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CHAPTER 1.  INTRODUCTION 

Eukaryotic cells contain several compartments called organelles, which are specialized subunits within 

the cell (Figure 1-1). The cell and the organelles are delimited by membranes which form a physical 

barrier from the surrounding environment and preserve their integrity. The different organelles are not 

static isolated structures; they constantly communicate between each other by means of transport 

vesicles. Intracellular vesicular trafficking is mandatory for the cell survival and is achievable thanks to 

membranes deformability and shape modulation.  

 

 

FIGURE 1-1: A EUKARYOTIC CELL INTERNAL ORGANIZATION. ADAPTED FROM (LODISH ET AL., 2003). 

 

Different Intracellular trafficking pathways, critical for cell functioning, allow material exchange between 

the plasma membrane (PM), the Golgi apparatus, the endoplasmic reticulum (ER) and endosomes 

(Figure 1-2). These pathways are responsible for the transport of proteins and lipids within the cell, 

between and through the different organelles, while protecting their integrity. This communication of 

the cell with its environment is crucial for all tissue and organ function. The two major intracellular 

pathways, based on the direction of the exchanges, are the secretory pathway (or exocytic pathway) 

and the endocytic pathway. The secretory pathway which was the first communication pathway 

characterized in 1975 by George Palade, carries proteins and lipids from the endoplasmic reticulum 

through the Golgi apparatus to the plasma membrane (PM). It allows the cell to modify the molecules 

which are produced, in a series of steps, store them until needed, and then deliver them either to the 

plasma membrane (for receptors, adhesion proteins for instance) or to the exterior through exocytosis. 

https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5160/
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The endocytic pathway allows to internalize (through endocytosis) cargos from the cell external medium 

or the PM through a set of endosomes to the degradative cellular compartment, the lysosome. The two 

pathways are connected by bi-directional transport between the Golgi and endosomes. Both the 

secretory and endocytic intracellular trafficking pathways implicate the constant budding and transport 

of small vesicles or tubules enclosing the cargo (lipids or proteins) to be transported. These vesicles or 

tubules bud off from the donor compartment and shuttle through the cytoplasm along the cytoskeleton 

in general towards the targeted acceptor compartment where they fuse and release their content 

(Palade 1975; Bonifacino and Glick 2004; Takamori, Holt et al. 2006). 

 

FIGURE 1-2: INTRACELLULAR TRANSPORT PATHWAYS (BONIFACINO AND GLICK 2004) 

The secretory, lysosomal and endocytic pathways. The main types of coats are indicated by colored lines. Clathrin is involved 
in endocytosis and trafficking at the trans-Golgi network. COPII is involved in export from the ER, and COPI in retrograde 
transport from the Golgi complex. 
 
 

Intracellular traffic can occur in the presence or in the absence of proteins on the cytosolic surface, 

which self-assemble on the membrane forming a protein coat (Doherty and McMahon 2009). There are 

three major coat proteins, which are implicated at various points during endocytosis and exocytosis: 

COPI and COPII, caveolae and clathrin, (Figure 1-2) (Hsu, Lee et al. ; Vassilieva and Nusrat 2008; 

McMahon and Boucrot 2011; Faini, Beck et al. 2013).  

 

COPI and COPII coat proteins mediate the transport both ways between the ER and the Golgi apparatus 

(Figure 1-2). The proteins synthetized in the ER are exported to ER exit sites (ERES) where COPII coat 

proteins form the budding complex that will later go through the Golgi apparatus to be further 

glycosylated, processed or sorted before their release at the plasma membrane or out of the cell or 

returned to the ER through COPI-coated vesicles (Barlowe, Orci et al. 1994).  
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Clathrin coat proteins mediate endocytosis from the plasma membrane to endosomal compartments 

and the Golgi (Figure 1-2). The clathrin-mediated endocytosis pathway is involved in the regulation of 

the level of receptors, adhesion molecules at the plasma membrane and allows internalizing exterior 

substrates, etc. The incorporation of these materials is accomplished through deformation and 

invagination of the plasma membrane by the clathrin coat and associated proteins (Doherty and 

McMahon 2009). Clathrin assembles into a lattice-like cage on the plasma membrane with the 

assistance of adaptor proteins that directly bind lipids, cargo proteins, other adaptors, and clathrin itself. 

The clathrin multicomponent protein coat clusters cargo and bend the membrane by forming a scaffold 

that imposes its spontaneous positive curvature to the underlying membrane with dynamin, and in 

some cases with the help of adhering cytoskeleton. The clathrin-coated vesicles then pinch off from the 

plasma membrane by dynamin-mediated membrane scission before clathrin-uncoating and fusing with 

the specific targeted compartment (Figure 1-3).  

 

 

FIGURE 1-3: SCHEMATIC ILLUSTRATION OF CLATHRIN-MEDIATED ENDOCYTOSIS (CME) (SCHMID 2017). 

CME is initiated when the coat-forming protein clathrin is recruited to the PM by the heterotetrameric adaptor proteins that 

also recognize cargo on the cytoplasmic domains of surface receptors. As clathrin assembles, cargo is concentrated into the 

inwardly growing clathrin-coated pit (CCP). With the help of numerous endocytic accessory proteins (EAPs), nascent CCPs 

undergo maturation until they are deeply invaginated but remain connected to the cell surface via a narrow neck. The large 

GTPase dynamin then assembles around these narrow necks forming collar-like structures and, with the help of curvature-

generating EAPs, catalyzes membrane scission. 

 

In all cases, once the coated-bud grows and is ready to detach, it has to be separated from the 

membrane of origin by fission of the membrane, without loss of cargo. Membrane fission requires  

specialized complexes: the GTPase dynamin in the context of clathrin-mediated endocytosis, the GTPase 

Sar1 in COP-II vesicle scission (Lee, Orci et al. 2005) or the endosomal sorting complex required for 

transport machinery (ESCRT) for driving the formation of intraluminal vesicles in the multivesicular body 

pathway (Peel, Macheboeuf et al. 2011; Guizetti and Gerlich 2012). 

https://www.mechanobio.info/topics/cellular-organization/membrane/membrane-trafficking/clathrin-mediated-endocytosis/
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ESCRT complexes constitute an evolutionary conserved class of proteins that mediate a topologically 

unique mode of membrane remodelling and scission (Figure 1-4; Figure 1-5). In the multivesicular body 

pathway (MVB) (Henne, Stenmark et al. 2013), the ESCRT complexes catalyze membrane budding and 

fission processes, necessary for receptor sorting and down-regulation (Figure 1-5). In addition to the 

MVB generation, ESCRTs are involved in a variety of other cellular contexts such as in late steps of 

cytokinesis (Guizetti and Gerlich 2012; Agromayor and Martin-Serrano 2013), in plasma membrane 

repair (Jimenez, Maiuri et al. 2014), in exosome biogenesis (Juan and Furthauer 2017), in nuclear 

envelope assembly (Olmos and Carlton 2016; Christ, Raiborg et al. 2017), in neuron pruning and repair 

and in retroviral egress, etc. (Hurley 2015; Alonso, Migliano et al. 2016; Schoneberg, Lee et al. 2017) 

(Figure 1-4). Additionally, a dysfunction of these complexes could be partly associated with numerous 

pathologies like cancer or neurodegenerative diseases (Slagsvold, Pattni et al. 2006; Piper and Katzmann 

2007; Saksena and Emr 2009). 

 

FIGURE 1-4: TIME-LINE OF DISCOVERY OF ESCRT-DEPENDENT PROCESSES (CAMPSTEIJN, VIETRI ET AL. 2016) 

Overview of ESCRT functions described in a variety of cellular contexts since its identification in 2001.  

The first study identifying each of the functionalities is indicated. 

 

 

Interestingly, in all the ESCRT-dependent processes, the membrane-neck-directed mode of action of the 

machinery is preserved (Figure 1-5). The ESCRT complexes drive membrane scission of vesicles budding 

away from the cytosol, whether into internal compartments or out of the cell, (Figure 1-5).  

In the case of the ESCRT-mediated membrane scission, budding happens from the inner surface of the 

membrane resulting in scission and vesicle formation away from the cytosol and towards the lumen of 

the endosome. Therefore, ESCRT complexes induce reverse-topology membrane scission events 
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compared to the membrane scission in CME (Figure 1-5). In contrast with dynamin-induced fission 

where the neck can be constricted without obstacle, ESCRT proteins are present inside the neck, thus, 

its direct thinning and self-fusion is hindered by the protein scaffold (Figure 1-5). Hence, the character 

of membrane deformation leading to scission driven by ESCRTs must differ essentially from that 

generated by dynamin in the CME context and the mechanics of the fission reaction must be dissimilar. 

 

 

FIGURE 1-5: OPPOSITE MEMBRANE BUDDING TOPOLOGIES LEAD TO VESICLE FORMATION IN DIFFERENT 

DIRECTIONS (SCHONEBERG, LEE ET AL. 2017). 

Normal-topology (left) and reverse-topology (right) membrane scission. Normal-topology scission occurs in the biogenesis of 

clathrin-, coat protein I (COPI) - and COPII-coated vesicles, where budding occurs towards the cytosol. Reverse-topology 

scission, carried out by the endosomal sorting complexes required for transport (ESCRTs), functions in vesicle budding away 

from the cytosol. Note that a fundamental mechanistic difference between normal-and reverse-topology scission arises from 

the fact that only the cytosolic side of the membrane neck is accessible for the protein scaffolding and scission machinery. 

 

 

The ESCRT family comprises five different sub-complexes: ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III , the 

AAA-ATPase Vps4 (Vacuolar protein sorting 4) complex, and ESCRT-associated or accessory proteins 

such as ALIX (also known as BRO1) (Piper and Katzmann 2007). The ESCRT-accessory proteins play a key 

role in recruiting and stabilizing ESCRT subunits. The ESCRT complexes are recruited sequentially on the 

cytosolic side of the membrane as preformed complexes (ESCRT-0, I and II) or inactive monomers 

(ESCRT-III) and, together, contribute to specific steps in membrane budding and fission.  

 

The ESCRT-0 complex is the first complex involved in the process as it recognizes and sequesters 

ubiquitynilated cargo proteins. In addition, ESCRT-0 triggers ESCRT-I (and ALIX) and ESCRT-II complexes 

which likewise contain ubiquitin-binding domains (Schmidt and Teis 2012) (Figure 1-6). This way, 
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ubiquitin tagged proteins are passed from one complex to the other, from ESCRT-0 to ESCRT-I and then 

to ESCRT-II, like on a conveyor belt.  

 

ESCRT-I and ESCRT-II complexes mediate membrane deformation and invagination. But, acting alone, 

ESCRT-I and II can only generate the formation of membrane buds and are not able to induce membrane 

fission (Figure 1-6). This last step is performed by the hetero-oligomeric ESCRT-III complex, recruited 

either by ESCRT-II via ESCRT-I or by ALIX. The ESCRT-III complex is thus critical for accomplishing the last 

steps in membrane scission and, peculiarly, the ESCRT-III subunits are not internalized in the formed 

vesicle. Finally, ESCRT-III proteins are recycled into the cytoplasm by the Vps4 complex in an ATP-

consuming reaction (Figure 1-6). Additionally to disassembling the ESCRT complex, recent studies 

indicate that Vps4 could also play an important role in the machinery regulation (Adell, Migliano et al. 

2017; Mierzwa, Chiaruttini et al. 2017).  

 

 

FIGURE 1-6: THE ESCRT MACHINERY 

Schema of the different steps of membrane remodelling by ESCRTs. First, the ESCRT evolutionary conserved complexes ESCRT-

0, -I, -II sort ubiquitynilated cargoes and initiate membrane deformation. Second, the ESCRT-III complex induces membrane 

budding and scission. Third, the AAA-ATPase Vps4 regulates the ESCRT-III components and prior to membrane scission, it 

disassembles and recycles back to the cytosol the ESCRT-III components. ESCRT-III subunits are not internalized in the formed 

vesicle. 

 

The ESCRT-III complex differs from all other ESCRT machinery since it exists only transiently and contains 

both essential and non-essential components. The ESCRT-III subunits cycle between an inactive cytosolic 

state (Muziol, Pineda-Molina et al. 2006; Bajorek, Schubert et al. 2009; Xiao, Chen et al. 2009) and an 

active state when bound to the membrane (Zamborlini, Usami et al. 2006; Shim, Kimpler et al. 2007; 

Lata, Roessle et al. 2008). The latter state includes recruitment by adaptor proteins leading to 
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membrane binding and transient assembly of ESCRT-III subunits as a heteropolymer that ultimately lead 

to membrane fission. 

The yeast ESCRT-III protein complex comprises four core subunits: Vps20, Vps24, Vps2 and Snf7 

(vacuolar sorting proteins 20, 24, 2 and sucrose non-fermenting protein 7). In Homo sapiens, 32 proteins 

form the five different complexes ESCRT-0, -I, -II, -III and the ATPase Vps4 complex and up to 12 proteins 

exist for the ESCRT-III complex, called Charged Multivesicular Body Protein (CHMP 1-7) and IST1 

(Increased Sodium tolerance 1 gene product). The increased number of ESCRT-III subunits in Homo 

sapiens is paralleled by the functional diversification of the complex in higher organisms. CHMPs 

proteins involve a set of closely related core components with their yeast homologues: Vps20 and Vps24 

Homo sapiens homologous are respectively CHMP6 and CHMP3. Snf7 is present in three isoforms, 

namely CHMP4A, B and C. And, there are two subunits sharing a relative high sequence homology with 

Vps2, called CHMP2A and CHMP2B.Previous studies suggest that CHMP4B and CHMP2A are respectively 

the functional homologues of Snf7 and Vps2 according to their essential role in the MVB pathway 

(Henne, Stenmark et al. 2013). The role of the remaining ESCRT-III proteins (CHMP1A, B, CHMP5, CHMP7 

and IST1) is less defined. 

Although, the principal biochemical function of the ESCRT-III proteins is to induce membrane scission 

by constricting and narrowing membrane necks, the individual functions of the different respective 

human isoforms are not well conclusively proved and the minimal machinery necessary to induce 

membrane scission and its biophysical mechanism and regulation remain unknown. Several models 

have been proposed to explain how ESCRTs are spatially arranged to accomplish scission but the 

biochemical conditions for ESCRT-III interactions with the membrane, the role of the shape of the neck, 

the membrane curvature as well as the mechanical properties of ESCRT-III polymers, have been less 

investigated.  

The aim of this thesis is to characterize the mechanical properties of CHMP2B protein in comparison 

with the other ESCRT-III subunits. And, additionally, we look forward in this study to present a biological 

function for CHMP2B within the other ESCRT-III core components in the membrane scission context. 

We have used biomimetic model systems to study in vitro CHMP protein affinity and effects on 

membrane by several techniques (confocal microscopy, FACS, FRAP, and EM and AFM with 

collaborators). We focused our work on CHMP2B protein, the less studied ESCRT-III subunit. We have 

determined and precisely quantified the interaction of CHMP2B protein with synthetic membranes of 

different lipid compositions. We established that CHMP2B binding is enhanced in the presence of 

PI(4,5)P2  lipids, whereas the other human core components (CHMP4, CHMP2A and CHMP3) have no 

lipid specificity besides their negative charge. In addition, we revealed for the first time the 
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supramolecular organization of CHMP2B proteins on membranes. We found that CHMP2B proteins 

form at the macroscopic scale a reticular-like structure on the surface of giant vesicles that was never 

observed before. At a smaller scale and high resolution, we observed by EM and AFM that CHMP2B 

proteins form a “honeycomb”-like pattern. Furthermore, we also characterized for the first time the 

mechanical properties of CHMP2B polymers, showing a strong membrane stiffening induced by 

CHMP2B in contrast with the other CHMPs subunits. These results provide strong experimental 

evidence that modulation of membrane elasticity is an important function of CHMP polymers. This 

property might play an important role in the context of membrane scission. With our collaborators 

(Aurélie Bertin at the UMR168 and W. Roos (Zernike Instituut, Groningen) using cryo-electron 

microscopy and high-speed AFM, we also studied how these protein complexes deform membranes. 

Our results show that in contrast with the actual prominent hypothesis, CHMP4 alone does not deform 

membranes, but when complexed with the other CHMP subunits (CHMP2A + CHMP3 or CHMP2B), it 

forms tubular helical structures that were never reported before.  These observations provide a novel 

basis for proposing possible mechanism for membrane constriction in the presence of the ATPase Vps4.  

The physics of biomembranes will be presented in Chapter 2. The ESCRT machinery in Yeast and Homo 

sapiens and the thesis objectives are detailed in Chapter 3. In Chapter 4, we will describe the different 

techniques used to study CHMP2B in comparison with the other ESCRT-III human core components: 

CHMP4, CHMP2A and CHMP3. And in Chapter 5, we will present our results. Finally, the conclusion and 

perspectives will be presented in Chapter 6. 
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CHAPTER 2.  PHYSICS OF BIOMEMBRANES 

2.1 STRUCTURE OF LIPIDS 

The building block of a cellular membrane is lipids. The cellular membrane mainly consists of a double 

layer of lipids of 3 nm thickness each and with an area per lipid molecules about 0.7 nm2 (Lipowsky 

1995). It is an asymmetric structure with different lipid compositions on each leaflet.  

 

Lipids are amphiphilic molecules with a hydrophilic head group and hydrophobic tails. The hydrophilic 

head group varies depending on the lipid type and can be neutral or negatively charged.  The 

hydrophobic tail group is made of a variable number of hydrocarbon chains (from 1 up to 4) of various 

lengths and degrees of unsaturation. Their amphiphilic property is a chemical property that enables cells 

to segregate their internal constituents from the external environment. Lipids are highly soluble in 

organic solvents. When solubilized in water and when their concentration exceeds the critical micellar 

concentration (CMC) (of the order of µM for lysolipids (1 chain) in C16, C18 and of the order of nM for 

phospholipids (2 chains) in C16, C18) (Kuhl, Leckband et al. 1994), the amphiphilic property of lipids 

causes them to self-assemble spontaneously into various structures. The hydrophilic heads face the 

water and protect the hydrophobic tails from contact with water. The optimal arrangement of lipids in 

water results from the competition between two forces: the hydrophobic attraction force which tends 

to aggregate the molecules together, in other words to reduce the interfacial area, and the repulsion 

force of the head groups which tends to increase the interfacial area. The hydrophobic attraction is not 

a real interaction between hydrophobic molecules; rather, it is an effective interaction. It results from 

the so-called hydrophobic effect: when a non-polar molecule is introduced in water, it perturbs the 

arrangement of water molecules. These molecules reorient to minimize the disruption of hydrogen 

bonds. However, the arrangement of water molecules around non-polar solute is more ordered, and 

therefore entropically unfavorable. By aggregation, hydrophobic molecules minimize the entropic cost 

associated with the rearrangement of water molecules. The competition between hydrophobic 

attraction and head group repulsion forces results in a constant (equilibrium) area per lipid. Thus, the 

shape of the self-assembled or aggregated lipid structures depends on this parameter as well as on the 

geometrical shape of the lipids (Helm, Israelachvili et al. 1992). Lipids assembly can form for instance a 

globally flat structure, namely a lipid bilayer in which the lipid tails are arranged parallel to each other 

being sandwiched by the head groups or spherical shape structures such micelles (Figure 2-1). Micelles 

are globular structures with the lipid head groups at the water interface covering the lipid tails (Figure 

2-1). This micelle structure is practically only found for one-chain lipids (lysolipids) at accessible 

concentrations.  
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FIGURE 2-1: MOST COMMON LIPID SELF-ASSEMBLIES IN WATER DEPENDING ON THE INDIVIDUAL LIPID UNIT 

SHAPE 

(Left) Lipid bilayer with cylindrical-shaped individual unit. The cross section of the lipid head equal that of the side chain.  

(Right) Micelles with wedge-shaped individual unit. The cross section of the lipid head is greater than that of the side chain.  

 

Besides being a protective barrier for the different organelles in cells, with a low permeability to most 

water-soluble molecules and ions, lipid membranes behave as highly dynamic two-dimensional fluid 

structures (Lipowsky 1995). Lipids continuously diffuse laterally within each leaflet of the bilayer (Figure 

2-2 / A). This lateral diffusion is considered as a relatively fast phenomenon with a diffusion coefficient 

ranging from 1 to 10 µm2.s-1 in reconstituted membrane systems. Lipids can also flip in the bilayer 

between the inner and outer leaflets (Figure 2-2 / B). The passive transversal diffusion or flip-flop occurs 

less frequently and is very slow in the absence of protein involved in active transport such as flippase, 

floppase or scramblase (Figure 2-2 / C). 

 

FIGURE 2-2: LIPID DIFFUSION IN A BILAYER: LATERAL VS. TRANSVERSE (FLIP-FLOP) 

(A) Lipid lateral diffusion.  

(B) Lipid Transverse diffusion or lipid Flip-Flop.  

(C) Lipid transverse diffusion in the presence of proteins: Flippase, Floppase and Scramblase. 
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Lipids can be divided into two classes: structural lipids and signaling lipids. Structural lipids are 

responsible for the physical barrier function of the membrane and are the most abundant lipids in the 

membrane. Signaling lipids are present in smaller quantities. They are highly regulated and play a major 

role in defining organelles and recruitment of target proteins to the membrane (Sprong, van der Sluijs 

et al. 2001; van Meer, Voelker et al. 2008). 

The most abundant structural lipids found in cell membranes are phospholipids (Figure 2-3). 

Phospholipids have in general one or two fatty acid hydrocarbon tails (providing the hydrophobic 

barrier) linked together to a platform, a phosphate group and additionally to that, they have a polar 

group (headgroup) defining their function. Depending on the headgroup, the distribution of 

phospholipids varies among the different organelles. The two major sub-types of phospholipids are 

glycerophospholipids, if the hydrophobic platform on which phospholipids are built is diacylglycerol 

(Figure 2-3 / A) and sphingolipids, if the platform on which phospholipids are built is ceramide (Figure 

2-3 / B). 

 

FIGURE 2-3: PRECURSORS OF PHOSPHOLIPIDS  

They define the two major sub-types of phospholipids.  

(A) Diacylglycerol (DAG) backbone, at the base of the glycerophospholipids.  

(B) The ceramide backbone for the sphingolipids. 

 

2.1.1 PHOSPHOLIPIDS 

The main phospholipids found in biological membranes are glycerophospholipids that represent 40 to 

60 mol % of the total lipid fraction. Glycerophospholipids have a diacyl hydrophobic backbone 

composed of two saturated or cis-unsaturated fatty acid chains of varying lengths (and various possible 

unsaturated levels) covalently linked to a glycerol molecule (Figure 2-4). The cis-unsaturations create 

kinks in the hydrocarbon chain. The presence of these kinks effectively reduces the surface area 

accessible to other fatty acid chains, weakening Van der Waals interactions. They form less dense 

irregular packing of individual lipid molecules as for saturated chains or in other terms a disordered 

organization of the membrane called the liquid disordered phase (Ld). The Ld phase corresponds to a 

highly fluid state in which individual lipids can move laterally across the surface of the membrane with 

a high diffusion constant. Note that glycerophospholipids with saturated chains can also form Ld phase 

above the gel-transition temperature (Tg), but their Tg is higher than their counterparts containing one 

or more unsaturations. 
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In glycerophospholipids, the diacylglycerol part is connected to the head group via a phosphate group. 

The most abundant glycerophospholipid in mammalian cells, with a ratio superior to 50% of the 

phospholipids, is phosphatidylcholine (PC) (Figure 2-4). Phosphatidylcholines have a cylindrical shape 

and mostly all of natural ones have one cis-unsaturated fatty acid chain making them fluid at room 

temperature. Phosphatidylcholine is zwitterionic as it has both a positive and a negative charge at 

physiological conditions, making in principle PC with a net neutral charge at neutral pH. Other dominant 

phospholipids in cells are phosphatidylserine (PS) and phosphatidylethanolamine (PE) (Figure 2-4). 

Phosphatidylserine, a cylindrical shaped lipid, is a negatively charged phospholipid highly concentrated 

on the cytosolic leaflet of the plasma membrane while phosphatidylethanolamine is zwitterionic. PE 

exhibits a conical molecular geometry because of its small-sized polar headgroup as compared to the 

chain. Phosphatidylinositol lipids (PI) are an example of signaling lipids (Figure 2-4). They are present in 

smaller quantities and have likewise PS a negative charge and a cylindrical shape. PI lipids will be 

described in detail below (in section 2.1.3). 

 

FIGURE 2-4: STRUCTURE OF MAJOR GLYCEROPHOSPHOLIPIDS 

Examples of major glycerophospholipids in cells. Abbreviations: phosphatidylethanolamine (PE), phosphatidylcholine (PC), 
phosphatidylserine (PS) and phosphatidylinositol lipids (PI). The glycerophosphate part is shown in purple. 

 

Sphingolipids have hydrophobic backbone composed of a sphingosine and a fatty acid. Sphingolipids 

have long and saturated hydrophobic tails. Hence, sphingolipids are more packed in comparison with 

glycerophospholipids with a cis-saturation, and form solid-like phases at usual temperatures. The major 

sphingolipids in mammalian cells are sphingomyelin (SM) and glycosphingolipids (GSL) (Neumann and 

van Meer 2008). 
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2.1.2 STEROLS  

Sterols are lipids with an extremely small polar head group (hydroxyl OH group) and a bulky chain 

composed of a few carbon cycles and a short hydrocarbon chain. Similarly to phospholipids, sterols are 

considered as structural lipids and are not homogeneously distributed throughout the cells organelles. 

They are more abundant at the plasma membrane and almost absent from the ER (van Meer, Voelker 

et al. 2008). The most abundant sterol species in eukaryotic cells is cholesterol (Figure 2-5) that contains 

a tetracyclic ring, which confers a planar rigid conformation to the molecule. The addition of sufficiently 

high cholesterol concentration to lipids organized in a Ld phase leads to tighter packing of the 

membrane. The result is the emergence of another phase called the liquid ordered (Lo) phase (Figure 

2-5). The Lo phase has intermediate properties, between solid and liquid, namely a higher 

conformational order and a lower diffusion than the Ld phase, but nevertheless a relatively high lateral 

diffusion of the lipids as compared to the solid phase (Figure 2-5) (Garcia-Saez and Schwille 2010). When 

added to solid-like phases of sphingolipids the opposite effect occurs, from the solid-like phase to the 

Lo fluid phase. Moreover, addition of cholesterol reduces the overall permeability of lipid bilayers to 

water (Rawicz, Smith et al. 2008). 

 

FIGURE 2-5: LIPID LIQUID DISORDERED (LD) PHASE VS.  LIQUID ORDERED (LO) PHASE 

Top: Structure of the cholesterol molecule. Bottom:  effect of cholesterol addition in a lipid bilayer. Cholesterol induces changes 

in the bilayer organization:  from liquid disordered with high membrane fluidity to liquid ordered phase with lower membrane 

fluidity and even lower organization. It also reduces membrane permeability. 

 

2.1.3 PHOSPHOINOSITIDES 

Phosphatidylinositol is synthetized in the endoplasmic reticulum by a PI synthase enzyme. Like other 

phospholipids, PI has a glycerol backbone esterified to two fatty acid chains, a phosphate and linked to 

a cyclic polyol myo-inositol headgroup that extends into the cytoplasm (Figure 2-4). The synthetized PI 

is then transported from the ER by PI transfer proteins and possibly vesicular trafficking to different 
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cellular membranes (Cockcroft and Carvou 2007). Once PI is distributed, it can be reversibly 

phosphorylated at different positions of the inositol ring, on the 3, 4 and/or 5 free hydroxyl group by 

cytoplasmic lipid kinases, yielding seven different phosphorylated derivatives of PI (Figure 2-6): PI(3)P, 

PI(4)P, PI(5)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3. 

 

FIGURE 2-6: PHOSPHATIDYLINOSITOL DERIVATIVES (STAHELIN, SCOTT ET AL. 2014) 

Examples of the seven phosphatidylinositol lipid derivatives corresponding to phosphorylation of the different positions 3,4 

and 5. Abbreviations:  phosphatidylinositol-3-phosphate PI(3)P, phosphatidylinositol-4-phosphate PI(4)P, phosphatidylinositol-

5-phosphate PI(5)P, phosphatidylinositol-3,4-bisphosphate PI(3,4)P2, phosphatidylinositol-3,5-bisphosphate PI(3,5)P2, 

phosphatidylinositol-4,5-bisphosphate PI(4,5)P2 and phosphatidylinositol-3,4,5-trisphosphate PI(3,4,5)P3. 

 

 

Phosphoinositides constitute a minority of the phospholipids family with a concentration lower than 1% 

in cell membranes. However, PI lipids play an important signaling role in cells. Each cellular membrane 

compartment uses a characteristic species of phosphoinositide (Figure 2-7). Each distinct 

phosphoinositide plays a specific role in cell signaling as it attracts phosphoinositide-specific and 

functionally important proteins to the membranes (Stahelin, Scott et al. 2014). Thus, by playing an 

instructional role in specific cytosolic protein recruitment to the different cell membranes, 

phosphorylated derivatives are involved in several cellular processes where they regulate membrane 

trafficking, cell growth and survival, cytoskeletal dynamics, etc. (Di Paolo, Moskowitz et al. 2004; Roth 

2004). Phosphoinositides are thus considered as spatial landmarks. 

PI(4,5)P2 and PI(4)P are the most abundant of the PIP lipids. PI(4)P is enriched at the trans-Golgi network 

and PI(4,5)P2 at the plasma membrane (Figure 2-7), in the range of approximately 5,000-20,000 
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molecules.µm-2 of the plasma membrane cytosolic leaflet (Falkenburger, Jensen et al. 2010). PI(4,5)P2 

plays a major role in signaling and membrane targeting. For instance, PI(4,5)P2 present at the inner 

plasma membrane leaflet attract proteins that regulate the actin cytoskeleton. In addition, they act 

during endocytosis  allowing membranes to recruit specific proteins that are involved in vesicle 

trafficking such as phospholipase C, protein kinase C which are implicated in membrane budding and 

fusion (Neumann and van Meer 2008; Stahelin, Scott et al. 2014).  

PI(3)P and  PI(3,5)P2 are present in smaller concentration, in early endosomes and late endosomes 

respectively (De Craene, Bertazzi et al. 2017) (Figure 2-7). 

 

FIGURE 2-7: CELLULAR HETEROGENOUS DISTRIBUTION OF PI PHOSPHORYLATED DERIVATIVES IN THE 

DIFFERENT CELLULAR ORGANELLES (ROTH 2004) 

The major phosphoinositide species are concentrated at distinct sites in intracellular membrane traffic pathways and may serve 
as organelle markers. The major concentration of phosphatidylinositol 4-phosphate P(4)P (blue) is at the Golgi complex, and 
very little free P(4)P is detected at the plasma membrane or on endosomes. P(3)P (green) is concentrated on early endosomes. 
The majority of phosphatidylinositol 4,5-bisphosphate P(4,5)P2 (red) is at the plasma membrane at steady state. P(3,5)P2 
(orange) is found on multivesicular endosomes and lysosomes. Some phosphoinositides are found in the endoplasmic 
reticulum and in the nucleus, but probably do not play major roles in membrane traffic. 
 

2.2 MEMBRANE MECHANICS 

Because cellular membranes achieve essential biological functions by modulating their shapes, such as 

membrane trafficking and signaling, it is important to theoretically describe membrane mechanical 

properties, which represents a governing principle of cellular biological function.  

 

In the 1970’s, W. Helfrich and P. Canham proposed a theory on membrane elasticity. This theory 

embodies the idea that the elastic energy of a membrane is linked to its shape. Membranes are modeled 

as homogeneous two-dimensional fluid sheets, characterized by their surface tension σ, the mean and 
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Gaussian curvature moduli κ and κG, respectively. In most cases, their thickness about a few nanometers 

is considered to be negligible as compared to the length scale of their surface of about the micrometer 

order scale. If this approximation is satisfied then any membrane deformation can be decomposed into 

three main classes of membrane deformations, which are: stretching (changing the membrane area), 

bending, and shearing at constant area (Figure 2-8). The Canham-Helfrich Hamiltonian is derived by 

summing the three membrane deformation energies (stretching, bending and shearing, described 

below).  

 

 

FIGURE 2-8: ELASTIC DEFORMATIONS OF A LIPID MEMBRANE 

(A) Schematic representation of the three main membrane deformations. The arrows represent the direction of the 
deformation or stress, resulting in different strain responses: bending, stretching (or extension), and shear (Mijo Simunovic, 
PhD thesis, 2015). 
(B) Examples of mean curvatures (J) and Gaussian curvatures (K) (Kozlovsky and Kozlov 2003). 
 

 
2.2.1.1 STRETCHING A MEMBRANE 

Stretching (or Extension and/or compression) are deformations involving a change in the membrane 

area (Figure 2-8). They correspond to the variation of the area in the membrane plane ΔA. If the original 

state of the membrane corresponds to its equilibrium state, stretching will be opposed by the internal 

stress in the membrane. The density of energy cost (Hstretching) of stretching a membrane is given 

following Hooke’s law and can be expressed as a quadratic function of the relative deformation ΔA/A: 

 
𝐻stretching = (

1

2
) 𝜒 (

𝛥𝐴

𝐴
)

2

 (2-1) 
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Where χ is the stretching or the elastic area compressibility modulus and  
∆𝐴

𝐴
 is the relative area 

variation. This parameter varies weakly with chain unsaturation or length and is of the order of 250 

mN.m-1 (Rawicz, Olbrich et al. 2000). However, it increases in the presence of sterols (Rawicz, Smith et 

al. 2008). The maximum stretching deformation on a bilayer does not usually exceed ~ 1-3 % in lipid 

bilayer, above which lysis by pore opening is observed. The order of magnitude of lysis tension is about 

the order of 10−3 N.m-1 depending on the lipid composition of the membrane, (Sandre, Moreaux et al. 

1999; Rawicz, Olbrich et al. 2000; Evans, Heinrich et al. 2003; Rawicz, Smith et al. 2008). 

 

2.2.1.2 SHEARING A MEMBRANE 

Shear is the stress involving a deformation of the material in two parallel opposite directions at constant 

surface area (Figure 2-8).  A membrane resists such a deformation only if the relative positions of its 

constituent molecules are fixed by some lattice structure. Thus, fluid membranes are, by definition, 

unable to sustain shear deformations (Zeman, Engelhard et al. 1990). But shear deformations can 

become relevant in the case of gel-phase bilayers or if the membrane is coupled to an external lattice 

structure such as the cytoskeleton. Areal density of energy (Hshear) associated to shear stress can be 

deduced from Hook’s law:  

 
𝐻Shear = (

1

2
) µ (𝜆2 + 𝜆−2 − 2) (2-2) 

Where λ= (L0 + ΔL)/L0 is the lateral extension rate, μ the shear modulus (expressed in J.m-2). In the case 

of fluid membranes, shearing deformations are negligible compared to stretching and bending and is 

ignored.  

 

2.2.1.3 BENDING A MEMBRANE  

Membrane bending is the dominant deformation for fluid lipid bilayers. To describe membrane bending, 

one must relate to the notion of membrane curvature, which corresponds to any deformation out of 

the membrane plane (Figure 2-8). The bending energy derives from the curvature of the membrane: at 

a given point of the surface, one can define two perpendicular radii of curvature R1 and R2. The two 

principal curvatures are then defined as the inverse of these radii, with a positive or negative sign, which 

corresponds to the 2 radii oriented in the same or opposite direction relative to the surface, 

respectively. The two principal curvatures are thus C1 = 1/R1 and C2 = 1/R2. Thus, if the radius is very 

large (i.e., the membrane is nearly flat), the curvature is small, and vice versa. The sum of the principal 

curvatures C1 and C2 is the mean curvature J = C1 + C2. And, the product of the principal curvatures is 

the Gaussian Curvature K = C1 x C2. The mean curvature J and the Gaussian Curvature K are local 

parameters that describe the membrane shape. 
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For example, for a sphere of radius R, the mean curvature is 2/R and the Gaussian curvature is 1/R2, 

whereas for an infinite cylinder of radius R, the mean curvature is 1/R and the Gaussian curvature is 

equal to zero at every point of the cylinder surface. Finally, a saddle point has the particularity of having 

two curvatures of opposite signs, a positive and a negative curvature. Thus a saddle point has a negative 

Gaussian curvature (Figure 2-8).  

To define the capacity of a membrane to bend, two intrinsic parameters must be considered: κ, the 

bending rigidity modulus (or bending stiffness of the membrane) ranging from 10 to 100 kBT and κG, the 

Gaussian bending rigidity modulus (or Gaussian Curvature modulus). Both depend on the membrane 

composition and they represent the energetic cost to generate principal curvature (by increasing J) and 

Gaussian curvature (by increasing K). The bending modulus depends on the aliphatic chain length and 

degree of unsaturation (Evans and Rawicz 1990; Rawicz, Olbrich et al. 2000; Marsh 2006; Rawicz, Smith 

et al. 2008), for instance it increases from 13 to 30 kBT when the PC lipid chains contain 22 carbon atoms 

instead of 13 and decreases to 10 kBT for cis-polyunsaturated PC lipid (Rawicz, Olbrich et al. 2000). The 

corresponding areal density of energy (Hcurvature) is given by:  

 
𝐻curvature = (

1

2
) 𝜅 (𝐽 − 𝐶₀)2 + 𝜅G 𝐶₁ 𝐶₂ (2-3) 

Where C1 = 1/R1 and C2 = 1/R2 are the two principal local membrane curvatures describing the shape of 

the membrane at a given point, C0 is the spontaneous curvature (i.e. the curvature of the membrane in 

the absence of any external stress). κ is the bending rigidity modulus (expressed in J or in kBT unit) and 

κG is the Gaussian bending rigidity modulus (expressed in J or in kBT unit).  

 

The bending and the stretching moduli are related through membrane thickness (h) according to the 

following relation (Rawicz, Olbrich et al. 2000):  

 
𝜅 =

𝜒 ℎ2 

24
 (2-4) 

Symmetrical membrane lipid bilayers are expected to be flat in the absence of external stress. Non-

symmetrical bilayers adopt a particular curvature in the same condition namely the spontaneous 

curvature C0. The spontaneous curvature C0 is another intrinsic mechanical measure of the membrane 

and represents the curvature that the membrane would adopt when free of external constraints, i.e. 

the membrane mean resting curvature. For example, a symmetrical membrane, made of two identical 

lipid bilayers, would have in the absence of external stress a zero-spontaneous curvature. Whereas, a 

non-zero-spontaneous curvature occurs when the membrane has a variable composition of lipids 

incorporated in the two leaflets and the sum of the spontaneous curvatures of both leaflets is not equal 

to zero (Zimmerberg and Kozlov 2006). Other ways leading to a non-zero-spontaneous membrane 
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curvature are: (i) by introducing asymmetrical shaped objects into the membrane such as trans-

membrane proteins (McMahon and Gallop 2005; Zimmerberg and Kozlov 2006; Campelo, McMahon et 

al. 2008) or (ii) by exposing the lipid bilayer leaflets to solutions containing different compositions of 

ions, particles or proteins (Lipowsky 1995).  

 

According to the Gauss-Bonnet theorem, Gaussian curvature is conserved if the membrane bends 

without a change in its topology (topological invariant). Consequently, as long a membrane is not 

submitted to fusion of fission, the membrane bending energy per unit area can be expressed only using 

the mean curvature: 

 
𝐻curvature = (

1

2
) 𝜅 (𝐽 − 𝐶₀)2 (2-5) 

Measurements of the bending rigidity of lipid bilayers can for instance be achieved by micropipette 

aspiration of Giant Unilamellar Vesicles (GUVs) (described in chapter 0) with typical resulting values of 

the order of  𝜅 ≈ 20 kBT.  

 

By including, over the surface of the fluid membrane, the contributions of the deformation energies of 

stretching and bending (described above) we derive the Canham-Helfrich Hamiltonian: 

 
𝐻 = ∫ 𝑑𝑠 ((

1

2
) 𝜅 (𝐽 − 𝐶₀)2 + 𝜅G 𝐾 + 𝜎)

𝐴

 (2-6) 

This formula represents the free energy of a membrane with a surface area A, a bending modulus κ, a 

Gaussian bending rigidity modulus κG and a tension σ (described below). 

This formula represents the free energy of a membrane with a surface area A, a bending modulus κ, a 

Gaussian bending rigidity modulus κG and a tension σ (described below).  

2.3 MEMBRANE TENSION  

Another important parameter to describe membranes that can be added to Canham-Helfrich 

Hamiltonian is the one due to membrane lateral tension (σ), the stress associated to change in 

membrane area. Membrane tension is linked to the stretching energy of the membrane.  

𝜎 = 𝐻Another important parameter to describe membranes that can be added to Canham-Helfrich 

Hamiltonian is the one due to membrane lateral tension (σ), the stress associated to change in 

membrane area. Membrane tension is linked to the stretching energy of the membrane.  

 
𝜎 =

𝜕𝐻stretching

𝜕𝐴
 (2-7) 

Due to their low bending modulus, membrane deformation modes can be excited by thermal motion. 

Membrane fluctuations were first recognized at the origin of the flickering of red blood cells (Brochard 
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and Lennon 1975).  At very low tensions, membrane fluctuations can be optically detected since they 

can have amplitudes up to a few microns (Pecreaux, Dobereiner et al. 2004). Stretching a fluctuating 

membrane tends to flatten its surface. Once the surface is fully flattened, further stretching pulls the 

lipids apart, further increasing the tension of the membrane. With these intuitive observations, we easily 

see that two regimes have to be considered to describe the stretching deformations: (i) the entropic 

regime at low tensions where the membrane is fluctuating and (ii) the enthalpic regime at higher 

membrane tensions where the membrane has a purely elastic behavior. 

 

i. The entropic regime 

When a membrane is stretched, the resulting change in membrane area is first due to the excess area 

stored in the thermal fluctuations of the membrane. The maximum amplitude of these fluctuations Umax 

can be derived from the theorem of energy equipartition and the Canham-Helfrich Hamiltonian:  

 

Umax ∝  √(
𝑘B𝑇

𝜎
) ln

𝐿

𝑎
 (2-8) 

Where L is the macroscopic length scale of the membrane (typically about 10 µm), a the membrane 

microscopic length scale (typically about 0.5 nm), kB is the Boltzmann constant and T the temperature. 

Note that in a system at a temperature T, each microscopic degree of freedom has a thermal energy on 

the order of (
𝑘B𝑇

2
), with kBT= 4 x 10-21 J at room temperature. It thus clearly appears in this formula that 

membrane tension tends to reduce the amplitude of fluctuations. More precisely the relationship 

between the relative membrane area variation  𝛼 =
∆𝐴

𝐴
 and membrane tension can be calculated from 

fluctuations spectrum analysis (Evans and Rawicz 1990):  

 

 ∆𝐴

𝐴
=

𝑘B𝑇

8𝜋𝜅
ln

𝜋2

𝑎2 +
𝜎

𝜅

𝜋2𝐿2 +
𝜎

𝜅

 (2-9) 

For low tensions, when the condition 
𝜅𝜋2

𝐿2  ≪ σ ≪ 
𝜅𝜋2

𝑎2  is satisfied, the relationship simplifies: 

 

 ∆𝐴

𝐴
=

𝑘B𝑇

8𝜋𝜅
ln

𝜋𝜅

𝜎𝑎2
 (2-10) 

If we consider a reference state (σ0, A0) and a final state (σ, A) with a variation of the excess area ∆𝛼, 

membrane tension is related to ∆𝛼 = 𝛼 − 𝛼0 by:  

 
𝜎 = 𝜎𝑒(

8𝜋𝜅

𝑘B𝑇
∆𝛼) (2-11) 
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ii. The enthalpic regime 

When all the excess area stored in the fluctuations of the membrane has been unfolded, the stretching 

energy is then mainly due to variation in membrane tension σ (Helfrich and Servuss 1984; Evans and 

Rawicz 1990).  

With 𝜎 =
𝜕𝐻stretching

𝜕𝐴
 and the stretching energy per unit area 𝐻stretching = (

1

2
) 𝜅A (

𝛥𝐴

𝐴
)

2

, tension in this 

enthalpic regime is given by: 

 
𝜎 = 𝐾a (

𝛥𝐴

𝐴
) (2-12) 

Indicating that in the enthalpic regime the variation in area is linear with membrane tension. 

 

Finally the relative change in area due to stretching is the sum of both contributions: the entropic regime 

(non-linear with tension) and the enthalpic regime (linear with tension) (Evans and Rawicz 1990): 

 
𝛼 ≈

𝑘𝑇

8𝜋𝜅
ln(1 + 𝑐𝐴𝜎) +

𝜎

𝜒
 (2-13) 

The constant c can be calculated exactly if we consider the membrane being plane (𝑐 = 1/𝜋2) or taking 

into account its spherical shape (𝑐 = 1/24𝜋) (Evans and Rawicz 1990). This expression was confirmed 

with a renormalization approach integrating the fluctuations at all scales (Fournier, Ajdari et al. 2001).  

