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Résumé

Les systèmes embarqués temps réel impactent nos vies au quotidien. Leur com-
plexité s’intensifie avec la diversité des applications et l’évolution des architectures
des plateformes de calcul. En effet, les systèmes temps réel peuvent se retrouver dans
des systèmes autonomes, comme dans les métros, avions et voitures autonomes. Ils
sont donc souvent d’une importance décisive pour la vie humaine, et leur dysfonction-
nement peut avoir des conséquences catastrophiques. Ces systèmes sont généralement
multi-périodiques car leurs composants interagissent entre eux à des rythmes différents,
ce qui rajoute de la complexité. Par conséquent, l’un des principaux défis auxquels
sont confrontés les chercheurs et industriels est l’utilisation de matériel de plus en plus
complexe, dans le but d’ exécuter des applications temps réel avec une performance
optimale et en satisfaisant les contraintes temporelles. Dans ce contexte, notre étude
se focalise sur la modélisation et l’ordonnancement des systèmes temps réel en utilisant
un formalisme de flot de données. Notre contribution a porté sur trois axes:

Premièrement, nous définissons un mode de communication général et intuitif au
sein de systèmes multi-périodiques. Nous montrons que les communications entre les
tâches multi-périodiques peuvent s’exprimer directement sous la forme d’une classe
spécifique du “Synchronous Data Flow Graph” (SDFG). La taille de ce graphe est
égale à la taille du graphe de communication. De plus, le modèle SDFG est un outil
d’analyse qui repose sur de solides bases mathématiques, fournissant ainsi un bon
compromis entre l’expressivité et l’analyse des applications.

Deuxièmement, le modèle SDFG nous a permis d’obtenir une définition précise de
la latence. Par conséquent, nous exprimons la latence entre deux tâches communicantes
à l’aide d’une formule close. Dans le cas général, nous développons une méthode
d’évaluation exacte qui permet de calculer la latence du système dans le pire des cas.
Ensuite, nous bornons la valeur de la latence en utilisant deux algorithmes pour calculer
les bornes inférieure et supérieure. Enfin, nous démontrons que les bornes de la latence
peuvent être calculées en temps polynomial, alors que le temps nécessaire pour évaluer
sa valeur exacte augmente linéairement en fonction du facteur de répétition moyen.

Finalement, nous abordons le problème d’ordonnancement mono-processeur des
systèmes strictement périodiques non-préemptifs, soumis à des contraintes de com-
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munication. En se basant sur les résultats théoriques du SDFG, nous proposons un
algorithme optimal en utilisant un programme linéaire en nombre entier (PLNE). Le
problème d’ordonnancement est connu pour être NP-complet au sens fort. Afin de
résoudre ce problème, nous proposons trois heuristiques: relaxation linéaire, simple et
ACAP. Pour les deux dernières heuristiques, et dans le cas où aucune solution faisable
n’est trouvée, une solution partielle est calculée.

Mots clés: systèmes temps réel, graphes de flots de données synchrones, modélisation
des communications, tâches strictement périodiques non-préemptifs, ordonnancement
mono-processeur, latence.



Abstract

Real-time embedded systems change our lives on a daily basis. Their complexity is
increasing with the diversity of their applications and the improvements in processor
architectures. These systems are usually multi-periodic, since their components commu-
nicate with each other at different rates. Real-time systems are often critical to human
lives, their malfunctioning could lead to catastrophic consequences. Therefore, one
of the major challenges faced by academic and industrial communities is the efficient
use of powerful and complex platforms, to provide optimal performance and meet
the time constraints. Real-time system can be found in autonomous systems, such as
air-planes, self-driving cars and drones. In this context, our study focuses on modeling
and scheduling critical real-time systems using data flow formalisms. The contributions
of this thesis are threefold:

First, we define a general and intuitive communication model within multi-periodic
systems. We demonstrate that the communications between multi-periodic tasks can
be directly expressed as a particular class of “Synchronous Data Flow Graph” (SDFG).
The size of this latter is equal to the communication graph size. Moreover, the SDFG
model has strong mathematical background and software analysis tools which provide
a compromise between the application expressiveness and analyses.

Then, the SDFG model allows precise definition of the latency. Accordingly, we
express the latency between two communicating tasks using a closed formula. In the
general case, we develop an exact evaluation method to calculate the worst case system
latency from a given input to a connected outcome. Then, we frame this value using
two algorithms that compute its upper and lower bounds. Finally, we show that these
bounds can be computed using a polynomial amount of computation time, while the
time required to compute the exact value increases linearly according to the average
repetition factor.
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Finally, we address the mono-processor scheduling problem of non-preemtive strictly
periodic systems subject to communication constraints. Based on the SDFG theoretical
results, we propose an optimal algorithm using MILP formulations. The scheduling
problem is known to be NP-complete in the strong sense. In order to solve this issue, we
proposed three heuristics: linear programming relaxation, simple and ACAP heuristics.
For the second and the third heuristic if no feasible solution is found, a partial solution
is computed.

Keywords: real-time systems, Synchronous Data Flow Graph, communications mod-
eling, non-preemptive strictly periodic tasks, mono-processor scheduling, latency.
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Chapter 1

Introduction

Nowadays, electronic devices are ubiquitous in our daily lives. Every time we set an
alarm, drive a car, take a picture or use a cell-phone, we interact in some way with
electronic components or devices. Electronic systems make people’s lives safer, faster,
easier and more convenient. These systems, integrated in a larger environment with
specific assignments or purposes, are called embedded systems. They comprise a
hardware part (electronic) that defines interfaces and system performance as well as a
software part (computer) that dictates their functions. Such systems are autonomous
and limited in size, power consumption, and heat dissipation. In order to achieve
specific tasks, their design combines skills from computer and electronics fields.

An important class of embedded systems is real-time embedded systems. They
operate dynamically in their environments and must continuously adapt to their changes.
Indeed, they fully command their environments through actuators upon data reception
via sensors. The correctness of such systems depends not only on the logical result but
also on the time it is delivered. Therefore, real-time systems are classified according
to the temporal constraints severity: soft, firm and hard (critical) systems. In hard
systems, the violation of a temporal constraint can lead to catastrophic consequences.
The aircraft piloting system, the control of a nuclear power plant and the track control
system are typical examples. The soft and firm systems are more “tolerant”: the
temporal constraint violation does not cause serious damages to the environment and
does not corrupt the system behaviour. In fact, this violation leads to a degradation of
the result quality (i.e performance).

On the other hand, critical real-time systems are becoming increasingly complex.
They require research effort in order to be effectively modeled and executed. In this
context, one of the major challenges faced by academic and industrial environments is
the efficient use of powerful and complex resources, to provide optimal performance
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and meet the time constraints. These systems are usually multi-periodic, since their
components communicate with each other at different rates. This is mainly due to their
physical characteristics. For this reason, a deep analysis of communications within
multi-periodic systems is required. This analysis is essential to schedule these systems
on a given platform. Moreover, the estimation of parameters in a static manner, such
as evaluating the latency between the system input and its corresponding outcomes, is
an important practical issue.

1.1 Contributions
In this section, we summarize the research contribution of this thesis.

The first contribution consists in defining a general and intuitive communication
model for multi-periodic systems. Based on the precedence constraints between the
tasks executions, we demonstrate that the communications between multi-periodic tasks
can be directly expressed as a “Synchronous Data-flow Graph”. The size of this graph
is equal to the application size. We called this particular class “Real-Time Synchronous
Data-flow Graphs”. These results were published in a short paper in “Ecole d’été temps
réel”(ETR 2015). In collaboration with Cedric Klikpo (projet ELA, IRT SystemX),
we showed that the communications of an application expressed with Simulink can be
modeled by a SDFG. This transformation led to an article published in RTAS 2016 [76].

The second contribution consists in evaluating the worst-case latency of multi-
periodic systems. Based on our communication model, we define and compute the
latency between two communicating tasks. We prove that minimum and maximum
latency between the tasks executions can be computed according to the tasks parame-
ters using closed formulas. Moreover, we bounded their values according to the tasks
periods. In order to evaluate the worst-case system latency, we propose an exact pricing
algorithm. This method computes the system latency in terms of the average repetition
factor. This implies that if this factor is not bounded, the complexity of the exact
evaluation increases exponentially. Consequently, we propose two polynomial-time
algorithms that compute respectively the upper and lower bounds of this latency. This
evaluation led to an article published in RTNS 2016 [73].

The third contribution consists in solving the mono-processor scheduling problem of
non-preemptive strictly periodic systems subject to communication constraints. Based
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on our communication model, we proved that scheduling two periodic communicating
tasks is equivalent to schedule two independent tasks. These tasks can only be executed
between their release dates and their deadlines. Accordingly, we propose an optimal
algorithm using “Mixed Integer Linear Programming” formulations. We study two
case: the fixed and flexible interval cases. As the scheduling problem in known to be
NP-complete in strong sense [79], we propose three heuristics: linear programming
relaxation, simple and ACAP heuristics. For the second and the third heuristic if no
feasible solution is found, a partial solution is computed. This solution contains the
subset of tasks that can be executed on the same processor.

1.2 Thesis overview
The thesis is organized as follows.

Chapter 2 introduces the context of this thesis. First, it presents the real-time compu-
tational model and its characteristics. Afterwards, it formulates the first two problems
addressed in this thesis: modeling communications within multi-periodic systems and
evaluating their latencies. This chapter reviewed several existing approaches regarding
multi-periodic systems modeling. Finally, basic notions of real-time scheduling are
presented in order to formulate the third problem studied in this thesis: mono-processor
scheduling of non-preemptive strictly periodic set of tasks with communication con-
straints.

Chapter 3 presents an overview of static data flow models. Important notions and
transformations are introduced in the context of the Synchronous Data Flow Graph:
precedence constraints, consistency, repetition vector, normalization and expansion.

Chapter 4 gives an overview on the state of the art related to this thesis. It positions
our study regarding existing approaches for the two aspects:

• modeling real-time systems and evaluating their latencies using data formalisms,

• scheduling non-preemptive strictly periodic systems.

Chapter 5 introduces the first two contributions of this thesis. It defines the “Real-Time
Synchronous Data Flow Graph” which models the communications within a multi-
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periodic system. On the other hand, this chapter describes the latency computation
method between two periodic communicating tasks. This latency is computed according
to the tasks parameters with a closed formula and its value is bounded according to
the tasks periods. Several methods are described for evaluating the worst case system
latency: exact evaluation, upper and lower bounds.

Chapter 6 introduces the third contribution of this thesis. It presents the mono-
processor scheduling problem of non-preemptive strictly periodic systems subject to
communication constraints. In order to solve the scheduling problem, an exact method
is developed using the “Mixed Integer Linear Programming” formulations. Two cases
are treated: the fixed and flexible interval cases. In the fixed case, tasks execution is
restricted to the interval between its release date and its deadline. However, in the
flexible case, tasks can admit new execution intervals whose lengths are equal to their
relative deadlines. Furthermore, several heuristics are proposed: linear programming
relaxation, simple and ACAP heuristics.

Chapter 7 presents the experimental results of this thesis. It is devoted to evaluate
the methods that compute the worst system latency using the RTSDFG formalism. In
addition, it presents several experiments dedicated to evaluate the performance of our
methods that solve the mono-processor scheduling problem.

Chapter 8 concludes this thesis and introduces some perspectives for future work.



Chapter 2

Context and Problems

Embedded real-time systems are omnipresent in our daily life, they cover a range of
different levels of complexity. We find Embedded real-time systems in several domains:
robotics, automotive, aeronautics, medical technology, telecommunications, railway
transport, multimedia and nuclear power plants. These systems are composed of
hardware and software devices with functional and timing constraints. In fact, the cor-
rectness of such systems depends not only on the logical result but also on the physical
time at which this result is produced. Real-time systems are usually reactive, since
they interact permanently with their environments. In addition, embedded real-time
systems are often considered critical. This is due to the fact that the computer system
is entrusted with a great responsibility in terms of human lives and non-negligible
economic interests. In order to predict the behavior of an embedded safety-critical
system, we need to know the interactions between its components and how to schedule
these components on a given platform.

This chapter introduces the required background to understand the thesis contribu-
tions presented in the following chapters. The remainder of this chapter is organized
as follows. Section 2.1 introduces the real-time computational model and its character-
istics. Section 2.2 formulates the first two problems addressed in this thesis: modeling
communications within multi-periodic systems and evaluating their latencies. Section
2.3 presents several approaches from the literature dedicated to model multi-periodic
applications. Section 2.4 presents some basic notions of the scheduling problem. Section
2.5 formulates the third problem studied in this thesis: mono-processor scheduling prob-
lem of non-preemptive strictly periodic systems subject to communication constrains.
Finally, Section 2.6 concludes the chapter.
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2.1 Real-time systems
In this section, we introduce the real-time systems and their characteristics. We present
the task models on which the approaches developed in Chapters 5 and 6 are applied.

2.1.1 Definition

There are several definitions of real-time systems in the literature [22, 111, 39].
J.Stankovic [111] proposed a functional definition as follows:

“A real-time computer system is defined as a system whose correctness depends not
only on the logical results of computations, but also on the physical time at which the
results are produced.”

In other words, a real-time system should satisfy two types of constraints:

• logical constraints corresponding to the computation of the system’s output
according to its input.

• temporal constraints corresponding to the computation of the system’s output
within a time frame specified by the application. A delayed production of the
system’s output considered as an error which can lead to serious consequences.

J-P.Elloy [39] defines a real-time system in an operational way:

“A real-time system is defined as any application implementing a computer system
whose behaviour is conditioned by the state dynamic evolution of the process which is
assigned to it. This computer system is then responsible for monitoring or controlling
this process while respecting the application temporal constraints.”

This latter definition clarifies the meaning of the term “real-time” by altering the
relationships between the computer systems and external environment.

The real-time systems are reactive systems [58, 15]. Their primary purpose is to
continuously react to stimulus from their environment which are considered external
to the system. A formal definition of a reactive system, describing the functioning of a
real-time system, was given in [47]:
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“A reactive system is a system that reacts continuously with its environment at
a rate imposed by this environment. It receives inputs coming from the environment
called stimuli via sensors. It reacts to all these stimuli by performing a certain number
of operations and. It produces through actuators outputs that will be used by the envi-
ronment. These outputs are called reactions or commands.”

Fig. 2.1 Schematic representation of a real-time system.

Usually, a real-time system must react to each stimuli coming from its environments. In
addition, the system response depends not only on the input stimuli but on the system
state at the moment when the stimuli arrives. The interface between a real-time system
and its environment consists of two types of peripheral devices. Sensors are input
devices used to collect a flow of information emitted by the environment. Actuators
are output devices which provide the environment with control system commands (see
Fig. 2.1). A real-time embedded system is an integrated system inside the controlled
environment, such as a calculator in a car.

2.1.2 Real-Time systems classification

The validity of real-time systems is related to the result quality (range of accepted
values) and the limited duration of the result computation (deadline). Real-time
systems can be classified from different perspectives [78]. These classifications depend
on the characteristics of the application (factors outside the computer system) or on
the design and implementation (factors inside the computer system). According to the
temporal constraints criticality, there are three types of real-time systems:

Hard real-time systems

The hard (critical) real-time systems consist of processings that have strict temporal
constraints. A hard real-time system requires that all the system processing must
imperatively respect all the temporal constraints. In these systems, the violation of
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a constraint can lead to catastrophic consequences. The aircraft piloting system, the
control of a nuclear power plant and the track control system are typical examples.
To ensure the proper functioning of a real-time system, we must be able to define
conditions on the system environment. Under subsequent conditions, it is also necessary
to guarantee the temporal constraints for all possible execution scenarios.

Soft real-time systems

The soft real-time systems are more “tolerant”. This means that these systems are
less demanding in terms of respecting the temporal constraints than the hard systems.
The constraint violation does not cause serious damages to the environment and does
not corrupt system behaviour. In fact, this violation leads to a degradation of the
result quality (performance). This is the case of multimedia applications such as image
processing, where it is acceptable to have a precise number of images (image processing)
with a sound shift of few milliseconds. One problem of these systems is to evaluate
their performance while respecting the quality of service constraints [64].

Firm real-time systems

The Firm real-time systems are composed of processing with strict and soft temporal
constraints. These systems [14] can tolerate a clearly specified degree of missed
deadlines. This means that deadlines can be missed occasionally by providing a late
worthless result. The extent to which a system may tolerate missed deadlines has to
be stated precisely.

In this thesis we are interested only in hard real-time systems such as motor drive
applications in cars, buses and trucks.

2.1.3 Real-time tasks’ characteristics

A real-time task is a set of instructions intended to be executed on a processor. It can
be executed several times during the lifetime of the real-time system. For example,
an input task that responds to the informations coming from a sensor. Each task
execution is called an instance or job. In order to meet the real-time system temporal
requirements, time constraints are defined for each real-time task (see Figure 2.2) of
an application. The most used parameters of a real-time task ti are:

• Activation period Ti: the minimum delay between two consecutive activations
of ti is the task period. A task is periodic if the task instances are activated
regularly at a constant rate.
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• Release date ri: the earliest date on which the task can begin its execution.

• Start date si: it is also called the start execution date. It is the date on which
the task starts its execution on a processor.

• End date ei: the date on which the task ends its execution on a processor.

• Execution time Ci: the required time for a processor to execute an instance of
a task ti. In general, this parameter is evaluated as the task worst case execution
time (WCET) on a processor. The WCET represents an upper bound of the task
execution time. The value of this parameter should not be overestimated. The
problem of estimating the task execution time has been extensively studied in
the literature [104, 106, 99, 113].

• Deadline Di: it corresponds to the date at which the task must complete its
execution. Exceeding the due date (deadline) causes a violation of the temporal
constraints. we distinguish two types of deadlines:

- Relative deadline: Di the time interval between the task release date and
its absolute deadline.

- Absolute deadline: the date at which the task must be completed (ri + Di).

Fig. 2.2 Real-time tasks’ characteristics.

Some parameters are derived from the basic parameters such as the utilization
factor:

Ui = Ci

Ti
.

Dynamic parameters are used to follow the behaviour of the task executions:

• rk
i : the release date of the kth task instance (tk

i ). In the periodic case, this date
can be calculated according to the task first release date r1

i :

rk
i = r1

i +(k−1) ·Ti
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• sk
i : the start date of the kth task instance (tk

i ).

• ek
i : the end date of the kth task instance (tk

i ).

• dk
i : the absolute deadline of the kth task instance (tk

i ). In the periodic case,
this date can be computed in function of the relative deadline (Di) and the kth
release date rk

i :

dk
i = rk

i +Di = r1
i +(k−1) ·Ti +Di.

• Rk
i : the response time of the kth task instance (tk

i ). It is equal to ek
i − rk

i .

2.1.4 Tasks models

The real-time system environment defines the system temporal constraints. In other
words, it defines the activation dates pace of the tasks. A task can be activated
randomly (non-periodic) or at regular intervals (periodic). There are three classes of
real-time tasks:

Periodic tasks

Tasks with regular arrival times Ti are called periodic tasks. A common use of periodic
tasks is to process sensor data and update the current state of the real-time system on
a regular basis. Periodic tasks usually have hard deadlines, but in some applications
the deadlines can be soft. This class is based on the model of Liu and Layand [85].

Fig. 2.3 Liu and Layland model.

An example of Liu and Layland model is depicted in Figure 2.3. Each task ti is
characterized by an activation period Ti, an execution time Ci (all instances of a
periodic task have the same worst case execution time Ci), a deadline Di, and eventually
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a release date (date of the first activation) ri. Each task instance must be executed
entirely within the interval of length Ti. Successive executions of ti , admit periodic
release dates and deadlines, where the period is equal to Ti.

Strictly periodic tasks is a particular case of this class. In addition to the Liu and
Layland model, the task successive executions admit periodic start dates. In other
words, the first instance (job) t1

i of task ti, which is released at r1
i , starts its execution

at time s1
i . Then, in every following period of ti, tk

i is released at rk
i and starts its

execution at sk
i . The kth release and start dates of ti can be written as follows:

rk
i = r1

i +(k−1) ·Ti

sk
i = s1

i +(k−1) ·Ti

In the following of the manuscript, r1
i and s1

i are noted ri and si respectively.

Aperiodic tasks

An aperiodic task is a stream of instances arriving at irregular intervals. Aperiodic
task has a relative deadline, with no activation dates and no activation periods. Thus,
the task activation dates are random and can not be anticipated. These activations are
determined by the arrival of events that can be triggered at any time such as message
from an operator. Several processes deal with this class of tasks as shown in [110].

Sporadic tasks

A sporadic task is an aperiodic task with a hard deadline and a minimum period pi [94].
Two successive instances of a task must be separated by at least pi time units. Note
that without a minimum inter-arrival time restriction, it is impossible to guarantee
that a sporadic task’s deadline would always be met.

2.1.5 Execution mode

Multiple instances of a task can be executed during the lifetime of a real-time system.
We distinguish two executions modes:

Non-preemptive mode

In non-preemptive execution mode, the scheduler cannot interrupt the task execution
in favour of another one. In order to execute a new task, it is necessary to wait until
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the end of the current task. In other words, a task must voluntarily give it up the
control of the processor before the execution of an other task.

Preemptive mode

The difference between the non-preemptive execution mode and the preemptive one
is that the later gives the scheduler the control of the processor without the task’s
cooperation. According to the scheduling algorithm, the currently running task loses
control of the processor when a task with higher priority is ready to be executed
regardless of whether it has finished its execution or not.

In this thesis, we focus our study on modeling and scheduling applications composed
of non-preempting strictly periodic tasks.

2.1.6 Communication constraints

Designers describe the embedded real-time systems workflow using block diagrams.
These blocks correspond to functions that may be independent or dependent. Functions
are considered tasks as soon as they have been characterized temporally. Most of real-
time applications require communication between tasks. This type of communication
connects an emitting task to a receiving one. The emitting task produces data that are
consumed by the receiving task through a communication point. However, a receiving
task cannot consume a piece of data unless this data has been sent by the emitting
task. Thus, the execution of a receiving task should be preceded by the execution of
an emitting task, which imposes precedence constraints between some executions. It
should be noted that the precedence constraint between executions (jobs) is mostly
due to the fact that both tasks are dependent. The dependency between the tasks
can be described by a directed graph. The graph nodes represent the tasks and its
arcs represent the dependency relations between the tasks. There are two types of
dependencies:

• Dependencies that involve a loss of data. In this case, the receiving task can not
consume all the data produced by the emitting one. These data (which are not
consumed) have been overwritten by the newer data which are produced by more
recent emitting task executions. This is the case where the periods of dependent
tasks correspond to prime numbers.

• Dependencies that do not involve a loss of data. In this case, the data produced
by the emitting task executions are all consumed by the receiving task executions.
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In this thesis, we consider a communication mechanism between tasks which may
involve a loss of data. In other words, a task can be executed using the most recent
data of its predecessors. The description of the communication scheme between
multi-periodic tasks will be detailed in section 5.1 of chapter 5

2.1.7 Latency

Latency constraint between two tasks ti and tj is equivalent to impose that the gap
between the end date of tj and the start date of ti does not exceed a certain value L.
Limiting the time gap between these tasks guarantees that the response time - the
total time required by a task in order accomplish its execution - of the second task
will never exceed a preset critical value. Exceeding this value may lead to performance
degradation as well as instability of the system.

System latency evaluation

Real-time systems have to provide results to its environment in a timely fashion. This
requirement is typically measured by the duration (time gap) between an input event
arriving at the system input and its corresponding result events coming out from the
system output. This time gap is denoted as the system latency. Executing a system
with a long response time (fairly significant latency) may cause a lot of damages, such
as the late identification of an obstacle in an Advanced Driver Assistance Systems
[117]. Depending on the application scenario, the system latency can be evaluated
with different accuracy classes: worst-case latency, best-case latency, average latency
or different quantiles of latency.

In this thesis, we are interested in evaluating the worst-case system latency.

2.1.8 Multi-periodic systems

Complex real-time embedded systems should handle multiple distinct periods. This is
mainly induced by the physical characteristic of sensors and actuators. A multi-periodic
system is composed of a set of periodic tasks communicating with each other and having
distinct periods. Each task is executed according to its own period. However, the entire
system is executed according to a global period which is called the "hyper-period"(hp)
[50]. This global period is equal to the Least Common Multiple (LCM) of all the
system tasks periods. A task’s execution is called a Job or instance. The number of
these instances (repetitions) can be computed according to the task period and the
system hyper-period (hp

Ti
). We distinguish two types of multi-periodic systems:
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Harmonic periodic system

A harmonic periodic system is composed of a set of harmonic and periodic tasks. Each
task is executed according to a precise activation period which is an integral multiple
of all lower periods. Tasks with harmonic periods are widely used to model real-time
applications. They are easy to handle using some specific designs and scheduling
algorithms.

Fig. 2.4 Example of a harmonic multi-periodic system. The tasks periods are equal
TA = 5 ms, TB = 20 ms and TC = 10 ms.

Figure 2.4 illustrates an example of harmonic periodic system. This latter is
composed of three periodic communicating tasks which are respectively executed at 5,
10, and 20 ms . The system hyper-period is equal to 20 ms.

Non-harmonic periodic system

A non-harmonic system is constituted by a set of periodic non-harmonic tasks. Tasks
periods are chosen to match the application requirements (physical phenomena) rather
than the implementation requirements (frequencies required by hardware or imple-
mentation details). These systems are not particularly amenable to a cyclic executive
design. In addition, they have low scheduling theoretic.

This thesis proposes a general model which deals with harmonic and non-harmonic
systems. In the following section, we formulate the first two problems studied in the
thesis.

2.2 Problems 1 & 2: Modeling multi-periodic sys-
tems and evaluating their latencies

Modeling communications within multi-periodic systems, such as control/command
applications, is a complex process. These systems are highly critical. The fundamental
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requirement is to ensure the system functionality with respect to the data exchange
between its parts as well as their temporal constraints. These systems require a
deterministic behaviour, which means that for a given input the system execution must
produce the same output. In addition, the system’s execution must be temporally
deterministic as well, always having the same temporal behaviour and respecting several
hard real-time constraints.

Data flow models are a class of formalisms used to describe in a simple and compact
way the communications of regular applications (for example video encoders). A model
of this class is usually represented in the form of a network of communicating tasks
where their executions are guided by the data dependencies. In this context, the first
problem addressed in this thesis is:

How can we model the communications within multi-periodic systems,
while meeting simultaneously their temporal and data requirements?

The second problem of this thesis is:

How can we evaluate the latency of a multi-periodic system?

We detail in chapter 4 the state of the art of modeling multi-periodic systems and
evaluating their latencies using data flow formalisms. Next section lists several research
approaches of modeling real-time systems.

2.3 Modeling real-time systems
Real-time systems are continuously interacting with external environment (other
systems or hardware components). Assurance of a global quality of this kind of
interactions is a major issue in the systems design. Nowadays, it is widely accepted
that modelling plays a central role in the systems engineering. Modeling real-time
systems provides an operational representation of the system overall organization as
well as the behaviour of all its sub-systems. Therefore, using models can profitably
substitutes experimentation. Modeling advantages can be summarized as follows [107]:

• flexibility : the model and its parameters can be modified in a simple way;

• generality by using abstraction: solving the scale factor issue;
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• expressibility: improving observation, control and avoidance perturbations due
to experimentation;

• predictability: real-time system characteristics can be predictable such as the
system latency;

• reduced cost: systems modeling is less expensive than real implementation in
terms of time and effort.

2.3.1 Models for Real-Time Programming

In general, the time representations in a real-time system can be classified into three
types [74]: asynchronous, timed and synchronous models. These time models differ
mainly in the manner of characterizing the correlated behaviour of a real-time system.
More precisely, the time models define the relationship between the physical-time
and logical-time which depends on several factors, such as the execution platform
performance and utilization, the scheduling policies, the communication protocols as
well as the program and compiler optimization.

Asynchronous model

Fig. 2.5 Execution of an asynchronous model. Logical-time ≤ Physical-time.

Asynchronous model is a classical representation of real-time programming [118] such
as the real-time programming languages “Ada” or “C”. Applications are represented
by a finite number of processes (tasks). Logical-time in the asynchronous model
corresponds to the task’s processing time (see Figure 2.5). The system execution is
controlled by a scheduler setting the execution dates of the application’s tasks. A task’s
execution depends on the adopted scheduling policy within the Real-Time Operating
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System (RTOS in short). Accordingly, in asynchronous model the logical-time is not
a priori determined and may vary depending on several factor such as the platform
performance or the scheduling scheme. Therefore, asynchronous model logical-time
variation is constrained by real-time deadlines: logical-time must be less than or equal
to physical-time. The system schedulability condition (i.e. all deadlines are met) must
be indicated in the scheduling scheme of real-time operating system. A schedulability
analysis also requires the analysis of the worst-case execution times.

Timed model

The principle of timed model is based on the idea that interactions between two
processes can only occur at two precise moments τ and τ

′ . The interval between these
moments (]τ,τ

′ [) is a fixed non-zero amount of time which corresponds to the logical
duration of computation and communication between two processes (see Figure 2.6).

Fig. 2.6 Execution of a timed model. Logical-time = Physical-time.

In this context, programmers annotate their programs describing real-time systems
with logical durations. The latter are an approximation of the actual computation and
communication times. In this case, logical-time and physical-time are equal. Unlike the
asynchronous model, since all the necessary information are known before execution,
verification of some properties related to the logical temporal behaviour of the system
becomes possible. For example, a scheduling validity or the system latency evaluation
can be checked using a static method at compile-time.

In the timed model the program’s logical execution time is fixed, two situations
may arise at the execution level:

• The program may not have finished executing while its logical execution time
is exceeded. If the timed program is indeed late, a runtime exception may be
thrown (an exception is usually generated).
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• The program may have completed its execution before its logical delay expiration.
If the timed program finishes early, its output is delayed until the specified logical
execution time has elapsed. The model annotation values should be carefully
chosen in order to reduce the phase shift between the computations and output
productions.

The timed model is well-suited for embedded control systems, which require timing
predictability. The timed programming language Giotto [61] supports the design
and implementation of embedded control systems [75], in particular, on distributed
hardware. The key element in Giotto is that timed tasks are periodic and deterministic
with respect to their inputs and states. The logical execution time of a Giotto task
is the period of the task. For example, a 10Hz Giotto task runs logically for 100ms
before its output becomes available and its input is updated for the next invocation.

Synchronous model

Fig. 2.7 Execution of a synchronous model. Logical-time = 0.

The principle of the synchronous model is similar to that of the timed model, in the
sense that the two processes do not communicate between instants τ and τ

′ . In contrast
to the timed model, the synchronous programmer assumes that any computational
activity of a synchronous program including communication takes no time: logical-time
in a synchronous program is always zero (see Figure 2.7). In other words, the synchrony
hypothesis is satisfied as long as the system is fast enough to react to inputs coming
from external environment and produces corresponding outputs before the acquisition
of the next inputs. The interval ]τ,τ

′ [ is seen as part of the logical-time model. In order
to have a detailed the system behaviour, this interval can be refined by considering
intermediate instants from the logical time point of view.



2.3 Modeling real-time systems 19

In order to model the communications within multi-periodic systems, we character-
ized the systems behavior using a temporal approach (a timed model). We assume
that all the tasks parameters are provided by the developer.

2.3.2 Low-level languages

A large real-time systems class is implemented using low-level languages. However, the
use of these languages presents several major disadvantages:

• Time-triggered communications are hard to implement. In fact, a part of the
system should be scheduled manually.

• A basic mechanism for tasks communications is the “rendez-vous”, which is
implemented by three primitive operations: send, receive and reply. This type
of communications may lead to deadlocks such as two communicating tasks are
waiting each other to resume their executions.

• A low level of abstraction makes the program correctness harder to verify (manu-
ally or using automated tools).

