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Chapter 0

Résumé long en francais

Ce résumé du manuscrit de thése en francais est une directive de ’'Ecole Doctorale de
Physique en Ile-de-France pour faciliter la propagation du savoir en langue francaise.
Cette tache est doublement délicate, principalement en raison de la difficulté a définir le
lectorat d’un tel document : d’une part, bien qu’une introduction de base soit nécessaire,
il ne s’agit pas de se substituer a un travail de vulgarisation, d’autre part, si le travail
exposé dans ce manuscrit est effectivement original, il ne peut prétendre & une présentation
francophone autonome, c¢’est-a-dire indépendante de la recherche non-francophone publiée
durant le demi-siecle dernier. Pour ces raisons, et pour tenter de répondre convenablement
a cette double attente, ce résumé propose une approche a deux tétes, c’est-a-dire une
traduction partielle du chapitre 1 d’introduction, nécessaire a la contextualisation de
ce travail de these, ainsi qu'une rapide présentation des résultats des chapitres 2, 3 et 4,
permettant au lectorat plus curieux de se repérer dans la partie anglophone du manuscrit.

Dans le reste du document, nous utilisons un systeme standard de conventions ou
h = ¢ = 1, c’est-a-dire qu’une unité de temps est égale & une unité de longueur, et a
I'inverse d’une unité d’énergie. La signature utilisée pour I'espace-temps est (—, +, ..., +).

0.1 Introduction

La gravité quantique est I'une des grandes problématiques de la physique théorique mod-
erne. Sa version classique, telle qu’elle fut exprimée par Newton et Einstein, ne permet
pas d’en établir une description microscopique malgré la longue liste d’outils théoriques
développés lors du siecle dernier. Obtenir une description complete de la théorie de
gravité fut considéré comme un probleme majeur, notamment pour pouvoir expliquer des
phénomenes physiques se déroulant dans des régions de I’espace-temps ou la force de grav-
ité est réputée extrémement forte, comme les trous noirs ou "'origine de 1’espace-temps".
Au-dela des applications pratiques, ce probléeme est souvent énoncé comme celui pouvant
offrir la piece de puzzle manquante entre les théories quantiques décrivant la physique
des particules, les théories quantiques des champs, et la théorie classique décrivant la
dynamique de I'espace-temps, a savoir la théorie de la relativité générale d’Einstein.
A ce propos, 'équation d’Einstein illustre ses deux faces élégamment

1
R, — §gWR = 87GT,, . (1)
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6 CHAPTER 0. RESUME LONG EN FRANCAIS

Le membre gauche de (1) décrit une géométrie non-quantifiée (classique) de l’espace-
temps, tandis que le c6té droit décrit de la matiere quantifiée. Ce paradoxe n’a pas
été exploré davantage a ’époque des travaux d’Einstein, car la physique macroscopique
(par opposition a la physique microscopique) était suffisante pour décrire tous les objets
astrophysiques du milieu interstellaire nous entourant.

Tout laisse a croire que la nature quantique de l'espace-temps serait observable a
I’échelle de Planck MI%Z = % ~ 10?8 eV, ou les effets quantique et gravitationnels sont
comparables. Malheureusement, cette échelle d’énergie est hors d’atteinte de tout colli-
sionneur artificiel — les techniques actuelles nous permettant de sonder des énergies de
collision de 'ordre 10 eV, malgré tout, de nombreuses études en théories effectives des
champs et modeles phénoménologiques ont été inspirées par la recherche en gravité quan-
tique [3, 1].

Comme présentés dans 'introduction anglophone de la suite de ce manuscrit, les deux
obstacles majeurs a la quantification de la gravité sont les problemes dits d’unitarité
et de renormalisabilité. Pour y remédier, deux grands paradigmes ont émergé dans le
dernier quart du XX€ siecle, deux approches distinctes qui different sur la question de
la quantification. D’un c6té, la gravité est considérée comme une théorie completement
non-perturbative, et les problémes sus-mentionnés d’unitarité et de renormalisabilité sont
interprétés comme des artefacts de ’approche perturbative. Cette approche s’appelle
la Gravité Quantique a Boucles, ou 'on utilise la notion de boucle dans 1’espace pour
mesurer la courbure de celui-ci, et 'on quantifie la dite variable de boucle. De l'autre
cOté, la gravité classique est considérée comme la limite a basse énergie d’une théorie
plus fondamentale, et ’on décide de quantifier la métrique perturbativement autour d’un
espace-temps plat, avec un contenu de matiere plus riche et symétrique que celui connu,
comme en supergravité ou en théorie des cordes. Cette approche est celle poursuivie dans
le reste de ce manuscrit.

0.1.1 Trous noirs

Les théories couplées a la gravité permettent l’existence de solutions d’espace-temps de
type trous noirs. Décrire leur entropie — que nous présentons maintenant — est un des
points centraux de [BCHP1], [BCHP3].

Les trous noirs sont caractérisés par une surface hypothétique, ’horizon des éven-
nements, ayant la propriété spéciale d’étre une surface de type lumiere : tout objet se
trouvant a sa surface a deux alternatives, tomber vers 'intérieur du trou noir si sa vitesse
est inférieure & celle de la lumiére, ou bien se déplacer tangent a celle-ci s’il évolue a
la vitesse de la lumiére. Les objets voyageant a une vitesse supérieure a celle de la
lumiere pourraient, en principe, échapper a l'attraction du trou noir, mais ce comporte-
ment contredit le principe de causalité, ce qui est formellement interdit dans toute théorie
raisonnable. Cependant, les effets quantiques, comme la polarisation du vide, permettent
a certaines particules de s’en échapper (voir figure 1). Des paires particule-antiparticule se
séparent constamment a ’horizon des événements, occasionant une radiation semblable a
celle d’'un corps noir de température finie. Cette température dépend des caractéristiques
du trou noir, et est appelée la température de Hawking [10, 23]

hk
T=— 2
Ly )
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Fig. 1 Ilustration de I’émission de matiére par un trou noir. Une paire
particule-antiparticule se créé spontanément au voisinage de I’horizon des événe-
ments. L’une d’entre elles tombe a l'intérieur du trou noir tandis que ’autre s’en
échappe. Particules et antiparticules sont représentées par une fléche.

ou k est appelée gravité de surface, mesurant la force de gravité a I’horizon. De plus,
les trous noirs se comportent comme des systemes thermodynamiques caractérisés par
leur température et d’autres variables d’état': le théoréme de ’calvitie’ — ou d’absence de
chevelure? — affirme qu’un trou noir est entiérement décrit par sa masse, ses charges et
son moment angulaire, impliquant que son énergie interne peut étre pergue comme une
fonction d’état.? Cette analogie avec la fonction d’état d’un systéme thermodynamique a
été utilisée pour identifier [24]

A 3
1}%25 ) ( )

la célebre entropie de Bekenstein-Hawking®. Dans le paragraphe anglophone 4.1, nous
présentons une méthode reconnue pour calculer I'entropie d’une certaine classe de solu-
tions de trou noir, qui prend en compte les possibles corrections a ’action d’Einstein-
Hilbert.

Ce résultat est pour le moins étrange, car on s’attend a voir 'entropie d’un objet
étendu dans 'espace varier proportionnellement a son volume. Cependant, la loi (3) peut
sembler raisonnable si 'on prend en compte la compression arbitrairement grande de
I’espace dans la direction radiale au voisinage de ’horizon du trou noir, comme illustré
figure 2. Si cette analogie est correcte, il est naturel de se poser la question suivante

est-ce qu'une théorie quantique de la gravité peut permettre une compréhension en
termes statistiques de cette entropie 7 En effet, ’entropie thermodynamique d’un systeme
satisfait a la célebre loi de Boltzmann

SpH =

S=kgnQ, (4)

!La température, le volume, la pression et autres quantités macroscopiques qui sont définies & I’équilibre
thermodynamique seulement.

2Son nom le plus courant étant "no-hair theorem".

3Par définition, une fonction d’état ne dépend que des variables d’état du systéme.

4Pour donner un ordre de grandeur, un trou noir de la taille de notre soleil aurait une trés petite
température T ~ 107" K, et une trés grande entropie S = 107".
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Fig. 2 Illustration de la chute d’un objet vers l'intérieur d’un trou noir depuis
un point de vue externe (en bleu) : la géométrie de I'espace-temps déforme
infiniment la forme de l'objet vers une surface en deux dimensions, et de la
méme maniére, ralentit infiniment le temps nécessaire pour que l’'objet passe a
travers I’horizon. Depuis le point de vue externe, les objets ‘tombant’ dans le
trou noir ne font que s’accumuler tout autour sur une sphére entourant I’horizon.

.
.

. .

REETT T Lo

ot {2 est le nombre de microétats accessibles a un méme état d’équilibre thermodynamique.
Dans [BCHP1], [BCHP3], nous concentrons notre attention sur une classe particuliere
d’objets ou cette question a été répondue affirmativement, une sous-classe de solutions de
trou noir extrémales [25]. Dans le paragraphe anglophone §4.2, nous présentons un cas
particulier de théorie permettant une compréhension statistique des microétats de trous
noirs extrémaux, ou il a été montré avec grande précision que le dénombrement de ces
microétats concorde avec ’entropie classique des trous noirs correspondants.

Les variables thermodynamiques d’un trou noir extrémal saturent 'inégalité définis-
sant I’état a température nulle. Nous nous concentrerons sur le cas de solutions sta-
tionnaires a symétrie sphérique avec charges électromagnétiques — appelée la solution de
Reissner-Nordstréom — ou 'inégalité sur les charges est M? > Q? + P2, avec @ la charge
électrique et P la charge magnétique. L’entropie de Bekenstein-Hawking de ces trous
noirs extrémaux (1.8) peut-étre obtenue a partir d’une théorie dite de Einstein-Maxwell
en quatre dimensions

SBH(Q,P):W(QQ—FPQ). (5)

Il est important de souligner que, méme en tant qu’approximation classique, I'expression (5)
ne dépend d’aucun parametre de la théorie. Dans une théorie invariante sous difféo-
morphismes, 'entropie d’un trou noir correspond & l'intégrale d’une 2-forme, charge de
Noether définie par Wald, sur 'horizon [26]. L’entropie de trous noirs extrémaux, tels
que (5), est aussi indépendante de la valeur asymptotique des champs scalaires, ce qui
est une conséquence de la généralisation du mécanisme d’attracteur pour les solutions
de trous noirs de supergravité [27, 28]. Ceci peut étre facilement compris en écrivant la
fonction entropie comme une fonctionnelle de la densité lagrangienne, tel que décrit dans
le paragraphe anglophone §4.1.

Dans certaines théories ot les couplages correspondent a la valeur asymptotique d’un
champs dynamique, comme la théorie des cordes, cela implique que ’entropie d’un systéme
ne change pas lorsque 'on varie le couplage. On peut ainsi décrire ses microétats a
faible couplage, lorsque les techniques actuelles le permettent, et prolonger le résultat aux
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régimes de couplage suffisamment forts, lorsque le systéme devient un trou noir.

Dans les paragraphes anglophones §4.1 et §4.3, nous proposons une introduction des
types de solutions de trous noirs pertinentes pour le reste de ce manuscrit. Ce sont des so-
lutions sphériques de supergravité en quatre dimensions, et dans le paragraphe anglophone
§4.2 nous présentons le comptage de leurs microétats a partir d’une leur description en
théorie des cordes. Enfin, dans le paragraphe anglophone §4.4, nous montrons comment
les calculs publiés dans [BCHP3| permettent de retrouver et de généraliser les résultats
présentés en §4.2.

0.1.2 Supergravité

Les théories de supergravité constituent une tentative de modifier le comportement ul-
traviolet de la gravité d’Einstein, et peuvent également étre la limite de basse énergie
d’une théorie des cordes telle que celles que ’on considérera dans la suite de ce manuscrit.
L’espace-temps habituel est plongé dans un espace de dimension supérieure appelé su-
perespace, ou les nouvelles coordonnées sont définies par des nombres de Grassmann an-
ticommutants — ou supernombres, i.e. les degrés de liberté fermioniques.

Les symétries de cette nouvelle géométrie constituent un groupe de Poincaré (trans-
lations, rotations, boosts) étendu par des symétries locales anticommutantes appelées
supercharges, et se transformant comme des spineurs sous la symétrie de Lorentz. Ces
symétries locales contraignent également les champs de matiere contenus dans la théorie
quantique des champs, ce qui simplifie drastiquement la dynamique de ces théories (voir
ci-apres, tableau 1). Cette extension du groupe de Poincaré est toute particuliere dans la
mesure ol elle correspond au seul exemple possible ot les symétries de I’espace-temps se
mélangent non-trivialement avec les symétries internes de la théorie quantique des champs
sous-jacente, ce qui contredit I'esprit du théoréme de Coleman-Mandula [29].

Les théories de supergravité sont généralement classifiées par leur nombre de super-
charges : de 4 en quatre dimensions d’espace-temps a 32 pour l'extension maximale,
cette derniére étant définie en toute dimensions jusqu’a D = 11 [30, 31]. Par la suite,
nous référerons au nombre N de supercharges spinorielles en quatre dimensions seulement
lorsque nous nous restreindrons & quatre dimensions, i.e. N = 8 et A/ = 4 correspon-
dent respectivement aux supergravités maximales et demi-maximales en quatre dimen-
sions d’espace-temps. De plus, les supergravités peuvent étre séparées en deux types
de construction, les constructions (2,2) et les constructions (4,0).> Ces derniéres sont
celles que nous étudierons dans le reste de ce manuscrit. En particulier, dans le para-
graphe anglophone §3.1.1, nous présentons une réduction dimensionnelle de supergravité
demi-maximale de dix a quatre dimensions, et nous exhibons la maniéere avec laquelle les
champs de jauge et les modules peuvent s’arranger dans des représentations des groupes
de symétrie globaux listés dans le tableau 1.

Les théories de supergravité contenant une grande extension de supersymétrie, dont
certaines son listées tableau 1, ont un spectre bien plus riche que celui de la gravité
d’Einstein (qui, par comparaison, se restreint a un seul champ de spin 2). Comme dit
plus haut, cette complexité est réduite au niveau de I'action effective ou des amplitudes
de diffusion, notamment & cause des contraintes de supersymétrie, mais aussi a cause des

5Cette notation fait référence & la chiralité des supercharges du modéle sigma de théorie des cordes —
voir la section suivante — & ne pas confondre avec la supersymétrie d’espace-temps.
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|s=2 s=3 s=1 s=1/2 s=0| ‘
N=8 | 1 8 28 56 70 | Er \
1 4 6 4 2 SO(6) x SL(2,R)
1 4 642 448 2+12 | SO(2,6) x SL(2,R)
1 4 6+4 4416 2+24 | SO(4,6) x SL(2,R) | N=7
N =4 1 4 646 4424 2436 | SO(6,6) x SL(2,R) | N=5
1 I 6410 4440 2760 | SO(10.6) x SL(2,R) | N=3
1 4 6+14 4456 2+84 | SO(14,6) x SL(2,R) | N=2
1 4 6422 4488  2+132 | SO(22,6) x SL(2,R) | N=1

Table 1: Champs de matiere classifiés par spin contenus dans des théories avec spin
maximal 2 en quatre dimensions de certaines supergravités N' = 8 et N' = 4. La taille
des représentations de spin est fixée depuis le plus haut spin par supersymétrie. Les
deux premieres lignes correspondent a des supergravités pures (champs de gravité de
spin 2 et partenaires supersymétriques uniquement), et les suivantes sont couplées & un
nombre spécifique de multiplets vectoriels préservant la symétrie globale non-perturbative
SL(2,R). Les deux derniéres colonnes correspondent aux symétries globales attendues
du spectre de masse nulle, et au parametre d’orbifold de la théorie CHL avec orbifold Z y
correspondante.

symétries géométriques, ou symétries globales. Une partie de ce manuscrit a pour but de
montrer les simplifications engendrées par les symétries géométriques, et de méme que les
contraintes imposées par supersymétrie sur les amplitudes de diffusion, comme rapporté
dans les paragraphes anglophones §3.3 et §3.4.

Ces supergravités ont été étudiées vers la fin des années 70 et 80, apres quoi s’est
développé un consensus selon lequel les contraintes de supersymétrie ne seraient pas suff-
isantes pour éradiquer completement le probleme des divergences non-renormalisables.
Cependant, ces théories ont concentré un regain d’intérét lors des dernieres années et il
a été montré par le biais de calculs explicites que la supergravité N’ = 8 ne rencontre
aucun divergence pathologique en dimension d’espace-temps D < 4+6/L avec L = 2, 3,4
boucles (R*, D?R*) [32, 33]. Ce résultat redonna un élan d’optimisme, étant donné
I'impressionante concordance avec le comportant ultraviolet d’une théorie de jauge pure,
N = 4 super-Yang-Mills, qui est elle-méme finie dans 1'ultraviolet. Cependant, des études
utilisant les symétries de dualité [34, 35, 36, 37, 38] ont prédit un changement abrupt dans
le comportement critique de la supergravité N'= 8 & L = 5 boucles a cause d’'un possible
contre-terme D8R*. Si ce contre-terme ne s’annule pas a 5 boucles, alors il y a fort a
parier que la supergravité N/ = 8 est finie seulement pour D < 2 + 14/L pour L >= 5,
prédisant ainsi une divergence non-renormalisable en quatre dimensions a 7 boucles et
au-dela. De fait, la présence de D®R* & 5 boucles a été récemment confirmée par un
calcul explicite [39].

Dans ce manuscrit, nous ne nous intéresserons pas au cas de la supergravité N’ = 8 et
nous concentrerons nos efforts sur les supergravités N' = 4 présentées dans le tableau 1.
A cause de leur supersymétrie N’ = 4, ces supergravités peuvent étre couplées a des mul-
tiplets de matiere [10] qui, par ailleurs, causent davantage de divergences. La richesse de
leur structure leur permet également d’étre réalisées en tant que limite a basse énergie de
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différents modeles de théorie des cordes, et, en particulier, la théorie des cordes hétéro-
tique compactifiée sur T avec un orbifold Zy que nous décrivons plus en détails dans
le chapitre anglophone 2. La présence de l'orbifold a notamment pour effet de réduire le
spectre des états physiques, comme on peut le constater depuis le tableau 1.

0.1.3 Théorie des cordes

La théorie des cordes, disposant d’une longue et intéressante histoire, sera le centre du
reste de ce manuscrit. Elle fut initialement développée autour de I'année 1968 avec
I'amplitude de Veneziano, et plus tard, 'amplitude de Virasoro-Shapiro

I(—1—da's/4)0 (-1 —a't/4)T (-1 — d'u/4)
(-2 —a't/4— du/HT(-2 — o/s/4 — /u/4)T (-2 — o's/4 — 't /4)
(6)
Celles-ci étaient sensées donner une description du spectre de matiere hadronique provo-
qué par les interactions fortes [11, 12]. Dans (6), s, ¢ et u sont les invariants de Mandelstam
définis par les quatre impulsions entrantes, respectivement, — (k1 + k2)2, — (k1 + k4)? et
—(k1 + k3), et o' fut appelée la pente de Regge. Il fut compris plus tard que ces ampli-
tudes décrivent 'interaction de cordes ouvertes et fermées de taille £5 = v/’ et de tension
T = 1/(2ma’),% tandis qu'une particule de masse nulle et de spin 2 était identifiée dans
le spectre des cordes fermées comme une possible candidate pour le graviton [13]. 11 fut
ensuite rapidement compris que la quantification, 'invariance sous le groupe de Lorentz,
et les contraintes d’unitarité imposent & ces cordes de se propager dans un espace a 26
dimensions d’espace-temps.”. De plus, leur spectre contient une infinité d’états, générés
par les oscillations se déplacant le long d’une corde et dont la masse et le spin s’expriment
en terme du nombre de quantas d’oscillations n

MY3(s,t,u) =

QOg, J < ao'm? +1, n=-1,0,1,..., +c0 . (7)
Cette candidate pour une théorie de la gravité fut plus attirante qu’aucune autre théorie
des champs, car elle a la particularité d’étre manifestement finie dans 'ultraviolet. Ceci
est dli notamment a la taille finie de la longueur de la corde ¢,, impliquant des interactions
non-locales. En effet, a une distance tres supérieure & la taille d’une corde, celles-ci se com-
portent comme des particules ponctuelles pouvant se rencontrer. De plus pres, leur taille
finie donne une épaisseur a leur trajectoire dans I’espace-temps, que ’on ne nomme plus
ligne d’univers, mais feuille d’univers. Cette feuille d’'univers a deux dimensions héberge
une théorie des champs conforme (CFT), dont les symétries permettent par ailleurs une
compréhension alternative de la dimension critique D = 26 [11], et impose également
au graviton de satisfaire le graviton les équations d’Einstein (1.1) comme équations du
mouvement, avec des corrections a tous les ordres en o/. Le gros probléme de ces théories,
aussi bien celle des cordes ouvertes que celle des cordes fermées, est qu’elles contiennent
un tachyon (I’état correspondant a n = —1, dont la masse est un imaginaire pur) qui rend

5Notons que I'amplitude de Virasoro-Shapiro est invariante sous 1’échange des trois variables de Man-
delstam, comme attendu pour une amplitude de cordes fermées a ’ordre des arbres, tandis que ’amplitude
de Veneziano, décrivant I'interaction de cordes ouvertes, n’est invariante que sous ’échange de s et t.

"Cette contrainte sur la dimension d’espace-temps protége I'unitarité de la théorie dans la mesure ot
elle élimine les états de norme négative du spectre.
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incohérente la théorie en en brisant la causalité. Une théorie des supercordes fut alors
élaborée plus tard, et Gliozzi, Scherk et Olive proposerent un mécanisme pour projetter
cet état tachyonic hors du spectre physique [15]. Les théories de supercordes vivent en 10
dimensions d’espace-temps, et disposent d’un secteur d’états de masse nulle contenant le
spectre de la supergravité maximale [16] mentionné dans la section précédente.

La supergravité maximale a ainsi été étudiée longuement pour savoir si elle était
cohérente par elle-méme, ou si elle devait étre complétée & une théorie des cordes afin
d’obtenir un comportement unitaire et régulier dans I'ultraviolet. En effet, les amplitudes
de théorie des cordes sont caractérisées par leur comportement régulier dans la limite des
hautes énergies. En utilisant les invariants cinématiques de Mandelstam, une amplitude
a 4 points a l'ordre des arbres, dans la limite de forte collision — s,t — 400, angle fixe —
se conduit telle que

/

MVS(s,t)Nexp(—%(slns+tlnt+ulnu)) , (8)

ou le comportement souple a large impulsion peut étre attribué a la tour infinie d’états
massifs présents dans le spectre.

Par ailleurs, le probleme des divergences ultraviolettes est résolu par ’existence d’une
longueur finie de cordes ¢;. Celle-ci implique la présence d’une taille minimale ¢; =
Va! pour les phénomenes se réalisant dans Uespace-temps. A Pordre des boucles, cela
peut se comprendre en remarquant que le lieu géométrique dans ’espace des impulsions
correspondant aux divergences de I'amplitude est absente a tous les ordres. Ceci est
une conséquence générale de 'invariance modulaire de 'intégrant : pour les tores et les
surfaces de Riemann de plus haut genre, la partie divergente de la région ultraviolette est
absente de ’espace des parameétres de ’amplitude.

La limite basse énergie de la théorie des cordes donne lieu & une théorie de la gravité
couplée & des champs de matiere. Ces théories peuvent donc décrire des solutions de trou
noir, et constituent ainsi un cadre idéal pour étudier les propriétés quantiques des trous
noirs.

Dualités non-perturbatives en théorie des cordes. Bien que la théorie des super-
cordes soit a I’époque 'unique candidate pour une théorie renormalisable de la gravité
quantique, un certain manque d’intérét fut présent & ses premiers instants, notamment
en raison de l'existence de plusieurs réalisations différentes du principe des supercordes
(théories appelées Type I, Type ITA et Type IIB). De plus, aucune d’entre elles ne sem-
blait compatible avec les exigences de la Nature : les théories de type II n’avaient que
des groupes de jauge abéliens, contrairement aux théories électrofaibles et d’interactions
fortes, et la théorie de type I semblait pouvoir donner l’illusion de posséder un groupe
de jauge arbitraire. Cependant, en 1985, il fut découvert que ’ensemble des groupes de
jauges possibles est séverement contraint par 'absence d’anomalies, condition indispens-
able & tout théorie de jauge cohérente, et qu’'une autre théorie des cordes, appelée théorie
des cordes hétérotique,® avec groupe de jauge SO(32)/Zso ou Eg x Es (ot Eg est 'un des

8Ce nom vient de la construction particuliére de cette théorie. Le oscillations allant dans un sens le
long des cordes fermées se donnent lieu & un spectre purement bosonique en 26 dimensions, tandis que les
oscillations se déplagant dans I’autre sens le long des cordes donnent lieu & un spectre supersymétrique en
10 dimensions.
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groupes exceptionnels dans la classification de Cartan). Le dernier s’avéra étre plus at-
trayant phénoménologiquement et devint tres populaire pour son aptitude a produire des
théories de grande unification du modele standard a partir du sous-groupe exceptionnel
Eg.

Bien que ces découvertes aient amélioré la réputation de cette théorie-candidate, il
devint rapidement évident qu’une compréhension non-perturbative des effets de théorie
des cordes serait nécessaire pour produire un modeéle d’unification des forces de la na-
ture. Plus précisément, la physique en quatre dimensions d’espace-temps dépend de
maniere critique du type de compactification utilisé pour réduire le nombre de dimensions
d’espace-temps de dix a quatre. Certains de ces espaces de compactification possedent
de nombreuses symétries, facilitant ainsi les calculs analytiques, et d’autres sont parfois
reliés entre eux par des dualités, les dualités T, permettant de comprendre un modele de
compactification a partir d’un autre. Cependant, beaucoup de compactifications ne sont
nullement reliées, et restent insondables par nos techniques actuelles. De plus, le type de
compactification est déterminé par la dynamique des champs a trés haute énergie, et la
sélection de cette compactification requiert également une information non-perturbative
a propos du potentiel sur les vides possibles de théorie des cordes.

Il fut compris, en parallele, que les effets non-perturbatifs de certaines théories de jauge
étaient accessibles sans calcul explicite de toutes les contributions instantoniques. Ceci est
rendu possible par la présence d’'une symétrie dite non-perturbative, c’est-a-dire reliant
de maniere hautement non-triviale les effets a faible et fort couplage. Comme mentionné
en §1.4, une telle symétrie fut conjecturée dans le modele de Georgi-Glashow en 1977 [19],
mais fut reque avec scepticisme jusqu’a qu’un argument plus fort soit présenté dans une
extension supersymétrique N = 2 de cette théorie [50]. Cette symétrie entre fort et faible
couplage, appelée dualité S, relie deux phases d’une théorie super-Yang-Mills,” 1'une &
grande valeur du couplage avec ’autre a petite valeur du couplage. Lorsque la théorie est
super-conforme, elle n’est jamais dans une de ces deux phases, mais toujours a un point
critique, et la valeur du couplage ainsi que d’autres grandeurs plus complexe peuvent étre
obtenues en utilisant leur propriété d’invariance sous la dualité S.'°

Ces dualités S furent au méme moment conjecturées dans de nombreuses théories des
cordes, telles que les théories hétérotiques et type IIB, a la fois en tant que symétries et
en tant que dualités reliant différentes théories entre elles, comme par exemple les cordes
hétérotiques a faible (fort) couplage avec les cordes de type I a fort (faible) couplage.
Cette symétrie est notamment utilisée en [BCHP3] pour déduire les propriétés de I’action
effective de basse énergie de l'interaction & quatre photons des cordes de type I.

Plus tard, une autre symétrie fut conjecturée, ce qui marqua un tournant important
dans T’histoire de la théorie des cordes. Celle-ci reliait les cordes de type ITA a fort
couplage a une théorie en onze dimensions d’espace-temps appelée théorie M. Cette méme
dualité envoie la théorie hétérotique avec groupe de jauge Eg x Eg a fort couplage a une
version de la théorie M avec des bords physiques sur la onziéme dimension. L’existence
de cette derniere théorie fut plus tard corroborée par la découverte d’une supergravité en
onze dimensions d’espace-temps, mentionnée dans §0.1.2. Cette étape historique dans la
recherche en théorie des cordes donna lieu & bien d’autres conjectures similaires qui ont

9Elle relie deux théorie différentes lorsque que le groupe de jauge n’est pas simplement lacé [51].
10Crest la cas des théories N =4 et N = 2 oit N, = 2N., avec Ng et N, les nombres de saveur et de
couleur.
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préparé la voie de ce travail de theése.

Ainsi, en étudiant le régime perturbatif de certaines théories des cordes, a faible cou-
plage, il est possible d’utiliser la dualité entre couplages fort et faible pour extraire cer-
taines informations non-perturbatives du régime a fort couplage, dans la méme théorie ou
dans une autre, comme étudié dans les sections anglophones §3.3 et §3.4. Cette dualité
S peut nous aider a comprendre les théories des cordes a grande et petite valeurs du
couplage, mais aussi a nous donner le controle sur certaines informations contenues dans
le secteur instantonique, comme proposé dans le chapitre anglophone §4.

0.1.4 Dualités non-perturbatives en théorie des champs

Les symétries non-perturbatives ont joué un roéle tres important en physique, aussi bien
dans la compréhension de la théorie des cordes que dans certaines théories quantiques
des champs. Elles restent I'un de nos seuls outils théoriques permettant de décrire des
effets physiques non-perturbatifs, c’est-a-dire indétectables par les techniques d’étude au
voisinage des équations classiques du mouvement. Dans cette section, a défaut de résumer
toute leur histoire, nous introduisons quelques détails et concepts clés des dualités entre
couplage fort et faible dans les théories des champs a quatre dimensions. Ceux-ci seront
utiles au profane pour comprendre la déclinaison de ces symétries en théorie des cordes
et en supergravité N’ = 4, revue dans la prochaine section.

Théorie de jauge non-abélienne en quatre dimensions. Nous rappelons ici quelques
détails sur la dualité entre faible et fort couplage dans la plus vieille théorie de I’électromagnétisme,
la théorie de Maxwell, et nous commenterons ensuite sur ce type de dualité dans le cas des
théories des champs (voir le paragraphe suivant), ainsi qu’en supergravité et en théorie
des cordes (voir §3.1). Ces symétries sont au centre des propositions de couplage exacts
faites dans [BCHP1], [BCHP2], [BCHP3|, comme nous 'introduisons dans la section §0.3.

Dans le vide, la théorie de Maxwell de I’électromagnétisme a une symétrie de jauge
U(1) permettant une rotation de référentiel entre les champs électrique et magnétique

E +iB — ¢'*(E +iB). (9)

Celle-ci permet également d’échanger le champ électrique avec le champ magnétique
(E,B) — (—B, E). Dans la formulation relativiste de cette théorie, ou les champs élec-
trique et magnétique sont exprimés respectivement par les entrées du tenseur d’intensité
de champs F" et son dual de Hodge «Fy;, la dualité (E, B) — (B, —E) peut s’exprimer
simplement F),, — «F},,.

Lorsque I’on étend cette dualité au spectre chargé, celle-ci prédit ’existence de monopoles
magnétiques,!! c’est-a-dire des états de charge magnétique ¢, non-nulle. Si présentes, ces
charges doivent satisfaire a la condition de quantification de Dirac-Schwinger-Zwanziger [6,

, 66]

Qe — QoGm =470,  n€eZ, (10)

ot (Ge,qm) et (¢l,q,,) sont les charges électriques et magnétiques de deux particules
présentes dans le spectre. Puisque des électrons de charges (ge,0), avec e € Z et g la

1 Ne pas confondre avec le monopole commercial, sans 6.
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constante de couplage électromagnétique, existent dans la nature, la condition de quan-
tification (1.19) pour un monopole magnétique hypothétique requiert geq,, = 27n. Ainsi,
la charge magnétique possible d’un monopodle est donnée par

4
qm:—ﬂm, meEZ. (11)
g

Ceci implique notamment que 1’échange entre les champs électrique et magnétique, en
présence de matiere chargée, impose une correspondance entre les charges électriques et
magnétiques, jointe a une dualité entre fort et faible couplage ¢

(e,m) = (—mye) = g— 4; (12)

Cette dualité du spectre de charge est également développée en supergravité N' = 4 dans
la section anglophone §3.1.1.

Symétries non-perturbative de la théorie des champs N = 4. In 1974, des solu-
tions magnétiquement chargées furent trouvées dans des théories de jauge non-abéliennes
avec brisure spontanée de symétrie vers des théories de jauge abéliennes [(7, 68]. Monto-
nen et Olive ont ainsi conjecturé I'existence qu'une dualité échangeant un triplet de jauge
composé de ces états de monopodle et du photon avec les bosons W de la brisure spon-
tanée de symétrie de la théorie non-abélienne [19]. Dans le cas général, cette conjecture
fut falsifiée par les corrections quantiques & la masse, ou par la différence de spin entre
ces deux triplets. Cependant, pour la théorie super-Yang-Mills N' = 4, I’action effective
n’obtient aucune correction de couplages a plus de deux dérivées, et il fut montré que la
quantification des modes zéro fermioniques autour d’une solution de monopodle en faisait
un triplet vectoriel massif N’ = 4 [69]. Cela laissa bon espoir quant a l'existence d’une
dualité entre couplage fort et faible.

On peut ainsi donner une valeur moyenne dans le vide (¢) a I'un des six scalaires
adjoints de la théorie N' = 4 avec groupe de jauge G. Ensuite, le boson W, ou la
fluctuation de la composante F, du champ de jauge, avec « une racine de G, obtient une
masse donnée par

Mw(a) = gla-(9)|. (13)

D’un autre coté, chaque racine o donne une solution de monopole similaire a la solution de
Bogomol'nyi-Prasad-Sommerfield G = SU(2) [70, 71]. Ces états, formant une représenta-
tion de dimension seize de 1’algébre de supersymétrie N' = 4, sont annihilés par la moitié
des seize supercharges, et leur masses et charges satisfont une relation particuliere, on dit
qu’elles saturent I'inégalité de Bogomol’'nyi. Dans le cas présent, cette relation est donnée
par

Mas(a) = “;Wav o). (14)

ol o est une coracine de G.'?
Le spectre de bosons W et de monopdles de la théorie peut étre échangé si le systeme
de racines est dual a lui-méme par rapport a la projection orthogonale, i.e. si le systéme

121 ,e systéme des coracines est aussi un systéme de racines. Il est dual au systéme de racines par rapport
a la projection orthogonale.
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de racines et le systéme de coracines sont isomorphes.'® Enfin, on peut également voir
qu’échanger les monopodles de G avec les bosons W de G amene a la méme dualité entre
fort et faible couplage que (12).

Cette présentation superficielle de la dualité S en théorie de super-Yang-Mills ' = 4
peut étre complétée par [72, 73, 74].

Dans la section anglophone §3.1.1, nous rappelons 'invariance de masse du spectre
de charges du secteur BPS dans le cas de la supergravité N' = 4, de manieére & motiver
I'existence d’une dualité non-perturbative de la théorie des cordes complete. Dans les
sections §0.3.1 et §0.3.2, nous utilisons cette dualité ainsi que les contraintes de super-
symétrie pour conjecturer I'existence de couplages exacts F* et V2F*. Ce dernier nous
permettra d’extraire 'information relative a la dégénérescence des trous noirs quart-BPS
en supergravité N’ = 4, dans le chapitre anglophone §4.

0.2 Amplitudes de supercordes et développement pertur-
batif

Dans le chapitre anglophone §3, nous étudions les amplitudes & une et deux boucles
de théories des cordes hétérotiques N/ = 4. Dans le cas le plus simple, la description
effective du secteur de masse nulle de cette théorie correspond a la réduction toroidale
d’une supergravité N’ = 1 couplée a une théorie de super-Yang-Mills N’ = 1. Quelques
modeles de ce type sont donnés dans le tableau 1, et certain d’entre eux étant réalisables
par compactification toroidale d’une théorie des cordes hétérotiques, la colonne N est
I’ordre de I'action libre du groupe Zy de la construction orbifold.

Nous commencons par rappeler certaines bases des amplitudes de cordes fermées
en théorie des cordes, et nous présentons ensuite le calcul a une et deux boucles de
I'interaction a quatre photons. Les résultats a deux boucles sont basés sur le célebre
calcul de D’Hoker et Phong [75, 76, 77, 78, 79, 80].

0.3 Contraintes non-perturbatives et de supersymétrie

Dans le chapitre anglophone 3, nous étudions les symétries entre fort et faible couplage
dans un contexte de théorie des cordes, d’abord pour le modele hétérotique entier, puis
dans les modeles CHL de rang réduit. Nous voulons motiver 'existence de ces symétries
afin de les utiliser dans la construction d’amplitudes exactes pour les interactions a quatre
photons, dans le but in fine d’en extraire le comptage de dégénérescence de trous noirs en
supergravité N’ = 4 (chapitre 4). Ces symétries de théorie des cordes sont tres similaires
dans leur forme aux symétries de théorie des champs présentées dans I'introduction §0.1.4.

Dans la section anglophone 3.1, nous présentons le cas de la théorie hétérotique com-
pléte compactifiée sur le tore, et nous revoyons, a partir de [102, 72], les motivations pour
la symétrie entre fort et faible couplage pour ’action effective de la théorie de supergravité
en quatre dimensions, ainsi que le spectre de charges et d’états BPS. Nous rééxaminons

13En général, la dualité S envoie une théorie avec un groupe de jauge de systéme de racines ® vers une
théorie avec un groupe de jauge de systéme de racines ®¥, ott ®" est le systéme de coracines associé &
®. La symétrie sous dualité S est ainsi possible uniquement si ®¥ ~ ®, ce qui est le cas des groupes
simplement lacés seulement.
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ensuite cette symétrie en trois dimensions, et présentons le groupe beaucoup plus grand
de symétries non-perturbatives qui en découle, G3(Z) [103, ].

Dans la section anglophone 3.2, nous revoyons quelques détails des modeles CHL Zy,
avec N prime, dont le groupe de jauge est de rang réduit, depuis une perspective de cordes
hétérotique [59, 60, 62], et nous argumentons ensuite pour la présence d’une symétrie entre
couplage fort et faible pour ces théories en quatre et trois dimensions [105].

Finalement, dans les sections 0.3.1 et 0.3.2, nous exposons les conjectures de [BCHP1],
[BCHP2], et [BCHP3] qui proposent que des couplages exacts a quatre scalaires dans la
limite de basse énergie de I’action effective en trois dimensions — nommément (V¢)? et
V2(Vg)* — sont donnés par des intégrales modulaires de certaines formes modulaires
spécifiques, multipliées par les fonctions de partition pour le réseau non-perturbatif de
Narain invariant sous le groupe complet des symétries non-perturbatives Gsz(Z). Ces
couplages sont obtenus par covariantisation des coefficients des couplages perturbatifs
respectifs F éggd et Gﬁ) g Sous le groupe de symétries non-perturbatives G3(Z). Ceux-ci
sont également motivés par les contraintes de supersymétrie que nous exposons dans les
sections anglophones §3.3 et §3.4, et sont vérifiés en utilisant des résultats perturbatifs
extraits de la littérature dans le régime de faible couplage en théorie des cordes hétérotique
et de type II dans les sections §3.3.1 et §3.4.1 respectivement.

0.3.1 Conjecture pour le couplage exact F**

Les arguments pour 'existence d’un groupe de dualités non-perturbatives O(r — 4,8, Z),
revus dans les sections anglophones 3.1 and 3.2, ainsi que les contraintes de supersymétrie
revues section 3.3 ont motivé notre conjecture pour 'existence du couplage exact (V¢)*
sous la forme d’une intégrale modulaire

dTl d7_2 FA,» —4,8 [Pabcd}
To(N\H: T3 Ap(r) 7

FG 48 (0) =R.N. (15)

qui est construite comme la généralisation du couplage perturbative a une boucle — voir
dans la partie anglophone (2.24) pour le rang maximal, ou (3.87) pour N = 2,3,5,7 —
ol nous avons remplacé le réseau de Narain A,_57 par son extension non-perturbative
Ar_48 (3.89).

La fonction (15) est manifestement invariante sous les dualités non-perturbatives men-
tionnées section 3.1.2, et a également la propriété de satisfaire aux contraintes de super-
symétrie (3.95), et en particulier a I’équation différentielle (3.97), voir §3.2 de [BCHP2].

Afin de prouver qu’'une solution de la contrainte différentielle de supersymétrie cor-
respond au couplage exact escompté, nous devons vérifier qu’elle satisfait également aux
bonnes conditions aux bords, par exemple, en vérifiant qu’elle redonne bien le résultat
perturbatif pour F*4 dans la limite de faible couplage. Dans la sous-section suivante,
nous calculons cette limite de faible couplage en étudiant la décomposition de Fourier de
Faped(p) a Papproche du cusp gs — 0 dans le cas des cordes hétérotiques en trois dimen-
sions, et dans le cas des cordes de type II en quatre dimensions. Nous montrons que le
mode zéro dans la décomposition de Fourier de (15) correspond aux résultats perturbatifs
obtenus dans la littérature.
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Limite faible couplage en trois dimensions du couplage (V$)*. Dans [BCHP2],
nous avons calculé la décomposition de Fourier de la fonction F gff) au cusp g3 — 0 de

O(r—5,7
G2k78 ~ RT/Q% X {W/O(T — 5, 7, Z):| s (16)

ce qui correspond a la limite de faible couplage des cordes hétérotiques a D = 3. Le
réseau non-perturbatif se décompose selon [BCHP2]

Aok.g = Aog—17® I 1[N], (17)

Pour interpréter les résultats dans un langage perturbatif, nous devons rappeler que la
fonction covariante sous U-dualité F ész)(go) est le coefficient du couplage (V¢)* dans
I’action de basse énergie écrite en référentiel d’Einstein, de sorte que la métrique vg est

invariant sous U-dualité

2k,8 vo pad 7 ob 3
So= [ oy [Rie) = (20,8, = buebia) P’ (0) V017 P PRSP .

(18)
Dans le référentiel de théorie des cordes, v = ygg3 et on trouve
1 2%k,8 bbb e pdd
S3 = / &Pz /=y [ggRM — 93 (26,30, — 0ac03) Fupea () v“pv”aPﬁ“Pﬁ’bPECPﬁd} e
(19)

En utilisant ¢;(0) = k pour les modeles CHL avec N > 1 ou ¢(0) = 2k dans le cas de rang
maximal, ainsi que §(2) = §, les résultats de [BCHP2] donnent

2 (2k8) 3 (2k—1,7) L S0 omia ()
95 Fped = 5—30@bOcd) T Fopeq ~ + Z ck(Q)e 93 Py (20)
2193 Q€A2k—1,7

ou nous avons omis la forme détaillée des corrections exponentiellement supprimées, et
ou ¢x(Q) est la mesure de sommation

i Q’ i
& (Q) = dep( — =) + Ndcy| — . (21)
Eoatd) v
Q/deNsp_17 Q/AeENAZ, .y -

Les deux premiers termes dans (20) devraient correspondre aux contributions & ’ordre des
arbres et a une boucle respectivement. En effet, la réduction dimensionnelle du couplage
hétérotique a l'ordre des arbres en dix dimensions R? + (TrF?)% [128, | implique
I'existence d’un terme & I’ordre des arbres (V¢)* en D = 3, avec un coefficient indépendant
de N. Le second terme dans 20 correspond au terme perturbatif a une boucle (2.24)
par construction. Les termes non-perturbatifs restant peuvent étre interprétés comme
des contributions instantoniques de branes euclidiennes NS5, KK5 hétérotiques et de
monopdles H enroulés autour de tout 7% au sein du 77 de compactification [130]. Plus
précisément, les charges des branes NS5 et KK5 correspondent aux charges de moments
et d’enroulements dans le réseau hyperbolique II1 1 [N] & I3 2 contenu dans Ay,  II; 1,
tandis que les monopoles H correspondent aux charges dans le réseau de jauge Ay g_j (pour
les cordes hétérotiques compactifiées sur T7, ces sous-réseaux doivent étre remplacés par
II7 7 et Eg & Eg ou Djg, respectivement).
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Limite de faible couplage de la théorie des cordes de type II compactifiée sur
K3 x T?. L’axiodilaton hétérotique S correspond respectivement au module Kéhler du
2-tore Ta en type IIA, et & la structure complexe du 2-tore Ug en type IIB, tandis que
Iaxiodilaton de type II Sp = Sp correspond au module de Kéhler T' du 2-tore du co6té
hétérotique
S=Ty=Ug, T=55=58, U=Uxy=18 . (22)
Afin de développer a faible couplage de type I, i.e. & large 15, nous décomposons le réseau
selon
Aop—06=Nog—aa® 1 & I 1[N]. (23)

Pour simplifier, nous utiliserons les modules Sg, Ts, Up de type IIB dans cette section,
avec Spz = 1/g2. De plus, nous ne considérerons que les termes perturbatifs pour les
champs de Maxwell dans le secteur RR correspondant aux indices «, 3,... le long du
sous-réseau Aoj_4 4. La limite de faible couplage de type IIB de I'interaction exacte F 4
donne ainsi [BCHP3]

~(2h— 1 _ 3 él(NTB)+31(TB)+€1(NUB)+(§1(UB)+QIOgg
(2k—2,6) (2k—4,4) s
Fogysmn = gtgFama i+ gé(aﬁ‘své)( N +1 - )
1 _ 3 _
= ?FQ%CW;A) (t) = g 20s0s) log(gs My Ugs| Ak(Ts) Ar(Us) ) (24)
ou le premier terme correspond au couplage a l’ordre des arbres calculé dans [131], tandis

que le second terme est 1ié par supersymétrie au couplage R? calculé dans [132, ].

0.3.2 Conjecture pour le couplage exact V?(V¢)?

Comme pour le couplage (V¢)?* de la section précédente, les arguments motivant existence
d’un groupe de dualités non-perturbatives 6(7‘ —4,8,7), revus dans les sections anglo-
phones §3.1 et §3.2, ainsi que les contraintes de supersymétrie, §3.3, ont motivé la con-
jecture [BCHP3] spécifiant le couplage exact VZ(V¢)* comme I'intégrale modulaire

AQydQ, Ty, [Pabed]
Too(M\Hz Q2> @p_2(Q)

Gab,cd(‘P) = R.N. (25)
Celle-ci est construite comme une généralisation de l'amplitude perturbative & deux
boucles (2.37) (avec I'y(1) = Sp(4,Z)), ou 'on a remplacé le réseau de Narain A,_57
avec son extension non-perturbative A,_4 g (3.89). Dans le cas des modeles CHL, la con-
struction de (25) est nettement plus technique que dans le cas de genre un, mais celle-ci
a été explicité en détails pour N = 2 dans I'appendice B.2.2 of [BCHP3]|, et généralisée
a N = 3,5,7 avec une argumentation dans I’esprit de celle proposée dans la présentation
de genre un de la section anglophone §3.2.1 de ce manuscrit.

La fonction (3.118) est manifestement invariante sous le groupe des dualités non-
perturbatives mentionné dans la section anglophone 3.1.2, et satisfait aux contraintes
de supersymétrie (3.114), et en particulier a I’équation (3.115) (voir la section §3.3 de
[BCHP3]).

Dans la prochaine sous-section, nous nous intéressons a la limite de faible couplage du
modele hétérotique en trois dimensions, et de type II en quatre dimensions. Le mode zéro
dans le développement de Fourier de (25) correspond ainsi a la réponse attendue d’un
calcul perturbatif lorsqu’elle est connue, ou a une prédiction lorsqu’elle est inconnue.
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Limite de faible couplage du couplage exact V?(V¢)*. La décomposition de

Fourier des fonctions F ég;f’g), et Gl(lz’_ci’& au cusp gz — 0 (3.88) correspondant a la
limite de faible couplage hétérotique en trois dimensions ont été calculé dans [BCHP2]

et [BCHP3] respectivement. Dans cette limite, le réseau Agy g se décompose en
Aogg—1,7 @ I 1[N], (26)

oil le rayon du second facteur est relié¢ au couplage des cordes hétérotiques par g3 = 1/v/R,
et le groupe d’U-dualité est brisé en 6(2k —1,7,7), le groupe des automorphismes re-
streints de Agp—1 7. Afin d’interpréter les résultats en termes de contributions perturba-
tives a l'interaction V2(V¢)?, il peut étre pratique de multiplier le coefficient du couplage
par gg, qui prend sa source dans le redimensionnement de Weyl v = v/ g§ pour passer
du référentiel d’Einstein au référentiel de cordes, voir la section §4.3 de [BCHP2|. Le
développement a faible couplage peut étre ensuite extrait de la section §4.1 de [BCHP3|
en remplacant ¢ = 8, v = 1, et donne ainsi

6 ~(2k,8) 3 1 (2k—1,7)

. 2 ~(2k—1,7)
95 Cagas = = 1rg20s.00) = 30s. G (0) F 95 Gagad™ ()
/ *2%\/@+2”@'a
3e % ~(2k—1,7) > 9% 95
+ > 202 Glap.  (@,9) (QLVQL(;)( 208+ %) - 8‘757&)
Qe 17 R
N T
+ > e B "Gapaelgs, QL. Qr)- (27)

les trois premiers termes dans (27) correspondent respectivement a la contribution a deux
boucles calculée en (2.37), la contribution & une boucle (2.29), et la contribution du point
singulier ou la surface de Riemann se factorise en deux surfaces de Riemann de genre un
liées par un point. Cette derniére reproduit la contribution & 'ordre des arbres V2(V¢)4,
obtenue par réduction dimensionelle du couplage V2F* en dix dimensions.

Les termes exponentiellement supprimés de la seconde ligne de (27) peuvent étre
interprétés comme des instantons de branes NS5 euclidiennes enroulées respectivement sur
tous les 7% possibles a I'intérieur du 77 de compactification, des branes KK (6,1) enroulées
avec toutes les fibres Taub-NUT S! possibles & I'intérieur du 77 de compactification, et
des monopodles H enroulés sur le T7 tout entier. Leur expression précise peut étre trouvée
dans [BCHP3]. Bien que nous obtenions une expression précise de ces contributions,
la méthode des orbites utilisée dans [BCHP3] manque plusieurs types de contributions
exponentiellement supprimées ne dépendant pas des axions a. L’existence de ces termes
est assurée par la contrainte différentielle de supersymétrie (3.117), car le coefficient du
couplage (Vé)*, Fupeq, apparaissant dans le membre droit contient des termes de type
instantons anti-instantons indépendants des axions. Malheureusement, nos outils actuels
ne nous permettent pas d’extraire ces contributions a partir de la méthode des orbites.

Pour finir, il est important de préciser que bien que les contributions perturbatives
Gfbkfl‘” et Gﬁf;j ™ soient singuliéres sur des lieux géométriques de codimention 7 &
I'intérieur de /\/l73 aux points d’agrandissement du groupe de symétrie de jauge, le couplage
exact composé des contributions perturbatives et non-perturbatives (3.118) est singulier
sur des lieux géométriques de codimension 8 seulement.
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Limite de faible couplage de cordes de type II compactifiées sur K3 x T? Le
développement des termes V2F* et R2F? exacts en quatre dimensions a été obtenu en
section §5.3.1 de [BCHP3], et nous considérons maintenant la limite de faible couplage des
cordes de type II. Rappelons que S = T = Usg, i.e. 'axiodilaton hétérotique correspond
au module Kéhler du 2-tore en type ITA, et a la structure complexe du 2-tore en type
IIB, tandis que l'axiodilaton de type II Sp = Sg = T correspond au module de Kéhler
hétérotique (3.106).

A large Tgo, i.e. faible couplage de type II, le réseau se décompose similairement
a (3.107), et le coefficient exact du couplage V2E* a été obtenu section §5.3.1 de [BCHP3],
apres s’étre séparé des termes en log R

~ior ~ g 3 él(NUB)—i-gl(UB) 2
(2k—2,6) _ (2k—2,6) _
Gab,cd p(Uss @) = Gab,cd () 4ﬂ_6<ab,5cd)( N+ 1 ) (28)
1 NE(NUg) — E1(U) Ao NE(Ug) — E1(NUB) Ao
o (NG o)« MRS o).

ol ¢ appartient a la grassmannienne paramétrant Agy_o 6. Nous négligeons ici les correc-
tions non-perturbatives et utilisons la décomposition de @fb'f;; %) () pouvant étre obtenue
a partir de la section §5.3.1 de [BCHP3] en replacant les modules par R? = Spy = é,
et en dénotant par ¢ = ¢ les modules de K3 appartenant a la grassmannienne G o444y

Apres avoir développé autour de ¢ = 6 + 2¢, on obtient

~ ok 1~ 3 él(NTB)—I—gl(TB)—I—Qlogg 2
(2k—2,6) (2k—4,4) s
G (0) ~ 305 () = s Yo )
NE&(NTg) &1 (T N& (Tp)—&1(NT

. 1 5 1( ]\[B_)l 1( B) + %log Js é(2k74,4)(t)+ 1( B]z/—ll( B) + %loggs gé(2k74’4) (t))

492" N+1 29) N+1 1) '

(29)

Pour calculer les termes en puissance de @fbkﬁ‘ﬁ)(cp), on peut développer autour de g =

6 + 2¢ et négliger les contributions non-perturbatives. S’agissant de g@gbk_lﬁ) (), il peut
étre utile d’agir avec la dualité de Fricke sur le module de Kéhler Ty pour obtenir Tg —
—ﬁ, ainsi que sur le module de K3 ¢ avec l'involution ¢. En récupérant toutes ces
contributions, nous obtenons le développement perturbatif complet du couplage V2F* en
quatre dimensions

. 1 ~
(2k—2,6) __ (2k—4,4)
Gagron = 7Casqs (1)
S

B 1 ((N(‘fl(NTB)—51(TB)+N51(NUB)_gl(UB)
A(N + 1)g2" o N-1
NE&(Tg) — &1(NTg) + NE(Us) — £ (NUB) 6 A (2k—1,4)
+ ( N1 + = log gs) CGW> (t)
(&1(Th) — E1(NTR))(£1(Us) — él(NUB))>
N -1
3 E1(NTg) + E1(Ts) + E1(NUg) + E1(Ug) + 2 log g4\ 2
— 0t e ). (o)

6 A (2k—4,4)
+ = log gs) G75> (t)

—2N3,5
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Le résultat (30) est manifestement invariant sous I’échange de Up et Ty, et est ainsi
identique dans les cordes de type IIA et type IIB. Il est également invariant sous les
dualités de Fricke combinées T — —ﬁ, Ug — —ﬁ, t — <t [105], ceci étant vrai par
construction de la proposition (3.118).

La limite N = 1 de ce cas est légerement subtile. Le résultat (30) doit étre remplacé

par

1 -~
Goilsn = gTGSE’,?a(t)JFi%ﬁ,(log(TBz\Tl(TB)|4)+10g(UB2\77(UB)!4)—2IOggs)Gf§§4)

4rg 2
27

2
— 1-5%(as035) (108(Toaln(Ts)*) + log(Una|n(Us)|*) — 2log gs) " . (31)

1l serait intéressant de vérifier ces prédictions par un calcul perturbatif explicite en cordes
de type II. Pour simplifier le résultat, on peut utiliser les relations

gl(NTB) +51(TB) 1 A 1
N+1 - _EIOg(TB]Emk(TB)D ’ &1(Tp) = “in log(T5 |A(Ts)])
(32)
afin de réécrire la contribution & deux boucles dans la derniére ligne de (30) as
; - 2
- W%ﬁﬁw (log (g5 " Ty U | Ak (T) A (Us)*))”~ - (33)

0.4 Compter les microétats de trou noir avec des instantons

Dans le chapitre anglophone 4, nous faisons état des résultats de [BCHP1], [BCHP3|
et illustrons leur application au comptage de microétats de trous noirs quart-BPS en
supergravité N = 4.

Ces trous noirs sont invariants sous certaines transformations de supersymeétrie et leur
masse sature 1'inégalité de Bogomol’'nyi (3.37). Ils sont donc extrémaux et n’émettent pas
de radiation de Hawking. En vertu de ce fait, ce sont des objets stables et stationnaires,
c’est-a-dire des solitons. Les microétats correspondants ont été étudiés a faible couplage,
ou les effets gravitationnels induits par le systéme peuvent étre ignorés, et les résultats
furent ensuite prolongés a fort couplage, ot le systeme peut étre décrit comme un trou noir.
L’entropie de ces objets a notamment la particularité d’étre inaffectée par les variations
du couplage gravitationnel [25]. Par ailleurs, leur stabilité nous permet aisément de
comprendre la dynamique des configurations microscopiques correspondantes, et celle-
ci implique de nombreux objets de théorie des cordes, enroulés ou étendus dans des
directions compactes de la variété de compactification, comme décrit dans le paragraph
anglophone §4.2. Dans le régime de grands trous noirs, une découverte historique fut
de découvrir que l'entropie de certains trous noirs en cing dimensions d’espace-temps
satisfait [25, , , ]

SBH(Q7 P) = SStat(Q> P) ) (34)

ou Syp(Q, P) est 'entropie de Bekenstein-Hawking d’un trou noir extrémal de charge
(Q, P), et Sgqat(Q, P) correspond & 'entropie statistique obtenue par comptage des mi-
croétats de charge (Q, P)

Sstat =In d(Q, P) . (35)
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Cette formule de Bekenstein-Hawking (1.8) reste valide si la taille de 'horizon est
grande comparée a la courbure de ’espace-temps et d’autres intensité de champ a I’horizon,
i.e. , pour de grandes charges. Dans ce régime, la taille de I’horizon est assez large pour
que l'intensité de la courbure de I'espace-temps et des champs de jauge soit petite devant
I’horizon. Dans un régime ou ce n’est plus vrai, il faut alors se soucier des corrections de
plus haute dérivée a 'action effective dans la limite de basse énergie [20, , , .

D’un autre coté, la limite des grandes charges simplifie également les calculs statis-
tiques. Dans cette approche, un trou noir extrémal correspond & un état de la théorie
conforme & large valeur propre de Lg et valeur propre nulle de Lg (ou inversement). Pour
Lo = 0, par exemple, on peut calculer la dégénérescence de cet état en utilisant la for-
mule de Cardy en termes de la charge centrale du secteur gauche (left) ¢y, de la théorie
conforme

cr Lo
Sstat(Q) ~ 2T 6 5 (36)
ou ¢y, est proportionelle & un produit de charges physiques du trou noir [25]. On trouve

ainsi une concordance parfaite dans cette limite entre les deux calculs (4.1).

Dans le cas de supergravités N' = 4 pouvant étre réalisées comme des modeles CHL
avec orbifold Zp, ce résultat a été obtenu pour des trous noirs en quatre dimensions
par [140, ].1* Le chapitre anglophone 4 est donc dévoué & la démonstration de la
concordance des résultats de [BCHP3], et nous montrons en particulier comment obtenir
la dégénérescence des trous noirs quart-BPS de supergravité N’ = 4 & partir du calcul de
Iinteraction exacte V2(V@)* en théorie des cordes en trois dimensions.

Dans le paragraphe anglophone §4.1, nous donnons une rapide description du formal-
isme d’entropie pour les trous noirs stationnaires en quatre dimensions[139, , , ].
La fonction d’entropie est obtenue en tant que valeur extremum d’une fonctionnelle de
la densité lagrangienne, ce qui par ailleurs nous assure qu’elle reste indépendante de la
valeur asymptotique des modules a 'infinie [135, ].

Dans §4.2, nous rappelons la célebre formule de Dijkgraaf-Verlinde-Verlinde [110] dans
le cas des modeles CHL [141, 144, 145].

Dans §4.3, nous rappelons le formalisme de base utilisé pour décrire les solutions de
trou noir quart-BPS en supergravité N' = 4 [110].

Finalement, dans §4.4 nous rapportons les résultats de [BCHP1], [BCHP3], ou les
contributions instantoniques quart-BPS dans la limite de décompactification de Gﬁ{fés)
ont été utilisées pour prédire la dégénérescence des solutions de trou noir quart-BPS. Ces
résultats concordent avec les prédictions présentées en amont §4.2 [110, , , | et
les étendent a d’autres type de trous noirs quart-BPS, tout en déclinant correctement la
prescription de contour proposée dans [117, ].

0.5 Questions ouvertes

L’un des buts de ce manuscrit est de présenter de maniere simplifiée et cohérente certains
des résultats obtenus lors de ce travail de theése de trois années. Beaucoup de questions
restent cependant ouvertes. Elles sont présentées en anglais dans le chapitre §5.

14 Cela fut originalement calculé dans la description de type IL.
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Chapter 1

Introduction

We use throughout this paper the standard system of conventions where h = ¢ = 1, which
means that one unit of time equals one unit of length equals the inverse of a unit of energy.
Our space-time signature is (—,+,...,+).

1.1 The ultraviolet catastrophe of quantum gravity

For long time, quantum gravity has been one of the main focus of modern theoretical
physics. Gravity, as Newton and Einstein expressed it, is missing a microscopic de-
scription. Having a complete theory was considered to be a big concern to account for
phenomena in regions of spacetime where the gravity force becomes extremely strong, like
black holes or the ’origin’ of spacetime. Beyond practical applications, this problem is
often stated as being the missing puzzle piece between quantum theories describing par-
ticle physics, quantum fields theories, and the classical theory describing the dynamics of
spacetime, Eistein’s general relativity.

The first part of this picture, quantum field theory, was studied after the seminal
computation by Hans Bethe [1] of the Lamb-Retherford shift [2], in 1947, explaining a
color difference between two types of hydrogen atoms! which was unpredicted by the
Dirac equation, the guiding theory at the time. This computation was then enhanced
and developped in a more general framework called quantum theory of electrodynamism
by Feynman, Schwinger, Stuekelberg, Tomonaga and Dyson. This computation used the
fundamental idea — that we will use later on in the context of black holes — of 'vacuum
polarisation’, namely, that pairs of particles and anti-particles are constantly populating
the vacuum at a microscopic level. This picture was completed in the late 60’s, extending
the construction to the weak and strong forces — all the forces known today except gravity
— by many important physicists such as Glashow, Salam, Weinberg and Gell-Mann.

On the second side of this picture stands general relativity, a non-quantum theory of
gravitational interactions elaborated by Einstein in 1915 that describes the dynamics of
spacetime itself. Einstein’s equation illustrates the two sides of the problem elegantly

1
R, — qu,,R = 87GT,, . (1.1)

!The first being excited to the 285, 2 orbital, the second to the 2P, ;.
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(a) (b)

Fig. 1.1 Diagrams of the most prominent corrections to quantum mechanics
when describing an electron (straight line) interacting with the hydrogen atom
through the emission of a photon (wiggly line). In 1.1a, the electron emits a
photon before interacting and reabsorbs it after the interaction, while in 1.1b,
the exchanged photon experiences the creation of a particle-antiparticle pair.

The left hand side of (1.1) describes a non-quantised geometry of spacetime, while its right
hand side describes quantised matter and energy contained in spacetime. This paradox
did not get pursued extensively at the time since macroscopic physics (as opposed to
quantum physics) was sufficient to describe all the observed objects in the interstellar
medium around us.

The quantum nature of spacetime is expected to be observable at the Planck scale,
Ml%l = % ~ 10?8 eV, where gravitational and quantum effects are comparable. This
energy range is far away from the reach of any human-made collider — which is currently
at 1013 eV, but still many phenomenological and effective theory studies have been inspired
by quantum gravity research [3, 1].

Renormalisability and unitarity. Naive quantisation of gravity is known to fail be-
cause of non-renormalisability and unitarity violation, or, in other words, its inability to
be tracked down at arbitrary small scales and have a consistent quantum interpretation.
The study of gravity divergences and its non-renormalisability dates back to 't Hooft and
Veltman [5] in 1974. The same year, Llewellyn-Smith proposed that non-renormalisibility
of a quantum field theory was equivalent to unitarity violation at the classical level [0],
and that the growth of scattering processes in energy could be used as a criterium. In
the case of gravity, the linearised Einstein-Hilbert action in D dimensions with a single
dimensionless scalar field writes, symbolically,

1 1
Spn = [ P (28h8h(1 +20h) + 5 0006(1 + mh)) b (1.2)
where we linearised the curved metric around the Minkowski metric as

Guv = N + Khyy (1.3)

with k? = 327G and G = M]%Z_D the gravity coupling constant, and with A, the graviton
field. The second and fourth term in this expansion indicate that a graviton interacts
with another graviton and any other matter field with a double derivative term. Thus,
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when considering the event of two massless fields exchanging a single graviton, as shown
figure 1.2a, one obtains an amplitude proportional to E?/k, where E is the energy of
the process, with E*/k? coming from the vertices and x/E? from the external legs. This
violates unitarity for processes beyond the Planck scale, i.e. when E > k.2 The rule
proposed by Llewellyn-Smith follows from the fact that any process of this type will arise
with a UV divergence when two gravitons get exchanged, as in the figure 1.2b. In pure
gravity, these divergences occur at two loops [3, 9]. These issues will persist for all loops

(a)

Fig. 1.2 Classical and one-loop interaction of two massless fields through gravity
(doubled wiggly lines)

using the same reasoning, as long as D > 2. This can be seen as a consequence of the
positive mass dimension of the gravity coupling 1/G.? This infinite number of divergences
must be compensated by introducing as many counter-terms or arbitrariness in the theory,
and therefore makes it ill-defined.

Scattering amplitudes could also induce a breaking of unitarity for another very subtle
reason: evaporating black holes. Although this is not the direction this manuscript will
take, let us mention this point of on-going debate and introduce some basic concepts about
black holes. In 1975, Hawking argued that vacuum polarisation, in the region near a black
hole’s horizon, would cause particle emission [10]. Since this vacuum polarisation behaves
as a purely thermal fluctuation, the emitted radiation cannot contain any information,
and in particuler not the one that "felt" in the black hole, which leads to another unitarity
infringement.

Large black holes are not perturbative objects. However, small black holes have a
non-zero probability to be created in an energetic collision process, also known as trans-
Planckian process [11, 12, 13, 14, 15, 16]. Black hole physics is thus very relevant at high
energy, and this would implies another type of perturbative inconsistency.

In the 80’s, an argument called complementarity developped by Susskind et al. [17],
suggested that information infalling the black hole could be located both inside and
outside the black hole. Namely, from the point of view of asymptotic observers, time

2More precisely, for a theory of gravity coupled to N, scalars, N + fermions and Ny vectors, one expects

unitarity to be violated at energy EZ,; = Wﬁfﬂ%’v) [7]

3In naive dimensional analysis, we say that the critical dimension of the gravitational coupling constant
is D = 2, and thus, it is non-renormalisable for D > 2
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Fig. 1.3 Schematical representation of radiation emission by a black hole. A pair
of particle-antiparticle spontaneously emerges near the horizon (dotted circle),
one fall inside the black hole while the other goes outward. Both particles and
antiparticles are symbolised indistinguishly by an arrow.

intervals near the horizon become arbitrary dilated while space intervals in the falling
direction become arbitrarily thin, which prevents these observers from seeing the matter
passing through the black hole horizon in a finite time. Infalling objects spend an arbitrary
long time around the black hole’s horizon, and information can be radiated away through
Hawking’s radiation. On the other hand, an observer within the black hole can see the
matter entering in a finite time, but this one can never communicate with the exterior,
which seems to prevent a paradox.

A very subtle point that was learnt from this debate is that, in the classical ap-
proximation, information must be stored on the black hole’s surface, i.e. in a two-
dimensional space, with gravity playing no dynamical role. This is in contrast with the
three-dimensional interior of the black hole, where gravity is of course central. This led
to the popularisation of the notion of holography, that was first initiated by 't Hooft and
developped in the early 90’s [18, 17], when, in 1997, Maldacena made a precise statement
out of the idea above, by conjecturing that string theory under certain circumstances —
when understood as a quantum theory of gravity — is equivalent to a quantum field the-
ory without gravity in a spacetime with one space dimension less [19, 20, 21]. This latter
argument has been considered to be almost a proof that decay of small black holes* was
consistent with unitarity: if the thermalisation process is described by a quantum field
theory without gravity, it must be a unitary process by definition.

Although locally, the evaporation process is unitary, the decay of larger black holes
is still puzzling at present.” In 2010, Almheiri, Marolf, Polchinski, and Sully found a
self-contradiction in the complementarity argument while studying this evaporation pro-
cess under certain circumstances [22]. The thermal radiation becomes problematic after
a certain time, because it cannot be maximally correlated with both the radiation inside
the black hole — which is assumed to maintain spacetime regularity at the horizon — and

*Smaller in size than the length of the AdS spacetime, such that it is similar to asymptotically flat
black holes.
5Large black holes do not evaporate entirely in the holographic picture.
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Fig. 1.4 Schematic representation of an object falling into a black hole from an
outsider’s perpective (in blue) : the spacetime geometry deforms infinitely the
shape of the object to a 2D surface, as well as the time needed to go through the
horizon. From the outsider’s perspective, the infalling objects accumulate in a
sphere around the surface horizon.
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the past radiation outside — which is assumed to preserve unitarity. This paradox does
not seem to be explicable by arguments from fundamental theory of gravity, like string

theory, and goes under the name of "firewall paradox".5

All the modern issues about renormalisibility and unitarity have generated differ-
ent programs in the realm of research in quantum gravity. The two most developped
paradigms differ on how they approach quantisation. On the one hand, gravity is believed
to be fully non-perturbative theory, and above-mentioned issues are artefacts of the per-
turbative treatment of quantisation as (1.3). This is the philosophy of Loop Quantum
Gravity, where one uses the notion of loops in spaces to measure its curvature, and quan-
tises these so-called loop variables. On the other hand, classical gravity is believed to be
the low-energy limit of a more fundamental theory, and one quantises the metric pertur-
batively around flat spacetime theories with richer and more symmetric matter content,
like a supergravity or a string theory. This is the direction followed in this manuscript.

UV divergences. In quantum field theories, ultraviolet divergences are of central im-
portance when considering effective theories because they point out our lack of under-
standing of the ultraviolet behavior: identification of the wrong degrees of freedom. They
will be used in section 1.2, as well as in chapter 3 to analyse the results of [BCHP1],
[BCHP2].

As we will be interested in theories coupled to matter, and in particular, gauge vectors,
we will focus on interactions in the low-energy effective action of the type of (1.2) from
higher order scattering events of nj-gravitons and ns-photons. These interactions must
respect symmetries of the theory, in particular diffeomorphism and gauge invariance.
These symmetries force interactions to be formulated in terms of the Riemann tensor
R,vap and the electromagnetic field strength tensor F),,, and derivative of these. For
n-point amplitudes, with n = ny + ns, the possible effective couplings are

VMRM, YTEtE YTRMYT Fre (1.4)

5Local irregularity of spacetime at the horizon was thought to produce a dramatic 'firewall’.
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where V is the covariant derivative and m; > 0. These operators have mass dimension
[leRmvm2Fn2] — Mm1+m2+2m+n2 . (1.5)

The superficial degree of divergence provides an upper bound on the possible divergences
that one might have to cancel. It is given by counting the degree in momentum of the
most divergent graphs. In the case of graviton and photon interactions, the most diver-
gent graph at leading order in the gravity coupling constant is obtained by concatenating
3-valent vertices with two powers of the momentum each (associated to the double deriva-
tives). The naive superficial behavior of a L—loop n;—graviton and na—photon amplitude

7
1S
ML—loop — YMRMYyM2 e AL(D—2)+2—m1+m2—2n1—n2 (1 6)

This simple calculation will allow us to compare the superficial degree of divergence with
explicit computation presented in the section 1.2.

Black holes and entropy. Theories coupled to gravity typically have black hole solu-
tions, and describing their entropy — that we now introduce — will be one of the central
points of [BCHP1], [BCHP3|.

They are caracterised by an hypothetical surface, the event horizon, that has the
special property of being lightlike: any object at the surface would either fall inward if
traveling slower than light, or remain tangent to the surface if traveling at the speed
of light. Objects traveling faster than light could in principle escape from the black
hole’s pull, but this behavior would break causality and is thus forbidden in any sensible
theory. However, quantum effects, as the vacuum polarisation mentioned above, allow
some particles to escape their fate (see figure 1.3). Pairs of particles-antiparticles separate
at the horizon, causing black holes to emit black body radiation of finite temperature,
called the Hawking temperature [10, 23]

_ hk
=5
where x is the so-called surface gravity, which measures the strength of gravity at the
horizon. Furthermore, they behave as thermodynamic systems characterised by their
temperature and other state quantities:® the no-hair theorem states that black holes can
solely be described by their mass, charge and spin, implying that their internal energy
can be seen as a state function.” The analogy with the state function of thermodynamical
system has been used to identify [24]

T (1.7)

A
4hG’
the so-called Bekenstein-Hawking entropy'®. In §4.1, we present how to compute the

entropy of some specific class of black hole solutions, taking into account higher derivative
correction in the effective action.

Sp = (1.8)

"One can make use of the Euler formula for connected graphs with V vertices, I internal legs and L
loops V — I + L = 1. Each vertex (internal line) will add a factor k? in the numerator (denominator).

8Temperature, volume, pressure and other non-vanishing macroscopic quantities that are only defined
at thermodynamic equilibrium of the system.

9By definition, a state function only depends on the state quantities of the system.

105tellar-size black holes, for instance, have very small temperature T' ~ 1077 K, and very large entropy
S=10"".
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This result is quite peculiar, since entropy of extended objects is expected to scale
as their volume, but it seems reasonable given the arbitrary large spacetime stretching
happening near the event horizon, as advocated figure 1.4. However, if this analogy is
correct, can a quantum theory of gravity provide an understanding of this entropy from
a statistical viewpoint ? Indeed, the entropy of thermodynamical systems is known to
satisfy

S:kBan, (19)

where 2 is the number of possible microscopic states underlying a given thermodynamical
state. In [BCHP1], [BCHP3], we focused our attention on a specific class of objects where
this question has been answered in the affirmative, a particular subclass of extremal black
holes [25]. In §4.2, we present a specific setup providing a statistical understanding of
black hole microstates, where it has been shown to match with high accuracy black hole’s
classical entropy.

Thermodynamic variables of extremal black holes saturate a bound corresponding to
states with zero temperature. We will focus on the case of stationary spherical black holes
with electromagnetic charge — called the Reissner-Nordstrom solution — where the charge
bound is M? > Q? 4+ P? with electric and magnetic charges @ and P. These extremal
black holes thus have M = \/Q? + P2, and their Bekenstein-Hawking entropy (1.8) can

be obtained from Einstein-Maxwell theory in four dimensions
Spn(Q, P) = n(Q* + P?). (1.10)

It is important to note that (1.10), even as a classical approximation, does not depend
on any parameter of the theory. In any diffeomorphism invariant theory, the black hole
entropy is the integral of the Noether charge over the event horizon [26], and it is thus
always invariant under any non-singular field redefinition. For extremal black holes, such
as (1.10), it is also independent of the asymptotic values of the fields parametrising the
metric, which is a generalisation of the attractor mechanism for black holes in supergravity

theories [27, 28]. This latter fact can be easily understood by writing the entropy function
as the extremum value of a functional of the Lagrangian density, as we come back to in
§4.1.

In some specific theories, where the coupling constants corresponds to the asymptotic
value of a dynamical field, like a string theory, it implies that the entropy of the system
does not change as we vary coupling constants from a sufficiently large value where the
black hole description is valid, to a sufficiently low value where the microscopic description
can be handled with the current technical tools.

In §4.1 and §4.3, we introduce the black holes of interest in more details, which are
spherical solutions of a four-dimensional supergravity, and we present in §4.2 how their
microstates have been counted in a string theory description. In §4.4, we present how the
calculations in [BCHP3] can recover and extend the results presented in §4.2.

1.2 Supergravities

They constitute an attempt at modifying the UV behavior of Einstein’s gravity, and are
the low-energy limits of superstring theories considered in the rest of this manuscript. The
usual spacetime is embedded in a higher-dimensional space called superspace, where the
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coordinates of the new dimensions are labelled by anticommuting Grassmann numbers,
the so-called "fermionic" degrees of freedom.

The new symmetry of this geometry is the usual Poincaré group (translations, rota-
tions, boosts) extended by local anti-commuting generators called supercharges. These
anti-commuting symmetries also constrain the matter content of the field theorie, leading
to drastic dynamical simplifications (see table 1.1 hereafter). This extension is the only
instance where spacetime symmetries mix non-trivially with internal symmetries of the
quantum field theory, which goes against in spirit to the Coleman-Mandula theorem [29].

Theories are usually classified by the number of supercharges : from 4 in four di-
mensions to 32 for the maximal extension, which is defined in any dimension up to
D = 11 [30, 31]. In the following, we shall refer to the number N of four-dimensional
supercharges only when we restrict ourselves to four dimensions, i.e. A’ =8 and N' = 4
correspond respectively to supergravity and half-maximal supergravity in four dimen-
sions. Half-maximal supergravities can be separated into two types of constructions, the
(2,2) and (4,0).!'' The latter will be the one of interest in this manuscript. In partic-
ular, in §3.1.1 we present the dimensional reduction of half-maximal supergravity from
ten to four dimensions, and exhibit how the gauge and moduli fields can be arranged in
representations of the global symmetry groups listed table 1.1.

‘522 s=32 s=1 s=1/2 s:O‘ ‘

N=8 | 1 8 28 56 70 | Er \

1 4 6 4 2 SO(6) x SL(2,R)

1 4 6+2 448  2+12 | SO(2,6) x SL(2,R)

1 4 6+4 4+16 2+24 | SO(4,6) x SL(2,R) | N=7
N =4 1 4 6+6 4424 2+36 | SO(6,6) x SL(2,R) | N=5

1 4 6+10 4+40 2460 | SO(10,6) x SL(2,R) | N=3

1 4 6+14 4+56  2+84 | SO(14,6) x SL(2,R) | N=2

1 4 6422 4488 24132 | SO(22,6) x SL(2,R) | N=1

Table 1.1: Spin content of the massless supersymmetry representation with maximal spin
2 in four dimensions of some N’ = 8 and N = 4 supergravities. The size of representations
with decreasing spin are fixed from the highest by supersymmetry. The first two rows
correspond to the pure supergravities and the ones below are coupled to a given number
of vector multiplets preserving the non-perturbative SL(2,R) global symmetry. The two
last columns correspond to the expected global symmetry of the massles spectrum, and
the orbifold parameter of the corresponding Zy CHL string theory.

The supergravity theories with large supersymmetry extension, some of which being
listed in table 1.1, have much richer spectrum than Einstein’s supergravity (which, for
comparison, can be restricted to a single spin s = 2 field). However, this complexity is
reduced at the level of the effective action and scattering amplitudes, mainly because of
the geometric symmetries and supersymmetries of the theory. Part of this manuscript will
be aimed at understanding simplifications induced by the geometric symmetries, as well
as the constraints imposed by supersymmetries on the scattering amplitudes, as reviewed

§3.3 and §3.4.

" This notation refer to the sigma model, not to confuse with the spacetime supersymmetry.
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These supergravities were studied in depth in the late 70’s and 80’s, giving the
consensus opinion that supersymmetry alone wouldn’t be sufficient to eradicate non-
renormalisable divergences completely — although they would start to appear at a larger
number of quantum loops than in Einstein gravity. However, these theories have focused
a resurgence of interest in the recent years, and direct calculations by the leading experts
have shown that N' = 8 supergravity is finite in spacetime dimensions D < 4 + 6/L
for L = 2,3,4 loops (R*, D*R*) [32, 33], showing an impressive concordance with the
UV behavior of a purely gauge theory, N' = 4 super-Yang-Mills, which is UV-finite in
four-dimension. However, duality symmetry analysis [34, 35, 36, 37, 38] have predicted
an abrupt change in the critical behavior of N' = 8 supergravity at L = 5 loops, due
to an allowed D®R* counterterm. Non-vanishing of this counterterm at five loops would
indicate that supergravity is finite only for D < 2+14/L, predicting a non-renormalisable
divergence in four dimensions at seven loops and beyond. Unfortunately, the presence of
D3R* at five loops was recently confirmed by a long-awaited computation [39].

In this manuscript, we will disregard the case of N/ = 8 and focus on the N/ = 4
supergravity theories presented in the table 1.1. Because of their reduced supersymmetry,
they allow coupling to matter multiplets [10] which trigger more divergences. Their richer
structure also allows them to be realised as the low energy limit of various string models,
and in particular, the heterotic string on 7% with Z y orbifold that we describe in chapter 2.

1.3 String theory

String theories have a very long and interesting history, and will be the main focus of the
rest of the manuscript. It was initially developped around 1968, through the Veneziano
amplitude and later the Virasoro-Shapiro amplitude

I(—1—da's/4)0 (-1 —d't/4)T (-1 — d'u/4)
(-2 —a't/4— du/H)T(-2 — o/s/4 — /u/4)T (-2 — o's/4 — 't /4)’
(1.11)
to give an account of the observed spectrum in hadronic matter caused by strong interac-
tions [11, 12]. In (1.11), s, t and u are the usual kinematic Mandelstam invariants defined
by the four incoming momenta, respectively, — (k1 + k2)?, —(k1 + k4)? and — (k1 + k3),
and o was called the Regge slope. These amplitudes were later understood to describe
interactions of open and closed strings of size £, = v/ and tension T' = 1/(2ra/),'? while
a massless particle of spin two was identified as a possible graviton candidate in the closed
string sector [13]. Quantisation, Lorentz invariance and unitarity constraints impose that
these strings must propagate in a 26-dimensional spacetime!®. Moreover, their spectrum
contains an infinite tower of states caused by the oscillations running onto the string, with
quantised mass and spin given by

MYS(s,t,u) =

m20<£, J < ao'm? 41, n=-1,0,1,..., +c0 . (1.12)

Oé/

12Note that the Virasoro-Shapiro amplitude is invariant under exchanges of s ,t and u, as expected for
a tree-level closed string interaction, while the Veneziano amplitude, describing open string interactions,
is only invariant under exchange of s and ¢

13This latter constraint protects unitarity in the sense that it eliminates negative normed states created
by X*.
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This candidate as a quantum theory of gravity was more attractive than usual field
theories because of the finiteness of all amplitudes. Such fortunate phenomenon is due to
the string length being finite, and hence the interaction points being non-local as we will
discuss later. From a far away perspective, strings behave like pointlike particles that can
join and split like in the Feynman diagrams in figure 1.1 and 1.2, but their finite length
gives their trajectory in spacetime, their worldline, a one-dimensional ’thickness’ named
worldsheet. This embedded two-dimensional worldsheet hosts a conformal field theory
(CFT), whose symmetries give an alternative understanding of the critical dimension
D = 26 [14], but are responsible for obtaining Einstein’s equations of motion for the
graviton (1.1), with corrections at all orders in o/. Both theories of open and closed strings
contain a problematic tachyon (the state with n = —1, of imaginary mass), which would
spoil the theory by breaking causality. A theory of superstrings was later elaborated,
and it was proposed by Gliozzi, Scherk and Olive to project out this tachyonic state of
the spectrum [15]. Superstrings live in a 10-dimensional spacetime and were shown to
possess in its massless sector the content of maximal supergravity spectrum [16] that was
mentioned in the previous section.

It has been since long a topic of research to inquire whether maximal supergravity
necessitates to be completed to a string theory to exhibit a safe UV behavior and unitarity.
Indeed, string theory amplitudes show in the high energy limit a soft behavior compatible
with unitary. Using the kinematic Madelstam invariant s, ¢ and u in a 4-point scattering
event, the hard scattering limit — s,t — +oo0, fixed angle — at tree level behaves as

/

MVS(s,t)~exp(—%(slns+tlnt+ulnu)) , (1.13)

where the soft behavior at large momenta, the same responsible for the mismatch
between string and strong interactions, can be attributed to the infinite tower of massive
states.

On the other hand, the problem of UV divergences is rather solved by the finiteness of
the string length. In string theory, the spacetime phenomena have a minimum size : the
string length v/a/. At loop amplitude, this can be understood by noticing that the usual
UV divergent part (large momenta, or small distances) is absent at all genera. This is a
general consequence of modular invariance of integrand : for tori and Riemann surfaces of
higher genera, the UV divergent region is absent of the parametrisation of the amplitude.

Low energy limit of string theory gives rise to gravity coupled to matter fields. These
theory must then have black hole solutions, and thus constitute a framework for studying
classical and quantum properties of black holes.

Heterotic strings Within the landscape of possible string theoretic constructions, one
has been particularly studied for phenomenological purposes, despite its peculiarity. The
heterotic strings [17, 18] have an asymmetry between the left-moving sector, which is
purely bosonic, and the right-moving sector, which is supersymmetric, where left- and
right- designate the direction of the oscillation along the strings. Their critical dimension
is ten, as for superstring theories, but sixteen ’extra’ left-movers are required by the
critical dimension 26 of a bosonic string mentioned in §1.3. Since no string boundary
condition can be consistent with this peculiar asymmetry between the right- and left-
moving sector, heterotic strings can only be closed strings. The sixteen ’extra’ direction
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of one sector must be compactified, and windings and momenta along the 16 compact
directions are counted by a sixteen-dimensional even self-dual lattice, i.e. the lattices of
either Fg x Eg or SO(32) (where Eg is one of the exceptional groups). The two possible
gauge groups resulting from the massless sector of these ’extra’ dimension turn out to
be different models are sometimes being refered to as HE and HO respectively. It is
through this construction that we will continue most of the discussion, although some of
our results in [BCHP2] and [BCHP3| can be interpreted in other string constructions.

Non-perturbative dualities in string theories. Although superstring theory is the
only candidate for a renormalisable quantum theory of gravity, a lack of interest was
noticeable in its early days, notably because of the existence of many possible realisation
of string theories (called Type I, Type IIA and Type IIB). None of them seemed to be
in compatible with Nature : type II theories only had abelian gauge group, unlike the
electroweak and strong forces, and in type I the gauge group for super-Yang-Mills was
thought to be arbitrary. However, in 1985, it was learned that the possible gauge groups
were restricted by the absence of anomalies, and the heterotic string was discovered. The
latter was phenomenologically attractive and became popular for its aptitude to produce
grand unified theories starting from the exceptional subgroup FEg.

Although this discoveries attracted many researchers into the field, it became soon
clear that understanding non-perturbative effects of string theories was crucial to produce
a grand unified model of nature. More precisely, four-dimensional physics depends cru-
cially on the type of compactification which is used to reduce from ten to four dimensions.
Numerous symmetries relating different compactifications are known, they are named T-
duality, but there remains a large class of compactifications which are not related any
any way. In principle, the type of compactification by the dynamics at very high energy,
however, the selection of the correct compactification scheme requires non-perturbative
information on the potential over the landscape of string vacua.

In parallel, it has been understood that many non-perturbative features of some spe-
cific four-dimensional gauge theories could be understood without performing an ex-
plicit instanton calculation. This is made possible by the presence of a so-called non-
perturbative symmetry, i.e. highly non-trivial symmetry between the weak and strong
coupling effects. As we mention in §1.4, such symmetry was conjectured in the Georgi-
Glashow model in 1977 [19], but was received with skepticism until convincing evidence
was presented for the case of a N' = 2 extension [50]. This strong-weak coupling sym-
metry, dubbed S-duality, relates two phases of a super-Yang-Mills theory,'* one at large
value of the coupling with the other at small value of the coupling. If the theory is super-
conformal, it cannot be in either of two aforementioned phases and the coupling is fixed
by self-duality under S-duality.'®

These S-dualities symmetries were at the same time conjectured to be present as self-
symmetries of various string theories such as the heterotic or type IIB string theory, but
as connectors between different string theories such as heterotic at weak (strong) coupling
to type I at strong (weak) coupling. This duality is in fact used in [BCHP3] in order to

17t relates two differents theories when the gauge groups are non-simply-laced [51].
15This is the case of both N/ = 4, or N' = 2 with Ny = 2N, with Ny and N, being the flavor and color

numbers.
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deduce some properties of the low energy effective action of four-photon interactions of
type I strings.

Later, another symmetry was conjectured to map the type ITA theory at strong cou-
pling into an eleven-dimensional theory called M-theory, and which maps the heterotic
superstring with gauge group Eg x Fg at strong coupling into a version of M-theory with
boundaries. The existence of the latter theory was corroborated by the discovery of the
eleven-dimensional supergravity mentioned previously in §1.2. This historical step in
string theory research induced many other non-perturbative symmetry conjectures and
important works that paved the path for this present work.

Thus, by studying the perturbative regime of string theories where the coupling con-
stant is small, one can use the strong-weak duality non-perturbative information where
the coupling constant is large in the same, or in another theory. S-duality symmetries
may help in understanding superstring theory at very small and very large values of the
coupling constants, but also to gain control over some relevant informations contained in
the instantonic effects. This is the direction pursued in this manuscript.

1.4 Non-perturbative dualities

Non-perturbative dualites have played an important role in understanding string theory
as well as certain quantum theories. They remain one of the only theoretical tool to access
effects that are invisible in the neighborhood of the solutions to the equations of motion.
We do not intend to recapitulate their history here, but only to introduce some details
and concepts that will be relevant in the following chapters, and in particular to motivate
the presence of a strong-weak duality in N = 4 supergravities.

Kramers-Wannier duality The first instance of a non-perturbative duality was found

by Kramers and Wannier [52] in the Ising model. It is presented here as an example to
introduce the concept of dualities in toroidal string compactifications in the next para-
graph.

In a statistical physics, a model is said to be self-dual if its partition function is
left invariant under a transformation interchanging to physical variables. The partition
function of physical system is of the utmost importance, as it sums the probability weights
of all the possible states of the system. The partition function of a system on a lattice,
like a field theory, is relevant for its similarities with lattice partition function in string
theory that counts the states generated by winding and momenta in the compact flat
directions.

Consider a square lattice, on which each site hosts a particle of spin with up and down
state o; = £1. The partition function at temperature T'= 1/ is given by summing the
probability weight of a system configuration {o;} over all possible spin states

Z = Z Hexp(ﬁJ oi0;) = cosh(B.J)* Z H (1+ tanh(BJ)oi0;), (1.14)

{o} (ij) {o} <ij>

where (ij) designate nearest neighbouring sites, and where the second equality is obtained
by noticing that ¢#/9i% = cosh(BJ) + o;0;sinh(3J). Using the formula (1.14), one can
study the high temperature expansion 5 < 1, i.e. to study configurations close to the
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configurations where all spins are unaligned with their nearest neighbors. The expansion
shows configurations will only contribute when they produce a polynomial of even degree
in the spin variables o;, 0j,..., which can be represented as closed loops on the spin
lattice, see figure 1.5. The high temperature expansion of the partition function thus
counts closed loops of length 2n, with n € Z. In the expansion of the partition function
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Fig. 1.5 Schematic representation of the contributions to the partition function
at large temperature (left, < 1) and et low temperature (right, § > 1).
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at low temperature, 5 > 1, one expects to obtain the ordered phase where all spins
are pointing in the same direction (either up our down), up to some patches of one or
several spins pointing in the other direction. These are caused by small fluctuations due
to the non zero temperature, and can be circled as in the right picture of figure 1.5. As
one can judge in figure 1.5, the links and interfaces drawn in these two pictures form
identical patterns, and this is so because 1)the polygons drawn to circle the blobs in the
low temperature phase lie on the lattice dual to the spin lattice with respect to the nearest
neighbor pairing (ij), and 2)the dual lattice to a square lattice is also a square lattice.
These arguments prove that the partition function of the Ising model is invariant under
low- /high-temperature duality

Z(B) = Z(-1/p). (1.15)
These results can extended to the case where the spin lattice is not a self-dual lattice by
coupling several Ising models [53]. They naturally generalise to abelian gauge theories on

four-dimensional lattice, where a larger group SL(2,7Z) acts non-perturbatively on both
the gauge coupling and a topological "theta term" added in the action, which can be used
to recover critical points of phase transition [54, 55]. Although we will not review this
work further, we will exhibit how the charged spectrum of Maxwell’s theory transforms
under this duality 1.4, as well as massive BPS states in N’ = 4 super-Yang-Mills 1.4. We
will also review a generalisation of these results to N' = 4 supergravities descending from
heterotic string theory in §3.1 to motivate the conjecture of exact F* and V2F* couplings
in sections 3.3 and 3.4.

We now exhibit briefly how the non-perturbative symmetry shown above is often
encountered as a perturbative symmetry in a compactified string theory model 1.4.
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Perturbative symmetry in toroidal string compactification. The string theory
partition function counting string states with momenta and winding around the internal
flat directions, exhibits self duality in a very similar fashion. In particular, toroidal com-
pactification of heterotic string theory can be viewed as the compactification of indepen-
dent left- and right-movers (L, L) on tori on which momenta en windings are represented
by an even Lorentzian self-dual lattices in R6+%4[56], with D = 10 — d being the space-
time dimension after compactification. In the case of compactification on one circle, the
duality symmetry, which acts on the radius of the circle as R — 1/(2R), maps different
Lorentzian even lattices and sends the lattice vectors as [57, 58]

(Lvi) - (La _[N’)> (1.16)

thus preserving the norm L2 — L2, and thus the self-duality of the lattice. This symmetry
is here perturbative, as it leaves the string coupling constant unchanged. Compactifying
down to D spacetime dimension, d-tori is parametrised by dynamical massless scalar fields
called moduli that span the non-compact Riemannian symmetric space

. _ 0(16 + d, d)

(1.17)

and whose transformation under the duality symmetries can be understood from the
supergravity effective description, as we discuss in §3.1. String states being labelled
by their discrete winding and momenta along the compactified directions, the group of
global symmetries is SO(16 + d, d, Z). Other effective N’ = 4 effective supergravities can
be obtained by quotienting the internal lattice by a discrete Zy rotation [59, 60, 61, 62].
Note that these types of N/ = 4 model with reduced gauge group were first discovered
and studied through a type I string construction by Bianchi, Pradisi and Sagnotti [63].
We will focus on some of these models, the ones listed in table 1.1 §1.2.

Four-dimensional abelian gauge theory. We now study the strong-weak coupling
duality in the oldest theory of electromagnetism. We will further comment on this type
of duality in the case of field theories (see next paragraph), as well as in supergravity
and string theory (see §3.1). It is moreover at the center of the exact coupling proposal
of [BCHP1], [BCHP2], [BCHP3], as we review in chapter 3.

In the vacuum, Maxwell’s theory of electromagnetism has a U(1) symmetry allowing
rotations between the electric and the magnetic field as

E +iB — ¢'*(FE +iB), (1.18)

which thus contain the exchange between the electric and the magnetic field (E, B) —
(=B, E). In the relativistic formalism where the electric and magnetic fields are given
respectively by F% and its Hodge dual «Fp;, the duality (E, B) — (B, —FE) can be simply
expressed as F),, — «I,,.

Extending this duality to the charged spectrum predicts the existence of magnetic
monopoles, i.e. states with non vanishing charge g,, under the magnetic field. The pres-
ence of such charge would have to satisfy the Dirac-Schwinger-Zwanziger quantisation
condition [64, 65, (0]

Qe — GoGm = 47, ne, (1.19)
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where (ge, ¢n) and (q., ¢,,,) are the electric and magnetic charges of two particles. Since in
nature there are electrons of charge (ge,0), with e € Z and g the gauge coupling constant,
the charge quantisation condition (1.19) for a hypothetical magnetic monopole of charge
(ge, qm) Tequires geq,, = 2mn. Thus the allowed magnetic monopole charge reads

4
Om = —Wm, meZ. (1.20)
g

This implies that the exchange of magnetic and electric field, in the presence of charged
matter, imply the following identification of the charges, joined with a strong-weak duality
ing
4
(e,m) > (—m,e) = g— —. (1.21)
g

This picture will be exhibited for the electro-magnetic spectrum of N' = 4 supergravity
in §3.1.1.

Self-duality of N/ = 4 four-dimensional gauge theory. In 1974, magnetically
charged solution were found in non-abelian gauge theories with spontaneous symmetry
breaking to abelian gauge groups [(7, (65]. Montonen and Olive conjectured a duality
exchanging a gauge triplet made of this monopole states with the photon, together with
the W bosons of the spontaneously broken non-abelian gauge theory [19]. In the general
case, this conjecture was either falsified by the mass quantum corrections or the matching
of the two triplets’ spin. However, for N' = 4 super-Yang-Mills, the effective action does
not obtain corrections beyond two derivative couplings and it was shown that the quan-
tisation of fermionic zero modes around the monopole solution makes it into a N = 4
massive vector multiplet [69].

One can give a vacuum expectation value (¢) to one of the six adjoint scalars of the
N = 4 theory with gauge group G. Then, the W-boson, or fluctuation of the component
FE,, of the gauge field, with « is a root of G, obtains a mass given by

My (@) = gla- (¢)]. (1.22)

On the other hand, each root « gives a monopole solution similar to Bogomol’'nyi-Prasad-
Sommerfield solution for G = SU(2) [70, 71]. These states belong to the 16 dimensional
representation of the N' = 4 supersymmetry algebra, are annihilated by half of the sixteen
supercharges, and their mass and charge satisfying a definite relation. In the present case,
the mass of the solution is given by
47
Mu(a) = ?|0¢v ()], (1.23)
where " is a coroot of G.
Then, the spectrum of W bosons and the monopoles of the theory can be exchanged
if the root lattice is self-dual with respect to the orthogonal projection, i.e. , if the root
system is isomorphic to the coroot system.!® One can see that exchanging monopoles of

16In general, the S-duality maps a theory with gauge group of root system ® to a theory with gauge
group of root system ®V, where ®" is the system of coroots of the former. Self-duality is hence possible
only if ®¥ ~ &, which is the case for simply-laced groups only.
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G with W-boson of G leads to the same strong-weak duality as (1.21). This superficial
recount of the S-duality in N' = 4 theories can completed by [72, 73, 74].

In §3.1.1, we will recall invariance of the mass spectrum of the BPS sector in the case
of N' = 4 supergravity, as a motivation of a non-perturbative duality of the full theory.
In sections 3.3 and 3.4, we use this duality together with supersymmetry considerations
to conjecture the existence of exact F* and V2F* couplings.

Structure of the manuscript

Below is a quick summary of the organisation of this manuscript.

In chapter 2, we introduce some basics of perturbative string theory and recall the
low-energy computation of perturbative F'* interaction at one loop, and V2F* interaction
at one and two loops.

In chapter 3, we introduce the conjectures of [BCHP1|, [BCHP2| and [BCHP3] for
the exact F* and V2F* couplings in three dimensions, and discuss their perturbative
limit in weak heterotic coupling in three dimensions and weak type II coupling in four
dimensions. To motivate these conjectures, we first review the dimensional reduction of
half-maximal supergravity to four and three dimensions, and give argument for S-duality
in four dimensions. We then recall some of the specificities of CHL models with prime
N, and give a brief presentation of the construction of their one-loop partition function.

In chapter 4, we discuss their decompactification limit from three to four dimensions
presented in [BCHP1], [BCHP3|, and show how they allow to compute the degeneracy
of quarter-BPS black hole solutions. These results reproduce and extend the Dijgkraaf-
Verlinde-Verlinde (DVV) formula for prime CHL models, as well as the exact contour
prescription. To introduce these results, we first review the entropy formalism for sta-
tionary four-dimensional black holes, and then the famous DVV formula in the case of
CHL models. Finally, we recall some techniques to describe quarter-BPS black holes in
N = 4 supergravities.

Finally, in chapter 5, we give some directions for the outlook.



Chapter 2

Superstring amplitudes and
perturbative expansion

In this chapter, we study the one- and two-loop amplitudes of half-maximal heterotic
string theories. In the simplest case, this theory is the toroidal reduction of NV = 1
supergravity coupled to A/ = 1 super-Yang-Mills. Such models are given table 1.1, some
of which being realisable as a toroidal compactifiction of heterotic string theory, with N
in the rightmost column being the order of the free action of the Zy orbifold.

We first review some general facts about closed string theory amplitudes, and then
present the one-loop and two-loop computations of four-photon interactions, where the
latter are based on a calculation by D’Hoker and Phong [75, 76, 77, 78, 79, 80].

2.1 Closed string theory amplitudes

2.1.1 Bosonic string

Scattering processes in string theory, or S-matrix elements, are computed in a first quan-
tised formalism. The string trajectory X describes the wordlsheet. It can be thought
as a map from the string-surface ¥ (indices m,n = 1,2) to the D-dimensional spacetime
manifold M (indices p,v =0,...,D —1). The fields X are scalars from the view point of
¥ which are governed by the Polyakov action! [14]

1
4o

S =

/ dodT /G g™ O X 00 X" G (X) | 2.1)
where o, 7 and ¢"™" are the coordinates and metric on ¥, and where G, (X) is the
metric on M. It has the special feature of being renormalisable as a QFT, as well as
local in X, g, and G, and invariant under orientation preserving diffeomorphisms of 3
and diffeomorphisms of M. Strings can only interact through ’joinings’ and ’splittings’
because of Lorentz invariance and mathematical consistency. In particular, no specific
point on the worldsheet can be singled out as interaction point, since it depends upon the
Lorentz frame chosen to observe the process. One should note that an open string theory
always contain closed strings, since endpoints of an open string can always join. However
a closed string theory refer to a theory containing only closed strings.

We refrain from presenting the historic Nambu-Goto action because of its difficult quantisation.

41
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C

Fig. 2.1 Map from the string-surface ¥ to the spacetime manifold M. The little
crosses symbolise the insertion points, i.e. the ingoing or outgoing states

E é % % (c)
(a) (b)

Fig. 2.2 String interactions. Closed and open strings can interact as in 2.2a
and 2.2b, respectively. Open strings can also join their ends to form a closed
string 2.2c.

As in a first quantised path integral formalism, the transition amplitudes between two
specified external string states is obtained by the sum over all possible worldsheets, i.e.
all possible surfaces ¥ and trajectories in spacetime X,

A= N ersenMl (2.2)
Y X

and must be normalised by the overall volume given by the diffeomorphism invariance to
be determined later. Another important ingredient is to notice that the action S is also
invariant under Weyl rescalings, which can be spoiled by anomalies, but is nonetheless
crucial for the consistency of the theory. Assuming this, the sum over all geometries on 3
collapses to the sum over all topologies of genus h, and all metrics of surfaces ¥, for each
h. Finally, a second simplification concerns the boundary data specifying the ingoing and
outgoing states of the scattering process, which can be geometrically reduced to a simple
point on the compact surface ¥, where states’ data is mapped by inserting so-called

vertex operators Vi, ...,V to be constructed later. The amplitudes thus writes
3 ! Xl
A= / Dg—/ DX V... Vye oKX 2.3
hz::o Met(Zp) MN(g) Maps(Xp,M) 23

where Met(X},) is the space of metrics on X5, 9(g) is a normalisation factor compensating
the diffeomorphism and Weyl invariance of the action S such that Dg/(g) reduces
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Fig. 2.3 The sum over all string worldsheets decompose into a sum over all
topologies because of Weyl invariance.

naturally to the canonical measure on M;, = Met(X,)/Diff(X5) x Weyl(2), the moduli
space of Riemann surfaces of genus h. The action S that we considered is not the most
general one, and one can consider having a manifold M with extra structure. The manifold
can carry an anti-symmetric tensor field By, € Q2)(M), a dilaton field & € Q©)(M)
coupled to the Gauss curvature of X, and a tachyon field T € Q(O)(M ). The tachyon field
will not be consider as sensible field in general, but the other will lead to an effective
action at low energy in terms of kinetic terms for the graviton, the dilaton, and the
anti-symmetric B-field.

