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Chapter 0

Résumé long en français

Ce résumé du manuscrit de thèse en français est une directive de l’École Doctorale de
Physique en Île-de-France pour faciliter la propagation du savoir en langue française.
Cette tâche est doublement délicate, principalement en raison de la difficulté à définir le
lectorat d’un tel document : d’une part, bien qu’une introduction de base soit nécessaire,
il ne s’agit pas de se substituer à un travail de vulgarisation, d’autre part, si le travail
exposé dans ce manuscrit est effectivement original, il ne peut prétendre à une présentation
francophone autonome, c’est-à-dire indépendante de la recherche non-francophone publiée
durant le demi-siècle dernier. Pour ces raisons, et pour tenter de répondre convenablement
à cette double attente, ce résumé propose une approche à deux têtes, c’est-à-dire une
traduction partielle du chapitre 1 d’introduction, nécessaire à la contextualisation de
ce travail de thèse, ainsi qu’une rapide présentation des résultats des chapitres 2, 3 et 4,
permettant au lectorat plus curieux de se repérer dans la partie anglophone du manuscrit.

Dans le reste du document, nous utilisons un système standard de conventions où
~ = c = 1, c’est-à-dire qu’une unité de temps est égale à une unité de longueur, et à
l’inverse d’une unité d’énergie. La signature utilisée pour l’espace-temps est (−,+, . . . ,+).

0.1 Introduction

La gravité quantique est l’une des grandes problématiques de la physique théorique mod-
erne. Sa version classique, telle qu’elle fut exprimée par Newton et Einstein, ne permet
pas d’en établir une description microscopique malgré la longue liste d’outils théoriques
développés lors du siècle dernier. Obtenir une description complète de la théorie de
gravité fut considéré comme un problème majeur, notamment pour pouvoir expliquer des
phénomènes physiques se déroulant dans des régions de l’espace-temps où la force de grav-
ité est réputée extrêmement forte, comme les trous noirs ou "l’origine de l’espace-temps".
Au-delà des applications pratiques, ce problème est souvent énoncé comme celui pouvant
offrir la pièce de puzzle manquante entre les théories quantiques décrivant la physique
des particules, les théories quantiques des champs, et la théorie classique décrivant la
dynamique de l’espace-temps, à savoir la théorie de la relativité générale d’Einstein.

À ce propos, l’équation d’Einstein illustre ses deux faces élégamment

Rµν −
1
2gµνR = 8πGTµν . (1)
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Le membre gauche de (1) décrit une géométrie non-quantifiée (classique) de l’espace-
temps, tandis que le côté droit décrit de la matière quantifiée. Ce paradoxe n’a pas
été exploré davantage à l’époque des travaux d’Einstein, car la physique macroscopique
(par opposition à la physique microscopique) était suffisante pour décrire tous les objets
astrophysiques du milieu interstellaire nous entourant.

Tout laisse à croire que la nature quantique de l’espace-temps serait observable à
l’échelle de Planck M2

Pl = ~c
G ∼ 1028 eV, où les effets quantique et gravitationnels sont

comparables. Malheureusement, cette échelle d’énergie est hors d’atteinte de tout colli-
sionneur artificiel – les techniques actuelles nous permettant de sonder des énergies de
collision de l’ordre 1013 eV, malgré tout, de nombreuses études en théories effectives des
champs et modèles phénoménologiques ont été inspirées par la recherche en gravité quan-
tique [3, 4].

Comme présentés dans l’introduction anglophone de la suite de ce manuscrit, les deux
obstacles majeurs à la quantification de la gravité sont les problèmes dits d’unitarité
et de renormalisabilité. Pour y remédier, deux grands paradigmes ont émergé dans le
dernier quart du XXe siècle, deux approches distinctes qui diffèrent sur la question de
la quantification. D’un côté, la gravité est considérée comme une théorie complètement
non-perturbative, et les problèmes sus-mentionnés d’unitarité et de renormalisabilité sont
interprétés comme des artefacts de l’approche perturbative. Cette approche s’appelle
la Gravité Quantique à Boucles, où l’on utilise la notion de boucle dans l’espace pour
mesurer la courbure de celui-ci, et l’on quantifie la dite variable de boucle. De l’autre
côté, la gravité classique est considérée comme la limite à basse énergie d’une théorie
plus fondamentale, et l’on décide de quantifier la métrique perturbativement autour d’un
espace-temps plat, avec un contenu de matière plus riche et symétrique que celui connu,
comme en supergravité ou en théorie des cordes. Cette approche est celle poursuivie dans
le reste de ce manuscrit.

0.1.1 Trous noirs

Les théories couplées à la gravité permettent l’existence de solutions d’espace-temps de
type trous noirs. Décrire leur entropie – que nous présentons maintenant – est un des
points centraux de [BCHP1], [BCHP3].

Les trous noirs sont caractérisés par une surface hypothétique, l’horizon des éven-
nements, ayant la propriété spéciale d’être une surface de type lumière : tout objet se
trouvant à sa surface a deux alternatives, tomber vers l’intérieur du trou noir si sa vitesse
est inférieure à celle de la lumière, ou bien se déplacer tangent à celle-ci s’il évolue à
la vitesse de la lumière. Les objets voyageant à une vitesse supérieure à celle de la
lumière pourraient, en principe, échapper à l’attraction du trou noir, mais ce comporte-
ment contredit le principe de causalité, ce qui est formellement interdit dans toute théorie
raisonnable. Cependant, les effets quantiques, comme la polarisation du vide, permettent
à certaines particules de s’en échapper (voir figure 1). Des paires particule-antiparticule se
séparent constamment à l’horizon des événements, occasionant une radiation semblable à
celle d’un corps noir de température finie. Cette température dépend des caractéristiques
du trou noir, et est appelée la température de Hawking [10, 23]

T = ~κ
2π , (2)
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Fig. 1 Illustration de l’émission de matière par un trou noir. Une paire
particule-antiparticule se créé spontanément au voisinage de l’horizon des événe-
ments. L’une d’entre elles tombe à l’intérieur du trou noir tandis que l’autre s’en
échappe. Particules et antiparticules sont représentées par une flèche.

où κ est appelée gravité de surface, mesurant la force de gravité à l’horizon. De plus,
les trous noirs se comportent comme des systèmes thermodynamiques caractérisés par
leur température et d’autres variables d’état1: le théorème de ’calvitie’ – ou d’absence de
chevelure2 – affirme qu’un trou noir est entièrement décrit par sa masse, ses charges et
son moment angulaire, impliquant que son énergie interne peut être perçue comme une
fonction d’état.3 Cette analogie avec la fonction d’état d’un système thermodynamique a
été utilisée pour identifier [24]

SBH = A

4~G , (3)

la célèbre entropie de Bekenstein-Hawking4. Dans le paragraphe anglophone 4.1, nous
présentons une méthode reconnue pour calculer l’entropie d’une certaine classe de solu-
tions de trou noir, qui prend en compte les possibles corrections à l’action d’Einstein-
Hilbert.

Ce résultat est pour le moins étrange, car on s’attend à voir l’entropie d’un objet
étendu dans l’espace varier proportionnellement à son volume. Cependant, la loi (3) peut
sembler raisonnable si l’on prend en compte la compression arbitrairement grande de
l’espace dans la direction radiale au voisinage de l’horizon du trou noir, comme illustré
figure 2. Si cette analogie est correcte, il est naturel de se poser la question suivante
: est-ce qu’une théorie quantique de la gravité peut permettre une compréhension en
termes statistiques de cette entropie ? En effet, l’entropie thermodynamique d’un système
satisfait à la célèbre loi de Boltzmann

S = kB ln Ω , (4)
1La température, le volume, la pression et autres quantités macroscopiques qui sont définies à l’équilibre

thermodynamique seulement.
2Son nom le plus courant étant "no-hair theorem".
3Par définition, une fonction d’état ne dépend que des variables d’état du système.
4Pour donner un ordre de grandeur, un trou noir de la taille de notre soleil aurait une très petite

température T ∼ 10−7K, et une très grande entropie S = 1077.
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Fig. 2 Illustration de la chute d’un objet vers l’intérieur d’un trou noir depuis
un point de vue externe (en bleu) : la géométrie de l’espace-temps déforme
infiniment la forme de l’objet vers une surface en deux dimensions, et de la
même manière, ralentit infiniment le temps nécessaire pour que l’objet passe à
travers l’horizon. Depuis le point de vue externe, les objets ’tombant’ dans le
trou noir ne font que s’accumuler tout autour sur une sphère entourant l’horizon.

où Ω est le nombre de microétats accessibles à un même état d’équilibre thermodynamique.
Dans [BCHP1], [BCHP3], nous concentrons notre attention sur une classe particulière
d’objets où cette question a été répondue affirmativement, une sous-classe de solutions de
trou noir extrémales [25]. Dans le paragraphe anglophone §4.2, nous présentons un cas
particulier de théorie permettant une compréhension statistique des microétats de trous
noirs extrémaux, où il a été montré avec grande précision que le dénombrement de ces
microétats concorde avec l’entropie classique des trous noirs correspondants.

Les variables thermodynamiques d’un trou noir extrémal saturent l’inégalité définis-
sant l’état à température nulle. Nous nous concentrerons sur le cas de solutions sta-
tionnaires à symétrie sphérique avec charges électromagnétiques – appelée la solution de
Reissner-Nordström – où l’inégalité sur les charges est M2 ≥ Q2 + P 2, avec Q la charge
électrique et P la charge magnétique. L’entropie de Bekenstein-Hawking de ces trous
noirs extrémaux (1.8) peut-être obtenue à partir d’une théorie dite de Einstein-Maxwell
en quatre dimensions

SBH(Q,P ) = π(Q2 + P 2) . (5)

Il est important de souligner que, même en tant qu’approximation classique, l’expression (5)
ne dépend d’aucun paramètre de la théorie. Dans une théorie invariante sous difféo-
morphismes, l’entropie d’un trou noir correspond à l’intégrale d’une 2-forme, charge de
Noether définie par Wald, sur l’horizon [26]. L’entropie de trous noirs extrémaux, tels
que (5), est aussi indépendante de la valeur asymptotique des champs scalaires, ce qui
est une conséquence de la généralisation du mécanisme d’attracteur pour les solutions
de trous noirs de supergravité [27, 28]. Ceci peut être facilement compris en écrivant la
fonction entropie comme une fonctionnelle de la densité lagrangienne, tel que décrit dans
le paragraphe anglophone §4.1.

Dans certaines théories où les couplages correspondent à la valeur asymptotique d’un
champs dynamique, comme la théorie des cordes, cela implique que l’entropie d’un système
ne change pas lorsque l’on varie le couplage. On peut ainsi décrire ses microétats à
faible couplage, lorsque les techniques actuelles le permettent, et prolonger le résultat aux
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régimes de couplage suffisamment forts, lorsque le système devient un trou noir.
Dans les paragraphes anglophones §4.1 et §4.3, nous proposons une introduction des

types de solutions de trous noirs pertinentes pour le reste de ce manuscrit. Ce sont des so-
lutions sphériques de supergravité en quatre dimensions, et dans le paragraphe anglophone
§4.2 nous présentons le comptage de leurs microétats à partir d’une leur description en
théorie des cordes. Enfin, dans le paragraphe anglophone §4.4, nous montrons comment
les calculs publiés dans [BCHP3] permettent de retrouver et de généraliser les résultats
présentés en §4.2.

0.1.2 Supergravité

Les théories de supergravité constituent une tentative de modifier le comportement ul-
traviolet de la gravité d’Einstein, et peuvent également être la limite de basse énergie
d’une théorie des cordes telle que celles que l’on considérera dans la suite de ce manuscrit.
L’espace-temps habituel est plongé dans un espace de dimension supérieure appelé su-
perespace, où les nouvelles coordonnées sont définies par des nombres de Grassmann an-
ticommutants – ou supernombres, i.e. les degrés de liberté fermioniques.

Les symétries de cette nouvelle géométrie constituent un groupe de Poincaré (trans-
lations, rotations, boosts) étendu par des symétries locales anticommutantes appelées
supercharges, et se transformant comme des spineurs sous la symétrie de Lorentz. Ces
symétries locales contraignent également les champs de matière contenus dans la théorie
quantique des champs, ce qui simplifie drastiquement la dynamique de ces théories (voir
ci-après, tableau 1). Cette extension du groupe de Poincaré est toute particulière dans la
mesure où elle correspond au seul exemple possible où les symétries de l’espace-temps se
mélangent non-trivialement avec les symétries internes de la théorie quantique des champs
sous-jacente, ce qui contredit l’esprit du théorème de Coleman-Mandula [29].

Les théories de supergravité sont généralement classifiées par leur nombre de super-
charges : de 4 en quatre dimensions d’espace-temps à 32 pour l’extension maximale,
cette dernière étant définie en toute dimensions jusqu’à D = 11 [30, 31]. Par la suite,
nous référerons au nombre N de supercharges spinorielles en quatre dimensions seulement
lorsque nous nous restreindrons à quatre dimensions, i.e. N = 8 et N = 4 correspon-
dent respectivement aux supergravités maximales et demi-maximales en quatre dimen-
sions d’espace-temps. De plus, les supergravités peuvent être séparées en deux types
de construction, les constructions (2, 2) et les constructions (4, 0).5 Ces dernières sont
celles que nous étudierons dans le reste de ce manuscrit. En particulier, dans le para-
graphe anglophone §3.1.1, nous présentons une réduction dimensionnelle de supergravité
demi-maximale de dix à quatre dimensions, et nous exhibons la manière avec laquelle les
champs de jauge et les modules peuvent s’arranger dans des représentations des groupes
de symétrie globaux listés dans le tableau 1.

Les théories de supergravité contenant une grande extension de supersymétrie, dont
certaines son listées tableau 1, ont un spectre bien plus riche que celui de la gravité
d’Einstein (qui, par comparaison, se restreint à un seul champ de spin 2). Comme dit
plus haut, cette complexité est réduite au niveau de l’action effective ou des amplitudes
de diffusion, notamment à cause des contraintes de supersymétrie, mais aussi à cause des

5Cette notation fait référence à la chiralité des supercharges du modèle sigma de théorie des cordes –
voir la section suivante – à ne pas confondre avec la supersymétrie d’espace-temps.
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s = 2 s = 3
2 s = 1 s = 1/2 s = 0

N = 8 1 8 28 56 70 E7

N = 4

1 4 6 4 2 SO(6)× SL(2,R)
1 4 6+2 4+8 2+12 SO(2, 6)× SL(2,R)
1 4 6+4 4+16 2+24 SO(4, 6)× SL(2,R) N=7
1 4 6+6 4+24 2+36 SO(6, 6)× SL(2,R) N=5
1 4 6+10 4+40 2+60 SO(10, 6)× SL(2,R) N=3
1 4 6+14 4+56 2+84 SO(14, 6)× SL(2,R) N=2
1 4 6+22 4+88 2+132 SO(22, 6)× SL(2,R) N=1

Table 1: Champs de matière classifiés par spin contenus dans des théories avec spin
maximal 2 en quatre dimensions de certaines supergravités N = 8 et N = 4. La taille
des représentations de spin est fixée depuis le plus haut spin par supersymétrie. Les
deux premières lignes correspondent à des supergravités pures (champs de gravité de
spin 2 et partenaires supersymétriques uniquement), et les suivantes sont couplées à un
nombre spécifique de multiplets vectoriels préservant la symétrie globale non-perturbative
SL(2,R). Les deux dernières colonnes correspondent aux symétries globales attendues
du spectre de masse nulle, et au paramètre d’orbifold de la théorie CHL avec orbifold ZN
correspondante.

symétries géométriques, ou symétries globales. Une partie de ce manuscrit a pour but de
montrer les simplifications engendrées par les symétries géométriques, et de même que les
contraintes imposées par supersymétrie sur les amplitudes de diffusion, comme rapporté
dans les paragraphes anglophones §3.3 et §3.4.

Ces supergravités ont été étudiées vers la fin des années 70 et 80, après quoi s’est
développé un consensus selon lequel les contraintes de supersymétrie ne seraient pas suff-
isantes pour éradiquer complètement le problème des divergences non-renormalisables.
Cependant, ces théories ont concentré un regain d’intérêt lors des dernières années et il
a été montré par le biais de calculs explicites que la supergravité N = 8 ne rencontre
aucun divergence pathologique en dimension d’espace-temps D < 4+6/L avec L = 2, 3, 4
boucles (R4, D2R4) [32, 33]. Ce résultat redonna un élan d’optimisme, étant donné
l’impressionante concordance avec le comportant ultraviolet d’une théorie de jauge pure,
N = 4 super-Yang-Mills, qui est elle-même finie dans l’ultraviolet. Cependant, des études
utilisant les symétries de dualité [34, 35, 36, 37, 38] ont prédit un changement abrupt dans
le comportement critique de la supergravité N = 8 à L = 5 boucles à cause d’un possible
contre-terme D8R4. Si ce contre-terme ne s’annule pas à 5 boucles, alors il y a fort à
parier que la supergravité N = 8 est finie seulement pour D < 2 + 14/L pour L >= 5,
prédisant ainsi une divergence non-renormalisable en quatre dimensions à 7 boucles et
au-delà. De fait, la présence de D8R4 à 5 boucles a été récemment confirmée par un
calcul explicite [39].

Dans ce manuscrit, nous ne nous intéresserons pas au cas de la supergravité N = 8 et
nous concentrerons nos efforts sur les supergravités N = 4 présentées dans le tableau 1.
À cause de leur supersymétrie N = 4, ces supergravités peuvent être couplées à des mul-
tiplets de matière [40] qui, par ailleurs, causent davantage de divergences. La richesse de
leur structure leur permet également d’être réalisées en tant que limite à basse énergie de
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différents modèles de théorie des cordes, et, en particulier, la théorie des cordes hétéro-
tique compactifiée sur T 6 avec un orbifold ZN que nous décrivons plus en détails dans
le chapitre anglophone 2. La présence de l’orbifold a notamment pour effet de réduire le
spectre des états physiques, comme on peut le constater depuis le tableau 1.

0.1.3 Théorie des cordes

La théorie des cordes, disposant d’une longue et intéressante histoire, sera le centre du
reste de ce manuscrit. Elle fut initialement développée autour de l’année 1968 avec
l’amplitude de Veneziano, et plus tard, l’amplitude de Virasoro-Shapiro

MVS(s, t, u) = Γ(−1− α′s/4)Γ(−1− α′t/4)Γ(−1− α′u/4)
Γ(−2− α′t/4− α′u/4)Γ(−2− α′s/4− α′u/4)Γ(−2− α′s/4− α′t/4) .

(6)
Celles-ci étaient sensées donner une description du spectre de matière hadronique provo-
qué par les interactions fortes [41, 42]. Dans (6), s, t et u sont les invariants de Mandelstam
définis par les quatre impulsions entrantes, respectivement, −(k1 + k2)2, −(k1 + k4)2 et
−(k1 + k3), et α′ fut appelée la pente de Regge. Il fut compris plus tard que ces ampli-
tudes décrivent l’interaction de cordes ouvertes et fermées de taille `s =

√
α′ et de tension

T = 1/(2πα′),6 tandis qu’une particule de masse nulle et de spin 2 était identifiée dans
le spectre des cordes fermées comme une possible candidate pour le graviton [43]. Il fut
ensuite rapidement compris que la quantification, l’invariance sous le groupe de Lorentz,
et les contraintes d’unitarité imposent à ces cordes de se propager dans un espace à 26
dimensions d’espace-temps.7. De plus, leur spectre contient une infinité d’états, générés
par les oscillations se déplaçant le long d’une corde et dont la masse et le spin s’expriment
en terme du nombre de quantas d’oscillations n

m2 ∝ n

α′
, J ≤ α′m2 + 1, n = −1, 0, 1, . . . , +∞ . (7)

Cette candidate pour une théorie de la gravité fut plus attirante qu’aucune autre théorie
des champs, car elle a la particularité d’être manifestement finie dans l’ultraviolet. Ceci
est dû notamment à la taille finie de la longueur de la corde `s, impliquant des interactions
non-locales. En effet, à une distance très supérieure à la taille d’une corde, celles-ci se com-
portent comme des particules ponctuelles pouvant se rencontrer. De plus près, leur taille
finie donne une épaisseur à leur trajectoire dans l’espace-temps, que l’on ne nomme plus
ligne d’univers, mais feuille d’univers. Cette feuille d’univers à deux dimensions héberge
une théorie des champs conforme (CFT), dont les symétries permettent par ailleurs une
compréhension alternative de la dimension critique D = 26 [44], et impose également
au graviton de satisfaire le graviton les équations d’Einstein (1.1) comme équations du
mouvement, avec des corrections à tous les ordres en α′. Le gros problème de ces théories,
aussi bien celle des cordes ouvertes que celle des cordes fermées, est qu’elles contiennent
un tachyon (l’état correspondant à n = −1, dont la masse est un imaginaire pur) qui rend

6Notons que l’amplitude de Virasoro-Shapiro est invariante sous l’échange des trois variables de Man-
delstam, comme attendu pour une amplitude de cordes fermées à l’ordre des arbres, tandis que l’amplitude
de Veneziano, décrivant l’interaction de cordes ouvertes, n’est invariante que sous l’échange de s et t.

7Cette contrainte sur la dimension d’espace-temps protège l’unitarité de la théorie dans la mesure où
elle élimine les états de norme négative du spectre.
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incohérente la théorie en en brisant la causalité. Une théorie des supercordes fut alors
élaborée plus tard, et Gliozzi, Scherk et Olive proposèrent un mécanisme pour projetter
cet état tachyonic hors du spectre physique [45]. Les théories de supercordes vivent en 10
dimensions d’espace-temps, et disposent d’un secteur d’états de masse nulle contenant le
spectre de la supergravité maximale [46] mentionné dans la section précédente.

La supergravité maximale a ainsi été étudiée longuement pour savoir si elle était
cohérente par elle-même, ou si elle devait être complétée à une théorie des cordes afin
d’obtenir un comportement unitaire et régulier dans l’ultraviolet. En effet, les amplitudes
de théorie des cordes sont caractérisées par leur comportement régulier dans la limite des
hautes énergies. En utilisant les invariants cinématiques de Mandelstam, une amplitude
à 4 points à l’ordre des arbres, dans la limite de forte collision – s, t→ +∞, angle fixe –
se conduit telle que

MV S(s, t) ∼ exp
(
− α′

2 (s ln s+ t ln t+ u ln u)
)
, (8)

où le comportement souple à large impulsion peut être attribué à la tour infinie d’états
massifs présents dans le spectre.

Par ailleurs, le problème des divergences ultraviolettes est résolu par l’existence d’une
longueur finie de cordes `s. Celle-ci implique la présence d’une taille minimale `s =√
α′ pour les phénomènes se réalisant dans l’espace-temps. À l’ordre des boucles, cela

peut se comprendre en remarquant que le lieu géométrique dans l’espace des impulsions
correspondant aux divergences de l’amplitude est absente à tous les ordres. Ceci est
une conséquence générale de l’invariance modulaire de l’intégrant : pour les tores et les
surfaces de Riemann de plus haut genre, la partie divergente de la région ultraviolette est
absente de l’espace des paramètres de l’amplitude.

La limite basse énergie de la théorie des cordes donne lieu à une théorie de la gravité
couplée à des champs de matière. Ces théories peuvent donc décrire des solutions de trou
noir, et constituent ainsi un cadre idéal pour étudier les propriétés quantiques des trous
noirs.

Dualités non-perturbatives en théorie des cordes. Bien que la théorie des super-
cordes soit à l’époque l’unique candidate pour une théorie renormalisable de la gravité
quantique, un certain manque d’intérêt fut présent à ses premiers instants, notamment
en raison de l’existence de plusieurs réalisations différentes du principe des supercordes
(théories appelées Type I, Type IIA et Type IIB). De plus, aucune d’entre elles ne sem-
blait compatible avec les exigences de la Nature : les théories de type II n’avaient que
des groupes de jauge abéliens, contrairement aux théories électrofaibles et d’interactions
fortes, et la théorie de type I semblait pouvoir donner l’illusion de posséder un groupe
de jauge arbitraire. Cependant, en 1985, il fut découvert que l’ensemble des groupes de
jauges possibles est sévèrement contraint par l’absence d’anomalies, condition indispens-
able à tout théorie de jauge cohérente, et qu’une autre théorie des cordes, appelée théorie
des cordes hétérotique,8 avec groupe de jauge SO(32)/Z2 ou E8 ×E8 (où E8 est l’un des

8Ce nom vient de la construction particulière de cette théorie. Le oscillations allant dans un sens le
long des cordes fermées se donnent lieu à un spectre purement bosonique en 26 dimensions, tandis que les
oscillations se déplaçant dans l’autre sens le long des cordes donnent lieu à un spectre supersymétrique en
10 dimensions.
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groupes exceptionnels dans la classification de Cartan). Le dernier s’avéra être plus at-
trayant phénoménologiquement et devint très populaire pour son aptitude à produire des
théories de grande unification du modèle standard à partir du sous-groupe exceptionnel
E6.

Bien que ces découvertes aient amélioré la réputation de cette théorie-candidate, il
devint rapidement évident qu’une compréhension non-perturbative des effets de théorie
des cordes serait nécessaire pour produire un modèle d’unification des forces de la na-
ture. Plus précisément, la physique en quatre dimensions d’espace-temps dépend de
manière critique du type de compactification utilisé pour réduire le nombre de dimensions
d’espace-temps de dix à quatre. Certains de ces espaces de compactification possèdent
de nombreuses symétries, facilitant ainsi les calculs analytiques, et d’autres sont parfois
reliés entre eux par des dualités, les dualités T, permettant de comprendre un modèle de
compactification à partir d’un autre. Cependant, beaucoup de compactifications ne sont
nullement reliées, et restent insondables par nos techniques actuelles. De plus, le type de
compactification est déterminé par la dynamique des champs à très haute énergie, et la
sélection de cette compactification requiert également une information non-perturbative
à propos du potentiel sur les vides possibles de théorie des cordes.

Il fut compris, en parallèle, que les effets non-perturbatifs de certaines théories de jauge
étaient accessibles sans calcul explicite de toutes les contributions instantoniques. Ceci est
rendu possible par la présence d’une symétrie dite non-perturbative, c’est-à-dire reliant
de manière hautement non-triviale les effets à faible et fort couplage. Comme mentionné
en §1.4, une telle symétrie fut conjecturée dans le modèle de Georgi-Glashow en 1977 [49],
mais fut reçue avec scepticisme jusqu’à qu’un argument plus fort soit présenté dans une
extension supersymétrique N = 2 de cette théorie [50]. Cette symétrie entre fort et faible
couplage, appelée dualité S, relie deux phases d’une théorie super-Yang-Mills,9 l’une à
grande valeur du couplage avec l’autre à petite valeur du couplage. Lorsque la théorie est
super-conforme, elle n’est jamais dans une de ces deux phases, mais toujours à un point
critique, et la valeur du couplage ainsi que d’autres grandeurs plus complexe peuvent être
obtenues en utilisant leur propriété d’invariance sous la dualité S.10

Ces dualités S furent au même moment conjecturées dans de nombreuses théories des
cordes, telles que les théories hétérotiques et type IIB, à la fois en tant que symétries et
en tant que dualités reliant différentes théories entre elles, comme par exemple les cordes
hétérotiques à faible (fort) couplage avec les cordes de type I à fort (faible) couplage.
Cette symétrie est notamment utilisée en [BCHP3] pour déduire les propriétés de l’action
effective de basse énergie de l’interaction à quatre photons des cordes de type I.

Plus tard, une autre symétrie fut conjecturée, ce qui marqua un tournant important
dans l’histoire de la théorie des cordes. Celle-ci reliait les cordes de type IIA à fort
couplage à une théorie en onze dimensions d’espace-temps appelée théorie M. Cette même
dualité envoie la théorie hétérotique avec groupe de jauge E8 × E8 à fort couplage à une
version de la théorie M avec des bords physiques sur la onzième dimension. L’existence
de cette dernière théorie fut plus tard corroborée par la découverte d’une supergravité en
onze dimensions d’espace-temps, mentionnée dans §0.1.2. Cette étape historique dans la
recherche en théorie des cordes donna lieu à bien d’autres conjectures similaires qui ont

9Elle relie deux théorie différentes lorsque que le groupe de jauge n’est pas simplement lacé [51].
10C’est la cas des théories N = 4 et N = 2 où Ns = 2Nc, avec Ns et Nc les nombres de saveur et de

couleur.
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préparé la voie de ce travail de thèse.
Ainsi, en étudiant le régime perturbatif de certaines théories des cordes, à faible cou-

plage, il est possible d’utiliser la dualité entre couplages fort et faible pour extraire cer-
taines informations non-perturbatives du régime à fort couplage, dans la même théorie ou
dans une autre, comme étudié dans les sections anglophones §3.3 et §3.4. Cette dualité
S peut nous aider à comprendre les théories des cordes à grande et petite valeurs du
couplage, mais aussi à nous donner le contrôle sur certaines informations contenues dans
le secteur instantonique, comme proposé dans le chapitre anglophone §4.

0.1.4 Dualités non-perturbatives en théorie des champs

Les symétries non-perturbatives ont joué un rôle très important en physique, aussi bien
dans la compréhension de la théorie des cordes que dans certaines théories quantiques
des champs. Elles restent l’un de nos seuls outils théoriques permettant de décrire des
effets physiques non-perturbatifs, c’est-à-dire indétectables par les techniques d’étude au
voisinage des équations classiques du mouvement. Dans cette section, à défaut de résumer
toute leur histoire, nous introduisons quelques détails et concepts clés des dualités entre
couplage fort et faible dans les théories des champs à quatre dimensions. Ceux-ci seront
utiles au profane pour comprendre la déclinaison de ces symétries en théorie des cordes
et en supergravité N = 4, revue dans la prochaine section.

Théorie de jauge non-abélienne en quatre dimensions. Nous rappelons ici quelques
détails sur la dualité entre faible et fort couplage dans la plus vieille théorie de l’électromagnétisme,
la théorie de Maxwell, et nous commenterons ensuite sur ce type de dualité dans le cas des
théories des champs (voir le paragraphe suivant), ainsi qu’en supergravité et en théorie
des cordes (voir §3.1). Ces symétries sont au centre des propositions de couplage exacts
faites dans [BCHP1], [BCHP2], [BCHP3], comme nous l’introduisons dans la section §0.3.

Dans le vide, la théorie de Maxwell de l’électromagnétisme a une symétrie de jauge
U(1) permettant une rotation de référentiel entre les champs électrique et magnétique

E + iB → eiα(E + iB) . (9)

Celle-ci permet également d’échanger le champ électrique avec le champ magnétique
(E,B) → (−B,E). Dans la formulation relativiste de cette théorie, où les champs élec-
trique et magnétique sont exprimés respectivement par les entrées du tenseur d’intensité
de champs F 0i et son dual de Hodge ?F0i, la dualité (E,B) → (B,−E) peut s’exprimer
simplement Fµν → ?Fµν .

Lorsque l’on étend cette dualité au spectre chargé, celle-ci prédit l’existence de monopôles
magnétiques,11 c’est-à-dire des états de charge magnétique qm non-nulle. Si présentes, ces
charges doivent satisfaire à la condition de quantification de Dirac-Schwinger-Zwanziger [64,
65, 66]

qeq
′
m − q′eqm = 4πn , n ∈ Z , (10)

où (qe, qm) et (q′e, q′m) sont les charges électriques et magnétiques de deux particules
présentes dans le spectre. Puisque des électrons de charges (ge, 0), avec e ∈ Z et g la

11Ne pas confondre avec le monopole commercial, sans ô.
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constante de couplage électromagnétique, existent dans la nature, la condition de quan-
tification (1.19) pour un monopôle magnétique hypothétique requiert geqm = 2πn. Ainsi,
la charge magnétique possible d’un monopôle est donnée par

qm = 4π
g
m , m ∈ Z . (11)

Ceci implique notamment que l’échange entre les champs électrique et magnétique, en
présence de matière chargée, impose une correspondance entre les charges électriques et
magnétiques, jointe à une dualité entre fort et faible couplage g

(e,m)→ (−m, e) ⇒ g → 4π
g
. (12)

Cette dualité du spectre de charge est également développée en supergravité N = 4 dans
la section anglophone §3.1.1.

Symétries non-perturbative de la théorie des champs N = 4. In 1974, des solu-
tions magnétiquement chargées furent trouvées dans des théories de jauge non-abéliennes
avec brisure spontanée de symétrie vers des théories de jauge abéliennes [67, 68]. Monto-
nen et Olive ont ainsi conjecturé l’existence qu’une dualité échangeant un triplet de jauge
composé de ces états de monopôle et du photon avec les bosons W de la brisure spon-
tanée de symétrie de la théorie non-abélienne [49]. Dans le cas général, cette conjecture
fut falsifiée par les corrections quantiques à la masse, ou par la différence de spin entre
ces deux triplets. Cependant, pour la théorie super-Yang-Mills N = 4, l’action effective
n’obtient aucune correction de couplages à plus de deux dérivées, et il fut montré que la
quantification des modes zéro fermioniques autour d’une solution de monopôle en faisait
un triplet vectoriel massif N = 4 [69]. Cela laissa bon espoir quant à l’existence d’une
dualité entre couplage fort et faible.

On peut ainsi donner une valeur moyenne dans le vide 〈φ〉 à l’un des six scalaires
adjoints de la théorie N = 4 avec groupe de jauge G. Ensuite, le boson W , ou la
fluctuation de la composante Eα du champ de jauge, avec α une racine de G, obtient une
masse donnée par

MW (α) = g |α · 〈φ〉| . (13)

D’un autre côté, chaque racine α donne une solution de monopôle similaire à la solution de
Bogomol’nyi-Prasad-Sommerfield G = SU(2) [70, 71]. Ces états, formant une représenta-
tion de dimension seize de l’algèbre de supersymétrie N = 4, sont annihilés par la moitié
des seize supercharges, et leur masses et charges satisfont une relation particulière, on dit
qu’elles saturent l’inégalité de Bogomol’nyi. Dans le cas présent, cette relation est donnée
par

MM (α) = 4π
g
|α∨ · 〈φ〉| , (14)

où α∨ est une coracine de G.12

Le spectre de bosons W et de monopôles de la théorie peut être échangé si le système
de racines est dual à lui-même par rapport à la projection orthogonale, i.e. si le système

12Le système des coracines est aussi un système de racines. Il est dual au système de racines par rapport
à la projection orthogonale.
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de racines et le système de coracines sont isomorphes.13 Enfin, on peut également voir
qu’échanger les monopôles de G avec les bosons W de G amène à la même dualité entre
fort et faible couplage que (12).

Cette présentation superficielle de la dualité S en théorie de super-Yang-Mills N = 4
peut être complétée par [72, 73, 74].

Dans la section anglophone §3.1.1, nous rappelons l’invariance de masse du spectre
de charges du secteur BPS dans le cas de la supergravité N = 4, de manière à motiver
l’existence d’une dualité non-perturbative de la théorie des cordes complète. Dans les
sections §0.3.1 et §0.3.2, nous utilisons cette dualité ainsi que les contraintes de super-
symétrie pour conjecturer l’existence de couplages exacts F 4 et ∇2F 4. Ce dernier nous
permettra d’extraire l’information relative à la dégénérescence des trous noirs quart-BPS
en supergravité N = 4, dans le chapitre anglophone §4.

0.2 Amplitudes de supercordes et développement pertur-
batif

Dans le chapitre anglophone §3, nous étudions les amplitudes à une et deux boucles
de théories des cordes hétérotiques N = 4. Dans le cas le plus simple, la description
effective du secteur de masse nulle de cette théorie correspond à la réduction toroïdale
d’une supergravité N = 1 couplée à une théorie de super-Yang-Mills N = 1. Quelques
modèles de ce type sont donnés dans le tableau 1, et certain d’entre eux étant réalisables
par compactification toroïdale d’une théorie des cordes hétérotiques, la colonne N est
l’ordre de l’action libre du groupe ZN de la construction orbifold.

Nous commençons par rappeler certaines bases des amplitudes de cordes fermées
en théorie des cordes, et nous présentons ensuite le calcul à une et deux boucles de
l’interaction à quatre photons. Les résultats à deux boucles sont basés sur le célèbre
calcul de D’Hoker et Phong [75, 76, 77, 78, 79, 80].

0.3 Contraintes non-perturbatives et de supersymétrie

Dans le chapitre anglophone 3, nous étudions les symétries entre fort et faible couplage
dans un contexte de théorie des cordes, d’abord pour le modèle hétérotique entier, puis
dans les modèles CHL de rang réduit. Nous voulons motiver l’existence de ces symétries
afin de les utiliser dans la construction d’amplitudes exactes pour les interactions à quatre
photons, dans le but in fine d’en extraire le comptage de dégénérescence de trous noirs en
supergravité N = 4 (chapitre 4). Ces symétries de théorie des cordes sont très similaires
dans leur forme aux symétries de théorie des champs présentées dans l’introduction §0.1.4.

Dans la section anglophone 3.1, nous présentons le cas de la théorie hétérotique com-
plète compactifiée sur le tore, et nous revoyons, à partir de [102, 72], les motivations pour
la symétrie entre fort et faible couplage pour l’action effective de la théorie de supergravité
en quatre dimensions, ainsi que le spectre de charges et d’états BPS. Nous rééxaminons

13En général, la dualité S envoie une théorie avec un groupe de jauge de système de racines Φ vers une
théorie avec un groupe de jauge de système de racines Φ∨, où Φ∨ est le système de coracines associé à
Φ. La symétrie sous dualité S est ainsi possible uniquement si Φ∨ ' Φ, ce qui est le cas des groupes
simplement lacés seulement.



0.3. CONTRAINTES NON-PERTURBATIVES ET DE SUPERSYMÉTRIE 17

ensuite cette symétrie en trois dimensions, et présentons le groupe beaucoup plus grand
de symétries non-perturbatives qui en découle, G3(Z) [103, 104].

Dans la section anglophone 3.2, nous revoyons quelques détails des modèles CHL ZN ,
avec N prime, dont le groupe de jauge est de rang réduit, depuis une perspective de cordes
hétérotique [59, 60, 62], et nous argumentons ensuite pour la présence d’une symétrie entre
couplage fort et faible pour ces théories en quatre et trois dimensions [105].

Finalement, dans les sections 0.3.1 et 0.3.2, nous exposons les conjectures de [BCHP1],
[BCHP2], et [BCHP3] qui proposent que des couplages exacts à quatre scalaires dans la
limite de basse énergie de l’action effective en trois dimensions – nommément (∇φ)4 et
∇2(∇φ)4 – sont donnés par des intégrales modulaires de certaines formes modulaires
spécifiques, multipliées par les fonctions de partition pour le réseau non-perturbatif de
Narain invariant sous le groupe complet des symétries non-perturbatives G3(Z). Ces
couplages sont obtenus par covariantisation des coefficients des couplages perturbatifs
respectifs F (1)

abcd et G(2)
ab,cd sous le groupe de symétries non-perturbatives G3(Z). Ceux-ci

sont également motivés par les contraintes de supersymétrie que nous exposons dans les
sections anglophones §3.3 et §3.4, et sont vérifiés en utilisant des résultats perturbatifs
extraits de la littérature dans le régime de faible couplage en théorie des cordes hétérotique
et de type II dans les sections §3.3.1 et §3.4.1 respectivement.

0.3.1 Conjecture pour le couplage exact F 4

Les arguments pour l’existence d’un groupe de dualités non-perturbatives Õ(r − 4, 8,Z),
revus dans les sections anglophones 3.1 and 3.2, ainsi que les contraintes de supersymétrie
revues section 3.3 ont motivé notre conjecture pour l’existence du couplage exact (∇φ)4

sous la forme d’une intégrale modulaire

F
(r−4,8)
abcd (ϕ) = R.N.

∫
Γ0(N)\H1

dτ1dτ2
τ2

2

ΓΛr − 4, 8

[
Pabcd

]
∆k(τ) , (15)

qui est construite comme la généralisation du couplage perturbative à une boucle – voir
dans la partie anglophone (2.24) pour le rang maximal, ou (3.87) pour N = 2, 3, 5, 7 –
où nous avons remplacé le réseau de Narain Λr−5,7 par son extension non-perturbative
Λr−4,8 (3.89).

La fonction (15) est manifestement invariante sous les dualités non-perturbatives men-
tionnées section 3.1.2, et a également la propriété de satisfaire aux contraintes de super-
symétrie (3.95), et en particulier à l’équation différentielle (3.97), voir §3.2 de [BCHP2].

Afin de prouver qu’une solution de la contrainte différentielle de supersymétrie cor-
respond au couplage exact escompté, nous devons vérifier qu’elle satisfait également aux
bonnes conditions aux bords, par exemple, en vérifiant qu’elle redonne bien le résultat
perturbatif pour F 4 dans la limite de faible couplage. Dans la sous-section suivante,
nous calculons cette limite de faible couplage en étudiant la décomposition de Fourier de
Fabcd(ϕ) à l’approche du cusp gs → 0 dans le cas des cordes hétérotiques en trois dimen-
sions, et dans le cas des cordes de type II en quatre dimensions. Nous montrons que le
mode zéro dans la décomposition de Fourier de (15) correspond aux résultats perturbatifs
obtenus dans la littérature.
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Limite faible couplage en trois dimensions du couplage (∇φ)4. Dans [BCHP2],
nous avons calculé la décomposition de Fourier de la fonction F (2k,8)

abcd au cusp g3 → 0 de

G2k,8 ' R+
1/g2

3
×
[

O(r−5,7)
O(r−5)×O(7)/O(r − 5, 7,Z)

]
, (16)

ce qui correspond à la limite de faible couplage des cordes hétérotiques à D = 3. Le
réseau non-perturbatif se décompose selon [BCHP2]

Λ2k,8 = Λ2k−1,7 ⊕ II1,1[N ] , (17)

Pour interpréter les résultats dans un langage perturbatif, nous devons rappeler que la
fonction covariante sous U-dualité F (2k,8)

abcd (ϕ) est le coefficient du couplage (∇φ)4 dans
l’action de basse énergie écrite en référentiel d’Einstein, de sorte que la métrique γE est
invariant sous U-dualité

S3 =
∫

d3x
√
−γE

[
R[γE ]− (2δâb̂δĉd̂ − δâĉδb̂d̂)F

(2k,8)
abcd (ϕ) γµρE γνσE P aâµ P bb̂ν P

cĉ
ρ P

dd̂
σ

]
+ . . . .

(18)
Dans le référentiel de théorie des cordes, γ = γEg

4
3 et on trouve

S3 =
∫

d3x
√
−γ

[ 1
g2

3
R[γ]− g2

3 (2δâb̂δĉd̂ − δâĉδb̂d̂)F
(2k,8)
abcd (ϕ) γµργνσP aâµ P bb̂ν P

cĉ
ρ P

dd̂
σ

]
+ . . . .

(19)
En utilisant ck(0) = k pour les modèles CHL avec N > 1 ou c(0) = 2k dans le cas de rang
maximal, ainsi que ξ(2) = π

6 , les résultats de [BCHP2] donnent

g2
3 F

(2k,8)
abcd = 3

2πg2
3
δ(abδcd) + F

(2k−1,7)
abcd +

′∑
Q∈Λ2k−1,7

c̄k(Q)e
− 2π

√
2 |QR|
g23

+2πia·Q
P

(∗)
abcd , (20)

où nous avons omis la forme détaillée des corrections exponentiellement supprimées, et
où c̄k(Q) est la mesure de sommation

c̄k(Q) =
∑
d≥1,

Q/d∈Λ2k−1,7

d ck
(
− Q2

2d2

)
+

∑
d≥1,

Q/d∈NΛ∗2k−1,7

N d ck
(
− Q2

2Nd2

)
. (21)

Les deux premiers termes dans (20) devraient correspondre aux contributions à l’ordre des
arbres et à une boucle respectivement. En effet, la réduction dimensionnelle du couplage
hétérotique à l’ordre des arbres en dix dimensions R2 + (TrF 2)2 [128, 129] implique
l’existence d’un terme à l’ordre des arbres (∇φ)4 enD = 3, avec un coefficient indépendant
de N . Le second terme dans 20 correspond au terme perturbatif à une boucle (2.24)
par construction. Les termes non-perturbatifs restant peuvent être interprétés comme
des contributions instantoniques de branes euclidiennes NS5, KK5 hétérotiques et de
monopôles H enroulés autour de tout T 6 au sein du T 7 de compactification [130]. Plus
précisément, les charges des branes NS5 et KK5 correspondent aux charges de moments
et d’enroulements dans le réseau hyperbolique II1,1[N ]⊕IIk−2,k−2 contenu dans Λm⊕II1,1,
tandis que les monopôles H correspondent aux charges dans le réseau de jauge Λk,8−k (pour
les cordes hétérotiques compactifiées sur T 7, ces sous-réseaux doivent être remplacés par
II7,7 et E8 ⊕ E8 ou D16, respectivement).
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Limite de faible couplage de la théorie des cordes de type II compactifiée sur
K3× T 2. L’axiodilaton hétérotique S correspond respectivement au module Kähler du
2-tore TA en type IIA, et à la structure complexe du 2-tore UB en type IIB, tandis que
l’axiodilaton de type II SA = SB correspond au module de Kähler T du 2-tore du côté
hétérotique

S = TA = UB , T = SA = SB , U = UA = TB . (22)
Afin de développer à faible couplage de type II, i.e. à large T2, nous décomposons le réseau
selon

Λ2k−2,6 = Λ2k−4,4 ⊕ II1,1 ⊕ II1,1[N ] . (23)
Pour simplifier, nous utiliserons les modules SB, TB, UB de type IIB dans cette section,

avec SB2 = 1/g 2
s . De plus, nous ne considérerons que les termes perturbatifs pour les

champs de Maxwell dans le secteur RR correspondant aux indices α, β, . . . le long du
sous-réseau Λ2k−4,4. La limite de faible couplage de type IIB de l’interaction exacte F 4

donne ainsi [BCHP3]

F̂ (2k−2,6)
αβγδ II = 1

g 2
s

F (2k−4,4)
αβγδ II + 3

2πδ(αβδγδ)
( Ê1(NTB) + Ê1(TB) + Ê1(NUB) + Ê1(UB) + 12

π log gs
N + 1

)
= 1

gs2F
(2k−4,4)
αβγδ (t)− 3

8π2 δ(αβδγδ) log(gs−2kT k
B2U

k
B2|∆k(TB)∆k(UB)|2) , (24)

où le premier terme correspond au couplage à l’ordre des arbres calculé dans [131], tandis
que le second terme est lié par supersymétrie au couplage R2 calculé dans [132, 123].

0.3.2 Conjecture pour le couplage exact ∇2(∇φ)4

Comme pour le couplage (∇φ)4 de la section précédente, les arguments motivant l’existence
d’un groupe de dualités non-perturbatives Õ(r − 4, 8,Z), revus dans les sections anglo-
phones §3.1 et §3.2, ainsi que les contraintes de supersymétrie, §3.3, ont motivé la con-
jecture [BCHP3] spécifiant le couplage exact ∇2(∇φ)4 comme l’intégrale modulaire

Gab,cd(ϕ) = R.N.
∫

Γ2,0(N)\H2

dΩ1dΩ2
|Ω2|2

Γ(2)
Λr − 4, 8

[
Pab,cd

]
Φk−2(Ω) . (25)

Celle-ci est construite comme une généralisation de l’amplitude perturbative à deux
boucles (2.37) (avec Γ2,0(1) = Sp(4,Z)), où l’on a remplacé le réseau de Narain Λr−5,7
avec son extension non-perturbative Λr−4,8 (3.89). Dans le cas des modèles CHL, la con-
struction de (25) est nettement plus technique que dans le cas de genre un, mais celle-ci
a été explicité en détails pour N = 2 dans l’appendice B.2.2 of [BCHP3], et généralisée
à N = 3, 5, 7 avec une argumentation dans l’esprit de celle proposée dans la présentation
de genre un de la section anglophone §3.2.1 de ce manuscrit.

La fonction (3.118) est manifestement invariante sous le groupe des dualités non-
perturbatives mentionné dans la section anglophone 3.1.2, et satisfait aux contraintes
de supersymétrie (3.114), et en particulier à l’équation (3.115) (voir la section §3.3 de
[BCHP3]).

Dans la prochaine sous-section, nous nous intéressons à la limite de faible couplage du
modèle hétérotique en trois dimensions, et de type II en quatre dimensions. Le mode zéro
dans le développement de Fourier de (25) correspond ainsi à la réponse attendue d’un
calcul perturbatif lorsqu’elle est connue, ou à une prédiction lorsqu’elle est inconnue.
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Limite de faible couplage du couplage exact ∇2(∇φ)4. La décomposition de
Fourier des fonctions F (r−4,8)

abcd , et G(r−4,8)
ab,cd au cusp g3 → 0 (3.88) correspondant à la

limite de faible couplage hétérotique en trois dimensions ont été calculé dans [BCHP2]
et [BCHP3] respectivement. Dans cette limite, le réseau Λ2k,8 se décompose en

Λ2k−1,7 ⊕ II1,1[N ] , (26)

où le rayon du second facteur est relié au couplage des cordes hétérotiques par g3 = 1/
√
R,

et le groupe d’U-dualité est brisé en Õ(2k − 1, 7,Z), le groupe des automorphismes re-
streints de Λ2k−1,7. Afin d’interpréter les résultats en termes de contributions perturba-
tives à l’interaction ∇2(∇φ)4, il peut être pratique de multiplier le coefficient du couplage
par g6

3, qui prend sa source dans le redimensionnement de Weyl γE = γs/g
4
3 pour passer

du référentiel d’Einstein au référentiel de cordes, voir la section §4.3 de [BCHP2]. Le
développement à faible couplage peut être ensuite extrait de la section §4.1 de [BCHP3]
en remplaçant q = 8, υ = 1, et donne ainsi

g 6
3 G

(2k,8)
αβ,γδ = − 3

4πg 2
3
δ〈αβ,δγδ〉 −

1
4δ〈αβ,G

(2k−1,7)
γδ〉 (ϕ) + g 2

3 G
(2k−1,7)
αβ,γδ (ϕ)

+
′∑

Q∈Λ∗2k−1,7

3e
− 2π
g23

√
2Q 2

R+2πiQ·a

2Q 2
R

Ḡ(2k−1,7)
〈αβ, (Q,ϕ)

(
QLγQLδ〉

(√
2Q 2

R + g 2
3

2π

)
− g 2

3
8π δγδ〉

)

+
′∑

Q∈Λ∗2k−1,7

e
− 4π
g23

√
2Q 2

R
Gαβ,γδ(g3, QL, QR) . (27)

les trois premiers termes dans (27) correspondent respectivement à la contribution à deux
boucles calculée en (2.37), la contribution à une boucle (2.29), et la contribution du point
singulier où la surface de Riemann se factorise en deux surfaces de Riemann de genre un
liées par un point. Cette dernière reproduit la contribution à l’ordre des arbres ∇2(∇φ)4,
obtenue par réduction dimensionelle du couplage ∇2F 4 en dix dimensions.

Les termes exponentiellement supprimés de la seconde ligne de (27) peuvent être
interprétés comme des instantons de branes NS5 euclidiennes enroulées respectivement sur
tous les T 6 possibles à l’intérieur du T 7 de compactification, des branes KK (6,1) enroulées
avec toutes les fibres Taub-NUT S1 possibles à l’intérieur du T 7 de compactification, et
des monopôles H enroulés sur le T 7 tout entier. Leur expression précise peut être trouvée
dans [BCHP3]. Bien que nous obtenions une expression précise de ces contributions,
la méthode des orbites utilisée dans [BCHP3] manque plusieurs types de contributions
exponentiellement supprimées ne dépendant pas des axions a. L’existence de ces termes
est assurée par la contrainte différentielle de supersymétrie (3.117), car le coefficient du
couplage (∇φ)4, Fabcd, apparaissant dans le membre droit contient des termes de type
instantons anti-instantons indépendants des axions. Malheureusement, nos outils actuels
ne nous permettent pas d’extraire ces contributions à partir de la méthode des orbites.

Pour finir, il est important de préciser que bien que les contributions perturbatives
G(2k−1,7)
ab et G(2k−1,7)

ab,cd soient singulières sur des lieux géométriques de codimention 7 à
l’intérieur deM3 aux points d’agrandissement du groupe de symétrie de jauge, le couplage
exact composé des contributions perturbatives et non-perturbatives (3.118) est singulier
sur des lieux géométriques de codimension 8 seulement.
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Limite de faible couplage de cordes de type II compactifiées sur K3 × T 2 Le
développement des termes ∇2F 4 et R2F 2 exacts en quatre dimensions a été obtenu en
section §5.3.1 de [BCHP3], et nous considérons maintenant la limite de faible couplage des
cordes de type II. Rappelons que S = TA = UB, i.e. l’axiodilaton hétérotique correspond
au module Kähler du 2-tore en type IIA, et à la structure complexe du 2-tore en type
IIB, tandis que l’axiodilaton de type II SA = SB = T correspond au module de Kähler
hétérotique (3.106).

À large TB2, i.e. faible couplage de type II, le réseau se décompose similairement
à (3.107), et le coefficient exact du couplage ∇2F 4 a été obtenu section §5.3.1 de [BCHP3],
après s’être séparé des termes en logR

Ĝ(2k−2,6)
ab,cd NP(UB, ϕ) = Ĝ(2k−2,6)

ab,cd (ϕ)− 3
4πδ〈ab,δcd〉

( Ê1(NUB) + Ê1(UB)
N + 1

)2
(28)

−1
4δ〈ab,

(N Ê1(NUB)− Ê1(UB)
N2 − 1 Ĝ(2k−2,6)

cd〉 (ϕ) + N Ê1(UB)− Ê1(NUB)
N2 − 1

ςĜ(2k−2,6)
cd〉 (ϕ)

)
,

où ϕ appartient à la grassmannienne paramétrant Λ2k−2,6. Nous négligeons ici les correc-
tions non-perturbatives et utilisons la décomposition de Ĝ(2k−2,6)

ab,cd (ϕ) pouvant être obtenue
à partir de la section §5.3.1 de [BCHP3] en replaçant les modules par R2 = SB2 = 1

g2
s
,

et en dénotant par ϕ = t les modules de K3 appartenant à la grassmannienne G(2k−4,4).
Après avoir développé autour de q = 6 + 2ε, on obtient

Ĝ(2k−2,6)
αβ,γδ (ϕ) ∼ 1

g 4
s

Ĝ(2k−4,4)
αβ,γδ (t)− 3

4πδ〈αβ,δγδ〉
( Ê1(NTB) + Ê1(TB) + 12

π log gs
N + 1

)2

− 1
4g 2
s

δ〈αβ,
( N Ê1(NTB)−Ê1(TB)

N−1 + 6
π log gs

N + 1 Ĝ(2k−4,4)
γδ〉 (t)+

N Ê1(TB)−Ê1(NTB)
N−1 + 6

π log gs
N + 1

ςĜ(2k−4,4)
γδ〉 (t)

)
.

(29)

Pour calculer les termes en puissance de Ĝ(2k−2,6)
ab (ϕ), on peut développer autour de q =

6 + 2ε et négliger les contributions non-perturbatives. S’agissant de ςĜ(2k−2,6)
ab (ϕ), il peut

être utile d’agir avec la dualité de Fricke sur le module de Kähler TB pour obtenir TB →
− 1
NTB

, ainsi que sur le module de K3 t avec l’involution ς. En récupérant toutes ces
contributions, nous obtenons le développement perturbatif complet du couplage ∇2F 4 en
quatre dimensions

Ĝ(2k−2,6)
αβ,γδ II = 1

g 4
s

Ĝ(2k−4,4)
αβ,γδ (t)

− 1
4(N + 1)g 2

s

δ〈αβ,

((N Ê1(NTB)− Ê1(TB) +N Ê1(NUB)− Ê1(UB)
N − 1 + 6

π
log gs

)
Ĝ(2k−4,4)
γδ〉 (t)

+
(N Ê1(TB)− Ê1(NTB) +N Ê1(UB)− Ê1(NUB)

N − 1 + 6
π

log gs
)
ςĜ(2k−4,4)

γδ〉 (t)

−2Nδγδ〉
(Ê1(TB)− Ê1(NTB))(Ê1(UB)− Ê1(NUB))

N − 1

)

− 3
4πδ〈αβ,δγδ〉

( Ê1(NTB) + Ê1(TB) + Ê1(NUB) + Ê1(UB) + 12
π log gs

N + 1
)2

. (30)
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Le résultat (30) est manifestement invariant sous l’échange de UB et TB, et est ainsi
identique dans les cordes de type IIA et type IIB. Il est également invariant sous les
dualités de Fricke combinées TB → − 1

NTB
, UB → − 1

NUB
, t→ ςt [105], ceci étant vrai par

construction de la proposition (3.118).
La limite N = 1 de ce cas est légèrement subtile. Le résultat (30) doit être remplacé

par

G(22,6)
αβ,γδ II = 1

g 4
s

Ĝ(20,4)
αβ,γδ(t)+

3
4πg 2

s

δ〈αβ,
(
log(TB2|η(TB)|4)+log(UB2|η(UB)|4)−2 log gs

)
G(20,4)
γδ〉 (t)

− 27
4π3 δ〈αβδγδ〉

(
log(TB2|η(TB)|4) + log(UB2|η(UB)|4)− 2 log gs

)2
. (31)

Il serait intéressant de vérifier ces prédictions par un calcul perturbatif explicite en cordes
de type II. Pour simplifier le résultat, on peut utiliser les relations

Ê1(NTB) + Ê1(TB)
N + 1 = − 1

4π log(T k
B2|∆k(TB)|) , Ê1(TB) = − 1

4π log(T 12
B2 |∆(TB)|) ,

(32)
afin de réécrire la contribution à deux boucles dans la dernière ligne de (30) as

− 3
(4π)3 δ〈αβ,δγδ〉

(
log(g−2k

s T k
B2U

k
B2|∆k(TB)∆k(UB)|2)

)2
. (33)

0.4 Compter les microétats de trou noir avec des instantons
Dans le chapitre anglophone 4, nous faisons état des résultats de [BCHP1], [BCHP3]
et illustrons leur application au comptage de microétats de trous noirs quart-BPS en
supergravité N = 4.

Ces trous noirs sont invariants sous certaines transformations de supersymétrie et leur
masse sature l’inégalité de Bogomol’nyi (3.37). Ils sont donc extrémaux et n’émettent pas
de radiation de Hawking. En vertu de ce fait, ce sont des objets stables et stationnaires,
c’est-à-dire des solitons. Les microétats correspondants ont été étudiés à faible couplage,
où les effets gravitationnels induits par le système peuvent être ignorés, et les résultats
furent ensuite prolongés à fort couplage, où le système peut être décrit comme un trou noir.
L’entropie de ces objets a notamment la particularité d’être inaffectée par les variations
du couplage gravitationnel [25]. Par ailleurs, leur stabilité nous permet aisément de
comprendre la dynamique des configurations microscopiques correspondantes, et celle-
ci implique de nombreux objets de théorie des cordes, enroulés ou étendus dans des
directions compactes de la variété de compactification, comme décrit dans le paragraph
anglophone §4.2. Dans le régime de grands trous noirs, une découverte historique fut
de découvrir que l’entropie de certains trous noirs en cinq dimensions d’espace-temps
satisfait [25, 134, 135, 136]

SBH(Q,P ) = Sstat(Q,P ) , (34)

où SHB(Q,P ) est l’entropie de Bekenstein-Hawking d’un trou noir extrémal de charge
(Q,P ), et Sstat(Q,P ) correspond à l’entropie statistique obtenue par comptage des mi-
croétats de charge (Q,P )

Sstat = ln d(Q,P ) . (35)
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Cette formule de Bekenstein-Hawking (1.8) reste valide si la taille de l’horizon est
grande comparée à la courbure de l’espace-temps et d’autres intensité de champ à l’horizon,
i.e. , pour de grandes charges. Dans ce régime, la taille de l’horizon est assez large pour
que l’intensité de la courbure de l’espace-temps et des champs de jauge soit petite devant
l’horizon. Dans un régime où ce n’est plus vrai, il faut alors se soucier des corrections de
plus haute dérivée à l’action effective dans la limite de basse énergie [26, 137, 138, 139].

D’un autre côté, la limite des grandes charges simplifie également les calculs statis-
tiques. Dans cette approche, un trou noir extrémal correspond à un état de la théorie
conforme à large valeur propre de L0 et valeur propre nulle de L̄0 (ou inversement). Pour
L̄0 = 0, par exemple, on peut calculer la dégénérescence de cet état en utilisant la for-
mule de Cardy en termes de la charge centrale du secteur gauche (left) cL de la théorie
conforme

Sstat(Q) ' 2π

√
cLL0

6 , (36)

où cL est proportionelle à un produit de charges physiques du trou noir [25]. On trouve
ainsi une concordance parfaite dans cette limite entre les deux calculs (4.1).

Dans le cas de supergravités N = 4 pouvant être réalisées comme des modèles CHL
avec orbifold ZN , ce résultat a été obtenu pour des trous noirs en quatre dimensions
par [140, 141].14 Le chapitre anglophone 4 est donc dévoué à la démonstration de la
concordance des résultats de [BCHP3], et nous montrons en particulier comment obtenir
la dégénérescence des trous noirs quart-BPS de supergravité N = 4 à partir du calcul de
l’interaction exacte ∇2(∇φ)4 en théorie des cordes en trois dimensions.

Dans le paragraphe anglophone §4.1, nous donnons une rapide description du formal-
isme d’entropie pour les trous noirs stationnaires en quatre dimensions[139, 142, 143, 124].
La fonction d’entropie est obtenue en tant que valeur extremum d’une fonctionnelle de
la densité lagrangienne, ce qui par ailleurs nous assure qu’elle reste indépendante de la
valeur asymptotique des modules à l’infinie [138, 142].

Dans §4.2, nous rappelons la célèbre formule de Dijkgraaf-Verlinde-Verlinde [140] dans
le cas des modèles CHL [141, 144, 145].

Dans §4.3, nous rappelons le formalisme de base utilisé pour décrire les solutions de
trou noir quart-BPS en supergravité N = 4 [146].

Finalement, dans §4.4 nous rapportons les résultats de [BCHP1], [BCHP3], où les
contributions instantoniques quart-BPS dans la limite de décompactification de G(2k,8)

ab,cd

ont été utilisées pour prédire la dégénérescence des solutions de trou noir quart-BPS. Ces
résultats concordent avec les prédictions présentées en amont §4.2 [140, 141, 144, 145] et
les étendent à d’autres type de trous noirs quart-BPS, tout en déclinant correctement la
prescription de contour proposée dans [147, 148].

0.5 Questions ouvertes
L’un des buts de ce manuscrit est de présenter de manière simplifiée et cohérente certains
des résultats obtenus lors de ce travail de thèse de trois années. Beaucoup de questions
restent cependant ouvertes. Elles sont présentées en anglais dans le chapitre §5.

14Cela fut originalement calculé dans la description de type II.
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Chapter 1

Introduction

We use throughout this paper the standard system of conventions where ~ = c = 1, which
means that one unit of time equals one unit of length equals the inverse of a unit of energy.
Our space-time signature is (−,+, . . . ,+).

1.1 The ultraviolet catastrophe of quantum gravity

For long time, quantum gravity has been one of the main focus of modern theoretical
physics. Gravity, as Newton and Einstein expressed it, is missing a microscopic de-
scription. Having a complete theory was considered to be a big concern to account for
phenomena in regions of spacetime where the gravity force becomes extremely strong, like
black holes or the ’origin’ of spacetime. Beyond practical applications, this problem is
often stated as being the missing puzzle piece between quantum theories describing par-
ticle physics, quantum fields theories, and the classical theory describing the dynamics of
spacetime, Eistein’s general relativity.

The first part of this picture, quantum field theory, was studied after the seminal
computation by Hans Bethe [1] of the Lamb-Retherford shift [2], in 1947, explaining a
color difference between two types of hydrogen atoms1 which was unpredicted by the
Dirac equation, the guiding theory at the time. This computation was then enhanced
and developped in a more general framework called quantum theory of electrodynamism
by Feynman, Schwinger, Stuekelberg, Tomonaga and Dyson. This computation used the
fundamental idea – that we will use later on in the context of black holes – of ’vacuum
polarisation’, namely, that pairs of particles and anti-particles are constantly populating
the vacuum at a microscopic level. This picture was completed in the late 60’s, extending
the construction to the weak and strong forces – all the forces known today except gravity
– by many important physicists such as Glashow, Salam, Weinberg and Gell-Mann.

On the second side of this picture stands general relativity, a non-quantum theory of
gravitational interactions elaborated by Einstein in 1915 that describes the dynamics of
spacetime itself. Einstein’s equation illustrates the two sides of the problem elegantly

Rµν −
1
2gµνR = 8πGTµν . (1.1)

1The first being excited to the 2S1/2 orbital, the second to the 2P1/2.
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(a) (b)

Fig. 1.1 Diagrams of the most prominent corrections to quantum mechanics
when describing an electron (straight line) interacting with the hydrogen atom
through the emission of a photon (wiggly line). In 1.1a, the electron emits a
photon before interacting and reabsorbs it after the interaction, while in 1.1b,
the exchanged photon experiences the creation of a particle-antiparticle pair.

The left hand side of (1.1) describes a non-quantised geometry of spacetime, while its right
hand side describes quantised matter and energy contained in spacetime. This paradox
did not get pursued extensively at the time since macroscopic physics (as opposed to
quantum physics) was sufficient to describe all the observed objects in the interstellar
medium around us.

The quantum nature of spacetime is expected to be observable at the Planck scale,
M2
Pl = ~c

G ∼ 1028 eV, where gravitational and quantum effects are comparable. This
energy range is far away from the reach of any human-made collider – which is currently
at 1013 eV, but still many phenomenological and effective theory studies have been inspired
by quantum gravity research [3, 4].

Renormalisability and unitarity. Naive quantisation of gravity is known to fail be-
cause of non-renormalisability and unitarity violation, or, in other words, its inability to
be tracked down at arbitrary small scales and have a consistent quantum interpretation.
The study of gravity divergences and its non-renormalisability dates back to ’t Hooft and
Veltman [5] in 1974. The same year, Llewellyn-Smith proposed that non-renormalisibility
of a quantum field theory was equivalent to unitarity violation at the classical level [6],
and that the growth of scattering processes in energy could be used as a criterium. In
the case of gravity, the linearised Einstein-Hilbert action in D dimensions with a single
dimensionless scalar field writes, symbolically,

SEH =
∫
dDx

(1
2∂h∂h(1 + 2κh) + 1

2G∂φ∂φ(1 + κh)
)

+ ... , (1.2)

where we linearised the curved metric around the Minkowski metric as

gµν = ηµν + κhµν , (1.3)

with κ2 = 32πG and G = M2−D
Pl the gravity coupling constant, and with hµν the graviton

field. The second and fourth term in this expansion indicate that a graviton interacts
with another graviton and any other matter field with a double derivative term. Thus,
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when considering the event of two massless fields exchanging a single graviton, as shown
figure 1.2a, one obtains an amplitude proportional to E2/κ, where E is the energy of
the process, with E4/κ2 coming from the vertices and κ/E2 from the external legs. This
violates unitarity for processes beyond the Planck scale, i.e. when E � κ.2 The rule
proposed by Llewellyn-Smith follows from the fact that any process of this type will arise
with a UV divergence when two gravitons get exchanged, as in the figure 1.2b. In pure
gravity, these divergences occur at two loops [8, 9]. These issues will persist for all loops

(a)
(b)

Fig. 1.2 Classical and one-loop interaction of two massless fields through gravity
(doubled wiggly lines)

using the same reasoning, as long as D > 2. This can be seen as a consequence of the
positive mass dimension of the gravity coupling 1/G.3 This infinite number of divergences
must be compensated by introducing as many counter-terms or arbitrariness in the theory,
and therefore makes it ill-defined.

Scattering amplitudes could also induce a breaking of unitarity for another very subtle
reason: evaporating black holes. Although this is not the direction this manuscript will
take, let us mention this point of on-going debate and introduce some basic concepts about
black holes. In 1975, Hawking argued that vacuum polarisation, in the region near a black
hole’s horizon, would cause particle emission [10]. Since this vacuum polarisation behaves
as a purely thermal fluctuation, the emitted radiation cannot contain any information,
and in particuler not the one that "felt" in the black hole, which leads to another unitarity
infringement.

Large black holes are not perturbative objects. However, small black holes have a
non-zero probability to be created in an energetic collision process, also known as trans-
Planckian process [11, 12, 13, 14, 15, 16]. Black hole physics is thus very relevant at high
energy, and this would implies another type of perturbative inconsistency.

In the 80’s, an argument called complementarity developped by Susskind et al. [17],
suggested that information infalling the black hole could be located both inside and
outside the black hole. Namely, from the point of view of asymptotic observers, time

2More precisely, for a theory of gravity coupled to Ns scalars, Nf fermions and NV vectors, one expects
unitarity to be violated at energy E2

CM = 60
κ2(2Ns+3Nf +12NV ) [7]

3In naive dimensional analysis, we say that the critical dimension of the gravitational coupling constant
is D = 2, and thus, it is non-renormalisable for D > 2
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Fig. 1.3 Schematical representation of radiation emission by a black hole. A pair
of particle-antiparticle spontaneously emerges near the horizon (dotted circle),
one fall inside the black hole while the other goes outward. Both particles and
antiparticles are symbolised indistinguishly by an arrow.

intervals near the horizon become arbitrary dilated while space intervals in the falling
direction become arbitrarily thin, which prevents these observers from seeing the matter
passing through the black hole horizon in a finite time. Infalling objects spend an arbitrary
long time around the black hole’s horizon, and information can be radiated away through
Hawking’s radiation. On the other hand, an observer within the black hole can see the
matter entering in a finite time, but this one can never communicate with the exterior,
which seems to prevent a paradox.

A very subtle point that was learnt from this debate is that, in the classical ap-
proximation, information must be stored on the black hole’s surface, i.e. in a two-
dimensional space, with gravity playing no dynamical role. This is in contrast with the
three-dimensional interior of the black hole, where gravity is of course central. This led
to the popularisation of the notion of holography, that was first initiated by ’t Hooft and
developped in the early 90’s [18, 17], when, in 1997, Maldacena made a precise statement
out of the idea above, by conjecturing that string theory under certain circumstances –
when understood as a quantum theory of gravity – is equivalent to a quantum field the-
ory without gravity in a spacetime with one space dimension less [19, 20, 21]. This latter
argument has been considered to be almost a proof that decay of small black holes4 was
consistent with unitarity: if the thermalisation process is described by a quantum field
theory without gravity, it must be a unitary process by definition.

Although locally, the evaporation process is unitary, the decay of larger black holes
is still puzzling at present.5 In 2010, Almheiri, Marolf, Polchinski, and Sully found a
self-contradiction in the complementarity argument while studying this evaporation pro-
cess under certain circumstances [22]. The thermal radiation becomes problematic after
a certain time, because it cannot be maximally correlated with both the radiation inside
the black hole – which is assumed to maintain spacetime regularity at the horizon – and

4Smaller in size than the length of the AdS spacetime, such that it is similar to asymptotically flat
black holes.

5Large black holes do not evaporate entirely in the holographic picture.
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Fig. 1.4 Schematic representation of an object falling into a black hole from an
outsider’s perpective (in blue) : the spacetime geometry deforms infinitely the
shape of the object to a 2D surface, as well as the time needed to go through the
horizon. From the outsider’s perspective, the infalling objects accumulate in a
sphere around the surface horizon.

the past radiation outside – which is assumed to preserve unitarity. This paradox does
not seem to be explicable by arguments from fundamental theory of gravity, like string
theory, and goes under the name of "firewall paradox".6

All the modern issues about renormalisibility and unitarity have generated differ-
ent programs in the realm of research in quantum gravity. The two most developped
paradigms differ on how they approach quantisation. On the one hand, gravity is believed
to be fully non-perturbative theory, and above-mentioned issues are artefacts of the per-
turbative treatment of quantisation as (1.3). This is the philosophy of Loop Quantum
Gravity, where one uses the notion of loops in spaces to measure its curvature, and quan-
tises these so-called loop variables. On the other hand, classical gravity is believed to be
the low-energy limit of a more fundamental theory, and one quantises the metric pertur-
batively around flat spacetime theories with richer and more symmetric matter content,
like a supergravity or a string theory. This is the direction followed in this manuscript.

UV divergences. In quantum field theories, ultraviolet divergences are of central im-
portance when considering effective theories because they point out our lack of under-
standing of the ultraviolet behavior: identification of the wrong degrees of freedom. They
will be used in section 1.2, as well as in chapter 3 to analyse the results of [BCHP1],
[BCHP2].

As we will be interested in theories coupled to matter, and in particular, gauge vectors,
we will focus on interactions in the low-energy effective action of the type of (1.2) from
higher order scattering events of n1-gravitons and n2-photons. These interactions must
respect symmetries of the theory, in particular diffeomorphism and gauge invariance.
These symmetries force interactions to be formulated in terms of the Riemann tensor
Rµναβ and the electromagnetic field strength tensor Fµν , and derivative of these. For
n-point amplitudes, with n = n1 + n2, the possible effective couplings are

∇m1Rn1 , ∇m2Fn2 , ∇m1Rn1∇m2Fn2 (1.4)
6Local irregularity of spacetime at the horizon was thought to produce a dramatic ’firewall’.
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where ∇ is the covariant derivative and mi ≥ 0. These operators have mass dimension

[∇m1Rn1∇m2Fn2 ] = Mm1+m2+2n1+n2 . (1.5)

The superficial degree of divergence provides an upper bound on the possible divergences
that one might have to cancel. It is given by counting the degree in momentum of the
most divergent graphs. In the case of graviton and photon interactions, the most diver-
gent graph at leading order in the gravity coupling constant is obtained by concatenating
3-valent vertices with two powers of the momentum each (associated to the double deriva-
tives). The naive superficial behavior of a L−loop n1−graviton and n2−photon amplitude
is7

ML−loop
n = ∇m1Rn1∇m2Fm2 × ΛL(D−2)+2−m1+m2−2n1−n2 . (1.6)

This simple calculation will allow us to compare the superficial degree of divergence with
explicit computation presented in the section 1.2.

Black holes and entropy. Theories coupled to gravity typically have black hole solu-
tions, and describing their entropy – that we now introduce – will be one of the central
points of [BCHP1], [BCHP3].

They are caracterised by an hypothetical surface, the event horizon, that has the
special property of being lightlike: any object at the surface would either fall inward if
traveling slower than light, or remain tangent to the surface if traveling at the speed
of light. Objects traveling faster than light could in principle escape from the black
hole’s pull, but this behavior would break causality and is thus forbidden in any sensible
theory. However, quantum effects, as the vacuum polarisation mentioned above, allow
some particles to escape their fate (see figure 1.3). Pairs of particles-antiparticles separate
at the horizon, causing black holes to emit black body radiation of finite temperature,
called the Hawking temperature [10, 23]

T = ~κ
2π , (1.7)

where κ is the so-called surface gravity, which measures the strength of gravity at the
horizon. Furthermore, they behave as thermodynamic systems characterised by their
temperature and other state quantities:8 the no-hair theorem states that black holes can
solely be described by their mass, charge and spin, implying that their internal energy
can be seen as a state function.9 The analogy with the state function of thermodynamical
system has been used to identify [24]

SBH = A

4~G , (1.8)

the so-called Bekenstein-Hawking entropy10. In §4.1, we present how to compute the
entropy of some specific class of black hole solutions, taking into account higher derivative
correction in the effective action.

7One can make use of the Euler formula for connected graphs with V vertices, I internal legs and L
loops V − I + L = 1. Each vertex (internal line) will add a factor k2 in the numerator (denominator).

8Temperature, volume, pressure and other non-vanishing macroscopic quantities that are only defined
at thermodynamic equilibrium of the system.

9By definition, a state function only depends on the state quantities of the system.
10Stellar-size black holes, for instance, have very small temperature T ∼ 10−7K, and very large entropy

S = 1077.
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This result is quite peculiar, since entropy of extended objects is expected to scale
as their volume, but it seems reasonable given the arbitrary large spacetime stretching
happening near the event horizon, as advocated figure 1.4. However, if this analogy is
correct, can a quantum theory of gravity provide an understanding of this entropy from
a statistical viewpoint ? Indeed, the entropy of thermodynamical systems is known to
satisfy

S = kB ln Ω , (1.9)

where Ω is the number of possible microscopic states underlying a given thermodynamical
state. In [BCHP1], [BCHP3], we focused our attention on a specific class of objects where
this question has been answered in the affirmative, a particular subclass of extremal black
holes [25]. In §4.2, we present a specific setup providing a statistical understanding of
black hole microstates, where it has been shown to match with high accuracy black hole’s
classical entropy.

Thermodynamic variables of extremal black holes saturate a bound corresponding to
states with zero temperature. We will focus on the case of stationary spherical black holes
with electromagnetic charge – called the Reissner-Nordström solution – where the charge
bound is M2 ≥ Q2 + P 2 with electric and magnetic charges Q and P . These extremal
black holes thus have M =

√
Q2 + P 2, and their Bekenstein-Hawking entropy (1.8) can

be obtained from Einstein-Maxwell theory in four dimensions

SBH(Q,P ) = π(Q2 + P 2) . (1.10)

It is important to note that (1.10), even as a classical approximation, does not depend
on any parameter of the theory. In any diffeomorphism invariant theory, the black hole
entropy is the integral of the Noether charge over the event horizon [26], and it is thus
always invariant under any non-singular field redefinition. For extremal black holes, such
as (1.10), it is also independent of the asymptotic values of the fields parametrising the
metric, which is a generalisation of the attractor mechanism for black holes in supergravity
theories [27, 28]. This latter fact can be easily understood by writing the entropy function
as the extremum value of a functional of the Lagrangian density, as we come back to in
§4.1.

In some specific theories, where the coupling constants corresponds to the asymptotic
value of a dynamical field, like a string theory, it implies that the entropy of the system
does not change as we vary coupling constants from a sufficiently large value where the
black hole description is valid, to a sufficiently low value where the microscopic description
can be handled with the current technical tools.

In §4.1 and §4.3, we introduce the black holes of interest in more details, which are
spherical solutions of a four-dimensional supergravity, and we present in §4.2 how their
microstates have been counted in a string theory description. In §4.4, we present how the
calculations in [BCHP3] can recover and extend the results presented in §4.2.

1.2 Supergravities
They constitute an attempt at modifying the UV behavior of Einstein’s gravity, and are
the low-energy limits of superstring theories considered in the rest of this manuscript. The
usual spacetime is embedded in a higher-dimensional space called superspace, where the
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coordinates of the new dimensions are labelled by anticommuting Grassmann numbers,
the so-called "fermionic" degrees of freedom.

The new symmetry of this geometry is the usual Poincaré group (translations, rota-
tions, boosts) extended by local anti-commuting generators called supercharges. These
anti-commuting symmetries also constrain the matter content of the field theorie, leading
to drastic dynamical simplifications (see table 1.1 hereafter). This extension is the only
instance where spacetime symmetries mix non-trivially with internal symmetries of the
quantum field theory, which goes against in spirit to the Coleman-Mandula theorem [29].

Theories are usually classified by the number of supercharges : from 4 in four di-
mensions to 32 for the maximal extension, which is defined in any dimension up to
D = 11 [30, 31]. In the following, we shall refer to the number N of four-dimensional
supercharges only when we restrict ourselves to four dimensions, i.e. N = 8 and N = 4
correspond respectively to supergravity and half-maximal supergravity in four dimen-
sions. Half-maximal supergravities can be separated into two types of constructions, the
(2, 2) and (4, 0).11 The latter will be the one of interest in this manuscript. In partic-
ular, in §3.1.1 we present the dimensional reduction of half-maximal supergravity from
ten to four dimensions, and exhibit how the gauge and moduli fields can be arranged in
representations of the global symmetry groups listed table 1.1.

s = 2 s = 3
2 s = 1 s = 1/2 s = 0

N = 8 1 8 28 56 70 E7

N = 4

1 4 6 4 2 SO(6)× SL(2,R)
1 4 6+2 4+8 2+12 SO(2, 6)× SL(2,R)
1 4 6+4 4+16 2+24 SO(4, 6)× SL(2,R) N=7
1 4 6+6 4+24 2+36 SO(6, 6)× SL(2,R) N=5
1 4 6+10 4+40 2+60 SO(10, 6)× SL(2,R) N=3
1 4 6+14 4+56 2+84 SO(14, 6)× SL(2,R) N=2
1 4 6+22 4+88 2+132 SO(22, 6)× SL(2,R) N=1

Table 1.1: Spin content of the massless supersymmetry representation with maximal spin
2 in four dimensions of some N = 8 and N = 4 supergravities. The size of representations
with decreasing spin are fixed from the highest by supersymmetry. The first two rows
correspond to the pure supergravities and the ones below are coupled to a given number
of vector multiplets preserving the non-perturbative SL(2,R) global symmetry. The two
last columns correspond to the expected global symmetry of the massles spectrum, and
the orbifold parameter of the corresponding ZN CHL string theory.

The supergravity theories with large supersymmetry extension, some of which being
listed in table 1.1, have much richer spectrum than Einstein’s supergravity (which, for
comparison, can be restricted to a single spin s = 2 field). However, this complexity is
reduced at the level of the effective action and scattering amplitudes, mainly because of
the geometric symmetries and supersymmetries of the theory. Part of this manuscript will
be aimed at understanding simplifications induced by the geometric symmetries, as well
as the constraints imposed by supersymmetries on the scattering amplitudes, as reviewed
§3.3 and §3.4.

11This notation refer to the sigma model, not to confuse with the spacetime supersymmetry.
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These supergravities were studied in depth in the late 70’s and 80’s, giving the
consensus opinion that supersymmetry alone wouldn’t be sufficient to eradicate non-
renormalisable divergences completely – although they would start to appear at a larger
number of quantum loops than in Einstein gravity. However, these theories have focused
a resurgence of interest in the recent years, and direct calculations by the leading experts
have shown that N = 8 supergravity is finite in spacetime dimensions D < 4 + 6/L
for L = 2, 3, 4 loops (R4, D2R4) [32, 33], showing an impressive concordance with the
UV behavior of a purely gauge theory, N = 4 super-Yang-Mills, which is UV-finite in
four-dimension. However, duality symmetry analysis [34, 35, 36, 37, 38] have predicted
an abrupt change in the critical behavior of N = 8 supergravity at L = 5 loops, due
to an allowed D8R4 counterterm. Non-vanishing of this counterterm at five loops would
indicate that supergravity is finite only for D < 2+14/L, predicting a non-renormalisable
divergence in four dimensions at seven loops and beyond. Unfortunately, the presence of
D8R4 at five loops was recently confirmed by a long-awaited computation [39].

In this manuscript, we will disregard the case of N = 8 and focus on the N = 4
supergravity theories presented in the table 1.1. Because of their reduced supersymmetry,
they allow coupling to matter multiplets [40] which trigger more divergences. Their richer
structure also allows them to be realised as the low energy limit of various string models,
and in particular, the heterotic string on T 6 withZN orbifold that we describe in chapter 2.

1.3 String theory

String theories have a very long and interesting history, and will be the main focus of the
rest of the manuscript. It was initially developped around 1968, through the Veneziano
amplitude and later the Virasoro-Shapiro amplitude

MVS(s, t, u) = Γ(−1− α′s/4)Γ(−1− α′t/4)Γ(−1− α′u/4)
Γ(−2− α′t/4− α′u/4)Γ(−2− α′s/4− α′u/4)Γ(−2− α′s/4− α′t/4) ,

(1.11)
to give an account of the observed spectrum in hadronic matter caused by strong interac-
tions [41, 42]. In (1.11), s, t and u are the usual kinematic Mandelstam invariants defined
by the four incoming momenta, respectively, −(k1 + k2)2, −(k1 + k4)2 and −(k1 + k3),
and α′ was called the Regge slope. These amplitudes were later understood to describe
interactions of open and closed strings of size `s =

√
α′ and tension T = 1/(2πα′),12 while

a massless particle of spin two was identified as a possible graviton candidate in the closed
string sector [43]. Quantisation, Lorentz invariance and unitarity constraints impose that
these strings must propagate in a 26-dimensional spacetime13. Moreover, their spectrum
contains an infinite tower of states caused by the oscillations running onto the string, with
quantised mass and spin given by

m2 ∝ n

α′
, J ≤ α′m2 + 1, n = −1, 0, 1, . . . , +∞ . (1.12)

12Note that the Virasoro-Shapiro amplitude is invariant under exchanges of s ,t and u, as expected for
a tree-level closed string interaction, while the Veneziano amplitude, describing open string interactions,
is only invariant under exchange of s and t

13This latter constraint protects unitarity in the sense that it eliminates negative normed states created
by Xµ.
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This candidate as a quantum theory of gravity was more attractive than usual field
theories because of the finiteness of all amplitudes. Such fortunate phenomenon is due to
the string length being finite, and hence the interaction points being non-local as we will
discuss later. From a far away perspective, strings behave like pointlike particles that can
join and split like in the Feynman diagrams in figure 1.1 and 1.2, but their finite length
gives their trajectory in spacetime, their worldline, a one-dimensional ’thickness’ named
worldsheet. This embedded two-dimensional worldsheet hosts a conformal field theory
(CFT), whose symmetries give an alternative understanding of the critical dimension
D = 26 [44], but are responsible for obtaining Einstein’s equations of motion for the
graviton (1.1), with corrections at all orders in α′. Both theories of open and closed strings
contain a problematic tachyon (the state with n = −1, of imaginary mass), which would
spoil the theory by breaking causality. A theory of superstrings was later elaborated,
and it was proposed by Gliozzi, Scherk and Olive to project out this tachyonic state of
the spectrum [45]. Superstrings live in a 10-dimensional spacetime and were shown to
possess in its massless sector the content of maximal supergravity spectrum [46] that was
mentioned in the previous section.

It has been since long a topic of research to inquire whether maximal supergravity
necessitates to be completed to a string theory to exhibit a safe UV behavior and unitarity.
Indeed, string theory amplitudes show in the high energy limit a soft behavior compatible
with unitary. Using the kinematic Madelstam invariant s, t and u in a 4-point scattering
event, the hard scattering limit – s, t→ +∞, fixed angle – at tree level behaves as

MV S(s, t) ∼ exp
(
− α′

2 (s ln s+ t ln t+ u ln u)
)
, (1.13)

where the soft behavior at large momenta, the same responsible for the mismatch
between string and strong interactions, can be attributed to the infinite tower of massive
states.

On the other hand, the problem of UV divergences is rather solved by the finiteness of
the string length. In string theory, the spacetime phenomena have a minimum size : the
string length

√
α′. At loop amplitude, this can be understood by noticing that the usual

UV divergent part (large momenta, or small distances) is absent at all genera. This is a
general consequence of modular invariance of integrand : for tori and Riemann surfaces of
higher genera, the UV divergent region is absent of the parametrisation of the amplitude.

Low energy limit of string theory gives rise to gravity coupled to matter fields. These
theory must then have black hole solutions, and thus constitute a framework for studying
classical and quantum properties of black holes.

Heterotic strings Within the landscape of possible string theoretic constructions, one
has been particularly studied for phenomenological purposes, despite its peculiarity. The
heterotic strings [47, 48] have an asymmetry between the left-moving sector, which is
purely bosonic, and the right-moving sector, which is supersymmetric, where left- and
right- designate the direction of the oscillation along the strings. Their critical dimension
is ten, as for superstring theories, but sixteen ’extra’ left-movers are required by the
critical dimension 26 of a bosonic string mentioned in §1.3. Since no string boundary
condition can be consistent with this peculiar asymmetry between the right- and left-
moving sector, heterotic strings can only be closed strings. The sixteen ’extra’ direction
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of one sector must be compactified, and windings and momenta along the 16 compact
directions are counted by a sixteen-dimensional even self-dual lattice, i.e. the lattices of
either E8 × E8 or SO(32) (where E8 is one of the exceptional groups). The two possible
gauge groups resulting from the massless sector of these ’extra’ dimension turn out to
be different models are sometimes being refered to as HE and HO respectively. It is
through this construction that we will continue most of the discussion, although some of
our results in [BCHP2] and [BCHP3] can be interpreted in other string constructions.

Non-perturbative dualities in string theories. Although superstring theory is the
only candidate for a renormalisable quantum theory of gravity, a lack of interest was
noticeable in its early days, notably because of the existence of many possible realisation
of string theories (called Type I, Type IIA and Type IIB). None of them seemed to be
in compatible with Nature : type II theories only had abelian gauge group, unlike the
electroweak and strong forces, and in type I the gauge group for super-Yang-Mills was
thought to be arbitrary. However, in 1985, it was learned that the possible gauge groups
were restricted by the absence of anomalies, and the heterotic string was discovered. The
latter was phenomenologically attractive and became popular for its aptitude to produce
grand unified theories starting from the exceptional subgroup E6.

Although this discoveries attracted many researchers into the field, it became soon
clear that understanding non-perturbative effects of string theories was crucial to produce
a grand unified model of nature. More precisely, four-dimensional physics depends cru-
cially on the type of compactification which is used to reduce from ten to four dimensions.
Numerous symmetries relating different compactifications are known, they are named T-
duality, but there remains a large class of compactifications which are not related any
any way. In principle, the type of compactification by the dynamics at very high energy,
however, the selection of the correct compactification scheme requires non-perturbative
information on the potential over the landscape of string vacua.

In parallel, it has been understood that many non-perturbative features of some spe-
cific four-dimensional gauge theories could be understood without performing an ex-
plicit instanton calculation. This is made possible by the presence of a so-called non-
perturbative symmetry, i.e. highly non-trivial symmetry between the weak and strong
coupling effects. As we mention in §1.4, such symmetry was conjectured in the Georgi-
Glashow model in 1977 [49], but was received with skepticism until convincing evidence
was presented for the case of a N = 2 extension [50]. This strong-weak coupling sym-
metry, dubbed S-duality, relates two phases of a super-Yang-Mills theory,14 one at large
value of the coupling with the other at small value of the coupling. If the theory is super-
conformal, it cannot be in either of two aforementioned phases and the coupling is fixed
by self-duality under S-duality.15

These S-dualities symmetries were at the same time conjectured to be present as self -
symmetries of various string theories such as the heterotic or type IIB string theory, but
as connectors between different string theories such as heterotic at weak (strong) coupling
to type I at strong (weak) coupling. This duality is in fact used in [BCHP3] in order to

14It relates two differents theories when the gauge groups are non-simply-laced [51].
15This is the case of both N = 4, or N = 2 with Nf = 2Nc with Nf and Nc being the flavor and color

numbers.
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deduce some properties of the low energy effective action of four-photon interactions of
type I strings.

Later, another symmetry was conjectured to map the type IIA theory at strong cou-
pling into an eleven-dimensional theory called M-theory, and which maps the heterotic
superstring with gauge group E8×E8 at strong coupling into a version of M-theory with
boundaries. The existence of the latter theory was corroborated by the discovery of the
eleven-dimensional supergravity mentioned previously in §1.2. This historical step in
string theory research induced many other non-perturbative symmetry conjectures and
important works that paved the path for this present work.

Thus, by studying the perturbative regime of string theories where the coupling con-
stant is small, one can use the strong-weak duality non-perturbative information where
the coupling constant is large in the same, or in another theory. S-duality symmetries
may help in understanding superstring theory at very small and very large values of the
coupling constants, but also to gain control over some relevant informations contained in
the instantonic effects. This is the direction pursued in this manuscript.

1.4 Non-perturbative dualities

Non-perturbative dualites have played an important role in understanding string theory
as well as certain quantum theories. They remain one of the only theoretical tool to access
effects that are invisible in the neighborhood of the solutions to the equations of motion.
We do not intend to recapitulate their history here, but only to introduce some details
and concepts that will be relevant in the following chapters, and in particular to motivate
the presence of a strong-weak duality in N = 4 supergravities.

Kramers-Wannier duality The first instance of a non-perturbative duality was found
by Kramers and Wannier [52] in the Ising model. It is presented here as an example to
introduce the concept of dualities in toroidal string compactifications in the next para-
graph.

In a statistical physics, a model is said to be self-dual if its partition function is
left invariant under a transformation interchanging to physical variables. The partition
function of physical system is of the utmost importance, as it sums the probability weights
of all the possible states of the system. The partition function of a system on a lattice,
like a field theory, is relevant for its similarities with lattice partition function in string
theory that counts the states generated by winding and momenta in the compact flat
directions.

Consider a square lattice, on which each site hosts a particle of spin with up and down
state σi = ±1. The partition function at temperature T = 1/β is given by summing the
probability weight of a system configuration {σi} over all possible spin states

Z =
∑
{σ}

∏
〈ij〉

exp(βJ σiσj) = cosh(βJ)2N∑
{σ}

∏
<ij>

(1 + tanh(βJ)σiσj) , (1.14)

where 〈ij〉 designate nearest neighbouring sites, and where the second equality is obtained
by noticing that eβJσiσj = cosh(βJ) + σiσj sinh(βJ). Using the formula (1.14), one can
study the high temperature expansion β � 1, i.e. to study configurations close to the
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configurations where all spins are unaligned with their nearest neighbors. The expansion
shows configurations will only contribute when they produce a polynomial of even degree
in the spin variables σi, σj , . . ., which can be represented as closed loops on the spin
lattice, see figure 1.5. The high temperature expansion of the partition function thus
counts closed loops of length 2n, with n ∈ Z. In the expansion of the partition function

Fig. 1.5 Schematic representation of the contributions to the partition function
at large temperature (left, β � 1) and et low temperature (right, β � 1).

at low temperature, β � 1, one expects to obtain the ordered phase where all spins
are pointing in the same direction (either up our down), up to some patches of one or
several spins pointing in the other direction. These are caused by small fluctuations due
to the non zero temperature, and can be circled as in the right picture of figure 1.5. As
one can judge in figure 1.5, the links and interfaces drawn in these two pictures form
identical patterns, and this is so because 1)the polygons drawn to circle the blobs in the
low temperature phase lie on the lattice dual to the spin lattice with respect to the nearest
neighbor pairing 〈ij〉, and 2)the dual lattice to a square lattice is also a square lattice.
These arguments prove that the partition function of the Ising model is invariant under
low-/high-temperature duality

Z(β) = Z(−1/β) . (1.15)

These results can extended to the case where the spin lattice is not a self-dual lattice by
coupling several Ising models [53]. They naturally generalise to abelian gauge theories on
four-dimensional lattice, where a larger group SL(2,Z) acts non-perturbatively on both
the gauge coupling and a topological "theta term" added in the action, which can be used
to recover critical points of phase transition [54, 55]. Although we will not review this
work further, we will exhibit how the charged spectrum of Maxwell’s theory transforms
under this duality 1.4, as well as massive BPS states in N = 4 super-Yang-Mills 1.4. We
will also review a generalisation of these results to N = 4 supergravities descending from
heterotic string theory in §3.1 to motivate the conjecture of exact F 4 and ∇2F 4 couplings
in sections 3.3 and 3.4.

We now exhibit briefly how the non-perturbative symmetry shown above is often
encountered as a perturbative symmetry in a compactified string theory model 1.4.
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Perturbative symmetry in toroidal string compactification. The string theory
partition function counting string states with momenta and winding around the internal
flat directions, exhibits self duality in a very similar fashion. In particular, toroidal com-
pactification of heterotic string theory can be viewed as the compactification of indepen-
dent left- and right-movers (L, L̃) on tori on which momenta en windings are represented
by an even Lorentzian self-dual lattices in R16+d,d[56], with D = 10− d being the space-
time dimension after compactification. In the case of compactification on one circle, the
duality symmetry, which acts on the radius of the circle as R → 1/(2R), maps different
Lorentzian even lattices and sends the lattice vectors as [57, 58]

(L, L̃)→ (L,−L̃) , (1.16)

thus preserving the norm L2− L̃2, and thus the self-duality of the lattice. This symmetry
is here perturbative, as it leaves the string coupling constant unchanged. Compactifying
down to D spacetime dimension, d-tori is parametrised by dynamical massless scalar fields
called moduli that span the non-compact Riemannian symmetric space

G16+d,d = O(16 + d, d)
O(16 + d)×O(d) , (1.17)

and whose transformation under the duality symmetries can be understood from the
supergravity effective description, as we discuss in §3.1. String states being labelled
by their discrete winding and momenta along the compactified directions, the group of
global symmetries is SO(16 + d, d,Z). Other effective N = 4 effective supergravities can
be obtained by quotienting the internal lattice by a discrete ZN rotation [59, 60, 61, 62].
Note that these types of N = 4 model with reduced gauge group were first discovered
and studied through a type I string construction by Bianchi, Pradisi and Sagnotti [63].
We will focus on some of these models, the ones listed in table 1.1 §1.2.

Four-dimensional abelian gauge theory. We now study the strong-weak coupling
duality in the oldest theory of electromagnetism. We will further comment on this type
of duality in the case of field theories (see next paragraph), as well as in supergravity
and string theory (see §3.1). It is moreover at the center of the exact coupling proposal
of [BCHP1], [BCHP2], [BCHP3], as we review in chapter 3.

In the vacuum, Maxwell’s theory of electromagnetism has a U(1) symmetry allowing
rotations between the electric and the magnetic field as

E + iB → eiα(E + iB) , (1.18)

which thus contain the exchange between the electric and the magnetic field (E,B) →
(−B,E). In the relativistic formalism where the electric and magnetic fields are given
respectively by F 0i and its Hodge dual ?F0i, the duality (E,B)→ (B,−E) can be simply
expressed as Fµν → ?Fµν .

Extending this duality to the charged spectrum predicts the existence of magnetic
monopoles, i.e. states with non vanishing charge qm under the magnetic field. The pres-
ence of such charge would have to satisfy the Dirac-Schwinger-Zwanziger quantisation
condition [64, 65, 66]

qeq
′
m − q′eqm = 4πn , n ∈ Z , (1.19)
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where (qe, qm) and (q′e, q′m) are the electric and magnetic charges of two particles. Since in
nature there are electrons of charge (ge, 0), with e ∈ Z and g the gauge coupling constant,
the charge quantisation condition (1.19) for a hypothetical magnetic monopole of charge
(qe, qm) requires geqm = 2πn. Thus the allowed magnetic monopole charge reads

qm = 4π
g
m , m ∈ Z . (1.20)

This implies that the exchange of magnetic and electric field, in the presence of charged
matter, imply the following identification of the charges, joined with a strong-weak duality
in g

(e,m)→ (−m, e) ⇒ g → 4π
g
. (1.21)

This picture will be exhibited for the electro-magnetic spectrum of N = 4 supergravity
in §3.1.1.

Self-duality of N = 4 four-dimensional gauge theory. In 1974, magnetically
charged solution were found in non-abelian gauge theories with spontaneous symmetry
breaking to abelian gauge groups [67, 68]. Montonen and Olive conjectured a duality
exchanging a gauge triplet made of this monopole states with the photon, together with
the W bosons of the spontaneously broken non-abelian gauge theory [49]. In the general
case, this conjecture was either falsified by the mass quantum corrections or the matching
of the two triplets’ spin. However, for N = 4 super-Yang-Mills, the effective action does
not obtain corrections beyond two derivative couplings and it was shown that the quan-
tisation of fermionic zero modes around the monopole solution makes it into a N = 4
massive vector multiplet [69].

One can give a vacuum expectation value 〈φ〉 to one of the six adjoint scalars of the
N = 4 theory with gauge group G. Then, the W -boson, or fluctuation of the component
Eα of the gauge field, with α is a root of G, obtains a mass given by

MW (α) = g |α · 〈φ〉| . (1.22)

On the other hand, each root α gives a monopole solution similar to Bogomol’nyi-Prasad-
Sommerfield solution for G = SU(2) [70, 71]. These states belong to the 16 dimensional
representation of the N = 4 supersymmetry algebra, are annihilated by half of the sixteen
supercharges, and their mass and charge satisfying a definite relation. In the present case,
the mass of the solution is given by

MM (α) = 4π
g
|α∨ · 〈φ〉| , (1.23)

where α∨ is a coroot of G.
Then, the spectrum of W bosons and the monopoles of the theory can be exchanged

if the root lattice is self-dual with respect to the orthogonal projection, i.e. , if the root
system is isomorphic to the coroot system.16 One can see that exchanging monopoles of

16In general, the S-duality maps a theory with gauge group of root system Φ to a theory with gauge
group of root system Φ∨, where Φ∨ is the system of coroots of the former. Self-duality is hence possible
only if Φ∨ ' Φ, which is the case for simply-laced groups only.
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G with W -boson of G leads to the same strong-weak duality as (1.21). This superficial
recount of the S-duality in N = 4 theories can completed by [72, 73, 74].

In §3.1.1, we will recall invariance of the mass spectrum of the BPS sector in the case
of N = 4 supergravity, as a motivation of a non-perturbative duality of the full theory.
In sections 3.3 and 3.4, we use this duality together with supersymmetry considerations
to conjecture the existence of exact F 4 and ∇2F 4 couplings.

Structure of the manuscript
Below is a quick summary of the organisation of this manuscript.

In chapter 2, we introduce some basics of perturbative string theory and recall the
low-energy computation of perturbative F 4 interaction at one loop, and ∇2F 4 interaction
at one and two loops.

In chapter 3, we introduce the conjectures of [BCHP1], [BCHP2] and [BCHP3] for
the exact F 4 and ∇2F 4 couplings in three dimensions, and discuss their perturbative
limit in weak heterotic coupling in three dimensions and weak type II coupling in four
dimensions. To motivate these conjectures, we first review the dimensional reduction of
half-maximal supergravity to four and three dimensions, and give argument for S-duality
in four dimensions. We then recall some of the specificities of CHL models with prime
N , and give a brief presentation of the construction of their one-loop partition function.

In chapter 4, we discuss their decompactification limit from three to four dimensions
presented in [BCHP1], [BCHP3], and show how they allow to compute the degeneracy
of quarter-BPS black hole solutions. These results reproduce and extend the Dijgkraaf-
Verlinde-Verlinde (DVV) formula for prime CHL models, as well as the exact contour
prescription. To introduce these results, we first review the entropy formalism for sta-
tionary four-dimensional black holes, and then the famous DVV formula in the case of
CHL models. Finally, we recall some techniques to describe quarter-BPS black holes in
N = 4 supergravities.

Finally, in chapter 5, we give some directions for the outlook.



Chapter 2

Superstring amplitudes and
perturbative expansion

In this chapter, we study the one- and two-loop amplitudes of half-maximal heterotic
string theories. In the simplest case, this theory is the toroidal reduction of N = 1
supergravity coupled to N = 1 super-Yang-Mills. Such models are given table 1.1, some
of which being realisable as a toroidal compactifiction of heterotic string theory, with N
in the rightmost column being the order of the free action of the ZN orbifold.

We first review some general facts about closed string theory amplitudes, and then
present the one-loop and two-loop computations of four-photon interactions, where the
latter are based on a calculation by D’Hoker and Phong [75, 76, 77, 78, 79, 80].

2.1 Closed string theory amplitudes

2.1.1 Bosonic string

Scattering processes in string theory, or S-matrix elements, are computed in a first quan-
tised formalism. The string trajectory X describes the wordlsheet. It can be thought
as a map from the string-surface Σ (indices m,n = 1, 2) to the D-dimensional spacetime
manifold M (indices µ, ν = 0, . . . , D− 1). The fields X are scalars from the view point of
Σ which are governed by the Polyakov action1 [44]

S = 1
4πα′

∫
dσdτ

√
g gmn∂mX

µ∂nX
ν Gµν(X) , (2.1)

where σ, τ and gmn are the coordinates and metric on Σ, and where Gµν(X) is the
metric on M . It has the special feature of being renormalisable as a QFT, as well as
local in X, g, and G, and invariant under orientation preserving diffeomorphisms of Σ
and diffeomorphisms of M . Strings can only interact through ’joinings’ and ’splittings’
because of Lorentz invariance and mathematical consistency. In particular, no specific
point on the worldsheet can be singled out as interaction point, since it depends upon the
Lorentz frame chosen to observe the process. One should note that an open string theory
always contain closed strings, since endpoints of an open string can always join. However
a closed string theory refer to a theory containing only closed strings.

1We refrain from presenting the historic Nambu-Goto action because of its difficult quantisation.

41
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Fig. 2.1 Map from the string-surface Σ to the spacetime manifoldM . The little
crosses symbolise the insertion points, i.e. the ingoing or outgoing states

(a) (b)
(c)

Fig. 2.2 String interactions. Closed and open strings can interact as in 2.2a
and 2.2b, respectively. Open strings can also join their ends to form a closed
string 2.2c.

As in a first quantised path integral formalism, the transition amplitudes between two
specified external string states is obtained by the sum over all possible worldsheets, i.e.
all possible surfaces Σ and trajectories in spacetime X,

A =
∑
Σ

∑
X

e−S[X,Σ,M ] , (2.2)

and must be normalised by the overall volume given by the diffeomorphism invariance to
be determined later. Another important ingredient is to notice that the action S is also
invariant under Weyl rescalings, which can be spoiled by anomalies, but is nonetheless
crucial for the consistency of the theory. Assuming this, the sum over all geometries on Σ
collapses to the sum over all topologies of genus h, and all metrics of surfaces Σh for each
h. Finally, a second simplification concerns the boundary data specifying the ingoing and
outgoing states of the scattering process, which can be geometrically reduced to a simple
point on the compact surface Σh, where states’ data is mapped by inserting so-called
vertex operators V1, . . . , VN to be constructed later. The amplitudes thus writes

A =
∞∑
h=0

∫
Met(Σh)

Dg
1

N(g)

∫
Maps(Σh,M)

DX V1 . . . VN e
−S[X,g] (2.3)

where Met(Σh) is the space of metrics on Σh, N(g) is a normalisation factor compensating
the diffeomorphism and Weyl invariance of the action S such that Dg/N(g) reduces
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(a)

+

(b)

+

(c)

+ . . .

Fig. 2.3 The sum over all string worldsheets decompose into a sum over all
topologies because of Weyl invariance.

naturally to the canonical measure onMh = Met(Σh)/Diff(Σh)×Weyl(Σh), the moduli
space of Riemann surfaces of genus h. The action S that we considered is not the most
general one, and one can consider having a manifoldM with extra structure. The manifold
can carry an anti-symmetric tensor field Bµν ∈ Ω(2)(M), a dilaton field Φ ∈ Ω(0)(M)
coupled to the Gauss curvature of Σ, and a tachyon field T ∈ Ω(0)(M). The tachyon field
will not be consider as sensible field in general, but the other will lead to an effective
action at low energy in terms of kinetic terms for the graviton, the dilaton, and the
anti-symmetric B-field.

2.1.2 Superstrings

The sector of string theory that we considered previously is usually named the bosonic
string theory. It is necessary to include bosonic excitation on strings, but these alone don’t
allow for a physically sensible theory, as Nature clearly displays fermionic states (electrons,
quarks, etc.) or states transforming under a spinor representation of the Lorentz group.
The purely bosonic string in flat spacetime also contains a tachyonic state, as stated
before, which leads to a violation of the physical principal of causality.

These problems can be solved by adding extra degrees of freedom on the string world-
sheet, which will result in introducing fermionic string states in the physical Hilbert space,
but also in changing the critical dimension D of the embedding manifold M .

• This can be done in the Green-Schwarz (GS) formulation [81, 82], where one con-
siders strings to move in a "super spacetime". The coordinates Xµ are supple-
mented with the fermionic ones θα, respectively transforming under a vectorial and
fermionic representation of SO(1, D−1). Thus ground state is thus degenerate and
bosonic and fermionic states are obtained by applying to it the latter two fields. The
drawback of this formulation is the difficulty to quantise it in a manifestly Lorentz
invariant way.

• A way to bypass this difficulty was to use a twistor-like constraint to gauge-fix
differently the purely bosonic action, leading to Berkovits’ pure spinor formalim [83,
84] It has lead to several important results in the past year, among which the first
computation of a three-loop four-graviton amplitude [85]2.

• The Ramond-Neveu-Schwarz (RNS) formulation two fundamental spacetime vector
fields in the theory, Xµ and ψµ, where the latter is a Grassmannian variable. There

2Above genus five amplitudes, the prescription to compute the pure spinor ghost path integral has to
be changed [86].
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are thus two sectors in the Hilbert space, built by applying both fields on either
the Neveu-Schwartz bosonic ground state, or the Ramond fermionic ground state.
However, this field produces further negative norm states independent of those of
Xµ, which are eliminated by imposing a local Grassmann symmetry, or local super-
symmetry. This symmetry has to be local to remove the entire field component ψ0
of ψµ. And, it also implies the existence of the spin 3/2 field χα, a spinor-vector field
sometimes called the superpartner to the metric field, gravitino, or Rarita-Schwinger
field.

The supersymmetric Deser-Zumino-Brink-Di Vecchia-Howe-Polyakov action3 thus in-
volves Xµ, ψµ, gmn and χm – also refered to as the N = 1 supergravity action – writes,
for flat target spacetime M

S[X,ψ; g, χ] = 1
4π

∫
Σ
dσdτ

√
g
[ 1
2α′ g

mn∂mX
µ∂nXµ + ψµγaema ∂mψµ

− 1√
α′
ψµγaγbχae

m
b ∂mXµ −

1
4(ψµγmγnχm)(χnψµ)

]
,

(2.4)

where γm satisfy the 2-dimension algebra {γm, γn} = −gmn, and ema is the local frame
field satisfying ema enb δab = gmn. The integrand of (2.4) is a single-valued function when
ψµ and χm have the same spin structure, and the total action under three additional
symmetries with respect to (2.1): Weyl-invariance over Σ, super-Weyl invariance δea =
0, δχm = γmδΛ, and local supersymmetry

δXµ = ζψµ

δψµ = γm(∂mXµ − 1
2χmψ

µ)ζ
δeam = ζγaχm

δχσm = −2∇mζσ .

(2.5)

The supersymmetrised Polyakov action coupled to a conformal field theory thus defines a
superconformal field theory. The critical dimension for the superstring theory, which can
be computed by requiring the Weyl-anomaly to vanish, is D = 10. Furthermore, gauging
the supergravity fields on a genus-h super-Riemann surface with n-insertion point induces
an integration over 3h−3+n bosonic and 2h−2+n fermionic moduli. They parametrise
the space of all frame and gravitino fields {eam, χσm}, denoted sMet(Σh), quotiented by
the group of superdiffeomorphisms {Diff(Σh), local SUSY}, super-Weyl transformations
{Weyl(Σh), super δλ}, and local SO(2) frame rotations Lorentz(Σh) [89, 90, 91]

sMh = sMet(Σh)/(sDiff(Σh)× sWeyl(Σh)× Lorentz(Σh)) (2.6)

The scattering amplitudes or N string states are thus expressed in terms of the fields
X, ψ, g and χ

A =
∞∑
h=0

∑
ν,ν̄

w(ν, ν̄)
∫

sMet(Σh)
DχDg

1
N(g, χ)

∫
Maps(Σh,M)

DX

∫
Dψ V1 . . . VN e

−S[X,ψ;g,χ] ,

(2.7)
3Although it corresponds to the supersymmetrized version of the Polyakov action, it was discovered

beforehand by Deser, Zumino, and independently by Brink, Di Vecchia, Howe [87, 88].
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where ν, ν̄ are the spin structure, w(ν, ν̄) is a weight factor, and V1 . . . VN a collection of
vertex operators for the RNS string.

The procedure to compute integrals of the form (2.7) was believed to rely in the
existence of a global holomorphic section of sMh [91, 92, 93]. The existence of such
section makes space of super-Riemann surfaces split, implying that the odd moduli can
be integrated alone and the amplitude reduces to an integral over its Riemann base.
However, for h ≥ 5, it is known that sMh is not holomorphically projected [94], while
the question remains for h = 3, 4.

2.2 One-loop four-photon couplings
We start this section by recalling the form of one-loop photon amplitude in string theory.
At four-point in heterotic string, they write as a correlation function of a product of vertex
operators

A(1)
abcd = α′2

(2πi)4

∫
F1

d2τ

τ2
2

∫
T

3∏
i=1

d2zi
τ2
〈V1a(z1)V2b(z2)V3c(z3)V4d(z4)〉 , (2.8)

where the domain F1 has been defined in the previous chapter, and the zi belong to
T = {z ∈ C, −1/2 < Re z ≤ 1/2, 0 < Im z < τ2}. One vertex operator is fixed to z4 = iτ2
by conformal invariance. The heterotic gauge bosons propagate on the left-moving sector,
and the vertex operators for the gauge boson read:4

Va(z) = iρaµP̃µPaeik·X(z,z̄) (2.9)

with µ = 1, . . . , d labelling the transverse spacetime directions, a = 1, . . . , 16 + d la-
belling the internal lattice dimensions, and where P̃µ is the supersymmetric right-moving
momentum operator

P̃µ = ∂τX
µ + 1

16k
νψ̄γµνψ , (2.10)

with ψ the RNS spacetime Grassmann variable, and where ∂τXµ and Pa are the left-
moving spacetime momentum and gauge lattice operators

∂τX
µ = 1

2p
µ +

∑
n6=0

αµne
−2in(τ−σ) , Pa = pa +

∑
n6=0

α̃an e
−2in(τ+σ) . (2.11)

The periodicity conditions for the fermionic fields ψµ, ψ̄ν upon transport along the
torus of complex structure τ define spin structures, denoted by α, β ∈ {0, 1}, such that

ψµ(z + 1) = eiπαψµ(z) , ψµ(z + τ̄) = eiπβψµ(z) . (2.12)

One must sum all these sectors to ensure modular invariance, with a relative sign dictated
by the GSO projection [45]. The partition function of a supersymmetric sector of spin
structure α, β writes5

Zαβ(τ̄) ≡
θ
[α
β

]
(τ̄ , 0)

η(τ̄)12 , (2.13)

4The vertex operators Vi can all be chosen in the (0) superghost picture since the superghost background
charge is zero on the torus.

5Note that for orbifold models, such as the one presented in the next section, GSO boundary conditions
can be mixed with target-space shifts, implying non-trivial boundary conditions for the fields Xµ, ψµ [95,
96].
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with the Riemann theta θ
[α
β

]
(τ, z) and eta η(τ) functions

θ
[α
β

]
(τ, z) =

∑
n∈Z

q
1
2 (n−α2 )2

e2πi(z−β2 )(n−α2 ) , η(τ) = q1/24
∞∏
n=1

(1− qn) . (2.14)

The GSO projection gives rise the so-called supersymmetric cancellation identities on the
worldsheet, namely∑

α,β=0,1
αβ=0

(−1)α+β+αβZαβ = 0

∑
α,β=0,1
αβ=0

(−1)α+β+αβZαβ
4∏
i=1

Sα,β(τ̄ , zi − zi+1) = −(2π)4 ,

(2.15)

with the fermionic correlators Sα,β = 〈ψµ(zi)ψν(zj)〉α,β of spin structure α, β. The first of
these identities ensures that the string self-energy vanishes, while the second will produce
the t8F 4 tensor when there are exactly four bilinears : ψψ :. These are a consequence of
supersymmetric simplifications on the worldsheet in the RNS formalism, and details of
these computation can be found in standard textbooks [82, 97].

Contraction of the spacetime and internal momenta also leads the so-called kinematical
Koba-Nielsen factor, coming from the plane-wave part of the vertex operator

〈: eik·X(z1,z̄1) : . . . : eik·X(z1,z̄1) :〉h = exp
(∑
i<j

ki · kj〈X(zi, z̄i)X(zj , z̄j)〉h
)
. (2.16)

Since its expression does not change for all genera, we will denote using the genus-h
holomorphic two-point function

Gh(τ, zi − zj) = 〈X(zi)X(zj)〉h (2.17)

and
χ

(h)
ij = eGh(τ,zi−zj) . (2.18)

The one loop amplidute becomes, denoting Ja(z) the internal current bilinear in the
fermions, and s, t, u the Mandelstam variables

A(1)
abcd = α′2

(2πi)4

∫
F1

d2τ

τ2
2

1
∆(τ)

∫
T

3∏
i=1

d2zi
τ2

(χ12χ34)α′s(χ13χ42)α′t(χ14χ23)α′u

× 〈Ja(z1)Jb(z2)Jc(z3)Jd(z4)〉 ,
(2.19)

where the torus Green function reads

g(z) = − log |θ1(τ, z)/η(τ)|2 + 2π
τ2

(Imz)2 , (2.20)

and the discriminant function
∆(τ) = η(τ)24 . (2.21)
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The partition function with four current insertion evaluates to

〈Ja(z1)Jb(z2)Jc(z3)Jd(z4)〉 =Γp,q
[
Pabcd]−

1
4π2

(
δabΓp,q

[
Pab]∂2g(z1 − z2) + 5 perms

)
+ 1

16π4

(
δabδcdΓp,q∂2g(z1 − z2)∂2g(z3 − z4) + 2 perms

)
,

(2.22)

where Pab and Pabcd are modular polynomial homogeneous in (Q2
L, ρ
−1
2 ) explicited in [BCHP2],

such that for any modular polynomial P of degree n, and integer lattice Λp,q of signature
(p, q), the partition function

ΓΛp, q [P ] = τ
q/2
2

∑
Q∈Λp,q

P (QLa, τ)eiπτQ2
Le−iπτ̄Q

2
R (2.23)

is a modular form of weight (2n + p−q
2 , 0). Upon expanding the one-loop amplitude

(2.8) in α′, the so-called low-energy expansion, the leading term reproduces the one-loop
contribution to the t8F 4 coupling in D = 10− d dimensions

F
(1)
abcd = R.N.

∫
F1

dτ1dτ2
τ2

2

ΓΛ16 + d, d
[Pabcd]

∆(τ) , (2.24)

where Pabcd denotes a polynomial in QLa defined in [BCHP1], [BCHP2], and where R.N.
denotes a regularisation procedure introduced in [98, 99], which is in particular need to
make sense of the integral when d ≥ 6.

At next to leading order in α′, the term linear in the Mandelstam variables s, t, u
reduces to

G(1)
ab,cd =

∫
F1

dτ1dτ2
τ2

2

1
∆

∫
E4

4∏
i=1

dzidz̄i
2iτ2

[
g(z1 − z2) ∂2g(z1 − z2) δab ΓΛd+ 16, d [Pcd] + 5 perms

]
,

(2.25)
since all other terms at this order are total derivatives with respect to zi. The integral
over z can be computed by using the Poincaré series representation of the Green function,

g(τ, z) = 1
π

′∑
(m,n)∈Z2

τ2
|mτ + n|2

e
π
τ2

[z̄(mτ+n)−z(mτ̄+n)]
, (2.26)

leading to∫
E

dzdz̄
2iτ2

g(z − w)∂2g(z − w) = lim
s→0

′∑
(m,n)∈Z2

1
(mτ + n)2|mτ + n|2s

= π2

6 Ê2 , (2.27)

where the sum over (m,n) was regularized à la Kronecker, with Ê2 the non-holomorphic
modular form of weight two

Ê2 =
′∑

(m,n)∈Z2

1
(mτ + n)2 −

3
πτ2

. (2.28)

Up to an overall numerical factor, we therefore find that the one-loop contribution to
the coefficient of ∇2F 4 coupling for the maximal rank model is given by

G(1)
ab,cd ∝ δ〈abG

(d+16,d)
cd〉 , G(p,q)

ab =R.N.
∫
F1

dτ1dτ2
ρ2

2

Ê2
∆(τ)ΓΛp, q [Pab] . (2.29)



48CHAPTER 2. SUPERSTRING AMPLITUDES AND PERTURBATIVE EXPANSION

2.3 Two-loop ∇2F 4 coupling
At two-loop, the scattering amplitude of four gauge bosons in ten-dimensional heterotic
string theory was computed in [80, 100]. Upon compactifying on a torus T d, one obtains

A(2)
abcd =

∫
F2

d3Ω1 d3Ω2
|Ω2|3

1
Φ10

×
∫

Σ4
YS

4∏
i=1

dzi (χ12χ34)α′s (χ13χ24)α′t (χ14χ23)α′u 〈Ja(z1) Jb(z2) Jc(z3) Jd(z4)〉

(2.30)

where Σ is a genus-two Riemann surface with period matrix Ω, YS is a specific (1, 1) form
in each of the coordinates zi on Σ [80, (11.32)],

YS = t∆(z1, z2) ∆(z3, z4)− s∆(z1, z4) ∆(z2, z3) , (2.31)

where ∆(z, w) = ω1(z)ω2(w) − ω1(w)ω2(z), χij = eG(Ω,zi−zj) and G(Ω, z) is the scalar
Green function on Σ. At leading order in α′, χij can be set to one, and the integrated
current correlator

∫
Σ J

a(z)dz ωI(z) can be expressed as a multiple derivative [101]

〈
∫

Σ4
Ja(z1)Jb(z2)Jc(z3)Jd(z4)

4∏
i=1

dzi ωI(zi) 〉 =
1
3(εrr′εss′ + εrs′εsr′)∂4

(2πi)4∂yra ∂y
s
b ∂y

r′
c ∂y

s′
d

Γ(2)
Λd+ 16, d

(y)|y=0

(2.32)
where Γ(2)

Λd+ 16, d
(y) is the partition function of the compact bosons deformed by the currents

yraJ
a integrated along the r-th A-cycle of Σ,

Γ(2)
Λp, q(y) = |Ω2|q/2

∑
Q∈Λ⊗2

p,q

eiπQrLa ΩrsQsL
a−iπQrRâ Ω̄rsQsR

â+2πiQrLay
a
r+π

2 y
a
rΩrs2 yas . (2.33)

The Siegel modular form Φ10(Ω) is given by the square product of all genus two even
theta series
Φ10(Ω) =

2−12
[
θ(2)[00

00
]
θ(2)[00

01
]
θ(2)[00

10
]
θ(2)[00

11
]
θ(2)[10

00
]
θ(2)[01

00
]
θ(2)[11

00
]
θ(2)[10

10
]
θ(2)[01

01
]
θ(2)[11

11
]]2

,

(2.34)

where θ(2)[a1a2
b1b2

]
= θ(2)[a1a2

b1b2

]
(Ω|0), and

θ(2)[a1a2
b1b2

]
(Ω|ζ) =

∑
n1,n2∈Z

e
iπ(n1+a1

2 ,n2+a2
2 )·Ω·

(
n1 + a1

2
n2 + a2

2

)
+2πi(n1+a1

2 ,n2+a2
2 )·
(
ζ1 + b1

2
ζ2 + b2

2

)
. (2.35)

The Siegel modular form 1/Φ10(Ω) has an order one singularity at v = 0,6 corresponding
the separating degeneration where the genus two surface degenerates to the connected
sum of two genus one surfaces. In this limit

Φ10(ρ, σ, v) ∼ (2πiv)2∆(ρ)∆(σ) , (2.36)
6The singularity also exists at all its Sp(4,Z) images, but only v = 0 intersects with the fundamental

domain of Sp(4,Z).
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where the discriminant function ∆(τ) is defined (2.21).
Evaluating the derivatives explicitly, we obtain the result announced in [BCHP3] for

the two-loop ∇2F 4 coupling in the maximal rank case,

G(d,d+16)
ab,cd =R.N.