• The use of low-level languages makes the program maintenance difficult. This is
due to lack of informations differentiating parts of the program corresponding
to real design constraints and parts which only correspond to implementation
concerns.

Dealing with such considerations cannot be avoided. Actually, real-time systems
developers tend to use programming languages with a higher-level of abstraction, where
these issues are managed by the language compiler. Several languages seek to cover
the entire process (from verification up to implementation). Their approach is based
on translating the input program modeled with a high-level language into a low level
code using automatic code generation processes. Such a strategy reduces the required
time for implementation. Then, it provides a simple system description which is easier
to analyse using verification tools. Finally, the compilation ensures the low-level code
correctness.

2.3.3 Synchronous languages

The synchronous approach presents a high level of abstraction. This approach is based
on simple and solid mathematical theories, which ease the program implementation



20 Context and Problems

and verification. Synchronous approach introduces a discrete and logical time concept
defined as succession of steps (instants). Each step corresponds to the system reaction.
The synchrony assumption consider that the system is fast enough to react to its
environment stimulus. This practically means that the system changes occurring
during a step are treated at the next step and implies that responsiveness and precision
are limited by the step duration.

The synchronous execution model has been developed in order to control in deter-
ministic way reactions and interactions with the external environment. Esterel [16],
Lustre [56] and Signal [13] are examples of synchronous languages. In order to meet
the synchrony assumption, the correct implementation of these languages requires the
estimation of the worst case execution times of the program code.

Lustre

Flow or Signal is an infinite sequence of values. It describes the values taken by the
variables or expressions manipulated by a synchronous language. The sequence clock
indicates the lack or the availability of a value carried by this sequence at a specific
instants. The diverse features of Lustre programming language are illustrated in the
following example:

node NOD (i: int; b: bool) returns (o: int)
var x: int; y: int when b;
let

x = 0 -> pre(i);
y = x when b;
o = current (y);

tel

A program consists of a set of equations that are hierarchically structured using
nodes. These equations defines the program output flows according to the input flows.
Equations use variables of either primitive types (int, bool,. . .) or user-defined types.
They also use a set of primitive operators (arithmetic, relational . . .). In addition to
those operators, there exists four temporal operators:

• "pre"(previous) operator acts as memory. It allows to refer at cycle n to the
value of a flow at cycle n−1. If X= (x1,x2, . . . ,xn, . . .) is the values sequence of
the flow X, then pre(X)= (nil,x1,x2, . . . ,xn−1, . . .) In this flow, the first value
is the undefined (non initialized). In addition, for any n > 1, its nth value of
pre(X) is the n−1th value of X.
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• "->"(follow by) operator is used to initialize a flow. If X = (x1,x2, . . . ,xn, . . .) and Y
= (y1,y2, . . . ,yn, . . .) are two flows of the same type, then X -> Y= (x1,y2, . . . ,yn, . . .).
This means that X -> Y is equal to Y except the first value.

• "when" operator is used to create a slower clock according to a boolean flow such
as B = (true,false, . . . , true, . . .). X when B is the flow whose clock tick when B
is true and its values are equal to those of X at these instants.

• "current" operator is used to get the current value which is computed at the
last clock tick of the flow. If Y = X when B is a flow, then current(Y) is a flow
having the same clock as B and whose value at a given clock’s tick is the value
taken by X at the last clock’s tick when B was true.

i 1 2 3 4 5 . . .
b true true false false true . . .

pre(i) nil 1 2 3 4 . . .
x = 0 -> pre (i) 0 1 2 3 4 . . .

y = x when b 0 1 4 . . .
o = current(y) 0 1 1 1 4 . . .

Table 2.1 Lustre program behaviour.

The Lustre program behaviour is depicted in table 2.1. The flow value is given
at clock’s tick. The node output (o) is computed according to the inputs (i,b). x
and y are two local (intermediate) variables. x = 0 -> pre (i) equation sets x to 0
initially, and the subsequent x is equal to the value of i at the previous clock’s tick. y
= x when b means that y is present only when b is true and it takes the value of x
at this instant. Finally, the output o is defined as the current value of y when it was
available.

Due to the complexity of high-performance applications and to the intrinsic combi-
natorics of synchronous execution, multiple clock domains have to be considered at
the application level. This is the case of a single system with multiple input/output
associated with several real-time clocks. In this context, we focussing our study on
modelling multi-periodic systems. In the following part, we introduce two synchronous
languages dedicated to model multi-periodic systems.

Lucy-n

Synchronous languages such as Lustre [56] or Lucid Synchrone [103] define a restricted
class of Kahn Process Networks which can be executed without buffers. For some appli-
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cations (real-time streaming applications), synchrony condition forces the programmer
to implement manually complex buffers, which is very error-prone. In order to avoid
this issue, Cohen et al. [27] generalized the synchronous approach by introducing the
n-synchronous approach. This latter is based on defining a relaxed clock-equivalence.
Communication between n-synchronous streams is implemented with a buffer of size n.
Accordingly, quantitative information about clocks can be revealed so that the compiler
can decide whether it is possible to buffer a stream into another or not.

Based on the n-synchronous approach, Mandel et al. [89] introduced Lucy-n an
extension of Lustre with a build-in buffer operator. The purpose of this language is to
relax synchrony constraints while ensuring determinism and execution in bounded time
and memory. Lucy-n handles the communication between processes of different rates
through the buffers. A clock analysis is used to determine where finite buffers must be
introduced into the data flow graph. Finally, clocks and buffer sizes are computed by
the compiler.

In this thesis, tasks parameters are extracted from the real-time application itself.
In addition, communication between two periodic tasks are modeled using an non-flow-
preserving semantics.

Prelude

Prelude [42, 41] is a real-time programming language inspired by Lustre [56]. It focuses
on the real-time aspects of multi-periodic systems. Predule is an integration language
that assembles local mono-periodic programs into a globally multi-periodic system.

A program consists of a set of equations, structured into nodes. Real-time constraints
representing the environment requirements are specified either on nodes’ inputs/outputs
(e.g. periods, deadlines) or on nodes (worst-case execution time). Equations of a
node define its output flows according to its input flows. In order to manage the
communication between nodes with different rates, transition operators are added
to the synchronous data flow model. These operators are formally defined using
strictly periodic clocks. They accelerate, decelerate, or offset flows. Therefore, they
allow the definition of communication patterns provided by the user. The transition
operators in Prelude allow the oversampling data sent from lower frequency tasks and
under-sampling data sent from higher frequency tasks. Consequently, communications
between nodes are non-flow-preserving (quasi-synchrony approach [23]).

The compiler translates a Prelude program into a set of communicating periodic
tasks that respect the semantics of the original program. The tasks set is implemented
as concurrent “C” threads that can be executed on a standard real-time operating
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system. In case of a mono-processor platform [43], Prelude compiler implements
deterministic communications between tasks without synchronization mechanisms. In
order to establish these communications, the compiler ensures that the producer write
before the consumer reads. In addition, it prevents a new execution of the producer
to overwrite the value of its previous execution, if this latter is still required by other
executions. Tasks parameters (release dates and deadlines) were adjusted in order to
be scheduled on a mono-processor using Earliest Deadline First policy [85].

Our approach differs from [42, 41] in the following points: we characterize the
systems behavior using a temporal approach (a timed model), in order to model the
communications of multi-periodic systems. In addition, we tackle the mono-processor
scheduling problem for applications modeled as non-preemptive strictly periodic tasks.
Unfortunately, it has been proven [45] that the schedulability conditions for preemptive
scheduling become, at best, necessary conditions for the non-preemptive case.

2.3.4 Oasis

Based on Time-Triggered Approach [77], Oasis [24, 87] is a framework dedicated to
model and implement safety-critical real-time systems. An Oasis application is defined
as a set of parallel communicating tasks called agents. Each agent is an autonomous
running entity composed of a finite number of basic processing operations.

An Oasis application is implemented using an extension of “C” programming
language, denoted by “ΨC”. This language allows the tasks specification as well as
their temporal requirements and interfaces. Each task t (agent) is characterized by
a real-time clock H symbolizing the physical moments at which the (input/output)
data can be observed. Clocks tasks are computed according to a global (smallest)
clock which include all the observable moments of the system. Each basic processing is
associated with a time interval defining its earliest start time (release date) and its
latest end time (deadline). This latter is also the release date of the next processing.
Such specific temporal dates are called temporal synchronization points.

There are two communication mechanisms in the Oasis model. The first one is
shared variables (temporal variables) defined as real-time data flows. Variables can be
shared implicitly between tasks and their past values of can be read by any task that
needs it. Temporal variables modifications are only made visible at synchronization
points. The second mechanism for data communication is explicit message passing.
Each message defines a visibility date specified by the emitting task. In fact, the
message can be observed by the receiving task from this date. Moreover, messages are
stored, according to their visibility, in queues that belong to the receiving task.
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Our communication model is similar the temporal variable mechanism in the
sense that data is available at the emitting task deadline and can only consumed
(received) at release date of the receiving task. However, in our model the release
dates and the deadlines of successive executions do not necessary coincide. In addition,
communications between the tasks executions is modeled, in a deterministic way, using
a Synchronous Data Flow Graph whose size is equal to the application size.

2.3.5 Matlab/Simulink

Simulink [67] is a high-level modelling language developed by Mathworks. It is a
specification and simulation tool widely used in the industrial field. Simulink models
an application as a set of functional blocks (or Synchronous Block Diagrams) connected
by signals. Each block is characterized by a set of input/output signals and an internal
state. Each block output depends on its inputs and/or on its state. However, the block
state depends only on the inputs of the block. A Simulink block transforms its inputs
to outputs at a rate corresponding to its sample time. The block sample time indicates
when the block will be executed during simulation. In other word, it indicates when
the block internal state is updated and its outputs are computed. This sample time
can be periodic or continuous. A periodic block is activated at time steps multiple of
its period. Multi-periodic systems are modelled by a Simulink block diagram whose
links defined the data transfer mechanisms between blocks.

In [76], we introduce an approach that models formally the synchronous semantic
of multi-periodic Simulink systems using Synchronous Data Flow Graph. We proved
that communication links between two periodic Simulink blocks can be modeled by a
Synchronous Data Flow graph buffer. Our approach is based on a formal equivalence
between the data dependencies imposed by the communication mechanisms in Simulink
and the precedence constraints of a Synchronous Data Flow Graph. This approach
allows multi/many-core implementation analysis since the resulting graph has the same
size as the original Simulink system.

2.3.6 Architecture Description Language

An architecture description language (ADL) provides a high level of abstraction. The
description may cover software features such as processes, threads and data as well
as hardware component such as processors, memory, and input/output devices. This
language focuses on describing the interaction between high level components of a
system. The development process of a complex system, such as control/command
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application, can be supported by such approach. The software engineering community
uses ADLs in order to describe the software architectures. ADLs advantages are:

- Providing a formal representation of architectures.

- Both human and machines can apprehend their designs.

However, ADLs have a major drawback. There is no universal agreement on what
ADLs should represent, especially when it is about the system behaviour.

In the sequel, we describe two languages dedicated to model multi-periodic systems.

Architecture Analysis and Design Language

Architecture Analysis and Design Language (AADL) [40] is used to model the software
and hardware architecture of a real-time embedded system. An AADL design consists
of a set of components interacting through interfaces. Components can be separated
into three categories: application software (process, thread, etc.), execution platform
(hardware) or composite components (composition of other components).

In AADL, user can specify a set of properties and extend them in order to fulfil
his own requirement. For instance, a variety of execution properties can be assigned
to threads, including timing (such as worst case execution times), dispatch protocols
(such as aperiodic, periodic), memory size, etc.

Interactions among components are represented through connections defined be-
tween interface elements. Communication mechanisms can either be immediate (be-
tween simultaneous dispatches of the communicating threads) or delayed (from the
current dispatch of the sender to the next dispatch of the receiver). Immediate com-
munications impose a precedence order from the data sender to the receiver. However,
in delayed communications, data are available to a receiving thread is that value
produced at the most recent deadline of the emitting thread. Immediate and delayed
communications can also be established between threads of different periods.

The AADL approach allows to model multi-periodic systems with a high-level of
abstraction. The main restriction of this approach is that it provides a limited choice of
communication schemes. However, our approach allows the definition of several (user-
provided) communication schemes, while relying on the solid mathematical background
of the SDFGs.

GIOTTO

Giotto [62] is a time-triggered Architecture Description Language designed to implement
real-time systems. These latter can be executed in a distributed environment. A Giotto
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program allows to specify the possible interactions systems’ components and their
environment.

A Giotto program is composed of four major concepts:

- Tasks: Giotto tasks are periodic. They are executed at regularly spaced points
in time. They express calls to functions and they can have parameters defined
by input and output ports.

- Ports: They allow the communication between a system and its environment.
There are three types of ports: input, output and private. Private ports are used
to communicate between tasks.

- Modes: They represent the major elements of a Giotto program. Giotto can only
be in one mode at a certain instant. A mode consists of a period, an output set,
actuators update, tasks execution and a set of switch modes.

- Drivers: They are functions that provide values for the input ports from sensors
and mode ports. Drivers can be guarded: the guard of a driver is a predicate
on sensor and mode ports. In other words, a task is executed only if the driver
guard is true. Otherwise, the task execution is skipped.

A Giotto program consists of a set of modes. Each mode repeats the execution of a
fixed set of tasks. These tasks are multi-periodic: each mode has a period P and each
task has a frequency f , thus the task period is given by P

f .

Data produced by a task are available only at the end of its period. Conversely,
when a task is executed it consumes only the last inputs’ values, which is produced at
the beginning of its period. This communication implies significant latencies between
input data and the corresponding output one. However, our communication model
considers that the data are available at the task deadline instead of the end of the task
period (Di ≤ Ti).

2.4 Scheduling real-time system
Real-time scheduling problem consists in defining the tasks’ execution order on pro-
cessors of a given architecture. In real-time systems, tasks are subject to temporal
constraints and possibly other constraints. The scheduling purpose is to set a start
(preemption/recovery) date for each task execution in order to respect the system
constraints.
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A scheduler provides a policy for ordering the tasks executions on processors
according to some predefined criteria. A scheduler is said to be optimal with respect
to a given class of schedulers if and only if it generates a valid schedule for any feasible
task set in this class [45]. In other words, a scheduling algorithm is said to be optimal
regarding a system and a task model if it can schedule all tasks’ sets that comply with
the task model and are feasible on the system [33]. We distinguish several scheduling
classes:

Offline and online scheduling

A scheduling is offline if all the decisions are made at compile-time (before the applica-
tion execution). A table is generated containing the scheduling sequence that will be
repeated infinitely during run-time. In order to be efficient, this approach requires a
priori knowledge of all tasks parameters. Therefore, this approach is workable only
if all the tasks are actually periodic. This approach is static and does not adapt to
environment changes. However, offline scheduling is often the only way to predict
whether temporal constraints are satisfied or not in a complex real-time system. As
the scheduling is offline, the use of exact algorithms is possible even if these methods
are very time consuming.

A scheduling is online if decisions are made during the runtime of the system. At
each moment of the system life time, the scheduling algorithm is able to process tasks
that have not been previously activated using the task parameters specific to this
moment. This makes online scheduling flexible and able to adapt to environment
changes. In this case, the use of effective heuristics is preferred to that of optimal
algorithms.

Independent/dependent tasks Scheduling

The scheduling policy is divided into dependent and independent tasks scheduling.
Tasks whose execution is not dependent upon other tasks’ executions are termed
independent tasks. These latter have no dependencies among the tasks and have
no precedence order to be followed during scheduling. In this case, we talk about
independent tasks scheduling.

Given a real-time system, dependency between tasks ensures that the tasks are
executed in some order. Executing a dependent task may require the availability of
data provided by other tasks of the system. Therefore, this task can only be schedule
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after the compilation of its predecessors. The relationship between independent tasks
is typically described by a directed graph called precedence or communication graph.

Preemptive and non-preemptive scheduling

A scheduling is called preemptive if the task’s execution can be suspended and resumed
later on without affecting its behaviour, except by increasing its elapse time. A task is
typically suspended by an other task with higher priority, when this latter becomes
ready to be executed. Additional cost caused by the preemption may not be negligible
compared to the tasks execution and communication times. Moreover, the system may
include critical sections where preemption is not allowed.

In contrast, a non-preemptive scheduler does not suspend tasks. When a task is
selected to be executed, it runs until the end of its execution. In this case, a higher
priority task cannot interrupt the execution of a lower priority task even when it becomes
ready to be executed. Compared to preemptive scheduling, non-preemptive algorithms
are easy to implement and have a low runtime overhead. The time consumption of
each task in the system can be easily characterized and predicted [65]. Even though
the non-preemptive scheduling has been proven to be NP-Hard in strong sense [80],
this type of scheduling is widely used in industrial applications such as cell phone
devices [100] and mobile robotics [101].

Mono-processor and Multi-processor scheduling

Designing real-time systems is influenced by the hardware architecture on which the
application may run. It designates the physical resources needed to control the process.
This architecture is composed of processors, input / output cards, memories, networks,
etc. According to the processors number, we distinguish two scheduling problems:

- Mono-processor scheduling: All the system tasks are executed by a single proces-
sor.

- Multi-processor scheduling: In order to be executed, the application’s tasks are
assigned to n processors sharing a central memory.

In the following section, we formulate the scheduling problem studied in the thesis.
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2.5 Problem 3: Scheduling strictly multi-periodic
system with communication constraints

Nowadays, real-time embedded systems are becoming increasingly complex. Conse-
quently, these systems require additionally Real-Time Operating Systems (RTOS in
short) to manage concurrent tasks and critical resources. Most RTOS implement
real-time dynamic scheduling strategies such as Rate Monotonic, Earliest Deadline
First and so on. The real-time applications are modeled as a set of periodic tasks. Each
task is characterized by a set of parameters such as period, release date, deadline and so
on. Several schedulability conditions have been provided by the real-time community.
These conditions verify, prior to the implementation phase, whether a set of tasks will
meet their deadlines for a given scheduling strategy and platform.

Several studies addressed the preemptive scheduling problem of periodic tasks set.
However, much less attention was given to the non-preemptive one. In fact, preemptive
scheduling has a good task responsiveness, however it increases the resource utilization
rate compared to non-preemptive scheduling. Nonetheless, there exists several cases
where non-preemptive scheduling is preferable. For instance, the overhead generated by
preemption is not always negligible compared to task execution time and inter-processor
communication. Non-preemptive scheduling on a uniprocessor guarantees exclusive
access to shared resources and data as well as eliminating the need for synchronization
and associated overhead. On the other hand, many industrial applications (e.g. avionic
applications [1]) are modeled as a set of strictly periodic tasks. This strict periodicity is
usually essential to avoid problems arising form input and output jitters. For example,
input jitter can cause a data loss from sensors. Output jitter may lead to performance
degradation of the systems, as its negligence can be a source of instability.

On the other hand, communication within multi-periodic systems is more and more
indispensable. Due to the tasks strict deadlines that must be met, communications
between the tasks executions are implemented in a completely deterministic manner.
In this context, the third problem we address in this thesis is:

How to schedule on mono-processor a set of strictly periodic tasks, as-
suming that these tasks communicate with each other and can not be pre-
empted?

We detail in chapter 4 the state of the art regarding this scheduling problem.
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2.6 Conclusion
In this chapter, we introduced the context of this thesis. We presented an overview of
real-time systems and their characteristics. We have formulated the two first problems
that we studied in this thesis: modeling communications within multi-periodic systems
and evaluating their latencies. In addition, we have reviewed several existing approaches
regarding multi-periodic systems design. The novelty of our approach consists in using
Synchronous Data Flow Graphs for modeling communications within multi-periodic
systems in a deterministic way. Afterwards, we have introduced the basic notions
of real-time scheduling. Finally, we formulated the third problem studied in this
thesis: mono-processor scheduling of non-preemtive strictly periodic set of tasks with
communication constraints.

The following chapter introduces an overview of data flow models. Moreover, it
introduces notions and transformations related to the Synchronous Data Flow Graphs.



Chapter 3

Data Flow models

The emergence of microelectronics and modern calculators led to the development of
increasingly accurate models. These models seek to formally describe the notion of
parallel and distributed computing. Kahn Process Network is one of the first attempts
which models an application using First In First Out queues between the application
sub-parts. However, this model is too permissive to allow an algorithmic prediction of
the application performances. Nowadays, Synchronous Data Flow graph is a widely
used model which provides a compromise between the application expressiveness and
analyse.

This chapter provides an overview of data flow models and introduces important
notion concerning them. Section 3.1 presents an overview of data flow models. Section
3.2 introduces notions and transformations related to Synchronous Data Flow Graph
model. Section 3.3 concludes the chapter.

3.1 Data Flow Graphs
The data flow model is inspired from computation graphs and Kahn Process Networks
(KPN). This model is based on a graphical representation of programs and architectures.
In the model’s original definition [34, 32], the graph vertices represent the elementary
operations of the computer program and the graph edges between two vertices model
the data dependencies between two operations. The program’s initial conditions are
modeled by adding tokens on the graph edges. In Denis’ model [34], an operation
which is represented by a graph vertex, can be executed whenever data are available on
all its inputs. When an operation is executed, it consumes a token on each input edge
and produces a token on each output edge. The data flow representation is dedicated
to computer programs, multi-processors architecture and parallel compilation.
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In the sequel, we present data flow models that are frequently used for embedded
systems design. These models are: Kahn Process Network, Computation Graph,
Synchronous Data Flow Graph and Cyclo-Static Data Flow Graph.

3.1.1 Kahn Process Network

We start by presenting Kahn Process Network (KPN in short) [46] since it is one of
the most general data flow model. KPN is a data flow model based on a graphical
description. It describes an application using a directed graph. the vertices symbolize
the application sub-sections (processes). During the application execution, processes
communicate through communication channels. These channels are unbounded FIFO
(First In First Out) buffers which temporarily store data. The input process can
exclusively write into the buffer and the output process can exclusively read from
the buffer. Reading from an empty buffer is blocking. In fact, when a process starts
reading from a buffer, its execution is suspended until the data arrival (it must wait
for the data availability before resuming its execution). The process cannot verify the
presence of data before its execution. In addition, the processes are not reentrant.
This means when a process starts executing, it must finish before starting an other
execution.

ti tj. . . . . .

Fig. 3.1 Example of Kahn Processor Network.

The Kahn Process Network is a deterministic model. Indeed, the output data of
the KNP depend only on the input data. This output value is neither influenced by
the processes execution times and their executions order nor by the communication
delays between them. Moreover, the semantic of this model does not allow the buffer
sizing. In order to compensate this issue, the buffer has infinite size. Thus, this model
is useful to describe complex applications. However, it is unable to predict the system
performances.

3.1.2 Computation Graph

Computation graphs [69] (CG in short) are one of the first static data flow model. Karp
and Miller defined the CG in order to propose an alternative to sequential execution
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model. As the Kahn Process Network, an application (system) is represented by
directed graph. The graph nodes model the tasks (or sub-tasks) of an application. The
graph arcs represent the data exchange between these tasks. Each arc corresponds
to an unbounded FIFO (First In First Out) buffer connecting an input task to an
output one. At the end of the input task execution, a fixed amount of data is produced
and stored temporarily in the buffer. According to a fixed threshold, these data are
subsequently consumed from the buffer at the beginning of the output task execution.
Each task activation depends only on the availability of a sufficient amount of data on
all of its input arcs. In addition, each buffer may contain an initial amount of data.

ti

3
tj

7 : 4
. . . . . . 2

Fig. 3.2 Example of Computation Graph.

In the sequel, we referred data as tokens. Figure 3.2 represents a Computation
Graph consisting of two tasks ti and tj connected by a buffer a = (ti, tj). The initial
amount of tokens is equal to 2. Each execution of ti produces 3 tokens in the buffer a.
In order to be able to execute, tj must wait for the availability of 7 tokens in the buffer,
since the required data threshold is equal to 7. At the beginning of its execution, tj

consumes 4 tokens from the buffer a. Note that the data threshold must be greater or
equal than the amount of tokens consumed by tj .

Some applications are represented using the Computations graphs model which
highlights the parallelism between their different parts. Karp and Miller [69] show that
the execution of a program modeled by a CG is deterministic (static). It is possible
to study the program behaviour even without its execution. Accordingly, several
fundamental problems become decidable such as checking the application liveliness
(absence of deadlock).

3.1.3 Synchronous Data Flow Graph

The “Synchronous Data Flow Graphs” (SDFG in short) are a formalism introduced
and studied by Lee and Messerchmidtt [83, 84] in order to model the communications
within an embedded applications. They are defined by a set of tasks exchanging
data using FIFO queues. A SDFG is represented by an oriented graph G = (T ,A).
SDFGs can be considered as a particular case of Computation Graphs where the data
thresholds of the buffers are equal to the consumption rates.
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A Synchronous Data Flow Graph is defined as follows:

– Each node ti ∈ T corresponds to a task. Nodes can be executed infinity of times.

– Each arc a = (ti, tj) corresponds to a buffer formed by an unbounded FIFO queue
connecting an input task ti to an output task tj .

– A buffer may contain data which are referred as tokens. The initial amount
of tokens in a buffer is expressed by M0(a). This notation is also called initial
marking.

At the beginning of their executions, tasks consume tokens from their inputs. Further-
more, these tasks produce tokens in their outputs at the end of their executions.

– ina is the production rate which corresponds to the amount of tokens produced
in the buffer a at each execution of the input task ti.

– outa is the consumption rate which corresponds to the amount of tokens consumed
from the buffer a at each execution of the output task tj .

An application modeled by a consistent SDFG can be always implemented. Provided
that SDFG’ tasks take finite time and finite memory in order to execute, the implemen-
tation will also take finite time and finite memory. Thus, an application modeled with
a SDFG can be executed (infinitely) in a periodic way without requiring additional
resources. This formalism suits well the streaming applications such as video encoders
and decoders such as the H263 in [112]. In addition, SDFG formalisms can be used in
some academics tools [115, 7, 51] or industrial ones [52] in order to map an application
on a many-core architecture.

ti

2
tj

5
. . . . . . 3

Fig. 3.3 A simple example of Synchronous Data Flow Graph.

Figure 3.3 illustrates a buffer a = (ti, tj). The number of initial tokens in the buffer
is equal to 3. At the end of each execution of ti, 2 tokens are produced and stored
temporarily in the buffer a. Task tj cannot be executed unless the number of tokens in
the buffer is at least equal to 5. Then, 5 tokens will be consumed at the beginning of
the tj execution .
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Homogeneous Synchronous Data Flow Graph

There exists a particular case of Synchronous Data Flow Graph named Homogeneous
Synchronous Data Flow Graphs (HSDFG in short). A Homogeneous SDFG is a SDFG
where the production and consumption rates are equal ina = outa. By convention, we
note it by

∀a ∈ A, ina = outa = 1.

3.1.4 Cyclo-Static Data Flow Graph

“Cyclo-Static Data Flow Graph” (CSDFG in short) [17] is an extension of SDFG. In
this model, the production and consumption rates are decomposed into phases. The
amount of tokens consumed and produced by a task varies from one execution to the
successive one in a cyclic pattern. These rates are represented as a vector.

Example 3.1.1 Consider a buffer a = (ti, tj). Denote by outa(kj) the quantity of
tokens consumed during the kjth execution of the task tj with kj ∈ {1, . . . ,ϕ(tj)}.
Similarly, denote by ina(ki) the quantity of tokens produced during the kith execution
of the task ti with ki ∈ {1, . . . ,ϕ(ti)}.

ti

[3,4,2]

tj

[1,2]
. . . . . . 2

Fig. 3.4 An example of a Cyclo-Static Data Flow Graph.

As depicted in Figure 3.4, the task ti will produce 3 tokens at the end of its first
execution. Then, it produces 4 tokens after its second execution. Finally, it produces
2 tokens after its third execution. This sequence of ϕ(ti) = 3 executions is called an
iteration. Once this iteration is over, we restart from the beginning.

Denote by ia the total amount of data produced in the buffer a after an iteration
of its input task and denote by oa the total amount of data consumed from the buffer
a after an iteration of its output task.

ia =
ϕ(ti)∑
k=1

ina(k) and oa =
ϕ(tj)∑
k=1

outa(k)
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3.2 Synchronous Data Flow Graph Characteristics
and transformations

Several tests and transformations can be used to study the Synchronous Data Flow
model. These transformations have different complexities. In the sequel, we present
some essential transformations to our study such as expansion and repetition vector
computation.

3.2.1 Precedence relations

Consider the SDFG G = (T ,A), for each task ti ∈ T , we denote by tνi
i the νith execution

of ti where νi is a strictly positive integer.
In the SDFG formalism, the task execution is conditioned only by the availability

of sufficient amount of tokens on its inputs. For a buffer a = (ti, tj) ∈A with M0(a) as
initial marking, the executions of tj may require the presence of data produced by ti.
In this case, the buffer a induces a set of precedence constraints between the executions
of ti and tj . We say that there exists a precedence relation between the νith execution
of tj and the νjth execution of ti if and only if:

• Condition 1: t
νj

j can be executed after tνi
i .

• Condition 2: t
νj

j can not be executed before tνi
i .

After the νith execution of ti, νi · ina tokens are added to the buffer a. On the other
hand, at the beginning of the νjth execution of tj , νj ·outa tokens are consumed from
the buffer. The resulting marking of these executions is equal to:

M(a) = M0(a)+νi · ina−νj ·outa (3.1)

In the general case, Munier [96] defines a strict precedence relationship between the
executions of adjacent tasks. Consider a SDFG G = (T ,A). Let a = (ti, tj) be a buffer
with M0(a) as initial marking. Let (νi,νj) be a pair of strictly positive integers. We say
that there exists a precedence relation between tνi

i and t
νj

j if the following conditions
are met:

• Condition 1: t
νj

j can be executed after tνi
i . This condition is equivalent to:

M0(a)+νi · ina−νj ·outa ≥ 0.
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• Condition 2: t
νj−1
j can be executed before tνi

i , while t
νj

j cannot be executed before
tνi
i . This condition is equivalent to:

ina > M0(a)+(νi−1) · ina− (νj−1) ·outa ≥ 0.

By combining these two inequalities, Munier [96] obtained the following theorem:

Theorem 3.2.1 Let a = (ti, tj) be a buffer with M0(a) as initial marking. Let (νi,νj)
be a couple of strictly positive integers. There is a precedence constraint between the
νith execution of ti and the νjth execution of tj if and only if:

ina > M0(a)+νi · ina−νj ·outa ≥max{0, ina−outa}. (3.2)

In the remainder of this manuscript, we use the term “precedence constraint” to
refer to a strict precedence constraint.

Example 3.2.1 Consider the SDFG of Figure 3.3. There is a precedence constraint
between the executions t4

i and t2
j induced by the buffer a. Indeed, after the execution

of t4
i , 3 + 4×2 = 11 tokens are produced in the buffer a. Then, after the execution

of t2
j , 2×5 = 10 tokens are consumed from the buffer. Therefore, t2

j can be executed
after t4

i (Condition 1).
After the execution of t3

i , 3+3×2 = 8 tokens are produced in the buffer a. However,
in order to execute t1

j , 1×5 = 5 tokens are required. Therefore, t1
j can be executed

before t4
i , while, t2

j cannot be executed before t4
i since there are not enough tokens in

the buffer (Condition 2).

Relation between the tasks executions’ indexes

Consider a SDFG G = (T ,A). Let a = (ti, tj) be a buffer with M0(a) as its initial
marking. Let (νi,νj) be a pair of strictly positive integers such that there exists a
precedence constraints between the νith execution of ti and the νjth execution of tj .

Marchetti and Munier [90] establish a relation between the execution indexes of two
adjacent tasks. The following lemma describes this relation in detail.

Lemma 3.2.1 Let a = (ti, tj) be a buffer of a SDFG. Let kmin = max{0,ina−outa}−M0(a)
gcda

and kmax = ina−M0(a)
gcda

−1 be two integer values, with gcda = gcd(ina,outa).
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1. If buffer (a) induces a precedence constraint between the executions tνi
i and t

νj

j

then there exists k ∈ {kmin, . . . ,kmax} such that

ina ·νi−outa ·νj = k ·gcda.