2.1.2 Superstrings

The sector of string theory that we considered previously is usually named the bosonic
string theory. It is necessary to include bosonic excitation on strings, but these alone don’t
allow for a physically sensible theory, as Nature clearly displays fermionic states (electrons,
quarks, etc.) or states transforming under a spinor representation of the Lorentz group.
The purely bosonic string in flat spacetime also contains a tachyonic state, as stated
before, which leads to a violation of the physical principal of causality.

These problems can be solved by adding extra degrees of freedom on the string world-
sheet, which will result in introducing fermionic string states in the physical Hilbert space,
but also in changing the critical dimension D of the embedding manifold M.

e This can be done in the Green-Schwarz (GS) formulation [31, 82], where one con-
siders strings to move in a "super spacetime'. The coordinates X* are supple-
mented with the fermionic ones 8%, respectively transforming under a vectorial and
fermionic representation of SO(1, D —1). Thus ground state is thus degenerate and
bosonic and fermionic states are obtained by applying to it the latter two fields. The
drawback of this formulation is the difficulty to quantise it in a manifestly Lorentz
invariant way.

e A way to bypass this difficulty was to use a twistor-like constraint to gauge-fix

differently the purely bosonic action, leading to Berkovits’ pure spinor formalim [3,

| It has lead to several important results in the past year, among which the first
computation of a three-loop four-graviton amplitude [$5]2.

e The Ramond-Neveu-Schwarz (RNS) formulation two fundamental spacetime vector
fields in the theory, X* and ", where the latter is a Grassmannian variable. There

2Above genus five amplitudes, the prescription to compute the pure spinor ghost path integral has to
be changed [36].
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are thus two sectors in the Hilbert space, built by applying both fields on either
the Neveu-Schwartz bosonic ground state, or the Ramond fermionic ground state.
However, this field produces further negative norm states independent of those of
X* which are eliminated by imposing a local Grassmann symmetry, or local super-
symmetry. This symmetry has to be local to remove the entire field component g
of 1, And, it also implies the existence of the spin 3/2 field x., a spinor-vector field
sometimes called the superpartner to the metric field, gravitino, or Rarita-Schwinger
field.

The supersymmetric Deser-Zumino-Brink-Di Vecchia-Howe-Polyakov action® thus in-
volves X*, ¢*, gmn and x,, — also refered to as the N' = 1 supergravity action — writes,
for flat target spacetime M

1 1
S[Xv 1/}; g, X] = E /2 dO'dT\/g[@gmnamXuanX“ + W“YGGT mwu
1 a. b m 1 m.n
~ 7 Xl Om X = 2™ Xom) (xnt)]
(2.4)

where 4™ satisfy the 2-dimension algebra {7",7"} = —¢™", and €}’ is the local frame
field satisfying eTelld® = ¢g™". The integrand of (2.4) is a single-valued function when
" and x,, have the same spin structure, and the total action under three additional
symmetries with respect to (2.1): Weyl-invariance over ¥, super-Weyl invariance de, =
0, dXm = YmdA, and local supersymmetry

SXH =
SUH = 4™ (O X P — Ixm)C (2.5)
den, = CY"Xm |

5XT, = —2V (7.

The supersymmetrised Polyakov action coupled to a conformal field theory thus defines a
superconformal field theory. The critical dimension for the superstring theory, which can
be computed by requiring the Weyl-anomaly to vanish, is D = 10. Furthermore, gauging
the supergravity fields on a genus-h super-Riemann surface with n-insertion point induces
an integration over 3h — 3 +n bosonic and 2h — 2+ n fermionic moduli. They parametrise
the space of all frame and gravitino fields {e%, x7 }, denoted sMet(Xy), quotiented by

the group of superdiffeomorphisms {Diff(3,),local SUSY}, super-Weyl transformations
{Weyl(X}), super 6A}, and local SO(2) frame rotations Lorentz(Xy,) [89, 90, 91]

sMy = sMet(2y)/(sDiff (X7,) x sWeyl(X) x Lorentz(X,)) (2.6)

The scattering amplitudes or N string states are thus expressed in terms of the fields
X, 9, gand x

A= iZw(y,y)/

DXDgif DX/DU)VIVN e_S[Xﬂ"»mgvX} ,
h=0 v,v sMet(Z) m(gy X) Maps(Zy,,M)

(2.7)

3 Although it corresponds to the supersymmetrized version of the Polyakov action, it was discovered
beforehand by Deser, Zumino, and independently by Brink, Di Vecchia, Howe [87, 88].



2.2. ONE-LOOP FOUR-PHOTON COUPLINGS 45

where v, v are the spin structure, w(v, v) is a weight factor, and V; ... Vy a collection of
vertex operators for the RNS string.

The procedure to compute integrals of the form (2.7) was believed to rely in the
existence of a global holomorphic section of sMy [91, 92, 93]. The existence of such
section makes space of super-Riemann surfaces split, implying that the odd moduli can
be integrated alone and the amplitude reduces to an integral over its Riemann base.
However, for h > 5, it is known that sMj, is not holomorphically projected [94], while
the question remains for h = 3, 4.

2.2  One-loop four-photon couplings

We start this section by recalling the form of one-loop photon amplitude in string theory.
At four-point in heterotic string, they write as a correlation function of a product of vertex
operators

a? d2r 3 422,
A f/i/ LV (21 Van (20) Vau(23)V , 2.8

abed = (v fz 72 Tg . (Via(21)Vap(22) Vae(23) Vaa(24)) (2.8)
where the domain F; has been defined in the previous chapter, and the z; belong to
T={2€C, -1/2<Rez<1/2,0<Imz < m}. One vertex operator is fixed to z4 = ity
by conformal invariance. The heterotic gauge bosons propagate on the left-moving sector,
and the vertex operators for the gauge boson read:*

Va(z) = ipauﬁ“Paeik'X(z’g) (2.9)

with 4 = 1,...,d labelling the transverse spacetime directions, a = 1,...,16 + d la-
belling the internal lattice dimensions, and where P* is the supersymmetric right-moving
momentum operator

PH = 0, XV + Lk Yy, (2.10)
with ¢ the RNS spacetime Grassmann variable, and where 0,X* and P® are the left-
moving spacetime momentum and gauge lattice operators

O XF = Lyt £ Y alhe =) pr gy S an et (o)
n#0 n#0

The periodicity conditions for the fermionic fields 1/*, ¢* upon transport along the
torus of complex structure 7 define spin structures, denoted by «, 5 € {0, 1}, such that

Wz 1) = eTOP(z), (a4 7) = T (2). (2.12)

One must sum all these sectors to ensure modular invariance, with a relative sign dictated
by the GSO projection [15]. The partition function of a supersymmetric sector of spin
structure «, 3 writes®

0[3](7,0)

ZoP(7) = T (2.13)

4The vertex operators V; can all be chosen in the (0) superghost picture since the superghost background
charge is zero on the torus.

Note that for orbifold models, such as the one presented in the next section, GSO boundary conditions
can be mixed with target-space shifts, implying non-trivial boundary conditions for the fields X", ¢* [95,

].
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with the Riemann theta ¢[3](7, z) and eta n(7) functions

L a 1
Z q§ -%) 27r1 Z—*)(n—g) , 77(7—) — q1/24 H (1 — qn) . (214)
n=1

The GSO projection gives rise the so-called supersymmetric cancellation identities on the
worldsheet, namely

S (—r)ethrefzel =g

a,3=0,1
afB=0
4 (2.15)
Z (_1>a+,3+a6Zoc,3 H Sa,ﬁ(i 2 — Zi+1) _ —(27?)4,
,6=0,1 =1
a@[ﬁ:o 7

with the fermionic correlators S, g = (¥*(2;)¥" (25))a,s of spin structure «, 5. The first of
these identities ensures that the string self-energy vanishes, while the second will produce
the tgF* tensor when there are exactly four bilinears : 1) :. These are a consequence of
supersymmetric simplifications on the worldsheet in the RNS formalism, and details of
these computation can be found in standard textbooks [32, 97].

Contraction of the spacetime and internal momenta also leads the so-called kinematical
Koba-Nielsen factor, coming from the plane-wave part of the vertex operator

(kX Gna) L kX () Ly exp (Zk k(X (21, 2) X (zj,éj)>h) . (2.16)
1<J

Since its expression does not change for all genera, we will denote using the genus-h
holomorphic two-point function

Gn(T,2i — 2j) = (X(2:) X (%)) (2.17)

and
X = eGnlrzi=z) (2.18)

The one loop amplidute becomes, denoting J,(z) the internal current bilinear in the
fermions, and s, ¢, © the Mandelstam variables

aQ d2T 1 3 d2Z‘ ’ ’ ’
A((zggd = : /f1 TT /TE TQZ(X12X34)Q S(X13X42)a 1t()<14X23)a “

(2mi)4 5 A(T (2.19)
x (Ja(21)Jp(22)Jc(23) Ja(24)) 5
where the torus Green function reads
9(2) = —log |01(7, 2) /n(7)* + Z(Imz)?, (2.20)

and the discriminant function
A(r) =n(r)*. (2.21)
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The partition function with four current insertion evaluates to
1
<Ja(Zl)Jb(ZQ)JC(Z3)Jd(Z4)> :Fpg [Pabcd} - 5apr,q [Pab]82g(z1 - 22) +5 perms
472

1
+ 160 ((Sabécdrpgan(Zl — 20)0%g(z3 — 24) + 2 perms) ,
(2.22)

where P, and P,p.q are modular polynomial homogeneous in (Q%, Py 1) explicited in [BCHP2],
such that for any modular polynomial P of degree n, and integer lattice A, , of signature
(p, q), the partition function

FAp . — 7_51/2 Z P QLa, ZWTQie—’iﬂ'i'Q% (223)
QENp 4

is a modular form of weight (2n + 25%,0). Upon expanding the one-loop amplitude
(2.8) in o, the so-called low-energy expansion, the leading term reproduces the one-loop
contribution to the tgF* coupling in D = 10 — d dimensions

dTl dTQ FA16 +d,d [Pabcd]

F —RN. 2.24

abed 7 7_22 A(T) ’ ( )

where P,j.q denotes a polynomial in @1, defined in [BCHP1], [BCHP2], and where R.N.
denotes a regularisation procedure introduced in [98, 99], which is in particular need to

make sense of the integral when d > 6.
At next to leading order in o/, the term linear in the Mandelstam variables s,t,u
reduces to

drdm 1 dzzdzl
Gt(zlb),cd _/ 71_2 : /54 H 21y 9(z1 — 22) 0°g(21 = 22) Gup Uag 6.l Ped) + 5perms} )
Fi1

(2.25)

since all other terms at this order are total derivatives with respect to z;. The integral
over z can be computed by using the Poincaré series representation of the Green function,

1 / 72 L [Z(mT+n)—z(mT+n)]
grz)=— ) e : (2.26)
T (mieze M7 7
leading to
dzdz : ! 1 -2
- —w) =i -2 E 2.2
& 2imy g(Z w)a g(Z 'UJ) s% Z (mT+n)2|mT+n‘25 6 2 ( 7)

(m,n)€Z2

where the sum over (m,n) was regularized a la Kronecker, with Ey the non-holomorphic
modular form of weight two

!
~ 1 3
Fy = -_ 2.28
2 (mnz):€Z2 (mT4+n)? 77 ( )

Up to an overall numerical factor, we therefore find that the one-loop contribution to
the coefficient of V2F* coupling for the maximal rank model is given by
dridr Es [
A
Fi p% A(r) "

Gipea % 8(an Gy, Gif” =R.N. P . (2.29)
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2.3 Two-loop V?F* coupling

At two-loop, the scattering amplitude of four gauge bosons in ten-dimensional heterotic

string theory was computed in [30, ]. Upon compactifying on a torus T¢, one obtains
A® :/ 1 d’Q 1
abed 7 |Q2|3 q)lO

4

X/z4 Vs [z (xazxsa)®® (xasxea)®" (xraxes)® ™ (Ja(21) Jp(22) Je(23) Ja(z4))
=1

(2.30)

where Y is a genus-two Riemann surface with period matrix Q, Vs is a specific (1,1) form
in each of the coordinates z; on ¥ [30, (11.32)],

Vs =t A(z1,22) A(zs, 24) — s A(21, 24) Az, 23) , (2.31)

where A(z,w) = wi(2)wa(w) — wi(w)wa(2), xij = F#%7%) and G(L, 2) is the scalar
Green function on ¥. At leading order in o/, x;; can be set to one, and the integrated
current correlator [y, J%(z)dzwr(z) can be expressed as a multiple derivative [101]

%(Err’gss’ + Ers’gsr’)a4 (2)
(2mi) 0y Oy Dy Dy Mo

(¥)ly=0

(2.32)
where F1§2d>+ o (y) is the partition function of the compact bosons deformed by the currents

4
(L, 770 I ) T ) ) [T dzrz) =

Yo d® integrafed along the r-th A-cycle of X,

a

TP ()= [t Qe Q" inQ o Qi AR B (3.33)
QeAP?
The Siegel modular form ®;4(2) is given by the square product of all genus two even
theta series

P19(Q) =
2
271 o 5510 306 {510 2016 1510 10 3310 16 5110 1]
(2.34)
where 0(2) [S02] = 62 [5152](£2/0), and
a1 bl
iﬂ(n1+a—1,n2+a—2)-§2- "1+£ +2ﬂi(n1+ﬂ,n2+2)- Cl+Z
oD@ = D e by (5, 2> e (<2+7) (2.35)

ni,no€Z

The Siegel modular form 1/®1¢(€2) has an order one singularity at v = 0,% corresponding
the separating degeneration where the genus two surface degenerates to the connected
sum of two genus one surfaces. In this limit

D19(p, 0,v) ~ (2miv)?A(p)A(o), (2.36)

5The singularity also exists at all its Sp(4,Z) images, but only v = 0 intersects with the fundamental
domain of Sp(4,Z).
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where the discriminant function A(7) is defined (2.21).
Evaluating the derivatives explicitly, we obtain the result announced in [BCHP3] for
the two-loop V2F* coupling in the maximal rank case,
(2)
430, a3, T, g [ Fabed]

i (2.37)
7 |9 Q1

(d,d+16) __
Gt =R.N.

where Py 4 is the quartic polynomial defined in [BCHP1], and more details about the
regularization procedure can be found in [BCHP3|.
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Chapter 3

Non-perturbative and
supersymmetry constraints

In the introduction we motivated the study of strong-weak duality symmetries in the
context of string theory as a useful feature to count the microstates of black holes solutions
in N' = 4 supergravity theories. Such symmetries are similar to the non-perturbative
symmetries presented in §1.4 in the context of fields theories.

In section 3.1, we first consider the case of full heterotic string theory compactified on
the torus, and we review the arguments motivating S-duality symmetries at the level of the
four-dimensional effective action, the charge and the BPS spectrum, following [102, 72].
We review how this strong-weak symmetry generalises to a much bigger group G3(Z) of
non-perturbative symmetries for the descending three-dimensional theory upon dimen-
sional reduction on circle [103, 104].

In section 3.2, we review some details of the Z CHL models for prime N from an
heterotic string perspective [59, 60, (2], and arguments for the presence of strong-weak
dualities in both four and three dimensions [105].

Finally, in section 3.3 and 3.4 we expose the conjectures of [BCHP1], [BCHP2],
[BCHP3] stating that exact four-scalar interactions in the low-energy three-dimensional
effective action — namely (V¢)* and V2(V¢)* couplings — are given by modular integrals
of specific modular forms times partition function for the non-perturbative Narain lattice
invariant under the full group of non-perturbative symmetries G3(Z). These exact inter-

actions are obtained by covariantisation of the respective perturbative F (gzd and Gg))cd
coupling coefficients under the group of non-perturbative symmetries G3(Z). They are
motivated in addition by supersymmetry constraints that we expose in §3.3 and §3.4, and
are checked against known pertubative results extracted from the literature in the weak

coupling regime for both the heterotic and type II string in §3.3.1 and §3.4.1 respectively.

3.1 Dualities and applications

Our intention here is not to provide an exhaustive recapitulation of the knowledge about
four-dimensional half-maximal theories, but rather to introduce the main arguments mo-
tivating the presence of strong-weak dualities in these compactified string theories.

In general, analysis of compactified string theories benefits from isometries of the
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target space introduced in chapter 2, the so-called T-dualities. In perticular, for toroidal
compactification of the heterotic string, they are composed of reparametrisations of the
16+d-dimensional left-moving sector and d-dimensional right-moving sector, as introduced
in §1.4. These act trivially on the coupling constant g, and are thus valid order by
order in string perturbation theory. Four-dimensional compactification of the heterotic
string exhibits such symmetry, which we come back to in this section, but it possesses
another type of symmetries that act non-trivially on the coupling constant gs, the so-called
strong-weak duality or S-duality. Such symmetry is very reminiscent of the strong-weak
symmetry of N' = 4 super-Yang-Mills evocated in §1.4. As such, this property cannot be
realised order by order in the gs-expansion, and since our modern computational method
are mostly perturbative, we still lack tools to prove the existence of S-duality on the full
theory. However, it is possible to verify this property on some quantities that can be
known exactly. This will be the focus of this section, and will serve as a motivation for
anticipating the exact answers to questions that are not fully understood perturbatively.

In section 3.1.1, we review the dimensional reduction of the two-derivative low energy
effective action to four dimensions, the realisation of the the strong-weak duality on the
charge spectrum, as well as on the spectrum of massive BPS states. In section 3.1.2,
we review the arguments for the presence of a 0(24,8,7) duality symmetry in three
dimensions.

3.1.1 Strong-weak duality in four-dimensional string theory

To introduce heterotic string theory on a six dimensional torus, we start by writing the low
energy effective action as N = 1 supergravity theory coupled with N’ = 1 super Yang-Mills
theory in ten dimensions, and then reduce this action from ten to four dimensions [106].
The moduli space in D = 4 is a quotient

My = SL(2,R) " 0(22,6) 7

SO(2) 0(22) x O(6)

where SL(2,R)/SO(2) is parametrised by the heterotic axiodilaton S while the Grassma-
niann factor Grog g is parametrised by the scalars in the vector multiplets — respectively
the 2 and the 132 in 1.1 — that we will come back to later. Since we will mostly be
interested in the theory at a generic point of the moduli, we restrict the gauge group to

its abelian subgroup U(1)1%. The bosonic part of the ten-dimensional action is given by,
with 0 < M, N <9 and [, J,... indexing the 16 gauge directions,

(3.1)

1 1
/dlox —Ge ™ (Rg + GMN 9y oD — EHMNPHMNP - ZnIJ-F]{/[NFJMN) , (3.2

where Gy, By, Aly, @ are the ten-dimensional metric, anti-symmetric tensor field,
U(1) gauge fields and the scalar dilaton field respectively, where 77 is the positive-definite
metric on the internal gauge lattice, and

1 :
Fin = OuAy —OnAL . Hune = 0uByp — 21 AL Fip + cyclicperm.  (3.3)

2
We will then denote by m, n, ... the directions along the six-dimensional torus, and by
1, U, ... the non-compact ones. The compactification Ansatz for toroidal compactification

PLe] A(G)nEa
B =% Sn Fn 3.4
o= (3 45 o

m
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leads the the following decomposition of the Riemann tensor, when all fields are assumed
to be y—independant

V=Ge ®Re = \/—ge—qﬁ(ng + 0,60, + iTr(@uGa“G) — i@mnFﬁf)mF(G)”W), (3.5)

where we introduced the shifted dilaton field ¢ = ® — %log det (CA;) Using bold letters for
tensors along the non-compact four-dimensional space

AI :ain(dym—i-A(G)m)—l-A(F)I

3.6
B = by (dy™ + AD™)(dy™ + A" 4 B, (dy™ + A + B (36)
The field strengths thus become
FlL =dal,
FL=a[ABT _ ol AlGM] 4 oI gA@m (3.7)

= dAPT gl gA©m
and
1
Hon = dbyn + 3N (a{nda,{ — a{lda;{l)

Hom = d[Bp + byin A" + %m gab, (AP — a] AN — (b + %m Jsab,a;)dA"
— nryal d(AF) — gt AGm)
= dAP) — (B + Cpup)d AP — ppal dATT
H=d[B+ %A(G)m AAB) — b, A AGI] %(A@mdAyf) + ABmgAC))
+ %mJA(F)IdA(F)J - éwgwmem |
(3.8)
To make the full O(22,6) symmetry explicit, one can define, using the notations intro-

duced in (3.7),(3.8), a new gauge vector A’ where the indices I,.J,... now denote the full
22 gauge directions

AP
Al = <_ A(F)I) ., BP =By %A@)m ANAB) ., A 4Gn

AG)m (3.9)

Q;w = G,u,y - GmanV(é’il)mn )

so that the kinetic term of this 28-dimensional gauge field A’ can be deduced from 28 x 28
dimensional matrix

S|

@:1 C:’_laA G l(b+c)
M = < aTG_lA Lig +aTG:1 R aG~Y(
(=b+c)G7t (G-b+c)

Q
|
>
+
&
I
)
+

a
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where ¢ = %afmaf; and 1,, is the n x n identity matrix. Note that this matrix consists of

the 132 scalars paramatrising Gao 6 (3.1). This matrix is an element of O(22, 6), satisfying

0 0 —1g
MLMT =1L ) L:( 0 nn O > (3.11)
-1 0 O
The four-dimensional action can thus be re-written as, using a shifted dilaton field
o — p— %logdetG

~ - 1 v — v
S = [ dlay/=5e Ry + 0,006 — 1 Hyup H' — FL, (O 7)1, " -
+ {TH(OMLO ML)

where all the indices are raised by the metric g,,,,, where R is now the curvatuge associated
to the latter, while other dynamical fields can be found in [107].
This effective action is indeed invariant under O(22,6) tranformations [107]

M — QMQT, Al — QAT Gy = G » By — B, b — ¢, (3.13)
where  is an O(22,6) matrix. However, charge quantisation will break this symmetry
to its largest discrete subgroup, 0(22,6,7), which is also known as the T-duality group
of this theory. Part of this symmetry exchanges the Kaluza-Klein modes of the theory,
i.e. the states carrying momenta along the internal directions with the string wrapped
around the internal directions.

To exhibit the string-weak symmetry, let us go to the Einstein frame metric g, =
e_d’gm,, and define a scalar field b dual to the antisymmetric tensor field

owr = —(\/—g)_lewe””p”&,b. (3.14)
Let us introduce the axiodilaton
S=b+ie?=5 +iS,, (3.15)

which is the complex scalar field parametrising the coset SL(2,R)/SO(2) in (3.1), and
rewrite the effective action with this field redefinition

1 - _ ., v
5= / d'ry =3[R, - 553 WSS = SaFly (M 1)1y /% + SiFf, Ff

1 (3.16)
+ éT&r(aMMLaMML)} .
where we denote the Hodge-dual field strength by
1
* P = —— o pl S = Ly < F (3.17)

2y/~g
where we will use L;; to indices of other tensors in the following.
The equation of motion of (3.16) for the field strength and the complex scalar field
are
D, (So(M™T) F/H — S xFI") =0
1 2
So? So3

(3.18)

D'D,S + ——=DyuSoDHS —iF) (M) F/™ + Fl, «FI" =0,
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where D), is the standard covariant derivative constructed from the metric g,,,. The other
equation of motion can be found in [102, 72]. In order to exhibit the electromagnetic
duality in a canonical way, we introduce the dual field F}"” as suggested the equation of
motion (3.18)

F = So(M Ty xF/M — S1FI (3.19)

such that the equations of motion for the gauge field strength and its Bianchi identities,
respectively )
dFf =0, dF =0, (3.20)

are dual one another, as suggests their expression above, and are related by the projection

(ML)} %) 7

(F7 +SF7)=0. (3.21)

Strong-weak duality of the effective theory As stated earlier, the strong-weak
symmetry acts non-trivially on e~?. It is not an explicit symmetry of the four-dimensional
action (3.16), but it can be exhibited in the equations of motion like (3.18). Using the
dual field notation (3.19), one can check that the SL(2,R) transformations [10, 108, 109]

aS+b F! a —b\[(F!
S=8=5ra <FI> - (—C d)(Ff)’ B = G - (3:22)
Considering that S5 1 — ¢% can be identified to the string coupling constant, this set of
transformation contains the strong-weak coupling duality given by a =0, b =1, ¢ = —1,
d =0,
1 ~ ~
S =5 FY = F,  FY — —F/" (3.23)

which, together with the shift of S;
Si— Si+b,  F— FMY bR, (3.24)

generates the full SL(2,R) group, with all other fields remaining invariant.

Note that the SL(2,R) symmetry is not explicitely realised at the level of the ef-
fective action (3.16), but only at the level of the equations of motion. It is possible to
introduce auxiliary variable to make both SL(2,R) and O(22,6) symmetries explicit, but
this is at the cost of losing explicit general covariance [110]. Since the SL(2,7) symmetry
exchanges the electric fields E} with the magnetic fields (M L)? ;B* (3.23), general co-
variance cannot be kept explicit. It is only possible at the cost of breaking the T-duality
symmetry at the level of the effective action, although it is recovered in the equations of
motions [110].

Note that SL(2,R) cannot be a symmetry of the full theory, in the same way that
0(22,6) is broken to O(22,6,7) when requiring quantisation of the charges. However,
SL(2,7Z) can be. In (3.16), we rewrote the four-dimensional action in a way that made
explicit the coupling between S; and the topological density F) ,fyLI g *EF7m - The latter
obtains contributions from gauge instantons which exist only for a discrete set of value
— usually refered to as instanton number, and thus the translational symmetry (3.24)
must be broken to a discrete subgroup of translations. Note that even if Abelian gauge
field do not lead to gauge instantons, the theory considered here does produces gauge
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instantons since the fields A? descend from non-Abelian gauge fields at a generic point of
the moduli space. One can compute the contribution of such instanton [108], and show
that the action can be normalised such that e*® remains invariant under S; — S;+1. The
translational symmetry is thus broken to S — S 4 1 in the path integral formalism, and
one can show that, together with S — —1/S, it generates SL(2,Z) the group of integer

matrices (‘Z 2) such that ab —cd = 1.

Invariance of the charge spectrum. The full four-dimensional string theory contains
charged fields. Although massive states decouple from the low energy effective action,
they are a good playground to investigate SL(2,7) invariance of the spectrum. The
gauge fields couple to their currents J, through the action

1
- §/d4m\/—gA£J}L, (3.25)

and one can identify the variables related the the electromagnetic field strength at large
distance

I . 2 I . 2
Qe = lim r°Fp, Qrm = lim 77 xFro, (3.26)
and use the equations of motion from the effective action [110] together with (3.25) to

identify the electric charge as

1
=5

o! MP5Qr, (3.27)

where the superscript *° stands for the asymptotic values of the fields and will be kept
implicit in the following, and where ()7 is the integrated charge density

Qr= /d3xx/ng?- (3.28)

The electric charge vectors Q7 must belong to an even self-dual Lorentzian lattice A,
with metric L defined in (3.11) [I11]. One can find the magnetic charges by imposing
the Dirac-Schwinger-Zwanziger quantisation rule [64, 65, 66]. Considering an elementary
string that can only carry an electric charge

(Qf, Q) = (512M”QJ,0) : (3.29)

and generic solitonic state, the quantisation rule constrain the magnetic charge to satisfy
1

Sy Qu(LML) 1y o M”* Qx = Q1,Q1 € Z, (3.30)
2

which corresponds to the definition of the dual lattice. Thus we have A,, = A}, and the
magnetic charges can be defined as

1
Q= S—L”P[, Pre Ag, (3.31)
2
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where Q! and Q! are canonically contracted with the canonical lattice metric L7;. Note
that these lattice charge are directly obtained a the canonical definition using the Gauss

la 1 1
QI I /52 I I | /2 I, ( 2)

where here So designates a 2-sphere enclosing the charge, and where the definition of the
dual field is given in (3.19).

We now want to know the general charge for dyonic state with both @; and P
non-zero. For S; = 0, or vanishing field strength H,,,, the topological term in (3.16)
is turned off from the action and we expect the electric charge of dyonic states to be
quantised in units of integral electric charges [112], but it not the case in general. By
using the canonical description (3.32), and relating the definition of (Q., Q,,) (3.26), one
obtains
1
Sy
The class of states described by (3.33) consists of all possible states charged under the
gauge field, including the purely electric states. One can notice that when S; # 0, there
does not exist electrically neutral magnetic monopoles [112].

To verify invariance of the charged spectrum under the strong-weak duality one can
perform a generic SL(2,7Z) transformation on the field strength (3.22) and deduce the
effect on the lattice charges Q7 € A¢, Pr € Ay,

(Qf,Qh) = < (M"(Qs + $1Py), L' Fy) . (3.33)

1
Qi — (81 +d) QL + Sy (ML) yQp, = o M (Q + S1 Pp)
2 (3.34)
Q= (e + d)Qy, — ¢Sy (M L)' ;Q; = o L Py

). O

This show that SL(2,7Z) transformations (3.22) preserve the expression of the charge
spectrum, up to a linear transformation of the bases (3.35), A¢ X Ay, — Ae and A X A, —
A,,. These transformations are well defined if the lattice is self-dual

! _ aS+b
where S’ = cord and

Ao = Ay, (3.36)

but might lead to further restrictions on the S-duality group otherwise. It is important to
notice that for generic N' = 4 string theory models, the lattice is not necessarily self-dual
and only subgroup of SL(2,7Z) can be preserved. In the case where both lattices are
included into each other up to a integer coefficient, for instance if A* C A and NA C A*,
a subgroup of SL(2,7) with ¢ = 0mod N — the congruent subgroup I'o(N) — may be a
symmetry of the charged spectrum. We come back to this in section 3.2.

Invariance of the mass spectrum. SL(2,7) invariance of the full string theory in-
cludes invariance of the allowed charge spectrum, but also of the full mass spectrum.
This statement is more challenging to verify because of all the perturbative and non-
perturbative quantum corrections to be considered. Here, we focus on a special class of
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states that are protected from any quantum corrections, as in the case of N' = 4 super-
Yang-Mills 1.4. Namely, states saturating the Bogomol’nyi bound [70] have their mass
fixed as a function of their charge, and the latter can be obtained from the asymptotic
value of the 28-dimensional field strength (3.26), as we shall now see.

The Bogomol'nyi lower bound on the mass squared of a state is given by M? >

M(Q, P)? with [10)
M(Q, P)? = S5(QLM™T = 1)1,Q] + QL (LML — L)1,QL,)

=(M;2L)U<QI Py (g 15) (%) (3:37)

Note that for vanishing charge along the compactified directions, (Qr, Pr) = (0,0) for
1<I<6and22< <28

M(Q, P)* = Synrs((QLay) (G1)"(Qlay) + (Qna) (G~ )™ (Qhay)) . (338)
with 77y the metric on the internal sixteen-dimensional lattice, is precisely Osborn’s
formula [69] presented in section 1.4 for the case of N’ = 4 super-Yang-Mills, where the

fields al, should be interpreted as the vacuum expectation value of the Higgs fields.
Using the definition of the Grassmaniann projectors defined in [BCHP2], one finds
that (M — L){J = 2pk.p%® and can rewrite M(Q, P)? as

M(Q, P)* = 52,2|QR + SPr|?. (3.39)

The two expressions (3.37) and (3.39) are explicitely invariant under O(22,6,7) and
SL(2,7) transformations given respectively by (3.13) and S — Zgig, up to self-duality of
the electro-magnetic charge lattice discussed under (3.35) [102, , 1141]. In other words,
two states saturating the Bogomol’'nyi bound have the same mass if their electro-magnetic
charge numbers (@, P), and the asymptotic values of M and S are related by an SL(2,7Z)
transformation.

To establish the invariance of the complete mass spectrum for such states, it thus
remains to show that the degeneracy N(Q, P) of states carrying electromagnetic numbers
Qr, P, is an SL(2,7) invariant. Such task has not been perfomed completely in the
literature, but we will see how far it has been pushed. We first consider states of vanishing
magnetic charge, i.e. string excitations, and then identify the specific magnetic monopoles
and dyons that close their SL(2,7) orbit.! It will be convenient to specify a duality frame
where the matrix M equals the identity

M — QMQT =1y, Ac—Q TA =A,. (3.40)

In the chosen normalisation, the mass formurla for string excitations in the Neveu-Schwarz
sector? is [102]
2

2 _
Mstr(Q) - 52

(Q% +2Nr — 1), (3.41)

!For a monopole soliton to be a plausible dual state, one needs to ensure that the carries the same
quantum and classical properties than the given string excitations. We will thus not consider singular or
non-asymptotically-flat monopole solutions.

2The Ramond and Neveu-Schwarz states being degenerate with each other due to space-time super-
symmetry, it is enough to study the Neveu-Schwarz sector only.
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where Qr, Nr and —1 are respectively the internal momenta, oscillator and ghost con-
tributions to Ly in the world-sheet theory. All elementary string states saturating the
Bogomol'nyi bound have Np = 1/2, so that M,.(Q) = M(Q,0).

On the other hand, the monopole solitons can be of various origin [1 15, , , I,
but realistic known ones can only be gauge monopole solutions or H-monopoles. The
former can be obtained in a gauge where vacuum expectation value of the gauge field
is directed along a fixed direction [110, |, and then rotate back the solution to the
frame (3.40)

(Qr, Pr) = (p, ey, erel = 2, er € A, (3.42)

where p € Z. The H-monopole is a solution associated with the ten dimensional field
Hyvnp [L17, ], and was constructed in [I 18] a finite sized gauge five-brane solution
around the torus. They are pure magnetic monopoles in terms of quantum numbers
(Q, P), and correspond to charge vectors

(Q[,P[) = (O,m[), mlml =0 my € Ay, . (343)

These monopole solutions contains an SU(2) gauge field, and thus only exist in a codi-
mension one locus over the moduli space. In other words, they can only be constructed
for specific class of M where the gauge group has a non-abelian enhancement [72].

One can now review what type of states are known in the SL(2,Z)-orbit of string
excitation saturating the Bogomol'nyi bound

e In the case Q% = eje! = 2, one can infer from Q? = Q2 — Q% = 2(1 — Np) that
there are no left-moving oscillators. Such states are mapped by strong-weak duality
onto purely magnetic gauge solitons (3.42) with p =0

0 —1\/(er\ (O
(1 0)(5)=(2) 344
which exists at any point of the moduli space. One can also show, similarly to

N = 4 super-Yang-Mills [69], that both of them fall in the vector representation
of the N' = 4 super-Poincaré algebra. For a generic SL(2,7) transformation, one

obtains
a b\ (fer\ _(aer
(= () = (1) (@45

where the unit determinant condition of SL(2,7Z) imposes a and ¢ to be coprimes.
The gauge soliton states (3.42) are a special case of (3.45) for ¢ = 1, but the others
have not been constructed yet, and can been seen as a prediction of the strong-weak
duality.

e In the case Q? = 0, the states satisfy N;, = 1. The oscillators associated with the
22 internal directions transform as scalars under four-dimensional Lorentz trans-
formations and thus are vectors of super-Poincaré algebra. The Inversion of the
type (3.44) maps elementary string states to H-monopole solutions — which only
have been constructed in a background where the gauge group hasn’t been totally
broken. Ths other states obtained from (3.45) have not been constructed either.
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e In the case Q% < 0, we get Ny, > 2 and thus states of the form

(Qr, Pr) = (n1,0) (3.46)

are mapped to states that haven’t been constructed yet. However, they are not
expected to be constructible from the massless fields of the low energy effective
action, except at special point of the moduli space where their mass vanishes.

3.1.2 Strong-weak duality in three dimensions

In this section, we study the duality group of heterotic string theory compactified on
a seven-dimensional torus. In the low energy limit, this results in a three-dimensional
supergravity theory with eight local supersymmetries [119]. The only massless bosonic
fields are the non-propagating spin-2 graviton, and a set of scalar fields: all the gauge
fields from dimensional reduction can be dualised to scalars in three spacetime dimensions.
The scalar fields parametrise a single coset space

0(24,8)

Ms = 5a1) % 0@)

(3.47)

containing the four-dimensional moduli space, the holonomies of the four-dimensional
gauge fields, the Kaluza-Klein vector and the circle radius [119, ]. This symmetry
enhancement can also be noticed from the perspective of vector multiplets: the 23 vector
multiplets have manifest R-symmetry Spin(7)/SO(8), while the gravity multiplet consists
of 8 fermions and 7 vectors which can be dualised and completed with the dilaton to give
8 scalars and 8 fermions with SO(8) symmetry.

The full string theory possess O(23,7,7) target space duality, but the theory can
also be seen as the four-dimensional theory of section 3.1.1 compactified on a circle,
whose SL(2,7Z) invariance should remain unbroken since it does not act on space-time.
When seen from the three-dimensional perspective, O(23,7,7Z) target space duality im-
plies that there are seven ways of decompactify back to a four-dimensional theory, and
since SL(2,7Z) acts on the moduli space of the decompactifying circle, these seven differ-
ent compactification lead to seven different SL(2,7Z) strong-weak duality groups. Since
these transformations do not commute with each other, they generate a larger non-abelian
discrete subgroup of O(24, 8), which happens to be O(24,8,7Z).

In the following, we first use the picture elaborated in §3.1.1 to reduce from ten
to three dimensions directly and show, at the level of the bosonic effective action, how
all the vector fields can be arranged in a 30-dimensional multiplet and parametrize the
Grassmaniann Gagg (3.47), together with moduli of G237 and the dilaton. In a second
and complementary paragraph, we work out for latter use the dimensional reduction from
four to three dimensions in a more general context with 2k + 4 vector fields.

Starting from the ten-dimensional action of N' = 1 supergravity coupled with ' = 1
super-Yang-Mills (3.2), the reduction on T leads to a matrix of scalar similar to (3.10),
where the upperblock 7 x 7 instead of 6 x 6, and satisfies

0 0 -1
MLMT =1L, MT =M, L:( 0 n O ) (3.48)
~1; 0
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where 7 is the metric on the internal gauge lattice. The action can be written in the
Finstein frame as

—4¢
S = /dBHZ\/ _g(REJ + au¢a'u¢ - %HMVPHMVP - 672¢F;£V(LML>IJFJMV (3 49)
1 .
+ S Tr(@,MLO"ML)) ,

A

and is invariant under O(23,7) transformations {2
M—OQMQT, Al = Q5,47 (3.50)

with g, By, ¢ remaining invariant.

In three dimensions, the B-field has no physical degree of freedom and its field strength
can be fixed to 0, which implies that the equations of motion of the gauge fields A’,
1<1 <27,

Bu(e v/ =g(ML)1;Fy,) =0, (3.51)

can be used to introduce the 30 scalars !

— 1 1%
(& 2¢\/ —g(ML)]JF;L]V = 57]]]6“ papw‘] . (3.52)

One can thus introduce the 32 x 32 matrix

_ M + 2Pyt MLy + 5e**9 (4T L) —e*%y)
M= (wTLM + 3eRUT(WTLY) e+ YTLMLY + §e (4T Ly) —5e2¢wTLw> ,
—e20yT _%62¢¢TL¢ e3¢
(3.53)

which belongs to O(24,8). For H,,, = 0, the action can be rewritten as
1 o
S — / d*oy/=g[Ry + 5 tr (@, M0" M) (3.54)

which is manifestly invariant under the O(24, 8) transformation

M — QMQT, Gy = G » (3.55)
with
_ N B 0 0 -1
QLOT =L, L:(O L o). (3.56)
10 0

One can then show that this O(24, 8) symmetry of the action can be understood in terms of
the O(23,7) symmetry (3.50) and the SL(2,R) symmetry of the four-dimensional action,
by exhibiting the element acting on the S module (3.15) [103]. It can shown that the
0(24,8) group is generated as a combination of the O(23,7) transformations (3.50), and
the SL(2,7Z) tranformation. To show that O(24,8,7Z) is the invariance group of the full
theory, one needs to show that the SL(2,Z) invariance of the four-dimensional theory is
not destroyed when we compactify on one of the three space-like dimension of this theory.
Some of the monopole solitons necessary for the O(24,8,Z) invariance of the theory are
identified in [103].
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Dimensional reduction from 4 to 3 dimensions. It is instructive to perform this
dimensional reduction from a four-dimensional perspective. Let us thus consider again
the effective action in four dimensions (3.16) and reduce the metric along a vector K, =
(Rkp,, R), with m =0,1,2

h
—lupn 4 Rk K, Rk
G = ( R Ekn - ) (3.57)

where A, is the scaled metric on the three dimensional space. Note that this reduction
can be performed irrespective of the signature of the Killing vector field, and we have
used notations for time-translation for the study of instantons in §4.4, i.e. h,,, is positive
definite and R > 0. For axial rotations, the metric has signature (— + +) and R < 0.

Supposing we are interested in configuration allowing a Killing vector K, all the fields
Aﬁ will depend only on the remaining three coordinates ™, and decompose as Aﬁ =
(AL + k,, B!, BY), with A and A’ perpendicular and parallel to K. Thus, the effective
action (3.16) rewrites as — apart from surface terms —

~ 1 _ 2
3B = / BV =h[Rh = o5 0mSO"S + S1(Fly + bmn AT) L1y ——e""0, A”

25,2 V=h
2
— 52 (FT{”m + kmnAI)(MiT)IJ (FJmn + kmnAJ) T Rzkmnkmn
1 1
_ mp “w
S Om RO R — STr(9,MLO"ML)] |
(3.58)

2
+ RamAI(MiT)IJamAJ —+

where Ry, is the scalar curvature for h, kpnp = Omkn — Onkm, F,{m = amfl{l - 8n/~17]n. The
equations of motion for Al and k,, can then be considered as Bianchi identities for the
dual fields B! and the twist potential 1. One can treat the fields A’ and their dual B’
in a self-dual way by introducing

- Al - -
Al = (g) R Y (3.59)
and the matrices
B 0 L7T/4 - A4 (SEMT S S MY
Yy - <_L_1/4 ; ) L = 52< o DY (30)

Treating them as independent variables, one ca rewrite the full action as

S® = / d%\/—h[Rh —~ %amsamé + &(amAT)M(aMA)
1 1 1 '
S mp __ _ " m s
72 0m BRI R — 5 0" — (Tr(9,MLO"ML)] .
where
Q= Ontp — ATY 79,4 (3.62)

(3.61) is in agreement with the graded decomposition of the Lie algebra sogy, g

S00k8 = ... @ (gl © sly @ 509y _06) Y @ (2® (2k + 4))(1) &1, (3.63)
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where the radius R, the axiodilaton S and the scalar matrix M are the grade-0 fields,

(A, B") is the grade-1 doublet, and v is the grade-2 singlet. This indicates that the
. . . . O(2k,8)

action can be rewritten as a non-linear sigma-model over the coset space Ok x0@E) 39

in (3.54).

3.2 CHL models in heterotic string

Chaudhuri-Hockney-Lykken models [59, 60, 62, (1] are asymmetric orbifolds of the het-
erotic string compatified on T% x S' that preserve all of the half-maximal supersymmetry.>
They exist in type I string constructions, where they were originally discovered [(3], as
well as in type II string descriptions [60, (1].

In the following sections we review from an heterotic string perspective some details
of three- and four-dimensional Zy CHL models with prime N, and argue for the presence
of strong-weak dualities in these constructions.

3.2.1 CHL moduli space in four dimensions

We consider theories that are freely acting orbifold of the maximal rank model, where a
Zy rotation acts on the heterotic lattice Agp ¢ together with an order N shift along one
circle inside 7. This projection removes 28 — r of the gauge fields in four dimensions,
along with their fermionic and scalar partners. For simplicity we shall restrict ourselves
to CHL orbifolds with N prime with £ = 24/(/N + 1). In this case, one can decompose

Aooe = Anps—i ® I & Hy—35-3, (3.64)

such that the Zy action acts on the first term by a Zy rotation, on the second term
by an order N shift, leaving II},_3 3 invariant. We denote by Ay s—1 the quotient of
Ank,s—k under the Zy rotation (see Table 3.1). One thus obtains

A6 =Nps— i ® I [N|® I_35-3, (3.65)

i.e. the subgroup of the automorphism group of A,_g ¢ which acts trivially on the discrim-
inant group A;_g4/Ar—66. The 6 from A,_¢ 6 always corresponds to the gravity multiplet,
while
_ 24 +2(11—N), (3.66)
N+1 N+1
corresponds the number of vector multiplets: the first term can be interpreted as the
number of vector multiplets left after orbifolding of the 16-dimensional gauge vectors
together with (when N > 2) some of the fields descending from dimensional reduction,
while the second term can be interpreted as the number of compactified dimensions, or
equivalently, the number of vector multiplets that unaffected by the orbifolding. Note
also that the second term in (3.66) must always be greater or equal to one for the model
to exist since the compactification involves an additional orbifolded circle S*/Z .
Here and below, for any lattice A, we denote by A[a] the same lattice with a quadratic
form rescaled by a factor . Note that the lattice (3.65) is still even, but it is no longer

r—=6

3A given CHL model is defined d > d*, where d* increases monotoneously with the order of the orbifold
for the cases considered in this manuscript. See 3.1.

“See § A2 of [BCHP2] for details on this construction.

5This is equivalent to rescaling the lattice vectors by v/a.
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N | Cycle Shape | k r Aps—k A, = A |AY /A
1 124 12| 28 Es @ Es @ I 1

2 1828 8 | 20 FEs[2] Eg2) @ I 1[2] @ II5 5 210

3 1636 6 16 Dg[3] @ Do[—1] | A2® As @ ﬂ373[3] @ 133 38

5 1454 4 | 12 | D4[5] ® Dy[—1] I3 5[5 @ I3 5 50

7 1373 3| 10 |Ds[7l@Ds[-1]| [ -} @ Is[7)® Map 7

Table 3.1: The class of Zy CHL orbifolds studied in this manuscript. Here k = 24/(N +1)
is the weight of the cusp form whose inverse counts half-BPS states, r = 2k + 4 is the
rank of the gauge group and A,, is the lattice of magnetic charges in four dimensions.
The discriminant group A%, /A,, is isomorphic to Z2. Dg[—1] is the null vector and
Dy[—1] = Aj[—1] ® A;[—1]. Agreement between the lattice A,, listed here and A,_¢ ¢
defined in (3.65) follows from the lattice isomorphisms listed in [105].

unimodular, rather it is a lattice of level IV, i.e.
QeM o5=>Q*€2Z, Qe _g4=Q*€2Z/N. (3.67)

One can see from (3.67) and arguments similar to § 3.1.1, that the U-duality group
G4(Z) includes T'; (N)xO(r—6,6, Z), where I'; (N) is the congruence subgroup of SL(2, Z)
corresponding to matrices (‘Z Z) with ¢ = Omod N,a = d = 1mod N, and 5(7‘ —6,6,7)
is the restricted automorphism group of the lattice. A brief, but technical, review of the
construction of the CHL partition function [BCHP2] is given a the end of this subsection.

Motivation for strong-weak duality. In [105] it was observed that the Gauss-Bonnet
coupling
1
oL / Az v/=g108(SS|AK(S)[*) (Rppe RMP7 — 4R RM + R?) (3.68)

is in fact invariant under the larger group Io(N), obtained by adjoining to Io(N) the
Fricke involution, which acts on modular forms of weight k£ under I'g(N) via fx(7) —
fu(r) = (=ir/N)"% f,,(—=1/(N7)). Based on a detailed study of geometric dualities in
the type II dual description, it was conjectured® that the full U-duality group in D = 4
also includes the so-called Fricke S-duality, which acts on the axiodilaton modulus S by
the Fricke involution S + —1/(N.S), accompanied by a suitable action ¢ € O(r —6,6) on
the second factor. Additional evidence for the existence of Fricke S-duality comes from
the spectrum of BPS states, to which we now turn.
Moreover, it was observed in [105] that the lattice A, is in fact N-modular, i.e. it
satisfies
Ay, ~ Ay [1/N] . (3.69)

In other words, there exists an O(r — 6,6) matrix ¢ such that v/ N¢ maps the lattice A,
into itself and such that
. S
AL = ——
VN
5More generally, Fricke S-duality is conjectured to hold whenever the cycle shape satisfies the balancing
condition m(a) = m(N/a) for all a|N. [105]

Am (D A) . (3.70)
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A simple example of N-modular lattice is Agq[N| @ Agq, which is relevant for N = 5
above. In this case one can parametrise an element in the lattice in (Z<¢, NZ4, 7%, Z4)
and an element of the dual lattice in (Z%/N,Z¢,74,7%) and define ¢ € O(2d,2d) such
that

0 0 ﬁ]ld,d 0 0 0 +lgq O

s 1 0 0 0 VN1gqg | | O 0 0 lgq
VN VN | VNigy 0 0 0 R PP 0 0
0 —<lag O 0 0 wlga O 0

(3.71)

This latter fact is essential to obtain a strong-weak duality acting non-trivially on the
charge spectrum.

Half-BPS Charge spectrum. Point-like particles in D = 4 carry electric and mag-
netic charges (Q, P) € Ay, under the r Maxwell fields, where

Aem =Ae @A, Ap=Ar_gg= A" . (3.72)

The lattice A,, is tabulated in the sixth column of Table 1.1, taken from [105]. In view
of the remarks below (3.65), one has, for any (Q, P) € Aep,

2
QQENZ, P c2Z, P-QeZ. (3.73)
The last property in particular ensures that the Dirac-Schwinger-Zwanziger pairing @) -
P’ — Q' - P is integer.

The map (3.70), provided by the N-modularity of the electromagnetic charge lattice,
defines the action

(Q,P) — (—s- P/V/N, 1. QVN), (3.74)

of the Fricke S-duality on A,,, which maps (Q?, P2, P - Q) +— (P?/N,NQ? —P - Q) and
therefore preserves the quantisation conditions (3.73).

Covariance of both the spectrum and the level— N modular form Ay, hints at a possible
strong-weak duality for the F* interaction acting as S — —1/(NS). As we see in the
next paragraph, the coefficient of this coupling can be written as a modular integral over
the fundamental domain I'g(N)\?H1, which is itself invariant under the Fricke duality.
Indeed, T'o(IN)\H1 possesses two cusps, ico and 0, of width 1 and N respectively, which
are exchanged under this duality. Unfortunately, deeper understanding of this strong-
weak duality is not available at present.”

Construction of the F* coupling for CHL models. We give in spirit the construc-
tion detailed in [BCHP2] for the freely acting Zy orbifolds. To implement the quotient,
it is simpler to work at the point of the moduli space G44164 Where the lattice partition
function factorises as (3.64), and Zy acts on the lattice Agy164 by a permutation with
cycle shape 1¥N* (recall k(N + 1) = 24). One can then construct the CHL lattice Ag g

"In particular, it does not descend naively from the unorbifolded theory since the Fricke duality cannot
be written as a SL(2,Z) element.
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in (3.65) for N = 2,3,5,7 by applying a Wick rotation on the Niemeier lattices D,iV'H,

replacing one Dy, by Dg_x[—1]3
N=2: D} = D2a®Dy-1]
N=3: D = Do Dy-1] (375)
N=5: D = Do Dy-1] '
N=7: D} = Do Ds-1]

so that the new lattice is an even self-dual Lorentzian lattice with signature (Nk,8 — k)
[121, § A.4]. In particular, it enjoys Zy symmetry o acting by cyclic permutations of the
N Dy, factors. Insertion in the partition function over (3.75) of elements ¢ is equivalent
to changing the lattices as

N=2: Do Dg[-1] = Dg[2]® Dy[-1]

N=3: D{®Dy[-1] = Ds[3]@® Dy[-1]
- (3.76)

N=5: D4 D D4[—1] = D4[5] D D4[—1]

[—1] [7] (1]

N=7: DI®Ds[-1] = Ds[7]® Ds[-1],

so that one is left with the signature (k,8—k) lattice Ay g advertised in (3.65). Denoting

the blocs over this lattice th_g[z |, we have the natural set of transformation rules, for
h # 0mod N,
th_g[Z](T) = Zk’k_g[g](T-l-ghil) (377)

where h™! is the inverse of h in the multiplicative group Zy. Then, the untwisted
unprojected block decomposes as

Ty NoITx:  [(—1)99°]
0 .’,.7 k=
Zk‘,k78[0:| = AZEO]B + Z kkAsk[l:I )
1 e=0 g (3.78)
_ Z FAk,k—S
AVARN P

V€T (N\SL(2,Z)

i.e. a sum over the coset To(N)\SL(2,Z) = {1,S,TS,..., TN-1S}, where

irgk

Ar =AY =0t (NT), Ax[f] = e () (5" (3.79)

and where I’y [P(Q)] is the standard partition function over A, , with insertion of P(Q).
The full partition function can be obtained by multiplying the blocks Zj s [Z], with

the orbifold blocks I'y, [Z |(7) for the lattice with the shifted partition function for the

remaining d — 8 4+ k compact directions, with d > 8 — k,

h d_§+k lgé-Q lQQ _lQQ
PAd78+k,d—8+k[g] =T Z (=)W~ q2¥L g27 R | (3.80)

h
QENG—8+k,d—s+kT 0

8The lattices D,iV'H consist of the adjoint lattice plus gluing vectors associated to a certain represen-
tations of a product group of type VN T1CN 1SN+ See details in § A2 [BCHP2].
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where 6/N = (04,0971, 1/N) represents the 1/N translation along a S' inside 79.° One
can then notice that the orbifold blocks written as sums over

A=Aps 1 ® Mg sirastr (3.81)
rearrange as
~ 0 T2d/2 2—‘sQ M QZ Q2
Zaror—s.dl] :mz 1+ (-)¥“+... +(-1)" ~ ]q2
k QeA
12 142
Zd+2k 8.d| { Z + Z + ...+ Z }qQQLQQQR
0 QeA* Qe ++s QeA N5 (3.82)
12 19
Zgion-s,a| [ Do+ D o+ D }(—1)%226]2%(12@’*,

g Qeh*  QeA*+36 QeA+28Es

which, altogether, rewrites similarly as (3.78)

N1
Zavor-sal}) + D Zaror-sal,] = > Zd+2k—8,d[?]‘ : (3.83)
9=0 YETo(N)\SL(2Z) !

Flnally, the insertion in Zd+2k 8 d[o] act as a projection (up to a factor N) onto charges
Q € Ad+2k 8,4 Which have vanishing component modulo N along the S 1 subjected to
the orbifolding. Thus, this projection amounts to reduce the lattice Ad+2k 8,4 to the one
adviertised in (3.65)

A6 =Nps— s @M1 [N|® I_35-3, (3.84)
and the full partition function rewrites naturally as
N-1 N—=1T'x 1)9Q?
%Zd—ﬂk Sd[ +gZOZd+2k Sd[ } W{-i]; Ad+2k2:[[§] ) ]
_ Z FAd+2k—8,d‘
v€To(N)\SL(2,7) Akm 2
(3.85)

This description is in agreement with the results stated in Table 1.1, thanks to the
isomorphisms
D6[3] D DQ[_l] ~ A2 D A2 &) HQQ[?)]
Dy[5] & Dy[—1] >~ I55[5] & I3, (3.86)

Dy[7) & Ds[-1] = (T} T,) @ M7 & Mo

Indeed, both lattices on each line have the same discriminant group L*/L = Zﬁv.

9In more generality, it is a null modulo N vector
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Finally, we can obtain the one-loop F* amplitude by an insertion of the polynomial
Ppeq explicited in [BCHP2|, and integrating over the fundamental domain H/SL(2,7Z).
The integral can thus be unfolded onto a fundamental domain I'g(N)\H for the action of
To(N) on H, at the expense of keeping only the block [?],

dTldTQ FAd +2k —8,d [Pabcd]
To(N\H T3 Ak ’

F{ 9™ = R.N. (3.87)

where A, = Ay [(1)], thus establishing the F* coupling coefficient for this class of models.

While the U-duality group in four dimension G4(Z) must certainly include I'; (N) x
6(7" — 6,6,7Z), it may actually be larger. Moreover, special BPS observables may well
be invariant under an even larger group. Indeed, the partition function of the coupling
coefficient (3.87) turns out to be invariant under the action of the larger duality group
Io(N) x O(r — 6,6,Z), where To(N) is the subgroup of matrices (* ’) with ¢ = 0mod N
and O(r — 6,6, Z) is the full automorphism group of the lattice A,_g .

3.2.2 CHL moduli space in three dimensions

Upon further compactification on a circle, additional moduli arise from the radius R of the
circle, from the holonomies a'! of the r gauge fields, and from the scalars a?!, v dual to the
r Maxwell fields and to the Kaluza—Klein gauge field in three dimensions. The U-duality
group G3(Z) includes G4(Z), the Heisenberg group of large gauge transformations acting
on a!?, 4, and a subgroup of O(r —5,7,Z) containing the restricted automorphism group
6(7‘ —5,7,7) of the Narain lattice A,_57 = Ar_¢,6 @ II1 1. The action of these subgroups
is most easily seen in the vicinity of the cusps R — oo and g3 — 0, corresponding to the
decompactification limit to D = 4 and the weak heterotic coupling limit in D = 3, where

the moduli space reduces to

M {RE X My x T?+1
3 —

O(r—5,7 .
Ry gz % [on)m/()(r - 5,7,Z)} x T7+2

(3.88)

and where My is parametrised as in (3.1) with the value of the asymptotic scalar fields
listed in table 1.1, the 7%+ is parametrised by the grade-1 » Wilson lines AT their duals
B!, and the grade-2 twit potential ¢ (3.59). In the second line of (3.88), the T7*2 is
parametrised be the r + 2 grade-1 scalars dual to the gauge fields.

For r = 28, it is well-known that these subgroups generate the automorphism group
0(24,8,7Z) of the ‘non-perturbative Narain lattice’ Aogg = Aao 6@ II2 2, as we discussed in
section 3.1.2. The U-duality group for CHL models does not seem to have been discussed
in the literature, but it is natural to expect that it includes the restricted automorphism
group O(r — 4,8,7) of an extended Narain lattice of the form

Ay =Ny @Iy @ I 1 [N] (3.89)

where II 1[N] is the standard hyperbolic lattice with quadratic form rescaled by a factor
of N, such that A* /A, 45 ~ ZK™. In terms of the usual construction of s by
windings (n1,n2) € Z2, momenta (m1,ms) € Z? and quadratic form 2min; + 2mans, we
define II7 ; & II; ;1 [N] as the sublattice of Iy 5 where ny is restricted to be a multiple of
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N. The restricted automorphism group of II1 1 @ II1 1[IN] was determined in [105, 122],
and includes oros X [['1(IV) x I'1(V)], acting by fractional linear transformations on
the moduli (7', S) parametrising G2, such that [m; + Smg + Tny + STno|?/(SoTs) is
invariant (see [123, §C], case V for N = 2, or [124, §3.1.3] for arbitrary N). In the
present context, T is interpreted as ¢ + iR2, while S is the heterotic axiodilaton. Thus,
6(7‘ —4,8,7) contains the S-duality group I'1(N) and T-duality group 6(7“ —6,6,7Z) in
four dimensions. In addition, Fricke S-duality in four dimensions follows from the fact
that the non-perturbative lattice (3.89) is itself N-modular,

Ar_ys >~ Ar_as[1/N], (3.90)

which can be checked easily using the table 3.1, and the relation II; ;[N]|* = I[; 1[1/N].

3.3 Exact F* coupling from supersymmetry constraints

In three dimensional supergravity with half-maximal supersymmetry, linearised super-
symmetry invariants can be obtained from the action of supercharge derivatives D on
any homogeneous function of the linearised superfield Wy, [119, , ]

DiWaa = (Ta)"Xp30»  DaXgja = —1(0")ap(T);' 0, Waa , (3.91)

where @ = 1...8 is a vectorial index for O(8), i = 1...8 for the positive chirality Weyl
spinor of Spin(8) and 7 = 1...8 the negative chirality Weyl spinor.

In particular, couplings with k derivatives are obtained by acting with 2k supercharge
derivatives D!, and are thus said to be protected by supersymmetry for k < 8. The
coupling F**, of the type D8 f(W), is thus said to be half-BPS.

At the non-linear level, derivatives of the scalar fields only appear through the pull-
back of the right-invariant form P ; defining the metric on G,_gg as Guy = ZPMBP\‘}I’,
and the covariant derivative in tangent frame acting on a symmetric tensor with unhatted
indices as

Daf,Aal...am = PuagGuv(avAal...am + mwv(achag.“am)c) . (392)

The supersymmetry invariant associated to a tensor Fp.q on the Grassmanian defines a
Lagrangian density £ that decomposes naturally as

L= Fa1a2a3a4£a1a2a3a4 + D(alaFa2a3a4a5)£alma5d + D(a1d1Da2&2Fa

+ D(al dl Da2d2pa3&3 Fa4a5a6a7)£alma7d1&2d3
+ D(a1&1Da2&2Da3&3Da4d4Fa5...as)£a1masdl...[m 5 (3-93)

ai...ag .
3a4a5a6)‘c a1a2

where the polynomials £"*4, are O(r — 8,8) invariant functions of the covariant scalar
field strength, the dreibeins and the gravitini fields. Since non-linear invariants define
linear invariants by truncation to lowest order, the covariant polynomials £*" reduce at
lowest order to homogeneous polynomials of degree n + 4 in the covariant fields,

Lo — J=g(2P, Pro, pelaprdb _ plag prtlape prab Ly (3.94)

The important conclusion to draw from the linearised analysis in [BCHP2]| is that the
O(r —8,8) right-invariant polynomials £** appearing in the ansatz (3.93) are symmetric
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in both sets of indices and traceless in the O(8) indices. Checking the supersymmetry
invariance (modulo a total derivative) of £ (3.93) in this basis, one finds that the tensor
Fpeq must satisfy the constraints [BCHP2]

D "Dy Foges =0, D Fopea = 0. (3.95)

Similarly, because the polynomials £ are traceless in the O(8) indices, the O(8) singlet
component of §(DF)L] can only be cancelled by terms coming from FJL*, and thus the
tensor Fy.q satisfies an equation of the form

DededFabcd = 5b156(fFabcd) + 5by 6(fancd)e , (3.96)

for the numerical constants by, bo can be fixed by consistency. In particular, the integra-
bility condition on the component antisymmetric in e and f implies by = 2b; + 4.

One can then generalise Fyp.q to a completely symmetric tensor F LEZ’:Z) on a general
Grassmanian G, 4, which would arise by considering a superfield in D = 10— ¢ dimensions
with 3 < ¢ < 6. The tensor Fyp.q is thus subject to the constraints (3.95) and

D Dya Pt = by bep Faped) + 2520 o Fyoyt) + (2by — q)0c(a Fyogiy + 3b3 0(apFiyly . (3.97)

with coefficients by, bo, b3 a priori depending on p and gq.

A first integrability condition implies b; = 2b24_q and bs = bo, and considering the

antisymmetrised action of three covariant derivatives, one finds that by = 1

a 2 —4q
D. Df‘lngbcd) - 4 63(fF(§§c(cll)) + 55(f‘1 b(cd)) (398)

Finally, let us note that the discussion only applies so far to the local Wilsonian
effective action. The Ward identity satisfied by the renormalised coupling Fopeq is cor-
rected in four dimensions (for ¢ = 6) because of the 1-loop divergence of the supergravity
amplitude [127], leading a source term in given in [BCHP2].

3.3.1 Conjecture for exact F* coupling

The arguments for the existence of a non-perturbative duality group 6(7" —4,8,7), re-
viewed section 3.1 and 3.2, as well as the supersymmetry constraints section 3.3 motivated
the conjecture of the exact (V¢)* coupling as the one-loop integral

dT]_ d7—2 FAT —4,8 [Pabcd]
Lo(N)\H1 7_22 Ak(T) 7

FG 48 (@) = R.N.

(3.99)

which is constructed as the generalisation of one-loop perturbative function — see (2.24)
for the full rank case or (3.87) for N = 2,3,5,7 — where we replaced the Narain lattice
A, _5 7 with its non-perturbative extension A,_4g (3.89).

The function (3.99) is manifestly invariant under the non-perturbative dualities men-
tioned in section 3.1.2, and has the property of satisfying the supersymmetry constraints (3.95),
and in particular the equation (3.97), see § 3.2 of [BCHP2].

In order to prove that a solution of the supersymmetry differential constraints cor-
responds to the expected exact coupling, we must verify that it statisfies the right the
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boundary condition, by, for instance, matching the perturbative F* coupling in the weak
string coupling limit. In the next subsection, we compute its weak coupling limit by
studying the Fourier decomposition of Fyp.q(®) near the cusp gs — 0 in the cases of het-
erotic string in three dimensions and type 11 string in four dimensions. We show that zero
mode in the Fourier decomposition of (3.99) matches with perturbative answers from the
literature.

Weak coupling limit of three-dimensional exact (V¢)? couplings. In [BCHP2],

we computed the Fourier decomposition of the function F égfc’lg) at the cusp g3 — 0 of

~ + O( _577)
Gars =R o % oy eim /O(r = 5.7.2)] (3.100)
corresponding to the weak heterotic coupling limit in D = 3. Decomposing as
Aopg = Nop—17 ® I 1[N], (3.101)

the limit studied in this section corresponds to the expansion of the exact (V®)?* couplings
in D = 3 [BCHP2]. To interpret the resulting contributions in the language of heterotic
perturbation theory, one should remember that the U-duality function Fégff)(@) is the
coefficient of the (V®)* coupling in the low-energy action written in Einstein frame, such

that the metric vg is inert under U-duality,

2k,8 o ad pbb peé pdd
S = /d3x V=E [R[’YE] —(20,30,5 — 5aa553)Fébcd (D) Vel vE Pﬁ“PBbP;chd} +.o.
(3.102)
In terms of the string frame metric v = ygg4, one finds

Ss = / &Pz [;%Rm — 63 (26,3054 — dact3) Fipe (P) wwvf’Pg@PSbP;éPﬁd] +o

(3.103)
Using ¢x(0) = k for CHL orbifolds with N > 1 or ¢(0) = 2k in the maximal rank case,
and (2) = &, the results from [BCHP2] read

—LQ‘QR‘—&-ZWin

/
2%,8 3 2%—1,7 _ *
932) Fébcd )= 25(ab56d) + Fa(bcd ) + Z c(Q)e Pa(bc):d , (3.104)

21
93 QEN2,_1,7

where we omit the detailed form of exponentially suppressed corrections, and where ¢ (Q)
is as summation measure

_ Q2 Q2
a@= 3 de(- @) + Y Nde(- 2Nd2) . (3.105)
d>1, d>1,
Q/d€Nzp—1,7 Q/deNA3, , ;

The first two terms in (3.104) should match the tree-level and one-loop contributions,
respectively. Indeed, the dimensional reduction of the tree-level R? + (TrF?2)? coupling
in ten-dimensional heterotic string theory [128, ] leads to a tree-level (V®)* cou-
pling in D = 3, with a coefficient independent of N by construction. The second term
in (3.104) matches the one-loop contribution (2.24) by construction. The remaining
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non-perturbative terms can be interpreted as heterotic NS5-brane, KK5-brane and H-
monopoles wrapped on any possible T inside 77 [130]. More precisely, NS5-brane and
KK5-brane charges correspond to momentum and winding charges in the hyperbolic part
I 1 [N] @ I3 j;—2 of Ay, @ II1 1, while H-monopoles correspond to charges in the gauge
lattice Ay g—j (for the heterotic string compactification on T7, these sublattices must be
replaced by II7 7 and Eg & Eg or D, respectively).

Weak coupling limit in type II string theory compactified on K3 x T2. The
heterotic axiodilaton S corresponds respectively to the 2-torus Kéhler modulus T in
type ITA, and the 2-torus complex structure modulus Ug in type 1IB, while the type II
axiodilaton S = Sp corresponds to the Kdhler modulus T of the 2-torus on the heterotic
side

S =T\ =Ugp, T =55=058, U=Up=13. (3.106)

In order to expand at small type II string coupling, i.e. at large T3, we decompose the
lattice as

Aop—96 = Nog—aa® I 1 & I 1[N]. (3.107)

For simplicity we shall use the type IIB moduli in this section, with Sgs = 1/g2.
Moreover, we shall only consider the perturbative terms for the Maxwell fields in the RR
sector corresponding to indices «, 3, ... along the sublattice Ag;_4 4. The type IIB weak
coupling limit of the exact F* interaction gives [BCHP3]

~(2k— 1 _ 3 él(NTB) —l—gl(TB) +<€1(NUB) —i—él(UB) + Qloggs
(2k—2,6) (2k—4,4)

Fogysin = PFOLB'\/J m+ %5(%%5)( N+1 - )
S
1 _ 3 _

= PFC%W;A)@) - @5(@3%5) log(gs Ty Usa| Ak (T) Ak (Us) ) (3.108)

S

where the first term matches the tree-level coupling computed in [131], while the second

term is related by supersymmetry to the R? coupling computed in [132, ].

3.4 Exact V?F* coupling and differential Ward identities

This analysis is a generalisation of section 3.3. A six-derivative coupling is obtained by
acting with twelve supercharge derivatives on an homogeneous function of the linearized
superfield W, for a specific measure [BCHP3], and is thus said to be quarter-BPS. The

integral vanishes unless the integrand includes at least the factor W[Efo]} WEW;?, such
that the non-trivial integrands are defined as the homogeneous polynomials of degree
4+ 2n 4+ m in Wy,.

It follows from the analysis in [BCHP3] that the non-linear invariant only depends on
the scalar fields through the tensor Fyy, 4, its covariant derivatives D" Fy, .4 and covariant
polynomials Ly, ,,,; in the corresponding irreducible representation of highest weight mA;+
nAy of SO(8), where the latter only depends on the scalar fields through the covariant
scalar field strength PM b fermions and their covariant derivative, the dreibeins and the
gravitini fields. Using the known structure of the tgtrV,FVFFtrFF invariant in ten
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]10
)

dimensions | one can compute the first covariant density Ljg o bosonic component

Eab,cd — V87T ( P([a v Pl;]apﬂ[ VUPV|d]b_|_2P [‘1( vV, Pﬂ|b] )pl’[c|av‘7P dlb (3109)

a bla ¢ o prl|db ala b]b opv|d
—P ;v prilaplegopridh _gp oy, pilp [[aVP|]3]+...).

The factor of 7 is introduced by convenience for the definition (2.37) to hold. Moreover,
the only non-vanishing tensors in this mass dimension are the polynomials Ly, ,, with
0<n <2and 0 <m <4, such that the invariant £ admits the decomposition

L = Fupeal™® +DSOF,, cd»Cab ke | Dy, (an) )Fab cdﬁab edef | D[e[&Df]b] Fab,cdﬁgg’Cd’ef

aia2,a3a4,a5a06,a7ag8,b1,b2,b3,b
+ "+D(b1( LDy 4)Da1a1 "‘Da4a4Fa5a6,a7a8E 162,0304,0506,07a8,b1.b2,63,04 (3 17

G1G2,4304,b1,b2,b3,b4

a1az,...,a a b1,...,b . . . . . .
where the L7172 2n3%nt 099 ar6 in the irreducible representation of highest weight
a182,...,a2n—1821,b1,....0m

md +nde of SO(8) and admit the symmetry of the Young tableau [n+2, m| with respect
to the permutation of the SO(p) indices. In particular, Fyy o4 transforms according to (i,
realised by first symmetrising along the columns and then antisymmetrising along the
rows [ab], [cd].

Checking the supersymmetry invariance (modulo a total derivative) of £ in this basis,
one finds that the tensor Fgp g must satisfy the constraints [BCHP3]

D[al azas),bc — =0, D[al [d1Da2d2]Fa3]b,cd =0, D[al [&yDadeDag]dg}ch,ef =0. (3111)

Similarly, because the Ly, ,,, are traceless in the SO(8) indices, the SO(8) singlet com-
ponent of 6(DF)Ljg 1) can only be cancelled by terms coming from F'6Ljq ), and thus the
tensor Fy cq must obey an equation of the form [BCHP3]

D Do Fopea = b (—5efFab,cd + el Py fca + 5e[ch]f,ab)
— 3b2 (0o Fhje,ca + O picFae.an) — 420g 0 Fhj(e,pya > (3:112)

where the numerical constants by, by can be fixed by consistency. In particular the inte-
grability condition on the component antisymmetric in e and f implies by = 4 — 3bs.

One can then generalise Fyy, .q to a tensor F, (i o7 on a general Grassmanian G, 4, which
would arise by considering a superfield in D = 10 — q dimensions with 4 < ¢ < 6 The
same argument leads to the conclusion that F(g 331 satisfies to (3.112) with b; = 4 — 3bo,
and another integrability condition gives by = [BCHP?)}. One can then represent a
tensor with the symmetry [ with two pairs of indices that are manifestly symmetric, i.e.
Gab,cd = Gracd = Gab,de = Ged,ap such that G(ab,c)d = 0, such that

Fabed = Golaplid > Gabed = —3F0)cayv - (3.113)
The tensor Gy g thus satisfies the constraints

) _ a (p.g) __ a a (p,9)
D[alaGapz\qlﬂ asle — 0, Dy [alpa2 ]Gapg]qb =05 Dl [a1Da2a2D ]as]GcIZlqe _(O )
3.114

Owith tg F* = Fu, FY7 Fpp FP* — 1/4(F,, F*)2.
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and

é o) _ 3= () | 6— o) (p.a) 3 )
D"DpaGapea = “320efCapea T ~3- 0e)@Ch)(fea T 9e)cCa)(f.an) T 20(abGeiyer -

(3.115)

The discussion only applies so far to a supersymmetry invariant modulo the classical
equations of motion, whereas one must take into account the first correction in (V®)%.
This implies that corrections to the differential equations must be quadratic source terms
in the coefficient F%'%) defining the (V®)?* coupling (2.24). Constraints on F.7'% (3.111)
indicates that there is no possible correction to (3.114), and contributions to (3.115) can
be restrained by looking at their possible representations. Because ﬁﬂj is trivially satisfied

0§ o, 720 (3.116)

[a1 azas],bld ’

Lo a q
(P9 _ (p,q)
§D[a1‘apb&ﬂ;223],cd - _Zéb[al Fa;)(jg],cd - Z
the source term quadratic in Fé’g’cﬁ must belong to the representation . One finally

finds that the only possible source term that also satisfies to the constraint (3.114) is

(p,a) g p(pa)
Fieyan, Feay(s1g
P,q)

We conclude that the correct supersymmetry constraint for szb vq Teads

a () _ 3= w6 #0) (p0) 3 P0)
D("D1)aGapea = “5300efCapea + ~3 (0e)@Gh)(fca + 0e)cCay(f.apn) T 50(ab, Gy e

30 pa) g pa)
= 5 Fioylan, Feay(plg - (3-117)

where w is an undetermined numerical coefficient at this stage. In [BCHP3], we show by
an explicit calculation that the genus-two modular integral Gg;:qczj satisfies (3.117) with
w = T.

Let us note that this discussion only applies to the Wilsonian effective action. The
differential Ward identity satisfied by the renormalised coupling Gab,ad from the 1PI effec-
tive action is corrected in four dimensions (¢ = 6) by constant terms and by terms linear
in Fy.q [BCHP3).

3.4.1 Conjecture for V?(V¢)!

As for the (V¢)* coupling of the previous section, the arguments for the existence of a
non-perturbative duality group 6(7’ —4,8,7), reviewed in §3.1 and §3.2, as well as the
supersymmetry constraints, §3.3, motivated to conjecture the exact V2(V¢)4 coupling as
the two-loop integral

dQyd, Ty, [Pabed]

Gap.cd(®) = R.N. R
pd(®) Too(N\Hz Q22 @r2(Q)

(3.118)

which is constructed as the generalisation of two-loop perturbative function (2.37) (with
Iy0(1) = Sp(4,7Z)), where we replaced the Narain lattice A,_5 7 with its non-perturbative
extension A,_4g (3.89). In the case of CHL models, the construction of (3.118) is more
involved than the genus one case, but has been worked out in details for N = 2 in § B.2.2
of [BCHP3], and generalised to N = 3,5, 7 with a line of argument similar in spirit to the
genus one presentation in § 3.2.1 of this manuscript.
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The function (3.118) is manifestly invariant under the non-perturbative dualities men-
tioned in section 3.1.2, and satisfies the supersymmetry constraints (3.114), and in par-
ticular the equation (3.115), see §3.3 of [BCHP3].

In the next subsection, we look at the weak coupling limit of heterotic string in three
dimensions and type II string in four dimensions. We show that the zero mode in the
Fourier decomposition of (3.118) matches with expected perturbative computations when
known, and consider them as predictions otherwise.

Weak coupling limit of three-dimensional exact V?(V¢)?* couplings. The Fourier
decomposition of the function Fég;f’g) at the cusp g3 — 0 (3.88) corresponding to the
weak heterotic coupling limit in D = 3 was computed in [BCHP2]. In this limit, the
lattice Ao g decomposes into

Aok—17® I 1[N], (3.119)

where the ‘radius’ of the second factor is related to the heterotic string coupling by g3 =
1/VR, and the U-duality group is broken to 6(2k —1,7,7), the restricted automorphic
group of Agr_17. In order to interpret the results as perturbative contributions to the
V2(V¢)* interaction, it is convenient to multiply the coupling by a factor of g§, which
arises due to the Weyl rescaling vg = 75/ g§ from the Einstein frame to the string frame,
see §4.3 of [BCHP2|. The weak coupling expansion can be extracted from §4.1 of [BCHP3|
upon setting ¢ = 8, v = 1, and reads

3 1
bers. - 2 (2k-1,7) 2 ~(26-1,7)
g3 Go?gfy(s - 7471_932 5<aﬁ757§> - 15<QB’G,;§> L7 (SO) + 93 G;E;ylé? (QO)
/ —22./2Q 2 +27iQ-a
3e % ~(2k—1,7) 5, gl 92
T Z 202 Glag, (Q, ) (QL'yQLé)< 207 + g) - 876%;))
QEAZ, 17 R
! -22Q2
+ Y e 5 "Gasnslgs QL. Qr) - (3.120)

QEAS, 4

The three first terms in (3.120) correspond to the two-loop perturbative contribution com-
puted in (2.37), the one-loop contribution (2.29), and the splitting degeneration contri-
bution. The latter reproduces the tree-level V2(V¢)?4, obtained by dimensional reduction
of the V2F* coupling in 10 dimensions.

The exponentially suppressed terms in the second line of (3.120) can be interpreted as
instantons from Euclidean NS five-branes wrapped respectively on any possible 7 inside
T7, KK (6,1)-branes wrapped with any S' Taub-NUT fiber in 77, and H-monopoles
wrapped on T"7. Their precise expression can be found in [BCHP3]. Although we obtain
a definite answer for such contributtion, the orbit method misses exponentially suppressed
terms which do not depend on the axions a in the last line of (3.120). The existence of
these terms is clear from the differential constraint (3.117), since the (V$)* coupling Fipeq
appearing on the right-hand side contains both instanton and anti-instanton contributions.
Unfortunately, our current tools do not allow us to extract these contributions from the
unfolding method at present.

Finally, it is worth stressing that while the perturbative contributions Gfbkfl’” and

Gfbkc_; " have singularities in codimension 7 inside M3 at points of enhanced gauge sym-



76 CHAPTER 3. NON-PERTURBATIVE AND SUPERSYMMETRY CONSTRAINTS

metry, the full instanton-corrected coupling (3.118) has only singularities in codimension
8.

Weak coupling limit in type II string theory compactified on K3 x 72 The
expansion of the exact V2F* and R?F? terms in D = 4 is obtained in §5.3.1 of [BCHP3],
and we now consider the weak coupling limit on the type Il side. Recall that S =T = Ug,
i.e. the heterotic axiodilaton corresponds to the 2-torus Kédhler modulus in type IIA,
and the 2-torus complex structure modulus in type IIB, while the type II axiodilaton
Sa = S =T corresponds to the heterotic Kéhler modulus (3.106).

At large Tgo, i.e. small type II coupling, the lattice decomposes as (3.107), and the
exact V2F* interaction is obtained from §5.3.1 of [BCHP3] after dropping the logarithmic
terms in R,

2k 2 3 E1(NUg) + &1 (Ug)\2
Gire o (U, 9) = Gl () = —0(andea ( i ;L ; i B)) (3.121)
1 NE(NUg) — £1(U) A@ins NEL(Ug) — EL(NUB) Ao ,
=30 (SR TR GO () 4 SRR SRR G ()

where ¢ belongs to the Grassmannian on Ag;_2¢. We neglect the non-perturbative con-
tributions and use the decomposition of Gfbkc_; %) (), which can be obtained from §5.3.1
of [BCHP3] by replacing the moduli as R?> = Spy = g% and ¢ =t the K3 moduli of the

Grassmanian G o, _44y. After expanding around ¢ = 6 + 2¢,'1 we find

~on 1 ~0 3 gl(NTB)—I—EAl(TB)—FQIQgg 2
(2k—2,6) (2k—4,4) s
Giind (@) ~ 3G (0 = 1810800 ( N )
NE(NTg)—E&1 (T 6 NE(Tg)—E&1 (NT; 6
1 5 1( ]\}321 1(TB) + ?10g986(2k74,4> . 1( B]szll( B) + —log gs SECE-1) ()

(3.122)

To compute the power-like terms of @;2[)'“_2’6)(@), one proceeds as in [BCHP2] and finds
after expanding around ¢ = 6 4 2¢ and neglecting the non-perturbative contributions

A 1 /4 2N A A
(2k—2,6) (2k—4,4)
Gaog () ~ 92 (Gaﬁ (t) + N 1008 (&1(Ts) - 51(NTB)))
12 1 12 A A
N 1 as 000 (5 loslon) +E(Te) + E4(NTw)) . (3.123)

while the ones of g@fbkfm)(@) are obtained by acting on the Kéhler moduli 75 by Fricke
duality 1 — —ﬁ, and on the K3 moduli ¢t with the involution ¢, so that

(2k— 1 A~ o 2N A A
Gt ) ~ -3 (L0 + 51 0as (E1(NT) — &1(Ti)))
12 1

12 4 5
+ mgdag(? log(gs) + &1(T) + El(NTB)> - (3.124)

HUNote that the lattice Aop_26 is kept fixed, and the expansion in ¢ = 6 + 2¢ only applies to the
numerical value of the various exponents, just as if one introduced a regularising factor of |22]¢ in the
genus 2 integral.
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Collecting all terms, we obtain the complete perturbative V2F# coupling in D = 4,

Gt = Gﬁfg S8
1 N&(NTg) — & (Ts) + NE(NUg) _gl(UB) 6 (2k—4,4)
TEERT wv(( = + Slogan) G0

n (Ngl(TB) —&1(NTg) + N&(Up) — E1(NUB) I gloggs) gé;2k74,4)(t)

N-1 )
(£1(T) — £1(NTp))(€1(Us) — £1(NUs))
—2N G,
N-—-1
3 E1(NTg) + &1(T) + &1(NUg) + £1(Us) + 2log g\ 2
- E%ﬁ,%)( e G ). (3.125)
The terms involving log gs originate from the mixing between the local and non-local
terms in the effective action [34]. The result (3.125) is manifestly invariant under the
exchange of Ug and Ty, and is thus identical in type ITA and type IIB strings. It is also
invariant under the combined Fricke duality T — —ﬁ, Ug — —ﬁ, t — <t [105],

which is built in the conjecture (3.118).

The limit N = 1 in this case is subtle, and for the full rank case (3.125) must be
replaced by 2

3
Goslsn = GSE Ds(t )+ngg§(aﬁ, (10g(TBQ|7I(TB) |*)+log(Usz|n(Us)|*)—21log gs)G%A) t

27

2
—mswm(log<TBQ\n<TB>|4>+log<UBQ|n<UB>|4>—2loggs) . (3.126)

It would be interesting to check these predictions by explicit perturbative computations
in type II string theory. To simplify the results, one can use the formulae

gl(NTB) +81(TB)
N+1

1 A
= - loa(TlAw(TB)) . &(Th) = - = log(T2IA (Tp))) .
(3.127)
to rewrite the two-loop contribution on the last line of (3.125) as

3

= (e B30 (1080 T U ATa) A (U) ) (3.128)

The (log gs)? term is consistent with the two-loop logarithmic divergence of the four-
photon amplitude [133] (recall that the log gs can be traced back to the logarithm of the
Mandelstam variables in the full amplitude, and therefore to the logarithm supergravity
divergences [34][BCHP2]). The term linear in log g, in (3.128), corresponding to the tgF*

12Note that fog *) is finite for the full rank case, whereas G(Qg *%) requires in general a regularisation
due to the 1-loop supergravity divergence in six dimensions.
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form factor divergence, can be rewritten as

3k 1 _ A2k
17 10800 0, (153 (G0 + G 0)) = by g BTVl Ac(To) A U )

1 _ 2k
=—Eloggs5<aﬂ,(§F$§n4’4m(t> %) (am)? 3 log(ThUdh| A (T5) Ax(Up) %))

3 ~(2k—2,6)
= _Eloggs 5<a5:F'y(5>c I ‘ ’

(3.129)

where one uses integration by part on the definition of F C(fﬁsz 9 with ;r gT Akl( y =

£ (Ea(1) + NE>(NT))/Ak(p), and S(abOca) 0t = 2 54p- Ignoring these logarithmic contri-
butions, the two-loop coupling (3.128) does not depend on the K3 moduli, as required by
supersymmetry, and might be computable in topological string theory.

The amplitudes with two photons in the Ramond sector and two gravitons can be
obtained in the same way. It is non vanishing only when both photons have the same
polarisation and the gravitons’ differ to one another. In type IIB string, the complex
amplitude is obtained through the Ké&hler derivative of the same function (3.125) with
respect to Up, e.g. in the full rank case

9 .
ReG = _ﬁ%BEﬂUB) (log(Tha|n(T)|*) + log(Una|n(Us)|*) — 21og g, )
(3.130)

o BaUs) GV

4dmg2

S

or with respect to T in type IIA. The loggs term can be interpreted as the divergence
of the form factor of the operator R F3 (where F§ are the graviphoton field strengths)
belonging to the R2-type supersymmetric invariant.



Chapter 4

Black hole counting from
instantonic corrections

In this chapter we review the application of [BCHP1], [BCHP3| to the counting of quarter-
BPS black holes in N = 4 supergravities.

As we reviewed in the introducing paragraph 1.1, these black holes do not emit Hawk-
ing radiation, and are thus stable stationary objects, or solitons. There are moreover
invariant under a certain number of supersymmetry transformations, and their mass sat-
urate the Bogomol’'nyi bound (3.37). The stability linked to these properties allows some
control over the dynamics of the microscopic configurations corresponding to these black
holes, which involve various object depending on the string theoretic description as we
describe in §4.2. Furthermore, the entropy of these objects has the particularity of being
unaffected by variations of the gravitational coupling [25]. The corresponding microscopic
states have thus been studied in the weak coupling regime where the gravitational back-
reaction of the system can be ignored, and the results were continued to strong coupling,
where the system can be described as a black hole. In the regime where the size of the black
hole is large, it was found for certain five-dimensional black holes that [25, , , ]

SBH(Q,P) = Sstat(Q7P)7 (4'1)

where Spp(Q, P) denotes the Bekenstein-Hawing entropy of an extremal black hole with
charge (@, P), and Sgq(Q, P) denotes the entropy of the corresponding microstates,
obtained as the logarithm of their degeneracy given by the statistical calculation

Sstat =In d(Q) . (42)

This Bekenstein-Hawking formula (1.8) remains valid as long as the size of the horizon
is large compared to the space-time curvature and other field strengths at the horizon,
i.e. for large values of the charges. Typically, in this regime the size of the horizon is large
enough so that the strength of the curvature of space-time and gauge fields is small at the
horizon. Otherwise, one must worry about higher derivative corrections to the effective
action in the low energy limit [20, , , l.

On the other hand, the large charge limit also simplifies the statistical computation,
where an extremal black hole corresponds to a state of the conformal field theory with
large Lg eigenvalue and zero Lg eigenvalue (or inversely). For Ly = 0, for instance, one can

79
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compute the degeneracy of such state using the Cardy formula in terms of the left-moving
central charge ¢y, of the conformal field theory

CLLO
6 ?

Sstat(Q) ~ 27 (4.3)

where ¢y, is proportional to (a product of) the physical charges of the black holes [25].
One finds that the two computations give the same answer (4.1).

In the case of NV = 4 supergravities that can be realised as Zy CHL orbifolds, this
result was first obtained for four-dimensional black holes by [110, ].1 This chapter is
devoted to demonstrating how the degeneracy of quarter-BPS black hole can be obtained
from the exact V?(V¢)* interaction in the three-dimensional heterotic string.

In §4.1, we give a rapid description of the entropy formalism for stationary four-
dimensional black holes [139, , , |. the entropy function is obtained as the
extremum value of a functional of the Lagrangian density, which ensures it cannot depend
on the value of the asymptotic moduli at infinity [138, ].

In §4.2, we review the famous DVV formula [110] in the case of CHL models [111,

, 145].

In §4.3, we recall the formalism used to describe quarter-BPS black holes in N = 4
supergravities [110].

Finally, in §4.4 we review the results of [BCHP1], [BCHP3], where quarter-BPS in-
stantonic contributions in the decompactification limit of Gg%]fc’s) were used to predict the
degeneracy of quarter-BPS black hole solutions. These results recover and extend the
predictions presented in §4.2 [110, , , ] as well as the exact contour prescrip-
tion [147, 148].

4.1 The black hole entropy function

Let us consider a four-dimensional theory of gravity coupled to abelian gauge fields A{L
and scalars Si, S2 and M;;. They are described by a Lagrangian density expressed
solely in terms of the metric g,,, the Riemann tensor R, -, the gauge field strengths
F l{,j and covariant derivative of the fields. It is invariant under reparametrisations and
gauge transformations. In such a theory, the 'near horizon’ limit of the extremal Reissner-
Nordstrom solution is a spherically symmetric extremal solution of the equation of motion,
the so-called Bertotti-Robinson geometry

2 50, dr? 2 a2 2
ds? = v1 (= r2de? 4“5 ) + vp(d6? + sin® dg?) ,
r
Sl = uSl s S2 = uSZ s Mz] = uMij s (44)
FrIt:eI, F91¢Zp[SiH9,

which has the particularity of being the product of two spaces, namely AdSs x S, and
thus enjoys SO(2,1) x SO(3) as an isometry group, generated by the three-dimensional
rotation and

1,1
Ll = 8157 LO = t@t — T@T, L—l = 5(71*2 + tz)ﬁt — trﬁr, (45)

Tt was originally computed in the type II string theory description.
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which is a near-horizon symmetry of all extremal spherically symmetric black holes in
four dimensions. Note that the gauge fields strength in (4.4) are also invariant under
these transformations.

Let us denote f(us,v;,er,pr) the Lagrangian density /—gL evaluated for the geome-
try (4.4) and averaged over the two-sphere

1
flasvierpr) = - [ d0dsy=gc . (16)
T Jg2

For spherical solutions, we expect all the field equations of motions to be encapsulated in
f. For instance, the scalar and metric field equations rewrite simply as

of _ of _
aus N avi N

0, 0, (4.7)

while for the gauge field equations of motions, the Gauss law can be applied to recover

of

_— = y — P . 48
de; Qr b1 I (4.8)

It is convenient to take the Legendre transform of f
g(u87 Vi, ela QI7 PI) = 6[@] - f(usa Vi, €1, PI) ) (49)
which is equivalent to a reparametrisation changing equations (4.7), (4.8) into extrem-
isation of the function £. It has been proven [112] that the general formula for black
hole entropy in the presence of higher derivative terms [20, , | for a metric (4.4)

was correctly reproduced by the value of £ at its extremum. Subsequently, since £ only
depends on Lagrangian density and the charges, it cannot depend on any asymptotic
moduli. Note that this procedure has been extended to rotating black holes in [124].

Let us choose a specific action for the fields (4.4) reminiscent of the N' = 4 supergravity
effective action (3.16), in the string frame metric S2G = g

L
25,2

_ S »
0,50"S — FL (M7 7/ 4 ZLFL sF

' 52 (4.10)
+ éTr(a#MLaMML)} .

S— / dtaV/=GS2[Re -

The expression of £ with the explicit Lagrangian density (4.10) simplifies to

™

&

v
= Sug [us,?(va — v1) + U—;(QTUMQ + (ug, + ud,)PTup P — 2ug, QTup P)] . (4.11)
2

This expression is explicitely O(2k —2,6) invariant, but one can check that it also satisfies
SL(2,R) invariance on the moduli fields (3.22), which also acts in the metric fields vy, vo

B @0 D) wereen

rus +s’

One can take advantage of these symmetries, and go to a duality frame where

(Lopa — L)1sQ" =0, (Lopss — L)1sQ" =0, (4.13)
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such that up; = Logy4 extremizes (4.11), and extremize £ with respect to vy, ve, ug, and
s,- One obtains [112]

2P _ (0. P2 P
v = vy = 2P?, ug, = V@ PQ(Q ) , ug, = Qpﬁ (4.14)
Hence, the black hole entropy, which the value of £ at this point, writes
Spi =m\/Q?P? — (Q- P)2. (4.15)

One-loop correction to the effective action. As mentioned in the introduction and
recalled in (3.68), the one-loop effective action contains a Gauss-Bonnet R? term of the
form [151, ]

1
AL =— (87r)2 log(s2k|Ak(S)|2)(R,ul/paRMVpU - 472#1/7?/“” + RQ) ) (4'16)

where R, o is the Riemann tensor constructed from the Einstein frame metric g,,,,. This
function is manifestly invariant under S-duality, using the I'o(N)-modular properties of
SF|AL(S)|2. Furthermore, it does not depend on the O(2k — 2,6) moduli, and is thus
T-duality invariant as well.
This effect gives a correction the the black hole entropy [152], and leads to a difference
in& 1
AE = — /dedwfgm = o log(ud, [ Ax(us) ). (4.17)

The minimization with respect to ug, and ug,, implies the equations

0
uS1P2 +Q-P+us,— us log(uSZ\Ak(usﬂ )=0
P (4.18)
(Q+ uglp) + u52P2 + 2uS2 Bus log(uSQIAk(uS)\ )=0.

These equations can be solved iteratively so that in the large charge limit one obtains [1412]

Q- P Q’P* = Q- P)?
ASBH(Q,P) = _1Og(u§2‘Ak(uS)|2)+ ) us, = p2 us, = \/ PQ( )
(4.19)
where ... denotes correction terms that are further suppressed by inverse powers of the
charges.

4.2 Dyon counting and marginal stability

Statistical entropy computation have been performed for some the dyonic quarter-BPS
black holes of interest in this manuscript. The original DVV formula for the degeneracy
was proposed in [1410), , , , | in the case of type II string theory compactified
on K3 x T?, or heterotic string compactified on 7%, and extended to specific dyonic
charges of more general models such as CHL models and asymmetric type II orbifolds

in [111, , ]

)
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The computation was performed on type IIB strings compactified on K3 x Slx S L
which is dual to the four-dimensional toroidal compactification of heterotic string after
performing a strong-weak duality, a T-duality on S' and then a string-string duality.

This chain of dualities holds for the CHL models [61, 62], where the Zx action on the
type IIB compactification manifold acts by a 1/N translation along S* and an order N
automorphism on K3. On this side of the duality, [144, , | considered dyonic states

consisting of Q5 D5-branes wrapped on K3 x S, @1 D1l-branes wrapped on S, a single
Kaluza-Klein monopole associated with the S with negative magnetic charge, momentum
—n/N along S' and momentum J along S1. This also known as a BPMV black hole at
the center of Taub-NUT space, and corresponds to charge vectors

0 Q1— Qs
—n/N —J
Q= _01 , P= %5 : (4.20)
0 0
which gives
Q% =2n/N, P?=2(Q1 — Q5)Qs, Q-P=1J. (4.21)

The degeneracy d(Q,P) for these states, which counts the number of bosonic minus
fermionic quarter BPS supermultiplets carrying this particular charge, is given by, for
n # 0mod N and P primitive,

(—1)@-P+1 oI [PNQ*+0P2/N+20Q-P]
d(Q,P) = 7/d dodv -
@.P) N ¢’ Pp—2(p, 0, v)

(7 1)Q.p+1 eiw [pQ2+0P2+2vaP]
=—"— [ dpdodv——=
N ¢ Pp—2(p, 0,v)

(4.22)

where C is a three-dimensional cube of width (1, N, 1) in (p1, 01, v1) at position (p2, o2, v2) =
(Ml,Mg,ng), with My, My, M3 being large positive numbers and M7, Ms > M3. The

function ®_o(p, o, v)

(i)(p’ o, ’U) _ 627ri(ap+'ya+v)
N-1 ZNfl 6727risl/NCTvS)(4kl_ i2)
_2mi(ko+lp+jv) ) Les=0 b J
<1 m (- ,

b=0 r=0 k€Z+ I€Z,j€2Z+b
k,1>0,5<0 for k=I=0

(4.23)

was first constructed in [I41] from CFT counting, and proven to be a modular form
of the congruent subgroup I's g of Sp(2,Z). Let us mention briefly that the historical
case was described in type IIB for the same type of vector (4.20) with N = 1. It can
notably be computed by collecting the degeneracies of a system of one D5 and n D1-
branes from the Fourier coefficients of the elliptic genus x,(p, v) of a symmetric orbifold
of n K3’s [135], where it was further shown that the weighted sum of these elliptic genera
S ns0 Xn(p, v) €27 together with contributions from a single fivebrane, gives back the
inverse of ®1.
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In the case of ék_g, this modular form can also be described as the image of the
level-N Siegel modular form ®5_s(p, o, v)
1 v? v>

‘i)ka(pa g, ’U) - (m)k<_1p)_(k_2)q)k72( - 0 = (4'24)

p p’p
which transforms as a weight-(k — 2) form under I'y o(N), the group of Sp(4,Z) matrices
with lower left block congruent to O2xo modulo N.

Because of ambiguities in the expansion of 1/ ®4_o, the result of an integral of the
type of (4.22) is very sensitive to the contour C [160, ]. Mathematically, this is due to
terms proportional to

e27riv
in the expansion of 1/®j_,, that have different Taylor expansions depending on whether
e~2™2 ig smaller or larger than one.

These singular terms describe walls of marginal stability where quarter-BPS states
marginaly decay into a pair of half-BPS states. They are double poles given by all
images of the locus v = 0 under I'; o(N), which are mapped by the integration (4.22)
to one-codimensional subspaces of the asymptotic moduli space, on which the mass of
quarter-BPS states becomes equal to the sum of masses of two half-BPS states carrying
the same total charge. Thus, crossing a wall in the moduli space amounts to going from
a region where a quarter-BPS bound state is energetically favoured, to a region where it
becomes disfavoured for a pair of unbound half-BPS states with same total charge. In
other words, the spectrum of quarter-BPS states of a given charge changes discontinously
as asymptotic moduli pass through any of these walls, which is quite a generic phenomenon
for quarter-BPS states in N' = 4 supersymmetric string theories [162].

The quarter-BPS mass can be expressed as

2
M@, Py = 2SI Ly [P~ (@n P, (4.26)

(4.25)

which is manifestly invariant under S-duality? and T-duality (3.67). General decay can

occur as
H-Qrgor=

with (” q) € M>(Z) and such that ({f Z)il (g) € Ay, @ A},. Thus, walls of marginal

T S
stability are defined as loci in the moduli space where the masses of the states in (4.27)
satisfy

sQ —qP sQ —qP pP—1rQQ pP—rQ
M(Q,P)=M(p r )+ M(q 5 ), (4.28)
ps —gqr bs —gqr ps —gqr ps —gqr
which can be reformulated as [121]
ps + qry2 E N2 1 9
St — S —) = 1+ F 4.29
( ! 2rs ) + ( 2t 2rs) (2rs)2( +E9, (4.29)

2Either SL(2,7Z) (3.22) for the full rank model, or T'o(N) plus the Fricke transformation (3.74) for
CHL models.
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where ) )
rsQx + pqPg — (ps + qr)Qr - Pr

( #Ph— (Qr- PR)2)1/2

where all the moduli fields are implicitely evaluated at infinity. For fixed @), P, and moduli
¢ € Gop—26, the walls of marginal stability describe lines and circles in the S complex
plane [124]. One can see that, in the relevant upper-half plane Sy > 0, the circles only
intersect with other walls at rational points of the real axis Sy = 0

E:

(4.30)

p/r and q/s, (4.31)

while the straight lines intersect other walls in integer points b of the real axis as well
as at ico. These intersection points have the special property of depending on the decay
(Q,P) = (Q1,P1) + Q2,P2) only, and not on the moduli ¢ € Gap_26 — not even on
the charges themselves. They are thus invariant under continuous change of the moduli,
which is not the case of the walls (4.29) whose precise shape depends on ¢.

It is then natural to question the validity of the formula (4.22) for a generic domain
defined in the S-plane by its vertices, as well as the generality of the formula itself for
other type of quarter-BPS dyonic charges (@, P). These formulae were worked out at
weak coupling limit of the type IIB string and other moduli finite, which translates in
the heterotic description to finite S7 and Ss, with PI%, Qr- Pr < Q%. In this regime,
the walls (4.29) with circle shape lie close to the real axis, while straight ones are almost
vertical lines passing through the integers S = b. Thus, the coupling region in type 1IB
string with —1 < 57 < 1 is mapped in the heterotic description to two neighbouring
domains bound by the lines b = —1,0,1 together with a set of circle segments at the
bottom. The domain with S; > 0 is described by the formula (4.22), while the other
one is describe only by a similar formula where the contour ¢C' has been changed by
Ms — —Ms. In general, using S-duality with the formula (4.22) allows to express the
degeneracy of other dyonic charges within other domains. Invariance of the theory can
thus be used to obtain the degeneracy formula for other types of vectors, and it will
be at the cost of changing the imaginary part of the contour C. T-duality can also be
used to express the degeneracy of another dyonic charge (Q’, P') with the same T-duality
invariants (Q"?, P2, Q' - P") = (Q%, P%, Q- P).