∫
F2

d3Ω1 d3Ω2
|Ω2|3

Γ(2)
Λd, d+ 16

[Pab,cd]
Φ10

(2.37)

where Pab,cd is the quartic polynomial defined in [BCHP1], and more details about the
regularization procedure can be found in [BCHP3].
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Chapter 3

Non-perturbative and
supersymmetry constraints

In the introduction we motivated the study of strong-weak duality symmetries in the
context of string theory as a useful feature to count the microstates of black holes solutions
in N = 4 supergravity theories. Such symmetries are similar to the non-perturbative
symmetries presented in §1.4 in the context of fields theories.

In section 3.1, we first consider the case of full heterotic string theory compactified on
the torus, and we review the arguments motivating S-duality symmetries at the level of the
four-dimensional effective action, the charge and the BPS spectrum, following [102, 72].
We review how this strong-weak symmetry generalises to a much bigger group G3(Z) of
non-perturbative symmetries for the descending three-dimensional theory upon dimen-
sional reduction on circle [103, 104].

In section 3.2, we review some details of the ZN CHL models for prime N from an
heterotic string perspective [59, 60, 62], and arguments for the presence of strong-weak
dualities in both four and three dimensions [105].

Finally, in section 3.3 and 3.4 we expose the conjectures of [BCHP1], [BCHP2],
[BCHP3] stating that exact four-scalar interactions in the low-energy three-dimensional
effective action – namely (∇φ)4 and ∇2(∇φ)4 couplings – are given by modular integrals
of specific modular forms times partition function for the non-perturbative Narain lattice
invariant under the full group of non-perturbative symmetries G3(Z). These exact inter-
actions are obtained by covariantisation of the respective perturbative F (1)

abcd and G
(2)
ab,cd

coupling coefficients under the group of non-perturbative symmetries G3(Z). They are
motivated in addition by supersymmetry constraints that we expose in §3.3 and §3.4, and
are checked against known pertubative results extracted from the literature in the weak
coupling regime for both the heterotic and type II string in §3.3.1 and §3.4.1 respectively.

3.1 Dualities and applications

Our intention here is not to provide an exhaustive recapitulation of the knowledge about
four-dimensional half-maximal theories, but rather to introduce the main arguments mo-
tivating the presence of strong-weak dualities in these compactified string theories.

In general, analysis of compactified string theories benefits from isometries of the
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target space introduced in chapter 2, the so-called T-dualities. In perticular, for toroidal
compactification of the heterotic string, they are composed of reparametrisations of the
16+d-dimensional left-moving sector and d-dimensional right-moving sector, as introduced
in §1.4. These act trivially on the coupling constant gs and are thus valid order by
order in string perturbation theory. Four-dimensional compactification of the heterotic
string exhibits such symmetry, which we come back to in this section, but it possesses
another type of symmetries that act non-trivially on the coupling constant gs, the so-called
strong-weak duality or S-duality. Such symmetry is very reminiscent of the strong-weak
symmetry of N = 4 super-Yang-Mills evocated in §1.4. As such, this property cannot be
realised order by order in the gs-expansion, and since our modern computational method
are mostly perturbative, we still lack tools to prove the existence of S-duality on the full
theory. However, it is possible to verify this property on some quantities that can be
known exactly. This will be the focus of this section, and will serve as a motivation for
anticipating the exact answers to questions that are not fully understood perturbatively.

In section 3.1.1, we review the dimensional reduction of the two-derivative low energy
effective action to four dimensions, the realisation of the the strong-weak duality on the
charge spectrum, as well as on the spectrum of massive BPS states. In section 3.1.2,
we review the arguments for the presence of a O(24, 8,Z) duality symmetry in three
dimensions.

3.1.1 Strong-weak duality in four-dimensional string theory

To introduce heterotic string theory on a six dimensional torus, we start by writing the low
energy effective action asN = 1 supergravity theory coupled withN = 1 super Yang-Mills
theory in ten dimensions, and then reduce this action from ten to four dimensions [106].
The moduli space in D = 4 is a quotient

M4 = SL(2,R)
SO(2) ×

O(22, 6)
O(22)×O(6) , (3.1)

where SL(2,R)/SO(2) is parametrised by the heterotic axiodilaton S while the Grassma-
niann factor Gr22,6 is parametrised by the scalars in the vector multiplets – respectively
the 2 and the 132 in 1.1 – that we will come back to later. Since we will mostly be
interested in the theory at a generic point of the moduli, we restrict the gauge group to
its abelian subgroup U(1)16. The bosonic part of the ten-dimensional action is given by,
with 0 ≤M, N ≤ 9 and I, J, . . . indexing the 16 gauge directions,∫

d10x
√
−Ge−Φ(RG +GMN∂MΦ∂NΦ− 1

12HMNPHMNP − 1
4ηIJF

I
MNFJMN) , (3.2)

where GMN , BMN , AIM , Φ are the ten-dimensional metric, anti-symmetric tensor field,
U(1) gauge fields and the scalar dilaton field respectively, where ηIJ is the positive-definite
metric on the internal gauge lattice, and

FIMN = ∂MAIN − ∂NAIM , HMNP = ∂MBNP −
1
2ηIJA

I
MFJNP + cyclic perm . (3.3)

We will then denote by m, n, . . . the directions along the six-dimensional torus, and by
µ, ν, . . . the non-compact ones. The compactification Ansatz for toroidal compactification

EAM =
(
ẽαµ A

(G)n
µ Ean

0 Eam

)
(3.4)
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leads the the following decomposition of the Riemann tensor, when all fields are assumed
to be y−independant

√
−Ge−ΦRG =

√
−g̃e−φ

(
Rg̃ + ∂µφ∂νφ+ 1

4Tr(∂µG∂µG)− 1
4ĜmnF

(G)m
µν F (G)nµν

)
, (3.5)

where we introduced the shifted dilaton field φ = Φ− 1
2 log det (Ĝ). Using bold letters for

tensors along the non-compact four-dimensional space

AI = aIm(dym +A(G)m) +A(F )I

B = bmn(dym +A(G)m)(dyn +A(G)n) +Bm(dym +A(G)m) +B .
(3.6)

The field strengths thus become

FIm = daIm

FI = d
[
A(F )I − aImA(G)m]+ aImdA

(G)m

≡ dA(F )I + aImdA
(G)m

(3.7)

and

Hmn = dbmn + 1
2ηIJ

(
aImda

J
n − aIndaJm

)
Hm = d

[
Bm + bmnA

(G)n + 1
2ηIJa

I
m

(
A(F )J − aJnA(G)n)]− (bmn + 1

2ηIJa
I
ma

J
n)dA(G)n

− ηIJaImd
(
A(F )J − aJnA(G)n)

≡ dA(B)
m − (B̂mp + Ĉmp)dA(G)p − ηIJaImdA(F )J

H = d
[
B + 1

2A
(G)m ∧A(B)

m − bmnA(G)mA(G)n]− 1
2
(
A(G)mdA(B)

m +A(B)mdA(G)
m

)
+ 1

2ηIJA
(F )IdA(F )J − 1

2ηIJa
I
mA

(F )JdA(G)m .

(3.8)

To make the full O(22, 6) symmetry explicit, one can define, using the notations intro-
duced in (3.7),(3.8), a new gauge vector AI where the indices I, J, . . . now denote the full
22 gauge directions

AI =
(
A

(B)
m

−A(F )I

A(G)m

)
, B(B) = B + 1

2A
(G)m ∧A(B)

m − bmnA(G)mA(G)n

g̃µν = Gµν −GmµGnν(Ĝ−1)mn ,

(3.9)

so that the kinetic term of this 28-dimensional gauge field AI can be deduced from 28× 28
dimensional matrix

M =
( Ĝ−1 Ĝ−1a Ĝ−1(b+ c)

aᵀĜ−1 116 + aᵀĜ−1a aĜ−1(Ĝ+ b+ c)
(−b+ c)Ĝ−1 (Ĝ− b+ c)Ĝ−1a (Ĝ− b+ c)Ĝ−1(Ĝ+ b+ c)

)
(3.10)
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where cmn = 1
2a

I
ma

I
n and 1n is the n × n identity matrix. Note that this matrix consists of

the 132 scalars paramatrising G22,6 (3.1). This matrix is an element of O(22, 6), satisfying

MLMᵀ = L , L =
( 0 0 −16

0 η 0
−16 0 0

)
. (3.11)

The four-dimensional action can thus be re-written as, using a shifted dilaton field
φ→ φ− 1

2 log detG

S =
∫

d4x
√
−g̃e−φ

(
Rg̃ + ∂µφ∂

µφ− 1
12HµνρH

µνρ − F Iµν(M−ᵀ)IJF Jµν

+ 1
8Tr

(
∂µML∂µML)

)
,

(3.12)

where all the indices are raised by the metric g̃µν , whereRg̃ is now the curvatuge associated
to the latter, while other dynamical fields can be found in [107].

This effective action is indeed invariant under O(22, 6) tranformations [107]

M → ΩMΩᵀ , AIµ → ΩI
JA

J
µ , gµν → gµν , Bµν → Bµν , φ→ φ , (3.13)

where Ω is an O(22, 6) matrix. However, charge quantisation will break this symmetry
to its largest discrete subgroup, O(22, 6,Z), which is also known as the T-duality group
of this theory. Part of this symmetry exchanges the Kaluza-Klein modes of the theory,
i.e. the states carrying momenta along the internal directions with the string wrapped
around the internal directions.

To exhibit the string-weak symmetry, let us go to the Einstein frame metric gµν =
e−φg̃µν , and define a scalar field b dual to the antisymmetric tensor field

Hµνρ = −(
√
−g)−1e2φεµνρσ∂σb . (3.14)

Let us introduce the axiodilaton

S = b + ie−φ ≡ S1 + iS2 , (3.15)

which is the complex scalar field parametrising the coset SL(2,R)/SO(2) in (3.1), and
rewrite the effective action with this field redefinition

S =
∫

d4x
√
−g
[
Rg −

1
2S22∂µS∂

µS̄ − S2F
I
µν(M−ᵀ)IJF Jµν + S1F

I
µν ?F

µν
I

+ 1
8Tr

(
∂µML∂µML)

]
.

(3.16)

where we denote the Hodge-dual field strength by

? F Iµν = 1
2
√
−g

εµνρσF Iρσ , ?FµνI = LIJ ?F
Jµν , (3.17)

where we will use LIJ to indices of other tensors in the following.
The equation of motion of (3.16) for the field strength and the complex scalar field

are
Dµ(S2(M−ᵀ)IJF Jµν − S1 ?F

µν
I ) = 0

1
S22D

µDµS + 2
S23DµS2D

µS − iF Iµν(M−ᵀ)IJF Jµν + F Iµν ?F
µν
I = 0 ,

(3.18)
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where Dµ is the standard covariant derivative constructed from the metric gµν . The other
equation of motion can be found in [102, 72]. In order to exhibit the electromagnetic
duality in a canonical way, we introduce the dual field F̃µνI as suggested the equation of
motion (3.18)

F̃µνI = S2(M−ᵀ)IJ ?F Jµν − S1F
µν
I , (3.19)

such that the equations of motion for the gauge field strength and its Bianchi identities,
respectively

dF̃ I = 0 , dF = 0 , (3.20)

are dual one another, as suggests their expression above, and are related by the projection

(
(ML)IJ − i ?

) 1√
S2

(F̃ J + SF J) = 0 . (3.21)

Strong-weak duality of the effective theory As stated earlier, the strong-weak
symmetry acts non-trivially on e−φ. It is not an explicit symmetry of the four-dimensional
action (3.16), but it can be exhibited in the equations of motion like (3.18). Using the
dual field notation (3.19), one can check that the SL(2,R) transformations [40, 108, 109]

S → S′ = aS + b

cS + d
,

(
F̃ I

F I

)
→
(
a −b
−c d

)(
F̃ I

F I

)
, gµν → gµν . (3.22)

Considering that S−1
2 = eφ can be identified to the string coupling constant, this set of

transformation contains the strong-weak coupling duality given by a = 0, b = 1, c = −1,
d = 0,

S → − 1
S
, FµνI → F̃µνI , F̃µνI → −F

µν
I (3.23)

which, together with the shift of S1

S1 → S1 + b , F̃µνI → F̃µνI − bF
µν
I , (3.24)

generates the full SL(2,R) group, with all other fields remaining invariant.
Note that the SL(2,R) symmetry is not explicitely realised at the level of the ef-

fective action (3.16), but only at the level of the equations of motion. It is possible to
introduce auxiliary variable to make both SL(2,R) and O(22, 6) symmetries explicit, but
this is at the cost of losing explicit general covariance [110]. Since the SL(2,Z) symmetry
exchanges the electric fields EIi with the magnetic fields (ML)I JBiJ (3.23), general co-
variance cannot be kept explicit. It is only possible at the cost of breaking the T-duality
symmetry at the level of the effective action, although it is recovered in the equations of
motions [110].

Note that SL(2,R) cannot be a symmetry of the full theory, in the same way that
O(22, 6) is broken to O(22, 6,Z) when requiring quantisation of the charges. However,
SL(2,Z) can be. In (3.16), we rewrote the four-dimensional action in a way that made
explicit the coupling between S1 and the topological density F IµνLIJ ?F Jµν . The latter
obtains contributions from gauge instantons which exist only for a discrete set of value
– usually refered to as instanton number, and thus the translational symmetry (3.24)
must be broken to a discrete subgroup of translations. Note that even if Abelian gauge
field do not lead to gauge instantons, the theory considered here does produces gauge
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instantons since the fields AI descend from non-Abelian gauge fields at a generic point of
the moduli space. One can compute the contribution of such instanton [108], and show
that the action can be normalised such that eiS remains invariant under S1 → S1 +1. The
translational symmetry is thus broken to S → S + 1 in the path integral formalism, and
one can show that, together with S → −1/S, it generates SL(2,Z) the group of integer
matrices

(
a b
c d

)
such that ab− cd = 1.

Invariance of the charge spectrum. The full four-dimensional string theory contains
charged fields. Although massive states decouple from the low energy effective action,
they are a good playground to investigate SL(2, Z) invariance of the spectrum. The
gauge fields couple to their currents Jµ through the action

− 1
2

∫
d4x
√
−gAIµJ

µ
I , (3.25)

and one can identify the variables related the the electromagnetic field strength at large
distance

QIe = lim
r→∞

r2F I0r , QIm = lim
r→∞

r2 ?FI0r , (3.26)

and use the equations of motion from the effective action [110] together with (3.25) to
identify the electric charge as

QIe = 1
S∞2

M∞IJQI , (3.27)

where the superscript ∞ stands for the asymptotic values of the fields and will be kept
implicit in the following, and where QI is the integrated charge density

QI =
∫

d3x
√
−g J0

I . (3.28)

The electric charge vectors QI must belong to an even self-dual Lorentzian lattice Λe
with metric L defined in (3.11) [111]. One can find the magnetic charges by imposing
the Dirac-Schwinger-Zwanziger quantisation rule [64, 65, 66]. Considering an elementary
string that can only carry an electric charge

(QIe,QIm) =
( 1
S2
M IJQJ , 0

)
, (3.29)

and generic solitonic state, the quantisation rule constrain the magnetic charge to satisfy

S2QIm(LML)IJ
1
S2
MJKQK = QImQI ∈ Z , (3.30)

which corresponds to the definition of the dual lattice. Thus we have Λm = Λ∗e, and the
magnetic charges can be defined as

QIm = 1
S2
LIJPI , PI ∈ Λ∗e , (3.31)
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where QIe and QIm are canonically contracted with the canonical lattice metric LIJ . Note
that these lattice charge are directly obtained a the canonical definition using the Gauss
law

QI = 1
4π

∫
S2
F̃I , PI = 1

4π

∫
S2
FI , (3.32)

where here S2 designates a 2-sphere enclosing the charge, and where the definition of the
dual field is given in (3.19).

We now want to know the general charge for dyonic state with both QI and PI
non-zero. For S1 = 0, or vanishing field strength Hµνρ, the topological term in (3.16)
is turned off from the action and we expect the electric charge of dyonic states to be
quantised in units of integral electric charges [112], but it not the case in general. By
using the canonical description (3.32), and relating the definition of (Qe,Qm) (3.26), one
obtains

(QIe,QIm) = 1
S2

(
M IJ(QJ + S1PJ), LIJPJ

)
. (3.33)

The class of states described by (3.33) consists of all possible states charged under the
gauge field, including the purely electric states. One can notice that when S1 6= 0, there
does not exist electrically neutral magnetic monopoles [112].

To verify invariance of the charged spectrum under the strong-weak duality one can
perform a generic SL(2,Z) transformation on the field strength (3.22) and deduce the
effect on the lattice charges QI ∈ Λe, PI ∈ Λm

QIe → (cS1 + d)QIe + cS2(ML)I JQIm = 1
S′2
M IJ(Q′I + S′1P

′
I)

QIm → (cS1 + d)QIm − cS2(ML)I JQIe = 1
S′2
LIJP ′J .

(3.34)

where S′ = aS+b
cS+d and (

Q′

P ′

)
=
(
a −b
−c d

)(
Q
P

)
. (3.35)

This show that SL(2,Z) transformations (3.22) preserve the expression of the charge
spectrum, up to a linear transformation of the bases (3.35), Λe×Λm → Λe and Λe×Λm →
Λm. These transformations are well defined if the lattice is self-dual

Λe = Λm , (3.36)

but might lead to further restrictions on the S-duality group otherwise. It is important to
notice that for generic N = 4 string theory models, the lattice is not necessarily self-dual
and only subgroup of SL(2,Z) can be preserved. In the case where both lattices are
included into each other up to a integer coefficient, for instance if Λ∗ ⊂ Λ and NΛ ⊂ Λ∗,
a subgroup of SL(2,Z) with c = 0 modN – the congruent subgroup Γ0(N) – may be a
symmetry of the charged spectrum. We come back to this in section 3.2.

Invariance of the mass spectrum. SL(2,Z) invariance of the full string theory in-
cludes invariance of the allowed charge spectrum, but also of the full mass spectrum.
This statement is more challenging to verify because of all the perturbative and non-
perturbative quantum corrections to be considered. Here, we focus on a special class of
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states that are protected from any quantum corrections, as in the case of N = 4 super-
Yang-Mills 1.4. Namely, states saturating the Bogomol’nyi bound [70] have their mass
fixed as a function of their charge, and the latter can be obtained from the asymptotic
value of the 28-dimensional field strength (3.26), as we shall now see.

The Bogomol’nyi lower bound on the mass squared of a state is given by M2 ≥
M(Q,P )2 with [102]

M(Q,P )2 = S2
(
QIe(M−ᵀ − L)IJQJe +QIm(LML− L)IJQJm

)
= (M − L)IJ

S2

(
QI PI

)( 1 S1
S1 |S|2

)(
QJ
PJ

)
.

(3.37)

Note that for vanishing charge along the compactified directions, (QI , PI) = (0, 0) for
1 ≤ I ≤ 6 and 22 < I ≤ 28,

M(Q,P )2 = S2ηIJ
(
(QIeaJn)(Ĝ−1)np(QIeaJp ) + (QImaJn)(Ĝ−1)np(QImaJp )

)
, (3.38)

with ηIJ the metric on the internal sixteen-dimensional lattice, is precisely Osborn’s
formula [69] presented in section 1.4 for the case of N = 4 super-Yang-Mills, where the
fields aIm should be interpreted as the vacuum expectation value of the Higgs fields.

Using the definition of the Grassmaniann projectors defined in [BCHP2], one finds
that (M − L)IJ = 2pIRâpJRâ and can rewriteM(Q,P )2 as

M(Q,P )2 = 2
S2
|QR + SPR|2 . (3.39)

The two expressions (3.37) and (3.39) are explicitely invariant under O(22, 6,Z) and
SL(2,Z) transformations given respectively by (3.13) and S → aS+b

cS+d , up to self-duality of
the electro-magnetic charge lattice discussed under (3.35) [102, 113, 114]. In other words,
two states saturating the Bogomol’nyi bound have the same mass if their electro-magnetic
charge numbers (Q,P ), and the asymptotic values ofM and S are related by an SL(2,Z)
transformation.

To establish the invariance of the complete mass spectrum for such states, it thus
remains to show that the degeneracy N(Q,P ) of states carrying electromagnetic numbers
QI , PI , is an SL(2,Z) invariant. Such task has not been perfomed completely in the
literature, but we will see how far it has been pushed. We first consider states of vanishing
magnetic charge, i.e. string excitations, and then identify the specific magnetic monopoles
and dyons that close their SL(2,Z) orbit.1 It will be convenient to specify a duality frame
where the matrix M equals the identity

M → ΩMΩᵀ = 128 , Λe → Ω−ᵀΛe = Λ̃e . (3.40)

In the chosen normalisation, the mass formurla for string excitations in the Neveu-Schwarz
sector2 is [102]

Mstr(Q)2 = 2
S2

(
Q2
R + 2NR − 1

)
, (3.41)

1For a monopole soliton to be a plausible dual state, one needs to ensure that the carries the same
quantum and classical properties than the given string excitations. We will thus not consider singular or
non-asymptotically-flat monopole solutions.

2The Ramond and Neveu-Schwarz states being degenerate with each other due to space-time super-
symmetry, it is enough to study the Neveu-Schwarz sector only.
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where QR, NR and −1 are respectively the internal momenta, oscillator and ghost con-
tributions to L̄0 in the world-sheet theory. All elementary string states saturating the
Bogomol’nyi bound have NR = 1/2, so thatMstr(Q) =M(Q, 0).

On the other hand, the monopole solitons can be of various origin [115, 116, 117, 118],
but realistic known ones can only be gauge monopole solutions or H-monopoles. The
former can be obtained in a gauge where vacuum expectation value of the gauge field
is directed along a fixed direction [116, 118], and then rotate back the solution to the
frame (3.40)

(QI , PI) = (p, 1)eI , eIe
I = 2 , eI ∈ Λe , (3.42)

where p ∈ Z. The H-monopole is a solution associated with the ten dimensional field
HMNP [117, 118], and was constructed in [118] a finite sized gauge five-brane solution
around the torus. They are pure magnetic monopoles in terms of quantum numbers
(Q,P ), and correspond to charge vectors

(QI , PI) = (0,mI) , mIm
I = 0 mI ∈ Λm . (3.43)

These monopole solutions contains an SU(2) gauge field, and thus only exist in a codi-
mension one locus over the moduli space. In other words, they can only be constructed
for specific class of M where the gauge group has a non-abelian enhancement [72].

One can now review what type of states are known in the SL(2,Z)-orbit of string
excitation saturating the Bogomol’nyi bound

• In the case Q2 = eIe
I = 2, one can infer from Q2 = Q2

L − Q2
R = 2(1 − NL) that

there are no left-moving oscillators. Such states are mapped by strong-weak duality
onto purely magnetic gauge solitons (3.42) with p = 0(

0 −1
1 0

)(
eI
0

)
=
(

0
eI

)
, (3.44)

which exists at any point of the moduli space. One can also show, similarly to
N = 4 super-Yang-Mills [69], that both of them fall in the vector representation
of the N = 4 super-Poincaré algebra. For a generic SL(2,Z) transformation, one
obtains (

a b
c d

)(
eI
0

)
=
(
aeI
ceI

)
, (3.45)

where the unit determinant condition of SL(2,Z) imposes a and c to be coprimes.
The gauge soliton states (3.42) are a special case of (3.45) for c = 1, but the others
have not been constructed yet, and can been seen as a prediction of the strong-weak
duality.

• In the case Q2 = 0, the states satisfy NL = 1. The oscillators associated with the
22 internal directions transform as scalars under four-dimensional Lorentz trans-
formations and thus are vectors of super-Poincaré algebra. The Inversion of the
type (3.44) maps elementary string states to H-monopole solutions – which only
have been constructed in a background where the gauge group hasn’t been totally
broken. Ths other states obtained from (3.45) have not been constructed either.
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• In the case Q2 < 0, we get NL ≥ 2 and thus states of the form

(QI , PI) = (nI , 0) (3.46)

are mapped to states that haven’t been constructed yet. However, they are not
expected to be constructible from the massless fields of the low energy effective
action, except at special point of the moduli space where their mass vanishes.

3.1.2 Strong-weak duality in three dimensions

In this section, we study the duality group of heterotic string theory compactified on
a seven-dimensional torus. In the low energy limit, this results in a three-dimensional
supergravity theory with eight local supersymmetries [119]. The only massless bosonic
fields are the non-propagating spin-2 graviton, and a set of scalar fields: all the gauge
fields from dimensional reduction can be dualised to scalars in three spacetime dimensions.
The scalar fields parametrise a single coset space

M3 = O(24, 8)
O(24)×O(8) (3.47)

containing the four-dimensional moduli space, the holonomies of the four-dimensional
gauge fields, the Kaluza-Klein vector and the circle radius [119, 120]. This symmetry
enhancement can also be noticed from the perspective of vector multiplets: the 23 vector
multiplets have manifest R-symmetry Spin(7)/SO(8), while the gravity multiplet consists
of 8 fermions and 7 vectors which can be dualised and completed with the dilaton to give
8 scalars and 8 fermions with SO(8) symmetry.

The full string theory possess O(23, 7,Z) target space duality, but the theory can
also be seen as the four-dimensional theory of section 3.1.1 compactified on a circle,
whose SL(2,Z) invariance should remain unbroken since it does not act on space-time.
When seen from the three-dimensional perspective, O(23, 7,Z) target space duality im-
plies that there are seven ways of decompactify back to a four-dimensional theory, and
since SL(2,Z) acts on the moduli space of the decompactifying circle, these seven differ-
ent compactification lead to seven different SL(2,Z) strong-weak duality groups. Since
these transformations do not commute with each other, they generate a larger non-abelian
discrete subgroup of O(24, 8), which happens to be O(24, 8,Z).

In the following, we first use the picture elaborated in §3.1.1 to reduce from ten
to three dimensions directly and show, at the level of the bosonic effective action, how
all the vector fields can be arranged in a 30-dimensional multiplet and parametrize the
Grassmaniann G24,8 (3.47), together with moduli of G23,7 and the dilaton. In a second
and complementary paragraph, we work out for latter use the dimensional reduction from
four to three dimensions in a more general context with 2k + 4 vector fields.

Starting from the ten-dimensional action of N = 1 supergravity coupled with N = 1
super-Yang-Mills (3.2), the reduction on T 7 leads to a matrix of scalar similar to (3.10),
where the upperblock 7× 7 instead of 6× 6, and satisfies

MLMᵀ = L , MT = M , L =
( 0 0 −17

0 η 0
−17 0 0

)
, (3.48)
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where η is the metric on the internal gauge lattice. The action can be written in the
Einstein frame as

S =
∫

d3x
√
−g̃
(
Rg̃ + ∂µφ∂

µφ− e−4φ

12 HµνρH
µνρ − e−2φF Iµν(LML)IJF Jµν

+ 1
8Tr

(
∂µML∂µML)

)
,

(3.49)

and is invariant under O(23, 7) transformations Ω̂

M → Ω̂M Ω̂ᵀ , AI → Ω̂IJA
J , (3.50)

with gµν , Bµν , φ remaining invariant.
In three dimensions, the B-field has no physical degree of freedom and its field strength

can be fixed to 0, which implies that the equations of motion of the gauge fields AI ,
1 ≤ I ≤ 27,

∂µ
(
e−2φ√−g(ML)IJF Iµν

)
= 0 , (3.51)

can be used to introduce the 30 scalars ψI

e−2φ√−g(ML)IJF Jµν = 1
2ηIJε

µνρ∂ρψ
J . (3.52)

One can thus introduce the 32× 32 matrix

M̃ =
( M + e2φψψᵀ MLψ + 1

2e
2φψ(ψᵀLψ) −e2φψ

ψᵀLM + 1
2e

2φψᵀ(ψᵀLψ) e−2φ + ψᵀLMLψ + 1
4e

2φ(ψᵀLψ) −1
2e

2φψᵀLψ
−e2φψᵀ −1

2e
2φψᵀLψ e2φ

)
,

(3.53)
which belongs to O(24, 8). For Hµνρ = 0, the action can be rewritten as

S =
∫

d3x
√
−g
[
Rg + 1

8 tr (∂µM̃∂µM̃)
]
, (3.54)

which is manifestly invariant under the O(24, 8) transformation

M̃ → ΩM̃Ωᵀ , gµν → gµν , (3.55)

with

ΩL̃Ωᵀ = L̃ , L̃ =
( 0 0 −1

0 L 0
−1 0 0

)
. (3.56)

One can then show that this O(24, 8) symmetry of the action can be understood in terms of
the O(23, 7) symmetry (3.50) and the SL(2,R) symmetry of the four-dimensional action,
by exhibiting the element acting on the S module (3.15) [103]. It can shown that the
O(24, 8) group is generated as a combination of the O(23, 7) transformations (3.50), and
the SL(2,Z) tranformation. To show that O(24, 8,Z) is the invariance group of the full
theory, one needs to show that the SL(2,Z) invariance of the four-dimensional theory is
not destroyed when we compactify on one of the three space-like dimension of this theory.
Some of the monopole solitons necessary for the O(24, 8,Z) invariance of the theory are
identified in [103].
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Dimensional reduction from 4 to 3 dimensions. It is instructive to perform this
dimensional reduction from a four-dimensional perspective. Let us thus consider again
the effective action in four dimensions (3.16) and reduce the metric along a vector Kµ =
(Rkm, R), with m = 0, 1, 2

gµν =
(
−hmn

R +Rkmkn Rkn
Rkn R

)
, (3.57)

where hmn is the scaled metric on the three dimensional space. Note that this reduction
can be performed irrespective of the signature of the Killing vector field, and we have
used notations for time-translation for the study of instantons in §4.4, i.e. hmn is positive
definite and R > 0. For axial rotations, the metric has signature (−+ +) and R < 0.

Supposing we are interested in configuration allowing a Killing vector K, all the fields
AIµ will depend only on the remaining three coordinates xm, and decompose as AIµ =
(ÃIm + kmB

I , BI), with ÃIm and AI perpendicular and parallel to K. Thus, the effective
action (3.16) rewrites as – apart from surface terms –

S̃(3) =
∫

d3x
√
−h
[
Rh −

1
2S22∂mS∂

mS̄ + S1
(
F Imn + kmnA

I)LIJ 2√
−h

εmnp∂pA
J

− S2
(
F Imn + kmnA

I)(M−ᵀ)IJ
(
F Jmn + kmnAJ

)
+ R2

4 kmnk
mn

+ 2
R
∂mA

I(M−ᵀ)IJ∂mAJ + 1
2R2∂mR∂

mR− 1
8Tr

(
∂µML∂µML)

]
,

(3.58)

where Rh is the scalar curvature for h, kmn = ∂mkn − ∂nkm, F Imn = ∂mÃ
I
n − ∂nÃIm. The

equations of motion for ÃIm and km can then be considered as Bianchi identities for the
dual fields B̃I and the twist potential ψ. One can treat the fields ÃI and their dual B̃I

in a self-dual way by introducing

ÃI =
(
ÃI

B̃I

)
, F̃ I = dÃI , (3.59)

and the matrices

Y =
(

0 L−ᵀ/4
−L−1/4 0

)
, M̄ = 4

S2

(
S2

2M
−ᵀ + S2

1M
−1 S1M

−1

S1M
−1 M−1

)
. (3.60)

Treating them as independent variables, one ca rewrite the full action as

S(3) =
∫

d3x
√
−h
[
Rh −

1
2S22∂mS∂

mS̄ + S2
4R
(
∂mAᵀ)M̄(

∂mA
)

− 1
R2∂mR∂

mR− 1
2R2 ΩmΩm − 1

8Tr
(
∂µML∂µML)

]
.

(3.61)

where
Ωm = ∂mψ −AᵀY −ᵀ∂mA . (3.62)

(3.61) is in agreement with the graded decomposition of the Lie algebra so2k,8

so2k,8 ' . . .⊕ (gl1 ⊕ sl2 ⊕ so2k−2,6)(0) ⊕
(
2⊗ (2k + 4)

)(1) ⊕ 1(2) , (3.63)
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where the radius R, the axiodilaton S and the scalar matrix M are the grade-0 fields,
(ÃI , B̃I) is the grade-1 doublet, and ψ is the grade-2 singlet. This indicates that the
action can be rewritten as a non-linear sigma-model over the coset space O(2k,8)

O(2k)×O(8) , as
in (3.54).

3.2 CHL models in heterotic string
Chaudhuri-Hockney-Lykken models [59, 60, 62, 61] are asymmetric orbifolds of the het-
erotic string compatified on T d×S1 that preserve all of the half-maximal supersymmetry.3
They exist in type I string constructions, where they were originally discovered [63], as
well as in type II string descriptions [60, 61].

In the following sections we review from an heterotic string perspective some details
of three- and four-dimensional ZN CHL models with prime N , and argue for the presence
of strong-weak dualities in these constructions.

3.2.1 CHL moduli space in four dimensions

We consider theories that are freely acting orbifold of the maximal rank model, where a
ZN rotation acts on the heterotic lattice Λ22,6 together with an order N shift along one
circle inside T 6. This projection removes 28 − r of the gauge fields in four dimensions,
along with their fermionic and scalar partners. For simplicity we shall restrict ourselves
to CHL orbifolds with N prime with k = 24/(N + 1). In this case, one can decompose

Λ22,6 = ΛNk,8−k ⊕ II1,1 ⊕ IIk−3,k−3 , (3.64)

such that the ZN action acts on the first term by a ZN rotation, on the second term
by an order N shift, leaving IIk−3,k−3 invariant.4 We denote by Λk,8−k the quotient of
ΛNk,8−k under the ZN rotation (see Table 3.1). One thus obtains

Λr−6,6 = Λk,8−k ⊕ II1,1[N ]⊕ IIk−3,k−3 , (3.65)

i.e. the subgroup of the automorphism group of Λr−6,6 which acts trivially on the discrim-
inant group Λ∗r−6,6/Λr−6,6. The 6 from Λr−6,6 always corresponds to the gravity multiplet,
while

r − 6 = 24
N + 1 + 2(11−N)

N + 1 , (3.66)

corresponds the number of vector multiplets: the first term can be interpreted as the
number of vector multiplets left after orbifolding of the 16-dimensional gauge vectors
together with (when N > 2) some of the fields descending from dimensional reduction,
while the second term can be interpreted as the number of compactified dimensions, or
equivalently, the number of vector multiplets that unaffected by the orbifolding. Note
also that the second term in (3.66) must always be greater or equal to one for the model
to exist since the compactification involves an additional orbifolded circle S1/ZN .

Here and below, for any lattice Λ, we denote by Λ[α] the same lattice with a quadratic
form rescaled by a factor α.5 Note that the lattice (3.65) is still even, but it is no longer

3A given CHL model is defined d ≥ d∗, where d∗ increases monotoneously with the order of the orbifold
for the cases considered in this manuscript. See 3.1.

4See §A2 of [BCHP2] for details on this construction.
5This is equivalent to rescaling the lattice vectors by

√
α.
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N Cycle Shape k r Λk,8−k Λm ∼= Λ∗e |Λ∗m/Λm|
1 124 12 28 E8 ⊕ E8 ⊕ II6,6 1
2 1828 8 20 E8[2] E8[2]⊕ II1,1[2]⊕ II5,5 210

3 1636 6 16 D6[3]⊕D2[−1] A2 ⊕A2 ⊕ II3,3[3]⊕ II3,3 38

5 1454 4 12 D4[5]⊕D4[−1] II3,3[5]⊕ II3,3 56

7 1373 3 10 D3[7]⊕D5[−1]
[
−4 −1
−1 −2

]
⊕ II2,2[7]⊕ II2,2 75

Table 3.1: The class of ZN CHL orbifolds studied in this manuscript. Here k = 24/(N+1)
is the weight of the cusp form whose inverse counts half-BPS states, r = 2k + 4 is the
rank of the gauge group and Λm is the lattice of magnetic charges in four dimensions.
The discriminant group Λ∗m/Λm is isomorphic to Zk+2

N . D0[−1] is the null vector and
D2[−1] = A1[−1] ⊕ A1[−1]. Agreement between the lattice Λm listed here and Λr−6,6
defined in (3.65) follows from the lattice isomorphisms listed in [105].

unimodular, rather it is a lattice of level N , i.e.

Q ∈ Λr−6,6 ⇒ Q2 ∈ 2Z , Q ∈ Λ∗r−6,6 ⇒ Q2 ∈ 2Z/N . (3.67)

One can see from (3.67) and arguments similar to § 3.1.1, that the U-duality group
G4(Z) includes Γ1(N)×Õ(r−6, 6,Z), where Γ1(N) is the congruence subgroup of SL(2,Z)
corresponding to matrices

(
a b
c d

)
with c = 0 modN, a = d = 1 modN , and Õ(r − 6, 6,Z)

is the restricted automorphism group of the lattice. A brief, but technical, review of the
construction of the CHL partition function [BCHP2] is given a the end of this subsection.

Motivation for strong-weak duality. In [105] it was observed that the Gauss-Bonnet
coupling

− 1
(8π)2

∫
d4x
√
−g log(S k

2 |∆k(S)|2)(RµνρσRµνρσ − 4RµνRµν +R2) (3.68)

is in fact invariant under the larger group Γ̂0(N), obtained by adjoining to Γ0(N) the
Fricke involution, which acts on modular forms of weight k under Γ0(N) via fk(τ) 7→
f̂k(τ) = (−iτ

√
N)−kfk(−1/(Nτ)). Based on a detailed study of geometric dualities in

the type II dual description, it was conjectured6 that the full U-duality group in D = 4
also includes the so-called Fricke S-duality, which acts on the axiodilaton modulus S by
the Fricke involution S 7→ −1/(NS), accompanied by a suitable action ς ∈ O(r− 6, 6) on
the second factor. Additional evidence for the existence of Fricke S-duality comes from
the spectrum of BPS states, to which we now turn.

Moreover, it was observed in [105] that the lattice Λm is in fact N -modular, i.e. it
satisfies

Λ∗m ' Λm[1/N ] . (3.69)
In other words, there exists an O(r − 6, 6) matrix ς such that

√
Nς maps the lattice Λm

into itself and such that
Λ∗m = ς√

N
Λm (⊃ Λm) . (3.70)

6More generally, Fricke S-duality is conjectured to hold whenever the cycle shape satisfies the balancing
condition m(a) = m(N/a) for all a|N . [105]
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A simple example of N -modular lattice is Λd,d[N ] ⊕ Λd,d, which is relevant for N = 5
above. In this case one can parametrise an element in the lattice in (Zd, NZd,Zd,Zd)
and an element of the dual lattice in (Zd/N,Zd,Zd,Zd) and define ς ∈ O(2d, 2d) such
that

ς√
N

= 1√
N


0 0 1√

N
1d,d 0

0 0 0
√
N1d,d√

N1d,d 0 0 0
0 1√

N
1d,d 0 0

 =


0 0 1

N 1d,d 0
0 0 0 1d,d
1d,d 0 0 0

0 1
N 1d,d 0 0

 .

(3.71)
This latter fact is essential to obtain a strong-weak duality acting non-trivially on the

charge spectrum.

Half-BPS Charge spectrum. Point-like particles in D = 4 carry electric and mag-
netic charges (Q,P ) ∈ Λem under the r Maxwell fields, where

Λem = Λe ⊕ Λm , Λm = Λr−6,6 = Λ∗e . (3.72)

The lattice Λm is tabulated in the sixth column of Table 1.1, taken from [105]. In view
of the remarks below (3.65), one has, for any (Q,P ) ∈ Λem,

Q2 ∈ 2
N
Z , P 2 ∈ 2Z , P ·Q ∈ Z . (3.73)

The last property in particular ensures that the Dirac-Schwinger-Zwanziger pairing Q ·
P ′ −Q′ · P is integer.

The map (3.70), provided by the N -modularity of the electromagnetic charge lattice,
defines the action

(Q,P ) 7→ (−ς · P/
√
N, ς−1 ·Q

√
N) , (3.74)

of the Fricke S-duality on Λem, which maps (Q2, P 2, P ·Q) 7→ (P 2/N,NQ2,−P ·Q) and
therefore preserves the quantisation conditions (3.73).

Covariance of both the spectrum and the level−N modular form ∆k hints at a possible
strong-weak duality for the F 4 interaction acting as S → −1/(NS). As we see in the
next paragraph, the coefficient of this coupling can be written as a modular integral over
the fundamental domain Γ0(N)\H1, which is itself invariant under the Fricke duality.
Indeed, Γ0(N)\H1 possesses two cusps, i∞ and 0, of width 1 and N respectively, which
are exchanged under this duality. Unfortunately, deeper understanding of this strong-
weak duality is not available at present.7

Construction of the F 4 coupling for CHL models. We give in spirit the construc-
tion detailed in [BCHP2] for the freely acting ZN orbifolds. To implement the quotient,
it is simpler to work at the point of the moduli space Gd+16,d where the lattice partition
function factorises as (3.64), and ZN acts on the lattice Λd+16,d by a permutation with
cycle shape 1kNk (recall k(N + 1) = 24). One can then construct the CHL lattice Λk,8−k

7In particular, it does not descend naively from the unorbifolded theory since the Fricke duality cannot
be written as a SL(2,Z) element.
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in (3.65) for N = 2, 3, 5, 7 by applying a Wick rotation on the Niemeier lattices DN+1
k ,

replacing one Dk by D8−k[−1]8

N = 2 : D3
8 ⇒ D2

8 ⊕D0[−1]
N = 3 : D4

6 ⇒ D3
6 ⊕D2[−1]

N = 5 : D6
4 ⇒ D5

4 ⊕D4[−1]
N = 7 : D8

3 ⇒ D7
3 ⊕D5[−1]

(3.75)

so that the new lattice is an even self-dual Lorentzian lattice with signature (Nk, 8− k)
[121, §A.4]. In particular, it enjoys ZN symmetry σ acting by cyclic permutations of the
N Dk factors. Insertion in the partition function over (3.75) of elements σg is equivalent
to changing the lattices as

N = 2 : D2
8 ⊕D0[−1] ⇒ D8[2]⊕D0[−1]

N = 3 : D3
6 ⊕D2[−1] ⇒ D6[3]⊕D2[−1]

N = 5 : D5
4 ⊕D4[−1] ⇒ D4[5]⊕D4[−1]

N = 7 : D7
3 ⊕D5[−1] ⇒ D3[7]⊕D5[−1] ,

(3.76)

so that one is left with the signature (k, 8−k) lattice Λk,8−k advertised in (3.65). Denoting
the blocs over this lattice Zk,k−8

[h
g

]
, we have the natural set of transformation rules, for

h 6= 0 modN ,
Zk,k−8

[h
g

]
(τ) = Zk,k−8

[h
0
]
(τ + gh−1) (3.77)

where h−1 is the inverse of h in the multiplicative group ZN . Then, the untwisted
unprojected block decomposes as

Zk,k−8
[0

0
]

=
ΓΛk, k − 8

∆k

[0
1
] +

N−1∑
g=0

ΓΛ∗
k, k − 8

[
(−1)gQ2]

∆k

[1
g

] ,

=
∑

γ∈Γ0(N)\SL(2,Z)

ΓΛk, k − 8

∆k

∣∣∣
γ
,

(3.78)

i.e. a sum over the coset Γ0(N)\SL(2,Z) = {1, S, TS, . . . , TN−1S}, where

∆k = ∆k

[0
1
]

= ηk(τ)ηk(Nτ) , ∆k

[1
g

]
= e

iπgk
12 η(τ)k η

( τ+g
N

)k
, (3.79)

and where ΓΛp, q
[
P (Q)

]
is the standard partition function over Λp,q with insertion of P (Q).

The full partition function can be obtained by multiplying the blocks Zk,k−8
[h
g

]
, with

the orbifold blocks ΓΛk, 8− k
[h
g

]
(τ) for the lattice with the shifted partition function for the

remaining d− 8 + k compact directions, with d > 8− k,

ΓΛd− 8 + k, d− 8 + k

[h
g

]
= τ

d−8+k
2

2
∑

Q∈Λd−8+k,d−8+k+ h
N δ

(−1)
2
N
g δ·Q q

1
2Q

2
L q̄

1
2Q

2
R , (3.80)

8The lattices DN+1
k consist of the adjoint lattice plus gluing vectors associated to a certain represen-

tations of a product group of type V N+1CN+1SN+1. See details in §A2 [BCHP2].
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where δ/N = (0d; 0d−1, 1/N) represents the 1/N translation along a S1 inside T d.9 One
can then notice that the orbifold blocks written as sums over

Λ̃ = Λk,8−k ⊕ IId−8+k,d−8+k , (3.81)

rearrange as

Z̃d+2k−8,d
[0

1
]

= τ
d/2
2

∆k

[0
1
] ∑
Q∈Λ̃

[
1 + (−1)

2δ
N
·Q + . . .+ (−1)

2(N−1)δ
N

·Q] q 1
2Q

2
L q̄

1
2Q

2
R

Z̃d+2k−8,d
[1

0
]

= τ
d/2
2

∆k

[1
0
][ ∑

Q∈Λ̃∗
+

∑
Q∈Λ̃∗+ 1

N
δ

+ . . .+
∑

Q∈Λ̃∗+N−1
N

δ

]
q

1
2Q

2
L q̄

1
2Q

2
R

...

Z̃d+2k−8,d
[1
g

]
= τ

d/2
2

∆k

[1
g

][ ∑
Q∈Λ̃∗

+
∑

Q∈Λ̃∗+ 1
N
δ

+ . . .+
∑

Q∈Λ̃∗+N−1
N

δ

]
(−1)gQ2

q
1
2Q

2
L q̄

1
2Q

2
R ,

(3.82)

which, altogether, rewrites similarly as (3.78)

Z̃d+2k−8,d
[0

1
]

+
N−1∑
g=0

Z̃d+2k−8,d
[1
g

]
=

∑
γ∈Γ0(N)\SL(2,Z)

Z̃d+2k−8,d
[0

1
]∣∣∣
γ
. (3.83)

Finally, the insertion in Z̃d+2k−8,d
[0

1
]
act as a projection (up to a factor N) onto charges

Q ∈ Λ̃d+2k−8,d which have vanishing component modulo N along the S1 subjected to
the orbifolding. Thus, this projection amounts to reduce the lattice Λ̃d+2k−8,d to the one
adviertised in (3.65)

Λr−6,6 = Λk,8−k ⊕ II1,1[N ]⊕ IIk−3,k−3 , (3.84)

and the full partition function rewrites naturally as

1
N
Z̃d+2k−8,d

[0
1
]

+ 1
N

N−1∑
g=0

Z̃d+2k−8,d
[1
g

]
=

ΓΛd+ 2k − 8, d

∆k

[0
1
] + 1

N

N−1∑
g=0

ΓΛ∗
d+ 2k − 8, d

[
(−1)gQ2]

∆k

[1
g

]
=

∑
γ∈Γ0(N)\SL(2,Z)

ΓΛd+ 2k − 8, d

∆k

[0
1
] ∣∣∣

γ
.

(3.85)

This description is in agreement with the results stated in Table 1.1, thanks to the
isomorphisms

D6[3]⊕D2[−1] ' A2 ⊕A2 ⊕ II2,2[3]
D4[5]⊕D4[−1] ' II2,2[5]⊕ II2,2

D3[7]⊕D5[−1] '
(
−4 −1
−1 −2

)
⊕ II1,1[7]⊕ II2,2

(3.86)

Indeed, both lattices on each line have the same discriminant group L∗/L = ZkN .
9In more generality, it is a null modulo N vector
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Finally, we can obtain the one-loop F 4 amplitude by an insertion of the polynomial
Pabcd explicited in [BCHP2], and integrating over the fundamental domain H/SL(2,Z).
The integral can thus be unfolded onto a fundamental domain Γ0(N)\H for the action of
Γ0(N) on H, at the expense of keeping only the block

[0
1
]
,

F (1-loop)
abcd = R.N.

∫
Γ0(N)\H

dτ1dτ2
τ2

2

ΓΛd+ 2k − 8, d [Pabcd]
∆k

, (3.87)

where ∆k ≡ ∆k

[0
1
]
, thus establishing the F 4 coupling coefficient for this class of models.

While the U-duality group in four dimension G4(Z) must certainly include Γ1(N) ×
Õ(r − 6, 6,Z), it may actually be larger. Moreover, special BPS observables may well
be invariant under an even larger group. Indeed, the partition function of the coupling
coefficient (3.87) turns out to be invariant under the action of the larger duality group
Γ0(N)×O(r− 6, 6,Z), where Γ0(N) is the subgroup of matrices

(
a b
c d

)
with c = 0 modN

and O(r − 6, 6,Z) is the full automorphism group of the lattice Λr−6,6.

3.2.2 CHL moduli space in three dimensions

Upon further compactification on a circle, additional moduli arise from the radius R of the
circle, from the holonomies a1I of the r gauge fields, and from the scalars a2I , ψ dual to the
r Maxwell fields and to the Kaluza–Klein gauge field in three dimensions. The U-duality
group G3(Z) includes G4(Z), the Heisenberg group of large gauge transformations acting
on aI,i, ψ, and a subgroup of O(r− 5, 7,Z) containing the restricted automorphism group
Õ(r− 5, 7,Z) of the Narain lattice Λr−5,7 = Λr−6,6⊕ II1,1. The action of these subgroups
is most easily seen in the vicinity of the cusps R→∞ and g3 → 0, corresponding to the
decompactification limit to D = 4 and the weak heterotic coupling limit in D = 3, where
the moduli space reduces to

M3 →

R
+
R ×M4 × T̃ 2r+1

R+
1/g2

3
×
[

O(r−5,7)
O(r−5)×O(7)/O(r − 5, 7,Z)

]
× T r+2 ,

(3.88)

and where M4 is parametrised as in (3.1) with the value of the asymptotic scalar fields
listed in table 1.1, the T 2r+1 is parametrised by the grade-1 r Wilson lines ÃI , their duals
B̃I , and the grade-2 twit potential ψ (3.59). In the second line of (3.88), the T r+2 is
parametrised be the r + 2 grade-1 scalars dual to the gauge fields.

For r = 28, it is well-known that these subgroups generate the automorphism group
O(24, 8,Z) of the ‘non-perturbative Narain lattice’ Λ24,8 = Λ22,6⊕II2,2, as we discussed in
section 3.1.2. The U-duality group for CHL models does not seem to have been discussed
in the literature, but it is natural to expect that it includes the restricted automorphism
group Õ(r − 4, 8,Z) of an extended Narain lattice of the form

Λr−4,8 = Λm ⊕ II1,1 ⊕ II1,1[N ] , (3.89)

where II1,1[N ] is the standard hyperbolic lattice with quadratic form rescaled by a factor
of N , such that Λ∗r−4,8/Λr−4,8 ' Zk+4

N . In terms of the usual construction of II2,2 by
windings (n1, n2) ∈ Z2, momenta (m1,m2) ∈ Z2 and quadratic form 2m1n1 + 2m2n2, we
define II1,1 ⊕ II1,1[N ] as the sublattice of II2,2 where n2 is restricted to be a multiple of
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N . The restricted automorphism group of II1,1 ⊕ II1,1[N ] was determined in [105, 122],
and includes σT↔S n [Γ1(N) × Γ1(N)], acting by fractional linear transformations on
the moduli (T, S) parametrising G2,2, such that |m1 + Sm2 + Tn1 + STn2|2/(S2T2) is
invariant (see [123, §C], case V for N = 2, or [124, § 3.1.3] for arbitrary N). In the
present context, T is interpreted as ψ + iR2, while S is the heterotic axiodilaton. Thus,
Õ(r − 4, 8,Z) contains the S-duality group Γ1(N) and T-duality group Õ(r − 6, 6,Z) in
four dimensions. In addition, Fricke S-duality in four dimensions follows from the fact
that the non-perturbative lattice (3.89) is itself N -modular,

Λ∗r−4,8 ' Λr−4,8[1/N ] , (3.90)

which can be checked easily using the table 3.1, and the relation II1,1[N ]∗ = II1,1[1/N ].

3.3 Exact F 4 coupling from supersymmetry constraints
In three dimensional supergravity with half-maximal supersymmetry, linearised super-
symmetry invariants can be obtained from the action of supercharge derivatives Di

α on
any homogeneous function of the linearised superfield Wâa [119, 125, 126]

Di
αWâa = (Γâ)iĵχαĵa , Di

αχβĵa = −i(σµ)αβ(Γâ)ĵ
i∂µWâa , (3.91)

where â = 1 . . . 8 is a vectorial index for O(8), i = 1 . . . 8 for the positive chirality Weyl
spinor of Spin(8) and î = 1 . . . 8 the negative chirality Weyl spinor.

In particular, couplings with k derivatives are obtained by acting with 2k supercharge
derivatives Di

α, and are thus said to be protected by supersymmetry for k < 8. The
coupling F 4, of the type D8f(W ), is thus said to be half-BPS.

At the non-linear level, derivatives of the scalar fields only appear through the pull-
back of the right-invariant form Pab̂ defining the metric on Gr−8,8 as Gµν = 2Pµab̂P

ab̂
ν ,

and the covariant derivative in tangent frame acting on a symmetric tensor with unhatted
indices as

Dab̂Aa1...am ≡ Pµab̂G
µν(∂νAa1...am +mων(a1

cAa2...am)c) . (3.92)

The supersymmetry invariant associated to a tensor Fabcd on the Grassmanian defines a
Lagrangian density L that decomposes naturally as

L = Fa1a2a3a4La1a2a3a4 +D(a1
âFa2a3a4a5)La1...a5

â +D(a1
â1Da2

â2Fa3a4a5a6)La1...a6
â1â2

+D(a1
â1Da2

â2Da3
â3Fa4a5a6a7)La1...a7

â1â2â3

+D(a1
â1Da2

â2Da3
â3Da4

â4Fa5...a8)La1...a8
â1...â4 , (3.93)

where the polynomials Ln+4
n are O(r − 8, 8) invariant functions of the covariant scalar

field strength, the dreibeins and the gravitini fields. Since non-linear invariants define
linear invariants by truncation to lowest order, the covariant polynomials L4+n

n reduce at
lowest order to homogeneous polynomials of degree n+ 4 in the covariant fields,

Labcd =
√
−g
(
2P (a

µ âP
µ b
b̂P

c|â
ν P ν d)b̂ − P (a

µ âP
µ b|âP cν b̂P

ν d)b̂ + . . .
)
. (3.94)

The important conclusion to draw from the linearised analysis in [BCHP2] is that the
O(r−8, 8) right-invariant polynomials Ln+4

n appearing in the ansatz (3.93) are symmetric
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in both sets of indices and traceless in the O(8) indices. Checking the supersymmetry
invariance (modulo a total derivative) of L (3.93) in this basis, one finds that the tensor
Fabcd must satisfy the constraints [BCHP2]

D[a
[âDb]b̂]Fcdef = 0 , D[e

âFa]bcd = 0 . (3.95)

Similarly, because the polynomials Ln+4
n are traceless in the O(8) indices, the O(8) singlet

component of δ(DF )L5
1 can only be cancelled by terms coming from FδL4, and thus the

tensor Fabcd satisfies an equation of the form

DeâDfâFabcd = 5b1δe(fFabcd) + 5b2 δ(faFbcd)e , (3.96)

for the numerical constants b1, b2 can be fixed by consistency. In particular, the integra-
bility condition on the component antisymmetric in e and f implies b2 = 2b1 + 4.

One can then generalise Fabcd to a completely symmetric tensor F (p,q)
abcd on a general

Grassmanian Gp,q, which would arise by considering a superfield in D = 10−q dimensions
with 3 ≤ q ≤ 6. The tensor Fabcd is thus subject to the constraints (3.95) and

DeâDfâF
(p,q)
abcd = b1 δefF

(p,q)
abcd + 2b2δf(aF

(p,q)
bcd)e + (2b2 − q)δe(aF

(p,q)
bcd)f + 3b3 δ(abF

(p,q)
cd)ef . (3.97)

with coefficients b1, b2, b3 a priori depending on p and q.
A first integrability condition implies b1 = 2b2−q

4 and b3 = b2, and considering the
antisymmetrised action of three covariant derivatives, one finds that b2 = 1

DeâDfâF
(p,q)
abcd = 52− q

4 δe(fF
(p,q)
abcd) + 5δ(faF

(p,q)
bcd)e . (3.98)

Finally, let us note that the discussion only applies so far to the local Wilsonian
effective action. The Ward identity satisfied by the renormalised coupling F̂abcd is cor-
rected in four dimensions (for q = 6) because of the 1-loop divergence of the supergravity
amplitude [127], leading a source term in given in [BCHP2].

3.3.1 Conjecture for exact F 4 coupling

The arguments for the existence of a non-perturbative duality group Õ(r − 4, 8,Z), re-
viewed section 3.1 and 3.2, as well as the supersymmetry constraints section 3.3 motivated
the conjecture of the exact (∇φ)4 coupling as the one-loop integral

F
(r−4,8)
abcd (Φ) = R.N.

∫
Γ0(N)\H1

dτ1dτ2
τ2

2

ΓΛr − 4, 8

[
Pabcd

]
∆k(τ) , (3.99)

which is constructed as the generalisation of one-loop perturbative function – see (2.24)
for the full rank case or (3.87) for N = 2, 3, 5, 7 – where we replaced the Narain lattice
Λr−5,7 with its non-perturbative extension Λr−4,8 (3.89).

The function (3.99) is manifestly invariant under the non-perturbative dualities men-
tioned in section 3.1.2, and has the property of satisfying the supersymmetry constraints (3.95),
and in particular the equation (3.97), see § 3.2 of [BCHP2].

In order to prove that a solution of the supersymmetry differential constraints cor-
responds to the expected exact coupling, we must verify that it statisfies the right the
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boundary condition, by, for instance, matching the perturbative F 4 coupling in the weak
string coupling limit. In the next subsection, we compute its weak coupling limit by
studying the Fourier decomposition of Fabcd(Φ) near the cusp gs → 0 in the cases of het-
erotic string in three dimensions and type II string in four dimensions. We show that zero
mode in the Fourier decomposition of (3.99) matches with perturbative answers from the
literature.

Weak coupling limit of three-dimensional exact (∇φ)4 couplings. In [BCHP2],
we computed the Fourier decomposition of the function F (2k,8)

abcd at the cusp g3 → 0 of

G2k,8 ' R+
1/g2

3
×
[

O(r−5,7)
O(r−5)×O(7)/O(r − 5, 7,Z)

]
, (3.100)

corresponding to the weak heterotic coupling limit in D = 3. Decomposing as

Λ2k,8 = Λ2k−1,7 ⊕ II1,1[N ] , (3.101)

the limit studied in this section corresponds to the expansion of the exact (∇Φ)4 couplings
in D = 3 [BCHP2]. To interpret the resulting contributions in the language of heterotic
perturbation theory, one should remember that the U-duality function F (2k,8)

abcd (Φ) is the
coefficient of the (∇Φ)4 coupling in the low-energy action written in Einstein frame, such
that the metric γE is inert under U-duality,

S3 =
∫

d3x
√
−γE

[
R[γE ]− (2δâb̂δĉd̂ − δâĉδb̂d̂)F

(2k,8)
abcd (Φ) γµρE γνσE P aâµ P bb̂ν P

cĉ
ρ P

dd̂
σ

]
+ . . . .

(3.102)
In terms of the string frame metric γ = γEg

4
3, one finds

S3 =
∫

d3x
√
−γ

[ 1
g2

3
R[γ]− g2

3 (2δâb̂δĉd̂ − δâĉδb̂d̂)F
(2k,8)
abcd (Φ) γµργνσP aâµ P bb̂ν P

cĉ
ρ P

dd̂
σ

]
+ . . . .

(3.103)
Using ck(0) = k for CHL orbifolds with N > 1 or c(0) = 2k in the maximal rank case,
and ξ(2) = π

6 , the results from [BCHP2] read

g2
3 F

(2k,8)
abcd = 3

2πg2
3
δ(abδcd) + F

(2k−1,7)
abcd +

′∑
Q∈Λ2k−1,7

c̄k(Q)e
− 2π

√
2 |QR|
g23

+2πia·Q
P

(∗)
abcd , (3.104)

where we omit the detailed form of exponentially suppressed corrections, and where c̄k(Q)
is as summation measure

c̄k(Q) =
∑
d≥1,

Q/d∈Λ2k−1,7

d ck
(
− Q2

2d2

)
+

∑
d≥1,

Q/d∈NΛ∗2k−1,7

N d ck
(
− Q2

2Nd2

)
. (3.105)

The first two terms in (3.104) should match the tree-level and one-loop contributions,
respectively. Indeed, the dimensional reduction of the tree-level R2 + (TrF 2)2 coupling
in ten-dimensional heterotic string theory [128, 129] leads to a tree-level (∇Φ)4 cou-
pling in D = 3, with a coefficient independent of N by construction. The second term
in (3.104) matches the one-loop contribution (2.24) by construction. The remaining
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non-perturbative terms can be interpreted as heterotic NS5-brane, KK5-brane and H-
monopoles wrapped on any possible T 6 inside T 7 [130]. More precisely, NS5-brane and
KK5-brane charges correspond to momentum and winding charges in the hyperbolic part
II1,1[N ]⊕ IIk−2,k−2 of Λm ⊕ II1,1, while H-monopoles correspond to charges in the gauge
lattice Λk,8−k (for the heterotic string compactification on T 7, these sublattices must be
replaced by II7,7 and E8 ⊕ E8 or D16, respectively).

Weak coupling limit in type II string theory compactified on K3 × T 2. The
heterotic axiodilaton S corresponds respectively to the 2-torus Kähler modulus TA in
type IIA, and the 2-torus complex structure modulus UB in type IIB, while the type II
axiodilaton SA = SB corresponds to the Kähler modulus T of the 2-torus on the heterotic
side

S = TA = UB , T = SA = SB , U = UA = TB . (3.106)

In order to expand at small type II string coupling, i.e. at large T2, we decompose the
lattice as

Λ2k−2,6 = Λ2k−4,4 ⊕ II1,1 ⊕ II1,1[N ] . (3.107)

For simplicity we shall use the type IIB moduli in this section, with SB2 = 1/g 2
s .

Moreover, we shall only consider the perturbative terms for the Maxwell fields in the RR
sector corresponding to indices α, β, . . . along the sublattice Λ2k−4,4. The type IIB weak
coupling limit of the exact F 4 interaction gives [BCHP3]

F̂ (2k−2,6)
αβγδ II = 1

g 2
s

F (2k−4,4)
αβγδ II + 3

2πδ(αβδγδ)
( Ê1(NTB) + Ê1(TB) + Ê1(NUB) + Ê1(UB) + 12

π log gs
N + 1

)
= 1

gs2F
(2k−4,4)
αβγδ (t)− 3

8π2 δ(αβδγδ) log(gs−2kT k
B2U

k
B2|∆k(TB)∆k(UB)|2) , (3.108)

where the first term matches the tree-level coupling computed in [131], while the second
term is related by supersymmetry to the R2 coupling computed in [132, 123].

3.4 Exact ∇2F 4 coupling and differential Ward identities

This analysis is a generalisation of section 3.3. A six-derivative coupling is obtained by
acting with twelve supercharge derivatives on an homogeneous function of the linearized
superfield Wâa for a specific measure [BCHP3], and is thus said to be quarter-BPS. The
integral vanishes unless the integrand includes at least the factor W [â

[aW
b̂]
b]W

[ĉ
[cW

d̂]
d] , such

that the non-trivial integrands are defined as the homogeneous polynomials of degree
4 + 2n+m in Wâa.

It follows from the analysis in [BCHP3] that the non-linear invariant only depends on
the scalar fields through the tensor Fab,cd, its covariant derivatives DnFab,cd and covariant
polynomials L[n,m] in the corresponding irreducible representation of highest weightmΛ1+
nΛ2 of SO(8), where the latter only depends on the scalar fields through the covariant
scalar field strength Pµab̂, fermions and their covariant derivative, the dreibeins and the
gravitini fields. Using the known structure of the t8tr∇µF∇µF trFF invariant in ten
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dimensions [128],10 one can compute the first covariant density L[0,0] bosonic component

Lab,cd =
√
−g

8π
(
2P [a

(µ â∇σP
b]â
ν) Pµ[c

b̂∇
σP ν|d]b̂ + 2P [a

µ (â∇σPµ|b]b̂)P
ν[c|â∇σP d]b̂

ν (3.109)

−P [a
µ â∇σPµ |b]âP [c

ν b̂∇
σP ν |d]b̂ − 4P[µ

[a|â∇σP b]b̂
ν] P

µ[c
[â∇σP ν |d]

b̂] + . . .
)
.

The factor of π is introduced by convenience for the definition (2.37) to hold. Moreover,
the only non-vanishing tensors in this mass dimension are the polynomials L[n,m] with
0 ≤ n ≤ 2 and 0 ≤ m ≤ 4, such that the invariant L admits the decomposition

L = Fab,cdLab,cd +DeâFab,cdLab,cd,eâ +D(e
(âDf)

b̂)Fab,cdLab,cd,e,fâ,b̂
+D[e

[âDf ]
b̂]Fab,cdLab,cd,efâb̂

+ · · ·+D(b1
(b̂1 · · · Db4)

b̂4)Da1
â1 · · · Da4

â4Fa5a6,a7a8L
a1a2,a3a4,a5a6,a7a8,b1,b2,b3,b4
â1â2,â3â4,b̂1,b̂2,b̂3,b̂4

,(3.110)

where the La1a2,...,a2n+3a2n+4,b1,...,bm
â1â2,...,â2n−1â2n,b̂1,...,b̂m

are in the irreducible representation of highest weight
mα̌1 +nα̌2 of SO(8) and admit the symmetry of the Young tableau [n+2,m] with respect
to the permutation of the SO(p) indices. In particular, Fab,cd transforms according to ,
realised by first symmetrising along the columns and then antisymmetrising along the
rows [ab], [cd].

Checking the supersymmetry invariance (modulo a total derivative) of L in this basis,
one finds that the tensor Fab,cd must satisfy the constraints [BCHP3]

D[a1
âFa2a3],bc = 0 , D[a1

[â1Da2
â2]Fa3]b,cd = 0 , D[a1

[â1Da2
â2Da3]

â3]Fcd,ef = 0 . (3.111)

Similarly, because the L[n,m] are traceless in the SO(8) indices, the SO(8) singlet com-
ponent of δ(DF )L[0,1] can only be cancelled by terms coming from FδL[0,0], and thus the
tensor Fab,cd must obey an equation of the form [BCHP3]

DeâDfâFab,cd = b1
(
−δefFab,cd + δe[aFb]f,cd + δe[cFd]f,ab

)
− 3b2

(
δf [aFb]e,cd + δf [cFd]e,ab

)
− 4b2δc][aFb](e,f)[d , (3.112)

where the numerical constants b1, b2 can be fixed by consistency. In particular the inte-
grability condition on the component antisymmetric in e and f implies b1 = 4− 3b2.

One can then generalise Fab,cd to a tensor F (p,q)
ab,cd on a general Grassmanian Gp,q, which

would arise by considering a superfield in D = 10 − q dimensions with 4 ≤ q ≤ 6. The
same argument leads to the conclusion that F (p,q)

ab,cd satisfies to (3.112) with b1 = q
2 − 3b2,

and another integrability condition gives b2 = 1
2 [BCHP3]. One can then represent a

tensor with the symmetry with two pairs of indices that are manifestly symmetric, i.e.
Gab,cd = Gba,cd = Gab,dc = Gcd,ab such that G(ab,c)d = 0, such that

Fab,cd = Gc][a,b][d , Gab,cd = −4
3Fa)(c,d)(b . (3.113)

The tensor Gab,cd thus satisfies the constraints

D[a1
âG(p,q)

a2|b|,a3]c = 0 , D[a1
[â1Da2

â2]G(p,q)
a3]b,cd = 0 , D[a1

[â1Da2
â2Da3]

â3]G(p,q)
cd,ef = 0 .

(3.114)
10with t8F 4 = FµνF

νσFσρF
ρµ − 1/4(FµνFµν)2.
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and

D(e
âDf)âG

(p,q)
ab,cd = 3−q

2 δefG
(p,q)
ab,cd + 6−q

2
(
δe)(aG

(p,q)
b)(f,cd + δe)(cG

(p,q)
d)(f,ab

)
+ 3

2δ〈ab,G
(p,q)
cd〉,ef .

(3.115)

The discussion only applies so far to a supersymmetry invariant modulo the classical
equations of motion, whereas one must take into account the first correction in (∇Φ)4.
This implies that corrections to the differential equations must be quadratic source terms
in the coefficient F (p,q)

abcd defining the (∇Φ)4 coupling (2.24). Constraints on F (p,q)
abcd (3.111)

indicates that there is no possible correction to (3.114), and contributions to (3.115) can
be restrained by looking at their possible representations. Because is trivially satisfied

1
2D[a1|

âDbâF (p,q)
|a2a3],cd = −q4δb[a1F

(p,q)
a2a3],cd −

q

4δc][a1F
(p,q)
a2a3],b[d , (3.116)

the source term quadratic in F (p,q)
abcd must belong to the representation . One finally

finds that the only possible source term that also satisfies to the constraint (3.114) is
F (p,q)
|e)〈ab,

gF (p,q)
cd〉(f |g.

We conclude that the correct supersymmetry constraint for G(p,q)
ab,cd reads

D(e
âDf)âG

(p,q)
ab,cd = 3−q

2 δefG
(p,q)
ab,cd + 6−q

2
(
δe)(aG

(p,q)
b)(f,cd + δe)(cG

(p,q)
d)(f,ab

)
+ 3

2δ〈ab,G
(p,q)
cd〉,ef

− 3$
2 F (p,q)

|e)〈ab,
gF (p,q)

cd〉(f |g , (3.117)

where $ is an undetermined numerical coefficient at this stage. In [BCHP3], we show by
an explicit calculation that the genus-two modular integral G(p,q)

ab,cd satisfies (3.117) with
$ = π.

Let us note that this discussion only applies to the Wilsonian effective action. The
differential Ward identity satisfied by the renormalised coupling Ĝab,cd from the 1PI effec-
tive action is corrected in four dimensions (q = 6) by constant terms and by terms linear
in F̂abcd [BCHP3].

3.4.1 Conjecture for ∇2(∇φ)4

As for the (∇φ)4 coupling of the previous section, the arguments for the existence of a
non-perturbative duality group Õ(r − 4, 8,Z), reviewed in §3.1 and §3.2, as well as the
supersymmetry constraints, §3.3, motivated to conjecture the exact ∇2(∇φ)4 coupling as
the two-loop integral

Gab,cd(Φ) = R.N.
∫

Γ2,0(N)\H2

dΩ1dΩ2
|Ω2|2

Γ(2)
Λr − 4, 8

[
Pab,cd

]
Φk−2(Ω) , (3.118)

which is constructed as the generalisation of two-loop perturbative function (2.37) (with
Γ2,0(1) = Sp(4,Z)), where we replaced the Narain lattice Λr−5,7 with its non-perturbative
extension Λr−4,8 (3.89). In the case of CHL models, the construction of (3.118) is more
involved than the genus one case, but has been worked out in details for N = 2 in §B.2.2
of [BCHP3], and generalised to N = 3, 5, 7 with a line of argument similar in spirit to the
genus one presentation in § 3.2.1 of this manuscript.
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The function (3.118) is manifestly invariant under the non-perturbative dualities men-
tioned in section 3.1.2, and satisfies the supersymmetry constraints (3.114), and in par-
ticular the equation (3.115), see § 3.3 of [BCHP3].

In the next subsection, we look at the weak coupling limit of heterotic string in three
dimensions and type II string in four dimensions. We show that the zero mode in the
Fourier decomposition of (3.118) matches with expected perturbative computations when
known, and consider them as predictions otherwise.

Weak coupling limit of three-dimensional exact ∇2(∇φ)4 couplings. The Fourier
decomposition of the function F

(r−4,8)
abcd at the cusp g3 → 0 (3.88) corresponding to the

weak heterotic coupling limit in D = 3 was computed in [BCHP2]. In this limit, the
lattice Λ2k,8 decomposes into

Λ2k−1,7 ⊕ II1,1[N ] , (3.119)
where the ‘radius’ of the second factor is related to the heterotic string coupling by g3 =
1/
√
R, and the U-duality group is broken to Õ(2k − 1, 7,Z), the restricted automorphic

group of Λ2k−1,7. In order to interpret the results as perturbative contributions to the
∇2(∇φ)4 interaction, it is convenient to multiply the coupling by a factor of g6

3, which
arises due to the Weyl rescaling γE = γs/g

4
3 from the Einstein frame to the string frame,

see §4.3 of [BCHP2]. The weak coupling expansion can be extracted from §4.1 of [BCHP3]
upon setting q = 8, υ = 1, and reads

g 6
3 G

(2k,8)
αβ,γδ = − 3

4πg 2
3
δ〈αβ,δγδ〉 −

1
4δ〈αβ,G

(2k−1,7)
γδ〉 (ϕ) + g 2

3 G
(2k−1,7)
αβ,γδ (ϕ)

+
′∑

Q∈Λ∗2k−1,7

3e
− 2π
g23

√
2Q 2

R+2πiQ·a

2Q 2
R

Ḡ(2k−1,7)
〈αβ, (Q,ϕ)

(
QLγQLδ〉

(√
2Q 2

R + g 2
3

2π

)
− g 2

3
8π δγδ〉

)

+
′∑

Q∈Λ∗2k−1,7

e
− 4π
g23

√
2Q 2

R
Gαβ,γδ(g3, QL, QR) . (3.120)

The three first terms in (3.120) correspond to the two-loop perturbative contribution com-
puted in (2.37), the one-loop contribution (2.29), and the splitting degeneration contri-
bution. The latter reproduces the tree-level ∇2(∇φ)4, obtained by dimensional reduction
of the ∇2F 4 coupling in 10 dimensions.

The exponentially suppressed terms in the second line of (3.120) can be interpreted as
instantons from Euclidean NS five-branes wrapped respectively on any possible T 6 inside
T 7, KK (6,1)-branes wrapped with any S1 Taub-NUT fiber in T 7, and H-monopoles
wrapped on T 7. Their precise expression can be found in [BCHP3]. Although we obtain
a definite answer for such contributtion, the orbit method misses exponentially suppressed
terms which do not depend on the axions a in the last line of (3.120). The existence of
these terms is clear from the differential constraint (3.117), since the (∇φ)4 coupling Fabcd
appearing on the right-hand side contains both instanton and anti-instanton contributions.
Unfortunately, our current tools do not allow us to extract these contributions from the
unfolding method at present.

Finally, it is worth stressing that while the perturbative contributions G(2k−1,7)
ab and

G(2k−1,7)
ab,cd have singularities in codimension 7 insideM3 at points of enhanced gauge sym-
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metry, the full instanton-corrected coupling (3.118) has only singularities in codimension
8.

Weak coupling limit in type II string theory compactified on K3 × T 2 The
expansion of the exact ∇2F 4 and R2F 2 terms in D = 4 is obtained in §5.3.1 of [BCHP3],
and we now consider the weak coupling limit on the type II side. Recall that S = TA = UB,
i.e. the heterotic axiodilaton corresponds to the 2-torus Kähler modulus in type IIA,
and the 2-torus complex structure modulus in type IIB, while the type II axiodilaton
SA = SB = T corresponds to the heterotic Kähler modulus (3.106).

At large TB2, i.e. small type II coupling, the lattice decomposes as (3.107), and the
exact ∇2F 4 interaction is obtained from §5.3.1 of [BCHP3] after dropping the logarithmic
terms in R,

Ĝ(2k−2,6)
ab,cd NP(UB, ϕ) = Ĝ(2k−2,6)

ab,cd (ϕ)− 3
4πδ〈ab,δcd〉

( Ê1(NUB) + Ê1(UB)
N + 1

)2
(3.121)

−1
4δ〈ab,

(N Ê1(NUB)− Ê1(UB)
N2 − 1 Ĝ(2k−2,6)

cd〉 (ϕ) + N Ê1(UB)− Ê1(NUB)
N2 − 1

ςĜ(2k−2,6)
cd〉 (ϕ)

)
,

where ϕ belongs to the Grassmannian on Λ2k−2,6. We neglect the non-perturbative con-
tributions and use the decomposition of Ĝ(2k−2,6)

ab,cd (ϕ), which can be obtained from §5.3.1
of [BCHP3] by replacing the moduli as R2 = SB2 = 1

g2
s
and ϕ = t the K3 moduli of the

Grassmanian G(2k−4,4). After expanding around q = 6 + 2ε,11 we find

Ĝ(2k−2,6)
αβ,γδ (ϕ) ∼ 1

g 4
s

Ĝ(2k−4,4)
αβ,γδ (t)− 3

4πδ〈αβ,δγδ〉
( Ê1(NTB) + Ê1(TB) + 12

π log gs
N + 1

)2

− 1
4g 2
s

δ〈αβ,
( N Ê1(NTB)−Ê1(TB)

N−1 + 6
π log gs

N + 1 Ĝ(2k−4,4)
γδ〉 (t)+

N Ê1(TB)−Ê1(NTB)
N−1 + 6

π log gs
N + 1

ςĜ(2k−4,4)
γδ〉 (t)

)
.

(3.122)

To compute the power-like terms of Ĝ(2k−2,6)
ab (ϕ), one proceeds as in [BCHP2] and finds

after expanding around q = 6 + 2ε and neglecting the non-perturbative contributions

Ĝ(2k−2,6)
αβ (ϕ) ∼ 1

g 2
s

(
Ĝ(2k−4,4)
αβ (t) + 2N

N + 1δαβ
(
Ê1(TB)− Ê1(NTB)

))
+ 12
N + 1

1
2πδαβ

(12
π

log(gs) + Ê1(TB) + Ê1(NTB)
)
, (3.123)

while the ones of ςĜ(2k−2,6)
ab (ϕ) are obtained by acting on the Kähler moduli TB by Fricke

duality TB → − 1
NTB

, and on the K3 moduli t with the involution ς, so that

ςĜ(2k−2,6)
αβ (ϕ) ∼ 1

g 2
s

(
ςĜ(2k−4,4)

αβ (t) + 2N
N + 1δαβ

(
Ê1(NTB)− Ê1(TB)

))
+ 12
N + 1

1
2πδαβ

(12
π

log(gs) + Ê1(TB) + Ê1(NTB)
)
. (3.124)

11Note that the lattice Λ2k−2,6 is kept fixed, and the expansion in q = 6 + 2ε only applies to the
numerical value of the various exponents, just as if one introduced a regularising factor of |Ω2|ε in the
genus 2 integral.
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Collecting all terms, we obtain the complete perturbative ∇2F 4 coupling in D = 4,

Ĝ(2k−2,6)
αβ,γδ II = 1

g 4
s

Ĝ(2k−4,4)
αβ,γδ (t)

− 1
4(N + 1)g 2

s

δ〈αβ,

((N Ê1(NTB)− Ê1(TB) +N Ê1(NUB)− Ê1(UB)
N − 1 + 6

π
log gs

)
Ĝ(2k−4,4)
γδ〉 (t)

+
(N Ê1(TB)− Ê1(NTB) +N Ê1(UB)− Ê1(NUB)

N − 1 + 6
π

log gs
)
ςĜ(2k−4,4)

γδ〉 (t)

−2Nδγδ〉
(Ê1(TB)− Ê1(NTB))(Ê1(UB)− Ê1(NUB))

N − 1

)

− 3
4πδ〈αβ,δγδ〉

( Ê1(NTB) + Ê1(TB) + Ê1(NUB) + Ê1(UB) + 12
π log gs

N + 1
)2

. (3.125)

The terms involving log gs originate from the mixing between the local and non-local
terms in the effective action [34]. The result (3.125) is manifestly invariant under the
exchange of UB and TB, and is thus identical in type IIA and type IIB strings. It is also
invariant under the combined Fricke duality TB → − 1

NTB
, UB → − 1

NUB
, t → ςt [105],

which is built in the conjecture (3.118).
The limit N = 1 in this case is subtle, and for the full rank case (3.125) must be

replaced by 12

G(22,6)
αβ,γδ II = 1

g 4
s

Ĝ(20,4)
αβ,γδ(t)+

3
4πg 2

s

δ〈αβ,
(
log(TB2|η(TB)|4)+log(UB2|η(UB)|4)−2 log gs

)
G(20,4)
γδ〉 (t)

− 27
4π3 δ〈αβδγδ〉

(
log(TB2|η(TB)|4) + log(UB2|η(UB)|4)− 2 log gs

)2
. (3.126)

It would be interesting to check these predictions by explicit perturbative computations
in type II string theory. To simplify the results, one can use the formulae

Ê1(NTB) + Ê1(TB)
N + 1 = − 1

4π log(T k
B2|∆k(TB)|) , Ê1(TB) = − 1

4π log(T 12
B2 |∆(TB)|) ,

(3.127)
to rewrite the two-loop contribution on the last line of (3.125) as

− 3
(4π)3 δ〈αβ,δγδ〉

(
log(g−2k

s T k
B2U

k
B2|∆k(TB)∆k(UB)|2)

)2
. (3.128)

The (log gs)2 term is consistent with the two-loop logarithmic divergence of the four-
photon amplitude [133] (recall that the log gs can be traced back to the logarithm of the
Mandelstam variables in the full amplitude, and therefore to the logarithm supergravity
divergences [34][BCHP2]). The term linear in log gs in (3.128), corresponding to the t8F 4

12Note that G(20,4)
αβ is finite for the full rank case, whereas Ĝ(2k−4,4)

αβ requires in general a regularisation
due to the 1-loop supergravity divergence in six dimensions.
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form factor divergence, can be rewritten as

− 3k
4π log gsδ〈αβ,

( 1
12g 2

s

(
Ĝ(2k−4,4)
γδ〉 (t) + ςĜ(2k−4,4)

γδ〉 (t)
)
− δγδ〉

1
8π2 log(T k

B2U
k

B2|∆k(TB)∆k(UB)|2)
)

= − 3
4π log gs δ〈αβ,

( 1
g 2
s

F (2k−4,4)
γδ〉η

η(t)− δγδ〉
2k

(4π)2 log(T k
B2U

k
B2|∆k(TB)∆k(UB)|2)

)
= − 3

4π log gs δ〈αβ,F̂ (2k−2,6)
γδ〉c II

c ,

(3.129)

where one uses integration by part on the definition of F (2k−2,6)
αβγδ with − 1

iπ
∂
∂τ

1
∆k(τ) =

k
12(E2(τ) +NE2(Nτ))/∆k(ρ), and δ(abδcd)δ

cd = 2k
3 δab. Ignoring these logarithmic contri-

butions, the two-loop coupling (3.128) does not depend on the K3 moduli, as required by
supersymmetry, and might be computable in topological string theory.

The amplitudes with two photons in the Ramond sector and two gravitons can be
obtained in the same way. It is non vanishing only when both photons have the same
polarisation and the gravitons’ differ to one another. In type IIB string, the complex
amplitude is obtained through the Kähler derivative of the same function (3.125) with
respect to UB, e.g. in the full rank case

R(22,6)
αβ II = − 9

2π3 δαβÊ2(UB)
(
log(TB2|η(TB)|4) + log(UB2|η(UB)|4)− 2 log gs

)
+ 1

4πg 2
s

Ê2(UB)G(20,4)
αβ (t) ,

(3.130)

or with respect to TA in type IIA. The log gs term can be interpreted as the divergence
of the form factor of the operator RF 2

R (where F α̂R are the graviphoton field strengths)
belonging to the R2-type supersymmetric invariant.



Chapter 4

Black hole counting from
instantonic corrections

In this chapter we review the application of [BCHP1], [BCHP3] to the counting of quarter-
BPS black holes in N = 4 supergravities.

As we reviewed in the introducing paragraph 1.1, these black holes do not emit Hawk-
ing radiation, and are thus stable stationary objects, or solitons. There are moreover
invariant under a certain number of supersymmetry transformations, and their mass sat-
urate the Bogomol’nyi bound (3.37). The stability linked to these properties allows some
control over the dynamics of the microscopic configurations corresponding to these black
holes, which involve various object depending on the string theoretic description as we
describe in §4.2. Furthermore, the entropy of these objects has the particularity of being
unaffected by variations of the gravitational coupling [25]. The corresponding microscopic
states have thus been studied in the weak coupling regime where the gravitational back-
reaction of the system can be ignored, and the results were continued to strong coupling,
where the system can be described as a black hole. In the regime where the size of the black
hole is large, it was found for certain five-dimensional black holes that [25, 134, 135, 136]

SBH(Q,P ) = Sstat(Q,P ) , (4.1)

where SHB(Q,P ) denotes the Bekenstein-Hawing entropy of an extremal black hole with
charge (Q,P ), and Sstat(Q,P ) denotes the entropy of the corresponding microstates,
obtained as the logarithm of their degeneracy given by the statistical calculation

Sstat = ln d(Q) . (4.2)

This Bekenstein-Hawking formula (1.8) remains valid as long as the size of the horizon
is large compared to the space-time curvature and other field strengths at the horizon,
i.e. for large values of the charges. Typically, in this regime the size of the horizon is large
enough so that the strength of the curvature of space-time and gauge fields is small at the
horizon. Otherwise, one must worry about higher derivative corrections to the effective
action in the low energy limit [26, 137, 138, 139].

On the other hand, the large charge limit also simplifies the statistical computation,
where an extremal black hole corresponds to a state of the conformal field theory with
large L0 eigenvalue and zero L̄0 eigenvalue (or inversely). For L̄0 = 0, for instance, one can

79
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compute the degeneracy of such state using the Cardy formula in terms of the left-moving
central charge cL of the conformal field theory

Sstat(Q) ' 2π

√
cLL0

6 , (4.3)

where cL is proportional to (a product of) the physical charges of the black holes [25].
One finds that the two computations give the same answer (4.1).

In the case of N = 4 supergravities that can be realised as ZN CHL orbifolds, this
result was first obtained for four-dimensional black holes by [140, 141].1 This chapter is
devoted to demonstrating how the degeneracy of quarter-BPS black hole can be obtained
from the exact ∇2(∇φ)4 interaction in the three-dimensional heterotic string.

In §4.1, we give a rapid description of the entropy formalism for stationary four-
dimensional black holes [139, 142, 143, 124]. the entropy function is obtained as the
extremum value of a functional of the Lagrangian density, which ensures it cannot depend
on the value of the asymptotic moduli at infinity [138, 142].

In §4.2, we review the famous DVV formula [140] in the case of CHL models [141,
144, 145].

In §4.3, we recall the formalism used to describe quarter-BPS black holes in N = 4
supergravities [146].

Finally, in §4.4 we review the results of [BCHP1], [BCHP3], where quarter-BPS in-
stantonic contributions in the decompactification limit of G(2k,8)

ab,cd were used to predict the
degeneracy of quarter-BPS black hole solutions. These results recover and extend the
predictions presented in §4.2 [140, 141, 144, 145] as well as the exact contour prescrip-
tion [147, 148].

4.1 The black hole entropy function
Let us consider a four-dimensional theory of gravity coupled to abelian gauge fields AIµ
and scalars S1, S2 and Mij . They are described by a Lagrangian density expressed
solely in terms of the metric gµν , the Riemann tensor Rµνρσ, the gauge field strengths
F Iµν and covariant derivative of the fields. It is invariant under reparametrisations and
gauge transformations. In such a theory, the ’near horizon’ limit of the extremal Reissner-
Nordstrom solution is a spherically symmetric extremal solution of the equation of motion,
the so-called Bertotti-Robinson geometry

ds2 = v1
(
− r2dt2 + dr2

r2

)
+ v2

(
dθ2 + sin2 θdφ2) ,

S1 = uS1 , S2 = uS2 , Mij = uMij ,

F Irt = eI , F Iθφ = pI sin θ ,

(4.4)

which has the particularity of being the product of two spaces, namely AdS2 × S2, and
thus enjoys SO(2, 1) × SO(3) as an isometry group, generated by the three-dimensional
rotation and

L1 = ∂t , L0 = t∂t − r∂r , L−1 = 1
2
( 1
r2 + t2

)
∂t − tr∂r , (4.5)

1It was originally computed in the type II string theory description.
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which is a near-horizon symmetry of all extremal spherically symmetric black holes in
four dimensions. Note that the gauge fields strength in (4.4) are also invariant under
these transformations.

Let us denote f(us, vi, eI , pI) the Lagrangian density
√
−gL evaluated for the geome-

try (4.4) and averaged over the two-sphere

f(us, vi, eI , pI) = 1
4π

∫
S2

dθdφ
√
−gL , (4.6)

For spherical solutions, we expect all the field equations of motions to be encapsulated in
f . For instance, the scalar and metric field equations rewrite simply as

∂f

∂us
= 0 , ∂f

∂vi
= 0 , (4.7)

while for the gauge field equations of motions, the Gauss law can be applied to recover

∂f

∂eI
= QI , pI = PI . (4.8)

It is convenient to take the Legendre transform of f

E(us, vi, eI , QI , P I) = eIQI − f(us, vi, eI , PI) , (4.9)

which is equivalent to a reparametrisation changing equations (4.7), (4.8) into extrem-
isation of the function E . It has been proven [142] that the general formula for black
hole entropy in the presence of higher derivative terms [26, 149, 150] for a metric (4.4)
was correctly reproduced by the value of E at its extremum. Subsequently, since E only
depends on Lagrangian density and the charges, it cannot depend on any asymptotic
moduli. Note that this procedure has been extended to rotating black holes in [124].

Let us choose a specific action for the fields (4.4) reminiscent of theN = 4 supergravity
effective action (3.16), in the string frame metric S2Gµν = gµν

S =
∫

d4x
√
−GS2

[
RG −

1
2S22∂µS∂

µS̄ − F Iµν(M−ᵀ)IJF Jµν + S1
S2
F Iµν ?F

µν
I

+ 1
8Tr

(
∂µML∂µML)

]
.

(4.10)

The expression of E with the explicit Lagrangian density (4.10) simplifies to

E = π

2uS2

[
uS2

2(v2 − v1) + v1
v2

(
QᵀuMQ+ (u2

S1 + u2
S2)P ᵀuMP − 2uS1Q

ᵀuMP
)]
. (4.11)

This expression is explicitely O(2k−2, 6) invariant, but one can check that it also satisfies
SL(2,R) invariance on the moduli fields (3.22), which also acts in the metric fields v1, v2

uS →
puS + q

ruS + s
,

(
Q
P

)
→
(
p −q
−r s

)(
Q
P

)
, vi → |ruS + s|2vi . (4.12)

One can take advantage of these symmetries, and go to a duality frame where

(12k+4 − L)IJQI = 0 , (12k+4 − L)IJQI = 0 , (4.13)
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such that uM = 12k+4 extremizes (4.11), and extremize E with respect to v1, v2, uS1 and
uS2 . One obtains [142]

v1 = v2 = 2P 2 , uS2 =
√
Q2 P 2 − (Q · P )2

P 2 , uS1 = Q · P
P 2 . (4.14)

Hence, the black hole entropy, which the value of E at this point, writes

SBH = π
√
Q2 P 2 − (Q · P )2. (4.15)

One-loop correction to the effective action. As mentioned in the introduction and
recalled in (3.68), the one-loop effective action contains a Gauss-Bonnet R2 term of the
form [151, 132]

∆L = − 1
(8π)2 log(S k

2 |∆k(S)|2)(RµνρσRµνρσ − 4RµνRµν +R2) , (4.16)

where Rµνρσ is the Riemann tensor constructed from the Einstein frame metric gµν . This
function is manifestly invariant under S-duality, using the Γ0(N)-modular properties of
S k

2 |∆k(S)|2. Furthermore, it does not depend on the O(2k − 2, 6) moduli, and is thus
T-duality invariant as well.

This effect gives a correction the the black hole entropy [152], and leads to a difference
in E

∆E = −
∫

dθdφ
√
−g∆L = 1

2π log(u kS2 |∆k(uS)|2) . (4.17)

The minimization with respect to uS1 and uS2 , implies the equations

uS1P
2 +Q · P + uS2

∂

∂uS1
log(u kS2 |∆k(uS)|2) = 0

(Q+ uS1P )2 + u2
S2P

2 + 2u2
S2

∂

∂uS2
log(u kS2 |∆k(uS)|2) = 0 .

(4.18)

These equations can be solved iteratively so that in the large charge limit one obtains [142]

∆SBH(Q,P ) = − log(u kS2 |∆k(uS)|2)+. . . , uS1 = Q · P
P 2 , uS2 =

√
Q2P 2 − (Q · P )2

P 2 ,

(4.19)
where . . . denotes correction terms that are further suppressed by inverse powers of the
charges.

4.2 Dyon counting and marginal stability
Statistical entropy computation have been performed for some the dyonic quarter-BPS
black holes of interest in this manuscript. The original DVV formula for the degeneracy
was proposed in [140, 153, 154, 155, 156] in the case of type II string theory compactified
on K3 × T 2, or heterotic string compactified on T 6, and extended to specific dyonic
charges of more general models such as CHL models and asymmetric type II orbifolds
in [141, 157, 158].
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The computation was performed on type IIB strings compactified on K3 × S̃1 × S1,
which is dual to the four-dimensional toroidal compactification of heterotic string after
performing a strong-weak duality, a T-duality on S̃1 and then a string-string duality.
This chain of dualities holds for the CHL models [61, 62], where the ZN action on the
type IIB compactification manifold acts by a 1/N translation along S1 and an order N
automorphism on K3. On this side of the duality, [144, 145, 159] considered dyonic states
consisting of Q5 D5-branes wrapped on K3× S1, Q1 D1-branes wrapped on S1, a single
Kaluza-Klein monopole associated with the S̃1 with negative magnetic charge, momentum
−n/N along S1 and momentum J along S̃1. This also known as a BPMV black hole at
the center of Taub-NUT space, and corresponds to charge vectors

Q =


0

−n/N
0
−1
~0

 , P =


Q1 −Q5
−J
Q5
0
~0

 , (4.20)

which gives
Q2 = 2n/N , P 2 = 2(Q1 −Q5)Q5 , Q · P = J . (4.21)

The degeneracy d(Q,P ) for these states, which counts the number of bosonic minus
fermionic quarter BPS supermultiplets carrying this particular charge, is given by, for
n 6= 0 modN and P primitive,

d(Q,P ) = (−1)Q·P+1

N

∫
C

dρdσdv e
iπ
[
ρNQ2+σP 2/N+2vQ·P

]
Φ̃k−2(ρ, σ, v)

= (−1)Q·P+1

N

∫
C′

dρdσdv e
iπ
[
ρQ2+σP 2+2vQ·P

]
Φ̃k−2(ρ, σ, v)

(4.22)

where C is a three-dimensional cube of width (1, N, 1) in (ρ1, σ1, v1) at position (ρ2, σ2, v2) =
(M1,M2,−M3), with M1,M2,M3 being large positive numbers and M1,M2 � M3. The
function Φ̃k−2(ρ, σ, v)

Φ̃(ρ, σ, v) = e2πi(αρ+γσ+v)

×
1∏
b=0

N−1∏
r=0

∏
k∈Z+ r

N
,l∈Z,j∈2Z+b

k,l≥0,j≤0 for k=l=0

(
1− e2πi(kσ+lρ+jv)

)∑N−1
s=0 e−2πisl/N c

r,s)
b

(4kl−j2)
,

(4.23)

was first constructed in [141] from CFT counting, and proven to be a modular form
of the congruent subgroup Γ2,0 of Sp(2,Z). Let us mention briefly that the historical
case was described in type IIB for the same type of vector (4.20) with N = 1. It can
notably be computed by collecting the degeneracies of a system of one D5 and n D1-
branes from the Fourier coefficients of the elliptic genus χn(ρ, v) of a symmetric orbifold
of n K3’s [135], where it was further shown that the weighted sum of these elliptic genera∑
n≥0 χn(ρ, v) e2πinρ, together with contributions from a single fivebrane, gives back the

inverse of Φ10.
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In the case of Φ̃k−2, this modular form can also be described as the image of the
level-N Siegel modular form Φk−2(ρ, σ, v)

Φ̃k−2(ρ, σ, v) = (
√
N)k(−iρ)−(k−2)Φk−2

(
− 1
ρ
, σ − v2

ρ
,
v

ρ

)
, (4.24)

which transforms as a weight-(k− 2) form under Γ2,0(N), the group of Sp(4,Z) matrices
with lower left block congruent to 02×2 modulo N .

Because of ambiguities in the expansion of 1/Φ̃k−2, the result of an integral of the
type of (4.22) is very sensitive to the contour C [160, 161]. Mathematically, this is due to
terms proportional to

e2πiv

(1− e2πiv)2 , (4.25)

in the expansion of 1/Φk−2, that have different Taylor expansions depending on whether
e−2πv2 is smaller or larger than one.

These singular terms describe walls of marginal stability where quarter-BPS states
marginaly decay into a pair of half-BPS states. They are double poles given by all
images of the locus v = 0 under Γ2,0(N), which are mapped by the integration (4.22)
to one-codimensional subspaces of the asymptotic moduli space, on which the mass of
quarter-BPS states becomes equal to the sum of masses of two half-BPS states carrying
the same total charge. Thus, crossing a wall in the moduli space amounts to going from
a region where a quarter-BPS bound state is energetically favoured, to a region where it
becomes disfavoured for a pair of unbound half-BPS states with same total charge. In
other words, the spectrum of quarter-BPS states of a given charge changes discontinously
as asymptotic moduli pass through any of these walls, which is quite a generic phenomenon
for quarter-BPS states in N = 4 supersymmetric string theories [162].

The quarter-BPS mass can be expressed as

M(Q,P )2 = 2|QR + SPR|2

S2
+ 4

√
Q2
RP

2
R − (QR · PR)2 , (4.26)

which is manifestly invariant under S-duality2 and T-duality (3.67). General decay can
occur as (

Q
P

)
=
(
p
r

)
sQ− qP
ps− qr

+
(
q
s

)
pP − rQ
ps− qr

, (4.27)

with
(
p q
r s

)
∈ M2(Z) and such that

(
p q
r s

)−1(
Q
P

)
∈ Λ∗m ⊕ Λ∗m. Thus, walls of marginal

stability are defined as loci in the moduli space where the masses of the states in (4.27)
satisfy

M(Q,P ) =M
(
p
sQ− qP
ps− qr

, r
sQ− qP
ps− qr

)
+M

(
q
pP − rQ
ps− qr

, s
pP − rQ
ps− qr

)
, (4.28)

which can be reformulated as [124](
S1 −

ps+ qr

2rs
)2

+
(
S2 + E

2rs
)2

= 1
(2rs)2 (1 + E2) , (4.29)

2Either SL(2,Z) (3.22) for the full rank model, or Γ0(N) plus the Fricke transformation (3.74) for
CHL models.
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where
E = rsQ2

R + pqP 2
R − (ps+ qr)QR · PR(

Q2
RP

2
R − (QR · PR)2

)1/2 , (4.30)

where all the moduli fields are implicitely evaluated at infinity. For fixed Q, P , and moduli
φ ∈ G2k−2,6, the walls of marginal stability describe lines and circles in the S complex
plane [124]. One can see that, in the relevant upper-half plane S2 > 0, the circles only
intersect with other walls at rational points of the real axis S2 = 0

p/r and q/s , (4.31)

while the straight lines intersect other walls in integer points b of the real axis as well
as at i∞. These intersection points have the special property of depending on the decay
(Q,P ) = (Q1, P1) + Q2, P2) only, and not on the moduli φ ∈ G2k−2,6 – not even on
the charges themselves. They are thus invariant under continuous change of the moduli,
which is not the case of the walls (4.29) whose precise shape depends on φ.

It is then natural to question the validity of the formula (4.22) for a generic domain
defined in the S-plane by its vertices, as well as the generality of the formula itself for
other type of quarter-BPS dyonic charges (Q,P ). These formulae were worked out at
weak coupling limit of the type IIB string and other moduli finite, which translates in
the heterotic description to finite S1 and S2, with P 2

R, QR · PR � Q2
R. In this regime,

the walls (4.29) with circle shape lie close to the real axis, while straight ones are almost
vertical lines passing through the integers S = b. Thus, the coupling region in type IIB
string with −1 < S1 < 1 is mapped in the heterotic description to two neighbouring
domains bound by the lines b = −1, 0, 1 together with a set of circle segments at the
bottom. The domain with S1 > 0 is described by the formula (4.22), while the other
one is describe only by a similar formula where the contour cC has been changed by
M3 → −M3. In general, using S-duality with the formula (4.22) allows to express the
degeneracy of other dyonic charges within other domains. Invariance of the theory can
thus be used to obtain the degeneracy formula for other types of vectors, and it will
be at the cost of changing the imaginary part of the contour C. T-duality can also be
used to express the degeneracy of another dyonic charge (Q′, P ′) with the same T-duality
invariants (Q′2, P ′2, Q′ · P ′) = (Q2, P 2, Q · P ).

The quarter-BPS charges considered in [124] are a subset of ones that strictly belong
to electromagnetic lattice (Q,P )∈Λe ⊕ Λm, where strictly is understood as ’does not
belong to a smaller lattice in the graph of inclusion’3

NΛe ⊕NΛe
Λm ⊕NΛm

⊂
⊂ Λm ⊕NΛe ⊂⊂

Λm ⊕ Λm
Λe ⊕NΛe

⊂
⊂ Λe ⊕ Λm . (4.32)

When primitive vectors belong to one of the lattice above, it may experience splits into
pairs of half-BPS charges that are neither twisted nor primitive. One may consider using
S-duality to reach another type of vector contained in a lattice smaller than Λe⊕Λm, but
the latter is in fact self-dual under Fricke duality (3.74)

(Q,P ) ∈ Λe ⊕ Λm 7→ (−ς · P/
√
N, ς−1 ·Q

√
N) ∈ Λe ⊕ Λm , (4.33)

3A lattice is considered smaller than another one if it is included in it.
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besides, lattices in the graph (4.32) are drawn such that Fricke duality acts as a reflection
with respect to the horizontal axis. As for using T-duality invariance of the theory,
one should keep in mind that two dyonic charges with the same T-duality invariants
(Q2, P 2, Q ·P ) need not be in the same T-duality orbit.4 Another point is that T-duality
acts non-trivially on the asymptotic moduli, which makes identifying the degeneracy of a
dyonic charge in a given region difficult.

All these options were considered in [124], and the degeneracy of primitive vector
in Λe ⊕ Λm even more generic than (4.20) were shown to be correctly given by (4.22)
[144, 145, 159]. Note that it was further noticed in [155, 163, 158] that a class of quarter-
BPS dyons arises from string networks which lift to M5-branes wrapped on K3 times a
genus-two curve. Part of the motivations of [BCHP1]and [BCHP3] were to make explicit
and quantitative the nature of the connection between quarter-BPS black holes and genus-
two surfaces.

4.3 Quarter-BPS solutions in N = 4 supergravity
In the case of generic quarter-BPS black holes, it is natural to look for more general
solutions that go beyond the static case (4.4). Indeed, to include quarter-BPS solutions
realised as two-center bound states of half-BPS states, one has to allow for more general
spacetimes. In [164], it was argued that BPS time-independent configurations require a
metric that can be expressed in the form

ds2 = −e2U (dt+ ωidxi)2 + e−2Udxidxi , (4.34)

where U is an arbitrary function of space coordinates, ω is time-independent, and both
vanish at space infinity, since we consider asymptotically flat spacetimes. Fields con-
figuration allowing a timelike Killing vector give rise to a dimensionally reduced three-
dimensional theory [104]. The three dimensional effective action was well-defined for
small ω when rewritten in terms of the metric field U , the scalar moduli, and vector fields
only [146, § 7.1]. It is equivalent to consider (3.49) and dualise the scalar component of
the gauge fields AI . The BPS constraints onto the equation of motion imply that

e−2U =
[
(HI1H1

I)(HI2H2
I)− (HI1H2

I)2
]1/2

?dωi = εijkHIjdHkI ,
(4.35)

with HIi the harmonic function

HIi =
∑
A

ΓIiA
|x− xA|

− pIRâv−1i
µ

Z âµ+ (Γ)
M(Q,P ) , (4.36)

with Γ = (Q,P ) =
∑
A ΓA, and the central charge Z = 2√

S2

(
QR + SPR

)
= Z+ + Z−

decomposing into two components

Z± = 1√
S2

[
(1, S) ·

( QR
PR

)
± i
|QR ∧ PR|

(−S, 1) ·
( P 2

RQR − (QR · PR)PR
Q 2
RPR − (QR · PR)QR

)]
, (4.37)

4For instance, a dyonic charge with non-integer components and even duality invariants is certainly in
the same duality orbit than dyonic charges with integer components only. However, the T-duality group
being a discrete integer group, it cannot map the former to the latter.
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with Z â+1 = ReZ â+, Z â+2 = ImZ â+, and M(Q,P ) = |Z+| =
√
Zα̂Z̄α̂ the mass of states

with charge (Q,P ) saturating the Bogomol’nyi bound (3.37). It is convenient to write
Z+α̂ = (z1 + iz2)α̂M(Q,P ) with z1 and z2 vectors of SO(6) satisfying z 2

1 + z 2
2 = 1. All

the other fields are determined in terms of the harmonic function (4.36) [146].
Using 〈∆H,H〉 = 0, with ∆ |x− xA|−1 = −4πδ3(x− xA), one obtains from (4.36)

∑
B

〈ΓA,ΓB〉
|xA − xB|

=
〈ΓAR, v−1

µ Zµ+(Γ)〉
M(Q,P ) . (4.38)

Thus, for two centers with charge Γ1, Γ2, the distance |x1 − x2|

|x1 − x2| =
〈Γ1,Γ2〉

〈Γ1R, v
−1
µ Zµ+(Γ)〉

M(Q,P ) (4.39)

might fail to be positive depending on the sign difference between 〈Γ1,Γ2〉 and 〈Γ1R, v
−1
µ Zµ+(Γ)〉.

In particular, two charges will be driven to infinite distance from each other when one of
the walls of marginal stability defined by 〈Γ1R, v

−1
µ Zµ+(Γ)〉 = 0 is approached. We come

back to this condition the next section.
These multicenter solutions can have intrisic angular momentum. Defining the angular

momentum vector J from the asymptotic metric as [165]

ωi = 2εijkJ j
xk

r3 +O
( 1
r3
)

as r →∞, (4.40)

one can use (4.35) and (4.38), one obtains for a two-center solution [146]

J = 1
2〈Γ1,Γ2〉

x1 − x2
|x1 − x2|

. (4.41)

This quantity is independent of the details of the solution and is quantised such that
2|J | ∈ Z (3.73).

4.4 Black holes degeneracy from exact ∇2F 4 coupling
Since stationary solutions in four dimension beneficiate from timelike Killing vector, they
can be described by the Euclidean field theory resulting from the dimensional reduction of
the same theory along this vector [104]. As described section 3.1.2, the four-dimensional
effective theory could be reformulated in terms of the three-dimensional fields, and this
dimensional reduction can be done irrespective of the signature of the Killing vector
field. The moduli spaces G4/K4 and G3/K3 of for four and three spacetime dimensions
were explicited in (3.1) and (3.47) respectively, while for the Euclidean three-dimensional
theory the moduli space G3/K3E is given by

G3/K3E = O(2k, 8)
O(2k − 2, 2)×O(2, 6) , (4.42)

where K3E is a non-compact version of K3 such that G3/K3E is a symmetric space with
indefinite metric where the signature of the scalars which arose from vectors fields has
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been changed. Stationary four-dimensional black hole solutions allow both a time-like
and space-like Killing vector fields, and will thus be preserved by both reductions. This
feature is generic for dimensional reduction of four-dimensional gravity models coupled to
scalars in non-compact Riemannian symmetric space [104]. Recalling the effective action
obtained after reduction (3.61)

S(3) =
∫

d3x
√
−h
[
Rh −

1
2S22∂mS∂

mS̄ + S2
4R
(
∂mAᵀ)M̄(

∂mA
)

− 1
R2∂mR∂

mR− 1
2R2 ΩmΩm − 1

8Tr
(
∂µML∂µML)

]
,

(4.43)

where we used notations for the reduction along a time-like Killing vector field, one can
notice that all the kinetic terms of the scalar fields ensure definiteness of the action in
the path integral formalism, and thus of the non-trivial instanton saddle points. The
kinetic terms of the gauge fields, however, is problematic. In [146], Denef showed that
a well-defined form of the action was obtained by dualizing all the scalar field obtained
after dimensional reduction to gauge fields §7.1 [146], and we use this as a postulate to
study non-trivial saddle points of the Euclidean action.

Size of the automorphic representation. Although the contribution of black holes
as instantons is not understood in general, in the present case one can notice a relation
between the electromagnetic charge (Q,P ) characterising the black hole solution and the
size of the automorphic representation of G(2k,8)

ab,cd .
In general, the tensor G(p,q)

ab,cd does not belong strickly speaking to an automorphic
representation of SO(p, q), because of the quadratic source term in (3.117), but one can
nonetheless define a generalisation of this notion. From the linearised analysis §3.4,
the homogeneous differential equation is attached to the SO(p, q) representation of the
nilpotent orbit. A representative of the nilpotent orbit in the unipotent associated to the
maximal parabolic GL(2)× SO(p− 2, q − 2) nR2(p+q−4)+1 must satisfy the constraint 5

Q[i
[mQj

nQk]
p] = 0 , Q[i

mQj
nKkl] = 0 , (4.44)

which admits a subspace of solutions of dimension 2(p+ q − 4) for Qim ∈ R2(p+q−4) and
a subspace of dimension 1 for Kij ∈ R. Therefore, the total subspace of solutions is of
dimension 2(p+ q − 4) + 1.

On the other hand, in the Euclidean three-dimensional theory, i.e. (p, q) = (2k, 8),
the quarter-BPS black hole solutions are associated to a real nilpotent orbit of SO(2k, 8).
Their electromagnetic charge (Q,P ) lies in the grade-1 component of SO(2k, 8)

so2k,8 ' . . .⊕ (gl1 ⊕ sl2 ⊕ so2k−2,6)(0) ⊕
(
2⊗ (2k + 4)

)(1) ⊕ 1(2) . (4.45)

They thus coincide with the dimension 2(p+ q− 4) of the representation attached to the
linear differential equations (4.44) for vanishing Kij . The Fourier coefficients associated
to these black hole solutions thus saturate the dimension associated to the automorphic
representation, and one can expect those Fourier coefficients to be proportional to the
helicity supertrace of these states.

5The unipotent being non-Abelian, one cannot generally define the Fourier coefficients for (Qmi ,Kij),
but one must consider separately the Abelian Fourier coefficient with Kij = 0, from the non-Abelian ones.
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4.4.1 Decompactification limit of exact ∇2(∇φ)4 couplings

The Fourier decomposition of the function G
(2k,8)
ab,cd at the cusp R → ∞ (3.88) corre-

sponding to the decompactification limit of the three-dimensional theory was computed
in [BCHP3].6 In this limit, the lattice Λ2k,8 decomposes into

Λ2k−2,6 ⊕ II1,1[N ]⊕ II1,1 . (4.46)

We find that the conjectured exact ∇2(∇φ)4 coupling (3.118) has the large radius expan-
sion

G(2k,8)
αβ,γδ = G

(0)
αβ,γδ +G

(1)
αβ,γδ +G

(2)
αβ,γδ +G

(TN)
αβ,γδ (4.47)

corresponding to the constant terms, half-BPS and quarter-BPS Abelian Fourier modes
and finally, the non-Abelian Fourier modes with non-zero Taub-NUT charge. The con-
stant part G(0)

αβ,γδ contains a terms proportional to R4 which reproduce the exact ∇2F 4

couplings in the four-dimensional effective action. It is given in detail together with the
half-BPS and non-Abelian modes in [BCHP3].

In this section, we focus on the contributions from the the Abelian – with vanishing
Taub-NUT charge – quarter-BPS contributions, that we associate to quarter-BPS black
holes solution in four dimensions. Indeed, these Fourier coefficients correspond to non-
perturbative corrections associated to spacetime instantons, or equivalently, solutions of
the Euclidean three-dimensional action which can be interpreted as stationary solution
in the four-dimensional theory, as argue in the beginning of this section 4.4.

Black hole solutions and quarter-BPS instantons. Decomposing

G
(2)
ab,cd =

∑
Γ∈Λ∗m⊕Λm
Q∧P 6=0

G
(2,Γ)
ab,cd e

2πi(a1Q+a2P ) (4.48)

with Γ = (Q,P ), G(2,Γ)
αβ,γδ can be expressed as

G
(2,Γ)
ab,cd = 2R4

∫
P
d3Ω2 C̄k−2(Q,P ; Ω2)Pab,cd(QL, PL,Ω2) e

−πTr
[
R2

S2
Ω−1

2

( 1 S1
S1 |S|2

)
+2Ω2

(
Q 2
R QRPR

QRPR P 2
R

)]
,

(4.49)
where P is the set of positive-definite matrices, and Pαβ,γδ(QL, PL,Ω2) a polynomial
explicited in [BCHP3] §H. Notice that the function C̄k−2(Q,P,Ω2), obtained from the
Fourier coefficients of 1/Φk−2 and 1/Φ̃k−2, depends on both the charge Γ = (Q,P ) and
the integration variable Ω2 ∈ P. In the full rank model, it is given by

C̄(Q,P ; Ω2) =
∑

A∈M2(Z)/GL(2,Z)
A−1Γ∈Λ22,6⊕Λ22,6

|A|C
[
A−1( −Q2 −Q · P

−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]
, (4.50)

where Λ22,6 = Λm is the magnetic lattice of the full rank model, and C
[(2m l

l 2n
)
; Ω2

]
are

the Fourier coefficients of 1/Φ10 [140].7. For CHL models with N = 2, 3, 5, 7, it is instead
6The large circle is of course orthogonal to the one involved in the orbifold action.
7A detailed study of the properties of 1/Φ10 can be found in [166].
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given by

C̄k−2(Q,P ; Ω2) =
∑

A∈M2(Z)/GL(2,Z)
A−1

(
Q
P

)
∈Λm⊕Λm

|A|Ck−2
[
A−1( −Q2 −Q · P

−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]

+
∑

A∈M2,0(N)/[Z2nΓ0(N)]
A−1

(
Q
P

)
∈Λ∗m⊕Λm

|A|C̃k−2
[
A−1( −Q2 −Q · P

−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]

+
∑

A∈M2(Z)/GL(2,Z)
A−1

(
Q
P/N

)
∈Λ∗m⊕Λ∗m

|A|Ck−2
[
A−1(−NQ2 −Q · P

−Q · P −P 2/N

)
A−ᵀ;AᵀΩ2A

]
,(4.51)

where Ck−2
[(2m l

l 2n
)
; Ω2

]
and C̃k−2

[(2m l
l 2n

)
; Ω2

]
denote the Fourier coefficients of 1/Φk−2(Ω)

and 1/Φ̃k−2(Ω) defined in (4.23), (4.24).
The functions 1/Φk−2(Ω) and 1/Φ̃k−2(Ω) are meromorphic with poles, so that their

Fourier coefficients are piecewise constant functions of Ω2, with discontinuities as well as
delta-function singularities at the boundary between distinct chambers.8 However, the
integral (4.49) is dominated by a saddle point Ω2 = Ω∗2,

Ω?
2 = R

M(Γ)A
ᵀ
(

1√
S2

( 1 S1
S1 |S|2

)
+ 1
|QR∧PR|

(
P 2
R −QR · PR

−QR · PR Q 2
R

))
A , (4.52)

in the neighborhood of which their Fourier coefficients are constant for generic moduli S
and ϕ. Due to this non-trivial Ω2-dependence, one cannot compute (4.49) analytically, but
the leading contribution can be computed at large radius by a saddle point approximation
with C̄k−2(Q,P ; Ω2) ∼ C̄k−2(Q,P ; Ω?

2) kept constant in the integrand, see eq. (5.77) of
[BCHP3].

These leading contributions are exponentially suppressed in e−2πRM(Γ), with Γ =
(Q,P ) and M(Γ) the BPS mass of a black hole of charge Γ (4.26). Given a charge Γ
for which there is no d 6= 1 such that d−1Γ ∈ Λ∗m ⊕ Λm, only A = 1 contributes to
the measures (4.50), (4.51), and one can interpret the measure factor (up to an overall
sign) as the helicity supertrace counting string theory states of charge Γ, as given by
the formula (4.22). Indeed, the value of Ω2 at the saddle point (4.52) reproduces the
contour prescription of [147, 148] when both electric and magnetic charges are separately
primitive in Λ∗m and Λm, and d−1Q ∧ P ∈ Λ∗m ∧ Λm for d = 1 only. More generally, the
contour prescription depends on the set of matrices A such that A−1(Q

P

)
belongs to the

electromagnetic lattice. In the full rank case, for instance, all primitive charges (Q,P )
are in the U-duality orbit of a charge of the form [167]

Q = e1 + q e2 , P = p e2 , Q ∧ P = p e1 ∧ e2 , (4.53)

with e1 and e2 primitive in Λ22,6, such that (4.50) simplifies to

C̄(Q,P ; Ω?
2) =

∑
d≥1
d|p

d C
[(

Q2 QP/d
QP/d P 2/d2

)
,
(1 0

0 d

)
Ω?

2
(1 0

0 d

)]
, (4.54)

8Moreover, they are generically well-defined only for |Ω2| > 1
4 , otherwise the integration domain C

(4.22) generically crosses the poles at small values of |Ω2|.
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in agreement with [168], with added precision on the contour prescription. If we con-
sider (4.53) in CHL orbifolds for e1 primitive in Λ∗m and not in Λm, e2 primitive in Λm
and not in NΛ∗m, and with p not divisible by N , only the second line in (4.51) contributes
and the result reduces similarly to

C̄k−2(Q,P ; Ω?
2) =

∑
d≥1
d|p

d C̃k−2
[(

Q2 QP/d
QP/d P 2/d2

)
,
(1 0

0 d

)
Ω?

2
(1 0

0 d

)]
, (4.55)

in agreement with [141] for p = 1. For general ’untwisted’ charges such that Q can be in
Λm or P in NΛ∗m, all three terms in (4.51) contribute the degeneracy, generalising (4.22).
Note that the result is manifestly invariant under U-duality, including Fricke duality.

Bound states and pairs of half-BPS instantons. As mentioned in the previous
paragraph, the saddle point approximation to (4.49) has subleading corrections reflecting
the non-trivial behavior of quarter-BPS black hole solutions at walls of marginal stabil-
ity (4.28).9

For fixed total charge Γ = (Q,P ), we expect contributions from all pairs of half-BPS
states with charges Γ1 and Γ2 such that Γ = Γ1 + Γ2. Such splitting is parametrised by
a non-degenerate matrix B =

(
p q
r s

)
∈M2(Z), such that

(Q1
P1

)
=
(p
r

)sQ− qP
ps− qr

= Bπ1B
−1
(Q
P

)
,
(Q2
P2

)
=
(q
s

)pP − rQ
ps− qr

= Bπ2B
−1
(Q
P

)
, (4.56)

where π1 =
(1 0

0 0
)
and π2 =

(0 0
0 1
)
. It follows from the calculation of these Fourier modes

that all splittings of a given charge Γ are in one-to-one correspondence with the matrices
B ∈M2(Z)/Stab(πi) with

M2(Z)/Stab(πi) =
{
γ ·
(1 j′

0 k′
)
, γ ∈ GL(2,Z)/Dih4 , 0 ≤ j′ < k′ , (j′, k′) = 1

}
,

(4.57)
such that Bπ1B

−1Γ ∈ Λ∗m ⊕ Λm. This can be proven with some effort to generalise to
CHL models, see §C.2 of [BCHP3].

