.,
each neuron or channel in the network is scaled with a different factor. This promotes
learning various neurons or channels at different speeds. Based on this, we propose
ScaLP (Scaling Layer Pruning) to perform either neuron pruning in fully connected
layers, or channel pruning in convolutional layers. It consists in using ScaLa with a
penalty and an asymmetrical scaling layer; this is provably equivalent to enforcing
an asymmetrical penalty over the set of computing units (i.e., neurons or channels)
in each layer. This way, the most useful units are preserved while the least useful
ones are pushed even more strongly towards 0.

For instance, possible setups for S are:

ScaLa : σk = 1
√
nin

, ScaLP : σk ∝
1√

k log k
.

In both cases, we show that fine-tuning the learning rate becomes unnecessary when
changing layer widths. Moreover, ScaLP combined with a penalization leads to
final layer weight matrices in which some rows are close to zero; such layers are
consequently easy to prune.

We first provide (Section 3.3) a theoretical justification for scaling layers, that is
based both on an analysis of variance similar to the standard 1√

nin
initialization [22],

and on a novel analysis of the stability of the SGD step (since we would like to
obtain stability of training, not only of initialization).

In Section 3.4 we define ScaLP, a pruning algorithm based on scaling layers.
ScaLa and ScaLP are tested in Section 3.5. First, we test the learning rate

stability provided by ScaLa: it turns out that a learning rate of 1 performs well
over a wide range of network widths. Next, we compare ScaLP (with fixed learning
rate 1) to other pruning techniques. We compare the final accuracy and the final
number of parameters. Finally, we test whether various pruning techniques find the
same pruned architecture size when the initial width is changed. Ideally, either for
pruning or for standard training, it should be safe to start with a too-wide network.

3.2 Related Work
Several approaches has been developed to reduce the computational cost of neural
network models at test time. Large neural networks can be compressed in many
ways: approximate large neural networks by small ones [3], decrease the rank of large
matrices in linear layers [14], share or quantize the weights inside matrices [11, 23]

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 57

Making the layers more sparse is one of the most common options. One way to
achieve sparsity is to prune connections or neurons during or after training. The
first pruning technique, Optimal Brain Damage, was based on the second-order
derivative of the loss with respect to the weights [57, 29]. This was shown to provide
better results than simply pruning the smallest weights. Despite this observation,
pruning the weights according to their magnitude is still used [27], and the resulting
pruned networks keep roughly their initial accuracy.

A second group of pruning methods focuses on pruning neurons, which is more
difficult than pruning weights. The idea of most neuron pruning techniques is
to use group Lasso-like penalties, studied in [89]: group Lasso itself [89], sparse-
group Lasso [1] or `∞,1-norm [81]. It is also possible to prune entire channels in a
Convolutional Neural Network (CNN) by evaluating and ranking the L1-norm of
the channels, without regularization during training [60].

Another type of approach recently proposed [65] consists in introducing a mul-
tiplicative scaling factor just after each channel or neuron, that is learned and
penalized by a L1-norm. This simple trick allows direct neuron pruning, and can be
generalized to remove groups of convolutions or entire layers [38]. Our work also
makes use of scaling factors after each neuron, although they play a different role:
in our setup, the scaling layer is not learned. Both methods behave differently in
our experiments.

Our treatment of width independence for network training is based on intuitions
and results for infinitely wide neural networks (Section 3.3). Interest for the latter
has recently increased, continuing the seminal work of Neal [82], who pointed out a
connection with Gaussian processes. In [78], infinitely wide deep neural networks
are proven to behave like Gaussian processes, while [58] and [41] study the dynamics
of such networks, which are called Neural Tangent Kernels (NTK). These works
indicate that scaling the weights is a necessary step in order to build a training
algorithm resilient to any width change: the weights of finitely wide layers are
supposed to be scaled by the same factor 1/√nin (where nin is the number of inputs),
in order to ensure convergence in the infinitely-wide limit. In Section 3.3, we prove
that a whole family of scaling factors, beyond the standard choice 1/√nin, can
be used to achieve such resilience. In particular, our algorithm ScaLa may use
non-uniform scalings: this preserves individual neurons in the infinite-width limit,
whereas the classical 1/√nin scaling produces neurons with infinitesimal individual
influence in the limit.

3.3 ScaLa: Scaling the Weights for Width-
Independent Training

In this section, we introduce ScaLa, a technique designed to make SGD resilient to
any change of a layer width in the trained model. We will later use this technique
for the pruning algorithm ScaLP (Section 3.4).

58 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

Indeed, one strategy to find the optimal size of a neural network layer consists
in starting from a intentionally too wide layer, and pruning it iteratively during
training according to some well-suited method. For this, we will ensure that the
training technique behaves correctly in a very-large-width setup; ideally, the training
of the neural network should be asymptotically independent of the network width
for large widths. This leads to considering the infinite-width limit: How should we
learn and prune an infinitely wide neural network?

3.3.1 Two Problems with Infinitely Wide Layers
In a neural network where the layers can be arbitrarily wide, one has to check at
least that the first forward pass and the first update do not lead to any divergence.

Problem 1: the forward pass. The forward pass should output activations with
bounded variance for arbitrary network sizes. With the Glorot initialization [22],
weight variance is set to 1/nin, with nin the number of inputs. This preserves the
variances of the activations from one layer to the next. Thanks to this, the layer’s
output does not diverge if nin tends to infinity.

We extend this classical analysis to non-uniform initializations.

Problem 2: the gradient step. Initialization is not the only problem: one has
to ensure that the training mechanism is stable as well with large network widths.
The output of one neuron should not diverge after a few updates when the number
of inputs tends to infinity.

In fact, the number of inputs affects gradient computation: with a fixed learning
rate, if nin tends to infinity, the outputs are likely to diverge after even one update.
It follows that a simple Glorot-like initialization is not sufficient to solve this problem
(Remark 1 below).

We show that replacing a layer with weights w, with a layer with weights w̃
preceded by a scaling layer S, is sufficient to deal simultaneously with the two
problems above.

In the next sections, the weights w denote the original network parameters; while
the weights w̃ are called scaled weights and are those we learn via SGD.

3.3.2 Training a Layer with an Infinite Number of Inputs
To face the problem of learning arbitrarily wide neural networks, let us first under-
stand how a single neuron can deal with an arbitrarily large number N of inputs.
We focus here on the simple case where a neuron just computes its pre-activation y
and its activation a from its input vector x = (xk)1≤k≤N :

a = φ

(
N∑
k=1

wkxk + b

)
= φ

(
wTx + b

)
= φ(y),

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 59

where w = (wk)1≤k≤N ∈ RN is the vector of weights of the neuron, b ∈ R its bias
and φ its activation function.

Instead of learning w directly, we apply the following variable change:

w = Sw̃, (3.1)

where S = S(N) = Diag(σ(N)1, · · · , σ(N)N) ∈ MN,N is a fixed scaling matrix whose
coefficients depend only on N , and where w̃ = (w̃k)1≤k≤N . The criterion to be
optimized is not seen as a function of w anymore, but as a function of S and w̃. As
S is fixed, we perform SGD on w̃. This is the ScaLa algorithm.

We now provide a necessary and sufficient condition on the scaling S and on the
initialization variance of w̃, to ensure that the output of a layer stays bounded, both
at initialization and after one SGD step, in the limit of infinitely many inputs to a
layer.

Notation and Conditions:

• let (xk)1≤k≤N be the vector of inputs, whose coordinates are independent
random variables with mean 0, variance 1 and finite order-4 momentum;

• we assume, as in [22], that ∂L
∂y

is a random variable of mean 0 and non-zero
finite variance, independent of the (xk)k;

• the weights (w̃k)1≤k≤N are randomly initialized, i.i.d. of mean 0 and common
variance τ 2

(N) (it will typically set to 1 later);

• the bias b is drawn from a distribution of mean 0 and variance τ 2
b , independently

from (w̃k)k.

Proposition 1. We denote by y(N) and y′(N) respectively the initial pre-activation
of the neuron and its pre-activation after one SGD step over w̃ ∈ RN . The learning
rate η is fixed and independent from N .

With the assumptions above, and assuming that
(∑N

k=1 σ
2
(N)k

)
N

is weakly mono-
tonic and does not admit a subsequence that converges to 0, the following equivalence
holds: {

limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞

⇔

limN→∞

∑N
k=1 σ

2
(N)k <∞

limN→∞
∑N
k=1 σ

4
(N)k <∞

limN→∞ τ(N) <∞
. (3.2)

Thus, luckily, when the conditions of Proposition 1 are satisfied, the neural
network is resilient to any width change, at fixed learning rate.

60 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

Remark 1 (The Glorot initialization leads to an infinite first step). Importantly, the
standard setup of working with the original weights w does not have such properties:
it leads to infinite variance after the first SGD step.

Indeed, wk is usually initialized with Var(wk) = 1/N . This is equivalent to setting
τ 2

(N) = 1/N and σ(N)k = 1 (namely, S = Id, no rescaling) in our setup. Since

lim
N→∞

N∑
k=1

σ2
(N)k =∞

lim
N→∞

Var(y(N)) <∞,

it follows from Proposition 1 that:

lim
N→∞

Var(y′(N) − y(N)) =∞.

Therefore, just initializing the weights for bounded activation variance does not
implies a bounded SGD update. Hence the interest of the scaling layer S.

In the following, we set τ 2
(N) = 1.

Link with classical initialization strategies. Still, it is possible to reproduce
Glorot initialization with a finite first step. We choose the uniform scaling σ(N)k =
1/
√
N (for all k) and τ 2 = 1, which fulfills the conditions (3.2):

limN→∞

∑N
k=1

(
1√
N

)2
= 1 <∞

limN→∞
∑N
k=1

(
1√
N

)4
= 1

N
<∞

limN→∞ 1 = 1 <∞
.

This choice corresponds to the well-known initialization: wk ∼ N (0, 1/N). Still,
ScaLa with uniform scaling σ(N)k = 1/

√
N differs from classical SGD: the reparame-

terization leads to a change of the update rule. Indeed, the update rule for w̃ can
be interpreted as an update rule for w with scaled learning rates:

 w̃t+1 = w̃t − η ∂L∂y (Sx)T

S = Diag
(

1√
N
, · · · , 1√

N

) ⇒ Wt+1 = Wt −
η

N

∂L

∂y
xT .

Thus, in the case where the chosen scaling is uniform (σ(N)k = 1/
√
N), the variable

change can be simply seen as a scaling for the learning rate, inversely proportional
to N . Experimentally, this will result in learning rates and learning speeds that are
roughly independent of N (Figures. 3.3a, 3.3b).

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 61

Infinite number of inputs. In Proposition 1, we impose a condition over
(σ(N)k)N,k, in order to obtain a consistent behavior of y(N) and y′(N) as the number
N of inputs grows.

In the classical treatment of infinitely wide networks, the variances are 1/N :
asymptotically, each individual neuron “disappears”.

Here, it is possible to choose values of σ(N)k that do not depend on N . This
allows a direct treatment of effectively infinite networks, without vanishing neurons.
It could also be useful in situations when N changes during training, such as pruning
(Section 3.4). This can be expressed as follows.

Corollary 2. Under the same conditions as in Proposition 1, and assuming that
σ(N)k = σk and τ(N) = τ , the outputs of a layer at initialization and after one ScaLa
SGD step stay bounded if and only if the sum of scaling factors converges:

∞∑
k=1

σ2
k <∞⇔

{
limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞ . (3.3)

This corollary imposes a constraint over the sequence of scaling factors (σk)k in
a given layer. Possibilities include

σk ∝
1
k
, σk ∝

1√
k log(k)

the latter being one of the slowest-decreasing sequences that still satisfies the finite
variance condition.

3.3.3 Neurons and Convolutional Filters with ScaLa
The initialization rule and the update rule have in common the decomposition of a
standard neuron into an unlearned scaling layer and a normalized weight layer. So,
from now, we use this general model of a neuron, which is easily customizable to fit
convolutional filters in CNNs.

Simple neuron. A simple neuron which computes a = φ(y) = φ(wTx + b) is
transformed into a = φ(y) = φ(w̃TSx + b), where S is a fixed diagonal matrix and
w̃ the matrix of learnable parameters. In the case where φ = ReLU, the matrix S
should satisfy (see Equation (3.10)):

N∑
k=1

σ2
k + τ 2

b = 2. (3.4)

This model is represented in Figure 3.1, where S is the scaling layer.

Remark 2. If we substitute w for w̃, as proposed in equation (3.1), then one can
write:

y = wTx + b = w̃T (Sx) + b.

62 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

x1

x2

x3

σ1x1

σ2x2

σ3x3

scaling
layer

∑N
k=1 w̃kσkxk

“neuron” w̃
w̃1

w̃2

w̃3
= ∑N

k=1wkxk

σ1

σ2

σ3

x Sx
S = Diag((σk)k) w̃ = (w̃k)k

w̃TSx = wTx

Figure 3.1 – The new model for the simple neuron.

Therefore, the substitution can be seen in two ways: either the weights are a scaled
vector of the original weights and the inputs are as they are (zero-mean and variance
1), or the weights are as they are and the inputs are scaled when they enter the
neuron.

Convolutional filter. Let F ∈ RN×c×c be a convolutional filter, where N is the
number of masks and c× c is the size of each 2D-mask, and x ∈ RN×p×q be a tensor
containing N images of size p× q. The filter computing A = φ(Fx) is transformed
into A = φ(F̃Sx), where S is an operator multiplying each subtensor Xi ∈ Rp×q by
a factor σk, for k ∈ {1, · · · , N}. F̃ is the tensor of learnable parameters. In the case
where φ = ReLU, we should have:

c2 ·
N∑
k=1

σ2
k + τ 2

b = 2. (3.5)

In this case, S is the scaling layer.

3.3.4 Normalizing the Activations

We recall that, according to Proposition 1, the inputs of a neuron are assumed to
be of mean zero and variance 1. This is easily achieved if the inputs are taken from
the dataset: it is sufficient to make an affine operation over the dataset.

In order to keep this assumption true for all neurons of a neural network, we
propose to add a batch-norm layer before of after each weight layer.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 63

3.4 ScaLP: Pruning with Non-Uniform Weight
Scaling

In this section, we introduce ScaLP, a pruning method combining ScaLa with a
non-uniform scaling and a penalty pushing the rescaled weights w̃ to 0. Thanks to
the non-uniform scaling, the penalty on the original weights w becomes non-uniform:
some neurons are more strongly pushed to 0 than others, making them easier to
prune. The network will more easily train neurons with weaker penalties, and thus
consider more penalized neurons only if necessary. This intuitively should lead to
automatic adaptation of the layer size, according to the complexity of the task.

3.4.1 The L2 Penalty for ScaLP
For the sake of simplicity, we first consider the L2-squared penalty. Instead of
penalizing the weights w directly, we penalize the underlying parameters w̃. This
choice results from a consideration about their magnitude: since the parameters
w̃ are initially i.i.d., they have initially the same order of magnitude. Then, they
contribute equally to the loss and can be learned with the same learning rate.
Recalling that “w = σw̃”, this penalty can equivalently be seen as a L2-squared
penalization of w modulated by 1/σ. Thus, the level of penalization of w can be
tuned through σ.

Definition of the penalty. We denote by w the vector of all weights, by wl
k the

k-th neuron in the l-th layer, and by wlki its i-th input weight. We denote by w̃l
k

and w̃lki their respective underlying parameters.

Proposition 3. Let L+ 1 be the number of layers of the neural network, where the
layer at index 0 is the input of the network. For l ∈ {0, · · · , L}, let nl be the number
of computing units (neurons or convolutional filters) in the layer l. We denote by
wl
k the k-th computing unit in the layer l and by σlk the k-th scaling factor in layer

l. Thus the entire penalty can be written:

pen(w) :=
L∑
l=1

nl∑
k=1

∑
i

(w̃lki)2 =
L∑
l=1

nl∑
k=1

∑
i

(
wlki
σl,k

)2

=
L−1∑
l=0

nl∑
k=1

 1
σ2
l+1,k

∑
w∈wl

k→

w2

 ,
where wl

k→ is the set of “output weights” of wl
k. In other words, w belongs to wl

k→
if, and only if, the output of wl

k is multiplied by the weight w in the next layer.

Since the meaning and the effect of this penalty are not easy to see, we illustrate
the rearrangement of the terms. For this purpose, we define respectively the penalty
term associated to a neuron wlk and its norm, denoted by m:

pen(wl
k) =

∑
i

(
w̃lki

)2
and m(wl

k)2 =
∑

w∈wl
k→

w2.