The quarter-BPS charges considered in [124] are a subset of ones that strictly belong
to electromagnetic lattice (Q, P) €A & A, where strictly is understood as ’does not
belong to a smaller lattice in the graph of inclusion’

NAc® NA.
A, ® NA,, ©

c Am®An

A, ® NA,
C  A.® NA,

Ac® A,y (4.32)
When primitive vectors belong to one of the lattice above, it may experience splits into
pairs of half-BPS charges that are neither twisted nor primitive. One may consider using

S-duality to reach another type of vector contained in a lattice smaller than A, @ A,,, but
the latter is in fact self-dual under Fricke duality (3.74)

(@, P) € Ae® Ay = (=5 P/VN,c7" - QVN) € Ac ® Ay, (4.33)

3A lattice is considered smaller than another one if it is included in it.
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besides, lattices in the graph (4.32) are drawn such that Fricke duality acts as a reflection
with respect to the horizontal axis. As for using T-duality invariance of the theory,
one should keep in mind that two dyonic charges with the same T-duality invariants
(Q?, P2, Q- P) need not be in the same T-duality orbit. Another point is that T-duality
acts non-trivially on the asymptotic moduli, which makes identifying the degeneracy of a
dyonic charge in a given region difficult.

All these options were considered in [124], and the degeneracy of primitive vector
in Ac @ A, even more generic than (4.20) were shown to be correctly given by (4.22)
[144, , |. Note that it was further noticed in [155, , | that a class of quarter-
BPS dyons arises from string networks which lift to M5-branes wrapped on K3 times a
genus-two curve. Part of the motivations of [BCHP1]and [BCHP3] were to make explicit
and quantitative the nature of the connection between quarter-BPS black holes and genus-
two surfaces.

4.3 Quarter-BPS solutions in N = 4 supergravity

In the case of generic quarter-BPS black holes, it is natural to look for more general
solutions that go beyond the static case (4.4). Indeed, to include quarter-BPS solutions
realised as two-center bound states of half-BPS states, one has to allow for more general

spacetimes. In [164], it was argued that BPS time-independent configurations require a
metric that can be expressed in the form
ds? = —e2V(dt + widz?)? 4+ eV daldat (4.34)

where U is an arbitrary function of space coordinates, w is time-independent, and both
vanish at space infinity, since we consider asymptotically flat spacetimes. Fields con-
figuration allowing a timelike Killing vector give rise to a dimensionally reduced three-
dimensional theory [104]. The three dimensional effective action was well-defined for
small w when rewritten in terms of the metric field U, the scalar moduli, and vector fields
only [146, §7.1]. It is equivalent to consider (3.49) and dualise the scalar component of
the gauge fields A’. The BPS constraints onto the equation of motion imply that

1/2
e = (" HD A HY) — (- HD)

‘ (4.35)
*dwi = Eijk/HI]d/H’; y
with " the harmonic function
F,I4i 7 —1i Zi“(I’) (4.36)

Ii . R s S
" ‘% @ —wa] TR MQ, P

with I' = (Q,P) = > 44, and the central charge Z = \/%(QR + SPR) = Zy + Z_

decomposing into two components

_ ( QR i _ ( PRQr—(Qr- Pr)Pr
7= \/572[(1’5) ( Pp )i |QR/\PR|( 5:1) ( QI:%PR —(Qr- Pr)Qr )} , (437)

4For instance, a dyonic charge with non-integer components and even duality invariants is certainly in
the same duality orbit than dyonic charges with integer components only. However, the T-duality group
being a discrete integer group, it cannot map the former to the latter.
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with Z4, = ReZ%, Z%, = ImZ%, and M(Q, P) = |Z4| = \/ ZaZ® the mass of states
with charge (@, P) saturating the Bogomol’'nyi bound (3.37). It is convenient to write
Zia = (21 +1i22)aM(Q, P) with 21 and 23 vectors of SO(6) satisfying 22 + z# = 1. All
the other fields are determined in terms of the harmonic function (4.36) [116].

Using (AH,H) = 0, with A |z —x4|7! = —4753(x — 1 4), one obtains from (4.36)

(Ca,Tp)  (Tagr v Z4(T))

4.38
2leasesl T M@ P) (439
Thus, for two centers with charge I'y, I'y, the distance |z1 — 2|
., T
21—l = —— T2 (g, p) (4.39)

(P1r, v Z ()

might fail to be positive depending on the sign difference between (I';, I'y) and (I'y g, v;lZﬁi ().
In particular, two charges will be driven to infinite distance from each other when one of
the walls of marginal stability defined by (I'1r, v;lZﬁ‘r (")) = 0 is approached. We come
back to this condition the next section.

These multicenter solutions can have intrisic angular momentum. Defining the angular
momentum vector J from the asymptotic metric as [165]

k
: 1
w; = 261'ij]% + O('F)’) as r — 00, (4.40)

one can use (4.35) and (4.38), one obtains for a two-center solution [110]

1 T —
J = ([, Ty)——2

5 (4.41)

w1 — @]
This quantity is independent of the details of the solution and is quantised such that
2|J| € Z (3.73).

4.4 Black holes degeneracy from exact V?F* coupling

Since stationary solutions in four dimension beneficiate from timelike Killing vector, they
can be described by the Euclidean field theory resulting from the dimensional reduction of
the same theory along this vector [104]. As described section 3.1.2, the four-dimensional
effective theory could be reformulated in terms of the three-dimensional fields, and this
dimensional reduction can be done irrespective of the signature of the Killing vector
field. The moduli spaces G4/K,4 and G3/Kjz of for four and three spacetime dimensions
were explicited in (3.1) and (3.47) respectively, while for the Euclidean three-dimensional
theory the moduli space G3/Ksg is given by

O(2k, 8)
02k —2,2) x 0(2,6)

Gs/Ksp = (4.42)

where K3p is a non-compact version of K3 such that G3/Ksp is a symmetric space with
indefinite metric where the signature of the scalars which arose from vectors fields has
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been changed. Stationary four-dimensional black hole solutions allow both a time-like
and space-like Killing vector fields, and will thus be preserved by both reductions. This
feature is generic for dimensional reduction of four-dimensional gravity models coupled to
scalars in non-compact Riemannian symmetric space [1041]. Recalling the effective action
obtained after reduction (3.61)

:/de\/—h[Rh s 23 Sams+&(a AT)M (9™ A)
2 R (4.43)

Lo RamR—2 S, — —TY(@MMLOMML)},

"R R 8

where we used notations for the reduction along a time-like Killing vector field, one can
notice that all the kinetic terms of the scalar fields ensure definiteness of the action in
the path integral formalism, and thus of the non-trivial instanton saddle points. The
kinetic terms of the gauge fields, however, is problematic. In [140], Denef showed that
a well-defined form of the action was obtained by dualizing all the scalar field obtained
after dimensional reduction to gauge fields §7.1 [146], and we use this as a postulate to
study non-trivial saddle points of the Euclidean action.

Size of the automorphic representation. Although the contribution of black holes
as instantons is not understood in general, in the present case one can notice a relation
between the electromagnetic charge (@, P) characterising the black hole solution and the

(2k,8)
size of the automorphic representation of G ab.ed -

(p.q)

In general, the tensor G/ ab.cd does not belong strickly speaking to an automorphic
representation of SO(p, q), because of the quadratic source term in (3.117), but one can
nonetheless define a generalisation of this notion. From the linearised analysis §3.4,
the homogeneous differential equation is attached to the SO(p, q) representation of the
nilpotent orbit. A representative of the nilpotent orbit in the unipotent associated to the
maximal parabolic GL(2) x SO(p — 2,q — 2) x R2PT4=9+1 must satisfy the constraint

Q"R =0, Q"Q" Ky =0, (4.44)

which admits a subspace of solutions of dimension 2(p 4+ ¢ — 4) for Q;" € R2®P*t4=4) and
a subspace of dimension 1 for K;; € R. Therefore, the total subspace of solutions is of
dimension 2(p + ¢ —4) + 1.

On the other hand, in the Euclidean three-dimensional theory, i.e. (p,q) = (2k,8),
the quarter-BPS black hole solutions are associated to a real nilpotent orbit of SO(2k, 8).
Their electromagnetic charge (@, P) lies in the grade-1 component of SO(2k, 8)

509p8 ... D (gl Dsly @ 502k72,6)(0) ®(2® (2k + 4))(1) o1@ . (4.45)

They thus coincide with the dimension 2(p 4+ ¢ — 4) of the representation attached to the
linear differential equations (4.44) for vanishing K;;. The Fourier coefficients associated
to these black hole solutions thus saturate the dimension associated to the automorphic
representation, and one can expect those Fourier coefficients to be proportional to the
helicity supertrace of these states.

5The unipotent being non-Abelian, one cannot generally define the Fourier coefficients for (Q7", K;;),
but one must consider separately the Abelian Fourier coefficient with K;; = 0, from the non-Abelian ones.
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4.4.1 Decompactification limit of exact V?(V¢)* couplings

The Fourier decomposition of the function G(QlC % at the cusp R — oo (3.88) corre-

sponding to the decompactification limit of the three—dimensional theory was computed
in [BCHP3].% In this limit, the lattice Agxg decomposes into

Agk—06 @ M1 [N]® I 1. (4.46)

We find that the conjectured exact V2(V¢)?* coupling (3.118) has the large radius expan-
sion

k8  _ (0 ) (2) (TN)
Ga,@,’yé - G aB6 + GOAB ~6 + Gaﬁ ~8 + Ga/&,yg (447)

corresponding to the constant terms, half-BPS and quarter-BPS Abelian Fourier modes
and finally, the non-Abelian Fourier modes with non-zero Taub-NUT charge. The con-
stant part C?g]ﬁ)’7 s contains a terms proportional to R* which reproduce the exact V2F*
couplings in the four-dimensional effective action. It is given in detail together with the
half-BPS and non-Abelian modes in [BCHP3].

In this section, we focus on the contributions from the the Abelian — with vanishing
Taub-NUT charge — quarter-BPS contributions, that we associate to quarter-BPS black
holes solution in four dimensions. Indeed, these Fourier coefficients correspond to non-
perturbative corrections associated to spacetime instantons, or equivalently, solutions of
the Euclidean three-dimensional action which can be interpreted as stationary solution
in the four-dimensional theory, as argue in the beginning of this section 4.4.

Black hole solutions and quarter-BPS instantons. Decomposing

2 2T) o
Gt(zb),cd = Z G((zb c) 2mi{a1Q+aaP) (4.48)
TeAr BAm
QAP0

with ' = (Q, P), lely b, 7)5 can be expressed as

R2 . _1(1 5 Qf QrPr
—7Tr| - Q 2 Q R 9
ngcd—2R4/d392 Cr—2(Q, P;Q2) Pap ca(Qr, Pr,Q2) e Tl s jsh) +22 g, P )

(4.49)
where P is the set of positive-definite matrices, and P,g.,5(Qr, Pr,€2) a polynomial
explicited in [BCHP3] § H. Notice that the function Cy_o(Q, P,€s), obtained from the
Fourier coefficients of 1/®;_y and 1/®;_s, depends on both the charge I' = (Q, P) and
the integration variable €9 € P. In the full rank model, it is given by

_ 1, 0
C(Q, P: Q) = S ACAT(E, G AT AT ] (4.50)
AEM>(Z)/GL(2,Z)
ATITEA22 6DA22,6
where Agy g = Ay, is the magnetic lattice of the full rank model, and C[(*" an); Q] are
the Fourier coefficients of 1/®1q [140].”. For CHL models with N = 2,3,5,7, it is instead

5The large circle is of course orthogonal to the one involved in the orbifold action.
A detailed study of the properties of 1/®1o can be found in [166].
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given by

Cr2(Q, P; Q) = > |AlCk—2 [A_l (7 DA™ ATQ2A}
AEM(Z)]GL(2,Z)
A1(D) eAn@Am

+ 3 AICk o [ATH (2, "GP AT AT004]
AEMQ@(N)/[ZQKF()(N)]
A=1(Q) err, ohm
—1/— 2 _0. _
- > A[Ck—s [ATH (N9 “9 R)ATT AT, A) (4.51)

A€M (Z)/GL(2,Z)
A (p%v) EAL @A,

where Cy_a[(*"" ) ); Q2] and Cr_s [(* ] ); 9] denote the Fourier coefficients of 1/®5_2(2)

and 1/®;_5(Q) defined in (4.23), (4.24).

The functions 1/®;_5(Q) and 1/®;_5(Q) are meromorphic with poles, so that their
Fourier coefficients are piecewise constant functions of 2o, with discontinuities as well as
delta-function singularities at the boundary between distinct chambers.® However, the
integral (4.49) is dominated by a saddle point 2 =

" R 1S P2  —Qp-P
05 = 7M(F)AT(\1ﬁ(Sl \s|12) n |QRiPR\( QRR- Py QS]% R))A, (4.52)
in the neighborhood of which their Fourier coefficients are constant for generic moduli S
and . Due to this non-trivial {23-dependence, one cannot compute (4.49) analytically, but
the leading contribution can be computed at large radius by a saddle point approximation
with Cp_2(Q, P; Q) ~ Cr_2(Q, P; Q%) kept constant in the integrand, see eq. (5.77) of
[BCHP3].

These leading contributions are exponentially suppressed in e 2 BMI)  with T' =
(Q,P) and M(T") the BPS mass of a black hole of charge I' (4.26). Given a charge I'
for which there is no d # 1 such that d~'I' € A¥ @ A,,, only A = 1 contributes to
the measures (4.50), (4.51), and one can interpret the measure factor (up to an overall
sign) as the helicity supertrace counting string theory states of charge T', as given by
the formula (4.22). Indeed, the value of €2y at the saddle point (4.52) reproduces the
contour prescription of [117, | when both electric and magnetic charges are separately
primitive in A%, and A,,, and d"'Q A P € A*, A A, for d = 1 only. More generally, the
contour prescription depends on the set of matrices A such that Ail(g) belongs to the
electromagnetic lattice. In the full rank case, for instance, all primitive charges (@, P)
are in the U-duality orbit of a charge of the form [167]

Q=e +qey, P=pey, QAP =peiNey, (4.53)
with e; and eg primitive in Agg g, such that (4.50) simplifies to
2
C(@ Pi) = 3 O[(gf, 2, G D%G D] (4.54)

dlp

8Moreover, they are generically well-defined only for [Qq| > i otherwise the integration domain C
(4.22) generically crosses the poles at small values of |22].
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in agreement with [168], with added precision on the contour prescription. If we con-
sider (4.53) in CHL orbifolds for e; primitive in A}, and not in A,,, ez primitive in Ay,
and not in NA7,, and with p not divisible by NV, only the second line in (4.51) contributes
and the result reduces similarly to

Cra(Q. P5 %) = > d Cra[ (%, 4/, (D25 )] - (4.55)
d>1
dlp
in agreement with [111] for p = 1. For general 'untwisted’ charges such that @ can be in

Ay, or Pin NAZ, | all three terms in (4.51) contribute the degeneracy, generalising (4.22).
Note that the result is manifestly invariant under U-duality, including Fricke duality.

Bound states and pairs of half-BPS instantons. As mentioned in the previous
paragraph, the saddle point approximation to (4.49) has subleading corrections reflecting
the non-trivial behavior of quarter-BPS black hole solutions at walls of marginal stabil-
ity (4.28).7

For fixed total charge I' = (@, P), we expect contributions from all pairs of half-BPS
states with charges I'y and I'y such that I' = I'y 4+ I's. Such splitting is parametrised by
a non-degenerate matrix B = (2 9) € M(Z), such that

(%)= (0 (@) (F) = ()22 = prnt(B) . oo

where 1 = (; ) and 72 = (). It follows from the calculation of these Fourier modes
that all splittings of a given charge I' are in one-to-one correspondence with the matrices
B € Ms(Z.)/Stab(m;) with

-/
My (Z)/Stab(m;) = {fy. (1 J,) , 7€GL(2,Z)/Dihy, 0<j <K, (j k)= 1} :

0 k
(4.57)
such that BmyB~'TI" € A¥, @ A,,. This can be proven with some effort to generalise to
CHL models, see § C.2 of [BCHP3|.

Focusing on the maximal rank case for simplicity, function (4.50) on the domain
Q] > X reads (for N > 1, see (5.92) in [BCHP3])

C(@, Py > JAICT[ATN( 5 GDAT]

AeM»(Z)/GL(2,7)

ATIPEAm®Am

5([BTB Iy, To) il
3 ey (<2 T iy 1)) — s (B Bl) )
T 2
Li€Am®Am
QiNP;=0,T'14+T2=T

(4.58)

°The contributions to G BF) due to the deviation of Cj_2(Q, P, Q) from its saddle point value are
investigated in § F [BCHP3]. In particular, at large |2/, it is shown that these contributions are exponen-
tially suppressed in 672”R(M(F1)+M<F2)) and can therefore be ascribed to two-instanton effects associated
to two unbound half-BPS states of charges I'y and T's.
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where the so-called finite coefficients C'[ ("' Tm are globally constant functions of 25 [160],

and where B € SL(2,Q)/Stab(m;, Q) are defined as
" 1 0 1 L
BBy ) =7( §) (4.59

determined such that I'; = BWZB*IF and where [BTQQB]U denotes the components 5 of
the matrix.

In §4.3, we introduced the adequate formalism to express the distance within a quarter-
BPS two-center black hole solution with charge I' (4.39)

<F17 F2>
(Cigr, v Z(D))

M(Q,P). (4.60)

|21 — 22| =

The Z; component of the central charge (4.37) is related to the saddle point value Qg =
0% (4.52) through

1 Q
—1 7p _ * R
v 1ZM() = =0 : 461
o +( ) R 2 (PR> ( )
implying that the distance |z1 — z2| (4.60) satisfies
r,T APpl n
|=<Tll— ;j! - -[Qn 2 (BT3Bl - (4.62)

In other words, the bound state of charge I is only defined when (I'y, T's) and [BTQ3B] 12
have opposite signs, or equivalently (4.28)

M(Q,P) < M(Q1,P1) + M(Q2, Ps) . (4.63)

If so, it contributes to Gﬁ:ﬁ; at leading order with measure factor ¢(I'y)é(Is) (I, ') | (4.58).

In contrast, when [BTQQB]H and (I'1,T'2) have the same sign, the bound state is not
allowed and the last term in (4.58) vanishes at the saddle point Q9 = QF (4.52). It still
contributes to the integral (4.49) with an exponential suppression e 27HMI)+M(T2))

but is then subdominant since the inequality (4.63) is reversed.

We conclude that (4.49) receives contributions of each possible splitting I' = I'; 4 I'y,
weighted by the product of the half-BPS measures ¢(I'1) ¢(I'2) and further exponentially
suppressed by e~ 2mRMT1)+M(T2)) - Tt is important to distinguish these two-instanton
contributions from one-instanton contributions due to bound states of half-BPS states,
and to notice that the full function Gg%{c)l (4.49) is made continuous at the walls of
marginal stability by the defining equality M(T) = M(T'1) + M(T'g). This discussion
easily generalises to the CHL case [BCHP3|.

Properties of the differential equation. It is interesting to understand these prop-
erties from the perspective of the inhomogeneous differential equation imposed by the
supersymmetry Ward identities (3.117). The leading contribution to the Fourier coeffi-
cient (4.49) — associated to quarter-BPS states — solves the homogeneous equation asso-
ciated to (3.117), whereas contributions due to discontinuities of Cy_o(Q, P; ) give a
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particular solution to the full inhomogeneous equation (3.117). For a given quarter-BPS
charge I', the Fourier coefficients of F,p.q contribute with a source term proportional to
cx(I'1)cx(I'2) for all possible splittings I' = I'y + I'y, which matches the structure of the
measure in (4.58). Furthermore, the Fourier coefficients of F,;.q being associated to in-

stantonic half-BPS states [BCHP2], it is consistent for the leading contributions to G(%’E

a

sourced by (Fypeq)? terms to be associated to unbound pairs of half-BPS instantons.

The explicit check of the differential equation, in § E.3 [BCHP3], demonstrates that
the unfolding procedure used for the computation of the Fourier modes Gﬁ’zc)l reproduces
the correct Abelian Fourier coefficients, at least up to terms exponentially 7suppressed in
e=2mR? agsociated to Taub-NUT anti-Taub-NUT instantons. This is an important consis-
tency check since the same unfolding procedure fails to reproduce the non-perturbative
contributions to the constant terms, which are also required to solve the differential equa-

tion.
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Chapter 5

Outlook

One of the aims of this manuscript was to collect and present in a simple and coherent way
the publications produced with the work of the author during their three years of PhD.
Many open questions remains after this work, in addition to those that were encountered
through this journey.

Non-perturbative contributions to the zero modes. There exists missing contri-
butions to the zero modes of Gfﬁ)%, which induce non-perturbative terms in the exact
low-energy effective action at finite coupling in both of the heterotic or type II descriptions.
In the case of decompactification from three to four dimensions, they are particular solu-
tions to the full inhomogeneous equations obtained from the supersymmetry constraints,

e.g. §E.1 of [BCHP3], for instance

(2D Duyr = (9 + 6) Dy + £(9g + 8)(Dp + 6)01,) G cr
3T r I—I'y\d Iy Apl-Ticd r (5.1)
- _Z(S<JP75HA> r e/\z*:@/\ (ngl(HCF”)A e ngl(l‘ FV)/\ ' ) - 37TFMV70/J,F»/\ ]
1 m m

where all the indices were chosen in the SL(2,R)/SO(2) direction, while the index d runs
in all eight directions, and with R = e~® the radius of the decompactified dimension.
The first source terms in the r.h.s. behave as e~2™ and result from half-BPS instanton-
anti-instanton contributions from Abelian modes in F(?%8) while the last term in (5.1)
behaves as 6_2”R2, induced by instanton-anti-instantons with non-zero Taub-NUT charge.
It would be interesting to recover these contributions by solving these sets of differential
equations.

Unfolding method and meromorphic functions. Although connected to the previ-
ous question this issue is slightly more general, and is related to handling of the unfolding
method in the case of meromorphic functions. In particular, the missing contributions
mentioned above seem to be related to the presence of overlapping singularities on the
modular domain of genus-two Riemann surfaces. It would be useful to understand these
complications in a more rigourous manner, and/or to find other tools to extract these con-
tribution directly, in particular for cases where one would not be able to use differential
equations to recover the correct results.
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Black holes with non-prime charges. The measure of instantons with non-prime
vectors (@, P) gets contributions from all the possible ways of obtaining the given charge
(Q, P) by multiplying a lattice charge (Q', P') with the instantonic winding k — winding
along the U-duality and/or decompactification direction, i.e. such that (Q, P) = k(Q', P’).
It would be interesting to understand if and how this type of multiplicity counting is
related to multiplicities of BPS solitons. This would allow to extend the results presented
in this manuscript to all possible quarter-BPS dyonic solitons.

Beyond prime Zy CHL models. An obvious generalisation of the results presented
in this manuscript would be to extend these calculation to the case of non-prime Zy
CHL models, with N = 4, 6 in particular, whose frame shapes are 14224% and 12233262
respectively. The number of cusps in the modular plane is no longer two — which is the
case of prime orbifolds — but one can expect general lines of the calculation to hold. It
would be interesting to confirm whether the degeneracy of half-BPS states follows

a@P)=) Y - =EEEen), (52)
a|N

d>1
(Q,P)/d€Nemla]

as suggestively written in [BCHP2], and to understand the counting of quarter-BPS black
holes in these cases. Some initial steps can be found in [169, , ]. Note that there
exists other prime CHL models that are not freely acting orbifold, but their frame shape
is not balanced and in general one does not expect strong-weak Fricke dualities to be a
symmetries of these theories, but rather to map one CHL model to another. A list of
such models with their properties can be found in [105, .

Matching the perturbative effective actions. The perturbative limits of our con-
jecture was presented in §3.3 and §3.4, in the case of weak heterotic coupling in three
dimensions and weak type II couplings in four dimensions. Other perturbative limit were
given in [BCHP2] and [BCHP3]. It would be interesting to match these results with
explicit calculations.

Matching classical entropy for all prime vectors (Q, P). In §4.1, we review the
black hole entropy calculation for extremal solutions in N' = 4 supergravities. The match-
ing between black hole and statistical entropy was performed with high accuracy in [142],
and it would be interesting to pursue this calculation for the other types of black hole
solution with degeneracy predicted in [BCHP3].

Counting bound states of three half~-BPS black holes. It would be also interesting
to comprehend the results of [171], conjecturing the degeneracies for three- and two-
center bound states of half-BPS states to be Fourier coefficients of a degree three Siegel
modular form, and to determine whether it can be understood using the langage of string
amplitudes. It is however clear that these states belong to long quarter-BPS multiplets,
and thus do not contribute to the helicity supertrace related to the degeneracies studied
in this manuscript.
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Generalisation to V' = 2 theories. Given the success in finding the dyon spectrum in
N = 4 supersymmetric string compactifications, one could hope that the dyon degeneracy
in N' = 2 supersymmetric string theories will also be given by a similar formula:

d(Q,P) = /C dMf(Q, P, M), (5.3)

where M denotes a set of complex variables, C is a contour in the complex manifold
labelled by the variables M. A suggestion has been made for the STU model in [172, 173],
although the expected relevant BPS coupling should be the metric over the moduli space
of three-dimensional vector multiplets.
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We analyze four- and six-derivative couplings in the low energy effective action of D = 3 string vacua
with half-maximal supersymmetry. In analogy with an earlier proposal for the (V®)? coupling, we
propose that the VQ(V¢)4 coupling is given exactly by a manifestly U-duality invariant genus-two
modular integral. In the limit where a circle in the internal torus decompactifies, the VZ(V®)*
coupling reduces to the V2F* and R?F? couplings in D = 4, along with an infinite series of
corrections of order e™%, from four-dimensional 1/4-BPS dyons whose wordline winds around the

circle. Each of these contributions is weighted by a Fourier coefficient of a meromorphic Siegel
modular form, explaining and extending standard results for the BPS index of 1/4-BPS dyons.

String vacua with half-maximal supersymmetry offer
an interesting window into the non-perturbative regime
of string theory and the quantum physics of black holes,
unobstructed by intricacies present in vacua with less su-
persymmetry. In particular, the low-energy effective ac-
tion at two-derivative order does not receive any quantum
corrections, and all higher-derivative interactions are ex-
pected to be invariant under the action of an arithmetic
group G(Z), known as the U-duality group, on the mod-
uli space G/K of massless scalars [1-4]. This infinite
discrete symmetry also constrains the spectrum of BPS
states, and allows to determine, for any values of the
electromagnetic charges, the number of BPS black hole
micro-states (counted with signs) in terms of Fourier co-
efficients of certain modular forms [5-7]. This property
has been used to confirm the validity of the microscopic
stringy description of BPS black holes at an exquisite
level of precision, both for small black holes (preserving
half of the supersymmetries of the background) [8, 9] and
for large black holes (preserving a quarter of the same)
[10-18].

In this letter, we shall exploit U-duality invariance
and supersymmetry Ward identities to determine cer-
tain higher-derivative couplings in the low-energy effec-
tive action of three-dimensional string vacua with 16 su-
percharges, for all values of the moduli. These protected
couplings are analogues of the R* and VOR* couplings in
toroidal compactifications of type II strings, which have
been determined exactly in [19, 20] and in many sub-
sequent works. Our motivation for studying these pro-
tected couplings in D = 3 is that they are expected to
encode the infinite spectrum of BPS black holes in D = 4,
in a way consistent with the U-duality group Gs(Z).
The latter contains the four-dimensional U-duality group
G4(Z), but is potentially far more constraining. Thus,
these protected couplings provide analogues of ‘black hole
partition functions’, which do not suffer from the usual

difficulties in defining thermodynamical partition func-
tions in theories of quantum gravity, and are manifestly
automorphic [21].

The fact that solitons in D = 4 may induce instanton
corrections to the quantum effective potential in dimen-
sion D = 3 is well known in the context of gauge theories
with compact U(1) [22]. In the context of quantum field
theories with 8 rigid supersymmetries, BPS dyons in four
dimensions similarly correct the moduli space metric af-
ter reduction on a circle [23, 24]. In string vacua with 16
local supersymmetries, one similarly expects that 1/2-
BPS dyons in D = 4 will contribute to four-derivative
scalar couplings of the form Fp.q(®) VO VO VPV P4
in D = 3, while both 1/2-BPS and 1/4-BPS dyons in
D = 4 will contribute to six-derivative scalar couplings
of the form G up cq(®) V(VOVE)V(VOVDY) (here, V
denote space-time derivatives, contracted so as to make
a Lorentz scalar). In either case, the contribution of
a four-dimensional BPS state with electric and mag-
netic charges (@, P) is expected to be suppressed by
e 2T RM(Q.P) where M(Q, P) is the BPS mass and R the
radius of the circle on which the four-dimensional theory
is compactified, and weighted by a suitable BPS index
Q(Q, P) counting the number of BPS states with given
charges. In addition, coupling to gravity implies addi-
tional O(e*RQ/ Zf’) corrections from gravitational Taub-
NUT instantons, which are essential for invariance under
G3(Z) (here, £p is the Planck length in four dimensions).

For simplicity we shall restrict attention to the simplest
three-dimensional string vacuum with 16 supercharges,
obtained by compactifying the ten-dimensional heterotic
string on T7. Our construction can however be general-
ized to other half-maximal supersymmetric models with
reduced rank [25] with some effort [26]. The moduli space
in three dimensions is the symmetric space M3 = Gaa g
[28], where Gp 4, = O(p,q)/O(p) x O(g) denotes the or-
thogonal Grassmannian of g-dimensional positive planes



in RP9. In the limit where the heterotic string coupling
g3 becomes small, M3 decomposes as

Goag — RT x Goz 7 x R (1)

where the first factor corresponds to g3, the second factor
to the Narain moduli space (parametrizing the metric, B-
field and gauge field on T7), and R?° to the scalars a’ dual
to the gauge fields in three dimensions. At each order in
g3, the low-energy effective action is known to be invari-
ant under the T-duality group O(23,7,Z), namely the
automorphism group of the even self-dual Narain lattice
Ags 7 [27]. The latter leaves g3 invariant, acts on Gag 7
by left multiplication and on the last factor in (1) by the
defining representation. U-duality postulates that this
symmetry is extended to G3(Z) = 0(24,8,7Z), the auto-
morphism group of the ‘non-perturbative Narain lattice’
Aos g = Aoz 7 ® Ay 1, where Ap 7 is the standard even-self
dual lattice of signature (1,1) [29].

In the limit where the radius R of one circle of the
internal torus becomes large, M3 instead decomposes as

G24’8 — R+ X [G2’1 X GQQ’G} X R56+1 y (2)

where the first factor now corresponds to R?/(g3l%) =
R/(930y) = R?/{% (with £y being the heterotic string
scale and g4 the string coupling in D = 4), the second
correspond to the moduli space My in 4 dimensions, the
third factor to the holonomies a'l, a?! of the 28 electric
gauge fields fields and their magnetic duals along the cir-
cle, along with the NUT potential ¢, dual to the Kaluza—
Klein gauge field. The factor Go1 = SL(2)/U(1) is
parametrized by the axio-dilaton S = S; +iSy = B+i/g3,
while Gag6 is the Narain moduli space of TS, with co-
ordinates ¢. In the limit R — oo, the U-duality group
is broken to SL(2,Z) x O(22,6,Z), where the first factor
SL(2,7) is the famous S-duality in four dimensions [1, 2].

Besides being automorphic under G3(Z), the couplings
Faved and Ggp g must satisfy supersymmetric Ward iden-
tities. To state them, we introduce the covariant deriva-
tive D_; on the Grassmannian G, 4, defined by its action
on the projectors pj , and pf , on the time-like p-plane
and its orthogonal complement (here and below, a,b,...,
a, 1;, 1,J... take values 1 to p, ¢, and p+q, respectively):

%6[;@p£,a . (3)

The trace of the operator Dgf = D(eng)g is equal to
(1/2 times) the Laplacian on G 4. On-shell linearized
superspace methods indicate that Fpeq and Ggp cq have
to satisfy [26]

I 1 I I
DaEpL,c = §5ach7g ) Dai,PR,é =

sz Faped = 1 5ef Faped + c2 66)((1 Fbcd)(f +c3 6(ab ch)ef )
(4

Gay(f.ab)
204)(c Gef.a)(v)

~—

Dngab,cd :C4éefGab7cd +c5 [66)(aGb)(f,cd + 58)((;
+ce [5ab Gef,cd + ded Gef,ab -
+c7 |:Fabk(e Ff)cdk - Fc)ka(e Ff)b(dk:| )

(5)

DDy N Fupea =0, D ¥Dy Dy G ca =0 . (6)

The first two constraints are analogous to those derived in
[30] for H* and V2 H* couplings in Type IIB string theory
on K3. The numerical coefficients ¢y, ... ¢y will be fixed
below from the knowledge of perturbative contributions.

EXACT (V®)* COUPLINGS IN D =3

Based on the known one-loop contribution [31-33], it
was proposed in [34] (a proposal revisited in [35]) that
the four-derivative scalar coupling F ;g is given exactly
by the genus-one modular integral

F(24 ,8) dpldp2 84 F24,8 7
abed T 2 27 46 ag ba cH d A ( )
7 Py (2m)t0y 0y oy oyt |,

where F; is the standard fundamental domain for the
action of SL(2,Z) on the Poincaré upper half-plane, A =
n** is the unique cusp form of weight 12, and I'py g is the

partition function of the non-perturbative Narain lattice,

2 2 51 9om o (YY)
F248 = pJ Z elﬂQLP ImQrp+2mQL y+—5; (8)
QEANA248

where Qr = p;Q1,Qr = piQr, and Q> = QF — Q%
takes even values on Agy g. It will be important that the
Fourier coefficients of 1/A =37 | ¢(m)¢™ count the
number of 1/2-BPS states in the D = 4 vacuum obtained
by decompactifying a circle inside 77. This is obvious
from the fact that these states are dual to perturbative
string states carrying only left-moving excitations [5, 8].
It is also worth noting that the ansatz (7) is a special
case of a more general class of modular integrals, which
we shall denote by F7"7*” where the lattice Aoy g is re-
placed by an even self-dual lattice Ag+16,4 and the factor

04 by pg The integral F';7%? converges for ¢ < 6, and
is defined for ¢ > 6 by a suitable regularization prescrip-
tion. For ¢ < 7, the modular integral F(qu %9 controls
the one-loop contribution to the F'* couphng in heterotic
string compactified on T [31-33]. For any value of ¢,
it can be checked that F\i" 1> satisfies (4) and (6) with
clz%, co=4—¢q, c3=3.

By construction, the ansatz (7) is a solution of the
supersymmetric Ward identity, which is manifestly in-
variant under G3(Z). Its expansion at weak coupling
(corresponding to the parabolic decomposition (1), such
that the non-perturbative Narain lattice Asg g degener-
ates to Aoz 7@ A1 1) can be computed using the standard
unfolding trick. For simplicity, we shall assume that none
of the indices abcd lies along Aq ;:

(23,7)

By 3 Y,

k=1QEAS, ,
o (BVaQn|) el
) 3

)

(24,8) __
afBvyd T

6(@/35“/5) +

x&(Q) 95" |V2Qr |’“‘§K



where co = 24 is the constant term in 1/A,
1)
= A0}, PS(Q) = QraQusQrsQrs, P35 =

~550(a8Q12QLs)s Pyths = ome0(apdys) Ku(2) is the
modified Bessel function of the second kind, behaving as
5-€ *(1+0O(1/z)) for large positive values of z, and

=Y de(-197) . (10)

dlQ

After rescaling from Einstein frame to string frame, the
first and second terms in (9) are recognized as the tree-
level and one-loop (V®)* coupling in perturbative het-
erotic string theory, while the remaining terms corre-
spond to NS5-brane and KKb5-branes wrapped on any
possible T inside T [34].

In the large radius limit (corresponding to the
parabolic decomposition (2), such that the non-
perturbative Narain lattice Ags g degenerates to A g @
As o), we get instead (in units where {p = 1)

48

afyé T R2 (7 El (S) §(O¢f86’)’5) + Fa2527615)> (11)
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MY Y Y

k= lQ’EAEQGmn

Kkiz (ZWR\mSJrn\'\[Q |) —2mi(ma +na2)Q+
2

afvyo

where E1(S) = —2 log So[n(S)[*. The first term in (11)
originates from the dimensional reduction of the R? and
F* couplings in D = 4 [33, 36], after dualizing the gauge
fields into scalars. The term F'%%) can also be traced to
the four-derivative scalar couphngs studied in [32]. The
second term in (11) is of order e 27FM(@.P) where M is
the mass of a four-dimensional 1/2-BPS state with elec-
tromagnetic charges (Q, P) = (mQ’,nQ’). The phase
factor is the expected minimal coupling of a dyonic state
to the holonomies of the electric and magnetic gauge
fields along the circle. Fixing charges (@, P) such that
Q@ and P are collinear, the sum over (m,n) induces a
measure factor

W@ Py = 3 e(-EAILeny (g

dl(Q,P)

which is recognized as the degeneracy of 1/2-BPS states
with charges (@, P). In particular for a purely elec-
tric state (P = 0) with primitive charge, it reduces to
the well-known result ¢(—|Q[*/2) [5]. The dots in (11)
stand for terms of order e—27#’ Ik I+27ikY  characteristic of
a Kaluza—Klein monopole of the form TNj, x T°, where
TNy, is Euclidean Taub—NUT space with charge k. These
contributions will be discussed in [26].

EXACT V?(V®)* COUPLINGS IN D =3

We now turn to the six-derivative coupling Gap,cd,
which is expected to receive both 1/2-BPS and 1/4-BPS

instanton contributions. Based on U-duality invariance,
supersymmetric Ward identities and the known two-loop
contribution [37, 38], it is natural to conjecture that
Gab,ca 1s given by the genus-two modular integral

218 _ / B d3Qy 5 (eine +2ugn)d* | Thaso
el g 1P @ri)ioyrayioyioyt|,—g @10

(13)
where F5 is the standard fundamental domain for the ac-
tion of Sp(4,7Z) on the Siegel upper half-plane of degree
two [39], |Q2] is the determinant of the imaginary part
of Q = Oy +iQy, ®q¢ is the unique cusp form of weight
10 under the Siegel modular group Sp(4,Z) (whose in-
verse counts micro-states of 1/4-BPS black holes [6]), and
I5482 is the genus-two partition function of the non-
perturbative Narain lattice,

2

Iyygo= |22 |4ZeiW(Q1LQijQJ;;*QEQiJ T 2QL )+ 5y U yja
QieASs
(14)
Acting with the y{-derivatives results in the insertion of
a polynomial P,ps(Q%,Q5") of degree 4 and 2 in its
first and second arguments. We shall denote by G 15"
the analogue of (14) where the lattice Az is replaced
by Agt16,4 and the power of Q22| by ¢/2. The integral
G;‘Z;Cls 9 is convergent for ¢ < 6, and defined for ¢ > 6
by a suitable regularization prescription [40]. For ¢ <7,
the modular integral folfcls 9 controls the two-loop con-
tribution to the V2F* coupling in heterotic string com-
pactified on T9 [37, 38].
For any value of ¢, one can show that G;qbfclg‘” satisfies

(5) and (6) with ¢4 = 25%,¢5 = %59, ¢ = 3, 7 = —.
In particular, the quadratic source term on the r.h.s. of
(5) originates from the pole of 1/®1¢ on the separating
degeneration divisor, similar to the analysis in [30, 40].
Thus, G?%%) is a solution of the supersymmetric Ward
identity, which is manifestly invariant under G3(Z). It
remains to check that it produces the expected terms at
weak coupling, when Asy g degenerates to Agz 7z @ Aj ;.
This limit can be studied using a higher-genus version
of the unfolding trick [41, 42]. Using results about the
Fourier—Jacobi expansion of 1/®1¢ from [16], we find

2 (23 7) (23 7) (23,7)
(208 _ G;; 25 B O G +0, G y (aGﬁ)((;
aB,yé gél 1293
1
“ongs [Dasdys ~SaOnp] £ (15)
where
Gt _ / dp1dps s E, Fq+167q (16)
ab 7 p22 (27i)20y*0y® A ’

with By = %ap log n— %2 the almost holomorphic Eisen-
stein series of weight 2. The first and second terms in
(15) corresponds to the zero and rank 1 orbits, respec-
tively. The third term is necessary for consistency with



the quadratic term on the r.h.s. of the supersymmetric
Ward identity (5), although a naive unfolding procedure
fails to produce it, presumably due to the singularity of
the integrand in the separating degeneration limit. Af-
ter rescaling to string frame, the first three terms in (15)
correspond to the expected two-loop [37, 38], one-loop
[43] and tree-level contributions [44, 45] to the V2(V®)*
coupling in heterotic string on 77, while the dots stand
for terms of order e~1/9% ascribable to NS5-brane and
KK5-brane instantons, which will be discussed in [26].
Note that the tree-level single trace VZF* term in [44]
proportional to ¢(3) vanishes on the Cartan subalgebra
[46], and does not contribute to this coupling.

Having shown that our ansatz (13) passes all consis-
tency conditions in D = 3, let us now analyze its large ra-
dius limit, where Agg g degenerates to Agg A2 2. Again,
the unfolding trick gives

(24,8)
Gaﬂ ) (17)
4 22 E S 22, 22, 22
= R[G50, — B2 (ap G 40,5650 - 20, G

KKM
+g(S) (6a55v5 - 5a(~/65)ﬂ)} + Gaﬂ e + Gaﬂ ~vé + wa,vé)

The two terms on the first line (which correspond to the
constant term with respect to the parabolic decomposi-
tion (2)) originate from the reduction of the V2F? and
R2F? couplings in four dimensions. The term propor-
tional to g(.S) originates presumably from the separating
degeneration divisor, and is determined by the differen-
tial equation (6). The terms GV and G are inde-
pendent of the NUT potential ¢, and correspond to the
Abelian Fourier coefficients. They are both suppressed
as e 27RM(@Q.P)  put G has support on electromag-
netic charges (@, P) which @ and P collinear, hence cor-
responds to contributions of 1/2-BPS states winding the
circle, while G® has support on generic charges, corre-
sponding to 1/4-BPS states. The last term G XM in-
cludes all terms with non-zero charge with respect to the
NUT potential, corresponding to Kaluza—Klein monopole
contributions.

In this letter, we focus on the contribution G
from 1/4-BPS black holes. This contribution originates
from the ‘Abelian rank 2 orbit’, whose stabilizer is the
parabolic subgroup GL(2,Z) x Z3 inside Sp(4,7Z). Thus,
the integral can be unfolded onto P2/ PGL(2,Z) x [0,1]3,
where Py denotes the space of positive definite 2 x 2 ma-
trices Qa:

% =R / L / S
aBy Py Q2 Jio.158

< —27ia’ A,7Q1>

% 22,6,2 § e

AeMq(Z)/GL(2,Z)
|A|#£0

(cineji + cucjn) 0
1 .
(27”)48@/?8:%891@8?/] y=0

gnforan( )4

(18)

where (f(Q))22,6,2 denotes the partition function I'ss 6 2
with an insertion of f(Q) in the sum. The integral

over 7 at fixed 5 extracts the Fourier coefficient

C [( —slQl’ QB )Qg} of 1/®19. Due to the zeros of
-Q-P —3|P]® )0

®qg, the latter is a locally constant function of s, dis-
continuous across certain real codimension 1 walls in Py
[47, 48]. For large R however, the remaining integral over
Qs is dominated by a saddle point Q3 (see (24) below),
so to all orders in 1/R around the saddle point, we can
replace the above Fourier coefficient by its value at Q3.
The remaining integral over {29 can be computed using

| Bl

d35|s|5—— —nTr (SA+S™'B) _ — 2(
Al

)6/2 By(AB),

(19)
where B;(Z) is a matrix-variate generalization of the
modified Bessel function [49][60],

=~ Codt o _amz 21v/]Z]
B5(Z):/O 7372 ¢ T K (t> (20)

In the limit where all entries in Z are large, one has

P2

Bo(2) ~ L1211z + 2/12])] F e/

(21)

Further relabelling (g) = A( 8; ), we find

a2 ﬁ 5= — 9oR7 Z o 2mi(a' Q+a®P) M(Qap)x
apyy |2PR/\QR|§
Q,PEAS, 4

<P (950 2) (R) ~ehr ) 2
(|Y|%§3 |:YQ~51?22 (fl) g:) <P‘1;QR5R PTPR?QR) (*;1 £2>:| ) ‘Y:I{

where |Pr A Qr| = v/(PR)(Q%) — (Pr - Qr)?,
the polynomial defined below (14),

~LQP? -Q- _ .

wQ.Py= > jAjc[aTt( 5o “Fh AT
AeM>(Z)/GL(2,Z)
Ail(g)GAg‘tﬁ

(x,@ ~¥é is

(23)
and €23 is the location of the afore-mentioned saddle
point,

* R Ar[l(l

5 QT 5 |Pr[? *PR,'QR) }A.

Sh + 1
S1 |S]2) T IPRAQRI\=Pr-Qr |Qr/l?
(24)

Using (21), we see that these contributions behave as
e 2mRM(QP) in the limit R — oo, where

|QrlI*> Qr-Pr
Qr-Pr |Pg|?

M(Q, P) = \/ plQntSPal 4 4 (25)

is recognized as the mass of a 1/4-BPS dyon with elec-
tromagnetic charges (@, P) [50, 51]. Moreover, in cases
where only A = 1 contributes to (23), the instanton mea-
sure p(@Q, P) agrees with the BPS index Q(@, P; S, ¢) in
the corresponding chamber of the moduli space My in



D = 4, computed with the contour prescription in [52].
Our result (23) generalizes this prescription to arbitrary
electromagnetic charges (@, P) and recovers the results
of [53-55] for dyons with torsion, fixing a subtlety in
the choice of chamber. Additional (exponentially sup-
pressed) contributions to G(?) arise from the difference

1 2
between C ( __fQ‘Q]‘D :;1'31'32 );QQ:| and its value at the
saddle point. The relation between the jumps of these
Fourier coefficients and the possible splittings of a 1/4-
BPS bound state into two 1/2-BPS constituents [47] is
crucial for consistency with the quadratic source term in
the supersymmetric Ward identity (5). These contribu-
tions, along with the terms G and G®EM) which we

have ignored here, will be discussed in [26].

DISCUSSION

In this work, we have conjectured the exact form of the
(V®)* and V2(V®)* couplings in the low energy effec-
tive action of D = 3 string vacua with half-maximal su-
persymmetry, focussing on the simplest model, heterotic
string compactified on T7. Our ansétze (7) and (13) are
manifestly U-duality invariant, satisfy the requisite su-
persymmetric Ward identities, reproduce the known per-
turbative contributions at weak heterotic coupling and
the known F* R? D?F* and R?F? couplings in D = 4
in the limit where the radius of one circle inside T7 be-
comes large. While we do not yet have a rigorous proof
that these constraints uniquely determine the functions
Fopea and Gp cd, we expect that additional contributions
from cusp forms are ruled out by the supersymmetric
Ward identities (4) and (5), by the same type of argu-
ments which apply for the R* and VOR* couplings.

In the limit where the radius of one circle inside
T7 becomes large, we find, in addition to the afore-
mentioned power-like terms, an infinite series of correc-
tions of order e 27RM(@.P) which are interpreted as Eu-
clidean counterparts of four-dimensional BPS states with
mass M(Q, P), whose worldline winds around the cir-
cle. Rather remarkably, the contribution from a 1/4-
BPS dyon is weighted by the BPS index Q(Q, P; S, ¢),
extracted from the Siegel modular form 1/®1, using the
very same contour prescription as in [52]. Indeed, it was
suggested in [56] (see also [57, 58]) to represent 1/4-BPS
dyons as heterotic strings wrapped on a genus-two curve
holomorphically embedded in a T* inside 77. This pic-
ture was further used in [59] to justify the contour pre-
scription of [52]. Our analysis of the V2(V®)* coupling in
D = 3 gives a concrete basis to these heuristic ideas, and
explains why 1/4-BPS dyons in D = 4 are counted by
a Siegel modular form of genus two. We emphasize that
the introduction of the Siegel modular form 1/®y¢ in the
conjectured formula (13) is necessary to match the per-
turbative 2-loop amplitude, where it appears explicitly
[37, 38]. A more detailed analysis of the weak coupling

and large radius expansions of the VZ(V®)* coupling will
appear in [26], with particular emphasis on the conse-
quences of wall-crossing for three-dimensional couplings.
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Abstract

Three-dimensional string models with half-maximal supersymmetry are believed
to be invariant under a large U-duality group which unifies the S and T dual-
ities in four dimensions. We propose an exact, U-duality invariant formula for
four-derivative scalar couplings of the form F(®)(V®)* in a class of string vacua
known as CHL Zy heterotic orbifolds with N prime, generalizing our previous
work which dealt with the case of heterotic string on 76, We derive the Ward
identities that F'(®) must satisfy, and check that our formula obeys them. We ana-
lyze the weak coupling expansion of F(®), and show that it reproduces the correct
tree-level and one-loop contributions, plus an infinite series of non-perturbative
contributions. Similarly, the large radius expansion reproduces the exact F* cou-
pling in four dimensions, including both supersymmetric invariants, plus infinite
series of instanton corrections from half-BPS dyons winding around the large
circle, and from Taub-NUT instantons. The summation measure for dyonic in-
stantons agrees with the helicity supertrace for half-BPS dyons in 4 dimensions in
all charge sectors. In the process we clarify several subtleties about CHL models
in D =4 and D = 3, in particular we obtain the exact helicity supertraces for
1/2-BPS dyonic states in all duality orbits.
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1 Introduction

In the absence of a first principle non-pertubative formulation of superstring theory, the study
of string vacua with extended supersymmetry continues to be one of the few sources of insight
into the strong coupling regime. By exploiting invariance under U-dualities, which the full
quantum theory is believed to enjoy [1, 2, 3, 4], as well as supersymmetric Ward identities,
it is often possible to determine certain couplings in the low energy effective action exactly,
for all values of the moduli (as demonstrated by [5] and numerous subsequent works). The
expansion of these couplings near boundaries of the moduli space, corresponding to cusps
of the U-duality group, then reveals, beyond power-like terms computable in perturbation
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theory, infinite series of exponentially suppressed corrections interpreted as semi-classical
contributions in the putative string field theory. A particularly interesting class of examples
is that of BPS saturated couplings in three-dimensional string vacua: in the limit where a
circle in the internal space decompactifies, these couplings receive exponentially suppressed
contributions from BPS states in four dimensions, along with further suppressed contributions
from Taub-NUT instantons. These couplings can therefore be viewed as BPS black hole
partitions, which encode the exact degeneracies (or more precisely, helicity supertraces) of
BPS black hole micro-states [6, 7, 8].

In the recent letter [7], we investigated the F'(®)(V®)?* and G(®)V?(V®)* couplings in the
low energy effective action of three-dimensional string vacua with 16 supercharges, focussing
on the simplest example of such vacua, namely heterotic strings compactified on a torus 77,
or equivalently, type II strings compactified on K3 x T3. Based on the known perturbative
contributions to these couplings, we conjectured exact formulae for the coefficients F(®)
and G(®) for all values of the moduli ®, which satisfy the requisite supersymmetric Ward
identities and are manifestly invariant under U-duality. In the limit where one circle inside
T7 decompactifies, we claimed that these formulae reproduce the correct helicity supertraces
for 1/2-BPS and 1/4-BPS states with primitive charges, for all values of the moduli ¢ in four
dimensions.

The goal of the present work is to demonstrate these claims in the case of the (V®)*
coupling,! revisiting the analysis in [9], and extend our conjecture to a class of string vacua
with 16 supercharges known as CHL orbifolds [10], restricting to Zy orbifolds with N prime
for simplicity.

In Section 2, after reviewing relevant aspects of heterotic CHL vacua with 16 supercharges
in four and three dimensions, we state the helicity supertraces of 1/2-BPS dyons with arbitrary
charge in four dimensions (referring to Appendix A for the derivation of the perturbative BPS
spectrum), and determine the precise form of the U-duality group G3(Z) in three dimensions,
consistent with S-duality and T-duality in four dimensions. We then propose a manifestly U-
duality invariant formula (2.27) for the coefficient Fjp.q(®) of the (V®)* couplings, obtained
by covariantizing the known one-loop contribution under G3(Z), extending the proposal in
[7] for the maximal rank case (N = 1).

In Section 3, using superspace arguments we establish the supersymmetric Ward identities
(2.23) which constrain the coupling Fp.q(®P), and show that the proposal (2.27) satisfies these
relations.

In Section 4, we analyze (2.27) in the limit where g5 — 0, and show that it reproduces the
known tree-level and one-loop contributions in heterotic perturbation theory, plus an infinite
series of NS5-brane, Kaluza—Klein monopole and H-monopole instanton corrections.

In Section 5, we similarly analyze (2.27) in the large radius limit R — oo, and show
that it reproduces the known F* and R? couplings in D = 4, along with an infinite series
of exponentially suppressed corrections of order e~ M(@:P) with @ and P collinear, weighted
by the helicity supertrace Q4(Q, P), and further exponentially suppressed corrections from
Taub-NUT monopoles.

In most computations, we allow for lattices of arbitrary signature (p, ¢), before specifying to
the most relevant case (p, q) = (2k,8) at the end. Details of some computations are relegated
to Appendices. The one-loop vacuum amplitude for heterotic CHL models, from which the
perturbative BPS spectrum, F* and (V<I>)4 couplings are easily read off, is constructed in

! An analysis of the VZ(V®)* couplings will appear in a separate publication.
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Appendix §A. In §B we decompose the Ward identity on all Fourier modes in the degeneration
limit O(p, q) — O(p—1, ¢—1), and show that all Fourier coefficients are uniquely determined up
to a moduli-independent summation measure. In §C and §D we collect some notations which
arise in the analysis of §4 and §5. In Appendix §E we obtain a Poincaré series representation
of the relevant genus-one modular integrals, and use the same method to construct Eisenstein
series for O(p, q,Z).

2 Dualities, BPS spectrum and (V®)* couplings in CHL vacua

In this section, we recall relevant aspects of heterotic CHL vacua with 16 supercharges in
four and three dimensions, restricting to the case of Zy orbifolds with N prime for simplicity.
While most of the results are well known, we pay special attention to the quantization con-
ditions for the electromagnetic charges of 4D dyons, and to the precise form of the U-duality
groups in D = 4 and D = 3. Finally, we state our proposal for the non-perturbative (V®)*
coupling, which is the focus of the remainder of this work.

2.1 Moduli space and 1/2-BPS dyons in D =4

Recall that in four-dimensional string vacua with 16 supercharges, the moduli space is locally
a product

M4 - S‘SL(Oz(’QI;R) X Gr—6,6 /G4(Z) ) (21)
where Gy, 4, = O(p, q)/[O(p) x O(q)] denotes the orthogonal Grassmannian of positive g-planes
in a fiducial vector space RP? of signature (p, ¢) (a real symmetric space of dimension pq), r is
the rank of the Abelian gauge group, and G4(Z) is an arithmetic subgroup of SL(2,R)x O(r—
6,6, R). In heterotic string theory compactified on a torus T6, the first factor is parametrized
by the axiodilaton S = b + 2mi/g?, where b is the scalar dual to the Kalb-Ramond two-
form, while the second factor, with r = 28, is the Narain moduli space [11]. The U-duality
group G4(Z) is then the product of the S-duality group SL(2,7Z), acting on S by fractional
linear transformations S — Zgifl [1, 2], and of the T-duality group O(22,6,Z), which is the
automorphism group of the even self-dual Narain lattice Aop g = Eg @ Eg @ Il 6, where Fy
denotes the root lattice of Eg and II;4 denotes d copies of the standard hyperbolic lattice
Il 1. The effective action is singular on real codimension-6 loci where the projection Qg of a
vector @ € Mg g with norm Q? = 2 on the negative 6-plane parametrized by G,_g ¢ vanishes,
corresponding to points of gauge symmetry enhancement. The same moduli space (2.1) arises
in type IIA string compactified on K3 x T2, where the first factor parametrizes the Kihler
modulus of T2, while the second factor parametrizes the axiodilaton, the complex modulus of
T2, the K3 moduli and the holonomies of the RR gauge fields on 72 x K3. These two string
vacua are in fact related by heterotic/type II duality [12], which in particular turns S-duality
into a geometrical symmetry.

Vacua with lower values of r can be constructed as freely acting orbifolds of the maximal
rank model with » = 28 [10, 13, 14, 15]. On the heterotic side, one mods out by a Zy
rotation of the heterotic lattice Agp ¢ at values of the Narain moduli where such a symmetry
exists, combined with an order N shift along one circle inside 7%. This projection removes
28 — r of the gauge fields in 4 dimensions, along with their scalar partners. On the type Il
side, one can similarly mod out by a symplectic automorphism of order N on K3, combined




SciPost Physics

N | Cycle Shape | k r Ak s—k Ay = A |AY, /A
1 124 12| 28 Es® Es @ Ilg ¢ 1

2 1828 8| 20 Es[2] Es2] ® I 1[2] © @5 5 210

3 1636 6 16 D6[3] D DQ[—l] Ay @ A @ H373[3] D ﬂ373 38

5 %54 4 | 12 | D4[5] ® D4[—1] I3 5[5 © I3 3 50

7 1373 3| 10 | Ds[fl@Ds[-1]| [t -] @ Moa[7] @ o 7

Table 1: A class of Zx CHL orbifolds. Here k = 24/(N + 1) is the weight of the cusp form
whose inverse counts 1/2 BPS states, » = 2k +4 is the rank of the gauge group and A,, is the
lattice of magnetic charges in four dimensions. The discriminant group A, /A, is isomorphic
to Z?VH. Agreement between the lattice A,, listed here and A,_g¢ defined in (2.2) follows
from the lattice isomorphisms (A.33).

with an order N shift on T2. It is convenient to label this action by the data {m(a),a|N}
and the associated cycle shape HQ‘N a™) such that 2a|N am(a) = 24, corresponding to the
cycle decomposition of the Zy action on the even homology lattice Heyen(K3) ~ Z*. For
simplicity we shall restrict ourselves to CHL orbifolds with N prime and cycle shape 1¥N*
with & = 24/(N +1). In this case, one can decompose Ago g = Angg— © 11 @ i3 3, such
that the Zy action acts on the first term by a Zy rotation, on the second term by an order
N shift, leaving IIj;_3 ;3 invariant (see §A.2 for details on this construction). We denote by
Ay g—i the quotient of Ayyg—j under the Zy rotation (see Table 1). The U-duality group
G4(Z) includes T'1(N) x O(r — 6, 6,7), where 'y (N) is the congruence subgroup of SL(2,Z)
corresponding to matrices (‘; Z) with ¢ = 0mod N,a = d = 1mod N, and 6(1" —6,6,7) is the
restricted automorphism group of the lattice

Ar—66=Npg—r @1 1[N D I_3p-_3 , (2.2)

i.e. the subgroup of the automorphism group of A, _g ¢ which acts trivially on the discriminant
group A7_g6/Ar—¢6. Here and below, for any lattice A, we denote by Ala] the same lattice
with a quadratic form rescaled by a factor a (which is equivalent to rescaling the lattice
vectors by y/a). Note that the lattice (2.2) is still even, i.e. Q2 € 27 for Q € A,_g¢, but it is
no longer unimodular, rather it is a lattice of level N, in the sense that Q? € 27Z /N for any
Q € A _g - Singularities now occur on codimension-¢ loci where Q% = 0 for a norm 2 vector
Q € Mg, or for a norm 2/N vector @ € A} 4.

While the U-duality group G4(Z) must certainly include I'y(N) x O(r — 6,6, 7), it may
actually be larger. Moreover, special BPS observables may well be invariant under an even
larger group. In particular the four-derivative couplings in D = 4 turn out to be invariant
under the action of the larger duality group I'g(N) x O(r — 6,6,7Z), where I'o(NNV) is the
subgroup of matrices (‘: Z) with ¢ = Omod N and O(r — 6,6,Z) is the full automorphism

group of the lattice A,_gg. For example, the exact R? coupling in the low-energy effective
action is given by [19, 20, 21]
1
(8)>?
where Ay is the unique cusp form of weight & under I'g(/N), nowhere vanishing except at the
cusps ioco and 0,

[ e v g1og(SHAS) PR RO — AR R 4 RE) (23

Ag(r) = n"(r)n*(NT) . (2.4)
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In the weak coupling limit So — oo, the expansion

—log(SFIAKS)P) =4Sy — klog o+ kS [ Sd+ 3 Na| B0 (2.5)
m=1 \dlm Nd|m m
with gg = 2™ reveals, beyond the expected tree-level contribution and logarithmic mixing

with the non-local part of the effective action, an infinite series of exponentially suppressed
corrections ascribed to NS5-branes wrapped on T [19]. While not all T'o(N) x O(r — 6,6, Z)
transformations are expected to be U-dualities of the full theory but only of the BPS sector,
for brevity we shall refer to them respectively as S- and T-dualities.

In [18] it was observed that the coupling (2.3) is in fact invariant under the larger group
To(N), obtained by adjoining to T'g(NV) the Fricke involution, which acts on modular forms
of weight k under To(N) via fx(7) — fi(7) = (—irv/N) % f1,(—=1/(NT)). Based on a detailed
study of geometric dualities in the type II dual description, it was conjectured? that the full
U-duality group in D = 4 also includes the so-called Fricke S-duality, which acts on the first
factor in (2.1) by the Fricke involution S — —1/(NS), accompanied by a suitable action of
O(r —6,6,R) on the second factor. Additional evidence for the existence of Fricke S-duality
comes from the spectrum of BPS states, to which we now turn.

Point-like particles in D = 4 carry electric and magnetic charges (@, P) € A¢y, under the
r Maxwell fields, where

Aem =Ae® Ay Ap=Ar_gg=A>. (2.6)

The lattice A,, is tabulated in the sixth column of Table 1, taken from [18]. It agrees with
the result (2.2) upon making use of the lattice isomorphisms (A.33). In view of the remarks
below (2.2), one has, for any (Q, P) € Aep,

2
N
The last property in particular ensures that the Dirac-Schwinger-Zwanziger pairing @Q - P’ —

Q' - P is integer. Moreover, it was observed in [18] that the lattice A, is in fact N-modular,
i.e. it satisfies

Q*c —7, P’c2Z, P-QcZ. (2.7)

A%~ A [L/N] . (2.8)

m
In other words, there exists an O(r — 6,6, R) matrix o such that V/No maps the lattice A,,
into itself and such that o
A =——A,, (ODA,). 2.9
= b (5 An) (29)
A simple example of N-modular lattice is Ay 4[IN] @ Ag 4, which is relevant for N = 5 above.
In this case one can parametrize an element in the lattice in (Zd, Nz, 77, Zd) and an element

of the dual lattice in (Z¢/N, Z¢, 74, 7Z%) and define o € O(2d, 2d, R) such that

0 0 =lga O 0 0 Lhgg 0
o 1 0 0 0 VN1gq | 0 0 0 lgg
VN VN | VN1 0 0 0 | Taa O 0 0
0 Jxlia 0 0 0 %lgq O 0

(2.10)

2More generally, Fricke S-duality is conjectured to hold whenever the cycle shape satisfies the balancing
condition m(a) = m(N/a) for all a|N. [18]
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The map (2.9) defines the action (Q, P) — (—¢ - P/v/N,o~' - Qv/N) of the Fricke S-duality
on Aepm, which maps (Q?, P2, P - Q) — (P%2/N,NQ? —P - Q) and therefore preserves the
quantization conditions (2.7). It also allows to identify NAY as a sublattice of A,,

NAY, =VNoA, C Ay, . (2.11)

Electric charge vectors Q € A,, C A, are called untwisted, while vectors Q) € A . A,, are
called twisted. More generally, we shall call dyonic charge vectors (@, P) lying in A,,, 8 NA, C
Ae ® A, untwisted, and twisted otherwise.? Untwisted dyons are in particular such that

Q*c2Z, P*c2NZ, P-QeNZ. (2.12)

Half-BPS states exist only when @, P are collinear. Their mass is then determined in
terms of the charges via

M(Q,P) = (@n ~ SPx) - (@n - SFx) (2.13)

where, for a vector QY € R?? (I = 1...p + q), we denote by Q4 (a =1...p) and Q% (a =
1...q) its projections on the positive p-plane and its orthogonal complement parametrized
by the orthogonal Grassmannian Gy, 4, such that Q? = Q% — Q%{.

For primitive purely electric states (such that @ € A. but Q/d ¢ A, for all d > 1),
corresponding to left-moving excitations in the twisted sectors of the perturbative heterotic
string, it is known that the helicity supertrace 4(Q,0) is given by [22, 17, 24, 25, 23]

1 1
Q — ¢ (ML =y m— Z 2.14
4(@70) Ck ( D) ) ) Ak(’i’) g Ck(m> q q +k+ ) ( )
m>—1

where ¢ = 22™7 and Ag(7) is the same cusp form (2.4) which enters in the exact R? coupling.
In Appendix A, we rederive this result by constructing the one-loop vacuum amplitude for
the CHL models under consideration, and show that primitive purely electric states corre-
sponding to left-moving excitations in the untwisted sector have an additional contribution

(first observed for N = 2 in [26])
(@0 = (-F) +ex (-2F) . (2.15)

Invariance under both T'o(N) and Fricke S-duality implies that the same formulae apply to
generic primitive dyons with Q2 being replaced by %gcd(N Q? P% Q- P). It follows that the
helicity supertrace for general 1/2 BPS primitive dyons is given by

c 2 p2 .
0(Q, P) = o (——g AN P P)) : (2.16)
for twisted electromagnetic charge (@, P) € (Ae & Ayp,) ~ (A, & NA,), and by
2 p2 . 2 p2 0.
0,(Q,P) =y (OGN | (_sigron) e

for untwisted charge (Q, P) € A,,®NA.. In contrast, primitive 1/2-BPS states of the maximal
rank theory have a single contribution

1 1

04(Q, P) = ¢ (—2d@.P20P)) - e(m)gm == +24+ ... 2.18

o R e . AT L e =g (2.18)
m>—1

3Note that this terminology is defined to be consistent with Fricke and I'o(N) S-duality, but twisted magnetic
charges do not correspond to any twisted sector in the conventional sense.
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2.2 Moduli space and 1/2-BPS couplings in D =3

Upon further compactification on a circle, additional moduli arise from the radius R of the
circle, from the holonomies a'! of the r gauge fields, and from the scalars a?/, 7 dual to the
r Maxwell fields and to the Kaluza—Klein gauge field in three dimensions, extending (2.1) to
27]

Mz =G,_48/G3(Z) . (2.19)

The U-duality group G3(Z) includes G4(Z), the Heisenberg group of large gauge transfor-
mations acting on a’*%,1), and the automorphism group O(r — 5,7,7) (or rather a subgroup
containing 6(r —5,7,7)) of the Narain lattice A,_57 = Ar_6 @ 1,1 corresponding to T-
duality in heterotic string compactified on T7. The action of these subgroups is most easily
seen in the vicinity of the cusps R — oo and g3 — 0, corresponding to the decompactification
limit to D = 4 and the weak heterotic coupling limit in D = 3, where (2.19) reduces to

R x My x T?r+1
M3z — (2.20)

R}, % |02 /O = 5,7, Z)| x T7+?
Here, T2 *1 is a circle bundle over the torus 72" parametrized by the holonomies a®!, with
fiber parametrized by the NUT potential ¢, while 772 corresponds to the scalars dual to the
Maxwell gauge fields after compactifying the heterotic string on T7. In heterotic perturbation
theory, the effective action in D = 3 is singular on codimension-7 loci where Q% =0 for a
norm 2 vector @ € A,—5 7, or for a norm 2/N vector Q € A} _; 7.

For r = 28, it is well-known that these subgroups generate the automorphism group
0(24,8,7Z) of the ‘non-perturbative Narain lattice’ Aosg = Mg @ 22 [28]. To the extent of
our knowledge, the U-duality group for CHL models has not been discussed in the literature,
but it is natural to expect that it includes the restricted automorphism group 6(7“ —4,8,7)
of an extended Narain lattice of the form A,_48 = A;,;, @ Az2. We find that the following
choice reproduces the correct S and T-dualities in D = 4:

Ar—ag =Ny @ Iy @ 1L [N] (2.21)

where I} 1[N] is the standard hyperbolic lattice with quadratic form rescaled by a factor of
N, such that AY_ 48 JAr—48 >~ Z’fVH. In terms of the usual construction of Il » by windings
(n1,n2) € Z2, momenta (mq, ms) € Z* and quadratic form 2myny + 2mans, we define I ; &
I, 1[N] as the sublattice of II; 5 where ns is restricted to be a multiple of N. The restricted
automorphism group of II; 1 @11 1 [N] was determined in [18, 29], and includes o7.,5x [I'1 (IV) %
I'1(N)], acting by fractional linear transformations on the moduli (7', S) parametrizing G2 2,
such that |my + Smg + Tny + STna|?/(SoTe) is invariant (see [20, §CJ, case V for N = 2, or
[30, §3.1.3] for arbitrary V). In the present context, T is interpreted as ¢ 4iR2, while S is the
heterotic axiodilaton. Thus, O(r — 4, 8,7Z) contains the S-duality group I';(N) and T-duality
group 5(7"—6, 6, Z) in four dimensions. In addition, Fricke S-duality in four dimensions follows
from the fact that the non-perturbative lattice (2.21) is itself N-modular,

r_as =~ Ar—ag[l/N]. (2.22)

More evidence for the claim (2.21) will come from the analysis of BPS couplings in D = 3, to
which we now turn.
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In this work, we focus on the coupling of the form F(®)(V®)?* in the low energy effective
action in D = 3, where F/(®) is a symmetric rank four tensor Fyp.q(®), and (V®)? is a short-
hand notation for a particular contraction of the pull-back of the right-invariant one-forms P,
on G,_s8 to R>! (see (3.15)). As stated in [7], and further explained below, supersymmetry
requires that the coefficient F,p.q(P) satisfies the tensorial differential equations

D(eng)g Fobed = % 6ef Fabed + (4 —q) 66)((1 Fbcd)(f +3 6(ab ch)ef + %&abécd(;ef)éq,ﬁ )
(2.23a)
D[e [éDf] f]Fabcd = 0, D[edFa]bcd =0, (223b)

where the constant term in the first line occurs from the regularisation in ¢ = 6 (see 3.57),
and where D ; are the covariant derivatives in tangent frame on G 4. In fact, we shall show
that all components of the tensor Fyp.q can be recovered from its trace Fi (®) = Fa‘ib(@) by
acting with the differential operators D ; (see (3.26)). Supersymmetry requires that Fi.(®)
be an eigenmode of the Laplacian on G,_48 with a specified eigenvalue, while U-duality
requires that it should be invariant under 5(7“ —4,8,7). (Note however that the second order
differential equations satisfied by Fi,(®) does not imply (2.23), so it should not be thought of
as a prepotential for Fjp.q.)

In CHL Zy orbifold of heterotic string on 177, Fjp.q gets tree-level and one-loop con-
tributions, both of which are solutions of (2.23), invariant under the full T-duality group
O(r —5,7,7). As we show in Appendix A, the one-loop contribution is given by a modular
integral?
dridm FAT,5‘7[Pabcd]

o(N\H T3 Ap(r)

(1-loop) __
Fioo™ =RN. /F (2.24)
where Ay (7) is the same cusp form (2.4) which appeared in the R? couplings in D = 4, and
LA, ,[Pabea] denotes the Siegel-Narain theta series for the lattice A, 4,

2,12 =
]-_‘Ap,q[ abcd - 7—2 E Pabcd mQLT ITFQRT 5 (225)
QEApq

with an insertion of the polynomial
3 3
Pabed(Q) = QLaQrLpQrL.cQrLd — 5——0(QL.cQrL.d) + ~550(ab0cd)s (2.26)
21Ty 16m=75

To(N)\H is any fundamental domain for the action of I'y(N) on the Poincaré upper half-plane
H, and R.N. denotes a suitable regularization prescription (see (3.30)). In view of the form
of the one-loop contribution, it is therefore natural to conjecture [9, 7] that the exact (V®)*
coupling is the obvious generalization of (2.24), where the Narain lattice 'y is replaced
by its non-perturbative extension (2.21),

r—5,7

drdrm Ta, P,
Fopea(®) = R.N./ Ty 27’2 A, 5[ Pabed] (2.27)
Do(N\H T2 Ag(7)
A similar formula holds for the trace part Fi,(®) = 096 Fp0q(®),
drdm 1
Fo(®) = R.N./ TA, ys  DpyoD_jp——— , 2.28
tr( ) To(N)\H 7_22 4,8 +2 Ak(T> ( )

A similar computation for four-graviton couplings in CHL models was performed in [31].
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where D, = %( . — %) is the Maass raising operator, mapping modular forms of weight w to
weight w+2. The proposals (2.27) and (2.28) are manifestly invariant (or covariant) under the
full automorphism group O(r — 4, 8,7Z) of the non-perturbative lattice (2.21), which contains
the true U-duality group in D = 3. Moreover, since the latter is N-modular, 'y, _,  is invariant
under the combined action of the Fricke involution on H and the rotation o € O(r — 4,8, R)

realizing the isomorphism (2.22),

_k 1
Tay (@ 1) Patea] = (<i7VN ) Ta,y[Pased] <g @, _NT> . (2.29)
Since Ay is also an eigenmode of the Fricke involution on #H, and since the fundamental
domain I'o(IV)\H can be chosen to be invariant under this involution, it follows that Fp.q(P)
(and therefore Fi,(®)) is covariant (invariant) under the action of o on G,_48. As already
anticipated, this action descends to Fricke S-duality in D = 4.
It is also important to note that the couplings (2.27) and (2.28) are singular on codimension-
8 loci where Q% = 0 for some norm 2 vector Q) € A,_435, or norm 2/N vector Q € Al 4
When the vector @ is of the form @ = (0, @, 0) € Ap_4g with @ € A,_57, this singularity is
visible at the level of the one-loop correction to the (V®)?* coupling, and is due to additional
states becoming massless. However, the one-loop correction is singular in real codimension 7,
while the full non-perturbative coupling (assuming that (2.27) is correct) is singular in real
codimension 8. Indeed, the invariant norm Q%{ = @% + % g%(@ : a)2 vanishes only when both
@%3 =0 and @ -a = 0. This partial resolution may be seen as an analogue of the resolution of
the conifold singularity on the vector multiplet branch in type II strings compactified on a CY
threefold times a circle, or equivalently on the hypermultiplet branch in the mirror descrip-
tion [32]. Singularities associated to generic vectors @ € A,_4g are not visible at any order
in perturbation theory, and are associated to ‘exotic’ particles in D = 3 becoming massless
[33, 34].

3 Establishing and solving supersymmetric Ward identities

In this section, we establish the supersymmetric Ward identities (2.23), from linearized su-
perspace considerations, relate the components of the tensor Fp.q to its trace Fy = Fa%b, and
show that the genus-one modular integral (2.27) obeys this identity. For completeness, we
solve the first equation of (2.23) in appendix B, and show that it is satisfied by each Fourier
mode of Fabcd-

3.1 (V®)* type invariants in three dimensions

In three dimensional supergravity with half-maximal supersymmetry, the linearised superfield
W, satisfies the constraints [27, 35, 36]

DgW&a = (Fd)inaja s DQXBja = *i(au)aﬁ(F&)jiauW&a ) (3‘1)

with @ = 1 to 8 for the vector of O(8), i = 1 to 8 for the positive chirality Weyl spinor
of Spin(8) and ¢ = 1 to 8 for the negative chirality Weyl spinor. The 1/2 BPS linearised
invariants are defined using harmonics of Spin(8)/U (4) parametrizing a Spin(8) group element

10
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u”;, up; in the Weyl spinor representation of positive chirality [37],

QUT(Z-UT]_) — 51.3. , 6ijumusj - 5: , 5ijuriusj =0, 5iju7"iusj =0, (3‘2>
Ui, u'; in the Weyl spinor representation of negative chirality,
2ur(iurj) =05 , 5ijuriu8j — 5ﬁ ) 5ijuriusj =0, 5ijuriusj -0, (3‘3)

and ut,,u";, u 4 in the vector representation,

2u+(du_1}) + %5T$tuursdutu5 — 5&13 ’ 5a5u+du—6 =1, (5abumdutu3 _ %grstu ,
5di’u+au+5 =0, 6di’u+du”l§ =0, Jdi’u_dursé =0, (5&Bu_@u_5 =0, (3.4)
with 7 =1 to 4 of U(4). They are related through the relations
u (T = V2ud? | upug(Ta)? = ergt®™s 0" aun(T)7 = 28] ul;67 |
uiu';(Ta)? = V2u 468, wiugg(Ta)? = Voutedl . u'w’y(Ta)7 =2u"%:.  (3.5)
The superfield W} = uT4W,, then satisfies the G-analyticity property
u DL uT Wy = DIWE =0 . (3.6)

One can obtain a linearised invariant from the action of the eight derivatives D, = uriDé’s
on any homogeneous function of the W,’s. After integrating over the harmonic variables with
the normalisation [ du =1 and using

6! n!

/duu_@1 couT g, Wa L ten = 6+20)(5 +n)!VVal(m Wy (3.7)

with the projection (ay ...a,) on the traceless symmetric component (recall that u™zu~% =

0), one gets °
(6 +2n)(5+n)!
6! n!
1

0)abed
= ﬁcal...anabcdwal (a1 Wa2&2 cee Wan&n)’ﬁ( Jabe

- — 8 1 + +
/duu ap---u an[D ]mcal'“an+4w ai LW an+-4

1 0)aiabed
+mca1.“anabcdwa2(d2 W%, ... W“"anﬁfil))f”a ¢

1 w0 bed
+ (n — 4)| Cal...anabchVa5 (&5Wa6&6 s Wa dn£d1£1(%2(;3)?4a ¢ + a( . ) 5 (39)

+...

5In particular for a single vector multiplet

7] (n i 4)! (W)t = %(Wﬂ”(28,LW7-S6VW”6“WW8"W” — O W 0" W8, Wit 0" W)
8 _ 8 _ _
—_ (n+1)!(W+)n+18uWrsayWT58uaVW 4 (n+2)!(W+)n+2aua’/W auauw 4o (38)

11



SciPost Physics

where the £ are symmetric tensors consisting of a homogeneous polynomial of order 4 +n
in 9, W, Xaia and OuXaia, i-e-

£Oabed —9g e omwt o, weltgr b — o, W@, orwhlag, we o w4
L% g POW) 45 x PIxOW

Omaaabed 6 AW +2 x X°0x
0 bed
i
0 _ bed
Dercagaouabed 8 (3.10)

where we only wrote the bosonic part of the first polynomial, and only indicated the number of
independent structures for the others, such that x® is for example the unique Lorentz singlet
in the irreducible representation of O(8) with four symmetrised indices without trace and
eight symmetrised O(r — 8) indices. A total derivative has been extracted in (3.9) in order to
remove all second derivative terms auaywa&.

At the non-linear level, derivatives of the scalar fields only appear through the pull-back
of the right-invariant form P ; defined from the Maurer—Cartan form

dgglz< dpra"nripry” —dpLaI”IJpRz}J )E< —wap Dy ) (3.11)
dpra'nrspes’  —dpra'niipg”’ P —wyy )

where 17 is the O(r—8, 8) metric and pL,aI, Pr 13] are the left and right projections parametrised
by the Grassmaniann G,_gg. The right-invariant metric on G,_gg is defined as Guy =

2Pua,;PV“b and the covariant derivative in tangent frame acts on a symmetric tensor as

DA

~ ~ N~ = Nal “ N c ~ ~ . C ~ -
ab*“ay...am,b1...bp, — PuabG (avAal...am,bl...bn +mw\’(a1 Aag...am)(z,bl..‘bn + nwv(bl Aal...am,|b2...bn)é) .

(3.12)
The supersymmetry invariant associated to a tensor Fip.q on the Grassmanian defines a
Lagrange density £ that decomposes naturally as

_ ajazasaq a ai...as a1 as al...ag |
‘C - Fa1a2a3a4£ + D(al Fa2a3a4a5)‘£ a + D(al DCLQ Fa3a4a5a6)£ aiaz
a1 as as ai...ar
+ D(a1 DQQ Dag Fa4a5a6a7)£ aijazas
ai as as ay at...ag | N
+ D(al Daz Dag Da4 Fa5“.a8)£ ai...aq4 (313>

where the £"*4, are O(r — 8,8) invariant polynomial functions of the following covariant

fields:

1 e
b b
Puai) = /L¢upuaf,a Xaia DuXaia = V/LXaia‘l'auQSu (wua Xaia'i_zwua[)(ra )i]Xaja) 5 (314)

and the dreibeins and the gravitini fields. Because non-linear invariants define a linear invari-
ant by truncation to lowest order in the fields (3.14), the covariant densities £:*" reduce at
lowest order to homogeneous polynomials of degree n + 4 in the covariant fields (3.14) that

coincide with the linearised polynomials [,7(10)”%, in particular
Lobed = /=g (2P, Prb, polipr b _ ple, prdlape prab ) (3.15)

The important conclusion to draw from the linearised analysis is that the O(r — 8, 8) right-
invariants tensors £7*4 appearing in the ansatz (3.13) are symmetric in both sets of indices

12
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and traceless in the O(8) indices. Checking the supersymmetry invariance (modulo a total
derivative) of £ in this basis, one finds that there is no term to cancel the supersymmetry
variation

5Fabcd = (Q (Ff)ijxg)’DEfFabcd (316)

of the tensor Fyp.q and of its derivative when open O(r — 8) indices are antisymmetrized,
hence the tensor Fj,.q must satisfy the constraints

DDy Fraer =0, D Fpeq = 0. (3.17)

Similarly, because the £ are traceless in the O(8) indices, the O(8) singlet component of
§(DF)L3 can only be cancelled by terms coming from F3L?, i.e.

1 . N
Fipead L0 1 gpeapf&Fabcd(z rex) L2 0 (3.18)

modulo terms arising from the supercovariantisation,® so that the covariant components must
satisfy

abe 5b176 abcede 5b276 a\ pbed
5L bed + ?(GF Xe)ﬁéb d + ?(CF X( )Eéc )ee = Vll«( . ) (319)
and the tensor Fyp.q an equation of the form
DDt Fabed = 5b10e(f Fapedy + 562 0(faFoedye - (3.20)

for some numerical constants b1, bo which are fixed by consistency. In particular the integra-
bility condition on the component antisymmetric in e and f implies by = 2b; + 4.

Before determining the constants b;, it is convenient to generalize Fyp.q to a completely
symmetric tensor Féf;g) on a general Grassmanian G, 4, which would arise by considering a
superfield in D = 10—q dimensions with 3 < ¢ < 6, with harmonics parametrizing similarly the
Grassmannian G,_22 [40]. The corresponding invariant takes the form £ = Fé’b’é‘é) Lobed 4

with
14 1 1%
Lot = =g (Ef L PO — L E G F EL p
(UG FL — g FfgFYo9) PH, P
+ 2P, prb, peleprdb _ ple, publape prab ) (3.21)
where Fjpeq is subject to the constraints (3.17) and

D Dy Fips) = b1 bog Fomet) + 2030 (o Fyigt) + (2bs — )0eaFyigty + 3bs Sian oty - (3.22)

with coefficients b1, be, b3 a priori depending on p, q.
A first integrability condition for (3.22) is obtained through

a : : 202 —q : ,
0= D DraFil] ~ DuaFlfy) = (01— =2 ) GerFubidd = SaFif)

3
+§(b2 — b3)(5f(an(fC}()li - 6((1ch(5)€}> ;o (3.23)

5The same construction in superspace implies that the lift of £ in superspace is d-closed [38], such that
d,,Lbed — %Pée /\L:gbc‘i8 — %Pé(“ AﬁZCd)ee, in agreement with equation (3.19). Therefore, the terms associated
to the variation of the gravitini that we disregard here do not spoil the argument [39].

13
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which implies b; = % and b3 = be, consistently with (3.20). Similarly, considering

Dy (DD ) — Dy (DD i) = 2b10,( D)  Fipis) + 2b384) D" FL52)

_ a b (p,q) a b (p,9) bry @ (p,9)
- [DQ ; De ]Dfl;Fagcg B [Df » De ]DgBFafc(é +De [D[g ’,Df]lA)]Fai)cg
2—¢q i (P, o (P,
= S50y Dy Fad) + 20D FLGl) (3.24)
and therefore b = % and by = 1 and so b3 = 1 so that
a (pa) _ r2—4 (p.a) (p.a)
D. Ddeagc‘czl =5 4 6€(fFa§cgl) + 55(fanfdt)le ' (325)

Taking traces of this equation one can show that the entire tensor is determined by its trace

component F\{P9 = Féi”q)ab through

(pa) _ é f é 3(g—2)(g—4 ,
Fobed = G @mma (QD(a DyyeDe! Dy + (24 — T)3(aDe Dgpe + =244 5(ab5cd))Ft(rp 9.
(3.26)

The function F{»? is an eigenmode of the Laplacian Ag,, = 2DaBD“i’ on Gy 4, and satisfies
1 ) .
A, FPD = —5 0+~ OFRPY . DEDYIRPY =0, (3.27)

It is worth noting, however, that Eq. (3.25) for the tensor defined by (3.26) is an additional
constraint on the function Fi;, which does not follow by integrability from the two equations
(3.27).

Finally, let us note that the discussion so far only applies to the local Wilsonian effective
action. As we shall see in the next subsection, the Ward identity satisfied by the renormalized
coupling Fabcd is corrected in four dimensions (for ¢ = 6) because of the 1-loop divergence of
the supergravity amplitude [41], leading to the source term in (2.23).

3.2 The modular integral solves the Ward identities

In this subsection we shall prove that the modular integral (2.27) is a solution of the super-
symmetric Ward identities (2.23). More generally, we shall show that the modular integral

dTldTQ FAp‘q [Pabcd]
o(N\H TS A(T)

FP9(p) — RN, /F (3.28)

where Ay (7) is the cusp form (2.4) of weight k£ under I'o(N), Ap4 is a level N even lattice
of signature (p,q) with 52 +4 = k, and P is the quartic polynomial (2.26), satisfies the

constraints (3.17) and (3.22). Moreover, its trace §*°§°F éfég)(q)) is given by

drdmy
FP9(d) = R.N. / — Ty -D_ji9D_ . 3.29
t ( ) FO(N)\’H T22 ApAq k+2 kJAk(T) ( )

Before going into the proof however, it will be useful to spell out the regularization pre-
scription which we use to define these otherwise divergent modular integrals. We follow the
procedure developed in [42, 43, 44], whereby the integral is first carried out on the truncated
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fundamental domain Fy o = Fy N {2 <A} N {NMQ > A}, where Fy is the standard funda-
mental domain for I'g(N)\H, invariant under the Fricke involution 7 +— —1/(NN7), and then
the limit A — oo is taken after subtracting any divergent term in A. In the case of the integral
(3.28), the divergent term originates from the contribution of the vector @ = 0 in ', , [Papedl,
so the regularized integral is defined for g # 6 by

F09(@) = lim

dTldTQ FA])q[Pade] 3ak A% (3 30)
A—oo FN |

T4 Ag(T) 1672 % 6(ab50d)} ’

A

where ap = (1 +v)k = (1 + U)C(QO), and ag = (1 + v)cg(0) for prime CHL models. In the

case of interest v = 1, but it depends on the lattice volume in general and v = 1/N for the
non-perturbative Narain lattice (2.21). For q < 6, no subtraction is necessary, as long as the
integral is carried out first along 71 € [—3 3 2] in the region 7 — o0o. For ¢ = 6, the integral is
logarithmically divergent, and the regularized integral is defined instead by

6 . dridry Ta, ¢[Pabea] — 3(2K)
F(@) = Jim | [ SRl SO
A=oo | JEya T Ag(7) 167

logA(S(abécd)} . (331)

The logarithmic divergence at ¢ = 6 is consistent with the expected divergence in the one-loop
scattering amplitude of four gauge bosons in D = 4 supergravity [41]. Equivalently, following
[45] one may consider the modular integral

, drid7 Ta,, o [Pabed
ch)?cz) ((I)7 6) = / 2—e€ Z IXW
SLRZN\H T2 L ero(N)\SL(2,Z) k

: (3.32)
.,

which converges for Re(e) < %, and defines the renormalized integral as the constant term

in the Laurent expansion at ¢ = 0 of the analytical continuation of F éf;g)(@, €). The result
will then differ from (3.31) by an irrelevant additive constant. In what follows, we shall often

abuse notation and omit the hat in Féf&? when stating properties valid for arbitrary ¢. It is
also important to note that while the regularized integral (3.30) or (3.31) is finite at generic
points on G, 4, it diverges on a real codimension-q loci of G 4, where Qg4 = 0 for a vector
Q € Ay g with Q% =2, or for a vector @ € A% with Q? = 2/N (see (E.12)).

In order to establish that F éfé?i) satisfies the constraints (3.22), we shall first establish
differential equations for a general class of lattice partition functions

FA,M,[P]ZTQ% S P(Q)eimLTTI@RT (3.33)

__A
where the polynomial P(Q) is obtained by acting with the operator 73'e 5772, with

A;%:<ag%) +§d:(a‘;%)2, (3.34)

on a homogeneous polynomial of bidegree (m,n) in (Qr, Qr), respectively. As shown in [45],
[z, ,[P] satisfies

(—i)% T%—l—m—n

1A5.a/ Mpl

Ta, [Pl(~1/7) = Th;, [P)(r) (3.35)
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which implies that it transforms as a modular form of weight £54 +m —n under T'g(N'). More

specifically, we shall consider Ty, , [Pal...am 31_._;%] with
__A
Pal.“am,l;l...i)n = Tge 8w (QL,al N QL,(lm QRin ce QR,I;H) . (336)

The quartic polynomial Ppp.q defined in (2.26) arises in the case (m,n) = (4,0), so that
[, q[Pabcd] is a modular form of weight p—;q + 4 = k, ensuring the modular invariance of
the integrands in (3.28) and (3.29). Upon contracting the indices, it is easy to check that
(5ab60dI‘AP‘q [Pabed) = Dr—2Dy—4T'p,, ,[1], so the claim that (3.29) gives the trace of (3.28) follows
by integration by parts.

To obtain the differential equations satisfied by (3.28), we shall act with the covariant
derivative D;, defined in (3.11) and (3.12). As mentioned below (2.13), pr./, pR,l;I are
the left and right orthogonal projectors on the Grassmaniann Gy, = O(p,q)/ [O(p) x O(q)].
Using the derivative rules

1 I

1
DipLe = 30acPpp’ D, PR = §5l;épL,aI : (3.37)

one can effectively define the action of the covariant derivative on a function that only depends
on @1, and QR as

1
Dal; = 5 (QL,aag + QRj)aa) ) (338>
where 9, = %, 0y = ﬁ. Acting with D4 on (3.33) we get
DegFAP«,(I [Pal...am,l;y..l;n] = FAPJ] |:(D5g - 27TT2 QL7EQR7-@) Pal...amlal..‘l;n . (339>

Using (3.38), one computes the commutation relations

[A, Deg) = 2005, [A,QLeQrgl = 4Dy, (3.40)
(A, QLeQr,s] = 20cy +4Qr (0py , [A, Q)] = 20:0; . (3.41)

Using them along with the Baker-Campbell-Hausdorff formula
RO T = O+ ——[A, O] 4 ~— A [A, O] ... (3.42)

8y 2! (8wre)2t 7 ’
one easily obtains
__Aa 1 A
DEQFAPJZ [Pal...am,i)l...i)n] = _27T7_2 FAPJ] [6 e (QL7€QR7Q - (471’7’2)2 aeag>687r‘r2 Pal...am,i)l...i)ni| :

(3.43)

Note that the similarity transformation is such that the operator acts on the simple monomial
in Qq, - Qa,, @, --- Qp according to (3.36), such that it directly follows from (3.43) that

Deslnyy [Paycaminein) = P | = 27 Pray i + 50as Pay ) (b Oy - (344)
Upon antisymmetrizing in (e, a1), we get
§ 1 A -
D[e FAP«‘I[Paﬂ-uam,gl---En] - 871'27’22 FAPAZ e o 8[68 esrr2 Pal]...am,l}l...gn}' (3'45)
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_A
which vanishes when n = 0 since e®™2 P, ,, does not depend on Qr. Acting a second time
with D ; and antisymmetrizing, we get

5 7 __A 5 poo_A
DDy 0,4 [Py ) = ~20[ 657 QuieQnl0y 07 €53 P (3.46)

al...Qm, ai...am,b1...bn |’

which similarly vanishes when n = 0. Setting m = 4, we conclude that the modular integral
(3.28) satisfies

D Fupea =0, DDy Fea=0, (3.47)

which therefore establishes the last two equations in (2.23). Note that these two equations do
not rely on any particular property of the function 1/Ay.
Now, the first equation of (2.23) arises from applying the quadratic operator sz =

D(eg’Df)g on the partition function with polynomial insertion,

2 2 g
4D€frAp~q [Pal...am,f)l...f)n] = FAIMI [<4D€f - 87r7—2QLa(6QRng)§

2,2 de 2
+167T T2 (QL75QL,f - 471’7{2) <QR - 47?7’2) - q5€f> Pal...aml;l..‘l;n )

(3.48)
which gives, using (3.40) and (3.42)
A 0:070%
ADATN, [Py o] = D€ 772 (167278 QF eOroh
s 000 [Py ] = T |€ 72 (1077 QR QueQug + 16m273 (3.49)

N N _A
- QL,(eaf)(QQRga§ +q) = bef(QrR05 + Q)>68”2 Pal...amgl...i)n:|

The first term on the r.h.s. can be rewritten as the action of the Maass lowering operator

Dy, = —in720- mapping modular forms of weight w to weight w — 2. Indeed,

B _ 2.2 2 +2n
DwFAIUI Pefal...am,lsl...i)n] =TT FAP,Q [(QR - (5177772> Pefal...am,lal...l;ni|
1
+ E Ap.q [A Pefa1...am,i71...i)n] (350)
A A
_ “8rry (1 92 2 Srrs o
=I,, [6 572 (1607 — (72QR)%) €3 ZPefal...am,bl,..bJ :

__A
where in the second line, we used the fact that A commutes with e 3772. The r.h.s. of (3.49)
can thus be written as

2
ADcsLn,. Pal...am,al...i)n] = (2= (g+7n))desLn,, [Pal...am,al...zsn}

+ m(4 - (q + 2”))6|€)(‘11FAD,(1 [Pagu.am)(ﬂ,l;l...i)n] + m(m - 1)5(a1a2FAP,(1 |:Pa3...am)ef,l;1‘..l;ni|

(m=1)n(n-1) 5
+ g Oe(ar 0] flas Ay {Pag...amx(al‘..an_z] 03,1,y — 16Dwln, [Pefal...am,i)l...l;n}’

(3.51)

where only the last term remains to be computed explicitely. Specializing to the case of main
interest, we obtain
Def : FApyq [Pabcd] = —4Dy ]-—‘Apiyq [Pabcdef] (352)
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where, for any tensor Fyp.q, we denote

(q—2
4

Ocf - Faped = D2 Faped + )5ef Fabed + (@ — 4)0(e(aFrea) ) — 30(avFeayes (3.53)

We can now integrate both sides of (3.52) times 1/Aj on the truncated fundamental domain
Fn,a, leading to

dridry Tny,, [Pabed] drdr 1 -
Def / 1d72 p.g L7 abcal _4/ #KDk+2FA1Aq [Pabcdef} (354)
Fa FN,A k

7'22 A TS

The 1.h.s. is a boundary term, because D_;(1/Ay) = 0 by holomorphicity. To compute the
boundary term we use Stokes’ theorem in the form

2 d7‘1d7‘2 — —
| tear=[ attgan=2 [ TERDufg+fDug.  (359)
OFN,A FA TJFyn T2
where f and g are any modular forms of weight w and w’ = —w + 2 and 2d7;d7, = idT A dT.

By modular invariance, the boundary term reduces to an integral along the segment {1/2 <
71 < 1/2, 79 = A} and its image under the Fricke involution (for N > 1). The latter can be
mapped to the former upon using (3.35). At generic points on the Grassmannian Gy 4, the
contributions of non-zero vectors in Ay, and A , are exponentially suppressed, leaving only
the contribution of Q = 0:

3 An N7 gamzlndede), (3.56)

dTldTQ FApﬂq [Pabcd] q—6 15 (67
Def / = 2
FN,A
where we recall that ap = (1 +v)k = (1 + U)@ for the heterotic string compactifications
and ap = (1 +v)k = (14 v)e(0) = N4—_§1 for CHL models, see table 1. v = 1 for the case of
interest but v = 1/N for the non-perturbative lattice (2.21). Physically, 2k — 2 is the number
of vector multiplets. Acting with the same operator Dgf on the subtraction in (3.30), we see

that the term proportional to A4=6)/2 cancels, except for ¢ = 6 where the substraction in
(3.31) leaves a finite remainder. Thus, we find, as claimed earlier, that the modular integral
(3.28) is annihilated by the second-order differential operator [.s defined in (3.53), up to a
constant source term present when g = 6,

(pa) _ 15(2k)

Def Fagcgl - 2(47r)25(ab60d56f) (5q,6 . (357)

In B, as a consistency check we show that this equation is verified by each Fourier mode in
the degeneration limit O(p,q) — O(p — 1,4 — 1).

4 Weak coupling expansion of exact (V®)* couplings
In this section, we study the expansion of the proposal (2.27) in the limit where the heterotic
string coupling g3 goes to zero, and show that it reproduces the known tree-level and one-

loop amplitudes, along with an infinite series of NS5-brane, Kaluza—Klein monopole and H-
monopole instanton corrections. We start by analyzing the expansion of the tensorial modular
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integral defining the coupling and its trace

dT1 dTQ FAIL q [Pabcd]

(X))
FPD () — R.N./ : 4.1a
bed To(N\H T2 Ag(T) (4-12)
dridr
EP9(@) = R.N. / L 2Ty D_jiaD_ , 4.1b
w(e) ro N T2 TR AL () (4.1b)

for a level N even lattice A, , of arbitrary signature (p,¢), in the limit near the cusp where
O(p, q) is broken to O(1,1) x O(p — 1,q — 1), so that the moduli space decomposes into

G —>R+XG_1 _1D<Rp+q_2. 4.2
p,q p—1,q

For simplicity, we first discuss the maximal rank case N = 1, p— ¢ = 16, where the integrand
is invariant under the full modular group, before dealing with the case of N prime, where the
integrand is invariant under the Hecke congruence subgroup I'o(N). The reader uninterested
by the details of the derivation may skip to §4.3, where we specialize to the values (p,q) =
(r — 4,8) relevant for the (V®)?* couplings in D = 3 and interpret the various contributions
as perturbative and non-perturbative effects in heterotic string theory compactified on T7. In
§4.5 we discuss the case (p,q) = (r — 7, 5) relevant for H* couplings in type IIB string theory
compactified on K3.

4.1 O(p,q) - O(p—1,q — 1) for even self-dual lattices

We first consider the case where the lattice A, , is even self-dual and factorizes in the limit
(4.2) as
Apg = Dp-14-1© M - (4.3)

We shall denote by R the coordinate on R* and by a/, I =2...p+ g — 1 the coordinates on
RP*9=2, R parametrizes a one-parameter subgroup e®70 in O(p, q), such that the action of
the non-compact Cartan generator Hy on the Lie algebra so, , decomposes into

sope~(pra—2) " a@gheso, 1, )@ Ptrq-2)? . (4.4)

while the coordinates a! parametrize the unipotent subgroup obtained by exponentiating the
grade 2 component in this decomposition. A generic charge vector Q7 € A, ~ 12 g
(p+q-— 2)(0) ® 1® decomposes into Q7 = (m, @I,n) where (m,n) € II1 1 = 7?2 and @1 €
Ap—1,4-1, such that Q? = —2mn + @2. The orthogonal projectors defined by Qr = p%QI and
Qr = pﬂQI decompose according to

1 R
7

m+a-Q+—=-a-an | — —=n,
pL,lQI Rf( Q 2 > \/§
p%,aQI :pL a(Ql + ’I”L(l]),

1 R
7
m+a-QQ+—=-a-an |+ —=n,
pR,lQI R\/> ( Q 2 > \/§
p%z,aQZ :pR,d(QI + nay),

(4.5)

where ﬁi’a,ﬁ{%’d (¢ =2...d+16, & =2...d) are orthogonal projectors in Gp_1 4—1 satisfying

@2 = @% — @% In the following we shall denote |Qr| = \/é%.
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To study the behavior of (4.1) in the limit R >> 1,7 it is useful to perform a Poisson
resummation on m. For a lattice partition function I'y,, with no insertion, as in the scalar
integral (4.1b), this gives

_ wR?|nT4+m|? q%l 27rim(a~@+la-an) 12 12
[y, =R Z e ™ T, Z e 2 q2%L q2%R (4.6)
(mn)ez? QEAp—1,4-1

In the case of a lattice sum with momentum insertion, as in the tensor integral F a(gfi) (4.1a),
we must distinguish whether the indices abed lie along the direction 1 or along the directions
a. Denoting by h the number of indices along direction 1, the previous result generalizes to

= h 2 2

~ 5y h Z R(nT 4+ m) — R nrdm]®

FA”“I [e . [(QL’I) QLo - "QL:O‘LF’LH =f (m,n)€Z? (17'2\/§ ¢ ’
m,n

S ~ im(O—1 .
X Tayry ina|€ % (O v Qrias ] @ 4ama] a7

at+b
ct+d

), under which the second

In this representation, modular invariance is manifest, since a transformation 7 —

a b
c d

line of (4.7) transforms with weight 12 — h. As a relevant example for what follows, consider
the case (n,m) = k(c,d), k = ged(m,n), then using an transformation (“ Z) € SL(2,7Z)

can
be compensated by a linear transformation (n,m) — (n,m)(

3 ey {@Lm _“@meh} (2mikd(@}ake)a (303 3Q%
QEAp—1,4-1+kca
(et +d)t2=h Z ¢ T [@L,al . QL’%_J e2mikQ-a q%é% q%é% . (4.8)
QEAp_1,4-1
We can therefore compute the integral using the orbit method [46, 47, 48], namely decompose
the sum over (m,n) into various orbits under SL(2,7), and for each orbit O, retain the

contribution of a particular element ¢ € O at the expense of extending the integration domain
F1 = SL(2,Z)\H to I \'H, where T is the stabilizer of ¢ in SL(2,7),® by using the identity

U v-A=T\% (4.9)
YEl'\SL(2,Z)
The coset representative ¢ € O, albeit arbitrary, is usually chosen so as to make the unfolded
domain I':\H as simple as possible. In the present case, there are two types of orbits:
The trivial orbit (n,m) = (0,0) produces, up to a factor of R, the integrals (4.1) for the

lattice A,—1,4—1, provided none of the indices abcd lie along the direction 1,

F(Py‘])vo — RF(pflvqfl)

s s . RP20 — g Rp-la-l) (4.10)

while it vanishes otherwise (i.e. when h > 0).

