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Synthèse en français

La recherche de réponses à des questions relève de deux disciplines : le traitement
du langage naturel et la recherche d’information. L’émergence de l’apprentissage
profond dans plusieurs domaines de recherche tels que la vision par ordinateur, le
traitement du langage naturel, la reconnaissance vocale, etc. a conduit à l’émergence
de modèles de bout en bout et les travaux actuels de l’état de l’art en question-réponse
(QR) visent à mettre en oeuvre de tels modèles.

Dans le cadre du projet GoASQ1, l’objectif est d’étudier, comparer et combiner
différentes approches pour répondre à des questions formulées en langage naturel
sur des données textuelles, en domaine ouvert et en domaine biomédical. Le travail
de thèse se concentre principalement sur 1) la construction de modèles permettant
de traiter des ensembles de données à petite et à grande échelle, et 2) l’exploitation
de connaissances sémantiques pour répondre aux questions par leur intégration dans
les différents modèles. Nous visons à fusionner des connaissances issues de textes
libres, d’ontologies, de représentations d’entités, etc.

Afin de faciliter l’utilisation des modèles neuronaux sur des données de domaine
de spécialité, généralement de petite taille, nous nous plaçons dans le cadre de
l’adaptation de domaine. Nous avons proposés deux modèles de tâches de QR
différents, évalués sur la tâche BIOASQ de réponse à des questions biomédicales, et
nous montrons par nos résultats expérimentaux que le modèle de Questions-Réponses
ouvert2 convient mieux qu’une modélisation de type Compréhension machine3, qui
est la plus courament utilisée. Nous pré-entrainons le modèle de Compréhension
machine, qui sert de base à notre modèle, sur différents ensembles de données pour
montrer la variabilité des performances lorsque ces modèles sont adaptés au domaine
biomédical. Nous constatons que l’utilisation d’un ensemble de données particulier
(ensemble de données SQUAD v2.0) pour la pré-entraînement donne les meilleurs
résultats lors du test et qu’une combinaison de quatre jeux de données donne les
meilleurs résultats lors de l’adaptation au domaine biomédical. Nous avons effectué
des expériences à l’aide de modèles de langage à grande échelle, comme BERT4,
qui sont adaptés à la tâche de réponse aux questions. Les performances varient
en fonction du type des données utilisées pour pré-entrainer BERT. Nous en avons
conclu que le modèle de langue appris sur des données biomédicales, BIOBERT,
constitue le meilleur choix pour le QR biomédical.

1https://goasq.lri.fr/
2Extraction de la réponse étant donné un ensemble de paragraphes, pertinents et non pertinents
3Extraction de la réponse étant donné un paragraphe pertinent
4https://github.com/google-research/bert
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Étant donné que les modèles d’apprentissage profond visent à fonctionner de bout
en bout, les informations sémantiques provenant de sources de connaissances con-
struites par des experts n’y sont généralement pas introduites. Nous avons annoté
manuellement et automatiquement un jeu de données par les variantes des réponses
de BIOASQ et montré l’importance d’apprendre un modèle de QR avec ces variantes.
Nous montrons l’utilité d’exploiter le Type de réponse attendu et le Types lexical de
la réponse en domaine ouvert et en domaine biomédical par différentes études.
Ces types sont ensuite utilisés pour mettre en évidence les entités dans les jeux de
données, ce qui montre des améliorations sur l’état de l’art. Par ailleurs l’exploitation
de représentations vectorielles d’entités dans les modèles se montre positif pour le
domaine ouvert.

Une de nos hypothèses est que les résultats obtenus à partir de modèles d’apprentissage
profond peuvent être encore améliorés en utilisant des traits sémantiques et des traits
collectifs calculés à partir des différents paragraphes sélectionnés pour répondre
à une question. Nous proposons d’utiliser des modèles de classification binaires
pour améliorer la prédiction de la réponse parmi les K candidats à l’aide de ces
caractéristiques, conduisant à un modèle hybride qui surpasse les résultats de l’état
de l’art sur la plupart des ensembles de données.

Enfin, nous avons évalué des modèles de QR ouvert sur des ensembles de données
construits pour les tâches de Compréhension machine et Sélection de phrases. Nous
montrons la différence de performance lorsque la tâche à résoudre est une tâche de
QR ouverte et soulignons le fossé important qu’il reste à franchir dans la construction
de modèles de bout en bout pour la tâche complète de réponse aux questions.
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1Introduction

Question Answering (QA) deals with retrieving relevant answers from documents for
a given question. It is a field of research which is an intersection between two major
research fields, Natural Language Processing (NLP) and Information Retrieval (IR).
Unlike document retrieval performed by search engines, question answering relies
on extracting suitable short answers which are more specific than lengthy documents
which are topic related. Question Answering is often seen as a supervised learning
problem which requires labelled data, although some exceptions exist (Lewis et al.,
2019).

Question Answering can be defined in several ways based on the target task. Some
of Question-Answer pair examples are presented below.

Q: Who is the current President of France?
Document Answer: The President of France, officially the President of the
French Republic is the executive head of state of France in the French Fifth
Republic. In French terms, the presidency is the supreme magistracy of the
country.
The powers, functions and duties of prior presidential offices, as well as their
relation with the Prime Minister and Government of France, have over time
differed with the various constitutional documents since the French Second
Republic. The President of the French Republic is also the ex officio Co-Prince
of Andorra, Grand Master of the Legion of Honour and the National Order of
Merit. The officeholder is also honorary proto-canon of the Basilica of St. John
Lateran in Rome, although some have rejected the title in the past.
The current President of the French Republic is Emmanuel Macron, who
succeeded François Hollande on 14 May 2017.

Paragraph Answer: The current President of the French Republic is Emmanuel
Macron, who succeeded François Hollande on 14 May 2017.

Short Answer: Emmanuel Macron

A Question-Answer pair with a document, paragraph and short answer.
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If the goal of the system is to find a relevant document (with multiple paragraphs)
to a query, the task is called as Document Retrieval. If the goal is to find a paragraph
or a sentence relevant to a query, the task is called as Answer Selection. If the goal is
to find an answer span in the text, the task is called as Answer Extraction. All the
examples for each task are shown above for a given question. The target task of the
QA system defines the type of output expected from the system.

In the first approaches of QA systems, a question is analysed to determine some
elements such as focus (the main entity addressed in the question), question category
(factoid, non factoid, summary, yes/no, choice question etc.), and expected answer
type (entity type expected from the question). The question terms (words) are
used to find documents, paragraphs and sentences which might contain the answer.
Answer selection (or extraction or ranking based on how the candidates are chosen)
is then performed on the relevant paragraphs or sentences to choose the answer
sentence (long) or answer span (short).

The Information Retrieval (IR) community focuses on document retrieval and para-
graph retrieval, whose role is to fetch a set of relevant supporting texts which might
contain the answer for a question. Other models are used for ranking answers
candidates based on term frequencies, entities, etc. The Natural Language Processing
(NLP) community works on the QA topics which use different linguistic features
such as named entities, part of speech tags, expected answer types, passage and
question representations (different syntactic and semantic approaches) etc. These
are used as features for either document or paragraph retrieval models or answer
selection/extraction models. Both the communities often use machine learning
algorithms to learn different classifiers, ranking functions etc. for their individual
fields. (Jouis et al., 2012; Chu-Carroll et al., 2012; Grappy, Grau, et al., 2011)

Domain specific question answering is a special type of question answering that
deals with specialized data belonging to a domain. Open domain datasets are
usually curated automatically or by using crowd sourced workers, while domain
specific datasets are curated with the help of domain experts. Open domain question
answering systems must be explicitly adapted to these specific domain data inorder
to perform efficiently.

In biomedical domain, there are a plenty of expert curated information available
in the form of ontologies, metathesaurus etc. The datasets for biomedical question
answering are not large scale in size. Creating a large scale dataset in biomedical
domain requires domain expertise which is expensive and a time consuming process.
Therefore it is important to adapt an open domain model to biomedical domain.
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1.1 Question Answering Pipeline

Fig. 1.1: A traditional IR or NLP based question answering pipeline

There are different types of question answering systems based on the type of data
they use for processing. Textual data (free text, wikipedia documents, scientific
articles, medical text etc.), relational databases, knowledge graphs, ontologies etc.
are some of the data sources used for question answering.

A textual question answering system has series of operations either performed se-
quentially or in parallel. A typical QA pipeline1 seen in the perspective of Information
Retrieval discipline is as shown in the Figure 1.1. The sub-modules of the QA pipeline
are explained in brief below.

Question Processing

The question processing module processes a query either to analyse query terms
(words) for query expansion, answer type detection etc., or to reformulate it as a
SPARQL or a relational database query to find answers in structured databases or
ontologies.

The answer type detection analyses the question for different expected answer types
based on question words such as "Who", "What", "Where", "When", "How" etc. and
determine the expected type of answer such as "Person", "Entity", "Location", "Time",

1Figure from: https://web.stanford.edu/class/cs124/lec/watsonqa.pdf
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"Procedure" respectively. Based on this type, the answer space can be filtered for
better candidate answers.

Passage Retrieval

In a textual QA task, the data used is only textual documents (not databases or
knowledge graphs) using which the Document Retrieval module applies several
techniques to find the relevant documents (more than one paragraphs is termed as a
document) for a question, based on the indexed set of documents. These documents
are then passed on to a Paragraph Retrieval module which finds the best set of
paragraphs out of the text documents to extract the answer.

Answer Processing (Long and Short)

The answer processing module processes the paragraphs or sentences in several
ways such as ranking candidates based on features (word overlap, entity match,
knowledge graph entity types, syntactic analysis, representation matching etc.)
and extract answer spans based on named entity type match. This module uses
knowledge from databases, ontology, knowledge graphs as reference to extract or
find the answers.

The kind of answers such as sentences for long answers or short spans for short
answers determines the processing steps involved. For long answers, a sentence selec-
tion task is used to select an answer sentence. For short answers, an extraction task
namely reading comprehension or machine reading or extractive question answering
task is used to extract short answer spans from sentences or paragraphs.

The three answer processing tasks used in our works are:

• Answer Sentence Selection - choosing one or more answer sentences or short
paragraphs among other candidates, as correct answers for a given question.

• Reading Comprehension - extracting short answer spans from a relevant para-
graph for a given question.

• Open Question Answering - extracting short answer spans from a set of para-
graphs (relevant and irrelevant) for a given question.
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Since Question Answering is a complex task, each module is considered to be an
individual subtask and the focus is on achieving better scores on the subtask target
datasets. An issue with pipeline approaches in general, is Error Propagation. If an
intermediate module causes errors, the error gets propagated onto the final output.
The overall error rate would increase. In other words, the error gets propagated
across different modules which might reduce the final performance. Evaluating
individual module and predicting the overall behaviour in a pipeline approach is
cumbersome.

1.2 Redefining the QA Pipeline with Deep
Learning

The use of deep learning models in the field of Computer Vision and Speech Process-
ing started to rise rapidly because of the availability of 1) Large scale datasets 2)
Access to use hardwares such as GPUs (Graphical Processing Unit) for machine learn-
ing. GPUs were earlier used primarily for computer graphics but recently tweaked
for training deep learning models, which gave rise to more research interests in the
field of machine learning towards deep learning because of the accelerated training
times. This was observed in the field of question answering which changed the way
some of the traditional QA models work. The intuition of using these models is to 1)
avoid handcrafting features for the models, 2) avoid pipeline approaches but rely
only on input data to predict the output by automatically learning these features. An
ideal deep learning model would be an end-to-end model which relies only on input
data and will not have issues like Error Propagation.

Fig. 1.2: Deep learning QA pipeline (only the modules highlighted in red are used)
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The field of Natural Language Processing (NLP) witnessed the usage of deep learning
models starting with tasks such as Named Entity Recognition (Collobert et al., 2011),
Dependency Parsing (Socher et al., 2013), Sentiment Analysis (Moraes et al., 2013)
etc. The intuition or the hypothesis behind using deep learning models is that these
models are good implicit feature extractors and will not need handcrafted feature
engineering which the pipeline modules heavily relied on.

The deep learning models for QA would focus only on the red parts highlighted
in the Figure 1.2. An ideal deep learning based QA model would perform answer
extraction directly by retrieving the documents, finding the relevant ones, extracting
relevant paragraphs and finally extracting the answers out of it. All the modules can
be learnt based on the input data and no explicit features would be needed. But
building such models has many hurdles to cross.

Hurdles on using deep learning models

Building such a deep learning model (end-to-end model) which requires zero hand-
crafted features and which learns solely from data has some hurdles.

• Have enough data. (Size)

• Have the right kind of labelled data. (Suitable type)

• Build a single model which does it all. (Architectural Complexity)

• Generalize the model to work on all QA tasks. (Generalization)

Size

For deep learning models to work efficiently, they have to be trained on large scale
datasets. Training on small scale datasets will not result in similar performance as
on large scale ones. We show this behaviour experimentally in further sections of
our work. Because of this behaviour, only tasks which have sufficiently large scale
labelled datasets can use deep learning models.

This behaviour causes difficulty in analysing if the model itself is performing poorly
or if the dataset is not sufficient for the model to perform better. It causes a dilemma
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whether or not to design a new model or augment the dataset with more labeled
samples and balanced label classes.

To overcome the small size of datasets for biomedical question answering, Transfer
Learning was first used by (Wiese et al., 2017a). The process involves training models
on large scale datasets and fine-tuning the same models on small scale datasets for
the same target tasks. When this process is conducted across two or more different
domain datasets, it is called as Domain Adaptation. The target task remains the same
in this approach. Another type of Transfer Learning approach is to train models on a
task with large scale datasets and modifying final output layer to another target task
and fine tuning this model on a small scale dataset of the target task.

Suitable type

The large scale datasets required by the deep neural network models are not just
any random datasets. The data should be labelled according to the task for which
the model is built. To label such datasets three methods are used in common
practice. 1) An automatic annotation method which results in creation of synthetic
datasets; 2) Distant supervision methods with some noise; 3) Crowdsourced workers
(or sometimes colleagues, students etc.) employed to annotate a dataset which is
sufficiently large scale for their model. Although an important highlight is that there
is no standard measure to determine a "large scale" dataset.

Architectural complexity

Building an end-to-end model which returns an answer for an input question, is more
complex than building submodules, the focus was on using deep learning models
on tasks such as Answer Sentence Selection and Answer Extraction using Reading
Comprehension by splitting the QA process into two or more sub-tasks. More focus is
seen on these topics separately than together into a single big model. The goal of
building end-to-end models remained the same but the target tasks became different,
that are mainly the sub tasks of the overall QA task.

Even though end-to-end models are the best models one can strive to build for
some subtasks, getting certain aspects such as their neural architectures, training
approaches, hyperparameters, optimizer functions, random initialization parameters
etc. is a big challenge and often sometimes referred as Architecture Engineering2.
From avoiding Feature Engineering which the traditional machine learning algorithms

2https://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html
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heavily relied on, towards neural networks which heavily relies on Architecture
Engineering, one problem gives rise to another problem. Techniques like neural
architecture search (Elsken et al., 2018) can be used to learn a better architecture
than the ones chosen by humans. But they are computationally very expensive to do
and bad for environment because the electricity and CO2 emissions they use for this
purpose.

Generalization

A common problem working on QA datasets is the usability of these models on other
datasets. This problem is not only specific to QA but also other applied machine
learning tasks. In other words, can a model trained on one dataset perform equally
well on other datasets on the same or similar task? This aspect plays a major role
in determining if deep learning models trained on large scale datasets can be used
to predict on datasets like the domain specific ones which are usually tedious and
expensive to curate with the help of experts.

Hurdles in domain specific question answering

Domain specific question answering has several issues in common with some points
discussed above. The data is usually curated by domain experts. Contrary to open
domain where there is no need of expert knowledge, domain specific data demands
domain expertise.

The complexity of the domain expertise makes it hard to obtain labelled datasets
of large scale. One such example is the BIOASQ3 challenge where the biomedical
domain experts are asked to annotate certain task datasets for question answering.
Over the period of 7 years, the data annotated by human annotators who are domain
experts for factoid questions still remain less than 1000 questions.

Domain specific data has two main limitations to be addressed before using the
models which work better on open domain data:

Size

Similar to applying deep learning models on small scale datasets, the same problem
applies for domain specific datasets which are small scale. Construction of large

3http://bioasq.org/
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scale dataset is expensive and time consuming because of the domain expertise it
demands.

Domain Expertise and Vocabulary

Since the data is domain specific, the vocabulary also consists of new words from a
specific domain. For example, using a word embedding space which is trained on
Wikipedia might result in missing words from the vocabulary of biomedical domain
data. Because the vocabulary is different, detecting named entities, noun phrases,
part of speech tags and expected answer types cannot be reused from the traditional
QA pipeline used in the open domain setting. There is a requirement for special use
case handling for domain specific knowledge integration along with the existing QA
models.

While using word embeddings in any NLP tasks, a tokenizer is used to split sentences
into words and an embedding vector is found corresponding to the word from a
pretrained embedding space. In domains such as biomedical domain or medical
domain, the numerical values and co-efficients such as α,β,γ are important and
using a tokenizer which tokenizes them differently from the tokenizer used in the
pretrained word embeddings, results in missing vocabulary.

Because of the above two limitations, research on domain specific data is significantly
less emphasized compared to the open domain. This explains the low results on
domain specific tasks like the BIOASQ tasks4. Techniques such as domain adaptation
and transfer learning can be used to handle this situation, which are relatively easier
to do with deep learning models.

Structured Knowledge for Question Answering

Structured knowledge and semantic knowledge by experts provide supporting in-
formation for textual data which are enriched, verified, accessible and stored in
such a manner that computer applications can access and use it easily with querying
languages. They are annotated by human experts or extracted from free text. Re-
lational databases, knowledge graphs and ontologies are some of the examples for
such knowledge.

To overcome the missing vocabulary problem in domain specific QA one way is
to use domain specific textual resources for training word embedding spaces and

4http://participants-area.bioasq.org/results/
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another is to use concepts and relationships from ontologies like SNOMED CT5,
UMLS metathesaurus6 to detect specific entities and their types in the text of QA
datasets.

1.3 Research Objectives and Contributions

To address some of the issues discussed in the above sections with respect to deep
learning methods, we intend to investigate and compare various question answering
system techniques on open domain and domain specific data. Specifically we focus
on answer sentence selection task on open domain data, answer extraction by
reading comprehension and open question answering tasks on both open domain
data and biomedical domain datasets.

Our research questions are the following:

1. How can we build models which work both on small scale and large scale
datasets without dropping performance?

2. How can we leverage the structured and semantic knowledge effectively into
state of the art question answering models?

In the context of this thesis work - "Question Answering with Hybrid Data and
Models", Hybrid data refers to using open domain data with specific domain data in
a domain adaptation process, plus integrating structured knowledge for annotating
training datasets and for enriching the input data. Hybrid model refers to an addition
of a post processing reranker to account for structured knowledge and collective
features obtained from different paragraphs.

Deep learning models have been commonly used in the field of Natural Language
Processing across various tasks. However, using them on domain specific data
which are small scale and are dependent on domain specific vocabulary is not very
straightforward. As addressed earlier the performance of these models rely on the
Size of the datasets.

In Chapter 4, addressing our first research question, we discuss how one can use
these models on small scale labelled datasets such as biomedical domain dataset for
question answering and discuss different strategies involved in getting better perfor-
mance. More precisely we discuss details about Domain adaptation on biomedical

5https://www.snomed.org/snomed-ct/five-step-briefing
6https://www.nlm.nih.gov/research/umls/index.html
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QA dataset (BIOASQ) by training two task models 1) Reading Comprehension and
2) OpenQA on open domain QA datasets and fine-tune them on BIOASQ data. We
show how a pre-training method using OpenQA method suits better for BIOASQ task
instead of the other method.

Using deep learning models has become a new trend in the field of research, which
has resulted in a lot of outcomes which are incremental in nature. Although often
some engineering tricks can improve a model performance slightly (sometimes
significantly), research papers tend to not discuss these in detail but rather focus
on the mathematical models. Often the performance reported is generalized as the
result of the underlying neural network architectures and training methods, but
not the subtle difference in preprocessing training data such as using a different
tokenizer, different named entity recognition tools, different part of speech taggers,
different embedding spaces, highlighting some entity information, using different
combination of datasets etc. We present two research articles (Seo et al., 2016;
Chen, Fisch, et al., 2017) focused on introducing two different QA models based on
RNNs on a same QA task. The authors report the performance on SQUAD dataset
leaderboard (Rajpurkar, J. Zhang, et al., 2016). The simple method (Single attention
mechanism, faster training) by (Chen, Fisch, et al., 2017) performs better than the
complex method (Multiple attention mechanisms, slower training) by (Seo et al.,
2016), which shows that the results not always increase based on the increasing
complexity.

In Chapter 5, addressing our second research question, we hypothesize that existing
QA models can perform better if the input data contain more information than just
textual phrases. Structured and semantic knowledge which exist already can be
useful for question answering.

Our contributions are:

• Using entity information - we explore entity enriched texts for Reading Compre-
hension task on open domain QA dataset.

• Using answer variants - we manually annotate more answer spans which are
correct besides the gold standard ones in biomedical domain and show how
models can perform better when correct data is input.

• Using expected answer types to highlight entities - we highlight entities in para-
graphs which match the expected answer types from the question using an
existing Answer Sentence Selection QA model and compare their performance

1.3 Research Objectives and Contributions 11



with baseline model scores and show how using the same model with slightly
modified data can improve performance.

• Improving QA performance using semantic features and structured information
for ranking models - The semantic information from various paragraphs which
are provided with the questions in OpenQA task are not well modelled in
neural network models which consider only a pair of paragraph and question
inputs and ignore other paragraph information. In our work we model this
collective information and semantic information as features for ranking models
to improve QA performance.

The organization of the chapters of this thesis is as shown below: We introduced the
context of our research work, presented the introduction to question answering, some
hurdles with neural network models in QA and presented our research questions in
this chapter.

In the following chapters, we detail the tasks of question answering, datasets used
for benchmarking QA models and models which are widely used as state-of-the-art
techniques. Chapter 3 presents the overview of QA approaches including the state-
of-the-art models widely used these days on different QA tasks. Chapter 4 presents
our work on building models for small scale and large scale datasets using domain
adaptation. Chapter 5 presents our work on leveraging structured and semantic
information into QA models to improve performance.

1.4 Publications

• 2019 - Measuring semantic similarity of clinical trial outcomes using
deep pre-trained language representations - Anna Koroleva, Sanjay Ka-
math, Patrick Paroubek. Journal of Biomedical Informatics: X, Published in
October 2019.

• 2019 - How to Pre-Train Your Model? Comparison of Different Pre-Training
Models for Biomedical Question Answering. - Sanjay Kamath, Brigitte Grau,
Yue Ma. Proceedings of the 7th BioASQ Workshop A challenge on large-scale
biomedical semantic indexing and question answering. ECMLPKDD, September
2019.

• 2019 - Predicting and Integrating Expected Answer Types into a Simple
Recurrent Neural Network Model for Answer Sentence Selection. - Sanjay
Kamath, Brigitte Grau, Yue Ma. 20th International Conference on Compu-
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tational Linguistics and Intelligent Text Processing - CICLING 2019, April
2019.

• 2018 - An Adaption of BIOASQ Question Answering dataset for Machine
Reading systems by Manual Annotations of Answer Spans. - Sanjay Ka-
math, Brigitte Grau, Yue Ma. Proceedings of the 6th BioASQ Workshop A
challenge on large-scale biomedical semantic indexing and question answering.
EMNLP, October 2018.

• 2018 - Verification of the Expected Answer Type for Biomedical Question
Answering. - Sanjay Kamath, Brigitte Grau, Yue Ma. HQA workshop, compan-
ion proceedings of the The Web Conference 2018, April 2018.

• 2017 - A Study of Word Embeddings for Biomedical Question Answer-
ing. - Sanjay Kamath, Brigitte Grau, Yue Ma. 4e édition du Symposium sur
l’Ingénierie de l’Information Médicale, November 2017.
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2Question Answering - Tasks and
Problems

Fig. 2.1: A traditional IR or NLP based question answering pipeline

In this chapter we introduce the task of Question Answering formally by explaining
different types of tasks, problems, questions, answers and corresponding datasets
involved which are being extensively used by the research community.

The question answering pipeline introduced in the Introduction chapter in Figure
1.1 (is also shown in Figure 2.1 for reference) represents the whole pipeline or a
complete QA system architecture. Each of these modules individually sometimes
are termed as "Question Answering systems" based on different assumptions on the
target subtask. Question Answering in different contexts can mean different tasks.

The organization of this chapter is as follows: we first discuss and detail about
question answering based on a classification of different types of answers. Then
are followed by defining question answering based on different types of tasks,
specifically about Answer Sentence Selection, Reading Comprehension and OpenQA.
We also highlight and detail some modifications on Reading Comprehension task and
term it as RC 2.0.
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We present a list of datasets/corpora used for benchmarking the above mentioned QA
tasks and explain some characteristics of open domain and closed domain datasets.
Finally we present some evaluation metrics with respect to different tasks and
conclude by highlighting what we address in our work.

