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Les systèmes embarqués temps réel impactent nos vies au quotidien. Leur complexité s'intensifie avec la diversité des applications et l'évolution des architectures des plateformes de calcul. En effet, les systèmes temps réel peuvent se retrouver dans des systèmes autonomes, comme dans les métros, avions et voitures autonomes. Ils sont donc souvent d'une importance décisive pour la vie humaine, et leur dysfonctionnement peut avoir des conséquences catastrophiques. Ces systèmes sont généralement multi-périodiques car leurs composants interagissent entre eux à des rythmes différents, ce qui rajoute de la complexité. Par conséquent, l'un des principaux défis auxquels sont confrontés les chercheurs et industriels est l'utilisation de matériel de plus en plus complexe, dans le but d' exécuter des applications temps réel avec une performance optimale et en satisfaisant les contraintes temporelles. Dans ce contexte, notre étude se focalise sur la modélisation et l'ordonnancement des systèmes temps réel en utilisant un formalisme de flot de données. Notre contribution a porté sur trois axes: Premièrement, nous définissons un mode de communication général et intuitif au sein de systèmes multi-périodiques. Nous montrons que les communications entre les tâches multi-périodiques peuvent s'exprimer directement sous la forme d'une classe spécifique du "Synchronous Data Flow Graph" (SDFG). La taille de ce graphe est égale à la taille du graphe de communication. De plus, le modèle SDFG est un outil d'analyse qui repose sur de solides bases mathématiques, fournissant ainsi un bon compromis entre l'expressivité et l'analyse des applications.

Deuxièmement, le modèle SDFG nous a permis d'obtenir une définition précise de la latence. Par conséquent, nous exprimons la latence entre deux tâches communicantes à l'aide d'une formule close. Dans le cas général, nous développons une méthode d'évaluation exacte qui permet de calculer la latence du système dans le pire des cas. Ensuite, nous bornons la valeur de la latence en utilisant deux algorithmes pour calculer les bornes inférieure et supérieure. Enfin, nous démontrons que les bornes de la latence peuvent être calculées en temps polynomial, alors que le temps nécessaire pour évaluer sa valeur exacte augmente linéairement en fonction du facteur de répétition moyen.

Finalement, nous abordons le problème d'ordonnancement mono-processeur des systèmes strictement périodiques non-préemptifs, soumis à des contraintes de com-vi munication. En se basant sur les résultats théoriques du SDFG, nous proposons un algorithme optimal en utilisant un programme linéaire en nombre entier (PLNE). Le problème d'ordonnancement est connu pour être NP-complet au sens fort. Afin de résoudre ce problème, nous proposons trois heuristiques: relaxation linéaire, simple et ACAP. Pour les deux dernières heuristiques, et dans le cas où aucune solution faisable n'est trouvée, une solution partielle est calculée.

First, we define a general and intuitive communication model within multi-periodic systems. We demonstrate that the communications between multi-periodic tasks can be directly expressed as a particular class of "Synchronous Data Flow Graph" (SDFG). The size of this latter is equal to the communication graph size. Moreover, the SDFG model has strong mathematical background and software analysis tools which provide a compromise between the application expressiveness and analyses.

Then, the SDFG model allows precise definition of the latency. Accordingly, we express the latency between two communicating tasks using a closed formula. In the general case, we develop an exact evaluation method to calculate the worst case system latency from a given input to a connected outcome. Then, we frame this value using two algorithms that compute its upper and lower bounds. Finally, we show that these bounds can be computed using a polynomial amount of computation time, while the time required to compute the exact value increases linearly according to the average repetition factor.
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Introduction

Nowadays, electronic devices are ubiquitous in our daily lives. Every time we set an alarm, drive a car, take a picture or use a cell-phone, we interact in some way with electronic components or devices. Electronic systems make people's lives safer, faster, easier and more convenient. These systems, integrated in a larger environment with specific assignments or purposes, are called embedded systems. They comprise a hardware part (electronic) that defines interfaces and system performance as well as a software part (computer) that dictates their functions. Such systems are autonomous and limited in size, power consumption, and heat dissipation. In order to achieve specific tasks, their design combines skills from computer and electronics fields.

An important class of embedded systems is real-time embedded systems. They operate dynamically in their environments and must continuously adapt to their changes. Indeed, they fully command their environments through actuators upon data reception via sensors. The correctness of such systems depends not only on the logical result but also on the time it is delivered. Therefore, real-time systems are classified according to the temporal constraints severity: soft, firm and hard (critical) systems. In hard systems, the violation of a temporal constraint can lead to catastrophic consequences. The aircraft piloting system, the control of a nuclear power plant and the track control system are typical examples. The soft and firm systems are more "tolerant": the temporal constraint violation does not cause serious damages to the environment and does not corrupt the system behaviour. In fact, this violation leads to a degradation of the result quality (i.e performance).

On the other hand, critical real-time systems are becoming increasingly complex. They require research effort in order to be effectively modeled and executed. In this context, one of the major challenges faced by academic and industrial environments is the efficient use of powerful and complex resources, to provide optimal performance Introduction and meet the time constraints. These systems are usually multi-periodic, since their components communicate with each other at different rates. This is mainly due to their physical characteristics. For this reason, a deep analysis of communications within multi-periodic systems is required. This analysis is essential to schedule these systems on a given platform. Moreover, the estimation of parameters in a static manner, such as evaluating the latency between the system input and its corresponding outcomes, is an important practical issue.

Contributions

In this section, we summarize the research contribution of this thesis.

The first contribution consists in defining a general and intuitive communication model for multi-periodic systems. Based on the precedence constraints between the tasks executions, we demonstrate that the communications between multi-periodic tasks can be directly expressed as a "Synchronous Data-flow Graph". The size of this graph is equal to the application size. We called this particular class "Real-Time Synchronous Data-flow Graphs". These results were published in a short paper in "Ecole d'été temps réel"(ETR 2015). In collaboration with Cedric Klikpo (projet ELA, IRT SystemX), we showed that the communications of an application expressed with Simulink can be modeled by a SDFG. This transformation led to an article published in RTAS 2016 [START_REF] Klikpo | Modeling multi-periodic simulink systems by synchronous dataflow graphs[END_REF].

The second contribution consists in evaluating the worst-case latency of multiperiodic systems. Based on our communication model, we define and compute the latency between two communicating tasks. We prove that minimum and maximum latency between the tasks executions can be computed according to the tasks parameters using closed formulas. Moreover, we bounded their values according to the tasks periods. In order to evaluate the worst-case system latency, we propose an exact pricing algorithm. This method computes the system latency in terms of the average repetition factor. This implies that if this factor is not bounded, the complexity of the exact evaluation increases exponentially. Consequently, we propose two polynomial-time algorithms that compute respectively the upper and lower bounds of this latency. This evaluation led to an article published in RTNS 2016 [START_REF] Khatib | Computing latency of a real-time system modeled by synchronous dataflow graph[END_REF].

The third contribution consists in solving the mono-processor scheduling problem of non-preemptive strictly periodic systems subject to communication constraints. Based 1.2 Thesis overview 3 on our communication model, we proved that scheduling two periodic communicating tasks is equivalent to schedule two independent tasks. These tasks can only be executed between their release dates and their deadlines. Accordingly, we propose an optimal algorithm using "Mixed Integer Linear Programming" formulations. We study two case: the fixed and flexible interval cases. As the scheduling problem in known to be NP-complete in strong sense [START_REF] Korst | Scheduling periodic tasks[END_REF], we propose three heuristics: linear programming relaxation, simple and ACAP heuristics. For the second and the third heuristic if no feasible solution is found, a partial solution is computed. This solution contains the subset of tasks that can be executed on the same processor.

Thesis overview

The thesis is organized as follows.

Chapter 2 introduces the context of this thesis. First, it presents the real-time computational model and its characteristics. Afterwards, it formulates the first two problems addressed in this thesis: modeling communications within multi-periodic systems and evaluating their latencies. This chapter reviewed several existing approaches regarding multi-periodic systems modeling. Finally, basic notions of real-time scheduling are presented in order to formulate the third problem studied in this thesis: mono-processor scheduling of non-preemptive strictly periodic set of tasks with communication constraints.

Chapter 3 presents an overview of static data flow models. Important notions and transformations are introduced in the context of the Synchronous Data Flow Graph: precedence constraints, consistency, repetition vector, normalization and expansion.

Chapter 4 gives an overview on the state of the art related to this thesis. It positions our study regarding existing approaches for the two aspects:

• modeling real-time systems and evaluating their latencies using data formalisms,

• scheduling non-preemptive strictly periodic systems.

Chapter 5 introduces the first two contributions of this thesis. It defines the "Real-Time Synchronous Data Flow Graph" which models the communications within a multi-Introduction periodic system. On the other hand, this chapter describes the latency computation method between two periodic communicating tasks. This latency is computed according to the tasks parameters with a closed formula and its value is bounded according to the tasks periods. Several methods are described for evaluating the worst case system latency: exact evaluation, upper and lower bounds.

Chapter 6 introduces the third contribution of this thesis. It presents the monoprocessor scheduling problem of non-preemptive strictly periodic systems subject to communication constraints. In order to solve the scheduling problem, an exact method is developed using the "Mixed Integer Linear Programming" formulations. Two cases are treated: the fixed and flexible interval cases. In the fixed case, tasks execution is restricted to the interval between its release date and its deadline. However, in the flexible case, tasks can admit new execution intervals whose lengths are equal to their relative deadlines. Furthermore, several heuristics are proposed: linear programming relaxation, simple and ACAP heuristics.

Chapter 7 presents the experimental results of this thesis. It is devoted to evaluate the methods that compute the worst system latency using the RTSDFG formalism. In addition, it presents several experiments dedicated to evaluate the performance of our methods that solve the mono-processor scheduling problem.

Chapter 8 concludes this thesis and introduces some perspectives for future work.

Chapter 2

Context and Problems

Embedded real-time systems are omnipresent in our daily life, they cover a range of different levels of complexity. We find Embedded real-time systems in several domains: robotics, automotive, aeronautics, medical technology, telecommunications, railway transport, multimedia and nuclear power plants. These systems are composed of hardware and software devices with functional and timing constraints. In fact, the correctness of such systems depends not only on the logical result but also on the physical time at which this result is produced. Real-time systems are usually reactive, since they interact permanently with their environments. In addition, embedded real-time systems are often considered critical. This is due to the fact that the computer system is entrusted with a great responsibility in terms of human lives and non-negligible economic interests. In order to predict the behavior of an embedded safety-critical system, we need to know the interactions between its components and how to schedule these components on a given platform. This chapter introduces the required background to understand the thesis contributions presented in the following chapters. The remainder of this chapter is organized as follows. Section 2.1 introduces the real-time computational model and its characteristics. Section 2.2 formulates the first two problems addressed in this thesis: modeling communications within multi-periodic systems and evaluating their latencies. Section 2.3 presents several approaches from the literature dedicated to model multi-periodic applications. Section 2.4 presents some basic notions of the scheduling problem. Section 2.5 formulates the third problem studied in this thesis: mono-processor scheduling problem of non-preemptive strictly periodic systems subject to communication constrains. Finally, Section 2.6 concludes the chapter.

Real-time systems

In this section, we introduce the real-time systems and their characteristics. We present the task models on which the approaches developed in Chapters 5 and 6 are applied.

Definition

There are several definitions of real-time systems in the literature [START_REF] Burns | Real-time systems and programming languages: Ada 95, real-time Java, and real-time POSIX[END_REF][START_REF] Stankovic | Misconceptions about real-time computing: a serious problem for next-generation systems[END_REF][START_REF] Elloy | Les contraintes du temps réel dans les systèmes industriels répartis[END_REF]. J.Stankovic [START_REF] Stankovic | Misconceptions about real-time computing: a serious problem for next-generation systems[END_REF] proposed a functional definition as follows:

"A real-time computer system is defined as a system whose correctness depends not only on the logical results of computations, but also on the physical time at which the results are produced."

In other words, a real-time system should satisfy two types of constraints:

• logical constraints corresponding to the computation of the system's output according to its input.

• temporal constraints corresponding to the computation of the system's output within a time frame specified by the application. A delayed production of the system's output considered as an error which can lead to serious consequences.

J-P.Elloy [START_REF] Elloy | Les contraintes du temps réel dans les systèmes industriels répartis[END_REF] defines a real-time system in an operational way:

"A real-time system is defined as any application implementing a computer system whose behaviour is conditioned by the state dynamic evolution of the process which is assigned to it. This computer system is then responsible for monitoring or controlling this process while respecting the application temporal constraints." This latter definition clarifies the meaning of the term "real-time" by altering the relationships between the computer systems and external environment.

The real-time systems are reactive systems [START_REF] Harel | On the development of reactive systems[END_REF][START_REF] Berry | Real time programming: Special purpose or general purpose languages[END_REF]. Their primary purpose is to continuously react to stimulus from their environment which are considered external to the system. A formal definition of a reactive system, describing the functioning of a real-time system, was given in [START_REF] Girault | Une heuristique d'ordonnancement et de distribution tolérante aux pannes pour systemes temps-réel embarqués[END_REF]: "A reactive system is a system that reacts continuously with its environment at a rate imposed by this environment. It receives inputs coming from the environment called stimuli via sensors. It reacts to all these stimuli by performing a certain number of operations and. It produces through actuators outputs that will be used by the environment. These outputs are called reactions or commands." Fig. 2.1 Schematic representation of a real-time system. Usually, a real-time system must react to each stimuli coming from its environments. In addition, the system response depends not only on the input stimuli but on the system state at the moment when the stimuli arrives. The interface between a real-time system and its environment consists of two types of peripheral devices. Sensors are input devices used to collect a flow of information emitted by the environment. Actuators are output devices which provide the environment with control system commands (see Fig. 2.1). A real-time embedded system is an integrated system inside the controlled environment, such as a calculator in a car.

Real-Time systems classification

The validity of real-time systems is related to the result quality (range of accepted values) and the limited duration of the result computation (deadline). Real-time systems can be classified from different perspectives [START_REF] Kopetz | Real-time systems: design principles for distributed embedded applications[END_REF]. These classifications depend on the characteristics of the application (factors outside the computer system) or on the design and implementation (factors inside the computer system). According to the temporal constraints criticality, there are three types of real-time systems:

Hard real-time systems

The hard (critical) real-time systems consist of processings that have strict temporal constraints. A hard real-time system requires that all the system processing must imperatively respect all the temporal constraints. In these systems, the violation of a constraint can lead to catastrophic consequences. The aircraft piloting system, the control of a nuclear power plant and the track control system are typical examples. To ensure the proper functioning of a real-time system, we must be able to define conditions on the system environment. Under subsequent conditions, it is also necessary to guarantee the temporal constraints for all possible execution scenarios.

Soft real-time systems

The soft real-time systems are more "tolerant". This means that these systems are less demanding in terms of respecting the temporal constraints than the hard systems. The constraint violation does not cause serious damages to the environment and does not corrupt system behaviour. In fact, this violation leads to a degradation of the result quality (performance). This is the case of multimedia applications such as image processing, where it is acceptable to have a precise number of images (image processing) with a sound shift of few milliseconds. One problem of these systems is to evaluate their performance while respecting the quality of service constraints [START_REF] Hyman | Real-time scheduling with quality of service constraints[END_REF].

Firm real-time systems

The Firm real-time systems are composed of processing with strict and soft temporal constraints. These systems [START_REF] Bernat | Weakly hard real-time systems[END_REF] can tolerate a clearly specified degree of missed deadlines. This means that deadlines can be missed occasionally by providing a late worthless result. The extent to which a system may tolerate missed deadlines has to be stated precisely.

In this thesis we are interested only in hard real-time systems such as motor drive applications in cars, buses and trucks.

Real-time tasks' characteristics

A real-time task is a set of instructions intended to be executed on a processor. It can be executed several times during the lifetime of the real-time system. For example, an input task that responds to the informations coming from a sensor. Each task execution is called an instance or job. In order to meet the real-time system temporal requirements, time constraints are defined for each real-time task (see Figure 2.2) of an application. The most used parameters of a real-time task t i are:

• Activation period T i : the minimum delay between two consecutive activations of t i is the task period. A task is periodic if the task instances are activated regularly at a constant rate.
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• Release date r i : the earliest date on which the task can begin its execution.

• Start date s i : it is also called the start execution date. It is the date on which the task starts its execution on a processor.

• End date e i : the date on which the task ends its execution on a processor.

• Execution time C i : the required time for a processor to execute an instance of a task t i . In general, this parameter is evaluated as the task worst case execution time (WCET) on a processor. The WCET represents an upper bound of the task execution time. The value of this parameter should not be overestimated. The problem of estimating the task execution time has been extensively studied in the literature [START_REF] Puschner | Calculating the maximum execution time of real-time programs[END_REF][START_REF] Shaw | Reasoning about time in higher-level language software[END_REF][START_REF] Park | Experiments with a program timing tool based on source-level timing schema[END_REF][START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF].

• Deadline D i : it corresponds to the date at which the task must complete its execution. Exceeding the due date (deadline) causes a violation of the temporal constraints. we distinguish two types of deadlines:

-Relative deadline: D i the time interval between the task release date and its absolute deadline.

-Absolute deadline: the date at which the task must be completed (r i + D i ). Some parameters are derived from the basic parameters such as the utilization factor:

U i = C i T i .
Dynamic parameters are used to follow the behaviour of the task executions:

• r k i : the release date of the kth task instance (t k i ). In the periodic case, this date can be calculated according to the task first release date r 1 i :

r k i = r 1 i + (k -1) • T i 10
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• s k i : the start date of the kth task instance (t k i ).

• e k i : the end date of the kth task instance (t k i ).

• d k i : the absolute deadline of the kth task instance (t k i ). In the periodic case, this date can be computed in function of the relative deadline (D i ) and the kth release date r k i :

d k i = r k i + D i = r 1 i + (k -1) • T i + D i . • R k i : the response time of the kth task instance (t k i ). It is equal to e k i -r k i .

Tasks models

The real-time system environment defines the system temporal constraints. In other words, it defines the activation dates pace of the tasks. A task can be activated randomly (non-periodic) or at regular intervals (periodic). There are three classes of real-time tasks:

Periodic tasks

Tasks with regular arrival times T i are called periodic tasks. A common use of periodic tasks is to process sensor data and update the current state of the real-time system on a regular basis. Periodic tasks usually have hard deadlines, but in some applications the deadlines can be soft. This class is based on the model of Liu and Layand [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. An example of Liu and Layland model is depicted in Figure 2.3. Each task t i is characterized by an activation period T i , an execution time C i (all instances of a periodic task have the same worst case execution time C i ), a deadline D i , and eventually a release date (date of the first activation) r i . Each task instance must be executed entirely within the interval of length T i . Successive executions of t i , admit periodic release dates and deadlines, where the period is equal to T i . Strictly periodic tasks is a particular case of this class. In addition to the Liu and Layland model, the task successive executions admit periodic start dates. In other words, the first instance (job) t 1 i of task t i , which is released at r 1 i , starts its execution at time s 1 i . Then, in every following period of t i , t k i is released at r k i and starts its execution at s k i . The kth release and start dates of t i can be written as follows:

r k i = r 1 i + (k -1) • T i s k i = s 1 i + (k -1) • T i
In the following of the manuscript, r 1 i and s 1 i are noted r i and s i respectively.

Aperiodic tasks

An aperiodic task is a stream of instances arriving at irregular intervals. Aperiodic task has a relative deadline, with no activation dates and no activation periods. Thus, the task activation dates are random and can not be anticipated. These activations are determined by the arrival of events that can be triggered at any time such as message from an operator. Several processes deal with this class of tasks as shown in [START_REF] Sprunt | Aperiodic task scheduling for hard-real-time systems[END_REF].

Sporadic tasks

A sporadic task is an aperiodic task with a hard deadline and a minimum period p i [START_REF] Mok | Fundamental design problems of distributed systems for the hard-real-time environment[END_REF]. Two successive instances of a task must be separated by at least p i time units. Note that without a minimum inter-arrival time restriction, it is impossible to guarantee that a sporadic task's deadline would always be met.

Execution mode

Multiple instances of a task can be executed during the lifetime of a real-time system. We distinguish two executions modes:

Non-preemptive mode

In non-preemptive execution mode, the scheduler cannot interrupt the task execution in favour of another one. In order to execute a new task, it is necessary to wait until the end of the current task. In other words, a task must voluntarily give it up the control of the processor before the execution of an other task.

Preemptive mode

The difference between the non-preemptive execution mode and the preemptive one is that the later gives the scheduler the control of the processor without the task's cooperation. According to the scheduling algorithm, the currently running task loses control of the processor when a task with higher priority is ready to be executed regardless of whether it has finished its execution or not.

In this thesis, we focus our study on modeling and scheduling applications composed of non-preempting strictly periodic tasks.

Communication constraints

Designers describe the embedded real-time systems workflow using block diagrams. These blocks correspond to functions that may be independent or dependent. Functions are considered tasks as soon as they have been characterized temporally. Most of realtime applications require communication between tasks. This type of communication connects an emitting task to a receiving one. The emitting task produces data that are consumed by the receiving task through a communication point. However, a receiving task cannot consume a piece of data unless this data has been sent by the emitting task. Thus, the execution of a receiving task should be preceded by the execution of an emitting task, which imposes precedence constraints between some executions. It should be noted that the precedence constraint between executions (jobs) is mostly due to the fact that both tasks are dependent. The dependency between the tasks can be described by a directed graph. The graph nodes represent the tasks and its arcs represent the dependency relations between the tasks. There are two types of dependencies:

• Dependencies that involve a loss of data. In this case, the receiving task can not consume all the data produced by the emitting one. These data (which are not consumed) have been overwritten by the newer data which are produced by more recent emitting task executions. This is the case where the periods of dependent tasks correspond to prime numbers.

• Dependencies that do not involve a loss of data. In this case, the data produced by the emitting task executions are all consumed by the receiving task executions.

In this thesis, we consider a communication mechanism between tasks which may involve a loss of data. In other words, a task can be executed using the most recent data of its predecessors. The description of the communication scheme between multi-periodic tasks will be detailed in section 5.1 of chapter 5

Latency

Latency constraint between two tasks t i and t j is equivalent to impose that the gap between the end date of t j and the start date of t i does not exceed a certain value L. Limiting the time gap between these tasks guarantees that the response time -the total time required by a task in order accomplish its execution -of the second task will never exceed a preset critical value. Exceeding this value may lead to performance degradation as well as instability of the system.

System latency evaluation

Real-time systems have to provide results to its environment in a timely fashion. This requirement is typically measured by the duration (time gap) between an input event arriving at the system input and its corresponding result events coming out from the system output. This time gap is denoted as the system latency. Executing a system with a long response time (fairly significant latency) may cause a lot of damages, such as the late identification of an obstacle in an Advanced Driver Assistance Systems [117]. Depending on the application scenario, the system latency can be evaluated with different accuracy classes: worst-case latency, best-case latency, average latency or different quantiles of latency.

In this thesis, we are interested in evaluating the worst-case system latency.

Multi-periodic systems

Complex real-time embedded systems should handle multiple distinct periods. This is mainly induced by the physical characteristic of sensors and actuators. A multi-periodic system is composed of a set of periodic tasks communicating with each other and having distinct periods. Each task is executed according to its own period. However, the entire system is executed according to a global period which is called the "hyper-period"(hp) [START_REF] Goossens | Limitation of the hyper-period in real-time periodic task set generation[END_REF]. This global period is equal to the Least Common Multiple (LCM) of all the system tasks periods. A task's execution is called a Job or instance. The number of these instances (repetitions) can be computed according to the task period and the system hyper-period ( hp T i ). We distinguish two types of multi-periodic systems:

Harmonic periodic system

A harmonic periodic system is composed of a set of harmonic and periodic tasks. Each task is executed according to a precise activation period which is an integral multiple of all lower periods. Tasks with harmonic periods are widely used to model real-time applications. They are easy to handle using some specific designs and scheduling algorithms. 4 illustrates an example of harmonic periodic system. This latter is composed of three periodic communicating tasks which are respectively executed at 5, 10, and 20 ms . The system hyper-period is equal to 20 ms.

Non-harmonic periodic system

A non-harmonic system is constituted by a set of periodic non-harmonic tasks. Tasks periods are chosen to match the application requirements (physical phenomena) rather than the implementation requirements (frequencies required by hardware or implementation details). These systems are not particularly amenable to a cyclic executive design. In addition, they have low scheduling theoretic.

This thesis proposes a general model which deals with harmonic and non-harmonic systems. In the following section, we formulate the first two problems studied in the thesis.

Problems 1 & 2: Modeling multi-periodic systems and evaluating their latencies

Modeling communications within multi-periodic systems, such as control/command applications, is a complex process. These systems are highly critical. The fundamental requirement is to ensure the system functionality with respect to the data exchange between its parts as well as their temporal constraints. These systems require a deterministic behaviour, which means that for a given input the system execution must produce the same output. In addition, the system's execution must be temporally deterministic as well, always having the same temporal behaviour and respecting several hard real-time constraints.

Data flow models are a class of formalisms used to describe in a simple and compact way the communications of regular applications (for example video encoders). A model of this class is usually represented in the form of a network of communicating tasks where their executions are guided by the data dependencies. In this context, the first problem addressed in this thesis is:

How can we model the communications within multi-periodic systems, while meeting simultaneously their temporal and data requirements?

The second problem of this thesis is:

How can we evaluate the latency of a multi-periodic system?

We detail in chapter 4 the state of the art of modeling multi-periodic systems and evaluating their latencies using data flow formalisms. Next section lists several research approaches of modeling real-time systems.

Modeling real-time systems

Real-time systems are continuously interacting with external environment (other systems or hardware components). Assurance of a global quality of this kind of interactions is a major issue in the systems design. Nowadays, it is widely accepted that modelling plays a central role in the systems engineering. Modeling real-time systems provides an operational representation of the system overall organization as well as the behaviour of all its sub-systems. Therefore, using models can profitably substitutes experimentation. Modeling advantages can be summarized as follows [START_REF] Sifakis | Building models of real-time systems from application software[END_REF]:

• flexibility : the model and its parameters can be modified in a simple way;

• generality by using abstraction: solving the scale factor issue;
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• expressibility: improving observation, control and avoidance perturbations due to experimentation;

• predictability: real-time system characteristics can be predictable such as the system latency;

• reduced cost: systems modeling is less expensive than real implementation in terms of time and effort.

Models for Real-Time Programming

In general, the time representations in a real-time system can be classified into three types [START_REF] Kirsch | Principles of real-time programming[END_REF]: asynchronous, timed and synchronous models. These time models differ mainly in the manner of characterizing the correlated behaviour of a real-time system. More precisely, the time models define the relationship between the physical-time and logical-time which depends on several factors, such as the execution platform performance and utilization, the scheduling policies, the communication protocols as well as the program and compiler optimization. Asynchronous model is a classical representation of real-time programming [START_REF] Wirth | Toward a discipline of real-time programming[END_REF] such as the real-time programming languages "Ada" or "C". Applications are represented by a finite number of processes (tasks). Logical-time in the asynchronous model corresponds to the task's processing time (see Figure 2.5). The system execution is controlled by a scheduler setting the execution dates of the application's tasks. A task's execution depends on the adopted scheduling policy within the Real-Time Operating System (RTOS in short). Accordingly, in asynchronous model the logical-time is not a priori determined and may vary depending on several factor such as the platform performance or the scheduling scheme. Therefore, asynchronous model logical-time variation is constrained by real-time deadlines: logical-time must be less than or equal to physical-time. The system schedulability condition (i.e. all deadlines are met) must be indicated in the scheduling scheme of real-time operating system. A schedulability analysis also requires the analysis of the worst-case execution times.

Asynchronous model

Timed model

The principle of timed model is based on the idea that interactions between two processes can only occur at two precise moments τ and τ ′ . The interval between these moments (]τ, τ ′ [) is a fixed non-zero amount of time which corresponds to the logical duration of computation and communication between two processes (see Figure 2.6). In this context, programmers annotate their programs describing real-time systems with logical durations. The latter are an approximation of the actual computation and communication times. In this case, logical-time and physical-time are equal. Unlike the asynchronous model, since all the necessary information are known before execution, verification of some properties related to the logical temporal behaviour of the system becomes possible. For example, a scheduling validity or the system latency evaluation can be checked using a static method at compile-time.

In the timed model the program's logical execution time is fixed, two situations may arise at the execution level:

• The program may not have finished executing while its logical execution time is exceeded. If the timed program is indeed late, a runtime exception may be thrown (an exception is usually generated).

• The program may have completed its execution before its logical delay expiration.

If the timed program finishes early, its output is delayed until the specified logical execution time has elapsed. The model annotation values should be carefully chosen in order to reduce the phase shift between the computations and output productions.

The timed model is well-suited for embedded control systems, which require timing predictability. The timed programming language Giotto [START_REF] Henzinger | Giotto: a time-triggered language for embedded programming[END_REF] supports the design and implementation of embedded control systems [START_REF] Kirsch | A giottobased helicopter control system[END_REF], in particular, on distributed hardware. The key element in Giotto is that timed tasks are periodic and deterministic with respect to their inputs and states. The logical execution time of a Giotto task is the period of the task. For example, a 10Hz Giotto task runs logically for 100ms before its output becomes available and its input is updated for the next invocation. The principle of the synchronous model is similar to that of the timed model, in the sense that the two processes do not communicate between instants τ and τ ′ . In contrast to the timed model, the synchronous programmer assumes that any computational activity of a synchronous program including communication takes no time: logical-time in a synchronous program is always zero (see Figure 2.7). In other words, the synchrony hypothesis is satisfied as long as the system is fast enough to react to inputs coming from external environment and produces corresponding outputs before the acquisition of the next inputs. The interval ]τ, τ ′ [ is seen as part of the logical-time model. In order to have a detailed the system behaviour, this interval can be refined by considering intermediate instants from the logical time point of view.

Synchronous model

In order to model the communications within multi-periodic systems, we characterized the systems behavior using a temporal approach (a timed model). We assume that all the tasks parameters are provided by the developer.

Low-level languages

A large real-time systems class is implemented using low-level languages. However, the use of these languages presents several major disadvantages:

• Time-triggered communications are hard to implement. In fact, a part of the system should be scheduled manually.

• A basic mechanism for tasks communications is the "rendez-vous", which is implemented by three primitive operations: send, receive and reply. This type of communications may lead to deadlocks such as two communicating tasks are waiting each other to resume their executions.

• A low level of abstraction makes the program correctness harder to verify (manually or using automated tools).

• The use of low-level languages makes the program maintenance difficult. This is due to lack of informations differentiating parts of the program corresponding to real design constraints and parts which only correspond to implementation concerns.

Dealing with such considerations cannot be avoided. Actually, real-time systems developers tend to use programming languages with a higher-level of abstraction, where these issues are managed by the language compiler. Several languages seek to cover the entire process (from verification up to implementation). Their approach is based on translating the input program modeled with a high-level language into a low level code using automatic code generation processes. Such a strategy reduces the required time for implementation. Then, it provides a simple system description which is easier to analyse using verification tools. Finally, the compilation ensures the low-level code correctness.

Synchronous languages

The synchronous approach presents a high level of abstraction. This approach is based on simple and solid mathematical theories, which ease the program implementation and verification. Synchronous approach introduces a discrete and logical time concept defined as succession of steps (instants). Each step corresponds to the system reaction.

The synchrony assumption consider that the system is fast enough to react to its environment stimulus. This practically means that the system changes occurring during a step are treated at the next step and implies that responsiveness and precision are limited by the step duration. The synchronous execution model has been developed in order to control in deterministic way reactions and interactions with the external environment. Esterel [START_REF] Berry | The esterel synchronous programming language: Design, semantics, implementation[END_REF], Lustre [START_REF] Halbwachs | The synchronous data flow programming language lustre[END_REF] and Signal [START_REF] Benveniste | Synchronous programming with events and relations: the signal language and its semantics[END_REF] are examples of synchronous languages. In order to meet the synchrony assumption, the correct implementation of these languages requires the estimation of the worst case execution times of the program code.

Lustre

Flow or Signal is an infinite sequence of values. It describes the values taken by the variables or expressions manipulated by a synchronous language. The sequence clock indicates the lack or the availability of a value carried by this sequence at a specific instants. The diverse features of Lustre programming language are illustrated in the following example: node NOD ( i : int ; b : bool ) returns ( o : int ) var x : int ; y : int when b ; let x = 0 -> pre ( i ); y = x when b ; o = current ( y ); tel A program consists of a set of equations that are hierarchically structured using nodes. These equations defines the program output flows according to the input flows. Equations use variables of either primitive types (int, bool,. . . ) or user-defined types. They also use a set of primitive operators (arithmetic, relational . . . ). In addition to those operators, there exists four temporal operators:

• "pre"(previous) operator acts as memory. It allows to refer at cycle n to the value of a flow at cycle n -1. If X= (x 1 , x 2 , . . . , x n , . . . ) is the values sequence of the flow X, then pre(X)= (nil, x 1 , x 2 , . . . , x n-1 , . . . ) In this flow, the first value is the undefined (non initialized). In addition, for any n > 1, its nth value of pre(X) is the n -1th value of X.