"Since 1/A grows as ezfi2r at 7o — 0, the following treatment which relies on exchanging the sum and the
integral for unfolding is justified for R? > 2.

8This unfolding procedure requires particular care since the integrand is not of rapid decay near the cusp.
We suppress these details here, and refer to [42, 45, 49, 43, 50, 44] for rigorous treatments.
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The rank-one orbit corresponds to terms with (n,m) # (0,0). Setting (n,m) = k(c,d),
with ged(e,d) = 1 and k # 0, the doublet (c¢,d) can always be rotated by an element of
SL(2,7) into (0,1), whose stabilizer inside SL(2,7) is I'oc = {(j }),n € Z}. Thus, doublets
(¢,d) with ged(c,d) = 1 are in one-to-one correspondence with elements of I'\o\SL(2,Z).
For each k, one can therefore unfold the integration domain SL(2,Z)\H to S = I'xo\H =
R, x (R/Z).,, the unit width strip, provided one keeps only the term (c¢,d) = (0,1) in the
sum. The resulting contribution to the tensor integral (4.1a) are

2nikal QVI}

P B
vt 75 Jrm o (5 A

2 D 27rika1@1}
F(p q),1 _ R/ dTQ / ( Rk ) e_ﬂR2k2/7'2 FAp—qul [Paﬂe | (411)
R+ R/Z 120

11v6 17_2\/5 A
4 271'ik:alél]
F(p7q) 1 = / / < Rk > 6_71'R2k2/T2 FAP*L’I*l |:€
T e 3 2 \inv2 A ,
where i o B
Parasn=¢ 7 [Quar - Qrai ] - (4.12)

while the contribution to its trace is
R TS R/Z 20 " A

The integral over S can be computed by inserting the Fourier expansion

1 1
X = Z c(m) g™, D2A = ag c(0) + Z Zagm m) ¢y (4.14)
mez, meZ—{0} =0
m>—1 m>—1
where 6 6 N
w=4, a-P=1r0 , _@ZatOb-at8 (4.15)
T 1672
The integral over 7 picks up the Fourier coefficient ¢(m) with m = @2 The remaining

integral over 79 can be computed after expanding I:’al,,,a%h ZZ o Pc(fi o hT2 , where
]5(&?“%7,1 is a polynomial in @ of degree 4 — h — 2{, or zero when 2¢ > 4 — h. Contributions
with @@ = 0 lead to power-like terms,

-~ 3c(0
FHO = Ri=S¢(q — 6) %6(015575)7

afvyo
0
FED0 = R0 (g - 6) (7 - ) "Dy (4.16)
—6 c(0
A = R0 6) (T 90 - 05

while the result vanishes for an odd number of indices along the direction 1, and for its trace

FPO10 — RI=6¢(q —6) (p—q+6)(p—q+8) 8(7(:) (4.17)
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Here we used Pégzd(O) = w%é(ab(%d), ]5(55)(0) = —ﬁéab, and P = 1. Note that (4.17) and
(4.16) have a simple pole at ¢ = 6, which is subtracted by the regularization prescription
mentioned below (3.32). For ¢ = 7, the pole in (4.17), (4.16) cancels against the pole from
the trivial orbit contribution (4.10).

In contrast, non-zero vectors () lead to exponentially suppressed contributions, which
depend on the axions through a phase factor e2™** @ After rescaling Q + Q/k, we find that
the Fourier coefficient with charge @ € Ap—1 4—1 ~\ {0} is given by

1 & PO Q) Kas_, (27 By/21QRP)
P0)LQ _ 4~ =1 n Popos(@Q) q—fz( R
Fygys © =4c@QR 2 Y 2 ——
=0 2|QrI? 2
(¢ . p)
F1(p7q)’1’Q — 4E(Q) R% zl: Po(zﬂ)ry(Q) K%*f (27TR 2|QR| )
« . _5
By =0 1\/§R€ 2|QR|2%—£ (418)

=1 p(0) Ko (27TR\/2|QR|2>
2 g—11
BEVC o

F e = 1e(Q) R

for the tensor integral, and

2. 2t Kos_, (27 R\/Q\QRP)

—1 2
R —1e@ R Y 2% (-%) — (4.19)
=0 V2|Qr* *
for its trace. In either case,
2 _
{Q) =3 ¢ (-2%) 497 (4.20)

dlQ
The physical interpretation of these results will be discussed in §4.3, after generalizing them
to Z orbifolds.

4.2 Extension to Zy CHL orbifolds

The degeneration limit (4.2) of the modular integrals (4.1) for Zy CHL models with N =
2,3,5,7 can be treated similarly by adapting the orbit method to the case where the integrand
is invariant under the Hecke congruence subgroup I'g(N) [51, 52, 44]. In (4.1), A, is the cusp

form of weight k = Nz—jjl defined in (2.4), and T’ , is the partition function for a lattice

Apg=Ap-14-1® M1 [N], (4.21)

where A,_1, 1 is a level N even lattice of signature (p — 1,q — 1). The lattice I 1[N] is
obtained from the usual unimodular lattice II1 ; by restricting the winding and momentum
to (n,m) € NZ & Z. After Poisson resummation on m, Eq. (4.6) and (4.7) continue to hold,
except for the fact that n is restricted to run over NZ. The sum over (n,m) can then be
decomposed into orbits of T'g(V):?

2w
9Since 1/Ay grows as eN72 at 72 — 0, the following treatment which relies on exchanging the sum and the
integral for unfolding is justified for NR? > 2.
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Trivial orbit The term (n,m) = (0,0) produces the same modular integral, up to a factor
of R,

Fé%%o RFc(v%w% q—1) 7 Fp00 = g pp—1a-1) 7 (4.22)

where Fé%;;’qfl), EP~19=1 are the integrals (4.1) for the lattice A,_1, 1 defined by (4.21).

Rank-one orbits Terms with (n,m) = k(c,d) with k # 0 and ged(c,d) = 1 fall into two
different classes of orbits under I'o(IN):

e Doublets k(c,d) such that ¢ = Omod N and k € Z can be rotated by an element
of Ig(N) into (0,1), whose stabilizer in I'o(N) is I'ngc = {(j }),n € Z}. For these
elements, one can unfold the integration domain I'o(N)\H into the unit width strip

S =To\H = R, x (R/Z)r,;

e Doublets k(c,d) such that ¢ # Omod N and & = Omod N can be rotated by an el-
ement of I'o(IN) into (1,0), whose stabilizer in Io(NN) is SToon S™1, where Do y =

{(6 1),n € NZ} and S = (! ). One can unfold the integration domain I'o(N)\H

into ST v Sfl\’H, and change variable 7 — —1/7 so as to reach Sy = ' o N\H =
R, x (R/NZ),, the width-N strip. Under this change of variable, the level-N weight-k
cusp form transforms as Ag(—1/7) = (iv/N)“*7FAy(7/N), while the partition function
for the sublattice /~\p,17q,1 transforms as

JURNE. .
FA,),L(,,l[POéBWZS](_l/T) =0N"2 1(_1) 2T F]\; » [Paﬁ'yé] (1), (4.23)
where I;. enotes the sum over the dual lattice , and © —5-1 =
h 'y d h he dual 1 Ap 1g—1 d ON

p—1,q—1

‘A g N . 1] 1/2 (Note that © = N'7%3 for ¢ < 8 in the cases of interest).

For the simplest component F(i%’% 1, the sum of the two classes of orbits then reads

(p,9),1 dn —nR2k2/ 2rikal Q
Faﬁvé _R/R /R/ZdT T)Z " =T A[;1q1|: e Ipaﬁvé}

+ 7—2

k£0
dT2/ 0 1 _ R2k2/ ik [@
+R e TQF |: mika'Qr p 5i| )
R+ T3 R/(NZ) TN Ay(r/N) % A g1 apy
k=0mod N
(4.24)

The contributions from @ = 0 lead to power-like terms,

(p.a)(1.0) _ _g-7 3ck(0)
Fofys = BT0%(q = 6) (1+0N"T) =200y
- = k(0
FL = R0 eg—6) (7 —q) (1 o8 T) 20 (1.25)

FiY = R15¢(g— 6) (T— q)(9— q) (1+mq*7)C§T(r02),

for the tensor integral and

e (0)

R0 = R17%¢(q = 6)(p— g+ 6)(p — g +8) (1 + ONTT) 5

(4.26)
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for its trace, where ¢, (0) = k is the constant term in 1/Aj. As in (4.17) and (4.16), the pole
at ¢ = 6 is subtracted by the regularization prescription (3.30), while the pole at ¢ = 7 cancels
against the pole from the zero orbit contribution (4.22).

The terms with non-zero vector () produce exponentially suppressed corrections of the
same form as in the maximal rank case (4.18), but with a different summation measure,
namely

a@= 3 ck( 2%22)&7 s Y ck<2]%;)(Nd)q_7, (4.27)

d~217 d>1,
Q/dGApflyqfl /dGNA

p—1,q—1

where the first term, arising from the first class of orbits, has support on [Xp,l,q,l, and the
second term, arising from the second class of orbits, has support on the sublattice N /NX;_Lq_l C
/~\p,1,q,1. In the latter contribution, notice that one factor of N in the numerator of the Fourier
coefficient comes from the matching condition with 1/Ag(7/N), and two factors of N in its
denominator come from all the divisors being originally multiples of N.

It will also be useful to consider a different degeneration limit of the type (4.2) where the

lattice decomposes as
Apg=Np1g10 1, (4.28)

where II1; is the usual unimodular even lattice, with no restriction on the windings and
momenta (n,m), and Ap_14-—1 is a level N even lattice of signature (p — 1,¢ — 1), not to
be confused with the lattice A,_q,-1 above. The sum over (n,m) € Z @ Z can then be

decomposed into orbits of T'g(/N). The trivial orbit is similar to (4.22), but now Fc(f@y;’q Y

and Fi{?~19-1 are the modular integrals for the lattice A,_14-1. For the rank-one orbit,
the discussion goes as before, except that the second class of orbits (m,n) = k(c,d) with
k = ged(m,n) and ¢ # 0mod N has no restriction on k. For the simplest component FO%% ,

the sum of the two classes of orbits then reads

dTQ _ 21,2 I
F(p a),1 _ — / / dr TRk /TQI"A 627r1ka Qr P
pro R+ T4 R/Z ! Ak(T) kz;éo p=la-l { By ‘5}

de/ 1 B2y —
Ry, famal@p s ] 40)
R+ 7'2 R/(NZ) T/N Nkzyéo p—1,q-1 apy

where vN 271 = |A;*7—1,q—1/Ap71,q71|_1/2 (which now simplifies to v = N =% for ¢ < 8 in

the cases of interest). The contributions from @ = 0 lead to power-like terms,

3c k(0>

Fai ™ = RI06(q = 6) (1+0) =5 37 0asd0).
FO = B0~ 6) (7~ )1 +0) 87(3 b (1.30)
Fiii} = R%¢(g—6) (T— q)(9 — q)(1+v) ng)
for the tensor integral and
o0 = Ri-t¢(q— 6)(p — g+ 6)(p — g + 9)(1 +v) L (4.31)
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for its trace, where ¢ (0) = k is the constant term in 1/Ay.
The terms with non-zero vector ) produce exponentially suppressed corrections of the
same form as in the maximal rank case (4.18), but with a different summation measure,

namely
2 3 N 2 B
a@ =), Ck(—%Q)dq Y ck(— 2222 )dq T (4.32)
d>1, a1,
Q/d€ENp—1,9-1 Q/deA;—l,qfl

where the first term, arising from the first class of orbits, has support on Ap_q,-1, and
the second term, arising from the second class of orbits, has support on the dual lattice

»—1,4—1- 1n the latter contribution, notice that one factor of N in the numerator of the
Fourier coefficient comes from the matching condition with 1/A(7/N).

4.3 Perturbative limit of exact (V®)! couplings in D = 3

Specializing to (p, q) = (2k,8) = (r —4,8), and decomposing as Aoy g = Ag—1,7® II11[N], the
limit (4.2) studied in this section corresponds to the expansion of the exact (V®)* couplings
in D = 3 in the limit where the heterotic string coupling g3 = 1/ V'R becomes weak. To
interpret the resulting contributions in the language of heterotic perturbation theory, one
should remember that the U-duality function F' égff) (®) is the coefficient of the (V®)* coupling
in the low-energy action written in Einstein frame, such that the metric yg is inert under U-

duality,
Sy = / Bev/ e [R[vE] — (20,305 — 0acly ) F 28 (@) ygpygapgdpjbpgépgﬂ 4o (4.33)
In terms of the string frame metric v = nygg, one finds

1 2k,8 Vo pai pbb peé pdd
Ss = / d*z /= [ggRM 63 (20,30,5 — 0ac03) Fuped (9747 ”P,‘f“Pi’prccpﬁd] +o
(4.34)

Using ¢;(0) = k for CHL orbifolds with N > 1 or ¢(0) = 2k in the maximal rank case, and
£(2) = §, the results from §4.1 and §4.2 read

/ ZW\/W )
2k,8 3 2k—1,7 _ — YR PomiaQ
9 Fchcd )= og2 S(abOcay + Fchcd '+ E c(Q)e a3 chbzd ;o (4.35)
3 QeNap_17

where we omit the detailed form of exponentially suppressed corrections, and the summation
measure is read off from (4.27)

i Q? o
a@= Y de(‘ﬁ) + D NM(‘W) ’ (4.36)
d>1, a>1,
Q/dEAQk_lj Q/dGNAqu,?

The first two terms in (4.35), originating from the zero orbit and rank-one orbit, respectively,
should match the tree-level and one-loop contributions, respectively. Indeed, the dimensional
reduction of the tree-level R?+(TrF?)? coupling in ten-dimensional heterotic string theory [53,
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54] leads to a tree-level (V®)* coupling in D = 3, with a coefficient which is by construction
independent of N. A more detailed analysis of the ten-dimensional origin of this term will
be given in §5.3.1. The second term in (4.35) of course matches the one-loop contribution
(2.24) by construction. The remaining non-perturbative terms can be interpreted as heterotic
NS5-brane, KK5-brane and H-monopoles wrapped on any possible 76 inside T7 [9]. More
precisely, NS5-brane and KK5-brane charges correspond to momentum and winding charges
in the hyperbolic part II1 1[N] @ Hy_2x—2 of Ay, @ II11, while H-monopoles correspond to
charges in the gauge lattice Ay g_j (for the heterotic string compactification on T7, these
sublattices must be replaced by II7 7 and Eg @ Eg or Djg, respectively). Note that [9] studied
these corrections on a special locus in moduli space, corresponding to T*/Zs realization of
K3 surfaces on the type II side, and did not keep track of all gauge charges, which resulted
in a different summation measure.

4.4 Decompactification limit of one-loop F* couplings

For general (p,q) = (d+ 2k —8,d) = (d +r — 12,d) with ¢ < 7, the modular integral (4.1a)
is interpreted as the one-loop F* amplitude in a heterotic CHL orbifold compactified down
to dimension D = 10 — d. The decomposition (4.21) corresponds to the case (a) where the
radius R of a circle in T% orthogonal to the Zy orbifold action becomes large, while the limit
(4.28) corresponds to the case (b) where the radius R of the circle in 7% singled out by the
Z orbifold action becomes large in string units.

The power-like terms contributions in R come in part from the trivial orbit, and from the
zero-charge contribution to the rank-one orbit:

3(2k)

7 ~1,q-1 -

a): Fyil = RE ") 4+ RI°6(q = 6)5 5 0(apdoe) + - (437
. ( ’ ~( 717 71) - 3k(1 + Nq_G) ‘

b): FOO = RED LY 4 R1-O¢(q — 0) g2 O+

The first term reproduces, up to a volume factor of R, the one-loop F* amplitude in D + 1
dimensions (4.10), either in the same CHL model (case a), or in the full heterotic string
compactification (case b). Indeed, in the latter case, the partition function Iy, , _, fac-
torizes into I'my,, o, 9 X I'aps - The fundamental domain To(N)\H can be extended
to SL(2,Z)\H, at the expense of replacing Ty, ,_, /Ay by the sum over its images un-
der To(N)\SL(2,Z) = {1,5,TS,..., TN=1S}. As explained in §A, this sum reproduces
DAyirs 0 /A, the partition function for the maximal rank theory in dimension D + 1.

The second term, originating from the zero-charge contribution to the rank-one orbit, can

instead be understood as the limit s — 0 of an infinite tower of terms of the schematic form

Yom 7&0(%; — 5)>"2F* in the low-energy effective action, where s is a Mandelstam variable,
arising from threshold contributions of Kaluza—Klein excitations of the massless supergravity
states in dimension D + 1. In the limit R — oo, this infinite series along with the term m = 0
from the non-local part of the action in dimension D sums up to the contribution of massless
supergravity states to the non-local part of the action in dimension D + 1. The pole at ¢ = 6
in the second term of (4.37) originates from the logarithmic infrared divergence in the local
part of the string effective action in dimension D = 4, and matches the expected ultraviolet
divergence in 4-dimensional supergravity. The apparent pole at ¢ = 7 cancels against a pole
in the first term, due to the same logarithmic divergence. Indeed, the 1/e pole of the full
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amplitude Féf{fl)(@, €) can be extracted from its Laurent expansion at € = 0, namely

3(2k)

(p,6) _
Fabcd ((D’ 6) - 71671'26

5(ab50d) +0(1) (4.38)
In addition, massive perturbative BPS states with non-vanishing charge @ € Agj2r—9,4—1 in
dimension D + 1 and mass M(Q) lead to exponentially suppressed terms of order e 2mRM(Q)
weighted by the helicity supertrace 4(Q), as expected on general grounds.

4.5 Perturbative limit of exact H* couplings in type IIB on K3

Here we briefly consider the case ¢ = 5, N = 1, corresponding to type IIB string theory
compactified on K3. In Einstein frame, the low energy effective action takes the form

So = / 0Oz 5 [RIyp] = Flani (@) Hiy Hh HE M HY7, [ 4 (4.39)

where the three-form H® with « # 1 are the self-dual field-strengths of the reduction of the RR
two-form, four-form and six-form on the self-dual part of the homology lattice H®V*"(K3) =
Es ® Eg @ I, 4, while H' is the self-dual component of the NS-NS two-form field-strength.
We shall restrict for simplicity to the components «, 8,7, # 1. In terms of the string frame
metric 7 = g5y and setting H® = g;H® (since Ramond-Ramond field are normalized as
H ~ 1/gs in type II perturbation theory), we get

1 1
S = / bz /= [927%[7] - g—FC%? (@) HS HE, FHY AP | (4.40)

Identifying R = 1/gs, the large radius expansion of F 5;5’5 becomes, schematically,

L oeis) 1 204 3 L EVRIRRE 0
o, Fasvs :?EFQM (®) + o Oapdae) + dYoAQe = Prys - (4.41)
QEN20,4

The first term proportional to chggf) is now recognized as a tree-level correction in type I on
K3, the second term is a one-loop correction which to our knowledge has not been computed
independently yet, and the remaining terms originate from D3, D1, D(-1) branes wrapped on
K3 [55]. Tt is worth noting that decompactification limits of the form O(2k,8) — O(2k —3,5)
exist in principle for all CHL models listed in Table 1, however, they cannot be interpreted
in terms of six-dimensional chiral string vacua, due to anomaly cancellation constraints.

5 Large radius expansion of exact (V®)* couplings

In this section, we study the expansion of the proposal (2.27) in the limit where the radius
R of one circle in the internal space goes to infinity. We show that it reproduces the known
F* and R? couplings in D = 4, along with an infinite series of O(e™) corrections from 1/2-
BPS dyons whose wordline winds around the circle, as well as an infinite series of (’)(e’RQ)
corrections from Taub-NUT instantons. We start by analyzing the expansion of genus-one
modular integrals (4.1b) and (4.1a) for arbitrary values of (p,q), in the limit near the cusp
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where O(p, q) is broken to O(2,1) x O(p—2,q — 2), so that the moduli space decomposes into

Gpqg = BT x [gég; X Gpogz| x R2PH=4 x R (5.1)
As in the previous section, we first discuss the maximal rank case N = 1, p — ¢ = 16, where
the integrand is invariant under the full modular group, before dealing with the case of NV
prime. The reader uninterested by the details of the derivation may skip to §5.3, where we
specialize to the values (p,q) = (r — 4,8) relevant for the (V®)* couplings in D = 3, and
interpret the various contributions arising in the decompactification limit to D = 4.

5.1 O(p,q) — O(p—2,q — 2) for even self-dual lattices

We first consider the case where the lattice A, , is even self-dual and factorizes in the limit
(5.1) as
Apg = Ap2g2® Iz . (5.2)

In order to study the behavior of the modular integral (4.1a) in the limit (5.1), we denote by
R, S, ¢,al 1) the coordinates for each factors in (5.1), where i = 1,2 and I = 3,...,p+q—2.
The coordinate R (not to be confused with the one used in §4) parametrizes a one-parameter
subgroup e®f1 in O(p, q), such that the action of the non-compact Cartan generator H; on
the Lie algebra so, , decomposes into

5002 ... © (gl @50y 242) VB (20 (P+qg—4)Ye1@, (5.3)

while (a” , 1) parametrize the unipotent subgroup obtained by exponentiating the grade 1 and
2 components in this decomposition. We parametrize the SO(2)\SL(2,R) coset representative
v#" and the symmetric SL(2,R) element M = vTv by the complex upper half-plane coordinate
S =51 +159

1 (18 . R A
i L M = iy iy = — _ 5.4
w7 o %) wnd =5 (s, i) oy

A generic charge vector Qz € Ay ¥ p+q >~ 26D @ (p+q—4)9 @ 21 decomposes into
Q = (m",Qr,n;), where (m’,n;) € llo5 and Q1 € Ap_3 42 such that Q? = —2m'n; +Q?. The
projectors defined by Qf = p%QI and Qg = p}I%QI decompose according to

-1

pI szviu m’—|—azé+(1/)e”+1a’a9)n —E’U in'
L,p R\/i 5 j \/§ M
PLaQ1 =PLa(Qr + nia})
=1 (5.5)

1

T o _ Y

L 1. R .
<m’+a’-Q+(z/)e”+2a’~a])nj>—l—\/Ev,jni

PhaQ1 =Ph o(Qr + nia})

where ﬁi,a,ﬁfi& (¢ = 3...p, & = 3...q) are orthogonal projectors in G,_2, 2 satisfying

Q*=Q} — Q%
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In order to study the region R > 1 it is useful to perform a Poisson resummation on the
momenta m’ along Il 2. Note that this analysis is in principle valid for a region containing
R > /2. In the case of the scalar integral (4.1b), one obtains

R? Z e_%gj‘(l S)A( )’ —2mi (1 +iR?) det AI‘ [e%imi(é-ai—&-“i;jm)} . (5.6)

FAIMI = Ap-2,q-2

AeZ2%X2

where A = (:f; ;’j;) In the case of (4.1a), we must distinguish whether the indices abcd lie

along the direction 1,2 or along the directions «. Denoting by h the number of indices of the
first kind, we get

3 )
2_27TdeetA>liI[ (b AQ)]

A

——= ~ 2 . i ai»aj .
X I‘AP,QA(],Q—‘FTMLUJL [6 877 |:QL,O¢1 e QL’a47hi| e ﬂ—lmZ(Q'a 7Tn3):| (57)

A h
Iy, [e‘sw (H(QLM)QL,M - QL,aM)

=1

con (-2 0.9

Ty S

HE

at+b
ct+d

compensated by a linear action A — A( %, "), under which the last line of (5.7) transforms
with weight 12 — h. We can therefore decompose the sum over A into various orbits under
SL(2,7) and apply the unfolding trick to each orbit:

In this representation, modular invariance is manifest, since a transformation 7 — can be

The trivial orbit A = 0 produces, up to a factor of R?, the integrals (4.1) or for the lattice
Ap_2 4—2, provided none of the indices abcd lie along the direction 1 or 2,

FOO0 = g2 FE2972)  Rpo0 - 2 pp2ed) (5.8)

while it vanishes otherwise (i.e. when h > 0).

Rank-one orbit: Matrices with detA = 0 but A # 0 can be decomposed into A =
(8 ]Jg) (@ Z), where (j,p) € Z* ~ (0,0) and (& Z) € I'o\SL(2,Z). As before the funda-
mental domain SL(2,Z)\H can be unfolded to the strip S = T'oo\H = R, x (R/Z),, using

(4.9), leading to

el R Z H <1\[> =0 %) (?))L

Gp) =1

© B2, 2
— =2 |j+pS|
dm e "2 52|J ~ (i0-al4Lp0-a2
2mi (jQ-a” +pQ-a”)
X /IR _2+h ]R/%Tl A FAP*Z#I*Q [Pal'"o‘4—he ’

+7'2

dr i (jQ-al+pQ-a? 1
,q),1 2 2 P \]+p ‘ 27 (jQ-a' +pQ-a 2
Fpot = R E / 2+h /R dre % S NP [e & P )} D (A) ,

(4:p)
(5.9)
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for the tensor integral with 0 < h < 4 indices along the large torus and its trace respectively.
Inserting the Fourier~expansion (4.14), the integral over 7 picks up the Fourier coefficient
¢(m) with m = % 2. The remaining integral over 7o can be computed after expanding

Pal,.,a%h ZE 0 Po(f) s nTy ¢ where PC(”) i is a polynomial in Q of degree 4—h—2¢ > 0,
or vanishing otherwise. The contribution of Q = 0 produces power-like terms in R?,

FO010 = o630 ex(5oa 9) 508,

aByé S Q2
1,0 c(0) 15—
D 64 K {84‘%5%—6&5%4 £ (84, 9), (5.10)

555
FBat0 = R0 49 [DZ - M(S(Mz/ po) T (Tq> ( ) 5(#1/%0)} 5“%75)

uvpo 272 nvpo

for the tensor integral, and

0 S
Fp Ot = RS (é;(m) (p—a+6)(p—aq+8)E(FS), (5.11)

for its trace. Here, £*(s,S) is the completed weight 0 non-holomorphic Eisenstein series,

/

£5(5,8) = g T(s) Y B s e(s.8) | (5.12)

ez [nS + m|

D, is the traceless differential operator on SSLéQ(’;l}) defined in appendix D, and D? =

pvpo
DuwDpoy — ié(wém)DMDm is the traceless operator of degree 2 in the symmetric represen-
tation. The equalities used to write (5.10) are detailed in (D.8), and similar expressions using
non-holomorphic series of non-zero weight are given in (D.7). Recall that £*(s,.S) is invariant
under s — 1 — s, and has simple poles at s = 0 and s = 1. As in the previous section, the
pole at ¢ = 6 is subtracted by the regularization prescription mentioned below (3.32), while
the pole at ¢ = 8 cancels against the pole from the trivial orbit contribution (5.8).
Contributions of non-zero vectors @ € Ap_24—2, on the other hand, lead to exponentially
suppressed contributions, e.g. for the trace of the tensor integral

—4—-2¢

ES i a a 2=t Q 2/VQ‘S o
Rl Y S el ”Z o () e (-9) (U%ZSQP)

QEAp_qu_g (4,p)

2, . ~
X Ko, <2w %S]z|j+p5||QR|> (5.13)

Defining (Q, P) = (j,p)@, we see that the Fourier expansion with respect to (a1, az2) has
support on collinear vectors (@, P) with Q,P € A,_»,o. Extracting the greatest common
divisor of (4,p), we find that the Fourier coefficients with charge Q" = (Q,P) and mass
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M(Q,P)=4/2 Q”M defined in (2.13) are given by

PO (i s K 2rRM(Q, P
FROM — 4R E(Qli)i Passy (@ S)[|Q+SP|2} a4, (2rRM(Q, P))
« e
7 =R S MQ.P)F
pO i s Ko 2rRM(Q, P
P ey 3o P @S lg sopy e D BTG T
paBy ivV2R2¢ S5 (Q,P)%_g

P;(L?,)UP(Q”’,S) |:|Q + SPz]q;SKqQIQ (27TRM(Q,P))
4

F(p q)vva/ — 4R% C i 514
uvpo (Q ) S2 M(Q, P)% ( )
for the tensor integral, and
i 2-¢ Kg-a_,(2rRM(Q, P))
FpOLQ — 4 RS 50N Z L3 [ ged(Q" - QY )] 2 . (5.15)
R? 2 M@Q.P)7

for its trace. The covariantized versions of Pyp.q(Q) with respect to the torus’ metric,
73(%)7 P ,P,(f,,)gp are given in appendix C. Finally the degeneracy is given by

o

q—38

_ d? 2 «d(02.0.P.P2
@n- ¥ (aggre) (). oo

(Q.P)/deAy?

p—2,9—2

with support (Q, P) € Ap_24-2® Ap_24-2.

Rank-two orbit Finally, rank-two matrices can be uniquely decomposed as A = (g g; ) (Z 2)

where k > j > 0 and p # 0 and (‘f 2) € SL(2,Z). The matrices A can therefore be restricted

to A = ((’; -[7;), provided the integral is extended to the double cover of the upper half-plane
‘H. This leads to

h P~ 2 lkr+j+pS|?
F(p q),1 — 2R2 < R > —27nkp(w+1R2) dT2 / dr e ™ 52
Pl O oot E .
1--MhQ1..-Og—p Vo 1\/5 R+ 7—2 A
p#0
" 1 S1\/(k ] Q-1 -1
H T+ i (j(O=21kay)- —Lray)-
x [ }5‘2 (0 Sé) ( Tp J)]m FAp—Z,q—z-i-mai |:P041--.Oé4—h. e (9@ 3kar)-a1+p(Q- gkar)-a2)

(5.17)
for the tensor integral, and to
thP:Q)vl — 2R2 Z e—27rikp(1ll+iR2) d7—2 / dr e ™2 52|kT+j+pS\

k>5>0 RE TS
p#0

i —5Kka a —5Kkal)-a 1
X FA[] 2,q— 2+nlal|: 2 (](Q 3k 1) 1+p(Q k 1) 2>:| D2 <A> (518)
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for its trace.

Inserting the Fourier expansion (4.14), the integral over 71 is Gaussian while the integral
over 7y is of Bessel type. The sum over 0 < j < k enforces a Kronecker delta function modulo
k,

k-1 o . G _
3 exp [%J(Q;er)] kit Cam=w, ez (5.19)
=0 k 0 otherwise
Relabelling the charges as p@ — P, kp - —M; and Ip — —M>, and defining D = —%2 +
M7 M> one obtains, for the trace of the tensor integral,
Fpa2 = N~ RPO2M(P— Mgy, My — ay - P+ §(ay - a1) M)
M1¢07M2
PeAp_2,4-2

2m(Paz+ M (Y= Lar-a)+(Ma—a1-P+ 5 (a1:01) M) 1) (5.20)

where F{P:9-2M ig the non-Abelian Fourier coefficient,
2 _ =3 _y
_ D2t /9 3
FPO2M(p 0, = 4(3252)‘171 ¢(My, My, P) Z az <7T> Kq s ,(Sa), (5.21)
=0

Se1 is the classical action

Scl(Mla Mo, P) = 27T\/(R2M1 + SQM2)2 + QRQSQPI% , (5.22)
and ¢(Mj, My, P) the summation measure
&My, My, P) = > c(B)dr". (5.23)
d|(My,M2)
P/dEAp_qu_Q

It is worth noting that (5.20) is the general expansion of a function of (51, a1, ag, ¢) invariant
under discrete shifts T}, ¢, ¢, » acting as

(S1,a1,a2,9) — (S1+b,a1 + €1, a2 + €2 + bay, ¥ + & + 3[ea(ar + €1) — e1(az + bay)]) (5.24)

with b,k € Z and €1,eo € ZP~2972, Invariance under T}.0,e5, is manifest, while invariance
under Tp ¢, 0,0 is realized by shifting P +— P + Myey, My — My + €1 P + %Mle%, which leaves
D and ]\ng =My —a;-P+ %(al -a1)M; invariant. Tt is worth noting that in the special case
p = 2, P} vanishes identically so (5.22) simplifies to S¢ = 27| R2M; + S2 M.
Similarly, for the tensor integral, we get
2 p

Fo(é%gg,ZMl (P, Ms) = 4(R282)q% (My, My, P) Z 014%524/;2 (

2T
Scl

=3y
> Kq%sfz(sd)

=5y
(p,9),2,M1 _ 2 =2 & 2
F2a,8’y (P, Mz) =4 (R SQ) 2 Z\[1,JWQ,P> Z 1\/» R2S 6—}-% SC1> K%,g(scl)

FEa2M (P M) = 4(R2S) "2 &(My, My, P)—s—

\N
L
e
7N
[\
3

(5.25)
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where we restricted to the cases u,v,... = 2 for simplicity.

5.2 Extension to Zy CHL orbifolds

The degeneration limit (5.1) of the modular integrals (4.1) for Zxy CHL models with N =
2,3,5,7 can be treated similarly by applying the orbit method. In (4.1), Ay is the cusp form
of weight k = N%l defined in (2.4), and I'y, ,[Papeq] is the partition function with insertion of
P,peq for a lattice

Apg=Np 24 2® 11 & I1][N], (5.26)

where Ap_5 .2 is a lattice of level N. The lattice II; 1 & II1 1[N] is obtained from the usual
unimodular lattice II; 5 by restricting the windings and momenta to (n, na, mi,ms) € Z &
NZ & Z & Z, hence breaking the automorphism group O(2,2,7Z) to oser X [[o(INV) x To(N)].
After Poisson resummation on mg, Eq. (5.6) and (5.7) continue to hold, except for the fact
that ng is restricted to run over NZ. The sum over A = (”1 "“) can then be decomposed

Ny Mo
into orbits of To(N): 10

Trivial orbit The contribution of A = 0 reduces, up to a factor of R?, to the integrals (4.1)
for the lattice A,_2 q—o2,

Rank-one orbits Matrices A of rank-one fall into two different classes of orbits under
Io(N). For simplicity, let us first consider the case where (na,ma) # (0,0), and denote
(ma, ng) = p(nf,m}), with p = ged(ng, ma):

e Matrices with n, = 0mod N, as they are required to be rank-one, can be decomposed
as (1 1) = () 9)( B) with (j.p) € Z2 < {(0,0)}, p £ O and (¢ }) € Poc\To(N). For
this class of orbit, one can thus unfold directly the domain I'o(N)\H into the unit strip
S =Tx\H =R} x (R/Z)-,.

e Matrices with nf, # 0mod N can be decomposed as (Z; ﬁ;) = (g) 8) (¢ Z) with (4,p) €
Z & NZ~{(0,0)}, p # 0 and (% 3) € SToon S~N\Io(N), where Too vy = {(§ 1).n €
NZ}. One can then unfold the fundamental domain I'g(N)\H into ST y S™H\H, and
change variable 7 — —1/7 as in the weak coupling case (4.24) to recover the integration
domain Sy =L v\H = RE x (R/NZ),,, the width-N strip.

The remaining contributions A with (ng,m2) = (0,0) belong to the two classes of orbits
above. Let (ni,m1) = j(n},m}), where j = ged(ni,m1) and j € Z, then contributions with
n} = 0mod N correspond to the cases (j,p) = (j,0) in the first class above; contributions

with n} # 0mod N correspond to (j,p) = (j,0) in the second class above.

After unfolding and changing variable, the result for the simplest component F(i%’gg’l reads

1Note that the subsequent analysis is valid in the region of the moduli space where NR? > 25,
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(similarly to (4.24))

(»,9):1 2/ dT2 /
FLI =R dTl
Ao R+ T3 JR/Z

/

2 er X ~
Z e T2 S2 |J+p | FAp—&q—? [eQm(]Q.alﬂoQ).aQ Paﬁw}

Jp)eZ2
d7—2 v ! | + S|2 i = ~
+R2/ / dr ——— e % 52 AL P [e i (jQ-a1+pQ)-az2 Paﬂ'yé] 7
R+ T3 JrNz Dk T/N)N i b2.q-2
P )EZ
p(=30pmodN

(5.28)

where FA* g is the partition function of the dual lattice A* and where

p—2,q—2
Nk/QH‘A 2,q—2/Ap—2,Q—2‘_1/2 (which reduces to v = N17%s# for ¢ < 8 in the cases

of 1nterest). The contributions from Q = 0 thus give

’ 7170 3( ()) * 9=8 *

ity = RO TRz 5( ig () +oNz M(NS)) S(ap0rs),
2 1

F;S]Z'%lo_Rq 6 Ck( ) [8 q(gaﬁ(sw—(sagi?w} 5( L L(S) +uN T EL (NS))

20 (O)
10 _ 6<Ck
F‘S%)’ =R 272

X | Dhvpo = 520 Dpo) + (?q) (%) %5(,”6,;0)} % (5%[1(5) + vN%gg%q(NS)) ,
(5.29)

for the tensor integral, and

_ 2¢(0) 1
FPOR = R0 — g+ 6)(p — g+ 2000 1 (£2,(5) + oN'TEL(NS)),  (530)

for its trace. Recall ¢x(0) = N7+1 = k is the zero mode of 1/A, = > cx(m)¢™. As in
(5.11) and (5.10), the pole at ¢ = 6 is minimally subtracted by the regularization prescription
mentioned below (3.32), while the pole at ¢ = 8 cancels against the pole from the zero orbit
contribution (5.27).

The contributions with @ # 0 are exponentially suppressed at large R, and have similar
Fourier coefficients as in the full rank case (5.14), except for a different summation measure.
Let us label the electromagnetic charges by (Q,P) = (j, p)@ = (j’,p’)@ where (j',p') are
coprime integers. It will be useful to classify all possible rank-one charges (@, P) in orbits of

the S-duality group I'g(N) acting as (g) — (4 Z) (g), where (% Z) € Iy(N).

e Charges (@, P) such that p’ = 0mod N are in the same orbit as purely electric charges
(Q,0). Their Fourier coefficient gets contributions from both terms in (5.28) with d =

ged(j, p) and Q =Qe¢ Ap_24—2 in the first case and Q =Qe¢ A} 5,5 in the second,
such that they are weighted by the measure

~ q—8 ~ q—8
- Q2 d2 N NQ2 d2 o
Ck(Q,P) = Z Ck<_ﬁ) Ai2 + v Z Ck(— 242 ) W 5 (531)
d>1 Q d>1 Q
Q/dENy 24 2 Q/deAp 2,q—2
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where the first contribution has support @ € Ap—24-2 C A} 5 5, while the second has
support on Q € Aj_, 5. Notice that the latter is matched against 1/Ag(7/N), which
explains the N factor in the argument of c.

° Charges (Q, P) such that p’ 7& Omod N are in the same orbit as purely magnetic charges
(0, P), where we relabelled Q as P for convenience. Their Fourier coefficient gets con-

tributions from both terms in (5.28) with d = ged(j, p) and g =Q¢c Ay oy o in the

first case and Nd = ged(j,p) (because j = 0 mod N) and Nid =Q € A} 5, o in the
second, such that they are weighted by the measure

~ q ~ q=8
_ P2y [ d? P2\ (Nd*\ 7z
d>1
PldeAp 2,42 P/deNAp 2.2

where the first contribution has support P € Aj,_,_2, while the second has P €
NAJ 542 C Ap—24-2. In the latter contribution, one N factor in the argument of
¢ comes from the matching condition, and two IV factors in its denominator come from
all divisors d being originally multiples of N.

Rank-two orbit For the rank-two matrices A, the two classes of orbits are similarly given
by studying (ng, m2) = p(nh, m}), where p = ged(nga, ma).
e Contributions for which (nf, m}) = (0,1) mod N can be decomposed as A = (]6 i)) (i 2),
0<j<k,peZ~{0}and (§ Z) € I'g(INV), where its representative has trivial stabilizer.
For this first class of orbits, the fundamental domain can be unfolded to the full upper
half-plane H = Rf x R,.
e Contributions for which (n5, m5) = (1,0) mod N can have A = (:f) IS) (Z 3), 0<j< NEk,
p € NZ ~ {0} and (§ d) € T'o(N), where the representative has trivial stabilizer. For
this second class of orbits, the fundamental domain can be unfolded to H = R} x R, as
well and the integrand can be brought back to the standard lattice sum representation
using a transformation 7 — —1/7, in the spirit of (5.28).

Both classes of contributions lead to the same type of non-Abelian Fourier coefficient
as in the unorbifolded case (5.21) and (5.25), except for a different summation measure
¢(My, Ms, P). The first class have support (Mi, Ms,P) € Z & Z & Ap_3 4—2, whereas the
second class have support (M, My, P) € NZ & NZ & NA} In fine the summation
measure reads

p—2,q—2°

D _ D _
(M, My, P) = Y ck(ﬁ) AU ck<m) (Nd)I~7, (5.33)
d|(My,M>) Nd|(My,M>)
P/dEApfzyq,Q P/dENAp 2,q—2
where we recall that D = —fP2 + My Ms>. For the second class of orbits, one factor of NV in

the argument of c; comes from the matching condition, and two factors of 1/N come from
the fact that all divisors were originally multiples of N.
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5.3 Large radius limit and BPS dyons

Specializing to (p,q) = (2k,8) = (r — 4,8), and choosing A,_24-2 = A, the degeneration
studied in this section corresponds to the limit of the exact (V®)* amplitude in heterotic string
on T7 in the limit where a circle inside 77, orthogonal to the Zy action, decompactifies. The
coordinate R is identified as the radius of the large circle in units of the four-dimensional
Planck length [p = g4lgy. The contributions from the various orbits discussed in §5.1 and §5.2
are then interpreted as follows:

5.3.1 Effective action in D =4

In the large R limit, Fé?;fy’? should reproduce the exact four-dimensional F* coupling, up

to exponentially suppressed corrections. As already mentioned below (5.10) and (5.29), the
contribution of the vector = 0 to the rank-one orbit has a pole at ¢ = 8. Using the
regularisation (3.32), that formally sets ¢ = 8 + 2¢, one obtains

32k) .
FOE0e) = R (iﬁ)g (E2.(S) + NE* (NS)) Sasdys) (5.34)
I B S Ry
= A 2(277)2(6 log (571 Ak(S)] Hk(log(zm) 7)) dastin +O(E)

However, this pole cancels against the pole (4.38) in the trivial zero-orbit contribution (5.8),
(5.27), leaving the finite result

F(2k,8) — R2 (_

~ (Qf— ,
o (log(Szk\Ak(S)\4)—2k: log R) S(apbos) + LS 6>(¢>)> +...  (5.35)

2(2m)?

where F éé]fwfﬁ) is the renormalized 1-loop coupling, up to an irrelevant additive constant,
and the dots denote exponentially suppressed terms.

Thus, the conjectural formula (2.27) for the exact (V®)* coupling in D = 4 predicts that
the exact I coupling in four dimensions should be given by

3 -
53 108(SS 1A (S) P asdea) + Fapeq (@) (5.36)

where for convenience we renamed the indices «, 3, ... into a, b, ... running from 1 to 2k — 2.
Indeed, it is known that half-maximal supersymmetry in D = 4 allows for two types of
supersymmetry invariants with four derivatives: the first one is determined in terms of a
holomorphic function of S, the second depends on the Gaj_2 ¢ moduli only, as described in
(3.21), and both contribute to F* couplings [56]. The first term in (5.36) corresponds the first
invariant, which also includes the R? coupling (2.3), while the second was considered in [55],
it is by construction exact at 1-loop and includes a four-derivative scalar couplings studied in
[57].

The relative coefficient of the two invariants in (5.36) is in fact fixed by unitarity. In-
deed, the logarithmic dependence of the one-loop amplitude with respect to the Mandelstam
variables (s; = s, so = t, s3 = u) is determined by the 1-loop divergence of the four-photon
supergravity amplitude [41]. Because the genus-one string theory amplitude F éifd_2’6)(<1>7 Si)
is finite in the ultra-violet, the corresponding supergravity amplitude pole in dimensional
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regularisation D = 4 — 2¢ cancels by construction the pole of the coupling F éifd_Q’@((IL €) reg-
ularised according to (3.32) (corresponding formally to ¢ = 6 + 2¢). Thus, in the low energy
limit —¢2s; < 1 1

3
2%k—2,6 2k—2,6 3(2k) 11
Fa(bccl )(‘1’7 8i) ~ Fébcd )(cp’ €) + (iw)g (E 3 ZIOg(_ESZSi))é(“b(SCd) (5.37)
i=1
(2k—2,6) 3 % o
7 4 k 2
~ Fa (@) — ) log(Sy )5(ab5cd) - W ;log(—fpsz‘)fs(abfscd) )

up to a fixed constant, where we used the relation %6 }g = 682 between Planck length and
string length. Therefore, the relative coefficient of the two invariants in (5.36) is indeed such
that the logarithm of S in the coupling disappears in string frame, consistently with the fact
that string amplitudes depend analytically on the string coupling constant when formulated
in string frame [58].

The overal normalisation of the 4-photon amplitude can be determined from the 1-loop
divergence as [41, 59] (with tsf* = fuu £ fopfP* — i(fm,f‘“’)Q)

kY[ 3 _
Au(S. @, 1) = <87r2 10g(S5"| Ak (S) ) (apbea) — Frney % (@, si)>t8F“FbFCFd . (5.38)
More precisely, the 1PI effective action includes the local terms
1 S. - S R
— 4 2 a v a 1 vpo a a
Sy = /d x@(MR - 327(FWF5 + F, FyY) + mgu P (FyFpoa — FFpoa)
k*/ 3 ~(2k—2,6 S S\ 2
+ 7 (53 0B (S S IAK)D)wdeay — iy - (@) ) 470707 (2 ) B, Bl FES .
1 vV po 1%
—W1og(52’“|Ak(S)|2)(RWWR“ P — AR, RM™ + R?) (5.39)
_ R‘“’”U(Dlo (SEIAS)P) 2R F~ 4 Dlog(SF|Ak(S)R) 22 Fit F )
(87)2 Loz 15k & MV T poa Loz 15k g MV pod
4 A
K 2 k 2y (522 a— — ob a— o 1b—
~ D’ loa(SH18k(8)| V(2) (2B Froa L P2 + Fi FV Y Fy )
I{4 2 k 2 SQ 2 a+ + v mpob a+ v o b+
~ D JoB(SH1Ak(S)| )(87> (QFZV Ff P 4 R F5‘+F£’+Fpo) . ) :

which includes in particular the exact R? coupling (2.3). The components of (5.10), (5.29)
with p, v indices correspond to scalar field parametrizing the circle radius R, the scalar field
1 dual to the Kaluza—Klein vector, and the axiodilaton scalar field S in four dimensions. The
components involving the derivative of the function of S depend on the complex (anti)selfdual
field F ﬁl,i = %Fg,/ £ ﬁswng gg, with the covariant derivative D defined as in Appendix D
with D = Dy and D? = Dy D,.

Let us now discuss the decompactification limit of the 1PI effective action to ten dimen-
sions, focussing for simplicity on the maximal rank case where the lattice decomposes as

Aoz 6 = D16 @ s 6, (5.40)

"Recall that 2k — 2 is the number of vector multiplets in D = 4.
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2r(27R)®
BUICUEL M

where Djg is the weight lattice of Spin(32)/Zs. Identifying Sy = , with g5 the
heterotic string coupling constant in 10 dimensions, one obtains for a, b, ¢, d along Dg,

3 - (2k— 3
~ 52 B 10KS) )by + Fipla ™ (@) = (2R (56(anden +

1
3 5abcd) ... (5.41)

5
E 2w

up to a threshold contribution and exponentially suppressed terms. Here 45 = 1 if all
indices are identical, and zero otherwise, and we used

4’7 I'pis [Pabcd] / d?r [ ER—2F3E Ee+E2E 2 :|
T A T 2 —2416/.1,0 + 486, bed
/SL(2,Z)\H T2 A SLeZ\H T2 ( I8A ) (ab0ed) abe

= 3270ubed - (5.42)

This equation follows from known results about the elliptic genus of the heterotic string [60].
Using an orthogonal basis for a Cartan subalgebra of SO(32), one easily computes that this
coupling gives the following trace combination in the vector representation of SO(32)

(2rR)S /3
t8 (72
4 s

3 1 R 1
(gﬁa(abacd) + ﬁéabcd)tgF Fhpepd = (TrF?)? + ﬁTrF‘l) L (5.43)
S

Using k2 = 40’ and reabsorbing the (2 R)%a/ 3 into the 6-torus volume one obtains in Einstein
frame

1 1
10 -5 v vpo v 2
S = /d x\ﬁ—g(WRJrga,ge $ (TR P+ Rypo R — AR, R + R?)
1 3 1 1
- —<¢ 2 2 - 50 4
2a/t8(36 NP IF? + 3 TrF ) +) : (5.44)

which reproduces the tree level R? and (TrF?)? coupling computed in [53] upon identifying
¢ = /2xD — 6log2, and the 1-loop TrF* coupling computed in [61, 62].

5.3.2 BPS dyons

The contributions of non-zero vectors to the rank-one orbit yield exponentially suppressed
corrections of order e~ 2"RM(@:P) (5.14), where M is the mass of a 1/2-BPS state of electro-
magnetic charge (@, P) in four dimensions. The phase e2mi(a'Q+a*P) multiplying (5.14) is the
expected minimal coupling of a dyonic state with charge (@, P) to the holonomies of the elec-
tric and magnetic gauge fields along the circle. The corresponding instanton is a saddle point
of the three-dimensional Euclidean supergravity theory obtained by formal reduction along
a time-like Killing vector, in the duality frame where the axionic scalars a1, as are dualized
into vector fields. Following the same steps as [63], one finds that the classical action is then
Sl =27 RM(Q, P).

In the maximal rank case, the summation measure (5.16) is given by

2 p2 .
QP = Y c(—ing(QQ’;; ’QP)) , (5.45)
d>1
(Q,P)/dENem

where ¢(m) are the Fourier coefficients of 1/A. For (Q, P) primitive, this agrees with the
helicity supertrace (2.18) of 1/2-BPS states with charges (@, P). In the case of CHL models,
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the summation measure is instead given by (5.31) or (5.32) with ¢ = 8, 0 = 1, depending
whether the dyon is related by I'o(N), acting as (g) — (Z 2) (g), to a purely electric or a
purely magnetic state. It is interesting to note that these two formulas can be combined as
follows. We first notice using the decomposition (@, P) = (j’,p’)@ and (Q,P) = (j’,p’)ﬁ’

when (Q, P) belong the electric and magnetic orbit respectively, with (j/,p’) = 1, one obtains

%eAm = (Q’ )eA ® NA,, ,

€ NA. (Q;l ) € NA. ® NA. (5.46)

p
d

such that in both cases (Q,P)/d € A ® NA.. Moreover, if (Q, P)/d € Ay & NA,, then
Q/d € Ay, or P/d € NA., depending of the orbit to which (@, P) belongs to, therefore one
has the equivalence

@EAm@NAe &

; €Ay or = € NA,, (5.47)

for (Q, P) conjugate to either an electric charge Qora magnetic charge P. Similarly,

QeAe = (Q’P)eAe@NAe,
d d
r eN, = (@.P) €Ay @A, , (5.48)
d d
such that ) .
P P
(Q;l ) cEADA, & %EAE or EGAm, (5.49)

for (Q P) conjugate to either an purely electric charge (Q 0) or a purely magnetic charge
(0, P). Moreover, we have that ged(NQ?2, P?,Q - P) NQ@? for a dyon in the Iy(N) orbit
of a purely electric charge, because then ged(Nj2, p2, j'p') = N since p’ = 0 mod N, and
ged(NQ?, P2, Q- P) = P? for a dyon in the Ty(N) orbit of a purely magnetic charge, because
then ged(Nj2,p?,7'p') = 1 since p’ # 0 mod N. Putting these observations together we
conclude that the summation measure for a general 1/2 BPS dyon is given by

(Q,P) = Z Ck(_w> + Z ck(_w> . (5.50)
d>1 d>1
(Q,P)/d€Nc®Am (Q,P)/d €EAm@®NA,

It is worth noting that gcd(NQ?, P?,Q - P) is invariant under I'q(N) and Fricke S-duality, so
that each term in (5.50) is separately invariant under Fricke duality. Further noticing that
Ay @ NAe ~ A [N] @ Ay [N], (5.50) can be rewritten in a more suggestive way as

(@, P) Z > Ck( W) (5.51)

d>1
(Q P)/d€Nemla]

Most importantly, (5.51) agrees with the helicity supertrace Q4(Q, P) of a half-BPS dyon with
primitive charge (@, P) which was determined in (2.16) and (2.17).
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5.3.3 Taub-NUT instantons

Finally, the rank-two orbit (5.25) yields contributions schematically of the form

Z E(M]_, MQ, P) e*?ﬂ'\/(R2M1+SQM2)2+2R252P%+2ﬂi(P-a2+M1(1/}7%(11-0,2)4%\]231) (552>

M, #0,M2,P

where the summation measure (5.33) is given by

D D
(M, My, P) = dck<ﬁ> + S Ndck<—Nd2) , (5.53)
d|(My, M) Nd|(M,Mz)
P/deAm P/dENA.

and we denoted My = My —ay - P + %(al ~ay)My, P=pP-— Miay, and D = —%PQ + M7 Ms.
These O(e_%RQ‘Mﬂ) contributions are characteristic of an Euclidean Taub-NUT solution of
the form TNy, x TS, where the Taub-NUT space asymptotes to R? x S1(R) at spatial infinity
[64].

The detailed semi-classical interpretation of these effects is complicated by the fact that in
a Taub-NUT background, similarly to the case of NS5-branes, large gauge transformations of
the electric and magnetic holonomies a; and as do not commute, thus cannot be diagonalized
simultaneously. The representation (5.20) corresponds to the case where translations in as
and 9 are diagonalized. Accordingly, the argument of the exponential in (5.52) should be
interpreted as the classical action in the duality frame in which the fields ¢, S1, as associated to
the conserved charges My, M5 and P are dualized into vector fields w, B, A in three dimensions.
In order to reach a positive definite action after dualization, one should first analytically

. . . O(2k,8) . O(2k,8) .
continue the non-linear sigma model on O X0 into OP—1.0) X007 1) by taking 1, S, a2 to
be purely imaginary. Equivalently, this is the non-linear sigma model obtained by reduction
of a Euclidean four-dimensional theory. Denoting by U, ¢, { the scalar fields whose asymptotic
values are given by log R, —% log S2 and a1, the Lagrange density in three dimensions is

1 1
£ =AU + 2edwl® +[dgf* + Je™IdB = (¢,dA) + 3(C, O dw]?
(5.54)
1 1 P
+ ZeQU—2¢g(dA — (dw,dA — ¢dw) + 1e—2U—2¢>g(dg, d¢) + P+ P,

where we denote |f|> = f Axf, g(F, F) = F@xFr,+ Fx Frs. For simplicity we shall consider
only instantons for which the electromagnetic fields vanish, dA = { = 0. One can then write
the Lagrangian as a sum of squares

1 2 1 1 2 1 ;
£ = ;e |xde ddw| £ d(e dw)+1e—4¢’*dez¢id3‘ +5d(e 2dB)+ Pgx P . (5.55)

The corresponding 1/2-BPS solutions describe Ms Euclidean NS5-branes on a self-dual Taub-
NUT space of charge Mj, with MMy > 0.'2 For simplicity we consider the NS5-branes at
the tip of the Taub-NUT space, with

1 M 1 M.
v L M oy 1 M|

= o =3, s w=—-Mycosfdp, B=-—Msycosfdy, (5.56)

12Solutions with M; Mo < 0 exist but do not preserve eight supercharges.
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and the fields ® on the Grassmannian G,_¢¢ are uniform. The action then reduces to the
boundary term S = 27 (R2| M|+ So|Ma|) = 27| R?M; + Sa Ms|. Note that the measure factor
(5.53) vanishes for P = 0 unless M1 My > —1. We shall refrain from constructing 1/2-BPS
instantons with generic magnetic charge P such that D > 0, although we expect that their
action will reproduce Sg in (5.22).

6 Discussion

In this work, we have proposed a formula (2.24) for the exact (V®)* coupling in a class
of three-dimensional string vacua obtained as freely acting orbifolds of the heterotic string
on T7 under a Zy action with N prime. Our formula is manifestly invariant under the U-
duality group G3(Z), which unifies the S and T-duality in D = 4 along with Fricke duality.
We derived the supersymmetric Ward identities that the exact coupling function Fppeq(®)
must satisfy, and showed that the formula (2.24) satisfies this constraint. Furthermore, we
analyzed its behavior in the weak coupling regime g3 — 0 and large radius regime R — oo,
and found that it correctly reproduces the known tree-level and one-loop contributions in
D = 3, and the correct non-perturbative F* couplings in D = 4. In addition, we extracted
the exponential corrections to these power-like terms in both regimes, corresponding to non-
zero Fourier coefficients with respect to parabolic subgroups R x Gag_1 7 X R2*+6 and Rt x
[SL(2)/SO(2) x Gaj_a,6] x R?*(#+4) x R, and found agreement with the expected form of the
contributions of NS5-brane, Kaluza—Klein monopoles and H-monopole instantons as g3 — 0,
and the contributions of half-BPS dyons and Taub-NUT instantons as R — oo. In the case
of half-BPS dyons, we found a precise match between the summation measure ¢ (Q, P) and
the helicity supertrace Q4(Q, P), at least when the charge vector (@, P) is primitive. This
vindicates the general expectation that BPS saturated couplings in dimension D encode BPS
indices in dimension D + 1. It would be interesting to determine the helicity supertrace
Q4(Q, P) when (Q, P) is not primitive (which requires a careful treatment of threshold bound
states), and compare with the summation measure ¢ (Q, P).

It is natural to ask whether our formula (2.27) is the unique solution to the Ward identities
(2.23) which is invariant under G3(Z), and reproduces the correct power-like terms in the
weak coupling and large radius expansions g3 — 0 and R — oo. Typically, theorems in
the mathematical literature guarantee that smooth automorphic forms on K\G/G(Z) which
vanish at all cusps and have sufficiently sparse Fourier coefficients (in mathematical terms, are
attached to a sufficiently small nilpotent orbit) necessarily vanish; so that the only smooth
automorphic functions satisfying to (3.27) are necessary Eisenstein series. However, these
theorems are typically concerned with Chevalley subgroups of reductive groups in the split or
quasi-split real form, which is not the case here (G3(Z) is a proper subgroup of the Chevalley
group of O(2k,8) for N > 1), and smoothness away from the cusps is essential.

As far as the support of Fourier coefficients is concerned, the Ward identities (3.27),
imply that the trace of the modular integral (3.29) is attached to the vectorial character of
O(p, q), corresponding to the next-to-minimal orbit. However, the constraints imposed by
the differential equations (3.17), (3.20) are stronger than (3.27), e.g. we show in Appendix B
that the tensor F,p.q derived from the scalar Eisenstein series defined in Appendix E.2 is not
a solution to (3.20). The general form of the Fourier coefficients is in fact very reminiscent of
the one for automorphic forms attached to the minimal orbit of O(p, q): it allows for only two
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power-like terms at the cusp, rather than three for the next-to-minimal orbit; they involve
ordinary Bessel function of one single variable, similarly to A; Whittaker vectors, rather
than more complicated functions of two variables or the typical 24; Whittaker vectors which
appear in the Fourier coefficients of generic vectorial Eisenstein series [65].

However, as we emphasized repeatedly, (3.28) has singularities in the bulk of G,, on
codimension ¢ loci where the projection PI‘:’2 of a vector P in A, ; with norm 2 (or the projection
Q% of a vector @ in Aj , with norm 2/N) vanishes. In order to argue for uniqueness, it is
crucial to ensure that the modular integral (2.24) correctly captures the behavior of the (V®)*
coupling at all singular loci. Since (2.24) reproduces correctly the one-loop contribution to
(V®)4, it is clear that it correctly captures the singular behavior on the loci associated to
vectors P, () in the ‘perturbative Narain lattice’ A,_57 C A,_43, at least in the weak coupling
limit. Presumably, this suffices to guarantee agreement on all singular loci, but we do not
know how to prove this rigorously.

Let us note finally that, independently of our proposed identification of the U-duality
group in three dimensions, the general solution to the Ward identities (3.17), (3.20) derived
in Appendix B implies that the exact coupling must be of the form (4.35), up to the deter-
mination of the measure factor ¢;(Q). The property that we recover the exact coupling in
four dimensions implies that the mesure factor is correct for null vectors by O(r — 5,7,7Z)
T-duality. Indeed, for Q% = 0, the summation measure in (4.36) reproduces the summation
measure for NS5-brane instantons in (2.5). The computation of the BPS index associated
to an arbitrary NS5-brane, Kaluza—Klein monopole, H-monopole instanton, would therefore
give a direct proof of our result.

Clearly, it would be interesting to generalize our construction to the complete class of
heterotic CHL models, whose duality properties and BPS spectrum in 4-dimensions are by now
well understood. It is natural to conjecture that the duality group in D = 3 will still be given
by the automorphism group of the non-perturbative Narain lattice (2.21), which naturally
incorporates the S and T-duality symmetries in D = 4. More pressingly however, the present
study was a warm-up towards the more challenging problem of understanding the 1/4-BPS
saturated coupling V2(V®)? in four dimensions, which we shall address in forthcoming work.
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A Perturbative spectrum and one-loop F* couplings in het-
erotic CHL orbifolds

In this section, we construct the one-loop vacuum amplitude in CHL models obtained as a
freely acting Zpy-orbifold of the standard heterotic string on 7% with N prime. From this,
we deduce the helicity supertrace for perturbative BPS states, and the one-loop contribution
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to the F* and (V<I))4 couplings. We start with the simplest model with N = 2, and then
generalize the construction to N = 3,5, 7.

A.1 Z, orbifold

The simplest CHL model is obtained by orbifolding the Eg x Eg heterotic string compactified
on T%, by an involution o which exchanges the two Fg gauge groups and performs a translation
by half a period along one circle in T¢ [14]. This perturbative BPS spectrum in this model was
further studied in [66, 26]. The symmetry o exists only on a codimension 8d space inside the
Narain moduli space G g416,4 and preserves only a U (1)29+8 subgroup of the original U (1)%4+16
gauge symmetry, corresponding to the usual 2d Kaluza—Klein and Kalb-Ramond gauge fields,
and the Cartan torus of the diagonal combination of the two Fg gauge groups. To implement
the quotient by o, it is simplest to work at the point in G4416,4 Where the lattice factorizes
as

Nir16a=FEs® Es @ gy - (A1)

The integrand of the one-loop vacuum amplitude of the original heterotic string is then

—4rq
1 0[5
A= Zggxps X Ty g X 5 Z (—1)aﬂ+a+ﬁﬁig (A.2)
R 721
where - o
7 _ ZQIEES q§Q1 ZQzGEs q§Q2 o [E4(T)]2 (A 3)
EgXEg - ,'78 778 — 7716 .

is the partition function of the 16 chiral bosons on the Eg x FEg root lattice, and the last
factor in (A.2) represents the contribution of the transverse bosonic and fermionic oscillators,
while the sum over «, 8 implements the GSO projection. As a consequence of space-time
supersymmetry, the integral (A.2) vanishes pointwise, but it will no longer be so in the
presence of vertex operators. Note that the right-moving part in (A.2) will not play any role
in our case, and will be later replaced by an insertion of the polynomial P,p.q (2.26).
Following standard rules, the one-loop partition function of the orbifold by o is obtained
by replacing A by a sum % Zh,ge{o,l} A[Z], where A[}gl} is obtained by twisting the bound-
ary conditions of the fields by 9 along the spatial direction of the string, and o" along the
Euclidean time direction, so that %(A[g] + A[(l]]) counts o-invariant states in the untwisted
sector, while %(A[é] + AH]) counts o-invariant states in the twisted sector. Modular invari-

ance permutes the three blocks [(1)], [(1)], H] according to

AL (28) = Al () (A.4)

where h, g are treated modulo 2. In particular, the block [?] is invariant under the Hecke
congruence subgroup I'g(2), and all other blocks can be obtained by acting on it with elements
of SL(2,7)/Ty(2) ={1,5,5T}.

In the case at hand, the involution o exchanges ()1 <+ @2 and the corresponding oscillators,
so o-invariant states must have ()1 = (2 and the same oscillator state on both factors, thus

2
_ ZQEEg qQ

n®(27) (4.5)

Zpexps[1](7)
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The two remaining orbifold blocks are then fixed by modular covariance,

E2 Eqi(21
ZEBXES[g] 1()(( ; ESXES[(I)] = n;l((QZT)) )
o B G (5.6)
ZEgXEs [0] - 778(%) 5 ZEgXEg[l] - €2i7r/3 (i) )

As for the action of ¢ on the torus T, it can be taken into account by replacing the partition

function I'y, , by 1 1
h d/2 5- 112 _112
p, [0] =7 Y (-1)77Qg2% g2 . (A7)
QEHd,d+%5

where § must be null modulo 2, and depends on the choice of circle S; inside T¢. The resulting
one-loop vacuum amplitude is then the modular integral of

—4
1 7[5
Ao = = Z ZE8><E8 Fﬂdd[h] X 5 Z (_1)o¢ﬁ+a+,37—4 8812’ (A8)
h,ge{0,1} a,8€{0,1} 21

where the one-half factor is explained above (A.4). Now, a key observation is that the nu-
merator in the blocks Zg, « g, [;ﬂ for (h,g) # (0,0) can be written as a partition functions for
the lattice A = E3[2] and for its dual A* = Eg[1/2],

>

Q€F3[2]

> ¢ (A.9)

QEEs[1/2]
1

1
ZEgx By [(1)} :778(27-)
1

Z Fsx By [(1)} = 8(%)

1 2 12
Zpsxns[1] = 2ir /3,8 (1L >, (=1 ¢z
e/ (55)
QEEs[1/2]
Moreover, the untwisted, unprojected partition function satisfies
Ey4(27) | Ea(3) Ey(3)
B2r) - nd(E) B8 (T (A.10)

=ZFEsxEs [?] + ZEgx By [(1)] + Zpsx By [H :

ZEgXEg [8] -

This relation can be checked using the explicit form of the blocks Zg,« Eg[(l)], but more
conceptually, it follows by decomposing Zg, x g [8], the character of the level 1 representation

of Eg &b Eg, into characters of level 2 representations of the diagonal Eg [67]. It follows from
(A.9), (A.10) that the one-loop amplitude (A.8) can be written as

—4
19 (63
orb—f Z Zaysal! ><5 > (—1)a5+a+6#§; (A.11)

1
hgef0.1) o fE{0.1) R
where the sum over (h, g) no longer includes (0,0). Here, we defined the eta products
As[V] =0 (r)n®(27) = 2749203 = As(7)
As[o] =n*(T)nd(3) = n'?9) = As(3), (A.12)
AS [%] :eQIW/S 778(T)778(TT—H> = _771219§ = A8(TT+1)7 )
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satisfying

As[V](=1/m) =27 As[o](7) . As[p](m+1) = As[1](7) (A.13)

and the partition functions Zd+8,d[g] are defined over Ad+8’d = FEg[2] ® I3 q and its dual

Ay s q = Es[l/2] @ Ly

7 op_ 7 14 (1)@ ¢39 539%
8l Q€A uts,4
/2

~ 1
Zosaltl =2z X+ X %% (A.14)
8 [0] Q€A2+8,d Q€A2+8,d+%5

d/2 1 1
~ T 2 202 _20n2
Zosall] =25 X+ X 0@k
Q6A2+8,d QEA;Hs,d"‘%‘S

These relations were derived at the special point where the lattice /~\d+87d is factorized, but it
is now clear that they hold at arbitrary points on the moduli space Gg;84 C Gay16,4 Where
the Zy symmetry exists.

Choosing ¢ = (Od;Od_l, 1), so that the involution o acts by a translation along the d-th
circle by a half period, this can be further written as

10 1 1 .
FAd+8,d ETQd/Q Z QQQ%QQQQ = §A8[(1]]Zd+8,d[(1)}

Q€Ag48,d
42 1oz 1o 115 1
@/ =Ty = S 3% = sl asall] (a)
QEA; 54
2 _ d/2 2 l 271 2 1175 1
FA;;%J[(—UQ ] :72/ Z (1)@ q2%rq2¢ = Ag[]Zass.a[;]
QEN] 54

where Ag,g g is related to /~\d+87d by rescaling a Iy 1 summand’3,
Aitga = Es[2] ® Hl,l[z] SHg1,4-1 - (A.16)

Here II; 1[2] is the usual sum over momentum mg, and winding ng, with mg running only over
even integers. The dual lattice is

Agga = Es[1/2] @ I [1/2] © Mg-1,4-1 (A.17)

where II7 1[1/2] is the usual sum over momentum mgy and winding ng4, with ng running over
Z/2. For d = 6, since A6 C Al ¢, we see that the electric charges carried by excitations
of the heterotic string lie in the lattice Ac = Aj,q, in agreement with the result stated
in Table 1. Moreover, it is apparent that the degeneracy of perturbative BPS states with
charge Q € AZ‘HS’d, Q@ ¢ Agisq in the twisted sector is given by the coefficient of q_Qz/2 in

1/Ag [(1)] = 1/Ag(7/2), or equivalently the coefficient of ¢ 9 in 1/Asg, while the degeneracy

13Note that this rescaling implies an extra volume factor upon Poisson resummation, namely Ty« T) =
d+8,d
(2°/7")ay, g o (—1/7).
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of perturbative BPS states with charge @ € Ag184 C A} g4 has an additional contribution

from the coefficient of ¢~9°/2 in 1/Ag, in agreement with (2.14) and (2.15), and the analysis
in [66, 26].

At last, we can turn to the one-loop F* amplitude in this model. As is the case in the usual
heterotic string, the insertion of four vertex operators replaces the right-moving contribution
in the vacuum amplitude (A.11) by an insertion of the polynomial Pyp.q in (2.26). Thus, we
get

R ern [ 405 DBl g
SLRZNH T2 ery2)\SL(2,Z) s v

where I'y, s [ Pabca] denotes the lattice partition function Iy, 184 [Z] with an insertion of the
polynomial P as in (2.25). Equivalently, we can unfold the integral over a fundamental domain
I'o(2)\H for the action of I'y(2) on H, at the expense of keeping only the identity in the sum

over cosets,

e =, [ A Dl o
To@2\H T2 Ag

which demonstrates (2.24) in this case.

A.2 Zpy orbifold with N =3,5,7

The construction detailed in the previous section can be easily generalized to Zy orbifolds,
provided one can find a point in the moduli space G4416,4 Where Z acts on the lattice Agy16,4
by a permutation with cycle shape 1¥N*. Tt turns out that for N = 3,5, 7, such a lattice can
be obtained by applying a Wick rotation on the Niemeier lattices Dé, Dg and Dg, respectively.
Indeed, recall that given an even self-dual Euclidean lattice

A =Upyeg(De + ) @ (A 4+ X) (A.20)

of dimension n, where the glue code G is a given sublattice of D} /Dy @A™ /A’, one can obtain
an even self-dual lattice of dimension n — 8, by replacing Dj by Dy _g, while keeping the same
glue code G, using the fact that G, = D} /D, is invariant under k — k — gl

A=Upeg(Dr—s + ) @ (A" + X) . (A.21)

If 1 < k < 8, then Di_g should be understood as Dg_x[—1], so that the new lattice is a
Lorentzian lattice with signature (n — k,8 — k) [68, §A.4]. In this way, starting from the
Niemeier lattice A = D,JCV o for N = 3,5,7, which is symmetric under cyclic permutations of
the N + 1 Dy, factors, we obtain an even self-dual lattice A = DY @& Dg_x[—1] of signature
(Nk,8 — k) with a Zy symmetry o acting by cyclic permutations of the N Dy, factors. Using
the explicit description of the glue code for Niemeier lattices given in [69, Table 16.1], it is
possible to check that the only elements (\1,...Ay11) in the glue code G C QN +1 which are
invariant under Zy are those of the form (A,...,\) with A running over Gi. The partition
function of the lattice A with an insertion of the element o9 with g # 0mod N is thus

9k ok 95108 19 —k 95 "—198’“
Zsk[0] =" (N7) % *4 + S (NT) g A22)

vk +19 f(Nr )08 ’“+198 k 192—191 (NT)ﬂg k_ g8k .

+ + an 2778_k

14Indeed, Gx = Zia @ Z2 is k is even, or Z, is k is odd, with the 4 elements in one-to-one correspondence
with the highest weights 0, s, v, ¢ of the adjoint, spinor, vector and conjugate spinor representations.
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The other blocks are obtained by modular covariance, leading for h # 0mod N to

l) 05 F 95k
N Qns—k

8—k 8—k .
Z&sw[iﬂ :ﬁlgw’g (%)ﬁg :1913 i 19’5719’5(

2nF 2 2k
et 7\ FEEITE , vioot 7\ (42
+ 2nk (N) 27,8—19 + 27] (N) 2n87k 9
while the remaining blocks with g # Omod N follow by acting with 7 — 7 4+ 1,
Zrs-k[5](T) = Zrs-r[(] (T +gh7") (A.24)

where h~! is the inverse of h in the multiplicative group Zy. The untwisted, unprojected
block is then

Zis—klg] = Zrs—i[)] + ZZk:B klgl (A.25)

i.e. a sum over images of Z; [(1)] under T'o(N)\SL(2,Z) = {1,8,TS,...,TV"1S}. As a
consistency check, one can verify that the analogous sum for the Euclidean lattice A reproduces
the partition function of the Niemeier lattice,

O N Ei
77754 Zok—s Z Zok—s| = + 48k — 768 (A.26)

where Zoj 8[ | is obtained by replacing 95~ R I8k by (9;/n)F in (A.22).

The integrand of the one-loop vacuum amphtude follows in the same way as in the previous
subsection, by combining the orbifold blocks Zj g [}gl} (1) for the lattice A with the shifted
partition function for the remaining d — 8 + k compact directions (where d is assumed to be
greater that 8 — k)

d—8+k 1 1
2 3 (—1)¥95Q g3 729 . (A.27)

h
QENG—s+k,d—s+kt N0

h

TAd_sira—ssr [g} =T

After eliminating Zj g1 [8] using (A.25), grouping terms into an orbit of I'g(N)\SL(2,7Z),
and rescaling a II; ; factor in Agior—gq as!®

Agtor—s8q = Di[N]® Dg_y[-1] © I 1[N] @ Mgy k—9,d1k—9 (A.28)

with a glue code {(0,0), (s, s), (v,v), (c,c)} for the first two factors, we find

2 —4
T = ()91 7 (5]
Aorb _ d+2k07 8,d L Z d+2k 8,d % = Z (_1)aﬁ+a+ﬂ 47[52 (A29)
Ar[]] N =0 [g] 2 a,8e{0,1} 21
where we defined the eta products
irgk T k
A Y] =@ a(NF L Alf] = e ()t () (A.30)

k .
5Note that this rescaling implies Ty« = (N2 7 HTn, g (=1/7).

d+2k -8, ]( )
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and

vl
—

_ 5Q% —5Q3%
Chgion_sa = T2 Z VERSIERS
QEAG2k—8.d

d 1 1
FA;+2k—8d[(_1)gQ2] = 7-22 Z (_1)9Q2 QQQ%QEQ% .
QEN] o1 5.4

(A.31)

From this description, it is apparent that the degeneracy of twisted perturbative BPS
states with charge Q € Aj, o g4 @ ¢ Agyor—sq is given by the coefficient of q_Qz/2 in
1/Ak[é] = 1/Ax(7/N), or equivalently the coefficient of ¢~V@*/2 in 1/A}, while the degen-
eracy of perturbative BPS states with charge Q € Agior—sa C A§+2k—8 4 has an additional
contribution from the coefficient of ¢~@*/2 in 1/A}, in agreement with (2.14) and (2.15). For
four-dimensional vacua (d = 6), we see that the electric charges carried by perturbative BPS
states lie in the lattice Ae = A}, where

N=3: Am:D6[3]@D2[—1]@H171[3]@H3,3
N=5: A, = D4[5] D D4[—1] (&) H171[5] D Hl,l (A32)
N=7: AmID3[7]@D5[—1]@ELl[7]

This is in fact in agreement with the results stated in Table 1, thanks to the isomorphisms

D6[3] D Dg[—l] ~ Ay D Ay ® H2,2[3]
Dy[5] ® Dy[~1] = I 5[5] ® 22 (A.33)
D[} & Ds[=1] = (7} 73) & Ma[T) & Iz,

Indeed, both lattices on each line have the same genus, in particular the same discriminant
group L*/L = 7K. For N = 2 (hence k = 8), Eq. (A.28) continues to hold with the
understanding that Dg[2] ©& Dy[—1] = Eg|2].

Finally, we can obtain the one-loop F* amplitude by replacing the last factor in (A.29) by
an insertion of the polynomial Pp.q in (2.26), and integrating over the fundamental domain
H/SL(2,7Z). As before, the integral can be unfolded onto a fundamental domain T'g(N)\H
for the action of I'o(N) on H, at the expense of keeping only the block [(1)],

(1-loop) __
F{1%") = R.N.

/ drdr Tag o g4 [Pabed] (A.34)
r

o(N\H T3 Ay, ’

where A, = Ay, [(1]], thus establishing (2.24) for this class of models.

B Ward identity in the degeneration O(p,q) - O(p—1,q—1)

In section 3.2, we proved that the differential equations (3.17) and (3.22) are satisfied by the
one-loop modular integral F;.q defined in (3.28). Here, we verify explicitly that the differential
equation in (3.22) is verified by each Fourier mode in the degeneration limit O(p,q) — O(p —
1,q—1), and that the solution is uniquely determined up to a moduli-independent summation
measure.

48



SciPost Physics

Using the decomposition (4.4) and changing variable R = e~ for the non-compact Cartan
generator of O(p, q), the metric on moduli space reads

2P, P% = 2d¢” + 2PQBP°“5 +e*(prampr®s + prapr® ) da’ da’ (B.1)

with . .
P.=—d¢, Pos = —e®prardal, P.=_—¢ da’ . B.2
00 o 0 7 PR&T a0 = 5 PLal (B.2)

Beware that in this section we use the same notations py, and pg for both O(p,q) and O(p —

1,q—1), 50 pra1QF is not pr,7Q* for a = a.
One can compute the covariant derivative in tangent frame such that

dZ, = 2P" 0y Z, = 2P"(DyeZo — Bpea"Za), (B.3)

and similarly for hatted indices. This way one computes that, for any tensor F, = (Fy, Fu, Fs, F),
Fy, = (Fo, F3, FB’ Fy), ..

10
DOOF(]’ - —5%}7& B
1 4. 0 1
Da()Fa = ﬁe ¢01]aﬁFa—|—i(Fa,—(SagFo,O,O)
DosFr = ety 0 gyl (0,0, —6a5Fp, Fi) (B.4)
Oaa—\/i aaalb o W aplipyLa) » .

and finally the operator D,z will only be acting on the moduli fields through the projectors
Pl PRy
D, iPLy = 300PRp  DopPLi = 3045Pha - (B.5)
Recall the differential equation (2.23)

2—q
D(.Dy)yeFaped = 1 OerFabea + (4 = @)0a) (e Eybed + 30(apFeayes - (B.6)

For brevity we define the vector F
F= (Fiui1, Fitia, Fiiag: Fiagy, Fapys)T (B.7)

and ﬁQ such that F = 2.0 ﬁQeQWiQ'“. The first component (e, f) = (0,0)gives

5(¢ — 6)F1111
. . 4(q —5)F111a
4D DoeFg = (94(0p+q—1)—8m2e Q%) Fo = — | 3(¢ — 4)Fi1ap — 200F1111 | - (B.8)
2(q — 3)Fiapy — 65(apF111+)
(¢ = 2)Fuprs — 1200 Fi145)
Then the action of the differential operator
DD, Fg + 2D, DocFy = —2miV2e%(QLy(0s + q — 2) + 2QraDy®) Fg
4F11y
g—2 3F11an — Opa 111
—(8¢ + T) 2F1a577 — 25n(aF1115) , (B.9)
Fopgyn — 35n(aF1167)
—40y(aF1py5)
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allows to obtain the second component (e, f) = (0, «) of the differential equation

—27iv2¢ QL1 (8 + ¢ — 2) + 2QraD, %) Fy
4(0g + 4)Fi11y
3(8¢ + 3)F11an — 5,,a(6¢ +q—3)Fi111
= 2(84) + 2)F1a57] — 2577(&(845 +q— 3)F1115) + 26QBF1117) . (BlO)
(0p + 1) Fapyy — 30,(a(0s + @ — 3)Fr1py) + 66(apF114)y
—40,a (05 + ¢ = 3)Fipy5) + 126(apF1y0)

The final differential operator for (e, f) = (n,?)

4D DyyeFo = (4D Dyys + 039y — 87°¢ **QryQr o) Fo
4F1119)
3F11a)9) — 09)ati111
—|—47Ti\/§6_¢QL (n 2F1aﬁ|19) — 2(29)(QF1115) (B.11)
Fapy) = 309)(af118y)
—409)(aF1570)
12F 1199 — 469 F1111
6 F1any — 3059 F 1110 — T00(nF1119)
+ | 2Fupny — 2009 F 1108 — 1000)(n F119)(8 T 200)(n00)(sF1111 |
=0 Flagy = 9a)(nFro)(sy + 60a)n00)(sF 1114
—400)(nF) (815 + 120a)(n09) (8 F 1175

gives a third differential equation

4F119)
3F11a)9) — 09)a 111
(4,D(n:y’D19):y + (577198(1) - 871'26_2¢QL nQLﬁ)FQ + 47Ti\/§€_¢QL (n 2F1aﬂ\19) - 2(519)(0[}71115)
Eopyio) = 309)(al118y)
—409)(aL1519)
(q —6)0poF1111
(q - 5)67]19F11101 + (q - 11)5(1(77F11119)
=— (¢ =409 F1108 — 2008 F11n9 + 2(q — 9)00)(n F119)(8 + 20a)(n09) (3 F1111 (B.12)
(q = 3)0pFrapy — 60(apF iy + 3(0 — 7)0a)(nF10)(8y T 600y (ndv) (s F 1114
(@ = 2)0psFasys = 120(ap ey + 400 = 5)0a)n Fo) (576 + 1200)(n09) (811195

One can then check that the only exponentially suppressed solution to the three equations
(B.8), (B.10) and (B.12) is given, up to a moduli-independent prefactor, by

P
QLaFl(S)
Fo = QroQrsF? + 605F” : (B.13)
QraQrsQr-F\ + 8(0sQL ) (Q) FLY
QraQrsQr,QrsF” + 5(a5QL7QL5)FQ(O) + 5((15675)173(0)
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2k+3—¢q

i Nk g2 g—3-2k _g—1 T2
PO = <ﬁ) 27 (2m)"z R™ \/m K%(QWR\/M)

2k+5—¢q

. {\ kot (= BB K) ) amse oo gt e

FQ() = _(E> 272 f(2 ) 2 2|QR|2 K2k+257q(27TR 2|QR|2)
_ 7—q

FY = 3x2%(2mn)"% R /2[Qx? ° Kiq(2mR7/2|QRI%) , (B.14)

In particular, the tensorial part of the function ﬁQ is polynomial in Q1 ..., and the rest only
depends on the moduli through QQR and R = e~?. We conclude that the Fourier coefficient
FQ for a fixed @ is uniquely determined by the differential equations (3.17) and (3.22) up to
an overal constant corresponding to the measure factor.

The power-low terms satisfy to the same equations for ( = 0. One easily computes that
the only two solutions are such that

(7T—q)(9 6 q)coR16
F= (7— q)c%Rq’(ada,g , (B.15)
_ 1,g-1
3coR? 6(5(06,3(575) + RF§575q

for an arbitrary constant cy and a solution Fapﬂ_wl(gq_l to (3.17) and (3.22) on Gp—1,4—1-

C Polynomials appearing in Fourier modes

In the degeneration limit O(p,q) — O(p — 1,q — 1) studied in §4, the monomials
Po(éi)ﬂ,,,wl(Q) with £ > 0 are of degree 4 — 2¢ — h in @), and defined by

(0) 3 3
; Pagwg =Qr,aQrsQr,QrLs — %5@5@@7@]4,5) + Wg(aﬁ&yéﬁ

(¢ 3
Z PC((B)’y(Q) = QL,QQL,,BQLW - EQLa(a(sﬂV)’

1
Z Pi3(Q) = Qr.aQrs — 3-0a, (C.1)

In the degeneration limit O(p,q) — O(p — 2,q — 2) studied in §5, the monomials
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73,%) i anstas (@, S) with £ > 0 are of degree 4 — 2¢ — h in Q", and defined by

l i ; 3 ; ) 3
D Pia(QS) = Qo QF sQE Q1 5y MisMit — 50apQ Q7 5 Mij + 753000
>0

PO (o 3
Z 'u,aﬂ'y(Ql S) QIL,;L(QQ QL fy) EQIL,}L(Q(SB’V)’

£>0

(Z) 1i / / 1 Q,/M ) Q;/
; #yaﬁ(Q S) QL7anL,Vﬁ - Eaaﬁ Qé— . Q/T’

; Q, - Q,
(f) 17, S
QZOPHVPQ(Q ’ ) QL lwéQ/ QT
QL Q
(Q; . Q/T)2 ’

> P (@) =
£>0

(C.2)

where M;; = v;,v"; is the torus metric (5.4), and Q, - @), = ¢ (éciglsﬁ,fép @ *S”ZIPF;)SQP)

D Tensorial Eisenstein series

In the degeneration limit O(p, q) — O(p—2, ¢—2) studied in §5, the power-like terms in (5.29)
involve tensorial Eisenstein series that we rewrote as tensorial derivatives of real analytic
Eisenstein series, using D, the traceless differential operator on SL(2,R)/O(2). Here we
exhibit these relations, and show how this operator can be rewritten in terms of lowering and
raising operators D,, and D,,.

The non-holomorphic Eisenstein series

1 S5
Esw(S) = e — D.1
() 2¢(2s) (c d)e;:\{o 0} (c+dS)*T2(c+dS)° 2 (D-1)

has modular weight (%, %) under SL(2,Z). The raising and lowering operators, D,, =
215205 + 5 and Dy = —215285 — 5 act on & 4,(S) according to
— w
Dy 5s,w = (5 + §>£s,w+27 Dy 5s,w = (5 - 5)53,11)72- (D2>

Non-holomorphic Eisenstein series are thus eigenmodes of the laplacian A, = D, 42D, with
eigenvalue (s + %) (s — % —1).

Alternatively, one can denote the momenta and winding along a torus as z, = m;v;, with
(m1,m2) = (¢,d), v," is the vielbein defined in (5.4), such that z,2# = Si2|c+d5]2 is invariant
under SL(2,7). The traceless differential operator Dy, acts as

1 1

Duvzp = 25p(uz,,) (5,“,zp (D.3)
One can show that they are related to the lowering and raising operator through
1 o 1 _ =
D,, =— 50w Duw — 5% Dw (D.4)
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+

where c* = %(03 +1i01) and o; are the Pauli matrices. By acting on non-holomorphic Eisen-

stein series of weight 0 with D, and D(,, D,,), one obtains the relations

/
B s 1 zyzy 1
2 J‘“’gs 2 J’“’gs T 2¢(2s) Z (2727)8 (szT a 26W>
(4,p)
s(s+1) s(s—=1) _  _ _ 1
1 JE';WU;FJ)&A + 1 O'(/U/O'pa)g&_zl +s(s—1) U(J;Vapa) — éé(uyém) Eso

s(s+1) o 1 ZuzvZpZe O(uwipZo) 1
ucvcpco  Y(p<pco 1
2((2s) Z (2:27)° ( (2:27)2 22T T 85(uvépo)>

(Gp)
(D.5)
where the second line is traceless.
Now, the components F (p:a 5#2, and F ,E’;;{Z b0 n (5.10) were obtained originally as
0)/8—gq 1 ' 1 242y
P10 _ pg-6C < 1
apy . =B 472 ( 2 >2C( —q) G )(ZTZT)¥ 227
Jp
(D.6)
!/
F(ﬁ’qg’l’o Ra-6€ c(0) (8 — q) (10 — q> 1 Z 1 2u2uZpZa
Hep 22\ 2 2 /2¢(8—q) oo (o ZT) 52 (2027)2
They can be written as in (5.10) by rewritting the relations above, for s # —1
/
s 1 zuz s -
=— (0 € + & Es—
(2s) Z (2r27)% 2727 2 (G0 + o Es2 + 00 Es-2)
s(s+1) « 1 zuzzpze  s(s+1) | s(s—1) _  _
= Es —_— Es—
2¢(2s) (2:) (2727)° (2r27)? 1 o) st T T O ) Ce (D.7)
Jp
s(s+1) +
2 (6(#1’0;70)53 2+ 6(MV0pa)53 *2)
2
s, L 1 3s(s+1)
+ 2 (U(W/Upa) B 15@”5%’))5&0 + 8 O(y19p0) €5,0

In other words, all the tensorial series in (5.29) appearing as low-energy propagators on the
torus can be rewritten a combination of &g, DEs o, 555,07 D28370 and @28370. This is used
extensively to rewrite the 1-PI effective action in four dimensions (5.39).

Similarly, they can also be rewritten using traceless differential operators D,,, and D%, = =

pvpo
D Poo) = 45(#V5PU)DT“D
s i 1 Zuiy (5(5 D )5
2¢(2s) | (2727)8 2727 \2 M ) <0
P (D.8)

(s+1) 2uZvZpo 9 §
24(25 Z (z ZT s (ZTZT)2 - (Duupa (S+ 1)5(/LVDpo') + 85(5 + 1)(5(11,,(5@,))55,0
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E Poincaré series and Eisenstein series for O(p, q,7Z)

In this section, we evaluate the modular integrals (3.28) and (3.29) using the method developed
in [50, 44], which keeps invariance under the automorphism group O(p, g, Z) of the lattice A, 4
manifest. The result is expressed as a sum over lattice vectors with fixed norm, which is a
special type of Poincaré series for O(p, ¢, 7). In §E.2, we use a similar method to construct
Eisenstein series for O(p, ¢, Z).

E.1 Poincaré series representation of 74

The method developed in [50, 44] relies on expressing the factor multiplying the lattice sum
in the integrand in terms of a special type of Poincaré series for I'g(INV), known as the Niebur-
Poincaré series of weight w € 27,

1 .
Fy(simuwim) =5 D Maw(—rm)e M,y (1)
Y€l \T'o (V)

where M ,(y) is the Whittaker function defined in [50, Eq. (2.7)], and |7 is the Petersson

slash operator, [f|wy](7) = (c7 +d)7* f(2ZE8) for v = (¢ ). The series converges absolutely
I'(2s)

w
F(S-l-g)
transforms under the Maass raising and lower operators according to

for Re(s) > 1, grows as ¢ " near the cusp 7 — ico and is regular at the cusp 7 = 0. It

DFn(s,k,w) =2k (s + %) Fn(s,kyw+2),
~ 1 (E.2)
DFn (s, k,w) e (s — %) Fn(s,ky,w—2)

which implies that it is an eigenmode of the weight w Laplacian on ‘H with eigenvalue (s —
$)(s =14 %). In particular, for w < 0 and s = 1 — %, Fn(s,k,w) is a harmonic Maass
form of weight w. In cases where there exists no cusp form of weight 2 — w, it is actually a
weakly holomorphic modular form of weight w [49]. The Fourier expansion of Fn (s, k,w) =
Foo(8, kyw; T) around the cusps at co and at 0 is given in [44, Eq. (5.8-10)], in terms of the
Kloosterman sums Zso0(m, n;s) and Zpoo(m, n; s) defined in Eq. A.3 and A.4 of loc. cit.

For N =1, one has, by matching the residue of the pole at 7 = ico,

1 . F(s,1,-12;7)
= lim ——>2 > &/ E.
A(r) =51 (29 (E-3)
For N = 2,3,5,7, using the fact that Ay is invariant under the Fricke involution, one has
instead R
1 i ‘FN(S’L_k;T)+‘FN(5a17_k;T) (E 4)
= lim ) .
Ap(T)  so1tk I'(2s)

where ]:"N(s, K, w;T) is the image of Fy (s, x,w;7) under the Fricke involution.!®

16 For N =7, 1/A3 is a modular form of odd weight with character y = (%), so the Petersson slash operator
lwy in (E.1) involves an additional factor of x(d)~*. This results in additional factors of x(d)™* and x(c)~! in
the Kloosterman sums Zooo0 (M, n; 8) and Zoso (M, n; 8), respectively.
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We shall compute the family of integrals

1 dridmy _
FP9 (P — / r _p=q.
( ’ 87 K‘) F(QS) FO(N)\H 7_22 Ap ]:N( 2 T) )

(E.5)

1 drdme _
F(p7q) q) S,R) = / FA; bed ]:N S7H7_u_4;7— )
abed ( ) F(QS) To(N)\H 7_22 D, [ abc ] ( 2 )

which converges absolutely for Re(s) > %. Here, T, ,[Pabea] is the partition function of a
N-modular lattice A,  of signature (p,q). It follows from the N-modularity property that
AL/ Apgl =N (r+a)/2 and that LA, [Pabea] satisfies

b—g

U, o [Pabeal (@, 7) =< 1Tx/>) * T, [Pabed] (a@,]\;) (E.6)

where o is the O(p,q,R) transformation realizing the isomorphism A} =~ Aj,[1/N]. The
desired integrals (4.1) are then obtain by taking a limit

F(nq)(q)) :1 lim [FP"J(CD7 s, 1) + F(p’q)(a - D s, 1)}
s—14k (E.7)

Fd)(®) = illni [Fa(i’c?(@,s,l)+F§§c§)(0-¢>,s,1)} .

By unfolding the integration domain against the sum over =y, one obtains, for Re(s) > pTJrq,

F(p,q)(

(b Z / d7'1d7'2 -2 Poped eivr(rp%—?pQR)M&w(_m_Q) e—?wirm7 (E.8)

QEAP q

where S denotes the strip —% <7 < %,7‘2 > 0. The integral over 7 enforces the BPS

condition Q? = Q% — Q% = 2k. Decomposing

Pabcd(Qa 7—2) = Z pabcd,é(Q) 7—2_2 y (Eg)

0<e<2

where pabcd,é is a polynomial of degree 4 — 2/ in (), and integrating over 7, we get

02) Q g+1,s,%
P, 41—
FUA 6 =g & m™ P (52
O<é<2 QEAp,q
Q2%2=2x
_ 2K
xF(s—l—q;“—K—l)gFl(s—i—Q,s—f— Y0 —1;2s; Q2>
U (E.10)
_ l+1— R
g 2 @m0 Y Pas(@Q (2)
1<k<3 QeAp.q
Q?2=2k
2
xF(s—i—q_;”—f—l)gFl(s—s—i—q—6—123 H)
Q%
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where in the second line, we used Pfaff’s equality o F1(a,b;c; 2) = (1 —2) "2 F(b,c—a;c; =)
Similarly, for the scalar integral we get

g 1-s—24
(477&)1 3 Q3 * 25
e =T 2 SRR B B ) BCED
QEAp q R

Q%=2x

For ¢ < 6, the series (E.10) and (E.11) are absolutely convergent at s = 1+§, so the limit (E.7)
can be taken term by term. For ¢ > 6, the limit must be taken after analytically continuing
the sum, and subtracting the pole when ¢ = 6. In either case, the series (E.10) and (E.11)
correctly encode the singular behavior of the integral at codimension-g singularities in G, 4
where P% — 0 for a norm 2k in A, , or Q% — 0 for a norm 2x/N vector in A} - Near these
loci, the leading singular behavior of (E.10) is given, for k = 1, by

pea) I'(%2) | QraQrsQr.cQr.a 6 0@QreQra 3 S(abded)
el (o) Q)5 a—1 Q3T (¢-6)(a—4) (@2)5
(E.12)

and similarly for F®9),
Using the same argument as in (3.51) and making use of (E.2), it is easy to show that the
integrals (E.5) satisfy the differential equation

D2y Fupi) (8) =(2 = 0) e F5) (5) + (16 — 40) 8oy F\ot) 1 (5) + 12 8t Frape (5)

drydrs 2(2s + k) (E.13)
i / FN(8s 8, =k = 2) Ty o [ Pabede
To(N\H  Ts  2KT(2s) ( ) Tyl 7]

The modular integral on the second line can again by evaluating by the unfolding trick, as a
sum over vectors ) € A, , with Q? = 2k . For the relevant value s = 1 + % with small |k|,
such that Fn (s, k,—k) is weakly holomorphic, Fx (s, x, —k — 2) vanishes so the sum over @
must vanish. We have checked that this is indeed the case in the Euclidean case ¢ = 0, N =1,
such that only a finite number of vectors ) contribute.

E.2 Eisenstein series for O(p,q,Z)

While the modular integrals (E.5) result into automorphic forms with singularities on G 4,
due to the pole of order x in the Niebur-Poincaré series Fy (s, &, w;7), it is useful to consider
the analogue

dnd
EPD(®, ) = / #D\M En(s,—25%;7) (E.14)
Co(N\H T2

where Fn (s, k,w;T) is replaced by the non-holomorphic Eisenstein series for T'o(N),

1 _w
En(s,w;T) =5 Sooon Ty, (E.15)
Y€l \T'o ()

which can be obtained formally by taking the limit x — 0 in (E.1). The integral converges
for Re(s) > %ﬂ, and can be computed using the unfolding trick, leading to a standard
vectorial Eisenstein series for O(p, ¢, Z), the automorphism group of A, 4,

s 1
E(p,q) ((I)v S) =7 F(S,) Z (PQ + PQ)S’ (E16)
Pehp {0} VL R

P2=0
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with s = s+ pTJrq — 1. Another Eisenstein series for the same group is obtained by replacing
En(s,w;T) by its image under the Fricke involution, which amounts to changing ® + o - ®
in (E.16). Unlike (E.5), both Eisenstein series are smooth automorphic forms on Gp 4. Their
behavior in the degeneration limits O(p,q) — O(p — 1,q — 1) and O(p,q) — O(p — 2,9 — 2)
is easily obtained by apply&}ng the same meu‘ghods as in §4 and §5. In particular, the constant
2 =g

terms proportional to TS_ and to 721_ in the Fourier expansion of En(s,w;7) lead to
power-like terms proportional to R%" and RPT12-2¢ ip the degeneration limit O(p,q) —
O(p—-1,q—-1).

By direct computation, or using the fact that En(s,w;7) is an eigenmode of the weight
w Laplacian on H with eigenvalue (s — §)(s — 1+ ¥), one sees that

Ag,, EPD(®,s) =525 —p—q+2) EPD(®,s) . (E.17)
For s’ = %, corresponding to s = 3 + 254, the eigenvalue coincides with the eigenvalue of
FP:) in (3.27) (the other value s’ = ‘%6, s = —2 — E=4 Jies outside the fundamental domain,

and is related to the former by the functional equation s — 1 — s). Moreover, using the
same methods as in §3.2 it is easy to check that E(p’q)(q), s) satisfies the second constraint
in (3.27). It is thus natural to ask if the exact (V®)* coupling could involve an extra term
proportional to E®9(d,3 + P=4) in addition to the proposed formula (2.27). However, it
turns out that the latter contains terms of order RP** and R97% in the degeneration limit
O(p,q) — O(p — 1,q — 1) with a non-zero coefficient, respectively, and the first term RP* is
ruled out by the differential equation (3.22).
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Abstract

Motivated by precision counting of BPS black holes, we analyze six-derivative cou-
plings in the low energy effective action of three-dimensional string vacua with
16 supercharges. Based on perturbative computations up to two-loop, super-
symmetry and duality arguments, we conjecture that the exact coefficient of the
V2(V¢)* effective interaction is given by a genus-two modular integral of a Siegel
theta series for the non-perturbative Narain lattice times a specific meromorphic
Siegel modular form. The latter is familiar from the Dijkgraaf-Verlinde-Verlinde
(DVYV) conjecture on exact degeneracies of 1/4-BPS dyons. We show that this
Ansatz reproduces the known perturbative corrections at weak heterotic cou-
pling, including tree-level, one- and two-loop corrections, plus non-perturbative
effects of order ¢~ /9. We also examine the weak coupling expansions in type I
and type II string duals and find agreement with known perturbative results. In
the limit where a circle in the internal torus decompactifies, our Ansatz predicts
the exact V2F* effective interaction in four-dimensional CHL string vacua, along
with infinite series of exponentially suppressed corrections of order e from Eu-
clideanized BPS black holes winding around the circle, and further suppressed
corrections of order e % from Taub-NUT instantons. We show that instanton
corrections from 1/4-BPS black holes are precisely weighted by the BPS index
predicted from the DVV formula, including the detailed moduli dependence. We
also extract two-instanton corrections from pairs of 1/2-BPS black holes, demon-
strating consistency with supersymmetry and wall-crossing, and estimate the size
of instanton-anti-instanton contributions.
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1 Introduction

Providing a statistical origin of the thermodynamic entropy of black holes is a key goal for
any theory of quantum gravity. More than two decades ago, Strominger and Vafa demon-
strated that D-branes of type II string theories provide the correct number of micro-states
for supersymmetric black holes in the large charge limit [1]. Since then, much work has gone
into performing precise counting of black hole micro-states and comparing with macroscopic
supergravity predictions. In vacua with extended supersymmetry, it was found that exact
degeneracies of five-dimensional BPS black holes (counted with signs) are given by Fourier
coefficients of weak Jacobi forms, giving access to their large charge asymptotics [2, 3, 4].
With hindsight, the modular invariance of the partition function of BPS black holes follows
from the existence of an AdSj3 factor in the near-horizon geometry of these extremal black
holes.

In a prescient work [5], Dijkgraaf, Verlinde and Verlinde (DVV) conjectured that four-
dimensional BPS black holes in type II string theory compactified on K3 x T? (or equivalently,
heterotic string on 7%) are in fact Fourier coefficients of a meromorphic Siegel modular form,
invariant under a larger Sp(4,7) symmetry. This conjecture was subsequently extended to
other four-dimensional vacua with 16 supercharges [6], proven using D-brane techniques [7, 8],
and refined to properly incorporate the dependence on the moduli at infinity [9], but the origin
of the Sp(4,7Z) symmetry had remained obscure. In [10, 11, 12], it was noted that a class of
1/4-BPS dyons arises from string networks which lift to M5-branes wrapped on K3 times a
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genus-two curve, but this observation did not lead to a transparent derivation of the DVV
formula.