2.1 Answer based classification

Question Answering systems can be classified based on the answers they expect by
analysing the questions. Based on different types of Answers or Results a system
returns to the user, we can briefly classify a QA system into one of the following
below:

• Factoid Question Answering

• Non-Factoid Question Answering

Factoid answers are factual answers such named entities, numerical values, lists,
currencies, locations etc. For domain specific data such as medical domain the
answers can be the names of medicines, diseases, proteins etc.

Q: What country are Volvo automobiles made in? (Location - Country)
A: Sweden

Q: How tall is Mount McKinley? (Numerical value - Height)
A: 6,190 m

Q: What currency is used in Ukraine? (Currency)
A: Ukrainian hryvnia

Q: Who played the role of Heisenberg in the series Breaking Bad? (Person)
A: Bryan Cranston

Factoid QA examples

Non-Factoid answers are answers which are descriptive in nature, such as definitions,
procedures, explanation of a phenomenon etc. Often, these answers can be directly
extracted from the paragraphs and sometimes a summary can be generated based
on textual supporting documents.
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Question: Why is ice less dense than water?
Answer Passage: The molecules of water are closer together and constantly
moving, whereas the molecules of ice are in a crystal lattice, meaning they’re
in a rigid formation. When water freezes, the molecules spread out a little
more to form the crystal lattice. Since density is mass over volume, and ice
has takes up more volume than water, the density of ice is lesser than that of
water. Which makes ice float on water.

A non-factoid QA example

Apart from the above two types of QA, there are also Multiple choice QA, Yes/No
QA, Conversational QA etc. In our work we only focus on factoid QA therefore the
further sections refer to Factoid Question Answering as just Question Answering or
QA.

2.2 Task based classification

In the context of factoid question answering as explained above, Question Answering
field has seen a lot of different tasks commonly referred to as "Question Answering"
although they differ in many ways. These systems can be classified according to
their tasks.

2.2.1 Evolution of tasks over time

The tasks have evolved over time based on several factors such as available datasets,
approaches, evaluation campaigns etc. The below list of tasks are presented in the
chronological order.

1. Open domain question answering based on the pipeline approaches. - Legacy
OpenQA, initiated by TREC evaluations.

2. Answer sentence selection - to focus on sentence similarity or textual entail-
ment problems.

3. Reading comprehension and modifications - with neural network approaches.

4. Open domain question answering based on deep learning approaches. -
OpenQA
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For question answering in an open setting, a question is provided and the system is
expected to return an answer. No other supporting information is provided along
with the questions. The system has to retrieve a document collection and extract
a short answer. This is termed as an Open QA task. In the earlier QA systems,
pipeline approaches were used for this purpose using information retrieval and NLP
techniques, knowledge bases and ontologies. These systems are called as Legacy
OpenQA. Recent methods use deep learning methods instead of traditional pipeline
methods with a goal of building end-to-end models for the same task, these systems
are simply called as OpenQA.

In between the above two tasks, the focus of QA system was towards Answer sentence
selection where a sentence among other sentences was to be predicted as a relevant
answer or not. Focus further shifted towards answer extraction task from relevant
paragraphs which were called as Reading Comprehension. There were also systems
for multiple choice answers under Reading Comprehension.

In this section we define the QA tasks which we address in our work.

2.2.2 Answer Sentence Selection

As per the details presented in Figure 2.1, the task of Answer Sentence Selection
deals with finding a sentence as the correct answer for a question. So the Answer
Processing module determines which paragraph (or sentence) is the correct answer.

Given a question in natural language, the objective of this task is to find relevant
sentences among candidate sentences. A sample dataset consists of a Question Q, a
set of paragraphs P = {p1, p2, p3, ....pn} and annotated labels either being {0, 1}.

From the definition, the problem can be formulated as a ranking problem, where
the goal is to give better rank to the candidate sentences that are relevant to the
question. Pointwise and Pairwise approaches are the two most common approaches
to learn the ranking functions.

In the pointwise approach, the ranking problem is transformed into a binary classi-
fication problem. More specifically, the training instances are triples (Qi, Pij , yij),
where Qi is a question in the dataset, Pij is a candidate answer sentence for Qi, and
yij is a binary value indicating whether Pij contains the correct answer to Qi.

In the pairwise approach the ranking function is explicitly trained to score correct
candidate sentences higher than incorrect sentences. Given a question, the approach
takes a pair of candidate answer sentences and learns to predict which sentence is
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relevant to the question. Concretely, a score is predicted for each pair of question Qi

and a candidate sentence Pij . We discuss more about several such approaches and
the state of the art models in the Section 3.

Q: Who is the author of the book , "The Iron Lady: A Biography of Margaret
Thatcher" ?
P1: The Iron Lady ; a biography of margaret thatcher by hugo young, farrar
straus giroux
P2: this second volume of ward’s lively and psychologically revealing biog-
raphy begins with his honeymoon abroad in 1905 and concludes with his
election as governor of new york in 1928.
P3: in "The Iron Lady", Young traces the winding staircase of fortune that
transformed the younger daughter of a provincial english grocer into the
greatest woman political leader since catherine the great.

An example from TREC-QA dataset, where the sentence P1 is the correct answer.

The example shown above is from a QA task where the answers are sentences. The
models built for this task must determine if an answer sentence is correct or wrong.
However, the main limitation of this task is the inability to extract short answers
from the sentences. For example, the correct answer for the above example is Hugo
Young, but the model can only determine if the whole sentence is an answer or
contains a short answer in it.

The TrecQA dataset by (M. Wang, Smith, et al., 2007) which was curated from the
Trec task1 is used to benchmark this task.

2.2.3 Reading Comprehension or Machine Reading

To focus on the answer extraction task, the Reading Comprehension or Machine
Reading task was introduced. By definition, the goal of Reading Comprehension
task is to "read" a document, which technically means "analyse" or "understand" a
document and answer a set of questions based on the document, similar to a Cloze
test2 where an exercise consisting of a portion of text with certain items such as
entities, words, numbers etc. are removed or hidden from the text. The participant
is asked to replace the missing item or items by reading the text. "Cloze tests require
the ability to understand context and vocabulary in order to identify the correct

1https://trec.nist.gov/data/qa.html
2https://en.wikipedia.org/wiki/Cloze_test
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language or part of speech that belongs in the deleted parts of the paragraphs." -
Wikipedia2.

Using this intuition, the Reading Comprehension task for answer extraction was
developed by (Hermann et al., 2015) where a question and a relevant paragraph
is the input to a QA system and the answer should be a span (word, set of words,
numbers, phrases etc.) from the relevant paragraph. This way an answer from the
predicted paragraph can be extracted.

By definition, Reading Comprehension task needs comprehension skills to understand
and answer a question. The task of QA4MRE3 (Question Answering for Machine
Reading Evaluation) by (Peñas et al., 2013) was held in CLEF QA task, which is
termed as Machine Reading and had multiple choice answers for questions. The task
needed some reasoning and understanding of the paragraph to choose the correct
answer among candidate answers and not the extraction of substrings from the
paragraphs like in the Reading Comprehension task.

In our work we only use and refer to the Reading Comprehension task which is
formally defined below. A sample dataset consists of a Question Q, a relevant
paragraph P along with two string offsets - Start and End which represent the start
and the end character offsets of the answer in the relevant paragraph text. The task
of extracting answer span has been generally approached in an uniform manner
since its inception by (Hermann et al., 2015). If the answer is a single token, then a
probability distribution overall the paragraph terms is used to extract the answer
token. If the answer is a span (more than 1 tokens), two classifiers are used to detect
the answer span.

A question Q has m terms Q = {q1, ....., qm} and paragraph S has n terms S =
{s1, ....., sn}. An answer span (s, e) is a substring in S. (s, e) ∈ S.

We discuss more about several approaches and the state of the art models in the
Chapter 3.

3http://nlp.uned.es/clef-qa/repository/qa4mre.php
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Question: Which NFL team represented the AFC at Super Bowl 50?

Answer Passage: Super Bowl 50 was an American football game to determine
the champion of the National Football League (NFL) for the 2015 season. The
American Football Conference (AFC) champion Denver Broncos defeated the
National Football Conference (NFC) champion Carolina Panthers 24-10 to earn
their third Super Bowl title. The game was played on February 7, 2016, at
Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California. As
this was the 50th Super Bowl, the league emphasized the "golden anniversary"
with various gold-themed initiatives, as well as temporarily suspending the
tradition of naming each Super Bowl game with Roman numerals (under
which the game would have been known as "Super Bowl L"), so that the logo
could prominently feature the Arabic numerals 50.

Answer: Denver Broncos. Start Offset: 177

An example of RC task from SQUAD dataset (Rajpurkar, J. Zhang, et al., 2016).

The example shown above represents a sample data from a Reading Comprehension
dataset SQUAD where usually more than one questions exists per paragraph. A lot of
buzz around this task was created by the media,4 when a system got higher accuracy
scores than the human annotator scores. Since then and before this buzz, a lot of
works have been published on the SQUAD dataset and their scores are presented on
its leaderboard5 which shows the increasing interests of the community towards this
task.

Following this hype, a lot of limitations of the task and the models were put forward
by Yoav Goldberg6 and several others on various social media such as Medium and
Twitter.

Following is a list of some of the limitations of Reading Comprehension on SQUAD
dataset which gave rise to other methods and datasets later on:

• The answer is guaranteed to be in the paragraph.

• We must find the answer in a given paragraph, not elsewhere.

4https://www.wired.com/story/ai-beat-humans-at-reading-maybe-not/,
https://www.cnet.com/news/new-results-show-ai-is-as-good-as-reading-comprehension-as-
we-are/

5https://rajpurkar.github.io/SQuAD-explorer/
6http://u.cs.biu.ac.il/~yogo/on-squad.pdf
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• Annotators see the paragraph when creating the question, resulting in high
lexical similarity between question and answer.

• Adversarial manipulation of the paragraphs (appending an automatically gener-
ated noisy sentence to the paragraph) leads to significant drop of performance
of many models. (Jia and Liang, 2017)

• No symbolic reasoning is required. Understanding questions to perform rea-
soning over paragraphs is not possible in traditional datasets such as SQUAD
or CNN/Dailymail datasets (Hermann et al., 2015).

2.2.4 Reading Comprehension 2.0 - Modifications

There are several shortcomings from Reading Comprehension task which were listed
in the previous section. To address some of them, several works have been published
recently. More details about specific works are presented in the Section 3.

In this section we briefly describe three approaches which are often seen as modifi-
cations for the Reading Comprehension task.

Fig. 2.2: An example from HotpotQA dataset by (Zhilin Yang, Qi, et al., 2018) on multi-hop
reasoning for QA.
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1. Unanswerable questions - in other words Paragraphs with no answers. In the
setting of open domain question answering, not always there is an answer
present in the paragraph. To address this issue the SQUAD 2.0 dataset (Ra-
jpurkar, Jia, et al., 2018) was released which contains some questions which
do not have an answer.

2. Discrete reasoning over paragraphs - To address the simplicity of the task, ques-
tions which do not need any symbolic reasoning, (Dua et al., 2019) released a
dataset named DROP (Discrete Reasoning Over Paragraphs) which consists of
questions which will need to resolve multiple references in a question, perhaps
to multiple input positions, and perform discrete operations over them (such
as addition, counting, or sorting).

3. Multihop reasoning - When a question needs several paragraphs or sentences
to find references to entities which are needed to answer a question, the task
is referred to as Multihop QA. For instance, a paragraph which contains an
answer might not have any lexical term match with the question terms. Such
situation makes the Reading Comprehension models to fail (predict wrong
answers). Multihop QA models must take this into account by cross referencing
entities from different paragraphs and making links to the answer. Figure 2.2
shows an example by (Zhilin Yang, Qi, et al., 2018) where the answer has 5
supporting sentences from 2 different paragraphs which relates the answer to
the question.

There are some simple approaches used for the above cases. For unanswerable
questions, a binary classifier can be trained to determine if a paragraph contains
answers to a question, if the binary predication is positive, then the Start and End
linear classifiers can extract the answer from the paragraph. For Discrete reasoning
over paragraphs, authors of (Dua et al., 2019) propose multi-class classification
approach to determine what type of reasoning problem the question refers to and
perform further steps. We discuss more works on these topics in the Section 3.

2.2.5 Open Domain Question Answering - OpenQA

Back to where it all started - the pioneering QA task as explained in Section 2.2 is
open domain question answering. Open Domain Question Answering or OpenQA is
a QA task where a given input data would contain a question and a short answer
(which is a factoid answer) and no supporting paragraphs or documents. The
systems should find relevant documents from some sources, and further find relevant
paragraphs and perform answer processing to extract a short answer. In other words,
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OpenQA task follows the QA pipeline, where a QA system as shown in Figure 2.1
shall perform intermediate steps in order to obtain a final answer.

The difference between Legacy OpenQA and OpenQA is in the intermediate modules.
Earlier, different information retrieval approaches, knowledge graphs and ontologies
were used to process information in the intermediate modules. Currently deep
learning models have replaced these intermediate modules (by modelling different
intermediate tasks) and the goal is to achieve an end-to-end model which does all of
it in a single model like in multi task learning.

OpenQA task is a union of both Answer Sentence Selection and Reading Comprehen-
sion tasks done sequentially but with certain changes. The assumption of Reading
Comprehension that the paragraph always contains an answer will not be feasible
in OpenQA setting as the Answer Sentence Selection model might select a paragraph
semantically nearby to the question terms but might not contain an answer.

Q: What’s the capital of Ireland?
P1: As the capital of Ireland, Dublin is...
P2: Ireland is an island in the North Atlantic. . .
P3: Dublin is the capital of Ireland. Besides, Ottawa is one of famous tourist
cities in Ireland and ...

An example from a dataset on OpenQA task.

An example shown above shows how a relevant paragraph does not always contain
an answer. P2 is a relevant paragraph according to an Information Retriever model
but the answer is not present in this paragraph. A model trained on Reading
Comprehension task will extract some answer which is incorrect. To overcome this
problem, RC 2.0 models can be used in combination with Answer Sentence Selection
models or probabilistic models can be used to extract answers only from highest
probable paragraph using a Reading Comprehension model.

2.3 Datasets/Corpora

The performance of a QA model can be tested and reported on benchmark datasets
which are used by the research community. In this section we list some of the
well known datasets used for reporting results on particular tasks. As explained
in QA pipeline in the Figure 2.1, the section 2.2 details three main tasks and the
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recent variants of the Reading Comprehension task. Listed below are the datasets
corresponding to these tasks.

2.3.1 Answer Sentence Selection

Domain Dataset Split #Question #QA Pairs

Open Trec QA
Train 94 4,718

Train-all 1229 53,417
Raw-Dev 82 1,148
Raw-Test 100 1,517
Clean-Dev 65 1,117
Clean-Test 68 1,442

Open SQUAD-Sent
Train 87,599 359,222
Dev 10,570 90,117
Test - -

Open Wiki QA
Train 873 8,627
Dev 126 1,130
Test 243 2,351

Closed Insurance QA
Train 12887 -
Dev 1000 -

Test1 1800 -
Test2 1800 -

Tab. 2.1: Answer Sentence Selection Datasets. #Questions - Number of questions.
#QA Pairs - Number of Question-Answer pairs. Statistics presented by (Lai et al.,
2018). WikiQA questions without any correct answers are removed as done by
(Y. Yang et al., 2015)

Table 2.1 presents the datasets for the Answer Sentence Selection task.

TrecQA is a well known dataset to benchmark a system built for Answer Sentence
Selection task. It was created from the TREC Question Answering tracks (M. Wang,
Smith, et al., 2007). It contains real questions created from search engine logs and
sentences from news articles returned by the participating systems in TRECQA task.
There are two versions of this dataset, both have the same training set (Train has
manual judgements and Train-all is a noisy set with automatic judgements) but their
development and test sets differ. The clean version has removed questions in the dev
and test sets that did not have answers or only contained positive/negative answers,
reducing the development and test sets sizes from the raw version. WikiQA dataset
(Y. Yang et al., 2015) is constructed from real queries of Bing search engine and
Wikipedia data. The answers are annotated by human annotators on Amazon Mturk
crowd sourcing platform. Questions with no correct answers are usually removed,
resulting in the statistics presented in the table 2.1.
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InsuranceQA by (Feng et al., 2015) is a large scale dataset on insurance domain.
The questions and answers were collected from the website Insurance Library7.
The questions are from real world users and the answers with high quality were
composed by professionals with deep domain knowledge. There could be multiple
correct answers for some questions so that the number of correct answers is larger
than the number of questions.

SQUAD-Sent dataset was created by us by modifying the SQUAD dataset (Rajpurkar,
J. Zhang, et al., 2016) designed for reading comprehension, into an answer sentence
selection dataset to provide the answers in their original context. Sentence tokeniza-
tion was performed on SQUAD dataset paragraphs using spacy toolkit8 and answers
were checked for an exact match of strings in the sentences. There is only one
positive sentence per question and the all other sentences are negative examples.

Although Natural Questions dataset by (Kwiatkowski et al., 2019) contains long
sentence answers (like in sentence selection task) for questions, with both relevant
and irrelevant paragraphs. It is not explicitly used for Answer Sentence Selection
rather it is used for RC 2.0 or OpenQA. Questions come from Google search engine
queries filtered by human annotators along with the answers.

2.3.2 Answer Extraction

The Table 2.2 presents different answer extraction task datasets for Reading Compre-
hension, Advancements to Reading Comprehension - RC 2.0, and OpenQA tasks.

The rise of deep learning models in the field of natural language processing gave rise
to the demand for large scale labelled datasets across different tasks. For reading
comprehension, the first large scale synthetic dataset was constructed by (Hermann
et al., 2015) who used a large scale news domain corpus and converted that into a
cloze style question answering dataset who goal is to find the missing entities for
the query, in the paragraph. CNN and Dailymail datasets presented in the Table
2.2 shows this first large scale supervised reading comprehension dataset created
synthetically which was inspired by the Cloze style QA.

Following this, a work by (Rajpurkar, J. Zhang, et al., 2016) released the SQUAD
dataset which presents a new dataset for Reading Comprehension annotated by
human crowdsourced workers. A set of human annotators were asked to read a
paragraph and frame questions on it. SQUAD dataset is split into Train, Dev and
Test sets. The Test dataset is hidden from public access. The only way to evaluate a

7https://www.insurancelibrary.com
8https://spacy.io
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Dataset Annotation Split #Question Task

CNN Synthetic
Train 380,298
Dev 3,924 RC - Cloze
Test 3,198

Dailymail Synthetic
Train 879,450
Dev 64,835 RC - Cloze
Test 53,182

SQUAD Human
Train 87,599

Annotated
Dev 10,570 RC
Test 9,533

SQUAD 2.0 Human
Train 130,319

Annotated
Dev 11,873 RC 2.0
Test 8,862

NewsQA Human
Train 107,673

Annotated
Dev 5,988 RC 2.0
Test 5,971

HotpotQA Human
Train-easy 18,089

Annotated
Train-medium 56,814

Train-hard 15,661
Dev 7,405 RC 2.0

Test-Distractor 7,405 Multi Hop
Test-fullwiki 7,405

DROP Human
Train 77,409

Annotated
Dev 9,536 RC 2.0
Test 9,622 Multi Hop

QUASAR-T Synthetic
Train 37,012
Dev 3,000 OpenQA
Test 3,000

SearchQA Synthetic
Train 99,811
Dev 13,893 OpenQA
Test 27,247

TriviaQA Synthetic
Train 66,828
Dev 11,313 OpenQA
Test 10,832

CuratedTREC Human
Train 1,486

Annotated
Dev - OpenQA
Test 694

Webquestions Human
Train 3,778

Annotated
Dev - OpenQA
Test 2032

Natural Questions Human
Train 307,373 Ans. Sentence

Annotated
Dev 7,830 Selection+RC 2.0
Test 7,842 +OpenQA

BIOASQ Human
Train 685

Annotated
Dev 94 OpenQA
Test 161

Tab. 2.2: Reading Comprehension, OpenQA and modified RC 2.0 datasets.

system on the Test set, is by submitting the code on a codalab platform. The SQUAD
leaderboard9 then will display the system scores. A lot of work has been published
by benchmarking on this dataset.

9https://rajpurkar.github.io/SQuAD-explorer/
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Due to the issues pointed out in the Section 2.2.4 with respect to the SQUAD v1.0
dataset on Reading Comprehension, all the other datasets published with changes
are referred as RC 2.0 in the Table 2.2 including SQUAD v2.0.

SQUAD 2.0 dataset (Rajpurkar, Jia, et al., 2018) was released two years after the
first one with additional data which contained questions without an answer. The
dataset contained an additional data point about being answerable or not. The
unanswerable questions were annotated by crowd sourced workers.

NewsQA is a RC 2.0 type dataset with unanswerable questions. Only the CNN
articles from the dataset of (Hermann et al., 2015) were used and crowd sourced
workers were asked to create questions in natural language. This is done to convert
a synthetic cloze QA dataset to a crowd sourced human annotated QA dataset.

HotpotQA (Zhilin Yang, Qi, et al., 2018) is a special RC 2.0 dataset which pointed
out the issues with Reading Comprehension or traditional RC 2.0 datasets with
unanswerable questions being simple to answer without any reasoning required.
Another challenge with models trained on these datasets is the interpretability or
explanation. Therefore this dataset provides supporting facts from different parts
of a paragraph which are required to answer a particular question. This dataset
is a Multi-hop reasoning dataset which means an answer can be answered with
information taken from more than one document to arrive at the answer. This solves
another shortcoming of the RC datasets such as SQUAD whose questions have high
lexical similarity around the answer terms in the paragraphs.

DROP dataset (Dua et al., 2019) is a crowd sourced dataset which is also a Multi-hop
reasoning dataset like HotpotQA but has questions which require discrete operations
such as addition, counting, or sorting to answer questions. Some of the other
operations needed to answer these questions involve - subtraction, comparison,
selection, addition, coreference resolution, different answer spans and more. The
authors also propose a multiclass classifier method to classify which kind of reasoning
problem the question would belong to and perform discrete operations.

QUASAR-T dataset (Dhingra, Danish, et al., 2018) consists of trivia questions which
were collected manually by a reddit user and posted freely online10. It is in the
format of OpenQA task where the paragraphs are retrieved using LUCENE tool and
not all the paragraphs contain the answer.

10https://www.reddit.com/r/trivia/comments/3wzpvt/free_database_of_50000_trivia_questions/
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SearchQA (Dunn et al., 2017) is a large-scale open domain QA dataset which consists
of QA pairs crawled from J!11 archive and the paragraphs are obtained by retrieving
50 webpages for each question from Google search.

TriviaQA dataset (Joshi et al., 2017) consists of QA pairs created by trivia enthusiasts
and documents gathered by retrieving 50 webpages per question using Bing Web
search. For our experiments involving Quasar-T and SearchQA, we use the retreived
paragraphs from (S. Wang, M. Yu, Guo, et al., 2018) as done by (Y. Lin et al.,
2018).

CuratedTREC dataset (Voorhees, 2001) is based on the benchmark from the TREC
QA datasets from 1999, 2000, 2001 and 2002.

WebQuestions (Berant et al., 2013) is designed for answering questions from the
freebased knowledge base which was built by crawling Google suggest API and the
paragraphs were retrieved from English wikipedia.

Natural Questions by (Kwiatkowski et al., 2019) is a large scale QA dataset with
questions coming from Google search engine which are anonymous and aggregated.
They also release a 5 way annotated test data to capture different ways of human
annotations. In the paper they report some findings on 25-way annotations on 302
examples to highlight human variability for annotations. This dataset is 3 times
bigger than SQUAD dataset and contains long answers (paragraphs or wikipedia
HTML bounding boxes highlighted by the annotators) and short answers (answer
spans highlighted by the annotators).

There have been some debate about the inductive bias in some of the datasets like
SQUAD dataset where people were first shown the paragraphs and answers while
annotating and were asked to frame questions based on that. This arguably gives
an easier set of questions than when somebody was just asked to find answers in a
paragraph which the SQUAD task is aimed for. Datasets like Natural Questions do
not ask users to formulate queries but rather choose the queries based on existing
query logs from their search engines to avoid such biases.

The field of Question Answering has seen a lot of datasets because of the rise in the
usage of deep learning methods and the trend of releasing more models and datasets.
This has changed and improved some of the issues in the former QA systems which
heavily relied on feature engineering. In the section 3, we discuss some works which
have had significant impact in the QA field.

11https://www.j-archive.com
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BIOASQ dataset

BIOASQ12 challenge is a large-scale biomedical semantic indexing and question
answering task (Tsatsaronis et al., 2015) which has been held successfully for 7
years. The challenge proposes several tasks using biomedical data. One of the tasks
focuses on Biomedical question answering (Task B Phase B) where the goal is to
extract answers for a given question.