64 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

The norm m(wl
k)2 can be interpreted as the utility of the neuron wl

k from the point
of view of the next layer. Then, we can reformulate Proposition 3:

pen(w) =
L∑
l=1

nl∑
k=1

pen(wl
k) =

L−1∑
l=0

nl∑
k=1

m(wl
k)2

σ2
l+1,k

. (3.6)

The right-hand side of this equality can be interpreted as an asymmetrical
penalization of the usage of each neuron in a layer: for each neuron wl

k, we evaluate
its “utility” through m(wl

k)2, then we scale it by 1/σ2
l+1,k to obtain the final penalty

term.
In practice, the role of the σlk is clearer if we sort the sequence (σlk)k for each

layer l in descending order: the higher is the index k, the smaller σlk is, the more is
penalized the usage of the k-th neuron in the preceding layer. Briefly, the higher is
the index of a neuron, the less it is likely to be used.

From now, the sequences (σlk)k are supposed to be non-increasing for all l.

Reordering the neurons. We recall that, in most neural networks, two neurons
of a layer can be swapped without changing the function computed by the neural
network, if the corresponding weights in the next layer are swapped too. We show
not only how to do this in neural networks with scaling layers, but also how it helps
decreasing the penalty in that case.
Proposition 4. Two neurons wl

i and wl
j can be swapped without changing the

operation made by the neural network through the following procedure:

wl
i ←→ wl

j and ∀k,

 w̃l+1
ki ←− w̃l+1

kj
σl+1,j
σl+1,i

w̃l+1
kj ←− w̃l+1

ki
σl+1,i
σl+1,j

,

where σl+1,i and σl+1,j are respectively the i-th and the j-th scaling factor in layer
l + 1.
Remark 3. Swapping the neurons wl

i and wl
j causes a swapping of m(wl

i) and
m(wl

j) without change.
In neural networks with scaling layers, the penalty depends on the association

between the (wl
k)k and the (σl+1,k)k at fixed l (equation (3.6)). The following

proposition indicates how to permute the neurons to minimize the penalty.
Proposition 5. The order of the neurons (wl

i)i in a given layer l provides the
minimal loss if, and only if the sequence m(wl

i)i is non-increasing, that is:
∀i < j, m(wl

i) ≥ m(wl
j).

Since this reordering does not change the output of the network, its benefit may
not appear clearly. A potential issue that might arise if no reordering is performed
during training is that, by chance, neurons of initially high index might become
useful (i.e. their norm may increase). Because of this high indices and thus heavy
penalization, the optimization might get stuck and prevent further learning. The
proposed reordering gets rid of this potential issue, thus we apply it periodically.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 65

Other penalties. The results above can be extended to other penalties, such as
the L1 penalty or a modified group-Lasso penalty:

• Lasso L1: choosing the L1 penalty changes only the definition of the norm:

∑
l,k

pen(wl
k) =

L−1∑
l=0

nl∑
k=1

m(wl
k)

σl+1,k
with: m(wl

k) =
∑

w∈wl
k→

|w|;

• group-Lasso `2,1: unlike the usual version of the group-Lasso penalty applied
to neural networks [89], the weights of a layer are put in the same group if
they are connected to the same neuron in the preceding layer:

∑
l,k

pen(wl
k) =

L−1∑
l=0

nl∑
k=1

m(wl
k)

σl+1,k
with: m(wl

k) =
√√√√ ∑
w∈wl

k→

w2 .

This norm m is exactly the same as the one defined in equation (3.6). The
resulting parsimony differs slightly from the usual Lasso: instead of pushing
the input weights of each neuron towards zero, this group-Lasso penalty pushes
its output weights towards zero. This choice is compatible with the pruning
rule presented in section 3.4.2.

3.4.2 ScaLP Pruning Rule
Pruning neurons from a trained network, that is, removing certain neurons from
the network, is expected to cause an accuracy drop, as this operation changes the
function computed by the network. Therefore, we divided the learning into two
phases: A) training and pruning phase; B) fine-tuning phase. This trick is widely
used in pruning literature [60, 89, 65], in order to achieve better performance.

We define a pruning criterion based on the norm m of each neuron, that is, the
norm of its output weights. As neurons do not all have the same number of outputs,
for a fair treatment we choose to balance the norm m by it. We thus introduce the
average norm m̄ of a neuron wl

k:

m(wl
k)2 =

∑
w∈wl

k→

w2 ⇒ m̄(wl
k)2 = 1

#[wl
k→]

∑
w∈wl

k→

w2

m(wl
k) =

∑
w∈wl

k→

|w| ⇒ m̄(wl
k) = 1

#[wl
k→]

∑
w∈wl

k→

|w| ,

where #[wl
k→] denotes the number of outputs weights wl

k→.

Phase A: iterative training and pruning. A pruning threshold ε > 0 is fixed.
The neural network is trained using SGD to minimize the penalized loss. At the
end of each epoch, the following steps are sequentially performed on each layer l,
from the output to the input, as illustrated in Figure 3.2:

66 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

1. perform a reordering in layer l, as described in section 3.4.1;

2. establish the list of neurons to prune in layer l. We prune every neuron
verifying:

m̄(wl
k) < ε ; (3.7)

3. recompute the (l+1)-th scaling layer, in order to maintain the same theoretical
pre-activation variance s2 throughout pruning. For example, if the scaling
factors were initially chosen such that:

σl+1,k ∝
1
k

and
nl∑
k=1

σ2
l+1,k = s2,

then, after pruning K neurons in layer l, they are redefined such that:

σ′l+1,k ∝
1
k

and
nl−K∑
k=1

σ′2l+1,k = s2.

Meanwhile, following Proposition 4, the weights are also recomputed so that
the global output of the network remains the same:

wlk ← wlk
σlk
σ′lk

.

Selecting the neurons to prune is very easy to perform, since the neurons are
regularly reordered by descending order of norms. For k from nl to 1, i.e. from the
lowest norm to the highest, we prune each visited neuron until m̄(wl

k) reaches ε.

Phase B: fine-tuning. The penalty is removed from the loss, and a final training
is performed (without pruning).

3.4.3 Choice of (σk)k
As shown in equation (3.6), the choice of the sequence (σlk)k determines the penalty,
thus the behavior of the network during training. This hyperparameter is closely
linked to the expected final sparsity of the network.

Let us consider any layer and drop the index l for simplicity, hence denoting
σlk by σk. Supposing that the activation function is φ = ReLU, the sequence (σk)k
should verify equation (3.4) in the case of a fully connected layer, or equation (3.5)
in the case of a convolutional layer. In both cases, the condition can be written:

N∑
k=1

σ2
k = s2, (3.8)

where s is a constant depending only on the activation function [30].

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 67

σ2
k m(ck)2

0.70 1.2

0.18 0.8

0.08 0.1

0.04 0.3

reordering

σ2
k m(ck)2

1.2

0.8

0.3

0.1

pruning

rescaling

(σ′k)2 m(c′k)2

0.73 1.15

0.18 0.76

0.08 0.29

0.70

0.18

0.08

0.04

σ2
k ∝ 1

k2 ,
∑
σ2
k = s2

(σ′k)2 ∝ 1
k2 ,

∑(σ′k)2 = s2

w̃′k ← w̃k
σk
σ′
k

Figure 3.2 – Steps of the pruning phase for one layer: 1) the neurons are reordered
by descending order of norm; 2) the neurons with a norm lower than a fixed
threshold (e.g. m(w)2 ≤ ε = 0.2) are pruned; 3) in the next layer, the scaling layer
is recomputed to fit equation (3.8), and its weights are modified so as not to alter
its behavior.

Algorithm 3 Pseudo-code for phase A (training with penalty + pruning)
1: epoch← 1
2: while loss or number of neurons has decreased in the last T epochs do
3: w̃← w̃− η

[
∂`
∂w̃ + ∂penalty

∂w̃

]
. update rule

4: for all l from L to 1 do
5: sort the neurons (wl

k)k of l by decreasing norm (m(wl
k))k . step 1

6: k ← nl
7: while m̄(wl

k) < ε do . step 2
8: prune neuron k in layer l
9: k ← k − 1
10: recompute the scaling layer (σ(l+1)k)k of layer l + 1 . step 3
11: epoch← epoch + 1

68 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

Case l ≥ 1: hidden layer. We recall that we want to train and prune a neural
network, such that the width of the layers of the resulting network will be approxi-
mately the same, however large they were at initialization. To handle arbitrarily
large widths, we pick a infinite sequence (σk)k∈[1,∞[such that ∑∞k=1 σ

2
k is finite,

and, for a given layer width N , we consider the normalized subsequence (σk)k∈[1,N],
i.e. consider (ασk)k∈[1,N] with α = s2/‖(σk)k∈[1,N]‖2, to satisfy Equation (3.8). Note
that such a choice of (σk)k satisfies Corollary 2 and that we can pick for instance:

• σk ∝ 1√
k log(k) . This sequence just fulfills the preceding condition, introducing

few asymmetry between the neurons of the layer in the penalty;

• σk ∝ 1
k
. This sequence is sharper and the neuron penalization is more hetero-

geneous.

In general, the faster the sequence (σ2
k)k decreases, the more the first neurons are

privileged: they can reach higher values and they learn faster, thus the first neurons
are more likely to be useful.

Case l = 0: input layer. In the special case l = 0, m(w0
k) measures the norm

of the inputs of the network. If we do not have any prior knowledge about the
usefulness of these inputs, the most reasonable choice for the sequence (σ0k)k is the
constant sequence:

σ2
0k = s2

N
.

3.5 Experiments
In this section, we evaluate the pruning technique developed above. We consider
an image classification task, with either fully connected or convolutional neural
networks.

First, we verify that ScaLa addresses efficiently the Problems 1 and 2 defined in
Section 3.3, that is, the training with SGD of a standard neural network should not
diverge when its width tends to infinity. For this, we compare the performance of a
simple neural network with different layer widths, with and without scaling layer.

Second, we check the stability of ScaLP. On the one hand, the initial width of
the layers should not impact the structure of the resulting neural network, provided
that they are wide enough. On the other hand, when performing several runs of
a same experiment with same hyperparameters, such as the learning rate or the
penalty factor, we would like results to be stable, that is, the final accuracy and the
final structure not to vary much.

Third, we compare ScaLP to other pruning algorithms. Moreover, we also test
our setup with other common penalties (Lasso, group-Lasso).

In all experiments, the datasets are split into a training set, a validation set and
a test set. The test set is only used to test the final version of the pruning technique.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 69

3.5.1 Influence of the Variable Change w→ w̃
In this section, we illustrate the difference between ScaLa and standard SGD, that
is, given the variable change w = Sw̃, we compare SGD over w̃ to SGD over w.

We first illustrate the training of a neural network with or without ScaLa in the
simplest possible setup: a fully connected linear neural network [1024, N, 10] on
CIFAR-10. We also test the same neural network [1024, N, 10] with ReLU activation
functions after the two first layers.

• with ScaLa: the learning rate η is chosen once and for all, in order to achieve
the best performance for N = 300. In practice, this yields η = 1. Once η is
fixed, the neural network is trained for each N with this same learning rate.
We have tested three different types of scaling layers S = Diag(σ1, σ2, · · · , σN),
defined by:

Uniform: σk = 1√
N

1√
k log(k) : σk = C 1√

k+1 log(k+1) with C s.t. ∑N
k=1 σ

2
k = 1

1
k
: σ2

k = C ′ 1
k

with C ′ s.t. ∑N
k=1 σ

2
k = 1

(3.9)

• without ScaLa: for each N , we trained the neural network with all learning
rates η in {10−5, 10−4, 10−3, 10−2, 10−1}.

Then, we measured the best performance achieved by each trained neural network
(according to the validation set), and the number of epochs needed to reach this
performance.

Note that we made the setup harder for ScaLa: instead of exploring the most
efficient learning rate η for each N , we fixed η after one grid search for N = 300.
Thus, the learning rate we used is independent from N . On the contrary, without
ScaLa, we made one grid search for every tested N .

Results. Figure 3.3 shows the performance and the number of training epochs
according to the hidden layer size N , without and with a scaling layer. Without
scaling layer, most learning rates (η ∈ [10−4, 10−1]) lead to unstable results when N
changes: there exists at least one N for which each learning rate performs poorly.
In the linear case, the only learning rate that works well for all N is 10−5, but its
number of training epochs is much larger than in the other cases, especially for
small N . In the ReLU case, the only learning rate which works well without scaling
layer is η = 10−4, but, in terms of accuracy, this setup is dominated by the ScaLa
algorithm with uniform scaling.

Conversely, with a scaling layer and a fixed learning rate, the given results do
not depend on N : the accuracy and the number of training epochs remain the same
for the tested widths. Moreover, they are roughly the same for the three tested
scaling layers: there exists a learning rate η such that for all N , the resulting network
performs well. However, this stability is not always costless (see Figure 3.3a): in the

70 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

103 104 105

number of neurons in the hidden layer

0.28

0.30

0.32

0.34

0.36

0.38

ac
cu

ra
cy

Fully-connected NN (linear)

(a)

103 104 105

number of neurons in the hidden layer

0

100

200

300

400

ep
oc

hs

Fully-connected NN (linear)
no scaling, lr = 1.0e-01
no scaling, lr = 1.0e-02
no scaling, lr = 1.0e-03
no scaling, lr = 1.0e-04
no scaling, lr = 1.0e-05
uniform scaling
scaling 1/(k^.5 log(k))
scaling 1/k

(b)

103 104 105

number of neurons in the hidden layer

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

ac
cu

ra
cy

Fully-connected NN (ReLU)

(c)

103 104 105

number of neurons in the hidden layer

200

400

600

800

1000

ep
oc

hs

Fully-connected NN (ReLU)

(d)

Figure 3.3 – Results of the training of neural networks with one hidden layer of size
N ∈ [3 · 102, 105] on CIFAR-10, with two setups of activations functions: identity
(top) and ReLU (bottom). Figures (3.3a) and (??) show their best accuracies on
the validation set. Figures (3.3b) and (??) show the number of epochs necessary
to reach it, up to 1000 epochs. Continuous lines correspond to experiments with
a scaling layer, and the dotted lines correspond to experiments without it. Each
point corresponds to an average over 3 runs and each run is early stopped if any
improvement has been made during 50 epochs.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 71

linear network setup, for all N , there also exists η such that the resulting network,
trained without scaling layer, performs slightly better (but finding it requires a grid
search).

Moreover, we recall that the chosen learning rate for ScaLa is 1. Thus, it appears
that the scaling layer leads not only to stable results, but also makes the optimal
learning rate close to 1, which would make the learning rate search easier. This
result is confirmed in the next section: with ScaLP over VGG19, the chosen learning
rate is also 1.

Overall, we have shown that, even in a very simple setup (training a linear neural
network), we observe a difference between ScaLa and standard SGD: using ScaLa
leads to very stable results according to the width of the hidden layer, with the same
learning rate η. However, standard SGD with learning rates fine-tuned separately
for each width leads to slightly better results.

3.5.2 Pruning: Results and Comparison
In this section, we compare our algorithm with other pruning techniques. As pointed
out in [66], pruning techniques can be split into two categories. Some, as in [60],
need a predefined pruning rate (and consequently, predefined resulting architectures),
while the other ones discover automatically the final architecture, as in [65]. Since
we do not need any prior knowledge about the pruning rate, our method stands in
the second category. Thus we compare it to other penalty-based methods.

3.5.3 Existing Penalties
The pruning techniques studied here depend on a penalty: adding to the loss a
well-chosen penalty term is an efficient way to push neurons towards zero, allowing
their removal. In this section, we recall some penalties commonly used in pruning.
For convenience, we denote by wl

k the vector of weights of the k-th neuron in layer
l, where l ∈ [1, L] and k ∈ [1, nl].

Lasso penalty. The loss with a Lasso penalty [101] can be written:

L(w) = `(w) + λ
L∑
l=1

nl∑
k=1
‖wl

k‖1,

where ` is the error term and λ > 0 is a given constant. The Lasso penalty is likely
to push towards 0 each weight with a constant force proportional to λ [101].

Group-Lasso penalty. The group-Lasso penalty [110] is designed to push groups
of parameters towards 0. The loss writes itself:

L(w) = `(w) +
L∑
l=1

nl∑
k=1

λl
√

dim(wl
k)‖wl

k‖2,

72 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

where the λl > 0 are given constants. The scaling factor
√

dim(wl
n) ensures that

the weights are uniformly penalized.

Sparse group-Lasso penalty. The sparse-group Lasso penalty [21] is a linear
combination of the Lasso and the group-Lasso penalties. The aim of this penalty is
to push simultaneously each weight and each group of weights towards 0.

L(w) = `(w) +
L∑
l=1

nl∑
k=1

λl

[
α‖wl

k‖1 + (1− α)
√

dim(wl
k)‖wl

k‖2

]
,

where the λl > 0 are given constants and α ∈ [0, 1]. The value of α is usually 0.5, as
in [89, 1].

In the case of large neural networks, the efficiency of pruning techniques using
the group-Lasso penalty or the sparse group-Lasso penalty highly depends on the
hyperparameters λl, which are usually different from layer to layer [1].