2. Conversely, for any k ∈ {kmin, . . . ,kmax}, there exists an infinite number of
couples (νi,νj) ∈ N∗2 such that ina · νi− outa · νj = k · gcda and the buffer (a)
induces a precedence relationship between the executions tνi

i and t
νj

j

Considering the SDFG example in Figure 3.3, Buffer (a) and its initial marking
induce a precedence relationship between the fourth execution of ti and the second
execution of tj . According to the lemma 3.2.1, there exists an integer value k ∈
{kmin . . .kmax} where kmin = max{0,2−5}−2

1 =−2 and kmax = 2−2
1 −1 =−1 with gcda =

gcd(2,5) = 1. Therefore, the relationship between the execution indexes of t4
i and t2

j is
establish as follows:

ina ·νi−outa ·νj = 2 ·4−5 ·2 = k ·1,

with k ∈ {−2,−1}.

3.2.2 Consistency

The consistency of a SDFG is a necessary condition for the existence of a schedule
with bounded memory [84]. During the system execution, consistency ensures that the
amount of tokens consumed is equal to that produced in each buffer of the SDFG.

Definition 3.2.1 Let G = (T ,A) be a SDFG. For each task ti ∈ T , we define the set
of input arcs A+(ti) and the set of output arcs A−(ti) as follow:

A+(ti) = {a = (tj , ti) ∈ A, tj ∈ T } and A−(ti) = {a = (ti, tj) ∈ A, tj ∈ T }

The topology matrix of a SDFG allows a synthetic description of a system. This
matrix is analogous to the incidence matrix in graph theory. Let us consider a SDFG
G = (T ,A). Its topology matrix ΓG , of size |A|× |T |, is defined in the following way:
∀(a,ti) ∈ A×T ,

ΓG(a,ti) =


ina if a ∈ A−(ti)
−outa if a ∈ A+(ti)
0 Otherwise

.
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Each column of ΓG corresponds to a node and each row corresponds to an arc. G
is consistent only when the rank of ΓG is equal to |T |−1.

Fig. 3.5 Cyclic Synchronous Data Flow Graph.

Let us consider the SDFG depicted in Figure 3.5, its topological matrix is equal to:

Γ =


3 −4 0
0 2 −2
−3 0 4


The SDFG consistency can be verified by computing the rank of the topology matrix
which is equal to |T |−1 = 2.

3.2.3 Repetition vector

An other way to check the SDFG consistency is to compute its repetition vector R

[84]. The SDFG’s repetition vector indicates for each task the minimal number of
executions, such that the graph returns to its initial state. Hence, a SDFG is said to
be consistent if its repetition vector exists.

We compute the SDFG repetition vector R by finding a vector with the smallest
strictly positive integer entries which satisfies the following equation:

ΓG ·RT = 0.

We note Ri the repetition factor of a task ti ∈ T . In order to compute the SDFG’s
repetition vector, each buffer should verify the following equality:

∀a = (ti, tj) ∈ A, outa ·Ri = ina ·Rj .



40 Data Flow models

Let’s consider the previous SDFG represented in Figure 3.5. Its repetition vector
can be computed using the following system:

4 ·RB = 3 ·RA

3 ·RA = 4 ·RC

2 ·Rc = 2 ·RB

By solving this system, we can deduce that the SDFG is consistent and its minimal
repetition vector is equal to R = [4,3,3]. The graph reaches its initial state (initial
marking), when A is executed 4 times, while B and C are respectively executed 3
times.

3.2.4 Normalized Synchronous Data Flow graph

The normalization [91] consists on transforming a SDFG into a normalized equivalent
graph where all the arcs values adjacent to a task are equal. This transformation has
no influence on precedence relationships; however it serves to simplify several stages of
analysis. Marchetti and Munier [91] prove that any consistent Synchronous Data Flow
Graph can be normalized in polynomial time.

Definition 3.2.2 Let G = (T ,A) be a SDFG. A task ti ∈ T is normalized, if there is
a strictly positive integer zi ∈ N∗ such that

∀a ∈ A−(ti), ina = zi

∀a ∈ A+(ti), outa = zi.

Definition 3.2.3 A SDFG G = (T ,A) is normalized if each task ti ∈ T is normalized.
Normalizing G consists on finding two strictly positive integer vectors z = (z1, . . . , z|T |)
and µ = (µ1, . . . ,µ|A|) that verify the following equation system:

∀a ∈ A−(ti), µa · ina = zi

∀a ∈ A+(ti), µa ·outa = zi.

In order to validate this transformation, the initial marking of each SDFG buffer must
be multiplied by the corresponding factor as follows:

∀a ∈ A, M0(a) ·µa
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(a) Unnormalized SDFG. (b) Equivalent normalized SDFG.

Fig. 3.6 Example of Synchronous Data Flow Graph normalisation.

The normalization example shown in Figure 3.6b is obtained by solving the following
equation system:

zA = 3 ·µAB = 2 ·µAD zB = 4 ·µAB = 1 ·µBC

zc = 5 ·µBC = 20 ·µDC zD = 2 ·µAD = 3 ·µDC

Since the SDFG of Figure 3.6a is consistent, we can deduce the existence of a
solution before solving the equation system. A minimal solution of this system is
equal to µ = (µAB,µAD,µBC ,µDC) = (2,3,8,2) and z = (6,8,40,6). Thus, the initial
marking of each buffer is equal to M0(aAB) = 20, M0(aBC) = 40, M0(aDC) = 0 and
M0(aAD) = 9.

Normalization is an analytical tool that has been successfully used in the analysis
SDFG liveliness conditions. In our study, we only deal with consistent and normalized
SDFG.

3.2.5 Expansion

Synchronous Data Flow graphs may be analysed by transforming them into an equiv-
alent Homogeneous Synchronous Data Flow Graph. HSDFGs are particular class of
SDFGs where all the production and consumption rates are equal. Efficient analysis
technique have been developed for this class of graphs. Most of these analysis which
are applied to HSDFGs may be applied to the original graphs. For example, each
valid schedule for the equivalent HSDFG is a valid schedule for the original SDFG. In
contrast, the disadvantage of this transformation is that the size of the resulting graph
(HSDFG) can increase, in the worst case, exponentially compared to the size of the
SDFGs.
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(a) An example of a SDFG.
(b) Equivalent Homoge-
neous SDFG.

Fig. 3.7 Example of a SDFG transformation into equivalent HSDFG using the technique
introduced by Sih and Lee [108].

Based on the consistency [84], Sih and Lee [108] defined a SDFG transformation
into an equivalent HSDFG. Their approach consists on duplicating the SDFG’s tasks ac-
cording to their repetition factors. In order to ensure the precedences relations, arcs are
added according to the tasks production. In other words, the HSDFG arcs number corre-
sponds to the number of tokens produced in the SDFG’s buffers. Figure 3.7b illustrates
the equivalent HSDFG resulting from the transformation of the SDFG depicted in Fig-
ure 3.7a. The equivalent HSDFG consists of 5 duplicates (tasks) connected by 9 buffers.

Munier [96] introduces the expansion, a transformation which associates to each
SDFG buffer a = (ti, tj) an equivalent HSDFG. Precedence constraints between the
executions of ti and tj are fulfilled by adding min(Ri,Rj) arcs to the equivalent HSDFG,
where Ri and Rj are respectively the repetition factor of ti and tj . The next part of
this section explains in detail the different steps of this transformation.

Let G = (T ,A) be a SDFG. Let a = (ti, tj) be a buffer with M0(a) its initial marking
and R = (Ri,Rj) its repetition vector. Let (νi,νj) be a pair of strictly positive integer
such that it exists a precedence constraint between tνi

i and t
νj

j . Hence, νi and νj satisfy
the following equation

ina > M0(a)+νi · ina−νj ·outa ≥max{0, ina−outa}.

On the other hand, Ri and Rj are the tasks’ repetition factors. This means that
Ri · ina = Rj ·outa. Hence,
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ina > M0(a)+(νi +Ri) · ina− (νj +Rj) ·outa ≥max{0, ina−outa}.

This inequalities implies that there is an infinite set of precedence constraints which
are repeated every iteration. An iteration means a phase in which tasks ti and tj are
executed respectively Ri and Rj times.

The underlying idea of the expansion, is to represent the infinite set of precedence
constraints induced by the buffer and its initial marking using a finite repetitive
structure, i.e a pattern. This transformation is composed of three steps:

1. Each task ti is replaced by Ri (task repetition factor) tasks denoted by t1
i , . . . , tRi

i .

such that for any k ∈ {1, . . . ,Ri} and α > 0, the αth execution of tk
i corresponds

to the ((α−1) ·Ri +k)th execution of ti. Tasks t1
i , . . . , tRi

i are called duplicates
of ti.

2. For successive executions of each task, a buffer ak = (tki
i , tki+1

i ) is added for
ki ∈ {1, . . . ,Ri−1} with M0(ak) = 0. In addition, aRi

= (tRi
i , t1

i ) is added with
M0(aRi

) = 1.

3. Arcs are added between tνi
i and t

νj

j in the following cases:

• If ina > outa, Ri arcs are added between the executions of ti and tj . The
executions indexes are computed as follows:

∀νi ∈ {1, . . . ,Ri}, νj = ⌊M0(a)+ ina · (νi−1)
outa

⌋+1

• If ina ≤ outa, Rj arcs are added between the executions of ti and tj . The
executions indexes are computed as follows:

∀νj ∈ {1, . . . ,Rj}, νi = ⌈outa ·νj−M0(a)
ina

⌉ with νj >
M0(a)
outa
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(a) An example of a SDFG. (b) Equivalent Homogeneous SDFG.

Fig. 3.8 Example of SDFG transformation into equivalent HSDFG using the expansion.

Figure 3.8b represents the equivalent HSDFG resulting from the expansion of the
SDFG depicted in Figure 3.8a. The SDFG repetition factor is equal to R = (2,3). We
notice that the number of arc which models the precedence constraints between the
executions of ti and tj is equal to min(2,3) = 2.

Marchetti and Munier [90] have proven that the expansion of a SDFG is not
polynomial. The size of the resulting HSDFG is pseudo-polynomial (O(|T | ·max

ti∈T
Ri))

according to the SDFG size. Hence, expansion is an efficient technique for instance
with reasonable average repetition factor.

3.3 Conclusion
This chapter has introduced an overview of static data flow models. Important notions
and transformations were introduced in the context of the SDFG model: precedence
constraints, consistency, repetition vector, normalization and expansion. The sequel of
this thesis addresses only a particular class of normalized SDFG. This particular class
is used for the communication modeling problem of real-time applications, addressed
in Chapter 5.

The next chapter introduces the data flow formalisms dedicated to model a real-time
system and evaluate its latency. In addition, this chapter presents a state of the art on
the scheduling problem of non-preemptive strictly periodic tasks.



Chapter 4

State of art

Modeling stage is essential for designing real-time systems. This procedure provides an
operational representation of the system. Modeling an application using static data
flow graph provides additional informations related to its execution. Thus, it is possible
to evaluate accurately the system performances. On the other hand, these applications
must be (properly) scheduled in order to be executed on a given platform. Schedulers
must take into account several type of constraints such as resource and communication
constraints.

This chapter gives an overview on the state of the art related to this thesis. The
remainder of this chapter is organized as follows. Section 4.1 positions our study with
respect to the state of the art for modeling real-time systems and evaluating their
latencies using data flow formalisms. Section 4.2 compares our approach with some
existing non-preemptive strictly periodic scheduling approaches. Conclusion is given in
Section 4.3.

4.1 Modeling real time systems using data flow for-
malisms

Critical real-time applications are becoming increasingly complex. These applications
are subject to temporal and data constraints. They require a reliable and predictable
implementation, since a mismatch during the system lifetime can be catastrophic.
Therefore, a model is required to represent (in a deterministic way) the communi-
cations between the several parts of a real-time application. This section represents
several studies that have been investigated to study real-time systems using data flow
formalisms.
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Cyclo-Static Data Flow

In [5, 6, 86], the authors consider acyclic CSDFG applications with a single input.
They provide an analytical framework for extracting the timing parameters for the
CSDFG actors. They compute the periodic tasks parameters using an estimation of
the worst-case execution time. They also assume that each read and write has constant
execution time. Each actor of CSDFG were scheduled as an implicit periodic task
where its deadline is equal to its period. In our approach, we modelled cyclic and
acyclic multi-periodic systems with single/multiple input. Moreover, periodic tasks
admit deadlines which are not necessarily equal to their periods.

Affine Data Flow graph

Bouakaz et al. [20] propose an extension of the CSDFG model called Affine Data
Flow graph (ADF in short). This latter is a time-triggered data flow model that
explicitly represents each task execution during a complete iteration of the graph.
Each task is associated with an activation clock and executed at each clock tick. Any
couple clock of ticks in the network can be related by an affine function. Precedence
constraints between the tasks’ executions are respected since the affine functions ensure
the correct order of clock ticks execution. In this context, the authors proposed an
analysis framework to schedule the actors of the ADF graph as periodic tasks. However,
modeling the execution behaviour using the clock ticks and the affine functions delays
the process of finding a feasible schedule. In fact, representing the execution behaviour
with clock ticks implicitly transforms the ADF into an equivalent HSDFG. In contrast,
our approach modeled the communication within a multi-periodic system with a graph
whose size is equal to the number of the system tasks.

Homogeneous Synchronous Data Flow Graph

In [60, 59], Hausmans et al. have presented a temporal analysis for fixed-priority
scheduling. They considered that data flow applications are modelled as cyclic HS-
DFG/SDFGs. They compute an upper bound on the worst-case response time of
each actor. They assume that the data flow graphs have a strictly periodic source
while considering that the other actors have a data-driven operational semantics. Task
timing properties were extracted based on its interference with the set of higher pri-
ority tasks executed on the same platform. This means that the computation of the
timing parameters depends on the set of applications executed on the same platform.
Their approaches differ in how to compute that interference. They used a period and
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jitter characterization [60](difference between best-case and worst-case offsets), an
enabling rate characterization [59] (describing for each time interval the minimum and
maximum number of possible task enabling). Unlike their approach, we modeled the
communications within a multi-rate system independently of the scheduling strategy
or the other applications executed on the same platform.

In [2], Ali et al. proposed an algorithm for extracting the real-time properties
of data flow applications. They extract timing parameters (such as offsets, periods
and deadlines) of data flow applications with timing constraints (such as throughput
and latency). Their approach converts each actor into a periodic arbitrary-deadline
tasks. However, their method can only be applied on data flow applications modeled
as HSDFGs which are less expressive than SDFGs. In addition, transforming a SDFG
into an equivalent HSDFG requires the use of an unfolding process that duplicates
each actor potentially an exponential number of times.

Synchronous Data Flow Graph

Recently, Singh et al. [109] extended the SDFG model in order to incorporate real-time
properties. They associate to each actor a worst-case execution time. Moreover, they
specify to each SDFG a single input and output actors with repetition factors equal to 1.
Each SDFG was also characterized by a period and a relative deadline parameters. In
order to schedule the SDFG upon preemptive uniprocessor, they developed an algorithm
converting any SDFG task into a collection of equivalent 3-parameter sporadic tasks
τi = (Ci,Di,Ti) [94, 10]. These latter have the worst-case computational requirement
exactly equal to the worst-case computational requirement of the SDFG task. In this
thesis, we limit our study to periodic tasks. However, we consider that the real-time
tasks can admit release dates. In addition, we modeled the communications, within a
multi-periodic system using a particular class of SDFGs, without increasing the number
of the system tasks.

4.1.1 Latency evaluation using data flow model

Other authors have modeled real-time applications using data flow graphs in order to
compute their latency.



48 State of art

Processing Graphs Methods

Goddard [48] modeled a real-time data flow application using Processing Graphs
Methods (PGM in short). In PGM, a system is expressed as directed graph where
nodes correspond to processing functions and edges correspond to FIFO queues. Real-
time requirements were verified using the Rate Based Execution (RBE in short) model.
A RBE task t is specified by four parameters (x,y,d,e). The couple (x,y) represents
the rate execution where x is the number of executions during the interval y. A task is
also specified by its deadline d and its execution time e. The latency was measured
as function of the source period. It was bounded according to the sum of the tasks
execution times and the sink deadline. In our approach, the tasks periods are directly
extracted from the real-time application. Hence, latency is computed according to the
parameters of each couple of periodic communicating tasks which is more expressive in
terms of the system’s communications.

Homogeneous Synchronous Data Flow Graph

Moreira et al. [95] studied real-time scheduling of data flow programs using Homo-
geneous SDFG. In this latter, the consumption and production rates are equal to
1. Some tasks were added to the equivalent HSDFG in order to enforce the strictly
periodic behaviour within a self-timed implementation. They defined latency as the
time interval between two events. Latency between periodic tasks were computed only
if their repetition factors are equal. However, our communication model allows to
evaluate the latency between periodic tasks having different repetition factors. Despite
SDFG is known to be convertible into HSDFG, Marcheti and Munier [90] have proven
that this conversion is not polynomial.

In [36, 35], authors proposed an analytical framework for computing the periodic
tasks’ parameters for an application modeled as acyclic CSDFG, so that the tasks
are scheduled in a strictly periodic manner. Accordingly, they compute the latency
between the executions of two dependent tasks . Moreover, they defined the system
latency as an iteration during which each task is executed according to its repetition
factor.

4.1.2 Main difference

Existing techniques [48, 95, 5, 20, 60, 2, 109], transform each actor in a given data flow
into (independent/dependent) real-time task(s). Tasks’ parameters are specified so that
the data flow temporal behavior is correctly reflected. Accordingly, scheduling data
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flow graph is equivalent to schedule the set of real-time tasks. This can be done using
existing analysis frameworks developed for real-time systems. In contrast, our approach
consists in modeling communications within multi-periodic systems. We assume that
the periodic tasks parameters and their communication scheme are user-provided.
We describe how inter-task dependencies (at the job level) can be modeled using a
particular class of SDFG [73]. Consequently, scheduling a multi-periodic system is
equivalent to schedule a SDFG using techniques (methods) that have be developed
within the SDFG community.

4.2 Scheduling strict periodic non-preemptive tasks
A real-time task is considered schedulable if its worst-case response time under a given
scheduling algorithm is less than or equal to its deadline. Consequently, a set of tasks
is schedulable under a given scheduling algorithm if all of its tasks are schedulable.
Real-time scheduling theory yields several schedulability conditions in order to verify
whether a set of tasks is schedulable under a given scheduling algorithm. Given a
system and scheduling algorithm, a schedulability condition is termed sufficient, if
all of the system tasks that are deemed schedulable according to the condition are
in fact schedulable [33]. Similarly, a schedulability test is termed necessary, if all of
the system tasks that are deemed unschedulable according to the condition are in fact
unschedulable [33]. Moreover, a schedulability condition that is both sufficient and
necessary is an exact schedulability condition.

In this section, we present some studies from the literature concerned with scheduling
of applications modeled as real-time periodic tasks. More precisely, we emphasis on
the scheduling problem for non-preemptive strictly periodic tasks. In this case, the
successive executions of each task admit periodic starting dates that are separated by
the task period.

4.2.1 Preemptive uniprocessor schedulability analysis

In this subsection, we present two well-known scheduling algorithms and their schedu-
lability test upon preemptive uniprocessor. These algorithms are Rate Monotonic (RM
in short) and Early Deadline First (EDF in short).
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Rate Monotonic

The RM algorithm [85] is a preemptive scheduling with static priorities that are
assigned to a set of independent periodic tasks according to their rates (periods).
Higher execution priority is given to the task with the smaller period. The RM
algorithm is considered as a fixed-priority algorithm, since the tasks periods are
constant. The sufficient schedulability condition of an implicit-deadline periodic task
set on uniprocessor using RM algorithm can be verified through the processor utilization,
as follows:

Theorem 4.2.1 A set of independent periodic tasks T = {t1, . . . , tn} with implicit-
deadlines is schedulable using RM if

∑
ti∈T

ui ≤ n(2
1
n −1).

Given an implicit-deadline periodic task set, RM is optimal among all fixed-priority
algorithms. In other words, if a fixed-priority algorithm can schedule a set of implicit-
deadline tasks, RM does it as well. However, RM is not optimal on uniprocessor for
non-preemptive periodic tasks.

Early Deadline First

EDF algorithm [85] is a scheduling algorithm that schedules the executions of the
tasks according to their absolute deadlines. Higher execution priority is given to task
execution with earlier deadline. EDF algorithm is optimal for independent implicit-
deadline periodic task set on preemptive uniprocessor. The schedulability condition
can be verified through the processor utilization, as follows:

Theorem 4.2.2 A set of independent tasks T = {t1, . . . , tn} with implicit-deadlines is
schedulable using EDF if and only if

∑
ti∈T

ui ≤ 1.

Baruah et al. [11] provide a sufficient and necessary condition for scheduling a
constrained-deadline periodic tasks using EDF on uniprocessor. However, this schedu-
lability test is very time consuming, since it is know to be co-NP-complete in strong
sense.

In this thesis, we focus our study on scheduling applications modeled as non-
preemptive strictly periodic tasks.
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4.2.2 Scheduling non-preemptive strictly periodic systems

In real-time systems, scheduling of preemptive periodic tasks have been extensively
studied. Many uniprocessor schedulability conditions have been developed for several
preemptive algorithms such as RM and EDF [85]. Goossens et al. [49] studied the
problem of scheduling offset free systems. They propose a schedulability condition on
multi-core platform using EDF algorithm. Their approach has polynomial time com-
plexity. Unfortunately, George et al. [45] proved that the schedulability conditions in
preemptive scheduling become, at best, necessary conditions in the non-preemptive case.

Non-preemptive scheduling problems must be studied since their resolution may offer
advantages in term of schedulability. Several studies considered preemptive scheduling
conditions in order to obtain the conditions for the non-preemptive versions. Taking
into consideration the extra interference time caused by non-preemption, Baruah [9]
followed the similar method in [49] and provided a sufficient schedulability condition
for non-preemptive periodic tasks. Based on the problem windows analysis [8], Guan
et al. [55] studied the problem of global non-preemptive fixed priority scheduling. In
our approach, we consider a set of non-preemptive tasks.

Furthermore, other studies focused on non-preemptive scheduling. Jeffay et al.
[65] showed that non-preemptive scheduling of real-time tasks is an NP-hard problem.
They also derived a necessary and sufficient condition for the non-preemptive Earliest
Deadline First scheduling algorithm (npEDF in short) when tasks are periodic with
arbitrary offsets. Recently, Nasri et al. [97] showed that the latter condition is very
pessimistic in the special case of harmonic tasks. They also studied the non-preemptive
Rate Monotonic (npRM in short) for the same type of tasks and derived a sufficient
condition of schedulability for both npRM and npEDF. The same authors [98] proposed
a scheduling algorithm called “Precausious-RM” or “P-RM”. It is an online algorithm
for scheduling periodic non-preemptive harmonic task set, with linear complexity. A
relaxed algorithm derived from P-RM is also proposed thereafter, called “Lazy P-RM”.
This algorithm improves the performance of P-RM when task execution times are short.
In these works [65, 97, 98], non-preemptive periodic tasks were studied. However,
in this thesis, we consider strictly periodic constraints. In the sequel, we present
some studies from the literature concerned with scheduling of applications modeled as
non-preemptive strictly periodic tasks.
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Scheduling independent non-preemptive strictly periodic tasks

A more particular scheduling problem is the one with non-preemptive strictly periodic
tasks. The non-preemptive scheduling problem is known to be NP-hard computational
complexity [65]. Adding the strict periodicity constraint increases the problem com-
plexity. Korst et al. [80] were the first to study the problem of scheduling a set of
non-preemptive strictly periodic tasks. Their work was motivated by real-time video
signal processing. The authors considered this problem on a minimum number of
processors [79]. They showed that the problem is NP-complete in the strong sense, even
in the case of a single processor, but that it is solvable in polynomial time if the periods
and execution times are divisible. Thus, they proposed an approximation algorithm
based on assigning tasks to processors according to some priority rule. Besides, they
proposed a necessary and sufficient condition for the schedulability of two strictly
periodic tasks. Later, Kermia et al [70] proposed a sufficient schedulability condition
that generalizes the previous condition for a set of tasks. They imposed that the sum
of the tasks execution times is less or equal to the greatest common divisors (GCDs)
of task periods. In [92], Marouf and Sorel proved that this sufficient condition is very
restrictive (pessimistic). They also gave a schedulability condition for implicit-deadline
strictly periodic tasks and proposed an heuristic based on this condition. In contrast,
our approach is not restricted to implicit-deadline tasks.

Eisenbrand et al. [37] considered the problem of scheduling non-preemptive strictly
periodic tasks in order to minimize the number of processors. They studied tasks
with harmonic periods, i.e., every period divides all other periods of greater value.
In this case, they showed that there exists a 2-approximation for the minimization
problem and that this result is tight. The same authors added additional constraints to
the same problem with harmonic tasks and proposed an Integer Linear Programming
(ILP) formulation and primal heuristics [38]. Marouf and Sorel [93] proposed a similar
work and gave a scheduling heuristic. This latter is based on the constraint that the
period of a candidate task has a multiple relationship with the task periods already
scheduled. However, this thesis addresses a more challenging problem which is dealing
with harmonic and non-harmonic periods.

Al-Sheikh et al. [1] used the Mixed Integer Linear Program (MILP) formulation in
order to establish an exact framework for non-preemptive strictly periodic scheduling
problem in Integrated Modular Avionics (IMA) platform. Afterwards, they proposed
a best-response algorithm based on game theory [44]. This algorithm consists in



4.2 Scheduling strict periodic non-preemptive tasks 53

computing the largest possible change for all task execution times. Accordingly, they
determined whether all tasks are schedulable upon a limited number of processors.
Pira and Artigues [102] improved the best-response algorithm using a propagation
mechanism and local optimizations. However, in our study we consider that the user
provides all the tasks parameters.

Chen et al. [26] represented a strictly periodic task by its eigentask, i.e., a task that
has the same period as the original task and an execution time equal to one. Assuming
that a set of tasks is already scheduled on a given processor, they proposed a sufficient
condition to determine whether a new task is schedulable on the same processor. Based
on this condition, they developed a task assignment algorithm to allocate the tasks and
compute an upper bound of the number of required processors . Afterwards, Chen et
al. [25] adopted the idea of eigentask. They used a more efficient method to calculate
the valid scheduling slots of an eigentask. In addition, they developed an heuristic that
assigned the tasks to required processors. In their approach, the tasks priorities were
not considered during the assignment step.

As mentioned previously, several studies [92, 37, 38, 93, 1, 102, 26, 25] investigated
the scheduling problem of independent non-preemptive strictly periodic tasks. These
approaches considered uniprocessor/multiprocessor scheduling problem. Tasks were
assigned to the same processor either with harmonic or non-harmonic periods. However,
none of these approaches considered the scheduling of dependent tasks set. In other
words, these approaches do not take into account the communication constraints
between the tasks executions. In this thesis, we tackle the mono-processor scheduling
problem of strictly periodic tasks subject to communication constraints.

Scheduling dependent non-preemptive strictly periodic tasks

Other authors considered the scheduling problem of dependent non-preemptive strictly
periodic tasks, taking into consideration data exchange (at the job level). Dependency
between the tasks executions were modeled as precedence constraints.

Cucu and Sorel [30] considered the problem of multiprocessor scheduling of strictly
periodic systems with communication requirements. They used a graph-based model
to specify the precedence between the tasks executions through acyclic graphs [29]. In
their approach, a precedence constraint between a pair of tasks (ti, tj) imposes that
the period of ti must be less or equal to that of its successor tj . Communication (data
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transfer) between tasks is only restricted to tasks that are executed at the same rate.
In order to solve the scheduling problem, they proposed an heuristic and compared its
performance to an exact “Branch & Bound” algorithm [82].

Based on the previous work, Kermia et al. [70] proposed a greedy heuristic for
allocating and scheduling non-preemptive dependent strictly periodic systems onto
multi-core platform. Their approach is composed of several algorithms. Assuming
a scheduling frame whose length is equal to the system hyper-period, each task was
duplicated (hp

T ) times, where T is a task period and hp is the hyper-period. Arcs were
added between duplicates in order to represent precedence constraints between the
tasks executions. Duplicates were classified and assigned to processors according to
their periods (in an increasing order). Their assignment favours mapping duplicates
whose periods are equal or multiples on the same processor. Finally, an extension of
the SynDEx heuristic [54] was applied onto the unrolled graph instead of the original
one. Afterwards, the same authors [71] improved their assignment algorithm using a
mixed sort which takes into account both the tasks periods (in an increasing order)
and a priority level. In addition, data transfer can only be occurred between two tasks
having the same or multiple periods. The heuristic performance was compared to an
optimal “Branch and Cut” algorithm [88].

Contrary to the previous works [30, 70, 71], in this thesis, we limit our study
to uniprocessor scheduling problem of strictly priodic communicating tasks. In our
approach, tasks admit release dates and relative deadlines (user-provided). Communica-
tion scheme between the tasks execution is build according to these parameters (release
dates and relative deadlines). Consequently, our framework allows communication
between tasks with arbitrary periods. In order to solve this scheduling, we propose an
exact (optimal) algorithm and three heuristics. These methods are able to schedule
cyclic and acyclic systems on a single processor. Furthermore, our heuristics do not
increase the number of tasks in order to schedule them on the same processor. In other
words, we do not convert our original graph into an equivalent graph that models the
communications between the tasks executions. This transformation is not polynomial
and can be very time consuming [90]. Finally, tasks with non-harmonic periods can be
assigned to the same processor.
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4.3 Conclusion
In recent years, several models have been developed to study data flow graphs from
a real-time point of view. This problem has been studied by researchers from both
(real time and data flow) communities. Conversely to the approaches proposed in the
literature, our approach consists in studying communications within a multi-periodic
system from a data flow point of view.

On the other hand, scheduling applications modeled as non-preemtive strictly
periodic tasks is very challenging, since this problem is known to be NP-complete in
strong sense. Several approaches introduced in the literature considered the scheduling
problem of an independent strictly periodic set of tasks. Unfortunately, only few
authors tackled this scheduling problem with communication (precedence) constraints
between the tasks executions. In order to meet this challenge, we propose in chapter 6
an optimal algorithm and three heuristics that solve the scheduling problem of strictly
periodic systems subject to communication constraints.

The following chapter presents the first contribution of this thesis. This contribution
consists in modeling the communications within a multi-periodic systems and evaluating
their (worst-case) latencies using data flow formalisms.





Chapter 5

Real Time Synchronous Data Flow
Graph (RTSDFG)

Nowadays, real-time applications are invading our daily life. These systems are highly
critical, as a mismatch during the system lifetime can be catastrophic. In this context,
one of the major challenges faced by academic and industrial environments is the effi-
cient use of powerful and complex material, to provide optimal performance (producing
the right outputs for given inputs) and meet the time constraints (producing outputs
at the right time). These systems are usually multi-periodic, since their components
communicate with each other at different rates (this is mainly due to their physical
characteristic). For this reason, a deep analysis of communications between tasks of a
multi-periodic system is required. Moreover, the estimation of parameters in a static
manner, such as evaluating the latency between the system input and its corresponding
outcome, is an important practical issue.

In this chapter, we seek to model the communications within multi-periodic systems
using SDGF formalisms. Section 5.1 is dedicated to define the “Real-Time Synchronous
Data Flow Graph”. This latter describes the communication model within a multi-
periodic system. Computing the latency between two periodic communicating tasks is
developed in section 5.2. Several methods for evaluating the worst case system latency
are explicitly described in Section 5.3. Experimental results of these methods are
represented in Chapter 7. Conclusion is stated in Section 5.4.
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5.1 modeling real time system communications us-
ing RTSDFG

This section shows that the set of communication constraints of a multi-periodic system
can be modeled with a SDFG. In the beginning, we introduce the tasks model given by
Liu and Layland [85]. Then, we define the precedence constraints between two periodic
communicating tasks. Afterwards, we characterize the execution of these two tasks
using a set of linear inequalities. Finally, we demonstrate that the communication
constraints of a multi-periodic system can be modeled with a SDFG. The size of this
latter is equivalent to the related communication graph.