Focusing on the maximal rank case for simplicity, function (4.50) on the domain
|Ω2| > 1

4 reads (for N > 1, see (5.92) in [BCHP3])

C̄(Q,P ; Ω2)=
∑

A∈M2(Z)/GL(2,Z)
A−1Γ∈Λm⊕Λm

|A|CF
[
A−1( −Q2 −Q · P

−Q · P −P 2

)
A−ᵀ

]

+
∑

Γi∈Λm⊕Λm
Qi∧Pi=0,Γ1+Γ2=Γ

c̄(Γ1)c̄(Γ2)
(
−δ([B̂

ᵀΩ2B̂]12)
4π + 〈Γ1,Γ2〉

2
(
sign(〈Γ1,Γ2〉)− sign([B̂ᵀΩ2B̂]12)

))
,

(4.58)

9The contributions to G(2,Γ)
αβ,γδ due to the deviation of C̄k−2(Q,P,Ω2) from its saddle point value are

investigated in §F [BCHP3]. In particular, at large |Ω2|, it is shown that these contributions are exponen-
tially suppressed in e−2πR(M(Γ1)+M(Γ2)), and can therefore be ascribed to two-instanton effects associated
to two unbound half-BPS states of charges Γ1 and Γ2.
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where the so-called finite coefficients CF
[(
m l
l n

)]
are globally constant functions of Ω2 [166],

and where B̂ ∈ SL(2,Q)/Stab(πi,Q) are defined as

B̂ = B
(1 0
0 |B|−1

)
= γ ·

(1 j′

k′

0 1
)
, (4.59)

determined such that Γi = B̂πiB̂
−1Γ and where [B̂ᵀΩ2B̂]ij denotes the components ij of

the matrix.
In §4.3, we introduced the adequate formalism to express the distance within a quarter-

BPS two-center black hole solution with charge Γ (4.39)

|x1 − x2| =
〈Γ1,Γ2〉

〈Γ1R, v
−1
µ Zµ+(Γ)〉

M(Q,P ) . (4.60)

The Z+ component of the central charge (4.37) is related to the saddle point value Ω2 =
Ω?

2 (4.52) through

v−1
µ Zµ+(Γ) = 1

R
Ω?

2

(
QR
PR

)
, (4.61)

implying that the distance |x1 − x2| (4.60) satisfies

〈Γ1,Γ2〉
|x1 − x2|

= −|QR ∧ PR|
R

[B̂ᵀΩ?
2B̂]12 . (4.62)

In other words, the bound state of charge Γ is only defined when 〈Γ1,Γ2〉 and [B̂ᵀΩ?
2B̂]12

have opposite signs, or equivalently (4.28)

M(Q,P ) <M(Q1, P1) +M(Q2, P2) . (4.63)

If so, it contributes toG(2,Γ)
ab,cd at leading order with measure factor c̄(Γ1)c̄(Γ2)|〈Γ1,Γ2〉| (4.58).

In contrast, when [B̂ᵀΩ?
2B̂]12 and 〈Γ1,Γ2〉 have the same sign, the bound state is not

allowed and the last term in (4.58) vanishes at the saddle point Ω2 = Ω?
2 (4.52). It still

contributes to the integral (4.49) with an exponential suppression e−2πR(M(Γ1)+M(Γ2)),
but is then subdominant since the inequality (4.63) is reversed.

We conclude that (4.49) receives contributions of each possible splitting Γ = Γ1 + Γ2,
weighted by the product of the half-BPS measures c̄(Γ1) c̄(Γ2) and further exponentially
suppressed by e−2πR(M(Γ1)+M(Γ2)). It is important to distinguish these two-instanton
contributions from one-instanton contributions due to bound states of half-BPS states,
and to notice that the full function G

(2,Γ)
ab,cd (4.49) is made continuous at the walls of

marginal stability by the defining equality M(Γ) = M(Γ1) +M(Γ2). This discussion
easily generalises to the CHL case [BCHP3].

Properties of the differential equation. It is interesting to understand these prop-
erties from the perspective of the inhomogeneous differential equation imposed by the
supersymmetry Ward identities (3.117). The leading contribution to the Fourier coeffi-
cient (4.49) – associated to quarter-BPS states – solves the homogeneous equation asso-
ciated to (3.117), whereas contributions due to discontinuities of C̄k−2(Q,P ; Ω2) give a
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particular solution to the full inhomogeneous equation (3.117). For a given quarter-BPS
charge Γ, the Fourier coefficients of Fabcd contribute with a source term proportional to
c̄k(Γ1)c̄k(Γ2) for all possible splittings Γ = Γ1 + Γ2, which matches the structure of the
measure in (4.58). Furthermore, the Fourier coefficients of Fabcd being associated to in-
stantonic half-BPS states [BCHP2], it is consistent for the leading contributions to G(2,Γ)

ab,cd

sourced by (Fabcd)2 terms to be associated to unbound pairs of half-BPS instantons.
The explicit check of the differential equation, in §E.3 [BCHP3], demonstrates that

the unfolding procedure used for the computation of the Fourier modes G(2,Γ)
ab,cd reproduces

the correct Abelian Fourier coefficients, at least up to terms exponentially suppressed in
e−2πR2 associated to Taub-NUT anti-Taub-NUT instantons. This is an important consis-
tency check since the same unfolding procedure fails to reproduce the non-perturbative
contributions to the constant terms, which are also required to solve the differential equa-
tion.
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Chapter 5

Outlook

One of the aims of this manuscript was to collect and present in a simple and coherent way
the publications produced with the work of the author during their three years of PhD.
Many open questions remains after this work, in addition to those that were encountered
through this journey.

Non-perturbative contributions to the zero modes. There exists missing contri-
butions to the zero modes of G(p,q)

ab,cd, which induce non-perturbative terms in the exact
low-energy effective action at finite coupling in both of the heterotic or type II descriptions.
In the case of decompactification from three to four dimensions, they are particular solu-
tions to the full inhomogeneous equations obtained from the supersymmetry constraints,
e.g. §E.1 of [BCHP3], for instance(

2D(µ
τDν)τ − (∂φ + 6)Dµν + 1

8(∂φ + 8)(∂φ + 6)δµν
)
GΓ
σρ,κλ

= −3π
4 δ〈σρ,δκλ〉

∑
Γ1∈Λ∗m⊕Λm

(
FΓ1
ςd(µ

ςFΓ−Γ1
ν)λ

λd − FΓ1
ςd(µ

λFΓ−Γ1
ν)λ

ςd)− 3πFΓ
µν,σρ,κλ ,

(5.1)

where all the indices were chosen in the SL(2,R)/SO(2) direction, while the index d runs
in all eight directions, and with R = e−φ the radius of the decompactified dimension.
The first source terms in the r.h.s. behave as e−2πR and result from half-BPS instanton-
anti-instanton contributions from Abelian modes in F (2k,8), while the last term in (5.1)
behaves as e−2πR2 , induced by instanton-anti-instantons with non-zero Taub-NUT charge.
It would be interesting to recover these contributions by solving these sets of differential
equations.

Unfolding method and meromorphic functions. Although connected to the previ-
ous question this issue is slightly more general, and is related to handling of the unfolding
method in the case of meromorphic functions. In particular, the missing contributions
mentioned above seem to be related to the presence of overlapping singularities on the
modular domain of genus-two Riemann surfaces. It would be useful to understand these
complications in a more rigourous manner, and/or to find other tools to extract these con-
tribution directly, in particular for cases where one would not be able to use differential
equations to recover the correct results.
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Black holes with non-prime charges. The measure of instantons with non-prime
vectors (Q,P ) gets contributions from all the possible ways of obtaining the given charge
(Q,P ) by multiplying a lattice charge (Q′, P ′) with the instantonic winding k – winding
along the U-duality and/or decompactification direction, i.e. such that (Q,P ) = k(Q′, P ′).
It would be interesting to understand if and how this type of multiplicity counting is
related to multiplicities of BPS solitons. This would allow to extend the results presented
in this manuscript to all possible quarter-BPS dyonic solitons.

Beyond prime ZN CHL models. An obvious generalisation of the results presented
in this manuscript would be to extend these calculation to the case of non-prime ZN
CHL models, with N = 4, 6 in particular, whose frame shapes are 142244 and 12233262

respectively. The number of cusps in the modular plane is no longer two – which is the
case of prime orbifolds – but one can expect general lines of the calculation to hold. It
would be interesting to confirm whether the degeneracy of half-BPS states follows

c̄k(Q,P ) =
∑
a|N

∑
d≥1

(Q,P )/d∈Λem[a]

ck
(
− gcd(NQ2,P 2,Q·P )

2a d2

)
, (5.2)

as suggestively written in [BCHP2], and to understand the counting of quarter-BPS black
holes in these cases. Some initial steps can be found in [169, 105, 170]. Note that there
exists other prime CHL models that are not freely acting orbifold, but their frame shape
is not balanced and in general one does not expect strong-weak Fricke dualities to be a
symmetries of these theories, but rather to map one CHL model to another. A list of
such models with their properties can be found in [105, 170].

Matching the perturbative effective actions. The perturbative limits of our con-
jecture was presented in §3.3 and §3.4, in the case of weak heterotic coupling in three
dimensions and weak type II couplings in four dimensions. Other perturbative limit were
given in [BCHP2] and [BCHP3]. It would be interesting to match these results with
explicit calculations.

Matching classical entropy for all prime vectors (Q,P ). In §4.1, we review the
black hole entropy calculation for extremal solutions in N = 4 supergravities. The match-
ing between black hole and statistical entropy was performed with high accuracy in [142],
and it would be interesting to pursue this calculation for the other types of black hole
solution with degeneracy predicted in [BCHP3].

Counting bound states of three half-BPS black holes. It would be also interesting
to comprehend the results of [171], conjecturing the degeneracies for three- and two-
center bound states of half-BPS states to be Fourier coefficients of a degree three Siegel
modular form, and to determine whether it can be understood using the langage of string
amplitudes. It is however clear that these states belong to long quarter-BPS multiplets,
and thus do not contribute to the helicity supertrace related to the degeneracies studied
in this manuscript.
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Generalisation to N = 2 theories. Given the success in finding the dyon spectrum in
N = 4 supersymmetric string compactifications, one could hope that the dyon degeneracy
in N = 2 supersymmetric string theories will also be given by a similar formula:

d(Q,P ) =
∫
C

dMf(Q,P,M) , (5.3)

where M denotes a set of complex variables, C is a contour in the complex manifold
labelled by the variablesM . A suggestion has been made for the STU model in [172, 173],
although the expected relevant BPS coupling should be the metric over the moduli space
of three-dimensional vector multiplets.
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We analyze four- and six-derivative couplings in the low energy effective action of D = 3 string vacua
with half-maximal supersymmetry. In analogy with an earlier proposal for the (∇Φ)4 coupling, we
propose that the ∇2(∇Φ)4 coupling is given exactly by a manifestly U-duality invariant genus-two
modular integral. In the limit where a circle in the internal torus decompactifies, the ∇2(∇Φ)4

coupling reduces to the ∇2F 4 and R2F 2 couplings in D = 4, along with an infinite series of
corrections of order e−R, from four-dimensional 1/4-BPS dyons whose wordline winds around the
circle. Each of these contributions is weighted by a Fourier coefficient of a meromorphic Siegel
modular form, explaining and extending standard results for the BPS index of 1/4-BPS dyons.

String vacua with half-maximal supersymmetry offer
an interesting window into the non-perturbative regime
of string theory and the quantum physics of black holes,
unobstructed by intricacies present in vacua with less su-
persymmetry. In particular, the low-energy effective ac-
tion at two-derivative order does not receive any quantum
corrections, and all higher-derivative interactions are ex-
pected to be invariant under the action of an arithmetic
group G(Z), known as the U-duality group, on the mod-
uli space G/K of massless scalars [1–4]. This infinite
discrete symmetry also constrains the spectrum of BPS
states, and allows to determine, for any values of the
electromagnetic charges, the number of BPS black hole
micro-states (counted with signs) in terms of Fourier co-
efficients of certain modular forms [5–7]. This property
has been used to confirm the validity of the microscopic
stringy description of BPS black holes at an exquisite
level of precision, both for small black holes (preserving
half of the supersymmetries of the background) [8, 9] and
for large black holes (preserving a quarter of the same)
[10–18].

In this letter, we shall exploit U-duality invariance
and supersymmetry Ward identities to determine cer-
tain higher-derivative couplings in the low-energy effec-
tive action of three-dimensional string vacua with 16 su-
percharges, for all values of the moduli. These protected
couplings are analogues of the R4 and ∇6R4 couplings in
toroidal compactifications of type II strings, which have
been determined exactly in [19, 20] and in many sub-
sequent works. Our motivation for studying these pro-
tected couplings in D = 3 is that they are expected to
encode the infinite spectrum of BPS black holes in D = 4,
in a way consistent with the U-duality group G3(Z).
The latter contains the four-dimensional U-duality group
G4(Z), but is potentially far more constraining. Thus,
these protected couplings provide analogues of ‘black hole
partition functions’, which do not suffer from the usual

difficulties in defining thermodynamical partition func-
tions in theories of quantum gravity, and are manifestly
automorphic [21].

The fact that solitons in D = 4 may induce instanton
corrections to the quantum effective potential in dimen-
sion D = 3 is well known in the context of gauge theories
with compact U(1) [22]. In the context of quantum field
theories with 8 rigid supersymmetries, BPS dyons in four
dimensions similarly correct the moduli space metric af-
ter reduction on a circle [23, 24]. In string vacua with 16
local supersymmetries, one similarly expects that 1/2-
BPS dyons in D = 4 will contribute to four-derivative
scalar couplings of the form Fabcd(Φ)∇Φa∇Φb∇Φc∇Φd

in D = 3, while both 1/2-BPS and 1/4-BPS dyons in
D = 4 will contribute to six-derivative scalar couplings
of the form Gab,cd(Φ)∇(∇Φa∇Φb)∇(∇Φc∇Φd) (here, ∇
denote space-time derivatives, contracted so as to make
a Lorentz scalar). In either case, the contribution of
a four-dimensional BPS state with electric and mag-
netic charges (Q,P ) is expected to be suppressed by
e−2πRM(Q,P ), whereM(Q,P ) is the BPS mass and R the
radius of the circle on which the four-dimensional theory
is compactified, and weighted by a suitable BPS index
Ω(Q,P ) counting the number of BPS states with given
charges. In addition, coupling to gravity implies addi-
tional O(e−R

2/`2P ) corrections from gravitational Taub-
NUT instantons, which are essential for invariance under
G3(Z) (here, `P is the Planck length in four dimensions).

For simplicity we shall restrict attention to the simplest
three-dimensional string vacuum with 16 supercharges,
obtained by compactifying the ten-dimensional heterotic
string on T 7. Our construction can however be general-
ized to other half-maximal supersymmetric models with
reduced rank [25] with some effort [26]. The moduli space
in three dimensions is the symmetric space M3 = G24,8

[28], where Gp,q = O(p, q)/O(p) × O(q) denotes the or-
thogonal Grassmannian of q-dimensional positive planes



2

in Rp,q. In the limit where the heterotic string coupling
g3 becomes small, M3 decomposes as

G24,8 → R+ ×G23,7 nR30 , (1)

where the first factor corresponds to g3, the second factor
to the Narain moduli space (parametrizing the metric, B-
field and gauge field on T 7), and R30 to the scalars aI dual
to the gauge fields in three dimensions. At each order in
g2

3 , the low-energy effective action is known to be invari-
ant under the T-duality group O(23, 7,Z), namely the
automorphism group of the even self-dual Narain lattice
Λ23,7 [27]. The latter leaves g3 invariant, acts on G23,7

by left multiplication and on the last factor in (1) by the
defining representation. U-duality postulates that this
symmetry is extended to G3(Z) = O(24, 8,Z), the auto-
morphism group of the ‘non-perturbative Narain lattice’
Λ24,8 = Λ23,7⊕Λ1,1, where Λ1,1 is the standard even-self
dual lattice of signature (1, 1) [29].

In the limit where the radius R of one circle of the
internal torus becomes large,M3 instead decomposes as

G24,8 → R+ × [G2,1 ×G22,6] nR56+1 , (2)

where the first factor now corresponds to R2/(g2
4`

2
H) =

R/(g2
3`H) = R2/`2P (with `H being the heterotic string

scale and g4 the string coupling in D = 4), the second
correspond to the moduli spaceM4 in 4 dimensions, the
third factor to the holonomies a1I , a2I of the 28 electric
gauge fields fields and their magnetic duals along the cir-
cle, along with the NUT potential ψ, dual to the Kaluza–
Klein gauge field. The factor G2,1

∼= SL(2)/U(1) is
parametrized by the axio-dilaton S = S1+iS2 = B+i/g2

4 ,
while G22,6 is the Narain moduli space of T 6, with co-
ordinates φ. In the limit R → ∞, the U-duality group
is broken to SL(2,Z)×O(22, 6,Z), where the first factor
SL(2,Z) is the famous S-duality in four dimensions [1, 2].

Besides being automorphic under G3(Z), the couplings
Fabcd and Gab,cd must satisfy supersymmetric Ward iden-
tities. To state them, we introduce the covariant deriva-
tive Dab̂ on the Grassmannian Gp,q, defined by its action
on the projectors pIL,a and pIR,â on the time-like p-plane
and its orthogonal complement (here and below, a, b,...,

â, b̂..., I, J ... take values 1 to p, q, and p+q, respectively):

Dab̂ pIL,c = 1
2δac p

I
R,b̂

, Dab̂ pIR,ĉ = 1
2δb̂ĉ p

I
L,a . (3)

The trace of the operator D2
ef = D(e

ĝDf)ĝ is equal to
(1/2 times) the Laplacian on Gp,q. On-shell linearized
superspace methods indicate that Fabcd and Gab,cd have
to satisfy [26]

D2
ef Fabcd = c1 δef Fabcd + c2 δe)(a Fbcd)(f + c3 δ(ab Fcd)ef ,

(4)

D2
efGab,cd =c4δefGab,cd + c5

[
δe)(aGb)(f,cd + δe)(cGd)(f,ab

]

+c6
[
δabGef,cd + δcdGef,ab − 2δa)(cGef,d)(b

]

+c7

[
Fabk(e F

k
f)cd − Fc)ka(e F

k
f)b(d

]
,

(5)

D[e
[êDf ]

f̂ ]Fabcd = 0 , D[e
[êDf f̂Dg] ĝ]Gab,cd = 0 . (6)

The first two constraints are analogous to those derived in
[30] forH4 and∇2H4 couplings in Type IIB string theory
on K3. The numerical coefficients c1, ... c7 will be fixed
below from the knowledge of perturbative contributions.

EXACT (∇Φ)4 COUPLINGS IN D = 3

Based on the known one-loop contribution [31–33], it
was proposed in [34] (a proposal revisited in [35]) that
the four-derivative scalar coupling Fabcd is given exactly
by the genus-one modular integral

F (24,8)

abcd =

∫

F1

dρ1dρ2

ρ 2
2

∂4

(2πi)4∂ya∂yb∂yc∂yd

∣∣∣∣
y=0

Γ24,8

∆
(7)

where F1 is the standard fundamental domain for the
action of SL(2,Z) on the Poincaré upper half-plane, ∆ =
η24 is the unique cusp form of weight 12, and Γ24,8 is the
partition function of the non-perturbative Narain lattice,

Γ24,8 = ρ 4
2

∑

Q∈Λ24,8

eiπQ2
Lρ−iπQ2

Rρ̄+2πiQL·y+
π(y·y)
2ρ2 (8)

where QL ≡ pILQI , QR ≡ pIRQI , and |Q|2 = Q2
L − Q2

R

takes even values on Λ24,8. It will be important that the
Fourier coefficients of 1/∆ =

∑
m≥−1 c(m) qm count the

number of 1/2-BPS states in the D = 4 vacuum obtained
by decompactifying a circle inside T 7. This is obvious
from the fact that these states are dual to perturbative
string states carrying only left-moving excitations [5, 8].
It is also worth noting that the ansatz (7) is a special
case of a more general class of modular integrals, which
we shall denote by F (q+16,q)

abcd , where the lattice Λ24,8 is re-
placed by an even self-dual lattice Λq+16,q and the factor

ρ4
2 by ρ

q/2
2 . The integral F (q+16,q)

abcd converges for q < 6, and
is defined for q ≥ 6 by a suitable regularization prescrip-
tion. For q ≤ 7, the modular integral F (q+16,q)

abcd controls
the one-loop contribution to the F 4 coupling in heterotic
string compactified on T q [31–33]. For any value of q,
it can be checked that F (q+16,q)

abcd satisfies (4) and (6) with
c1 = 2−q

4 , c2 = 4− q, c3 = 3.
By construction, the ansatz (7) is a solution of the

supersymmetric Ward identity, which is manifestly in-
variant under G3(Z). Its expansion at weak coupling
(corresponding to the parabolic decomposition (1), such
that the non-perturbative Narain lattice Λ24,8 degener-
ates to Λ23,7⊕Λ1,1) can be computed using the standard
unfolding trick. For simplicity, we shall assume that none
of the indices abcd lies along Λ1,1:

F (24,8)

αβγδ =
c0

16πg 4
3

δ(αβδγδ) +
F (23,7)

αβγδ

g 2
3

+ 4
3∑

k=1

∑

Q∈Λ?23,7

P
(k)
αβγδ

×c̄(Q) g2k−9
3 |

√
2QR|k−

7
2 K

k− 7
2

(
2π
g 2
3
|
√

2QR|
)
e−2πiaIQI

(9)
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where c0 = 24 is the constant term in 1/∆,

Λ? = Λ\{0}, P (1)
αβγδ(Q) = QLαQLβQLγQLδ, P

(2)
αβγδ =

− 3
2π δ(αβQLγQLδ), P

(3)
αβγδ = 3

16π2 δ(αβδγδ), Kν(z) is the
modified Bessel function of the second kind, behaving as√

π
2z e
−z(1 +O(1/z)) for large positive values of z, and

c̄(Q) =
∑

d|Q
d c
(
− |Q|

2

2d

)
. (10)

After rescaling from Einstein frame to string frame, the
first and second terms in (9) are recognized as the tree-
level and one-loop (∇Φ)4 coupling in perturbative het-
erotic string theory, while the remaining terms corre-
spond to NS5-brane and KK5-branes wrapped on any
possible T 6 inside T 7 [34].

In the large radius limit (corresponding to the
parabolic decomposition (2), such that the non-
perturbative Narain lattice Λ24,8 degenerates to Λ22,6 ⊕
Λ2,2), we get instead (in units where `P = 1)

F (24,8)

αβγδ = R2
( c0

16π
Ê1(S) δ(αβδγδ) + F (22,6)

αβγδ

)
(11)

+4
3∑

k=1

∑

Q′∈Λ?22,6

′∑

m,n

c
(
− |Q

′|2
2

)
R5−k P (k)

αβγδ

K
k− 7

2

(
2πR|mS+n|√

S2
|
√

2Q′R|
)
e−2πi(ma1+na2)·Q′+ . . .

where Ê1(S) = − 3
π logS2|η(S)|4. The first term in (11)

originates from the dimensional reduction of the R2 and
F 4 couplings in D = 4 [33, 36], after dualizing the gauge
fields into scalars. The term F (22,6)

αβγδ can also be traced to
the four-derivative scalar couplings studied in [32]. The
second term in (11) is of order e−2πRM(Q,P ), whereM is
the mass of a four-dimensional 1/2-BPS state with elec-
tromagnetic charges (Q,P ) = (mQ′, nQ′). The phase
factor is the expected minimal coupling of a dyonic state
to the holonomies of the electric and magnetic gauge
fields along the circle. Fixing charges (Q,P ) such that
Q and P are collinear, the sum over (m,n) induces a
measure factor

µ(Q,P ) =
∑

d|(Q,P )

c
(
− gcd(Q2,P 2,Q·P )

2d2

)
, (12)

which is recognized as the degeneracy of 1/2-BPS states
with charges (Q,P ). In particular for a purely elec-
tric state (P = 0) with primitive charge, it reduces to
the well-known result c(−|Q|2/2) [5]. The dots in (11)

stand for terms of order e−2πR2|k|+2πikψ, characteristic of
a Kaluza–Klein monopole of the form TNk × T 6, where
TNk is Euclidean Taub–NUT space with charge k. These
contributions will be discussed in [26].

EXACT ∇2(∇Φ)4 COUPLINGS IN D = 3

We now turn to the six-derivative coupling Gab,cd,
which is expected to receive both 1/2-BPS and 1/4-BPS

instanton contributions. Based on U-duality invariance,
supersymmetric Ward identities and the known two-loop
contribution [37, 38], it is natural to conjecture that
Gab,cd is given by the genus-two modular integral

G(24,8)

ab,cd =

∫

F2

d3Ω1d3Ω2

|Ω2|3
1
2 (εikεjl + εilεjk)∂4

(2πi)4∂yai ∂y
b
j∂y

c
k∂y

d
l

∣∣∣∣
y=0

Γ24,8,2

Φ10
,

(13)
where F2 is the standard fundamental domain for the ac-
tion of Sp(4,Z) on the Siegel upper half-plane of degree
two [39], |Ω2| is the determinant of the imaginary part
of Ω = Ω1 + iΩ2, Φ10 is the unique cusp form of weight
10 under the Siegel modular group Sp(4,Z) (whose in-
verse counts micro-states of 1/4-BPS black holes [6]), and
Γ24,8,2 is the genus-two partition function of the non-
perturbative Narain lattice,

Γ24,8,2 = |Ω2|4
∑

Qi∈Λ⊗2
24,8

eiπ(QiLΩijQ
j
L−QiRΩ̄ijQ

j
R+2QiLyi)+

π
2 y

a
i Ω-1ij

2 yja

(14)
Acting with the yai -derivatives results in the insertion of
a polynomial Pαβ,γδ(Q

i
L,Ω

-1
2 ) of degree 4 and 2 in its

first and second arguments. We shall denote by G(q+16,q)

ab,cd

the analogue of (14) where the lattice Λ24,8 is replaced
by Λq+16,q and the power of |Ω2| by q/2. The integral
G(q+16,q)

ab,cd is convergent for q < 6, and defined for q ≥ 6
by a suitable regularization prescription [40]. For q ≤ 7,
the modular integral G(q+16,q)

ab,cd controls the two-loop con-

tribution to the ∇2F 4 coupling in heterotic string com-
pactified on T q [37, 38].

For any value of q, one can show that G(q+16,q)

ab,cd satisfies

(5) and (6) with c4 = 3−q
2 , c5 = 6−q

2 , c6 = 1
2 , c7 = −π.

In particular, the quadratic source term on the r.h.s. of
(5) originates from the pole of 1/Φ10 on the separating
degeneration divisor, similar to the analysis in [30, 40].
Thus, G(24,8) is a solution of the supersymmetric Ward
identity, which is manifestly invariant under G3(Z). It
remains to check that it produces the expected terms at
weak coupling, when Λ24,8 degenerates to Λ23,7 ⊕ Λ1,1.
This limit can be studied using a higher-genus version
of the unfolding trick [41, 42]. Using results about the
Fourier–Jacobi expansion of 1/Φ10 from [16], we find

G(24,8)

αβ,γδ =
G(23,7)

αβ,γδ

g 4
3

−
δαβG

(23,7)

γδ +δγδG
(23,7)

αβ −2δγ)(αG
(23,7)

β)(δ

12g 6
3

− 1

2πg 8
3

[
δαβδγδ − δα(γδδ)β

]
+ . . . (15)

where

G(q+16,q)

ab =

∫

F1

dρ1dρ2

ρ 2
2

∂2

(2πi)2∂ya∂yb

∣∣∣
y=0

Ê2 Γq+16,q

∆
, (16)

with Ê2 = 12
iπ ∂ρ log η− 3

πρ2
the almost holomorphic Eisen-

stein series of weight 2. The first and second terms in
(15) corresponds to the zero and rank 1 orbits, respec-
tively. The third term is necessary for consistency with
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the quadratic term on the r.h.s. of the supersymmetric
Ward identity (5), although a naive unfolding procedure
fails to produce it, presumably due to the singularity of
the integrand in the separating degeneration limit. Af-
ter rescaling to string frame, the first three terms in (15)
correspond to the expected two-loop [37, 38], one-loop
[43] and tree-level contributions [44, 45] to the ∇2(∇Φ)4

coupling in heterotic string on T 7, while the dots stand
for terms of order e−1/g23 ascribable to NS5-brane and
KK5-brane instantons, which will be discussed in [26].
Note that the tree-level single trace ∇2F 4 term in [44]
proportional to ζ(3) vanishes on the Cartan subalgebra
[46], and does not contribute to this coupling.

Having shown that our ansatz (13) passes all consis-
tency conditions in D = 3, let us now analyze its large ra-
dius limit, where Λ24,8 degenerates to Λ22,6⊕Λ2,2. Again,
the unfolding trick gives

G(24,8)

αβ,γδ (17)

= R4
[
G(22,6)

αβ,γδ −
Ê1(S)

12

(
δαβG

(22,6)

γδ +δγδG
(22,6)

αβ −2δγ)(αG
(22,6)

β)(δ

)

+g(S)(δαβδγδ − δα(γδδ)β)
]
+G

(1)
αβ,γδ +G

(2)
αβ,γδ +G

(KKM)
αβ,γδ

The two terms on the first line (which correspond to the
constant term with respect to the parabolic decomposi-
tion (2)) originate from the reduction of the ∇2F 4 and
R2F 2 couplings in four dimensions. The term propor-
tional to g(S) originates presumably from the separating
degeneration divisor, and is determined by the differen-
tial equation (6). The terms G(1) and G(2) are inde-
pendent of the NUT potential ψ, and correspond to the
Abelian Fourier coefficients. They are both suppressed
as e−2πRM(Q,P ), but G(1) has support on electromag-
netic charges (Q,P ) which Q and P collinear, hence cor-
responds to contributions of 1/2-BPS states winding the
circle, while G(2) has support on generic charges, corre-
sponding to 1/4-BPS states. The last term G(KKM) in-
cludes all terms with non-zero charge with respect to the
NUT potential, corresponding to Kaluza–Klein monopole
contributions.

In this letter, we focus on the contribution G(2)

from 1/4-BPS black holes. This contribution originates
from the ‘Abelian rank 2 orbit’, whose stabilizer is the
parabolic subgroup GL(2,Z)nZ3 inside Sp(4,Z). Thus,
the integral can be unfolded onto P2/PGL(2,Z)× [0, 1]3,
where P2 denotes the space of positive definite 2× 2 ma-
trices Ω2:

G
(2)
αβ,γδ =R4

∫

P2

d3Ω2

|Ω2|3
∫

[0,1]3
d3Ω1

(εikεjl + εilεjk)∂4

(2πi)4∂yai ∂y
b
j∂y

c
k∂y

d
l

∣∣∣∣
y=0

×
〈
e−2πiaiIAijQ

j
I

〉
22,6,2

Φ10

∑

A∈M2(Z)/GL(2,Z)
|A|6=0

e
−πR2

S2
Tr

[
Ω−1

2 ·Aᵀ·
(

1 S1

S1 |S|2
)
·A
]

(18)

where 〈f(Q)〉22,6,2 denotes the partition function Γ22,6,2

with an insertion of f(Q) in the sum. The integral

over Ω1 at fixed Ω2 extracts the Fourier coefficient

C
[(
− 1

2 |Q|2 −Q · P
−Q · P − 1

2 |P |2
)

; Ω2

]
of 1/Φ10. Due to the zeros of

Φ10, the latter is a locally constant function of Ω2, dis-
continuous across certain real codimension 1 walls in P2

[47, 48]. For large R however, the remaining integral over
Ω2 is dominated by a saddle point Ω?2 (see (24) below),
so to all orders in 1/R around the saddle point, we can
replace the above Fourier coefficient by its value at Ω?2.
The remaining integral over Ω2 can be computed using

∫

P2

d3S |S|δ− 3
2 e−πTr (SA+S−1B) = 2

( |B|
|A|

)δ/2
B̃δ(AB) ,

(19)

where B̃δ(Z) is a matrix-variate generalization of the
modified Bessel function [49][60],

B̃δ(Z) =

∫ ∞

0

dt

t3/2
e−πt−

πTrZ
t Kδ

(
2π
√
|Z|
t

)
. (20)

In the limit where all entries in Z are large, one has

B̃δ(Z) ∼ 1

2

[
|Z|
(
TrZ + 2

√
|Z|
)]− 1

4
e−2π

√
TrZ+2

√
|Z| .

(21)
Further relabelling (QP ) = A(Q1

Q2
), we find

G
(2)
αβ,γδ = 2R7

∑

Q,P∈Λ?22,6

e−2πi(a1Q+a2P ) µ(Q,P )

|2PR ∧QR|
3
2

×Pαβ,γδ
(

1√
S2

(
1 S1

0 S2

)(
QL
PL

)
,− 1

πR2
∂
∂Y

)
· (22)

(
|Y | 34 B̃ 3

2

[
Y 2R2

S2

(
1 S1

0 S2

)(
|QR|2 PR ·QR
PR ·QR |PR|2

)(
1 0
S1 S2

)])∣∣∣
Y=1

where |PR ∧ QR| =
√

(P 2
R)(Q2

R)− (PR ·QR)2, Pαβ,γδ is
the polynomial defined below (14),

µ(Q,P ) =
∑

A∈M2(Z)/GL(2,Z)

A−1(QP )∈Λ⊗2
22,6

|A|C
[
A−1

(
− 1

2 |Q|2 −Q · P
−Q · P − 1

2 |P |2
)
A−ᵀ; Ω?2

]

(23)
and Ω?2 is the location of the afore-mentioned saddle
point,

Ω?2 =
R

M(Q,P )
Aᵀ
[

1
S2

(
1 S1

S1 |S|2
)
+ 1
|PR∧QR|

(
|PR|2 −PR ·QR
−PR ·QR |QR|2

) ]
A .

(24)
Using (21), we see that these contributions behave as
e−2πRM(Q,P ) in the limit R→∞, where

M(Q,P ) =

√
2 |QR+SPR|2

S2
+ 4

√∣∣∣ |QR|
2 QR · PR

QR · PR |PR|2
∣∣∣ (25)

is recognized as the mass of a 1/4-BPS dyon with elec-
tromagnetic charges (Q,P ) [50, 51]. Moreover, in cases
where only A = 1 contributes to (23), the instanton mea-
sure µ(Q,P ) agrees with the BPS index Ω(Q,P ;S, φ) in
the corresponding chamber of the moduli space M4 in
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D = 4, computed with the contour prescription in [52].
Our result (23) generalizes this prescription to arbitrary
electromagnetic charges (Q,P ) and recovers the results
of [53–55] for dyons with torsion, fixing a subtlety in
the choice of chamber. Additional (exponentially sup-
pressed) contributions to G(2) arise from the difference

between C
[(
− 1

2 |Q|2 −Q · P
−Q · P − 1

2 |P |2
)

; Ω2

]
and its value at the

saddle point. The relation between the jumps of these
Fourier coefficients and the possible splittings of a 1/4-
BPS bound state into two 1/2-BPS constituents [47] is
crucial for consistency with the quadratic source term in
the supersymmetric Ward identity (5). These contribu-
tions, along with the terms G(2) and G(KKM) which we
have ignored here, will be discussed in [26].

DISCUSSION

In this work, we have conjectured the exact form of the
(∇Φ)4 and ∇2(∇Φ)4 couplings in the low energy effec-
tive action of D = 3 string vacua with half-maximal su-
persymmetry, focussing on the simplest model, heterotic
string compactified on T 7. Our ansätze (7) and (13) are
manifestly U-duality invariant, satisfy the requisite su-
persymmetric Ward identities, reproduce the known per-
turbative contributions at weak heterotic coupling and
the known F 4,R2, D2F 4 and R2F 2 couplings in D = 4
in the limit where the radius of one circle inside T 7 be-
comes large. While we do not yet have a rigorous proof
that these constraints uniquely determine the functions
Fabcd and Gab,cd, we expect that additional contributions
from cusp forms are ruled out by the supersymmetric
Ward identities (4) and (5), by the same type of argu-
ments which apply for the R4 and ∇6R4 couplings.

In the limit where the radius of one circle inside
T 7 becomes large, we find, in addition to the afore-
mentioned power-like terms, an infinite series of correc-
tions of order e−2πRM(Q,P ) which are interpreted as Eu-
clidean counterparts of four-dimensional BPS states with
mass M(Q,P ), whose worldline winds around the cir-
cle. Rather remarkably, the contribution from a 1/4-
BPS dyon is weighted by the BPS index Ω(Q,P ;S, φ),
extracted from the Siegel modular form 1/Φ10 using the
very same contour prescription as in [52]. Indeed, it was
suggested in [56] (see also [57, 58]) to represent 1/4-BPS
dyons as heterotic strings wrapped on a genus-two curve
holomorphically embedded in a T 4 inside T 7. This pic-
ture was further used in [59] to justify the contour pre-
scription of [52]. Our analysis of the∇2(∇Φ)4 coupling in
D = 3 gives a concrete basis to these heuristic ideas, and
explains why 1/4-BPS dyons in D = 4 are counted by
a Siegel modular form of genus two. We emphasize that
the introduction of the Siegel modular form 1/Φ10 in the
conjectured formula (13) is necessary to match the per-
turbative 2-loop amplitude, where it appears explicitly
[37, 38]. A more detailed analysis of the weak coupling

and large radius expansions of the ∇2(∇Φ)4 coupling will
appear in [26], with particular emphasis on the conse-
quences of wall-crossing for three-dimensional couplings.
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Abstract

Three-dimensional string models with half-maximal supersymmetry are believed
to be invariant under a large U-duality group which unifies the S and T dual-
ities in four dimensions. We propose an exact, U-duality invariant formula for
four-derivative scalar couplings of the form F (Φ)(∇Φ)4 in a class of string vacua
known as CHL ZN heterotic orbifolds with N prime, generalizing our previous
work which dealt with the case of heterotic string on T 6. We derive the Ward
identities that F (Φ) must satisfy, and check that our formula obeys them. We ana-
lyze the weak coupling expansion of F (Φ), and show that it reproduces the correct
tree-level and one-loop contributions, plus an infinite series of non-perturbative
contributions. Similarly, the large radius expansion reproduces the exact F 4 cou-
pling in four dimensions, including both supersymmetric invariants, plus infinite
series of instanton corrections from half-BPS dyons winding around the large
circle, and from Taub-NUT instantons. The summation measure for dyonic in-
stantons agrees with the helicity supertrace for half-BPS dyons in 4 dimensions in
all charge sectors. In the process we clarify several subtleties about CHL models
in D = 4 and D = 3, in particular we obtain the exact helicity supertraces for
1/2-BPS dyonic states in all duality orbits.
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1 Introduction

In the absence of a first principle non-pertubative formulation of superstring theory, the study
of string vacua with extended supersymmetry continues to be one of the few sources of insight
into the strong coupling regime. By exploiting invariance under U-dualities, which the full
quantum theory is believed to enjoy [1, 2, 3, 4], as well as supersymmetric Ward identities,
it is often possible to determine certain couplings in the low energy effective action exactly,
for all values of the moduli (as demonstrated by [5] and numerous subsequent works). The
expansion of these couplings near boundaries of the moduli space, corresponding to cusps
of the U-duality group, then reveals, beyond power-like terms computable in perturbation
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theory, infinite series of exponentially suppressed corrections interpreted as semi-classical
contributions in the putative string field theory. A particularly interesting class of examples
is that of BPS saturated couplings in three-dimensional string vacua: in the limit where a
circle in the internal space decompactifies, these couplings receive exponentially suppressed
contributions from BPS states in four dimensions, along with further suppressed contributions
from Taub-NUT instantons. These couplings can therefore be viewed as BPS black hole
partitions, which encode the exact degeneracies (or more precisely, helicity supertraces) of
BPS black hole micro-states [6, 7, 8].

In the recent letter [7], we investigated the F (Φ)(∇Φ)4 and G(Φ)∇2(∇Φ)4 couplings in the
low energy effective action of three-dimensional string vacua with 16 supercharges, focussing
on the simplest example of such vacua, namely heterotic strings compactified on a torus T 7,
or equivalently, type II strings compactified on K3 × T 3. Based on the known perturbative
contributions to these couplings, we conjectured exact formulae for the coefficients F (Φ)
and G(Φ) for all values of the moduli Φ, which satisfy the requisite supersymmetric Ward
identities and are manifestly invariant under U-duality. In the limit where one circle inside
T 7 decompactifies, we claimed that these formulae reproduce the correct helicity supertraces
for 1/2-BPS and 1/4-BPS states with primitive charges, for all values of the moduli φ in four
dimensions.

The goal of the present work is to demonstrate these claims in the case of the (∇Φ)4

coupling,1 revisiting the analysis in [9], and extend our conjecture to a class of string vacua
with 16 supercharges known as CHL orbifolds [10], restricting to ZN orbifolds with N prime
for simplicity.

In Section 2, after reviewing relevant aspects of heterotic CHL vacua with 16 supercharges
in four and three dimensions, we state the helicity supertraces of 1/2-BPS dyons with arbitrary
charge in four dimensions (referring to Appendix A for the derivation of the perturbative BPS
spectrum), and determine the precise form of the U-duality group G3(Z) in three dimensions,
consistent with S-duality and T-duality in four dimensions. We then propose a manifestly U-
duality invariant formula (2.27) for the coefficient Fabcd(Φ) of the (∇Φ)4 couplings, obtained
by covariantizing the known one-loop contribution under G3(Z), extending the proposal in
[7] for the maximal rank case (N = 1).

In Section 3, using superspace arguments we establish the supersymmetric Ward identities
(2.23) which constrain the coupling Fabcd(Φ), and show that the proposal (2.27) satisfies these
relations.

In Section 4, we analyze (2.27) in the limit where g3 → 0, and show that it reproduces the
known tree-level and one-loop contributions in heterotic perturbation theory, plus an infinite
series of NS5-brane, Kaluza–Klein monopole and H-monopole instanton corrections.

In Section 5, we similarly analyze (2.27) in the large radius limit R → ∞, and show
that it reproduces the known F 4 and R2 couplings in D = 4, along with an infinite series
of exponentially suppressed corrections of order e−RM(Q,P ) with Q and P collinear, weighted
by the helicity supertrace Ω4(Q,P ), and further exponentially suppressed corrections from
Taub-NUT monopoles.

In most computations, we allow for lattices of arbitrary signature (p, q), before specifying to
the most relevant case (p, q) = (2k, 8) at the end. Details of some computations are relegated
to Appendices. The one-loop vacuum amplitude for heterotic CHL models, from which the
perturbative BPS spectrum, F 4 and (∇Φ)4 couplings are easily read off, is constructed in

1An analysis of the ∇2(∇Φ)4 couplings will appear in a separate publication.

3



SciPost Physics Submission

Appendix §A. In §B we decompose the Ward identity on all Fourier modes in the degeneration
limitO(p, q)→ O(p−1, q−1), and show that all Fourier coefficients are uniquely determined up
to a moduli-independent summation measure. In §C and §D we collect some notations which
arise in the analysis of §4 and §5. In Appendix §E we obtain a Poincaré series representation
of the relevant genus-one modular integrals, and use the same method to construct Eisenstein
series for O(p, q,Z).

2 Dualities, BPS spectrum and (∇Φ)4 couplings in CHL vacua

In this section, we recall relevant aspects of heterotic CHL vacua with 16 supercharges in
four and three dimensions, restricting to the case of ZN orbifolds with N prime for simplicity.
While most of the results are well known, we pay special attention to the quantization con-
ditions for the electromagnetic charges of 4D dyons, and to the precise form of the U-duality
groups in D = 4 and D = 3. Finally, we state our proposal for the non-perturbative (∇Φ)4

coupling, which is the focus of the remainder of this work.

2.1 Moduli space and 1/2-BPS dyons in D = 4

Recall that in four-dimensional string vacua with 16 supercharges, the moduli space is locally
a product

M4 =

[
SL(2,R)

SO(2)
×Gr−6,6

]
/G4(Z) , (2.1)

where Gp,q ≡ O(p, q)/[O(p)×O(q)] denotes the orthogonal Grassmannian of positive q-planes
in a fiducial vector space Rp,q of signature (p, q) (a real symmetric space of dimension pq), r is
the rank of the Abelian gauge group, and G4(Z) is an arithmetic subgroup of SL(2,R)×O(r−
6, 6,R). In heterotic string theory compactified on a torus T 6, the first factor is parametrized
by the axiodilaton S = b + 2πi/g2

4, where b is the scalar dual to the Kalb-Ramond two-
form, while the second factor, with r = 28, is the Narain moduli space [11]. The U-duality
group G4(Z) is then the product of the S-duality group SL(2,Z), acting on S by fractional
linear transformations S 7→ aS+b

cS+d [1, 2], and of the T-duality group O(22, 6,Z), which is the
automorphism group of the even self-dual Narain lattice Λ22,6 = E8 ⊕ E8 ⊕ II6,6, where E8

denotes the root lattice of E8 and IId,d denotes d copies of the standard hyperbolic lattice
II1,1. The effective action is singular on real codimension-6 loci where the projection QR of a
vector Q ∈ Λ22,6 with norm Q2 = 2 on the negative 6-plane parametrized by Gr−6,6 vanishes,
corresponding to points of gauge symmetry enhancement. The same moduli space (2.1) arises
in type IIA string compactified on K3 × T 2, where the first factor parametrizes the Kähler
modulus of T 2, while the second factor parametrizes the axiodilaton, the complex modulus of
T 2, the K3 moduli and the holonomies of the RR gauge fields on T 2 ×K3. These two string
vacua are in fact related by heterotic/type II duality [12], which in particular turns S-duality
into a geometrical symmetry.

Vacua with lower values of r can be constructed as freely acting orbifolds of the maximal
rank model with r = 28 [10, 13, 14, 15]. On the heterotic side, one mods out by a ZN
rotation of the heterotic lattice Λ22,6 at values of the Narain moduli where such a symmetry
exists, combined with an order N shift along one circle inside T 6. This projection removes
28 − r of the gauge fields in 4 dimensions, along with their scalar partners. On the type II
side, one can similarly mod out by a symplectic automorphism of order N on K3, combined
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N Cycle Shape k r Λk,8−k Λm ∼= Λ∗e |Λ∗m/Λm|
1 124 12 28 E8 ⊕ E8 ⊕ II6,6 1

2 1828 8 20 E8[2] E8[2]⊕ II1,1[2]⊕ II5,5 210

3 1636 6 16 D6[3]⊕D2[−1] A2 ⊕A2 ⊕ II3,3[3]⊕ II3,3 38

5 1454 4 12 D4[5]⊕D4[−1] II3,3[5]⊕ II3,3 56

7 1373 3 10 D3[7]⊕D5[−1]
[
−4 −1
−1 −2

]
⊕ II2,2[7]⊕ II2,2 75

Table 1: A class of ZN CHL orbifolds. Here k = 24/(N + 1) is the weight of the cusp form
whose inverse counts 1/2 BPS states, r = 2k+ 4 is the rank of the gauge group and Λm is the
lattice of magnetic charges in four dimensions. The discriminant group Λ∗m/Λm is isomorphic
to Zk+2

N . Agreement between the lattice Λm listed here and Λr−6,6 defined in (2.2) follows
from the lattice isomorphisms (A.33).

with an order N shift on T 2. It is convenient to label this action by the data {m(a), a|N}
and the associated cycle shape

∏
a|N a

m(a) such that
∑

a|N am(a) = 24, corresponding to the

cycle decomposition of the ZN action on the even homology lattice Heven(K3) ∼ Z24. For
simplicity we shall restrict ourselves to CHL orbifolds with N prime and cycle shape 1kNk

with k = 24/(N+1). In this case, one can decompose Λ22,6 = ΛNk,8−k⊕II1,1⊕IIk−3,k−3, such
that the ZN action acts on the first term by a ZN rotation, on the second term by an order
N shift, leaving IIk−3,k−3 invariant (see §A.2 for details on this construction). We denote by
Λk,8−k the quotient of ΛNk,8−k under the ZN rotation (see Table 1). The U-duality group

G4(Z) includes Γ1(N)× Õ(r − 6, 6,Z), where Γ1(N) is the congruence subgroup of SL(2,Z)
corresponding to matrices

(
a b
c d

)
with c = 0 modN, a = d = 1 modN , and Õ(r− 6, 6,Z) is the

restricted automorphism group of the lattice

Λr−6,6 = Λk,8−k ⊕ II1,1[N ]⊕ IIk−3,k−3 , (2.2)

i.e. the subgroup of the automorphism group of Λr−6,6 which acts trivially on the discriminant
group Λ∗r−6,6/Λr−6,6. Here and below, for any lattice Λ, we denote by Λ[α] the same lattice
with a quadratic form rescaled by a factor α (which is equivalent to rescaling the lattice
vectors by

√
α). Note that the lattice (2.2) is still even, i.e. Q2 ∈ 2Z for Q ∈ Λr−6,6, but it is

no longer unimodular, rather it is a lattice of level N , in the sense that Q2 ∈ 2Z/N for any
Q ∈ Λ∗r−6,6. Singularities now occur on codimension-q loci where Q2

R = 0 for a norm 2 vector
Q ∈ Λr−6,6, or for a norm 2/N vector Q ∈ Λ∗r−6,6.

While the U-duality group G4(Z) must certainly include Γ1(N) × Õ(r − 6, 6,Z), it may
actually be larger. Moreover, special BPS observables may well be invariant under an even
larger group. In particular the four-derivative couplings in D = 4 turn out to be invariant
under the action of the larger duality group Γ0(N) × O(r − 6, 6,Z), where Γ0(N) is the
subgroup of matrices

(
a b
c d

)
with c = 0 modN and O(r − 6, 6,Z) is the full automorphism

group of the lattice Λr−6,6. For example, the exact R2 coupling in the low-energy effective
action is given by [19, 20, 21]

− 1

(8π)2

∫
d4x
√−g log(S k

2 |∆k(S)|2)(RµνρσRµνρσ − 4RµνRµν +R2) (2.3)

where ∆k is the unique cusp form of weight k under Γ0(N), nowhere vanishing except at the
cusps i∞ and 0,

∆k(τ) = ηk(τ) ηk(Nτ) . (2.4)
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In the weak coupling limit S2 →∞, the expansion

− log(S k
2 |∆k(S)|2) = 4πS2 − k logS2 + k

∞∑

m=1


∑

d|m
d+

∑

Nd|m
Nd


 qmS + q̄mS

m
(2.5)

with qS = e2πiS reveals, beyond the expected tree-level contribution and logarithmic mixing
with the non-local part of the effective action, an infinite series of exponentially suppressed
corrections ascribed to NS5-branes wrapped on T 6 [19]. While not all Γ0(N)×O(r− 6, 6,Z)
transformations are expected to be U-dualities of the full theory but only of the BPS sector,
for brevity we shall refer to them respectively as S- and T-dualities.

In [18] it was observed that the coupling (2.3) is in fact invariant under the larger group
Γ̂0(N), obtained by adjoining to Γ0(N) the Fricke involution, which acts on modular forms
of weight k under Γ0(N) via fk(τ) 7→ f̂k(τ) = (−iτ

√
N)−kfk(−1/(Nτ)). Based on a detailed

study of geometric dualities in the type II dual description, it was conjectured2 that the full
U-duality group in D = 4 also includes the so-called Fricke S-duality, which acts on the first
factor in (2.1) by the Fricke involution S 7→ −1/(NS), accompanied by a suitable action of
O(r − 6, 6,R) on the second factor. Additional evidence for the existence of Fricke S-duality
comes from the spectrum of BPS states, to which we now turn.

Point-like particles in D = 4 carry electric and magnetic charges (Q,P ) ∈ Λem under the
r Maxwell fields, where

Λem = Λe ⊕ Λm , Λm = Λr−6,6 = Λ∗e . (2.6)

The lattice Λm is tabulated in the sixth column of Table 1, taken from [18]. It agrees with
the result (2.2) upon making use of the lattice isomorphisms (A.33). In view of the remarks
below (2.2), one has, for any (Q,P ) ∈ Λem,

Q2 ∈ 2

N
Z , P 2 ∈ 2Z , P ·Q ∈ Z . (2.7)

The last property in particular ensures that the Dirac-Schwinger-Zwanziger pairing Q · P ′ −
Q′ · P is integer. Moreover, it was observed in [18] that the lattice Λm is in fact N -modular,
i.e. it satisfies

Λ∗m ' Λm[1/N ] . (2.8)

In other words, there exists an O(r − 6, 6,R) matrix σ such that
√
Nσ maps the lattice Λm

into itself and such that
Λ∗m =

σ√
N

Λm (⊃ Λm) . (2.9)

A simple example of N -modular lattice is Λd,d[N ]⊕ Λd,d, which is relevant for N = 5 above.
In this case one can parametrize an element in the lattice in (Zd, NZd,Zd,Zd) and an element
of the dual lattice in (Zd/N,Zd,Zd,Zd) and define σ ∈ O(2d, 2d,R) such that

σ√
N

=
1√
N




0 0 1√
N
1d,d 0

0 0 0
√
N1d,d√

N1d,d 0 0 0
0 1√

N
1d,d 0 0


 =




0 0 1
N 1d,d 0

0 0 0 1d,d
1d,d 0 0 0

0 1
N 1d,d 0 0


 .

(2.10)

2More generally, Fricke S-duality is conjectured to hold whenever the cycle shape satisfies the balancing
condition m(a) = m(N/a) for all a|N . [18]
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The map (2.9) defines the action (Q,P ) 7→ (−σ · P/
√
N, σ−1 ·Q

√
N) of the Fricke S-duality

on Λem, which maps (Q2, P 2, P · Q) 7→ (P 2/N,NQ2,−P · Q) and therefore preserves the
quantization conditions (2.7). It also allows to identify NΛ∗m as a sublattice of Λm

NΛ∗m =
√
NσΛm ⊂ Λm . (2.11)

Electric charge vectors Q ∈ Λm ⊂ Λe are called untwisted, while vectors Q ∈ Λe r Λm are
called twisted. More generally, we shall call dyonic charge vectors (Q,P ) lying in Λm⊕NΛe ⊂
Λe ⊕ Λm untwisted, and twisted otherwise.3 Untwisted dyons are in particular such that

Q2 ∈ 2Z , P 2 ∈ 2NZ , P ·Q ∈ NZ . (2.12)

Half-BPS states exist only when Q,P are collinear. Their mass is then determined in
terms of the charges via

M2(Q,P ) =
2

S2
(QR − SPR) · (QR − S̄PR) (2.13)

where, for a vector QI ∈ Rp,q (I = 1 . . . p + q), we denote by QaL (a = 1 . . . p) and QâR (â =
1 . . . q) its projections on the positive p-plane and its orthogonal complement parametrized
by the orthogonal Grassmannian Gp,q, such that Q2 = Q2

L −Q2
R.

For primitive purely electric states (such that Q ∈ Λe but Q/d /∈ Λe for all d > 1),
corresponding to left-moving excitations in the twisted sectors of the perturbative heterotic
string, it is known that the helicity supertrace Ω4(Q, 0) is given by [22, 17, 24, 25, 23]

Ω4(Q, 0) = ck

(
−NQ2

2

)
,

1

∆k(τ)
=
∑

m∈Z
m≥−1

ck(m) qm =
1

q
+ k + . . . , (2.14)

where q = 22πiτ and ∆k(τ) is the same cusp form (2.4) which enters in the exact R2 coupling.
In Appendix A, we rederive this result by constructing the one-loop vacuum amplitude for
the CHL models under consideration, and show that primitive purely electric states corre-
sponding to left-moving excitations in the untwisted sector have an additional contribution
(first observed for N = 2 in [26])

Ω4(Q, 0) = ck

(
−Q2

2

)
+ ck

(
−NQ2

2

)
. (2.15)

Invariance under both Γ0(N) and Fricke S-duality implies that the same formulae apply to
generic primitive dyons with Q2 being replaced by 1

N gcd(NQ2, P 2, Q ·P ). It follows that the
helicity supertrace for general 1/2 BPS primitive dyons is given by

Ω4(Q,P ) = ck

(
−gcd(NQ2,P 2,Q·P )

2

)
. (2.16)

for twisted electromagnetic charge (Q,P ) ∈ (Λe ⊕ Λm) r (Λm ⊕NΛe), and by

Ω4(Q,P ) = ck

(
−gcd(NQ2,P 2,Q·P )

2

)
+ ck

(
−gcd(NQ2,P 2,Q·P )

2N

)
. (2.17)

for untwisted charge (Q,P ) ∈ Λm⊕NΛe. In contrast, primitive 1/2-BPS states of the maximal
rank theory have a single contribution

Ω4(Q,P ) = c
(
−gcd(Q2,P 2,Q·P )

2

)
,

1

∆(τ)
=
∑

m∈Z
m≥−1

c(m) qm =
1

q
+ 24 + . . . (2.18)

3Note that this terminology is defined to be consistent with Fricke and Γ0(N) S-duality, but twisted magnetic
charges do not correspond to any twisted sector in the conventional sense.
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2.2 Moduli space and 1/2-BPS couplings in D = 3

Upon further compactification on a circle, additional moduli arise from the radius R of the
circle, from the holonomies a1I of the r gauge fields, and from the scalars a2I , ψ dual to the
r Maxwell fields and to the Kaluza–Klein gauge field in three dimensions, extending (2.1) to
[27]

M3 = Gr−4,8/G3(Z) . (2.19)

The U-duality group G3(Z) includes G4(Z), the Heisenberg group of large gauge transfor-
mations acting on aI,i, ψ, and the automorphism group O(r − 5, 7,Z) (or rather a subgroup
containing Õ(r − 5, 7,Z)) of the Narain lattice Λr−5,7 = Λr−6,6 ⊕ II1,1 corresponding to T-
duality in heterotic string compactified on T 7. The action of these subgroups is most easily
seen in the vicinity of the cusps R→∞ and g3 → 0, corresponding to the decompactification
limit to D = 4 and the weak heterotic coupling limit in D = 3, where (2.19) reduces to

M3 →
{
R+
R ×M4 × T̃ 2r+1

R+
1/g2

3
×
[

O(r−5,7)
O(r−5)×O(7)/O(r − 5, 7,Z)

]
× T r+2

(2.20)

Here, T̃ 2r+1 is a circle bundle over the torus T 2r parametrized by the holonomies ai,I , with
fiber parametrized by the NUT potential ψ, while T r+2 corresponds to the scalars dual to the
Maxwell gauge fields after compactifying the heterotic string on T 7. In heterotic perturbation
theory, the effective action in D = 3 is singular on codimension-7 loci where Q2

R = 0 for a
norm 2 vector Q ∈ Λr−5,7, or for a norm 2/N vector Q ∈ Λ∗r−5,7.

For r = 28, it is well-known that these subgroups generate the automorphism group
O(24, 8,Z) of the ‘non-perturbative Narain lattice’ Λ24,8 = Λ22,6 ⊕ II2,2 [28]. To the extent of
our knowledge, the U-duality group for CHL models has not been discussed in the literature,
but it is natural to expect that it includes the restricted automorphism group Õ(r − 4, 8,Z)
of an extended Narain lattice of the form Λr−4,8 = Λm ⊕ Λ2,2. We find that the following
choice reproduces the correct S and T-dualities in D = 4:

Λr−4,8 = Λm ⊕ II1,1 ⊕ II1,1[N ] , (2.21)

where II1,1[N ] is the standard hyperbolic lattice with quadratic form rescaled by a factor of
N , such that Λ∗r−4,8/Λr−4,8 ' Zk+4

N . In terms of the usual construction of II2,2 by windings

(n1, n2) ∈ Z2, momenta (m1,m2) ∈ Z2 and quadratic form 2m1n1 + 2m2n2, we define II1,1 ⊕
II1,1[N ] as the sublattice of II2,2 where n2 is restricted to be a multiple of N . The restricted
automorphism group of II1,1⊕II1,1[N ] was determined in [18, 29], and includes σT↔Sn[Γ1(N)×
Γ1(N)], acting by fractional linear transformations on the moduli (T, S) parametrizing G2,2,
such that |m1 + Sm2 + Tn1 + STn2|2/(S2T2) is invariant (see [20, §C], case V for N = 2, or
[30, §3.1.3] for arbitrary N). In the present context, T is interpreted as ψ+iR2, while S is the
heterotic axiodilaton. Thus, Õ(r− 4, 8,Z) contains the S-duality group Γ1(N) and T-duality
group Õ(r−6, 6,Z) in four dimensions. In addition, Fricke S-duality in four dimensions follows
from the fact that the non-perturbative lattice (2.21) is itself N -modular,

Λ∗r−4,8 ' Λr−4,8[1/N ] . (2.22)

More evidence for the claim (2.21) will come from the analysis of BPS couplings in D = 3, to
which we now turn.
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In this work, we focus on the coupling of the form F (Φ)(∇Φ)4 in the low energy effective
action in D = 3, where F (Φ) is a symmetric rank four tensor Fabcd(Φ), and (∇Φ)4 is a short-
hand notation for a particular contraction of the pull-back of the right-invariant one-forms Paâ
on Gr−4,8 to R2,1 (see (3.15)). As stated in [7], and further explained below, supersymmetry
requires that the coefficient Fabcd(Φ) satisfies the tensorial differential equations

D(e
ĝDf)ĝ Fabcd = 2−q

4 δef Fabcd + (4− q) δe)(a Fbcd)(f + 3 δ(ab Fcd)ef + 15k
(4π)2 δ(abδcdδef)δq,6 ,

(2.23a)

D[e
[êDf ]

f̂ ]Fabcd = 0 , D[e
âFa]bcd = 0 , (2.23b)

where the constant term in the first line occurs from the regularisation in q = 6 (see 3.57),
and where Dab̂ are the covariant derivatives in tangent frame on Gp,q. In fact, we shall show
that all components of the tensor Fabcd can be recovered from its trace Ftr(Φ) ≡ F ab

ab (Φ) by
acting with the differential operators Dab̂ (see (3.26)). Supersymmetry requires that Ftr(Φ)
be an eigenmode of the Laplacian on Gr−4,8 with a specified eigenvalue, while U-duality

requires that it should be invariant under Õ(r−4, 8,Z). (Note however that the second order
differential equations satisfied by Ftr(Φ) does not imply (2.23), so it should not be thought of
as a prepotential for Fabcd.)

In CHL ZN orbifold of heterotic string on T 7, Fabcd gets tree-level and one-loop con-
tributions, both of which are solutions of (2.23), invariant under the full T-duality group
O(r − 5, 7,Z). As we show in Appendix A, the one-loop contribution is given by a modular
integral4

F (1-loop)

abcd = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ 2
2

ΓΛr−5, 7 [Pabcd]

∆k(τ)
, (2.24)

where ∆k(τ) is the same cusp form (2.4) which appeared in the R2 couplings in D = 4, and
ΓΛp, q [Pabcd] denotes the Siegel–Narain theta series for the lattice Λp,q,

ΓΛp, q [Pabcd] = τ
q/2
2

∑

Q∈Λp,q

Pabcd(Q) eiπQ2
Lτ−iπQ2

Rτ̄ , (2.25)

with an insertion of the polynomial

Pabcd(Q) = QL,aQL,bQL,cQL,d −
3

2πτ2
δ(abQL,cQL,d) +

3

16π2τ2
2

δ(abδcd), (2.26)

Γ0(N)\H is any fundamental domain for the action of Γ0(N) on the Poincaré upper half-plane
H, and R.N. denotes a suitable regularization prescription (see (3.30)). In view of the form
of the one-loop contribution, it is therefore natural to conjecture [9, 7] that the exact (∇Φ)4

coupling is the obvious generalization of (2.24), where the Narain lattice ΓΛr−5, 7 is replaced
by its non-perturbative extension (2.21),

Fabcd(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ 2
2

ΓΛr−4, 8 [Pabcd]

∆k(τ)
. (2.27)

A similar formula holds for the trace part Ftr(Φ) ≡ δabδcdFabcd(Φ),

Ftr(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ 2
2

ΓΛr−4, 8 ·D−k+2D−k
1

∆k(τ)
, (2.28)

4A similar computation for four-graviton couplings in CHL models was performed in [31].
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where Dw = i
π (∂τ − iw

2τ2
) is the Maass raising operator, mapping modular forms of weight w to

weight w+2. The proposals (2.27) and (2.28) are manifestly invariant (or covariant) under the
full automorphism group O(r− 4, 8,Z) of the non-perturbative lattice (2.21), which contains
the true U-duality group inD = 3. Moreover, since the latter isN -modular, ΓΛr−4, 8 is invariant
under the combined action of the Fricke involution on H and the rotation σ ∈ O(r − 4, 8,R)
realizing the isomorphism (2.22),

ΓΛr−4, 8(Φ, τ)[Pabcd] =
(
−iτ
√
N
)−k

ΓΛr−4, 8 [Pabcd]

(
σ · Φ,− 1

Nτ

)
. (2.29)

Since ∆k is also an eigenmode of the Fricke involution on H, and since the fundamental
domain Γ0(N)\H can be chosen to be invariant under this involution, it follows that Fabcd(Φ)
(and therefore Ftr(Φ)) is covariant (invariant) under the action of σ on Gr−4,8. As already
anticipated, this action descends to Fricke S-duality in D = 4.

It is also important to note that the couplings (2.27) and (2.28) are singular on codimension-
8 loci where Q2

R = 0 for some norm 2 vector Q ∈ Λr−4,8, or norm 2/N vector Q ∈ Λ∗r−4,8.

When the vector Q is of the form Q = (0, Q̃, 0) ∈ Λr−4,8 with Q̃ ∈ Λr−5,7, this singularity is
visible at the level of the one-loop correction to the (∇Φ)4 coupling, and is due to additional
states becoming massless. However, the one-loop correction is singular in real codimension 7,
while the full non-perturbative coupling (assuming that (2.27) is correct) is singular in real
codimension 8. Indeed, the invariant norm Q2

R = Q̃2
R + 1

2g
2
3(Q̃ · a)2 vanishes only when both

Q̃2
R = 0 and Q̃ · a = 0. This partial resolution may be seen as an analogue of the resolution of

the conifold singularity on the vector multiplet branch in type II strings compactified on a CY
threefold times a circle, or equivalently on the hypermultiplet branch in the mirror descrip-
tion [32]. Singularities associated to generic vectors Q ∈ Λr−4,8 are not visible at any order
in perturbation theory, and are associated to ‘exotic’ particles in D = 3 becoming massless
[33, 34].

3 Establishing and solving supersymmetric Ward identities

In this section, we establish the supersymmetric Ward identities (2.23), from linearized su-
perspace considerations, relate the components of the tensor Fabcd to its trace Ftr ≡ F ab

ab , and
show that the genus-one modular integral (2.27) obeys this identity. For completeness, we
solve the first equation of (2.23) in appendix B, and show that it is satisfied by each Fourier
mode of Fabcd.

3.1 (∇Φ)4 type invariants in three dimensions

In three dimensional supergravity with half-maximal supersymmetry, the linearised superfield
Wâa satisfies the constraints [27, 35, 36]

Di
αWâa = (Γâ)

îχα̂a , Di
αχβ̂a = −i(σµ)αβ(Γâ)̂

i∂µWâa , (3.1)

with â = 1 to 8 for the vector of O(8), i = 1 to 8 for the positive chirality Weyl spinor
of Spin(8) and ı̂ = 1 to 8 for the negative chirality Weyl spinor. The 1/2 BPS linearised
invariants are defined using harmonics of Spin(8)/U(4) parametrizing a Spin(8) group element

10
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uri, uri in the Weyl spinor representation of positive chirality [37],

2ur(iu
r
j) = δij , δijuriu

s
j = δsr , δijuriusj = 0 , δijuriu

s
j = 0 , (3.2)

urı̂, u
r
ı̂ in the Weyl spinor representation of negative chirality,

2ur(ı̂u
r
̂) = δı̂̂ , δı̂̂urı̂u

s
̂ = δsr , δı̂̂urı̂uŝ = 0 , δı̂̂urı̂u

s
̂ = 0 , (3.3)

and u+
â, u

rs
â, u
−
â in the vector representation,

2u+
(âu
−
b̂) +

1

2
εrstuu

rs
âu

tu
b̂ = δâb̂ , δâb̂u+

âu
−
b̂ = 1 , δâb̂ursâu

tu
b̂ =

1

2
εrstu ,

δâb̂u+
âu

+
b̂ = 0 , δâb̂u+

âu
rs
b̂ = 0 , δâb̂u−âu

rs
b̂ = 0 , δâb̂u−âu

−
b̂ = 0 , (3.4)

with r = 1 to 4 of U(4). They are related through the relations

u+
âuri(Γ

â)î =
√

2urı̂δ
ı̂̂ , uriuŝ(Γâ)

î = εrstuu
tu
â , ursâuti(Γ

â)î = 2δ
[r
t u

s]
ı̂δ
ı̂̂ ,

uriu
s
̂(Γâ)

î =
√

2u−âδ
s
r , uriuŝ(Γâ)

î =
√

2u+
âδ
r
s , uriu

s
̂(Γâ)

î = 2ursâ . (3.5)

The superfield W+
a ≡ u+âWâa then satisfies the G-analyticity property

uriD
i
αu

+âWâa ≡ Dr
αW

+
a = 0 . (3.6)

One can obtain a linearised invariant from the action of the eight derivatives Dαr ≡ uriD
i
α’s

on any homogeneous function of the W+
a ’s. After integrating over the harmonic variables with

the normalisation
∫

du = 1 and using

∫
duu−â1 . . . u

−
ânW

+a1 · · ·W+an =
6!n!

(6 + 2n)(5 + n)!
W a1

(a1
· · ·W an

an)′ , (3.7)

with the projection (â1 . . . ân)′ on the traceless symmetric component (recall that u−âu−â =
0), one gets 5

(6 + 2n)(5 + n)!

6!n!

∫
duu−â1 . . . u

−
ân [D8] 1

(n+4)!ca1...an+4W
+a1 . . .W+an+4

=
1

n!
ca1...anabcdW

a1
(â1
W a2

â2 . . .W
an
ân)′L(0)abcd

+
1

(n− 1)!
ca1...anabcdW

a2
(â2
W a3

â3 . . .W
an
ânL

(0)a1abcd
â1)′ + . . .

+
1

(n− 4)!
ca1...anabcdW

a5
(â5
W a6

â6 . . .W
an
ânL

(0)a1a2a3a4abcd
â1â2â3â4)′ + ∂(. . . ) , (3.9)

5In particular for a single vector multiplet

[D8]
1

(n+ 4)!
(W+)n+4 =

1

n!
(W+)n

(
2∂µWrs∂νW

rs∂µWtu∂
νW tu − ∂µWrs∂

µW rs∂νWtu∂
νW tu)

− 8

(n+ 1)!
(W+)n+1∂µWrs∂νW

rs∂µ∂νW− +
8

(n+ 2)!
(W+)n+2∂µ∂νW

−∂µ∂νW− + . . . . (3.8)

11
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where the Ln+4
n are symmetric tensors consisting of a homogeneous polynomial of order 4 +n

in ∂µW
aâ, χαı̂a and ∂µχαı̂a, i.e.

L(0)abcd = 2∂µW
(a
â∂

µW b
b̂∂νW

c|â∂νW d)b̂ − ∂µW (a
â∂

µW b|â∂νW c
b̂∂
νW d)b̂ + . . .

L(0)abcde
â ∼ 4× χ2(∂W )3 + 5× χ3∂χ∂W

L(0)a1a2abcd
â1â2

∼ 6× χ4(∂W )2 + 2× χ5∂χ

L(0)a1a2a3abcd
â1â2â3

∼ χ6∂W

L(0)a1a2a3a4abcd
â1â2â3â4

∼ χ8 (3.10)

where we only wrote the bosonic part of the first polynomial, and only indicated the number of
independent structures for the others, such that χ8 is for example the unique Lorentz singlet
in the irreducible representation of O(8) with four symmetrised indices without trace and
eight symmetrised O(r− 8) indices. A total derivative has been extracted in (3.9) in order to
remove all second derivative terms ∂µ∂νW

aâ.
At the non-linear level, derivatives of the scalar fields only appear through the pull-back

of the right-invariant form Pab̂ defined from the Maurer–Cartan form

dg g−1 =

(
dpLa

IηIJpLb
J −dpLa

IηIJpRb̂
J

dpRâ
IηIJpLb

J −dpRâ
IηIJpRb̂

J

)
≡
(
−ωab Pab̂
Pbâ −ωâb̂

)
, (3.11)

where ηIJ is theO(r−8, 8) metric and pL,a
I , pR,b̂

I are the left and right projections parametrised
by the Grassmaniann Gr−8,8. The right-invariant metric on Gr−8,8 is defined as Gµν =

2Pµab̂P
ab̂
ν and the covariant derivative in tangent frame acts on a symmetric tensor as

Dab̂Aa1...am,b̂1...b̂n
≡ Pµab̂G

µν(∂νAa1...am,b̂1...b̂n
+mων(a1

cAa2...am)c,b̂1...b̂n
+ nων(b̂1

ĉAa1...am,|b̂2...b̂n)ĉ) .

(3.12)
The supersymmetry invariant associated to a tensor Fabcd on the Grassmanian defines a
Lagrange density L that decomposes naturally as

L = Fa1a2a3a4La1a2a3a4 +D(a1

âFa2a3a4a5)La1...a5
â +D(a1

â1Da2
â2Fa3a4a5a6)La1...a6

â1â2

+D(a1

â1Da2
â2Da3

â3Fa4a5a6a7)La1...a7
â1â2â3

+D(a1

â1Da2
â2Da3

â3Da4
â4Fa5...a8)La1...a8

â1...â4 , (3.13)

where the Ln+4
n are O(r − 8, 8) invariant polynomial functions of the following covariant

fields:

Pµab̂ = ∂µφ
µPµ ab̂ , χαîa , Dµχαı̂a = ∇µχαı̂a+∂µφ

µ
(
ωµ a

bχαı̂a+
1

4
ωµ âb̂(Γ

âb̂)ı̂
̂χα̂a

)
, (3.14)

and the dreibeins and the gravitini fields. Because non-linear invariants define a linear invari-
ant by truncation to lowest order in the fields (3.14), the covariant densities L4+n

n reduce at
lowest order to homogeneous polynomials of degree n + 4 in the covariant fields (3.14) that

coincide with the linearised polynomials L(0)n+4
n , in particular

Labcd =
√−g

(
2P (a

µ âP
µ b
b̂P

c|â
ν P ν d)b̂ − P (a

µ âP
µ b|âP cν b̂P

ν d)b̂ + . . .
)
. (3.15)

The important conclusion to draw from the linearised analysis is that the O(r − 8, 8) right-
invariants tensors Ln+4

n appearing in the ansatz (3.13) are symmetric in both sets of indices

12
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and traceless in the O(8) indices. Checking the supersymmetry invariance (modulo a total
derivative) of L in this basis, one finds that there is no term to cancel the supersymmetry
variation

δFabcd =
(
εi(Γ

f̂ )îχê
)
Def̂Fabcd (3.16)

of the tensor Fabcd and of its derivative when open O(r − 8) indices are antisymmetrized,
hence the tensor Fabcd must satisfy the constraints

D[a
[âDb]b̂]Fcdef = 0 , D[e

âFa]bcd = 0 . (3.17)

Similarly, because the Ln+4
n are traceless in the O(8) indices, the O(8) singlet component of

δ(DF )L5
1 can only be cancelled by terms coming from FδL4, i.e.

FabcdδLabcd +
1

8
DeâDfâFabcd(εΓĉχe)Labcdfĉ ∼ 0 (3.18)

modulo terms arising from the supercovariantisation,6 so that the covariant components must
satisfy

δLabcd +
5b1
8

(εΓĉχe)Labcdeĉ +
5b2
8

(εΓĉχ(a)Lbcd)e
ĉ e = ∇µ(. . . ) (3.19)

and the tensor Fabcd an equation of the form

DeâDfâFabcd = 5b1δe(fFabcd) + 5b2 δ(faFbcd)e , (3.20)

for some numerical constants b1, b2 which are fixed by consistency. In particular the integra-
bility condition on the component antisymmetric in e and f implies b2 = 2b1 + 4.

Before determining the constants bi, it is convenient to generalize Fabcd to a completely

symmetric tensor F
(p,q)
abcd on a general Grassmanian Gp,q, which would arise by considering a

superfield inD = 10−q dimensions with 3 ≤ q ≤ 6, with harmonics parametrizing similarly the

Grassmannian Gq−2,2 [40]. The corresponding invariant takes the form L = F
(p,q)
abcd Labcd + . . .

with

Labcd =
√−g

(
F (a
µνF

b|νσF bσρF
d)ρµ − 1

4
F (a
µνF

b|µνF bσρF
d)σρ

+ (4F (a
µσF

b
ν
|σ − ηµνF (a

σρF
b|σρ)Pµ|câP

ν|d)â

+ 2P (a
µ âP

µ b
b̂P

c|â
ν P ν d)b̂ − P (a

µ âP
µ b|âP cν b̂P

ν d)b̂ + . . .
)

(3.21)

where Fabcd is subject to the constraints (3.17) and

DeâDfâF (p,q)
abcd = b1 δefF

(p,q)
abcd + 2b2δf(aF

(p,q)
bcd)e + (2b2 − q)δe(aF (p,q)

bcd)f + 3b3 δ(abF
(p,q)
cd)ef . (3.22)

with coefficients b1, b2, b3 a priori depending on p, q.
A first integrability condition for (3.22) is obtained through

0 = Deâ(DfâF (p,q)
abcd −D(a|âF

(p,q)
bcd)f ) =

(
b1 −

2b2 − q
4

)
(δefF

(p,q)
abcd − δe(aF

(p,q)
bcd)f )

+
3

2
(b2 − b3)(δf(aF

(p,q)
bcd)e − δ(abF

(p,q)
cd)ef ) , (3.23)

6The same construction in superspace implies that the lift of L in superspace is d-closed [38], such that

dωLabcd = 15
16
P ĉe∧Labcdeĉ − 5

8
P ĉ(a∧Lbcd)eĉ e, in agreement with equation (3.19). Therefore, the terms associated

to the variation of the gravitini that we disregard here do not spoil the argument [39].
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which implies b1 = 2b2−q
4 and b3 = b2, consistently with (3.20). Similarly, considering

Dgâ
(
Deb̂Dfb̂F

(p,q)
abcd

)
−Df â

(
Deb̂Dgb̂F

(p,q)
abcd

)
= 2b1δe[fDg]âF (p,q)

abcd + 2b2δa)[fDg]âF (p,q)
e(bcd

= [Dgâ,Deb̂]Dfb̂F
(p,q)
abcd − [Df â,Deb̂]Dgb̂F

(p,q)
abcd +Deb̂[D[g

â,Df ]b̂]F
(p,q)
abcd

=
2− q

2
δe[fDg]âF (p,q)

abcd + 2δa)[fDg]âF (p,q)
e(bcd , (3.24)

and therefore b1 = 2−q
4 and b2 = 1 and so b3 = 1 so that

DeâDfâF (p,q)
abcd = 5

2− q
4

δe(fF
(p,q)
abcd) + 5δ(faF

(p,q)
bcd)e . (3.25)

Taking traces of this equation one can show that the entire tensor is determined by its trace

component Ftr
(p,q) ≡ F (p,q)ab

ab through

F
(p,q)
abcd = 1

(8+p−q)(6+p−q)

(
2D(a

êDb|êDcf̂Dd)f̂ + (2q − 7)δ(abDcêDd)ê + 3(q−2)(q−4)
8 δ(abδcd)

)
Ftr

(p,q) .

(3.26)

The function Ftr
(p,q) is an eigenmode of the Laplacian ∆Gp,q ≡ 2Dab̂Dab̂ on Gp,q, and satisfies

∆Gp,qFtr
(p,q) = −1

2
(p+ 4)(q − 6)Ftr

(p,q) , D[a
[âDb]b̂]Ftr

(p,q) = 0 . (3.27)

It is worth noting, however, that Eq. (3.25) for the tensor defined by (3.26) is an additional
constraint on the function Ftr, which does not follow by integrability from the two equations
(3.27).

Finally, let us note that the discussion so far only applies to the local Wilsonian effective
action. As we shall see in the next subsection, the Ward identity satisfied by the renormalized
coupling F̂abcd is corrected in four dimensions (for q = 6) because of the 1-loop divergence of
the supergravity amplitude [41], leading to the source term in (2.23).

3.2 The modular integral solves the Ward identities

In this subsection we shall prove that the modular integral (2.27) is a solution of the super-
symmetric Ward identities (2.23). More generally, we shall show that the modular integral

F
(p,q)
abcd (Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ 2
2

ΓΛp, q [Pabcd]

∆k(τ)
, (3.28)

where ∆k(τ) is the cusp form (2.4) of weight k under Γ0(N), Λp,q is a level N even lattice
of signature (p, q) with p−q

2 + 4 = k, and P is the quartic polynomial (2.26), satisfies the

constraints (3.17) and (3.22). Moreover, its trace δabδcdF
(p,q)
abcd (Φ) is given by

Ftr
(p,q)(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ 2
2

ΓΛp, q ·D−k+2D−k
1

∆k(τ)
. (3.29)

Before going into the proof however, it will be useful to spell out the regularization pre-
scription which we use to define these otherwise divergent modular integrals. We follow the
procedure developed in [42, 43, 44], whereby the integral is first carried out on the truncated
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fundamental domain FN,Λ = FN ∩ {τ2 < Λ} ∩ { τ2
N |τ |2 > Λ}, where FN is the standard funda-

mental domain for Γ0(N)\H, invariant under the Fricke involution τ 7→ −1/(Nτ), and then
the limit Λ→∞ is taken after subtracting any divergent term in Λ. In the case of the integral
(3.28), the divergent term originates from the contribution of the vector Q = 0 in ΓΛp, q [Pabcd],
so the regularized integral is defined for q 6= 6 by

F
(p,q)
abcd (Φ) = lim

Λ→∞

[∫

FN,Λ

dτ1dτ2

τ 2
2

ΓΛp, q [Pabcd]

∆k(τ)
− 3αk

16π2

Λ
q−6

2

q−6
2

δ(abδcd)

]
, (3.30)

where α12 = (1 + υ)k = (1 + υ) c(0)
2 , and αk = (1 + υ)ck(0) for prime CHL models. In the

case of interest υ = 1, but it depends on the lattice volume in general and υ = 1/N for the
non-perturbative Narain lattice (2.21). For q < 6, no subtraction is necessary, as long as the
integral is carried out first along τ1 ∈ [−1

2 ,
1
2 ] in the region τ →∞. For q = 6, the integral is

logarithmically divergent, and the regularized integral is defined instead by

F̂
(p,6)
abcd (Φ) = lim

Λ→∞

[∫

FN,Λ

dτ1dτ2

τ 2
2

ΓΛp, 6 [Pabcd]

∆k(τ)
− 3(2k)

16π2
log Λ δ(abδcd)

]
. (3.31)

The logarithmic divergence at q = 6 is consistent with the expected divergence in the one-loop
scattering amplitude of four gauge bosons in D = 4 supergravity [41]. Equivalently, following
[45] one may consider the modular integral

F
(p,q)
abcd (Φ, ε) =

∫

SL(2,Z)\H

dτ1dτ2

τ 2−ε
2

∑

γ∈Γ0(N)\SL(2,Z)

ΓΛp, q [Pabcd]

∆k(τ)

∣∣∣∣
γ

, (3.32)

which converges for Re(ε) < 6−q
2 , and defines the renormalized integral as the constant term

in the Laurent expansion at ε = 0 of the analytical continuation of F
(p,q)
abcd (Φ, ε). The result

will then differ from (3.31) by an irrelevant additive constant. In what follows, we shall often

abuse notation and omit the hat in F̂
(p,q)
abcd when stating properties valid for arbitrary q. It is

also important to note that while the regularized integral (3.30) or (3.31) is finite at generic
points on Gp,q, it diverges on a real codimension-q loci of Gp,q, where QR,â = 0 for a vector
Q ∈ Λp,q with Q2 = 2, or for a vector Q ∈ Λ∗p,q with Q2 = 2/N (see (E.12)).

In order to establish that F
(p,q)
abcd satisfies the constraints (3.22), we shall first establish

differential equations for a general class of lattice partition functions

ΓΛp, q [P ] = τ
q
2

2

∑

Q∈Λp,q

P (Q) eiπQ2
Lτ−iπQ2

Rτ̄ , (3.33)

where the polynomial P (Q) is obtained by acting with the operator τn2 e
− ∆

8πτ2 , with

∆ ≡
∑

a

(
∂

∂QaL

)2

+
∑

â

( ∂

∂QâR

)2
, (3.34)

on a homogeneous polynomial of bidegree (m,n) in (QL, QR), respectively. As shown in [45],
ΓΛp, q [P ] satisfies

ΓΛp, q [P ](−1/τ) =
(−i)

p−q
2 τ

p−q
2

+m−n
√
|Λ∗p,q/Λp,q|

ΓΛ∗p, q [P ](τ) , (3.35)
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which implies that it transforms as a modular form of weight p−q
2 +m−n under Γ0(N). More

specifically, we shall consider ΓΛp, q

[
Pa1...am,b̂1...b̂n

]
with

Pa1...am,b̂1...b̂n
= τn2 e

− ∆
8πτ2

(
QL,a1 . . . QL,am QR,b̂1 . . . QR,b̂n

)
. (3.36)

The quartic polynomial Pabcd defined in (2.26) arises in the case (m,n) = (4, 0), so that
ΓΛp, q [Pabcd] is a modular form of weight p−q

2 + 4 = k, ensuring the modular invariance of
the integrands in (3.28) and (3.29). Upon contracting the indices, it is easy to check that
δabδcdΓΛp, q [Pabcd] = Dk−2Dk−4ΓΛp, q [1], so the claim that (3.29) gives the trace of (3.28) follows
by integration by parts.

To obtain the differential equations satisfied by (3.28), we shall act with the covariant
derivative Dab̂, defined in (3.11) and (3.12). As mentioned below (2.13), pL,a

I , pR,b̂
I are

the left and right orthogonal projectors on the Grassmaniann Gp,q = O(p, q)/ [O(p)×O(q)].
Using the derivative rules

Dab̂ pL,cI =
1

2
δac pR,b̂

I , Dab̂ pR,ĉ I =
1

2
δb̂ĉ pL,a

I , (3.37)

one can effectively define the action of the covariant derivative on a function that only depends
on QL and QR as

Dab̂ =
1

2

(
QL,a∂b̂ +QR,b̂∂a

)
, (3.38)

where ∂a = ∂
∂QaL

, ∂b̂ = ∂

∂Qb̂R
. Acting with Deĝ on (3.33) we get

DeĝΓΛp, q

[
Pa1...am,b̂1...b̂n

]
= ΓΛp, q

[
(Deĝ − 2πτ2QL,eQR,ĝ) Pa1...amb̂1...b̂n

]
. (3.39)

Using (3.38), one computes the commutation relations

[∆,Deĝ] = 2∂e∂ĝ , [∆, QL,eQR,ĝ] = 4Deĝ , (3.40)

[∆, QL,eQL,f ] = 2δef + 4QL,(e∂f) , [∆, QL,(e∂f)] = 2∂e∂f . (3.41)

Using them along with the Baker-Campbell-Hausdorff formula

e
∆

8πτ2O e−
∆

8πτ2 = O +
1

8πτ2
[∆, O] +

1

2!

1

(8πτ2)2
[∆, [∆, O]] + . . . , (3.42)

one easily obtains

DeĝΓΛp, q

[
Pa1...am,b̂1...b̂n

]
= −2πτ2 ΓΛp, q

[
e
− ∆

8πτ2

(
QL,eQR,ĝ −

1

(4πτ2)2
∂e∂ĝ

)
e

∆
8πτ2 Pa1...am,b̂1...b̂n

]
.

(3.43)
Note that the similarity transformation is such that the operator acts on the simple monomial
in Qa1 . . . QamQb̂1 . . . Qb̂n according to (3.36), such that it directly follows from (3.43) that

DeĝΓΛp, q

[
Pa1...am,b̂1...b̂n

]
= ΓΛp, q

[
− 2π Pea1...am,ĝb̂1...b̂n

+ mn
8π δe(a1

Pa2...am),(b̂2...b̂n
δb̂1)ĝ

]
. (3.44)

Upon antisymmetrizing in (e, a1), we get

D[e
ĝΓΛp, q

[
Pa1]...am,b̂1...b̂n

]
=

1

8π2τ2
2

ΓΛp, q

[
e
− ∆

8πτ2 ∂[e∂
ĝ e

∆
8πτ2 Pa1]...am,b̂1...b̂n

]
. (3.45)
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which vanishes when n = 0 since e
∆

8πτ2 Pa1...am does not depend on QR. Acting a second time
with Dab̂ and antisymmetrizing, we get

D[e
[êDf ]

f̂ ]ΓΛp, q

[
Pa1...am,b̂1...b̂n

]
= −2ΓΛp, q

[
e
− ∆

8πτ2 QL,[eQR
[ê∂f ]∂

f̂ ] e
∆

8πτ2 Pa1...am,b̂1...b̂n

]
, (3.46)

which similarly vanishes when n = 0. Setting m = 4, we conclude that the modular integral
(3.28) satisfies

D[e
âFa]bcd = 0 , D[e

[êDf ]
f̂ ]Fabcd = 0 , (3.47)

which therefore establishes the last two equations in (2.23). Note that these two equations do
not rely on any particular property of the function 1/∆k.

Now, the first equation of (2.23) arises from applying the quadratic operator D2
ef ≡

D(e
ĝDf)ĝ on the partition function with polynomial insertion,

4D2
efΓΛp, q

[
Pa1...am,b̂1...b̂n

]
= ΓΛp, q

[(
4D2

ef − 8πτ2QL,(eQR
ĝDf)ĝ

+16π2τ2
2

(
QL,eQL,f − δef

4πτ2

)(
Q2
R − q

4πτ2

)
− qδef

)
Pa1...amb̂1...b̂n

]
,

(3.48)

which gives, using (3.40) and (3.42)

4D2
efΓΛp, q

[
Pa1...am,b̂1...b̂n

]
= ΓΛp, q

[
e
− ∆

8πτ2

(
16π2τ2

2 Q
2
RQL,eQL,f +

∂e∂f∂
2
R

16π2τ2
2

−QL,(e∂f)(2QR
ĝ∂ĝ + q)− δef (QR

ĝ∂ĝ + q)
)
e

∆
8πτ2 Pa1...amb̂1...b̂n

] (3.49)

The first term on the r.h.s. can be rewritten as the action of the Maass lowering operator
D̄w = −iπτ2

2∂τ̄ mapping modular forms of weight w to weight w − 2. Indeed,

D̄wΓΛp, q

[
Pefa1...am,b̂1...b̂n

]
=− π2τ2

2 ΓΛp, q

[(
Q2
R − q+2n

4πτ2

)
Pefa1...am,b̂1...b̂n

]

+
1

16
ΓΛp, q

[
∆Pefa1...am,b̂1...b̂n

]

=ΓΛp, q

[
e
− ∆

8πτ2

(
1
16∂

2
L − (πτ2QR)2

)
e

∆
8πτ2 Pefa1...am,b̂1...b̂n

]
.

(3.50)

where in the second line, we used the fact that ∆ commutes with e
− ∆

8πτ2 . The r.h.s. of (3.49)
can thus be written as

4D2
efΓΛp, q

[
Pa1...am,b̂1...b̂n

]
= (2− (q + n))δefΓΛp, q

[
Pa1...am,b̂1...b̂n

]

+m(4− (q + 2n))δ|e)(a1
ΓΛp, q

[
Pa2...am)(f |,b̂1...b̂n

]
+m(m− 1)δ(a1a2

ΓΛp, q

[
Pa3...am)ef,b̂1...b̂n

]

+ m(m−1)n(n−1)
16π2 δe(a1

δ|f |a2
ΓΛp, q

[
Pa3...am),(b̂1...b̂n−2

]
δb̂n−1b̂n) − 16D̄wΓΛp, q

[
Pefa1...am,b̂1...b̂n

]
,

(3.51)

where only the last term remains to be computed explicitely. Specializing to the case of main
interest, we obtain

�ef · ΓΛp, q [Pabcd] = −4D̄w ΓΛp, q [Pabcdef ] (3.52)

17



SciPost Physics Submission

where, for any tensor Fabcd, we denote

�ef · Fabcd ≡ D2
efFabcd +

(q − 2)

4
δef Fabcd + (q − 4)δ(e|(aFbcd)|f) − 3δ(abFcd)ef (3.53)

We can now integrate both sides of (3.52) times 1/∆k on the truncated fundamental domain
FN,Λ, leading to

�ef
∫

FN,Λ

dτ1dτ2

τ2
2

ΓΛp, q [Pabcd]

∆k
= −4

∫

FN,Λ

dτ1dτ2

τ2
2

1

∆k
D̄k+2ΓΛp, q [Pabcdef ] (3.54)

The r.h.s. is a boundary term, because D̄−k(1/∆k) = 0 by holomorphicity. To compute the
boundary term we use Stokes’ theorem in the form

∫

∂FN,Λ
f g dτ =

∫

FΛ

d(f g dτ) =
2

π

∫

FN,Λ

dτ1dτ2

τ2
2

(D̄wf g + f D̄w′ g), (3.55)

where f and g are any modular forms of weight w and w′ = −w + 2 and 2dτ1dτ2 = idτ ∧ dτ̄ .
By modular invariance, the boundary term reduces to an integral along the segment {1/2 ≤
τ1 < 1/2, τ2 = Λ} and its image under the Fricke involution (for N > 1). The latter can be
mapped to the former upon using (3.35). At generic points on the Grassmannian Gp,q, the
contributions of non-zero vectors in Λp,q and Λ∗p,q are exponentially suppressed, leaving only
the contribution of Q = 0:

�ef
∫

FN,Λ

dτ1dτ2

τ2
2

ΓΛp, q [Pabcd]

∆k
= Λ

q−6
2

15αk
2(4π)2

δ(abδcdδef), (3.56)

where we recall that αk = (1 + υ)k = (1 + υ) c(0)
2 for the heterotic string compactifications

and αk = (1 + υ)k = (1 + υ)ck(0) = 48
N+1 for CHL models, see table 1. υ = 1 for the case of

interest but υ = 1/N for the non-perturbative lattice (2.21). Physically, 2k− 2 is the number
of vector multiplets. Acting with the same operator D2

ef on the subtraction in (3.30), we see

that the term proportional to Λ(q−6)/2 cancels, except for q = 6 where the substraction in
(3.31) leaves a finite remainder. Thus, we find, as claimed earlier, that the modular integral
(3.28) is annihilated by the second-order differential operator �ef defined in (3.53), up to a
constant source term present when q = 6,

�ef F (p,q)
abcd =

15(2k)

2(4π)2
δ(abδcdδef) δq,6 . (3.57)

In B, as a consistency check we show that this equation is verified by each Fourier mode in
the degeneration limit O(p, q)→ O(p− 1, q − 1).

4 Weak coupling expansion of exact (∇Φ)4 couplings

In this section, we study the expansion of the proposal (2.27) in the limit where the heterotic
string coupling g3 goes to zero, and show that it reproduces the known tree-level and one-
loop amplitudes, along with an infinite series of NS5-brane, Kaluza–Klein monopole and H-
monopole instanton corrections. We start by analyzing the expansion of the tensorial modular
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integral defining the coupling and its trace

F
(p,q)
abcd (Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ 2
2

ΓΛp, q [Pabcd]

∆k(τ)
, (4.1a)

Ftr
(p,q)(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ 2
2

ΓΛp, q D−k+2D−k
1

∆k(τ)
, (4.1b)

for a level N even lattice Λp,q of arbitrary signature (p, q), in the limit near the cusp where
O(p, q) is broken to O(1, 1)×O(p− 1, q − 1), so that the moduli space decomposes into

Gp,q → R+ ×Gp−1,q−1 nRp+q−2 . (4.2)

For simplicity, we first discuss the maximal rank case N = 1, p− q = 16, where the integrand
is invariant under the full modular group, before dealing with the case of N prime, where the
integrand is invariant under the Hecke congruence subgroup Γ0(N). The reader uninterested
by the details of the derivation may skip to §4.3, where we specialize to the values (p, q) =
(r − 4, 8) relevant for the (∇Φ)4 couplings in D = 3 and interpret the various contributions
as perturbative and non-perturbative effects in heterotic string theory compactified on T 7. In
§4.5 we discuss the case (p, q) = (r− 7, 5) relevant for H4 couplings in type IIB string theory
compactified on K3.

4.1 O(p, q)→ O(p− 1, q − 1) for even self-dual lattices

We first consider the case where the lattice Λp,q is even self-dual and factorizes in the limit
(4.2) as

Λp,q → Λp−1,q−1 ⊕ II1,1 . (4.3)

We shall denote by R the coordinate on R+ and by aI , I = 2 . . . p+ q − 1 the coordinates on
Rp+q−2. R parametrizes a one-parameter subgroup eRH0 in O(p, q), such that the action of
the non-compact Cartan generator H0 on the Lie algebra sop,q decomposes into

sop,q ' (p + q− 2)(−2) ⊕ (gl1 ⊕ sop−1,q−1)(0) ⊕ (p + q− 2)(2) . (4.4)

while the coordinates aI parametrize the unipotent subgroup obtained by exponentiating the
grade 2 component in this decomposition. A generic charge vector QI ∈ Λp,q ' 1(−2) ⊕
(p + q− 2)(0) ⊕ 1(2) decomposes into QI = (m, Q̃I , n) where (m,n) ∈ II1,1 = Z2 and Q̃I ∈
Λp−1,q−1, such that Q2 = −2mn+ Q̃2. The orthogonal projectors defined by QL ≡ pILQI and
QR ≡ pIRQI decompose according to

pIL,1QI =
1

R
√

2

(
m+ a · Q̃+

1

2
a · an

)
− R√

2
n,

pIL,αQI =p̃IL,α(Q̃I + naI),

pIR,1QI =
1

R
√

2

(
m+ a · Q̃+

1

2
a · an

)
+

R√
2
n,

pIR,α̂QI =p̃IR,α̂(Q̃I + naI),

(4.5)

where p̃IL,α, p̃
I
R,α̂ (α = 2 . . . d+16, α̂ = 2 . . . d) are orthogonal projectors in Gp−1,q−1 satisfying

Q̃2 = Q̃2
L − Q̃2

R. In the following we shall denote |QR| ≡
√
Q̃2
R.
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To study the behavior of (4.1) in the limit R � 1,7 it is useful to perform a Poisson
resummation on m. For a lattice partition function ΓΛp, q with no insertion, as in the scalar
integral (4.1b), this gives

ΓΛp, q = R
∑

(m,n)∈Z2

e
−πR

2|nτ+m|2
τ2 τ

q−1
2

2

∑

Q̃∈Λp−1,q−1

e2πim(a·Q̃+ 1
2
a·an) q

1
2
Q̃2
L q

1
2
Q̃2
R (4.6)

In the case of a lattice sum with momentum insertion, as in the tensor integral F
(p,q)
abcd (4.1a),

we must distinguish whether the indices abcd lie along the direction 1 or along the directions
α. Denoting by h the number of indices along direction 1, the previous result generalizes to

ΓΛp, q

[
e
− ∆

8πτ2

[
(QL,1)hQL,α1 . . . QL,α4−h

]]
= R

∑

(m,n)∈Z2

(
R(nτ̄ +m)

iτ2

√
2

)h
e
−πR

2|nτ+m|2
τ2

× ΓΛp−1, p−1+na

[
e
− ∆

8πτ2

[
Q̃L,α1 . . . Q̃L,α4−h

]
e2πim(Q̃− 1

2
an)·a

]
. (4.7)

In this representation, modular invariance is manifest, since a transformation τ 7→ aτ+b
cτ+d can

be compensated by a linear transformation (n,m) 7→ (n,m)
(
a b
c d

)
, under which the second

line of (4.7) transforms with weight 12− h. As a relevant example for what follows, consider
the case (n,m) = k(c, d), k = gcd(m,n), then using an transformation

(
a b
c d

)
∈ SL(2,Z)

∑

Q̃∈Λp−1,q−1+kc a

e
− ∆

8πτ2

[
Q̃L,α1 . . . Q̃L,α4−h

]
e2πi kd(Q̃− 1

2
a kc)·a q

1
2
Q̃2
L q̄

1
2
Q̃2
R =

(cτ + d)12−h ∑

Q̃∈Λp−1,q−1

e
− ∆

8πτ2

[
Q̃L,α1 . . . Q̃L,α4−h

]
e2πik Q̃·a q

1
2
Q̃2
L q̄

1
2
Q̃2
R . (4.8)

We can therefore compute the integral using the orbit method [46, 47, 48], namely decompose
the sum over (m,n) into various orbits under SL(2,Z), and for each orbit O, retain the
contribution of a particular element ς ∈ O at the expense of extending the integration domain
F1 = SL(2,Z)\H to Γς\H, where Γς is the stabilizer of ς in SL(2,Z),8 by using the identity

⋃

γ∈Γς\SL(2,Z)

γ · F1 = Γς\H. (4.9)

The coset representative ς ∈ O, albeit arbitrary, is usually chosen so as to make the unfolded
domain Γς\H as simple as possible. In the present case, there are two types of orbits:

The trivial orbit (n,m) = (0, 0) produces, up to a factor of R, the integrals (4.1) for the
lattice Λp−1,q−1, provided none of the indices abcd lie along the direction 1,

F
(p,q),0
αβγδ = RF

(p−1,q−1)
αβγδ , Ftr

(p,q),0 = RFtr
(p−1,q−1) , (4.10)

while it vanishes otherwise (i.e. when h > 0).

7Since 1/∆ grows as e
2π
τ2 at τ2 → 0, the following treatment which relies on exchanging the sum and the

integral for unfolding is justified for R2 > 2.
8This unfolding procedure requires particular care since the integrand is not of rapid decay near the cusp.

We suppress these details here, and refer to [42, 45, 49, 43, 50, 44] for rigorous treatments.
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The rank-one orbit corresponds to terms with (n,m) 6= (0, 0). Setting (n,m) = k(c, d),
with gcd(c, d) = 1 and k 6= 0, the doublet (c, d) can always be rotated by an element of
SL(2,Z) into (0, 1), whose stabilizer inside SL(2,Z) is Γ∞ = {

(
1 n
0 1

)
, n ∈ Z}. Thus, doublets

(c, d) with gcd(c, d) = 1 are in one-to-one correspondence with elements of Γ∞\SL(2,Z).
For each k, one can therefore unfold the integration domain SL(2,Z)\H to S = Γ∞\H =
R+
τ2 × (R/Z)τ1 , the unit width strip, provided one keeps only the term (c, d) = (0, 1) in the

sum. The resulting contribution to the tensor integral (4.1a) are

F
(p,q),1
αβγδ = R

∫

R+

dτ2

τ2
2

∫

R/Z
dτ1

∑

k 6=0

e−πR
2k2/τ2

ΓΛp−1, q−1

[
P̃αβγδ e

2πikaIQ̃I
]

∆
,

F
(p,q),1
11γδ = R

∫

R+

dτ2

τ2
2

∫

R/Z
dτ1

∑

k 6=0

(
Rk

iτ2

√
2

)2

e−πR
2k2/τ2

ΓΛp−1, q−1

[
P̃αβ e

2πikaIQ̃I
]

∆
,

F
(p,q),1
1111 = R

∫

R+

dτ2

τ2
2

∫

R/Z
dτ1

∑

k 6=0

(
Rk

iτ2

√
2

)4

e−πR
2k2/τ2

ΓΛp−1, q−1

[
e2πikaIQ̃I

]

∆
,

(4.11)

where
P̃α1...α4−h = e

− ∆
8πτ2

[
Q̃L,α1 . . . Q̃L,α4−h

]
, (4.12)

while the contribution to its trace is

Ftr
(p,q),1 = R

∫

R+

dτ2

τ2
2

∫

R/Z
dτ1

∑

k 6=0

e−πR
2k2/τ2 ΓΛp−1, q−1

[
e2πikaIQ̃I

]
D2

(
1

∆

)
. (4.13)

The integral over S can be computed by inserting the Fourier expansion

1

∆
=
∑

m∈Z
m≥−1

c(m) qm , D2 1

∆
= a2 c(0) +

∑

m∈Z−{0}
m≥−1

2∑

`=0

a`m
2−`c(m) qmτ−`2 (4.14)

where

a0 = 4 , a1 =
p− q + 6

π
, a2 =

(p− q + 6)(p− q + 8)

16π2
. (4.15)

The integral over τ1 picks up the Fourier coefficient c(m) with m = −1
2Q̃

2. The remaining

integral over τ2 can be computed after expanding P̃α1...α4−h =
∑⌊

4−h
2

⌋

`=0 P̃
(`)
α1...α4−hτ

−`
2 , where

P̃
(`)
α1...α4−h is a polynomial in Q̃ of degree 4− h− 2`, or zero when 2` > 4− h. Contributions

with Q̃ = 0 lead to power-like terms,

F
(p,q),1,0
αβγδ = Rq−6 ξ(q − 6)

3c(0)

8π2
δ(αβδγδ),

F
(p,q),1,0
11αβ = Rq−6 ξ(q − 6) (7− q)c(0)

8π2
δαβ ,

F
(p,q),1,0
1111 = Rq−6 ξ(q − 6) (7− q)(9− q)c(0)

8π2
,

(4.16)

while the result vanishes for an odd number of indices along the direction 1, and for its trace

Ftr
(p,q),1,0 = Rq−6 ξ(q − 6) (p− q + 6)(p− q + 8)

c(0)

8π2
. (4.17)
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Here we used P̃
(2)
abcd(0) = 3

16π2 δ(abδcd), P̃
(1)
ab (0) = − 1

4π δab, and P̃ (0) = 1. Note that (4.17) and
(4.16) have a simple pole at q = 6, which is subtracted by the regularization prescription
mentioned below (3.32). For q = 7, the pole in (4.17), (4.16) cancels against the pole from
the trivial orbit contribution (4.10).

In contrast, non-zero vectors Q̃ lead to exponentially suppressed contributions, which

depend on the axions through a phase factor e2πika·Q̃. After rescaling Q̃ 7→ Q/k, we find that
the Fourier coefficient with charge Q ∈ Λp−1,q−1 r {0} is given by

F
(p,q),1,Q
αβγδ = 4 c̄(Q)R

q−1
2

2∑

`=0

P̃
(`)
αβγδ(Q)

R`

K q−3
2
−`

(
2π R

√
2|QR|2

)

√
2|QR|2

q−3
2 −`

F
(p,q),1,Q
1αβγ = 4 c̄(Q)R

q−1
2

1∑

`=0

P̃
(`)
αβγ(Q)

i
√

2R`

K q−5
2
−`

(
2π R

√
2|QR|2

)

√
2|QR|2

q−5
2
−`

...

F
(p,q),1,Q
1111 = 4c̄(Q)R

q−1
2

P̃ (0)

4

K q−11
2

(
2π R

√
2|QR|2

)

√
2|QR|2

q−11
2

(4.18)

for the tensor integral, and

Ftr
(p,q),1,Q = 4 c̄(Q)R

q−1
2

2∑

`=0

a`
R`

(
−Q2

2

)2−` K q−3
2
−`

(
2π R

√
2|QR|2

)

√
2|QR|2

q−3
2
−`

(4.19)

for its trace. In either case,

c̄(Q) =
∑

d|Q
c
(
− Q2

2d2

)
dq−7 . (4.20)

The physical interpretation of these results will be discussed in §4.3, after generalizing them
to ZN orbifolds.

4.2 Extension to ZN CHL orbifolds

The degeneration limit (4.2) of the modular integrals (4.1) for ZN CHL models with N =
2, 3, 5, 7 can be treated similarly by adapting the orbit method to the case where the integrand
is invariant under the Hecke congruence subgroup Γ0(N) [51, 52, 44]. In (4.1), ∆k is the cusp
form of weight k = 24

N+1 defined in (2.4), and ΓΛp, q is the partition function for a lattice

Λp,q = Λ̃p−1,q−1 ⊕ II1,1[N ] , (4.21)

where Λ̃p−1,q−1 is a level N even lattice of signature (p − 1, q − 1). The lattice II1,1[N ] is
obtained from the usual unimodular lattice II1,1 by restricting the winding and momentum
to (n,m) ∈ NZ⊕Z. After Poisson resummation on m, Eq. (4.6) and (4.7) continue to hold,
except for the fact that n is restricted to run over NZ. The sum over (n,m) can then be
decomposed into orbits of Γ0(N):9

9Since 1/∆k grows as e
2π
Nτ2 at τ2 → 0, the following treatment which relies on exchanging the sum and the

integral for unfolding is justified for NR2 > 2.
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Trivial orbit The term (n,m) = (0, 0) produces the same modular integral, up to a factor
of R,

F
(p,q),0
αβγδ = R F̃

(p−1,q−1)
αβγδ , Ftr

(p,q),0 = R F̃tr
(p−1,q−1) , (4.22)

where F̃
(p−1,q−1)
αβγδ , F̃tr

(p−1,q−1) are the integrals (4.1) for the lattice Λ̃p−1,q−1 defined by (4.21).

Rank-one orbits Terms with (n,m) = k(c, d) with k 6= 0 and gcd(c, d) = 1 fall into two
different classes of orbits under Γ0(N):

• Doublets k(c, d) such that c = 0 modN and k ∈ Z can be rotated by an element
of Γ0(N) into (0, 1), whose stabilizer in Γ0(N) is Γ∞ = {

(
1 n
0 1

)
, n ∈ Z}. For these

elements, one can unfold the integration domain Γ0(N)\H into the unit width strip
S = Γ∞\H = R+

τ2 × (R/Z)τ1 ;

• Doublets k(c, d) such that c 6= 0 modN and k = 0 modN can be rotated by an el-
ement of Γ0(N) into (1, 0), whose stabilizer in Γ0(N) is S Γ∞,N S−1, where Γ∞,N =
{
(

1 n
0 1

)
, n ∈ NZ} and S =

(
0 −1
1 0

)
. One can unfold the integration domain Γ0(N)\H

into S Γ∞,N S−1\H, and change variable τ → −1/τ so as to reach SN = Γ∞,N\H =
R+
τ2×(R/NZ)τ1 , the width-N strip. Under this change of variable, the level-N weight-k

cusp form transforms as ∆k(−1/τ) = (i
√
N)−kτk∆k(τ/N), while the partition function

for the sublattice Λ̃p−1,q−1 transforms as

ΓΛ̃p−1, q−1
[Pαβγδ](−1/τ) = υ̃N−

k
2
−1(−i)

p−q
2 τk ΓΛ̃∗p−1, q−1

[Pαβγδ](τ) , (4.23)

where ΓΛ̃∗p−1, q−1
(τ) denotes the sum over the dual lattice Λ̃∗p−1,q−1, and υ̃N−

k
2
−1 =

∣∣Λ̃∗p−1,q−1/Λ̃p−1,q−1

∣∣−1/2
(Note that υ̃ = N1−δq,8 for q ≤ 8 in the cases of interest).

For the simplest component F
(p,q),1
αβγδ , the sum of the two classes of orbits then reads

F
(p,q),1
αβγδ = R

∫

R+

dτ2

τ2
2

∫

R/Z
dτ1

1

∆k(τ)

∑

k 6=0

e−πR
2k2/τ2ΓΛ̃p−1, q−1

[
e2πikaIQ̃I Pαβγδ

]

+R

∫

R+

dτ2

τ2
2

∫

R/(NZ)
dτ1

υ̃

N

1

∆k(τ/N)

∑

k 6=0
k=0 modN

e−πR
2k2/τ2ΓΛ̃∗p−1, q−1

[
e2πikaIQ̃I Pαβγδ

]
.

(4.24)

The contributions from Q̃ = 0 lead to power-like terms,

F
(p,q)(1,0)
αβγδ = Rq−6ξ(q − 6)

(
1 + υ̃N q−7

) 3ck(0)

8π2
δ(αβδγδ) ,

F
(1,0)
11αβ = Rq−6 ξ(q − 6) (7− q)

(
1 + υ̃N q−7

) ck(0)

8π2
δαβ ,

F
(1,0)
1111 = Rq−6 ξ(q − 6) (7− q)(9− q)

(
1 + υ̃N q−7

) ck(0)

8π2
,

(4.25)

for the tensor integral and

Ftr
(p,q)(1,0) = Rq−6ξ(q − 6)(p− q + 6)(p− q + 8)

(
1 + υ̃N q−7

) ck(0)

8π2
(4.26)
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for its trace, where ck(0) = k is the constant term in 1/∆k. As in (4.17) and (4.16), the pole
at q = 6 is subtracted by the regularization prescription (3.30), while the pole at q = 7 cancels
against the pole from the zero orbit contribution (4.22).

The terms with non-zero vector Q̃ produce exponentially suppressed corrections of the
same form as in the maximal rank case (4.18), but with a different summation measure,
namely

c̄k(Q) =
∑

d≥1,

Q/d∈Λ̃p−1,q−1

ck

(
− Q2

2d2

)
dq−7 + υ̃

∑

d≥1,

Q/d∈NΛ̃∗p−1,q−1

ck

(
− Q2

2Nd2

)
(Nd)q−7 , (4.27)

where the first term, arising from the first class of orbits, has support on Λ̃p−1,q−1, and the
second term, arising from the second class of orbits, has support on the sublattice N Λ̃∗p−1,q−1 ⊂
Λ̃p−1,q−1. In the latter contribution, notice that one factor ofN in the numerator of the Fourier
coefficient comes from the matching condition with 1/∆k(τ/N), and two factors of N in its
denominator come from all the divisors being originally multiples of N .

It will also be useful to consider a different degeneration limit of the type (4.2) where the
lattice decomposes as

Λp,q = Λp−1,q−1 ⊕ II1,1 , (4.28)

where II1,1 is the usual unimodular even lattice, with no restriction on the windings and
momenta (n,m), and Λp−1,q−1 is a level N even lattice of signature (p − 1, q − 1), not to
be confused with the lattice Λ̃p−1,q−1 above. The sum over (n,m) ∈ Z ⊕ Z can then be

decomposed into orbits of Γ0(N). The trivial orbit is similar to (4.22), but now F
(p−1,q−1)
αβγδ

and Ftr
(p−1,q−1) are the modular integrals for the lattice Λp−1,q−1. For the rank-one orbit,

the discussion goes as before, except that the second class of orbits (m,n) = k(c, d) with

k = gcd(m,n) and c 6= 0 modN has no restriction on k. For the simplest component F
(p,q),1
αβγδ ,

the sum of the two classes of orbits then reads

F
(p,q),1
αβγδ = R

∫

R+

dτ2

τ2
2

∫

R/Z
dτ1

1

∆k(τ)

∑

k 6=0

e−πR
2k2/τ2ΓΛp−1, q−1

[
e2πikaIQ̃I Pαβγδ

]

+R

∫

R+

dτ2

τ2
2

∫

R/(NZ)
dτ1

1

∆k(τ/N)

υ

N

∑

k 6=0

e−πR
2k2/τ2ΓΛ∗p−1, q−1

[
e2πikaIQ̃I Pαβγδ

]
, (4.29)

where υN−
k
2
−1 =

∣∣Λ∗p−1,q−1/Λp−1,q−1

∣∣−1/2
(which now simplifies to υ = N−δq,8 for q ≤ 8 in

the cases of interest). The contributions from Q̃ = 0 lead to power-like terms,

F
(p,q)(1,0)
αβγδ = Rq−6ξ(q − 6)

(
1 + υ

)3ck(0)

8π2
δ(αβδγδ),

F
(1,0)
11αβ = Rq−6 ξ(q − 6) (7− q)

(
1 + υ

)ck(0)

8π2
δαβ,

F
(1,0)
1111 = Rq−6 ξ(q − 6) (7− q)(9− q)

(
1 + υ

)ck(0)

8π2

(4.30)

for the tensor integral and

Ftr
(p,q)(1,0) = Rq−6ξ(q − 6)(p− q + 6)(p− q + 8)

(
1 + υ

)ck(0)

8π2
(4.31)
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for its trace, where ck(0) = k is the constant term in 1/∆k.
The terms with non-zero vector Q̃ produce exponentially suppressed corrections of the

same form as in the maximal rank case (4.18), but with a different summation measure,
namely

c̄k(Q) =
∑

d≥1,
Q/d∈Λp−1,q−1

ck

(
− Q2

2d2

)
dq−7 + υ

∑

d≥1,
Q/d∈Λ∗p−1,q−1

ck

(
− NQ2

2d2

)
dq−7, (4.32)

where the first term, arising from the first class of orbits, has support on Λp−1,q−1, and
the second term, arising from the second class of orbits, has support on the dual lattice
Λ∗p−1,q−1. In the latter contribution, notice that one factor of N in the numerator of the
Fourier coefficient comes from the matching condition with 1/∆k(τ/N).

4.3 Perturbative limit of exact (∇Φ)4 couplings in D = 3

Specializing to (p, q) = (2k, 8) = (r− 4, 8), and decomposing as Λ2k,8 = Λ2k−1,7⊕ II1,1[N ], the
limit (4.2) studied in this section corresponds to the expansion of the exact (∇Φ)4 couplings
in D = 3 in the limit where the heterotic string coupling g3 = 1/

√
R becomes weak. To

interpret the resulting contributions in the language of heterotic perturbation theory, one

should remember that the U-duality function F
(2k,8)
abcd (Φ) is the coefficient of the (∇Φ)4 coupling

in the low-energy action written in Einstein frame, such that the metric γE is inert under U-
duality,

S3 =

∫
d3x
√−γE

[
R[γE ]− (2δâb̂δĉd̂ − δâĉδb̂d̂)F

(2k,8)
abcd (Φ) γµρE γνσE P aâµ P bb̂ν P

cĉ
ρ P

dd̂
σ

]
+. . . . (4.33)

In terms of the string frame metric γ = γEg
4
3, one finds

S3 =

∫
d3x
√−γ

[
1

g2
3

R[γ]− g2
3 (2δâb̂δĉd̂ − δâĉδb̂d̂)F

(2k,8)
abcd (Φ) γµργνσP aâµ P bb̂ν P

cĉ
ρ P

dd̂
σ

]
+ . . . .

(4.34)
Using ck(0) = k for CHL orbifolds with N > 1 or c(0) = 2k in the maximal rank case, and
ξ(2) = π

6 , the results from §4.1 and §4.2 read

g2
3 F

(2k,8)
abcd =

3

2πg2
3

δ(abδcd) + F
(2k−1,7)
abcd +

′∑

Q∈Λ2k−1,7

c̄k(Q)e
− 2π
√

2|QR|2

g23
+2πia·Q

P
(∗)
abcd , (4.35)

where we omit the detailed form of exponentially suppressed corrections, and the summation
measure is read off from (4.27)

c̄k(Q) =
∑

d≥1,
Q/d∈Λ2k−1,7

d ck

(
− Q2

2d2

)
+

∑

d≥1,
Q/d∈NΛ∗2k−1,7

N d ck

(
− Q2

2Nd2

)
, (4.36)

The first two terms in (4.35), originating from the zero orbit and rank-one orbit, respectively,
should match the tree-level and one-loop contributions, respectively. Indeed, the dimensional
reduction of the tree-levelR2+(TrF 2)2 coupling in ten-dimensional heterotic string theory [53,
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54] leads to a tree-level (∇Φ)4 coupling in D = 3, with a coefficient which is by construction
independent of N . A more detailed analysis of the ten-dimensional origin of this term will
be given in §5.3.1. The second term in (4.35) of course matches the one-loop contribution
(2.24) by construction. The remaining non-perturbative terms can be interpreted as heterotic
NS5-brane, KK5-brane and H-monopoles wrapped on any possible T 6 inside T 7 [9]. More
precisely, NS5-brane and KK5-brane charges correspond to momentum and winding charges
in the hyperbolic part II1,1[N ] ⊕ IIk−2,k−2 of Λm ⊕ II1,1, while H-monopoles correspond to
charges in the gauge lattice Λk,8−k (for the heterotic string compactification on T 7, these
sublattices must be replaced by II7,7 and E8⊕E8 or D16, respectively). Note that [9] studied
these corrections on a special locus in moduli space, corresponding to T 4/Z2 realization of
K3 surfaces on the type II side, and did not keep track of all gauge charges, which resulted
in a different summation measure.