 

2.4 MEMBRANE FISSION 

As described previously, cellular membranes undergo continuous rearrangements. Many cellular 

processes such as vesicular trafficking, exocytosis, endocytosis, cell division, entry and release of 

enveloped virus, etc., involve membrane budding and fission events. Intracellular vesicular trafficking is 

used to transfer cargoes between membranes in the secretory and the endocytic pathways. The 

generation of these vesicles occurs in three steps: cargo sorting from the donor compartment, 

membrane budding (or tubulation) and finally membrane separation from the donor compartment by 

a fission event. Membrane fission was first studied and discussed in the context of dynamin-induced 

membrane fission on clathrin-coated vesicles at the plasma membrane. But, there are many scission 

processes at the surface of organelles that are dynamin-independent. This is the case for the scission of 

COPI and COPII coated-vesicles at the Golgi apparatus and the ER, respectively, and of course, of the 

scission of vesicles in MVBs by the ESCRT complexes. 

When a bud is formed at the surface of a membrane, fission reaction proceeds as follows:  (i) 

constriction of the budding vesicle with formation of a highly curved neck (Figure 2-9 / A and B), which 

can be mediated by different means (ii) merge of the contacting monolayers in a stalk intermediate 
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(hemifission) (Figure 2-9 / C) and (iii) disappearance of the fission stalk and completion of the reaction 

(Figure 2-9 / D). Hemifission (similarly to the hemifusion-like pathway) is an intermediate stage of the 

fission reaction, where the opposing internal leaflets of the neck are fused, but not the external ones; it 

requires a transient membrane disruption which is opposed by the hydrophobic forces preserving the 

integrity and continuity of the lipid assembly (Chernomordik and Kozlov 2003; Kozlovsky and Kozlov 

2003; Chernomordik and Kozlov 2005; Kozlov, McMahon et al. 2010). The formation of this hemifission 

state allows the accomplishment of membrane fission without compromising the integrity of the bilayer 

by exposure of the content to the external milieu or even content leakage (Matsuoka, Orci et al. 1998; 

Takahashi, Kishimoto et al. 2002; Frolov, Dunina-Barkovskaya et al. 2003).  

 

FIGURE 2-9: THE DIFFERENT INTERMEDIATE STEPS LEADING TO MEMBRANE FISSION (KOZLOVSKY AND KOZLOV 

2003) 

(A) The coated bud at an initial stage of the coat protein self-assembly.  
(B) Constricted neck.  
(C) Hemifission intermediate.  
(D) Separated coated vesicle. 

 

Because the different intermediate steps leading to membrane fission involve strong local bending and 

eventually changes in topology, a low bending modulus κ and forces leading to membrane constriction 

promote membrane fission. However, membrane fission is energetically unfavorable due to membrane 

self-sealing properties, and there is an energy barrier to overcome for the membrane to undergo 

scission. Yonathan Kozlovsky and Michael M. Kozlov presented in 2003 the first complete theoretical 

analysis for membrane fission (Kozlovsky and Kozlov 2003). This fission model is based on the elastic 

energy of the membrane. The initial state corresponds to a flat membrane with an area A and the final 

post-fission state to a vesicle of radius R + a flat membrane with an area A - 4πR2. The fission energy 

(minimal bending energy to form a vesicle) is the sum of the energies of the initial and final state (post-

fission state) and can be deduced using the Canham-Helfrich Hamiltonian: 

 
∫ 𝑑𝑠 (

1

2
𝜅 (

1

2𝑅
)

2

+
𝜅G

𝑅² 𝑣𝑒𝑠𝑖𝑐𝑙𝑒

+  𝜎vesicle) +  ∫ 𝑑𝑠 (𝜎flat)
𝑓𝑙𝑎𝑡 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

 (2-14) 

 =  4𝜋 (
𝜅

8
+ 𝜅G) +  𝜎vesicle4𝜋𝑅² +  𝜎flat(𝐴 − 4𝜋𝑅2) (2-15) 
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Because of the topological change upon scission, the Gaussian curvature term must be kept in the 

Hamiltonian. The Gaussian energy is given by the equation: 𝐸 = 2𝜋𝜅G𝜒 , with χ being the Euler 

characteristic. Χ is defined as twice the number of independent compartments (N) minus the number 

of handles or holes in the membrane (g) : 𝜒 = 2 (𝑁 − 𝑔). Before fission, χ=2 and after fission χ=4 

making the energy of the Gaussian curvature equal to: 𝐸 = 4𝜋𝜅G. If the tension remains constant during 

the fission process (σ = σvesicle = σflat) then the fission energy is equal to 4𝜋 (
𝜅

8
+ 𝜅G). Thus this energy 

only depends on the bending rigidity modulus κ and on the Gaussian bending rigidity modulus κG which 

has been suggested to be negative and of the order of κG≈-15kBT (Siegel and Kozlov 2004). For 

membrane fission to occur, the energy of the final state must be lower than the energy of the initial 

state; i.e. a negative term for the fission energy, which is the case if we consider κ= -0.8 κG. Thus, the 

fact that the Gaussian bending rigidity modulus κG is negative implies that the Gaussian energy favours 

spontaneous fission, regardless of the membrane shape. Indeed, the energy of Gaussian curvature is 

only dependent on the topology of the membrane. 

Additionally, even if the post fission state is energetically favourable with respect to the pre-fission state, 

a large energy barrier could arrest the system kinetically in a bud configuration. Kozlovsky and Kozlov 

predicted that hemi-fission occurs when the constriction limits bud neck to a radius of the order 2.7-2.9 

nm, thus to a lumen radius of the order of 1 nm.The hemifission intermediate involving rearrangements 

of the lipid bilayers, is the energy barrier as it that has to be surpassed by thermal fluctuations on the 

membrane to spontaneously lead to kinetically feasible fission (Kozlovsky and Kozlov 2003) and is about 

40 kBT (Kuzmin, Zimmerberg et al. 2001; Campelo and Malhotra 2012). Indeed, when hemi-fission is 

reached, fission should spontaneously occur. 

This theoretical modeling of membrane fission has been tested for dynamin-driven scission. This protein 

was discovered in 1989 (Shpetner and Vallee 1989); Dynamin is a 100 kDa GTPase that self-oligomerizes 

into contractile helical polymers (Hinshaw and Schmid 1995) wrapping around the neck of budding 

endocytic vesicles in plant and animal cells (Hinshaw and Schmid 1995; Sweitzer and Hinshaw 1998; 

Schmid and Frolov 2011; Ferguson and De Camilli 2012). Dynamin converts the energy of GTP hydrolysis 

into progressive severing of the lipid bilayer neck leading to membrane fission (Chappie, Mears et al. 

2011; Morlot, Galli et al. 2012). Dynamin-mediated fission proceeds through a hemi-fission state 

according to different authors (Bashkirov, Akimov et al. 2008; Morlot, Galli et al. 2012; Shnyrova, 

Bashkirov et al. 2013; Mattila, Shnyrova et al. 2015), but the debate on the  scission mechanism still 

exists today (for a recent state-of-the-art of the question, see (Antonny, Burd et al. 2016).  

Dynamin-mediated scission has been reconstituted in vitro using the nanotube pulling assay  (Morlot, 

Galli et al. 2012). Using purified dynamin and GTP, it was possible to measure the characteristic time 
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before scission, and from this, to estimate the reduction of the energy barrier upon GTP-mediated 

constriction. Morlot et al could not directly evidence the hemi-fission state leading to scission but 

nevertheless showed that the characteristic fission time is increased when the membrane bending 

rigidity is increased and decreased when membrane tension increases, as expected from the theoretical 

model. 
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CHAPTER 3.  THE ESCRT-DEPENDENT MEMBRANE REMODELLING 

PROCESSES 

3.1 ESCRT MACHINERY IN SACCHAROMYCES CEREVISIAE 

The endosomal sorting complex required for transport (ESCRT) complexes were discovered and named, 

in 2001 by Scott Emr’s group, for their main role in ubiquitin-dependent sorting from endosomes to 

lysosomes in the multivesicular body biogenesis (MVB) (Figure 3-1) (Katzmann, Babst et al. 2001).  

 

The machinery was first identified in yeast by means of genetic isolation of mutants that cause defective 

protein sorting to the vacuole, the functional yeast equivalent of the lysosome (Bankaitis, Johnson et al. 

1986; Rothman, Howald et al. 1989). These mutants, called “class E vps (Vacuolar Protein Sorting) 

mutants”, caused a major morphological change of the vacuole (Raymond, Howald-Stevenson et al. 

1992). Most of the class E vps genes were later found to act in succession to concentrate trafficking 

cargoes and include them in forming late endosomes, also termed multivesicular bodies (MVB). The 

latter, also called multivesicular endosomes (MVE),  are specialized compartments within endosomes 

that are delivered into lysosomes for protein degradation (Katzmann, Babst et al. 2001). They consist of 

a limiting membrane and small intraluminal vesicles (ILVs).  

 

Like all vesicle budding reactions, the formation of intraluminal MVB vesicles requires three successive 

steps, respectively, cargo recognition and sorting, membrane budding and, vesicle separation from a 

donor membrane which in this case is the endosome (Adell and Teis 2011).  

 

In opposition to the formation of secretory and endocytic vesicles, where membrane budding and 

fission occur into the cytosol, the MVB formation requires budding away from the cytosol (Katzmann, 

Babst et al. 2001). 



42 
 

 

FIGURE 3-1: THE ESCRT COMPLEXES 

Schematic illustration of the ESCRT machinery leading to membrane fission. ESCRT-0, -I and -II are responsible for cargo 

recruitment and membrane deformation (A) (B). ESCRT-III is then recruited to constrict at the membrane neck and induce 

membrane scission (C). The ESCRT-III subunits are disassembled before vesicle release and recycled back to the cytoplasm (D). 

 

The different ESCRT complexes assemble sequentially on the cytosolic side of the endosomal membrane 

to sort and concentrate ubiquitinated membrane proteins into vesicles, which accumulate inside 

endosomes (Figure 3-2) (Teis, Saksena et al. 2008; Saksena, Wahlman et al. 2009; Hurley and Hanson 

2010; Henne, Buchkovich et al. 2011). The ESCRT complexes are therefore crucial for membrane protein 

turnover and cell regulation. 
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FIGURE 3-2: COMPOSITION OF THE ESCRT COMPLEXES IN THE MVB PATHWAY 

Yeast proteins names and their Homo sapiens homologues are detailed for each ESCRT complex, as well as their proposed 
function and recruitment order in the ESCRT pathway. 
 

 

The previously described genetic analysis in the yeast Saccharomyces cerevisiae identified precisely 17 

class E genes that form the core of the ESCRT machinery. The ESCRT-0, -I and -II function early in the 

MVB pathway and are sequentially recruited as stable soluble hetero-oligomers preformed in the 

cytosol to cargo-laden endosomes (Saksena, Sun et al. 2007; Williams and Urbe 2007). ESCRT-0 is a 1:1 

heterodimer composed of Vps27and Hse1 proteins that interact together via long coiled-coil GAT 

domains. Vps27 binds to PI(3)P lipids enriched at endosomes, thus directing the entire ESCRT-0 complex 

to endosomes (Figure 3-3). Together with Hse1, Vps27 binds to ubiquitin-tagged membrane proteins 

destined for degradation. The ESCRT-0 complex can bind up to five different ubiquitynilated cargo 

proteins or multiple ubiquitin moieties of poly-ubiquitinated cargos. So, by binding ubiquitinated cargos, 

PI(3)P membrane lipids and by recruiting the ESCRT-I complex through the direct binding with the 

ESCRT-I protein Vps23, Vps27 appears to be fundamental for the initiation of the MVB pathway.  

ESCRT-I is a soluble hetero-tetramer consisting of Vps23, Vps28, Vps37 and Mvb12 proteins and forms 

a rod-like shaped complex. ESCRT-II, on the other hand, is a hetero-tetrameric protein complex 

consisting of Vps36, Vps22 and two Vps25 subunits (Figure 3-3). ESCRT-II complex adopts a Y-shaped 

structure with the two Vps25 subunits forming the arms of the Y-shaped heterotetramer. ESCRT-I and 

ESCRT-II complexes interact together through the binding of Vps28 with Vps36, and assemble in solution 

into a 1:1 supercomplex. In addition to binding simultaneously to PI(3)P, to ubiquitin and accordingly 

sorting cargo, in vitro studies have shown that ESCRT-I and ESCRT-II induce the formation of intraluminal 
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vesicle budding of 20 - 40 nm diameter (Murk, Humbel et al. 2003; Hurley and Hanson 2010; Wollert 

and Hurley 2010) (Figure 3-3). Thus, ESCRT-0, -I, and -II are responsible for cargo binding, early 

membrane bending and are therefore considered as the generators of membrane necks that can then 

serve as substrates for ESCRT-III-mediated fission (Figure 3-4). 

 

FIGURE 3-3: MODEL FOR CARGO CLUSTERING AND SEQUENTIAL ASSEMBLY OF THE ESCRT COMPLEXES (SCHMIDT 

AND TEIS 2012). 

ESCRT-0 (brown) initiates the MVB pathway. ESCRT-0 binds to PI3P and clusters ubiquitinated membrane proteins via multiple 

ubiquitin-binding domains. ESCRT-I (green) is recruited by ESCRT-0 (Vps27) and binds to ubiquitinated cargo. ESCRT-II (blue) 

interacts via the Glue domain of Vps36 with ESCRT-I, PI3P and cargo. The ESCRT-II subunit Vps25 serves as a nucleation point 

for stepwise assembly of the filamentous ESCRT-III complex (yellow–orange), which leads to membrane scission.  

 

In yeast, ESCRT-III complex consists of four core components Vps20, Snf7, Vps24 and Vps2 and three 

accessory components Did2, Vps60 and Ist1. The ESCRT-III core components remain monomeric in the 

cytosol and only assemble into two sub-complexes, formed by Vps20+Snf7 and Vps2+Vps24, upon 

activation and membrane binding. ESCRT-II complex has two binding sites to the ESCRT-III complex and 

serves as the adaptor that initiates ESCRT-III assembly. Both Vps25 subunits could recruit and activate 

the ESCRT-III subunit Vps20 (Teo, Perisic et al. 2004). Once recruited and activated, Vps20 initiates 

ESCRT-III filament assembly by recruiting Snf7, the most abundant ESCRT-III subunit present with at least 

50% of the total complex components (Teis, Saksena et al. 2008; Henne, Buchkovich et al. 2012). By 

inducing conformational changes within Snf7, Vps20 promotes the movement of the inhibitory helix 

away from the core, thereby exposing and enabling the Snf7 core regions to interact with other ESCRT-

III subunits. Snf7 builds then the main polymer scaffold and associates with Vps24 (Teis, Saksena et al. 

2008). This latter recruits the last ESCRT-III core component Vps2 and stops Snf7 oligomerization (Figure 

3-4). The growing ESCRT-III protein lattice recruits deubiquitinases, which mediate cargo 
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deubiquitylation and ubiquitin recycling prior to vesicle formation (Schmidt and Teis 2012). Once 

assembled, the ESCRT-III proteins induce membrane constriction at the neck and induce membrane 

scission and fusion of MVBs with lysosomes releases ILVs into the lumen of the lysosome where they 

are degraded together with their contents (Adell, Vogel et al. 2014) (Figure 3-4). Vps2 controls the 

complex disassembly by direct interaction to the MIT domain of Vps4 via its carboxyl-terminus MIM1 

domain (Babst, Katzmann et al. 2002; Obita, Saksena et al. 2007; Teis, Saksena et al. 2008). Recent 

studies suggest that Vps4 takes part actively to the scission process by favoring the dynamical 

remodeling of the complex (Adell, Migliano et al. 2017; Mierzwa, Chiaruttini et al. 2017). Quantitative 

fluorescence lattice light-sheet experiments have shown that ESCRT-III subunits polymerize rapidly on 

yeast endosomes, together with the recruitment of at least two Vps4 hexamers and that productive 

budding events required at least two additional Vps4 hexamers (Christ, Wenzel et al. 2016). These 

experiments have also shown that membrane budding was associated with continuous, stochastic 

exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and 

depended on Vps4 ATPase activity (Christ, Wenzel et al. 2016). Moreover, tomographic electron 

microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding (Christ, 

Wenzel et al. 2016). 

 

FIGURE 3-4: PROPOSED MODEL FOR THE MVB VESICLE FORMATION BY THE ESCRT-III COMPLEX (ADELL, VOGEL 

ET AL. 2014). 

First, the ESCRT-0, -I and -II complexes are responsible for ubiquitinated cargo clustering and early membrane 

bending/deformation (I). Second, the ESCRT-III complex is recruited to induce further membrane invagination/budding leading 

to neck constriction (II) (III). This step is coordinated with the AAA-ATPase Vps4 binding to ESCRT-III (III). Third, just before 

achieving membrane scission and vesicle release, the ESCRT-III complex is disassembled by the action of Vps4 (IV).  

 

3.2 ESCRT MACHINERY IN HOMO SAPIENS 

In yeast, the ESCRT complexes are only involved in receptor trafficking regulation through endosomes 

(MVB pathway), while in Homo Sapiens, there is a large diversification of the processes as they play 

multiple roles in topologically equivalent membrane scission events such as in MVB formation (Babst, 

Davies et al. 2011), budding and release of some enveloped viruses from the plasma membrane of 
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infected cells (Morita, Sandrin et al. 2011), abscission in late step of cytokinesis (Morita, Sandrin et al. 

2007), biogenesis of microvesicles and exosomes, plasma membrane wound repair (Scheffer, Sreetama 

et al. 2014), neuron pruning (Loncle, Agromayor et al. 2015), dendritic spine formation, nuclear 

envelope repair, nuclear envelope sealing during telophase (Olmos, Hodgson et al. 2015; Vietri, Schink 

et al. 2015) (Figure 3-5).  

 

FIGURE 3-5: OVERVIEW OF ESCRT-DEPENDENT PROCESSES (CHRIST, RAIBORG ET AL. 2017) 

Overview of the cellular membrane scission processes mediated by ESCRT-III that include biogenesis of multivesicular 

endosomes, budding of enveloped viruses, cytokinetic abscission, neuron pruning, plasma membrane wound repair, nuclear 

pore quality control, nuclear envelope reformation, and nuclear envelope repair. 

 

 

3.2.1 ESCRT ROLE IN TERMINAL STAGES OF CYTOKINESIS 

Cytokinesis, the last step of cell division, involves large-scale cleavage of the plasma membrane. This 

process is characterized by the constriction of an acto–myosin contractile ring leading to the ingression 

of the plasma membrane at the cell equator, which partitions two cytoplasmic domains of emerging 

sister cells that remain connected by a membrane tube about 1 µm wide, called the intercellular bridge 

(Figure 3-6) (Eggert, Mitchison et al. 2006; Steigemann and Gerlich 2009; Guizetti and Gerlich 2010; 

Green, Paluch et al. 2012). This process divides the organelles and most of the cytoplasm equally 

between the two daughter cells, but the microtubules forming the spindle remain in the intercellular 

bridge. To separate the daughter cells and finalize the cellular division process, the microtubules, mostly 

enriched at the center of the intercellular bridge, in a dark zone region named the “midbody”, must be 
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severed and the plasma membrane must be sealed (Figure 3-6). Furthermore, Cryo-EM measurements 

showed that cell separation does not take place at the midbody site itself but rather at two peripheral 

sites located about 1 µm away from the midbody center (Elia, Sougrat et al. 2011; Guizetti, Schermelleh 

et al. 2011). 

 

FIGURE 3-6: ABSCISSION OF THE INTERCELLULAR BRIDGE (ELIA, SOUGRAT ET AL. 2011) 

The intercellular bridge connecting two daughter cells must be resolved to complete cytokinesis. The microtubules in the 
intercellular bridge are visible using both confocal microscopy and TEM. Shown here are live MDCK cells expressing tubulin 
GFP (left) and fixed MDCK cells imaged by TEM (right) (Elia, Sougrat et al. 2011; Elia, Ott et al. 2013). The bridge can be severed 
on either or both sides of the dark zone. Scale bars: (left) 5 µm, (right) 1 µm. 

 

Cytokinesis abscission requires the function of the ESCRT complexes, ESCRT-I, ESCRT-II and ESCRT-III, 

and ALIX, an ESCRT-associated protein. ESCRT-III subunits are recruited to the midbody via ALIX or via 

ESCRT-I – ESCRT-II complexes (Christ, Wenzel et al. 2016).  

ALIX consists of a BRO1 domain, a V domain (Fisher, Chung et al. 2007) and a Pro-rich domain (PRD), 

and functions as a homodimer (Figure 3-7). The main function of the curved BRO1 domain is to bind to 

the C-terminal helix of the ESCRT-III protein CHMP4 (Figure 3-7). The BRO1 domain can interact with all 

CHMP4 isoforms (McCullough, Fisher et al. 2008). The central V domain binds to viral L-domains (late 

domains) (Fisher, Chung et al. 2007; Lee, Joshi et al. 2007) and cargo sequences and to ubiquitin 

(Dowlatshahi, Sandrin et al.). The C-terminal PRD binds to upstream elements and other ESCRT proteins 

such as Tsg101 of the ESCRT-I complex (Chatellard-Causse, Blot et al. 2002). Additionally, the PRD 

domain auto inhibits the V domain and keeps ALIX in an inactive state. Once activated via its V domain, 

ALIX forms a banana-shaped dimer in solution that resembles ESCRT-II with two CHMP4 binding sites 

(Figure 3-7) (Pires, Hartlieb et al. 2009). 
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FIGURE 3-7: ALIX BRANCHES OF THE UPSTREAM ESCRTS (SCHONEBERG, LEE ET AL. 2017) 

This figure shows how the upstream element ALIX organizes ESCRT-III subunit CHMP4 at the atomic scale. A dimer of ALIX 

initiates the formation of two CHMP4 filaments via direct interactions with the carboxyl terminus of CHMP4.  

 

While much of mitosis proceeds rapidly (less than 30 min from metaphase to telophase), the 

intercellular bridge usually persists for over an hour prior to the final cleavage event (Elia, Sougrat et al. 

2011; Guizetti, Schermelleh et al. 2011). The bridge constriction occurs acutely 20 min prior to final 

cleavage. ESCRT-I (TSG101) and ESCRT-III (CHMP4 and Vps4) components are recruited to the 

intercellular bridge at different times prior to abscission (time 0) by spastin, an AAA-ATPase which severs 

microtubules by inducing lesions in the microtubule lattice (Roll-Mecak and Vale 2008), and CEP55 

(centrosomal and microtubule protein 55), which is a specific adaptor for ESCRTs in mammalian 

cytokinesis (Figure 3-8). In fact, CEP55 recruits ESCRT-I and ALIX, which subsequently targets ESCRT-III 

to the midbody.  

 

 

FIGURE 3-8: MEMBRANE NECK SCISSION BY ESCRTS IN CELL DIVISION (HURLEY 2015) 

This figure shows the classical cytokinetic function of both the ESCRT-I/ESCRT-II and ALIX branches in membrane abscission by 
the ESCRT-III complex and coordination with microtubule severing by spastin.  
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Timing for the recruitment of the different components of the abscission complex was obtained using 

high-speed quantitative fluorescence imaging (Figure 3-9). While the relative fluorescence intensity 

values of CEP55 increase early, the levels of ESCRT-I and ESCRT-III increase later in abscission (Figure 

3-9). An acute increase of fluorescence levels of ESCRT-III proteins was observed at the intercellular 

bridge approximately 20 min prior to cell separation, thus correlating with the time of constriction of 

the microtubule bridge (Figure 3-9) (Carlton and Martin-Serrano 2007; Lee, Elia et al. 2008; Yang, 

Rismanchi et al. 2008; Morita, Colf et al. 2010; Elia, Sougrat et al. 2011; Guizetti, Schermelleh et al. 

2011). And, unexpectedly, recent Fluorescence Recovery After Photobleaching (FRAP) experiments 

have shown that ESCRT-III at the midbody rapidly turns over subunits with cytoplasmic pools while 

gradually forming larger assemblies. And that, ESCRT-III turnover depended on the ATPase VPS4, which 

accumulated at the midbody simultaneously with ESCRT-III subunits, and was required for assembly of 

functional ESCRT-III structures (Mierzwa, Chiaruttini et al. 2017). 

 

 

FIGURE 3-9: KINETICS OF CYTOKINETIC ABSCISSION ASSESSED USING HIGH-SPEED QUANTITATIVE FLUORESCENCE 

IMAGING (ELIA, SOUGRAT ET AL. 2011) 

ESCRT components are recruited to the intercellular bridge at different times prior to abscission (time 0). As shown in the 
graph, the relative intensity values CEP55 increases early. ESCRT-I and ESCRT-III levels increase later in abscission. An acute 
increase in ESCRT-III level correlates with a decrease in the diameter of the intercellular bridge.  

 

Importantly, both ESCRT-I and ESCRT-III proteins were found to organize in well-defined cortical rings 

of approximately 1 µm diameter indicating that the ESCRT-III complex can assemble into large diameter 

structures and is not restricted to small diameters complexes such as in MVBs buds (Figure 3-10). 

Furthermore, structured Illumination microscopy data revealed that a portion of the ESCRT-III proteins, 

assembled initially at the dark zone, polymerize and then migrate to the abscission site as the diameter 

of the microtubule bundle diminishes (Elia, Sougrat et al. 2011; Guizetti, Schermelleh et al. 2011).  
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FIGURE 3-10: STRUCTURAL ORGANIZATION OF ESCRT COMPLEX AT THE INTERCELLULAR BRIDGE REVEALED BY 

SIM (ELIA, SOUGRAT ET AL. 2011; GUIZETTI, SCHERMELLEH ET AL. 2011). 

The ESCRT-I protein TSG101 (top) localizes to ring structures on either side of the dark zone. The ESCRT-III protein CHMP4B 
(bottom) is visible both in rings adjacent to the dark zone and at a late structure closer to the cell body. Scale bar, 2 µm. 
 
 

In addition, spinning-disk confocal microscopy studies revealed that release of membrane tension by 

ablation on one side of the dark zone promoted the abscission progression by accumulation of the 

ESCRT-III complex at the opposite constriction site (Figure 3-11) (Lafaurie-Janvore, Maiuri et al. 2013) 

pointing to the important inhibition role of membrane tension on the scission process. 

 

 

FIGURE 3-11: A SCHEME OF MAMMALIAN CYTOKINETIC ABSCISSION. NUMBERS INDICATE SUCCEEDING STAGES 

OF ABSCISSION (LEFT TO RIGHT; EARLY TO LATE, RESPECTIVELY)(ADAPTED FROM (SHERMAN, KIRCHENBUECHLER 

ET AL. 2016). 

Schematic representation of cytokinetic abscission. This process is characterized by two consecutive events of membrane 
constriction (2, 4) and fission (3, 5), which occur at the abscission sites residing about 1 μm away, on each side, from the center 
of the bridge. The so-called midbody dark zone (black) positioned at the center of the bridge, plays a central role in coordinating 
abscission.  

 

From all these data, a working model of cytokinetic abscission driven by ESCRTs was suggested. Early in 

cytokinesis, CEP55 localization to the dark zone appears to facilitate sequential recruitment of ESCRT-I 

and ESCRT-III proteins (CHMP4, CHMP3 and CHMP2). Abscission could then be driven by polymerization 

of the central ESCRT-III ring near the midbody (Figure 3-12). To reach the energetically preferred 

diameter for fission, the filaments constrict the bridge membrane. At the same time, microtubules are 



51 
 

severed in the constricted area and actin is removed from the bridge. Vps4 could mediate ESCRT-III helix 

remodelling during this process, which includes breaking the helix into two rings—one that remains 

associated with the dark zone, and a second that may slide outward, constricting the membrane further 

and forming an ESCRT-III fission complex (Mierzwa, Chiaruttini et al. 2017).  

 

FIGURE 3-12: HYPOTHETIC MECHANISTIC MODEL FOR ESCRT-MEDIATED ABSCISSION (ELIA, SOUGRAT ET AL.  

2011). 

Suggested mechanistic model for ESCRT-driven cytokinetic abscission based on high-resolution microscopy data and 
computational modelling(Elia, Sougrat et al. 2011).  Cytokinetic abscission begins with the assembly of early (ESCRT-I subunit 
Tsg101) and late (ESCRT-III subunit CHMP4) ESCRT proteins into a series of partially overlapping cortical rings located at the 
center of the intercellular bridge. Ring formation is followed by ESCRT-III polymerization and remodelling into 3D helical spirals. 
Breakage and sliding of the membrane-associated ESCRT-III spiral away from the dark zone, results in acute constriction of the 
cytokinetic tube. This continues until the ESCRT-III spiral reaches an equilibrium distance where it relaxes to a spontaneous 
diameter of 50 nm. At this point fission of the 50-nm diameter constricted membrane tube occurs, mediated by a dome-like 
end-cap structure, finalizing cell separation. Similar events occur on the other side of the bridge (not Illustrated). 
 
 

3.2.2 ESCRT ROLE IN HIV-1 BUDDING 

Many enveloped viruses, such as HIV, hijack the cellular ESCRT machinery to the cytoplasmic leaflet to 

promote their own egress from infected host cells (Morita and Sundquist 2004; Martin-Serrano and Neil 

2011). Retroviruses such as HIV replicate and leave the cell through a process called budding. This means 

that the virus uses part of the host cell plasma membrane to enclose itself and bud out of the cell before 

proceeding to a new host. The complete process can be divided into a series of steps.  

 

For the budding to be more efficient, it is also desirable to gather the viral proteins into defined budding 

spots. This is thought to be defined by specific lipid domains in the cell membrane called lipid rafts, 

where the lipids are arranged in a more ordered state. Following the assembly of the viral proteins at 

the budding sites, the budding is initiated by locally deforming the cell membrane. The membrane is 

then further deformed, making the buds grow to a usually defined size after which they are finally cut 

from the cell membrane allowing the now fully enveloped virus to exit the cell. In many enveloped 
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viruses that replicate through budding, scission is performed by the host cell machinery, the most 

common being the ESCRT complexes. 

 

HIV assembly and budding require the clustering of viral Gag proteins at the plasma membrane. Gag 

proteins are the major structural proteins of retroviruses (Ganser-Pornillos, Yeager et al. 2008), and 

fluorescence microscopy experiments have shown that the HIV virions are fully assembled when the 

recruitment of Gag molecules stops (Jouvenet, Bieniasz et al. 2008). The resulting virus bud is connected 

to the plasma membrane by a narrow membrane neck; HIV buds have typically diameters ranging from 

100 nm to 200 nm (von Schwedler, Stuchell et al. 2003; Morita, Sandrin et al. 2011). Thus, formation of 

the cell membrane-attached HIV bud occurs independently of ESCRT proteins. However, its detachment 

from the PM of the cell necessitates the ESCRT complexes to achieve the membrane scission step (Figure 

3-13). 

 

Studies have found that ESCRT-III filaments surround Gag assemblies at the PM in Vps4 depleted cells 

(Hanson, Roth et al. 2008). More recent super-resolution studies detect endogenous ESCRT proteins or 

low expression HA-tagged ESCRT components in clusters (diameter 60 – 100 nm) at the base of or inside 

viral necks, but not inside the viral particle (Van Engelenburg, Shtengel et al. 2014). This suggests that 

membrane scission by ESCRT-III filaments and Vps4 occurs within the bud neck, which is consistent with 

their role in other biological processes.   

 

 

FIGURE 3-13: THE ROLE OF THE ESCRT MACHINERY IN HIV RELEASE (ALONSO, MIGLIANO ET AL. 2016) 

 

The ESCRT machinery is recruited by Gag, which in addition to inducing plasma membrane negative 

curvature, also functions as an adaptor to ESCRTs. The ESCRT complexes are recruited by direct 

interactions with specific sequences called L-domains (late domains) contained in Gag.  Gag proteins 

contain two L-domains, PTAP and LxxLF, with PTAP being the functionally more important motif and 

recruiting the ESCRT complex via a direct interaction with the ESCRT-I proteins (Tsg101) (Martin-
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Serrano, Zang et al. 2001). The second L-domain, LxxLF, interacts with ALIX (Fisher, Chung et al. 2007), 

and in turn, ALIX is shown to be the alternative pathway to ESCRT-I – ESCRT-II complexes for the 

recruitment of the ESCRT-III subunit CHMP4 and Vps4.  

 

The dynamics of recruitment of CHMP4 and Vps4A is coordinated with the completion of the 

recruitment of Gag. CHMP4 and Vps4A are recruited transiently, most often in a single pulse, with a 

typical residence time of few minutes, and appear to be tightly coupled temporally in their appearance 

at and disappearance from the membrane (Jouvenet, Zhadina et al. 2011). A siRNA-based knockdown 

screen of ESCRT-III showed that only CHMP4 and CHMP2A/B are essential for HIV-1 release, while 

depletion of all other ESCRT-III proteins induce minor HIV-1 budding and release defects. Cell depletion 

of CHMP4B reduces virion release and infectivity 12-fold without altering Gag protein levels. Depletion 

of CHMP2A, CHMP2B, and CHMP1A individually causes modest reduction of virus release and infectivity 

(4-, 2- and 2-fold reductions, respectively). But, co-depletion of CHMP2A and CHMP2B or CHMP4A, 

CHMP4B and CHMP4C resulted in dramatic reductions in HIV-1 release and infectivity (95- and 166-fold, 

respectively). These data imply that individual CHMP2 and CHMP4 family members can function 

redundantly (Morita, Sandrin et al. 2011). For individual CHMP4 family members, the relative functional 

importance (4B > 4A > 4C) parallels their reported cellular abundance (4B > 4A > 4C) (Katoh, Shibata et 

al. 2004).  

 

Observations of CHMP4 binding in a context of CHMP2-deficient cells show a CHMP4 collar-like 

structure within the bud neck of virions that fails to pinch off; thus CHMP2 is required for the final cut 

(Morita, Sandrin et al. 2011). However, combinatorial siRNA knock-down screening demonstrated 

further that CHMP3 exerts a significant synergistic effect on budding together with CHMP2A and to a 

much lesser extent with CHMP2B (Effantin, Dordor et al. 2013), suggesting an important role for CHMP3 

in HIV-1 budding.  

 

Thus, the expected core of the ESCRT-III machinery for HIV release is CHMP4, CHMP2 (A / B) and CHMP3 

(+ Alix) binding to the budding site and promoting scission of HIV particles off the plasma membrane (von 

Schwedler, Stuchell et al. 2003; Baumgartel, Ivanchenko et al. 2011; Jouvenet, Zhadina et al. 2011). 
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3.2.3 ESCRT ROLE IN NEURONAL PRUNING 

Neuronal pruning is critical for maturation of the nervous system and implies large scale pruning of 

relatively long neuronal branches, that are no longer needed, from their parent neuron (Loncle, 

Agromayor et al. 2015). Large-scale pruning occurs as a local degeneration involving ESCRTs for the 

severing of the nerve cell membrane of axons and dendrites (Figure 3-14) (Zhang, Wang et al. 2014; 

Loncle, Agromayor et al. 2015). The latter participate actively in neuronal function, both as an apparatus 

for processing neuronal signals and as major sites of synaptic plasticity.  

 

 

FIGURE 3-14: THE ROLE OF THE ESCRT MACHINERY IN NEURAL PRUNING (ALONSO, MIGLIANO ET AL. 2016) 

 

A siRNAi-based knockdown screen of all ESCRT complexes showed that neuronal pruning is specifically 

dependent on ESCRT-I and ESCRT-III complexes and presumably independent of ESCRT-0 or ESCRT-II like 

in cytokinesis and HIV budding (Figure 3-15; Figure 3-16). Moreover, this screen showed that loss of 

activity of Tsg101 (ESCRT-I) and Shrub, the fly homologue of the human ESCRT-III subunit CHMP4B, and 

Vps4 leads to severe disruptions and defects in dendrites pruning (Figure 3-15) (Sweeney, Brenman et 

al. 2006; Loncle, Agromayor et al. 2015).  

 

In addition, it appeared that similarly to cytokinesis and HIV budding, a direct interaction with an ESCRT-

associated protein is necessary. Here, the Myopic accessory protein (Mop) is required for the 

recruitment of Shrub (CHMP4B) in the fly neuronal membrane remodelling process. Mop is the homolog 

of the human gene HD-PTP. HD-PTP is an ALIX-like protein (another Bro-domain protein) which replaces 

ALIX in recruiting CHMP4 in the neuronal pruning process (Doyotte, Mironov et al. 2008; Miura, 

Roignant et al. 2008). 
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FIGURE 3-15: ESCRT-I,-III AND ACCESSORY PROTEINS ARE REQUIRED FOR DENDRITE PRUNING (LONCLE, 

AGROMAYOR ET AL. 2015) 

(a–l) Results from the siRNAi screen showing representative images of a ddaC neuron at 18 h APF expressing RNAi against 
ESCRT-I (TSG101), ESCRT-III (Vps2, CHMP2B, Vps20, Vps24, shrub and Vps60), Vps4 and ESCRT-accessory proteins (Alix, mop, 
and UBPY)(Loncle, Agromayor et al. 2015). Scale bar = 50 µm. 
 
 
 
 

 

FIGURE 3-16: CHMP4B (MSNF7-2) IS NECESSARY FOR NEURITE DEVELOPMENT (LEE, BEIGNEUX ET AL. 2007) 

To determine whether mSnf7-2 (CHMP4B) is required to maintain mature dendritic trees, mSnf7-2 siRNA (533–551) or mSnf7-
2 siRNA (482–500) were transfected into 15 DIV mature cortical neurons that exhibit fully elaborated dendritic trees. Results 
from 18 DIV cortical neuron show that transfection with scrambled siRNA had no effect (right) and that transfection with 
mSnf7-2 siRNA caused dramatic retraction of the dendritic trees of transfected neurons (left).  
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Figure 3-17 summarizes the ESCRT-0, -I, -II and –III presence in the different cellular processes discussed 

above. 

 

FIGURE 3-17: ESCRT COMPLEXES ASSEMBLING AT VARIOUS CELLULAR PROCESSES (LONCLE, AGROMAYOR ET AL. 

2015) 

Schematic representation of the role of the ESCRT machinery in membrane scission events at different cellular locations at 
different times in the life of a cell. 1. Membrane repair. 2. MVB formation. 3. Cytokinetic abscission, the requirement of ESCRT-
II complex in cytokinesis is proven by (Christ, Wenzel et al. 2016). 4. Viral budding. 5. Neurite branch severing. The table 
summarizes the deployment of ESCRT components and highlights that specific combinations of ESCRT complexes assemble 
depending on which membrane-cutting event is required. “?” indicates that at present its role is not known.  
 

3.3 ESCRT-III CRYSTAL STRUCTURE AND CYCLING 

The core ESCRT-III components are soluble charged proteins with similarities at the sequence level and 

in size (221–241 residues) (Obita, Saksena et al. 2007). The ESCRT-III subunits are thereby predicted to 

share common structural architecture (Muziol, Pineda-Molina et al. 2006; Shim, Kimpler et al. 2007). 

Up-to-date, the only known crystal structure for the ESCRT-III proteins is that of CHMP3/hVps24 

(residues 9–183). It reveals a common domain architecture of four α helices bundled into an N-terminal 

core domain and followed by the C-terminal region (Muziol, Pineda-Molina et al. 2006). The highly 

structured positively charged N-terminal region consists of two helices (α1, α2) that form a 7nm hairpin 

important for membrane binding and homo- or hetero-dimerization (Figure 3-18). This hairpin structure 
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together with the helices α3 and α4 form an asymmetric anti-parallel four-helix bundle (Muziol, Pineda-

Molina et al. 2006; Bajorek, Schubert et al. 2009) (Figure 3-18). This N-terminal core domain is enriched 

with basic amino acids that bind acidic lipids within lipid bilayers. The C-terminal region, in contrast, is 

largely unstructured and forms numerous intramolecular contacts along the amino-terminal core 

domain: it interacts with helix α2 of the core and thereby blocks homo- or heterodimerization of ESCRT-

III proteins. Such intramolecular interactions may therefore prevent ESCRT-III protein-protein 

intermolecular assembly and thus keep the ESCRT-III proteins as inactive monomers in the cytosol in a 

‘‘closed’’ conformation (Zamborlini, Usami et al. 2006; Shim, Kimpler et al. 2007; Bajorek, Schubert et 

al. 2009).  

 

FIGURE 3-18: PREDICTED COMMON STRUCTURE FOR ESCRT-III SUBUNITS (HENNE, BUCHKOVICH ET AL. 2012) 

Schema of ESCRT-III subunits architecture. Helices are denoted as boxes. The MIM domain (in red) interacts with the MIT 

domain of Vps4. 

 

ESCRT-III assembly is both temporally ordered and transient as the subunits cycle between inactive 

monomers in the cytoplasm and active assembled polymers on membranes (Figure 3-19) (Henne, 

Buchkovich et al. 2012). The activation of the ESCRT-III subunits requires the release of the folded C-

terminal region from the core. Displacement of the C-terminal region rearranges the helical segments 

and drives both membranes binding and homo- or hetero-oligomerization (Shim, Kimpler et al. 2007; 

Ghazi-Tabatabai, Saksena et al. 2008; Henne, Buchkovich et al. 2012).  

The C-terminal acidic region also carries the so-called MIM domain (MIT Interacting Motif) for 

interaction with the MIT (Microtubule Interacting and Transport) domain of Vps4 (Scott, Gaspar et al. 

2005; Obita, Saksena et al. 2007; Stuchell-Brereton, Skalicky et al. 2007) (Figure 3-19). Each ESCRT-III 

subunit has either one MIM1 (CHMP2/hVps2, CHMP3/hVps24 and the Vacuolar assembly protein Did2), 

one MIM2 (CHMP6/hVps20, CHMP4/hSnf7 and CHMP5/hVps60) or both (the ESCRT-III associated factor 

Ist1).  
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FIGURE 3-19: ESCRT-III CYCLING BY THE AAA-ATPASE VPS4B (ADELL AND TEIS 2011) 

Cartoon of an ESCRT-III subunit based on the crystal structure of human CHMP3. Inactive, auto-inhibited ESCRT-III subunits can 
be activated either by the ESCRT-II subunit Vps25 or by the ESCRT-associated protein Alix. The AAA-ATPase Vps4 resets the 
active ESCRT-III subunits to the ‘inactive’ state. 

 

The Vps4 complex consists of the type I AAA-ATPase Vps4 and its co-factor Vta1. In the cytoplasm, Vps4 

is an inactive protomer (monomer or dimer). The Vps4 complex is the only ATP consuming factor of the 

ESCRT machinery. Vps4 subunits have two functional domains, an amino-terminal MIT domain, 

consisting of three antiparallel helices (α1/α2/α3), and a central AAA-ATPase domain (Scott, Gaspar et 

al. 2005). The MIT domain is responsible for the interaction of Vps4 with the MIM domains of the ESCRT-

III subunits, and the AAA-ATPase domain hydrolyses ATP to disassemble and likely remodel and recycle 

the ESCRT-III complex in the cytoplasm.  

 

Once recruited to the ESCRT-III complex, Vps4 assembles into a dodecamer, consisting of one or two 

stacked hexameric rings with a central pore. Binding of Vta1 to Vps4 results in an active Vps4–Vta1 

complex with enhanced ATPase activity (Azmi, Davies et al. 2006; Landsberg, Vajjhala et al. 2009; 

Monroe, Han et al. 2014). Finally, after each round of membrane scission event, Vps4 completes the 

disassembly of ESCRT-III and then dissociates the ESCRT or the Vps4 complex into inactive protomers 

(Scott, Chung et al. 2005) (Figure 3-20).  
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FIGURE 3-20: MODEL FOR THE FUNCTIONAL CYCLE OF VPS4 COMPLEX (SCOTT, CHUNG ET AL. 2005). 

Left: At steady state, Vps4 is primarily a monomeric cytoplasmic protein (Fujita, Umezuki et al. 2004), and exhibits a monomer-

dimer equilibrium in the absence of bound nucleotide (Babst, Wendland et al. 1998). Vta1 is an oligomer of uncertain 

stoichiometry. Middle: Vps4 proteins are recruited to sites of vesicle formation at the endosomal membrane by interactions 

between the N-terminal MIT domain and the C-proximal domains of assembled ESCRT-III lattice (Babst, Katzmann et al. 2002; 

Lin, Kimpler et al. 2005; Scott, Gaspar et al. 2005). The assembled Vps4 proteins can also bind ATP and Vta1 oligomers via β-

domain interactions to form an enzymatically active complex. Right: Bound ESCRT-III subunits are freed from the assembled 

lattice and released into the cytoplasm as they are pulled up into the narrow central chamber of the Vps4 ring. 

 

One side of the MIT domain (helices α2 / α3) can bind to the helical MIM1 of CHMP2 and Did2 and the 

MIM1-like element of CHMP3. And, the opposite side of the MIT domain (helices α1/α3) can bind to the 

unstructured MIM2 on CHMP6 and CHMP4 (Figure 3-21) (Obita, Saksena et al. 2007; Kieffer, Skalicky et 

al. 2008; Adell, Vogel et al. 2014). The interaction of Vps4 is negligible with CHMP3 and with a low affinity 

with CHMP4.  In contrast, Vps4 interacts strongly with CHMP2 and CHMP6 (Adell, Vogel et al. 2014). 

Because CHMP6 is thought to only play a nucleator role for the ESCRT-III proteins assembly (discussed 

in detail in chapter 3.1) (Teis, Saksena et al. 2008; Saksena, Wahlman et al. 2009), its interaction with 

Vps4 is not considered.  