5.1.1 Periodic tasks

We consider a set of tasks based on the model of Liu and Layland [85]. Each task
ti is characterized by an activation period Ti, an execution time Ci (this value is
often evaluated from a worst case analysis of the system), a relative deadline Di,
and eventually a release date (date of the first activation) ri. This implies that the
successive executions of ti, admit periodic release dates and deadlines, where the period
is equal to Ti (see Figure 5.1).

Fig. 5.1 Liu and Layland model

Therefore, the kth execution of ti is executable if and only if its execution start
date sk

i is greater or equal to its release date

sk
i ≥ rk

i

sk
i ≥ ri +(k−1) ·Ti,
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and its execution end date cannot exceed its deadline

sk
i +Ci ≤ ri +(k−1) ·Ti +Di.

5.1.2 Communication constraints

Most of real-time applications requires communication between tasks. This type of
communication happens between an emitting task and a receiving one. The emitting
task produces data that are consumed by the receiving task through a communication
point. However, a receiving task cannot consume a piece of data unless this data has
been sent by the emitting task. Thus, the execution of a receiving task should be
preceded by the execution of an emitting task, which imposes precedence constraints
between some executions.

Communication Scheme

In order to separate the tasks execution model from the communication scheme, we
simplify the execution model of Liu and Layland. Therefore, we seek to increase for
each task its execution time (as big as possible). We assume that each task starts
its execution at its release date and it will be executed until it reaches its deadline.
Thus, the execution start date of a given task and its release date coincide. Hence, the
starting date of any task execution (tk

i ) is equal to

sk
i = ri +(k−1) ·Ti.

In other words, we build our communication scheme by assuming that data are available
at the emitting task deadline. Moreover, these data can only be consumed at the
beginning of the receiving task period. Accordingly, we assume that the execution
time of each task (Ci) is equal to its relative deadline (Di). This assumption is
only considered to define the communication scheme between the tasks
executions. In the general case, this assumption does not prevent Ci to be
smaller.

As depicted in Figure 5.2, the task ti = (ri,Ci,Di,Ti) starts its first execution at
its release date (ri). This task is executed during Ci time units. Moreover, the second
execution of ti starts at ri +Ti such that Ti is the task period.

In order to describe the communication scheme, we consider two periodic commu-
nicating tasks ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj), such that ti is the emitting
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Fig. 5.2 Simplification of Liu and layland’s model

task and tj is the receiving one. Let νi and νj be a pair of strictly positive integers.
There exists a precedence constraint between the νith execution of ti and the νjth
execution of tj if and only if the three following conditions are met:

1. The νjth execution of tj cannot begin before the end of the νith execution of ti,

thus

sνi
i +Ci ≤ s

νj

j

ri +(νi−1) ·Ti +Di ≤ rj +(νj−1) ·Tj (5.1)

2. There is no precedence constraint between the (νi +1)th execution of ti and the
νjth execution of tj , since the νjth execution of tj starts before the end of the
(νi +1)th execution of ti, hence

sνi+1
i +Ci > s

νj

j

ri +νi ·Ti +Di > rj +(νj−1) ·Tj . (5.2)

3. There is no precedence constraint between the νith execution of ti and the
(νj−1)th execution of tj , since the (νj−1)th execution of tj begins before the
end of νith execution of ti, so

sνi
i +Ci > s

νj−1
j

ri +(νi−1) ·Ti +Di > rj +(νj−2) ·Tj . (5.3)

Example 5.1.1 Let us consider ti = (ri,Ci,Di,Ti), tj = (rj ,Cj ,Dj ,Tj) two periodic
communicating tasks. We suppose that Ti = 30, Tj = 40 time units, Ci = Di = 20 time
units, Cj = Dj = 20 time units, and their release dates are null (ri = rj = 0). Figure
5.3 illustrates the precedence constraints between the tasks executions. We notice the
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Fig. 5.3 Example of multi-periodic communication model

existence of a precedence constraint between the first execution of ti and the second
execution of tj . In fact, equation (5.1) is fulfilled since the second execution of tj did
not start before the end of the first execution of ti. Furthermore, we notice the absence
of precedence constraints between t1

i and t1
j on one hand, and between t2

i and t2
j on

the other hand. In both cases, the corresponding execution of tj begins before the end
of ti execution. This means that equation (5.2) and (5.3) are also fulfilled.

The following lemma draws together the three inequalities mentioned before.

Lemma 5.1.1 Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two periodic commu-
nicating tasks, with ti the emitting task and tj the receiving one. Let νi and νj be a
pair of strictly positive integers. There exists a precedence constraint between the νith
execution of ti and the νjth execution of tj if and only if:

Ti ≥ Tj− rj + ri +Di +νi ·Ti−νj ·Tj > max{0,Ti−Tj} (5.4)

Proof: Let us consider the inequalities (5.1), (5.2) and (5.3) which define the prece-
dence constraints between the different executions of two communicating tasks. By
substituting Tj− rj + ri +Di with M, we obtain:

1. Condition 1 is equivalent to:

M+νi ·Ti−νj ·Tj ≤ Ti,

2. Condition 2 is equivalent to:

M+νi ·Ti−νj ·Tj > 0,
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3. Condition 3 is equivalent to:

M+νi ·Ti−νj ·Tj > Ti−Tj .

By combining the three inequalities, we obtain

Ti ≥M+νi ·Ti−νj ·Tj > max{0,Ti−Tj} .

□

Let us Consider the communication scheme illustrated in Figure 5.3. Equation (5.4)
can be written according to the executions indexes (νi and νj):

30≥ 40+20+30 ·νi−40 ·νj > 0

We verify this inequality for the couples (νi,νj) = (1,2) and (3,3) , which corresponds
to the established precedence constraints between t1

i and t2
j and between t3

i and t3
j .

5.1.3 From real time system to RTSDFG model

Based on the communication rules presented in the previous subsection, we prove
in this subsection that the set of communication constraints between two periodic
communicating tasks can be modeled using a SDFG buffer. The buffer production and
consumption rates correspond to the tasks periods and its initial marking is computed
with a close formula according to the tasks parameters. Accordingly, we deduce that
communication constraints of a multi-periodic system can be modeled with a particular
SDFG. The size of the latter is equal to the system communication graph size.

We note gcda the common period of two communicating tasks ti and tj . It is equal
to the greatest common divider of tasks periods, gcda = gcd(Ti,Tj). We assume for
what follows, that all the tasks parameters are integers.

Theorem 5.1.1 Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two periodic tasks
such that ti communicates with tj. The set of communication constraints between the
executions of ti and tj can be modeled by a buffer a = (ti, tj) with zi = Ti, zj = Tj and
M0 (a) = Tj +λ−gcda with λ =

⌈
ri−rj+Di

gcda

⌉
·gcda.

Proof: Let us consider a couple of periodic communicating tasks ti = (ri,Ci,Di,Ti)
and tj = (rj ,Cj ,Dj ,Tj) such that ti is the emitting task and tj the receiving one. Let
(νi,νj) be a pair of strictly positive integers. We assume that there is a precedence
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constraints between the νith execution of ti and the νjth execution of tj . According to
the lemma 5.1.1, νi and νj must verify the equation (5.4):

Ti ≥ Tj− rj + ri +Di +νi ·Ti−νj ·Tj > max{0,Ti−Tj} .

We can notice that all the terms of this inequality are divisible by the common period
(gcda) except the following one: ri− rj + Di. Hence, by substituting ri− rj + Di by
λ =

⌈
ri−rj+Di

gcda

⌉
·gcda, we obtain

Ti ≥ Tj +λ+νi ·Ti−νj ·Tj > max{0,Ti−Tj} .

Consequently, all the terms of this inequality are divisible by gcda. By subtracting
gcda from the second term of this inequality, we obtain

Ti > Tj +λ−gcda +νi ·Ti−νj ·Tj ≥max{0,Ti−Tj} . (5.5)

On the other hand, let a = (ti, tj) be a buffer and M0(a) its initial marking. Let
(νi,νj) be a couple of strictly positive integers. According to Theorem 3.2.1, there
exists a precedence constraint between the νith execution of ti and the νjth execution
of tj if and only if:

zi > M0 (a) + zi ·νi − zj ·νj ≥max{0, zi− zj} . (5.6)

When we compare inequalities (5.5) and (5.6), we deduce that the set of commu-
nication constraints between the executions of ti and tj can be modeled by a buffer
a = (ti, tj) . The buffer production and consumption rates are respectively equal to Ti

and Tj and its initial marking M0(a) is equal to Tj +λ−gcda. □

Let us return to the example illustrated in Figure 5.3, the common period is
equal to gcda = gcd(30,40) = 10 time units. According to Theorem 5.1.1, all the
communication constraints between the tasks executions can be modeled with a buffer
a = (ti, tj). The buffer production and consumption rates are respectively equal to
zi = Ti = 30, zj = Tj = 40 and its initial marking is equal to M0(a) = Tj +λ−gcda =
40+ ⌈0+20

10 ⌉ ·10−10 = 50 (see Figure 5.4).
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Fig. 5.4 The Buffer a = (ti, tj) that models the communication constraints between the
tasks executions of the example illustrated in Figure 5.3.

Corollary 5.1.1 Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two strictly periodic
communicating tasks. Let a = (ti, tj) be a SDFG buffer modeling the communications
between the tasks executions. Let (νi,νj) be a pair of strictly positive integers. Let
sνi

i and s
νj

j be respectively the execution starting dates of tνi
i and t

νj

j . Communication
constraints represented by the buffer a = (ti, tj) are fulfilled, if

∀νi ≥ 1, sνi
i ∈ [ri +(νi−1) ·Ti, ri +Di−Ci +(νi−1) ·Ti] and,

∀νj ≥ 1, s
νj

j ∈ [rj +(νj−1) ·Tj , rj +Dj−Cj +(νj−1) ·Tj ].

Proof: We consider two periodic communicating tasks ti = (ri,Ci,Di,Ti) and tj =
(rj ,Cj ,Dj ,Tj) which communicate according to the communication scheme defined
previously. According to Theorem 5.1.1, there exists a buffer a = (ti, tj) which models
the set of precedence constraints induced by the communications between the executions
of ti and tj . Accordingly, the data are only available at the deadline of the emitting
task and the consumption of these data can only be done at the begin of the receiving
task period. Communications between the tasks executions depend on the release dates
and the deadlines of ti on one hand, and they only depend on the release dates of tj

on the other hand.
We assume that a precedence constraint (induced by the buffer a) exists between

the νith execution of ti and the νjth execution of tj . This means that data are available
at the deadline of tνi

i which is equal to ri +Di + (νi−1) ·Ti. These data are consumed
at the release date of t

νj

j which is equal to rj +(νj−1) ·Tj .

Furthermore, let sνi
i and s

νj

j be respectively the starting dates of tνi
i and t

νj

j

respectively, such that

sνi
i ∈ [ri +(νi−1) ·Ti, ri +Di−Ci +(νi−1) ·Ti]

s
νj

j ∈ [rj +(νj−1) ·Tj , rj +Dj−Cj +(νj−1) ·Tj ]

Consequently, the end of the execution of the emitting task (tνi
i ) cannot exceed its

deadline, since sνi
i ≤ ri + Di−Ci + (νi− 1) ·Ti. Moreover, the receiving task cannot
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begin its execution before its release date, since s
νj

j ≥ rj + (νj − 1) ·Tj . Hence, the
precedence constraint between tνi

i and t
νj

j is fulfilled. In this case, we can deduce that
the set of communication constraints represented by the buffer a = (ti, tj) is fulfilled. □

Fig. 5.5 An example of scheduling which respects the communication constraints
between the tasks ti = (0,5,20,30) and tj = (0,10,20,40).

Example 5.1.2 Consider two periodic communicating tasks ti = (0,5,20,30) and
tj = (0,10,20,40). Let Si = (10,45,60,95) and Sj = (5,40,90) be respectively the
starting dates of ti and tj ’ executions. Since the tasks are executed between their
release dates and their deadlines, we can deduce that the communications constraints
between the tasks’ executions are respected (see Figure 5.5).

Corollary 5.1.2 Let N be a set of periodic communicating tasks. Let H be the
corresponding communication graph. The precedence constraints induced by the com-
munications are modeled with a particular class of SDFG.

We named the particular class of SDFG that models all the precedence constraints
induced by the communications of a multi-periodic communicating tasks set as “Real-
Time Synchronous Data Flow Graph” (RTSDFG in short). In this particular class of
SDFG, the buffer production and consumption rates are no longer representing the
amount of data produced and consumed at each task execution. These rates correspond
to the tasks periods while the initial marking corresponds to the delay between the tasks.

Therefore, we deduce that our problem is equivalent to a problem that takes as
input a set of periodic tasks with a corresponding communication graph. Modeling
this problem returns a particular class of SDFG which called RTSDFG. The size of
the resulting graph is equal to the size of the communication graph. The RTSDFG
models all the communication constraints between the tasks’ executions. Table 5.1
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presents a set of periodic tasks N = {t1, t2, t3}. The tasks communication relationships
E = {(t1, t2),(t1, t3),(t2, t1),(t3, t2)} are depicted in Figure 5.6. The RTSDFG associated
to this multi-periodic system is depicted in Figure 5.7.

ti ri Ci Di Ti

t1 0 5 20 30
t2 20 10 20 40
t3 5 5 10 20

Table 5.1 Periodic tasks parameters Fig. 5.6 Communication graph H

Fig. 5.7 The RTSDFG that models the communications between the tasks’ executions
of the multi-periodic system presented in Table 5.1 and Figure 5.6

In the previous parts of this chapter, we proposed a general and intuitive communi-
cation model between multi-periodic tasks. Now, the question that needs to be raised
is:

How to compute the latency of a multi-periodic system using a Real-Time Syn-
chronous Data Flow Graph?
The next part of this chapter answers this question in two steps. First, we compute
the latency between two periodic communicating tasks, then we compute the worst
case system latency using several approaches.

5.2 Evaluating latency between two periodic com-
municating tasks

In this section, we define the latency between two periodic communicating tasks. We
show that the latency between the tasks executions is calculated with a closed formula



5.2 Evaluating latency between two periodic communicating tasks 67

according to the tasks parameters. Moreover, we express the maximum and minimum
latency between two communicating tasks with closed formulas. Finally, we prove that
the minimum and maximum latency can be bounded according to the tasks periods.

In order to evaluate the worst-case system latency, we assume that each task starts
its execution at its release date and it will be executed until its deadline. According
to this assumption, evaluating the latency between two communicating executions, is
equivalent to compute the duration between the data availability and its consumption.

5.2.1 Definitions

Definition 5.2.1 Latency is the time gap between the moment that a stimulation
appears and the moment that its reaction begins or ends. Evaluating the latency L
between two executions of periodic communicating tasks, is equivalent to compute the
duration between the execution end date of the emitting task and the execution start
date of the receiving task (since we assume that each task starts its execution at its
release date and ends at its deadline).

Definition 5.2.2 Let ti and tj be a couple of periodic communicating tasks. We
consider the set E (ti, tj) of couples (νi,νj) ∈ N∗2, such that there exists a precedence
constraint between tνi

i and t
νj

j .

Definition 5.2.3 Let tνi
i and t

νj

j be a couple of executions with (νi,νj) ∈ E(ti, tj).
Hence, t

νj

j cannot start its execution before the end of tνi
i . We denote by L(tνi

i , t
νj

j ) the
latency between the νith execution of ti and the νjth execution of tj. This latency can
be computed as follows:

L(tνi
i , t

νj

j ) = s
νj

j − (sνi
i +Ci)

= rj +(νj−1) ·Tj− (ri +(νi−1) ·Ti +Di).
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Fig. 5.8 Example of communication scheme between two periodic communicating tasks.

Example 5.2.1 Consider two periodic communicating tasks ti = (0,5,20,30) and
tj = (20,10,20,40) such that ti is the emitting task and tj the receiving one. Figure 5.8
illustrates the communication scheme between the tasks executions. We can notice the
existence of a precedence (communication) constraint between the t2

i and t2
j . Latency

between these execution can be computed as follows:

L(t2
i , t2

j) = 20+(2−1) ·40− (0+(2−1) ·30+20)
= 10 time units.

Computing latency between two periodic communicating tasks

Lemma 5.2.1 Let ti and tj be two periodic communicating tasks, with ti the emitting
task and tj the receiving one. Let (νi,νj) ∈ E (ti, tj) be a couple of strictly positive
integers. The latency between tνi

i and t
νj

j is equal to:

L
(
tνi
i , t

νj

j

)
= rj− ri−k ·gcda−Tj +Ti−Di, (5.7)

where gcda = gcd(Ti,Tj) and k ∈ {kmin, . . . ,kmax} .

Proof: We assume that there is a precedence constraint between tνi
i and t

νj

j . Fur-
thermore, the νith execution of ti ends at sνi

i +Ci and the νjth execution of tj starts
at s

νj

j .
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By assumption, sνi
i = ri + (νi−1) ·Ti and s

νj

j = rj + (νj−1) ·Tj . Therefore, the
latency between the νith execution of ti and the νjth execution of tj is equal to

L
(
tνi
i , t

νj

j

)
= s

νj

j − (sνi
i +Ci)

= rj +(νj−1) ·Tj− ri− (νi−1) ·Ti−Di.

Then, we consider a RTSDFG buffer a = (ti, tj). The buffer production and
consumption rates are respectively equal to Ti and Tj , and its initial marking is equal
to M0(a) = Tj + λ− gcda. According to Theorem 5.1.1, the buffer a models all the
communication constraints between tasks executions. Therefore, Lemma 3.2.1 of
Chapter 3 establishes a relation between the indexes of two adjacent tasks connected
by a buffer. According to this lemma, there exists an integer k ∈ {kmin, . . . ,kmax} such
that νj = Ti·νi−k·gcda

Tj
, with kmin = max{0,Ti−Tj}−M0(a)

gcda
and kmax = Ti−M0(a)

gcda
−1.

Hence, the latency between νith execution of ti and the νjth execution of tj can be
computed as follows:

L
(
tνi
i , t

νj

j

)
= rj +(νj−1) ·Tj− ri− (νi−1) ·Ti−Di

= rj +
(

Ti ·νi−k ·gcda

Tj
−1

)
·Tj− ri− (νi−1) ·Ti−Di

= rj− ri−k ·gcda−Tj +Ti−Di

□

Let us consider the communication scheme depicted in Figure 5.8. Let a = (ti, tj)
be the RTSDFG buffer that models the communication constraints between the tasks
executions. The buffer production and consumption rates are respectively equal to 30
and 40 and its initial marking is equal to 30. Therefore,

kmin = max{0,30−40}−30
10 =−3,

kmax = 30−30
10 −1 =−1.

Hence, we can deduce that the latency between tνi
i and t

νj

j such that (νi,νj) ∈E(ti, tj),
can be computed as follows:
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L
(
tνi
i , t

νj

j

)
= rj− ri−k ·gcda−Tj +Ti−Di

= 20−0−k ·10−40+30−20
=−10 · (k +1),

with k ∈ {−3,−2,−1}.
We apply this result to compute the latency between t2

i and t2
j with k =−2,

L(t2
i , t2

j) =−10 · (−2+1) = 10 time units.

5.2.2 Maximum latency between two periodic communicat-
ing tasks

Definition 5.2.4 We define Lmax(ti, tj) as the maximum latency between the execu-
tions of two periodic communicating tasks,

Lmax(ti, tj) = max
(νi,νj)∈E(ti,tj)

L
(
tνi
i , t

νj

j

)
.

Theorem 5.2.1 Let ti and tj be two periodic communicating tasks, with ti the emitting
task and tj the receiving one. The maximum latency between executions of these tasks
is equal to:

Lmax(ti, tj) = rj− ri−max{0,Ti−Tj}+λ−gcda +Ti−Di. (5.8)

Proof: We consider two periodic tasks ti and tj . Let (νi,νj) ∈ E (ti, tj) be a couple
of strictly positive integers. According to Lemma 5.2.1, the latency between tνi

i and t
νj

j

can be written as follows:

L(νi,νj) (ti, tj) = rj− ri−k ·gcda−Tj +Ti−Di.

In order to evaluate the maximum latency between ti and tj , we substitute k with
its minimal value kmin = max{0,Ti−Tj}−M0(a)

gcda
[90]. In this case, we obtain Lmax (ti, tj)

equals to:
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rj− ri−
(

max{0,Ti−Tj}−M0 (a)
gcda

)
·gcda−Tj +Ti−Di.

Furthermore, M0(a) = Tj +λ−gcda. Hence, Lmax(ti, tj) equals

rj− ri−max{0,Ti−Tj}+(Tj +λ−gcda)−Tj +Ti−Di.

Finally, we deduce that the maximum latency is equal to

rj− ri−max{0,Ti−Tj}+λ−gcda +Ti−Di.

□

In our example, depicted in Figure 5.8, the maximum latency between ti and tj is
equal to

Lmax(ti, tj) = rj− ri−max{0,Ti−Tj}+λ−gcda +Ti−Di

= 20−0−max{0,30−40}+ ⌈0−20+20
10 ⌉ ·10−10+30−20

= 20 time units.

This value corresponds exactly to the duration between the end of t3
i and the beginning

of t3
j .

Corollary 5.2.1 Let ti and tj be two periodic communicating tasks, with ti the emitting
task and tj the receiving one. the maximum latency value is bounded as follows:

Ti−max{0,Ti−Tj}−gcda ≤ Lmax(ti, tj) < Ti−max{0,Ti−Tj} (5.9)

Proof: Let ti and tj two periodic communicating tasks such that ti communicates
with tj . According to Theorem 5.2.1, the maximum latency between the executions of
ti and tj can be computed as follows:

Lmax(ti, tj) = rj− ri−max{0,Ti−Tj}+λ−gcda +Ti−Di,

with λ = ⌈ri−rj+Di

gcda
⌉ ·gcda.

On the other hand, λ can be bounded as follows:

ri− rj +Di ≤ λ < ri− rj +Di +gcda
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Furthermore,

0≤ λ− (ri− rj +Di) < gcda,

Ti−max{0,Ti−Tj}−gcda ≤ λ− (ri− rj +Di)+Ti−max{0,Ti−Tj}−gcda < Ti−max{0,Ti−Tj}.

Hence, we can deduce that

Ti−max{0,Ti−Tj}−gcda ≤ Lmax(ti, tj) < Ti−max{0,Ti−Tj}

□

Let us reconsider our example in Figure 5.8. Computing the maximum latency
lower and upper bounds between the tasks ti and tj can be done in the following way:

30−max{0,30−40}−10≤
20≤

Lmax(ti, tj)
Lmax(ti, tj)

< 30−max{0,30−40}
< 30.

5.2.3 Minimum latency between two periodic communicating
tasks

Definition 5.2.5 We denote by Lmin(ti, tj) the minimum latency between the execu-
tions of two communicating tasks,

Lmin(ti, tj) = min
(νi,νj)∈E(ti,tj)

L(tνi
i , t

νj

j ).

Theorem 5.2.2 Let ti and tj be two periodic communicating tasks , with ti the emitting
task and tj the receiving one. The minimum latency between executions of these two
tasks is equal to:

Lmin(ti, tj) = rj− ri +λ−Di.

Proof: We consider two periodic tasks ti and tj . Let (νi,νj) ∈ E (ti, tj) a couple of
strictly positive integers. According to the Lemma 5.2.1, the latency between tνi

i and
t
νj

j can be written as follows:

L
(
tνi
i , t

νj

j

)
= rj− ri−k ·gcda−Tj +Ti−Di.
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In order to be able to evaluate the minimum latency between ti and tj , we substitute
k with its maximal value kmax = Ti−M0(a)

gcda
−1 [90]. In this case, we obtain

Lmin (ti, tj) = rj− ri−kmax ·gcda−Tj +Ti−Di

= rj− ri− (Ti−M0(a)
gcda

−1) ·gcda−Tj +Ti−Di

= rj− ri +M0(a)+gcda−Tj−Di.

Furthermore, we have M0 (a) = Tj + λ− gcda. Hence, we deduce that Lmin (ti, tj) is
equal to

rj− ri +λ−Di.

□

Let us consider our communication example depicted in Figure 5.8, the minimum
latency between the tasks executions can be compute as follows:

Lmin(ti, tj) = rj− ri +λ−Di

= 20−0+ ⌈0−20+20
10 ⌉ ·10−20

= 0 time units.

This value corresponds exactly to the duration between the end the first execution of
ti and the begging of the first execution of tj .

Corollary 5.2.2 Let ti and tj be two periodic communicating tasks, with ti the emitting
task and tj the receiving one. the minimum latency value can be bounded as follows:

0≤ Lmin(ti, tj) < gcda (5.10)

Proof: Let ti and tj two periodic communicating tasks such that ti communicates
with tj . According to the Theorem 5.2.2, the minimum latency between tasks executions
can be computed as follows:

Lmin(ti, tj) = rj− ri +λ−Di,

with λ = ⌈ri−rj+Di

gcda
⌉ ·gcda.

On the other hand, λ can be bounded as follows:

ri− rj +Di ≤ λ < ri− rj +Di +gcda.
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Hence, we can deduce that

0≤ Lmin(ti, tj) < gcda.

□

We apply this result on our example depicted in figure 5.8,

0≤ Lmin(ti, tj) < 10.

5.3 Evaluating the worst-case system latency
This section presents methods for latency computation of a given system. First, we
define the worst-case system latency. Then, we present an exact method, that uses
all the precedence relationships between tasks’ executions, to compute the latency
value. Finally, we propose two algorithms that calculate the system latency upper
and lower bounds. These algorithms transform the RTSDFG into an equivalent graph
having the same size of the RTSDFG. In this graph, the weight of each arc connecting
two adjacent nodes corresponds to the time required to transfer the data between the
periodic tasks. In order to evaluate the worst-case latency of a multi-periodic system,
we limit our study in this thesis to live, consistent and connected acyclic RTSDFGs.
Moreover, we compute the system latency using a linear algorithm for computing the
longest path length in a directed acyclic graph.

5.3.1 Definition

Definition 5.3.1 Latency is the delay between the stimulation and response. In other
words, entire system latency is a time gap between the system input and the connected
outcome. In our study, we define the worst-case system latency as the longest time gap
between the system input task executions and the output ones.

As we mentioned before, in order to evaluate the worst-case system latency, we
assume that each task of the system starts its execution at its release date and ends at
its deadline.
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Fig. 5.9 Path pth = {t1, t2, t3} which corresponds to the communication graph of three
periodic tasks.

0 30 60 90 120

0 12040 80

0 12040 8020 60 100

150 180 210 240

240160 200

240160 200140 180 220

Fig. 5.10 Communication and execution model of the path pth = {t1, t2, t3} depicted in
Figure 5.9.

Example 5.3.1 Let t1 = (0,10,20,30), t2 = (0,5,10,20) and t3 = (0,10,20,40) be three
periodic communicating tasks. Figure 5.9 represents the tasks communication graph.
Figure 5.10 illustrates all the communications constraints between the tasks executions
of the path pth = {t1, t2, t3}. We consider t1 as the system input and t3 the system output.
According to our communication model, the data produced by the first execution of
t1 is consumed by the second execution of t2, which in turn produces data that is
consumed by the second execution of t3. We summarize all communications constraints
between the input and the output tasks’ executions as follows: pth1 = ⟨t1

1→ t2
2→ t2

3⟩,
pth2 = ⟨t2

1→ t4
2→ t3

3⟩ and pth3 = ⟨t3
1→ t5

2→ t6
2→ t4

3⟩. The time required to cover these
executions paths is respectively equal to 60,70 and 80 time units. This communications
and executions pattern is repeated infinitely. Hence, we can deduce that the system
worst-case latency is equal to max{60,70,80}= 80 time units. This value corresponds
to the time gap between the beginning of the third execution of t1 and the end of the
the fourth execution of t3.

Computing the latency of applications that are executing infinitely is a problematic.
Actually, the size of the graph, which represents the communication constraints of
these applications, is bounded. The question that needs to be raised at this stage is:
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how to represent the communications constraints between the tasks executions in a
finite way?
Next part answers this question by introducing an exact pricing algorithm that repre-
sents these constraints in a finite way and evaluates the system worst-case latency.

5.3.2 Exact pricing algorithm

We present in this part an exact pricing algorithm that computes the worst-case latency
between a system input and its corresponding output. This algorithm computes the
system latency using all communication constraints between the tasks executions. It
is therefore necessary to explicitly represent these communications. Our approach is
inspired from the expansion [96] which is previously detailed in Section 3.2 of Chapter
3. This technique consists on transforming a SDFG into an equivalent HSDFG that
explicitly models all the precedence constraints between the tasks executions.

Dependency between executions of two communicating tasks

Let ti and tj be two periodic communicating tasks. Let a = (ti, tj) be the RTSDFG
buffer that models all the communication constraints between the tasks’ executions. Let
(νi,νj) ∈ E(ti, tj) be a pair of strictly positive integers, such that there is a precedence
constraint between tνi

i and t
νj

j . The buffer marking after the νjth execution of tj and
the νith execution of ti is equal to

M0(a)+νi ·Ti−νj ·Tj .

Our purpose is to describe the dependency between tνi
i and t

νj+d
j with d ∈N∗. We seek

to find out how many times tj can be executed using the remaining amount of tokens
in the buffer (M0(a) + νi ·Ti− νj ·Tj). In fact, tj cannot be executed unless there is
a least Tj tokens in the buffer. This means if the remaining amount of tokens is less
than Tj , t

νj+d
j depends on the tνi+1

i .

We denote by dep the number of executions succeeding (following) the νjth execution
of tj and which are totally dependent from the νith execution of ti. This number of
execution can be computed, according to the buffer consumption rate and the buffer
marking after the tνi

i and t
νj

j executions, as follows:

dep = ⌊M0(a)+νi ·Ti−νj ·Tj

Tj
⌋
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On the other hand, since there is a precedence constraint between tνi
i and t

νj

j , νi

and νj verify the following equation

Ti > M0(a)+νi ·Ti−νj ·Tj ≥max{0,Ti−Tj}

Hence, dep can be bounded as follows:

⌊Ti

Tj
⌋ ≥ ⌊M0(a)+νi ·Ti−νj ·Tj

Tj
⌋ ≥ ⌊max{0,Ti−Tj}

Tj
⌋ (5.11)

We distinguish two cases:

– If Ti ≤ Tj :

Equation (5.11) can be written in the following form,

⌊Ti

Tj
⌋ ≥ dep≥ 0.

Actually, since Ti ≤ Tj , we can deduce that the number of executions that follow
t
νj

j and which totally depend from tνi
i is null (dep = 0).

– If Ti > Tj :

We can bound dep according to the tasks periods,

⌊Ti

Tj
⌋ ≥ ⌊M0(a)+νi ·Ti−νj ·Tj

Tj
⌋ ≥ ⌊Ti−Tj

Tj
⌋.

Hence, we deduce that dep ∈ {⌊ Ti
Tj
⌋−1,⌊ Ti

Tj
⌋}. We can also deduce that at most

(⌈ Ti
Tj
⌉) executions of tj can totally depend on ti execution.