4.4 Decompactification limit of one-loop F 4 couplings

For general (p, q) = (d + 2k − 8, d) = (d + r − 12, d) with q ≤ 7, the modular integral (4.1a)
is interpreted as the one-loop F 4 amplitude in a heterotic CHL orbifold compactified down
to dimension D = 10 − d. The decomposition (4.21) corresponds to the case (a) where the
radius R of a circle in T d orthogonal to the ZN orbifold action becomes large, while the limit
(4.28) corresponds to the case (b) where the radius R of the circle in T d singled out by the
ZN orbifold action becomes large in string units.

The power-like terms contributions in R come in part from the trivial orbit, and from the
zero-charge contribution to the rank-one orbit:

a) : F
(p,q)
αβγδ = RF

(p−1,q−1)
αβγδ +Rq−6ξ(q − 6)

3(2k)

8π2
δ(αβδγδ) + . . .

b) : F
(p,q)
αβγδ = RF̃

(p−1,q−1)
αβγδ +Rq−6ξ(q − 6)

3k(1 +N q−6)

8π2
δ(αβδγδ) + . . .

(4.37)

The first term reproduces, up to a volume factor of R, the one-loop F 4 amplitude in D + 1
dimensions (4.10), either in the same CHL model (case a), or in the full heterotic string
compactification (case b). Indeed, in the latter case, the partition function ΓΛp−1, q−1 fac-
torizes into ΓIId+k−9, d+k−9

× ΓΛk, 8−k . The fundamental domain Γ0(N)\H can be extended
to SL(2,Z)\H, at the expense of replacing ΓΛk,8−k/∆k by the sum over its images un-

der Γ0(N)\SL(2,Z) = {1, S, TS, . . . , TN−1S}. As explained in §A, this sum reproduces
ΓΛd+15, d−1

/∆, the partition function for the maximal rank theory in dimension D + 1.
The second term, originating from the zero-charge contribution to the rank-one orbit, can

instead be understood as the limit s→ 0 of an infinite tower of terms of the schematic form∑
m6=0(m

2

R2 − s)3−d2F 4 in the low-energy effective action, where s is a Mandelstam variable,
arising from threshold contributions of Kaluza–Klein excitations of the massless supergravity
states in dimension D+ 1. In the limit R→∞, this infinite series along with the term m = 0
from the non-local part of the action in dimension D sums up to the contribution of massless
supergravity states to the non-local part of the action in dimension D+ 1. The pole at q = 6
in the second term of (4.37) originates from the logarithmic infrared divergence in the local
part of the string effective action in dimension D = 4, and matches the expected ultraviolet
divergence in 4-dimensional supergravity. The apparent pole at q = 7 cancels against a pole
in the first term, due to the same logarithmic divergence. Indeed, the 1/ε pole of the full

26



SciPost Physics Submission

amplitude F
(p,6)
abcd (Φ, ε) can be extracted from its Laurent expansion at ε = 0, namely

F
(p,6)
abcd (Φ, ε) = − 3(2k)

16π2ε
δ(abδcd) +O(1) (4.38)

In addition, massive perturbative BPS states with non-vanishing charge Q ∈ Λd+2k−9,d−1 in
dimension D+1 and massM(Q) lead to exponentially suppressed terms of order e−2πRM(Q),
weighted by the helicity supertrace Ω4(Q), as expected on general grounds.

4.5 Perturbative limit of exact H4 couplings in type IIB on K3

Here we briefly consider the case q = 5, N = 1, corresponding to type IIB string theory
compactified on K3. In Einstein frame, the low energy effective action takes the form

S6 =

∫
d6x
√−γE

[
R[γE ]− F (21,5)

abcd (Φ)Ha
µνκH

b
ρσ
κHc µνλHdρσ

λ

]
+ . . . (4.39)

where the three-form Hα with α 6= 1 are the self-dual field-strengths of the reduction of the RR
two-form, four-form and six-form on the self-dual part of the homology lattice Heven(K3) =
E8 ⊕ E8 ⊕ II4,4, while H1 is the self-dual component of the NS-NS two-form field-strength.
We shall restrict for simplicity to the components α, β, γ, δ 6= 1. In terms of the string frame
metric γ = gsγE and setting Ha = gsH

a (since Ramond-Ramond field are normalized as
H ∼ 1/gs in type II perturbation theory), we get

S6 =

∫
d6x
√−γ

[
1

g2
s

R[γ]− 1

gs
F

(21,5)
αβγδ (Φ)HαµνκHβρσκHγ µνλHδρσλ

]
+ . . . (4.40)

Identifying R = 1/gs, the large radius expansion of F 21,5
αβγδ becomes, schematically,

1

gs
F

(21,5)
αβγδ =

1

g2
s

F
(20,4)
αβγδ (Φ) +

3

2π
δ(αβδγδ) +

′∑

Q∈Λ20,4

c̄(Q)e
− 2π
√

2|QR|2
gs

−2πia·Q
P

(∗)
αβγδ . (4.41)

The first term proportional to F
(20,4)
abcd is now recognized as a tree-level correction in type II on

K3, the second term is a one-loop correction which to our knowledge has not been computed
independently yet, and the remaining terms originate from D3, D1, D(-1) branes wrapped on
K3 [55]. It is worth noting that decompactification limits of the form O(2k, 8)→ O(2k−3, 5)
exist in principle for all CHL models listed in Table 1, however, they cannot be interpreted
in terms of six-dimensional chiral string vacua, due to anomaly cancellation constraints.

5 Large radius expansion of exact (∇Φ)4 couplings

In this section, we study the expansion of the proposal (2.27) in the limit where the radius
R of one circle in the internal space goes to infinity. We show that it reproduces the known
F 4 and R2 couplings in D = 4, along with an infinite series of O(e−R) corrections from 1/2-
BPS dyons whose wordline winds around the circle, as well as an infinite series of O(e−R

2
)

corrections from Taub-NUT instantons. We start by analyzing the expansion of genus-one
modular integrals (4.1b) and (4.1a) for arbitrary values of (p, q), in the limit near the cusp
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where O(p, q) is broken to O(2, 1)×O(p− 2, q− 2), so that the moduli space decomposes into

Gp,q → R+ ×
[
SL(2)

SO(2)
×Gp−2,q−2

]
nR2(p+q−4) ×R (5.1)

As in the previous section, we first discuss the maximal rank case N = 1, p− q = 16, where
the integrand is invariant under the full modular group, before dealing with the case of N
prime. The reader uninterested by the details of the derivation may skip to §5.3, where we
specialize to the values (p, q) = (r − 4, 8) relevant for the (∇Φ)4 couplings in D = 3, and
interpret the various contributions arising in the decompactification limit to D = 4.

5.1 O(p, q)→ O(p− 2, q − 2) for even self-dual lattices

We first consider the case where the lattice Λp,q is even self-dual and factorizes in the limit
(5.1) as

Λp,q → Λp−2,q−2 ⊕ II2,2 . (5.2)

In order to study the behavior of the modular integral (4.1a) in the limit (5.1), we denote by
R,S, φ, aI,i, ψ the coordinates for each factors in (5.1), where i = 1, 2 and I = 3, . . . , p+ q−2.
The coordinate R (not to be confused with the one used in §4) parametrizes a one-parameter
subgroup eRH1 in O(p, q), such that the action of the non-compact Cartan generator H1 on
the Lie algebra sop,q decomposes into

sop,q ' . . . ⊕ (gl1 ⊕ sop−2,q−2)(0) ⊕ (2⊗ (p + q− 4))(1) ⊕ 1(2), (5.3)

while (aiI , ψ) parametrize the unipotent subgroup obtained by exponentiating the grade 1 and
2 components in this decomposition. We parametrize the SO(2)\SL(2,R) coset representative
vµ
i and the symmetric SL(2,R) element M ≡ vT v by the complex upper half-plane coordinate

S = S1 + iS2

vµ
i =

1√
S2

(
1 S1

0 S2

)
, M ij = δµνvµ

ivν
j =

1

S2

(
1 S1

S1 |S|2
)
. (5.4)

A generic charge vector QI ∈ Λp,q ' p + q ' 2(−1) ⊕ (p + q− 4)(0) ⊕ 2(1) decomposes into

Q = (mi, Q̃I , nj), where (mi, ni) ∈ II2,2 and Q̃I ∈ Λp−2,q−2 such that Q2 = −2mini+ Q̃2. The
projectors defined by QL ≡ pILQI and QR ≡ pIRQI decompose according to

pIL,µQI =
v−1
iµ

R
√

2

(
mi + ai · Q̃+ (ψεij +

1

2
ai · aj)nj

)
− R√

2
vµ
ini

pIL,αQI =p̃ IL,α(Q̃I + nia
i
I)

pIR,µQI =
v−1
iµ

R
√

2

(
mi + ai · Q̃+ (ψεij +

1

2
ai · aj)nj

)
+

R√
2
vµ
ini

pIR,α̂QI =p̃ IR,α̂(Q̃I + nia
i
I)

(5.5)

where p̃IL,α, p̃
I
R,α̂ (α = 3 . . . p, α̂ = 3 . . . q) are orthogonal projectors in Gp−2,q−2 satisfying

Q̃2 = Q̃2
L − Q̃2

R.
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In order to study the region R� 1 it is useful to perform a Poisson resummation on the
momenta mi along II2,2. Note that this analysis is in principle valid for a region containing
R >

√
2. In the case of the scalar integral (4.1b), one obtains

ΓΛp, q = R2
∑

A∈Z2×2

e
− π
τ2

R2

S2

∣∣(1,S)A
(
τ
1

)∣∣2−2πi (ψ+iR2) det A
ΓΛp−2, q−2

[
e2πimi(Q̃·ai+ai·aj

2
nj)
]
, (5.6)

where A =
(
n1m1
n2m2

)
. In the case of (4.1a), we must distinguish whether the indices abcd lie

along the direction 1, 2 or along the directions α. Denoting by h the number of indices of the
first kind, we get

ΓΛp, q

[
e
− ∆

8πτ2

(
h∏

i=1

(QL,µi)QL,α1 . . . QL,α4−h

)]
= R2

∑

A∈Z2×2

(
R

i
√

2

)h

× exp

(
− π
τ2

R2

S2

∣∣∣(1, S)A
(
τ
1

)∣∣∣
2
− 2πiT det A

) h∏

k=1

[
1√
S2

(
1 S1
0 S2

)
A
(
τ̄
1

)]
µk

× ΓΛp−2, q−2+niai

[
e
− ∆

8πτ2

[
Q̃L,α1 . . . Q̃L,α4−h

]
e2πimi(Q̃·ai−a

i·aj
2

nj)
]

(5.7)

In this representation, modular invariance is manifest, since a transformation τ → aτ+b
cτ+d can be

compensated by a linear action A→ A
(
d −b
−c a

)
, under which the last line of (5.7) transforms

with weight 12 − h. We can therefore decompose the sum over A into various orbits under
SL(2,Z) and apply the unfolding trick to each orbit:

The trivial orbit A = 0 produces, up to a factor of R2, the integrals (4.1) or for the lattice
Λp−2,q−2, provided none of the indices abcd lie along the direction 1 or 2,

F
(p,q),0
αβγδ = R2 F

(p−2,q−2)
αβγδ , Ftr

(p,q),0 = R2 Ftr
(p−2,q−2) , (5.8)

while it vanishes otherwise (i.e. when h > 0).

Rank-one orbit: Matrices with detA = 0 but A 6= 0 can be decomposed into A =(0 j
0 p

)(a b
c d

)
, where (j, p) ∈ Z2 r (0, 0) and

(a b
c d

)
∈ Γ∞\SL(2,Z). As before the funda-

mental domain SL(2,Z)\H can be unfolded to the strip S = Γ∞\H = R+
τ2 × (R/Z)τ1 using

(4.9), leading to

F (p,q),1
µ1...µhα1...α4−h = R2

′∑

(j,p)

h∏

i=1

(
R

i
√

2

)h [
1√
S2

(
1 S1
0 S2

)(
j
p

)]
µi

×
∫

R+

dτ2

τ2+h
2

∫

R/Z
dτ1

e
− π
τ2

R2

S2
|j+pS|2

∆
ΓΛp−2, q−2

[
P̃α1...α4−he

2πi (jQ̃·a1+pQ̃·a2)
]
,

Ftr
(p,q),1 = R2

′∑

(j,p)

∫

R+

dτ2

τ2+h
2

∫

R/Z
dτ1e

− π
τ2

R2

S2
|j+pS|2

ΓΛp−2, q−2

[
e2πi (jQ̃·a1+pQ̃·a2)

]
D2

(
1

∆

)
,

(5.9)
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for the tensor integral with 0 ≤ h ≤ 4 indices along the large torus and its trace respectively.
Inserting the Fourier expansion (4.14), the integral over τ1 picks up the Fourier coefficient
c(m) with m = −1

2Q̃
2. The remaining integral over τ2 can be computed after expanding

P̃α1...α4−h =
∑⌊

4−h
2

⌋

`=0 P̃
(`)
α1...α4−hτ

−`
2 , where P̃

(`)
α1...α4−h is a polynomial in Q̃ of degree 4−h−2` ≥ 0,

or vanishing otherwise. The contribution of Q̃ = 0 produces power-like terms in R2,

F
(p,q),1,0
αβγδ = Rq−6 3c(0)

8π2
E?(8−q

2 , S) δ(αβδγδ),

F
(p,q),1,0
µνγδ = Rq−6 c(0)

4π2

[
8−q

4 δαβδµν − δαβDµν
]
E?(8−q

2 , S),

F (p,q),1,0
µνρσ = Rq−6 c(0)

2π2

[
D2
µνρσ − 10−q

2 δ(µνDρσ) +
(

8−q
2

)(
10−q

2

)
3
8δ(µνδρσ)

]
E?(8−q

2 , S)

(5.10)

for the tensor integral, and

Ftr
(p,q),1,0 = Rq−6 c(0)

8π2
(p− q + 6)(p− q + 8) E?(8−q

2 , S) , (5.11)

for its trace. Here, E?(s, S) is the completed weight 0 non-holomorphic Eisenstein series,

E?(s, S) =
1

2
π−s Γ(s)

′∑

(m,n)∈Z2

Ss2
|nS +m|2s ≡ ξ(2s) E(s, S) , (5.12)

Dµν is the traceless differential operator on SL(2,R)
SO(2) defined in appendix D, and D2

µνρσ =

D(µνDρσ) − 1
4δ(µνδρσ)DτκDτκ is the traceless operator of degree 2 in the symmetric represen-

tation. The equalities used to write (5.10) are detailed in (D.8), and similar expressions using
non-holomorphic series of non-zero weight are given in (D.7). Recall that E?(s, S) is invariant
under s 7→ 1 − s, and has simple poles at s = 0 and s = 1. As in the previous section, the
pole at q = 6 is subtracted by the regularization prescription mentioned below (3.32), while
the pole at q = 8 cancels against the pole from the trivial orbit contribution (5.8).

Contributions of non-zero vectors Q̃ ∈ Λp−2,q−2, on the other hand, lead to exponentially
suppressed contributions, e.g. for the trace of the tensor integral

2R
q
2

′∑

Q̃∈Λp−2,q−2

′∑

(j,p)

e2πi(jQ̃·a1+pQ̃·a2)
2∑

`=0

a`

R2`

(
− Q̃2

2

)2−`
c
(
− Q̃2

2

) ( 2Q̃2
RS2

|j + pS|2

) q−4−2`
4

×K q−4
2
−`

(
2π
√

2R2

S2
|j + pS||Q̃R|

)
(5.13)

Defining (Q,P ) = (j, p)Q̃, we see that the Fourier expansion with respect to (a1, a2) has
support on collinear vectors (Q,P ) with Q,P ∈ Λp−2,q−2. Extracting the greatest common
divisor of (j, p), we find that the Fourier coefficients with charge Q′i = (Q,P ) and mass
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M(Q,P ) =
√

2Q′iRQ
′j
RMij defined in (2.13) are given by

F
(p,q),1,Q′

αβγδ = 4R
q
2 c̄(Q′i)

2∑

`=0

P(`)
αβδγ(Q′i, S)

R2`

[ |Q+ SP |2
S2

] q−8
2

K q−4
2 −`

(2πRM(Q,P ))

M(Q,P )
q−4

2
−`

F
(p,q),1,Q′

µαβγ = 4R
q
2 c̄(Q′i)

1∑

`=0

P(`)
µαβδ(Q

′i, S)

i
√

2R2`

[ |Q+ SP |2
S2

] q−8
2

K q−6
2 −`

(2πRM(Q,P ))

M(Q,P )
q−6

2
−`

...

F (p,q),1,Q′
µνρσ = 4R

q
2 c̄(Q′i)

P(0)
µνσρ(Q′i, S)

4

[ |Q+ SP |2
S2

] q−8
2

K q−12
2

(2πRM(Q,P ))

M(Q,P )
q−12

2

(5.14)

for the tensor integral, and

Ftr
(p,q),1,Q′ = 4R

q
2 c̄(Q′i)

2∑

`=0

a`

R2`

[
−gcd(Q′i ·Q′j)

2

]2−` K q−4
2 −`

(2πRM(Q,P ))

M(Q,P )
q−4

2
−`

(5.15)

for its trace. The covariantized versions of Pabcd(Q) with respect to the torus’ metric,

P(`)
αβγδ, . . . ,P

(`)
µνσρ are given in appendix C. Finally the degeneracy is given by

c̄(Q,P ) =
∑

(Q,P )/d∈Λ⊕2
p−2,q−2

(
d2

gcd(Q2, Q · P, P 2)

) q−8
2

c
(
−gcd(Q2,Q·P,P 2)

2d2

)
, (5.16)

with support (Q,P ) ∈ Λp−2,q−2 ⊕ Λp−2,q−2.

Rank-two orbit Finally, rank-two matrices can be uniquely decomposed as A =
(
k j
0 p

)(
a b
c d

)

where k > j ≥ 0 and p 6= 0 and
(
a b
c d

)
∈ SL(2,Z). The matrices A can therefore be restricted

to A =
(
k j
0 p

)
, provided the integral is extended to the double cover of the upper half-plane

H. This leads to

F (p,q),1
µ1...µhα1...α4−h = 2R2

∑

k>j≥0
p6=0

(
R

i
√

2

)h
e−2πikp(ψ+iR2)

∫

R+

dτ2

τ2+h
2

∫

R

dτ1
e
− π
τ2

R2

S2
|kτ+j+pS|2

∆

×
h∏

l=1

[
1√
S2

(
1 S1
0 S2

)(
kτ̄ + j
p

)]
µl

ΓΛp−2, q−2+niai

[
Pα1...α4−h e

2πi (j(Q̃− 1
2
ka1)·a1+p(Q̃− 1

2
ka1)·a2)

]

(5.17)

for the tensor integral, and to

Ftr
(p,q),1 = 2R2

∑

k>j≥0
p 6=0

e−2πikp(ψ+iR2)

∫

R+

dτ2

τ2
2

∫

R

dτ1 e
− π
τ2

R2

S2
|kτ+j+pS|2

× ΓΛp−2, q−2+niai

[
e2πi (j(Q̃− 1

2
ka1)·a1+p(Q̃− 1

2
ka1)·a2)

]
D2

(
1

∆

)
(5.18)
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for its trace.
Inserting the Fourier expansion (4.14), the integral over τ1 is Gaussian while the integral

over τ2 is of Bessel type. The sum over 0 ≤ j < k enforces a Kronecker delta function modulo
k,

k−1∑

j=0

exp

[
2πi

j

k

(
Q̃2

2 +m
)]

=

{
k if Q̃2

2 +m = lk, l ∈ Z,
0 otherwise

(5.19)

Relabelling the charges as pQ̃ → P , kp → −M1 and lp → −M2, and defining D = −P 2

2 +
M1M2 one obtains, for the trace of the tensor integral,

Ftr
(p,q),2 =

∑

M1 6=0,M2
P∈Λp−2,q−2

Ftr
(p,q),2,M1

(
P −M1a1,M2 − a1 · P + 1

2(a1 · a1)M1

)

× e2πi(P ·a2+M1(ψ− 1
2
a1·a2)+(M2−a1·P+

1
2 (a1·a1)M1)S1) (5.20)

where Ftr
(p,q),2,M1 is the non-Abelian Fourier coefficient,

Ftr
(p,q),2,M1(P,M2) = 4(R2S2)

q−1
2 c̄(M1,M2, P )

2∑

`=0

a`D
2−`

(R2S2)`

(
2π

Scl

) q−3
2
−`
K q−3

2
−`(Scl) , (5.21)

Scl is the classical action

Scl(M1,M2, P ) = 2π

√
(R2M1 + S2M2)2 + 2R2S2P 2

R , (5.22)

and c̄(M1,M2, P ) the summation measure

c̄(M1,M2, P ) =
∑

d|(M1,M2)
P/d∈Λp−2,q−2

c
(
D
d2

)
dq−7 . (5.23)

It is worth noting that (5.20) is the general expansion of a function of (S1, a1, a2, ψ) invariant
under discrete shifts Tb,ε1,ε2,κ acting as

(S1, a1, a2, ψ) 7→
(
S1 + b, a1 + ε1, a2 + ε2 + ba1, ψ + κ+ 1

2 [ε2(a1 + ε1)− ε1(a2 + ba1)]
)

(5.24)

with b, κ ∈ Z and ε1, ε2 ∈ Zp−2,q−2. Invariance under Tb,0,ε2,κ is manifest, while invariance
under T0,ε1,0,0 is realized by shifting P 7→ P +M1ε1,M2 7→ M2 + ε1P + 1

2M1ε
2
1, which leaves

D and M̃2 = M2 − a1 · P + 1
2(a1 · a1)M1 invariant. It is worth noting that in the special case

p = 2, P 2
R vanishes identically so (5.22) simplifies to Scl = 2π|R2M1 + S2M2|.

Similarly, for the tensor integral, we get

F
(p,q),2,M1

αβγδ (P,M2) = 4 (R2S2)
q−2

2 c̄(M1,M2, P)
2∑

`=0

P̃
(`)
αβγδ(P )

(R2S2)`

(
2π

Scl

) q−3
2
−`
K q−3

2
−`(Scl)

F
(p,q),2,M1

2αβγ (P,M2) = 4 (R2S2)
q−2

2 c̄(M1,M2, P)
1∑

`=0

P̃
(`)
αβγ(P )

i
√

2(R2S2)`+
1
2

(
2π

Scl

) q−5
2
−`
K q−5

2
−`(Scl)

...

F
(p,q),2,M1

2222 (P,M2) = 4 (R2S2)
q−2

2 c̄(M1,M2, P)
P̃ (0)

4(R2S2)2

(
2π

Scl

) q−11
2

K q−11
2

(Scl),

(5.25)
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where we restricted to the cases µ, ν, . . . = 2 for simplicity.

5.2 Extension to ZN CHL orbifolds

The degeneration limit (5.1) of the modular integrals (4.1) for ZN CHL models with N =
2, 3, 5, 7 can be treated similarly by applying the orbit method. In (4.1), ∆k is the cusp form
of weight k = 24

N+1 defined in (2.4), and ΓΛp, q [Pabcd] is the partition function with insertion of
Pabcd for a lattice

Λp,q = Λp−2,q−2 ⊕ II1,1 ⊕ II1,1[N ] , (5.26)

where Λp−2,q−2 is a lattice of level N . The lattice II1,1 ⊕ II1,1[N ] is obtained from the usual
unimodular lattice II2,2 by restricting the windings and momenta to (n1, n2,m1,m2) ∈ Z ⊕
NZ⊕Z⊕Z, hence breaking the automorphism group O(2, 2,Z) to σS↔T n [Γ0(N)×Γ0(N)].
After Poisson resummation on m2, Eq. (5.6) and (5.7) continue to hold, except for the fact
that n2 is restricted to run over NZ. The sum over A =

(
n1 m1
n2 m2

)
can then be decomposed

into orbits of Γ0(N): 10

Trivial orbit The contribution of A = 0 reduces, up to a factor of R2, to the integrals (4.1)
for the lattice Λp−2,q−2,

F
(p,q),0
αβγδ = R2 F

(p−2,q−2)
αβγδ , Ftr

(p,q),0 = R2 Ftr
(p−2,q−2) , (5.27)

Rank-one orbits Matrices A of rank-one fall into two different classes of orbits under
Γ0(N). For simplicity, let us first consider the case where (n2,m2) 6= (0, 0), and denote
(m2, n2) = p(n′2,m

′
2), with p = gcd(n2,m2):

• Matrices with n′2 = 0 modN , as they are required to be rank-one, can be decomposed

as
(n1 m1
n2 m2

)
=
(0 j

0 p

)(a b
c d

)
with (j, p) ∈ Z2 r{(0, 0)}, p 6= 0 and

(a b
c d

)
∈ Γ∞\Γ0(N). For

this class of orbit, one can thus unfold directly the domain Γ0(N)\H into the unit strip
S = Γ∞\H = R+

τ2 × (R/Z)τ1 .

• Matrices with n′2 6= 0 modN can be decomposed as
(n1 m1
n2 m2

)
=
(j 0
p 0

)(a b
c d

)
with (j, p) ∈

Z ⊕NZ r {(0, 0)}, p 6= 0 and
(a b
c d

)
∈ S Γ∞,N S−1\Γ0(N), where Γ∞,N = {

(1 n
0 1

)
, n ∈

NZ}. One can then unfold the fundamental domain Γ0(N)\H into S Γ∞,N S−1\H, and
change variable τ → −1/τ as in the weak coupling case (4.24) to recover the integration
domain SN = Γ∞,N\H = R+

τ2 × (R/NZ)τ1 , the width-N strip.

The remaining contributions A with (n2,m2) = (0, 0) belong to the two classes of orbits
above. Let (n1,m1) = j(n′1,m

′
1), where j = gcd(n1,m1) and j ∈ Z, then contributions with

n′1 = 0 modN correspond to the cases (j, p) = (j, 0) in the first class above; contributions
with n′1 6= 0 modN correspond to (j, p) = (j, 0) in the second class above.

After unfolding and changing variable, the result for the simplest component F
(p,q),1
αβγδ reads

10Note that the subsequent analysis is valid in the region of the moduli space where NR2 > 2S2
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(similarly to (4.24))

F
(p,q),1
αβγδ = R2

∫

R+

dτ2

τ2
2

∫

R/Z
dτ1

1

∆k(τ)

′∑

(j,p)∈Z2

e
− πR2

τ2 S2
|j+pS|2

ΓΛp−2, q−2

[
e2πi(jQ̃·a1+pQ̃)·a2 Pαβγδ

]

+R2

∫

R+

dτ2

τ2
2

∫

R/NZ
dτ1

1

∆k(τ/N)

υ

N

′∑

(j,p)∈Z2

p=0 modN

e
− πR2

τ2 S2
|j+pS|2

ΓΛ∗p−2, q−2

[
e2πi(jQ̃·a1+pQ̃)·a2 Pαβγδ

]
,

(5.28)

where ΓΛ∗p−2, q−2
is the partition function of the dual lattice Λ∗p−2,q−2 and where

υ = Nk/2+1|Λ∗p−2,q−2/Λp−2,q−2|−1/2 (which reduces to υ = N1−δq,8 for q ≤ 8 in the cases

of interest). The contributions from Q̃ = 0 thus give

F
(p,q),1,0
αβγδ = Rq−6 3(2ck(0))

8π2

1

2

(
E?8−q

2

(S) + vN
q−8

2 E?8−q
2

(NS)
)
δ(αβδγδ),

F
(p,q),1,0
µνγδ = Rq−6 2ck(0)

4π2

[
8−q

4 δαβδµν − δαβDµν
] 1

2

(
E?8−q

2

(S) + vN
q−8

2 E?8−q
2

(NS)
)
,

F (p,q),1,0
µνρσ = Rq−6 2ck(0)

2π2

×
[
D2
µνρσ − 10−q

2 δ(µνDρσ) +
(

8−q
2

)(
10−q

2

)
3
8δ(µνδρσ)

] 1

2

(
E?8−q

2

(S) + vN
q−8

2 E?8−q
2

(NS)
)
,

(5.29)

for the tensor integral, and

Ftr
(p,q),1,0 = Rq−6(p− q + 6)(p− q + 8)

2ck(0)

8π2

1

2

(
E?8−q

2

(S) + vN
q−8

2 E?8−q
2

(NS)
)
, (5.30)

for its trace. Recall ck(0) = 24
N+1 = k is the zero mode of 1/∆k =

∑
m ck(m)qm. As in

(5.11) and (5.10), the pole at q = 6 is minimally subtracted by the regularization prescription
mentioned below (3.32), while the pole at q = 8 cancels against the pole from the zero orbit
contribution (5.27).

The contributions with Q̃ 6= 0 are exponentially suppressed at large R, and have similar
Fourier coefficients as in the full rank case (5.14), except for a different summation measure.
Let us label the electromagnetic charges by (Q,P ) = (j, p)Q̃ = (j′, p′)Q̂ where (j′, p′) are
coprime integers. It will be useful to classify all possible rank-one charges (Q,P ) in orbits of

the S-duality group Γ0(N) acting as
(Q
P

)
→
(a b
c d

)(Q
P

)
, where

(a b
c d

)
∈ Γ0(N).

• Charges (Q,P ) such that p′ = 0 modN are in the same orbit as purely electric charges
(Q̂, 0). Their Fourier coefficient gets contributions from both terms in (5.28) with d =

gcd(j, p) and Q̂
d = Q̃ ∈ Λp−2,q−2 in the first case and Q̂

d = Q̃ ∈ Λ∗p−2,q−2 in the second,
such that they are weighted by the measure

c̄k(Q,P ) =
∑

d≥1

Q̂/d∈Λp−2,q−2

ck

(
− Q̂2

2d2

)( d2

Q̂2

) q−8
2

+ υ
∑

d≥1

Q̂/d∈Λ∗p−2,q−2

ck

(
−NQ̂

2

2d2

) ( d2

NQ̂2

) q−8
2

, (5.31)
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where the first contribution has support Q ∈ Λp−2,q−2 ⊂ Λ∗p−2,q−2, while the second has
support on Q ∈ Λ∗p−2,q−2. Notice that the latter is matched against 1/∆k(τ/N), which
explains the N factor in the argument of ck.

• Charges (Q,P ) such that p′ 6= 0 modN are in the same orbit as purely magnetic charges
(0, P̂ ), where we relabelled Q̂ as P̂ for convenience. Their Fourier coefficient gets con-

tributions from both terms in (5.28) with d = gcd(j, p) and P̂
d = Q̃ ∈ Λp−2,q−2 in the

first case and Nd = gcd(j, p) (because j = 0 mod N) and P̂
Nd = Q̃ ∈ Λ∗p−2,q−2 in the

second, such that they are weighted by the measure

c̄k(Q,P ) =
∑

d≥1

P̂ /d∈Λp−2,q−2

ck

(
− P̂ 2

2d2

)( d2

P̂ 2

) q−8
2

+ υ
∑

d≥1

P̂ /d∈NΛ∗p−2,q−2

ck

(
− P̂ 2

2Nd2

)(Nd2

P̂ 2

) q−8
2

, (5.32)

where the first contribution has support P ∈ Λp−2,q−2, while the second has P ∈
NΛ∗p−2,q−2 ⊂ Λp−2,q−2. In the latter contribution, one N factor in the argument of
ck comes from the matching condition, and two N factors in its denominator come from
all divisors d being originally multiples of N .

Rank-two orbit For the rank-two matrices A, the two classes of orbits are similarly given
by studying (n2,m2) = p(n′2,m

′
2), where p = gcd(n2,m2).

• Contributions for which (n′2,m
′
2) = (0, 1) modN can be decomposed as A =

(k j
0 p

)(a b
c d

)
,

0 ≤ j < k, p ∈ Zr{0} and
(a b
c d

)
∈ Γ0(N), where its representative has trivial stabilizer.

For this first class of orbits, the fundamental domain can be unfolded to the full upper
half-plane H = R+

τ2 ×Rτ1 .

• Contributions for which (n′2,m
′
2) = (1, 0) modN can have A =

(j k
p 0

)(a b
c d

)
, 0 ≤ j < Nk,

p ∈ NZ r {0} and
(a b
c d

)
∈ Γ0(N), where the representative has trivial stabilizer. For

this second class of orbits, the fundamental domain can be unfolded to H = R+
τ2×Rτ1 as

well and the integrand can be brought back to the standard lattice sum representation
using a transformation τ → −1/τ , in the spirit of (5.28).

Both classes of contributions lead to the same type of non-Abelian Fourier coefficient
as in the unorbifolded case (5.21) and (5.25), except for a different summation measure
c̄(M1,M2, P ). The first class have support (M1,M2, P ) ∈ Z ⊕ Z ⊕ Λp−2,q−2, whereas the
second class have support (M1,M2, P ) ∈ NZ ⊕ NZ ⊕ NΛ∗p−2,q−2. In fine the summation
measure reads

c̄k(M1,M2, P ) =
∑

d|(M1,M2)
P/d∈Λp−2,q−2

ck

(D
d2

)
dq−7 + υ

∑

Nd|(M1,M2)
P/d∈NΛ∗p−2,q−2

ck

( D

Nd2

)
(Nd)q−7, (5.33)

where we recall that D = −1
2P

2 + M1M2. For the second class of orbits, one factor of N in
the argument of ck comes from the matching condition, and two factors of 1/N come from
the fact that all divisors were originally multiples of N .
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5.3 Large radius limit and BPS dyons

Specializing to (p, q) = (2k, 8) = (r − 4, 8), and choosing Λp−2,q−2 = Λm, the degeneration
studied in this section corresponds to the limit of the exact (∇Φ)4 amplitude in heterotic string
on T 7 in the limit where a circle inside T 7, orthogonal to the ZN action, decompactifies. The
coordinate R is identified as the radius of the large circle in units of the four-dimensional
Planck length lP = g4lH . The contributions from the various orbits discussed in §5.1 and §5.2
are then interpreted as follows:

5.3.1 Effective action in D = 4

In the large R limit, F
(2k,8)
αβγδ should reproduce the exact four-dimensional F 4 coupling, up

to exponentially suppressed corrections. As already mentioned below (5.10) and (5.29), the
contribution of the vector Q̃ = 0 to the rank-one orbit has a pole at q = 8. Using the
regularisation (3.32), that formally sets q = 8 + 2ε, one obtains

F
(2k,8),1,0
αβγδ (ε) = R2+2ε 3(2k)

(4π)2

(
E?−ε(S) +N εE?−ε(NS)

)
δ(αβδγδ) (5.34)

= R2 3

2(2π)2

(k
ε
− log(S k

2 |∆k(S)|2) + k
(

log
(R2

4π

)
− γ
))

δ(αβδγδ) +O(ε) ,

However, this pole cancels against the pole (4.38) in the trivial zero-orbit contribution (5.8),
(5.27), leaving the finite result

F
(2k,8)
αβγδ = R2

(
− 3

2(2π)2

(
log(S k

2 |∆k(S)|4)−2k logR
)
δ(αβδγδ)+F̂

(2k−2,6)
αβγδ (Φ)

)
+. . . (5.35)

where F̂
(2k−2,6)
αβγδ is the renormalized 1-loop coupling, up to an irrelevant additive constant,

and the dots denote exponentially suppressed terms.
Thus, the conjectural formula (2.27) for the exact (∇Φ)4 coupling in D = 4 predicts that

the exact F 4 coupling in four dimensions should be given by

− 3

8π2
log(S k

2 |∆k(S)|2)δ(abδcd) + F
(2k−2,6)
abcd (Φ) , (5.36)

where for convenience we renamed the indices α, β, . . . into a, b, . . . running from 1 to 2k− 2.
Indeed, it is known that half-maximal supersymmetry in D = 4 allows for two types of
supersymmetry invariants with four derivatives: the first one is determined in terms of a
holomorphic function of S, the second depends on the G2k−2,6 moduli only, as described in
(3.21), and both contribute to F 4 couplings [56]. The first term in (5.36) corresponds the first
invariant, which also includes the R2 coupling (2.3), while the second was considered in [55],
it is by construction exact at 1-loop and includes a four-derivative scalar couplings studied in
[57].

The relative coefficient of the two invariants in (5.36) is in fact fixed by unitarity. In-
deed, the logarithmic dependence of the one-loop amplitude with respect to the Mandelstam
variables (s1 = s, s2 = t, s3 = u) is determined by the 1-loop divergence of the four-photon

supergravity amplitude [41]. Because the genus-one string theory amplitude F
(2k−2,6)
abcd (Φ, si)

is finite in the ultra-violet, the corresponding supergravity amplitude pole in dimensional
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regularisation D = 4− 2ε cancels by construction the pole of the coupling F
(2k−2,6)
abcd (Φ, ε) reg-

ularised according to (3.32) (corresponding formally to q = 6 + 2ε). Thus, in the low energy
limit −` 2

s si � 1 11

F
(2k−2,6)
abcd (Φ, si) ∼ F

(2k−2,6)
abcd (Φ, ε) +

3(2k)

(4π)2

(1

ε
− 1

3

3∑

i=1

log(−` 2
s si)

)
δ(abδcd) (5.37)

∼ F̂
(2k−2,6)
abcd (Φ)− 3

8π2
log(S k

2 )δ(abδcd) −
2k

(4π)2

3∑

i=1

log(−` 2
P si)δ(abδcd) ,

up to a fixed constant, where we used the relation S2
2π `

2
P = ` 2

s between Planck length and
string length. Therefore, the relative coefficient of the two invariants in (5.36) is indeed such
that the logarithm of S2 in the coupling disappears in string frame, consistently with the fact
that string amplitudes depend analytically on the string coupling constant when formulated
in string frame [58].

The overal normalisation of the 4-photon amplitude can be determined from the 1-loop
divergence as [41, 59] (with t8f

4 = fµνf
νσfσρf

ρµ − 1
4(fµνf

µν)2)

A4(S,Φ, si) =
κ4

8

(
3

8π2
log(S k

2 |∆k(S)|2)δ(abδcd) − F (2k−2,6)
abcd (Φ, si)

)
t8F

aF bF cF d . (5.38)

More precisely, the 1PI effective action includes the local terms

S4 =

∫
d4x
√−g

(
1

2κ2
R− S2

32π
(F aµνF

µν
a + F âµνF

µν
â ) +

S1

64π√-g
εµνρσ(F aµνFρσ a − F âµνFρσ â)

+
κ4

8

( 3

8π2
log(S k

2 |∆k(S)|2)δ(abδcd) − F̂ (2k−2,6)
abcd (Φ)

)
tµνρσκλϑτ

(S2

8π

)2
F aµνF

b
ρσF

c
κλF

d
ϑτ

− 1

(8π)2
log(S k

2 |∆k(S)|2)(RµνρσRµνρσ − 4RµνRµν +R2) (5.39)

− κ2

(8π)2
Rµνρσ

(
D log(S k

2 |∆k(S)|2)
S2

8π
F â−µν F

−
ρσâ +D log(S k

2 |∆k(S)|2)
S2

8π
F â+
µν F

+
ρσâ

)

− κ4

(8π)2
D2 log(S k

2 |∆k(S)|2)
(S2

8π

)2(
2F â−µν F

−
ρσâF

µν

b̂−F
ρσb̂
− + F â−µν F

µν
â−F

ρσ

b̂−F
b̂−
ρσ

)

− κ4

(8π)2
D2

log(S k
2 |∆k(S)|2)

(S2

8π

)2(
2F â+

µν F
+
ρσâF

µν

b̂+
F ρσb̂+ + F â+

µν F
µν
â+F

ρσ

b̂+
F b̂+ρσ

)
+ . . .

)
,

which includes in particular the exact R2 coupling (2.3). The components of (5.10), (5.29)
with µ, ν indices correspond to scalar field parametrizing the circle radius R, the scalar field
ψ dual to the Kaluza–Klein vector, and the axiodilaton scalar field S in four dimensions. The
components involving the derivative of the function of S depend on the complex (anti)selfdual
field F â±µν ≡ 1

2F
â
µν ± i

4
√

-g εµν
ρσF âρσ, with the covariant derivative D defined as in Appendix D

with D ≡ D0 and D2 ≡ D2D0.
Let us now discuss the decompactification limit of the 1PI effective action to ten dimen-

sions, focussing for simplicity on the maximal rank case where the lattice decomposes as

Λ22,6 = D16 ⊕ II6,6, (5.40)

11Recall that 2k − 2 is the number of vector multiplets in D = 4.
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where D16 is the weight lattice of Spin(32)/Z2. Identifying S2 = 2π(2πR)6

g 2
s

, with gs the

heterotic string coupling constant in 10 dimensions, one obtains for a, b, c, d along D16,

− 3

8π2
log(S k

2 |∆k(S)|2)δ(abδcd) + F̂
(2k−2,6)
abcd (Φ) = (2πR)6

( 3

g 2
s

δ(abδcd) +
1

2π5
δabcd

)
+ . . . (5.41)

up to a threshold contribution and exponentially suppressed terms. Here δabcd = 1 if all
indices are identical, and zero otherwise, and we used

∫

SL(2,Z)\H

d2τ

τ2
2

ΓD16 [Pabcd]

∆
=

∫

SL(2,Z)\H

d2τ

τ2
2

[(
E 3

4 −2Ê2E4E6+Ê 2
2 E

2
4

48∆ − 24
)
δ(abδcd) + 48δabcd

]

= 32πδabcd . (5.42)

This equation follows from known results about the elliptic genus of the heterotic string [60].
Using an orthogonal basis for a Cartan subalgebra of SO(32), one easily computes that this
coupling gives the following trace combination in the vector representation of SO(32)

( 3

g 2
s

δ(abδcd) +
1

2π5
δabcd

)
t8F

aF bF cF d =
(2πR)6

4
t8

( 3

g 2
s

(TrF 2)2 +
1

π5
TrF 4

)
. (5.43)

Using κ2 = 4α′ and reabsorbing the (2πR)6α′ 3 into the 6-torus volume one obtains in Einstein
frame

S10 =

∫
d10x

√−g
(

1

8α′ 4
R+

1

8α′ 3
e−

1
2
φ
(

TrFµνF
µν +RµνρσRµνρσ − 4RµνRµν +R2

)

− 1

2α′
t8

(
3e−

3
2
φTrF 2TrF 2 +

1

π5
e

1
2
φTrF 4

)
+ . . .

)
, (5.44)

which reproduces the tree level R2 and (TrF 2)2 coupling computed in [53] upon identifying
φ =
√

2κD − 6 log 2, and the 1-loop TrF 4 coupling computed in [61, 62].

5.3.2 BPS dyons

The contributions of non-zero vectors to the rank-one orbit yield exponentially suppressed
corrections of order e−2πRM(Q,P ) (5.14), where M is the mass of a 1/2-BPS state of electro-
magnetic charge (Q,P ) in four dimensions. The phase e2πi(a1Q+a2P ) multiplying (5.14) is the
expected minimal coupling of a dyonic state with charge (Q,P ) to the holonomies of the elec-
tric and magnetic gauge fields along the circle. The corresponding instanton is a saddle point
of the three-dimensional Euclidean supergravity theory obtained by formal reduction along
a time-like Killing vector, in the duality frame where the axionic scalars a1, a2 are dualized
into vector fields. Following the same steps as [63], one finds that the classical action is then
Scl = 2πRM(Q,P ).

In the maximal rank case, the summation measure (5.16) is given by

c̄(Q,P ) =
∑

d≥1
(Q,P )/d∈Λem

c
(
−gcd(Q2,P 2,Q·P )

2d2

)
, (5.45)

where c(m) are the Fourier coefficients of 1/∆. For (Q,P ) primitive, this agrees with the
helicity supertrace (2.18) of 1/2-BPS states with charges (Q,P ). In the case of CHL models,
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the summation measure is instead given by (5.31) or (5.32) with q = 8, υ̃ = 1, depending

whether the dyon is related by Γ0(N), acting as
(Q
P

)
→
(a b
c d

)(Q
P

)
, to a purely electric or a

purely magnetic state. It is interesting to note that these two formulas can be combined as
follows. We first notice using the decomposition (Q,P ) = (j′, p′)Q̂ and (Q,P ) = (j′, p′)P̂
when (Q,P ) belong the electric and magnetic orbit respectively, with (j′, p′) = 1, one obtains

Q̂

d
∈ Λm ⇒ (Q,P )

d
∈ Λm ⊕NΛm ,

P̂

d
∈ NΛe ⇒

(Q,P )

d
∈ NΛe ⊕NΛe , (5.46)

such that in both cases (Q,P )/d ∈ Λm ⊕ NΛe. Moreover, if (Q,P )/d ∈ Λm ⊕ NΛe, then
Q̂/d ∈ Λm or P̂ /d ∈ NΛe, depending of the orbit to which (Q,P ) belongs to, therefore one
has the equivalence

(Q,P )

d
∈ Λm ⊕NΛe ⇔

Q̂

d
∈ Λm or

P̂

d
∈ NΛe , (5.47)

for (Q,P ) conjugate to either an electric charge Q̂ or a magnetic charge P̂ . Similarly,

Q̂

d
∈ Λe ⇒

(Q,P )

d
∈ Λe ⊕NΛe ,

P̂

d
∈ Λm ⇒ (Q,P )

d
∈ Λm ⊕ Λm , (5.48)

such that
(Q,P )

d
∈ Λe ⊕ Λm ⇔ Q̂

d
∈ Λe or

P̂

d
∈ Λm , (5.49)

for (Q,P ) conjugate to either an purely electric charge (Q̂, 0) or a purely magnetic charge
(0, P̂ ). Moreover, we have that gcd(NQ2, P 2, Q · P ) = NQ̂2 for a dyon in the Γ0(N) orbit
of a purely electric charge, because then gcd(Nj′2, p′2, j′p′) = N since p′ = 0 mod N , and
gcd(NQ2, P 2, Q ·P ) = P̂ 2 for a dyon in the Γ0(N) orbit of a purely magnetic charge, because
then gcd(Nj′2, p′2, j′p′) = 1 since p′ 6= 0 mod N . Putting these observations together we
conclude that the summation measure for a general 1/2 BPS dyon is given by

c̄k(Q,P ) =
∑

d≥1
(Q,P )/d∈Λe⊕Λm

ck

(
− gcd(NQ2,P 2,Q·P )

d2

)
+

∑

d≥1
(Q,P )/d∈Λm⊕NΛe

ck

(
− gcd(NQ2,P 2,Q·P )

2Nd2

)
. (5.50)

It is worth noting that gcd(NQ2, P 2, Q · P ) is invariant under Γ0(N) and Fricke S-duality, so
that each term in (5.50) is separately invariant under Fricke duality. Further noticing that
Λm ⊕NΛe ' Λe[N ]⊕ Λm[N ], (5.50) can be rewritten in a more suggestive way as

c̄k(Q,P ) =
∑

a|N

∑

d≥1
(Q,P )/d∈Λem[a]

ck

(
− gcd(NQ2,P 2,Q·P )

2a d2

)
. (5.51)

Most importantly, (5.51) agrees with the helicity supertrace Ω4(Q,P ) of a half-BPS dyon with
primitive charge (Q,P ) which was determined in (2.16) and (2.17).
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5.3.3 Taub-NUT instantons

Finally, the rank-two orbit (5.25) yields contributions schematically of the form

∑

M1 6=0,M2,P

c̄(M1,M2, P ) e−2π
√

(R2M1+S2M̃2)
2
+2R2S2P̃ 2

R+2πi(P ·a2+M1(ψ− 1
2
a1·a2)+M̃2S1) (5.52)

where the summation measure (5.33) is given by

c̄k(M1,M2, P ) =
∑

d|(M1,M2)
P/d∈Λm

d ck

(D
d2

)
+

∑

Nd|(M1,M2)
P/d∈NΛe

Nd ck

( D

Nd2

)
, (5.53)

and we denoted M̃2 = M2 − a1 · P + 1
2(a1 · a1)M1, P̃ = P −M1a1, and D = −1

2P
2 +M1M2.

These O(e−2πR2|M1|) contributions are characteristic of an Euclidean Taub-NUT solution of
the form TNM1×T 6, where the Taub-NUT space asymptotes to R3×S1(R) at spatial infinity
[64].

The detailed semi-classical interpretation of these effects is complicated by the fact that in
a Taub-NUT background, similarly to the case of NS5-branes, large gauge transformations of
the electric and magnetic holonomies a1 and a2 do not commute, thus cannot be diagonalized
simultaneously. The representation (5.20) corresponds to the case where translations in a2

and ψ are diagonalized. Accordingly, the argument of the exponential in (5.52) should be
interpreted as the classical action in the duality frame in which the fields ψ, S1, a2 associated to
the conserved charges M1,M2 and P are dualized into vector fields ω,B,A in three dimensions.
In order to reach a positive definite action after dualization, one should first analytically
continue the non-linear sigma model on O(2k,8)

O(2k)×O(8) into O(2k,8)
O(2k−1,1)×O(7,1) by taking ψ, S1, a2 to

be purely imaginary. Equivalently, this is the non-linear sigma model obtained by reduction
of a Euclidean four-dimensional theory. Denoting by U, φ, ζ the scalar fields whose asymptotic
values are given by logR,−1

2 logS2 and a1, the Lagrange density in three dimensions is

L =|dU |2 +
1

4
e4U |dω|2 + |dφ|2 +

1

4
e−4φ|dB − (ζ,dA) + 1

2(ζ, ζ)dω|2

+
1

4
e2U−2φg(dA− ζdω,dA− ζdω) +

1

4
e−2U−2φg(dζ,dζ) + Pab̂ ? P

ab̂ ,

(5.54)

where we denote |f |2 = f ∧?f , g(F, F ) ≡ F aL ?FLa+F âR ?FRâ. For simplicity we shall consider
only instantons for which the electromagnetic fields vanish, dA = ζ = 0. One can then write
the Lagrangian as a sum of squares

L =
1

4
e4U
∣∣∣?de−2U±dω

∣∣∣
2
± 1

2
d(e2Udω)+

1

4
e−4φ

∣∣∣?de2φ±dB
∣∣∣
2
± 1

2
d(e−2φdB)+Pab̂?P

ab̂ . (5.55)

The corresponding 1/2-BPS solutions describe M2 Euclidean NS5-branes on a self-dual Taub-
NUT space of charge M1, with M1M2 ≥ 0.12 For simplicity we consider the NS5-branes at
the tip of the Taub-NUT space, with

e−2U =
1

R2
+
|M1|
r

, e2φ =
1

S2
+
|M2|
r

, ω = −M1 cos θ dϕ , B = −M2 cos θ dϕ , (5.56)

12Solutions with M1M2 ≤ 0 exist but do not preserve eight supercharges.
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and the fields Φ on the Grassmannian Gr−6,6 are uniform. The action then reduces to the
boundary term Scl = 2π(R2|M1|+S2|M2|) = 2π|R2M1 +S2M2|. Note that the measure factor
(5.53) vanishes for P = 0 unless M1M2 ≥ −1. We shall refrain from constructing 1/2-BPS
instantons with generic magnetic charge P such that D ≥ 0, although we expect that their
action will reproduce Scl in (5.22).

6 Discussion

In this work, we have proposed a formula (2.24) for the exact (∇Φ)4 coupling in a class
of three-dimensional string vacua obtained as freely acting orbifolds of the heterotic string
on T 7 under a ZN action with N prime. Our formula is manifestly invariant under the U-
duality group G3(Z), which unifies the S and T-duality in D = 4 along with Fricke duality.
We derived the supersymmetric Ward identities that the exact coupling function Fabcd(Φ)
must satisfy, and showed that the formula (2.24) satisfies this constraint. Furthermore, we
analyzed its behavior in the weak coupling regime g3 → 0 and large radius regime R → ∞,
and found that it correctly reproduces the known tree-level and one-loop contributions in
D = 3, and the correct non-perturbative F 4 couplings in D = 4. In addition, we extracted
the exponential corrections to these power-like terms in both regimes, corresponding to non-
zero Fourier coefficients with respect to parabolic subgroups R+×G2k−1,7 nR2k+6 and R+×
[SL(2)/SO(2)×G2k−2,6]nR2×(2k+4)×R, and found agreement with the expected form of the
contributions of NS5-brane, Kaluza–Klein monopoles and H-monopole instantons as g3 → 0,
and the contributions of half-BPS dyons and Taub-NUT instantons as R → ∞. In the case
of half-BPS dyons, we found a precise match between the summation measure c̄k(Q,P ) and
the helicity supertrace Ω4(Q,P ), at least when the charge vector (Q,P ) is primitive. This
vindicates the general expectation that BPS saturated couplings in dimension D encode BPS
indices in dimension D + 1. It would be interesting to determine the helicity supertrace
Ω4(Q,P ) when (Q,P ) is not primitive (which requires a careful treatment of threshold bound
states), and compare with the summation measure c̄k(Q,P ).

It is natural to ask whether our formula (2.27) is the unique solution to the Ward identities
(2.23) which is invariant under G3(Z), and reproduces the correct power-like terms in the
weak coupling and large radius expansions g3 → 0 and R → ∞. Typically, theorems in
the mathematical literature guarantee that smooth automorphic forms on K\G/G(Z) which
vanish at all cusps and have sufficiently sparse Fourier coefficients (in mathematical terms, are
attached to a sufficiently small nilpotent orbit) necessarily vanish; so that the only smooth
automorphic functions satisfying to (3.27) are necessary Eisenstein series. However, these
theorems are typically concerned with Chevalley subgroups of reductive groups in the split or
quasi-split real form, which is not the case here (G3(Z) is a proper subgroup of the Chevalley
group of O(2k, 8) for N > 1), and smoothness away from the cusps is essential.

As far as the support of Fourier coefficients is concerned, the Ward identities (3.27),
imply that the trace of the modular integral (3.29) is attached to the vectorial character of
O(p, q), corresponding to the next-to-minimal orbit. However, the constraints imposed by
the differential equations (3.17), (3.20) are stronger than (3.27), e.g. we show in Appendix B
that the tensor Fabcd derived from the scalar Eisenstein series defined in Appendix E.2 is not
a solution to (3.20). The general form of the Fourier coefficients is in fact very reminiscent of
the one for automorphic forms attached to the minimal orbit of O(p, q): it allows for only two
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power-like terms at the cusp, rather than three for the next-to-minimal orbit; they involve
ordinary Bessel function of one single variable, similarly to A1 Whittaker vectors, rather
than more complicated functions of two variables or the typical 2A1 Whittaker vectors which
appear in the Fourier coefficients of generic vectorial Eisenstein series [65].

However, as we emphasized repeatedly, (3.28) has singularities in the bulk of Gp,q on
codimension q loci where the projection P âR of a vector P in Λp,q with norm 2 (or the projection
QâR of a vector Q in Λ∗p,q with norm 2/N) vanishes. In order to argue for uniqueness, it is
crucial to ensure that the modular integral (2.24) correctly captures the behavior of the (∇Φ)4

coupling at all singular loci. Since (2.24) reproduces correctly the one-loop contribution to
(∇Φ)4, it is clear that it correctly captures the singular behavior on the loci associated to
vectors P,Q in the ‘perturbative Narain lattice’ Λr−5,7 ⊂ Λr−4,8, at least in the weak coupling
limit. Presumably, this suffices to guarantee agreement on all singular loci, but we do not
know how to prove this rigorously.

Let us note finally that, independently of our proposed identification of the U -duality
group in three dimensions, the general solution to the Ward identities (3.17), (3.20) derived
in Appendix B implies that the exact coupling must be of the form (4.35), up to the deter-
mination of the measure factor c̄k(Q). The property that we recover the exact coupling in
four dimensions implies that the mesure factor is correct for null vectors by O(r − 5, 7,Z)
T-duality. Indeed, for Q2 = 0, the summation measure in (4.36) reproduces the summation
measure for NS5-brane instantons in (2.5). The computation of the BPS index associated
to an arbitrary NS5-brane, Kaluza–Klein monopole, H-monopole instanton, would therefore
give a direct proof of our result.

Clearly, it would be interesting to generalize our construction to the complete class of
heterotic CHL models, whose duality properties and BPS spectrum in 4-dimensions are by now
well understood. It is natural to conjecture that the duality group in D = 3 will still be given
by the automorphism group of the non-perturbative Narain lattice (2.21), which naturally
incorporates the S and T-duality symmetries in D = 4. More pressingly however, the present
study was a warm-up towards the more challenging problem of understanding the 1/4-BPS
saturated coupling ∇2(∇Φ)4 in four dimensions, which we shall address in forthcoming work.
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A Perturbative spectrum and one-loop F 4 couplings in het-
erotic CHL orbifolds

In this section, we construct the one-loop vacuum amplitude in CHL models obtained as a
freely acting ZN -orbifold of the standard heterotic string on T d with N prime. From this,
we deduce the helicity supertrace for perturbative BPS states, and the one-loop contribution
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to the F 4 and (∇Φ)4 couplings. We start with the simplest model with N = 2, and then
generalize the construction to N = 3, 5, 7.

A.1 Z2 orbifold

The simplest CHL model is obtained by orbifolding the E8×E8 heterotic string compactified
on T d, by an involution σ which exchanges the two E8 gauge groups and performs a translation
by half a period along one circle in T d [14]. This perturbative BPS spectrum in this model was
further studied in [66, 26]. The symmetry σ exists only on a codimension 8d space inside the
Narain moduli space Gd+16,d and preserves only a U(1)2d+8 subgroup of the original U(1)2d+16

gauge symmetry, corresponding to the usual 2d Kaluza–Klein and Kalb-Ramond gauge fields,
and the Cartan torus of the diagonal combination of the two E8 gauge groups. To implement
the quotient by σ, it is simplest to work at the point in Gd+16,d where the lattice factorizes
as

Λd+16,d = E8 ⊕ E8 ⊕ IId,d . (A.1)

The integrand of the one-loop vacuum amplitude of the original heterotic string is then

A = ZE8×E8 × ΓIId, d ×
1

2

∑

α,β∈{0,1}
(−1)αβ+α+β

ϑ
4[α
β

]

τ4
2 η

8η12 (A.2)

where

ZE8×E8 =

[∑
Q1∈E8

q
1
2
Q2

1

η8

] [∑
Q2∈E8

q
1
2
Q2

2

η8

]
=

[E4(τ)]2

η16
(A.3)

is the partition function of the 16 chiral bosons on the E8 × E8 root lattice, and the last
factor in (A.2) represents the contribution of the transverse bosonic and fermionic oscillators,
while the sum over α, β implements the GSO projection. As a consequence of space-time
supersymmetry, the integral (A.2) vanishes pointwise, but it will no longer be so in the
presence of vertex operators. Note that the right-moving part in (A.2) will not play any role
in our case, and will be later replaced by an insertion of the polynomial Pabcd (2.26).

Following standard rules, the one-loop partition function of the orbifold by σ is obtained
by replacing A by a sum 1

2

∑
h,g∈{0,1}A

[
h
g

]
, where A

[
h
g

]
is obtained by twisting the bound-

ary conditions of the fields by σg along the spatial direction of the string, and σh along the
Euclidean time direction, so that 1

2(A
[

0
0

]
+A

[
0
1

]
) counts σ-invariant states in the untwisted

sector, while 1
2(A

[
1
0

]
+A

[
1
1

]
) counts σ-invariant states in the twisted sector. Modular invari-

ance permutes the three blocks
[

0
1

]
,
[

1
0

]
,
[

1
1

]
according to

A
[
h
g

] (
aτ+b
cτ+d

)
= A

[
ah+cg
bh+gd

]
(τ) (A.4)

where h, g are treated modulo 2. In particular, the block
[

0
1

]
is invariant under the Hecke

congruence subgroup Γ0(2), and all other blocks can be obtained by acting on it with elements
of SL(2,Z)/Γ0(2) = {1, S, ST}.

In the case at hand, the involution σ exchanges Q1 ↔ Q2 and the corresponding oscillators,
so σ-invariant states must have Q1 = Q2 and the same oscillator state on both factors, thus

ZE8×E8

[
0
1

]
(τ) =

∑
Q∈E8

qQ
2

η8(2τ)
. (A.5)

43



SciPost Physics Submission

The two remaining orbifold blocks are then fixed by modular covariance,

ZE8×E8

[
0
0

]
=
E2

4(τ)

η16(τ)
, ZE8×E8

[
0
1

]
=
E4(2τ)

η8(2τ)
,

ZE8×E8

[
1
0

]
=
E4( τ2 )

η8( τ2 )
, ZE8×E8

[
1
1

]
=

E4( τ+1
2 )

e2iπ/3η8( τ+1
2 )

,

(A.6)

As for the action of σ on the torus T d, it can be taken into account by replacing the partition
function ΓIId, d by

ΓIId, d
[
h
g

]
= τ

d/2
2

∑

Q∈IId,d+
h
2 δ

(−1)g δ·Q q
1
2
Q2
L q̄

1
2
Q2
R . (A.7)

where δ must be null modulo 2, and depends on the choice of circle S1 inside T d. The resulting
one-loop vacuum amplitude is then the modular integral of

Aorb =
1

2

∑

h,g∈{0,1}
ZE8×E8

[
h
g

]
ΓIId, d

[
h
g

]
× 1

2

∑

α,β∈{0,1}
(−1)αβ+α+β

ϑ
4[α
β

]

τ4
2 η

8η12 , (A.8)

where the one-half factor is explained above (A.4). Now, a key observation is that the nu-
merator in the blocks ZE8×E8

[
h
g

]
for (h, g) 6= (0, 0) can be written as a partition functions for

the lattice Λ = E8[2] and for its dual Λ∗ = E8[1/2],

ZE8×E8

[
0
1

]
=

1

η8(2τ)

∑

Q∈E8[2]

q
1
2Q

2

ZE8×E8

[
1
0

]
=

1

η8( τ2 )

∑

Q∈E8[1/2]

q
1
2Q

2

ZE8×E8

[
1
1

]
=

1

e2iπ/3η8( τ+1
2 )

∑

Q∈E8[1/2]

(−1)Q
2
q

1
2Q

2

.

(A.9)

Moreover, the untwisted, unprojected partition function satisfies

ZE8×E8

[
0
0

]
=
E4(2τ)

η8(2τ)
+
E4( τ2 )

η8( τ2 )
+

E4( τ+1
2 )

e2iπ/3η8( τ+1
2 )

=ZE8×E8

[
0
1

]
+ ZE8×E8

[
1
0

]
+ ZE8×E8

[
1
1

]
.

(A.10)

This relation can be checked using the explicit form of the blocks ZE8×E8

[
0
1

]
, but more

conceptually, it follows by decomposing ZE8×E8

[
0
0

]
, the character of the level 1 representation

of Ê8 ⊕ Ê8, into characters of level 2 representations of the diagonal Ê8 [67]. It follows from
(A.9), (A.10) that the one-loop amplitude (A.8) can be written as

Aorb =
1

2

′∑

h,g∈{0,1}
Z̃d+8,d

[
h
g

]
× 1

2

∑

α,β∈{0,1}
(−1)αβ+α+β

ϑ
4[α
β

]

τ4
2 η

12 (A.11)

where the sum over (h, g) no longer includes (0, 0). Here, we defined the eta products

∆8

[
0
1

]
=η8(τ)η8(2τ) = 2−4η12ϑ4

2 ≡ ∆8(τ)

∆8

[
1
0

]
=η8(τ)η8( τ2 ) = η12ϑ4

4 = ∆8( τ2 ),

∆8

[
1
1

]
=e2iπ/3 η8(τ)η8( τ+1

2 ) = −η12ϑ4
3 = ∆8( τ+1

2 ), ,

(A.12)
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satisfying
∆8

[
0
1

]
(−1/τ) = 2−4τ8 ∆8

[
1
0

]
(τ) , ∆8

[
1
0

]
(τ + 1) = ∆8

[
1
1

]
(τ) , (A.13)

and the partition functions Z̃d+8,d

[
h
g

]
are defined over Λ̃d+8,d = E8[2] ⊕ IId,d and its dual

Λ̃∗d+8,d = E8[1/2]⊕ IId,d:

Z̃d+8,d

[
0
1

]
=

τ
d/2
2

∆8

[
0
1

]
∑

Q∈Λ̃d+8,d

[
1 + (−1)δ·Q

]
q

1
2Q

2
L q̄

1
2Q

2
R

Z̃d+8,d

[
1
0

]
=

τ
d/2
2

∆8

[
1
0

]
[ ∑

Q∈Λ̃∗d+8,d

+
∑

Q∈Λ̃∗d+8,d+ 1
2
δ

]
q

1
2Q

2
L q̄

1
2Q

2
R

Z̃d+8,d

[
1
1

]
=

τ
d/2
2

∆8

[
1
1

]
[ ∑

Q∈Λ̃∗d+8,d

+
∑

Q∈Λ̃∗d+8,d+ 1
2
δ

]
(−1)Q

2
q

1
2Q

2
L q̄

1
2Q

2
R

(A.14)

These relations were derived at the special point where the lattice Λ̃d+8,d is factorized, but it
is now clear that they hold at arbitrary points on the moduli space Gd+8,d ⊂ Gd+16,d where
the Z2 symmetry exists.

Choosing δ = (0d; 0d−1, 1), so that the involution σ acts by a translation along the d-th
circle by a half period, this can be further written as

ΓΛd+ 8, d
≡ τd/22

∑

Q∈Λd+8,d

q
1
2Q

2
L q̄

1
2Q

2
R =

1

2
∆8

[
0
1

]
Z̃d+8,d

[
0
1

]

(25/τ4)ΓΛd+ 8, d
(−1/τ) = ΓΛ∗d+ 8, d

≡ τd/22

∑

Q∈Λ∗d+8,d

q
1
2Q

2
L q̄

1
2Q

2
R = ∆8

[
1
0

]
Z̃d+8,d

[
1
0

]

ΓΛ∗d+ 8, d

[
(−1)Q

2] ≡ τd/22

∑

Q∈Λ∗d+8,d

(−1)Q
2
q

1
2Q

2
L q̄

1
2Q

2
R = ∆8

[
1
1

]
Z̃d+8,d

[
1
1

]

(A.15)

where Λd+8,d is related to Λ̃d+8,d by rescaling a II1,1 summand13,

Λd+8,d = E8[2]⊕ II1,1[2]⊕ IId−1,d−1 . (A.16)

Here II1,1[2] is the usual sum over momentum md and winding nd, with md running only over
even integers. The dual lattice is

Λ∗d+8,d = E8[1/2]⊕ II1,1[1/2]⊕ IId−1,d−1 , (A.17)

where II1,1[1/2] is the usual sum over momentum md and winding nd, with nd running over
Z/2. For d = 6, since Λ14,6 ⊂ Λ∗14,6, we see that the electric charges carried by excitations
of the heterotic string lie in the lattice Λe = Λ∗14,6, in agreement with the result stated
in Table 1. Moreover, it is apparent that the degeneracy of perturbative BPS states with
charge Q ∈ Λ∗d+8,d, Q /∈ Λd+8,d in the twisted sector is given by the coefficient of q−Q

2/2 in

1/∆8

[
1
0

]
= 1/∆8(τ/2), or equivalently the coefficient of q−Q

2
in 1/∆8, while the degeneracy

13Note that this rescaling implies an extra volume factor upon Poisson resummation, namely ΓΛ∗
d+ 8, d

(τ) =

(25/τ4)ΓΛd+ 8, d(−1/τ).
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of perturbative BPS states with charge Q ∈ Λd+8,d ⊂ Λ∗d+8,d has an additional contribution

from the coefficient of q−Q
2/2 in 1/∆8, in agreement with (2.14) and (2.15), and the analysis

in [66, 26].
At last, we can turn to the one-loop F 4 amplitude in this model. As is the case in the usual

heterotic string, the insertion of four vertex operators replaces the right-moving contribution
in the vacuum amplitude (A.11) by an insertion of the polynomial Pabcd in (2.26). Thus, we
get

F (1-loop)

abcd = R.N.

∫

SL(2,Z)\H

dτ1dτ2

τ 2
2

∑

γ∈Γ0(2)\SL(2,Z)

ΓΛd+ 8, d
[Pabcd]

∆8

∣∣∣∣
γ

, (A.18)

where ΓΛd+ 8, d
[Pabcd] denotes the lattice partition function ΓΛd+ 8, d

[
h
g

]
with an insertion of the

polynomial P as in (2.25). Equivalently, we can unfold the integral over a fundamental domain
Γ0(2)\H for the action of Γ0(2) on H, at the expense of keeping only the identity in the sum
over cosets,

F (1-loop)

abcd = R.N.

∫

Γ0(2)\H

dτ1dτ2

τ2
2

ΓΛd+ 8, d
[Pabcd]

∆8
, (A.19)

which demonstrates (2.24) in this case.

A.2 ZN orbifold with N = 3, 5, 7

The construction detailed in the previous section can be easily generalized to ZN orbifolds,
provided one can find a point in the moduli space Gd+16,d where ZN acts on the lattice Λd+16,d

by a permutation with cycle shape 1kNk. It turns out that for N = 3, 5, 7, such a lattice can
be obtained by applying a Wick rotation on the Niemeier lattices D4

6, D6
4 and D8

3, respectively.
Indeed, recall that given an even self-dual Euclidean lattice

Λ = ∪(λ,λ′)∈G(Dk + λ)⊕ (Λ′ + λ′) (A.20)

of dimension n, where the glue code G is a given sublattice of D∗k/Dk⊕Λ′∗/Λ′, one can obtain
an even self-dual lattice of dimension n−8, by replacing Dk by Dk−8, while keeping the same
glue code G, using the fact that Gk = D∗k/Dk is invariant under k 7→ k − 814,

Λ̂ = ∪(λ,λ′)∈G(Dk−8 + λ)⊕ (Λ′ + λ′) . (A.21)

If 1 ≤ k < 8, then Dk−8 should be understood as D8−k[−1], so that the new lattice is a
Lorentzian lattice with signature (n − k, 8 − k) [68, §A.4]. In this way, starting from the
Niemeier lattice Λ = DN+1

k for N = 3, 5, 7, which is symmetric under cyclic permutations of

the N + 1 Dk factors, we obtain an even self-dual lattice Λ̂ = DN
k ⊕ D8−k[−1] of signature

(Nk, 8− k) with a ZN symmetry σ acting by cyclic permutations of the N Dk factors. Using
the explicit description of the glue code for Niemeier lattices given in [69, Table 16.1], it is
possible to check that the only elements (λ1, . . . λN+1) in the glue code G ⊂ GN+1

k which are
invariant under ZN are those of the form (λ, . . . , λ) with λ running over Gk. The partition
function of the lattice Λ̂ with an insertion of the element σg with g 6= 0 modN is thus

Zk,8−k
[

0
g

]
=
ϑk3+ϑk4

2ηk
(Nτ)

ϑ8−k
3 +ϑ8−k

4

2η8−k +
ϑk3−ϑk4

2ηk
(Nτ)

ϑ8−k
3 −ϑ8−k

4

2η8−k

+
ϑk2+ϑk1

2ηk
(Nτ)

ϑ8−k
2 +ϑ8−k

1

2η8−k +
ϑk2−ϑk1

2ηk
(Nτ)

ϑ8−k
2 −ϑ8−k

1

2η8−k .

(A.22)

14Indeed, Gk = Z2 ⊕ Z2 is k is even, or Z4 is k is odd, with the 4 elements in one-to-one correspondence
with the highest weights 0, s, v, c of the adjoint, spinor, vector and conjugate spinor representations.
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The other blocks are obtained by modular covariance, leading for h 6= 0 modN to

Zk,8−k
[
h
0

]
=
ϑk3+ϑk2

2ηk

( τ
N

)ϑ8−k
3 +ϑ8−k

2

2η8−k +
ϑk3−ϑk2

2ηk

( τ
N

)ϑ8−k
3 −ϑ8−k

2

2η8−k

+
ϑk4+ϑk1

2ηk

( τ
N

)ϑ8−k
4 +ϑ8−k

1

2η8−k +
ϑk4−ϑk1

2ηk

( τ
N

)ϑ8−k
4 −ϑ8−k

1

2η8−k ,

(A.23)

while the remaining blocks with g 6= 0 modN follow by acting with τ → τ + 1,

Zk,8−k
[
h
g

]
(τ) = Zk,8−k

[
h
0

]
(τ + gh−1) (A.24)

where h−1 is the inverse of h in the multiplicative group ZN . The untwisted, unprojected
block is then

Zk,8−k
[

0
0

]
= Zk,8−k

[
0
1

]
+
N−1∑

g=0

Zk,8−k
[

1
g

]
, (A.25)

i.e. a sum over images of ZΛ̂

[
0
1

]
under Γ0(N)\SL(2,Z) = {1, S, TS, . . . , TN−1S}. As a

consistency check, one can verify that the analogous sum for the Euclidean lattice Λ reproduces
the partition function of the Niemeier lattice,

ΘDN+1
k

η24
= Z2k−8

[
0
1

]
+
N−1∑

g=0

Z2k−8

[
1
g

]
=
E3

4

η24
+ 48k − 768 , (A.26)

where Z2k−8

[
0
1

]
is obtained by replacing ϑ8−k

i /η8−k by (ϑi/η)k in (A.22).
The integrand of the one-loop vacuum amplitude follows in the same way as in the previous

subsection, by combining the orbifold blocks Zk,8−k
[
h
g

]
(τ) for the lattice Λ̂ with the shifted

partition function for the remaining d− 8 + k compact directions (where d is assumed to be
greater that 8− k)

ΓΛd− 8 + k, d− 8 + k

[
h
g

]
= τ

d−8+k
2

2

∑

Q∈Λd−8+k,d−8+k+
h
N δ

(−1)
2
N
g δ·Q q

1
2Q

2
L q̄

1
2Q

2
R . (A.27)

After eliminating Zk,8−k
[

0
0

]
using (A.25), grouping terms into an orbit of Γ0(N)\SL(2,Z),

and rescaling a II1,1 factor in Λd+2k−8,d as15

Λd+2k−8,d = Dk[N ]⊕D8−k[−1]⊕ II1,1[N ]⊕ IId+k−9,d+k−9 , (A.28)

with a glue code {(0, 0), (s, s), (v, v), (c, c)} for the first two factors, we find

Aorb =


ΓΛd+ 2k − 8, d

∆k

[
0
1

] +
1

N

N−1∑

g=0

ΓΛ∗d+ 2k − 8, d
[(−1)gQ

2
]

∆k

[
1
g

]


× 1

2

∑

α,β∈{0,1}
(−1)αβ+α+β

ϑ
4[α
β

]

τ4
2 η

12 (A.29)

where we defined the eta products

∆k

[
0
1

]
= η(τ)k η(Nτ)k , ∆k

[
1
g

]
= e

iπgk
12 η(τ)k η

( τ+g
N

)k
(A.30)

15Note that this rescaling implies ΓΛ∗
d+ 2k − 8, d

(τ) = (N
k
2

+1/τk−4)ΓΛd+ 2k − 8, d(−1/τ).
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and

ΓΛd+ 2k − 8, d
= τ

d
2

2

∑

Q∈Λd+2k−8,d

q
1
2Q

2
L q̄

1
2Q

2
R

ΓΛ∗d+ 2k − 8, d

[
(−1)gQ

2]
= τ

d
2

2

∑

Q∈Λ∗d+2k−8,d

(−1)gQ
2
q

1
2Q

2
L q̄

1
2Q

2
R .

(A.31)

From this description, it is apparent that the degeneracy of twisted perturbative BPS
states with charge Q ∈ Λ∗d+2k−8,d, Q /∈ Λd+2k−8,d is given by the coefficient of q−Q

2/2 in

1/∆k

[
1
0

]
= 1/∆k(τ/N), or equivalently the coefficient of q−NQ

2/2 in 1/∆k, while the degen-
eracy of perturbative BPS states with charge Q ∈ Λd+2k−8,d ⊂ Λ∗d+2k−8,d has an additional

contribution from the coefficient of q−Q
2/2 in 1/∆k, in agreement with (2.14) and (2.15). For

four-dimensional vacua (d = 6), we see that the electric charges carried by perturbative BPS
states lie in the lattice Λe = Λ∗m where

N = 3 : Λm = D6[3]⊕D2[−1]⊕ II1,1[3]⊕ II3,3

N = 5 : Λm = D4[5]⊕D4[−1]⊕ II1,1[5]⊕ II1,1

N = 7 : Λm = D3[7]⊕D5[−1]⊕ II1,1[7]

(A.32)

This is in fact in agreement with the results stated in Table 1, thanks to the isomorphisms

D6[3]⊕D2[−1] ' A2 ⊕A2 ⊕ II2,2[3]

D4[5]⊕D4[−1] ' II2,2[5]⊕ II2,2

D3[7]⊕D5[−1] '
(
−4 −1
−1 −2

)
⊕ II1,1[7]⊕ II2,2

(A.33)

Indeed, both lattices on each line have the same genus, in particular the same discriminant
group L∗/L = ZkN . For N = 2 (hence k = 8), Eq. (A.28) continues to hold with the
understanding that D8[2]⊕D0[−1] ≡ E8[2].

Finally, we can obtain the one-loop F 4 amplitude by replacing the last factor in (A.29) by
an insertion of the polynomial Pabcd in (2.26), and integrating over the fundamental domain
H/SL(2,Z). As before, the integral can be unfolded onto a fundamental domain Γ0(N)\H
for the action of Γ0(N) on H, at the expense of keeping only the block

[
0
1

]
,

F (1-loop)

abcd = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛd+ 2k − 8, d
[Pabcd]

∆k
, (A.34)

where ∆k ≡ ∆k

[
0
1

]
, thus establishing (2.24) for this class of models.

B Ward identity in the degeneration O(p, q)→ O(p− 1, q − 1)

In section 3.2, we proved that the differential equations (3.17) and (3.22) are satisfied by the
one-loop modular integral Fabcd defined in (3.28). Here, we verify explicitly that the differential
equation in (3.22) is verified by each Fourier mode in the degeneration limit O(p, q)→ O(p−
1, q−1), and that the solution is uniquely determined up to a moduli-independent summation
measure.
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Using the decomposition (4.4) and changing variable R = e−φ for the non-compact Cartan
generator of O(p, q), the metric on moduli space reads

2Pab̂P
ab̂ = 2dφ2 + 2Pαβ̂P

αβ̂ + e2φ
(
pLα IpL

α
J + pR α̂ IpR

α̂
J

)
daI daJ (B.1)

with

P00̂ = −dφ , P0α̂ =
1√
2
eφpR α̂ I daI , Pα0̂ =

1√
2
eφpLα I daI . (B.2)

Beware that in this section we use the same notations pL and pR for both O(p, q) and O(p−
1, q − 1), so pLα IQ

I is not pLa IQI for a = α.
One can compute the covariant derivative in tangent frame such that

dZa = 2P bĉ∂bĉZa = 2P bĉ(DbĉZa −Bbĉ adZd), (B.3)

and similarly for hatted indices. This way one computes that, for any tensor Fa = (F0, Fα, Fα̂, F0̂),
Fb = (F0, Fβ, Fβ̂, F0̂), ...

D00̂Fa = −1

2

∂

∂φ
Fa ,

Dα0̂Fa =
1√
2
e−φv-1I

α
∂

∂aI
Fa +

1

2
(Fα,−δαβF0, 0, 0)

D0α̂Fa =
1√
2
e−φv-1I

α̂
∂

∂aI
Fb +

1

2

(
0, 0,−δαβF0̂, Fα̂

)
, (B.4)

and finally the operator Dαβ will only be acting on the moduli fields through the projectors
pIL γ , pIR γ̂ :

Dαβ̂pILγ = 1
2δαγp

I
Rβ̂, Dαβ̂pIL γ̂ = 1

2δβ̂γ̂p
I
Rα . (B.5)

Recall the differential equation (2.23)

Dĉ(eDf) ĉFabcd =
2− q

4
δefFabcd + (4− q)δa)(eFf)(bcd + 3δ(abFcd)ef . (B.6)

For brevity we define the vector ~F

~F = (F1111, F111α, F11αβ, F1αβγ , Fαβγδ)
ᵀ (B.7)

and ~FQ such that ~F =
∑

Q
~FQe

2πiQ·a. The first component (e, f) = (0, 0)gives

4D0
ĉD0ĉ

~FQ = (∂φ(∂φ+q−1)−8π2e−2φQ2
R)~FQ = −




5(q − 6)F1111

4(q − 5)F111α

3(q − 4)F11αβ − 2δαβF1111

2(q − 3)F1αβγ − 6δ(αβF111γ)

(q − 2)Fαβγδ − 12δ(αβF11γδ)



. (B.8)

Then the action of the differential operator

2D0
ĉDηĉ ~FQ + 2DηĉD0ĉ

~FQ = −2πi
√

2e−φ(QLη(∂φ + q − 2) + 2QR α̂Dηα̂)~FQ

−(∂φ +
q − 2

2
)




4F111η

3F11αη − δηαF1111

2F1αβη − 2δη(αF111β)

Fαβγη − 3δη(αF11βγ)

−4δη(αF1βγδ)




, (B.9)
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allows to obtain the second component (e, f) = (0, α) of the differential equation

−2πi
√

2e−φ(QLη(∂φ + q − 2) + 2QR α̂Dηα̂)~FQ

=




4(∂φ + 4)F111η

3(∂φ + 3)F11αη − δηα(∂φ + q − 3)F1111

2(∂φ + 2)F1αβη − 2δη(α(∂φ + q − 3)F111β) + 2δαβF111η

(∂φ + 1)Fαβγη − 3δη(α(∂φ + q − 3)F11βγ) + 6δ(αβF11γ)η

−4δη(α(∂φ + q − 3)F1βγδ) + 12δ(αβF1γδ)η




. (B.10)

The final differential operator for (e, f) = (η, ϑ)

4D(η
ĉDϑ)ĉ

~FQ = (4D(η
γ̂Dϑ)γ̂ + δηϑ∂φ − 8π2e−2φQLηQLϑ)~FQ

+4πi
√

2e−φQL (η




4F111ϑ)

3F11α|ϑ) − δϑ)αF1111

2F1αβ|ϑ) − 2δϑ)(αF111β)

Fαβγ|ϑ) − 3δϑ)(αF11βγ)

−4δϑ)(αF1βγδ)




(B.11)

+




12F11ηϑ − 4δηϑF1111

6F1αηϑ − 3δηϑF111α − 7δα(ηF111ϑ)

2Fαβηϑ − 2δηϑF11αβ − 10δα)(ηF11ϑ)(β + 2δα)(ηδϑ)(βF1111

−δηϑF1αβγ − 9δα)(ηF1ϑ)(βγ + 6δα)(ηδϑ)(βF111γ

−4δα)(ηFϑ)(βγδ + 12δα)(ηδϑ)(βF11γδ




,

gives a third differential equation

(4D(η
γ̂Dϑ)γ̂ + δηϑ∂φ − 8π2e−2φQLηQLϑ)~FQ + 4πi

√
2e−φQL (η




4F111ϑ)

3F11α|ϑ) − δϑ)αF1111

2F1αβ|ϑ) − 2δϑ)(αF111β)

Fαβγ|ϑ) − 3δϑ)(αF11βγ)

−4δϑ)(αF1βγδ)




= −




(q − 6)δηϑF1111

(q − 5)δηϑF111α + (q − 11)δα(ηF111ϑ)

(q − 4)δηϑF11αβ − 2δαβF11ηϑ + 2(q − 9)δα)(ηF11ϑ)(β + 2δα)(ηδϑ)(βF1111

(q − 3)δηϑF1αβγ − 6δ(αβF1γ)ηϑ + 3(q − 7)δα)(ηF1ϑ)(βγ + 6δα)(ηδϑ)(βF111γ

(q − 2)δηϑFαβγδ − 12δ(αβFγδ)ηϑ + 4(q − 5)δα)(ηFϑ)(βγδ + 12δα)(ηδϑ)(βF11γδ




(B.12)

One can then check that the only exponentially suppressed solution to the three equations
(B.8), (B.10) and (B.12) is given, up to a moduli-independent prefactor, by

~FQ =




F
(4)
1

QLαF
(3)
1

QLαQLβF
(2)
1 + δαβF

(2)
2

QLαQLβQLγF
(1)
1 + δ(αβQLγ)(Q)F

(1)
2

QLαQLβQLγQLδF
(0)
1 + δ(αβQLγQLδ)F

(0)
2 + δ(αβδγδ)F

(0)
3




, (B.13)
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F
(k)
1 =

( i√
2

)k
2
q−2

2 (2π)
q−3−2k

2 R
q−1

2

√
2|QR|2

2k+3−q
2

K 2k+3−q
2

(2πR
√

2|QR|2)

F
(k)
2 = −

( i√
2

)k
2
q−4

2
(4− k)(3− k)

2
(2π)

q−5−2k
2 R

q−3
2

√
2|QR|2

2k+5−q
2

K 2k+5−q
2

(2πR
√

2|QR|2)

F
(0)
3 = 3× 2

q−6
2 (2π)

q−7
2 R

q−5
2

√
2|QR|2

7−q
2 K 7−q

2
(2πR

√
2|QR|2) , (B.14)

In particular, the tensorial part of the function ~FQ is polynomial in QLα, . . ., and the rest only
depends on the moduli through Q2

R and R = e−φ. We conclude that the Fourier coefficient
~FQ for a fixed Q is uniquely determined by the differential equations (3.17) and (3.22) up to
an overal constant corresponding to the measure factor.

The power-low terms satisfy to the same equations for Q = 0. One easily computes that
the only two solutions are such that

~F =




(7− q)(9− q)c0R
q−6

0
(7− q)c0R

q−6δαβ
0

3c0R
q−6δ(αβδγδ) +RF p−1,q−1

αβγδ


 , (B.15)

for an arbitrary constant c0 and a solution F p−1,q−1
αβγδ to (3.17) and (3.22) on Gp−1,q−1.

C Polynomials appearing in Fourier modes

In the degeneration limit O(p, q) → O(p − 1, q − 1) studied in §4, the monomials

P̃
(`)
αh+1...α4(Q) with ` ≥ 0 are of degree 4− 2`− h in Q, and defined by

∑

`≥0

P̃
(`)
αβγδ(Q) = QL,αQL,βQL,γQL,δ −

3

2π
δ(αβQL,γQL,δ) +

3

16π2
δ(αβδγδ),

∑

`≥0

P̃
(`)
αβγ(Q) = QL,αQL,βQL,γ −

3

4π
QL,(αδβγ),

∑

`≥0

P̃
(`)
αβ (Q) = QL,αQL,β −

1

4π
δαβ,

∑

`≥0

P̃ (`)
α (Q) = QL,α,

∑

`≥0

P̃ (`)(Q) = 1.

(C.1)

In the degeneration limit O(p, q) → O(p − 2, q − 2) studied in §5, the monomials
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P(`)
µ1...µh αh+1...α4(Q′i, S) with ` ≥ 0 are of degree 4− 2`− h in Q′i, and defined by

∑

`≥0

P(`)
αβγδ(Q

′i, S) = Q′iL,(αQ
′j
L,βQ

′k
L,γQ

′l
L,δ)MijMkl −

3

2π
δ(αβQ

′i
L,γQ

′j
L,δ)Mij +

3

16π2
δ(αβδγδ),

∑

`≥0

P(`)
µαβγ(Q′i, S) = Q′L,µ(αQ

′i
L,βQ

′j
L,γ)Mij −

3

4π
Q′L,µ(αδβγ),

∑

`≥0

P(`)
µναβ(Q′i, S) = Q′L,µαQ

′
L,νβ −

1

4π
δαβ

Q′µ ·Q′ν
Q′τ ·Q′τ

,

∑

`≥0

P(`)
µνρα(Q′i, S) = Q′L,µα

Q′ν ·Q′ρ
Q′τ ·Q′τ

,

∑

`≥0

P(`)
µνρσ(Q′i, S) =

Q′(µ ·Q′ν Q′ρ ·Q′σ)

(Q′τ ·Q′τ )2
,

(C.2)

where Mij = viµv
µ
j is the torus metric (5.4), and Q′µ ·Q′ν = 1

S2

(
(Q+ S1P )2 (Q+ S1P )S2P

(Q+ S1P )S2P S2
2P

2

)
.

D Tensorial Eisenstein series

In the degeneration limit O(p, q)→ O(p−2, q−2) studied in §5, the power-like terms in (5.29)
involve tensorial Eisenstein series that we rewrote as tensorial derivatives of real analytic
Eisenstein series, using Dµν the traceless differential operator on SL(2,R)/O(2). Here we
exhibit these relations, and show how this operator can be rewritten in terms of lowering and
raising operators Dw and Dw.

The non-holomorphic Eisenstein series

Es,w(S) =
1

2ζ(2s)

∑

(c,d)∈Z2r{0,0}

Ss2
(c+ dS)s+

w
2 (c+ dS̄)s−

w
2

(D.1)

has modular weight (w2 ,−w
2 ) under SL(2,Z). The raising and lowering operators, Dw =

2iS2∂S + w
2 and Dw = −2iS2∂S̄ − w

2 act on Es,w(S) according to

Dw Es,w =
(
s+

w

2

)
Es,w+2, Dw Es,w =

(
s− w

2

)
Es,w−2. (D.2)

Non-holomorphic Eisenstein series are thus eigenmodes of the laplacian ∆w = D̄w+2Dw with
eigenvalue

(
s+ w

2

)(
s− w

2 − 1
)
.

Alternatively, one can denote the momenta and winding along a torus as zµ = miv
i
µ with

(m1,m2) = (c, d), vµ
i is the vielbein defined in (5.4), such that zµz

µ = 1
S2
|c+dS|2 is invariant

under SL(2,Z). The traceless differential operator Dµν acts as

Dµνzρ =
1

2
δρ(µzν) −

1

4
δµνzρ. (D.3)

One can show that they are related to the lowering and raising operator through

Dµν = −1

2
σ+
µν Dw −

1

2
σ−µν D̄w (D.4)
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where σ± = 1
2(σ3 ± iσ1) and σi are the Pauli matrices. By acting on non-holomorphic Eisen-

stein series of weight 0 with Dµν and D(µνDρσ), one obtains the relations

s

2
σ+
µνEs,2 +

s

2
σ−µνEs,−2 =

s

2ζ(2s)

′∑

(j,p)

1

(zτzτ )s

(
zµzν
zτzτ

− 1

2
δµν

)

s(s+ 1)

4
σ+

(µνσ
+
ρσ)Es,4 +

s(s− 1)

4
σ−(µνσ

−
ρσ)Es,−4 + s(s− 1)

(
σ+

(µνσ
−
ρσ) −

1

8
δ(µνδρσ)

)
Es,0 =

s(s+ 1)

2ζ(2s)

′∑

(j,p)

1

(zτzτ )s

(
zµzνzρzσ
(zτzτ )2

−
δ(µνzρzσ)

zτzτ
+

1

8
δ(µνδρσ)

)

(D.5)

where the second line is traceless.
Now, the components F

(p,q),1,0
αβµν and F

(p,q),1,0
µνρσ in (5.10) were obtained originally as

F
(p,q),1,0
αβµν = Rq−6 c(0)

4π2

(8− q
2

) 1

2ζ(8− q)
′∑

(j,p)

1

(zτzτ )
8−q

2

zµzν
zτzτ

,

F (p,q),1,0
µνρσ = Rq−6 c(0)

2π2

(8− q
2

)(10− q
2

) 1

2ζ(8− q)
′∑

(j,p)

1

(zτzτ )
8−q

2

zµzνzρzσ
(zτzτ )2

(D.6)

They can be written as in (5.10) by rewritting the relations above, for s 6= −1

s

2ζ(2s)

′∑

(j,p)

1

(zτzτ )s
zµzν
zτzτ

=
s

2

(
δµνEs,0 + σ+

µνEs,2 + σ−µνEs,−2

)
,

s(s+ 1)

2ζ(2s)

′∑

(j,p)

1

(zτzτ )s
zµzνzρzσ
(zτzτ )2

=
s(s+ 1)

4
σ+

(µνσ
+
ρσ)Es,4 +

s(s− 1)

4
σ−(µνσ

−
ρσ)Es,−4

+
s(s+ 1)

2

(
δ(µνσ

+
ρσ)Es,2 + δ(µνσ

−
ρσ)Es,−2

)

+
s2

2

(
σ+

(µνσ
−
ρσ) −

1

4
δ(µνδρσ)

)
Es,0 +

3s(s+ 1)

8
δ(µνδρσ)Es,0

(D.7)

In other words, all the tensorial series in (5.29) appearing as low-energy propagators on the

torus can be rewritten a combination of Es,0, DEs,0, DEs,0, D2Es,0 and D2Es,0. This is used
extensively to rewrite the 1-PI effective action in four dimensions (5.39).

Similarly, they can also be rewritten using traceless differential operators Dµν and D2
µνρσ =

D(µνDρσ) − 1
4δ(µνδρσ)DτκDτκ

s

2ζ(2s)

′∑

(j,p)

1

(zτzτ )s
zµzν
zτzτ

=
(s

2
δµν −Dµν

)
Es,0

s(s+ 1)

2ζ(2s)

′∑

(j,p)

1

(zτzτ )s
zµzνzρzσ
(zτzτ )2

=
(
D2
µνρσ − (s+ 1)δ(µνDρσ) +

3

8
s(s+ 1)δ(µνδρσ)

)
Es,0

(D.8)
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E Poincaré series and Eisenstein series for O(p, q,Z)

In this section, we evaluate the modular integrals (3.28) and (3.29) using the method developed
in [50, 44], which keeps invariance under the automorphism group O(p, q,Z) of the lattice Λp,q
manifest. The result is expressed as a sum over lattice vectors with fixed norm, which is a
special type of Poincaré series for O(p, q,Z). In §E.2, we use a similar method to construct
Eisenstein series for O(p, q,Z).

E.1 Poincaré series representation of F p,q

The method developed in [50, 44] relies on expressing the factor multiplying the lattice sum
in the integrand in terms of a special type of Poincaré series for Γ0(N), known as the Niebur-
Poincaré series of weight w ∈ 2Z,

FN (s, κ, w; τ) =
1

2

∑

γ∈Γ∞\Γ0(N)

Ms,w(−κτ2) e−2πiκτ1 |wγ , (E.1)

where Ms,w(y) is the Whittaker function defined in [50, Eq. (2.7)], and |wγ is the Petersson
slash operator, [f |wγ](τ) = (cτ + d)−kf(aτ+b

cτ+d) for γ =
(
a b
c d

)
. The series converges absolutely

for Re(s) > 1, grows as Γ(2s)

Γ(s+
w
2 )
q−κ near the cusp τ → i∞ and is regular at the cusp τ = 0. It

transforms under the Maass raising and lower operators according to

DFN (s, κ, w) =2κ
(
s+ w

2

)
FN (s, κ, w + 2) ,

D̄FN (s, κ, w) =
1

8κ

(
s− w

2

)
FN (s, κ, w − 2) ,

(E.2)

which implies that it is an eigenmode of the weight w Laplacian on H with eigenvalue (s −
w
2 )(s − 1 + w

2 ). In particular, for w < 0 and s = 1 − w
2 , FN (s, κ, w) is a harmonic Maass

form of weight w. In cases where there exists no cusp form of weight 2 − w, it is actually a
weakly holomorphic modular form of weight w [49]. The Fourier expansion of FN (s, κ, w) ≡
F∞(s, κ, w; τ) around the cusps at ∞ and at 0 is given in [44, Eq. (5.8-10)], in terms of the
Kloosterman sums Z∞∞(m,n; s) and Z0∞(m,n; s) defined in Eq. A.3 and A.4 of loc. cit.

For N = 1, one has, by matching the residue of the pole at τ = i∞,

1

∆(τ)
= lim

s→7

F1(s, 1,−12; τ)

Γ(2s)
. (E.3)

For N = 2, 3, 5, 7, using the fact that ∆k is invariant under the Fricke involution, one has
instead

1

∆k(τ)
= lim

s→1+ k
2

[
FN (s, 1,−k; τ) + F̂N (s, 1,−k; τ)

]

Γ(2s)
, (E.4)

where F̂N (s, κ, w; τ) is the image of FN (s, κ, w; τ) under the Fricke involution.16

16 For N = 7, 1/∆3 is a modular form of odd weight with character χ = ( ·
7
), so the Petersson slash operator

|wγ in (E.1) involves an additional factor of χ(d)−1. This results in additional factors of χ(d)−1 and χ(c)−1 in
the Kloosterman sums Z∞∞(m,n; s) and Z0∞(m,n; s), respectively.
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We shall compute the family of integrals

F (p,q)(Φ, s, κ) =
1

Γ(2s)

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q FN (s, κ,−p−q
2 ; τ) ,

F
(p,q)
abcd (Φ, s, κ) =

1

Γ(2s)

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q [Pabcd]FN (s, κ,−p−q
2 − 4; τ) ,

(E.5)

which converges absolutely for Re(s) > p+q
4 . Here, ΓΛp, q [Pabcd] is the partition function of a

N -modular lattice Λp,q of signature (p, q). It follows from the N -modularity property that
|Λ∗p,q/Λp,q| = N (p+q)/2 and that ΓΛp, q [Pabcd] satisfies

ΓΛp, q [Pabcd](Φ, τ) =
(
−iτ
√
N
)−4− p−q

2
ΓΛp, q [Pabcd]

(
σ · Φ,− 1

Nτ

)
(E.6)

where σ is the O(p, q,R) transformation realizing the isomorphism Λ∗p,q ' Λp,q[1/N ]. The
desired integrals (4.1) are then obtain by taking a limit

F (p,q)(Φ) =
1

8
lim

s→1+ k
2

[
F p,q(Φ, s, 1) + F (p,q)(σ · Φ, s, 1)

]

F
(p,q)
abcd (Φ) = lim

s→1+ k
2

[
F

(p,q)
abcd (Φ, s, 1) + F

(p,q)
abcd (σ · Φ, s, 1)

]
.

(E.7)

By unfolding the integration domain against the sum over γ, one obtains, for Re(s) > p+q
4 ,

F
(p,q)
abcd (s, κ) =

1

Γ(2s)

∑

Q∈Λp,q

∫

S
dτ1dτ2 τ

q/2−2
2 Pabcd e

iπ(τp2
L−τ̄p2

R)Ms,w(−κτ2) e−2πiτ1κ, (E.8)

where S denotes the strip −1
2 < τ1 < 1

2 , τ2 > 0. The integral over τ1 enforces the BPS
condition Q2 = Q2

L −Q2
R = 2κ. Decomposing

Pabcd(Q, τ2) =
∑

0≤`≤2

P̃abcd,`(Q) τ−`2 , (E.9)

where P̃abcd,` is a polynomial of degree 4− 2` in Q, and integrating over τ2, we get

F
(p,q)
abcd (s, κ) =

1

Γ(2s)

∑

0≤`≤2

(4πκ)`+1− q
2

∑

Q∈Λp,q

Q2=2κ

P̃abcd,`(Q)

(
Q2
L

2κ

)`+1−s− q−w2

× Γ
(
s+ q−w

2 − `− 1
)

2F1

(
s+ w

2 , s+ q−w
2 − `− 1; 2s;

2κ

Q2
L

)

=
1

Γ(2s)

∑

1≤k≤3

(4πκ)`+1− q
2

∑

Q∈Λp,q

Q2=2κ

P̃abcd,`(Q)

(
Q2
R

2κ

)`+1−s− q−w2

× Γ
(
s+ q−w

2 − `− 1
)

2F1

(
s− w

2 , s+ q−w
2 − `− 1; 2s;− 2κ

Q2
R

)

(E.10)
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where in the second line, we used Pfaff’s equality 2F1(a, b; c; z) = (1−z)−b2F1(b, c−a; c; z
z−1).

Similarly, for the scalar integral we get

F (p,q)(s, κ) =
(4πκ)1− q

2

Γ(2s)

∑

Q∈Λp,q

Q2=2κ

(
Q2
R

2κ

)1−s− p+q
4

2F1

(
s+ q

4 , s+ p+q
4 − 1; 2s;− 2κ

Q2
R

)
(E.11)

For q < 6, the series (E.10) and (E.11) are absolutely convergent at s = 1+ k
2 , so the limit (E.7)

can be taken term by term. For q ≥ 6, the limit must be taken after analytically continuing
the sum, and subtracting the pole when q = 6. In either case, the series (E.10) and (E.11)
correctly encode the singular behavior of the integral at codimension-q singularities in Gp,q
where P 2

R → 0 for a norm 2κ in Λp,q or Q2
R → 0 for a norm 2κ/N vector in Λ∗p,q. Near these

loci, the leading singular behavior of (E.10) is given, for κ = 1, by

F
(p,q)
abcd ∼

Γ
( q−2

2

)

(2π)
q−2

2

[
QL,aQL,bQL,cQL,d

(Q2
R)

q−2
2

− 6

q − 4

δ(abQL,cQL,d)

(Q2
R)

q−4
2

− 3

(q − 6)(q − 4)

δ(abδcd)

(Q2
R)

q−6
2

]

(E.12)
and similarly for F (p,q).

Using the same argument as in (3.51) and making use of (E.2), it is easy to show that the
integrals (E.5) satisfy the differential equation

D2
ef F

(p,q)
abcd (s) =(2− q) δef F (p,q)

abcd (s) + (16− 4q) δe)(a F
(p,q)
bcd)(f (s) + 12 δ(ab Fcd)ef (s)

+

∫

Γ0(N)\H

dτ1dτ2

τ2
2

2(2s+ k)

2κΓ(2s)
FN (s, κ,−k − 2) ΓΛp, q [Pabcdef ]

(E.13)

The modular integral on the second line can again by evaluating by the unfolding trick, as a
sum over vectors Q ∈ Λp,q with Q2 = 2κ . For the relevant value s = 1 + k

2 with small |k|,
such that FN (s, κ,−k) is weakly holomorphic, FN (s, κ,−k − 2) vanishes so the sum over Q
must vanish. We have checked that this is indeed the case in the Euclidean case q = 0, N = 1,
such that only a finite number of vectors Q contribute.

E.2 Eisenstein series for O(p, q,Z)

While the modular integrals (E.5) result into automorphic forms with singularities on Gp,q,
due to the pole of order κ in the Niebur-Poincaré series FN (s, κ, w; τ), it is useful to consider
the analogue

E(p,q)(Φ, s) =

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q EN (s,−p−q
2 ; τ) , (E.14)

where FN (s, κ, w; τ) is replaced by the non-holomorphic Eisenstein series for Γ0(N),

EN (s, w; τ) =
1

2

∑

γ∈Γ∞\Γ0(N)

τ
s−w2
2 |wγ , (E.15)

which can be obtained formally by taking the limit κ → 0 in (E.1). The integral converges
for Re(s) > p+q−2

2 , and can be computed using the unfolding trick, leading to a standard
vectorial Eisenstein series for O(p, q,Z), the automorphism group of Λp,q,

E(p,q)(Φ, s) = π−s
′
Γ(s′)

∑

P∈Λp,qr{0}
P 2=0

1

(P 2
L + P 2

R)s′
(E.16)
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with s′ = s+ p+q
4 − 1. Another Eisenstein series for the same group is obtained by replacing

EN (s, w; τ) by its image under the Fricke involution, which amounts to changing Φ 7→ σ · Φ
in (E.16). Unlike (E.5), both Eisenstein series are smooth automorphic forms on Gp,q. Their
behavior in the degeneration limits O(p, q) → O(p − 1, q − 1) and O(p, q) → O(p − 2, q − 2)
is easily obtained by applying the same methods as in §4 and §5. In particular, the constant

terms proportional to τ
s−w2
2 and to τ

1−s−w2
2 in the Fourier expansion of EN (s, w; τ) lead to

power-like terms proportional to R2s′ and Rp+q−2−2s′ in the degeneration limit O(p, q) →
O(p− 1, q − 1).

By direct computation, or using the fact that EN (s, w; τ) is an eigenmode of the weight
w Laplacian on H with eigenvalue (s− w

2 )(s− 1 + w
2 ), one sees that

∆Gp,q E
(p,q)(Φ, s) = s′(2s′ − p− q + 2)E(p,q)(Φ, s) . (E.17)

For s′ = p+4
2 , corresponding to s = 3 + p−q

2 , the eigenvalue coincides with the eigenvalue of

F (p,q) in (3.27) (the other value s′ = q−6
2 , s = −2− p−q

2 lies outside the fundamental domain,
and is related to the former by the functional equation s 7→ 1 − s). Moreover, using the
same methods as in §3.2 it is easy to check that E(p,q)(Φ, s) satisfies the second constraint
in (3.27). It is thus natural to ask if the exact (∇Φ)4 coupling could involve an extra term
proportional to E(p,q)(Φ, 3 + p−q

2 ) in addition to the proposed formula (2.27). However, it
turns out that the latter contains terms of order Rp+4 and Rq−6 in the degeneration limit
O(p, q)→ O(p− 1, q − 1) with a non-zero coefficient, respectively, and the first term Rp+4 is
ruled out by the differential equation (3.22).
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Abstract

Motivated by precision counting of BPS black holes, we analyze six-derivative cou-
plings in the low energy effective action of three-dimensional string vacua with
16 supercharges. Based on perturbative computations up to two-loop, super-
symmetry and duality arguments, we conjecture that the exact coefficient of the
∇2(∇φ)4 effective interaction is given by a genus-two modular integral of a Siegel
theta series for the non-perturbative Narain lattice times a specific meromorphic
Siegel modular form. The latter is familiar from the Dijkgraaf-Verlinde-Verlinde
(DVV) conjecture on exact degeneracies of 1/4-BPS dyons. We show that this
Ansatz reproduces the known perturbative corrections at weak heterotic cou-
pling, including tree-level, one- and two-loop corrections, plus non-perturbative
effects of order e−1/g2

3 . We also examine the weak coupling expansions in type I
and type II string duals and find agreement with known perturbative results. In
the limit where a circle in the internal torus decompactifies, our Ansatz predicts
the exact ∇2F 4 effective interaction in four-dimensional CHL string vacua, along
with infinite series of exponentially suppressed corrections of order e−R from Eu-
clideanized BPS black holes winding around the circle, and further suppressed
corrections of order e−R

2
from Taub-NUT instantons. We show that instanton

corrections from 1/4-BPS black holes are precisely weighted by the BPS index
predicted from the DVV formula, including the detailed moduli dependence. We
also extract two-instanton corrections from pairs of 1/2-BPS black holes, demon-
strating consistency with supersymmetry and wall-crossing, and estimate the size
of instanton-anti-instanton contributions.
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1 Introduction

Providing a statistical origin of the thermodynamic entropy of black holes is a key goal for
any theory of quantum gravity. More than two decades ago, Strominger and Vafa demon-
strated that D-branes of type II string theories provide the correct number of micro-states
for supersymmetric black holes in the large charge limit [1]. Since then, much work has gone
into performing precise counting of black hole micro-states and comparing with macroscopic
supergravity predictions. In vacua with extended supersymmetry, it was found that exact
degeneracies of five-dimensional BPS black holes (counted with signs) are given by Fourier
coefficients of weak Jacobi forms, giving access to their large charge asymptotics [2, 3, 4].
With hindsight, the modular invariance of the partition function of BPS black holes follows
from the existence of an AdS3 factor in the near-horizon geometry of these extremal black
holes.

In a prescient work [5], Dijkgraaf, Verlinde and Verlinde (DVV) conjectured that four-
dimensional BPS black holes in type II string theory compactified on K3×T 2 (or equivalently,
heterotic string on T 6) are in fact Fourier coefficients of a meromorphic Siegel modular form,
invariant under a larger Sp(4,Z) symmetry. This conjecture was subsequently extended to
other four-dimensional vacua with 16 supercharges [6], proven using D-brane techniques [7, 8],
and refined to properly incorporate the dependence on the moduli at infinity [9], but the origin
of the Sp(4,Z) symmetry had remained obscure. In [10, 11, 12], it was noted that a class of
1/4-BPS dyons arises from string networks which lift to M5-branes wrapped on K3 times a
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genus-two curve, but this observation did not lead to a transparent derivation of the DVV
formula.

In [13], implementing a strategy advocated earlier in [14], we revisited this problem by
analyzing certain protected couplings in the low energy effective action of the four-dimensional
string theory compactified on a circle of radius R down to three space-time dimensions. In
three-dimensional string vacua with 16 or more supercharges, the massless degrees of freedom
are described by a non-linear sigma model on a symmetric manifold G3/K3, which contains the
four-dimensional moduli spaceM4 = G4/K4, the holonomies aiI of the four-dimensional gauge
fields, the NUT potential ψ dual to the Kaluza–Klein vector and the circle radius R. Since
stationary solutions with finite energy in dimension 4 yield finite action solutions in dimension
3, it is expected that black holes of massM and charge ΓIi = (QI , P I) in 4 dimensions which

break 2r supercharges induce instantonic corrections of order e−2πRM+2πiaiIΓIi to effective
couplings with 2r fermions (or r derivatives) in dimension 3 (see e.g. [15]); and moreover that
these corrections are weighted by the helicity supertrace

Ω2r(Γ) =
1

n!
TrΓ[(−1)F (2h)n] , (1.1)

where F is the fermionic parity and h is the helicity in D = 4. In addition, there are corrections
of order e−2πR2|M1|+2πiM1ψ from Euclidean Taub-NUT instantons which asymptote to R3×S1,
where the circle is fibered with charge M1 over the two-sphere at spatial infinity. While the
two-derivative effective action is uncorrected and invariant under the full continuous group
G3, higher-derivative couplings need only be invariant under an arithmetic subgroup G3(Z)
known as the U-duality group. For string vacua with 32 supercharges, theR4,∇4R4 and∇6R4

effective interactions are expected to receive instanton corrections from 1/2-BPS, 1/4-BPS and
1/8-BPS black holes, respectively. In [16], two of the present authors demonstrated that the
exact R4,∇4R4 couplings, given by Eisenstein series for the U-duality group G3(Z) = E8(Z)
[17, 18, 19, 20], indeed reproduce the respective helicity supertraces Ω4 and Ω6 for 1/2-BPS
and 1/4-BPS black holes in dimension 4. At the time of writing, a similar check for the ∇6R4

coupling conjectured in [21] still remains to be performed.

For three-dimensional string vacua with 16 supercharges, the scalar fields span a symmetric
space of the form

G3/K3 = O(2k, 8)/[O(2k)×O(8)] , (1.2)

for a model-dependent integer k, which extends the moduli space

G4/K4 = SL(2)/SO(2)×O(2k − 2, 6)/[O(2k − 2)×O(6)] (1.3)

in D = 4. The four-derivative scalar couplings of the form F (φ)(∇φ)4 are expected to receive
instanton corrections from 1/2-BPS black holes, along with Taub-NUT instantons, while six-
derivative scalar couplings of the form G(φ)∇2(∇φ)4 receive instanton corrections both from
four-dimensional 1/2-BPS and 1/4-BPS black holes, along with Taub-NUT instantons. In
[13], we restricted for simplicity to the maximal rank case (k = 12) arising in heterotic string
compactified on T 7 (or equivalently type II string theory compactified on K3 × T 3). Using
low order perturbative computations, supersymmetric Ward identities and invariance under
the U-duality group G3(Z) ⊂ O(24, 8,Z), we determined the tensorial coefficients Fabcd(φ)
and Gab,cd(φ) of the above couplings exactly, for all values of the string coupling. In either
case, the non-perturbative coupling is given by a U-duality invariant generalization of the
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genus-one and genus-two contribution, respectively:

F (24,8)

abcd = R.N.

∫

SL(2,Z)\H1

dρ1dρ2

ρ 2
2

ΓΛ24, 8 [Pabcd]

∆
, (1.4)

G(24,8)

ab,cd = R.N.

∫

Sp(4,Z)\H2

d3Ω1d3Ω2

|Ω2|3
Γ(2)

Λ24, 8
[Pab,cd]

Φ10
, (1.5)

where Hh is the Siegel upper half-plane of degree h, Γ(h)

ΓΛp, q
[P ] is a genus-h Siegel-Narain

theta series for a lattice of signature (p, q) with a polynomial insertion (see (B.4) and (2.32)
for the genus-one and two cases), ∆ and Φ10 are the modular discriminants in genus-one
and two, and R.N. denotes a specific regularization prescription. We demonstrated that
the Ansätze (1.4) and (1.5) satisfy the relevant supersymmetric Ward identities, and that
their asymptotic expansion at weak heterotic string coupling g3 → 0 reproduces the known
perturbative contributions, up to one-loop and two-loop, respectively, plus an infinite series of
O(e−1/g2

3 ) corrections ascribed to NS5-instantons, Kaluza–Klein (6,1)-branes and H-monopole
instantons. We went on to analyze the limit R → ∞ and demonstrated that the O(e−R)
corrections to F (24,8)

abcd and to G(24,8)

ab,cd were proportional to the known helicity supertraces of
1/2- and 1/4-BPS four-dimensional black holes, respectively. In particular, the DVV formula
for the index of 1/4-BPS states [5], with the correct contour prescription [9], emerges in a
transparent fashion after unfolding the integral over the fundamental domain Sp(4,Z)\H2

onto the full Siegel upper-half plane H2.

In [22], we extended the study of the 1/2-BPS saturated coupling F (24,8)

abcd to the case of
CHL heterotic orbifolds of prime order N = 2, 3, 5, 7. All these models have 16 supercharges,
and their moduli space in D = 3 or 4 is of the form (1.2), (1.3) with k = 24/(N + 1). After
conjecturing the precise form of the U-duality group G3(Z) ⊂ O(2k, 8,Z) in D = 3, we
proposed an exact formula for Fabcd analogous to (1.4),

F (2k,8)

abcd = R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ 2
2

ΓΛ2k, 8
[Pabcd]

∆k
, (1.6)

where Γ0(N) ⊂ SL(2,Z) is the Hecke congruence subgroup of level N , ∆k is the unique
cusp form of weight k under Γ0(N) and Λ2k,8 is the ‘non-perturbative Narain lattice’ of
signature (2k, 8). We studied the weak coupling and large radius limits of the Ansatz (1.6),
and found that it reproduces correctly the known tree-level and one-loop contributions in the
limit g3 → 0, powerlike corrections in the limit R→∞, as well as infinite series of instanton
corrections consistent with the known helicity supertrace of 1/2-BPS states in D = 4, for all
orbits of the U-duality group G4(Z).

The goal of the present work is to provide strong evidence that the tensorial coefficient
Gab,cd of the 1/4-BPS saturated coupling ∇2(∇φ)4 in the same class of CHL orbifolds is given
similarly by the natural extension of (1.5), namely

G(2k,8)

ab,cd = R.N.

∫

Γ2,0(N)\H2

d3Ω1d3Ω2

|Ω2|3
Γ(2)

Λ2k, 8
[Pab,cd]

Φk−2
, (1.7)

where Γ2,0(N) is a congruence subgroup of level N inside Sp(4,Z), Φk−2 is a specific mero-
morphic Siegel modular form of weight k − 2 and Γ(2)

Λ2k, 8
[Pab,cd] is a suitable genus-two Siegel-

Narain theta series for the same non-perturbative Narain lattice Λ2k,8 as in (1.6). Using
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similar techniques as in [22], we shall demonstrate that the Ansatz (1.7) satisfies the relevant
supersymmetric Ward identities and produces the correct tree-level, one-loop and two-loop
terms in the weak heterotic coupling limit, or powerlike terms in the large radius limit, ac-
companied by infinite series of instanton corrections consistent with the helicity supertraces
of 1/2-BPS and 1/4-BPS states in D = 4.

A significant feature and complication of (1.5),(1.7) compared to the 1/2-BPS coupling
(1.4), (1.6) is that the integrand 1/Φk−2 has a double pole on the diagonal locus Ω12 = 0
and its images under Γ2,0(N) (corresponding to the separating degeneration of the genus-two
Riemann surface with period matrix Ω). In the context of the DVV formula, these poles
are well-known to be responsible for the moduli dependence of the helicity supertrace Ω6.
In the context of the BPS coupling (1.7), these poles are responsible for the fact that the
weak coupling and large radius expansions receive infinite series of instanton anti-instanton
contributions, as required by the quadratic source term in the differential equation (2.26) for
the coefficient G(2k,8)

ab,cd . A similar phenomenon is encountered in the case of the ∇6R4 couplings
in maximal supersymmetric string vacua [23].

Organization

This work is organized as follows. In §2 we recall relevant facts about the moduli space, duality
group and BPS spectrum of heterotic CHL models in D = 4 and D = 3, record the known
perturbative contributions to the ∇2F 4 and ∇2(∇φ)4 couplings in heterotic perturbation
theory, and preview our main results. In §3, we derive the differential constraints imposed
by supersymmetry on these couplings, and show that they are obeyed by the Ansatz (1.7).
In §4, we study the expansion of (1.7) at weak heterotic coupling, and show that it correctly
reproduces the known pertubative contributions, along with an infinite series of NS5-brane,
Kaluza–Klein (6,1)-branes and H-monopole instanton corrections. In §5, we move to the
central topic of this work and study the large radius limit of the Ansatz (1.7). We obtain
the exact ∇2F 4 and R2F 2 couplings in D = 4 plus infinite series of O(e−R) and O(e−R

2
)

corrections. We extract from the former the helicity supertrace of 1/4-BPS black holes with
arbitrary charge, and recover the DVV formula and its generalizations. We further analyze
two-instanton contributions from pairs of 1/2-BPS black holes and show their consistency
with wall-crossing. In §6 we study the weak coupling limit of the ∇2(∇φ)4 couplings in
CHL orbifolds of type II string on K3 × T 3, and of the related ∇2H4 couplings in type IIB
compactified on K3 down to six dimensions.

A number of more technical developments are relegated to appendices. In Appendix A we
collect relevant facts about genus-two Siegel modular forms, and the structure of their Fourier
and Fourier-Jacobi expansions. In §B we compute the one-loop and two-loop contributions
to the ∇2F 4 and ∇2(∇φ)4 couplings in CHL models, spell out the regularization of the
corresponding modular integrals, compute the anomalous terms in the differential constraints
due to boundary contributions, and discuss their behavior near points of enhanced gauge
symmetry. In §C, we verify that the polar contributions to the Fourier coefficients of 1/Φk−2

are in one-to-one correspondence with the possible splittings Γ = Γ1 +Γ2 of a 1/4-BPS charge
Γ into a pair of 1/2-BPS charges Γ1,Γ2. In §D, we use this information to compute the
singular contributions to Abelian Fourier coefficients with generic 1/4-BPS charge, and in §E
demonstrate that the structure of these coefficients and of the constant terms is consistent
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with the differential constraint. In §F, we also estimate the corrections to the saddle point
value of the Abelian Fourier coefficients, due to the non-constancy of the Fourier coefficients
of 1/Φk−2 and show that they are of the size expected for two-instanton effects on the one
hand, and Taub-NUT instanton – anti-instanton on the other hand. In §G, we explain how to
infer the non-Abelian Fourier coefficients with respect to O(p− 2, q − 2) from the knowledge
of the Abelian coefficients with respect to O(p − 1, q − 1). Finally, §H collects definitions of
various polynomials which enter in the formulae of §4 and §5.1.

Note: The structure of the body of this paper follows that of our previous work [22] on
1/2-BPS couplings, so as to facilitate comparison between our treatments of the genus-one
and genus-two modular integrals. The reader is invited to refer to [22] for more details on
points discussed cursorily herein.
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2 BPS spectrum and BPS couplings in CHL vacua

In this section, we recall relevant facts about the moduli space, duality group and BPS
spectrum of heterotic CHL models in D = 4 and D = 3, and summarize the main features of
our Ansatz for the exact ∇2(∇φ)4 and ∇2F 4 couplings in these models.

2.1 Moduli spaces and dualities

Recall that heterotic CHL models are freely acting orbifolds of the heterotic string com-
pactified on a torus, preserving 16 supersymmetries [24, 25] (see [26] for a review of these
constructions). We shall be mostly interested in models with D = 4 non-compact spacetime
dimensions, and the reduction of those models on a circle down to D = 3. Furthermore, for
simplicity we restrict to ZN orbifolds with N ∈ {1, 2, 3, 5, 7} prime, in which case the gauge
symmetry in D = 4 is reduced from U(1)28 in the original ‘maximal rank’ model (namely,
heterotic string compactified on T 6) to U(1)2k+4 with k = 24/(N + 1). The lattice of electro-
magnetic charges in D = 4 is a direct sum Λem = Λe ⊕ Λm where Λm is an even, lattice of
signature (2k− 2, 6) and Λe ≡ Λ∗m its dual (see Table 1 in [22]). While Λm is not self-dual for
N > 1, it is N -modular in the sense that Λ∗m = Λm[1/N ] [27], in particular we have the chain
of inclusions NΛm ⊂ NΛ∗m ⊂ Λm ⊂ Λ∗m.

The moduli space in D = 4 is a quotient

M4 = G4(Z)\ [SL(2,R)/SO(2)×G2k−2,6] , (2.1)

where SL(2,R)/SO(2) is parametrized by the heterotic axiodilaton S and the Grassmannian
G2k−2,6 is parametrized by the scalars ϕ in the vector multiplets. Here and elsewere, Gp,q
will denote the orthogonal Grassmannian O(p, q)/[O(p)× O(q)] of negative q-planes in Rp,q.
The U-duality group G4(Z) in D = 4 includes the S-duality group Γ1(N) acting on the first
factor and the T-duality group Õ(2k − 2, 6,Z) acting on the second (where Õ(2k − 2, 6,Z)
denotes the restricted automorphism group of Λm, acting trivially on the discriminant group
Λe/Λm ∼ Zk+2

N ). As discussed in [27, 22], there are strong indications that BPS observables
are invariant under the larger group Γ0(N)×O(2k− 2, 6,Z), the automorphism group of Λm,
along with the Fricke involution acting by S 7→ −1/(NS) on the first factor, accompanied by a
suitable action ϕ 7→ ς ·ϕ of ς ∈ O(2k−2, 6,R) on the second factor, such that Λ∗m = ς ·Λm/

√
N .