BN-Lasso: Lasso penalty over scaling parameters of batch-norm layers.
In addition to these penalties, [65] proposes to introduce learned scaling parameters
γ, penalized by their l1-norm. These parameters γ are used as follows: the output of
each neuron unit u is multiplied by γu. Thus, the size of γu indicates the usefulness
of the neuron u. Then, the loss can be written as:

L(w,γ) = `(w) + λ
∑

neurons u
|γu|,

where λ > 0 is a given constant. In practice, instead of introducing new parameters,
the authors propose to penalize the trained scaling parameter in each batch-norm
layer. We refer to this penalty by the name BN-Lasso. Unlike simple Lasso, group-
Lasso and sparse group-Lasso over the weights, BN-Lasso leads to stable results,
with only one hyperparameter, and without fixing the final sparsity.

3.5.4 Pruning Experiments
Setup. We tested pruning with two neural networks: a small fully connected
neural network trained on MNIST (which is named sFC, with architecture [1000,
1000, 10], i.e. two hidden layers of size 1000), and a VGG19 deep convolutional
network (with only one output fully connected layer) trained on CIFAR-10. For
each experiment, we retain the neural network at the epoch where it achieves the
best validation accuracy: the reported test accuracy, final number of parameters...
refer to this specific state.

We tested ScaLP (Section 3.4.2) with different scalings (3.9) and different penal-
ties. The tested penalties are: L2, Lasso and group-Lasso (denoted by GLasso).
We tested the penalty proposed in [65], to which we refer as BN-Lasso, with our
pruning setup. As mentioned above, the learning rate was fixed once and for all to 1

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 73

for these methods (which was the best across the board, as can be expected with
scaling layers).

We also tested standard pruning setup without scaling layers (with Lasso and
Group-Lasso); in that case, the learning rate has to be retuned by grid search for
each penalty factor λ.

Phase A (pruning) ends when the number of neurons and the best validation
accuracy have not improved for 50 epochs. During phase B (fine tuning), the learning
rate is decreased by a factor 10 each time the validation accuracy has not improved
for 50 epochs, up to 2 times. The third time, training is stopped.

The baseline is the accuracy obtained with the same neural network, learned
with SGD and weight decay, without pruning; its learning rate and weight decay
constant are optimized for accuracy on the validation set. To obtain a similar setup,
the training is also divided into two phases: in phase A, weight decay is applied,
then removed in phase B. Moreover, we apply the same learning rate schedule and
early stopping rule as in the other setups.

Results. In terms of performance, the non-pruned baseline performs very well.
ScaLP with group-Lasso penalty and uniform scaling matches this baseline perfor-
mance while dividing the number of parameters by 14.

To assess performance for various pruned network sizes, we look at the Pareto
front, namely, the set of points corresponding to the best performance for a given
target on pruned network size. Clearly (Fig. 3.4), no method sticks to the Pareto front
for all target network sizes. On VGG, both BN-Lasso and ScaLP with 1/(k1/2 log k)
scaling are on the Pareto front for small network sizes. For pruned network sizes
above 106, the best performance is with ScaLP with group-Lasso penalty and uniform
scaling. On MNIST with a fully-connected network, the Pareto front is entirely
made of ScaLP variants, while BN-Lasso is inferior (Fig. 3.5).

In Figure 3.4, the cyan line goes out of the plot: ScaLP with group-Lasso and
uniform scaling is not usable with high λ. For small λ, on the other hand, it tends
to overfit: with λ = 0 performance is below the baseline. (The same holds for
BN-Lasso.) Thus, ScaLP with group-Lasso and uniform scaling provides the top
performance in Figure 3.4, but only for a well-tuned λ. On the contrary, ScaLP
group-Lasso with non-uniform scaling leads to more regular curves as λ varies.

Pruning without scaling layers, either with Lasso or group-Lasso penalties, leads
to poor performance compared to ScaLP and BN-Lasso (Fig. 3.4 and Fig. 3.5).
Moreover, the learning rate for these methods had to be tuned differently for
each penalty factor λ (to compensate for the absence of scaling; otherwise their
performance are substantially worse). This is in line with the results for such
methods in [1], where the authors had to use one penalty factor λ per layer for good
results.

Surprisingly, the L2 penalty combined with non-uniform scaling layers (dotted
orange lines) leads to pruned neural networks with reasonable performance, although
it is rarely used for pruning in standard setups. Still, the resulting networks are

74 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

105 106 107

final number of parameters

0.82

0.84

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19

baseline
pen. Lasso
pen. GLasso
BN-Lasso
ScaLP, pen. L2, sc. 1/(k^.5 log(k))
ScaLP, pen. L2, sc. 1/k
ScaLP, pen. GLasso, sc. unif.
ScaLP, pen. GLasso, sc. 1/(k^.5 log(k))
ScaLP, pen. GLasso, sc. 1/k

Figure 3.4 – Comparison between ScaLP, BN-Lasso, and standard pruning setups
without scaling: Lasso penalty (red) and group-Lasso penalty (blue). Performance
of a VGG19 network trained on CIFAR-10. Each setup (pruning method + penalty
+ scaling) is represented by a line, and each point of a line corresponds to a different
penalty factor λ. The bigger λ is, the more the resulting network appears on the left.
Each point corresponds to an average over 3 runs, and is surrounded by a vertical
bar and an horizontal bar, showing respectively the min/max final accuracy and the
min/max final number of parameters.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 75

105 106

final number of parameters

0.95

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

small fully connected NN (sFC)

baseline
pen. Lasso
pen. GLasso
BN-Lasso
ScaLP, pen. L2, sc. 1/(k^.5 log(k))
ScaLP, pen. L2, sc. 1/k
ScaLP, pen. GLasso, sc. unif.
ScaLP, pen. GLasso, sc. 1/(k^.5 log(k))

Figure 3.5 – Final accuracy according to final number of parameters for different
setups, for a fully connected network trained on MNIST.

76 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

always below the Pareto front.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 77

Ta
bl
e
3.
1
–
Fi
na

la
cc
ur
ac
y
an

d
fin

al
nu

m
be

r
of

pa
ra
m
et
er
s.

Fo
r
ea
ch

pr
un

in
g
se
tu
p
(i.
e.

ro
w)

,w
e
se
lec

te
d
th
e
pe

na
lty

fa
ct
or

λ
th
at

led
to

th
e
be

st
m
ea
n
ac
cu

ra
cy

ov
er

3
ru
ns
.W

e
re
po

rt
ed

he
re

th
is
m
ea
n
ac
cu

ra
cy

an
d
th
e
m
ea
n
nu

m
be

ro
fp

ar
am

et
er
s

at
th
e
en
d
of

tr
ai
ni
ng

.
Be

st
re
su
lts

,e
ith

er
in

te
rm

s
of

ac
cu

ra
cy

or
fin

al
nu

m
be

r
of

pa
ra
m
et
er
s
ha

ve
be

en
hi
gh

lig
ht
ed

(e
ve
n
if

th
ey

ar
e
ve
ry

cl
os
e
to

ot
he
rs
).

M
od

el
V
G
G
19

on
C
IF
A
R
-1
0

sF
C

on
M
N
IS
T

A
cc
(%

)
#

Pa
ra
m
s

A
cc

(%
)

#
Pa

ra
m
s

Ba
se
lin

e
93
.2

8
20
M

98
.7

7
1.

8M
BN

-L
as
so

92
.2

8
±

0.
21

78
3K
±

14
98
.1

0
±

0.
07

36
4K
±

48
pe

n.
La

ss
o

93
.2

9
±

0.
05

2.
39
M
±

0.
05

98
.7

2
±

0.
06

1.
8M
±

0
pe

n.
G
La

ss
o

92
.8

3
±

0.
22

3.
22
M
±

0.
10

98
.7

1
±

0.
05

1.
8M
±

0

Sc
aL

P,
pe

n.
L

2 ,
sc
.

1/
(√
k

lo
gk

)
92
.6

9
±

0.
09

2.
95
M
±

0.
02

98
.4

6
±

0.
05

23
8K
±

0.
9

Sc
aL

P,
pe

n.
L

2 ,
sc
.

1/
k

92
.2

9
±

0.
12

1.
38
M
±

0.
02

98
.4

3
±

0.
14

13
4K
±

1

Sc
aL

P,
pe

n.
G
La

ss
o,

sc
.
un

if.
93
.3

6
±

0.
11

1.
44
M
±

0.
03

98
.6

5
±

0.
10

57
1K
±

9
Sc
aL

P,
pe

n.
G
La

ss
o,

sc
.

1/
(√
k

lo
gk

)
92
.1

1
±

0.
05

85
5K
±

29
98
.5

6
±

0.
03

14
7K
±

3
Sc
aL

P,
pe

n.
G
La

ss
o,

sc
.

1/
k

91
.3

7
±

0.
11

93
2K
±

4
-

-

78 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

3.5.5 Stability of the Final Architecture with Respect to
Initial Width

The main motivation for the presented pruning technique was that its behavior
should be independent of the initial network width, provided the initial network is
wide enough. To test this assumption, we ran the pruning methods with various
initial numbers of neurons per layer.

We tested the sFC architecture with [N,N, 10] neurons, where N ∈
{250, 500, 1000, 2000}. We tested ScaLP with uniform scaling and 1/(k1/2 log k)
scaling, and BN-Lasso pruning. The results are given in Figure 3.6: each colored
bar is the average final number of neurons, computed over 3 runs.

ScaLP with 1/(k1/2 log k) scaling leads to the same network architecture, no
matter the initial width. On the contrary, the other two methods return different
architectures, depending on the initial width N .

While Figure 3.6 reports the average over three runs of the final architecture
width, Figure 3.7 reports the individual values obtained for the three runs. We find
that ScaLP leads roughly to the same final neural network, either with a uniform
scaling of with scaling 1/(k1/2 log k). On the other hand, pruning with BN-Lasso,
results in quite different architectures from run to run.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 79

1st layer 2nd layer classifier
0

250

500

750

1000

1250

1500

1750

2000

nu
m

be
r o

n
ne

ur
on

s

ScaLP, pen. GLasso, sc. unif.
width: 250, acc.: 98.62 %,
width: 500, acc.: 98.77 %,
width: 1000, acc.: 98.65 %,
width: 2000, acc.: 98.63 %,

(a)

1st layer 2nd layer classifier
0

250

500

750

1000

1250

1500

1750

2000

nu
m

be
r o

n
ne

ur
on

s

ScaLP, pen. GLasso, sc. 1/(k^.5 log(k))
width: 250, acc.: 98.49 %,
width: 500, acc.: 98.46 %,
width: 1000, acc.: 98.56 %,
width: 2000, acc.: 98.51 %,

(b)

1st layer 2nd layer classifier
0

250

500

750

1000

1250

1500

1750

2000

nu
m

be
r o

n
ne

ur
on

s

BN-Lasso
width: 250, acc.: 98.02 %,
width: 500, acc.: 98.05 %,
width: 1000, acc.: 98.12 %,
width: 2000, acc.: 98.21 %,

(c)

Figure 3.6 – Final number of neurons for different pruning setups and different
widths of the initial networks. Grey bars show the initial number of neurons (250,
500, 1000 or 2000)

80 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

25
0

50
0

10
00

20
00

in
iti

al
 n

um
be

r o
n

ne
ur

on
s

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

final number on neurons

Sc
aL

P,
 p

en
. G

La
ss

o,
 sc

. u
ni

f.,
 1

st
 la

ye
r

(a
)

25
0

50
0

10
00

20
00

in
iti

al
 n

um
be

r o
n

ne
ur

on
s

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

final number on neurons

Sc
aL

P,
 p

en
. G

La
ss

o,
 sc

. 1
/(k

^.
5

lo
g(

k)
),

1s
t l

ay
er

(c
)

25
0

50
0

10
00

20
00

in
iti

al
 n

um
be

r o
n

ne
ur

on
s

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

final number on neurons

BN
-L

as
so

, 1
st

 la
ye

r

(e
)

25
0

50
0

10
00

20
00

in
iti

al
 n

um
be

r o
n

ne
ur

on
s

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

final number on neurons

Sc
aL

P,
 p

en
. G

La
ss

o,
 sc

. u
ni

f.,
 2

nd
 la

ye
r

(b
)

25
0

50
0

10
00

20
00

in
iti

al
 n

um
be

r o
n

ne
ur

on
s

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

final number on neurons

Sc
aL

P,
 p

en
. G

La
ss

o,
 sc

. 1
/(k

^.
5

lo
g(

k)
),

2n
d

la
ye

r

(d
)

25
0

50
0

10
00

20
00

in
iti

al
 n

um
be

r o
n

ne
ur

on
s

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

final number on neurons

BN
-L

as
so

, 2
nd

 la
ye

r

(f
)

Fi
gu

re
3.
7
–
Va

ria
bi
lit
y
of

th
e
fin

al
nu

m
be

r
of

ne
ur
on

s.
Ea

ch
co
lu
m
n
co
rr
es
po

nd
s
to

a
pr
un

in
g
se
tu
p.

Fo
r
ea
ch

se
tu
p,

fo
ur

in
iti
al

la
ye
r
w
id
th
s
we

re
te
st
ed

(o
ne

pe
r
co
lo
r)
,a

nd
th
re
e
ex
pe

rim
en
ts

pe
r
in
iti
al

la
ye
r
w
id
th

we
re

ru
n.

In
on

e
pl
ot
,e

ac
h

co
lo
re
d
ba

r
sh
ow

s
th
e
nu

m
be

r
of

ne
ur
on

s
at

th
e
en
d
of

on
e
ru
n.

Fi
gu

re
s
3.
7a

an
d
3.
7b

:
Sc
aL

P
w
ith

un
ifo

rm
sc
al
in
g
an

d
gr
ou

p-
La

ss
o
pe

na
lty

.F
ig
ur
es

3.
7c

an
d
3.
7d

:S
ca
LP

wi
th

sc
al
in
g

1/
(√
k

lo
gk

)a
nd

gr
ou

p-
La

ss
o
pe

na
lty

.F
ig
ur
es

3.
7e

an
d
3.
7f
:

BN
-L
as
so
.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 81

3.5.6 Discussion

Choice of the scaling. With the use of ScaLa or ScaLP comes a new hyperpa-
rameter: the scaling (σk)k. As shown in Table 3.2, the final neural network depends
on the choice of the scaling layer: at fixed penalty factor λ, the more the sequence
(σk)k decreases sharply, the more neurons are pruned. Therefore, the scaling (σk)k
may be tuned by the user according to their needs in terms of accuracy and sparsity.
Still, a “universal” setting like 1/(k1/2 log k) provides a slow decrease while still
satisfying the finiteness assumptions (3.3), and we would expect it to work in general
situations.

Table 3.2 – Final accuracy and final number of parameters. The model is VGG19
trained on CIFAR-10, and pruned with ScaLP combined with the group Lasso
penalty with different penalty factor λ and different scalings.

Penalty factor λ sc. unif. sc. 1/(
√
k log k) sc. 1/k

Acc(%) # Params Acc (%) # Params Acc(%) # Params

λ = 1.38 · 10−5 90.33± 0.21 404K ± 14 85.96± 0.12 38K ± 0.8 84.49± 0.74 28K ± 1.5
λ = 1.38 · 10−6 93.36± 0.11 1.44M ± 0.03 92.05± 0.07 389K ± 17 91.17± 0.17 237K ± 11
λ = 1.38 · 10−7 87.71± 0.05 20M ± 0 90.43± 0.11 20M ± 1K 91.37± 0.11 932K ± 4

Limitation in the choice of the penalty. Some choices of penalties may not
make sense with ScaLP. The asymmetric scaling is more consistent with grouping
output weights. More precisely (Section 3.4.1, Proposition 3), ScaLP with an asym-
metrical scaling and a L2-squared penalty is equivalent to penalizing asymmetrically
the neurons through their output weights. The same holds for a Lasso penalty.

On the other hand, a standard group Lasso penalty applied to the sets of input
weights of each neuron cannot be interpreted in such way. Group Lasso with an
asymmetric scaling would penalize all incoming weights of a given neuron in but all
neurons in a layer in the same way. This is why we used group Lasso on the sets of
output weights.

Generic use of scaling layers. We have shown the pertinence of rescaling the
inputs of the layers for training a simple linear network (Section 3.5.1), as well as
for training and pruning more complex networks (Section 3.5.2 and 3.5.5). However,
the uniform scaling 1/

√
#fan-in, which is already known and used into theoretical

works, is not frequently used to train practical neural networks. This is probably
due to the slight loss of performance we have observed with scaling layers (Fig. 3.3a),
which we are not able to explain. Therefore, further study has to be made in order
to understand why such theoretically assessed scaling does not lead to better results.

82 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

3.6 Conclusion

The standard Glorot initialization provides finite variance of activities at initialization,
independently of network width. However, the size of the resulting first SGD gradient
step is still heavily network-width-dependent, and learning rates must be adapted
accordingly. We have identified the scaling layer trick, ScaLa, as a possible solution,
together with theoretical conditions on the scaling factors. Experimentally, ScaLa
works well and provides a unified learning rate, close to 1 whatever the widths of
the layers in a network are. This both provides theoretical understanding and could
reduce reliance on grid search for learning rates.