• "->"(follow by) operator is used to initialize a flow. If X = (x 1 , x 2 , . . . , x n , . . . ) and Y = (y 1 , y 2 , . . . , y n , . . . ) are two flows of the same type, then X -> Y= (x 1 , y 2 , . . . , y n , . . . ). This means that X -> Y is equal to Y except the first value.

• "when" operator is used to create a slower clock according to a boolean flow such as B = (true, f alse, . . . , true, . . . ). X when B is the flow whose clock tick when B is true and its values are equal to those of X at these instants.

• "current" operator is used to get the current value which is computed at the last clock tick of the flow. If Y = X when B is a flow, then current(Y) is a flow having the same clock as B and whose value at a given clock's tick is the value taken by X at the last clock's tick when B was true. 

pre(i) nil 1 2 3 4 . . . x = 0 -> pre (i) 0 1 2 3 4 . . . y = x when b 0 1 4 . . . o = current(y) 0 1 1 1 4 . . . Table 2.1 Lustre program behaviour.
The Lustre program behaviour is depicted in table 2.1. The flow value is given at clock's tick. The node output (o) is computed according to the inputs (i,b). x and y are two local (intermediate) variables. x = 0 -> pre (i) equation sets x to 0 initially, and the subsequent x is equal to the value of i at the previous clock's tick. y = x when b means that y is present only when b is true and it takes the value of x at this instant. Finally, the output o is defined as the current value of y when it was available.

Due to the complexity of high-performance applications and to the intrinsic combinatorics of synchronous execution, multiple clock domains have to be considered at the application level. This is the case of a single system with multiple input/output associated with several real-time clocks. In this context, we focussing our study on modelling multi-periodic systems. In the following part, we introduce two synchronous languages dedicated to model multi-periodic systems.

Lucy-n

Synchronous languages such as Lustre [START_REF] Halbwachs | The synchronous data flow programming language lustre[END_REF] or Lucid Synchrone [103] define a restricted class of Kahn Process Networks which can be executed without buffers. For some appli-cations (real-time streaming applications), synchrony condition forces the programmer to implement manually complex buffers, which is very error-prone. In order to avoid this issue, Cohen et al. [START_REF] Cohen | N-synchronous kahn networks: a relaxed model of synchrony for real-time systems[END_REF] generalized the synchronous approach by introducing the n-synchronous approach. This latter is based on defining a relaxed clock-equivalence. Communication between n-synchronous streams is implemented with a buffer of size n. Accordingly, quantitative information about clocks can be revealed so that the compiler can decide whether it is possible to buffer a stream into another or not.

Based on the n-synchronous approach, Mandel et al. [START_REF] Mandel | Lucy-n: a n-synchronous extension of lustre[END_REF] introduced Lucy-n an extension of Lustre with a build-in buffer operator. The purpose of this language is to relax synchrony constraints while ensuring determinism and execution in bounded time and memory. Lucy-n handles the communication between processes of different rates through the buffers. A clock analysis is used to determine where finite buffers must be introduced into the data flow graph. Finally, clocks and buffer sizes are computed by the compiler.

In this thesis, tasks parameters are extracted from the real-time application itself. In addition, communication between two periodic tasks are modeled using an non-flowpreserving semantics.

Prelude

Prelude [START_REF] Forget | A multi-periodic synchronous data-flow language[END_REF][START_REF] Forget | A synchronous language for critical embedded systems with multiple real-time constraints[END_REF] is a real-time programming language inspired by Lustre [START_REF] Halbwachs | The synchronous data flow programming language lustre[END_REF]. It focuses on the real-time aspects of multi-periodic systems. Predule is an integration language that assembles local mono-periodic programs into a globally multi-periodic system.

A program consists of a set of equations, structured into nodes. Real-time constraints representing the environment requirements are specified either on nodes' inputs/outputs (e.g. periods, deadlines) or on nodes (worst-case execution time). Equations of a node define its output flows according to its input flows. In order to manage the communication between nodes with different rates, transition operators are added to the synchronous data flow model. These operators are formally defined using strictly periodic clocks. They accelerate, decelerate, or offset flows. Therefore, they allow the definition of communication patterns provided by the user. The transition operators in Prelude allow the oversampling data sent from lower frequency tasks and under-sampling data sent from higher frequency tasks. Consequently, communications between nodes are non-flow-preserving (quasi-synchrony approach [START_REF] Caspi | About the design of distributed control systems: The quasi-synchronous approach[END_REF]).

The compiler translates a Prelude program into a set of communicating periodic tasks that respect the semantics of the original program. The tasks set is implemented as concurrent "C" threads that can be executed on a standard real-time operating system. In case of a mono-processor platform [START_REF] Forget | A real-time architecture design language for multi-rate embedded control systems[END_REF], Prelude compiler implements deterministic communications between tasks without synchronization mechanisms. In order to establish these communications, the compiler ensures that the producer write before the consumer reads. In addition, it prevents a new execution of the producer to overwrite the value of its previous execution, if this latter is still required by other executions. Tasks parameters (release dates and deadlines) were adjusted in order to be scheduled on a mono-processor using Earliest Deadline First policy [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF].

Our approach differs from [START_REF] Forget | A multi-periodic synchronous data-flow language[END_REF][START_REF] Forget | A synchronous language for critical embedded systems with multiple real-time constraints[END_REF] in the following points: we characterize the systems behavior using a temporal approach (a timed model), in order to model the communications of multi-periodic systems. In addition, we tackle the mono-processor scheduling problem for applications modeled as non-preemptive strictly periodic tasks. Unfortunately, it has been proven [START_REF] George | Preemptive and non-preemptive real-time uniprocessor scheduling[END_REF] that the schedulability conditions for preemptive scheduling become, at best, necessary conditions for the non-preemptive case.

Oasis

Based on Time-Triggered Approach [START_REF] Kopetz | Time-triggered real-time computing[END_REF], Oasis [START_REF] Chabrol | Deterministic distributed safety-critical real-time systems within the oasis approach[END_REF][START_REF] Louise | Oasis project: deterministic real-time for safety critical embedded systems[END_REF] is a framework dedicated to model and implement safety-critical real-time systems. An Oasis application is defined as a set of parallel communicating tasks called agents. Each agent is an autonomous running entity composed of a finite number of basic processing operations.

An Oasis application is implemented using an extension of "C" programming language, denoted by "ΨC". This language allows the tasks specification as well as their temporal requirements and interfaces. Each task t (agent) is characterized by a real-time clock H symbolizing the physical moments at which the (input/output) data can be observed. Clocks tasks are computed according to a global (smallest) clock which include all the observable moments of the system. Each basic processing is associated with a time interval defining its earliest start time (release date) and its latest end time (deadline). This latter is also the release date of the next processing. Such specific temporal dates are called temporal synchronization points.

There are two communication mechanisms in the Oasis model. The first one is shared variables (temporal variables) defined as real-time data flows. Variables can be shared implicitly between tasks and their past values of can be read by any task that needs it. Temporal variables modifications are only made visible at synchronization points. The second mechanism for data communication is explicit message passing. Each message defines a visibility date specified by the emitting task. In fact, the message can be observed by the receiving task from this date. Moreover, messages are stored, according to their visibility, in queues that belong to the receiving task.

Context and Problems

Our communication model is similar the temporal variable mechanism in the sense that data is available at the emitting task deadline and can only consumed (received) at release date of the receiving task. However, in our model the release dates and the deadlines of successive executions do not necessary coincide. In addition, communications between the tasks executions is modeled, in a deterministic way, using a Synchronous Data Flow Graph whose size is equal to the application size.

Matlab/Simulink

Simulink [START_REF] Jonkman | Fast user's guide-updated august[END_REF] is a high-level modelling language developed by Mathworks. It is a specification and simulation tool widely used in the industrial field. Simulink models an application as a set of functional blocks (or Synchronous Block Diagrams) connected by signals. Each block is characterized by a set of input/output signals and an internal state. Each block output depends on its inputs and/or on its state. However, the block state depends only on the inputs of the block. A Simulink block transforms its inputs to outputs at a rate corresponding to its sample time. The block sample time indicates when the block will be executed during simulation. In other word, it indicates when the block internal state is updated and its outputs are computed. This sample time can be periodic or continuous. A periodic block is activated at time steps multiple of its period. Multi-periodic systems are modelled by a Simulink block diagram whose links defined the data transfer mechanisms between blocks.

In [START_REF] Klikpo | Modeling multi-periodic simulink systems by synchronous dataflow graphs[END_REF], we introduce an approach that models formally the synchronous semantic of multi-periodic Simulink systems using Synchronous Data Flow Graph. We proved that communication links between two periodic Simulink blocks can be modeled by a Synchronous Data Flow graph buffer. Our approach is based on a formal equivalence between the data dependencies imposed by the communication mechanisms in Simulink and the precedence constraints of a Synchronous Data Flow Graph. This approach allows multi/many-core implementation analysis since the resulting graph has the same size as the original Simulink system.

Architecture Description Language

An architecture description language (ADL) provides a high level of abstraction. The description may cover software features such as processes, threads and data as well as hardware component such as processors, memory, and input/output devices. This language focuses on describing the interaction between high level components of a system. The development process of a complex system, such as control/command application, can be supported by such approach. The software engineering community uses ADLs in order to describe the software architectures. ADLs advantages are:

-Providing a formal representation of architectures.

-Both human and machines can apprehend their designs.

However, ADLs have a major drawback. There is no universal agreement on what ADLs should represent, especially when it is about the system behaviour.

In the sequel, we describe two languages dedicated to model multi-periodic systems.

Architecture Analysis and Design Language

Architecture Analysis and Design Language (AADL) [START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF] is used to model the software and hardware architecture of a real-time embedded system. An AADL design consists of a set of components interacting through interfaces. Components can be separated into three categories: application software (process, thread, etc.), execution platform (hardware) or composite components (composition of other components).

In AADL, user can specify a set of properties and extend them in order to fulfil his own requirement. For instance, a variety of execution properties can be assigned to threads, including timing (such as worst case execution times), dispatch protocols (such as aperiodic, periodic), memory size, etc.

Interactions among components are represented through connections defined between interface elements. Communication mechanisms can either be immediate (between simultaneous dispatches of the communicating threads) or delayed (from the current dispatch of the sender to the next dispatch of the receiver). Immediate communications impose a precedence order from the data sender to the receiver. However, in delayed communications, data are available to a receiving thread is that value produced at the most recent deadline of the emitting thread. Immediate and delayed communications can also be established between threads of different periods.

The AADL approach allows to model multi-periodic systems with a high-level of abstraction. The main restriction of this approach is that it provides a limited choice of communication schemes. However, our approach allows the definition of several (userprovided) communication schemes, while relying on the solid mathematical background of the SDFGs.

GIOTTO

Giotto [START_REF] Henzinger | Giotto: A timetriggered language for embedded programming[END_REF] is a time-triggered Architecture Description Language designed to implement real-time systems. These latter can be executed in a distributed environment. A Giotto program allows to specify the possible interactions systems' components and their environment.

A Giotto program is composed of four major concepts:

-Tasks: Giotto tasks are periodic. They are executed at regularly spaced points in time. They express calls to functions and they can have parameters defined by input and output ports.

-Ports: They allow the communication between a system and its environment.

There are three types of ports: input, output and private. Private ports are used to communicate between tasks.

-Modes: They represent the major elements of a Giotto program. Giotto can only be in one mode at a certain instant. A mode consists of a period, an output set, actuators update, tasks execution and a set of switch modes.

-Drivers: They are functions that provide values for the input ports from sensors and mode ports. Drivers can be guarded: the guard of a driver is a predicate on sensor and mode ports. In other words, a task is executed only if the driver guard is true. Otherwise, the task execution is skipped.

A Giotto program consists of a set of modes. Each mode repeats the execution of a fixed set of tasks. These tasks are multi-periodic: each mode has a period P and each task has a frequency f , thus the task period is given by P f . Data produced by a task are available only at the end of its period. Conversely, when a task is executed it consumes only the last inputs' values, which is produced at the beginning of its period. This communication implies significant latencies between input data and the corresponding output one. However, our communication model considers that the data are available at the task deadline instead of the end of the task period (D i ≤ T i ).

Scheduling real-time system

Real-time scheduling problem consists in defining the tasks' execution order on processors of a given architecture. In real-time systems, tasks are subject to temporal constraints and possibly other constraints. The scheduling purpose is to set a start (preemption/recovery) date for each task execution in order to respect the system constraints.

Scheduling real-time system

A scheduler provides a policy for ordering the tasks executions on processors according to some predefined criteria. A scheduler is said to be optimal with respect to a given class of schedulers if and only if it generates a valid schedule for any feasible task set in this class [START_REF] George | Preemptive and non-preemptive real-time uniprocessor scheduling[END_REF]. In other words, a scheduling algorithm is said to be optimal regarding a system and a task model if it can schedule all tasks' sets that comply with the task model and are feasible on the system [START_REF] Davis | A survey of hard real-time scheduling for multiprocessor systems[END_REF]. We distinguish several scheduling classes:

Offline and online scheduling

A scheduling is offline if all the decisions are made at compile-time (before the application execution). A table is generated containing the scheduling sequence that will be repeated infinitely during run-time. In order to be efficient, this approach requires a priori knowledge of all tasks parameters. Therefore, this approach is workable only if all the tasks are actually periodic. This approach is static and does not adapt to environment changes. However, offline scheduling is often the only way to predict whether temporal constraints are satisfied or not in a complex real-time system. As the scheduling is offline, the use of exact algorithms is possible even if these methods are very time consuming.

A scheduling is online if decisions are made during the runtime of the system. At each moment of the system life time, the scheduling algorithm is able to process tasks that have not been previously activated using the task parameters specific to this moment. This makes online scheduling flexible and able to adapt to environment changes. In this case, the use of effective heuristics is preferred to that of optimal algorithms.

Independent/dependent tasks Scheduling

The scheduling policy is divided into dependent and independent tasks scheduling. Tasks whose execution is not dependent upon other tasks' executions are termed independent tasks. These latter have no dependencies among the tasks and have no precedence order to be followed during scheduling. In this case, we talk about independent tasks scheduling.

Given a real-time system, dependency between tasks ensures that the tasks are executed in some order. Executing a dependent task may require the availability of data provided by other tasks of the system. Therefore, this task can only be schedule Context and Problems after the compilation of its predecessors. The relationship between independent tasks is typically described by a directed graph called precedence or communication graph.

Preemptive and non-preemptive scheduling

A scheduling is called preemptive if the task's execution can be suspended and resumed later on without affecting its behaviour, except by increasing its elapse time. A task is typically suspended by an other task with higher priority, when this latter becomes ready to be executed. Additional cost caused by the preemption may not be negligible compared to the tasks execution and communication times. Moreover, the system may include critical sections where preemption is not allowed.

In contrast, a non-preemptive scheduler does not suspend tasks. When a task is selected to be executed, it runs until the end of its execution. In this case, a higher priority task cannot interrupt the execution of a lower priority task even when it becomes ready to be executed. Compared to preemptive scheduling, non-preemptive algorithms are easy to implement and have a low runtime overhead. The time consumption of each task in the system can be easily characterized and predicted [START_REF] Jeffay | On non-preemptive scheduling of period and sporadic tasks[END_REF]. Even though the non-preemptive scheduling has been proven to be NP-Hard in strong sense [START_REF] Korst | Periodic multiprocessor scheduling[END_REF], this type of scheduling is widely used in industrial applications such as cell phone devices [START_REF] Park | Non-preemptive fixed priority scheduling of hard real-time periodic tasks[END_REF] and mobile robotics [START_REF] Piaggio | Pre-emptive versus non-preemptive real time scheduling in intelligent mobile robotics[END_REF].

Mono-processor and Multi-processor scheduling

Designing real-time systems is influenced by the hardware architecture on which the application may run. It designates the physical resources needed to control the process. This architecture is composed of processors, input / output cards, memories, networks, etc. According to the processors number, we distinguish two scheduling problems:

-Mono-processor scheduling: All the system tasks are executed by a single processor.

-Multi-processor scheduling: In order to be executed, the application's tasks are assigned to n processors sharing a central memory.

In the following section, we formulate the scheduling problem studied in the thesis.
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Problem 3: Scheduling strictly multi-periodic system with communication constraints

Nowadays, real-time embedded systems are becoming increasingly complex. Consequently, these systems require additionally Real-Time Operating Systems (RTOS in short) to manage concurrent tasks and critical resources. Most RTOS implement real-time dynamic scheduling strategies such as Rate Monotonic, Earliest Deadline First and so on. The real-time applications are modeled as a set of periodic tasks. Each task is characterized by a set of parameters such as period, release date, deadline and so on. Several schedulability conditions have been provided by the real-time community. These conditions verify, prior to the implementation phase, whether a set of tasks will meet their deadlines for a given scheduling strategy and platform.

Several studies addressed the preemptive scheduling problem of periodic tasks set. However, much less attention was given to the non-preemptive one. In fact, preemptive scheduling has a good task responsiveness, however it increases the resource utilization rate compared to non-preemptive scheduling. Nonetheless, there exists several cases where non-preemptive scheduling is preferable. For instance, the overhead generated by preemption is not always negligible compared to task execution time and inter-processor communication. Non-preemptive scheduling on a uniprocessor guarantees exclusive access to shared resources and data as well as eliminating the need for synchronization and associated overhead. On the other hand, many industrial applications (e.g. avionic applications [START_REF] Sheikh | A best-response algorithm for multiprocessor periodic scheduling[END_REF]) are modeled as a set of strictly periodic tasks. This strict periodicity is usually essential to avoid problems arising form input and output jitters. For example, input jitter can cause a data loss from sensors. Output jitter may lead to performance degradation of the systems, as its negligence can be a source of instability.

On the other hand, communication within multi-periodic systems is more and more indispensable. Due to the tasks strict deadlines that must be met, communications between the tasks executions are implemented in a completely deterministic manner. In this context, the third problem we address in this thesis is:

How to schedule on mono-processor a set of strictly periodic tasks, assuming that these tasks communicate with each other and can not be preempted?

We detail in chapter 4 the state of the art regarding this scheduling problem.

Chapter 3

Data Flow models

The emergence of microelectronics and modern calculators led to the development of increasingly accurate models. These models seek to formally describe the notion of parallel and distributed computing. Kahn Process Network is one of the first attempts which models an application using First In First Out queues between the application sub-parts. However, this model is too permissive to allow an algorithmic prediction of the application performances. Nowadays, Synchronous Data Flow graph is a widely used model which provides a compromise between the application expressiveness and analyse.

This chapter provides an overview of data flow models and introduces important notion concerning them. Section 3.1 presents an overview of data flow models. Section 3.2 introduces notions and transformations related to Synchronous Data Flow Graph model. Section 3.3 concludes the chapter.

Data Flow Graphs

The data flow model is inspired from computation graphs and Kahn Process Networks (KPN). This model is based on a graphical representation of programs and architectures. In the model's original definition [START_REF] Dennis | First version of a data flow procedure language[END_REF][START_REF] Davis | Data flow program graphs[END_REF], the graph vertices represent the elementary operations of the computer program and the graph edges between two vertices model the data dependencies between two operations. The program's initial conditions are modeled by adding tokens on the graph edges. In Denis' model [START_REF] Dennis | First version of a data flow procedure language[END_REF], an operation which is represented by a graph vertex, can be executed whenever data are available on all its inputs. When an operation is executed, it consumes a token on each input edge and produces a token on each output edge. The data flow representation is dedicated to computer programs, multi-processors architecture and parallel compilation.

Data Flow models

In the sequel, we present data flow models that are frequently used for embedded systems design. These models are: Kahn Process Network, Computation Graph, Synchronous Data Flow Graph and Cyclo-Static Data Flow Graph.

Kahn Process Network

We start by presenting Kahn Process Network (KPN in short) [START_REF] Gilles | The semantics of a simple language for parallel programming[END_REF] since it is one of the most general data flow model. KPN is a data flow model based on a graphical description. It describes an application using a directed graph. the vertices symbolize the application sub-sections (processes). During the application execution, processes communicate through communication channels. These channels are unbounded FIFO (First In First Out) buffers which temporarily store data. The input process can exclusively write into the buffer and the output process can exclusively read from the buffer. Reading from an empty buffer is blocking. In fact, when a process starts reading from a buffer, its execution is suspended until the data arrival (it must wait for the data availability before resuming its execution). The process cannot verify the presence of data before its execution. In addition, the processes are not reentrant. This means when a process starts executing, it must finish before starting an other execution. The Kahn Process Network is a deterministic model. Indeed, the output data of the KNP depend only on the input data. This output value is neither influenced by the processes execution times and their executions order nor by the communication delays between them. Moreover, the semantic of this model does not allow the buffer sizing. In order to compensate this issue, the buffer has infinite size. Thus, this model is useful to describe complex applications. However, it is unable to predict the system performances.

Computation Graph

Computation graphs [START_REF] Karp | Properties of a model for parallel computations: Determinacy, termination, queueing[END_REF] (CG in short) are one of the first static data flow model. Karp and Miller defined the CG in order to propose an alternative to sequential execution model. As the Kahn Process Network, an application (system) is represented by directed graph. The graph nodes model the tasks (or sub-tasks) of an application. The graph arcs represent the data exchange between these tasks. Each arc corresponds to an unbounded FIFO (First In First Out) buffer connecting an input task to an output one. At the end of the input task execution, a fixed amount of data is produced and stored temporarily in the buffer. According to a fixed threshold, these data are subsequently consumed from the buffer at the beginning of the output task execution. Each task activation depends only on the availability of a sufficient amount of data on all of its input arcs. In addition, each buffer may contain an initial amount of data. In the sequel, we referred data as tokens. Figure 3.2 represents a Computation Graph consisting of two tasks t i and t j connected by a buffer a = (t i , t j ). The initial amount of tokens is equal to 2. Each execution of t i produces 3 tokens in the buffer a. In order to be able to execute, t j must wait for the availability of 7 tokens in the buffer, since the required data threshold is equal to 7. At the beginning of its execution, t j consumes 4 tokens from the buffer a. Note that the data threshold must be greater or equal than the amount of tokens consumed by t j .

Some applications are represented using the Computations graphs model which highlights the parallelism between their different parts. Karp and Miller [69] show that the execution of a program modeled by a CG is deterministic (static). It is possible to study the program behaviour even without its execution. Accordingly, several fundamental problems become decidable such as checking the application liveliness (absence of deadlock).

Synchronous Data Flow Graph

The "Synchronous Data Flow Graphs" (SDFG in short) are a formalism introduced and studied by Lee and Messerchmidtt [START_REF] Lee | Synchronous data flow[END_REF][START_REF] Lee | Static scheduling of synchronous data flow programs for digital signal processing[END_REF] in order to model the communications within an embedded applications. They are defined by a set of tasks exchanging data using FIFO queues. A SDFG is represented by an oriented graph G = (T , A). SDFGs can be considered as a particular case of Computation Graphs where the data thresholds of the buffers are equal to the consumption rates.

A Synchronous Data Flow Graph is defined as follows:

-Each node t i ∈ T corresponds to a task. Nodes can be executed infinity of times.

-Each arc a = (t i , t j ) corresponds to a buffer formed by an unbounded FIFO queue connecting an input task t i to an output task t j .

-A buffer may contain data which are referred as tokens. The initial amount of tokens in a buffer is expressed by M 0 (a). This notation is also called initial marking.

At the beginning of their executions, tasks consume tokens from their inputs. Furthermore, these tasks produce tokens in their outputs at the end of their executions.

in a is the production rate which corresponds to the amount of tokens produced in the buffer a at each execution of the input task t i .

out a is the consumption rate which corresponds to the amount of tokens consumed from the buffer a at each execution of the output task t j .

An application modeled by a consistent SDFG can be always implemented. Provided that SDFG' tasks take finite time and finite memory in order to execute, the implementation will also take finite time and finite memory. Thus, an application modeled with a SDFG can be executed (infinitely) in a periodic way without requiring additional resources. This formalism suits well the streaming applications such as video encoders and decoders such as the H263 in [START_REF] Stuijk | Exploring trade-offs in buffer requirements and throughput constraints for synchronous dataflow graphs[END_REF]. In addition, SDFG formalisms can be used in some academics tools [START_REF] Thies | Streamit: A language for streaming applications[END_REF][START_REF] Bamakhrama | A methodology for automated design of hard-real-time embedded streaming systems[END_REF][START_REF] Goossens | Virtual execution platforms for mixed-time-criticality systems: the compsoc architecture and design flow[END_REF] or industrial ones [START_REF] Goubier | σc: A programming model and language for embedded manycores[END_REF] in order to map an application on a many-core architecture. 3 illustrates a buffer a = (t i , t j ). The number of initial tokens in the buffer is equal to 3. At the end of each execution of t i , 2 tokens are produced and stored temporarily in the buffer a. Task t j cannot be executed unless the number of tokens in the buffer is at least equal to 5. Then, 5 tokens will be consumed at the beginning of the t j execution .

Homogeneous Synchronous Data Flow Graph

There exists a particular case of Synchronous Data Flow Graph named Homogeneous Synchronous Data Flow Graphs (HSDFG in short). A Homogeneous SDFG is a SDFG where the production and consumption rates are equal in a = out a . By convention, we note it by ∀a ∈ A, in a = out a = 1.

Cyclo-Static Data Flow Graph

"Cyclo-Static Data Flow Graph" (CSDFG in short) [START_REF] Bilsen | Cycle-static dataflow[END_REF] is an extension of SDFG. In this model, the production and consumption rates are decomposed into phases. The amount of tokens consumed and produced by a task varies from one execution to the successive one in a cyclic pattern. These rates are represented as a vector.

Example 3.1.1 Consider a buffer a = (t i , t j ). Denote by out a (k j ) the quantity of tokens consumed during the k j th execution of the task t j with k j ∈ {1, . . . , ϕ(t j )}. Similarly, denote by in a (k i ) the quantity of tokens produced during the k i th execution of the task t i with k i ∈ {1, . . . , ϕ(t i )}. As depicted in Figure 3.4, the task t i will produce 3 tokens at the end of its first execution. Then, it produces 4 tokens after its second execution. Finally, it produces 2 tokens after its third execution. This sequence of ϕ(t i ) = 3 executions is called an iteration. Once this iteration is over, we restart from the beginning.

Denote by i a the total amount of data produced in the buffer a after an iteration of its input task and denote by o a the total amount of data consumed from the buffer a after an iteration of its output task.

i a = ϕ(t i ) k=1 in a (k) and o a = ϕ(t j ) k=1 out a (k)

Synchronous Data Flow Graph Characteristics and transformations

Several tests and transformations can be used to study the Synchronous Data Flow model. These transformations have different complexities. In the sequel, we present some essential transformations to our study such as expansion and repetition vector computation.

Precedence relations

Consider the SDFG G = (T , A), for each task t i ∈ T , we denote by t ν i i the ν i th execution of t i where ν i is a strictly positive integer.

In the SDFG formalism, the task execution is conditioned only by the availability of sufficient amount of tokens on its inputs. For a buffer a = (t i , t j ) ∈ A with M 0 (a) as initial marking, the executions of t j may require the presence of data produced by t i . In this case, the buffer a induces a set of precedence constraints between the executions of t i and t j . We say that there exists a precedence relation between the ν i th execution of t j and the ν j th execution of t i if and only if:

• Condition 1: t ν j j can be executed after t ν i i .

• Condition 2: t ν j j can not be executed before t ν i i .

After the ν i th execution of t i , ν i • in a tokens are added to the buffer a. On the other hand, at the beginning of the ν j th execution of t j , ν j • out a tokens are consumed from the buffer. The resulting marking of these executions is equal to:

M (a) = M 0 (a) + ν i • in a -ν j • out a (3.1)
In the general case, Munier [START_REF] Munier | Optimal asymptotic behavior of a generalized timed event graph: application to an assembly system[END_REF] defines a strict precedence relationship between the executions of adjacent tasks. Consider a SDFG G = (T , A). Let a = (t i , t j ) be a buffer with M 0 (a) as initial marking. Let (ν i , ν j ) be a pair of strictly positive integers. We say that there exists a precedence relation between t ν i i and t ν j j if the following conditions are met:

• Condition 1: t ν j j can be executed after t ν i i . This condition is equivalent to:

M 0 (a) + ν i • in a -ν j • out a ≥ 0.
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• Condition 2: t ν j -1 j can be executed before t ν i i , while t ν j j cannot be executed before t ν i i . This condition is equivalent to:

in a > M 0 (a) + (ν i -1) • in a -(ν j -1) • out a ≥ 0.
By combining these two inequalities, Munier [START_REF] Munier | Optimal asymptotic behavior of a generalized timed event graph: application to an assembly system[END_REF] obtained the following theorem:

Theorem 3.2.1 Let a = (t i , t j ) be a buffer with M 0 (a) as initial marking. Let (ν i , ν j ) be a couple of strictly positive integers. There is a precedence constraint between the ν i th execution of t i and the ν j th execution of t j if and only if:

in a > M 0 (a) + ν i • in a -ν j • out a ≥ max{0, in a -out a }. (3.2)
In the remainder of this manuscript, we use the term "precedence constraint" to refer to a strict precedence constraint.

Example 3.2.1 Consider the SDFG of Figure 3.3. There is a precedence constraint between the executions t 4

i and t 2 j induced by the buffer a. Indeed, after the execution of t 4 i , 3 + 4 × 2 = 11 tokens are produced in the buffer a. Then, after the execution of t 2 j , 2 × 5 = 10 tokens are consumed from the buffer. Therefore, t 2 j can be executed after t 4 i (Condition 1). After the execution of t 3 i , 3 + 3 × 2 = 8 tokens are produced in the buffer a. However, in order to execute t 1 j , 1 × 5 = 5 tokens are required. Therefore, t 1 j can be executed before t 4 i , while, t 2 j cannot be executed before t 4 i since there are not enough tokens in the buffer (Condition 2).

Relation between the tasks executions' indexes

Consider a SDFG G = (T , A). Let a = (t i , t j ) be a buffer with M 0 (a) as its initial marking. Let (ν i , ν j ) be a pair of strictly positive integers such that there exists a precedence constraints between the ν i th execution of t i and the ν j th execution of t j . Marchetti and Munier [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF] establish a relation between the execution indexes of two adjacent tasks. The following lemma describes this relation in detail. Lemma 3.2.1 Let a = (t i , t j ) be a buffer of a SDFG. Let k min = max{0,ina-outa}-M 0 (a) gcda and k max = ina-M 0 (a) gcda -1 be two integer values, with gcd a = gcd(in a , out a ).

Data Flow models

If buffer (a) induces a precedence constraint between the executions t ν i

i and t ν j j then there exists k ∈ {k min , . . . , k max } such that

in a • ν i -out a • ν j = k • gcd a .
2. Conversely, for any k ∈ {k min , . . . , k max }, there exists an infinite number of couples

(ν i , ν j ) ∈ N * 2 such that in a • ν i -out a • ν j = k • gcd a and the buffer (a)
induces a precedence relationship between the executions t ν i i and t ν j j

Considering the SDFG example in Figure 3.3, Buffer (a) and its initial marking induce a precedence relationship between the fourth execution of t i and the second execution of t j . According to the lemma 3.2.1, there exists an integer value k ∈

{k min . . . k max } where k min = max{0,2-5}-2 1 = -2 and k max = 2-2
1 -1 = -1 with gcd a = gcd(2, 5) = 1. Therefore, the relationship between the execution indexes of t 4 i and t 2 j is establish as follows:

in a • ν i -out a • ν j = 2 • 4 -5 • 2 = k • 1, with k ∈ {-2, -1}.

Consistency

The consistency of a SDFG is a necessary condition for the existence of a schedule with bounded memory [START_REF] Lee | Static scheduling of synchronous data flow programs for digital signal processing[END_REF]. During the system execution, consistency ensures that the amount of tokens consumed is equal to that produced in each buffer of the SDFG. Definition 3.2.1 Let G = (T , A) be a SDFG. For each task t i ∈ T , we define the set of input arcs A + (t i ) and the set of output arcs A -(t i ) as follow:

A + (t i ) = {a = (t j , t i ) ∈ A, t j ∈ T } and A -(t i ) = {a = (t i , t j ) ∈ A, t j ∈ T }
The topology matrix of a SDFG allows a synthetic description of a system. This matrix is analogous to the incidence matrix in graph theory. Let us consider a SDFG G = (T , A). Its topology matrix Γ G , of size |A| × |T |, is defined in the following way:

∀(a, t i ) ∈ A × T , Γ G (a, t i ) =            in a if a ∈ A -(t i ) -out a if a ∈ A + (t i ) 0 Otherwise
.