After compactification on a circle of radius R down to D = 3, the moduli space spanned
by the scalars φ = (R,S, ϕ, aIi, ψ) described in the introduction becomes a quotient

M3 = G3(Z)\G2k,8 (2.2)

of the orthogonal Grassmannian G2k,8 by the U-duality group in D = 3. In [22] we provided

evidence that the U-duality group includes the restricted automorphism group Õ(2k, 8,Z) of
the ‘non-perturbative Narain lattice’

Λ2k,8 = Λm ⊕ II1,1 ⊕ II1,1[N ] , (2.3)

which is also N -modular. It also includes the U-duality group G4(Z) as well as the restricted
automorphism group Õ(2k− 1, 7,Z) of the perturbative Narain lattice Λm ⊕ II1,1. The exact
four and six-derivative couplings of interest in this paper will turn out to be invariant under
the full automorphism group O(2k, 8,Z) ⊃ G3(Z), however, this group is not expected to be
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a symmetry of the full spectrum. In particular, the automorphism group of the perturbative
lattice O(2k− 1, 7,Z) does not preserve the orbifold projection, and does not act consistently
on states that are not invariant under the ZN action on the circle. Nevertheless, we expect
the U-duality group to be larger than Õ(2k, 8,Z) and to include in particular Fricke duality.

An important consequence of the enhancement of T-duality group Õ(2k − 1, 7,Z) to the
U-duality group Õ(2k, 8,Z) is that singularities in the low energy effective action occur on
codimension-8 loci in the full moduli space M3, partially resolving the singularities which
occur at each order in the perturbative expansion on codimension-7 loci where the gauge
symmetry is enhanced.

2.2 BPS dyons in D = 4

We now review relevant facts about helicity supertraces of 1/2-BPS and 1/4-BPS states in het-
erotic CHL orbifolds. As mentioned above, the lattice of electromagnetic charges Γ = (Q,P )
decomposes into Λem = Λ∗m ⊕ Λm, where on the heterotic side the first factor corresponds
to electric charges Q carried by fundamental heterotic strings, while the second factor corre-
sponds to magnetic charges P carried by heterotic five-brane, Kaluza-Klein (6,1)-brane and
H-monopoles. The lattices Λe = Λ∗m and Λm carry quadratic forms such that

Q2 ∈ 2

N
Z , P 2 ∈ 2Z, P ·Q ∈ Z , (2.4)

while Λem carries the symplectic Dirac pairing 〈Γ,Γ′〉 = Q · P ′ −Q′ · P ∈ Z. A generic BPS
state with charge Γ ∈ Λem such that Q∧P 6= 0 (i.e. when Q and P are not collinear) preserves
1/4 of the 16 supercharges, and has mass

M(Γ; t) =

√
2 |QR+SPR|2

S2
+ 4

√∣∣∣ Q 2
R QR · PR

QR · PR P 2
R

∣∣∣ (2.5)

where t = (S, ϕ) denote the set of all coordinates on (2.1), and QR, PR are the projections of
the charges Q,P on the negative 6-plane parametrized by ϕ ∈ G2k−2,6. When Q∧P = 0, the
state preserves half of the 16 supercharges, and the mass formula (2.5) reduces to M(Γ)2 =
2|QR + SPR|2/S2.

In order to describe the helicity traces carried by these states, it is useful to distinguish
‘untwisted’ 1/2-BPS states, characterized by the fact that their charge vector (Q,P ) lies in
the sublattice Λm ⊕NΛe ⊂ Λe ⊕ Λm, from ‘twisted’ 1/2-BPS states where (Q,P ) lies in the
complement of this sublattice inside Λem. One can show that twisted 1/2-BPS states lie in
two different orbits of the S-duality group Γ0(N): they are either dual to a purely electric
state of charge (Q, 0) with Q ∈ Λe r Λm, or to a purely magnetic state of charge (0, P ) with
P ∈ ΛmrNΛe. Similarly, untwisted 1/2-BPS states are either dual to a purely electric state
of charge (Q, 0) with Q ∈ Λm, or to a purely magnetic state of charge (0, P ) with P ∈ NΛe.
The fourth helicity supertrace is sensitive to 1/2-BPS states only, and is given by

Ω4(Γ) = ck

(
−gcd(NQ2,P 2,Q·P )

2

)
(2.6)

for twisted electromagnetic charge Γ ∈ (Λe ⊕ Λm) r (Λm ⊕NΛe), and by

Ω4(Γ) = ck

(
−gcd(NQ2,P 2,Q·P )

2

)
+ ck

(
−gcd(NQ2,P 2,Q·P )

2N

)
(2.7)
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for untwisted charge Γ ∈ Λm ⊕ NΛe. Here, the ck’s are the Fourier coefficient of 1/∆k =∑
m≥1 ck(m)qm = 1

q + k + . . . , where ∆k = ηk(τ)ηk(Nτ) is the unique cusp form of weight k
under Γ0(N). In the maximal rank case N = 1, we write c(m) = c12(m) for brevity.

In contrast, the helicity supertrace Ω6 is sensitive to 1/2-BPS and 1/4-BPS states. For
1/4-BPS charge Q∧P 6= 0, it is given by a Fourier coefficient of a meromorphic Siegel modular
form [5, 6, 8]. In the simplest instance corresponding to dyons with ‘generic twisted’ charge
Γ = (Q,P ) in (Λe r Λm)⊕ (Λm rNΛe) and unit ‘torsion’ (gcd(Q ∧ P ) = 1), 1

Ω6(Γ; t) =
(−1)Q·P+1

N

∫

C
d3Ω

eiπ[ρQ2+σ P 2+2vQ·P ]

Φ̃k−2(ρ, σ, v)
(2.8)

where the contour C in the Siegel upper half plane H2 parametrized by Ω =
(ρ v
v σ

)
is given

by 0 ≤ ρ1 ≤ N , 0 ≤ σ1 ≤ 1, 0 ≤ v1 ≤ 1 with a fixed value Ω2 of (ρ2, σ2, v2) (see
below). The overall sign (−1)Q·P+1 ensures that contributions from single-centered black
holes are positive [30, 31]. Here, Φ̃k−2(ρ, σ, v) is a Siegel modular form of weight k−2 under a
congruence subgroup Γ̃2,0(N) ⊂ Sp(4,Z) which is conjugate to the standard Hecke congruence
subgroup

Γ2,0(N) =

{(
A B
C D

)
⊂ Sp(4,Z), C = 0 modN

}
(2.9)

by the transformation Sρ defined in (A.10). Φ̃k−2(ρ, σ, v) is the image of a Siegel modular
form Φk−2(ρ, σ, v) of weight k − 2 under Γ2,0(N) under the same transformation,

Φ̃k−2(ρ, σ, v) = (
√
N)k (−iρ)−(k−2) Φk−2

(
−1

ρ
, σ − v2

ρ
,
v

ρ

)
. (2.10)

Ignoring the choice of contour C, (2.8) is formally invariant under the U-duality group Γ0(N)×
O(2k−2, 6,Z), the first factor acting as the block diagonal subgroup (A.14) of the congruence
subgroup Γ̃2,0(N). Invariance under Fricke S-duality follows from the invariance of Φ̃k−2 under
the genus-two Fricke involution (A.39). Note that the sign (−1)Q·P+1 also is invariant under
Γ0(N)×O(2k − 2, 6,Z) and Fricke S-duality.

Importantly, both Φk−2(ρ, σ, v) and Φ̃k−2(ρ, σ, v) have a double zero on the diagonal divisor
D given by all images of the locus v = 0 under Γ2,0(N). Hence, the right-hand side of (2.8)
jumps whenever the contour C crosses D. As explained in [9, 32], if one chooses the constant
part of Ω2 along the contour C in terms of the moduli t and charge Γ via

Ω∗2 =
R

M(Q,P )

[
1
S2

(
1 S1

S1 |S|2
)
+ 1
|QR∧PR|

(
P 2
R −QR · PR

−QR · PR Q 2
R

) ]
, (2.11)

where R is a large positive number (identified in our set-up as the radius of the circle), then
C crosses D precisely when the moduli allow for the marginal decay of the 1/4-BPS state of
charge Γ = Γ1 + Γ2 into a pair of 1/2-BPS states with charges Γ1 and Γ2. The corresponding

1 Using (A.39), one may rewrite (2.8) in the other common form (see e.g. [28, (5.1.10)]

Ω6(Γ; t) =
(−1)Q·P+1

N

∫

C′
d3Ω

eiπ[NρQ2+σ P2/N+2vQ·P ]

Φ̃k−2(σ, ρ, v)
.

Note that our Φ̃k−2 differs from the one in [28] by an exchange of ρ and σ, but agrees with Φg,e(ρ, σ, v) in [29].
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jump in Ω6(Q,P ; t) can then be shown to agree [33, 34, 35] with the primitive wall-crossing
formula [36]

∆Ω6(Γ) = −(−1)〈Γ1,Γ2〉+1 Ω4(Γ1) Ω4(Γ2) , (2.12)

where ∆Ω6 is the index in the chamber where the bound state exists, minus the index in the
chamber where it does not.

The formula (2.8) only applies to dyons whose charge is primitive with unit torsion and
that is generic, in the sense that it belongs to the highest stratum in the following graph of
inclusions 2

NΛe ⊕NΛe

Λm ⊕NΛm

⊂
⊂ Λm ⊕NΛe

⊂
⊂

Λm ⊕ Λm

Λe ⊕NΛe

⊂
⊂ Λe ⊕ Λm . (2.13)

When (Q,P ) is primitive and belongs to one of the sublattices above, it may split into pairs
of 1/2-BPS charges that are not necessarily ‘twisted’ nor primitive. As explained in [13],
the study of 1/4-BPS couplings in D = 3 provides a microscopic motivation for the contour
prescription (2.11), and gives access to the helicity supertrace for arbitrary charges in (2.13)
beyond the special case of the highest stratum for which (2.8) is valid.

Indeed, it will follow from the analysis in the present work that for any primitive charge
(Q,P ), the helicity supertrace is given by

(−1)Q·P+1Ω6(Q,P ; t) =
∑

A∈M2,0(N)/(Z2nΓ0(N))

A−1(Q
P

)∈Λe⊕Λm

|A| C̃k−2

[
A−1

(
−Q2 −Q · P
−Q · P −P 2

)
A−1ᵀ;AΩ?

2A
ᵀ
]

+
∑

A∈M2(Z)/GL(2,Z)

A−1(Q
P

)∈Λm⊕Λm

|A|Ck−2

[
A−1

(
−Q2 −Q · P
−Q · P −P 2

)
A−1ᵀ;AΩ?

2A
ᵀ
]

+
∑

A∈M2(Z)/GL(2,Z)

A−1( Q
P/N

)∈Λe⊕Λe

|A|Ck−2

[
A−1

(
−NQ2 −Q · P
−Q · P − 1

NP
2

)
A−1ᵀ;AΩ?

2A
ᵀ
]
.

(2.14)

where Ck−2 and C̃k−2 are the Fourier coefficients of 1/Φk−2 and 1/Φ̃k−2 evaluated with the
same contour prescription as above, and Ω?

2 is conjugated by the matrix A. This formula is
manifestly invariant under the U-duality group G4(Z), including Fricke duality that exchanges
the last two lines. For primitive ‘twisted charges’ of gcd(Q ∧ P ) = 1, only the first line is
non-zero and the only allowed matrix A is the identity such that one recovers (2.8). This
is also the dominant term in the limit where the charges Q,P are scaled to infinity, since
terms with A 6= 1 in the sum grow exponentially as eπ|Q∧P |/|detA|, at a much slower rate that
the leading term with A = 1 [2, 8]. It would be interesting to check that the logarithmic
corrections to the black hole entropy are consistent with the R2 coupling in the low energy
effective action, generalizing the analysis of [37, 6] to general charges, and to identify the near
horizon geometries responsible for the exponentially suppressed contributions, along the lines
of [38, 39].

After splitting Ck−2 and C̃k−2 into their finite and polar parts, and representing the latter
as a Poincaré sum, we shall show that the unfolded sum over matrices A accounts for all

2The graph is drawn such that Fricke duality acts by reflection with respect to the horizontal axis.
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possible splittings of a charge (Q,P ) = (Q1, P1) + (Q2, P2) into two 1/2-BPS constituents,

labeled by A ∼
(p q
r s

)
∈M2(Z) [33],

(Q1, P1) = (p, r)
sQ− qP
ps− qr , (Q2, P2) = (q, s)

pP − rQ
ps− qr . (2.15)

Generalizing the analysis in [40], we shall show that the discontinuity of Ω6(Γ, t) for an
arbitrary primitive (but possibly torsionful) charge Γ is given by a variant of (2.12) where
Ω4(Γ) on the right-hand side is replaced by

Ω4(Γ) =
∑

d≥1
Γ/d∈Λe⊕Λm

Ω4(Γ/d) , (2.16)

in agreement with the macroscopic analysis in [35].

2.3 BPS couplings in D = 4 and D = 3

In supersymmetric string vacua with 16 supercharges, the low-energy effective action at two-
derivative order is exact at tree level, being completely determined by supersymmetry. In
contrast, four-derivative and six-derivative couplings may receive quantum corrections from
1/2-BPS and 1/4-BPS states or instantons, respectively. At four-derivative order, the coef-
ficients of the R2 + F 4 and F 4 couplings in D = 4, which we denote by f and F (2k−2,6)

abcd , are
known exactly, and depend only on the first and second factor in the moduli space (2.1),
respectively:

f(S) = − 3

8π2
log(Sk2 |∆k(S)|2) , (2.17)

F (2k−2,6)

abcd = R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ 2
2

ΓΛ2k − 2, 6
[Pabcd]

∆k(ρ)
, (2.18)

where ΓΛ2k − 2, 6
[Pabcd] denotes the Siegel–Narain theta series (B.4) for the lattice Λm = Λ2k−2,6,

with an insertion of the symmetric polynomial

Pabcd(Q) = QL,aQL,bQL,cQL,d −
3

2πρ2
δ(abQL,cQL,d) +

3

16π2ρ2
2

δ(abδcd) , (2.19)

and ∆k is the same cusp form whose Fourier coefficients enter in the helicity supertrace
(2.6),(2.7). Here and elsewhere, we suppress the dependence of ΓΛp, q [Pabcd], and therefore of
the left-hand side of (2.18), on the moduli φ ∈ Gp,q. As explained in [22], both couplings
arise as polynomial terms in the large radius limit of the exact (∇φ)4 coupling in D = 3. The
latter is uniquely determined by supersymmetry Ward identities, invariance under U-duality
and the tree-level and one-loop corrections in heterotic perturbation string theory to be given
by the genus-one modular integral (1.4). In the weak heterotic coupling limit g3 → 0, (1.4)
has an asymptotic expansion

g2
3 F

(2k,8)

abcd =
3

2πg2
3

δ(abδcd) + F (2k−1,7)

abcd +

′∑

Q∈Λ2k−1,7

c̄k(Q)e
− 2π

√
2 |QR|
g23

+2πia·Q
P(∗)
abcd , (2.20)

reproducing the known tree-level and one-loop corrections, along with an infinite series of
O(e−1/g2

3 ) corrections ascribable to NS5-brane, Kaluza–Klein (6,1)-brane and H-monopole

12
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instantons. Here, P(∗)
abcd is a schematic notation for the tensor appearing in front of the expo-

nential, including an infinite series of subleading terms which resum into a Bessel function. In
the large radius limit R→∞, the asymptotic expansion of (1.4) instead gives, schematically,

F (2k,8)

abcd (φ) =R2
(
f(S)δ(abδcd) + F (2k−2,6)

abcd (ϕ)
)

+
′∑

(Q,P )∈Λe⊕Λm
Q∧P=0

c̄k(Q,P )P(∗)
abcd e

−2πRM(Q,P )+2πi(a1·Q+a2·P )

+
∑

M1 6=0,M2∈Z
P∈Λm

F
(TN)
abcdM1

e−2πR2|M1|+2πiM1

(2.21)

where we used the same schematic notation P(∗)
abcd for the tensor appearing in front of the ex-

ponential including subleading terms. The first line in (2.21) reproduces the four-dimensional
couplings (2.18), while the second line corresponds toO(e−R) corrections from four-dimensional
1/2-BPS states whose wordline winds around the circle. These contributions are weighted by
the BPS index c̄k(Q,P ) = Ω4(Q,P ) given in (2.16),

c̄k(Q,P ) =
∑

d≥1
(Q,P )/d∈Λe⊕Λm

ck
(
− gcd(NQ2,P 2,Q·P )

2d2

)
+

∑

d≥1
(Q,P )/d∈Λm⊕NΛe

ck
(
− gcd(NQ2,P 2,Q·P )

2Nd2

)
. (2.22)

The last line in (2.21) corresponds to O(e−R
2
) corrections from Taub-NUT instantons.

Our interest in this work is on the six-derivative coupling ∇2(∇φ)4 in the low energy
effective action inD = 3 (see (3.6) for the precise tensorial structure). The coefficientG(2k,8)

ab,cd (φ)
multiplying this coupling is valued in a vector bundle over the Grassmannian G2k,8 associated
to the representation of O(2k). As announced in [13], and proven in §3, supersymmetric
Ward identities require that G(2k,8)

ab,cd (φ) satisfies the following differential constraints

D[a1

âG(2k,8)

a2|b|,a3]c = 0 (2.23)

D[a1

[â1Da2
â2]G(2k,8)

a3]b,cd = 0 (2.24)

D[a1

[â1Da2
â2Da3]

â3]G(2k,8)

cd,ef = 0 (2.25)

D(e
âDf)âG

(2k,8)

ab,cd = −5
2δefG

(2k,8)

ab,cd −
(
δe)(aG

(2k,8)

b)(f,cd + δe)(cG
(2k,8)

d)(f,ab

)

+3
2δ〈ab,G

(2k,8)

cd〉,ef − 3π
2 F

(2k,8)

|e)〈ab,
gF (2k,8)

cd〉(f |g . (2.26)

Here, for two symmetric tensors Aab, Bcd, we denote the projection of their product on the
representation by

A〈ab,Bcd〉 =
1

3

(
AabBcd +AcdBab − 2A|a)(cBd)(b|

)
. (2.27)

The inhomogeneous term in the last equation (2.26), proportional to the square of the (∇φ)4

coupling, originates from higher-derivative corrections to the supersymmetry variations. 3 It

3Note that the properly normalized coupling in the Lagrangian is in fact 1
π
G(2k,8)

ab,cd (φ), which accounts for
the factor of π on the r.h.s. of (2.26).
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follows from (3.16)–(3.20) that in heterotic perturbation string theory, G(2k,8)

ab,cd can only receive

tree-level, one-loop and two-loop corrections, plus non-perturbative corrections of order e−1/g2
3 .

We calculate the one-loop and two-loop contributions in Appendix B using earlier results in
the literature [41, 42, 43, 44, 45, 46]. After rescaling to Einstein frame, we find that the
perturbative corrections take the form 4

g6
3 G

(2k,8)

ab,cd =− 3

4πg2
3

δ〈ab,δcd〉 −
1

4
δ〈ab,G

(2k−1,7)

cd〉 + g2
3G

(2k−1,7)

ab,cd +O(e−1/g2
3 ) (2.28)

where G(p,q)

ab denotes the genus-one modular integral

G(p,q)

ab =R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Ê2 ΓΛp, q [Pab]

∆k
, (2.29)

with Pab = QL,aQL,b− δab
4πρ2

and Ê2 = E2− 3
πρ2

is the almost holomorphic Eisenstein series of

weight 2, while G(p,q)

ab,cd the genus-two modular integral (of which (1.7) is a special case),

G(p,q)

ab,cd = R.N.

∫

Γ2,0(N)\H2

d3Ω1d3Ω2

|Ω2|3
Γ(2)

Λp, q
[Pab,cd]

Φk−2
. (2.30)

Here Pab,cd is the quartic polynomial

Pab,cd = εrtεsuQ
r
L(aQ

s
Lb)Q

t
L(cQ

u
Ld) −

3

4π|Ω2|
δ〈ab,Q

r
Lc(Ω2)rsQ

s
Ld〉 +

3

16π2|Ω2|
δ〈ab,δcd〉 ,

=
3

2

(
δ〈rs,δtu〉Q

r
LaQ

s
LbQ

t
LcQ

u
Ld −

1

2π|Ω2|
δ〈ab,Q

r
Lc(Ω2)rsQ

s
Ld〉 +

1

8π2|Ω2|
δ〈ab,δcd〉

)
, (2.31)

and for any polynomial P in QrLa and integer lattice Λp,q of signature (p, q), we denote

Γ(2)

Λp, q
[P ] = |Ω2|q/2

∑

Q∈Λp,q⊕Λp,q

P (QLa) e
iπQrLa ΩrsQsL

a−iπQrRâ Ω̄rsQsR
â
. (2.32)

where r, s = 1, 2 label the choice of A-cycle on the genus-two Riemann surface.
Since the modular integral (2.30) itself satisfies the differential constraints (2.23)–(2.26),

as shown in §3.3, it is consistent with supersymmetry to propose that the exact coefficient of
the ∇2(∇φ)4 coupling be given by (1.7). In §§4 below, we shall demonstrate that the weak
coupling expansion of the Ansatz (1.7) indeed reproduces the perturbative corrections (2.28),
up to O(e−1/g2

3 ) corrections. Unlike the (∇φ)4 couplings (2.20) however, the latter also affect
the constant term in the Fourier expansion with respect to the axions aI , as required by the
quadratic source term in the differential equation (3.20). Such corrections can be ascribed to
(NS5, KK, H-monopoles) instanton anti-instanton of vanishing total charge.

In the large radius limit, the ∇2(∇φ)4 coupling must reduce to the exact R2F 2 and ∇2F 4

couplings in D = 4. Consistently with this expectation, we shall find that the asymptotic

4The tree-level term comes from the double-trace contribution in [47]. The relative coefficients of the three
contributions are determined by the differential equation required by the supersymmetry Ward identity, which
also ensures that there are no contributions at higher loop order.
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expansion of (1.7) in the limit R→∞ takes the form

G(2k,8)

ab,cd =R4G
(D=4)
ab,cd +

ζ(3)

8π
(k − 12)R6δ〈αβ,δγδ〉

+
′∑

(Q,P )∈Λe⊕Λm
Q∧P=0

δ〈ab,Ḡ
(2k−1,7)

cd〉 (Q,P, t) e−2πRM(Q,P )+2πi(a1·Q+a2·P )

+
′∑

(Q,P )∈Λe⊕Λm
Q∧P 6=0

C̄k−2(Q,P ; t)P(∗)
abcd e

−2πRM(Q,P )+2πi(a1·Q+a2·P )

+

′∑

(Q1,P1)∈Λe⊕Λm
Q1∧P1=0

′∑

(Q2,P2)∈Λe⊕Λm
Q2∧P2=0

c̄k(Q1, P1) c̄k(Q2, P2)P(∗)
abcd(Q1, P1;Q2, P2; t)

× e−2πR[M(Q1,P1)+M(Q2,P2)]+2πi(a1·(Q1+Q2)+a2·(P1+P2))

+
∑

M1 6=0

G
(TN)
ab,cdM1

e−2πR2|M1|+2πiM1ψ +G
(IĪ)
ab,cd .

(2.33)

In the first line, G
(D=4)
ab,cd predicts the exact R2F 2 and ∇2F 4 couplings in D = 4, which are

exhibited in (5.67),(5.70) below, and involve explicit modular functions of the axio-dilaton S,
as well as genus-two and genus-one modular integrals for the lattice Λm. These couplings are
by construction invariant under the S-duality group Γ0(N) and under Fricke duality.

The second line in (2.33) are the 1/2-BPS Fourier coefficients, weighted by a genus-one
modular integral Ḡcd(Q,P ; t) for the lattice orthogonal to Q,P given in (5.18), (5.46). This
weighting is similar to that of 1/2-BPS contributions to the ∇4R4 coupling in maximal su-
persymmetric vacua [16], and is typical of Fourier coefficients of automorphic representations
that do not belong to the maximal orbit in the wavefront set.

The third line corresponds to contributions from 1/4-BPS dyons, weighted by the moduli-
dependent helicity supertrace, up to overall sign,

C̄k−2(Q,P ; t) = (−1)Q·P+1 Ω6(Q,P ; t) (2.34)

whereas the fourth line corresponds to contributions from two-particle states consisting of
two 1/2-BPS dyons that are discussed in detail in Appendices C and D. While the two
contributions on the third and fourth line are separately discontinuous as a function of the
moduli t, their sum is continuous across walls of marginal stability. In Appendix C we show
the non-trivial fact, especially for CHL orbifolds, that for fixed total charge Γ, the sum involves
all possible splittings Γ1 + Γ2, weighted by the respective helicity supertraces (2.22). This
complements and extends the consistency checks on the helicity supertrace formulae [29] to
arbitrary charges. Moreover, we show in Appendix E that these contributions are consistent
with the differential constraint (2.26). The 1/4-BPS Abelian Fourier coefficients of the non-
perturbative coupling are the main focus of this paper, and the results are discussed in detail
in section 5.3.

The first term G
(TN)
ab,cdM1

on the last line corresponds to non-Abelian Fourier coefficients of

order e−R
2
, ascribable to Taub-NUT instantons of charge M1. We compute them in Appendix

§G by dualizing the Fourier coefficients in the small coupling limit g3 → 0 computed in §4,
rather than by evaluating them directly from the unfolding method.
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Finally G(IĪ) contains contributions associated to instanton anti-instantons configurations,
which are not captured by the unfolding method but are required by the quadratic source term
in the differential equation (2.26). This includesO(e−R) andO(e−R

2
) contributions to the con-

stant term, which are independent of the axions a1, a2, ψ, and contributions of order O(e−R
2
)

to the Abelian Fourier coefficients, which depend on the axions a1, a2 as e2πi(a1·Q+a2·P ) but are
independent of ψ. The latter can be ascribed to Taub-NUT instanton-anti-instantons, and are
necessary in order to resolve the ambiguity of the sum over 1/4-BPS instantons [48], which is
divergent due to the exponential growth of the measure C̄k−2(Q,P ; Ω?

2) ∼ (−1)Q·P+1eπ|Q∧P |.
We do not fully evaluate G(IĪ) in this paper, but we identify the origin of the O(e−R

2
) cor-

rections as coming from poles of 1/Φk−2 which lie ‘deep’ in the Siegel upper-half plane H2

and do not intersect the fundamental domain, becoming relevant only after unfolding. While
the precise contributions can in principle be determined by solving the differential equation
(2.26), it would be interesting to obtain them via a rigorous version of the unfolding method
which applies to meromorphic Siegel modular forms.

In §6, we discuss other pertubative expansions of the exact result (1.7), in the dual type I
and type II pictures. In either case, the perturbative limit is dual to a large volume limit on
the heterotic side, where either the full 7-torus (in the type I case) of a 4-torus (in the type II
case) decompactifies. We find that the corresponding weak coupling expansion is consistent
with known perturbative contributions, with non-perturbative effects associated to D-branes,
NS5-branes and KK-monopoles wrapped on supersymmetric cycles of the internal space, T 7

in the type I case, or K3× T 3 on the type II case.
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3 Supersymmetric Ward identities

In this section, we establish the supersymmetric Ward identities (3.16)–(3.20), from linearized
superspace considerations, and show that the genus-two modular integral (2.30) obeys this
identity.

3.1 ∇2(∇Φ)4 type invariants in three dimensions

This analysis is a direct generalization of the one provided in [22, §3]. We shall define the
linearised superfield Wâa of half-maximal supergravity in three dimensions that satisfies to
the constraints [49, 50, 51]

Di
αWâa = (Γâ)

îχα̂a , Di
αχβ̂a = −i(σµ)αβ(Γâ)̂

i∂µWâa , (3.1)

with â = 1 to 8 for the vector of O(8), i = 1 to 8 for the positive chirality Weyl spinor
of Spin(8) and ı̂ = 1 to 8 for the negative chirality Weyl spinor. The 1/4-BPS linearised
invariants are defined using harmonics of SO(8)/(U(2) × SO(4)) parametrizing a Spin(8)
group element ur1 i, u

r2r3
i, ur1i in the Weyl spinor representation of positive chirality [52],

2ur1(iu
r1
j) + εr2s2εr3s3u

r2r3
iu
s2s3

j = δij , δijur1iu
s1
j = δs1r1 , δijur1ius1j = 0 , (3.2)

δijur1iu
r2r3

j = 0 , δijur2r3 iu
s2s3

j = εr2s2εr3s3 , δijur1 iu
r2r3

j = 0 , δijur1 iu
s1
j = 0 ,

where the rA indices for A = 1, 2, 3 are associated to the three SU(2) subgroups of SU(2)1 ×
Spin(4) = SU(2)1 × SU(2)2 × SU(2)3. The harmonic variables parametrize similarly a
Spin(8) group element ur3â, ur1r2â, ur3

â in the vector representation and a group element
ur2 ı̂, u

r3r1
ı̂, ur2 ı̂ in the Weyl spinor representation of opposite chirality. They satisfy the same

relations as (3.2) upon permutation of the three SU(2)A.
The superfield W r3

a ≡ ur3âWâa then satisfies the G-analyticity condition

ur1 iD
i
αu

r3âWâa ≡ Dr1
α W

r3
a = 0 . (3.3)

One can obtain a linearised invariant from the action of the twelve derivatives Dαr1 ≡ ur1iDi
α

and Dr2r3
α ≡ ur2r3 iDi

α on any homogeneous function of the W r3
a ’s. The integral vanishes unless

the integrand includes at least the factor W 1
[aW

2
b]W

1
[cW

2
d] such that the non-trivial integrands

are defined as the homogeneous polynomials of degree 4+2n+m in W r3
a in the representation

of SU(2) isospin m/2 and in the SL(p,R) ⊃ SO(p) representation of Young tableau [n+2,m]
(n + 2 rows of two lines and m of one line) that branches under SO(p) with respect to
all possible traces. After integration, the resulting expression is in the same representation
of SO(p) and in the irreducible representation of highest weight mΛ1 + nΛ2 of SO(8), i.e.
the traceless component associated to the Young tableau [n,m], with Λ1,Λ2 denoting two
fundamental weights.

It follows that the non-linear invariant only depends on the scalar fields through the
tensor function Fab,cd and its covariant derivatives DnFab,cd and covariant densities L[n,m] in
the corresponding irreducible representation of highest weight mΛ1 +nΛ2 of SO(8) that only
depend on the scalar fields through the covariant fields

Pµab̂ = ∂µφ
µPµ ab̂ , χαı̂a , Dµχαı̂a = ∇µχαı̂a +∂µφ

µ
(
ωµ a

bχαı̂a +
1

4
ωµ âb̂(Γ

âb̂)ı̂
̂χα̂a

)
, (3.4)
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and the dreibeins and the gravitini fields, and where

Pab̂ ≡ dpRb̂
IηIJpLa

J , ωab ≡ −dpLa
IηIJpLb

J , ωâb̂ ≡ dpRâ
IηIJpRb̂

J , (3.5)

are defined from the Maurer–Cartan form of SO(p, 8)/(SO(p) × SO(8)). Using the known
structure of the t8tr∇µF∇µF trFF invariant in ten dimensions [47],5 one computes that the
first covariant density L[0,0] bosonic component is

Lab,cd =

√−g
8π

(
2P

[a
(µ â∇σP

b]â
ν) Pµ[c

b̂∇σP ν|d]b̂ + 2P [a
µ (â∇σPµ|b]b̂)P ν[c|â∇σP d]b̂

ν (3.6)

−P [a
µ â∇σPµ |b]âP [c

ν b̂∇σP ν |d]b̂ − 4P[µ
[a|â∇σP b]b̂

ν] P
µ[c

[â∇σP ν |d]
b̂] + . . .

)
.

The factor of π is introduced by convenience for the definition (2.30) to hold. Investigating
the possible tensors one can write in this mass dimension, one concludes that the tensor
densities L[n,m] are only non-zero for 0 ≤ n ≤ 2 and 0 ≤ m ≤ 4 and the density L[2,4] ∼ χ12

with open SO(p) indices in the symmetrization . The invariant admits therefore the
decomposition

L = Fab,cdLab,cd +DeâFab,cdLab,cd,eâ +D(e
(âDf)

b̂)Fab,cdLab,cd,e,fâ,b̂
+D[e

[âDf ]
b̂]Fab,cdLab,cd,efâb̂

+ · · ·+D(b1
(b̂1 · · · Db4)

b̂4)Da1
â1 · · · Da4

â4Fa5a6,a7a8La1a2,a3a4,a5a6,a7a8,b1,b2,b3,b4
â1â2,â3â4,b̂1,b̂2,b̂3,b̂4

, (3.7)

where the La1a2,...,a2n+3a2n+4,b1,...,bm

â1â2,...,â2n−1â2n,b̂1,...,b̂m
are in the irreducible representation of highest weight

mα̌1 + nα̌2 of SO(8) and admit the symmetry of the Young tableau [n + 2,m] with respect
to the permutation of the SO(p) indices. In particular, Fab,cd transforms according to ,
realized by first symmetrizing along the columns and then antisymmetrizing along the rows
[ab], [cd].

Checking the supersymmetry invariance (modulo a total derivative) of L in this basis, one
finds that there is no term to cancel the supersymmetry variation

δFab,cd =
(
εi(Γ

f̂ )îχ̂ e
)
Def̂Fab,cd (3.8)

of the tensor Fab,cd and of its derivative when three open SO(p) indices are antisymmetrized,
hence the tensor Fab,cd must satisfy the constraints

D[a1

âFa2a3],bc = 0 , D[a1

[â1Da2
â2]Fa3]b,cd = 0 , D[a1

[â1Da2
â2Da3]

â3]Fcd,ef = 0 . (3.9)

Similarly, because the L[n,m] are traceless in the SO(8) indices, the SO(8) singlet component
of δ(DF )L[0,1] can only be cancelled by terms coming from FδL[0,0], i.e.

Fab,cdδLab,cd +
1

8
DeâDfâFab,cd(εΓĉχe)Lab,cd,fĉ ∼ 0 (3.10)

modulo terms arising from the supercovariantization, so that the covariant components must
satisfy

δLab,cd +
b1
4

(εΓĉχe)Lab,cd,eĉ +
b2
2

(
(εΓĉχ[a)Lb]e,cd,ĉ e + (εΓĉχ[c)Ld]e,ab,

ĉ e

)
= ∇µ(. . . ) . (3.11)

5with t8F
4 = FµνF

νσFσρF
ρµ − 1/4(FµνF

µν)2.
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Therefore, the tensor Fab,cd must obey an equation of the form

DeâDfâFab,cd = b1

(
−δefFab,cd + δe[aFb]f,cd + δe[cFd]f,ab

)

− 3b2
(
δf [aFb]e,cd + δf [cFd]e,ab

)
− 4b2δc][aFb](e,f)[d , (3.12)

for some numerical constants b1, b2 which are fixed by consistency. In particular the integra-
bility condition on the component antisymmetric in e and f implies b1 = 4− 3b2.

Before determining the constants bi, it is convenient to generalize Fab,cd to a tensor F (p,q)

ab,cd

on a general Grassmanian Gp,q, which would arise by considering a superfield in D = 10− q
dimensions with 4 ≤ q ≤ 6, with harmonics parametrizing SO(q)/(U(2)×SO(q−4)) [53]. The
same argument leads again to the conclusion that F (p,q)

ab,cd satisfies to (3.12) with b1 = q
2 − 3b2.

Equivalently, these constraints follow from the general Ansatz preserving the symmetry of
the indices ab, cd and the two first equations in (3.9). An additional integrability condition
comes from the equation

D[a1

âDeb̂D|a2|b̂F
(p,q)

a3]b,cd = [D[a1

â,Deb̂]D|a2|b̂F
(p,q)

a3]b,cd +
1

2
Deb̂[D[a1

â,Da2
b̂]F (p,q)

a3]b,cd

= D[a1

â
(

6b2−q
4 δe|a2

F (p,q)

a3]b,cd + 3b2
2 δb|a2

F (p,q)

a3]e,cd + 2b3δc]|a2
F (p,q)

a3]b,e[d + b3δc]|a2
F (p,q)

a3][d,be

)

= D[a1

â
(

3−q
4 δe|a2

F (p,q)

a3]b,cd + 1
4δb|a2

F (p,q)

a3]e,cd + 1
2δc]|a2

F (p,q)

a3]b,e[d

)

+
1

4
Deâ

(
δb[a1

F (p,q)

a2a3],cd + δc][a1
F (p,q)

a2a3],b[d

)
, (3.13)

which is indeed consistent, if and only if b2 = 1
2 and so b1 = q−3

2 so that (3.12) reduces to

D(e
âDf)âF

(p,q)

ab,cd = 3−q
2 δefF

(p,q)

ab,cd + q−6
2

(
δe)[aF

(p,q)

b](f,cd + δe)[cF
(p,q)

d](f,ab

)
− 2δc][aF

(p,q)

b](e,f)[d . (3.14)

Alternatively, one can represent a tensor with the symmetry with two pairs of indices
that are manifestly symmetric, i.e. Gab,cd = Gba,cd = Gab,dc = Gcd,ab such that G(ab,c)d = 0,
such that

Fab,cd = Gc][a,b][d , Gab,cd = −4
3Fa)(c,d)(b . (3.15)

The tensor Gab,cd satisfies the constraints

D[a1

âG(p,q)

a2|b|,a3]c = 0 , D[a1

[â1Da2
â2]G(p,q)

a3]b,cd = 0 , D[a1

[â1Da2
â2Da3]

â3]G(p,q)

cd,ef = 0 . (3.16)

and

D(e
âDf)âG

(p,q)

ab,cd = 3−q
2 δefG

(p,q)

ab,cd + 6−q
2

(
δe)(aG

(p,q)

b)(f,cd + δe)(cG
(p,q)

d)(f,ab

)
+ 3

2δ〈ab,G
(p,q)

cd〉,ef . (3.17)

The discussion so far only applies to a supersymmetry invariant modulo the classical equa-
tions of motion, whereas one must take into account the first correction in (∇Φ)4. The direct
computation of this correction via supersymmetry invariance at the next order is extremely
difficult, however, one can determine its form from general arguments. The modification of
the supersymmetry Ward identities implies that the corrections to the differential equations
must be an additional source term quadratic in the completely symmetric tensor F (p,q)

abcd defin-
ing the (∇Φ)4 coupling. This correction should preserve the wave-front set associated to the
original homogeneous solution, so it is expected that (3.16) is not modified, while the second
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order equation (3.17) admits a source term quadratic in F (p,q)

abcd and consistent with (3.16).
Inspection of the various possible tensor structures shows that there is indeed no possible
correction to (3.16), because F (p,q)

abcd satisfies itself

D[a
âF (p,q)

b]cde = 0 , D[a
[âDb]b̂]F (p,q)

cdef = 0 . (3.18)

Equation (3.17) admits the symmetry associated to the Young tableaux and , however
it is easy to check that the latter is trivially satisfied

1

2
D[a1|

âDbâF (p,q)

|a2a3],cd = −q
4
δb[a1

F (p,q)

a2a3],cd −
q

4
δc][a1

F (p,q)

a2a3],b[d , (3.19)

and therefore cannot be corrected by a source term. The only source term quadratic in F (p,q)

abcd

with the symmetry structure that also satisfies to the constraint (3.16) is F (p,q)

|e)〈ab,
gF (p,q)

cd〉(f |g.
It is indeed straighforward to check that the corresponding combination sourcing (3.17),
namely F (p,q)

c]e[a
gF (p,q)

b]fg[d, satisfies (3.9) using (3.18), whereas any other combination with the
symmetry structure involving the Kronecker symbol would not.

We conclude that the correct supersymmetry constraint for G(p,q)

ab,cd reads

D(e
âDf)âG

(p,q)

ab,cd = 3−q
2 δefG

(p,q)

ab,cd + 6−q
2

(
δe)(aG

(p,q)

b)(f,cd + δe)(cG
(p,q)

d)(f,ab

)
+ 3

2δ〈ab,G
(p,q)

cd〉,ef

− 3$

2
F (p,q)

|e)〈ab,
gF (p,q)

cd〉(f |g , (3.20)

where $ is an undetermined numerical coefficient at this stage. In §3.3 we shall show that
the genus-two modular integral (2.30) satisfies this equation with $ = π.

Let us note that this discussion only applies to the Wilsonian effective action. As we
shall see in section B.2.4, the differential Ward identity satisfied by the renormalized coupling
Ĝab,cd appearing in the 1PI effective action is expected to be corrected in four dimensions

(q = 6) by constant terms and by terms linear in F̂abcd.
Because of the quadratic source term in (3.20), the tensor Gab,cd does not belong strickly

speaking to an automorphic representation of SO(p, q). One can nonetheless define a gener-
alization of the notion of automorphic representation attached to this tensor. The linearised
analysis exhibits that the homogeneous differential equation is attached to the SO(p, q) rep-
resentation associated to the nilpotent orbit of partition [32, 1p+q−6] such that the nilpotent
elements Zab̂ ∈ so(p+ q)(C)	 (so(p)(C)⊕ so(q)(C)) satisfy the constraint (cf. (3.9), (3.12))

Z[a
[âZb

b̂Zc]
ĉ] = 0 , ZaĉZb

ĉ = 0 . (3.21)

For a representative of the nilpotent orbit in the unipotent associated to the maximal parabolic

GL(k)× SO(p− k, q − k) nR2(p+q−2k)+
k(k−1)

2 this gives the constraints 6

Q[i
[mQj

nQk]
p] = 0 , Q[i

mQj
nKkl] = 0 , (3.22)

which admits a subspace of solutions of dimension 2(p+ q−k− 2) for Qi
m ∈ SL(k)×SO(p−

k, q−k)/(SO(2)×SL(k−2)nR2(k−2)×SO(p−k−2, q−k)) ∈ R2(p+q−2k) and a subspace of

6The unipotent being non-Abelian for k ≥ 2, one cannot generally define the Fourier coefficients for
(Qmi ,Kij), but one must consider separately the Abelian Fourier coefficient with Kij = 0, from the non-
Abelian Fourier coefficients with Kij and a subset of the charges Qmi defining a polarization.
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dimension 2k−3 for Kij ∈ R
k(k−1)

2 , and therefore a Kostant–Kirillov dimension 2(p+q−4)+1
that is exactly saturated by the Fourier coefficients in the maximal parabolic decomposition
with k = 2.

The tensor Fabcd is instead in an automorphic representation associated to the nilpotent
orbit of partition [3, 1p+q−3] such that the nilpotent elements Zab̂ ∈ so(p+q)(C)	 (so(p)(C)⊕
so(q)(C)) satisfy the constraint

Z[a
[âZb]

b̂] = 0 , ZaĉZb
ĉ = 0 . (3.23)

For a representative of the nilpotent orbit in the unipotent associated to the maximal parabolic

GL(k)× SO(p− k, q − k) nR2(p+q−2k)+
k(k−1)

2 this gives the constraints

Q[i
[mQj]

n] = 0 , Q[i
mKjk] = 0 , K[ijKkl] = 0 , (3.24)

which admits a subspace of solutions of dimension p+ q − k − 1 for Qi
m ∈ SL(k)× SO(p−

k, q−k)/(SL(k− 1)nRk−1×SO(p−k− 1, q−k)) ∈ R2(p+q−2k) and a subspace of dimension

k − 1 for Kij ∈ R
k(k−1)

2 , and therefore a Kostant–Kirillov dimension p+ q − 2 that is exactly
saturated by the Fourier coefficients in the maximal parabolic decomposition with k = 1.
One easily checks that the sum of two generic elements (Qmi ,Kij) solving (3.24) always solve
(3.22), so that the quadratic source in Fabcd sources the Fourier coefficients of the tensor Gab,cd
consistently with the automorphic representation associated to the nilpotent orbit of partition
[32, 1p+q−6].

It is important to note that the 1/4-BPS black hole solutions (single-centered and multi-
centered) are solutions of the Euclidean three-dimensional non-linear sigma model overO(2k, 8)
/(O(2k)×O(8)) which are themselves associated to a real nilpotent orbit of O(2k, 8) of par-
tition [32, 12+2k] [54, 55]. This is consistent with the property that the Fourier coefficients in
the maximal parabolic decomposition GL(2)×O(2k−2, 6)nR2(4+2k)+1 saturate the Kostant–
Kirillov dimension and are proportional to the helicity supertrace associated with these black
holes.

3.2 R2F 2 type invariants in four dimensions

In four dimensions, there are two distinct classes of six-derivative supersymmetric invariants.
In the linearised approximation, they are defined as harmonic superspace integrals of G-
analytic integrands annihilated by a quarter of the fermionic derivatives, and can be promoted
to non-linear harmonic superspace integrals [56]. The first class of invariants is the one defined
in the preceding section for q = 6. It includes a G(2k−2,6)

ab,cd ∇(F aF̄ b)∇(F cF̄ d) coupling with a

tensor G(2k−2,6)

ab,cd satisfying to (3.16) and (3.20). The second class of invariants is defined as a
chiral harmonic superspace integral at the linearised level, as we now explain.

In four dimensional supergravity with half-maximal supersymmetry, the linearised Maxwell
superfield Wâa ∼Wija satisfies the constraints

DαkWija = εijklλ
l
αa , D̄k

α̇Wija = 2δk[iλ̄α̇j]a , Dαiλ
j
βa = δjiFαβa , (3.25)

whereas the chiral scalar superfield satisfies

DαiS = χαi , D̄i
α̇S = 0 , Dαiχβi = Fαβij , (3.26)
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with i = 1 to 4 of SU(4) and α, α̇ the SL(2,C) indices. The chiral 1/4-BPS linearised
invariants are defined using harmonics of SU(4)/S(U(2)×U(2)) parametrizing a SU(4) group
element ur

i, ur̂
i with r and r̂ the indices of the two respective SU(2) subgroups. The superfield

W34a ≡ u3
iu4

jWija = 1
2ε
r̂ŝur̂

iuŝ
jWija then satisfies the G-analyticity constraints

ur̂
iDαi(u3

iu4
jWija) ≡ Dαr̂W34a = 0 , ui

rD̄i
α̇(u3

iu4
jWija) ≡ D̄r

α̇W34a = 0 . (3.27)

One can obtain a linearised invariant from the action of the eight derivatives Dαi and the
four derivatives D̄r

α̇ ≡ uirD̄i
α̇ on any homogeneous function of the G-analytic superfields W34a

and S. Using for short u34
â = (Γâ)

ijui
3uj

4 and the projection (â1 . . . ân)′ on the traceless
symmetric component, one gets

∫
duu34

â1
. . . u34

ân [D8][D̄4] 1
(n+2)!(m+2)!ca1...an+2W

a1
34 . . .W

an+2

34 S2+m

=
1

n!m!
ca1...anabW

a1
(â1
W a2

â2 . . .W
an
ân)′S

mL(0)ab
+2

+
1

(n− 1)!m!
ca1...anabW

a2
(â2
W a3

â3 . . .W
an
ânS

mL(0)a1ab
â1)′+2

+
1

n!(m− 1)!
ca1...anabW

a1
(â1
W a2

â2 . . .W
an
ân)′S

m−1L(0)ab
+4 + . . .

+
1

(n− 6)!(m− 2)!
ca1...anabW

a7
(â7
W a6

â6 . . .W
an
ânS

m−2L(0)a1...a6ab
â1...â6)′+6 + . . .

+
1

(n− 2)!(m− 6)!
ca1...anabW

a3
(â3
W a4

â4 . . .W
an
ânS

m−6L(0)a1a2ab
â1â2)′+14 + ∂(. . . ) , (3.28)

where the L[n+4]
[n]+m are symmetric tensors that only depend on the scalar fields through their

derivative. One works out in particular that L(0)ab
+2 includes a term of type R2F 2 as

L(0)ab
+2 ∼ F̄ a

α̇β̇
F̄ α̇β̇bCαβγδC

αβγδ + . . . (3.29)

with Cαβγδ the complex Weyl curvature tensor (which we denote schematically byR), whereas
the highest monomials only depend on the fermion fields as

L(0)a1...a6ab
â1...â6+6 ∼ λ̄4λ4χ4 , L(0)a1...a5ab

â1...â5+8 ∼ λ̄4λ3χ5 , L(0)a1...a4ab
â1...â4+10 ∼ λ̄4λ2χ6 ,

L(0)a1a2a3ab
â1â2â3+12 ∼ λ̄4λχ7 , L(0)a1a2ab

â1â2+14 ∼ λ̄4χ8 . (3.30)

Note that L(0)ab
+2 is of U(1) weight −2, so one can anticipate that it must be multiplied by

a modular form of weight 2 at the non-linear level. At the non-linear level, derivatives of
the scalar fields only appear through the pull-back of the right-invariant form Pab̂ over the
Grassmanian and the covariant derivative (S−S̄)−1∂µS of the upper complex half plan field S.
One defines in the same way the covariant derivative Dab̂ on the Grassmanian and the Kähler

derivative D = (S − S̄) ∂∂S + w
2 on a weight w form. According to the linearised analysis, the

supersymmetry invariant is associated to a tensor Gab(φ, S), holomorphic in S and function
of the Grassmanian coordinates φ.

Due to the superconformal symmetry PSU(2, 2|4) of the linearised theory in four di-
mensions, the non-linear invariants are in bijective correspondance with the linearised in-
variants, themselves determined by harmonic superspace integrals. However, the linearised
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invariants that combine to define a general class of non-linear invariants are not necessar-
ily defined from the same harmonic superspace. The general ∇2F 4 type invariants de-
fined in the preceding section are determined by vector-like harmonic superspace integrals
of SU(4)/S(U(1) × U(2) × U(1)). In contrast the R2F 2 type invariants described in this
section involve both structures, such that the defining function Gab(φ, S) is of weight zero,
and the terms in the Lagrangian that do not involve its Kähler derivative D are defined at the
linearised level from SU(4)/S(U(1)×U(2)×U(1)) harmonic superspace integral of a restricted
type. These invariants are constructed explicitly in [56] for a SO(p) invariant function on the
Grassmannian. One finds that Gab(φ, S) must be holomorphic in S, as the linearised analysis
suggested. It defines a Lagrange density L that decomposes naturally as

L = GabLab +D(a
âGbc)Labcâ +D(a

(âDbb̂)Gcd)Labcdâb̂ + . . .

+DGabLab+2 + · · ·+DD(a1

â1 · · · Da6
â6Ga7a8)La1...a8

â1...â6+2

+D2GabLab+4 + · · ·+D2D(a1

â1 · · · Da5
â5Ga6a7)La1...a7

â1...â5+4

...

+D7GabLab+14 +D7D(a
âGbc)Labcâ+14 +D7D(a

(âDbb̂)Gcd)Labcdâb̂+14 , (3.31)

where the L[n+2]
[n]+m are SL(2)×O(2k−2, 6) invariant polynomial functions of the covariant

fields and their derivatives and the vierbeins and the gravitini fields. Because non-linear in-
variants induce linear invariants by truncation to lowest order in the fields (3.4), the covariant
densities L[n+2]

[n]+m reduce at lowest order to homogeneous polynomials of degree n+2 in the

covariant fields (3.4) that coincide with the linearised polynomials L(0)[n+2]
[n]+m for m ≥ 2.

For m = 0, the linearised invariants L(0)[n+2]
[n] are the real analytic superspace integrals de-

scribed in the preceding section [n + 2,m] for n = 0, and where indices are contracted with
δab to reduce the representation from the Young Tableau [2,m] to [0,m + 1]. The analysis
of the invariant defined as a non-linear harmonic superspace integral indeed shows that the
component Lab is of the type

Lab =
√−g t8

(
2∇(F (aF b))∇(FcF

c) +∇(FcF
(a)∇(F b)F c) + . . .

)
, (3.32)

with t8F
4 = FαβF

αβF̄α̇β̇F̄
α̇β̇, and

Lab+2 =
√−gF̄ a

α̇β̇
F̄ α̇β̇bCαβγδC

αβγδ + . . . . (3.33)

The complete invariant is the real part of this complex invariant. So the four-photon MHV
amplitude gives a contribution to the Wilsonian effective action in Gab(φ, S) + Gab(φ, S̄),
whereas the amplitude with two gravitons of positive helicity and two photons of negative
helicity gives a contribution in DGab(φ, S). Because DGab(φ, S̄) = 0, we will usually refer to a
single function G(0)

ab (φ, S, S̄) = Gab(φ, S) + Gab(φ, S̄).
Similarly to [22], one can show that supersymmetry at the linearised level implies tensorial

differential equations of the form

DdâDcâG(0)

ab = 3(2−q)
4 δd(cG

(0)

ab) + 3
2 δ(abG

(0)

c)d , D[a
âG(0)

b]c = 0 , (3.34)

with q = 6, where the coefficients of the two terms on the right-hand side have been fixed by
requiring that these constraints are integrable.
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As in the preceding section, this linearized analysis does not take into account the lower
order corrections in the effective action and the local terms coming from the explicit decom-
position of the effective action into local and non-local components. The coefficient Fabcd(ϕ)
of the F 4 coupling and the real coefficient E(S) of the R2 coupling give rise to source terms
in these differential equations, such that we get eventually

DdâDcâGab(S, ϕ) = −3δd(cGab)(S, ϕ) + 3
2 δ(abGc)d(S, ϕ) + 6E(S)Fabcd(ϕ) ,

DD̄Gab(S, ϕ) =
3

4π
Fabc

c(ϕ) . (3.35)

Finally, let us note that the same class of harmonic superspace integrals (3.28) produces
higher derivative invariants by integrating instead

∫
duu34

â1
. . . u34

ânu
34
b̂1
. . . u34

b̂2p
[D8][D̄4] 1

n!(m+2)!(p+1)!ca1...anW
a1
34 . . .W

an
34 S

2+m(Fαβ34F
αβ
34 )p+1 .

(3.36)
This gives rise to chiral 1/4-BPS-protected invariants of the same class, including couplings
of the form

G(2p+4)

â1â2...â2p
(S, ϕ)C2∇2S∇2S(F â1F â2) . . . (F â2p−1F â2p) . (3.37)

Here C is the Weyl tensor and G(2p)(S, ϕ) is a rank 2p SO(6) symmetric traceless tensor,
which is a weight 2p+ 4 weakly holomorphic modular form in S. It satisfies to a hierarchy of
differential equations on the Grassmannian [57]

Daâ2pG(2p+4)

â1...â2p
= Da[â1

G(2p+4)

â2]â3...â2p+1
= D̄G(2p+4)

â1...â2p
= 0 ,

DaĉDbĉG(2p+4)

â1...â2p
= −2(p+ 2)δabG(2p+4)

â1...â2p
+Da(â1

D|b|â2
G(2p+2)

â3...â2p) . (3.38)

On the type II side these couplings can be computed in topological string theory [58].

3.3 The modular integral satisfies the Ward identities

In this subsection, we shall prove that the modular integral

G(p,q)

ab,cd = R.N.

∫

Γ2,0(N)\H2

d3Ω1d3Ω2

|Ω2|3
Γ(2)

Λp, q
[Pab,cd]

Φk−2(Ω)
, (3.39)

satisfies the differential equations (3.16) and (3.20), with a specific value of the coefficient
$ in the quadratic source term. Here, Φk−2(Ω) is the meromorphic Siegel modular form
defined in (A.33), and Γ(2)

Λp, q
[Pab,cd] is the genus-two partition function (2.32) for a level N

even lattice of signature (p, q), with an insertion of the quartic polynomial Pab,cd defined in
(2.31). Since Φk−2 and Γ(2)

Λp, q
[Pab,cd] are modular forms of weight k − 2 and p−q

2 + 2 = k − 2

under Γ2,0(N), the integrand is well defined on the quotient Γ2,0(N)\H2. The symbol R.N.
refers to a regularization procedure which is necessary to make sense of the integral when
q ≥ 5, as discussed in Appendix B.2.4.

In order to derive these results, we shall first establish differential equations for the general
class of genus-two Siegel theta series Γ(2)

Λp, q
[P ], where the polynomial P (Q) is obtained by acting

on a homogeneous polynomial of bidegree (m,n) in (εrsQ
r
LQ

s
L, εrsQ

r
RQR)s respectively, with
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the operator |Ω2|ne−
∆2
8π , where εrs is the rank-two antisymmetric tensor with ε12 = 1 and ∆2

is the second order differential operator

∆2 ≡
∑

a

∂

∂QrLa
(Ω−1

2 )rs
∂

∂QsaL
+
∑

â

∂

∂QrRâ
(Ω−1

2 )rs
∂

∂QsâR
, (3.40)

Under this condition, one can show using Poisson resummation that Γ(2)

Λp, q
[P ] satisfies

Γ(2)

Λp, q
[P ](−Ω−1) =

(−i)p−q|Ω| p−q2
+m−n

|Λ∗p,q/Λp,q|
Γ(2)

Λ∗p, q
[P ](Ω) , (3.41)

which implies that Γ(2)

Λp, q
[P ] transforms as a modular form of weight p−2

2 + m − n under

Γ2,0(N). For our purposes, it will be sufficient to focus on polynomials of the form, using
(Qa εQb) = εrsQ

r
aQ

s
b,

Pa1...am,b1...bm,ĉ1...ĉn,d̂1...d̂n

= e
−∆2
8π

[(
(QL(a1|εQL|b1|) . . . (QL|am)εQLbm)

)(
(QR(ĉ1|εQR|d̂1|) . . . (QR|ĉn)εQRd̂n)

)]
,

(3.42)

where (b1 . . . bm) denotes all symmetric permutations of b1, . . . , bm, and similarly for hatted
indices. The quadratic polynomial P = Pab,cd arises in the case (m,n) = (2, 0) with no
contraction among the left-moving indices, as written explicitely in the first line of (2.31).

As in [22, section 3], one can obtain the differential equations satisfied by (3.39) by acting
with the covariant derivatives Dab̂ defined by

Dab̂ =
1

2
(QrLa∂rb̂ +Qr

R,b̂
∂ra) , (3.43)

where ∂ar = ∂
∂QrLa

and ∂âr = ∂
∂QrRâ

. Recalling that pL,a
I and pR,b̂

J are the left and right

orthogonal projectors on the Grassmaniann Gp,q = O(p, q)/[O(p) × O(q)], one can use the
effective derivation rules

Dab̂pL,cI =
1

2
δacpR,b̂

I , Dab̂pR,ĉ I =
1

2
δb̂ĉpL,a

I , (3.44)

Acting with Deĝ on (2.32) we get

DeĝΓ(2)

Λp, q
[P ] = Γ(2)

Λp, q

[(
Deĝ − 2π(QLeΩ2QRĝ)

)
P
]
, (3.45)

where (QL,eΩ2QR,ĝ) = (Ω2)rsQ
r
LaQ

s
Rĝ is a short notation that will be used in the following.

It will prove useful to compute the commutation relations

[∆2,Deĝ] = 2(∂eΩ
−1
2 ∂ĝ) , [∆2, Q

r
Le] = 2(∂eΩ

−1
2 )r , (3.46)

[∆2, Q
r
LeQ

s
Rĝ] = 2QrLe(Ω

−1
2 ∂ĝ)

s + 2QsRĝ(Ω
−1
2 ∂e)

r , (3.47)

[∆2, Q
r
LeQ

s
Lf ] = 2δef (Ω−1

2 )rs + 4Q
(r
L(e(Ω

−1
2 ∂f))

s) , (3.48)

with the Baker-Campbell-Hausdorff formula

e
∆2
8π Oe−

∆2
8π = O +

1

8π
[∆2,O] +

1

2!

1

(8π)2
[∆2, [∆2,O]] + . . . , (3.49)
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one obtains

DeĝΓ(2)

Λp, q
[P ] = −2πΓ(2)

Λp, q

[
e−

∆2
8π
(
(QLeΩ2QRĝ)− 1

(4π)2 (∂eΩ
−1
2 ∂ĝ)

)
e

∆2
8π P

]
. (3.50)

Note that the derivation rules ensure that the constraints (3.16) are automatically satisfied at
the level of the integrand, from the structure of (3.42) with n = 0. Antisymmetrizing (3.50)
with n = 0, one obtains

D[e
ĝΓ(2)

Λp, q
[Pa1|...am,|b1]...bm ] = Γ(2)

Λp, q

[
e−

∆2
8π 1

8π (∂[eΩ
−1
2 ∂ ĝ)e

∆2
8π Pa1|...am,|b1]...bm

]
, (3.51)

which vanishes identically since e
∆2
8π Pa1...am,b1...bm does not depend on QR. The same argument

goes for D[e
[êDf f̂ ]Γ(2)

Λp, q
[Pa1]...am,b1...bm ] and D[e

[êDf f̂Dg] ĝ]Γ(2)

Λp, q
[Pa1...am,b1...bm ], and we conclude

that for m = 2, the modular integral (3.39) satisfies

D[e
êGa|b,|c],d = 0 , D[e

êDf f̂Ga]b,cd = 0 , D[e
[êDf f̂Dg] ĝ]Gab,cd = 0 , (3.52)

which thus establishes (3.16). Note that these properties are independent of the details of the
function 1/Φk−2(Ω).

Now, the main equation (3.20) arises by applying the quadratic operator D2
ef ≡ D(e

ĝDf)ĝ

on the lattice partition function with polynomial insertion, and commuting with the summa-
tion measure eiπQLΩQL−iπQRΩ̄QR of the partition function

4D2
efΓ(2)

Λp, q
[P ] = Γ(2)

Λp, q

[(
4D2

ef − 8π(QL(eΩ2QR
ĝ)Df)ĝ − 2qδef

+ 16π2 tr
[
Ω2

(
QLeQLf − δef

4π Ω−1
2

)
Ω2

(
Q2
R − q

4πΩ−1
2

)])
P
]
.

(3.53)

Using the commutation relations (3.46), one can re-express it to make modular invariance
explicit

4D2
efΓ(2)

Λp, q
[P ] = Γ(2)

Λp, q

[
e−

∆2
8π

(
16π2(QLeΩ2QR

ĝ)(QRĝΩ2QLf )− δef (qg + (QRĝ∂
ĝ))

− q(QL(e∂f))− 2(QL(eΩ2QRĝ)(∂
ĝΩ−1

2 ∂f ) +
1

16π2
(∂eΩ

−1
2 ∂ĝ∂

ĝΩ−1
2 ∂f )

)
e

∆2
8π P

]
,

(3.54)

and notice that all the terms in (3.54) except the first and last one will become linear tensorial
combinations of the original partition function Γ(2)

Λp, q
[P ]. The first term on the r.h.s of (3.54)

can be rewritten as the action of the lowering operator for Siegel modular forms,

D̄rs = −iπ(Ω2(Ω2∂Ω̄)ᵀ)rs = −iπ(Ω2)rt(Ω2)su
∂

∂Ω̄tu
, (3.55)

which take a weight w representation syml modular form to a weight w − 2 representation
sym2 ⊗ syml modular form [59]. Indeed,

D̄rsΓ
(2)

Λp, q

[
e−

∆2
8π QrLeQ

s
Lfe

∆2
8π P

]

= −π2Γ(2)

Λp, q

[
tr
[
Ω2

(
Q2
R − q

4πΩ−1
2

)
Ω2e

−∆2
8π (QLeQLf )e

∆2
8π
]
P
]

+
1

16
Γ(2)

Λp, q

[
(∂hr ∂sh + ∂ĥr ∂sĥ)e−

∆2
8π QrLeQ

s
Lfe

∆2
8π P

]

= Γ(2)

Λp, q

[
e−

∆2
8π ( 1

16∂rh∂
h
sQ

r
LeQ

s
Lf − π2(QLeΩ2QRĝ)(QR

ĝΩ2QLf )

− π

2

(
(QL(eΩ2QRĝ)(∂

ĝQLf))− n(QLeΩ2QLf )
)
e

∆2
8π P

]
,

(3.56)
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and the r.h.s. of (3.54) can thus be written as

4D2
efΓ(2)

Λp, q

[
P
]

= Γ(2)

Λp, q

[
e−

∆2
8π

(
(6− 2q −QRĝ∂ ĝ)δef + (6− q)(QL(e∂f))

+QrLeQsLf (∂2
L)rs − 2(QL(eΩ2QRĝ)(∂

ĝΩ−1
2 ∂f )

− 8π
(
(QL(eΩ2QRĝ)(∂

ĝQLf))− n(QLeΩ2QLf )
)

+
1

16π2
(∂eΩ

−1
2 ∂ĝ∂

ĝΩ−1
2 ∂f )

)
e

∆2
8π P

]

− 16D̄rsΓ
(2)

Λp, q

[
e−

∆2
8π QrLeQ

s
Lfe

∆2
8π P

]
.

(3.57)

The third line contains contributions from partition functions with more or fewer momentum
insertions, respectively, and the fourth line is to be computed explicitly. We now specialize
to the case of interest and obtain

∆efΓ(2)

Λp, q

[
Pab,cd

]
= −4D̄rsΓ

(2)

Λp, q

[
e−

∆2
8π QrLeQ

s
Lfe

∆2
8π Pab,cd

]
, (3.58)

where the operator ∆ef is defined as

2∆efGab,cd ≡2D2
efGab,cd + (q − 3)δefGab,cd + (q − 6)

[
δ|e)(aGb)(f |,cd + δ|e)(cGd)(f |,ab

]

− 3δ〈ab,Gcd〉,ef .
(3.59)

Let us now return to the modular integral (3.39). In order to regularize the infrared
divergences which arise when q > 5 (discussed in more detail in Appendix B.2.4), it is useful to
first fold the integration domain Γ2,0(N)\H2 onto the fundamental domain F2 = Sp(4,Z)\H2,
and restrict the latter to truncated fundamental domain

F2,Λ,η = F2 ∩ {ρ2 ≤ σ2 − v 2
2 /ρ2 ≤ Λ} ∩ {|v| > η} (3.60)

excising both the non-separating degeneration at Ω2 = i∞ and the separating degeneration
at v = 0. We thus define

G(p,q)

ab,cd(Λ, η) =

∫

F2,Λ,η

d3Ω1d3Ω2

|Ω2|3
∑

γ∈Γ2,0(N)\Sp(4,Z)

[
Γ(2)

Λp, q
[Pab,cd]

Φk−2(Ω)

]

γ

. (3.61)

The renormalized integral (3.39) is defined as the limit of (3.61) as Λ →∞, η → 0, possibly
after subtracting divergent terms. Acting with the operator ∆ef and using (3.58) one obtains

∆ef G
(p,q)

ab,cd(Λ, η) = −4

∫

F2,Λ,η

d3Ω1d3Ω2

|Ω2|3
∑

γ

[
1

Φk−2
D̄rsΓ

(2)

Λp, q

[
e−

∆2
8π QrLeQ

s
Lfe

∆2
8π Pab,cd

]]
(3.62)

To compute the boundary term, we use Stokes’ theorem in the form

∫

∂FΛ
2,Λ,η

d5Ωrs

|Ω2|3
(Ω2)rt(Ω2)su(f tug) =

2

π

∫

FΛ
2,Λ,η

d3Ω1d3Ω2

|Ω2|3
(
gD̄rsf

rs + f rsD̄rsg
)
, (3.63)

where f rs and g are modular form of Γ2,0(N) respectively of weight w and representation sym2,
and weight w′ = 2 − w and trivial representation. The differential operator ∂Ω̄ commutes
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with factors of Ω2 because of the natural connection D̄rs. Then, since D̄rs1/Φk−2 = 0 by
holomorphicity, we obtain that the r.h.s. of (3.62) reads

−2π

∫

∂F2,Λ,η

d5Ωrs

|Ω2|3
(Ω2)rt(Ω2)su

∑

γ

[
1

Φk−2(Ω)
Γ(2)

Λp, q

[
e−

∆2
8π QtLeQ

u
Lfe

∆2
8π Pab,cd

]]

γ

. (3.64)

The contributions from the Λ-dependent boundary of F2,Λ,η lead to powerlike terms in Λ,
which cancel in the renormalized integral, except for q = 5 or q = 6 where these divergent
terms become logarithmic and are responsible for an anomalous term in the differential equa-
tion. These anomalous terms are computed in §B.2.5 and will be displayed in the final result
below. Here we focus on the contribution from the boundary at |v| = η due to the pole of
the integrand at v = 0, which is cut-off independent for any q and can be computed using
Cauchy’s theorem.

To compute the residue at v = 0, recall that the function 1/Φk−2 has a second order pole
at v = 0 (cf. (A.44)) and behaves as Φk−2 ∼ (2πiv)2∆k(ρ)×∆k(σ) +O(v4) . The only cosets
γ preserving the pole at v = 0 are those in γ ∈ (Γ0(N)\SL(2,Z))ρ × (Γ0(N)\SL(2,Z))σ.
Adding up these contributions, we find that the residue of the integrand at v = 0 is

1

ρ2
2σ

2
2

i

∆k(ρ)∆k(σ)

∑

γ∈(Γ0(N)\SL(2,Z))ρ
×(Γ0(N)\SL(2,Z))σ

Γ(2)

Λp, q

[
e−

∆2
8π Q1

LkQ
2k
L Q

1
LeQ

2
Lfe

∆2
8π Pab,cd

]∣∣∣
γ

(
Ω =

(
ρ 0
0 σ

))
.

(3.65)
Near the boundary at |v| = η, the fundamental domain F2,Λ,η reduces to F1(ρ)×F1(σ)×{|v| >
η}/Z2 × Z2 where the first Z2 exchanges ρ and σ while the second sends v 7→ −v. Thus, the
sum in (3.65) factorizes into two genus-one integrands, leading to

∆ef G
(p,q)

ab,cd(Λ, η) =− π
(
F (p,q)

abk(e(Λ)F (p,q)

f)cd
k(Λ)− F (p,q)

ak|c)(e(Λ)F (p,q)

f)(d|b
k(Λ)

)
+ . . .

=− 3π

2
F (p,q)

|e)k〈ab,(Λ)F (p,q)

cd〉
k

(f |(Λ) + . . . ,
(3.66)

where the dots denote contributions from the Λ-dependent boundary, discussed in detail in
Appendix B.2.4, while F (p,q)

abcd (Λ) is the genus-one regularized modular integral

F (p,q)

abcd (Λ) =

∫

F1,Λ

dρ1 dρ2

ρ2
2

∑

γ∈Γ0(N)\SL(2,Z)

[
1

∆k
ΓΛp, q

[
Pabcd

]]

γ

. (3.67)

This establishes (3.20) with $ = π. We show in Appendix B.2.5 that the divergent terms
from the Λ-dependent boundary of F2,Λ,η combine consistently such that the renormalised
coupling satisfies the same differential equation (3.20), but for q = 5 or q = 6, for which
one gets additional linear source terms. For the perturbative string alplitude, υ = N , the
additional source term vanishes for q = 5, and for q = 6 it can be ascribed to the mixing
between the analytic and the non-analytic parts of the amplitude. In this case one obtains
(B.96)

∆ef G
(p,q)

ab,cd = −3π

2
F (p,q)

|e)k〈ab,F
(p,q)

cd〉
k

(f | − δq,6
3

16π

(
δefδ〈ab, + 2δe〈(aδb),|f |

)
F (p,q)

cd〉k
k , (3.68)

where ∆ef was defined in (3.59).
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4 Weak coupling expansion of exact ∇2(∇φ)4 couplings

In this section, we study the asymptotic expansion of the proposal (1.5) in the limit where
the heterotic string coupling g3 goes to zero, and show that it reproduces the known tree-level
and one-loop amplitudes, along with an infinite series of NS5-brane, Kaluza–Klein monopole
and H-monopole instanton corrections. For the sake of generality, we analyze the family of
modular integral

G(p,q)

ab,cd = R.N.

∫

Γ2,0(N)\H2

d3Ω1d3Ω2

|Ω2|3
Γ(2)

Λp, q
[Pab,cd]

Φk−2(Ω)
, (4.1)

for a level N even lattice Λp,q of arbitrary signature (p, q), in the limit near the cusp where
O(p, q) is broken to O(1, 1)×O(p− 1, q − 1), so that the moduli space decomposes into

Gp,q → R+ ×Gp−1,q−1 nRp+q−2 . (4.2)

For simplicity, we first discuss the maximal rank case N = 1, p− q = 16, where the integrand
is invariant under the full Siegel modular group Sp(4,Z), before dealing with the case of
N prime, where the integrand is invariant under the congruence subgroup Γ2,0(N). The
reader uninterested by the details of the derivation may skip to §4.3, where we specialize to
the values (p, q) = (2k, 8) relevant for the ∇2(∇φ)4 couplings in D = 3 and interpret the
various contributions as perturbative and non-perturbative effects in heterotic string theory
compactified on T 7. In §6.4 we discuss the case (p, q) = (21, 5) relevant for ∇2H4 couplings
in type IIB string theory compactified on K3.

4.1 O(p, q)→ O(p− 1, q − 1) for even self-dual lattices

In this subsection we assume that the lattice Λp,q is even self-dual and factorizes in the limit
(4.2) as

Λp,q → Λp−1,q−1 ⊕ II1,1 . (4.3)

We shall denote by R the coordinate on R+, ϕ the coordinates on Gp−1,q−1 and by aI ,
I = 1 . . . p+q−2 the coordinates onRp+q−2. The variable R > 0 parametrizes a one-parameter
subgroup eRH0 in O(p, q), such that the action of the non-compact Cartan generator H0 on
the Lie algebra sop,q decomposes into

sop,q ' (p + q− 2)(−2) ⊕ (gl1 ⊕ sop−1,q−1)(0) ⊕ (p + q− 2)(2) . (4.4)

while the coordinates aI parametrize the unipotent subgroup obtained by exponentiating the
grade 2 component in this decomposition.

The lattice vectors are now labelled according to the choice of A-cycle on the genus-two
Riemann surface. They thus take value take value in double copy of the original lattice Λp,q⊕
Λp,q. Thus, the generic charge vector (Q1 I , Q2 I) ∈ Λp,q⊕Λp,q ' 2(−2)⊕ (2⊗ (p + q− 2))(0)⊕
2(2),7 decomposes into

(Q1
I , Q

2
I) = (n1, n2, Q̃1

I , Q̃
2
I ,m

1,m2) , (4.5)

7We use I to label indices from 1 to p + q in this paragraph to differentiate them from the indices on the
sublattice.
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where (n1, n2,m1,m2) ∈ II1,1 ⊕ II1,1 and (Q̃1
I , Q̃

2
I) ∈ Λp−1,q−1 ⊕Λp−1,q−1, such that Qr ·Qr =

−2mrnr+Q̃rQ̃r (with no summation on r). The orthogonal projectors defined by QrL ≡ pILQrI
and QrR ≡ pIRQrI decompose according to

pIL,1Q
r
I =

1

R
√

2

(
mr + a · Q̃r +

1

2
a · anr

)
− R√

2
nr,

pIL,αQ
r
I =p̃IL,α(Q̃rI + nraI),

pIR,1Q
r
I =

1

R
√

2

(
mr + a · Q̃r +

1

2
a · anr

)
+

R√
2
nr,

pIR,α̂Q
r
I =p̃IR,α̂(Q̃rI + nraI),

(4.6)

where p̃IL,α, p̃
I
R,α̂ (α = 2 . . . q+ 16, α̂ = 2 . . . q) are orthogonal projectors in Gp−1,q−1 satisfying

Q̃r · Q̃s = Q̃rL · Q̃sL − Q̃rRQ̃sR. In the following, we shall denote |Q̃rR| ≡
√
p̃IR,α̂p̃

J α̂
R Q̃rIQ̃

r
J .

To study the behavior of (4.1) in the limit R � 1, it is useful to perform a Poisson
resummation on the momenta (m1, m2). For a lattice partition function Γ(2)

Λp, q
with or without

insertion, we must distinguish whether the indices lie along the direction 1 or along the
directions α. The result can be obtain by applying the corresponding derivative polynomial
with respect to (yr,1, yr,α) to the following partition function

Γ(2)

Λp, q

[
e2πiya·Q̃a+π

2
ya·Ω−1

2 ·ya
]

=

R2
∑

(n,m)∈Z4

e
−πR2(nm)

(
Ω
1

)
·Ω−1

2 ·
[
(nm)

(
Ω̄
1

)]ᵀ
e

2πR√
2
y1·Ω−1

2 ·
[
(nm)

(
Ω̄
1

)]ᵀ

× Γ(2)

Λp− 1, q − 1

[
e2πimᵀ·(aIQ̃I+ 1

2
aIaI n)e2πiyα·Q̃α+π

2
yα·Ω−1

2 ·yα
]
, (4.7)

where we denote the winding and momenta doublets n = (n1, n2), m = (m1,m2), and we
use Einstein summation convention for indices I = 1, . . . , p + q − 2 and α = 2, . . . , p. In this
representation, modular invariance is manifest, since a transformation Ω 7→ (AΩ + B)(CΩ +
D)−1 (A.2) can be compensated by a linear transformation (n,m) 7→ (n,m)

(
Dᵀ −Bᵀ

−Cᵀ Dᵀ
)
, y1 7→

y1 · (CΩ +D), under which the third line of (4.7) transforms as a weight p−q
2 modular form.

We can therefore compute the integral using the orbit method [60, 61, 62, 63, 64], namely
decompose the sum over (n,m) into various orbits under Sp(4,Z), and for each orbit O, retain
the contribution of a particular element ς ∈ O at the expense of extending the integration
domain F2 = Sp(4,Z)\H2 to Γς\H2, where Γς is the stabilizer of ς in Sp(4,Z). The integration
domain is unfolded according to the formula

⋃

γ∈Γς\Sp(4,Z)

γ · F2 = Γς\H2 , (4.8)

where one must take into account that −1 ∈ Sp(4,Z) acts trivially on H2. The coset repre-
sentative ς ∈ O, albeit arbitrary, is usually chosen so as to make the unfolded domain Γς\H2

as simple as possible. In the present case, there are two types of orbits:

The trivial orbit (n,m) = (0, 0, 0, 0) produces, up to a factor of R2, the integrals (4.1) for
the lattice Λp−1,q−1, provided none of the indices ab, cd lie along the direction 1,

G
(p,q),0
αβ,γδ = R2G(p−1,q−1)

αβ,γδ , (4.9)
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while it vanishes otherwise.

The rank-one orbits correspond to terms with (n,m) 6= (0, 0, 0, 0). Setting (n1, n2,m1,m2) =
k(c3, c4, d3, d4), with gcd(c3, c4, d3, d4) = 1 and k 6= 0, the quadruplet (c3, c4, d3, d4) can always
be rotated by an element of Sp(4,Z) into (0, 0, 0, 1), whose stabilizer inside Sp(4,Z) is ΓJ1
(4.10)

ΓJ1 =








a 0 b µ′

λ 1 µ κ
c 0 d −λ′
0 0 0 1


 , (λ, µ) = (λ′, µ′)

(a b
c d

)
,
(a b
c d

)
∈ SL(2,Z), (κ, λ, µ) ∈ Z3




,

(4.10)
which is a central extension of the Jacobi group SL(2,Z)nZ2 in which the triple (κ, λ, µ) ∈ Z3

parametrizes the Heisenberg group H2,1(Z).8

Thus, quadruplets (c3, c4, d3, d4) with gcd(c3, c4, d3, d4) = 1 are in one-to-one correspon-
dence with elements of ΓJ1 \Sp(4,Z). For each k ∈ Z, one can therefore unfold the integration
domain Sp(4,Z)\H2 to

ΓJ1 \H2 = R+
t × (SL(2,Z)\H1)ρ ×

(
(R/Z)3/Z2

)
u1,u2,σ1

, (4.11)

provided one keeps only the term (c3, c4, d3, d4) = (0, 0, 0, 1) in the sum, and where Z2 comes
from the element −1 ∈ SL(2,Z) leaving ρ invariant but acting as (u1, u2) → (−u1,−u2).
In practice, we integrate u1, u2 over R/Z and multiply the integral by a factor 1/2. We

parametrize the domain ΓJ1 \H2 by t = |Ω2|
ρ2
, ρ, and (u1, u2, σ1) = (v1 − v2ρ1/ρ2, v2/ρ2, σ1).

The resulting contribution can be expressed in terms of the y variables (4.7). Changing
yra variables as (y′11, y

′
21, y

′
1α, y

′
2α) = (y11, y11u2 − y21, y1α, y1αu2 − y2α), we obtain

G(p,q),1
ab,cd =

R2

2

∫ ∞

0

dt

t3

∫

(R/Z)3

du1du2dσ1

∫

F1

dρ1dρ2

ρ2
2

Pab,cd( ∂
∂y′ )

Φ10

∑

k 6=0

e−
πR2k2

t Γ(2)

Λp−1, q−1

[
e2πikaIQ̃2I

× exp
(

2π
( R√

2

k

t
y′2 1 + iy′1α(Q1α

L + u2Q
2α
L )− iy′2αQ

2α
L +

1

4ρ2
y′1αy

′
1
α +

1

4t
y′2αy

′
2
α
))]

,

(4.12)

where

Pab,cd
( ∂
∂y

)
= εrtεsu

1

(2πi)4

∂

∂yr (a

∂

∂ysb)
∂

∂yt (c
∂

∂yud)
. (4.13)

The integral over ΓJ1 \H2 can be computed by inserting the Fourier–Jacobi expansion

1

Φ10
=
∑

m∈Z
m≥−1

ψm(ρ, v) qm . (4.14)

The integral over σ1 picks up the Jacobi form ψm(ρ, v) with m = −1
2Q̃

2
2 .

For Q̃2 = 0, one has from (A.54), ψ0 = c(0)P/∆ where here P denotes the (rescaled) Weier-
strass function (A.55) and c(0) = 24 is the zero-th Fourier coefficient in 1/∆ =

∑
m≥−1 c(m)qm.

8They satisfy the group multiplication law (λ, µ, κ) · (λ′, µ′, κ′) = (λ+ λ′, µ+ µ′, κ+ κ′ + λµ′ − λ′µ).
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The integral over σ1 is trivial while the integral over u1, u2 is computed using (A.72),

∫ 1/2

−1/2
du1

∫ 1/2

−1/2
du2 ψ0(ρ, u1 + ρu2) =

c(0)Ê2

12∆
, (4.15)

where Ê2(ρ) = E2(ρ) − 3
πρ2

is the non-holomorphic completion of the weight 2 Eisenstein

series. The contributions with Q̃2 = 0 therefore lead to the integral (after exchanging the
order of sum and integral)

G(p,q),1
ab,cd = R2 c(0)

24

∑

k 6=0

∫ ∞

0

dt

t
t
q−5

2 e−
πR2k2

t Pab,cd
( ∂
∂y′
)
e

2πi
(
R

i
√

2
k
t
y′2 1+ 1

4it
y′2αy

′
2
α
)

×
∫

F1

dρ1dρ2

ρ2
2

Ê2

∆(ρ)
ΓΛp−1, q−1

[
e

2πi
(
y′1αQ

1α
L + 1

4iρ2
y′1αy

′
1
α
)]
,

(4.16)

leading to the constant terms in the Fourier expansion of G(p,q)

ab,cd

G(p,q),1,0
αβ,γδ = −Rq−5 ξ(q − 6)

c(0)

16π
δ〈αβ,G

(p−1,q−1)

γδ〉 ,

G(p,q),1,0
αβ,11 = −Rq−5 ξ(q − 6)(7− q)c(0)

48π
G(p−1,q−1)

αβ ,

(4.17)

and G(p,q),1,0
αβ,γ1 = 0. Note that they are the only components by symmetry of the indices

ab, cd. Here G(p,q)

ab is the genus-one modular integral defined in (2.29) with N = 1 and ξ(s) =
π−s/2Γ(s/2)ζ(s) = ξ(1− s) is the completed Riemann zeta function.

The missing constant term: It is clear from the differential equation (3.20) that (4.17)
does not give all the power-like terms: indeed, the coupling F (p,q) appearing on the r.h.s. of
(3.20) behaves schematically in the same limit as [22, (4.37)]

F (p,q) ∼ RF (p−1,q−1) + ξ(q − 6)Rq−6 +O(e−R) . (4.18)

The power-like terms (4.17) can be checked to satisfy the differential constraint with the
source term Rq−5F (p−1,q−1) appearing in the square of F (p,q), but the accompanying source
term ξ(q − 6)2R2q−12 requires that G(p,q)

ab,cd should also include a term proportional to R2q−12.
We shall now argue that these terms originate from the intersection of the separating and
non-separating degenerations described by the figure-eight supergravity diagram depicted in
Figure 1ii). In the region |Ω2| � 1, the fundamental domain asymptotes to the domain
P2/GL(2,Z) × [0, 1]3, where Ω2 parametrizes the first factor. In the case where all external
indices are along the subgrassmaniann, the dominant contributions in this limit have Q̃1 =
Q̃2 = 0 and vanishing winding number (n1, n2) along the circle. The sum over dual momenta
(m1,m2) running in the two loops leads to

3

16π2
δ〈αβ,δγδ〉R

2

∫
P2

GL(2,Z)
×[0,1]3

d3Ω1d3Ω2

|Ω2|4−
q−1

2

∑
mr∈Z2 e−πR

2mr[Ω
−1
2 ]rsms

Φ10
(4.19)

Using (A.90), the integral over Ω1 leads to a delta function supported at v2 = 0 and its
images under the action of GL(2,Z) (modulo the center). After unfolding, the remaining
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integral then factorizes into two integrals over ρ2 and σ2. Assuming that this contribution
is accurately computed by this integral by extending the integration domain of ρ2 and σ2 to
R+, one obtains the correct power-like term

G
(p,q),1,0′

αβ,γδ = − 3

64π3
R2q−12 [ξ(q − 6)c(0)]2δ〈αβ,δγδ〉 ,

G
(p,q),1,0′

αβ,11 = − 1

32π3
R2q−12 [ξ(q − 6) c(0)]2 (7− q) δαβ ,

(4.20)

where the second line — the other non-vanishing polarization — can be deduced in a similar
fashion. While the power-like terms (4.20) are not captured by the unfolding trick in the de-
generation (p, q)→ (p−1, q−1), we shall be able to recover them below from the degeneration
(p, q)→ (p− 2, q − 2), see (5.26).

The fact that the unfolding method does not give the full result is seemingly due to the
non-absolute convergence of the integral near the separating locus. In principle, the missing
contributions can be determined by checking the differential equation (3.20). In Appendix E.4
we derive the contributions (4.20) rigorously in this fashion. The same analysis also implies
that there exists additional exponentially suppressed corrections to the constant term due to
instanton–anti-instanton contributions. For what concerns non-trivial Fourier coefficients, we
shall argue in §5.1 (and specifically in Appendix E.1) that the unfolding method is in fact
reliable.

Exponentially suppressed corrections: Contributions from non-zero vectors Q̃2 lead to
exponentially suppressed contributions, which depend on the axions through a phase factor

e2πikaIQ̃2I . Each Jacobi form ψm(ρ, v) in (4.14) can be decomposed as the sum of a finite
and polar contributions, ψm = ψ̂Pm + ψ̂Fm (see §A.5), where ψ̂Fm is an almost holomorphic
Jacobi form, and ψ̂Pm is proportional to a completed non-holomorphic Appell–Lerch sum. For
m = −1, the finite part vanishes and the polar part requires special treatment. In either case,
the integral over σ1 enforces Q̃ 2

2 = −2m.

We first treat the finite contributions ψ̂Fm(ρ, v) with m ≥ 0 according to whether Q̃ 2
2 = 0

or Q̃ 2
2 6= 0, and then consider the polar contributions:

1. In the case Q̃ 2
2 = 0, since ψ̂F0 = c(0)Ê2

12∆ and does not depend on v, the integral over u1

receives only contributions from vectors Q̃1 such that Q̃1 ·Q̃2 = 0. To express the remaining
sum, we choose a second null vector Q̃′2 such that (Q̃2, Q̃

′
2) = m2, where m2, which we

also denote by gcd(Q̃2), is the largest integer such that 1
m2
Q̃2 ∈ Λp−1,q−1. The vectors Q̃1

orthogonal to Q̃2 are then of the form Q̃1 = Q̃⊥1 +m1
m2
Q̃2 where Q̃⊥1 is orthogonal to both Q̃2

and Q̃′2. We denote the resulting lattice by Λp−2,q−2. This parametrization is not unique,

but the result of the integral will be independent of the choice of Q̃′2, in other words it is a

function of the Levi subgroup of the stabilizer of Q̃2 inside O(p− 1, q − 1). The sum over
Q̃1 therefore becomes a sum over Q̃⊥1 ∈ Λp−2,q−2 and m1 = m2s+ r, s ∈ Z , r ∈ Zm2 . The
sum over s can be used to unfold the integral over u2 ∈ [−1

2 ,
1
2 ] to the full R axis, as one

can see from (4.12), while the dependence on r can be absorbed by a translation in u2 and
therefore leads to an overall factor m2. The integral thus becomes, for a given null vector
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Q̃2,

R2 m2

2

∑

k 6=0

e2πikQ̃2Ia
I

∫

R+

dt

t
t
q−5

2 e−
πR2k2

t
−2πt|Q̃2R|2

∫

F1

dρ1dρ2

ρ2
2

ρ
q−1

2
2

c(0)Ê2

12∆

×
∫

R

du2

∑

Q̃⊥1 ∈Λp−2,q−2

q
1
2

(Q̃⊥1 +u2Q̃2)2
L q̄

1
2

(Q̃⊥1 +u2Q̃2)2
R

× Pab,cd( ∂
∂y′ ) e

2πi
(
R

i
√

2
k
t
y′21+y′1α(Q̃⊥1 +u2Q̃2)αL−y′2αQ̃2L

α+ 1
4iρ2

y′1αy
′
1
α+ 1

4it
y′2αy

′
2
α
)∣∣∣∣
y′=0

.

(4.21)

The Gaussian integral over u2 removes the dependence on the unipotent part of the stabi-
lizer of Q = kQ̃2, leaving a modular integral of a genus-one partition function G(p−1,q−1)⊥

αβ ,0

for the lattice Λp−2,q−2 depending only on the sub-Grassmaniann Gp−2,q−2 ⊂ Gp−1,q−1

parametrizing the Levi component of this stabilizer, given by

G(p−1,q−1)⊥
F,αβ ,0 (Q) =

gcd(Q)

12

∫

F1

dρ1dρ2

ρ2
2

Ê2

∆(ρ)
ρ
q−2

2
2

∑

Q̃∈Λp−2,q−2

q
1
2
Q̃2
L q̄

1
2
Q̃2
Re

2πρ2
(Q̃R·QR)2

Q2
R

×
[(
Q̃Lα −

Q̃R ·QR
Q2
R

QLα

)(
Q̃Lβ −

Q̃R ·QR
Q2
R

QLβ

)
− 1

4πρ2

(
δαβ −

QLαQLβ
Q2
R

)]
,

(4.22)

where we write Q̃1 as Q̃ for simplicity. Note that the integrand only depends on Q̃ through

Q̃ − Q Q̃R·QR
Q2
R

, and so is invariant under Q̃ → Q̃ + εQ for any ε ∈ R such that the sum is

defined on the quotient lattice Λp−1,q−1mod Q
gcd(Q) with the constraint Q · Q̃ = 0, and does

not depend on the specific choice of Λp−2,q−2.

We find that the Fourier coefficient with charge Q ∈ Λp−1,q−1 r {0} for Q2 = 0, is given
by

3R
q−1

2 Ḡ(p−1,q−1)⊥
F, 〈αβ ,0 (Q,ϕ)

1∑

l=0

P̃
(l)
γδ〉(Q)

Rl

K q−5
2
−l

(
2π R

√
2|QR|2

)

√
2|QR|2

q−3
2 −l

(4.23)

when all the indices are chosen along the sub-Grassmaniann, where P̃
(l)
γδ are defined in

(H.1), and where we defined

Ḡ(p−1,q−1)⊥
F, αβ ,0 (Q,ϕ) =

∑

d≥1
Q/d∈Λp−1,q−1

dq−6c(0)G(p−1,q−1)⊥
F, αβ ,0 (Qd ) . (4.24)

The full expression for all polarizations will be given together with the polar contributions
in (4.44).

Let us point out that G(p−1,q−1)⊥
F,αβ ,0 (Q,ϕ) = gcd(Q)

12 G(p−2,q−2)

αβ (ϕQ) for the function defined in
(2.29) for the lattice Λp−2,q−2 orthogonal to Q, where ϕQ parametrizes the Levi subgroup
O(p− 2, q − 2) of the stabilizer of Q in O(p− 1, q − 1).

34



SciPost Physics Submission

2. In the case Q̃ 2
2 < 0, the finite part of the Fourier-Jacobi coefficient has the following

expansion in theta series

ψ̂Fm(ρ, v) =
c(m)

∆(ρ)

∑

`∈Z2m

ĥm,`(ρ)θm,`(ρ, v) , (4.25)

where θm,` and ĥm,` are vector-valued modular forms of weight 1/2 and 3/2, respectively

defined in (A.62) and (A.67). The integral over σ1 enforces Q̃ 2
2 = −2m, while the integral

over u1 enforces Q̃1 · Q̃2 = −`. The summation over s ∈ Z in (A.62) can be used to unfold
the integral over u2 ∈ [−1

2 ,
1
2 ] to the full real axis, after shifting each term in the lattice

sum as Q̃1 → Q̃1 + sQ̃2, since Q̃1, Q̃2 ∈ Λp−1,q−1. One thus obtain Fourier coefficients

similar to previous case, using Q̃2 → Q/k,

3R
q−1

2 Ḡ(p−1,q−1)

F, 〈αβ,−Q2

2

(Q,ϕ)

1∑

l=0

P̃
(l)
γδ〉(Q)

Rl

K q−5
2
−l

(
2π R

√
2|QR|2

)

√
2|QR|2

q−3
2 −l

(4.26)

when all the indices are chosen along the sub-Grassmanian, where P̃
(l)
γδ (Q) are defined in

(H.1), and where we defined, for Q2 6= 0

Ḡ(p−1,q−1)

F, αβ,−Q2

2

(Q,ϕ) =
∑

d≥1
Q/d∈Λp−1,q−1

dq−6 c
(
− Q2

2d2

)
G(p−1,q−1)⊥
F,αβ,− Q2

2d2

(Qd ) , (4.27)

G(p−1,q−1)⊥
F,αβ,m (Q) =

∫

F1

dρ1dρ2

ρ2
2

1

∆(ρ)

∑

`∈Z2m

ĥm,`Γ
m,`
αβ (Q) . (4.28)

Here Γm,`ab (Q) is the lattice partition function (with Q̃ = Q̃1 − `
2mQ)

Γm,`αβ (Q) = ρ
q−4

2
2

∑

Q̃∈Λp−1,q−1− `
2m

Q

Q̃·Q=0

q
1
2
Q̃2
φFαβ(

√
2ρ2Q̃,Q) (4.29)

with kernel

φFαβ(
√

2ρ2Q̃,Q) = e
−2πρ2

(
|Q̃R|2− (Q̃R·QR)2

|QR|2
)

×
(
ρ2

(
Q̃Lα −QLα

Q̃R ·QR
|QR|2

)(
Q̃Lβ −QLβ

Q̃R ·QR
|QR|2

)
− 1

4π

(
δαβ −

QLα ·QLβ
|QR|2

))
.

(4.30)

The latter satisfies Vignéras’ equation
(
〈∂x, ∂x〉 − 2πx∂x

)
φFαβ(x,Q) = 2π(q − 4)φFαβ(x,Q) , (4.31)

where 〈·, ·〉 is the inverse of the integer norm on the lattice Λp−1,q−1, which ensures [65]
that (4.29) is a vector-valued modular form of weight p−q+5

2 = 21
2 , consistently with the

weight of 3/2 of ĥm,`(ρ) (note that the condition Q̃ ·Q = 0 in the sum of (4.29) implies that
the lattice over which Q̃ is summed is of dimension p + q − 3). The analogue expression
for other polarizations will be given along with the polar contributions in (4.44).
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3. Let us now consider the contributions arising from the polar part ψ̂Pm of the Fourier-Jacobi
coefficient ψm with m ≥ 0. According to (A.69), the latter can be written as an indefinite
theta series

ψ̂Pm(ρ, v) =
c(m)

∆(ρ)

∑

s,`∈Z
qms

2+s`y2ms+` b̂(s, `,m, ρ2) (4.32)

where for m ≥ 1,

b̂(s, `,m, ρ2) =
1

2
`

[
sgn(s+ u2) + erf

(
`

√
πρ2

m

)]
+

√
m

2π
√
ρ2
e−πρ2`2/m − 1

4πρ2
δ(s+ u2) ,

(4.33)
whereas

b̂(s, `, 0, ρ2) =
1

2
` [sgn(s+ u2) + sgn(`)]− 1

4πρ2
δ(s+ u2) + δs,0δ`,0

1

4πρ2
. (4.34)

As in the previous case, one can shift the charges to Q̃1 → Q̃1 + sQ̃2 since Q̃1, Q̃2 ∈
Λp−1,q−1, and then use the sum over s to unfold the u2 ∈ [−1

2 ,
1
2 ] to R. Then, integrating

over u1 ∈ [−1
2 ,

1
2 ] imposes Q̃1 · Q̃2 = −`. One then carries out the change of variable

u2 = u√
2ρ2|QR|2

. One obtains the Fourier coefficients, using Q̃2 → Q/k,

3R
q−1

2 Ḡ(p−1,q−1)

P, 〈αβ, (Q)
1∑

l=0

P̃
(l)
γδ〉(Q)

Rl

K q−5
2
−l

(
2π R

√
2|QR|2

)

√
2|QR|2

q−3
2 −l

(4.35)

when all indices are chosen along the sub-Grassmanian, and where we define for Q2 < 0

Ḡ(p−1,q−1)

P, αβ (Q,ϕ) =
∑

d≥1
Q/d∈Λp−1,q−1

dq−6c(− Q2

2d2 )G(p−1,q−1)

P,αβ (Qd ) , (4.36)

G(p−1,q−1)

P,αβ (Q) =

∫

F1

dρ1dρ2

ρ2
2

ρ
q−5

2
2

∆(ρ)

∑

Q̃∈Λp−1,q−1

q
1
2
Q̃2
φP,αβ(

√
2ρ2Q̃,Q) , (4.37)

with the kernel

φP, αβ(x,Q) = − 1

4
√

2

∫

R

du (x ·Q)

[
sgn(u) + erf

(
−
√

π
−Q2x ·Q

)
−
√
−Q2

πx ·Q e
π(x·Q)2

Q2

]

×e−π|xR|
2−πu2−2πu

xR·QR
|QR|

((
xLα + u

QLα
|QR|

)(
xLβ + u

QLβ
|QR|

)
− 1

2π
δαβ

)

−
√

2|QR|2
8π

e−π|xR|
2

(
xLαxLβ −

1

2π
δαβ

)
. (4.38)

Using integration by part over u one computes that φP, αβ(x,Q) satisfies the Vignéras
equation (

〈∂x, ∂x〉 − 2πx∂x
)
φP,αβ(x,Q) = 2π(q − 5)φP,αβ(x,Q) , (4.39)
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therefore the lattice sum in (4.37) is a modular form of weight p−q
2 + 4, and the integral is

well defined. For Q2 = 0, one has instead

G(p−1,q−1)

P,αβ (Q) =

∫

F1

dρ1dρ2

ρ2
2

ρ
q−5

2
2

∆(ρ)

( ∑

Q̃∈Λp−1,q−1

q
1
2
Q̃2
φP,αβ(

√
2ρ2Q̃,Q)

+ ρ
− 1

2
2

∑

Q̃∈Λp−2,q−2

q
1
2
Q̃2
φ′⊥P,αβ(

√
2ρ2Q̃,Q)

)
, (4.40)

with

φP, αβ(x,Q) = − 1

4
√

2

∫

R

du
(
(x ·Q)sgn(u)− |x ·Q|

)
e
−π|xR|2−πu2−2πu

xR·QR
|QR|

×
((

xLα + u
QLα
|QR|

)(
xLβ + u

QLβ
|QR|

)
− 1

2π
δαβ

)

−
√

2|QR|2
8π

e−π|xR|
2

(
xLαxLβ −

1

2π
δαβ

)
, (4.41)

φ′⊥P,αβ(x,Q) =
e
−π(x2

R−
(xR·QR)2

Q2
R

)

8π

((
xLα − xR·QR

Q2
R
QLα

)(
xLβ − xR·QR

Q2
R
QLβ

)
− 1

2π

(
δαβ − QLαQLβ

Q2
R

))
.

The integrand in (4.40) must be modular by construction, but its modularity does not
follow directly from Vignéras theorem. In this case φP, αβ(x,Q) satisfies Vignéras equation
(4.39), but it is a distribution and its second derivative is not square integrable. The
function φ′⊥P,αβ(x,Q) satisfies Vignéras equation (4.31), but this is not the correct eigenvalue
to give the correct modular weight. As the failure of φP, αβ(x,Q) to define a modular form
comes from its singularity at (Q · x) = 0, it is somehow natural that its modular anomaly
can be compensated by a partition function on the lattice orthogonal to Q.

4. Finally, the case m = −1 requires special treatment. The finite part of ψ−1 automatically
vanishes, but the polar part is proportional to a modified Appell-Lerch sum, as explained
in Appendix A.5,

ψ−1 = − 1

∆

∑

s,`∈Z

[
`

sign(`− 2s) + sign(u2 + s)

2
− 1

4πρ2
δ(u2 + s)

]
q−s

2+`s y`−2s , (4.42)

which differs from the naive Appell-Lerch sum (which diverges when the index is negative)
by a replacement sign`→ sign(`− 2s). In this case we still get (4.40) with

φP, αβ(x,Q) = − 1

4
√

2

∫

R

du (x ·Q)

[
sgn(u)− sign

(
x·Q√
2ρ2

+ 2b u√
2ρ2Q2

R

c
)]

×e−π|xR|
2−πu2−2πu

xR·QR
|QR|

((
xLα + u

QLα
|QR|

)(
xLβ + u

QLβ
|QR|

)
− 1

2π
δαβ

)

−
√

2|QR|2
8π

e−π|xR|
2

(
xLαxLβ −

1

2π
δαβ

)
, (4.43)

φ′⊥P,αβ(x,Q) =
e
−π(x2

R−
(xR·QR)2

Q2
R

)

8π

((
xLα − xR·QR

Q2
R
QLα

)(
xLβ − xR·QR

Q2
R
QLβ

)
− 1

2π

(
δαβ − QLαQLβ

Q2
R

))
.

Although the modularity of (4.43) no longer follows from Vignéras’ theorem, it must hold
by construction.
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Combining the finite and polar contributions, we finally obtain the full expressions for the
exponentially suppressed corrections,

G(p,q),1,Q
αβ,γδ = 3R

q−1
2 Ḡ(p−1,q−1)

〈αβ, (Q,ϕ)

1∑

l=0

P̃
(l)
γδ〉(Q)

Rl

K q−5
2
−l

(
2π R

√
2Q 2

R

)

(2Q 2
R)

q−3−2l
4

G(p,q),1,Q
αβ,γ1 =

3

2
R
q−1

2 Ḡ(p−1,q−1)

〈αβ, (Q,ϕ)
QLγ〉
i
√

2

K q−7
2

(
2π R

√
2Q 2

R

)

(2Q 2
R)

q−5
4

G(p,q),1,Q
αβ,11 = −R

q−1
2 Ḡ(p−1,q−1)

αβ (Q,ϕ)
K q−9

2

(
2π R

√
2Q 2

R

)

(2Q 2
R)

q−7
4

,

(4.44)

where the polynomials P̃
(l)
γδ (Q) are given in (H.1), and the coefficient Ḡ(p−1,q−1)

αβ is defined by

Ḡ(p−1,q−1)

αβ (Q,ϕ) =
∑

d≥1
Q/d∈Λp−1,q−1

dq−6c(− Q2

2d2 )
(
G(p−1,q−1)⊥
F,αβ,− Q2

2d2

(Qd ) +G(p−1,q−1)

P,αβ (Qd )
)
, (4.45)

where G(p−1,q−1)

F and G(p−1,q−1)

P are defined in (4.24), (4.28),(4.36) for Q2 < 0, in (4.40) for
Q2 = 0 and in (4.43) for Q2 > 0.

4.2 Extension to ZN CHL orbifolds

The degeneration limit (4.2) of the modular integral (2.30) for ZN CHL models with N =
2, 3, 5, 7 can be treated similarly by adapting the orbit method to the case where the integrand
is invariant under the congruence subgroup Γ2,0(N) = {

(
A B
C D

)
∈ Sp(4,Z), C = 0 mod N}.

In (2.30), Φk−2 is the meromorphic Siegel modular form of Γ2,0(N) of weight k− 2 defined in
§A.4, and Γ(2)

Λp, q
is the genus-two partition function for a lattice

Λp,q = Λp−1,q−1 ⊕ II1,1[N ] , (4.46)

where Λp−1,q−1 is a level N even lattice of signature (p − 1, q − 1). The lattice II1,1[N ] is
obtained from the usual unimodular lattice II1,1 by restricting the winding and momentum
to (n1, n2,m1,m2) ∈ NZ ⊕ NZ ⊕ Z ⊕ Z. After Poisson resummation on m1,m2, Eq. (4.7)
continues to hold, except for the fact that n1, n2 are restricted to run over NZ. The sum over
(n1, n2,m1,m2) can then be decomposed into orbits of Γ2,0(N):

Trivial orbit The term (n1, n2,m1,m2) = (0, 0, 0, 0) produces the same modular integral,
up to a factor of R2,

G
(p,q),0
αβ,γδ = R2G(p−1,q−1)

αβ,γδ , (4.47)

where G(p−1,q−1)

αβ,γδ , is the integral (2.30) for the lattice Λp−1,q−1 defined by (4.46).

Rank-one orbits Terms with (n1, n2,m1,m2) = k(c3, c4, d3, d4) with k 6= 0 and
gcd(c3, c4, d3, d4) = 1 fall into two different classes of orbits under Γ2,0(N):
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1. Quadruplets k(c3, c4, d3, d4) such that (c3, c4) = (0, 0) modN and k ∈ Z can be rotated by
an element of Γ2,0(N) into (0, 0, 0, 1), whose stabilizer in Γ2,0(N) is Γ0(N)nH2,1(Z) ⊂ ΓJ1 .
For these elements, one can unfold the integration domain Γ2,0(N)\H2 into the domain

(Γ0(N) nH2,1(Z))\H2 = R+
t × (Γ0(N)\H1)ρ ×

(
(R/Z)3/Z2

)
u1,u2,σ1

(4.48)

where the Z2 comes from −1 ∈ Γ0(N) leaving ρ invariant but acting as (u1, u2) →
(−u1, u2) on the other moduli.

2. Doublets k(c3, c4, d3, d4) such that (c3, c4) 6= (0, 0) modN have k = 0 modN since (n1, n2) =
0 modN . They can be rotated by an element of Γ2,0(N) into (0, 1, 0, 0), whose stabilizer
in Γ2,0(N) is SρSσ (Γ0(N) nH (2)

2,1,N (Z)) (SρSσ)−1, where

H (2)

2,1,N (Z) = {(κ, λ, µ) ∈ H2,1(Z), κ = µ = 0 mod N} , (4.49)

and the inversion on σ is Sσ : (ρ, σ, v) → (ρ − v2/σ,−1/σ,−v/σ). One can unfold the
integration domain Γ2,0(N)\H2 into SρSσ (Γ0(N) nH (2)

2,1,N (Z)) (SρSσ)−1\H2, and change
variable

Ω→ (SρSσ) · Ω = −Ω−1 , (4.50)

so as to reach (Γ0(N)nH (2)

2,1,N (Z))\H2 = 1
2R

+
t × (Γ0(N)\H1)ρ× (R/Z)u2 × (R/NZ)2

u1,σ1
.

Under this change of variable, the level-N weight-(k − 2) Siegel modular form transforms
as

Φk−2(−Ω−1) = (i
√
N)−2(k−2)|Ω|k−2Φk−2(Ω/N) , (4.51)

while the genus-two partition function for the sublattice Λp−1,q−1 transforms as

Γ(2)

Λ̃p−1, q−1
[Pαβ,γδ](−Ω−1) = υ2N−k−2(−i)p−q|Ω|k−2Γ(2)

Λ̃∗p−1, q−1

[Pαβ,γδ](Ω) , (4.52)

where we denoted υ2N−k−2 =
∣∣Λ∗p−1,q−1/Λp−1,q−1

∣∣−1
the volume factor from Poisson

ressummation (Note that υ2 = N2−2δq,8 for q ≤ 8 in the cases of interest).

For the function G
(p,q),1
ab,cd , changing y variables as before (y′11, y

′
21, y

′
1α, y

′
2α) = (y11, y11u2 −

y21, y1α, y1αu2 − y2α), the sum of the two classes of orbits then reads

G(p,q),1
ab,cd =

R2

2

∫

R+

dt

t3

∫

(R/Z)3

du1du2dσ1

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Pab,cd( ∂
∂y′ )

Φk−2(Ω)

×
∑

k 6=0

e−
πR2k2

t Γ(2)

Λ̃p−1, q−1

[
e2πikaIQ̃2IY(y′)

]

+
R2

2

∫

R+

dt

t3

∫

(R/NZ)2

du1dσ1

∫

R/Z
du2

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Pab,cd( ∂
∂y′ )

Φk−2(Ω/N)

× υ2

N4

∑

k 6=0
k=0 mod N

e−
πR2k2

t Γ(2)

Λ̃∗p−1, q−1

[
e2πikaIQ̃2IY(y′)

]

(4.53)

where

Y(y′) = e
2πi

(
R

i
√

2
k
t
y′2 1+y′1α(Q1α

L +u2Q2α
L )−y′2αQ2α

L + 1
4iρ2

y′1αy
′
1
α+ 1

4it
y′2αy

′
2
α

)
.

(4.54)
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As before, we substitute 1/Φk−2 by its Fourier-Jacobi expansion 1/Φk−2 =
∑

m≥−1 ψk−2,me
2πimσ,

so that the integral over σ1 enforces Q̃ 2
2 = −2m. For Q̃ 2

2 = 0 case, the integral over u1, u2 in
the first line follows from (A.73),

∫ 1
2

− 1
2

du1

∫ 1
2

− 1
2

du2 ψk−2,0(ρ, u1 + ρu2) =
ck(0)

12(N − 1)

N2Ê2(Nρ)− Ê2(ρ)

∆k(ρ)
, (4.55)

where N2Ê2(Nρ)− Ê2(ρ) is a level-N weight 2 holomorphic modular form. The contribution
from the second line in (4.53) is calculated using the transformation properties of the genus-
one cusp form and partition function9. The transformation ρ→ −1/ρ changes the integration
domain from Γ0(N)\H1 to Γ0(N)\H1, and one thus obtains, denoting QI = kQ̃2I

G(p,q),1,Q2=0
ab,cd = R2

∫ ∞

0

dt

t
t
q−5

2

∑

Q̃2∈Λp−1,q−1

Q̃2
2=0

∑

k 6=0

e−
πR2k2

t
−2πtQ2

R/k
2 ck(0)

24(N − 1)

×
∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

(N2−υNq−6)Ê2(Nρ)+(υNq−6−1)Ê2(ρ)
∆k(ρ) ΓΛ̃p−1, q−1

[
e2πiaIQIPab,cd( ∂

∂y′ )Y(y′)
]

(4.56)

The zero mode contribution, Q = 0, may be expressed in terms of the genus-one modular
integrals

G(p,q)

ab = R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Ê2 ΓΛp, q [Pab]

∆k
, (4.57)

ςG(p,q)

ab = R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

NÊ2(Nρ)

∆k(ρ)
ΓΛp, q [Pab] . (4.58)

When Λp,q is N -modular, such that Λ∗p,q = ς · Λp,q/
√
N for ς ∈ O(p, q,R), then ςG(p,q)

ab =

G(p,q)

ab (ς · ϕ). The zero mode Q = 0 thus leads to power-like terms

G(p,q),1,0
αβ,γδ = −Rq−5 ξ(q − 6)

ck(0)

16π

[υN q−6 − 1

N − 1
δ〈αβ,G

(p−1,q−1)

γδ〉 +
N − υN q−7

N − 1
δ〈αβ,

ςG(p−1,q−1)

γδ〉

]
,

G(p,q),1,0
αβ,11 = −Rq−5 ξ(q − 6)(7− q)ck(0)

48π

[υN q−6 − 1

N − 1
G(p−1,q−1)

αβ +
N − υN q−7

N − 1
ςG(p−1,q−1)

αβ

]
.

(4.59)

As in the maximal rank case (4.20), the unfolding trick fails to capture another powerlike
term proportional to R2q−12, which is required by the non-homogeneous differential equation
(3.20). This term can be seen to arise in the maximal non-separating degeneration, and can
be computed as in (4.19), leading to

G
(p,q),1,0′

αβ,γδ = − 3

64π3
R2q−12

[
ck(0)(1 + υN q−7)ξ(q − 6)

]2
δ〈αβ,δγδ〉 ,

G
(p,q),1,0′

αβ,11 = − 1

32π3
R2q−12

[
ck(0)(1 + υN q−7)ξ(q − 6)

]2
(7− q)δαβ .

(4.60)

9i.e. ∆k(−1/Nρ) = N
k
2 (−iρ)k∆k(ρ), and ΓΛ∗p−1, q−1

[Pab](−1/ρ) = v−1N
k
2

+1(−i)kρk−2ΓΛp−1, q−1 [Pab](ρ)

where υ = N
k
2

+1
∣∣Λ∗p−1,q−1/Λp−1,q−1

∣∣−1/2
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These results can also be obtained by taking the limit S2 →∞ from the result (5.60) obtained
in the degeneration limit (p, q)→ (p− 2, q − 2).

The contributions from vectors Q 6= 0 lead to exponentially suppressed contributions of
the same form as the Fourier modes of null vectors (4.23), non-null vectors (4.26), and the
polar contribution (4.36) respectively, with different coefficients:

1. For null Fourier vectors Q2 = 0, the moduli-dependent coefficient coming from the finite
part of 1/Φk−2(Ω) reads

Ḡ(p−1,q−1)

F, αβ, 0 (Q,ϕ) =
∑

d>0
Q/d∈Λp−1,q−1

dq−6ck(0)
N ςG(p−1,q−1)⊥

F,αβ,0

(Q
d

)
−G(p−1,q−1)⊥

F,αβ,0

(Q
d

)

N − 1

+ υ
∑

d>0
Q/d∈NΛ∗p−1,q−1

(Nd)q−6ck(0)
NG(p−1,q−1)⊥

F,αβ,0

( Q
Nd

)
− ςG(p−1,q−1)⊥

F,αβ,0

( Q
Nd

)

N − 1
, (4.61)

where G(p,q)

F, ab, 0(ϕ) is defined as in (4.22) with Ê2/∆ replaced by Ê2/∆k, and ςG(p,q)

F, ab, 0(ϕ)

is defined as in (4.22) with Ê2/∆ replaced by NÊ2(Nρ)/∆k(ρ).

2. For non-null Fourier vectors, Q2 6= 0, the moduli-dependent coefficient coming from the
finite part of 1/Φk−2(Ω) is given by

Ḡ(p−1,q−1)

F, αβ,−Q2

2

(Q,ϕ) =
∑

d>0
Q/d∈Λp−1,q−1

dq−6 ck
(
− Q2

2d2

)
G(p−1,q−1)⊥
F,αβ,− Q2

2d2

(Q
d

)

+ υ
∑

d>0
Q/d∈NΛ∗p−1,q−1

(Nd)q−6 ck
(
− Q2

2Nd2

)
ςG(p−1,q−1)⊥

F,αβ,− Q2

2Nd2

( Q
Nd

)
,

(4.62)

where we defined, similarly to ςG(p−1,q−1)

F, αβ, 0 (Q),

ςG(p−1,q−1)

F, αβ,m (Q) =

∫

Γ0(N)\H1

d2ρ

ρ2
2

∑

l∈Z2m

Nĥm,l(Nρ)

∆k(ρ)
Γm,lαβ (Q) , (4.63)

with Γm,lαβ (Q) defined in (4.29).

3. For all non-zero vectors Q 6= 0, the moduli-dependent coefficient coming from the polar
part of 1/Φk−2(Ω) is given by

Ḡ(p−1,q−1)

P, αβ (Q,ϕ) =
∑

d>0
Q/d∈Λp−1,q−1

dq−6 ck
(
− Q2

2d2

)
G(p−1,q−1)

P,αβ (Qd )

+ υ
∑

d>0
Q/d∈NΛ∗p−1,q−1

(Nd)q−6 ck
(
− Q2

2Nd2

)
G(p−1,q−1)

P,αβ ( Q
Nd) .

(4.64)

where G(p−1,q−1)

P,αβ is defined as in the previous subsection, upon replacing ∆(ρ) by ∆k(ρ).

41



SciPost Physics Submission

Note that the polar part and the finite part of the function Ḡ(p−1,q−1)

αβ (Q,ϕ) combine for

all Q into the same divisor sum of the function G(p−1,q−1)

αβ (Q) = G(p−1,q−1)

Fαβ (Q) + G(p−1,q−1)

Pαβ (Q)

and ςG(p−1,q−1)

αβ (Q) = ςG(p−1,q−1)

Fαβ (Q) + ςG(p−1,q−1)

Pαβ (Q) as in the maximal rank case (4.45). The
only apparent difference is for the finite part of the function (4.61), because we defined the
function (4.61) G(p−1,q−1)⊥

F,αβ,0

(Q
d

)
and ςG(p−1,q−1)⊥

F,αβ,0

(Q
d

)
such that they can be identified to the

function gcd(Q)
12 G(p−2,q−2)

αβ (ϕQ) and gcd(Q)
12

ςG(p−2,q−2)

αβ (ϕQ) on the quotient of the sublattice of
Λp−1,q−1 orthogonal to Q by the shift in Q.

4.3 Perturbative limit of exact heterotic ∇2(∇φ)4 couplings in D = 3

According to our Ansatz (1.7), the exact∇2(∇φ)4 coupling in three-dimensional CHL orbifolds
is given by a special case of the family of genus-two modular integrals (4.1) for the ‘non-
perturbative Narain lattice’ (2.3) of signature (p, q) = (2k, 8) = (2k, 8). The degeneration
(4.2) studied in this section corresponds to the limit of weak heterotic coupling g3 → 0. In
this limit, the lattice Λ2k,8 decomposes into Λ2k−1,7⊕II1,1[N ], where the ‘radius’ of the second
factor is related to the heterotic string coupling by g3 = 1/

√
R, and the U-duality group is

broken to Õ(2k−1, 7,Z) ⊂ Õ(2k, 8,Z), with Õ(2k−1, 7,Z) the restricted automorphic group
of Λ2k−1,7 = Λm ⊕ II1,1[N ]. In order to interpret the various power-like terms in the large
radius expansion as perturbative contributions to the ∇2(∇φ)4 coupling, it is convenient to
multiply the coupling by a factor of g6

3, which arises due to the Weyl rescaling γE = γs/g
4
3

from the Einstein frame to the string frame [22, Sec 4.3]. The weak coupling expansion can
be extracted from section 4.2 upon setting q = 8 and υ = 1, and reads

g 6
3 G

(2k,8)

αβ,γδ = − 3

4πg 2
3

δ〈αβ,δγδ〉 −
1

4
δ〈αβ,G

(2k−1,7)

γδ〉 (ϕ) + g 2
3 G

(2k−1,7)

αβ,γδ (ϕ)

+
′∑

Q∈Λ∗2k−1,7

3e
− 2π

g23

√
2Q 2

R+2πiQ·a

2Q 2
R

Ḡ(2k−1,7)

〈αβ, (Q,ϕ)
(
QLγQLδ〉

(√
2Q 2

R +
g 2
3

2π

)
− g 2

3
8π δγδ〉

)

+
′∑

Q∈Λ∗2k−1,7

e
− 4π

g23

√
2Q 2

R
Gαβ,γδ(g3, QL, QR) . (4.65)

The three first terms in (4.65) originate (in reverse order) from the trivial orbit (4.47), the
rank one orbit (4.59), and the splitting degeneration contribution (4.60). By construction,
the trivial orbit reproduces the two-loop contribution computed in (B.57). More remarkably,
the rank one orbit matches the one-loop contribution (B.14), while the splitting degeneration
contribution reproduces the tree-level ∇2(∇φ)4, obtained by dimensional reduction of the
∇2F 4 coupling in 10 dimensions.10

The exponentially suppressed terms in the second line of (4.65) can be interpreted as
instantons from Euclidean NS five-branes wrapped respectively on any possible T 6 inside T 7,
KK (6,1)-branes wrapped with any S1 Taub-NUT fiber in T 7, and H-monopoles wrapped on

10As already noted in [13], there also exists a tree-level single trace ∇2F 4 interaction in ten dimensions,
with coefficient proportional to ζ(3) [47], but the latter vanishes when all gauge bosons belong to an Abelian
subalgebra and therefore does not contribute to the ∇2(∇φ)4 interaction in three dimensions. Note that the
single trace interaction is not protected and receives corrections to all orders in heterotic perturbation theory
[66].
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T 7. One has similarly for the other components (4.44)

g 6
3 G

(2k,8),1,Q
αβ,γ1 =

3

4i
√

2Q 2
R

e
− 2π

g 2
3

√
2Q 2

R
Ḡ(2k−1,7)

〈αβ, (Q,ϕ)QLγ〉 ,

g 6
3 G

(2k,8),1,Q
αβ,11 = − 1

2
√

2Q 2
R

e
− 2π

g 2
3

√
2Q 2

R
Ḡ(2k−1,7)

αβ (Q,ϕ) , (4.66)

where Ḡ(2k−1,7)

αβ,−Q2

2

= Ḡ(2k−1,7)

F, αβ,−Q2

2

+ Ḡ(2k−1,7)

P, αβ,−Q2

2

and takes the form

Ḡ(2k−1,7)

αβ,−Q2

2

(Q,ϕ) =
∑

d>0
Q/d∈Λ2k−1,7

d2 ck
(
− Q2

2d2

)
G(2k−1,7)

αβ,− Q2

2d2

(Q
d

)

+
∑

d>0
Q/d∈NΛ∗2k−1,7

(Nd)2 ck
(
− Q2

2Nd2

)
ςG(2k−1,7)

αβ,− Q2

2Nd2

( Q
Nd

)
.