 

Thus, the interaction of the MIT domain of Vps4 with the MIM1 of CHMP2 is the main responsible for 

its binding to the ESCRT-III complex and recruitment (Adell, Vogel et al. 2014), CHMP2 is therefore 

presumed to be the intrinsic timer for ESCRT-III disassembly (Schmidt and Teis 2012). Moreover, the 

possibility of interaction of Vps4 with several MIMs is believed to stabilize its recruitment and enhance 

its activity. This way, the recycled ESCRT-III subunits are continuously available and could be involved 

multiple times in the cell (Adell, Vogel et al. 2014). 
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FIGURE 3-21: MIT DOMAIN OF VPS4 (SCOTT, GASPAR ET AL. 2005) 

Schematic illustrations of human VPS4A. Shown are the MIT domain (left), the AAA-ATPase domain (middle) and the β-domain 

(right. (A) Ribbon diagram of the VPS4A MIT domain (residues 5–76). (B) Top view of the three-helix bundle of the MIT domain, 

emphasizing the asymmetry in the disposition of the three helices. 

 

3.4 ESCRT-III POLYMER STRUCTURES IN VIVO AND IN VITRO 

In vitro and in vivo observations have shown that activated ESCRT-III subunits can assemble into flat 

spirals, helices and tubes.  

3.4.1 ESCRT-III POLYMERS FORM FLAT SPIRALS 

CHMP4B forms spirals in vivo and in vitro. Deep-etch EM (DEEM) of the plasma membranes of cells 

overexpressing CHMP4 showed that CHMP4 can form flat spirals on membrane (Figure 3-22 / A, C and 

D) (Hanson, Roth et al. 2008; Cashikar, Shim et al. 2014; McCullough, Clippinger et al. 2015). Indeed, in 

this case, stoichiometry unbalance due to CHMP4 overexpression favors this type of organization for 

this protein. This observation was confirmed in vitro with Snf7, the yeast Caenorhabditis elegans 

orthologues of CHMP4, showing that the protein alone assembles into flat spirals on solid surfaces 

(Figure 3-22 / B) (Henne, Buchkovich et al. 2012; Shen, Schuh et al. 2014; Chiaruttini, Redondo-Morata 

et al. 2015). These studies based on EM and HS-AFM showed that CHMP4 filaments have a preferred 

radius of curvature ranging between about 21 to 32 nm. In the spirals, their innermost observed ring is 

slightly overbent (having a radius of curvature of 18 nm), meaning that the coils are bent at a higher 

curvature than would be predicted by their natural energy minimum. Meanwhile, the outer rings are 

underbent, meaning that their radii of curvature are greater than the energetically preferred value 

(Henne, Buchkovich et al. 2012; Shen, Schuh et al. 2014; Chiaruttini, Redondo-Morata et al. 2015).  
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CHMP2A also forms spirals in vitro. C-terminally truncated CHMP2A alone coils up to small rings and can 

also form spirals (Figure 3-22 / E) (Lata, Roessle et al. 2008; Lata, Schoehn et al. 2008; Effantin, Dordor 

et al. 2013).  

3.4.2 ESCRT-III POLYMERS FORM HELICES AND TUBES 

CHMP4 forms tubes in vivo when in combination with other ESCRTs. Indeed, depletion of Vps4 leads to 

formation of tubular exvaginations from cells that are sustained by CHMP4-containing helices (Figure 

3-22 / J) (Hanson, Roth et al. 2008; Henne, Buchkovich et al. 2012; Cashikar, Shim et al. 2014). These 

exvaginations of CHMP4 approximately range between 100 to 120 nm in diameter and extend to varying 

heights. Moreover, overexpression of CHMP4 and depletion of Vps4 or co-expression of CHMP4 and of 

a dominant negative mutant of Vps4 results in tightening of CHMP4 flat spirals and thus formation of 

tubular structures protruding out of the plasma membrane (Hanson, Roth et al. 2008). These tubes are 

also about 100 nm in diameter.  

CHMP2B forms tubes in vivo. Overexpressed full-length CHMP2B leads to helical scaffolds deforming the 

plasma membrane into long rigid tubes protruding out of the cell and reaching up to 400 nm in diameter 

(Figure 3-22 / H and I) (Bodon, Chassefeyre et al. 2011). But, there is lack of study in vitro showing 

CHMP2B tubular structures. 

CHMP2A + CHMP3 co-assemble into tubes in vivo and in vitro. In the absence of membrane, CHMP2A 

and CHMP3 co-assemble in vitro into heteropolymeric closed tubes with an inner diameter 

approximately equal to 50 nm (Figure 3-22 / F). The outer surface of these tubes is expected to bind to 

membranes, whereas the inner surface corresponds to a binding site for the AAA-ATPase VPS4 (Lata, 

Schoehn et al. 2008; Effantin, Dordor et al. 2013). Furthermore, CHMP2A + CHMP3 tubes were found 

to be closed at one end forming thus a cone / dome-like structures with a height of 25 nm (Figure 3-22 

/ G1 and G2). Moreover, helical tubes in the presence of negatively charged liposomes have been 

observed (Lata, Schoehn et al. 2008), although it is not a priori easy to reconcile these different 

organizations. In vivo, helical structures that apparently contain CHMP2A have been imaged by cryo-

electron tomography at the midbody of Hela cells (Guizetti, Mantler et al. 2011; Guizetti, Schermelleh 

et al. 2011). Interestingly, these cytokinesis filaments have a large filament–filament distance of 35 nm 

(Guizetti, Schermelleh et al. 2011), quite far from the tight packing of pure CHMP2–CHMP3 tubes with 

a 3.5 nm spacing measured in vitro. 

IST1–CHMP1B complex forms tubes in vivo. The IST1–CHMP1B complex also forms a heteropolymeric 

tube, with a diameter of 24 nm and a 5.1-nm repeat, and has yielded a high-resolution Cryo-EM 

reconstruction (Figure 3-22 / K) (McCullough, Clippinger et al. 2015). Interestingly, it was the first ESCRT-

III complex described to form an external coat on positively curved membranes in vitro and in vivo. 
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FIGURE 3-22: STRUCTURES OF ESCRT-III POLYMERS  

ESCRT subunits can polymerize into a wide range of structures — including spirals, tubes, bells, coils and cones, which have all 

been visualized by electron microscopy (EM). Spirals of CHMP4 visualized by EM  

(A) Spirals of CHMP4 visualized by EM (Shen, Schuh et al. 2014) 

(B) Transmission EM of a single spiral of Snf7 (yeast CHMP4) on a membrane (Chiaruttini, Redondo-Morata et al. 2015) 

(C) Anaglyph of the plasma membrane from COS-7 cells expressing CHMP4A (Cashikar, Shim et al. 2014) 

(D) Filament spirals on COS-7 cell membranes expressing CHMP4A1–164 (McCullough, Clippinger et al. 2015) 

(E) Spirals of CHMP2AΔC visualized by negative-stain EM (Effantin, Dordor et al. 2013) 

(F) CHMP2AΔC–CHMP3ΔC tubes in the presence of negatively charged liposomes. Tube diameter ~55 nm. (Effantin, Dordor et 

al. 2013) 

(G1) CHMP2AΔC–CHMP3ΔC coils in the presence of negatively charged liposomes, (G2) often cone-shaped (Lata, Schoehn et 

al. 2008) 

(H) Tubes of CHMP2B pelleted from culture media of CHMP2B-expressing cells. P1 pellets of culture medium of CHMP2B-FLAG-

expressing cells contain tubes made up of CHMP2B. P1 pellets were fixed, permeabilized, and immunolabeled with anti-

CHMP2B antibodies revealed by protein A gold (10 nm) (Bodon, Chassefeyre et al. 2011) 

(I) Dome closing one end of a tube. The inner leaflet of the membrane is closely associated with the CHMP2B protein lattice 

(Bodon, Chassefeyre et al. 2011) 

(J) Helices of Snf7 Arg52Glu (R52E), Vps24 (yeast CHMP3) and Vps2 (yeast CHMP2) assembled on membranes (Henne, Buchkovich et 

al. 2012) 

(K) Spirals on COS-7 cells expressing FLAG–CHMP1B (McCullough, Clippinger et al. 2015) 

 

 

This structural diversity could be related to the complexity of the membrane scission mechanism and to 

the various roles of the proteins at different points of this process. The full range of these structures 

forms the basis of the most up-to-date mechanistic hypotheses.  
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3.5 THEORETICAL MODELS FOR MEMBRANE SCISSION BY THE ESCRT-III 

POLYMERS 

Although ESCRT complexes have been a hot topic in the past decade, the minimal machinery and its 

mode of action to induce membrane scission remain puzzling. This is mainly because the available data 

in the field are insufficient to define a unique scission mechanism. ESCRTs are involved in several 

membrane remodelling processes with highly varying membrane neck diameters. In MVB biogenesis 

and HIV budding, the ESCRT proteins promote budding and/or scission of membrane necks ranging from 

20 to 200 nm, whereas, in cytokinesis, the process is even more complex, and the ESCRT proteins seem 

to be involved in the narrowing of the cytokinetic neck from ≈ 1 μm all the way to zero, although not 

demonstrated. Additionally, in vitro and in vivo observations show that the ESCRT polymers form 

multiple structures such as spirals or helical structures with large diameters about 50 nm. Hence, based 

on these apparently heterogeneous observations, it is difficult to disclose the potential mode of 

assembly of the complex inside a bud neck. Finally, because splitting of membrane necks requires 

opposing membranes to come as close as approximately 3 nm (Kozlovsky and Kozlov 2003), the large 

diameters of the structures observed in vitro impede the possibility of having spontaneous membrane 

fission. 

Nevertheless, based on the different studies on ESCRTs, several theoretical models have been proposed 

to explain the mechanism of membrane scission. But none of these speculative models can fully fit and 

explain all the different ESCRT-III-related membrane narrowing processes. Yet, according to all the in 

vitro and in vivo observations, two models seem to be the most appealing. One model suggests that 

Vps4 induces filament sliding or constriction leading to fission (Henne, Buchkovich et al. 2012), while 

the second model asserts that ESCRT-III polymers form dome-like structures to conduct neck 

constriction and membrane fission (Lata, Schoehn et al. 2008; Fabrikant, Lata et al. 2009; Peel, 

Macheboeuf et al. 2011; Chiaruttini, Redondo-Morata et al. 2015).  

3.5.1 SPIRAL SPRING (BUCKLING) MODEL FOR ESCRT-III MEDIATED MEMBRANE 

SCISSION 

A model called "sliding model" (Henne, Buchkovich et al. 2012) was initially proposed for ESCRT-

mediated MVB biogenesis consisting in the following steps (Figure 3-23):  (1) ESCRT-0, -I, and -II engage 

ubiquitinated cargoes and concentrate them into a patch on the endosome surface; (2) ESCRT-II initiates 

the assembly of an Snf7 ring-like polymer by directly binding Vps20; (3) Snf7 flat spiral remodels upon 

addition of Vps24 and Vps2, ultimately forming a 3D helix or spring-like structure similar to the ESCRT-

III-induced membrane tubules in vivo (Cashikar, Shim et al. 2014); and (4) the AAA ATPase Vps4 is 

recruited by ESCRT-III to recycle the ESCRT machinery off the MVB. 
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FIGURE 3-23: SLIDING MODEL FOR ESCRT-III-MEDIATED MVB BIOGENESIS (HENNE, BUCHKOVICH ET AL. 2012) 

(A–C) Speculative cartoons illustrating three stages in ESCRT-mediated vesicle budding from a ‘‘top’’ perspective over the 

endosome surface. A- ESCRT-II engages cargo and two Vps20 subunits; two Snf7 filaments extend around cargo. B- ESCRT-III 

forms a ≈65 nm ring defining ILV membrane; Snf7 assembly recruits deubiquitinases. C- Cargo deubiquitylation; Vps24 and 

Vps2 induce the ESCRT-III helix, driving invagination. (D) A ‘‘side’’ view of the proposed mechanism of ESCRT-mediated budding. 

 

 

 

HS-AFM of reconstituted Snf7 spirals on supported lipid bilayers provides next a possible mechanism for 

membrane budding and scissioning. Chiaruttini et al found that Snf7  polymers form spirals on 

membrane (Chiaruttini, Redondo-Morata et al. 2015) similar to those observed with EM (Hanson, Roth 

et al. 2008; Shen, Schuh et al. 2014) with an apparent nucleation ring about 25 nm in diameter. This 

nucleation ring corresponds to a preferred curvature of Snf7 polymers. When Snf7 filaments form spirals 

outward from the nucleation ring, the filaments underbend and reciprocally overbend when they grow 

inwards. The "spiral spring" model (Chiaruttini, Redondo-Morata et al. 2015) thus proposes that 

polymerizing Snf7 spirals become loaded springs as a result of lateral compression induced by 

neighboring ESCRT-III filaments during growth into the bud neck. Expansion of Snf7 springs back to a 

flat relaxed configuration would release the mechanical stress and cause at the same time membrane 

distortion driving membrane instability and scission (Figure 3-24). So far, no model provides details for 

this instability.  
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FIGURE 3-24: BUCKLING MODEL FOR ESCRT-MEDIATED SCISSION (ADAPTED FROM (SCHONEBERG, LEE ET AL. 

2017) 

HIV-1 Gag (blue) accumulates at the membrane (white), causing initial membrane deformation. ESCRT-I/ESCRT-II 
(green/orange) and ALIX (purple) are recruited by Gag. ESCRT-III (yellow) is recruited by ESCRT-II and ALIX, and polymerizes in 
the bud neck.  ESCRT-III polymerizes outward from the virion towards the cytosol, with consecutive wider rings. The cone is 
higher in energy than a flat spiral. Conversion of the cone to a spiral releases the tension, but at the cost of creating sharp 
bends where the virion is attached to the plasma membrane. The high energy of these bends is released when the virion is 
severed. ESCRTs are released to the cytosol at the end. 
 

3.5.2 THEORETICAL DOME MODEL FOR ESCRT-III MEDIATED MEMBRANE SCISSION 

The dome-model presupposes that CHMP4 proteins, either recruited by ESCRT-I and ESCRT-II or Alix, 

polymerize into spirals and induce a first narrowing of the neck before serving as a platform to recruit 

either CHMP2A-CHMP3 or CHMP2A or CHMP2B polymers. Based on the in vitro observations with pure 

proteins, this model supposes that the latter proteins assemble into a dome-like structure with the 

membrane neck wrapped around the dome due to a strong adhesion (Figure 3-25). Then, the successive 

narrowing of the helical filaments of the dome structure will further bend and mold the membrane, 

leading thus to a neck constriction down to a diameter of 6 nm which would be energetically favorable 

for spontaneous scission (Lata, Schoehn et al. 2008; Fabrikant, Lata et al. 2009; Lenz, Crow et al. 2009; 

Bodon, Chassefeyre et al. 2011) (Figure 3-25). 

 

FIGURE 3-25: THE DOME MODEL FOR MEMBRANE BUDDING AND FISSION BY THE ESCRT-III SUB-COMPLEXES 

(FABRIKANT, LATA ET AL. 2009) 

Speculative cartoons Illustrating three stages in ESCRT-mediated vesicle budding from a ‘‘side’’ perspective over the endosome 
surface. 
A- Formation of the initial bud by CHMP4 (Snf7).  
B- Self-assembly of CHMP2 - CHMP3 nanotube with a dome-like end-cap.  
C- Fission of the neck and completion of the vesicle formation. 
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Albeit none of the models have been proven experimentally, the dome model seems more consistent, 

because all potential polymers implicated in the final cut (CHMP2A-CHMP3 or CHMP2A or CHMP2B) can 

form dome-like end-caps in vitro or in cellulo (Lata, Schoehn et al. 2008; Bodon, Chassefeyre et al. 2011; 

Effantin, Dordor et al. 2012). And, even though a reconstituted ESCRT-III-catalyzed intraluminal vesicle 

budding reaction was observed in vitro without the AAA-ATPase activity of Vps4 (Wollert, Wunder et al. 

2009; Wollert and Hurley 2010), it is likely that Vps4 plays an active role beyond recycling ESCRT-III and 

is essential for the ESCRT-III machinery regulation (Babst, Davies et al. 2011; Baumgartel, Ivanchenko et 

al. 2011; Elia, Sougrat et al. 2011; Jouvenet, Zhadina et al. 2011; Elia, Fabrikant et al. 2012; Adell, 

Migliano et al. 2017).  

 

Dominant negative Vps4 prevents fission of HIV buds (von Schwedler, Stuchell et al. 2003) (Figure 3-26), 

and Vps4 at viral budding sites disappears before detachment of the virus (Baumgartel, Ivanchenko et 

al. 2011; Jouvenet, Zhadina et al. 2011) and turnover at the abscission site several minutes before the 

completion of cytokinesis, simultaneously with the other ESCRT-III subunits (Elia, Sougrat et al. 2011; 

Guizetti and Gerlich 2012; Adell, Migliano et al. 2017; Mierzwa, Chiaruttini et al. 2017). Hence, apart 

from disassembling the ESCRT-III complex, Vps4 may as well play a role in providing further energy to 

induce supplementary stress on the filaments upon disassembly and thereby lead to spontaneous 

fission (Figure 3-26). 

 

FIGURE 3-26: HIV-1 BUDDING ARREST INDUCED BY DOMINANT-NEGATIVE VPS4B PROTEINS (von Schwedler, 

Stuchell et al. 2003) 

Left: EM images of thin-sectioned 293T cells transfected with HIV DsRed-VPS4B-E235Q. Scale bar is 100 nm. Black arrows 

indicate striations in the stalks of arrested virions.  

Right: Schematic Model for the HIV-1 budding arrest induced by expression of dominant-negative VPS4 Proteins. The 

illustration emphasizes how nascent viral particles arrest together with class E protein complexes at both endosomal and 

plasma membranes when VPS4 proteins are unable to hydrolyze ATP (denoted by the black X). 
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3.6 OBJECTIVE: CHARACTERIZATION OF CHMP2B AND DETERMINATION OF ITS 

ROLE WITHIN THE ESCRT-III MACHINERY 

3.6.1 CHMP2B IS SPECIFIC TO HIGHER ORGANISMS 

Among all ESCRT-III subunits, CHMP4, CHMP2A and CHMP3 are conserved throughout Eukaryotes, while 

CHMP2B is only found in higher organisms. Moreover, CHMP2B appears to be a relatively recent 

acquisition in the evolution of ESCRT-III complex as a result of a gene duplication event (Leung, Dacks et 

al. 2008). The fact that in yeast only one Vps2 protein is present might simply reflect the diversification 

of ESCRT-III function in higher organisms, which mediates membrane scission in many different 

subcellular contexts. In terms of sequence similarity, both CHMP2A and CHMP2B share a high sequence 

homology with Vps2 and have therefore been considered as isoforms. 

3.6.2 CHMP2B IS IMPLIED IN THE DIVERSIFICATION OF ESCRT FUNCTIONS 

Beside the implication of the ESCRT machinery in the MVB pathway, these proteins are involved in many 

other membrane remodelling processes associated to higher organisms. Interestingly, except for the 

MVB pathway, CHMP2B seems to be important in all these newly acquired ESCRT-III mediated events  

(Carlton, Agromayor et al. 2008; Morita, Sandrin et al. 2011; Carlton, Caballe et al. 2012; Jimenez, Maiuri 

et al. 2014; Olmos, Hodgson et al. 2015; Olmos and Carlton 2016) (Figure 3-27). Nevertheless, its 

function within the ESCRT machinery is still elusive. 

 

FIGURE 3-27: CHMP2B INVOLVED IN THE NOVEL ESCRT-III DEPENDENT PROCESSES 

This table summarizes that while CHMP4B, CHMP3 and CHMP2A are necessary for all the ESCRT-dependent processes, 

CHMP2B appears to be only involved in the novel ESCRT- mediated membrane remodelling processes. 

 

Studies on cytokinesis and HIV-1 budding and release showed that only a subset of ESCRTs is recruited, 

notably ESCRT-III and Vps4, which most likely constitute the fission machinery. These studies show that 

both CHMP2A and CHMP2B localize to the midbody region before the last abscission step in cytokinesis 

(Figure 3-28).  
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FIGURE 3-28: CHMP2 LOCALISATION TO THE MIDBODY DURING LATE CYTOKINESIS (OLMOS, HODGSON ET AL. 
2015) 
Immunofluorescence analysis of HeLa cells stained with anti-tubulin, anti-CHMP2A or -CHMP2B and DAPI, showing that 
endogenous ESCRT-III components CHMP2A and CHMP2B localise to the midbody during late cytokinesis (Olmos, Hodgson 
et al. 2015).  

 

Furthermore, HIV budding studies indicate that only CHMP4B and CHMP2 (A or B) are essential for virus 

release and that CHMP3 exerts a significant synergistic effect on the CHMP2A function, but not 

CHMP2B. These studies also show that in HIV release, co-silencing of CHMP2A and CHMP2B has an 

additional effect over individual silencing, but functional redundancy between the two proteins has 

never been shown (Figure 3-29 / left) (Carlton and Martin-Serrano 2007; Morita, Sandrin et al. 2007; 

Morita, Sandrin et al. 2011; Effantin, Dordor et al. 2013). Additionally, studies by Effantin and al. show 

that during HIV-1 budding, CHMP3 synergizes much more efficiently with CHMP2A than with CHMP2B 

(Figure 3-29 / right) (Effantin, Dordor et al. 2013).  

Likewise, in neuronal pruning, silencing of CHMP2B or CHMP2A does not have a direct effect on 

neuronal viability, probably because of mutual compensation. Finally, it was also shown that a mutation 

in CHMP2B gene could be responsible of a neurodegeneration disease named Fronto-Temporal 

Dementia (FTD disease) (see chapter 3.6.3). 

Thus, to summarize, CHMP2B is involved in the newly acquired human ESCRT-III processes and a 

mutation in its gene could lead to neurodegenerative disease. But the protein has been so far much less 

studied than the other main components of the ESCRT-III machinery, thus a more extensive 

investigation and understanding of CHMP2B role in the ESCRT machinery is now necessary.  
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FIGURE 3-29: EFFECT OF THE DEPLETION OF CHMP2 ON HIV BUDDING (MORITA, SANDRIN ET AL. 2011; EFFANTIN, 

DORDOR ET AL. 2013) 

(Left): Viral titers in 293T cells expressing HIV-1 and depleted or co-depleted of the designated CHMP2 family members. SiRNA 

against the essential budding factor, TSG101, was used as a positive control. And, as expected, TSG101 depletion strongly 

inhibited viral infectivity. Individual depletion of CHMP2A and CHMP2B caused modest reductions in virus release and 

infectivity, whereas, co-depletion of CHMP2A and CHMP2B resulted in dramatic reductions in HIV-1 release and infectivity 

(Morita, Sandrin et al. 2011).  

(Right): Viral titers in 293T cells expressing HIV-1 and treated either with control siRNAs (lanes 1 and 2) or with siRNAs that 

target the indicated ESCRT-III CHMP family members (lanes 3-8). Individual depletion of CHMP2A, CHMP2B and CHMP3 had 

only modest effects on virion release and infectivity. Depletion of CHMP2A and CHMP3 reduced infectious units by a factor of 

～1.4 and CHMP2B knockdown produced a ～2.5-fold reduction. Co-depletion ofCHMP2A and CHMP3 reduced infectivity 2.6-

fold, while the double knockdown ofCHMP2B-CHMP3 reduced infectivity 17-fold and the CHMP2A-CHMP2B double 

knockdown reduced infectivity 46-fold (Effantin, Dordor et al. 2013).  

 

3.6.3 CHMP2B MUTATION LEADS TO A NEUROLOGICAL DISORDER: FRONTO-TEMPORAL 

DEMENTIA 

During normal aging, the number of hippocampal neurons gradually decreases, and the number and 

length of terminal dendritic branches of remaining neurons increase progressively, probably to 

compensate for the loss of other neurons. The abnormal growth and degeneration of dendrites are 

closely associated with many neurodegenerative diseases such as Alzheimer or Fronto-Temporal 

Dementia (FTD) diseases.  

Fronto-Temporal Dementia is considered as the second most common form of senile dementia in 

individuals above 65 years, accounting for up to 20% of cases (Knopman, Mastri et al. 1990). The most 

prominent clinical and neuropsychological features of FTD are changes in personality and behavior, such 

as poor insight, loss of personal awareness and social awareness, lack of empathy, aggressiveness, 

inappropriate social behaviors, dietary changes, and the development of a new personality. FTD is 
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genetically heterogeneous, with associated loci identified on chromosomes 3, 9 and 17 (Wilhelmsen, 

Lynch et al. 1994; Hosler, Siddique et al. 2000; Skibinski, Parkinson et al. 2005). 

 

Northern-blot analysis showed that wild-type CHMP2B is expressed in most cell types and in all major 

regions of the brain, including the frontal and temporal lobes (Skibinski, Parkinson et al. 2005). CHMP2B 

seems to be especially vital for proper neuronal function as the neurological disorder FTD-3 Fronto-

temporal dementia linked to chromosome 3) could be directly linked to different CHMP2B mutations 

(Skibinski, Parkinson et al. 2005).The first mutation, leading to the CHMP2BIntron5 mutant is unique to 

Danish kindred with a history of FTD-3.  It is a point mutation (G to C substitution) resulting in mRNA 

splicing and production of mutant CHMP2B proteins lacking the C-terminal 36 aa isoform. This C-

terminus truncation causes removal of an important Vps4 binding site as well as the elimination of the 

normal auto-inhibitory resting state of CHMP2B, thus producing what is believed to be a constitutively 

active protein. Other mutations have also been reported. CHMP2BΔ10 is an alternative mRNA transcript 

generated from the same mutation missing the final 36aa of the normal protein; however, 29aa are 

added randomly to the C-terminus. CHMP2BQ165X is an unrelated mutation resulting in a 49aa C-terminus 

truncation; it was found in a Belgian family and appears to result in similar pathology to the 

CHMP2BIntron5 mutant isoform (Figure 3-30 / A). Ectopic expression of the mutant protein CHMP2BIntron5 

caused misregulation of transmembrane receptors, accumulation of multilamellar structures, abnormal 

lysosomal morphology, downregulation of a brain-specific microRNA (miRNA-124), abnormal dendritic 

spine morphology, dendritic retraction (Figure 3-30 / C) prior to neurodegeneration, and cell death 

(Figure 3-30 / B) (Skibinski, Parkinson et al. 2005; van der Zee, Urwin et al. 2008). CHMP2BIntron5 binds 

CHMP4B, which is essential for neuronal structural integrity and viability, with higher affinity than 

CHMP2B-WT. CHMP2BIntron5 recruits CHMP4B in clusters or aggregates, resulting in sequestration of 

CHMP4B (Figure 3-30 / D). Thus, CHMP2BIntron5inhibits neurite development causing neurodegeneration 

through its failure to dissociate from ESCRT-III subunit CHMP4B in cortical neurons. Moreover, loss of 

CHMP4B or CHMP2BIntron5 expression caused the accumulation of auto phagosomes in cortical neurons 

in flies (Lee, Beigneux et al. 2007; Lee and Gao 2008; Lee and Gao 2008). Hence, by sequestering 

CHMP4B, CHMP2BIntron5 forms abnormal complexes containing CHMP4B and could cause rapid neuronal 

cell loss. 
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FIGURE 3-30: CHMP2BINTRON5 CAUSES NEURODEGENERATION THROUGH ITS FAILURE TO DISSOCIATE FROM 

CHMP4B (LEE, BEIGNEUX ET AL. 2007) 

 (A) Schematics of wild-type (CHMP2BWT) and mutant CHMP2B proteins. ‘‘CC’’ stands for coiled-coil domain. The asterisk 

indicates D148Y. The black box represents an abnormal 29 aa C terminus of CHMP2BΔ10. 

(B) Survival curves of cultured cortical neurons transfected with EGFP alone or with different CHMP2B proteins. Values are the 

mean 6 SEM of four independent experiments. ***p < 0.001. 

(C) Effects of wild-type or mutant CHMP2B proteins on dendritic morphology of 15 DIV mature cortical neurons. Different 

CHMP2B proteins were co-transfected with GFP, and the dendritic length was measured by MAP2-antibody staining. The scale 

bar represents 20 mm. 

(D) Expression of different CHMP2B mutant proteins in HEK293 cells 18 or 72 hours after transfection. Flag antibody was used 

for detecting wild-type or mutant CHMP2B proteins. b-tubulin served as the loading control. 

 

3.6.4 THESIS OBJECTIVE: STUDY OF CHMP2B USING MODEL MEMBRANES IN VITRO 

The current hypothesis for the minimal membrane scission machinery is that CHMP4B recruits either 

CHMP2A or B, or CHMP3 together with CHMP2A, that act in concert with the ESCRT-III disassembling 

AAA-type ATPase VPS4 (Adell and Teis 2011; Adell, Migliano et al. 2016) . CHMP2A can bind CHMP4B 

(Figure 3-31 / A) through basic residues which are also present in the sequence of CHMP2B (Figure 

3-31 / B) (Morita, Sandrin et al. 2011). 



72 
 

 

FIGURE 3-31: BINDING OF CHMP2A WITH CHMP4B (MORITA, SANDRIN ET AL. 2011) 

(A) Yeast two-hybrid interactions between the designated ESCRT proteins fused to activation (AD) or DNA binding (DBD) 

domains (or with empty vector controls). The following interactions Were judged to be positive (AD fusions listed first): 

CHMP1A:CHMP2A1-146, CHMP1A:CHMP2A1-146,C4-, CHMP4B:CHMP2A1-146,CHMP4B:CHMP4B, CHMP4BC2-:CHMP4B, 

VPS4A:CHMP2A. VPS4A also interacted very weakly with CHMP4B in this assay. 

(B) CHMP2A basic residues (in yellow) which are required for the interaction with CHMP4B are present in CHMP2B. 

 

CHMP2A can form tubes with dome-like end cap, but only in the presence of CHMP3. CHMP2B alone 

can also form tubes both in vivo and in vitro, but it does not co-polymerize with CHMP3 in vitro (Lata, 

Schoehn et al. 2008; Bodon, Chassefeyre et al. 2011). In HIV release, co-silencing of CHMP2A and 

CHMP2B has an additional effect over individual silencing, but functional redundancy between the two 

proteins has never been shown (Morita, Sandrin et al. 2011). And, even though both CHMP2A and 

CHMP2B are Vps2 human homologs, the MIM domain to bind Vps4 MIT domain is present in Vps2 and 

conserved in CHMP2A, but absent in CHMP2B (Figure 3-32). Accordingly, CHMP2A / CHMP3 dome-like 

structures might be well-suited for carrying out the last step of ESCRT-III-mediated scission, whereas, 

the role of CHMP2B in the membrane scission event as well as its order of recruitment within the ESCRT-

III machinery remain unclear. 

 

FIGURE 3-32: MIM-DOMAIN SEQUENCE OF VPS2 

Alignment of the C-terminal region of Vps2 from S. Cerevisiae and CHMP2A/2B from H. Sapiens. Critical residues constituting 

the MIM domain are colored. The MIM domain, which is required for Vps4 recruitment, is present in Vps2 and conserved in 

CHMP2A, but absent in CHMP2B. 

 

This is even more striking when considering that mutations in the CHMP2B gene, but not in the CHMP2A 

or CHMP3 genes, are implicated in the neurodegenerative disease FTD. CHMP2BIntron5 forms aggregates 

in cells and interferes with endosomal / lysosomal fusion, causes autophagosomes accumulation and 

leads to empowered dendritic spines formation (Lee, Beigneux et al. 2007; Lee and Gao 2008; Lee and 
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Gao 2008; Urwin, Ghazi-Noori et al. 2009; Belly, Bodon et al. 2010). However, the molecular mechanism 

responsible for this pathology remains largely obscure, because the function of CHMP2B is still 

unknown. Along these lines, our aim is to understand the role of CHMP2B in the ESCRT-III machinery.  

Our global objective was to use model membrane systems of controlled composition and shape as well 

as a battery of biophysics and structural technics to study the assembly of CHMP2B on membranes and 

compare it to CHMP2A and CHMP3. We initially aimed at mimicking the inverted topology of ESCRT-III 

proteins in cells by using model membranes. The idea was to encapsulate CHMP proteins inside GUVs 

and using micromanipulation to pull a membrane nanotube out of the GUV. Unfortunately, these 

experiments appeared not to be feasible in the presence of CHMP2B proteins for numerous reasons 

that we will describe in the Results chapter. To overcome this impasse, we decided to change the work 

plan. We studied the interaction of CHMP2B with different lipids and characterized the polymer 

assembly. Moreover, to understand the role of CHMP2B protein in the fission machinery, we compared 

all of our obtained results with that of the other CHMP subunits. 
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CHAPTER 4.  MATERIAL AND METHODS 

4.1 PROTEIN PURIFICATION 

CHMPs proteins used for this work were provided by the team of Prof. Dr. Winfried Weissenhorn, EBEV 

group at the Institute of Structural Biology in Grenoble. Protein purification and labelling was kindly 

achieved by Nolwenn Miguet and Christophe Caillat. 

Escherichia coli BL21 cells were transformed with plasmids and grown at 37°C in Luria broth medium to 

an OD600 of 0.6. Following expression, CHMP proteins Were concentrated, labelled over night at 4°C 

with a ratio of Alexa labelling dye per protein of 2 to 1 and immediately frozen in liquid nitrogen with 

0.1% of methyl cellulose (Sigma Aldrich) as cryo-protectant. All aliquots were kept at -80°C prior to 

experiments. 

Protein MW Vector TAG Induction Purification column Gel filtration buffer 

CHMP2AFL 
GSCS 25103 pETG30A GST 

3h-37°C- 

IPTG 1mM glutathion 
20mM HEPES pH7,6 / 

150mM NaCl 

CHMP2A∆C 62000 Unkown MBP 

1h-37°C- 

IPTG 1mM amylose 
20mM HEPES pH7,6 / 

150mM NaCl 

CHMP2B∆C 17755 pETM11 HIS 

4h-37°C – 

IPTG 1mM Refolding - nickel 
50mM Tris pH7,4 / 

100mM NaCl 

CHMP2BFL 25074 pETM11 HIS 

4h-37°C – 

IPTG 1mM Refolding - nickel 
50mM Tris pH7,4 / 

100mM NaCl 

CHMP3∆C 
GSCS 20621 pBADM30 GST 

3h-37°C- 

Arabinose 0,2% glutathion 
20mM HEPES pH7,6 / 

150mM NaCl 

CHMP3FL 25100 pproexthtb HIS 

3h-37°C- 

IPTG 1mM nickel 
20mM HEPES pH7,6 / 

150mM NaCl 

CHMP4B 
LINK 68139 pBADM41 MBP 

1h-37°C- 

Arabinose 0,2% amylose 

50mM HEPES pH7,6 / 
300mM NaCl /300mM 

KCl 

TEV 28617 pRK793 HIS 

3h-37°C- 

IPTG 1mM nickel 
PBS1X / 10% glycerol / 

2mM EDTA / 10mM DTT 

VPS4 49302 pproexthtb HIS 

ON-20°C – 

IPTG 1mM nickel 

25mM Hepes pH 7.5, 
150mM NaCl, 0.5mM, 

DTT 
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4.2 MODEL MEMBRANE SYSTEMS 

To investigate the protein-lipid interaction and the effect of the protein assembly on the membrane 

surface, we used model membranes for our study.  

Membrane model systems with precisely controlled composition are used to investigate fundamental 

interactions of membrane components under well-defined conditions. The most commonly used model 

membranes are lipid monolayers (Langmuir monolayers), supported lipid bilayers (SLB) and unilamellar 

lipid vesicles categorized as a function of their size (small unilamellar vesicles (SUVs), large unilamellar 

vesicles (LUVs) and giant unilamellar vesicles (GUVs)) (Figure 4-1).  

 

FIGURE 4-1: SUMMARY OF THE DIFFERENT TECHNIQUES USED FOR VESICLE PRODUCTION 

4.2.1 REAGENTS 

β-casein from bovine milk (>99%), polyvinyl alcohol fully hydrolyzed (PVA) and neutravidin were 

purchased from Sigma-Aldrich (Sigma-Aldrich, France). Streptavidin conjugated to a Texas Red dye was 

purchased from ThermoFisher (ThermoFisher Scientific, USA). β-casein and PVA were dissolved in 

Sucrose 25mM, NaCl 50mM and Tris 25mM (pH 7.5) at 5mg.mL-1 and 5% (w/w) respectively. Texas Red 

dye conjugated Streptavidin and neutravidin were dissolved in ultrapure water at a concentration of 

2mg.mL-1. Biotin-PEG-Silane (M.W. 3400) and m-PEG-Silane (M.W 2000) were both purchased from 

Laysan Bio, Inc (Laysan Bio, U.S.A) and dissolved at 5 mM in DMSO. All the reagents were stored at −20°C 

in amber vials (Sigma-Aldrich, France). 

DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine), DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-

serine), DOPE (1,2-dioleoyl-sn-glycero-3-phosphatidylethanol- amine), cholesterol (cholest-5-en-3ß-ol), 

PI(3)P (1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3'-phosphate)), PI(3,5)P2 (1,2-dioleoyl-sn-

glycero-3-phospho-(1'-myo-inositol-3',5'-bisphosphate)), PI(4)P (L-α-phosphatidylinositol-4-
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phosphate), PI(4,5)P2 (L-α-phosphatidylinositol-4,5-bisphosphate), BODIPY TMR-PtdIns(4,5)P2, C16 (red 

PI(4,5)P2), 1-oleoyl-2-6-[4-(dipyrrometheneboron difluoride) butanoyl] amino hexanoyl-sn-glycero-3-

phosphoinositol-4,5-bisphosphate (TopFluor PI(4,5)P2),DSPE-PEG2000-Biotin (1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[biotynyl(polyethylene glycol)-2000] and Egg Rhod PE (L-α-

phosphatidylethanolamine-N-(lissamine rhodamine B sulfonyl) were purchased from Avanti Polar Lipids, 

Inc (Avanti Polar Lipids, U.S.A.). Stock solutions of lipids were solubilized in chloroform at a concentration 

of 10 mg.mL-1, except for cholesterol which was solubilized in chloroform at a concentration of 20 

mg.mL-1, DSPE-PEG2000-Biotin at a concentration of 0.1 mg.mL-1, Egg Rhod PE which was dissolved at 

0.5 mg.mL-1 and PIPs, which were solubilized in a mixture of chloroform/methanol (70:30) (v/v) at a 

concentration of 1 mg.mL-1. All stock solutions were kept with argon and stored at −20°C in amber vials 

(Sigma-Aldrich, France).  

4.2.2 LIPID MIXTURES 

The different lipid mixtures used in the present work are summarised below:  

TABLE1: LIPID MIXTURES 

Lipid mix % DOPC % DOPE % Cholesterol % Negatively charged lipids 

1 70 0 0 30 % DOPS  

2 60 0 0 40% DOPS 

3 80 0 0 10% DOPS, 10% PI(4,5)P2 

4 80 0 0 10% DOPS, 10% PI(3,4,5)P3 

5 55 10 15 10% DOPS, 10% PI(4,5)P2 

6 73 10 15 2% DOPS 

7 73 10 15 2% PI(4,5)P2 

8 73 10 15 2% PI(4)P 

9 73 10 15 2% PI(3,5)P2 

10 73 10 15 2% PI(3)P 

 

Lipid mixtures 1 to 4 were exclusively used for Quartz Crystal Microbalance with Dissipation monitoring 

(QCM-D) experiments. Lipid mixtures 6 to 10 were exclusively used for Fluorescence-activated cell 

sorting (FACS) experiments. Lipid mixture 5 was used for all the other experiments performed with 

confocal fluorescence, EM and AFM setups.  

 

All lipid solutions were stored at −20°C in amber vials (Sigma-Aldrich, France). And, after each use, argon 

was added to the vials before sealing them with paraffin film (Parafilm, USA) to prevent lipid oxidation.  
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4.2.3  GUVS PREPARATION 

The size of GUVs, ranging from 1 - 100 µm, is well above the diffraction limit and can allow their 

visualization by optical microscopy such as confocal or fluorescence microscopy, as well as the use of 

micromanipulation techniques for single vesicles manipulation. These micrometer sized vesicles provide 

a model of cell-sized membranes with a lipid composition of choice.  

 

Different methods of GUVs preparation have been designed over the years. GUVs can be produced by 

emulsion-based approaches (Pautot, Frisken et al. 2003; Stachowiak, Richmond et al. 2008) in which 

water droplets are successively coated with inner and outer lipid monolayers, and by techniques based 

on lipid film rehydration (Horger, Estes et al. 2009; Meleard, Bagatolli et al. 2009). Emulsion-based 

methods are advantageous for soluble proteins encapsulation and for the formation of asymmetric 

GUVs, i.e. with different inner and outer leaflets lipid compositions. However, GUVs formed from 

emulsions retain traces of solvent altering the mechanical properties of the membrane (Campillo, Sens 

et al. 2013). Lipid film rehydration methods are based on the formation of a multi-lamellar stack of 

membranes obtained by drying a lipid film followed by a rehydration in an aqueous buffer step. The 

solvent pushes the layers apart and at the surface of the stack, individual membranes can detach to 

form GUVs (Kwok and Evans 1981). Practically, the spontaneous swelling method has a relatively low 

yield of defect-free GUVs (Rodriguez, Pincet et al. 2005). To improve the yield of defect-free GUVs, 

electroformation methods have been developed in which an electric AC field is applied during film 

rehydration (Angelova, Soléau et al. 1992; Mathivet, Cribier et al. 1996). To work at physiological salt 

conditions, electroformation is performed on platinum wires at high frequency (500 Hz) at a voltage of 

350 mV (Meleard, Bagatolli et al. 2009) (Figure 4-2). Alternatively, to rapidly form GUVs in physiological 

buffers, gel-assisted swelling can be used. This last method consists in depositing the lipid solution onto 

a polymeric gel substrate, such as polyvinyl alcohol (PVA), drying the film, which eventually leads to GUV 

formation upon rehydration (Horger, Estes et al. 2009; Weinberger, Tsai et al. 2013). 

 

4.2.3.1 ELECTROFORMATION WITH PLATINUM WIRES 

GUVs were prepared by the Electroformation method using platinum wires in high salt conditions 

(Mathivet, Cribier et al. 1996; Meleard, Bagatolli et al. 2009; Morales-Penningston, Wu et al. 2010) 

(Figure 4-2). Two platinum wires of 0.5mm diameter (99.9%+ pure, Goodfellow) are inserted into a 

Teflon chamber holes, crossing the chamber wells (Figure 4-2).  

Lipid droplets with the requisite lipid mixture at 3 mg.mL-1 are deposited on the platinum wires by using 

a Hamilton syringe. To remove residual solvent, the lipid film is further dried under vacuum for 20 min 

at room temperature. Sigillum wax (Vitrex, Denmark) is applied to the chamber sides to prevent leakage 
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from the platinum wires protruding from the holes. Vacuum grease is applied on the rim of the bottom 

side of the chamber, which is then closed with a 22 × 40 mm glass coverslip (Menzel-Gläser, Germany). 

To rehydrate the dried lipid drops, the wells are filled with the growth buffer and the chamber is sealed 

with a second coverslip. The wires are finally connected to a generator, building up a sine electric field 

at 350 mV and 500 Hz, for 8 hours at 4°C. GUVs are extracted by pipetting directly from GUV-rich regions 

from the wires. 

 

FIGURE 4-2: ELECTROFORMATION ON PLATINUM WIRES (MODIFIED FROM (AIMON, MANZI ET AL. 2011)) 

A Teflon chamber for GUVs preparation by electroformation on platinum wire (PLW). Insert: phase contrast image of GUVs on 
a PLW. Scale bar 20 µm. 

 
4.2.3.2 SPONTANEOUS SWELLING WITH PVA 

GUVs were also prepared by spontaneous swelling on polyvinyl alcohol (PVA)-based gels (Weinberg et 

al., 2013). The PVA gel (5% PVA, 50 mM Sucrose, 25 mM NaCl and 25 mM Tris, at pH 7.4) is deposited 

on plasma cleaned (PDC-32G, Harrick) glass coverslips (18 x 18 mm, VWR International, France). The 

excess gel was removed. The glass cover slides are then dried for 50 min at 60°C. A volume of 15 µL of 

lipid solution at 1mg.mL-1 is deposited on the PVA-coated slide by using a Hamilton syringe to get a lipid 

film as thin as possible. To remove residual solvent, the lipid film is further dried under vacuum for 20 

min at room temperature. The lipid film is then rehydrated with the growth buffer at room temperature. 

Vesicles form within approximately 45 min to 60 min and are extracted by pipetting directly from the 

slides on top of the PVA gel. 

For all the experiments performed using GUVs, the osmolarity of the vesicle growth buffer, of the 

protein binding buffer and of the observation buffers were measured with an osmometer (Löser 

Messtechnik-Osmometer, Berlin, Germany) and adjusted to avoid GUV inflation or deflation due to 

osmotic pressure variation between the inner and outer media. Indeed, it is crucial to work at isotonic 

conditions to avoid any osmotic shock on the pre-formed GUVs. 