Each column of Γ G corresponds to a node and each row corresponds to an arc. G is consistent only when the rank of Γ G is equal to |T | -1.

Fig. 3.5 Cyclic Synchronous Data Flow Graph.

Let us consider the SDFG depicted in Figure 3.5, its topological matrix is equal to:

Γ =     3 -4 0 0 2 -2 -3 0 4    
The SDFG consistency can be verified by computing the rank of the topology matrix which is equal to |T | -1 = 2.

Repetition vector

An other way to check the SDFG consistency is to compute its repetition vector R [START_REF] Lee | Static scheduling of synchronous data flow programs for digital signal processing[END_REF]. The SDFG's repetition vector indicates for each task the minimal number of executions, such that the graph returns to its initial state. Hence, a SDFG is said to be consistent if its repetition vector exists. We compute the SDFG repetition vector R by finding a vector with the smallest strictly positive integer entries which satisfies the following equation:

Γ G • R T = 0.
We note R i the repetition factor of a task t i ∈ T . In order to compute the SDFG's repetition vector, each buffer should verify the following equality:

∀a = (t i , t j ) ∈ A, out a • R i = in a • R j .

Data Flow models

Let's consider the previous SDFG represented in Figure 3.5. Its repetition vector can be computed using the following system:

4 • R B = 3 • R A 3 • R A = 4 • R C 2 • R c = 2 • R B
By solving this system, we can deduce that the SDFG is consistent and its minimal repetition vector is equal to R = [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF][START_REF] Aubry | Extended cyclostatic dataflow program compilation and execution for an integrated manycore processor[END_REF][START_REF] Aubry | Extended cyclostatic dataflow program compilation and execution for an integrated manycore processor[END_REF]. The graph reaches its initial state (initial marking), when A is executed 4 times, while B and C are respectively executed 3 times.

Normalized Synchronous Data Flow graph

The normalization [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] consists on transforming a SDFG into a normalized equivalent graph where all the arcs values adjacent to a task are equal. This transformation has no influence on precedence relationships; however it serves to simplify several stages of analysis. Marchetti and Munier [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] prove that any consistent Synchronous Data Flow Graph can be normalized in polynomial time.

Definition 3.2.2 Let G = (T , A) be a SDFG. A task t i ∈ T is normalized, if there is a strictly positive integer z

i ∈ N * such that ∀a ∈ A -(t i ), in a = z i ∀a ∈ A + (t i ), out a = z i . Definition 3.2.3 A SDFG G = (T , A) is normalized if each task t i ∈ T is normalized.
Normalizing G consists on finding two strictly positive integer vectors z = (z 1 , . . . , z |T | ) and µ = (µ 1 , . . . , µ |A| ) that verify the following equation system:

∀a ∈ A -(t i ), µ a • in a = z i ∀a ∈ A + (t i ), µ a • out a = z i .
In order to validate this transformation, the initial marking of each SDFG buffer must be multiplied by the corresponding factor as follows: The normalization example shown in Figure 3.6b is obtained by solving the following equation system:

∀a ∈ A, M 0 (a) • µ a (a) Unnormalized SDFG. (b) Equivalent normalized SDFG.
z A = 3 • µ AB = 2 • µ AD z B = 4 • µ AB = 1 • µ BC z c = 5 • µ BC = 20 • µ DC z D = 2 • µ AD = 3 • µ DC
Since the SDFG of Figure 3.6a is consistent, we can deduce the existence of a solution before solving the equation system. A minimal solution of this system is equal to µ = (µ AB , µ AD , µ BC , µ DC ) = (2, 3, 8, 2) and z = [START_REF] Bamakhrama | Managing latency in embedded streaming applications under hard-real-time scheduling[END_REF][START_REF] Baruah | Techniques for multiprocessor global schedulability analysis[END_REF][START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF][START_REF] Bamakhrama | Managing latency in embedded streaming applications under hard-real-time scheduling[END_REF]. Thus, the initial marking of each buffer is equal to M 0 (a AB ) = 20, M 0 (a BC ) = 40, M 0 (a DC ) = 0 and

M 0 (a AD ) = 9.
Normalization is an analytical tool that has been successfully used in the analysis SDFG liveliness conditions. In our study, we only deal with consistent and normalized SDFG.

Expansion

Synchronous Data Flow graphs may be analysed by transforming them into an equivalent Homogeneous Synchronous Data Flow Graph. HSDFGs are particular class of SDFGs where all the production and consumption rates are equal. Efficient analysis technique have been developed for this class of graphs. Most of these analysis which are applied to HSDFGs may be applied to the original graphs. For example, each valid schedule for the equivalent HSDFG is a valid schedule for the original SDFG. In contrast, the disadvantage of this transformation is that the size of the resulting graph (HSDFG) can increase, in the worst case, exponentially compared to the size of the SDFGs. Based on the consistency [START_REF] Lee | Static scheduling of synchronous data flow programs for digital signal processing[END_REF], Sih and Lee [START_REF] Sih | Scheduling to account for interprocessor communication within interconnection-constrained processor networks[END_REF] defined a SDFG transformation into an equivalent HSDFG. Their approach consists on duplicating the SDFG's tasks according to their repetition factors. In order to ensure the precedences relations, arcs are added according to the tasks production. In other words, the HSDFG arcs number corresponds to the number of tokens produced in the SDFG's buffers. Munier [START_REF] Munier | Optimal asymptotic behavior of a generalized timed event graph: application to an assembly system[END_REF] introduces the expansion, a transformation which associates to each SDFG buffer a = (t i , t j ) an equivalent HSDFG. Precedence constraints between the executions of t i and t j are fulfilled by adding min(R i , R j ) arcs to the equivalent HSDFG, where R i and R j are respectively the repetition factor of t i and t j . The next part of this section explains in detail the different steps of this transformation.

Let G = (T , A) be a SDFG. Let a = (t i , t j ) be a buffer with M 0 (a) its initial marking and R = (R i , R j ) its repetition vector. Let (ν i , ν j ) be a pair of strictly positive integer such that it exists a precedence constraint between t ν i i and t ν j j . Hence, ν i and ν j satisfy the following equation

in a > M 0 (a) + ν i • in a -ν j • out a ≥ max{0, in a -out a }.
On the other hand, R i and R j are the tasks' repetition factors. This means that

R i • in a = R j • out a . Hence,
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This inequalities implies that there is an infinite set of precedence constraints which are repeated every iteration. An iteration means a phase in which tasks t i and t j are executed respectively R i and R j times.

The underlying idea of the expansion, is to represent the infinite set of precedence constraints induced by the buffer and its initial marking using a finite repetitive structure, i.e a pattern. This transformation is composed of three steps: 1. Each task t i is replaced by R i (task repetition factor) tasks denoted by t 1 i , . . . , t R i i . such that for any k ∈ {1, . . . , R i } and α > 0, the αth execution of t k i corresponds to the ((α -1)

• R i + k)th execution of t i . Tasks t 1 i , . . . , t R i i are called duplicates of t i .

For successive executions of each task, a buffer a

k = (t k i i , t k i +1 i ) is added for k i ∈ {1, . . . , R i -1} with M 0 (a k ) = 0. In addition, a R i = (t R i i , t 1 i ) is added with M 0 (a R i ) = 1.

Arcs are added between t ν i

i and t ν j j in the following cases:

• If in a > out a , R i arcs are added between the executions of t i and t j . The executions indexes are computed as follows:

∀ν i ∈ {1, . . . , R i }, ν j = ⌊ M 0 (a) + in a • (ν i -1) out a ⌋ + 1
• If in a ≤ out a , R j arcs are added between the executions of t i and t j . The executions indexes are computed as follows: Figure 3.8b represents the equivalent HSDFG resulting from the expansion of the SDFG depicted in Figure 3.8a. The SDFG repetition factor is equal to R = (2, 3). We notice that the number of arc which models the precedence constraints between the executions of t i and t j is equal to min(2, 3) = 2.

∀ν j ∈ {1, . . . , R j }, ν i = ⌈ out a • ν j -M 0 (a) in a ⌉ with ν j > M 0 (a) out a (a)
Marchetti and Munier [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF] have proven that the expansion of a SDFG is not polynomial. The size of the resulting HSDFG is pseudo-polynomial (O(|T | • max

t i ∈T R i ))
according to the SDFG size. Hence, expansion is an efficient technique for instance with reasonable average repetition factor.

Conclusion

This chapter has introduced an overview of static data flow models. Important notions and transformations were introduced in the context of the SDFG model: precedence constraints, consistency, repetition vector, normalization and expansion. The sequel of this thesis addresses only a particular class of normalized SDFG. This particular class is used for the communication modeling problem of real-time applications, addressed in Chapter 5.

The next chapter introduces the data flow formalisms dedicated to model a real-time system and evaluate its latency. In addition, this chapter presents a state of the art on the scheduling problem of non-preemptive strictly periodic tasks.

Chapter 4

State of art

Modeling stage is essential for designing real-time systems. This procedure provides an operational representation of the system. Modeling an application using static data flow graph provides additional informations related to its execution. Thus, it is possible to evaluate accurately the system performances. On the other hand, these applications must be (properly) scheduled in order to be executed on a given platform. Schedulers must take into account several type of constraints such as resource and communication constraints.

This chapter gives an overview on the state of the art related to this thesis. The remainder of this chapter is organized as follows. Section 4.1 positions our study with respect to the state of the art for modeling real-time systems and evaluating their latencies using data flow formalisms. Section 4.2 compares our approach with some existing non-preemptive strictly periodic scheduling approaches. Conclusion is given in Section 4.3.

Modeling real time systems using data flow formalisms

Critical real-time applications are becoming increasingly complex. These applications are subject to temporal and data constraints. They require a reliable and predictable implementation, since a mismatch during the system lifetime can be catastrophic. Therefore, a model is required to represent (in a deterministic way) the communications between the several parts of a real-time application. This section represents several studies that have been investigated to study real-time systems using data flow formalisms.

Cyclo-Static Data Flow

In [START_REF] Bamakhrama | Hard-real-time scheduling of datadependent tasks in embedded streaming applications[END_REF][START_REF] Bamakhrama | Managing latency in embedded streaming applications under hard-real-time scheduling[END_REF][START_REF] Liu | Resource optimization for csdf-modeled streaming applications with latency constraints[END_REF], the authors consider acyclic CSDFG applications with a single input. They provide an analytical framework for extracting the timing parameters for the CSDFG actors. They compute the periodic tasks parameters using an estimation of the worst-case execution time. They also assume that each read and write has constant execution time. Each actor of CSDFG were scheduled as an implicit periodic task where its deadline is equal to its period. In our approach, we modelled cyclic and acyclic multi-periodic systems with single/multiple input. Moreover, periodic tasks admit deadlines which are not necessarily equal to their periods.

Affine Data Flow graph

Bouakaz et al. [START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF] propose an extension of the CSDFG model called Affine Data Flow graph (ADF in short). This latter is a time-triggered data flow model that explicitly represents each task execution during a complete iteration of the graph. Each task is associated with an activation clock and executed at each clock tick. Any couple clock of ticks in the network can be related by an affine function. Precedence constraints between the tasks' executions are respected since the affine functions ensure the correct order of clock ticks execution. In this context, the authors proposed an analysis framework to schedule the actors of the ADF graph as periodic tasks. However, modeling the execution behaviour using the clock ticks and the affine functions delays the process of finding a feasible schedule. In fact, representing the execution behaviour with clock ticks implicitly transforms the ADF into an equivalent HSDFG. In contrast, our approach modeled the communication within a multi-periodic system with a graph whose size is equal to the number of the system tasks.

Homogeneous Synchronous Data Flow Graph

In [START_REF] Hausmans | Dataflow analysis for multiprocessor systems with non-starvation-free schedulers[END_REF][START_REF] Hausmans | Temporal analysis flow based on an enabling rate characterization for multi-rate applications executed on mpsocs with non-starvation-free schedulers[END_REF], Hausmans et al. have presented a temporal analysis for fixed-priority scheduling. They considered that data flow applications are modelled as cyclic HS-DFG/SDFGs. They compute an upper bound on the worst-case response time of each actor. They assume that the data flow graphs have a strictly periodic source while considering that the other actors have a data-driven operational semantics. Task timing properties were extracted based on its interference with the set of higher priority tasks executed on the same platform. This means that the computation of the timing parameters depends on the set of applications executed on the same platform. Their approaches differ in how to compute that interference. They used a period and 4.1 Modeling real time systems using data flow formalisms 47 jitter characterization [START_REF] Hausmans | Dataflow analysis for multiprocessor systems with non-starvation-free schedulers[END_REF](difference between best-case and worst-case offsets), an enabling rate characterization [START_REF] Hausmans | Temporal analysis flow based on an enabling rate characterization for multi-rate applications executed on mpsocs with non-starvation-free schedulers[END_REF] (describing for each time interval the minimum and maximum number of possible task enabling). Unlike their approach, we modeled the communications within a multi-rate system independently of the scheduling strategy or the other applications executed on the same platform.

In [START_REF] Ali | Generalized extraction of real-time parameters for homogeneous synchronous dataflow graphs[END_REF], Ali et al. proposed an algorithm for extracting the real-time properties of data flow applications. They extract timing parameters (such as offsets, periods and deadlines) of data flow applications with timing constraints (such as throughput and latency). Their approach converts each actor into a periodic arbitrary-deadline tasks. However, their method can only be applied on data flow applications modeled as HSDFGs which are less expressive than SDFGs. In addition, transforming a SDFG into an equivalent HSDFG requires the use of an unfolding process that duplicates each actor potentially an exponential number of times.

Synchronous Data Flow Graph

Recently, Singh et al. [START_REF] Singh | Applying real-time scheduling theory to the synchronous data flow model of computation[END_REF] extended the SDFG model in order to incorporate real-time properties. They associate to each actor a worst-case execution time. Moreover, they specify to each SDFG a single input and output actors with repetition factors equal to 1. Each SDFG was also characterized by a period and a relative deadline parameters. In order to schedule the SDFG upon preemptive uniprocessor, they developed an algorithm converting any SDFG task into a collection of equivalent 3-parameter sporadic tasks [START_REF] Mok | Fundamental design problems of distributed systems for the hard-real-time environment[END_REF][START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF]. These latter have the worst-case computational requirement exactly equal to the worst-case computational requirement of the SDFG task. In this thesis, we limit our study to periodic tasks. However, we consider that the real-time tasks can admit release dates. In addition, we modeled the communications, within a multi-periodic system using a particular class of SDFGs, without increasing the number of the system tasks.

τ i = (C i , D i , T i )

Latency evaluation using data flow model

Other authors have modeled real-time applications using data flow graphs in order to compute their latency.

Processing Graphs Methods

Goddard [START_REF] Goddard | Analyzing the real-time properties of a dataflow execution paradigm using a synthetic aperture radar application[END_REF] modeled a real-time data flow application using Processing Graphs Methods (PGM in short). In PGM, a system is expressed as directed graph where nodes correspond to processing functions and edges correspond to FIFO queues. Realtime requirements were verified using the Rate Based Execution (RBE in short) model. A RBE task t is specified by four parameters (x, y, d, e). The couple (x, y) represents the rate execution where x is the number of executions during the interval y. A task is also specified by its deadline d and its execution time e. The latency was measured as function of the source period. It was bounded according to the sum of the tasks execution times and the sink deadline. In our approach, the tasks periods are directly extracted from the real-time application. Hence, latency is computed according to the parameters of each couple of periodic communicating tasks which is more expressive in terms of the system's communications.

Homogeneous Synchronous Data Flow Graph

Moreira et al. [START_REF] Moreira | Self-timed scheduling analysis for real-time applications[END_REF] studied real-time scheduling of data flow programs using Homogeneous SDFG. In this latter, the consumption and production rates are equal to 1. Some tasks were added to the equivalent HSDFG in order to enforce the strictly periodic behaviour within a self-timed implementation. They defined latency as the time interval between two events. Latency between periodic tasks were computed only if their repetition factors are equal. However, our communication model allows to evaluate the latency between periodic tasks having different repetition factors. Despite SDFG is known to be convertible into HSDFG, Marcheti and Munier [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF] have proven that this conversion is not polynomial.

In [START_REF] Do | Managing the latency of datadependent tasks in embedded streaming applications[END_REF][START_REF] Do | Modèle de calcul et d'exécution pour des applications flots de données dynamiques avec contraintes temps réel[END_REF], authors proposed an analytical framework for computing the periodic tasks' parameters for an application modeled as acyclic CSDFG, so that the tasks are scheduled in a strictly periodic manner. Accordingly, they compute the latency between the executions of two dependent tasks . Moreover, they defined the system latency as an iteration during which each task is executed according to its repetition factor.

Main difference

Existing techniques [START_REF] Goddard | Analyzing the real-time properties of a dataflow execution paradigm using a synthetic aperture radar application[END_REF][START_REF] Moreira | Self-timed scheduling analysis for real-time applications[END_REF][START_REF] Bamakhrama | Hard-real-time scheduling of datadependent tasks in embedded streaming applications[END_REF][START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF][START_REF] Hausmans | Dataflow analysis for multiprocessor systems with non-starvation-free schedulers[END_REF][START_REF] Ali | Generalized extraction of real-time parameters for homogeneous synchronous dataflow graphs[END_REF][START_REF] Singh | Applying real-time scheduling theory to the synchronous data flow model of computation[END_REF], transform each actor in a given data flow into (independent/dependent) real-time task(s). Tasks' parameters are specified so that the data flow temporal behavior is correctly reflected. Accordingly, scheduling data flow graph is equivalent to schedule the set of real-time tasks. This can be done using existing analysis frameworks developed for real-time systems. In contrast, our approach consists in modeling communications within multi-periodic systems. We assume that the periodic tasks parameters and their communication scheme are user-provided. We describe how inter-task dependencies (at the job level) can be modeled using a particular class of SDFG [START_REF] Khatib | Computing latency of a real-time system modeled by synchronous dataflow graph[END_REF]. Consequently, scheduling a multi-periodic system is equivalent to schedule a SDFG using techniques (methods) that have be developed within the SDFG community.

Scheduling strict periodic non-preemptive tasks

A real-time task is considered schedulable if its worst-case response time under a given scheduling algorithm is less than or equal to its deadline. Consequently, a set of tasks is schedulable under a given scheduling algorithm if all of its tasks are schedulable. Real-time scheduling theory yields several schedulability conditions in order to verify whether a set of tasks is schedulable under a given scheduling algorithm. Given a system and scheduling algorithm, a schedulability condition is termed sufficient, if all of the system tasks that are deemed schedulable according to the condition are in fact schedulable [START_REF] Davis | A survey of hard real-time scheduling for multiprocessor systems[END_REF]. Similarly, a schedulability test is termed necessary, if all of the system tasks that are deemed unschedulable according to the condition are in fact unschedulable [START_REF] Davis | A survey of hard real-time scheduling for multiprocessor systems[END_REF]. Moreover, a schedulability condition that is both sufficient and necessary is an exact schedulability condition.

In this section, we present some studies from the literature concerned with scheduling of applications modeled as real-time periodic tasks. More precisely, we emphasis on the scheduling problem for non-preemptive strictly periodic tasks. In this case, the successive executions of each task admit periodic starting dates that are separated by the task period.

Preemptive uniprocessor schedulability analysis

In this subsection, we present two well-known scheduling algorithms and their schedulability test upon preemptive uniprocessor. These algorithms are Rate Monotonic (RM in short) and Early Deadline First (EDF in short).

Rate Monotonic

The RM algorithm [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] is a preemptive scheduling with static priorities that are assigned to a set of independent periodic tasks according to their rates (periods). Higher execution priority is given to the task with the smaller period. The RM algorithm is considered as a fixed-priority algorithm, since the tasks periods are constant. The sufficient schedulability condition of an implicit-deadline periodic task set on uniprocessor using RM algorithm can be verified through the processor utilization, as follows: Theorem 4.2.1 A set of independent periodic tasks T = {t 1 , . . . , t n } with implicitdeadlines is schedulable using RM if

t i ∈T u i ≤ n(2 1 n -1).
Given an implicit-deadline periodic task set, RM is optimal among all fixed-priority algorithms. In other words, if a fixed-priority algorithm can schedule a set of implicitdeadline tasks, RM does it as well. However, RM is not optimal on uniprocessor for non-preemptive periodic tasks.

Early Deadline First

EDF algorithm [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] is a scheduling algorithm that schedules the executions of the tasks according to their absolute deadlines. Higher execution priority is given to task execution with earlier deadline. EDF algorithm is optimal for independent implicitdeadline periodic task set on preemptive uniprocessor. The schedulability condition can be verified through the processor utilization, as follows: Theorem 4.2.2 A set of independent tasks T = {t 1 , . . . , t n } with implicit-deadlines is schedulable using EDF if and only if

t i ∈T u i ≤ 1.
Baruah et al. [START_REF] Baruah | Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor[END_REF] provide a sufficient and necessary condition for scheduling a constrained-deadline periodic tasks using EDF on uniprocessor. However, this schedulability test is very time consuming, since it is know to be co-NP-complete in strong sense.

In this thesis, we focus our study on scheduling applications modeled as nonpreemptive strictly periodic tasks. 

Scheduling non-preemptive strictly periodic systems

In real-time systems, scheduling of preemptive periodic tasks have been extensively studied. Many uniprocessor schedulability conditions have been developed for several preemptive algorithms such as RM and EDF [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. Goossens et al. [START_REF] Goossens | Scheduling of offset free systems[END_REF] studied the problem of scheduling offset free systems. They propose a schedulability condition on multi-core platform using EDF algorithm. Their approach has polynomial time complexity. Unfortunately, George et al. [START_REF] George | Preemptive and non-preemptive real-time uniprocessor scheduling[END_REF] proved that the schedulability conditions in preemptive scheduling become, at best, necessary conditions in the non-preemptive case.

Non-preemptive scheduling problems must be studied since their resolution may offer advantages in term of schedulability. Several studies considered preemptive scheduling conditions in order to obtain the conditions for the non-preemptive versions. Taking into consideration the extra interference time caused by non-preemption, Baruah [START_REF] Baruah | The non-preemptive scheduling of periodic tasks upon multiprocessors[END_REF] followed the similar method in [START_REF] Goossens | Scheduling of offset free systems[END_REF] and provided a sufficient schedulability condition for non-preemptive periodic tasks. Based on the problem windows analysis [START_REF] Baruah | Techniques for multiprocessor global schedulability analysis[END_REF], Guan et al. [START_REF] Guan | Schedulability analysis for non-preemptive fixed-priority multiprocessor scheduling[END_REF] studied the problem of global non-preemptive fixed priority scheduling. In our approach, we consider a set of non-preemptive tasks.

Furthermore, other studies focused on non-preemptive scheduling. Jeffay et al. [START_REF] Jeffay | On non-preemptive scheduling of period and sporadic tasks[END_REF] showed that non-preemptive scheduling of real-time tasks is an NP-hard problem. They also derived a necessary and sufficient condition for the non-preemptive Earliest Deadline First scheduling algorithm (npEDF in short) when tasks are periodic with arbitrary offsets. Recently, Nasri et al. [START_REF] Nasri | On the optimality of rm and edf for non-preemptive real-time harmonic tasks[END_REF] showed that the latter condition is very pessimistic in the special case of harmonic tasks. They also studied the non-preemptive Rate Monotonic (npRM in short) for the same type of tasks and derived a sufficient condition of schedulability for both npRM and npEDF. The same authors [START_REF] Nasri | Precautious-rm: a predictable non-preemptive scheduling algorithm for harmonic tasks[END_REF] proposed a scheduling algorithm called "Precausious-RM" or "P-RM". It is an online algorithm for scheduling periodic non-preemptive harmonic task set, with linear complexity. A relaxed algorithm derived from P-RM is also proposed thereafter, called "Lazy P-RM". This algorithm improves the performance of P-RM when task execution times are short. In these works [START_REF] Jeffay | On non-preemptive scheduling of period and sporadic tasks[END_REF][START_REF] Nasri | On the optimality of rm and edf for non-preemptive real-time harmonic tasks[END_REF][START_REF] Nasri | Precautious-rm: a predictable non-preemptive scheduling algorithm for harmonic tasks[END_REF], non-preemptive periodic tasks were studied. However, in this thesis, we consider strictly periodic constraints. In the sequel, we present some studies from the literature concerned with scheduling of applications modeled as non-preemptive strictly periodic tasks.

Scheduling independent non-preemptive strictly periodic tasks

A more particular scheduling problem is the one with non-preemptive strictly periodic tasks. The non-preemptive scheduling problem is known to be NP-hard computational complexity [START_REF] Jeffay | On non-preemptive scheduling of period and sporadic tasks[END_REF]. Adding the strict periodicity constraint increases the problem complexity. Korst et al. [START_REF] Korst | Periodic multiprocessor scheduling[END_REF] were the first to study the problem of scheduling a set of non-preemptive strictly periodic tasks. Their work was motivated by real-time video signal processing. The authors considered this problem on a minimum number of processors [START_REF] Korst | Scheduling periodic tasks[END_REF]. They showed that the problem is NP-complete in the strong sense, even in the case of a single processor, but that it is solvable in polynomial time if the periods and execution times are divisible. Thus, they proposed an approximation algorithm based on assigning tasks to processors according to some priority rule. Besides, they proposed a necessary and sufficient condition for the schedulability of two strictly periodic tasks. Later, Kermia et al [START_REF] Kermia | Non-preemptive multiprocessor static scheduling for systems with precedence and strict periodicity constraints[END_REF] proposed a sufficient schedulability condition that generalizes the previous condition for a set of tasks. They imposed that the sum of the tasks execution times is less or equal to the greatest common divisors (GCDs) of task periods. In [START_REF] Marouf | Schedulability conditions for non-preemptive hard real-time tasks with strict period[END_REF], Marouf and Sorel proved that this sufficient condition is very restrictive (pessimistic). They also gave a schedulability condition for implicit-deadline strictly periodic tasks and proposed an heuristic based on this condition. In contrast, our approach is not restricted to implicit-deadline tasks.

Eisenbrand et al. [START_REF] Eisenbrand | Scheduling periodic tasks in a hard real-time environment[END_REF] considered the problem of scheduling non-preemptive strictly periodic tasks in order to minimize the number of processors. They studied tasks with harmonic periods, i.e., every period divides all other periods of greater value. In this case, they showed that there exists a 2-approximation for the minimization problem and that this result is tight. The same authors added additional constraints to the same problem with harmonic tasks and proposed an Integer Linear Programming (ILP) formulation and primal heuristics [START_REF] Eisenbrand | Solving an avionics real-time scheduling problem by advanced ip-methods[END_REF]. Marouf and Sorel [START_REF] Marouf | Scheduling non-preemptive hard real-time tasks with strict periods[END_REF] proposed a similar work and gave a scheduling heuristic. This latter is based on the constraint that the period of a candidate task has a multiple relationship with the task periods already scheduled. However, this thesis addresses a more challenging problem which is dealing with harmonic and non-harmonic periods.

Al-Sheikh et al. [START_REF] Sheikh | A best-response algorithm for multiprocessor periodic scheduling[END_REF] used the Mixed Integer Linear Program (MILP) formulation in order to establish an exact framework for non-preemptive strictly periodic scheduling problem in Integrated Modular Avionics (IMA) platform. Afterwards, they proposed a best-response algorithm based on game theory [START_REF] Fudenberg | Game theory[END_REF]. This algorithm consists in computing the largest possible change for all task execution times. Accordingly, they determined whether all tasks are schedulable upon a limited number of processors. Pira and Artigues [START_REF] Pira | Propagation mechanism for a non-preemptive strictly periodic scheduling problem[END_REF] improved the best-response algorithm using a propagation mechanism and local optimizations. However, in our study we consider that the user provides all the tasks parameters.

Chen et al. [START_REF] Chen | Schedulability analysis of non-preemptive strictly periodic tasks in multi-core real-time systems[END_REF] represented a strictly periodic task by its eigentask, i.e., a task that has the same period as the original task and an execution time equal to one. Assuming that a set of tasks is already scheduled on a given processor, they proposed a sufficient condition to determine whether a new task is schedulable on the same processor. Based on this condition, they developed a task assignment algorithm to allocate the tasks and compute an upper bound of the number of required processors . Afterwards, Chen et al. [START_REF] Chen | Allocation and scheduling of strictly periodic tasks in multi-core real-time systems[END_REF] adopted the idea of eigentask. They used a more efficient method to calculate the valid scheduling slots of an eigentask. In addition, they developed an heuristic that assigned the tasks to required processors. In their approach, the tasks priorities were not considered during the assignment step.

As mentioned previously, several studies [START_REF] Marouf | Schedulability conditions for non-preemptive hard real-time tasks with strict period[END_REF][START_REF] Eisenbrand | Scheduling periodic tasks in a hard real-time environment[END_REF][START_REF] Eisenbrand | Solving an avionics real-time scheduling problem by advanced ip-methods[END_REF][START_REF] Marouf | Scheduling non-preemptive hard real-time tasks with strict periods[END_REF][START_REF] Sheikh | A best-response algorithm for multiprocessor periodic scheduling[END_REF][START_REF] Pira | Propagation mechanism for a non-preemptive strictly periodic scheduling problem[END_REF][START_REF] Chen | Schedulability analysis of non-preemptive strictly periodic tasks in multi-core real-time systems[END_REF][START_REF] Chen | Allocation and scheduling of strictly periodic tasks in multi-core real-time systems[END_REF] investigated the scheduling problem of independent non-preemptive strictly periodic tasks. These approaches considered uniprocessor/multiprocessor scheduling problem. Tasks were assigned to the same processor either with harmonic or non-harmonic periods. However, none of these approaches considered the scheduling of dependent tasks set. In other words, these approaches do not take into account the communication constraints between the tasks executions. In this thesis, we tackle the mono-processor scheduling problem of strictly periodic tasks subject to communication constraints.

Scheduling dependent non-preemptive strictly periodic tasks

Other authors considered the scheduling problem of dependent non-preemptive strictly periodic tasks, taking into consideration data exchange (at the job level). Dependency between the tasks executions were modeled as precedence constraints.

Cucu and Sorel [START_REF] Cucu | Non-preemptive multiprocessor scheduling for strict periodic systems with precedence constraints[END_REF] considered the problem of multiprocessor scheduling of strictly periodic systems with communication requirements. They used a graph-based model to specify the precedence between the tasks executions through acyclic graphs [START_REF] Cucu | Schedulability condition for systems with precedence and periodicity constraints without preemption[END_REF]. In their approach, a precedence constraint between a pair of tasks (t i , t j ) imposes that the period of t i must be less or equal to that of its successor t j . Communication (data transfer) between tasks is only restricted to tasks that are executed at the same rate. In order to solve the scheduling problem, they proposed an heuristic and compared its performance to an exact "Branch & Bound" algorithm [START_REF] Land | An automatic method for solving discrete programming problems. 50 Years of Integer Programming[END_REF].

Based on the previous work, Kermia et al. [START_REF] Kermia | Non-preemptive multiprocessor static scheduling for systems with precedence and strict periodicity constraints[END_REF] proposed a greedy heuristic for allocating and scheduling non-preemptive dependent strictly periodic systems onto multi-core platform. Their approach is composed of several algorithms. Assuming a scheduling frame whose length is equal to the system hyper-period, each task was duplicated ( hp T ) times, where T is a task period and hp is the hyper-period. Arcs were added between duplicates in order to represent precedence constraints between the tasks executions. Duplicates were classified and assigned to processors according to their periods (in an increasing order). Their assignment favours mapping duplicates whose periods are equal or multiples on the same processor. Finally, an extension of the SynDEx heuristic [START_REF] Grandpierre | Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors[END_REF] was applied onto the unrolled graph instead of the original one. Afterwards, the same authors [START_REF] Kermia | A rapid heuristic for scheduling non-preemptive dependent periodic tasks onto multiprocessor[END_REF] improved their assignment algorithm using a mixed sort which takes into account both the tasks periods (in an increasing order) and a priority level. In addition, data transfer can only be occurred between two tasks having the same or multiple periods. The heuristic performance was compared to an optimal "Branch and Cut" algorithm [START_REF] Magnanti | A strong cutting plane algorithm for production scheduling with changeover costs[END_REF].