RTSDFG transformation

Consider N = {t1, . . . , tn} a set of periodic communicating tasks and H the corre-
sponding communication graph. Let G = (T ,A) be the RTSDFG that models all
communications constraints between the tasks executions of this system. The main
idea here is to evaluate the latency using a finite equivalent graph G ′ . This latter
describes exactly the precedence constraints of the original graph. Transforming a
RTSDFG G into G ′ = (T ′

,A′) can be done as follows:

• Each ti ∈T is substituted by Ri (repetition factor of ti) tasks denoted by t1
i , . . . , tRi

i

such that for any k ∈ {1, . . . ,Ri} and α > 0, the αth execution of tk
i corresponds
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to the ((α−1) ·Ri +k)th execution of ti. Tasks t1
i , . . . , tRi

i are called duplicates of
ti. We note that the duplicates have the same parameters than the original task.

• For each pair of strictly positive integers (νi,νj)∈E(ti, tj), we add an arc between
tνi
i and t

νj

j . Based on the expansion [96] which is previously detailed in Section 3.2
of Chapter 3, arcs are added between duplicates only if the following conditions
are met:


νj = ⌊M0(a)+Ti·(νi−1)

Tj
⌋+1 if Ti > Tj and νi ≥ −M0(a)

Ti
+1

νi = ⌈Tj ·νj−M0(a)
Ti

⌉ if Ti ≤ Tj and νj > M0(a)
Tj

(5.12)

• If Ti > Tj , dependency between tasks’ executions is described by adding arcs
between tνi

i and the set of executions {tνj+d
j ,d ∈ {1, . . . ,dep}} with

dep = ⌊M0(a)+νi·Ti−νj ·Tj

Tj
⌋.

• The weight of each arc in A′ is equal to

ω(tνi
i , t

νj

j ) = rj +(νj−1) ·Tj− ri− (νi−1) ·Ti. (5.13)

This value corresponds to the duration between the beginning of the νith execution
of ti and the beginning of the νjth execution of tj .

Algorithm 1 describes the transformation of a RTSDFG G = (T ,A) into an equiva-
lent graph G ′ = (T ′

,A′). The Duplication of each task ti ∈ T , according to its repetition
factor, is represented in line 5. Once the tasks are duplicated, arcs are added between
duplicates in two cases:

1. For describing precedence between executions: we connect each couple of dupli-
cates (tνi

i , t
νj

j ) with an arc if there exists a precedence relationship between the
tasks executions. This is given in line 8.

2. For describing dependency between executions: in order to evaluate the system
latency, some arcs must be added to express dependency between executions.
These arcs are added if there is a precedence relationship between two executions
(tνi

i and t
νj

j ) such that Ti > Tj . Line 12 verifies if there is any other executions of tj

which totally depend on the νith execution of ti. The number of these dependent
executions dep is computed in line 11 according to the buffer consumption rate
and the remaining amount of tokens in the buffer after the νith execution of ti

and the νjth execution of tj .
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Algorithm 1 Transformation of a RTSDFG into a equivalent graph G ′

1: Input: RTSDFG G = (T ,A)
2: Output: G ′ = (T ′

,A′)
3: pair of strictly positive integers: (νi,νj)
4: arc weight : ω(tνi

i , t
νj

j )
5: substitute each task ti ∈ T by the set of duplicates {t1

i , . . . , tRi
i }

6: for all a = (ti, tj) ∈ A do
7: for all (νi,νj) ∈ E (ti, tj) do
8: add arc between tνi

i and t
νj

j

9: ω(tνi
i , t

νj

j )← rj +(νj−1) ·Tj− ri− (νi−1) ·Ti

10: if Ti > Tj then
11: dep = ⌊M0(a)+Ti·νi−Tj ·νj

Tj
⌋

12: if dep > 0 then
13: add arcs from tνi

i to {tνj+d
j ,d ∈ {1, . . . ,dep}}

14: ω(tνi
i , t

νj+d
j )← rj +(νj−1+d) ·Tj− ri− (νi−1) ·Ti

15: end if
16: end if
17: end for
18: end for

Finally, lines 9 and 14 in Algorithm 1 compute the weight of each arc in the resulting
graph G ′ .

Fig. 5.11 RTSDFG G = (T ,A) modeling the communication constraints between the
tasks’ executions of the example represented in Figure 5.10.

Example 5.3.2 Let us consider the RTSDFG depicted in Figure 5.11 which models
the communication constraints between the tasks executions presented in Figure 5.10.
The RTSDFG repetition vector is equal to R = [4,6,3]. Figure 5.12 illustrates the
equivalent graph obtained by applying Algorithm 1 on this RTSDFG. This graph
represents all the precedence and dependency constraints induced by the buffers of the
original graph.
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30

20

30

20
2020

2040
40

Fig. 5.12 Graph G ′ = (T ′
,A′) that models precedence and dependency constraints

between the tasks executions of the RTSDFG depicted in Figure 5.11.

First, we substitute each task by its duplicates (according to its repetition factor). In
this example, t1, t2 and t3 are respectively substituted by {t1

1, t2
1, t3

1, t4
1},{t1

2, t2
2, t3

2, t4
2, t5

2, t6
2}

and {t1
3, t2

3, t3
3}. Then, precedence and dependency constraints are modeled by adding

arcs between the tasks’ duplicates. In our example, there exists a buffer between t1

and t2 such that T1 > T2. According to equation (5.12), we connect each couple of
duplicates (tν1

1 , tν2
2 ) if

ν2 = ⌊30+30 · (ν1−1)
20 ⌋+1,

such as
(
t1
1, t2

2
)
. The arc weight which connects these duplicates is equal to

0+20 · (2−1)−0−30 · (1−1) = 20 (eqution 5.13).

In addition, as T1 > T2, we compute the number of executions which may totally
depend on the first execution of t1. This can be done by computing the value of dep

which is equal to

dep = ⌊30+30 ·1−20 ·2
20 ⌋= 1 with ν1 = 1 and ν2 = 2.

We describe this dependency by adding an arc from t1
1 to t2+1

2 whose weight is equal to

0+20 · (3−1)−0−30 · (1−1) = 40.
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On the other hand, t2 is connected to t3 with a buffer where T2 < T3. By applying
equation (5.12), we connect each couple of duplicates (tν3

3 , tν2
2 ) if

ν2 = ⌈40 ·ν3−40
20 ⌉ for ν3 >

40
40 ,

such as the couple
(
t2
2, t2

3
)
. The arc weight which connects these duplicates is equal to

0+40 · (2−1)−0−20 · (2−1) = 20.

Latency computation

After transforming the RTSDFG G into G ′ which models all the precedence and
dependency constraints between the tasks executions, we evaluate the worst-case
system latency using G ′

. More precisely, worst-case latency evaluation is done by
finding the longest path in the equivalent graph G ′

. The steps of this evaluation are
detailed in Algorithm 2.

Definition 5.3.2 We denote by P = {t | prec(t) = ∅} the set of nodes without pre-
decessor. In addition, we denote by S = {t | succ(t) = ∅} the set of nodes without
successor.

Algorithm 2 Computation of the worst-case system latency
1: Input: equivalent graph G ′ = (T ′

,A′)
2: Output: LG worst-case system latency
3: add a super source: src

4: add a super destination : dst

5: for all t ∈ P do
6: add arc between src and t

7: ω(src, t)← 0
8: end for
9: for all t ∈ S do

10: add arc between t and dst

11: ω(t,dst)← relative deadline of t (Dt)
12: end for
13: LG ← longest path length between src and dst

Algorithm 2 describes the worst-case latency computation of a RTSDFG. This
algorithm takes as input the equivalent graph resulting from the transformation
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presented in Algorithm 1 and returns as output the value of the worst-case system
latency. First, we add to G ′ two virtual nodes: a super source and a super destination
(lines 3 and 4). Then, we connect src to each node t ∈ P with an arc whose weight is
null (from line 5 to 8). We connect each node t ∈ S to dst with an arc whose weight is
equal to the relative deadline of t (from line 9 to 12). Adding these virtual nodes does
not influence the time behavior of the system. Finally, we find the worst-case latency
value for the entire system by computing the length of the longest path between the
virtual nodes src and dst (line 13).

30

20

30

20
2020

20

20 20 20

0
0 0 0

40
40

10

10

10

Fig. 5.13 Computation of the Worst-case latency of the RTSDFG depicted in Figure
5.11.

In order to evaluate the worst-case latency of the RTSDG in Figure 5.11, we
use Algorithm 2 which takes as input the equivalent graph G ′ depicted in Figure
5.12. We add two virtual nodes (src/dst) to the equivalent graph. Then, we connect
src to each duplicate without predecessor P = {t1

1, t2
1, t3

1, t1
1} with arcs whose weights

are null. On the other hand, we add arcs between each duplicate without successor
S = {t1

2, t3
2, t5

2, t1
3, t2

3, t3
3} and dst. Their weights are equal to the tasks relative deadline

(D2 = 10 and D3 = 20). Figure 5.13 depicts the resulting graph. Finally, in order to
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evaluate the latency of the entire system, we compute the length of the longest path
between src and dst which is equal to 80 time units. This value matches the result
obtained previously in Figure 5.10.

Cyclic RTSDFGs

We mentioned previously that evaluating the worst-case system latency using our
approach is restricted to acyclic RTSDFG. In this paragraph, we give a clear illustration
of how this evaluation is no longer possible for a cyclic RTSDFG. Let us consider a
RTSDFG G = (T ,A) that contains a cycle Ω = (ti, tj , tk) . We assume that the νith
execution of ti will influence the νkth execution of tk. As there is a buffer between tk

and ti, the same execution will affect the (νi + ϵ)th execution of ti such that ϵ ∈ N*.

Hence, an execution occurred in a cycle can loop infinitely because the beginning of a
task execution in a cycle depends on its own end.

(a) Cyclic RTSDFG. (b) Equivalent graph G′

Fig. 5.14 A cyclic RTSDFG with its equivalent graph that models the precedence and
dependence constraints between the tasks executions.

Figure 5.14a depicts a cyclic RTSDFG composed of three tasks ti, tj and tk. The
equivalent graph G ′ = (T ′

,A′) which models the precedence and dependency constraints
between the tasks’ executions is represented in Figure 5.14b. The weight of each arc in
T ′ is strictly positive and it corresponds to the time gap between the beginnings of
two executions in relation. As we can see, there exists precedence constraints between
t1
i → t1

j , t1
j → t3

k and t3
k→ t1

i . This implies that the equivalent graph contains a cycle
whose arcs’ weights are strictly positive. Therefore, we can deduce that the worst-case
latency computation is no longer possible, since the computation of the longest path
in the equivalent graph G ′ does not converge.
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Computation of the longest path

The NP-hardness of the longest path problem for arbitrary graphs can be shown using
the reduction from Hamiltonian path problem. However, computing the longest path
in directed acyclic graphs (DAG in short) has a linear solution using a topological
sorting. It can be computed by applying a linear time algorithm for shortest paths in
a DAG [21] in which every weight is replaced by its negation. The complexity of this
algorithm is O(n + m) where n is the number of nodes and m is the number of arcs of
the graph. However, the complexity of transforming the RTSDFG into an equivalent
graph is not polynomial. The computation of this complexity is detailed in Section 7.2
of Chapter 7.

In the next part of this chapter, we present two algorithms that compute respec-
tively the upper and lower bounds of the system latency. The computation of these
bounds does not require the use of the equivalent graph which explicitly represents the
precedence and the dependency constraints between the tasks executions.

5.3.3 Upper bound

In order to evaluate the upper and lower bounds of the system latency, our approach
consists on transforming the RTSDFG into a weighted graph. The size of this latter
is equal to the size of the original graph. In addition, the weight of each arc in the
weighted graph corresponds to the time required to transfer the data between two task
in the worst (or best) case scenario.

Let us consider the RTSDFG buffer a = (ti, tj) with zi = Ti, zj = Tj and M0(a) its
initial marking. We assume that a models all the communication constraints between
the two periodic communicating tasks ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj). Ac-
cording to our communication model presented in section 5.1.2, data are only available
at the deadline of the emitting task ti. Moreover, these data can only be consumed
at the release date of the receiving task tj . On the other hand, the latency between
two communicating tasks is equal to the time gap between the deadline of ti and the
release date of tj . According to Theorem 5.2.1, the maximum latency between the
executions of ti and tj can be written in the following format:

Lmax(ti, tj) = rj− ri +λ+Ti−max{0,Ti−Tj}−gcda−Di,

where λ =
⌈

ri−rj+Di

gcda

⌉
·gcda.
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In order to compute the time required to transfer the data between ti and tj in the
worst case scenario, two cases should be studied:

1. If Ti ≤ Tj ,

Lmax(ti, tj) = rj− ri +λ+Ti−gcda−Di.

After an execution of ti, tj can be executed at most one time. Hence, the
time required to ensure the data transfer between these tasks, in the worst case
scenario, is equal to

Di +Lmax (ti, tj) = Di + rj− ri +λ+Ti−gcda−Di

= rj− ri +λ+Ti−gcda.

In our example in Figure 5.10 on page 75, t2 = (0,5,10,20) communicates with
t3 = (0,10,20,40) where T2 < T3 and gcda = gcd(20,40) = 20. Hence, the time
needed for the data transfer from t2 to t3, in the worst case scenario, is equal to

D2 +Lmax (t2, t3) = r3− r2 +λ+T2−gcda

= 0+ ⌈0+10
20 ⌉ ·20+20−20

= 20 time units.

2. If Ti > Tj ,
Lmax(ti, tj) = rj− ri +λ+Tj−gcda−Di.

After an execution of ti, tj can be executed at most ⌈ Ti
Tj
⌉ times. This means that at

most ⌈ Ti
Tj
⌉ executions of tj are totally depend on the execution of ti. Accordingly,

the time separating the beginnings of the first and the last executions of tj that
depend on ti is equal to (⌈ Ti

Tj
⌉−1) ·Tj time units. Hence, in order to ensure the

data transfer from ti to tj , the time required in the worst case scenario is equal
to

Di +Lmax(ti, tj)+(⌈Ti

Tj
⌉−1) ·Tj = rj− ri +λ−gcda + ⌈Ti

Tj
⌉ ·Tj .

In the same example on page 75, t1 = (0,10,20,30) and t2 = (0,5,10,20) are
communicating with T1 > T2 and gcda = gcd(30,20) = 10. Therefore, an execution
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of t1 will affect at most ⌈T1
T2
⌉= ⌈30

20⌉= 2 executions of t2. Accordingly, the time
separating the beginnings of the first and the last executions of t2 that totally
depend on the execution of t1 is equal to (2−1) ·20 time units. In the worst case,
the time needed to transfer the data between these tasks is equal to

Di +Lmax(ti, tj)+(⌈Ti

Tj
⌉−1) ·Tj = rj− ri +λ−gcda + ⌈Ti

Tj
⌉ ·Tj

= 0+ ⌈0+20
10 ⌉ ·10−10+2 ·20

= 50 time units.

In the next paragraph, we propose an algorithm covering the two cases below.

Latency upper bound computation

Algorithm 3 From RTSDFG to weighted graph Gmax

1: Input: RTSDFG G = (T ,A)
2: Output: Weighted graph Gmax

3: arc weight: ω(e)
4: substitute each task ti ∈ T by a node ti

5: substitute each buffer a = (ti, tj) ∈ A by an arc e = (ti, tj)
6: for all a = (ti, tj) ∈ A do
7: if Ti ≤ Tj then
8: ω(e)← rj− ri +λ+Ti−gcda

9: else
10: ω(e)← rj− ri +λ+ ⌈ Ti

Tj
⌉ ·Tj−gcda

11: end if
12: end for

Algorithm 3 converts a RTSDFG G = (T ,A) into a weighted graph Gmax having
the same size. Each task ti ∈ T is represented by a node (line 4) and each buffer
a = (ti, tj) is represented by an arc e = (ti, tj) (line 5). The arc weight ω(e) corresponds
to the time required for data transfer from ti to tj in the worst case scenario. This
weight is computed in two different cases according to the values of the buffer produc-
tion and consumption rates. The two cases are respectively represented in line 8 and 10.

In order to evaluate the upper bound of the system latency, we add to the resulting
graph Gmax two virtual nodes src and dst. Then, we connect src to each node without
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predecessor with an arc whose weight is null. We also connect each node without
successor to dst with an arc whose weight is equal to the relative deadline of the source
task. We evaluate the latency upper bound by computing the longest path between
the virtual nodes (src and dst).

(a) Acyclic RTSDFG.

0

(b) Weighted graph Gmax

Fig. 5.15 Example of latency upper bound computation using the weighted graph Gmax

Consider the RTSFG in Figure 5.15a that models the communication constraints
between the executions of t1 = (0,10,20,30), t2 = (0,10,20,40) and t3 = (0,5,10,20).
Figure 5.15b presents the weighted graph Gmax. In this graph, the weight of each arc
connecting two nodes corresponds to the time required to transfer the data between
these nodes in the worst case scenario. For example, the time required to ensure the
communication between (t1, t3) ,(t1, t2) and (t3, t2) is respectively equal to 50,50 and
20 time units.

Let P = {t1} be the set of nodes that do not have any predecessor. In addition, let
S = {t2} be the set of nodes that do not have any successor. Two super nodes (src /
dst) are added to Gmax. We connect src to t1 with an arc whose weight is null, and t2

to dst with an arc whose weight is equal to D2 = 20 time units. In order to evaluate
the latency upper bound, we compute the length of the longest path between src and
dst which is equal to 90 time units.

5.3.4 Lower bound

Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two periodic communicating tasks.
Let a = (ti, tj) be RTSDFG buffer that models all the communication constraints
between the tasks executions. According to Theorem 5.2.2, the minimum latency
between the tasks executions is computed as follows:

Lmin(ti, tj) = rj− ri +λ−Di.



88 Real Time Synchronous Data Flow Graph (RTSDFG)

Therefore, the time required to transfer the data from ti to tj , in the best-case scenario,
is equal to

Di +Lmin(ti, tj) = Di + rj− ri +λ−Di

= rj− ri +λ.

In our example in Figure 5.10 on page 75, t2 = (0,5,10,20) communicates with
t3 = (0,10,20,40) where gcda = gcd(20,40) = 20. Hence, the time needed for the data
transfer from t2 to t3, in the best case scenario, is equal to

D2 +Lmin(t2, t3) = r3− r2 + ⌈r2− r3 +D2
gcda

⌉ ·gcda

= 0+ ⌈0+10
20 ⌉ ·20

= 20 time units.

Latency lower bound computation

In order to evaluate the lower bound of the system latency, we transform a RTSDFG
into a weighted graph Gmin. This transformation uses the same principle of Algorithm
1, which transform the RTSDFDG into a weighted graph Gmax. By contrast, in this
case, the weight of each arc connecting two communicating nodes (ti, tj) is equal to

ω(e) = rj− ri +λ.

We also add two virtual nodes (src/dst) to Gmin (see Figure 5.16). We evaluate the
latency lower bound by computing the longest path between the virtual nodes.

0

Fig. 5.16 Latency lower bound computation of the RTSFDG depicted in Figure 5.15a
using the weighted graph Gmin.
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Figure 5.16 depicts the weighted graph Gmin of the RTSDFG depicted in Figure
5.15a. For instance, the time required for data transfer from t1 = (0,10,20,30) to
t2 = (0,10,20,40), in the best case scenario, is equal to

D1 +Lmin(t1, t2) = r2− r1 +λ

= 0+ ⌈20
20⌉ ·10

= 20 time units.

In order to evaluate the latency lower bound, we compute the longest path between
src and dst. In this example, latency lower bound is equal to 60 time units.

5.4 Conclusion
In this chapter, we demonstrated that the communication within a multi-periodic
system can be modeled by a RTSDFG. The size of this latter is equal to the communi-
cation graph size. Moreover, we expressed the latency between two communicating
tasks using a closed formula. In the general case, we evaluated the latency of a system
modeled by a RTSDFG using an exact pricing algorithm. In addition, we proposed
two polynomial-time algorithms that compute respectively the latency upper and lower
bounds. The three algorithms were applied on several instances of RTSDFGs, the
experimental results are detailed in Section 7.2 of Chapter 7.

As the set of communication constraints within a multi-periodic system can be
modeled by a RTSDFG, the following chapter addresses the scheduling problem of
strictly periodic communicating tasks on a single processor.





Chapter 6

Scheduling strictly periodic systems
with communication constraints

Preemptive real-time systems have received considerable research efforts in the real-
time community, compared to non-preemptive systems. However, these latter are
usually adopted in practical hard-real real time systems where missing deadlines may
lead to catastrophic situations. Moreover, many industrial applications (e.g. avionic
applications) require strictly periodic tasks. This means that the tasks successive
executions admit periodic starting dates separated by the task period. This strict
periodicity is usually required at the system inputs and outputs, such as the sensors
and the actuators of a control/command applications.

In many hard real-time systems, communication is becoming increasingly indispens-
able. Due to the tasks strict deadlines that must be met, communications between the
tasks executions are implemented in a completely deterministic manner. Our approach
models the communication requirements as precedence constraints between tasks. More
precisely, this approach consists of modeling the communications within multi-periodic
systems using RTSDFG formalisms.

In this chapter, we consider the mono-processor scheduling problem for non-
preemptive strictly periodic systems subject to communication constraints. Section
6.1 presents the non-preemptive strictly periodic model and its characteristics. In
addition, it recalls the schedulability condition of two independent tasks on the same
processor. Section 6.2 defines the SDFG schedules, especially the periodic ones that
combine an explicit description of starting dates and an easy implementation. Section
6.3 introduces the schedulability condition of two non-preemptive strictly periodic
tasks with communication constraints. In order to solve the scheduling problem, an
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exact method is developed in Section 6.4. Furthermore, Section 6.5 proposes several
heuristics in order to solve the same problem. Conclusion is stated in Section 6.6

6.1 Scheduling a strictly periodic independent tasks
This section presents the non-preemptive strictly periodic model and its characteristics.
It presents the advantages of these tasks in presenting (modeling) critical real-time
systems. Moreover, we recall the necessary and sufficient condition of scheduling two
independent non-preemptive strictly periodic tasks on the same processor. Finally, we
show that there exists a symmetry between the tasks starting dates which verify the
schedulability condition.

6.1.1 Strictly periodic tasks

Strictly periodic non-preemptive tasks model is a particular case of the periodic tasks
model. In this particular class, the task successive executions admit periodic starting
dates. Moreover, the task execution cannot be interrupted by an other execution
with higher priority, since the tasks are non-preemptive. The characteristics of non-
preemptive strictly periodic tasks model are:

• the gap between the release dates of two successive executions of the same task
(ti) is equal to its period:

rk
i − rk−1

i = Ti, ∀k ∈ N∗.

• the gap between the starting dates of two successive executions of the same task
(ti) is equal to its period:

sk
i − sk−1

i = Ti, ∀k ∈ N∗.

• the gap between the starting date and the release date of each task execution
(tk

i ) is equal to:
sk

i − rk
i = d, ∀k ∈ N∗.
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Fig. 6.1 Non-preemptive strictly periodic task.

Let ti = (ri,Ci,Di,Ti) be a non-preemptive strictly periodic task. Figure 6.1 il-
lustrates the task executions. The task starts its first execution at si and ends it at
si +Ci. The second execution begins at si +Ti and ends at si +Ti +Ci. Furthermore,
the gap between the task release date and its starting date in both executions is constant.

In critical real-time systems such as the control/command applications, the tasks
which represent the system input and output should not have jitter. In order to avoid
this jitter on the inputs receiving the data from sensors, input tasks must be strictly
periodic. On the other hand, to avoid jitter on the outputs which transfer the data to
actuators, output tasks must be non-preemptive.

In addition, for the majority of embedded systems, preemption is too expensive in
time and space due to the context changing cost. This later is not controlled or not
taken into account. For these reasons we focus our study on non-preemptive scheduling
as long as we do not fully control the cost of preemption.

In the preemptive periodic model proposed by Liu and Layland [85], the gap
between the start date of execution and the activation date may vary. However, this
gap is constant in the strictly periodic non-preemptive tasks model. In fact, there is
no jitter in the model [29].

Non-preemptive strictly periodic tasks are usually adopted in practical real-time
applications when continual sampling and processing data are required. We find these
types of applications in several domains such as avionics [37, 1] and process control
[72, 114].

In the sequel of this manuscript, we use the term “ strictly periodic task ” to refer
to a non-preemptive strictly periodic task.
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6.1.2 Schedulabilty analysis of strictly periodic independent
tasks

Considering a set of strictly periodic independent tasks T = {t1, . . . , tn}. Each task
ti ∈ T is characterized by an activation period Ti, an execution time Ci and a starting
date (of the first execution) si. Since there is no precedence constraints between the
tasks executions, we assume without loss of generality that si ∈ [0,Ti). We use the
interval Eνi

i (si) to characterize the execution time units occupied by the νith execution
of ti having a starting date equals to si. The first execution interval of ti begins at si and
ends before si +Ci, hence E1

i (si) = [si, si +Ci). According to the task strict periodicity,
the νith execution of ti begins at si + (νi−1) ·Ti and ends before si + (νi−1) ·Ti + Ci.

More formally, the execution time units for each task can be written as follows:

∀ti ∈ T ,∀νi ≥ 1, Eνi
i (si) = [si +(νi−1) ·Ti, si +(νi−1) ·Ti +Ci)

Let ti = (si,Ci,Ti) and tj = (sj ,Cj ,Tj) be two strictly periodic independent tasks.
These tasks are schedulable on the same processor if and only if there is no overlapping
between their executions. This means ∀(νi,νj) ∈ N∗2

,Eνi
i (si)∩E

νj

j (sj) = ∅. Therefore,
a set of strictly periodic independent tasks T = {t1, . . . , tn} can be scheduled on the
same processor if and only if each tasks couple (ti, tj) can be scheduled on the same
processor. This condition can be written as follows:

∀(ti, tj)
i ̸=j

∀(νi,νj) ∈ N∗2
,Eνi

i (si)∩E
νj

j (sj) = ∅. (6.1)

Although the previous equation (6.1) is a necessary and sufficient condition, it
cannot be directly used to solve the scheduling problem of two tasks. Indeed, equation
(6.1) requires the computation of the time units intervals occupied by all the tasks
executions. However, the number of the tasks execution can increase exponentially
and this is unacceptable in practice. Theorem 6.1.1 provides a schedulability condition
without computing the interval execution time units occupied by all the tasks executions.
This theorem was first proposed by Korst et al. [80]. More recently, Al Sheikh at al.
[1] and Chen et al. [26] proved that this theorem does not require that the start date
of the first task has to be smaller than the start date of the second one. This is done
following the fact that (−a) mod (b) = b− (a) mod b.

Theorem 6.1.1 Two strictly periodic independent tasks ti = (si,Ci,Ti) and tj =
(sj ,Cj ,Tj) are schedulable on the same processor if and only if
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Ci ≤ (sj− si) mod (gij)≤ gij−Cj , (6.2)

where gij = gcd(Ti,Tj).

Corollary 6.1.1 results from theorem 6.1.1. It gives a necessary and sufficient
condition for scheduling the tasks on the same processor when their starting dates can
be freely assigned by the designer.

Corollary 6.1.1 [80] The executions of two periodic independent tasks ti = (Ci,Ti)
and tj = (Cj ,Tj) can be scheduled on the same processor if and only if

Ci +Cj ≤ gij , (6.3)

where gij = gcd(Ti,Tj).

Example 6.1.1 Let ti = (si,Ci,Ti) and tj = (sj ,Cj ,Tj) be two independent strictly
periodic tasks. We suppose that Ti = 30, Tj = 40 time units, Ci = Cj = 5 time units,
and their starting dates are respectively equal to si = 0 and sj = 5 time units. Figure
6.2a represents the tasks executions during their hyper period. We notice that there is
no overlapping between the tasks executions (see Figure 6.2b). Therefore, ti and tj

can be scheduled on the same processor. We can verify this result (without computing
the tasks executions), by applying equation (6.2) as follows:

Ci ≤
5≤

(sj− si) mod (gij)
(5−0) mod (10)

≤ gij−Cj

≤ 10−5,

where gij = gcd(30,40) = 10 time units.

(a) Tasks executions. (b) Non overlapping between executions.

Fig. 6.2 Scheduling two strictly periodic tasks ti = (0,5,30) and tj = (5,5,40) on the
same processor.
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Symmetry

Let ti = (si,Ci,Ti) and tj = (sj ,Cj ,Tj) be two strictly periodic independent tasks. The
difference between the tasks starting dates (sj− si) can be written as follows:

sj− si = δij +kij ·gij , (6.4)

where δij = (sj− si) mod gij and kij = ⌊sj−si

gij
⌋, with kij ∈ Z.

On the other hand, the difference between the tasks starting dates (si− sj) can be
written as follows:

si− sj = δji +kji ·gij , (6.5)

where δji = (si− sj) mod gij and kji = ⌊si−sj

gij
⌋, with kji ∈ Z. According to the fact

that (−a) mod (b) = b− (a) mod (b) with a,b > 0, we can deduce that

δji = gij− δij .

Therefore, the equation (6.4) and (6.5) can also be written as follows:

sj− si = δij +kij ·gij

si− sj = gij− δij +kji ·gij .

By summing these equalities, we obtain

kij ·gij +(kji +1) ·gij = 0

Hence, we can deduce that
kij +kji =−1.

Finally, we can deduce a symmetry between δij and δji on one hand, and between
kij and kji on the other hand. This implies that if there exists si and sj which verify
the equality (6.4) then these dates will also verify equality (6.5).

Let us consider the strictly periodic tasks ti = (0,5,30) and tj = (5,5,40) of our
previous example. We notice that si and sj verify equation (6.4) with δij = 5 and
kij = 0. In addition, these dates verify equation (6.5) with δji = gij− δij = 10−5 = 5
and kji =−1−kij =−1.
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6.2 Synchronous Data Flow Graph schedule
SDFG is a static model which provides enough information in order to anticipate its
behaviour. Therefore, it is possible to determine a scheduling for each task execution.
Constraints that must be taken into consideration are the data dependencies that may
exist between the tasks executions.

Let G = (T ,A) be a SDFG. Given the set of tasks A, solving a scheduling problem
consists on finding the start dates for each task execution while respecting the associated
constraints. More formally, a schedule is a function s : T ×N∗→ R+ which associates
for each execution tνi

i a starting date. We denote by sνi
i the starting date of the νith

execution of ti. Let a = (ti, tj) be a SDFG buffer with its initial marking M0(a). There is
a strong relationship between a schedule and the corresponding instantaneous marking
of the buffer Mt(a). This latter can be computed as follows:

Mt(a) = M0(a)+P t
ti
· zi +Ct

tj
· zj ,

where P t
ti

and Ct
tj

correspond respectively to the number of completed executions of ti

and tj at time t. A SDFG schedule is feasible if

∀(t,a) ∈ R∗
+×A, Mt(a)≥ 0.

6.2.1 As Soon As Possible schedule

As Soon As Possible (ASAP in short) schedule is one of the most useful policy to
analyse a SDFG. This scheduling algorithm consists in executing each task of the
graph as soon as it has enough input data. ASAP schedule consists of two phases [28]:
a transient phase followed by a periodic one where the tasks starting dates admit a
periodic behaviour. Baccelli et al.[4] proved that the transient phase is bounded.

(a) A SDFG. (b) ASAP schedule

Fig. 6.3 Example of a SDFG and its ASAP schedule.

Figure 6.3b represents the ASAP schedule of the SDFG depicted in Figure 6.3a.
In this example, the execution times of tasks A and B are fixed to 1 time unit. As
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we can see in Figure 6.3b, the transition phase is limited to one execution of A and
two executions of B (executions are marked by zeros). This phase is followed by a
periodic phase where an execution pattern is repeated for each period (delimited by
red lines). This pattern consists on executing task A four times and task B three times.
The tasks’ executions are marked according to the period number. For example, the
executions marked by 1 correspond to the tasks’ executions of the first period.

In general, the ASAP strategy does not guarantee a bounded marking. In fact,
ensuring a bounded marking using ASAP strategy is restricted to some classes of
strongly connected graphs. In addition, the drawback of the ASAP strategy for
scheduling a SDFG, is the dependency from the SDFG repetition vector rather than
its size (|T |).