Since our work is mainly focused on domain specific QA with biomedical data, we
present the BIOASQ data separately. BIOASQ task is an OpenQA task with both
relevant and irrelevant snippets in the dataset.

Datasets Train Dev Test
BIOASQ 4b 427 59 161
BIOASQ 5b 544 75 150
BIOASQ 6b 685 94 161

Tab. 2.3: BIOASQ datasets used in all our experiments along with their splits. The numbers
represent number of questions. It is a small scale expert annotated QA dataset.

2.3.3 Open Domain vs Closed Domain Corpus

Closed Domain corpora are those datasets that come from a specific domain source
which consists of special definitions, vocabulary terms and features which corre-
sponding to the domain such as Insurance, Medical, Biomedical, Scientific, law etc.
Their size is often small scale.

Open Domain corpora are those datasets that come from a broad range of data
sources and are not constrained by some special domain specific content. Usually
datasets coming from News, Wikipedia, Common crawled data from the internet
that do not require certain domain expertise to understand. They are termed under
Open Domain data for textual corpora. Their size is often large scale.

BIOASQ Question Answering dataset is a biomedical domain dataset with questions
annotated by biomedical domain experts. Domain specific (closed domain) corpus
often have certain special characteristics which make them different. Some of the
characteristics are listed below:

• Specialized vocabulary.

12http://bioasq.org/
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• Different answer variants (abbreviations, symbols etc.) for a same question in
factoid QA.

• Small scale data.

• Created with the help of domain experts.

• Focused towards a specific community of users.

BIOASQ dataset being a closed domain dataset, was annotated by biomedical experts
with the support of biomedical documents. Experts were asked to curate questions
and annotate or provide answers to them.

2.4 Evaluation metrics

Different Question Answering tasks have different evaluation metrics because of
different outputs. We discuss the evaluation metrics we used in our work in this
section based on the corresponding QA task. We experiment mainly on the tasks of
Answer Sentence Selection, Reading Comprehension, BIOASQ Question Answering and
OpenQA.

2.4.1 Answer Sentence Selection

For a given question, there are a set of sentences out of which one or more sentences
are correct. For evaluation, Mean Average Precision (MAP) (Eq. 2.1) and Mean
Reciprocal Rank (MRR) (Eq. 2.2) are used.

Precision is calculated for each question if the highest ranked (or scored) sentence is
retrieved correctly or not (P = 0 for each correct sentence that was not retrieved).
The average is then calcuated for each question. Finally, an average over all questions
is calculated.

MAP = 1
N

N∑
j=1

1
Qj

Qj∑
i=1

P (rel = i) (2.1)

with Qj being the number of relevant sentences for question j; N the number of
questions, and P (rel = i) the precision at ith relevant sentence.
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In the case of MRR, each system returns some K number of answers, in rank of
confidence of their correctness, for each question. The MRR is defined as the mean
of the inverse rank of the first correct answer, taken over all N questions:

MRR = 1
N

N∑
i=1

RRi (2.2)

RRi = 1
ri

(2.3)

The score for an individual question i is the reciprocal rank ri where the first correct
answer appeared (0 if no correct answer in top K (often K=5) answers). Thus, there
are only six possible reciprocal ranks per question for K=5: 0, 0.2, 0.25, 0.33, 0.5,
and 1. MRR is averaged over the N questions.

Instead of implementing code for computing this, once can use the scripts13 provided
by Trec.

2.4.2 Reading Comprehension

For a simple Reading Comprehension system, an answer is present inside the para-
graph. i.e the answer is a substring of a paragraph string. There are two types of
evaluations commonly done by systems for this task.

• Unofficial Evaluation - Word offsets of the answers in paragraphs are evaluated.

• Official Evaluation - As defined by (Rajpurkar, J. Zhang, et al., 2016), answer
strings are extracted from the word offsets, and are normalized before being
evaluated.

A simple Reading Comprehension system has two classifier outputs which detect the
start and end positions of the answers in the paragraph.

For the Unofficial Evaluation - Accuracy is evaluated to check how accurate the
start and end positions individually are extracted by the model. For a question i, if
Gold standard label is the same as Predicted label, Accuracy is 1, else the Accuracy
is 0 where label is the pair of word offsets. An average over all the questions is
calculated.

13https://github.com/usnistgov/trec_eval

32 Chapter 2 Question Answering - Tasks and Problems



For the Official Evaluation - The predicted word offsets are used to retrieve the
answer text from the paragraph, and are normalized to remove punctuations, stop
words, extra spaces etc. and are checked for exact match between the gold standard
and normalized prediction strings. If both the strings match, then Exact Match (EM)
score is 1 for question i, else Exact Match (EM) is 0, an average over all the questions
is calculated.

Along with Exact Match, F1 Score for each question is calculated and averaged over
all the questions, using the following equation:

F1 =
(

2
recall −1 + precision −1

)
= 2 · precision · recall

precision + recall
(2.4)

Precision and Recall are computed based on words which are retrieved and are
computed as follows:

Precision = len(tokens(prediction) ∩ tokens(gold standard))
len(prediction) (2.5)

Recall = len(tokens(prediction) ∩ tokens(gold standard))
len(gold standard) (2.6)

Where tokens function tokenizes words from the string and len function calculates
the number of words in the string.

These measures were initially used by (Rajpurkar, J. Zhang, et al., 2016) on the
SQUAD leaderboard14 whose code can be found in their repository.

2.4.3 BIOASQ evaluation

BIOASQ challenge has a biomedical question answering (Task B Phase B) task where
the goal is to extract answers for a given question from relevant snippets.

For a given question, there are one or more relevant snippets which contain the
answer. Unlike Reading Comprehension task, not all answers are correctly annotated
in the gold standard data and also not all gold standard answers are present in all
the relevant snippets.

The official evaluation as defined by the task organizers is as follows. There are
three measures computed by the scripts15 provided.

14https://rajpurkar.github.io/SQuAD-explorer/
15https://github.com/BioASQ/Evaluation-Measures
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• Strict Evaluation - Top 1 accuracy - Where accuracy is measured using Exact
Match (EM) as done by Reading Comprehension tasks for Top-1 answer.

• Lenient Evaluation - Top 5 accuracy - If the gold standard is present in Top 5
responses, where accuracy is measured using Exact Match (EM) as done by
Reading Comprehension tasks.

• Mean Reciprocal Rank - As done in Answer Sentence Selection - the score for an
individual question i is the reciprocal rank ri where the first correct answer
appeared (0 if no correct answer in top five answers).

All the three measures are averaged over total number of questions and are reported
in the challenge leader board16, batch wise.

2.5 Contributions and Conclusion

Our work is funded by the GOASQ project17 which intends to investigate, compare,
and combine two different approaches for answering questions formulated in natural
language over textual, semi-structured, and structured data. One approach is the
text-based question answering that directly answers natural language questions
using natural language processing and information extraction techniques. The
other tries to translate the natural language questions into formal, database-like
queries and then answer these formal queries w.r.t. a domain-dependent ontology
using database techniques. This thesis work is focused on the first approach that
directly answers natural language questions using natural language processing and
information extraction techniques.

As defined in our research objectives (Section 1.3), our focus is towards building
QA models which work with better performance both on large scale and small
scale datasets such as biomedical domain datasets. For this purpose, we show how
Domain Adaptation can be done on biomedical data from open domain QA datasets
using Reading Comprehension. We evaluate two models (Reading Comprehension
and OpenQA) for biomedical question answering and compare their performance
variation to show that the OpenQA modelling of BIOASQ performs better. We also
experiment with several open domain datasets for Domain Adaptation process to
show which ones perform better while adapted to biomedical domain.

16http://participants-area.bioasq.org/
17https://goasq.lri.fr/
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We use SQUAD v1.0, v2.0, HotpotQA, NewsQA datasets for reading comprehension,
QUASAR-T dataset for OpenQA, BIOASQ dataset for domain specific dataset. WikiQA,
TrecQA for Answer sentence selection task.

Another research objective is to focus on leveraging structured and semantic infor-
mation for existing QA models. In factoid question answering where answers are
usually entities, their types (based on a custom taxonomy) can often be inferred by
analysing the question keywords. These types are called as "Expected Answer Types"
which are useful in traditional pipeline question answering systems. These are used
to filter or eliminate candidates which does not belong to the question type. This
information is seldom used explicitly in deep learning models for QA as the goal is
to build end-to-end systems. We present a detailed analysis on "Expected Answer
Types" for biomedical and open domain QA to verify its usefulness. We also show
how entity information and expected answer type information can be used for QA
tasks in open domain QA to further improve scores of deep learning models.

We annotate for more variants of answers than just use gold standard data on
biomedical QA dataset and show that the Reading Comprehension models perform
better when annotations are done correctly with more information. We also show
how these annotations can be automatically annotated using Metamap tool which
uses UMLS meta thesaurus and fetches similar results to the manual ones.

Deep learning models almost always focus towards building end-to-end systems,
and not much emphasis is put towards post processing of the outputs to better rank
the Top-K predictions. We use semantic features and structured information from
different paragraphs provided for a question, and use it for a ranking model to
improve the QA performance. We use some traditional machine learning models to
rank a better answer candidate from Top-K predictions into Top-1 position and show
that there is a scope for improvement on the predictions from the neural network
models. This applies both on biomedical question answering and open domain
question answering models on Open QA tasks.

The following chapter presents some of the state-of-the-art models on the above
tasks in detail.
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3State of the Art

In the previous chapter we have defined the Question Answering (QA) tasks, datasets,
evaluation metrics commonly used. In this chapter we present the state of the art
models and present a literature review of how some models and tasks evolved over
time.

We present the history of question answering system development from their initial
stages, and how they ended up with a structured pipeline of tasks which we see
these days. The extensive use of deep learning models in machine learning also
had an impact on question answering changing the way some traditional systems
work. The following sections first present question answering in the past, before
deep learning and with deep learning models. Recently since contextual embeddings
using pre-trained language models have started to improve performance of several
NLP tasks including question answering, we present some of the works in this regard
which are currently in the trend.

Since a long time, Question Answering is always targetted in different ways based
on the type of data used. One of the pioneering works in the field of Question
Answering was BASEBALL (Green Jr et al., 1961) which was built for answering
questions about baseball games played in the American league over one season.
LUNAR (Woods, 1973) was designed as a result of the Apollo moon mission, to
help lunar geologists. Several others early systems SYNTHEX, LIFER, and PLANES
are mentioned by (Paris, 1985) for the same objective of getting an answer for a
question asked in natural language. There were no pipeline structure approaches
as we see in Figure 1.1 earlier in those systems and people built rule based systems
generally. This kind of QA systems were also built for querying databases. The
QA tasks on plain text with answer sentences and spans, gained attention while
TREC QA task was organized in 1999. Data such as databases, knowledge bases and
graphs, triples, plain text etc. lead to different types of question answering systems.
Given a question in natural language, one of the main challenges is to convert or
translate the question into a query which can be used to querying a database or a
knowledge base. The process involves aligning a question with the KB triples, which
needs to overcome lexical gap and to adapt the question parsing to the KB schema
in order to determine which phrases are entity or relation mentions. If the question
answering data is only based on free text, these problems do not exist but other
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problems such as text understanding, part of speech tagging, entity recognition,
answer type detection etc. are important to tackle (Grau and Ligozat, 2018)

Our work focuses on text based question answering, mainly factoid question answer-
ing and answer sentence selection tasks.

Fig. 3.1: Question Answering pipeline as defined by (Allam and Haggag, 2012)

3.1 Text Based Question Answering by Feature
Engineering Approaches

Different question answering systems can be generalised into a single structured
pipeline manner. A recent survey by (Allam and Haggag, 2012) shows in Figure 3.1
how different sub tasks are structured into one QA structure and each contribution
would come under some sub tasks generally, which is similar to the one presented
in Figure 2.1. We list and explain some of the works with respect to the structured
pipeline.

To retrieve an answer in a text from a question, there are three main modules
namely:

• Question Processing
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• Document Processing

• Answer Processing

Question Processing

Question Processing module takes as input a question in natural language. This
module Analyzes the question, Classifies it into a question type and Reformulates into
queries for the IR engine.

Question analysis is done to analyze and determine the focus of the question. A
focus is word or a sequence of words in the question which is used to determine and
disambiguate what the question is looking for. For example, in the question "What
is the longest river in France?", the question focus would be "longest river". If the
Expected Answer Type (that defines the entity type of the answer inferred from the
question) and the question focus are known, the system can determine the answer.
Pattern matching rules can be used to determine the focus based on the question
type. Machine learning methods using models like Wapiti by (Lavergne et al., 2010)
that uses conditional random fields for sequence labelling tasks can also be used for
this purpose.

Determining the question type is important to understand what kind of answer is to
be extracted. This information will make the search easier by filtering the type of
information to be searched. For example, if the question type is a "location" then the
answer expected shall be a location and not a name of a person. Either done by rule
based systems or machine learning based classifiers, the question types are classified
based on taxonomies.

The effectiveness of the taxonomy chosen is directly linked to the capacity of rec-
ognizing the question type. For rule based systems, the taxonomies act as a base
to construct rules such as "Where" questions would classify as "Location" class
and "When" would classify as "Date" class and so on. This approach was used by
(Moldovan et al., 1999; Hermjakob, 2001; Radev et al., 2002; Ferret et al., 2001) as
it was simple, quick and effective.

Machine learning classifiers need labeled questions to be trained on. Choosing the
right set of features to represent the question and the type of classifier plays an
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Fig. 3.2: Hierarchical question types taxonomy by (Moldovan et al., 1999) (left) and (Li
and Roth, 2002) (right)

important role on the performance. Features may vary from simple shallow word
analysis to detailed syntactic and semantic features using linguistics analysis. The
authors of (Hermjakob, 2001) used machine learning based parsing and question
classification. The authors of (D. Zhang and W. S. Lee, 2003) compared various
choices for machine learning classifiers using the hierarchical taxonomy proposed by
(Li and Roth, 2002). Among: Support Vector Machines (SVM), Nearest Neighbors
(NN), Naive Bayes (NB), Decision Trees (DT), and Sparse Network of Winnows
(SNoW), they showed that with only surface text features SVM outperforms four
other methods for question classification.

For the question reformulation into queries (Azad and Deepak, 2019) used entity
recognition tools, stop words, part of speech taggers to extract keywords and features
from question words which are appended to the expanded query along with synsets
from the WordNet by (Miller, 1995). These are input to Information Retrieval
engine.
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Document Processing

The first step in document processing module is to extract relevant documents for an
input question. A document can be defined as a set of multiple paragraphs of text. A
relevant document is a document which has some semantic relationship with the
question. This can be based on matching terms between question and documents,
terms which are semantically nearby to each other measured using cosine similarity
in embedding space, etc. An important detail to highlight here is that a relevant
document (judged according to some measure) might not always contain short
answer terms but might still be relevant to the question, which leads to different QA
tasks.

The authors of (Stoyanchev et al., 2008) present a document retrieval model on a
question answering system, and evaluate the use of named entities, part of speech
tags in a query and show that phrases extracted from questions, named entities of
noun, verb, and prepositional phrases improves IR performance than just words.
The authors of (Gaizauskas and Humphreys, 2000) describe an IR model with an
NLP model that performed reasonably through linguistic analysis.

In question answering datasets which require a relevant textual paragraph for a
question, researchers typically use an IR method to retrieve relevant documents. The
authors of (Dhingra, Mazaitis, and William W Cohen, 2017a) use ClueWeb09 service
to retrieve 100 HTML documents per question and later do post processing to remove
HTML syntax, non textual data, images etc. For paragraph filtering and ordering
given in the Figure 3.1, different approaches do it differently. A common way of
doing this is by splitting documents into paragraphs which act as answer candidates
for Answer Sentence Selection task which predicts the best suitable paragraphs as
answers. We detail this in section 3.2.1. Several models and approaches for this can
be found on the ACL leaderboard1.

Answer Processing

Answer Processing module functions differently for different sub-tasks of textual
question answering. For long answers like answer sentences, semantic similarities
are captured between questions and answer sentences. For short answers like short
spans or phrases, entities, one of the several ways of processing answers is based on
the expected answer types obtained in the Question Processing module as done by
(Grappy, Grau, et al., 2011).

1https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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For long answers like in TrecQA dataset2, the authors of (Severyn and Moschitti,
2013) use the answer type and their named entities as features in their tree kernel
approach on answer sentence selection and extraction task. The authors of (Gleize
and Grau, 2015a) also propose a unified kernal approach for recognizing textual
entailment and answer sentence selection tasks.

For short answers, the answer type can be used to infer short answers by using the
named entity recognition tools. For the short answers that are entities, a question
type classifier would predict a class based on the hierarchies in Figure 3.2, which
can be used to extract the matching named entities that are further ranked based
on some features such as embedding similarity, term overlap. The authors of (Shih
et al., 2005) propose an approach to extract answers in Chinese texts. The authors of
(Ravichandran and Hovy, 2002) present a model for finding answers using shallow
surface text patterns and manually constructed rules on the Web dataset and TREC-
10 questions. The authors of (Peng et al., 2005) present an approach to capture long
distance dependencies using linguistic structures to enhance patterns in chinese QA
data.

Earlier works before deep learning models such as the ones by (Punyakanok et al.,
2004; Cui et al., 2005) focus mainly on syntactic features such as using dependency
trees and relation between terms and the distance between question and sentence
syntax trees. They also include named entity features for semantic information.
Instead of using strict word match between question terms and answer sentence
terms, the authors of (Cui et al., 2005) propose fuzzy relation matching based on
statistical models. The authors of(Gleize and Grau, 2015a) use kernel functions to
detect paraphrases, answer sentence selection and recognizing textual entailment.
Some other works such as (Heilman and Smith, 2010; M. Wang and Manning, 2010;
Yao et al., 2013b; Yih et al., 2013) focus on using tree edit distances, probabilistic
tree edit models, feature extraction using dependency trees, relations, named entity
types etc.

3.2 Neural Question Answering - Task based
classification

Ever since the rise in the usage of deep learning models and techniques in the field of
machine learning and natural language processing. Question answering domain also
has witnessed the impact on a lot of question answering systems built using neural
network models. For a few sub-tasks of question answering, like answer extraction

2https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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from plain text, sentence selection task, these models outperform the traditional
methods.

From building individual sub-tasks of question answering organized in a pipeline to
building end-to-end models which completely rely on input data, deep learning is
being used extensively.

Deep learning models are good at automatic feature extraction which the models
learn based on the input data, contrary to traditional models which heavily rely on
the hand crafted features provided by tools.

In the following section we discuss how deep learning models function on a few QA
tasks following the same classification of tasks presented in Section 2. We discuss
about the current state of the art models in the respective tasks, how some popular
neural network models evolved over time and the advantages/disadvantages of
using one model over the other.

3.2.1 Answer Sentence Selection

Given a question and a set of potential answer sentences, answer selection is the task
of identifying which of the candidates sentences answer the question correctly. As
per the question answering pipeline described in Figure 3.1, the Document Processing
module outputs a list of paragraphs corresponding to a question, and the Answer
Processing module shall predict which of the answer sentences (or paragraphs) are
relevant to answer the question.

For this task, there are several popular labelled datasets used to benchmark results
as listed in Table 2.1. The most popular dataset used by the community since more
than a decade is TREC QA dataset curated and first used by (M. Wang, Smith, et al.,
2007) where the authors use probabilistic quasi-synchronous grammar for question
answering. The dataset is designed for open domain question QA task.

Few years later, (Y. Yang et al., 2015) released a dataset named WikiQA based on
Bing search engine query logs and answer sentences were annotated by humans
on a crowdsourcing platform. Until this dataset was released, all the models were
experimented on TrecQA dataset alone. This shows the lack of datasets for question
answering and especially for the task of answer sentence selection. Table 2.1
presents the four datasets out of which two (TrecQA and WikiQA) are widely used
for benchmarking models. This task also corresponds to a textual entailment task.
Often the models are also evaluated on a paraphrase corpus (Gleize and Grau,
2015a).
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Models and approaches

The ACL page3 for state of the art models for question answering contains a leader-
board with scores comparing MAP (Mean Average Precision) and MRR (Mean
Reciprocal Rank) of different models evaluated using official evaluation scripts4 of
Trec. Authors can upload their scores directly on the leaderboard by linking their
published articles.

As soon as a deep learning model was first used in this task by (L. Yu et al., 2014)
where the authors use a 1D CNN model, others started using different deep learning
models for this task. Following the convolutional neural network approach, (Severyn
and Moschitti, 2015) propose a siamese CNN model using learning to rank approach,
which computes a representation of both entries, candidate passage and question,
and a similarity between these two representations using a pooling layer followed
by similarity matrix computation. In (Yin et al., 2016), the similarity of the two
entries is evaluated by computing interactions between words of the two texts by an
attention layer.

The authors of (He et al., 2015) propose a Multi-Perspective CNN for this task which
is further used by (Rao et al., 2016) with a triplet ranking loss function to learn
pairwise ranking from both positive and negative samples. CNNs are generally used
for classification problems where the input size between question and answer pair
does not vary significantly. (Lai et al., 2018) gives a good comprehensive review of
the task and summarizes several works which use deep learning models.

According to the authors of (Lai et al., 2018), there are three general architectures
for measuring the relevance of a candidate answer sentence to a question.

1. Siamese Architecture: In a siamese architecture (Bromley et al., 1994), The
same encoder (a CNN or a RNN) layer is used to build the representations for
the input sentences (both the question and the answer sentence) individually.
After that, the relevance score is determined based on the encoded representa-
tions. There is no explicit interaction between the input sentences during the
encoding process.

3https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
4https://github.com/usnistgov/trec_eval
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Fig. 3.3: An overview of deep learning methods applied for Answer Sentence Selection
presented by (Lai et al., 2018)

2. Attentive Architecture: Rather than encoding representations independently,
attention mechanisms can be used to allow the information from an input
sentence to influence the computation of the other’s representation (Tan et al.,
2015; Santos et al., 2016).

3. Compare-Aggregate Architecture: In a Compare-Aggregate architecture, vec-
tor representations of small units such as words of the sentences are first
compared. After that, these comparison results are aggregated to calculate the
final relevance score.

The authors of (Lai et al., 2018) also note that boundaries of defining which model
follows which architecture is often unclear because some models mix different
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representations inspired from different types of models making it harder to classify
under a single category.

Following these definitions for neural model architectures and definitions for Point-
wise and Pairwise learning approaches as defined in Section 2.2.2, the Figure 3.3
presents an overview of deep learning models used for this task. A similar overview
can also be found on the ACL leaderboard5.

The authors of (Tayyar Madabushi et al., 2018) use a CNN model proposed by
(He et al., 2015) using question classes (or question types as described earlier) to
enhance the dataset by highlighting entities in it. Highlighting entities were done by
mainly two ways called Bracketing (appending a special token before and after the
entity occurrence) and Replacement (replacing the entity word with a special token)
methods. They propose the above two methods for highlighting expected answer
types or question classes in the answer text.

Answer Sentence Selection task was extensively studied and several works using
different neural architectures were proposed. But the question answering commu-
nity shifted focus towards tougher aspects of the factoid QA tasks such as answer
extraction and answering tougher questions which require reasoning skills than just
factoid answer type matches.

3.2.2 Reading Comprehension

Reading Comprehension task has been addressed in several ways. One of the
popular tasks in CLEF was QA4MRE by (Peñas et al., 2013) which provided multiple
choice questions (with one correct answer) and the goal was to understand single
documents and answer a question out of the options provided.

Two of the other earliest Reading Comprehension systems are based on pattern
matching techniques with bag-of-words (Hirschman et al., 1999), and a rule based
system Quarc (Riloff and Thelen, 2000) which use rules based on the question words
present in the question. The dataset consist of 115 questions in total. The authors
of (Poon et al., 2010) propose an approach using information extraction methods
for detecting predicate argument triples that can later be queried as a relational
database, similar to converting queries in natural language to structured queries.
The authors of (Gleize and Grau, 2015b) use word vectors and tree edit model on
graph representations of the passages and answer choices to extract edit sequences
which decide the correct answers among several choices of QA4MRE task (Peñas
et al., 2013).

5https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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With the introduction of a new dataset by (Hermann et al., 2015), cloze style QA
task was used to convert news domain data into QA data. Since this was synthetic,
human annotated data like SQUAD dataset by (Rajpurkar, J. Zhang, et al., 2016)
became more popular as they were harder than the synthetic ones. The task is to
identify an answer span (a short answer) in the given paragraph which is the correct
answer. The models built for this task must focus on analyzing the given paragraph
to extract an answer from it. The main assumption of this task is that the answer is
always present in the paragraph. This task is often referred as Machine Reading as
well.

The lack of training data is one of the bottlenecks of using deep learning models.
Not just question answering, but this is common to many other NLP tasks. A solution
for this bottleneck is to create more data (labelled data). There are three common
ways of doing this,

• Creating labelled datasets by automatically generating question and answers
from a source (Hermann et al., 2015) - Synthetic datasets.

• Creating semi-supervised models with limited labelled data (Dhingra, Mazaitis,
and William W Cohen, 2017a) - Semi-supervised datasets.