In [13], implementing a strategy advocated earlier in [14], we revisited this problem by
analyzing certain protected couplings in the low energy effective action of the four-dimensional
string theory compactified on a circle of radius R down to three space-time dimensions. In
three-dimensional string vacua with 16 or more supercharges, the massless degrees of freedom
are described by a non-linear sigma model on a symmetric manifold G3/ K3, which contains the
four-dimensional moduli space My = G4/ K}, the holonomies a’, of the four-dimensional gauge
fields, the NUT potential ¢ dual to the Kaluza—Klein vector and the circle radius R. Since
stationary solutions with finite energy in dimension 4 yield finite action solutions in dimension

3, it is expected that black holes of mass M and charge 1“{ = (@', P!) in 4 dimensions which
—27TRM+27riaiI

break 2r supercharges induce instantonic corrections of order e Il to effective
couplings with 2r fermions (or r derivatives) in dimension 3 (see e.g. [15]); and moreover that
these corrections are weighted by the helicity supertrace

20 (1) = — Tar[(~1)7 20)"] (1.1)

where F' is the fermionic parity and h is the helicity in D = 4. In addition, there are corrections
of order e~ 27 R*IMi[+2mM1Y {15 Euclidean Taub-NUT instantons which asymptote to R3 x 51,
where the circle is fibered with charge M; over the two-sphere at spatial infinity. While the
two-derivative effective action is uncorrected and invariant under the full continuous group
G3, higher-derivative couplings need only be invariant under an arithmetic subgroup Gs(Z)
known as the U-duality group. For string vacua with 32 supercharges, the R*, V4R* and VOR4
effective interactions are expected to receive instanton corrections from 1/2-BPS, 1/4-BPS and
1/8-BPS black holes, respectively. In [16], two of the present authors demonstrated that the
exact R*, VAR* couplings, given by Eisenstein series for the U-duality group G3(Z) = Es(7Z)
[17, 18, 19, 20], indeed reproduce the respective helicity supertraces €4 and Qg for 1/2-BPS
and 1/4-BPS black holes in dimension 4. At the time of writing, a similar check for the VOR?
coupling conjectured in [21] still remains to be performed.

For three-dimensional string vacua with 16 supercharges, the scalar fields span a symmetric
space of the form

Gs/K3 = O(2k,8)/[0(2k) x O(8)] (1.2)

for a model-dependent integer k, which extends the moduli space
G4/Kq = SL(2)/S0(2) x O(2k —2,6)/[0(2k — 2) x O(6)] (1.3)

in D = 4. The four-derivative scalar couplings of the form F (¢)(V¢)4 are expected to receive
instanton corrections from 1/2-BPS black holes, along with Taub-NUT instantons, while six-
derivative scalar couplings of the form G(¢)V?(V¢)?* receive instanton corrections both from
four-dimensional 1/2-BPS and 1/4-BPS black holes, along with Taub-NUT instantons. In
[13], we restricted for simplicity to the maximal rank case (k = 12) arising in heterotic string
compactified on T (or equivalently type II string theory compactified on K3 x T3). Using
low order perturbative computations, supersymmetric Ward identities and invariance under
the U-duality group Gs3(Z) C O(24,8,7), we determined the tensorial coefficients Fypeq(¢)
and Ggpca(¢) of the above couplings exactly, for all values of the string coupling. In either
case, the non-perturbative coupling is given by a U-duality invariant generalization of the
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genus-one and genus-two contribution, respectively:

FEY  _ RN dp1dp2 FA24,8 [Pabed] , (1.4)
abed 2 A
SL(2,Z)\H1 P2
(2)
G((12b4,6862 R.N./ dSQlszQ FA24A8[Pab,Cd] , (1‘5)
’ Spa,z)\He  1€22] @1

where H;, is the Siegel upper half-plane of degree h, F(F’IL\) [P] is a genus-h Siegel-Narain
theta series for a lattice of signature (p,q) with a polynomipé(i insertion (see (B.4) and (2.32)
for the genus-one and two cases), A and ®jo are the modular discriminants in genus-one
and two, and R.N. denotes a specific regularization prescription. We demonstrated that
the Ansétze (1.4) and (1.5) satisfy the relevant supersymmetric Ward identities, and that
their asymptotic expansion at weak heterotic string coupling g3 — 0 reproduces the known
perturbative contributions, up to one-loop and two-loop, respectively, plus an infinite series of
O(e~V 9 ) corrections ascribed to NS5-instantons, Kaluza—Klein (6,1)-branes and H-monopole
instantons. We went on to analyze the limit R — oo and demonstrated that the O(e™F)
corrections to F éiij) and to Gfb‘tfi were proportional to the known helicity supertraces of
1/2- and 1/4-BPS four-dimensional black holes, respectively. In particular, the DVV formula
for the index of 1/4-BPS states [5], with the correct contour prescription [9], emerges in a
transparent fashion after unfolding the integral over the fundamental domain Sp(4,Z)\H,
onto the full Siegel upper-half plane Ho.

In [22], we extended the study of the 1/2-BPS saturated coupling F= to the case of
CHL heterotic orbifolds of prime order N = 2,3,5,7. All these models have 16 supercharges,
and their moduli space in D = 3 or 4 is of the form (1.2), (1.3) with k£ =24/(N +1). After
conjecturing the precise form of the U-duality group G3(Z) C O(2k,8,Z) in D = 3, we
proposed an exact formula for F,j.s analogous to (1.4),

Ta, [ Pabe
Fuped = RN. / didee ol Pabea] (1.6)
To(N)\H1 P2 Ay

where T'o(N) C SL(2,7Z) is the Hecke congruence subgroup of level N, Ay is the unique
cusp form of weight k under I'o(N) and Agyg is the ‘non-perturbative Narain lattice’ of
signature (2k,8). We studied the weak coupling and large radius limits of the Ansatz (1.6),
and found that it reproduces correctly the known tree-level and one-loop contributions in the
limit g3 — 0, powerlike corrections in the limit R — oo, as well as infinite series of instanton
corrections consistent with the known helicity supertrace of 1/2-BPS states in D = 4, for all
orbits of the U-duality group G4(Z).

The goal of the present work is to provide strong evidence that the tensorial coefficient
Glp,cq of the 1/4-BPS saturated coupling V2(V¢)* in the same class of CHL orbifolds is given
similarly by the natural extension of (1.5), namely

d3Qld3QQ F/(\Q;k78 [Pab,cd]
20(M\Hs €22 Qpp

G = R.N. / (1.7)
' r

where I'y o(N) is a congruence subgroup of level N inside Sp(4,7Z), ®j_2 is a specific mero-
morphic Siegel modular form of weight k£ — 2 and F}f;k ) [Pab,ca) is a suitable genus-two Siegel-

Narain theta series for the same non-perturbative Narain lattice Agyg as in (1.6). Using
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similar techniques as in [22], we shall demonstrate that the Ansatz (1.7) satisfies the relevant
supersymmetric Ward identities and produces the correct tree-level, one-loop and two-loop
terms in the weak heterotic coupling limit, or powerlike terms in the large radius limit, ac-
companied by infinite series of instanton corrections consistent with the helicity supertraces
of 1/2-BPS and 1/4-BPS states in D = 4.

A significant feature and complication of (1.5),(1.7) compared to the 1/2-BPS coupling
(1.4), (1.6) is that the integrand 1/®;_o has a double pole on the diagonal locus Q12 = 0
and its images under I'y (V) (corresponding to the separating degeneration of the genus-two
Riemann surface with period matrix Q). In the context of the DVV formula, these poles
are well-known to be responsible for the moduli dependence of the helicity supertrace 2.
In the context of the BPS coupling (1.7), these poles are responsible for the fact that the
weak coupling and large radius expansions receive infinite series of instanton anti-instanton
contributions, as required by the quadratic source term in the differential equation (2.26) for
the coefficient Ggfﬁi). A similar phenomenon is encountered in the case of the VSR? couplings
in maximal supersymmetric string vacua [23].

Organization

This work is organized as follows. In §2 we recall relevant facts about the moduli space, duality
group and BPS spectrum of heterotic CHL models in D = 4 and D = 3, record the known
perturbative contributions to the V2F* and V?(V¢)* couplings in heterotic perturbation
theory, and preview our main results. In §3, we derive the differential constraints imposed
by supersymmetry on these couplings, and show that they are obeyed by the Ansatz (1.7).
In §4, we study the expansion of (1.7) at weak heterotic coupling, and show that it correctly
reproduces the known pertubative contributions, along with an infinite series of NS5-brane,
Kaluza—Klein (6,1)-branes and H-monopole instanton corrections. In §5, we move to the
central topic of this work and study the large radius limit of the Ansatz (1.7). We obtain
the exact V2F* and R?F? couplings in D = 4 plus infinite series of O(e™ ) and (’)(e’Rg)
corrections. We extract from the former the helicity supertrace of 1/4-BPS black holes with
arbitrary charge, and recover the DVV formula and its generalizations. We further analyze
two-instanton contributions from pairs of 1/2-BPS black holes and show their consistency
with wall-crossing. In §6 we study the weak coupling limit of the V2(V@)* couplings in
CHL orbifolds of type II string on K3 x T3, and of the related V2ZH* couplings in type 1IB
compactified on K3 down to six dimensions.

A number of more technical developments are relegated to appendices. In Appendix A we
collect relevant facts about genus-two Siegel modular forms, and the structure of their Fourier
and Fourier-Jacobi expansions. In §B we compute the one-loop and two-loop contributions
to the V2F* and V?(V¢)* couplings in CHL models, spell out the regularization of the
corresponding modular integrals, compute the anomalous terms in the differential constraints
due to boundary contributions, and discuss their behavior near points of enhanced gauge
symmetry. In §C, we verify that the polar contributions to the Fourier coefficients of 1/®j_o
are in one-to-one correspondence with the possible splittings I' = I'; +I'y of a 1/4-BPS charge
I’ into a pair of 1/2-BPS charges I';,I's. In §D, we use this information to compute the
singular contributions to Abelian Fourier coefficients with generic 1/4-BPS charge, and in §E
demonstrate that the structure of these coefficients and of the constant terms is consistent
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with the differential constraint. In §F, we also estimate the corrections to the saddle point
value of the Abelian Fourier coefficients, due to the non-constancy of the Fourier coefficients
of 1/®;_o and show that they are of the size expected for two-instanton effects on the one
hand, and Taub-NUT instanton — anti-instanton on the other hand. In §G, we explain how to
infer the non-Abelian Fourier coefficients with respect to O(p — 2,q — 2) from the knowledge
of the Abelian coefficients with respect to O(p — 1,q — 1). Finally, §H collects definitions of
various polynomials which enter in the formulae of §4 and §5.1.

Note: The structure of the body of this paper follows that of our previous work [22] on
1/2-BPS couplings, so as to facilitate comparison between our treatments of the genus-one
and genus-two modular integrals. The reader is invited to refer to [22] for more details on
points discussed cursorily herein.
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2 BPS spectrum and BPS couplings in CHL vacua

In this section, we recall relevant facts about the moduli space, duality group and BPS
spectrum of heterotic CHL models in D =4 and D = 3, and summarize the main features of
our Ansatz for the exact V?(V¢)* and V2F* couplings in these models.

2.1 Moduli spaces and dualities

Recall that heterotic CHL models are freely acting orbifolds of the heterotic string com-
pactified on a torus, preserving 16 supersymmetries [24, 25] (see [26] for a review of these
constructions). We shall be mostly interested in models with D = 4 non-compact spacetime
dimensions, and the reduction of those models on a circle down to D = 3. Furthermore, for
simplicity we restrict to Zy orbifolds with N € {1,2,3,5,7} prime, in which case the gauge
symmetry in D = 4 is reduced from U(1)*® in the original ‘maximal rank’ model (namely,
heterotic string compactified on T9) to U(1)?**4 with k = 24/(N 4 1). The lattice of electro-
magnetic charges in D = 4 is a direct sum A.,, = A, & A,, where A,, is an even, lattice of
signature (2k —2,6) and A, = A}, its dual (see Table 1 in [22]). While A,, is not self-dual for
N > 1, it is N-modular in the sense that A¥, = A,,[1/N] [27], in particular we have the chain
of inclusions NA,,, C NAy, C A, CAj,.
The moduli space in D = 4 is a quotient

My = Gu(Z)\[SL(2,R)/SO(2) x Ga—2] , (2.1)

where SL(2,R)/SO(2) is parametrized by the heterotic axiodilaton S and the Grassmannian
Gop—26 is parametrized by the scalars ¢ in the vector multiplets. Here and elsewere, G 4
will denote the orthogonal Grassmannian O(p, q)/[O(p) x O(q)] of negative g-planes in RP-7.
The U-duality group G4(Z) in D = 4 includes the S-duality group I'1 (V) acting on the first
factor and the T-duality group O(2k — 2,6,7) acting on the second (where O(2k — 2,6,7)
denotes the restricted automorphism group of A,,, acting trivially on the discriminant group
Ae/A ~ ZEF2). As discussed in [27, 22], there are strong indications that BPS observables
are invariant under the larger group I'o(N) x O(2k — 2,6, 7Z), the automorphism group of A,
along with the Fricke involution acting by S — —1/(N.S) on the first factor, accompanied by a
suitable action ¢ — ¢- of ¢ € O(2k—2, 6, R) on the second factor, such that A*, = ¢-A,,/v/N.

After compactification on a circle of radius R down to D = 3, the moduli space spanned
by the scalars ¢ = (R, S, ¢, a’’,4) described in the introduction becomes a quotient

M3 = G3(Z)\Garg (2.2)

of the orthogonal Grassmannian Gy g by the U-duality group in D = 3. In [22] we provided

evidence that the U-duality group includes the restricted automorphism group 6(21{:, 8,7) of
the ‘non-perturbative Narain lattice’

Aops =Ny @ 111 & 111 [N] (2.3)

which is also N-modular. Tt also includes the U-duality group G4(Z) as well as the restricted
automorphism group O(2k —1,7,Z) of the perturbative Narain lattice A, @ II1 ;. The exact
four and six-derivative couplings of interest in this paper will turn out to be invariant under
the full automorphism group O(2k, 8,7) D G3(Z), however, this group is not expected to be
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a symmetry of the full spectrum. In particular, the automorphism group of the perturbative
lattice O(2k — 1,7, 7,) does not preserve the orbifold projection, and does not act consistently
on states that are not invariant under the Zy action on the circle. Nevertheless, we expect
the U-duality group to be larger than O(2k,8,Z) and to include in particular Fricke duality.

An important consequence of the enhancement of T-duality group O(2k — 1,7,Z) to the
U-duality group O(2k,8,7Z) is that singularities in the low energy effective action occur on
codimension-8 loci in the full moduli space Mg, partially resolving the singularities which
occur at each order in the perturbative expansion on codimension-7 loci where the gauge
symmetry is enhanced.

2.2 BPS dyonsin D=4

We now review relevant facts about helicity supertraces of 1/2-BPS and 1/4-BPS states in het-
erotic CHL orbifolds. As mentioned above, the lattice of electromagnetic charges I' = (Q, P)
decomposes into Ay = A, & Ay, where on the heterotic side the first factor corresponds
to electric charges @ carried by fundamental heterotic strings, while the second factor corre-
sponds to magnetic charges P carried by heterotic five-brane, Kaluza-Klein (6,1)-brane and
H-monopoles. The lattices A = A}, and A, carry quadratic forms such that

2
QQENZ, P c27Z, P-QeZ, (2.4)
while Ag,, carries the symplectic Dirac pairing (I'\T') = Q- P’ — Q' - P € Z. A generic BPS
state with charge I' € A¢yy, such that QAP # 0 (i.e. when @ and P are not collinear) preserves

1/4 of the 16 supercharges, and has mass

M(Ts5t) = \/2'QR+SfPR'2 + 4\/

where ¢ = (.59, ¢) denote the set of all coordinates on (2.1), and Qr, Pg are the projections of
the charges @, P on the negative 6-plane parametrized by ¢ € Gar_26. When Q A P = 0, the
state preserves half of the 16 supercharges, and the mass formula (2.5) reduces to M(T)? =
2|Qr + SPg|?/Ss.

In order to describe the helicity traces carried by these states, it is useful to distinguish
‘untwisted’ 1/2-BPS states, characterized by the fact that their charge vector (@, P) lies in
the sublattice A, ® NA. C Ae @ Ay, from ‘twisted’ 1/2-BPS states where (Q, P) lies in the
complement of this sublattice inside A¢y,. One can show that twisted 1/2-BPS states lie in
two different orbits of the S-duality group T'g(IV): they are either dual to a purely electric
state of charge (@,0) with @ € A. \ A, or to a purely magnetic state of charge (0, P) with
P € Ay, ~ NA.. Similarly, untwisted 1/2-BPS states are either dual to a purely electric state
of charge (@, 0) with @ € A,,, or to a purely magnetic state of charge (0, P) with P € NA,.
The fourth helicity supertrace is sensitive to 1/2-BPS states only, and is given by

c 2 p2 .
Q) = cx (fW) (2.6)

2 . P
QI?Q’RPR QI}DRQ R (2.5)

for twisted electromagnetic charge I' € (A & Ayy) ~ (A, & NA.), and by

2 p2 ). 2 p2 0.
(L) = ¢ (_gcduvc? 120 P)) ¥ (_gcd(NQQJ,VP Q P)) (2.7)

9
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for untwisted charge I' € A, & NA.. Here, the ¢;’s are the Fourier coefficient of 1/A; =
> m>1 ck(m)g™ = % +k+ ..., where Ay = n*(7)n*(NT) is the unique cusp form of weight k&
under I'g(N). In the maximal rank case N = 1, we write ¢(m) = cj2(m) for brevity.

In contrast, the helicity supertrace g is sensitive to 1/2-BPS and 1/4-BPS states. For
1/4-BPS charge QAP # 0, it is given by a Fourier coefficient of a meromorphic Siegel modular
form [5, 6, 8]. In the simplest instance corresponding to dyons with ‘generic twisted’ charge
[ =(Q,P)in (Ac ~ Ap) ® (A, ~ NA,) and unit ‘torsion’ (ged(Q A P) = 1), !

Qs(C;t) =

_1\Q-P+1 ir[p Q?+0 P2+20Q-P]
() il / 30 & (2.8)
C

N ‘i)k72(l)7 g, U)

where the contour C in the Siegel upper half plane Ho parametrized by 2 = (p g) is given

v
by 0 < pp < N, 0<o0 <1, 0< v <1 with a fixed value Qy of (p2,02,v2) (see
below). The overall sign (—1)@P*! ensures that contributions from single-centered black
holes are positive [30, 31]. Here, ®1_o(p, 0, v) is a Siegel modular form of weight k — 2 under a
congruence subgroup I's o(N) C Sp(4,Z) which is conjugate to the standard Hecke congruence
subgroup

Tyo(N) = {(é g) C Sp(4,7),C = 0mod N} (2.9)

by the transformation S, defined in (A.10). ®;_5(p,0,v) is the image of a Siegel modular
form ®j_o(p, o, v) of weight & — 2 under I'; o(/V) under the same transformation,

2
O_a(p,0,0) = (VN)F (=ip) "+ 2 3, (-1, o, ”) . (2.10)
p p’p
Ignoring the choice of contour C, (2.8) is formally invariant under the U-duality group I'o(NV) x
O(2k—2,6,7), the first factor acting as the block diagonal subgroup (A.14) of the congruence
subgroup I's o (V). Invariance under Fricke S-duality follows from the invariance of ®,_5 under
the genus-two Fricke involution (A.39). Note that the sign (—1)@F*! also is invariant under
To(N) x O(2k — 2,6,7Z) and Fricke S-duality.
Importantly, both ®;_s(p, o, v) and ®_s(p, o, v) have a double zero on the diagonal divisor
D given by all images of the locus v = 0 under I'y o(N'). Hence, the right-hand side of (2.8)
jumps whenever the contour C crosses D. As explained in [9, 32], if one chooses the constant
part of Q5 along the contour C in terms of the moduli ¢ and charge I' via

2= A o | S

., R 1
M(Q, P) [1 <1 s

1 Pz —Qr-Pr
S \S\2>+m<,(@;p}z Q2 )} , (2.11)

where R is a large positive number (identified in our set-up as the radius of the circle), then
C crosses D precisely when the moduli allow for the marginal decay of the 1/4-BPS state of
charge I' =Ty + 'y into a pair of 1/2-BPS states with charges I'; and I's. The corresponding

! Using (A.39), one may rewrite (2.8) in the other common form (see e.g. [28, (5.1.10)]

_1)@-P+1 iﬂ[NpQ2+a P2/N+2UQ-P]
Q6(T;t) = ¥/ Pot—— .
! CPIC—2(0-7 12 U)

Note that our ®;_» differs from the one in [28] by an exchange of p and o, but agrees with ®, .(p, o, v) in [29].

10
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jump in Qg(Q, P;t) can then be shown to agree [33, 34, 35] with the primitive wall-crossing
formula [36]

AQ6(T) = —(=1)T0l2+1 0 (1)) Qu(Ty) | (2.12)

where AS)g is the index in the chamber where the bound state exists, minus the index in the
chamber where it does not.

The formula (2.8) only applies to dyons whose charge is primitive with unit torsion and
that is generic, in the sense that it belongs to the highest stratum in the following graph of
inclusions 2

NAe@NAe C C Am@Am C

A @ NA, C A, © NA. C A @ NA, Ac® A,y . (2.13)

When (Q, P) is primitive and belongs to one of the sublattices above, it may split into pairs
of 1/2-BPS charges that are not necessarily ‘twisted’ nor primitive. As explained in [13],
the study of 1/4-BPS couplings in D = 3 provides a microscopic motivation for the contour
prescription (2.11), and gives access to the helicity supertrace for arbitrary charges in (2.13)
beyond the special case of the highest stratum for which (2.8) is valid.

Indeed, it will follow from the analysis in the present work that for any primitive charge
(Q, P), the helicity supertrace is given by

~ _ 2 _ . _ *
(—1)QPH104(Q, Pit) = S MG (A (L G AT A0saT]
AEMQ’O(N)/(ZQ D<F0(N))
AT (Q)eADAR

_02 _0. _ N
Y G [aT (D) At amaT]
AeM>(Z)/GL(2,Z)

AT (Q)EAMDAR

_NQ® —0O- _ .
> G [T ()9 d ) AT angaT]
AEM»(Z)/GL(2,Z) N
ANy )EA@A.
(2.14)

where Cj_o and ék,g are the Fourier coefficients of 1/®;_5 and 1/‘1%—2 evaluated with the
same contour prescription as above, and {23 is conjugated by the matrix A. This formula is
manifestly invariant under the U-duality group G4(Z), including Fricke duality that exchanges
the last two lines. For primitive ‘twisted charges’ of ged(Q A P) = 1, only the first line is
non-zero and the only allowed matrix A is the identity such that one recovers (2.8). This
is also the dominant term in the limit where the charges @, P are scaled to infinity, since
terms with A # 1 in the sum grow exponentially as e™l@API/Idet Al a5 much slower rate that
the leading term with A = 1 [2, 8]. It would be interesting to check that the logarithmic
corrections to the black hole entropy are consistent with the R? coupling in the low energy
effective action, generalizing the analysis of [37, 6] to general charges, and to identify the near
horizon geometries responsible for the exponentially suppressed contributions, along the lines
of [38, 39].

After splitting C_o and C~'k_2 into their finite and polar parts, and representing the latter
as a Poincaré sum, we shall show that the unfolded sum over matrices A accounts for all

2The graph is drawn such that Fricke duality acts by reflection with respect to the horizontal axis.
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possible splittings of a charge (Q, P) = (Q1, P1) + (Q2, P») into two 1/2-BPS constituents,
labeled by A ~ (7 9) € My(Z) [33)],

_ P P —
(Q1,P1) = (p,7) m , (Q2, P2) = (g, ) H?

(2.15)

Generalizing the analysis in [40], we shall show that the discontinuity of Qg(T',¢) for an
arbitrary primitive (but possibly torsionful) charge I" is given by a variant of (2.12) where
Q4(T") on the right-hand side is replaced by

UI) = > uT/d), (2.16)
r/d edESGBAm

in agreement with the macroscopic analysis in [35].

2.3 BPS couplings in D=4 and D =3

In supersymmetric string vacua with 16 supercharges, the low-energy effective action at two-
derivative order is exact at tree level, being completely determined by supersymmetry. In
contrast, four-derivative and six-derivative couplings may receive quantum corrections from
1/2-BPS and 1/4-BPS states or instantons, respectively. At four-derivative order, the coef-
ficients of the R? + F* and F* couplings in D = 4, which we denote by f and Féiidz 9 are
known exactly, and depend only on the first and second factor in the moduli space (2.1),

respectively:

3
f(8) =~ lon(SHAS)) (217)
iniZdZ(i) _ R.N./ dPl(QiPQ FAak,fz,e[Pabcd}’ (2.18)
To(N\H1 P3 Ax(p)

where I'y,, , ¢ [Pabed) denotes the Siegel-Narain theta series (B.4) for the lattice Ay, = Agg—25,
with an insertion of the symmetric polynomial

Paped(Q) = QL,aQrpQr,Qr.a — 5(abQL Qr.d) + 5 3%abcd) (2.19)

167 2 2
and Ay is the same cusp form whose Fourier coefficients enter in the helicity supertrace
(2.6),(2.7). Here and elsewhere, we suppress the dependence of I'y, ,[Papeq], and therefore of
the left-hand side of (2.18), on the moduli ¢ € G,,. As explained in [22], both couplings
arise as polynomial terms in the large radius limit of the exact (V¢)* coupling in D = 3. The
latter is uniquely determined by supersymmetry Ward identities, invariance under U-duality
and the tree-level and one-loop corrections in heterotic perturbation string theory to be given
by the genus-one modular integral (1.4). In the weak heterotic coupling limit g3 — 0, (1.4)
has an asymptotic expansion

2 (2k,8) 3 (2k—1,7) _ QWI‘QR‘—&-QmaQ (+)

93 Furei = grgdtaded) + Fuiea™™ + > a@e 4 P (2.20)
3 Q€N 1,7

reproducing the known tree-level and one-loop corrections, along with an infinite series of

O(e~V 9 ) corrections ascribable to NS5-brane, Kaluza—Klein (6,1)-brane and H-monopole

12
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instantons. Here, Pézzd is a schematic notation for the tensor appearing in front of the expo-
nential, including an infinite series of subleading terms which resum into a Bessel function. In
the large radius limit R — oo, the asymptotic expansion of (1.4) instead gives, schematically,

Foped (@) =R* (£(S)d(@deay + Fypeq ™ ()
!/

+ Z Ek(Qv P) PC(LZZd G_QWRM(Q7P)+27Ti(a1.Q+a2,P)

(Q,P)EAe®Am (221)
QAP=0

(TN) —27TR2|M1H—27TiM1
+ Z Fabch1 e

My #0,Mo€Z
PeAm

where we used the same schematic notation Pé:ld for the tensor appearing in front of the ex-
ponential including subleading terms. The first line in (2.21) reproduces the four-dimensional
couplings (2.18), while the second line corresponds to O(e~#) corrections from four-dimensional
1/2-BPS states whose wordline winds around the circle. These contributions are weighted by

the BPS index ¢, (Q, P) = Q4(Q, P) given in (2.16),

- cd(NQ?,P%2Q-P cd(NQ?,P%2Q-P
& (Q, P) = Z Ck(_g(%%ﬂéﬂ) + Z Ck(_g(gN—sz)) . (2.22)
d>1 d>1
(Q.P)/dere®Am (Q,P)/d€EAm®NA.

The last line in (2.21) corresponds to O(e %) corrections from Taub-NUT instantons.

Our interest in this work is on the six-derivative coupling V2(V¢)? in the low energy
effective action in D = 3 (see (3.6) for the precise tensorial structure). The coefficient Ggf’;l) (9)
multiplying this coupling is valued in a vector bundle over the Grassmannian Gy, g associated
to the representation (H of O(2k). As announced in [13], and proven in §3, supersymmetric

Ward identities require that fobk‘éy(qﬁ) satisfies the following differential constraints

Do, Gy = 0 (2.23)

D[al[alpazaﬂGfgk]}i)cd - (2.24)

D[al[élDa2&2Da3}&3]GiZ’f’3 -0 (2.25)
D" DpaGped = —30efGood = (0)aGhy(fra T 9e) (G Fup)

20 Genyer = T Fieyian. Fea) 1o - (2.26)

Here, for two symmetric tensors Agp, Beg, we denote the projection of their product on the
representation FH by

A(ab,Bcd> = (AabBcd + AcaBap — 2A|a)(ch)(b|) . (2.27)

W =

The inhomogeneous term in the last equation (2.26), proportional to the square of the (V)4
coupling, originates from higher-derivative corrections to the supersymmetry variations. 3 It

(2k,8)

ab.ed (@), which accounts for

3Note that the properly normalized coupling in the Lagrangian is in fact %G
the factor of 7 on the r.h.s. of (2.26).
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follows from (3.16)—(3.20) that in heterotic perturbation string theory, G(ﬁk(’fg can only receive

tree-level, one-loop and two-loop corrections, plus non-perturbative corrections of order e~/ g3,
We calculate the one-loop and two-loop contributions in Appendix B using earlier results in
the literature [41, 42, 43, 44, 45, 46]. After rescaling to Einstein frame, we find that the

perturbative corrections take the form 4
3 1 2
6 ~(2k,8) (2k—1,7) 2 ~(2k—1,7) -1
95 Ganea = = gz danded) = 30, Gogy "+ 95Capca™ + Ol /95) (228

where Ggg” denotes the genus-one modular integral

EyTy, [P,
G ZR.N. / dprdpa B2 NylPa] (2.29)
To(N\H1 P2 Ay

with Py, = Qr.oeQrp — 45;1;)’2 and Eg = Fy — ﬂ%z is the almost holomorphic Eisenstein series of

weight 2, while G;’;,qc)d the genus-two modular integral (of which (1.7) is a special case),

430, d3Q, Tx, [Pabed
Gf;;fgd_R.N./ 1029 T, Fobed (2.30)

T2,0(N)\H2 |QQ|3 Do
Here P, q is the quartic polynomial

3 3
_ r s t U r s
Pab,cd = ErtESuQL(aQLb)QL(CQLd) - m5<ab,QLc(QQ)rsQLd> + m&ab,écd) )

1 ) . 1
0(ab,QLe(Q2)rs Q1 gy + m%bﬁc@) ,(2.31)

3 T S t w
= (0P RO~ g

and for any polynomial P in Q7 , and integer lattice A, , of signature (p, q), we denote

I [P = 10077 Y P(Qra) ™0 @it QR O T (230
7 QEAp,¢®Ap,q

where 7, s = 1,2 label the choice of A-cycle on the genus-two Riemann surface.

Since the modular integral (2.30) itself satisfies the differential constraints (2.23)-(2.26),
as shown in §3.3, it is consistent with supersymmetry to propose that the exact coefficient of
the V2(V¢)* coupling be given by (1.7). In §§4 below, we shall demonstrate that the weak
coupling expansion of the Ansatz (1.7) indeed reproduces the perturbative corrections (2.28),
up to O(e~1/9) corrections. Unlike the (V¢)* couplings (2.20) however, the latter also affect
the constant term in the Fourier expansion with respect to the axions a’, as required by the
quadratic source term in the differential equation (3.20). Such corrections can be ascribed to
(NS5, KK, H-monopoles) instanton anti-instanton of vanishing total charge.

In the large radius limit, the Vz(V¢)4 coupling must reduce to the exact R2F? and V2F*
couplings in D = 4. Consistently with this expectation, we shall find that the asymptotic

“The tree-level term comes from the double-trace contribution in [47]. The relative coefficients of the three
contributions are determined by the differential equation required by the supersymmetry Ward identity, which
also ensures that there are no contributions at higher loop order.
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expansion of (1.7) in the limit R — oo takes the form

Gfbkcil) =R' szchd4) Céﬁ)( - 12)R65<a6,5v5>
/
+ Z 5( G<2k 1, 7)(Q P, t) —27RM(Q,P)+27i(a1-Q+az-P)

(Q,P)EAeDAm
QAP=0

!/

Y Ch@ PPl e @ g

@D ndim (2.33)
/ /
+ > S a(Qu P a(Qa, P) PGy (Qr, Pri Qo Poit)
(Q1,P1)EADAm (Q2,P2)EADAM
QiNP1=0 Q2AP>=0
Xe—%RMMQhHH%MQm&H+%ﬂm(@+Qﬂ+@(ﬂ+&”
(TN) —27R2| M, |+-27iM (I7)
+ Z G(ab,ch1e mEIM 1w—’—G’ab,cd .

M0

In the first line, aP ab, d) predicts the exact R?F? and V2F* couplings in D = 4, which are
exhibited in (5.67),(5.70) below, and involve explicit modular functions of the axio-dilaton S,
as well as genus-two and genus-one modular integrals for the lattice A,,. These couplings are
by construction invariant under the S-duality group I'g(/N) and under Fricke duality.

The second line in (2.33) are the 1/2-BPS Fourier coefficients, weighted by a genus-one
modular integral G.4(Q, P;t) for the lattice orthogonal to @, P given in (5.18), (5.46). This
weighting is similar to that of 1/2-BPS contributions to the V4R* coupling in maximal su-
persymmetric vacua [16], and is typical of Fourier coefficients of automorphic representations
that do not belong to the maximal orbit in the wavefront set.

The third line corresponds to contributions from 1/4-BPS dyons, weighted by the moduli-
dependent helicity supertrace, up to overall sign,

Cre—2(Q, Pit) = (-1)9F T Q4(Q, P3t) (2.34)

whereas the fourth line corresponds to contributions from two-particle states consisting of
two 1/2-BPS dyons that are discussed in detail in Appendices C and D. While the two
contributions on the third and fourth line are separately discontinuous as a function of the
moduli ¢, their sum is continuous across walls of marginal stability. In Appendix C we show
the non-trivial fact, especially for CHL orbifolds, that for fixed total charge I', the sum involves
all possible splittings I'; + I'y, weighted by the respective helicity supertraces (2.22). This
complements and extends the consistency checks on the helicity supertrace formulae [29] to
arbitrary charges. Moreover, we show in Appendix E that these contributions are consistent
with the differential constraint (2.26). The 1/4-BPS Abelian Fourier coefficients of the non-
perturbative coupling are the main focus of this paper, and the results are discussed in detail
in section 5.3.

The first term Ggf:d) , on the last line corresponds to non-Abelian Fourier coefficients of
order e’R2, ascribable to Taub-NUT instantons of charge M;. We compute them in Appendix
8G by dualizing the Fourier coefficients in the small coupling limit g5 — 0 computed in §4,
rather than by evaluating them directly from the unfolding method.

15



SciPost Physics

Finally GU!) contains contributions associated to instanton anti-instantons configurations,
which are not captured by the unfolding method but are required by the quadratic source term
in the differential equation (2.26). This includes O(e~%) and O(e~%") contributions to the con-
stant term, which are independent of the axions a1, as, %, and contributions of order (’)(e_Rz)
to the Abelian Fourier coefficients, which depend on the axions a, ag as e2™(@1:@+a2:P) g are
independent of 1. The latter can be ascribed to Taub-NUT instanton-anti-instantons, and are
necessary in order to resolve the ambiguity of the sum over 1/4-BPS instantons [48], which is
divergent due to the exponential growth of the measure Cj,_o(Q, P; Q%) ~ (—1)@FPH1eml@AP],
We do not fully evaluate GUD) in this paper, but we identify the origin of the O(e_Rz) cor-
rections as coming from poles of 1/®;_o which lie ‘deep’ in the Siegel upper-half plane Hs
and do not intersect the fundamental domain, becoming relevant only after unfolding. While
the precise contributions can in principle be determined by solving the differential equation
(2.26), it would be interesting to obtain them via a rigorous version of the unfolding method
which applies to meromorphic Siegel modular forms.

In §6, we discuss other pertubative expansions of the exact result (1.7), in the dual type I
and type II pictures. In either case, the perturbative limit is dual to a large volume limit on
the heterotic side, where either the full 7-torus (in the type I case) of a 4-torus (in the type II
case) decompactifies. We find that the corresponding weak coupling expansion is consistent
with known perturbative contributions, with non-perturbative effects associated to D-branes,
NS5-branes and KK-monopoles wrapped on supersymmetric cycles of the internal space, 177
in the type I case, or K3 x T2 on the type II case.
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3 Supersymmetric Ward identities

In this section, we establish the supersymmetric Ward identities (3.16)—(3.20), from linearized
superspace considerations, and show that the genus-two modular integral (2.30) obeys this
identity.

3.1 V?(V®)* type invariants in three dimensions

This analysis is a direct generalization of the one provided in [22, §3]. We shall define the
linearised superfield W3, of half-maximal supergravity in three dimensions that satisfies to
the constraints [49, 50, 51]

DiWia = Ta)%%0ja s Dixgja = —1(0")ap(T")5'0,Waa , (3.1)

with @ = 1 to 8 for the vector of O(8), i = 1 to 8 for the positive chirality Weyl spinor
of Spin(8) and 2 = 1 to 8 for the negative chirality Weyl spinor. The 1/4-BPS linearised
invariants are defined using harmonics of SO(8)/(U(2) x SO(4)) parametrizing a Spin(8)
group element u™;, u"2"3; u,,; in the Weyl spinor representation of positive chirality [52],

S §Yupue =0, (3.2)

7] Y - %j,,T2T3 ., 5283  __ _T282_T353 %j,,T1.,,7273 . __ 19,71 .,,51 .
0 up ™ =0, YU = g% , 0™ =0, 0Yutiuy =0,

1 ror3 , 8283 . _ §. ij 51— 8§51
2Up (U ) F ErgsyErasgt P P u Ty =645, 6P upu =0

where the r4 indices for A = 1,2, 3 are associated to the three SU(2) subgroups of SU(2); x
Spin(4) = SU(2); x SU(2)2 x SU(2)3. The harmonic variables parametrize similarly a
Spin(8) group element urse, 12 @ in the vector representation and a group element
w5, w7 U,y in the Weyl spinor representation of opposite chirality. They satisfy the same
relations as (3.2) upon permutation of the three SU(2) 4.

The superfield W? = u"3%W,, then satisfies the G-analyticity condition

y Urg

U™ DL Wy, = DIIW3 =0 . (3.3)

One can obtain a linearised invariant from the action of the twelve derivatives Dq,, = um-Dfx
and D72 = 4™"3; D on any homogeneous function of the W/3’s. The integral vanishes unless
the integrand includes at least the factor W[}IW,?]W[}:WC%] such that the non-trivial integrands
are defined as the homogeneous polynomials of degree 4+2n+m in W3 in the representation
of SU(2) isospin m/2 and in the SL(p, R) D SO(p) representation of Young tableau [n+ 2, m]
(n 4+ 2 rows of two lines and m of one line) that branches under SO(p) with respect to
all possible traces. After integration, the resulting expression is in the same representation
of SO(p) and in the irreducible representation of highest weight mA; + nAg of SO(8), i.e.
the traceless component associated to the Young tableau [n,m], with Aj, Ay denoting two
fundamental weights.

It follows that the non-linear invariant only depends on the scalar fields through the
tensor function Fyp .q and its covariant derivatives D" Fyy, .q and covariant densities £[n7m] in
the corresponding irreducible representation of highest weight mA; 4+ nAg of SO(8) that only
depend on the scalar fields through the covariant fields

1 o
Ppai) = u¢upua[,a Xaias DuXaia = VuXaia + 6u¢u (WuabXaia + iwpdé(rab)i]Xaja) , (3.4)
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and the dreibeins and the gravitini fields, and where

Py =dpp'nispra’ wab = —dpra’nrspry’ 5 = dpra’nropg” (3.5)

are defined from the Maurer—Cartan form of SO(p,8)/(SO(p) x SO(8)). Using the known
structure of the tgtrV,FV/FtrFF invariant in ten dimensions [47],° one computes that the
first covariant density Ly bosonic component is

rabed V87T (P([aav P)] PM[ VUPV|d]b+2P[ @ Ve Pﬂ|b] PV[C‘CLVUPd]b (36)

a bla c o pv|dlb ala b]b c o pvl|d
PV, priap e, gopridh  yp laay, p P prlego p '1,;]+...) .

The factor of 7 is introduced by convenience for the definition (2.30) to hold. Investigating
the possible tensors one can write in this mass dimension, one concludes that the tensor
densities Ly, ., are only non-zero for 0 < n < 2 and 0 < m < 4 and the density L 4 ~ X2
with open SO(p) indices in the symmetrization HHH. The invariant admits therefore the
decomposition

L = Fab,cdﬁabﬂd + Ded ab7cd£gb7cd,e + D(e(&Df)b)Fab,cd['ZblA;Cdﬁ’f + D[e[&,Df]b]Fab,chZZ’Cdﬁf

b b a Q 4102,0304,0506,07a8,b1,b2,b3,b4
+ 4 D(bl( 1., 'Db4) 4)Da1al .. 'Da4a4Fa5a5,a7a8£ 1 a5a6,a7as,01 3 , (3.7)

a102,a304,b1,b2,b3,b4

Lo1a2 yeer02n4+302n+4,015---,0m
dle7---7d2n71&2n1b1a---ab7n

mdq + nag of SO(8) and admit the symmetry of the Young tableau [n + 2, m] with respect
to the permutation of the SO(p) indices. In particular, Fgpq transforms according to H,
realized by first symmetrizing along the columns and then antisymmetrizing along the rows
[ab], [ed].

Checking the supersymmetry invariance (modulo a total derivative) of £ in this basis, one
finds that there is no term to cancel the supersymmetry variation

where the are in the irreducible representation of highest weight

5Fab,cd = (?i(rf)ijxje)DefFab’cd (38)

of the tensor Fgp ¢ and of its derivative when three open SO(p) indices are antisymmetrized,
hence the tensor F; ¢ must satisfy the constraints

Doy Fuyaglpe =00 Doy Doy Flpyea =0, Dy Day™ D) Frgep = 0. (3.9)

1

Similarly, because the Ly, ,, are traceless in the SO(8) indices, the SO(8) singlet component
of §(DF)Ly 1) can only be cancelled by terms coming from F3L g, i.e.

| .
Fab,cd(sﬁab76d + gl)eatpf&Fab,cd(E che)ﬁgbpd’f ~0 (310>

modulo terms arising from the supercovariantization, so that the covariant components must
satisfy

bi,_ ¢ ab,cd,e bo
Z(efcxe)ﬁé + = 5

Swith ts F* = F,, F¥° Fyp FP* — 1/4(F,, F*)2,

6£ab,cd +

C c

((erc [a)c’i]e’cd’ﬁ(zréX[C)ﬁ”ev“b’e) =V,(..). (311)
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Therefore, the tensor Fy, .q must obey an equation of the form

De&Ddeab,cd = bl <_6efFab,cd + 5e[an]f,cd + 5e[ch]f,ab>
— 32 (01 Fhje.ca + OficFuje,an) — 4020 Fyje,pypa - (3-12)

for some numerical constants by, by which are fixed by consistency. In particular the integra-
bility condition on the component antisymmetric in e and f implies by = 4 — 3bs.

Before determining the constants b;, it is convenient to generalize Fy 4 to a tensor chg?z
on a general Grassmanian G, 4, which would arise by considering a superfield in D = 10 — ¢
dimensions with 4 < ¢ < 6, with harmonics parametrizing SO(q)/(U(2) x SO(¢—4)) [53]. The
same argument leads again to the conclusion that Fézgfi satisfies to (3.12) with by = 2 — 3b,.
Equivalently, these constraints follow from the general Ansatz preserving the symmetry ( of
the indices ab, cd and the two first equations in (3.9). An additional integrability condition
comes from the equation

am b (Pa) a b
D[al D. D|a2\5FaZ}Z,cd - [D[al » De ]D|a2\b ar as)b,cd

1 R N
(p,a) a b1 o (p9)
iFasjbed + 5 PebPlan s Pz 1F

_ a( 6ba—q (»,9) 3b (»,9) (,2) (p,9)
- D[ala( 24 5€|a2Fa§]z,cd + 725b|a2 Faz](é,cd + 2b350]|0l2 FaZ]Z,e[d + b360”a2Fa§]lid,be)

_ a 3— (p,a) 1 (p,q) 1 (p,q)
- D[ala(Tq5elazF aslbed T 30las Pl +§5cua2Fa§]Z,e[d>

asle,cd
1 .
+ZDea(5b[a1FéZ§;},cd + 0 [alFéZg],b[d) J (3.13)

which is indeed consistent, if and only if by = % and so b) = % so that (3.12) reduces to

Q (ra) _ 3— (p,9) —6 (p,9) (p,0) (p,0)
D" Ppyatupea = 5 0 Faea + 5 OofaFy(fea + SoicFul(far) = 2elfaFificpya - (3:14)
Alternatively, one can represent a tensor with the symmetry FH with two pairs of indices
that are manifestly symmetric, i.e. Gaped = Gpa,cd = Gabde = Ged,ab Such that Ggp g = 0,
such that
Fabed = Galaya » Gabed = =3 Fayc.ay - (3.15)

The tensor Gy cq satisfies the constraints

D[aldG(P,q) =0, D[al [&12)02&2}6;1(?741) =0, D[a1 [&12)@2&213%]&3}(;(6132}( =0. (316)

azlb|,as]c aslb,ed

and

D("Dpyalyog = 320es Gty + 6z;q(‘Se)(aGéI))’(q},cd + 56)(6G((113’(q an) T %5<ab7G(CIL)i’>q,)€f - (317)
The discussion so far only applies to a supersymmetry invariant modulo the classical equa-
tions of motion, whereas one must take into account the first correction in (V®)?*. The direct
computation of this correction via supersymmetry invariance at the next order is extremely
difficult, however, one can determine its form from general arguments. The modification of
the supersymmetry Ward identities implies that the corrections to the differential equations
must be an additional source term quadratic in the completely symmetric tensor F (ilf’c‘fi) defin-
ing the (V®)* coupling. This correction should preserve the wave-front set associated to the

original homogeneous solution, so it is expected that (3.16) is not modified, while the second
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order equation (3.17) admits a source term quadratic in F égfd) and consistent with (3.16).

Inspection of the various possible tensor structures shows that there is indeed no possible

correction to (3.16), because Féifd) satisfies itself

a ) _ amy b pva) _
Dy Fyig =0, DDy IFGH =0 . (3.18)
Equation (3.17) admits the symmetry associated to the Young tableaux F- and Hﬂj, however
it is easy to check that the latter is trivially satisfied

1 N

§D[allapbdﬂf£3],cd = _%5b[a1FéZlf;},cd - %50][G1Fé:g;],b[d ) (3.19)
and therefore cannot be corrected by a source term. The only source term quadratic in F ;11221)
with the symmetry structure - that also satisfies to the constraint (3.16) is F‘g’ggb’QFégq&‘g.
It is indeed straighforward to check that the corresponding combination sourcing (3.17),
namely Fc(]pe’[qa)gFé]’}z)[ > satisfies (3.9) using (3.18), whereas any other combination with the
symmetry structure - involving the Kronecker symbol would not.

We conclude that the correct supersymmetry constraint for Gfl”b’qu reads

a (pa) _ 3— (a) | 6— (p-a) (p,a) 3 (p.a)
Dee Df)dGa%:ch = Tq5ef Ga%,ch + Tq (56)(‘1Gb1))(qf,cd + 56)(067,;;((1 f,ab) + §5<ab7GcZ>q,e f

_ 3£F(Pv‘1) gF(p,q) (3.20>

2 " le){ab, " cd)(flg
where w is an undetermined numerical coefficient at this stage. In §3.3 we shall show that
the genus-two modular integral (2.30) satisfies this equation with @ = .

Let us note that this discussion only applies to the Wilsonian effective action. As we
shall see in section B.2.4, the differential Ward identity satisfied by the renormalized coupling
GAabvcd appearing in the 1PI effective action is expected to be corrected in four dimensions
(¢ = 6) by constant terms and by terms linear in Fabcd-

Because of the quadratic source term in (3.20), the tensor Gy cq does not belong strickly
speaking to an automorphic representation of SO(p,q). One can nonetheless define a gener-
alization of the notion of automorphic representation attached to this tensor. The linearised
analysis exhibits that the homogeneous differential equation is attached to the SO(p, q) rep-
resentation associated to the nilpotent orbit of partition [32, 17+976] such that the nilpotent
elements Z ; € so(p + ¢)(C) © (s0(p)(C) @ s0(q)(C)) satisfy the constraint (cf. (3.9), (3.12))

292200 =0, ZuwZ¥ =0, (3.21)
For a representative of the nilpotent orbit in the unipotent associated to the maximal parabolic
k(k—1
GL(k) x SO(p — k,q — k) x R2(Pra=2k)+ S this gives the constraints 6
Qu"Q" QY =0, Qu"Q; Ky =0, (3.22)

which admits a subspace of solutions of dimension 2(p+q — k —2) for Q;" € SL(k) x SO(p —
k,q—k)/(SO(2) x SL(k—2) x R2 k=2 x SO(p—k —2,q— k)) € R>®*+9-2k) and a subspace of

5The unipotent being non-Abelian for & > 2, one cannot generally define the Fourier coefficients for
(Q", Kij), but one must consider separately the Abelian Fourier coefficient with K;; = 0, from the non-
Abelian Fourier coefficients with K;; and a subset of the charges Q7" defining a polarization.
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k(k—1)

dimension 2k —3 for K;; € R~ 2, and therefore a Kostant-Kirillov dimension 2(p+¢—4)+1
that is exactly saturated by the Fourier coefficients in the maximal parabolic decomposition
with k& = 2.

The tensor Fyp.q is instead in an automorphic representation associated to the nilpotent
orbit of partition [3, 177973 such that the nilpotent elements Z_; € so(p+q)(C) & (so(p)(C) @
s0(q)(C)) satisfy the constraint

22" =0, ZeZS=0. (3.23)

For a representative of the nilpotent orbit in the unipotent associated to the maximal parabolic
k(k—1)

GL(k) x SO(p — k,q — k) x R*PHa=2k)+=5= thig gives the constraints

Qi@ =0, QMK =0,  KyKy=0, (3.24)

which admits a subspace of solutions of dimension p 4+ ¢ — k — 1 for Q;” € SL(k) x SO(p —
k,q—k)/(SL(k—1)x R*1x SO(p—k —1,q—k)) € R¥P+4-2k) and a subspace of dimension
k-1 for K;; € ]Rk(kin, and therefore a Kostant—Kirillov dimension p 4+ g — 2 that is exactly
saturated by the Fourier coefficients in the maximal parabolic decomposition with k£ = 1.
One easily checks that the sum of two generic elements (Q!", K;;) solving (3.24) always solve
(3.22), so that the quadratic source in Fyqq sources the Fourier coefficients of the tensor Ggp,cq

consistently with the automorphic representation associated to the nilpotent orbit of partition
[32,1PFa76],

It is important to note that the 1/4-BPS black hole solutions (single-centered and multi-
centered) are solutions of the Euclidean three-dimensional non-linear sigma model over O(2k, 8)
/(O(2k) x O(8)) which are themselves associated to a real nilpotent orbit of O(2k, 8) of par-
tition [32, 12+2¥] [54, 55]. This is consistent with the property that the Fourier coefficients in
the maximal parabolic decomposition GL(2) x O(2k —2, 6) x R2(4+2F)+1 saturate the Kostant
Kirillov dimension and are proportional to the helicity supertrace associated with these black
holes.

3.2 R?F? type invariants in four dimensions

In four dimensions, there are two distinct classes of six-derivative supersymmetric invariants.
In the linearised approximation, they are defined as harmonic superspace integrals of G-
analytic integrands annihilated by a quarter of the fermionic derivatives, and can be promoted
to non-linear harmonic superspace integrals [56]. The first class of invariants is the one defined
in the preceding section for ¢ = 6. It includes a Gﬁ:j OV (FeFP)V(F¢F?) coupling with a
tensor Gfb'f;; 9 satisfying to (3.16) and (3.20). The second class of invariants is defined as a
chiral harmonic superspace integral at the linearised level, as we now explain.
In four dimensional supergravity with half-maximal supersymmetry, the linearised Maxwell
superfield W5, ~ W;j, satisfies the constraints
DoixWija = €ijr\. DEWija = 266 ajla »  DaiXhy = 6] Fapa (3.25)

aa )

whereas the chiral scalar superfield satisfies

DqiS = Xai DiS=0, Deaixgi = Faopij (3.26)
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with ¢ = 1 to 4 of SU(4) and «, & the SL(2,C) indices. The chiral 1/4-BPS linearised
invariants are defined using harmonics of SU(4)/S(U(2) x U(2)) parametrizing a SU(4) group
element u,, u;* with r and # the indices of the two respective SU(2) subgroups. The superfield
Wasa = ustuyg? Wija = %sf’gufiugj Wijq then satisfies the G-analyticity constraints

u;iDai(U3iU4jVVija) = DO”:W34Q =0 y uiTDé(u?,i’leWija) = DgW34a =0 . (327)

One can obtain a linearised invariant from the action of the eight derivatives D,; and the
four derivatives D7, = u;" DY, on any homogeneous function of the G-analytic superfields Wy,
and S. Using for short u3? = (I';)%u;3u;* and the projection (aj...a,)" on the traceless
symmetric component, one gets

1 a1 nt2 o24m
g Caran 2 Wag - W™ 5

/du ugt .. ugi [D?)[ D]
= lml Ca1...anabI/Va1 (a1 Wa2a2 R Wa"&n)lsmﬁfgab

+¥C . bwaz(d I/Vam3 Wwan . Smﬁ(o)alab
at...ana 2 Ga .- an N

(n—1)Im! a1)'+2
1 - b
+mca1manabwal (@1 Wa2&2 - Wan&n),sm 1[,5’2(1 + ...
1 " —2 ~(0)ar...agab
+<n _ 6)!(7’7], _ 2)!Ca1.‘.an(lbwa7(d7wa6d6 AR Wa dnSm £&ld6)l+6 + RO
1

a a an m—6 p(0)aiazab
+(n —3)im = 6)!Ca1...anabW 2asW ™y W, 8 ﬁala;)/iu +0(...), (3.28)
[n+4]

where the C[n] e

are symmetric tensors that only depend on the scalar fields through their

derivative. One works out in particular that ﬁ(f%ab includes a term of type R?F? as

ﬁf%ab ~ FgBFdeCaﬁwz;Caﬁ’Yé + ... (329)

with Cq g5 the complex Weyl curvature tensor (which we denote schematically by R), whereas
the highest monomials only depend on the fermion fields as

(0)ay...agab N4+\4. 4 (0)ai...asab 3413. 5 (0)ay...asab 412 6
E&1...dg+6 ~ )\ )\ X > L&1...Lf5+8 ~ )\ )\ X E&1...d4+10 ~ )\ )\ X
(0)aiazaszab N4y T (0)aiazab N4 8
LOmeaseb XA, LOmee XS (3.30)

Note that Egab is of U(1) weight —2, so one can anticipate that it must be multiplied by
a modular form of weight 2 at the non-linear level. At the non-linear level, derivatives of
the scalar fields only appear through the pull-back of the right-invariant form P ; over the
Grassmanian and the covariant derivative (S—S)719,S of the upper complex half plan field S.
One defines in the same way the covariant derivative D ; on the Grassmanian and the Kéhler
derivative D = (S — S )(% + 5 on a weight w form. According to the linearised analysis, the
supersymmetry invariant is associated to a tensor Ggp(¢,.S), holomorphic in S and function
of the Grassmanian coordinates ¢.

Due to the superconformal symmetry PSU(2,2|4) of the linearised theory in four di-
mensions, the non-linear invariants are in bijective correspondance with the linearised in-

variants, themselves determined by harmonic superspace integrals. However, the linearised
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invariants that combine to define a general class of non-linear invariants are not necessar-
ily defined from the same harmonic superspace. The general V?F* type invariants de-
fined in the preceding section are determined by vector-like harmonic superspace integrals
of SU(4)/S(U(1) x U(2) x U(1)). In contrast the R?F? type invariants described in this
section involve both structures, such that the defining function Gu(¢,S) is of weight zero,
and the terms in the Lagrangian that do not involve its Kahler derivative D are defined at the
linearised level from SU(4)/S(U(1) xU(2) x U(1)) harmonic superspace integral of a restricted
type. These invariants are constructed explicitly in [56] for a SO(p) invariant function on the
Grassmannian. One finds that G,;(¢, S) must be holomorphic in S, as the linearised analysis
suggested. It defines a Lagrange density £ that decomposes naturally as

L= gabﬁab + 'D(aagbc)ﬁabc@ + D(a(&pbi))gcd)ﬁabajai) + ...
—+ DgabﬁibQ + -+ DD(al ar ... Dagaﬁgtnag)['almas[zl...fla-i-Q
+ D2gab£ib4 4o DQD(aldl . 'Da5&5ga6a7)£a1ma7d1..-&5+4

+ D7gab£ib14 + D7D(a&gbc)£abcd+l4 + D7D(a(dpbb)gcd)ﬁade&i,+14 ’ (331>
where the £["+2 (n]+m are SL(2) x O(2k — 2, 6) invariant polynomial functions of the covariant
fields and their derivatives and the vierbeins and the gravitini fields. Because non-linear in-
variants induce linear invariants by truncation to lowest order in the fields (3.4), the covariant
densities £ 12 [n]+m reduce at lowest order to homogeneous polynomials of degree n+2 in the
covariant fields (3.4) that coincide with the linearised polynomials £(O+2l (n]+m for m > 2.
For m = 0, the linearised invariants £(9"+2] (n] are the real analytic superspace integrals de-
scribed in the preceding section [n + 2, m] for n = 0, and where indices are contracted with
5% to reduce the representation from the Young Tableau [2,m] to [0,m + 1]. The analysis
of the invariant defined as a non-linear harmonic superspace integral indeed shows that the
component £% is of the type

L% = /=gts(2V(FUFY )V (F.FC) + V(F.F*)V(FYF) +...) , (3.32)

with tsF* = FogFOPF, . F%% and

L=V *gFC-‘jBFO"B”CawC“W o (3.33)

The complete invariant is the real part of this complex invariant. So the four-photon MHV
amplitude gives a contribution to the Wilsonian effective action in Gu(¢,S) + Gap(0, S),
whereas the amplitude with two gravitons of positive helicity and two photons of negative
helicity gives a contribution in DGu(¢, S). Because DGyy(¢, S) = 0, we will usually refer to a
single function G (6, S, S) = Gup (¢, S) + Gan(9, S).

Similarly to [22], one can show that supersymmetry at the linearised level implies tensorial
differential equations of the form

Dy DGy = 254 GY) + 35wGly . DGyl =0, (3.34)

with ¢ = 6, where the coefficients of the two terms on the right-hand side have been fixed by
requiring that these constraints are integrable.
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As in the preceding section, this linearized analysis does not take into account the lower
order corrections in the effective action and the local terms coming from the explicit decom-
position of the effective action into local and non-local components. The coefficient Fpeq(p)
of the F* coupling and the real coefficient £(S) of the R? coupling give rise to source terms
in these differential equations, such that we get eventually

,Ddd,Dchab(S’ @) = _35d(cGab) (Sv SD) + % 5(ach)d(Su SO) + GS(S)Fade(SD) )
_ 3
DDGab(S7 90) = EFabcc(Qp) : (335)

Finally, let us note that the same class of harmonic superspace integrals (3.28) produces
higher derivative invariants by integrating instead

S W ST (Fapsa Fyy Pt

(3.36)
This gives rise to chiral 1/4-BPS-protected invariants of the same class, including couplings
of the form

34 34,34 34 [ 811794 1
/du Uay -+ Ugy Uy - U, [D°][D ]n!(m+2)!(p+1)!ca1'-'an

GEMHD (S,) CPVASVES(FUFa2) . (Fiw-1Fio) (3.37)

a1&2md2p
Here C is the Weyl tensor and G®”(S,¢) is a rank 2p SO(6) symmetric traceless tensor,

which is a weight 2p + 4 weakly holomorphic modular form in S. It satisfies to a hierarchy of
differential equations on the Grassmannian [57]

Q (2p+4)  __ (2p+4) _ pcetd)
Daoapg&:..fup - Da[&l gd;])dg...dszrl - ng:..&gp =0 ’
Da Dol = —2(0 + 2)8abG5r 2, + Pagas Divjaz oy - oy - (3.38)

On the type II side these couplings can be computed in topological string theory [58].

3.3 The modular integral satisfies the Ward identities

In this subsection, we shall prove that the modular integral

A30,d3Q T [Pab,ed]
Gy = RN. / T (3.39)

Too(N\Hy 22 Dp_o(Q)

satisfies the differential equations (3.16) and (3.20), with a specific value of the coefficient
w in the quadratic source term. Here, ®;_o(2) is the meromorphic Siegel modular form
defined in (A.33), and F/(i,)q[Pab,cd] is the genus-two partition function (2.32) for a level NV
even lattice of signature (p, q), with an insertion of the quartic polynomial Py 4 defined in
(2.31). Since ®;_o and Fj\z;q[Pab’cd} are modular forms of weight k¥ — 2 and 257 +2 =k — 2
under I'y o(N), the integrand is well defined on the quotient I's o(N)\Hz2. The symbol R.N.
refers to a regularization procedure which is necessary to make sense of the integral when
q > 5, as discussed in Appendix B.2.4.

In order to derive these results, we shall first establish differential equations for the general
class of genus-two Siegel theta series F/(\zlf , [P], where the polynomial P(Q) is obtained by acting
on a homogeneous polynomial of bidegfee (m,n) in (6,4Q7 Q7,ersQrQR)° respectively, with
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A
the operator |Qg]"6_87§, where €, is the rank-two antisymmetric tensor with €12 = 1 and As
is the second order differential operator

— 9 —1\rs 9 9 —1\rs 0
Az = Z @(QQ ) 8Qia + Z aQrRA (QZ ) ang ) (340)

Under this condition, one can show using Poisson resummation that Fffp) q[P} satisfies

(—ip-eje) 7
|A;,q/AP7¢I|
p—2

which implies that I‘/(\Q;q[P] transforms as a modular form of weight 5= + m — n under

I'20(N). For our purposes, it will be sufficient to focus on polynomials of the form, using

(Qa 3 Qb) = 57‘3@2@?,7

I, P17 = T [P, (3.41)

a1...am,b1...b;m,C1...6n,d1...dn

s {((QL(MW Qripr)) - - - (QLjay)E Qb)) (QR(ey|E Qpridy) -+ (QRjea)E QRCzn))} ,
(3.42)

where (b1 ...by,) denotes all symmetric permutations of by, ..., by, and similarly for hatted
indices. The quadratic polynomial P = Py .4 arises in the case (m,n) = (2,0) with no
contraction among the left-moving indices, as written explicitely in the first line of (2.31).

As in [22, section 3|, one can obtain the differential equations satisfied by (3.39) by acting
with the covariant derivatives D ; defined by

]' ' T
Dal} = i(QLaarI; + QR’I;am) 9 (343)

where 0% = % and 0% = %;?; Recalling that pL,aI and pRI;J are the left and right

orthogonal projectors on the Grassmaniann Gp,, = O(p,q)/[O(p) x O(q)], one can use the
effective derivation rules

1 1
D ipre’ = §6achj,I : D ipre’ = 5535PL,¢11 , (3.44)

Acting with D4 on (2.32) we get
Deér/(\?,q[P] =Ty, [(Deg - QW(QLeQQQRQ»P} ; (3.45)

where (Qr.2:QR5) = (QQ)TSQEGQ;@ is a short notation that will be used in the following.
It will prove useful to compute the commutation relations

[As, Deg] = 2(0:0519), (A2, QL] = 2(0:051)", (3.46)
(A2, QLeQkg) = 207023 105)" + 205, (2 10e)", (3.47)
(A, Q1eQ7 ] = 2001(05 1) +4QY (2595, (3.48)
with the Baker-Campbell-Hausdorff formula
0T 04 [0, 0]+ (A, [A0, 0] + ..., (3.49)
87 2! (87)?
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one obtains

A
Degrf\iiq[P} = _QWF/(\Q;Q [678773 ((QLeQQQRg) (47T)2 (a Q 16 ))6 8m ] . (3.50)

Note that the derivation rules ensure that the constraints (3.16) are automatically satisfied at
the level of the integrand, from the structure of (3.42) with n = 0. Antisymmetrizing (3.50)
with n = 0, one obtains

5 _B2 _1ady 22
D[egr/(\iiq[Pa1|...am,\b1}..‘bm] - F/(\zp),q |:6 s 8%(8[692 ag)egﬂ Pa1|...am,|b1]...bm} ) (351>

A
which vanishes identically since e Py ...am br..b,, does not depend on Qr. The same argument
goes for Dy, [efo]F(2) [Pa1)...amybr...bm ) a0d D [efoD ]g]F > [Pal...am,b1...bm]a and we conclude
that for m = 2, the modular integral (3.39) satisfies

D[eéGa\b,|c],d =0, D[eépffGa}b,cd =0, D[e [éDf ng] d Gab,cd =0, (352>

which thus establishes (3.16). Note that these properties are independent of the details of the
function 1/®5_o(2).

Now, the main equation (3.20) arises by applying the quadratic operator Dgf = D(eng)g
on the lattice partition function with polynomial insertion, and commuting with the summa-
tion measure ¢mQLURL—ITQROQR of the partition function

D41 [P =T} [ (4D — 87(Qu2Qr?)Dyy; — 26
1677 tr [2(QreQuy — 32957) 2 (Q% — £951)]) P|.

Using the commutation relations (3.46), one can re-express it to make modular invariance
explicit

ADZTY) [P] =T} {6 5 (167r (QrLe2Qr? )(QRgﬁzQLf) — dep(ag + (Qrgd))

— q(Qr9y)) — 2(Qr(02Qry) (09951 0s) + Tor 2(5 0, 19,090, 1af))eg’r P}

and notice that all the terms in (3.54) except the first and last one will become linear tensorial
combinations of the original partition function F(2) [P] The first term on the r.h.s of (3.54)
can be rewritten as the action of the lowering operator for Siegel modular forms,

_ . . a
D,y = —im(22(02205)7)rs = —W(QZ)H(Q?)SUW )
tu

(3.53)

(3.54)

(3.55)

which take a weight w representation sym' modular form to a weight w — 2 representation
sym? @ sym' modular form [59]. Indeed,

DT [ 5 Q1.1 e P
= =) [0 [20(Q% — £957) e+ (QLeQuy)e™ | P
eI (000 +00,5)e % QLQ1 e P (356)
=10 [ (50m0LQLQi  — 7 QL Q) (QR10Q1y)

- g((QL(eQ2QR§)(agQLf)) - n(QLeQQQLf))Q%P} :
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and the r.h.s. of (3.54) can thus be written as

A ~

4D4TR [P] =T [e75 ((6 - 20 — Quyd") ey + (6 = 0)(Qu(eDy)

+ QrLeQsrs(07)" = 2(Qr(2Qry) (99951 0y)

. 1 _ A Ao

— 87 ((Qre2Qrs)(7QLyp)) — n(QLe2QLy)) + @(@92 19,094, 1af)>€ & P}

— 16D, [6_%Qr Q3 e% P}
T4 Ap g Le Lf .
(3.57)

The third line contains contributions from partition functions with more or fewer momentum
insertions, respectively, and the fourth line is to be computed explicitly. We now specialize
to the case of interest and obtain

= ) Ao
Aefr;\zq [Pab,cd] = _4Drs]-—‘/(\2p)iq [6 8 QzerLfe 8 Pab,cd] ) (358)
where the operator Ay is defined as

20§ Gapca =2D2;Gapea + (4 — 3)0efGaved + (4 = 6) [81e)@G)(fl.ed + Ole)(cCa)(fat)

(3.59)
- 35(ab,ch) ef -

Let us now return to the modular integral (3.39). In order to regularize the infrared
divergences which arise when ¢ > 5 (discussed in more detail in Appendix B.2.4), it is useful to
first fold the integration domain I'g o(/V)\ H2 onto the fundamental domain F» = Sp(4, Z)\H2,
and restrict the latter to truncated fundamental domain

Forng=FoN{p2 <02 — v22/p2 < A}n{jv| > n} (3.60)

excising both the non-separating degeneration at {20 = ico and the separating degeneration
at v = 0. We thus define

0%, L [Pabcd
GO (A ) = / dfthd g DT 3.61
abred (A1) n Qa3 2 D 2(Q) (361
A v€T2,0(N)\Sp(4,Z)

The renormalized integral (3.39) is defined as the limit of (3.61) as A — oo, 7 — 0, possibly
after subtracting divergent terms. Acting with the operator A.; and using (3.58) one obtains

d391d3Q2 1 = _B2 . s A2
Acy Gtg(A,m) _—4/F TP > [@k 2DT5F@,Q[6 7 QLeQrre Pab,cd]} (3.62)
2,Am o7 -

To compute the boundary term, we use Stokes’ theorem in the form

asQrs 2
/ IRNES (Q2)rt(Q2)su(f"9) = /
OF L n Q] T JFN

2,Am

d30Q1d3Q,

|QQ|3 (gDrsfrs + fTsDrsg) ) (363)

where f7 and g are modular form of I's o (V) respectively of weight w and representation sym?,
and weight w' = 2 — w and trivial representation. The differential operator dg commutes
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with factors of Qo because of the natural connection D,s. Then, since Drsl/q)k,g = 0 by
holomorphicity, we obtain that the r.h.s. of (3.62) reads

d5QTs 1 N N
_%/ T (2 [F(z) ™5 QLQf ™ Pabe ] . (3.64
ran, 0o (22 2 | T €7 Qe v | - (360

The contributions from the A-dependent boundary of F A, lead to powerlike terms in A,
which cancel in the renormalized integral, except for ¢ = 5 or ¢ = 6 where these divergent
terms become logarithmic and are responsible for an anomalous term in the differential equa-
tion. These anomalous terms are computed in §B.2.5 and will be displayed in the final result
below. Here we focus on the contribution from the boundary at |v| = 1 due to the pole of
the integrand at v = 0, which is cut-off independent for any ¢ and can be computed using
Cauchy’s theorem.

To compute the residue at v = 0, recall that the function 1/®,_o has a second order pole
at v =0 (cf. (A.44)) and behaves as ®y_o ~ (2miv)2A(p) x A(c) +O(v*) . The only cosets
7 preserving the pole at v = 0 are those in v € (I'o(N)\SL(2,Z)), x (T'o(N)\SL(2,Z)),.
Adding up these contributions, we find that the residue of the integrand at v = 0 is

1 i Ag Ag
202 Br(0)Bn(0) > T e 5 QT QLeQ] e 5 Pab.cd] )7 Q=("2).
YE(Co(N)\SL(2,2)),
X (Co(N)\SL(2,Z))s
(3.65)
Near the boundary at |v| = 7, the fundamental domain F5 4 , reduces to Fi(p) x Fi(o) x {|v] >
n}/Zsy x Zy where the first Zs exchanges p and o while the second sends v — —v. Thus, the
sum in (3.65) factorizes into two genus-one integrands, leading to

Aef Gggfc)d(Av 77) - _ 7.‘.(F(p,q) (A)F(p’q)k(A) — p»9 (A)F(p,q) k(A)) + ...

abk(e fled ak|c)(e )b
— 37T F(P,q) A F(p,q)k; A (366)
7_7 |e)k<ab,( ) cd) (f|( )-l— ,

where the dots denote contributions from the A-dependent boundary, discussed in detail in
Appendix B.2.4, while F ;l’;g; (A) is the genus-one regularized modular integral

p,q dpl dp? 1
Ftibcc; (A) = / p2 Z l:AkrAp’q [Pabcd]:| . (367)
Fia o P2 erg(N)\SL(2,2) v

This establishes (3.20) with w = 7. We show in Appendix B.2.5 that the divergent terms
from the A-dependent boundary of F3 5, combine consistently such that the renormalised
coupling satisfies the same differential equation (3.20), but for ¢ = 5 or ¢ = 6, for which
one gets additional linear source terms. For the perturbative string alplitude, v = N, the
additional source term vanishes for ¢ = 5, and for ¢ = 6 it can be ascribed to the mixing

between the analytic and the non-analytic parts of the amplitude. In this case one obtains
(B.96)

37TF(p,q) (r,a) k F(p,q)k

3
) _
Bet Gapea = —5 Floyptan Fed) (71~ 5%6167(561”5@& +20¢((ab)111) Fogi > (3.68)

where A,y was defined in (3.59).
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4 Weak coupling expansion of exact V(V¢)? couplings

In this section, we study the asymptotic expansion of the proposal (1.5) in the limit where
the heterotic string coupling g3 goes to zero, and show that it reproduces the known tree-level
and one-loop amplitudes, along with an infinite series of NS5-brane, Kaluza—Klein monopole
and H-monopole instanton corrections. For the sake of generality, we analyze the family of
modular integral

(4.1)

G(zuq) _RN/ dBQldBQQ F/(\Z;Q[Pab,cd]
abed o I2,0(N)\Hz2 |QQ‘3 ‘1)1972(9) ’

for a level N even lattice A, , of arbitrary signature (p,q), in the limit near the cusp where
O(p, q) is broken to O(1,1) x O(p — 1,q — 1), so that the moduli space decomposes into

Gp,q — RT x Gp_17q_1 x RPHa—2 (4.2)

For simplicity, we first discuss the maximal rank case N = 1, p— ¢ = 16, where the integrand
is invariant under the full Siegel modular group Sp(4,7Z), before dealing with the case of
N prime, where the integrand is invariant under the congruence subgroup I'; o(N). The
reader uninterested by the details of the derivation may skip to §4.3, where we specialize to
the values (p,q) = (2k,8) relevant for the V?(V¢)* couplings in D = 3 and interpret the
various contributions as perturbative and non-perturbative effects in heterotic string theory
compactified on 77. In §6.4 we discuss the case (p,q) = (21,5) relevant for V2H* couplings
in type IIB string theory compactified on K3.

4.1 O(p,q) = O(p—1,q—1) for even self-dual lattices

In this subsection we assume that the lattice A, 4 is even self-dual and factorizes in the limit
(4.2) as
Apg = Ap1g-1 @1 (4.3)

We shall denote by R the coordinate on RT, ¢ the coordinates on Gp_14-1 and by al,
I =1...p+q—2the coordinates on RP*9=2, The variable R > 0 parametrizes a one-parameter
subgroup 0 in O(p, q), such that the action of the non-compact Cartan generator Hy on
the Lie algebra so, , decomposes into

sopq~ (P+a—2)"" @ (gl ®s0p_14-1)” D (p+q—2)? . (4.4)

while the coordinates a! parametrize the unipotent subgroup obtained by exponentiating the
grade 2 component in this decomposition.

The lattice vectors are now labelled according to the choice of A-cycle on the genus-two
Riemann surface. They thus take value take value in double copy of the original lattice A, , ®
A, 4. Thus, the generic charge vector (Q17,Q27) € Apg®Apg =207 B (20(p+q—2))V®
2™ 7 decomposes into o

(QllﬁQQI) = (n17n27Q}7Q%7m1am2)7 (45)

"We use Z to label indices from 1 to p + ¢ in this paragraph to differentiate them from the indices on the
sublattice.
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where (n',n% m!,m?) € I, 1 ® I ; and (QI,QI) €ANp1g-1PAp_14-1,such that Q"- Q" =
—2m'n"+Q Q" (Wlth no summation on 7). The orthogonal projectors defined by Q% = pl Q7
and QR = pﬁQ? decompose according to

1 ~ 1 R
T T r r r r
= m +a- +-a-an | ——n,
PraQ1 NG ( Q 5 ) 7
p%,aQI pL a(QI +n (1[)
~ 1 R
T r r r r r
=——F|m +a- +sa-an | +—7n,
Pr1@T R\/§ ( Q 5 ) 7
P}I%,an :ﬁfz,a(Q§ +n"ar),

where ﬁi,a7ﬁ{?,d (=2...q+16, & =2...q) are orthogonal projectors in Gp_1 4—1 satisfying

Qr-Q° = QVTL . @‘Z - QR In the following, we shall denote |Q | = ﬁR aﬁ‘éa TQ’“

To study the behavior of (4.1) in the limit R > 1, it is useful to perform a Poisson
resummation on the momenta (my, mg). For a lattice partition function F( ' with or without
insertion, we must distinguish whether the indices lie along the dlrectlon 1 or along the
directions a. The result can be obtain by applying the corresponding derivative polynomial
with respect to (Yr,1,Yrq) to the following partition function

3 Na_ | ™ -1 _a
r [ riwnstar] -
B Y B mm) ()05t [em) ()7 25 un0s [ ()]

(n,m)ez*

XD e delorm 2mive Q7 5 93| (47)
where we denote the winding and momenta doublets n = (ny,n2), m = (mi,mz), and we
use Einstein summation convention for indices I = 1,...,p+¢—2 and o = 2,...,p. In this
representation, modular invariance is manifest, since a transformation  — (AQ + B)(CQ +

D)~! (A.2) can be compensated by a linear transformation (n,m) — (n,m)( %, 37), y1 —

y1 - (CQ + D), under which the third line of (4.7) transforms as a weight 25 modular form.

We can therefore compute the integral using the orbit method [60, 61, 62, 63, 64], namely
decompose the sum over (n, m) into various orbits under Sp(4,Z), and for each orbit O, retain
the contribution of a particular element ¢ € O at the expense of extending the integration
domain Fy = Sp(4, Z)\Ha to T\ Ha, where I is the stabilizer of ¢ in Sp(4,Z). The integration
domain is unfolded according to the formula

U 1 R=T\H,, (4.8)
v€T\Sp(4,Z)

where one must take into account that —1 € Sp(4,7Z) acts trivially on Hy. The coset repre-
sentative ¢ € O, albeit arbitrary, is usually chosen so as to make the unfolded domain I'c\Hs
as simple as possible. In the present case, there are two types of orbits:

The trivial orbit (n,m) = (0,0,0,0) produces, up to a factor of R?, the integrals (4.1) for
the lattice A,_1,4—1, provided none of the indices ab, cd lie along the direction 1,

GUIY = R2GU b (4.9)
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while it vanishes otherwise.

The rank-one orbits correspond to terms with (n, m) # (0,0,0,0). Setting (ny,ng, my,ms) =
k(cs, cq,ds,dy), with ged(cs, cq,ds,dy) = 1 and k # 0, the quadruplet (cs, ¢4, ds, dg) can always
be rotated by an element of Sp(4,7) into (0,0,0,1), whose stabilizer inside Sp(4,7Z) is I'{
(4.10)

a 0 b
/= Al op K A _/\//ab a b SL(2.7 A\ 73
- c 0 d =N ’( ’M)_( ’p’)(c d)’<c d)e (7 ),(K, 7#)6 ,
00 0 1

(4.10)
which is a central extension of the Jacobi group SL(2, Z)x Z? in which the triple (x, \, u) € Z3
parametrizes the Heisenberg group Ho1(%Z).8

Thus, quadruplets (cs3, cq, ds, ds) with ged(es, cq,ds,ds) = 1 are in one-to-one correspon-
dence with elements of I'{\Sp(4,Z). For each k € Z, one can therefore unfold the integration
domain Sp(4,Z)\Hs to

P{\Ha = B x (SL(2, Z)\ 1), x ((R/Z)*/Z) , (4.11)

u1,u2,01
provided one keeps only the term (cs, cq,ds,ds) = (0,0,0,1) in the sum, and where Zy comes
from the element —1 € SL(2,Z) leaving p invariant but acting as (u1,us) — (—u1, —u2).
In practice, we integrate uj, ug over R/Z and multiply the integral by a factor 1/2. We
parametrize the domain I'{\Hs by t = %2', p, and (u1,ug,01) = (v1 — vep1/p2,v2/p2,01).
The resulting contribution can be expressed in terms of the y variables (4.7). Changing

Yra variables as (Y11, Y51, ViYoo) = (Y11, Y1142 — Y21, Y1a, YiaU2 — Y24), We obtain

el
Gl — R—Z /OO g dmduzdm/ dprdps Pabﬁd(@iy,) z:e*mtjl‘<2> [e%ikal@f
ab,cd 2 0 3 (R/Z)? 7 P% D10 = Ap_1,4-1

Rk, .. , 1 1
x exp(27r(ﬁ;yél g (QF + wQF) — i0haQ + T Ulath + 0hath”) )|

4p2 4t
(4.12)
where ) R

abed\ 77 ) = : . 4.13
Pabca(g,) = erien (27i)* Oy, (@ Dy ®) Dy (© Dy, D (413

The integral over I'{\Hs can be computed by inserting the Fourier-Jacobi expansion

1
- m(p,0) g™ . 4.14
5= 2 Yulp0)g (1.14)
s

The integral over o1 picks up the Jacobi form v,,(p,v) with m = 7%622.

For Q = 0, one has from (A.54), ¢o = ¢(0)P/A where here P denotes the (rescaled) Weier-
strass function (A.55) and ¢(0) = 24 is the zero-th Fourier coefficient in 1/A = 3"~ ¢(m)q™.

8They satisfy the group multiplication law (X, i, k) - (N, 1/, &) = A+ N, u+p/, 6+ &' 4+ A’ — N p).
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The integral over o1 is trivial while the integral over uy, uo is computed using (A.72),

1/2 1/2 B
/ dul/ dug Yo (p, u1 + pug) = c(0) Fy , (4.15)
_1/2 1/2 12A
where Fs(p) = Ea(p) — % is the non-holomorphic completion of the weight 2 Eisenstein

series. The contributions with Qg = 0 therefore lead to the integral (after exchanging the
order of sum and integral)

P,q), dt q 5 rR2K2 0 27
G;bc)d = R2 24 Z/ e t Pabcd(a /) (
k70 (4.16)

X/ Sorlen 2 A [Zm(ylan"_‘hpzylﬂyl )}
APy Alp)

leading to the constant terms in the Fourier expansion of G;’g‘?d

k
S T Yh 1 3 Y5 0l )

)

1,0 -5 c(0) —lq-
Gains = ~RT7 6= 0) g 0an Gy ™7 (417)

Gisn” = —R"°&(q—6)(T—q) ()G“’ vy,

and foé’;ﬁ’o = 0. Note that they are the only components by symmetry of the indices
ab, cd. Here G'%? is the genus-one modular integral defined in (2.29) with N =1 and £(s) =

75/ (5/2)¢(s) = £(1 — s) is the completed Riemann zeta function.

The missing constant term: It is clear from the differential equation (3.20) that (4.17)
does not give all the power-like terms: indeed, the coupling F®? appearing on the r.h.s. of
(3.20) behaves schematically in the same limit as [22, (4.37)]

F®9 ~ RF®M0 4 £(q—6) R0+ O(e™ ™) . (4.18)

The power-like terms (4.17) can be checked to satisfy the differential constraint with the
source term RISF®-1e-1) appearing in the square of F®9, but the accompanying source
term £(q 6)2R2q 12 yequires that G(p q) should also 1nclude a term proportional to R?4~12,
We shall now argue that these terms orlglnate from the intersection of the separating and
non-separating degenerations described by the figure-eight supergravity diagram depicted in
Figure 1ii). In the region |Q2| > 1, the fundamental domain asymptotes to the domain
Py/GL(2,7) x [0,1]3, where Qs parametrizes the first factor. In the case where all external
indices are along the subgrassmaniann, the dominant contributions in this limit have Q1 =
@2 = 0 and vanishing winding number (n1,n2) along the circle. The sum over dual momenta
(mq,ms) running in the two loops leads to

1]TS

dSQ dSQ e—ﬂRQmT[Qg ms
2%5, 25y R? / 2 Lomc2? (4.19)
167 x[0,1]3 Q]2 30

GL(2 Z)

Using (A.90), the integral over Q; leads to a delta function supported at vo = 0 and its
images under the action of GL(2,7Z) (modulo the center). After unfolding, the remaining
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integral then factorizes into two integrals over ps and oo. Assuming that this contribution
is accurately computed by this integral by extending the integration domain of ps and o9 to
R™, one obtains the correct power-like term

’ 3 B
Ggép[f')y?o = 64n3 R12 [€(q — 6)0(0)]25<aﬁ,576) ) (420
/ 1 _ .
G = S R [€(q = 6) () (T = q) 8as

where the second line — the other non-vanishing polarization — can be deduced in a similar
fashion. While the power-like terms (4.20) are not captured by the unfolding trick in the de-
generation (p,q) — (p—1,¢—1), we shall be able to recover them below from the degeneration
(p,q) — (p— 2,9 — 2), see (5.26).

The fact that the unfolding method does not give the full result is seemingly due to the
non-absolute convergence of the integral near the separating locus. In principle, the missing
contributions can be determined by checking the differential equation (3.20). In Appendix E.4
we derive the contributions (4.20) rigorously in this fashion. The same analysis also implies
that there exists additional exponentially suppressed corrections to the constant term due to
instanton—anti-instanton contributions. For what concerns non-trivial Fourier coeflicients, we
shall argue in §5.1 (and specifically in Appendix E.1) that the unfolding method is in fact
reliable.

Exponentially suppressed corrections: Contributions from non-zero vectors @2 lead to
exponentially suppressed contributions, which depend on the axions through a phase factor

e2mika’Qar - Fach Jacobi form Ym(p;v) in (4.14) can be decomposed as the sum of a finite
and polar contributions, ¥, = wp + @m (see §A.5), where z])\m is an almost holomorphic
Jacobi form, and wP is proportional to a completed non-holomorphic Appell-Lerch sum. For
m = —1, the finite part vanishes and the polar part requires special treatment. In either case,

the integral over oy enforces Qf = —2m.

We first treat the finite contributions Jffl(p, v) with m > 0 according to whether @22 =0
or Q£ # 0, and then consider the polar contributions:

1. In the case @22 = (, since z/b\g = C(PQ)AEQ and does not depend on v, the integral over wu;

receives only contributions from vectors Q1 such that @1 @2 = (. To express the remaining
sum, we choose a second null vector ’ such that (QQ,QQ) = msg, where my, which we
also denote by ng(@g), is the largest 1nteger such that Q2 € Ap—1,4-1. The vectors O
orthogonal to @2 are then of the form Ql = @f + %@2 where Ql is orthogonal to both Qg
and @’2 We denote the resulting lattice by A,_2,_o. This parametrization is not unique,
but the result of the integral will be independent of the choice of @’2, in other words it is a
function of the Levi subgroup of the stabilizer of Q- inside O(p—1,9g—1). The sum over
Q1 therefore becomes a sum over Ql €Ay24—2and m; = mgs +r,s€Z,r € ZLm,. The
sum over s can be used to unfold the integral over uy € [—1 o 2] to the full R axis, as one
can see from (4.12), while the dependence on 7 can be absorbed by a translation in ug and
therefore leads to an overall factor ms. The integral thus becomes, for a given null vector
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Q2,
R 2 5 kG / At a5 =B | Ganf? / dplgm ;’%10(0)152
2 k;ﬁo R+ Fi p2 12A
X/dUQ Z qz(Ql +u2Q2) q%(@f+u2©2)% (4'21>
R

Q%EAzF?,qf?

X Pabed(72) 627”(155’?y§1+y'1a(‘°?1l+“2@2)%*y'2aQ2LD‘*T&Qyﬁayia*ﬁyéayéa)
ab,c 7

/

y'=0

The Gaussian integral over uy removes the dependence on the unipotent part of the stabi-
lizer of @ = kQ2, leaving a modular integral of a genus-one partition function Ggg }dqfl)l
for the lattice A,_24—2 depending only on the sub-Grassmaniann Gp_24-2 C Gp—1,4-1
parametrizing the Levi component of this stabilizer, given by

o 2
~1a- d(Q) [ dpidpy E> 22 ) 2mpy QR
GE o @) =& / Py’ AT,
faso 12 Fi1 p% A(p) ? @EAzz 2
2 Qr-Qr 5 Qr-Qr 1 QLaQrs
X [(Qm G Qm) (QLB T Qs ) Tnps (5 - ) :

(4.22)

where we write Qvl as @ for simplicity. Note that the integrand only depends on @ through
@ — QQR‘QR, and so is invariant under @ — @ + €@ for any € € R such that the sum is

defined on the quotient lattice Ap_1 4— 1modgcd(Q)
not depend on the specific choice of Ap_2 4 2.

We find that the Fourier coefficient with charge @ € Ap—1 4—1 ~ {0} for Q? =0, is given
by
1 PO Q) Kos (27r R\/2|QR|2)
( - 7
3R G N (Qp Z : 5
V2|Qr* 2

when all the indices are chosen along the sub-Grassmaniann, where P() are defined in
(H.1), and where we defined

with the constraint @ - Q = 0, and does

(4.23)

1 _ “1,-1)L
Graid @)= Y d0%(0)GE " (G) (4.24)
d>1
Q/deApfl,qfl

The full expression for all polarizations will be given together with the polar contributions
in (4.44).

Let us point out that G;f{;lﬁ"ia”l(Q, ©) = %@Géﬁgz’qﬂ)(m) for the function defined in
(2.29) for the lattice A,_2 42 orthogonal to (), where ¢ parametrizes the Levi subgroup
O(p — 2,q — 2) of the stabilizer of @ in O(p — 1,q — 1).
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2. In the case @22 < 0, the finite part of the Fourier-Jacobi coefficient has the following
expansion in theta series

Uh(p,v) Z Pt (9)Orme(p;0) (4.25)

( bEliom

where 6, » and /}\lmj are vector-valued modular forms of weight 1/2 and 3/2, respectively
defined in (A.62) and (A.67). The integral over o; enforces Q2 = —2m, while the integral
over 1 enforces @1 QVQ —E The summation over s € Z in (A.62) can be used to unfold
the 1ntegral over uz € [ 55 2] to the full real axis, after shifting each term in the lattice
sum as Q1 — Q1 + SQQ, since Ql,Qg € Ap—14—1. One thus obtain Fourier coefficients
similar to previous case, using Qs — Q /k,

1 (l) (Q) K@—l (QWR\/W)

(p—1,q-1) ’75> 2
3Rz GF< . %(Q,@)Z T P (4.26)

=5 V2QP

when all the indices are chosen along the sub-Grassmanian, where 15%)(@) are defined in
(H.1), and where we defined, for Q2 # 0

( ) _ -6 Q% \ ( L@
G @9 = X (-GG,
d>1 2d
Q/d€Ap_1,q-1
dpldpg 1 =~ V4
Gob Q) = / o > Q). (4.28)
F,ap, 7 p% A(ﬂ) ee%m At ap

Here FZ;)’Z(Q) is the lattice partition function (with Q = Q; — %Q)

V4 a4 172 ~
05 (Q) = py® > 729 9l5(1/202Q, Q) (4.29)
QeApil,qfl—ﬁQ
Q-Q=0

with kernel
~ _ 512 (QrQp)
ohs(V202Q,Q) = e 2npe(Qal KR )

(-0 G o0 oo U9

(4.30)

The latter satisfies Vignéras’ equation

({02, 02) — 2m20;) Pap(, Q) = 27(q — 4)Pas(z, Q) | (4.31)

where (-,-) is the inverse of the integer norm on the lattice A,_; 4—1, which ensures [65]
that (4.29) is a vector-valued modular form of weight ]%J“r’ = %, consistently with the
weight of 3/2 of Emj(p) (note that the condition Q-Q = 0 in the sum of (4.29) implies that
the lattice over which Q is summed is of dimension p + ¢ — 3). The analogue expression

for other polarizations will be given along with the polar contributions in (4.44).
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3. Let us now consider the contributions arising from the polar part @Z of the Fourier-Jacobi
coefficient 1), with m > 0. According to (A.69), the latter can be written as an indefinite
theta series

- c ms2+sl, 2ms
Y (pv) = A(( ) ST g2 (s 0m, o) (4.32)
sEZ

where for m > 1,

B(s, o, ) = 50 |sen(s + ua) + exf (e, /”ﬂi)] b VI L sy,

2m\/p2 47 pa
(4.33)
whereas
~ 1 1
b(s, 4,0, p2) = 56 [sgn(s + uz) + sgn(f)] — Mé(s + ug) + 55705470% (4.34)

As in the previous case, one can shift the charges to @1 —> @1 + 8@2 since @1, @2 €
Ap_1,4-1, and then use the sum over s to unfold the uy € [—1 3 2] to R. Then, integrating

over u; € [—3 5 2] imposes Q1 QQ = —/{. One then carries out the change of variable
u . One obtains the Fourier coefficients, using Q2 — Q/k,

U = —F7———=
vV 202|Qr|?

(l)
R2 GglémQ)i: ’y§ qul<2ﬂRM)

when all indices are chosen along the sub-Grassmanian, and where we define for Q2 < 0

(4.35)

_ 2
U Q) = D G G et OB (4.36)
d>1
Q/dEA;_l,q_l
q=5
e dp1dps o2 - N
G M@ = [ TR S 0 (/2n0.0) . (437)
Fi1 P2 (p)~
QeApfl,qfl

with the kernel

/—02
opap(z,Q) = —4\15 Rdu (x-Q) [sgn(u) +erf(—,/_62x-Q> - %e <QQ) }

| |2 —mu?—2mu LR ( ( ) ( ) 1 )
xe R Tro + u Trg + u —9,
PR T T Q) T 2n
\/2 2 1
_%e 7leg|? (xLa(ELB — 271_(5&5) . (438)

Using integration by part over u one computes that ¢p o5(x, Q) satisfies the Vignéras
equation

(<6za am> - 27T.I8$) ¢P,Ocﬁ(x7 Q) = 27’[’((] - 5)¢P,aﬁ('x, Q) ) (439>
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therefore the lattice sum in (4.37) is a modular form of weight 254 4-4, and the integral is
well defined. For Q2 = 0, one has instead

q=5
g dp1d 2 15 ~
G 1)(@:/ pl?mf ( S 2% 0pas(v202Q.Q)
Fi P32 (p) Sehn 1oy
_1 15 .
NP qz%s-%aﬁw%@@) | (4.40)
éeApfquZ
with
¢p.ap(z,Q) = —1/ du ((z - Q)sgn(u) — |z - Q)e ™Al ™ —2mu*fpft
P,Ozﬁ ) - 4\/5 R g
QLa QL,@ 1 >
X +u—") — —0q
<( |QR|)( IQr |> o
\/W —rlzg|? 1
T ¢ TLaTLs ~ 5-0a8 | (4.41)
—7T(z ‘LRQR))
@) = g (i 55 s 4750) = 258))

The integrand in (4.40) must be modular by construction, but its modularity does not
follow directly from Vignéras theorem. In this case ¢p o5(z, Q) satisfies Vignéras equation
(4.39), but it is a distribution and its second derivative is not square integrable. The
function ¢z Pap(@, Q) satisties Vignéras equation (4.31), but this is not the correct eigenvalue
to give the correct modular weight. As the failure of ¢p o5(z, Q) to define a modular form
comes from its singularity at (Q - x) = 0, it is somehow natural that its modular anomaly
can be compensated by a partition function on the lattice orthogonal to Q.

4. Finally, the case m = —1 requires special treatment. The finite part of ¢)_; automatically
vanishes, but the polar part is proportional to a modified Appell-Lerch sum, as explained
in Appendix A5,

sign(f — 2s) + sign(ug + s 1 _ _
(U 1——* > [ : )2 nlz )—4ﬂp25(uz+5)} gy (4.42)
sEEZ

which differs from the naive Appell-Lerch sum (which diverges when the index is negative)
by a replacement sign¢ — sign(¢ — 2s). In this case we still get (4.40) with

e =g vt @t —sn (38 15)]

Xe—7r|17R|2—7ru —27ru—%§—‘R (([EL + u )(.CL'Lﬁ T ) 1 5 5
167 «
|QR] |QR| 2m
2|QR‘2 _ ‘xRI2 1
-7 a - —9 , 4.43
& ¢ TLalLp 2T of ( )
G ) Q Q QLaQup
- _ ZR'WYR _ R R a
@) = T (o ) s 5 00s) o )

Although the modularity of (4.43) no longer follows from Vignéras’ theorem, it must hold
by construction.

37



SciPost Physics

Combining the finite and polar contributions, we finally obtain the full expressions for the
exponentially suppressed corrections,

1
G(znq),LQ — 3Rq§71 G(p_lyq_l)(Qv 90) Z

B0 (B, l “3_2
o : = & (2Q3) "
2
G(p,q),l,Q _ §R%é(p*1¢q71)(Q SO) QL’Y> Kq%7 (27TR QQR) (4,44)
Bl = 5 (s, T2 2y
— Koo (27 Ry207)
G(pyq%l,Q _ —RTG(p_l’q_l)(Q, tp) Al ,
af,11 af (2@1%) 147

where the polynomials ]57(?(6)2) are given in (H.1), and the coefficient C_v‘({iél’qfl) is defined by

et _ 2 C1g-nL 1,
Gl Qe = X @) (G T D+ GR(D). )
dzl 7a6>_m
Q/deNp-1,4-1

where G% Y and G% Y are defined in (4.24), (4.28),(4.36) for Q% < 0, in (4.40) for
Q? =0 and in (4.43) for Q% > 0.

4.2 Extension to Zy CHL orbifolds

The degeneration limit (4.2) of the modular integral (2.30) for Zy CHL models with N =
2,3,5,7 can be treated similarly by adapting the orbit method to the case where the integrand
is invariant under the congruence subgroup I'oo(N) = {(4 5) € Sp(4,Z), C = 0 mod N}.
In (2.30), ®4_o is the meromorphic Siegel modular form of I'y o(N) of weight k — 2 defined in
8A.4, and F/(\sz,q is the genus-two partition function for a lattice

Apg=Ap-14-1® M1 [N], (4.46)

where A,_1 -1 is a level N even lattice of signature (p — 1,¢ — 1). The lattice II; ;[N] is
obtained from the usual unimodular lattice II1; by restricting the winding and momentum
to (n1,ng,my,mg) € NZ @& NZ @& Z & 7. After Poisson resummation on my, me, Eq. (4.7)
continues to hold, except for the fact that ny, ns are restricted to run over NZ. The sum over
(n1,n2,m1,my) can then be decomposed into orbits of I'y o(IV):

Trivial orbit The term (ny,ng2, my,ma) = (0,0,0,0) produces the same modular integral,
up to a factor of R?,

) 70 —LH4qd—
GIDY = R2GU (4.47)
where G(;B_fy’g_l), is the integral (2.30) for the lattice A,_; 4—1 defined by (4.46).

Rank-one orbits Terms with (n1,ng,m1, ms2) = k(cs, cq,ds, dy) with k # 0 and
ged(cs, ¢4, ds, ds) = 1 fall into two different classes of orbits under I'y o(IV):
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1. Quadruplets k(cs, ¢4, d3, d4) such that (c3,cq) = (0,0) mod N and k € Z can be rotated by
an element of 'y o(V) into (0,0, 0, 1), whose stabilizer in 'y o(N) is ['o(N) x Ha 1(Z) C T{.
For these elements, one can unfold the integration domain I'; o(N)\H2 into the domain

(To(N) x Ha1 (Z)\H2 = R} x (Do(N)\H1), x ((R/Z)°/Z2) (4.48)

Uu1,u2,01

where the Zsy comes from —1 € T'4(N) leaving p invariant but acting as (u1, uz) —
(—uq, ug) on the other moduli.

2. Doublets k(cs3, ¢4, ds, dyg) such that (c3,cq) # (0,0) mod N have k = 0mod N since (nq,n2) =
Omod N. They can be rotated by an element of 'y o(/V) into (0,1,0,0), whose stabilizer
in Ty 0(N) is SS9, (T°(N) x Hy| \(Z)) (5,55) 7", where

H) N(Z) = {(k, M\, p) € H21(Z), k = pp = Omod N}, (4.49)

and the inversion on o is S, : (p,0,v) = (p — v?/o,—~1/0,—v/c). One can unfold the
integration domain I'y o(N)\Hz into S,Sy (T°(N) x HS) \(Z)) (S,S5) " \Ha, and change
variable o

Q= (S,5,) - Q=-07", (4.50)

so as to reach (T°(N) x H| (Z))\Ha = $R, x (TY(N)\H1), x (R/Z)u, X (R/NZ)2, ..
Under this change of variable, the level-N weight-(k — 2) Siegel modular form transforms
as

Bpz(—027") = (WN)PEDQf 20, 5 (Q/N), (4.51)
while the genus-two partition function for the sublattice A,_1 4—1 transforms as
@) _O-1 — 2 N—k—=2(_\p—a|O[F—27 @
F~p71‘q71[Pa5775]( Q7)) =0v°N (—1)P79|Q FA;,lvq,l[Paﬁ”&](Q) , (4.52)
where we denoted v2NF"2 = |A;717q71/Ap_17q_1‘_1 the volume factor from Poisson

ressummation (Note that v? = N272%s for ¢ < 8 in the cases of interest).

For the function Gfli’zzi’l, changing y variables as before (¥i1, Y51, Yins Yoa) = (Y11,Y11u2 —
Y21, Ylas Ylal2 — Y2a), the sum of the two classes of orbits then reads

0
Gl R? dt/ d’LL1dU2dO’1/ dp1dps Paved(7,7)
el 2 g 8 Jwymy roN i P Pr2(9)

nR2K2 P
— (2) 2mika’ Qo1 /
DI I G b ()]
k#0

R? / dt / dp1dps Pabed(3%)
+ — — duldal/ dUQ/ Y
2 Jr+ t Jrynz) R/Z o\ P Pr2(Q/N)

2 2,92 ~
v _ 7R%k 1
oy T [Emeeow)
k40 p—1,q-1
k=0mod N
(4.53)
where
V) = 627ri<i’f§%yé1+y’1Q(Q?ﬂa@%“)*yéa(e?%“ﬂfw yiay’l‘”%ﬁyéayé“) (4.54)
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As before, we substitute 1/®j,_5 by its Fourier-Jacobi expansion 1/®,_o =" - wk,gme%im"

so that the integral over o1 enforces @22 = —2m. For ~22 = 0 case, the integral over uy, ug in
the first line follows from (A.73),

cr(0)  N2E3(Np) — Es(p)
/%dm/;duzd)k 2.0(p, u1 + puz) = 12(N —1) Arlp) ;

where N 2E2(N p) — Eg(p) is a level-IV weight 2 holomorphic modular form. The contribution
from the second line in (4.53) is calculated using the transformation properties of the genus-
one cusp form and partition function?. The transformation p — —1/p changes the integration
domain from TO(N)\H; to To(N)\H1, and one thus obtains, denoting Q; = kQa;

a0, 1,Q2=0 _ po [T dt a5 ar?2 00 o ck(0)
Gapb,ch =R /0 Tt 2 Z Ze t Qr/ m
C5261\];_1,(1—1 k#0

(4.55)

Q3=0
dpldPQ (N2*qu76)E2(Np)Jr(qu*Gfl)Ez(p) 2 10 )
X T Tia p . y
/I:O(N)\Hl p% Ak(p) Apfl,q—l ab, d(ay ) ( )

(4.56)

The zero mode contribution, ) = 0, may be expressed in terms of the genus-one modular
integrals

dpidps E2Ta [P,
Gy = w. [ dodeBlnlral (51
To(N\H1 P35 Ay,
dpidps NEo(N
‘GEY = RN. / oy NEXNp)p 1o (4.58)
To(N\H1 P Ax(p)

When A, g is N-modular, such that A5 = ¢-A,q/VN for ¢ € O(p,q,R), then ‘G&H? =
G*?(c - ). The zero mode @ = 0 thus leads to power-like terms

c(0) [’UNq_G —1ls  awren , N VN7
l6r L N—1 "%

79) TN
_ cx(0)foN9 6 —1 N —uN97
G = R (g - )7~ ) A | gton ¢ LU

N -1 of N-—1

G(p q)%,O _ RIS 5((] _ 6)

o 5<aﬁ, cG@—Lq—l)] 7

)

CGgEl,q—l)} )
(4.59)

As in the maximal rank case (4.20), the unfolding trick fails to capture another powerlike
term proportional to R24~'2, which is required by the non-homogeneous differential equation
(3.20). This term can be seen to arise in the maximal non-separating degeneration, and can
be computed as in (4.19), leading to

3 - 2
Ggﬁq%(;o 7647&32(1 2 [e4(0)(1 + oNT)E(g = 6)]” 610p.6,5) w60
1 _ B .
Gz(fﬂ?%ll v - 327T3 qu - [Ck(o)(l +ouN1? 7)5((1 - 6)} ? (7 - Q)(Sa,b’ .