 

http://www.loeser-osmometer.de/
http://www.loeser-osmometer.de/
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4.2.4 MAKING LUVS AND SUVS 

Lipid stock solutions are prepared at a concentration 3 mg.mL-1 in chloroform. The solvent is then 

evaporated by rotating the vial to evenly spread the lipids on the bottom and the walls of the glass vial 

under a gentle stream of nitrogen and at room temperature. To remove excess residual solvent, the 

lipid film is further dried under vacuum for 20 min at room temperature. Multilamellar vesicles (MLVs) 

are prepared by rehydrating the lipid film in the appropriate growth buffer solution to obtain a final 

concentration of 1 mg.mL-1. The solution is vortexed for 2 min. The vortexed solution has a turbid-like 

aspect. MLVs are then either extruded 11 times through a polycarbonate track-etched membrane with 

pore sizes of 100 nm for LUVs formation (Meleard, Bagatolli et al. 2009) or sonicated for 5 min until 

obtaining a clear colorless solution for SUVs formation.  SUVs produced by sonication have a radius 

ranging from 20 to 40 nm. The obtained vesicles are stored at −20°C in amber vials (Sigma-Aldrich, 

France).  

4.2.5 MAKING SLBS  

Supported lipid bilayers are biomimetic model membranes obtained by adsorption and fusion of SUVs 

(diameter in the range of 20 - 100 nm) or LUVs (diameter in the range 50-200 nm) onto a solid surface 

such as mica (for HS- AFM experiments), glass (for AFM nanoindentation experiments), or silicon wafers 

(for QCM-D experiments) (Figure 4-3). However, the drawback is that the surface-membrane interaction 

seriously perturbs lipid diffusion. In this model membrane type, the hydrophilic head groups of the first 

lipid monolayer are facing the support, the hydrophobic hydrocarbon chains of this monolayer are in 

contact with the chains of the second monolayers, and the hydrophilic head groups of the second 

monolayer is accessible. SLBs are more stable than GUVs and the overall lipid composition of SLBs can 

be controlled while it is not the case with vesicles. Because the membrane of supported lipid bilayers is 

bound to the solid support surface, their characterization could be easily done with different surface-

sensitive techniques such as AFM or QCM-D techniques. 

 

FIGURE 4-3: SUPPORTED LIPID BILAYER FORMATION 

Formation of a supported lipid bilayer. Intact vesicles are added in the bulk solution in contact with a wafer solid support (mica, 

glass or silicon dioxide) (A). The vesicle is first adsorbed as intact - unruptured vesicles (B) and then, when a critical surface 

coverage is reached, the lipid bilayer is formed spontaneously (C). 
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4.3 FLUORESCENCE MICROSCOPY 

The addition of fluorescently-labelled CHMP proteins to vesicles containing fluorescent lipids enables 

the observation, quantification and characterization of the protein-membrane binding properties by 

fluorescence microscopy.  

Measurements of fluorescence intensities allow a precise quantification of the protein affinity towards 

different lipid membranes. Furthermore, using fluorescent microscopy permits the direct observation 

of the protein supramolecular assembly and dynamics on the surface of the GUV. 

4.3.1.1 FLUORESCENCE MICROSCOPY PRINCIPLE 

Fluorescence microscopy is a type of microscopy where, instead of magnifying objects based on 

different absorptions of reflections of visible light, it excites fluorescent molecules and captures their 

emitted fluorescence. The basic setup is an epifluorescence or a wide field microscope. Here a filter is 

placed after a high intensity Illumination lamp that selectively let pass only a narrow range of 

wavelengths. The light is then directed toward a dichroic mirror that reflects beams of certain 

wavelengths, while letting others pass through. In this case, the mirror reflects the excitation light, which 

then irradiates the sample. Fluorescence molecules absorb excitation light and through the 

phenomenon of fluorescence, emit light of lower energy, hence higher wavelength. The emitted light 

passes through a dichroic mirror, which can filter out any non-absorbed excitation light (same as above), 

and then goes through the emission filter, which eliminates any other background light, not coming 

from fluorescent molecules. The caveat of this setup is that the entire visual field of the sample is 

illuminated creating a lot of noise in imaging. The fluorescence emitted by the specimen outside the 

focal plane of the objective interferes with the resolution of in focus features. As the sample increases 

in thickness, the ability to capture fine detail above out-of-focus signal becomes increasingly 

challenging.  

In confocal microscopy, spatial filtering eliminates the light outside the thickness of the focal plane (≈ 

100 nm) which effectively increases the resolution and the contrast. The basic configuration comprises 

a single point of light from a laser and a pinhole placed in front of the detector, in an optically conjugated 

plane. The use of a pinhole rejects out-of-focus light which improves the lateral and axial resolution: 

only light from the right focal plane passes through the pinhole. Light from the plane above or below 

the imaged plane focuses after or before the pinhole and fails to pass through the pinhole. Therefore, 

only light from one plane is in focus to pass through the pinhole or as the name suggest “confocal”. The 

depth of the image can be changed by modifying the focus, which allows to obtain a three-dimensional 

image of the sample. 
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4.3.1.2 EXPERIMENTAL CONDITIONS 

The confocal microscope is composed of an inverted microscope (Eclipse TE2000 from Nikon), two 

objectives (60x water immersion and 100x oil immersion), a C1 confocal head from Nikon, three lasers 

(λ=488 nm, λ=561 nm and λ = 633 nm) with the following filters ET 515/30m, ET 585/40m and ET 655LP , 

respectively, an AOM to set the laser power, a camera to observe the chamber in bright field is placed 

behind a bandpass filter (750-900 nm, RG9, schott glass) to avoid light pollution. The stage is also 

equipped with two pipet holders both linked to manometers to control the pressure. The software EZ-

C1 was used to make the acquisition of the confocal images and a MatLab routine to view the stage in 

real time and take movies via the camera.  

For the fluorescence microscopy experiments, we used Fluorodish Cell Culture Dishes – 35 mm, 23 mm 

Well (World Precision Instruments Inc, Germany) and custom-made chambers. Custom-made chambers 

were prepared using 60 x 20 mm and 40 x 22 mm glass coverslips (Menzel-Gläser, Germany). The 

bottom coverslip was divided into multiple sample chambers by making walls of plastic paraffin film 

(Parafilm, USA). The paraffin film was attached by heating it, making it act as glue between the bottom 

and top coverslips. Prior to each experiment, the chamber was passivated for 15min with a β-casein 

solution (Sucrose 25 mM, NaCl 50 mM and Tris 25 mM (pH 7.5) at 5 mg.mL-1) to prevent the adhesion 

of the GUVs on the glass surface. Following the passivation step, the chambers were rinsed twice with 

the experiment buffer before addition of the vesicles co-incubated with CHMP proteins.  

4.3.2 SPINNING DISK CONFOCAL MICROSCOPY 

4.3.2.1 SPINNING DISK CONFOCAL MICROSCOPY PRINCIPLE 

In basic confocal microscopy, the laser beam is scanned point by point in a raster pattern and signal is 

detected sequentially from each point by a photomultiplier tube until an entire image is created with a 

trade-off between image resolution and speed. A time skew between the first and last points in the scan 

is measured as each point will be illuminated at different times. For example, if the array consists of a 

512 x 512 pixel array and each point is illuminated for 1 µs, then each scan will take about 262 ms. To 

compensate for the brief Illumination of each pixel, an intense laser beam is required, and if the 

specimen is dynamic the time skew can lead to errors in observation. 

Spinning disk confocal laser microscopy overcomes this problem by exploiting the multiplex principle. 

Here, an expanded beam illuminates an array of micro lenses arranged on a disk. Each microlens has an 

associated pinhole laterally co-aligned on a second (pinhole) disk and axially positioned at the focal 

plane of the microlenses. The disks are fixed to a common shaft that is driven at high speed by an electric 

motor. When the disks spin, and the scanner is coupled to a microscope with the pinhole disk located 
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in its primary image plane, an array of focused laser beams scan across the specimen. The pinholes (and 

microlenses) are arranged in a pattern, which scans a field of view defined by the array aperture size 

and the microscope objective magnification. The scanning laser beams excite fluorescent labels in the 

sample. Fluorescence emission will be most intense where this array is focused. Some fraction of this 

light will return along the excitation path where it will be preferentially selected by the same confocal 

pinholes. A dichroic mirror, which reflects emission wavelengths, is located between the two disks. This 

separates the laser emission from any excitation light reflected or scattered from the microscope optics. 

And, the geometry of the emission path results in a confocal fluorescence signal with extremely low 

background noise. 

4.3.2.2 EXPERIMENTAL CONDITIONS 

To image protein binding to the surface of GUVs and obtain a 3D acquisition of this assembly, we used 

an Inverted Spinning Disk Confocal Roper/Nikon equipped with Camera: EMCCD 512x512 Andor 

Technology (pixel size:16 µm), objective (100x CFI Plan Apo VCoil NA 1,4  WD 0,13) and 3 lasers (491, 

561, 633, 100mW) with the following filters ET 525/50m Emission Filter 25mm, 

ET 595/50m Emission Filter 25mm and ET 655LP Emission Filter 25mm, respectively. Spinning disk 

experiments were performed at The BioImaging Cell and Tissue Core Facility of the Institute Curie (PICT-

IBiSA), member of the France-BioImaging national research infrastructure.  

All data for quantification based on fluorescence intensity were taken every time on the same 

microscope with the same camera, using the same settings. The only parameter that was changed 

between samples was the exposure time. This was necessary to allow imaging of both faint samples and 

bright samples with the same laser power without saturating the detector. The difference in exposure 

time was normalized later. Images were taken for each vesicle, independently of its size or amount of 

bound protein. Only vesicles showing non-spherical shapes, aggregation or being multilamellar were 

discarded. A time-lapse at the equator of the vesicle was acquired in addition to the above-mentioned 

imaging procedure for each CHMP-GUV binding assay. Likewise, Z-stacks were acquired on vesicles to 

determine the morphology/structure of the protein assembly on the surface of the GUVs in three 

dimensions. 

Fluorodish Cell Culture Dishes – 35 mm, 23 mm well (World Precision Instruments Inc, Germany) were 

used for the protein-GUV binding assay observation. Before use, the dishes were passivated for 15 min 

with a β-casein solution (Sucrose 25 mM, NaCl 50 mM and Tris 25 mM (pH 7.5) at 5 mg.mL-1) to prevent 

the adhesion of the GUVs and CHMP proteins on the positively charged glass surface. Following the 

passivation step, the chambers were rinsed twice with the experiment buffer before addition of the 

vesicles co-incubated with CHMP proteins. The collected GUVs from the electroformation on platinum 
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wires growth were incubated 15 min with CHMP proteins at variable concentrations ranging from 50 

nM to 2 µM in the observation buffer in isotonic conditions. 

 

4.3.3 FLUORESCENCE RECOVERY AFTER PHOTOBLEACHING ASSAY (FRAP) 

FRAP experiments were performed in collaboration with Dr. Nicola De Franceschi (Post-Doc in the 

team).  

4.3.3.1 FRAP PRINCIPLE 

Fluorescence recovery after photobleaching (FRAP) is a quantitative fluorescence technique that can be 

used to measure the dynamics or lateral diffusion of a molecularly thin film containing fluorescently 

labelled probes in 2D by taking advantage of the fact that most fluorophores are irreversibly bleached 

by incident light of very high intensity.  

In practice, FRAP requires that a series of fluorescence intensity images are first collected to give a value 

for intensity in both the region of interest and the surrounding sample (i.e. background image of the 

sample before photobleaching). Following this, a defined region of the sample, namely the region of 

interest (ROI), is illuminated with high intensity light causing the fluorophore within that region to 

become photobleached. Photobleaching is defined as the permanent destruction of fluorescence by a 

light-induced conversion of the fluorophore to a chemically non-fluorescent compound. This creates a 

darker, bleached region, within the sample (Figure 4-4). Photobleached molecules are subsequently 

replaced by non-bleached molecules over time due to diffusion in GUVs resulting in an increase in 

fluorescence intensity in the bleached region (Figure 4-4). Recovery of fluorescence into the bleached 

area occurs because of the diffusional exchange between bleached and unbleached molecules.  

The fraction of fluorescent molecules that can participate in this exchange is referred to as the mobile 

fraction. The fraction of molecules that cannot exchange between bleached and non-bleached regions 

is called the immobile fraction. And, if the fluorescent molecules are bound to static membrane 

components, the rate of recovery is thus retarded by a factor related to the association and 

disassociation coefficients of binding.  
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FIGURE 4-4: SCHEMATIC ILLUSTRATION OF FRAP EXPERIMENT ON A SELECTED ROI OF A GUV SECTION 

 

The fraction of proteins that diffuse and contribute to the recovery are called mobile fraction and those 

who do not are called immobile fraction and corresponds to A and B (with B = 1 - A), respectively (Figure 

4-5). The characteristic time of diffusion τ1/2 is measured to characterize and compare the diffusion and 

thus the mobility of CHMP2A proteins. τ1/2 indicates the time at which half of the fluorescence has 

recovered and is therefore commonly called the half-time (Salmon, Leslie et al. 1984; Lajoie, Partridge 

et al. 2007) (Figure 4-5). It is readily extracted from the fit of the normalized FRAP curve I(t) with the 

exponential equation: 

 
𝐼 = 𝐴(1 − 𝑒−𝜏𝑡) (4-1) 

Where  

 
𝜏1/2 =

ln(0.5)

−𝜏
 (4-2) 

The mobile protein fraction can be quantified by measuring the ratio between the fluorescence intensity 

that eventually moved out of the ROI and the total photobleached sub-population by the following 

equation (Reits and Neefjes 2001):  

 
𝐴 =

𝐹∞ − 𝐹0

𝐹𝐼 − 𝐹0
 (4-3) 

Where 𝐹∞  is the fluorescence measured after recovery plateau is reached, F0 is the fluorescence 

intensity measured just after photobleaching and Fi is the initial measured fluorescent intensity prior to 

photo-bleaching. 
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FIGURE 4-5: TYPICAL FRAP RECOVERY CURVE 

 

Moreover, the protein diffusion coefficient D, which provides a quantitative measure of diffusion, can 

be determined using the Soumpasis equation (Axelrod, Koppel et al. 1976; Soumpasis 1983): 

 
𝐷 = 0.224 

𝑟n

τ
 (4-4) 

Where rn is the radius of the uniformly bleached area and the coefficient 0.224 was numerically 

determined (Soumpasis 1983).  

 

However, this model assumes that diffusion during photobleaching is negligible which is not the case 

for confocal FRAP as significant diffusion during the photobleaching may occur in confocal FRAP due to 

the long scanning time of the confocal scanning microscope.  rn thus may not provide an accurate 

description of the initial conditions required for this equation to be valid.  Thus leading to an 

underestimation of D especially for fast-diffusing soluble proteins (Braga, Desterro et al. 2004; Weiss 

2004; Pucadyil and Chattopadhyay 2006; Kang, Day et al. 2009). This problem can be solved by using 

the post-bleach fluorescence intensity profile to correct for any diffusion that occurs during the photo-

bleaching by incorporating an empirically determined measure, the effective bleach radius re from the 

post-bleach profile (Kang, Day et al. 2009; Kang, Day et al. 2012): 

 

 
𝐷 =

(𝑟n
2 + 𝑟e

2)

8𝜏
 (4-5) 

With re the efficient radius of a post-bleached profile, in contrast to the nominal radius rn, from a used-

defined bleaching spot radius. 
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4.3.3.2 EXPERIMENTAL CONDITIONS 

We performed FRAP experiments to check the dynamics of the CHMP proteins supramolecular assembly 

on the surface of GUVs. We also measured the dynamics of other membrane-associated proteins, i.e. 

streptavidin, in the presence of CHMP proteins on the GUV surface.  

For the FRAP experiments we used an inverted Spinning Disk Confocal Roper/Nikon microscope with a 

FRAP/Photo Activation module with 60x oil objective (NA=1.4, WD =0.13, pixel size =0.222 µm) and 3 

lasers (491, 532, and 561) with the following filters ET 525/50m Emission Filter 25mm, 

ET 595/50m Emission Filter 25mm and ET 655LP Emission Filter 25mm, respectively. Images were 

recorded with an EM-CCD Evolve camera. FRAP experiments were performed at The BioImaging Cell 

and Tissue Core Facility of the Institute Curie (PICT-IBiSA), member of the France-BioImaging national 

research infrastructure. 

For all series of FRAP experiments we bleached the region of interest several times at nominal 100 % 

laser transmission in the targeted protein laser line. To track protein recovery, multiple images were 

then captured every 15, 30 or 45 seconds following photobleaching for several minutes. 

Fluorodish Cell Culture dishes were used for the protein diffusion assay. Prior to the passivation step, 

dishes were first coated with 10-1 mg.mL-1 streptavidin for 30 min to fix our GUVs containing biotinylated 

lipids to the dish surface. This step helps avoiding vesicle rotation during the photobleaching and image 

acquisition steps. Then, the dishes were passivated with a β-casein solution (Sucrose 25 mM, NaCl 50 

mM and Tris 25 mM (pH 7.5) at 5 mg.mL-1) to prevent further adhesion of the GUVs. 

To measure the lateral diffusion of CHMPs proteins alone on the surface of GUVs, the collected vesicles 

from the PLW electroformation growth were incubated with CHMP proteins at concentrations ranging 

from 500 nM to 2 µM in the protein binding buffer for 30 min to reach protein-membrane saturation. 

Next, the solution containing the CHMP-covered GUVs was diluted in the observation buffer and added 

to the observation chamber. The dilution step is essential to avoid signal recovery on the GUV surface 

from free soluble CHMP proteins in the bulk. 

To measure the diffusion of streptavidin on vesicles fully covered with CHMP proteins, GUVs were first 

incubated for 30 min with 500 nM CHMP2B-ΔC or with 500 nM CHMP2A-ΔC + 1 µM CHMP3FL, for 30 

min.  Then, the CHMP-covered GUVs were transferred to a solution containing 500nM streptavidin 

conjugated to TR-Ceramide for 30 min. We also measured the diffusion of streptavidin on vesicles 

covered with a non-complete assembly of CHMP2B-ΔC proteins, vesicles were incubated with 500 nM 

CHMP2B-ΔC for 15 min then with 500 nM streptavidin conjugated to TR-Ceramide for 30 min. The 
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control experiment here consisted on measuring the diffusion membrane-bound streptavidin in the 

absence of CHMPs proteins. 

To follow the protein recovery on the bleached region of GUV surface, confocal images were taken 

before bleaching, after bleaching and during recovery. To determine the protein fraction of recovery on 

the bleached area of the GUV we measured using Image J software, the IntDen value (product of vesicle 

area and the protein mean fluorescence intensity) in the defined ROI for all the acquired confocal 

images. The background was subtracted. And, due to vesicle photobleaching during image acquisition, 

we normalized the bleached region of interest by the mean fluorescence intensity measured within a 

non-bleached region of the vesicle taken from the last image frame. Eventually, the fraction of recovery 

over time is plotted. 

 

4.3.4 FLUORESCENCE-ACTIVATED CELL SORTING (FACS) 

FACS experiments were performed in collaboration with Dr. Nicola De Franceschi (Post-Doc in the 

team).  

4.3.4.1 FACS PRINCIPLE 

The principle of flow cytometry is based on the passage of single cells or particles placed in a microfluidic 

chamber in front of a laser where both fluorescence and light scattering are measured so they can be 

detected, counted and sorted. It is generally used to study cells and kinetics of absorption of proteins 

or functionalized nanoparticles. But it can also be used for GUVs (Lamblet, Delord et al. 2008; Jalmar, 

García-Sáez et al. 2010). 

A laser beam is directed at a hydrodynamically-focused stream of fluid that carries here the GUVs. 

Several detectors are carefully placed around the stream, at the point where the fluid passes through 

the light beam. One of these detectors is aligned with the beam to measure Forward Scattered light 

signals (FSC) and another detector is placed perpendicular to the stream and is used to the side measure 

Side Scattered light signals (SSC). Since fluorescent labels are used to detect the different objects, 

fluorescence detectors are also in place. The suspended objects, which in theory range from 0.2 µm to 

150 μm diameter, pass through the beam and scatter the light. As the fluorescently labelled cell passes 

through the interrogation point and interacts with the laser beam, it creates a pulse of photon emission 

over time (a peak). These are detected by the photo-multiplying tubes (PMT) and converted by the 

electronics system to a voltage pulse, typically called an "event". The total pulse height and area is 

measured by the flow cytometer instrument, and the voltage pulse area will correlate directly to the 

fluorescence intensity for that individual event. These events are assigned channel numbers based on 
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its measured intensity (pulse area). The higher the fluorescence intensity, the higher the channel 

number the event is assigned. This signal can be amplified by increasing the voltage running through 

the PMT.  In a flow cytometry experiment, every cell or particle (here GUV) that passes through the 

interrogation point and is detected will be counted as a distinct event. If many events are detected at 

the same intensity, they will be represented as a peak on the histogram. And the plot will represent the 

number of events in function of the relative fluorescence intensity (Figure 4-6).  

FACS technique is based on the count of events, here our vesicles ± CHMP2B proteins, by fluorescence 

light refraction or emission. Fluorescent light is emitted simultaneously by fluorescent CHM2B and lipids 

dyes after excitation by the appropriate wavelength laser.  In flow cytometry every detected particle in 

the solution (i.e. vesicles ± CHMP2B proteins) is classified as a distinct event. Every event is plotted 

independently in function of the fluorescence channel in which it was detected. Thus the fluorescence 

intensity of the membrane and the fluorescence intensity of the proteins are respectively proportional 

to the amount of fluorophores in the vesicle (thus, to its size) and proteins bound to it or present in the 

detection zone and unbound. The protein fluorescence appears in the left upper quadrant of the plot 

or protein positive region and the lipid (vesicle) fluorescence signal in the right lower quadrant or lipid 

positive region.  

To quantify the amount of protein bound to the vesicles, one must look at the colocalization of both the 

protein and the lipids fluorescence signals called the double-positive region (protein positive region + 

lipid positive region) (Figure 4-6). A gate is placed around this region and a histogram of the protein 

fluorescence over the number of events of this region is plotted (Figure 4-6). The mean value of the 

fluorescence plot for each studied condition is subtracted from the histogram plot. 

 

FIGURE 4-6: DESCRIPTION OF THE FACS EXPERIMENT 

The double-positive where protein and lipid fluorescence colocalized is gated. Then a histogram of the protein fluorescence 

for the number of events counted in the gated region is plotted. And, the mean fluorescence value is deduced from the 

histogram plot. 
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4.3.4.2 EXPERIMENTAL CONDITIONS 

We used flow cytometry to precisely measure the binding of CHMP proteins on the surface of GUVs 

with different lipid composition. With the FACs technique, a very large number of GUVs can be analyzed 

in a very short time, as compared to image analysis with confocal or spinning-disk microscopes. Indeed, 

we measured the protein-lipid interaction for 10 000 events (GUVs) per condition or lipid mixture in a 

very short period of time. 

GUVs obtained with the PVA-swelling method were incubated 30 min with CHMP proteins at different 

concentrations, ranging from 0 nM to 4 µM, in the protein binding buffer. Then GUVs with bound CHMP 

proteins were diluted in the observation buffer to remove free soluble proteins from the bulk. Gating 

and sorting of protein and lipid fluorescence intensity were measured using a BD LSRFORTESSA flow 

cytometry instrument (lasers 488, 532, 633) available on the Curie platform. Data analysis was done 

using FlowJo software to gate the protein-bound vesicles region. To compare the protein affinity 

towards the different PIP species, the mean fluorescence intensity value of the protein for each 

condition is deduced from the histogram plot of the gated region. 

4.4 CRYO-ELECTRON MICROSCOPY 

The planning for the Cryo-EM experiments was cooperatively performed with Dr. Aurélie Bertin, in our 

lab. 

4.4.1 CRYO-EM PRINCIPLE 

Cryo-electron microscopy (Cryo-EM) is a method of transmission electron microscopy (TEM) where the 

sample is studied at cryogenic temperatures (generally liquid-nitrogen temperatures).  

2D imaging was performed at about 10 electrons per Å2. To carry out cryo-tomography experiments, 

gold beads (10 nm size) were added to the sample solution before being plunge-frozen. Tilted series 

were collected in low dose mode from -60 to +60 degrees, every two degrees, using a Tecnai G2 (FEI, 

Eindhoven, Netherlands) microscope operated at 200 kV and equipped with a 4kX4k CMOS camera 

(F416, TVIPS). The dose per image was 0.8 electrons per Å2.  

The imaging was performed at a magnification of 50,000 and each image was binned twice for a final 

pixel size of 4.26 Å. The consecutive images were aligned using the IMOD software. Back projection and 

thus 3-D reconstruction was performed using IMOD and SIRT reconstruction was carried out using 

Tomo3d. Segmentation was performed manually using IMOD. 

https://en.wikipedia.org/wiki/Transmission_electron_microscopy
https://en.wikipedia.org/wiki/Cryogenic
https://en.wikipedia.org/wiki/Liquid-nitrogen
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4.4.2 EXPERIMENTAL CONDITIONS 

For Cryo-EM experiments, 500 nM CHMPs were added to pre-formed LUVs (see chapter 0) in BP buffer 

(50 mM NaCl, 25 mM Tris at pH=7.5).  Then, 5 µL of the sample was applied on the carbon side of a 

lacey grid (Ted Pella), previously glow discharged for 30 seconds. The sample was then blotted on the 

reverse side and plunge-frozen in liquid ethane using an EMGP automated apparatus (Leica).  Grids were 

stored at liquid nitrogen temperature until they were loaded in a 200 kV G2 Tecnai (FEI, Eindhoven) 

microscope equipped with a LaB6 filament and operated at 200 kV. Images were acquired with the 

software suite EMTools under low dose conditions at a magnification of 50k using a 4K X 4K CMOS 

camera (F416, TVIPS) at a pixel size of 2.13 A/pixel. 

4.5 MICROPIPETTE ASPIRATION ASSAY 

Micropipette aspiration technique was used to study the membrane mechanical properties in the 

absence and in the presence of CHMPs assemblies bound to the surface of the GUV. 

4.5.1 MICROPIPETTE ASPIRATION PRINCIPLE 

This technique was first introduced in 1979 by Waugh and Evans to study the elastic properties of red 

blood cells (Waugh and Evans 1979; Kwok and Evans 1981; Mohandas and Evans 1994; Hochmuth 2000) 

before being applied on Giant Unilamellar Vesicles (GUVs). It consists in measuring the evolution of the 

membrane excess area of the GUV as a function of a controlled aspiration, by measuring the length of 

the aspirated tongue in a micropipette. Using principles on membrane elasticity, in particular the 

relation between excess area and membrane tension, the membrane elastic moduli can be extracted 

(Evans and Rawicz 1990). The setup is the following: a micropipette is connected to a water circuit, 

ending in a reservoir with adjustable height. The pipette is attached to a three-axis mechanical 

micromanipulator, to allow its displacement in all three directions within the experimental chamber 

(Figure 4-7). By moving down the reservoir connected to the micropipette, the hydrostatic pressure 

inside the pipette decreases leading to the increase of the aspiration and consequently the applied 

tension on the GUV can be controlled. The membrane tension is proportional to the difference of 

pressure ΔP between the interior of the micropipette and that of the chamber and can be derived by 

applying the Young-Laplace equation at both interfaces between the inside and the outside of the GUV: 

 
𝜎 =

𝛥𝑃 × 𝑅𝑝

2 (1 − (
𝑅𝑝

𝑅𝑣
))

 
(4-6) 

Where Rp and Rv are the radius of the pipette and vesicle respectively (Figure 4-8), and the aspiration 

pressure ∆P is given by: 
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𝛥𝑃 = 𝜌𝑔ℎ (4-7) 

Where ρ is the density of water at room temperature, g is the standard gravitational acceleration, and 

h is the height of the reservoir relative to that of the experiment chamber (Kwok and Evans 1981).  

 

FIGURE 4-7: MICROPIPETTE ASPIRATION SETUP (ADAPTED FROM P. GIRARD PHD THESIS) 

 

At very low aspiration, the vesicle is just held by the micropipette and when the tension increases, a 

portion of the GUV, called « membrane tongue », is aspirated inside the micropipette (Figure 4-8). The 

measurement of the longue length aspirated into the pipette allows the direct measurement of the 

membrane excess area of the membrane (Figure 4-9).  

The excess area is given by: 

 
𝛼 =

𝐴 − 𝐴𝑝

𝐴
 (4-8) 

The excess area represents the difference between the microscopic area of the membrane A and the 

observed apparent area Ap. In general, the difference between an aspiration corresponding to α and a 

reference state α0 , where a very low aspiration is  applied,  is considered: 

 
∆𝛼 =  𝛼0 − 𝛼 (4-9) 

 

FIGURE 4-8: SCHEMA OF A VESICLE ASPIRATED INTO A MICROPIPETTE 
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For membrane mechanics analysis, the following criteria are strictly required: 

 Constant volume of the vesicle 

 Constant number of lipid molecules in the vesicle  

 Free membrane sliding in the pipette, i.e. no membrane adhesion into the pipette 

 The cylindrical part of the membrane aspirated in the pipette is ended by a spherical part with 

a radius Rp (which means that the length of the tongue 𝛥𝐿 ≥ 𝑅𝑝 )  

 Small imposed deformation (ΔA/A < 10%) (Drury and Dembo 1999). 

From geometrical arguments, the difference of surface of the vesicle between the aspiration state and 

the reference state ∆α can be related to the variation of the tongue  length ΔL = L − L0  (Kwok and Evans 

1981):   

 
∆𝛼 = (

((𝑅𝑝 − 𝑅𝑣)2) − ((𝑅𝑝𝑖𝑝 − 𝑅𝑣)3)

2𝑅𝑝
) × 𝛥𝐿 (4-10) 

 

FIGURE 4-9: PRINCIPLE OF MICROPIPETTE ASPIRATION OF A GUV 

 

Membrane mechanical properties are obtained by converting measurements of aspirated tongue length 

versus pipette aspiration pressure to apparent area excess area Δα versus tension. Micropipette 

pressurization of giant vesicles is used to measure both the bending rigidity modulus κ (detailed in 

chapter 2.2.1.3) and the area stretching modulus χ (detailed in chapter 2.2.1.1) of fluid-phase 

membranes (Kwok and Evans 1981; Evans and Needham 1987; Evans and Rawicz 1990; Rawicz, Olbrich 

et al. 2000) (Figure 4-10). The bending rigidity modulus κ is derived from measurements of Δα at low 

tension (0.001– 0.5 mN.m-1), which is dominated by smoothing of thermal undulations (entropic regime, 

as described in chapter 2.3). The stretching modulus χ is obtained from measurements of vesicle surface 

expansion at high tension (0.5 mN.m-1 and above), which involves an increase in area per molecule and 

a small, yet important contribution from smoothing of residual thermal undulations (enthalpic regime, 

as described in chapter 2.3). Both the bending modulus κ and the stretching modulus χ can be derived 

from the Canham-Helfrich Hamiltonian as following: 
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𝛥𝛼 = (

𝑘B𝑇

8𝜋𝜅
) ln (1 + 𝑐𝜎

𝐴

𝜅
) + 𝜎𝜒 (4-11) 

Where Δα the variation of the apparent area, A the vesicle area, c a constant related to face undulations 

(~0.1), kBT the thermal energy (~4x10-21 J) and σ the micropipette applied tension on the membrane. 

In the entropic regime (in the low tension regime), the apparent excess area Δα is dominated by 

smoothing of thermal undulations, and the bending rigidity modulus κ is revealed by the logarithmic 

dependence of the apparent area on tension (Figure 4-10 / A): 

 
ln (

𝜎

𝜎0
) ~ (

8𝜋𝜅

𝑘B𝑇
) 𝛥𝛼 (4-12) 

κ is obtained from the plot of the logarithmic value of the tension as a function of the apparent area. It 

is given by the slope of the curve multiplied by (𝑘B𝑇/8𝜋). Monounsaturated lipid chains have typically 

a bending modulus equal to κ ≈ 21 kBT for diC18:1 (Δ9-Cis) (DOPC) (Rawicz, Olbrich et al. 2000). This 

value increases with the chain length: κ ≈ 30 kBT for diC22:1 and diminishes for long chains with 2 or 

more cis-double bonds along the chain(s): κ ≈ 11 kBT for diC20:4 (Rawicz, Olbrich et al. 2000). 

On the other hand, in the enthalpic regime (at high tension), an increase in the apparent area Δα is 

governed by the elastic area stretching modulus χ, which increases linearly with the tension following 

the equation (Figure 4-10 / B): 

 
𝜎 ~ 𝜒 𝛥𝛼 (4-13) 

Where typical value of χ ≈ 265 mN.m-1 for diC18:1 and about 250 mN.m-1 for diC20:4 (Rawicz, Olbrich 

et al. 2000). 
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FIGURE 4-10: VARIATION OF THE APPARENT AREA EXPANSION WITH TENSION, AS MEASURED WITH 

MICROPIPETTE ASPIRATION (RAWICZ, OLBRICH ET AL. 2000). 

Examples of the variation of the apparent area expansion versus tension from 10-6 to 8 mN/m for two vesicles made from 
C18:0/1 and diC18:3 PC, showing the two stretching regimes  
(A) Apparent area expansion measured in the entropic regime for low tensions. Semilog plot of tension versus apparent area 
expansion. Slopes of the linear fits (dashed lines) applied to the range of very low tensions yield elastic bending moduli κ (x 
8π/kBT) for each bilayer (κ ≈ 0.9 x 10-19 J for C18:0/1 and κ ≈ 0.4 x 10-19 J for diC18:3).  
(B) Apparent area expansion measured in the enthalpic regime for high tensions. Linear plot of tension versus apparent area 
expansion. The initial soft-exponential rise of tension with area expansion reveals smoothing of thermal shape fluctuations, 
which is followed by the onset of the linear increase in tension as the bilayer begins to stretch.  
The solid curves in A and B are the fit of the elastic compressibility relation over the entire four-order-of-magnitude range of 
tension, using the values of bending elasticity and a common value of the direct expansion modulus (χ ≈ 230 mN/m) for both 
lipid vesicles. 

 

In the entalpic regime, residual thermal undulations introduce a small (but important) area dilation 

which can contribute to the membrane area expansion. Thus, when the value of the bending modulus 

is known, a correction should be used at high tension (Rawicz, Olbrich et al. 2000): 

 
∆𝛼′ =  ∆𝛼 + 𝛼′ (4-14) 

Where the area dilation due to residual thermal undulations 𝛼′ =  −
𝑘𝑇

8𝜋𝜅
ln

𝜎

𝜎0
. 

The stretching modulus is thus deduced from the slope of the corrected apparent area ∆α’ versus the 

tension. 

4.5.2 EXPERIMENTAL CONDITIONS 

Experimental chambers are made using 9 x 35 mm glass coverslips (VWR International, France) to form 

the upper side and a 10 x 30 mm glass coverslips (VWR International, France) to form the bottom side. 

The chamber is passivated with a β-casein solution (Sucrose 25 mM, NaCl 50 mM and Tris 25 mM (pH 
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7.5) at 5 mg.mL-1) for 15 min to prevent GUVs and CHMP proteins from adhering to the glass surface. 

Then a micropipette, also passivated with β-casein solution, is introduced into the chamber. This way, 

the experimental chamber and the inner and outer surfaces of the micropipette are passivated prior to 

GUVs addition.  

 

Micropipettes are made of borosilicate capillaries of 1 mm outer diameter and 0.58 mm inner diameter 

(Harvard Apparatus, UK). They are produced using a micropipette puller (P-2000, Sutter Instrument, 

USA), which pulls on both ends of the capillary while heating it in the middle with a laser beam. This 

creates a thin elongated tip that is closed at its end by the merged glass walls. Subsequently, the pipette 

is forged (MF-830 microforge, Narishige, Japan) by generating a smooth opening and its size can be 

precisely defined. We worked with micropipettes with diameters ranging from 4 µm to 10 µm. 

 

Following the passivation step with the β-casein solution, the chamber is rinsed several times with the 

observation buffer. Then, GUVs pre-incubated with CHMP proteins are added to the chamber. The 

chamber is sealed with mineral oil, 20 min after vesicles addition so that the osmolarity of the external 

buffer increases due to evaporation and vesicles become floppy. Once the chamber is sealed, the zero 

pressure is measured and the aspiration assay can begin by decreasing the water height gradually, thus 

increasing the applied tension on the vesicle.  

 

One confocal plane image was taken for each set tension. The explored tensions for the aspiration 

experiments with the different CHMP proteins range from 0.5 to 1 mN.m-1 (corresponding to the 

membrane enthalpic regime). And, few measurements were performed  below 0.5 mN.m-1.  

 

The micropipette aspiration assay normally prescribes to pre-stretch the GUVs at very high tension 

before the measurements to get rid of any hidden excess area in the GUV residual from the GUV 

preparation. Note that such a pre-stretching was not performed in our experiments. Since we could not 

inject the proteins on our GUVs, which were pre-incubated with the CHMPs prior the micropipette 

experiments instead, no pre-stretching could be performed in those experiments. Accordingly it was 

neither done on bare membranes as we had to perform the micropipette aspiration experiments in the 

exact same conditions to precisely compare the effect of the presence of the proteins on membrane 

elasticity.  
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4.6 QUARTZ CRYSTAL MICROBALANCE WITH DISSIPATION MONITORING 

I performed these experiments in Chalmers University (Gothenburg, Sweden) in collaboration with  Dr. 

Marta Bally, in the laboratory of Prof. Dr. Frederik Hook. 

4.6.1 QCM-D PRINCIPLE 

QCM-D is based on an oscillating quartz crystal resonator which is excited with an electric field applied 

over the electrodes. The surface of the disk-shaped sensor performs a shear oscillation, i.e. with periodic 

motion back and forth parallel to the sensor surface. Two parameters, frequency of oscillation of the 

sensor and dissipation (or damping of the oscillator) are monitored simultaneously (Höök, Rodahl et al. 

1998). The frequency of oscillation of the sensor is reduced when mass is attached to the surface. The 

relation between the frequency shift ∆f and the mass of material adsorbed on the sensor, m, is given 

by the Sauerbrey equation (Sauerbrey 1959):  

 
𝛥𝑚 =  −𝐶

𝛥𝑓

𝑛
 (4-15) 

Where C is the mass sensitive constant, equal to 17,7 ng/cm2/Hz1 at f = 5 MHz (fundamental frequency) 

and n=1,3,5,7 is the sensor overtone. the This relationship is only valid for acoustically rigid films with 

low dissipation (Cho, Frank et al. 2010).  

The energy dissipation of the oscillator, ∆D, is defined as the fraction of the total energy stored in the 

oscillator that is dissipated during one oscillation cycle. It indicates a change in the viscoelastic and 

structural properties of the mass coupled to the oscillator. The energy dissipation of the oscillator, ∆D, 

is defined by the equation:  

 
𝛥𝐷 =

1

𝑄
=

1

2𝜋
×

𝐸dissipated

𝐸stored
 (4-16) 

Where Q is the quality factor, Estored and Edissipated are respectively the energy stored and lost during one 

period of oscillation. High ∆D value correspond to a soft film whereas low ∆D value to a stiff film. 

4.6.2 TYPICAL EXPERIMENT 

Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the binding of 

CHMP proteins to different lipid bilayer compositions. This instrument is a real-time, in-situ, label-free 

technique for measuring surface phenomena such as adsorption, desorption and structural properties 

of a material deposit on the substrate. 

QCM-D measurements were performed using a Q-Sense E4 system (Q sense; Gothenburg, Sweden) with 

four temperature controlled flow modules. The mass sensor is a silicon dioxide-coated quartz crystal 
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microbalance SiO2 (QSX-303 Lot Quantum Design France) with a fundamental frequency of 4.95 MHz. 

The liquid flow was controlled using a high precision multichannel dispenser (IPC; ISMATEC – Germany). 

Prior to all experiments, the sensors were cleaned with a solution of SDS 2% and stored in the same 

solution. They were subsequently rinsed with Milli-Q water, dried under nitrogen flow and placed in an 

UV Ozone Cleaner for 45 minutes (ProCleaner™ Plus; BIOFORCE Nanosciences USA). Immediately after 

UV Ozone cleaning, the sensors were inserted in the QCM-D system. After mounting, the sensors were 

further cleaned with a solution of 2 % SDS for 10 min at a flow rate of 25 µL.min-1 and then with Milli-Q 

water for 10 min at 50 µL.min-1.All experiments were performed at constant temperature equal to 295 

K with a flow rate of 50 µL.min-1.  

A typical QCM-D experiment is presented in Figure 4-11. After baseline stabilization with 150 mM NaCl, 

10 mM Tris buffer at pH 7.5, the LUVs are injected, in their preparation buffer, leading to a rapid and 

irreversible adsorption on the substrate. They are first adsorbed as intact - unruptured vesicles (Figure 

4-11 / B1) and then, when a critical surface coverage is reached, the lipid bilayer is formed 

spontaneously leading to a frequency shift 1 (Figure 4-11 / B2).  

 

To form a supported lipid bilayer (SLB) with LUVs the electrostatic repulsion between lipid vesicles and 

the substrate must be minimized either by screening or reducing the negative charges with salt addition 

and divalent ions to favor fusion of negatively charged membranes (Leckband, Helm et al. 1993; Hed 

and Safran 2004). The formation of SLB made from lipid mixtures 1 and 2 (respectively 70% DOPC, 30% 

DOPS and 60% DOPC, 40% DOPS) was performed in a buffer containing Ca2+ (150 mM NaCl, 10 mM Tris 

(at pH 7.5) + 2 mM Ca2+), which is also known to promote interaction between negatively charged lipids 

and the substrate (Rossetti, Bally et al. 2005). After SLB formation, the bilayer is rinsed with the same 

buffer but containing EDTA ((150 mM NaCl, 10 mM Tris (at pH 7.5) + 10 mM EDTA) to remove Ca2+ 

excess. In the case of SLBs containing phosphoinositide lipids, it has been shown that Ca2+ induced the 

formation of PIP clusters in membranes either in giant unilamellar vesicles (Carvalho, Ramos et al.) or in 

SLB (Wang, Collins et al. 2012). For these reasons, the formation of SLB for lipid mixtures 3 and 4 

(respectively 80% DOPC, 10% DOPS, 10% PI(4,5)P2 and 80% DOPC, 10% DOPS, 10% PI(4,5)P3) was 

achieved in 150 mM KCl, 20 mM citrate at a low pH (pH=4.8), which decreases the net negative charge 

of the lipids and thus allows for a reproducible rupture and spreading of the LUVs on the substrate 

(Braunger, Kramer et al. 2013).  

 

After the formation of the lipid bilayer, the sensors are washed again with 150 mM NaCl, 10 mM Tris 

buffer at pH 7.5 to remove all free vesicles. The sensors are then re-equilibrated with 50 mM NaCl, 10 

mM Tris at pH 7.5 (protein binding buffer (BP). Next, CHMP proteins are t injected under a continuous 
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flow in BP at a concentration of 200 nM. The interaction between the proteins and the lipid bilayer is 

directly measured from the frequency shift. Continuous perfusion of the proteins is achieved until this 

frequency shift reaches a constant value, indicating that the SLB is saturated with proteins (Figure 4-11). 

When protein saturation on the bilayer is reached, the sensors are washed with the BP buffer during 15 

– 30 min to remove the additional unbound proteins. The frequency 2 and dissipation Dsat shifts due 

to the interaction between the different CHMP proteins and the SLB are subsequently quantified. 

 

After quantifying the protein affinity to the different SLBs, we studied their detachment by injecting a 

high ionic strength buffer (500 mM NaCl, 10 mM Tris at pH 7.5) for at least 30 min to significantly reduce 

the proteins-lipids electrostatic interactions. The sensors are then washed again with BP to reach stable 

values for the frequency and the dissipation. The frequency shift is eventually measured to quantify the 

degree of detachment for each type of protein. 

 

FIGURE 4-11:  A TYPICAL QCM-D EXPERIMENT 

(A) Typical QCM-D experiment measuring simultaneously the frequency (black) and the dissipation (red) shifts as a function of 
time.  
(B) Mechanism of bilayer formation: SUVs are first adsorbed as intact - unruptured vesicles (1) and then, when a critical surface 

coverage is reached, the lipid bilayer is formed spontaneously (2), leading to a frequency shift 1. The SLB is extensively 
washed with proteins buffer leading to a small frequency and dissipation shift (buffer jump). After stabilization of the baseline, 

CHMP proteins are added until saturation on the SLB (3). The corresponding frequency and dissipation shifts 2 and shift D 
are measured. 
 

4.7 ATOMIC FORCE MICROSCOPY (AFM) 

Imaging structures at the single molecular level is crucial in biological sciences. But often, images with 

high spatial resolution only are not sufficient for understanding a biological event; dynamical 

informations and sufficient spatio-temporal resolution might be required additionnally to decipher a 

mechanism.  
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Atomic force microscopy (AFM) provides high-resolution images including surface height information 

leading to three-dimensional information on sample morphology. AFM can be operated both in air and 

in buffer solutions, which allow imaging at physiological conditions and enhance the biological relevance 

of the obtained results. Moreover, it has the capacity to determine mechanical material properties via 

the force spectroscopy mode. Using AFM, proteins and membranes can be imaged at nanometer 

resolution (Ando 2014). Besides nanometer spatial resolution, high temporal resolution can be achieved 

with high-speed AFM (HS-AFM) with imaging rates higher than 10 frames per second. HS-AFM is 

essential to investigate in real-time dynamic processes (Ando 2017).  