• Creating labelled datasets by human annotations (Rajpurkar, J. Zhang, et al.,
2016) - Human annotated datasets.

Datasets

Synthetic datasets are the ones that can be created automatically and without expert
knowledge for annotations. The authors of (Hermann et al., 2015) followed the
approach of Cloze style reading where a summary or a paraphrase sentence related
to a paragraph is used to create queries. The answer terms are one or more entities
present in the query, but hidden or anonymized. The task is to identify which is
the entity hidden in the query. The dataset created and released by the authors
contained more than 1 million query answer pairs.

The follow up work by (Chen, Bolton, et al., 2016) criticizes the way these questions
are framed and state that the required reasoning and inference level of this dataset
is still quite simple. The authors build a simple model which outperforms the state
of the art by 7-10% of the original paper results. Although this dataset is relatively
simple to address the complex reading comprehension task, this work fetched more
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attention towards the reading comprehension task especially towards using an
end-to-end model.

Addressing the issues discussed above and the noise present in automatically cre-
ated synthetic datasets, (Rajpurkar, J. Zhang, et al., 2016) released a new human
annotated dataset for reading comprehension named as SQUAD (Stanford QUestion
Answering Dataset). This dataset contains over 100,000+ questions posed by crowd-
workers on wikipedia articles. The workers were asked to read a paragraph and
frame questions based on the paragraph and mark the answer span in the paragraph.
This was a pioneering work in reading comprehension which released a human
annotated large scale dataset which led to several other works in the domain of
reading comprehension for question answering.

Along with the dataset, Kaggle6 like leaderboards for question answering was re-
leased7 by the authors of (Rajpurkar, J. Zhang, et al., 2016) which made research
on reading comprehension more competitive and comparable. The authors propose
a baseline approach using logistic regression and textual features to extract answers
and also report human accuracy score which was computed by comparing one of the
three answers humans had annotated as a prediction and others as gold standard.

Although a similar leaderboard approach existed already for Answer Sentence Se-
lection8, the main difference introduced by the authors was a hidden test set. A
participant must submit the code and model to the organizers in order to evaluate
their model. That made sure that the results were not fine-tuned on the test set and
the scores were reproducible and trustworthy which made a leap in transparency of
reported results.

A lot of interesting approaches, tricks and models came out as a result since the
availability of this dataset which showed how deep learning models would indeed
perform better with more data. Most of these below mentioned works can be found
on the SQUAD leaderboard9 as well.

Models and approaches

We briefly discuss some of the works contributing towards Reading Comprehen-
sion and mainly on SQUAD dataset and highlight some important points from the
articles.

6https://www.kaggle.com/
7https://rajpurkar.github.io/SQuAD-explorer/
8https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
9https://rajpurkar.github.io/SQuAD-explorer/
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When variable length textual data is used such as in paragraph texts where the
size might vary significantly from one to another. Using a Convolutional Neural
Network (CNN) is not very straightforward as CNNs were modelled on images
initially which are fixed size inputs. Several works on Reading Comprehension focus
on using Recurrent Neural Networks such as Long Short Term Memories (LSTM) or
Gated Recurrent Units (GRU) to model sequential and variable length data. Works by
(Weissenborn et al., 2017; Chen, Fisch, et al., 2017) use a similar simple architecture
of LSTM or GRUs for both Question and Paragraph encoding and use a mechanism
to learn interaction between question layer and paragraph layer. The authors of
(Weissenborn et al., 2017) call it as Interaction Layer and (Chen, Fisch, et al., 2017)
call is it as Aligned Question Embedding which makes an interaction of question terms
with paragraphs term possible. The authors of (S. Wang and Jiang, 2016) used
MatchLSTM which is built on Pointer networks by (Vinyals et al., 2015) where the
output sequence tokens must come from the input sequence. Instead of picking an
output token from a fixed vocabulary, pointer network uses attention mechanism as
a pointer to select a position from the input sequence as output. This was one of the
first few models which used attention mechanism for this task.

In the same regard, attention mechanism which was also used extensively in se-
quence to sequence models for machine translation and later modified to work
on Reading Comprehension by several others and almost all models using RNNs
use some kind of attention mechanisms for this task to facilitate interaction be-
tween two sequences. Using attention in a bidirectional manner was later shown
by (Seo et al., 2016) termed as BIDAF - BIDirectional Attention Flow which uses a
hierarchical multi-stage architecture for modeling the representations of the context
paragraph at different levels of granularity. BIDAF includes character-level, word-
level, and contextual embeddings, and uses bi-directional attention flow to obtain a
query-aware context representation. Inspite of this model being more complex than
DRQA by (Chen, Fisch, et al., 2017), the latter performs much better on the SQUAD
leaderboard (BIDAF - EM 67.974, DRQA - EM 70.733), which is indeed a surprising
aspect.

Ever since RNN models became popularly used for this task, works by (Xiong et al.,
2016; Hu et al., 2017; Shen et al., 2017; Huang et al., 2017) focused on using
attention mechanism in different ways to handle dependency between question to
paragraph, paragraph to question, left to right, right to left etc. by modelling different
mechanisms with RNNs. Figure 3.4 by (Huang et al., 2017) gives a comparison
between different works by showing which model uses how many RNN, at what level
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Fig. 3.4: Summary of several models using an attention mechanism for Reading Compre-
hension. Figure by (Huang et al., 2017).

and how many attentions are used. This comparison shows how little modifications
in the neural architectures led to different results.

Although the focus is to increase metrics like exact match score or F1 score of these
models for Reading Comprehension, the training time of these models is increased
along with model complexity while using RNNs. That is one of the disadvantages
of using RNNs (it is worse while multiple RNNs are used sequentially) where
the training time is increased proportionally to increasing complexity of the RNN
model.

Convolution operations on the other hand take lesser training times and hence
they are better suited when time constraint is considered seriously. Following this
problem (A. W. Yu et al., 2018) propose QANET to use local convolutions and self
attention mechanism by (Vaswani et al., 2017) which would avoid the use of RNNs
but facilitates using attention mechanism. The self attention mechanism was one
of the pioneering works which was famously called as Transformer model which
later was used for contextual embeddings. Modifications of RNNs had almost hit
a ceiling on SQUAD leaderboard followed by QANET which performed better than
the previous RNN methods whose exact match score for a single model was 82.47%.
This is the peak performance reported on SQUAD leaderboard for a model that does
not use pre-trained language representations, which are explained in the following
section.
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Pre-trained language representations and reading comprehension

An important milestone of using pre-trained language representations for contextual
word embeddings was proposed by (M. Peters et al., 2018a) in their work Deep
contextualized word representations which is famously named as ELMO - Embeddings
from Language Models. The authors train a deep bidirectional language model
on a large corpus to learn word vectors, these word vectors are later added as an
embedding layer to downstream NLP tasks. The authors concatenate these contextual
word vectors into existing state of the art models for NLP tasks such as question
answering (Reading comprehension on SQUAD), textual entailment, semantic role
labelling, co-reference resolution, sentiment analysis, named entity recognition and
show that the performance of these models can be improved right away without
modifying anything with the downstream task model. This was originally inspired
by TagLM (M. E. Peters et al., 2017) which shows the feasibility of this on sequence
labelling tasks.

The authors of ELMO (M. Peters et al., 2018a) use a baseline model of theirs which
is an improved version of BIDAF model which fetches exact match score of 81.1 and
adding ELMO words vectors to the same model fetches exact match score of 85.8
which is an increase 4.7 points on the SQUAD dataset test set. This work sets a new
baseline for using contextual word embeddings trained on language model tasks.

ELMO uses Bi-LSTMs in their model in both the directions left and right, separately
to encode the sequences. Instead of these Bi-LSTMs, (Radford et al., 2018) propose
to use a transformer model as proposed by (Vaswani et al., 2017). Following ELMO
and GPT, a work by (Devlin et al., 2018) named as BERT - Bidirectional Encoder
Representations from Transformers was released. BERT is also a popular name from
the Sesame Street10 which is why a muppet is used while portraying the BERT model.
Figure 3.5 compares the three models briefly.

Fig. 3.5: Comparing BERT by (Devlin et al., 2018) with OpenAI GPT (Radford et al., 2018)
and ELMO (M. Peters et al., 2018a)

10https://www.sesamestreet.org/
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Fig. 3.6: Overall process of pre-training and fine tuning BERT for different NLP tasks by
(Devlin et al., 2018)

BERT is designed to pretrain deep bidirectional word representations from unlabeled
text by jointly conditioning on both left and right context in all layers. As a result,
the pre-trained BERT model can be finetuned with just one additional output layer
to create state-of-the-art models for a wide range of NLP tasks, such as question
answering and language inference, without substantial task specific architecture
modifications.

For question answering, as shown in Figure 3.6, the final layer of BERT is an
additional layer which shall predict the Start and End of the answer span, with
no new model specifically for QA. BERT-Large (A variant with large number of
layers) scored 84.1% which beat the previous state of the art models at the time
of release and the only peer reviewed and published paper at the time of writing.
Other variants of BERT and better models have not been published yet althought the
results are published on SQUAD leaderboard.

ELMO, BERT, OpenAI GPT, GPT-2 and their variants are trained on large corpus of
text with very deep models. The are mainly two downsides of these models: 1)
Time required to train. 2) Hardware required to train. Since algorithms can be
parallelised easily, more hardware leads to lesser time.

The cost required to train these models using a sophisticated hardware set up is very
expensive11 for an individual or an academic lab to afford for such use cases. These
models are made publicly available because of the reason that they are expensive
to recompute and fine tuning it leads to better reuse of the models for downstream

11https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
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tasks. But if one wants to pre-train these models from scratch, the cost involved is
expensive.

There are new variants of the above models released very frequently these days
by different research teams which can be accessible and tested easily by using
a repository by Huggingface12 who currently host 7 types of transformer models
namely: 1)BERT, 2)GPT, 3)GPT-2, 4)Transformer XL, 5)XLNet, 6)XLM, 7)RoBERTa
which can be used easily towards any NLP downstream tasks without the need of
pretraining the models ourselves.

Moving on from SQUAD

The simplicity of SQUAD dataset was criticized and the assumption that the answer
was always contained in the paragraph gives a pseudo positive relevance for all the
paragraphs which in real time QA setting might not hold true because finding the
"relevant" paragraphs which contains the answer is also a challenge.

We mainly discuss about the dataset of SQUAD in this section because the Reading
Comprehension task witnessed a lot of models and progress in question answering.
Several changes were proposed because of the issues of SQUAD dataset, and the
authors also released a new dataset SQUAD 2.0 (Rajpurkar, Jia, et al., 2018) with
additional questions without an answer.

Because of the different other assumptions and changes proposed to the task, Section
3.2.3 and 3.2.4 discuss either a different QA setting or a modified version of Reading
Comprehension task.

3.2.3 OpenQA: back to the original QA task

OpenQA or open domain question answering is a QA task whose goal is to retrieve
answer to a given question in open domain.

The input is only a question and a text collection, and the underlying systems
should perform all possible operations to return a short answer. Such operations
can be from the structured pipeline as explained in Figure 3.1. Traditional Reading
Comprehension models are provided with a paragraph which contains the answer.
Whereas in OpenQA there is no supporting paragraph provided to extract answer
directly.

12https://github.com/huggingface/pytorch-transformers
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A typical system would use an IR engine to retrieve relevant paragraphs for a
question and perform Answer Sentence Selection to find the best set of sentences
which contain the answer.

An answer extraction module such as a Reading Comprehension model can be used
to extract an answer from the sentences and choose the best one among them but
the assumption that the paragraph is always relevant (A relevant paragraph is a
paragraph that is likely to contain the answer), does not apply for OpenQA. There
can be relevant paragraphs which do not contain an answer, which makes OpenQA
a more realistic and tougher problem than the task such as the one aimed by the
SQUAD dataset.

Datasets

There are not many QA datasets for OpenQA which are large scale in size to use
it effectively with a neural network model. For this reason works such as (K. Lee
et al., 2019; Chen, Fisch, et al., 2017) convert a Reading Comprehension datasets into
OpenQA ones just by considering their question and answer strings and ignoring the
provided gold standard paragraphs and follow the IR method either in a cascaded
manner (Chen, Fisch, et al., 2017) or by learning both the document retrieval and
answer extraction model in an end to end fashion (K. Lee et al., 2019).

Dataset statistics and details can be found in Section 2.3 in detail.

Models and Approaches

A straightforward way to approach this task is by doing it in a strongly supervised
manner where the model assumes that the paragraphs retrieved from a retriever
model contain the answer and the noise is ignored. The authors of (Chen, Fisch,
et al., 2017) do it in this way where the retriever model is used to retrieve relevant
paragraphs for questions, which are further used in the reader model which is a
Reading Comprehension model.

But in reality, there is always noise induced in the retrieved paragraphs as some
paragraphs might not contain answers when an IR approach is used. As pointed
out by (Singh, 2012), QA is fundamentally different from IR. (K. Lee et al., 2019)
highlight that IR is concerned with lexical and semantic matching, but in QA the
models require more language understanding, since users are explicitly looking
for unknown information which may not be lexically or semantically closed to

54 Chapter 3 State of the Art



question terms. Works by (Joshi et al., 2017; Dunn et al., 2017; Dhingra, Mazaitis,
and William W Cohen, 2017a) consider this noise and follow a weakly supervised
manner which removes the strong supervision and considers the noise in the gold
standard data by IR systems.

Models built for OpenQA ideally should consider this noise from the retriever. There-
fore works by (Choi, Hewlett, et al., 2017; S. Wang, M. Yu, Guo, et al., 2018) attempt
to consider this noise in the model of (Chen, Fisch, et al., 2017) by separating the
question answering into paragraph selection and answer extraction. Both these mod-
els only select the most relevant paragraphs among all retrieved paragraphs to extract
answers. By doing so, only the best scored paragraph from paragraph selection is
used for answer extraction. This approach neglects information present in other
paragraphs and does not take negative paragraph information into consideration by
doing as above.

A follow up work by (S. Wang, M. Yu, Jiang, et al., 2017) propose strength-base
and coverage-based re-ranking approaches for retrieved paragraphs, which can
aggregate13 the results extracted from each paragraph by an existing Reading Com-
prehension system like DRQA by (Chen, Fisch, et al., 2017) to better determine the
answer. However, this still suffers from the noise issue in distant supervision data
because it considers all retrieved paragraphs indiscriminately. The authors of (Y. Lin
et al., 2018) use a paragraph selector to filter out noisy paragraphs and keep the
best ones to perform answer extraction by considering the combined paragraph and
answer probabilities.

The most popular pipeline QA system which raised media attention was the IBM
Watson which won the jeopardy challenge against human competitors14. IBM Watson
follows a parallel component based pipeline approach (Ferrucci et al., 2010) whose
complex workflow is as shown in the Figure 3.7.

All the above discussed approaches rely on a cascaded style model which first
performs paragraph retrieval and then followed by answer extraction. Both the
processes are done sequentially and not learnt together. The authors of (Chen,
Fisch, et al., 2017) use the IR engine like a blackbox model without learning any
parameters for the model. The first end-to-end model which learns to retrieve
evidence from an open corpus and supervise only by question answer string pairs
is proposed by (K. Lee et al., 2019). The authors highlight that the main challenge
13Consider values calculated from different paragraphs for a question
14https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html
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Fig. 3.7: Overall DeepQA architecture of the IBM Watson QA system

to build a fully end to end model is by considering the retrieval as a latent variable
which is impractical to learn from scratch and using IR systems result in a potentially
suboptimal starting point. So they propose a pre-training task called as Inverse
Cloze Task (ICT) which is done in an unsupervised manner. Both the retrieval model
which is pretrained with ICT and answer extraction model like BERT on Reading
Comprehension are trained together end to end.

3.2.4 Reading Comprehension 2.0 - Modifications and Future
of QA

Reading Comprehension task was mainly experimented on SQUAD v1.0 dataset as it
was the first ever human annotated large scale dataset for the task. In section 2.2.4,
some problems were discussed and new methods were also introduced which gave
rise to new datasets. These new methods and datasets are explained in this section
and we term it as Reading Comprehension 2.0 as they are generally a variant of the
original RC task.
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Fig. 3.8: Table presented by (Dua et al., 2019) with different types of reasoning required
for the QA in DROP dataset

Unanswerable questions

The goal of introducing unanswerable questions in SQUAD 2.0 by (Rajpurkar, Jia,
et al., 2018) is to learn models which can determine if an answer exists to a question
in the paragraph. This is similar to the questions of TRECQA task which did not
contain any answers in the documents, but on a large scale.

In the setting of open domain question answering (OpenQA), an answer is not
always present in the paragraph. There are relevant paragraphs in accordance with
a question, which do not contain an answer.
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A simple way to learn this datapoint as done by the authors of SQUAD v2.0 is by using
the models of (Levy et al., 2017; Clark and Gardner, 2018) which learn to predict
the probability that a question is unanswerable, in addition to extracting answers if
the question is answerable. A binary classifier which predicts this probability can be
learnt along with answer span extraction probabilities Start and End of the answer.
Several works including one of the state of the art models BERT by (Devlin et al.,
2018) uses the above method to handle this case.

Discrete reasoning over paragraphs

As the RC task is relatively simple and does not need any reasoning required to find
answers in the paragraph, the authors of (Dua et al., 2019) introduce a new dataset
named DROP - Discrete Reasoning Over Paragraphs which is a more challenging read-
ing comprehension dataset which requires discrete reasoning to answer questions
which demand numerical answers, choice answers etc. and not just lexically similar
term matching answers.

Figure 3.8 shows different types of questions present in the DROP dataset which
require different reasoning skills to answer the question. The baseline approach
proposed by the authors uses a multi-class classification approach where the tradi-
tional RC type answer offsets are extracted along with two classes to predict if it is
a Count type or Arithmetic type reasoning, followed by predicting the numbers in
the text. Although this is a pretty naive way of doing limited set of operations, the
authors state that this is a promising approach to combine neural network methods
and symbolic reasoning. The authors also created a leaderboard15 where one can
upload their systems and the website evaluates on the hidden test set automatically
online.

Multihop reasoning

The DROP dataset provides a dataset and explains a baseline approach of using
multi-class classification approach to solve the reasoning problem. But the answers
are still relying on a single supporting paragraph. i.e. Questions in DROP dataset do
not use any information from other paragraphs to answer questions.

Suppose we have a question who needs data from different paragraghs to answer a
question, neither DROP or other RC datasets have such data or methods to tackle
this situation. To address this issue which is called as Multihop reasoning, (Zhilin

15https://leaderboard.allenai.org/drop/submissions/public
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Yang, Qi, et al., 2018) introduce this problem and release a dataset called HOTPOT
QA which addresses two main issues: 1) Multihop reasoning, 2) Sentence level
supporting facts to provide explainability of the answers.

The systems should not only return answers to the questions which are inferred
based on different supporting paragraph information, but also provide supporting
facts which resulted in that answer prediction. The dataset also contains questions
where two entities are compared, two entities are used to bridge another entity. The
authors also propose a baseline approach which uses strong supervision over facts in
a multi-task setting. The authors created a leaderboard16 where one can upload their
systems and the website evaluates on the hidden test set automatically online.

3.3 Evaluations and Challenges

A question answering system is tested always on datasets to determine its capability.
Recently, there have been several leaderboards which compare results on a hidden
dataset and report the performance of a system. These are online exclusive, some
are automatic and most of them are updated frequently all over the year.

Some of such popular online leaderboards are:

• SQUAD v1.0 and v2.0 datasets by (Rajpurkar, J. Zhang, et al., 2016; Rajpurkar,
Jia, et al., 2018)

• HotpotQA dataset by (Zhilin Yang, Qi, et al., 2018)

• DROP dataset by (Dua et al., 2019)

• Natural Questions dataset by (Kwiatkowski et al., 2019)

Offline Evaluation campaigns or challenges are held in order to gather research
community efforts to solve a task by providing a standard dataset and evaluation
metrics. Participating teams must submit either their systems (code + model) or
the system predictions on a test set which the organizers will evaluate and compare
with others. Usually a workshop is conducted at the end of the shared task where
participants discuss their systems, approaches, tricks etc. and explain how their
systems perform. To make it comparable, all the systems use the same datasets.
In this section we discuss six such workshops or conferences based on question
answering and mainly focus on explaining about the workshop, data used and

16https://hotpotqa.github.io
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different tasks involved. However, this section does not provide an exhaustive list of
all popular workshops involving question answering.

TREC

The TREC question answering (QA) track was the pioneer in large-scale evaluation
of open-domain question answering systems. TREC is a workshop series designed to
provide the infrastructure required for large-scale evaluation of text retrieval and
related technologies. A "QA" track was introduced in TREC-8 in 1999 which went
on for several years. The motivation was to foster research towards information
retrieval systems than document retrieval systems.

Participants were given a document collection and a test set of questions, and
expected to return a ranked list of five answer strings which contain an answer to
the question. Human assessors read string and decided if it contained the answer or
not. TREC-9 dataset contained around 500 questions which is a small scale dataset
for today’s standards.

In Trec QA task, QA systems return an actual answer (can be an answer sentence or
a phrase), rather than a ranked list of documents, in response to a question. TREC
has had a question answering track since 1999; in each track the task was defined
such that the systems were supposed to retrieve small snippets of text that contained
an answer for open-domain, factoid questions.

Trec QA evaluations considered the possibility that different people might have
different ideas of what constitutes a correct answer. And the judgements by three
individuals which were in conflict were decided by the official evaluation but the
difference in the answer judgements were used to measure the judgement on system
scores. More detailed version of the evaluation can be found in the document by
(Voorhees, 2002).

These datasets from the past (1999-2004) are curated (questions without an answer
were removed) by (M. Wang, Smith, et al., 2007) and used popularly as TrecQA data
for Answer Sentence Selection today.

CLEF

The CLEF Initiative (Conference and Labs of the Evaluation Forum, formerly known
as Cross-Language Evaluation Forum) is an ongoing initiative started in 1999 in the
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view of supporting and promoting research, innovation, and development of informa-
tion access systems with an emphasis on multilingual and multimodal information
with various levels of structure.

CLEF initiative is split into two parts: 1) Peer-reviewed conference 2) A series
of evaluation labs with some datasets released to conduct evaluations. CLEF has
different tracks such as ImageCLEF, VideoCLEF, QA@CLEF, CLEF-eHealth related to
different data domains and tasks.

QA track at CLEF has different language question answering tasks. Questions in this
track are in natural language. However, answering some questions may need to
query Linked Data and some questions may need textual inferences and querying
free text data. QA@CLEF had various types of QA tasks since 2003-2014. Some of
the QA tasks in this track are, 1) BIOASQ - a biomedical challenge dataset which we
use in our work. 2) QA4MRE - a QA task which has multiple choice questions related
to a document. 3) QALD - a QA task on linked data. 4) Answer Validation Exercise
to assess QA responses and decide whether an Answer to a Question is correct or
not according to a given Text. More details can be found on the track site17.

QA4MRE - Question Answering for Machine Reading Evaluation was a campaign which
was held during 2011-2013 aimed at evaluating Machine Reading systems through
Question Answering and Reading Comprehension Tests. The definition of Reading
Comprehension is slightly different these days (also in our work) as the field of
question answering refer to Reading Comprehension and Machine Reading as an
answer extraction task, whereas QA4MRE was about detecting the right answer in
multiple choices provided. Therefore the evaluation and the models built for both
the tasks are different even though they carry the same name. More about QA@CLEF
can be found on their website18.

BIOASQ

BIOASQ19 challenge is a large-scale biomedical semantic indexing and question
answering task (Tsatsaronis et al., 2015) which has been successful for 7 years. The
challenge proposes several tasks using Biomedical data. One of the tasks focuses
on Biomedical question answering (Task B Phase B) where the goal is to extract
answers for a given question from relevant snippets.

17http://nlp.uned.es/clef-qa/repository/
18http://www.clef-initiative.eu/track/qaclef
19http://bioasq.org/
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Below is an example of a factoid question from the BIOASQ dataset for QA (task B).
Each sample contains a question, answer and relevant snippets.

Question: What is the mode of inheritance of Wilson’s disease?
Answer: autosomal recessive
Snippets: The overall sex ratio of patients was nearly 1:1,
and genetic analysis of 20 families confirmed an autosomal
recessive mode of inheritance.

Every year the challenge is organized in 5 batches, a training set with all the gold
standard data is released earlier and the 5 test sets with all new questions and
snippets are provided in each batch release. System predictions are expected to be
submitted within 24 hours of release of the test set. Biomedical questions with their
exact answers, relevant text snippets, concepts, articles, summaries were constructed
or selected by biomedical experts from around Europe.

BIOASQ 7 is the seventh challenge and the evaluation measures for BIOASQ task B
has always been the same. Strict Accuracy, Lenient Accuracy and Mean Reciprocal
Rank (MRR) are the three evaluation measures used. To compute the scores, the
exact match of strings between the predictions and the gold standard answers is
used to decide if a system answer is correct. Strict accuracy is the rate of top 1 exact
answers. Lenient accuracy is the rate of exact answers in top 5 predictions. MRR is
the mean reciprocal rank computed on the top 5 system answers. These measures
have been the same since the 1st challenge, although the first four challenges had
triples and concepts along with snippets in the data. In the last two challenges, only
relevant snippets for questions are released.