Using ScaLa together with non-uniform scalings and penalties leads to the pruning
method ScaLP. ScaLP is competitive with respect to comparable pruning methods.
Interestingly, the final network size provided by ScaLP tends to be independent of
the initial size used (though this is still adjustable via a regularization constant),
and also more regular between runs. Neither is the case with other pruning methods.

These methods are based on the principle that the behavior of network training
should be independent from network width: it should be safe to just start with a
large enough network, and also to change layer width during training (as happens
for pruning). Our approach is based on analogies with the theory of infinitely wide
networks. One difference is that our non-uniform weights retain the individuality of
neurons in the infinite-width limit. These theoretical considerations deserve further
exploration.

3.7 Appendix

3.7.1 Proof of Proposition 1

We recall Proposition 1:

Proposition. We assume that the (xk)k are independent random variables with
zero-mean, variance 1 and finite order 4 momentum. Moreover, we suppose that ∂L

∂y

is a random variable of mean 0 and non-zero finite variance, independent from the
(xk)k.

We initialize the weights (w̃k)k such that they are i.i.d. of mean 0 and variance
τ 2

(N) (τ 2
(N) = 1 if not specified). The bias b is drawn from a distribution of mean 0

and variance τ 2
b , independently from (w̃k)k.

We denote by y(N) and y′(N) respectively the initial pre-activation of the neuron
and its pre-activation after one SGD step over w̃ ∈ RN . The learning rate η is fixed
and independent from N .

Assuming that
(∑N

k=1 σ
2
(N)k

)
N

is weakly monotonic and does not admit a subse-

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 83

quence that converges to 0, the following equivalence holds:
limN→∞

∑N
k=1 σ

2
(N)k <∞

limN→∞
∑N
k=1 σ

4
(N)k <∞

limN→∞ τ(N) <∞

⇔
{

limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞ .

Proof. • We assume that:
limN→∞

∑N
k=1 σ

2
(N)k <∞

limN→∞
∑N
k=1 σ

4
(N)k <∞

limN→∞ τ(N) <∞
.

Computation of Var(y(N)). We have:

y(N) =
N∑
k=1

wkσ(N),kxk + b.

Then:

Var(y(N)) = τ 2
(N)

N∑
k=1

σ2
(N),k + τ 2

b . (3.10)

Since the sequences
(
τ 2

(N)

)
N

and
(∑N

k=1 σ
2
(N),k

)
N

converge, then
(
Var(y(N))

)
Nconverges.

Computation of Var(y′(N) − y(N)). We denote by w′k and b′ the weight and
the bias after one update. We have:

w′k = wk − η
∂L

∂wk

= wk − η
∂L

∂y

∂y

∂wk

= wk − ησ(N),kxk
∂L

∂y
.

and:

b′ = b− η∂L
∂b

= b− η∂L
∂y

84 Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning

Then:

y′(N) − y(N) =
N∑
k=1

w′kσ(N),kxk + b′ −
N∑
k=1

wkσ(N),kxk − b

= −η∂L
∂y

[
N∑
k=1

σ2
(N),kx

2
k + 1

]
.

Therefore:

Var
(
y′(N) − y(N)

)
= η2Var

(
∂L

∂y

) N∑
k=1

σ4
(N),kE(x4

k) +
∑
k 6=l

σ2
(N),kσ

2
l Var(xk)Var(xl) + 2

N∑
k=1

σ2
(N),kVar(xk) + 1

= η2Var

(
∂L

∂y

)3
N∑
k=1

σ4
(N),k +

N∑
k=1

σ2
(N),k

N∑
l=1,l 6=k

σ2
l + 2

N∑
k=1

σ2
(N),k + 1

= η2Var

(
∂L

∂y

)[
3

N∑
k=1

σ4
(N),k +

N∑
k=1

σ2
(N),k

(
N∑
l=1

σ2
l − σ2

(N),k

)
+ 2

N∑
k=1

σ2
(N),k + 1

]

= η2Var
(
∂L

∂y

)3
N∑
k=1

σ4
(N),k +

(
N∑
k=1

σ2
(N),k

)2

−
N∑
k=1

σ4
(N),k + 2

N∑
k=1

σ2
(N),k + 1

= η2Var

(
∂L

∂y

)2
N∑
k=1

σ4
(N),k +

(
N∑
k=1

σ2
(N),k

)2

+ 2
N∑
k=1

σ2
(N),k + 1

 . (3.11)

Using the assumptions,
(
Var(y′(N) − y(N))

)
N

converges.

• We assume that: {
limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞

Convergence of
(∑N

k=1 σ
2
(N)k

)
N

and
(∑N

k=1 σ
4
(N)k

)
N
. We recall equa-

tion (3.11):

Var
(
y′(N) − y(N)

)
= η2Var

(
∂L

∂y

)2
N∑
k=1

σ4
(N)k +

(
N∑
k=1

σ2
(N)k

)2

+ 2
N∑
k=1

σ2
(N)k + 1

 .
Then

(
2∑N

k=1 σ
4
(N)k +

(∑N
k=1 σ

2
(N)k

)2
+ 2∑N

k=1 σ
2
(N)k

)
N

converges. Moreover,

the three terms are non-negative, thus
(∑N

k=1 σ
2
(N)k

)
N

is bounded. Recalling
that it is also weakly monotonic, this sequence converges, so the second term
and the third term. Thus, the first term

(∑N
k=1 σ

4
(N)k

)
N

converges as well.

Chapter 3 – Asymmetrical Scaling Layers for Stable Network Pruning 85

Convergence of (τ 2
(N))N . We recall equation (3.10):

Var
(
y(N)

)
= τ 2

(N)

N∑
k=1

σ2
(N)k + τ 2

b .

Since we have proven that the sequence
(∑N

k=1 σ
2
(N)k

)
N

converges, and we
have assumed that it does not admit a subsequence that tends to 0, (τ 2

(N))N
converges.

Chapter 4

Interpreting the Penalty as the
Influence of a Bayesian Prior

4.1 Introduction
Adding a penalty term to a loss, in order to make the trained model fit some
user-defined property, is very common in machine learning. For instance, penalties
are used to improve generalization, prune neurons or reduce the rank of tensors
of weights. Therefore, usual penalties are mostly empirical and user-defined, and
integrated to the loss as follows:

L(w) = `(w) + r(w),

with w the vector of all parameters in the network, `(w) the error term and r(w)
the penalty term.

From a Bayesian point of view, optimizing such a loss L is equivalent to finding
the Maximum A Posteriori (MAP) of the parameters w given the training data
and a prior α ∝ exp(−r). Indeed, assuming that the loss ` is a log-likelihood loss,
namely, `(w) = − ln pw(D) with dataset D, then minimizing L is equivalent to
minimizing LMAP(w) = − ln pw(D)− ln(α(w)). Thus, within the MAP framework,
we can interpret the penalty term r as the influence of a prior α [70].

However, the MAP approximates the Bayesian posterior very roughly, by taking
its maximum. Variational Inference (VI) provides a variational posterior distribution
rather than a single value, hopefully representing the Bayesian posterior much better.
VI looks for the best posterior approximation within a family βu(w) of approximate
posteriors over w, parameterized by a vector u. For instance, the weights w may be
drawn from a Gaussian distribution with mean u and fixed variance. The loss to be
minimized over u is then:

LVI(βu) = −Ew∼βu ln pw(D) + KL(βu‖α) = Ew∼βu`(w)︸ ︷︷ ︸
data fit term

+ KL(βu‖α)︸ ︷︷ ︸
penalty term

, (4.1)

87

88 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

and is also an upper bound on the Bayesian negative log-likelihood of the data [43].
Here pw(D) is the likelihood of the full dataset D given w, `(w) = − ln pw(D) is the
log-likelihood loss, and α is the Bayesian prior. The posteriors βu that minimize
this loss will be concentrated around values of w that assign high probability to the
data, while not diverging too much from the prior α. Thus, the KL divergence term
can be seen as a penalty r(·) over the vector u.

Contributions and outline. We start from the following question: given some
arbitrary penalty r(·), does it admit such an interpretation? Does there exist a prior
α such that for all u, r(u) = KL(βu‖α) (up to an additive constant)? If so, is there
a systematic way to compute such α?

First, we provide a necessary and sufficient condition (Theorem 1) over the penalty
r, that ensures the existence of a prior α such that VI with prior α reproduces the
penalty r. The theorem comes with an explicit formula for α. We recover the MAP
case as a degenerate case (Section 4.4.3).

Thus, we are able to determine whether a penalty r makes sense in a Bayesian
framework and can be interpreted as the influence of a prior. We find this to be
a strong constraint on r (Section 4.4.2). Here the regularizer r operates on the
variational posterior βu; for deterministic β this reduces to r directly acting on w,
and we recover the traditional MAP correspondence in this case (Section 4.4.3).

Second (Section 4.5), we propose a heuristic to predict a priori useful values of
the penalty factor λ to be put in front of a penalty r for neural networks, potentially
bypassing the usual hyperparameter search on λ. Namely, we posit that the Bayesian
prior α(w) corresponding to λr should reasonably match what is known for good a
priori values of weights w in neural networks, namely, that the variance of weights
under the prior α should match the Glorot initialization procedure [22]. This usually
provides a specific value of λ. Moreover, the penalty size gets automatically adjusted
depending on the width of the various layers in the network.

We test this prediction for various penalties (Section 4.6), including group-
Lasso [110], for which per-layer adjustment of the penalty is needed [1]. Experi-
mentally, the predicted value of the regularization factors leads to reasonably good
results without extensive hyperparameter search. Still, the optimal penalization
factor is found to be systematically about 0.01 to 0.1 times our predicted value,
showing that our heuristic provides a usable order of magnitude but not a perfect
value, and suggesting that the Bayesian VI viewpoint may over-regularize.

4.2 Related Work
Interpretations of existing empirical deep learning methods in a Bayesian variational
inference framework include, for instance, variational drop-out [49], a version of
drop-out which fits the Bayesian framework. Further developments of variational
drop-out have been made by [80] for weight pruning and by [67] for neuron pruning.

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 89

Closer to our present work, the links between a penalized loss and the Bayesian
point of view have previously been mentioned by [83] with a few approximations.
[70] noted the equivalence of the penalized loss L(w) = `(w) + r(w) and the MAP
loss LMAP(w) = `(w) − ln(α(w)) when `(w) is the negative log-likelihood of the
training dataset given the weights w, and with a prior α(w) ∝ exp(−r(w)). That
is, finding the vector ŵ minimizing a loss L can be equivalent to finding the MAP
estimator ŵMAP by minimizing the loss LMAP with a well-chosen prior distribution
α.

However, the MAP framework is not completely satisfying from a Bayesian
point of view: instead of returning a distribution over the weights, which contains
information about their uncertainty, it returns the most reasonable value. In order to
evaluate this uncertainty, [69] proposed a second-order approximation of the Bayesian
posterior. In the process, [71] also proposed a complete Bayesian framework and
interpretation of neural networks. Still, this approximation of the Bayesian posterior
is quite limited.

In the same period, [34] applied the Minimum Description Length (MDL) princi-
ple to neural networks. Then, [72] made the link between the MDL principle and
variational inference, and [24] applied it to neural networks, allowing for variational
approximations of the Bayesian posterior in a tractable way.

4.3 Variational Inference
We include here a reminder on variational inference for neural networks, following
[24].

From a Bayesian viewpoint, we describe the vector of weights w ∈ RN of a
neural network as a random variable. Given a dataset D, we denote by pw(D) the
probability given to D by the network with parameter w. For instance, with a
dataset D = {(x1, y1), · · · , (xn, yn)} of n input-output pairs and a model that outputs
(log-)probabilities pw(yi|xi) for the outputs, then ln pw(D) = ∑n

i=1 ln pw(yi|xi) is the
total log-likelihood of the data given the model.

Given the dataset D, the posterior distribution over weights w is:

πD(w) = pw(D)α(w)
P(D) , P(D) =

∫
w
α(w)pw(D)

which is analytically intractable for multi-layer nonlinear neural networks. However,
the posterior πD can be approximated by looking for probability distributions β
that minimize the loss

LVI(β) = −Ew∼β ln pw(D) + KL(β‖α), (4.2)

where KL(β‖α) =
∫
RN ln

(
β(w)
α(w)

)
β(w) dw is the Kullback–Leibler divergence. Indeed,

one has LVI(β) = − lnP(D) + KL(β‖πD), which is minimal when β = πD.

90 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

The first term in the loss (4.2) represents the error made over the dataset D: it
is small if β is concentrated around good parameters w. The second term can be
seen as a user-defined penalty over β that keeps it from diverging too much from
the prior α. Moreover, for any distribution β, the quantity LVI(β) is a bound on
the Bayesian log-likelihood of the data: LVI(β) ≥ − ln

∫
w α(w)pw(D) [43].

In variational inference, a parametric family B of probability distributions β
is fixed, and one looks for the best approximation β∗ of the Bayesian posterior in
B by minimizing LVI(β) in this family: the variational posterior. Importantly, for
some families such as Gaussians with fixed variance, the gradient of LVI(β) can be
computed if the gradients of ln pw(D) can be computed [24], so that LVI(β) can be
optimized by stochastic gradient descent. Thus, this is well-suited for models such
as neural networks.

Thus, we consider a parametric family B = {βu : u ∈ RP} with parameter
u, where each βu is a probability distribution over w ∈ RN . Then we learn the
parameters u instead of the weights w. For instance, we can choose one of the
following families of variational posteriors.

Example 4.3.1. The family of products of Gaussian distributions over w =
(w1, · · · , wN):

βu = β(µ1,σ2
1 ,··· ,µN ,σ

2
N) = N (µ1, σ

2
1)⊗ · · · ⊗ N (µN , σ2

N).

In this case, the weights of the neural network are random and independently sampled
from different Gaussian distributions N (µk, σ2

k). Instead of learning them directly,
the vector of parameters u = (µ1, σ

2
1, · · · , µN , σ2

N) is learned to minimize LVI(βu).

Example 4.3.2. The family of products of Dirac distributions over w =
(w1, · · · , wN):

βu = β(µ1,··· ,µN) = δµ1 ⊗ · · · ⊗ δµN .

In this case, the weights are deterministic: wk and µk are identical for all k.

4.4 Bayesian Interpretation of Penalties

4.4.1 When Can a Penalty Be Interpreted as a Prior?
In this section, we provide a necessary and sufficient condition ensuring that a
penalty r(u) over the parameters of a variational posterior can be interpreted as a
Kullback–Leibler divergence with respect to a prior α; namely, that

∃K ∈ R, ∀u, r(u) = KL(βu‖α) +K

(the constant K does not affect optimization). In the process, we give a formula
expressing α as a function of r(·).

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 91

In a nutshell, we place ourselves in the framework of variational inference: we
assume the vector of weights w of the probabilistic model to be a random variable,
drawn from a learned distribution βu parameterized by a vector u. For instance,
the vector of weights w can be drawn from a multivariate normal distribution
βµ,Σ ∼ N (µ,Σ).

We use some notions of distribution theory. We provide a reminder in Ap-
pendix 4.8.3.

Notation. To approximate the posterior distribution of a vector w ∈ RN , we
denote by (βµ,ν)µ,ν the family of variational posteriors over w, parameterized by its
mean µ and a vector of additional parameters ν. The basic example is a multivariate
Gaussian distribution βµ,ν parameterized by its mean µ ∈ RN and its covariance
matrix ν = Σ ∈MN,N(R).

We say that the family (βµ,ν)µ,ν of variational posteriors is translation-invariant
if βµ,ν(θ) = β0,ν(θ − µ) for all µ,ν, θ.

We denote by r(µ,ν) = rν(µ) some penalty, to be applied to the distribution
βµ,ν .

We denote by F the Fourier transform, given by (Fϕ)(ξ) :=
∫
RN ϕ(x)e−iξ·x dx for

ϕ ∈ L1(RN). This definition extends to the class of tempered distributions S ′(RN)
(see Appendix 4.8.3).

In the sequel, we always restrict ourselves to priors α ∈ T (RN) = {α s.t. ln(α) ∈
S ′(RN)}, i.e. log-tempered probability distributions, hence the condition ln(α) ∈
S ′(RN) in the results below. This provides a reasonable behavior of α at infinity.
Common probability distributions belong to this set. As a simple counter-example,
one may take α(θ) ∝ exp(− exp |θ|), for which ln(α) /∈ S ′(R).

Definition 1. We define the following distribution over RN :

Aν := −Ent(β0,ν)1 − F−1
[
Frν

F β̌0,ν

]
, (4.3)

where β̌0,ν(θ) := β0,ν(−θ), 1 is the constant function equal to 1, and Ent(β0,ν) :=
−Eθ∼β0,ν [ln β0,ν(θ)] is the entropy of β0,ν. We say that

r fulfills (?)⇔
{
Aν does not depend on ν, i.e. Aν = A;
A is a function such that exp(A) integrates to κ > 0.

Theorem 1. Let (βµ,ν)µ,ν be a translation-invariant family of variational posteriors.
Let r(µ,ν) = rν(µ) be a penalty over βµ,ν.