(4.67)

For the null charges Q2 = 0, we write instead the finite contribution as

Ḡ(2k−1,7)

F, αβ,0 (Q,ϕ) =
k

N − 1

∑

d>0
Q/d∈Λ2k−1,7

d2
[
N ςG(2k−1,7)⊥

F, αβ, 0

(Q
d

)
−G(2k−1,7)⊥

F, αβ, 0

(Q
d

)]

+
k

N − 1

∑

d>0
Q/d∈NΛ∗2k−1,7

(Nd)2
[
NG(2k−1,7)⊥

F, αβ, 0

( Q
Nd

)
− ςG(2k−1,7)⊥

F, αβ, 0

( Q
Nd

)]
(4.68)

In the maximal rank case N = 1, upon setting ςG(p,q)

ab = G(p,q)

ab and replacing ck(m)→ c(m),
k → 12 = c(0)/2, Eqs. (4.67) and (4.68) simplify to

Ḡ(23,7)

αβ,−Q2

2

(Q,ϕ) =
∑

d>0
Q/d∈Λ23,7

d2 c
(
− Q2

2d2

)
G(23,7)

αβ,− Q2

2d2

(Q
d

)
.

(4.69)

It is important to note that the orbit method misses exponentially suppressed terms which
do not depend on the axions a in the last line of (4.65). The existence of these terms is
clear from the differential constraint (3.20), since the (∇φ)4 coupling Fabcd appearing on the
right-hand side contains both instanton and anti-instanton contributions. Unfortunately, our
current tools do not allow us to extract these contributions from the unfolding method at
present. One could obtain them by solving the differential equation (E.51) for Q = 0.

Finally, it is worth stressing that while the perturbative contributions G(2k−1,7)

ab and G(2k−1,7)

ab,cd

have singularities in codimension 7 insideM3 at points of enhanced gauge symmetry, the full
instanton-corrected coupling (1.7) has only singularities in codimension 8. In Appendix B.3,
we analyze the structure of the singularities for a general genus-two modular integral of the
form (2.30) and find the expected one-loop and two-loop contributions with nearly massless
gauge bosons running in the loops.
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5 Large radius expansion of exact ∇2(∇φ)4 couplings

We now study the asymptotic expansion of the modular integral (1.7) in the limit where
the radius R of one circle in the internal space goes to infinity. We show that it reproduces
the known ∇2F 4 and R2F 2 couplings in D = 4, along with an infinite series of O(e−R)
corrections from 1/2-BPS and 1/4-BPS dyons whose wordline winds around the circle, up
to an infinite series of O(e−R

2
) corrections with non-zero NUT charge, corresponding to

Taub-NUT instantons. We start by analyzing the expansion of genus-two modular integral
(2.30) for arbitrary values of (p, q), in the limit near the cusp where O(p, q) is broken to
SL(2,R)×O(p− 2, q − 2), so that the moduli space decomposes into

Gp,q → R+ ×
[
SL(2,R)

SO(2)
×Gp−2,q−2

]
nR2(p+q−4) ×R (5.1)

As in the previous section, we first discuss the maximal rank case N = 1, p− q = 16, where
the integrand is invariant under the full modular group, before dealing with the case of N
prime. The reader uninterested by the details of the derivation may skip to §5.3, where we
specialize to the values (p, q) = (2k, 8) relevant for the ∇2(∇φ)4 couplings in D = 3, and
interpret the various contributions arising in the decompactification limit to D = 4.

5.1 O(p, q)→ O(p− 2, q − 2) for even self-dual lattices

In this subsection we assume that the lattice Λp,q is even self-dual and factorizes in the limit
(5.1) as

Λp,q → Λp−2,q−2 ⊕ II2,2 . (5.2)

We denote by R, t, aIi, ψ the coordinates for each factors in (5.1) (here i = 1, 2 and I =
3, . . . , p+ q− 2). The coordinate R (not to be confused with the one used in §4) parametrizes
a one-parameter subgroup eRH1 in O(p, q), such that the action of the non-compact Cartan
generator H1 on the Lie algebra sop,q decomposes into

sop,q ' . . . ⊕ (gl1 ⊕ sl2 ⊕ sop−2,q−2)(0) ⊕ (2⊗ (p + q− 4))(1) ⊕ 1(2), (5.3)

while (aiI , ψ) parametrize the unipotent subgroup obtained by exponentiating the grade 1 and
2 components in this decomposition. We parametrize the SO(2)\SL(2,R) coset representative
vµ
i and the symmetric SL(2,R) element M ≡ vT v by the complex upper half-plane coordinate

S = S1 + iS2, such that

vµ
i =

1√
S2

(
1 S1

0 S2

)
, M ij = δµνvµ

ivν
j =

1

S2

(
1 S1

S1 |S|2
)
. (5.4)

The remaining coordinates in Gp−2,q−2 will be denoted by ϕ. As in the weak coupling expan-
sion, lattice vector are labelled according to the choice of A-cycle on the genus-two Riemann
surface. A generic charge vector (Q1

I , Q
2
I) ∈ Λp,q⊕Λp,q ' (2⊗ 2)(−1)⊕ (2⊗ (p + q− 4))(0)⊕

(2⊗ 2)(1) decomposes into

(Q1
I , Q

2
I) = (n1

i , n
2
i , Q̃

1
I , Q̃

2
I ,m

1j ,m2j) (5.5)

where (n1
i , n

2
i ,m

1j ,m2j) ∈ II2,2⊕ II2,2 and (Q̃1
I , Q̃

2
I) ∈ Λp−2,q−2⊕Λp−2,q−2 such that Qr ·Qs =

−mrinsi −msinri + Q̃r · Q̃s. The orthogonal projectors defined by QrL ≡ pILQrI and QrR ≡ pIRQrI
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decompose according to

pIL,µQ
r
I =

v−1
iµ

R
√

2

(
mri + ai · Q̃r + (ψεij +

1

2
ai · aj)nrj

)
− R√

2
vµ
inri

pIL,αQ
r
I =p̃ IL,α(Q̃rI + nria

i
I)

pIR,µQ
r
I =

v−1
iµ

R
√

2

(
mri + ai · Q̃r + (ψεij +

1

2
ai · aj)nrj

)
+

R√
2
vµ
inri

pIR,α̂Q
r
I =p̃ IR,α̂(Q̃rI + nria

i
I)

(5.6)

where p̃IL,α, p̃
I
R,α̂ (α = 3 . . . p, α̂ = 3 . . . q) are orthogonal projectors in Gp−2,q−2 satisfying

Q̃rQ̃s = Q̃rL · Q̃sL − Q̃rR · Q̃s.
In order to study the region R � 1 it is useful to perform a Poisson resummation on

the momenta mri along II2,2 ⊕ II2,2. Note that this analysis is in principle valid for a region
containing R >

√
2. Insertion of momenta polynomials along the torus or the sublattice can

be again obtained using an insertion of a auxiliary variables (yr,µ, yr,α)

Γ(2)

Λp, q

[
e2πiya·Q̃a+π

2
ya·Ω−1

2 ·ya
]

= R4
∑

(mi,nj)∈Z8

e
−πR2(nimi)

(
Ω
1

)
·Ω−1

2 M ij ·
[
(nj mj)

(
Ω̄
1

)]ᵀ
e

2πR
i
√

2
yµ·Ω−1

2 ·
[
(nimi)

(
Ω̄
1

)]ᵀ
vµi

× Γ(2)

Λp− 2, q − 2

[
e2πimi·(aiIQ̃I+ 1

2
aiIa

Ij nj)e2πiyαI ·Q̃αI+π
2
yαI ·Ω−1

2 ·yαI
]
, (5.7)

where the sum over indices r = 1, 2 is implicit, we used Einstein summation convention for
indices r = 1, 2, µ = 1, 2, i, j = 1, 2 and α = 3, ..., p, and where M ij is defined in (5.4).
In this representation, modular invariance is manifest since a transformation Ω 7→ (AΩ +
B)(CΩ +D)−1 can be compensated by a linear transformation

(
n1 m1
n2 m2

)
7→
(

n1 m1
n2 m2

)(
Dᵀ −Bᵀ

−Cᵀ Aᵀ
)
,

yµ 7→ yµ · (CΩ +D), under which the third line of (5.7) transforms as a weight p−q
2 modular

form. We can therefore decompose charges (ni,mj) into various orbits under Sp(4,Z) and
apply the unfolding trick to each orbit:

The trivial orbit (ni,mj) = (0, 0) produces the integral (4.1) for the lattice Λ⊕2
p−2,q−2 ≡

Λp−2,q−2⊕Λp−2,q−2, up to a factor R4, and vanishes if one of the indices ab, cd lies along 1, 2

G
(p,q),0
αβ,γδ = R4G(p−2,q−2)

αβ,γδ . (5.8)

Rank-one orbit This orbit consists of matrices (ni,mj) 6= (0, 0) where (n1,m1) and
(n2,m2) are collinear and not simultaneously vanishing. Such matrices can be decomposed
as (ni,mj) =

(
j
p

)
(c3, c4, d3, d4), (j, p) 6= (0, 0) and gcd(c3, c4, d3, d4) = 1. Quadruplets

(c3, c4, d3, d4) with gcd(c3, c4, d3, d4) = 1 can all be rotated to (0, 0, 0,±1) by a Sp(4,Z)
element, whose stabilizer is the central extension of the Jacobi group ΓJ1 (4.10), and are in
one-to-one correspondence with elements of ΓJ1 \Sp(4,Z). Thus for each doublet (j, p) 6= (0, 0),
one can unfold the integration domain Sp(4,Z)\H2 to ΓJ1 \H2 = R+

t × (SL(2,Z)\H1)ρ ×
(T 3/Z2)u1,u2,σ1 (for further details, see below (4.11)). We parametrize ΓJ1 \H2 by t = |Ω2|

ρ2
, ρ
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and (u1, u2, σ1) = (v1 − u2ρ1, v2/ρ2, σ1), and change the y variables (y′1µ, y
′
2µ, y

′
1α, y

′
2α) =

(y1µ, y1µu1 − y2µ, y1α, y1αu2 − y2α) stabilizing Pab,cd

G(p,q),1
ab,cd = R4

∫ ∞

0

dt

t3

∫
[
−1

2 ,
1
2

]3 du1du2dσ1

∫

F1

dρ1dρ2

ρ2
2

Pab,cd( ∂
∂y′ )

Φ10

′∑

(j,p)∈Z2

e
−πR2

S2t
|j+pS|2

× Γ(2)

Λp−2, q−2

[
e2πi(jaI1+paI2)Q̃2I exp 2πi

( R

i
√

2
y′rµ(Ω−1

2 )r2m2iv
iµ

+ y′1α(Q̃1α
L + u2Q̃

2α
L )− y′2αQ̃2α

L +
1

4iρ2
y′1αy

′
1
α +

1

4it
y′2αy

′
2
α
)]
,

(5.9)

where m2iv
iµ = 1

S2

(1 S1
0 S2

)(
j
p

)
, and Pab,cd( ∂∂y ) is derivative polynomial of order four defined in

(4.13), and where the Fourier-Jacobi expansion of 1/Φ10 is given eq.(4.14).
The integral over σ1 picks up the Jacobi ψm(ρ, v) of index m = −1

2Q̃
2

2 . Contributions

from Q̃2 = 0 pick up the contribution c(0)Ê2/(12∆) (4.15), and lead to power-like terms11

G(p,q),1,0
αβ,γδ = −Rq−4 c(0)

16π
E?(8−q

2 , S)δ〈αβ,G
(p−2,q−2)

γδ〉

G(p,q),1,0
αβ,µν = −Rq−4 c(0)

48π

[
8−q

2 δµν − 2Dµν
]
E?(8−q

2 , S)G(p−1,q−1)

αβ ,

(5.10)

where E?(s, S) is the completed weight 0 non-holomorphic Eisenstein series

E?(s, S) =
1

2
π−sΓ(s)

′∑

(m,n)∈Z2

Ss2
|nS +m|2s ≡ ξ(2s)E(s, S) , (5.11)

with ξ(2s) the reduced zeta function ξ(2s) = π−sΓ(s)ζ(2s) and Dµν is the traceless differential

operator on SL(2,R)
SO(2) acting on S and defined in terms of raising and lowering operators of weight

w as

Dµν = −1

2
σ+
µνDw −

1

2
σ−µνD̄w , (5.12)

with σ± = 1
2(σ3 ± iσ1) and σi the Pauli matrices.

Non-zero vectors Q̃2 lead to exponentially suppressed contributions, in a similar fashion
as what described for the O(p, q) → O(p − 1, q − 1) limit, section 4.1. They depend on the

axions through a phase factor e2πim2jQ̃2Ia
Ij

. In order to evaluate them, we insert the Fourier-
Jacobi expansion (A.54) and decompose each ψm(ρ, v) into its finite and polar parts. In
either case, the integral over σ1 imposes Q̃2

2 = −2m. As in the previous section, we consider
first the contributions of the finite part ψFm(ρ, v), for null and non-null vectors, and then the
contributions of the polar part ψPm(ρ, v)

1. In the case Q̃2
2 = 0, one can make the same decomposition as in section 4.1, using the

constraint Q̃1 · Q̃2 = 0 from ψ̂F0 (ρ). The integral then reads, for a given null vector Q̃2 and

11Note that (5.10) has a pole at q = 6 and q = 8, of which the first is substracted by the regularization
prescription discussed in §B.2.4, and the second cancels against the pole from the trivial orbit contribution
(5.8).
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m2j =
(
j
p

)

R4

2

′∑

(j,p)∈Z2

e2πim2jQ̃2Ia
Ij

gcd(Q̃2)

∫

R+

dt

t
t
q−2

2 e
−πR2

S2t
|j+pS|2−2πt|Q̃2R|2

∫

F1

dρ1dρ2

ρ2
2

c(0)Ê2

12∆

×
∫

R

du2 ρ
q−1

2
2

∑

Q̃⊥1 ∈Λp−3,q−3

q
1
2

(Q̃⊥1 +u2Q̃2)2
L q̄

1
2

(Q̃⊥1 +u2Q̃2)2
R Pab,cd( ∂

∂y′ )

× e
2πi

(
R

i
√

2
y′rµ(Ω−1

2 )r2m2iv
iµ+y′1α(Q̃1α

L +u2Q̃2α
L )−y′2αQ̃2α

L + 1
4iρ2

y′1αy
′
1
α+ 1

4it
y′2αy

′
2
α

)∣∣∣∣∣
y′=0

,

(5.13)

where gcd(Q̃2) comes from unfolding the u2-integral that uses the component of Q̃1

along Q̃2, and where Q̃⊥1 ∈ Λp−3,q−3 such that Λp−3,q−3 = {Q̃⊥1 ∈ Λp−2,q−2, Q̃
⊥
1 · Q̃2 =

0}/(Z Q̃2

gcd Q̃2
) (for further details, see (4.21)). We obtain the a one-loop integral on a sub-

GrassmaniannGp−2,q−2 parametrizing a space orthogonal to Q̃2, labelledG(p−2,q−2)⊥
F, αβ (Q̃2, ϕ),

that we define as

G(p−2,q−2)⊥
F, αβ, 0 (Q,ϕ) =

gcd(Q)

12

∫

F1

dρ1dρ2

ρ2
2

Ê2

∆k(ρ)
ρ
q−3

2
2

∑

Q̃∈Λp−3,q−3

q
1
2
Q̃2
L q̄

1
2
Q̃2
Re

2πρ2
(Q̃R·QR)2

Q2
R

×
[(
Q̃Lα −

Q̃R ·QR
Q2
R

QLα

)(
Q̃Lβ −

Q̃R ·QR
Q2
R

QLβ

)
− 1

4πρ2

(
δαβ −

QLαQLβ
Q2
R

)]
,

(5.14)

where ∆k = ∆ in the case at hand. After defining Γi = (Q,P ) = m2iQ̃2, with support
on 1/2-BPS states, and covariantizing the expression with the torus vielbein, we find that
the Fourier coefficient with support Γi ∈ Λ⊕2

p−2,q−2 r {0}, with εijΓiΓj = 0, and mass

M(Γ) =
√

2MijΓiR · Γ
j
R, is given by, when Q̃2

2 = Γi · Γj = 0

3R
q+2

2 Ḡ(p−2,q−2)

F, 〈αβ, 0 (Γ, ϕ)

1∑

l=0

P(l)
γδ〉(Γ, S)

Rl

K q−6
2
−l (2π RM(Γ))

M(Γ)
q−4

2 −l
, (5.15)

where the polynomial P(l) in (4.23) is defined in appendix H.2, and

Ḡ(p−2,q−2)

F, αβ, 0 (Γ, ϕ) = c(0)
[ 1√

S2
|j′ + p′S|

]q−8 ∑

d≥1

Q̂/d∈Λp−2,q−2

dq−8G(p−2,q−2)⊥
F, αβ, 0 ( Q̂d , ϕ) , (5.16)

and where we defined Q̂ and the unique coprimes (j′, p′) such that Γ = (Q,P ) = (j′, p′)Q̂.
The full expression for all polarizations will be given together with the polar contributions
in (5.22).

2. In the case Q̃ 2
2 6= 0, we replace ψ̂Fm by its theta decomposition (4.25). The integral over σ1

matches Q̃ 2
2 = −2m, while the integral over u1 imposes the constraint Q̃1 · Q̃2 = −`. The
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variable s ∈ Z in (A.62) can be used to unfold the integral over u2 ∈ [−1
2 ,

1
2 ] to R, after

shifting each term in the lattice sum as Q̃1 → Q̃1 + sQ̃2, since Q̃1, Q̃2 ∈ Λp−2,q−2. One

thus obtain a Fourier coefficient similar to previous case, using Γi = m2iQ̃2 = (Q,P ),

3R
q+2

2 Ḡ(p−2,q−2)

F, 〈αβ,− gcd(Γi·Γj)

2

(Γ, ϕ)

1∑

l=0

P(l)
γδ〉(Γ, S)

Rl

K q−6
2
−l (2π RM(Γ))

M(Γ)
q−4

2 −l
(5.17)

where we denoted, by extension, the function

Ḡ(p−2,q−2)

F, αβ,− gcd(Γi·Γj)

2

(Γ, ϕ) =
(
M ijΓi · Γj

) q−8
2

×
∑

d≥1
Γ/d∈Λ⊕2

p−2,q−2

( d2

gcd(Γi · Γj)
) q−8

2
c
(
− gcd(Γi · Γj)

2d2

)
G(p−2,q−2)⊥
F,αβ,− gcd(Γi·Γj)

2d2

( Q̂d , ϕ) ,

(5.18)

where we introduced the automorphic tensor G(p−2,q−2)⊥
F, αβ,− gcd(Γi·Γj)

2d2

( Q̂d , ϕ) in (4.28) and the

monomials P(l)
γδ (Γ, S) in (H.2). Notice that the function G(p−2,q−2)⊥

F, αβ,− gcd(Γi·Γj)

2d2

( Q̂d , ϕ) only de-

pends on the direction of Γ = (j′, p′)Q̂ in Λp−2,q−2, and on the norm gcd(Γi · Γj)/d2 =
Q̂2/d2.

The full expression for all polarizations will be given together with the polar contributions
in (5.22).

3. For the polar contributions, we use the representation

ψ̂Pm(ρ, v) =
c(m)

∆(ρ)

∑

s,`∈Z
qms

2+s`y2ms+` b̂(s, `,m, ρ2) (5.19)

One can then shift the charges to Q̃1 → Q̃1 + sQ̃2 since Q̃1, Q̃2 ∈ Λp−2,q−2, and then
use the sum over s to unfold the u2 ∈ [−1

2 ,
1
2 ] to R. Then, integrating over u1 ∈ [−1

2 ,
1
2 ]

imposes Q̃1 · Q̃2 = −`. One obtains the Fourier coefficients, using Γi = m2iQ̃2 = (Q,P ),

3R
q+2

2 Ḡ(p−2,q−2)

P, 〈αβ, (Γ, ϕ)
1∑

l=0

P(l)
γδ〉(Γ)

Rl

K q−6
2
−l (2π RM(Γ))

M(Γ)
q−4

2 −l
, (5.20)

where

Ḡ(p−2,q−2)

P, αβ (Γ, ϕ) =
[

1√
S2
|j′ + p′S|

]q−8
∑

d≥1

Q̂/d∈Λ⊕2
p−2,q−2

c
(
− Q̂2

2d2

)
dq−8G(p−2,q−2)

P, αβ (
Q̂

d
, ϕ) . (5.21)

Here (j′, p′) are coprimes such that Γ = (j′, p′)Q̂, and where we used the automorphic
tensor G(p,q)

P, ab(Q̂, ϕ) defined in (4.37). Note that the expression above is identical to (5.18),
but expressed in a different manner to include the case where the norm of Γ vanishes.
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Combining all contributions, the sum of the finite and polar contributions to the rank one
Fourier mode are given for all polarizations by

G
(p,q),1,Γ
αβ,γδ = 3R

q+2
2 Ḡ(p−2,q−2)

〈αβ, (Γ, ϕ)

1∑

l=0

P(l)
γδ〉(Γ)

Rl

K q−6
2
−l (2π RM(Γ))

M(Γ)
q−4

2 −l

G
(p,q),1,Γ
αβ,γµ =

3

2
R
q+2

2 Ḡ(p−2,q−2)

〈αβ, (Γ, ϕ)
ΓLγ〉µ
i
√

2

K q−8
2

(2π RM(Γ))

M(Γ)
q−6

2

G
(p,q),1,Γ
αβ,µν = −R

q+2
2 Ḡ(p−2,q−2)

αβ (Γ, ϕ) ΓRα̂µΓR
α̂
ν

K q−10
2

(2π RM(Γ))

M(Γ)
q−4

2

,

(5.22)

where Ḡ(p−2,q−2)

αβ (Γ, ϕ) = Ḡ(p−2,q−2)

F, αβ,− gcd(Γi·Γj)

2

(Γ, ϕ) + Ḡ(p−2,q−2)

P, αβ (Γ, ϕ), ΓLγµ = vµ
iΓLγi, ΓRα̂µ =

vµ
iΓRα̂i, and we recall Γi = (Q,P ).

Rank two Abelian orbits These orbits consist of matrices
(

n1 m1
n2 m2

)
where (n1,m1) and

(n2,m2) are not collinear (in particular, non-zero) but have vanishing symplectic product
n1 ·m2 −m1 · n2 = 0. Such matrices can be decomposed as

(
n1 m1
n2 m2

)
=
(

0 j
0 p

)(
A B
C D

)
, where

(j,p) ∈ M2(Z)\{0}, and
(
A B
C D

)
∈ Γ2,∞\Sp(4,Z), with Γ2,∞ = GL(2,Z) n Z3 the residual

symmetry at the cusp Ω2 →∞, embedded in Sp(4,Z) as

Γ2,∞ = {
(
γ 0
0 γ−ᵀ

)
, γ ∈ GL(2,Z)}n {

(
1 M
0 1

)
, M ∈M2(Z), M = Mᵀ}. (5.23)

Doublets (C,D) can be rotated to (0,1) by an element of Sp(4,Z), and are in one-to-one corre-
spondence with elements Γ2,∞\Sp(4,Z). The fundamental domain can thus be unfolded from
Sp(4,Z)\H2 to Γ2,∞\H2 = (GL(2,Z)\P2)Ω2n(R/Z)3

Ω1
, where P2 is the set of positive-definite

matrices. Finally, one can restrict the matrices A = (j,p) ∈M2(Z) to A ∈M2(Z)/GL(2,Z),
in order to unfold GL(2,Z)\P2 to P2.

The resulting contribution can be expressed in terms of the auxiliary variables (yr,µ, yr,α)
(5.7), and we obtain

G
(p,q),2Ab
ab,cd = 2R4

∫

P2

d3Ω2

|Ω2|3
∫

[− 1
2
, 1
2

]3
d3Ω1

|Ω2|
q−2

2

Φ10

×
∑

Q̃∈Λ⊕2
p−2,q−2

eπiTr
[
Ω Q̃·Q̃ᵀ

] ∑

A∈M2(Z)/GL(2,Z)

e
2πiaiIAijQ

j
I−πTr

[
R2

S2
Ω−1

2 Aᵀ
(

1 S1

S1 |S|2
)
A+2Ω2Q̃R·Q̃ᵀ

R

]

× Pab,cd( ∂∂y ) e
2πi
(
R

i
√

2
yrµ(Ω−1

2 )rsAᵀ
siv

ᵀ iµ+yr αQ̃L
rα+ 1

4i
yr α(Ω−1

2 )rsysα
)
,

(5.24)

where the factor two comes from the non-trivial center of order 2 of GL(2,Z) acting on
H2. For sufficiently large |Ω2|, the integral over Ω1 ∈ [0, 1]3 selects the Fourier coefficient
C(m,n,L; Ω2) of 1/Φ10, with Q̃2

1 = −2m, Q̃2 = −2n, Q̃1 · Q̃2 = −L. As discussed in §A.6,
the Fourier coefficient can be decomposed into a finite contribution CF (n,m,L), independent
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of Ω2, and an infinite series of terms associated to the polar part,

C(m,n,L; Ω2) ≡
∫

C
d3Ω1

e
iπ(Q1, Q2)

(
ρ v
v σ

)(
Q1
Q2

)

Φ10

= CF (Q2
1, Q

2
2, Q1 ·Q2)

+
∑

γ∈GL(2,Z)/Dih4

c(− (sQ1−qQ2)2

2 )c(− (pQ2−rQ1)2

2 )
[
−
δ( tr (

(
0 1/2

1/2 0

)
γᵀΩ2γ))

4π

+ (sQ1−qQ2)·(pQ2−rQ1)
2 (sign

(
(sQ1 − qQ2) · (pQ2 − rQ1)

)
− sign

(
tr (
(

0 1/2
1/2 0

)
γᵀΩ2γ))

)]

(5.25)

where γ =
(p q
r s

)
and Dih4 ≡

〈(
1 0
0 −1

)
,
(

0 1
1 0

)〉
is the dihedral group of order 8, which stabilizes

(up to sign) the matrix
(

0 1/2
1/2 0

)
, or equivalently the locus v2 = 0. As explained in Appendix

A.6, this formula holds only when |Ω2| > 1/4, such that the contour C = [0, 1]3 + iΩ2 avoids
the poles of 1/Φ10 for generic values of Ω2. Inserting (5.25) in (5.24), we find the following
contributions,

1. The contributions from (Q̃1, Q̃2) = (0, 0) produces power-like terms in R2, from the delta
function contribution in (5.25), even though CF (0, 0, 0) = 0,

G
(p,q), 2Ab,0
αβ,γδ = −R2q−12 3c(0)2

64π3
E?(8−q

2 , S)2δ〈αβ,δγδ〉 ,

G
(p,q), 2Ab,0
αβ,ρσ = −R2q−12 c(0)2

32π3
E?(8−q

2 , S)
[

8−q
2 δρσ − 2Dρσ

]
E?(8−q

2 , S) δαβ ,

G(p,q), 2Ab,0
µν,ρσ = −R2q−12 3c(0)2

64π3

[
8−q

2 δ〈µν, − 2D〈µν,
]
E?(8−q

2 , S)
[

8−q
2 δρσ〉 − 2Dρσ〉

]
E?(8−q

2 , S) ,

(5.26)

Here, the non-holomorphic Eisenstein series E?(s, S) and traceless differential operator Dµν
are defined in (5.11) and (5.12). It is worth noting that in the limit S2 →∞, the constant

term proportional to ξ(q−6)S
q−6

2
2 in the Eisenstein series E?(8−q

2 , S) reproduces the missing
constant term in (4.20). Thus, while this term is missed by the unfolding procedure in the
degeneration (p, q)→ (p− 1, q − 1), it is correctly captured by the unfolding procedure in
the degeneration (p, q)→ (p− 2, q − 2).

2. Contributions of non-zero vectors (Q̃1, Q̃2) ∈ Λ⊕2
p−2,q−2 lead to exponentially suppressed

contributions. For the finite term CF (Q2
1, Q

2
2, Q1 · Q2) in (5.25), and for the simplest

tensorial representation, the unfolded integral leads to

6R8δ〈µν,δρσ〉
∑

(Q̃1,Q̃2)∈Λ⊕2
p−2,q−2

A∈M2(Z)/GL(2,Z)

|A|2 e2πiaiIAijQ
j
I CF (Q2

1, Q
2
2, Q1 ·Q2)

(
R2|A|

2|Q̃1R∧Q̃2R|

) q−9
2
B̃ q−9

2
(Z) ,

(5.27)

where

Z =
2R2

S2

(
1 S1

S1 |S|2
)
A
(

Q̃2
1R Q̃1R · Q̃2R

Q̃1R · Q̃2R Q̃2
2R

)
Aᵀ , (5.28)
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|Q∧P |2 = det ( Q2 Q · P
Q · P P 2 ) and B̃δ(Z) is the matrix-variate Bessel function [67], defined by

B̃s(UV ) = 1
2

(
|U |
|V |

)−s/2 ∫

P2

d3Ω2

|Ω2|
3
2
−s e

−π tr (Ω−1
2 U+Ω2V )

(5.29)

Note that B̃δ(Z) depends on Z only through its trace and determinant. In the limit
R → ∞, or large |Z| = |UV |, the integral over Ω2 is dominated by a saddle point where
Ω?

2V Ω?
2 = U ; using the identity Tr(UV )U − UV U = |U | |V |V −1 valid for 2× 2 matrices,

this is given by

Ω?
2 =

U +
√
|UV |V −1

√
tr (UV ) + 2

√
|UV |

. (5.30)

For the matrices U = R2

S2
Aᵀ( 1 S1

S1 |S|2
)
A, V = 2

(
Q̃2

1R Q̃1R · Q̃2R

Q̃1R · Q̃2R Q̃2
2R

)
, given by (5.24), we obtain

Ω?
2 =

R

M(Γ)
Aᵀ
(

1√
S2

(
1 S1

S1 |S|2
)

+ 1
|QR∧PR|

(
P 2
R −QR · PR

−QR · PR Q 2
R

))
A , (5.31)

where M(Γ) is the mass (2.5) of a 1/4-BPS state with charge Γ = (Q,P ) = (Q̃1, Q̃2)Aᵀ,

and |QR ∧ PR| =
√
Q 2
RP

2
R − (QR · PR)2.

For the contributions on the last line of (5.25), the integral over Ω2 no longer evaluates to a
matrix-variate Bessel integral, since these contributions depend on Ω2, being discontinuous
across the walls where tr (

(
0 1/2

1/2 0

)
γᵀΩ2γ) changes sign. However, as long as (5.31) does

not sit on the walls, the integral over Ω2 is still dominated by the same saddle point, with a
prefactor obtained by replacing CF (Q2

1, Q
2
2, Q1 ·Q2) by C(Q2

1, Q
2
2, Q1 ·Q2; Ω∗2). In appendix

F, we estimate the error made by neglecting the variation of C(Q2
1, Q

2
2, Q1 ·Q2; Ω2) at finite

distance away from the saddle point, and find that they are of the order expected for multi-
instanton corrections. For the remainder of this section, we ignore these corrections, and
perform the above replacement in (5.27).

In order to write the result for more general polarizations, it will be useful to introduce

B̃(0)
s,µν(Z) =

δµν

4|Z|s/2
∫

d3Ω2

|Ω2|
3
2
−s e

−π tr (Ω−1
2 Z+Ω2)

B̃(1)
s,µν(Z) =

1

2|Z|s/2
∫

d3Ω2

|Ω2|1−s
(Ω−1

2 )µν e
−π tr (Ω−1

2 Z+Ω2) ,

(5.32)

such that δµνB̃
(0)
s µν(Z) = B̃s(Z) and |Z| s2 B̃(1)

s µν(Z) = 1
−π

∂
∂Zµν

[√
|Z|s+

1
2 B̃s+ 1

2
(Z)
]
.

Changing variable
(
Q
P

)
= A

(
Q̃1

Q̃2

)
, we therefore obtain the Fourier expansion with respect to
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(a1, a2), with support on Γ = (Q,P ) ∈ Λ⊕2
p−2,q−2,

G
(p,q), 2Ab,Γ
αβ,γδ ∼ 2Rq−1C̄(Q,P ; Ω?

2)

2∑

l=0

P
(l)µν
αβ,γδ(Γ)

Rl

B̃
(lmod 2)
q−5−l

2
,µν

[
2R2

S2

(
1 S1

S1 |S|2
)(

Q2
R QR · PR

QR · PR P 2
R

)]

|2QR ∧ PR|
q−5−l

2

G
(p,q), 2Ab,Γ
ρβ,γδ ∼ Rq−1C̄(Q,P ; Ω?

2)
1∑

l=0

P
(l)µν
ρβ,γδ (Γ)

Rl

B̃
(l+1 mod 2)
q−6−l

2
,µν

[
2R2

S2

(
1 S1

S1 |S|2
)(

Q2
R QR · PR

QR · PR P 2
R

)]

|2QR ∧ PR|
q−6−l

2

...

G(p,q), 2Ab,Γ
µν,ρσ ∼ 2Rq−1C̄(Q,P ; Ω?

2)
δ〈µν,δστ〉

4

B̃ q−9
2

[
2R2

S2

(
1 S1

S1 |S|2
)(

Q2
R QR · PR

QR · PR P 2
R

)]

|2QR ∧ PR|
q−9

2

(5.33)

where the measure factor is given by, for Γ = (Q,P )

C̄(Q,P ; Ω?
2) =

∑

A∈M2(Z)/GL(2,Z)

A−1Γ∈Λ⊕2
p−2,q−2

|A|q−7C
[
A−1

(
Q2 Q · P
Q · P P 2

)
A−ᵀ;AᵀΩ?

2A
]
. (5.34)

3. Contributions from the Dirac delta function and sign function in the first line of (5.25)
also produce exponentially suppressed contributions to the same Fourier coefficient. These
contributions are localized on the walls tr (

(
0 1/2

1/2 0

)
γᵀΩ2γ) associated to the splittings

(Q,P ) = (Q1, P1) + (Q2, P2). For the Dirac delta function terms the integral separates
into the product of two Bessel functions, with arguments given by the masses M(Q1, P1)
and M(Q2, P2) of the 1/2-BPS components, as shown in Appendix D. In Appendix C,
we show that he summation measure for these contributions also factorizes into the two
respective measures for 1/2-BPS instantons appearing in the genus-one integral (1.4), (1.6).
The contributions from the sign functions are estimated in Appendix F.

Rank two non-abelian orbits These orbits consist of matrices
(

n1 m1
n2 m2

)
where (n1,m1) and

(n2,m2) have non vanishing symplectic product M1 ≡ n1 ·m2 −m1 · n2 6= 0 (in particular,
they are non collinear). Unlike all other orbits considered previously, the contribution of
such matrices depend on the scalar ψ corresponding to the top grade component in the
decomposition (5.3) via a factor e2iπM1ψ, and therefore contribute to the non-Abelian Fourier
coefficient. While the classification of the orbits of such matrices under Sp(4,Z) is rather
complicated, we show in Appendix G that these contributions can be deduced by a simple
change of variables from the already known Fourier coefficients in the degeneration (p, q) →
(p− 1, q − 1).

5.2 Extension to ZN CHL orbifolds

The degeneration limit (5.1) of the modular integral (2.30) for ZN CHL models with N =
2, 3, 5, 7 can be treated similarly by adapting the orbit method to the case where the integrand
is invariant under the congruence subgroup Γ2,0(N) = {

(
A B
C D

)
∈ Sp(4,Z), C = 0 mod N}. In

(1.7), Φk−2 is the cusp form of Γ2,0(N) of weight k = 24
N+1 defined in (A.33), and Γ(2)

Λp, q
[Pab,cd]
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is the genus-two partition function with insertion of Pab,cd for a lattice

Λp,q = Λp−2,q−2 ⊕ II1,1 ⊕ II1,1[N ] , (5.35)

where Λp−2,q−2 is a lattice of level N with signature (p−2, q−2). The lattice II1,1⊕II1,1[N ] is
obtained from the usual unimodular lattice II2,2 by restricting the windings and momenta to(

n1 m1
n2 m2

)
=
(
n11 n12 m11 m12
n21 n22 m21 m22

)
∈
(
Z2 Z2

(NZ)2 Z2

)
, hence breaking the automorphism group O(2, 2,Z)

to σS↔T n [Γ0(N) × Γ0(N)], exactly as in [22]. After Poisson resummation on m1,m2, Eq.
(4.7) continues to hold, except for the fact that n2 are restricted to run over (NZ)2. The sum
over A =

(
n1 m1
n2 m2

)
can then be decomposed into orbits of Γ2,0(N):

Trivial orbit The term
(

n1 m1
n2 m2

)
=
(

0 0
0 0

)
produces the same modular integral, up to a factor

of R4,
G(p,q),0
αβ,γδ = R4G(p−2,q−2)

αβ,γδ , (5.36)

where G(p−1,q−1)

αβ,γδ is the integral (4.1) for the lattice Λp−2,q−2 defined by (5.35).

Rank-one orbits Matrices A of rank one fall into two different classes of orbits under
Γ2,0(N). Let us first consider the case where (n2,m2) 6= (0, 0) and denote (n2,m2) =
p(n′2,m

′
2) with p = gcd(n2,m2):

1. Matrices with n′2 = 0 modN , as they are required to be rank one, can be decomposed as
(
n1 m1
n2 m2

)
=
(

0 0 0 j
0 0 0 p

)(
A B
C D

)
, (5.37)

with (j, p) ∈ Z2 r {(0, 0)}, p 6= 0, and
(
A B
C D

)
∈ (Γ0(N) n H2,1(Z))\Γ2,0(N), with Z2 ×

Γ0(N) nH2,1(N) ⊂ ΓJ1 . For this class of orbits, one can thus unfold directly the domain
Γ2,0(N)\H2 into (Γ0(N) nH2,1(Z))\H2 = R+

t × (Γ0(N)\H1)ρ ×
(
(R/Z)3/Z2

)
u1,u2,σ1

(for

further details, see (4.48));

2. Matrices with n′2 6= 0 modN can be decomposed as
(
n1 m1
n2 m2

)
=
(

0 j 0 0
0 p 0 0

)(
A B
C D

)
(5.38)

with (j, p) ∈ Z ⊕ NZ r {(0, 0)}, p 6= 0, since n2 = 0 modN , and where
(
A B
C D

)
∈

SρSσ(Γ0(N) nH (2)

2,1,N (Z))(SρSσ)−1\Γ2,0(N), recalling the definition

H (2)

2,1,N (Z) = {(κ, λ, µ) ∈ H2,1(Z), κ = µ = 0 mod N} , (5.39)

and where Sσ denotes the inversion over σ. One can then unfold the fundamental domain
Γ2,0(N)\H2 into SρSσ (Γ0(N)nH (2)

2,1,N (Z)) (SρSσ)−1\H2, and change variable Ω→ (SρSσ)·
Ω = −Ω−1 as in the weak coupling case (4.53) to recover the integration domain (Γ0(N)n
H (2)

2,1,N (Z))\H2 = R+
t × (Γ0(N)\H1)ρ × (R/Z)u2 × (R/NZ)2

u1,σ1
. Under this change of

variable, the level-N weight-(k − 2) cusp form transforms as in (4.51), while the partition
function for the sublattice Λp−2,q−2 transforms as

Γ(2)

Λ̃p−2, q−2
[Pαβ,γδ](−Ω−1) = υ2N−k−2(−i)2k|Ω|k−2Γ(2)

Λ̃∗p−2, q−2

[Pαβ,γδ](Ω) , (5.40)

where we denoted υ2N−k−2 =
∣∣Λ∗p−2,q−2/Λp−2,q−2

∣∣−1
(Note that υ2 = N2−2δq,8 for q ≤ 8

in the cases of interest).
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The remaining contributions A with (n2,m2) = (0, 0) can be split in the two classes of
orbits above. Given (n1,m1) = j(n′1,m

′
1), where j = gcd(n1,m1) and j ∈ Z, terms with

n′1 = 0 modN correspond to cases (j, p) = (j, 0) in the first class above, while terms with
n′1 6= 0 modN correspond to (j, p) = (j, 0) in the second class above.

For the functionG(p,q),1
ab,cd , changing the y variables as before (y′1µ, y

′
2µ, y

′
1α, y

′
2α) = (y1µ, y1µu1−

y2µ, y1α, y1αu2 − y2α), the sum of the two classes of orbits then reads (similarly to (4.53))

G(p,q),1
ab,cd = R4

∫

R+

dt

t3

∫

(R/Z)3

du1du2dσ1

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Pab,cd( ∂
∂y′ )

Φk−2(Ω)

×
′∑

(j,p)∈Z2

e
−πR2

S2t
|j+pS|2

Γ(2)

Λp−2, q−2

[
e2πiQ̃2I(jaI1+paI2)Y(y′)

]

+R4

∫

R+

dt

t3

∫

(R/NZ)2

du1dσ1

∫

R/Z
du2

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Pab,cd( ∂
∂y′ )

Φk−2(Ω/N)

× υ2

N4

′∑

(j,p)∈Z2

p=0 mod N

e
−πR2

S2t
|j+pS|2

Γ(2)

Λ∗p−2, q−2

[
e2πiQ̃2I(jaI1+paI2)Y(y′)

]
,

(5.41)

where

Y(y′) = e
2πi

(
R

i
√

2

miv
i
µy
′
2
µ

t
+y′1α(Q1L

α+u2Q2L
α)−y′2αQ2L

α+ 1
4iρ2

y′1αy
′
1
α+ 1

4it
y′2αy

′
2
α

)

,
(5.42)

with miv
i
µ = 1√

S2
(j + pS1, pS2). The contributions with Q̃2

2 = 0, after integration over u1, u2

(4.55), can be brought back to regular integral over Γ0(N)\H1 by changing variable ρ→ −1/ρ.
Similarly to (4.56), the transformation property of the genus-one partition function and the
level-N cusp form allows to obtain12

G(p,q),1,Q2=0
ab,cd = R4

∫ ∞

0

dt

t
t
q−6

2

∑

Q̃2∈Λ̃p−2,q−2

Q̃2
2=0

e−2πtQ̃2
2R

ck(0)

12(N − 1)

×
{ ′∑

(j,p)∈Z2

e
−πR2

S2t
|j+pS|2

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

N2Ê2(Nρ)− Ê2(ρ)

∆k

+ υN
′∑

(j,p)∈Z2

p=0 modN

e
−πR2

S2t
|j+pS|2

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Ê2(ρ)− Ê2(Nρ)

∆k(ρ)

}

× e2πiQ̃2I(jaI1+paI2)ΓΛp−1, q−1

[
Pab,cd( ∂

∂y′ )Y(y′)
]

(5.43)

12Recall that ∆k(−1/Nρ) = N
k
2 (−iρ)k∆k(ρ), ΓΛ∗p−2, q−2

[Pab](−1/ρ) = v−1N
k
2

+1(−i)kρk−2ΓΛp−2, q−2 [Pab](ρ)
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The zero mode contribution, Q̃2 = 0, lead to power-like terms

G(p,q),1,0
αβ,γδ = Rq−4 ck(0)

16π(N − 1)

[
δ〈αβ,G

(p−2,q−2)

γδ〉 (E?(8−q
2 , S)− υN q−6

2 E?(8−q
2 , NS))

− δ〈αβ, ςG(p−2,q−2)

γδ〉 (NE?(8−q
2 , S)− υN q−8

2 E?(8−q
2 , NS))

]

G(p,q),1,0
αβ,µν = Rq−4 ck(0)

48π(N − 1)

[
8−q

2 δµν − 2Dµν
]

×
[
G(p−2,q−2)

γδ (E?(8−q
2 , S)− υN q−6

2 E?(8−q
2 , NS))

− ςG(p−2,q−2)

γδ (NE?(8−q
2 , S)− υN q−8

2 E?(8−q
2 , NS))

]

(5.44)

where we use the genus-one modular integral G(p,q)

ab (ϕ) (B.11), with integrand invariant under
the Hecke congruence subgroup Γ0(N), as well as ςG(p,q)

ab (4.57) (Note that the cases of interest
satisfy ςG(2k−2,6)

ab (ϕ) = G(2k−2,6)

ab (ϕ), ςG(2k−4,4)

ab (ϕ) = G(2k−4,4)

ab (ϕ)).
The terms with non-zero vectors Q lead to exponentially suppressed contributions of the

same form as the Fourier modes of null vectors (5.15), non-null vectors (5.17), and the polar
contribution (5.20) respectively, with the following changes:

1. In the case of the finite part of 1/Φk(Ω), for null Fourier vectorsQ2 = 0, the CHL equivalent
of G(p−2,q−2)

F, αβ, 0 is

G(p−2,q−2)

F αβ, 0 (Γi, S) =
ck(0)

12(N − 1)

[ |j′ + p′S|√
S2

]q−8

×
[( ∑

d≥1
Γ/d∈Λ⊕2

p−2,q−2

dq−8 −
∑

d≥1
Γ/d∈Λ∗p−2,q−2⊕NΛ∗p−2,q−2

υNdq−8

)
G(p−2,q−2)⊥
F, αβ, 0 ( Q̂d , ϕ)

+

( ∑

d≥1
Γ/d∈Λ∗p−2,q−2⊕NΛ∗p−2,q−2

υdq−8 −
∑

d≥1
Γ/d∈Λ⊕2

p−2,q−2

Ndq−8

)
ςG(p−2,q−2)⊥

F, αβ, 0 ( Q̂d , ϕ)

]
,

(5.45)

where we defined the coprimes (j′, p′) such that Γ = (j′, p′)Γ̂.

2. For non-null Fourier vectors, Q2 6= 0, the finite part of 1/Φk−2(Ω) contains two terms

G(p−2,q−2)

αβ,− gcd(Γi·Γj)

2d2

(Γ, ϕ) =
(
M ijΓi · Γj

) q−8
2

( ∑

d≥1
Γ/d∈Λ⊕2

p−2,q−2

ck

(
− gcd(Γi·Γj)

2d2

)(
d2

gcd(Γi·Γj)

) q−8
2
G(p−2,q−2)⊥
αβ,− gcd(Γi·Γj)

2d2

( Q̂d , ϕ)

+
∑

d≥1
Γ/d∈Λ∗p−2,q−2⊕NΛ∗p−2,q−2

υ ck

(
− gcd(Γi·Γj)

2Nd2

)(
Nd2

gcd(Γi·Γj)

) q−8
2 ςG(p−2,q−2)⊥

αβ,− gcd(Γi·Γj)

2Nd2

( Q̂
Nd , ϕ)

)
.

(5.46)
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with

ςG(p−2,q−2)⊥
αβ,m

(
Γ
Nd , ϕ) =

∫

Γ0(N)\H1

d2ρ

ρ2
2

Nĥm,l(Nρ)

∆k(ρ)
Γm,lαβ ( Γ

Nd) , (5.47)

and Γm,lab (Q) the vector-valued partition function defined in (4.29).

Rank two abelian orbits Matrices
(

n1 m1
n2 m2

)
=
(
n11 n12 m11 m12
n21 n22 m21 m22

)
with vanishing symplectic

product n1 ·m2 −m1 · n2 = 0 but (ni,mi) 6= (0, 0) and (n1,m1) and (n2,m2) not aligned,
fall into four different classes of orbits. Consider k1 = gcd(n1,m1) and k2 = gcd(n2,m2), the
four classes depend on whether n1/k1 and n2/k2 are congruent to 0 modN or not.

1. When n1/k1 and n2/k2 = 0 modN , one can rotate the element as
(

n1 m1
n2 m2

)
=
(

0 p1
0 p2

)(
A B
C D

)
,

with (p1,p2) ∈ M2(Z) r {0} and
(
A B
C D

)
∈ Γ2,∞\Γ2,0(N) (A, C are not independent and

the fourth winding entry, say n22, vanishes because of the symplectic contraint). The
representative is stabilized by Γ2,∞ = GL(2,Z) × T 3, and one can restrict the sum over
matrices A = (j,p) ∈M2(Z) to A ∈M2(Z)/GL(2,Z) and unfold the fundamental domain
from Γ2,0(N)\H2 to Γ2,∞\H2 = (P2)Ω2 × (R\Z)3

Ω1
, with (Q,P ) ∈ Λm ⊕ Λm.

2. The two cases n1/k1 6= 0 modN but n2/k2 = 0 modN , and n1/k1 = 0 modN but
n2/k2 6= 0 modN , should be considered together. Respectively, the charges can be
rotated as

(
n1 m1
n2 m2

)
=
(
k 0 0 j
0 0 0 p

)(
A B
C D

)
, 0 ≤ j < k, p ∈ Z r {0} , and

(
n1 m1
n2 m2

)
=(

0 j k 0
0 p 0 0

)(
A B
C D

)
, 0 ≤ j < Nk, p ∈ NZ r {0}, by construction of the lattice (5.35).

(
A B
C D

)
∈ SρΓ(1)

2,∞,NS
−1
ρ \Γ2,0(N) and

(
A B
C D

)
∈ SσΓ(2)

2,∞,NS
−1
σ \Γ2,0(N) respectively, with

Γ
(1)
2,∞,N = {

(
1 M
0 1

)
,M =

(
Nq r
r s

)
, (q, r, s) ∈ Z3} ,

Γ
(2)
2,∞,N = {

(
1 M
0 1

)
,M =

(
q r
r Ns

)
, (q, r, s) ∈ Z3} ,

(5.48)

and one can then unfold Γ2,0(N)\H2 to SρΓ
(1)
2,∞,NS

−1
ρ \H2, SσΓ

(2)
2,∞,NS

−1
σ \H2, and change

variable ρ→ −1/ρ, σ → −1/σ, respectively. After exchanging ρ and σ in the second case13,
the two cases can be assembled together to form the two orbits of the decomposition of

M2,0(N) = {
(
p q
r s

)
∈M2(Z), r = 0 modN} , (5.49)

over
(Z2 n Γ0(N)) = {

(
p q
r s

)
∈ GL(2,Z), r = 0 modN} . (5.50)

Explicitely,

M2,0(N)/(Z2 n Γ0(N)) = {
(
k j
0 p

)
, 0 ≤ j < k , p ∈ Zr {0}}

∪ {
(
j k
p 0

)
, 0 ≤ j < Nk , p ∈ NZr {0}} .

(5.51)

One thus obtains a single sum over matrices A ∈ M2,0(N)/(Z2 n Γ0(N)), with a funda-

mental domain unfolded to Γ
(1)
2,∞,N\H2 = (P2)Ω2 × (R\Z)2

σ1,v1
× (R\NZ)ρ1 , with (Q,P ) ∈

Λ∗m ⊕Λm. Under this change of variable, the level-N weight-(k− 2) cusp form transforms
as

Φk−2(Sρ ◦ Ω) = (i
√
N)−kρk−2Φ̃k−2(Ω) , (5.52)

13This transformation belongs to Γ2,0(N)
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such that it satifies the splitting degeneration limit (A.44), while the genus-two partition
function for the sublattice transforms as

Γ(2)

Λp− 2, q − 2
[Pab,cd](Sρ ◦ Ω) = υ(i

√
N)−k−2ρk−2Γ(2)

Λ∗p− 2, q − 2⊕Λp− 2, q − 2
[Pab,cd](Ω) , (5.53)

where υ = Nk/2+1|Λ∗p−2,q−2/Λp−2,q−2|−1/2 (reducing to υ = N1−δq,8 for q ≤ 8 in the cases
of interest).

3. When n1/k1,n2/k2 6= 0 modN , one can rotate the element as
(

n1 m1
n2 m2

)
=
(
j1 j2 0 0
p1 p2 0 0

)(
A B
C D

)
,

with
(
j1 j2
p1 p2

)
∈M2,00(N) r {0},

M2,00(N) = {
(
p q
r s

)
∈M2(Z), r = s = 0 modN} (5.54)

by construction of the lattice (5.35), and
(
A B
C D

)
∈ SρSσΓ

(3)
2,∞,N (SσSρ)

−1\Γ2,0(N), with

Γ
(3)
2,∞,N = {

(
γ 0
0 γ−ᵀ

)
, γ ∈ GL(2,Z)} × {

(
1 M
0 1

)
,M =

(
q r
r s

)
, (q, r, s) ∈ (NZ)3} . (5.55)

One can then unfold Γ2,0(N)\H2 to SρSσΓ
(3)
2,∞,N (SσSρ)

−1\H2, and change variable Ω2 →
−Ω−1

2 to recover Γ
(3)
2,∞,N\H2 = (GL(2,Z)\P2)Ω2 × (R\NZ)3

Ω1
. Finally, one can restrict

the sum over matrices A ∈ M2,00(N), p = 0 modN to A ∈ M2,00(N)/GL(2,Z), in order
to unfold GL(2,Z)\P2 to P2, with (Q,P ) ∈ Λ∗m ⊕NΛ∗m.

After unfolding and changing variables, the result for the simplest component G(p,q),2 Ab
αβ,γδ

reads

G(p,q),2Ab
αβ,γδ = 2R4

∫

P2

d3Ω2

|Ω2|3
∫

(R/Z)3

d3Ω1

Φk−2(Ω)

′∑

A∈
M2(Z)/GL(2,Z)

e
−πTr

[
R2

S2
Ω−1

2 Aᵀ
(

1 S1

S1 |S|2
)
A
]

× Γ(2)

Λp−2, q−2
[e2πiaiIAijQ̃

jI
Pαβ,γδ]

+2R4

∫

P2

d3Ω2

|Ω2|3
∫

(R/Z)2×(R/NZ)

d3Ω1

Φ̃k−2(Ω)

υ

N

′∑

A∈
M2,0(N)/(Z2nΓ0(N))

e
−πTr

[
R2

S2
Ω−1

2 Aᵀ
(

1 S1

S1 |S|2
)
A
]

× Γ(2)

Λ∗p−2, q−2⊕Λp−2, q−2
[e2πiaiIAijQ

jI
Pαβ,γδ]

+ 2R4

∫

P2

d3Ω2

|Ω2|3
∫

(R/NZ)3

d3Ω1

Φk−2(Ω/N)

υ2

N4

′∑

A∈
M2,00(N)/GL(2,Z)

e
−πTr

[
R2

S2
Ω−1

2 Aᵀ
(

1 S1

S1 |S|2
)
A
]

× Γ(2)

Λ∗p−2, q−2
[e2πiaiIAijQ

jI
Pαβ,γδ] ,

(5.56)

where υ2 = Nk+2|Λ∗p−2,q−2\Λp−2,q−2|−1 (which reduces to υ2 = N2−2δq,8 for q ≤ 8 in the cases
of interest).

Integrating over Ω1 selects the Fourier coefficient Ck−2(m,n, l; Ω2) of 1/Φk−2, and the
Fourier coefficient C̃k−2(m,n, l; Ω2) of 1/Φ̃k−2, with Q̃2

1 = −2m, Q̃2 = −2n, Q̃1 · Q̃2 = −l.
The first one is invariant under GL(2,Z) ⊂ Γ2,∞, defined in (5.23), and its Fourier coefficients
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can be written after separating the finite contribution CF , independent of Ω2, from the polar
ones

∫

[0,1[3
d3Ω1

e
iπ(Q1, Q2)

(
ρ v
v σ

)(
Q1
Q2

)

Φk−2(Ω)
= CFk−2(Q2

1, Q
2
2, Q1 ·Q2)

+
∑

γ∈GL(2,Z)/Dih4

ck(− (sQ1−qQ2)2

2 )ck(− (pQ2−rQ1)2

2 )
[
−
δ( tr (

(
0 1/2

1/2 0

)
γᵀΩ2γ))

4π

+ (sQ1−qQ2)·(pQ2−rQ1)
2 (sign

(
(sQ1 − qQ2) · (pQ2 − rQ1)

)
− sign

(
tr (
(

0 1/2
1/2 0

)
γᵀΩ2γ))

)]

(5.57)

where γ =
(p q
r s

)
, and the finite contributions CFk−2(Q2

1, Q
2
2, Q1 ·Q2) are also invariant under

(
Q̃1

Q̃2

)
→ γ−1

(
Q̃1

Q̃2

)
. The contributions of 1/Φ̃k−2 can be written similarly as

1

N

∫

[0,N [×[0,1[2
d3Ω1

e
iπ(Q1, Q2)

(
ρ v
v σ

)(
Q1
Q2

)

Φ̃k−2(Ω)
= C̃Fk−2(Q2

1, Q
2
2, Q1 ·Q2)

+
∑

γ∈Γ0(N)/Z2

ck(−N(sQ1−qQ2)2

2 )ck(− (pQ2−rQ1)2

2 )
[
−
δ( tr (

(
0 1/2

1/2 0

)
γᵀΩ2γ))

4π

+ (sQ1−qQ2)·(pQ2−rQ1)
2 (sign

(
(sQ1 − qQ2) · (pQ2 − rQ1)

)
− sign

(
tr (
(

0 1/2
1/2 0

)
γᵀΩ2γ))

)]

,

(5.58)

where Z2 n Γ0(N), the symmetry at the cusp, is equivalent to GL(2,Z) ∩M2,0(N), and the
stabilizer of

(
0 1/2

1/2 0

)
inside it is reduced to {

(
1 0
0 1

)
,
(−1 0

0 −1

)
,
(

1 0
0 −1

)
}, leading the sum over

Γ0(N)/Z2.

1. The contributions from (Q̃1, Q̃2) = (0, 0) come in two classes: the ones associated to the
zero mode CFk−2(0, 0, 0) = 48N

N2−1
and C̃Fk−2(0, 0, 0) = − 48

N2−1
(see (A.49) and (A.50)) that

were absent for N = 1, and the ones coming from the delta function contribution in (5.57)
and (5.58). The zero mode contribution is proportional to

∫

P2

d3Ω2

|Ω2|
10−q

2

(
N

′∑

A∈
M2(Z)/GL(2,Z)

− υ

′∑

A∈
M2,0(N)/(Z2nΓ0(N))

+ υ2
′∑

A∈
M2,00(N)/GL(2,Z)

)
e−πTr

[
R2Ω−1

2 AᵀMA
]

= R2q−14π
2q−13

2 Γ(7−q
2 )Γ(6−q

2 )

(
N

′∑

A∈
M2(Z)/GL(2,Z)

− υ
′∑

A∈
M2,0(N)/(Z2nΓ0(N))

+ υ2
′∑

A∈
M2,00(N)/GL(2,Z)

)
detAq−7

= R2q−14ξ(7− q)ξ(6− q)
(
N − υ(1 +N q−6) + υ2N q−7

)
, (5.59)

where the integral is a matrix-variate Gamma integral [67] and the sums reduce to zeta
functions using explicit representatives as (5.51).14

14Alternatively, the integral can be reduced to a beta integral over r ∈ [0, 1] using the substitution v =
√
ρσr.
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With the same computation as in the preceding section, one obtains

G(p,q), 2Ab
αβ,γδ = −R2q−12 3ck(0)2

64π3

(
E?(8−q

2 , S) + υN
q−8

2 E?(8−q
2 , NS)

)2
δ〈αβ,δγδ〉

+
18R2q−10

π2
ξ(7− q)ξ(6− q)(N − υ)(1− υN q−7)

N2 − 1
δ〈αβ,δγδ〉 ,

G(p,q), 2Ab
αβ,ρσ = −R2q−12 ck(0)2

32π3

(
E?(8−q

2 , S) + υN
q−8

2 E?(8−q
2 , NS)

)

×
[

8−q
2 δρσ − 2Dρσ

]1

2

(
E?(8−q

2 , S) + υN
q−8

2 E?(8−q
2 , NS)

)
δαβ

+
6(7− q)R2q−10

π2
ξ(7− q)ξ(6− q)(N − υ)(1− υN q−7)

N2 − 1
δαβδρσ ,

G(p,q), 2Ab
µν,ρσ = −R2q−12 3ck(0)2

64π3

[
8−q

2 δ〈µν, − 2D〈µν,
](
E?(8−q

2 , S) + υN
q−8

2 E?(8−q
2 , NS)

)

×
[

8−q
2 δρσ〉 − 2Dρσ〉

](
E?(8−q

2 , S) + υN
q−8

2 E?(8−q
2 , NS)

)

+
9(6− q)(7− q)R2q−10

π2
ξ(7− q)ξ(6− q)(N − υ)(1− υN q−7)

N2 − 1
δ〈µν,δρσ〉 .

(5.60)

Recall that ck(0) = 24
N+1 = k is the zero mode of 1/∆k =

∑
m ck(m)qm, and that δ〈αβ,δγδ〉 =

2
3(δαβδγδ − δα(γδδ)β). As in the maximal rank case (5.26), the leading constant term in

E?(8−q
2 , S) ∼ ξ(q − 6)S

q−6
2

2 + ξ(8− q)S
8−q

2
2 (5.61)

reproduces the missing constant term in (4.60).

2. Contributions of non-zero vectors (Q̃1, Q̃2) ∈ Λ⊕2
p−2,q−2 lead to the exponentially suppressed

contributions written in (5.33). The measure of each Fourier mode will fall in three cat-
egory, depending on the support of (Q,P ) . The simplest one is for the most generic
vector Q∈Λ∗m , P ∈Λm – where we denote X ∈Λ the strict inclusion of the vector X in
Λ, meaning that X ∈ Λ , X /∈ Λ[N ] – for which only the first orbit in (5.51) of the second
term in (5.24) contributes

υ
∑

A=
(
k j
0 p

)
,
0≤j<k
p6=0

A−1
(
Q
P

)
∈Λ∗m⊕Λm

|A|q−7C̃k−2

[
A−1

( −|Q|2 −Q · P
−Q · P −|P |2

)
A−ᵀ;AᵀΩ?

2A
]
, (5.62)

where the N factor comes from the width of the integration domain (R/NZ).

For less generic vectors Q∈Λ∗m , P ∈NΛ∗m, one must add to (5.62) the second orbit of
(5.51), allowing to rewrite the two as a sum over M2,0(N)/(Z2 nΓ0(N)) defined in (5.51),
as well as the contribution from the last term of (5.24). We obtain

υ
∑

A∈M2,0(N)/[Z2nΓ0(N)]

A−1
(
Q
P

)
∈Λ∗m⊕Λm

|A|q−7C̃k−2

[
A−1

( −|Q|2 −Q · P
−Q · P −|P |2

)
A−ᵀ;AᵀΩ?

2A
]

+ υ2
∑

A∈M2(N)/GL(2,Z)

A−1
(
Q
P/N

)
∈Λ∗m⊕Λ∗m

N q−8|A|q−7Ck−2

[
A−1

(−N |Q|2 −Q · P
−Q · P −|P |2/N

)
A−ᵀ;AᵀΩ?

2A
]
,

(5.63)
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where in the second line, N factors come from the width of the integration domain
(R/NZ)3, as well as the argument of 1/Φk−2(NΩ), and the magnetic vector is rescaled
P → P/N , allowing us to use M2(N)/GL(2,Z) instead of M2,00(N)/GL(2,Z) (5.54) for
simplicity.

Finally, for vectors Q ∈ Λm , P ∈ Λm, one must add to (5.62) the contribution from the
first term of (5.24). One thus obtain the full measure as

C̄k−2(Q,P,Ω?) =
∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P

)
∈Λm⊕Λm

|A|q−7Ck−2

[
A−1

( −|Q|2 −Q · P
−Q · P −|P |2

)
A−ᵀ;AᵀΩ?

2A
]

+ υ
∑

A∈M2,0(N)/[Z2nΓ0(N)]

A−1
(
Q
P

)
∈Λ∗m⊕Λm

|A|q−7C̃k−2

[
A−1

( −|Q|2 −Q · P
−Q · P −|P |2

)
A−ᵀ;AᵀΩ?

2A
]
,

+ υ2
∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P/N

)
∈Λ∗m⊕Λ∗m

N q−8|A|q−7Ck−2

[
A−1

(−N |Q|2 −Q · P
−Q · P −|P |2/N

)
A−ᵀ;AᵀΩ?

2A
]
.

(5.64)

Finally, there are also contributions from rank two non-abelian orbits where the two rows
(n1,m1) and (n2,m2) have non vanishing symplectic product n1 ·m2 −m1 · n2 6= 0, but as
mentioned in the previous subsection, it is more convenient to obtain them from the Fourier
coefficients in the degeneration (p, q)→ (p− 1, q − 1), as explained in Appendix G.

5.3 Large radius limit and BPS dyon counting

We now apply the results in §5.1 and 5.2 for (p, q) = (2k, 8) and Λp−2,q−2 = Λm, to discuss the
limit of the exact ∇2(∇φ)4 couplings in three-dimensional CHL orbifolds, in the limit where
one circle inside T 7 (orthogonal to the circle involved in the orbifold action) decompactifies.
We regularize the coupling coefficient by analytic coninuation of q = 8 + 2ε, and we substract
the pole at ε = 0. We find that the conjectured exact ∇2(∇φ)4 coupling (1.7) has the large
radius expansion

G(2k,8)

αβ,γδ = G
(0)
αβ,γδ +G

(1)
αβ,γδ +G

(2)
αβ,γδ +G

(TN)
αβ,γδ (5.65)

corresponding to the constant term, 1/2-BPS and 1/4-BPS Abelian Fourier modes and finally,
the non-Abelian Fourier modes with non-zero Taub-NUT charge discussed in Appendix G.

5.3.1 Effective action in D = 4

The constant term in (5.65) takes the form

G
(0)
αβ,γδ = R4G

(D=4)
αβ,γδ +

ζ(3)

8π
(k − 12)R6δ〈αβ,δγδ〉 +O(e−2πR) , (5.66)

The first term originates from orbits of rank 0 (5.36), rank-1 (5.44) and Abelian rank-2 (5.60),
and combines all terms proportional to R4 that survive in the decompactification limit. The
second term comes from (5.60), and can be ascribed to the 2-loop sunset diagram shown
in Figure 1 c), with Kaluza–Klein states running in the loops. Its coefficient vanishes in
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the maximal rank case. The exponentially suppressed contributions of order e−R and e−R
2

are missed by the unfolding procedure, but they must be present because of the differential
equation (2.26). We shall return to them in the next subsection.

If our Ansatz (1.7) for the exact ∇2(∇φ)4 couplings in D = 3 is correct, the term pro-
portional to R4 in (5.66) must reproduce the exact ∇2F 4 couplings in four dimensions, up
to logarithmic corrections in R due to the mixing between local and non-local couplings in
D = 4. For the maximal rank case, we find

G
(D=4)
αβ,γδ (S, ϕ) = Ĝ(24,6)

αβ,γδ(ϕ)− 3

4π
δ〈αβδγδ〉

(
Ê1(S)+

3

π
logR

)2
−1

4
δ〈αβ,

(
Ê1(S)+

3

π
logR

)
Ĝ(24,6)

γδ〉 (ϕ) ,

(5.67)
where we used the definition (5.11)

Es(S) =
1

ξ(2s)
E?(s, S) = S s

2 +
ξ(2s− 1)

ξ(2s)
S 1−s

2 +O(e−2πS2) . (5.68)

and the regularized value at s = 1,

Ê1(S) = lim
s→1

[
Es(S)− 3(

A12
G

4π )2(s−1)

π(s− 1)

]
= − 1

4π
log(S 12

2 |∆(S)|) , , (5.69)

where AG = e
1
12
−ζ′(−1) is the Glaisher-Kinkelin constant.

Recalling that S2 = 1/g2
4, we see that the first term in (5.67) indeed reproduces the

two-loop contribution to the ∇2F 4 coupling in D = 4, while the two other terms reproduce
the tree-level and one-loop contributions to the same coupling, along with non-perturbative
NS5-brane corrections of order e−2πS2 . Because there is no holomorphic modular form of
weight zero for SL(2,Z), supersymmetry Ward identities and U-duality determine uniquely
this non-perturbative coupling from its perturbative expansion.

For the CHL orbifolds with N = 2, 3, 5, 7, we find instead

G
(D=4)
αβ,γδ (S, ϕ) = Ĝ(2k−2,6)

αβ,γδ (ϕ)− 3

4π
δ〈αβδγδ〉

( Ê1(NS) + Ê1(S) + 6
π logR

N + 1

)2
(5.70)

− 1

4(N + 1)
δ〈αβ,

((N Ê1(NS)− Ê1(S)

N − 1
+

6

π
logR

)
Ĝ(2k−2,6)

γδ〉 (ϕ)

+
(N Ê1(S)− Ê1(NS)

N − 1
+

6

π
logR

)
ςĜ(2k−2,6)

γδ〉 (ϕ)
))

which is manifestly invariant under the Fricke duality S 7→ −1/(NS), ϕ → ς · ϕ [27]. In the
weak coupling limit S2 → +∞, this again reproduces the tree-level, one-loop and two-loop
contributions to the ∇2F 4 coupling in D = 4 (discarding the log terms)

G
(D=4)
αβ,γδ (S, ϕ) = Ĝ(2k−2,6)

αβ,γδ (ϕ)− 3

4π
δ〈αβ,δγδ〉S2

2 − 1

4
δ〈αβ,Ĝ

(2k−2,6)

γδ〉 (ϕ)S2 +O(e−2πS2)

This agreement is of course guaranteed by the similar agreement in D = 3 discussed in §4.3.
Since there are no cuspidal forms of weight zero for Γ0(N), (5.70) is in fact the unique non-
perturbative completion of the perturbative coupling consistant with supersymmetry Ward
identities and U-duality, including Fricke duality.15

Other tensorial components Gαβ,µν correspond instead to R2F 2 couplings in D = 4, which
we refrain from discussing in detail.

15The square of Ê1(NS)+Ê1(S)
N+1

is determined by supersymmetry. The combination Ê1(NS)+Ê1(S)
N+1

(Ĝ(2k−2,6)

αβ (ϕ)+
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5.3.2 Contributions from 1/4-BPS instantons

Exponentially suppressed corrections arise from the rank one orbits (5.22), the Abelian rank
two orbits (5.33), and the non-Abelian rank two (G.9). In this section, we focus on the
contributions from the the Abelian rank two orbits, which provide the Abelian Fourier co-
efficients for generic 1/4-BPS charges.16 These Fourier coefficients can be interpreted as
non-perturbative corrections associated to space-time instantons corresponding to 1/4-BPS
black holes wrapping the Euclidean time circle.

Decomposing

G
(2)
ab,cd =

∑

Γ∈Λ∗m⊕Λm
Q∧P 6=0

G
(2,Γ)
ab,cd e

2πi(a1Q+a2P ) (5.71)

with Γ = (Q,P ), using (5.24) and the change of variable Ω2 → AᵀΩ2A, one obtains

G
(2,Γ)
ab,cd = 2R4

∫

P
d3Ω2 C̄k−2(Q,P ; Ω2)Pab,cd(QL, PL,Ω2) e

−πTr
[
R2

S2
Ω−1

2

(
1 S1

S1 |S|2
)

+2Ω2

(
Q 2
R QRPR

QRPR P 2
R

)]

(5.72)
with 17

Pab,cd(QL, PL,Ω2) =
(
Pab,cd( ∂∂y ) eπ

√
2Ryiµ(Ω−1

2 )ijvᵀ jµ+2πiyiαΓiαL −π2 yi α(Ω−1
2 )ijyj

α
)∣∣∣
y=0

, (5.73)

The summation measure C̄(Q,P,Ω2) depends both on the charge Γ = (Q,P ) and on Ω2 ∈ P,
and is given for the maximal rank model by (cf. (5.34))

C̄(Q,P ; Ω2) =
∑

A∈M2(Z)/GL(2,Z)
A−1Γ∈Λ22,6⊕Λ22,6

|A|C
[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]
, (5.74)

where Λ22,6 = Λm is the magnetic lattice of the full rank model, and C
[(

2m l
l 2n

)
; Ω2

]
are

the Fourier coefficients of 1/Φ10 defined in (5.25). For CHL models with N = 2, 3, 5, 7, it is
instead given by (cf. (5.64))

C̄k−2(Q,P ; Ω2) =
∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P

)
∈Λm⊕Λm

|A|Ck−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]

+
∑

A∈M2,0(N)/[Z2nΓ0(N)]

A−1
(
Q
P

)
∈Λ∗m⊕Λm

|A|C̃k−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]

+
∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P/N

)
∈Λ∗m⊕Λ∗m

|A|Ck−2

[
A−1

(−NQ2 −Q · P
−Q · P −P 2/N

)
A−ᵀ;AᵀΩ2A

]
, (5.75)

ςĜ(2k−2,6)

αβ (ϕ)) = Ê1(NS)+Ê1(S)
2

F (2k−2,6)

αβγ
γ(ϕ) is determined with a fixed coefficient by the source term in the differ-

ential equation enforced by supersymmetry whereas the coefficient of Ê1(NS)−Ê1(S)
N−1

(Ĝ(2k−2,6)

αβ (ϕ)− ςĜ(2k−2,6)

αβ (ϕ))
is determined by matching the perturbative expansion.

16The dimension of the set of generic 1/4-BPS charges, plus one for the Taub-NUT charge, is equal to the
Kostant–Kirillov dimension of the automorphic representation attached to Gab,cd, see the end of section 3.1.

17When αβγδ lie along the O(2k − 2, 6) directions, Pαβ,γδ(QL, PL,Ω2) reduces to the polynomial in (2.31).
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where Ck−2

[(
2m l
l 2n

)
; Ω2

]
and C̃k−2

[(
2m l
l 2n

)
; Ω2

]
denote the Fourier coefficients of 1/Φk−2(Ω)

and 1/Φ̃k−2(Ω) given in (5.57), (5.58).
As emphasized earlier, 1/Φk−2(Ω) and 1/Φ̃k−2(Ω) are meromorphic functions with poles,

so that their Fourier coefficients are piecewise constant functions of Ω2, with discontinuities as
well as delta-function singularities at the boundary between distinct chambers (moreover, they
are strictly speaking well-defined only for |Ω2| > 1

4 , since the contour C = [0, 1]3 generically
crosses the poles for lower values of |Ω2|). Due to this non-trivial Ω2-dependence, one cannot
compute the integral (5.72) analytically, but one may analyze its asymptotic expansion at
large radius.

For generic moduli S and ϕ, the integral is dominated by a saddle point at Ω2 = Ω?
2

(5.31), in the neighborhood of which the Fourier coefficients of 1/Φk−2(Ω) and 1/Φ̃k−2(Ω)
are constant. One can compute the leading contribution in the saddle point approximation
by integrating (5.72) with C̄k−2(Q,P ; Ω2) ∼ C̄k−2(Q,P ; Ω?

2) kept constant in the integrand.
Using (5.33) and the identities [13, (20)]

B̃3/2(Z) =
πK0

(
2πM(Z)

)

det (Z)1/4
+
πM(Z)K1

(
2πM(Z)

)

2det (Z)3/2

B̃1/2(Z) =
πK0

(
2πM(Z)

)

det (Z)1/4
,

(5.76)

where M(Z) =
√

2
√

detZ + tr (Z) (such that M(2R2v( Q2
R QRPR

QRPR P 2
R

)vᵀ) = RM(Γ)), the result-

ing 1/4-BPS Abelian Fourier coefficients in this approximation can be expressed in terms of
the standard modified Bessel functions,

G
(2,Γ)
αβ,γδ ∼

9

16
R5 C̄k−2(Q,P ; Ω?

2)

×
(

2π

R2

QL〈αQLβ,PLγPLδ〉
|QR ∧ PR|2

[
K0(2πRM(Γ)) +

RM(Γ)

4R2|2QR ∧ PR|
K1(2πRM(Γ))

]

+
1

π
δ〈αβ,

ΓLγ
κΓLδ〉λ

|QR ∧ PR|
∂

∂Zκλ

[
2
√
|Z|K0(2πM(Z)) +M(Z)K1(2πM(Z))

]∣∣∣∣
Z=2R2v

(
Q2
R QRPR

QRPR P 2
R

)
vᵀ

+
1

4π|QR ∧ PR|
δ〈αβ,δγδ〉K0(2πRM(Γ))

])
,

(5.77)

where ΓLγ
κ = 1√

S2
(QLγ+S1PLγ , S2PLγ). This leading contribution can be ascribed to instan-

tons of charge Γ associated to 1/4-BPS black holes (including bound states of two 1/2-BPS
black holes) wrapping the Euclidean time circle. It is indeed exponentially suppressed in
e−2πRM(Γ) for M(Γ) (2.5) the BPS mass of a black hole of charge Γ, and it is weighted by
the measure factor C̄k−2(Q,P ; Ω?

2). For a primitive charge Γ, i.e. such that there is no d 6= 1
with d−1Γ ∈ Λ∗m ⊕ Λm, the only matrix A contributing to the measure is A = 1 and one can
interpret the measure factor (up to an overall sign) as the helicity supertrace counting string
theory states of charge Γ, as advocated in the introduction (2.14),

C̄k−2(Q,P ; Ω?
2) = (−1)Q·P+1Ω6(Q,P, S, ϕ) . (5.78)

The value of Ω2 at the saddle point (5.31) reproduces the contour prescription of [9, 32] when
both electric and magnetic charges are separately primitive in Λ∗m and Λm and d−1Q ∧ P ∈
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Λ∗m ∧ Λm for d = 1 only. More generally, the contour prescription depends on the set of
matrices A dividing (Q,P ) in the electromagnetic lattice. For example in the maximal rank
case, all primitive charges (Q,P ) are in the U-duality orbit of a charge of the form [68]

Q = e1 + q e2 , P = p e2 , Q ∧ P = p e1 ∧ e2 , (5.79)

with e1 and e2 primitive in Λ22,6. The integer p is sometimes known as the ‘torsion’. In that
case (5.74) simplifies to

C̄(Q,P ; Ω?
2) =

∑

d≥1
d|p

d C
[(

Q2 QP/d
QP/d P 2/d2

)
,
(

1 0
0 d

)
Ω?

2

(
1 0
0 d

)]
, (5.80)

in agreement with the prescription in [40, 69], with additional fineprint on the contour of
integration. If we consider the same charge configuration (5.79) in CHL orbifolds for e1

primitive in Λ∗m and not in Λm, e2 primitive in Λm and not in NΛ∗m, and with p not divisible
by N , such that it corresponds to a twisted state, only the second line in (5.75) contributes
and the result reduces similarly to

C̄k−2(Q,P ; Ω?
2) =

∑

d≥1
d|p

d C̃k−2

[(
Q2 QP/d

QP/d P 2/d2

)
,
(

1 0
0 d

)
Ω?

2

(
1 0
0 d

)]
, (5.81)

in agreement with [6] for p = 1. For general primitive charges such that Q can be in Λm and
P in NΛ∗m, all three terms contribute to the helicity supertrace, and the result is manifestly
invariant under U-duality including Fricke duality.

5.3.3 Contributions from pairs of 1/2-BPS instantons

Let us now discuss corrections to the saddle point approximation to (5.72). In Appendix

F we estimate the contributions to G
(2,Γ)
αβ,γδ due to the deviation of C̄k−2(Q,P,Ω2) from its

saddle point value C̄k−2(Q,P,Ω∗2). In the range18 |Ω2| > 1
4 , the deviation is due to the poles

occuring when n1σ2−m1ρ2 +jv2 = 0 with 4n1m
1 +j2 = 0, resulting in the discontinuities and

delta-function singularities of Ck−2(Q,P,Ω∗2) and C̃k−2(Q,P,Ω∗2) on P shown in (5.25), (5.57)
and (5.58). In Appendix F.1, we show that these contributions are exponentially suppressed
in e−2πR(M(Γ1)+M(Γ2)), and can therefore be ascribed to two-instanton effects associated to
two unbounded 1/2-BPS states of charges Γ1 and Γ2.

For fixed total charge Γ, we expect contributions from all pairs of 1/2-BPS states with
charges Γ1 and Γ2 such that Γ = Γ1 + Γ2. We show in Appendix C that a general such
splitting is parametrized by a non-degenerate matrix B =

(
p q
r s

)
∈M2(Z), such that

(
Q1
P1

)
=
(
p
r

)sQ− qP
ps− qr = Bπ1B

−1
(
Q
P

)
,
(
Q2
P2

)
=
(
q
s

)pP − rQ
ps− qr = Bπ2B

−1
(
Q
P

)
, (5.82)

18In the range |Ω2| < 1
4
, there are additional contributions from ‘deep poles’ of the form (F.10) with n2 6= 0

which must be avoided in order to define the Fourier coefficient C̄(Q,P,Ω2). In Appendix (F.2), we show that
irrespective of the detailed prescription for avoiding these poles, the contribution from the region |Ω2| < 1

(4n2
2)

is exponentially suppressed in e−2πR2|2n2|, and can be ascribed to pairs of Taub-NUT instanton anti-instantons
of charge ±n2.
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where π1 =
(

1 0
0 0

)
and π2 =

(
0 0
0 1

)
. All splittings of a given charge Γ are in one-to-one cor-

respondence with the matrices B ∈ M2(Z)/Stab(πi) such that Bπ1B
−1Γ ∈ Λ∗m ⊕ Λm with

M2(Z)/Stab(πi) =
{
γ ·
(1 j′

0 k′
)
, γ ∈ GL(2,Z)/Dih4 , 0 ≤ j′ < k′ , (j′, k′) = 1

}
.

(5.83)
In the following it prove convenient to use an equivalent unimodular representative

B̂ = B
(1 0

0 |B|−1

)
= γ ·

(
1 j′

k′
0 1

)
, (5.84)

in SL(2,Q)/Stab(πi,Q), where Stab(πi,Q) is the stabilizer of the doublet πi in SL(2,Q).
We show in Appendix C that the summation measure (5.74) on the domain |Ω2| > 1

4
(taking into account the discontinuities displayed in (5.25)) reads (focusing on the maximal
rank case for simplicity)

C̄(Q,P ; Ω2) =
∑

A∈M2(Z)/GL(2,Z)
A−1Γ∈Λm⊕Λm

|A|CF
[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ

]
(5.85)

+
∑

Γi∈Λm⊕Λm
Qi∧Pi=0,Γ1+Γ2=Γ

c̄(Γ1)c̄(Γ2)

(
−δ([B̂

ᵀΩ2B̂]12)

4π
+
〈Γ1,Γ2〉

2

(
sign(〈Γ1,Γ2〉)− sign([B̂ᵀΩ2B̂]12)

))
,

with B̂ ∈ SL(2,Q)/Stab(πi,Q) determined such that Γi = B̂πiB̂
−1Γ and where [B̂ᵀΩ2B̂]ij

denotes the entrises ij of the matrix.
To interpret the second line, recall that the central charge Z = 2√

S2
(QR + SPR) for an

arbitrary 1/4-BPS state decomposes into orthogonal components Z = Z+ + Z− with

Z± =
1√
S2

[
(1, S) ·

( QR
PR

)
± i

|QR ∧ PR|
(−S, 1) ·

( P 2
RQR − (QR · PR)PR
Q 2
RPR − (QR · PR)QR

)]
(5.86)

The BPS mass is M(Q,P ) = |Z+|. It is convenient to write Z+α̂ = (z1 + iz2)α̂M(Q,P ) with
z1 and z2 vectors of SO(6) satisfying

z 2
1 + z 2

2 = 1 , z1 ·
QR + S1PR√

S2
+ z2 ·

S2PR√
S2

= 2M(Q,P ) , z1 ·
S2PR√
S2
− z2 ·

QR + S1PR√
S2

= 0 .

(5.87)
The matrix Ω?

2 at the saddle point determines precisely this decomposition through

(
z1

z2

)
= 1√

S2

(
S2 0
−S1 1

)
1

R
Ω?

2

(
QR
PR

)
. (5.88)

A generic two-center 1/4-BPS solution with total charge (Q,P ) is written in terms of the
harmonic functions 19

(HI ,KI) =
(QI1, P

I
1 )

|x− x1|
+

(QI2, P
I
2 )

|x− x2|
− pRα̂I 1√

S2

(
S2 −S1

0 1

)(
zα̂1
zα̂2

)
, (5.89)

19Supersymmetry implies that QiR and PiR are linear combinations of QR and PR, but this is automatically
the case for 1/2-BPS charges such that Qi ∧ Pi = 0.
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and is regular away from the points x1 and x2 provided the distance |x1 − x2| satisfies

〈Γ1,Γ2〉
|x1 − x2|

= −z1 ·
S2P1R√
S2

+ z2 ·
Q1R + S1P1R√

S2
= −|QR ∧ PR|

R
[B̂ᵀΩ?

2B̂]12 , (5.90)

which requires that [B̂ᵀΩ?
2B̂]12 and 〈Γ1,Γ2〉 have opposite sign. Returning to (5.85), we see

that when the bound state is allowed, the pair of 1/2-BPS charges contribute to the Fourier
coefficient at leading order with measure factor c̄(Γ1)c̄(Γ2)|〈Γ1,Γ2〉|.

In contrast, when [B̂ᵀΩ?
2B̂]12 and 〈Γ1,Γ2〉 have the same sign, the bound state is not

allowed and the last term in (5.85) vanishes at the saddle point Ω2 = Ω?
2 in (5.31). This

term still contributes to the integral (5.72), but is exponentially suppressed. At large R, the
integral is now dominated by the boundary of the chamber where the sign of [B̂ᵀΩ2B̂]12 flips,

as shown in Appendix F.1. On this locus, the argument of the exponential Tr
[
R2

S2
Ω−1

2

(
1 S1

S1 |S|2
)

+

2Ω2

(
Q 2
R QRPR

QRPR P 2
R

)]
in (5.72) decomposes into two pieces associated to Γ1,Γ2,

R2

σ2S2

[
B̂ᵀ( 1 S1

S1 |S|2
)
B̂
]
11

+ 2σ2([B̂−1ΓR]1)2 +
R2

ρ2S2

[
B̂ᵀ( 1 S1

S1 |S|2
)
B̂
]
22

+ 2ρ2([B̂−1ΓR]2)2 . (5.91)

The integral is then exponentially suppressed by e−2πR(M(Γ1)+M(Γ2)). The same holds for the
contribution of the Dirac delta function which is computed explicitly in Appendix D.

We conclude that (5.72) receives contributions of each possible splitting Γ = Γ1 + Γ2,
weighted by the product of the 1/2-BPS measures c̄(Γ1) c̄(Γ2) and further exponentially sup-
pressed by e−2πR(M(Γ1)+M(Γ2)). It is important to distinguish these two-instanton contribu-
tions from one-instanton contributions due to bound states of 1/2-BPS states. Due to the
triangular inequality M(Γ1) +M(Γ2) ≥ M(Γ), these contributions are subdominant com-
pared to the one-instanton contributions (5.77) away from the walls of marginal stability. On
the wall, the two contributions become comparable and the complete Fourier coefficient is
continuous.

This discussion generalizes with some efforts to CHL models with N prime. In Appendix
C we show that the measure function for |Ω2| ≥ 1

4 decomposes as

C̄k−2(Q,P ; Ω2) =
∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P

)
∈Λm⊕Λm

|A|CFk−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ

]

+
∑

A∈M2,0(N)/[Z2nΓ0(N)]

A−1
(
Q
P

)
∈Λ∗m⊕Λm

|A|C̃Fk−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ

]
(5.92)

+
∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P/N

)
∈Λ∗m⊕Λ∗m

|A|CFk−2

[
A−1

(−NQ2 −Q · P
−Q · P −P 2/N

)
A−ᵀ

]

+
∑

Γi∈Λ∗m⊕Λm
Qi∧Pi=0,Γ1+Γ2=Γ

c̄k(Γ1)c̄k(Γ2)

(
−δ([B̂

ᵀΩ2B̂]12)

4π
+
〈Γ1,Γ2〉

2

(
sign(〈Γ1,Γ2〉)− sign([B̂ᵀΩ2B̂]12)

))
,

with B̂ ∈ SL(2,Q)/Stab(πi,Q) such that Γi = B̂πiB̂
−1Γ. In this case one must distinguish

the charges Γ1 and Γ2 that are twisted or untwisted to reproduce the exact measure (2.22).
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In Appendix C we analyze all the possible splittings depending on the orbit – electric or
magnetic – of the charges Γ1 and Γ2 under Γ0(N). The sign (−1)Q·P = (−1)〈Γ1,Γ2〉 for all
splittings, which ensures that the contribution of the sign function in (5.92) to the helicity
supertrace Ω6(Q,P, t) satisfies to the wall-crossing formula (2.12) with the correct sign.

It is interesting to understand this property from the differential equation imposed by
supersymmetry Ward identities (2.26). We show explicitly in Appendix E.3 that the compo-
nent of the differential equation with all indices along the decompactified torus is satisfied.
In general, one finds that the leading contribution to the Fourier coefficient (5.72) with con-
stant measure C̄k−2(Q,P ; Ω2) ∼ C̄k−2(Q,P ; Ω?

2) as in (5.77), solves the homogeneous equation
(3.17). The contributions due to the discontinuities of the summation measure C̄k−2(Q,P ; Ω2)
give a particular inhomogeneous solution sourced by the quadratic term in Fabcd. For a given
1/4-BPS charge Γ, the Fourier coefficients of Fabcd contribute a source term proportional to
c̄k(Γ1)c̄k(Γ2) for all possible splittings Γ = Γ1 + Γ2, which matches the structure of the mea-
sure measure in (5.92). In this way, the differential equation constrains the measure function
to be consistent with wall crossing, such that the discontinuities must correspond to the sum
over all possible splittings weighted by the 1/2-BPS measures of the constituent charges as
exhibited in (5.92).

The explicit check of the differential equation in Appendix E.3 demonstrates that the
unfolding procedure reproduces the correct Abelian Fourier coefficients, at least up to terms
that are exponentially suppressed in e−2πR2

. This is an important consistency check because
the same unfolding procedure fails to reproduce the non-perturbative contributions to the
constant terms associated to instanton anti-instantons, which are also required to be present
in order for the differential equation to hold . These effects are also necessary in order to
resolve the ambiguity of the sum over 1/4-BPS instantons [48], which is divergent due to the
exponential growth of the measure C̄k−2(Q,P ; Ω?

2) ∼ (−1)Q·P+1eπ|Q∧P | [2, 8].

6 Weak coupling expansion in dual string vacua

In section §4.3, we analyzed the weak coupling expansion of the exact ∇2(∇φ)4 in D = 3, in
the limit where the heterotic string coupling is small. However, the CHL vacua of interest
in this paper also admit dual descriptions in terms of freely acting orbifolds of type II string
theory compactified on K3 × T 3 [70, 71], or of type I strings on T 7 [72]. In this section, we
discuss the weak coupling expansion of these exact results on the type II and type I sides. We
also include a brief discussion of the ∇2H4 couplings in type IIB string theory compactified
on K3, whose exact form was conjectured in [46] and involves the same type of genus-two
modular integral, albeit with a lattice of signature (21, 5).

6.1 Weak coupling limit in CHL orbifolds of type II strings on K3× T 3

On the type II side, string vacua with 16 supercharges can be obtained by orbifolding the
type II string on K3× T 3 by a symplectic automorphism of K3 combined with a translation
on T 3 [70, 71]. In order to keep manifest the four-dimensional origin of these models, we shall
assume that the translation acts only on a T 2 inside T 3. In the weak coupling limit g6 → 0
(where g6 is the string coupling in type IIA compactified on K3), the ‘non-perturbative Narain
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lattice’ (2.3) decomposes into [73],

Λ2k,8 → Λ2k−4,4 ⊕ [II1,1 ⊕ II1,1[N ]]⊕ [II1,1 ⊕ II1,1[N ]] , (6.1)

where the first summand is the sublattice of the homology lattice Λ20,4 = Heven(K3) which
is invariant under the symplectic automorphism, the second is the lattice of windings and
momenta along T 2, and the third is the lattice of windings and momenta along S1 together
with the non-perturbative direction. The last two summands can be combined into a lattice
Λ4,4 = II2,2 ⊕ II2,2[N ] which can be thought as the lattice of windings and momenta along a
fiducial torus T 4. Assuming for simplicity that flat metric on the torus T 3 is diagonal and the
Kalb-Ramond two-form vanishes, the radii of the four circles in this fiducial T 4 are related to
the three radii R5, R6, R7 of the physical T 3 by

(r1, r2, r3, r4) =

(
R6

g6`II
,
R7

g6`II
,
R5

g6`II
,
R5R6R7

g6`3II

)
(6.2)

In the limit g6 → 0, the four radii ri scale to infinity at the same rate, so the automorphism
group O(Λ4,4) is broken to a congruence subgroup of SL(4,Z), which is identified with the T-
duality group O(Λ3,3) along the three-torus. In order to make T-duality invariance manifest,

it is useful to define the type II string coupling in three-dimensions g′3 = g6

√
`3II/V3 where `II

is the type II string length and V3 = R5R6R7.
The analysis in §4.1 and §5.1 – and our previous analysis of the one-loop integral in [22]

is readily generalized to the case where n radii of a lattice IIn−r,n−r ⊕ IIr,r[N ] become large,
leading in the maximal rank case N = 1 to

F (p,q)

αβγδ = Vn F
(p−n,q−n)

αβγδ +
3c(0)

16π2
V

q−6
n

n Γ(n+6−q
2 )

′∑

mi∈Zn
(πmiUijm

j)
q−n−6

2 δ(αβδγδ) + . . .(6.3)

G(p,q)

αβ,γδ = V 2
n G

(p−n,q−n)

αβ,γδ − c(0)

32π
V

q+n−6
n

n Γ(n+6−q
2 )

′∑

mi∈Zn
(πmiUijm

j)
q−n−6

2 δ〈αβ,G
(p−n,q−n)

γδ〉

− 3

4π


c(0)

8π
V

q−6
n

n Γ(n+6−q
2 )

′∑

mi∈Zn
(πmiUijm

j)
q−n−6

2




2

δ〈αβ,δγδ〉 + . . . (6.4)
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or in the case of N 6= 1,

F (p,q)

αβγδ = Vn F
(p−n,q−n)

αβγδ +
3ck(0)

16π2
V

q−6
n

n Γ(n+6−q
2 )δ(αβδγδ)

[ ′∑

mi∈Zn
(πmiUijm

j)
q−n−6

2

+N r−1
′∑

m1,...,mn−r∈Zn−r
mn−r,...,mn∈NZr

(πmiUijm
j)

q−n−6
2

]
+ . . .

G(p,q)

αβ,γδ = V 2
n G

(p−n,q−n)

αβ,γδ − ck(0)

32π(N − 1)
V

q+n−6
n

n Γ(n+6−q
2 )δ〈αβ,

×
[(
N r

′∑

m1,...,mn−r∈Zn−r
mn−r+1,...,mn∈NZr

(πmiUijm
j)

q−n−6
2 −

′∑

mi∈Zn
(πmiUijm

j)
q−n−6

2

)
G(p−n,q−n)

γδ〉

+
(
N

′∑

mi∈Zn
(πmiUijm

j)
q−n−6

2 −N r−1
′∑

m1,...,mn−r∈Zn−r
mn−r+1,...,mn∈NZr

(πmiUijm
j)

q−n−6
2

)]
ςG(p−n,q−n)

γδ〉

− 3ck(0)2

256π3
V

2q−12
n

n Γ(n+6−q
2 )2

×
[ ′∑

mi∈Zn
(πmiUijm

j)
q−n−6

2 +N r−1
′∑

m1,...,mn−r∈Zn−r
mn−r+1,...,mn∈NZr

(πmiUijm
j)

q−n−6
2

]2
δ〈αβ,δγδ〉

+
18V

2q−10
n

n

(N2 − 1)π3/2
Γ(n+5−q

2 )Γ(n+4−q
2 )δ〈αβ,δγδ〉

×
(
N

′∑

A∈
Mn,2(Z)/GL(2,Z)

− N r−1
′∑

A∈
Mn,2,0[Nr]/(Z2nΓ0(N))

+ N2r−2
′∑

A∈
Mn,2,00[Nr]/GL(2,Z)

)
det (πAᵀUA)

q−n−5
2 + . . .

(6.5)

where the dots denote exponentially suppressed terms and Uij is the metric on the n-torus,
normalized to have unit determinant.20 Here Mn,2(Z) is the set of rank two n by 2 matrices
over the integers, Mn,2,0[N r] the subset for which the first column last r entries vanish mod
N , and Mn,2,00[N r] the subset for which the two columns last r entries vanish mod N .

The sums over mi ∈ Zn\{0} can be expressed in terms of the vector Eisenstein series for
the congruence subgroup of SL(n,Z) for which the lower left r × (n− r) entries vanish mod
N in the fundamental matrix representation, which we denote by SLn[N r],

E?SLn[Nr]
sΛ1

(U) =
1

2
Γ(s)

′∑

m1,...,mn−r+1∈Zn−r
mn−r,...,mn∈NZr

(πmiUijm
j)−s . (6.6)

The sums over A can be expressed in terms of rank two tensor Eisenstein series for the same

20In the case of a square torus of volume Vn = r1 . . . rn, Uij = r2
i δij/V

2
n
n .
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congruence subgroup SLn[N r]

E?SLnsΛ2
(U) = π

1
2 Γ(s)Γ(s− 1

2)
′∑

A∈
Mn,2(Z)/GL(2,Z)

det (πAᵀUA)−s ,

E?SLn[Nr]
sΛ2,0

(U) = π
1
2 Γ(s)Γ(s− 1

2)

′∑

A∈
Mn,2,0[Nr]/(Z2nΓ0(N))

det (πAᵀUA)−s ,

E?SLn[Nr]
sΛ2,00 (U) = π

1
2 Γ(s)Γ(s− 1

2)
′∑

A∈
Mn,2,00[Nr]/GL(2,Z)

det (πAᵀUA)−s . (6.7)

Note that for N = 1, E?SLnsΛk
(U) is the standard Langlands Eisenstein series satisfying the

functional relation E?SLn(n
2
−s)Λk(U) = E?SLnsΛk

(U−1).

For (n, r) = (1, 0) and (n, r) = (2, 1), (6.3) and (6.5) reduce to the results in §4 and 5 of [22]
and the present paper, respectively. The case relevant in the present context is (n, r) = (4, 2).
Setting (p, q, n) = (2k, 8, 4), V4 = V 2

3 /(g
4
6`

6
II) = 1/g′43 , and multiplying by a suitable power of

g′3 for translating to the string frame, we find that the perturbative terms in the (∇φ)4 and
∇2(∇φ)4 couplings in the maximal rank case are given by

g′23 F
(24,8)

αβγδ =
1

g′23
F (20,4)

αβγδ +
9

π2
E?SL4

Λ1
(U)δ(αβδγδ) + . . .

g′63 G
(24,8)

αβ,γδ =
1

g′23
G(20,4)

αβ,γδ −
3

2π
E?SL4

Λ1
(U)δ〈αβ,G

(20,4)

γδ〉 −
27g′23
π3

[E?SL4
Λ1

(U)]2δ〈αβ,δγδ〉 + . . .

(6.8)

Similarly, for N > 1 we get

g′23 F
(2k,8)

αβγδ =
1

g′23
F (2k−4,4)

αβγδ +
9

π2(N + 1)

[
E?SL4

Λ1
(U) +NE?SL4[N2]

Λ1
(U)
]
δ(αβδγδ) + . . . (6.9)

g′63 G
(2k,8)

αβ,γδ =
1

g′23
G(2k−4,4)

αβ,γδ −
3

2π(N2 − 1)

[
N2E?SL4[N2]

Λ1
(U)− E?SL4

Λ1
(U)
]
δ〈αβ,G

(2k−4,4)

γδ〉

− 3N

2π(N2 − 1)

[
E?SL4

Λ1
(U)− E?SL4[N2]

Λ1
(U)
]
δ〈αβ,

ςG(2k−4,4)

γδ〉

+
18N

(N2 − 1)π2
δ〈αβ,δγδ〉

[
E?SL4

1
2

Λ2
(U)− E?SL4[N2]

1
2

Λ2,0
(U) +NE?SL4[N2]

1
2

Λ2,00
(U)

]

− 27g′23
π3(N + 1)2

[
E?SL4

Λ1
(U) +NE?SL4[N2]

Λ1
(U)
]2
δ〈αβ,δγδ〉 + . . . (6.10)

In either case, the rank 0, rank-1 and rank-2 orbits are now interpreted on the type II side as
tree-level, one-loop and two-loop contributions, with an additional one-loop contribution in
the rank-2 orbit for N > 1. The tree-level contributions are consistent with the observation
in [74] that the tree-level F 4 coupling of four twisted gauge bosons is governed by a genus-one
modular integral, and the analogous statement in [75] that the tree-level ∇2F 4 coupling of
four twisted gauge bosons is governed by a genus-two modular integral. For N = 1, the one-
loop contributions are proportional to the vector Eisenstein series of SL(4,Z), or equivalently
the spinor Eisenstein series under the T-duality group O(3, 3) of the torus T 3, while the two-
loop contribution is proportional to the square of the same. For N > 1 they are similar
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generalizations of Eisenstein series of SL4[N2], and there is an additional contribution at 1-
loop in rank two Eisenstein series of SL4[N2], that are linear combinations of vector Eisenstein
series of the group O(3, 3) of automorphisms of II2,2 ⊕ II1,1[N ].21

It would be interesting to confirm these predictions by independent one-loop and two-loop
computations in type II string theory. Finally, the exponentially suppressed terms in (6.8)
can be ascribed to D-brane, NS5-branes and KK (6,1)-brane instantons as explained in more
detail in [74].

6.2 Weak coupling limit in type II string theory compactified on K3× T 2

Let us now consider the expansion of the exact ∇2F 4 and R2F 2 terms in D = 4 obtained in
(5.70) at weak coupling on the type II side. Recall that the heterotic axiodilaton S corresponds
respectivly to the 2-torus Kähler modulus TA in type IIA, and the 2-torus complex structure
modulus UB in type IIB, while the type II axiodilaton SA = SB corresponds to the Kähler
modulus T of the 2-torus on the heterotic side, i.e.

S = TA = UB , T = SA = SB , U = UA = TB . (6.11)

In order to expand at small type II string coupling, i.e. at large T2, we decompose the lattice
Λ2k−2,6 into Λ2k−4,4 ⊕ II1,1 ⊕ II1,1[N ] as in section 5.2.

For simplicity we shall use the type IIB moduli in this section, and we won’t write explicitly
the label B. So S is now the type IIB axiodilaton with S2 = 1

g 2
s

. For simplicity we shall only

consider the perturbative terms for the Maxwell fields in the RR sector, corresponding to
indices α, β, . . . along the sublattice Λ2k−4,4. Using the results of [22], the perturbative part
of the exact F 4 coupling is given by

F̂ (2k−2,6)

αβγδ II =
1

g 2
s

F (2k−4,4)

αβγδ II +
3

2π
δ(αβδγδ)

( Ê1(NT ) + Ê1(T ) + Ê1(NU) + Ê1(U) + 12
π log gs

N + 1

)

= S2F
(2k−4,4)

αβγδ (t)− 3

8π2
δ(αβδγδ) log(S k

2 T
k

2 U
k

2 |∆k(T )∆k(U)|2) , (6.12)

where the first term matches the tree-level coupling computed in [74], while the second term
is related by supersymmetry to the R2 coupling computed in [76, 77].

The exact ∇2F 4 coupling is obtained from (5.70) after dropping the logarithmic terms in
R,

Ĝ(2k−2,6)

ab,cd NP(U,ϕ) = Ĝ(2k−2,6)

ab,cd (ϕ)− 3

4π
δ〈ab,δcd〉

( Ê1(NU) + Ê1(U)

N + 1

)2
(6.13)

−1

4
δ〈ab,

(N Ê1(NU)− Ê1(U)

N2 − 1
Ĝ(2k−2,6)

cd〉 (ϕ) +
N Ê1(U)− Ê1(NU)

N2 − 1
ςĜ(2k−2,6)

cd〉 (ϕ)
)
,

where U parametrizes SL(2)/SO(2) and ϕ the Grassmannian on Λ2k−2,6. The power-behaved

term of Ĝ(2k−2,6)

ab,cd (ϕ) in this limit is given in equations (5.36), (4.59) and (5.60) for q = 6,

21The condition that SL(4,Z) preserves the lattice II2,2 ⊕ II1,1[N ], so Q34 = 0[N ], implies that the matrices

are either of type



∗ ∗ ∗ ∗
∗ ∗ ∗

0 0 ∗ ∗
0 0 ∗ ∗


 mod N or of type




∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
0 0 0 0


 mod N , but the condition that the it preserves the dual

lattice, i.e. Qij ∈ Z for ij 6= 12 with NQ12 ∈ Z forbids the second.
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υ = N , R =
√
S2 = 1

gs
, and ϕ = t the K3 moduli of the Grassmanian G(2k−4,4). After

expanding around q = 6 + 2ε and subtracting polar terms,22 we find

Ĝ(2k−2,6)

αβ,γδ (ϕ) ∼ 1

g 4
s

Ĝ(2k−4,4)

αβ,γδ (t)− 3

4π
δ〈αβ,δγδ〉

( Ê1(NT ) + Ê1(T ) + 12
π log gs

N + 1

)2

− 1

4g 2
s

δ〈αβ,
( N Ê1(NT )−Ê1(T )

N−1 + 6
π log gs

N + 1
Ĝ(2k−4,4)

γδ〉 (t) +

N Ê1(T )−Ê1(NT )
N−1 + 6

π log gs

N + 1
ςĜ(2k−4,4)

γδ〉 (t)
)

(6.14)

To compute the power-like term of Ĝ(2k−2,6)

ab (ϕ) one proceeds as in [22], and finds after ex-
panding around q = 6 + 2ε and subtracting polar terms

Ĝ(2k−2,6)

αβ (ϕ) ∼ 1

g 2
s

(
Ĝ(2k−4,4)

αβ (t) +
2N

N + 1
δαβ
(
Ê1(T )− Ê1(NT )

))

+
12

N + 1

1

2π
δαβ

(12

π
log(gs) + Ê1(T ) + Ê1(NT )

)
. (6.15)

The function ςĜ(2k−2,6)

ab (ϕ) is obtained by acting with the involution ς on the K3 moduli t and
on the Kähler moduli T by Fricke duality T → − 1

NT , so that

ςĜ(2k−2,6)

αβ (ϕ) ∼ 1

g 2
s

(
ςĜ(2k−4,4)

αβ (t) +
2N

N + 1
δαβ
(
Ê1(NT )− Ê1(T )

))

+
12

N + 1

1

2π
δαβ

(12

π
log(gs) + Ê1(T ) + Ê1(NT )

)
. (6.16)

Collecting all terms, we obtain the complete perturbative ∇2F 4 coupling in D = 4,

Ĝ(2k−2,6)

αβ,γδ II =
1

g 4
s

Ĝ(2k−4,4)

αβ,γδ (t)

− 1

4(N + 1)g 2
s

δ〈αβ,

((N Ê1(NT )− Ê1(T ) +N Ê1(NU)− Ê1(U)

N − 1
+

6

π
log gs

)
Ĝ(2k−4,4)

γδ〉 (t)

+
(N Ê1(T )− Ê1(NT ) +N Ê1(U)− Ê1(NU)

N − 1
+

6

π
log gs

)
ςĜ(2k−4,4)

γδ〉 (t)

−2Nδγδ〉
(Ê1(T )− Ê1(NT ))(Ê1(U)− Ê1(NU))

N − 1

)

− 3

4π
δ〈αβ,δγδ〉

( Ê1(NT ) + Ê1(T ) + Ê1(NU) + Ê1(U) + 12
π log gs

N + 1

)2
. (6.17)

The terms involving log gs originate as usual from the mixing between the local and non-local
terms in the effective action [78]. The result (6.17) is manifestly invariant under the exchange
of U and T , hence identical in type IIA and type IIB. It is also invariant under the combined
Fricke duality T → − 1

NT , U → − 1
NU , t → ςt [27], which is built in our conjecture for the

22Note that the lattice is fixed to Λ2k−2,6, and the expansion in q = 6 + 2ε only applies to the numerical
value of the various exponents, just like if one introduced a regularizing factor of |Ω2|ε in the genus 2 integral.
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non-perturbative amplitude. In the maximal rank case, (6.17) must be replaced by 23

G(22,6)

αβ,γδ II =
1

g 4
s

Ĝ(20,4)

αβ,γδ(t) +
3

4πg 2
s

δ〈αβ,
(

log(T2|η(T )|4) + log(U2|η(U)|4)− 2 log gs

)
G(20,4)

γδ〉 (t)

− 27

4π3
δ〈αβδγδ〉

(
log(T2|η(T )|4) + log(U2|η(U)|4)− 2 log gs

)2
. (6.18)

It would be interesting to check these predictions by explicit perturbative computations in
type II string theory. Noting that

Ê1(NT ) + Ê1(T )

N + 1
= − 1

4π
log(T k

2 |∆k(T )|) , Ê1(T ) = − 1

4π
log(T 12

2 |∆(T )|) , (6.19)

the 2-loop contribution on the last line of (6.17) takes the suggestive form

− 3

(4π)3
δ〈αβ,δγδ〉

(
log(S k

2 T
k

2 U
k

2 |∆k(T )∆k(U)|2)
)2
. (6.20)

The (log gs)
2 term is consistent with the 2-loop logarithmic divergence of the four-photon

amplitude [79] (recall that the log gs can be traced back to the logarithm of the Mandelstam
variables in the full amplitude, and therefore to the logarithm supergravity divergences [78,
22]). The term linear in log gs in (6.20), corresponding to the t8F

4 form factor divergence,
can be rewritten as

−3k

4π
log gsδ〈αβ,

( 1

12g 2
s

(
Ĝ(2k−4,4)

γδ〉 (t) + ςĜ(2k−4,4)

γδ〉 (t)
)
− δγδ〉

1

8π2
log(T k

2 U
k

2 |∆k(T )∆k(U)|2)
)

= − 3

4π
log gs δ〈αβ,

( 1

g 2
s

F (2k−4,4)

γδ〉η
η(t)− δγδ〉

2k

(4π)2
log(T k

2 U
k

2 |∆k(T )∆k(U)|2)
)

= − 3

4π
log gs δ〈αβ,F̂

(2k−2,6)

γδ〉c II
c , (6.21)

where one uses integration by part on the definition of F (2k−2,6) with − 1
iπ

∂
∂τ

1
∆k(τ) = k

12(E2(τ)+

NE2(Nτ))/∆k(ρ), and δ(abδcd)δ
cd = 2k

3 δab. Ignoring these logarithmic contributions, the two-
loop coupling (6.20) does not depend on the K3 moduli, as required by supersymmetry, and
might be computable in topological string theory.

The amplitudes with two photons in the Ramond sector and two gravitons can be obtained
in the same way. It is non vanishing only when the two photons have the same polarization
and the two gravitons have the opposite polarization. In type IIB, the complex amplitude is
obtained through the Kähler derivative of the same function (6.17) with respect to U , e.g. in
the maximal rank case

R(22,6)

αβ II = − 9

2π3
δαβÊ2(U)

(
log(T2|η(T )|4) + log(U2|η(U)|4)− 2 log gs

)
+

1

4πg 2
s

Ê2(U)G(20,4)

αβ (t) ,

(6.22)
or with respect to T in type IIA. The log gs term can be interpreted as the divergence of the
form factor of the operator RF 2

R (where F α̂R are the graviphoton field strengths) belonging to
the R2-type supersymmetric invariant.

23Note that G(20,4)

αβ is finite for the maximal rank case, whereas Ĝ(2k−4,4)

αβ requires in general a regularization
due to the 1-loop supergravity divergence in six dimensions.
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6.3 Type I string theory

The heterotic string with gauge group Spin(16)/Z2 is dual to the type I superstring [80]. In
ten dimensions, the duality inverts the string coupling eφ → e−φ and identifies the Einstein
frame metrics. After compactifying on a torus T q, the effective string coupling gs in 10 − q
dimensions and volume Vs in string units are given by

gs = e(1− q
8

)φ V −
1
2 , Vs = e

q
4
φ V , (6.23)

where V is the volume of the torus T q measured in ten-dimensional Planck units. It follows
that the heterotic/type I duality identifies

gs = g′s
−1+ q

4 V ′s
−1+ q

8 , Vs = g′s
− q

2 V ′s
1− q

4 , (6.24)

where the unprimed variables refer to the heterotic string while the primed variables refer to
the type I string, the unit volume metric Uij being the same on both sides. In particular, the
weak coupling regime g′s → 0 on the type I side corresponds to strong coupling on the heterotic
side when D = 10− q > 6, or to weak coupling when D < 6. In either case, the volume V ′s in
heterotic string units scales to infinity. Furthermore, in dimension D > 4 the coefficients of
the F 4 and ∇2F 4 couplings are purely perturbative on the heterotic side, so their type I dual
expansion is obtained by taking the large volume limit. We shall now show that the resulting
weak coupling expansion on the type I side has only powers of the form g′2h+b−2

s , compatible
with type I genus expansion where b is the number of boundaries or crosscaps. For simplicity
we focus on the maximal rank model and consider only gauge bosons with indices along the
D16 lattice, but these considerations easily extend to CHL models and gauge bosons with
indices along the torus.

Using (6.3) and similar computations using the same method, we find that for D > 4, the
F 4 coupling at weak type I coupling is given by

g′s
2 q−2

8−qF Iαβγδ =
V ′s

1
2

g′s
F (16,0)

αβγδ +
3

2π
g′sV

′
s

3
2 δ(αβδγδ) +

9

π2
g′s

2
V ′s

2− 6
q

′∑

mi∈Zn
(πmiUijm

j)−3δ(αβδγδ)

+
V ′s

1− 2
q

π

∑

Q∈D16

Q2=2

′∑

m∈Zq
e2πimiQ·ai

(
QαQβQγQδ
miUijmj

−3V ′s
1
2
− 2
q

2π2
g′s
δ(αβQγQδ)

(miUijmj)2
+

3V ′s
1− 4

q

8π4
g′s

2 δ(αβδγδ)

(miUijmj)3

)

+ . . . (6.25)

where the dots stand for non-perturbative corrections associated to D1 branes wrapping two-
cycles inside T q. The first term is the expected disk amplitude of 4 open string gauge bosons
in type I, while the remaining terms of order g′0s , g

′1
s , g

′2
s are contributions from genus 1, 3/2,
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2 open Riemann surfaces [81]. Similarly, the ∇2F 4 coupling reads

g′s
2q

8−qGIαβ,γδ =
1

g′s
2 G

(16,0)

αβ,γδ −
V ′s
4
δ〈αβ,G

(16,0)

γδ〉 −
3

2π
gsV

′
s

3
2
− 6
q

′∑

mi∈Zq
(πmiUijm

j)−3δ〈αβ,G
(16,0)

γδ〉

+
3

4π

(
−g′s

2
V ′s

2
+

2

π2
g′s

3
Vs

5
2
− 6
q − 1

V ′s

[ 6

π
g′s

2
V ′s

2− 6
q

′∑

mi∈Zq
(πmiUijm

j)−3
]2
)
δ〈αβ,δγδ〉

− g′s
V ′s

3
2
− 2
q

4π
δ〈αβ,

∑

Q∈D16

Q2=2
m∈Zqr{0}

e2πimiQ·ai
(

QγQδ〉
miUijmj

− g′sV
′
s

1
2
− 2
q

4π2

12QγQδ〉 − δγδ〉
(miUijmj)2

+
g′s

2

8π4

3V ′s
1− 4

q δγδ〉
(miUijmj)3

)

+ 3
′∑

Q∈D16

Q2=2

Ḡ(16,0)

〈αβ, (Q)
′∑

m∈Zq
e2πimiQ·ai

(
QγQδ〉

V ′s
1− 4

q

(πmiUijmj)2
− g′s

2π
δγδ〉

V ′s
3
2
− 6
q

(πmiUijmj)3

)

+ g′s

′∑

Qi∈D16⊕D16

Q2
i≤2

∫

P2

d3Ω2

|Ω2|3
C(Q, 1

g′s
Ω2)

′∑

A∈Mq,2(Z)/GL(2,Z)

Pαβ,γδ(Q,
1
g′s

Ω2)e2πia·A·Q−πV ′s
2
q−

1
2 Tr[AΩ−1

2 AᵀU ]

+ . . . (6.26)

where the dots stand for non-perturbative corrections associated to D1 branes wrapping two-
cycles inside T q. In the last term, the integral of the constant part CF (Q) of the Fourier
coefficient of 1/Φ10 produces a matrix-variate Gamma function and contributes to order
g′s, g

′
s
2, g′s

3. The jumps in C(Q, 1
g′s

Ω2) dues to poles at large |Ω2| give terms of order g′s
`

for ` = 0, 1, 2, 3, 4, which are sourced by the square of the ‘Wilson lines corrections’ in (6.25)
in the differential equation (2.26). The jumps due to deep poles where |Ω2| ≤ 1

4 lead to further

corrections of order e−2π/g′s , which can be ascribed to D1-anti-D1 instantons.
The first term 1

g′s
2 G

(16,0)

αβ,γδ in (6.26) is however apparently inconsistent with type I per-

turbation theory, since the four-photon amplitude only involves open string vertex operators
which cannot couple at genus zero. Fortunately, we can show that this term vanishes for the
heterotic Spin(16)/Z2 string. Indeed, using the same integration by parts argument as in
section 3.3 (the boundaries at the cusp do not contribute at q = 0) one finds

20G(16,0)

αβ,γδ + δ〈αβ,G
(16,0)

γδ〉,ε
ε = πF εζ (16,0)

〈αβ, F
(16,0)

γδ〉,εζ = 0 , (6.27)

which vanishes because [22, (5.42)]

F (16,0)

αβγδ = 16πδαβγδ , (6.28)

where δαβγδ is equal to one if all for indices are equal and zero otherwise. It follows that

G(16,0)

αβ,γδ = R.N.

∫

Sp(4,Z)\H2

d3Ω1d3Ω2

|Ω2|3
Γ(2)

D16
[Pαβ,γδ]

Φ10
= 0 , (6.29)

so (6.26) is indeed consistent with type I perturbation theory. In particular, the genus-
two double trace ∇2(TrF 2)2 coupling computed in [43] for the ten-dimensional Spin(16)/Z2

75



SciPost Physics Submission

heterotic string vanishes. It is worth stressing that the same genus-two coupling in the E8×E8

string does not vanish. 24

Let us now discuss the form of the non-perturbative corrections in some more details. For
any D ≥ 3, the contributions of the non-Abelian rank-2 orbit are non-perturbative on the
type I side, with an action given for vanishing gauge charge by

SD1 = 2π
V ′s

2
q

g′sV ′s
1
2

√
1
2UikUjlN

ijNkl + 2πiBijN
ij , (6.33)

where g′sV
′
s

1
2 = eφ

′
is the ten-dimensional type I string coupling. This can be ascribed to

Euclidean D1 branes wrapping T q with charge N ij ∈ Zq ∧ Zq. For D = 4, the NS5-brane
instantons on the heterotic side translate into D5-brane instantons on the type I side, with

action S2 = V ′s
1
2

g′s
. For D = 3, the non-perturbative heterotic contributions with vanishing

NUT charge translate into type I D5-brane instantons with wrapping number Ni and gauge
charge Q ∈ D16, with action

Re[SD5] = 2π
V ′s

6
7

g′sV ′s
1
2

√
(U−1)ij(Ni + ai ·Q)(Nj + aj ·Q) , (6.34)

Finally, non-perturbative heterotic instantons with non-vanishing NUT charge translate into
type I Taub-NUT instantons, with action

Re[STN ] = 2π
V ′s

8
7

g′s
2V ′s

√
Uij(ki + g′sV ′s

3
14 (U−1)ikÑk)(kj + g′sV ′s

3
14 (U−1)jlÑl) , (6.35)

with
Ñi = Ni + ai ·Q+ (1

2ai · aj +Bij)k
j . (6.36)

Thus, all non-perturbative effects on the heterotic side map to expected instanton effects in
type I.