Several works in the past BIOASQ tasks have used classical question answering
pipeline architecture adapted to the biomedical domain which includes modules such
as question analysis, passage selection, answer selection which contribute towards
the extraction of suitable answers. Some use the domain-specific information from
UMLS tools such as Metamap (Schulze et al., 2016), along with other NLP tools like
Corenlp, LingPipe (Zi Yang et al., 2016).

One of the first attempts to use deep learning algorithms for the BIOASQ task was
reported in BIOASQ 5 by (Wiese et al., 2017c) where the dataset was adapted to
be used as a reading comprehension dataset whose goal is to extract answers from
snippets. The authors use a model trained on open domain questions, and perform
domain adaptation from open domain to biomedical domain using BIOASQ data.
The models prior to the first deep learning model by (Wiese et al., 2017c) got lower
scores than the deep learning ones.
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Starting from BIOASQ 7 in 2019, BERT models are being used with different training
strategies such as training with varying paragraph data and varying data the BERT
model is pre-trained on for language modelling task. BIOBERT used Biomedical
data to pre-train BERT model and use it for BIOASQ task (J. Lee et al., 2019). And
authors of (Hosein et al., 2019) use BERT model on BIOASQ task by pre-training
BERT on Natural Questions dataset. Both BIOBERT and work by (Hosein et al.,
2019) obtain similar results on same sets and BIOBERT being generally better than
others. Both the models first train on open domain reading comprehension task and
perform domain adaptation in their best scored approaches.

MediQA

The MEDIQA challenge20 aims to attract further research efforts in Natural Language
Inference (NLI), Recognizing Question Entailment (RQE), and their applications in
medical Question Answering (QA).

The shared task of the workshop had a QA task which is to filter and improve the
ranking of automatically retrieved answers. Similar to Answer Sentence Selection,
the MEDIQA task had documents (collection of paragraphs) instead of a sentence
or a small paragraph as an answer. For a given question a system had to return if
a question and an answer document pair is correct or wrong (0 or 1). The dataset
contained 104 consumer health questions and 104 simple questions about diseases.
MediQA had an automatic evaluation system21 setup by the organizers where the
participants could upload the test set predictions.

An overview of the workshop is presented by (Ben Abacha et al., 2019) where more
details about other tasks can also be found.

MRQA

Machine Reading for Question Answering (MRQA) workshop22 was organized for
the first time in 2018 to gather researchers to address and discuss important research
topics surrounding Machine Reading (Reading Comprehension). The goal was to
discuss aspects such as Accuracy, Interpretability, Speed, Scalability, Robustness,
Dataset Creation, Dataset Analysis, Error Analysis. The first task mainly covered

20https://sites.google.com/view/mediqa2019
21https://www.aicrowd.com/challenges/mediqa-2019-question-answering-qa
22https://mrqa2018.github.io/
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works such as new models, datasets, training methods, error analysis etc. on RC
task.

The second workshop along with being open to normal papers also had a shared task
where the goal was to evaluate the generalisation of models beyond the datasets they
are trained on. Intuition is that the models should do more than merely interpolate
from the training set to answer test examples drawn from the same distribution but
rather extrapolate on data from different distributions. A training set was created by
pooling six large scale datasets and test sets were ten different test sets to test the
generalisation. More details can found on the link23.

An overview and proceedings of the workshop is presented by (Choi, Seo, et al.,
2018) which also lists different works published recently.

3.4 Conclusion

In this chapter, we have detailed about question answering models and approaches
in the past, and currently used state-of-the-art systems. Indeed, the definition of
question answering has evolved in many different ways, resulting in various datasets
with different challenges and a large number of models with their distinct advantages
and limits. According to the issues we address, we experiment on different QA tasks,
including Reading Comprehension, Answer Sentence Selection, and OpenQA.

The current state-of-the-art models on question answering tasks mainly use neural
network based approaches. They are mainly proposed for open domain with large
datasets. In contrast, the interests in neural network models for domain specific
datasets, that are small scaled datasets, are much less studied. One way of using
neural network models for small sized datasets is via domain adaptation. We will
explore different possibilities for doing domain adaptation and experiment different
neural network models and different pre-training data for BIOASQ dataset.

The Reading Comprehension task mainly used in the context of SQUAD dataset
(Rajpurkar, J. Zhang, et al., 2016) assumes that the paragraphs given along with
the questions always contain an answer. This assumption does not hold good in
the case of the BIOASQ dataset (Tsatsaronis et al., 2015) where there are several
paragraphs that do not contain an answer. Several works on BIOASQ such as (Wiese
et al., 2017b; Yoon et al., 2019; Hosein et al., 2019) use Reading Comprehension
task modelling for BIOASQ where the paragraphs that do not contain an answer
are ignored from the data. The pre-training is done on SQUAD v1.0 dataset and

23https://mrqa.github.io/shared
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fine-tuning on the BIOASQ data in all the previous works. We believe that modelling
this task differently considering all kinds of paragraphs from BIOASQ dataset would
improve the performance of the models.

BERT model (Devlin et al., 2018) is used in many QA tasks currently. Previous best
scoring models, such as (Hosein et al., 2019; Yoon et al., 2019), fine-tune the BERT
language model (primary task of BERT) towards the target QA tasks like BIOASQ.
(Yoon et al., 2019) pre-train on SQUAD v1.0 dataset (Rajpurkar, J. Zhang, et al.,
2016) and (Hosein et al., 2019) pre-train on Natural Questions dataset (Kwiatkowski
et al., 2019) before fine-tuning on BIOASQ dataset. Our intuition is that the choice
of the dataset to pre-train plays a major role on the performance on BIOASQ dataset.
We will study the variation of performance when a QA model is pre-trained on
different datasets.

The performance of neural network models is based on the dataset annotation and
evaluation protocols. BIOASQ dataset lacks many variants of answer in the gold
standard dataset annotated by human experts. Since it is important to be able to
construct annotated corpus of a high quality at a reasonable cost, we will study
how structured resources, like UMLS which contain large amount of information on
biomedical domain, can be used to annotate the answer variants in order to improve
the performance of the QA models.

Since end-to-end models are one of the goals of using neural networks, not much
efforts have been put towards improving the outputs of a neural network model by
post-processing the predictions. Our hypothesis is that the semantic features and
structured information from different paragraphs can be used to post-process the
predictions to further increase the performance. In the biomedical domain, there
exists structured information such as UMLS which can help in detecting biomedical
entities and find the matching types between question and paragraphs. In the open
domain, the Expected Answer Types inferred from questions can help in finding the
matching entity types between question and paragraphs. These matching types
highlight the entity types and the entities which are likely to be the answers for the
questions. We intend to study and use these features in different ways to improve
the QA performance on different models and tasks.

In the following chapters, we detail about our two research questions of 1) Building
better models for large scale and small scale data and 2) Leveraging structured and
semantic information into QA models and present several hypothesis, experiments,
and result comparison in detail.
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4Building Models for Small Scale
and Large Scale Datasets

"Deep neural network models perform better with more data!", "One needs more
data to use a deep neural network model", "Less data? Not suitable to use deep
learning models!, "Why is it difficulty to get annotated datasets?" are some of the
common phrases we come across in recent times.

In our work, one of the goals was to build a better question answering model for
domain specific data. Using deep neural network models directly on small scale datasets
would not fetch the best scores because of the small scale nature of the datasets - is one
of the popular beliefs among the deep learning community. Since the data (BIOASQ
dataset) we came across was small scale, we wanted to experimentally determine
how bad the performance of a deep neural network model (usually targeted for
large scale datasets) would be on this small scale dataset.

One of the solutions to obtain optimal performance on small scale datasets is to train
the models on large scale datasets, and then fine-tune (retrain the model) it towards
the small scale datasets. This allows reusing the state-of-the-art models for small
scale QA datasets. This process is called as Domain Adaptation and we present a
method to perform domain adaptation from open domain data (which is generally
large scale) towards biomedical domain data (which is generally small scale).

In this chapter we report several experiments on small scale domain specific dataset
of BIOASQ task. We define the process of domain adaptation by formalizing the
terms such as Pre-training (first training) and Fine-tuning (retraining), and explain
three main kinds of domain adaptations.

Choosing a good model among several state-of-the-art models is a challenging task.
We present certain factors which are important to consider before choosing to work
on their implementations and explain why we choose one model over the others for
Reading Comprehension task.

To perform domain adaptation, one must first choose a suitable QA task to perform
the first training phase with a large scale dataset. We compare two QA task models
(One for Reading Comprehension task and one for Open domain question answering
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task) for training and show one outperforms the other on BIOASQ dataset. We
also hypothesize that using different datasets (sometimes more than one combined
together) to pre-train a model impacts the downstream finetuning performance. To
show this behaviour we pre-train a single model with different datasets and finetune
it to biomedical data.

The organisation of this chapter is as follows:

• We first define and detail the state-of-the-art question answering models used in
our work for 1) Reading comprehension, 2) Open domain question answering
models, 3) Answer sentence selection tasks.

• We detail the concept of domain adaptation, and show how to adapt these
models to biomedical domain along with general notions of pre-training and
fine-tuning.

• We experiment with different word embedding spaces for a QA model to
determine which performs better.

• We explain about the choice of a good QA model and compare two QA task
models for pre-training.

• For performing domain adaptation, we also need a large scale dataset to pre-
train the models, we compare with several datasets and report performance
on domain adaptation.

4.1 Question Answering models

Question Answering is a broad domain of natural language processing which can
be defined in different ways based on the types of tasks involved. As introduced in
chapter 2, there are several tasks under question answering.

In this section we explain two QA models which we have used extensively in several
studies throughout this research work.

• Reading comprehension, a task that deals with extracting an answer from a
paragraph. The input data would ideally contain a question and a paragraph.
The model is expected to predict an answer span in the paragraph.
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• Open Question Answering, a task that deals with finding an answer provided a
question. Sometimes there is a collection of texts provided from an IR engine
and sometimes there is no paragraph provided along with the question.

4.1.1 Reading Comprehension

Fig. 4.1: DRQA model by (Chen, Fisch, et al., 2017)

Reading Comprehension or RC task although existed since several years, it has gained
a lot of attention since the release of SQUAD dataset (Rajpurkar, J. Zhang, et al.,
2016). Many works on Reading Comprehension or RC task can be found on the
SQUAD leaderboard1.

We chose a model named DRQA by (Chen, Fisch, et al., 2017) for the following
three reasons. 1) The document reader model of DRQA that performed the best on
SQUAD dataset at the time of experimenting, 2) The code was released publicly2

to replicate the results reported in the paper, 3) The model was training rapidly (4
hours approximately on a single GPU) and performed better than models which took
longer to train and were more complex.

DRQA has two models namely Retriever and Reader which work in a cascaded fashion
when the questions are not provided with related paragraphs. Figure 4.1 shows the
workflow of the overall model.

1https://rajpurkar.github.io/SQuAD-explorer/
2https://github.com/facebookresearch/DrQA
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The retriever model is primarily based on a tool which uses information retrieval
(non-machine learning) techniques to retrieve relevant paragraphs (or documents)
for the question based on question terms. The reader model is a simple Bi-LSTM
model for Reading Comprehension task which takes as input a question and a para-
graph and aims at extracting an answer from the paragraph.

Fig. 4.2: Detailed reader model of DRQA

For our work, we only use the reader model of DRQA as we have supporting
paragraphs for questions for this task. An overview of the reader model is presented
in the figure 4.2.

The input to the reader model are sequences of question words and paragraph
words. Both the question and the paragraph strings are tokenized and their word
embeddings are used by the model i.e. Question words Q = {q1, ....., qm} and
paragraph words S = {s1, ....., sn} are sequences which are encoded using an
embedding layer of dimension D. The authors use Glove vectors by (Pennington
et al., 2014) in their work so we use the same for this model.
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E(Q) = {E(q1), .., E(qm)} (4.1)

E(S) = {E(s1), .., E(sn)} (4.2)

A pre-attention mechanism captures the similarity between paragraph words and
question words in the same layer. We call it as pre-attention mechanism because it
is applied before the embeddings are encoded with LSTM layers, which is usually
how attention mechanisms are used such as in (Seo et al., 2016). For this purpose,
a feature Falign shown in Equation 4.3 is added as an input feature to the LSTM
layer.

Falign(pi) = Σjai,jE(qj) (4.3)

Where ai,j is,

ai,j = exp (α(E(si)) · α(E(qj))
Σj′ exp(α(E(si)) · α(E(qj′)) (4.4)

which computes the dot product between nonlinear mappings of word embeddings
of question and paragraph.

They are followed by a 3-layer Bidirectional LSTM layers for both question and
sentence encodings. Maximum length of the sequences are set as 200 tokens.

{E(q1), .., E(qn)} = Bi-LSTM({Ẽ(q1), .., Ẽ(qn}) (4.5)

{E(s1), .., E(sn)} = Bi-LSTM({Ẽ(s1), .., Ẽ(sn}) (4.6)

These LSTM states are connected to two independent classifiers that use a bilinear
term to capture the similarity between paragraph words and question words and
compute the probabilities of each token being start or end of the answer span.

Pstart(i) ∝ exp (piWsq) (4.7)

Pend(i) ∝ exp (piWeq) (4.8)

During prediction, the best spans are chosen from token i to token i′ such that i ≤ i′

≤ i+ 15 and Pstart(i) × Pend (i′) is maximized.
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The combined probability predicted as shown above results in a set of predictions
and for official evaluations like SQUAD, we only consider Top-1 prediction. For
tasks like BIOASQ, Top-5 can be chosen based on the decreasing order of combined
probability scores.

4.1.2 Pre-trained Large scale Language Models - BERT

Since the introduction of self attention mechanism by (Vaswani et al., 2017) which
are usually termed as Transformer models, a lot of attention has been given towards
using these as building blocks in several neural architectures such as in (A. W. Yu
et al., 2018) for question answering. Pre-trained language models which are trained
on large scale architectures like BERT by (Devlin et al., 2018) use transformer models
as building blocks instead of LSTMs such as in ELMO by (M. Peters et al., 2018b).

Fig. 4.3: BERT model modified for several NLP tasks by (Devlin et al., 2018)

The authors of BERT train two large scale neural language models (BERT Base
and BERT Large) using transfer models as building blocks on two tasks namely 1)
Masked Language Modelling and 2) Next Sentence Prediction. Further they modify
the model to be able to work on several NLP tasks such as question answering,
natural language inference, named entity recognition etc. They do this by modifying
the final output layer to fit into target task. In our work we only use the fine-tuning
modifications on a question answering task.

Figure 4.3 shows the final layer of BERT model modified into Reading Comprehension
task SQUAD. Both the question and paragraph are packed as a single packed sequence
with question and paragraph as two different embedding representations from BERT.
Both Start and End which represents the answer span in the paragraph are two
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vectors S ∈ RH and E ∈ RH which are used only during fine-tuning for SQUAD
task. The probability of word i being the start of the answer span is computed as
a dot product between Ti and S followed by a softmax over all of the words in the
paragraph:

Pi = eS·Ti∑
j e

S·Tj
(4.9)

The score of a candidate span from position i to position j is defined as S ·Ti +E ·Tj ,
and the maximum scoring span where j ≥ i is used as a prediction. By doing this
small modification and fine-tuning the whole BERT model with this new layer at the
end, the authors get state of the art results in several NLP tasks including Reading
Comprehension on SQUAD dataset.

BERT has two models namely BERT Large and BERT Base which defines the number
of layers and units used in the model. In our experiments, we only use BERT Base as
it is faster and easier to fine-tune on a single GPU machine. BERT Large performs
the best out of the two models but since our aim was not to fetch the best scores
possible, we rely on BERT Base model for all of our experiments.

We use the open source code for BERT experiments from HuggingFace Inc.3 by
(Wolf et al., 2019), whose code is compatible with PyTorch and also is modifiable
for several other NLP tasks models.

4.1.3 Open QA - Open Domain Question Answering Model

Open QA task is a straightforward question answering task whose input is just a
question phrase without any additional information. One way of modeling this
task which we use in our work is by using a Retriever model to retrieve relevant
paragraphs for the question, followed by using a Reader model to extract answers
from the retrieved paragraphs.

We present a model named PSPR - Paragraph Selector and Paragraph Reader which
is an Open QA model by (Y. Lin et al., 2018) whose overview is presented in the
Figure 4.4 and the code is available online4. We do not use the DRQA model as
explained in section 4.1.1 directly for this task because DRQA works only on Reading
Comprehension task which assumes that all questions are provided with relevant

3https://github.com/huggingface/transformers
4https://github.com/thunlp/OpenQA
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paragraphs, which is not the case for Open QA task which contains a mixture of
irrelevant and relevant paragraphs.

This model has two parts, namely Paragraph Selector (PS) and Paragraph Reader
(PR) in a cascade fashion, that is why we named it as PSPR model. Normally this
model is termed as OpenQA model. The authors of (Y. Lin et al., 2018) use DRQA
model in this model for modelling the Paragraph Reader (PR).

Fig. 4.4: OpenQA model by (Y. Lin et al., 2018)

Not all the paragraphs are relevant or contain the answer in the OpenQA task and also
several paragraphs might contain the answer, therefore the paragraph probability
computed by the Paragraph Selector (PS) model and the answer probability computed
by the Paragraph Reader (PR) model are used to compute a combined probability.

Paragraphs for the questions are retrieved using an information retrieval model
where some paragraphs are relevant and some are not. The Paragraph Selector model
predicts a probability distribution Pr (pi|q, P ) over all the retrieved paragraphs
where P is the set of paragraphs for the question.

The Paragraph Reader model extracts answer spans as shown in the DRQA model for
Reading Comprehension task and predicts a probability Pr (a|q, pi) for each answer
span where pi is ith paragraph in Paragraph set P .
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The reader model gives two probabilities (one for start and one for end token given
by two classifiers) as described in equation 4.7 and 4.8. The answer probability
Pr(a|q, P ) is computed as shown below:

Pr (a|q, pi) =
∑

j

Prs

(
aj

s

)
Pre

(
aj

e

)
(4.10)

The Paragraph Selector uses tokenized question words Q = {q1, ....., qm} and tok-
enized paragraph words P = {p1, ....., pn} which are encoded using an embedding
layer of dimension D.

E(Q) = {E(q1), .., E(qm)} (4.11)

E(P ) = {E(p1), .., E(pn)} (4.12)

A RNN layer encodes the contextual information of the sequence.

{E(q1), .., E(qm)} = RNN({Ẽ(q1), .., Ẽ(qm}) (4.13)

{E(p1), .., E(pn)} = RNN({Ẽ(p1), .., Ẽ(pn}) (4.14)

Using this hidden representation, a self attention operation is applied to get the
question representation q:

q̂ =
∑

j

αjq̂j (4.15)

where αj encodes the importance of each question word against the other question
words which is calculated as:

αi = exp (wbqi)∑
j exp (wbqj) (4.16)

Where w is the learnt weight vector. Finally, the probability of each paragraph is
calculated via a max-pooling and a softmax layer as shown below:

Pr (pi|q, P ) = softmax

(
max

j

(
p̂j

i Wq
))

(4.17)

where W is a learnt weight matrix.
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The softmax operation in equation 4.17 is applied over total number of paragraphs
per question therefore a probability value is predicted for each paragraph. Since not
all the paragraphs contain an answer in the Open QA setting, the probability scores
from equation 4.17 should indicate if there exists an answer or not.

While training, the paragraphs containing the answer are highlighted as 1 and the
rest as 0. While testing, the best answer candidate (â from equation 4.19) is chosen
with the highest probability Pr(a|q, P ) for a question q which is calculated as shown
below :

Pr(a|q, P ) =
∑

pi∈P

Pr (a|q, pi)Pr (pi|q, P ) (4.18)

â = arg max
a

Pr(a|q, P ) (4.19)

For each paragraph, the authors of (Y. Lin et al., 2018) extract 10 answer spans based
on their decreasing order of probabilities represented in equation 4.18. Choosing a
lesser value instead of 10 might affect the model performance. This is an important
hyperparameter to control the number of answer predictions per paragraph.

In the implementation provided online5, the training process is done in three
phases:

1. Pre-training the reader model to determine which paragraph has an answer
and which doesn’t based on answer presence.

2. Pre-training the selector model to learn a ranking function which is similar to
the one in Answer Sentence Selection task.

3. Training an overall model using the above two pre-trained models to perform
Reading Comprehension by combining paragraph and answer probabilities.

4.1.4 Choosing a Good model

What defines as a good model? Why is it hard to choose a good model? What factors
should one consider before choosing a model for training? - these are some of the
questions we asked ourselves before we began performing experiments on QA
tasks.

5https://github.com/thunlp/OpenQA
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With the rise of deep learning models for many NLP tasks including the ones for
question answering we have listed above, there have been exploding number of
research articles and models for various tasks. It is often hard to catch up with the
latest state-of-the-art research work. If someone wants to use a model to compare for
the baseline performance, there has to be certain points to consider before jumping
on using the latest or more visibly famous (on social media such as facebook and
twitter) research models.

Here are some factors which are important to address:

1. Time required to train these models.

2. Computation power needed.

3. Model complexity and difference in performance over simple models.

Fig. 4.5: DRQA model by (Chen, Fisch, et al., 2017) (Left) and BIDAF model by (Seo et al.,
2016) (Right)

In an academic research lab scenario, we are often limited to smaller and basic
computation resources required to run some experiments. This becomes the first
most important aspect in choosing the right experimental setup and models.

Secondly, based on the complexity of the models, some models consume more time
to train compared to some other simpler models who train faster. Therefore time is
also an important aspect which contributes to choosing the right model needed for
some experiments.
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Model complexity and difference in performance over simple models is one of the
aspects which seems to be less of a concern while experimenting with latest research
works. When we began our work on Reading Comprehension task. We came across
several works which were very similar to each other in terms of model complexity
and their performance. For a QA task, research done on SQUAD dataset and the
scores reported on the SQUAD leaderboard6 are a good example to show this point.

Some models were better than the rest and simpler. Particularly we stumbled upon
two models, A simple model DRQA by (Chen, Fisch, et al., 2017) which we have
explained above and we use extensively in our works and another complex model
named BIDAF - Bidirectional Attention Flow by (Seo et al., 2016).

BIDAF proposes a bidirectional attention flow and a complex RNN based architecture
(atleast 2 LSTM layers) whose code7 takes ∼20 hours to compute on the SQUAD
train set and fetches 67.7% EM score on the SQUAD dev set. DRQA which is a much
simpler model with just 1 layer of 3 layered Bi-LSTM trains on SQUAD train set in
∼4 hours and fetches 69.5% EM score on the SQUAD dev set. The training time of
DRQA model is 5 times lesser than that of the BIDAF model.

These two models were reported and published around the same with DRQA being
released in March 2017 and BIDAF being released in November 2016 with a gap of
around 5 months. Although DRQA was published late, the model is much simpler
and fetches better scores than BIDAF on the exact same dataset. This difference in
model complexity and simpler model (DRQA) performing better on a comparable ex-
perimental setup on the same dataset raises suspicions about the actual contribution
of the attention layers and extra LSTM layers required for the task as presented by
(Seo et al., 2016).

Does this phenomenon occur because of engineering tricks which was done on the
DRQA code or just hyper parameter optimization ? We could not come up with a
conclusion in this regard so we went ahead with choosing DRQA as a base model for
all our Reading Comprehension experiments. This phenomenon shows that using a
simple model sometimes is better than using the latest and famous (well discussed
in social media) models which may not be always better performing. Therefore we
proceed by using a simple model for our experiments.

In the following section, we introduce domain adaptation and detail about adapting
QA models which are primarily modelled for open domain question answering tasks,
towards biomedical domain question answering.

6https://rajpurkar.github.io/SQuAD-explorer/
7https://github.com/allenai/bi-att-flow
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4.2 Domain Adaptation

Domain adaptation is a field associated with machine learning and transfer learning.
This scenario arises when we aim at learning from a source data distribution a well
performing model on a different (but related) target data distribution. - Wikipedia8

In our research context, we use domain adaptation to learn a model on a large scale
dataset and use the same model and its parameters to learn on a small scale dataset.
In this case both the datasets are similar in nature but come from different source
domains. This facilitates to use a deep neural network model effectively on small
scale datasets like BIOASQ data. Training a model from scratch on a small scale
dataset might not result in the best performance, therefore domain adaptation is
carried out.

We first present the general process of domain adaptation before presenting different
types of domain adaptations (sometimes referred as transfer learning) for biomedical
QA task BIOASQ from open domain data.