We assume that ∀ν, the probability distribution β0,ν has finite entropy and lies in
the Schwartz class S(RN); that Fβ0,ν is nonzero everywhere; and that Frν ∈ E ′(RN),
the class of distributions with compact support.

We are looking for probability distributions α such that:

∃K ∈ R : ∀(µ,ν), rν(µ) = KL(βµ,ν‖α) +K. (4.4)

92 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

We have the following equivalence:

α is a solution to (4.4), with α ∈ T (RN) ⇔ r fulfills (?) and α = 1
κ

exp(A),

where A is defined in Equation (4.3).

The proof is given in Appendix 4.8.4. It is based on the resolution of a classical
integral equation ([85], Section 10.3-1) adapted to the wider framework of distribution
theory. This extension is necessary, since the Fourier transform of the widely-used
L2 penalty (r(x) = x2) cannot be expressed as a function.

The preceding result holds under some technical assumptions. Even if some of
the technical assumptions fail, the formula is still useful to compute a candidate
prior α from a penalty r(·): apply Equation (4.3) on a penalty r to compute Aν ,
then check that Condition (?) holds, define α = 1

κ
exp(A), and finally compute

KL(βµ,ν‖α) analytically and compare it to r.

Remark 4. The assumption Frν ∈ E ′(RN) includes the L2 penalty and all L2p

penalties (for any positive integer p), but not the L1 penalty. Indeed, For r2(x) = x2

one has Fr2 = −2πδ′′ ∈ E ′(R). For r2p(x) = x2p, one has Fr2p = (−1)p2πδ(2p) ∈
E ′(R), but for r1(x) = |x|, (Fr1)(t) = 2t−2 /∈ E ′(R). Still, for any penalty r ∈
S ′(RN), it is always possible to find a sequence (rn)n ∈ S ′(RN) converging to r in
S ′(RN) such that Frn ∈ E ′(RN) for all n (see Appendix 4.8.5).

Particular case: variational posteriors parameterized by their mean (ν =
∅). Theorem 1 provides a method to compute a prior from a penalty and a family
of variational posteriors (βµ,ν)µ,ν . Still, Eq. (4.3) returns a distribution Aν which
may or may not satisfy the condition. Here we present a corollary which guarantees
that the condition is satisfied; this holds under stricter conditions over the variational
posteriors.

Corollary 6. Assume that the family of posterior distributions (βµ,ν)µ,ν is only
parameterized by their means, that is βµ,ν = βµ and rν(µ) = r(µ). Assume that
β0 ∈ S(RN), Fr ∈ E ′(RN), Fβ0 is nonzero everywhere and β0 has a finite entropy.
Assume that F−1[FrF β̌0

] is a function satisfying

∃ (a, b, k) ∈ R+
∗ × R+

∗ × R : ∀θ ∈ RN , F−1
[
Fr
F β̌0

]
(θ) ≥ a‖θ‖b + k, (4.5)

where ‖ · ‖ is the L2 norm on RN .
Then there exists κ > 0 such that:

α(θ) = 1
κ

exp
(
−Ent(β0)−F−1

[
Fr
F β̌0

]
(θ)
)

= 1
κ
eA(θ)

is a probability density satisfying r(µ) = KL(βµ‖α) up to a constant, and is the
unique such probability density in T (RN).

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 93

Remark 5. In many cases, condition (4.5) is not a limitation. For instance, with
βµ ∼ N (µ, σ2), where σ2 is a constant, and with the penalty r the L2 penalty,
Condition (4.5) reads: ∃ (a, b, k) ∈ R+

∗ ×R+
∗ ×R such that θ2 − σ2 ≥ a‖θ‖b + k for

all θ ∈ RN , which is satisfied.

4.4.2 Example 4.3.1: Gaussian Distributions with L2

Penalty
Let us study the variational posteriors from Example 4.3.1: each vector of weights
w ∈ RN is drawn from a Gaussian distribution βu = N (µ1, σ

2
1)⊗ · · · ⊗ N (µN , σ2

N)
with parameter u = (µ1, σ

2
1, · · · , µN , σ2

N). We assume that each pair of variational
parameters (µk, σk) is penalized independently by some penalty ra,b depending on
two real-valued functions a and b:

ra,b(µk, σ2
k) = a(σ2

k) + b(σ2
k)µ2

k. (4.6)

The penalty over u is assumed to be the sum of the penalties ra,b(µk, σk). Therefore,
we study each pair (µk, σk) independently and we omit the index k.

Corollary 7. If the penalty (4.6) above corresponds to a prior α, then α is Gaussian.
More precisely, let α be a probability distribution in T (R), and assume that

ra,b(µ, σ2) = KL(βµ,σ2‖α), up to a constant. Then there exists σ2
0 > 0 such that

α = N (0, σ2
0). Moreover, in that case, the penalty is, up to a constant:

ra,b(µ, σ2) = 1
2

[
σ2 + µ2

σ2
0

+ ln
(
σ2

0
σ2

)
− 1

]
.

This corollary is an application of Theorem 1. We give the proof in Ap-
pendix 4.8.7.

Thus, the assumption that a penalty r arises from a variational interpretation is
a strong constraint over r. Here the penalty r was initially parameterized by a pair
of real functions (a, b), and is finally parameterized by a single number σ2

0.

4.4.3 Example 4.3.2: Deterministic Posteriors and the
MAP

Another basic example is to use Dirac functions as variational posteriors (Exam-
ple 4.3.2): βµ,ν = δµ. Since δ0 /∈ S(R), the technical conditions of Theorem 1 are not
satisfied. However, it is possible to apply Formula (4.3) and check that the resulting
prior α is consistent with a chosen penalty r.

Applying Formula (4.3) yields

A = −Ent(δ0)1−F−1
[Fr
Fδ0

]
= −F−1

[Fr
1

]
= −r.

94 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

Thus, if exp(−r) integrates to 0 < κ < ∞, then we can define α = 1
κ

exp(−r).
Then, we can check that indeed KL(δµ‖α) = r(µ) up to a constant:

KL(δµ‖α) = −Ent(δ0)− 〈δµ, ln(α)〉 = − lnα(µ)− Ent(δ0) = r(µ) + ln κ− Ent(δ0),

which confirms that the proposed prior α is consistent with the penalty r(·).
Thus, this formula recovers via variational inference the well-known penalty–prior

equivalence in the MAP approximation, αVI(θ) ∝ exp(−r(θ)) ∝ αMAP(θ) [70].
However, this is somewhat formal: the entropy Ent(δ0) of a Dirac function is

technically undefined and is an “infinite constant”. In practice, though, with a finite
machine precision ε, a Dirac mass can be defined as a uniform distribution over an
interval of size ε, and Ent(δ0) becomes the finite constant ln ε.

4.5 Application to Neural Networks: Choosing
the Penalty Factor

In this section, we compare the prior α arising from a penalty via Theorem 1, to
reasonable weight priors for neural networks. In particular, we study how the prior
varies when scaling the penalty by a factor λ, namely, rλ(·) = λr̃(·) for a reference
penalty r̃. Requiring that α is comparable to standard priors for neural network
weights provides a specific value of the regularization constant λ. Specifically, we
compare the prior to the standard initialization of neuron weights [22]: the variance
of weights sampled from the prior α should be approximately equal to the inverse
of the number of incoming weights to a neuron. This constraint can be used to
determine λ. In particular, this suggests different values of λ for different layers,
depending on their size.

Possible advantages of being able to predict a good value for λ include avoiding
a hyperparameter search, and better adjustment of the relative penalties of different
layers or groups of neurons. For instance, one application of penalties in neural
networks is to push neurons or convolutional filters towards zero, allowing for network
pruning and reduced computational overhead. Penalties have been developed to
remove entire neurons or filters, often based on the Lasso penalty: for instance,
group-Lasso [89] and sparse group-Lasso [1]. In the latter work, different penalties
are used for different layers, with values of λ determined empirically. We will
compare our predicted values of λ to the values used in these works.

Additive penalties and independent priors. Below, we focus on penalties
that are expressed as sums over neurons or groups of neurons, such as L2 or group-
Lasso penalties. In the Bayesian setup, this corresponds to the additivity property of
Kullback–Leibler divergence over products of distributions, KL(β1 ⊗ β2‖α1 ⊗ α2) =
KL(β1‖α1) + KL(β2‖α2). Thus, sums of penalties over different neurons or groups
of neurons correspond to priors α and variational posteriors β that decompose as
independent distributions over these neurons or groups of neurons.

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 95

4.5.1 A Reasonable Condition over the Prior α
Let us consider the variational inference framework applied to one weight wlij, the
j-th weight of the i-th neuron in the l-th layer of a neural network. As a default
distribution, one could expect α to be usable to initialize the weight wlij.

Therefore, we require α to satisfy the condition given by [22] over the initialization
procedure, which we call (]):

α fulfills (]) ⇔ Ewlij∼α[wlij] = 0 and Ewlij∼α[w2
lij] = 1/Pl

where Pl is the number of incoming weights in one neuron of the layer l. More
generally, this condition can be written for the whole set of incoming weights to
each neuron: denoting by wli the vector of all incoming weights of neuron i in layer
l, one can define Condition (]′):

α fulfills (]′) ⇔ Ewli∼α[wli] = 0 and Ewli∼α[‖wli‖2] = 1
which slightly extends (]).

Thus, if the prior α depends on some variable b, then Condition (]) is reflected
on b. For instance, in Example 4.3.1 (Section 4.4.2), (]) is satisfied if and only if
ασ2

0
is N (0, 1/Pl). In the end, our suggested recipe for finding reasonable values for

parameters b of a penalty rb is the following:
1. Follow the formulas in Thm. 1 to compute a prior αb such that rb(µ,ν) =

KL(βµ,ν‖αb) +K.

2. write Condition (]) or (]′) (depending on the case) for αb: this provides a
constraint on b.

4.5.2 Examples: L2, L1, and Group-Lasso Penalties
We now review some standard penalties, and apply this criterion to compute the
penalty factor λ in front of each penalty.

Here we work with Dirac posterior distributions βµ = δµ (Example 4.3.2 and
Section 4.4.3). In that case, since each weight wlij is deterministically set to µlij , we
use wlij and µlij indifferently. Thus, the penalty with penalty factor λ is

rλ(w) = rλ(µ) = λr̃(µ) = KL(δµ‖αλ) +K

for some reference penalty r̃. For each λ, the corresponding prior is αλ(θ) ∝ e−λr̃(θ).
We will apply Condition (]) to find a value for λ, for various penalties. In

Table 4.1 we compare these values to usual ones.
We recall that Pl in the number of incoming weights of a neuron in layer l.

Remark 6. We recall that r(w) is a full-dataset penalty (see Eq. 4.1), so that the
actual per-minibatch penalty for stochastic gradient is 1

n
r(w) for individual samples

or B
n
r(w) for minibatches of size B.

The results below apply equally to fully connected and to convolutional networks;
in the latter case, “neuron” should read as “individual filter”.

96 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

L2 penalty. We have rλ(w) = λw2, thus αλ(θ) ∼ N (0, 1/(2λ)). Then Condition (])
is equivalent to λ = Pl

2 . Thus, from a Bayesian viewpoint, when using a L2-penalty,
each weight w of a neuron with Pl incoming weights should be penalized by

rλ(w) = Pl
2 w

2. (4.7)

L1 penalty. We have rλ(w) = λ|w|, thus αλ(θ) = λ
2e
−λ|θ|. Therefore, Condition (])

is equivalent to λ =
√

2Pl. As a consequence, when penalizing weight w in the l-th
layer of a neural network with a L1-penalty, this weight w should be penalized with
the term:

rλ(w) =
√

2Pl|w|. (4.8)

Standard Group-Lasso penalty. The group-Lasso jointly penalizes all the in-
coming weights of each neuron wl,i ∈ RPl . Thus, we consider a prior and a posterior
that are probability distributions on RPl , and use Condition (]′). Denoting by
w ∈ RPl the incoming weights of a neuron, we have

rλ(w) = λ‖w‖2. (4.9)

Then αλ(θ) = λPl
SPl−1Γ(Pl)

e−λ‖θ‖2 , where Γ is Euler’s Gamma function and Sn−1 is the
surface of the (n− 1)-sphere. After computation of the variance, Condition (]′) is
equivalent to λ =

√
Pl(Pl + 1). As a consequence, when penalizing neuron w in the

l-th layer of a neural network with a group-Lasso penalty, this neuron w should be
penalized with the term:

rλ(w) =
√
Pl(Pl + 1)‖w‖2. (4.10)

This choice differs from [1], who use λ ∝
√
Pl, after an intuition proposed in

[110]. Their whole-network penalty is

L(w) = `(w) +
L∑
l=1

λ̃l

(
(1− γ)

√
Pl

nl∑
i=1
‖wl,i‖2 + γ

nl∑
i=1
‖wl,i‖1

)
, (4.11)

where γ ∈ [0, 1] is a fixed constant, L is the number of layers, nl is the number of
neurons in the l-th layer, Pl is the number of parameters in each neuron in the l-th
layer, and wl,i is the set of weights of the i-th neuron of the l-th layer. The per-layer
regularization constants λ̃l are chosen empirically in [1]. On the other hand, our
Bayesian reasoning yields a scaling

√
Pl(Pl + 1) instead of

√
Pl for the penalties

‖wl,i‖2 in (4.11).

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 97

Table 4.1 – How the regularization constant λ depends on the number of neurons
nl and the number of parameters per neuron Pl in layer l, both for our heuristics
(λBayesian) and for standard settings (λusual). For details on group-Lasso and reversed
group-Lasso penalties, see Equations (4.9) and (4.12).

Penalty L2 L1 group-Lasso rev. gr.-Lasso

λBayesian Pl/2
√

2Pl
√
Pl(Pl + 1)

√
Pl(nl + 1)

λusual 1 1
√
Pl

√
nl

Reversed Group-Lasso penalty. We recall that the standard group-Lasso
penalty groups the weights of a layer by neurons, that is output features. It
is also possible to group them by input features, namely, to group together the
outgoing weights of each neuron. For a fully-connected neural network, the loss
penalized by a “reversed” group-Lasso can be written:

L(w) = `(w) +
L∑
l=1

λl

Pl∑
j=1
‖wl,·,j‖2, (4.12)

where wl,·,j ∈ Rnl is the vector of weights of the l-th layer linked to the j-th input
feature and nl is the number of neurons in the l-th layer. By computations similar to
standard group-Lasso, (]′) is equivalent to λ =

√
Pl(nl + 1) where nl is the number

of neurons in layer l, namely,

rλ(wl,·,j) =
√
Pl(nl + 1)‖wl,·,j‖2.

4.6 Experiments
Penalty terms are often used in the literature [89, 1, 27] in order to prune neural
networks, that is, to make them sparse. Indeed, penalties such as L1 or group-Lasso
tend to push weights or entire groups of weights towards 0 [102]. The efficiency of
such methods can be measured in terms of final accuracy and number of remaining
parameters.

We have chosen to compare within this context our heuristic to usual setups
for the penalty factor, for different penalties. Our main criterion remains the final
accuracy of the pruned network. According to the results given in Table 4.1, the
global penalty should be decomposed into a sum of penalties over each layer:

r(w) = λ
L∑
l=1

λlr(wl),

98 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

where λ is a global penalty factor, L is the number of layers, r(wl) is the penalty
term due to the l-th layer and λl is its corresponding penalty factor. According to
our heuristic, each λl should be set to λBayesian given in Table 4.1 and λ = λTh = 1/n,
where n is the size of the training dataset (by Remark 6). In the usual setup, each
λl is set to λusual given in Table 4.1, while several values for λ are tested.

We test the quality of our heuristic in two steps. First, we only test the computed
partial penalty factors λl: they are fixed to λBayesian, while several values for λ are
tested. Second, we test the full heuristic: each λl is fixed to its corresponding
λBayesian and λ = λTh = 1/n.

Experimental setup. We consider two neural networks: a version of VGG19 [94]
with one fully connected layer of size 512, and CVNN, which is a simple network
with two convolutional layers (of respective sizes 100 and 200 with 5× 5 patches),
each followed by a ReLU and a 2× 2 max-pool layer, and two fully-connected layers
(of sizes 1000 and 200).

The training and pruning procedure is detailed in Appendix 4.8.1 and the full
experimental procedure is detailed in Appendix 4.8.2. The CIFAR-10 dataset is
decomposed into three parts: a training set (42000 images), a validation set (8000
images), and a test set (10000 images). All reported accuracies are computed over
the test set, which is never used during each run.

Results. We give the results in Figure 4.1. Each point gives the final accuracy
and number of parameters of a neural network for a given setup, averaged over 3
runs. The red line and the blue line correspond respectively to the usual setup and
our setup for per-layer penalty λl, for various global factors λ. To check the quality
of the heuristics over λl, we should compare the maxima of the two lines in each
graph. The theoretical value λ = λTh is marked by the grey vertical line, so the blue
point on the grey vertical line illustrates the performance of the joint theoretical
values on both λl and λ.