 

For the indentation and HS-AFM experiments, we collaborated with Prof. Dr. Wouter Roos (Groningen, 

the Netherlands). The experiments were performed by Dr. Sourav Maity in Prof. Dr. W. Roos's group.  

4.7.1 PRINCIPLE OF AFM 

AFM image acquisition is based on the interacting (attractive/repulsive) force between the tip and the 

surface, which deflects the cantilever. In combination with a feedback control, the topography of the 

sample surface can be reconstructed (de Pablo 2011).  

 

For the measurement of the bending of the cantilever, a laser beam is focused on the rear side of the 

cantilever. The reflected light is directed to a quadrant photodiode (dual photodiode for HS-AFM), which 

detects positional alterations in the reflected light. Whenever the interaction force between the tip and 

the sample surface changes, the cantilever bends, and thus the position of the laser spot on the 

photodiode moves (Figure 4-12). The measured signals are transmitted to the feedback electronics, 

processed and converted into a voltage, which is used to retract or extend the piezoelectric actuator 

supporting the sample. The actuator is used to change the position of the sample, thus the deflection 

of the cantilever to keep the interaction force at a set value.  

 

FIGURE 4-12: SCHEMA OF AFM SETUP COMPONENTS 
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The cantilevers used for the experiments were 7 µm length and 2 µm in width. The cantilever spring 

constant is of 0.15 N.m-1. The resonance frequency which defines the limit for the scanning speed is 

equal to 1.2MHz in air and it is around 600 kHz in liquid. 

 

In general, AFM works in different modes, depending on the user-defined interaction force between 

the cantilever and the surface. In the present work we have used HS-AFM, which in fact, works in the 

"tapping mode"; therefore, we will only describe this imaging mode. In tapping mode, when the 

cantilever is far away from the sample surface it is commanded (by the user) to oscillate at its resonance 

frequency with defined amplitude (free amplitude). When approaching the surface, the tip experiences 

a dampening of the free amplitude (Close-contact mode in Figure 4-13). Approach of the cantilever 

continues until predefined damped amplitude (set point) has been achieved. In this way the cantilever 

tip continuously taps on the surface without being in contact continuously. In tapping mode, the set 

point amplitude and the set frequency (near resonance) will be conserved during the imaging process.  

As can be seen, the difference between the free amplitude of the cantilever and the set point amplitude 

is directly related to the applied tapping force on the sample surface. We can also use this force (of 

imaging) to investigate the mechanical properties of our samples.  

 

FIGURE 4-13: FORCE DESCRIPTION FOR A TYPICAL AFM EXPERIMENT 

 

4.7.2 EXPERIMENTAL CONDITIONS 

For all the experiments PI(4,5)P2-SUVs (lipid mixture 5) were added in BP to a chamber with a mica 

substrate. Following, 1 µM of CHMP2B, or CHMP4B, or CHMP4B then subsequently CHMP2B were 

added.  

For the HS-AFM all images were acquired at 5 s per frame rate with a minimal force of approximately 

100 pN. Image acquisition of CHMP4 polymerization on supported lipid membrane is done a few 

minutes after protein addition as it takes about 5 to 10 min for the spirals to form. For the measurement 

of membrane mechanics in the presence of CHMP2B, we measured the relative deformation of the 
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membrane through imaging as a function of the tapping force. Image acquisition was first performed at 

minimal force required to image a vesicle (around 100 pN), then step by step tapping force was 

increased by 10 % increment. After reaching the maximal force, around 80% or 180 pN, the tapping 

force was diminished returning back again to its lowest value (100 pN). For the study of the effect of 

CHMP2B on CHMP4 spiral, we first checked the spiral formation on flat lipid bilayer as a control. Then 

we added CHMP2B and directly imaged the vesicles thus covered with both polymers.  
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CHAPTER 5.  RESULTS 

5.1 OPTIMIZATION AND CHARACTERIZATION OF CHMP2B PROTEIN 

INTERACTION WITH MODEL MEMBRANES 

The aim of this part is to characterize in vitro the interaction of CHMP2B proteins with lipids using 

biomimetic model membranes. Our purpose is to find the appropriate lipid mixture with highest affinity 

for the interaction with CHMP2B proteins. Moreover, to work at physiological conditions we have 

optimized the chemical properties of the experimental buffers.  

5.1.1 STUDY OF CHMP2B PROTEIN STABILITY 

Before studying the interaction of CHMP2B proteins with lipids, we first checked the stability of the 

protein over time and the effect of the buffer. We used Dynamic Light Scattering (DLS) technique to 

check the protein stability over time at room temperature. DLS measures the autocorrelation of the 

fluctuations of the refractive-index in the solution. The scattering is related to the hydrodynamic radius 

by the Stokes–Einstein equation:  

 
𝑅 =

𝑘B𝑇

6𝜋ɳ𝐷
 (5-1) 

Where R is the hydrodynamic radius, D the translational diffusion coefficient, kB the Boltzmann's 

constant, T the thermodynamic temperature and ɳ the dynamic viscosity.  

 

Particles of different sizes and aggregation status are recognized by their different hydrodynamic radius 

values.  

Figure 5-1 presents the variation of the hydrodynamic radius of CHMP2B-ΔC proteins (CHMP2B protein 

with C-terminus truncation) in the storage buffer (NaCl 100 mM, Tris 50 mM at pH 7.4) over time (30 

min, 60 min and 120 min). CHMP2B proteins size distribution does not vary (particle hydrodynamic 

radius ≈ 1 nm) for one hour at room temperature in their storage buffer, meaning that they do not tend 

to polymerize/aggregate and remain stable in their storage buffer at room temperature. At 1 hour, 

protein aggregation was observed meaning that the proteins started to deteriorate. At 2 hours, the 

protein aggregation was not observed anymore, perhaps due to sedimentation of the largest 

aggregates. Thus for all our experiments, CHMP2B proteins were used immediately after protein 

defreezing. 
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FIGURE 5-1: VARIATION OF THE HYDRODYNAMIC RADIUS OF CHMP2B OVER TIME STUDIED BY DLS 

Size distribution at different times. 

 

 

Although stable at room temperature in their storage buffer up to 30 min with a high salt content, 

CHMP2B proteins have to be transferred to a low ionic strength buffer to bind efficiently the lipid 

membrane. Indeed, CHMP2B proteins are positively charged and require negative lipids to bind 

membranes. Since binding is governed by electrostatic interactions, we wanted to test protein binding 

and stability in buffers of different ionic strengths. We incubated CHMP2B proteins during 30 min at 

500 nM with GUVs made of lipid mixture 5 (DOPS/PI(4,5)P2 (10:10)) in buffers with different salt 

concentrations ranging from 0 mM NaCl to 100 mM NaCl (+ 25 mM Tris at pH 7.5) and we recorded the 

green protein fluorescence signal on the membrane with confocal microscopy (Figure 5-2).  

 

In the absence of NaCl, we did not detect CHMP2B protein binding on the lipid membranes. We could 

thus suspect that without salt in solution, the proteins are unstable and have aggregated (Figure 5-2). 

For buffers with NaCl concentrations of 75 mM and 100 mM, protein-lipid binding is diminished as 

compared to 50 nM, because electrostatic interactions between CHMP2B proteins and the underlying 

lipid membrane are screened. Moreover, proteins seem to be aggregated on the membrane.  

 

To sum up, interaction between CHMP2B proteins and membranes is enhanced when the buffer 

contains 50 mM NaCl, 25 mM Tris at pH 7.5 (named the protein binding buffer (BP)). 
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FIGURE 5-2: TEST OF PROTEIN BINDING AT DIFFERENT IONIC STRENGTH BUFFERS 

Pre-formed vesicles were incubated with CHMP2B-ΔC in buffers with different salt concentrations ranging from 0 mM to 100 
Mm NaCl (+Tris 25mM at pH 7.5). After 30 min incubation, vesicles were transferred to the same salt buffer free of proteins. 
Fluorescent images were taken for each condition with a confocal microscope. Lipid signal is shown in magenta and protein 
signal in green. Scale bar = 5 µm. 

 

To further characterize CHMP2B stability on membrane over time at 4°C, we did a sucrose flotation 

assay (Figure 5-3). We incubated 500 nM CHMP2B with GUVs made of the same lipid mixture 5 

(DOPS/PI(4,5)P2 (10:10)) in BP (50 mM NaCl, 25 mM Tris at pH 7.5 buffer) and in the protein storage 

buffer (NaCl 100 mM, Tris 50 mM at pH 7.4 ). With this method, CHMP2B proteins are mixed with the 

GUVs at the bottom of a sucrose gradient and are then ultra-centrifuged (Figure 5-3). If the proteins 

and lipids interact, the complex floats in the upper fractions of the centrifugation tube (Figure 5-3). The 

presence of the proteins on the different fractions is checked with SDS page gel.  

 

FIGURE 5-3: PRINCIPLE OF THE SUCROSE FLOTATION ASSAY 

Figure 5-4 displays a SDS-page of the different fractions collected from the sucrose gradient (in the 

protein storage buffer (A) and in BP (B)). CHMP2B proteins interaction with the vesicle was observed in 

the upper fraction of the tube. However, CHMP2B protein signal was detected in the lower fractions of 

the tube, in the 20 % sucrose fraction with the high salt storage buffer and even in the 30% sucrose 

fraction with the low salt buffer (with 50 mM NaCl). These results are the signature of protein 

polymerization or aggregation in both buffers, more particularly at 50 mM. 
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FIGURE 5-4: SDS-PAGE GEL SHOWING CHMP2B STABILITY IN DIFFERENT BUFFERS 
(A) Different pooled fractions from the sucrose gradient of CHMP2B + lipids (lipid mixture 5) in the protein storage buffer.  
(B) Different pooled fractions from the sucrose gradient of CHMP2B + lipids (lipid mixture 5) in the protein binding buffer.   
 
 

Based on these protein stability tests, we have used the BP buffer to bind CHMP2B proteins to 

membranes in all the following experiments. Moreover, to collect data before protein suffers from 

deterioration, experiments have been performed within a short period of time inferior to 1 hour after 

transfer to BP buffer.     

5.1.2 CHMP2B PROTEINS BIND PREFERENTIALLY TO PI(4,5)P2-CONTAINING 

MEMBRANES 

Phosphoinositides constitute a minority of the phospholipids family with a concentration lower than 1% 

in cell membranes. Nevertheless, PIP lipids play an essential signaling role in cells. The main 

phosphatidylinositide present in the endosomal compartment in the MVB pathway, where the ESCRTs 

were first identified, is PI(3)P, and it has been used in purified systems to reconstitute MVB formation 

using yeast proteins (Wollert and Hurley 2010). However, more recently discovered ESCRT-III-mediated 

scission events occur on membranes enriched in PI(4,5)P2, ,notably at the plasma membrane, including 

for instance HIV virus egress, plasma membrane repair and cytokinesis events, or at the nuclear 

envelope (Di Paolo and De Camilli 2006; Garnier-Lhomme, Byrne et al. 2009). We therefore wondered 

whether CHMP2B, which appears to be important in all these processes on PI(4,5)P2-containing 

membranes, would preferentially bind PI(4,5)P2 lipids. We used two different approaches for our study 

both involving the use of model membranes. We have tested (i) the binding of CHMP2B on supported 

lipid bilayers (SLBs) and (ii) the interaction on the surface of giant unilamellar vesicles (GUVs). The 

advantage of using both approaches is that we have been able to study the assembly of CHMP2B 

proteins on different surfaces, respectively on stiff non-deformable surfaces (SLB) and on flat 

deformable surfaces (GUV).  

For the first approach using SLBs, the protein interaction with different lipid compositions was measured 

with the Quartz Crystal Microbalance with Dissipation monitoring technique (QCM-D) (previously 

described in chapter 4.6.1). Recording the variation in frequency of oscillation of a quartz crystal enables 
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us to directly quantify the amount of adsorbed proteins and assess their affinity to different lipid bilayers 

according to Sauerbrey’s equation (equation 4-15 in chapter 4.6):  

𝛥𝑚 =  −𝐶
 𝛥𝑓

𝑛
 

An advantage of the QCM-D technique is that it does not require the use of labelled proteins. 

For the second approach, fluorescently labelled CHMP2B proteins, at various concentrations were 

added to pre-formed GUVs. FACS method and Spinning Disk confocal microscopy (SD) were used to 

respectively measure the affinity of CHMP2B proteins for different PIPs species (PI(3)P, PI(3,5)P2, PI(4)P 

and PI(4,5)P2).  

For all the GUV sets of experiments, CHMP2B proteins were labelled with Alexa Fluor™ 488 and the 

different lipid mixtures contained PE lipids fluorescently tagged with Rhodamine. 

 

5.1.2.1 STUDY OF THE BINDING OF CHMP2B PROTEINS ON SUPPORTED LIPID BILAYERS 

To study the protein-lipid interaction, precisely electrostatic dependent interactions, we compared the 

binding of CHMP2B proteins to membranes incorporating different negatively charged lipids. We first 

tested the binding of CHMP2B proteins to 30% DOPS and 40% DOPS-containing membranes (lipid 

mixtures 1 and 2, with respectively (DOPC/DOPS (70:30); DOPC/DOPS (60:40)). Then, we compared the 

effect of the presence of PI(4,5)P2 and PI(3,4,5)P3 in the membrane (lipid mixtures 3 and 4, with 

respectively DOPC/DOPS/PI(4,5)P2 (80:10:10) and DOPC/DOPS/PI(3,4,5)P3 (80:10:10)). After formation 

of the SLB, CHMP2B proteins at a concentration of 200 nm in BP buffer (NaCl 50 mM, Tris 25mM at pH 

7.5) were injected with a continuous flow system. The interaction between CHMP proteins and the lipid 

membrane leads to a decrease of the measured frequency (Figure 5-5 / A). CHMP2B protein injection 

was stopped when a plateau was observed on the graph indicating that protein saturation on the 

membrane is reached. Next, the SLB was washed with BP buffer to remove free-unbound proteins in 

solution and we measured the frequency shift 2 for the different SLBs (Figure 5-5 / A). The variation 

of the frequency 2 is directly related to the amount of proteins bound to the membrane, according 

to the equation mentioned above. Figure 5-5 / B shows the variation of the frequency 2 as a function 

of time for CHMP2B-∆C on SLB made of 10% PI(4,5)P2. 

The interaction of CHMP2B-C proteins was found to be highly dependent on the lipid composition 

(Figure 5-5 / C). The amount of proteins adsorbed to the bilayer increased by 50 % when the amount of 

DOPS was increased from 30 % (grey bar) to 40 % (dark grey bar) (Figure 5-5 / C). Indeed, increasing the 

number of negatively charged lipids in the membrane increases the amount of proteins adsorbed on it. 

This implies that electrostatic interactions play a key role in mediating the interaction between the 

proteins and the membrane in agreement with the exposure of basic surfaces in ESCRT-III polymers 

(McCullough, Clippinger et al. 2015; Tang, Henne et al. 2015). The frequency shift 2 measured for SLB 
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containing PI(4,5)P2 averages to 50 Hz whereas the frequency shift measured for SLB containing 30 % 

DOPS is approximately equal 20 Hz (Figure 5-5 / C). Thus, when PI(4,5)P2 is present in the membrane 

(10 % DOPS, 10 % PI(4,5)P2 and 80 % EPC) (blue bar), the amount of proteins interacting with the 

membrane lipids is significantly increased by 66 % and 150 %, respectively, compared with membrane 

containing 30 % and 40 % DOPS (Figure 5-5 / C). This indicates that the amount of proteins is nearly 

doubled for SLB containing PI(4,5)P2 in comparison with SLB containing 30 % DOPS (Figure 5-5 / C). 

Interestingly, if one considers that DOPS has a net charge of -1 at pH 7.5 and PI(4,5)P2 has a net charge 

of -4 at pH 7.5 (McLaughlin, Wang et al. 2002), the total net charge of SLB containing 60 % EPC; 40 % 

DOPS is similar to that made with 80 % EPC; 10 % DOPS; 10 % PI(4,5)P2. When PI(4,5)P2 lipids in the SLB 

are replaced by the same fraction of PI(3,4,5)P3 (magenta bar), the amount of proteins on the SLB 

decreases significantly and is almost equal to the amount of proteins bound to SLB containing 30 % 

DOPS. Surprisingly, while PI(3,4,5)P3 lipids have a higher negative net charge (-6) as compared to 

PI(4,5)P2 lipids (-4) (it was assumed that one of the oxygen atoms in the phosphate of the inositol ring 

in PIP2 and PIP3 is protonated) (McLaughlin, Wang et al. 2002), we found that the interactions between 

CHMP2B-ΔC proteins and the SLB are higher with PI(4,5)P2 lipids, further supporting the hypothesis that 

there is a preferential interaction with PI(4,5)P2 lipids. We conclude that the interaction between SLBs 

and CHMP2B-ΔC is partially governed by electrostatic interactions. In addition, CHMP2B-ΔC specific 

interactions with PI(4,5)P2 lipids increase protein affinity for membranes containing this type of lipid, 

e.g. the plasma membrane. Interestingly, CHMP2B-ΔC interaction with PI(3,4,5)P3 lipids is much weaker. 

In addition, we could measure the kinetics of adsorption of CHMP2B-ΔC on the different negatively 

charged membranes (Figure 5-5 / D). The frequency shift 2 curves were fitted with exponential time 

decay. And, the corresponding characteristic time τ is deduced from the equation: 

 
 = ₀𝑒−(𝑡−𝑡₀)/𝜏 (5-2) 

Depending on the lipids, the kinetics of adsorption is different. τ values range from 11 ± 0.5 to 50 ± 1.0 

sec depending on the lipids (Figure 5-5 / D). The kinetics of adsorption is slower (≈ 50 ± 1.0 sec) for SLBs 

containing PI(4,5)P2 lipids, although when PI(4,5)P2 is present in the membrane, the total quantity of 

proteins bound to the membrane is highly increased (Figure 5-5 / D). On the contrary, the kinetics is 

faster (≈ 15 ± 0.5 sec) for SLBs containing PI(3,4,5)P3 lipids, which bind less proteins (Figure 5-5 / D). 

Thus, a higher amount of bound protein is correlated with a slower kinetic rate. This difference might 

be due to protein rearrangements on the surface. When the protein density on the surface is low 

because of the protein weak affinity to the membrane, equilibrium is reached fast. If the protein density 

is high due to strong membrane affinity, protein reorganization is necessary in order to adsorb 

furthermore proteins.  
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FIGURE 5-5: INTERACTION OF CHMP2B WITH DIFFERENT TYPES OF SUPPORTED LIPID BILAYERS 

(A) Schematic representation of the measurement of the frequency versus time.  

(B) Variation of the frequency shift 2 for CHMP2B-C for the PI(4,5)P2 lipid composition. The exponential decay fit is shown.  

(C) Variation of the frequency shift 2 for CHMP2B-C as a function of the lipid compositions (Light grey: 30% DOPS; Grey: 

40% DOPS; Light Blue: 10% PI(4,5)P2; Magenta: 10% PI(3,4,5)P3).  n=5. 

(D) Characteristic adsorption time measured for CHMP2B-C proteins for various lipid compositions (Grey: 40% PS; Light blue: 

PI(4,5)P2; Magenta: PI(3,4,5)P3). n=5. 

 

5.1.2.2 STUDY OF CHMP2B BINDING ON GIANT UNILAMELLAR VESICLES 

To study the binding of CHMP2B proteins on giant unilamellar vesicles, we first produced GUVs with 

lipid mixtures 6 to 10, with respectively 2% DOPS, 2% PI(4,5)P2, 2% PI(4)P, 2% PI(3,5)P2 and 2% PI(3)P. 

The preformed GUVs were then incubated for 30 min in BP buffer (NaCl 50 mM, Tris 25 mM at pH 7.5) 

with CHMP2B-FL (full length) and CHMP2B-ΔC (CHMP2B protein with C-terminus truncation) proteins 

at variable concentrations to check the effect of the C-terminus truncation on the protein interaction 

with membranes. We used flow cytometry (FACS) to analyze the protein and vesicle fluorescence 

signals. 
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FACS technique is based on the count of events, here our vesicles ± CHMP2B proteins, by light scattering 

and fluorescence emission simultaneously. Fluorescence is emitted by fluorescent CHMP2B and lipids 

dyes after excitation by the appropriate laser.  In flow cytometry every particle detected in the solution 

(i.e. vesicles ± CHMP2B proteins) is classified as a distinct event. Every event is plotted independently as 

a function of the fluorescence channel in which it was detected.  

Thus the fluorescence intensity of the membrane and the fluorescence intensity of the proteins are 

respectively proportional to the amount of fluorophores in the vesicle (thus, to its size) and proteins 

bound to it or present in the detection zone and unbound. The protein fluorescence appears in the left 

upper quadrant of the plot or protein positive region and the lipid (vesicle) fluorescence signal in the 

right lower quadrant or lipid positive region. 

 

 To quantify the amount of protein bound to the vesicles, one must look at the colocalization of both 

the protein and the lipids fluorescence signals, corresponding to the right upper quadrant or double-

positive region (protein positive region + lipid positive region) (Figure 5-6 / A).  

 

Figure 5-6 / B shows a typical FACS experiment. It represents the intensity plot of CHMP2B proteins on 

DOPS lipid mixture (control sample). In this condition, we observed no significative presence of double-

positives in the right upper quadrant, meaning that the interaction of the proteins with the DOPS lipid 

vesicles is low. The histogram plot on the right represents the number of counted events for the protein 

fluorescence. It shows two peaks, the first corresponding to the proteins signal only and the second to 

the detected protein signal on vesicles.  

 

Figure 5-6 / C shows the scatters plot for the protein and PI(4,5)P2 lipid fluorescence signal (sample 1). 

It clearly shows the detection of protein bound to vesicles in the right upper quadrant (highlighted by 

the red rectangle in the figure) and vesicles without proteins in the right lower quadrant. We also see 

in the double -positive quadrant a linear variation of the protein signal with the lipid signal, suggesting 

that the total signal of the proteins bound increases with the size of the vesicles. Practically, the analysis 

did not include a renormalization of the protein intensity by the lipid intensity. Instead, the histogram 

of the "gated" region (Figure 5-6 / C - right) is plotted. It shows one peak showing that CHMP2B is bound 

to the vesicles. The median intensity of this peak is then considered as the average density of proteins 

bound to the vesicles in arbitrary unit. This intensity value can be compared for the different lipid 

compositions. 
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FIGURE 5-6: MEASUREMENT OF THE FLUORESCENCE INTENSITY OF CHMP PROTEIN BOUND TO GUVS BY FACS 

(A) Bivariate histogram showing the possible combinations of positive and negative staining for two different dyes. Red arrow 

highlights the double-positive gated fluorescence, i.e. when proteins are bound to vesicles. 

(B) Example with CHMP2B protein binding to DOPS (control sample). The intensity plot and the distribution of the protein 

fluorescence are shown. 

(C) Example with CHMP2B binding to PI(4,5)P2 containing vesicles. The intensity plot shows the signal for CHMP2B protein as 

a function of the lipid signal in the PI(4,5)P2-vesicles. Red box defines the gated double-positive population. 

(D) Histogram of the gated population (displayed in panel C) showing the distribution of the fluorescence signal of CHMP2B 

bound to PI(4,5)P2 vesicles.  

 

We measured the average fluorescence signal (green) of the protein bound to vesicles of different lipid 

membranes in the double positive region. To compare the binding efficiency of CHMP2B-∆C for the 

different lipids, we plotted the protein fluorescence density in arbitrary unit normalized by the density 

of DOPS (Figure 5-7 / A – in green). We found that in agreement with the QCM-D observations, CHMP2B-

ΔC exhibits preferential binding to GUVs containing PI(4,5)P2 lipids as compared to the other PIP species. 

This increase of binding in the presence of PI(4,5)P2 lipids is almost doubled when compared to the 

other PIPs lipid mixtures, including PI(3,5)P2. Note that PI(4,5)P2 and PI(3,5)P2 have the same number of 

negative charges, yet CHMP2B binds more PI(4,5)P2, further demonstrating that the interaction is not 

just a matter of electrostatic interaction. We also confirm that the interaction of CHMP2B-ΔC proteins 

is almost equal for PI(3,5)P2-GUVs, PI(4)P-GUVs and PI(3)P-GUVs. These values are however 2 times 

higher than the value of the density of CHMP2B-ΔC with DOPS lipids. Consequently, we conclude that 

CHMP2B, in addition to electrostatic interactions with charged membranes, has a specific preference 

for PI(4,5)P2 lipids, in agreement with its contribution to ESCRT-mediated processes only at the plasma 

membrane and the nuclear envelop.  
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We next tested the effect of the C-terminal deletion of CHMP2B proteins. Therefore, we repeated the 

same experiment and incubated the full length protein CHMP2-FL at 500 nM with GUVs made of the 

same different PIP species. We observed that the preferential binding to PI(4,5)P2 is also conserved for 

CHMP2B-FL (Figure 5-7 / A – in black). Nevertheless, CHMP2B-FL has a lower binding affinity than 

CHMP2B-∆C for all lipid compositions, including the PI(4,5)P2 lipid mixture.  

 

In addition Figure 5-7/ B shows the average protein density (in arbitrary unit) on PI(4,5)P2-GUVs as a 

function of CHMPB-∆C and CHMP2B-FL bulk concentration. CHMP2B-FL binds 4 times less than 

CHMP2B-ΔC on PI(4,5)P2-GUVs at 4 µM protein concentration in bulk. We also tried to estimate the 

value of the binding constant Kd by varying the CHMP2B protein bulk concentration. However, since no 

saturation could be observed in the accessible concentration range, this measurement was not possible. 

Indeed, above 4 µM in BP buffer, we observed that both CHMP2B-∆C and CHMP2B-FL proteins 

aggregate and form clusters with the lipids, which completely compromises the measurement. These 

results indicate that the Kd value for CHMP2B-∆C and CHMP2B-FL proteins is relatively high (probably 

above 1-2 µM). Moreover, the C-terminal truncation is expected to result in a constitutively active 

protein with a higher membrane binding capacity. Thus, our results show that CHMP2B-FL protein can 

nevertheless bind membranes but more weakly that CHMP2B-∆C, in particular on PI(4,5)P2 membranes 

for which the constitutively active form has 4-times stronger affinity. 

  

 

FIGURE 5-7: AFFINITY OF CHMP2B-ΔC VS. CHMP2B-FL TOWARDS NEGATIVELY CHARGED MEMBRANES MEASURED 

BY FACS 

(A) Quantification of CHMP2B-FL and CHMP2B-ΔC binding to GUVs containing DOPS and different PIPs by flow cytometry. 

Equimolar amount of DOPS and different PIPs (2% mol/mol of total lipids) have been used. Results were normalized to the 

fluorescence intensity of DOPS-containing vesicles. *=p-value<0.05 (Student's t-test); n=6 (number of FACS experiment with 

104 counted event per experiment, per condition). 

 (B) Titration curve of CHMP2B-FL and CHMP2B-ΔC binding to GUVs containing PI(4,5)P2.  

*=p-value<0.05; **=p-value<0.01; ***=p-value<0.001 (Student's t-test); n=6 (number of FACS experiment with 104 counted 

event per experiment, per condition). 
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In addition, we have observed that for the same conditions (i.e. PI(4,5)P2 lipid mixture, BP buffer and 

bulk protein concentration) CHMP2B binding could vary significantly among PI(4,5)P2 binding assays. 

More precisely, we realized that CHMP2B proteins have to be incubated within an hour or less, following 

GUVs production to significantly bind GUV membranes. These binding variations are related to PI(4,5)P2 

stability and preservation over time (Beber. A et. al 2017, in revision in Langmuir journal). Therefore, in 

all our following experiments, proteins were added for binding and imaging less than an hour after 

vesicles preparation ahead of PI(4,5)P2 solubilization out of the membrane or oxidation..  

 

5.1.3 ENCAPSULATION OF CHMP2B PROTEINS INSIDE GUVS TO MIMIC ESCRTS 

INVERTED TOPOLOGY 

After the characterization of the CHMP2B–lipid interaction, we aimed to encapsulate CHMP2B proteins 

inside GUVs to study the correct physiological topology. In vivo, ESCRT proteins interact with the 

cytosolic side of the membrane to induce membrane scission of buds toward the exterior of the cell or 

the interior of the endosomes, i.e. with a negatively curved membrane. Our initial aim was to use the 

tube pulling assay with encapsulated CHMP proteins (this system was previously developed and used in 

the team) (Prévost, Zhao et al. 2015) to mimic the neck of the biological buds where the protein is 

functioning. We reasoned that binding the internal side of a nanotube would replicate for the ESCRT (in 

particular CHMP2B) the topology of a bud neck (Figure 5-8).  

 

FIGURE 5-8: SCHEMATIC REPRESENTATION OF THE MEMBRANE NANOTUBE PULLING ESSAY 

First, the GUV is moved up at about 20 µm from the bottom of the chamber with a micropipette. Second, a streptavidin-coated 

bead is trapped in the focus plane with the optical tweezers and moved into contact with the GUV in the equatorial plane of 

the vesicle. Third, a membrane nanotube is pulled out of the vesicle by moving the GUV away from the trapped bead. Schematic 

illustration not to scale. 
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5.1.3.1 ENCAPSULATION OF CHMP2B PROTEINS INSIDE GUVS BY INVERTED EMULSION 

AND PVA SWELLING 

To mimic the negative membrane curvature a priori required for ESCRT action, the first step consists in 

the encapsulation of CHMP2B inside GUVs. We tried several techniques that were already published. 

One is the "inverted emulsion" method. It was initially designed by S. Pautot (Pautot, Frisken et al. 2003) 

and some improvements were proposed over the past years (Pontani, van der Gucht et al. 2009; 

Abkarian, Loiseau et al. 2011). This technique consists first in preparing an inverted emulsion of aqueous 

droplets containing the protein of interest into mineral oil containing lipids (lipid mixture 5 (10% DOPS, 

10% PI(4,5)P2)), and thus forming a monolayer at the droplet surface. Practically, the oil mixture and the 

aqueous solution containing CHMP2B proteins in BP buffer are mixed to make an inverted emulsion 

(Pautot, Frisken et al. 2003). Because of their amphipathic nature, the lipids form a monolayer around 

the droplets of protein solution (Figure 5-9 / A). Next, the emulsion is placed in contact with an aqueous 

solution that will eventually form the external medium of the GUVs, forming an interface covered with 

an additional lipid monolayer. The coated lipid droplets are then pushed by centrifugation through this 

monolayer at this oil/water interface (Figure 5-9 / B and C), thus creating a lipid bilayer around the 

protein solution and producing GUVs with proteins inside and the lipid bilayer around (Figure 5-9 / C). 

The osmolarity of the aqueous solution must match that of the protein solution in the droplets, to obtain 

stable GUVs. The group of M. Abkarian in Montpellier had improved the method, using microfluidic to 

produce droplets of homogeneous size continuously injected into an oil (plus lipids) solution placed over 

a rotating disk. This method is called cDICE ("continuous Droplet Interface Crossing Encapsulation") 

(Abkarian, Loiseau et al. 2011). The water droplet size can be adjusted to be of the order of the ten 

microns' range. To produce GUVs with CHMP2B proteins surrounded by a bilayer containing 10% DOPS 

+ 10% PI(4,5)P2 lipids, we used cDICE, but also the "manual" method with a syringe to produce the 

emulsion (Pontani, van der Gucht et al. 2009). Unfortunately, because of the presence of negatively 

charged lipids,  a significant amount of oil is trapped in between the bilayer leaflets (C.Prevost PhD 

thesis), more than in the absence of charged lipids (Campillo, Sens et al. 2013). Indeed, we observed 

that in tube pulling experiments, the force on the tube was not stable, even in the absence of proteins, 

which precluded us from doing any quantitative measurement with this system. We tried to remove 

residual oil within the bilayer by using cyclodextrin, a molecule that has a strong affinity for hydrophobic 

molecules, for instance cholesterol (Roux, Cuvelier et al. 2005); we expected that cyclodextrin could 

extract the oil residues from the bilayer. Unfortunately, we observed that cyclodextrin also solubilized 

most of the PI(4,5)P2 present in the membrane, which induces a significant reduction of the protein 

affinity for the membrane. For this reason, the inverted oil emulsion technique was abounded. We tried 

then the gel-assisted swelling technique on polyvinyl alcohol (PVA) gel.  
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FIGURE 5-9: SCHEMATIC REPRESENTATION OF THE PRINCIPLE OF THE INVERTED EMULSION TECHNIQUE TO 

PRODUCE GUVS (Pautot, Frisken et al. 2003) 

(A): The lipids solubilized in the oil phase adsorb on water droplets, with their hydrophilic heads facing the water phase. 

(B): The lipids adsorb at the interface between the oil phase and the aqueous phase forming the external buffer. 

(C): The water droplets, covered with a first monolayer of lipids, are forced through this interface by centrifugation, leading to 

the addition of a second monolayer around the droplet. 

 

The PVA spontaneous swelling technique (see chapter 4.2.3.2) consists in first drying the lipid film made 

of the lipid mixture 5 on the PVA gel, and then rehydrating it with a solution made of CHMP2B protein 

diluted in BP buffer. We expected to obtain GUVs with CHMP2B proteins in the inner medium (inside) 

and bound to the membrane (Figure 5-10 / ideal case). 

 

FIGURE 5-10: POSSIBLE ORIGIN OF THE NON-ENCAPSULATION OF CHMP2B INTO GUVS FORMED BY PVA-

ASSISTED SWELLING TECHNIQUE 

Left: In the "ideal case", swelling of the lipids bilayers with the protein solution leads to the spontaneous formation of GUVs 
with proteins bound on both sides of the bilayer.  
Right: in our case, with CHMP2B, we suspect that either CHMP2B strongly binds to the PVA gel or to the surface of the lipid 
film and that the proteins do not penetrate into the PVA gel. 
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Practically, this was not the case: we observed that it was not possible to incorporate any CHMP2B 

protein in the produced GUV, even by adding up to 10 µM protein in the growth buffer (Figure 5-11 / 

A). We first thought that due to its size, the protein did not penetrate into the gel. But surprisingly, we 

managed to encapsulate other CHMP proteins (i.e. CHMP2A, CHMP3 separately and CHMP2A + CHMP3) 

that have the same size range (Figure 5-11 / B). Thus we supposed that either the CHMP2B proteins 

strongly adhere to the gel during vesicle growth and for this reason could not be encapsulated, or 

because of its high affinity to PI(4,5)P2 lipids it directly interacts with the most accessible PI(4,5)P2 lipids 

present on the surface of the lipid film (Figure 5-10 / experimental case). We thus switched to another 

method. 

 

FIGURE 5-11: ENCAPSULATION OF CHMP PROTEINS USING PVA SPONTANEOUS SWELLING TECHNIQUE 

Confocal images showing the result of the encapsulation of CHMP proteins by PVA-assisted spontaneous swelling technique. 

CHMP2B fluorescence signal (in green) is very weak inside the GUV implying a low rate of encapsulation; no signal is observed 

at the GUV surface. In contrast, fluorescence signal for CHMP2A (in green), CHMP3 (in dark blue) and CHMP2A + CHMP3 

complex (merge: in light blue) indicate that those are significantly present inside GUVs. Scale bar = 10 µm. 

 

 

 

5.1.3.2 ENCAPSULATION OF CHMP2B PROTEINS INSIDE GUVS BY PLW 

ELECTROFORMATION  

Another alternative to encapsulate CHMP2B was to use the electroformation technique on platinum 

wires (PLW). This technique has been used in our team to successfully encapsulate I-BAR proteins 

(Prévost, Zhao et al. 2015).  

To work at physiological salt conditions (i.e. high salt concentrations), GUVs cannot be produced by 

electroformation on ITO plates. Instead, vesicles were produced using the PLW electroformation 

technique (see chapter 4.2.3.1). However, CHMP2B protein encapsulation with PLW revealed to be very 

challenging. Practically, the growth chamber is made of a Teflon block with three holes. Two platinum 
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wires are inserted into the Teflon and the lipids are deposited on them (see chapter 4.2.3.1) (Figure 

5-12 / left). Lipid droplets in chloroform are deposited on the platinum wires, dried and rehydrated 

under an electric field (500 Hz, 35mV). GUVs were grown in the presence of 500 nM CHMP2B proteins 

diluted in the growth buffer. When vesicle growth was done in BP buffer, we were able to produce 

GUVs, yet all the proteins were strongly bound to the membrane. We could never observe any protein 

in the lumen of the GUVs, as it was also the case with the PVA-spontaneous swelling technique. Thus, 

we supposed that because of the high affinity to the PI(4,5)P2  membrane, all proteins added in the 

vesicle growth buffer were bound to the membrane, leaving no free protein in bulk. To check this 

hypothesis, we prepared GUVs in the presence of 500 nM CHMP2B proteins diluted in a growth buffer 

at a higher salt concentration: NaCl 150 mM, Sucrose 50 mM and Tris 25 mM at pH 7.5. In these 

conditions, we did not observe protein interaction with the membrane due to the screening of the 

electrostatic interaction between CHMP2B and the lipids. Yet we did not see CHMP2B green 

fluorescence signal in the vesicle inner medium, meaning that the encapsulation of the protein was not 

successful although CHMP2B protein was “in principle” in excess in the bulk.  At this point, we examined 

more closely our GUV production method. We realized that CHMP2B proteins were mostly aggregated 

and adhered strongly to the glass cover slips used to seal the growth Teflon chamber (one in the bottom 

and one on the top of the chamber). 

To solve this problem, we produced customized chambers made of Teflon only (Figure 5-12 / right). 

These “all-Teflon” chambers were tricky to use. First, it was impossible to observe the vesicle growth. 

Second, the hydrophobic surface of the chamber often favoring leaking of the growth buffer, which in 

turn, caused a dewetting of the wires.  To sum up, making GUVs in “all-Teflon” chambers was not 

reproducible.  

 

FIGURE 5-12: SCHEMATIC ILLUSTRATION OF THE TEFLON CHAMBERS USED FOR PLW ELECTROFORMATION 

In the “classical” Teflon chamber, two glass coverslips are used to seal the chamber (Left), whereas in the “All” Teflon chamber 
they were replaced by Teflon coverslips (Right). 

Consequently, we had to return to the “classical” electroformation chambers and treat the glass slide 

surfaces to avoid interaction between the protein and the glass surface. Glass passivation with β-casein 

(at a concentration of 5 mg.mL-1 in NaCl 100 mM, Tris 25mM at pH 7.5) was not sufficient and the only 

efficient way was by cleaning the glass coverslips with a Piranha solution.  
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"Piranha" solution is a mixture of 70 % sulfuric acid (H2SO4) and 30 % hydrogen peroxide (H2O2), used to 

remove most organic matter. It can also hydroxylate glassy surfaces and make them highly hydrophilic 

for a more efficient binding of the β-casein solution. Only after "Piranha" treatment followed by β-casein 

passivation, CHMP2B proteins adhesion to the glass surface was limited and proteins encapsulation was 

possible (Figure 5-13).  

 

FIGURE 5-13: ENCAPSULATION OF CHMP2B PROTEIN INSIDE GUV BY PLW ELECTROFORMATION AFTER 

"PIRANHA" TREATMENT PLUS Β-CASEIN PASSIVATION OF THE GLASS COVERSLIPS 

The membrane is in magenta, the protein in green and the merge in yellow. Because CHMP2B protein is present in the growth 

buffer, it is present inside the GUV and bound to the membrane inner and outer leaflets. Scale bar = 10 µm. n=50. 

 

Thus, with this method we obtained GUVs with CHMP2B proteins present in the inner and outer 

medium, bound to the membrane inner and outer leaflets. So to reach our goal of tube pulling with 

CHMP2B proteins only present inside the vesicle, with the topologically correct membrane negative 

curvature, it is crucial to remove the proteins bound to the external leaflet of the GUVs. Indeed, the 

protein presence on both sides of the membrane could interfere with our measurements.  

In the following, we will explain the different strategies we employed to detach CHMP2B proteins from 

the membrane outer leaflet. 

5.1.4 CHMP2B PROTEINS INTERACTION WITH PI(4,5)P2 LIPIDS IS IRREVERSIBLE 

Here again we used QCM-D technique to monitor the detachment of CHMP2B proteins from lipid 

membranes. We formed the different lipid bilayers and injected continuously 200 nM CHMP2B proteins 

in BP until protein saturation on the membrane was reached. Then we rinsed the bilayer with BP buffer 

to remove unbound proteins. Next, to detach the bound proteins from the SLB membrane, we increased 

the salt concentration by flowing continuously a solution made of NaCl 500 mM and Tris 25 mM at pH 

7.5. An increase in salt concentration is meant to screen the electrostatic interactions between the 

proteins and the membrane and thus should promote CHMP2B proteins desorption from the lipid 

bilayer.  



119 
 

In Figure 5-14 / A, we present two extreme scenarios for the variation of the frequency during a QCM-

D experiment: either a 100 % detachment of CHMP2B proteins where the frequency value would return 

to 1 (frequency shift value measured upon lipid bilayer formation and before addition of the protein) 

or a 0 % detachment of the proteins in which the frequency value would remain equal to 2 (frequency 

shift value measured after protein saturation on the SLB).  

 

After complete saturation of CHMP2B-ΔC proteins on the SLB made of the different lipid mixtures (i.e. 

t > 110 min) (Figure 5-14 / A), we injected the high ionic strength buffer solution (500 mM NaCl, 10 mM 

Tris at pH 7.5) during a period ranging from 30 min to overnight and then rinsed with the protein binding 

buffer BP (NaCl 50 mM, Tris 25mM at pH 7.5).  

 

To quantify the percentage of CHMP2B protein detachment, we measured the frequency change 

between the protein saturation and the last washing step. In Figure 5-14 / B, we present the percentage 

of detachment of CHMP2B as a function of lipid mixtures.  

For all lipid mixtures, only a limited fraction of CHMP2B-ΔC proteins were detached from the membrane. 

We measured 30 % detachment for the DOPS lipid mixture (dark grey) and a only 5 % for the PI(4,5)P2 

lipid mixture (blue) and 10 % for the different PI(3,4,5)P3 lipid mixture (magenta).  

 

 

FIGURE 5-14: DETACHMENT OF CHMP2B PROTEINS BOUND TO DIFFERENT LIPID BILAYERS 

(A) Typical detachment curve in a QCM-D experiment. Scheme showing two extreme scenarios for the detachment of CHMP 

proteins from a SLB after washing with a 500 mM NaCl, 10mM Tris pH 7.5 buffer: variation of the frequency shift as a function 

of time when proteins are completely detached or remain fully bound to the SLB.  
(B) Detachment of CHMP2B proteins bound to different lipid bilayers. Percentage of CHMP2B-ΔC proteins detached from the 

SLB after washing with a 500 mM NaCl, 10mM Tris pH 7.5 buffer for at least 30 min as a function of the lipid composition (Grey: 

40% DOPS; Light Blue: PI(4,5)P2 and Magenta: PI(3,4,5)P3). n=5. 
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We then aimed at confirming these results with GUVs, knowing that the charged lipids incorporation in 

GUVs is much lower than in SLBs. GUVs were grown overnight in the absence of proteins using the PLW 

technique in 300 mM sucrose, 100 mM NaCl and 25 mM Tris at pH 7.5. Subsequently, they were 

transferred and kept for at least 30 min at room temperature in a CHMP2B-ΔC 500 nM in 400 mM 

glucose, 50 mM NaCl and 25 mM Tris at pH7.5. In this case, the CHMP proteins are thus bound onto the 

external leaflet only. Part of this sample was diluted 20 times in the same buffer for protein binding 

control imaging. Another part was diluted 20 times in 250 mM NaCl and 25 mM Tris at pH=7.5, to detach 

the bound proteins from the outer leaflet. Osmolarity of the different buffers was matched to avoid 

vesicle deflation or inflation due to an osmotic difference. For each sample, at least 20 vesicles were 

imaged in the green channel (protein channel) by confocal fluorescence microscopy. Figure 5-15 

presents the interaction between GUVs and CHMP2B before and after being subjected to the high ionic 

strength buffer (NaCl 500 mM). No detachment of CHMP2B protein was observed, confirming here 

again that the interaction of CHMP2B protein with PI(4,5)P2-containing membranes is not just due to 

electrostatic interactions but more likely to specific interactions, possibly a protein insertion into the 

membrane.  

 

FIGURE 5-15: HIGH IONIC STRENGTH BUFFER DETACHMENT ASSAY ON VESICLES COVERED WITH CHMP2B 

PROTEINS 

Detachment assay of CHMP2B proteins (in green) – covered GUVs (in magenta). One confocal plane images are taken before 

and after 1h incubation in high ionic strength buffer. Scale bar = 5 µm. 