4.2.1 The process

In this section we first briefly explain the process of domain adaptation in a generic
manner. In the context of domain adaptation and transfer learning for deep neural
networks, two terms are often used. 1) Pre-training - is a learning or training process
of a model with randomly initialized model weights. 2) Fine-tuning - is a learning
or training process but initialized from the model weights of the pre-trained model
and not randomly initialized model weights. Both pre-training and fine-tuning
together can be termed as Domain Adaptation when the domain of the data used for
pre-training and fine-tuning are different. For example, open domain and biomedical
domain in question answering.

Pre-training and fine-tuning or domain adaptation can also be done in several ways.
The general approaches are listed below.

• Type 1 - The target task remains the same for pre-training and fine-tuning.
Pre-training should be done on a large scale dataset from random initialization
of parameters. Fine-tuning can be done on a small scale dataset by loading the
model parameters from pre-trained model rather than random initialization.
This approach is used when a target dataset is small scaled and using it to train
a deep neural network would result in overfitting. This type of pre-training

8https://en.wikipedia.org/wiki/Domain_adaptation
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is common in computer vision field where models are pre-trained on Ima-
genet (Russakovsky et al., 2015) and fine-tuned on target image classification
datasets.

• Type 2 - The tasks are different for pre-training and fine-tuning. Pre-training
should be done on a large scale dataset from random initialization of param-
eters. Fine-tuning should be done on a different model which uses certain
parameters from the pre-trained model which are frozen (non-trainable) and
learns some parameters which are randomly initialized on a different task.
These approaches in NLP were initially proposed for sequence labelling tasks
by (M. E. Peters et al., 2017) which were later evolved into ELMO (Embedding
Language Models) by (M. Peters et al., 2018a) which significantly improved
the state of the art across a broad range of challenging NLP tasks such as
question answering, textual entailment and sentiment analysis. This type of
method uses special contextual text embeddings obtained from the pre-trained
models that are added as features into downstream models built for another
task.

• Type 3 - The tasks are different for pre-training and fine-tuning. Pre-training
should be done on a large scale dataset from random initialization of parame-
ters. Fine-tuning should be done on the pre-trained model by modifying certain
layers to fit to the new task. Newly added layers can be randomly initialised
and pre-trained model layers together with newly added ones are trained on
the new task. This approach is similar to Type 2 approach with a difference
that the reference model can be slightly modified for target task rather than
building a different model. This type of approach proposed by (Devlin et al.,
2018) is being widely used in NLP tasks such as question answering, textual
entailment, sentiment analysis, named entity recognition, relation extraction
etc. which are easily done by modifying a final output layer of the original
model and fine-tuned. Fine-tuning can be done either by learning the whole
model parameters or learning only a part of the model by freezing the rest.

4.2.2 Biomedical Domain Adaptation for Reading
Comprehension

As explained earlier, a neural network model like DRQA cannot be used in a straight-
forward way on a small scale dataset like BIOASQ dataset whose statistics are
presented in table 4.1. The statistics compares BIOASQ data with two other large
scale datasets and shows the difference in the number of samples. The large scale
datasets SQUAD v1.0 and QUASAR-T and several others which are currently used
in different Question Answering tasks are at least 100 times larger than BIOASQ
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dataset. An assumption with deep neural network models is that it needs large scale
datasets to perform better. We test this assumption by experimenting with a deep
neural network model trained on small scale dataset and show the performance
difference experimentally.

An important aspect to highlight is that the formulation of questions, paragraphs and
answers from both SQUAD v1.0 dataset and BIOASQ dataset are very similar. Only
the vocabulary and paragraph lengths are different (BIOASQ dataset has shorter
paragraph lengths in gold standard data). The task definition provided by the
organizers which states that all the paragraphs are useful to answer the questions,
enables to use a Reading Comprehension model.

Datasets Train Dev Test
BIOASQ 4b 427 59 161
BIOASQ 5b 544 75 150
BIOASQ 6b 685 94 161
SQUAD v1.0 87,599 10,570 9,533
QUASAR-T 37,012 3,000 3,000

Tab. 4.1: Datasets used in the experiments along with their splits. The numbers represent
number of questions.

At the time of performing these experiments, DRQA model by (Chen, Fisch, et al.,
2017) was ranking on top on the SQUAD leaderboard with the source code released
by the authors9. The model is built for the Reading Comprehension task i.e. the
model would take as input - a question and a paragraph, and output an answer span
in the paragraph. We use this model and modify the dataset to fit the format.

Data modification

We modified the BIOASQ dataset in order to fit it into Reading Comprehension
task style data by considering only those paragraphs which contained the gold
standard answer and ignoring the rest. We do this the same way as (Wiese et al.,
2017b) by performing distant supervision considering the gold standard answers
and paragraphs.

An example from SQUAD dataset and BIOASQ dataset:

Question: The atomic number of the periodic table for oxygen?
Paragraph: Oxygen is a chemical element with symbol O and atomic number 8. It

9https://github.com/facebookresearch/DrQA
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is a member of the chalcogen group on the periodic table and is a highly reactive
nonmetal and oxidizing agent that readily forms compounds (notably oxides) with
most elements.
Answer: 8

Question: Which topoisomerase is essential in yeast?
Paragraph 1: Yeast DNA topoisomerase II is encoded by a single-copy, essential gene.
Paragraph 2: Topo II performs topological modifications on double-stranded DNA
molecules that are essential for chromosome condensation, resolution, and segrega-
tion.
Answers: Topoisomerase II, Topo II

After these modifications, we can highlight the differences between SQUAD dataset
and BIOASQ datasets:

• BIOASQ can have multiple paragraphs and SQUAD has 1 paragraph.

• SQUAD paragraph always contains an answer and BIOASQ paragraphs might
not always contain exact matching gold answers.

• SQUAD has 1 answer, BIOASQ has multiple answers (as shown in the above
example).

DRQA considers each question and a paragraph as a pair for each sample datapoint.
It does not take into account multiple paragraphs per question or multiple answers
per paragraph. Therefore in order to modify our data to match this format, we repeat
the same question with multiple paragraphs creating same number of samples as the
number of paragraphs and consider only one gold standard answer per paragraph.
We keep only the positive paragraphs (paragraphs containing an answer) in the
dataset.

The DRQA model is originally trained and tested on SQUAD v1.0 dataset. We use
the same model trained on SQUAD dataset, and perform domain adaptation by fine-
tuning the model on our modified BIOASQ dataset. Figure 4.6 shows the procedure
we follow.

The Open domain model is the DRQA trained on SQUAD v1.0 with best performing
parameters of the model (best scores on validation set). The Biomedical + Open
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Fig. 4.6: Domain Adaptation from open domain to biomedical domain using DRQA model

domain model is the same best performing Open domain model trained again on
modified BIOASQ dataset. This model is used to predict answers on test sets of
BIOASQ. Both the processes use the same Glove word embeddings.

For BIOASQ evaluation, if we have only 1 paragraph relevant for a question, we
take 5 predictions from the same paragraph as Top-5 answers and rank it based on
the decreasing score of probability. Top-1 probability answer is evaluated for the
strict accuracy as per official evaluation. And Top-5 is evaluated for lenient accuracy.
If we have more than 1 paragraphs per question, we take at least 1 prediction
(best candidate prediction with highest probability) per paragraph until we have 5
predictions. Further all the predictions are ranked based on the decreasing score of
their answer probabilities.

4.2.3 Importance of Pre-Training and Fine-Tuning

To show the importance of Pre-Training and Fine-Tuning for domain adaptation to
biomedical domain, and also show the necessity of doing this to be able to use deep
learning methods efficiently, we experimented three approaches on a single model
DRQA without altering any hyperparameters. Default parameters as those used by
(Chen, Fisch, et al., 2017) in their code10.

1) No-Pre model is the DRQA model trained on BIOASQ dataset only - Deep learning
on small scale data.

2) No-Fine model is the DRQA model trained on SQUAD v1.0 dataset only. - Deep
learning on large scale data.

10https://github.com/facebookresearch/DrQA
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Datasets No. of Ques Metrics No-Pre No-Fine Pre+Fine

BIOASQ 4b

S.Acc 08.98 23.96 24.00
161 L.Acc 16.56 35.26 39.21

MRR 11.36 28.40 29.34

BIOASQ 5b

S.Acc 25.91 32.17 32.43
150 L.Acc 34.86 45.58 47.73

MRR 29.27 36.75 38.37

BIOASQ 6b

S.Acc 13.40 26.24 26.72
161 L.Acc 27.08 40.60 43.72

MRR 19.20 32.57 33.80

Average

S.Acc 16.09 27.45 27.71
L.Acc 26.16 40.48 43.55
MRR 19.94 32.57 33.83

Tab. 4.2: Results reporting the importance of Pre-Training and Fine-Tuning a model. All
scores are computed on the official test sets combined into one. S.Acc is Strict
Accuracy, L.Acc is Lenient Accuracy (the correct answer is in the top 5) and MRR
is the Mean Reciprocal Rank for the correct answer in Top-5 answers. No-Pre is
for No-Pretraining on open domain, No-Fine is for No-Finetuning on biomedical
domain and Pre+Fine is for Pretraining and Finetuning on open domain and
biomedical domain.

3) Pre+Fine is the DRQA model trained on SQUAD v1.0 dataset and fine-tuned on
BIOASQ dataset - Domain Adaptation.

Results are shown in the Table 4.2 for different BIOASQ test sets. When a model
is only trained on a small dataset like BIOASQ, the results are very low as shown
in the column No-Pre, because deep neural network model do not perform the best
when the source dataset is small scale. When a model is trained on a large dataset
like SQUAD v1.0, the model can be straight away used to predict results on the
biomedical dataset. No-Fine shows a clear improvement doing so, against No-Pre,
because of the large scale dataset it is trained on.

Lastly, Pre+Fine is the model which underwent pre-training on a large scale dataset
and fine-tuning on the biomedical dataset which clearly shows an improvement
over the other approaches as the model which is well learnt on a large scale dataset
is tuned to fit a small scale dataset. This set of experiments show that the best
approach is to do pre-training on large scale datasets and fine-tuning on small scale
datasets, which is a feasible approach to use deep learning models on small scale
datasets.

The difference between No-Fine and Pre+Fine shows the need for domain adaptation.
The No-Fine model is a good model with good performance because it has been
trained on a large scale dataset, but it can be further improved by doing the above
process.
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4.2.4 Comparison of word embeddings for domain
adaptation

While performing domain adaptation, one hurdle we came across was the set of
missing vocabulary terms across different domain word embeddings. The input word
embeddings for both Pre-training and Fine-tuning process should be the same for the
overlapping words. Therefore a word having one word vector in word embedding
space cannot be different while doing pre-training or fine-tuning. Which means a
common word embedding space is required for this purpose.

An easy way is to keep the same word embeddings space for both Pre-training and
Fine-tuning processes. This gives raise to several questions. Using both domain data
together is better? or one is better than the other? , Which algorithm is the best for this
purpose?.

In order to check with different domain word embeddings, different algorithms
and different hyperparameters required to train them, we train different word
embeddings with CBOW and Skipgram models of Word2Vec by (Mikolov et al.,
2013) with different hyperparameters and different data from open domain and
biomedical domain.

For training biomedical domain word embeddings we chose the BIOASQ 5A task data
which consist of 12,834,585 PUBMED articles as an input corpus. We preprocessed
this dataset to remove special characters and use the Gensim tool11 to train word
embeddings with 50, 100, 200, 300, 400 dimensions with CBOW and Skipgram
algorithms. We also use Global Vectors (Glove) which was trained on 840B tokens,
300 dimensions and available to download freely12 to compare performance. We
also combine open domain and biomedical domain data into one big corpus and use
it to train word embeddings using Word2vec.

We do an extrinsic evaluation of word embeddings by using them on the downstream
task of question answering. BIOASQ Task B contains five different test batches with
distinct question sets. We retrained the DRQA model on BIOASQ 2017 5B training
data after removing each test set.

Table 4.3 presents the comparison of five word embedding spaces tested on the five
test sets (Test-1 to Test-5) and a set with all test sets combined (All). BIOASQ 4 with
200D performed worse on our experiments. These embeddings are given by the
organizers of BIOASQ task that is available on their website. BIOASQ 5 embeddings

11https://radimrehurek.com/gensim/models/word2vec.html
12https://nlp.stanford.edu/projects/glove/
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Nb. of BIOASQ 4 BIOASQ 5 Wikipedia Wiki+BIOASQ 5 Glove
Ques. |V| = 1.7M |V| = 2.1M |V| = 2.13M |V| = 4M |V| = 2.2M

|T| = 2.2B |T| = 2.3B |T| = 2.19B |T| = 4.49B |T| = 840B
Test-1 39 33.33 46.15 46.15 51.28 58.97
Test-2 31 35.48 48.39 45.16 48.38 51.61
Test-3 26 38.46 65.38 65.38 65.38 61.53
Test-4 31 35.48 45.16 51.61 41.93 41.93
Test-5 33 45.45 57.57 60.61 60.61 66.66
Average – 37.64 52.53 53.78 53.52 56.14
All 160 33.12 51.25 45.0 50.0 52.5

Tab. 4.3: Accuracy (top 5) on 4B test with different Embeddings: |V|= vocab,|T|= token
counts

were trained by us with a Skipgram model and 300D. We can see that although
Glove embeddings are trained on Web Crawl data and not specifically biomedical
data, it performs better than the rest trained on biomedical data because of the large
training data of Glove. Wiki+BIOASQ 5 trained with Skipgram and 300D on data
of BIOASQ 5 and Wikipedia articles, has second best accuracy after Glove because
of the domain specific training data even though it is smaller compared to Glove’s
training data.

CBOW Skipgram
Dims Strict Lenient Strict Lenient
100 30.62 48.75 31.25 50.0
200 28.75 47.5 33.75 50.0
300 31.87 48.75 31.87 51.25
400 28.75 46.87 30.0 48.75

Tab. 4.4: Comparision of Word2vec models on 4B Test set (Testset “All” from Table 4.3)

Table 4.4 presents a comparison of different embedding spaces trained on different
dimensions (namely 100, 200, 300, 400) with CBOW and Skipgram models as
described in (Mikolov et al., 2013), where the performance is calculated based on
Strict Accuracy (Top-1) measure of BIOASQ 4B test sets. It is evident from the table
that Skipgram performs better than CBOW when the dimensions are higher. But
300 dimensions is found to be optimal in terms of both strict and lenient accuracy.
Increasing it to 400 dimensions did not fetch better results.

These experiments highlight the importance of choosing right word embeddings
for biomedical domain QA system. Glove performs better on average because of
large amount of data it is trained on, and pretraining on SQUAD which has a
large set of open domain questions makes the pretrained QA model to learn better
representations. Whereas the biomedical embeddings are trained on lesser data
and domain specific vocabulary which has a negative impact over the pretraining of
SQUAD. Therefore we further use Glove embeddings for all our experiments as it
showed better performance in the above experiments.
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In the above set of experiments, we consider only positive paragraphs (paragraphs
containing an answer) in the datasets for answer extraction which suits the definition
of Reading Comprehension task. BIOASQ datasets consists of some negative para-
graphs (paragraphs that do not contain an answer) as well. Therefore in the next
section we experiment by modelling the task as an OpenQA task for pre-training.

4.3 Domain adaptation with Different Models and
Data

In the previous section we focussed on how domain adaptation can be done using a
Reading Comprehension task model DRQA with modifying different word embedding
inputs. In this section we explore two other aspects of performing domain adaptation.
1) Different QA models. 2) Different Large Scale Datasets.

Our hypothesis is that the pre-training data and different modelling can also result
in performance variations. The following sections show which models and which
datasets are better for domain adaptation towards biomedical domain.

4.3.1 Comparison of Different Pre-Training Models

In section 4.2.2 we already discussed about how a Reading Comprehension model
DRQA is used for domain adaptation. We now consider another question answering
task named Open QA. Open QA is a QA task where a question is given and the goal is
to retrieve an answer. Since this is an open task, answer can be retrieved either from
textual sources or knowledge graphs or ontologies. In our work we focus only on
textual sources. An answer has to be retrieved from a set of documents or passages
of textual sources as Wikipedia articles or news or scientific articles. Answers are
also usually short phrases or entities.

In deep neural network approaches for Open QA, generally answers are extracted
using a reading comprehension model on the subset of the retrieved documents or
passages considered as relevant (Dhingra, Mazaitis, and William W. Cohen, 2017b;
Joshi et al., 2017).

One of the main differences between Reading Comprehension (RC) and Open QA tasks
is that the answer must be present in the paragraphs (or documents) for Reading
Comprehension (RC), but for Open QA this condition might not hold true because
the retrieved documents considered to be relevant to the question might not contain
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any answer. Multiple paragraphs can contain the answer as well. An effective Open
QA model must consider all these into account.

Below is an example from the dataset.

Q: Which calcium channels does ethosuximide target?
A: T-type calcium channels
P1: ..neuropathic pain is blocked by ethosuximide, known to block T-type cal-
cium channels,..
P2: Theta rhythms remained disrupted during a subsequent week of with-
drawal but were restored with the T-type channel blocker ethosuximide.

However, as shown in the example one paragraph (P1) has the gold standard
answer and the other (P2) does not (i.e. it does not contain the exact match of the
answer string). Therefore this resembles more like an Open QA task than a Reading
Comprehension task because of several reasons. 1) The existence of paragraphs
without answers even though they are considered relevant. 2) Multiple paragraphs
containing the same answer. Therefore we experiment by pre-training and fine-
tuning in three different ways for BIOASQ task by taking into account the above two
considerations.

In its general definition, the OpenQA task contains questions and their short answers
without any given paragraphs. BIOASQ organizers already provide paragraphs in
the gold standard data. Therefore, OpenQA can be formulated as a parent task which
involves two child tasks, 1) Ranking the relevant paragraphs for a question and 2)
Extracting a short answer from the paragraphs. In Open QA, the first task is generally
referred as paragraph selection or answer sentence selection and the second task is
often modelled as Reading Comprehension although there exists several correct and
incorrect paragraphs. Open QA models should distinguish if the paragraph is correct
and then extract the answer unlike the RC models.

We use the two models for RC and Open QA which are shown in the Figure 4.7.

Open QA model described in section 4.1.3 is used for the implementation. While
adapting the model to BIOASQ, the number of answers to be extracted for BIOASQ
is Top-5 and not Top-1. Because of this, instead of choosing from only the top
most probable paragraph, we select top 5 answers from combined probability scores
in equation 4.20, which might consider 1 or more paragraphs to extract answers
from.
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Fig. 4.7: Left: DRQA - Paragraph Reader (RC task). Right: PSPR - Paragraph Selector and
Paragraph Reader model (Open QA task)

Pr(a|q, P ) =
∑

pi∈P

Pr (a|q, pi)Pr (pi|q, P ) (4.20)

In this set of experiments, we apply Type 1 domain adaptation.

The data for pre-training

Two datasets correspond to each of the two tasks: SQUAD V1.0 dataset for RC task
and QUASAR-T dataset for Open QA task and we show below their differences.

• QUASAR-T which is based on Trivia questions is generated synthetically, and
SQUAD is annotated manually by humans on a crowd-sourcing platform.
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• Each question in QUASAR-T is associated to 100 sentence-level passages re-
trieved from ClueWeb09 dataset based on Lucene, whereas SQUAD 1.0 has 1
relevant paragraph from Wikipedia.

• Some paragraphs in QUASAR-T do not have an answer. 13

Comparing the above differences with BIOASQ dataset, the QUASAR-T dataset
resembles more closely to BIOASQ than that of SQUAD v1.0 due to the following
reasons.

• BIOASQ data has more than 1 relevant paragraphs per question.

• Some paragraphs do not have an answer.

Experiments with Gold standard paragraphs

For studying the modelling of the BIOASQ QA task as a Reading Comprehension task,
we use SQUAD v1.0 dataset for pre-training and experiment with the DRQA model
as explained in the previous section. For studying its modelling as an Open QA task,
we use QUASAR-T dataset for pre-training and experiment with PSPR model.

As the PSPR model is a cascaded model with paragraph selector and paragraph
reader, we use the paragraph probabilities predicted by the paragraph selector and
multiply them with the answer probabilities obtained using DRQA model to select
the Top-5 answers which have combined higher probabilities. The PSPR model
has a selector model which predicts a probability score for each paragraph which
signifies the answer presence. We use these paragraph probability scores from PSPR
model and the answer probability scores from DRQA model and multiply them to
choose the answer candidates. The results for this experiment is highlighted in
Table 4.5 as DRQA+PS. This is different PSPR model because PSPR learns the model
by combining probabilities, whereas DRQA+PS does not learn but just use output
probability scores.

Results are shown in Table 4.5 for different BIOASQ test sets. We compare different
model results with BioBert scores reported in (J. Lee et al., 2019). The scores from
PSPR model shows the performance on Strict and Lenient accuracy on 4b, 5b and 6b
test sets. By taking paragraph probability into account PSPR allows to better rank
Top-1 correct answer than BioBert which extracts answers from all paragraphs and

13SQUAD 2.0 is a variant of SQUAD dataset which contains questions without answers. We do not use
this because the reference models also do not use v2.0 to pre-train.
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chooses the maximum probability scored answer only based on answer probability.
Although PSPR has a reader model similar to DRQA, considering the paragraph
probability improves the answer extraction in PSPR model.

Datasets Metrics BioBert by (J. Lee et al., 2019) DRQA DRQA+PS PSPR

BIOASQ 4b

S.Acc 36.48 24.00 26.22 30.28
L.Acc 48.89 39.21 32.33 40.34
MRR 41.05 29.34 26.54 34.19

BIOASQ 5b

S.Acc 41.56 32.43 30.62 46.59
L.Acc 54.00 47.73 47.86 53.76
MRR 46.32 38.37 36.96 49.55

BIOASQ 6b

S.Acc 35.58 26.72 26.50 43.91
L.Acc 51.39 43.72 42.16 51.34
MRR 42.51 33.80 32.07 45.70

Average

S.Acc 37.87 27.71 27.78 40.26
L.Acc 51.43 43.55 40.78 48.48
MRR 43.29 33.83 31.85 43.14

Tab. 4.5: DRQA is the Reading Comprehension model by (Chen, Fisch, et al., 2017), PSPR
is the Open QA model by (Y. Lin et al., 2018), DRQA+PS is answers chosen
with scores by multiplying answer probabilities of DRQA with Paragraph Selector
probabilities of PSPR. SOTA scores are reported by (J. Lee et al., 2019) who
average the best scores from each batch (possibly from multiple different models).
Results from BIOASQ 4b, 5b and 6b test sets. 7b test set cannot be evaluated yet
due to lack of gold standard answers. S.Acc is Strict Accuracy, L.Acc is Lenient
Accuracy and MRR is Mean Reciprocal Rank. Experiments are done with the
original BIOASQ data.

Experiments with Longer paragraphs (modified BIOASQ data)

For the BIOASQ task we noted that the method used by (J. Lee et al., 2019) with
BioBert modified the original paragraphs. For computing the BioBert model, the
authors have retrained the original BERT model (Devlin et al., 2018) using Pubmed
and PMC articles. For applying it on the BIOASQ task, the authors use longer
documents (instead of the actual snippets) from Pubmed corresponding to the data
given by BIOASQ in the "documents" field to access the Pubmed documents for each
question. Therefore this modification of the gold standard dataset leads to different
results for BioBert compared to the gold standard data performance.

The exact pre-processing of BIOASQ dataset in order to do this is detailed in (Yoon
et al., 2019). The authors have used different strategies and found that using full
abstracts from the pubmed document is more useful than using the BIOASQ gold
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standard snippet which is a small part of the abstract. The authors released the
data14 with full abstracts which we use in some of our experiments for comparison.

Similar to these modifications, the authors of (Hosein et al., 2019) perform modifi-
cations of the BIOASQ gold standard data by using pubmed abstracts as paragraphs
instead of the given gold standard paragraphs (which are part of the of the pubmed
abstracts). The authors also use the paragraphs obtained from a system which
participated in BIOASQ paragraph retrieval task.

They found that the performance is better when the full abstract text is used instead
of gold standard data in some cases, and gold standard training data worked better
in some cases. The authors conclude that the paragraph retrieval also plays major
role than the QA model itself and report that the domain adaptation is not always
useful as the non fine-tuned model performed better in some cases. We do not
compare our scores with their work because the authors pre-train their models on
Google Natural Questions dataset (Kwiatkowski et al., 2019) which contains atleast
3 times more data than SQUAD dataset and diverse set of questions obtained from
Google search logs. Because of this pre-training difference with a different dataset,
the results are not directly comparable with the systems which have pre-trained on
SQUAD dataset. We discuss more about this in the next section.

In order to evaluate the importance of this data modification, we did two experiments
and also report results on BioBert with modified paragraph data from (J. Lee et
al., 2019) : 1) DRQA with longer contexts 2) BioBert with unaltered data from
BIOASQ.

The results are shown in Table 4.6. The results of BioBert is as presented in (J. Lee
et al., 2019) where the authors have fine-tuned the models first using SQUAD v1.0
dataset and adapted it to BIOASQ data. We use the modified dataset to experiment
it with the DRQA model to determine if it would improve the performance of the
pre+fine DRQA model as reported in Table 4.2. We got lower performances to that
of the DRQA model trained on the original BIOASQ data.