Contrary to the previous works [START_REF] Cucu | Non-preemptive multiprocessor scheduling for strict periodic systems with precedence constraints[END_REF][START_REF] Kermia | Non-preemptive multiprocessor static scheduling for systems with precedence and strict periodicity constraints[END_REF][START_REF] Kermia | A rapid heuristic for scheduling non-preemptive dependent periodic tasks onto multiprocessor[END_REF], in this thesis, we limit our study to uniprocessor scheduling problem of strictly priodic communicating tasks. In our approach, tasks admit release dates and relative deadlines (user-provided). Communication scheme between the tasks execution is build according to these parameters (release dates and relative deadlines). Consequently, our framework allows communication between tasks with arbitrary periods. In order to solve this scheduling, we propose an exact (optimal) algorithm and three heuristics. These methods are able to schedule cyclic and acyclic systems on a single processor. Furthermore, our heuristics do not increase the number of tasks in order to schedule them on the same processor. In other words, we do not convert our original graph into an equivalent graph that models the communications between the tasks executions. This transformation is not polynomial and can be very time consuming [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF]. Finally, tasks with non-harmonic periods can be assigned to the same processor.

Conclusion
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Conclusion

In recent years, several models have been developed to study data flow graphs from a real-time point of view. This problem has been studied by researchers from both (real time and data flow) communities. Conversely to the approaches proposed in the literature, our approach consists in studying communications within a multi-periodic system from a data flow point of view.

On the other hand, scheduling applications modeled as non-preemtive strictly periodic tasks is very challenging, since this problem is known to be NP-complete in strong sense. Several approaches introduced in the literature considered the scheduling problem of an independent strictly periodic set of tasks. Unfortunately, only few authors tackled this scheduling problem with communication (precedence) constraints between the tasks executions. In order to meet this challenge, we propose in chapter 6 an optimal algorithm and three heuristics that solve the scheduling problem of strictly periodic systems subject to communication constraints.

The following chapter presents the first contribution of this thesis. This contribution consists in modeling the communications within a multi-periodic systems and evaluating their (worst-case) latencies using data flow formalisms.

Chapter 5 Real Time Synchronous Data Flow Graph (RTSDFG)

Nowadays, real-time applications are invading our daily life. These systems are highly critical, as a mismatch during the system lifetime can be catastrophic. In this context, one of the major challenges faced by academic and industrial environments is the efficient use of powerful and complex material, to provide optimal performance (producing the right outputs for given inputs) and meet the time constraints (producing outputs at the right time). These systems are usually multi-periodic, since their components communicate with each other at different rates (this is mainly due to their physical characteristic). For this reason, a deep analysis of communications between tasks of a multi-periodic system is required. Moreover, the estimation of parameters in a static manner, such as evaluating the latency between the system input and its corresponding outcome, is an important practical issue.

In this chapter, we seek to model the communications within multi-periodic systems using SDGF formalisms. Section 5.1 is dedicated to define the "Real-Time Synchronous Data Flow Graph". This latter describes the communication model within a multiperiodic system. Computing the latency between two periodic communicating tasks is developed in section 5.2. Several methods for evaluating the worst case system latency are explicitly described in Section 5.3. Experimental results of these methods are represented in Chapter 7. Conclusion is stated in Section 5.4.

modeling real time system communications using RTSDFG

This section shows that the set of communication constraints of a multi-periodic system can be modeled with a SDFG. In the beginning, we introduce the tasks model given by Liu and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. Then, we define the precedence constraints between two periodic communicating tasks. Afterwards, we characterize the execution of these two tasks using a set of linear inequalities. Finally, we demonstrate that the communication constraints of a multi-periodic system can be modeled with a SDFG. The size of this latter is equivalent to the related communication graph.

Periodic tasks

We consider a set of tasks based on the model of Liu and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. Each task t i is characterized by an activation period T i , an execution time C i (this value is often evaluated from a worst case analysis of the system), a relative deadline D i , and eventually a release date (date of the first activation) r i . This implies that the successive executions of t i , admit periodic release dates and deadlines, where the period is equal to T i (see Figure 5.1).

Fig. 5.1 Liu and Layland model

Therefore, the kth execution of t i is executable if and only if its execution start date s k i is greater or equal to its release date

s k i ≥ r k i s k i ≥ r i + (k -1) • T i , 5.
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and its execution end date cannot exceed its deadline

s k i + C i ≤ r i + (k -1) • T i + D i .

Communication constraints

Most of real-time applications requires communication between tasks. This type of communication happens between an emitting task and a receiving one. The emitting task produces data that are consumed by the receiving task through a communication point. However, a receiving task cannot consume a piece of data unless this data has been sent by the emitting task. Thus, the execution of a receiving task should be preceded by the execution of an emitting task, which imposes precedence constraints between some executions.

Communication Scheme

In order to separate the tasks execution model from the communication scheme, we simplify the execution model of Liu and Layland. Therefore, we seek to increase for each task its execution time (as big as possible). We assume that each task starts its execution at its release date and it will be executed until it reaches its deadline. Thus, the execution start date of a given task and its release date coincide. Hence, the starting date of any task execution (t k i ) is equal to

s k i = r i + (k -1) • T i .
In other words, we build our communication scheme by assuming that data are available at the emitting task deadline. Moreover, these data can only be consumed at the beginning of the receiving task period. Accordingly, we assume that the execution time of each task (C i ) is equal to its relative deadline (D i ). This assumption is only considered to define the communication scheme between the tasks executions. In the general case, this assumption does not prevent C i to be smaller.

As depicted in Figure 5.2, the task t i = (r i , C i , D i , T i ) starts its first execution at its release date (r i ). This task is executed during C i time units. Moreover, the second execution of t i starts at r i + T i such that T i is the task period.

In order to describe the communication scheme, we consider two periodic communicating tasks t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ), such that t i is the emitting Fig. 5.2 Simplification of Liu and layland's model task and t j is the receiving one. Let ν i and ν j be a pair of strictly positive integers. There exists a precedence constraint between the ν i th execution of t i and the ν j th execution of t j if and only if the three following conditions are met:

1. The ν j th execution of t j cannot begin before the end of the ν i th execution of t i , thus

s ν i i + C i ≤ s ν j j r i + (ν i -1) • T i + D i ≤ r j + (ν j -1) • T j (5.1)
2. There is no precedence constraint between the (ν i + 1)th execution of t i and the ν j th execution of t j , since the ν j th execution of t j starts before the end of the (ν i + 1)th execution of t i , hence

s ν i +1 i + C i > s ν j j r i + ν i • T i + D i > r j + (ν j -1) • T j . (5.2)
3. There is no precedence constraint between the ν i th execution of t i and the (ν j -1)th execution of t j , since the (ν j -1)th execution of t j begins before the end of ν i th execution of t i , so

s ν i i + C i > s ν j -1 j r i + (ν i -1) • T i + D i > r j + (ν j -2) • T j . ( 5.3) 
Example 5.1.1 Let us consider t i = (r i , C i , D i , T i ), t j = (r j , C j , D j , T j ) two periodic communicating tasks. We suppose that T i = 30, T j = 40 time units, C i = D i = 20 time units, C j = D j = 20 time units, and their release dates are null (r i = r j = 0). Figure 5.3 illustrates the precedence constraints between the tasks executions. We notice the existence of a precedence constraint between the first execution of t i and the second execution of t j . In fact, equation (5.1) is fulfilled since the second execution of t j did not start before the end of the first execution of t i . Furthermore, we notice the absence of precedence constraints between t 1 i and t 1 j on one hand, and between t 2 i and t 2 j on the other hand. In both cases, the corresponding execution of t j begins before the end of t i execution. This means that equation (5.2) and (5.3) are also fulfilled.

The following lemma draws together the three inequalities mentioned before. Lemma 5.1.1 Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) be two periodic communicating tasks, with t i the emitting task and t j the receiving one. Let ν i and ν j be a pair of strictly positive integers. There exists a precedence constraint between the ν i th execution of t i and the ν j th execution of t j if and only if:

T i ≥ T j -r j + r i + D i + ν i • T i -ν j • T j > max {0, T i -T j } (5.4) 
Proof: Let us consider the inequalities (5.1), (5.2) and (5.3) which define the precedence constraints between the different executions of two communicating tasks. By substituting T j -r j + r i + D i with M, we obtain:

1. Condition 1 is equivalent to:

M + ν i • T i -ν j • T j ≤ T i ,
2. Condition 2 is equivalent to:

M + ν i • T i -ν j • T j > 0,
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3. Condition 3 is equivalent to:

M + ν i • T i -ν j • T j > T i -T j .
By combining the three inequalities, we obtain

T i ≥ M + ν i • T i -ν j • T j > max {0, T i -T j } .
□ Let us Consider the communication scheme illustrated in Figure 5.3. Equation (5.4) can be written according to the executions indexes (ν i and ν j ):

30 ≥ 40 + 20 + 30 • ν i -40 • ν j > 0
We verify this inequality for the couples (ν i , ν j ) = (1, 2) and [START_REF] Aubry | Extended cyclostatic dataflow program compilation and execution for an integrated manycore processor[END_REF][START_REF] Aubry | Extended cyclostatic dataflow program compilation and execution for an integrated manycore processor[END_REF] , which corresponds to the established precedence constraints between t 1 i and t 2 j and between t 3 i and t 3 j .

From real time system to RTSDFG model

Based on the communication rules presented in the previous subsection, we prove in this subsection that the set of communication constraints between two periodic communicating tasks can be modeled using a SDFG buffer. The buffer production and consumption rates correspond to the tasks periods and its initial marking is computed with a close formula according to the tasks parameters. Accordingly, we deduce that communication constraints of a multi-periodic system can be modeled with a particular SDFG. The size of the latter is equal to the system communication graph size. We note gcd a the common period of two communicating tasks t i and t j . It is equal to the greatest common divider of tasks periods, gcd a = gcd(T i , T j ). We assume for what follows, that all the tasks parameters are integers. Theorem 5.1.1 Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) be two periodic tasks such that t i communicates with t j . The set of communication constraints between the executions of t i and t j can be modeled by a buffer a = (t i , t j ) with z i = T i , z j = T j and M 0 (a) = T j + λ -gcd a with λ = r i -r j +D i gcda

• gcd a .

Proof: Let us consider a couple of periodic communicating tasks t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) such that t i is the emitting task and t j the receiving one. Let (ν i , ν j ) be a pair of strictly positive integers. We assume that there is a precedence constraints between the ν i th execution of t i and the ν j th execution of t j . According to the lemma 5.1.1, ν i and ν j must verify the equation (5.4):

T i ≥ T j -r j + r i + D i + ν i • T i -ν j • T j > max {0, T i -T j } .
We can notice that all the terms of this inequality are divisible by the common period (gcd a ) except the following one: r i -r j + D i . Hence, by substituting r i -r j + D i by

λ = r i -r j +D i gcda
• gcd a , we obtain

T i ≥ T j + λ + ν i • T i -ν j • T j > max {0, T i -T j } .
Consequently, all the terms of this inequality are divisible by gcd a . By subtracting gcd a from the second term of this inequality, we obtain

T i > T j + λ -gcd a + ν i • T i -ν j • T j ≥ max {0, T i -T j } . (5.5)
On the other hand, let a = (t i , t j ) be a buffer and M 0 (a) its initial marking. Let (ν i , ν j ) be a couple of strictly positive integers. According to Theorem 3.2.1, there exists a precedence constraint between the ν i th execution of t i and the ν j th execution of t j if and only if:

z i > M 0 (a) + z i • ν i -z j • ν j ≥ max {0, z i -z j } .
(5.6)

When we compare inequalities (5.5) and (5.6), we deduce that the set of communication constraints between the executions of t i and t j can be modeled by a buffer a = (t i , t j ) . The buffer production and consumption rates are respectively equal to T i and T j and its initial marking M 0 (a) is equal to T j + λ -gcd a . □

Let us return to the example illustrated in Figure 5.3, the common period is equal to gcd a = gcd (30, 40) = 10 time units. According to Theorem 5.1.1, all the communication constraints between the tasks executions can be modeled with a buffer a = (t i , t j ). The buffer production and consumption rates are respectively equal to z i = T i = 30, z j = T j = 40 and its initial marking is equal to M 0 (a) = T j + λ -gcd a = 40 + ⌈ 0+20 10 ⌉ • 10 -10 = 50 (see Figure 5.4).

Fig. 5. [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF] The Buffer a = (t i , t j ) that models the communication constraints between the tasks executions of the example illustrated in Figure 5.3.

Corollary 5.1.1 Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) be two strictly periodic communicating tasks. Let a = (t i , t j ) be a SDFG buffer modeling the communications between the tasks executions. Let (ν i , ν j ) be a pair of strictly positive integers. Let s ν i i and s ν j j be respectively the execution starting dates of t ν i i and t ν j j . Communication constraints represented by the buffer a = (t i , t j ) are fulfilled, if

∀ν i ≥ 1, s ν i i ∈ [r i + (ν i -1) • T i , r i + D i -C i + (ν i -1) • T i ] and, ∀ν j ≥ 1, s ν j j ∈ [r j + (ν j -1) • T j , r j + D j -C j + (ν j -1) • T j ].
Proof: We consider two periodic communicating tasks t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) which communicate according to the communication scheme defined previously. According to Theorem 5.1.1, there exists a buffer a = (t i , t j ) which models the set of precedence constraints induced by the communications between the executions of t i and t j . Accordingly, the data are only available at the deadline of the emitting task and the consumption of these data can only be done at the begin of the receiving task period. Communications between the tasks executions depend on the release dates and the deadlines of t i on one hand, and they only depend on the release dates of t j on the other hand.

We assume that a precedence constraint (induced by the buffer a) exists between the ν i th execution of t i and the ν j th execution of t j . This means that data are available at the deadline of t ν i i which is equal to

r i + D i + (ν i -1)
• T i . These data are consumed at the release date of t ν j j which is equal to r j + (ν j -1) • T j . Furthermore, let s ν i i and s ν j j be respectively the starting dates of t ν i i and t

ν j j
respectively, such that

s ν i i ∈ [r i + (ν i -1) • T i , r i + D i -C i + (ν i -1) • T i ] s ν j j ∈ [r j + (ν j -1) • T j , r j + D j -C j + (ν j -1) • T j ]
Consequently, the end of the execution of the emitting task (t ν i i ) cannot exceed its deadline, since

s ν i i ≤ r i + D i -C i + (ν i -1) • T i .
Moreover, the receiving task cannot 5.1 modeling real time system communications using RTSDFG
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begin its execution before its release date, since s ν j j ≥ r j + (ν j -1) • T j . Hence, the precedence constraint between t ν i i and t ν j j is fulfilled. In this case, we can deduce that the set of communication constraints represented by the buffer a = (t i , t j ) is fulfilled. □ Fig. 5.5 An example of scheduling which respects the communication constraints between the tasks t i = (0, 5, 20, 30) and t j = (0, 10, 20, 40).

Example 5.1.2 Consider two periodic communicating tasks t i = (0, 5, 20, 30) and t j = (0, [START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF][START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF]. Let S i = (10, 45, 60, 95) and S j = (5, 40, 90) be respectively the starting dates of t i and t j ' executions. Since the tasks are executed between their release dates and their deadlines, we can deduce that the communications constraints between the tasks' executions are respected (see Figure 5.5).

Corollary 5.1.2 Let N be a set of periodic communicating tasks. Let H be the corresponding communication graph. The precedence constraints induced by the communications are modeled with a particular class of SDFG.

We named the particular class of SDFG that models all the precedence constraints induced by the communications of a multi-periodic communicating tasks set as "Real-Time Synchronous Data Flow Graph" (RTSDFG in short). In this particular class of SDFG, the buffer production and consumption rates are no longer representing the amount of data produced and consumed at each task execution. These rates correspond to the tasks periods while the initial marking corresponds to the delay between the tasks. Therefore, we deduce that our problem is equivalent to a problem that takes as input a set of periodic tasks with a corresponding communication graph. Modeling this problem returns a particular class of SDFG which called RTSDFG. The size of the resulting graph is equal to the size of the communication graph. The RTSDFG models all the communication constraints between the tasks' executions. Table 5.1

Real Time Synchronous Data Flow Graph (RTSDFG) presents a set of periodic tasks N = {t 1 , t 2 , t 3 }. The tasks communication relationships E = {(t 1 , t 2 ), (t 1 , t 3 ), (t 2 , t 1 ), (t 3 , t 2 )} are depicted in Figure 5.6. The RTSDFG associated to this multi-periodic system is depicted in Figure 5.7. The RTSDFG that models the communications between the tasks' executions of the multi-periodic system presented in Table 5.1 and Figure 5.6

t i r i C i D i T i t 1 0 5 
In the previous parts of this chapter, we proposed a general and intuitive communication model between multi-periodic tasks. Now, the question that needs to be raised is:

How to compute the latency of a multi-periodic system using a Real-Time Synchronous Data Flow Graph?

The next part of this chapter answers this question in two steps. First, we compute the latency between two periodic communicating tasks, then we compute the worst case system latency using several approaches.

Evaluating latency between two periodic communicating tasks

In this section, we define the latency between two periodic communicating tasks. We show that the latency between the tasks executions is calculated with a closed formula according to the tasks parameters. Moreover, we express the maximum and minimum latency between two communicating tasks with closed formulas. Finally, we prove that the minimum and maximum latency can be bounded according to the tasks periods.

In order to evaluate the worst-case system latency, we assume that each task starts its execution at its release date and it will be executed until its deadline. According to this assumption, evaluating the latency between two communicating executions, is equivalent to compute the duration between the data availability and its consumption.

Definitions

Definition 5.2.1 Latency is the time gap between the moment that a stimulation appears and the moment that its reaction begins or ends. Evaluating the latency L between two executions of periodic communicating tasks, is equivalent to compute the duration between the execution end date of the emitting task and the execution start date of the receiving task (since we assume that each task starts its execution at its release date and ends at its deadline). Definition 5.2.2 Let t i and t j be a couple of periodic communicating tasks. We consider the set E (t i , t j ) of couples (ν i , ν j ) ∈ N * 2 , such that there exists a precedence constraint between t ν i i and t ν j j .

Definition 5.2.3 Let t ν i i and t ν j j be a couple of executions with (ν i , ν j ) ∈ E(t i , t j ). Hence, t ν j j cannot start its execution before the end of t ν i i . We denote by L(t ν i i , t ν j j ) the latency between the ν i th execution of t i and the ν j th execution of t j . This latency can be computed as follows:

L(t ν i i , t ν j j ) = s ν j j -(s ν i i + C i ) = r j + (ν j -1) • T j -(r i + (ν i -1) • T i + D i ).
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Real Time Synchronous Data Flow Graph (RTSDFG) Fig. 5.8 Example of communication scheme between two periodic communicating tasks.

Example 5.2.1 Consider two periodic communicating tasks t i = (0, 5, 20, 30) and t j = [START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF][START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF][START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF] such that t i is the emitting task and t j the receiving one. Figure 5.8 illustrates the communication scheme between the tasks executions. We can notice the existence of a precedence (communication) constraint between the t 2 i and t 2 j . Latency between these execution can be computed as follows:

L(t 2 i , t 2 j ) = 20 + (2 -1) • 40 -(0 + (2 -1) • 30 + 20)
= 10 time units.

Computing latency between two periodic communicating tasks

Lemma 5.2.1 Let t i and t j be two periodic communicating tasks, with t i the emitting task and t j the receiving one. Let (ν i , ν j ) ∈ E (t i , t j ) be a couple of strictly positive integers. The latency between t ν i i and t ν j j is equal to:

L t ν i i , t ν j j = r j -r i -k • gcd a -T j + T i -D i , ( 5.7) 
where gcd a = gcd(T i , T j ) and k ∈ {k min , . . . , k max } .

Proof: We assume that there is a precedence constraint between t ν i i and t ν j j . Furthermore, the ν i th execution of t i ends at s ν i i + C i and the ν j th execution of t j starts at s ν j j .
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By assumption, s ν i i = r i + (ν i -1) • T i and s ν j j = r j + (ν j -1) • T j . Therefore, the latency between the ν i th execution of t i and the ν j th execution of t j is equal to

L t ν i i , t ν j j = s ν j j -(s ν i i + C i ) = r j + (ν j -1) • T j -r i -(ν i -1) • T i -D i .
Then, we consider a RTSDFG buffer a = (t i , t j ). The buffer production and consumption rates are respectively equal to T i and T j , and its initial marking is equal to M 0 (a) = T j + λ -gcd a . According to Theorem 5.1.1, the buffer a models all the communication constraints between tasks executions. Therefore, Lemma 3.2.1 of Chapter 3 establishes a relation between the indexes of two adjacent tasks connected by a buffer. According to this lemma, there exists an integer k ∈ {k min , . . . , k max } such that

ν j = T i •ν i -k•gcda T j , with k min = max{0,T i -T j }-M 0 (a) gcda and k max = T i -M 0 (a)
gcda -1. Hence, the latency between ν i th execution of t i and the ν j th execution of t j can be computed as follows:

L t ν i i , t ν j j = r j + (ν j -1) • T j -r i -(ν i -1) • T i -D i = r j + T i • ν i -k • gcd a T j -1 • T j -r i -(ν i -1) • T i -D i = r j -r i -k • gcd a -T j + T i -D i
□ Let us consider the communication scheme depicted in Figure 5.8. Let a = (t i , t j ) be the RTSDFG buffer that models the communication constraints between the tasks executions. The buffer production and consumption rates are respectively equal to 30 and 40 and its initial marking is equal to 30. Therefore,

k min = max{0, 30 -40} -30 10 = -3, k max = 30 -30 10 -1 = -1.
Hence, we can deduce that the latency between t ν i i and t ν j j such that (ν i , ν j ) ∈ E(t i , t j ), can be computed as follows:
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L t ν i i , t ν j j = r j -r i -k • gcd a -T j + T i -D i = 20 -0 -k • 10 -40 + 30 -20 = -10 • (k + 1), with k ∈ {-3, -2, -1}.
We apply this result to compute the latency between t 2 i and t 2 j with k = -2, L(t 2 i , t 2 j ) = -10 • (-2 + 1) = 10 time units.

Maximum latency between two periodic communicating tasks

Definition 5.2. [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF] We define L max (t i , t j ) as the maximum latency between the executions of two periodic communicating tasks,

L max (t i , t j ) = max (νi,νj)∈E(ti,tj) L t ν i i , t ν j j .
Theorem 5.2.1 Let t i and t j be two periodic communicating tasks, with t i the emitting task and t j the receiving one. The maximum latency between executions of these tasks is equal to:

L max (t i , t j ) = r j -r i -max{0, T i -T j } + λ -gcd a + T i -D i .
(5.8)

Proof: We consider two periodic tasks t i and t j . Let (ν i , ν j ) ∈ E (t i , t j ) be a couple of strictly positive integers. According to Lemma 5.2.1, the latency between t ν i i and t ν j j can be written as follows:

L (νi,νj) (t i , t j ) = r j -r i -k • gcd a -T j + T i -D i .
In order to evaluate the maximum latency between t i and t j , we substitute k with its minimal value k min = max{0,T i -T j }-M0(a)

gcda [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF]. In this case, we obtain L max (t i , t j ) equals to: 5.2 Evaluating latency between two periodic communicating tasks 71

r j -r i - max {0, T i -T j } -M 0 (a) gcd a • gcd a -T j + T i -D i .
Furthermore, M 0 (a) = T j + λ -gcd a . Hence, L max (t i , t j ) equals

r j -r i -max {0, T i -T j } + (T j + λ -gcd a ) -T j + T i -D i .
Finally, we deduce that the maximum latency is equal to

r j -r i -max{0, T i -T j } + λ -gcd a + T i -D i .
□ In our example, depicted in Figure 5.8, the maximum latency between t i and t j is equal to

L max (t i , t j ) = r j -r i -max{0, T i -T j } + λ -gcd a + T i -D i = 20 -0 -max{0, 30 -40} + ⌈ 0 -20 + 20 10 ⌉ • 10 -10 + 30 -20 = 20 time units.
This value corresponds exactly to the duration between the end of t 3 i and the beginning of t 3 j .

Corollary 5.2.1 Let t i and t j be two periodic communicating tasks, with t i the emitting task and t j the receiving one. the maximum latency value is bounded as follows:

T i -max{0, T i -T j } -gcd a ≤ L max (t i , t j ) < T i -max{0, T i -T j } (5.9) 
Proof: Let t i and t j two periodic communicating tasks such that t i communicates with t j . According to Theorem 5.2.1, the maximum latency between the executions of t i and t j can be computed as follows:

L max (t i , t j ) = r j -r i -max{0, T i -T j } + λ -gcd a + T i -D i , with λ = ⌈ r i -r j +D i gcda ⌉ • gcd a .
On the other hand, λ can be bounded as follows:

r i -r j + D i ≤ λ < r i -r j + D i + gcd a Real Time Synchronous Data Flow Graph (RTSDFG) Furthermore, 0 ≤ λ -(r i -r j + D i ) < gcd a , T i -max{0, T i -T j } -gcd a ≤ λ -(r i -r j + D i ) + T i -max{0, T i -T j } -gcd a < T i -max{0, T i -T j }.
Hence, we can deduce that

T i -max{0, T i -T j } -gcd a ≤ L max (t i , t j ) < T i -max{0, T i -T j }
□ Let us reconsider our example in Figure 5.8. Computing the maximum latency lower and upper bounds between the tasks t i and t j can be done in the following way:

30 -max{0, 30 -40} -10 ≤ 20 ≤ L max (t i , t j ) L max (t i , t j ) < 30 -max{0, 30 -40} < 30.

Minimum latency between two periodic communicating tasks

Definition 5.2. [START_REF] Bamakhrama | Hard-real-time scheduling of datadependent tasks in embedded streaming applications[END_REF] We denote by L min (t i , t j ) the minimum latency between the executions of two communicating tasks,

L min (t i , t j ) = min (νi,νj)∈E(ti,tj) L(t ν i i , t ν j j ).
Theorem 5.2.2 Let t i and t j be two periodic communicating tasks , with t i the emitting task and t j the receiving one. The minimum latency between executions of these two tasks is equal to:

L min (t i , t j ) = r j -r i + λ -D i .
Proof: We consider two periodic tasks t i and t j . Let (ν i , ν j ) ∈ E (t i , t j ) a couple of strictly positive integers. According to the Lemma 5.2.1, the latency between t ν i i and t ν j j can be written as follows:

L t ν i i , t ν j j = r j -r i -k • gcd a -T j + T i -D i .
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In order to be able to evaluate the minimum latency between t i and t j , we substitute k with its maximal value k max = T i -M 0 (a) gcda -1 [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF]. In this case, we obtain

L min (t i , t j ) = r j -r i -k max • gcd a -T j + T i -D i = r j -r i -( T i -M 0 (a) gcd a -1) • gcd a -T j + T i -D i = r j -r i + M 0 (a) + gcd a -T j -D i .
Furthermore, we have M 0 (a) = T j + λ -gcd a . Hence, we deduce that L min (t i , t j ) is equal to

r j -r i + λ -D i .
□ Let us consider our communication example depicted in Figure 5.8, the minimum latency between the tasks executions can be compute as follows:

L min (t i , t j ) = r j -r i + λ -D i = 20 -0 + ⌈ 0 -20 + 20 10 ⌉ • 10 -20 = 0 time units.
This value corresponds exactly to the duration between the end the first execution of t i and the begging of the first execution of t j .

Corollary 5.2.2 Let t i and t j be two periodic communicating tasks, with t i the emitting task and t j the receiving one. the minimum latency value can be bounded as follows:

0 ≤ L min (t i , t j ) < gcd a (5.10)

Proof: Let t i and t j two periodic communicating tasks such that t i communicates with t j . According to the Theorem 5.2.2, the minimum latency between tasks executions can be computed as follows:

L min (t i , t j ) = r j -r i + λ -D i , with λ = ⌈ r i -r j +D i gcda ⌉ • gcd a .
On the other hand, λ can be bounded as follows:

r i -r j + D i ≤ λ < r i -r j + D i + gcd a .
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Hence, we can deduce that 0 ≤ L min (t i , t j ) < gcd a .

□

We apply this result on our example depicted in figure 5.8, 0 ≤ L min (t i , t j ) < 10.

Evaluating the worst-case system latency

This section presents methods for latency computation of a given system. First, we define the worst-case system latency. Then, we present an exact method, that uses all the precedence relationships between tasks' executions, to compute the latency value. Finally, we propose two algorithms that calculate the system latency upper and lower bounds. These algorithms transform the RTSDFG into an equivalent graph having the same size of the RTSDFG. In this graph, the weight of each arc connecting two adjacent nodes corresponds to the time required to transfer the data between the periodic tasks. In order to evaluate the worst-case latency of a multi-periodic system, we limit our study in this thesis to live, consistent and connected acyclic RTSDFGs. Moreover, we compute the system latency using a linear algorithm for computing the longest path length in a directed acyclic graph.

Definition Definition Latency is the delay between the stimulation and response. In other words, entire system latency is a time gap between the system input and the connected outcome. In our study, we define the worst-case system latency as the longest time gap between the system input task executions and the output ones.

As we mentioned before, in order to evaluate the worst-case system latency, we assume that each task of the system starts its execution at its release date and ends at its deadline. Example 5.3.1 Let t 1 = (0, 10, 20, 30), t 2 = (0, 5, 10, 20) and t 3 = (0, 10, 20, 40) be three periodic communicating tasks. Figure 5.9 represents the tasks communication graph. Figure 5.10 illustrates all the communications constraints between the tasks executions of the path pth = {t 1 , t 2 , t 3 }. We consider t 1 as the system input and t 3 the system output.

According to our communication model, the data produced by the first execution of t 1 is consumed by the second execution of t 2 , which in turn produces data that is consumed by the second execution of t 3 . We summarize all communications constraints between the input and the output tasks' executions as follows:

pth 1 = ⟨t 1 1 → t 2 2 → t 2 3 ⟩, pth 2 = ⟨t 2 1 → t 4 2 → t 3 3 ⟩ and pth 3 = ⟨t 3 1 → t 5 2 → t 6 2 → t 4 3 ⟩.
The time required to cover these executions paths is respectively equal to 60, 70 and 80 time units. This communications and executions pattern is repeated infinitely. Hence, we can deduce that the system worst-case latency is equal to max{60, 70, 80} = 80 time units. This value corresponds to the time gap between the beginning of the third execution of t 1 and the end of the the fourth execution of t 3 .

Computing the latency of applications that are executing infinitely is a problematic. Actually, the size of the graph, which represents the communication constraints of these applications, is bounded. The question that needs to be raised at this stage is: how to represent the communications constraints between the tasks executions in a finite way? Next part answers this question by introducing an exact pricing algorithm that represents these constraints in a finite way and evaluates the system worst-case latency.

Exact pricing algorithm

We present in this part an exact pricing algorithm that computes the worst-case latency between a system input and its corresponding output. This algorithm computes the system latency using all communication constraints between the tasks executions. It is therefore necessary to explicitly represent these communications. Our approach is inspired from the expansion [START_REF] Munier | Optimal asymptotic behavior of a generalized timed event graph: application to an assembly system[END_REF] which is previously detailed in Section 3.2 of Chapter 3. This technique consists on transforming a SDFG into an equivalent HSDFG that explicitly models all the precedence constraints between the tasks executions.

Dependency between executions of two communicating tasks

Let t i and t j be two periodic communicating tasks. Let a = (t i , t j ) be the RTSDFG buffer that models all the communication constraints between the tasks' executions. Let (ν i , ν j ) ∈ E(t i , t j ) be a pair of strictly positive integers, such that there is a precedence constraint between t ν i i and t ν j j . The buffer marking after the ν j th execution of t j and the ν i th execution of t i is equal to

M 0 (a) + ν i • T i -ν j • T j .
Our purpose is to describe the dependency between t ν i i and t ν j +d j with d ∈ N * . We seek to find out how many times t j can be executed using the remaining amount of tokens in the buffer (M 0 (a) + ν i • T i -ν j • T j ). In fact, t j cannot be executed unless there is a least T j tokens in the buffer. This means if the remaining amount of tokens is less than T j , t ν j +d j depends on the t ν i +1 i . We denote by dep the number of executions succeeding (following) the ν j th execution of t j and which are totally dependent from the ν i th execution of t i . This number of execution can be computed, according to the buffer consumption rate and the buffer marking after the t ν i i and t ν j j executions, as follows:

dep = ⌊ M 0 (a) + ν i • T i -ν j • T j T j ⌋
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On the other hand, since there is a precedence constraint between t ν i i and t ν j j , ν i and ν j verify the following equation

T i > M 0 (a) + ν i • T i -ν j • T j ≥ max{0, T i -T j }
Hence, dep can be bounded as follows:

⌊ T i T j ⌋ ≥ ⌊ M 0 (a) + ν i • T i -ν j • T j T j ⌋ ≥ ⌊ max{0, T i -T j } T j ⌋ (5.11)
We distinguish two cases:

-If T i ≤ T j : Equation (5.11) can be written in the following form,

⌊ T i T j ⌋ ≥ dep ≥ 0.
Actually, since T i ≤ T j , we can deduce that the number of executions that follow t ν j j and which totally depend from t ν i i is null (dep = 0).