 

 

Because CHMP2B proteins bind irreversibly the PI(4,5)P2 membrane and could not be detached by 

increasing the salt concentration, we tried to remove the proteins bound to the membrane outer leaflet 

by enzyme digestion. The experiments were performed with two proteases: Pronase (a combination of 

proteases) and Proteinase K (Figure 5-16). In the presence of both proteases, we observed a decrease 

with time of the protein signal on the vesicle rim, indicating that both enzymes digested the outside-

bound proteins (Figure 5-16). But, we also noticed that the number of vesicles was remarkably reduced 

after enzyme addition implying that the enzymes not only digested the proteins but could also induce 

GUVs leakage and eventually destabilize them.  
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To test whether the enzyme induced vesicles leakage, protein-bound vesicles were transferred to a 

buffer containing the enzyme and Cascade Blue, a soluble fluorescent dye. This fluorescent dye does 

not interact with the vesicles and in normal condition cannot cross the lipid bilayer. It is very convenient 

for testing GUV leakage (Garten, Mosgaard et al. 2017): if the vesicles leak, the Cascade Blue dye present 

outside enters in the vesicle which can be detected with the fluorescence signal. As a control, we 

checked whether the enzymes induce membrane leakage in the absence of CHMP2B. No leakage was 

detected on CHMP2B-free vesicles before and after incubation with the enzymes. In contrast, in the 

presence of CHMP2B, the dye was observed inside the GUVs, confirming the vesicle leakage (Figure 

5-16). This could be due to CHMP2B insertion into the membrane and/or to the formation of defects in 

the bilayer after protein cleavage by the protease. 

 

FIGURE 5-16: DETACHMENT ASSAY BY ENZYME DIGESTION ON VESICLES COVERED WITH CHMP2B PROTEINS 

One confocal plane images are taken before and after 1h incubation with Protease K enzyme (left). One confocal plane image 

is taken after incubation with cascade blue dye to test vesicle leakage (right). Scale bar = 5 µm. n = 30. 

 

 

Although we could not find a good method for having CHMP2B only on the internal leaflet of the GUVs, 

we nevertheless tried to pull membrane nanotubes from CHMP2B-bound GUVs to study how the 

proteins redistribute between the quasi-flat GUV and the highly curved nanotube.  

Tube pulling experiments are achieved as following:  GUVs are added to the passivated experimental 

chamber together with 2 µl of streptavidin coated polystyrene beads (3.05 µm in diameter, diluted 400 

times, part no. SVP-30-5, Spherotech). The beads and vesicles are then left to sediment at the bottom 

of the chamber for about 20 to 60 min. During this time, the experiment buffer gradually evaporates 

causing the osmolarity to slowly increase in the medium, and thus leading to a flow of water outside of 

the GUVs. Consequently, membrane tension decreases, which facilitates tube pulling. When the vesicles 

are floppy enough and optically fluctuate, the chamber is sealed with mineral oil (Sigma-Aldrich, USA) 

to prevent further evaporation. The streptavidin-coated bead is then trapped with the optical tweezers 

and a membrane tube is pulled by bringing the micropipette-aspirated vesicle containing biotinylated 

lipids into contact with the bead and then moving it away from the bead. The bead position, and thus 

the force, is then tracked at different membrane tensions by changing the micropipette aspiration. The 
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bead is tracked for at least 1 min at each tension to give the system time to reach steady state. 

Fluorescent confocal images are acquired at each step to measure the membrane and protein 

fluorescence signal intensities at the vesicle rim and on the tube. 

We realized during these experiments that in contrast with bare vesicles without proteins, the vesicles 

encapsulating CHMP2B were rarely floppy which made aspiration and tube pulling hard tasks. However, 

we succeeded to pull membrane nanotubes when a very low amount of proteins were bound to the 

membrane (Figure 5-17) (around 1 to 2 pulled tubes out of 20 trials per experiment). Protein clusters / 

aggregation were often observed on the tube and never on the surface of the vesicle (Figure 5-17). 

Interestingly, these clusters move along the tube when tension is varied.  Figure 5-17 shows the cluster 

displacement from the tube neck towards the bead when tension is increased.  

 

FIGURE 5-17: EXAMPLE OF TUBE PULLING EXPERIMENT WITH ENCAPSULATED CHMP2B PROTEIN 

A membrane nanotube pulled from a GUV encapsulating CHMP2B proteins. In this case, no protein binding was detected on 

the GUV membrane. A protein polymerization/aggregation is observed on the membrane nanotube only (pointed by the white 

arrow). A displacement of this protein cluster is observed when membrane tension is increased. Scale bar = 10 µm.  

 

In addition, in rare cases, more protein clusters formed on the tube when the applied tension on the 

membrane was increased. We supposed that the protein polymerization/aggregation on the tube could 

be membrane curvature dependent and that the additional clusters could be formed when a threshold 

tube radius is reached, like in the case of dynamin (Roux, Koster et al. 2010). Since in our experiments, 

CHMP2B proteins were bound to both inner and outer membrane leaflets i.e. on negative and positive 

curvatures (Figure 5-18 / A), we had to test CHMP2B binding on positively curved only (Figure 5-18 / B). 

A priori, we expected not to observe any binding in this case, considering the in vivo geometry of the 

bud necks, with a negative curvature.  
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FIGURE 5-18: SCHEMATIC ILLUSTRATION OF THE DIFFERENT CURVATURES EXPERIENCED BY PROTEINS IN OUR 

TUBE PULLING EXPERIMENTS. 

(A) With our encapsulation protocol, proteins are bound to both the inner and the outer leaflet of the membrane 

tube. Thus the effects of positive and negative curvature are detected at the same time.  

(B) Proteins are bound to the external leaflet only and the effect of positive curvature can be probed.   

Both schematic illustrations are not in scale.  

  

To do so, CHMP2B proteins must be bound to the outer membrane leaflet of the tube only. We 

performed tube pulling experiments with CHMP2B proteins added outside instead of being 

encapsulated inside vesicles (Figure 5-18 / B). To do so, CHMP2B proteins were injected with a second 

micropipette placed close the previously pulled membrane nanotube (Figure 5-19). We measured the 

intensity signal of the protein on the tube as well as the force to get information on the curvature 

sensing properties of the protein. 

 
FIGURE 5-19: SCHEMATIC ILLUSTRATION OF THE PROTEIN INJECTION SYSTEM 

After pulling a membrane nanotube out of the micropipette-aspirated vesicle we proceed to protein injection by a second 

micropipette (diameter Dp), which is brought close to the tube. Proteins are blown out of the pipette by varying the hydrostatic 

pressure inside the micropipette. Schematic illustration not to scale. 
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 When proteins were injected at concentrations below 1 µM, we observed the same type of spots on 

the tube as observed with encapsulated proteins (Figure 5-20 / A). Moreover, the spots did not grow 

with time, as observed for instance for dynamin polymers nucleating and growing on tubes (Roux, Koster 

et al. 2010). We did not measure any effect on the tube diameter or on the force, even when the tension 

was changed. Thus, we supposed that these clusters are an experimental artifact seen in the tube pulling 

experiments with encapsulated CHMP2B protein.  Aiming to see an induced effect of the protein on the 

tube such as for instance tube buckling or tube diameter constriction, we repeated the experiment and 

injected greater protein concentration (up to 10 µM). By increasing the concentration of the injected 

protein, we wanted to first completely cover the tube with the proteins in order to see their consequent 

effect on the tube. Against all expectations, we did not observe any further protein assembly on the 

tube or protein full assembly on the tube even after prolonged injection time on the same pulled 

nanotube (60 min). In reality, only bigger aggregates were observed on the tube and in the experimental 

chamber (Figure 5-20 / B). By seeing these aggregates we wondered if the observed clusters 

corresponded to experimental artifact instead protein polymerization on the tube. Because we already 

faced problems with CHMP2B protein adhesion and aggregation on the glass coverslips (see part 

5.1.3.2), we filled the micropipette used for the injection with CHMP2B proteins (as we usually did for 

the injection experiment) and the inspected the pipette glass surface under the microscope. By doing 

so, we realized that the protein aggregation observed during CHMP2B injection experiment (Figure 5-20 

/ B) was originally nucleated on the micropipette glass surface. And it was later further injected into the 

chamber by decrease of the hydrostatic pressure inside the pipette. We thus looked for an alternative 

to glass pipette for our injection system. 

 

FIGURE 5-20: EXAMPLES OF CHMP2B PROTEIN INJECTION ASSAY ON MEMBRANE NANOTUBE 

(A) Formation of three CHMP2B protein clusters on positively curved membrane nanotube. Scale bar = 5 µm.  

(B) CHMP2B protein aggregation upon long-time injection. Many protein aggregates are visible in the bulk, on the GUV and on 

the tube. Scale bar = 10 µm. 
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We tried to replace glass micropipettes by PEEK tubes that have Teflon’s similar non-adhesive properties 

(in collaboration with S. Descroix from the microfluidics group of the UMR168). CHMP2B protein 

aggregation was largely reduced by using PEEK tubes. However, since protein diffusion is slow, injection 

must be performed close to the nanotube. This implies that the PEEK tube diameter must be smaller 

than 50 µm. We thus pulled on PEEK tubes to reduce their diameter. Yet, protein injection was not 

possible because CHMP2B proteins tend to rapidly aggregate inside the tube and obstruct it. Eventually, 

due to all these issues, we have decided to give up experiments on the interaction of CHMP2B with 

curved membrane nanotubes. 

As a conclusion for this part, we have been able to characterize the interaction between lipids and 

CHMPS2B proteins. We found that CHMP2B proteins require negative lipids to bind the membrane, 

specially PI(4,5)P2. We showed that CHMP2B-FL interacts less than CHMP2B-ΔC with the membrane 

confirming thus that the C-terminal truncation of CHMP2B results in a constitutively active protein.  

We then aimed at studying the curvature sensitivity of CHMP2B with tube pulling experiments. We 

adapted the growth chamber previously developed in the team by C. Prevost (Prévost, Zhao et al. 2015) 

using glass coverslips cleaned with “Piranha” solution and passivated with β-casein solution to limit 

protein adherence to the glass and aggregation. We succeeded to encapsulate CHMP2B proteins, but 

we could not get rid of the proteins bound on the external leaflet. Unfortunately, we succeeded to pull 

membrane nanotubes out of GUVs only when a very low density of proteins was bound to the 

membrane. In addition, protein binding on nanotube was impossible to investigate since it requires 

using glass micropipette, which systematically induces protein aggregation.   

 

For all these reason, we have decided to focus our work and effort on the study of protein assembly on 

the surface of GUVs and of their mechanical properties by micropipette aspiration and HS-AFM. We first 

studied CHMP2B and compared it with the other ESCRT-III subunits. 

5.1.5 CHMP2B PROTEINS FORM A RETICULAR-LIKE STRUCTURE ON GUVS 

To further characterize the protein-membrane interaction and study the effect of protein binding on 

the elastic properties of the membrane, CHMP2B-ΔC proteins were added to pre-formed GUVs 

containing 10% DOPS, 10% PI(4,5)P2 (lipid mixture 5) at different bulk concentrations in BP buffer (50 

mM NaCl, 25 mM Tris at pH 7.5).  

To define how CHMP2B proteins assemble on GUVs and to look for possible protein-induced membrane 

deformations, we acquired confocal and spinning disk images on the GUV surface, along the vesicle z-

axis. A 3D reconstruction of the z-stacks gives information about the proteins distribution on the entire 

vesicle surface. At high protein concentrations, above 1 µM in bulk, CHMP2B-∆C proteins fully cover the 
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GUV surface and no distinctive structure is observed besides some protein-lipid clusters on the surface 

of the GUVs (Figure 5-21 / upper panel). At optical resolution, CHMP2B-∆C appears homogeneously 

distributed on the surface of the vesicles, with the additional presence of some larger structures. At 

lower bulk concentrations, 500 nM and below, after 15 min incubation in the protein binding buffer BP 

(50 mM NaCl, 25 mM Tris at pH 7.5), CHMP2B-ΔC proteins polymerize on the GUV surface forming a 

very unique network or reticular-like structure wrapping around the whole vesicle (Figure 5-21 / lower 

panel). When compared to the experiments at higher protein concentration where full protein coverage 

was observed, we propose that this network become denser when bulk concentration is increased 

leading to an apparent continuous coverage at high concentration or longer incubation time, at least at 

optical resolution.  

 

FIGURE 5-21: CHMP2B-ΔC ASSEMBLY ON GUV 

Supramolecular assembly of CHMP2B-ΔC in BP buffer on PI(4,5)P2-containing GUVs. At high protein concentration around 1 

µM, CHMP2B-ΔC fully covers the vesicle surface (upper panel), whereas at lower protein concentration, at 500 nM, CHMP2B-

ΔC assembles into a reticular-like structure on the GUV (lower panel). A z-projection of the whole GUV is shown. Scale bar = 10 

µm. 

 

We next compared with CHMP2B-FL and we repeated the experiment. At high CHMP2B-FL protein 

concentration (1 µm) full coverage could not be reached with the full length protein, probably due to 

its lower affinity for PI(4,5)P2 (Figure 5-22 / A). Yet, we observed the same reticular-structure formation 

on the vesicle surface (Figure 5-22 / A). This result confirms that the C-terminal truncation does not 

change dramatically the way CHMP2B assembles on the GUVs' surface.  
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To further characterize and compare the interaction of CHMP2B-∆C and CHMP2B-FL on GUVs, we 

measured their respective area fraction on the vesicle surface from the analysis of fluorescence 

intensity. To do so, using the Cellprofiler software, we applied the “Otsu Global” greyscale threshold 

method and set the pixels below the threshold to zero. From there, we can calculate on each vesicle, 

the number of pixels and the intensity corresponding either to lipids or to proteins. We measured the 

vesicle area, reticulum area and total intensity of the protein on the vesicle. 

 

Figure 5-22 / B shows the area fraction covered by CHMP2B-ΔC and CHMP2B-FL on GUVs. This 

calculation has been deduced from the equation: 

 
% 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =

𝑅𝑒𝑡𝑖𝑐𝑢𝑙𝑢𝑚 𝑎𝑟𝑒𝑎

𝐺𝑈𝑉 𝑎𝑟𝑒𝑎
 ∗  100 (5-3) 

Where the reticulum area corresponds to the total number of pixels measured for the protein signal 

and GUV area the total number of pixels measured for the lipids signal. 

 

The box plot gives the median value (X = 0.5), the lower quartile (X = 0.25), the upper quartile (X = 0.75), 

the lower whisker (X = 0.05), the upper whisker (X = 0.95) as well as the minimal and maximal values 

(see cross). While the coverage fraction of CHMP2B-ΔC at a bulk concentration of 1 µM on PI(4,5)P2-

GUVs is close to 100 % (average value ≈ 86.4 ± 21.6 and median value ≈ 99.7) after 15 min incubation, 

it is less than 50 % in the presence of CHMP2B-FL (average value ≈ 43.4 ± 25.9 and median value ≈ 33.3).  

 

Figure 5-22 / C shows the mean CHMP2B protein fluorescence intensity on the GUVs. This quantification 

has been deduced from the following the equation: 

 
𝐷 =  

𝐼 (𝑝𝑟𝑜𝑡𝑒𝑖𝑛)

GUV area
 (5-4) 

Where I (protein) correspond to the sum of all pixel intensities for the protein. The box plot gives the 

median value (X = 0.5), the lower quartile (X = 0.25), the upper quartile (X = 0.75), the lower whisker (X 

= 0.05), the upper whisker (X = 0.95) as well as the minimal and maximal values (see cross). The 

measured fluorescence intensity is at least 1.5 times higher with the protein truncated version (average 

value ≈ 6.6 ± 2.3 x 10-3 A.U. and median value ≈ 7.5 x 10-3 A.U. for CHMP2B-∆C against average value ≈ 

4.3 ± 4.1 x 10-3 A.U. and median value ≈ 2.2 x 10-3 A.U. for CHMP2B-FL). 
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FIGURE 5-22: COMPARISON OF CHMP2B-ΔC AND CHMP2B-FL ASSEMBLY ON THE GUV SURFACE 

(A) Comparison of CHMP2B-ΔC and CHMP2B-FL polymers assemblies on GUVs (lipid mixture 5 with 10 % PI(4,5)P2). CHMP2 

proteins were added to pre-formed GUVs at a concentration of 1 µM. A z-projection of the GUV is shown. Scale bar = 10 µm. 

(B) Quantification of the percentage of coverage of CHMP2B-FL and CHMP2B-ΔC polymers bound to GUVs. n=40.  

(C) Quantification of the fluorescence intensity of CHMP2B-FL and CHMP2B-ΔC polymers bound to GUVs. n=40.  
 
 

These observations by spinning disk microscopy confirm again that the C-terminal truncation of the 

protein increases the affinity of the protein for PI(4,5)P2 membranes. 

 

To get further insights into the formation of the observed network structure, experiments were 

performed with fluorescently labelled PI(4,5)P2 lipids (lipid mixture 5 with 8% PI(4,5)P2 instead of 10% 

PI(4,5)P2 and 0.5% Fluo-PI(4,5)P2 instead of 0.8% PE-Rhodamine). Co-localization between the CHMP2B-

ΔC reticulum and Fluo-PI(4,5)P2 was detected, indicating that CHMP2B-ΔC proteins recruit the 

negatively charged PI(4,5)P2 lipids underneath the network structure (Figure 5-23).  

 

The clustering of Fluo-PI(4,5)P2lipids within CHMP2B-ΔC reticulum, further stresses the importance of 

the interaction between CHMP2B-ΔC proteins and PI(4,5)P2 lipids.  

 

 

FIGURE 5-23: PI(4,5)P2 IS CLUSTERED BY CHMP2B-ΔC POLYMERS 

Co-localization between Fluo-PI(4,5)P2 and CHMP2B-ΔC on GUVs. A z-projection spanning the upper part of the GUV is shown. 

Scale bar = 10 µm. 
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5.1.6 CHMP2B ASSEMBLES INTO RING-LIKE STRUCTURES AT THE NANOSCALE 

Optical imaging of GUV reveals the global organization of the protein at the micron scale. We thus aimed 

at studying the organization and mode of polymerization of CHMP2B proteins at molecular scale and 

high resolution. Therefore, Cryo-EM and HS-AFM experiments were performed by Dr. A. Bertin and Dr. 

S. Maity from the groups of Dr. D. Levy and Prof. W. Roos, respectively, on LUVs and SLBs covered with 

CHMP2B proteins.  

 

CHMP2B proteins at a concentration of 500 nM were added to pre-formed LUVs (see chapter 4.2.4) 

made of the lipid mixture 5 (10% DOPS, 10% PI(4,5)P2 in the protein binding buffer BP (50 mM NaCl, 25 

mM Tris at pH 7.5) and kept at room temperature during 30 min. Samples were then vitrified and 

observed by Cryo-EM. CHMP2B visualization by EM was a real challenge as we could rarely see the 

protein and often only indirectly observed the effect of its binding onto membranes (in contrast with 

the other CHMP subunits that could be easily detected by EM). Nevertheless, we managed to image the 

protein assembly of CHMP2B proteins on a membrane for the first time. CHMP2B proteins have a 

peculiar nanoscopic organization: they form rings and at high density and assemble into a dense 

“honeycomb-like” pattern (Figure 5-24 / A). The mean diameter of the CHMP2B rings within the 

honeycomb lattice measured by Cryo-EM is equal to 13.6 ± 1.8 nm (Figure 5-24 / B). 

 

By HS-AFM on PI(4,5)P2-SLBs (see chapter 4.2.5) coated with CHMP2B proteins at a concentration of 1 

µM, same results were obtained. CHMP2B proteins assemble in rings on SLB. Figure 5-24 / C represents 

these ring structures. The ring structures that protrude from the surface (highlighted by a white asterisk) 

correspond to stacks of two CHMP2B rings on top of each other (Figure 5-24 / C).  In Figure 5-24 / D, 

the height profile is measured by HS-AFM over a single ring on the surface (orange line on the image). 

CHMP2B rings have a height of about 1.5 nm. In addition, the mean ring diameter is equal to 16.4 ± 0.4 

nm, not too different from the value obtained by Cryo-EM (Figure 5-24 / E). This ring diameter value is 

consistent with the measured diameter of CHMP2B tubular structures at the narrowest points in-vivo 

(Bodon, Chassefeyre et al. 2011). In fact, previous Cryo-EM study by Bodon et al. shows that 

overexpressed CHMP2B, polymerizes into a tightly packed helical polymer intimately associated with 

the inner leaflet of the bilayer. These CHMP2B tubular structures vary in diameter from 100 to 400 nm 

and in some cases, are constricted from a diameter of ∼80 to ∼16 nm.  
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FIGURE 5-24: OBSERVATION OF CHMP2B ASSEMBLY AT HIGH RESOLUTION 

(A) Representative Cryo-EM image showing the assembly of CHMP2B on LUVs. Scale bar: 100 nm.  

(B) Distribution of CHMP2B ring sizes (from the Cryo-EM acquired images)  

(C) Representative image taken with HS-AFM showing the assembly of CHMP2B on a SLB. Scale bar: 50 nm. 

(D) Height profile of CHMP2B rings (from the HS-AFM acquired images) 

(E) Distribution of CHMP2B rings sizes (from the HS-AFM acquired images)  

 

5.2 CHMP2B POLYMERS MODULATE MEMBRANE ELASTIC PROPERTIES 

We have next investigated the influence of the presence of CHMP2B proteins on the elastic properties 

of model lipid membranes. We observed during tube pulling experiments that it was not possible to 

form a tube from GUVs as soon as a detectable amount of proteins was present on the GUV. This pointed 

to a stiffening of the membrane induced by CHMP2B binding and assembling on the GUV surface. The 

elastic properties of the membrane in the absence and in the presence of CHMP2B proteins were 

studied using three different techniques: (i) applying osmotic shocks on GUVs, (ii) micropipette 

aspiration of GUVs and (iii) AFM deformation experiments of SUVs. 

5.2.1 INVESTIGATION OF CHMP2B MECHANICAL PROPERTIES BY APPLYING OSMOTIC 

SHOCKS 

It is well known that bare lipid membranes cannot sustain stretching larger than about 5% (Rawicz, 

Smith et al. 2008), and rupture if the strain is too high (Motta, Gohlke et al. 2015). This is the case when 

GUVs are immersed in a hypo-osmotic buffer. Conversely, in a hyperosmotic medium, GUVs loose 

volume, change shape and even tend to become unstable when the shock is too strong (Bernard, 

Guedeau-Boudeville et al. 2002). Indeed, the increase of the external osmotic pressure induces an efflux 
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of water through the lipid and the water pores, causing a decrease of the volume of the GUV. We thus 

studied how much CHMP2B-coated GUVs resist to hyper-osmotic shocks. As before, we used GUVs 

made of the lipid mixture 5 (10% DOPS, 10% PI(4,5)P2). They were either transferred to the BP buffer 

free of proteins or incubated containing 500 nM of CHMP2B for 15 min in BP (osmolarity equal to 125 

mOsm.L-1). We then applied a hyperosmotic shock by increasing the sodium chloride concentrations in 

the GUV outer medium.  

The effect of the osmotic shock was evaluated using confocal microscopy and measuring the eccentricity 

of the vesicles. The eccentricity is the ratio of the between-foci distance and the major axis length of an 

object. If the semi-major axis is a and the semi-minor axis is b, then the eccentricity is given by: 

 

𝑒 =  √(1 −
𝑏2

𝑎2
) (5-5) 

Eccentricity ranges between 0 (for a circle) and 1 (for a line segment). Thus, a high eccentricity value 

corresponds to a strongly deformed GUV (Figure 5-25).   

 

FIGURE 5-25: CIRCULARITY DEVIATION WITH ECCENTRICITY INCREASE 

Shown are different circularity deviation in function of increasing eccentricity with a and b corresponding to the semi-major 
axis and the semi-minor axis, respectively. 

 

In the control experiments without CHMP2B proteins, the osmotic difference between both sides of the 

membrane caused a strong deformation on the surface of the GUVs. For osmotic shock higher than 20% 

(osmolarity of the external medium= 150 mOsm L-1 versus osmolarity of the inner medium= 120 mOsm 

L-1) we observed a deflation or shrinkage effect on the GUV shape. And for osmotic shock above 50 % 

(osmolarity of the external medium ≥ 190 mOsm.L-1), we observed a net decrease in the number of 

vesicles in the experimental chamber due to their strong instability.  

Figure 5-26 / A (see control) displays the change in shape of the vesicle after their transfer in a solution 

with an osmolarity of 315 mOsm L-1 corresponding to a relative osmotic pressure difference equal to 

150%. Figure 5-26 / B data in magenta display the eccentricity average for bare vesicles. The lowest and 

highest measured eccentricities are shown and are equal to 0.56 and 0.82, respectively. And, the 

eccentricity average is equal to 0.72 ± 0.11, indicating an important deviation in the vesicle circularity. 
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In high contrast, vesicles covered with CHMP2B polymer remained spherical for higher osmotic values. 

Figure 5-26 / A shows a vesicle with a preserved spherical shape after a 150% applied osmotic shock. 

Figure 5-26 /B presents the eccentricity value for CHMP2B-coated vesicles in green. It shows that the 

eccentricity average is equal to 0.35 ± 0.03 with the highest eccentricity value about 0.39 and the lowest 

equal about 0.31. Moreover, vesicles covered with CHMP2B proteins could even stand a 300 % osmotic 

shock with a solution osmolarity equal to 500 mOsm L-1, showing again that CHMP2B polymer assembly 

on the GUV surface prevents the vesicle from deformation. As a conclusion, these observations suggest 

that the CHMP2B protein assembly on the GUV surface probably induces a membrane stiffening which 

preserves it from external stresses. 

 

FIGURE 5-26: HYPEROSMOTIC SHOCKS APPLIED TO VESICLES COVERED WITH CHMP2B PROTEINS 

(A) Hyperosmotic shock (150%) applied to GUVs with or without pre-incubation with CHMP2B-ΔC. Scale bar = 10 µm. 

(B) Eccentricity is measured after 150% osmotic shock for GUVs alone or covered with CHMP2B polymer.  

Note that the reference value for a non-deformed, circular-shaped vesicle is 0. 

*=p-value<0.05 (Student's t-test).  n=40.  

 

 

5.2.2 STUDY OF CHMP2B MECHANICAL PROPERTIES BY MICROPIPETTE ASPIRATION 

We next used the micropipette aspiration technique to further investigate the mechanical properties of 

CHMP2B assembly on the surface of GUVs. Here, the elasticity of lipid membranes is measured on GUVs 

both in the absence and in the presence of CHMP2B proteins, as first described by (Kwok and Evans 

1981). The micropipette aspiration method (see chapter 4.5.1) consists in applying a tension on the 

membrane and measuring its elastic response to the induced stress. The tension can be calculated using 

the Young-Laplace equation (equation 4-6 in chapter 4.1):  

𝜎 =
𝛥𝑃 × 𝑅𝑝

2 (1 − (
𝑅𝑝

𝑅𝑣
))
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Where Rp and Rv are the radius of the pipette and vesicle respectively and ∆P the hydrostatic pressure. 

When the tension increases, the vesicle is aspirated with formation of a characteristic “tongue” (or 

cylindrical part) inside the pipette (Figure 5-27). 

The excess area due to membrane fluctuations α is the difference between the macroscopic area of 

the membrane (A) and the membrane apparent area (Ap). When the GUV is not aspirated, the tension 

on the membrane is minimal (σ = σ0) and the excess area due to fluctuations is maximal (α=α0). On the 

other hand, when the vesicle is aspirated, its membrane tension increases (σ > σ0)  and the excess area 

decreases (α < α0). The observed increase of area upon pipette aspiration ΔA/A0 is thus linked to the 

variation of excess area (equation 4-10 in chapter 4.1): 

∆𝛼 =  
(𝐴𝑎𝑠𝑝 − 𝐴0)

𝐴0
= (

((𝑅𝑝 − 𝑅𝑣)2) − ((𝑅𝑝𝑖𝑝 − 𝑅𝑣)3)

2𝑅𝑝
) × 𝛥𝐿 

 

By plotting the variation of the apparent area Δα versus the membrane tension, in the enthalpic regime 

(for tensions above 0.5 mN.m-1), the stretching modulus can then be extracted from the slope value of 

the curve following (equation 4-13 in chapter 4.1): 

σ ≈ χ 𝛥𝛼 

Where χ is the stretching modulus and Δα the variation of excess area from the reference state.  

 

FIGURE 5-27: SCHEMA OF MICROPIPETTE ASPIRATION FOR THE MEASUREMENT OF MEMBRANE MECHANICAL 

PROPERTIES 

A GUV is held in a micropipette by aspiration. When the aspiration pressure is increased, (from left to right) membrane 
tension increases, which results in an increase in membrane apparent area. 
 

 

For our experiments, preformed PI(4,5)P2-GUVs (lipid mixture 5 with 10% DOPS, 10% PI(4,5)P2) were 

incubated  with 500 nM CHMP2B-ΔC in BP until full coverage of CHMP2B proteins on the GUV surface 

is reached (approximatively 30 min). Then CHMP2B-covered GUVs were aspirated. Vesicle pre-

stretching was not possible due to the presence of the protein.   

Figure 5-28 displays the effect of the tension increase and shows that in the absence of CHMP2B, 

vesicles can be aspirated easily with formation of the characteristic tongue inside the pipette. In 

contrast, CHMP2B-covered GUVs could not be aspirated even at high tensions above 10-3 N.m-1. 

However, during aspiration at high tension, we could sometimes observe an occasional rupture of the 
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CHMP2B-ΔC coat, which allowed the formation of a short tongue inside the micropipette devoid of 

proteins (Figure 5-28), indicating that CHMP2B polymer itself could not be aspirated or deformed.  

Because we did not see any tongue formation in the presence of CHMP2B bound to the GUVs, the 

tension calculation was biased. Indeed, to calculate the membrane tension with the Young-Laplace law, 

it is assumed that the tongue radius (cylinder radius) is equal to the pipette radius, whereas in our case 

the tongue length is less than the pipette radius even at high tensions of the order of 10-3 N.m-1. 

Moreover, for the same reason we could not as well measure the variation in the apparent area Δα. 

Thus, the micropipette aspiration technique was not adapted to measure the stretching modulus 

according to Evan’s theory.  However, even though the technique was not adapted for quantifying the 

membrane bending modulus in the presence of CHMP2B, these results still show that the 

polymerization of CHMP2B-ΔC on the surface of GUVs leads to membrane stiffening and eventually 

explain why tube pulling experiments on GUVs with bound CHMP2B were not feasible.  

 

 

FIGURE 5-28: MEASUREMENT OF CHMP2B RIGIDITY BY MICROPIPETTE ASPIRATION TECHNIQUE 

Representative confocal single-plane images of micropipette aspiration of a bare GUV containing PI(4,5)P2-(left) and of a GUV 

coated with CHMP2B-ΔC (right). Strong aspiration was performed at σ averaging 10-3 N.m-1.  Bottom: Occasional rupture of 

CHMP2B polymer at high tension (σ ≈ 2.10-3 N.m-1) is shown. The white arrow highlights the polymer breakage and tongue 

formation inside the pipette. Scale bar = 10 µm. n=30. 

 

To conclude, our experiments suggest that CHMP2B can drastically modify the membrane elastic 

properties. CHMP2B polymer is strongly bound to the underlying membrane and forms a shell-like 

structure covering the vesicle that confers to the membrane a high stiffness and shape stability and 

resistance to osmotic shocks and external mechanical stresses. 
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5.2.3 STUDY OF CHMP2B MECHANICAL PROPERTIES BY AFM 

To assess if the mechanical rigidity of CHMP2B polymer observed at the micrometer scale is a property 

conserved at nanometer scale, we measured the effect of CHMP2B polymer on the membrane elastic 

properties of SUVs by High-Speed Atomic Force Microscopy (HS-AFM) (see chapter 4.7.1).  

This technique is usually used for direct visualization of dynamic structural changes and dynamic 

processes of functioning biological molecules in physiological solutions, at high spatio-temporal 

resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating the 

understanding of how biological molecules operate. Here, the study of membrane mechanics was 

performed for the first time using HS-AFM technique by Dr. Sourav Maity in Prof. Dr. W. Roos's group.  

Vesicle imaging by HS-AFM involves a very fast point by point tapping locally on the membrane surface. 

The advantage of the tapping mode is that the elastic modulus is independent of the vesicle size in 

contrast with the AFM classical indentation. Indeed, by HS-AFM very fast scanning, each pixel 

corresponds to a local membrane indentation and thus a high throughput measurement. To measure 

the membrane mechanics, the imaging set point is decreased leading to an increase of the damped 

amplitude and tapping force on the vesicle.  As a result to this indentation, the vesicle surface deforms 

and its relative height decreases with the applied force (Figure 5-29/ A). By measuring the difference in 

vesicle height as a response to the local indentation, we thus measured the relative variation of the 

vesicle topology. The mechanical resistance to the local tapping on CHMP2B-free SUVs and CHMP2B-

bound SUVs was characterized (Figure 5-30).  

 

FIGURE 5-29: SUV DEFORMATION BY HS-AFM  

Schematic illustration of the indentation experiment on a vesicle covered with CHMP2B protein by AFM. 

(A) Surface features of indented vesicles. The different frames show vesicle deformability upon increased applied force. 

Vesicles height and width (in nm) are shown.  The increased percentage of force represents the increased relative force during 

vesicle scanning. Imaging started at the minimum force required to acquire an image (around 100 pN) and was increased by 

maximum 81 % force (≈ 180 pN). 

(B) Surface features of an indented vesicle after the applied force returns to the lowest force required for imaging (≈ 100 pN).  
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The size distribution of the vesicles in the chamber ranged from 20 nm to 100 nm. It was difficult to 

perform this experiment (image while increasing force) on larger vesicles due to their higher degree of 

thermal fluctuations, leading to a "parachute effect" or to loss of contact with the cantilever tip during 

the scan and thus limiting the maximum scan speed. We did not observe any significative effect of the 

presence of the protein on the vesicles' size. The only observed outcome was a slight remodelling of the 

surface with a heterogeneous-like aspect of the membrane surface when CHMP2B are bound (Figure 

5-30 / B), in contrast to the smooth-like membrane aspect in the absence of proteins (Figure 5-30 / A).  

Imaging was initially acquired at the minimum required force to image considered as the lowest force 

(or the zero force increment) around 150 pN (Ruan, Miyagi et al. 2017). The force applied to the sample 

was minimized by adjusting the free amplitude to approximatively 10 Å and the imaging amplitude set 

point to almost 90 % (i.e., ≈ 9 Å) of the free amplitude. Then a higher force in roughly 1 Å increment of 

set point amplitude, per data point (≈10 % force increase per data point) was applied. The force 

increment was increased up to approximatively 81 % of the initial value (≈ 250 pN) and then decreased 

back to initial value (back to 0 % force increment). In both cases vesicles were deformed at first and 

then returned back to their original form with a height recovery superior to 80 %, indicating that the 

system behaves as an elastic system and that the measurement (vesicle pressing) was done within the 

elastic limit of the vesicles (Figure 5-29 / B). Therefore, we can apply General Hooke spring law as: 

 
𝑘vesicle* =

𝑓𝑜𝑟𝑐𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
 (5-6) 

Where, kvesicle*  is the relative vesicle stiffness. 

In line with the results obtained with micropipette aspiration experiments, we observed that vesicle 

deformability upon increased applied force is still reduced in the presence of CHMP2B polymer (Figure 

5-30 / C). Figure 5-30 / D shows the variation of the mean relative deformation versus relative force 

increment for the control vesicles (without proteins, in red) and for the protein-covered vesicles (in 

blue), calculated from panel Figure 5-30 /C. The mean deformation is higher in the absence of proteins. 

We also calculated the slope of each curve (equal to 1 𝑘vesicle*
⁄  ) in Figure 5-30 /C (both red and blue 

lines) and comparative histograms are plotted in Figure 5-30 / E. A Gaussian fitting to the histogram 

brings the relative stiffness of the vesicles without CHMP2B (kvesicle*  ≈ 0.3 ± 0.04 A.U.) and covered with 

CHMP2B proteins(kvesicle + CHMP2B* ≈ 0.89 ± 0.07 A.U.). Since, in amplitude modulation (AM) tapping mode 

AFM, the absolute calculation of applied force is difficult, we have investigated the relative stiffness 

rather than absolute values. Now, if kvesicle*  ≈ 0.3 ± 0.04 A.U. and  kvesicle + CHMP2B* ≈ 0.89 ± 0.07 a.u. then, 

kvesicle + CHMP2B*/ kvesicle*  = 0.89 ± 0.07 A.U. / 0.3 ± 0.04 A.U. implies,  kvesicle + CHMP2B* ≈ 3 kvesicle*. Therefore, 

we can conclude that the vesicles covered with CHMP2B proteins are approximately 3 times stiffer than 
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the vesicles without. And, this indicates that the mechanical rigidity of CHMP2B polymer observed at 

the mesoscale is a property conserved at the nanoscale.  

 

 

FIGURE 5-30: AFM DEFORMATION EXPERIMENT ON SUVS COVERED WITH CHMP2B PROTEINS 

(A) AFM image of a vesicle without proteins, prior to deformation. Vesicles height and width (in nm) are shown.   

(B) AFM image of a vesicle coated with CHMP2B proteins, prior to deformation. Vesicles height and width (in nm) are shown.   

(C) Variation of the relative height of the bare vesicles (left, in red) and vesicles coated with CHMP2B (right, in blue) as a function 

of the force increment. 100% height corresponds to the initial height value without deformation, corresponding to 0 % force 

increment. n=31 for each condition. 

(D) Variation of the mean relative height of the vesicles as a function of the force increment for vesicles in the absence and in 

the presence of CHMP2B proteins. 

(E) Distribution of the slopes of the curves plotted in (C). The mean average values are given for both conditions 

. 

5.2.4 MOBILITY OF CHMP2B SUPRAMOLECULAR ASSEMBLY ON GUVS 

We have shown that CHMP2B proteins assemble into networks on membranes that induce membrane 

stiffening. We next aimed at studying the dynamics of these CHMP2B networks and thus the mobility of 

the CHMP2B molecules. We thus performed FRAP experiments on vesicles covered with CHMP2B 

proteins. Figure 5-31 illustrates the experiment. A laser beam focused on a defined region of the vesicle 

(region of interest ROI) irreversibly destroys the fluorescence emission of the fluorescent molecules in 

this area (dark section in square in Figure 5-31 and in Figure 5-32 / A). If molecules diffuse in the 

membrane, or exchange with fluorescent molecules from the bulk, a subsequent recovery of 

fluorescence into the region should occur (Figure 5-31). Recording the changes in CHMP2B fluorescence 

intensity over time within the region yields measurements of the protein mobility (see chapter 4.3.3.1). 

The mobile protein fraction can be quantified by measuring the ratio between the fluorescence intensity 

variation at steady state after recovery in the ROI and the total photobleached sub-population by the 

following (equation 4-3 in chapter 4.3.3) (Reits and Neefjes 2001):  
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𝐴 =
𝐹∞ − 𝐹0

𝐹𝐼 − 𝐹0
 

Where 𝐹∞  is the fluorescence measured after recovery plateau is reached, F0 is the fluorescence 

intensity measured just after photobleaching and Fi is the initial measured fluorescent intensity prior to 

photo-bleaching. 

 

FIGURE 5-31: SCHEMA OF FRAP EXPERIMENT ON CHMP2B COVERED GUVS 

A region of CHMP2B-covered GUV is defined (ROI). The fluorescence intensities of the ROI, before photo-bleaching Fi, after 
photo-bleaching F0 and after recovery F∞ are measured.  
 

GUVs made of the lipid mixture 5 (10% DOPS 10% PI(4,5)P2) were incubated with 500 nM CHMP2B-ΔC 

proteins for 15 to 30 min to obtain a full coverage of CHMP2B on the surface of the giant vesicles. Then, 

vesicles covered with CHMP2B proteins were transferred in the observation chamber with a 10 times 

dilution factor of CHMP2B protein concentration in bulk. Thus, no free CHMP2B protein monomers were 

present in the solution and fluorescence recovery could only be achieved by diffusion of the proteins 

already assembled on the GUV surface.  

 

To follow the protein recovery on the bleached region of GUV surface, confocal images were taken 

before bleaching, after bleaching and during recovery (Figure 5-32 / A). To determine the fraction of 

recovery on the bleached area of the GUV over time we measured using Image J software, the mean 

fluorescence intensity in the defined ROI for each recovery images. The background IB was subtracted. 

And, due to vesicle photobleaching during image acquisition, we normalized the FRAPed region of 

interest by the mean fluorescence intensity measured within a non-FRAPed region of the vesicle taken 

from the last image frame. The measured fraction of recovery over time is plotted in Figure 5-32 / B. 
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Approximately 4 minutes after photobleaching, we observed a very low protein signal recovery on the 

photobleached area (average fraction of recovery equal to 0.085 ± 0.05 at 250 sec after bleaching), 

indicating that once assembled, no exchange of monomers occurs on the membrane surface. It suggests 

that CHMP2B-ΔC assembles into a polymer network or scaffold that is not dynamic at this time (5 min.) 

and space (a few microns) scale. Furthermore, we obtained identical results in the presence of CHMP2B-

FL proteins (average fraction of recovery below 0.1), confirming that CHMP2B-ΔC and CHMP2B-FL both 

form static scaffolds independently of the C-terminal truncation (Figure 5-32 / B).  

 
FIGURE 5-32: FRAP EXPERIMENT TO MEASURE THE DIFFUSION OF CHMP2B-ΔC AND CHMP2B-FL BOUND TO A 

GUV SURFACE 

(A) CHMP2B proteins were photobleached and protein recovery was imaged over time. Yellow square represents the 

photobleached ROI. Scale bar = 10 µm. 

(B) Mean recovery curves for CHMP2B proteins (truncated and full length) over time. The Error bars correspond to the standard 

deviation of the mean recovery. n=60. 

 

 

5.2.5 DIFFUSION OF MEMBRANE-ASSOCIATED PROTEIN ON GUVS COVERED BY CHMP2B 

ASSEMBLIES  

We then wondered if the rigid polymeric structure formed by CHMP2B proteins could also affect the 

lateral diffusion of transmembrane proteins or membrane-associated proteins, a property which might 

be of biological relevance. Indeed, we reasoned that if CHMP2B forms polymeric structures tightly 

bound to PI(4,5)P2 lipids, it might form a barrier for membrane-bound proteins that protrude from the 

membrane surface. As a model system, we used the streptavidin coupled to biotinylated lipids system. 

Streptavidin is a 52.8 kDa non-glycosylated protein that is isolated from bacteria and has a near-neutral 

isoelectric point. It has a very large affinity for biotin (vitamin B7) The streptavidin molecule is about 2-

3 nm high (Yamamoto, Nagura et al. 2009) and has an approximate volume of approximately 105 nm3 

(Lee, Cho et al. 2009). The small size of streptavidin similar to that of membrane associated proteins 

makes it a good candidate to study the effect of the presence of CHMP2B on the dynamics of 

transmembrane or membrane associated proteins. Practically, GUVs containing biotinylated lipids and 
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fully covered with 500 nM CHMP2B proteins were incubated with 500 nM red-labelled fluorescent 

streptavidin for 30 min and streptavidin (coupled to biotinylated lipids) dynamics was measured by FRAP 

(Figure 5-33). 

 

FIGURE 5-33: STREPTAVIDIN DIFFUSION EXPERIMENTS BY FRAP 

Schematic representation of the measurement of streptavidin diffusion on GUVs covered with CHMP2B-ΔC proteins.  

 

The lipid mixture used for this set of experiments is the lipid mixture 5 including 10% PI(4,5)P2 

complemented with 0.1% DSPE-PEG-2000-Biotin. No PE-Rhodamine fluorescent lipid dye was present 

in the lipid mixture to measure the recovery of streptavidin only. Vesicles were grown in a buffer 

containing 50 mM Sucrose, 25 mM NaCl and 25 mM Tris at pH 7.5. Next, the vesicles were transferred 

to BP buffer with 500 nM CHMP2B (Alexa Fluor 488) for 30 min incubation. Half of the CHMP2B-vesicles 

were then transferred to BP buffer containing 500 nM red-labelled streptavidin (Alexa Fluor 561) and 

the other half to BP buffer without any diluted protein (control sample) for 30 min to reach full protein 

coverage.  

We performed FRAP on Alexa 561-labelled streptavidin bound to biotinylated lipids on the surface of 

GUVs. In the absence of CHMP2B, we observed a fast diffusion and recovery of the streptavidin 

molecules leading to full recovery of the streptavidin fluorescence signal on the membrane of the 

bleached ROI (Figure 5-34 / A upper panel). Indeed, in Figure 5-34 / B – magenta curve, more than 60 

% of the streptavidin (coupled to biotinylated lipids) fluorescence signal was recovered in less than 20 

sec (fraction of recovery ≈ 0.64 ± 0.18 at 20 sec) and we measured full recovery in less than a min after 

bleaching (fraction of recovery about 0.87 ± 0.25 only 50 sec). The diffusion coefficient could not be 

calculated due to ROI geometry. Indeed, we did not bleach an almost flat area of the GUV (top or 

bottom), but an area around the equatorial plan; the area of the ROI was thus not well defined.  