For comparison, we try the BioBert model on the original BIOASQ data i.e. para-
graphs given by BIOASQ data and not pre-processed. The results in Table 4.6,
under the column BioBert-Unaltered represents these results. It is evident that the
modification performed on the BIOASQ data fetches better results using BioBert
model.

14https://github.com/naver/BioBert-pretrained
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Datasets Metrics SOTA DRQA BioBert-Unaltered BioBert by (J. Lee et al., 2019)

BIOASQ 4b

S.Acc 20.59 18.49 13.08 36.48
L.Acc 29.24 32.51 18.54 48.89
MRR 24.04 23.88 15.48 41.05

BIOASQ 5b

S.Acc 41.82 28.92 22.84 41.56
L.Acc 57.43 46.54 32.46 54.00
MRR 47.73 35.88 25.94 46.32

BIOASQ 6b

S.Acc 25.12 21.70 16.35 35.58
L.Acc 40.20 41.51 22.61 51.39
MRR 29.28 28.60 18.72 42.51

Average

S.Acc 29.18 23.03 17.42 37.87
L.Acc 42.29 40.18 24.53 51.43
MRR 33.68 29.45 20.04 43.29

Tab. 4.6: Experiments with data containing longer contexts (Document level) by (J. Lee
et al., 2019). DRQA is a Reading Comprehension model by (Chen, Fisch, et al.,
2017). BioBert-Unaltered is the original BIOASQ dataset with questions and
paragraphs which contain answers. BioBert by (J. Lee et al., 2019) is the modified
BIOASQ dataset where the paragraphs are longer paragraphs (documents from
respective articles), where all the models are pre-trained on SQUAD v1.0 dataset
and finetuned on BIOASQ dataset. SOTA scores are reported by (J. Lee et al.,
2019) who average the best scores from each batch (possibly from multiple
different models). Results from BIOASQ 4b, 5b and 6b test sets. 7b test set cannot
be evaluated yet due to lack of gold standard answers. S.Acc is Strict Accuracy,
L.Acc is Lenient Accuracy and MRR is Mean Reciprocal Rank.

Conclusion

In this set of experiment we compare two QA models based on i.e. 1) Reading
Comprehension task 2) Open QA task, and found that the performance is better
when using an Open QA model than a Reading Comprehension model. We report the
performance on different datasets and show that in some cases OpenQA modelling
outperforms the state-of-the-art systems of BIOASQ which use domain adaptation
using Reading Comprehension model (Wiese et al., 2017a; J. Lee et al., 2019) in
average.

Based on a different pre-processing done by (J. Lee et al., 2019) on the biomedical
dataset by using longer contexts from documents than shorter contexts, we found
that the Reading Comprehension model performs worse on the pre-processed longer
contexts (which are longer documents than paragraphs) compared to the shorter
contexts (paragraphs) originally given by BIOASQ data. On the other end, a large
pre-trained language model such as BERT performs much better on the pre-processed
longer contexts than shorter contexts.
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4.3.2 Comparison of Pre-Training with Different Datasets

In the previous section, the importance of Pre-training and fine-tuning a.k.a Domain
adaptation can be seen on small scale datasets in order to use deep neural network
models effectively. We also state that the deep learning models perform better when
trained on large scale datasets. This assumption gives raise to several concerns to
address before using different datasets to train deep neural network models.

Some of those concerns are:

1. How large is large enough for a dataset?

2. What is the minimum size required for deep neural network models to learn
efficiently?

3. What kind of data should be used?

4. Are synthetic datasets better than human annotated ones?

5. How do we choose the best dataset for pre-training?

To address some of the above concerns in terms of question answering and deep
learning methods, we present some experiments in this section which uses a single
model namely BERT-Base (Devlin et al., 2018). BERT15 has two models 1) BERT-
Base and 2) BERT-Large. BERT-Large takes approximately 12-13 hours to fine-tune
on SQUAD dataset on one GPU, whereas BERT-Base takes around 2 hours of time.
Therefore we decided to use BERT-Base for our experiments. The BioBert model
which we have used in other set of experiments on other datasets is pre-trained on
the BERT-Base model. The goal is to experimentally understand the performance
variation of QA models trained on different datasets and compare the performance
variation while using it for domain adaptation.

This study was inspired by the work of (Talmor and Berant, 2019) who perform
an empirical investigation of generalization of QA datasets across different other
datasets. The authors use two models 1) Bi-LSTM based attention model - DocQA
2) BERT Base for QA and perform several experiments by training models on one
dataset and testing it on another. They also do fine-tuning on target datasets (not
always small scale) and show that the fine-tuning does have positive impact.

15https://github.com/google-research/bert
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One of the conclusions from their study is that the QA models are often overfitting
to source datasets and their own data distributions and not well suited when data
comes from a different source or is of a different type. Therefore the authors create a
single dataset called MultiQA by using several QA datasets listed in Table 4.8 where
some percentage of questions were randomly picked from all datasets used in the
experiments to create the MultiQA dataset which fetches the best results over all the
test sets of the datasets used on the Reading Comprehension task, using the same
model BERT-Base. Some important observations from this work are relevant to our
work:

• A model trained on sufficiently large scale data is good at performance for
generalization.

• An ideal dataset to obtain The Best performing QA model involves mixing up
questions from different datasets which are created using different sources of
data and different annotation schemes.

• Generalization improves when the model learns information from the target
distribution of data.

Based on some observations and conclusions mentioned in the above study, we
decided to perform a similar study on domain adaptation by using a single model
pre-trained with different datasets to measure the performance of fine-tuning process
towards biomedical domain.

Our intuition is that, a model with exact same hyperparameters perform differently
on a downstream task when pre-trained with different datasets. Mainly because of
the nature and the scale of the dataset. Human annotated data may perform better
than synthetic ones which is why human annotated datasets are widely used for
benchmarking QA models. Our goal is to experimentally determine these aspects on
biomedical domain adaptation.

Experiments

We pre-train the BERT Base model on datasets from Table 4.8 individually and
fine-tune the model to BIOASQ datasets from Table 4.7 individually.

For the datasets in table 4.8, note that the SQUAD 2.0, HotpotQA, NewsQA, SearchQA
and TriviaQA are not exclusively for Reading Comprehension task as some datasets
have relevant and irrelevant snippets like the datasets for OpenQA task. Therefore,
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Datasets Train Dev Test
BIOASQ 4b 427 59 161
BIOASQ 5b 544 75 150
BIOASQ 6b 685 94 161

Tab. 4.7: Small scale BIOASQ datasets used in the experiments for fine-training, with their
splits. The numbers represent number of questions.

Datasets Train Dev Test
SQUAD v1.0 87,599 10,570 9,533
SQUAD v2.0 130,319 11,873 8,862
Hotpot QA 90,564 7,405 7,405
News QA 107,673 5,988 5,971

Tab. 4.8: Large scale datasets used in the experiments for pre-training, with their splits.
The numbers represent number of questions.

as done by the authors of (Talmor and Berant, 2019), we also pre-process and keep
only those questions whose paragraphs contain the answers. If there are irrelevant
and relevant paragraphs in the datasets, we only keep relevant paragraphs and
questions . This allows to use SQUAD v1.0 models with these datasets.

For the following experiments we use the single model and the same set of hyper
parameters for all the experiments as used in the code16 for RC task. Table 4.9 shows
experimental results on BIOASQ 4,5 & 6 task test sets.

The experiments are performed on the models trained on open domain large scale
datasets from Table 4.8 and fine-tuned on the BIOASQ data. We have two special
datasets which are combined datasets created using several other datasets into a
single large dataset. 1) SQUAD v1.0, SQUAD v2.0, NewsQA, HotpotQA. 2) SQUAD
v1.0, SQUAD v2.0. The above datasets are created by combining the datasets
mentioned into a big collection by adding 100% of data from each set. Due to lack
of time we did not experiment more combinations of these with varying amount of
data from different sets. We compare our results with BioBert (Yoon et al., 2019)
whose work scored the best at BIOASQ 7. Since we do not have access to BIOASQ 7
gold standard data for the test sets, we cannot evaluate our models on the test set.

SQUAD v2.0 dataset pre-training seems to clearly outperform SQUAD v1.0 on average
on Strict Accuracy and MRR, which almost all previous works such as (Wiese et al.,
2017b; J. Lee et al., 2019) have used for pre-training their models.

16https://github.com/huggingface/transformers
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Index Datasets Measures BIOASQ 4 BIOASQ 5 BIOASQ 6 Average
Strict 30.33 44.58 37.21 37.37

1 NewsQA Lenient 46.68 57.42 52.87 52.32
MRR 36.74 49.82 43.54 43.36
Strict 31.61 36.72 33.58 33.97

2 HotpotQA Lenient 45.81 52.14 53.74 50.56
MRR 37.07 42.55 41.97 40.53
Strict 30.30 42.12 36.73 36.38

3 SQUAD v1.0 Lenient 52.66 56.99 54.60 54.75
MRR 39.51 48.16 43.83 43.83
Strict 34.00 42.91 41.01 39.30

4 SQUAD v2.0 Lenient 50.50 57.28 56.49 54.75
MRR 41.30 48.02 47.17 45.49

Strict 31.13 46.53 38.90 38.85
5 SQUAD v2.0 & v1.0 Lenient 48.24 56.47 54.88 53.19

MRR 37.92 50.11 44.78 44.27
Strict 34.70 39.36 41.41 38.49

6 SQUAD v2.0 & v1.0 Lenient 51.40 57.69 56.64 55.24
HotpotQA, NewsQA MRR 41.27 46.76 47.13 45.05

Strict 28.57 44.00 42.86 38.47
7 BioBert Lenient 47.82 56.67 57.14 53.87

at BIOASQ MRR 35.17 49.38 48.41 44.32
Tab. 4.9: Experiments with different single datasets with fine-tuning on BIOASQ data.

Results averaged over 5 official test sets. The paragraphs used in these experiments
has been obtained from the authors of BioBert (J. Lee et al., 2019) which is a
modified long document data and not BIOASQ gold standard paragraphs. Best
scores are highlighted in Bold according to the different BIOASQ tasks and
Average.

For individual BIOASQ (BIOASQ 4, 5 and 6) evaluations, on BIOASQ 4 the dataset
(SQUAD v1.0, SQUAD v2.0, NewsQA, HotpotQA) fetches better scores for Strict
accuracy and SQUAD v2.0 fetches better scores for MRR. On BIOASQ 5 the dataset
(SQUAD v2.0, SQUAD v1.0) fetches better scores for both Strict accuracy and MRR.
On BIOASQ 6 the dataset (SQUAD v1.0, SQUAD v2.0, NewsQA, HotpotQA) fetches
better scores for Strict accuracy and SQUAD v2.0 fetches better scores for MRR.

On average, the scores of SQUAD v2.0 dataset are better than the BioBert (Yoon
et al., 2019) scores which are pretrained on SQUAD v1.0 dataset. In the next set of
experiments we experiment several BERT models including BioBert on the SQUAD
v2.0 dataset.

There are multiple BERT models popular these days such as Roberta by (Y. Liu
et al., 2019), XLNet by (Zhilin Yang, Dai, et al., 2019), DistilBERT by (Sanh et al.,
2019) etc. Some are trained using different tweaks in the architectures and training
methods, and some are trained on different datasets. We are interested in testing
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Fig. 4.8: BERT model training process from Language modelling task to BIOASQ QA task.

BERT trained on different datasets like BioBert by (J. Lee et al., 2019) which was
shown to be useful for several biomedical tasks by just fine-tuning the original BERT
model on some large scale biomedical text corpus.

The Figure 4.8 shows a pipeline of training tasks done on the BERT model to obtain
a BIOASQ QA model. In this experiment we use BERT-BASE models which have
modified only the Large Scale Text Corpus data for the language modelling task as
highlighted in red colour in the Figure 4.8. The underlying BERT model (BERT-
BASE), the QA task pre-training (SQUAD v2.0) and fine-tuning (BIOASQ) datasets
remain the same.

We believe that the pre-training language modelling task of BERT on different
datasets, has a greater impact on the performance of BERT on downstream tasks
like QA task.

We use three BERT models trained on different domain data.

1. BERT Base Google by (Devlin et al., 2018) - the original BERT model with Base
(smaller in size) trained on large scale open datasets.

2. BioBert by (J. Lee et al., 2019) - BERT model trained on original google data
and later finetuned on PubMed 200K articles + PMC 270K articles.

3. Scibert by (Beltagy et al., 2019) - BERT model trained on multi-domain corpus
of scientific publications.
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Datasets Measure BIOASQ 4 BIOASQ 5 BIOASQ 6 Average
Strict 22.02 24.22 19.50 21.91

BERT Base (Google) Lenient 33.16 38.69 39.31 37.05
MRR 26.37 29.65 26.69 27.57
Strict 34.00 42.91 41.01 39.30

BioBert Lenient 50.50 57.28 56.49 54.75
MRR 41.30 48.02 47.17 45.49
Strict 28.20 32.83 33.55 31.52

SciBert Lenient 43.35 43.39 46.54 44.42
MRR 34.07 37.02 38.66 36.58

Tab. 4.10: Experiments with BERT-BASE models trained on different text corpus for Lan-
guage Modelling tasks. We pre-train these models on SQUAD V2.0 dataset and
then fine-tune on BIOASQ dataset. Results averaged over 5 official test sets.

Table 4.10 shows experimental results on BIOASQ 4, 5 & 6 task datasets on different
BERT-BASE models. We use the SQUAD v2.0 dataset for pre-training as shown above
in table 4.9 that this dataset is the better option to pre-train a BERT model and
fine-tune to BIOASQ than the rest (excluding the combination datasets).

Table 4.10 shows that the BioBert model by (J. Lee et al., 2019) is the best choice as
shown earlier in their article. Even though Scibert is trained on scientific domain
data, it is not the best choice for biomedical tasks as seen in the results above. Google
BERT performed with least scores as it is not trained specifically on any biomedical
corpus.

In the above set of experiments, we try different datasets on BERT models and
experimentally verify that the SQUAD v2.0 is the better single dataset to pre-train
models than SQUAD v1.0 maybe because of the presence of paragraphs without
answers. And BioBert is the best suited pre-trained domain data for BERT model
on biomedical tasks. While SQUAD v2.0 performs the best among single dataset
pretraining, the combination dataset which combines 4 datasets (SQUAD v1.0,
SQUAD v2.0, NewsQA, HotpotQA) is the best option to fetch better results.

In the work of (Hosein et al., 2019), the authors pre-train Google BERT on Natural
Questions dataset by (Kwiatkowski et al., 2019) and find that in some cases, the
results are better than BioBert. We believe that this phenomenon would be different
for the authors if they had trained their system with SQUAD dataset and not Natural
Questions (NQ) as the NQ dataset has 3 times larger than SQUAD and contains
diverse range of questions. Our results and findings in this section supports our
argument that pre-training QA datasets also play a major role in downstream QA
system performance.

Also since the above experiments were conducted on BERT models which are trained
on large scale data for language modelling, the performance gain from one dataset to
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another might be subtle. It would be interesting to see how traditional deep learning
models like CNN or RNN based models like DRQA and PSPR would perform when pre-
trained on different datasets. Note that training DRQA model takes approximately 4
hours, whereas fine-tuning BERT on SQUAD dataset takes around 2 hours which is
why we chose BERT-Base for our experiments.

4.4 Conclusion

Using deep learning models directly on the small scale datasets (especially on
different speciality domains like biomedical domain) will not fetch optimal results.
In this chapter we addressed one of our research questions on building models which
work both on small scale and large scale datasets to obtain better performance.
Choosing right models which works better on open domain and adapting it to
biomedical domain was the primary goal.

We presented and detailed three QA task models for Reading Comprehension, Open
QA and Answer Sentence Selection. We also explained in brief about using BERT
model for question answering. We presented some factors which we consider as
important before choosing a model to work with and explained why we did some of
our choices of models.

In this regard, we introduced the concept of domain adaptation from open domain to
biomedical question answering and showed the impact on the performance gain. We
also formally defined some terminologies used for domain adaptation and showed
different ways of doing domain adaptation which is sometimes also referred to as
Transfer Learning when the target task is different. The domain adaptation cannot
performed be straight away because the data formats are different for the open
domain dataset and the BIOASQ data, there we modified some aspects of the data
and detailed about the process. This facilitates using state-of-the-art deep learning
models for biomedical question answering.

We experimented these models with different word embeddings trained on open do-
main corpus, biomedical domain corpus and their mixture with various embeddings
models like Word2vec, Glove etc. We concluded that using Glove embeddings was
the best choice as it is trained on a large scale corpus.

While performing domain adaptation, choosing a good model is equally as important
as choosing the right training datasets or right word embeddings. We studied 2
different QA task models suitable for biomedical domain adaptation. We concluded
that the Open QA task outperforms the Reading Comprehension task for modelling
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BIOASQ task. The model of (Y. Lin et al., 2018) for OpenQA task on BIOASQ
outperforms BioBert model (Yoon et al., 2019) results on certain sets which shows
that simpler models using Bi-LSTMs can be better than massively large scaled models
like BERT on tasks like BIOASQ.

We experimented pre-training with different Reading Comprehension datasets by
keeping the same model architecture and hyperparameters to show variability in the
performance on downstream domain adaptation. SQUAD 2.0 dataset by (Rajpurkar,
Jia, et al., 2018) was the best performing single dataset for pre-training the models.
And a combination of 4 RC datasets for pre-training performed the best on the
fine-tuning for BIOASQ dataset.

The neural network approaches usually focus on building end-to-end models and
seldom focus on improving the predictions by post processing them. Generally,
the objective of the neural models in QA is to score better on the Top-1 accuracy
by learning the whole model on the QA dataset. Not a lot of emphasis is put on
post-processing Top-K predictions. In the OpenQA task, a question is provided with
several paragraphs some of which might contain the answer. Our hypothesis is that
the semantic features from questions and paragraphs and structured information
from different sources like UMLS can be used to further improve the performance
of the OpenQA task. The predictions from the neural model are used to compute
the features and input into a ML classifier which is modified as a ranker to better
rank Top-1 predictions. The following chapter will focus on using different kinds of
features in biomedical domain and open domain to improve the QA performance.

Our publications related to the work described in this chapter is listed below:

• 2019 - How to Pre-Train Your Model? Comparison of Different Pre-Training
Models for Biomedical Question Answering. - Sanjay Kamath, Brigitte Grau,
Yue Ma. Proceedings of the 7th BioASQ Workshop A challenge on large-scale
biomedical semantic indexing and question answering. ECMLPKDD, September
2019.

• 2018 - An Adaption of BIOASQ Question Answering dataset for Machine
Reading systems by Manual Annotations of Answer Spans. - Sanjay Ka-
math, Brigitte Grau, Yue Ma. Proceedings of the 6th BioASQ Workshop A
challenge on large-scale biomedical semantic indexing and question answering.
EMNLP, October 2018.
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5Leveraging Structured and
Semantic Information into
Question Answering Models

In this chapter we address the topic of using existing data from different sources
into the QA models to improve their performance. Ever since deep learning models
have become prominent in the field of NLP, end-to-end models are on the rise which
depend only on the input data to produce outputs. Our research concern in this
regard is to use different ways to annotate, enrich and highlight certain aspects of
the text data to improve the performance of these models without changing much of
their underlying model.

When doing our experiments on BIOASQ data, we came across some issues for anno-
tating the training data and automatically evaluating the results with gold answers.
Using distant supervision with gold answers leads to omit a lot of answer variants.
Thus, to overcome this problem, after studying its impact on the system results, we
leverage biomedical entities and terminology present in the Metathesaurus UMLS1

for improving the corpus annotation. These biomedical terms, entities and their
types can be detected in free text data using Metamap. This tool gives an easy access
to use UMLS by providing an interface to input text and obtain annotations about
the biomedical entities, types and concept identifiers etc.

Neural network models do not explicitly use the semantic information such as Lexical
and Expected Answer Types from questions which were used to improve prediction of
answers in older models. The answer types are useful in highlighting the entity types
in the paragraph text, which are likely to be the answers. We study different ways
for modelling this information, by enriching the input data, or better representing
entities by embeddings learned on semi-structured knowledge without changing the
overall architecture of the system.

In order to exploit structured and semantic information sources for question an-
swering in open domain and biomedical domain, we annotate, enrich and highlight
the existing datasets with these extra information. We use it on different QA tasks
(Answer sentence selection, Reading comprehension and Open question answering

1https://www.nlm.nih.gov/research/umls/index.html
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tasks). All experiment results are compared with plain text results to show the
performance variations.

Our third study concerns improving the system predictions in the open QA task
by introducing a post-ranking process. The features used are based on the earlier
mentioned expected answer types, and also on the redundancy of answers in several
paragraphs. We conclude our study on the open QA task by experimenting state-
of-the-art models on different and even newly built datasets, and highlight the
remaining difficulty of this task when modelled by neural network approaches.

The organisation of this chapter is as follows:

• Annotation of Answer variants in BIOASQ dataset to highlight the actual
performance of a Reading Comprehension model when the annotation is done
extensively.

• We discuss about Expected Answer Types and Lexical Answer Types and their
importance for question answering by performing a verification study with a
QA model outputs.

• Annotation of entities in plain text w.r.t Expected Answer Types and using special
entity embeddings for Reading Comprehension, Answer Sentence Selection
and open domain question answering tasks.

• Improving the QA performance using semantic and structured information
features such as lexical answer types and semantic types match from UMLS for
biomedical data etc. for reranking answer candidates.

• Applying QA pipeline on different sub-task datasets to benchmark scores on
Open Question Answering task.

5.1 Annotation of answer variants for BIOASQ
dataset to improve performance of existing QA
models in Biomedical domain

5.1.1 Introduction

"What happens when a human (expert or non expert) annotated labelled dataset does
not contain all possible variants of answer labels in their label set? Does that hurt a
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model’s performance? What about true negatives while evaluating? Is the evaluation
correctly done?" - These are some of the questions which we wondered about when
we came across BIOASQ dataset for the first time and built a system of QA on this
dataset.

In fact, our results were pretty low compared to what we had obtained when
manually did the evaluation ourselves (we are not biomedical experts, but we used
reference gold standard answers to decide what is correct and what is not). The
dataset of BIOASQ for question answering (task B phase B) as explained in Section
2.3.2 has gold standard answers annotated by experts, based on knowledge base
triples and plain text paragraphs provided as reference for annotators. The human
annotators provided answer spans which are the gold standard answers do not
necessarily cover all variants of the answers present in the paragraphs. i.e. these
annotations are not an exhaustive list of all answer variants which occur in the
paragraphs. They only provide one or two variants.

In this section we discuss and highlight the problem (with examples) and show how
a model can perform when the annotation is done while highlighting all the correct
variants.

5.1.2 Problems addressed

The evaluation measures computed by BIOASQ for task B phase B are Strict Accuracy,
Lenient Accuracy and Mean Reciprocal Rank (MRR). Participating systems are
required to provide an answer span (5 answers maximum) for each question. To
compute the scores automatically, the exact match of strings between the predictions
and the gold standard answers is used to decide if a system answer is correct. Strict
accuracy is the rate of Top-1 exact answers. Lenient accuracy is the rate of exact
answers in Top-5 predictions. MRR is the mean reciprocal rank computed on the
Top-5 system answers.

These measures have been the same since BIOASQ 1, although the first four chal-
lenges had triples and concepts along with snippets in the data. In the last three
challenges, only relevant snippets for questions are released. Similar evaluations
are performed in extractive question answering and reading comprehension tasks
like in SQUAD question answering task where Top-1 accuracy and F1 scores are
computed by comparing exact matching strings after removing stop words and
special characters. One main assumption in reading comprehension task is that the
answer strings are substrings of the snippets, which implies that answers have to be
extracted from the snippets. In BIOASQ, the answers are curated by human experts
by analyzing the triples, concepts, and snippets (or paragraphs). Thus, the BioASQ
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dataset and evaluation measures are very similar to that of reading comprehension
task, but the major difference apart from the dataset size are the answers instances
provided as gold standard which does not contain all the occurrences, abbreviations,
different forms of answers which are present in the snippets.

As in (Wiese et al., 2017c), we transform BIOASQ Phase B as a reading comprehen-
sion task with domain adaptation (we explained this process in detail in Section
4.2.2). Gold standard answer strings and their offsets are automatically searched
in the snippets for exact match and treated as answers if only they are found in
the snippets, i.e., the answer string must be a substring of the snippet. We term
this method as Distant Supervision method. By doing so the dataset size is reduced
to 65% of Bioasq 5B train set which was suitable for adaptation. Other 35% of
the questions did not have matching answers in the snippets, because of different
variants of answers in the snippets, missing abbreviations, or irrelevant snippets. We
also found that in BIOASQ 6B training dataset for factoid questions, 205 out of 619
questions have false negative answers (33% of the dataset). This kind of corpus
annotation may result in some problems:

• Less data for learning.

• The model does not learn to extract all the variants because it does not learn
from all the variants.