6.4 Exact ∇2H4 couplings in type IIB on K3

Finally, let us briefly discuss the couplings of four self-dual three-form field strengths Haµνρ in
type IIB string theory compactified on K3. In [74, 46], it was conjectured that the exact H4

coupling is given by a genus-one modular integral of the form (1.4) for the non-perturbative
Narain lattice Λ21,5 of signature (p, q) = (21, 5). This was later generalized to the case of

24For the E8 × E8 heterotic string, we have instead

20G(16,0)

αβ,γδ + δ〈αβ,G
(16,0)

γδ〉,ε
ε = πF εζ (16,0)

〈αβ, F
(16,0)

γδ〉,εζ =
64π3

3
(4P 1
〈αβ,P

1
γδ〉 + 4P 2

〈αβ,P
2
γδ〉 − 7P 1

〈αβ,P
2
γδ〉) , (6.30)

with
F (16,0)

αβγδ = 8π(P 1
(αβP

1
γδ) + P 2

(αβP
2
γδ) − P 1

(αβP
2
γδ)) , (6.31)

and P iαβ the two projectors to the eight-dimensional subspaces. One computes that G(16,0)

αβ,γ
γ = 0, such that

G(16,0)

αβ,γδ =

∫

Sp(4,Z)\H2

d3Ω1d3Ω2

|Ω2|3
Γ(2)

E8⊕E8
[Pαβ,γδ]

Φ10
=

16π3

15
(4P 1
〈αβ,P

1
γδ〉 + 4P 2

〈αβ,P
2
γδ〉 − 7P 1

〈αβ,P
2
γδ〉) . (6.32)

This reproduces the relative coefficient in [82, (7.4)].
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the ∇2H4 couplings, which were conjectured to be given exactly by a genus-two modular
integral of the form (1.5) for the same lattice [46]. These conjectures follow from our exact
non-perturbative results for the maximal rank model25 in D = 3 by decompactification. Here,
we briefly discuss the weak coupling expansion of these results on the type IIB side, using the
results of section 4.1.

At weak coupling, the even self-dual lattice Λ21,5 decomposes into Λ20,4 ⊕ II1,1, where the
‘radius’ associated to the second factor is related to the type IIB string coupling by gs = 1/R.
The low energy action in the string frame was recalled in [22, 4.40], after changing the metric
for γ = gsγE and renormalising the Ramond-Ramond field as Ha = gsH

a. The coefficient of
the ∇2H4 coupling in this frame is then given by G(21,5)

αβ,γ,δ, without any further power of gs.
The results of section 4.1 then provide its weak coupling expansion,

G(21,5)

αβ,γδ =
1

g2
s

G(20,4)

αβ,γδ −
1

4
δ〈αβ,G

(20,4)

γδ〉 −
3g2
s

4π
δ〈αβ,δγδ〉

+
3

g 4
s

′∑

Q∈Λ∗21,5

e2πiQ·a Ḡ(20,4)

〈αβ, (Q,ϕ)
(
QLγQLδ〉

K0(2π
g2
s

√
2Q 2

R)
√

2Q 2
R

− g 2
s

4π
δγδ〉K1(2π

g2
s

√
2Q 2

R)
)

+
′∑

Q∈Λ∗21,5

e
− 4π

g 2
s

√
2Q 2

R Kαβ,γδ(gs, QL, QR) . (6.37)

The first term proportional to G(20,4)

αβ,γδ is recognized as a tree-level contribution in type IIB
on K3 [75]. The second and third terms correspond to one-loop and two-loop corrections,
and to our knowledge have not been computed independently yet. The second line of (6.37)
corresponds to exponentially suppressed terms that originate from D3, D1, D(-1) branes
wrapped on K3 [74], or, formally, to Fourier coefficients of the coupling coefficient. The
function Ḡ(21,5)

αβ is the sum of a finite and a polar contribution and reads

Ḡ(20,4)

αβ,−Q2

2

(Q,ϕ) =
∑

d>0
Q/d∈Λ21,5

d2 ck
(
− Q2

2d2

)
G(20,4)

αβ,− Q2

2d2

(Q
d

)
, (6.38)

where Ḡ(20,4)

αβ = Ḡ(20,4)

F, αβ + Ḡ(20,4)

P, αβ as described in §4. The last line corresponds to instanton anti-
instanton corrections that are missed by the unfolding method, and which could be computed
by solving (E.51) for Q = 0.

25Note that CHL models in D = 3 all decompactify to the same model in D = 6, whose rank is fixed by the
constraints of anomaly cancellation.
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A Compendium on Siegel modular forms

A.1 Action on H2

The Siegel’s upper half plane H2 is the space of complex symmetric matrices

Ω =

(
ρ v
v σ

)
such that |Ω2| > 0, ρ2 > 0, σ2 > 0 , (A.1)

where Ω1 and Ω2 denote the real and imaginary parts of Ω, similarly for ρ, v, σ, and |Ω2| is
the determinant of Ω2. An element γ ∈ Sp(4,Z),

γ =

(
A B
C D

)
, γ εγt = ε , ε =

(
0 12

−12 0

)
, (A.2)

with
AᵀC − CᵀA = 0, BᵀD −DᵀB = 0, AᵀD − CᵀB = 12 , (A.3)

acts on H2 via
Ω 7→ Ω̃ = (AΩ +B)(CΩ +D)−1 . (A.4)

A standard fundamental domain for the action of Sp(4,Z) on H2 is the domain F2 defined
by the conditions [83]

−1

2
< ρ1, σ1, v1 <

1

2
, 0 < 2v2 ≤ ρ2 ≤ σ2 , |CΩ +D| ≥ 1 (A.5)

for all γ ∈ Sp(4,Z) (the latter condition needs only to be checked for a finite number of γ’s).
The period matrix of a genus-two curve Σ takes values in H2\S, where S is the union of

the quadratic divisors

D(mi, j, ni; Ω) ≡ m2 −m1ρ+ n1σ + n2(ρσ − v2) + jv = 0 , (A.6)

parametrized by five integers M = (m1,m2, j, n1, n2). M transform as a vector under Sp(4) ∼
O(3, 2) such that the signature (2,3) quadratic form

∆(M) = j2 + 4(m1n1 +m2n2) (A.7)

and the parity of j stay invariant. Under a combined action of γ on Ω and M , the divisor
D(M ; Ω) = 0 stays invariant,

D(M̃ ; Ω̃) = [det (CΩ +D)]−1D(M,Ω) . (A.8)

The divisor S is the locus where the curve Σ degenerates into the connected sum of two
genus-one curves. Its intersection with the fundamental domain F2 is simply the divisor
v = 0.

On the other hand, the boundary of the domain F2 consists of three strata, i) σ2 → +∞
where Σ degenerates into a one-loop graph, ii) ρ2, σ2 → +∞ at the same rate where Σ
degenerates into a figure-eight graph, and iii) v2, ρ2, σ2 → +∞ at the same rate where Σ
degenerates into a sunset diagram (see Figure 1). In order to discuss these limits, it will be
useful to introduce the alternative parametrizations for Ω2,

Ω2 =

(
ρ2 ρ2u2

ρ2u2 t+ ρ2u
2
2

)
=

1

V τ2

(
|τ |2 −τ1

−τ1 1

)
(A.9)

such that the limits i) and iii) correspond to t→ +∞ and V → 0, respectively.
We now give the explicit action of some relevant subgroups of Sp(4,Z):
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i) ii) iii)

Figure 1: Degenerations of a genus-two Riemann surface corresponding to the boundary
strata of the fundamental domain F2. The white node in i) corresponds to a torus while
the black dots in ii), iii) corresponds to a sphere. The ‘figure-eight’ and ‘sunset’ diagrams in
supergravity are obtained by replacing the black dots in ii) and iii) with supergravity 4-point
and 3-point interactions, and attaching four external gauge bosons to the edges.

1. SL(2)ρ (leaving t = σ2 − v2
2/ρ2 invariant)

(
a b
c d

)
ρ

=




a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


 : (ρ, v, σ)′ =

(
aρ+ b

cρ+ d
,

v

cρ+ d
, σ − cv2

cρ+ d

)
,

(m1,m2, j, n1, n2)′ =
(
dm1 + cm2, bm1 + am2, j, an1 − bn2, dn2 − cn1

)
(A.10)

We denote by Sρ the generator
(

0 −1
1 0

)
ρ
.

2. SL(2)σ (leaving t′ = ρ2 − v2
2/σ2 invariant):

(
a b
c d

)
σ

=




1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d


 : (ρ, v, σ)′ =

(
ρ− cv2

cσ + d
,

v

cσ + d
,
aσ + b

cσ + d

)
,

(m1,m2, j, n1, n2)′ =
(
am1 + bn2, am

2 − bn1, j, dn1 − cm2, cm1 + dn2

)
(A.11)

We denote by Sσ the generator
(

0 −1
1 0

)
σ
.

3. Heisρ (leaving Ω2 invariant):

Tλ,µ,κ =




1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1


 :

(ρ, v, σ)′ =
(
ρ, µ+ λρ+ v, σ + κ+ 2λv + λµ+ λ2ρ

)
,

(m1,m2)′ =
(
m1 + jλ+ (µn2 − λn1)λ+ κn2,m

2 − µ(j − λn1 + µn2)− κn1

)
,

(j, n1, n2)′ = (j − 2λn1 + 2µn2, n1, n2)

(A.12)
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4. Heisσ (leaving Ω2 invariant):

T̃λ,µ,κ =




1 λ κ µ
0 1 µ 0
0 0 1 0
0 0 −λ 1


 (A.13)

5. GL(2,Z)S (leaving V = 1/
√
|Ω2| invariant):

(
a b
c d

)
S

=




a −b 0 0
−c d 0 0
0 0 d c
0 0 b a


 :

(ρ, v, σ)′ =
(
a2ρ− 2ab v + b2σ,−acρ+ (ad+ bc)v − bd σ, c2 ρ− 2cd v + d2 σ

)
,

(m1,m2)′ =
(
−c2 n1 − cd j + d2m1,m2

)
,

(j, n1, n2)′ =
(
j + 2bcj − 2bdm1 + 2ac n1, a

2 n1 + ab j − b2m1, n2

)

(A.14)

τ 7→ aτ + b

cτ + d
(ad− bc = 1) , τ 7→ aτ̄ + b

cτ̄ + d
(ad− bc = −1) . (A.15)

Defining Ω2 =
(
L1 + L2 L2

L2 L2 + L3

)
, the permutations of the Li’s correspond to the following

elements of GL(2,Z)S :

L1 ↔ L2 :

(
0 1
1 0

)

S

, L2 ↔ L3 :

(
1 1
0 −1

)

S

, L1 ↔ L3 :

(
1 0
−1 −1

)

S

. (A.16)

6. Z3 (leaving Ω2 invariant):

Tr1,r2,r3 =




1 0 r1 r2

0 1 r2 r3

0 0 1 0
0 0 0 1


 : (ρ, v, σ)′ = (ρ+ r1, v + r2, σ + r3) ,

(m1,m2)′ =
(
m1 + n2r3,m

2 − n2r
2
2 − jr2 +m1r1 − n1r3 + n2r1r3

)
,

(j, n1, n2)′ = (j + 2n2r2, n1 − n2r1, n2)

(A.17)

7. σρ↔σ:

hρ↔σ =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 : (ρ, v, σ)′ = (σ, v, ρ),

(m1,m2, j, n1, n2)′ = (n1,−m2,−j,m1,−n2)

(A.18)

A.2 Siegel modular forms and congruence subgroups

For any γ ∈ Sp(4,R) and integer w, we define the Petersson slash operator

(Φ|wγ)(Ω) = [det (CΩ +D)]−w Φ
(
(AΩ +B)(CΩ +D)−1

)
. (A.19)
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A Siegel modular form Φ(Ω) = Φ(ρ, σ, v) of weight w under a subgroup Γ ⊂ Sp(4,Z) satisfies
Φ|wγ = Φ for any γ ∈ Γ. We shall be mostly interested in modular forms with respect to the
congruence subgroups of Sp(4,Z) (A.2), denoting its elements by

(
A B
C D

)
,

1. Γ2,0(N), restricting to elements with C = 0 modN ;

2. Γ̃2,0(N) = Sρ · Γ2,0(N) · S−1
ρ , its conjugate w.r.t. Sρ (A.10);

3. Γ̂2,0(N) = Sσ · Γ2,0(N) · S−1
σ , conjugate of Γ2,0(N) w.r.t. Sσ (A.11);

4. Γ2,1(N) ⊂ Γ2,0(N), restricting to elements with A = D = 1 modN ;

5. Γ2(N) ⊂ Γ2,1(N), restricting to elements with B = 0 modN ;

6. Γ2,er(N) the subgroup fixing the vector (0, 0, 0, r) modulo N ;

7. Γ2,0,er(N) = Γ2,er(N) ∩ Γ2,0(N).

The indices of these subgroups inside Sp(4,Z) are summarized below:

∣∣∣Sp(4,Z)/Γ2(N)
∣∣∣ = N10

∏

p|N

(
1− 1

p2

)(
1− 1

p4

)
,

∣∣∣Sp(4,Z)/Γ2,0(N)
∣∣∣ = N3

∏

p|N

(
1 +

1

p

)(
1 +

1

p2

)
,

∣∣∣Sp(4,Z)/Γ2,1(N)
∣∣∣ = N7

∏

p|N

(
1− 1

p2

)(
1− 1

p4

)
,

∣∣∣Sp(4,Z)/Γ2,0,er(N)
∣∣∣ = N5

r2

∏

p|N

(
1 +

1

p

)(
1 +

1

p2

) ∏

p′|N
r

(
1− 1

p′2

)
,

∣∣∣Sp(4,Z)/Γ2,e1(N)
∣∣∣ = N4

∏

p|N

(
1− 1

p4

)
, (A.20)

where p, p′ run over primes. Indeed the corresponding quotients can be understood as

∣∣∣Γ2,1(N)/Γ2(N)
∣∣∣ = N3 =

(
Z/NZ

)3

B
,

∣∣∣Γ2,0,e1(N)/Γ2,1(N)
∣∣∣ = N2

∏

p|N

(
1− 1

p

)
=
∣∣∣Γ1(N)/Γ(N)

∣∣∣
D
×
∣∣∣Γ2,0(N)/Γ2,1(N)

∣∣∣[a1b1
c1d1

] ,

∣∣∣Γ2,0,er(N)/Γ2,0,e1(N)
∣∣∣ = r2

∏

p|N
p/| N

r

(
1− 1

p2

)
=
∣∣∣Γ1(Nr )/Γ1(N)

∣∣∣
D
,

∣∣∣Γ2,0(N)/Γ2,0,er(N)
∣∣∣ = (Nr )2

∏

p|N
r

(
1− 1

p2

)
=
∣∣∣SL(2,Z)/Γ1(Nr )

∣∣∣
D
, (A.21)

where the subscript indicates the embedding SL(2,Z) ⊂ Sp(4,Z) of the coset representatives.
Of special interest is the Hecke congruence subgroup Γ2,0(N) and its conjugates Γ̃2,0(N),

Γ̂2,0(N). The cosets of Sp(4,Z)/Γ2,0(N) are in one-to-one correspondence with cosets of
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GSpN (4,Z)/Sp(4,Z), where GSpN (4,Z) is the group of symplectic similitudes such that
γεγt = Nε. For N prime, the (N + 1)(N2 + 1) = 1 +N +N2 +N3 cosets can be chosen as
(see e.g. [84, p.6])




N
N

1
1


 ,




1 a
N

N
1


 ,




N
−a 1 b

1 a
N


 ,




1 a c
1 c b

N
N


 ,

(A.22)
with a, b, c = 0 . . . N − 1. For Φ(ρ, σ, v) a Siegel modular form of weight w for the full Siegel
modular group Sp(4,Z), the sum of the action of these elements on Φ produces again a Siegel
modular form for the full Siegel modular group Sp(4,Z), which is the image of Φ under the
N -th Hecke operator HN ,

HNΦ(ρ, σ, v) =Φ(Nρ,Nσ,Nv) +N−w
∑

amodN

Φ

(
ρ+ a

N
,Nσ, v

)

+N−w
∑

a,bmodN

Φ
(
Nρ, σ−2av+a2ρ+b

N , v − aρ
)

+N−2w
∑

a,b,cmodN

Φ
(ρ+a
N , σ+b

N , v+c
N

)
.

(A.23)

The first term in this sum, Φ(Nρ,Nσ,Nv), is then a Siegel modular form for Γ2,0(N). The
‘Fricke involution’

Φ 7→ Φ|w




0 0 0 1√
N

0 0 − 1√
N

0

0 −
√
N 0 0√

N 0 0 0


 = Φ|w




0 0 − 1√
N

0

0 0 0 − 1√
N√

N 0 0 0

0
√
N 0 0


 =[N |Ω|]−wΦ

(
−(NΩ)−1)

)

(A.24)

takes a Siegel modular form Φ of weight w under Γ2,0(N) into another one. Similarly,

Φ̃ 7→ Φ̃|w




0 1/
√
N 0 0√

N 0 0 0

0 0 0
√
N

0 0 1/
√
N 0


 = Φ̃(σ/N,Nρ, v) (A.25)

takes a Siegel modular form Φ̃ of weight w under Γ̃2,0(N) into another one.

A.3 Genus two theta series

The genus-two even theta series are defined as

ϑ(2)
[
a1,a2

b1,b2

]
(Ω, ζ) =

∑

p1,p2∈Z
e

iπ (p1+
a1
2 ,p2+

a2
2 )

t
Ω

(
p1+

a1
2

p2+
a2
2

)
+2πi(p1+

a1
2 ,p2+

a2
2 )

t


 ζ1+

b1
2

ζ2+
b2
2




(A.26)

with ai, bi ∈ Z. It is an even or odd function of ζ = (ζ1, ζ2)t depending on the parity of
a1b1+a2b2. When it is even, the value at ζ = 0 is the Thetanullwert denoted by ϑ(2)

[
a1,a2

b1,b2

]
(Ω).

The value of ai, bi modulo two defines a spin structure labelled by the column vector κ =
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(a1, a2, b1, b2)t, whose parity is that of a1b1 + a2b2. Under translations of the characteristics
by even integers,

ϑ(2)
[a1+2a′1,a2+2a′2
b1+2b′1,b2+2b′2

]
(Ω, ζ) = eiπ(a1b′1+a2b′2) ϑ(2)

[
a1,a2

b1,b2

]
(Ω, ζ) . (A.27)

Under Sp(4,Z) transformations,

ϑ(2)[κ̃](Ω̃, ζ̃) = ε(κ, γ) [det (CΩ +D)]1/2ϑ(2)[κ](Ω, ζ) (A.28)

with Ω̃ = (AΩ +B)(CΩ +D)−1, ζ̃ = (CΩ +D)−tζ,

κ̃ =

(
D −C
−B A

)
κ+

1

2
diag

(
CDt

ABt

)
mod 2 (A.29)

and ε(κ, γ) is an 8-th root of unity. In particular,

ϑ(2)
[
a1,a2

b1,b2

]
(ρ+ 1, σ, v) =e−

iπ
4
a1(a1+2) ϑ(2)

[
a1,a2

a1+b1+1,b2

]
(ρ, σ, v)

ϑ(2)
[
a1,a2

b1,b2

]
(ρ, σ + 1, v) =e−

iπ
4
a2(a2+2) ϑ(2)

[
a1,a2

b1,a2+b2+1

]
(ρ, σ, v)

ϑ(2)
[
a1,a2

b1,b2

]
(ρ, σ, v + 1) =e−

iπ
2
a1a2 ϑ(2)

[
a1,a2

b1+a2,b2+a1

]
(ρ, σ, v)

ϑ(2)
[
a1,a2

b1,b2

]
(ρ, σ + ρ− 2v, v − ρ) =ϑ(2)

[
a1−a2,a2

b1,b1+b2

]
(ρ, σ, v)

ϑ(2)
[
a1,a2

b1,b2

]
(−1/ρ, σ − v2/ρ, v/ρ) =

√
−iρ e

iπ
2
a1b1 ϑ(2)

[
b1,a2

−a1,b2

]
(ρ, σ, v)

ϑ(2)
[
a1,a2

b1,b2

]
(ρ− v2/ρ,−1/σ, v/σ) =

√
−iσ e

iπ
2
a2b2 ϑ(2)

[
a1,b2
b1,−a2

]
(ρ, σ, v)

(A.30)

In the separating degeneration limit,

ϑ(2)
[
a1a2

b1b2

] v→0→
{
ϑ
[
a1

b1

]
(ρ)ϑ

[
a2

b2

]
(σ)

[
a1a2

b1b2

]
6=
[

11
11

]
v

2πi ϑ
[

1
1

]′
(ρ)ϑ

[
1
1

]′
(σ)

[
a1a2

b1b2

]
=
[

11
11

] (A.31)

where ϑ
[
a
b

]
is the genus-one theta series,

ϑ
[
a
b

]
=
∑

p∈Z
eiπ(p+a

2
)2τ)+iπb(p+a

2
) (A.32)

and ϑ
[

1
1

]′
(ρ) = 2πη3 , ϑ2ϑ3ϑ4 = 2η3.

A.4 Meromorphic Siegel modular forms from Borcherds products

In the context of heterotic CHL orbifolds, two meromorphic Siegel modular forms Φk−2 and
Φ̃k−2 of weight k− 2 under Γ2,0(N) and Γ̃2,0(N), respectively play an essential rôle. They are
given by infinite products [85] [86, 3.16,3.17] [28, C.18,C.19]26

Φk−2(ρ, σ, v) = e2πi(ρ+σ+v)
N−1∏

r=0

∏

k′,`,j∈Z
k′,`≥0,

j<0 for k′=`=0

(
1− e2πir/N e2πi(k′σ+`ρ+jv)

)∑N−1
s=0 e−

2πirs
N c

(0,s)
jmod 2(4k′`−j2)

(A.33)

26Note that Φk−2(ρ, σ, v) and Φ̃k−2(ρ, σ, v) are denoted by Φ̂(ρ, σ, v) and Φ̃(σ, ρ, v) in [28], while Φ̃(ρ, σ, v)
coincides with Φg,e(ρ, σ, v) in [29].
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Φ̃k−2(ρ, σ, v) = e2πi(σ+ 1
N
ρ+v)

N−1∏

r=0

∏

k′∈Z+
r
N ,`,j∈Z

k′,`≥0,
j<0 for k′=`=0

(
1− e2πi(k′ρ+`σ+jv)

)∑N−1
s=0 e−

2πis`
N c

(r,s)
jmod 2(4k′`−j2)

.

(A.34)

Here, c
(r,s)
b (n) with b ∈ Z/(2Z) are Fourier coefficients of a family of index 1 weak Jacobi

forms
F (r,s)(τ, z) =

∑

j∈Z,n∈ZN

c
(r,s)
jmod 2(4n− j2) e2πi(nτ+jz) (A.35)

obtained as a twining/twisted elliptic genus of the ZN orbifold of K3. In particular, for
N = 1, 2, 3, 5, 7 and 1 ≤ s ≤ N − 1,

F (0,0) =
2

N
φ0,1 , F (0,s) =

2

N(N + 1)
φ0,1 + 2(E2(τ)−NE2(Nτ)

(N+1)(N−1) φ−2,1

F (r,s) =
2

N(N + 1)
φ0,1 − 2(E2(

τ+s/r
N

)−NE2(τ)

N(N+1)(N−1) φ−2,1

(A.36)

where φ0,1 = 4
∑

i=2,3,4

(
ϑi(τ,z)
ϑi(τ,0)

)2
, φ−2,1 = ϑ2

1(τ, z)/η6 are the standard generators of the ring

of weak Jacobi forms, and s/r = sk where kr = 1 modN . It is also useful to consider the

discrete Fourier transform of the coefficients c
(r,s)
b (n) with respect to s,

ĉ
(r,s)
b (n) =

N−1∑

s′=0

e−2πiss′/Nc
(r,s′)
b (n) . (A.37)

Using the property ĉ
(r,s)
j (n) = ĉ

(s,r)
j (n), one can rewrite Φ̃k−2 as [29, 5.10]

Φ̃k−2(ρ, σ, v) =e2πi(σ+ ρ
N

+v)
∏

k′∈Z/N,`,j∈Z
k′,`≥0,j<0 for k′=`=0

(
1− e2πi(k′ρ+`σ+jv)

)∑N−1
s=0 e−2πisk′c(`,s)jmod 2(4k′`−j2)

(A.38)

From this relation, it is manifest that Φ̃k−2 is invariant under the Fricke involution [85, §C],

Φ̃k−2(ρ, σ, v) = Φ̃k−2(Nσ, ρ/N, v) = Φ̃k−2|




0
√
N 0 0

1/
√
N 0 0 0

0 0 0 1/
√
N

0 0
√
N 0


 , (A.39)

and therefore, so is Φk−2,

Φk−2(Ω) = (N |Ω|)2−k Φk−2(−1/(NΩ)) = Φk−2|




0 0 0 1/
√
N

0 0 −1/
√
N 0

0 −
√
N 0 0√

N 0 0 0


 . (A.40)
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It is worth recalling that the infinite products (A.33) and (A.34) arise as theta liftings of
F (r,s), namely

R.N.

∫

F1

dµ1

∑

m1,n1,j∈Z
m2∈Z/N,n2∈NZ+r

q
1
2
p2
L q̄

1
2
p2
R e2πim2s h

(r,s)
jmod 2 =− 2 log |Ω2|2(k−2)|Φk−2(ρ, σ, v)|2

R.N.

∫

F1

dµ1

∑

m1,m2,n2,j∈Z
n1∈Z+ r

N

q
1
2
p2
L q̄

1
2
p2
R e2πim1s/N h

(r,s)
jmod 2 =− 2 log |Ω2|2(k−2)|Φ̃k−2(σ, ρ, v)|2

(A.41)

where h
(r,s)
b , b ∈ Z/(2Z) is the vector valued modular form arising in the theta series decom-

position

F (r,s)(τ, z) = h
(r,s)
0 (τ)ϑ3(2τ, 2z) + h

(r,s)
1 (τ)ϑ2(2τ, 2z) , h

(r,s)
b =

∑

n∈ 1
N Z−

b2

4

c
(r,s)
b (4n)e2πinτ

(A.42)
and pR, pL are projections of the vector M = (m1, n1, j,m

2, n2) such that

p2
R =

1

2|Ω2|
∣∣m2 −m1ρ+ n1σ + n2(ρσ − v2) + jv

∣∣2 ,
1

2
(p2
L − p2

R) = m1n1 +m2n2 +
j2

4
.

(A.43)
From the infinite product representation, one can easily read off the location of the zeros
and poles which intersect the cusp Ω2 = i∞. Such zeros (respectively, poles) arise from the
existence of positive (respectively, negative) coefficients ĉ(r,s)(m) with m < 0, known as polar

coefficients. For N = 1, 2, 3, 5, 7, the only positive polar term is ĉ
(0,0)
1 (−1) = 2, which implies

that Φk−2 and Φ̃k−2 have a double zero on the diagonal locus v = 0, where they behave
according to 27

Φk−2(ρ, σ, v) ∼− 4π2v2 ∆k(ρ) ∆k(σ) ,

Φ̃k−2(ρ, σ, v) ∼− 4π2 v2 ∆k(ρ/N) ∆k(σ) ,
(A.44)

where ∆k(ρ) = ηk(ρ)ηk(Nρ). It can be shown that all zeros of Φk−2 and Φ̃k−2 occur only
on the divisor v = 0 and its images under the congruence subgroups Γ2,0(N) and Γ̃2,0(N),

respectively. For N = 1, 2, 3, ĉ
(0,0)
1 (−1) is the only polar term, so Φk−2 and Φ̃k−2 are actually

holomorphic Siegel modular forms, corresponding to the Igusa cusp form Φ10 for N = 1, or
the cusp forms Φ6 of level 2 and Φ4 of level 3 constructed in [87, 88]. In particular, Φ10 is
proportional to the product of the square of the ten even Thetanullwerte,

Φ10 = 2−20
(
ϑ(2)
[

00
00

]
ϑ(2)
[

01
00

]
ϑ(2)
[

10
00

]
ϑ(2)
[

00
10

]
ϑ(2)
[

00
01

]
ϑ(2)
[

01
10

]
ϑ(2)
[

10
01

]
ϑ(2)
[

11
00

]
ϑ(2)
[

00
11

]
ϑ(2)
[

11
11

])2
,

(A.45)
while Φ6 is proportional to the product of the square of 6 among the ten even Thetanullwerte,

Φ6 = 2−12
(
ϑ(2)
[

01
00

]
ϑ(2)
[

01
10

]
ϑ(2)
[

10
00

]
ϑ(2)
[

10
01

]
ϑ(2)
[

11
00

]
ϑ(2)
[

11
11

])2
. (A.46)

27Note that these two equations are consistent with (2.10) since ∆k is invariant under the Fricke involution,
i.e. ∆k(−1/ρ) = (i

√
N)−k ρk ∆k(ρ/N)
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For N = 5 and N = 7, there are additional polar coefficients but they are all negative,
implying that Φk−2 and Φ̃k−2 have poles,

N = 5 : ĉ
(1,1)
1 (−1

5
) = ĉ

(2,3)
1 (−1

5
) = ĉ

(3,2)
1 (−1

5
) = ĉ

(4,4)
1 (−1

5
) = −2

N = 7 : ĉ
(1,1)
1 (−3

7
) = ĉ

(2,4)
1 (−3

7
) = ĉ

(3,5)
1 (−3

7
)) = ĉ

(4,2)
1 (

3

7
)) = ĉ

(5,3)
1 (

3

7
)) = ĉ

(6,6)
1 (

3

7
) = −1 .

(A.47)

Note however that the Siegel modular forms relevant for our problem are the inverse of Φk−2

and Φ̃k−2, which have a double pole on the diagonal locus v = 0 for all N .
From the infinite product representation one can also read-off the behavior of 1/Φk−2 and

1/Φ̃k−2 in the maximal non-separating degeneration Ω2 → ∞, obtained by setting e2πiρ =
q1q3, e

2πiσ = q2q3, e
2πiv = q3, and Taylor expanding near qi → 0:

1

Φ10
=

1

q1q2q3
+ 2

∑

i<j

1

qiqj
+


24

3∑

i=1

1

qi
+ 3

∑

i 6=j<k 6=i

qi
qjqk




+


0 + 48

∑

i 6=j

qi
qj

+ 4
∑

i 6=j<k 6=i

q2
i

qjqk


+O(qi) (A.48)

1

Φk−2
=

1

q1q2q3
+ 2

∑

i<j

1

qiqj
+


 24

N + 1

3∑

i=1

1

qi
+ 3

∑

i 6=j<k 6=i

qi
qjqk




+


 48N

N2 − 1
+

48

N + 1

∑

i 6=j

qi
qj

+ 4
∑

i 6=j<k 6=i

q2
i

qjqk


+O(qi) (A.49)

1

Φ̃k−2

=
1

q
1/N
1 q2 q

1/N
3

+
24

N + 1

1

q2
− 48

N2 − 1
+ . . . (A.50)

where the dot denotes terms involving positive powers of qi. Since Sp(4,Z) and its congruence
subgroup Γ2,0(N) contains GL(2,Z)τ , the expansion of 1/Φ10 and 1/Φk−2 for N = 2, 3, 5, 7
are manifestly invariant under permutations of q1, q2, q3. In contrast, the expansion of 1/Φ̃k−2

is only invariant under permutations of q1 and q3.

A.5 Fourier-Jacobi coefficients and meromorphic Jacobi forms

Given a meromorphic Siegel modular form 1/Φ(ρ, σ, v) of weight −w, the Fourier expansion
with respect to σ

1/Φ(ρ, σ, v) =
∑

m�−∞
ψm(ρ, v) e2πimσ (A.51)

gives rise to an infinite series of meromorphic Jacobi forms ψm(ρ, v) of fixed weight w and
increasing index m. If Φ is modular under the full Siegel modular group, then m ∈ Z and ψm
is a Jacobi form for the full Jacobi group SL(2,Z) nZ2, i.e. it satisfies

ψm(ρ, v + λρ+ µ) = e−2πim(λ2ρ+2λv) ψm(ρ, v) (A.52)

ψm

(
aρ+ b

cρ+ d
,

v

cρ+ d

)
= (cρ+ d)w e

2πimcv2

cρ+d ψm(ρ, v) (A.53)

86



SciPost Physics Submission

for all integers a, b, c, d, λ, µ such that ad − bc = 1. If Φ is modular under a congruence
subgroup Γ ⊂ Sp(4,Z), then

1. for Γ = Γ2,0(N), then m ∈ Z and ψm is a Jacobi form for the Jacobi group Γ0(N)nZ2, i.e.
it satisfies (A.52),(A.53) for all integers a, b, c, d, λ, µ such that ad−bc = 1 and c = 0 modN

2. For Γ = Γ̃2,0(N), then ψm is a Jacobi form for Γ0(N) n Z2, i.e. it satisfies (A.52),(A.53)
for all integers a, b, c, d, λ, µ such that ad− bc = 1 and b = 0 modN ;

3. For Γ = Γ̂2,0(N), then m ∈ Z/N and ψm is a Jacobi form for Γ0(N) n (NZ×Z) satisfies
(A.52),(A.53) for all integers a, b, c, d, λ, µ such that ad − bc = 1, c = 0 modN and λ =
0 modN (examples of Jacobi forms of index n/N with these periodicity properties are
given by φ(Nρ, v) where φ(ρ, v) is an ordinary Jacobi form of index n under the full Jacobi
group).

In particular, the Fourier-Jacobi expansion of the inverse of the Igusa cusp form is given
by [89, (5.16)],

1

Φ10
=

1

φ−2,1∆
q−1
σ + 24

P
∆

+
9φ2

0,1 + 3E4φ
2
−2,1

4φ−2,1 ∆
qσ +O(q2

σ) (A.54)

where

P(ρ, v) =
φ0,1

12φ−2,1
=

1

(2πi)2

[
−∂2

v log ϑ1(ρ, v) + 2πi∂ρ log η2
]

(A.55)

is (up to a factor (2πi)2) the Weierstrass function, a weak Jacobi form of weight 2 and index
0.

In the case of CHL orbifolds with N = 2, 3, 5, 7, it will be useful to introduce Φ̂k−2, the
image of Φk−2 under an inversion Sσ,

Φ̂k−2(Ω) = (i
√
N)kσ−(k−2)Φk−2(Sσ ◦ Ω) = Φ̃k−2(Ω)

∣∣∣
ρ↔σ

. (A.56)

where we chose the normalization such that Φ̂k−2 ∼ −4π2v2∆k(ρ)∆k(σ/N) near the divisor
v = 0. The Fourier-Jacobi expansion of Φk−2 and Φ̂k−2 is given by

1

Φk−2
=

η6(ρ)

∆k(ρ)ϑ2
1(ρ, v)

q−1
σ + ψ0 +O(qσ) , (A.57)

1

Φ̂k−2

= − η6(Nρ)

∆k(ρ)ϑ2
1(Nρ, v)

q−1/N
σ + ψ̂0 +O(q1/N

σ ) , (A.58)

where ϑ1(ρ, v) =
∑

n∈Z(−1)n q
1
2

(n− 1
2

)2
yn−

1
2 (note that it differs from ϑ

[
1
1

]
(ρ, v) by a factor of

i) and

ψ0 =
kP(ρ, v)

∆k(ρ)
+

k

12(N − 1)

N2E2(Nρ)−N E2(ρ)

∆k(ρ)
,

ψ̂0 =
kP(Nρ, v)

∆k(ρ)
+

k

12(N − 1)

E2(ρ)−NE2(Nρ)

∆k(ρ)

(A.59)

Now, unlike holomorphic or weak Jacobi forms, a meromorphic Jacobi form ψm(ρ, v) of
index m > 0 and weight w in general do not have a theta series decomposition, unless it
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happens to be holomorphic in the variable v. Instead, it was shown in [90, 89] that it can be
decomposed into the sum of a polar part and a finite part,

ψm(ρ, v) = ψFm(ρ, v) + ψPm(ρ, v) , (A.60)

where the finite part ψF is holomorphic in z and has a theta series decomposition,

ψFm(ρ, v) =
ck(m)

∆k(ρ)

∑

`mod 2m

hm,`(ρ)ϑm,`(ρ, v), (A.61)

where
ϑm,`(ρ, v) =

∑

s∈Z
q(`+2ms)2/4m y`+2ms , (A.62)

are the standard theta series transforming in the Weil representation of dimension 2m while
the polar part is a linear combination of Appell–Lerch sums which match the poles of ψm(ρ, v)
in the v variable. Since Appell–Lerch sums transform inhomogeneously under modular trans-
formations, so does the finite part ψFm, which implies that hm,` transform as a vector-valued
mock modular form of weight 3

2 − k. In the case at hand, it follows from (A.44) that ψm(ρ, v)
has a double pole at v = 0 modZ + ρZ with coefficient proportional to ck(m)/∆k(ρ), where
ck(m) are the Fourier coefficients of 1/∆k(σ), so

ψPm(ρ, v) =
ck(m)

∆k(ρ)
Am(ρ, v) (A.63)

where Am(ρ, v) is the standard Appell–Lerch sum [89]

Am(ρ, v) =
∑

s∈Z

qms
2+s y2ms+1

(1− qsy)2
. (A.64)

The latter satisfies the elliptic property (A.52) but not the modular property (A.53). However,
it admits a non-holomorphic completion term

A?m(ρ, v) = m
∑

`mod 2m



ϑm,`(ρ)

2π
√
mρ2

−
∑

λ∈Z+ `
2m

|λ| erfc
(
2|λ|√πmρ2

)
q−mλ

2


 ϑm,`(ρ, v) , (A.65)

such that Âm ≡ Am +A?m transforms like a Jacobi form of weight 2 and index m, although
it is no longer holomorphic in the ρ and v variables. Consequently, both

ψ̂Pm(ρ, v) = ψPm +
ck(m)

∆k(ρ)
A∗m(ρ, v) and ψ̂Fm(ρ, v) = ψFm −

ck(m)

∆k(ρ)
A∗m(ρ, v) (A.66)

transform like Jacobi forms of weight 2− k and index m, although neither is holomorphic in
the ρ and v variables. Moreover, ψ̂Fm(ρ, v) has a theta series decomposition similar to (A.61)
with coefficients

ĥm,`(ρ) = hm,`(ρ)−m



ϑm,`(ρ)

2π
√
mρ2

−
∑

λ∈Z+ `
2m

|λ| erfc
(
2|λ|√πmρ2

)
q−mλ

2


 (A.67)
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transforming as a vector-valued modular form of weight 3
2 − k. By Taylor expanding the

denominator, we can rewrite (A.64) as an indefinite theta series of signature (1, 1),

Am(ρ, v) =
1

2

∑

s,`∈Z
` [sign(s+ u2) + sign `] qms

2+`s y2ms+` . (A.68)

Similarly, its modular completion can be written as an indefinite theta series,

Âm(ρ, v) =
1

2

∑

s,`∈Z
`

[
sign(s+ u2) +

√
m

π`
√
τ2
F

(
`

√
πτ2

m

)]
qms

2+`s y2ms+` , (A.69)

where
F (x) =

√
πx erf(x) + e−x

2
(A.70)

is a smooth function which asymptotes to
√
π|x| at large |x| [91].

For meromorphic Jacobi forms of index m = 0, the decomposition (A.60) still holds, but
the finite part ψF0 is now independent of z, while the non-holomorphic completion term of the
Appell–Lerch sum A0(ρ, v) reduces to A∗0 = 1/(4πρ2). The simplest example, relevant for the
present work, is the (rescaled) Weierstrass function (A.55), which decomposes into

P(ρ, v) =
E2

12
+
∑

s∈Z

qs y

(1− qsy)2
=
Ê2

12
+

(
1

4πρ2
+
∑

s∈Z

qsy

(1− qsy)2

)
(A.71)

In particular, it follows from this decomposition and from (A.88) (with L = 0) that the
integral over the elliptic curve v ∈ E is given by

∫

E
P(ρ, v)

dvdv̄

2iρ2
=

∫

[0,1]2
du1du2 P(ρ, u1 + ρu2) =

Ê2

12
, (A.72)

which is non-holomorphic in ρ as a consequence of the pole of P(ρ, v) at v = 0. From this,
it follows in particular that the average values of the zero-th Fourier-Jacobi modes (A.59) of
1/Φk−2 and 1/Φ̂k−2 with respect to v are given by

∫

[0,1]2
du1 du2 ψ0 =

k

12(N − 1)

N2Ê2(Nρ)− Ê2(ρ)

∆k(ρ)
,

∫

[0,1]×[0,N ]
du1 du2 ψ̂0 =

k

12(N − 1)

Ê2(ρ)− Ê2(Nρ)

∆k(ρ)
.

(A.73)

For negative index m < 0, it turns out that any meromorphic Jacobi form ψ can be
expressed as a linear combination of iterated derivative of a modified Appell-Lerch sum, (here
y = e2πiz, w = e2πiu) [92]

FM (z, u; τ) = (y/w)M
∑

s∈Z

w−2Ms qMs(s+1)

1− qsy/w , (A.74)

The latter transforms as a Jacobi form of index M = −m in u and has a simple pole at
u − z ∈ Z + τZ, with residue 1/(2πi) at u = z. If S denotes the set of poles of ψ(z) in a
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fundamental domain of C/(Z+ τZ), and Dn,u are the Laurent coefficients of ψ at z = u, then
Theorem 1.1 in [92] states that

ψ(z) = −
∑

u∈S

∑

n≥0

Dn,u

(2πi)n−1(n− 1)!

[
∂n−1
v F−m(z, v)

]
v=u

(A.75)

For the case of interest in this paper, the leading Fourier-Jacobi coefficient ψ−1 = 1
η18θ2

1(z)
of

1/Φ10 has a double pole at z = 0 with residue 1/∆, hence

ψ−1 =
1

∆

∂u
2πi

F1(z, u; τ)|u=0 = − 1

∆

∑

s∈Z

[
y qs

2+s

(1− qsy)2
+

2sy qs
2+s

1− qsy

]
(A.76)

Note that this plays the role of ψP−1, while ψF−1 vanishes. The modified Appell-Lerch sum can
be written as an indefinite theta series,

ψ−1 = − 1

∆

∑

s,`∈Z

[
(2s+ `)

sign`+ sign(u2 + s)

2
− 1

4πρ2
δ(u2 + s)

]
qs

2+`s y` (A.77)

where sign` is interpreted as −1 for ` = 0. To see that this formula is consistent with the
quasi-periodicity (A.52), note that under (y, s, `)→ (yq, s− 1, `+ 2), (A.77) becomes

− 1

∆

∑

s,`∈Z

[
(2s+ `)

sign(`+ 2) + sign(u2 + s)

2
− 1

4πρ2
δ(u2 + s)

]
qs

2+`s+1 y`+2 (A.78)

This differs from (A.77) (up to the automorphy factor qy2) only due to the terms ` = 0 and
` = −1, but those two terms leads to a vanishing contribution,

−1

2

∑

s∈Z

[
(2s− 1)qs(s−1)+1y + 2s qs

2+1y2
]

= 0 . (A.79)

Shifting ` to `− 2s, (A.77) may be written equivalently as

ψ−1 = − 1

∆

∑

s,`∈Z

[
`

sign(`− 2s) + sign(u2 + s)

2
− 1

4πρ2
δ(u2 + s)

]
q−s

2+`s y`−2s (A.80)

which resembles the Appell-Lerch sum (A.68) for m = −1, except for the replacement of
sign` by sign(` − 2s). Of course, the Appell-Lerch sum A−1 would be divergent, while the
modified Appell-Lerch sum is absolutely convergent. Similarly, for CHL orbifolds, the leading
Fourier-Jacobi coefficient of 1/Φk−2 is given by the same Eq. (A.80) with ∆ replaced by ∆k.

A.6 Fourier coefficients and local modular forms

In this section we shall use the decomposition (A.60) to infer the Fourier coefficients of 1/Φk−2

and 1/Φ̃k−2 in the limit Ω2 → i∞. Starting with the maximal rank case, and assuming that
σ2 � ρ2, v2, we find

C(n,m,L; Ω2) =

∫

[0,1]3
d3Ω1

e−2πi(nρ+Lv+mσ)

Φ10(ρ, σ, v)

=CF (n,m,L) + c(m)

∫

[0,1]2
dρ1 dv1

e−2πi(nρ+Lv)

∆(ρ)
Am(ρ, v)

(A.81)
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where CF (n,m,L) =
∫

[0,1]2 dρ1 dv1 ψ
F
m(ρ, v) e−2πi(nρ+Lv) are the Fourier coefficients of the

finite part of ψm. To compute the integral in the second line of (A.81), we Fourier expand
1/∆(ρ) =

∑
M≥−1 c(m)qm and Am(ρ, v) using the representation (A.68), and integrate term

by term with respect to v1, obtaining

1

2

∑

s,`∈Z
c(m) c(n− Ls+ms2) (L− 2ms) [sign(u2 + s) + sign(L− 2ms)] (A.82)

where we have used ` = L− 2ms,M = n−ms2− `s. However, while this naive manipulation
lead to the correct result for generic u2, it turns out to miss a distributional part localized at
u2 ∈ Z, originating from the poles of Am(ρ, v) at qse2πiv = 1.

To compute this distribution, let us first consider the contribution from the term s = 0 in
the sum (A.64). Upon expanding

y

(1− y)2
=

{∑
k≥1 ky

k , |y| < 1∑
k≥1 ky

−k , |y| > 1
, (A.83)

one would be tempted to conclude that the integral
∫ 1

0 dv1
y

(1−y)2 vanishes. However, we claim

that instead, ∫ 1

0
dv1

y

(1− y)2
= − 1

4π
δ(v2) . (A.84)

To see this, we first consider first the single pole function 1
2
y+1
y−1 , with Fourier expansion

1

2

y + 1

y − 1
= −

∑

`∈Z

sign(`) + sign(v2)

2
y` (A.85)

with the understanding that sign(0) = 0. We claim that this identity is valid at the distribu-
tional level. As a check, using the Euler formula representation for (A.85) and acting with an
anti-holomorphic derivative on each term (recalling that ∂v̄

1
v = πδ(v1)δ(v2)), we get

− 1

2πi

∂

∂v̄

(1

2

y + 1

y − 1

)
= − 1

2πi

∂

∂v̄

(∑

`∈Z

1

2πi(v − `)

)
=

1

4π
δ(v2)

∑

`∈Z
δ(v1 − `) =

1

4π
δ(v2)

∑

`∈Z
y` .

(A.86)
The right-hand side is also what one gets by acting with ∂v̄ = 1

2(∂v1 + i∂v2) on each term in
the Fourier series (A.85), noting that sign′(v2) = 2δ(v2).

The double pole distribution (A.83) is obtained by acting with a holomorphic derivative
on (A.85), therefore admits the Fourier expansion

y

(1− y)2
= − 1

2πi

∂

∂v

(1

2

y + 1

y − 1

)
=
∑

`∈Z

|`|+ sign(v2)`

2
y` − 1

4π
δ(v2)

∑

`∈Z
y` . (A.87)

In particular, integrating over v1 we reach (A.84).28. More generally, the same argument
shows that for any s,

qs y

(1− qsy)2
=
∑

`∈Z

( |`|+ ` sign(v2 + sρ2)

2
− 1

4π
δ(v2 + sρ2)

)
q`sy` (A.88)

28It is worth cautioning the reader that regularizing the double pole by point splitting would instead pro-
duce the same delta distribution with coefficient −1/(2π). This however would be inconsistent with modular
invariance, e.g. when computing the average of the Weierstrass function in (A.72).
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Using this identity, we find that the naive result (A.82) misses an additional term sup-
ported at u2 = v2/ρ2 ∈ Z,

− 1

4π

∑

s,`∈Z
c(m) c(n− Ls+ms2) δ(v2 + sρ2) . (A.89)

However, this still cannot be the full Fourier coefficient C(n,m,L; Ω2), since the latter must be
invariant under the action (A.14) of GL(2,Z). Instead, both (A.82) and (A.89) are invariant

under the subgroup Γ∞ which preserves the cusp σ2 = ∞, where
(

1 s
0 1

)
acts by sending

(n,m,L)→ (n−Ls+ms2,mL− 2ms). To restore invariance under the full GL(2,Z) group,
we may therefore replace the sum over s ∈ Z by a sum over all γ ∈ GL(2,Z)/Di4, obtaining

C(n,m,L; Ω2) =CF (n,m,L) +
∑

γ∈GL(2,Z)/Dih4

[
c(m) c(n)

(
1

2
L(sgnL+ sgnv2)− 1

4π
δ(v2)

)]
|γ + . . .

(A.90)

Here, Dih4 denotes the dihedral group generated by the matrices
(

1 0
0 −1

)
and

(
0 1
1 0

)
, which

stabilizes the locus v2 = 0, and the dots denotes possible additional contributions which are
not visible in the limit |Ω2| → ∞. The action of γ =

(
p q
r s

)
∈ GL(2,Z) on the quantities

m,n,L, v2 appearing in the bracket is given by

n̂ 7→ s2n+ q2m− qsL, m̂ 7→ r2n+ p2m− prL, (A.91)

L̂ 7→ −2rs n− 2pq m+
ps+ qr

2
L, (A.92)

v̂2 7→ tr (
(

0 1/2
1/2 0

)
γᵀΩ2γ) = pq ρ2 + rs σ2 + (ps+ qr)v2 . (A.93)

Using the same reasoning, we find the Fourier coefficients of 1/Φk−2, which must be invariant
under GL(2,Z),

Ck−2(n,m,L; Ω2) = CFk−2(n,m,L)

+
∑

γ∈GL(2,Z)/Dih4

[
ck (m̂) ck (n̂)

(1

2
L̂
(

signL̂+ signv̂2

)
− 1

4π
δ(v̂2)

)]

γ

+ . . . (A.94)

For the Fourier coefficients of 1/Φ̃k−2, which must be invariant under Γ0(N), we find instead

C̃k−2(n,m,L; Ω2) = C̃Fk−2(n,m,L)

+
∑

γ∈Γ0(N)/Z2

[
ck (Nm̂) ck (n̂)

[1

2
L̂
(

signL̂+ signv̂2

)
− 1

4π
δ(v̂2)

]]

γ

+ . . . (A.95)

It is important to note that the identities (A.90),(A.94),(A.95) are only valid when |Ω2| is
large enough such that the integration contour [0, 1]3 +iΩ2 does not cross any pole for generic
values of Ω2, and only crosses quadratic divisors (A.6) with n2 = 0 on real-codimension one
loci. When |Ω2| < 1/(4n2

2) with |n2| ≥ 1, the contour crosses the the quadratic divisor (A.6)
for generic values of Ω2, and the integral on the first line of (A.81) is no longer well-defined.
We leave it as an interesting open problem to define the Fourier coefficient C(n,m,L; Ω2) of
1/Φ10 (or its analogue for 1/Φk+2 and 1/Φ̃k−2) in the region where |Ω2| ≤ 1/4.
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B Perturbative contributions to 1/4-BPS couplings

In this section, we compute the one-loop and two-loop contributions to the coefficient of the
∇2F 4 coupling in the low-energy effective action in heterotic CHL orbifolds. In both cases we
start with the maximal rank case, i.e. heterotic string compactified on a torus T d, and then
turn to the simplest heterotic CHL orbifolds with N = 2, 3, 5, 7.

B.1 One-loop ∇2F 4 and R2F 2 couplings

B.1.1 Maximal rank case

In heterotic string compactified on a torus T d, the one-loop contribution to the coefficient of
the ∇2F 4 coupling in the low-energy effective action can be extracted from the four-gauge
boson one-loop amplitude, given up to an overal tensorial factor by [41]

A(1)

abcd =
1

(2πi)4

∫

F1

dρ1dρ2

ρ2
2

1

∆

∫

E4

4∏

i=1

dzidz̄i
2iρ2

(χ12χ34)α
′s (χ13χ24)α

′t (χ14χ23)α
′u

× 〈Ja(z1) Jb(z2) Jc(z3) Jd(z4)〉
(B.1)

where χij = eg(ρ,zi−zj) and g(ρ, z) = − log |θ1(ρ, z)/η|2 + 2π
ρ2

(Imz)2 is the scalar Green function
on the elliptic curve E with modulus ρ. The four-point function of the currents evaluates to

〈Ja(z1) Jb(z2) Jc(z3) Jd(z4)〉 =ΓΛd+ 16, d
[Pabcd]−

1

4π2

(
δabΓΛd+ 16, d

[Pcd] ∂
2g(z1 − z2) + 5 perms

)

+
1

16π4

(
δabδcd ΓΛd+ 16, d

[1] ∂2g(z1 − z2) ∂2g(z3 − z4) + 2 perms
)

(B.2)

where Pab and Pabcd are quadratic and quartic polynomials, respectively, in the projected
lattice vector QLa = pLa

IQI ∈ Γd+16,d arising from the zero-mode of the currents,

Pab =QLaQLb −
δab

4πρ2
,

Pabcd =QLaQLbQLcQLd −
3

2πρ2
δ(abQLcQLd) +

3

16π2ρ2
2

δ(abδcd) ,

(B.3)

and for any polynomial P in QLa and integer lattice Λp,q of signature (p, q), we denote

ΓΛp, q [P ] = ρ
q/2
2

∑

Q∈Λp,q

P (QLa) e
iπ[ρQ2

L−ρ̄ Q2
R] . (B.4)

Upon expanding in powers of α′, the leading term reproduces the one-loop contribution to
the F 4 coupling,

F (1)

abcd = R.N.

∫

F1

dρ1dρ2

ρ2
2

ΓΛd+ 16, d
[Pabcd]

∆(ρ)
, (B.5)

where R.N. denotes the regularization procedure introduced in [93, 94, 95], which is needed
to make sense of the divergent integral when d ≥ 6 (we return to this point at the end of this
subsection). Equivalently, (B.5) may be written as [46]

F (1)

abcd = R.N.

∫

F1

dρ1dρ2

ρ2
2

∂4

(2πi)4∂ya∂yb∂yc∂yd
ΓΛd+ 16, d

(y)

∆(ρ)

∣∣∣
y=0

, (B.6)
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where ΓΛp, q(y) is the partition function of the compact bosons deformed by the current yaJ
a

integrated along the A-cycle of the elliptic curve,

ΓΛp, q(y) = ρ
q/2
2

∑

Q∈Λp,q

e
iπ[ρQ2

L−ρ̄ Q2
R]+2πiQL·y+

π(y·y)
2ρ2 . (B.7)

At next to leading order in α′, the term linear in the Mandelstam variables s, t, u reduces
to

G(1)

ab,cd =

∫

F1

dρ1dρ2

ρ2
2

1

∆

∫

E4

4∏

i=1

dzidz̄i
2iρ2

[
g(z1 − z2) ∂2g(z1 − z2) δab ΓΛd+ 16, d

[Pcd] + 5 perms
]
,

(B.8)

since all other terms at this order are total derivatives with respect to zi. The integral over
z can be computed by using the Poincaré series representation of the Green function,

g(ρ, z) =
1

π

′∑

(m,n)∈Z2

ρ2

|mρ+ n|2 e
π
ρ2

[z̄(mρ+n)−z(mρ̄+n)]
, (B.9)

leading to
∫

E

dzdz̄

2iρ2
g(z − w)∂2g(z − w) = lim

s→0

′∑

(m,n)∈Z2

1

(mρ+ n)2|mρ+ n|2s =
π2

6
Ê2 , (B.10)

where the sum over (m,n) was regularized à la Kronecker. Up to an overall numerical factor,
we therefore find that the one-loop contribution to the coefficient of ∇2F 4 coupling for the
maximal rank model is given by

G(1)

ab,cd = δ〈abG
(d+16,d)

cd〉 , G(p,q)

ab =R.N.

∫

F1

dρ1dρ2

ρ2
2

Ê2

∆(ρ)
ΓΛp, q [Pab] . (B.11)

For d = 0, corresponding to either of the E8 × E8 or Spin(32)/Z2 heterotic strings in 10
dimensions, one has

ΓΛE8 ⊕ E8
[Pab] = ΓΛD16

[Pab] =
E4

12

(
Ê2E4 − E6

)
δab (B.12)

so G
(1)
ab,cd becomes proportional to the TrF 2TrR2 coupling computed from the elliptic genus

[96, C.5], [97], as required by supersymmetry.

B.1.2 CHL orbifolds

The four-gauge boson amplitude in CHL models with N = 2, 3, 5, 7 was obtained in [44, 45].
It was shown in [22, §A] that the one-loop F 4 coupling in these models is given by the simple
generalization of (B.5), namely

F (1)

abcd = F (d+r−12,d)

abcd , F (p,q)

abcd = R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

ΓΛp, q [Pabcd]

∆k
, (B.13)

where ∆k = [η(ρ)η(Nρ)]k arises from the partition function in the twisted sectors. The same
derivation goes through for the ∇2F 4 and R2F 2 couplings and yields

G(1)

ab,cd = δ〈abG
(d+r−12,d)

cd〉 , G(p,q)

ab = R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

Ê2

∆k
ΓΛp, q [Pab] . (B.14)
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B.1.3 Regularization of the genus-one modular integrals

As indicated above, the modular integrals (B.13) and (B.14) are divergent when d ≥ 6 and
d ≥ 4, respectively. We follow the same regularization procedure as in [98, 22] and define
them by truncating the integration domain to FN,Λ = ∪γ∈Γ0(N)\SL(2,Z)γ · F1,Λ, where F1,Λ =

{−1
2 < ρ1 < 1

2 , |ρ| > 1, ρ2 < Λ} is the truncated fundamental domain for SL(2,Z), and
minimally subtracting the divergent terms before taking the limit Λ → ∞. Using the fact
that the constant terms of 1/∆k and Ê2/∆k are equal to k and k(1− 3

πρ2
)− 24, the constant

terms of their Fricke dual are k and k(N − 3
πρ2

) and the constant terms of the Fricke dual of

the partition function include an extra factor of υN
q−8

2 , we get

F (p,q)

abcd = lim
Λ→∞

[ ∫

FN,Λ

dρ1dρ2

ρ2
2

ΓΛp, q [Pabcd]

∆k
− 3k(1 + υN

q−8
2 )

16π2

Λ
q−6

2

q−6
2

δ(abδcd)

]
, (B.15)

G(p,q)

ab = lim
Λ→∞

[ ∫

FN,Λ

dρ1dρ2

ρ2
2

Ê2

∆k
ΓΛp, q [Pab]−

3k(1 + υN
q−8

2 )

4π2

Λ
q−6

2

q−6
2

δab +
k(1 + υN

q−6
2 )− 24

4π

Λ
q−4

2

q−4
2

δab

]
,

(B.16)

where the terms Λ
q−6

2 / q−6
2 and Λ

q−4
2 / q−4

2 should be replaced by log Λ when q = 6 or q = 4,
respectively. Note that the second term in (B.16) cancels in the case of the full rank model
where k = 24. It will be also useful to consider the Fricke dual function to G(p,q)

ab for the
N = 2, 3, 5, 7 models, introduced in (4.57) and whose regularization is given by

ςG(p,q)

ab = lim
Λ→∞

[ ∫

FN,Λ

dρ1dρ2

ρ2
2

NÊ2(Nρ)

∆k(ρ)
ΓΛp, q [Pab]−

3k(1 + υN
q−8

2 )

4π2

Λ
q−6

2

q−6
2

δab

+
k(N + υN

q−8
2 )− 24

4π

Λ
q−4

2

q−4
2

δab

]
. (B.17)

B.1.4 Differential identities satisfied by genus-one modular integrals

Like the genus-two modular integral G(p,q)

ab,cd discussed in §3.3, the genus-one modular integrals
(B.15), (B.16) and (B.17) satisfy differential identities with constant source terms in q = 6,
q = 4 determined by regularization techniques using the same paramatrization as for section
B.1.3. The equation for the modular integral F (p,q)

abcd was calculated in [22, (3.57)], which we
reproduce below:

D(e
ĝDf)ĝFabcd = 2−q

4 δef Fabcd + (4− q)δ(e|(aFbcd)|f) + 3δ(abFcd)ef +
15k(1 + υ

N )

2(4π)2
δ(abδcdδef) δq,6 ,

(B.18)

Here the volume factor υ is either equal to N for the perturbative Narain lattice, or to 1 for
the non-perturbative Narain lattice.

The equation satisfied by the genus-one integral G(p,q)

ab can be computed using the same
techniques described in [22, §3.2] and reads

D(e
ĝDf)ĝG

(p,q)

ab =
2− q

4
δef G

(p,q)

ab +
4− q

2
δe)(aG

(p,q)

b)(f +
1

2
δabG

(p,q)

ef + 6F (p,q)

efab

− 3
(
(1 + υ

N )k − 24
)

8π
δ(efδab) δq,4 +

9(1 + υ
N )k

8π2
δ(efδab) δq,6 ,

(B.19)
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where the term proportional to F (p,q)

efab corresponds to the contribution of the non-holomorphic

completion in Ê2, and the two constant contributions of the second line correspond to the
boundary contribution after integration by part (see [22, (3.54)]). One checks that the diver-
gent contributions cancel each others, so the equation is valid for the renormalized couplings.
For the perturbative lattice with υ = N , these linear corrections are associated to the mix-
ing between the analytic and the non-analytic components of the amplitude, and are indeed
proportional to the corresponding 1-loop divergence coefficient in supergravity [79].

The same analysis for ςG(p,q)

ab gives

D(e
ĝDf)ĝ

ςG(p,q)

ab =
2− q

4
δef

ςG(p,q)

ab +
4− q

2
δe)(a

ςG(p,q)

b)(f +
1

2
δab

ςG(p,q)

ef + 6F (p,q)

efab

− 3
(
(N + υ)k − 24

)

8π
δ(efδab) δq,4 +

9(1 + υ
N )k

8π2
δ(efδab) δq,6 .

(B.20)

B.2 Two-loop ∇2F 4 couplings

B.2.1 Maximal rank case

At two-loop, the scattering amplitude of four gauge bosons in ten-dimensional heterotic string
theory was computed in [42, 43]. Upon compactifying on a torus T d, one obtains

A(2)

abcd =

∫

F2

d3Ω1 d3Ω2

|Ω2|3
1

Φ10

×
∫

Σ4

YS
4∏

i=1

dzi (χ12χ34)α
′s (χ13χ24)α

′t (χ14χ23)α
′u 〈Ja(z1) Jb(z2) Jc(z3) Jd(z4)〉

(B.21)

where Σ is a genus-two Riemann surface with period matrix Ω, YS is a specific (1, 1) form in
each of the coordinates zi on Σ [42, (11.32)],

YS = t∆(1, 2) ∆(3, 4)− s∆(1, 4) ∆(2, 3) , (B.22)

where ∆(z, w) = ω1(z)ω2(w)− ω1(w)ω2(z), χij = eG(Ω,zi−zj) and G(Ω, z) is the scalar Green
function on Σ. At leading order in α′, χij can be set to one, and similarly to (B.6), the
integrated current correlator

∫
Σ J

a(z)dz ωIz can be expressed as a multiple derivative [46]

〈
∫

Σ4

Ja(z1)Jb(z2)Jc(z3)Jd(z4)
4∏

i=1

dzi ωI(zi) 〉 =
1
3(εrr′εss′ + εrs′εsr′)∂

4

(2πi)4∂yra ∂y
s
b ∂y

r′
c ∂y

s′
d

Γ(2)

Λd+ 16, d
(y)|y=0

(B.23)
where Γ(2)

Λd+ 16, d
(y) is the partition function of the compact bosons deformed by the currents

yraJ
a integrated along the r-th A-cycle of Σ,

Γ(2)

Λp, q
(y) = |Ω|q/22

∑

Q∈Λ⊗2
p,q

eiπQrLa ΩrsQsL
a−iπQrRâ Ω̄rsQsR

â+2πiQrLay
a
r+π

2
yarΩrs2 yas . (B.24)

Evaluating the derivatives explicitly, we obtain the result announced in (2.30) for the two-loop
∇2F 4 coupling in the maximal rank case,

G(d,d+16)

ab,cd =R.N.

∫

F2

d3Ω1 d3Ω2

|Ω2|3
Γ(2)

Λd, d+ 16
[Pab,cd]

Φ10

(B.25)
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where Pab,cd is the quartic polynomial defined in (2.31). The regularization procedure needed
to make sense of this modular integral when d ≥ 5 will be discussed in §B.2.4.

In the special case (d = 0) of the E8 × E8 heterotic string in 10 dimensions, and for
a suitable choice of indices ab, cd, the partition function Γ(2)

ΛE8 × E8

[Pab;cd] reduces (up to nor-

malization) to (E(2)

4 )2Ψ2 where E(2)

4 is the holomorphic Eisenstein series of weight 4, which
coincides with the Siegel theta series for the lattice E8, and Ψ2 is a non-holomorphic modular
form of weight (2,0) given by

Ψ2 = ∂ρΦ∂σΦ− 1
4(∂vΦ)2 , Φ = log

[
|Ω2|4E(2)

4

]
, (B.26)

in agreement with [43, (5.7)]. This can be viewed as the genus-two counterpart of the genus-
one formula (B.12). We shall now discuss the extension of (B.25) to CHL orbifolds, starting
with the simplest case N = 2.

B.2.2 Z2 orbifold

The simplest CHL model is obtained by orbifolding the E8×E8 heterotic string on T d by an
involution σ exchanging the two E8 factors, and translating by half a period along one circle
in T d [25]. This model was studied in more detail in [99, 100] and revisited in [22, §A.1].
Some aspects of the genus-two heterotic amplitude in this model were discussed in [11] in the
context of 1/4-BPS dyon counting, which we shall build on.

Following standard rules, the two-loop amplitude is now a sum over all possible twisted or
untwisted periodicity conditions [h1h2] and [g1g2] along the A and B cycles of the genus-two
curve Σ, respectively,

A(2) =
1

4

∑

h1,h2∈{0,1}
g1,g2∈{0,1}

A(2)
[
h1h2

g1g2

]
. (B.27)

The untwisted amplitude A(2)
[

00
00

]
coincides with (B.21), restricted on the locus Gd+8,d ⊂

Gd+16,d which is invariant under the involution σ. As in the genus-one case [22, §A.1], it
is convenient to further restrict to the locus Gd,d ⊂ Gd+8,d where the lattice factorizes as

Λd+16,d = E8⊕E8⊕IId,d, and retain from A(2)
[
h1h2

g1g2

]
the chiral measure for the ten-dimensional

string, which we denote by

Z(2)

16

[
00
00

]
=

[
Θ(2)

E8
(Ω)
]2

Φ10
. (B.28)

Now, decomposing pα1 + pα2 = 2Σα + Pα, pα1 − pα2 = 2∆α − Pα for pα1 , p
α
2 ∈ ΛE8 , α = 1, 2,

the genus-two partition function of the lattice ΛE8×E8 appearing in the numerator can be
decomposed as

[
Θ(2)

E8
(Ω)
]2

=
∑

(P1,P2)∈(ΛE8
/2ΛE8

)⊗2

Θ(2)

E8[2],(P1,P2)(Ω) Θ(2)

E8[2],(P1,P2)(Ω) (B.29)

where Θ(2)

E8[2],(P1,P2) is the genus-two theta series for ΛE8 [2]:

Θ(2)

E8[2],(P1,P2)(Ω) =
∑

(∆1,∆2)∈Λ⊗2
E8

e2πi(∆r−1
2P

r)Ωrs(∆s−1
2P

s) (B.30)
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For P1 = P2 = 0, Θ(2)

E8[2],(0,0)(Ω) = Θ(2)

E8
(2Ω).

As for the twisted sectors
[
h
g

]
≡
[
h1h2

g1g2

]
6=
[

00
00

]
, we use the fact that the Z2 orbifold blocks

of d compact scalars on a Riemann surface of genus 2 are given by [101, 102]

∣∣∣∣
ϑ(2)[δ+

i ](0,Ω)ϑ(2)[δ−i ](0,Ω)

Z0(Ω)2 ϑi(0, τh,g)2

∣∣∣∣
d ∑

Q∈Λd,d

eiπp2
L(Q)τh,g−iπp2

R(Q)τ̄h,g (B.31)

where Z0(Ω) is the inverse of the chiral partition of a (uncompactified, untwisted, unpro-
jected) scalar field on Σ, and τh,g is the Prym period, namely the period of the unique even

holomorphic form on the double cover of Σ, a Riemann surface Σ̂ of genus 3. The Prym
period τh,g is related to the period matrix Ω by the Schottky-Jung relation [102, (1.6)]

(
ϑi(0, τh,g)

ϑj(0, τh,g)

)4

=

(
ϑ(2)[δ+

i ](0,Ω)ϑ(2)[δ−i ](0,Ω)

ϑ(2)[δ+
j ](0,Ω)ϑ(2)[δ−j ](0,Ω)

)2

(B.32)

for any choice of distinct i, j ∈ {1, 2, 3}. Here, δ±i are the 6 even spin structures δ such that

δ+ 1
2

[
h
g

]
is also en even spin structure; moreover δ−i = δ+

i + 1
2

[
h
g

]
. The relation (B.32) ensures

that (B.31) is independent of the choice of i. Since all 15 non-trivial twists are permuted by
Sp(4,Z), it will be convenient to focus on the twisted sector

[
h
g

]
=
[

00
01

]
, in which case the

relation (B.32) becomes [102, (6.5)]

ϑ4
4(τ)

ϑ4
2(τ)

=

(
ϑ(2)
[

01
00

]
ϑ(2)
[

01
01

]

ϑ(2)
[

10
00

]
ϑ(2)
[

10
01

]
)2

, (B.33)

where τ ≡ τh,g. In particular, under (ρ, σ, v) → (ρ + 1, σ, v), the Prym period transforms as
τ → τ + 1, whereas in the non-separating degeneration σ → i∞, τ ∼ ρmod 4Z [102, §7.2].

In our case, we need the orbifold blocks of 16 chiral scalars under exchange Xi 7→
Xi+8 mod 16. By decomposing Xi into its even and odd components Xi ± Xi+8 mod 16, we
find that the orbifold blocks are given by

[
ϑ(2)[δ+

i ](Ω)ϑ(2)[δ−i ](Ω)
]4

Z16
0 ϑi(τh,g)8

×
∑

P∈(ΛE8
/2ΛE8

)

Θ(2)

E8[2],(P,0)(Ω) ΘE8[2],P(τh,g) . (B.34)

As a consistency check on this result (first obtained in [11] from the partition function of
the E8 root lattice on the genus 3 covering surface Σ̂), let us consider the maximal non-

separating degeneration limit: the imaginary part of the period matrix Ω2 =
(
L1 + L2 L2

L2 L2 + L3

)

parametrizes Schwinger times along the three edges of the two-loop sunset diagram shown in
Figure 1 iii). Assuming that the Z2 action is inserted along the edge of length L3, the E8⊕E8

momenta running in the three edges are (p1, p2), (p1 + q, p2 + q), (q, q). Decomposing as usual
p1 + p2 = 2Σ + P, p1 − p2 = 2∆− P, the classical action is

L1(p2
1 + p2

2) + L2

[
(p1 + q)2 + (p2 + q)2

]
+ 2L3q

2

=2(L1 + L2)
[(

Σ + 1
2P
)2

+
(
∆− 1

2P
)2]

+ 2(L2 + L3)q2 + 4L2(Σ + 1
2P) · q

=2
(
Σ + 1

2P q
)
·
(
L1 + L2 L2

L2 L2 + L3

)
·
(

Σ + 1
2P
q

)
+ 2(L1 + L2)

(
∆− 1

2P
)2

,

(B.35)
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in agreement with the maximal non-separating degeneration limit of the second factor in
(B.34), using τh,g ∼ ρ.

The contributions of the other degrees of freedom (spacetime bosons and fermions, ghosts)
are unaffected by the orbifolding and, as in the maximal rank, turn the factor 1/Z16

0 in (B.34)
into 1/Φ10. In the sector

[
h
g

]
=
[

00
01

]
, the resulting ratio can be written in three equivalent

ways [11, (4.29-31)],

[
ϑ(2)[δ+

i ](Ω)ϑ(2)[δ−i ](Ω)
]4

ϑi(τh,g)8Φ10(Ω)
=
ϑ(2)
[

00
00

]2
ϑ(2)
[

00
01

]2
ϑ(2)
[

00
10

]2
ϑ(2)
[

00
11

]2
ϑ4

3ϑ
4
4(τ)Φ10(Ω)

=
1

ϑ4
3ϑ

4
4(τ) Φ6,0(Ω)

=
ϑ(2)
[

00
00

]2
ϑ(2)
[

00
01

]2
ϑ(2)
[

10
00

]2
ϑ(2)
[

10
01

]2
ϑ4

3ϑ
4
2(τ)Φ10(Ω)

=
1

ϑ4
3ϑ

4
2(τ) Φ6,1(Ω)

=
ϑ(2)
[

10
00

]2
ϑ(2)
[

10
01

]2
ϑ(2)
[

00
10

]2
ϑ(2)
[

00
11

]2
ϑ4

3ϑ
4
4(τ)Φ10(Ω)

=
1

ϑ4
2ϑ

4
4(τ) Φ6,2(Ω)

(B.36)

where Φ6,0 ≡ Φ6 is the Siegel modular form (A.46) of weight 6 and level 2, and Φ6,1 ∝ Φ̃6 and
Φ6,2 are its images under Sρ and Tρ · Sρ, respectively (see (B.44) below). Using the identity

∑

P∈(ΛE8
/2ΛE8

)

Θ(2)

E8[2],(P,0)(Ω) ΘE8[2],P(τ) =

ϑ4
3ϑ

4
4 Θ(2)

E8
(2ρ, 2σ, 2v)+

1

16
ϑ4

3ϑ
4
2 Θ(2)

E8
(ρ2 , 2σ, v) +

1

16
ϑ4

2ϑ
4
4 Θ(2)

E8
(ρ+1

2 , 2σ, v)

(B.37)

we find that the orbifold block in the sector
[
h
g

]
=
[

00
01

]
is given by [11, (4.38)]

Z(2)

8

[
00
01

]
=

Θ(2)

E8
(2ρ, 2σ, 2v)

Φ6,0
+

Θ(2)

E8
(ρ2 , 2σ, v)

16Φ6,1
+

Θ(2)

E8
(ρ+1

2 , 2σ, v)

16Φ6,2
(B.38)

In particular, the dependence on the Prym period τ has disappeared. The result (B.38) is
invariant under the index 15 subgroup Γ2,e1(2) of Sp(4,Z) which preserves the twist

[
00
01

]
[102,

§6.1]. In fact it can be rewritten as

Z(2)

8

[
00
01

]
=

∑

γ∈Γ2,e1 (2)/Γ2,0,e1 (2)

[
Θ(2)

E8
(2ρ, 2σ, 2v)

Φ6,0

]
|γ , (B.39)

where Γ2,0,e1(2) ≡ Γ2,e1(2) ∩ Γ2,0(2) has index 3 inside Γ2,e1(2), and 3 inside Γ2,0(2). As a
consistency check in (B.38), in the separating degeneration limit v → 0 (B.38) becomes

Z(2)

8

[
00
01

]
∼ −4π2v2 E4(2σ)

η
[

0
1

]
(σ)

[
E4(2ρ)

η
[

0
1

]
(ρ)

+
E4(ρ2)

η
[

1
0

]
(ρ)

+
E4(ρ+1

2 )

η
[

1
1

]
(ρ)

]
(B.40)

where, for N prime and h 6= 0 modN we define

η
[

0
g

]
= ηk+2(τ) ηk+2(Nτ) , η

[
h
g

]
= e

iπa(k+2)
12 ηk+2(τ) ηk+2

(
τ + a

N

)
(B.41)
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where k+2 = `, a = gh−1, with h−1 being the inverse of h in the multiplicative group Z/NZ.
Using [22, Eq.(A.10)], the term in bracket is indeed recognized as the untwisted unprojected
one-loop partition function

Z(2)

8

[
0
0

]
≡ E2

4

η24
=

E4(2τ)

η8(τ)η8(2τ)
+

E4( τ2 )

η8(τ)η8( τ2 )
+

E4( τ+1
2 )

e2iπ/3η8(τ)η8( τ+1
2 )

. (B.42)

The remaining blocks can be obtained by modular transformations,

Z(2)

8 [δ̃](Ω̃) = Z8[δ](Ω) , δ̃ =

(
D −C
−B A

)
δmod 2 (B.43)

where δ = (h1, h2, g1, g2)t. Using the invariance of Θ(2)

E8
(ρ, σ, v) under the full Siegel modular

group, and acting with the 15 elements γ of Sp(4,Z)/Γ2,e1(2) on (B.39), we obtain the orbifold
blocks shown on Table 1. In this table, Φ6,1 through Φ6,14 are images of Φ6,0 under γ ∈
Sp(4,Z)/Γ2,0(2). When γ lies in SL(2,Z)ρ × SL(2,Z)σ → Sp(4,Z) we denote the respective
SL(2,Z) generators in subscript:

Φ6,1(ρ, σ, v) =ρ−6 Φ6,0(−1/ρ, σ − v2/ρ, v/ρ) = Φ6|




0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1


 = Φ6|(S,1) ,

Φ6,2(ρ, σ, v) =Φ6,1(ρ+ 1, σ, v) = Φ6|




1 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1


 = Φ6|(TS,1)

Φ6,3(ρ, σ, v) =σ−6 Φ6,0(ρ− v2/σ,−1/σ, v/σ) = Φ6|




1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0


 = Φ6|(1,S)

Φ6,4(ρ, σ, v) =Φ6,3(ρ, σ + 1, v) = Φ6|




1 0 0 0
0 1 0 −1
0 0 1 0
0 1 0 0


 = Φ6|(1,TS)

Φ6,5(ρ, σ, v) =σ−6 Φ6,1(ρ− v2/σ,−1/σ, v/σ) = Φ6|




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 = Φ6|(S,S)

Φ6,6(ρ, σ, v) =Φ6,5(ρ+ 1, σ, v) = Φ6|




1 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 = Φ6|(TS,S)

Φ6,7(ρ, σ, v) =Φ6,5(ρ, σ + 1, v) = Φ6|




0 0 −1 0
0 1 0 −1
1 0 0 0
0 1 0 0


 = Φ6|(S,TS)

Φ6,8(ρ, σ, v) =Φ6,5(ρ+ 1, σ + 1, v) = Φ6|




1 0 −1 0
0 1 0 −1
1 0 0 0
0 1 0 0


 = Φ6|(TS,TS)

(B.44)
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[
h1h2

g1g2

]
Z(2)

8

[
h1h2

g1g2

]
γ ∈ Sp(4,Z)/Γ2,e1(2)

[
00
10

] Θ
(2)
E8

(2ρ,2σ,2v)

Φ6,0
+

Θ
(2)
E8

(2ρ,σ
2
,v)

24Φ6,3
+

Θ
(2)
E8

(2ρ,σ+1
2
,v)

24Φ6,4




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




[
01
00

] Θ
(2)
E8

(2ρ,σ
2
,v)

24Φ6,3
+

Θ
(2)
E8

( ρ
2
,σ
2
, v
2

)

28Φ6,5
+

Θ
(2)
E8

( ρ+1
2
,σ
2
, v
2

)

28Φ6,6




1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0




[
10
00

] Θ
(2)
E8

( ρ
2
,2σ,v)

24Φ6,1
+

Θ
(2)
E8

( ρ
2
,σ
2
, v
2

)

28Φ6,5
+

Θ
(2)
E8

( ρ
2
,σ+1

2
, v
2

)

28Φ6,7




0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0




[
11
00

] Θ
(2)
E8

( ρ
2
,σ
2
, v
2

)

28Φ6,5
+

Θ
(2)
E8

( ρ+1
2
,σ+1

2
, v+1

2
)

28Φ6,9
+

Θ
(2)
E8

(2ρ,σ−2v+ρ
2

,v−ρ)

24Φ6,13




1 0 0 0
−1 0 0 −1
0 1 1 0
0 1 0 0




[
01
01

] Θ
(2)
E8

(2ρ,σ+1
2
,v)

24Φ6,4
+

Θ
(2)
E8

( ρ
2
,σ+1

2
, v
2

)

28Φ6,7
+

Θ
(2)
E8

( ρ+1
2
,σ+1

2
, v
2

)

28Φ6,8




1 0 0 0
0 1 0 −1
0 0 1 0
0 1 0 0




[
10
10

] Θ
(2)
E8

( ρ+1
2
,2σ,v)

24Φ6,2
+

Θ
(2)
E8

( ρ+1
2
,σ
2
, v
2

)

28Φ6,6
+

Θ
(2)
E8

( ρ+1
2
,σ+1

2
, v
2

)

28Φ6,8




0 1 0 −1
1 0 0 0
0 1 0 0
0 0 1 0




[
01
10

] Θ
(2)
E8

(2ρ,σ
2
,v)

24Φ6,3
+

Θ
(2)
E8

( ρ
2
,σ
2
, v+1

2
)

28Φ6,10
+

Θ
(2)
E8

( ρ+1
2
,σ
2
, v+1

2
)

28Φ6,11




0 1 0 0
0 0 −1 0
0 0 1 1
1 −1 0 0




[
10
11

] Θ
(2)
E8

( ρ+1
2
,2σ,v)

24Φ6,2
+

Θ
(2)
E8

( ρ+1
2
,σ+1

2
, v+1

2
)

28Φ6,9
+

Θ
(2)
E8

( ρ+1
2
,σ
2
, v+1

2
)

28Φ6,11




0 1 −1 −1
1 −1 0 0
0 1 0 0
0 0 1 0




[
10
01

] Θ
(2)
E8

( ρ
2
,2σ,v)

24Φ6,1
+

Θ
(2)
E8

( ρ
2
,σ
2
, v+1

2
)

28Φ6,10
+

Θ
(2)
E8

( ρ
2
,σ+1

2
, v+1

2
)

28Φ6,12




0 0 −1 −1
1 −1 0 0
0 1 0 0
0 0 1 0




[
01
11

] Θ
(2)
E8

(2ρ,σ+1
2
,v)

24Φ6,4
+

Θ
(2)
E8

( ρ+1
2
,σ+1

2
, v+1

2
)

28Φ6,9
+

Θ
(2)
E8

( ρ
2
,σ+1

2
, v+1

2
)

28Φ6,12




0 1 0 0
1 −1 −1 0
0 0 1 1
1 −1 0 0




[
00
11

] Θ
(2)
E8

(2ρ,2σ,2v)

Φ6,0
+

Θ
(2)
E8

(2ρ, ρ−2v+σ
2

,v−ρ)

24Φ6,13
+

Θ
(2)
E8

(2ρ, ρ−2v+σ+1
2

,v−ρ)

24Φ6,14




0 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 0




[
11
01

] Θ
(2)
E8

( ρ
2
,σ+1

2
, v
2

)

28Φ6,7
+

Θ
(2)
E8

( ρ+1
2
,σ
2
, v+1

2
)

28Φ6,11
+

Θ
(2)
E8

(2ρ, ρ−2v+σ+1
2

,v−ρ)

24Φ6,14




1 0 0 0
−1 1 0 −1
0 1 1 0
0 1 0 0




[
11
10

] Θ
(2)
E8

( ρ+1
2
,σ
2
, v
2

)

28Φ6,6
+

Θ
(2)
E8

( ρ
2
,σ+1

2
, v+1

2
)

28Φ6,12
+

Θ
(2)
E8

(2ρ, ρ−2v+σ+1
2

,v−ρ)

24Φ6,14




1 1 1 0
−1 0 0 −1
0 1 1 0
0 1 0 0




[
11
11

] Θ
(2)
E8

( ρ+1
2
,σ+1

2
, v
2

)

28Φ6,8
+

Θ
(2)
E8

( ρ
2
,σ
2
, v+1

2
)

28Φ6,10
+

Θ
(2)
E8

(2ρ,σ−2v+ρ
2

,v−ρ)

24Φ6,13




1 1 1 0
−1 1 0 −1
0 1 1 0
0 1 0 0




Table 1: List of genus-two orbifold blocks for the Z2 CHL model
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Φ6,9(ρ, σ, v) =Φ6,5(ρ+ 1, σ + 1, v + 1) = Φ6|




1 1 −1 0
1 1 0 −1
1 0 0 0
0 1 0 0




Φ6,10(ρ, σ, v) =Φ6,5(ρ, σ, v + 1) = Φ6|




0 1 −1 0
1 0 0 −1
1 0 0 0
0 1 0 0




Φ6,11(ρ, σ, v) =Φ6,5(ρ+ 1, σ, v + 1) = Φ6|




1 1 −1 0
1 0 0 −1
1 0 0 0
0 1 0 0




Φ6,12(ρ, σ, v) =Φ6,5(ρ, σ + 1, v + 1) = Φ6|




0 1 −1 0
1 1 0 −1
1 0 0 0
0 1 0 0




Φ6,13(ρ, σ, v) =Φ6,3(ρ, σ − 2v + ρ, v − ρ) = Φ6|




1 0 0 0
−1 0 0 −1
0 1 1 0
0 1 0 0




Φ6,14(ρ, σ, v) =Φ6,4(ρ, σ − 2v + ρ+ 1, v − ρ) = Φ6|




1 0 0 0
−1 1 0 −1
0 1 1 0
0 1 0 0




(B.45)

As a consistency check, using the fact that

Φ6,k(ρ, σ, v) ∼
{

2−8v2η12ϑ4
i (ρ)ϑ4

j (σ) +O(v4) , k ≤ 8

±2−4 η12(ρ) η12(σ) +O(v2) k ≥ 9
(B.46)

where (k, i, j) = (0, 2, 2), (1, 4, 2), (2, 3, 2)(3, 2, 4), (4, 2, 3), (5, 4, 4), (6, 3, 4), (7, 4, 3), (8, 3, 3) for
k ≤ 8, we see that in the separating degeneration limit v → 0,

Z(2)

8

[
h1h2

g1g2

]
(Ω) ∼ −4π2v2Z

(1)
8

[
h1

g1

]
(ρ)Z

(1)
8

[
h2

g2

]
(σ) +O(v2) , (B.47)

where Z
(1)
8

[
h
g

]
are the genus-one orbifold blocks given in [22, Eq.(A.6)]. Note that each of

the numerators appearing in the genus-two orbifold blocks Z
(2)
8

[
h1h2

g1g2

]
can be interpreted as

the genus-two theta series for an Euclidean lattice of rank 8 as follows (here q
1
2
Q2

denotes
eiπQrΩrsQs)

ΘE8(2ρ, 2v, 2σ) =
∑

(Q1,Q2)∈
E8[2]⊕E8[2]

eiπQrΩrsQs ,

ΘE8(2ρ, v, σ2 ) =2−4
∑

(Q1,Q2)∈
E8[2]⊕E8[2]∗

eiπQrΩrsQs

ΘE8(2ρ, v, σ+1
2 ) =2−4

∑

(Q1,Q2)∈
E8[2]⊕E8[2]∗

(−1)Q
2
2 eiπQrΩrsQs

ΘE8(ρ2 ,
v
2 ,

σ+1
2 ) =2−8

∑

(Q1,Q2)∈
E8[2]∗⊕E8[2]∗

(−1)Q
2
2 eiπQrΩrsQs

(B.48)
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ΘE8(ρ2 ,
v+1

2 , σ2 ) =2−8
∑

(Q1,Q2)∈
E8[2]∗⊕E8[2]∗

(−1)2Q1·Q2 eiπQrΩrsQs

ΘE8(ρ2 ,
v+1

2 , σ+1
2 ) =2−8

∑

(Q1,Q2)∈
E8[2]∗⊕E8[2]∗

(−1)(2Q1+Q2)·Q2 eiπQrΩrsQs

ΘE8(ρ+1
2 , v2 ,

σ+1
2 ) =2−8

∑

(Q1,Q2)∈
E8[2]∗⊕E8[2]∗

(−1)Q
2
1+Q2

2 eiπQrΩrsQs

ΘE8(ρ+1
2 , v+1

2 , σ+1
2 ) =2−8

∑

(Q1,Q2)∈
E8[2]∗⊕E8[2]∗

(−1)(Q1+Q2)2
eiπQrΩrsQs

ΘE8(2ρ, v − ρ, σ−2v+ρ
2 ) =2−4

∑

(Q1,Q2)∈
E8[2]∗⊕E8[2]∗

δ(Q1+Q2)∈E8[2] e
iπQrΩrsQs

ΘE8(2ρ, v − ρ, σ−2v+ρ+1
2 ) =2−4

∑

(Q1,Q2)∈
E8[2]∗⊕E8[2]∗

δ(Q1+Q2)∈E8[2] (−1)
1
4

(Q1−Q2)2
eiπQrΩrsQs

(B.49)

Now, as indicated above (B.28), the orbifold blocks Z(2)

8

[
h1h2

g1g2

]
only include the contribu-

tions from the chiral measure for the ten-dimensional string, and need to be supplemented
with the contribution of the bosonic zero-modes of the d compact bosons,

Z(2)

d,d

[
h1h2

g1g2

]
= |Ω2|d/2

∑

Q∈Λ⊗2
d,d+ 1

2
(h1,h2)δ

(−1)δ·(g1Q1+g2Q2) eiπQrLΩrsQsL−iπQrRΩ̄rsQsR , (B.50)

where δ is a null element in (2IId,d)/IId,d which depends on the orbifold action on T d; we shall
henceforth restrict to a half-period shift along the d-th circle, so that δ = (0d; 0d−11). For this
choice, the product of (B.39) and (B.49) can again be written as a sum over images under
the stabilizer of the twist,

Z(2)

8

[
00
01

]
Z(2)

d,d

[
00
01

]
=

∑

γ∈Γ2,e1 (2)/Γ2,0,e1 (2)

Γ(2)

Λ̃d+ 8, d

[
(−1)δ·Q2

]

Φ6,0

∣∣∣∣∣
γ

, (B.51)

where
Λ̃d+8,d ≡ E8[2]⊕ IId,d . (B.52)

and δ · Q2 equals the winding of the d-th embedding coordinate along the cycle B2. Thus,
the sum over all the sectors listed in (1), in the case of compactification on T d at this specific
factorization point in the moduli space, can be rewritten as

′∑

hr,gr∈{0,1}
Z(2)

8

[
h1h2

g1g2

]
Z(2)

d,d

[
h1h2

g1g2

]
=

∑

γ∈Sp(4,Z)/Γ2,e1 (2)

Z(2)

8

[
00
01

]
Z(2)

d,d

[
00
01

]∣∣∣
γ

=
∑

γ∈Sp(4,Z)/Γ2,0(2)

Γ(2)

Λ̃d+ 8, d

[(
(−1)δ·Q1 + (−1)δ·Q2 + (−1)δ·(Q1+Q2)

)
Pab,cd

]

Φ6,0

∣∣∣∣∣
γ

,

(B.53)
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where for the last equality we expressed Z(2)

8

[
00
01

]
Z(2)

d,d

[
00
01

]
as a sum over Γ2,e1(2)/Γ2,0,e1(2),

similarly to (B.39), and rewrote the two sums as a double sum over Sp(4,Z)/Γ2,0(2) and
Γ2,0(2)/Γ2,0,e1(2).

Including the contribution from the second line in (B.21), and retaining the next-to-leading
term in the low energy expansion, we see that the ∇2F 4 coupling on the locus Gd,d ⊂ Gd+8,d

where the lattice Λd+16,d factorizes is given by

G(2)

ab,cd =
1

4
R.N.

∫

F2

d3Ω1 d3Ω2

|Ω2|3
(
Z(2)

8

[
00
00

]
Z(2)

d,d

[
00
00

]
+

′∑

hr,gr∈{0,1}
Z(2)

8

[
h1h2

g1g2

]
Z(2)

d,d

[
h1h2

g1g2

])
[Pab,cd] ,

(B.54)
where the bracket [Pab,cd] denotes an insertion of the quartic polynomial Pab,cd (2.31) in the
sum over the lattice Λ̃d+8,d and its modular images.

Now, in parallel with the ‘Hecke identity’ (B.42), observe that the untwisted genus-two
chiral partition function satisfies

Z(2)

8

[
00
00

]
≡

[Θ(2)

E8
(Ω)]2

Φ10
=

′∑

hr,gr∈{0,1}
Z(2)

8

[
h1h2

g1g2

]
. (B.55)

The validity of this identity can for example be checked for the minimal non-separating de-
generation using (A.31). Using this identity in the sum over all sectors, as in (B.53), we can
rewrite it as a sum over Sp(4,Z)/Γ2,0(2), as in the second line of (B.52), to obtain

1

4

∑

hr,gr∈{0,1}
Z(2)

8

[
h1h2

g1g2

]
Z(2)

d,d

[
h1h2

g1g2

]
[Pab,cd] =

∑

γ∈Sp(4,Z)/Γ2,0(2)

Γ(2)

Λ̃d+ 8, d

[
1
2

(
1 + (−1)δ·Q1

)
1
2

(
1 + (−1)δ·Q2

)
Pab,cd]

Φ6,0

∣∣∣∣∣
γ

.

(B.56)

The insertions of 1
2

(
1+(−1)δ·Qi

)
can be seen as projectors on the lattice Λ̃d+8,8 to vectors with

even entries along one of the cicle designated by δ, such that the resulting sum is recognized as
a genus-two partition function, with insertion of Pab,cd only, for the ‘magnetic charge lattice’
introduced in [22, (A,16)],

Λd+8,d = E8[2]⊕ II1,1[2]⊕ IId−1,d−1 . (B.57)

At this point, we can readily extend the result away from the factorized locus by allowing non-
trivial Wilson lines in the lattice partition function. As established in (B.55), the partition
function can be written down as a sum over images from under Sp(4,Z)/Γ2,0(2), such that
the integral can be unfolded from a fundamental domain of Sp(4,Z) to a fundamental domain
of Γ2,0(2)

G(2)

ab,cd = R.N.

∫

Γ2,0(2)\H2

d3Ω1 d3Ω2

|Ω2|3
Γ(2)

Λd+ 8, d
[Pab,cd]

Φ6
. (B.58)

This concludes the computation of the two-loop ∇2F 4 coupling in the Z2 orbifold.

104



SciPost Physics Submission

B.2.3 ZN orbifold with N = 3, 5, 7

Let us now briefly discuss the genus-two amplitude in heterotic CHL orbifolds with N =
2, 3, 5, 7. As in [22, §A.2], we restrict to a locus Gd+k−8,d+k−8 ⊂ Gd+16,d where the even
self-dual lattice Λd+16,d of the heterotic string compactified on T d factorizes as ΛNk,8−k ⊕
II1,1 ⊕ IId+k−8,d+k−8, where the ZN action acts by a ZN rotation on the first factor and by
a translation by 1/N period on the second. We denote by Λk,8−k the ZN -invariant part of
ΛNk,8−k, and let

Λ̃d+2k−8,d = Λk,8−k ⊕ II1,1 ⊕ IId+k−9,d+k−9 . (B.59)

Upon using the Niemeier lattice construction of the ZN -symmetric lattice outlined in [22], one
finds that the invariant lattice Λk,8−k = Dk[N ]⊕D8−k[−1], where the sum is performed with
respect to the diagonal glue code {(0, 0), (s, s), (v, v), (c, c)}. For N = 2 using the construction
in the previous subsection, one has instead Λ8,0 = E8[2].

Now, as in (B.27) the genus-two amplitude decomposes into a sum over all possible twisted
or untwisted periodicity conditions

[
h1h2

g1g2

]
along the A and B cycles of the genus-two curve

Σ, with hr, gr running over Z/(NZ). For N prime, all N4 − 1 non-trivial twistings form a
single orbit under Sp(4,Z), so it suffices to focus on one of them, say ε =

[
00
01

]
. The stabilizer

of ε under the action (B.43) is Γ2,e1(N) (a subgroup of index N4 − 1 inside Sp(4,Z)), so the

corresponding orbifold block Z̃(2)

d+2k−8,d

[
00
01

]
must be a Siegel modular form for Γ2,e1(N), and

satisfy
′∑

hr,gr∈Z/(NZ)

Z̃(2)

d+2k−8,d

[
h1h2

g1g2

]
=

∑

γ∈Sp(4,Z)/Γ2,e1 (N)

Z̃(2)

d+2k−8,d

[
00
01

]∣∣∣
γ
. (B.60)

This orbifold block can in principle be computed using the N -sheeted cover of the genus-two
curve Σ, which now has genus N + 1. Rather than following this route, we instead postulate
that it is given by the natural generalization of (B.50), namely

Z̃(2)

d+2k−8,d

[
00
01

]
=

∑

γ∈Γ2,e1 (N)/Γ2,0,e1 (N)

Γ(2)

Λ̃d+ 2k − 8, d

[
e

2πiδ·Q2
N

]

Φk−2

∣∣∣∣∣
γ

(B.61)

where Γ2,0,e1(N) = Γ2,e1(N) ∩ Γ2,0(N) has index N + 1 in Γ2,e1(N) and N2 − 1 in Γ2,0(N),
and δ ·Q2 = n2 is the winding of the d-th embedding coordinate along the cycle B2, so that

Γ(2)

Λ̃d+ 2k − 8, d

[
e

2πiδ·Q2
N

]
is a modular form of Γ2,0,e1(N). As a consistency check, one may verify

that (B.60) has the correct behavior

Z̃(2)

d+2k−8,d

[
00
01

]
(Ω)→ −4π2v2 Z̃

(1)
d+2k−8,d

[
0
0

]
(ρ) Z̃

(1)
d+2k−8,d

[
0
1

]
(σ) (B.62)

in the separating degeneration limit v → 0, where

Z̃
(1)
d+2k−8,d

[
0
0

]
=

∑

γ∈SL(2,Z)/Γ0(N)

ΓΛ̃d+ 2k − 8, d

∆k

∣∣∣∣∣
γ

, Z̃
(1)
d+2k−8,d

[
0
1

]
=

ΓΛ̃d+ 2k − 8, d

[
e

2πiδ·Q
N

]

∆k
.

(B.63)
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Similarly as in the N = 2 case, we deduce from (B.59) and (B.60) that the sum over all
non-trivial twisted sectors can be rewritten as a sum over images under Γ2,0(N),

′∑

hi,gi∈Z/(NZ)

Z̃d+2k−8,d

[
h1h2

g1g2

]
=

∑

γ∈Sp(4,Z)/Γ2,e1 (N)

∑

γ′∈Γ2,e1 (N)/Γ2,0,e1 (N)

Γ(2)

Λ̃d+ 2k − 8, d

[
e

2πiδ·Q2
N

]

Φk−2

∣∣∣∣∣
γ′γ

=
∑

γ∈Sp(4,Z)/Γ2,0(N)

[ ∑

γ′∈Γ2,0(N)/Γ2,0,e1 (N)

Γ(2)

Λ̃d+ 2k − 8, d

[
e

2πiδ·Q2
N

]

Φk−2

∣∣∣∣∣
γ′

]∣∣∣∣∣
γ

(B.64)

Next, we observe that the untwisted genus-two amplitude also satisfies an Hecke identity
generalizing (B.54), namely

Z̃d+2k−8,d

[
00
00

]
=

Γ(2)

Λd+ 16, d

Φ10
=

∑

γ∈Sp(4,Z)/Γ2,0(N)

Γ(2)

Λ̃d+ 2k − 8, d

Φk−2

∣∣∣∣∣
γ

. (B.65)

Combining (B.60) and (B.64), and using

1

N2

(
Γ(2)

Λ̃d+ 2k − 8, d
+

∑

γ∈Γ2,0(N)/Γ2,0,e1 (N)

Γ(2)

Λ̃d+ 2k − 8, d

[
e

2πiδ·Q2
N

]∣∣∣γ
)

= Γ(2)

Λ̃d+ 2k − 8, d

[
1
N

(
1 + e

2πiδ·Q1
N + . . .+ e

2πi(N−1)δ·Q1
N

)
1
N

(
1 + e

2πiδ·Q2
N + . . .+ e

2πi(N−1)δ·Q2
N

)]
,

(B.66)

we find that the sum over all twisted sectors reduce to a sum over images under Γ2,0(N)

1

N2

∑

hi,gi∈Z/(NZ)

Z
[
h1h2

g1g2

]
=

∑

γ∈Sp(4,Z)/Γ2,0(N)

Γ(2)

Λd+ 2k − 8, d

Φk−2

∣∣∣∣∣
γ

(B.67)

where now the Siegel theta series involves the rescaled lattice

Λd+2k−8,d = Λk,8−k ⊕ II1,1[N ]⊕ IId+k−9,d+k−9 . (B.68)

After including the contribution from the second line in (B.21), retaining the next-to-leading
term in the low energy expansion, and unfolding the integration domain F2 against the sum
over images in (B.66), we conclude that the genus-two ∇2F 4 coupling is given by

G(2)

ab,cd = R.N.

∫

Γ2,0(N)\H2

d3Ω1 d3Ω2

|Ω2|3
Γ(2)

Λd+ 2k − 8, d
[Pab,cd]

Φk−2
(B.69)

as announced in (2.28).

B.2.4 Regularization of the genus-two modular integral

In order to regulate the genus-two modular integral (2.30), it is easiest to fold the integration
domain H2/Γ2,0(N) back to the standard fundamental domain of Sp(4,Z) defined in (A.5),

G(p,q)

ab,cd = R.N.

∫

F2

d3Ω1d3Ω2

|Ω2|3
∑

γ∈Γ2,0(N)\Sp(4,Z)

Γ(2)

Λp, q
[Pab,cd]

Φk−2

∣∣∣∣∣
γ

. (B.70)
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The renormalized modular integral over F2 can then be defined following the procedure in
[103, 64], i.e. by truncating the fundamental domain to FΛ

2 = F2 ∩ {t < Λ}, where the
coordinate t on H2 was defined in (A.9). In order to separate one-loop and primitive two-loop
subdivergences, we then decompose FΛ

2 into three subregions,

F0
2 =FΛ

2 ∩ {ρ2 ≤ t+ u2
2ρ2 ≤ Λ1}

FI2 =FΛ
2 ∩ {ρ2 ≤ Λ1 ≤ t+ u2

2ρ2}
FII2 =FΛ

2 ∩ {Λ1 ≤ ρ2 ≤ t+ u2
2ρ2}

(B.71)

where Λ1 � Λ is a fiducial scale. One-loop subdivergences arise from integration over FI2 ,
while primitive divergence arises from integrating over FII2 . In extracting the divergences as
Λ → ∞, we can safely ignore terms proportional to powers of Λ1, since they cancel in the
sum over the three regions [103].

Let us first consider the divergences from region I. In this region, the variable t is bounded
by Λ while ρ is restricted to the fundamental domain F1,Λ1 . For the first 1 + N cosets of
Γ2,0(N)\Sp(4,Z) listed in (A.22), the charges (Q1, Q2) whose contributions are not exponen-
tially suppressed as t → ∞ are those with Q2 = 0. For those, the integral over σ1 projects
1/Φk−2|γ to its zero-mode ψ0|γ in (A.59), while the remaining integral over u1, u2 projects
the latter to its average value (A.73), with a factor of 1/2 because of the element of SL(2,Z)
permuting them. The divergence from these N + 1 cosets is then

− k

32π

∫ Λ dt

t3
t
q
2
−1R.N.

∫

F1

dρ1dρ2

ρ2
2

∑

γρ∈SL(2,Z)/Γ0(N)

[
N2E2(Nρ)− E2(ρ)

(N − 1) ∆k(ρ)
ΓΛp, q [P〈ab,]δcd〉

] ∣∣∣
γρ
.

(B.72)

For the remaining N2 + N3 cosets, the representative γ includes again the N + 1 γρ ele-
ments again, times the N transformations {Sσ, TσSσ, . . . , TN−1

σ Sσ}, which requires a Poisson
resummation over Q2 before setting its dual to 0, and the N shifts b in (A.22). The divergence
is then of the same form as above, upon replacing ψ0 by its image under Sσ, Nk/2ψ̂0 (A.59),

and including a volume factor |Λ∗p,q/Λp,q|−
1
2 = υN−

k
2−2 from the Poisson resummation and a

multiplicity factor N2 from the transformations listed above:

− kυ

32π

∫ Λ dt

t3
t
q
2
−1R.N.

∫

F1

dρ1dρ2

ρ2
2

∑

γρ∈SL(2,Z)/Γ0(N)

[
E2(ρ)− E2(Nρ)

(N − 1) ∆k(ρ)
ΓΛp, q [P〈ab,]δcd〉

] ∣∣∣
γρ

(B.73)
For the perturbative ∇2F 4 coupling in D = 10 − q dimensions, the volume factor is υ = N .
After unfolding the integral to the domain H1/Γ0(N), the two contributions (B.71), (B.72)
add up to

− k

32π

Λ
q−6

2

q−6
2

R.N.

∫

Γ0(N)\H1

dρ1dρ2

ρ2
2

NÊ2(Nρ) + Ê2(ρ)

∆k(ρ)
ΓΛp, q [P〈ab,]δcd〉 = − 3

8π

Λ
q−6

2

q−6
2

δ〈ab,F
(p,q)

cd〉e
e

(B.74)
where we recognized the coefficient of the divergence as the renormalized one-loop F 4 coupling
by integrating by part, as in [22, §3.2], upon using the identity

D−k
( 1

∆k(ρ)

)
=

k

12

NÊ2(Nρ) + Ê2(ρ)

∆k(ρ)
, (B.75)
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where Dw = i
π (∂τ − iw

2τ2
) is the raising operator.

We now turn to the primitive two-loop divergence coming from the integral over FII2 . In
this region, it is more convenient to use the variables V, τ defined in (A.9). The variable
V runs from τ2/Λ to 1/τ2Λ1, while the variable τ takes values in the standard fundamental
domain F1/Z2 of GL(2,Z), truncated at τ2 ≤

√
Λ/Λ1 [103]. The primitive divergence comes

from the region V → 0. For the first coset in (A.22), the contribution of all charge vectors
with Q1 6= 0 or Q2 6= 0 are exponentially suppressed as V → 0. For (Q1, Q2) = (0, 0), the
polynomial Pab,cd in (2.31) reduces to 3δ〈ab,δcd〉/(16π2|Ω2|), and the integral over Ω1 projects

1/Φk−2 to its zero-mode Ck−2(0, 0, 0) = 48N
N2−1

in (A.49). For the second and third class of
cosets in (A.22), the limit V → 0 requires first performing a Poisson resummation over either

Q1 or Q2, resulting in a volume factor of |Λ∗p,q/Λp,q|−
1
2 = υN−

k
2−2, and the integral over

Ω1 projects N
k
2 /Φ̃k−2|γ to its zero-mode Nk/2C̃k−2(0, 0, 0) = −48Nk/2

N2−1
from (A.50), for each

of the N(N + 1) cosets. Finally, for the fourth class of cosets in (A.22), the limit V → 0
requires performing a Poisson resummation over both Q1 and Q2, resulting in a volume factor
of |Λ∗p,q/Λp,q|−1 = υ2N−k−4, and the integral over Ω1 projects Nk−2/Φk−2(Ω/N)|γ to its
zero-mode after having used the identity (A.40), for each of the N3 cosets. Adding up all
contributions, we find

3δ〈ab,δcd〉
16π2

R.N.

∫

F1/Z2

48dτ1dτ2

(N2 − 1)τ2
2

∫ τ2/Λ1

τ2/Λ
2V 2dV V 2−q

[
N − (N + 1) υN + υ2

N2

]
(B.76)

Setting υ = N , the term in square bracket cancels, so the coefficient of the two-loop primitive
divergence in fact vanishes.

Finally, it remains to consider a potential divergence from the separating degeneration.
For generic values of ρ, σ in F2, the integral around v = 0 is of the form

∫
dvdv̄/v2, which

vanishes provided one integrates first over the angular direction in the v-plane. There can
however be a divergence from the region ρ2, σ2 →∞ while v → 0, where the genus-two curve
degenerates into a figure-eight graph. For the first coset in (A.22), the contribution of all
charge vectors with Q1 6= 0 or Q2 6= 0 are exponentially suppressed as ρ2, σ2 →∞. As shown
in §A.6, the integral over v1 gives rise to a delta-function ck(0)2δ(v2). To integrate this delta
distribution it is convenient to unfold the integration domain of Ω2 near the cusp |Ω2| → ∞,
P2/GL(2,Z) to P2, using the sum over GL(2,Z)/Dih4 in (5.25), and taking into account
the factor of 4 associated to Dih4, the stabilizer of the singular locus v = 0. Equivalently
one can think of the integral over P2/GL(2,Z), and simply unfold the order four symmetry
permuting σ2 and ρ2 and changing the sign of v2. At v2 = 0, σ2 = t and the integration
domain is Λ1 ≤ ρ2 ≤ σ2 < Λ, which after symmetrization gives the divergent contribution

− 3k2

256π3

∫ Λ dρ2

ρ3
2

∫ Λ dσ2

σ3
2

(ρ2σ2)
q
2
δ〈abδcd〉
ρ2σ2

∼ − 3k2

256π3

(
Λ
q−6

2

q−6
2

)2

δ〈ab,δcd〉 (B.77)

For the other cosets in (A.22), the zeroth Fourier-Jacobi coefficient behaves has N
k
2 ψ̂0(ρ, v)

leading to N
k
2 ck(0)2δ(v2), and Nk−2ψ0(ρ/N, v/N) leading to Nk−2ck(0)2δ(v2/N). The first

contribution occurs from the trivial coset only; the second from 2N cosets because of the

symmetry ρ ↔ σ, with an overall volume factor υN−
k
2
−2; and the third from N3 cosets

corresponding to all shifts (ρ+a
N , σ+b

N , v+c
N ), with an overall volume factor υ2N−k−4. Combining
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these terms and using ck(0) = k, we find that the divergence from the figure-eight degeneration
is

− 3k2

256π3

(N2 + 2Nυ + υ2)

N2

(
Λ
q−6

2

q−6
2

)2

δ〈ab,δcd〉 = −3k2(1 + υ
N )2

256π3

(
Λ
q−6

2

q−6
2

)2

δ〈ab,δcd〉 . (B.78)

For q = 6, the divergent term (Λ
q−6

2 / q−6
2 )2 is replaced by (log Λ)2.

Combining these results, we can now define the renormalized integral (2.30) by subtracting
all divergent contributions before taking the limit Λ→∞. In the case of the two-loop ∇2F 4

couplings (υ = N), we obtain

G(p,q)

ab,cd = lim
Λ→∞

[ ∫

FΛ
2

d3Ω1d3Ω2

|Ω2|3
∑

γ∈Γ2,0(N)\Sp(4,Z)

Γ(2)

Λp, q
[Pab,cd]

Φk−2(Ω)

∣∣∣∣
γ

+
Λ
q−6

2

q−6
2

3

8π
δ〈ab,F

(p,q)

cd〉e
e

+

(
Λ
q−6

2

q−6
2

)2 3k2

64π3
δ〈ab,δcd〉

)]
.

(B.79)

For q = 6, the O(Λ
q−6

2 ) and O(Λq−6) divergences become logarithmic and doubly logarithmic,

Ĝ(2k−2,6)

ab,cd = lim
Λ→∞

[ ∫

FΛ
2

d3Ω1d3Ω2

|Ω2|3
∑

γ∈Γ2,0(N)\Sp(4,Z)

Γ(2)

Λ2k -2, 6
[Pab,cd]

Φk−2(Ω)

∣∣∣∣
γ

+ log Λ
3

8π
δ〈ab,F̂

(2k−2,6)

cd〉e
e

+ (log Λ)2 3k2

64π3
δ〈ab,δcd〉

]
,

(B.80)

where F (p,q)

abcd is the regularized integral (B.13).

The renormalization of the couplings Fabcd andGab,cd is in fact consistent with supergravity
computations [79], as we now explain. Recall that the complete string theory amplitude can
be obtained by performing a functional integral over the fields of N = 4 supergravity with
2k−2 vector multiplets, weighted by the Wilsonian effective action computed in string theory.
This Wilsonian action can be defined by imposing an infrared cutoff Λ on the moduli space
of complex structures, identified with the ultra-violet cutoff in supergravity. It follows that
the Λ-dependent couplings

F (2k−2,6)

abcd (Λ) = F (2k−2,6)

abcd +
3k

8π2
log Λδ(abδcd) ,

G(2k−2,6)

ab,cd (Λ) = G(2k−2,6)

ab,cd − log Λ
3

8π
δ〈ab,F

(2k−2,6)

cd〉e
e − (log Λ)2 3k2

64π3
δ〈ab,δcd〉 , (B.81)

define a bare Lagrangian

L(Λ) =
2

κ2
R− 1

4
δabF

aF b + 1
8(κ2 )4F (2k−2,6)

abcd (Λ)t8F
aF bF cF d

+ 1
8π (κ2 )6G(2k−2,6)

ab,cd (Λ) t8∇F a∇F bF cF d + . . .
(B.82)

such that the UV divergences in the path integral cancel at this order. These divergences can-
cel for any functions F (2k−2,6)

abcd and G(2k−2,6)

ab,cd satisfying their respective differential constraints.
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Upon setting F (2k−2,6)

abcd and G(2k−2,6)

ab,cd to zero in (B.80), one reproduces precisely the counter-

terms computed in [79] in four dimensions. The variation of L(Λ) with respect to F (2k−2,6)

abcd is
interpreted in supergravity as the form factor for the operator t8F

4 (at zero momentum and
properly supersymmetrized). Similarly, the variation of L(Λ) with respect to G(2k−2,6)

ab,cd is the

form factor for the operator t8∇2F 4. Because (3.20) does not admit a constant homogeneous
solution for q = 6, there cannot be any genuine 2-loop divergence proportional to δ〈ab,δcd〉 in
N = 4 supergravity. The 2-loop divergence proportional to (log Λ)2 in (B.80) is therefore a
consequence of the 1-loop divergence, via the renormalization group equation

Λ
d

dΛ
G(2k−2,6)

ab,cd (Λ) = − 3

4π
δ〈ab,F

(2k−2,6)

cd〉e
e(Λ) . (B.83)

This is consistent with the supergravity analysis in [79, §5.A], where the two-loop divergence
originates entirely from figure-eight supergravity diagrams (shown in Figure 1ii), for which
the subdivergence is proportional to the 1-loop counter-term form factor.

Let us now briefly discuss the regularization of the integral (B.69) in the case where the
lattice Λp,q is the non-perturbative Narain lattice (2.3). In this case, the volume factor υ is
equal to 1. In this case, the cancellation in (B.75) still takes place in the maximal rank case
since the zero-th Fourier coefficient of 1/Φ10 vanishes from (A.48), but it no longer holds for
CHL models with N = 2, 3, 5, 7. Setting υ = 1 in the previous computations, we now get

G(p,q)

ab,cd = lim
Λ→∞

[ ∫

FΛ
2

d3Ω1d3Ω2

|Ω2|3
∑

γ∈Γ2,0(N)\Sp(4,Z)

Γ(2)

Λp, q
[Pab,cd]

Φk−2(Ω)

∣∣∣∣
γ

+
27

π2N2

Λq−6

(q − 6)2
δ〈ab,δcd〉

− 9(N − 1)

π2N2

Λq−5

q − 5
δ〈ab,δcd〉R.N.

∫

F1

dτ1dτ2

τ2
2

τ5−q
2 +

3

2πN

Λ
q−6

2

q−6
2

ςG(p,q)

〈ab, δcd〉
)]
,

(B.84)

where ςG(p,q)

ab denotes the regularized integral (B.17). The maximal rank case is obtained by
setting N = 1, and ςG(p,q)

ab = G(p,q)

ab . Of course, the case relevant for the non-perturbative
∇2(∇φ)4 coupling in D = 3 corresponds to q = 8, in which case there are power-like diver-
gences but no logarithmic divergence.

B.2.5 Anomalous terms in the differential equation for Gab,cd

In section 3.3 we established that the renormalized integral G(p,q)

ab,cd satisfies the differential
equation (3.20), with a quadratic source term originating from the separating degeneration
locus v = 0. In this section we take into account the boundary of the regularized domain FΛ

2

and show that the equation indeed holds for the renormalized couplings at generic values of q.
For q = 5 with υ 6= N and q = 6 we find additional linear source terms from the non-separating
degeneration. For the perturbative amplitude in four dimensions, q = 6, υ = N , these linear
term originate from the mixing between the analytic and the non-analytic components of the
amplitude. Our analysis parallels that of the D6R4 couplings in [103, §3.3].

From the t = Λ boundary of the region FI2 defined in (B.70), the leading contribution of
the polynomial insertion is given by

Ω2r
2 Ω2s

2 e
−∆2

8π QLerQLfse
∆2
8π Pab,cd

∣∣∣
Q2=0

=
3

16π2

(
δefδ〈ab,Pcd〉 + 2δe〈bδ|f |b,Pcd〉

)
+O(t−1) , (B.85)
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so using (A.73), with a factor 1/2 due to the Z2 symmetry (u1, u2)→ (−u1,−u2) at the cusp,
we find that the right-hand side of (3.62) receives an additional contribution given by

− kΛ
q−6

2

64π
R.N.

∫

F1

dρ1dρ2

ρ2
2

∑

γρ∈SL(2,Z)/Γ0(N)

[
N2Ê2(Nρ)−Ê2(ρ)

(N − 1) ∆k(ρ)
ΓΛp, q [P〈ab,](δcd〉δef + 2δc|e|δd〉f )

] ∣∣∣
γρ

− kυΛ
q−6

2

64π
R.N.

∫

F1

dρ1dρ2

ρ2
2

∑

γρ∈SL(2,Z)/Γ0(N)

[
Ê2(ρ)−Ê2(Nρ)

(N − 1) ∆k(ρ)
ΓΛp, q [P〈ab,](δcd〉δef + 2δc|e|δd〉f )

] ∣∣∣
γρ

(B.86)

where the first and second line results respectively from cosets elements (γ, 1) and (γ, Sσ) ∈
(SL(2,Z)/Γ0(N))ρ×(SL(2Z)/Γ0(N))σ, while other terms in the coset sum are annihilated by
integration over σ1, v1 ∈ [−1

2 ,
1
2 [. The sum (B.85) can be rewritten in terms of the regularized

integral G(p,q)

ab as

− k(υ − 1)Λ
q−6

2

64π(N − 1)

(
δefδ〈abG

(p,q)

cd〉 + 2δe〈aδb,|f |G
(p,q)

cd〉

)

− k(N2 − υ)Λ
q−6

2

64πN(N − 1)

(
δefδ〈ab

ςG(p,q)

cd〉 + 2δe〈aδb,|f |
ςG(p,q)

cd〉

)
. (B.87)

This terms gives a finite correction to the differential equation for q = 6.
The right-hand side of (3.62) also receives contributions from the boundary of region FII2

in (B.70), where the leading contribution of the polynomial insertion is

(Ω2)rse
−∆2

8π QrLeQ
s
Lfe

∆2
8π Pab,cd

∣∣∣
Q1=Q2=0

= − 3

32π3|Ω2|
(
δefδ〈ab,δcd〉 + 2δe〈aδ|f |b,δcd〉

)
+O(Ω−1

2 ) .

(B.88)
Its contribution to the right hand side of (3.62) thus reduces to 29

− 3

32π2
R.N.

∫

F1/Z2

dτ1dτ2

τ2
2

∫
τ2
Λ

2dV
∂

∂V

1

V 3

( |Ω2|
q
2

|Ω2|3
δefδ〈abδcd〉 + 2δe〈aδ|f |b,δcd〉

|Ω2|

)

×
( 2k

N − 1

[
N − υ

N
(N + 1) +

υ2

N2

]
− 1

4π
k2δ
( τ1

V τ2

)[
1 + 2

υ

N
+
υ2

N2

])
.

(B.89)

In (B.88) we kept the constant term in the Fourier expansions of 1/Φk−2 and we used ∂ /∂Ω̄ ∼
− i

4V Ω−1
2 ∂ /∂V . On the boundary at V = τ2/Λ, the first term in (B.88) gives

Λq−5 3k(N − υ)(1− υ
N2 )

8π2(N − 1)
(δefδ〈abδcd〉 + 2δe〈aδb,|f |δcd〉) R.N.

∫

F1/Z2

dτ1dτ2

τ2
2

τ5−q
2 (B.90)

which vanishes in the perturbative case, υ = N . The second term in (B.88) integrates to

−Λq−6

q − 6

3k2(δefδ〈abδcd〉 + 2δe〈aδb,|f |δcd〉)

128π3

(
1 +

υ

N

)2
. (B.91)

29Where one uses 2id3Ω2
∂

∂Ω̄rs

(
(Ω2)rt(Ω2)su(Ω−1

2 )tuX(Ω2)
)

= 2dV dτ1dτ2
τ22

∂
∂V

X(Ω2)

V 3 at the boundary V = τ2
Λ

.
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The case q = 6 must be computed separately and turns out to give zero. Finally, the quadratic
term in the second line of (3.66) can be written using the regularized genus-one integral F (p,q)

abcd

(B.15) as

−3π

2
F (p,q)

|e)k〈ab,(Λ)F (p,q)

cd〉
k

(f |(Λ) = −3π

2
F (p,q)

|e)k〈ab,F
(p,q)

cd〉
k

(f | −
3k(1 + υ

N )

16π

Λ
q−6

2

q−6
2

δ〈ab,F
(p,q)

cd〉ef (B.92)

−3k2(1 + υ
N )2

512π3

(
Λ
q−6

2

q−6
2

)2(
δefδ〈ab,δcd〉 + 2δe〈aδb,|f |δcd〉

)
.