Yie. Ap(—1/Np) = N%(=ip)*Ax(p), and Tar | [Pusl(=1/p) = v 'NEF(=i)*p" 2T, [Pul(p)

1.q
kq —1/2
where v =N2"" A}y o 1 /Ap14-1]
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These results can also be obtained by taking the limit So — oo from the result (5.60) obtained
in the degeneration limit (p,q) = (p — 2,q — 2).

The contributions from vectors ) # 0 lead to exponentially suppressed contributions of
the same form as the Fourier modes of null vectors (4.23), non-null vectors (4.26), and the
polar contribution (4.36) respectively, with different coefficients:

1. For null Fourier vectors @2 = 0, the moduli-dependent coefficient coming from the finite
part of 1/®;_o(f2) reads

NSGE " (%) - GEps " (9)

Gria (@)= > d 50

d>0 N-1
Q/d€Ap—1,4-1
N (r—1,g-1)L/ QY sGe—La- nl/Q
+ v Z (Nd)inCk(O) F,ap3,0 (N?\)[ Faﬂ, (Nd) , (461)
d>0
Q/dGNAp 1,g-1

where G(}’7“;)b70(cp) is defined as in (4.22) with EQ{A replaced by E3/Ay, and gC?;f;;‘b),w(go)
is defined as in (4.22) with E5/A replaced by N E2(Np)/Ak(p).

2. For non-null Fourier vectors, @Q? # 0, the moduli-dependent coefficient coming from the
finite part of 1/®5_2(Q2) is given by

(p—1,q—1) —6 Q? (r-1,9-1)L (1Q
Cros (@)= D, d0a(—gp) Gy e (7)
’ d>0 T
Q/dGAp,qul
3 5 o (4.62)
+v Z (Nd)T™ ex(~ 21?/d2)§G(p v 1%22 (N%l)7
d>0 Fof, =5
Q/deNN)_, .,
where we defined, similarly to gG;’fzgal)(Q),
d2p Ny (Np) i
G = [y Seltinnq), (1.63)
F,afm To(N\H: P e Aklp) op

with T7%/(Q) defined in (4.29).

3. For all non-zero vectors ) # 0, the moduli-dependent coefficient coming from the polar
part of 1/®5_o(12) is given by

— 2 _ _
G @)= X d o~ £) GET(D)
Qden,.
eENp_1.g—
p—1,q—1 . . (4‘64>
+v Z (Nd)=5 e (- 2Nd2)GPa,8 ().
d>0
/deNAp La—1

where G(Pp;lﬁ’qfl) is defined as in the previous subsection, upon replacing A(p) by Ag(p).
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Note that the polar part and the finite part of the function G(p b79(Q, ) combine for
all Q into the same divisor sum of the function Gg’ bD(Q) = G}gﬂéf”(@) + Gg;g“l)(Q)
and <G<O§gl’“>(@) = CG;?;E’WU(Q) + CG?D’;E"FU(Q) as in the maximal rank case (4.45). The
only apparent difference is for the finite part of the function (4.61), because we defined the

function (4.61) G%;lﬂ’qgl)l(f) and gG(palﬁqO 1)L(%) such that they can be identified to the

function %@Gggfz"’_z)(@@) and %&Q)CG& 279 (pg) on the quotient of the sublattice of
Ap_1,4—1 orthogonal to @ by the shift in Q.

4.3 Perturbative limit of exact heterotic V?(V¢)* couplings in D = 3

According to our Ansatz (1.7), the exact V2(V$)* coupling in three-dimensional CHL orbifolds
is given by a special case of the family of genus-two modular integrals (4.1) for the ‘non-
perturbative Narain lattice’ (2.3) of signature (p,q) = (2k,8) = (2k,8). The degeneration
(4.2) studied in this section corresponds to the limit of weak heterotic coupling gg — 0. In
this limit, the lattice Aoy g decomposes into Agg—1 7@ II1,1[N], where the ‘radius’ of the second
factor is related to the heterotic string coupling by g3 = 1/ VR, and the U-duality group is
broken to O(2k —1,7,7) c O(2k,8,Z), with O(2k —1,7,Z) the restricted automorphic group
of Agk—17 = Ay @ II11[N]. In order to interpret the various power-like terms in the large
radius expansion as perturbative contributions to the V2(V¢)4 coupling, it is convenient to
multiply the coupling by a factor of ¢§, which arises due to the Weyl rescaling vg = vs/g3
from the Einstein frame to the string frame [22, Sec 4.3]. The weak coupling expansion can
be extracted from section 4.2 upon setting ¢ = 8 and v = 1, and reads

3
6 ~(2k,8) (2k—1,7) 2 ~(2k—1,7)
93 Gaﬁﬁ(s i g 5(&5,576) 5(aﬂ G75> (¢) + 95 Gaﬂ,w ()

, 3 —3—72'\/2@1%+27riQ-a

e % S
+ Z 202 iikg (@, )(QL—yQL(S) (\/262,% + %) 67(”)
QeA;k 1,7 R
~ -5v0f
+ D, e B Gapys(9s Qr.QR)- (4.65)
Q€AY 17

The three first terms in (4.65) originate (in reverse order) from the trivial orbit (4.47), the
rank one orbit (4.59), and the splitting degeneration contribution (4.60). By construction,
the trivial orbit reproduces the two-loop contribution computed in (B.57). More remarkably,
the rank one orbit matches the one-loop contribution (B.14), while the splitting degeneration
contribution reproduces the tree-level V2(V¢)*, obtained by dimensional reduction of the
V2F* coupling in 10 dimensions.!°

The exponentially suppressed terms in the second line of (4.65) can be interpreted as
instantons from Euclidean NS five-branes wrapped respectively on any possible 7 inside 77,
KK (6,1)-branes wrapped with any S 1 Taub-NUT fiber in 77, and H-monopoles wrapped on

19As already noted in [13], there also exists a tree-level single trace V2F? interaction in ten dimensions,
with coefficient proportional to ¢((3) [47], but the latter vanishes when all gauge bosons belong to an Abelian
subalgebra and therefore does not contribute to the V?(V¢)* interaction in three dimensions. Note that the
single trace interaction is not protected and receives corrections to all orders in heterotic perturbation theory
[66].
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T7. One has similarly for the other components (4.44)

G(Qk 8),1,Q _ 3 6792?\/@ (2k—1, 7)(Q )Q
af,yl - 41\/§Q1% (aﬁ ) P L) »
1 _2m 2Q
936G(a2;ﬁ>1,1,Q _ e 92 R (2k 17)(@, )’ (4.66)

2,202

where G®*~07), = G@PF17) Q2 + GBFLD Q2 and takes the form

Q2

O‘B T ,0667 P O‘B T
(2k 17) 2 Q2 2k—1,7) (Q
G g (@)= > Pal(=3m) G0 ()
’ d>0 o2d?
Q/deNsk_1,7 167
+ Y N fm) G, () e
k 2Nad2 o, —-@2 \Nd/-
d>0 ' 2Nd?
Q/dENAZ, _, ;
For the null charges Q% = 0, we write instead the finite contribution as
k
(2k 1,7) 2 2k—-1,7L/Q ek-1,7L/Q
FozﬁO (Q’ ) TN -1 Z d [NCGF,QB,O (E) - GF,aﬁl,O (E)i|
d>0
Q/deNsp_1,7
k
(2k—1,7) L (2k-1,7) L
T Y (NaRNGELAT () - G ()] @es)
d>0

Q/dENA;,c_l’7

In the maximal rank case N = 1, upon setting ‘G5 = G* and replacing cj(m) — c(m),
k — 12 = ¢(0)/2, Egs. (4.67) and (4.68) simplify to

G570 Q)= 3 e~ )67 0 (9).
op,— % g) 2d aﬁ,—Z% d (4.69)

Q/d€N23 7

It is important to note that the orbit method misses exponentially suppressed terms which
do not depend on the axions a in the last line of (4.65). The existence of these terms is
clear from the differential constraint (3.20), since the (V¢)* coupling F,;.q appearing on the
right-hand side contains both instanton and anti-instanton contributions. Unfortunately, our
current tools do not allow us to extract these contributions from the unfolding method at
present. One could obtain them by solving the differential equation (E.51) for @ = 0.

Finally, it is worth stressing that while the perturbative contributions Gﬁfbk_l’” and Gfb’f;; i’
have singularities in codimension 7 inside M3 at points of enhanced gauge symmetry, the full
instanton-corrected coupling (1.7) has only singularities in codimension 8. In Appendix B.3,
we analyze the structure of the singularities for a general genus-two modular integral of the
form (2.30) and find the expected one-loop and two-loop contributions with nearly massless
gauge bosons running in the loops.
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5 Large radius expansion of exact V?(V¢)! couplings

We now study the asymptotic expansion of the modular integral (1.7) in the limit where
the radius R of one circle in the internal space goes to infinity. We show that it reproduces
the known V2F* and R2F? couplings in D = 4, along with an infinite series of O(e™ %)
corrections from 1/2-BPS and 1/4-BPS dyons whose wordline winds around the circle, up
to an infinite series of (’)(e’R2) corrections with non-zero NUT charge, corresponding to
Taub-NUT instantons. We start by analyzing the expansion of genus-two modular integral
(2.30) for arbitrary values of (p,q), in the limit near the cusp where O(p,q) is broken to
SL(2,R) x O(p — 2,q — 2), so that the moduli space decomposes into

Gp,q — R+ X Sé—/g{;;{) X Gp_gjq_g X RQ(p+q—4) x R (51)
As in the previous section, we first discuss the maximal rank case N = 1, p — ¢ = 16, where
the integrand is invariant under the full modular group, before dealing with the case of N
prime. The reader uninterested by the details of the derivation may skip to §5.3, where we
specialize to the values (p,q) = (2k,8) relevant for the V?(V¢)* couplings in D = 3, and
interpret the various contributions arising in the decompactification limit to D = 4.

5.1 O(p,q) = O(p—2,q— 2) for even self-dual lattices

In this subsection we assume that the lattice A, 4 is even self-dual and factorizes in the limit
(5.1) as

Ap7q — Ap_Q,q_Q D HQ,Q . (5.2)
We denote by R,t,a'’,4 the coordinates for each factors in (5.1) (here i = 1,2 and I =
3,...,p+q—2). The coordinate R (not to be confused with the one used in §4) parametrizes

a one-parameter subgroup ef*1 in O(p, q), such that the action of the non-compact Cartan
generator I on the Lie algebra so, , decomposes into

50,0~ ... D (gl @sl@s0, 0, 2) V@22 (P+q—4)Ya1?), (5.3)

while (a*!, 1)) parametrize the unipotent subgroup obtained by exponentiating the grade 1 and
2 components in this decomposition. We parametrize the SO(2)\SL(2, R) coset representative
vui and the symmetric SL(2,R) element M = vTv by the complex upper half-plane coordinate
S =51 41855, such that

i_ 1 (15 i _ gy iy i L (1 S
U“_@(O Sg)’ MY = "v, v, 5\ Is12) (5.4)

The remaining coordinates in G),_2 4—2 will be denoted by ¢. As in the weak coupling expan-
sion, lattice vector are labelled according to the choice of A-cycle on the genus-two Riemann
surface. A generic charge vector (Q}, Q%) € Ay, @Ay, ~(222) V22 (p+q—4)Ve
(2® 2)(1) decomposes into

(Q1,Q7) = (nf,n?,QF, QF,m", m”) (5.5)

where (n},n2,m', m%¥) € Iy ® Iz 5 and (Q}, Q%) € Ay 94 9@ Ay 2,4 o such that Q" - Q° =

79

—m”nf - mSin;" + @T . @s. The orthogonal projectors defined by Q% = p%Q% and Q' = pII_-ng
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decompose according to

IQr_Ui;l ri+i.@r+(¢ij+1i.j)r L A
Pl I_R\/§ m a e 2a a’ )n; Uy Ny
P1.oQF =P1 o(QF + njal)

-1
pl' Qr _ Uip mm’_|_az'.©r+(¢€ij+1ai'aj)n7j +
Ru<T R\/i 2 J

PhaQF =Pk a(Q7 + njal)

(5.6)

where ﬁi,aaﬁfa,@ (¢ = 3...p, & = 3...q) are orthogonal projectors in G,_g,_2 satisfying
Q@ =qQp Qs - Q- Q.

In order to study the region R > 1 it is useful to perform a Poisson resummation on
the momenta m™ along Il & I 5. Note that this analysis is in principle valid for a region
containing R > /2. Insertion of momenta polynomials along the torus or the sublattice can
be again obtained using an insertion of a auxiliary variables (yr ., Yr.a)

ry) [e%iya'@”%ya“; l'ya}
D, q

_pt Y e @ eraes femp (] v o [oumo ()] e

(m;,n;)eZ8

x Ty [e%mﬂaé@%a}a” n)) 2mivar- Q@+ §yar-Qy l'yal} , (5.7)
p—2,q—2

where the sum over indices r = 1,2 is implicit, we used Einstein summation convention for

indices r = 1,2, u = 1,2, i,j = 1,2 and a = 3,...,p, and where M%¥ is defined in (5.4).

In this representation, modular invariance is manifest since a transformation © — (AQ +

B)(CQ+ D)~! can be compensated by a linear transformation (2 1)y (21 1) (PCIT _AET),

n, mo n, my
Yu = Yu - (CQ+ D), under which the third line of (5.7) transforms as a weight =4 modular
form. We can therefore decompose charges (n;, m;) into various orbits under Sp(4,7Z) and
apply the unfolding trick to each orbit:

The trivial orbit (n;,m;) = (0,0) produces the integral (4.1) for the lattice A;?Ezqq =

Ap_2.4-2® Ap_24—2, up to a factor R*, and vanishes if one of the indices ab, cd lies along 1,2

,q),0 —2,q—2
GUIY = R1GU2a (5.8)
Rank-one orbit This orbit consists of matrices (n;, m;) # (0,0) where (n;,m;) and
(n2, my) are collinear and not simultaneously vanishing. Such matrices can be decomposed
as (n;,m;) = (g)(03,04,d3,d4), (4,p) # (0,0) and ged(cs,cq,ds,dg) = 1. Quadruplets
(c3,cq,ds3,dy) with ged(cs,ca,ds,dg) = 1 can all be rotated to (0,0,0,+1) by a Sp(4,7Z)
element, whose stabilizer is the central extension of the Jacobi group Fi] (4.10), and are in
one-to-one correspondence with elements of I'{\ Sp(4, Z). Thus for each doublet (3, p) # (0,0),
one can unfold the integration domain Sp(4,7)\Hz to I'{\Ha = R} x (SL(2,Z)\H1), x

(T3/Z2)uy uz.00 (for further details, see below (4.11)). We parametrize I'{ \Ha by t = %2‘, p
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and (u1,uz,01) = (v1 — ugp1,v2/p2,01), and change the y variables (yllluyé/myiomyéa) =
(yl,ua Y1pUl — Y2u, Ylas Y1a2 — yQa) StabﬂiZing Pab,cd

o)
dp1dps Pabed(gy7) 2
szl;)qc)éll = R4/ / L 1 du1du2d0’1/ ;012,02 a; Oy e~ r 2 |i+pS|
0 3] Fi P2 0o
R 5.9
FI(X2,)),21472|: 27r1(]al+pa2)Q2IeXp 27.[.1( fer(Q ) " m ( )
~ . 1 1
+ y/loz( ia + u2Q% yQOLQ p yl ayl + Eyéayéa>i| 9

where mo; v = 512 ((1) g;)( ) and Pgp cd( Ef? ) is derivative polynomial of order four defined in

(4.13), and where the Fourier-Jacobi expansion of 1/® is given eq.(4. 14)
The integral over oy picks up the Jacobi ¢,,(p,v) of index m = —fQQ Contributions

from @y = 0 pick up the contribution c¢(0)E,/(12A) (4.15), and lead to power-like terms!!

G(P q)7170 Rq 4C( )5*(8 S)(S(a G(p 2,q—2)

B,yd (4

wn ! ( 0) " (5.10)

L0 8— 8— 1,

G = —R S (350, — 2D, | £33, 9) G

where £*(s,.5) is the completed weight 0 non-holomorphic Eisenstein series
E*(s,8) = 17'(73]._‘(8) Z,: I S =¢{(25)E(s, 5) (5.11)

’ 2 [nS + m|?s Y

(m,n)eZ2

with £(2s) the reduced zeta function £(2s) = 77°I'(s){(2s) and Dy, is the traceless differential
SL(2,R)

operator on S0 acting on S and defined in terms of raising and lowering operators of weight
w as

Dy = —%a,jupw - %a;wa, (5.12)
with 0% = 1(03 £ i01) and o; the Pauli matrices.

Non-zero vectors @2 lead to exponentially suppressed contributions, in a similar fashion
as what described for the O(p,q) — O( —1,q — 1) limit, section 4.1. They depend on the
axions through a phase factor 2mim2; Q210" Ty order to evaluate them, we insert the Fourier-
Jacobi expansion (A.54) and decompose~each Ym(p,v) into its finite and polar parts. In
either case, the integral over oy imposes Q3 = —2m. As in the previous section, we consider
first the contributions of the finite part 1% (p,v), for null and non-null vectors, and then the
contributions of the polar part 2 (p,v)

1. In the case Q2 = 0, one can make the same decomposition as in section 4.1, usmg the
constraint Ql Qg = 0 from 1/}5 (p). The integral then reads, for a given null vector Qg and

"Note that (5.10) has a pole at ¢ = 6 and ¢ = 8, of which the first is substracted by the regularization
prescription discussed in §B.2.4, and the second cancels against the pole from the trivial orbit contribution
(5.8).
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s = ()

’ ~
R74 QWimzjégjalj d A ﬁthQ SQt |]+ps|2 27rt‘Q2R|2 dpldp2 C(O)E2
2 € gC (QQ) 2 12A

(w2 o e

7Y Qe gh(@ e 0
X duy P22 q2 T TIRRIL ga il T Rpab,cd(ay/)
R

L
Qi EAp-3,4-3

. 1 . ~ ~ ~
» 62m<%y£u(92 )T2m2iv1“+y’m(QlLa+U2Q%°‘)—y§QQ%Q+4iL2yiayi“+ﬁyéay§“)

y'=0
(5.13)

where ng(ég) comes from unfolding the wug-integral that uses the component of él
along Qg, and where Qi € A,_3,-3 such that A, 3,3 = {Qf € Ap_24-2, QF - Q2 =
O}/(Z Q2 ) (for further details, see (4.21)). We obtain the a one-loop integral on a sub-

Grassmamann Gp—2,4—2 parametrizing a space orthogonal to @2, labelled G249+ (Qg, ),

F,ap
that we define as
G(p 2,q— 2)J_(Q (,0) _ ng(Q)/ dpldpg E\Q quj Z q%é%q_%@zR 27T p2 (QRQ%R)Z
Faf0 % 12 Jr  pd Dk(p)?
QeAp—S,q—B
~ Qr- Qr ~ Qr- Qr 1 QraQrs
- <R ——(bap - H2EEY |

X {(Qm o, QL )(Qm a2, QLﬁ) 47rp2( 3 %, )

(5.14)

where Ap = A in the case at hand. After defining I'; = (Q, P) = mgiéz, with support
on 1/2-BPS states, and covariantizing the expression with the torus vielbein, we find that
the Fourier coefficient with support T'; € Ap 2.4—2 > 10}, with e9IT; = 0, and mass

M(T) = \/2M;;T% - T}, is given by, when Q3 =T; T = 0

1 <l> (T, 5) Ko, (2r RM(T))
qTC:“’ 2L, Z D s , (5.15)
M@z !

where the polynomial P® in (4.23) is defined in appendix H.2, and

~(p—2,q— 1 . q—8 _ L 5
Gif,cfb‘foz)(F,so):0(0)[ﬁly’+p’sl} S @Gt G (5.16)
2 o d>1
Q/deNy—2,q-2

and where we defined Q and the unique coprimes (j’,p') such that T' = (Q, P) = (/,p)Q
The full expression for all polarizations will be given together with the polar contributions
in (5.22).

2. In the case @22 = (0, we replace 12,1;1 by its theta decomposition (4.25). The integral over o1
matches QF = —2m, while the integral over u; imposes the constraint Q- Q2 = —¢. The
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variable s € Z in (A.62) can be used to unfold the integral over uy € [—3. 3] to R, after
shifting each term in the lattice sum as Q1 — Q1 + ng, since Ql, Qg € Ap_24-2. One
thus obtain a Fourier coefficient similar to previous case, using I'; = mzng =(Q,P),

L P 5) Koo, (2r RM(T))
3R G(ZJ 2,q— Q)ng(F r; ) Z 1 (517)
F (b~ 0 M)z !

where we denoted, by extension, the function

.. q—8
G(Fp 2; 2)gcd(r T, )(F ): (eri'rj) 2

d? e ged (T - Fj) (r—2,9-2)L Q
< X Gary) e b (e,

F7O‘51_T

d>1
T/deA®?, .,
(5.18)
where we introduced the automorphic tensor G;’: :ﬂq Qicldw - )(%go) in (4.28) and the
2d? )
monomials 73 (F S) in (H.2). Notice that the function G(”J‘)’q*r‘))gfd(ri_rj) (%,cp) only de-

F,OLB,*

242

pends on the direction of T' = (5/,p')Q in Ay_24 2, and on the norm ged(T; - T;)/d? =
0 /d2.

The full expression for all polarizations will be given together with the polar contributions
in (5.22).

3. For the polar contributions, we use the representation

T c(m ms<+s ms+4 7
U (pv) = A((; ST gyt (s, 0,m, o) (5.19)
s EZ

One can then shift the charges to @1 — él + 5@2 since él, @2 € Ap_24-2, and then
use the sum over s to unfold the us € [—1,1] to R. Then, integrating over u; € [—3, 1]
imposes Q1 . Qg = —/(. One obtains the Fourier coefficients, using I'; = mQZ‘QQ =(Q,P),

1 (l) ) Koo, (2r RM(T))
3Rq2 G(PP (2; 2) F ) Z 75} F -l — , (520)
M _

where

~(p—2,q9— . -8 Q2 _ p—2,q— Q
GE (e =[Gl +pSI" Y o — 5 ) GR U(Ep) . (52D)
d>1

Q/deA®?, .,
Here (j/,p') are coprimes such that T' = (j/,p/ )Q, and where we used the automorphic

tensor G(p D (Q, ¢) defined in (4.37). Note that the expression above is identical to (5.18),
but expressed in a different manner to include the case where the norm of I' vanishes.
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Combining all contributions, the sum of the finite and polar contributions to the rank one
Fourier mode are given for all polarizations by

L PO (D) Ko, (20 RM(T))

10 p—2,0— 3) -t
G(()zpﬂq’)y5 =3R'T Gy 2)(F7<P)§ le
=0

(aB

L
MT) 2~
aByp < (T e) 2 76
M(T)

2
K10 (21 RM(D))

)17F L A
ngpﬁqiu _ 3 G(zﬂ 2,q— 2>(r’ 90) PdeFRau 2

(5.22)

q—4 ’

M) 2

where égﬁizqiz) I ¢) = G:: 2; 2g>cd(1‘ vy (0 0) + G(lg ;éqd) (T,), PLyu = 04T Lyi, Trap =

v,'T Rai, and we recall T; = (Q, P).

Rank two Abelian orbits These orbits consist of matrices (E; E) where (n;,m;) and
(n2, my) are not collinear (in particular, non-zero) but have vanishing symplectic product

n; -mo —my - ny = 0. Such matrices can be decomposed as (E; 2;) = (8 IJ)) (é LB)), where

(4, p) € Ma(Z)\{0}, and (2 B) € I'20o\Sp(4,Z), with I'y oo = GL(2,Z) x Z3 the residual
symmetry at the cusp Qo — oo, embedded in Sp(4,Z) as

Too ={( %), v €GL2,Z)} x {(§ ), M € Ma(Z), M = MT}. (5.23)

Doublets (C, D) can be rotated to (0, 1) by an element of Sp(4, Z), and are in one-to-one corre-
spondence with elements I'y 5o \Sp(4, Z). The fundamental domain can thus be unfolded from
Sp(4,Z)\ Mz to Ty,00\Ha = (GL(2, Z)\Pa)a, X (R/Z), , where P; is the set of positive-definite
matrices. Finally, one can restrict the matrices A = (j,p) € Ma(Z) to A € My(Z)/GL(2,7Z),
in order to unfold GL(2,Z)\ P2 to Ps.

The resulting contribution can be expressed in terms of the auxiliary variables (v, ., Yr.a)
(5.7), and we obtain

a0 o 1007
G(p,Q) 2ADb 2R4/ 2/
abred Py 12 /i1 1]3 T P10

y Z e”m[ﬂé'@] Z eQma“AijQJI'—wTr[g—jQ;lAT(511 ‘5;2)A+292Q“R-é}]

QEAP - AeMs(Z)/GL(2,Z)

o _R —1 . - 1 .
X Pab Cd(ag) 627”(%?!7‘#(92 )TSATS"LUT,LMJ’_yTaQLTa_’_EyTQ(QZ )TSySO‘)

7

(5.24)

where the factor two comes from the non-trivial center of order 2 of GL(2,Z) acting on
Hy. For sufficiently large |Q2], the integral over ©; € [0,1]® selects the Fourier coefficient
C(m,n, L; Q) of 1/®19, with Q? = —2m, Q2 = —2n, Q1 - Q2 = —L. As discussed in §A.6,
the Fourier coefficient can be decomposed into a finite contribution C¥'(n, m, L), independent
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of 5, and an infinite series of terms associated to the polar part,

eiw(Q17Q2)(ﬁ (L;) (CQQE)
O3
= CM(Q1,Q3,Q1-Q2)

O — 2 _r 2 6( tr ((102 1(/)2)71-927))
+ Z C(—( Q1 2¢1Q2) )C(_(PQ2 - Q1) )[_ / >

C(m,n, L; Q) Z/d?’Ql
C

YE€GL(2,Z)/Dihy

 (5Q1m002) Q21 Q1) (o (5@ — Qo) - (pQ2 — Q1)) — sign( tr ((4), 152)'%927)))}
(5.25)

where v = (1;,7 (51) and Dihy = <((1J Pl), ((1) (1))> is the dihedral group of order 8, which stabilizes

(up to sign) the matrix (192 1(/)2
A6, this formula holds only when [Q;] > 1/4, such that the contour C = [0, 1]? + iQ2y avoids
the poles of 1/®;( for generic values of Q. Inserting (5.25) in (5.24), we find the following

contributions,

), or equivalently the locus vo = 0. As explained in Appendix

1. The contributions from (él, @2) = (0,0) produces power-like terms in R?, from the delta
function contribution in (5.25), even though C'*(0,0,0) = 0,

2Ab0 _ 3c(0)* .,
ngﬁ ’)yé —R¥1? 6;33 £ (Tqu)25<aﬂ,575>’

@), 2Ab0 _ c(0 _ .
Gépﬁq/)m — R 3(27235 (Tqu)[STq(SpU_2Dpff}g (8 1,5) 6as

36(0) _ _ _
Ab, x/8 8 x/8
G/?uqﬁaz 0= -RpM7Y 64m3 {Tq‘smm - 2D<MV7}S (Tqu) [Tqéptf) - 2Dpa>}g (Tq’s)?

Here, the non-holomorphic Eisenstein series £*(s, §) and traceless differential operator D,,,,
are defined in (5.11) and (5. 12) It is worth noting that in the limit Sy — oo, the constant
—6

term proportional to {(¢—6) 52 in the Eisenstein series 5*( 1 S) reproduces the missing
constant term in (4.20). Thus, while this term is missed by the unfolding procedure in the
degeneration (p,q) — (p —1,q — 1), it is correctly captured by the unfolding procedure in
the degeneration (p,q) — (p —2,q — 2).

2. Contributions of non-zero vectors (@1, ég) S AEB “9.4—2 lead to exponentially suppressed
contributions. For the finite term C*'( 1,Q2,Q1 - Q2) in (5.25), and for the simplest
tensorial representation, the unfolded integral leads to

. a—9
] 2 2mial A;; Q) ~F /N2 N2 R2| A 75
6R% b D AP M CT(QF.03 Q1 Q) (i) T Baga(2),
(Qu.Q2)eAl2,
AeM»(Z)/GL(2,Z)

(5.27)

where

_2R2 1 5 Q3 Q1R QQR
7= (s, 15) 45,5, 03 )4t (5-28)
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QA P|? = det @ Q-Pyand E(; Z) is the matrix-variate Bessel function [67], defined by
Q-P P

B ([ P e
By(UV) = 2(“,‘) /732 rNEh 2 Ute (5.29)

Note that E(;(Z) depends on Z only through its trace and determinant. In the limit
R — o0, or large |Z] = |UV/, the integral over €2y is dominated by a saddle point where
Q5V Q5 = U; using the identity Tr(UV)U — UVU = |U||V| V! valid for 2 x 2 matrices,

this is given by
-1
gy = UHVILVIVE, (5.30)
Vi (OV) +2,/0V]

. R 1 s _ o2 Oup- O . :
For the matrices U = < AT (S1 \S|12)Av V= 2(©1R R 1%§R 21) | given by (5.24), we obtain

. R 1 (1 S 1 Pg  —Qr-Pr
%= A (A (s o) e (ontp, 0z )4 (53D
where M(T') is the mass (2.5) of a 1/4-BPS state with charge T' = (Q, P) = (Q1, Q2)AT,
and |Qr A Pr| = \/Q}%PRQ —(Qr - Pr)*.

For the contributions on the last line of (5.25), the integral over Qs no longer evaluates to a
matrix-variate Bessel integral, since these contributions depend on 25, being discontinuous
across the walls where tr ((192 162)7T927) changes sign. However, as long as (5.31) does
not sit on the walls, the integral over {2 is still dominated by the same saddle point, with a
prefactor obtained by replacing C*'(Q?, @3, Q1-Q2) by C(Q?, Q2%,Q1-Q2; Q). In appendix
F, we estimate the error made by neglecting the variation of C'(Q?, Q3, Q1-Q2;Q2) at finite
distance away from the saddle point, and find that they are of the order expected for multi-
instanton corrections. For the remainder of this section, we ignore these corrections, and

perform the above replacement in (5.27).

In order to write the result for more general polarizations, it will be useful to introduce

BO (Z) = Opw / d’Qy o=t (1 Z+Q2)

T AIZPR T )i (5.32)
~ 1 d*Q - '

1 - 2 -1 —mtr (51 Z+99)
B£712V(Z) —2|Z5? / |QQ|1—5(QQ Juv € T 7,

~ ~ s ~ 1
such that 6" B{), (Z) = By(Z) and |Z|3 B{}),(2) = L 52 [\/|Z\s+2BS+%(Z)}.

Changing variable (jQ)) = A(gl), we therefore obtain the Fourier expansion with respect to
2
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(a1, a2), with support on I' = (Q, P) € Ap 9,420

2 pitery B R4 50)(,%, %)
15| Prp P}
Guns ™" ~ 2RICQ P9 ) et ) TS
7 ‘2QR/\PR‘
1 (1) pv E(H—lmodZ) 2R2 (1 S, Q% On - Pr
GPO2ANT | pas160) pras) Pyls(T) Pa=s=t %55 (s, \5\2) (QR.PR P2 )]

pB6 R!

=0

~;9 [%(5}1 |§\l2) (QS%PR Q%}%PR)]

G(p’q) 2ADb,T ~ 2RI~ 1C(Q P; O ) MV: f”'

e 2Qr A Pr|*T
(5.33)
where the measure factor is given by, for I' = (Q, P)
C(Q, P;3) = > JAITC[ATN ([, G AT ATO34] (5.34)
AeM»(Z)/GL(2,Z)
A-lrea®?, .,

3. Contributions from the Dirac delta function and sign function in the first line of (5.25)
also produce exponentially suppressed contributions to the same Fourier coefficient. These
contributions are localized on the walls tr((&2 1/ 2)7T§227) associated to the splittings

(Q,P) = (Q1,P1) + (Q2, P2). For the Dirac delta function terms the integral separates

into the product of two Bessel functions, with arguments given by the masses M(Q1, P1)

and M(Q2, P») of the 1/2-BPS components, as shown in Appendix D. In Appendix C,

we show that he summation measure for these contributions also factorizes into the two

respective measures for 1/2-BPS instantons appearing in the genus-one integral (1.4), (1.6).

The contributions from the sign functions are estimated in Appendix F.

Rank two non-abelian orbits These orbits consist of matrices (Ei EE) where (n1, m;) and
(n2, my) have non vanishing symplectic product M; = n; - mg — my - ny # 0 (in particular,
they are non collinear). Unlike all other orbits considered previously, the contribution of
such matrices depend on the scalar 1 corresponding to the top grade component in the
decomposition (5.3) via a factor e2™M1¥  and therefore contribute to the non-Abelian Fourier
coefficient. While the classification of the orbits of such matrices under Sp(4,7Z) is rather
complicated, we show in Appendix G that these contributions can be deduced by a simple
change of variables from the already known Fourier coefficients in the degeneration (p,q) —

(p—1,q-1).

5.2 Extension to Zy CHL orbifolds

The degeneration limit (5.1) of the modular integral (2.30) for Zy CHL models with N =
2,3,5,7 can be treated similarly by adapting the orbit method to the case where the integrand
is invariant under the congruence subgroup I'so(N) = {(2 5) € Sp(4,Z), C =0 mod N}. In

(1.7), ®4_2 is the cusp form of I'y o(N) of weight k = szl defined in (A.33), and F(Q) [ ab,cd)
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is the genus-two partition function with insertion of Py .4 for a lattice
Ap7q = Ap_zyq_z D El,l D Hl,l[N] , (5.35)

where A,_2 42 is a lattice of level N with signature (p—2,¢—2). The lattice I 1 & I 1 [N] is
obtained from the usual unimodular lattice II> 2 by restricting the windings and momenta to
() = (g iz ) e NZZQ)Z Z7), hence breaking the automorphism group O(2,2,7Z)
to ogor X [o(INV) x To(N)], exactly as in [22]. After Poisson resummation on my, ma, Eq.
(4.7) continues to hold, except for the fact that ny are restricted to run over (NZ)2. The sum

over A= (21 ™) can then be decomposed into orbits of 'y o(N):

Trivial orbit The term (E; E;) = (8 8) produces the same modular integral, up to a factor
of R,

GUbl = RYGU 2 (5.36)
where Gg’ﬁ_;g_l) is the integral (4.1) for the lattice A,_2 42 defined by (5.35).

Rank-one orbits Matrices A of rank one fall into two different classes of orbits under
I'y0(N). Let us first consider the case where (ng,m3) # (0,0) and denote (nz,mjy) =
p(nh, m)) with p = ged(ng, my):

1. Matrices with n}, = 0mod N, as they are required to be rank one, can be decomposed as
n; mip\ 0 00 j A B

(ne ms) = (0 0 0 )@ D) (5:37)

with (7,p) € Z% ~ {(0,0)}, p # 0, and (& 1) € (To(N) x Ho1(Z))\I'20(N), with Zs x

[o(N) x Hy1(N) C T{. For this class of orbits, one can thus unfold directly the domain

Ty0(N)\Hs into (Do(N) x Ho1(Z))\Ha = R x (To(N)\H1), x ((R/Z)?/Zs) (for
further details, see (4.48));

Uu1,u2,01

2. Matrices with n # 0mod N can be decomposed as
n; mip\ 0 j 0 0 A B
(ne ma) = (0 5 0 0)(c D) (5.38)
with (j,p) € Z ® NZ ~ {(0,0)}, p # 0, since ny = Omod N, and where (& 5) €
S,8,(TO(N) x Hégi N(2))(5,85)""\I',0(N), recalling the definition
H;LN(Z) = {(F&v A?M) € szl(Z)a kK=p= 0 mod N}7 (539)

and where S, denotes the inversion over o. One can then unfold the fundamental domain
I'0(N)\H2 into S,S, (T°(N) MHé?in(Z)) (S,55,) '\ H2, and change variable Q — (S5,S5,)-

Q = —Q~! as in the weak coupling case (4.53) to recover the integration domain (I'°(N) x
HY) N(Z)\Ha = RS x (TYN)\H1), X (R/Z)u, X (R/NZ)2, . Under this change of

variable, the level-N weight-(k — 2) cusp form transforms as in (4.51), while the partition
function for the sublattice A,_s 4o transforms as

L [Pasasl(07) = N2 (Papel(@), (5.40)
p—2,9—

Apog-

where we denoted v2ZN~F=2 = ‘A;727q72/Ap_2’q_2’71 (Note that v? = N272%s for ¢ < 8
in the cases of interest).
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The remaining contributions A with (na, mg) = (0,0) can be split in the two classes of
orbits above. Given (n;,m;) = j(n},m/), where j = ged(ni,m;) and j € Z, terms with
nj = O0mod N correspond to cases (j,p) = (J,0) in the first class above, while terms with
n} # 0mod N correspond to (j,p) = (4,0) in the second class above.

For the function Gfl’;:’gc’ll, changing the y variables as before (1/1,,, ¥5,s Y1as Y5a) = (Y1ps Y101~
Yous Ylas Y1al2 — Yo2u), the sum of the two classes of orbits then reads (similarly to (4.53))

9
dt dp1dps Pabed(gy)
Gt —R4/ 3/ du1duzd01/ ,012/)2 i ?g
’ r+ U0 J(r/Z)3 oM\, P53 Pr—2(9)
! ,LRQ i+tnS|2 L~ L I
« 3 Ry [eneuteindy )]
(4,p)€Z2
dt dp1dps Pabed(zy)
+R4/ 3/ duldal/ dm/ PISPs Oy
r+ 0 J(R/NZ)? R/Z roN\H, 5 Pr2(Q/N)
2 / 2 -
v — TR |j+pS |2 h(2) 27iQar (jal +pal)~y/, s
X NI > 1y [6 2AVaTPR2) Y (y )],
(j,p)eZ?
p=0mod N
(5.41)
where
omi £ mivf‘yé”-i-y/ (@11 %+u2Q2r*)—Yh o Qo2r “+ 1=V, WY1+ 7 Vb a5
y(y/) . V2 T la 2 Tipy Y1a¥1 Ta¥2aY2 (5,42)

with mivz = \/sz(j + pS1,pS2). The contributions with Q3 = 0, after integration over w1, ug

(4.55), can be brought back to regular integral over I'g(IN)\H; by changing variable p — —1/p.
Similarly to (4.56), the transformation property of the genus-one partition function and the

level-N cusp form allows to obtain'?

_ * dt g¢-s6 012 Ck(O)
G0, 1L,Q*=0 _ R4/ ay 2mtQ2,
abied A D DR 12(N - 1)

@2€§P—2,(I—2
Q3=0
X{ i 6Trsgtz|“ps|2/ dp1dp2 N?E3(Np) — Es(p)
(.p)EZ? To(N\H: P53 AL .13
+vN Z/: o litpSP? / dp1dp2 E2(P)_E2(Np)}
(j.p)eZ? To(N)\H1 1 Ag(p)
p=0mod N

7iQar (jal+pal
« 2mQ2r(ja+p 2)FAP717(171 ['Pab,cd(aiy/)y(y/)}

"2Recall that Ax(—1/Np) = N& (=ip)*Ax(p), Tn: , ., [Par(=1/p) = v "IN BT (=i)* p* 2T, |, [Pus)(p)
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The zero mode contribution, @2 = 0, lead to power-like terms

_ ck(0 C9.4-2) ) ox s 8— =6 L, 8
Gy = Rt 105105 Gy (€450, 8) — oS £ (550, NS)

~ Bap, G (NEH (352, 8) —oN'T (%51, N'S)) |

0
GP2:1.0 _ pg—4 %7() [%&w — 2D,

af, v 487(N — 1)
« [Ggé—?*q-?)(e*(%, S) —uNZ" (354, NS))

— SGUI(NE(5E, ) — uN T e (351, N S))|
(5.44)

where we use the genus-one modular integral G;’gq)(cp) (B.11), with integrand invariant under

the Hecke congruence subgroup I'g(V), as well as ‘G5 (4.57) (Note that the cases of interest
satisfy G () = G229 (), G () = Gl ().

The terms with non-zero vectors (Q lead to exponentially suppressed contributions of the
same form as the Fourier modes of null vectors (5.15), non-null vectors (5.17), and the polar
contribution (5.20) respectively, with the following changes:

1. In the case of the finite part of 1/®;(£2), for null Fourier vectors Q? = 0, the CHL equivalent
of G;’fﬁ;zf) is

-/ / -8
ng;zﬁ,?az) (Fia S) Ck(o) [|j +p S| :| q

T RE-DU V5
-8 -8 —2,4-2)L/Q
’ [( 2, A 2. oNd )vaoféfom (F.9)
d>1 d>1
T/deA®?, ., D/dEN] 54 2ONAG 54
_ - —2,4-2)L /O
S YR R e
d>1 d>1
T/deN; o, o®NAS 5 0 o T/deA?,

(5.45)

where we defined the coprimes (j',p’) such that T' = (5, p/)T.

2. For non-null Fourier vectors, Q? # 0, the finite part of 1/®;_»(Q) contains two terms

- -8
G212 (T, ) = (MYT; - F.)qT
ged(T;-T'5) y P 2 J
B, -
q—8 .
_ged(l;-Ty) d? 2 ~(p-2,4-2)L o
( Z Ck( 2d2 ged(T-T) Gaﬁ _ ged(TyTy) (77 SO)
d>1 ’ 242
T/deA??,
q—8 .
_ ged(Ts-Ty) Nd? T2 g (p-2,9-2)L Q
+ Z v Ck( 2Nd? ged(T;-T) Gaﬂ _ ged(T; T) (ma (P) .
d>1 ’ 2Nd?
T/dEN}_ o 2®NAS_, o

(5.46)
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with

A2p Nhumy(Np)
sqr-2a-L (T : :/ p X m IV P) | . 5.47
af,m (Nd °) To(N)\H1 P% Ag(p) aﬁ(N ) ( )

and FZZ’I(Q) the vector-valued partition function defined in (4.29).

Rank two abelian orbits Matrices (E; Q;) = (Z; o z;z) with vanishing symplectic
product n; - mo — my - ng = 0 but (n;, m;) # (0,0) and (n;, m;) and (ng, my) not aligned,
fall into four different classes of orbits. Consider k; = ged(ni, m;) and ky = ged(ng, myg), the
four classes depend on whether n;/k; and ny/ky are congruent to 0 mod N or not.

1. When n; /k; and na/ks = 0 mod N, one can rotate the element as (E; z;) = (8 g;) (é g),

with (p1,p2) € Ma(Z) ~ {0} and (2 5) € ' 5\I'20(N) (A, C are not independent and
the fourth winding entry, say nag, vanishes because of the symplectic contraint). The
representative is stabilized by I's oo = GL(2,7) x T3, and one can restrict the sum over
matrices A = (j,p) € Ma(Z) to A € My(Z)/GL(2,7) and unfold the fundamental domain
from I'y o(N)\H2 to I'a oo\ H2 = (P2)q, X (IR\Z)?ZI, with (@, P) € Ay, @ Ay,

2. The two cases ni/k; # 0mod N but ng/ke = 0 mod N, and n;/k; = Omod N but
ny/ko # 0 mod N, should be considered together. Respectively, the charges can be
cotated as (2 M) = (588 (A 5). 0 < j < kpeZn{op, amd (3 m) =
® ; FOYE B), 0 < j < Nk, p € NZ~ {0}, by construction of the lattice (5.35).

& Byes, FglgoN S;N\oo(N) and (2 B) € S F(;f)oN TN\I2,0(N) respectively, with

Fon =406 ¥ M = (3 ). (a.rs) € 2},

@

, (5.48)
2,00,N {(]Ol %[)’M:(;{ JG.S)’(Q7T7S)EZ3}7

and one can then unfold I'g o(N)\H2 to S Fglio NS 1\7—[2, S, FEQC))O NS, ~1\Hs, and change

variable p — —1/p, 0 — —1/0, respectively. After exchanglng p and o in the second case!?,

the two cases can be assembled together to form the two orbits of the decomposition of
Myo(N) ={(? %) € Ma(Z),r =0mod N}, (5.49)
over
(Zy x To(N)) ={(*» 7) € GL(2,Z),r = 0mod N} . (5.50)
Explicitely,

Myo(N)/(Z x To(N)) = {(§ 1).0<j <k.peZ~{0})

U{(7 1) ,0<j < Nk,pe NZ~{0}}. (5:51)

One thus obtains a single sum over matrices A € My o(NN)/(Za x T'¢(NN)), with a funda-
mental domain unfolded to I‘SQOVN\HQ = (P2)a, x (R\Z)Z, ,, X (R\NZ),,, with (Q, P) €
AY, ® Ay, Under this change of variable, the level-N weight-(k — 2) cusp form transforms
as

by, 2(Sp 0 Q) = ((VN) "o 2 dy5(Q) (5.52)

13This transformation belongs to T'2 o(N)
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such that it satifies the splitting degeneration limit (A.44), while the genus-two partition
function for the sublattice transforms as

re [Pap.cd] (S, 0 Q) = v(ivV/N)F=2pk=21() [Paped (), (5.53)

Ap—2.4-2 AS g g o®Ap_24-2

where v = Nk/2+1|A —9g-2/Np—2,4-2|" 1/2 (reducing to v = N'~%s for ¢ < 8 in the cases
of interest).

3. When n; /k1,ns/ko # 0 mod N, one can rotate the element as ( ml) = (jl j2 0 O) (é g),

n; mp p1 p2 0 0
with (1 72) € Mago(N) ~ {0},

M2’00(N) = {(p q) € MQ(Z),T’ =Ss= OmodN} (554)

T s

by construction of the lattice (5.35), and (4 ) € SpSUFég())O N (SoS,) "N\ o 0(N), with

I v =10 %) v e GLR. )}y x {(} ¥).M = (2 7). (¢.7.5) € (NZ)*}.  (5.55)

One can then unfold I'y o(N)\Hz2 to SpSUI’g?)())O N(SaSp)*l\”Hz, and change variable Qo —

—Q5 " to recover Fg?gO,N\HZ = (GL(2,Z)\P2)q, x (R\NZ)}, . Finally, one can restrict

the sum over matrices A € M5 o(N), p = 0mod N to A € M3 go(N)/GL(2,Z), in order

to unfold GL(2,Z)\Ps to P2, with (Q, P) € A}, & NA},.

After unfolding and changing variables, the result for the simplest component G% ﬁqug Ab
reads

3 3 ! R? 1§
G(ofﬁq) gAb 2R4/ d Qg/ d Ql Z e_”Tr[S QytAr (31 \sz)A]
? Py 190 Jiryzyr Pra(Q)
MQ(Z)/GL(z,Z)
wiatl A QI
XF/(\QI:—2,Q—2[62 oA Paﬂm?]
! R __ 1 s
+2R4/ dSQQ/ ﬂﬁ Z e_WTr[?QQ2 1AT(S1 |5‘12>A]
P [P Jryz)2x(®/NZ) Pr_2(Q) N o=
M2,0(N)/(Z2xTo(N))
2miat! A;; QI
F/(\ZZ) 2,q— Q@A[F?.,q—?[ i9 Pag o)
! R2 1S
vart [ o | L A GO
Py [0 Jr/Nz)s Pr2(Q/N) N4 "
M3,00(N)/GL(2,Z)
(2) 2riatl A;; Q1
X FA;_Q_’q_2[ J Paﬁqé] )
(5.56)

where v? = Nk+2|A —9.g-2\Ap—2,4— 2| ™! (which reduces to v? = N272%s for ¢ < 8 in the cases
of interest).

Integrating over (2 selects the Fourier coefficient Cy_o(m,n,l; ) of 1/®;_», and the
Fourier coefficient Cj,_ a(m,n,l;Q9) of 1/<I>k 9, with Q2 = —2m, Q2 = —2n, Q- QQ = —I.
The first one is invariant under GL(2,Z) C I' o, defined in (5.23), and its Fourier coefficients
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can be written after separating the finite contribution C'*', independent of €, from the polar
ones

3 eiﬂ(Ql’QQ)(f* 2)(8) e
30 L OF (0RO O, -
/[0,1[3 ' Bj_o(Q) 1—2(Q1, @3, Q1 Q2)

o(tr (17, '0°)772%27))
4

S — 2 —1 2
4 Z Ck(—%)ck(—(pch - Q1) )[_
~EGL(2,7)/Dihy

+ (SQ1—qu)é(pQ2—rQ1) (sign((s@Q1 — qQ2) - (pQ2 — rQ1)) — sign(tr ((1(/)2 162)7TQ27)))}

(5.57)
where v = (g (s]), and the finite contributions C’,f_Q( %, Q%, Q1 - Q2) are also invariant under
(gl) — w’l(gl). The contributions of 1/<i5k_2 can be written similarly as

2 2
1 eiW(Q1,Q2)(5 (l,i) (g;) _
T dggl = = CF— Q2a Q27 Ql : QQ
N Jio,N[x[o,12 Qp2(2) e-2(@1, Q2 )
3(tr (49 1))
—00)2 _r0)2 2 0 )
+ Z Ck(—N(SQ12 qQ2) )Ck(i(iﬂcb 2TQ1) )[7 1/ -
Y€To(N)/Z2
+ (squQz)é(sz—rQﬂ (sign((sQ1 — ¢Q2) - (pQ2 — rQ1)) — sign(tr ((1(/)2 162)7T927)))}

(5.58)

where Zy x I'g(N), the symmetry at the cusp, is equivalent to GL(2,Z) N M3 o(N), and the
stabilizer of (192 162) inside it is reduced to {((1) (1)), (*01 fl), ((1) %)}, leading the sum over
To(N)/Zs.

1. The contributions from (Q1,Q2) = (0,0) come in two classes: the ones associated to the
zero mode C{ ,(0,0,0) = ]3§]_V1 and CF ,(0,0,0) = —Nég_l (see (A.49) and (A.50)) that
were absent for N = 1, and the ones coming from the delta function contribution in (5.57)

and (5.58). The zero mode contribution is proportional to

/ / !/

N N T
10—¢q
Py |72 A
M2 (Z)/GL(2,2Z) M2o(N)/(Z2xTo(N)) Ma00(N)/GL(2,Z)

/ / /!

- RO (N Y < e Y+ Y Jaear
M3(Z)/GL(2,Z) M2,0(N)/(Z2axT'o(N)) Ma2,00(N)/GL(2,Z)

RAHE(T = q)€(6 — ) (N — v(1+ NTO) + 02NTT) (5.59)

where the integral is a matrix-variate Gamma integral [67] and the sums reduce to zeta
functions using explicit representatives as (5.51).14

4 Alternatively, the integral can be reduced to a beta integral over r € [0, 1] using the substitution v = ,/por.

o8



SciPost Physics

With the same computation as in the preceding section, one obtains

_193¢k(0)? ., s L8 o 8
G, 28b _  pog—12 £(0) (E* (34, 8) +vN= & (¥7N5))25<aﬁ,576>

afns T T 6473
18R%4—10 N —v)(1 —vNe7
+ 81— q)e(6 - 0" ])V(Q 7 )5<aﬂ,5w> )

G(p,q%QAb — _R2-12 Ck(O)Z (5*(8—

q=8 8—
aB,po 3973 71, 8) +uN"z £ (551, NS))
q

1 a— _
S(E° (552, 8) + uN"T €5 (55, N'S)) dap

8—
X | 252850 — 2Dpo] >
(N —v)(1 —vNTT)

6(7 o q)qu—lo

+ 2 5(7 - q)f(G - Q) N2 _1 5a66pcr 3
_193¢(0)% 15 _ =8 . g
), 2Ab 2¢—12 2Ck 8 *(8 *(8
Gifu?;))a =—R™ 6475 {TQ(S(W, - 2D<#V7} (5 <Tqv S)+uvN 'z € (TquS))
_ (8= a=8 L, 8
X |55 — 2D, | (€535, 8) + uN T €5 (554, NS))
9(6 — ¢)(7 — q)R?¢10 N —v)(1—ovNI7
+ ( )( 2 ) 5(7 - Q)£(6 - Q)( J)\£2 ] )6(;w,6pa) :
(5.60)

Recall that ¢;(0) = NQ—il = kis thezeromode of 1/Ay =} cx(m)q™, and that 048 05, =
%(60[/3675 — 0a(95)8)- As in the maximal rank case (5.26), the leading constant term in

8—gq

q—6
E(51,5) ~€g=6) 8,7 +&(8—q) 57 (5.61)
reproduces the missing constant term in (4.60).

2. Contributions of non-zero vectors (@1, @2) IS A;?EZ 4—2 lead to the exponentially suppressed

contributions written in (5.33). The measure of each Fourier mode will fall in three cat-
egory, depending on the support of (@, P) . The simplest one is for the most generic
vector Q €AY, , P€ A, — where we denote X € A the strict inclusion of the vector X in
A, meaning that X € A, X ¢ A[N] - for which only the first orbit in (5.51) of the second
term in (5.24) contributes

v Y AT G [AT (R AT ATz (5.62)

= 0
A7 (9)ens@nnm

where the N factor comes from the width of the integration domain (R/NZ).
For less generic vectors Q € AY,, P€ NA,, one must add to (5.62) the second orbit of

m>

(5.51), allowing to rewrite the two as a sum over Ms o(N)/(Zz x I'y(N)) defined in (5.51),
as well as the contribution from the last term of (5.24). We obtain

v > AT Chp [ AT (2 DA ATO34]
AEMQ’O(N)/[ZQ xI'g (N)}
A1 (g) GA;LGBA'IH,
2 8 7 1 2 (5.63)
+v 3 NIS|A[TTC o[ AT (YU 950 ) AT ATz
AeM3(N)/GL(2,Z)
A7 (phy) Ermens,
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where in the second line, N factors come from the width of the integration domain
(R/NZ)3, as well as the argument of 1/®;_5(NS), and the magnetic vector is rescaled
P — P/N, allowing us to use My(N)/GL(2,7Z) instead of M, 0o(N)/GL(2,Z) (5.54) for
simplicity.

Finally, for vectors @Q € A,,, P € A, one must add to (5.62) the contribution from the
first term of (5.24). One thus obtain the full measure as

Cra@P)= 3 AT AT (9, D AT ATasA]
AEM»(Z)/GL(2,Z)
A1 (9) ermenn
+v 3y AT Chp | AT (S, %) AT ATO34]
AEM3,0(N)/[Z2xTo(N)] (5.64)
A= (9)ens@nm

ot Y NTEAPTTC (AT (Y gih) AT ATOs4)
AEM»(Z)/GL(2,Z)
A7 (phy) ennens,

Finally, there are also contributions from rank two non-abelian orbits where the two rows
(n1,m;) and (ng2, my) have non vanishing symplectic product n; - mg — m;j - ng # 0, but as
mentioned in the previous subsection, it is more convenient to obtain them from the Fourier
coefficients in the degeneration (p,q) — (p — 1,q — 1), as explained in Appendix G.

5.3 Large radius limit and BPS dyon counting

We now apply the results in §5.1 and 5.2 for (p, ¢) = (2k,8) and Ap_2 42 = Ay, to discuss the
limit of the exact V2(V)* couplings in three-dimensional CHL orbifolds, in the limit where
one circle inside 77 (orthogonal to the circle involved in the orbifold action) decompactifies.
We regularize the coupling coefficient by analytic coninuation of ¢ = 8 + 2¢, and we substract
the pole at ¢ = 0. We find that the conjectured exact V?(V@)* coupling (1.7) has the large
radius expansion

5 A0 (1) (2) (TN)
Gags = Gapas+Gapas+ Gapas + Gapos (5.65)

corresponding to the constant term, 1/2-BPS and 1/4-BPS Abelian Fourier modes and finally,
the non-Abelian Fourier modes with non-zero Taub-NUT charge discussed in Appendix G.
5.3.1 Effective action in D =4

The constant term in (5.65) takes the form

(0)  _ pa0=1)  CB3) 6 —2rR
Goa,@,'y& =R Gaﬁq& + 87(k —12)R 5(&6,576) +O(e ), (5.66)
The first term originates from orbits of rank 0 (5.36), rank-1 (5.44) and Abelian rank-2 (5.60),
and combines all terms proportional to R* that survive in the decompactification limit. The
second term comes from (5.60), and can be ascribed to the 2-loop sunset diagram shown
in Figure 1 ¢), with Kaluza—Klein states running in the loops. Its coefficient vanishes in
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2

the maximal rank case. The exponentially suppressed contributions of order e % and e~
are missed by the unfolding procedure, but they must be present because of the differential
equation (2.26). We shall return to them in the next subsection.

If our Ansatz (1.7) for the exact V2(V¢)* couplings in D = 3 is correct, the term pro-
portional to R* in (5.66) must reproduce the exact VZF* couplings in four dimensions, up
to logarithmic corrections in R due to the mixing between local and non-local couplings in
D = 4. For the maximal rank case, we find

D= 3 1 4 3
GLns (8,0) = G2505(0) = 1=0(asdye (51(5) % log )’ —700as, (£1(8)+ = 10g R) G537 ()
(5.67)
where we used the definition (5.11)
I o £2s—1) 1 —2r8

Es(S) = —=E"(5,9) =8y + =>——285, 74+ O(e=™2) . 5.68
and the regularized value at s =1,

; BEPOD] g

&1(5) = ll_%} E(5) — W = —Elog(SQ IA(S)]) (5.69)

where Ag = e13=¢(=1) is the Glaisher-Kinkelin constant.

Recalling that Sy = 1/g2, we see that the first term in (5.67) indeed reproduces the
two-loop contribution to the V2F4 coupling in D = 4, while the two other terms reproduce
the tree-level and one-loop contributions to the same coupling, along with non-perturbative
NS5-brane corrections of order e~2™%2. Because there is no holomorphic modular form of
weight zero for SL(2,7), supersymmetry Ward identities and U-duality determine uniquely
this non-perturbative coupling from its perturbative expansion.

For the CHL orbifolds with N = 2,3,5,7, we find instead

_ E1(NS) + &1(S) + Elog Ry 2
Gg?i,v?(& p) = 555 7%6)@) Fé(aﬁ576)< N+l ) (5.70)
L Nél(NS)_él(S) (2k—2,6)
4(N+1)5<aﬁ’<< N1 10 R)G o ()
N& (S) - &1(NS) 6 S ohn0)
+( L= +log R) G (9))

which is manifestly invariant under the Fricke duality S — —1/(NS), ¢ — ¢ - ¢ [27]. In the
weak coupling limit So — 400, this again reproduces the tree-level, one-loop and two-loop
contributions to the V2F* coupling in D = 4 (discarding the log terms)

GO-3(S9) = GC 3V (p) - W 0,5y52% — 1%5 GCE™9()Sa + O(e ™)
This agreement is of course guaranteed by the similar agreement in D = 3 discussed in §4.3.
Since there are no cuspidal forms of weight zero for I'o(N), (5.70) is in fact the unique non-
perturbative completion of the perturbative coupling consistant with supersymmetry Ward
identities and U-duality, including Fricke duality.!?

Other tensorial components G,g,,,, correspond instead to R2F? couplings in D = 4, which
we refrain from discussing in detail.

15The square of %j’fl(s) is determined by supersymmetry. The combination %j}gl(s) (5512;72’6) (p)+
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5.3.2 Contributions from 1/4-BPS instantons

Exponentially suppressed corrections arise from the rank one orbits (5.22), the Abelian rank
two orbits (5.33), and the non-Abelian rank two (G.9). In this section, we focus on the
contributions from the the Abelian rank two orbits, which provide the Abelian Fourier co-
efficients for generic 1/4-BPS charges.' These Fourier coefficients can be interpreted as
non-perturbative corrections associated to space-time instantons corresponding to 1/4-BPS
black holes wrapping the Euclidean time circle.

Decomposing
2 2,1 i P
Gz(zb?cd: > ng,a)z ePrilmQteP) (5.71)
TeAs,BAm
QAPF#0

with T' = (Q, P), using (5.24) and the change of variable Q9 — ATQ23 A, one obtains

e 0 (4§ vamn (2, %60)]

Gﬁﬂ’l =2R* /dSQz Cr—2(Q, P;Q2) Papca(Qr, Pr,2) € Qnbr Py
P
(5.72)
with 17
Pab’Cd(QL7 Pr,Qs) = (Pab,cd(a%) em/iRyw(le)ijvTw+2wiymriLa_gyia(le)ijyja)‘ . (5.73)
y=

The summation measure C(Q, P,{s) depends both on the charge I' = (Q, P) and on Q5 € P,
and is given for the maximal rank model by (cf. (5.34))

C(Q,P; ) = > JAJCIAT (7 AT AT04] (5.74)
AeM,(Z)/GL(2,Z)
ATIT €A 6B A22,6

where Agog = A, is the magnetic lattice of the full rank model, and C’[(Q}" an);Qg] are

the Fourier coefficients of 1/®1¢ defined in (5.25). For CHL models with N = 2,3,5,7, it is
instead given by (cf. (5.64))

Cr2(Q, P; ) = > Gk [AT ([, G AT AT
AEMs(Z))GL(2,7)
A7 (B) eAmonn
+ 3 A1Cy 2[4 (& ~%F) AT AT 4]
A€My 0(N)/[ZaxTo(N)]
A71(D)ernorm

+ 3 AICh >[4 (5“8 M)A AT 4] (5.75)
AEM5(Z)/GL(2,Z)
A1 (phy) ernens,

géffg*”) (p)) = wFﬁk{M”(@) is determined with a fixed coefficient by the source term in the differ-

ential equation enforced by supersymmetry whereas the coefficient of W (éfg 29 (p)— ‘@f ﬂ" )
is determined by matching the perturbative expansion.
YThe dimension of the set of generic 1/4-BPS charges, plus one for the Taub-NUT charge, is equal to the
Kostant—Kirillov dimension of the automorphic representation attached to Gap,cd, see the end of section 3.1.
"When a8v6 lie along the O(2k — 2,6) directions, Pag,~s(Qr, Pr,$2) reduces to the polynomial in (2.31).
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where Ci_o [(2}” 217L>;QQ:| and CN'k,g [(27’ 21”); Qg] denote the Fourier coefficients of 1/®;_o(2)

and 1/®;,_5(Q) given in (5.57), (5.58).

As emphasized earlier, 1/®),_5(€) and 1/®;_4(2) are meromorphic functions with poles,
so that their Fourier coefficients are piecewise constant functions of {25, with discontinuities as
well as delta-function singularities at the boundary between distinct chambers (moreover, they
are strictly speaking well-defined only for |Qg| > %, since the contour C = [0, 1]® generically
crosses the poles for lower values of |Q3]). Due to this non-trivial Qo-dependence, one cannot
compute the integral (5.72) analytically, but one may analyze its asymptotic expansion at
large radius.

For generic moduli S and ¢, the integral is dominated by a saddle point at 23 = 3
(5.31), in the neighborhood of which the Fourier coefficients of 1/®,_5(2) and 1/®4_o(Q)
are constant. One can compute the leading contribution in the saddle point approximation
by integrating (5.72) with Cy_2(Q, P;Qs) ~ Ci_2(Q, P; Q%) kept constant in the integrand.
Using (5.33) and the identities [13, (20)]

~ TKo(2rM(2))  nM(Z)K1(2rM(Z))

Bs5(2) = det (Z)1/4 T 2det (Z)3/2 (5.76)
. K 27TM Z |
Bys(Z) = GW ’

where M(Z) = \/2\/ det Z + tr (Z) (such that M (2R?u( Q?(’,%R Pt )uT) = RM(T)), the result-
ing 1/4-BPS Abelian Fourier coefficients in this approximation can be expressed in terms of
the standard modified Bessel functions,

2,F 9 ~ *
Giis ~ 167 Crea(Q. P 0)
<27r QrQLs,PryPrs) RM(T)

4R?|2QR N Pr|

R?  |Qg A Pp|?
1 FLVHFL(S))\ 0
+ 76<O‘B7 K\
m |Qr A Pr| 0Z

[KO(%RM(F)) + K1(27rRM(F))}

[2@1«0(%/\4(2)) + M(Z)Kl(%M(Z))}

_op2 Q% QrPr
Z=2R v(QR;R i Yot

1
— /3 05 Ko (2T RM (T
+ QA Pa] o809 o(2m RM( ))D :

(5.77)

where I'z " = \/%(QLW +51Pr, S2Pr). This leading contribution can be ascribed to instan-
tons of charge I' associated to 1/4-BPS black holes (including bound states of two 1/2-BPS
black holes) wrapping the Euclidean time circle. It is indeed exponentially suppressed in
e~ 2 BM(T) for M(T) (2.5) the BPS mass of a black hole of charge I', and it is weighted by
the measure factor Cj,_»(Q, P;3). For a primitive charge T', i.e. such that there is no d # 1
with d~'T" € A%, ® A, the only matrix A contributing to the measure is A = 1 and one can
interpret the measure factor (up to an overall sign) as the helicity supertrace counting string
theory states of charge I', as advocated in the introduction (2.14),

Cr2(Q, P; ) = (—1)9PHQ4(Q, P, S, ) . (5.78)

The value of 2 at the saddle point (5.31) reproduces the contour prescription of [9, 32] when
both electric and magnetic charges are separately primitive in A%, and A, and d"'Q A P €
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Ay AN A, for d = 1 only. More generally, the contour prescription depends on the set of
matrices A dividing (@, P) in the electromagnetic lattice. For example in the maximal rank
case, all primitive charges (@, P) are in the U-duality orbit of a charge of the form [68]

Q=e1+qes, P=pey, QAP=pe; Ney, (5.79)

with e; and e primitive in Ags . The integer p is sometimes known as the ‘torsion’. In that
case (5.74) simplifies to

C(Q, %) = > d (3, %78 (1)) - (5.80)
d>1
dlp

in agreement with the prescription in [40, 69], with additional fineprint on the contour of
integration. If we consider the same charge configuration (5.79) in CHL orbifolds for e;
primitive in A}, and not in A,,, ez primitive in A,, and not in VA7, and with p not divisible
by N, such that it corresponds to a twisted state, only the second line in (5.75) contributes
and the result reduces similarly to

Cr2(Q, P; %) = chk 2[ QP/d P2/d2) (0a) % )} ; (5.81)

d>1
dlp

in agreement with [6] for p = 1. For general primitive charges such that @ can be in A,, and
P in NA},, all three terms contribute to the helicity supertrace, and the result is manifestly
invariant under U-duality including Fricke duality.

5.3.3 Contributions from pairs of 1/2-BPS instantons

Let us now discuss corrections to the saddle point approximation to (5.72). In Appendix

F we estimate the contributions to Gf/él;y)é due to the deviation of Cy_o(Q, P,Q2) from its
saddle point value Cj_o(Q, P,Q3). In the range!® |Qs| > 1, the deviation is due to the poles
occuring when nyog —m!'py +jug = 0 with 4nym® + j2 = 0, resulting in the discontinuities and
delta-function singularities of Cy_2(Q, P, %) and Cj_2(Q, P, Q%) on P shown in (5.25), (5.57)
and (5.58). In Appendix F.1, we show that these contributions are exponentially suppressed
in e 2mBMI1)+M(I2)) and can therefore be ascribed to two-instanton effects associated to
two unbounded 1/2-BPS states of charges I'y and I's.

For fixed total charge I', we expect contributions from all pairs of 1/2-BPS states with
charges I'y and I'y such that I' = I'y + I's. We show in Appendix C that a general such
splitting is parametrized by a non-degenerate matrix B = (f Z) € M(Z), such that

(B)= ()i = ome(B) () = ()%= = mme(3) . 02

'®In the range [Q2| < 1, there are additional contributions from ‘deep poles’ of the form (F.10) with ny # 0
which must be avoided i 1n order to define the Fourier coefficient C(Q, P,Q2). In Appendix (F.2), we show that
irrespective of the detailed prescription for avoiding these poles, the contribution from the region |Q2| < ( 4712)

—27R?|2n4)|

is exponentially suppressed in e , and can be ascribed to pairs of Taub-NUT instanton anti-instantons

of charge +ns.
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where ™ = ((1) 8) and mg = (8 ?) All splittings of a given charge I' are in one-to-one cor-

respondence with the matrices B € My(Z)/Stab(m;) such that Bmi BT € A%, @ A, with

-/
Mo (Z)/Stab(r;) = {7- (1 71,) , ye€GL(2,Z)/Dihy, 0<j <k, (k)= 1} :

(5.83)
In the following it prove convenient to use an equivalent unimodular representative
. 1 0 1 &
B:B( _): ( k) 5.84

in SL(2,Q)/Stab(m;, Q), where Stab(m;, Q) is the stabilizer of the doublet 7; in SL(2, Q).

We show in Appendix C that the summation measure (5.74) on the domain Q| > %
(taking into account the discontinuities displayed in (5.25)) reads (focusing on the maximal
rank case for simplicity)

C(Q. P; Q) = Yo AICT[ATN (S 4hAT (5.85)
AeMs(Z)/GL(2,Z)
ATITEN D Am

§([BTQLB I, Ts), . .
Y c<r1>c<r2>(— (E%:Pha) | 2>(S1gn<<r1,rz>>—s1gn<[BTszzBm>)),
U 2
L eAm®Am
QiAP;=0,T'1+T2=T

with B € SL(2,Q)/Stab(m;, Q) determined such that T; = Bm;B~'T" and where [BTQB);;
denotes the entrises ij of the matrix.
To interpret the second line, recall that the central charge Z = \/%(QR + SPg) for an

arbitrary 1/4-BPS state decomposes into orthogonal components Z = Z, + Z_ with

1 Qr i PEQr— (Qr - Pr)Pr ]
Zy = ——|(1,5) - +——(-5,1)- g 5.86

. @[( ) ( Pr ) \QRAPR\( ) (QI%PR—(QR'PR)QR) (5.86)
The BPS mass is M(Q, P) = |Z4|. Tt is convenient to write Z,4 = (21 + i22)aM(Q, P) with
z1 and zy vectors of SO(6) satisfying

Qr+S51Pr 4 SePr _ S2Pp  Qr+S51Pg

2 2
+z25 =1, 2M(Q, P) =0.
ata sl e e g, TAMER) g e TS,
(5.87)
The matrix Q3 at the saddle point determines precisely this decomposition through
21\ _ 1 (S2 0\1.,,.(Qr
(ZQ) o @(—Sl 1> RQQ<PR ' (588)

A generic two-center 1/4-BPS solution with total charge (@, P) is written in terms of the
harmonic functions '°

ol = (@ P | (@5, P)) (). (5.89)

T e x| | Jr—ao] PR VSN0 1 )\ag

19Supersymmetry implies that Q;r and Pir are linear combinations of Qr and Pg, but this is automatically
the case for 1/2-BPS charges such that Q; A P; = 0.
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and is regular away from the points 21 and x5 provided the distance |x; — x| satisfies

'l - S2Pir . Qir+S1Pir _ |Qr A PR
|1 — 22| b5 V' So

which requires that [BTQ%B]12 and (I'1,T') have opposite sign. Returning to (5.85), we see
that when the bound state is allowed, the pair of 1/2-BPS charges contribute to the Fourier
coefficient at leading order with measure factor ¢(I'1)c(I')[(T'1, T'2)].

In contrast, when [BTQ5B]2 and (I';,T's) have the same sign, the bound state is not
allowed and the last term in (5.85) vanishes at the saddle point Q9 = 3 in (5.31). This
term still contributes to the integral (5.72), but is exponentially suppressed. At large R, the
integral is now dominated by the boundary of the chamber where the sign of [B TQQB]12 flips,

[BTQ3B]15 , (5.90)

as shown in Appendix F.1. On this locus, the argument of the exponential Tr [5—2 Q5 ! ( 511 ‘gllz) +

20 (Q?j; Qfﬁ)] in (5.72) decomposes into two pieces associated to I't, o,

R2

R R . R?
.5, BTG 5) Bl + 202(1B7'Trp)* +

% [BT(4, o) B,y + 202([B~'Trl2)* . (5.91)

The integral is then exponentially suppressed by e~ 27R(M(T'1)+M(I'2))  The same holds for the
contribution of the Dirac delta function which is computed explicitly in Appendix D.

We conclude that (5.72) receives contributions of each possible splitting I' = I'; + I'g,
weighted by the product of the 1/2-BPS measures ¢(I'1) ¢(I'2) and further exponentially sup-
pressed by e 2mRMT)+M(T2)) Tt is important to distinguish these two-instanton contribu-
tions from one-instanton contributions due to bound states of 1/2-BPS states. Due to the
triangular inequality M(T'1) + M(T'2) > M(T'), these contributions are subdominant com-
pared to the one-instanton contributions (5.77) away from the walls of marginal stability. On
the wall, the two contributions become comparable and the complete Fourier coefficient is
continuous.

This discussion generalizes with some efforts to CHL models with NV prime. In Appendix
C we show that the measure function for Q| > % decomposes as

Cra(QPia) = S AICE[AT (4D
AeM3(Z)/GL(2,Z)
A71 (g) EAmBAm,

N Z A|CF, {A_l(fng.zp 1QP.2P)A—T} (5.92)
AEM2,0(N)/[Z2xTo(N)]
A= (9)ern@nm

Y AL [aT (% kAT
AEMs(Z)/GL(2,Z)
A7 (phy) ernens,

+ 30 amary (2R LR i, 1) - sign([B70581)) )

4 2
F/,;GA:R @Am
QiAP;=0,T"1+T2=T"

with B € SL(2,Q)/Stab(m;, Q) such that T'; = Bm; B~'T'. In this case one must distinguish
the charges I'; and I's that are twisted or untwisted to reproduce the exact measure (2.22).
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In Appendix C we analyze all the possible splittings depending on the orbit — electric or
magnetic — of the charges I'; and I's under I'g(N). The sign (—1)@F = (=1){T2) for all
splittings, which ensures that the contribution of the sign function in (5.92) to the helicity
supertrace Q6(Q, P, t) satisfies to the wall-crossing formula (2.12) with the correct sign.

It is interesting to understand this property from the differential equation imposed by
supersymmetry Ward identities (2.26). We show explicitly in Appendix E.3 that the compo-
nent of the differential equation with all indices along the decompactified torus is satisfied.
In general, one finds that the leading contribution to the Fourier coefficient (5.72) with con-
stant measure Cy_o(Q, P; Q2) ~ Cj_2(Q, P; Q%) as in (5.77), solves the homogeneous equation
(3.17). The contributions due to the discontinuities of the summation measure Cj,_5(Q, P;Q»)
give a particular inhomogeneous solution sourced by the quadratic term in Fpp.q. For a given
1/4-BPS charge I', the Fourier coefficients of Fy;.q contribute a source term proportional to
¢k(I'1)éx (Do) for all possible splittings I' = I'y 4 I'g, which matches the structure of the mea-
sure measure in (5.92). In this way, the differential equation constrains the measure function
to be consistent with wall crossing, such that the discontinuities must correspond to the sum
over all possible splittings weighted by the 1/2-BPS measures of the constituent charges as
exhibited in (5.92).

The explicit check of the differential equation in Appendix E.3 demonstrates that the
unfolding procedure reproduces the correct Abelian Fourier coefficients, at least up to terms
that are exponentially suppressed in e~2"R*  This is an important consistency check because
the same unfolding procedure fails to reproduce the non-perturbative contributions to the
constant terms associated to instanton anti-instantons, which are also required to be present
in order for the differential equation to hold . These effects are also necessary in order to
resolve the ambiguity of the sum over 1/4-BPS instantons [48], which is divergent due to the
exponential growth of the measure Cy_o(Q, P; Q%) ~ (—1)@FP+1emQAPI 28],

6 Weak coupling expansion in dual string vacua

In section §4.3, we analyzed the weak coupling expansion of the exact V2(V¢)* in D = 3, in
the limit where the heterotic string coupling is small. However, the CHL vacua of interest
in this paper also admit dual descriptions in terms of freely acting orbifolds of type II string
theory compactified on K3 x T [70, 71], or of type I strings on 77 [72]. In this section, we
discuss the weak coupling expansion of these exact results on the type II and type I sides. We
also include a brief discussion of the V2H?* couplings in type IIB string theory compactified
on K3, whose exact form was conjectured in [46] and involves the same type of genus-two
modular integral, albeit with a lattice of signature (21,5).

6.1 Weak coupling limit in CHL orbifolds of type II strings on K3 x T3

On the type II side, string vacua with 16 supercharges can be obtained by orbifolding the
type II string on K3 x T2 by a symplectic automorphism of K3 combined with a translation
on T3 [70, 71]. In order to keep manifest the four-dimensional origin of these models, we shall
assume that the translation acts only on a T2 inside 7. In the weak coupling limit gg — 0
(where gg is the string coupling in type IIA compactified on K3), the ‘non-perturbative Narain
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lattice’ (2.3) decomposes into [73],

Aokg — Noj—aa ® 11 @ I 1[N]] & 1,1 @ 111 [N]], (6.1)

where the first summand is the sublattice of the homology lattice Aag4 = Heyen(K3) which
is invariant under the symplectic automorphism, the second is the lattice of windings and
momenta along 72, and the third is the lattice of windings and momenta along S; together
with the non-perturbative direction. The last two summands can be combined into a lattice
Ay g = I35 @ Il 5[N] which can be thought as the lattice of windings and momenta along a
fiducial torus 7. Assuming for simplicity that flat metric on the torus 7° is diagonal and the
Kalb-Ramond two-form vanishes, the radii of the four circles in this fiducial T* are related to
the three radii Rs, Rg, R7 of the physical T2 by

(6.2)

R6 R7 R5 R5R6R7
(7’1,7‘2,7’3,7’4) =

g6lir” g6l gelir’  gela;

In the limit gg — 0, the four radii r; scale to infinity at the same rate, so the automorphism
group O(A44) is broken to a congruence subgroup of SL(4,7Z), which is identified with the T-
duality group O(As3) along the three-torus. In order to make T-duality invariance manifest,
it is useful to define the type II string coupling in three-dimensions g4 = g4 /E‘(;I /V3 where (7
is the type II string length and V3 = R5RgR7.

The analysis in §4.1 and §5.1 — and our previous analysis of the one-loop integral in [22]
is readily generalized to the case where n radii of a lattice II,,—y,,—, & I, ,[N] become large,
leading in the maximal rank case N =1 to

gy, 3¢(0) a6 g ! , gen—e
Fyis = VaFuos"™ + J5 3 Vo DY) Y (mmiUigm?) 2 d(agbys) +--(6:3)
mieZmn
/
» 2 —n,g—n C(O) q++76 6— i i\ a=n—=6 —n,g—n
Gains = VaGaphs " =55V © D50 D (! Uym?) 5 81 GI™ ™
miezZn
2
3 C(O) a=6 _ ! . . g—n—6
miezmn
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or in the case of N # 1,

!/

3c (0) a=6 _ . . g—n—
(p,a) (p—n,q—n) k n +6 7
U = Va F s + S 2V m D500y | D (miUymed) '
mieZn
!/
+ N1 > (rmiUm?) 6} ..

mb,...omn—TezZn "
mt~T,...m"eNZ"

(p,a) 2 A(p—n.g—n) cx(0) e ntbg
G;5q75 =Va Gapﬁﬁg B 327T(N _ 1)Vn F( )5<0‘57
/ /
3 i\ 4—n—6 n n
X [(NT Z (rm'Upym?) 2 — Z (mm’ U”m]) )G;’;} )
ml,..mn-TeZn " mteZ™
mn—r+17“.7mn€NZT
/
. g—n—=6 . . g—n—6 n n
—|—(N Z (mm'Uyym?) 2 — N} Z (mm'Usym?) 2 )}CG%) )
mitezmn ml7.'. Y A
mn=rtl  mreENZT
( ) n n+6— 2
56 25678 " F(Tq)
. . g—n—-672
[ Z (mm’ U”mj) NT 1 Z (Trm’UijmJ)iq 2 6} 8108,05)

mieZn 7 . mnTTEZN T
mn r+1 m ne NZT
2g—10
18y, » n+5— n+4—
+ (N2 — 1)773/2“ 5 (571)0(ap,049)

!/ !/

!
><<N S Nt Y 4 N2y )det(wATUA)qgs—i—...

Ac Ae Ae
My, 2(Z)/GL(2,Z) Mp,2,0[N")/(Z2xTo(N)) M, 2,00[N"]/GL(2,Z)

(6.5)

where the dots denote exponentially suppressed terms and U;; is the metric on the n-torus,
normalized to have unit determinant.?’ Here M, 2(Z) is the set of rank two n by 2 matrices
over the integers, My, 29[N"] the subset for which the first column last r entries vanish mod
N, and My, 200[N"] the subset for which the two columns last 7 entries vanish mod N.

The sums over m! € Z™\{0} can be expressed in terms of the vector Eisenstein series for
the congruence subgroup of SL(n,Z) for which the lower left r x (n — r) entries vanish mod
N in the fundamental matrix representation, which we denote by SL,[N"],

v 1 ! . A
ex™Muy=sre) > Emiugmd) (6.6)
ml“”,mnf'wkl czn—"r

mn",... . m"eENZ"

The sums over A can be expressed in terms of rank two tensor Eisenstein series for the same

29Tn the case of a square torus of volume V,, =r1...7r,, Us; = rféij/Vn"‘.
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congruence subgroup SLy[N"]

!
EXU) = mTET(s—1) Y det(rATUA) ™,

Ac
My, 2(Z)/GL(2,Z)

/

eIy = mrers-1) Y det(rATUA)

Ae
Mn,2,0[N"]/(Z2xTo(N))
/
Enapo (V) = mTEN(s—4) > det(rATUA) . (6.7)
A
Mnyzyoo[N’%/GL(Q,Z)

Note that for N = 1, S:f:"(U ) is the standard Langlands Eisenstein series satisfying the
functional relation Eégfg)Ak(U) = Es*ka” U-h).

For (n,r) = (1,0) and (n,r) = (2,1), (6.3) and (6.5) reduce to the results in §4 and 5 of [22]
and the present paper, respectively. The case relevant in the present context is (n,r) = (4,2).
Setting (p,q,n) = (2k,8,4), Vi = VZ/(galS;) = 1/g4, and multiplying by a suitable power of
g4 for translating to the string frame, we find that the perturbative terms in the (Vp)* and
V2(V¢)* couplings in the maximal rank case are given by

g R g}p;;g;g o ERSE U)oy + -
1 3 27g% (6:8)
95 Cuie = gpCaiie — gpths (s G = —5HER (U dapdig) + -
Similarly, for N > 1 we get
GRS = g}Fgﬂ’;g"“ + 772(]\?—1-1) [£335(U) + NEZ )] 60ty + - (6.9)
95 Gogls = 9220555,;3‘“ T am(NE ) N32 -y [N 2SN 1) — 558U )] 8as,Glgy "
- QW(;JQV_ ) 7 0) — 5 NW)] B, G
b [0 -0 - v
—773(2]\3951)2 (3504 ) + NEFI0)] 510 8,0+ (6.10)

In either case, the rank 0, rank-1 and rank-2 orbits are now interpreted on the type II side as
tree-level, one-loop and two-loop contributions, with an additional one-loop contribution in
the rank-2 orbit for IV > 1. The tree-level contributions are consistent with the observation
in [74] that the tree-level F* coupling of four twisted gauge bosons is governed by a genus-one
modular integral, and the analogous statement in [75] that the tree-level V2F* coupling of
four twisted gauge bosons is governed by a genus-two modular integral. For N = 1, the one-
loop contributions are proportional to the vector Eisenstein series of SL(4,Z), or equivalently
the spinor Eisenstein series under the T-duality group O(3,3) of the torus 7, while the two-
loop contribution is proportional to the square of the same. For N > 1 they are similar
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generalizations of Eisenstein series of SL4[N?], and there is an additional contribution at 1-
loop in rank two Eisenstein series of SL4[IN?], that are linear combinations of vector Eisenstein
series of the group O(3,3) of automorphisms of I 2 & Hl,l[N].Ql

It would be interesting to confirm these predictions by independent one-loop and two-loop
computations in type II string theory. Finally, the exponentially suppressed terms in (6.8)
can be ascribed to D-brane, NS5-branes and KK (6,1)-brane instantons as explained in more
detail in [74].

6.2 Weak coupling limit in type II string theory compactified on K3 x T

Let us now consider the expansion of the exact V2F* and R?F? terms in D = 4 obtained in
(5.70) at weak coupling on the type IT side. Recall that the heterotic axiodilaton S corresponds
respectivly to the 2-torus Kéhler modulus Ta in type ITA, and the 2-torus complex structure
modulus Uy in type IIB, while the type II axiodilaton Sp = Sp corresponds to the Kéhler
modulus T of the 2-torus on the heterotic side, i.e.

S=Tyn=Ug, T=Sx=8, U=Ur=Tgs. (6.11)

In order to expand at small type II string coupling, i.e. at large T>, we decompose the lattice
Aok—o6 into Agp_g 4 @ I 1 @ I 1[N] as in section 5.2.

For simplicity we shall use the type IIB moduli in this section, and we won’t write explicitly
the label B. So S is now the type IIB axiodilaton with Ss = g%. For simplicity we shall only
consider the perturbative terms for the Maxwell fields in the RR sector, corresponding to
indices «, 3, ... along the sublattice Agj_44. Using the results of [22], the perturbative part
of the exact F* coupling is given by

ok 1 o 3 E(NT) 4+ EL(T) + E(NU) + £ (U) + Llog g,
(2k—2,6) __ (2k—4,4) i
Fazﬁ'y;IGI - gs2 Foj@’yé II + It 6(0456“/5) ( N +1 )
_ 3
= S2F (D) — 55 0(apdys) 10g(Sy T UL | Ak(T) Ak(U)?) (6.12)

where the first term matches the tree-level coupling computed in [74], while the second term
is related by supersymmetry to the R? coupling computed in [76, 77].
The exact V2F* coupling is obtained from (5.70) after dropping the logarithmic terms in

R,

~ (2 ok 3 EL(NU) + & (U)\2

Gt (U.9) = G (9) — i oy (TS 613
1 NE(NU) = EL(U) ~gp NE(U) — E(NU) Ao
_Eé(a@( I(Nz)_l 1( )G(:dl; 2,6)(90)_{_ 1(}\22_ i( )CGde; 2,6)(@)) 7

where U parametrizes SL(2)/SO(2) and ¢ the Grassmannian on Ag,_3 . The power-behaved

term of é;%kgdz’ﬁ)(cp) in this limit is given in equations (5.36), (4.59) and (5.60) for ¢ = 6,

*IThe condition that SL(4,Z) preserves the lattice a2 @ I1,1[N], so Q34 = O[N], implies that the matrices
mod N or of type ( ) mod N, but the condition that the it preserves the dual

lattice, i.e. Qi; € Z for ij # 12 with NQ12 € Z forbids the second.

are either of type ( S

00 « x
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v=N, R=+5 = gis, and ¢ = t the K3 moduli of the Grassmanian G(o;_44). After

expanding around ¢ = 6 + 2¢ and subtracting polar terms,?? we find

A (2 1 ~one 3 EI(NT) 4 E(T) + Llog g\ 2
(2k—2,6) (2k—4,4)
Gaﬁwé () ~ 9754 apB,yé (t) - E&aﬂ, 75>< N+1 = )
NEI(NT)—E1(T) |, 6 NEL(T)—E(NT 6
B Lg 1(4N*)1 DA P IOg Js é(2k_4’4) (t) N 1( Nfll( ) + P IOg gs g@(Qk_4’4)(t))
192" (b N+1 79) N +1 79)

(6.14)

To compute the power-like term of @Efbk*z‘s)(cp) one proceeds as in [22], and finds after ex-
panding around ¢ = 6 + 2¢ and subtracting polar terms

= 1 /4 2N 4 R
(2k—2,6) (2k—4,4)
G ™" 0) ~ 5 (Gas ™0 + 1 8as (Bu(T) - E(NT))
12 1 12 A R
50 (S loglge) + E1(T) + E(NT)) . (6.15)

The function CC:’%*Q’G)(@) is obtained by acting with the involution ¢ on the K3 moduli ¢ and
on the Kéahler moduli T" by Fricke duality T" — —ﬁ, so that

~op 1 o 2N A -
Gy "V (p) ~ P(gG(an HO(t) + N 31008 (E1(NT) — 51(T)))

12 1

Ni—i—lﬂéaﬂ (1772 log(gs) + E1(T) + él(NT)) . (6.16)

Collecting all terms, we obtain the complete perturbative V2F* coupling in D = 4,

~ 1 ~
(2k—2,6) __ (2k—4,4)
Gaﬁ,'yé I — g4Gaﬁ,76 (t)
s

1 5 NE(NT) — E(T) + NE(NU) — £1(V)
4N +1)g2 <O‘B’(( N -1
N <N51(T) — 51(NT]17—|—_]¥51(U) —&1(NU) n gloggs) g@(wzgfzx,@(t)
(E((T) - E(NT))(E(U) — él(NU)))
) N-1

6 ~ ok
+ - log gs> G% 4‘4>(t)

—2NG;

3 ELNT) + E(T) + & (NU) + E1(U) + Zlog g, \ 2
— a0 N ). 6a7)

The terms involving log g, originate as usual from the mixing between the local and non-local
terms in the effective action [78]. The result (6.17) is manifestly invariant under the exchange
of U and T, hence identical in type ITA and type IIB. It is also invariant under the combined
Fricke duality T — —ﬁ, U — —NLU, t — <t [27], which is built in our conjecture for the

%Note that the lattice is fixed to Asx_2,6, and the expansion in ¢ = 6 + 2¢ only applies to the numerical
value of the various exponents, just like if one introduced a regularizing factor of |22]° in the genus 2 integral.
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non-perturbative amplitude. In the maximal rank case, (6.17) must be replaced by

1 ~ 3
Gif;ilm—Q?Gfggig(t)+Ua<aﬁ,(log<T2\n< )I%) + Log(Ueln(U)[") — 21og g, ) G5 (1)
—@5<a5675>(1og<T2\n(T>| >+1og<02|n<U>|4>—2loggs) . (6.18)

It would be interesting to check these predictions by explicit perturbative computations in
type 1I string theory. Noting that

51(N]7\;)1151(T) _ —ﬁlog(Tkak(T)D 7 E(T) = _%1Og(T212|A(T)|) , (6.19)

the 2-loop contribution on the last line of (6.17) takes the suggestive form

T ) 61,05 (108 (ST UL | AR (T) A (U)2))* . (6.20)

The (loggs)? term is consistent with the 2-loop logarithmic divergence of the four-photon
amplitude [79] (recall that the log g5 can be traced back to the logarithm of the Mandelstam
variables in the full amplitude, and therefore to the logarithm supergravity divergences [78,
22]). The term linear in log gs in (6.20), corresponding to the tgF* form factor divergence,
can be rewritten as

3k 1 ( ) A(2k—4, ) k
—Eloggsémﬁ(n 2(@ S0+ CHT0) = Sy log(T2 UK | AW (T)AL(D))| ))

_ _3 1 (2k-1,4)7) 2k kyprk
= _Eloggsémﬂ,(ﬁﬁiﬂsm (t) — 5~y5>( )2 5 10g(T5 Uy [ A (T) Ak (U)| ))

3 (2k—2,6)
= —Eloggs 5<a57Fﬂ/5>c e (6.21)
where one uses integration by part on the definition of F**~2% with —-L 2 Akl(T) £ (Ba(1)+

NE5(NT))/Ak(p), and 6(ab56d)50d = %(5&1). Ignoring these logarithmic contributions, the two-
loop coupling (6.20) does not depend on the K3 moduli, as required by supersymmetry, and
might be computable in topological string theory.

The amplitudes with two photons in the Ramond sector and two gravitons can be obtained
in the same way. It is non vanishing only when the two photons have the same polarization
and the two gravitons have the opposite polarization. In type IIB, the complex amplitude is
obtained through the Kéhler derivative of the same function (6.17) with respect to U, e.g. in
the maximal rank case

9

(22,6) _
Raﬁ I — 271'3

. 1 -
a2 (U) (Log(To n(T) ) + log(Ualn(U) ) — 2log g, ) + Tng2 2G5 ()

(6.22)
or with respect to T" in type IIA. The log g5 term can be interpreted as the divergence of the
form factor of the operator R F' 12% (where F g are the graviphoton field strengths) belonging to
the R2-type supersymmetric invariant.

Z3Note that Gifg"l) is finite for the maximal rank case, whereas Gfg 4% requires in general a regularization
due to the 1-loop supergravity divergence in six dimensions.
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6.3 Type I string theory

The heterotic string with gauge group Spin(16)/Zs is dual to the type I superstring [80]. In
ten dimensions, the duality inverts the string coupling e? — e~ and identifies the Einstein
frame metrics. After compactifying on a torus 7%, the effective string coupling g5 in 10 — ¢
dimensions and volume V in string units are given by

c=el=oy-2  y =ity 6.23

where V is the volume of the torus 79 measured in ten-dimensional Planck units. It follows
that the heterotic/type I duality identifies

gs =g, AV L v =gy (6.24)

where the unprimed variables refer to the heterotic string while the primed variables refer to
the type I string, the unit volume metric U;; being the same on both sides. In particular, the
weak coupling regime g — 0 on the type I side corresponds to strong coupling on the heterotic
side when D = 10 — ¢ > 6, or to weak coupling when D < 6. In either case, the volume V! in
heterotic string units scales to infinity. Furthermore, in dimension D > 4 the coefficients of
the F4 and V2F* couplings are purely perturbative on the heterotic side, so their type I dual
expansion is obtained by taking the large volume limit. We shall now show that the resulting
weak coupling expansion on the type I side has only powers of the form gchrb’Q, compatible
with type I genus expansion where b is the number of boundaries or crosscaps. For simplicity
we focus on the maximal rank model and consider only gauge bosons with indices along the
D1 lattice, but these considerations easily extend to CHL models and gauge bosons with
indices along the torus.

Using (6.3) and similar computations using the same method, we find that for D > 4, the
F* coupling at weak type I coupling is given by

24=2 V/% 3 3 9 o 9 6 < 4 4
a1 Fagys = gs/ Fogys + 5-0Vi* 0aploe) + — 05 Vi 0 Y (em'Uim?) 6456,

s miezZn

_2 12 L
VS/l - g E, 2mim'Q-ai QQQ5Q7Q5_3‘/Z2 S, 6(045@7@5) _|_3VS,1 2 5(a,6’5'y§)
T QeDig meza m'Uym? 212 77 (miUsymJ)? 8rt 77 (miU;;mJ)3
16
Q*=2

+

+... (6.25)

where the dots stand for non-perturbative corrections associated to D1 branes wrapping two-
cycles inside T9. The first term is the expected disk amplitude of 4 open string gauge bosons

in type I, while the remaining terms of order g%, ¢!, g/ are contributions from genus 1, 3/2,
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2 open Riemann surfaces [81]. Similarly, the V2F* coupling reads

/!

2q 1 ‘// . 3 3_ . . N

sl , ) - Gus

S_QGaﬁ,’YtS = 9/2 GS;,?& - 455(046,6(16 0 gsis/2 1 E (7T mlUijm]) 36(0457 e
s

76) 2w - 79)
mreZ9
3 272 s 1 g2 : ‘ \—3]>
mieZ4
pri-2 -2
_ g ! Z 627r1m Q- a1< Q’YQ5> . g{sVZQ 1 12@7@5) _ 675) M)
) b Q€D m'Ui;m? 4m? (m'Uiym/)? 774 (miUsmd)?
Q*=2
meZI~{0}

1—4
t3 Z GLo(Q Z 2mim'Qai (. Qyy L_i{o‘g _ Vi
aﬁ7 ¢ v 5( i Y6 i .mJ)3
Q%Dlﬁ meZ4
Q=2

!/

/
430, P B S
v Y [ GRCQE) S Pu(@ geyeneaa T imin

Q0
Qz‘EDQlGEBle) AEM, 2(Z)/GL(2,Z)
Q<2

+... (6.26)

where the dots stand for non-perturbative corrections associated to D1 branes wrapping two-
cycles inside T9. In the last term, the integral of the constant part C*(Q) of the Fourier
coefficient of 1/®19 produces a matrix-variate Gamma function and contributes to order
gs, 9;2, gg3. The jumps in C(Q, ,Qg) dues to poles at large |Qs] give terms of order gS

for ¢ =0,1,2,3,4, which are sourced by the square of the ‘Wilson lines corrections’ in (6.25)
in the dlfferentlal equation (2.26). The jumps due to deep poles where Q| < }1 lead to further
corrections of order e~ 27/ gg which can be ascribed to D1-anti-D1 instantons.

The first term g,% GS; 2/)6 in (6.26) is however apparently inconsistent with type I per-
turbation theory, since the four-photon amplitude only involves open string vertex operators
which cannot couple at genus zero. Fortunately, we can show that this term vanishes for the
heterotic Spin(16)/Zs string. Indeed, using the same integration by parts argument as in
section 3.3 (the boundaries at the cusp do not contribute at ¢ = 0) one finds

(16,0) (16,0)e _ (16,0) 7(16,0) __
20G o5 5+ 0ap, Gy, ¢ = F€C<a57 Flsee =05 (6.27)

which vanishes because [22, (5.42)]

F{g1d = 16m0asys (6.28)

where 0,445 is equal to one if all for indices are equal and zero otherwise. It follows that

G

(2)
(16,0) = R.N. / d391d392 FD216 [Pa6>76] -0 (629)
S

apne p@Z\Hy  |2[? ®1

o (6.26) is indeed consistent with type I perturbation theory. In particular, the genus-
two double trace V2(TrE?)? coupling computed in [43] for the ten-dimensional Spin(16)/Zs
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heterotic string vanishes. It is worth stressing that the same genus-two coupling in the Eg x Fg
string does not vanish. 24

Let us now discuss the form of the non-perturbative corrections in some more details. For
any D > 3, the contributions of the non-Abelian rank-2 orbit are non-perturbative on the
type I side, with an action given for vanishing gauge charge by

2

V! - y
Sp1 = 2r—*—\ [ LU U NUNK 4 2B, N | (6.33)
/V/*

9sVs?

1 . . . . . . .
where g,V/2 = e¢? is the ten-dimensional type I string coupling. This can be ascribed to
Euclidean D1 branes wrapping 79 with charge N“ € Z4 A Z4. For D = 4, the NS5-brane
instantons on the heterotic side translate into D5-brane instantons on the type I side, with

1
action Sy = ‘/;,2 . For D = 3, the non-perturbative heterotic contributions with vanishing
NUT charge translate into type I D5-brane instantons with wrapping number N; and gauge

charge ) € D¢, with action

RelSpn] = 20\ [(U)9 (N - QU +;-Q) (6.34)
GsVs?

Finally, non-perturbative heterotic instantons with non-vanishing NUT charge translate into
type I Taub-NUT instantons, with action

8
%4 4 . . s
Re{Srov] = 21— 5\ U (ki + gV (U R) (06 + V5 (U8, (6.39)
g

S S

with ~ .
N, =N;4+a; - Q+ (%al “aj + Bij)k‘] . (6.36)

Thus, all non-perturbative effects on the heterotic side map to expected instanton effects in
type L

6.4 Exact V?H* couplings in type IIB on K3

Finally, let us briefly discuss the couplings of four self-dual three-form field strengths Hj, , in
type IIB string theory compactified on K3. In [74, 46], it was conjectured that the exact H*
coupling is given by a genus-one modular integral of the form (1.4) for the non-perturbative

Narain lattice Ao 5 of signature (p,q) = (21,5). This was later generalized to the case of

2For the Es x Fs heterotic string, we have instead

3
(16,0) (16,0)e __ €C (16,0) 1~(16,0) __ 64 1 1 2 2 1 2
20Ga[3,’y(5 + 5(‘151G75),5 =7k (aB, F’yé),e( - 3 (4P<0451P’Y(5> + 4P(aﬁvp"/5> - 7P<045»P’Y§>) ’ (630)
with
(16,0) _ 1 pl 2 52 1 p2
Fogss =87 (PlasPys) + PlasPys) = PlasPrs) » (6.31)
and P,iﬂ the two projectors to the eight-dimensional subspaces. One computes that G;lg;?y)"’ =0, such that

G(16,0) :/ d391d392 F(Ezé@Eg [Pa[v’wé]
ape Sp(4,Z)\ Ha 223 D10

This reproduces the relative coefficient in [82, (7.4)].

167°
=4 (4Pl,5 Pysy + APl Plsy — TPlp Posy) . (6.32)
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the V2H* couplings, which were conjectured to be given exactly by a genus-two modular
integral of the form (1.5) for the same lattice [46]. These conjectures follow from our exact
non-perturbative results for the maximal rank model® in D = 3 by decompactification. Here,
we briefly discuss the weak coupling expansion of these results on the type IIB side, using the
results of section 4.1.