We report in Table 4.2 the values of relevant quantities: acc∗usual, the best (over
λ) accuracy of the usual per-layer scaling λl; acc∗Bayesian, the best (over λ) accuracy
of the Bayesian per-layer scaling λl (we denote by λ∗ the optimal λ); and accBayesian,
the accuracy of the Bayesian per-layer λl together with the Bayesian predicted
λ = λTh. This would allow us to conclude:

1. if acc∗Bayesian > acc∗usual, then we can conclude that our theoretical estimation
for λl is better that the usual ones;

2. moreover, we check whether accBayesian > acc∗usual. If it is, then we can conclude
that our theoretical estimation for λl and the choice λ = λTh are better than
the usual ones;

3. finally, the closer the ratio λTh/λ
∗ is to 1, the closer we are to the Bayesian

theoretical framework.

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 99

Regarding Point 1, our theoretical estimation for λl leads to accuracies which
remain close to accuracies obtained in the usual setup. Our setup leads to slightly
better accuracies when training CVNN, and slightly worse for VGG19.

Regarding Points 2 and 3, the usual setup with optimized λ and our setup with
Bayesian estimation for λ = λTh perform similarly, though the second one usually
performs slightly worse, due to a systematic mismatch between λTh and λ∗. Indeed,
λTh is always roughly 10 times greater than λ∗.

100 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

CVNN VGG19

L2 penalty

10 7 10 6 10 5 10 4 10 3 10 2

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + L2 penalty

pen. L2 (usual)
pen. L2 (Bayesian pen.)

10 7 10 6 10 5 10 4 10 3 10 2

penalty factor

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19 + L2 penalty

pen. L2 (usual)
pen. L2 (Bayesian pen.)

L1 penalty

10 7 10 6 10 5 10 4 10 3

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + L1 penalty

pen. L1 penalty (usual)
pen. L1 penalty (Bayesian pen.)

10 7 10 6 10 5 10 4 10 3

penalty factor

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19 + L1 penalty

pen. L1 penalty (usual)
pen. L1 penalty (Bayesian pen.)

Group-Lasso penalty

10 7 10 6 10 5 10 4 10 3

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + group-Lasso penalty

pen. group-Lasso (usual)
pen. group-Lasso (Bayesian pen.)

10 7 10 6 10 5 10 4 10 3

penalty factor

0.86

0.88

0.90

0.92

0.94
ac

cu
ra

cy

VGG19 + group-Lasso penalty

pen. group-Lasso (usual)
pen. group-Lasso (Bayesian pen.)

Reversed group-Lasso

10 7 10 6 10 5 10 4 10 3 10 2

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + rev. group-Lasso penalty

pen. Rev. gr. Lasso (usual)
pen. Rev. gr. Lasso (Bayesian pen.)

10 6 10 5 10 4 10 3 10 2

penalty factor

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19 + rev. group-Lasso penalty

pen. Rev. gr. Lasso (usual)
pen. Rev. gr. Lasso (Bayesian pen.)

Figure 4.1 – Final performance and number of parameters for various penalties in
function of the penalty factor λ. Red line: standard setup for the penalty; blue line:
setup provided by the heuristic (]) or (]′). Each bar corresponds to a final neural
network: its abscissa is the penalty factor λ used for training it, its ordinate is its
final accuracy, and its width corresponds to its final number of parameters. The
vertical grey line is the value of the heuristic for λ.

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 101

Ta
bl
e
4.
2
–
C
om

pa
ris

on
of

th
e
re
su
lts

.
W
e
sh
ow

on
th
e
fir
st

ro
w

th
e
be

st
ac
cu

ra
cy

ac
c∗ us

ua
l
ob

ta
in
ed

w
ith

th
e
us
ua

ls
et
up

.
T
he
n
we

sh
ow

th
e
be

st
ac
cu
ra
cy

ac
c∗ B

ay
es

ia
n
ob

ta
in
ed

w
ith

ou
r
se
tu
p,

th
e
ac
cu
ra
cy

ac
c B

ay
es

ia
n
ob

ta
in
ed

w
ith

ou
r
se
tu
p
w
ith

th
e
Ba

ye
sia

n
th
eo
re
tic

al
va
lu
e
fo
rλ

,t
ha

ti
sλ

T
h

=
n
−

1 ,
an

d
th
e
ra
tio

be
tw

ee
n
λ

T
h
an

d
th
e
fa
ct
or
λ

=
λ
∗ ,

th
at

is
th
e
op

tim
al

va
lu
e
fo
rλ

.A
m
on

g
th
e
re
su
lts

ob
ta
in
ed

wi
th

ou
rm

et
ho

ds
,t
ho

se
hi
gh

lig
ht
ed

in
bl
ue

ar
e
be

tt
er
,a

nd
th
os
e
hi
gh

lig
ht
ed

in
re
d

ar
e
wo

rs
e
th
an

in
th
e
us
ua

ls
et
up

.

L
2
pe

n.
L

1
pe

n.
gr
ou

p-
La

ss
o
pe

n.
re
v.

gr
.-L

as
so

pe
n.

C
V
N
N

V
G
G

C
V
N
N

V
G
G

C
V
N
N

V
G
G

C
V
N
N

V
G
G

ac
c∗ us

ua
l
(%

)
88
.0

0
±
.4

93
.3

5
±
.1

5
88
.3

6
±
.3

93
.1

7
±
.3

88
.4

3
±
.1

4
92
.7

8
±
.1

9
88
.0

4
±
.4

93
.3

7
±
.0

9
ac

c∗ B
ay

es
ia

n
88
.6

9
±
.1

2
93
.4

8
±
.0

9
88
.4

1
±
.3

92
.8

9
±
.2

88
.6

7
±
.0

9
92
.3

5
±
.1

8
88
.3

2
±
.1

6
93
.0

3
±
.1

5
ac

c B
ay

es
ia

n
88
.2

5
±
.3

93
.2

8
±
.1

7
87
.4

8
±
.0

8
92
.7

4
±
.1

9
87
.4

5
±
.1

7
92
.2

4
±
.1

4
85
.4

9
±
.3

92
.8

5
±
.0

6
λ

T
h/
λ
∗

10
0.

5
10

1
10

1
10

1
10

2
10

2
10

1.
5

10
1

102 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

Discussion. This systematic overestimation of the penalty factor indicates that
some phenomenon is not yet understood. We have two mutually compatible expla-
nations.

First, the choice λ = 1/n could be overestimated, as a strict Bayesian setup might
be overcautious from the very beginning. Indeed, in other Bayesian approaches
to neural networks, such observations have been made. For instance, when using
stochastic Langevin dynamics to approximate the posterior, performance is better if
the weight of the posterior is arbitrarily decreased by an additional factor n (see
footnote 5 in [75], and [59]).

Second, our choice for λl, based on Glorot’s initialization, could also be overesti-
mated. Indeed, λl only depends on Pl (the number of parameters in each neuron
in layer l), and not on the location of layer l in the network for instance, while
the following observations suggest that the heuristic used to set λl should take
into account the architecture. We noticed that in most of the pruning experiments
we made, the reached level of sparsity is much higher in the second half of the
network (layers closer to the output). This is corroborated by [112] which shows
that the layers may behave differently from a training point of view, depending on
the architecture of the network and their position in it. Notably, they have proven
that, in a trained VGG, some of the last convolutional layers can be reset to their
initial value without changing much the final accuracy, while this cannot be done
for the first layers.

4.7 Conclusion

We have provided a theorem that bridges the gap between empirical penalties
and Bayesian priors when learning the distribution of the parameters of a model.
This way, various regularization techniques can be studied in the same Bayesian
framework, and be seen as probability distributions. This unified point of view
allowed us to take into account well known heuristics (as Glorot’s initialization) in
order to find reasonable values for hyperparameters of the penalty.

We have checked experimentally that our theoretical framework leads to rea-
sonable results. However, we noticed a constant mismatch (about a factor 10)
between our predicted penalty factor λTh and the best one λ∗. This fact raises
interesting questions about a possible overcautiousness of the Bayesian framework
and the possible impact of the architecture when penalizing layers, which we plan
to investigate further.

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 103

4.8 Appendix

4.8.1 Training and Pruning: Details
Since pruning neurons causes an accuracy drop, we divided the learning into two
phases: learning and pruning phase; fine-tuning phase. This trick is widely used in
pruning literature [60, 89, 65], in order to achieve better performance.

We define a pruning criterion based on the “norm” of each neuron. The tested
penalties, i.e. L2 penalty, L1 penalty, group-Lasso penalty, and reversed group-Lasso
penalty, can be separated into two categories: penalization of the output features
of each layer (L2, L1, group-Lasso) and penalization of input features of each layer
(reversed group-Lasso).

Pruning with L2, L1 and group-Lasso penalties. For each neuron wl,i, we
check whether:

‖wl,i‖2 ≤ 0.001.

If so, then the neuron is pruned.

Pruning with reversed group-Lasso penalty. For each vector wl,·,j of the j-th
input weights of the neurons in layer l, we check whether:

‖wl,·,j‖2 ≤ 0.001.

If so, then the j-th neuron in layer l − 1 is pruned, because its output is almost not
used in layer l.

Pruning and training phase. The penalty is applied and, after each training
epoch, pruning is performed over all layers. This phase ends when the number of
neurons and the best validation accuracy have not improved for 50 epochs.

Fine-tuning phase. The penalty is removed and the learning rate is decreased
by a factor 10 each time the validation accuracy has not improved for 50 epochs, up
to 2 times. The third time, training is stopped. No pruning is performed during
this phase.

4.8.2 Experimental Procedure
For each combination of neural network (VGG19 or CVNN) and penalty (L2, L1,
group-Lasso, or reversed group Lasso), we have tested two setups: our Bayesian
heuristic for the penalty factor λl of each layer l, and the usual setup for them (as
described in Table 4.1). For each setup, we have planned to plot the final accuracy
and final number of parameters in function of the global penalty factor λ. We have
proceeded as follows:

104 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

1. we define a set Λ of λ we want to use into our experiments. Typi-
cally, we have chosen Λ = (1/n) · {10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5}
in our setup (where n is the size of the training set), and Λ =
{10−6, 10−5.5, 10−5, 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5} in the usual setup;

2. for each λ ∈ Λ, we test several learning rates η ∈ {10−2, 10−3, 10−4}, and we
select the learning rate ηλ which led to the best accuracy;

3. for each λ ∈ Λ, we run 2 more experiments with the selected learning rate ηλ.
Thus, we are able to average our results over 3 runs.

4.8.3 Reminder of Distribution Theory
In order to explain the main result, we recall some basic concepts of distribution
theory. We use three functional spaces: the Schwartz class S(RN), the space of
tempered distributions S ′(RN), and the space of distributions with compact support
E ′(RN).

Above all, we recall the definition of the space of distributions D′(RN). We
denote by C∞(RN) the space of infinitely derivable functions mapping RN to R, and
by C∞c (RN) ⊂ C∞(RN) the subspace of functions with compact support, that is
ϕ ∈ C∞c (RN) if, and only if:

ϕ ∈ C∞(RN) and ∃K ⊂ RN compact s.t.: {x ∈ RN : ϕ(x) 6= 0} ⊆ K.

The set {x ∈ RN : ϕ(x) 6= 0} is also denoted by supp(ϕ).

Space of distributions D′(RN). The space of distributions D′(RN) is defined as
the space of continuous linear forms over C∞c (RN). For any distribution T ∈ D′(RN),
we denote by 〈T, φ〉 the value of T at a given test function ϕ ∈ C∞c (RN).

More formally, T ∈ D′(RN) if, and only if, for all compact set K of RN , there
exists p ∈ N and C > 0 such that:

∀ϕ ∈ C∞c (RN) with supp(ϕ) ⊆ K, |〈T, ϕ〉| ≤ C sup
|α|≤p
‖∂αϕ‖∞.

Distributions are easier to visualize in specific cases. For instance, if a function
f : RN → R is integrable on every compact set K ∈ RN , then we can define a
distribution Tf by:

∀ϕ ∈ C∞c (RN), 〈Tf , ϕ〉 =
∫
fϕ.

Therefore, distributions are often called “generalized functions”, since most functions
can be seen as distributions. In fact, by abuse of notation, 〈f, ϕ〉 stands for 〈Tf , ϕ〉.

Another classic example of distribution is the Dirac at zero δ, defined as follows:

∀ϕ ∈ C∞c (RN), 〈δ, ϕ〉 = ϕ(0).

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 105

Schwartz class S(RN). A function ϕ belongs to S(RN) if, and only if ϕ ∈ C∞(RN)
and:

∀p ∈ N,∃Cp > 0 : sup
|α|≤p,|β|≤p

‖xα∂βϕ(x)‖∞ ≤ Cp.

In few words, S(RN) contains smooth and rapidly decreasing functions. For instance,
any Gaussian density function belongs to S(RN).

We can easily define the Fourier transform on S(RN). Let ϕ ∈ S(RN):

(Fϕ)(ξ) =
∫
RN
ϕ(x)e−iξx dx.

Thus, F−1 = (2π)−N F̄ , where F̄ϕ = F ϕ̌ and ϕ̌(x) = ϕ(−x).

Space of tempered distributions S ′(RN). Let T ∈ D′(RN) be a distribution.
T belongs to S ′(RN) if, and only if, there exists p ∈ N and C > 0 such that:

∀ϕ ∈ C∞c (RN), |〈T, ϕ〉| ≤ sup
|α|≤p,|β|≤p

‖xα∂βϕ‖∞.

The Fourier transform is defined on S ′(RN) by duality. For any T ∈ S ′(RN),
FT ∈ S ′(RN) and is defined by:

∀ϕ ∈ S(RN), 〈FT, ϕ〉 = 〈T,Fϕ〉.

Notably, this definition allows us to compute the Fourier transform of functions
that do not lie in L2. This is very useful in the applications of Theorem 1, where we
need the Fourier transform of f : x 7→ x2, which is Ff = −2πδ′′ ∈ S ′(R) (where δ′′
is the second derivative of the Dirac, defined below).

Space of distributions with compact support E ′(RN). Let T ∈ D′(RN). The
support of T is defined by:

supp(T) = RN\{x ∈ RN : ∃ω neighborhood of x s.t. T|ω = 0}.

Thus, T is said to have a compact support if, and only if, supp(T) is contained into
a compact subset of RN . As fundamental property of E ′(RN), one should notice
that E ′(RN) ⊂ S ′(RN). That is, the Fourier transform is defined on E ′(RN).

For instance, the Dirac at zero δ and its derivatives δ(k) have support {0}, which
is compact:

〈δ, ϕ〉 = ϕ(0)
〈δ(k), ϕ〉 = (−1)kϕ(k)(0),

for any test function ϕ ∈ C∞c (RN).

106 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

4.8.4 Proof of Theorem 1
Proof. The proof can be split into three parts:

1. according to Definition 1, we have:

Aν := −Ent(β0,ν)1−F−1
[
Frν

F β̌0,ν

]
,

and we prove that, for all (µ,ν):

Ent(β0,ν)− 〈Aν , βµ,ν〉 = rν(µ). (4.13)

2. we prove that, if exp(Aν) is a function integrating to κ > 0, then there exists
K ∈ R such that:

∀(µ,ν), r(µ,ν) = KL(βµ,ν‖αν) +K, (4.14)

where αν = 1
κ

exp(Aν).
At that point, if Condition (?) is satisfied, then r can be written as a KL-
divergence with respect to a prior. Thus, Condition (?) is a sufficient condition
to ensure the existence of a solution to Equation (4.4).

3. we prove that, if α is a solution to Equation (4.4), then ln(α) is equal to Aν

(up to a constant) and Aν satisfies Condition (?).
In the proof, and notably in Appendix 4.8.4, we need the following proposition.

Proposition 8. Let T ∈ S ′(RN) and ϕ ∈ S(RN). Then T ∗ ϕ ∈ S ′(RN) and:

F [T ∗ ϕ] = (FT) · (Fϕ).

Proof. This statement is directly given in the proof of Theorem 3.18 [97].

Proof of Equation (4.13)

The distribution Aν is defined by:

Aν = −Ent(β0,ν)1−F−1
[
Frν

F β̌0,ν

]
.

Since 1 ∈ S ′(RN) and Frν

F β̌0,ν
∈ S ′(RN), then Aν ∈ S ′(RN) by stability of S ′ by

Fourier transform ([39], Lemma 7.1.3).
We compute:

− Ent(β0,ν)− 〈Aν , βµ,ν〉

= −Ent(β0,ν) +
〈

Ent(β0,ν)1 + F−1
[
Frν

F β̌0,ν

]
, βµ,ν

〉

=
〈
F−1

[
Frν

F β̌0,ν

]
, βµ,ν

〉
,

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 107

since
∫
βµ,ν = 1.