Using the action of the operator (3.59) on the tensor defining the counter-terms of G(p,q)

ab,cd,

∆efδ〈abG
(p,q)

cd〉 = q−6
4

(
δefδ〈ab,G

(p,q)

cd〉 + 2δe〈(aδb),|f |G
(p,q)

cd〉
)

+ 6δ〈ab,F
(p,q)

cd〉ef (B.93)

∆efδ〈ab
ςG(p,q)

cd〉 = q−6
4

(
δefδ〈ab,

ςG(p,q)

cd〉 + 2δe〈(aδb),|f |
ςG(p,q)

cd〉
)

+ 6δ〈ab,F
(p,q)

cd〉ef (B.94)

∆efδ〈ab,δcd〉 = q−5
2

(
δefδ〈ab,δcd〉 + 2δe〈(aδb),|f |δcd〉

)
, (B.95)

one finds that all Λ dependent terms cancel in the differential equation for the renormalized
coupling, such that for generic q,

∆ef

(
G(p,q)

ab,cd(Λ) +
k

32π

Λ
q−6

2

q−6
2

δ〈ab
(
υ−1
N−1G

(p,q)

cd〉 +
N− υ

N
N−1

ςG(p,q)

cd〉

)
+

3k2(1 + υ
N )2

256π3

(Λ
q−6

2

q−6
2

)2
δ〈ab,δcd〉

− 3k

4π

Λq−5

q − 5

(N − υ)(1− υ
N2 )

N − 1
δ〈ab,δcd〉R.N.

∫

F1/Z2

dτ1dτ2

τ2
2

τ5−q
2

)

= −3π

2
F (p,q)

|e)k〈ab,F
(p,q)

cd〉
k

(f | . (B.96)

The cases featuring logs must be treated separately. Here we shall only discuss the case of the
perturbative lattice in four dimensions, i.e. υ = N and q = 6, which is physically relevant.

Because the first term proportional to q − 6 in (B.92) vanishes at q = 6, it does not
cancel the finite contribution from (B.86) and one gets an additional linear source term in
the equation. The computation of the anomalous terms from the counter-term in G(2k−2,6)

ab +
ςG(2k−2,6)

ab involves the detailed analysis of the integration by part in the boundary between
regions FI2 and FII2 . Since this boundary is artificial, these anomalous terms must cancel
other contributions from (B.85) and (B.88), such that one can assume that G(2k−2,6)

ab + ςG(2k−2,6)

ab

satisfies the naive differential equation (B.92), ignoring the anomalous source term in (B.19).
This prescription is in fact necessary for the differential equation to be well defined on the
renormalized couplings. In this way we obtain

∆ef Ĝ
(2k−2,6)

ab,cd = −3π

2
F̂ (2k−2,6)

|e)k〈ab, F̂
(2k−2,6)

cd〉
k

(f | −
3

16π

(
δefδ〈ab,F̂

(2k−2,6)

cd〉k
k + 2δe〈(aδb),|f |F̂

(2k−2,6)

cd〉k
k
)
,

(B.97)
where we recall that ∆ef is a shorthand for the operator in (3.59).

B.3 Loci of enhanced gauge symmetry

Even after regulating infrared divergences occurring at generic points on Gp,q, further diver-
gences may occur on loci of enhanced gauge symmetry, where perturbative 1/2-BPS states
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become massless. Divergences from region FI2 in (B.70) occur from contributions of lattice
vectors Q2 ∈ Λ such that Q2

2 = 2. For such vectors, the integral over σ1 ∈ [0, 1] picks up the
polar term in the Fourier-Jacobi expansion (A.57) of 1/Φk−2, contributing a term of the form

∫ ∞
dt t

q
2−3e−2πtQ2

2R ×
∫

F1

dρ1dρ2

ρ2
2

∫

[0,1]2
du1 du2 |ρ2|q/2

×
∑

Q1∈Λp,q

Pab,cd q
1
2Q

2
1L q̄

1
2Q

2
1R e−πρ

2
2Q

2
2R+2πi(vQ1L·Q2L−v̄Q1R·Q2R) η6

∆k(ρ) θ2
1(ρ, v)

(B.98)

to the modular integral G(p,q)

ab,cd. The integral over t diverges on the codimension q locus where
|Q2R| → 0, corresponding to 1/2-BPS states with charge ±Q2 becoming massless. This is a
familiar phenomenon in perturbative heterotic string theory, where such BPS states can be
viewed as W-bosons for a SU(2) gauge symmetry which spontaneously broken away from the
locus where |Q2R| = 0. Near the singular locus, the genus-two integral diverges as a sum of
powers of the mass M =

√
2|Q2R|, weighted by the genus-one modular integral appearing in

(B.97), which can interpreted as the four-point amplitude with two massless and two massive
gauge bosons. Note that this genus-one integral does not suffer from any divergence from
the lattice vector Q1 = Q2, since the polynomial Pab,cd in representation vanishes when
Q1 and Q2 are collinear. Of course, similar gauge symmetry enhancements arise from vectors
Q2 ∈ Λp,q with Q2

2 = 2/N , due to the polar term in the Fourier-Jacobi expansion of the images
of 1/Φk−2 under Γ2,0(N)\Sp(4,Z).

In addition, the modular integral G(p,q)

ab,cd has further singularities from region FII2 , due

to polar terms of the form q−N1
1 q−N2

2 q−N3
3 in the Fourier expansion (A.49) of 1/Φk−2, with

N1, N2, N3 < 0. The integral over Ω1 picks up contributions of pairs of vectors (Q1, Q2) ∈
Λp,q ⊕ Λp,q satisfying the level-matching conditions

Q2
1 − 2N1 = Q2

2 − 2N2 = Q2
3 − 2N3 = 0 (B.99)

where we denote Q3 = Q1 +Q2. The remaining integral over Ω2 is of then the form

∫
dL1dL2dL3

(L1L2 + L2L3 + L3L1)
6−q

2

Pab,cd e
−2π
(
L1Q2

1R+L2Q2
2R+L3Q2

3R

)
, (B.100)

which for q = 6 has a leading singularity in

∫
dL1dL2dL3Pab,cd e

−2π
(
L1Q2

1R+L2Q2
2R+L3Q2

3R

)
∼
εrtεsuQ

r
L(aQ

s
Lb)Q

t
L(cQ

u
Ld)

8π3Q 2
1RQ

2
2RQ

2
3R

. (B.101)

This integral is singular on the codimension q locus where Q2
iR = 0 for one index i ∈ {1, 2, 3},

but the corresponding divergence is covered by region I. Genuine new divergences occur in
codimension 2q where Q2

1R = Q2
2R = 0 for two distinct indices, in which case Q2

3R automat-
ically vanishes. The latter occurs for (N1, N2, N3) = (1, 1, 1) and corresponds to a SU(3)
gauge symmetry enhancement. Of course, similar divergences arise from pairs of vectors
(Q1, Q2) ∈ Λ∗p,q ⊕ Λ∗p,q due to the polar terms in the Fourier expansion of the images of
1/Φk−2 under Γ2,0(N)\Sp(4,Z). It would be interesting to recover (B.100) from a two-loop
computation in a super-Yang-Mills theory with SU(3) gauge group.
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C Composite 1/4-BPS states, and instanton measure

In this Appendix our main aim is to prove Eqs (5.85) and (5.92), which play a central role in
our analysis of the decompactification limit in §5. In particular, they ensure the consistency
of the 1/4-BPS Abelian Fourier coefficients of Gab,cd with the differential equation (2.26),
(3.20), and the consistency of the helicity supertrace (2.14) with wall-crossing, generalizing
the consistency checks of [29] to arbitrary charges Γ. Specifically, we show that the summation
measure c̄(Q,P ; Ω2) for 1/4-BPS Abelian Fourier coefficients of Gab,cd decomposes into an
Ω2-independent part associated to single-centered 1/4-BPS black holes, and a sum over all
possible splittings of a 1/4-BPS charge vector Γ = Γ1 + Γ2 into 1/2-BPS charges, Γ1 and Γ2,
weighted by the product c̄(Γ1)c̄(Γ2) of the summation measures for 1/2-BPS black holes.

We start by describing the possible splittings of a 1/4-BPS charge Γ = (Q,P ) into 1/2-
BPS constituents. Assuming an Ansatz of the form Γ1 = (p′, r′)(sQ − qP + tR) and Γ2 =
(q′, s′)(pP − rQ + uR) for rational coefficients and linearly independent charges (Q,P,R),
with R an arbitrary auxiliary charge, it is easy to find that the condition Γ = Γ1 + Γ2 fixes
t = u = 0 and p′, r′ q′, s′ such that

(
Q1
P1

)
=
(
p
r

)sQ− qP
ps− qr ,

(
Q2
P2

)
=
(
q
s

)pP − rQ
ps− qr . (C.1)

This splitting is conveniently parametrized by the a non-degenerate matrix B =
(
p q
r s

)
∈

M2(Z), such that
(
Q1
P1

)
= Bπ1B

−1
(
Q
P

)
,
(
Q2
P2

)
= Bπ2B

−1
(
Q
P

)
, (C.2)

where π1 =
(

1 0
0 0

)
and π2 =

(
0 0
0 1

)
. To parametrize the possible splittings bijectively one must

factorize out the stabilizer Stab(πi) of π1 and π2 in M2(Z) up to permutation, i.e.

Stab(πi) =
{(

d1 0
0 d2

)
,
(

0 1
1 0

)}
. (C.3)

All splittings of a charge Γ are therefore classified by the set of matrices B ∈M2(Z)/Stab(πi).
Decomposing the matrix B as
(
p q
r s

)
= γ ·

(
p′ j
0 k

)
, γ ∈ GL(2,Z) , p′ > 0 0 ≤ j < k ,

= γ ·
(1 j

gcd(j,k)

0 k
gcd(j,k)

)(
p′ 0
0 gcd(j, k)

)
,

(C.4)

and using Stab(πi) ∩ GL(2,Z) = Dih4 one can always choose γ ∈ GL(2,Z)/Dih4.30 We
conclude that the possible splittings are in one-to-one correspondence with the elements of

M2(Z)/Stab(πi) =
{
γ ·
(1 j′

0 k′
)
, γ ∈ GL(2,Z)/Dih4 , 0 ≤ j′ < k′ , (j′, k′) = 1

}
.

(C.5)
such that the quantization condition BπiB

−1Γ ∈ Λ∗m⊕Λm, i = 1, 2 on the charges of the two
constituents is obeyed. It suffices to check this condition for i = 1, since the sum of the two
is by assumption in Λ∗m ⊕ Λm.

30One checks indeed that the quotient by Dih4 passes to the right of γ, by changing the representatives γ
and j/ gcd(j, k) for

(
0 1
1 0

)
∈ Dih4.
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C.1 Maximal rank

In the maximal rank case the condition Bπ1B
−1Γ ∈ Λ∗m ⊕ Λm reduces to aP−cQ

k′ ∈ Λm, with

(Q1, P1) = (a, c)
(
dQ−bP− j

′

k′
(aP−cQ)

)
, (Q2, P2) =

( j′
k′

(a, c)+(b, d)
)

(aP−cQ) , (C.6)

These splittings are all related by GL(2,Z) to a canonical splitting

(Q
P

)
=
(1
0

)(
Q− j′

k′
P
)

+
(j′
k′
)

1
k′P , P/k′ ∈ Λm . (C.7)

Denoting by

∆C̄(Q,P ; Ω2) = C̄(Q,P ; Ω2)−
∑

A∈M2(Z)/GL(2,Z)
A−1Γ∈Λ22,6⊕Λ22,6

|A|CF
[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ

]
(C.8)

the contribution from the poles of 1/Φ10 on the second line of (5.25) to the measure factor
(5.74) we thus find

∆C̄(Q,P ; Ω2) =
∑

A∈M2(Z)/Dih4

A−1Γ∈Λ22,6⊕Λ22,6

|A| c(− ([A−1Γ]1)2

2 ) c(− ([A−1Γ]2)2

2 ) (C.9)

×
(
−δ([A

ᵀΩ2A]12)

4π
+

[A−1Γ]1 · [A−1Γ]2
2

(
sign([A−1Γ]1 · [A−1Γ]2)− sign([AᵀΩ2A]12)

))
.

where we combined the sum over A ∈M2(Z)/GL(2,Z) and the sum over γ ∈ GL(2,Z)/Dih4

into the sum over Aγ ∈M2(Z)/Dih4 that we call A again, Further decomposing the sum over
A as

A = γ ·
(
1 j′

k′
0 1

)(d1 0
0 d2

)
= B̂

(d1 0
0 d2

)
, (C.10)

with k′|d2, and B̂ = B
(

1 0

0 |B|−1

)
parametrizing the splittings, one obtains

∆C̄(Q,P ; Ω2) =
∑

B∈M2(Z)/Dih4

B̂−1Γ∈Λm⊕Λm

∑

d1≥1
Γ1/d1 ∈Λm⊕Λm

c
(
− gcd(Q2

1,P
2
1 ,Q1·P1)

2d2
1

) ∑

d2≥1
Γ2/d2 ∈Λm⊕Λm

c
(
− gcd(Q2

2,P
2
2 ,Q2·P2)

2d2
2

)

×
(
−δ([B̂

ᵀΩ2B̂]12)

4π
+
〈Γ1,Γ2〉

2

(
sign(〈Γ1,Γ2〉)− sign([B̂ᵀΩ2B̂]12)

))
(C.11)

with Γi = BπiB
−1Γ = B̂πiB̂

−1Γ.

C.2 Γ0(N) orbits of splittings

For CHL orbifolds the charge quantization condition BπiB
−1Γ ∈ Λ∗m ⊕ Λm for the splitting

(C.6) does not reduce to a single condition. They will depend on the charge orbit, as well
as on its twistedness, and only if γ ∈ Z2 n Γ0(N) ⊂ GL(2,Z), the quantization condition
BπiB

−1Γ ∈ Λ∗m ⊕ Λm reduces to aP−cQ
k′ ∈ Λ∗m. Therefore it will be more convenient to
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decompose M2(Z)/Stab(πi) into orbits of γ ∈ Γ0(N)/Z2 acting on the left.31 Therefore we
choose to decompose the splitting matrix as

(
p q
r s

)
=
(
a b
c d

)
·
(
p′ j
0 k

)
,
(
a b
c d

)
∈ Z2 n Γ0(N), p′ > 0 , 0 ≤ j < k , (C.12)

if (p,r)
gcd(p,r) = (∗, 0) mod N , and

(
p q
r s

)
=
(
a b
c d

)
·
(

0 k
p′ j

)
,
(
a b
c d

)
∈ Z2 n Γ0(N), p′ > 0 , 0 ≤ j < Nk (C.13)

otherwise. In the former case the splitting can be rotated under Γ0(N) to the canonical
splitting (C.7), such that Γ1 is in the Γ0(N) orbit of a purely electric charge. In this case
we say that Γ1 is of electric type and we call (C.7) ‘splitting of electric type’. This splitting
exists if and only if P/k′ ∈ Λ∗m. In contrast, the splitting (C.13) can be rotated under Γ0(N)
to the canonical form (

Q
P

)
=
(

0
1

)(
P − j′

k′
Q
)

+
(
k′

j′
) 1

k′
Q , (C.14)

such that Γ1 is in the Γ0(N) orbit of a purely magnetic charge. We then way Γ1 is of
magnetic type and we call (C.14) a ‘splitting of magnetic type’. This splitting exists if and
only if Q/k′ ∈ Λm. Note that the second charge Γ2 can be either of electric or of magnetic
type in both types of splitting. In fact, we shall see that a splitting of mixed type, such that
one charge is of electric type and the other of magnetic type, can be rotated by a suitable
γ ∈ Γ0(N) into either type of splittings.

We drop the primes on (j′, k′) in this discussion to simplify the notation, with the under-
standing that k and j are now relative prime. In the electric type, a splitting matrix with
k = 0 modN , such that

(
j
k

)
1
kP is of electric type, can be rotated by a Γ0(N) element to

another splitting of electric type
(

1 j
0 k

)
=
(
j b
k −̃

)(
̃ 1
k 0

)
, (C.15)

with 0 ≤ ̃ < k, j̃+ bk = 1. In the case where k 6= 0 modN , such that
(
j
k

)
1
kP is of magnetic

type, an element of Γ0(N) rotates it to a splitting of magnetic type
(

1 j
0 k

)
=
(
a j
−̃ k

)(
k 0
̃ 1

)
, (C.16)

with ̃ = 0 modN , ̃ < Nk. This can be understood as follows: in (C.15), the second charge
in the splitting is also electric since k = 0 modN , and thus exchanging (Q1, P1) with (Q2, P2)
preserves the type of the splitting; in (C.16), the second charge is magnetic since k 6= 0 modN ,
and thus exchanging the two charges of the splitting sends the splitting of electric type to
a splitting of magnetic type. The same reasoning applies to the splitting of magnetic types:
when j = 0 modN , such that

(
k
j

)
1
kQ is of electric type, one has

(
0 k
1 j

)
=
(
k −̃
j d

)(
̃ 1
k 0

)
, (C.17)

with d 6= 0 modN , 0 ≤ ̃ < k, and when j 6= 0 modN , such that
(
k
j

)
1
kQ is of magnetic type,

(
0 k
1 j

)
=
(−̃ k
c j

)(
k 0
̃ 1

)
, (C.18)

31Note that Dih4∩Z2nΓ0(N) = Z2×Z2 and the corresponding quotient Z2nΓ0(N)/[Z2×Z2] = Γ0(N)/Z2.
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with c = 0 modN , 0 ≤ ̃ < Nk and j̃+ ck = −1.
It follows from this discussion that the splittings are in one-to-one correspondence with

the cosets

M2(Z)/Stab(πi) =
{
γ ·
(1 j′

0 k′
)
, γ ∈ Γ0(N)/Z2 , 0 ≤ j′ < k′ , (j′, k′) = 1

}
(C.19)

∪
{
γ ·
(0 k′

1 j′
)
, γ ∈ Γ0(N)/Z2 , 0 ≤ j′ < Nk′ , j′ 6= 0 modN , (j′, k′) = 1

}

=
{
γ ·
(1 j′

0 k′
)
, γ ∈ Γ0(N)/Z2 , 0 ≤ j′ < k′ , k′ 6= 0 modN , (j′, k′) = 1

}

∪
{
γ ·
(0 k′

1 j′
)
, γ ∈ Γ0(N)/Z2 , 0 ≤ j′ < Nk′ , (j′, k′) = 1

}

where the splittings of mixed type are included either in the electric type or the magnetic type.
In the following we shall consider both representatives, keeping in mind that we systematically
double-count the splittings of mixed type in this way.

It is worth noting that the sign (−1)〈Γ1,Γ2〉 appearing in the wall-crossing formula (2.12)
does not depend on the type of splitting. For an electric-type splitting

〈Γ1,Γ2〉 = (Q− j′
k′P ) · P = Q · P mod 2 . (C.20)

To prove this, note that either P /∈ NΛ∗ and 1
k′P ∈ Λ so ( 1

k′P )2 = 0 mod 2, or P ∈ NΛ∗ and
1
k′P ∈ Λ∗ so ( 1

k′P ) · P = 0 mod 2. The same reasoning shows for a magnetic-type splitting

〈Γ1,Γ2〉 = Q · (P − j′
k′Q) = Q · P mod 2 . (C.21)

Moreover, under Γ0(N) the parity of Q · P is preserved:

(aQ+ bP ) · (cQ+ dP ) = Q · P + acQ2 + 2bcQ · P + bdP 2 = Q · P mod 2 . (C.22)

C.3 Factorization of the measure factor

We now discuss the factorization of the measure factor associated to the poles of 1/Φk−2 and
1/Φ̃k−2 for |Ω2| > 1

4 displayed in (5.75). In this subsection we show that whenever a term in
the measure associated to the charge Γ factorizes, it produces the correct measure factor of
the corresponding 1/2-BPS charges Γi.
• For the first term in (5.75), we combine the sum over A ∈ M2(Z)/GL(2,Z) and the
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sum over γ ∈ GL(2,Z)/Dih4 in (5.57) as in (C.9), and use the decomposition (C.10) to get

∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P

)
∈Λm⊕Λm

|A|
(
Ck−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]
− CFk−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ

])

=
∑

A∈M2(Z)/Dih4

A−1Γ∈Λm⊕Λm

|A|ck(− ([A−1Γ]1)2

2 )ck(− ([A−1Γ]2)2

2 )

×
(
−δ([A

ᵀΩ2A]12)

4π
+

[A−1Γ]1 · [A−1Γ]2
2

(
sign([A−1Γ]1 · [A−1Γ]2)− sign([AᵀΩ2A]12)

))

=
∑

B∈M2(Z)/Dih4

B̂−1Γ∈Λm⊕Λm

∑

d1≥1
Γ1/d1 ∈Λm⊕Λm

ck
(
− gcd(Q2

1,P
2
1 ,Q1·P1)

2d2
1

) ∑

d2≥1
Γ2/d2 ∈Λm⊕Λm

ck
(
− gcd(Q2

2,P
2
2 ,Q2·P2)

2d2
2

)

×
(
−δ([B̂

ᵀΩ2B̂]12)

4π
+
〈Γ1,Γ2〉

2

(
sign(〈Γ1,Γ2〉)− sign([B̂ᵀΩ2B̂]12)

))
, (C.23)

where B determines a splitting Γ = Γ1 + Γ2. In this sum, the only non-trivial contribu-

tions arise when Γ1 is of electric type, such that gcd(Q2
1, P

2
1 , Q1P1) =

gcd(NQ2
1,P

2
1 ,Q1P1)

N , and
because it is electric in Λm, Γ1/d1 is untwisted. Whereas, when Γ1/d1 is of magnetic type,
gcd(Q2

1, P
2
1 , Q1P1) = gcd(NQ2

1, P
2
1 , Q1P1), and because it is magnetic in Λm, Γ1 can be either

twisted or untwisted. Therefore we get the correct contribution to the measure for 1/2-BPS
displayed in (2.22).
• For the third term in the measure (5.75), it is convenient to consider instead Ã =(

1 0
0 N

)
A ∈M2,00(N) such that

∑

A∈M2(Z)/GL(2,Z)

A−1
(
Q
P/N

)
∈Λ∗m⊕Λ∗m

|A|
(
Ck−2

[
A−1

(−NQ2 −Q · P
−Q · P −P 2/N

)
A−ᵀ;AᵀΩ2A

]
− CFk−2

[
A−1

(−NQ2 −Q · P
−Q · P −P 2/N

)
A−ᵀ

])

=
∑

Ã∈M2,00(N)/Dih4

Ã−1Γ∈Λ∗m⊕Λ∗m

|Ã|ck(−N ([Ã−1Γ]1)2

2 ) ck(−N ([Ã−1Γ]2)2

2 )

×
(
−δ([Ã

ᵀΩ2Ã]12)

4π
+

[Ã−1Γ]1 · [Ã−1Γ]2
2

(
sign([Ã−1Γ]1 · [Ã−1Γ]2)− sign([ÃᵀΩ2Ã]12)

))
.(C.24)

A matrix Ã ∈M2,00(N) admits either a decomposition with γ ∈ Γ0(N) such that

Ã = γ ·
(p′ j

0 Nk

)
= γ ·

(
1 j

Nk
0 1

)(
p′ 0
0 Nk

)
, (C.25)

and Γγ = γ−1Γ satisfies

Pγ
k
∈ NΛ∗m ,

Qγ − j
kNPγ

p′
∈ Λ∗m , (C.26)

or a decomposition with γ ∈ Γ0(N) such that

Ã = γ ·
( 0 k
Np′ Nj

)
= γ ·

(0 1

1 Nj
k

)(
Np′ 0

0 k

)
, (C.27)
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and
Qγ
k
∈ Λ∗m ,

Pγ − Nj
k Qγ

p′
∈ NΛ∗m . (C.28)

For the splitting matrix of electric type (C.25), the charge Γ1 is of electric type with

N([Ã−1Γ]1)2 =
gcd(NQ2

1, P
2
1 , Q1 · P1)

p′2
, (C.29)

with the divisor integer d1 = p′; and either the second charge Γ2 is of electric type, with
kN

gcd(j,kN) = 0 mod N and

N([Ã−1Γ]2)2 =
gcd(NQ2

2, P
2
2 , Q2P2)

gcd(j,Nk)2
, (C.30)

with the divisor integer d2 = gcd(j,Nk), or Γ2 is of twisted magnetic type with kN
gcd(j,kN) 6= 0

mod N and

N([Ã−1Γ]2)2 =
gcd(NQ2

2, P
2
2 , Q2P2)

N(gcd(j,Nk)/N)2
, (C.31)

with the divisor integer d2 = gcd(j,Nk)/N .
For the splitting matrix of magnetic type (C.27) the first charge Γ1 is of untwisted magnetic

type with

N([Ã−1Γ]1)2 =
gcd(NQ2

1, P
2
1 , Q1 · P1)

Np′2
, (C.32)

with the divisor integer d1 = p′; and either the second charge Γ2 is of electric type, with
Nj

gcd(Nj,k) = 0 mod N and

N([Ã−1Γ]2)2 =
gcd(NQ2

2, P
2
2 , Q2P2)

gcd(Nj, k)2
(C.33)

with the divisor integer d2 = gcd(Nj, k), or Γ2 is of twisted magnetic type with Nj
gcd(Nj,k) 6= 0

mod N and

N([Ã−1Γ]2)2 =
gcd(NQ2

2, P
2
2 , Q2P2)

N(gcd(Nj, k)/N)2
(C.34)

with the divisor integer d2 = gcd(Nj, k)/N .
• At last we consider the second term in (5.75), which is a combination . We combine

the sum over A ∈M2,0(Z)/[Z2 n Γ0(N)] and the sum over γ ∈ Γ0(N)/Z2 in (5.58) to get

∑

A∈M2,0(N)/[Z2nΓ0(N)]

A−1
(
Q
P

)
∈Λ∗m⊕Λm

|A|
(
C̃k−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ;AᵀΩ2A

]
− C̃Fk−2

[
A−1

( −Q2 −Q · P
−Q · P −P 2

)
A−ᵀ

])

+
∑

A∈M2,0(N)/[Z2×Z2]

A−1Γ∈Λ∗m⊕Λm

|A|ck(−N ([A−1Γ]1)2

2 )ck(− ([A−1Γ]2)2

2 ) (C.35)

×
(
−δ([A

ᵀΩ2A]12)

4π
+

[A−1Γ]1 · [A−1Γ]2
2

(
sign([A−1Γ]1 · [A−1Γ]2)− sign([AᵀΩ2A]12)

))
.

A matrix in A ∈ M2,0(N) admits one of the following decompositions with respect to γ ∈
Γ0(N):
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1.

A = γ ·
(

1 j
k

0 1

)(
p′ 0
0 k

)
⇒ Qγ − j

kPγ

p′
∈ Λ∗m ,

Pγ
k
∈ Λm , (C.36)

Γ1 is always of electric type and N([A−1Γ]1)2 =
gcd(NQ2

1,P
2
1 ,Q1P1)

p′2 , and Γ2 is either of

untwisted electric type with k
gcd(j,k) = 0 mod N with ([A−1Γ]2)2 =

gcd(NQ2
2,P

2
2 ,Q2P2)

N gcd(j,k)2 or

of magnetic type with k
gcd(j,k) 6= 0 mod N with ([A−1Γ]2)2 =

gcd(NQ2
2,P

2
2 ,Q2P2)

gcd(j,k)2 .

2.

A = γ ·
( 0 1
N j

k

)(
p′ 0
0 k

)
⇒ Pγ − j

kQγ

p′
∈ NΛ∗m ,

Qγ
k
∈ Λm , (C.37)

Γ1 is always of untwisted magnetic type and N([A−1Γ]1)2 =
gcd(NQ2

1,P
2
1 ,Q1P1)

Np′2 , and

Γ2 is either of untwisted electric type with j
gcd(j,k) = 0 mod N with ([A−1Γ]2)2 =

gcd(NQ2
2,P

2
2 ,Q2P2)

N gcd(j,k)2 or of magnetic type with j
gcd(j,k) 6= 0 mod N with ([A−1Γ]2)2 =

gcd(NQ2
2,P

2
2 ,Q2P2)

gcd(j,k)2 .

3.

A = γ ·
(

1 j
Nk

0 1

)(
0 p′

Nk 0

)
⇒ Qγ − j

NkPγ

p′
∈ Λm ,

Pγ
k
∈ NΛ∗m , (C.38)

Γ2 is always of untwisted electric type and ([A−1Γ]2)2 =
gcd(NQ2

2,P
2
2 ,Q2P2)

Np′2 , and Γ1 is either

of electric type with Nk
gcd(j,Nk) = 0 mod N with N([A−1Γ]1)2 =

gcd(NQ2
1,P

2
1 ,Q1P1)

gcd(j,Nk)2 or of un-

twisted magnetic type with Nk
gcd(j,Nk) 6= 0 mod N with N([A−1Γ]1)2 =

gcd(NQ2
1,P

2
1 ,Q1P1)

N(gcd(j,Nk)/N)2 .

4.

A = γ ·
(0 1

1 Nj
k

)(
0 p′

k 0

)
⇒ Pγ − Nj

k Qγ

p′
∈ Λm ,

Qγ
k
∈ Λ∗m , (C.39)

Γ2 is always of magnetic type and ([A−1Γ]2)2 =
gcd(NQ2

2,P
2
2 ,Q2P2)

p′2 , and Γ1 is either of elec-

tric type with Nj
gcd(Nj,k) = 0 mod N with N([A−1Γ]1)2 =

gcd(NQ2
1,P

2
1 ,Q1P1)

gcd(Nj,k)2 or of untwisted

magnetic type with Nj
gcd(Nj,k) 6= 0 mod N with N([A−1Γ]1)2 =

gcd(NQ2
1,P

2
1 ,Q1P1)

N(gcd(Nj,k)/N)2 .

We conclude that after trading each of the sums over A as sums over splitting matrices
B, the contribution from (5.75) gives a term of the form

(
−δ([B̂

ᵀΩ2B̂]12)

4π
+
〈Γ1,Γ2〉

2

(
sign(〈Γ1,Γ2〉)− sign([B̂ᵀΩ2B̂]12)

))
c′(Γ1) c′(Γ2) (C.40)
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to the last line in (5.92), where c′(Γi) is either

cU (Γi) =
∑

di>1
d−1
i Γi∈Λm⊕NΛ∗m

ck(−
gcd(NQ2

i , P
2
i , Qi · Pi)

2Nd2
i

) , (C.41)

when the contribution is only non-vanishing for untwisted charge Γi, or

cT (Γi) =
∑

di>1
d−1
i Γi∈Λ∗m⊕Λm

ck(−
gcd(NQ2

i , P
2
i , Qi · Pi)

2d2
i

) , (C.42)

for generic contribution such the charge Γi is either twisted or untwisted.
It remains to show that the three terms in the measure count all the possible splittings

with the correct multiplicity, so as to reproduce the product of the summation factors of
formula (2.22) for the two charges Γi.

C.4 Electric-magnetic type of splittings

We summarize the conditions from the three terms in (5.75) to contribute to a given splitting
in Table 2, where for the second term we distinguish the cases where B−1(Q,P ) ∈ Λ∗m ⊕ Λm
or B−1(Q,P ) ∈ Λm ⊕ Λ∗m.

Oij Electric type Magnetic type Counted by

Λm ⊕ Λm Q− j
kP ∈ Λm , 1

kP ∈ Λm P − j
kQ ∈ Λm ,

1
kQ ∈ Λm Φ−1

k−2(Ω)

Λ∗m ⊕ Λm Q− j
kP ∈ Λ∗m , 1

kP ∈ Λm P − j
kQ ∈ NΛ∗m , 1

kQ ∈ Λm Φ̃−1
k−2(Ω)

Λm ⊕ Λ∗m Q− j
Nk′P ∈ Λm , 1

Nk′P ∈ Λ∗m P − Nj′
k Q ∈ Λm , 1

kQ ∈ Λ∗m Φ̃−1
k−2(Ω)

Λ∗m ⊕ Λ∗m Q− j
Nk′P ∈ Λ∗m, 1

Nk′P ∈ Λ∗m P − Nj′
k Q ∈ NΛ∗m, 1

kQ ∈ Λ∗m Φ−1
k−2(Ω/N)

Table 2: Γ0(N) orbits of splittings from the three terms in (5.75). The first column indicates
the support of B−1(Q,P ). The second and third columns give the corresponding constraints
on Γ1, Γ2, for each of the two possible splittings (C.7) and (C.14). The last column records
the counting function. We write k = Nk′ and j = Nj′ whenever k or j are forced to be
multiple of N . Oij is used in the text to denote in the table above contribution from row i
and column j.

For this purpose we enumerate the possible 1/4-BPS charges Γ and the type of 1/2-BPS
charges they can possibly split into, i.e. twisted or untwisted, electric or magnetic. It will be
convenient to introduce some notation for classifying pairs of 1/2-BPS charges: for each type
of splitting we define a 2-component vector which first component accounts for the electric
type charges and the second for the magnetic type charges, with a U for untwisted and a T
for twisted. e.g.

1. (TT, ∅), (T, T ) and (∅, TT ) stand for electric-twisted electric-twisted, electric-twisted magnetic-
twisted, and magnetic-twisted magnetic-twisted splittings, respectively.
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2. (TU, ∅), (T,U), (U, T ) and (∅, TU) stand for electric-twisted electric-untwisted, electric-
twisted magnetic-untwisted, electric-untwisted magnetic-twisted and magnetic-twisted magnetic-
untwisted splittings, respectively.

3. (UU, ∅), (U,U) and (∅, UU) stand for electric-untwisted electric-untwisted, electric-untwisted
magnetic-untwisted, and magnetic-untwisted magnetic-untwisted splittings, respectively.

We shall enumerate the possible splittings according to the following graph of inclusions,

NΛe ⊕NΛm
⊂
⊂

NΛe ⊕NΛe

Λm ⊕NΛm

⊂
⊂ Λm ⊕NΛe

⊂
⊂

Λm ⊕ Λm

Λe ⊕NΛe

⊂
⊂ Λe ⊕ Λm , (C.43)

We will denote X ∈Λ the strict inclusion of the vector X in Λ, meaning that X is a generic
vector in Λ and does not belong to a smaller lattice Λ̃ in this sequence

. . . ⊂ NkΛm ⊂ NkΛ∗m ⊂ . . . ⊂ NΛm ⊂ NΛ∗m ⊂ Λm ⊂ Λ∗m . (C.44)

In the following, it will be convenient to recall the generating function whose Fourier coeffi-
cients give the contribution to the measure. According to table 2, the factorizations (A.44)
imply that when the condition is 1

di
[B−1Γ]i ∈ Λm, the corresponding measure factor for the

1/2-BPS charge BπiB
−1Γ is a Fourier coefficient of ∆k(τ)−1, whereas when 1

di
[B−1Γ]i ∈ Λ∗m

it is a Fourier coefficient of ∆k(τ/N)−1. For a magnetic type charge BπiB
−1Γ, ∆k(τ)−1 gives

a contribution cT (Γ) and ∆k(τ/N)−1 a contribution cU (Γ). On the contrary for an eletric
type charge, ∆k(τ)−1 gives a contribution cU (Γ) and ∆k(τ/N)−1 a contribution cT (Γ).

There are seven cases of interest:

1. Q∈Λ∗m , P ∈Λm : the only contributions are from O21 and O32. These two contributions
give (T, T ) splittings with Fourier contributions in [∆k(ρ/N)∆k(σ)]−1. We thus obtain a
single contribution in cT (Γ1)cT (Γ2) (with (C.42)), as expected for twisted 1/2-BPS charges.

2. Q∈Λm , P ∈Λm : contributions from O11, O21, O12, O22, and O32 fall in (U, T ), (∅, UT ),
and (∅, TT ) splitting sectors.

Electric-type splitting : the first charge in (C.7) is purely electric and thus untwisted in
both O11 and O21, the second one is congruent to an electric charge for k = 0 modN ,
and a magnetic one otherwise. But since P ∈Λm, 1

kP ∈ Λm implies that k 6= 0 modN ,
and thus the second charge in (C.7) is magnetic-twisted. O11 and O21 combine together
to give (U, T ) splittings with measure factor (cT (Γ1) + cU (Γ1))cT (Γ2) coming from Fourier
coefficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)
∆k(σ)−1.

Magnetic-type splitting : the first charge in (C.14) is purely magnetic, and thus twisted for
O32, untwisted for O22, and can be either twisted or untwisted for O12, the second 1/2-BPS
charge is congruent to a magnetic-untwisted charge for j 6= 0 modN , and electric-twisted
otherwise.

When P − j
kQ ∈ NΛ∗m, O12 contribute only when j 6= 0 modN , thus combining with O22

to give (∅, TU) splittings with the measure (cT (Γ1) + cU (Γ1))cT (Γ2) coming from Fourier
coefficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)
∆k(σ)−1.

When P − j
kQ∈Λm with j 6= 0 modN , O12 gives (∅, TT ) splittings with measure cT (Γ1)

cT (Γ2) from Fourier coefficients of [∆k(ρ)∆k(σ)]−1. Finally, when j = 0 modN , O12
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combines with O32 — for which j = 0 modN by construction — to give (U, T ) splittings
with measure cT (Γ1)(cT (Γ2)+cU (Γ2)) from Fourier coefficients of (∆k(ρ)−1 +∆k(ρ/N)−1

)

∆k(σ)−1. Recall that we double-count this last splitting, which is the same as the one
defined above from O11 and O21 with Γ1 and Γ2 exchanged, according to (C.19).

3. Q∈Λ∗m , P ∈NΛ∗m : contribution from O21, O31, O41, O32 and O42 fall in (TT, ∅), (TU, ∅),
and (T,U).

Electric-type splitting : the contributions O31, O41 are both constrained to k = 0 modN ,
imposing the second charge in (C.7) to be electric-twisted.

If j 6= 0 modN and Q− j
kP ∈Λ∗m, the splitting is (TT, ∅) and only O41 contributes accord-

ingly, with measure cT (Γ1)cT (Γ2) from [∆k(ρ/N)∆k(σ/N)]−1.

When Q− j
kP ∈ Λm, the splitting is (TU, ∅) and both O31, O41 contribute with measure

(cT (Γ1) + cU (Γ1))cT (Γ2) from Fourier coefficients of ∆k(ρ/N)−1
(
∆k(σ)−1 + ∆k(σ/N)−1

)
.

If instead j = Nj′, contributions from O41, whose condition rewrites Q− j′
k′P ∈ Λ∗m ,

1
k′P ∈

NΛ∗m, combine with O21 to (T,U) splittings with measure cT (Γ1)(cT (Γ2) + cU (Γ2)) from
Fourier coefficients of ∆k(ρ/N)−1

(
∆k(σ)−1 + ∆k(σ/N)−1

)
— note that their second 1/2-

BPS charge in (C.7) is congruent to a magnetic-untwisted one since P ∈NΛ∗m implies
k′ 6= 0 modN in O41.

Magnetic-type splitting : contributions from O32 , O42 have j = 0 modN by construction,
imposing their second 1/2-BPS charge in (C.14) to be congruent to an electric-twisted one,

as well as P − Nj′
k Q ∈ NΛ∗, implying the first 1/2-BPS charge to be magnetic-untwisted

for both of them. They thus combine to give (T,U) splittings with measure (cT (Γ1) +
cU (Γ2))cT (Γ2) from Fourier coefficients in [∆k(ρ/N)

(
∆k(σ) + ∆k(σ/N)

)
]−1. Recall that

we couble-count this last splitting, which is the same as the one defined above from O41

and O21 with Γ1 and Γ2 exchanged, according to (C.19).

4. Q∈Λm , P ∈NΛ∗m : contribution from O11, O21, O31, O41, O12, O22, O32, and O42 fall
symmetrically in (U,U), (TT, ∅), and (∅, TT ).

Electric-type splitting : P ∈NΛ∗m imposes k 6= 0 modN for O11 , O21, for which the con-

ditions rewrite 1
k′P ∈ NΛ∗m, with k′ 6= 0 modN , thus implying that the second 1/2-BPS

charge in (C.7) is congruent to magnetic-untwisted one.

Given j = 0 modN in O31 , O41, one can rewrite their conditions as Q − j′
k′P ∈ Λm and

1
k′P ∈ NΛ∗m, and these combine with O11 , O21 to give (U,U) splittings with measure
(cT (Γ1) + cU (Γ1))(cT (Γ2) + cU (Γ2)) from Fourier coefficients of all factors

(
∆k(ρ)−1 +

∆k(ρ/N)−1
)(

∆k(σ)−1 + ∆k(σ/N)−1
)
. These are the only contributions from O11 and

O12, because k 6= 0 modN .

For j 6= 0 modN , one has Q− j
Nk′P ∈Λ∗m, and O31 is empty while O41 contributes alone

to (TT, ∅) splittings with measure cT (Γ1)cT (Γ2) from [∆k(ρ/N)∆k(σ/N)
)
]−1.

Magnetic-type splitting : in the case where j = 0 modN , all O12, O22, O32 and O42

combine, with k 6= 0 modN for each, to give (U,U) splittings measure from Fourier coef-
ficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 + ∆k(σ/N)−1

)
, double-counting the electric

type (U,U) splittings describe above. For j 6= 0 modN , and when P − j
kQ∈Λm, O12

contribute alone to (∅, TT ) splittings, with measure cT (Γ1)cT (Γ2) from Fourier coefficients
of [∆k(ρ)∆k(σ)]−1.
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5. Q∈Λm , P ∈NΛm : contributions from all Oij fall in (U,U), (UU, ∅), and (∅, TT ) splitting
sectors.

Electric-type splitting : cases with k 6= 0 modN and Q − j
kP ∈ Λm appear in O11 and

O21, together with O31 and O41 when j = 0 modN , corresponding to (U,U) splittings
with the generic measure from Fourier coefficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 +

∆k(σ/N)−1
)
.

When k = 0 modN , cases with j 6= 0 modN get contributions from O11, O21, O31 and
O41, corresponding to (UU, ∅) splittings with the generic measure from Fourier coefficients
of
(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 + ∆k(σ/N)−1

)
.

Magnetic-type splitting : we obtain that k 6= 0 modN in all cases. When j 6= 0 modN ,

one has P − j
kQ∈Λm and only O12 contributes, giving (∅, TT ) splittings with measure

cT (Γ1)cT (Γ2) from [∆k(ρ)∆k(σ)]−1.

When j = 0 modN , P − j
kQ ∈ NΛm and O12, O22, O32, O42 contribute, giving (U,U)

splittings with the generic measure from Fourier coefficients of all four factors in
(
∆k(ρ)−1+

∆k(ρ/N)−1
)(

∆k(σ)−1 + ∆k(σ/N)−1
)
. These splittings are the same as the electric type

splittings of the same (U,U) type.

6. Q∈NΛ∗m, P ∈NΛ∗m: all Oij contribute and fall in (U,U), (∅, UU), and (TT, ∅) splitting
sectors.

Electric-type splitting : when k 6= 0 modN , Q− j
kP ∈ NΛ∗m and O11, O21, together with

O31 and O41 when j = 0 modN , contribute to (U,U) splittings, with measure contribu-
tions from Fourier coefficients of all four factors in

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 +

∆k(σ/N)−1
)
.

When k = 0 modN , only the two last orbits can contribute, and when j 6= 0 modN there
is no other contribution than O41, leading to (TT, ∅) splittings with measure cT (Γ1)cT (Γ2)
from Fourier coefficients of [∆k(ρ/N)∆k(σ/N)]−1.

Magnetic-type splitting : when k 6= 0 modN , O12 and O22 with j 6= 0 modN contribute,
together with O32 and O42 when k = 0 modN , to (∅, UU) splittings with the generic
measure from Fourier coefficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 + ∆k(σ/N)−1

)
.

When k 6= 0 modN and j = 0 modN , O12, O22, O32 andO42 contribute to (U,U) splittings
with the generic measure from Fourier coefficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 +

∆k(σ/N)−1
)
, associated to the same splittings of electric type (U,U) described above.

7. Q∈NΛ∗m, P ∈NΛm: all Oij contribute and fall in (U,U), (∅, UU), and (UU, ∅) splitting
sectors.

Electric-type splitting : when k 6= 0 modN , Q− j
kP ∈ NΛ∗m and O11, O21, together with

O31 and O41 when j = 0 modN , contribute to (U,U) splittings, with the generic measure
from Fourier coefficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 + ∆k(σ/N)−1

)
.

When k = 0 modN , all the four orbits can contribute and j 6= 0 modN . They lead to
(UU, ∅) splittings with generic measure from Fourier coefficients of

(
∆k(ρ)−1+∆k(ρ/N)−1

)

×
(
∆k(σ)−1 + ∆k(σ/N)−1

)
.

Magnetic-type splitting : when k 6= 0 modN , O12 and O22 with j 6= 0 modN contribute,
together with O32 and O42 when k = 0 modN , to (∅, UU) splittings with the generic
measure from Fourier coefficients of

(
∆k(ρ)−1 + ∆k(ρ/N)−1

)(
∆k(σ)−1 + ∆k(σ/N)−1

)
.
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When k 6= 0 modN and j = 0 modN , O12, O22, O32 andO42 contribute to (U,U) splittings
with the generic measure (cT (Γ1) + cU (Γ1))(cT (Γ2) + cU (Γ2)) from Fourier coefficients of(
∆k(ρ)−1+∆k(ρ/N)−1

)(
∆k(σ)−1+∆k(σ/N)−1

)
, which count the same splitting of electric

type described above.

This concludes the proof of formula (5.92). As a consistency check, we note that these
results are consistent with Fricke duality. Namely, for 1/4-BPS charges belonging to Fricke-
invariant subsets, such as (Q,P )∈Λ∗m ⊕ Λm or (Q,P )∈Λm ⊕ NΛ∗m, the possible splittings
are invariant under the exchange of electric and magnetic type; whereas for charges in subsets
that are exchanged under Fricke duality, as (Q,P )∈Λm ⊕ NΛm and (Q,P )∈NΛ∗ ⊕ NΛ∗,
the possible splittings are themselves exchanged under Fricke duality. Moreover, we find that
all the splittings of electric-magnetic type are correctly double-counted through the splitting
matrices of electric and magnetic type, consistently with (C.19).

D Two-instanton singular contributions to Abelian Fourier co-
efficients

In this section, we extract the contributions to the rank-2 Abelian Fourier modes from the
Dirac delta functions in the Poincaré series representation (5.25), (5.57) of the Fourier coeffi-
cients of 1

Φk−2
.

D.1 Maximal rank

Starting from (5.24), the sum over γ ∈ GL(2,Z)/Dih4 can be unfolded against the integration
domain,32 by changing variables as Ω2 → γ−ᵀΩ2γ

−1. The contribution of the delta functions
in (5.25) then leads to

− R4

2π

∑

Q̃∈Λ⊕2
p−2,q−2

∑

A∈M2(Z)/GL(2,Z)
γ∈GL(2,Z)/Dih4

e2πiaiIAijQ
j
I

∫

P2

d3Ω2

Ω
3/2
2

|Ω2|
q−5

2 c(− (sQ̃1−qQ̃2)2

2 )c(− (pQ̃2−rQ̃1)2

2 )

× δ( tr
(

0 1/2
1/2 0

)
Ω2) e

−πTr
[
R2

S2
Ω−1

2 γᵀAᵀ
(

1 S1

S1 |S|2
)
Aγ+2Ω2γ−1Q̃·Q̃ᵀγ−ᵀ

]

× Pab,cd( ∂∂y ) e
2πi
(
R

i
√

2
yrµ(γΩ−1

2 γᵀ)rsAᵀ
siv

ᵀ iµ+yr αQ̃L
rα+ 1

4i
yr α(γΩ−1

2 γᵀ)rsysα
)
,

(D.1)

where a factor 2 comes from the center of order 2 of GL(2,Z) acting on H2, γ =
(
p q
r s

)
.

The integral over positive definite matrices P2 splits into two Bessel-type integrals, using the

32 Recall that Dih4 is the dihedral group of order 8 generated by the matrices
(

1 0
0 −1

)
and

(
0 1
1 0

)
, which stabilize(

0 1/2
1/2 0

)
.
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projectors π1 =
(

1 0
0 0

)
, π2 =

(
0 0
0 1

)

− R4

π

∑

Q̃∈Λ⊕2
p−2,q−2

∑

A∈M2(Z)/GL(2,Z)
γ∈GL(2,Z)/Dih4

e2πiaiIAijQ̃
j
I c(− (sQ̃1−qQ̃2)2

2 )c(− (pQ̃2−rQ̃1)2

2 )

×
∫ ∞

0

dρ2

ρ2
ρ
q−6

2
2 e

−πTr
[
π1

(
R2

ρ2S2
γᵀAᵀ

(
1 S1

S1 |S|2
)
Aγ+2ρ2γ−1Q̃·Q̃ᵀγ−ᵀ

)]

×
∫ ∞

0

dσ2

σ2
σ
q−6

2
2 e

−πTr
[
π2

(
R2

σ2S2
γᵀAᵀ

(
1 S1

S1 |S|2
)
Aγ+2σ2γ−1Q̃·Q̃ᵀγ−ᵀ

)]

× Pab,cd( ∂∂y ) e
2πi
(

R
ρ2i
√

2
(yµγπ1γᵀAᵀvᵀµ)+yαγ γ−1Q̃L

α+ 1
4iρ2

(yαγπ1γᵀyα)
)

× e2πi
(

R
σ2i
√

2
(yµγπ2γᵀAᵀvᵀµ)+ 1

4iσ2
(yαγπ2γᵀyα)

)
.

(D.2)

The matrices γ ∈ GL(2,Z)/Dih4 in the last two rows can be absorbed by a change of variable

(yµ, yα) → (yµγ
−1, yαγ

−1). After relabelling the summation variable as
(
Q
P

)
= A

(
Q̃1

Q̃2

)
, one

obtains a sum over all splittings Γ = (Q,P ) = Γ1 + Γ2 in the lattice Λ⊕2
p−2,q−2,

∑

Q̃i∈Λ⊕2
p−2,q−2

∑

A∈M2(Z)/GL(2,Z)
γ∈GL(2,Z)/Dih4

e2πiaiIAijQ̃
j
If(Aγπiγ

−1Q̃) g((π1γ
−1Q̃)2)g((π2γ

−1Q̃)2)

=
∑

Γ∈Λ⊕2
p−2,q−2

e2πi(a1·Q+a2·P )

×
∑

A∈M2(Z)/GL(2,Z)
γ∈GL(2,Z)/Dih4

A−1Γ∈Λ⊕2
p−2,q−2

f(Aγ πi(γA)−1Γ) g
(
− (π1(γA)−1Γ)2

2

)
g
(
− (π2(γA)−1Γ)2

2

)

=
∑

Γ∈Λ⊕2
p−2,q−2

e2πi(a1·Q+a2·P )
∑

B∈M2(Z)/Stab(πi)
Γ1,Γ2∈Λp−2,q−2

f(Γ1,Γ2)

×
∑

Γ1/d1∈Λp−2,q−2

g
(
− (B−1Γ1)2

2d2
1

) ∑

Γ2/d2∈Λp−2,q−2

g
(
− (B−1Γ2)2

2d2
2

)
.

(D.3)

where Γi = BπiB
−1Γ = (Qi, Pi), such that Γ1 + Γ2 = Γ, and where Stab(πi) is the stabilizer

of πi =
(
δ1,i 0
0 δ2,i

)
inside M(2,Z). The rearrangement (D.3) holds for arbitrary functions

f(Q), g(x), in particular for the product of Bessel integrals and the measure factors c(x) in
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(D.2). The singular contributions to the Fourier modes are thus

G(p,q), 2Ab,Γ
αβ,γδ = −R

4

π

∑

B∈M2(Z)/Stab(πi)

BπiB
−1Γ∈Λ⊕2

p−2,q−2

c̄(Γ1) c̄(Γ2)
2∑

l1,l2=0

P
(l1,l2)
αβ,γδ (Γ1,Γ2)

Rl1+l2

×
K q−6

2
−l1(2πRM(Γ1))

M(Γ1)
q−6

2
−l1

K q−6
2
−l2(2πRM(Γ2))

M(Γ2)
q−6

2
−l2

G(p,q), 2Ab,Γ
αβ,γυ = −R

4

π

∑

B∈M2(Z)/Stab(πi)

BπiB
−1Γ∈Λ⊕2

p−2,q−2

c̄(Γ1) c̄(Γ2)
1∑

l1,l2=0

P
(l1,l2)
αβ,γυ (Γ1,Γ2)

i
√

2Rl1+l2

×
K q−6

2
−l1(2πRM(Γ1))

M(Γ1)
q−6

2
−l1

K q−6
2
−l2(2πRM(Γ2))

M(Γ2)
q−6

2
−l2

...

G(p,q), 2Ab,Γ
ρσ,τυ = −R

4

π

∑

B∈M2(Z)/Stab(πi)

BπiB
−1Γ∈Λ⊕2

p−2,q−2

c̄(Γ1) c̄(Γ2)
1∑

l1,l2=0

P
(l1,l2)
ρσ,τυ (Γ1,Γ2)

4Rl1+l2

×
K q−6

2
−l1(2πRM(Γ1))

M(Γ1)
q−6

2
−l1

K q−6
2
−l2(2πRM(Γ2)

M(Γ2)
q−6

2
−l2

(D.4)

where the measure c̄(Γi) is defined by

c̄(Γ) =
∑

di>0
Γ/di∈Λ⊕2

p−2,q−2

c
(
− gcd(Q2, P 2, Q · P )

2d2
i

)( d2

gcd(Q2, P 2, Q · P )

) q−8
2
.

(D.5)

The factorized form of these singular contributions is indeed consistent with the differential
equation (3.20), as discussed in §E.3.

D.2 Measure factorization in CHL orbifolds

For CHL orbifolds, the contributions from the Dirac delta functions in (5.57) and (5.58) to
the Fourier mode (5.56) can be computed similarly to the full rank case (D.4) by using the
results of Appendix C. Here we explain the factorization of the measure for a general lattice
Λp−2,q−2 of signature (p − 2, q − 2), which we denote by Λ for short. When the lattice is
N -modular, as in the case of the magnetic lattice Λm discussed in section C, one can rewrite
the measure in a form manifestly invariant under Fricke electro-magnetic duality. However,
this is not the case in generic signature. In this section we use the results of the previous
section to write the 1/2-BPS charge measure factors coming from the different orbit terms in
(5.64). By abuse of language we shall refer to the charges (Q,P ) ∈ Λ∗ ⊕ Λ components as
electric and magnetic, although this terminology is only accurate when q = 8.

For the most generic lattice vectors, namely (Q,P )∈Λ∗ ⊕ Λ, the only matrices A which
contribute belong either to the electric first orbit of the second set of splittings (C.36), or the
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magnetic second orbit (C.39) contribute. They both lead to the factorized measure

c̄k(Γ1)c̄k(Γ2) = υ
∑

d1>0
(Q1,P1)/d1∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

×
∑

d2>0
(Q2,P2)/d2∈Λ⊕Λ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2
,

(D.6)

where Γ1 is of electric type and Γ2 of magnetic type. As explained in appendix C, this measure
is consistent with splittings into pairs of 1/2-BPS charges of (T, T ) type.

For less generic vectors (Q,P )∈Λ⊕Λ, the measure receives additional contributions from
the first term of (5.56), as well as from the first magnetic orbit from the second set (C.37).
Unlike the previous case Γ1 can be either of electric or magnetic type, while Γ2 is always of
magnetic type. When Γ1 is of electric type, the resulting measure is given by

c̄k(Γ1)c̄k(Γ2) =

[ ∑

d1>0
(Q1,P1)/d1∈Λ⊕NΛ

ck

(
− gcd(Q2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(Q2
1, P

2
1 , Q1 · P1)

) q−8
2

+ υ
∑

d1>0
(Q1,P1)/d1∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

]

×
∑

d2>0
(Q2,P2)/d2∈Λ⊕Λ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2

(D.7)

where only untwisted states can contribute in this case. This result is consistent with splittings
of type (U, T ), as explained in Appendix C. When Γ1 is of magnetic type, the measure is
instead given by

c̄k(Γ1)c̄k(Γ2) =

[ ∑

d1>0
(Q1,P1)/d1∈Λ⊕Λ

ck

(
− gcd(Q2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(Q2
1, P

2
1 , Q1 · P1)

) q−8
2

+ υ
∑

d1>0
(Q1,P1)/d1∈NΛ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2Nd2
1

)( Nd2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

]

×
∑

d2>0
(Q2,P2)/d2∈Λ⊕Λ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2

(D.8)

where both twisted and untwisted states can contribute, and where the former only get con-
tributions form the second term in the bracket, while the latter get contributions from both,
which is consistent with splittings into doublets of 1/2-BPS of (∅, UT ) and (∅, TT ) type.

128



SciPost Physics Submission

For the vectors (Q,P )∈Λ∗ ⊕NΛ∗, one must add to (D.6) the contribution from the last
term of (5.56), i.e. both electric and magnetic orbits of the third set of contributions (C.26),
(C.28). In this case, Γ1 can only be of electric type, while Γ2 can either be of electric or
magnetic type. For electric Γ2 one obtains

c̄k(Γ1)c̄k(Γ2) = υ
∑

d1>0
(Q1,P1)/d1∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

×
[ ∑

d2>0
(Q2,P2)/d2∈Λ⊕NΛ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2

+ υ
∑

d2>0
(Q2,P2)/d2∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(NQ2
2, P

2
2 , Q2 · P2)

) q−8
2

]

(D.9)

where both twisted and untwisted states can contribute in this case, consistently with split-
tings of type (TU, ) and (TT, ). For magnetic Γ2, one obtains

c̄k(Γ1)c̄k(Γ2) = υ
∑

d1>0
(Q1,P1)/d1∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

×
[ ∑

d2>0
(Q2,P2)/d2∈Λ⊕Λ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2

+ υ
∑

d2>0
(Q2,P2)/d2∈NΛ∗⊕NΛ∗

ck

(
− gcd(NQ2

2, P
2
2 , Q2 · P2)

2Nd2
2

)( Nd2
2

gcd(NQ2
2, P

2
2 , Q2 · P2)

) q−8
2

]

(D.10)

where only untwisted states can contribute, consistently with splittings of (T,U) type. In
both cases, the factors of N come from the width of the integration domain (R/NZ)3.

Finally, for vectors Q ∈ Λ , P ∈ NΛ∗, one must add each contribution specific to the two
last cases as well as the contribution from the second type of orbit of (5.51). Each 1/2-BPS

129



SciPost Physics Submission

state Γ1, Γ2 can be either electric or magnetic. When both of them are electric, we obtain

c̄k(Γ1)c̄k(Γ2) =

[ ∑

d1>0
(Q1,P1)/d1∈Λ⊕NΛ

ck

(
− gcd(Q2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(Q2
1, P

2
1 , Q1 · P1)

) q−8
2

+ υ
∑

d1>0
(Q1,P1)/d1∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

]

×
[ ∑

d2>0
(Q2,P2)/d2∈Λ⊕NΛ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2

+ υ
∑

d2>0
(Q2,P2)/d2∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(NQ2
2, P

2
2 , Q2 · P2)

) q−8
2

]
,
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with constraints on the possible splittings, as explained in appendix C, selecting splittings of
type (TT, ) only. When both states magnetic, one obtains

c̄k(Γ1)c̄k(Γ2) =

[ ∑

d1>0
(Q1,P1)/d1∈Λ⊕Λ

ck

(
− gcd(Q2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(Q2
1, P

2
1 , Q1 · P1)

) q−8
2

+ υ
∑

d1>0
(Q1,P1)/d1∈NΛ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2Nd2
1

)( Nd2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

]

×
[ ∑

d2>0
(Q2,P2)/d2∈Λ⊕Λ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2

+ υ
∑

d2>0
(Q2,P2)/d2∈NΛ∗⊕NΛ∗

ck

(
− gcd(NQ2

2, P
2
2 , Q2 · P2)

2Nd2
2

)( Nd2
2

gcd(NQ2
2, P

2
2 , Q2 · P2)

) q−8
2

]
,

(D.12)

with again constraints on the possible splittings, selecting splittings of type (∅, TT ) only.
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When one state, say Γ1, is electric, and the other magnetic, one obtains

c̄k(Γ1)c̄k(Γ2) =

[ ∑

d1>0
(Q1,P1)/d1∈Λ⊕NΛ

ck

(
− gcd(Q2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(Q2
1, P

2
1 , Q1 · P1)

) q−8
2

+ υ
∑

d1>0
(Q1,P1)/d1∈Λ∗⊕NΛ∗

ck

(
− gcd(NQ2

1, P
2
1 , Q1 · P1)

2d2
1

)( d2
1

gcd(NQ2
1, P

2
1 , Q1 · P1)

) q−8
2

]

×
[ ∑

d2>0
(Q2,P2)/d2∈Λ⊕Λ

ck

(
− gcd(Q2

2, P
2
2 , Q2 · P2)

2d2
2

)( d2
2

gcd(Q2
2, P

2
2 , Q2 · P2)

) q−8
2

+ υ
∑

d2>0
(Q2,P2)/d2∈NΛ∗⊕NΛ∗

ck

(
− gcd(NQ2

2, P
2
2 , Q2 · P2)

2Nd2
2

)( Nd2
2

gcd(NQ2
2, P

2
2 , Q2 · P2)

) q−8
2

]
,
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where the constraints on the possible splitting here select (U,U) only.
When the charge vectors(Q,P ) lies in an even finer sublattice, such as Λ⊕NΛ, NΛ∗⊕NΛ∗,

and so on, the measure is still given by (D.13), but it includes less generic type of splittings
like (UU, ) or (∅, UU), as explained in appendix C.

Thus, we have established that the delta function contributions to the Abelian Fourier
coefficients factorize into the product c̄k(Γ1)c̄k(Γ2) of the measures associated with each 1/2-
BPS component for all splittings Γ = Γ1 + Γ2 of an arbitrary 1/4-BPS charge Γ in CHL
models with N = 2, 3, 5, 7. This factorization is required for consistency with the differential
equation (3.20), as further discussed in §E.3.

E Consistency with differential constraints

In this section we analyze the consistency of the asymptotic expansion of the the two-loop
modular integral Gab,cd near the degenerations O(p, q) → O(p − 2, q − 2) and degeneration
O(p, q)→ O(p−1, q−1) with the differential equation (3.3). In the first case we consider both
the constant terms and generic rank-2 Abelian Fourier coefficients, and show consistency with
the quadratic source term in (3.3). In the second case for brevity we restrict to the constant
terms.

E.1 Differential equation under the degeneration O(p, q)→ O(p− 2, q − 2)

Here we write explicitly the differential equation 3.3 in the variables relevant to the degener-
ation limit O(p, q) → O(p − 2, q − 2). Using the decomposition (5.3), and changing variable
R = e−φ, the metric on the moduli space reads

2Pab̂P
ab̂ = 4dφ2 + 2PµνP

µν + 2Pαβ̂P
αβ̂ + e2φMijg

IJdaiIda
j
J + e4φ∇ψ∇ψ , (E.1)

with
∇ψ = dψ − 1

2εija
i · daj , (E.2)
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and the Maurer–Cartan coset component

P =




dφ δνµ − Pµ ν eφ√
2
v−1
iµ p

β I
L daiI − eφ√

2
v−1
iµ p

β̂ I
R daiI

1
2e

2φεµ
ν̂∇ψ

eφ√
2
v−1
i

νpLα
I daiI 0 Pα

β̂ eφ√
2
v−1
i

ν̂pLα
I daiI

− eφ√
2
v−1
i

νpRα̂
I daiI P βα̂ 0 eφ√

2
v−1
i

ν̂pRα̂
I daiI

1
2e

2φεν µ̂∇ψ eφ√
2
v−1
iµ̂ p

βI
L daiI

eφ√
2
v−1
iµ̂ p

β̂I
R daiI −dφδν̂µ̂ + Pµ̂

ν̂



. (E.3)

Beware that in this section we use the symbols pL and pR for the Gp−2,q−2 = O(p − 2, q −
2)/[O(p − 2) × O(q − 2)] projection pLαIQ

I , and not for the Gp,q = O(p, q)/[O(p) × O(q)]
projection pLaIQI as in the body of the paper. We use Greek letters of the beginning of the
alphabet, i.e. {α, β, γ, δ, ε, η, θ}, to denote local indices along Gp−2,q−2, and Greek letters of
the middle of the alphabet, i.e. {κ, λ, µ, ν, ρ, σ, τ}, to denote indices along SO(2)\SL(2,R).

The covariant derivative of a vector Za in the tangent frame must obey the usual equation

dZa = 2P bĉ∂bĉZa = 2P bĉ
(
DbĉZa −BbĉadZd

)
, (E.4)

allowing us to write down its action, for any vector Za = (Zσ, Zγ)

Dµν̂Za =
(1

4
δµν̂∂φ −Dµν̂ +

1

2
e−2φεµν̂∂ψ

)
Za +

1

2
(δσ[µδ

ρ
ν̂]Zρ, 0) ,

Dαν̂Za =
1√
2
e−φvν̂

ipLα
I
( ∂

∂aiI
− 1

2εija
j
I∂ψ

)
Za +

1

2
(−δν̂σZα, δαγδνν̂Zν) ,

Dµα̂Za =
1√
2
e−φvµipRα̂

I
( ∂

∂aiI
− 1

2εija
j
I∂ψ

)
Za ,

(E.5)

and on any vector Zâ = (Zα̂, Zσ̂) as

Dµν̂Zâ =
(1

4
δµν̂∂φ −Dµν̂ +

1

2
e−2φεµν̂∂ψ

)
Zâ +

1

2
(0,−δσ̂[µδ

ρ̂
ν̂]Zρ̂) ,

Dαν̂Zâ =
1√
2
e−φvν̂

ipLα
I
( ∂

∂aiI
− 1

2εija
j
I∂ψ

)
Zâ ,

Dµα̂Zâ =
1√
2
e−φvµipRα̂

I
( ∂

∂aiI
− 1

2εija
j
I∂ψ

)
Zâ +

1

2
(δα̂α̂δ

µ̂
µZµ̂,−δµσ̂Zα̂) ,

(E.6)

where vµ
i ∈ SO(2)\SL(2,R) such that

Dµνvρi =
1

2
δρ(µvν)

i − 1

4
δµνvρ

i , (E.7)

and finally, the operator Dαβ̂ = Dαβ̂ the differential operator on the Grassmanian O(p−2, q−
2), which acts on the projectors pLγ

I , pRα̂
I as

Dαβ̂pLγI =
1

2
δαγpLβ̂

I , Dαβ̂pRα̂I =
1

2
δβ̂α̂pLα

I . (E.8)

In this decomposition, the tensor Gab,cd admits six independent components

Gµν,σρ =
3

4
δ〈µν,δσρ〉Gλ

λ
,κ
κ , Gµν,σδ = δµνGσδ,λ

λ − δσ(µGν)δ,λ
λ , Gµν,γδ ,

Gµβ,νδ = Gβ[µ,ν]δ −
1

2
Gµν,βδ , Gµβ,γδ , Gαβ,γδ , (E.9)
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but for simplicity we shall only consider the components Gµν,σρ, Gµν,γδ and Gαβ,γδ that admit
a non-trivial constant term. The differential operator D(µ

ĉDν)ĉGab,cd acts diagonally on the
various components of fixed number of indices along the Grassmanian, so it is consistant to
only consider the components with an even number of indices along the sub-Grassmaniann in
the differential equation (3.20). Using the Fourier decompositions

Gab,cd =
∑

Γ∈Λ∗⊕Λ

GΓ
ab,cde

2πi(Γ,a) +
∑

n6=0

GTNn
ab,cde

2πinψ ,

Fabcd =
∑

Γ∈Λ∗⊕Λ

FΓ
abcde

2πi(Γ,a) +
∑

n6=0

FTNn
abcd e

2πinψ , (E.10)

one obtains from (3.20)

(
2D(µ

τDν)τ − (∂φ + q − 2)Dµν + 1
8(∂φ + 8)(∂φ + 2q − 10)δµν − 4πe−2φΓRµ · ΓRν

)
GΓ
σρ,κλ

= −3π

4
δ〈σρ,δκλ〉

∑

Γ1∈Λ∗⊕Λ

(
FΓ1

κd(µ
κFΓ−Γ1

ν)λ
λd − FΓ1

κd(µ
λFΓ−Γ1

ν)λ
κd
)
− 3πFΓ

µν,σρ,κλ , (E.11)

(
2D(µ

τDν)τ − (∂φ + q − 2)Dµν + 1
8(∂φ + 6)(∂φ + 2q − 8)δµν − 4πe−2φΓRµ · ΓRν

)
GΓ
σρ,γδ

=
1

2
δµνG

Γ
σρ,γδ +

8− q
2

δσρG
Γ
µνγδ +

6− q
2

δσ(µδν)ρG
Γ
αβ,λ

λ +
2q − 13

2
δµνδσρG

Γ
αβ,λ

λ

+D(µ
λδν)(σG

Γ
ρ)λ,αβ −Dσ)(µG

Γ
ν)(ρ|,αβ + δαβG

Γ
µν,σρ

−2π
∑

Γ1∈Λ∗⊕Λ

(
FΓ1

σρd(µ
κFΓ−Γ1

ν)γδ
d − FΓ1

σ)γd(µF
Γ−Γ1

ν)δ(ρ
d
)
− 3πFΓ

µν,σρ,γδ , (E.12)

and
(

2D(µ
τDν)τ − (∂φ + q − 2)Dµν + 1

8(∂φ + 4)(∂φ + 2q − 6)δµν − 4πe−2φΓRµ · ΓRν
)
GΓ
αβ,γδ

= 3δ〈αβ,G
Γ
γδ〉,µν − 3π

∑

Γ1∈Λ∗⊕Λ

FΓ1

µ)d〈αβ,F
Γ−Γ1

γδ〉(ν
d − 3πFΓ

µν,αβ,γδ , (E.13)

where the additional term of order O(e−R
2
) comes from the Abelian Fourier coefficients of

the quadratic source in Fabcd involving nonzero Taub-NUT charge,

∑

n 6=0

FTNn
eg〈ab,F

TN−n g
cd〉f =

∑

Γ∈Λ∗⊕Λ

FΓ
ef,ab,cde

2πi(Γ,a) . (E.14)

It is a non-trivial task to compute these Fourier coefficients from the explicit non-Abelian
Fourier coefficients of the tensor Fabcd, which we shall attempt to carry out in this paper.

Introducing for brevity the vector ~GΓ

~GΓ = (GΓ
ρσ,τυ, G

Γ
ρσ,γδ, G

Γ
αβ,γδ) , (E.15)

we find that the differential operator with two indices along the sub-Grassmaniann acts on
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~GΓ according to

4D(η
η̂Dθ)η̂

~GΓ = (4D(η
η̂Dθ)η̂ + δηθ∂φ − 8π2e−2φΓLη

κΓLθκ)~GΓ

+ 8iπ
√

2e−φΓL(η|
κ



−δκ(ρG

Γ
σ)|θ),τυ − δκ(τG

Γ
υ)|θ),ρσ

−δκ(ρG
Γ
σ)|θ),γδ + δθ)(γG

Γ
δ)κ,ρσ

δθ)(αG
Γ
β)κ,γδ + δθ)(γG

Γ
δ)κ,αβ


 ,

+




6δ〈ρσ,GΓ
τυ〉,γδ − 4δηθG

Γ
ρσ,τυ

2δρσG
Γ
ηθ,γδ − 2δηθG

Γ
ρσ,γδ + 2δη(γδδ)θG

Γ
ρσ,κ

κ

6δη〈(αδβ),|θ|GΓ
γδ〉,κ

κ − 8δ(η|〈(αGΓ
β),|θ),|γδ〉


 ,

(E.16)

where the term linear in Γ involves the components of GΓ with an odd number of indices
along the sub-Grassmaniann. Using this action, we find the differential equation obeyed by
the components with two indices along the sub-Grassmaniann Gp−2,q−2,

(
2D(η

α̂Dα)ζ̂ + 1
2δηθ∂φ − 4π2e−2φΓLη

κΓLθκ
)
~GΓ

+ 4iπ
√

2e−φΓL(η|
κ



−δκ(ρG

Γ
σ)|θ),τυ − δκ(τG

Γ
υ)|θ),ρσ

−δκ(ρG
Γ
σ)|θ),γδ + δθ)(γG

Γ
δ)κ,ρσ

δ|θ)(αGΓ
β)κ,γδ + δθ)(γG

Γ
δ)κ,αβ




=




(5− q)δηθGΓ
ρσ,τυ

(4− q)δηθGΓ
ρσ,γδ + (6− q)δ|η)(γG

Γ
δ)(θ|,ρσ + δγδG

Γ
ηθ,ρσ − δθ(γδδ)ηGΓ

ρσ,λ
λ

(3− q)δηθGΓ
αβ,γδ + 2(8− q)δ|η)〈(αGΓ

β),(θ|,|γδ〉 + 3δ〈αβ,GΓ
γδ〉,ηθ − 3δη〈(αδβ),|θ|GΓ

γδ〉,κ
κ




− π
∑

Γ1∈Λ∗⊕Λ




3FΓ1

ηd〈ρσ,F
Γ−Γ1

τυ〉θ
d

2FΓ1

ρσd(η
κFΓ−Γ1

θ)γδ
d − 2FΓ1

σ)γd(ηF
Γ−Γ1

θ)δ(ρ
d

3FΓ1

ηd〈αβ,F
Γ−Γ1

γδ〉θ
d


− 3π ~Fηθ Γ . (E.17)

E.2 Zero mode equations

In this subsection we analyze the consistency of the differential equations (E.11), (E.12),
(E.13), (E.17) with the results in §5 for the constant term G0

ab,cd. As mentioned earlier, the
unfolding method fails to capture exponentially suppressed corrections to the constant term,
which are sourced by the quadratic terms

∑
Γ1 6=0 F

Γ1F−Γ1 and F 0
ef,ab,cd defined in (E.14) on

the right-hand side of the differential equation, and can be ascribed to instanton anti-instanton
configurations. These terms can in principle be computed by solving the differential equation.
Here we concentrate on the perturbative part of G0

ab,cd, which is sourced by the square of the
perturbative part of Fabcd.The latter is given by [22, (5.29)]

F 0
µνρσ = 4e(6−q)φ

(
D(µνDρσ) + q−10

2 δ(µνDσρ) + (8−q)(12−q)
16 δ(µνδρσ)

)
E(S) ,

F 0
µνγδ = e(6−q)φδγδ

(
8−q

2 δµν − 2Dµν
)
E(S) ,

F 0
αβγδ = e−2φFαβγδ(ϕ) + 3e(6−q)φδ(αβδγδ)E(S) , (E.18)

where

E(S) =
3

(N + 1)π2

(
E?(8−q

2 , S) + υN
8−q

2 E?(8−q
2 , NS)

)
(E.19)
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is a specific solution of the Laplace equation

2DρσDρσE(S) =
1

2
(D−2D̄0 + D̄2D0)E(S) =

(8− q)(6− q)
4

E(S) . (E.20)

It is then straightforward to find a particular solution to Eq. (E.17)

G0
µν,ρσ = −3πe2(6−q)φδ〈µν,δρσ〉

((8−q
2

)2E(S)2 − 2DκλE(S)DκλE(S)
)
,

G0
µν,γδ = −π

6 e
(4−q)φ

(
8−q

2 δµν − 2Dµν
)
E(S)Gγδ(ϕ)− 2πe2(6−q)φδγδE(S)

(
8−q

2 δµν − 2Dµν
)
E(S) ,

G0
αβ,γδ = e−4φGαβ,γδ(ϕ)− π

2 e
(4−q)φE(S)δ〈αβ,Gγδ〉(ϕ)− 3πe2(6−q)φδ〈αβ,δγδ〉E(S)2 , (E.21)

with Gαβ,γδ(ϕ) solution to an equation analogue to (3.20) with source term quadratic in
Fαβγδ(ϕ), and Gαβ(ϕ) solution to the equation on the sub-Grassmaniann Gp−2,q−2

2D(γ
α̂Dδ)α̂Gαβ = 4−q

2 δγδGαβ + (6− q)δγ)(αGβ)(δ + δαβGγδ + 12Fαβγδ . (E.22)

One can then check that G0
ab,cd is also a solution to (E.11), (E.12) and (E.13), using the

identity

F 0
κd(µ

κF 0
ν)λ

λd − F 0
κd(µ

λF 0
ν)λ

κd = 2(8− q)2
((8− q

2

)2
+ 1
)
δµνE2 − (8− q)2(10− q)EDµνE

+ 8(10− q)DµνDρσEDρσE − 16DµλDρσEDνλDρσE (E.23)

and the fact that for any two symmetric tensors Xµν and Yµν , one has

X〈µν,Yρσ〉 = 1
2δ〈µν,δρσ〉(Xλ

λYκ
κ −XκλYκλ) . (E.24)

The most general solution is obtained by adding a solution of the homogeneous equation
without source term, given by

G̃0
µν,ρσ = (6−q)(7−q)

2 c e2(5−q)φδ〈µν,δρσ〉 ,

G̃0
µν,γδ = −π

6 e
(4−q)φ

(
8−q

2 δµν − 2Dµν
)
Ẽ(S)G̃γδ(ϕ) + 7−q

3 c e2(5−q)φδµνδγδ ,

G̃0
αβ,γδ = e−4φG̃αβ,γδ(ϕ)− π

2 e
(4−q)φẼ(S)δ〈αβ,G̃γδ〉(ϕ) + c e2(5−q)φδ〈αβ,δγδ〉 , (E.25)

with c a numerical constant, G̃αβ,γδ(ϕ) a solution to the homogeneous equation (3.17) on the
sub-Grassmanian, Ẽ a solution to (E.20) and G̃αβ(ϕ) solution to the homogeneous equation
(3.34) on the sub-Grassmanian. The explicit results (5.44), (5.60) for the constant term G0

ab,cd

obtained by unfolding method for generic values of q indeed lie in this class, upon setting

Ẽ(S) =
3

(N − 1)π2

(
−E?(8−q

2 , S) + υN
8−q

2 E?(8−q
2 , NS)

)
,

Gαβ(ϕ) = 1
2

(
G(p−2,q−2)

αβ (ϕ) + ςG(p−2,q−2)

αβ (ϕ)
)
,

G̃αβ(ϕ) = 1
2

(
G(p−2,q−2)

αβ (ϕ)− ςG(p−2,q−2)

αβ (ϕ)
)
,

c =
18

π2
ξ(7− q)ξ(6− q)(N − υ)(1− υN q−7)

N2 − 1
. (E.26)
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For special values of q one must take into account additional source terms due to logarithmic
divergences. For example for q = 8, one has instead

F 0
µνρσ = e−2φ

(
4(D(µνDρσ) − δ(µνDσρ))Ê(S)− 2κδ(µνδρσ)

)
,

F 0
µνγδ = −e−2φδγδ

(
κδµν + 2Dµν Ê(S)

)
,

F 0
αβγδ = e−2φ

(
F̂αβγδ(ϕ) + 3δ(αβδγδ)(Ê(S)− 2κφ)

)
, (E.27)

where Ê(S) = 1
2π(N+1)

(
Ê1(S) + Ê1(NS)

)
satisfies a Poisson equation with a constant source

term,

2DρσDρσÊ(S) =
1

2
(D−2D̄0 + D̄2D0)Ê(S) = κ . (E.28)

One finds the particular solution to E. (E.17),

G0
µν,ρσ = −3πe−4φδ〈µν,δρσ〉

(
κ2 − 2DκλÊ(S)DκλÊ(S)

)
, (E.29)

G0
µν,γδ = e−4φ

(
κδµν + 2Dµν Ê(S)

)(
π
6 Ĝγδ(ϕ) + 2πδγδ(Ê(S)− 2κφ)

)
,

G0
αβ,γδ = e−4φ

(
Ĝαβ,γδ(ϕ)− π

2 (Ê(S)− 2κφ)δ〈αβ,Ĝγδ〉(ϕ)− 3πδ〈αβ,δγδ〉
(
Ê(S)− 2κφ

)2)
,

with

2D(γ
α̂Dδ)α̂Ĝαβ = −2δγδĜαβ − 2δγ)(αĜβ)(δ + δαβĜγδ + 12F̂αβγδ + 36κδ(αβδγδ) ,

2D(η
α̂Dθ)α̂Ĝαβ,γδ = −3δηθĜαβ,γδ + 3δ〈αβ,Ĝγδ〉,ηθ − κ

2 (δηθδ〈αβ,Ĝγδ〉 + 2δη〈αδβ,|θ|Ĝγδ〉)
−3πF̂η)ε〈αβ,F̂γδ〉(θε . (E.30)

This is indeed consistent with the result (5.70) from the unfolding method, upon setting
κ = 3

π2(N+1)
= k

8π2 .

E.3 Abelian Fourier coefficients

In this subsection we show that the generic Abelian Fourier coefficients of the tensor Gab,cd
computed in section 5 satisfy the differential equation (E.11), including the quadratic source
term.

For simplicity we shall only consider the component of the Fourier coefficient with all

indices along the decompactified torus G
(p,q), 2Ab, (Q,P )
µν,σρ = −1

2εµ(σερ)νG
(p,q)(Q,P ). The latter is

proportional to the scalar function

G(p,q)(Q,P ) = R8
∑

A∈M2(Z)/GL(2,Z)

A−1
(Q
P

)
∈Λ⊕2

p−2,q−2

∫

P2

d3Ω2

|Ω2|
12−q

2

|A|2C
[
A−1

(
Q2 Q · P
Q · P P 2

)
A−ᵀ; Ω2

]
L(A−ᵀΩ2A

−1) (E.31)

with

L(A−ᵀΩ2A
−1) = e

−πR2 tr
[
vAΩ −1

2 Aᵀvᵀ
]
−2π tr

[
Ω2A−1

(
Q 2
R QR · PR

QR · PR P 2
R

)
A−ᵀ
]
. (E.32)

One can rewrite the differential operator in (E.11) as
(
DµâDνâ + (q − 5)δµν

)
G(p,q)(Q,P )e2πi(Qa1+Pa2)

=
((

1
16(−R∂R)2 − q−1

8 R∂R + q − 5)δµν − 1
2Dµν(−R∂R + q − 2) +D(µ

σDν)σ

− 2π2R2
(
v
(

Q2
R QR · PR

QR · PR P 2
R

)
vᵀ
)
G(p,q)(Q,P )e2πi(Qa1+Pa2) .

(E.33)
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Acting with this differential operator on R8L(A−ᵀΩ2A
−1) one obtains

(
πR2(vAΩ−1

2 Aᵀvᵀ)2 + q−12
2 vAΩ−1

2 Aᵀvᵀ − 2πv
(

Q2
R QR · PR

QR · PR P 2
R

)
vᵀ
)
µν
πR10|Ω2|

q−12
2 L(A−ᵀΩ2A

−1) ,

(E.34)

which allows to rewrite (E.34) as a total derivative in Ω2,

(
DµâDνâ + (q − 5)δµν

)
R8|Ω2|

q−12
2 L(A−ᵀΩ2A

−1)e2πi(Qa1+Pa2)

= (πR2vA
∂

∂Ω2
Aᵀvᵀ)µνR

8|Ω2|
q−12

2 L(A−ᵀΩ2A
−1)e2πi(Qa1+Pa2) .

(E.35)

By integration by parts, it follows that the Fourier coefficient would satisfy the homogeneous
differential equation if the Fourier coefficient C

[
A−1

(
Q2 Q · P
Q · P P 2

)
A−ᵀ; Ω2

]
did not depend on Ω2.

We shall now show that the dependence of the Fourier coefficients of 1/Φ10 in Ω2, due
to the poles at large |Ω2| accounts for the appearance of the quadratic source term in the
differential equation. Using (5.25) and (A.90), we obtain

G(p,q)(Q,P ) = R8
∑

A∈M2(Z)/GL(2,Z)

A−1
(Q
P

)
∈Λ⊕2

p−2,q−2

∫

P2

d3Ω2

|Ω2|
12−q

2

|A|2CF
[
A−1

(
Q2 Q · P
Q · P P 2

)
A−ᵀ

]
L(A−ᵀΩ2A

−1)

+
R8

2

∑

A∈M2(Z)/Dih4

A−1
(Q
P

)
∈Λ⊕2

p−2,q−2

|A|2c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)11

2

)
c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)22

2

)

×
∫

P2

d3Ω2

|Ω2|
12−q

2

(
− 1

2π
δ(v2)− (A−1

(
Q2 Q · P
Q · P P 2

)
A−ᵀ)12sign(v2) +

∣∣(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)12

∣∣
)
L(A−ᵀΩ2A

−1)

+O(e−R
2
) . (E.36)

The differential operator (E.35) annihilates the finite part of the Fourier coefficient, and gives

(
DµâDνâ + (q − 5)δµν

)
G(p,q)(Q,P )e2πi(Qa1+Pa2)

= −1

2

∑

A∈M2(Z)/Dih4

A−1
(Q
P

)
∈Λ⊕2

p−2,q−2

|A|2c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)11

2

)
c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)22

2

)

×
(

1

2π

(
DµâDνâ + (d− 5)δµν

)
− 2πR2

(
vAπ(1A

−1
(
Q2 Q · P
Q · P P 2

)
A−ᵀπ2)A

ᵀvᵀ
)
µν

)

×
∫ ∞

0

dρ2

ρ
12−q

2
2

∫ ∞

0

dσ2

σ
12−q

2
2

R8L(A−ᵀ
(
ρ2 0
0 σ2

)
A−1)e2πi(Qa1+Pa2) +O(e−R

2
) (E.37)

where the differential operator acting on the first term in (E.36) gives a total derivative,
while the second term factorizes after integrating the Dirac delta function, and the third is
integrated by part using d

dΩ2
sign(tr

(
0 1/2

1/2 0

)
Ω2) = δ(v2)

(
0 1
1 0

)
and

vA
(

0 1
1 0

)
Aᵀvᵀ

[
A−1

(
Q2 Q · P
Q · P P 2

)
A−ᵀ

]
12

= 2vAπ(1A
−1
(
Q2 Q · P
Q · P P 2

)
A−ᵀπ2)A

ᵀvᵀ . (E.38)

137



SciPost Physics Submission

Further using (E.34) to express
(
DµâDνâ + (d − 5)δµν

)
L(A−ᵀ

(
ρ2 0
0 σ2

)
A−1)e2πi(Qa1+Pa2), and

inserting π1 +π2 = 1 on both sides of (E.35), we see that the terms which involve two powers
of π1 or two powers of π2 cancel out since they are total derivatives with respect to ρ2 or to
σ2, leaving only terms involving one factor of π1 and one factor of π2:

(
DµâDνâ + (q − 5)δµν

)
G(p,q)(Q,P )e2πi(Qa1+Pa2)

= −π
2

∑

A∈M2(Z)/Dih4

A−1
(Q
P

)
∈Λ⊕2

p−2,q−2

|A|2c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)11

2

)
c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)22

2

)∫ ∞

0

dρ2

ρ
12−q

2
2

∫ ∞

0

dσ2

σ
12−q

2
2

×
(
vAπ(1

( R2

σ2ρ2
AᵀvᵀvA− 2A−1

(
Q2
R QR · PR

QR · PR P 2
R

)
A−ᵀ − 2A−1

(
Q2 Q · P
Q · P P 2

)
A−ᵀ

)
π2)A

ᵀvᵀ
)
µν

×R10L(A−ᵀ
(
ρ2 0
0 σ2

)
A−1)e2πi(Qa1+Pa2) +O(e−R

2
)

= −π
2

∑

A∈M2(Z)/Dih4

A−1
(Q
P

)
∈Λ⊕2

p−2,q−2

|A|2c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)11

2

)
c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)22

2

)

×
∫ ∞

0

dρ2

ρ
12−q

2
2

∫ ∞

0

dσ2

σ
12−q

2
2

(
vAπ1

( R2

σ2ρ2
AᵀvᵀvA− 2A−1

(
Q2
L QL · PL

QL · PL P 2
L

)
A−ᵀ

)
π2A

ᵀvᵀ
)

(µν)

×R10L(A−ᵀ
(
ρ2 0
0 σ2

)
A−1)e2πi(Qa1+Pa2) +O(e−R

2
) , (E.39)

where in the last step we recognized Q2 +Q2
R = Q2

L. Defining for i = 1 or 2 the tensors

Liµνσρ(ρ2) = R6(vA)µ
i(vA)ν

i(vA)σ
i(vA)ρ

ie
− π
ρ2
R2(vA)µi(vA)µi−2πρ2(A−1

(
Q 2
R QR · PR

QR · PR P 2
R

)
A−ᵀ)ii (E.40)

Liµνσα(ρ2) = iR5(vA)µ
i(vA)ν

i(vA)σ
i
(
A−1(QL

PL

))
iα
e
− π
ρ2
R2(vA)µi(vA)µi−2πρ2(A−1

(
Q 2
R QR · PR

QR · PR P 2
R

)
A−ᵀ)ii

one obtains
(
DµâDνâ + (d− 5)δµν

)
G(p,q)(Q,P ) e2πi(Qa1+Pa2) +O(e−R

2
)

= −π
2

∑

A∈M2(Z)/Dih4

A−1
(Q
P

)
∈Λ⊕2

p−2,q−2

c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)11

2

)
c
(
−

(A−1
(

Q2 Q · P
Q · P P 2

)
A−ᵀ)22

2

)
εσκερλe2πi(Qa1+Pa2)

(∫ ∞

0

dρ2

ρ
14−q

2
2

L1
σρϑ(µ(ρ2)

∫ ∞

0

dσ2

σ
14−q

2
2

L2
ν)κλ

ϑ(σ2) + 2

∫ ∞

0

dρ2

ρ
12−q

2
2

L1
σρ(µ|α(ρ2)

∫ ∞

0

dσ2

σ
12−q

2
2

L2
ν)κλ

α(σ2)

)

= −2πεσκερλδabe2πi(Qa1+Pa2)
∑

B∈M2(Z)/Stab

Bπ1B−1
(Q
P

)
∈Λ⊕2

p−2,q−2

F
(p,q), Bπ1B−1

(
Q
P

)

σρ(µ|a F
(p,q), Bπ2B−1

(
Q
P

)

ν)κλb (E.41)

that indeed recovers (3.20),
(
DµâDνâ + (d− 5)δµν

)
G(p,q)Γ
σρ,κλ =

π

2
εκ(σερ)λε

ϑυετι
∑

Γ1∈Λ∗⊕Λ

F (p,q)Γ1

aϑτ(µ F
(p,q)Γ−Γ1

ν)υι
a

= −3π

2

∑

Γ1∈Λ∗⊕Λ

F (p,q)Γ1

aµ〈σρ, F
(p,q)Γ−Γ1

κλ〉ν
a . (E.42)
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Thus, we have shown that the abelian Fourier coefficients with generic 1/4-BPS charge are
consistent with the differential constraint (3.20). This is a strong consistency check on the
validity of the unfolding method in this sector.

E.4 Differential equation in the degeneration O(p, q)→ O(p− 1, q − 1)

We now briefly discuss the consistency of the constant terms (4.20) computed in §4 with the
differential equation (3.20). We follow [22, §B] for the parametrization of the Grassmannian
and of the decomposition of the covariant derivative operators.

The operatorDab̂ decomposes intoD11̂, D1β̂, Dα1̂, Dαβ̂ acting on any vector Fa = (F1, Fα),

D11̂Fa = −1

2

∂

∂φ
Fa ,

Dα1̂Fa =
1√
2
e−φv-1I

α
∂

∂aI
Fa +

1

2
(Fα,−δαβF1)

D1α̂Fa =
1√
2
e−φv-1I

α̂
∂

∂aI
Fb , (E.43)

and on any vector Fb̂ = (Fβ̂, F1̂), as

D11̂Fb̂ = −1

2

∂

∂φ
Fb̂ ,

Dα1̂Fb̂ =
1√
2
e−φv-1I

α
∂

∂aI
Fb̂

D1α̂Fb̂ =
1√
2
e−φv-1I

α̂
∂

∂aI
Fb̂ +

1

2

(
−δαβF1̂, Fα̂

)
, (E.44)

whereas Dαβ̂ reduce to the differential operators on the sub-Grassmannian that act on the

projectors pIL γ , pIR α̂:

Dαβ̂pILγ = 1
2δαγp

I
Rβ̂ , Dαβ̂pILα̂ = 1

2δβ̂α̂p
I
Rα . (E.45)

In this decomposition, the tensor Gab,cd admits 3 independent components G11,γδ, G1β,γδ

and Gαβ,γδ, but only the first and last have a non-trivial constant term. Using the Fourier
decomposition

Gab,cd =
∑

Q∈Λ∗
GQab,cd e

2πiQ·a , Fabcd =
∑

Q∈Λ∗
FQabcd e

2πiQ·a , (E.46)

we obtain that the first component of (3.20) with (e, f) = (1, 1) reads

(
(∂φ + 4)(∂φ + q − 5)− 8π2e−2φQ2

R

)
GQαβ,11 = −4π

∑

Q1∈Λ

(
FQ1

1kαβF
Q−Q1
111

k − FQ1

11k(αF
Q−Q1

β)11
k
)

(
(∂φ + 2)(∂φ + q − 3)− 8π2e−2φQ2

R

)
GQαβ,γδ = 6δ〈αβ,G

Q
γδ〉,11 − 6π

∑

Q1∈Λ

FQ1

1k〈αβ,F
Q−Q1

γδ〉1
k ,

(E.47)

where the sum over k in the r.h.s. runs over all indices α and 1.
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Introducing for brievity the vector ~GQ

~GQ = (GQαβ,11, G
Q
αβ,γδ) , (E.48)

the differential operator Dα̂(1Dη)α̂ acts on ~GQ as

2D1
ĉDηĉ ~GQ + 2DηĉD1ĉ

~GQ

= D(Q)
η

~GQ − (∂φ + q−2
2 )

(
2GQ1η,γδ

−2δη(αG
Q
1β),γδ − 2δη(γG

Q
1δ),αβ

)
,

(E.49)

where we define for short

D(Q)
η ≡ −i

√
2e−φ(QLη(∂φ + q − 2) + 2QRα̂Dα̂η ) . (E.50)

The off-diagonal component of the differential equation (3.20) with (e, f) = (1, η) take the
form

D(Q)
η GQ11,γδ = 2(∂φ + 3)GQ1η,γδ − π

∑

Q1∈Λ∗

(
FQ1

111kF
Q−Q1

ηγδ
k + FQ1

η11kF
Q−Q1

1γδ
k − 2FQ1

11k(γF
Q−Q1

δ)1η
k
)

D(Q)
η GQ1β,γδ = (∂φ + 2)GQηβ,γδ − (∂φ + q − 4)

(
δηβG

Q
γδ,11 − δη(γG

Q
δ)β,11

)
− δγδGQηβ,11

+δβ(γG
Q
δ)η,11 − 2π

∑

Q1∈Λ∗

(
FQ1

1k1βF
Q−Q1

γδη
k + FQ1

1kγδF
Q−Q1

1βη
k − FQ1

1kβ(γF
Q−Q1

δ)1η
k − FQ1

1k1(γF
Q−Q1

δ)βη
k
)

D(Q)
η GQαβ,γδ = − 2(∂φ + q − 4)

(
δη(αG

Q
β)1,γδ + δη(γG

Q
δ)1,αβ

)
+ 3δ〈αβG

Q
γδ〉,1η

−6π
∑

Q1∈Λ∗
FQ1

1k〈αβ,F
Q−Q1

γδ〉η
k. (E.51)

The component of the differential operator with two indices along the subgrassmaniann
(e, f) = (η, ϑ), acts as

4D(η
ĉDθ)ĉ

~GQ = (4D(η
α̂Dθ)α̂ + δηθ∂φ − 8π2e−2φQLηQLθ)~G

Q

+ 8πi
√

2e−φQL(η|

(
GQ1|θ),γδ

−δ|θ)(αGQβ)1,γδ − δ|θ)(γG
Q
δ)1,αβ

)
,

+

(
2GQηθ,γδ − 2δηθG

Q
11,γδ + 2δ|η)(γG

Q
δ)(θ|,11

6δη〈(αδβ),|θ|G
Q
γδ〉,11 − 4δ(η|〈(αG

Q
β),|θ),|γδ〉

)
,

(E.52)

and thus we obtain the differential equation on the sub-Grassmaniann Gp−2,q−2

(
2D(η

α̂Dθ)α̂ + 1
2δηθ∂φ − 4π2e−2φQLηQLθ

)
~GQ

+ 4πi
√

2e−φQL(η

(
GQθ)1,γδ

−δθ)(αGQβ)1,γδ − δθ)(γG
Q
δ)1,αβ

)

=

(
(4− q)δηθGQ11,γδ + (5− q)δ|η)(γG

Q
δ)(θ|,11 + δγδG

Q
ηθ,11

(3− q)δηθGQαβ,γδ + 2(6− q)δ|η)〈(αG
Q
β),(θ|,|γδ〉 + 3δ〈αβ,G

Q
γδ〉,ηθ − 3δη〈(αδβ),|θ|G

Q
γδ〉,11

)

− 2π
∑

Q1∈Λ∗

(
FQ1

11d(ηF
Q−Q1

θ)γδ
d − FQ1

1γd(ηF
Q−Q1

θ)δ1
d

3
2F

Q1

ηd〈αβ,F
Q−Q1

γδ〉θ
d

)
, (E.53)
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The constant terms sourcing the perturbative part of G0
ab,cd are given by [22, (4.16)]

F 0
1111 = a e−(q−6)φξ(q − 6)

F 0
11γδ = b e−(q−6)φξ(q − 6)δδγ

F 0
αβγδ = e−φFαβγδ + c e−(q−6)φξ(q − 6)δ(αβδγδ) ,

(E.54)

with a, b, c constants which were computed in [22] (a = 3(7−q)(9−q)
π2 , b = 3(7−q)

π2 , c = 9
π2 ).

As mentioned in the previous section, the unfolding method fails to capture exponentially
suppressed corrections to the constant term, which are sourced by the instanton anti-instanton
quadratic terms

∑
Q1 6=0 F

Q1F−Q1 on the right-hand side of the differential equations (E.47),
(E.51), (E.53). These terms can in principle be computed by solving the differential equation.
Here we focus on the perturbative part sourced by the constant terms in (E.54).

We find the particular solution to equations (E.53)

G0
11,γδ = −πc

18
e−(q−5)φξ(q − 6)(7− q)Gγδ(ϕ)− 2πc2

9
(7− q)e−2(q−6)φξ(q − 6)2δαβ

G0
αβ,γδ = e−2φGαβ,γδ(ϕ)− πc

6
e−(q−5)φξ(q − 6) δ〈αβ,Gγδ〉(ϕ)− πc2

3
e−2(q−6)φξ(q − 6)2δ〈αβδγδ〉 ,

(E.55)

and b = 7−q
3 c in (E.54), which matches the result obtained in [22, (4.16)]. Gαβ,γδ(ϕ) is a

solution to the equation (3.20) on the sub-Grassmaniann Gp−1,q−1 with source term quadratic
in Fαβγδ(ϕ), and Gαβ(ϕ) satisfies the equation (B.19) along Gp−1,q−1

2D(η
α̂Dθ)α̂ Gαβ =

3− q
2

δηθGαβ + (5− q)δ|η)(αGβ)(θ| + δαβGηθ + 12Fαβηθ . (E.56)

One can check that G0
ab,cd is also solution to (E.47), setting a = (7−q)(9−q)c

3 which matches the
results [22, (4.16)].

The most general solution to (E.53) is obtained by adding a solution of the homogeneous
equation without source term

G̃0
11,γδ = −πc

18
(7− q)e−(q−5)φξ(q − 6)G̃γδ(ϕ)

G̃0
αβ,γδ = e−2φG̃αβ,γδ(ϕ)− πc

6
e−(q−5)φξ(q − 6) δ〈αβ,G̃γδ〉(ϕ) ,

(E.57)

with G̃αβ,γδ(ϕ) a solution to the homogeneous equation (3.17) on the sub-Grassmaniann
Gp−1,q−1, and G̃αβ(ϕ) solution to the homogeneous equation (3.34) on Gp−1,q−1. The re-
sults (4.59) and (4.60) for the constant term G0

ab,cd obtained by the unfolding method in this
decomposition lie in this class, upon setting for generic q

Gαβ =
υN q−7 + 1

N + 1
1
2(G(p−1,q−1)

αβ (ϕ) + ςG(p−1,q−1)

αβ (ϕ))

G̃αβ =
υN q−7 − 1

N − 1
1
2(G(p−1,q−1)

αβ (ϕ)− ςG(p−1,q−1)

αβ (ϕ)) ,

(E.58)

with c = 9
π2 as in [22].
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F Beyond the saddle point approximation

In the analysis of the large radius limit of the genus-two modular integral in §5.1, we neglected
the dependence of the Fourier coefficients Ck−2(n,m,L; Ω2) of the meromorphic Siegel mod-
ular form 1/Φk−2 on Ω2, and evaluated the integral over Ω2 arising in the Abelian rank-two
orbit in terms of a matrix variate Bessel function. Since the integral over Ω2 is dominated by
a saddle point at large R, and since Ck−2(n,m,L; Ω2) is constant in the vicinity of the saddle
point (at least at generic point in the moduli space G4/K4) , this approximation correctly
captures the leading behavior of order e−2πRM(Q,P ) at large R, as well as the infinite series
of perturbative corrections around the saddle point. As a result of the poles in 1/Φk−2 how-
ever, the Fourier coefficient Ck−2(n,m,L; Ω2) is only locally constant, and this approximation
misses contributions from the region where this Fourier coefficient differs from its saddle point
value. Here we shall estimate these effects and find that

1. poles occuring at large |Ω2| give rise to contributions of order e−2πR(M(Q1,P1)+M(Q2,P2)) for
all possible splittings (Q,P ) → (Q1, P1) + (Q2, P2) of the total charge into a pair of 1/2-
BPS charges; these contributions are subleading away from the walls of marginal stability,
but crucial for the smoothness of the physical couplings across the wall;

2. deep poles occuring at |Ω2| ≤ 1
(2n2)2 give rises to subleading contributions exponentially

suppressed in e−4π|n2|R2
which can be interpreted as |n2| pairs of Taub-NUT instantons

and anti-instantons.

In either case, the gist of the argument is as follows: one decomposes the integral

∫

P2

d3Ω2

|Ω2|
3
2
−s C[Ω2]e−2πS[Ω2] =

∑

k

Ck

∫

Wk

d3Ω2

|Ω2|
3
2
−s e

−2πS[Ω2] , (F.1)

with a locally constant insertion C[Ω2] into a sum over chambers Wk where C[Ω2] = Ck is
constant. Applying the saddle point approximation, one can bound the integral over Wk at
large R as

− 1

2π
log

(∫

Wk

d3Ω2

|Ω2|
3
2
−s e

−2πS[Ω2]

)
= S[Ω∗2(Wk)] + o(R) , (F.2)

where Ω∗2(Wk) is the minimum of S[Ω] on Wk.

F.1 Poles at large |Ω2|
Recall that the saddle point lies at

Ω∗2 =
R

M(Q,P )
Aᵀ
[

1
S2

(
1 S1

S1 |S|2
)
+ 1
|QR∧PR|

(
P 2
R −QR · PR

−QR · PR Q 2
R

) ]
A , (F.3)

where A is a non-generate integer matrix, which we decompose as A =
(

1 j
k

0 1

)(
d1 0
0 d2

)
γ for

γ ∈ SL(2,Z). We consider the component of the diagonal divisor D where the matrix(
1 0
j
k 1

)
A−ᵀΩ2A

−1
(

1 j
k

0 1

)
becomes diagonal. On this divisor, we parametrize Ω2 as

Ω2 =RAᵀ
(

1 0

− j
k 1

)(
ρ2 0
0 σ2

)(
1 − j

k
0 1

)
A . (F.4)
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It is straightforward to compute the minimum of the action

S[Ω2] =
R2

2
tr
[
Ω−1

2 Aᵀ 1
S2

(
1 S1

S1 |S|2
)
A
]

+ tr
[
Ω2A

−1
(

Q 2
R QR · PR

QR · PR P 2
R

)
A−ᵀ

]
(F.5)

on the surface parametrized by σ2 and ρ2, because the matrices in the traces are then diagonal.
The minimum is reached at

Ω′2 =RAᵀ
(

1 0

− j
k 1

)



1√
2S2(QR− jkPR)2

0

0
|S+ j

k
|√

2S2P 2
R



(

1 − j
k

0 1

)
A , (F.6)

with

S[Ω′2] = R
(√

2
S2

(QR − j
kPR)2 +

√
2|S+ j

k
|2

S2
P 2
R

)
= R

(
M(Q− j

kP, 0) +M( jkP, P )
)
, (F.7)

which we recognize as the sums of the actions associated to 1/2-BPS states with charge
(Q1, P1) = (Q − j

kP, 0) and (Q2, P2) = ( jkP, P ), as announced. Taking j = 0 for simplicity
and parametrizing the distance away from the divisor v = 0 by ε such that

S1

S2
− QR · PR
|QR ∧ PR|

= ε ⇒ QR · PR =

√
Q 2
RP

2
R

S 2
2 + (S1 − εS2)2

(S1 − εS2) , (F.8)

the perturbation of the action at small v2 gives

S
[
RAᵀ




1√
2S2Q 2

R

v2

v2
|S|√

2S2P 2
R


A
]

= S[Ω′2] + 2Rv2

√
Q 2
RP

2
R

( S1 − εS2√
S 2

2 + (S1 − εS2)2
− S1

|S|
)

+O(v 2
2 )

= S[Ω′2]− 2Rv2

√
Q 2
RP

2
R

S 3
2

|S|3 ε+O(ε2) +O(v 2
2 ) . (F.9)

For ε small enough, i.e. Ω∗2 close enough to the wall v2 = 0, one sees indeed that the action
increases monotonically away from the wall, and therefore, the minimum of the action in the
neighboring chamber must indeed be reached along the wall. All the other cases are then
determined from this one by SL(2,Z).

F.2 Deep poles

When the determinant |Ω2| becomes sufficiently small, the contour C = [0, 1]3 + iΩ2 starts
intersecting additional poles of the form

m2 −m1ρ+ n1σ + n2(ρσ − v2) + jv = 0 (F.10)

with n2 6= 0, 4(m1n1 +m2n2)+j2 = 1. This intersection occurs for generic values of Ω2, which
make the Fourier coefficient C(m,n, p; Ω2) itself ill-defined. In this section it is convenient to
parametrize Ω2 as

Ω2 =
1

V τ2

(
1 τ1

τ1 |τ |2
)
. (F.11)
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Eq. (F.10) can be solved for τ1, v1 as a function of τ2, V, ρ1, σ1,

v1 =
1

2n2

(
j ±

√
1− 4(n1 + n2ρ1)(m1 − n2σ1)− 4n2

2

V 2

)

τ1 =
1

2(n1 + n2ρ1)

[√
1− 4(n1 + n2ρ1)(m1 − n2σ1)− 4n2

2

V 2
−
√

1− 4(n1 + n2ρ1)2τ2
2 −

4n2
2

V 2

]

(F.12)

The solution is real only if V 2 − 4V 2(n1 + n2ρ1)2τ2
2 − 4n2

2 ≥ 0, which requires V 2 ≥ 4n2
2, i.e.

that |Ω2| < 1/(2n2)2.
In order to bound the contribution from this region, we shall look for the minimum of the

action (F.5) on the domain P2 with |Ω2| < 1
(2n2)2 . For simplicity we consider the case A = 1,

but the argument is general. Extremizing over τ in the parametrization (F.11) one obtains
the solution

τ∗ = S1 + S2

−PR · (QR + S1PR) + i
√
|QR ∧ PR|2 + R2V 2

2
|QR+SPR|2

S2
+ R4V 4

4

P 2
R + R2V 2

2

, (F.13)

at which point the action becomes

S[τ∗, V ] =

√
R4V 2 + 2R2

|QR + SPR|2
S2

+
4

V 2
|QR ∧ PR|2 . (F.14)

At large R the action grows monotonically in V , so the minimum of the action on the domain
V ≥ 2|n2| is reached on the boundary at V = 2|n2|, where it evaluates to

S[τ∗, 2|n2|] =

√
(2n2R2)2 + 2R2

|QR + SPR|2
S2

+
1

n2
2

|QR ∧ PR|2 . (F.15)

The correction in this domain are therefore exponentially suppressed as e−4πR2|n2|, which is the
expected magnitude of a contribution for |n2| pairs of Taub-NUT instanton anti-instantons.

G Non-Abelian Fourier coefficients

In this section we show that the non-Abelian Fourier coefficients in the degeneration (p, q)→
(p − 2, q − 2) can be deduced from the (Abelian) Fourier coefficients in the degeneration
(p, q) → (p − 1, q − 1). First, recall that the Fourier expansion of an automorphic form F
on Gp,q with respect to the maximal parabolic subgroup with Levi GL(1) × O(p − 2, q − 2),
corresponding to the grading (5.3), which we copy for convenience,

sop,q ' . . . ⊕ (gl1 ⊕ sl2 ⊕ sop−2,q−2)(0) ⊕ (2⊗ (p + q− 4))(1) ⊕ 1(2), (G.1)

consists of three parts:

1. the constant term F0(R, t), defined as the average of F with respect to (aiI , ψ) parametriz-
ing the grade (1) and (2) components in (G.1);
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2. the Abelian Fourier coefficients FQ,P (R, t), defined as the average of the product of F
by a character e−2πi(Qa1+Pa2) with (Q,P ) in the lattice Λ⊕2

p−2,q−2;

3. the non-Abelian Fourier coefficients FM1(R, t, a) for M1 ∈ Z\{0}, defined as the average
of F times e−2πiM1ψ over ψ ∈ [0, 1].

The non-Abelian Fourier coefficient can be further decomposed by diagonalizing a half-
dimensional Lagrangian subspace in the grade (1) space, e.g. dual to the lattice Λp−2,q−2

of magnetic charges. This leads to the ‘wave function representation’

FM1(R, t, a1, a2) =
∑

µ∈ Λp−2,q−2
M1Λp−2,q−2

∑

P∈M1Λp−2,q−2+µ

FM1,µ(R, t;P −M1a1) e2πi(P ·a2− 1
2
M1a1·a2)

(G.2)
However, an alternative representation of the same non-Abelian Fourier coefficient can be
obtained by diagonalizing not only translations in ψ and a2 but also in S1, corresponding to the
positive root in the sl(2) factor appearing in the grade 0 component of (G.1). This amounts to
performing the (Abelian) Fourier decomposition with respect to a different maximal parabolic
subgroup associated to the decomposition (4.4),

sop,q ' (p + q− 2)(−2) ⊕ (gl1 ⊕ sop−1,q−1)(0) ⊕ (p + q− 2)(2) . (G.3)

The only task is to relate the coordinates (R,S, ϕ, a1, a2) appropriate to (G.1) to the co-
ordinates (R′, ϕ′, a′) appropriate to (G.3). To this aim, let us parametrize the (SO(p) ×
SO(q))\SO(p, q) Grassmannian in the parabolic gauge as

g(R,S2, S1, ϕ, a1, a2, ψ) = L(R,S2, ϕ)U2(S1)Ue.m.(a1, a2)U1(ψ) , (G.4)

with L(1, 1, ϕ) ⊂ SO(p− 2, q− 2), L(1, S2, 0)U2(S1) ⊂ SL(2,R) and Ue.m.(a1, a2)U1(ψ) in the
unipotent radical. One straightforwardly computes that

[
L(R,S2, ϕ)U2(S1)

]
Ue.m.(a1, a2)U1(ψ) (G.5)

= L(R,S2, ϕ)U2(S1)Ue.m.(a1, 0)Ue.m.(0, a2)U1(ψ − 1
2a1 · a2)

=
[
L(R,S2, ϕ)Ue.m.(a1, 0)

]
U2(S1)Ue.m.(0, a2 − S1a1)U1(ψ − 1

2a1 · a2 + 1
2S1a

2
1 ) ,

where L(R,S2, ϕ)Ue.m.(a1, 0) ∈ R+ × SO(p − 1, q − 1) and U2(S1)Ue.m.(0, a
′)U1(ψ′) belongs

to the corresponding abelian unipotent radical. Using this parametrization, the non-abelian
Fourier coefficients can simply be obtained from the Fourier coefficients (4.44) by substituting

R′ = R
√
S2

Q′Rα̂ =

{
1√
2S2

(
RM1 + S2

R (M2 − a1 · P + 1
2a

2
1 M1)

)
if α̂ = q − 1

PRα̂ − a1Rα̂M1 if α̂ < q − 1

Q′Lα =

{
1√
2S2

(
RM1 − S2

R (M2 − a1 · P + 1
2a

2
1 M1)

)
if α = p− 1

PLα − a1LαM1 if α < p− 1

Q · a′ → M1(ψ − 1
2a1 · a2 + 1

2S1a
2

1 ) + P · (a2 − S1a1) +M2S1 , (G.6)

where Q = (P,M1,M2) ∈ Λp−1,q−1 split into P ∈ Λp−2,q−2 and (M1,M2) ∈ II1,1, such that
Q2 = P 2− 2M1M2. The index µ = 1 is combined with the index α ranging from 1 to p− 2 of
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SO(p− 2) to give the index α ranging from 1 to p− 1 of SO(p− 1), whereas the index µ = 2
corresponds to the index 1 in the decomposition (4.44). The non-Abelian Fourier coefficient
FM1(R, t, a1, a2) of G(p,q)

abcd is then

G(p,q), 2nab,M1

ab,cd =
∑

P∈Λp−2,q−2

( ∑

M2∈Z
G

(p,q),(P,M1,M2)
ab,cd e2πi(M2−a1·P+

1
2a

2
1 M1)S1

)
e2πi(P ·a2− 1

2
M1a1·a2)

(G.7)
with the classical action

Scl(M1,M2, P ) =

√(
R2M1 + S2(M2 − a1 · P + 1

2a
2

1 M1)
)2

+ 2R2S2(PR − a1RM1)2 ,
(G.8)

and

G
(p,q),(P,M1,M2)
αβ,γδ = 6 Ḡ(p−1,q−1)

〈αβ, (P,M1,M2; R
2

S2
, ϕ, a1)

1∑

l=0

P̃
(l)
γδ〉(PL − a1LM1)

(R2S2)l−
q−2

2

K q−5
2
−` (2πScl)

S
q−3

2
−l

cl

G
(p,q),(P,M1,M2)
αβ,γ2 = 3(R2S2)

q−3
2 Ḡ(p−1,q−1)

〈αβ, (P,M1,M2; R
2

S2
, ϕ, a1)

PLγ〉 − a1Lγ〉M1

i
√

2

K q−7
2

(2πScl)

S
q−5

2
cl

G
(p,q),(P,M1,M2)
αβ,22 = −(R2S2)

q−4
2 Ḡ(p−1,q−1)

αβ (P,M1,M2; R
2

S2
, ϕ, a1)

K q−9
2

(2πScl)

S
q−7

2
cl

, (G.9)

whereas the components with µ = 1 are obtained by replacing Q′Lα = PL − a1LM1 for
α = 1, p−2 by Q′Lp−1 in (G.6). The tensor Ḡ(p−1,q−1)

αβ (P,M1,M2) is defined on SO(p−1, q−1)

from (4.45) in the parabolic gauge in which g(R
2

S2
, t, a1) = L((R

2

S2
)

1
4 , ( S2

R2 )
1
2 , ϕ)Ue.m.(a1, 0), with

Q = (P,M1,M2), and with the index α = p − 1 interpreted as µ = 1, according to (G.6).
Note that the tensor Ḡ(p−1,q−1)

αβ (P,M1,M2) is not invariant under the shift of a1 by a vector
ε ∈ Λp−2,q−2, but satisfies

Ḡ(p−1,q−1)

αβ (P,M1,M2; R
2

S2
, t, a1 + ε) = Ḡ(p−1,q−1)

αβ (P − εM1,M1,M2 − ε · P + 1
2ε

2M1; R
2

S2
, ϕ, a1) ,

(G.10)
which ensures that the decomposition (G.7) is consistent with the action of the Heisenberg
group generated by the grade 1 and 2 components in (G.1). Note that the wave function
representation (G.2) of the non-abelian Fourier coefficient can be recovered from (G.7) by a
Poisson resummation on M2.

H Covariantized Polynomials

In the degeneration limit O(p, q) → O(p − 1, q − 1) studied in §4, the monomials P̃
(l)
α1...αi(Q)

with l ≥ 0 are of degree i− 2l, and defined by

1∑

l=0

P̃
(l)
γδ (Q) = QLγQLδ −

1

4π
δγδ

P̃
(0)
δ (Q) = QLδ

P̃ (0)(Q) = 1,

(H.1)
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In the degeneration limit O(p, q)→ O(p− 2, q− 2) studied in §5.1, the monomials P(l)
α1...αi

with l ≥ 0 are of degree i− 2l, and defined by

1∑

l=0

P(l)
γδ (Γi, S) = ΓL,γτΓL,δ

τ − 1

4π
δγδ

P(0)
δτ (Γ) = QLδτ

P(0)(Γ) = 1,

(H.2)

For the Abelian rank-2 orbits (5.33), the polynomial are contracted with their matrix-
variate Bessel function as

2∑

l=0

P(l)µν
αβ,γδ(Γi, S)B̃

(lmod 2)
q−5−l

2
µν

(Z) = δ〈λκ,δτε〉 ΓLα
λΓLβ

κΓLγ
τΓLδ

ε δµνB̃
(0)
q−5

2
µν

(Z)

− 3

4π
δ〈αβ,(ΓLγ

κΓLδ〉
λ)B̃

(1)
q−6

2
κλ

(Z)

+
3

16π2
δ〈αβ,δγδ〉δ

µνB̃
(0)
q−7

2
µν

(Z)

∑

l=0,1

P(l)µν
ρβ,γδ (Γi, S)B̃

(l+1 mod 2)
q−6−l

2
µν

(Z) = ΓL 〈β,ρΓLγ
τΓLδ〉

εB̃
(1)
q−6

2
τε

(Z)

− 3

4π
δ〈γδ,ΓLβ〉

κB̃
(0)
q−7

2
κρ

(Z)

∑

l=0,1

P(l)µν
ρσ,γδ (Γi, S)B̃

(lmod 2)
q−7−l

2
µν

(Z) = ΓLγ,ρΓLδ,σδ
µνB̃

(0)
q−7

2
µν

(Z)

− 1

4π
δγδB̃

(1)
q−8

2
ρσ

(Z)

P(0)µν
ρσ,τδ (Γi, S)B̃

(1)
q−8

2
µν

(Z) = ΓLδ,〈τ B̃
(1)
q−8

2
ρσ〉(Z)

P(0)µν
ρσ,τυ B

(0)
q−9

2
µν

(Z) = δ〈ρσ,δτυ〉B
(0)
q−9

2
µ

µ(Z)

(H.3)

For the singular contribution (D.4), the monomials P(l1,l2)
α1...αi with l1, l2 ≥ 0 are of degree
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i− 2l1 − 2l2, and defined by

2∑

l1=0

2∑

l2=0

P(l1,l2)
αβ,γδ (Γ1,Γ2, S) = δ〈λκ,δτε〉 Γ1Lα

λΓ1Lβ
κΓ2Lγ

τΓ2Lδ
ε + δ〈λκ,δτε〉 Γ2Lα

λΓ2Lβ
κΓ1Lγ

τΓ1Lδ
ε

− 3
4π

(
δ〈αβ,ΓL1γΓL1δ〉 + δ〈αβ,ΓL2γΓL2δ〉

)
− 3

8π2
δ〈αβ,δγδ〉

1∑

l1=0

1∑

l2=0

P(l1,l2)
ρβ,γδ (Γ1,Γ2, S) = Γ1L〈β,ρΓ2Lγ

τΓ2Lδ〉τ + Γ2L〈β,ρΓ1Lγ
τΓ1Lδ〉τ

− 3
4π

(
δ〈γδ,ΓL1β〉 + δ〈γδ,ΓL2β〉

)

1∑

l1=0

1∑

l2=0

P(l1,l2)
ρσ,γδ (Γ1,Γ2, S) = Γ1LγρΓ1Lδσ + Γ2LγρΓ2Lδσ − 1

2π δρσδγδ

P(0,0)
ρσ,τδ(Γ1,Γ2, S) = δ〈ρσ,(Γ1Lδτ〉 + Γ2Lδτ〉)

P(0,0)
ρσ,τυ(Γ1,Γ2, S) = δ〈ρσ,δτυ〉

(H.4)

where Γ = Γ1 + Γ2.
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