6.2.2 Periodic schedule

SDFGs are usually used to model applications that can be executed infinitely. Hence,
the SDFG schedule must fix an infinite number of execution starting dates. In order
to avoid this kind of issues, authors in [90, 12] were interested in the SDFG periodic
schedules. They characterize each SDFG task ti by an activation period (ωi ∈R∗

+) and
a starting date of the first execution (si).

Definition 6.2.1 Let G = (T ,A) be a SDFG. A SDFG schedule is periodic if each
task ti ∈ T has a period ωi such that

∀νi ≥ 1, sνi
i = si +(νi−1) ·ωi.

si is the starting date of the first execution of ti. The successive executions of ti are
then repeated every ωi time units.

Let G = (T ,A) be a normalized SDFG. Considering a task ti ∈A, let a be an output
buffer of ti. Every ωi time units, zi tokens are produced in the buffer a. Hence, on
average, a token is produced every ωi

zi
time units. This ratio is called average token flow

time. Considering that all the tasks have the same average token flow time, Marchetti
and Munier [90] prove that feasible periodic schedules satisfy linear inequalities. They
defined a condition on the starting dates of the tasks first executions in order to fulfil
the precedence constraints induced by the buffers.

Theorem 6.2.1 [90] Let G = (T ,A) be a normalized SDFG. For any periodic schedule,
there exists a strictly positive rational K ∈Q∗

+ such that, for each task ti ∈ T , ωi
zi

= K.
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In addition, the precedence constraints induced by a buffer a = (ti, tj) are fulfilled by
the periodic schedule if and only if

sj− si ≥ Ci +K · (zj−M0(a)−gcda). (6.6)

Fig. 6.4 A feasible periodic schedule of the SDFG depicted in Figure 6.3a.

Figure 6.4 illustrates a feasible periodic schedule of the SDFG presented in Figure
6.3a. The tasks periods are respectively equal to ωA = 3, ωB = 4 and their starting
dates are null (sA = sB = 0). We notice that the precedence constraints induced by the
buffer are fulfilled, since the tasks starting dates verify equation (6.6) with CA = 1 and
K = ωA

zA
= ωB

zB
= 1.

Unlike the ASAP strategy, the periodic schedule ensures a bounded marking for
any consistent SDFG. In addition, a periodic schedule can be computed in polynomial
time using the linear programming.

6.3 Schedulabilty analysis of two strictly periodic
communicating tasks

Based on our communication model defined in Section 5.1 of Chapter 5, we prove that
scheduling two strictly periodic communicating tasks is equivalent to schedule two
independent tasks. These latter can only be executed between their release dates and
their deadlines. In addition, we give a sufficient condition for scheduling two periodic
communicating tasks on a single processor.

Lemma 6.3.1 Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two strictly periodic
communicating tasks. Let a = (ti, tj) be the RTSDFG buffer that models the communi-
cations between the tasks executions. Let si and sj be respectively the starting dates of
t1
i and t1

j . Communications constraints represented by the buffer a = (ti, tj) are fulfilled,
if
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si ∈ [ri, ri +Di−Ci] and sj ∈ [rj , rj +Dj−Cj ].

Proof: Let a = (ti, tj) be the RTSDFG buffer that models the set of communi-
cation constraints between the strictly periodic tasks ti = (ri,Ci,Di,Ti) and tj =
(rj ,Cj ,Dj ,Tj). Let sνi

i and s
νj

j be respectively the starting dates of tνi
i and t

νj

j . Accord-
ing to corollary 5.1.1, communication constraints induced by the buffer a are fulfilled,
if

∀νi ≥ 1, sνi
i ∈ [ri +(νi−1) ·Ti, ri +Di−Ci +(νi−1) ·Ti] and,

∀νj ≥ 1, s
νj

j ∈ [rj +(νj−1) ·Tj , rj +Dj−Cj +(νj−1) ·Tj ].

On the other hand, according to the task strict periodicity, the execution starting dates
sνi

i and s
νj

j can be computed in function of the tasks first executions (si and sj) as
following:

sνi
i = si +(νi−1) ·Ti

s
νj

i = sj +(νj−1) ·Tj .

Consequently, it is sufficient that si ∈ [ri, ri +Di−Ci] and sj ∈ [rj , rj +Dj−Cj ] (for
νi = νj = 1) to ensure that all communications constraints induced by the buffer a are
satisfied. □

Fig. 6.5 Communications constraints between the executions of two strictly periodic
tasks ti = (10,3,15,30) and tj = (0,4,15,40).

Example 6.3.1 Let ti = (10,3,15,30) and tj = (0,4,15,40) be two strictly periodic
communicating tasks. Figure 6.5 represents the communications between the tasks
executions. We suppose that the tasks start their executions respectively at si = 10
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and sj = 5 time units. Communication constraints are fulfilled, since the first execution
of each task is accomplished between its release date and its deadline (si ∈ [10,22] and
sj ∈ [0,11]).

Theorem 6.3.1 Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two strictly periodic
communicating tasks. Let si and sj be respectively the starting dates of t1

i and t1
j such

that si ∈ [ri, ri + Di−Ci] and sj ∈ [rj , rj + Dj−Cj ]. These tasks can be scheduled on
the same processor if and only if

Ci ≤ (sj− si) mod gij ≤ gij−Cj ,

where gij = gcd(Ti,Tj).

Proof: Considering ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) two strictly periodic
communicating tasks. Let a = (ti, tj) be the RTSDFG buffer that models the commu-
nication constraints between the tasks executions. Let si and sj be respectively the
starting dates of t1

i and t1
j such that si ∈ [ri, ri + Di−Ci] and sj ∈ [rj , rj + Dj−Cj ].

Consequently, according to lemma 6.3.1, communications constraints induced by the
RTSDFG buffer a = (ti, tj) are fulfilled. Hence, we can deduce that tasks ti = (si,Ci,Ti)
and tj = (sj ,Cj ,Tj) can be considered as independent tasks, since the starting dates of
their first executions si and sj satisfy the communications constraints.

On the other hand, two strictly periodic independent tasks are scheduled on the
same processor if and only if there is no overlapping between their executions. According
to theorem 6.1.1, these tasks can be executed on the same processor if and only if the
starting dates of their first executions satisfy the following equation:

Ci ≤ (sj− si) mod gij ≤ gij−Cj .

□

Let us consider the strictly periodic communicating tasks ti = (10,3,15,30) and
tj = (0,4,15,40) of the example in Figure 6.5. Tasks are executed between their
release dates and their deadlines. Therefore, communication constraints between their
executions are fulfilled. Accordingly, these tasks can be considered as independent
ones. Moreover, we notice that the tasks starting dates si = 10 and sj = 5 verify the
condition of scheduling two independent tasks on the same processor (equation (6.2)):

Ci ≤
3≤

(sj− si) mod gij

(5−10) mod 10
≤ gij−Cj

≤ 10−4.
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Hence, we can deduce that ti and tj can be scheduled on the same processor while
respecting the communication constraints between their executions (see Figure 6.6).

Fig. 6.6 Scheduling on the same processor the strictly periodic communicating tasks
ti = (10,3,15,30) and tj = (0,4,15,40) of the example in Figure 6.5.

Schedulability condition of two strictly periodic communicating tasks

This subsection presents a sufficient condition for scheduling two strictly periodic tasks
on a the same processor. This condition takes into consideration the communication
constraints between the tasks executions and the available resource of a single processor.
In other words, given two strictly periodic tasks with their starting dates, the sufficient
condition allows to verify whether these tasks can be scheduled on a the same processor
or not.

Corollary 6.3.1 Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Di,Tj) be two strictly periodic
communicating tasks. Let a = (ti, tj) be a RTSDFG buffer that models the set of
communications constraints between the tasks executions. Let si and sj be respectively
the starting dates of t1

i and t1
j . These tasks can be scheduled to the same processor if:

max{Ci,M}≤ (sj− si) mod gij ≤min{gij−Cj ,M
′
} (6.7)

with M= rj− ri−Di +Ci−kij ·gij and M′ = rj− ri +Dj−Cj−kij ·gij

Proof: Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two strictly periodic com-
municating tasks. Let a = (ti, tj) be a RTSDFG buffer that models the set of commu-
nications constraints between the tasks’ executions. Let si and sj be respectively the
starting dates of t1

i and t1
j . The gap between the tasks starting dates can be written as

follows:

sj− si = δij +kij ·gij

δij = sj− si−kij ·gij ,
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where δij = (sj−si) mod gij and kij = ⌊sj−si

gij
⌋. According to theorem 6.1.1, two strictly

periodic independent tasks can be scheduled on the same processor if

Ci ≤
Ci ≤

δij

(sj− si)−kij ·gij

≤ gij−Cj

≤ gij−Cj .
(6.8)

On the other hand, there exists a set of communication constraints between the
executions of ti and those of tj . According to lemma 6.3.1, communication constraints
between the tasks’ executions are fulfilled if the starting dates of their first executions
belong to the following intervals:

ri ≤ si ≤ ri +Di−Ci

rj ≤ sj ≤ rj +Dj−Cj .

Hence, the gap between si and sj can be written as follows:

rj− ri−Di +Ci ≤ sj− si ≤ rj− ri +Dj−Cj

Therefore, the communication constraints between the tasks’ executions are fulfilled if
δij = (sj− si)−kij ·gij satisfy the following inequality:

rj− ri−Di +Ci−kij ·gij ≤ (sj− si)−kij ·gij ≤ rj− ri +Dj−Cj−kij ·gij (6.9)

By combining equations (6.8) and (6.9), we can deduce that two strictly periodic
communicating tasks can be scheduled on the same processor if

max{Ci, rj− ri−Di +Ci−kij ·gij} ≤ δij ≤min{gij−Cj , rj− ri +Dj−Cj−kij ·gij}

□

Considering the strictly periodic communicating tasks ti = (10,3,15,30) and tj =
(0,4,15,40). We assume that the tasks starting dates are respectively equal to si = 10
and sj = 5. Scheduling these tasks on the same processor can be verified by applying
equation (6.7) as follows:

max{Ci,M}≤
max{3,−12} ≤

(sj− si) mod gij

(5−10) mod 10
≤min{gij−Cj ,M

′
}

≤min{10−4,11},

with M= 0−10−15+3− (−1) ·10 =−12 and M′ = 0−10+15−4− (−1) ·10 = 11.
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6.4 Optimal algorithm: Integer linear programming
formulation

A linear programming (LP in short) problem consists on maximizing or minimizing
a linear function, subject to a finite number of linear constraints. These latter may
be equalities or inequalities. The problem feasible region is a convex polytope which
is defined by linear inequalities. Its objective function is a real-valued affine function
defined on this polytope. A linear programming algorithm consists on searching
through the polytope vertices in order to find a point (on this polytope) where the
objective function has the smallest or the largest value if such a point exists. The linear
programming problem was first introduced by Kantorovich [68] who also proposed a
method for solving it. The well know Simplex method, which is an important resolution
method dedicated to solve linear programs, was introduced by Dantzig [31]. The LP
problem can be solved using the Simplex method if there are no restrictions on the
variables types.

An integer linear programming (ILP in short) is a linear program with additional
constraint which requires that all the variables are restricted to integer values. When
the integer restriction is applied only to a subset of the variables, the problem is defined
as Mixed Integer Linear Programming (MILP in short). Several exact algorithms are
dedicated to solve these problems such as branch-and-bound [82], branch-and-cut [63],
branch-and-price [105] and cutting-plane [88]. Moreover, these linear programming
algorithms are known to be exact.

In this thesis, we need to answer the following question:
For a given set of strictly periodic tasks, these latter can be scheduled on the same

processor, assuming that the tasks communicate with each other and can not be pre-
empted?

In this section, an exact algorithm is suggested for the mono-processor scheduling
problem. This latter consists of scheduling a set of strictly periodic communicating
tasks on a single processor. Our approach used the mixed integer linear programming
formulation in order to build an exact framework. Our MILP formulation seeks a
feasible solution that satisfies the constraints induced by the communications and
available resource of a single processor without having any objective function.

Consider N = {t1, . . . , tn} a set of strictly periodic communicating tasks. Let
G = (T ,A) be the RTSDFG which models all the communications constraints between
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the tasks executions. According to lemma 6.3.1, the set of communication constraints
is fulfilled if the starting date of the first execution (si) of each task belongs to the
following interval:

∀ti ∈ T , si ∈ [ri, ri +Di−Ci].

In our study, we distinguish two cases: fixed and flexible intervals.

6.4.1 Fixed intervals

In this subsection, we presents the MILP formulation of the fixed intervals case,
where each task ti = (ri,Ci,Di,Ti) can only start its first execution during the interval
[ri, ri +Di−Ci]. Solving the MILP seeks to find a feasible solution if such one exists.
A feasible solution is composed of a set of starting dates which verify simultaneously
the communication and the resource constraints. Prior to presentation of the general
model, we present a list of constants and variables used in the MILP formulation.

Constants

• ri : Release date of the task first execution (t1
i ).

• Ci : Execution time of task ti.

• Di : Relative deadline of task ti.

Variables

• si : Starting date of the task’s first execution (t1
i ).

• δi,j : For each pair of tasks (ti, tj), δij corresponds to the time interval which is
allowed to occupy without interfering with each other.

• ki,j : For each pair of tasks (ti, tj), ki,j corresponds to the number of intervals of
length gij separating the starting dates of the tasks’ first executions

Constraints

• Communication constraints: According to lemma 6.3.1, communication con-
straints between the tasks executions are fulfilled if the first starting date of each
task execution belongs to the following interval

∀ti ∈ T , ri ≤ si ≤ ri +Di−Ci
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• Resource constraints: A set of strictly periodic communicating tasks T =
{t1, . . . , tn} can be scheduled on the same processor if and only if each cou-
ple of tasks (ti, tj) can be scheduled on this processor. According to theorem
6.3.1, two communicating tasks are executed on the same processor if and only if
equation 6.2 is fulfilled,

Ci ≤ (sj− si) mod gij ≤ gij−Cj .

In equation 6.2, mod is not a linear operation. In MILP formulation, this equation
must be substitute by the following one:

sj− si = δij +kij ·gij

where Ci ≤ δij ≤ gij−Cj and kij = ⌊sj−si

gij
⌋.

Moreover, and according to the symmetry presented in Section 6.1, we can halve
the constraints number. Therefore, the schedulability condition is only verified
for each couple (ti, tj) with i < j. More formally,

∀(ti, tj)
i<j

∈ T 2, sj− si = δij +kij ·gij

The following MILP gathers all the scheduling problem constraints of the fixed
intervals case, as follows:

subject to
ri ≤ si ≤ ri +Di−Ci, ∀ti ∈ T
sj− si = δi,j +ki,j ·gi,j , ∀(ti, tj)

i<j
∈ T 2

Ci ≤ δi,j ≤ gi,j−Cj , ∀(ti, tj)
i<j

∈ T 2

si ∈ R+ ∀ti ∈ T
ki,j ∈ Z, δij ∈ R+ ∀(ti, tj)

i<j
∈ T 2

Example 6.4.1 Consider the set of strictly periodic communicating tasksN = {t1, t2, t3}.
Let E = {(t1, t2),(t2, t3),(t3, t1)} be the set of communication relationships between
tasks. Table 6.1 represents the tasks parameters. Figure 6.7 depicts the RTSDFG
G = (T ,A) that models the communications between the tasks executions.
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ti ri Ci Di Ti

t1 90 10 30 120
t2 150 30 140 240
t3 30 20 30 60

Table 6.1 Strictly periodic tasks parameters Fig. 6.7 RTSDFG G = (T ,A).

Our purpose is to schedule these tasks on the same processor while respecting the
communication constraints between their executions. We reach our target by solving
the MILP formulation that seeks to find a feasible solution, if such a solution exists.
Figure 6.8 represents a feasible (schedule) solution of this problem where the tasks
starting dates are respectively equal to s1 = 110, s2 = 180 and s3 = 30 time units. We
notice that all the tasks are executed between their release dates and their deadlines.
Therefore, the communication constraints between the tasks’ executions are fulfilled.
For example, t1

3 starts at 30 time units and ends at 50 time units. Data produced
during its execution are available at 60 time units. These data are consumed by t1

1 at
90 time units. In turn, t1

1 starts its execution at 110 time units and ends it at 120 time
units. In addition, we notice that there is no overlapping between the tasks executions.
Hence, we can deduce that the resource constraints are also respected.

0 30 90

900

Fig. 6.8 A feasible Schedule of a strictly periodic system with communication constraints.

Infeasible solution

Let us modify the previous example by increasing the execution time of task t1 from
10 time units to 20 time units. Let s1 = 100, s2 = 180 and s3 = 30 be respectively the
tasks starting dates. Figure 6.9 illustrates the communication and execution model
of these tasks. Communication constraints are fulfilled since each task is executed
between its release date and its deadline. However, we notice that t1 and t3 can not
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admit starting dates that verify simultaneously the communication and the resource
constraints. In fact, there is an overlapping between the executions of t1 and that
of t3 if these tasks are executed between their release dates and their deadlines. For
example, the first execution of t1 begins at 100 and ends at 120 time units. In addition,
the second execution of t3 begins at 90 time units and it is accomplished after the
beginning of t1

1 (at 110 time units).

0 30 90

900

Fig. 6.9 Example of an infeasible solution where the resource constraints are not fulfilled.
There is an overlapping between the executions of t1 and that of t3.

6.4.2 Flexible intervals

In this subsection, we introduce the MILP formulation of the flexible intervals case.
Unlike the fixed intervals case, the beginning of the first execution of each task
ti = (ri,Ci,Di,Ti) is no more limited (restricted) by the interval [ri, ri + Di−Ci].
Tasks can start their executions in new execution intervals where the communications
constraints between their executions are always fulfilled. As the fixed intervals case,
solving the MILP seeks to find a feasible solution if such one exists. Prior to the
definition of the general model, we present a list of constants and variables used in the
MILP formulation.

Constants

• ri : Release date of the task’s first execution (t1
i ).

• Ci : Execution time of task ti.

• Di : Relative deadline of task ti.

Variables

• r∗
i : Starting date of the new execution interval ([r∗

i , r∗
i +Di]).
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• si : Starting date of the task first execution (t1
i ).

• δi,j : For each pair of tasks (ti, tj), δij corresponds to the time interval which is
allowed to occupy without interfering with each other.

• ki,j : For each pair of tasks (ti, tj), ki,j corresponds to the number of intervals of
length gij separating the starting dates of the tasks’ first executions

Constraints

• Communication constraints: According to theorem 5.1.1 in section 5.1 of chapter 5,
the set of communication constraints between two periodic tasks ti = (ri,Ci,Di,Ti)
and tj = (rj ,Cj ,Dj ,Tj) is modeled by a RTSDFG buffer a = (ti, tj). Its production
and consumption rates are respectively equal to zi = Ti and zj = Tj and its initial
marking is equal to M0(a). Moreover, and according to theorem 6.2.1, the
precedence constraints induced by the buffer a = (ti, tj) are fulfilled by a periodic
schedule if and only if

sj− si ≥ Ci +K · (zj−M0(a)−gcda),

where K = Ti
zi

= Tj

zj
∈Q∗

+.

In our case, K is equal to Ti
zi

= Tj

zj
= 1. The set of communications modeled by

the RTSDFG buffer is build according to the task’s release dates (ri) and their
relative deadlines (Di). In fact, a RTSDFG’s task corresponds to the interval
([ri, ri + Di]) during which the strictly periodic ti task is executed. Therefore,
the starting date of the RTSDFG task can be considered as the starting date of
the new execution interval (r∗

i ). Accordingly, precedence constraints between the
new execution intervals are fulfilled if and only if

∀a = (ti, tj) ∈ A, r∗
j − r∗

i ≥Di +(Tj−M0(a)−gcda).

Then, the new execution interval must begin after the task release date,

∀ti ∈ T , r∗
i ≥ ri.

Finally, and according to lemma 6.3.1, communications constraints between the
tasks executions are fulfilled if the starting dates of their first execution belongs
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to the new execution intervals,

∀ti ∈ T , r∗
i ≤ si ≤ r∗

i +Di−Ci.

• Resource constraints: As in the fixed intervals case, the set of strictly periodic
communicating tasks can be scheduled on the same processor if and only if:

∀(ti, tj)
i<j

∈ T 2, sj− si = δij +kij ·gij

where Ci ≤ δij ≤ gij−Cj and kij = ⌊sj−si

gij
⌋.

The following MILP formulation gathers all the scheduling problem constraints of
the flexible intervals case:

subject to
r∗

j − r∗
i ≥Di +(Tj−M0(a)−gcda), ∀a = (ti, tj) ∈ A

r∗
i ≥ ri, ∀ti ∈ T

r∗
i ≤ si ≤ r∗

i +Di−Ci, ∀ti ∈ T
sj− si = δi,j +ki,j ·gi,j , ∀(ti, tj)

i<j
∈ T 2

Ci ≤ δi,j ≤ gi,j−Cj , ∀(ti, tj)
i<j

∈ T 2

(si, r
∗
i ) ∈ R2

+ ∀ti ∈ T
ki,j ∈ Z, δij ∈ R+ ∀(ti, tj)

i<j
∈ T 2

0

900

Fig. 6.10 A feasible schedule of the example depicted in Figure 6.9. Communication
constraints are respected and there is no overlapping between the tasks executions.

Example 6.4.2 Let us reconsider the strictly periodic system depicted in figure 6.9.
Unlike the fixed intervals case, this system admits a feasible schedule. Figure 6.10
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illustrates a feasible solution where the tasks starting dates are respectively equal to
s1 = 90, s2 = 150 and s3 = 60. In addition, the starting date of the new execution
intervals are respectively equal to r∗

1 = 90, r∗
2 = 150 and r∗

3 = 50. We notice that
the communication constraints are fulfilled, since the tasks are executed during the
interval [r∗

i , r∗
i + Di]. For example, t1

3 begins its execution at 60 time units and it is
accomplished at 80 time units. Data produced during its execution are consumed by t1

1
at 90 time units. Moreover, we notice that there is no overlapping between the tasks
executions. For instance, t1

1 starts at 90 time units and ends at 110 time units. On the
other hand, t1

3 is accomplished at 80 time units and t2
3 starts at 120 time units.

In order to justify the MILP formulation of the flexible intervals case, more precisely
the addition of the variable r∗

i (starting date of the new execution interval), we consider
the following example:

Fig. 6.11 RTSDFG G = (T ,A) modeling the communication constraints between the
executions of t1 = (110,10,25,120), t2 = (15,15,30,60) and t3 = (190,45,200,240).

Example 6.4.3 Let t1 = (110,10,25,120), t2 = (15,15,30,60) and t3 = (190,45,200,240)
be three strictly periodic communicating tasks. Figure 6.11 depicts the RTSDFG
G = (T ,A) that models the set of communication constraints between the tasks’ ex-
ecutions. According to our communication model, data are only available at the
task’s deadline and they can only be consumed at the task’s release date. Figure 6.12
illustrates the communication scheme that should be respected in order to fulfil the
communication constraints between the tasks’ executions. For example, execution t3

2
must communicate with t1

3 which in turn must communicate with t8
2. Solving the MILP

formulation of the flexible intervals case provides us a feasible schedule. Figure 6.13
illustrates this feasible solution where the tasks’ starting dates s1 = 130, s2 = 55 and
s3 = 190 time units. In addition, the interval starting dates are r∗

1 = 130, r∗
2 = 40 and

r∗
3 = 190 time units.
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0

0

Fig. 6.12 Communication scheme between the executions oft1 = (110,10,25,120), t2 =
(15,15,30,60) and t3 = (190,45,200,240).

In order to highlight the impact of the variable r∗
i to solve the mono-processor

scheduling, we assume that the tasks’ starting dates are equal to the intervals starting
dates (si = r∗

i , ∀ti ∈ T ). This means that the tasks must start their executions at
the beginning of their intervals. Let us reconsider the feasible solution depicted in
Figure 6.13. The interval starting dates of tasks t1 and t3 remain unchanged since
their executions start at the beginning of their intervals. However, the interval starting
date of task t2 will be modified so that it is equal to s2 = 55 time units. By changing
this value, we notice that the resource constraints remain respected. However, this is
no longer the case for the communication constraints, since t3

2 is not able to transfer
the data to t1

3. In fact, the deadline of t3
2 is greater than the release date of t1

3. On
the other hand, let us decrease the starting date of t1

2 from 55 to 40 time units so
that t2 is executed at the beginning of its interval. In this case, we notice that the
communication constraints remain respected. However, this is no longer the case for
the resource constraints, since there is an overlapping between t4

2 and t1
3. Therefore, we

deduce that adding the starting date of the new execution interval (r∗
i ) to the MILP

formulation is essential to solve the mono-processor scheduling problem for the flexible
interval case.

0

0

Fig. 6.13 Scheduling the strictly periodic communicating tasks t1 = (110,10,25,120),
t2 = (15,15,30,60) and t3 = (190,45,200,240) on the same processor.
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6.5 Heuristics
Solving the MILP produces a schedule for a set of strictly periodic communicating tasks
on a single processor. Numerically solving the MILP within a reasonable amount of
time is only restricted to small instance. Recall that the scheduling problem in question
is known to be NP-complete in the strong sense [79]. Consequently, we present in this
section three heuristics which seek to find a feasible solution for our scheduling problem,
such as linear programming relaxation. For the second and the third heuristic if no
feasible solution is found, a partial solution is computed. This solution corresponds to
a subset of tasks that can be executed on the same processor.

6.5.1 Linear programming relaxation

Linear programming relaxation is a method which consists on transforming a com-
binatorial or discrete problem to a continuous one. This method is used to obtain
information on the initial discrete problem in order to build a solution. The linear pro-
gramming relaxation may be solved using any standard linear programming technique
(such as Simplex). Our first approach is based on the linear programming relaxation
and it can be defined in the following steps:

• Relaxation of the integrality constrain: this relaxation allows variables to have
non-integral values. The MILP of the Flexible intervals case can be “ relaxed ”
as follows :

subject to
r∗

j − r∗
i ≥Di +(Tj−M0(a)−gcda), ∀a = (ti, tj) ∈ A

r∗
i ≥ ri, ∀ti ∈ T

r∗
i ≤ si ≤ r∗

i +Di−Ci, ∀ti ∈ T
sj− si = δi,j +ki,j ·gi,j , ∀(ti, tj)

i<j
∈ T 2

Ci ≤ δi,j ≤ gi,j−Cj , ∀(ti, tj)
i<j

∈ T 2

(si, r
∗
i ) ∈ R2

+ ∀ti ∈ T
ki,j ∈ R, δij ∈ R+ ∀(ti, tj)

i<j
∈ T 2

• Solving the resulting linear program in order to obtain a fractional optimal
solution. We can notice that all the linear program constraints are potential
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except the resource ones. For example, the precedence constraints induced by
the RTSDFG buffers are potential constraints, since the gap between the starting
date of the new execution intervals (r∗

j − r∗
i ) are greater than or equal to an

integer constant. However, the equality sj− si = δi,j +ki,j ·gi,j is not potential.

• For each couple of tasks (ti, tj)
i<j

∈ T 2, we compute the integer value of kij which

is equal to ⌊sj−si

gij
⌋.

• We substitute each kij with its value in a new execution LP where kij is no longer
considered as a variable. In order to verify the existence of a feasible (integer)
solution to our scheduling problem, we solve the new LP. Note that finding a
feasible solution for the new LP is equivalent to find a feasible solution for the
original MILP.

Let us reconsider the example depicted in figure 6.8. Fractional solution obtained
by solving the “ relaxed ” program is equal to:

s1 = 140 r∗
1 = 120 k12 = 0.9167 δ12 = 10,

s2 = 260 r∗
2 = 150 k13 =−0.8334 δ13 = 10,

s3 = 100 r∗
3 = 90 k23 =−3.1667 δ23 = 30.

For each couple of tasks (ti, tj)
i<j

∈ T 2, we compute the number of intervals of length gij

separating the starting dates of the tasks’ executions:

k12 = ⌊s2− s1
g12

⌋= ⌊260−140
120 ⌋= 1,

k13 = ⌊s3− s1
g13

⌋= ⌊100−140
60 ⌋=−1,

k23 = ⌊s3− s2
g23

⌋= ⌊100−260
60 ⌋=−3.

By solving the new LP where each kij is substituted by its integer value, we obtain
the following solution:

s1 = 90 r∗
1 = 90 δ12 = 10,

s2 = 220 r∗
2 = 150 δ13 = 40,

s3 = 70 r∗
3 = 60 δ23 = 30.
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0

900

Fig. 6.14 A feasible solution for the scheduling problem is obtained by solving the new
LP with k12, k13 and k23 respectively equal to 1,−1 and −3.

Figure 6.14 illustrates the feasible solution obtained by solving the new LP. We notice
that there is no overlapping between the tasks executions and the communication
constraints between them are fulfilled.

6.5.2 Simple heuristic

In this subsection, we describe in detail our simple heuristic for scheduling strictly
periodic communicating tasks. It is based on the schedulability condition of two strictly
periodic communicating tasks, which is presented previously in Section 6.3. In our
approach, we use a greedy algorithm without back-tracking (i.e. if a decision is made
at some stage, it is never questioned during the following stages). The effectiveness
of any greedy algorithm is predicated on the decisions choice. In the simple heuristic,
decisions are based on two criteria: the interval length where each task can start its
execution ([ri, ri +Di−Ci]) and the task period (Ti).

Our algorithm takes as input a sorted list of tasks (the sort description is represented
subsequently). In addition, this algorithm returns a feasible solution (if it is able to
find such a solution). Otherwise, it returns a partial solution that corresponds to a
subset of tasks with their starting dates which can be executed on the same processor.

We sort the set of tasks in an ascending order according to the gap between the
tasks relative deadlines and their execution times (Di−Ci). Moreover, if two tasks
have the same gap between their deadlines and their execution times, the task with
the smallest period has a higher priority. In other words, the task with the smallest
period is placed prior to the other task in the sorted list. More formally, we denote by
LT the sorted list of tasks such that



116 Scheduling strictly periodic systems with communication constraints

LT = {ti : ∀ti ∈ T , (Di−Ci)≤ (Di+1−Ci+1). If (Di−Ci) = (Di+1−Ci+1) then
the task with the smallest period has a higher priority}.

Algorithm 4 describes the simple heuristic as follows:

• First, we initialize an empty list Solution. We insert in this latter the first task of
LT while setting its starting date to its release date s1 = r1 (line 3). In addition,
we remove this task from LT (line 4). Solution corresponds to the set of scheduled
tasks in the partial or global scheduling.

• Then, we verify for each candidate task tj in LT if there exists a starting date
sj ∈ [rj , rj +Dj−Cj ] which fulfils the schedulability condition with all tasks in
the current solution Solution. We run the test on the starting date values in an
increasing order (line 6). If such a starting date exists (line 7), we add the couple
(tj , sj) to the current solution Solution (line 8). Even if this starting date does not
exist, we continue to check the remaining tasks in LT in order to find a partial
solution and to compute the tasks percentage which can be executed on the same
processor.

• Finally, after checking all the tasks in LT , we return the current solution (line
13). If |Solution|= n then Solution is a feasible solution. Otherwise, it is a partial
solution that contains the subset of tasks which can be scheduled on the same
processor.