-If T i > T j :

We can bound dep according to the tasks periods,

⌊ T i T j ⌋ ≥ ⌊ M 0 (a) + ν i • T i -ν j • T j T j ⌋ ≥ ⌊ T i -T j T j ⌋.
Hence, we deduce that dep ∈ {⌊ T i T j ⌋ -1, ⌊ T i T j ⌋}. We can also deduce that at most (⌈ T i T j ⌉) executions of t j can totally depend on t i execution.

RTSDFG transformation

Consider N = {t 1 , . . . , t n } a set of periodic communicating tasks and H the corresponding communication graph. Let G = (T , A) be the RTSDFG that models all communications constraints between the tasks executions of this system. The main idea here is to evaluate the latency using a finite equivalent graph G ′ . This latter describes exactly the precedence constraints of the original graph. Transforming a RTSDFG G into G ′ = (T ′ , A ′ ) can be done as follows:

• Each t i ∈ T is substituted by R i (repetition factor of t i ) tasks denoted by t 1 i , . . . , t R i i such that for any k ∈ {1, . . . , R i } and α > 0, the αth execution of t k i corresponds to the ((α -1) • R i + k)th execution of t i . Tasks t 1 i , . . . , t R i i are called duplicates of t i . We note that the duplicates have the same parameters than the original task.

• For each pair of strictly positive integers (ν i , ν j ) ∈ E(t i , t j ), we add an arc between t ν i i and t ν j j . Based on the expansion [START_REF] Munier | Optimal asymptotic behavior of a generalized timed event graph: application to an assembly system[END_REF] which is previously detailed in Section 3.2 of Chapter 3, arcs are added between duplicates only if the following conditions are met:

     ν j = ⌊ M 0 (a)+T i •(ν i -1) T j ⌋ + 1 if T i > T j and ν i ≥ -M 0 (a) T i + 1 ν i = ⌈ T j •ν j -M 0 (a) T i ⌉ if T i ≤ T j and ν j > M 0 (a)
T j

(5.12)

• If T i > T j , dependency between tasks' executions is described by adding arcs between t ν i i and the set of executions {t

ν j +d j , d ∈ {1, . . . , dep}} with dep = ⌊ M 0 (a)+ν i •T i -ν j •T j T j ⌋.
• The weight of each arc in A ′ is equal to

ω(t ν i i , t ν j j ) = r j + (ν j -1) • T j -r i -(ν i -1) • T i . ( 5.13) 
This value corresponds to the duration between the beginning of the ν i th execution of t i and the beginning of the ν j th execution of t j .

Algorithm 1 describes the transformation of a RTSDFG G = (T , A) into an equivalent graph G ′ = (T ′ , A ′ ). The Duplication of each task t i ∈ T , according to its repetition factor, is represented in line 5. Once the tasks are duplicated, arcs are added between duplicates in two cases:

1. For describing precedence between executions: we connect each couple of duplicates (t ν i i , t ν j j ) with an arc if there exists a precedence relationship between the tasks executions. This is given in line 8.

2.

For describing dependency between executions: in order to evaluate the system latency, some arcs must be added to express dependency between executions. These arcs are added if there is a precedence relationship between two executions (t ν i i and t ν j j ) such that T i > T j . Line 12 verifies if there is any other executions of t j which totally depend on the ν i th execution of t i . The number of these dependent executions dep is computed in line 11 according to the buffer consumption rate and the remaining amount of tokens in the buffer after the ν i th execution of t i and the ν j th execution of t j . 3: pair of strictly positive integers: (ν i , ν j ) 4: arc weight : ω(t ν i i , t ν j j ) 5: substitute each task t i ∈ T by the set of duplicates {t 1 i , . . . , t R i i } 6: for all a = (t i , t j ) ∈ A do for all (ν i , ν j ) ∈ E (t i , t j ) do 8: add arc between t ν i i and t ν j j 9:

ω(t ν i i , t ν j j ) ← r j + (ν j -1) • T j -r i -(ν i -1) • T i 10: if T i > T j then 11: dep = ⌊ M 0 (a)+T i •ν i -T j •ν j T j ⌋ 12:
if dep > 0 then 

ω(t ν i i , t ν j +d j ) ← r j + (ν j -1 + d) • T j -r i -(ν i -1) • T i 15:
end if First, we substitute each task by its duplicates (according to its repetition factor). In this example, t 1 , t 2 and t 3 are respectively substituted by {t 1 1 , t Then, precedence and dependency constraints are modeled by adding arcs between the tasks' duplicates. In our example, there exists a buffer between t 1 and t 2 such that T 1 > T 2 . According to equation (5.12), we connect each couple of duplicates (t ν 1 1 , t ν 2 2 ) if

ν 2 = ⌊ 30 + 30 • (ν 1 -1) 20 ⌋ + 1, such as t 1 1 , t 2 2 .
The arc weight which connects these duplicates is equal to 0 + 20 • (2 -1) -0 -30 • (1 -1) = 20 (eqution 5.13).

In addition, as T 1 > T 2 , we compute the number of executions which may totally depend on the first execution of t 1 . This can be done by computing the value of dep which is equal to

dep = ⌊ 30 + 30 • 1 -20 • 2 20 ⌋ = 1 with ν 1 = 1 and ν 2 = 2.
We describe this dependency by adding an arc from t 1 1 to t 2+1 2 whose weight is equal to

0 + 20 • (3 -1) -0 -30 • (1 -1) = 40.
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On the other hand, t 2 is connected to t 3 with a buffer where T 2 < T 3 . By applying equation (5.12), we connect each couple of duplicates (t ν 3 3 , t ν 2 2 ) if

ν 2 = ⌈ 40 • ν 3 -40 20 ⌉ for ν 3 > 40 40 ,
such as the couple t 2 2 , t 2 3 . The arc weight which connects these duplicates is equal to

0 + 40 • (2 -1) -0 -20 • (2 -1) = 20.

Latency computation

After transforming the RTSDFG G into G ′ which models all the precedence and dependency constraints between the tasks executions, we evaluate the worst-case system latency using G ω(t, dst) ← relative deadline of t (D t )

12: end for 13: L G ← longest path length between src and dst Algorithm 2 describes the worst-case latency computation of a RTSDFG. This algorithm takes as input the equivalent graph resulting from the transformation presented in Algorithm 1 and returns as output the value of the worst-case system latency. First, we add to G ′ two virtual nodes: a super source and a super destination (lines 3 and 4). Then, we connect src to each node t ∈ P with an arc whose weight is null (from line 5 to 8). We connect each node t ∈ S to dst with an arc whose weight is equal to the relative deadline of t (from line 9 to 12). Adding these virtual nodes does not influence the time behavior of the system. Finally, we find the worst-case latency value for the entire system by computing the length of the longest path between the virtual nodes src and dst (line 13). In order to evaluate the worst-case latency of the RTSDG in Figure 5.11, we use Algorithm 2 which takes as input the equivalent graph G ′ depicted in Figure 5.12. We add two virtual nodes (src/dst) to the equivalent graph. Then, we connect src to each duplicate without predecessor P = {t 1 1 , t 2 1 , t 3 1 , t 1 1 } with arcs whose weights are null. On the other hand, we add arcs between each duplicate without successor S = {t 1 2 , t 3 2 , t 5 2 , t 1 3 , t 2 3 , t 3 3 } and dst. Their weights are equal to the tasks relative deadline (D 2 = 10 and D 3 = 20). Figure 5.13 depicts the resulting graph. Finally, in order to evaluate the latency of the entire system, we compute the length of the longest path between src and dst which is equal to 80 time units. This value matches the result obtained previously in Figure 5.10.

Cyclic RTSDFGs

We mentioned previously that evaluating the worst-case system latency using our approach is restricted to acyclic RTSDFG. In this paragraph, we give a clear illustration of how this evaluation is no longer possible for a cyclic RTSDFG. Let us consider a RTSDFG G = (T , A) that contains a cycle Ω = (t i , t j , t k ) . We assume that the ν i th execution of t i will influence the ν k th execution of t k . As there is a buffer between t k and t i , the same execution will affect the (ν i + ϵ)th execution of t i such that ϵ ∈ N * . Hence, an execution occurred in a cycle can loop infinitely because the beginning of a task execution in a cycle depends on its own end. 

t 1 i → t 1 j , t 1 j → t 3 k and t 3 k → t 1 i .
This implies that the equivalent graph contains a cycle whose arcs' weights are strictly positive. Therefore, we can deduce that the worst-case latency computation is no longer possible, since the computation of the longest path in the equivalent graph G ′ does not converge.

Computation of the longest path

The NP-hardness of the longest path problem for arbitrary graphs can be shown using the reduction from Hamiltonian path problem. However, computing the longest path in directed acyclic graphs (DAG in short) has a linear solution using a topological sorting. It can be computed by applying a linear time algorithm for shortest paths in a DAG [START_REF] Brandes | A faster algorithm for betweenness centrality[END_REF] in which every weight is replaced by its negation. The complexity of this algorithm is O(n + m) where n is the number of nodes and m is the number of arcs of the graph. However, the complexity of transforming the RTSDFG into an equivalent graph is not polynomial. The computation of this complexity is detailed in Section 7.2 of Chapter 7.

In the next part of this chapter, we present two algorithms that compute respectively the upper and lower bounds of the system latency. The computation of these bounds does not require the use of the equivalent graph which explicitly represents the precedence and the dependency constraints between the tasks executions.

Upper bound

In order to evaluate the upper and lower bounds of the system latency, our approach consists on transforming the RTSDFG into a weighted graph. The size of this latter is equal to the size of the original graph. In addition, the weight of each arc in the weighted graph corresponds to the time required to transfer the data between two task in the worst (or best) case scenario.

Let us consider the RTSDFG buffer a = (t i , t j ) with z i = T i , z j = T j and M 0 (a) its initial marking. We assume that a models all the communication constraints between the two periodic communicating tasks t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ). According to our communication model presented in section 5.1.2, data are only available at the deadline of the emitting task t i . Moreover, these data can only be consumed at the release date of the receiving task t j . On the other hand, the latency between two communicating tasks is equal to the time gap between the deadline of t i and the release date of t j . According to Theorem 5.2.1, the maximum latency between the executions of t i and t j can be written in the following format:

L max (t i , t j ) = r j -r i + λ + T i -max{0, T i -T j } -gcd a -D i ,
where λ = r i -r j +D i gcda

• gcd a .
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In order to compute the time required to transfer the data between t i and t j in the worst case scenario, two cases should be studied:

1. If T i ≤ T j , L max (t i , t j ) = r j -r i + λ + T i -gcd a -D i .
After an execution of t i , t j can be executed at most one time. Hence, the time required to ensure the data transfer between these tasks, in the worst case scenario, is equal to

D i + L max (t i , t j ) = D i + r j -r i + λ + T i -gcd a -D i = r j -r i + λ + T i -gcd a .
In our example in Figure 5.10 on page 75, t 2 = (0, 5, 10, 20) communicates with t 3 = (0, 10, 20, 40) where T 2 < T 3 and gcd a = gcd(20, 40) = 20. Hence, the time needed for the data transfer from t 2 to t 3 , in the worst case scenario, is equal to

D 2 + L max (t 2 , t 3 ) = r 3 -r 2 + λ + T 2 -gcd a = 0 + ⌈ 0 + 10 20 ⌉ • 20 + 20 -20
= 20 time units.

If T

i > T j , L max (t i , t j ) = r j -r i + λ + T j -gcd a -D i .
After an execution of t i , t j can be executed at most ⌈ T i T j ⌉ times. This means that at most ⌈ T i T j ⌉ executions of t j are totally depend on the execution of t i . Accordingly, the time separating the beginnings of the first and the last executions of t j that depend on t i is equal to (⌈ T i T j ⌉ -1) • T j time units. Hence, in order to ensure the data transfer from t i to t j , the time required in the worst case scenario is equal to

D i + L max (t i , t j ) + (⌈ T i T j ⌉ -1) • T j = r j -r i + λ -gcd a + ⌈ T i T j ⌉ • T j .
In the same example on page 75, t 1 = (0, 10, 20, 30) and t 2 = (0, 5, 10, 20) are communicating with T 1 > T 2 and gcd a = gcd(30, 20) = 10. Therefore, an execution of t 1 will affect at most ⌈ T 1 T 2 ⌉ = ⌈ 30 20 ⌉ = 2 executions of t 2 . Accordingly, the time separating the beginnings of the first and the last executions of t 2 that totally depend on the execution of t 1 is equal to (2 -1) • 20 time units. In the worst case, the time needed to transfer the data between these tasks is equal to

D i + L max (t i , t j ) + (⌈ T i T j ⌉ -1) • T j = r j -r i + λ -gcd a + ⌈ T i T j ⌉ • T j = 0 + ⌈ 0 + 20 10 ⌉ • 10 -10 + 2 • 20
= 50 time units.

In the next paragraph, we propose an algorithm covering the two cases below.

Latency upper bound computation

Algorithm 3 From RTSDFG to weighted graph G max 1: Input: RTSDFG G = (T , A) if T i ≤ T j then 8:

ω(e) ← r j -r i + λ + T i -gcd a 9:

else 10: ω(e) ← r j -r i + λ + ⌈ T i T j ⌉ • T j -gcd a 11:
end if

12: end for Algorithm 3 converts a RTSDFG G = (T , A) into a weighted graph G max having the same size. Each task t i ∈ T is represented by a node (line 4) and each buffer a = (t i , t j ) is represented by an arc e = (t i , t j ) (line 5). The arc weight ω(e) corresponds to the time required for data transfer from t i to t j in the worst case scenario. This weight is computed in two different cases according to the values of the buffer production and consumption rates. The two cases are respectively represented in line 8 and 10.

In order to evaluate the upper bound of the system latency, we add to the resulting graph G max two virtual nodes src and dst. Then, we connect src to each node without predecessor with an arc whose weight is null. We also connect each node without successor to dst with an arc whose weight is equal to the relative deadline of the source task. We evaluate the latency upper bound by computing the longest path between the virtual nodes (src and dst). Consider the RTSFG in Figure 5.15a that models the communication constraints between the executions of t 1 = (0, 10, 20, 30), t 2 = (0, 10, 20, 40) and t 3 = (0, 5, 10, 20). Figure 5.15b presents the weighted graph G max . In this graph, the weight of each arc connecting two nodes corresponds to the time required to transfer the data between these nodes in the worst case scenario. For example, the time required to ensure the communication between (t 1 , t 3 ) , (t 1 , t 2 ) and (t 3 , t 2 ) is respectively equal to 50, 50 and 20 time units.

Let P = {t 1 } be the set of nodes that do not have any predecessor. In addition, let S = {t 2 } be the set of nodes that do not have any successor. Two super nodes (src / dst) are added to G max . We connect src to t 1 with an arc whose weight is null, and t 2 to dst with an arc whose weight is equal to D 2 = 20 time units. In order to evaluate the latency upper bound, we compute the length of the longest path between src and dst which is equal to 90 time units.

Lower bound

Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) be two periodic communicating tasks. Let a = (t i , t j ) be RTSDFG buffer that models all the communication constraints between the tasks executions. According to Theorem 5.2.2, the minimum latency between the tasks executions is computed as follows:

L min (t i , t j ) = r j -r i + λ -D i .
Therefore, the time required to transfer the data from t i to t j , in the best-case scenario, is equal to

D i + L min (t i , t j ) = D i + r j -r i + λ -D i = r j -r i + λ.
In our example in Figure 5.10 on page 75, t 2 = (0, 5, 10, 20) communicates with [START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF][START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF] where gcd a = gcd(20, 40) = 20. Hence, the time needed for the data transfer from t 2 to t 3 , in the best case scenario, is equal to

t 3 = (0,
D 2 + L min (t 2 , t 3 ) = r 3 -r 2 + ⌈ r 2 -r 3 + D 2 gcd a ⌉ • gcd a = 0 + ⌈ 0 + 10 20 ⌉ • 20
= 20 time units.

Latency lower bound computation

In order to evaluate the lower bound of the system latency, we transform a RTSDFG into a weighted graph G min . This transformation uses the same principle of Algorithm 1, which transform the RTSDFDG into a weighted graph G max . By contrast, in this case, the weight of each arc connecting two communicating nodes (t i , t j ) is equal to ω(e) = r j -r i + λ.

We also add two virtual nodes (src/dst) to G min (see Figure 5.16). We evaluate the latency lower bound by computing the longest path between the virtual nodes. [START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF][START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF], in the best case scenario, is equal to

t 2 = (0,
D 1 + L min (t 1 , t 2 ) = r 2 -r 1 + λ = 0 + ⌈ 20 20 ⌉ • 10 = 20 time units.
In order to evaluate the latency lower bound, we compute the longest path between src and dst. In this example, latency lower bound is equal to 60 time units.

Conclusion

In this chapter, we demonstrated that the communication within a multi-periodic system can be modeled by a RTSDFG. The size of this latter is equal to the communication graph size. Moreover, we expressed the latency between two communicating tasks using a closed formula. In the general case, we evaluated the latency of a system modeled by a RTSDFG using an exact pricing algorithm. In addition, we proposed two polynomial-time algorithms that compute respectively the latency upper and lower bounds. The three algorithms were applied on several instances of RTSDFGs, the experimental results are detailed in Section 7.2 of Chapter 7.

As the set of communication constraints within a multi-periodic system can be modeled by a RTSDFG, the following chapter addresses the scheduling problem of strictly periodic communicating tasks on a single processor.

Chapter 6

Scheduling strictly periodic systems with communication constraints

Preemptive real-time systems have received considerable research efforts in the realtime community, compared to non-preemptive systems. However, these latter are usually adopted in practical hard-real real time systems where missing deadlines may lead to catastrophic situations. Moreover, many industrial applications (e.g. avionic applications) require strictly periodic tasks. This means that the tasks successive executions admit periodic starting dates separated by the task period. This strict periodicity is usually required at the system inputs and outputs, such as the sensors and the actuators of a control/command applications.

In many hard real-time systems, communication is becoming increasingly indispensable. Due to the tasks strict deadlines that must be met, communications between the tasks executions are implemented in a completely deterministic manner. Our approach models the communication requirements as precedence constraints between tasks. More precisely, this approach consists of modeling the communications within multi-periodic systems using RTSDFG formalisms.

In this chapter, we consider the mono-processor scheduling problem for nonpreemptive strictly periodic systems subject to communication constraints. Section 6.1 presents the non-preemptive strictly periodic model and its characteristics. In addition, it recalls the schedulability condition of two independent tasks on the same processor. Section 6.2 defines the SDFG schedules, especially the periodic ones that combine an explicit description of starting dates and an easy implementation. Section 6.3 introduces the schedulability condition of two non-preemptive strictly periodic tasks with communication constraints. In order to solve the scheduling problem, an Scheduling strictly periodic systems with communication constraints exact method is developed in Section 6.4. Furthermore, Section 6.5 proposes several heuristics in order to solve the same problem. Conclusion is stated in Section 6.6

Scheduling a strictly periodic independent tasks

This section presents the non-preemptive strictly periodic model and its characteristics. It presents the advantages of these tasks in presenting (modeling) critical real-time systems. Moreover, we recall the necessary and sufficient condition of scheduling two independent non-preemptive strictly periodic tasks on the same processor. Finally, we show that there exists a symmetry between the tasks starting dates which verify the schedulability condition.

Strictly periodic tasks

Strictly periodic non-preemptive tasks model is a particular case of the periodic tasks model. In this particular class, the task successive executions admit periodic starting dates. Moreover, the task execution cannot be interrupted by an other execution with higher priority, since the tasks are non-preemptive. The characteristics of nonpreemptive strictly periodic tasks model are:

• the gap between the release dates of two successive executions of the same task (t i ) is equal to its period:

r k i -r k-1 i = T i , ∀k ∈ N * .
• the gap between the starting dates of two successive executions of the same task (t i ) is equal to its period:

s k i -s k-1 i = T i , ∀k ∈ N * .
• the gap between the starting date and the release date of each task execution (t k i ) is equal to:

s k i -r k i = d, ∀k ∈ N * .
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Let t i = (r i , C i , D i , T i ) be a non-preemptive strictly periodic task. Figure 6.1 illustrates the task executions. The task starts its first execution at s i and ends it at

s i + C i .
The second execution begins at s i + T i and ends at s i + T i + C i . Furthermore, the gap between the task release date and its starting date in both executions is constant.

In critical real-time systems such as the control/command applications, the tasks which represent the system input and output should not have jitter. In order to avoid this jitter on the inputs receiving the data from sensors, input tasks must be strictly periodic. On the other hand, to avoid jitter on the outputs which transfer the data to actuators, output tasks must be non-preemptive.

In addition, for the majority of embedded systems, preemption is too expensive in time and space due to the context changing cost. This later is not controlled or not taken into account. For these reasons we focus our study on non-preemptive scheduling as long as we do not fully control the cost of preemption.

In the preemptive periodic model proposed by Liu and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF], the gap between the start date of execution and the activation date may vary. However, this gap is constant in the strictly periodic non-preemptive tasks model. In fact, there is no jitter in the model [START_REF] Cucu | Schedulability condition for systems with precedence and periodicity constraints without preemption[END_REF].

Non-preemptive strictly periodic tasks are usually adopted in practical real-time applications when continual sampling and processing data are required. We find these types of applications in several domains such as avionics [START_REF] Eisenbrand | Scheduling periodic tasks in a hard real-time environment[END_REF][START_REF] Sheikh | A best-response algorithm for multiprocessor periodic scheduling[END_REF] and process control [START_REF] Kermia | Schedulability analysis for non-preemptive tasks under strict periodicity constraints[END_REF][START_REF] Tendulkar | Strictly periodic scheduling of acyclic synchronous dataflow graphs using smt solvers[END_REF].

In the sequel of this manuscript, we use the term " strictly periodic task " to refer to a non-preemptive strictly periodic task.

Schedulabilty analysis of strictly periodic independent tasks

Considering a set of strictly periodic independent tasks T = {t 1 , . . . , t n }. Each task t i ∈ T is characterized by an activation period T i , an execution time C i and a starting date (of the first execution) s i . Since there is no precedence constraints between the tasks executions, we assume without loss of generality that s i ∈ [0, T i ). We use the interval E ν i i (s i ) to characterize the execution time units occupied by the ν i th execution of t i having a starting date equals to s i . The first execution interval of t i begins at s i and ends before

s i + C i , hence E 1 i (s i ) = [s i , s i + C i ).
According to the task strict periodicity, the ν i th execution of t i begins at s i + (ν i -1) • T i and ends before

s i + (ν i -1) • T i + C i .
More formally, the execution time units for each task can be written as follows:

∀t i ∈ T , ∀ν i ≥ 1, E ν i i (s i ) = [s i + (ν i -1) • T i , s i + (ν i -1) • T i + C i )
Let t i = (s i , C i , T i ) and t j = (s j , C j , T j ) be two strictly periodic independent tasks. These tasks are schedulable on the same processor if and only if there is no overlapping between their executions. This means

∀(ν i , ν j ) ∈ N * 2 , E ν i i (s i ) ∩ E ν j j (s j ) = ∅.
Therefore, a set of strictly periodic independent tasks T = {t 1 , . . . , t n } can be scheduled on the same processor if and only if each tasks couple (t i , t j ) can be scheduled on the same processor. This condition can be written as follows:

∀(t i , t j ) i̸ =j ∀(ν i , ν j ) ∈ N * 2 , E ν i i (s i ) ∩ E ν j j (s j ) = ∅. (6.1)
Although the previous equation (6.1) is a necessary and sufficient condition, it cannot be directly used to solve the scheduling problem of two tasks. Indeed, equation (6.1) requires the computation of the time units intervals occupied by all the tasks executions. However, the number of the tasks execution can increase exponentially and this is unacceptable in practice. Theorem 6.1.1 provides a schedulability condition without computing the interval execution time units occupied by all the tasks executions. This theorem was first proposed by Korst et al. [START_REF] Korst | Periodic multiprocessor scheduling[END_REF]. More recently, Al Sheikh at al. [START_REF] Sheikh | A best-response algorithm for multiprocessor periodic scheduling[END_REF] and Chen et al. [START_REF] Chen | Schedulability analysis of non-preemptive strictly periodic tasks in multi-core real-time systems[END_REF] proved that this theorem does not require that the start date of the first task has to be smaller than the start date of the second one. This is done following the fact that (-a) mod (b) = b -(a) mod b. Theorem 6.1.1 Two strictly periodic independent tasks t i = (s i , C i , T i ) and t j = (s j , C j , T j ) are schedulable on the same processor if and only if 6.1 Scheduling a strictly periodic independent tasks 95

C i ≤ (s j -s i ) mod (g ij ) ≤ g ij -C j , (6.2)
where g ij = gcd(T i , T j ).

Corollary 6.1.1 results from theorem 6.1.1. It gives a necessary and sufficient condition for scheduling the tasks on the same processor when their starting dates can be freely assigned by the designer. Corollary 6.1.1 [START_REF] Korst | Periodic multiprocessor scheduling[END_REF] The executions of two periodic independent tasks t i = (C i , T i ) and t j = (C j , T j ) can be scheduled on the same processor if and only if

C i + C j ≤ g ij , (6.3)
where g ij = gcd(T i , T j ).

Example 6.1.1 Let t i = (s i , C i , T i ) and t j = (s j , C j , T j ) be two independent strictly periodic tasks. We suppose that T i = 30, T j = 40 time units, C i = C j = 5 time units, and their starting dates are respectively equal to s i = 0 and s j = 5 time units. Figure 6.2a represents the tasks executions during their hyper period. We notice that there is no overlapping between the tasks executions (see Figure 6.2b). Therefore, t i and t j can be scheduled on the same processor. We can verify this result (without computing the tasks executions), by applying equation (6.2) as follows:

C i ≤ 5 ≤ (s j -s i ) mod (g ij )
(5 -0) mod ( 10)

≤ g ij -C j ≤ 10 -5,
where g ij = gcd(30, 40) = 10 time units. Fig. 6.2 Scheduling two strictly periodic tasks t i = (0, 5, 30) and t j = (5, 5, 40) on the same processor.

Symmetry

Let t i = (s i , C i , T i ) and t j = (s j , C j , T j ) be two strictly periodic independent tasks. The difference between the tasks starting dates (s j -s i ) can be written as follows:

s j -s i = δ ij + k ij • g ij , ( 6.4) 
where

δ ij = (s j -s i ) mod g ij and k ij = ⌊ s j -s i g ij ⌋, with k ij ∈ Z.
On the other hand, the difference between the tasks starting dates (s i -s j ) can be written as follows:

s i -s j = δ ji + k ji • g ij , ( 6.5) 
where 

δ ji = (s i -s j ) mod g ij and k ji = ⌊ s i -s j g ij ⌋,
δ ji = g ij -δ ij .
Therefore, the equation (6.4) and (6.5) can also be written as follows:

s j -s i = δ ij + k ij • g ij s i -s j = g ij -δ ij + k ji • g ij .
By summing these equalities, we obtain

k ij • g ij + (k ji + 1) • g ij = 0
Hence, we can deduce that

k ij + k ji = -1.
Finally, we can deduce a symmetry between δ ij and δ ji on one hand, and between k ij and k ji on the other hand. This implies that if there exists s i and s j which verify the equality (6.4) then these dates will also verify equality (6.5).

Let us consider the strictly periodic tasks t i = (0, 5, 30) and t j = (5, 5, 40) of our previous example. We notice that s i and s j verify equation (6.4) with δ ij = 5 and k ij = 0. In addition, these dates verify equation (6.5) with δ ji = g ij -δ ij = 10 -5 = 5 and k ji = -1 -k ij = -1.

Synchronous Data Flow Graph schedule

6.2 Synchronous Data Flow Graph schedule

SDFG is a static model which provides enough information in order to anticipate its behaviour. Therefore, it is possible to determine a scheduling for each task execution. Constraints that must be taken into consideration are the data dependencies that may exist between the tasks executions.

Let G = (T , A) be a SDFG. Given the set of tasks A, solving a scheduling problem consists on finding the start dates for each task execution while respecting the associated constraints. More formally, a schedule is a function s : T × N * → R + which associates for each execution t ν i i a starting date. We denote by s ν i i the starting date of the ν i th execution of t i . Let a = (t i , t j ) be a SDFG buffer with its initial marking M 0 (a). There is a strong relationship between a schedule and the corresponding instantaneous marking of the buffer M t (a). This latter can be computed as follows:

M t (a) = M 0 (a) + P t t i • z i + C t t j • z j ,
where P t t i and C t t j correspond respectively to the number of completed executions of t i and t j at time t. A SDFG schedule is feasible if

∀(t, a) ∈ R * + × A, M t (a) ≥ 0.

As Soon As Possible schedule

As Soon As Possible (ASAP in short) schedule is one of the most useful policy to analyse a SDFG. This scheduling algorithm consists in executing each task of the graph as soon as it has enough input data. ASAP schedule consists of two phases [START_REF] Cohen | A linear-systemtheoretic view of discrete-event processes and its use for performance evaluation in manufacturing[END_REF]: a transient phase followed by a periodic one where the tasks starting dates admit a periodic behaviour. Baccelli et al. [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF] proved that the transient phase is bounded. Figure 6.3b represents the ASAP schedule of the SDFG depicted in Figure 6.3a. In this example, the execution times of tasks A and B are fixed to 1 time unit. As we can see in Figure 6.3b, the transition phase is limited to one execution of A and two executions of B (executions are marked by zeros). This phase is followed by a periodic phase where an execution pattern is repeated for each period (delimited by red lines). This pattern consists on executing task A four times and task B three times. The tasks' executions are marked according to the period number. For example, the executions marked by 1 correspond to the tasks' executions of the first period.

In general, the ASAP strategy does not guarantee a bounded marking. In fact, ensuring a bounded marking using ASAP strategy is restricted to some classes of strongly connected graphs. In addition, the drawback of the ASAP strategy for scheduling a SDFG, is the dependency from the SDFG repetition vector rather than its size (|T |).

Periodic schedule

SDFGs are usually used to model applications that can be executed infinitely. Hence, the SDFG schedule must fix an infinite number of execution starting dates. In order to avoid this kind of issues, authors in [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF][START_REF] Benabid-Najjar | Periodic schedules for bounded timed weighted event graphs[END_REF] were interested in the SDFG periodic schedules. They characterize each SDFG task t i by an activation period (ω i ∈ R * + ) and a starting date of the first execution (s i ).

Definition 6.2.1 Let G = (T , A) be a SDFG. A SDFG schedule is periodic if each task t i ∈ T has a period ω i such that

∀ν i ≥ 1, s ν i i = s i + (ν i -1) • ω i .
s i is the starting date of the first execution of t i . The successive executions of t i are then repeated every ω i time units.

Let G = (T , A) be a normalized SDFG. Considering a task t i ∈ A, let a be an output buffer of t i . Every ω i time units, z i tokens are produced in the buffer a. Hence, on average, a token is produced every ω i z i time units. This ratio is called average token flow time. Considering that all the tasks have the same average token flow time, Marchetti and Munier [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF] prove that feasible periodic schedules satisfy linear inequalities. They defined a condition on the starting dates of the tasks first executions in order to fulfil the precedence constraints induced by the buffers. Theorem 6.2.1 [START_REF] Marchetti | Cyclic scheduling for the synthesis of embedded systems[END_REF] Let G = (T , A) be a normalized SDFG. For any periodic schedule, there exists a strictly positive rational K ∈ Q * + such that, for each task t i ∈ T , ω i z i = K.
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In addition, the precedence constraints induced by a buffer a = (t i , t j ) are fulfilled by the periodic schedule if and only if Figure 6.4 illustrates a feasible periodic schedule of the SDFG presented in Figure 6.3a. The tasks periods are respectively equal to ω A = 3, ω B = 4 and their starting dates are null (s A = s B = 0). We notice that the precedence constraints induced by the buffer are fulfilled, since the tasks starting dates verify equation (6.6) with C A = 1 and

s j -s i ≥ C i + K • (z j -M 0 (a) -gcd a ). ( 6 
K = ω A z A = ω B z B = 1.
Unlike the ASAP strategy, the periodic schedule ensures a bounded marking for any consistent SDFG. In addition, a periodic schedule can be computed in polynomial time using the linear programming.