At weak coupling, the even self-dual lattice Aa; 5 decomposes into Agg4 @ 11,1, where the
‘radius’ associated to the second factor is related to the type IIB string coupling by gs = 1/R.
The low energy action in the string frame was recalled in [22, 4.40], after changing the metric
for v = gsyg and renormalising the Ramond-Ramond ﬁeld as H* = gsH®. The coefficient of
the V2H* coupling in this frame is then given by G©} B, ﬂ/ 5, without any further power of g;.
The results of section 4.1 then provide its weak coupling expansion,

oLy iG(zo,ax) 15 G0 37935 S
af,yd T 92 aBys 4 (aB, ~6) - A (apB,b6)

3 ; Ko(%5\/208) ¢,
Y T Qo (QuQuy — s (32
R

95 Q€A21 )5
_Am /2Q2
+ Z € 95" " Kaﬁ,’yé(gsa QLa QR) . (637>
QEAS 5

The first term proportional to GSE’;)(; is recognized as a tree-level contribution in type I1B
on K3 [75]. The second and third terms correspond to one-loop and two-loop corrections,
and to our knowledge have not been computed independently yet. The second line of (6.37)
corresponds to exponentially suppressed terms that originate from D3, D1, D(-1) branes
wrapped on K3 [74], or, formally, to Fourier coefficients of the coupling coefficient. The
function @(5575) is the sum of a finite and a polar contribution and reads

(20 4) 2 Q? (20,4)
G° g (@ = > o )Gaﬁ "2 (8 (6.38)
B d>0 ’ 242
Q/deA21 5

where GSEA) G(QO —|—G;§0 as described in §4. The last line corresponds to instanton anti-
instanton correctlons that are missed by the unfolding method, and which could be computed
by solving (E.51) for @ = 0.

ZNote that CHL models in D = 3 all decompactify to the same model in D = 6, whose rank is fixed by the
constraints of anomaly cancellation.
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A Compendium on Siegel modular forms

A.1 Action on H,

The Siegel’s upper half plane Hs is the space of complex symmetric matrices

0= (5 g) such that |Q2] >0, p2>0, 02>0, (A1)

where Q; and Q2 denote the real and imaginary parts of €, similarly for p,v,o, and |Qs] is
the determinant of Qy. An element v € Sp(4,Z),

ry - <C D> 9 WS’Y = ) €= (_12 O) I (AQ)
with
ATC - CTA =0, B™D - D'B =0, ATD-C"B=1,, (A.3)
acts on Ho via }
Q= Q= (AQ+B)(CQ+D) ' (A.4)

A standard fundamental domain for the action of Sp(4,Z) on Hs is the domain Fy defined
by the conditions [83]

1 1
—§<p1,01,v1<§, 0 <2v9 < pg <o2, |CQ+D|21 (A5)

for all v € Sp(4,7Z) (the latter condition needs only to be checked for a finite number of ~’s).
The period matrix of a genus-two curve ¥ takes values in Hz\S, where S is the union of
the quadratic divisors

D(mg, j,ni; Q) =m? —mlp+nio 4+ na(po —v?) +jv =0, (A.6)

parametrized by five integers M = (m!, m?2, j,n1,n2). M transform as a vector under Sp(4) ~

0(3,2) such that the signature (2,3) quadratic form
A(M) = %+ 4(m'ny +m?ny) (A7)

and the parity of j stay invariant. Under a combined action of v on 2 and M, the divisor
D(M; Q) = 0 stays invariant,

D(M;Q) = [det (CQ+ D)7 D(M, Q) . (A.8)

The divisor S is the locus where the curve X degenerates into the connected sum of two
genus-one curves. Its intersection with the fundamental domain F5 is simply the divisor
v =0.

On the other hand, the boundary of the domain F» consists of three strata, i) oo — +00
where ¥ degenerates into a one-loop graph, ii) ps,09 — 400 at the same rate where X
degenerates into a figure-eight graph, and iii) vg,p2,00 — +00 at the same rate where X
degenerates into a sunset diagram (see Figure 1). In order to discuss these limits, it will be
useful to introduce the alternative parametrizations for s,

p2 pau2 L (|I7* —n
Qy = = — A9
? (P2U2 t+ sz%) Vo (—T1 1 (A.9)

such that the limits i) and iii) correspond to t — +o0o and V' — 0, respectively.
We now give the explicit action of some relevant subgroups of Sp(4, Z):
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& OO

i1) i41)

Figure 1: Degenerations of a genus-two Riemann surface corresponding to the boundary
strata of the fundamental domain F». The white node in i) corresponds to a torus while
the black dots in ii), iii) corresponds to a sphere. The ‘figure-eight’ and ‘sunset’ diagrams in
supergravity are obtained by replacing the black dots in ii) and iii) with supergravity 4-point
and 3-point interactions, and attaching four external gauge bosons to the edges.

1. SL(2), (leaving t = o9 — v3/py invariant)

ap+b v cv? )
) ;0 — )
cp+d cp+d cp+d (A.10)

(o) = (

S Qo o
— o O O

iy
o
ISUS
~——
s
Il
o 6 O e
O O = O

Ly em? bm! + am?, j, any — bng, dny — cm)

(m17 m27 ja ni, 7’&2)/ = (dm
We denote by S, the generator (? Bl> .
P

2. SL(2), (leaving t' = py — v3 /09 invariant):

1 0 00

(a b) _ 0 a 0 b ( va)’— _ cv? v aoc +b

cd), "l 0010 Pr ¥ P cotd cotd co+d)’ (A1)
0 c 0 d

(mt,m?, j,ny,ng) = (aml + bng, am? — bny, j,dny — em?, em! + d’ﬂg)

We denote by S, the generator ((1) _01) .
g

3. Heis, (leaving € invariant):

1 0 0 u
I . VA
Dour=10 01 -a
000 1 (A12)
(p,v,0) = (b, +Ap+v,0 4+ K+ 2 0+ A+ Xp)

(m',m?) = (m' 4+ jA + (un2 — M)A + kng, m® — p(j — Ang + png) — kny)
(4,m1,n2)" = (j — 2An1 + 2uma, ny, na)
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4. Heis, (leaving g invariant):

1 Ak pu
~ 101 p O
Trpr = 00 1 0 (A.13)
00 —Xx 1
5. GL(2,Z)s (leaving V = 1/1/|Q2] invariant):
a —b 0 0
<a b) | =cd 00
cdg [0 0 dc
(p,v,0) = (a2p — 2abv + b%o, —acp + (ad + be)v — bd o, ¢* p — 2cd v + d? o),
(mb,m?) = (—02 ni —cdj + d? ml,mz) ,
(j,n1,m9) = (j+2bcj —2bdm! + 2acni,a®>ny + abj —mel,nz)
at +b at +b
(ad—bc=1), T (ad —bc = —1) . (A.15)

cT +d cT+d

. L1+ Lo Lo
Defining Q5 = ( Ly Lot Ls

elements of GL(2,7Z)s:

0 1 1 1 1 0
L1+ Loy (1 0) R Lo+ Lj: (0 _1) R Ly < Ls: <_1 _1) . (A16)
S S S

6. Z3 (leaving {2y invariant):

), the permutations of the L;’s correspond to the following

0 r4 7o

1
0 ;2 63 (p,U,O')/:(,0-'—7‘1,’0—{—7’2,04—7”3),

00 1 (A.17)

/ .
(m!',m?) = (m1 + ngr3, m* — ngrs — jro + miry — nyrs + ngrlrg) ,

TTI 2,73

o O O

(4,m1,m2)" = (j + 2nare, n1 — nar1, na)

7. Opsso:
01 0O
1000 ;
hPHU_ 00 0 1 (p,’l},O') - (U,U,P), (A]_S)
0 010
(mla m27j7 ni, n2), = (nla _m27 _j9 my, —TLQ)
A.2 Siegel modular forms and congruence subgroups
For any v € Sp(4,R) and integer w, we define the Petersson slash operator
(®]yy)(2) = [det (CQL+ D) ® ((AQ + B)(CQ + D)_l) . (A.19)
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A Siegel modular form ®(2) = ®(p, 0, v) of weight w under a subgroup I' C Sp(4, Z) satisfies
|,y = @ for any v € I'. We shall be mostly interested in modular forms with respect to the

congruence subgroups of Sp(4,7) (A.2), denoting its elements by (é g),

1. 'y 9(N), restricting to elements with C' = 0mod NV;

2. Ton(N) =S, Tao(N)- 5,1, its conjugate w.r.t. S, (A.10);

3. T9o(N) = S, - Tao(N) - S, conjugate of Dy g(N) w.r.t. S, (A.11);
4. T'91(N) CT'90(N), restricting to elements with A = D = 1 mod N;
5. T'9(IN) C T'9,1(IV), restricting to elements with B = 0mod N;

6. I'a¢, (IV) the subgroup fixing the vector (0,0, 0,7) modulo N;

7. T20e.(N) =T, (IN)NTo(N).

The indices of these subgroups inside Sp(4,7) are summarized below:

[$p(4,2)/Ta(V)| = Nlop(l - plg) (1- p14) ,
[p(4,2)/T5(N)| = N3£[V<1 + ;) (1+ plg) ,
[p(4,2) /T2, ()| = N7£[V<1 - p12) (1- p14) ,
|9P(4,2)Tape, (V)| = 2% };[V(l =) (1) - (1-5)
sots.mrac 0] = A TI(-52) (A.20)

where p, p’ run over primes. Indeed the corresponding quotients can be understood as

‘rg,l(N)/FQ(N) - N3:(Z/NZ>3,
o060 (N)/Taa (V)| = N?H(l—f) 1), % [P0/ Taa(M)] -
P, (N)/Pag (V)| = rQ%(l—pl) PEm)|
‘PQ,O(N)/PQ,O,C,,(N) - (JTVI;X?TN@;Q)SL(z,Z)/rl(fy)D, (A.21)

where the subscript indicates the embedding SL(2,7Z) C Sp(4,7Z) of the coset representatives.
Of special interest is the Hecke congruence subgroup I'; (V) and its conjugates I's o(IN),
I'y0(N). The cosets of Sp(4,7Z)/T'20(N) are in one-to-one correspondence with cosets of
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GSpn(4,7)/Sp(4,7), where GSpn(4,7Z) is the group of symplectic similitudes such that
eyt = Ne. For N prime, the (N + 1)(N? +1) = 1+ N + N2 + N3 cosets can be chosen as
(see e.g. [84, p.6])

N 1 a N 1 a c
N N —a 1 b 1 ¢ b

1 ’ N ’ 1 al|’ N ’
1 1 N N

(A.22)
with a,b,c =0...N — 1. For ®(p,0,v) a Siegel modular form of weight w for the full Siegel
modular group Sp(4,7Z), the sum of the action of these elements on ® produces again a Siegel
modular form for the full Siegel modular group Sp(4,Z), which is the image of ® under the
N-th Hecke operator Hy,

Hy®(p,0,0) =B(Np, NoyNo) + N7 3 @ (M,NJ,U>
N
amod N
NN (N, TR ) N ST @ (g5, o e
a,bmod N a,b,cmod N

(A.23)

The first term in this sum, ®(Np, No, Nv), is then a Siegel modular form for I'y o(N). The
‘Fricke involution’

SEREE AR C
- _ - _ —wg (_ —1
eal,| 0 0T O a0 0 R | =il e (~(ve) )
VN 0 0 0 0 VN 0 0
(A.24)
takes a Siegel modular form ® of weight w under I'y o(IN) into another one. Similarly,
0o 1/VN 0 0
O VN 0 0 0 3
P Q| 7, 0 o VN = ®(o/N,Np,v) (A.25)

0 0 1/VN 0

takes a Siegel modular form ® of weight w under 1:270(]\7 ) into another one.

A.3 Genus two theta series

The genus-two even theta series are defined as

b
Cl+71

)
) (A.26)

ai

. t r1+75 . t

w (r 50218 )t e
P2ty

IO, = Y e

P1,p2€Z

with a;,b; € Z. Tt is an even or odd function of ¢ = ({1,({2)! depending on the parity of
a1b1+asbs. When it is even, the value at ¢ = 0 is the Thetanullwert denoted by 9 [Zig;] (Q).
The value of a;,b; modulo two defines a spin structure labelled by the column vector x =
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(a1, az, by, bz)t, whose parity is that of a1b; 4+ a2bs. Under translations of the characteristics
by even integers,

a1+2a’),a2+2a i b +asbl ai,a
9 [ o i | (2,Q) = ettt g [01821(9, () . (A.27)

Under Sp(4,7Z) transformations,
IR, C) = e(k,7) [det (CQ+ D))29P[£](0, ¢) (A.28)
with Q = (AQ + B)(CQ+ D), { = (CQ+ D)%,

- D -C L. (CD!
k= <—B A > K+ §d1ag (ABt> mod 2 (A.29)

and €(k,7y) is an 8-th root of unity. In particular,

19(2)[‘;17522](10_1_ 1,0,v) —e—ga1(a1+2) 92 4092, 1(p,0,v)

a1+b1+1,ba
_im
I35+ ) e D g )

0 [ (0w + 1) =em 29[, G2 (e, 00v)

IO [z (poo +p = 20,0 — p) =99 [§1 20 [ (p, 0, 0)
I [102] (=1/p,0 — v*[p,0/p) =\/—ipe? 19D P12 T(p 5,0)
9@ [%1722] (p— UQ/p, _1/0_7 U/O') —v/—ig e 2 ®2b2 9@ [bal,bQ } (,0, 0_7,[])

1,02 1,—a2

(A.30)

In the separating degeneration limit,
om0 [O[ 10 9[5] ) [56] # []
9@ [ara2] v30 { by b bibo 11 (A.31)
i S 0 ) (e = [
where 19[2] is the genus-one theta series,

0[e] = Z i (p+5)%7)+imb(p+3) (A.32)
PEZ

and 19[}]/(,0) = 21?930y = 21>,

A.4 Meromorphic Siegel modular forms from Borcherds products

In the context of heterotic CHL orbifolds, two meromorphic Siegel modular forms ®;_» and
Oy of weight k —2 under I'; (V) and I'y o(IV), respectively play an essential role. They are
given by infinite products [85] [86, 3.16,3.17] [28, C.18,C.19]%6

N—1 _ 2mirs (0,s)

N—1 rp_ ;2
Qr_2(p,0,v) = e2mi(ptotv) H H (1 _ p2mir/N 62ﬂi(k/a+€p+jv)>zs:0 ¢ N ¢ moa2 (4K (=57
- ) ) -
=0 K 0,jCZ
k' £>0,
j<0 for k'=£=0
(A.33)

%Note that ®5_2(p, ,v) and ®_s(p,o,v) are denoted by ®(p,o,v) and ®(a, p,v) in [28], while B(p, o, v)
coincides with @4 c(p,0,v) in [29].
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N-1 N—-1 _-— (r,s)
Dp_s(p,0,v) = p2mi(o+3p+v) H H (1 - eQWi(k’pHaJrjv))ZS:O ‘ ““0“2(4H 7
"Wl 57 LIET
k' ,0>0,
j<0 for k'=£=0
(A.34)
Here, cl()r’s) (n) with b € Z/(2Z) are Fourier coefficients of a family of index 1 weak Jacobi
forms

F(r,s) (7_’ Z) _ Z 5;2(12(4” - ] ) 2mi(nT+j2) (A35)

. YA
JGZ,nGW

obtained as a twining/twisted elliptic genus of the Zy orbifold of K3. In particular, for
N=12357and 1 <s<N -1,

2 2
0,0) __ 0,s) __ 2(E2(T7)—NE2(NT
Pl )—Nd’o,l, FO9) = N(N+1)¢0,1+ ((2}531)@3&) L 51
A.36
plrs) — 2 2B ()~ N Ea() (4.36)

= md)o,l - N(N+1)(N-1) ¢—2,1

9;(7,0)
of weak Jacobi forms, and s/r = sk where kr = 1mod N. It is also useful to consider the

where ¢o1 =43 534 < TZ)) $—21 = 93(1,2)/n° are the standard generators of the ring

discrete Fourier transform of the coeflicients cl(f’s) (n) with respect to s,

N—
A(r s) Z —27riss//Ncl(7T7$/) (n) ) (A37)

A('s T

Using the property c( ’ )( )=¢" )(n), one can rewrite ®,_y as [29, 5.10]

N—-1_—2risk’ (Z s)
By _o(p, 0,v) =TT R HV) H 1-— eQWi(k’pHaJrjv))Zs 0 ¢ ¢ moa 2 ('6=57)
- b b -
k'€Z/NJL,jeZ.
k' ,£>0,j<0 for k'=6=0

(A.38)

From this relation, it is manifest that ®;_ is invariant under the Fricke involution [85, §C],

0 VN o0 0
by, _o(p,0,0) = By _o(No, p/N,v) = By o] 1/\0/N O 1/?/ﬁ ; (A.39)
0 0 VN 0
and therefore, so is ®_o,
0 0 0 1/vVN
(@) = (NI F o a(—1/(NQ) = sl [ OO0 TN 0 ) (a)
vN 0 0 0
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It is worth recalling that the infinite products (A.33) and (A.34) arise as theta liftings of
F() namely

12 1,
R-N-/ dpn > ga¥h g2k mimes g | = — 210g |0 *F D) | By _s(p, 0, v)
F1 mi,n1,J
ngZ}N,}ziEZ%’Z#»T

12 1,
R-N~/ dpp ) gaPL qaPh e2mima/N h§mc))d2 — 21og |Q** 2 |®), (0, p, v)|?
]:1 m1,mo,ng,j€EZ
n1€Z+N

(A.41)

where hz()r’s), b € Z/(2Z) is the vector valued modular form arising in the theta series decom-

position
F(T,S) (7’, Z) = hg‘,s) (7-) 193(27-7 22) + hgT,S) (7_) 192(27_’ 22) , h}()r,s) _ Z (r s) (471)627”7“'
nE%Z—%
(A.42)
and pg, pr, are projections of the vector M = (mq,n1, J, m2, n2) such that
2 1 2 1 2 9 1 9 j2
Pr = 2\92| ’m —mlp+nio+ny(po —v )+]v‘ §(pL —p%) = mhng +m?ng + -
(A.43)

From the infinite product representation, one can easily read off the location of the zeros
and poles which intersect the cusp Q2 = ico. Such zeros (respectively, poles) arise from the
existence of positive (respectively, negative) coefficients ¢*) (m) with m < 0, known as polar
coefficients. For N = 1,2,3,5,7, the only positive polar term is c(0 0)( 1) = 2, which implies
that ®;_o and ®j_, have a double zero on the diagonal locus v = 0, where they behave
according to 27

Dp_o(p,0,v) ~ — 4120 Ap(p) Ar(o) ,

- (A.44)

(I)k_g(p, a, U) ~ — 47T2 ’U2 Ak(p/N) Ak(U) N
where Ai(p) = 7¥(p)n*(Np). It can be shown that all zeros of ®j_s and ®j_s occur only
on the divisor v = 0 and its images under the congruence subgroups I'; o(N) and Ly o(N),
respectively. For N =1,2,3, ¢ 0 0)( 1) is the only polar term, so ®5_o and ®;,_ are actually
holomorphic Siegel modular forms, corresponding to the Igusa cusp form ®1¢ for N =1, or
the cusp forms ®g of level 2 and ®4 of level 3 constructed in [87, 88]. In particular, ®1¢ is
proportional to the product of the square of the ten even Thetanullwerte,

Q) — 9~ 20 (19(2) [00] 19(2) [01] 19(2) [10] 19(2) [00] 19(2) [00} 19(2) [01] 19(2)[10] 19(2) [11] 19(2) [00] 19(2) HH)2 7
(A.45)
while ®g is proportional to the product of the square of 6 among the ten even Thetanullwerte,

Dy — 9—12 (19(2) [01] 19(2>[01] 9@ [10] 9@ [10] 9@ [11] 9@ HH)Q ' (A.46)

*"Note that these two equations are consistent with (2.10) since Ay, is invariant under the Fricke involution,

ie. Ax(=1/p) = (iVN)™* p* Ax(p/N)
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Submission

For N =

5 and N = 7, there are additional polar coefficients but they are all negative,
implying that ®;_o and ®;_o have poles,

N =58 (g) =) = () = () = 2
N =7:8(2) =9 (-2) = (- 2) = D2y = PV = 00Dy = 1
B 7 ! 7 7 1oy 17
(A.47)

Note however that the Siegel modular forms relevant for our problem are the inverse of ®5_o
and ®_5, which have a double pole on the diagonal locus v = 0 for all N.
From the infinite product representation one can also read-off the behavior of 1/®_5 and

1/ ®4_o in the maximal non-separating degeneration s — oo, obtained by setting e
e?™ = g3, and Taylor expanding near g; — 0:

2mio

q143, € = (243,

1
o - 2Z—+ 242 +3 >

2mip

414243 K] q; i <ot q]%
+lo+48Y L ya Y O(g:) (A.48)
1#£] 4 i#j<k#i qJQk
3
1 4 1 qi
Pp—2 919293 ; gig;  |N+1 Z_Zl Gi #j;# e
48N G a;
+ |5 Z 4y | +0(q) (A.49)
N N+1 z;éj<k;£quqk
1 1 24 1 48
— = + — =t (A.50)
By NN N+le N*-1

where the dot denotes terms involving positive powers of ¢;. Since Sp(4, Z,) and its congruence
subgroup I'; o(N) contains GL(2,Z)., the expansion of 1/®19 and 1/®j_o for N = 2,3,5,7
are manifestly invariant under permutations of ¢1, g2, ¢3. In contrast, the expansion of 1/ s
is only invariant under permutations of ¢; and gs.

A.5 Fourier-Jacobi coefficients and meromorphic Jacobi forms

Given a meromorphic Siegel modular form 1/®(p, o, v) of weight —w, the Fourier expansion

with respect to o
Z wm P,V
m>>—00

27rima

1/®(p,o0,v) (A.51)
gives rise to an infinite series of meromorphic Jacobi forms iy, (p,v) of fixed weight w and

increasing index m. If ® is modular under the full Siegel modular group, then m € Z and ¥,
is a Jacobi form for the full Jacobi group SL(2,7Z) x Z2, i.e. it satisfies

Ym(p v+ Ap+p) = e MRy () (A.52)
ap+b v w 2mimev?
o (0 2) = (ot w0 (A.53)
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for all integers a,b,c,d, A, i such that ad — bc = 1. If ® is modular under a congruence
subgroup I' C Sp(4,Z), then

1. for T' =Ty o(N), then m € Z and v, is a Jacobi form for the Jacobi group I'g(N) x Z2, i.e.
it satisfies (A.52),(A.53) for all integers a, b, ¢, d, A, u such that ad—bc = 1 and ¢ = 0mod N

2. For I = T'9(N), then v, is a Jacobi form for TO(N) x Z2, i.e. it satisfies (A.52),(A.53)
for all integers a, b, ¢, d, A, i such that ad — bc =1 and b = Omod IV;

3. ForT' = IA“ZO(N), then m € Z/N and 1)y, is a Jacobi form for I'o(N) x (NZ x Z) satisfies
(A.52),(A.53) for all integers a,b, c,d, \, pu such that ad —bc = 1, ¢ = Omod N and \ =
Omod N (examples of Jacobi forms of index n/N with these periodicity properties are
given by ¢(Np, v) where ¢(p, v) is an ordinary Jacobi form of index n under the full Jacobi

group).

In particular, the Fourier-Jacobi expansion of the inverse of the Igusa cusp form is given

by [89, (5.16)],

1 1 P 9951 +3E192,, 2
= “1yogl 4 70 Lo + O(2 A.54
P10 </>—2,1Aq A 421 A é () (A.54)
where )
Pp,v) = o1 _ 5 [—812, log ¥1(p,v) + 27id, log 772] (A.55)

12691 (2m)

is (up to a factor (2i)?) the Weierstrass function, a weak Jacobi form of weight 2 and index
0.

In the case of CHL orbifolds with N = 2,3,5,7, it will be useful to introduce qsk_g, the
image of ®;_5 under an inversion S,,

O_5(Q) = (VN)Fo " 2d)_5(S,0Q) = d1_5() : (A.56)

pro

where we chose the normalization such that ®j_y ~ —47202AL(p)Ar(0/N) near the divisor
v = 0. The Fourier-Jacobi expansion of ®;_o and ®_5 is given by

1 . 776(p) —1 A
(I)k72 - Ak(ﬂ) 19%(;0,1)) 95 +'€Z}0 + O((JU) ; ( 57)
6
L W v g oY) (A.58)

o Anlp)93(Np,v)

where 91 (p,v) = >, cn(=1)" qz(m2)*yns (note that it differs from 19[}] (p,v) by a factor of
i) and

o =P e:) k  N?E3(Np) — N Esx(p)

Ap(p)  12(N —1) Ak(p) ’ (A.59)
o _kP(Np,v) k Es(p) — NEy(Np)

Ax(p) 12(N — 1) Ax(p)

Now, unlike holomorphic or weak Jacobi forms, a meromorphic Jacobi form ¥y, (p,v) of
index m > 0 and weight w in general do not have a theta series decomposition, unless it
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happens to be holomorphic in the variable v. Instead, it was shown in [90, 89] that it can be
decomposed into the sum of a polar part and a finite part,

Um(p,v) = ¥} (p,0) + ¥} (p,v) (A.60)

where the finite part ¢ is holomorphic in z and has a theta series decomposition,

(Pﬂ)) Z hmf m((pav)v (A61)
Zmod 2m
where ,
SEZ

are the standard theta series transforming in the Weil representation of dimension 2m while
the polar part is a linear combination of Appell-Lerch sums which match the poles of ¥, (p, v)
in the v variable. Since Appell-Lerch sums transform inhomogeneously under modular trans-
formations, so does the finite part 1/)5“ which implies that h,, ¢ transform as a vector-valued
mock modular form of weight % — k. In the case at hand, it follows from (A.44) that v, (p, v)
has a double pole at v = 0mod Z + pZ with coefficient proportional to cx(m)/Ag(p), where
ck(m) are the Fourier coefficients of 1/Ag (o), so

0h0.0) = LT A (p.0) (4.6

where A, (p,v) is the standard Appell-Lerch sum [89]

ms2+s 2ms+1

q
Z 1_” . (A.64)

SEZ

The latter satisfies the elliptic property (A.52) but not the modular property (A.53). However,
it admits a non-holomorphic completion term

Tin —m2
Ay =m 3 | ZmlO) S arte(@NyAmR) ¢ | Do) (A.65)

2m/m
£mod 2m P2 \EZ+ 2L
m

such that ,Zl\m = A, + A}, transforms like a Jacobi form of weight 2 and index m, although
it is no longer holomorphic in the p and v variables. Consequently, both

~ % -~ Ccp(m *
o) = b+ E g o) and ) =l - E o) (a0)
Ax(p) k(p)
transform like Jacobi forms of Weig\ht 2 — k and index m, although neither is holomorphic in
the p and v variables. Moreover, ¥f (p,v) has a theta series decomposition similar to (A.61)
with coefficients

ﬁm,ﬁ(p)

—mA?
W_ Z Al erfe(2|A\|y/Tmp2) q (A.67)

AEZ+ 55

B e(p) = Bmt(p) —
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transforming as a vector-valued modular form of weight % — k. By Taylor expanding the
denominator, we can rewrite (A.64) as an indefinite theta series of signature (1, 1),

1
Am(p,v) = 3 Z ¢ [sign(s + ug) + sign ¢ gt g2t (A.68)
sEZ

Similarly, its modular completion can be written as an indefinite theta series,

Ap(p,v) = % S {sign( ;/\;F (e\/rﬁﬂ g s g 2ms (A.69)

SEL
F(z) = rzerf(z) + e (A.70)

is a smooth function which asymptotes to /7 |z| at large |z| [91].

For meromorphic Jacobi forms of index m = 0, the decomposition (A.60) still holds, but
the finite part ¢}" is now independent of z, while the non-holomorphic completion term of the
Appell-Lerch sum Ag(p, v) reduces to Aj = 1/(4mpz). The simplest example, relevant for the
present work, is the (rescaled) Weierstrass function (A.55), which decomposes into

E QY _E’
P =5 AP 12" <4ﬂp2 2(1—”) (A.71)

SEZ

where

In particular, it follows from this decomposition and from (A.88) (with L = 0) that the
integral over the elliptic curve v € £ is given by

| dudp .
/7? vev :/ durdug P(p, ut + puz) = — (A.72)
[0,1]2

2
2ipo 127

which is non-holomorphic in p as a consequence of the pole of P(p,v) at v = 0. From this,
it follows in particular that the average values of the zero-th Fourier-Jacobi modes (A.59) of
1/®k_o and 1/Pj_o with respect to v are given by

k N2Ey(Np) — Es(p)
duq dus g = )
/[071]2 PR T (N =) Ar(p)
. ko Es(p) — Eo(N
/ duy duy d — 2(p) = Ex(Np)
[0,1]%[0,N] 12(N - 1) Ak(p)
For negative index m < 0, it turns out that any meromorphic Jacobi form 1 can be

expressed as a linear combination of iterated derivative of a modified Appell-Lerch sum, (here
y = 627riz’ w = 627r'1u) [92]

(A.73)

w—2Ms qu(s+1)

oy M
Fur(z,u57) = (/) S g (A.74)
SEZ
The latter transforms as a Jacobi form of index M = —m in u and has a simple pole at

u— z € Z + 77, with residue 1/(27i) at u = z. If S denotes the set of poles of 1(z) in a
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fundamental domain of C/(Z+ 7Z), and D, ,, are the Laurent coefficients of ¢ at z = u, then
Theorem 1.1 in [92] states that

~1
W@ = =2 Gy oy 0 Fom(z 0], (A.75)
uesS n>0
For the case of interest in this paper, the leading Fourier-Jacobi coefficient _1 = e 92 ®) of
1/®1¢ has a double pole at z = 0 with residue 1/A, hence
1 0y gs s 2sy g=+s
Y1 = o Fi(z,u7) fu=o = — A.76
szshile o= -3 3 | + T (A7)

Note that this plays the role of 1)* |, while ¢¥'; vanishes. The modified Appell-Lerch sum can
be written as an indefinite theta series,

1 signf + sign(ug + s 1 2405
Yo = A Z {(25-1-5) g g CR) - 47r,026<u2 +3)] q e y' (A.77)
sEZ

where sign/ is interpreted as —1 for £ = 0. To see that this formula is consistent with the
quasi-periodicity (A.52), note that under (y,s,¢) — (yq,s — 1,£+ 2), (A.77) becomes

1 sign(f + 2) + sign(ug + s 1
7Z Z |:(28+€) g ( ) 5 g ( 2 ) . 4ﬂp25(u2+3)] qs2+Zs+1 y€+2 (A.78)
ENAYA

This differs from (A.77) (up to the automorphy factor qy?) only due to the terms ¢/ = 0 and

¢ = —1, but those two terms leads to a vanishing contribution,
_72 [ 1) 1)+1y+2$q52+1y2} —0. (A.79)
SEZ

Shifting ¢ to £ — 2s, (A.77) may be written equivalently as

1 sign(f — 2s) + sign(ug + s 1 C&240s (—2s
¢_1:—K Z [E en( ) 5 gu(us +5) 47rp25(u2+8)] g STy (A.80)
SEL

which resembles the Appell-Lerch sum (A.68) for m = —1, except for the replacement of
signf by sign(¢ — 2s). Of course, the Appell-Lerch sum A_; would be divergent, while the
modified Appell-Lerch sum is absolutely convergent. Similarly, for CHL orbifolds, the leading
Fourier-Jacobi coefficient of 1/®j_5 is given by the same Eq. (A.80) with A replaced by Ay.

A.6 Fourier coefficients and local modular forms

In this section we shall use the decomposition (A.60) to infer the Fourier coefficients of 1/®y_»
and 1/®j_5 in the limit Q9 — ico. Starting with the maximal rank case, and assuming that
09 > p2,vg, we find

6—27ri(np+[/u+ma')

C(n,m, L; Qs :/ d30,
( ) [0,1]3 ‘I)lo(P’UvU) A8l
e—2mi(np+Lv) ( ’ )

=CF(n,m,L) + ¢(m) / dpy duy A (p,v)

[0,1]2 A(p)
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where CF(n,m,L) = f[0,1]2 dp1 dvy ¥F (p,v) e~ 2m(np+Lv) are the Fourier coefficients of the
finite part of ¢,,. To compute the integral in the second line of (A.81), we Fourier expand
1/A(p) = > p>_1 ¢(m)g™ and Ay, (p, v) using the representation (A.68), and integrate term
by term with respect to vi, obtaining

- Z m) c(n — Ls +ms?) (L — 2ms) [sign(ug + s) + sign(L — 2ms)] (A.82)
s,EZ

where we have used ¢ = L — 2ms, M = n — ms? — ¢s. However, while this naive manipulation
lead to the correct result for generic uo, it turns out to miss a distributional part localized at
uy € Z, originating from the poles of A, (p,v) at ¢°e*™¥ = 1.

To compute this distribution, let us first consider the contribution from the term s = 0 in
the sum (A.64). Upon expanding

(1 - y)2 Zkzl ky_k , |y| >1 ’

one would be tempted to conclude that the integral fol duvy ﬁ vanishes. However, we claim
that instead,

1 y 1
dvy ———==——90 . A.84
/o Mg T a0 (A5
To see this, we first consider first the single pole function %Z% with Fourier expansion
ly+1 sign(¢) + sign(ve)
- - _ A.85
> 5 y (A.85)

2y—1 Lez

with the understanding that sign(0) = 0. We claim that this identity is valid at the distribu-
tional level. As a check, using the Euler formula representation for (A.85) and acting with an
anti-holomorphic derivative on each term (recalling that 051 = 76 (v;)d (’Uz)), we get

1 0 /ly+1 10 1
o5 G) =i (o amm =g — 0 a0 = o)
(e lez LeZ
(A.86)
The right-hand side is also what one gets by acting with 05 = %(81,1 + i0,,) on each term in
the Fourier series (A.85), noting that sign’(ve) = 26(vs).
The double pole distribution (A.83) is obtained by acting with a holomorphic derivative
n (A.85), therefore admits the Fourier expansion

L0 (lukly g s,
(1-y)? 27718v<2y—1) Z vz)ge%y (A.87)

In particular, integrating over v; we reach (A.84).28. More generally, the same argument
shows that for any s,

q° l| + sign(vy + s 1 .
(I_Z)QZZO | g2( 2 Pz)_ﬂ(s(vﬁsm))qe ) (A.88)
Y (eZ

281t is worth cautioning the reader that regularizing the double pole by point splitting would instead pro-
duce the same delta distribution with coefficient —1/(27). This however would be inconsistent with modular
invariance, e.g. when computing the average of the Weierstrass function in (A.72).
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Using this identity, we find that the naive result (A.82) misses an additional term sup-
ported at us = vy/ps € Z,

1
i g c(m) ¢(n — Ls +ms®) §(vy + sp2) . (A.89)
SAEZ

However, this still cannot be the full Fourier coefficient C'(n, m, L; Q22), since the latter must be
invariant under the action (A.14) of GL(2,Z). Instead, both (A.82) and (A.89) are invariant

under the subgroup I's, which preserves the cusp o9 = oo, where (é i) acts by sending

(n,m, L) — (n — Ls +ms?,mL — 2ms). To restore invariance under the full GL(2,7Z) group,
we may therefore replace the sum over s € Z by a sum over all v € GL(2,7Z)/Diy, obtaining

1 1
C(n,m, L;Qy) =C¥(n,m, L) + Z {c(m) c(n) <2L(sgnL + sgnug) — 45(1}2))} Iy + ...
vEGL(2,Z)/Dihy T
(A.90)

Here, Dihy denotes the dihedral group generated by the matrices ((1) _01) and ((1) (1)), which
stabilizes the locus v9 = 0, and the dots denotes possible additional contributions which are
not visible in the limit |Q3| — oco. The action of v = (¥ ) € GL(2,Z) on the quantities
m,n, L, vy appearing in the bracket is given by

o= s*n+¢*m—qsL, m— r’n + p*m — prL, (A.91)
L — —2rsn—2pgm+ &2(17,& (A.92)
Oy > tr ((1(/’2 162)7T92'y) =pqp2 +rsoy+ (ps+qr)ve . (A.93)

Using the same reasoning, we find the Fourier coefficients of 1/®j_5, which must be invariant
under GL(2,7Z),

Ck*? (n7 m, L7 QQ) = Ck}:lQ(n’ m, L)

. N N S A L.
+ Z [ck (m) ¢ (R) (§L <81gnL + 51gnv2) - 47_‘_5(1)2)>:| +... (A.94)
YEGL(2,Z)/Dihy vy

For the Fourier coefficients of 1/®_y, which must be invariant under T'o(N), we find instead
Ch—z(n,m, L; Q) = CF 5(n,m, L)

1. . 1
+ Y [ck (N1i) ex () [§L (signL+signﬁ2> - Ma(@g)H +... (A.95)
v€T0(N)/Zs v

It is important to note that the identities (A.90),(A.94),(A.95) are only valid when |Q5] is
large enough such that the integration contour [0, 1]> +iQ does not cross any pole for generic
values of €2y, and only crosses quadratic divisors (A.6) with ny = 0 on real-codimension one
loci. When [Qs] < 1/(4n3) with |n2| > 1, the contour crosses the the quadratic divisor (A.6)
for generic values of s, and the integral on the first line of (A.81) is no longer well-defined.
We leave it as an interesting open problem to define the Fourier coefficient C'(n,m, L; Qs) of
1/®1 (or its analogue for 1/®9 and 1/®;_5) in the region where Q] < 1/4.
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B Perturbative contributions to 1/4-BPS couplings

In this section, we compute the one-loop and two-loop contributions to the coefficient of the
V2F* coupling in the low-energy effective action in heterotic CHL orbifolds. In both cases we
start with the maximal rank case, i.e. heterotic string compactified on a torus 7%, and then
turn to the simplest heterotic CHL orbifolds with N =2,3,5,7.

B.1 One-loop V?F* and R?F? couplings
B.1.1 Maximal rank case

In heterotic string compactified on a torus 7%, the one-loop contribution to the coefficient of
the V2F* coupling in the low-energy effective action can be extracted from the four-gauge
boson one-loop amplitude, given up to an overal tensorial factor by [41]

1 d,oldpg 1 dz;dz; / / /
Agbed =75 /f 2 ” H — (x12x34) ™ ° (xasx24)®* (x1ax23)* "
1

(2mi)t 2ip2 (B.1)
X (Ja(21) Jp(22) Jo(23) Jd(2’4)>
where x;; = e9(»#%%) and g(p, 2) = —log |61 (p, 2) /0> + i—’;(lmz)2 is the scalar Green function

on the elliptic curve £ with modulus p. The four-point function of the currents evaluates to
1
(Ja(1) Jo(z2) Jel(28) Ja0)) =Ty, sy ol Pated] = 75 (06T, 15,a[Pea) 02921 — 22) + 5 perms)

+ (5ab5cd T, 16 a[1]0%g(21 — 22) *g(23 — 24) + 2 perms)

(B.2)

1674

where P, and P, are quadratic and quartic polynomials, respectively, in the projected
lattice vector Qrq = pratQr € [ 4416,4 arising from the zero-mode of the currents,

5ab
Py =QraQrp — ;
T2 X (B.3)
Pabed =QLaQroQreQra — %5(@@@@&1) + 6.2 25(ab5cd) ;

and for any polynomial P in @1, and integer lattice A, , of signature (p, q), we denote

Fqu _Pg/g Z P(Qra) TP QL= Q] (B.4)
QEAp 4

Upon expanding in powers of o', the leading term reproduces the one-loop contribution to
the F* coupling,
dpidp Tag, g o[ Pabed]

F _R.N./ : , B.5
abed AP A(p) B3

where R.N. denotes the regularization procedure introduced in [93, 94, 95|, which is needed
to make sense of the divergent integral when d > 6 (we return to this point at the end of this
subsection). Equivalently, (B.5) may be written as [46]

dp1dps o* Tayi16.4()
FY — R.N. / - +16, s B.6
abed moops o (2m)10yedyboycdy?  Ap)  ly=o (B6)
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where Ty, ,(y) is the partition function of the compact bosons deformed by the current y,.J*
integrated along the A-cycle of the elliptic curve,

. m(y-y)
Tn,,(y) = p/? S TPRL QRIS (B.7)
QEAp 4

At next to leading order in o/, the term linear in the Mandelstam variables s, ¢, u reduces

to

dpldpg 1 dzldzz
GSb)’Cd B /]-‘ pz gt H 2ipa Zl - 22) 829('21 a 22) Oab FAder‘ d [Pcd] +5perms| ,
1

(B.8)
since all other terms at this order are total derivatives with respect to z;. The integral over

z can be computed by using the Poincaré series representation of the Green function,

!

P2 = [Z(mp+n)—z(mptn)]
_ 2 § : B.9
9(p, 2) et |mp+n|2epz ) (B.9)
mn
leading to
dzdz d 1 2 .
*g(z —w) = 1l =—F B.10
| Sozat = w)oe(z —w) i 3 Gwprepmpran =gl B0

where the sum over (m,n) was regularized a la Kronecker. Up to an overall numerical factor,
we therefore find that the one-loop contribution to the coefficient of V2F* coupling for the
maximal rank model is given by

dp1dpa Eg
Pl .
,(p) Ap}q[ ab}

G =G G =R, | (B.11)

d 2
ed) F1 P2

For d = 0, corresponding to either of the Fg x Eg or Spin(32)/Zs heterotic strings in 10
dimensions, one has

Ei /-
Lag, o [Pl = Dy, [Pasl = 35 <E2E4 - E6> Jab (B.12)

SO szb) .q becomes proportional to the TrF?TrR? coupling computed from the elliptic genus
[96, C.5], [97], as required by supersymmetry.

B.1.2 CHL orbifolds

The four-gauge boson amplitude in CHL models with N = 2,3,5,7 was obtained in [44, 45].
It was shown in [22, §A] that the one-loop F** coupling in these models is given by the simple
generalization of (B.5), namely
dp1dps Ta, . [Pabed]
( r— )
Fia=Fi ™" Fga=RN. [ g
Lo (N)\H1

, B.13
03 Ay ( )

where Ay = [n(p)n(Np)]*¥ arises from the partition function in the twisted sectors. The same
derivation goes through for the V2F* and R?F? couplings and yields

Goped =0 Gy " G” =R.N. /F e 8 B twelfel (B4
0 1
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B.1.3 Regularization of the genus-one modular integrals

As indicated above, the modular integrals (B.13) and (B.14) are divergent when d > 6 and
d > 4, respectively. We follow the same regularization procedure as in [98, 22] and define
them by truncating the integration domain to Fn A = Uyergn)\sL(2,z)Y - F1,o, where Fi o =
{—3 < p1 < %.lp| > 1,p2 < A} is the truncated fundamental domain for SL(2,Z), and
minimally subtracting the divergent terms before taking the limit A — oo. Using the fact

that the constant terms of 1/A and Ey/Ay, are equal to k and k(1 — %pz) — 24, the constant
terms of their Fricke dual are k and k(N — %pz) and the constant terms of the Fricke dual of

-8
the partition function include an extra factor of v /N qT we get

dp1dpz T, [Pabea]  3k(1+vN"z ) AT
(pra) _ )
Fachd AlE)I;o [LNA p% . qu - 16772 6(ab(scd) (B15)
6 —4
dpldpg Ey 3k(1+ oN'E) ATS" K1+ oNT") —24 AT
GhY=1 / T, ,[Pa 8a ab| »
Agrolo[ Fra P53 Dk Ap.q [ Fab] = 472 28 bt 4 = b
(B.16)
where the terms /\%6/‘1;26 and AT /=% should be replaced by log A when ¢ = 6 or ¢ = 4,

respectively. Note that the second term in (B.16) cancels in the case of the full rank model
where k = 24. It will be also useful to consider the Fricke dual function to G;’gq) for the
N =2,3,5,7 models, introduced in (4.57) and whose regularization is given by

GED = lim {/ dpidp: NEQ(NP)FAP P Sk(1+oN'E) A 5
FN

Ao W2 Ap(p Al a2 LS
KN +oN's) —2a AT
+uvN2 ) — 2
= = Sup| . (B.17)

B.1.4 Differential identities satisfied by genus-one modular integrals

Like the genus-two modular integral Gfﬁ;’qc)d discussed in §3.3, the genus-one modular integrals
(B.15), (B.16) and (B.17) satisfy differential identities with constant source terms in ¢ = 6,
q = 4 determined by regularization techniques using the same paramatrization as for section
B.1.3. The equation for the modular integral F ;‘;C‘g was calculated in [22, (3.57)], which we
reproduce below:

15k(1 + &)

D(eng)gFabcd = %56]“ Fabed + (4 - Q)(S(e\(ancdﬂf) + 35(ab-ch)ef + W

S(abOedlef) 04,6 »
(B.18)

Here the volume factor v is either equal to N for the perturbative Narain lattice, or to 1 for
the non-perturbative Narain lattice.

The equation satisfied by the genus-one integral Gé’;f’) can be computed using the same
techniques described in [22, §3.2] and reads

4-
DGl = T L G + TS G + 5 0w G + 6 FG )
(B.19)
3((1 —)k—24) 91+ )k
B Jgﬂ O(efOab) 0g.4 + Té(eﬂsab) 09,6
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where the term proportional to F (; ;l)) corresponds to the contribution of the non-holomorphic

completion in E», and the two constant contributions of the second line correspond to the
boundary contribution after integration by part (see [22, (3.54)]). One checks that the diver-
gent contributions cancel each others, so the equation is valid for the renormalized couplings.
For the perturbative lattice with v = NN, these linear corrections are associated to the mix-
ing between the analytic and the non-analytic components of the amplitude, and are indeed
proportional to the corresponding 1-loop divergence coefficient in supergravity [79].

The same analysis for ngﬁ’q) gives

; 2 — 4 —
D(eng)g §Gflzzq> q 5 CG((lz;)q) + 1 C] 5e)(a §G(1;(qf) _|_ 5 G(p ,a) + 6Fe(]p‘§l)>

3((N+v)k—24) 91+ %)k
B oy 5(ef5ab) 5(1,4 + 78 5 5(ef5ab) 5,] 6 -

(B.20)

B.2 Two-loop V2F* couplings
B.2.1 Maximal rank case

At two-loop, the scattering amplitude of four gauge bosons in ten-dimensional heterotic string
theory was computed in [42, 43]. Upon compactifying on a torus T?, one obtains

e, / BP0 d*Qy 1
abed — F |QQ |3 (I)IO

= Vs Hdzz (xi2x30)™ (xasxas) ™" (xraxes)®™ (Ja(21) Jo(22) Je(z3) Ja(z1))

(B.21)

where Y is a genus-two Riemann surface with period matrix €, Vg is a specific (1, 1) form in
each of the coordinates z; on ¥ [42, (11.32)],

Vs =t A(1,2) A(3,4) — sA(1,4) A(2,3) (B.22)

where A(z,w) = w1 (2)wa(w) — wy(w)wa(2), xij = €¥(H%7%) and G(Q, 2) is the scalar Green
function on X. At leading order in ¢/, x;; can be set to one, and similarly to (B.6), the
integrated current correlator [y, J*(z)dzwrz can be expressed as a multiple derivative [46]

:1))(57“7"553 + Ers'Espt )84 (2)
(2mi)10y; Oy; Oy yg A+ 1o

( )|y=0
(B.23)

where F/(\Qd)HG d(y) is the partition function of the compact bosons deformed by the currents
y"J® integrated along the r-th A-cycle of ¥,

(/24 Ja(21)Jb(22)JC(Z3 Jd(24 HdZZWI zi)) =

i=1

L2 () = QU2 ST Qa0 @ -inQpy Ous QP 2mQLH SOV (B2g)

QeAR;
Evaluating the derivatives explicitly, we obtain the result announced in (2.30) for the two-loop
V2F* coupling in the maximal rank case,

(2)
G(d ,d+16) —R.N. / d391 dSQ2 FAd,d+ 16 [Pab’Cd] (B.25)
ab,cd T |QQ |3 (1)10
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where Py, ¢4 is the quartic polynomial defined in (2.31). The regularization procedure needed
to make sense of this modular integral when d > 5 will be discussed in §B.2.4.

In the special case (d = 0) of the Eg x Eg heterotic string in 10 dimensions, and for
a suitable choice of indices ab, cd, the partition function F/(\Q}; ) Ppp;cq) reduces (up to nor-

[
Eg
malization) to (E{”)?Wy where E{” is the holomorphic Eisenstein series of weight 4, which
coincides with the Siegel theta series for the lattice Eg, and W9 is a non-holomorphic modular
form of weight (2,0) given by

Ty = 9,29,® — 1(9,2)*, @ =1log [|W|'EP] | (B.26)

in agreement with [43, (5.7)]. This can be viewed as the genus-two counterpart of the genus-
one formula (B.12). We shall now discuss the extension of (B.25) to CHL orbifolds, starting
with the simplest case N = 2.

B.2.2 75 orbifold

The simplest CHL model is obtained by orbifolding the Eg x Eg heterotic string on T¢ by an
involution o exchanging the two Eg factors, and translating by half a period along one circle
in 79 [25]. This model was studied in more detail in [99, 100] and revisited in [22, §A.1].
Some aspects of the genus-two heterotic amplitude in this model were discussed in [11] in the
context of 1/4-BPS dyon counting, which we shall build on.

Following standard rules, the two-loop amplitude is now a sum over all possible twisted or
untwisted periodicity conditions [h1hs] and [g1g2] along the A and B cycles of the genus-two
curve 3, respectively,

1
2 — = (2) [h1h2
A® = 2 > ARt (B.27)
h1,h2€{0,1}
91,92€{0,1}

The untwisted amplitude .A® [88} coincides with (B.21), restricted on the locus Ggigq C
G416, which is invariant under the involution o. As in the genus-one case [22, §A.1], it
is convenient to further restrict to the locus Gg4 C Gg4y84 Where the lattice factorizes as
Agti6,a = Es®Eg®1l, 4, and retain from A®) [};Zﬂ the chiral measure for the ten-dimensional
string, which we denote by
2
16 Lool — q)l() : .

Now, decomposing p{ + p§ = 2X% + P, p{ — p§ = 2A% — P* for pf',p5 € Ag,, o = 1,2,
the genus-two partition function of the lattice Ag,x g, appearing in the numerator can be
decomposed as

2
(2) _ (2) (2)
@] = > Okt (71,22 (D) Oy (py ) (D) (B.29)
(Pl,Pg)G(AES/QAES)@’Z

where @

Fs[2,(P1.P») is the genus-two theta series for Ag,[2]:

. 1 1
(2) _ 2mi (AT — 5P Qs (AS— 5 PS5
9528[2],(7>1,7>2)(Q)— Z ZMHA TR P (AT 5P (B.30)
(AL,AZ)eAZ?
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For P1 =Py =0, O 0)(?) = 03 (29).

Eg[2
As for the twisted sectors [Z] = [21222} =+ [88], we use the fact that the Zs orbifold blocks
of d compact scalars on a Riemann surface of genus 2 are given by [101, 102]
+ _ d
9 [6;](0,9) v [6;1(0,9) Z AL (@) Th,g—imp3 (Q)Th.g (B.31)
Zo(2)29;(0, 75, )2 QEhes

where Zy(€2) is the inverse of the chiral partition of a (uncompactified, untwisted, unpro-
jected) scalar field on X, and 73, 4 is the Prym period, namely the period of the unique even
holomorphic form on the double cover of ¥, a Riemann surface S of genus 3. The Prym
period 7y, 4 is related to the period matrix 2 by the Schottky-Jung relation [102, (1.6)]

(0, 7) \*_ (990671(0,2) 9915710,
(M) N (19(2)[5;](0)52) 19(2)[(%—](0’9)) (B.32)

for any choice of distinct 4,5 € {1,2,3}. Here, 6;E are the 6 even spin structures § such that
543 [Z ] is also en even spin structure; moreover §; = ;" + % [Z |. The relation (B.32) ensures
that (B.31) is independent of the choice of 7. Since all 15 non-trivial twists are permuted by
Sp(4,7), it will be convenient to focus on the twisted sector [;L ] = [8?], in which case the

relation (B.32) becomes [102, (6.5)]

o) (02
9§

0[]\
P = oL : (B.33)

0
]9 [o1]

where 7 = 73, 4. In particular, under (p,o,v) = (p + 1,0,v), the Prym period transforms as
T — 7 + 1, whereas in the non-separating degeneration o — ico, 7 ~ pmod 47 [102, §7.2].

In our case, we need the orbifold blocks of 16 chiral scalars under exchange X; +—
Xit8mod16- By decomposing X, into its even and odd components X; £ X;i{8mod16, We
find that the orbifold blocks are given by

9D [51(Q) 02157 ]()]"
[ ] 3

X
16 ,9. 8
255 9i(Th.g) PE(Ag /2MEg)

9‘5;[2],@70)(9) @Es[Q],P(Th,g) . (B~34)

As a consistency check on this result (first obtained in [11] from the partition function of

the Eg root lattice on the genus 3 covering surface fl), let us consider the maximal non-

L1+ Lo Lo
Lo Lo+ L3

parametrizes Schwinger times along the three edges of the two-loop sunset diagram shown in
Figure 1 iii). Assuming that the Zs action is inserted along the edge of length L3, the Eg® Fg
momenta running in the three edges are (p1,p2), (p1 + g, p2 + q), (¢,q). Decomposing as usual
p1+p2 =2X 4+ P,p1 — p2 = 2A — P, the classical action is

separating degeneration limit: the imaginary part of the period matrix (2o = (

Li(p} +p3) + L2 [(p1 + 0)° + (2 + 0)*] + 2Lsq?
=2(Ly + Lo) [(E +1P)’ 4 (a— %P)Q} +2(Ly + L3)* + 4La(Z + 1P) - ¢

Li+L L >+ 1ip
=2(X+ 3P q).< 1L2 2 L2+2L3>.< q? >+2(L1+L2)(A—§73)2,

(B.35)
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in agreement with the maximal non-separating degeneration limit of the second factor in
(B.34), using 74,4 ~ p.

The contributions of the other degrees of freedom (spacetime bosons and fermions, ghosts)
are unaffected by the orbifolding and, as in the maximal rank, turn the factor 1/Z% in (B.34)
into 1/®19. In the sector [Z] = [8(1)], the resulting ratio can be written in three equivalent
ways [11, (4.29-31)],

[ 571 925 @] o [9]7 9 [ L] s [8] 0= [2]" 1
Vi(Th,g)3P10(2) KRIGEER I393(7) Poo()
_o [ o [0] 0 [g] 0@ [if]" _ L (B.36)
9395 (7)@10(Q) 19%193(7) D6,1(€2)
R S
G393 (1) 10(0) 9304 (7) B 2(2)

where ®g o = P is the Siegel modular form (A.46) of weight 6 and level 2, and Pg 1 o g and
Pg o are its images under S, and T}, - S, respectively (see (B.44) below). Using the identity

Z 9(535[2}7(7:,0)(9) @ES[Q},P(T) =
Pe(Agg/2AEg)

1 1
0301 0% (2p, 20, 2v)—|—1—619§19§ 0% (5,20,v) + 1—6193% Of (&5, 20,v)

(B.37)
we find that the orbifold block in the sector [Z} = [8(1)] is given by [11, (4.38)]
@) @ (p @) (p+l
ZéQ)[gg] = O, (2020, 20) + Ory(5:20,v) + On(%y 20,0) (B.38)

(I)G,O 16(1)6,1 16(1)6,2

In particular, the dependence on the Prym period 7 has disappeared. The result (B.38) is
invariant under the index 15 subgroup I's ¢, (2) of Sp(4, Z) which preserves the twist [8(1)} [102,
§6.1]. In fact it can be rewritten as

Z0 ] = )

V€T 2,61 (2)/T'2,0,e1 (2)

(B.39)

@g;(2p, 20,2v) |
D60 W’

where T'y 0, (2) = I'ae, (2) NT2(2) has index 3 inside 'y, (2), and 3 inside I'20(2). As a
consistency check in (B.38), in the separating degeneration limit v — 0 (B.38) becomes

1
Z@700) 42,2 E4(20) | E4(2p) E4(§) E4(P_5)} B.40
¢l ) (1100 9l alw ()
where, for N prime and h # O0mod N we define
77[2] _ nk+2(7_) nk+2(N7_) 7 77[2] _ ema“lkzﬂ) nk+2(7_> 2 (T;\Lra> (B.A1)
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where k42 = £, a = gh~!, with h~! being the inverse of h in the multiplicative group Z/NZ.
Using [22, Eq.(A.10)], the term in bracket is indeed recognized as the untwisted unprojected
one-loop partition function

E2 Ey(27) Ey(3) Ey ()
A A LA — 2 : B.42
b= = eren T e e P
The remaining blocks can be obtained by modular transformations,
2O = Zs[8)(Q) , & = (% AC) 5mod?2 (B.43)

where § = (hy, ha, g1, g2)". Using the invariance of @gé (p,o,v) under the full Siegel modular
group, and acting with the 15 elements y of Sp(4,Z) /T2, (2) on (B.39), we obtain the orbifold
blocks shown on Table 1. In this table, ®¢; through ®14 are images of ®gp under v €
Sp(4,7.)/T20(2). When ~ lies in SL(2,Z), x SL(2,7Z), — Sp(4,7Z) we denote the respective
SL(2,7) generators in subscript:

00 -1 0
, 01 0 0
®6,1(p,0,v) =p 6‘1’6,0(—1/Pv<7 - U2/P>“/P) = g 10 0o o |~ (I)6|(SJL) ’
00 0 1
10 -1 0
01 0 0
6 2(p,0,v) =Ps1(p+Lo0) =R6|| | o o o | = Pelrsy)
00 0 1
100 0
Bg3(p,0,0) =0 Ds0(p — v? /o, —1/o,v/0) =l o o | T | =Tslas
010 0
100 0
01 0 -1
Q6 a(p,0,v) =Ps3(p 0+ L) =D6|| o o 1 o | = Psla,rs
01 0 0
(B.44)
00 -1 0
_ 00 0 -1
Dg5(p,0,0) =0 0 Bg1(p—v*/o,~1/ov/o)=B6|| | o o o | =Pslss
01 0 0
10 -1 o0
00 0 -1
Qe 6(p,0,v) =Ps5(p+1,0,0) =6 | | o o o | =Pelirss)
01 0 0
00 -1 0
01 0 -1
(I>6,7(/), 07'0) :@675(;)70-4_ 17”) = (I>6| 1 0 0 0 = QG‘(S,TS)
01 0 0
10 -1 o0
0 0o -
Bg5(p,0,0) =Pes(p+1,0+1,0) =3[ 0 § o o | = 6| (rs,79)
01 0 o0
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Submission

[

hiha
9192

|

8

> o]

7 € Sp(4,7)/Tae (2)

0 1 0 O
2 2 2
[00] G(E; (2p,20,20) o' )(2p,2,v) @( )(2 v) 1 0 0 0
10 4)6,0 24(1)6,3 24(1)6,4 0O 0 0 1
0 0 1 o
1 0 0 O
[01} 0l (20,50) | OR(5.5.3) | O (& g.3) 00 0 -1
00 24<I>6?3 28<I>G,5 28<I>6,6 0 0 1 o0
0 1 0 O
0 0 0 -1
(2) (2) 1 (2) +1
[10] Opy(5.200)  Op (5.5.3 + 5y (555 3) 10 0 O
00 24®¢ | 28%¢ 5 28%¢ 7 0 1 0 o0
0 0 1 o0
1 0 0 O
2 - 2 1 2 2
(1] 00 (5.5.3) n o (et o) o) (2p, 752 w—p) -1 0 0 -1
00 28(1)6,5 28<I>6’g 24@6,13 0 1 1 0
0 1 0 O
1 0 0 O
o1 (")(2)(20, o+1 ’U) 9(2) P T %) @(2)(/)+1 o-+1 v) 01 0 -1
[01] 24@6,4 2843677 + 284)678 0 0 1 0
0 1 0 o0
10 O (H2ow) OP (2Hg8)  eR (e oY) oo o
N 1202
[10] 24@6,2 28@6,6 + 28‘:1)678 0 1 0 0
0 0 1 o0
0o 1 0o 0
o1 0 (2p,%0) | O0)(8,%,25) | %) (it g, 0 0 -1 0
[10] 24<I>673 28<I)6710 28@)6711 0 0 1 1
1 -1 0 0
(2) (pt1 (2)(pt1 a+1 u+1 (2)(ptl o vt1 o 1 -1l
[10] @ ( 25) @ ( )+® ( ORI ) 1 -1 0 0
11 24CI>6’2 28'@6’9 28‘@6,11 0 1 0 0
0 0 1 0
o 0 -1 -1
10 ®<2>( 20,0) ®<2>(2,27 L) (2)(” il vy 1 -1 0 0
[01] 24<I>G,1 28<I>5,10 + 28<I>6,12 0 1 0 0
0 0 1 0
01 @(2)(2p7o’+1 ’U) @(2)(P+1 o--Qi—l v+1) @(2)(57 1 ’zHQ—l) (1) _11 —Ol 8
[11] 24<I>6_’4 28%¢ 9 + 28%¢ 12 0o 0 1 1
1 -1 0 0
0 1 0 O
2 2 — 2 —
[00} 0 (2p,20,20) | O (20,275 w—p)  OF) (2p,L2UETEL 4 p) 1 -1 0 0
11 ®g.0 24<I>6’13 24<I>6,14 0 0 1 1
0O 0 1 o0
1 0 0 O
2 2 1 o 2 —2 1
i OR5ZHY) | OR(Eg Y | OR (e tet oy) 11 0 -1
01 28<I>677 28D¢ 11 24®¢ 14 0 1 1 0
0 1 0 o0
@(2)(p+1 g v) @(2)(9 a+1 v+1) @(2)(2 p—2vto+l ) o110
[11] 2032 + S -1 0 0 -1
10 284)676 28<I>6,12 24%¢ 14 0 1 1 o0
0 1 0 o0
1 @(2>(p+1 042»175 (2)(272’ 1) @(2)(2 o— 2U+p,v—p) jl 1 (1) Pl
[11] 28'@6,8 + 28496710 + 24(1)6,13 0 1 1 0
0 1 0 o0

Table 1: List of genus-two orbifold blocks for the Zy CHL model
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11 -1 0
11 0 -1
(I>6,9(/07(77U) :<D6,5(9+1a0+1av+1):(1)6‘ 1 0 0 0
01 0 0
01 -1 0
O —
®6,10(p, 0,0) =g 5(p, 0,0+ 1) = || g 0 01
01 0 0
1 1 -1 0
10 0 -1
D611(p,0,0) =Pe5(p+ Loyv+1) =6l | § 5
01 0 0
(B.45)
01 -1 0
11 0 -1
D612(p,0,0) =Pe5(p,o0 + Lo+ 1) =D[[ | 5 o
01 0 0
1 0 0 0
-1 0 0 -1
Pe13(p,0,0) =Pe3(p,0 —2v+pv—p)=B|| o | | |
0 1.0 0
1 00 0
-1 1 0 -1
Pe14(p,0,v) =Pea(p.o—20+p+Lv—p)=6|[ o | | |
0 1.0 0
As a consistency check, using the fact that
278021298 (p) 94 (o) + O(v?) , k<8
Pe i (p,0,0) ~ —4 12 it )12 J( : (2 : (B.46)
£27 " (p)n (o) + O(v7) k=9

where (k,i,7) = (0,2,2),(1,4,2),(2,3,2)(3,2,4),(4,2,3), (5,4,4), (6, 3,4), (7,4,3), (8, 3,3) for
k < 8, we see that in the separating degeneration limit v — 0,
1 1
ZQ[Mh21(Q) ~ —an*0?2{" "] (p) 2" 2] (0) + O(v?) . (B.47)

where Zél) [Z] are the genus-one orbifold blocks given in [22, Eq.(A.6)]. Note that each of

hiha
9192 Lo
the genus-two theta series for an Euclidean lattice of rank 8 as follows (here ¢29° denotes
eITQ s Q%)

the numerators appearing in the genus-two orbifold blocks Zéz)[ ] can be interpreted as

O (2p,2v,20) = Z eiﬂQTQmQS’

(Q1,Q2)€
Es[2]|®Es[2]

Onp0.g) =2t Y e

(Q1,Q2)€
Eg[2]®Es[2]*

D I et

(Q1,Q2)€
Es[2]®FEs[2]*

Om: (5,5, ”TH) =278 Z (,UQ% ATQT2sQ

(@Q1,Q2)€
Es[2]*®Es[2]*

(B.48)
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@Es(g’ g’ %) —9—8 Z (_1)2Q1-Q2 TR s Q°

(Q1,Q2)€
Eg[2]*®FEsg[2]*

Opy (8, UL, 75l =28 37 (—1)2QHQ2) Qs (inQ e

(@Q1,Q2)€
Eg[2]*®Es[2]*

Opy (B, 5,251y o8 3" (—1)@FHQE Qe

(Q1,Q2)€
Es[2]*®oEs[2]

1 g - 2 irQ Qs Q%
@Es(ﬂ %H’%l) —9—8 Z (_1)(Q1+Q2) £imQ Q
(Q1,Q2)€
Es[2]* & Es[2]*
o—2v — iTQT Qs QF
Or. (20,0 — p, *=570) =27 Z 8(Q1+Qa)ersz €7 o9
(leQQ)e
E8[2]*69E3[2]*
O, (20,0 — p, =5 2) =271 Z O(Q1+Q2)€Fs[2] (—1)3(@~Q2) (imQ Q"

(Q1,Q2)€
Es[2]*®Es[2]*

(B.49)

Now, as indicated above (B.28), the orbifold blocks Zg & [];1’;2} only include the contribu-

tions from the chiral measure for the ten-dimensional string, and need to be supplemented
with the contribution of the bosonic zero-modes of the d compact bosons,

= |Qy|¥/? Z (—1)5(@01Q1+92Q2) (imQ} Qs QF ~im QR QR (B.50)

QEAT A +5(h1,h2)s

vl oig:)

where ¢ is a null element in (214 )/ 4 which depends on the orbifold action on T?: we shall
henceforth restrict to a half-period shift along the d-th circle, so that 6 = (0%;09711). For this
choice, the product of (B.39) and (B.49) can again be written as a sum over images under
the stabilizer of the twist,

(2) 100 (2) 7007 _ FIS\2,1>+8,(1[(_1)6.Q2]
2= Y R B3
V€26, (2)/T'2,0,e1 (2) ’ ~
where B
Aiaysa = Es[2] © g - (B.52)

and J - Q2 equals the winding of the d-th embedding coordinate along the cycle Bs. Thus,
the sum over all the sectors listed in (1), in the case of compactification on T at this specific
factorization point in the moduli space, can be rewritten as

S oZppe g = 3 Z 18 28]

hr7gT€{0 1} 'Yesp(47Z)/F2,61 (2)

e [((_1)5-691 +(—1)7@2 4 (—1)0(@HQ2)) Pab,cd:|

. Z Ady g4
g0

Y€SP(4,Z)/T'2,0(2) ’

?

(1;.53)
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where for the last equality we expressed ZéQ)[ ] fozl[ ] as a sum over I's . (2)/T20,(2),
similarly to (B.39), and rewrote the two sums as a double sum over Sp(4,Z)/I'20(2) and
['2,0(2)/T2,0,e,(2)-

Including the contribution from the second line in (B.21), and retaining the next-to-leading
term in the low energy expansion, we see that the V2F* coupling on the locus Gaa C Gaygd
where the lattice Agy16,q4 factorizes is given by

G® — 1 R.N d3Ql d? 0y Z(2) 00 Z(2) 00 / Z(2) hihg AS) hiha j2)
Ba= AN [ SE (O ZG X A 20 Pacd
hr,gr€{0,1}

(B.54)
where the bracket [P, .q| denotes an insertion of the quartic polynomial P4 (2.31) in the
sum over the lattice IN\d+g7d and its modular images.

Now, in parallel with the ‘Hecke identity’ (B.42), observe that the untwisted genus-two
chiral partition function satisfies

2) /
007 — [@E (Q)] hih
Z(z)[UO] - q8>10 - Z Z(z)[gigj] ) (B.55)
hrvgre{ozl}

The validity of this identity can for example be checked for the minimal non-separating de-
generation using (A.31). Using this identity in the sum over all sectors, as in (B.53), we can

rewrite it as a sum over Sp(4,Z)/I'2(2), as in the second line of (B.52), to obtain
1
@) [hih hih B
1 A Paned =
hr,gTG{O 1}

Z Agysa 2
Dg 0

YESP(4,Z)/T2,0(2) ’ y

The insertions of % (1+ (71)5@1’) can be seen as projectors on the lattice /~\d+8,8 to vectors with
even entries along one of the cicle designated by §, such that the resulting sum is recognized as
a genus-two partition function, with insertion of Py, .4 only, for the ‘magnetic charge lattice’
introduced in [22, (A,16)],

Ad_._g’d = Eg[Q} &b ﬂ171[2] &b ﬂd—l,d—l . (B57)

At this point, we can readily extend the result away from the factorized locus by allowing non-
trivial Wilson lines in the lattice partition function. As established in (B.55), the partition
function can be written down as a sum over images from under Sp(4,Z)/I'20(2), such that
the integral can be unfolded from a fundamental domain of Sp(4, Z) to a fundamental domain
of P270(2)

@) d3Q; d39 F}\Q;M‘d[Pab,cd]
Gabcd_R'N' ONE 5
I'2,0(2)\H2 2 6

This concludes the computation of the two-loop V2F* coupling in the Zs orbifold.

(B.58)
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B.2.3 Zy orbifold with N =3,5,7

Let us now briefly discuss the genus-two amplitude in heterotic CHL orbifolds with N =
2,3,5,7. Asin [22, §A.2], we restrict to a locus Ggig—sdtk—s C Gati6d where the even
self-dual lattice Ag;164 of the heterotic string compactified on T? factorizes as ANgg—k @
II 1 @ Ig4k—8,4+k—8, Where the Zy action acts by a Zy rotation on the first factor and by
a translation by 1/N period on the second. We denote by Ay g_j the Zy-invariant part of
ANk g—r, and let

Agyor—8d=Npg—r ® M1 & Mgyp—9.drk—9 - (B.59)

Upon using the Niemeier lattice construction of the Z y-symmetric lattice outlined in [22], one
finds that the invariant lattice Ay g = Di[N]|® Dg_j[—1], where the sum is performed with
respect to the diagonal glue code {(0,0), (s, s), (v,v), (¢,¢)}. For N = 2 using the construction
in the previous subsection, one has instead Ago = Eg[2].

Now, as in (B.27) the genus-two amplitude decomposes into a sum over all possible twisted

or untwisted periodicity conditions [];1;‘22} along the A and B cycles of the genus-two curve

¥, with h,., g, running over Z/(NZ). For N prime, all N* — 1 non-trivial twistings form a
single orbit under Sp(4,7Z), so it suffices to focus on one of them, say ¢ = [8(1)]. The stabilizer
of € under the action (B.43) is 'y, (N) (a subgroup of index N* — 1 inside Sp(4,Z)), so the
corresponding orbifold block 2&?_%_8, d[g?] must be a Siegel modular form for I'y ¢, (IV), and

satisfy
/

7(2) hiha7 _ ~(2) 00
> Ziron-sdlgigs ) = > Zon—s.alo1] ‘7 - (B.60)
hr,gr€Z/(NZ) v€ESP(4,Z)/T2,6, (N)
This orbifold block can in principle be computed using the N-sheeted cover of the genus-two
curve Y, which now has genus NV + 1. Rather than following this route, we instead postulate
that it is given by the natural generalization of (B.50), namely

27id-Qo

I o

=) 007 Agyor -84
Zd+2k—8,d[01] = Z Dp_o —
€T ¢, (N)/Ta,0.6; (V) - g

where T'g ¢, (N) = Iy, (N) NT2(N) has index N + 1 in g, (N) and N2 — 1 in Ty o(N),
and § - Q2 = no is the winding of the d-th embedding coordinate along the cycle B, so that

2mid-Qo . . .
F/%Z) [e N ] is a modular form of I'y ., (/V). As a consistency check, one may verify
d+2k - 8,d

that (B.60) has the correct behavior

~(2) 00 2,2 (1) 0 ~(1) 0
Zd2+2lc78,d[01] () = —4r*v Zd+2k78,d[0] (p) Zd+2k787d[1] (o) (B.62)
in the separating degeneration limit v — 0, where

27id-Q
]

_ PO B T e
Z¢(122k—8,d[8] = Z —Eend Z&)%_&d[?] — _drok SAik

Ay
YESL(2,Z)/To(N) v

(B.63)
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Similarly as in the N = 2 case, we deduce from (B.59) and (B.60) that the sum over all
non-trivial twisted sectors can be rewritten as a sum over images under I'y o(N),

2mid-Qo

/ S
174 hiha] __ d+ 2k —8,d
Z Z‘“‘%_S’d[mgg} - Z Z Dy
hi.g:€Z/(NZ) YESP(4,2)/T2,e1 (N) v/ €261 (N)/T2,0,e1 (V) vy

2) 2mi0- Qg
— Z Z F]\d+2k—8,d[e : } }
Dp_o )
v

v€SP(4,Z)/T2,0(N) Lvy'€l2,0(N)/T2,0,eq (N)

(B.647)

Next, we observe that the untwisted genus-two amplitude also satisfies an Hecke identity
generalizing (B.54), namely

@) e
= A A _
Zasok-s.d|gg) = g = = > 7? 2t (B.65)
10 k—2
YESP(4,2)/T'2,0(N)
Combining (B.60) and (B.64), and using
1 27i5-Qq
3 SN )
N2< Ad+2k—8,d+ Z Agtok—-8.d e v
'YEF?,O(N)/F2,O,61 (N)
@ 1 27i5-Qq 27i(N—1)5-Qq 1 27i5-Qo 27i(N—1)5-Qo
—FA(H%M{W(“F@*N +...+e ¥  )x(l+e ¥ +...+e ¥ )},
(B.66)
we find that the sum over all twisted sectors reduce to a sum over images under I's o(IV)
1 X,
hiha7 __ d+ 2k —8,d
N2 Z Z[gigﬂ - Z Dy o (B.67)
hi,gi€Z/(NZ) Y€Sp(4,Z)/T'2,0(N) ¥
where now the Siegel theta series involves the rescaled lattice
ANgtok-sa = Nig—r ® L1 [N] & Tagi—9,d+k—9 - (B.68)

After including the contribution from the second line in (B.21), retaining the next-to-leading
term in the low energy expansion, and unfolding the integration domain F> against the sum
over images in (B.66), we conclude that the genus-two V?F* coupling is given by

(2)
430, 43, Th, oy [FPabcd]

G® =R.N. /
ab,cd T.0(N)\Ha ‘Q2|3 Dy

as announced in (2.28).

(B.69)

B.2.4 Regularization of the genus-two modular integral

In order to regulate the genus-two modular integral (2.30), it is easiest to fold the integration
domain Hy/T'2o(NN) back to the standard fundamental domain of Sp(4,Z) defined in (A.5),
dgﬂ d3Q F/(\Z) [Pab cd]
(Pa) _ 1 2 p,q ’
GHo = RN, /F 0P > —5 (B.70)
2 Y€T2,0(N)\Sp(4,Z)
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The renormalized modular integral over F5 can then be defined following the procedure in
[103, 64], i.e. by truncating the fundamental domain to Fj* = Fo N {t < A}, where the
coordinate t on Ho was defined in (A.9). In order to separate one-loop and primitive two-loop
subdivergences, we then decompose ]_-21\ into three subregions,

F9=Fpn{pa < t+u3ps < A1}
Fy =F3 N{p2 < A1 < t+u3ps} (B.71)
F3t =F5 n{A1 < ps < b+ ujpa}

where A; < A is a fiducial scale. One-loop subdivergences arise from integration over JFi,
while primitive divergence arises from integrating over F4!. In extracting the divergences as
A — oo, we can safely ignore terms proportional to powers of Ay, since they cancel in the
sum over the three regions [103].

Let us first consider the divergences from region I. In this region, the variable ¢ is bounded
by A while p is restricted to the fundamental domain Fj 5,. For the first 1 + N cosets of
I'20(N)\Sp(4,Z) listed in (A.22), the charges (Q1,Q2) whose contributions are not exponen-
tially suppressed as t — oo are those with Q2 = 0. For those, the integral over o1 projects
1/®;_2|, to its zero-mode tp|, in (A.59), while the remaining integral over u;,us projects
the latter to its average value (A.73), with a factor of 1/2 because of the element of SL(2,7Z)
permuting them. The divergence from these IV + 1 cosets is then

k /A dt 4 / dpidps [NZEQ(Np)—Ez(p)

——— | Zt27R.N. > T, . [Pias |0
3 2 _ p,q 4 {ab,1%%d)

327 t Fi 1) 2y ESL(2.Z)/To(N) (N 1) Ak(p) ‘“/p

(B.72)

For the remaining N? + N3 cosets, the representative 7 includes again the N + 1 vp ele-
ments again, times the N transformations {S,,7,S,,...,TN"1S,}, which requires a Poisson
resummation over Q2 before setting its dual to 0, and the N shifts b in (A.22). The divergence
is then of the same form as above, upon replacing ¢y by its image under S,, N*/ 21;0 (A.59),

k
and including a volume factor [A}  / Ap7q]7% — vN~ 272 from the Poisson resummation and a
multiplicity factor N2 from the transformations listed above:

ko [Mdt 4 dp1dps Es(p) — Fa(Np
327T/ 3 t2 1RN/ p2 Z |: (]\(f _ 1) Ak(p))FAp,q [P<ab7]5cd>
Fro P2 es0(2,2)/To(N)

Yo

(B.73)
For the perturbative V2EF* coupling in D = 10 — ¢ dimensions, the volume factor is v = N.
After unfolding the integral to the domain #;/T'o(N), the two contributions (B.71), (B.72)
add up to

B AT dp1dps NE3(Np) + E 5 A%

- 321 L6 - / p12p2 2( Ap) Q(p) FAnq[P(ab,]acd) - &g 46 5<ab,Fé¢§;?e
T To(N\H: P2 k(p) 7 a6 s
B.74

where we recognized the coefficient of the divergence as the renormalized one-loop F** coupling
by integrating by part, as in [22, §3.2], upon using the identity

(B.75)

1\ _ k NEy(Np)+ Es(p)
Prlmp) T A
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where Dy, = ~(0; — %) is the raising operator.

We now turn to the primitive two-loop divergence coming from the integral over Fi!. In
this region, it is more convenient to use the variables V,7 defined in (A.9). The variable
V runs from 79/A to 1/79A;, while the variable 7 takes values in the standard fundamental
domain Fi/Zsy of GL(2,7), truncated at 72 < y/A/A; [103]. The primitive divergence comes
from the region V' — 0. For the first coset in (A.22), the contribution of all charge vectors
with Q1 # 0 or Q2 # 0 are exponentially suppressed as V' — 0. For (Q1,Q2) = (0,0), the
polynomial Py g in (2.31) reduces to 384, dcqy/(1672[Q]), and the integral over € projects
1/®p_2 to its zero-mode Cj_2(0,0,0) = ]§§fj’1 in (A.49). For the second and third class of
cosets in (A.22), the limit V' — 0 requires first performing a Poisson resummation over either

k
Q1 or D2, resulting in a volume factor of |A;’q/Apyq|*% = vN"272 and the integral over

Q1 projects Ng/&)k_g\AY to its zero-mode Nk/Qék_g(O,O, 0) = 74]%];7?12 from (A.50), for each
of the N(N + 1) cosets. Finally, for the fourth class of cosets in (A.22), the limit V' — 0
requires performing a Poisson resummation over both 1 and @, resulting in a volume factor
of [A% /Apgl™' = vEN"F=4" and the integral over Q; projects N*=2/®;_5(Q/N)|, to its
zero-mode after having used the identity (A.40), for each of the N3 cosets. Adding up all
contributions, we find

T2 /A1
,Ocd) / 48drdmo /2 9 9_ " 2
————R.N. — 5 VAV VT4 IN - (N+ 1) + %5 B.76
F1/Z2 (N2 — 1)T22 T2/A ( >N N* ( )

Setting v = NN, the term in square bracket cancels, so the coefficient of the two-loop primitive
divergence in fact vanishes.

Finally, it remains to consider a potential divergence from the separating degeneration.
For generic values of p,o in F, the integral around v = 0 is of the form [ dvdv/v?, which
vanishes provided one integrates first over the angular direction in the v-plane. There can
however be a divergence from the region ps2, 00 — 0o while v — 0, where the genus-two curve
degenerates into a figure-eight graph. For the first coset in (A.22), the contribution of all
charge vectors with Q1 # 0 or Q2 # 0 are exponentially suppressed as p3, 02 — 00. As shown
in §A.6, the integral over vy gives rise to a delta-function c;(0)25(vs). To integrate this delta
distribution it is convenient to unfold the integration domain of Q9 near the cusp |Qz| — oo,
P2/GL(2,Z) to P2, using the sum over GL(2,7Z)/Dihy in (5.25), and taking into account
the factor of 4 associated to Dihy, the stabilizer of the singular locus v = 0. Equivalently
one can think of the integral over P2/GL(2,7Z), and simply unfold the order four symmetry
permuting o2 and ps and changing the sign of va. At vy = 0, 09 = ¢ and the integration
domain is A1 < ps < 09 < A, which after symmetrization gives the divergent contribution

3k° /A dp2 /A doy g 0(abOcd) 3k? (quﬁ ) 2
B —5 | 3 (p202)2 ~ = S (ab,0 B.77
25673 | pd 3 (p20) 0203 25673 \ 28 ) OlavOcd (B.77)

For the other cosets in (A.22), the zeroth Fourier-Jacobi coefficient behaves has N gl[)o(p, v)
leading to Ngck(O)Qé(vg), and N¥=2¢4(p/N,v/N) leading to N*=2¢;(0)26(va/N). The first
contribution occurs from the trivial coset only; the second from 2N cosets because of the
symmetry p <> o, with an overall volume factor v /N —%—2; and the third from N3 cosets

corresponding to all shifts (ﬁNa, ”TH’, ”]J\;C), with an overall volume factor v2 N ~*~%4. Combining
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these terms and using ¢ (0) = k, we find that the divergence from the figure-eight degeneration
is

q—6 6

)2 B2 (1+ %)% (A7 \?
> 5<ab,5cd> = - N < ~6 ) 6(ab,5cd) : (B78)

—6 3
5 2567 =

B 3k (N?+2Nv+0?) (A
25673 N2 4

For ¢ = 6, the divergent term (Aq;26/%)2 is replaced by (log A)2.

Combining these results, we can now define the renormalized integral (2.30) by subtracting
all divergent contributions before taking the limit A — co. In the case of the two-loop VZF*
couplings (v = N), we obtain

430, d3Q, Iy [Pwed| A 3
(pa) _ 7; ) (pa)e
Giita = | / NNTONE 2 o) | T o gr e Feae
72 YET2,0(N)\Sp(4.2) T2 (B.79)

A\ 2 3k2
+ < % ) 64773(5(‘11776061))} .
For ¢ = 6, the O(AQ%G) and O(A979) divergences become logarithmic and doubly logarithmic,

(2)
P d30;d30, Ly [ Pabed 3
GCE-20) _ i [/ d*hd* Chopaelt el A D
" Aoty 22" Y€l o(%%SpM z) Pi-2() K e

~(2k—2,6) e
6<ab’ch>e

3k2
+ (log A)2 6473 6(ab,5cd)} ’
(B.80)

where F'79) is the regularized integral (B.13).

The renormalization of the couplings Fyp.q and Gyp ¢q is in fact consistent with supergravity
computations [79], as we now explain. Recall that the complete string theory amplitude can
be obtained by performing a functional integral over the fields of N = 4 supergravity with
2k — 2 vector multiplets, weighted by the Wilsonian effective action computed in string theory.
This Wilsonian action can be defined by imposing an infrared cutoff A on the moduli space
of complex structures, identified with the ultra-violet cutoff in supergravity. It follows that
the A-dependent couplings

o agy 3k
Fupea " (A) = Fupeg™” + g5 108 Ad(abea)

_ _ 3 C6)e 3k?
Ganed(8) = Geg™ —log A (e Fg ™" —(logA)2—64W35<ab’6cd>, (B.81)

define a bare Lagrangian

2 1 apb | 1r\4p(2k-26) a pb pre pd
L(A) =R = 20 F P’ + 5(5) Fypeg ™ (Mts FOFUFCF (B.82)

+ (8GN tgVFIVF PR 4

such that the UV divergences in the path integral cancel at this order. These divergences can-
cel for any functions F éz(ﬁf’ﬁ) and Gfbkc_; %) satisfying their respective differential constraints.
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Upon setting F ;i’;f’e) and Gf;fc_; %) to zero in (B.80), one reproduces precisely the counter-

terms computed in [79] in four dimensions. The variation of £(A) with respect to F ;iﬁf’& is
interpreted in supergravity as the form factor for the operator tgF* (at zero momentum and
properly supersymmetrized). Similarly, the variation of £(A) with respect to Gféfc_j %) is the
form factor for the operator tgV2F*. Because (3.20) does not admit a constant homogeneous
solution for ¢ = 6, there cannot be any genuine 2-loop divergence proportional to d/, dcqy in
N = 4 supergravity. The 2-loop divergence proportional to (log A)? in (B.80) is therefore a
consequence of the 1-loop divergence, via the renormalization group equation

d o 3 —26) €
Gaped () = = -0 Fogy. ™ “(A) (B.83)

Ade ab,cd " edye

This is consistent with the supergravity analysis in [79, §5.A], where the two-loop divergence
originates entirely from figure-eight supergravity diagrams (shown in Figure 1ii), for which
the subdivergence is proportional to the 1-loop counter-term form factor.

Let us now briefly discuss the regularization of the integral (B.69) in the case where the
lattice A, 4 is the non-perturbative Narain lattice (2.3). In this case, the volume factor v is
equal to 1. In this case, the cancellation in (B.75) still takes place in the maximal rank case
since the zero-th Fourier coefficient of 1/®1o vanishes from (A.48), but it no longer holds for
CHL models with N =2,3,5,7. Setting v = 1 in the previous computations, we now get

B0, d50 F [ Pabca
Gim=tm [[ St X et
oo ]:2A | 2‘ v€T2,0(N)\Sp(4,Z) k_Q( )

L2 AT s
(ab,%d)
. mNZ?(q¢—6)?

-6
9(N — 1) A9=P drdry 5 3 AT ow
- 771_2]\[2 r — 56<ab,6cd> RN/ 3 Ty a + 727TN 9—6 §G<};§7 6cd>)i| 5
2

Fr T2
(B.84)

where gGiﬁ)"” denotes the regularized integral (B.17). The maximal rank case is obtained by
setting N = 1, and <Gfl’;’q> = fob’q). Of course, the case relevant for the non-perturbative
VQ(V¢)4 coupling in D = 3 corresponds to ¢ = 8, in which case there are power-like diver-
gences but no logarithmic divergence.

B.2.5 Anomalous terms in the differential equation for G .4

In section 3.3 we established that the renormalized integral G;’;)”qc)d satisfies the differential
equation (3.20), with a quadratic source term originating from the separating degeneration
locus v = 0. In this section we take into account the boundary of the regularized domain F3'
and show that the equation indeed holds for the renormalized couplings at generic values of q.
For ¢ = 5 with v # N and ¢ = 6 we find additional linear source terms from the non-separating
degeneration. For the perturbative amplitude in four dimensions, ¢ = 6, v = N, these linear
term originate from the mixing between the analytic and the non-analytic components of the
amplitude. Our analysis parallels that of the DSR* couplings in [103, §3.3].

From the ¢t = A boundary of the region 4 defined in (B.70), the leading contribution of
the polynomial insertion is given by

)25 — o2 22 ~1
05"Q5°e” 87 QrerQryse ™ Papea (8esOiab, Peay + 2001 s1p, Peay) + Ot "), (B.85)

0s=0 1672
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so using (A.73), with a factor 1/2 due to the Zy symmetry (uq,us) — (—u1, —u2) at the cusp,
we find that the right-hand side of (3.62) receives an additional contribution given by

q—6

o
_’“642 R.N./ d"li’” >
T Fr P2 cS02.2)/To(N)

N k“Aq?GRN/dmdpz 3
647T F1 p%
YpESL(2,Z)/To(N)

N2Ey(Np)—Es(p)
(N —1) Ax(p)

Es(p)— E»(Np)
(N —1) Ar(p)

FAp,q[P<ab,]<5cd) 66f + 260|e|5d)f>:| "y
P

Tp

Ta, o [Prab,)(0ca)Ocs + 20c/e/0a) f)} ‘
(B.86)

where the first and second line results respectively from cosets elements (y,1) and (v, S,) €
(SL(2,Z)/To(N)),x (SL(2Z)/T'o(N))s, while other terms in the coset sum are annihilated by
integration over oy, v1 € [—3, 3[. The sum (B.85) can be rewritten in terms of the regularized
integral Gfl’gq) as

q—6
k(v—1)A"=
) é‘“f(N)—l) (3esB Gl + 261Gl )
BN — o)A

®a) (».9)
SNV 1) Gerdi Gl + 20abi Gl ) - (BST)

cd) )
This terms gives a finite correction to the differential equation for g = 6.

The right-hand side of (3.62) also receives contributions from the boundary of region ]-"21 I
in (B.70), where the leading contribution of the polynomial insertion is

3

Ay Ay
() s Q" _QFS ;est P [ —
(Q22)rse QL@QLfe ab,cd 01=02=0 3273]Q2y

(Bef0iab,Ocdy + 20e(al)f1p,0cay) + O(2571) .

(B.88)
Its contribution to the right hand side of (3.62) thus reduces to 2

1 2 et 1apOcdy + 200000 £1. 0
—32R.N./ dﬁg”/ 2dva3<92|; £0(ab0cd) a9l f1p, d>)
321 F1/Zs 75 T2 8V % |QQ| |QQ|

A

2

w2l () 125 + 5
(B.89)

X <N2_kl[N—;\)/(N+l)+U2

In (B.88) we kept the constant term in the Fourier expansions of 1/®5_5 and we used 0 / o0 ~
—1v05'9 /0V. On the boundary at V = 75/A, the first term in (B.88) gives

k(N —v)(1 = %) dridm 5_
AT N22 (8, 18 1apOeds + 200(a0p. 1 10eay) RN / o1 (B.90)
87T2(N — 1) f9{ablcd) (a%,|f|9cd) £ /2 7_22 2

which vanishes in the perturbative case, v = N. The second term in (B.88) integrates to

46 3K2(8, 6 ey + 260(a00 110 2
A (9es0(abOea) + 2de(ads, f d>>(1+v) '

- B.91
q—6 12873 N (B.91)

29Where one uses 2id>Qg =2

EIOM ((Qz)rt(QQ)su(Qg_l)tuX(fb)) = 72(“/2? e 677)(‘(/%2) at the boundary V = 2.

oV
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The case ¢ = 6 must be computed separately and turns out to give zero. Finally, the quadratic
term in the second line of (3.66) can be written using the regularized genus-one integral F cilz;ch)
(B.15) as

37T 3

D,q p,q) k ,q p,9) k
F\(e)kzab (A)Fc(d) Y (1) = - ﬂ(e)kzab Féd) : (1=

5<ab F9 (B.92)

3h(1+ %) A'F
qT " ed)ef

167

3/{2(1#—%)2 AN\ 2
~ 512n8 ( q—6 > ((Sef(s(ab,(scd) +26e<a6b"f|6cd>> )

2

Using the action of the operator (3.59) on the tensor defining the counter-terms of G;’g“c)d,

AesSiaGog’ = 7% (Sepbian, Gog’ + 20e1(adb), 111Gy’ ) + 60(an, Pt s (B.93)
Aerdian G’ = 13° (Besdian, G + 206y 5 Gy’ + 60 Fuggy  (B94)
AerbianOedy = 52 (SerSian,Oedy + 20¢((adb). f(0cay) » (B.95)

one finds that all A dependent terms cancel in the differential equation for the renormalized
coupling, such that for generic ¢,

q—6

kAT SE2(1+ )2 /AT
(p,q) v—1 ~(p, q) (p,a) N
Bes (G“"’Cd(A) M 5<ab( LGP+ N G ) T o56m8 ( 0 ) 0 (ab.Oed)
3 AT5 (N — )(1 - ) dndrs s,
CAmq—5 N-1 Oab, Oy R-N. /fl/Z2 2 T2 >
37T P,q) p,9) k
= F\(e)uab,Fc(@ (f] - (B.96)

The cases featuring logs must be treated separately. Here we shall only discuss the case of the
perturbative lattice in four dimensions, i.e. v = N and ¢ = 6, which is physically relevant.

Because the first term proportional to ¢ — 6 in (B.92) vanishes at ¢ = 6, it does not
cancel the finite contribution from (B.86) and one gets an additional linear source term in
the equation. The computation of the anomalous terms from the counter-term in Gfbk_g’ﬁ) +
ngbk_2’6) involves the detailed analysis of the integration by part in the boundary between
regions 74 and FI!. Since this boundary is artificial, these anomalous terms must cancel
other contributions from (B.85) and (B.88), such that one can assume that G =% + <G *%
satisfies the naive differential equation (B.92), ignoring the anomalous source term in (B 19).
This prescription is in fact necessary for the differential equation to be well defined on the
renormalized couplings. In this way we obtain

~ 377 3
(2k—2,6) __ (2k ) (2k—2,6) k (2k Yk 7(2k—2,6) k
Acy Gazb,cd26 = F|62) <2b6 Fc;> e fI — 167 (5€f5<ab Fcfi)k26 25(3(( 5b) \fIF dyk o ) )
(B.97)

where we recall that A,y is a shorthand for the operator in (3.59).

B.3 Loci of enhanced gauge symmetry

Even after regulating infrared divergences occurring at generic points on G, 4, further diver-
gences may occur on loci of enhanced gauge symmetry, where perturbative 1/2-BPS states
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become massless. Divergences from region FJ in (B.70) occur from contributions of lattice
vectors Q2 € A such that Q3 = 2. For such vectors, the integral over o1 € [0,1] picks up the
polar term in the Fourier-Jacobi expansion (A.57) of 1/®j_5, contributing a term of the form

o)
/ dtt%_se_QWthR X / dp1(21p2 / duy dug |p2|q/2
F1 p2 [0,1]2

1, 1 s . ) 6 (B.98)
% Z Pab,cd q§Q1L q§Q1R e_WPQQQR-i-Qm(’UQlL'Q2L—UQ1R'Q2R) n 5
o Bk() B2(p,0)

to the modular integral G;’gfgd. The integral over ¢t diverges on the codimension ¢ locus where
|Q2r| — 0, corresponding to 1/2-BPS states with charge +@Q2 becoming massless. This is a
familiar phenomenon in perturbative heterotic string theory, where such BPS states can be
viewed as W-bosons for a SU(2) gauge symmetry which spontaneously broken away from the
locus where |Q2r| = 0. Near the singular locus, the genus-two integral diverges as a sum of
powers of the mass M = 1/2|Qag|, weighted by the genus-one modular integral appearing in
(B.97), which can interpreted as the four-point amplitude with two massless and two massive
gauge bosons. Note that this genus-one integral does not suffer from any divergence from
the lattice vector Q1 = @2, since the polynomial P .4 in representation H vanishes when
@1 and Q5 are collinear. Of course, similar gauge symmetry enhancements arise from vectors
Q2 € Ap 4 with Q3 = 2/N, due to the polar term in the Fourier-Jacobi expansion of the images
of 1/®y_o under I'y o(N)\Sp(4,Z).

In addition, the modular integral Gfl‘})’qc)d has further singularities from region Fi!, due

to polar terms of the form qul q;N2q§N3 in the Fourier expansion (A.49) of 1/®j_o, with
Ny, Ny, N3 < 0. The integral over ©; picks up contributions of pairs of vectors (Q1,Q2) €

Ap g @ Ap g satisfying the level-matching conditions
Qi —2N1 = Q5 — 2N, = Q3 —2N3 =0 (B.99)

where we denote Q3 = Q1 + Q2. The remaining integral over {25 is of then the form

6—q

/ dLydLydLs Pop o e 27 (1@t 2@t L0@3) (B.100)
(L1L2 + LoLg + Lng)T

which for ¢ = 6 has a leading singularity in

T S t u
2 (L1Q2p +L2Q3p+Ls@3r) ert€sull QL) QL QLa)
8”3Q12RQ22RQ32R

This integral is singular on the codimension ¢ locus where Q?R = 0 for one index i € {1,2,3},
but the corresponding divergence is covered by region I. Genuine new divergences occur in
codimension 2q where Q% R= Q% r = 0 for two distinct indices, in which case Q% r automat-
ically vanishes. The latter occurs for (Ny, N2, N3) = (1,1,1) and corresponds to a SU(3)
gauge symmetry enhancement. Of course, similar divergences arise from pairs of vectors
(Q1,Q2) € A, ® A, due to the polar terms in the Fourier expansion of the images of
1/®y_o under 'y o(N)\Sp(4,Z). It would be interesting to recover (B.100) from a two-loop
computation in a super-Yang-Mills theory with SU(3) gauge group.

/ dLydLodLs Py g €™ (B.101)
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C Composite 1/4-BPS states, and instanton measure

In this Appendix our main aim is to prove Eqs (5.85) and (5.92), which play a central role in
our analysis of the decompactification limit in §5. In particular, they ensure the consistency
of the 1/4-BPS Abelian Fourier coefficients of Ggp ¢ with the differential equation (2.26),
(3.20), and the consistency of the helicity supertrace (2.14) with wall-crossing, generalizing
the consistency checks of [29] to arbitrary charges I. Specifically, we show that the summation
measure ¢(Q, P; ) for 1/4-BPS Abelian Fourier coefficients of Gy cq decomposes into an
s-independent part associated to single-centered 1/4-BPS black holes, and a sum over all
possible splittings of a 1/4-BPS charge vector I' = I'y + I's into 1/2-BPS charges, I'y and T'o,
weighted by the product ¢(I'1)é(T'2) of the summation measures for 1/2-BPS black holes.

We start by describing the possible splittings of a 1/4-BPS charge I' = (@, P) into 1/2-
BPS constituents. Assuming an Ansatz of the form I'y = (p/,7')(sQ — ¢P + tR) and I'y =
(¢, s)(pP — rQ + uR) for rational coefficients and linearly independent charges (Q, P, R),
with R an arbitrary auxiliary charge, it is easy to find that the condition I' = I'y + I's fixes
t=wu=0and p, r' ¢, s such that

(B) =) s (B == e
This splitting is conveniently parametrized by the a non-degenerate matrix B = (f ‘j) €
M5(Z,), such that

($)=per (). (%)= (®). =

where m = ((1) 8) and my = (8 (1)) To parametrize the possible splittings bijectively one must

factorize out the stabilizer Stab(m;) of 1 and o in M(Z) up to permutation, i.e.

stab(m) = { (4 2), (0} - (C.3)

All splittings of a charge I are therefore classified by the set of matrices B € My(Z)/Stab(m;).
Decomposing the matrix B as

(17? ;1):7.(%’ 776) . vEGL(2,Z), p>0 0<j<k,
Lo (C.4)
- T )

and using Stab(m;) N GL(2,7) = Dihy one can always choose v € GL(2,7)/Dihs.?’ We
conclude that the possible splittings are in one-to-one correspondence with the elements of
-/
M»(Z) /Stab(m;) = {’y- (é i,) . 4 €GL(2,7)/Dihy, 0<j <k, (,K)= 1} .
(C.5)
such that the quantization condition Bm; B~'T" € A¥, @ A,,, i = 1,2 on the charges of the two
constituents is obeyed. It suffices to check this condition for ¢ = 1, since the sum of the two
is by assumption in A, & A,,.

390One checks indeed that the quotient by Dihs passes to the right of 5, by changing the representatives
and j/ ged(j, k) for (¢ ) € Diha.
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C.1 Maximal rank

In the maximal rank case the condition Bmy B~'T" € A%, & A,, reduces to aP ,;CQ € A,,, with
J’ J'
Q1 P) = (a,0) (dQ-bP=L(aP—cQ)) . (Q2.P2) = (35(a,0)+(b,d) ) (aP—cQ) , (C.6)

These splittings are all related by GL(2,7Z) to a canonical splitting

(g) - ((1)) (Q _ %P) n (77{;) 1P, P/ EA,. (C.7)
Denoting by
AC(Q, P;) = C(Q, P; Q) — Yo lAetAT(, eNHAT] ()

AEMy(Z)/GL(2,Z)
ATITEA22 6DA226

the contribution from the poles of 1/®1o on the second line of (5.25) to the measure factor
(5.74) we thus find

AC(Q, P; ) = S A e(— W (AT T (C.9)

A€M (Z)/Dih4
ATIT€A22 6BA22.6

" <_ O([AT2AN2) (A7), - [AT'T,

i 2 (Sign([Aflfh . [Aflf]g) — sign([ATQgA]12))> .

where we combined the sum over A € M>(Z)/GL(2,Z) and the sum over v € GL(2,Z)/Dihy
into the sum over Ay € Ms(Z)/Dihy that we call A again, Further decomposing the sum over

A as )
_ 1 LN\ydi 0N srdp O
(B o ) e
with ¥'|da, and B = B ((1] | B(\)*l) parametrizing the splittings, one obtains
_ 2 p2 0. 2 p2 0.
AC(Q,P;Qs) = Z Z c( _ gcd(Qlélzll%@ Pl)) Z c( _ ng(Q2721212§7Q2 P2))
BEM,(Z)/Dihy di>1 do>1
B—lreAm@Am Fl/dl EAMBAm F2/d2 EABAm
§([BTQ.B I, Do), . .
><<— ( o LE > 2) (51gn(<F1,F2>)—Slgn([BTQQB]12)>> (C.11)

with T; = Bm; BT = Bm; B~T.

C.2 T(N) orbits of splittings

For CHL orbifolds the charge quantization condition Bm; B~'TI" € A* @ A,, for the splitting
(C.6) does not reduce to a single condition. They will depend on the charge orbit, as well
as on its twistedness, and only if v € Zy x ['o(N) C GL(2,Z), the quantization condition
BmB~II' € A* @ A,, reduces to %€ ,;CQ € Af,. Therefore it will be more convenient to
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decompose M3(Z)/Stab(m;) into orbits of v € T'g(N)/Zs acting on the left.3! Therefore we
choose to decompose the splitting matrix as

& 9=( Z) . (%’ %) (¢ Z) €ZyxTy(N), p'>0, 0<j<k, (C12)
if gc%){;?r) = (*,0) mod N, and

a b 0 k a b .
D= 25 (&g ezaxrom), ¥>0, 0<j<NEk (C13)
otherwise. In the former case the splitting can be rotated under I'g(/N) to the canonical
splitting (C.7), such that I'; is in the I'o(N) orbit of a purely electric charge. In this case
we say that I'j is of electric type and we call (C.7) ‘splitting of electric type’. This splitting
exists if and only if P/k" € A},. In contrast, the splitting (C.13) can be rotated under I'o(V)

to the canonical form 3 .
(8)= ()P~ 50 + () pe (©.14)

such that T'; is in the To(IV) orbit of a purely magnetic charge. We then way I'; is of
magnetic type and we call (C.14) a ‘splitting of magnetic type’. This splitting exists if and
only if Q/k" € A,,. Note that the second charge I'y can be either of electric or of magnetic
type in both types of splitting. In fact, we shall see that a splitting of mixed type, such that
one charge is of electric type and the other of magnetic type, can be rotated by a suitable
v € T'o(N) into either type of splittings.