Note that our algorithm always selects the first starting date value that satisfies the
schedulability condition with current solution tasks. Changing the order of checking
the tasks starting date values provides a new heuristic. For example, we can modify
the order in line 6 from an increasing order to a decreasing one.
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Algorithm 4 Simple Heuristic
1: Input: sorted list LT = (t1, . . . , tn)
2: Output: feasible or partial solution
3: Solution = {(t1, r1)}
4: remove t1 from LT
5: for all tj ∈ LT do
6: for sj = rj to rj +Dj−Cj do
7: if sj satisfies equation 6.2 for each (ti, si) ∈ Solution then
8: Solution = Solution∪{(tj , sj)}
9: break

10: end if
11: end for
12: end for
13: return Solution

Example 6.5.1 Let us consider the set of strictly periodic communicating tasks N =
{t1, t2, t3}. Let E = {(t1, t3),(t3, t2),(t2, t1)} be the set of communication relationships
between tasks. Table 6.2 represents the tasks parameters. Figure 6.15 depicts the
RTSDFG G = (T ,A) that models the communications between the tasks executions.
Our purpose is to verify the system schedulability using Algorithm 4.

ti ri Ci Di Ti

t1 0 4 14 18
t2 0 10 50 144
t3 0 4 14 54

Table 6.2 Strictly periodic tasks parameters Fig. 6.15 RTSDFG G = (T ,A).

Let LT = (t1, t3, t2) be the tasks sorted list. Tasks are sorted increasingly according
to two criteria: the interval length where each task can start its execution (Di−Ci)
and the task period (Ti). We notice that t1 is prior to t3 in the sorted list even if they
admit equal gaps (D1−C1 = D3−C3 = 14−4 = 10). This is due to the fact that the
period of t1 is strictly smaller than the period of t3 (T1 < T3).

In order to build a schedule, we apply Algorithm 4 on the sorted list LT . First, we
schedule t1 with a starting date equals to s1 = r1 = 0. Then, we verify if there exists a
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starting date s3 ∈ [0,10] that allows t3 to be executed on the same processor executing
t1 (without overlapping). We run the test on the possible values of s3 in an increasing
order. Moreover, we select the first value that verify the schedulability condition with
(t1, s1). In this example, s3 is equal to 4 time units. Using the same principle, we verify
if there is a starting date s2 ∈ [0,40] that allows t2 to be scheduled on the processor
executing t1 and t3. t2 can be executed on this processor with a starting date equal to
8 time units.

Figure 6.16 depicts the resulting scheduling using Algorithm 4. As we can see, there
is no overlapping between the tasks execution (i.e. resource constraints are fulfilled).
In addition, we notice that communication constraints between the tasks executions
are satisfied, since each task starts its execution during the interval [ri, ri +Di−Ci].

0

Fig. 6.16 A feasible schedule of the strictly periodic system represented in Table 6.2
and Figure 6.15. The tasks starting dates are respectively equal to s1 = 0, s2 = 8 and
s3 = 4.

Partial solution

Let us modify the previous example by increasing the tasks release dates as follows:
r1 = 10, r2 = 120 and r3 = 40 time units. In order to verify the system schedulability
on a single processor, we apply Algorithm 4. Let LT = (t1, t3, t2) be the tasks sorted
list. First, we schedule t1 with a starting date equal to s1 = r1 = 10 time units. Then,
we verify if there is a starting date value of s3 ∈ [40,50] that satisfies the schedulability
condition with the starting date of t1. In this case, s3 is equal to 40 time units. Finally,
we check if there is a starting date s2 ∈ [120,160] that simultaneously satisfies the
schedulability condition with t1 and t3. We release that such a date does not exist.
More precisely, there is no starting date s2 ∈ [120,160] that verifies the schedulability
condition with (t3, s3). We can deduce that Algorithm 4 provides only a partial solution
(see Figure 6.17) composed by the couples (t1,10) and (t3,40).
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0

Fig. 6.17 A Partial solution of the scheduling problem using Algorithm 4. The tasks
starting dates are respectively equal to s1 = 10 and s3 = 40.

6.5.3 ACAP heuristic

In this part, we present the ACAP (As Close As Possible) heuristic which is also a
greedy algorithm. As the the simple heuristic, our algorithm takes as input a sorted
list of tasks. These latter are sorted increasingly according to their gaps (Di−Ci)
and their periods (Ti). In addition, this algorithm returns a feasible solution (if it is
able to find such a solution). Otherwise, it returns a partial solution corresponding
to a subset of tasks which can be executed on the same processor. In contrast to the
simple heuristic approach, a new priority is given to every candidate task in order to be
scheduled with the current solution tasks. This priority depends on the candidate task
position compared to the other tasks that are already scheduled. In fact, adding this
priority seeks to maximize the number of tasks that can executed on a single processor
by scheduling the tasks as close as possible.

Scheduling two strictly periodic communicating tasks as close as possible

Let ti = (ri,Ci,Di,Ti) and tj = (rj ,Cj ,Dj ,Tj) be two strictly periodic communicating
tasks, such that ti is already scheduled on a processor with a staring date equal to si.

Let sj be the unknown starting date of tj . According to theorem 6.3.1, these tasks
can be scheduled on the same processor if and only if equation (6.2) is fulfilled. This
equation can be written as follows:

sj− si = δij +kij ·gij , (6.10)

where Ci ≤ δij ≤ gij−Cj and kij = ⌊sj−si

gij
⌋.

In order to maximize the number of tasks that can be executed on the same
processor, we seek to schedule tj as close as possible to ti. Hence, we can distinguish
two cases:
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1. The execution of tj starts at the end of ti. This implies that sj = si +Ci. In this
case, we obtain δij = (sj− si) mod gij = Ci. Hence, the starting date of tj can
be computed according to the starting date of ti, as follows:

sj− si = Ci +kij ·gij

sj = si +Ci +kij ·gij . (6.11)

In order to fulfil the communication constraints between the tasks executions, sj

must belong to the interval [rj , rj +Dj−Cj ]. Accordingly, we compute the kij

values which verify that tj starts its execution at the end of ti, as follows:

rj ≤ sj ≤ rj +Dj−Cj

rj ≤ si +Ci +kij ·gij ≤ rj +Dj−Cj

rj− si−Ci ≤ kij ·gij ≤ rj +Dj−Cj− si−Ci

⌈rj−si−Ci

gij
⌉ ≤ kij ≤ ⌊rj+Dj−Cj−si−Ci

gij
⌋

2. The execution of tj ends at the beginning of ti. This implies that si = sj +Cj . In
this case, we obtain δij = (sj− si) mod gij = gij− (si− sj) mod gij = gij−Cj .

Hence, the starting date of tj can be computed according to the starting date of
ti, as follows:

sj− si = gij−Cj +kij ·gij ,

sj = si +gij−Cj +kij ·gij ,

sj = si−Cj +(kij +1) ·gij , (6.12)

In order to fulfil the communication constraints between the tasks executions,
sj must belong to the interval [rj , rj + Dj −Cj ]. Accordingly, we compute the
values of (kij +1) which verify that tj ends its execution at the beginning of ti,
as follows:

rj ≤ sj ≤ rj +Dj−Cj

rj ≤ si−Cj +(kij +1) ·gij ≤ rj +Dj−Cj

rj +Cj− si ≤ (kij +1) ·gij ≤ rj +Dj− si

⌈rj+Cj−si

gij
⌉ ≤ (kij +1) ≤ ⌊rj+Dj−si

gij
⌋
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Let t1 = (10,4,14,18) and t2 = (120,10,50,144) be two strictly periodic communi-
cating tasks. Let s1 and s2 be the tasks starting dates. we suppose that t1 is already
scheduled on a processor with a starting date s1 = 10. Hence, t2 can start its execution
at the end of t1 if

s2 = s1 +C1 +kij ·gij

= 10+4+kij ·18,

with 6≤ kij ≤ 8. Figure 6.18 illustrates an example where task t2 begins its execution
at the end of t1 with a starting date s2 = 14 + 6 · 18 = 122 time units. In addition,
communication constraints are fulfilled since s2 ∈ [120,160].

0

Fig. 6.18 Scheduling task t2 = (120,10,50,144) at the end of the execution of task
t1 = (10,4,10,18) which is already scheduled with a starting date s1 = 10 time units.

On the other hand, t2 can end its execution at the beginning of t1 if

s2 = s1−C2 +(kij +1) ·gij

= 10−10+(kij +1) ·18,

with 7≤ (kij +1)≤ 8. Figure 6.19 illustrates an example where task t2 ends its execution
at the beginning of t1 with a starting date s2 = 7 ·18 = 126 time units. In addition,
communication constraints are fulfilled since s2 ∈ [120,160].

0

Fig. 6.19 Scheduling task t2 = (120,10,50,144) such that the end of its execution
corresponds to the beginning of task t1 = (10,4,10,18) which is already scheduled with
a starting date s1 = 10 time units.
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Our target is to maximize the number of tasks that can be scheduled on the same
processor. In order to achieve this goal, we seek to schedule each candidate task as
close as possible to the tasks that are already scheduled. Algorithm 5 describes in
details this approach as follows:

• As in the simple heuristic, we initialize an empty list Solution. We insert in this
latter the first task of LT while setting its starting date to its release date s1 = r1

(line 3). In addition, this task is removed from LT (line 4).

• Then, we initialize an empty list Slist (line 6). For each candidate task tj in LT ,

we verify if there exists a starting date sj ∈ [rj , rj + Dj −Cj ] which fulfils the
schedulability condition with all tasks in the current solution Solution. We run the
test on the starting date values in an increasing order (line 8). If a given task tj

does not admit a starting date that satisfies the schedulability condition with all
the current solution tasks, then tj is removed from the list (line 11). In contrast
with the simple heuristic, we group in Slist all the couples (tj , sj) which verify
the schedulability condition with current solution tasks (line 14). Moreover, we
group in S ′

list the couples from Slist which verify equation (6.11) or (6.12) with
at least one couple (ti, si) ∈ Solution (line 20). In other words, we consider that a
couple (tj , sj) ∈ S

′
list has a higher priority, since its execution starts at the end

of a scheduled task. Moreover, this couple can also have a higher priority if its
execution ends at the beginning of a scheduled task. Note that (tj , sj) ∈ S

′
list

can verify both cases at the same time. This means that a candidate task can
begin at the end of a scheduled task and ends at the beginning of another one.

If several couples in S ′
list have the same priority, we choose the couple with the

smallest gap (line 22). In addition, if S ′
list is empty, we choose from Slist the

couple whose gap is minimal (line 24). We add the chosen couple (tj , sj) to the
current solution Solution and we remove tj from LT (lines 26 and 27). We repeat
the whole procedure as long as the list LT is not empty.

• Finally, once the tasks list LT is empty, we return the current solution (line
30). If |Solution|= n then Solution is a feasible solution. Otherwise, it is a partial
solution that corresponds to a tasks subset and their starting dates, that can be
scheduled on the same processor.
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Algorithm 5 ACAP Heuristic
1: Input: sorted list LT = (t1, . . . , tn)
2: Output: feasible or partial solution
3: Solution = {(t1, r1)}
4: remove t1 from LT
5: while LT ̸= ∅ do
6: Slist = ∅
7: for all tj ∈ LT do
8: for sj = rj to rj +Dj−Cj do
9: if ∃(tk, sk)∈ Solution such that sk and sj do not verify equation (6.2) then

10: if sj = rj +Dj−Cj then
11: remove tj from LT
12: end if
13: else
14: Slist = Slist∪{(tj , sj)}
15: break
16: end if
17: end for
18: end for
19: if Slist ̸= ∅ then
20: S ′

list = {(tj , sj)∈ Slist | ∃(tk, sk)∈ Solution, such that sj and sk verify equation
(6.11) or (6.12)}

21: if S ′
list ̸= ∅ then

22: choose the couple (tj , sj) ∈ S ′
list whose gap (Dj−Cj) is minimal

23: else
24: choose the couple (tj , sj) ∈ Slist whose gap (Dj−Cj) is minimal
25: end if
26: Solution = Solution∪{(tj , sj)}
27: remove tj from LT
28: end if
29: end while
30: return Solution

Similarly to the simple heuristic algorithm, Algorithm 5 always selects the first
starting date value that satisfies the schedulability condition with current solution
tasks. Changing the order of checking the tasks starting date values provides a new
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heuristic. This can be done by modifying the order in line 8 from an increasing order
to a decreasing one.

Example 6.5.2 Let us reconsider the system composed of three strictly periodic
communicating tasks t1 = (10,4,14,18), t2 = (120,10,50,144) and t3 = (40,4,14,54).
Recall that applying Algorithm 4 on this system provides only a partial solution. In
order to verify the system schedulability on a single processor, we apply Algorithm
5. Let LT = (t1, t3, t2) be the tasks sorted list. We schedule t1 with a starting date
equal to its release date s1 = r1 = 10 time units and we remove it from LT . Then,
we compute for each task in LT its first starting date that fulfils the schedulability
condition with (t1,10). In this example, the tasks starting dates are respectively equal
to s3 = 40 and s2 = 122 time units. We add the couples (t3,40) and (t2,122) to Slist.

Moreover, we check for each couple in Slist if its starting date satisfies equation (6.11)
or (6.12) with s1 = 10 time units. We notice that s3 = 40 does not satisfy any equation.
However, s2 = 122 verifies equation (6.11) with s1 = 10. This means that t2 starts its
execution at the end of t1. Accordingly, t2 is given a higher priority and it is scheduled
with a starting date equal to s2 = 122 time units. Therefore, we remove t2 from LT .
Finally, We check if there is a starting date s3 ∈ [40,50] that simultaneously verifies the
schedulability condition with (t1,10) and (t2,122). We realize that t3 can be executed
on the same processor with t1 and t2 with a starting date s3 = 42 time units.

0

Fig. 6.20 A feasible schedule resulting from applying Algorithm 5 on the perioidic
system composed of t1 = (10,4,14,18), t2 = (120,10,50,144) and t3 = (40,4,14,54).
The tasks starting dates are respectively equal to s1 = 10, s2 = 122 and s3 = 42 time
units.

Figure 6.20 depicts the resulting schedule using Algorithm 5. As we can see, the
tasks are scheduled as close as possible. For instance, the first execution of t3 ends
at the beginning of the third execution of t1. On the other hand, the first execution
of t2 starts at the end of the seventh execution of t1. In addition, we notice that
the resource constraints are fulfilled, since there is no overlapping between the tasks
executions. Moreover, communication constraints are fulfilled since each task ti starts
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its execution during the interval [ri, ri + Di−Ci], such as s3 = 42 time units which
belongs to [40,40+14−4].

Flexible interval case

In the flexible intervals case, the starting date of a task ti = (ri,Ci,Di,Ti) is no
longer restricted to the interval [ri, ri + Di−Ci]. Therefore, we need to know how
we might compute the starting date of the new execution interval (r∗

i ) knowing
that communication constraints between executions must always be respected. Let
G = (T ,A) be a RTSDFG. For each task ti ∈ T , we denote by αi the length of the
release date interval to which the starting date of the new execution interval (r∗

i )
belongs. More formally,

∀ti ∈ T , r∗
i ∈ [ri, ri +αi].

Computing αi of a given task ti = (ri,Ci,Di,Ti) must respect the communication
constraints between the executions of ti and that of its adjacent tasks. According
to our communication scheme of Section 5.1 in Chapter 5, the data consumption
can only be done at the release date of the receiving task. As the starting date of
the new execution interval (r∗

i ) is greater or equal to the task release date (ri), the
communications constraints between the task and its predecessors are always fulfilled.
Therefore, the αi computation depends only on the task’s release dates and those of
its successors. More precisely, it depends on the minimal latency separating the task’s
executions and those of its successors. According to Theorem 5.2.2 in Section 5.2 of
Chapter 5, the minimum latency between two periodic communicating tasks ti and tj ,
such that ti is the emitting task and tj the receiving one, can be computed as follows:

Lmin(ti, tj) = rj− ri +λ−Di,

where λ = ⌈ri−rj+Di

gcda
⌉ ·gcda and gcda = gcd(Ti,Tj).

Our approach computes the interval length αi of a task ti while taking into account
that ti can admit successors that are already scheduled. Therefore, our algorithm
takes as input a candidate task ti = (ri,Ci,Di,Ti) and a current solution Solution =
{(tj , r

∗
j , sj), such that tj is already scheduled}. It returns the interval length (αi) to

which r∗
i belongs.
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Algorithm 6 Computation of the length of the release date interval: αi

1: Input: task ti = (ri,Ci,Di,Ti), current solution Solution

2: Output: αi

3: Succ(ti): set of successors of ti

4: if Succ(ti) = ∅ then
5: αi←M− ri− (Ri−1) ·Ti−Di

6: else
7: for all tj ∈ Succ(ti) do
8: if tj ∈ Solution then
9: µj = r∗

j

10: else
11: µj = rj

12: end if
13: Lmin(ti, tj) = µj− ri +λ−Di with λ = ⌈ri−µj+Di

gcda
⌉ ·gcda

14: end for
15: µi←min{Lmin(ti, tj)} ∀tj ∈ Succ(ti)
16: αi←min{µi, M− ri− (Ri−1) ·Ti−Di}
17: end if
18: return αi

Algorithm 6 describes in details our approach, as follows:

• First, we check in line 4 if the successors list is empty. This means that there is
no restriction on the interval length value and communication constraints are
always fulfilled. We denote by M the date before which each task ti ∈ T is
executed at least Ri (task repetition factor) times. In our case, we compute an
upper bound on this date in the following way:

M= max
∀ti∈T

{ri}+β ·Ri ·Ti,

with β ∈ [2,n] where n is the number of tasks (|T |). In addition, we assume that
the Rith interval of length Di ends at the instant M. Therefore, the length of
the release date interval (αi) can be computed as follows:

ri +αi +(Ri−1) ·Ti +Di =M
αi =M− ri− (Ri−1) ·Ti−Di
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• In contrast, if the successors list is not empty, lines 7 to 12 classify the successors
tasks whether they are already scheduled or not. Accordingly, line 13 represents
the minimum latency computation between the task and its successor. In other
words, we compute the minimum latency Lmin(ti, tj) according the starting date
of the new execution interval (r∗

i ) if the successor task is already scheduled.
Otherwise, we compute this latency according to the successor release date. In
line 15, we compute µi which is equal to the minimum Lmin(ti, tj) between ti

and its successors. In line 16, we calculate the length of the release date interval
(αi) by computing the minimum between µi and M− ri− (Ri−1) ·Ti−Di.

After computing the interval length αi, we compute the starting date of the new
execution interval r∗

i . Our approach consists of finding the task starting date si (if
it exists), and according to its value, we compute the interval starting date. Our
algorithm takes as input a candidate task ti = (ri,Ci,Di,Ti), the length of its interval
release date αi and a current solution Solution. It returns the starting date of the new
execution interval (r∗

i ).

Algorithm 7 Computation of the starting date of the new execution interval: r∗
i

1: Input: task ti = (ri,Ci,Di,Ti), current solution Solution, interval length αi

2: Output: r∗
i

3: Prec(ti) : set of predecessors of ti

4: if ∃si ∈ [ri, ri +Di−Ci +αi] such that ti can be scheduled on the same processor
with the current solution tasks then

5: if ∃tj ∈ Prec(ti) such that tj /∈ Solution then
6: r∗

i = min(ri +αi, si)
7: else if si +Ci > ri +Di then
8: r∗

i = si +Ci−Di

9: else
10: r∗

i = ri

11: end if
12: end if
13: return r∗

i

Algorithm 7 computes the starting date of the new execution interval. First, line 3
checks if there is a task starting date (si) which belongs to the interval [ri, ri +Di−
Ci +αi], such that ti can be scheduled on the same processor with the current solution
tasks. We distinguish two cases:
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1. Task ti admits a predecessor (tj ∈ Prec(ti)) which is not scheduled yet. If such a
predecessor does exist (line 5), we seek to increase the starting date value of the
new execution interval (r∗

i ). This increases the possibility of finding a starting
date (sj) that allows the predecessor task (which is not scheduled yet) to be
executed on the same processor with the current solution tasks. Therefore, r∗

i

can be computed (line 6) by finding the minimum between ri +αi and the task
starting date si.

2. Task ti does not admit predecessors or admits predecessors that are already
scheduled. In this case, we check whether the task is partially or totally executed
outside the interval [ri, ri + Di]. If this occurs, the starting date of the new
execution interval is equal to si +Ci−Di (line 8). Otherwise, the task is totally
executed within the interval [ri, ri +Di] and r∗

i is equal to ri (line 10).

Our purpose is to solve the mono-processor scheduling problem for the flexible
intervals case using the simple or ACAP heuristics. In order to achieve our target, we
modify Algorithm 4 or 5 as follows:

• We verify whether the first task of the sorted list admits predecessors. If this
occurs, we compute the length of the release date interval (αi) using Algorithm 6.
Moreover, we schedule this task with a starting date si equal to ri +αi. Otherwise,
we schedule this task with a starting date equals to its release date ri. In both
cases, the starting date of the new execution interval r∗

i is equal to the task
starting date.

• After scheduling the first task, we seek to schedule the remaining tasks in LT .

Therefore, at the beginning of each iteration of Algorithm 4, we compute for
the candidate task the length of its release date interval (αi) (using Algorithm
6). However, at the beginning of each iteration of Algorithm 5, we compute for
every remaining task in LT the length of its release date interval (αi) (using
Algorithm 6). In both cases, we need to find the first date which allows the
task to be scheduled on the same processor with the current solution tasks.
In order to do that, we run the test on the starting date value in the interval
[ri, ri +Di−Ci +αi].

• Once the task’s starting date si is fixed, we compute its starting date of the new
execution interval r∗

i according to si using Algorithm 7.
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Example 6.5.3 Let us consider the set of strictly periodic communicating tasks
N = {t1, t2, t3, t4}. Let E = {(t1, t2),(t1, t2),(t1, t3),(t2, t3),(t3, t4),(t3, t5)} be the set of
communication relationships between tasks. Table 6.2 shows the tasks parameters.
Figure 6.15 depicts the RTSDFG G = (T ,A) that models the communications between
the tasks executions. Our purpose is to schedule this system using the ACAP heuristic
for the flexible intervals case.

ti ri Ci Di Ti

t1 160 20 50 240
t2 10 10 20 30
t3 80 10 30 120
t4 20 20 50 60
t5 60 10 40 120

Table 6.3 Strictly periodic tasks parameters Fig. 6.21 RTSDFG G = (T ,A).

Let Prec(ti) and Succ(ti) be respectively the set of predecessors and successors of
task ti. Let LT = (t2, t3, t4, t1) be the tasks sorted list. We notice that t2 (the first
task in LT ) admits t1 as predecessor. Consequently, we apply Algorithm 6 in order
to compute α2 knowing that Succ(t2) = t3. As t3 is not scheduled yet, we compute
Lmin(t2, t3) according to the release date of t3 as follows:

Lmin(t2, t3) = r3− r2 +λ−D2

= 80−10+ ⌈10−80+20
30 ⌉ ·30−20

= 20 time units.

On the other hand, we consider M a date before which each task is executed at least
Ri (its repetition factor) times. An upper bound on this date can be calculated in the
following way:

M= max
∀ti∈T

{ri}+β ·Ri ·Ti

= 160+β ·240,
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with β ∈ [2,4]. In this example, we consider β = 4. Hence, the length of the release
date interval is equal to

α2 = min{Lmin(t2, t3),M− r2− (R2−1) ·T2−D2}
= min{20,1120−10− (8−1) ·30−30}
= min{20,870}= 20 time units.

Once α2 computed, we schedule t2 with a starting date of the new execution interval
equals to

s2 = r∗
2 = r2 +α2 = 10+20 = 30 time units.

We add (t2,30,30) to the current solution Solution and we remove t2 from LT . At the
beginning of the first iteration, we apply Algorithm 6 on each task in LT = (t3, t4, t1).
The computed values of αi are α3 = 30, α4 = 870 and α1 = 0 time units. Hence, s3,
s4 and s1 are tested in the intervals [80,130], [20,920] and [160,190], respectively. We
compute for each task its first starting date that fulfils the schedulability condition
with (t2,30,30). In this iteration, these dates are respectively equal to s3 = 80, s4 = 40
and s1 = 160 time units. Moreover, we verify for every task if its starting date satisfies
equation (6.11) or (6.12) with s2 = 30 time units. We notice that s3 = 80 verifies
equation (6.12). However, s4 = 40 and s1 = 160 fulfil both equations at the same
time. This means that t4 and t1 can be exactly executed between two successive
executions of t2. More specifically, their starting dates (s4 and s1) coincide with the
end date of an execution of t2 and their end dates (s4 + C4 and s1 + C1) coincide with
the starting date of the next execution of t2. In addition, t4 has a smaller gap than t1

(D4−C4 < D1−C1). Accordingly, t4 is given a higher priority and it is scheduled with
s4 = 40 time units. After computing s4, we apply Algorithm 7 in order to calculate the
starting date of the new execution interval r∗

4. As t4 admits t1 and t3 as predecessors
(which are not scheduled yet), r∗

4 can be computed as follows:

r∗
4 = min(r4 +α4, s4)

= min(20+870,40)
= 40 time units.

This procedure is repeated as long as the list LT is not empty. At the second iteration,
we schedule t1 with s1 = 190 and r∗

1 = 160 time units (since Prec(t1) = ∅ and the task is
totally executed in the interval [160,210]). Finally, we schedule t3 with s3 = 130 time
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units. As t3 is executed outside the interval [80,110] and all its predecessor are already
scheduled, r∗

3 is equal to s3 +C3−D3 = 130+10−30 = 110 time units.
Figure 6.22 illustrates the feasible schedule resulting from applying Algorithm 5

for the flexible case. The tasks’ starting dates are s1 = 190, s2 = 30, s3 = 130 and
s4 = 40 time units. The starting dates of the new execution intervals are r∗

1 = 160,
r∗

2 = 30, r∗
3 = 110 and r∗

4 = 40 time units. We notice that the resource constraints
are fulfilled since there is no overlapping between the tasks executions. Moreover,
communication constraints are fulfilled since each task ti starts its execution during the
interval [r∗

i , r∗
i +Di−Ci], such as s4 = 40 time units which belongs to [40,40+90−20].

0

Fig. 6.22 A feasible schedule of the strictly periodic system represented in Table 6.3
and Figure 6.21. The tasks starting dates are s1 = 190, s2 = 30, s3 = 130 and s4 = 40
time units. In addition, the starting dates of the new execution intervals are r∗

1 = 160,
r∗

2 = 30, r∗
3 = 110 and r∗

4 = 40 time units.

6.6 Conclusion
This chapter has introduced an overview of strictly periodic tasks and their charac-
teristics. According to the communication model defined in Chapter 5, we proved
that scheduling two periodic communicating tasks is equivalent to schedule two in-
dependent tasks. These latter can only be executed between their release dates and
their deadlines. In order to solve the mono-processor scheduling problem of a strictly
periodic communicating system, we propose an optimal (exact) algorithm using MILP
formulations. Two cases were treated: the fixed and flexible interval cases. In the
fixed case, tasks execution is only restricted to the interval beginning at its release
date and ending at its deadline. However, in the flexible case, tasks can admit new
execution intervals whose lengths are equal to their relative deadlines. The scheduling
problem is know to be NP-complete in strong sense [79]. This means, obtaining feasible
schedule is practicable only for small instances. In order to solve this issue, we proposed
three heuristics: linear programming relaxation, simple and ACAP heuristics. For
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the second and the third heuristic if no feasible solution is found, a partial solution is
computed. This solution corresponds to a subset of tasks that can be executed on the
same processor.

The next chapter presents the experimental results of this thesis. It is devoted
to evaluating the methods that compute the worst case system latency using the
RTSDFG formalism. In addition, it presents several experiments dedicated to evaluate
the performance of our methods that solve the mono-processor scheduling problem.



Chapter 7

Experimental Results

This chapter presents the experimental results of this thesis. Section 7.1 present briefly
the random generator used to generate our RTSDFGs instances. Section 7.2 is devoted
to evaluate our methods that compute the worst case latency of a RTSDFG. Section 7.3
evaluates the performance of our algorithms that solve the mono-processor scheduling
problem of strictly periodic communicating systems. Section 7.4 concludes the chapter.

7.1 Graph generation: Turbine
Bodin et al.[19] recently developed a data flow random generator “Turbine”. It generates
randomly a Phased Computation Graph (PCG in short) [116] which is an extension of
the SDFG model. Turbine requires several parameters to be fixed in order to generate
instances. Some of these parameters are directly related to the graph structure, such
as the total number of tasks |T | and their degrees. The other parameters, as the
average value of the repetition vector

(
RT =

∑
t∈T Rt

|T |

)
, control the random generation

of production and consumption rates.
Turbine is implemented using Python and the graph library NetworkX that manage

the graph data structure. Random generation is composed of three steps. The first
step generates a random graph with nodes and arcs. The second step computes the
consumption and production rates of the graph. The last step computes a live initial
marking using the Linear Programming Solver (GLPK).

In our study, we added to Turbine two parameters: the task release date (ri) and
its relative deadline (Di). The initial marking of each buffer a = (ti, tj) is computed as
follows:

M0(a) = Tj +λ−gcda,



134 Experimental Results

where λ = ⌈ri−rj+Di

gcda
⌉ ·gcda and gcda = gcd(Ti,Tj). The relative deadline was generated

randomly such that its value do not exceed the production (or consumption) rate. The
duration of each task was generated randomly in such way that it does not exceed the
task relative deadline.

7.2 Latency evaluation
This section is devoted to evaluate our methods that compute the worst case latency
of a RTSDFG. We expose different results for the exact evaluation, upper and lower
bounds. These results are obtained by modifying several parameters such as the average
repetition factor and the number of tasks. Finally, we verify the quality of our bounds
and the complexity of our algorithms.

We generated randomly acyclic RTSDFG instances. The buffer production and
consumption rates were chosen uniformly from the following set

F = {Ti :R> 0, R≡ 0 mod Ti},

where R is a fixed strictly positive integer and F the set of its divisors. In addition,
the tasks’ release dates were randomly generated from the set {0, . . . , lcm} with lcm =
lcm

∀ti∈T
(Ti).

Complexity

The transformation from a RTSDFG to an equivalent graph G ′ , which presents all
the precedence and dependence constraints between the tasks executions, uses a
mathematical equation of complexity O(RT ) where RT is the average repetition factor
of the tasks. However, transforming a RTSDFG into an weighted graph Gmax (or Gmin),
which represents the required time to transfer the data in the worst (or best) case
scenario, uses mathematical equation of complexity O(1). Furthermore, the different
evaluation processes of the worst case latency use the same algorithm that computes
the length of the longest path in a DAG. Its complexity is O(|T |+ |A|). Therefore,
complexity of the latency exact evaluation is O(RT · (|T |+ |A|)), while the complexity
of computing its bounds is O(|T |+ |A|).
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7.2.1 Computation time

The experiments were performed on a Intel(R) Core2Duo P8600@2.40GHz using 2 GB
of RAM. We set up parallel calculations for some instances on a server with 48 cores.
Each algorithm was launched on 100 instances. Each one returned the average value
of the exact latency evaluation, upper and lower bound as well as their computation
times. Four graphs sizes have been chosen: Small for 100 tasks, Medium for 500 tasks,
Large for 1000 tasks and Huge for 10000 tasks. Input and output degrees of a task
belong to the set {1,2,3,4,5}.

RT
Computation time (s)

Exact evaluation Upper bound Lower bound
5 22.23 5.24 4.93
25 107.14 5.20 5.12
45 212.71 5.22 5.05
75 337.72 5.23 4.98
125 557.25 5.32 5.11

Table 7.1 Average computation time of latency evaluation methods for Huge RTSDFGs
with respect to their average repetition factors.

In Table 7.1, the size of the RTSDFG is fixed to 10000 tasks. Average repetition
factors were varied in order to present the latency computation time for the exact
evaluation, upper and lower bounds. By increasing the average repetition factor of
the tasks, the time required to compute the exact value of the worst-case latency
increases (linearly). Contrariwise, the time needed to compute the bounds remains
approximately constant (equal to 5 seconds).

|T | Computation time (s)
Exact evaluation Upper bound Lower bound

Small 3.40 0.15 0.15
Medium 16.76 0.46 0.45
Large 34.11 0.93 0.93
Huge 337.72 5.23 4.98

Table 7.2 Average computation time of latency evaluation methods for RTSDFGs
according to their size |T |. The average repetition factor is fixed to 75.