Schedulabilty analysis of two strictly periodic communicating tasks

Based on our communication model defined in Section 5.1 of Chapter 5, we prove that scheduling two strictly periodic communicating tasks is equivalent to schedule two independent tasks. These latter can only be executed between their release dates and their deadlines. In addition, we give a sufficient condition for scheduling two periodic communicating tasks on a single processor. Lemma 6.3.1 Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) be two strictly periodic communicating tasks. Let a = (t i , t j ) be the RTSDFG buffer that models the communications between the tasks executions. Let s i and s j be respectively the starting dates of t 1 i and t 1 j . Communications constraints represented by the buffer a = (t i , t j ) are fulfilled, if 100 Scheduling strictly periodic systems with communication constraints

s i ∈ [r i , r i + D i -C i ] and s j ∈ [r j , r j + D j -C j ].
Proof: Let a = (t i , t j ) be the RTSDFG buffer that models the set of communication constraints between the strictly periodic tasks t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ). Let s ν i i and s ν j j be respectively the starting dates of t ν i i and t ν j j . According to corollary 5.1.1, communication constraints induced by the buffer a are fulfilled, if

∀ν i ≥ 1, s ν i i ∈ [r i + (ν i -1) • T i , r i + D i -C i + (ν i -1) • T i ] and, ∀ν j ≥ 1, s ν j j ∈ [r j + (ν j -1) • T j , r j + D j -C j + (ν j -1) • T j ].
On the other hand, according to the task strict periodicity, the execution starting dates s ν i i and s ν j j can be computed in function of the tasks first executions (s i and s j ) as following:

s ν i i = s i + (ν i -1) • T i s ν j i = s j + (ν j -1) • T j . Consequently, it is sufficient that s i ∈ [r i , r i + D i -C i ] and s j ∈ [r j , r j + D j -C j ] (for ν i = ν j = 1)
to ensure that all communications constraints induced by the buffer a are satisfied. □ Fig. 6.5 Communications constraints between the executions of two strictly periodic tasks t i = (10, 3, 15, 30) and t j = (0, 4, 15, 40).

Example 6.3.1 Let t i = (10, 3, 15, 30) and t j = (0, 4, 15, 40) be two strictly periodic communicating tasks. Figure 6.5 represents the communications between the tasks executions. We suppose that the tasks start their executions respectively at s i = 10 6.3 Schedulabilty analysis of two strictly periodic communicating tasks 101 and s j = 5 time units. Communication constraints are fulfilled, since the first execution of each task is accomplished between its release date and its deadline (s i ∈ [START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Burns | Real-time systems and programming languages: Ada 95, real-time Java, and real-time POSIX[END_REF] and [START_REF] Baruah | Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor[END_REF]).

s j ∈ [0,
Theorem 6.3.1 Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) be two strictly periodic communicating tasks. Let s i and s j be respectively the starting dates of t 1 i and t 1 j such that s i ∈ [r i , r i + D i -C i ] and s j ∈ [r j , r j + D j -C j ]. These tasks can be scheduled on the same processor if and only if

C i ≤ (s j -s i ) mod g ij ≤ g ij -C j ,
where g ij = gcd(T i , T j ).

Proof: Considering t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) two strictly periodic communicating tasks. Let a = (t i , t j ) be the RTSDFG buffer that models the communication constraints between the tasks executions. Let s i and s j be respectively the starting dates of t 1 i and t 1 j such that

s i ∈ [r i , r i + D i -C i ] and s j ∈ [r j , r j + D j -C j ]
. Consequently, according to lemma 6.3.1, communications constraints induced by the RTSDFG buffer a = (t i , t j ) are fulfilled. Hence, we can deduce that tasks t i = (s i , C i , T i ) and t j = (s j , C j , T j ) can be considered as independent tasks, since the starting dates of their first executions s i and s j satisfy the communications constraints.

On the other hand, two strictly periodic independent tasks are scheduled on the same processor if and only if there is no overlapping between their executions. According to theorem 6.1.1, these tasks can be executed on the same processor if and only if the starting dates of their first executions satisfy the following equation:

C i ≤ (s j -s i ) mod g ij ≤ g ij -C j .

□

Let us consider the strictly periodic communicating tasks t i = (10, 3, 15, 30) and t j = (0, 4, 15, 40) of the example in Figure 6.5. Tasks are executed between their release dates and their deadlines. Therefore, communication constraints between their executions are fulfilled. Accordingly, these tasks can be considered as independent ones. Moreover, we notice that the tasks starting dates s i = 10 and s j = 5 verify the condition of scheduling two independent tasks on the same processor (equation (6.2)):

C i ≤ 3 ≤ (s j -s i ) mod g ij (5 -10) mod 10 ≤ g ij -C j ≤ 10 -4.
Hence, we can deduce that t i and t j can be scheduled on the same processor while respecting the communication constraints between their executions (see Figure 6.6). Fig. 6.6 Scheduling on the same processor the strictly periodic communicating tasks t i = (10, 3, 15, 30) and t j = (0, 4, 15, 40) of the example in Figure 6.5.

Schedulability condition of two strictly periodic communicating tasks

This subsection presents a sufficient condition for scheduling two strictly periodic tasks on a the same processor. This condition takes into consideration the communication constraints between the tasks executions and the available resource of a single processor. In other words, given two strictly periodic tasks with their starting dates, the sufficient condition allows to verify whether these tasks can be scheduled on a the same processor or not. Corollary 6.3.1 Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D i , T j ) be two strictly periodic communicating tasks. Let a = (t i , t j ) be a RTSDFG buffer that models the set of communications constraints between the tasks executions. Let s i and s j be respectively the starting dates of t 1 i and t 1 j . These tasks can be scheduled to the same processor if:

max{C i , M} ≤ (s j -s i ) mod g ij ≤ min{g ij -C j , M ′ } (6.7 
)

with M = r j -r i -D i + C i -k ij • g ij and M ′ = r j -r i + D j -C j -k ij • g ij Proof: Let t i = (r i , C i , D i , T i
) and t j = (r j , C j , D j , T j ) be two strictly periodic communicating tasks. Let a = (t i , t j ) be a RTSDFG buffer that models the set of communications constraints between the tasks' executions. Let s i and s j be respectively the starting dates of t 1 i and t 1 j . The gap between the tasks starting dates can be written as follows:

s j -s i = δ ij + k ij • g ij δ ij = s j -s i -k ij • g ij ,
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where

δ ij = (s j -s i ) mod g ij and k ij = ⌊ s j -s i g ij ⌋.
According to theorem 6.1.1, two strictly periodic independent tasks can be scheduled on the same processor if

C i ≤ C i ≤ δ ij (s j -s i ) -k ij • g ij ≤ g ij -C j ≤ g ij -C j . ( 6.8) 
On the other hand, there exists a set of communication constraints between the executions of t i and those of t j . According to lemma 6.3.1, communication constraints between the tasks' executions are fulfilled if the starting dates of their first executions belong to the following intervals:

r i ≤ s i ≤ r i + D i -C i r j ≤ s j ≤ r j + D j -C j .
Hence, the gap between s i and s j can be written as follows:

r j -r i -D i + C i ≤ s j -s i ≤ r j -r i + D j -C j
Therefore, the communication constraints between the tasks' executions are fulfilled if

δ ij = (s j -s i ) -k ij • g ij
satisfy the following inequality:

r j -r i -D i + C i -k ij • g ij ≤ (s j -s i ) -k ij • g ij ≤ r j -r i + D j -C j -k ij • g ij (6.9)
By combining equations (6.8) and (6.9), we can deduce that two strictly periodic communicating tasks can be scheduled on the same processor if

max{C i , r j -r i -D i + C i -k ij • g ij } ≤ δ ij ≤ min{g ij -C j , r j -r i + D j -C j -k ij • g ij }
□ Considering the strictly periodic communicating tasks t i = (10, 3, 15, 30) and t j = (0, 4, 15, 40). We assume that the tasks starting dates are respectively equal to s i = 10 and s j = 5. Scheduling these tasks on the same processor can be verified by applying equation (6.7) as follows: 

max{C i , M} ≤ max{3, -12} ≤ (s j -s i ) mod g ij (5 -10) mod 10 ≤ min{g ij -C j , M ′ } ≤ min{10 -4,

Optimal algorithm: Integer linear programming formulation

A linear programming (LP in short) problem consists on maximizing or minimizing a linear function, subject to a finite number of linear constraints. These latter may be equalities or inequalities. The problem feasible region is a convex polytope which is defined by linear inequalities. Its objective function is a real-valued affine function defined on this polytope. A linear programming algorithm consists on searching through the polytope vertices in order to find a point (on this polytope) where the objective function has the smallest or the largest value if such a point exists. The linear programming problem was first introduced by Kantorovich [68] who also proposed a method for solving it. The well know Simplex method, which is an important resolution method dedicated to solve linear programs, was introduced by Dantzig [START_REF] Dantzig | Decomposition principle for linear programs[END_REF]. The LP problem can be solved using the Simplex method if there are no restrictions on the variables types. An integer linear programming (ILP in short) is a linear program with additional constraint which requires that all the variables are restricted to integer values. When the integer restriction is applied only to a subset of the variables, the problem is defined as Mixed Integer Linear Programming (MILP in short). Several exact algorithms are dedicated to solve these problems such as branch-and-bound [START_REF] Land | An automatic method for solving discrete programming problems. 50 Years of Integer Programming[END_REF], branch-and-cut [START_REF] Hoffman | Lp-based combinatorial problem solving[END_REF], branch-and-price [START_REF] Savelsbergh | A branch-and-price algorithm for the generalized assignment problem[END_REF] and cutting-plane [START_REF] Magnanti | A strong cutting plane algorithm for production scheduling with changeover costs[END_REF]. Moreover, these linear programming algorithms are known to be exact.

In this thesis, we need to answer the following question:

For a given set of strictly periodic tasks, these latter can be scheduled on the same processor, assuming that the tasks communicate with each other and can not be preempted?

In this section, an exact algorithm is suggested for the mono-processor scheduling problem. This latter consists of scheduling a set of strictly periodic communicating tasks on a single processor. Our approach used the mixed integer linear programming formulation in order to build an exact framework. Our MILP formulation seeks a feasible solution that satisfies the constraints induced by the communications and available resource of a single processor without having any objective function.

Consider N = {t 1 , . . . , t n } a set of strictly periodic communicating tasks. Let G = (T , A) be the RTSDFG which models all the communications constraints between 6.4 Optimal algorithm: Integer linear programming formulation 105 the tasks executions. According to lemma 6.3.1, the set of communication constraints is fulfilled if the starting date of the first execution (s i ) of each task belongs to the following interval:

∀t i ∈ T , s i ∈ [r i , r i + D i -C i ].
In our study, we distinguish two cases: fixed and flexible intervals.

Fixed intervals

In this subsection, we presents the MILP formulation of the fixed intervals case, where each task

t i = (r i , C i , D i , T i ) can only start its first execution during the interval [r i , r i + D i -C i ].
Solving the MILP seeks to find a feasible solution if such one exists. A feasible solution is composed of a set of starting dates which verify simultaneously the communication and the resource constraints. Prior to presentation of the general model, we present a list of constants and variables used in the MILP formulation.

Constants

• r i : Release date of the task first execution (t 1 i ).

• C i : Execution time of task t i .

• D i : Relative deadline of task t i .

Variables

• s i : Starting date of the task's first execution (t 1 i ).

• δ i,j : For each pair of tasks (t i , t j ), δ ij corresponds to the time interval which is allowed to occupy without interfering with each other.

• k i,j : For each pair of tasks (t i , t j ), k i,j corresponds to the number of intervals of length g ij separating the starting dates of the tasks' first executions

Constraints

• Communication constraints: According to lemma 6.3.1, communication constraints between the tasks executions are fulfilled if the first starting date of each task execution belongs to the following interval

∀t i ∈ T , r i ≤ s i ≤ r i + D i -C i
• Resource constraints: A set of strictly periodic communicating tasks T = {t 1 , . . . , t n } can be scheduled on the same processor if and only if each couple of tasks (t i , t j ) can be scheduled on this processor. According to theorem 6.3.1, two communicating tasks are executed on the same processor if and only if equation 6.2 is fulfilled,

C i ≤ (s j -s i ) mod g ij ≤ g ij -C j .
In equation 6.2, mod is not a linear operation. In MILP formulation, this equation must be substitute by the following one:

s j -s i = δ ij + k ij • g ij where C i ≤ δ ij ≤ g ij -C j and k ij = ⌊ s j -s i g ij ⌋.
Moreover, and according to the symmetry presented in Section 6.1, we can halve the constraints number. Therefore, the schedulability condition is only verified for each couple (t i , t j ) with i < j. More formally,

∀(t i , t j ) i<j ∈ T 2 , s j -s i = δ ij + k ij • g ij
The following MILP gathers all the scheduling problem constraints of the fixed intervals case, as follows: subject to

r i ≤ s i ≤ r i + D i -C i , ∀t i ∈ T s j -s i = δ i,j + k i,j • g i,j , ∀(t i , t j ) i<j ∈ T 2 C i ≤ δ i,j ≤ g i,j -C j , ∀(t i , t j ) i<j ∈ T 2 s i ∈ R + ∀t i ∈ T k i,j ∈ Z, δ ij ∈ R + ∀(t i , t j ) i<j ∈ T 2
Example 6.4.1 Consider the set of strictly periodic communicating tasks N = {t 1 , t 2 , t 3 }. Let E = {(t 1 , t 2 ), (t 2 , t 3 ), (t 3 , t 1 )} be the set of communication relationships between tasks. Table 6.1 represents the tasks parameters. Figure 6.7 depicts the RTSDFG G = (T , A) that models the communications between the tasks executions. Our purpose is to schedule these tasks on the same processor while respecting the communication constraints between their executions. We reach our target by solving the MILP formulation that seeks to find a feasible solution, if such a solution exists. Figure 6.8 represents a feasible (schedule) solution of this problem where the tasks starting dates are respectively equal to s 1 = 110, s 2 = 180 and s 3 = 30 time units. We notice that all the tasks are executed between their release dates and their deadlines. Therefore, the communication constraints between the tasks' executions are fulfilled. For example, t 1 3 starts at 30 time units and ends at 50 time units. Data produced during its execution are available at 60 time units. These data are consumed by t 1 1 at 90 time units. In turn, t 1 1 starts its execution at 110 time units and ends it at 120 time units. In addition, we notice that there is no overlapping between the tasks executions. Hence, we can deduce that the resource constraints are also respected. 

Infeasible solution

Let us modify the previous example by increasing the execution time of task t 1 from 10 time units to 20 time units. Let s 1 = 100, s 2 = 180 and s 3 = 30 be respectively the tasks starting dates. Figure 6.9 illustrates the communication and execution model of these tasks. Communication constraints are fulfilled since each task is executed between its release date and its deadline. However, we notice that t 1 and t 3 can not admit starting dates that verify simultaneously the communication and the resource constraints. In fact, there is an overlapping between the executions of t 1 and that of t 3 if these tasks are executed between their release dates and their deadlines. For example, the first execution of t 1 begins at 100 and ends at 120 time units. In addition, the second execution of t 3 begins at 90 time units and it is accomplished after the beginning of t 1 1 (at 110 time units). There is an overlapping between the executions of t 1 and that of t 3 .

Flexible intervals

In this subsection, we introduce the MILP formulation of the flexible intervals case. Unlike the fixed intervals case, the beginning of the first execution of each task

t i = (r i , C i , D i , T i ) is no more limited (restricted) by the interval [r i , r i + D i -C i ].
Tasks can start their executions in new execution intervals where the communications constraints between their executions are always fulfilled. As the fixed intervals case, solving the MILP seeks to find a feasible solution if such one exists. Prior to the definition of the general model, we present a list of constants and variables used in the MILP formulation.

Constants

• r i : Release date of the task's first execution (t 1 i ).

• C i : Execution time of task t i .

• D i : Relative deadline of task t i .

Variables

• r * i : Starting date of the new execution interval ([r * i , r * i + D i ]).
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• s i : Starting date of the task first execution (t 1 i ).

• δ i,j : For each pair of tasks (t i , t j ), δ ij corresponds to the time interval which is allowed to occupy without interfering with each other.

• k i,j : For each pair of tasks (t i , t j ), k i,j corresponds to the number of intervals of length g ij separating the starting dates of the tasks' first executions

Constraints

• Communication constraints: According to theorem 5.1.1 in section 5.1 of chapter 5, the set of communication constraints between two periodic tasks t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) is modeled by a RTSDFG buffer a = (t i , t j ). Its production and consumption rates are respectively equal to z i = T i and z j = T j and its initial marking is equal to M 0 (a). Moreover, and according to theorem 6.2.1, the precedence constraints induced by the buffer a = (t i , t j ) are fulfilled by a periodic schedule if and only if

s j -s i ≥ C i + K • (z j -M 0 (a) -gcd a ),
where

K = T i z i = T j z j ∈ Q * + .
In our case, K is equal to

T i z i = T j z j = 1.
The set of communications modeled by the RTSDFG buffer is build according to the task's release dates (r i ) and their relative deadlines (D i ). In fact, a RTSDFG's task corresponds to the interval ([r i , r i + D i ]) during which the strictly periodic t i task is executed. Therefore, the starting date of the RTSDFG task can be considered as the starting date of the new execution interval (r * i ). Accordingly, precedence constraints between the new execution intervals are fulfilled if and only if

∀a = (t i , t j ) ∈ A, r * j -r * i ≥ D i + (T j -M 0 (a) -gcd a ).
Then, the new execution interval must begin after the task release date,

∀t i ∈ T , r * i ≥ r i .
Finally, and according to lemma 6.3.1, communications constraints between the tasks executions are fulfilled if the starting dates of their first execution belongs to the new execution intervals,

∀t i ∈ T , r * i ≤ s i ≤ r * i + D i -C i .
• Resource constraints: As in the fixed intervals case, the set of strictly periodic communicating tasks can be scheduled on the same processor if and only if:

∀(t i , t j ) i<j ∈ T 2 , s j -s i = δ ij + k ij • g ij where C i ≤ δ ij ≤ g ij -C j and k ij = ⌊ s j -s i g ij ⌋.
The following MILP formulation gathers all the scheduling problem constraints of the flexible intervals case:

subject to r * j -r * i ≥ D i + (T j -M 0 (a) -gcd a ), ∀a = (t i , t j ) ∈ A r * i ≥ r i , ∀t i ∈ T r * i ≤ s i ≤ r * i + D i -C i , ∀t i ∈ T s j -s i = δ i,j + k i,j • g i,j , ∀(t i , t j ) i<j ∈ T 2 C i ≤ δ i,j ≤ g i,j -C j , ∀(t i , t j ) i<j ∈ T 2 (s i , r * i ) ∈ R 2 + ∀t i ∈ T k i,j ∈ Z, δ ij ∈ R + ∀(t i , t j ) i<j ∈ T 2 0 90 0
Fig. 6.10 A feasible schedule of the example depicted in Figure 6.9. Communication constraints are respected and there is no overlapping between the tasks executions. Example 6.4.2 Let us reconsider the strictly periodic system depicted in figure 6.9. Unlike the fixed intervals case, this system admits a feasible schedule. Figure 6.10 In order to highlight the impact of the variable r * i to solve the mono-processor scheduling, we assume that the tasks' starting dates are equal to the intervals starting dates (s i = r * i , ∀t i ∈ T ). This means that the tasks must start their executions at the beginning of their intervals. Let us reconsider the feasible solution depicted in Figure 6.13. The interval starting dates of tasks t 1 and t 3 remain unchanged since their executions start at the beginning of their intervals. However, the interval starting date of task t 2 will be modified so that it is equal to s 2 = 55 time units. By changing this value, we notice that the resource constraints remain respected. However, this is no longer the case for the communication constraints, since t 3 2 is not able to transfer the data to t 1 3 . In fact, the deadline of t 3 2 is greater than the release date of t 1 3 . On the other hand, let us decrease the starting date of t 1 2 from 55 to 40 time units so that t 2 is executed at the beginning of its interval. In this case, we notice that the communication constraints remain respected. However, this is no longer the case for the resource constraints, since there is an overlapping between t 4 2 and t 1 3 . Therefore, we deduce that adding the starting date of the new execution interval (r * i ) to the MILP formulation is essential to solve the mono-processor scheduling problem for the flexible interval case. 

Heuristics

Solving the MILP produces a schedule for a set of strictly periodic communicating tasks on a single processor. Numerically solving the MILP within a reasonable amount of time is only restricted to small instance. Recall that the scheduling problem in question is known to be NP-complete in the strong sense [START_REF] Korst | Scheduling periodic tasks[END_REF]. Consequently, we present in this section three heuristics which seek to find a feasible solution for our scheduling problem, such as linear programming relaxation. For the second and the third heuristic if no feasible solution is found, a partial solution is computed. This solution corresponds to a subset of tasks that can be executed on the same processor.

Linear programming relaxation

Linear programming relaxation is a method which consists on transforming a combinatorial or discrete problem to a continuous one. This method is used to obtain information on the initial discrete problem in order to build a solution. The linear programming relaxation may be solved using any standard linear programming technique (such as Simplex). Our first approach is based on the linear programming relaxation and it can be defined in the following steps:

• Relaxation of the integrality constrain: this relaxation allows variables to have non-integral values. The MILP of the Flexible intervals case can be " relaxed " as follows :

subject to

r * j -r * i ≥ D i + (T j -M 0 (a) -gcd a ), ∀a = (t i , t j ) ∈ A r * i ≥ r i , ∀t i ∈ T r * i ≤ s i ≤ r * i + D i -C i , ∀t i ∈ T s j -s i = δ i,j + k i,j • g i,j , ∀(t i , t j ) i<j ∈ T 2 C i ≤ δ i,j ≤ g i,j -C j , ∀(t i , t j ) i<j ∈ T 2 (s i , r * i ) ∈ R 2 + ∀t i ∈ T k i,j ∈ R, δ ij ∈ R + ∀(t i , t j ) i<j ∈ T 2
• Solving the resulting linear program in order to obtain a fractional optimal solution. We can notice that all the linear program constraints are potential except the resource ones. For example, the precedence constraints induced by the RTSDFG buffers are potential constraints, since the gap between the starting date of the new execution intervals (r * j -r * i ) are greater than or equal to an integer constant. However, the equality s j -s i = δ i,j + k i,j • g i,j is not potential.

• For each couple of tasks (t i , t j ) i<j ∈ T 2 , we compute the integer value of k ij which is equal to ⌊

s j -s i g ij ⌋.
• We substitute each k ij with its value in a new execution LP where k ij is no longer considered as a variable. In order to verify the existence of a feasible (integer) solution to our scheduling problem, we solve the new LP. Note that finding a feasible solution for the new LP is equivalent to find a feasible solution for the original MILP.

Let us reconsider the example depicted in figure 6.8. Fractional solution obtained by solving the " relaxed " program is equal to: For each couple of tasks (t i , t j ) i<j ∈ T 2 , we compute the number of intervals of length g ij separating the starting dates of the tasks' executions:

s 1 = 140 r * 1 = 120 k 12 = 0.9167 δ 12 = 10,
k 12 = ⌊ s 2 -s 1 g 12 ⌋ = ⌊ 260 -140 120 ⌋ = 1, k 13 = ⌊ s 3 -s 1 g 13 ⌋ = ⌊ 100 -140 60 ⌋ = -1, k 23 = ⌊ s 3 -s 2 g 23 ⌋ = ⌊ 100 -260 60 ⌋ = -3.
By solving the new LP where each k ij is substituted by its integer value, we obtain the following solution: .14 illustrates the feasible solution obtained by solving the new LP. We notice that there is no overlapping between the tasks executions and the communication constraints between them are fulfilled.

s 1 = 90 r * 1 = 90 δ 12 = 10,

Simple heuristic

In this subsection, we describe in detail our simple heuristic for scheduling strictly periodic communicating tasks. It is based on the schedulability condition of two strictly periodic communicating tasks, which is presented previously in Section 6.3. In our approach, we use a greedy algorithm without back-tracking (i.e. if a decision is made at some stage, it is never questioned during the following stages). The effectiveness of any greedy algorithm is predicated on the decisions choice. In the simple heuristic, decisions are based on two criteria: the interval length where each task can start its execution ([r i , r i + D i -C i ]) and the task period (T i ).

Our algorithm takes as input a sorted list of tasks (the sort description is represented subsequently). In addition, this algorithm returns a feasible solution (if it is able to find such a solution). Otherwise, it returns a partial solution that corresponds to a subset of tasks with their starting dates which can be executed on the same processor.

We sort the set of tasks in an ascending order according to the gap between the tasks relative deadlines and their execution times (D i -C i ). Moreover, if two tasks have the same gap between their deadlines and their execution times, the task with the smallest period has a higher priority. In other words, the task with the smallest period is placed prior to the other task in the sorted list. More formally, we denote by LT the sorted list of tasks such that

LT = {t i : ∀t i ∈ T , (D i -C i ) ≤ (D i+1 -C i+1 ). If (D i -C i ) = (D i+1 -C i+1 ) then
the task with the smallest period has a higher priority}. Algorithm 4 describes the simple heuristic as follows:

• First, we initialize an empty list S olution . We insert in this latter the first task of LT while setting its starting date to its release date s 1 = r 1 (line 3). In addition, we remove this task from LT (line 4). S olution corresponds to the set of scheduled tasks in the partial or global scheduling.

• Then, we verify for each candidate task t j in LT if there exists a starting date s j ∈ [r j , r j + D j -C j ] which fulfils the schedulability condition with all tasks in the current solution S olution . We run the test on the starting date values in an increasing order (line 6). If such a starting date exists (line 7), we add the couple (t j , s j ) to the current solution S olution (line 8). Even if this starting date does not exist, we continue to check the remaining tasks in LT in order to find a partial solution and to compute the tasks percentage which can be executed on the same processor.

• Finally, after checking all the tasks in LT , we return the current solution (line 13). If |S olution | = n then S olution is a feasible solution. Otherwise, it is a partial solution that contains the subset of tasks which can be scheduled on the same processor.

Note that our algorithm always selects the first starting date value that satisfies the schedulability condition with current solution tasks. Changing the order of checking the tasks starting date values provides a new heuristic. For example, we can modify the order in line 6 from an increasing order to a decreasing one. for s j = r j to r j + D j -C j do 6.2 represents the tasks parameters. Figure 6.15 depicts the RTSDFG G = (T , A) that models the communications between the tasks executions.

Our purpose is to verify the system schedulability using Algorithm 4. Let LT = (t 1 , t 3 , t 2 ) be the tasks sorted list. Tasks are sorted increasingly according to two criteria: the interval length where each task can start its execution (D i -C i ) and the task period (T i ). We notice that t 1 is prior to t 3 in the sorted list even if they admit equal gaps (D 1 -C 1 = D 3 -C 3 = 14 -4 = 10). This is due to the fact that the period of t 1 is strictly smaller than the period of t 3 (T 1 < T 3 ).
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In order to build a schedule, we apply Algorithm 4 on the sorted list LT . First, we schedule t 1 with a starting date equals to s 1 = r 1 = 0. Then, we verify if there exists a starting date s 3 ∈ [0, 10] that allows t 3 to be executed on the same processor executing t 1 (without overlapping). We run the test on the possible values of s 3 in an increasing order. Moreover, we select the first value that verify the schedulability condition with (t 1 , s 1 ). In this example, s 3 is equal to 4 time units. Using the same principle, we verify if there is a starting date s 2 ∈ [0, 40] that allows t 2 to be scheduled on the processor executing t 1 and t 3 . t 2 can be executed on this processor with a starting date equal to 8 time units. Figure 6.16 depicts the resulting scheduling using Algorithm 4. As we can see, there is no overlapping between the tasks execution (i.e. resource constraints are fulfilled). In addition, we notice that communication constraints between the tasks executions are satisfied, since each task starts its execution during the interval [r i , r i + D i -C i ]. 0 Fig. 6.16 A feasible schedule of the strictly periodic system represented in Table 6.2 and Figure 6.15. The tasks starting dates are respectively equal to s 1 = 0, s 2 = 8 and s 3 = 4.

Partial solution

Let us modify the previous example by increasing the tasks release dates as follows: r 1 = 10, r 2 = 120 and r 3 = 40 time units. In order to verify the system schedulability on a single processor, we apply Algorithm 4. Let LT = (t 1 , t 3 , t 2 ) be the tasks sorted list. First, we schedule t 1 with a starting date equal to s 1 = r 1 = 10 time units. Then, we verify if there is a starting date value of s 3 ∈ [START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF][START_REF] Goossens | Limitation of the hyper-period in real-time periodic task set generation[END_REF] that satisfies the schedulability condition with the starting date of t 1 . In this case, s 3 is equal to 40 time units. Finally, we check if there is a starting date s 2 ∈ [120, 160] that simultaneously satisfies the schedulability condition with t 1 and t 3 . We release that such a date does not exist. More precisely, there is no starting date s 2 ∈ [120, 160] that verifies the schedulability condition with (t 3 , s 3 ). We can deduce that Algorithm 4 provides only a partial solution (see Figure 6.17) composed by the couples (t 1 , 10) and (t 3 , 40). 

ACAP heuristic

In this part, we present the ACAP (As Close As Possible) heuristic which is also a greedy algorithm. As the the simple heuristic, our algorithm takes as input a sorted list of tasks. These latter are sorted increasingly according to their gaps (D i -C i ) and their periods (T i ). In addition, this algorithm returns a feasible solution (if it is able to find such a solution). Otherwise, it returns a partial solution corresponding to a subset of tasks which can be executed on the same processor. In contrast to the simple heuristic approach, a new priority is given to every candidate task in order to be scheduled with the current solution tasks. This priority depends on the candidate task position compared to the other tasks that are already scheduled. In fact, adding this priority seeks to maximize the number of tasks that can executed on a single processor by scheduling the tasks as close as possible.

Scheduling two strictly periodic communicating tasks as close as possible

Let t i = (r i , C i , D i , T i ) and t j = (r j , C j , D j , T j ) be two strictly periodic communicating tasks, such that t i is already scheduled on a processor with a staring date equal to s i . Let s j be the unknown starting date of t j . According to theorem 6.3.1, these tasks can be scheduled on the same processor if and only if equation (6.2) is fulfilled. This equation can be written as follows:

s j -s i = δ ij + k ij • g ij , ( 6.10) 
where

C i ≤ δ ij ≤ g ij -C j and k ij = ⌊ s j -s i g ij ⌋.
In order to maximize the number of tasks that can be executed on the same processor, we seek to schedule t j as close as possible to t i . Hence, we can distinguish two cases:

1. The execution of t j starts at the end of t i . This implies that s j = s i + C i . In this case, we obtain δ ij = (s j -s i ) mod g ij = C i . Hence, the starting date of t j can be computed according to the starting date of t i , as follows: .11) In order to fulfil the communication constraints between the tasks executions, s j must belong to the interval [r j , r j + D j -C j ]. Accordingly, we compute the k ij values which verify that t j starts its execution at the end of t i , as follows:

s j -s i = C i + k ij • g ij s j = s i + C i + k ij • g ij . ( 6 
r j ≤ s j ≤ r j + D j -C j r j ≤ s i + C i + k ij • g ij ≤ r j + D j -C j r j -s i -C i ≤ k ij • g ij ≤ r j + D j -C j -s i -C i ⌈ r j -s i -C i g ij ⌉ ≤ k ij ≤ ⌊ r j +D j -C j -s i -C i g ij ⌋ 2.
The execution of t j ends at the beginning of t i . This implies that s i = s j + C j . In this case, we obtain δ ij = (s j -s i ) mod

g ij = g ij -(s i -s j ) mod g ij = g ij -C j .
Hence, the starting date of t j can be computed according to the starting date of t i , as follows:

s j -s i = g ij -C j + k ij • g ij , s j = s i + g ij -C j + k ij • g ij , s j = s i -C j + (k ij + 1) • g ij , ( 6.12) 
In order to fulfil the communication constraints between the tasks executions, s j must belong to the interval [r j , r j + D j -C j ]. Accordingly, we compute the values of (k ij + 1) which verify that t j ends its execution at the beginning of t i , as follows:

r j ≤ s j ≤ r j + D j -C j r j ≤ s i -C j + (k ij + 1) • g ij ≤ r j + D j -C j r j + C j -s i ≤ (k ij + 1) • g ij ≤ r j + D j -s i ⌈ r j +C j -s i g ij ⌉ ≤ (k ij + 1) ≤ ⌊ r j +D j -s i g ij ⌋ 6.