We drop the primes on (j’, k') in this discussion to simplify the notation, with the under-
standing that k£ and j are now relative prime. In the electric type, a splitting matrix with

k = Omod N, such that (i)%P is of electric type, can be rotated by a I'g(IV) element to
another splitting of electric type

(0 £)=C S o) ©15)

with 0 < 7 < k, j7+ bk = 1. In the case where k # 0mod IV, such that (i) %P is of magnetic
type, an element of I'g(NV) rotates it to a splitting of magnetic type

G) i) - (—aj i) (? (1)) , (C.16)

with 7 = 0mod N, 7 < Nk. This can be understood as follows: in (C.15), the second charge
in the splitting is also electric since k = 0 mod N, and thus exchanging (Q1, P1) with (Qs2, P»)
preserves the type of the splitting; in (C.16), the second charge is magnetic since k # 0 mod N,
and thus exchanging the two charges of the splitting sends the splitting of electric type to
a splitting of magnetic type. The same reasoning applies to the splitting of magnetic types:
when j = 0mod N, such that (];) %Q is of electric type, one has

(-G D o) )
with d # 0mod N, 0 < 7 < k, and when j # Omod N, such that (’j)%@ is of magnetic type,
(3= DG 1) ©18)

3'Note that DihyNZs2xTo(N) = Za X Z2 and the corresponding quotient Zs x To(N)/[Z2xZ2) =To(N)/Zs.
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with c=0mod N, 0 < j< Nk and jj+ ck = —1.
It follows from this discussion that the splittings are in one-to-one correspondence with
the cosets

My(Z)/Stab(m;) = {fy- ((1) i;) N ETo(N)/Zs, 0<j <K, (j k)= 1} (C.19)

/
ofy- (7 5) vemamize, 05 <N § £ 0mod N, (' K) =1}

-/
- {’y- ((1) i,) v €To(N)/Zs, 0< <k, K #0mod N, (j’,k:’)zl}

U{’y-((l) I;:) v €To(N)/Zs, 0<j < NK (j’,k’):l}

where the splittings of mixed type are included either in the electric type or the magnetic type.
In the following we shall consider both representatives, keeping in mind that we systematically
double-count the splittings of mixed type in this way.

It is worth noting that the sign (—1)'I'2) appearing in the wall-crossing formula (2.12)
does not depend on the type of splitting. For an electric-type splitting

(T, T2) =(Q—LP)-P=Q-Pmod 2. (C.20)

To prove this, note that either P ¢ NA* and 5P € A so (£P)? =0mod 2, or P € NA* and
%P € A* so (%P) - P =0 mod 2. The same reasoning shows for a magnetic-type splitting

M1, T9) =Q-(P-4Q)=Q-Pmod 2 . (C.21)
Moreover, under T'g(N) the parity of @ - P is preserved:

(aQ+bP)-(cQ +dP)=Q-P+acQ*+2bcQ-P+bdP?>=Q-Pmod 2. (C.22)

C.3 Factorization of the measure factor

We now discuss the factorization of the measure factor associated to the poles of 1/®;_o and
1/®_y for |Qp| > 1 displayed in (5.75). In this subsection we show that whenever a term in
the measure associated to the charge I' factorizes, it produces the correct measure factor of
the corresponding 1/2-BPS charges T';.

e For the first term in (5.75), we combine the sum over A € Ms(Z)/GL(2,7) and the
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sum over v € GL(2,7)/Dihy in (5.57) as in (C.9), and use the decomposition (C.10) to get

3 |A|(c,€_2 [A*l(_;zQQP —fél;f)A*T;ATQQA} —cr, [A*l(_—QQQP ‘_Ql;f)A*TD
AEM>(Z)/GL(2,Z)
A~ (9) eAm@rnm

—1 2 —1 2
_ Z |A|Ck(—([A QF]I) )Ck(—([A QF]z) )

AE Mo (Z)/Dih4
ATITEN @B Am

« (_5([ATQQA]12) i [A_lF]l . [A_ll_‘}g

(Sign([AflI‘]l [ATIT),) — Sign([ATQQA]12))>

47 2
cd(Q2,P2,Q1-P cd(Q2,P2,Qs-P:
_ Z Z Ck(_g (ledl%Ql 1)) Z Ck(_g (Q22d2%Q2 2))
BeM>(Z)/Dihy di>1 do>1
B—lFEAm@Am Fl/dl EAM DA, I‘2/d2 EABAm
§([BT,B I, Ts) .
x<— ( 4; h2) | 12 2) (81gn(<F1,F2>)—31gn([BTQQB]12)>) , (C.23)

where B determines a splitting I' = I'y + I';. In this sum, the only non-trivial contribu-
tions arise when I’y is of electric type, such that ged( %, P12, @Q1P) = %, and
because it is electric in A,,, I'1/d; is untwisted. Whereas, when I';/d; is of magnetic type,
ged(Q?, P2,Q1P)) = ged(NQ?, P2, Q1P1), and because it is magnetic in A,,, I'; can be either
twisted or untwisted. Therefore we get the correct contribution to the measure for 1/2-BPS
displayed in (2.22).

e For the third term in the measure (5.75), it is convenient to consider instead A =
(1 ]%)A S MZ,OO(N) such that

S A (G [ATN (%SGR AT AT A] - CEL[ATH(SY % ATT])
AeMs(Z)/GL(2,Z)
A1 ( P(/QN) e DAY,

= 3 Al (- NI ¢ (NI

Agngoo(N)/Dil'u
ATITEeAs, DAL,

y (_5([ATQQA~]12) n [121*11“]1 . [Ailrh

= 5 (sign([A~'T]; - [ATy) — sign([ATQQA}u))():.zzL)

A matrix A € Ms 00(N) admits either a decomposition with v € I'g(IV) such that

A AR ST AT =
and Iy = 47 'T satisfies

Ly € NAY, | 7627_?%]3”

A 2

or a decomposition with v € I'y(N) such that

iy )= DO D), e
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and

N
Q’Y * P’Y B TJQ’Y
e A, —r
k P’
For the splitting matrix of electric type (C.25), the charge I'; is of electric type with
2 ng(NQ%a-PleQl : Pl)
- p/2

€ NAY, . (C.28)

N([A™'TTy)

: (C.29)

with the divisor integer d; = p’; and either the second charge I's is of electric type, with

EN
Zd(GFN) = 0 mod N and

ng(NQ27 P227 Q2P2)
ged(j, Nk)? ’

N([A7'T)9)% = (C.30)

with the divisor integer dy = ged(j, Nk), or T'y is of twisted magnetic type with % #0

mod N and )
ged(NQ3, P35, Q2P2)

N([A™'T)2)* = N(ged(j, Nk)/N)Z

(C.31)

with the divisor integer dy = ged(j, Nk)/N.
For the splitting matrix of magnetic type (C.27) the first charge I'y is of untwisted magnetic
type with

ng(NQ%a P127 Ql . Pl)

N([A™1);)%2 = N2 : (C.32)
with the divisor integer d; = p’; and either the second charge I's is of electric type, with
% =0 mod N and

N([AT]y)? = ged(NQ3, P§, Q2P) (C.33)

ged(NJ, k)?
with the divisor integer dy = ged(INj, k), or T'y is of twisted magnetic type with % #0

mod N and )
ng(NQ27 P2 ) Q2P2)
N(ged(Nj, k)/N)?

N([A7'T)5)% = (C.34)
with the divisor integer dy = ged(Nj, k)/N.

e At last we consider the second term in (5.75), which is a combination . We combine
the sum over A € M5 ((Z)/[Z2 x T'o(NN)] and the sum over v € I'g(N)/Z5 in (5.58) to get

Z |A‘ (ék—Z |:A71 (7,QQ.2P ,Q P)A T. ATQQA:| 6’]1:’_2 |:A71 (,7QQ,2P ,7QP.2P)A*T:|)
AEMQVO(N)/[ZQMFO(N)]
A7 (Q)ens@nnm

AT Th)? _([AT'1)2)?
+ ) |Aler (=N === )en( 5 ) (C.35)
AGMQ’O(N)/[ZQXZQ}

A~ IDEA?, @A

X <— 6([ATZ?A]12) + (4 F]lé[A_ Il (sign([A_lf]l [A7ITp) — sign([ATQzA]lg))> .

A matrix in A € M (V) admits one of the following decompositions with respect to v €
Fo(N):
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1.
1 ! lP P.
A=y (DY) - Coten,, Den,. (w9
I'; is always of electric type and N([A™1T];)? = W, and T’y is either of
untwisted electric type with cd(],k:) = 0 mod N with ([A7!T)3)? = %{W
of magnetic type with gcd(] B # 0 mod N with ([A™'T]3)? = W
2.
01 P, -1
A:y.(N])(% 2) = Vp,’“Q”eNAjn, %eAm, (C.37)
I'y is always of untwisted magnetic type and N ([A71T]1)? = %{W, and
Iy is either of untwisted electric type with @ d( 5 = 0 mod N with ([A71I]3)? =
ng(J]\\;SCQd—W or of magnetic type with gcd(g,k) # 0 mod N with ([A7!T)9)? =
ged(NQ3,P3,Q2Ps)
ged(j,k)?
3.
g ' — 5P P
A=~ ((1) le)(jgk%) = WeAm, SLENA, . (C38)
Ty is always of untwisted electric type and ([A71T]3)? = %}W and I'y is either
of electric type with % = 0mod N with N([A7!T];)? = W or of un-
. : ) . _ d(NQ2,P2,Q, P
twisted magnetic type with % # 0 mod N with N([A!T];)? = %.
4.
_ (O Lo P - 30, Q _ y
A_7'<1%)(k 0) = y o Shm o ehn (C-39)

2 2
I is always of magnetic type and ([A7'T]2)? = W, and I'q is either of elec-

d(NQ?,P2,Q1 P, .
tric type with ng(N] 7 = 0mod N with N([A~ )2 = % or of untwisted
ged(NQF,PP.Q1P1)

magnetic type with N] k) # 0 mod N with N([A!T];)? = N (acd (N7 N)E -

We conclude that after trading each of the sums over A as sums over splitting matrices
B, the contribution from (5.75) gives a term of the form

(_5<[BTQzB]m) L (0LTy)

= ; (sign((T'1,T2)) — sign([BTQgB]lg))> d(T1) (M) (C.40)
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to the last line in (5.92), where ¢/(I';) is either

cd(NQ?, P?,Q, - P;
cy(Ty) = Z Ck:(_g ( QéNchz Qi l)), (C.41)
d;>1 i
di T EAR®NAZ,

when the contribution is only non-vanishing for untwisted charge I';, or

cd(NQ?, P?,Q; - P;
)= Y (- EING IR, (C.42)
d;i>1 i
d; T ENs, ®Am

for generic contribution such the charge I'; is either twisted or untwisted.

It remains to show that the three terms in the measure count all the possible splittings
with the correct multiplicity, so as to reproduce the product of the summation factors of
formula (2.22) for the two charges T';.

C.4 Electric-magnetic type of splittings

We summarize the conditions from the three terms in (5.75) to contribute to a given splitting
in Table 2, where for the second term we distinguish the cases where B=1(Q, P) € A%, @ A,,
or B-Y(Q,P) € A, & A%,.

O;j Electric type Magnetic type Counted by
An@An [ Q=1IPeA,, LtPeA, | P-iQeA,, Loen, | @.5,Q)
Ao @®Ay || Q—1PeAl,,  LtPeA, |P-1QeNA;,, L1lQen,| o.,Q
A @A || Q= 5P eM,, oPeli | P-YQeh,, L1Qeirn| 5,9
ALoA, | Q- sPel;, =Pels, | P-SlQeNAr,, Llgen: | o', (Q/N)

Table 2: T'g(N) orbits of splittings from the three terms in (5.75). The first column indicates
the support of B~1(Q, P). The second and third columns give the corresponding constraints
on I'y, T'g, for each of the two possible splittings (C.7) and (C.14). The last column records
the counting function. We write k = Nk’ and j = Nj’ whenever k or j are forced to be
multiple of N. O;; is used in the text to denote in the table above contribution from row 4
and column j.

For this purpose we enumerate the possible 1/4-BPS charges I" and the type of 1/2-BPS
charges they can possibly split into, i.e. twisted or untwisted, electric or magnetic. It will be
convenient to introduce some notation for classifying pairs of 1/2-BPS charges: for each type
of splitting we define a 2-component vector which first component accounts for the electric
type charges and the second for the magnetic type charges, with a U for untwisted and a T
for twisted. e.g.

1. (TT,0), (T,T) and (0, TT) stand for electric-twisted electric-twisted, electric-twisted magnetic-
twisted, and magnetic-twisted magnetic-twisted splittings, respectively.
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2. (TU,0), (T,U), (U,T) and (0, TU) stand for electric-twisted electric-untwisted, electric-
twisted magnetic-untwisted, electric-untwisted magnetic-twisted and magnetic-twisted magnetic-
untwisted splittings, respectively.

3. (UU,0), (U,U) and (0, UU) stand for electric-untwisted electric-untwisted, electric-untwisted
magnetic-untwisted, and magnetic-untwisted magnetic-untwisted splittings, respectively.

We shall enumerate the possible splittings according to the following graph of inclusions,
c NAc® NAe
" C AL ®NA, ©

c Am®An

NA. & NA
C  A.® NA.

A, ® NA, Ac® A, (CA43)

We will denote X € A the strict inclusion of the vector X in A, meaning that X is a generic
vector in A and does not belong to a smaller lattice A in this sequence

... C N¥A,, C N*A%, € ... C NA, € NAS, C Ay C AL, (C.44)

In the following, it will be convenient to recall the generating function whose Fourier coeffi-
cients give the contribution to the measure. According to table 2, the factorizations (A.44)

imply that when the condition is d%[B_lFL- € Ay, the corresponding measure factor for the

1/2-BPS charge Bm; B™IT is a Fourier coefficient of Ay (7)™, whereas when d%[B’lF]i €A},

it is a Fourier coefficient of Ag(7/N)~!. For a magnetic type charge Bm; B™IT, Ay(7)~! gives

a contribution c7(T') and Ag(7/N)~! a contribution ¢y (I'). On the contrary for an eletric

type charge, Ay (7)~! gives a contribution cy(T') and Ap(7/N)~! a contribution cz(T).
There are seven cases of interest:

1. QeA},,PeA,, : the only contributions are from Oy and Osy. These two contributions
give (T,T) splittings with Fourier contributions in [Ag(p/N)Ag(c)]~t. We thus obtain a
single contribution in er (I'y ) e (I'2) (with (C.42)), as expected for twisted 1/2-BPS charges.

2. QeN,,,PeA,, : contributions from O11, Og1, O12, O, and O3, fall in (U, T), (@, UT),
and (0, TT) splitting sectors.

Electric-type splitting : the first charge in (C.7) is purely electric and thus untwisted in
both 011 and 01, the second one is congruent to an electric charge for ¥ = Omod IV,
and a magnetic one otherwise. But since P € A, %P € A,, implies that & # 0mod N,
and thus the second charge in (C.7) is magnetic-twisted. O1; and Qg1 combine together
to give (U, T') splittings with measure factor (c¢p(I'1) +cy(I'1))er(I'2) coming from Fourier
coefficients of (Ag(p)™! + Ax(p/N)™1) A(o) .

Magnetic-type splitting : the first charge in (C.14) is purely magnetic, and thus twisted for
O3z, untwisted for Oa2, and can be either twisted or untwisted for Oy, the second 1/2-BPS
charge is congruent to a magnetic-untwisted charge for j # Omod N, and electric-twisted
otherwise.

When P — £Q € NA},, O12 contribute only when j # 0mod N, thus combining with O
to give (0, TU) splittings with the measure (¢r(I'1) + cy(T'1))er(I'2) coming from Fourier
coefficients of (Ag(p)™! + Ax(p/N)™1) A(o) L.

When P — %QgAm with j # 0mod N, Q14 gives (0, TT) splittings with measure cp(I'1)
cr(Dg) from Fourier coefficients of [Ag(p)Ax(c)]~!. Finally, when j = O0mod N, Oj
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combines with Q3o — for which j = 0mod N by construction — to give (U, T) splittings
with measure cp(I'1)(er(Tz) + ey (T'2)) from Fourier coefficients of (Ax(p) ™t + Ak(p/N) ™)
Aj(o)~t. Recall that we double-count this last splitting, which is the same as the one
defined above from 017 and Oy with I'; and T's exchanged, according to (C.19).

3. Qe A}, ,PeNA}, : contribution from Og;, Os1, O41, O32 and Oy fall in (T'T,0), (TU, D),
and (T,U).
Electric-type splitting : the contributions Os1, O41 are both constrained to kK = Omod NV,
imposing the second charge in (C.7) to be electric-twisted.
If j #0mod N and @ — %P € A}, the splitting is (T'T, () and only O4; contributes accord-
ingly, with measure cr(T'1)er(T2) from [Ag(p/N)Ag(o/N)] 7L
When @ — %P € A, the splitting is (TU,0) and both Oz1, Q41 contribute with measure
(cr(T1) + cu(T1))er(T2) from Fourier coefficients of Ag(p/N)™' (Ax(o) ™! + Ag(a/N)™1).

If instead j = Nj’, contributions from O, whose condition rewrites Q — %P ey, %P €
NAY,, combine with Oy to (T,U) splittings with measure cp(I'1)(cr(I'2) 4+ cy(I'2)) from
Fourier coefficients of Ag(p/N)~!(Ar(0) ™t + Ap(o0/N)~!) — note that their second 1/2-
BPS charge in (C.7) is congruent to a magnetic-untwisted one since P € NAY implies

k/ 75 Omod N in 041.

Magnetic-type splitting : contributions from Oss, O42 have j = 0mod N by construction,
imposing their second 1/2-BPS charge in (C.14) to be congruent to an electric-twisted one,
as well as P — NTj/Q € NA*, implying the first 1/2-BPS charge to be magnetic-untwisted
for both of them. They thus combine to give (T,U) splittings with measure (cp(I'1) +
cu(T'2))er(T2) from Fourier coefficients in [Ag(p/N)(Ag(o) + Ag(o/N))]~!. Recall that
we couble-count this last splitting, which is the same as the one defined above from Oy
and Oy with I'; and I'y exchanged, according to (C.19).

4. QgAm,PgNA;‘n : contribution from Oi1, Os1, O31, O41, O13, O22, Os2, and Oy fall
symmetrically in (U,U), (T'T,0), and (0,TT).
Electric-type splitting : P € NAY, imposes k # 0mod N for Oq1, Oa1, for which the con-
ditions rewrite %P € NA},, with ¥ # 0mod N, thus implying that the second 1/2-BPS
charge in (C.7) is congruent to magnetic-untwisted one.

Given j = O0mod N in Os;, Oy41, one can rewrite their conditions as @) — %/P € A, and
%P € NA,, and these combine with O;;, Oz to give (U,U) splittings with measure
(er(T1) + cu(T1))(er(T2) 4 cy(T'2)) from Fourier coefficients of all factors (Ag(p)~* +
Ak(p/N)™1) (Ag(o)™! + Ak(c/N)~1). These are the only contributions from Oq; and

012, because k # 0mod N.

For j # O0mod N, one has Q — Njk/P €Ay, and Os; is empty while O4; contributes alone
to (T'T,0) splittings with measure c7(I'1)er(T2) from [Ag(p/N)Ak(o/N))]7 .

Magnetic-type splitting : in the case where j = Omod N, all O3, O, O30 and Oy
combine, with k£ # 0mod N for each, to give (U, U) splittings measure from Fourier coef-
ficients of (Ax(p) ™" + Ak(p/N)™1) (Ak(o)™! + Ag(o/N)!), double-counting the electric
type (U,U) splittings describe above. For j # Omod N, and when P — %QgAm, 012
contribute alone to (), T'T') splittings, with measure ¢ (I'1)cp(T2) from Fourier coefficients

of [Ar(p)Ax (o).
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5. Q€ A, Pe NA,, : contributions from all O;; fall in (U,U), (UU,0), and (0, T'T) splitting
sectors.

Electric-type splitting : cases with £ # Omod N and @ — %P € A,, appear in 011 and
Oa1, together with 031 and Q41 when j = O0mod N, corresponding to (U,U) splittings
with the generic measure from Fourier coefficients of (Ag(p)~' + Ar(p/N)™) (Ax(o) ™t +
Ak(a/N)_l).

When k£ = Omod N, cases with j # 0mod N get contributions from Oi1, Oz, O31 and
Oy1, corresponding to (UU, () splittings with the generic measure from Fourier coefficients
of (Ak(p)™" + Ak(p/N)~1) (Ak(o) ! + Ag(o/N) 7).

Magnetic-type splitting : we obtain that k& # Omod N in all cases. When j # 0 mod N,
one has P — %Q €A, and only Oqy contributes, giving (0, T'T) splittings with measure
er(T1)er(Te) from [Ag(p)Ag(o)] 7"

When j = Omod N, P — %Q € NA,, and Oqa, Oz, Os2, O49 contribute, giving (U,U)
splittings with the generic measure from Fourier coefficients of all four factors in (Ak (p)~ 1+
Ak(p/N)™1) (Ag(o)™' 4+ Ak(o/N)~1). These splittings are the same as the electric type
splittings of the same (U, U) type.

6. Qe NAY,, P NAY : all O;; contribute and fall in (U,U), (0,UU), and (TT,0) splitting
sectors.

Electric-type splitting : when k& % 0mod N, @ — %P € NA?, and O;1, Oa1, together with
031 and O41 when j = 0mod N, contribute to (U, U) splittings, with measure contribu-
tions from Fourier coefficients of all four factors in (Agx(p)~! + Ax(p/N)™1) (Ak(o) ™ +
Ap(o/N)™1).

When k£ = 0mod N, only the two last orbits can contribute, and when j # 0mod IV there
is no other contribution than Oy, leading to (T'T, () splittings with measure ¢y (I'y)er(I'2)
from Fourier coefficients of [Ag(p/N)Ag(o/N)]~L.

Magnetic-type splitting : when k& £ Omod N, O12 and Qg2 with j # 0mod N contribute,
together with Oss and Oy when &k = Omod N, to (0, UU) splittings with the generic
measure from Fourier coefficients of (Ag(p) ™t + Ak(p/N)™1) (Ap(o) ™t + Ap(a/N)H).
When k& # 0mod N and j = 0mod N, O12, O22, O33 and Oys contribute to (U, U) splittings

with the generic measure from Fourier coefficients of (Ag(p)™! + Ag(p/N)™') (Ax(o) ™ +
Ay(o/N)~1), associated to the same splittings of electric type (U, U) described above.

7. QENA},, Pe NA,,: all O;; contribute and fall in (U,U), (0,UU), and (UU, 0) splitting
sectors.

Electric-type splitting : when k # Omod N, @ — %P € NAZ, and O;;, Oy, together with
Os1 and Oy when j = 0mod N, contribute to (U, U) splittings, with the generic measure
from Fourier coefficients of (Ag(p) ™' + Ak(p/N)™) (Ax(o) ™! + Ag(o/N)7H).

When k£ = Omod N, all the four orbits can contribute and j # 0mod N. They lead to
(UU, ) splittings with generic measure from Fourier coefficients of (Ag(p) ™'+ Ak (p/N)™1)
x(Ag(o)™t + Ag(a/N)7H).

Magnetic-type splitting : when k& # 0mod N, 012 and Oz with j # O0mod N contribute,
together with O3p and Oy when k = Omod N, to (0,UU) splittings with the generic
measure from Fourier coefficients of (Ag(p) ™t + Ak(p/N)™1) (Ap(o) ™! + Ap(o/N)H).
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When k # 0mod N and j = Omod N, O12, Oa2, Os2 and Oy contribute to (U, U) splittings
with the generic measure (c¢7(T'1) + cy (1)) (er(T'2) + ¢y (T2)) from Fourier coefficients of
(Ak(p) '+ Ak(p/N)~1) (Ak(0) "t +Ak(c/N)~t), which count the same splitting of electric
type described above.

This concludes the proof of formula (5.92). As a consistency check, we note that these
results are consistent with Fricke duality. Namely, for 1/4-BPS charges belonging to Fricke-
invariant subsets, such as (Q,P) € Af, ® A, or (Q, P)€ A, ® NA,, the possible splittings
are invariant under the exchange of electric and magnetic type; whereas for charges in subsets
that are exchanged under Fricke duality, as (@, P) € Ay, & NA,, and (Q, P)€ NA* & NA*,
the possible splittings are themselves exchanged under Fricke duality. Moreover, we find that
all the splittings of electric-magnetic type are correctly double-counted through the splitting
matrices of electric and magnetic type, consistently with (C.19).

D Two-instanton singular contributions to Abelian Fourier co-
efficients

In this section, we extract the contributions to the rank-2 Abelian Fourier modes from the
Dirac delta functions in the Poincaré series representation (5.25), (5.57) of the Fourier coeffi-

cients of (1)1 .
k—2

D.1 Maximal rank

Starting from (5.24), the sum over v € GL(2,Z)/Dihy4 can be unfolded against the integration
domain,?? by changing variables as Q2 — Yy~ TQy~!. The contribution of the delta functions
in (5.25) then leads to

4 . , 3 -~ SO
5o S A / B 52 (= Q-0 )  (pRa=rQ0)?)
L AEMy(Z)/CL(2,Z) P2
T217% 4eGL(2,Z)/Dihy
2 ~ ~
Tr [IS%QEIWTAT (511 “;‘lz) Aw+2927—1Q-QW‘T]

x 6(tr (9

1/2 1(/)2) Ma)e

i( £ -1 — ~ 1 .
% Pabmd(%) 627r1(i\/§ymt(792 ) AT T # by 0 QL+ L yr o (192 /YT)T'SySOé)
(D.1)

where a factor 2 comes from the center of order 2 of GL(2,7Z) acting on Ha, v = (ff g)

The integral over positive definite matrices Pa splits into two Bessel-type integrals, using the

32 Recall that Dihy is the dihedral group of order 8 generated by the matrices ((1) Pl) and (? (1]), which stabilize
( 0 1/2)
/2 0/
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projectors m = (é 8), T2 = (8 (1))
R omiaT A Q) o (5Q1-4Q2)%  (pQ2—rQ1)?
LRy )bl
Qen®?, _, AEMs(Z)/GL(2,Z)

~EGL(2,Z)/Dihy

v /OO dpPQPQqQG e*ﬂY[m(%'ﬂAT (S}1 ‘gllz)A'y+2p2'y‘1@-QvT'y‘T)]
0 2

D.2
o [Tl ote s (R (4 5) Ar42001G @) (D2)
0

—O0 e
g9 2

B (pzlf(ywwaATvT B)+yayy~ 1QL°“+41,J2 (YaymiyTy "‘))

27
X Pab,cd ( aiy)

(_R
v 627r1(021\/§(y“77r2’71ATvT”)+4i22 (yaryﬂ2fyTyo¢)) .

The matrices v € GL(2,7)/Dihy in the last two rows can be absorbed by a change of variable
(Yus Ya) = (Y 1, 9ay™t). After relabelling the summation variable as (%) = A(gl), one
2

obtains a sum over all splittings I' = (Q, P) = I'; + I'y in the lattice A®?

p—2,q—2°
Z Z 27ria“Ai]~Q§f(A,y7Tﬂ*1Qv) g((yrlﬁyflé)Q)g((Wz’fl@)%
Q:eNP2,  AeM2(Z)/GL(2,Z)
P=2472 L cGL(2,Z)/Dihy
_ Z e?m(a -Q+a?-P)
reA?,
x —1m\2 - —11m)2
S rntoariy - ey s

AeMy(Z)/GL(2,Z)
7€GL(2Z)/Dihy
ATITeA??,

_ Z 627ri(0L -Q+a?-P) Z f(Fl,FQ)

rea®?, BeM»(Z)/Stab(r;)
T1,lo€Ap_24-2

2 12
> Z g(_ (Bngl) ) Z g(_ (Bngz) ) _

Ti/di€Ap—2,q—2 To/do€Np_2,q—2

(D.3)

where I'; = Bm; B = (Qi, B;), such that I'; + 'y = I", and where Stab(m;) is the stabilizer
of m = ("6' 621) inside M(2,7Z). The rearrangement (D.3) holds for arbitrary functions

f(@), g(x), in particular for the product of Bessel integrals and the measure factors c¢(x) in
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(D.2). The singular contributions to the Fourier modes are thus

4 2 (l1,l2) . T
@), 2Ab, T R _ _ Pl ( 2)
GupittT === Y ey Y
BeMsy(Z)/Stab(r;) l1,l2=0
BmBTITeA®?,
Kq;ze_ll (2rRM(T'1)) Kq%s_b(%RM(Fg))
X
M@y h M(T)"7" "
11712)
, R (I'1,T2)
gopznt Z IS aryery Y Tt
aByv 11+l
T BeMa(Z)/Stab(ry) who V2RI
BmBTTeA?,
Kooy, (2nRM(I'1)) Kozs_y, (27RM(T'2)) (D.4)
X
M(ry) 50 M(Tp) "5
R! L P (1, Ty)
(p,q9),2Ab, T _ 1t _ _ pOTU 1,12
Gp;l;r?’rv - T Z C(Fl)C(FQ) Z 4Rl1+l2
BEMQ(Z)/Stab(Tri) l1,l2=0
BmB~'TeA?,
KLEG,ZI(QWRM(FO) K%ib(Qﬂ'RM(Fg)
X
M(Ty) 50 M(Da) 5"t
where the measure ¢(T';) is defined by
} ged(Q*, P%,Q - P) d? ER
I = — .
) dZ>O C( 2d3 )(gcd(Q27P2,Q~P)) (D.5)
r/dere?,

The factorized form of these singular contributions is indeed consistent with the differential
equation (3.20), as discussed in §E.3.

D.2 Measure factorization in CHL orbifolds

For CHL orbifolds, the contributions from the Dirac delta functions in (5.57) and (5.58) to
the Fourier mode (5.56) can be computed similarly to the full rank case (D.4) by using the
results of Appendix C. Here we explain the factorization of the measure for a general lattice
Ap_2 42 of signature (p — 2,¢q — 2), which we denote by A for short. When the lattice is
N-modular, as in the case of the magnetic lattice A,, discussed in section C, one can rewrite
the measure in a form manifestly invariant under Fricke electro-magnetic duality. However,
this is not the case in generic signature. In this section we use the results of the previous
section to write the 1/2-BPS charge measure factors coming from the different orbit terms in
(5.64). By abuse of language we shall refer to the charges (@, P) € A* & A components as
electric and magnetic, although this terminology is only accurate when ¢ = 8.

For the most generic lattice vectors, namely (Q, P) € A* @ A, the only matrices A which
contribute belong either to the electric first orbit of the second set of splittings (C.36), or the
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magnetic second orbit (C.39) contribute. They both lead to the factorized measure

= = _ ng(NQ%9P127Q1P1) d% %
wCaT) =y 3 el 2 ) (eavar. o)

di1>0
(Q1,P1)/d1EA*BNA*

ng(Q27P27Q2 P?) d2 %
) Z Ck(_ 2 223 ><ng(Q%7P§7Q2P2)> 7

d2>0
(Q2,P2)/d2eABA

(D.6)

where I'y is of electric type and I's of magnetic type. As explained in appendix C, this measure
is consistent with splittings into pairs of 1/2-BPS charges of (T, T') type.

For less generic vectors (@, P) € A® A, the measure receives additional contributions from
the first term of (5.56), as well as from the first magnetic orbit from the second set (C.37).
Unlike the previous case I'; can be either of electric or magnetic type, while I'y is always of
magnetic type. When I'; is of electric type, the resulting measure is given by

& ()& ged(QF, PY, Q1 - P1) 42 a8
cr(l)eg(T2) = [ cr( —
(Q1,P1)/diEABNA
ged(NQE, PE, Q1 - P1) d? 2
+v Z Ck(_ 2d2 )( Cd(NQZ PQQ P))
d1>0 1 g 141, Wl 1
(Q1,P1)/di1EA*BNA*
£cd(Q3, P5.Q2 - P) & s
) Z ck< - 2d3 ) ( d(Q2.P2.Q, - P. )
d2>0 2 ge (QQ? 2 QZ 2)

(Q2,P2)/d2€ ADA
(D.7)

where only untwisted states can contribute in this case. This result is consistent with splittings
of type (U,T), as explained in Appendix C. When T'; is of magnetic type, the measure is
instead given by

@(rl)ek(rz)—{ > Ck(—gcd@?va,QrPl))(gcd( i >q;8

dy>0 2d% Q%7P127Q1'-P1)
(Q1,P1)/d1eABA
+v Z Ck(_ng(NQ%PEanPl))( Nd% )(128:|
ONG 5cd(NQ3, P2, Q1 - )

d1>0
(Q1,P1)/diENA*BNA*

X Z ck(_ng(Q§7P227Q2~P2))< d2 )qu
dy>0 2d; gcd(Q2, P2,Qs - Py)
(Q2,P2)/daeABA

(D.8)

where both twisted and untwisted states can contribute, and where the former only get con-
tributions form the second term in the bracket, while the latter get contributions from both,
which is consistent with splittings into doublets of 1/2-BPS of (§, UT') and (0, TT) type.
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For the vectors (Q, P) € A* @ NA*, one must add to (D.6) the contribution from the last
term of (5.56), i.e. both electric and magnetic orbits of the third set of contributions (C.26),
(C.28). In this case, I'; can only be of electric type, while 'y can either be of electric or

magnetic type. For electric I's one obtains

& (T1)E (Ts) = ged(NQY, PY, Q1 - P1) 42 958
c(T)ep(Te) =v EO Ck( 242 ) <ng(NQ%7 PZ.Q - P1))
1
(Q1,P1)/d1EA*BNA*
% [ ) ck(—gcd(Q%aPQQ,Qz'PQ))( d3 )q;‘
do>0 2d% ng(Q%7 P227 QQ . PQ)
(Q2,P2)/d2eAGNA
+ v Z Ck(—ng(NQ%7P22’Q2P2)>< d% )qgsj|
d2>0 2d% ng(NQ%7 P227 QQ . PZ)
(Q2,P2)/d2eA*BNA*
(D.9)

where both twisted and untwisted states can contribute in this case, consistently with split-
tings of type (TU,) and (TT,). For magnetic I'y, one obtains

ng(NQ27P27Q1’P1) d2 q2
> o ) e e )

cx(l'1)en(T2) = v
d1>0

(Q1,P1)/d1EA*BNA*

gcd(Q3, P3,Qs - P») d3 =h
% { )3 C’“(‘ ; 255 ><gcd(Q§,P§,Q2-P2)>

d2>0
(Q2,P2)/d2e ABA
ng(NQ%VPQQ?QQPQ) Nd% ng
+wv Z Ck<_ 2N d3 )( ANOZ P2 Nz )
2 gc( Q27 27Q2 2)

do>0
(Q2,P2)/d2E NA*®NA*
(D.10)

where only untwisted states can contribute, consistently with splittings of (7,U) type. In

both cases, the factors of N come from the width of the integration domain (R/NZ)3.
Finally, for vectors Q € A, P € NA*, one must add each contribution specific to the two

last cases as well as the contribution from the second type of orbit of (5.51). Each 1/2-BPS
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state I'1, I's can be either electric or magnetic. When both of them are electric, we obtain

_ _ ng( %7P127Q1'P1) d% L;g
cx(I'1)ek(T2) = |: Ck\ —
(I'1)ex(I2) dlZ>0 ( 2d2 ><gcd( 1L, P Q1 - P1)>
(Q1,P1)/d1 €AGNA

ged(NQ3, PR, Q1 - P1) a2 ‘128]
+ v cpl —
dlz>:0 ( Qd% >(ng(NQ%7P127Q1'P1))
(Q1,P1)/d1EA*®NA*
ng(ng P227 QZ : PQ) d% qg—s
X e —
[ d;o ( 2d3 ><g0d(Q§7P§,Q2 : P2)>
(Q2,P2)/d2eAGNA
ged(NQ3, P3, Q2 - Pa) d3 qgs]
"l_ v cel — ’
dzz;o ( 2d; ) (gcd(NQg, P?.Qs- p2)>

(Q2,P2)/d2eN* BN A*
(D.11)

with constraints on the possible splittings, as explained in appendix C, selecting splittings of
type (T'T,) only. When both states magnetic, one obtains

& (T'1)e ged(QF, P, Q1 - P1) &2 o
r I'y) = _
cx(I1)cr(T2) { d12>0 C’f( Zd% )(ng<Q%7P127Q1~P1))
(Q1,P1)/d1EA®A
 ged(NQF, PE,Q: - P1) Nd2 =8
“+ v Z Ck( 2Nd% )(ng(NQ%vPEaQI'P1)>

d1>0
(Q1,P1)/diENA*ONA*

gcd(Q3, P, Qs - P) d> 8
% [ > C"“(_ ) 26213 )(gcd(Qg,P§,Q2.Pg))

do>0
(QQ ,PQ)/dQ eEADA

d(NQ2,P2,Q, - P Nd3 =R
+v Z Ck<—gc ( QQ’ 22,Q2 2))( 2 g ) ’ ] )
INd2 ged(NQ3, Py, Q2 - P)

d2>0
(Q2,P2)/d2e NA*SNA*
(D.12)

with again constraints on the possible splittings, selecting splittings of type (0,77) only.
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When one state, say I'y, is electric, and the other magnetic, one obtains

o]

q—

Ek(rl)ék(FQ)_{ > Ck(—ng( ?an,Ql-P1)>(ng( & )) =

di1>0 Qd% Q%7P127Q1'P1
(Q1,P1)/d1EADGNA
4+ Z Ck(_ng(NQ%’Plzan'Pl))( d% >q28:|
0150 2} gcd(NQ2, P2,Q; - P1)

(Qlypl)/dl eEAN*PNA*

ng(QQ;P27Q2 . -PZ) d2 %
Ty emageny g

d2>0
(Q2,P2)/d2eABA
_ ged(NQ3, P35, Qs - P) N as
+v Z Ck( 2Nd% ><ng(NQ%7P22,Q2-P2)> ;

do>0
(Q2,P2)/d2e NA*®NA*
(D.13)

where the constraints on the possible splitting here select (U,U) only.

When the charge vectors(Q, P) lies in an even finer sublattice, such as A NA, NA*®NA*,
and so on, the measure is still given by (D.13), but it includes less generic type of splittings
like (UU,) or (§,UU), as explained in appendix C.

Thus, we have established that the delta function contributions to the Abelian Fourier
coefficients factorize into the product ¢ (I'1)cx(I'2) of the measures associated with each 1/2-
BPS component for all splittings I' = I'y + I'y of an arbitrary 1/4-BPS charge I' in CHL
models with N = 2,3,5,7. This factorization is required for consistency with the differential
equation (3.20), as further discussed in §E.3.

E Consistency with differential constraints

In this section we analyze the consistency of the asymptotic expansion of the the two-loop
modular integral Ggp 4 near the degenerations O(p,q) — O(p — 2,q — 2) and degeneration
O(p,q) — O(p—1,q—1) with the differential equation (3.3). In the first case we consider both
the constant terms and generic rank-2 Abelian Fourier coefficients, and show consistency with
the quadratic source term in (3.3). In the second case for brevity we restrict to the constant
terms.

E.1 Differential equation under the degeneration O(p,q) — O(p — 2,q — 2)

Here we write explicitly the differential equation 3.3 in the variables relevant to the degener-
ation limit O(p,q) — O(p — 2,q — 2). Using the decomposition (5.3), and changing variable
R = e7?, the metric on the moduli space reads

2P ;P = 4d¢? + 2P, P* + 2P, ;P9 + ¢* My;g™ daidal) + V9V, (E.1)
with

Vi = dip — ejja’ - da? | (E.2)
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and the Maurer—Cartan coset component

d¢ (5" -P," fvmlpgl daiI —TUlulngdaé 562¢€M0V¢
e? —1V ) da’ 0 PA <y da’
P \/;;s i pLa T p g J pLaI T (ES)
ﬁ T ppa! dal Py 0 507 "pra’ daj
I i I % %
3€20e” ;e fvwlpf da’ \/ivwl g da’ —d¢6ﬂ+Pﬂ

Beware that in this section we use the symbols p;, and pr for the Gp_24-2 = O(p — 2,9 —
2)/[0(p — 2) x O(q — 2)] projection pr,;Q’, and not for the G, , = O(p,q)/[O(p) x O(q)]
projection pr,z@Q* as in the body of the paper. We use Greek letters of the beginning of the
alphabet, i.e. {a,3,7,0,€,1m,0}, to denote local indices along G,_2 42, and Greek letters of
the middle of the alphabet, i.e. {r,\, u, v, p,0, 7}, to denote indices along SO(2)\SL(2,R).
The covariant derivative of a vector Z, in the tangent frame must obey the usual equation

A2, = 2PY0ysZ, — 2P (Dbéza - Bb@adZd> : (E.4)

allowing us to write down its action, for any vector Z, = (Z,, Z)

1 1 1
Dpf/Z (16;“;8(1, — 'Dwy + = €#Va¢)Z + = (60[H6 ]Zp, O) s

2
DasZa = ——e=Pvgippal (=2 100 Za 006 Zers 0oy 052
ab a—%e Vo PLa (8@“ QEz]aI d)) + = ( voZay Oary l/) (E5)
1 ., . 0 ;
D”dZa = ﬁe ¢’UM2deI (W - %eija}&ﬁ)Z&
and on any vector Z; = (Z4, Zs) as

1 1
D#,;Zd = (15#,;845 — Dﬂf’ + 56 Ew,aw)Z + = (0 (50[“(5 ]Z )

1 ., 440 .
Doy Za = ﬁe 05" DL (W - %fijajjaw> Za (E.6)
TR
D,udZd = ﬁe ¢1)M’Lde (W 25Ua18¢>Z + = (504046 Zl“ —(LL&Zd),

where v,* € SO(2)\SL(2,R) such that

DMV’UPZ = 56;7(;/01/)1 — Eéuyvpz, (E7)

and finally, the operator Da =D, the differential operator on the Grassmanian O(p—2,q—

2), which acts on the projectors pr . Pra’ as

1
DaBpL“/I = §6aWpLﬁAI , Daﬁde = 26ﬁapL0‘ . (ES)
In this decomposition, the tensor Gy ¢ admits six independent components
3 A A
G;w,o—p = 16<MV’6UP>G/\ K Guu gd = 6,LWG06/\ - 5a(qu)5,/\ ) Guu,fyé s

1
Gupws = Gpluats = 5Gups Gupns s Gapns >,  (BE9)
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but for simplicity we shall only consider the components G u,0p, Gvy6 and Gog s that admit
a non-trivial constant term. The differential operator D(,°D,):Gap ca acts diagonally on the
various components of fixed number of indices along the Grassmanian, so it is consistant to
only consider the components with an even number of indices along the sub-Grassmaniann in
the differential equation (3.20). Using the Fourier decompositions

Gab,cd = Z ng’ 27T1(F a) + Z GTNn 277177,1/;
Fopea = Z ngcdezm(r,a) + Z Fg}lgdn 2min (F.10)
TeA*PA n#£0

one obtains from (3.20)
(Q'D(MT'DV)T - (a¢ +q— )D/W + 3 (&1’ + 8)((%5 + 2q — 10)6uu —4me™ 2¢FRM FR,/) Ggp Y

3
i L D DR G I el o o el B 2 (E.11)

kd(p VA kd(p ~v)A UV,OP,RN 9
T1eA*BA

(2D< Duyr — (% +q—2)Dy + (9 + 6)(0y + 2q — 8)5W e T, - FRV) s

r —4q T 6—¢q r
== 6 G p’YlS + 2 6UPGHV’Y5 + T(So—(’uéy)pG ﬁ by + 5 5 Gaﬂ by
T T
+D(M (5")(0Gp))\ af DO’)(/LGV)(pl af + 5aﬁG,uu op
I wkpl-Tid r I-I'id
—27 Z (thpld(u FV)751 th)lvd(#FV)é(p1 )_SWF H,opys (E.12)

T eA*BA
and
(2D Doy = (0 + 0 = 2Dy + 50 +4)(9s + 20— 6)0, — 47 2Ty Ty ) G

_ T r r-I'id
= 300p.Glsy =3 D Fs Fn i =3 agas (E.13)
I'eA*®A

where the additional term of order O(e‘Rz) comes from the Abelian Fourier coefficients of
the quadratic source in Fjp.q involving nonzero Taub-NUT charge,

TN TN r (T
Z Feg az F = Z Fef,ab,cdemn( ) . (E14)
n#0 TeA*QA

It is a non-trivial task to compute these Fourier coefficients from the explicit non-Abelian
Fourier coefficients of the tensor Fyj.q, which we shall attempt to carry out in this paper.
Introducing for brevity the vector Gr

ér - (G,EU TV Gpcf LR Ggﬁ,'yé) ) (E15)

we find that the differential operator with two indices along the sub-Grassmaniann acts on
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Gr according to

4D(nﬁD9)ﬁéF = (4D(," Dy + 6,605 — 872" 2T 1, "T 19, )Gr
r r
' ¢ _5ﬁ(pG01'_‘)‘9),T’U o 6K(TGUI)“9),pO'
+ 8imV2e T " —5n(pGg)|e>,ws + 50)(@5)&,@7 7

59)(QG5)H,M5 + 59)(7G6)n,aﬁ (E16)

i 60400, CT ;- 46,0G i

+ 25P0'G779,’y5 - 2(;779Gp0,'y5 + 2577(7(;5)9(;;)0,5” )

601((a98),0/Gr6) " = 80mI((a G 3y 10),1v6)

where the term linear in I' involves the components of G with an odd number of indices
along the sub-Grassmaniann. Using this action, we find the differential equation obeyed by
the components with two indices along the sub-Grassmaniann Gp_2 4—2,

(Q'D(ndpa)é + %57798(25 — 4772672¢FL7]RFL9,§)G'F
_6“(PG£ |0),7v 5”(”'G£ 10),p0
+4imV2e T L | —0uG ooy 16 + 901Gy po
000G h)n5 + 90)xCopn.as
(5 - q)éneGFO',T'U
= | 4=9)06G 05+ (6 = 1), G5)01,0 + 916G0.90 — 306951 G o
(3 = @)030Ghs5 T 28 = O)on)aC ) (1. 1v0) T 30(08.Ghs) o — 30n((@08),61G L4 "
3FF1 I'-TI'1d

nd(po,” Tv)0
I I'—I'id I I'-I'id 'l
-7 g 2Fpald(7]l€F9)’y§ te 2FUI)1'yd(77F9)5(p1 —3nFr. (E.17)
I1EA @A 3 andlmﬁ Fjﬁ;@ 1d

E.2 Zero mode equations

In this subsection we analyze the consistency of the differential equations (E.11), (E.12),
(E.13), (E.17) with the results in §5 for the constant term ng,cd' As mentioned earlier, the
unfolding method fails to capture exponentially suppressed corrections to the constant term,
which are sourced by the quadratic terms ZF#O FU1F=Tvand Feoﬁab’cd defined in (E.14) on
the right-hand side of the differential equation, and can be ascribed to instanton anti-instanton
configurations. These terms can in principle be computed by solving the differential equation.
Here we concentrate on the perturbative part of ng «q» Which is sourced by the square of the
perturbative part of F;.q.The latter is given by [22,7 (5.29)]

0 6— —10 8—q)(12—
F, = del0709 <D(WDPU) + qT‘;(uVDU/J) + %ﬁq)é(uvéw))g(s) ’

FO, 5 = 0095 (%% - 2DW)8(S) ;

1%
Flg s = € > Fapis(p) +36C079%5(,58,5)E(S) , (E.18)
where 3
_ *(8—q 829 o 8—q
E(S) = (N+1)7r2(6 (552,9) +vN 2z & (554,NS)) (E.19)
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is a specific solution of the Laplace equation

2D, DVE(S) = L (D 2Do + DaDO)E(S) = Wsm . (E.20)

It is then straightforward to find a particular solution to Eq. (E.17)

0 2(6—
GY, e = —3me70%,

Ghs = — %e“*m(%qé _QDW)E(S)QW( ) — 2me2(6-D¢5 58<S>(T‘16MV—2DMV)€<S>,
G55 = € *%Gap5(10) — 5 DPE(9)5105.Grs) () — 32O 7D95, 5 5.5 E(S)?, (E.21)

o) ((559)°E(5)? — 2DE(S)DE(S)) |

with Gup.5(¢) solution to an equation analogue to (3.20) with source term quadratic in
Fapys(p), and Gu(p) solution to the equation on the sub-Grassmaniann Gp_2 42

2D(,*D5)aGap = 505550 + (6 = 0)0,)(aF5)(5 + apGys + 12Fapys (E.22)
One can then check that Gab .q 18 also a solution to (E.11), (E.12) and (E.13), using the
identity
K 0 Ap0 rd 2((8—4q)\? 2 2
Fnd(u Fz/) Ffid(u E A T 2(8 - Q) ((T) + 1) 6!“’8 - (8 - Q) (10 - q)gD#Vg

+8(10 — q)D,DpoEDPE — 16D, Do ED,ZD°E  (E.23)
and the fact that for any two symmetric tensors X,,, and Y),,, one has
X Yooy = 500,00y (XY™ — XY (E.24)

The most general solution is obtained by adding a solution of the homogeneous equation
without source term, given by

GBV po — (6_q)2(7_q)c 62(57(1)4)6(#%%0)
G’W,ﬂS — %6(4—q)¢<82;¢15w —2D,, ( )g»y(s(ga) _|_ 662(5 q)¢5 055

G35 = € Gups(0) — FeUTV2E()5105.Grsy () + ¢ E2CTD5 158 5, (E.25)

with ¢ a numerical constant, gaﬁ ~5(¢) a solution to the homogeneous equation (3.17) on the
sub-Grassmanian, £ a solution to (E.20) and G,s(p) solution to the homogeneous equation
(3.34) on the sub-Grassmanian. The explicit results (5.44), (5.60) for the constant term G,
obtained by unfolding method for generic values of ¢ indeed lie in this class, upon setting 7

3 .
(N —1)72 (-& (5!

Gap(0) = 3(Gag ™ () + Gag™ () ,

Gas(p) = 3 (G5 (p) = G5 () ,

—v)(1 —ovNIT
e= Ser— (s — g I INTD

£(S) = 4.9) +oN T €4 (554, NS))

(E.26)
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For special values of ¢ one must take into account additional source terms due to logarithmic
divergences. For example for ¢ = 8, one has instead

3 SVPU =e (4(D(WDPU) - 5(#1/2)0/3))5(5 ) - 2“6(MV590)> )
=~ 26,5 (k0 + 2D E(S) ) |
Fs.5 = € 2% (Fapys(#) + 38005 (E(S) — 2r9)) (E.27)

where £(S) = m(&(S) +& (NS)) satisfies a Poisson equation with a constant source
term,

. 1 _ _ .
2D, D7 E(S) = i(D_Q.DO + D3Dg)E(S) =k . (E.28)
One finds the particular solution to E. (E.17),
GO pe = —31€ 495, 8,0y (K2 — 2D NE(S)DE(S)) | (E-29)

Coys = € (50 + 2D E(9)) (5G6(0) + 2785 (£(S) — 260)) ,

46 (5 P 5 5 2
Glps=e"1 (gaﬁﬁé(@) — Z(E(S) — 260)6(05,G16) (@) — 3T0(05,015) (E(S) — 260) ) ,
with

2D(,*Ds)30as = —2046Gas — 20.)(aG8)(6 + 0asGrs + 12Faps + 36K8(050,5) »
2D Doyabapas = —30m0Gapas +30(ap.Gropmo — 5 (0000(ap.Grs) T 20n(ads0G-0))
—371']: )€<a5]: 5)(9 . (E30)
This is indeed consistent with the result (5.70) from the unfolding method, upon setting
3 k

k=T — &2

E.3 Abelian Fourier coefficients

In this subsection we show that the generic Abelian Fourier coefficients of the tensor Gyp cq
computed in section 5 satisfy the differential equation (E.11), including the quadratic source
term.

For simplicity we shall only consider the component of the Fourier coefficient with all
indices along the decompactified torus Gif{,‘f[);p%b’ @F) _ —%eu(gep)yG@’Q)(Q, P). The latter is
proportional to the scalar function

Q
GP9(Q,P) = / cl 122q 2C[A’1(QP Qr)ATT, QQ] (ATTA™Y)  (E31)
AEMQ(Z onez) ’ P2 [Q2] 2

AT (P EAP 2,q—2
with
—7R2tr [vAQ IATUT] —2mtr |:QQA*1< Qi QR-fff) A*T}

Qr-Pr Py

L(ATTQ, A7) =

One can rewrite the differential operator in (E.11) as

(DM&D;}& +(q - 5)5w) GP?(Q, P)€27ri(Qa1+Pa2)

(E.32)

= ((%(_Raﬁg)? — LAROR + q — 5)0u — 3Dy (~ROg + ¢ — 2) + D(,°D,), (E.33)

=20 R (0, )T ) G (@ P)FTQ

136



SciPost Physics

Acting with this differential operator on R®L(A~TQ5A™!) one obtains

TOL(ATTO,ATY

(WRQ(UAﬁz_lAT’UT)Q + 12UAQ TATYT — 270 ( Q QRPPR)UT> TRY|Q,
R ny

Qr- Pr
(E.34)
which allows to rewrite (E.34) as a total derivative in g,
(DudDy& + (q _ 5)5!W) RS A*l)eQWi(QaH»Pa?)
(E.35)

1 5 L<A—TQQA—1)627ri(Qa1+Pa2) '

= (szvAaaQQATUT)WRS\Qz

By integration by parts, it follows that the Fourier coefficient would satisfy the homogeneous

differential equation if the Fourier coefficient C [Afl(QQ_“P QAT Qz] did not depend on 5.
We shall now show that the dependence of the Fourier coefficients of 1/®1p in g, due

to the poles at large || accounts for the appearance of the quadratic source term in the

differential equation. Using (5.25) and (A.90), we obtain

d3Q
GP(Q,P) = / 122q | A CF[ H@,on A T] (ATTQA7Y)
AEMs(Z /GL(QL P2 || 2
AT (P A2

R8 2 (A_ (QQ~2P
5 14 c(—
A€M;(Z)/Dihy
A_l(%)EAEEQ.q—Q

d3Q 1 . ‘
“J, o (3 00a) = (A7 ) A asn(on) + (47! 00) 4T LATT247)
2 2

“GHAT) (A7 (£ 50)AT)
e

—|—(9(67R2) . (E.36)
The differential operator (E.35) annihilates the finite part of the Fourier coefficient, and gives

(Du&DVd + (q _ 5)6UV) G(Pv‘I)(Q, P)627ri(Qa1+Pa2)

Loy (A (704

2 2 2

A€M>(Z)/Dihy
_1(Q\ - r@2
A 1<P) €A g2

1 a . )
- <27T (DM Dat+(d-9) W) — 2m R (vAm A” (Q p ) A Tﬂz)ATvT)W>

> ( < q 3
x /0 s /0 e REL(ATT (2 0) A)e2mQu +Pe) L 0(¢=R%) (E.37)

2 2
P2 ‘72

where the differential operator acting on the first term in (E.36) gives a total derivative,
while the second term factorizes after integrating the Dirac delta function, and the third is

integrated by part using ﬁsigm(‘cr(f}2 U2)Qs) = 6(v2) (1) and

vA(} ) AT’ [A1<QQ.2P Cp)a], = 2”A7T<1A1(QQ.213 QL) A TmyATT . (B.38)
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Further using (E.34) to express (DMdD,,@ + (d - 5)5HV>L(A_T (%2 fQ)A_l)eQWi(Qal“‘P“?), and
inserting 71 +m2 = 1 on both sides of (E.35), we see that the terms which involve two powers

of w1 or two powers of my cancel out since they are total derivatives with respect to ps or to
09, leaving only terms involving one factor of m; and one factor of mo:

(Dudpu& + (g — 5)6,“,) Gr9(Q, P)e?mi(@al +Pa?)

2

Iy |A|2c<_(A1(Q‘prf)A T)ll)c< (A~ (‘*’2 @I ATT) 22 / sz d02
A€Mx(Z)/Dihy
AT (g)EA;D 2,q-2

(UA’/T(l (FMATUTUA 2A° ( o, PR)A T 24" (Qz Q: P)A T)WQ)ATUT>

XRIOL(A T(%z (92)14_1) 27i(Qal +Pa?) + O(e_R )

- Iy |A|2C(_(A1(Qp 20 A" T)u)c(_(A o)A T)22>

2 2

7%

A€M (Z)/Dihy
_1(Q 2
At (F)eng? s

[ [ s aa s, )
0 0

g
2 oo 2 202

(1)
XRICL(ATT (3 0) AP Q TP L O (E.39)
where in the last step we recognized Q? + Q% = Q4. Defining for i = 1 or 2 the tensors

. . . . . _mR2 i i_on —1( Qi Qr-Pr) A-T)..
LLuop(pQ) _ RG(UA)HZ(UA)/(UA)UZ(’UAL;L@ ,,2R (vA)ut(vA)H —2mp2 (A <Qlc_pk P2 )A i (E40)
E R2(UA) "’(UA)“‘L.727T/72(A_1( Q,% Qr- Pn) A— T)

Linoa(ps) = iR (vA),/(vA), (0A)s" (A7 (%)),6 * "
one obtains

(Du"Dua + (d = 5)8 ) G# (Q, P) 2R+ 4 (=)

_ T Z . _(A—l(QQQP,o-Pg“)A—T)n)C<_(A—l(QQ’Pa;)A—T)zz)EMEMeQﬂ(QalJrPaz)
A€M(Z)/Dihy 2 2
AT (%)EAf 2,g-2
dps dO’Q dpz d0'2
(/ Ta— qLam?(p,(pQ)/ Ly)m (02) +2 =0 ap(ﬂ\ P2) Ly)m (02)
0 , 2 0 0
P2 02 P2
ok _pA sab 27 (Qa'+Pa?) (w0, B B~ 1<P) (pa), B2 B~ I(P)
= —2me7reP*5%e > wolula A (E.41)
BeM,(Z)/Stab
B’”B*l(g)EA;ﬁ 2,42
that indeed recovers (3.20),
; r T r r-r
(D Dua + (55 )Gl = Tenoeppe™s™ Y FabiRga T
T1eA*BA
r r-r
= 5 > EmmiEshe (E42)
T eA*DA
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Thus, we have shown that the abelian Fourier coefficients with generic 1/4-BPS charge are
consistent with the differential constraint (3.20). This is a strong consistency check on the
validity of the unfolding method in this sector.

E.4 Differential equation in the degeneration O(p,q) - O(p—1,q— 1)

We now briefly discuss the consistency of the constant terms (4.20) computed in §4 with the
differential equation (3.20). We follow [22, §B] for the parametrization of the Grassmannian
and of the decomposition of the covariant derivative operators.

The operator D _; decomposes into D, i, D1Bv D, Daﬁ acting on any vector F, = (Fy, Fy),
10
D.F, = —~—F,,
11 2 8¢
1 _ 0 1
,DaiFa = ﬁe ¢’UillawFa + 5 (Fa, —5aﬁF1)
1 _ 0
DiaF, = 7° 2Ty 6507 (E.43)
and on any vector Fy = (Fp, Fy), as
10
Pily = =550
1 4, g O
DaiFB = ﬁe ¢’U1 OCWFB
1 4oy 9 1
Dlng = ﬁe v d@FB + 5 (*(5QBF1,F5[) , (E.44)

whereas Da,é’ reduce to the differential operators on the sub-Grassmannian that act on the

projectors piw pfm:
I 1 I 1 1 I
,Daﬁpr = §5avaﬁA ) Daf}pLol = 553@17}%& . (E~45)

In this decomposition, the tensor Gy cq admits 3 independent components G115, G186
and Gqp,,6, but only the first and last have a non-trivial constant term. Using the Fourier
decomposition

Gab,cd = Z GaQb,cd eQwiQ-a ’ Fabcd = Z ngcd eQWiQ‘a 3 (E46>
QEA* QEA*

we obtain that the first component of (3.20) with (e, f) = (1, 1) reads

(9 +4)(Dp +a = 5) = 872 2QR) G, | = —4r > (P FRI9F = Fiy FS )
Q1EA

(0 +2)(9p + g — 3) — 87 2°QR) G2y s = 66<QB,G%>’H — 67 ) Fﬁiaﬁfgg;ﬁl b
Q1EA
(E.47)

where the sum over k in the r.h.s. runs over all indices o and 1.
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Introducing for brievity the vector G@
G? = (G110 Gils ) (E.48)

the differential operator D%Dmd acts on G@ as

2D1°D,:Gg + 2D,°D1:G

2GY (E.49)

Iné

:D(Q)éQ_<a¢+q—2)< 0 0 > ,
! ? _26n(aG1ﬂ),76 - 2577(“1G15),a5

where we define for short
DIV = —ivV2e™?(Qry(0p + a — 2) + 2QraDY) - (E.50)

The off-diagonal component of the differential equation (3.20) with (e, f) = (1,7n) take the
form

Q _ Q Q Q—Q1k Q Q—Q1k Q Q—Q1k
,D7(7Q)G11,fy5 - 2(a¢ + 3) Gln,'yé -7 Z (Fllllan'y(S e FnlllkFl'ﬂS - 2F11}c('yF6)177 ' )
Q1EA*
Q _ Q Q Q Q
DIAGY, 5 = (05 +2) Gl 5= (05 +q—4) (048G5 11 — 0nGpn1) — véGrsn

Q Q Q-Q1k Q Q—-Q1k Q Q-Q1k Q Q-Q1k
+5/3(7G5)n,11 — 27 Z (FlkllﬂF'yén ' +F1k1y(5F1677 ' _leﬁ(yFé)m ' _Flkll('yFé)ﬁn ' )

Q1EA*
Q _ Q Q Q
,D7(7Q)Ga5,76 = =205 +q—4) (677(0Gﬁ)1,75 + 577(’7G6)1,a,8) + 35<0‘/3G75>,117
Q Q—-Q1k
—6m Y Fi s Eon . (E.51)
Q1EA*

The component of the differential operator with two indices along the subgrassmaniann

(e, f) = (n,9), acts as
4D(néD9)ééQ = (4’1)(7,07'2)9)& + (577984) . 87r26—2¢QLn QL@)@Q

GQ
"\ =00)@G 515 — 910/ Coyra (E.52)

( 2G$9,75 - 257236:?1,75 + 25In)(vg?)(e,11 )
65n<(a‘sﬁ)7\9|G75>,11 - 45(n|<(aG5),|9),\75>

and thus we obtain the differential equation on the sub-Grassmaniann Gj,_2 42

(QD(ndDO)d + %5n98¢, - 47T2€_2¢QL7]QL9)6Q

GQ
+arivaeQ < L Gons )
! _59)(0Gﬁ)1,76 - 69)(’YG5)1,045
_ ( (4- Q)(snerlmS +(5 - ‘J)‘S\n)(vGaQ)(a Rt 575G$9,11 o o )
(3 - q)dneGaﬁ,fyé +2(6— Q)5In)<(aGﬁ),(e|,|~,5> + 35(&B,G75>,n9 - 35n<(a56)7\9|G75>,11
FQl FQ—Qld o FQl FQ—Q1d
11d(n*'6)y6 1yd(n™ 9)s1
-2 ) ( e ol : (E.53)
Q1EA* 27 nd(aB,” v6)0
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The constant terms sourcing the perturbative part of GY, , are given by [22, (4.16)]

ab,c

Flyy = ae 779%(q - 6)
F5 = be 99 (q — 6)d5, (E.54)
Flas =€ " Fagys +ce” 9% (q — 6)3(450,5) ,

3(7—q)2(9—q)7 b — 3(7;1) ).

with a, b, ¢ constants which were computed in [22] (a = S, C= 3
As mentioned in the previous section, the unfolding method fails to capture exponentially
suppressed corrections to the constant term, which are sourced by the instanton anti-instanton
quadratic terms ZQl;«éO F@1F~@1 on the right-hand side of the differential equations (E.47),
(E.51), (E.53). These terms can in principle be computed by solving the differential equation.
Here we focus on the perturbative part sourced by the constant terms in (E.54).

We find the particular solution to equations (E.53)

T _ (. 27 c? Y
Ghins = —15° (@=5)%¢(q — 6)(T — q)G1s(0) — 5 (T— e A1=600¢ (g — 6)%0ag
Q0. 20 _TC a4 _6) § _ 7 ag-6)s —6)25,.46
aBrs =€ “Gap~s(p) e §(q —6) 008,55y (¥) e §(q —6)70(apdys) »

6 3

(E.55)

and b = %c in (E.54), which matches the result obtained in [22, (4.16)]. Ga.g~s(p) is a
solution to the equation (3.20) on the sub-Grassmaniann Gp,_1 41 with source term quadratic
in Fopys(p), and Gog(p) satisfies the equation (B.19) along Gp—1,4—1

& 3—4q
2D(,7 Dg)& gaﬁ - T(snegaﬁ + (5 - q)cﬂn)(agﬁ)(m + 5a3gn9 + 12‘Fa5ﬂ9 . (E56)

One can check that GY, . is also solution to (E.47), setting a = w which matches the
results [22, (4.16)]. ,

The most general solution to (E.53) is obtained by adding a solution of the homogeneous
equation without source term

~ e (o 5
G?ma = _T8(7 — q)e”7%(q — 6)Gos ()

) . ) (E.57)
Goprs =€ *Gaprs(p) — 6 e 9L (g — 6) 010, Gry ()
with Qa,gﬁg(go) a solution to the homogeneous equation (3.17) on the sub-Grassmaniann
Gp—1,g—1, and G,p(p) solution to the homogeneous equation (3.34) on Gp_14-1. The re-
sults (4.59) and (4.60) for the constant term G?, _, obtained by the unfolding method in this
decomposition lie in this class, upon setting for éeneric q

oNI 7 +1 1

Gos = TN F1 7

(G (0) + G (o))
5 UNq_7 -1 1 (p—1,9-1) sy(p—1,q—1) (E.58)
Gap = ﬁg(@w (¢) — Gag (©))

with ¢ = % as in [22].
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F Beyond the saddle point approximation

In the analysis of the large radius limit of the genus-two modular integral in §5.1, we neglected
the dependence of the Fourier coefficients Cy_o(n, m, L; Q2) of the meromorphic Siegel mod-
ular form 1/®;_o on g, and evaluated the integral over (9 arising in the Abelian rank-two
orbit in terms of a matrix variate Bessel function. Since the integral over (29 is dominated by
a saddle point at large R, and since C_o(n, m, L; Q2) is constant in the vicinity of the saddle
point (at least at generic point in the moduli space G4/Ky) , this approximation correctly
captures the leading behavior of order e 2™AM(Q.P) 4t large R, as well as the infinite series
of perturbative corrections around the saddle point. As a result of the poles in 1/®;_o how-
ever, the Fourier coefficient Ck_s(n, m, L; Qs) is only locally constant, and this approximation
misses contributions from the region where this Fourier coefficient differs from its saddle point
value. Here we shall estimate these effects and find that

1. poles occuring at large || give rise to contributions of order e 2 RM(Q1,P1)+M(Q2.F2)) for
all possible splittings (Q, P) — (Q1, P1) + (Q2, 2) of the total charge into a pair of 1/2-
BPS charges; these contributions are subleading away from the walls of marginal stability,
but crucial for the smoothness of the physical couplings across the wall;

2. deep poles occuring at Q] < )2 give rises to subleading contributions exponentially

—47|ng|R?

suppressed in e Wthh can be interpreted as |ng| pairs of Taub-NUT instantons

and anti-instantons.

In either case, the gist of the argument is as follows: one decomposes the integral

/ d392 C[Q —ZWS[QQ] ZC / d392 —271',9[92] , (Fl)
Py (a2 W D)2

with a locally constant insertion C[€2;] into a sum over chambers W}, where C[Qs] = Cy is
constant. Applying the saddle point approximation, one can bound the integral over W}, at
large R as

1 d3Qs
—log</ ,e%s[%]) = S[Q5(Wi)] + o(R) , F.2
o we [ai— [(Wi)] + o(R) (F.2)

where Q5(W) is the minimum of S[2] on Wy.

F.1 Poles at large |(2|

Recall that the saddle point lies at

0 = oo AT (4 St o, ) A )

. . . . i
where A is a non-generate integer matrix, which we decompose as A = ([1) ’i) (%1 (?)*y for
L2

v € SL(2,7Z). We consider the component of the diagonal divisor D where the matrix
(i ?)A_TQQA_1<é %) becomes diagonal. On this divisor, we parametrize ()5 as
k

k

Q=RAT( 1 D)7 2)(3 A (F.4)
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It is straightforward to compute the minimum of the action

R? 1 5
_ v 171 (1 Q Qr-Pr -T
S[) = - tr [92 arg (s W)A} +tr [92A L2k, @) A ] (F.5)
on the surface parametrized by o9 and ps, because the matrices in the traces are then diagonal.
The minimum is reached at

S S 0
/o T7( 1 0\[ \/252(Qr—%Fr)?
3 =RA (-% 1)( 0 IS+ )

J-)A, (F.6)

with

= R(\/&(@Qn— Pr)? + \/m) = R(M(Q ~ {P.0) + M(}P,P)) , (E.7)

which we recognize as the sums of the actions associated to 1/2-BPS states with charge
(Q1,P1) = (Q — £P,0) and (Q2, P») = (%P, P), as announced. Taking j = 0 for simplicity
and parametrizing the distance away from the divisor v = 0 by € such that

S TQunPa ¢ T @nTRS Si-es), (P
S lQrnPel P ngﬂsl—esg)g(] S, (FS)

the perturbation of the action at small vy gives

i S1 — €S S
S[RAT<WU;QR " )A} - S[Q]+21~zum/Q}§PZ<\/S2 L 51—2652) ﬁ)—i—(’)(vf)

V/25:2P7

= S[Q] — 2Rvy Q§P2|§|3e+0( %)+ O(vs) . (F.9)

For e small enough, i.e. 25 close enough to the wall vo = 0, one sees indeed that the action
increases monotonically away from the wall, and therefore, the minimum of the action in the
neighboring chamber must indeed be reached along the wall. All the other cases are then
determined from this one by SL(2,Z).

F.2 Deep poles

When the determinant |Q3| becomes sufficiently small, the contour C = [0, 1]3 + i€y starts
intersecting additional poles of the form

m? —mlp+ nyo + na(po —v?) + ju =0 (F.10)

with ng # 0, 4(m1n1 +m2n2) +42 = 1. This intersection occurs for generic values of 2y, which
make the Fourier coefficient C'(m,n, p; Qs) itself ill-defined. In this section it is convenient to

parametrize ()9 as
1 1 T1
Qo =— . F.11
2 VTQ ( T1 |7’|2 ) ( )
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Eq. (F.10) can be solved for 71, v; as a function of 72, V, p1, 01,

1 . 4n?
v =—— (_] + \/1 — 4(ny + ngp1)(m1 — ngoy) — V22>

2TL2
1 4n3 , 4n3
T1 :m [\/1 —4(n1 + n2p1)(m1 — ngo1) — V2 \/1 — 4(n1 + nagp1)?ts — V2
(F.12)

The solution is real only if V2 — 4V2(ny + nap;1)?75 — 4n3 > 0, which requires V2 > 4n3, i.e.
that [Q2] < 1/(2n2)%.

In order to bound the contribution from this region, we shall look for the minimum of the
action (F.5) on the domain Py with Q] < W For simplicity we consider the case A =1,
but the argument is general. Extremizing over 7 in the parametrization (F.11) one obtains
the solution

—Pr - (Qr + S51PR) + i\/|QR A Pg|? + R22V2 \QRJgiPR|2 4 R44V4

" =51+ 52 R2V2 ’ (F.13)
P+ 5
at which point the action becomes
SPgr|? 4
S[r*, V] = \/R4V2+2R2W+W|QRAPR|2. (F.14)
2

At large R the action grows monotonically in V', so the minimum of the action on the domain
V' > 2|ng| is reached on the boundary at V' = 2|ng|, where it evaluates to

2
S[T*, 2|n2|] = \/(2n2R2)2 + 2R2w + %|QR A PR|2 . (F15)
2 2

The correction in this domain are therefore exponentially suppressed as 674”R2|”2|, which is the
expected magnitude of a contribution for |ng| pairs of Taub-NUT instanton anti-instantons.

G Non-Abelian Fourier coefficients

In this section we show that the non-Abelian Fourier coefficients in the degeneration (p,q) —
(p — 2,9 — 2) can be deduced from the (Abelian) Fourier coefficients in the degeneration
(p,q) — (p—1,q — 1). First, recall that the Fourier expansion of an automorphic form F
on Gy 4 with respect to the maximal parabolic subgroup with Levi GL(1) x O(p — 2,9 — 2),
corresponding to the grading (5.3), which we copy for convenience,

50,0 ... D (gl @sla®s0, 2, 2) Y@ 2@ (P+q—4)Ya1?), (G.1)
consists of three parts:

1. the constant term Fy(R,t), defined as the average of F' with respect to (a”, 1) parametriz-
ing the grade (1) and (2) components in (G.1);
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2. the Abelian Fourier coefficients Fy p(R,t), defined as the average of the product of F

by a character e~2m(@u+Pe2) with (Q, P) in the lattice A%%,  _;

3. the non-Abelian Fourier coefficients Fyy, (R, t,a) for My € Z\{0}, defined as the average
of F times e~ 2™M1¥ gver 4 € [0, 1].

The non-Abelian Fourier coefficient can be further decomposed by diagonalizing a half-
dimensional Lagrangian subspace in the grade (1) space, e.g. dual to the lattice Ap_2 42
of magnetic charges. This leads to the ‘wave function representation’

. 1 .
Fuy (R, t,a',a%) = > > Fapy u(R,t; P — Myay) 2miFaz—3Miaraz)
c Ap=24-2 PEMiAp o,q-2+p
a MiAp—2,q—2
(G.2)

However, an alternative representation of the same non-Abelian Fourier coefficient can be
obtained by diagonalizing not only translations in ) and ag but also in S, corresponding to the
positive root in the s[(2) factor appearing in the grade 0 component of (G.1). This amounts to
performing the (Abelian) Fourier decomposition with respect to a different maximal parabolic
subgroup associated to the decomposition (4.4),

s0pq~ (P+q— 2)(_2) @ (gl & 50p,17q,1)(0) ®(p+aq-— 2)(2) ) (G.3)

The only task is to relate the coordinates (R, S, ,a',a?) appropriate to (G.1) to the co-
ordinates (R',¢’,a’) appropriate to (G.3). To this aim, let us parametrize the (SO(p) x
SO(q))\SO(p, q) Grassmannian in the parabolic gauge as

g<R7 527517§0)a17a27¢) - L(R7 SQ,CP)UQ(Sl)Ue,m.(ODl,CLQ)Ul(w) ) (G4>

with L(1,1,¢) C SO(p—2,q9—2), L(1,S2,0)U2(S1) C SL(2,R) and Ug . (a1, a2)U;(?)) in the
unipotent radical. One straightforwardly computes that

[L(R, 82, 0)Ua(S1) | Ue.m. (a1, a2) U1 () (G.5)
= L(R7 Sa, @)UZ(Sl)Ue.m. (a'lv O)Ue.m. (07 a2)U1(7/1 - %al : az)
= [L(R,S2,9¢)Uem.(a1,0)]Ua(S1)Uem. (0, az — S1a1)Ur (¢ — a1 - az + 351a7%) ,

where L(R, S, 0)Usm.(a1,0) € RT x SO(p — 1,9 — 1) and Us(S1)Uem.(0,a")U1 (") belongs
to the corresponding abelian unipotent radical. Using this parametrization, the non-abelian
Fourier coefficients can simply be obtained from the Fourier coefficients (4.44) by substituting

R = RS,

0, — | s (BM 4508 — 0 Pt jafan)) ifa=g-1
Pra — a1raMi ifa<qg—1
Q). = ﬁ(RMl_%(MQ_Gl‘P+%G12M1)> ifa=p—1
Pro — aipa M ifa<p—1
Q-d — M(¢y— %al cag + %Slaf) + P - (a2 — Sia1) + M2Sy (G.6)

where Q = (P, My, M) € Ap_1,4-1 split into P € Ap_o 49 and (M;, M) € II; 1, such that
Q? = P? —2M; M. The index p = 1 is combined with the index « ranging from 1 to p — 2 of
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SO(p — 2) to give the index « ranging from 1 to p — 1 of SO(p — 1), whereas the index pu = 2
corresponds to the index 1 in the decomposition (4.44). The non-Abelian Fourier coefficient
Fy, (R, t,at, a?) of Gfﬁ;g‘; is then

Ggg:gfnaval = Y 3 G((;;i)é(P,Mth) e27ri(M2al»P+%a12M1)Sl)627ri(P~a2—;M1a1-a2)
PEAP727q72 Mo€Z
(G.7)
with the classical action
Scl(Mla MQ,P) = \/(R2M1 + SQ(MQ —a1- P+ %CL12M1))2 + 2R252(PR — alRM1)2 ,
(G.8)
and
1 PO (P —ai M) Kos_, (21Sa)
a),(P, My, M ~(p—1.g— 2 o(PL—aipMy) Kas_, (275
Gy = 6 G (P M, My ) DD
1=0 (R2S2)™ = Sy’
s P ay g My Ka=r (27S0)
G((qu;gP,Mth) — 3(R252)q2 G((z;ﬁl,q 1>(P, M1,M2; ]5%2’807@1) v) ' ) 2 —
3 b 1\/5 S 2
cl
Kq79 (27"8@])
—4 47
Gy ) = —(R2S0)"% GtV (P My, My ) —T e (G.9)
S 2

cl

whereas the components with 1 = 1 are obtained by replacing Q. = Pr — a;M; for
a=1,p—2by Q’Lp_l in (G.6). The tensor (_?(ofgl’q*l)(P, M, Ms) is defined on SO(p—1,q—1)
from (4.45) in the parabolic gauge in which g(g—j, t,a1) = L((g—j)i7 (%)%, ©)Ucm.(a1,0), with
Q = (P, My, M), and with the index o = p — 1 interpreted as p = 1, according to (G.6).
Note that the tensor G’g’lgl’q_”(P, My, My) is not invariant under the shift of a; by a vector
€ € Ap_2 42, but satisfies

GO (P My, Moy &t ay + €) = GOV (P — eMy, My, My — e - P+ LMy 22 an)

(G.10)
which ensures that the decomposition (G.7) is consistent with the action of the Heisenberg
group generated by the grade 1 and 2 components in (G.1). Note that the wave function
representation (G.2) of the non-abelian Fourier coefficient can be recovered from (G.7) by a
Poisson resummation on M.

H Covariantized Polynomials

In the degeneration limit O(p,q) — O(p — 1,q — 1) studied in §4, the monomials Pc(yll)mai(Q)
with [ > 0 are of degree i — 2[, and defined by

1
. 1

E PV((;)(Q) =Qr,Qrs — E&,a

1=0

N (H.1)
P(Q) = Qs
POQ) =1,
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In the degeneration limit O(p, q) — O(p — 2, q — 2) studied in §5.1, the monomials P&ll)_,_ai

with [ > 0 are of degree i — 2[, and defined by

Z PLd(T0,8) = TrrTrs™ = -0y
(H.2)
“”(r) Qror

POT) =1,
For the Abelian rank-2 orbits (5.33), the polynomial are contracted with their matrix-
variate Bessel function as

2
ZP(Z) IW(F S)Bgl r?O(lii) ( ) = 6()%,576) FLa/\FLﬁKFLVTFLz;e 5'[“/3&“ (Z>
p)

af,yo v
=0
3 K 2
- E&aﬁ,(rm L) )B%M(Z)
3 v 75(0)
+ Topdasdi B (2)
> Pl S)BLAI Y (2) = rm,,,erafB%gZ)
1=0,1

5(75 T1s) B %)

Z P(l) MV(FM S Bg;l II;O?IQ) ( ) FL 'y,pFL 5,0(5””3& (Z)

o,y v
1=0,1 o z ¥
6 B (2)
TP
PO, $)BLY, )8 (2)=Ty54B (2)

2

P(OWB(O) (Z)_5<p05w>3 “(Z)

po,TU

For the singular contribution (D.4), the monomials ’Pgll’l%[) with I1,lo > 0 are of degree
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i — 211 — 2l2, and defined by

2 2
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(H.4)

where I' =T'1 + I's.

148



SciPost Physics

References

1]

2]

[14]

[15]

[16]

A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,
Phys. Lett. B379, 99 (1996), hep-th/9601029.

R. Dijkgraaf, G. W. Moore, E. P. Verlinde and H. L. Verlinde, FElliptic genera of
symmetric products and second quantized strings, Commun. Math. Phys. 185, 197
(1997), doi:10.1007/5002200050087, hep-th/9608096.

J. M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP
12, 002 (1997), hep-th/9711053.

J. M. Maldacena, G. W. Moore and A. Strominger, Counting BPS black holes in toroidal
type II string theory (1999), hep-th/9903163.

R. Dijkgraaf, H. L. Verlinde and E. P. Verlinde, Counting dyons in N = 4 string theory,
Nucl. Phys. B484, 543 (1997), hep-th/9607026.

D. P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04, 018 (2006),
hep-th/0510147.

D. Shih, A. Strominger and X. Yin, Recounting Dyons in N=4 string theory, JHEP 10,
087 (2006), doi:10.1088/1126-6708,/2006/10/087, hep-th/0505094.

J. R. David and A. Sen, CHL Dyons and Statistical Entropy Function from D1-D5
System, JHEP 11, 072 (2006), doi:10.1088/1126-6708/2006/11/072, hep-th/0605210.

M. C. N. Cheng and E. Verlinde, Dying Dyons Don’t Count, JHEP 09, 070 (2007),
doi:10.1088/1126-6708 /2007 /09 /070, 0706 .2363.

D. Gaiotto, Re-recounting dyons in N=4 string theory (2005), hep-th/0506249.

A. Dabholkar and D. Gaiotto, Spectrum of CHL dyons from genus-two partition func-
tion, JHEP 12, 087 (2007), doi:10.1088/1126-6708/2007/12/087, hep-th/0612011.

A. Dabholkar and S. Nampuri, Spectrum of dyons and black holes in CHL orbifolds using
Borcherds lift, JHEP 11, 077 (2007), doi:10.1088/1126-6708/2007/11/077, hep-th/
0603066.

G. Bossard, C. Cosnier-Horeau and B. Pioline,  Protected couplings and BPS
dyons in half-mazimal supersymmetric string vacua, Phys. Lett. B765, 377 (2017),
doi:10.1016/j.physleth.2016.12.035, 1608.01660.

M. Giinaydin, A. Neitzke, B. Pioline and A. Waldron, BPS black holes, quantum attrac-
tor flows and automorphic forms, Phys. Rev. D73, 084019 (2006), hep-th/0512296.

E. Kiritsis, Duality and instantons in string theory, In Superstrings and related matters.
Proceedings, Spring Workshop, Trieste, Italy, March 22-30, 1999, pp. 127-205 (1999),
hep-th/9906018.

G. Bossard and B. Pioline, Ezact VAR?* couplings and helicity supertraces, JHEP 01,
050 (2017), doi:10.1007/JHEP01(2017)050, 1610.06693.

149



SciPost Physics

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[26]

[27]

[28]

N. A. Obers and B. Pioline, Fisenstein series and string thresholds, Commun. Math.
Phys. 209, 275 (2000), doi:10.1007/s002200050022, hep-th/9903113.

M. B. Green, J. G. Russo and P. Vanhove, Automorphic properties of low en-
ergy string amplitudes in various dimensions, Phys.Rev. D81, 086008 (2010),
do0i:10.1103/PhysRevD.81.086008, 1001 .2535.

B. Pioline, R* couplings and automorphic unipotent representations, JHEP 03, 116
(2010), doi:10.1007/JHEP03(2010)116, 1001.3647.

M. B. Green, S. D. Miller and P. Vanhove, Small representations, string instantons, and
Fourier modes of Eisenstein series (with an appendiz by D. Ciubotaru and P. Trapa)
(2011% 1111.2983.

G. Bossard and A. Kleinschmidt, Loops in exceptional field theory, JHEP 01, 164
(2016), doi:10.1007/JHEP01(2016)164, 1510.07859.

G. Bossard, C. Cosnier-Horeau and B. Pioline, Four-derivative couplings and
BPS dyons in heterotic CHL orbifolds, SciPost Phys. 3(1), 008 (2017),
doi:10.21468/SciPostPhys.3.1.008, 1702.01926.

M. B. Green, S. D. Miller and P. Vanhove, SL(2,Z)-invariance and D-instanton con-
tributions to the DSR* interaction, Commun. Num. Theor. Phys. 09, 307 (2015),
doi:10.4310/CNTP.2015.v9.n2.a3, 1404.2192.

S. Chaudhuri, G. Hockney and J. D. Lykken, Maximally supersymmetric string theories
in D j 10, Phys. Rev. Lett. 75, 2264 (1995), hep-th/9505054.

S. Chaudhuri and J. Polchinski, Moduli space of CHL strings, Phys. Rev. D52, 7168
(1995), hep-th/9506048.

D. Persson and R. Volpato, Dualities in CHL-Models, J. Phys. A51(16), 164002 (2018),
doi:10.1088/1751-8121 /aab489, 1704.00501.

D. Persson and R. Volpato, Fricke S-duality in CHL models, JHEP 12, 156 (2015),
doi:10.1007/JHEP12(2015)156, 1504.07260.

A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates,
Gen. Rel. Grav. 40, 2249 (2008), doi:10.1007/s10714-008-0626-4, 0708.1270.

N. M. Paquette, R. Volpato and M. Zimet, No More Walls! A Tale of Modularity,
Symmetry, and Wall Crossing for 1/4 BPS Dyons (2017), 1702.05095.

A. Sen, How Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel
Modular Forms?, Gen. Rel. Grav. 43, 2171 (2011), doi:10.1007/s10714-011-1175-9,
1008.42009.

K. Bringmann and S. Murthy, On the positivity of black hole degeneracies in string
theory, Commun. Num. Theor Phys. 07, 15 (2013), doi:10.4310/CNTP.2013.v7.n1.a2,
1208.3476.

150



SciPost Physics

[32]

[33]

[34]

[35]

[46]

[47]

S. Banerjee, A. Sen and Y. K. Srivastava, Genus Two Surface and Quarter BPS Dyons:
The Contour Prescription, JHEP 03, 151 (2009), doi:10.1088/1126-6708,/2009/03/151,
0808.1746.

A. Sen, Walls of Marginal Stability and Dyon Spectrum in N=4 Supersymmetric String
Theories, JHEP 05, 039 (2007), doi:10.1088/1126-6708,/2007/05/039, hep-th/0702141.

A. Sen, Two centered black holes and N=4 dyon spectrum, JHEP 09, 045 (2007),
doi:10.1088/1126-6708/2007/09/045, 0705.3874.

A. Sen, Wall Crossing Formula for N=/4 Dyons: A Macroscopic Derivation, JHEP 07,
078 (2008), doi:10.1088/1126-6708/2008/07/078, 0803.3857.

F. Denef and G. W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11,
129 (2011), doi:10.1007/JHEP11(2011)129, hep-th/0702146.

G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dy-
onic N = / string states and black hole entropy, JHEP 12, 075 (2004), doi:10.1088/1126-
6708/2004/12/075, hep-th/0412287.

N. Banerjee, D. P. Jatkar and A. Sen, Asymptotic Expansion of the N=4 Dyon Degen-
eracy, JHEP 05, 121 (2009), doi:10.1088/1126-6708/2009/05/121, 0810.3472.

S. Murthy and B. Pioline, A Farey tale for N=4 dyons (2009), 0904 .4253.

S. Banerjee, A. Sen and Y. K. Srivastava, Partition Functions of Torsion > 1
Dyons in Heterotic String Theory on TS, JHEP 05, 098 (2008), doi:10.1088/1126-
6708,/2008/05/098, 0802. 1556.

N. Sakai and Y. Tanii, One Loop Amplitudes and Effective Action in Superstring The-
ories, Nucl. Phys. B287, 457 (1987), d0i:10.1016,/0550-3213(87)90114-3.

E. D’'Hoker and D. H. Phong, Two-loop superstrings VI: Non-renormalization
theorems and the 4-point function, Nucl. Phys. BT715, 3 (2005),
do0i:10.1016/j.nuclphysb.2005.02.043, hep-th/0501197.

E. D’Hoker, M. Gutperle and D. H. Phong, Two-loop superstrings and S-duality, Nucl.
Phys. B722, 81 (2005), doi:10.1016/j.nuclphysb.2005.06.010, hep-th/0503180.

P. Tourkine and P. Vanhove, An R* non-renormalisation theorem in N = 4 supergravity,
Class. Quant. Grav. 29, 115006 (2012), doi:10.1088/0264-9381/29/11/115006, 1202.
3692.

P. Tourkine and P. Vanhove, One-loop four-graviton amplitudes in N = 4 supergravity
models, Phys. Rev. D87(4), 045001 (2013), doi:10.1103/PhysRevD.87.045001, 1208.
1255.

Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Supersymmetry Constraints and String
Theory on K3, JHEP 12, 142 (2015), doi:10.1007/JHEP12(2015)142, 1508.07305.

D. J. Gross and J. H. Sloan, The Quartic Effective Action for the Heterotic String,
Nucl. Phys. B291, 41 (1987), doi:10.1016/0550-3213(87)90465-2.

151



SciPost Physics

[48]

[49]

[50]

[51]

[52]

[53]

[60]

[61]

[62]

[63]

B. Pioline and S. Vandoren, Large D-instanton effects in string theory, JHEP 07, 008
(2009), doi:10.1088/1126-6708,/2009/07/008, 0904 .2303.

N. Marcus and J. H. Schwarz, Three-Dimensional Supergravity Theories, Nucl. Phys.
B228, 145 (1983), doi:10.1016/0550-3213(83)90402-9.

B. de Wit, H. Nicolai and A. K. Tollsten, Locally supersymmetric d = 3 nonlinear sigma
models, Nucl. Phys. B392, 3 (1993), hep-th/9208074.

J. Greitz and P. S. Howe, Half-maximal supergravity in three dimensions: su-
pergeometry, differential forms and algebraic structure, ~JHEP 06, 177 (2012),
doi:10.1007/JHEP06(2012)177, 1203.5585.

P. S. Howe and M. I. Leeming, Harmonic superspaces in low dimensions, Class. Quant.
Grav. 11, 2843 (1994), doi:10.1088/0264-9381/11/12/004, hep-th/9408062.

G. Bossard, P. S. Howe and K. S. Stelle, The Ultra-violet question in mazimally super-
symmetric field theories, Gen. Rel. Grav. 41, 919 (2009), doi:10.1007/s10714-009-0775-0,
0901.4661.

Y. Michel, B. Pioline and C. Rousset, N=4 BPS black holes and octonionic twistors,
JHEP 11, 068 (2008), doi:10.1088/1126-6708/2008/11/068, 0806 .4563.

G. Bossard, H. Nicolai and K. S. Stelle, Universal BPS structure of stationary supergrav-
ity solutions, JHEP 07, 003 (2009), doi:10.1088/1126-6708/2009/07/003, 0902.4438.

G. Bossard, P. S. Howe and K. S. Stelle, Invariants and divergences in half-maximal
supergravity theories, JHEP 07, 117 (2013), doi:10.1007/JHEP07(2013)117, 1304.7753.

I. Antoniadis, S. Hohenegger, K. S. Narain and E. Sokatchev, Harmonicity in
N=/ supersymmetry and its quantum anomaly, Nucl. Phys. B794, 348 (2008),
d0i:10.1016/j.nuclphysb.2007.11.005, 0708.0482.

I. Antoniadis, S. Hohenegger and K. S. Narain, N=4 Topological Amplitudes and String
Effective Action, Nucl. Phys. B771, 40 (2007), doi:10.1016/j.nuclphysb.2007.02.011,
hep-th/0610258.

A. Klemm, M. Poretschkin, T. Schimannek and M. Westerholt-Raum, On direct inte-
gration for mirror curves of genus two and an almost meromorphic Siegel modular form,
Commun. Number Theory Phys. 10(4), 587 (2016), doi:10.4310/CNTP.2016.v10.n4.al,
1502.00557.

D. Bump, The Rankin-Selberg method: a survey, In Number theory, trace formulas and
discrete groups (Oslo, 1987), pp. 49-109. Academic Press, Boston, MA (1989).

B. McClain and B. D. B. Roth, Modular invariance for interacting bosonic strings at
finite temperature, Commun.Math.Phys. 111, 539 (1987), doi:10.1007/BF01219073.

L. J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections
to gauge coupling constants, Nucl. Phys. B355, 649 (1991).

B. Pioline, Rankin-Selberg methods for closed string amplitudes, Proc.Symp.Pure Math.
88, 119 (2014), doi:10.1090/pspum/088/01457, 1401 .4265.

152



SciPost Physics

[64]

[65]

[66]

[67]

[68]

[69]

[73]

[74]

[75]

[76]

[77]

[78]

I. Florakis and B. Pioline, On the Rankin-Selberg method for higher genus string ampli-
tudes, Commun. Num. Theor. Phys. 11, 337 (2017), doi:10.4310/CNTP.2017.v11.n2.a4,
1602.00308.

M.-F. Vignéras, Séries théta des formes quadratiques indéfinies, Springer Lecture Notes
627, 227 (1977).

N. Berkovits, M. B. Green, J. G. Russo and P. Vanhove, Non-renormalization conditions
for four-gluon scattering in supersymmetric string and field theory, JHEP 11, 063
(2009), doi:10.1088/1126-6708,/2009/11/063, 0908.1923.

C. S. Herz, Bessel functions of matriz argument., Ann. Math. (2) 61, 474 (1955),
d0i:10.2307/1969810.

S. Banerjee and A. Sen, S-duality Action on Discrete T-duality Invariants, JHEP 04,
012 (2008), doi:10.1088/1126-6708/2008/04/012, 0801.0149.

A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N =/ string theory,
JHEP 05, 059 (2011), doi:10.1007/JHEP05(2011)059, 0803.2692.

S. Chaudhuri and D. A. Lowe, Type IIA heterotic duals with maximal supersymmetry,
Nucl. Phys. B459, 113 (1996), doi:10.1016/0550-3213(95)00589-7, hep-th/9508144.

J. H. Schwarz and A. Sen, Type IIA dual of the siz-dimensional CHL compactification,
Phys. Lett. B357, 323 (1995), hep-th/9507027.

M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal compactification and symmetry
breaking in open string theories, Nucl. Phys. B376, 365 (1992), doi:10.1016/0550-
3213(92)90129-Y.

N. A. Obers and B. Pioline, Ezact thresholds and instanton effects in D = 8 string
theories, JHEP 07, 003 (2000), doi:10.1088/1126-6708/2000/07/003, hep-th/0006088.

E. Kiritsis, N. A. Obers and B. Pioline, Heterotic / type II triality and instantons on
K(3), JHEP 01, 029 (2000), doi:10.1088/1126-6708/2000/01/029, hep-th/0001083.

Y .-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, N = 4 superconformal
bootstrap of the K3 CFT, JHEP 05, 126 (2017), doi:10.1007/JHEP05(2017)126, 1511.
04065.

J. A. Harvey and G. W. Moore, Five-brane instantons and R? couplings in N=/
string theory, Phys. Rev. D57, 2323 (1998), do0i:10.1103/PhysRevD.57.2323, hep-th/
9610237.

A. Gregori, E. B. Kiritsis, C. Kounnas, N. A. Obers, P. M. Petropoulos and B. Pioline,
R? corrections and non-perturbative dualities of N' = 4 string ground states, Nucl. Phys.
B510, 423 (1998), hep-th/9708062.

M. B. Green, J. G. Russo and P. Vanhove, String theory dualities and supergravity
divergences, JHEP 1006, 075 (2010), doi:10.1007/JHEP06(2010)075, 1002 .3805.

153



SciPost Physics

[79]

[80]

[81]

[83]

[84]

[85]

[36]

[87]

[33]

[89]

Z. Bern, S. Davies and T. Dennen, The Ultraviolet Structure of Half-Mazximal Super-
gravity with Matter Multiplets at Two and Three Loops, Phys. Rev. D88, 065007 (2013),
do0i:10.1103/PhysRevD.88.065007, 1305.4876.

J. Polchinski and E. Witten, Ewvidence for heterotic - type I string duality, Nucl. Phys.
B460, 525 (1996), doi:10.1016,/0550-3213(95)00614-1, hep-th/9510169.

C. Bachas, C. Fabre, E. Kiritsis, N. Obers and P. Vanhove, Heterotic / type I duality and
D-brane instantons, Nucl.Phys. B509, 33 (1998), doi:10.1016/S0550-3213(97)00639-1,
hep-th/9707126.

M. B. Green and A. Rudra, Type I/heterotic duality and M-theory amplitudes, JHEP
12, 060 (2016), doi:10.1007/JHEP12(2016)060, 1604.00324.

E. Gottschling, FExplizite Bestimmung der Randfidchen des Fundamentalbereiches der
Modulgruppe zweiten Grades., Math. Ann. 138, 103 (1959), doi:10.1007/BF01342938.

V. A. Gritsenko and V. V. Nikulin, Igusa modular forms and’the simplest’lorentzian
kac-moody algebras, Sbornik: Mathematics 187(11), 1601 (1996).

J. R. David, D. P. Jatkar and A. Sen, Product representation of Dyon partition function
in CHL models, JHEP 06, 064 (2006), doi:10.1088/1126-6708/2006/06/064, hep-th/
0602254.

J. R. David, D. P. Jatkar and A. Sen, Dyon spectrum in generic N=4 supersymmetric
Z(N) orbifolds, JHEP 01, 016 (2007), doi:10.1088/1126-6708/2007/01/016, hep-th/
0609109.

T. Ibukiyama, On Siegel modular varieties of level 3., Int. J. Math. 2(1), 17 (1991),
doi:10.1142/50129167X9100003X.

H. Aoki and T. Ibukiyama, Simple graded rings of Siegel modular forms, dif-
ferential operators and Borcherds products., Int. J. Math. 16(3), 249 (2005),
doi:10.1142/50129167X05002837.

A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing, and
Mock Modular Forms (2012), 1208.4074.

S. Zwegers, Mock theta functions, PhD dissertation, Utrecht University (2002).
S. Murthy and B. Pioline, Mock modularity from black hole scattering states To appear.

K. Bringmann, L. Rolen and S. Zwegers, On the fourier coefficients of negative index
meromorphic jacobi forms, Research in the Mathematical Sciences 3(1), 5 (2016).

D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid
decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 415 (1981).

C. Angelantonj, I. Florakis and B. Pioline, A new look at one-loop integrals in string
theory, Commun.Num.Theor.Phys. 6, 159 (2012), 1110.5318.

C. Angelantonj, I. Florakis and B. Pioline, One-Loop BPS amplitudes as BPS-state
sums, JHEP 1206, 070 (2012), doi:10.1007/JHEP06(2012)070, 1203.0566.

154



SciPost Physics

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

W. Lerche, B. Nilsson, A. Schellekens and N. Warner, Anomaly cancelling terms from
the elliptic genus, Nucl.Phys. B299, 91 (1988), doi:10.1016/0550-3213(88)90468-3.

M. Abe, H. Kubota and N. Sakai, Loop Corrections to the E(8) X E(8) Heterotic String
Effective Lagrangian, Nucl. Phys. B306, 405 (1988), doi:10.1016,/0550-3213(88)90699-2.

C. Angelantonj, I. Florakis and B. Pioline,  Rankin-Selberg methods for closed
strings on orbifolds, Journal of High Energy Physics 2013(7), 181 (2013),
doi:10.1007/JHEPO07(2013)181, 1304.4271.

A. Mikhailov, Momentum lattice for CHL string, Nucl. Phys. B534, 612 (1998),
do0i:10.1016/S0550-3213(98)00605-1, hep-th/9806030.

A. Dabholkar, F. Denef, G. W. Moore and B. Pioline, Precision counting of small black
holes, JHEP 10, 096 (2005), doi:10.1088/1126-6708/2005/10/096, hep-th/0507014.

R. Dijkgraaf, E. P. Verlinde and H. L. Verlinde, C' = 1 Conformal Field Theories on
Riemann Surfaces, Commun. Math. Phys. 115, 649 (1988), doi:10.1007/BF01224132.

K. Aoki, E. D’Hoker and D. H. Phong, Two loop superstrings on orbifold com-
pactifications, Nucl. Phys. B688, 3 (2004), doi:10.1016/j.nuclphysb.2004.04.001,
hep-th/0312181.

B. Pioline and R. Russo, Infrared divergences and harmonic anomalies in the two-
loop superstring effective action, JHEP 12, 102 (2015), doi:10.1007/JHEP12(2015)102,
1510.024009.

155



	0 Résumé long en français
	0.1 Introduction
	0.1.1 Trous noirs
	0.1.2 Supergravité
	0.1.3 Théorie des cordes
	0.1.4 Dualités non-perturbatives en théorie des champs

	0.2 Amplitudes de supercordes et développement perturbatif
	0.3 Contraintes non-perturbatives et de supersymétrie
	0.3.1 Conjecture pour le couplage exact F4
	0.3.2 Conjecture pour le couplage exact 2()4

	0.4 Compter les microétats de trou noir avec des instantons
	0.5 Questions ouvertes

	1 Introduction
	1.1 The ultraviolet catastrophe of quantum gravity
	1.2 Supergravities
	1.3 String theory
	1.4 Non-perturbative dualities
	Structure of the manuscript

	2 Superstring amplitudes and perturbative expansion
	2.1 Closed string theory amplitudes
	2.1.1 Bosonic string
	2.1.2 Superstrings

	2.2 One-loop four-photon couplings
	2.3 Two-loop 2F4 coupling

	3 Non-perturbative and supersymmetry constraints
	3.1 Dualities and applications
	3.1.1 Strong-weak duality in four-dimensional string theory
	3.1.2 Strong-weak duality in three dimensions

	3.2 CHL models in heterotic string
	3.2.1 CHL moduli space in four dimensions
	3.2.2 CHL moduli space in three dimensions

	3.3 Exact F4 coupling from supersymmetry constraints
	3.3.1 Conjecture for exact F4 coupling

	3.4 Exact 2F4 coupling and differential Ward identities
	3.4.1 Conjecture for 2()4


	4 Black hole counting from instantonic corrections
	4.1 The black hole entropy function
	4.2 Dyon counting and marginal stability
	4.3 Quarter-BPS solutions in N=4 supergravity
	4.4 Black holes degeneracy from exact 2F4 coupling
	4.4.1 Decompactification limit of exact 2()4 couplings


	5 Outlook
	Bibliography
	Publications