Through varying the sizes of RTSDFGs, table 7.2 and 7.3 present a comparison
between the average computation times of an exact value and its bounds. The average
repetition factors were fixed to 75 and 750 respectively. In both cases, the average time
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|T | Computation time (s)
Exact evaluation Upper bound Lower bound

Small 37.58 0.23 0.23
Medium 196.43 0.62 0.61
Large 481.52 0.97 0.97
Huge 3898.26 5.04 5.62

Table 7.3 Average computation time of latency evaluation methods for RTSDFGs
according to their size |T |. The average repetition factor is fixed to 750.

required to compute the latency bounds remains reasonable (in the range of seconds)
compared to that of the exact value. For instance, computing the worst case latency
exact value of a Huge graph with a average repetition factor is 750, requires on average
more than one hour. However, the computing its lower and upper bounds requires
approximately 5 seconds.

7.2.2 Quality of bounds
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Fig. 7.1 Average latency value using the evaluation methods with respect to the graph
size |T |.The average repetition was fixed to 125.

The histogram in Figure 7.1 represents the latency evaluations with respect to
the graph size. The average repetition factor was fixed to 125. The analysis of these
results shows that the gap between the exact evaluation and its upper bound on one
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hand is smaller than the gap between the same exact value and its lower bound on
the other hand. This is due to the fact that the exact value and the upper bound are
both computed in the worst case scenario, whereas, the lower bound is computed in
the best case scenario.

In this experiment, we evaluated the impact of the average repetition factor (RT )
on evaluating the worst case system latency. Therefore, we generated acyclic RTSDFG
without release dates (∀ti ∈ T , ri = 0).
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(b) Lower bound.

Fig. 7.2 Deviation ratio between the latency exact value and its bounds. Deviation
ratio of upper bound is equal to drup = upper−exact

exact ×100%. Deviation ratio of lower
bound is equal to drlw = exact−lower

exact ×100%.

Deviation ratio is the percentage of gaps between the latency exact value and
its bounds. We denote by drup as the deviation ratio of the upper bound which is
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computed as follows:
drup = upper− exact

exact ×100%.

However, we denote by drlw as the deviation ratio of the lower bound which is computed
as follows:

drlw = exact− lower
exact ×100%.

Through varying the average repetition factor for different size of RTSDFGs, the
histograms in Figure 7.2a and 7.2b depict the deviation ratios of the latency upper and
lower bounds respectively. For different size of RTSDFGs, we notice that deviation
ratios increase with the average repetition factors. This is due to the time required
to transfer the data between two communicating tasks in the worst (or best) case
scenario. The computation of this duration is strongly dependant from the production
(or consumption) rates whose generation is tightly related to the average repetition
factor. In addition, we can deduce that the deviation ratio between the exact value and
the upper bound ranges between 10 and 15 %. However, the deviation ratio between
the exact value and the lower bound varies between 20 and 30 %.

7.3 Mono-processor scheduling
An important challenge is solving scheduling problems of complex real-time systems.
These problems can lead to large-scale mathematical formulations which are intractable,
even with modern optimization solvers. In other words, there are many scheduling
problems that cannot easily be solved, even with commercial mixed-integer program-
ming software packages such as Gurobi Optimizer.

This section presents several experiments dedicated to evaluate the performance
of our methods that solve the mono-processor scheduling problem of strictly periodic
communicating systems. First, we describe the generation of the task parameters.
Then, we expose several results concerning the resolution of the scheduling problem
with an exact algorithm for different types of instances. Finally, we present the results
obtained by applying our heuristics on the same instances.

7.3.1 Generation of tasks parameters

Using the modified version of Turbine, we generated cyclic and acyclic instances of
RTSDFGs. Parameters of each task have been generated as follows:



7.3 Mono-processor scheduling 139

• Task utilization factors (ui, 1≤ i≤ n) have been generated based using UUnifast
algorithm [18]. The complexity of this algorithm is O(n) and the generated
utilization factors are characterized by a uniform distribution.

• Harmonic tasks periods, i.e. each period is multiple of all other periods with lesser
value, were uniformly chosen form the set {Ti : Ti+1 = k ·Ti} with the period ratio
k ∈ {2,3,4,5}. The value of the first period (T1) was equal to 500. However, non-
harmonic periods were chosen uniformly from the set {2x ·3y ·50 : x,y ∈ [0,4]2},
which is inspired from [38]. In both cases, the size of the set containing the
periods values was fixed to 5.

• Task worst case execution time was computed according to the task period and
its utilisation factor, as follows: Ci = ⌈Ti ·ui⌉.

• Task relative deadline was generated randomly such that its value is greater or
equal to the task execution time on one hand, and its lesser or equal to the task
period on the other hand (Ci ≤Di ≤ Ti).

• Task release date was generated randomly from the set {0, . . . , lcm} where lcm =
lcm

i∈{1,...,n}
(Ti).

ti 1 2 3 4 5 6 7 8 9 10
Ti 7200 2700 2700 600 7200 150 150 900 150 2700
Ci 690 198 216 36 210 6 12 54 12 6
ri 4367 20989 19680 6240 5696 12841 5347 13844 10472 9059
Di 3876 1154 2254 412 5847 33 32 588 115 1345

Table 7.4 Example of 10 non-harmonic tasks. Each task is characterized by a period
Ti, worst case execution time Ci, release date ri and relative deadline Di. The lcm
between the task periods is equal to 21600.

Table 7.4 presents an example of a non-harmonic instance temporal parameters.
The graph size was equal to 10 tasks and the system utilization was 0.6.

7.3.2 Optimal algorithm

In this subsection, we present some experimental results to evaluate the performance of
our exact algorithms for both fixed and flexible cases. The MILP formulations for the
mono-processor scheduling problem are solved using the mixed-integer programming
solver Gurobi (Academic license - for non-commercial use only).
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The size of the graph (number of tasks) was chosen from the set {5,10,15,20,25,30}.
The system utilization was varied from 0.1 to 1. Input and output degrees of a task
belong to the set {1,2,3,4,5}. We fixed a solver time limit of 600 seconds. Otherwise,
the solver does not stop seeking whether a feasible solution exists or not, even after
four hours. The instances for which the solver does not return a response during 600
seconds were called “solver failure instances”.

Each algorithm was launched on 1000 instances. Each one returned the average
value of the acceptance ratio, the percentage of infeasible instances, the percentage
of solver failure instances as well as their computation times. The experiments were
performed on an Intel(R) Core(TM) i3-3130M CPU @ 2.60GHz using 4 GB of RAM.
We set up parallel calculations for some instances on a server with 40 cores.

Harmonic periods
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Fig. 7.3 MILP acceptance ratio on harmonic tasks generated with different periods
ratios. The system utilization was fixed to 0.1. The RTSDFG size (|T |) was equal to
5,10 and 15 tasks.

In order to evaluate the impact of the periods ratio on the MILP acceptance ratio,
we generated harmonic instances by increasing the periods ratio k ∈ {2,3,4,5}. The
system utilization was fixed to 0.1 and the RTSDFG size was equal to 5, 10 and 15
tasks. Figure 7.3 depicts the MILP acceptance ratio on these harmonic instances.
We can find that the incrementation of the periods ratio leads to the decrease of the
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MILP acceptance ratio. For example, when the RTSDFG size is equal to 10 tasks, the
acceptance ratio decreases from 99.6% for k = 2 to 6.1% for k = 5. In fact, the increase
of the period ratio induces an increase in the period values as well as an increase in the
gap between the period values. In addition, this increase in the periods values leads
to larger worst execution times (Ci = ⌈Ti ·ui⌉). For these reasons, finding a feasible
schedule is more and more difficult. Therefore, the MILP acceptance ratio decreases
by increasing the periods ratio.

In the sequel, harmonic instances were generated with a period ratio equals to 2.

The histogram in Figure 7.4a represents the MILP acceptance ratio with respect
to the RTSDFG size (number of tasks) and the system utilization. For a system
utilization between 0.3 and 0.6, we notice that the MILP acceptance ratio increases
with increasing size of RTSDFG. In fact, the increase in the number of tasks leads to a
reduction in the tasks worst case execution times. This allows to find more feasible
schedules. However, this is no longer the case once the system utilization is equal to
0.8. For example, the acceptance ratio decreases from 15.3% for |T |= 10 to 8.9% for
|T |= 15.This is due to the tasks worst case execution times for |T |= 15 which are not
small enough to be scheduled on the same processor.

For a fixed size of RTSDFG, we notice that the acceptance ratio decreases with the
increase of the system utilization. For instance, when the RTSDFG size is equal to
20 tasks, the acceptance ratio decreases from 88.8% for U = 0.3 to 17.5% for U = 0.8.
Indeed, the tasks worst execution times grow with the increase of the system utilization.

Figure 7.4b demonstrates that the average computation time to find a feasible solu-
tion increases with the incrementation of the RTSDFG size and the system utilization.
For example, when the system utilization is 0.7, the time required to find a feasible
solution increases from 0.92 seconds for |T |= 10 to 130.68 seconds for |T |= 25. This is
due to the number of the MILP variables that grows with the increase of the RTSDFG
size. Moreover, when the RTSDFG size is equal to 20 tasks, the time required to find a
feasible solution increases from 1.08 seconds for U = 0.4 to 40.46 seconds for U = 0.8.

This means that the increase in the worst execution time (due to the system utilization
increment) requires the solver to use a larger amount of time in order to find a feasible
solution.
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(b) Average computation time to find a feasible schedule.

Fig. 7.4 Experimental results on harmonic instances of RTSDFGs with different
RTSDFG sizes (|T |) and system utilizations (U).

Harmonic versus Non Harmonic periods

In order to evaluate the effects of the tasks periods on our exact method, we generated
harmonic and non-harmonic instances with different system utilizations. The RTSDFG
size was fixed to 20 tasks. Figure 7.5a presents a comparison between the MILP
acceptance ratio for harmonic and non-harmonic instances with respect to the system
utilization. We notice that the acceptance ratio on harmonic instances is greater than
that on non-harmonic ones. For example, when the system utilization is 0.3, the
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acceptance ratio for harmonic instances is equal to 88.8% while that for non-harmonic
ones is equal to 45.0%. This is mainly due to the resource constraints that depend on
the greatest common divisor (gcd) value of each pair of periods. Indeed, the gcd of a
pair of harmonic periods is equal to the minimum period. However, the gcd of a pair
of non-harmonic periods is less or equal to the minimum period.
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Fig. 7.5 Experimental results on harmonic and non-harmonic instances with different
system utilizations. The RTSDFG size |T | was fixed to 20 tasks.

Figure 7.5b shows the average computation time required to find a feasible solution
for harmonic and non-harmonic instances. We can see that the average time required
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by the solver to find a feasible schedule is slightly higher in the non-harmonic case than
harmonic one. This means that the solver requires more time to allocate the tasks to a
narrow (restricted) space.

Acyclic versus Cyclic RTSDFGs
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Fig. 7.6 MILP acceptance ratio on harmonic acyclic and cyclic instances with respect
to the system utilization. The graph size |T | was fixed to 20 tasks.

In order to evaluate the impact of the graph topology on the MILP acceptance ratio,
we started by generating acyclic RTSDFGs. Then, we generated cyclic RTSDFGs by
adding arcs to the acyclic instances (the others parameters remain unchanged such as
the tasks periods and their execution times). The RTSDFG size was fixed to 20 tasks.
Figure 7.6 represents the MILP acceptance ratio on acyclic and cyclic instances. We
notice that the acceptance ratio on acyclic instances is equal to that on cyclic ones.
Indeed, communication constraints between the tasks executions are fulfilled when
each task is executed between its release date and its deadline. Hence, we can deduce
that our exact method is independent from the graph topology.

Fixed versus Flexible intervals cases

In this experiment, we generated harmonic instances with different system utilizations.
The RTSDFG size was fixed to 10 tasks. We applied the exact algorithms on the same
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instances for both fixed and flexible cases. Figure 7.7a presents the MILP acceptance
ratio for both cases. We notice that the acceptance ratio for the flexible case is higher
than the fixed one. The gap between these ratios varies between 2% and 7%. In fact,
scheduling a task in the flexible case is no longer restricted to the interval between its
release date and its deadline as in the fixed case. This allows the solver to find more
feasible solutions in the flexible case than the the fixed one.
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(a) MILP acceptance ratio for fixed and flexible cases with respect to
the system utilization.
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(b) Average computation time to find a feasible solution in fixed and
flexible cases.

Fig. 7.7 Experimental results on harmonic instances for fixed and flexible cases. The
RTSDFG size |T | was fixed to 10 tasks.
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Figure 7.7b shows the average computation time to find a feasible schedule in both
flexible and fixed cases. We notice that the time required by the solver to find a feasible
solution in the flexible case is higher than in the fixed one. For example, when the
system utilization is 0.8, the solver requires on average 1.04 seconds to find a feasible
schedule in the fixed case while it requires 44.48 seconds in the flexible case. This is
due to the addition of the interval starting date (r∗

i ) variable in the flexible case.
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Fig. 7.8 Percentage of solver failure instances for fixed and flexible cases with respect
to the system utilization. The RTSDFG size |T | was fixed to 20 tasks.

As we mentioned before, the solver time limit was fixed 600 seconds. Figure 7.8
presents a comparison between the percentage of solver failure instances for the flexible
and fixed cases. The RTSDFG size was fixed to 20 tasks. We can see that the percentage
of solver failure instances in the flexible case is considerably higher than in the fixed
case. This is due to the combinatorial explosion generated by the addition of variables
in the flexible case. For a system utilization under 0.7 for the flexible case and 0.8 for
the fixed case, we notice that the percentage of solver failure instances increases with
the increase of the system utilization. For instance, this percentage increases from
2.7% for U = 0.3 to 31.1% for U = 0.7 in the flexible case. Moreover, the percentage of
solver failure instances decreases with a system utilization beyond 0.7 for the flexible
case and 0.8 for the fixed case. In fact, instances with a system utilization beyond
these values admit less and less feasible schedules. Therefore, we can deduce that in
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our interest to verify whether a given instance admits a feasible schedule for the fixed
case before applying the MILP for the flexible case.
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Fig. 7.9 Percentage of solver failure instances for flexible case with respect to the graph
size. The system utilizations were equal to 0.5,0.6 and 0.7.

On the other hand, Figure 7.9 shows the percentage of solver failure instances in
the flexible case with respect to the graph size. The system utilizations were fixed to
0.5, 0.6 and 0.7. We notice that the percentage of solver failure instances increases
with the increase of the RTSDFG size. For example, when the system utilization is 0.5,
the percentage of solver failure instances increases from 1.3% for |T |= 5 to 23.6% for
|T |= 20. This is mainly due to the number of variables that increases by increasing
the RTSDFG size.

Release dates

We now evaluate the impact of the release date parameter on our method. To this end,
we started by generating harmonic instances without release dates (∀ti ∈ T , ri = 0).
Then, we generated instances with release dates by adding to each RTSDFG task a
random release date as follows:

∀ti ∈ T , ri ∈ {0, . . . , lcm},
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where lcm = lcm
i∈{1,...,n}

(Ti). The RTSDFG size was fixed to 25 tasks and other parameters
remain unchanged.
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(b) Average computation time to find a feasible solution.

Fig. 7.10 Experimental results on harmonic instances with and without release dates.
The RTSDFG size |T | was fixed to 25 tasks.

Figure 7.10a represents a comparison between the MILP acceptance ratios on
instances with and without release dates. As we can see, the acceptance ratio on
instances with release dates is higher than the acceptance ratio on instances without
release dates. This is mainly due to the time limitation (solver time limit = 600
seconds). We also notice that the gap between these acceptance ratios increases with
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the increase of the system utilization. This is due to the increase of the tasks worst
case execution times.

Figure 7.10b depicts the average computation time to find a feasible schedule for
instances with and without release dates. We notice that the solver requires more time
to find a feasible solution for instances without release dates than instances with release
dates. For example, when the system utilization is fixed to 0.7, the solver requires on
average 6.9 seconds to find a feasible schedule for instances with release dates while it
requires 130.68 seconds for instances without release dates. This is because the solver
requires more time to allocate the tasks to a restricted space.

7.3.3 Heuristics

In this subsection, we expose the experimental results of our heuristics: LP relaxation,
simple and ACAP. Some instances that cannot be solved by one heuristic, can be
scheduled by the other heuristics. Consequently, we propose a mega-heuristic “Mega”
that combines several heuristics. Given an RTSDFG instance, this mega-heuristic
applies sequentially the simple and ACAP heuristics for the fixed case. In addition,
it applies the LP relaxation, simple and ACAP heuristics for the flexible case. In
both cases, it either returns a feasible solution or a partial solution that contains a
set of tasks that can be scheduled on the same processor. In order to evaluate their
performances compared to the exact methods, heuristics were only tested on feasible
instances (that admit feasible schedules using the exact methods) and solver failure
instances. Finally, heuristics were applied on all the instances without any exception
in order to compare their performances for the fixed and flexible cases.

Complexity

In the simple heuristic, the main computation part of the algorithm is composed of
double loops. The inner loop iterates on the interval of length (Di−Ci) in order to find
a starting date that allows the task to be scheduled on the processor. The outer loop
iterates on all the tasks in the system (|T |). Hence, the simple heuristic complexity is
O(|T | · lmax) where lmax = max(Di−Ci). However, the ACAP heuristic complexity is
O(|T |2 · lmax), since a third loop was added to compute the list of tasks that verify the
schedulabily condition with tasks that are already scheduled.
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Fixed case
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(a) MILP acceptance ratio for the fixed case.
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(b) Heuristics acceptance ratio on feasible instances.

Fig. 7.11 Experimental results on harmonic instances without release dates. The
RTSDFG size |T | was fixed to 30 tasks.

In this experiment, we generated harmonic instances without release dates. The system
utilization was varied between 0.1 and 0.7. The RTSDFG size was fixed to 30 tasks.
Using the exact method for the fixed case, instances were sorted into feasible, infeasible
and solver failure. Figure 7.11a presents the MILP acceptance ratio for the fixed case.
Figure 7.11b gives the heuristics acceptance ratios on feasible instances. We notice
that the mega-heuristic have a higher acceptance ratio compared to those of the simple
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and ACAP heuristics. For the three heuristics, we notice that the acceptance ratios
decrease with the increase of the system utilisation. For example, the Mega acceptance
ratio decreases from 99.4% for U = 0.1 to 39.02% for U = 0.7. This is mainly due to
the increase of the tasks worst execution times.

Figure 7.12 depicts the average computation time to find a feasible schedule using
different methods. We notice that our methods have a similar changing tendency, i.e.
their average computation times increase with the increase of the system utilization.
This is due to the amount of computation that grows with the incrementation of
the tasks worst execution times. However, our heuristics have computation times
considerably lower than the exact method (MILP). For example, when the system
utilization is 0.5, the average computation times of the exact method, Mega, ACAP
and simple heuristics are respectively equal to 154.31, 3.02, 15.43 and 2.37 seconds.
Therefore, we deduce that the Mega heuristic is 51.09 times faster than the exact
method (MILP) with an acceptance ratio of 75.25%. On the other hand, we notice
the ACAP heuristic is more time consumption than the simple heuristic. Hence, the
experimental results are compatible with the computational complexity.
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Fig. 7.12 Average computation time to find a feasible solution. MILP represents our
exact method while Mega, ACAP and simple represent our heuristics.

In the experiment of Figure 7.13b, we apply our heuristics on the solver failure
instances. Figure 7.13a shows the percentage of these instances with respect to the
system utilization. Similarly to the previous case, the heuristics acceptance ratios
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decrease with the increase of the system utilization. For example, the Mega acceptance
ratio decreases from 100% for U = 0.2 to 21.01% for U = 0.7. We can deduce that our
heuristics are able to find feasible solutions for these instances with a computation
time in the range of seconds. However, the MILP solver is not able to provide any
solution with a computation time below 600 seconds.
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(a) Percentage of solver failure instances.
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(b) Heuristics acceptance ratio on solver failure instances.

Fig. 7.13 Results obtained by applying our heuristics on the solver failure instances.
The RTSDFG size |T | was fixed to 30 tasks.

We recall that our heuristics return a partial solution if they are not able to compute
a feasible one. This partial solution contains the set of tasks that can be scheduled
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on the same processor. Figure 7.14 gives the percentage of schedulable tasks with
respect to the system utilization. We notice that this percentage decreases with the
incrementation of the system utilization. This is because the tasks worst case execution
times grow with the system utilization. In addition, we deduce that the percentage of
schedulable tasks ranges between 96% and 86% using the Mega heuristic.
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Fig. 7.14 Partial solutions: percentage of tasks that can be scheduled on the same
processor. The RTSDFG size |T | was fixed to 30 tasks.

Flexible case

In this experiment, we generated harmonic instances with release dates. The system
utilization was varied between 0.1 and 0.7. The RTSDFG size was fixed to 30 tasks.
Using the exact method for the flexible case, instances are sorted into feasible, infeasible
and solver failure. Figure 7.15a presents the MILP acceptance ratio for the flexible
case. Figure 7.15b gives the heuristics acceptance ratios on feasible instances. We
notice that the mega-heuristic has a higher acceptance ratio compared to those of
the LP relaxation, simple and ACAP heuristics. On the other hand, we see that the
ACAP heuristic has a highest acceptance ratio compared to those of the LP relaxation
and simple heuristics. This is due to the additional priority which schedules the tasks
as close as possible. In addition, we notice that the LP relaxation acceptance ratio
decreases in order to reach 6.47% and 1.14% when the system utilization is respectively
equal to 0.4 and 0.5. Therefore, we deduce that the efficiency of this method is limited
to a system utilization less or equal than 0.3. For all the heuristics, we notice that
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the acceptance ratios decrease with the incrementation of the system utilisation. For
example, the Mega acceptance ratio decreases from 100.0% for U = 0.1 to 38.46% for
U = 0.7. This is mainly due to the increase of the tasks worst case execution times.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
cc

e
p

ta
n
ce

 r
a
ti

o
 (

%
)

System utilization (U)

MILP

(a) MILP acceptance ratio for the flexible case.
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(b) Heuristics acceptance ratio on feasible instances.

Fig. 7.15 Experimental results on harmonic instances with release dates. The RTSDFG
size |T | was fixed to 30 tasks.

Figure 7.16 gives the average computation time to find a feasible schedule using
different methods. Similar to the fixed case, we notice that our methods have a similar
changing tendency i.e, their average computation times increase with the increase of
the system utilization. This is due to the amount of computation that grows with the
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incrementation of the tasks worst execution times. When the system utilization is less
than or equal to 0.2, we see that the MILP average computation time is slightly lower
than that of Mega, ACAP and LP relaxation. However, when the system utilization
is greater than or equal to 0.3, our heuristics have computation times considerably
lower than the exact method (MILP). For example, when the system utilization is
0.5, the average computation times of the exact method, Mega, ACAP, simple and LP
relaxation heuristics are respectively equal to 58.93, 1.96, 2.14, 0.18 and 1.81 seconds.
Hence, we deduce that the Mega heuristic is 109.12 times faster than the exact method
(MILP) with an acceptance ratio of 64.01%.
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Fig. 7.16 Average computation time to find a feasible solution. MILP represents our
exact method while Mega, ACAP, simple and LP relaxation represent our heuristics.

Comparison

In order to compare the performances of our heuristics in both fixed and flexible cases,
we generated harmonic instances with and without release dates. The graph size was
fixed to 30 tasks and the system utilization was varied between 0.1 and 0.8. Unlike
the previous experiments, we applied the mega-heuristic for fixed and flexible cases
on all the instances without any exception. The histogram in Figure 7.17 depicts the
mega-heuristic acceptance ratios on harmonic instances without release dates. We
notice that the acceptance ratios, in both fixed and flexible cases, decrease with the
incrementation of the system utilization. We also notice that the acceptance ratio for
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Fig. 7.17 The mega-heuristic acceptance ratio on harmonic instances without release
dates. The RTSDFG size |T | was fixed to 30 tasks.

the flexible case is higher than that of the fixed case. Moreover, the gap between these
ratios varies between 2.3% and 22.5%.
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Fig. 7.18 The mega-heuristic acceptance ratio on harmonic instances with release dates.
The RTSDFG size |T | was fixed to 30 tasks.
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On the other hand, Figure 7.18 shows the mega-heuristic acceptance ratios on
harmonic instances with release dates. Same as the previous results, the acceptance
ratio for the flexible case is higher than that of the fixed case. Moreover, the gap
between these ratios varies between 1.1% and 22.5%. Therefore, we can deduce that
applying the mega-heuristic for the flexible case increases the possibility of finding
a feasible schedule. In addition, we notice that, in both fixed and flexible cases, the
mega-heuristic acceptance ratios on instances without release dates are higher than
the acceptance ratios on instances with release dates. The gap between the acceptance
ratios on instances with/without release dates varies between 0.5% and 23.6% in the
flexible case. It varies between 0.3% and 22.1% in the fixed case. Hence, we can deduce
that using our heuristics to schedule a set of tasks released at the same time is less
restrictive than scheduling the same set of tasks with random release dates.

7.4 Conclusion
This chapter presented the experimental results of this thesis. It consists of two parts:
latency evaluation and mono-processor scheduling.

In the first part, we evaluated the exact pricing algorithm and the upper and
lower bound algorithms developed in Chapter 5. These methods compute the worst
case system latency using the RTSDFG formalism. For the exact pricing algorithm,
numerical experiments have shown that the average computation time to compute
the worst case system latency increases by increasing the average repetition factor.
However, this average computation time remains constant for the upper and lower
bounds evaluation. We also found that the gap between the exact value and its upper
bound is between 10 and 15%. Moreover, the gap between the exact value and the
lower bound varies between 20 and 30%.

In the second part, we exposed experimentations to evaluate the performance of our
exact algorithms (MILP), LP relaxation, simple, ACAP heuristics developed in chapter
6. These algorithms are dedicated to solve the mono-processor scheduling problem of
strictly periodic system subject to communication constraints. For the exact algorithms
(fixed and flexible), numerical experiments have shown that the MILP acceptance ratio
increases with the incrementation of the graph size. However, this acceptance ratio
decreases with the incrementation of the system utilization. Moreover, their average
computation times to find a feasible solution increase exponentially according to the
graph size and the system utilization. These algorithms were applied on different types
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of instances in order to evaluate the impact of several parameters, such as the period
ratio and the graph topology.

On the other hand, we proposed a mega-heuristic that combines several heuristics
for both fixed and flexible cases. Heuristics were applied on several types of instances.
Experimental results showed that the average computation time to find a feasible
schedule using the mega-heuristic is much less compared to the exact method, especially
when the system utilization is greater than or equal to 0.5. On the other hand, these
experiments demonstrate that the mega-heuristic acceptance ratio on solver failure
instances varies between 100% and 21.01% with an average computation time in the
range of seconds. In addition, we found that the mega-heuristic is able to allocate on
the same processor 96% to 86% of the tasks when it is not able to provide a feasible
schedule. Finally, we compared the mega-heuristic for both fixed and flexible cases.
We found out that the mega-heuristic acceptance ratio for the flexible case is greater
than the fixed case with a gap which may reach 26.3%.



Chapter 8

Conclusion and Perspectives

Conclusion
In recent decades, electronic embedded systems have revolutionized our societies in daily
lives. The increase in the application demands and the fast improvement in platform
architectures led to more and more complex embedded systems. In order to ensure the
optimal use of resources, several applications from different computing domains are
simultaneously executed on the same platform. Advanced Driver Assistance Systems
(ADAS) [117, 66] are typical examples of these applications. Their purpose is to assist
drivers in making safety-related decisions, provide signals in possibly dangerous driving
situations, and execute counteractive measures. These applications gather best-effort
jobs (e.g. image processing for analyzing complex scenes) and critical real-time tasks
(e.g. emergency braking). Therefore, this type of applications require a research effort
in order to be efficiently modeled and executed. In this thesis, our study was focused
on modeling and scheduling critical real-time systems using data flow formalisms.

In the first part, we defined a general and intuitive communication model within
multi-periodic systems. We demonstrated that the communications between multi-
periodic tasks can be directly expressed as a RTSDFG. This modeling allows precise
definition of the system latency. Accordingly, we developed an exact evaluation method
to compute the worst case system latency from a given input to a connected outcome.
Then, we framed this value using two algorithms that compute its upper and lower
bounds respectively. Finally, our experimental results show that these bounds can be
computed using a polynomial amount of time, while the time required to compute
the exact value increases linearly with the average repetition factor. We also found
that the gap between the exact value and its upper bound varied between 10 and 15%.
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Moreover, the gap between the exact value and the lower bound varied between 20
and 30%.

In the second part, we addressed the mono-processor scheduling problem of non-
preemtive strictly periodic systems subject to communication constraints. Based on the
RTSDFG model, we proved that scheduling two strictly periodic communicating tasks
is equivalent to scheduling two independent tasks. These tasks can only be executed
between their release dates and their deadlines. Accordingly, we proposed an optimal
algorithm using MILP formulations. Two cases were treated: the fixed and flexible
interval cases. Since the scheduling problem is know to be NP-complete in the strong
sense [79], we proposed three heuristics: linear programming relaxation, simple and
ACAP heuristics. For the second and the third heuristic if no feasible solution is found,
a partial solution is computed. In comparison to the optimal algorithms, heuristics were
characterized by small average computation times. The heuristics acceptance ratios
on feasible instances varied between 100% and 38.46%. Moreover, their acceptance
ratios on solver failure instances varied between 100% and 21.01% with an average
computation time in the range of seconds. Finally, these heuristics were able to allocate
on the same processor 96% to 86% of the tasks when they were not able to provide a
feasible schedule.

Perspectives
This section presents perspectives and potential future work in the continuity of this
thesis.

Multi/Many-processor scheduling

In this thesis, we proposed several heuristics (Mega, ACAP and simple) in order to solve
the mono-processor scheduling problem of non-preemptive strictly periodic systems
subject to communication constraints. These heuristics are much less time-consuming
than the exact methods. In addition, they are able to provide a partial schedule when a
feasible schedule is not found. Therefore, one of the perspectives of our work is mapping
and scheduling an application modeled by a RTSDFG on a distributed architecture
such as Kalray-MPPA [3]. This future work can investigate the multi/many-processor
scheduling problem while taking into account the inter-processor communications. In
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fact, our communication model allows us to compute, using a closed formula, the time
required to transfer data between the tasks’ executions.

Application: WATERS Industrial Challenge

Hamann et al. [57] proposed an automotive embedded application for WATERS Indus-
trial Challenge 2017. This application is an engine management system which consists
of several functional components. These latter are tightly related by communication
dependencies and data sharing, while having real-time requirements. This application
is composed of:

• 1250 runnables which represent pieces of codes that read and write a set of labels.

• 10000 labels that symbolize the communication variables between runnables.
Producing (writing) a label is restricted to at most one runnable. However,
consuming (reading) a label can be done by several runnables.

• 21 tasks which group several runnables. Periodic tasks gather several runnables
that have the same period, while sporadic tasks assemble runnables that have
the same minimal and maximal inter arrival times.

Logical Execution Time (LET) has been proposed to ensures temporal determinism by
decoupling computation and communication. In this context, it would be interesting to
model this application using the RTSDFG formalism, since the communication model
behind this formalism is similar to the LET concept.

Relax the strict periodicity constraint

In this thesis, we addressed the scheduling problem of non-preemptive strictly periodic
systems subject to communication constraints. The strict periodicity allowed us to
define the resource constraints with a polynomial number of constraints on the starting
dates of the tasks’ first executions. Accordingly, we developed an exact method and
several heuristics that solve the scheduling problem. An interesting perspective is
to address the non-preemptive scheduling problem by relaxing the strict periodicity
constraint. This problem can be solved using the list scheduling algorithms [53, 81]. In
fact, it would be worth comparing our results, in terms of acceptance ratio and average
computation time, to the results obtained by relaxing the strict periodicity constraint.
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