Heuristics

121

Let t 1 = (10, 4, 14, 18) and t 2 = (120, 10, 50, 144) be two strictly periodic communicating tasks. Let s 1 and s 2 be the tasks starting dates. we suppose that t 1 is already scheduled on a processor with a starting date s 1 = 10. Hence, t 2 can start its execution at the end of t 1 if On the other hand, t 2 can end its execution at the beginning of t 1 if ) such that the end of its execution corresponds to the beginning of task t 1 = [START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF][START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Bini | Measuring the performance of schedulability tests[END_REF] which is already scheduled with a starting date s 1 = 10 time units.

s 2 = s 1 + C 1 + k ij • g ij = 10 + 4 + k ij • 18, with 6 ≤ k ij ≤ 8.
s 2 = s 1 -C 2 + (k ij + 1) • g ij = 10 -10 + (k ij + 1) • 18, with 7 ≤ (k ij +1) ≤ 8.
Our target is to maximize the number of tasks that can be scheduled on the same processor. In order to achieve this goal, we seek to schedule each candidate task as close as possible to the tasks that are already scheduled. Algorithm 5 describes in details this approach as follows:

• As in the simple heuristic, we initialize an empty list S olution . We insert in this latter the first task of LT while setting its starting date to its release date s 1 = r 1 (line 3). In addition, this task is removed from LT (line 4).

• Then, we initialize an empty list S list (line 6). For each candidate task t j in LT , we verify if there exists a starting date s j ∈ [r j , r j + D j -C j ] which fulfils the schedulability condition with all tasks in the current solution S olution . We run the test on the starting date values in an increasing order (line 8). If a given task t j does not admit a starting date that satisfies the schedulability condition with all the current solution tasks, then t j is removed from the list (line 11). In contrast with the simple heuristic, we group in S list all the couples (t j , s j ) which verify the schedulability condition with current solution tasks (line 14). Moreover, we group in S ′ list the couples from S list which verify equation (6.11) or (6.12) with at least one couple (t i , s i ) ∈ S olution (line 20). In other words, we consider that a couple (t j , s j ) ∈ S ′ list has a higher priority, since its execution starts at the end of a scheduled task. Moreover, this couple can also have a higher priority if its execution ends at the beginning of a scheduled task. Note that (t j , s j ) ∈ S ′ list can verify both cases at the same time. This means that a candidate task can begin at the end of a scheduled task and ends at the beginning of another one.

If several couples in S

′ list have the same priority, we choose the couple with the smallest gap (line 22). In addition, if S ′ list is empty, we choose from S list the couple whose gap is minimal (line 24). We add the chosen couple (t j , s j ) to the current solution S olution and we remove t j from LT (lines 26 and 27). We repeat the whole procedure as long as the list LT is not empty.

• Finally, once the tasks list LT is empty, we return the current solution (line 30). If |S olution | = n then S olution is a feasible solution. Otherwise, it is a partial solution that corresponds to a tasks subset and their starting dates, that can be scheduled on the same processor. 

S list = ∅ 7:
for all t j ∈ LT do 8:

for s j = r j to r j + D j -C j do Similarly to the simple heuristic algorithm, Algorithm 5 always selects the first starting date value that satisfies the schedulability condition with current solution tasks. Changing the order of checking the tasks starting date values provides a new Scheduling strictly periodic systems with communication constraints heuristic. This can be done by modifying the order in line 8 from an increasing order to a decreasing one. Example 6.5.2 Let us reconsider the system composed of three strictly periodic communicating tasks t 1 = [START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF][START_REF] Bernat | Weakly hard real-time systems[END_REF][START_REF] Bini | Measuring the performance of schedulability tests[END_REF], t 2 = (120, 10, 50, 144) and t 3 = [START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF][START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF][START_REF] Bernat | Weakly hard real-time systems[END_REF][START_REF] Grandpierre | Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors[END_REF]. Recall that applying Algorithm 4 on this system provides only a partial solution. In order to verify the system schedulability on a single processor, we apply Algorithm 5. Let LT = (t 1 , t 3 , t 2 ) be the tasks sorted list. We schedule t 1 with a starting date equal to its release date s 1 = r 1 = 10 time units and we remove it from LT . Then, we compute for each task in LT its first starting date that fulfils the schedulability condition with (t 1 , 10). In this example, the tasks starting dates are respectively equal to s 3 = 40 and s 2 = 122 time units. We add the couples (t 3 , 40) and (t 2 , 122) to S list . Moreover, we check for each couple in S list if its starting date satisfies equation (6.11) or (6.12) with s 1 = 10 time units. We notice that s 3 = 40 does not satisfy any equation. However, s 2 = 122 verifies equation (6.11) with s 1 = 10. This means that t 2 starts its execution at the end of t 1 . Accordingly, t 2 is given a higher priority and it is scheduled with a starting date equal to s 2 = 122 time units. Therefore, we remove t 2 from LT . Finally, We check if there is a starting date s 3 ∈ [START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF][START_REF] Goossens | Limitation of the hyper-period in real-time periodic task set generation[END_REF] that simultaneously verifies the schedulability condition with (t 1 , 10) and (t 2 , 122). We realize that t 3 can be executed on the same processor with t 1 and t 2 with a starting date s 3 = 42 time units. 0 Fig. 6.20 A feasible schedule resulting from applying Algorithm 5 on the perioidic system composed of t 1 = (10, 4, 14, 18), t 2 = (120, 10, 50, 144) and t 3 = [START_REF] Feiler | The architecture analysis & design language (aadl): An introduction[END_REF][START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF][START_REF] Bernat | Weakly hard real-time systems[END_REF][START_REF] Grandpierre | Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors[END_REF]. The tasks starting dates are respectively equal to s 1 = 10, s 2 = 122 and s 3 = 42 time units. Figure 6.20 depicts the resulting schedule using Algorithm 5. As we can see, the tasks are scheduled as close as possible. For instance, the first execution of t 3 ends at the beginning of the third execution of t 1 . On the other hand, the first execution of t 2 starts at the end of the seventh execution of t 1 . In addition, we notice that the resource constraints are fulfilled, since there is no overlapping between the tasks executions. Moreover, communication constraints are fulfilled since each task t i starts its execution during the interval [r i , r i + D i -C i ], such as s 3 = 42 time units which belongs to [40, 40 + 14 -4].

Flexible interval case

In the flexible intervals case, the starting date of a task t i = (r i , C i , D i , T i ) is no longer restricted to the interval [r i , r i + D i -C i ]. Therefore, we need to know how we might compute the starting date of the new execution interval (r * i ) knowing that communication constraints between executions must always be respected. Let G = (T , A) be a RTSDFG. For each task t i ∈ T , we denote by α i the length of the release date interval to which the starting date of the new execution interval (r * i ) belongs. More formally,

∀t i ∈ T , r * i ∈ [r i , r i + α i ].
Computing α i of a given task t i = (r i , C i , D i , T i ) must respect the communication constraints between the executions of t i and that of its adjacent tasks. According to our communication scheme of Section 5.1 in Chapter 5, the data consumption can only be done at the release date of the receiving task. As the starting date of the new execution interval (r * i ) is greater or equal to the task release date (r i ), the communications constraints between the task and its predecessors are always fulfilled. Therefore, the α i computation depends only on the task's release dates and those of its successors. More precisely, it depends on the minimal latency separating the task's executions and those of its successors. According to Theorem 5.2.2 in Section 5.2 of Chapter 5, the minimum latency between two periodic communicating tasks t i and t j , such that t i is the emitting task and t j the receiving one, can be computed as follows:

L min (t i , t j ) = r j -r i + λ -D i ,
where λ = ⌈ r i -r j +D i gcda ⌉ • gcd a and gcd a = gcd(T i , T j ).

Our approach computes the interval length α i of a task t i while taking into account that t i can admit successors that are already scheduled. Therefore, our algorithm takes as input a candidate task t i = (r i , C i , D i , T i ) and a current solution S olution = {(t j , r * j , s j ), such that t j is already scheduled}. It returns the interval length (α i ) to which r * i belongs. 

α i ← M -r i -(R i -1) • T i -D i 6: else 7:
for all t j ∈ S ucc (t i ) do 8:

if t j ∈ S olution then 9: 

µ j = r *
L min (t i , t j ) = µ j -r i + λ -D i with λ = ⌈ r i -µ j +D i gcda ⌉ • gcd a 14:
end for 15:

µ i ← min{L min (t i , t j )} ∀t j ∈ S ucc (t i ) 16: α i ← min{µ i , M -r i -(R i -1) • T i -D i } 17: end if 18: return α i
Algorithm 6 describes in details our approach, as follows:

• First, we check in line 4 if the successors list is empty. This means that there is no restriction on the interval length value and communication constraints are always fulfilled. We denote by M the date before which each task t i ∈ T is executed at least R i (task repetition factor) times. In our case, we compute an upper bound on this date in the following way:

M = max ∀t i ∈T {r i } + β • R i • T i , with β ∈ [2, n]
where n is the number of tasks (|T |). In addition, we assume that the R i th interval of length D i ends at the instant M. Therefore, the length of the release date interval (α i ) can be computed as follows:

r i + α i + (R i -1) • T i + D i = M α i = M -r i -(R i -1) • T i -D i
• In contrast, if the successors list is not empty, lines 7 to 12 classify the successors tasks whether they are already scheduled or not. Accordingly, line 13 represents the minimum latency computation between the task and its successor. In other words, we compute the minimum latency L min (t i , t j ) according the starting date of the new execution interval (r * i ) if the successor task is already scheduled. Otherwise, we compute this latency according to the successor release date. In line 15, we compute µ i which is equal to the minimum L min (t i , t j ) between t i and its successors. In line 16, we calculate the length of the release date interval (α i ) by computing the minimum between µ i and M -

r i -(R i -1) • T i -D i .
After computing the interval length α i , we compute the starting date of the new execution interval r * i . Our approach consists of finding the task starting date s i (if it exists), and according to its value, we compute the interval starting date. Our algorithm takes as input a candidate task t i = (r i , C i , D i , T i ), the length of its interval release date α i and a current solution S olution . It returns the starting date of the new execution interval (r * i ). 

C i + α i ]
, such that t i can be scheduled on the same processor with the current solution tasks. We distinguish two cases:

1. Task t i admits a predecessor (t j ∈ P rec (t i )) which is not scheduled yet. If such a predecessor does exist (line 5), we seek to increase the starting date value of the new execution interval (r * i ). This increases the possibility of finding a starting date (s j ) that allows the predecessor task (which is not scheduled yet) to be executed on the same processor with the current solution tasks. Therefore, r * i can be computed (line 6) by finding the minimum between r i + α i and the task starting date s i .

2. Task t i does not admit predecessors or admits predecessors that are already scheduled. In this case, we check whether the task is partially or totally executed outside the interval [r i , r i + D i ]. If this occurs, the starting date of the new execution interval is equal to s i + C i -D i (line 8). Otherwise, the task is totally executed within the interval [r i , r i + D i ] and r * i is equal to r i (line 10).

Our purpose is to solve the mono-processor scheduling problem for the flexible intervals case using the simple or ACAP heuristics. In order to achieve our target, we modify Algorithm 4 or 5 as follows:

• We verify whether the first task of the sorted list admits predecessors. If this occurs, we compute the length of the release date interval (α i ) using Algorithm 6. Moreover, we schedule this task with a starting date s i equal to r i + α i . Otherwise, we schedule this task with a starting date equals to its release date r i . In both cases, the starting date of the new execution interval r * i is equal to the task starting date.

• After scheduling the first task, we seek to schedule the remaining tasks in LT .

Therefore, at the beginning of each iteration of Algorithm 4, we compute for the candidate task the length of its release date interval (α i ) (using Algorithm 6). However, at the beginning of each iteration of Algorithm 5, we compute for every remaining task in LT the length of its release date interval (α i ) (using Algorithm 6). In both cases, we need to find the first date which allows the task to be scheduled on the same processor with the current solution tasks.

In order to do that, we run the test on the starting date value in the interval

[r i , r i + D i -C i + α i ].
• Once the task's starting date s i is fixed, we compute its starting date of the new execution interval r * i according to s i using Algorithm 7. ), (t 3 , t 5 )} be the set of communication relationships between tasks. Table 6.2 shows the tasks parameters. Figure 6.15 depicts the RTSDFG G = (T , A) that models the communications between the tasks executions. Our purpose is to schedule this system using the ACAP heuristic for the flexible intervals case. Let P rec (t i ) and S ucc (t i ) be respectively the set of predecessors and successors of task t i . Let LT = (t 2 , t 3 , t 4 , t 1 ) be the tasks sorted list. We notice that t 2 (the first task in LT ) admits t 1 as predecessor. Consequently, we apply Algorithm 6 in order to compute α 2 knowing that S ucc (t 2 ) = t 3 . As t 3 is not scheduled yet, we compute L min (t 2 , t 3 ) according to the release date of t 3 as follows:

t i r i C i D i T i t 1 160 20
L min (t 2 , t 3 ) = r 3 -r 2 + λ -D 2 = 80 -10 + ⌈ 10 -80 + 20 30 ⌉ • 30 - 20 
= 20 time units.

On the other hand, we consider M a date before which each task is executed at least R i (its repetition factor) times. An upper bound on this date can be calculated in the following way: [START_REF] Ali | Generalized extraction of real-time parameters for homogeneous synchronous dataflow graphs[END_REF][START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF]. In this example, we consider β = 4. Hence, the length of the release date interval is equal to

M = max ∀t i ∈T {r i } + β • R i • T i = 160 + β • 240, with β ∈ [
α 2 = min{L min (t 2 , t 3 ), M -r 2 -(R 2 -1) • T 2 -D 2 } = min{20, 1120 -10 -(8 -1) • 30 -30}
= min{20, 870} = 20 time units.

Once α 2 computed, we schedule t 2 with a starting date of the new execution interval equals to

s 2 = r * 2 = r 2 + α 2 = 10 + 20 = 30 time units.
We add (t 2 , 30, 30) to the current solution S olution and we remove t 2 from LT . At the beginning of the first iteration, we apply Algorithm 6 on each task in LT = (t 3 , t 4 , t 1 ). The computed values of α i are α 3 = 30, α 4 = 870 and α 1 = 0 time units. Hence, s 3 , s 4 and s 1 are tested in the intervals [START_REF] Korst | Periodic multiprocessor scheduling[END_REF]130], [START_REF] Bouakaz | Affine data-flow graphs for the synthesis of hard real-time applications[END_REF]920] and [160,190], respectively. We compute for each task its first starting date that fulfils the schedulability condition with (t 2 , 30, 30). In this iteration, these dates are respectively equal to s 3 = 80, s 4 = 40 and s 1 = 160 time units. Moreover, we verify for every task if its starting date satisfies equation (6.11) or (6.12) with s 2 = 30 time units. We notice that s 3 = 80 verifies equation (6.12). However, s 4 = 40 and s 1 = 160 fulfil both equations at the same time. This means that t 4 and t 1 can be exactly executed between two successive executions of t 2 . More specifically, their starting dates (s 4 and s 1 ) coincide with the end date of an execution of t 2 and their end dates (s 4 + C 4 and s 1 + C 1 ) coincide with the starting date of the next execution of t 2 . In addition, t 4 has a smaller gap than t 1 (D 4 -C 4 < D 1 -C 1 ). Accordingly, t 4 is given a higher priority and it is scheduled with s 4 = 40 time units. After computing s 4 , we apply Algorithm 7 in order to calculate the starting date of the new execution interval r * 4 . As t 4 admits t 1 and t 3 as predecessors (which are not scheduled yet), r * 4 can be computed as follows: This procedure is repeated as long as the list LT is not empty. At the second iteration, we schedule t 1 with s 1 = 190 and r * 1 = 160 time units (since P rec (t 1 ) = ∅ and the task is totally executed in the interval [160,210]). Finally, we schedule t 3 with s 3 = 130 time units. As t 3 is executed outside the interval [START_REF] Korst | Periodic multiprocessor scheduling[END_REF][START_REF] Sprunt | Aperiodic task scheduling for hard-real-time systems[END_REF] and all its predecessor are already scheduled, r * 3 is equal to s 3 + C 3 -D 3 = 130 + 10 -30 = 110 time units. 

Conclusion

This chapter has introduced an overview of strictly periodic tasks and their characteristics. According to the communication model defined in Chapter 5, we proved that scheduling two periodic communicating tasks is equivalent to schedule two independent tasks. These latter can only be executed between their release dates and their deadlines. In order to solve the mono-processor scheduling problem of a strictly periodic communicating system, we propose an optimal (exact) algorithm using MILP formulations. Two cases were treated: the fixed and flexible interval cases. In the fixed case, tasks execution is only restricted to the interval beginning at its release date and ending at its deadline. However, in the flexible case, tasks can admit new execution intervals whose lengths are equal to their relative deadlines. The scheduling problem is know to be NP-complete in strong sense [START_REF] Korst | Scheduling periodic tasks[END_REF]. This means, obtaining feasible schedule is practicable only for small instances. In order to solve this issue, we proposed three heuristics: linear programming relaxation, simple and ACAP heuristics. For the second and the third heuristic if no feasible solution is found, a partial solution is computed. This solution corresponds to a subset of tasks that can be executed on the same processor.

The next chapter presents the experimental results of this thesis. It is devoted to evaluating the methods that compute the worst case system latency using the RTSDFG formalism. In addition, it presents several experiments dedicated to evaluate the performance of our methods that solve the mono-processor scheduling problem. where λ = ⌈ r i -r j +D i gcda ⌉ • gcd a and gcd a = gcd(T i , T j ). The relative deadline was generated randomly such that its value do not exceed the production (or consumption) rate. The duration of each task was generated randomly in such way that it does not exceed the task relative deadline.

Latency evaluation

This section is devoted to evaluate our methods that compute the worst case latency of a RTSDFG. We expose different results for the exact evaluation, upper and lower bounds. These results are obtained by modifying several parameters such as the average repetition factor and the number of tasks. Finally, we verify the quality of our bounds and the complexity of our algorithms.

We generated randomly acyclic RTSDFG instances. The buffer production and consumption rates were chosen uniformly from the following set

F = {T i : R > 0, R ≡ 0 mod T i },
where R is a fixed strictly positive integer and F the set of its divisors. In addition, the tasks' release dates were randomly generated from the set {0, . . . , lcm} with lcm = lcm ∀t i ∈T (T i ).

Complexity

The transformation from a RTSDFG to an equivalent graph G ′ , which presents all the precedence and dependence constraints between the tasks executions, uses a mathematical equation of complexity O(R T ) where R T is the average repetition factor of the tasks. However, transforming a RTSDFG into an weighted graph G max (or G min ), which represents the required time to transfer the data in the worst (or best) case scenario, uses mathematical equation of complexity O(1). Furthermore, the different evaluation processes of the worst case latency use the same algorithm that computes the length of the longest path in a DAG. 

Computation time

The experiments were performed on a Intel(R) Core2Duo P8600@2.40GHz using 2 GB of RAM. We set up parallel calculations for some instances on a server with 48 cores. Each algorithm was launched on 100 instances. Each one returned the average value of the exact latency evaluation, upper and lower bound as well as their computation times. Four graphs sizes have been chosen: Small for 100 tasks, Medium for 500 tasks, 7.1 Average computation time of latency evaluation methods for Huge RTSDFGs with respect to their average repetition factors. In Table 7.1, the size of the RTSDFG is fixed to 10000 tasks. Average repetition factors were varied in order to present the latency computation time for the exact evaluation, upper and lower bounds. By increasing the average repetition factor of the tasks, the time required to compute the exact value of the worst-case latency increases (linearly). Contrariwise, the time needed to compute the bounds remains approximately constant (equal to 5 seconds). required to compute the latency bounds remains reasonable (in the range of seconds) compared to that of the exact value. For instance, computing the worst case latency exact value of a Huge graph with a average repetition factor is 750, requires on average more than one hour. However, the computing its lower and upper bounds requires approximately 5 seconds. The histogram in Figure 7.1 represents the latency evaluations with respect to the graph size. The average repetition factor was fixed to 125. The analysis of these results shows that the gap between the exact evaluation and its upper bound on one 7.2 Latency evaluation 137 hand is smaller than the gap between the same exact value and its lower bound on the other hand. This is due to the fact that the exact value and the upper bound are both computed in the worst case scenario, whereas, the lower bound is computed in the best case scenario.

|T |

Quality of bounds

In this experiment, we evaluated the impact of the average repetition factor (R T ) on evaluating the worst case system latency. Therefore, we generated acyclic RTSDFG without release dates (∀t i ∈ T , r i = 0). Deviation ratio is the percentage of gaps between the latency exact value and its bounds. We denote by dr up as the deviation ratio of the upper bound which is 138 Experimental Results computed as follows:

dr up = upper -exact exact × 100%.
However, we denote by dr lw as the deviation ratio of the lower bound which is computed as follows:

dr lw = exact -lower exact × 100%.
Through varying the average repetition factor for different size of RTSDFGs, the histograms in Figure 7.2a and 7.2b depict the deviation ratios of the latency upper and lower bounds respectively. For different size of RTSDFGs, we notice that deviation ratios increase with the average repetition factors. This is due to the time required to transfer the data between two communicating tasks in the worst (or best) case scenario. The computation of this duration is strongly dependant from the production (or consumption) rates whose generation is tightly related to the average repetition factor. In addition, we can deduce that the deviation ratio between the exact value and the upper bound ranges between 10 and 15 %. However, the deviation ratio between the exact value and the lower bound varies between 20 and 30 %.

Mono-processor scheduling

An important challenge is solving scheduling problems of complex real-time systems. These problems can lead to large-scale mathematical formulations which are intractable, even with modern optimization solvers. In other words, there are many scheduling problems that cannot easily be solved, even with commercial mixed-integer programming software packages such as Gurobi Optimizer. This section presents several experiments dedicated to evaluate the performance of our methods that solve the mono-processor scheduling problem of strictly periodic communicating systems. First, we describe the generation of the task parameters. Then, we expose several results concerning the resolution of the scheduling problem with an exact algorithm for different types of instances. Finally, we present the results obtained by applying our heuristics on the same instances.

Generation of tasks parameters

Using the modified version of Turbine, we generated cyclic and acyclic instances of RTSDFGs. Parameters of each task have been generated as follows:

• Task utilization factors (u i , 1 ≤ i ≤ n) have been generated based using UUnifast algorithm [START_REF] Bini | Measuring the performance of schedulability tests[END_REF]. The complexity of this algorithm is O(n) and the generated utilization factors are characterized by a uniform distribution.

• Harmonic tasks periods, i.e. each period is multiple of all other periods with lesser value, were uniformly chosen form the set {T i : T i+1 = k • T i } with the period ratio k ∈ {2, 3, 4, 5}. The value of the first period (T 1 ) was equal to 500. However, nonharmonic periods were chosen uniformly from the set {2 x • 3 y • 50 : x, y ∈ [0, 4] 2 }, which is inspired from [START_REF] Eisenbrand | Solving an avionics real-time scheduling problem by advanced ip-methods[END_REF]. In both cases, the size of the set containing the periods values was fixed to 5.

• Task worst case execution time was computed according to the task period and its utilisation factor, as follows:

C i = ⌈T i • u i ⌉.
• Task relative deadline was generated randomly such that its value is greater or equal to the task execution time on one hand, and its lesser or equal to the task period on the other hand (C i ≤ D i ≤ T i ). 7.4 Example of 10 non-harmonic tasks. Each task is characterized by a period T i , worst case execution time C i , release date r i and relative deadline D i . The lcm between the task periods is equal to 21600. Table 7.4 presents an example of a non-harmonic instance temporal parameters. The graph size was equal to 10 tasks and the system utilization was 0.6.

Optimal algorithm

In this subsection, we present some experimental results to evaluate the performance of our exact algorithms for both fixed and flexible cases. The MILP formulations for the mono-processor scheduling problem are solved using the mixed-integer programming solver Gurobi (Academic license -for non-commercial use only).

The size of the graph (number of tasks) was chosen from the set {5, 10, 15, 20, 25, 30}. The system utilization was varied from 0.1 to 1. Input and output degrees of a task belong to the set {1, 2, 3, 4, 5}. We fixed a solver time limit of 600 seconds. Otherwise, the solver does not stop seeking whether a feasible solution exists or not, even after four hours. The instances for which the solver does not return a response during 600 seconds were called "solver failure instances".

Each algorithm was launched on 1000 instances. Each one returned the average value of the acceptance ratio, the percentage of infeasible instances, the percentage of solver failure instances as well as their computation times. The experiments were performed on an Intel(R) Core(TM) i3-3130M CPU @ 2.60GHz using 4 GB of RAM. We set up parallel calculations for some instances on a server with 40 cores. In order to evaluate the impact of the periods ratio on the MILP acceptance ratio, we generated harmonic instances by increasing the periods ratio k ∈ {2, 3, 4, 5}. The system utilization was fixed to 0.1 and the RTSDFG size was equal to 5, 10 and 15 tasks. Figure 7.3 depicts the MILP acceptance ratio on these harmonic instances. We can find that the incrementation of the periods ratio leads to the decrease of the MILP acceptance ratio. For example, when the RTSDFG size is equal to 10 tasks, the acceptance ratio decreases from 99.6% for k = 2 to 6.1% for k = 5. In fact, the increase of the period ratio induces an increase in the period values as well as an increase in the gap between the period values. In addition, this increase in the periods values leads to larger worst execution times (C i = ⌈T i • u i ⌉). For these reasons, finding a feasible schedule is more and more difficult. Therefore, the MILP acceptance ratio decreases by increasing the periods ratio.

Harmonic periods

In the sequel, harmonic instances were generated with a period ratio equals to 2.

The histogram in Figure 7.4a represents the MILP acceptance ratio with respect to the RTSDFG size (number of tasks) and the system utilization. For a system utilization between 0.3 and 0.6, we notice that the MILP acceptance ratio increases with increasing size of RTSDFG. In fact, the increase in the number of tasks leads to a reduction in the tasks worst case execution times. This allows to find more feasible schedules. However, this is no longer the case once the system utilization is equal to 0.8. For example, the acceptance ratio decreases from 15.3% for |T | = 10 to 8.9% for |T | = 15.This is due to the tasks worst case execution times for |T | = 15 which are not small enough to be scheduled on the same processor.

For a fixed size of RTSDFG, we notice that the acceptance ratio decreases with the increase of the system utilization. For instance, when the RTSDFG size is equal to 20 tasks, the acceptance ratio decreases from 88.8% for U = 0.3 to 17.5% for U = 0.8. Indeed, the tasks worst execution times grow with the increase of the system utilization. Figure 7.4b demonstrates that the average computation time to find a feasible solution increases with the incrementation of the RTSDFG size and the system utilization. For example, when the system utilization is 0.7, the time required to find a feasible solution increases from 0.92 seconds for |T | = 10 to 130.68 seconds for |T | = 25. This is due to the number of the MILP variables that grows with the increase of the RTSDFG size. Moreover, when the RTSDFG size is equal to 20 tasks, the time required to find a feasible solution increases from 1.08 seconds for U = 0.4 to 40.46 seconds for U = 0.8. This means that the increase in the worst execution time (due to the system utilization increment) requires the solver to use a larger amount of time in order to find a feasible solution. 

Experimental Results

Harmonic versus Non Harmonic periods

In order to evaluate the effects of the tasks periods on our exact method, we generated harmonic and non-harmonic instances with different system utilizations. The RTSDFG size was fixed to 20 tasks. Figure 7.5a presents a comparison between the MILP acceptance ratio for harmonic and non-harmonic instances with respect to the system utilization. We notice that the acceptance ratio on harmonic instances is greater than that on non-harmonic ones. For example, when the system utilization is 0.3, the acceptance ratio for harmonic instances is equal to 88.8% while that for non-harmonic ones is equal to 45.0%. This is mainly due to the resource constraints that depend on the greatest common divisor (gcd) value of each pair of periods. Indeed, the gcd of a pair of harmonic periods is equal to the minimum period. However, the gcd of a pair of non-harmonic periods is less or equal to the minimum period. Figure 7.5b shows the average computation time required to find a feasible solution for harmonic and non-harmonic instances. We can see that the average time required by the solver to find a feasible schedule is slightly higher in the non-harmonic case than harmonic one. This means that the solver requires more time to allocate the tasks to a narrow (restricted) space. In order to evaluate the impact of the graph topology on the MILP acceptance ratio, we started by generating acyclic RTSDFGs. Then, we generated cyclic RTSDFGs by adding arcs to the acyclic instances (the others parameters remain unchanged such as the tasks periods and their execution times). The RTSDFG size was fixed to 20 tasks. Figure 7.6 represents the MILP acceptance ratio on acyclic and cyclic instances. We notice that the acceptance ratio on acyclic instances is equal to that on cyclic ones. Indeed, communication constraints between the tasks executions are fulfilled when each task is executed between its release date and its deadline. Hence, we can deduce that our exact method is independent from the graph topology.

Acyclic versus Cyclic RTSDFGs

Fixed versus Flexible intervals cases

In this experiment, we generated harmonic instances with different system utilizations.

The RTSDFG size was fixed to 10 tasks. We applied the exact algorithms on the same instances for both fixed and flexible cases. Figure 7.7a presents the MILP acceptance ratio for both cases. We notice that the acceptance ratio for the flexible case is higher than the fixed one. The gap between these ratios varies between 2% and 7%. In fact, scheduling a task in the flexible case is no longer restricted to the interval between its release date and its deadline as in the fixed case. This allows the solver to find more feasible solutions in the flexible case than the the fixed one. Experimental Results

Figure 7.7b shows the average computation time to find a feasible schedule in both flexible and fixed cases. We notice that the time required by the solver to find a feasible solution in the flexible case is higher than in the fixed one. For example, when the system utilization is 0.8, the solver requires on average 1.04 seconds to find a feasible schedule in the fixed case while it requires 44.48 seconds in the flexible case. This is due to the addition of the interval starting date (r * i ) variable in the flexible case. As we mentioned before, the solver time limit was fixed 600 seconds. Figure 7.8 presents a comparison between the percentage of solver failure instances for the flexible and fixed cases. The RTSDFG size was fixed to 20 tasks. We can see that the percentage of solver failure instances in the flexible case is considerably higher than in the fixed case. This is due to the combinatorial explosion generated by the addition of variables in the flexible case. For a system utilization under 0.7 for the flexible case and 0.8 for the fixed case, we notice that the percentage of solver failure instances increases with the increase of the system utilization. For instance, this percentage increases from 2.7% for U = 0.3 to 31.1% for U = 0.7 in the flexible case. Moreover, the percentage of solver failure instances decreases with a system utilization beyond 0.7 for the flexible case and 0.8 for the fixed case. In fact, instances with a system utilization beyond these values admit less and less feasible schedules. Therefore, we can deduce that in our interest to verify whether a given instance admits a feasible schedule for the fixed case before applying the MILP for the flexible case. On the other hand, Figure 7.9 shows the percentage of solver failure instances in the flexible case with respect to the graph size. The system utilizations were fixed to 0.5, 0.6 and 0.7. We notice that the percentage of solver failure instances increases with the increase of the RTSDFG size. For example, when the system utilization is 0.5, the percentage of solver failure instances increases from 1.3% for |T | = 5 to 23.6% for |T | = 20. This is mainly due to the number of variables that increases by increasing the RTSDFG size.

Release dates

We now evaluate the impact of the release date parameter on our method. To this end, we started by generating harmonic instances without release dates (∀t i ∈ T , r i = 0). Then, we generated instances with release dates by adding to each RTSDFG task a random release date as follows: 7.10a represents a comparison between the MILP acceptance ratios on instances with and without release dates. As we can see, the acceptance ratio on instances with release dates is higher than the acceptance ratio on instances without release dates. This is mainly due to the time limitation (solver time limit = 600 seconds). We also notice that the gap between these acceptance ratios increases with 7.3 Mono-processor scheduling 149 the increase of the system utilization. This is due to the increase of the tasks worst case execution times.

Figure 7.10b depicts the average computation time to find a feasible schedule for instances with and without release dates. We notice that the solver requires more time to find a feasible solution for instances without release dates than instances with release dates. For example, when the system utilization is fixed to 0.7, the solver requires on average 6.9 seconds to find a feasible schedule for instances with release dates while it requires 130.68 seconds for instances without release dates. This is because the solver requires more time to allocate the tasks to a restricted space.

Heuristics

In this subsection, we expose the experimental results of our heuristics: LP relaxation, simple and ACAP. Some instances that cannot be solved by one heuristic, can be scheduled by the other heuristics. Consequently, we propose a mega-heuristic "Mega" that combines several heuristics. Given an RTSDFG instance, this mega-heuristic applies sequentially the simple and ACAP heuristics for the fixed case. In addition, it applies the LP relaxation, simple and ACAP heuristics for the flexible case. In both cases, it either returns a feasible solution or a partial solution that contains a set of tasks that can be scheduled on the same processor. In order to evaluate their performances compared to the exact methods, heuristics were only tested on feasible instances (that admit feasible schedules using the exact methods) and solver failure instances. Finally, heuristics were applied on all the instances without any exception in order to compare their performances for the fixed and flexible cases.