 In strong contrast, in the presence of CHMP2B-ΔC polymer, we did not observe any recovery of the 

streptavidin fluorescence signal in the bleached ROI (Figure 5-34 / A lower panel). The fraction of 

streptavidin (coupled to biotinylated lipids) recovery after photobleaching as a function of time 

remained constant and very weak (fraction of recovery about 0.07 ± 0.06 at 270 sec) (Figure 5-34 / B – 

green curve), indicating that the diffusion of streptavidin is almost completely blocked when GUVs are 

covered with CHMP2B proteins.  
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FIGURE 5-34: MOBILITY OF STREPTAVIDIN BOUND TO GUVS COVERED WITH CHMP2B 

(A) Pre-formed vesicles with biotinylated lipids were incubated with CHMP2B-ΔC and streptavidin proteins. The ROI is 
highlighted by the yellow square. Scale bar = 10 µm. 
(B) Fraction of streptavidin recovery after photobleaching as a function of time for vesicles with bound CHMP2B proteins (green 
curve). A control experiment is performed in the absence of CHMP2B-ΔC (magenta curve).  Error bars correspond to the 
standard deviation of the recovery. n = 20.  

 

In these experiments, vesicles were incubated with CHMP2B proteins long enough to reach full coverage 

of the protein on the GUV surface. Next, we wondered if the observed diffusion barrier could be due to 

this full coverage of CHMP2B and if the recovery of streptavidin fluorescence would be modified and / 

or fostered with partial coverage of the protein on the vesicle surface.  

To answer this question, streptavidin recovery had to be measured on vesicles partially covered with 

CHMP2B proteins, i.e. with vesicles wrapped-up with CHMP2B reticulum as described in Figure 5-21. 

Therefore, we repeated the same experiment but decreased the protein-lipid incubation time to 15 min. 

Again, upon photo bleaching, we did not observe any recovery of the fluorescence signal of the red-

labelled streptavidin showing that the protein diffusion was blocked. However, remarkably, 

maintained/prolonged bleaching during image acquisition generated a decrease in fluorescence 

intensity beyond the bleached area, but in a localized zone with non-regular contours (Figure 5-35).  

Normally, in the case of diffusing molecules, a prolonged bleaching on the ROI would first induce the 

loss of the fluorescence of the area nearby, in a homogeneous and regular manner. Then, if bleaching 
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continues, all the diffusing particles on the surface will be bleached and a general loss of fluorescence 

should be observed. In our case, upon continuous bleaching of a small ROI (see yellow square in Figure 

5-35 / A) we also observed a loss of streptavidin fluorescence in a region larger than the ROI, very 

irregular and more or less limited by the polymer "reticulum" (see green irregular shape in Figure 5-35 

/ B). As a consequence, we propose that the streptavidin molecules bound to the biotinylated lipids are 

only able to diffuse within the region delimited by CHMP2B protein network, which is able to confine 

the molecules. Thus, the restriction of streptavidin diffusion can also occur when the CHMP2B does not 

cover membrane in a dense manner. Our experiments suggest that CHMP2B networks probably 

partition the membrane in discrete patches and strongly limit streptavidin diffusion between patches. 

In conclusion, CHMP2B strongly restricts the diffusion of membrane-associated proteins, thus acting as 

a diffusion barrier. Thus, lack of streptavidin diffusion is not due to a high density of CHMP2B protein at 

the membrane. Indeed, CHMP2B reticulum probably prevents streptavidin diffusion and partition the 

membrane in discrete patches. In conclusion, CHMP2B blocks the diffusion of membrane-associated 

proteins, thus acting as a diffusion barrier. 

 

FIGURE 5-35: FLUORESCENCE LOSS OF STREPTAVIDIN UPON CONTINUOUS BLEACHING 

(A) Streptavidin recovery after prolonged photobleaching on biotinylated-GUVs with CHMP2B-ΔC reticulum.  

(B) Outline of the streptavidin fluorescence loss after continuous photobleaching. The yellow square indicates the 

photobleached region and green outline indicates the streptavidin diffusion limited by CHMP2B-ΔC reticulum barrier. 

(C) Schematic illustration of streptavidin diffusion and fluorescence loss during prolonged bleaching. The streptavidin diffusion 

is delimited by CHMP2B protein network. 

 

 

All these sets of experiments allowed us determining the characteristics of CHMP2B interaction with 

lipids. CHMP2B binds irreversibly and specifically to PI(4,5)P2 lipids, clusters them and forms a network 

all over the vesicle surface. CHMP2B polymer is not dynamic and behaves as a diffusion barrier for 

membrane components. Finally, CHMP2B polymer can induce a degree of rigidity to the underneath 

membrane preserving it from external stress and preventing membrane deformation.  
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These results are very striking, since CHMP2B is part of the ESCRT-III complex that remodels membranes 

up to fission. We next compare these characteristics with those of CHMP2A proteins. CHMP2A protein 

is the closest homologous to CHMP2B protein in terms of sequence similarity. Therefore, we repeated 

the same sets of experiments to compare CHMP2A and CHMP2B proteins on model membranes. 

5.3 CHMP2A AND CHMP2B DISPLAY OPPOSITE PROPERTIES ON MODEL 

MEMBRANES 

As detailed in Chapter 3, the hypothesis for the minimal membrane scission machinery is that CHMP4B 

recruits either CHMP2A or B, or CHMP3 together with CHMP2A (Adell and Teis 2011; Adell, Migliano et 

al. 2016). CHMP2A and CHMP2B are both considered as Vps2 human homologs. Both CHMP2A and 

CHMP2B can bind CHMP4B through basic residues (Morita, Sandrin et al. 2011). Yet, even though 

presenting sequence similarity, CHMP2B lacks a MIM domain that is required to bind Vps4 MIT domain. 

To investigate the functional homology of CHMP2A and CHMP2B in the ESCRT machinery, we first 

studied their effect on the elastic properties of model membranes.  

5.3.1 STUDY OF CHMP2A PROTEIN INTERACTION ON MODEL MEMBRANE 

To compare the assembly of CHMP2A proteins with that of CHMP2B proteins on model membranes, we 

first tested the binding of CHMP2A on supported lipid bilayers (SLBs) and next the interaction on the 

surface of giant unilamellar vesicles (GUVs). For the first approach using SLBs, CHMP2A protein 

interaction with different lipid compositions was measured with the QCM-D technique (previously 

described in chapter 4.6.1). For the second approach, FACS was used to measure the affinity of CHMP2A 

proteins towards GUVs containing the different PIPs species (PI(3)P, PI(3,5)P2, PI(4)P and PI(4,5)P2). 

Eventually, SD microscopy was used to study the assembly of CHMP2A proteins on the surface of GUVs. 

The aim of these two different approaches is to (i) confirm by QCM-D that CHMP2A also has higher 

affinity to the membrane when additional negatively charged lipids are added, (ii) check by FACS 

microscopy on GUVs that equivalently to CHMP2B proteins, CHMP2A displays specific binding to 

PI(4,5)P2 and (iii) find out by SD microscopy if CHMP2A assembles similarly to CHMP2B on the surface 

of GUVs by forming a reticulum-like structure.  

For all the GUV sets of experiments, CHMP2A proteins were labelled with Alexa Fluor™ 488 and the 

different lipid mixtures contained PE lipids fluorescently tagged with Rhodamine.  

5.3.1.1 STUDY OF CHMP2A PROTEIN INTERACTION ON SLB 

We used Quartz Crystal Microbalance experiments with Dissipation monitoring (QCM-D) to study and 

compare the interaction of CHMP2A and CHMP2B proteins on supported lipid bilayers (SLBs) made of 

different lipid compositions. After formation of the SLB, CHMP2A-FL proteins were injected in a 
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continuous flow at a concentration of 200 nM in BP buffer until observation of a characteristic plateau 

indicating that protein saturation on the different lipid bilayers (lipid mixtures 1 to 4) is reached. Similarly 

to CHMP2B, CHMP2A proteins show a higher affinity towards the membrane when the percentage of 

negatively charged DOPS lipids is increased from 30 % (light grey bar) to 40 % (dark grey bar) (Figure 

5-36 / A). Also, for equal amount of negative charges in the membrane, CHMP2A proteins show a 

preferential binding towards supported lipid bilayers containing PI(4,5)P2 lipids (blue bar) with almost 

2-fold increase in the adsorbed amount of proteins, as compared to the binding to a 40% DOPS-

containing SLB. Both CHMP2A and CHMP2B reach saturation on PI(4,5)P2- containing bilayers with an 

equal final amount of adsorbed proteins (2 ≈ 50 Hz for both CHMP2A and CHMP2B proteins on 

PI(4,5)P2 SLB meaning that the adsorbed mass is equivalent) (Figure 5-36 / A). We then quantified the 

characteristic time (see chapter 4.6.2) of interaction of CHMP2A and CHMP2B proteins with the 

different lipid mixtures (Figure 5-36 / B). For all tested lipid compositions, we found that CHMP2A has a 

slower interaction rate as compared to CHMP2B proteins. For instance, the characteristic time of 

CHMP2B proteins with a PI(4,5)P2-SLB (blue bar) averages to 50 sec, whereas it is larger than 120 sec 

for CHMP2A proteins (Figure 5-36 / B).  

 
FIGURE 5-36: COMPARISON OF THE AFFINITY OF CHMP2A AND CHMP2B PROTEINS FOR DIFFERENT SLBS WITH 

QCM-D 

(A) Variation of the frequency shift 2 for CHMP2A-FL and CHMP2B-C as a function of the lipid compositions (Light grey: 

30% DOPS; Grey: 40% DOPS; Blue: 10% PI(4,5)P2; Magenta: 10% PI(3,4,5)P3).  n = 5. 

(B) Characteristic time of interaction measured for CHMP2A-FL and CHMP2B-C for various lipid compositions (Grey: 40% PS; 

Blue: PI(4,5)P2; Magenta: PI(3,4,5)P3). n = 5. 

 

 

Apart from measuring the frequency shift 2, the QCM-D technique also enables us to measure the 

dissipation shift ∆D, defined as the fraction of the total energy stored in the oscillator that is dissipated 

during one oscillation cycle. It provides information about the viscoelastic and structural properties of 

the mass coupled to the oscillator by the equation 4-16 in chapter 4.1 :  
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𝑄
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𝐸𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑

𝐸𝑠𝑡𝑜𝑟𝑒𝑑
 

Where Q is the quality factor, Estored and Edissipated are respectively the energy stored and lost during 

one period of oscillation.  

We measured the dissipation shifts ∆D as a function of time after addition of CHMP2A and CHMP2B 

proteins respectively. A decrease in the value of the dissipation shift ∆D corresponds to a stiffer film in 

the presence of the protein whereas an increase in ∆D value indicates a soft film. Table 2 sums up ∆D 

values for CHMP2A and CHMP2B proteins as a function of the different SLB lipid compositions.  For all 

lipid mixtures, dissipation shift values are always higher by almost a factor 2 in the presence of CHMP2A 

proteins as compared to CHMP2B, which implies that the overall structure is looser in this case. For 

PI(4,5)P2– SLBs, at protein saturation, CHMP2A proteins have a dissipation value of 3,2 ± 0.3 (10-6 A.U.) 

against  1,5 ± 0.1 (10-6 A.U.) for CHMP2B proteins (Table 2; Figure 5-37 / A).  

However, to precisely characterize the different adsorption behaviors, one must plot the dissipation as 

a function of the frequency shift. The slope of the dissipation shift versus the frequency shift graph 

characterizes the viscoelastic property of the surface (Höök, Rodahl et al. 1998), a higher slope being 

the signature of a loose structure with more viscous properties whereas a lower slope characterizes a 

more rigid structure. For CHMP2B proteins, the dissipation shift versus the frequency shift curve is linear 

with a slope equal to 0.038 ± 0.005 .106 Hz-1. This very low value is the signature of a rigid structure on 

the QCM-D sensor, possibly due to a strong adsorption of the proteins lying flat on the lipid bilayer 

(Figure 5-37 / B). This is very different for CHMP2, where at least 2 regimes are visible: linear for the low 

frequencies and a plateau at high frequencies, indicating at least two different kinetic processes during 

adsorption. For the low frequency shift, the slope of the curve of CHMP2A bound to PI(4,5)P2-SLB is 

equal to 2.8 10-7 Hz-1 which is close to the reported value of 210-7 Hz-1  for BSA (Bovine Serum Albumine) 

bound to citrate-coated surface (Brewer, Glomm et al. 2005) and where the adsorbed layer is supposed 

to have viscoelastic properties (Figure 5-37 / B). Consequently, during the first stage of the kinetic 

process in the presence of CHMP2A proteins, the membrane overall structure is not stiff in contrast 

with what is observed with CHMP2B proteins.  



146 
 

 

FIGURE 5-37: VISCO-ELASTICITY OF CHMP2 PROTEINS (2A AND 2B) ON A PI(4,5)P2-CONTAINING SLB BY QCM-D 

(A) Variation of the dissipation shift D as a function of time for CHMP2A (black curve) and CHMP2B (green curve) proteins. 

n=5. 

(B) Variation of the dissipation shift D as a function of the frequency shift for CHMP2A proteins (black curve) and CHMP2B 

proteins (green curve). n=5. 

 

TABLE 2: DISSIPATION VALUES FOR CHMP2 PROTEINS IN PRESENCE OF DIFFERENT NEGATIVELY CHARGED SLBS 

Dissipation 
shift (10-6) 

30% DOPS,  
70% DOPC 

40% DOPS, 
60% DOPC 

10% DOPS, 
10%PI(4,5)P2, 80% 

DOPC 

10% DOPS, 
10%PI(3,4,5)P3, 80% 

DOPC 

CHMP2A-FL 1,8 ± 0.1 2,7 ± 0.3 3,2 ± 0.3 1,8 ± 0.1 

CHMP2B-ΔC 1,9 ± 0.1 1,21 ± 0.06 1,5 ± 0.1 0,90 ± 0.04 

 

As a conclusion, we found that CHMP2A and CHMP2B proteins bind similarly the different tested SLBs. 

However, CHMP2A has a slower rate of interaction with the membrane and a softer overall structure in 

contrast with the stiff SLB structure observed in the presence of CHMP2B proteins. 

 

5.3.1.2 CHMP2A AND CHMP2B PROTEINS HAVE A DIFFERENT BINDING AFFINITY FOR 

PI(4,5)P2-GUVS 

In order to compare the two proteins affinity for the different PIP species, we investigated the 

interaction of CHMP2A with GUVs containing different PIPs.  

We have incubated GUVs made of the lipid mixture 5 with 500 nM MBP-CHMP2A-ΔC or CHMP2A-FL 

proteins in BP for 60 min. Surprisingly, we found that with the truncated version of CHMP2A (supposedly 

the active form), almost no binding on GUVs is observed (Figure 5-38 / A upper panel and C). Also, no 

binding at all was observed with CHMP2A-FL. The difference of affinity with our above results on 

supported lipid bilayers with QCM-D with theoretically the same membrane composition could be due 

to variations in the membrane preparation. In the SLB experiments, due to the preparation method 
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(SUVs fused on the substrate), charged lipids are 100 % incorporated in the bilayer, while this is not the 

case for electroformed GUVs. Indeed, we observed with CHMP2B- ΔC that saturation on the membrane 

is reached at 200 nM protein concentration in a short period of time on SLBs, whereas with GUVs, 

saturation was never reached even at high protein concentration (4 µM) and longer incubation time 

(Figure 5-7). Consequently, protein binding is limited in GUVs by the reduced fraction of charged lipids 

in the bilayer. We therefore decided to consider separately these two different techniques for our study 

although the overall obtained results remain complementary. Moreover, the decrease of affinity of 

CHMP2A-ΔC to the GUV membrane in comparison with CHMP2B-ΔC, could also be enhanced by the fact 

that the protein sequence is supplemented with an MBP Tag at the N-terminus. Cleavage of the MBP-

Tag is not possible as it is prevents aggregation of CHMP2A-ΔC protein and stabilizes it. So, perhaps 

because of the presence of the Tag, the N-terminus is no longer accessible and by that protein 

polymerization and interaction with the membrane by insertion of its N-terminal is not possible (see 

chapter 3.3) (Buchkovich, Henne et al. 2013). However, it has been shown that the combination of 

CHMP2A-ΔC and CHMP3-FL co-polymerize to form tubes with dome-like structure in the absence of 

membrane (Lata, Schoehn et al. 2008), but no polymerization occurs for both proteins independently. 

This suggests that these proteins have a strong mutual affinity. Thus, we decided to add CHMP3-FL to 

MBP-CHMP2A-ΔC and study the affinity for the membrane of the complex CHMP2A-CHMP3.  

We prepared GUVs using the lipid mixture 5 (10% DOPS, 10% PI(4,5)P2) and then transferred them to a 

solution made of BP buffer and 500 nM CHMP2A-ΔC + 2 µM CHMP3-FL for 60 min before image 

acquisition. We found that CHMP2A proteins strongly bind GUVs in the presence of CHMP3 proteins 

(Figure 5-38 / A lower panel). The quantification of the fluorescence intensity of CHMP2A proteins on 

GUVs by confocal microscopy shows that the affinity of CHMP2A to the membrane is increased by a 

factor of at least 2.5 in the presence of CHMP3. FACS measurements confirm this observation (Figure 

5-38). Moreover, with this technic that involves a flow, no binding of CHMP2A-ΔC is detected on the 

GUVs when alone in solution. When CHMP3-FL is incubated in the absence of CHMP2A-ΔC, a very weak 

signal is detected with FACS, but as previously observed for CHMP2A-ΔC, binding boosting by a factor 

of about 7 fold occurs when the other component (CHMP2A-ΔC) is present (Figure 5-38 / B and C). 

Therefore, it seems that CHMP2A and CHMP3 mutually enhance each other's binding to the membrane 

in a sort of "positive feedback loop", which is consistent with functional data in vivo showing their 

functional cooperative effect (Morita, Sandrin et al. 2011).  

In addition, to check if CHMP2A + CHMP3 have a preferential binding to one of the PI derivatives, we 

repeated the FACS experiments with the different PIPs. GUVs made of the lipid compositions 6 to 8 were 

co-incubated with 500 nM CHMP2A-ΔC + 2 µM CHMP3-FL for 60 min before FACS acquisition. We 

observed no preferential affinity to a particular specie of PIP derivates, such as for CHMP2B towards 

PI(4,5)P2 lipids (Figure 5-38 / D grey data). Eventually, by SD confocal microscopy we observed the 



148 
 

assembly of CHMP2A + CHMP3 copolymers on GUVs' surface. No reticulum-like structure was observed, 

in contrast to CHMP2B proteins. However structures protruding from the GUV surface are present 

(Figure 5-38 / E, and zoom-in). These structures contain CHMP2A-ΔC, indicating that they might 

correspond to the tubular polymers previously reported (Lata, Schoehn et al. 2008). Lipids fluorescence 

signal is also detected in some of the protruding structures, showing that these protrusions contain both 

proteins and lipids, yet the lipids intensity signal is considerably lower to that of CHMP2A-ΔC proteins 

(Figure 5-38 / E). It might indicate that CHMP2A + CHMP3 are able to induce very thin membrane tubules 

at the surface of the GUVs (thus, the low lipid signal) when assemble into polymers. Nevertheless, these 

tubules are much shorter that those observed at high density in the presence of BAR-domain proteins 

(Sorre, Callan-Jones et al. 2012; Shi and Baumgart 2015).  

 

FIGURE 5-38: CHMP2A + CHMP3 SUPRAMOLECULAR ASSEMBLY ON THE SURFACE OF GUVS 

(A) Binding of MBP-CHMP2A-ΔC + CHMP3 to GUVs containing PI(4,5)P2. A single confocal plane is shown. 

(B) MBP-CHMP2A-ΔC and CHMP3 binding to GUVs containing PI(4,5)P2 by flow cytometry.  ***=p-value<0.001 (Student's t-

test); n=4 (number of FACS experiment with 104 counted event per experiment, per condition). 

(C) Comparison of the binding of MBP-CHMP2A-ΔC + CHMP3-FL co-polymer to the different PIP species with that of CHMP2B- 

ΔC measured by flow cytometry. The values are normalized to binding to DOPS. n=4 (number of FACS experiment with 104 

counted event per experiment, per condition). 

(D) Supramolecular assembly of MBP-CHMP2A-ΔC + CHMP3-FL co-polymer (here, only CHMP2A-ΔC is fluorescent) on GUVs 

containing PI(4,5)P2 lipids. A z-projection is shown including a zoom-in in the right panel, showing short protrusions at the 

surface of the GUV. 
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To further compare the mode of polymerization of CHMP2A (+CHMP3) proteins with that of CHMP2B 

proteins, we worked at a high spatial resolution, using Cryo-EM. CHMP2A-ΔC and CHMP3-FL proteins 

were added respectively at a concentration of 500 nM and 2 µM to pre-formed LUVs (see chapter 4.2.4) 

made of the lipid mixture 5 in the protein binding buffer BP (50 mM NaCl, 25 mM Tris at pH 7.5) and 

kept at room temperature during 60 min. With our LUV preparation and after resuspension of the dried 

lipids (see chapter 4.2.4), we usually obtain a combination of vesicles with some irregular tubular 

membranes (with an average diameter of 30 nm). 

In the absence of proteins, both vesicles and tubes display a smooth contour with a clearly visible bilayer 

(Figure 5-39 / A, see red arrow). In the presence of CHMP2A + CHMP3 proteins regular protein spirals 

can be seen around membrane tubules (Figure 5-39 / A, see blue arrow). In addition, we also observe a 

hairy-like structure at the edge of the vesicles (Figure 5-39 / B see blue square). Moreover, the bilayer 

of vesicles and tubes becomes blurry (see Figure 5-39 / C). These different features confirm that 

CHMP2A + CHMP3 proteins are bound to membranes. The “hairy membrane” aspect can indicate that 

CHMP2A + CHMP3 proteins assemble into short continuous filaments (with a diameter of approximately 

10 nm) on the pre-formed vesicles. However, we did not observe any vesicle deformation or change in 

the tube morphology due to CHMP2A + CHMP3 assembly (Figure 5-39).  

 
FIGURE 5-39: ASSEMBLY OF CHMP2A + CHMP3 ON MEMBRANES IMAGED BY CRYO-EM 

(A) Assembly of CHMP2A-ΔC + CHMP3-FL on tubular membranes. A spiral is visible around the tube (blue arrow). A bilayer 
without proteins is highlighted by the red arrow. 
(B) Image of a hairy structure at the edge of a flattened vesicle. Blue rectangle: zoom-in of CHMP2A-ΔC + CHMP3-FL polymer 
assembling perpendicularly to the membrane axis. Scale bar = 100 nm. 
(C) Image of a small vesicle and a tube with blurry bilayers (blue arrows) indicating the assembly of CHMP2A-ΔC + CHMP3-FL 
co-polymer. 
 
 

To summarize, CHMP2A and CHMP2B display differences in terms of protein-protein interaction and 

interaction with PIPs. First, CHMP2A requires the presence of CHMP3 proteins to strongly bind the 

membrane in contrast with CHMP2B that has a strong binding alone. Secondly, CHMP2A + CHMP3 do 

not have any exclusive preferential interaction to a PI derivatives such as CHMP2B towards PI(4,5)P2 

lipids. Next, the supramolecular assemblies of CHMP2A + CHMP3 and CHMP2B on PI(4,5)P2-GUVs are 

very different since a reticulum-like structure is observed with CHMP2B only. Finally, at the nanoscopic 
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scale, CHMP2B and CHMP2A+CHMP3 also organize differently. While CHMP2B forms rings that 

assemble in a honeycomb-like pattern on membranes, CHMP2A + CHMP3 form short filaments. These 

filaments could correspond to those observed in previous in vitro studies in the absence of membranes 

(Lata, Schoehn et al. 2008; Effantin, Dordor et al. 2013). No purely in vitro data exist for CHMP2B to be 

compared with, besides the formation of very rigid tubes in cells when it is overexpressed (Bodon, 

Chassefeyre et al. 2011). Analysis with Cryo-EM of tubes pelleted from these cells revealed a very 

characteristic striation pattern with circular structures related to CHMP2B regularly aligned 

perpendicular to the tube axis at 3.2 nm and tube diameters ranging between 16 to 80 nm. The authors 

proposed that CHMP2B organized into a helical structure with a regular pitch but a variable diameter. 

Considering the dimensions of CHMP2B rings obtained with AFM and Cryo-EM (1.5 nm thick and about 

16 nm wide), we could also propose that the striations correspond to stacks of CHMP2B rings in the 

narrowest regions, but with variations that could be due to the interaction with other CHMP proteins, 

such as CHMP4. In addition, we could not detect CHMP2B on tubes, but we observed the formation of 

spiral structures with CHMP2A + CHMP3 around straight tubular membranes, different from the 

spiraled tubes previously described in (Effantin, Dordor et al. 2013). In conclusion, CHMP2B and 

CHMP2A+CHMP3 exhibit contrasting properties in terms of protein-lipid affinity and protein-protein 

interaction, as well as supramolecular organization at the mesoscale and at the nanoscale. 

5.3.2 CHMP2A AND CHMP2B PROTEINS DISPLAY OPPOSITE MECHANICAL PROPERTIES 

ON MEMBRANE 

Because CHMP2A+CHMP3 and CHMP2B appear to assemble differently on membranes, we next 

compared the consequence of their binding on the mechanical properties of membranes. We thus 

repeated the micropipette aspiration assay on GUVs in the presence of CHMP2A + CHMP3 proteins. 

We prepared PI(4,5)P2-vesicles made of lipid mixture 5 and co-incubated them with CHMP2A-ΔC + 

CHMP3-FL proteins in BP at a concentration of respectively 500 nM and 2 µM for 60 min. Interestingly 

vesicles were easily deformed during aspiration, in contrast to CHMP2B. In Figure 5-40 / A, we can 

observe an increase of the tongue length inside the micropipette as a response to the tension increase. 

And after release of aspiration, the vesicle returned back to a spherical shape (Figure 5-40 / A). This 

variation of the tongue length in the presence of CHMP2A + CHMP3 proteins translates into a change 

of the vesicle surface before and after aspiration and indicates that the protein-lipid structure is elastic, 

in contrast with CHMP2B protein-lipid very stiff structure. 

In Figure 5-40 / B, the variation of the area Δα in function of the applied tension on the membrane is 

plotted. Unlike CHMP2B, the membrane elastic properties are very moderately perturbed when 

CHMP2A + CHMP3 proteins are bound to the GUV surface. The values of the variation of the apparent 
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area Δα in function of the applied tension on the membrane are close for vesicles free of proteins and 

vesicles covered with CHMP2A-ΔC + CHMP3-FL proteins (Figure 5-40 / B). The slope of the protein-free 

vesicles curve (magenta) plotting the tension versus Δα provides a measurement of the stretching 

modulus χ = 120 ± 0.04 mN/m (coefficient of determination R2 = 0.99). This stretching modulus value is 

lower than the typical phospholipids stretching modulus value of 250 mN/m commonly found in the 

literature (Evans and Needham 1987; Rawicz, Olbrich et al. 2000). We suppose that this difference is 

due to the fact that we do not pre-stretch the vesicles prior to aspiration, keeping thus membrane 

reservoirs. This is visible in the very large range of excess area that can be obtained (more than 10% 

when Δα is normally limited to 5% maximum). This effect is well-known and mentioned in different 

papers from E. Evans. Actually, as our purpose was to compare the membrane elasticity with and 

without proteins, the experimental conditions had to be identical. And because vesicle pre-stretching is 

not possible when CHMP proteins are bound to the membrane, thus we similarly did not pre-stretch 

bare GUVs. For the (CHMP2A + CHMP3)-covered GUVs we measured a slightly lower stiffness (blue) 

with χ = 95 ± 0.06 mN/m (coefficient of determination R2 = 0.97). This indicates that the combination of 

CHMP2A-ΔC + CHMP3-FL proteins might loosen the membrane, perhaps due to the excess area from 

the protein-membrane protrusions induced by the co-polymer on the GUV surface (Figure 5-38). While 

the protein-membrane overall structure in presence of CHMP2B proteins is rigid, it is not in the presence 

of CHMP2A proteins where the membrane elasticity is almost unaltered. Thereby, CHMP2B and 

CHMP2A modulate differently the membrane elasticity. 

 

 
FIGURE 5-40: ASPIRATION EXPERIMENTS PERFORMED ON CHMP2A + CHMP3 CO-POLYMER BINDING TO GUVS 

(A) Mechanical manipulation applied to CHMP2A-ΔC + CHMP3-FL -covered GUV by micropipette aspiration. One confocal plane 

is shown at zero-tension and high-tension.  

(B) Quantification on the variation of the excess area as a function of the applied tension.  The fits of the data are shown (red 

line). n=20. 
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5.3.3 CHMP2A + CHMP3 SUPRAMOLECULAR ASSEMBLY ON MEMBRANE IS DYNAMIC IN 

CONTRAST WITH CHMP2B  

We have shown that CHMP2A + CHMP3 and CHMP2B organize differently on membrane and have 

different effects on its elasticity. We next investigated the dynamics of the CHMP2 + CHMP3 

supramolecular assembly on GUVs by FRAP (see chapter 4.3.3.1).  

We incubated PI(4,5)P2-GUVs (lipid mixture 5) with 500 nM CHMP2A-ΔC proteins and 2 µM CHMP3-FL 

proteins in BP for 60 min to obtain a homogeneous coverage of the proteins on the surface of the 

vesicles. Then, vesicles covered with CHMP2A-ΔC + CHMP3-FL proteins were transferred into the 

observation chamber with a 10 times dilution factor of the protein concentration in bulk to remove free 

protein monomers from the solution. This way, only the diffusion of previously assembled proteins on 

the bleached section of the GUV was measured by FRAP. The experiments were performed with only 

one of the two proteins being fluorescent at a time. And due to the heterogeneity in the size of the 

GUVs in the sample, the defined ROI varied from a vesicle to another (see yellow square in Figure 5-41 

/ A). 

Figure 5-41 / A shows the fluorescence intensities of CHMP2A-ΔC (in blue) and CHMP3-FL (in yellow) in 

the context of CHMP2A + CHMP3 co-assembly and of CHMP2B-ΔC (in green) before FRAP, after FRAP 

and after recovery (350 sec after FRAP).  Upon photobleaching, we observed an almost complete 

recovery of the fluorescence signal for both CHMP2A-ΔC and CHMP3-FL proteins, in less than 2 minutes, 

implying that both proteins diffuse on the membrane in the presence of the other. This result is 

completely opposite to the CHMP2B dynamics that does not recover at all on vesicles.  

Figure 5-41 / B presents the fraction of fluorescence recovery over time for CHMP2A + CHMP3 (in blue) 

and CHMP2B (in green). Note that the error bars in the plot correspond to the standard deviation of the 

measured recovery over time for 42 photobleached GUVs. The errors bars are relatively large due to 

the spreading of the ROI sizes. Indeed, the fluorescence recovery in a small region is faster than in a 

bigger one. The ROI size could not be fixed due to experimental conditions, in particular vesicle size 

heterogeneities and movement in the experimental chamber. For instance, a large ROI is defined on 

moving vesicles to ensure a recovery acquisition over time in case the vesicle rotates. 

Figure 5-41 / B shows that CHMP2A + CHMP3 co-polymer did not fully recover (fraction of recovery 

below 1) with a plateau of recovery at about 0.8.  As explained in chapter 4.3.3.1, this indicates that 

some of the FRAP-bleached proteins in the ROI are immobile and did not contribute to the recovery 

since they are not replaced by unbleached molecules. The fraction of proteins that diffused and 

contributed to the recovery are called mobile fraction and those who did not are called immobile 

fraction and corresponds to A and 1 - A, respectively. Another possibility for the incomplete recovery is 

that the bleached molecules represent a non-negligible fraction of the total number of molecules of the 
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GUV (i.e. the ROI being large as compared to the GUV size); in this case, the total GUV fluorescence is 

reduced and full recovery should correspond to this reduced intensity, not to the initial one. In our 

experiments, we did not correct for the variation of the fluorescence of the GUVs. 

The characteristic diffusion τ1/2  time is measured to characterize and compare the diffusion and thus 

the mobility of proteins knowing the area of the ROI. τ1/2 indicates the time at which half of the 

fluorescence has recovered and is therefore commonly called the half-time. It is calculated from the fit 

of the normalized FRAP curve I(t) with the exponential equation (4-1 in chapter 4.3.3): 

𝐼 = 𝐴(1 − 𝑒−𝜏𝑡) 

Where  

𝜏1/2 =
ln(0.5)

−𝜏
 

The measured mobile fraction from the fit A = 0.85 ± 0.04 A.U. (85% of the proteins are mobile) and τ1/2 

≈ 18 sec. In conclusion, the dynamics of CHMP2A and CHMP2B on GUVs are extremely different. 

CHMP2A and CHMP3 proteins are mobile on the surface of GUVs while CHMP2B proteins are immobile.  

 
FIGURE 5-41: COMPARISON OF THE DIFFUSION OF CHMP2B-ΔC AND OF CHMP2A-ΔC + CHMP3-FL PROTEINS 

BOUND TO GUVS BY FRAP 

 (A) CHMP2A-ΔC + CHMP3-FL and CHMP2B-ΔC are photobleached and fluorescence recovery is imaged over time (350 sec 

after FRAP). Yellow square indicates the photobleached ROI.  

(B) Recovery fraction over time of the mean fluorescence of CHMP2A-ΔC + CHMP3-FL and CHMP2B-ΔC polymers after 

photobleaching. Errors bars correspond to the standard deviation. n=42. 

 

We observed a very characteristic reticulum-like structure for CHMP2B at low surface fraction (see 

Figure 5-21 ), showing a tendency for this protein to assemble over large distances. At higher density, 

these structures probably overlap and cannot be distinguished any more, considering the optical 

resolution of our experiments. Nevertheless, our FRAP results suggest that CHMP2B proteins cannot 

diffuse anymore when these structures are formed, like in a static 2D network.  
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In contrast, CHMP2A and CHMP3 in spite of their tendency to form polymers, obviously do not form any 

entangled network, since recovery occurs. With our photobleaching geometry, we cannot easily extract 

a diffusion coefficient from the recovery time; thus, we cannot conclude whether the proteins move in 

a polymeric form on the GUV surface, or as individual entities. Nonetheless, this demonstrates once 

again that CHM2A and CHMP2B proteins display very different properties on membranes. 

To further compare CHMP2A and CHMP2B assemblies on GUVs and their effect on membrane-

associated proteins such as streptavidin, we repeated the FRAP experiment to membrane-bound 

streptavidin (see section 5.2.5) in the presence of CHMP2A-ΔC + CHMP3-FL. 

 

GUVs were incubated with 500 nM CHMP2A-ΔC + 2 µM CHMP3-FL in BP for 60 min. Following, half of 

the (CHMP2A + CHMP3) - covered vesicles were transferred to BP buffer containing 500 nM red-labelled 

streptavidin (Alexa Fluor 561) and the other half to BP buffer without any diluted protein (control 

sample). (CHMP2A + CHMP3) - vesicles were incubated with streptavidin during 30 min. 

 

We performed FRAP on Alexa 561-labelled streptavidin bound to biotinylated lipids on the surface of 

GUVs. In the presence of CHMP2A + CHMP3 proteins on the membrane, we observed full recovery of 

the streptavidin fluorescence signal in the ROI (Figure 5-42 / A). This indicates that the diffusion of 

streptavidin is not blocked when CHMP2A + CHMP3 proteins are bound to the GUV surface. Figure 5-42 

/ B shows the fraction of streptavidin fluorescence recovery after photobleaching over time for vesicles 

without proteins (magenta curve), vesicles with (CHMP2A + CHMP3) proteins (blue curve) and vesicles 

with CHMP2B proteins (green curve). In the absence of protein, the fraction of mobile streptavidin is 

about 0.99 and the half-time equals τ1/2 ≈ 15 sec (Figure 5-42 / B).  

 

 Similar results were obtained on vesicles covered with CHMP2A + CHMP3 proteins with 0.90 mobile 

proteins and a half-time of 23 sec. The slower recovery of streptavidin is probably due to CHMP2A + 

CHMP3 protein crowding on the membrane. Moreover, the 90 % protein recovery implies that 

CHMP2A-ΔC + CHMP3-FL co-polymers do not significantly affect mobility of streptavidin, meaning that 

the co-polymer does not form a structure that confines streptavidin proteins and pointing to an absence 

of long-distance 2D organization of these proteins. This is completely opposite to the diffusion in the 

presence of CHMP2B, probably forming a dense entangled network on the membrane. To sum up, these 

FRAP experiments performed on streptavidin show again opposite results between CHMP2B and 

CHMP2A (+ CHMP3) proteins and further stress the difference between these two proteins.  
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FIGURE 5-42: FRAP MEASUREMENTS OF STREPTAVIDIN-BOUND TO GUVS CONTAINING ESCRT PROTEINS 

Streptavidin recovery after photobleaching on biotinylated-GUVs.  

(A) Photobleaching of streptavidin bound to GUVs previously covered with CHMP2A-ΔC + CHMP3-FL and CHMP2B-ΔC. The 

recovery of the fluorescence of streptavidin over time (300 sec after FRAP) is imaged by confocal microscopy. The yellow square 

indicates the photobleached ROI. 

(B) Recovery fraction over time of streptavidin for different conditions. Error bars correspond to the standard deviation of the 

fraction of recovery of the photo-bleached ROI. n = 50.  

 

5.4 CHMP3 PERTURBS CHMP2B POLYMERIZATION AND ASSEMBLY ON 

MEMBRANES 

As described previously, we found that CHMP2A has very weak interactions with membrane unless 

CHMP3 is present. We next addressed the question of the effect of CHMP3 on CHMP2B. We also 

wondered if the differences observed between CHMP2A and CHMP2B proteins could be due to the 

presence of CHMP3 proteins in the experiments with CHMP2A. We have thus studied the effect of the 

co-incubation of CHMP3 proteins with CHMP2B proteins on GUVs. In this chapter we have used SD and 

FRAP confocal microscopy techniques to study the assembly and mechanical properties of CHMP2B-ΔC 

+ CHMP3-FL co-polymer on GUVs. We will (i) characterize the supramolecular assembly of (CHMP2B + 

CHMP3) co-polymer on the surface of GUVs, (ii) study the co-polymer dynamics and (iii) check the effect 

of the addition of CHMP3 on the membrane mechanical properties by CHMP2B-ΔC. 

5.4.1 CHMP3 BLOCKS CHMP2B POLYMERIZATION ON MEMBRANES 

We first studied the effect of CHMP3 on the polymerization of CHMP2B proteins on GUVs. We incubated 

PI(4,5)P2-GUVs made of the lipid mixture 5 with 500 nM CHMP2B-ΔC proteins and 2 µM CHMP3-FL in 

BP buffer for 60 min. By SD confocal microscopy, we observed that unlike results obtained with 

CHMP2A, the addition of CHMP3 together with CHMP2B results in reduced CHMP2B binding to the 

surface of the vesicles (Figure 5-43 / A). Figure 5-43 / B shows the quantification of the fluorescence 

signal of CHMP2B proteins on GUVs in the absence and in the presence of CHMP3. It indicates a 

decrease of CHMP2B fluorescence intensity by a factor of 2 when CHMP3 is co-incubated with CHMP2B. 
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In addition, FACS measurements allowed to compare the interactions with PI(4,5)P2-vesicles with 

CHMP2B-ΔC, CHMP3-FL, CHMP2B alone or in combination. They show in particular that the interaction 

of CHMP2B is stronger in the absence of CHMP3, but conversely, that CHMP3 affinity is enhanced in the 

presence of CHMP2B (Figure 5-43 / C). Figure 5-43 / D shows one single confocal plane image of the 

binding of CHMP3 on GUVs. In the absence of CHMP2B (in green) we could not detect any signal for 

CHMP3 binding. In contrast, when both proteins are co-incubated, CHMP3 is bound to the membrane 

and in perfect co-localization with CHMP2B (in yellow). These results confirm that CHMP3 proteins 

require the presence of CHMP2A or CHMP2B to bind the membrane. However, when associated to 

CHMP2A, CHMP3 binding is stronger than in association with CHMP2B. We propose that CHMP3 plays 

a double role: while CHMP3 increases the affinity of CHMP2A to the membrane consistent with their 

synergistic role in HIV budding, it interferes with CHMP2B polymer formation in agreement with their 

lack of synergy in the virus egress. In summary, while CHMP3 amplifies CHMP2A binding to the 

membrane, it might also refrain CHMP2B polymerization. 

 

FIGURE 5-43: SUPRAMOLECULAR ASSEMBLY OF CHMP2B + CHMP3 PROTEINS ON GUVS 

(A) Supramolecular assembly of CHMP2B-ΔC in the presence of CHMP3-FL on the surface of a GUV containing PI(4,5)P2 lipids.  

A z-projection is shown. 

(B) Effect of CHMP3 on CHMP2B-ΔC binding to GUVs containing PI(4,5)P2 lipids obtained from the quantification using cell 

profiler software of CHMP2B fluorescence from images taken by SD confocal microscopy. Fluorescence intensity of CHMP2B-

ΔC + CHMP3-FL-covered vesicles was normalized to the fluorescence intensity of CHMP2B-ΔC-covered vesicles. ***=p-

value<0.001 (Student's t-test). n= 48. 

(C) Quantification by FACS of the fluorescence intensities of CHMP2A-ΔC ± CHMP3, CHMP2B-ΔC ± CHMP3 and CHMP3 ± 

CHMP2A/B-ΔC co-polymers bound to PI(4,5)P2-containing GUVs. *=p-value<0.05; ** = p-value < 0.01; ***=p-value<0.001 

(Student's t-test). n=4 (number of FACS experiment with 104 counted event per experiment, per condition). 

(D) Effect of CHMP2A and CHMP2B-ΔC co-incubation with CHMP3-FL on the binding of each protein to GUVs containing 

PI(4,5)P2. A single confocal plane is shown. Scale bar = 10 µm. 
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5.4.2 CHMP2B + CHMP3 SUPRAMOLECULAR ASSEMBLY IS NOT DYNAMIC 

We showed in chapter 5.2.4 that CHMP2B alone forms a very stable and static network over GUVs. To 

study whether the presence of CHMP3 changes the assembly dynamics, we incubated GUVs made of 

the lipid mixture 5 with 500 nM CHMP2B-ΔC proteins and 2 µM CHMP3-FL proteins in BP for 60 min. 

Then, vesicles covered with CHMP2B-ΔC + CHMP3-FL co-polymer were transferred in the observation 

chamber to perform FRAP experiment.  

 

Measurement of CHMP2B-ΔC and CHMP3-FL recovery after photo-bleaching shows that CHMP3 does 

not affect CHMP2B-ΔC dynamics on the membrane. We observed no recovery of the fluorescence signal 

of both CHMP2B and CHMP3 in the photobleached region when present together (Figure 5-44 / A, see 

yellow square). The quantification of the fraction of recovery of CHMP2B with and without CHMP3 in 

Figure 5-44 / B (about 3% in 5 minutes), very similar to CHMP2B alone, confirms that the addition of 

CHMP3 has no effect on the CHMP2B assembly stability. Interestingly, while CHMP3 freely diffuses and 

fully recovers after photobleaching when associated to CHMP2A-ΔC, it does not recover when 

associated to CHMP2B-ΔC.  

In conclusion of this part, CHMP3 protein binding depends on CHMP2B and its dynamics follows that of 

the CHMP2B assembly, suggesting that either CHMP3 copolymerize with CHMP2B or binds onto the 

CHMP2B network assembly.  

 

FIGURE 5-44: PHOTOBLEACHING EXPERIMENTS PERFORMED ON CHMP2B + CHMP3 ASSEMBLIES BOUND TO A 

GUV SURFACE 

(A) FRAP experiment on CHMP2B-ΔC + CHMP3-FL co-polymer. Both proteins were photo-bleached at the same time. Yellow 

squares indicate the photobleached. 

(B) Time variation of the recovery fraction of CHMP2B in the presence and in the absence of CHMP3. Error bars correspond to 

the standard deviation. n=18. 
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5.4.3 CHMP3 MODULATES THE MECHANICAL PROPERTIES OF CHMP2B POLYMERS 

Next we tested if, in addition to limiting CHMP2B polymerization, CHMP3 co-assembly affects CHMP2B 

mechanical properties on the membrane. We therefore prepared GUVs made of lipid mixture 5 (10% 

DOPS, 10% PI(4.5)P2) and incubated them in BP for 30 min with 500 nM CHMP2B-ΔC proteins. Then, 

GUVs were transferred to a solution of BP buffer + 2 µM CHMP3-FL. We chose to add CHMP3 proteins 

after complete assembly of CHMP2B proteins on the vesicle to observe the direct effect of CHMP3 on 

CHMP2B polymer and consequently on the membrane mechanical properties.   

As seen previously in chapter 5.2.2, CHMP2B alone is able to stiffen the underlying membrane and to 

prevent its deformation by micropipette aspiration. Surprisingly, incubation of a pre-formed CHMP2B-

ΔC polymer with CHMP3-FL results in the loosening of the CHMP2B-ΔC "shell", which can now be 

deformed by micropipette aspiration (Figure 5-45 / A). CHMP3 proteins can thus weaken the CHMP2B 

proteins rigid structure, which can be systematically broken by micropipette aspiration (Figure 5-45 / A 

and B). This softening/weakening of the CHMP2B shell allows CHMP2B polymer breakage and thus the 

aspiration of a lipid tongue but deprived of protein (Figure 5-45 / A – top panel). Occasionally, CHMP2B 

+ CHMP3 polymer deformation occurs and a tongue covered with both proteins can be detected (Figure 

5-45 / A – lower panel).  