By definition of the Fourier transform over S ′(RN) ([39], Definition 7.1.9), we
have:

− Ent(β0,ν)− 〈Aν , βµ,ν〉

=
〈
Frν

F β̌0,ν
,F−1βµ,ν

〉
. (4.15)

We compute F−1βµ,ν :

(F−1βµ,ν)(ξ) = (2π)−N〈eiξ·, βµ,ν(·)〉
= (2π)−N〈eiξ·, β0,ν(· − µ)〉
= (2π)−N〈eiξ·, β̌0,ν(µ− ·)〉,

using the assumptions over the family (βµ,ν)µ,ν .
Thus:

(F−1βµ,ν)(ξ) = (2π)−N〈eiξ(µ−·), β̌0,ν(·)〉
= (2π)−Neiξµ〈e−iξ·, β̌0,ν(·)〉
= (2π)−Neiξµ(F β̌0,ν)(ξ).

By injecting the result into Equation (4.15), we have:

− Ent(β0,ν)− 〈Aν , βµ,ν〉

= (2π)−N
〈
Frν

F β̌0,ν
, eiµ·(F β̌0,ν)(·)

〉

= (2π)−N
〈
Frν , e

iµ·F β̌0,ν

F β̌0,ν

〉

= (2π)−N
〈
Frν , e

iµ·
〉
.

Since Frν ∈ E ′(RN), we can apply Theorem 7.1.14 [39]:

(2π)−N
〈
Frν , e

iµ·
〉

= (F−1Frν)(µ)
= rν(µ),

which achieves the proof of Equation (4.13).

Proof of Equation (4.14)

Now, we assume that exp(Aν) is a function integrating to κ > 0. We define αν :

αν = 1
κ

exp(Aν),

108 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

which is non-negative and integrates to 1. Thus, αν is a density of probability.
We compute the KL-divergence between βµ,ν and αν :

KL(βµ,ν‖αν) =
∫
RN

ln
(
βµ,ν(θ)
αν(θ)

)
βµ,ν(θ) dθ

= −Ent(βµ,ν)− 〈ln(αν), βµ,ν〉
= −Ent(βµ,ν)− 〈− ln(κ)1 + Aν , βµ,ν〉
= −Ent(βµ,ν) + ln(κ) 〈1, βµ,ν〉 − 〈Aν , βµ,ν〉
= rν(µ) + ln κ,

since βµ,ν integrates to 1 and Ent(βµ,ν) does not depend on µ. Therefore, using
Equation (4.13):

KL(βµ,ν‖αν) = r(µ,ν) + ln κ.

Moreover, if Aν does not depend on ν, then:

KL(βµ,ν‖α) = r(µ,ν) + ln κ.

Therefore, Condition (?) is a sufficient condition to ensure the existence of a solution
α to Equation (4.4).

Uniqueness of the Solution

We assume that α is a probability distribution in T (RN) and:

rν(µ) = KL(βµ,ν‖α) +K,

where K ∈ R is a constant.
Thus:

rν(µ) =
∫
RN

ln
(
βµ,ν(θ)
α(θ)

)
βµ,ν(θ) dθ +K

= −Ent(βµ,ν)−
∫
RN

[ln(α(θ))−K] βµ,ν(θ) dθ

= −Ent(βµ,ν)−
∫
RN
Â(θ)βµ,ν(θ) dθ (where Â(θ) := ln(α(θ))−K)

= −Ent(βµ,ν)−
∫
RN
Â(θ)β0,ν(θ − µ) dθ

= −Ent(βµ,ν)−
∫
RN
Â(θ)β̌0,ν(µ− θ) dθ

= −Ent(β0,ν)− (Â ∗ β̌0,ν)(µ),

since the convolution between Â ∈ S ′(RN) and β̌0,ν ∈ S(RN) is well-defined ([97],
Theorem 3.13), and Ent(βµ,ν) = Ent(β0,ν).

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 109

Then, we can apply the Fourier transform:

Frν = −2πEnt(β0,ν)δ −F(Â ∗ β̌0,ν)
= −2πEnt(β0,ν)δ − (FÂ) · (F β̌0,ν),

by applying Proposition 8. Since Fβ0,ν is supposed to be nonzero everywhere, then:

FÂ = −2πEnt(β0,ν)δ −Frν

F β̌0,ν
.

From now, we just have to compute the inverse Fourier transform of FÂ to get
Â:

Â = F−1
[
−2πEnt(β0,ν)δ −Frν

F β̌0,ν

]

= −F−1
[

2πEnt(β0,ν)δ
F β̌0,ν

]
−F−1

[
Frν

F β̌0,ν

]

= −2πEnt(β0,ν)F−1
[

δ

F β̌0,ν

]
−F−1

[
Frν

F β̌0,ν

]
.

We compute the first term, which is a tempered distribution. For all ϕ ∈ S(RN),
we have: 〈

δ

F β̌0,ν
, ϕ

〉
=
〈
δ,

ϕ

F β̌0,ν

〉

= ϕ(0)
(F β̌0,ν)(0)

= ϕ(0),

since (F β̌0,ν)(0) is equal to
∫
β̌0,ν =

∫
β0,ν = 1. Thus, δ

F β̌0,ν
= δ.

Therefore:

Â = −2πEnt(β0,ν)F−1δ −F−1
[
Frν

F β̌0,ν

]

= −Ent(β0,ν)1−F−1
[
Frν

F β̌0,ν

]
= Aν .

Recalling that Â(θ) := ln(α(θ))− nK, we have:

ln(α(θ))−K = Aν(θ),

thus Aν does not depend on ν, from which we deduce that r fulfills Condition (?)
and α ∝ exp(A).

110 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

4.8.5 Note on Remark 4
We show that, for all r ∈ S ′(RN), there exists a sequence (rn)n ∈ S ′(RN) converging
to r in S ′(RN) such that Frn ∈ E ′(RN) for all n.

For all r ∈ S ′(RN), Fr ∈ S ′(RN). Let us build the sequence of distributions:

qn = (Fr)1[−n,n]N .

The sequence (qn)n ∈ E ′(RN) converges to Fr in S ′(RN). Since F−1 is continuous,
we have:

F−1qn → r in S ′(RN).

Therefore, we can pose rn = F−1qn, which is appropriate.

4.8.6 Proof of Corollary 6
Proof. We apply Formula (4.3):

A = −Ent(β0)1−F−1
[
Fr
Fβ0

]
.

Thus:

exp(A(θ)) = e−Ent(β0) exp
(
−F−1

[
Fr
Fβ0

]
(θ)
)
.

Assuming there exists a > 0, b > 0 and k ∈ R such that:

F−1
[
Fr
Fβ0

]
(θ) ≥ a‖θ‖b + k,

we can write:

0 ≤ exp(A(θ))eEnt(β0) = exp
(
−F−1

[
Fr
Fβ0

]
(θ)
)
≤ exp

(
−
[
a‖θ‖b + k

])
.

Since
∫

exp
(
−
[
a‖θ‖b + k

])
dθ converges, then

∫
exp(A(θ)) dθ converges. Thus,

according to Theorem 1, there exists κ > 0 such that α = 1
κ

exp(A) verifies:

KL(βµ‖α) = r(µ),

up to a constant.

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 111

4.8.7 Proof of Corollary 7
We want to apply Theorem 1 in this case. We assume that α is a solution to
Equation (4.4) with ra,b(µk, σ2

k) = a(σ2
k) + b(σ2

k)µ2
k, such that α ∈ T (R). That is, for

some constant K:

ra,b(µk, σ2
k) = KL(βµk,σ2

k
‖α) +K.

We check the hypotheses:

• for all (µ, σ2) ∈ R× R+, βµ,σ2(·) = β0,σ2(· − µ) and β0,σ2 = β̌0,σ2 ;

• βµ,σ2 ∈ S(R) and Fβµ,σ2 is nonzero everywhere;

• Fra,b,σ2 = 2π [a(σ2)δ − b(σ2)δ′′] ∈ E ′(R).

Then, we apply Theorem 1, which ensures that r fulfills (?), that is Aa,b,σ2

does not depend on σ2. First, we compute Aa,b,σ2 by using its definition, given in
Equation (4.3). A first calculus (see Appendix 4.8.7) leads to:

Fra,b,σ2

Fβ0,σ2
= 2π

[(
a(σ2)− σ2b(σ2)

)
δ − b(σ2)δ′′

]
, (4.16)

and, according to the calculus made in Appendix 4.8.7, we have:

Aa,b,σ2(θ) = − ln(2πeσ2) +
[
−a(σ2) + σ2b(σ2)− b(σ2)θ2

]
. (4.17)

Second, we prove in Appendix 4.8.7 that Aa,b,σ2 does not depend on σ2 if, and
only if:

a(σ2) = σ2b0 − a0 −
ln(2πeσ2)

2 (4.18)

b(σ2) = b0, (4.19)

where a0 and b0 are real constants. Thus, the loss ra,b takes the following form:

ra,b(µ, σ2) = σ2b0 − a0 −
ln(2πeσ2)

2 + b0µ
2 +K.

In that case, Aa,b,σ2(θ) = Aa,b(θ) = a0 − b0θ
2. Thus αa,b = 1

κ
exp(Aa,b) is a

probability distribution, where:

κ = ea0

√
2π
2b0

αa,b(θ) = 1√
2π 1

2b0

exp
(
− θ2

2 1
2b0

)
.

112 Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior

Thus, αa,b can be seen as the density of the Gaussian distribution N (0, 1
2b0

).
Therefore αa,b is Gaussian and the penalty is necessarily the Kullback–Leibler

divergence between two Gaussian distributions βµ,σ2 ∼ N (µ, σ2) and αa,b = ασ2
0
∼

N (0, σ2
0):

rσ2
0
(µ, σ2) = σ2

2σ2
0

+ ln(2πσ2
0)

2 − ln(2πeσ2)
2 + 1

2σ0
µ2 +K

= 1
2

[
σ2 + µ2

σ2
0

+ ln
(
σ2

0
σ2

)
− 1

]
+K.

Proof of Equation (4.16)

We compute Fra,b,σ2

Fβ0,σ2
. We recall that Fra,b,σ2 = 2π [a(σ2)δ − b(σ2)δ′′]. Thus we have,

for each ϕ ∈ S(R):〈
Fra,b,σ2

Fβ0,σ2
, ϕ

〉
=
〈

2π [a(σ2)δ − b(σ2)δ′′]
Fβ0,σ2

, ϕ

〉

= 2π
〈
a(σ2)δ − b(σ2)δ′′, ϕ

Fβ0,σ2

〉

= 2πa(σ2)ϕ(0)− 2πb(σ2)
〈
δ′′, ϕ(x) exp

(
σ2x2

2

)〉
x

= 2πa(σ2)ϕ(0) + 2πb(σ2)
〈
δ′,
(
ϕ′(x) + ϕ(x)σ2x

)
exp

(
σ2x2

2

)〉
x

= 2πa(σ2)ϕ(0)

− 2πb(σ2)
〈
δ,
(
ϕ′′(x) + 2ϕ′(x)σ2x+ ϕ(x)σ2(1 + σ2x2)

)
exp

(
σ2x2

2

)〉
x

= 2π
[
a(σ2)ϕ(0)− b(σ2)

(
ϕ′′(0) + σ2ϕ(0)

)]
Thus, Fra,b,σ2

Fβ0,σ2
= 2π [(a(σ2)− σ2b(σ2)) δ − b(σ2)δ′′].

Proof of Equation (4.17)

Theorem 1 defines the following distribution:

Aa,b,σ2 = −Ent(β0,σ2)1−F−1
[
Fra,b,σ2

Fβ0,σ2

]

We have: Ent(β0,σ2) = 1
2 ln(2πeσ2)

Fra,bσ2

Fβ0,σ2
= 2π [(a(σ2)− σ2b(σ2)) δ − b(σ2)δ′′]

Chapter 4 – Interpreting the Penalty as the Influence of a Bayesian Prior 113

Besides, 2πF−1δ = 1 and 2π(F−1δ′′)(θ) = −θ2.
Thus:

Aa,b,σ2(θ) = −1
2 ln(2πeσ2)−

[
a(σ2)− σ2b(σ2) + b(σ2)θ2

]
= −1

2 ln(2πeσ2) +
[
−a(σ2) + σ2b(σ2)− b(σ2)θ2

]
Proof of Conditions (4.18) and (4.19)

We have:

Aa,b,σ2(θ) = −1
2 ln(2πeσ2) +

[
−a(σ2) + σ2b(σ2)− b(σ2)θ2

]
.

The polynomial Aa,b,σ2 does not depend on σ2 if, and only if, its coefficients do
not depend on σ2. That is:{

b(σ2) = b0
−1

2 ln(2πeσ2)− a(σ2) + σ2b(σ2) = a0
,

that is: {
b(σ2) = b0

a(σ2) = σ2b0 − a0 − ln(2πeσ2)
2

.

Chapter 5

Conclusion

Among the present works, the main results are the tools Alrao, ScaLa and ScaLP,
and the formula expressing the Bayesian prior corresponding to an empirical penalty.
The training algorithm Alrao is based on the intuition that diversity in a neural
network can counterbalance a poorly precise optimization. This intuition has been
tested in Saxe’s work [88] by drawing randomly the weights, and we have extended
it by drawing randomly the learning rates. As a consequence, Alrao is sufficiently
robust and efficient to be used in a very wide range of problems without learning
rate tuning. This result is itself quite surprising, and validates the initial intuition:
in neural networks, diversity appears to be an important parameter. Moreover,
Alrao could be used to train and test automatically generated architecture, without
hyperparameter tuning, which could be useful to improve the speed of architecture
search algorithms.

The work which has resulted in the tools ScaLa and ScaLP is initially theoretical.
It goes two steps beyond the well-known Glorot’s heuristics for the initialization of a
neural network: first, the activations should be reasonable not only at initialization,
but also after the first gradient step; second, the heuristics should remain reasonable
for infinitely wide neural networks. The first step leads to ScaLa, whose main
benefit is its resilience to layer width change. The second step leads naturally to the
pruning method ScaLP, which is more robust than other pruning methods, while
being competitive with them. Practical use aside, these good properties tends to
confirm the theoretical importance of the initial intuition about the variance of the
activations. Therefore, this subject still needs to be explored.

The formula given in Chapter 4, which builds a link from a given penalty
towards its corresponding prior distribution is a contribution to the theoretical
analysis of empirical regularization methods. Still, the technical conditions of the
main theorem seem to be too strict regarding the usual penalties and families of
variational posteriors.

To summarize, these works point towards four research axes: evaluate the
importance of diversity in neural networks, push further the intuition about the
variance of the activations, understand the behavior of infinitely wide neural networks,

115

116 Chapter 5 – Conclusion

and translate empirical regularization methods into Bayesian terms. These research
axes may seem purely theoretical, but, as we have shown in this thesis, they are
also likely to lead naturally to useful new methods (removing hyperparameters, find
heuristics, training and pruning methods, etc.).

Bibliography

[1] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in
deep networks. In Advances in Neural Information Processing Systems, pages
2270–2278, 2016.

[2] Shun-ichi Amari. Natural gradient works efficiently in learning. Neural
Comput., 10:251–276, February 1998.

[3] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In
Advances in neural information processing systems, pages 2654–2662, 2014.

[4] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing
neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

[5] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt,
and Frank Wood. Online learning rate adaptation with hypergradient descent.
In International Conference on Learning Representations, 2018.

[6] Yoshua Bengio. Practical recommendations for gradient-based training of
deep architectures. In Neural networks: Tricks of the trade, pages 437–478.
Springer, 2012.

[7] Yoshua Bengio, Nicolas L. Roux, Pascal Vincent, Olivier Delalleau, and Patrice
Marcotte. Convex neural networks. In Y. Weiss, B. Schölkopf, and J. C. Platt,
editors, Advances in Neural Information Processing Systems 18, pages 123–130.
MIT Press, 2006.

[8] James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of
model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. 2013.

[9] Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J Weston.
Smash: One-shot model architecture search through hypernetworks. In 6th
International Conference on Learning Representations, 2018.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

117

118 Chapter 5 – Bibliography

[11] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin
Chen. Compressing neural networks with the hashing trick. In International
Conference on Machine Learning, pages 2285–2294, 2015.

[12] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[14] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando
de Freitas. Predicting parameters in deep learning. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26, pages 2148–2156. Curran
Associates, Inc., 2013.

[15] Michael Denkowski and Graham Neubig. Stronger baselines for trustable
results in neural machine translation. arXiv preprint arXiv:1706.09733, 2017.

[16] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent
provably optimizes over-parameterized neural networks. 2019.

[17] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. JMLR, 12:2121–2159, 2011.

[18] Akram Erraqabi and Nicolas Le Roux. Combining adaptive algorithms and
hypergradient method: a performance and robustness study. 2018.

[19] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding
Small, Trainable Neural Networks. arXiv preprint arXiv:1704.04861, mar 2018.

[20] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael
Carbin. The lottery ticket hypothesis at scale, 2019.

[21] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the group
lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736, 2010.

[22] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249–256, 2010.

[23] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compress-
ing deep convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115, 2014.

[24] Alex Graves. Practical variational inference for neural networks. In Advances
in Neural Information Processing Systems, pages 2348–2356, 2011.