Complexity

In the simple heuristic, the main computation part of the algorithm is composed of double loops. The inner loop iterates on the interval of length (D i -C i ) in order to find a starting date that allows the task to be scheduled on the processor. The outer loop iterates on all the tasks in the system (|T |). Hence, the simple heuristic complexity is O(|T | • l max ) where l max = max(D i -C i ). However, the ACAP heuristic complexity is O(|T | 2 • l max ), since a third loop was added to compute the list of tasks that verify the schedulabily condition with tasks that are already scheduled. In this experiment, we generated harmonic instances without release dates. The system utilization was varied between 0.1 and 0.7. The RTSDFG size was fixed to 30 tasks. Using the exact method for the fixed case, instances were sorted into feasible, infeasible and solver failure. Figure 7.11a presents the MILP acceptance ratio for the fixed case. Figure 7.11b gives the heuristics acceptance ratios on feasible instances. We notice that the mega-heuristic have a higher acceptance ratio compared to those of the simple and ACAP heuristics. For the three heuristics, we notice that the acceptance ratios decrease with the increase of the system utilisation. For example, the Mega acceptance ratio decreases from 99.4% for U = 0.1 to 39.02% for U = 0.7. This is mainly due to the increase of the tasks worst execution times.

Figure 7.12 depicts the average computation time to find a feasible schedule using different methods. We notice that our methods have a similar changing tendency, i.e. their average computation times increase with the increase of the system utilization. This is due to the amount of computation that grows with the incrementation of the tasks worst execution times. However, our heuristics have computation times considerably lower than the exact method (MILP). For example, when the system utilization is 0.5, the average computation times of the exact method, Mega, ACAP and simple heuristics are respectively equal to 154.31, 3.02, 15.43 and 2.37 seconds. Therefore, we deduce that the Mega heuristic is 51.09 times faster than the exact method (MILP) with an acceptance ratio of 75.25%. On the other hand, we notice the ACAP heuristic is more time consumption than the simple heuristic. Hence, the experimental results are compatible with the computational complexity. In the experiment of Figure 7.13b, we apply our heuristics on the solver failure instances. Figure 7.13a shows the percentage of these instances with respect to the system utilization. Similarly to the previous case, the heuristics acceptance ratios decrease with the increase of the system utilization. For example, the Mega acceptance ratio decreases from 100% for U = 0.2 to 21.01% for U = 0.7. We can deduce that our heuristics are able to find feasible solutions for these instances with a computation time in the range of seconds. However, the MILP solver is not able to provide any solution with a computation time below 600 seconds. We recall that our heuristics return a partial solution if they are not able to compute a feasible one. This partial solution contains the set of tasks that can be scheduled on the same processor. Figure 7.14 gives the percentage of schedulable tasks with respect to the system utilization. We notice that this percentage decreases with the incrementation of the system utilization. This is because the tasks worst case execution times grow with the system utilization. In addition, we deduce that the percentage of schedulable tasks ranges between 96% and 86% using the Mega heuristic. 

Flexible case

In this experiment, we generated harmonic instances with release dates. The system utilization was varied between 0.1 and 0.7. The RTSDFG size was fixed to 30 tasks. Using the exact method for the flexible case, instances are sorted into feasible, infeasible and solver failure. Figure 7.15a presents the MILP acceptance ratio for the flexible case. Figure 7.15b gives the heuristics acceptance ratios on feasible instances. We notice that the mega-heuristic has a higher acceptance ratio compared to those of the LP relaxation, simple and ACAP heuristics. On the other hand, we see that the ACAP heuristic has a highest acceptance ratio compared to those of the LP relaxation and simple heuristics. This is due to the additional priority which schedules the tasks as close as possible. In addition, we notice that the LP relaxation acceptance ratio decreases in order to reach 6.47% and 1.14% when the system utilization is respectively equal to 0.4 and 0.5. Therefore, we deduce that the efficiency of this method is limited to a system utilization less or equal than 0.3. For all the heuristics, we notice that Experimental Results the acceptance ratios decrease with the incrementation of the system utilisation. For example, the Mega acceptance ratio decreases from 100.0% for U = 0.1 to 38.46% for U = 0.7. This is mainly due to the increase of the tasks worst case execution times. 7.16 gives the average computation time to find a feasible schedule using different methods. Similar to the fixed case, we notice that our methods have a similar changing tendency i.e, their average computation times increase with the increase of the system utilization. This is due to the amount of computation that grows with the 7.3 Mono-processor scheduling 155 incrementation of the tasks worst execution times. When the system utilization is less than or equal to 0.2, we see that the MILP average computation time is slightly lower than that of Mega, ACAP and LP relaxation. However, when the system utilization is greater than or equal to 0.3, our heuristics have computation times considerably lower than the exact method (MILP). For example, when the system utilization is 0.5, the average computation times of the exact method, Mega, ACAP, simple and LP relaxation heuristics are respectively equal to 58.93, 1.96, 2.14, 0.18 and 1.81 seconds. Hence, we deduce that the Mega heuristic is 109.12 times faster than the exact method (MILP) with an acceptance ratio of 64.01%. 

Comparison

In order to compare the performances of our heuristics in both fixed and flexible cases, we generated harmonic instances with and without release dates. The graph size was fixed to 30 tasks and the system utilization was varied between 0.1 and 0.8. Unlike the previous experiments, we applied the mega-heuristic for fixed and flexible cases on all the instances without any exception. The histogram in Figure 7.17 depicts the mega-heuristic acceptance ratios on harmonic instances without release dates. We notice that the acceptance ratios, in both fixed and flexible cases, decrease with the incrementation of the system utilization. We also notice that the acceptance ratio for the flexible case is higher than that of the fixed case. Moreover, the gap between these ratios varies between 2.3% and 22.5%. 
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On the other hand, Figure 7.18 shows the mega-heuristic acceptance ratios on harmonic instances with release dates. Same as the previous results, the acceptance ratio for the flexible case is higher than that of the fixed case. Moreover, the gap between these ratios varies between 1.1% and 22.5%. Therefore, we can deduce that applying the mega-heuristic for the flexible case increases the possibility of finding a feasible schedule. In addition, we notice that, in both fixed and flexible cases, the mega-heuristic acceptance ratios on instances without release dates are higher than the acceptance ratios on instances with release dates. The gap between the acceptance ratios on instances with/without release dates varies between 0.5% and 23.6% in the flexible case. It varies between 0.3% and 22.1% in the fixed case. Hence, we can deduce that using our heuristics to schedule a set of tasks released at the same time is less restrictive than scheduling the same set of tasks with random release dates.

Conclusion

This chapter presented the experimental results of this thesis. It consists of two parts: latency evaluation and mono-processor scheduling.

In the first part, we evaluated the exact pricing algorithm and the upper and lower bound algorithms developed in Chapter 5. These methods compute the worst case system latency using the RTSDFG formalism. For the exact pricing algorithm, numerical experiments have shown that the average computation time to compute the worst case system latency increases by increasing the average repetition factor. However, this average computation time remains constant for the upper and lower bounds evaluation. We also found that the gap between the exact value and its upper bound is between 10 and 15%. Moreover, the gap between the exact value and the lower bound varies between 20 and 30%.

In the second part, we exposed experimentations to evaluate the performance of our exact algorithms (MILP), LP relaxation, simple, ACAP heuristics developed in chapter 6. These algorithms are dedicated to solve the mono-processor scheduling problem of strictly periodic system subject to communication constraints. For the exact algorithms (fixed and flexible), numerical experiments have shown that the MILP acceptance ratio increases with the incrementation of the graph size. However, this acceptance ratio decreases with the incrementation of the system utilization. Moreover, their average computation times to find a feasible solution increase exponentially according to the graph size and the system utilization. These algorithms were applied on different types of instances in order to evaluate the impact of several parameters, such as the period ratio and the graph topology.

On the other hand, we proposed a mega-heuristic that combines several heuristics for both fixed and flexible cases. Heuristics were applied on several types of instances. Experimental results showed that the average computation time to find a feasible schedule using the mega-heuristic is much less compared to the exact method, especially when the system utilization is greater than or equal to 0.5. On the other hand, these experiments demonstrate that the mega-heuristic acceptance ratio on solver failure instances varies between 100% and 21.01% with an average computation time in the range of seconds. In addition, we found that the mega-heuristic is able to allocate on the same processor 96% to 86% of the tasks when it is not able to provide a feasible schedule. Finally, we compared the mega-heuristic for both fixed and flexible cases. We found out that the mega-heuristic acceptance ratio for the flexible case is greater than the fixed case with a gap which may reach 26.3%.

Chapter 8

Conclusion and Perspectives Conclusion

In recent decades, electronic embedded systems have revolutionized our societies in daily lives. The increase in the application demands and the fast improvement in platform architectures led to more and more complex embedded systems. In order to ensure the optimal use of resources, several applications from different computing domains are simultaneously executed on the same platform. Advanced Driver Assistance Systems (ADAS) [117,[START_REF] Jones | Building safer cars[END_REF] are typical examples of these applications. Their purpose is to assist drivers in making safety-related decisions, provide signals in possibly dangerous driving situations, and execute counteractive measures. These applications gather best-effort jobs (e.g. image processing for analyzing complex scenes) and critical real-time tasks (e.g. emergency braking). Therefore, this type of applications require a research effort in order to be efficiently modeled and executed. In this thesis, our study was focused on modeling and scheduling critical real-time systems using data flow formalisms.

In the first part, we defined a general and intuitive communication model within multi-periodic systems. We demonstrated that the communications between multiperiodic tasks can be directly expressed as a RTSDFG. This modeling allows precise definition of the system latency. Accordingly, we developed an exact evaluation method to compute the worst case system latency from a given input to a connected outcome. Then, we framed this value using two algorithms that compute its upper and lower bounds respectively. Finally, our experimental results show that these bounds can be computed using a polynomial amount of time, while the time required to compute the exact value increases linearly with the average repetition factor. We also found that the gap between the exact value and its upper bound varied between 10 and 15%.
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 23 Fig. 2.3 Liu and Layland model.
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 24 Fig. 2.4 Example of a harmonic multi-periodic system. The tasks periods are equal T A = 5 ms, T B = 20 ms and T C = 10 ms.

Figure 2 .

 2 Figure 2.4 illustrates an example of harmonic periodic system. This latter is composed of three periodic communicating tasks which are respectively executed at 5, 10, and 20 ms . The system hyper-period is equal to 20 ms.
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 25 Fig. 2.5 Execution of an asynchronous model. Logical-time ≤ Physical-time.
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 26 Fig. 2.6 Execution of a timed model. Logical-time = Physical-time.
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 27 Fig. 2.7 Execution of a synchronous model. Logical-time = 0.
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 232 Fig. 3.2 Example of Computation Graph.
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 333 Fig. 3.3 A simple example of Synchronous Data Flow Graph.

Figure 3 .

 3 Figure3.3 illustrates a buffer a = (t i , t j ). The number of initial tokens in the buffer is equal to 3. At the end of each execution of t i , 2 tokens are produced and stored temporarily in the buffer a. Task t j cannot be executed unless the number of tokens in the buffer is at least equal to 5. Then, 5 tokens will be consumed at the beginning of the t j execution .
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 234 Fig. 3.4 An example of a Cyclo-Static Data Flow Graph.
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 36 Fig. 3.6 Example of Synchronous Data Flow Graph normalisation.
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 37 Fig. 3.7 Example of a SDFG transformation into equivalent HSDFG using the technique introduced by Sih and Lee [108].

Figure 3 .

 3 7b illustrates the equivalent HSDFG resulting from the transformation of the SDFG depicted in Figure 3.7a. The equivalent HSDFG consists of 5 duplicates (tasks) connected by 9 buffers.

  An example of a SDFG. (b) Equivalent Homogeneous SDFG.
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 38 Fig. 3.8 Example of SDFG transformation into equivalent HSDFG using the expansion.

4. 2

 2 Scheduling strict periodic non-preemptive tasks 51
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 53 Fig. 5.3 Example of multi-periodic communication model

  Fig.5.[START_REF] Bamakhrama | A methodology for automated design of hard-real-time embedded streaming systems[END_REF] The RTSDFG that models the communications between the tasks' executions of the multi-periodic system presented in Table5.1 and Figure5.6
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 59 Fig. 5.9 Path pth = {t 1 , t 2 , t 3 } which corresponds to the communication graph of three periodic tasks.

Fig. 5 .

 5 Fig. 5.10 Communication and execution model of the path pth = {t 1 , t 2 , t 3 } depicted in Figure 5.9.
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 37911 Evaluating the worst-case system latency Transformation of a RTSDFG into a equivalent graph G Input: RTSDFG G = (T , A)2: Output: G ′ = (T ′ , A ′ )
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 55325 Fig. 5.11 RTSDFG G = (T , A) modeling the communication constraints between the tasks' executions of the example represented in Figure 5.10.
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 5 Fig. 5.13 Computation of the Worst-case latency of the RTSDFG depicted in Figure 5.11.

Fig. 5 .

 5 Fig.5.14 A cyclic RTSDFG with its equivalent graph that models the precedence and dependence constraints between the tasks executions.

Figure 5 .

 5 Figure 5.14a depicts a cyclic RTSDFG composed of three tasks t i , t j and t k . The equivalent graph G ′ = (T ′ , A ′ ) which models the precedence and dependency constraints between the tasks' executions is represented in Figure 5.14b. The weight of each arc in T ′ is strictly positive and it corresponds to the time gap between the beginnings of two executions in relation. As we can see, there exists precedence constraints between

  Fig. 5.15 Example of latency upper bound computation using the weighted graph G max
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 5895 Fig. 5.16 Latency lower bound computation of the RTSFDG depicted in Figure 5.15a using the weighted graph G min .
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  with k ji ∈ Z. According to the fact that (-a) mod (b) = b -(a) mod (b) with a, b > 0, we can deduce that
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 63 Fig. 6.3 Example of a SDFG and its ASAP schedule.
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 664 Fig. 6.4 A feasible periodic schedule of the SDFG depicted in Figure 6.3a.
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 68 Fig. 6.8 A feasible Schedule of a strictly periodic system with communication constraints.
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 69 Fig.6.9 Example of an infeasible solution where the resource constraints are not fulfilled. There is an overlapping between the executions of t 1 and that of t 3 .
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 6 Fig. 6.12 Communication scheme between the executions oft 1 = (110, 10, 25, 120), t 2 = (15, 15, 30, 60) and t 3 = (190, 45, 200, 240).

Fig. 6 .

 6 Fig. 6.13 Scheduling the strictly periodic communicating tasks t 1 = (110, 10, 25, 120), t 2 = (15, 15, 30, 60) and t 3 = (190, 45, 200, 240) on the same processor.

Fig. 6 .

 6 Fig. 6.14 A feasible solution for the scheduling problem is obtained by solving the new LP with k 12 , k 13 and k 23 respectively equal to 1, -1 and -3.

Figure 6

 6 Figure 6.14 illustrates the feasible solution obtained by solving the new LP. We notice that there is no overlapping between the tasks executions and the communication constraints between them are fulfilled.

6. 5 119 0 Fig. 6 .

 506 Fig. 6.17 A Partial solution of the scheduling problem using Algorithm 4. The tasks starting dates are respectively equal to s 1 = 10 and s 3 = 40.

Figure 6 .Fig. 6 .

 66 Fig.6.18 Scheduling task t 2 = (120, 10, 50, 144) at the end of the execution of task t 1 = (10, 4, 10, 18) which is already scheduled with a starting date s 1 = 10 time units.
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 66 Fig.6.19 Scheduling task t 2 = (120, 10, 50, 144) such that the end of its execution corresponds to the beginning of task t 1 =[START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF][START_REF] Baruah | Preemptively scheduling hard-real-time sporadic tasks on one processor[END_REF][START_REF] Bini | Measuring the performance of schedulability tests[END_REF] which is already scheduled with a starting date s 1 = 10 time units.

r * 4 =

 4 min(r 4 + α 4 , s 4 ) = min(20 + 870, 40) = 40 time units.

Figure 6 .Fig. 6 .

 66 Fig. 6.22 A feasible schedule of the strictly periodic system represented in Table 6.3 and Figure 6.21. The tasks starting dates are s 1 = 190, s 2 = 30, s 3 = 130 and s 4 = 40 time units. In addition, the starting dates of the new execution intervals are r * 1 = 160, r * 2 = 30, r * 3 = 110 and r * 4 = 40 time units.

  Its complexity is O(|T | + |A|). Therefore, complexity of the latency exact evaluation is O(R T • (|T | + |A|)), while the complexity of computing its bounds is O(|T | + |A|).
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 71 Fig. 7.1 Average latency value using the evaluation methods with respect to the graph size |T |.The average repetition was fixed to 125.
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 72 Fig. 7.2 Deviation ratio between the latency exact value and its bounds. Deviation ratio of upper bound is equal to dr up = upper-exact exact × 100%. Deviation ratio of lower bound is equal to dr lw = exact-lower exact
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 7 Fig. 7.3 MILP acceptance ratio on harmonic tasks generated with different periods ratios. The system utilization was fixed to 0.1. The RTSDFG size (|T |) was equal to 5, 10 and 15 tasks.

  MILP acceptance ratio (%).

  Average computation time to find a feasible schedule.
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 74 Fig. 7.4 Experimental results on harmonic instances of RTSDFGs with different RTSDFG sizes (|T |) and system utilizations (U ).

  MILP acceptance ratio (%).

  Average computation time to find a feasible solution.
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 75 Fig. 7.5 Experimental results on harmonic and non-harmonic instances with different system utilizations. The RTSDFG size |T | was fixed to 20 tasks.
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 7 Fig. 7.6 MILP acceptance ratio on harmonic acyclic and cyclic instances with respect to the system utilization. The graph size |T | was fixed to 20 tasks.

  MILP acceptance ratio for fixed and flexible cases with respect to the system utilization.

  Average computation time to find a feasible solution in fixed and flexible cases.
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 77 Fig. 7.7 Experimental results on harmonic instances for fixed and flexible cases. The RTSDFG size |T | was fixed to 10 tasks.
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 78 Fig. 7.8 Percentage of solver failure instances for fixed and flexible cases with respect to the system utilization. The RTSDFG size |T | was fixed to 20 tasks.

Fig. 7 . 9

 79 Fig.7.9 Percentage of solver failure instances for flexible case with respect to the graph size. The system utilizations were equal to 0.5, 0.6 and 0.7.

  ∀t i ∈ T , r i ∈ {0, . . . , lcm},where lcm = lcm i∈{1,...,n} (T i ). The RTSDFG size was fixed to 25 tasks and other parameters remain unchanged. MILP Acceptance ratio (%).

  Average computation time to find a feasible solution.

Fig. 7 .

 7 Fig. 7.10 Experimental results on harmonic instances with and without release dates. The RTSDFG size |T | was fixed to 25 tasks.

Figure

  Figure 7.10a represents a comparison between the MILP acceptance ratios on instances with and without release dates. As we can see, the acceptance ratio on instances with release dates is higher than the acceptance ratio on instances without release dates. This is mainly due to the time limitation (solver time limit = 600 seconds). We also notice that the gap between these acceptance ratios increases with

  MILP acceptance ratio for the fixed case.

  Heuristics acceptance ratio on feasible instances.
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 7 Fig. 7.11 Experimental results on harmonic instances without release dates. The RTSDFG size |T | was fixed to 30 tasks.

Fig. 7 .

 7 Fig.7.12 Average computation time to find a feasible solution. MILP represents our exact method while Mega, ACAP and simple represent our heuristics.

  Percentage of solver failure instances.

  Heuristics acceptance ratio on solver failure instances.

Fig. 7 .

 7 Fig. 7.13 Results obtained by applying our heuristics on the solver failure instances. The RTSDFG size |T | was fixed to 30 tasks.

Fig. 7 .

 7 Fig. 7.14 Partial solutions: percentage of tasks that can be scheduled on the same processor. The RTSDFG size |T | was fixed to 30 tasks.

  MILP acceptance ratio for the flexible case.

  Heuristics acceptance ratio on feasible instances.

Fig. 7 .

 7 Fig. 7.15 Experimental results on harmonic instances with release dates. The RTSDFG size |T | was fixed to 30 tasks.

Figure

  Figure 7.16 gives the average computation time to find a feasible schedule using different methods. Similar to the fixed case, we notice that our methods have a similar changing tendency i.e, their average computation times increase with the increase of the system utilization. This is due to the amount of computation that grows with the

Fig. 7 .

 7 Fig.7.[START_REF] Berry | The esterel synchronous programming language: Design, semantics, implementation[END_REF] Average computation time to find a feasible solution. MILP represents our exact method while Mega, ACAP, simple and LP relaxation represent our heuristics.

Fig. 7 .

 7 Fig.7.17 The mega-heuristic acceptance ratio on harmonic instances without release dates. The RTSDFG size |T | was fixed to 30 tasks.

Fig. 7 .

 7 Fig. 7.18 The mega-heuristic acceptance ratio on harmonic instances with release dates. The RTSDFG size |T | was fixed to 30 tasks.

Table 6 .

 6 1 Strictly periodic tasks parameters Fig. 6.7 RTSDFG G = (T , A).

	6.4 Optimal algorithm: Integer linear programming formulation	107
	t i r i C i D i	T i
	t 1 90 10 30 120
	t 2 150 30 140 240
	t 3 30 20 30	60

  Simple Heuristic 1: Input: sorted list LT = (t 1 , . . . , t n ) 2: Output: feasible or partial solution 3: S olution = {(t 1 , r 1 )} 4: remove t 1 from LT 5: for all t j ∈ LT do

	6.5 Heuristics	117
	Algorithm 4 6:	

  Let us consider the set of strictly periodic communicating tasks N = {t 1 , t 2 , t 3 }. Let E = {(t 1 , t 3 ), (t 3 , t 2 ), (t 2 , t 1 )} be the set of communication relationships between tasks. Table

	7:	if s j satisfies equation 6.2 for each (t i , s i ) ∈ S olution then
	8:	S olution = S olution ∪ {(t j , s j )}
	9:	break
	10:	end if
	11:	end for
	12: end for
	13: return S olution
	Example 6.5.1

Table 6 .

 6 2 Strictly periodic tasks parameters Fig. 6.15 RTSDFG G = (T , A).

	14 18
	t 2 0 10 50 144
	t 3 0 4 14 54

  Input: sorted list LT = (t 1 , . . . , t n ) 2: Output: feasible or partial solution 3: S olution = {(t 1 , r 1 )} 4: remove t 1 from LT 5: while LT ̸ = ∅ do

	6.5 Heuristics	123
	Algorithm 5 ACAP Heuristic	
	1: 6:	

9 :

 9 if ∃(t k , s k ) ∈ S olution such that s k and s j do not verify equation (6.2) thenS list = S list ∪ {(t j , s j )} , s j ) ∈ S list | ∃(t k , s k ) ∈ S olution, such that s j and s k verify equation(6.11) or (6.12)} choose the couple (t j , s j ) ∈ S list whose gap (D j -C j ) is minimal

	10:	if s j = r j + D j -C j then	
	11:	remove t j from LT	
	12:	end if	
	13:	else	
	14:		
	15:	break	
	16:	end if	
	17:	end for	
	18:	end for	
	19:	if S list ̸ = ∅ then	
	20: list = {(t j 21: S ′ if S ′ list ̸ = ∅ then	
	22:	choose the couple (t j , s j ) ∈ S ′	list whose gap (D j -C j ) is minimal
	23:	else	
	24:		
	25:	end if	
	26:	S olution = S olution ∪ {(t j , s j )}	
	27:	remove t j from LT	
	28:	end if	
	29: end while	
	30: return S olution	

Algorithm 6

 6 Computation of the length of the release date interval: α i 1: Input: task t i = (r i , C i , D i , T i ), current solution S olution 2: Output: α i 3: S ucc (t i ): set of successors of t i 4: if S ucc (t i ) = ∅ then

	5:

Algorithm 7

 7 Computation of the starting date of the new execution interval: r * Input:task t i = (r i , C i , D i , T i ), current solution S olution , interval length α i 2: Output: r * i 3: P rec (t i ) : set of predecessors of t i 4: if ∃s i ∈ [r i , r i + D i -C i + α i ]such that t i can be scheduled on the same processor with the current solution tasks then Algorithm 7 computes the starting date of the new execution interval. First, line 3 checks if there is a task starting date (s i ) which belongs to the interval [r i , r i + D i -

	5:	if ∃t j ∈ P rec (t i ) such that t j / ∈ S olution then
	6:	r * i = min(r i + α i , s i )
	7:	else if s i + C i > r i + D i then
	8:	r * i = s i + C i -D i
	9:	else
	10:	r * i = r i
	11:	end if
	12: end if
	13: return r * i

i 1:

  Let us consider the set of strictly periodic communicating tasks N = {t 1 , t 2 , t 3 , t 4 }. Let E = {(t 1 , t 2 ), (t 1 , t 2 ), (t 1 , t 3 ), (t 2 , t 3 ), (t 3 , t 4

	6.5 Heuristics	129
	Example 6.5.3	

Table 6 .

 6 3 Strictly periodic tasks parameters Fig. 6.21 RTSDFG G = (T , A).

	50 240
	t 2 10 10 20 30
	t 3 80 10 30 120
	t 4 20 20 50 60
	t 5 60 10 40 120

  Large for 1000 tasks and Huge for 10000 tasks. Input and output degrees of a task belong to the set {1, 2, 3, 4, 5}.

	R T	Computation time (s) Exact evaluation Upper bound Lower bound
	5	22.23	5.24	4.93
	25	107.14	5.20	5.12
	45	212.71	5.22	5.05
	75	337.72	5.23	4.98
	125	557.25	5.32	5.11
	Table			

Table 7 .

 7 2 Average computation time of latency evaluation methods for RTSDFGs according to their size |T |. The average repetition factor is fixed to 75.Through varying the sizes of RTSDFGs, table 7.2 and 7.3 present a comparison between the average computation times of an exact value and its bounds. The average repetition factors were fixed to 75 and 750 respectively. In both cases, the average time

			Computation time (s)	
		Exact evaluation Upper bound Lower bound
	Small	3.40	0.15	0.15
	Medium	16.76	0.46	0.45
	Large	34.11	0.93	0.93
	Huge	337.72	5.23	4.98

Table 7 .

 7 3 Average computation time of latency evaluation methods for RTSDFGs according to their size |T |. The average repetition factor is fixed to 750.
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Data Flow models

(a) An example of a SDFG. (b) Equivalent Homogeneous SDFG.

illustrates a feasible solution where the tasks starting dates are respectively equal to s 1 = 90, s 2 = 150 and s 3 = 60. In addition, the starting date of the new execution intervals are respectively equal to r * 1 = 90, r * 2 = 150 and r * 3 = 50. We notice that the communication constraints are fulfilled, since the tasks are executed during the interval [r * i , r * i + D i ]. For example, t 1 3 begins its execution at 60 time units and it is accomplished at 80 time units. Data produced during its execution are consumed by t 1 1 at 90 time units. Moreover, we notice that there is no overlapping between the tasks executions. For instance, t 1 1 starts at 90 time units and ends at 110 time units. On the other hand, t 1 3 is accomplished at 80 time units and t 2 3 starts at 120 time units.

In order to justify the MILP formulation of the flexible intervals case, more precisely the addition of the variable r * i (starting date of the new execution interval), we consider the following example: [START_REF] George | Preemptive and non-preemptive real-time uniprocessor scheduling[END_REF]200,240) be three strictly periodic communicating tasks. Figure 6.11 depicts the RTSDFG G = (T , A) that models the set of communication constraints between the tasks' executions. According to our communication model, data are only available at the task's deadline and they can only be consumed at the task's release date. Figure 6.12 illustrates the communication scheme that should be respected in order to fulfil the communication constraints between the tasks' executions. For example, execution t 3 2 must communicate with t 1 3 which in turn must communicate with t 8 2 . Solving the MILP formulation of the flexible intervals case provides us a feasible schedule. 

Chapter 7 Experimental Results

This chapter presents the experimental results of this thesis. Section 7.1 present briefly the random generator used to generate our RTSDFGs instances. Section 7.2 is devoted to evaluate our methods that compute the worst case latency of a RTSDFG. Section 7.3 evaluates the performance of our algorithms that solve the mono-processor scheduling problem of strictly periodic communicating systems. Section 7.4 concludes the chapter.

Graph generation: Turbine

Bodin et al. [START_REF] Bodin | Fast and efficient dataflow graph generation[END_REF] recently developed a data flow random generator "Turbine". It generates randomly a Phased Computation Graph (PCG in short) [START_REF] Thies | Phased computation graphs in the polyhedral model[END_REF] which is an extension of the SDFG model. Turbine requires several parameters to be fixed in order to generate instances. Some of these parameters are directly related to the graph structure, such as the total number of tasks |T | and their degrees. The other parameters, as the average value of the repetition vector

, control the random generation of production and consumption rates.

Turbine is implemented using Python and the graph library NetworkX that manage the graph data structure. Random generation is composed of three steps. The first step generates a random graph with nodes and arcs. The second step computes the consumption and production rates of the graph. The last step computes a live initial marking using the Linear Programming Solver (GLPK).

In our study, we added to Turbine two parameters: the task release date (r i ) and its relative deadline (D i ). The initial marking of each buffer a = (t i , t j ) is computed as follows:

Conclusion and Perspectives

Moreover, the gap between the exact value and the lower bound varied between 20 and 30%.

In the second part, we addressed the mono-processor scheduling problem of nonpreemtive strictly periodic systems subject to communication constraints. Based on the RTSDFG model, we proved that scheduling two strictly periodic communicating tasks is equivalent to scheduling two independent tasks. These tasks can only be executed between their release dates and their deadlines. Accordingly, we proposed an optimal algorithm using MILP formulations. Two cases were treated: the fixed and flexible interval cases. Since the scheduling problem is know to be NP-complete in the strong sense [START_REF] Korst | Scheduling periodic tasks[END_REF], we proposed three heuristics: linear programming relaxation, simple and ACAP heuristics. For the second and the third heuristic if no feasible solution is found, a partial solution is computed. In comparison to the optimal algorithms, heuristics were characterized by small average computation times. The heuristics acceptance ratios on feasible instances varied between 100% and 38.46%. Moreover, their acceptance ratios on solver failure instances varied between 100% and 21.01% with an average computation time in the range of seconds. Finally, these heuristics were able to allocate on the same processor 96% to 86% of the tasks when they were not able to provide a feasible schedule.

Perspectives

This section presents perspectives and potential future work in the continuity of this thesis.

Multi/Many-processor scheduling

In this thesis, we proposed several heuristics (Mega, ACAP and simple) in order to solve the mono-processor scheduling problem of non-preemptive strictly periodic systems subject to communication constraints. These heuristics are much less time-consuming than the exact methods. In addition, they are able to provide a partial schedule when a feasible schedule is not found. Therefore, one of the perspectives of our work is mapping and scheduling an application modeled by a RTSDFG on a distributed architecture such as Kalray-MPPA [START_REF] Aubry | Extended cyclostatic dataflow program compilation and execution for an integrated manycore processor[END_REF]. This future work can investigate the multi/many-processor scheduling problem while taking into account the inter-processor communications. In fact, our communication model allows us to compute, using a closed formula, the time required to transfer data between the tasks' executions.

Application: WATERS Industrial Challenge

Hamann et al. [START_REF] Hamann | Waters industrial challenge[END_REF] proposed an automotive embedded application for WATERS Industrial Challenge 2017. This application is an engine management system which consists of several functional components. These latter are tightly related by communication dependencies and data sharing, while having real-time requirements. This application is composed of:

• 1250 runnables which represent pieces of codes that read and write a set of labels.

• 10000 labels that symbolize the communication variables between runnables.

Producing (writing) a label is restricted to at most one runnable. However, consuming (reading) a label can be done by several runnables.

• 21 tasks which group several runnables. Periodic tasks gather several runnables that have the same period, while sporadic tasks assemble runnables that have the same minimal and maximal inter arrival times.

Logical Execution Time (LET) has been proposed to ensures temporal determinism by decoupling computation and communication. In this context, it would be interesting to model this application using the RTSDFG formalism, since the communication model behind this formalism is similar to the LET concept.

Relax the strict periodicity constraint

In this thesis, we addressed the scheduling problem of non-preemptive strictly periodic systems subject to communication constraints. The strict periodicity allowed us to define the resource constraints with a polynomial number of constraints on the starting dates of the tasks' first executions. Accordingly, we developed an exact method and several heuristics that solve the scheduling problem. An interesting perspective is to address the non-preemptive scheduling problem by relaxing the strict periodicity constraint. This problem can be solved using the list scheduling algorithms [START_REF] Graham | Bounds for certain multiprocessing anomalies[END_REF][START_REF] Kwok | Benchmarking and comparison of the task graph scheduling algorithms[END_REF]. In fact, it would be worth comparing our results, in terms of acceptance ratio and average computation time, to the results obtained by relaxing the strict periodicity constraint.