Figure 5-45 / B shows the percentage of aspirated vesicles in the presence of CHMP2B only or in the 

presence of CHMP2B + CHMP3. It clearly indicates that while less than 20 % of the CHMP2B-coated 

GUVs could be aspirated in the absence of CHMP3, probably after occasional shell rupture (see chapter 

5.2.2), almost 100 % of the CHMP2B-coated GUVs could be aspirated when CHMP3 proteins are added 

(CHMP2B polymer weakening). Unfortunately because of the strong adhesion of CHMP2B to the 

micropipette glass surface (see for instance, in Figure 5-45 / A, the green CHMP2B fluorescence 

detected on the pipette), the membrane strongly adhered to the pipette during all the aspiration 

process and measurements of the variation of the apparent area Δα as a function of the increasing 

applied tension on the membrane were biased. Globally, this suggests that the CHMP2B-CHMP3 

assembly on the membrane is much more deformable than CHMP2B alone.  

 

Hence, CHMP3 proteins need to co-assemble with CHMP2A or CHMP2B proteins to bind membranes. 

However, CHMP3 proteins induce opposite effects upon interaction with CHM2A or CHMP2B proteins. 

On the one hand, they strikingly increase CHMP2A affinity towards the membrane, and on the other 

hand, they perturb CHMP2B polymerization and weaken the polymer stiffness. 
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FIGURE 5-45: INVESTIGATION OF THE MECHANICAL PROPERTIES OF THE CHMP2B + CHMP3 ASSEMBLY ON 

VESICLES   

(A) Micropipette aspiration of 2 GUVs covered with a pre-formed CHMP2B-ΔC polymer subsequently incubated with CHMP3-

FL. Top: no CHMP2B, nor CHMP3, are visible on the tongue (Note that on this image, proteins were covering the surface of the 

micropipette. Bottom: Both CHMP2B and CHMP3 are present on the aspirated tongue. Yellow arrow shows that CHMP2B is 

present on the tongue inside the micropipette.  

(B) Percentage of aspirated GUVs. Comparison between CHMP2B and pre-assembled CHMP2B incubated with CHMP3. n=14. 

 

In conclusion of the sections 4.1, 4.1 and 5.4, even though CHMP2B and CHMP2A have been so far 

expected to be functionally and structurally homologous, both their organization and their resulting 

biophysical properties are different as summed-up in the following table: 
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(i) From a phylogenetic point of view, CHMP2A and CHMP2B are different. CHMP2A sequence 

comprises a MIM domain, crucial for the AAA-ATPase VPS4 binding, but CHMP2B not.  

(ii) CHMP2A does not display any preferential affinity to PI(4,5)P2 lipids in strong contrast with 

CHMP2B proteins. 

(iii) CHMP2A requires the presence of CHMP3 to bind to lipid membranes and vice versa, 

whereas CHMP2B binds alone, with a strong affinity for PiP2-containing membranes, and its 

binding is diminished in the presence of CHMP3.  

(iv) At the micron scale, their assemblies are much contrasted. CHMP2B proteins form a 

reticulum-like stable network on membranes while CHMP2A (combined with CHMP3) binds 

in a homogeneous fashion. The CHMP2B network on membranes is very stable and can 

confine membrane-associated proteins, whereas the CHMP2A+CHMP3 assembly is very 

dynamic and does not significantly perturb diffusion. 

(v) At the nanoscale, significant differences are observed as well, using Cryo-EM. CHMP2B 

forms rings that assemble into a dense honeycomb-like pattern on "flat" membranes while 

CHMP2A + CHMP3 bind the membrane as short filaments and form helical structures 

around tubules.  

(vi) Finally, CHMP2B alters dramatically the mechanical properties of membranes. It strongly 

rigidifies membranes at the mesoscale and also at the nanoscale as observed by 

micropipette assays and by AFM, respectively. In contrast, the CHMP2A+CHMP3 assembly 

is softer than CHMP2B alone, as observed with the micropipette aspiration experiments.  

Therefore, CHMP2A and CHMP2B cannot be considered as functional homologues and occupy the same 

role in the human ESCRT-III machinery, which is perhaps the reason why they require a distinctively 

opposite mode of regulation by CHMP3.  

5.5 CHMP2A AND CHMP2B MODULATE CHMP4B ASSEMBLY ON MEMBRANES 

CHMP4 is the most abundant ESCRT-III subunits. According to several studies in yeast, CHMP4 is 

responsible for the recruitment of CHMP2A or CHMP2B, or CHMP3 together with CHMP2A complex 

(Babst, Katzmann et al. 2002; Teis, Saksena et al. 2008; Adell and Teis 2011; Adell, Migliano et al. 2016).  

This motivated us to first characterize the interaction and mechanics of CHMP4 on PI(4,5)P2 membranes 

by SD microscopy and micropipette aspiration, respectively. Then, we observed by EM and AFM the 

effect of the addition of CHMP2A (+CHMP3) or CHMP2B proteins on CHMP4 assembly on membranes.  
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5.5.1 CHMP4B ASSEMBLY ON MEMBRANES 

Recombinant human CHMP4B was purified with an N-terminal MBP Tag that can be removed by 

incubation with TEV protease (at a ratio of CHMP4B : TEV of 3 to 1). For the yeast homologue Snf7, It is 

known that the interaction with membranes is achieved by insertion of its N-terminal (Buchkovich, 

Henne et al. 2013). The presence of the MBP Tag on the N-terminus of CHMP4 blocks its interaction 

with the membrane.  

 

Figure 5-46 / A shows in the upper panel that the fluorescence signal of the protein (blue) is very weak 

when the MBP tagged CHMP4 is not cleaved. However, when the MBP tag is removed, CHMP4B binds 

to membranes (Figure 5-46 / A, lower panel). Thus, in the following, the MBP tag is systematically 

cleaved for the experiments. As we did for the other CHMP proteins, we have investigated the affinity 

of CHMP4 to the different PIP species with FACS.  

 

Interestingly, CHMP4B does not show any preferences toward any particular phosphoinositide. CHMP4 

binds equally all the negatively charged lipids including DOPS as shown on Figure 5-46 / B that provides 

a comparison with the other CHMPs. From this figure, we conclude that only CHMP2B exhibits 

preferential affinity to PI(4,5)P2.  

 

This is on line with CHMP2B playing a role in membrane scission and reparation processes essentially at 

the plasma membrane where these lipids are enriched. 

 

FIGURE 5-46: CHMP4B BINDING TO MEMBRANE 

(A) Comparison between MBP-CHMP4B and CHMP4B binding to PI(4,5)P2-GUVs , showing that it is  essential to cleave the MBP 

tag. 

(B) Comparison between CHMP2B, CHMP2A + CHMP3 and CHMP4B proteins for their affinity to different PIP species, measured 

by FACS. 
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5.5.1.1 CHMP4B ALONE FORMS SPIRALS ON FLAT MEMBRANES 

Using LUVs, we aimed at testing whether CHMP4 deforms biomimetic membranes in 3D (i.e. tubulates) 

as suggested in the published theoretical models (Henne, Buchkovich et al. 2012; Chiaruttini, Redondo-

Morata et al. 2015). We thus studied the effect of CHMP4 polymerization on solid membrane surfaces 

(SLBs) and on quasi-flat and easily deformable membranes (GUVs).  

We prepared LUVs (made of the lipid mixture 5) as mentioned in chapter 4.2.4 and incubated them in 

BP with 500 mM CHMP4B (with TEV protease to cleave the MBP tag) for 15 min. Then, we imaged 

CHMP4B assembly on membrane using both AFM and Cryo-EM microscopy (experimental conditions 

for Cryo-EM and AFM experiments are respectively described in chapter 4.4.2  and in chapter 4.7.2).  

 

By AFM, on supported lipid bilayers, we observed that CHMP4B proteins self-assemble into spirals 

without deforming the membrane in 3D (Figure 5-47 / A). Similarly, by Cryo-EM on vesicles we visualized 

flat spirals (200 - 300 nm of external diameter) (Figure 5-47 / B). And likewise, CHMP4B proteins did not 

deform the membrane; they did not induce any membrane tubulation (Figure 5-47 / B) and rather 

flatten the surface of the LUV as shown in Figure 5-47 / C with a Cryo-tomograph. With AFM, we 

measured the mean value of the spiral center diameter and found approximately 29 nm (Figure 5-47 / 

A – see bottom section “2”, magenta line and respective quantification). This measured value is 

consistent with earlier published studies by HS-AFM on Snf7, the yeast homologue of CHMP4 

(Chiaruttini, Redondo-Morata et al. 2015). The authors show that Snf7 is as well forms spirals with a 

preferred radius of curvature of 25 - 30 nm. They also show that this radius decreases to about 14 nm 

when the spiraling increases from 2 to 3 concentric circles with an average innermost circle radii equal 

to 18 ± 3 nm. We also measured the peak to peak distance by AFM (mean value = 11.3 ± 0.2 nm) (Figure 

5-47 / A - see top section “1”, cyan line and respective quantification) and the mean distance between 

filaments within a spiral by Cryo-EM (mean value = 7.2 ± 1.4 nm) (Figure 5-47 / B).  
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FIGURE 5-47: CHMP4B FORMS SPIRAL STRUCTURES ON MEMBRANES 

(A) Representative image of CHMP4B assembly on Supported Lipid Bilayer (SLB) imaged by High-Speed Atomic Force 

Microscopy (HS-AFM). 2 z-profiles corresponding to the magenta and cyan sections in the left image Scale bar: 100nm. 

Distribution of the spiral peak to peak distance as measured from the cyan line in the top section. Distribution of the diameter 

of the spiral center as measured from the magenta line in the bottom section. 

(B) Representative Cryo-Electron Microscopy (EM) image showing the assembly of CHMP4B on vesicles. Scale bar = 100 nm. 

Distribution of interfilament filament distances as measured by Cryo-EM is shown. 

(C) Cryo-EM tomogram depicting CHMP4B assembly on vesicles. Colour code: yellow: lipids; red: CHMP4B assembly on lipids; 

blue: CHMP4B assembly on EM grid. Scale bar = 100 nm. 

 

In the initial vesicle preparation for EM experiments, it is possible to have some tubular structures with 

a percentage of 15.6 ± 3.4 % in the absence of proteins (from a quantification of 15 EM images with 

a total of 265 counted structures: 225 vesicles versus 40 tubular structures). By Cryo-EM, we 

observed tubular irregular structures with diameters of about 35 nm covered by CHMP4 polymers 

(Figure 5-48 / A). The percentage of tubular structures  increases weakly in the presence of CHMP4B 

and is about 20.4 ± 14.2 % (from a quantification of 15 EM images with a total of 265 counted 

structures: 214 vesicles versus 51 tubular structures). These tubes are generally not straight but 

present some helicity when they are thin enough (below 50 nm), although not regular. Onto those 

tubes, we found CHMP4 polymers either oriented parallel to the main axis of the tube or randomly 

oriented on tubes with a diameter above 40 - 50 nm (Figure 5-48 / A). We also have used preformed 

rigid nanotubes of 25 nm diameter made of galactosylceramide lipids (Galcer tubes) (Mears and 

Hinshaw 2008). Interestingly, we see that when a tube cannot be deformed, CHMP4 are almost straight 

on the rigid Galcer tubes, i.e. twisted with a very large pitch. These polymers are either single or can 

form bundles (Figure 5-48 / B). Globally, these experiments show that when a tube is preformed, CHMP4 

can assemble on its surface, thus on a membrane with a positive curvature. It forms filaments that are 
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either (i) parallel to the main tube axis and induce some helicity of the tubular structure on flexible 

tubes, or (ii) weakly twisted around the tubes on rigid tubes. 

 

FIGURE 5-48: ASSEMBLY OF CHMP4B POLYMERS ALONG TUBES 

(A) Cryo-EM image showing the assembly of CHMP4B on soft (unconstrained) preformed tubular membrane. Scale bar = 100 

nm. 

(B) Cryo-EM image showing the assembly of CHMP4B on rigid tubular membrane with a 25 nm diameter. Black dots correspond 

to gold beads used for Cryo-tomography. Scale bar = 100 nm. 

 

5.5.1.2 MECHANICAL PROPERTIES OF GUVS COATED WITH CHMP4B  

To investigate the mechanical proprieties of CHMP2B-ΔC and CHMP4B co-assemblies, we first analyzed 

the mode of assembly of CHMP4B on PI(4,5)P2-GUVs made of the lipid mixture 5. CHMP4B at a 

concentration of 500 nM binds homogeneously the GUV membrane in BP buffer, in agreement with 

published data showing as well a homogeneous fluorescence of the yeast homologue protein Snf7 on 

GUVs (Chiaruttini, Redondo-Morata et al. 2015).   

Very importantly, although some protein clusters are visible; no spontaneous membrane tubulation was 

visible at the surface of the GUV (Figure 5-49).  

 

FIGURE 5-49: CHMP4B BINDING ON THE SURFACE OF GUVS. 

Assembly of CHMP4B polymers on GUVs containing PI(4,5)P2 lipids. A z-projection is shown. Scale bar = 10 µm. 
 

Next, to investigate the effect of CHMP4B on membrane elasticity, we performed micropipette 

aspiration experiments of GUVs covered with CHMP4B and compared them with CHMP2B micropipette 

aspiration experiments. As described in chapter 5.2.2, CHMP2B-ΔC polymerization on the surface of 

GUVs impedes aspiration of the membrane even at high tension (σ = 0.6 mN.m-1) (Figure 5-50 / A), 

clearly indicating that CHMP2B makes the membrane very stiff. In contrast, GUVs coated with CHMP4B 
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can be aspirated easily with an apparition of the “characteristic tongue” inside the pipette (Figure 5-50 

/ B). Interestingly, the CHMP4B-coated GUVs keep a deformed shape after being released for the 

micropipette (Figure 5-50 / C), suggesting that the membrane acquires a plastic behaviour when CHMP4 

polymerizes at its surface. This result is again in agreement with Chiaruttini et al. results showing a Snf7- 

coated GUV plastic behaviour after micropipette aspiration release (Chiaruttini, Redondo-Morata et al. 

2015).  

 
FIGURE 5-50: IMAGES OF ASPIRATION EXPERIMENTS ON CHMP2B AND CHMP4B BOUND TO GUVS  

(A) Micropipette aspiration of a GUV incubated with CHMP2B-ΔC (green) at different aspiration pressures: zero (top), medium 

(middle, σ = 0.4 mN/m) and maximum (bottom, σ = 0.6 mN/m). The corresponding image of the lipids (magenta) is shown. 

Scale bar = 10 µm. 

(B) Micropipette aspiration of a GUV incubated with CHMP4B polymer (cyan). Same pressures as above. Scale bar = 10 µm. 

(C) Single confocal plane images of a GUV incubated with CHMP4B polymer (cyan) after aspiration release. Scale bar = 10 µm. 

Moreover, micropipette aspiration assays on vesicles covered with CHMP4B polymer proved that 

CHMP4B binding does not significantly change the membrane elastic properties compared to bare 

membranes. The quantification of the slope of the plot of tension versus excess area Δα in Figure 5-51 

/ A shows that the stretching modulus of vesicles without proteins (magenta) and CHMP4-GUVs (blue 

curve) are close (χlipids = 120 ± 0.04 mN/m, coefficient of determination R2=0.99 and χCHMP4B = 113 ± 0.07 

mN/m, coefficient of determination R2=0.98). Importantly, when we checked the effect of addition of 

CHMP2B to CHMP4B (green), we observed a stiffening of the overall structure (Figure 5-51 / B). The 

measured stretching modulus of CHMP4B-covered GUVs is equal to χCHMP4B = 113 ± 0.07 mN/m, 

coefficient of determination R2=0.99 versus χCHMP4B+CHMP2B = 326 ± 0.15 mN/m for CHMP4B+CHMP2B-

covered vesicles, coefficient of determination R2=0.99 (Figure 5-51 / B). This 3-fold increase in the 

membrane stretching modulus signifies that the pre-existing CHMP4 polymer can also be rigidified by 

CHMP2B polymer, but conversely, it implies that in the presence of CHMP4, the membrane covered 

with CHMP2B is softened. 
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FIGURE 5-51: COMPARISON OF MICROPIPETTE ASPIRATION EXPERIMENTS WITH CHMP4B AND CHMP2B 

Micropipette aspiration on a GUV sequentially incubated with CHMP4B and CHMP2B-ΔC.  

(A) Variation of the excess area as a function of the applied tension for GUVs coated with CHMP4B proteins and bare GUVs as 

a comparison. Fits are in red. n=25. 

(B) Comparison of the stretching experiments for GUVs coated with CHMP4B alone and CHMP4B + CHMP2B.Fits are in red. 

 n=18. 

 

As we did before for the other components, we next compared the mobility of CHMP2B and CHMP4B 

on the surface of GUVs. We prepared GUVs with the lipid mixture 5 and then incubated them in BP 

(NaCl 50 mM, Tris 25 mM at pH 7.5) for 30 min with CHMP4B or CHMP2B to reach full coverage of the 

polymer on the membrane. Once full coverage was reached, we diluted the vesicles with bound 

CHMP2B or CHMP4B proteins in BP, then, transferred them to the observation chamber and proceeded 

to the FRAP experiments.  

 

As seen previously in chapter 5.2.4, upon photobleaching, CHMP2B-ΔC does not diffuse on the 

membrane surface, indicating that, once assembled, CHMP2B-ΔC polymer is no more dynamic. In 

contrast, the fluorescence signal of CHMP4B proteins recovers after photobleaching (Figure 5-52 / A) 

with CHMP4B mobile fraction about 25 % with τ1/2 around 23 sec).  

 

This result proves that the CHMP4B proteins diffuse on the surface of the GUV. If we consider based on 

our AFM and EM images that CHMP4B forms spirals on membranes, our FRAP measurements suggest 

that these structures can move independently relative to each other but slowly considering their size 

and the crowding of the surface. 
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FIGURE 5-52: FRAP EXPERIMENTS ON CHMP4B VERSUS CHMP2B PROTEINS BOUND TO GUVS 

FRAP experiments on vesicles covered either with CHMP2B-ΔC or CHMP4B. 

(A) Confocal images showing fluorescence recovery for CHMP2B-ΔC and CHMP4B protein polymers after photobleaching. 

Yellow squares indicate the photobleached ROIs. White arrow shows the loss of fluorescence in an unbleached area of the 

GUV. Scale bar = 10 µm. 

(B) Recovery versus time after photo-bleaching of CHMP2B-ΔC and CHMP4B polymers. n=45 

 

5.5.2 CHMP2B DISORGANIZES CHMP4B SPIRALS ON FLAT SURFACES 

We incubated CHMP4B-covered LUVs with CHMP2B and imaged the effect of the addition of CHMP2B 

by Cryo-EM. We observed a noticeable change in the arrangement of CHMP4B filaments (Figure 5-53 / 

A). On flat deformable LUVs, CHMP4B/CHMP2B spirals appear enlarged, with increased spacing 

between filaments. On average, the spacing between filaments within the spirals is larger than for 

CHMP4B alone: a mean value of 8.1 ± 1.8 nm versus 7.2 ± 1.4 nm, respectively (Figure 5-53 / A).  

By HS-AFM, we also observed perturbations of the CHMP4B spirals on the membrane-coated mica 

support.  We first formed CHMP4 spirals on the SLB then added CHMP2B proteins. With HS-AFM, we 

could follow the changes live. A reorganization of the spiral is observed when CHMP2B is added on SLB 

membrane bound CHMP4B (Figure 5-53 / B). CHMP4B spirals are locally disrupted, with some filaments 

pushed away and other compressed; the spirals thus become very irregular (Figure 5-53). We 

characterized the changes in the filament organization by measuring the spiral interfilament distance in 

the regions away from the “holes” appearing when CHMP2B is added, i.e. (see red section "4" in Figure 

5-53 / B and C). Quantification of the filament distances indicates a mean value of 8.8 ± 0.2 nm. Sections 

were also performed at the position of the hole/disturbance of the spiral (see green section "3" in Figure 

5-53 / B and C) showing a larger local distance between filaments 13.7±1.7 nm. We also observe that 

addition of CHMP2B leads to the enlargement of the diameter of the spiral center to 40.6 ± 1.3 nm (see 

blue section "5" in Figure 5-53 / B and C). 



168 
 

 
FIGURE 5-53: EFFECT OF CHMP2B ON CHMP4B POLYMERIZATION ON MEMBRANE 

(A) Cryo-EM image showing the modulation of CHMP4B spirals on LUV membrane by addition of CHMP2B. Scale bar = 100 nm. 

Quantification of interfilament distance is shown on the right. 

(B) AFM image showing the modulation of CHMP4B spirals on SLB membrane by addition of CHMP2B. Scale bar = 100 nm.  

(C) Profiles of sections of the spiral shown in (B) between deformed filaments (green), between filaments far from the "holes" 

(red) and across the spiral center(blue).  

(D) Histograms showing different distances between distorted/deformed filaments (i.e. diameter of the holes) (green), the 

peak to peak between filaments far from perturbance (red) and the spiral center diameter (blue).  
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It was possible to image live by HS-AFM the effect of CHMP2B on LUVs with a diameter about 20 to 100 

nm, covered with CHMP4B. Surprisingly, whereas the vesicles remained more or less spherical with 

CHMP4B alone, we observed the gradual emergence of single or multiple protrusions OUT of the vesicle 

a few seconds (around 9 sec) after addition of CHMP2B.  Figure 5-54 shows this vesicle distortion.  

 

 
FIGURE 5-54: DISTORSION OF CHMP4B-COVERED GUV BY ADDITION OF CHMP2B 

Individual frames of AFM movie capturing the deformation over time of a vesicle pre-incubated with CHMP4B by the addition 

of CHMP2B (t=0 corresponds to CHMP2B addition). Scale bar: 50 nm. 

 

Moreover, to confirm that this effect is only due to the addition of CHMP2B proteins and not a result of 

a change in the buffer salinity or time, we imaged CHMP4B spirals in a different buffer (NaCl 150 mM, 

Tris 25mM at pH=7.5) and in BP over time without CHMP2B. These control experiments showed a 

preservation of the original spiral organization, thus confirming the strong deforming effect of CHMP2B. 

Note that the topology of the deformation is surprising since an invagination would be expected with 

the opposite curvature following the current models on ESCRTs. Moreover, it shows that with CHMP2B, 

the co-polymer structure is now stiff enough to deform a vesicle. 

5.5.3 CHMP2A AND CHMP2B INDUCE DEFORMATIONS ON CHMP4 ASSEMBLY ON 

MEMBRANE TUBES 

We next studied the effect of CHP2B and CHMP2A+3 on tubules covered with CHMP4B. As explained 

previously, our sample preparation usually contains vesicles and a small amount of tubes (percentage 

of tubes = 15.4 ± 3.4 % in the absence of proteins). Surprisingly, the presence of CHMP2B or 

CHMP2A+CHMP3 significantly increased the number of these tubes as shown in the low magnification 

Cryo-EM image (Figure 5-55).  Due to the striking number, quantification wasn’t possible to do.  

Thus it shows that both CHMP2B proteins and also CHMP2A, induce CHMP4B-bound membrane 

budding and tubulation, in agreement with AFM observations.  
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FIGURE 5-55: LOW-MAGNIFICATION CRYO-EM IMAGE SHOWING TUBULATION AFTER ADDITION OF CHMP2B OR 

CHMP2A+CHMP3 TO CHMP4B-BOUND LUVS 

Scale bar = 1000 nm. 

 

 

By Cryo-EM, we observed that the addition of CHMP2B causes an overall striking deformation of the 

tube, but keeping the CHMP4B filaments parallel to the main axis of the tube. Indeed, tubes tend to 

have a regular helical shape ("corkscrew-like") (Figure 5-56 / A). The diameter of these tubes is very 

regular and about 29.8 ± 9 nm (Figure 5-57 / E). The periodicity of the helical tubes is about 83.7 ± 22 

nm, with a width (diameter) of spiral equal 97.7 ± 23 nm. CHMP4 polymers are aligned along the axis of 

the tubes, and are quite regularly distributed around the tube perimeter, as can been seen at each turn 

of the spiral, where a section of the tube with the perpendicular polymers is visible (Figure 5-56 / A). 

However, at this resolution, CHMP2B is not visible on the tubes (Figure 5-56 / A – zoom-in), thus we 

cannot conclude on its organization with regard to CHMP4B. 

 

 This rearrangement of CHMP4B polymer on the underlying deformable membrane supports the idea 

that CHMP2B acts mechanically on CHMP4B filaments, inducing a conformational change that promotes 

the transition of CHMP4B filaments to a 3D helical arrangement. Eventually, this transition is transmitted 

to the underlying membrane, provided that the membrane is not mechanically constrained.  
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Addition of CHMP2A + CHMP3 to pre-formed CHMP4B flat spirals formed on vesicles induces a similar 

effect as with CHMP2B. Enlarged spirals are observed in Cryo-EM with a distance between CHMP4 

filaments equal to 11.9 ± 3.1 (Figure 5-57 / B). When CHMP2A + CHMP3 are added on tubular membrane 

with CHMP4 polymers bound, helical tubular structures are also observed by Cryo-EM, although less 

regular than when CHMP2B is added (Figure 5-56 / C). The tube diameters are on average lower (about 

18.8 ± 7 nm) (Figure 5-57 / E). The spiral diameter and pitch of the helical tubes are similar those 

observed with CHMP4B + CHMP2B.  

 

FIGURE 5-56: MODULATION OF CHMP4B ASSEMBLY BY CHMP2A AND CHMP2B PROTEINS IMAGED BY CRYO-EM 

(A) Sequential addition of CHMP2B on tubular membrane pre-incubated with CHMP4B. Corkscrew tube magnification is shown 

on the right panel. Scale bar = 100 nm.  

(B) Sequential addition of CHMP2A (+CHMP3) on pre-formed CHMP4B spirals on vesicles. Scale bar = 100 nm. 

(C) Sequential addition of CHMP2A (+CHMP3) on tubular membrane pre-incubated with CHMP4B. Scale bar = 100 nm. 

 

To conclude, CHMP2B and CHMP2A (+ CHMP3) induce a mechanical deformation of CHMP4B filaments, 

resulting in a transition to a more regular 3D spiral. This transition can be quantified by measuring helix 

length (Figure 5-57 / A). The features of the CHMP2B and CHMP2A spirals are rather similar in terms of 

length and width (Figure 5-57 / B and C). Helix periodicity and tube diameter appear to be smaller in 

case of CHMP2A + CHMP3 (Figure 5-57/ D and E). It seems that CHMP2B and CHMP2A plus CHMP3 

induce similar three-dimensional deformations and membrane remodeling even though, individually, 

they organize quite differently. 
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FIGURE 5-57: COMPARISON OF CHMP4B SPIRAL MEASUREMENTS IN PRESENCE OF CHMP2A/B PROTEINS 

(A) Schema illustrating the 3D helix parameters quantified from Cryo-EM data  

(B) Quantification of spiral length from Cryo-EM data. *=p-value<0.05; ***=p-value<0.001 (Tukey's multiple comparison test). 

(C) Quantification of spiral width from Cryo-EM data. (Tukey's multiple comparison test). 

(D) Quantification of helix periodicity from Cryo-EM data. (Tukey's multiple comparison test). 

(E) Quantification of the interfilament spacing from Cryo-EM data. (Tukey's multiple comparison test). 
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CHAPTER 6.  CONCLUSIONS AND PERSPECTIVES 

In this study, we have first investigated in vitro how the ESCRT-III protein CHMP2B assembles on lipid 

membranes and the consequences on membrane mechanical and dynamical properties. We have next 

compared CHMP2B to CHMP2A since, so far, both proteins were supposed to be homologous. We have 

next added CHMP3 that was known to co-polymerize with CHMP2A and again compared its interaction 

with CHMP2B. Eventually, towards a reconstitution of the minimal ESCRT scission machinery, we have 

added CHMP4 and compared the assemblies of CHMP4 with CHMP2B on the one hand and with 

CHMP2A + CHMP3 on the other hand. Our main results are summarized below. 

 

 CHMP2B. We have shown that CHMP2B has a strong preference for PI(4,5)P2 lipids, in contrast with 

the other ESCRTs that we have studied that bind indifferently negatively charged membranes. This 

higher affinity for PI(4,5)P2 lipids fits well with the role in vivo of CHMP2B's on membranes containing 

PI(4,5)P2 lipids only: at the plasma membrane for HIV virus egress, membrane repair and cytokinesis 

and at the nuclear envelop for damage repair (Di Paolo and De Camilli 2006; Garnier-Lhomme, Byrne et 

al. 2009). With Cryo-EM and HS-AFM, we have obtained for the first time the structure of CHMP2B 

assemblies on membranes: it forms very small rings that organize into honeycomb-like network at large 

densities. At larger scale, protein binding results into a reticular-like structure wrapping all over 

PI(4,5)P2-GUVs.  

In addition, we showed that the membrane elastic properties are altered in the presence of the 

CHMP2B. Micropipette aspiration experiments on GUVs and HS-AFM deformation experiments on SUVs 

indicate that CHMP2B-covered membranes are very stiff, which is not the case when they are coated 

with the other CHMP proteins that we have studied. The biological consequences of this unique 

mechanical characteristic is not clear, but considering that CHMP2B is involved in the reparation of the 

plasma membrane or the nuclear envelop, but not in the formation of MVB, this high degree of rigidity 

is maybe required in these processes. Moreover, FRAP experiments show that once assembled the 

polymer forms a "static" network that blocks the diffusion of membrane-associated proteins. This ability 

to block the diffusion of membrane proteins might be crucial during unexpected events like plasma 

membrane rupture, but also during cytokinesis in complement to septins to form a diffusion barrier 

(Caudron and Barral 2009).  

CHMP2B C-terminal truncation results in an increase of protein affinity to the membrane. We showed 

that CHMP2B-FL proteins has a weaker affinity for PI(4,5)P2-containing membranes than CHMP2B- ΔC, 

but still almost twice higher than the other ESCRT-III proteins,  as observed by FACS and spinning-disk 

confocal microscopy. It confirms that the C-terminal truncation of the protein results in an active protein 
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form as expected from previous studies (Zamborlini, Usami et al. 2006; Shim, Kimpler et al. 2007; 

Bajorek, Schubert et al. 2009). Yet, the C-terminal truncated protein resembles in terms of sequence to 

the mutant CHMP2Bintron5, involved in the FTD disease. CHMP2Bintron5 causes impaired maturation of 

dendritic spines, a phenotype that appears to be unrelated to defect in autophagy (Belly, Bodon et al. 

2010). The higher affinity for PI(4,5)P2 due to the C-terminal mutation and the high degree of the rigidity 

of the assembly could relate CHMP2B to the pathology. Indeed, similarly to our observations with 

CHMP2B-ΔC, the mutation at the protein C-terminus is expected to result in a significant increase of the 

mutant protein affinity to the plasma membrane. The mutant protein in large excess on the plasma 

membrane as compared to the wild-type protein, could induce a stiffening of the membrane and by 

that contribute to the FTD onset. Moreover, CHMP2B polymerization at sites of nascent dendritic spines 

could block the membrane deformation process needed for dendritic spine formation and maturation. 

The ability of CHMP2B to block diffusion on the membrane surface would as well provide a further level 

of misregulation, for instance inhibiting the diffusion of receptors to dendritic spines and thus blocking 

their development.  

 

 CHMP2B and CHMP2A assemble differently and display opposite mechanical properties. We have 

compared CHMP2B assembly and mechanical properties to that of CHMP2A, its closest homologue in 

terms of sequence. We unambiguously showed that CHMP2A requires to co-assemble with CHMP3 to 

bind to membranes, in contrast to CHMP2B that binds alone, in agreement with previously reported 

properties both in vivo and in vitro in solution (Babst, Katzmann et al. 2002; Lata, Schoehn et al. 2008; 

Henne, Buchkovich et al. 2012; Effantin, Dordor et al. 2013). Furthermore, CHMP2A + CHMP3 co-

polymers do not exhibit an exclusive affinity to PI(4,5)P2 lipids and assemble in a homogeneous manner 

on the GUV surface. Interestingly, outward-pointing membrane protrusions from the GUV surface are 

induced by the CHMP2A + CHMP3 co-polymer. In contrast with CHMP2B, once bound to the membrane, 

the CHMP2A + CHMP3 assemblies on the GUV remain dynamic and do not form any diffusion barrier to 

membrane-associated proteins. Eventually, the CHMP2A + CHMP3 co-polymer does not change 

membrane elasticity. Arguably, membrane unaltered softness is important at the very last stage of the 

membrane scission event carried out by ESCRT-III complex, whereas a rigid structure would oppose this 

process. However, a certain degree of membrane rigidity might help the constriction process prior to 

scission, but at this stage, it is difficult to conclude on this aspect. Moreover, at the nanometer scale, 

CHMP2B proteins form ring-structures whereas CHMP2A alone forms spirals in vivo (Lata, Roessle et al. 

2008; Lata, Schoehn et al. 2008; Guizetti, Mantler et al. 2011; Guizetti, Schermelleh et al. 2011; Effantin, 

Dordor et al. 2013) and CHMP2A + CHMP3 form filaments or conical tubes in vivo and in vitro (Lata, 

Schoehn et al. 2008; Effantin, Dordor et al. 2013) and spirals around membrane tubules in vitro as shown 

with our Cryo-EM data. For all these reasons, it is difficult to argue that CHMP2B and CHMP2A are 
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functional homologues and play the same role in the ESCRT-III machinery. In fact, CHMP2A, CHMP3 and 

CHMP2B could constitute a functional module able to regulate membrane viscoelastic properties in 

order to accomplish scission. And, the fact that only CHMP2A has a MIM domain binding to the ATPase 

VPS4 might correlate with its recruitment at the final stage prior to scission and complex disassembly.  

 

 CHMP3 works synergistically with CHMP2A but not with CHMP2B proteins. In contrast with CHMP2A 

and CHMP3 that work synergistically, we have shown by spinning disk confocal microscopy that the 

polymerization and coverage of CHMP2B on GUVs is reduced in the presence of CHMP3. FACS 

quantification confirmed this result and showed that CHMP2B binding to PI(4,5)P2-membrane is 

drastically diminished when CHMP3 is added. Additionally, micropipette aspiration experiments show 

that CHMP2B assembly on membranes is softened in the presence of CHMP3. This moderating effect 

of CHMP3 proteins on CHMP2B polymerization is consistent with previously published studies showing 

that CHMP2B and CHMP3 do not work synergistically during HIV budding (Effantin, Dordor et al. 2013) 

and do not co-polymerize in vitro (Lata, Schoehn et al. 2008). We thus propose that CHMP3 could play 

a key regulation role in the sequence of recruitment of CHMP2B and CHMP2A proteins in the machinery 

and in their respective stoichiometry on the membranes.  The ability of CHMP3 to regulate the 

polymerization of CHMP2A and CHMP2B suggests that this protein might also operate as a molecular 

switch during modulation of membrane rigidity. 

 

 CHMP4B alone does not induce membrane deformation. A recently published study by Chiaruttini et. 

al (Chiaruttini, Redondo-Morata et al. 2015) analyzes the mechanical properties of Snf7, the yeast 

analogue of CHMP4, deduced from HS-AFM on SLBs on mica. The authors show that Snf7 proteins 

polymerize into spirals on flat membranes with a preferred radius of 25 nm; they propose that spirals 

growing beyond this preferred radius accumulate stress. They eventually develop a "Spiral Spring" 

model in which Snf7 should induce membrane deformation and inward buckling to release the stress. 

According to the authors, this model should account for the tubular exvaginations observed in vivo upon 

over expression of Snf7 (with about a 100 nm diameter) (Hanson, Roth et al. 2008). Nevertheless, not 

such membrane deformation or tubulation has been observed so far in vitro in the presence of snf7 or 

CHMP4 only. In our work, we studied the mechanical properties of the human protein CHMP4B on 

deformable membrane. We showed by FACS that CHMP4B proteins bind equally all the PIP species. 

Surprisingly, the assembly of CHMP4B proteins on GUVs did not induce any membrane invagination or 

tubulation as predicted by the "Spiral Spring" model. Moreover, we show by micropipette aspiration 

that CHMP4 does not stiffen the membrane like CHMP2B or as expected with the high persistence 

length of 260 nm calculated in (Chiaruttini, Redondo-Morata et al. 2015). Interestingly, we find a plastic 

behaviour of GUVs covered with CHMP4B after release of aspiration, similar to Snf7.  At high resolution 
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by HS-AFM and Cryo-EM, we observe that CHMP4B forms spirals on membrane with similar 

characteristics as those published for Snf7. The most important result is that the spiral structure remains 

flat on the vesicles without leading to a 3D membrane budding or deformation as predicted. Moreover, 

on preformed deformable membrane tubes, CHMP4B proteins assemble parallel to the tube main axis 

when the diameter is smaller than 40 - 50 nm, inducing some spiraling of the tubes. But, interestingly, 

CHMP4B assembly alone does not affect the tube diameter. Moreover, on straight non-deformable 

Galcer tubes, CHMP4B proteins seem very weakly twisted with a large pitch. In addition of the absence 

of membrane deformation induced by CHMP4 polymers, our results point to a very unexpected 

characteristic: CHMP4 can clearly assemble on positively curved membranes, such as on the external 

surfaces of membrane tubes. This property was already described for another ESCRT protein, CHMP1B-

IST1 (McCullough, Clippinger et al. 2015). For CHMP4B and Snf7, it was shown that, when negatively 

curved membrane invaginations are present (via SLBs deposited in 100 nm-deep  nanofabricated 

concavities) polymerization is preferentially nucleated in these curved area but proceeds next towards 

the exterior of the cavities on the flat region (Lee, Kai et al. 2015). Note that a curved cavity has geometry 

similar to a sphere with a positive Gaussian curvature, different from the geometry of the necks with a 

negative Gaussian curvature (i.e. two curvatures of opposite signs) where the ESCRT-III complexes 

operate. We show with our experiments that CHMP4B can also assemble on a positively curved tube 

but along its main axis where curvature is minimal. Altogether, this shows that CHMP4 assemblies alone 

are not able to deform membranes and are rather flat on non-curved surfaces, but bind onto tubes in a 

way that minimizes the spontaneous curvature and preserves its twist. 

 

 CHMP2B and CHMP2A + CHMP3 induce morphological changes on CHMP4B-bound membranes. With 

HS-AFM, we showed that the addition of CHMP2B induces local deformations of CHMP4B spirals 

previously formed on a non-deformable SLB, with locally higher interfilament spacing. Furthermore, we 

showed with HS-AFM that CHMP2B causes the distortion of CHMP4B-coated SUVs and budding out of 

the vesicle only few seconds after addition of CHMP2B. Interestingly, EM data confirm this striking effect 

of CHMP2B on CHMP4B-coated membrane. We showed that deformable membrane tubes covered 

with CHMP4B are remodelled in the presence of CHMP2B. Actually, the initially irregular tubes adopt a 

regular corkscrew-like morphology with CHMP4 oriented parallel to the tube axis. The mean tube 

diameter is slightly reduced. This implies that CHMP2B proteins not only rigidify the CHMP4 assembly 

as observed with our micropipette aspiration experiments, which allows for a regular helical tube 

morphology but also induces some spontaneous curvature that influences the tube diameter. 

CHMP2A+CHMP3 induce similar three-dimensional deformations on CHMP4B filaments, organizing 

them along the axis of regular 3D spirals with a significantly smaller tube radius (twice smaller than in 

the absence of the copolymer). In addition, EM data confirmed a significantly increased membrane 
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tubulation when CHMP2B and CHMP2A+CHMP3 are added to a membrane preparation pre-incubated 

with CHMP4B, as compared to the control, consistent with the CHMP2B-budding effect observed by 

AFM. Importantly, the regular CHMP4B 3D helices on tubes resemble in terms of size and topology the 

helical filaments of unknown composition observed in vivo during cytokinesis (Guizetti, Schermelleh et 

al. 2011; Sherman, Kirchenbuechler et al. 2016). Thus, although presenting different mechanical 

properties, CHMP2A (+CHMP3) and CHMP2B proteins induce similar effects on CHMP4B-bound 

membrane, which might explain their redundant effect in HIV egress (Morita, Sandrin et al. 2011). Most 

importantly, neither CHMP2B nor CHMP2A+CHMP3 alone can induce such a drastic membrane 

remodelling. In fact, our results clearly indicate that CHMP4B must be previously bound to the 

membrane, meaning that a pre-existing CHMP4B scaffold is required. 

 Moreover, we made the puzzling observation that CHMP2+CHMP3, and CHMP4 alone are able to 

assemble onto positively curved tubes, a priori contrary to the in vivo situation, with CHMP2A+CHMP3 

spiraling around the tubes while CHMP4 is aligned along the tube axis that becomes helical. This implies 

that the CHMP2A-CHMP3 co-polymer has affinity for positively curved membranes. In the case of 

CHMP4B, this implies that this protein has neither affinity for highly positively curved surfaces such as 

tubes in contrast with CHMP2A+CHMP3 but probably nor for highly negatively curved surface since it 

aligns parallel to the zero-curvature line along the tube; at the same time, it imposes a twist to the tube 

with a curvature of the order of 1/50 nm-1. Moreover, the mixed assemblies of CHMP4B with CHMP2B 

or CHMP2A+CHMP3 also form on positively-curved membrane tubes, keeping CHMP4B parallel to the 

tube axis. The strong reduction of the tube diameter in the presence of CHMP2A+CHMP3 suggests that 

these proteins probably constrict the tube by assembling along the positively curved area (perpendicular 

to the tube axis) like in the absence of CHMP4B. We cannot distinguish CHMP2B on the Cryo-EM images, 

thus we cannot discuss its preference for one or the other type of curvature. We also observe that the 

radius of the helical structure remains unchanged (about 50 nm) even when CHMP2B or 

CHMP2A+CHMP3 are present. This topology for CHMP4B is not in contradiction with the in vivo situation 

if we consider that the surface of the neck is locally represented by the envelope of the tube, thus with 

a negative curvature. It implies that CHMP4B might have affinity for negatively curved membranes, but 

with a low preferential curvature of the order of 1/50 nm-1. If membrane curvature deviates from this 

value, CHMP4B polymer favors a flat conformation. Globally, it shows that 2 types of filaments operate 

at the neck with opposite properties: CHMP4B with affinity for weak negative curvatures (≈1/50 nm-1) 

and CHMP2A+CHMP3 with a preference for strong positive curvatures (≈1/8 nm-1). CHMP2B, due to its 

unique mechanical properties, might contribute to the stiffening of the assembly of the complex. 

In vivo, these ECRT-III proteins operate inside neck structures, which are formed prior to their 

recruitment, either by other ESCRTs (in MVBs), by the acto-myosin constricting ring at the cytokinesis 

site, by the HIV-coated bud or hole formation upon membrane rupture. The ESCRT-III proteins are 
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recruited by other proteins such other ESCRTs, Alix or Gag in the case of HIV budding to a location where 

membrane curvature is negative. Initially, the radius of curvature is probably large enough to favor 

CHMP4 helical assembly. However, the shape of the membrane is not cylindrical but has a negative 

Gaussian curvature (a combination of negative curvature perpendicular to the neck axis and positive 

curvature in the normal direction), thus can also recruit CHMP2A+CHMP3 along the positively curved 

surface. This shows that our conclusions, based on our Cryo-EM observations, are well compatible with 

the actual geometry of the membranes at the site of actions of these ESCRT proteins. 

 

 Perspectives. The first experiments that should be performed following this work would be to directly 

test the affinity of the CHMP proteins for positive and negative curvature. They are currently continued 

by N. de Franceschi in the lab. Considering the peculiar mechanical properties of CHMP2B, this protein 

might be left apart in a first place. Membrane nanotubes can be pulled from GUVs and the proteins 

either incubated or injected on the nanotube to test the affinity for positive curvature. Based on our 

observations, we would expect to measure a preferential binding of CHMP2A+3 to highly curved tubes. 

For CHMP4, large tubes (with a diameter of the order of 100 nm) have to be formed to check if the 

protein could assemble in this case. Studying the affinity for negative curvature is trickier because it 

requires developing new methods for the encapsulation of the proteins (in chapter 5.1.2). Nevertheless, 

it is a prerequisite to be in a position to eventually reconstitute membrane scission by the ESCRT 

complex.  

In our experiments, we never observed membrane scission. This is certainly due to the reverted 

geometry of our experiments and also to the absence of Vps4. Not only Vps4 is known to depolymerize 

the ESCRT complex, it is also thought to play a regulatory role (Mierzwa, Chiaruttini et al. 2017). The 

new generation of experiments has to include Vps4 and ATP in the mix of proteins. This will obviously 

complicate the encapsulation protocol. To trigger the reaction, caged ATP can be used and released 

with UV light. Based on our hypothesis, we expect that the only place that fits the geometry of the 

complex is the neck of the tube, thus a very restricted zone of the tube. We envision quite challenging 

experiments to test existing fission models as well as the probable necessity to develop new ones. 
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