Chapter 5 – Bibliography 119

[25] Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir
Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko,
Michèle Sebag, et al. A brief review of the ChaLearn AutoML challenge:
any-time any-dataset learning without human intervention. In Workshop on
Automatic Machine Learning, pages 21–30, 2016.

[26] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. arXiv preprint arXiv:1510.00149, 2015.

[27] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In Advances in neural information
processing systems, pages 1135–1143, 2015.

[28] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights
and Connections for Efficient Neural Networks. In NIPS, 2015.

[29] Babak Hassibi and David G Stork. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in neural information processing
systems, pages 164–171, 1993.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In ICCV, pages 770–778, 2016.

[32] Mark Herbster and Manfred K Warmuth. Tracking the best expert. Machine
learning, 32(2):151–178, 1998.

[33] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[34] Geoffrey E Hinton and Drew van Camp. Keeping neural networks simple. In
International Conference on Artificial Neural Networks, pages 11–18. Springer,
1993.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[36] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

120 Chapter 5 – Bibliography

[37] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In CVPR, volume 1, page 3, 2017.

[38] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for
deep neural networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 304–320, 2018.

[39] Lars Hörmander. The Analysis of Linear Partial Differential Operators I.
Springer, 1998.

[40] Robert A Jacobs. Increased rates of convergence through learning rate adap-
tation. Neural networks, 1(4):295–307, 1988.

[41] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:
Convergence and generalization in neural networks. In Advances in neural
information processing systems, pages 8571–8580, 2018.

[42] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja
Fischer, Yoshua Bengio, and Amos Storkey. Three factors influencing minima
in sgd. arXiv preprint arXiv:1711.04623, 2017.

[43] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K
Saul. An introduction to variational methods for graphical models. Machine
learning, 37(2):183–233, 1999.

[44] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and
Yonghui Wu. Exploring the limits of language modeling. arXiv preprint
arXiv:1602.02410, 2016.

[45] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical ex-
ploration of recurrent network architectures. In International Conference on
Machine Learning, pages 2342–2350, 2015.

[46] Nitish Shirish Keskar and Richard Socher. Improving generalization perfor-
mance by switching from Adam to SGD. arXiv preprint arXiv:1712.07628,
2017.

[47] Kianglu. pytorch-cifar, 2018.

[48] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations, 2015.

[49] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the
local reparameterization trick. In Advances in Neural Information Processing
Systems, pages 2575–2583, 2015.

[50] Wouter Koolen and Steven De Rooij. Combining expert advice efficiently.
arXiv preprint arXiv:0802.2015, 2008.

Chapter 5 – Bibliography 121

[51] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
2009.

[52] Alex Krizhevsky. One weird trick for parallelizing convolutional neural net-
works. arXiv preprint arXiv:1404.5997, 2014.

[53] Keita Kurita. Learning Rate Tuning in Deep Learning: A Practical Guide |
Machine Learning Explained, 2018.

[54] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[55] Yann LeCun, Leon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Effi-
cient backprop. In Neural Networks: Tricks of the Trade, pages 9–50. Springer,
1998.

[56] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In
D. S. Touretzky, editor, NIPS 2, pages 598–605. Morgan-Kaufmann, 1990.

[57] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In
Advances in neural information processing systems, pages 598–605, 1990.

[58] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve
as linear models under gradient descent. arXiv preprint arXiv:1902.06720,
2019.

[59] Chunyuan Li, Changyou Chen, David E. Carlson, and Lawrence Carin. Pre-
conditioned stochastic gradient Langevin dynamics for deep neural networks.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 1788–1794, 2016.

[60] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[61] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter
optimization. JMLR, 18(1):6765–6816, 2017.

[62] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. CoRR, abs/1509.02971, 2015.

[63] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia
Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive
neural architecture search. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 19–34, 2018.

122 Chapter 5 – Bibliography

[64] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[65] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and
Changshui Zhang. Learning efficient convolutional networks through network
slimming. In Computer Vision (ICCV), 2017 IEEE International Conference
on, pages 2755–2763. IEEE, 2017.

[66] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270,
2018.

[67] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for
deep learning. In Advances in Neural Information Processing Systems, pages
3288–3298, 2017.

[68] David Mack. How to pick the best learning rate for your machine learning
project, 2016.

[69] David JC MacKay. Bayesian model comparison and backprop nets. In Advances
in neural information processing systems, pages 839–846, 1992.

[70] David JC MacKay. A practical bayesian framework for backpropagation
networks. Neural computation, 4(3):448–472, 1992.

[71] David JC MacKay. Probable networks and plausible predictions—a review of
practical bayesian methods for supervised neural networks. Network: compu-
tation in neural systems, 6(3):469–505, 1995.

[72] David JC MacKay and David JC Mac Kay. Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[73] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyper-
parameter optimization through reversible learning. In International Confer-
ence on Machine Learning, pages 2113–2122, 2015.

[74] Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M
Pilarski. Tuning-free step-size adaptation. In Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on, pages 2121–
2124. IEEE, 2012.

[75] Gaétan Marceau-Caron and Yann Ollivier. Natural langevin dynamics for neu-
ral networks. In International Conference on Geometric Science of Information,
pages 451–459. Springer, 2017.

[76] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building
a large annotated corpus of english: The penn treebank. Comput. Linguist.,
19(2):313–330, June 1993.

Chapter 5 – Bibliography 123

[77] Pierre-Yves Massé and Yann Ollivier. Speed learning on the fly. arXiv preprint
arXiv:1511.02540, 2015.

[78] Alexander G de G Matthews, Jiri Hron, Mark Rowland, Richard E Turner,
and Zoubin Ghahramani. Gaussian process behaviour in wide deep neural
networks. 2018.

[79] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

[80] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout
sparsifies deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2498–2507. JMLR. org,
2017.

[81] Kenton Murray and David Chiang. Auto-sizing neural networks: With appli-
cations to n-gram language models. arXiv preprint arXiv:1508.05051, 2015.

[82] Radford M Neal. Bayesian learning for neural networks. PhD thesis, University
of Toronto, 1995.

[83] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete
basis set: A strategy employed by v1? Vision research, 37(23):3311–3325,
1997.

[84] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[85] Andrei D Polyanin and Alexander V Manzhirov. Handbook of integral equations.
CRC press, 1998.

[86] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon
Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution
of image classifiers. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2902–2911. JMLR. org, 2017.

[87] H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951.

[88] Andrew M Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin
Suresh, and Andrew Y Ng. On random weights and unsupervised feature
learning. In ICML, pages 1089–1096, 2011.

124 Chapter 5 – Bibliography

[89] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini.
Group sparse regularization for deep neural networks. Neurocomputing, 241:81–
89, 2017.

[90] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In
International Conference on Machine Learning, pages 343–351, 2013.

[91] Nicol N Schraudolph. Local gain adaptation in stochastic gradient descent.
1999.

[92] Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of
neural machine translation models via pruning. CoNLL 2016, page 291, 2016.

[93] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.

[94] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[95] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[96] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

[97] Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean
spaces (PMS-32), volume 32. Princeton university press, 2016.

[98] Pavel Surmenok. Estimating an Optimal Learning Rate For a Deep Neural
Network, 2017.

[99] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In ICCV, pages 1–9, 2015.

[100] Sergios Theodoridis. Machine learning: a Bayesian and optimization perspec-
tive. Academic Press, 2015.

[101] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[102] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[103] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31, 2012.

Chapter 5 – Bibliography 125

[104] Tim Van Erven, Peter Grünwald, and Steven De Rooij. Catching up faster
by switching sooner: A predictive approach to adaptive estimation with an
application to the AIC-BIC dilemma. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 74(3):361–417, 2012.

[105] Tim Van Erven, Steven D. Rooij, and Peter Grünwald. Catching up faster
in Bayesian model selection and model averaging. In J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, editors, NIPS 20, pages 417–424. Curran Asso-
ciates, Inc., 2008.

[106] Paul AJ Volf and Frans MJ Willems. Switching between two universal source
coding algorithms. In Data Compression Conference, 1998. DCC’98. Proceed-
ings, pages 491–500. IEEE, 1998.

[107] Larry Wasserman. Bayesian Model Selection and Model Averaging. Journal
of Mathematical Psychology, 44, 2000.

[108] Paul J Werbos. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[109] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin
Recht. The marginal value of adaptive gradient methods in machine learning.
In NIPS, pages 4148–4158, 2017.

[110] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67, 2006.

[111] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. 2017.

[112] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal?
arXiv preprint arXiv:1902.01996, 2019.

[113] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

Appendix A

Proofs

A.1 He’s Initialization Rule: Details of Exam-
ple 1.2.2

The content of this section is derived from the paper of He et al. [30].
Let us consider a neuron in the layer l performing the operation:

xl+1 = φ(yl) = φ(wl · xl),

where xl is the input vector, xl+1 is the output (number) of the neuron, wl is its
vector of weights, and φ its activation function.

We assume that the components of wl are i. i. d. from a symmetric distribution
centered in 0. Therefore:

Var(yl) = Var (wl · xl)
= nl−1Var (wlxl) ,

where wl and xl are random variables respectively with the same distribution as
each component of wl and xl, and nl−1 is their dimension. Thus:

Var(yl) = nl−1Var(wl)Ex2
l

Moreover, if φ is the Rectified Linear Unit (ReLU) activation function, i. e.
φ(x) = ReLU(x) = max(x, 0), then:

Var(yl) = nl−1Var(wl)E
[
x2
l

]
= nl−1Var(wl)E

[
φ(yl−1)2

]
= nl−1Var(wl)E

[
y2
l−11yl−1≥0

]
Since all the weights of the neural network are supposed to be independently

drawn from a symmetric distribution centered in 0, the output yl−1 of a neuron

127

128 Chapter A – Proofs

in the (l − 1)-th layer is a random variable whose distribution is symmetric and
centered in 0. Therefore:

E
[
y2
l−11yl−1≥0

]
= 1

2E
[
y2
l−1

]
= Var(yl−1).

Finally, we have:

Var(yl) = 1
2nl−1Var(wl)Var(yl−1),

which means that the variance of the pre-activations yl is preserved if:

Var(wl) = 2
nl−1

.

A.2 Variational Inference: Proof of Equation (1.4)
The content of this section is derived from the paper of Graves [24].

We recall equation (1.4):

KL(πD‖β) = −Ew∼β ln pw(D) + KL(α‖β) + lnP(D),

where D is the training dataset, pw(D) is the likelihood of D according to the model
Mw, α is the prior distribution over w, β is a probability distribution over w, and
πD is the posterior distribution of w given D.

Proof. For any distribution β, the following equations hold:

πD(w) = pw(D)α(w)
P(D)

πD(w)
β(w) = pw(D) · α(w)

β(w) ·
1

P(D)

− ln πD(w)
β(w) = − ln pw(D)− ln α(w)

β(w) − ln 1
P(D)

ln β(w)
πD(w) = − ln pw(D) + ln β(w)

α(w) + lnP(D).

By integrating over β, we have:

Ew∼β ln β(w)
πD(w) = −Ew∼β ln pw(D) + Ew∼β ln β(w)

α(w) + lnP(D)

KL(πD‖β) = −Ew∼β ln pw(D) + KL(α‖β) + lnP(D).

Titre : Apprentissage de structure pour les réseaux de neurones

Mots clés : réseaux de neurones, apprentissage profond, hyperparamètres, élagage, Bayes

Résumé : La structure d'un réseau de neu-

rones détermine dans une large mesure son coût

d'entraînement et d'utilisation, ainsi que sa ca-

pacité à apprendre. Ces deux aspects sont

habituellement en compétition : plus un réseau

de neurones est grand, mieux il remplira la tâche

qui lui a été assignée, mais plus son entraîne-

ment nécessitera des ressources en mémoire et

en temps de calcul. L'automatisation de la

recherche des structures de réseaux e�caces �

de taille raisonnable, mais performantes dans

l'accomplissement de la tâche� est donc une

question très étudiée dans ce domaine.

Dans ce contexte, des réseaux de neurones

aux structures variées doivent être entraînés, ce

qui nécessite un nouveau jeu d'hyperparamètres

d'entraînement à chaque nouvelle structure

testée. L'objectif de la thèse est de traiter dif-

férents aspects de ce problème. La première

contribution est une méthode d'entraînement de

réseau qui fonctionne dans un vaste périmètre de

structures de réseaux et de tâches à accomplir,

sans nécessité de régler le taux d'apprentissage.

La deuxième contribution est une technique

d'entraînement et d'élagage de réseau, conçue

pour être insensible à la largeur initiale de celui-

ci. La dernière contribution est principalement

un théorème qui permet de traduire une pénalité

d'entraînement empirique en a priori bayésien,

théoriquement bien fondé.

Ce travail résulte d'une recherche des pro-

priétés que doivent théoriquement véri�er les al-

gorithmes d'entraînement et d'élagage pour être

valables sur un vaste ensemble de réseaux de

neurones et d'objectifs.

Title: Structural Learning of Neural Networks

Keywords: neural networks, deep learning, hyperparameters, pruning, Bayes

Abstract: The structure of a neural network

determines to a large extent its cost of training

and use, as well as its ability to learn. These two

aspects are usually in competition: the larger

a neural network is, the better it will perform

the task assigned to it, but the more it will re-

quire memory and computing time resources for

training. Automating the search of e�cient net-

work structures �of reasonable size and perform-

ing well� is then a very studied question in this

area.

Within this context, neural networks with

various structures are trained, which requires

a new set of training hyperparameters for each

new structure tested. The aim of the thesis is to

address di�erent aspects of this problem. The

�rst contribution is a training method that op-

erates within a large perimeter of network struc-

tures and tasks, without needing to adjust the

learning rate. The second contribution is a net-

work training and pruning technique, designed

to be insensitive to the initial width of the net-

work. The last contribution is mainly a theorem

that makes possible to translate an empirical

training penalty into a Bayesian prior, theoret-

ically well founded.

This work results from a search for proper-

ties that theoretically must be veri�ed by train-

ing and pruning algorithms to be valid over a

wide range of neural networks and objectives.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Feedforward Neural Networks
	Initialization of a Neural Network
	Variational Inference
	General Framework
	Application to Neural Networks

	Contributions
	Facilitate Architecture Selection with Alrao
	Stable Neural Network Training and Pruning with ScaLP
	Interpreting an Empirical Penalty as the Influence of a Prior in a Variational Inference Setup

	Learning with Random Learning Rates
	Introduction
	Related Work
	Motivation and Outline
	All Learning Rates At Once: Description
	Notation
	Alrao Architecture
	Alrao Update for the Internal Layers: A Random Learning Rate for Each Unit
	Alrao Update for the Output Layer: Model Averaging from Output Layers Trained with Different Learning Rates

	Experimental Setup
	Image Classification on ImageNet and CIFAR10
	Other Tasks: Text Prediction, Reinforcement Learning

	Performance and Robustness of Alrao
	Alrao Compared to SGD with Optimal Learning Rate
	Robustness of Alrao, and Comparison to Default Adam
	Sensitivity Study to [min;max]
	Pruning Layers after Training

	Discussion, Limitations, and Perspectives
	Conclusion
	Appendix
	Model Averaging with the Switch
	Influence of Model Averaging in Alrao
	Additional Experimental Details and Results
	Alrao with Adam
	Number of Parameters
	Frozen Features Do Not Hurt Training

	Asymmetrical Scaling Layers for Stable Network Pruning
	Introduction
	Related Work
	ScaLa: Scaling the Weights for Width-Independent Training
	Two Problems with Infinitely Wide Layers
	Training a Layer with an Infinite Number of Inputs
	Neurons and Convolutional Filters with ScaLa
	Normalizing the Activations

	ScaLP: Pruning with Non-Uniform Weight Scaling
	The L2 Penalty for ScaLP
	ScaLP Pruning Rule
	Choice of (k)k

	Experiments
	Influence of the Variable Change w
	Pruning: Results and Comparison
	Existing Penalties
	Pruning Experiments
	Stability of the Final Architecture with Respect to Initial Width
	Discussion

	Conclusion
	Appendix
	Proof of Proposition 1

	Interpreting the Penalty as the Influence of a Bayesian Prior
	Introduction
	Related Work
	Variational Inference
	Bayesian Interpretation of Penalties
	When Can a Penalty Be Interpreted as a Prior?
	Example 4.3.1: Gaussian Distributions with L2 Penalty
	Example 4.3.2: Deterministic Posteriors and the MAP

	Application to Neural Networks: Choosing the Penalty Factor
	A Reasonable Condition over the Prior
	Examples: L2, L1, and Group-Lasso Penalties

	Experiments
	Conclusion
	Appendix
	Training and Pruning: Details
	Experimental Procedure
	Reminder of Distribution Theory
	Proof of Theorem 1
	Note on Remark 4
	Proof of Corollary 6
	Proof of Corollary 7

	Conclusion
	Proofs
	He's Initialization Rule: Details of Example 1.2.2
	Variational Inference: Proof of Equation (1.4)