• Evaluation is done using such gold standard data which will lower the results
even though the model is performing well.

This above explained automatic snippet annotation method results in:

• False positive: an answer mentioned in a snippet which does not answer the
question. i.e. a snippet alone does not justify the answer to the question.

• False negative: a snippet answers the question but does not have the exact
string compared to the gold standard string.

Below are some examples for which the answers returned from a reference system
is correct (when evaluated manually) but the automatic evaluation classifies it as
incorrect.
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Q: Which calcium channels does ethosuximide target?
P: ...neuropathic pain is blocked by ethosuximide, known to block T-type
calcium channels,..

Prediction: T-type calcium
Gold standard: T-type calcium channels

Example 1: Missing keywords in predictions (False Negative)

Q: Which disease can be treated with Delamanid?
P: In conclusion, delamanid is a useful addition to the treatment options
currently available for patients with MDR-TB.

Prediction: MDR-TB
Gold standard: tuberculosis

Example 2: Abbreviations and their expansions mismatch (False Negative)

Q: Which MAP kinase phosphorylates the transcription factor c-jun?
P: c-Jun NH2-terminal kinases (JNK) play important roles in T helper cell (Th)
proliferation, differentiation, and maintenance of Th1/Th2 polarization.

Gold standard: c-Jun NH2-terminal kinase (JNK)

Example 3: Non justifiable paragraph (False Positive)

In example 1, because of a missing word "channels", the predicted answer is marked
incorrect. In example 2, MDR-TB stands for Multi-drug-resistant tuberculosis, which
is from a relevant snippet but since the gold standard has only tuberculosis, it is
marked incorrect. Contextually both are valid answers. In example 3, the paragraph
has no relation with the question except that it contains the answer terms.

To overcome this problem and enrich the answer space correctly, we manually
annotated 618 factoid question-answers pairs from the training dataset of 6B task,
by annotating the substring of the gold standard answers in the snippets, and adding
answers with abbreviations, multi-word answers, synonyms, that are likely correct
answers. We explain this in detail in the following section.
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5.1.3 Annotations of variants

Manual Annotations

To overcome the issues mentioned above, we manually annotated answer variants in
the data. The details of the annotations on the BIOASQ 6B training dataset and the
statistics are presented here.

Our annotations include the following type of answers:

• Exact Answer - Exact match with gold standard (GS) answers, which can also
be annotated automatically, and different variants of the answers. For example,
the annotation of a single GS answer "Transcription factor EB (TFEB)" resulted
in 3 annotations, "Transcription factor EB", "TFEB", "Transcription factor EB
(TFEB)".

• Lenient Answer - a more general form or a more specific form of an answer.
An example is "Telomerase" for "Human telomerase reverse transcriptase".

• Paragraph Answer - The answer matches with gold standard but the snippet
alone is not relevant to the question. - this corresponds to the false positive
case.

We came across several kinds of snippets. A supporting snippet, or answering snippet,
is a snippet that contains the answer and has enough elements for justifying it. It is a
correct answer to the question (snippet starting at line 5 in Figure 5.1 for example).
A snippet that contains the answer without justification towards the question will
not be annotated with the answer as correct and is considered as a non-supporting
snippet (snippet starting at line 3 in Figure 5.1). A snippet that does not contain
the answer cannot be a supporting snippet, henceforth it is an irrelevant snippet
(snippet starting at line 8 in Figure 5.1).

We use Brat2 annotation tool by (Stenetorp et al., 2012) shown in Fig. 5.1 to
perform the manual annotations of the snippets with the answer to the question. The
annotations done include the answer string along with their character offsets in the
snippet. Answers were annotated by 3 people from computer science background

2http://brat.nlplab.org
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Fig. 5.1: Brat annotation tool

and multiple discussions were held to discuss problematic answers which involved
looking upon the internet for some medical term meanings.

Annotations were initially done on the BIOASQ 5B training set and the additional
questions from 5B test sets whose answers are present in the 6B training set were
annotated later on 6B data. So the changes done (if any) on 6B training set for
previous year questions from 5B set are not considered.

The annotation files are freely available3 and can be used by researchers who can
obtain the BIOASQ dataset from the official website4.

Gold std. annotations Full annotations
Count Avg Total Avg Total
Answers 0.8 500 2.9 1814
Snippets 7.7 3286 8 4965
Questions - 426 - 618

Tab. 5.1: Annotation statistics

Some statistics of the dataset are listed in Table 5.1 for the automatically annotated
answers from gold standard data and the fully annotated data with manual annota-
tions. The annotations are done on 618 BIOASQ 6B training dataset questions. Out
of 619 factoid questions, 1 question does not have any snippets. Only 426 questions
contain answers from automatic annotation.

"Answers" are the count of answers present in the snippets. Avg score represents an
average over the total number of questions (i.e. 618). Since in gold standard data,
only 426 questions have gold answers in snippets, it is normal for the average to
fall below 1. It is clear from the table that the full annotated data contain at least

3https://zenodo.org/record/1346193#.W3_WUZMzZQI
4http://bioasq.org/
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3 times (1814 answers) more the number of candidate answers over the provided
gold standard ones (500 answers).

We found that some answers contained the whole snippet as an answer and that
3503 snippets are repeated in the 6B train set. After filtering those repeated snippets
we found 3286 different snippets containing exact matching answers extracted
automatically from gold standard data and 4965 unique snippets manually annotated
with correct answers.

Automatic Annotations

When we realised the problems addressed in section 5.1.2, we did not use an
automatic method to annotate answer variants as it was not straightforward to do
using string edit distance for abbreviations etc. Instead we proceeded with manual
annotations. Once we began annotating it manually, we had some intuitions of
using either rule based techniques, noun phrases and text normalizing using some
pre-processing techniques.

Manual annotations are expensive in terms of time and money (if experts are paid
to annotate). An automatic alternative approach although not very straightforward
and accurate as manual ones, is necessary to provide as an alternate solution for
future BIOASQ datasets. Hence we propose an automatic way of annotating these
answer variants in this section.

Answers often refer to biomedical entities. The answer variants would also refer to
the same biomedical entity with different syntactic structures. Since both represent
the same biomedical entity, it is easier to detect the entity than the matching strings.
We decided to use the UMLS Meta-thesaurus to determine matching entities. UMLS
- Unified Medical Language System is a Metathesaurus created in 1986, which
has become an important and a large resource for biomedical science. It provides
over 3,100,000 biomedical concepts imported from nearly 200 vocabularies. Each
concept is assigned a Concept Unique Identifier (CUI) that uniquely identifies a
single meaning. To consistently categorize these huge number of concepts, 133
Semantic Types are defined in UMLS Metathesaurus. In order to further reduce the
complexity of the Metathesaurus, these semantic types are divided into 14 groups,
called Semantic Groups5. Metamap6 is a tool that exploits UMLS to annotate free
text containing biomedical entities.

5https://semanticnetwork.nlm.nih.gov/download/SemGroups.txt
6https://metamap.nlm.nih.gov
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Fig. 5.2: Output of Metamap tool for a sample paragraph containing the term MDR-TB

Figure 5.2 shows a sample output of metamap tool for a paragraph which contains a
biomedical term MDR-TB. We use PyMetamap code7 which is a python wrapper pro-
gram which uses metamap server running in the background and returns metamap
annotations. Metamap outputs an identifier for each entity that it recognizes in the
text. This identifier is called as a "CUI". This identifier is unique for each concept
found in UMLS. Metamap also gives the exact paragraph span which triggered this
concept while annotating. Using this tool we first annotate the gold standard answer
phrases provided by BIOASQ to obtain its "CUI". We then annotate the paragraphs
with metamap in order to obtain all annotations in them and search for the gold
standard answer "CUI" in them. The matching "CUIs" found this way are the exact
same concept in UMLS as the gold standard answer terms, but might be syntactically
different such as "Multi-drug-resistant tuberculosis" and "MDR-TB". This allows to
determine the UMLS concepts for Abbreviations.

There are two cases where automatic annotations fail: 1) Missing words: Missing
words from answer phrases will not be annotated if it does not belong to the UMLS
concepts. 2) Gold standard answers with both Abbreviations and the expansion
together, as UMLS does not highlight both in the annotations.

To determine if the automatic or the manual annotated ones are better, we exper-
iment by training the model using both data individually and evaluate the results
with gold standard data in Section 5.1.4.

5.1.4 Experiments

In this section we report the experiments we performed on the annotated and gold
standard data. We follow the process of (Wiese et al., 2017c) and use a machine

7https://github.com/AnthonyMRios/pymetamap
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reading model developed by (Chen, Fisch, et al., 2017) that is pre-trained on SQUAD
dataset (Rajpurkar, J. Zhang, et al., 2016) for open domain questions and fine
tuned to biomedical questions. Note that we use the same model for all experiments
without changing any model hyperparameters or methods.

To study the impact of training data sets on the evaluations, we train the models
using separately the domain adaptation done via Distant Supervision, Automatically
annotated data and Manually annotated data. We evaluate them individually.

For the detailed explanation of the QA system and domain adaptation to biomedical
domain, please refer the section 4.2.2. Several embedding spaces were tested as
input vectors (Kamath et al., 2017a) and the best performing ones which were the
Glove embeddings trained on common crawl data with 840B tokens, were chosen as
input to the system. Unknown words were initialized as zero vectors.

As BIOASQ questions have several answer paragraphs, we treat each question and
a paragraph as a training sample which might often result in repeated questions
with different paragraphs, i.e. for each training example, there is a question, a
unique paragraph and the start and end token string offsets of the answer in the
paragraph.

Since there are multiple paragraphs per question, while predicting we consider 5
answers from each paragraph based on the decreasing order of their probabilities,
resulting in a set of 5*n answers where n is the number of paragraphs. Top 1 and
Top 5 are chosen in this set based on their answer probabilities.

Distant supervised vs Manually annotated answers

In this section we compare the performance of systems trained on answers obtained
by the method of Distant Supervision and Manually annotated answers.

We perform fine-tuning on two datasets namely

• BIOASQ 5B training set, which contains the 4B training data + the answers of
the 4B test data - We term it as 5B.

• BIOASQ 6B training set, which contains the 5B training data + the answers of
the 5B test set - We term it as 6B.
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We term the distant supervised annotated data as Gold, and manually annotated
data as Anno., both for train and test splits.

The pre-trained model on open domain QA data is fine-tuned on the above listed
Bioasq datasets separately. Evaluation is performed by K-fold cross validation because
of the small scale of the data (Table 5.2), and on the official test sets of Bioasq 5B
(Table 5.3), which were separated from the training data while fine-tuning.

Train set 5B 6B
Finetune Gold Anno. Gold Anno.

Eval DeepQA Gold Anno. Gold Anno. Gold Anno. Gold Anno.
Strict - 0.2551 0.2962 0.1666 0.3333 0.2669 0.3090 0.2265 0.3948

Lenient - 0.4156 0.4444 0.2991 0.5843 0.4417 0.4724 0.3511 0.6197
MRR 0.2620 0.3138 0.3425 0.2148 0.4322 0.3334 0.3718 0.2728 0.4765

Tab. 5.2: K-fold evaluation on different train sets with Gold and Anno data. DeepQA scores
are presented by (Wiese et al., 2017b)

Train set 5B
Finetune Gold Anno.

Eval (Wiese et al., 2017c) Lab Zhu, Fudan Univer Gold Anno. Gold Anno.
Strict 0.3466 0.3533 0.3533 0.42 0.3133 0.4266

Lenient 0.5066 0.4533 0.54 0.64 0.5 0.6866
MRR - - 0.4256 0.5042 0.3884 0.5258

Tab. 5.3: Overall results calculated on official test sets from 5B task. Scores from (Wiese
et al., 2017c) and Lab Zhu, Fudan Univer are reported in Bioasq 5.

Train set 5B
Finetune Gold Anno.

Eval (Wiese et al., 2017c) Lab Zhu, Fudan Univer Gold Anno. Gold Anno.
Batch 1 0.5600 0.4200 0.4733 0.5733 0.4933 0.6066
Batch 2 0.4086 0.4839 0.4274 0.5510 0.3387 0.5215
Batch 3 0.4308 0.3846 0.4070 0.4198 0.3185 0.3955
Batch 4 0.3025 0.2601 0.3595 0.4474 0.4444 0.6196
Batch 5 0.3924 0.4524 0.4271 0.4771 0.3452 0.5023

Tab. 5.4: MRR results calculated batchwise on 5B official test sets.

The explanation of scores reported in table 5.2 and 5.3 along with the corresponding
experiments on the datasets listed above, is as follows. On the data of Train set
mentioned in the first row, we fine-tune it with Finetune data on the second row -
which is Gold or Anno. version of the answers.

The official evaluation measures8 using Gold or Anno. version of the test answers are
highlighted in the third row. The strict and lenient accuracies along with the MRR
are reported.

8https://github.com/BioASQ/Evaluation-Measures
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Gold version of 5B data contains 313 questions and Gold version of 6B data contains
428 questions. We consider the remaining questions with no matching answers as
incorrectly answered, hence evaluating over all the questions of the datasets (5B -
486 questions, 6B - 618 questions). Annotated 5B data contains 483 questions and
6B data contains 618 questions.

Overall results of 5B test sets presented in Table 5.3 are evaluated on 150 questions
from the test sets of 5B challenge whose gold standard answers are present in 6B
challenge train set.

To compare our scores with the ones reported in (Wiese et al., 2017b) and also since
the size of the dataset is small, we perform K-Fold (5) evaluations which are reported
in Table 5.2. To compare with previously reported official test scores in Bioasq 5, we
train on 5B training set and test on 5B test sets which are reported in Table 5.3.

The results shown in the tables 5.2, 5.3 and 5.4 highlights the improvements using
manually annotated data over the distance supervised annotated data on the QA
performance as well as the evaluations with Gold and Anno. versions of answers.

In Table 5.2, training on Gold and evaluating on Gold are the baseline scores. DeepQA
MRR score is the K-fold evaluation score of MRR reported on 5B train set by (Wiese et
al., 2017b). Comparing the DeepQA MRR score with the Gold and Anno. 5B versions,
there is an improvement of at least 17% (Anno. training and Anno. evaluation) to
8% (Gold training and Anno. evaluation).

In terms of accuracy, training the model on Anno. version and evaluating on Anno.
version of answers fetch best results by 3.68% and 8.58% on Strict accuracy, 14%
and 14.73% on Lenient accuracy in 5B and 6B respectively.

Training on Anno. and evaluating on Gold has low scores in almost all experiments
because of the model which learns on different forms of answers, therefore predicts
different forms of answers which are not present in the Gold version.

In Table 5.3, because of a low number of questions in the official test sets ranging
from 25 to 35 questions for each batch, the scores are computed over all 5B batch
test sets (5B test sets - 150 questions). The scores by (Wiese et al., 2017c) and Lab
Zhu, Fudan Univer are the best official results in Bioasq 5. We calculated strict and
lenient accuracy as mentioned above and our scores are better than both best official
results by 6.67% for strict accuracy and 13.34% lenient accuracy on Gold version
training, 7.33% for strict accuracy and 18% lenient accuracy on Anno. version
training.
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In Table 5.4, MRR scores are reported separately for each batch. MRR scores in
general have the best scores compared to both (Wiese et al., 2017c) and Lab Zhu,
Fudan Univer by training on Anno. and evaluating on Anno. versions.

Automatically annotated vs Manually annotated answers

To determine the usefulness of automatically annotated answers done using Metamap
with the manual annotated ones, we use the same methods to train as above done
for manually annotated answers, but train with automatically annotated answers
which are obtained as explained in section 5.1.3 of this chapter. To avoid confusion
with distant supervised data and automatically annotated data by metamap, we
present the results separately.

Evaluation - BIOASQ 5B BIOASQ 6B
- Measures Manual Auto. Manual Auto.

Strict 25.62 27.28 38.68 38.12
Gold Data Lenient 43.82 39.99 59.00 60.64

MRR 31.95 32.32 46.62 46.91
Strict 45.83 37.81 47.59 48.59

Automatically Lenient 70.23 62.34 75.68 74.70
Annotated Data MRR 53.90 46.55 58.39 58.53

Tab. 5.5: Experiments with manual and automatically annotated dataset. Evaluation done
on both BIOASQ gold standard data and annotated datasets.

In this set of experiments, we try to determine which method of annotation is better
and if automatic annotation is comparable with manual annotations. If automatic
annotations provide better or similar performance, this avoids the need of expensive
manual annotations done by experts.

Table 5.5 shows the results of the models trained on automatically annotated data
and manually annotated data. Gold Data evaluations are done on gold standard
answers given by BIOASQ challenge and Annotated Data evaluations are done
on respective annotated data. The results show that both automatic and manual
annotations are comparable on 6B set. Lenient accuracy (Top 5) is better with manual
annotated data than the automatically annotated data (3 out of 4 experiments). And
for Strict accuracy (Top-1) both perform very similar except BIOASQ 5B data where
manual data is better when evaluating on Annotated dataset.

Although the data used in the Table 5.5 for Manual annotated dataset and in the
previous section of experiments in the Table 5.2 for Annotated dataset is exactly the
same, the results on Gold Data evaluation differ largely between these two tables on
Manual annotated dataset training. The scores in Table 5.5 is much higher than Table
5.2 because of the difference in the prediction module. In the method presented in
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Table 5.2, we predict 5 answers per paragraph based on decreasing order of answer
probabilities and choose Top 1 and Top 5 based on answer probabilities of all the
resulting candidates. In the method presented in Table 5.5, if we have 1 paragraph
per question then we take 5 predictions from the same paragraph as Top 5 answers
and rank them based on the decreasing score of answer probabilities. If we have
more than 1 paragraphs per question, we take at least 1 prediction from a paragraph
which has maximum probability until we have at least 5 candidates and choose Top
1 and Top 5 based on answer probabilities of all the resulting candidates. The order
of choosing the paragraphs for answer extraction is the same as provided by BIOASQ
gold standard data.

These small changes in the prediction module has a large impact on the result mainly
because the second method considers answers from paragraphs whose top answers
might not have the highest probability compared to another paragraph top answer.

The experiments and results show that the automatically annotated dataset using
Metamap performs similar to the manually annotated datasets henceforth this
method is better, easier and cheaper to adapt future datasets to cover more answer
variants for biomedical domain. The study reported above shows the influence of
enriching the training data by manually and automatically annotating variants of gold
standard answers, on the evaluation performance. We used UMLS Meta-thesaurus as
a source for Metamap tool to detect and annotate biomedical vocabulary. We show
the impact of the enriched data on Reading Comprehension task by experimenting on
two training datasets. Our method outperforms some of the best-performing systems
from BIOASQ without changing the model.

In the following section, we report our studies on using semantic features such as
Expected Answer Types both in open domain and biomedical domain on improving
the QA model performance in different tasks.

5.2 Expected Answer Types (EAT) and their
importance in Question Answering models

5.2.1 Introduction

In traditional QA systems (non deep learning approaches) on text, one of the main
criteria for selecting an answer is based on recognizing the Lexical Answer Type
(LAT) and the Expected Answer Type (EAT) in order to do a matching with candidate
answers.
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The Expected Answer Type (EAT) is a type which determines the type of answer for
a question. This type is inferred from the question. In open domain, named entity
types can be used as EAT. Table 5.6 shows the taxonomy we follow to obtain EAT
from the named entity types. We use Spacy tool9 to determine named entities and
map them to the Expected Answer Type.

Spacy annotated named entity type EAT
PERSON, ORG, NORP HUM
LOC, GPE LOC
PRODUCT, EVENT, LANGUAGE, WORK_OF_ART, LAW, FAC ENTY
DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL NUM

Tab. 5.6: Spacy tool uses this named entity annotation scheme following OntoNotes 5
corpus, which is mapped with EAT types

The Lexical Answer Type (LAT) is the word or words in a question which determines
the type of expected answers. LAT and EAT are often used in the same context but
are very different from each other. LAT corresponds to the word in the question
phrase which is used to infer an expected type, whereas an EAT is the inferred type
and not a word in the question. Some examples of questions and answers with their
lexical answer types and expected answer types are given below:

Question: What was the name of the food chain owned by Gus Fring?
Answer: Los Pollos Hermanos
Expected Answer Type (EAT): ORG.
Lexical Answer Type (LAT): food chain.

Question: What was the food joint famous for?
Answer: Fried chicken
Expected Answer Type (EAT): NO_EAT
Lexical Answer Type (LAT): What

Question: Who played the role of Walter White in the series Breaking Bad?
Answer: Bryan Cranston
Expected Answer Type (EAT): HUM.
Lexical Answer Type (LAT): Who.

9https://spacy.io/
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Question: Where was the TV show Breaking Bad primarily filmed at?
Answer: Albuquerque
Expected Answer Type (EAT): LOC.
Lexical Answer Type (LAT): Where.

Question: Which president of the USA did not sign the Paris climate agreement?
Answer: Donald Trump
Expected Answer Type (EAT): PER
Lexical Answer Type (LAT): President

In biomedical QA, the answers do not belong to the open domain named entity
types as shown in Table 5.6. Biomedical domain Expected Answer Types (EATs) are
specific to the domain.

In the case of biomedical domain for entities, the UMLS gives references of semantic
types and groups which give more granular information about the entity type which
it belongs to. Therefore instead of named entity types from tools like Spacy, we
use semantic types and groups from UMLS10. There are 133 semantic types and 14
semantic groups. Metamap tool11 is used to detect these for biomedical entities.

Some examples of biomedical questions and answers with their lexical answer types
and expected answer types are given below:
Question: What disease in Loxapine prominently used for?
Answer: Schizophrenia
Expected Answer Type: Disease
Semantic Group: DISO Disease or Syndrome.
Lexical Answer Type: disease.

Question: Which drugs are utilized to treat amiodarone-induced thyroitoxicosis?
Answer: Antithyroid drugs
Expected Answer Type: Drug
Semantic Group: CHEM Chemicals & Drugs
Lexical Answer Type: drugs.

Question: What causes the majority of lung cancers?
Answer: Smoking

10https://mmtx.nlm.nih.gov/SemanticTypesAndGroups.shtml
11https://metamap.nlm.nih.gov/
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Expected Answer Type: NO_EAT
Semantic Group: None
Lexical Answer Type: causes

Traditional QA systems on text are made of several pipeline modules: question
analysis, passage selection, answer selection. Question analysis allows to extract
features that are used for selecting passages and extracting the answer. Apart from
the plain textual words, these features can be different from a system to another, but
they all make use of the Expected Answer Type (EAT) (Kolomiyets and Moens, 2011).
The definition of Expected Answer Type (EAT) and some examples are presented
above. Best methods for verifying if a candidate answer matches the EAT involves
feature based supervised learning based on the use of different resources, as co-
occurrences and presence in structured resources (Grappy and Grau, 2010; Grappy,
Grau, et al., 2011; Chu-Carroll et al., 2012). In medical domain, this verification
was made using UMLS (Zi Yang et al., 2016; Abacha and Zweigenbaum, 2015).

Recent QA approaches are based on deep neural network architectures, mainly in
the open domain. The authors of (Weissenborn et al., 2017) for their RNN based
model introduce a supplementary feature that is the word embeddings of LAT. It is
defined as the question word or the words around the question word (two different
features) whose embeddings are averaged and appended as a feature vector to the
model. However they did not report results that allows to evaluate the impact of
EAT on the overall performance of the model.

For the studies presented in this chapter, some of the resources used are listed
below:

UMLS is used extensively in almost all our works involving biomedical domain data.
For example, a concept such as Transcription factor EB (TFEB) has a CUI C1420699 in
the UMLS and belongs to the [Gene or Genome] semantic type. If a textual paragraph
contains a term "TFEB" or just "Transcription factor EB" without the abbreviation, it
belongs to the same concept mentioned above and UMLS tool Metamap can be used
to map these text spans to the concept to determine its features and relations with
other concepts.

Semantic types and semantic groups have been used in various biomedical informa-
tion systems, including categorizing clinical research eligibility criteria (Luo et al.,
2011), learning biomedical ontology (Petrova et al., 2015), and representing clinical
questions for medical QA (Kobayashi and Shyu, 2006).
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Pubmed articles are used to create word embeddings for biomedical domain words
which are used for tasks such as Named Entity Recognition (NER) by (Habibi et al.,
2017), Question Answering (QA) by (Tsatsaronis et al., 2015; Wiese et al., 2017c).

In the following sections we present a study to understand the usefulness of Expected
Answer Types (EAT) in Question Answering systems in biomedical domain and open
domain.

5.2.2 Verification of the Expected Answer Types in
Biomedical Domain

In the first study, we begin with biomedical domain data. To understand the impor-
tance of Expected Answer Types in biomedical QA dataset, one set of experiment
involves analysing the output of our QA system for determining how many system
responses correspond to the Expected Answer Type from the question. For this purpose
we use the Reading Comprehension task model DRQA by (Chen, Fisch, et al., 2017)
which is explained in Section 4.1.1.

The model does not make use of any LAT or EAT information or any medical domain
related resources. The model only relies on input data tagged with named entities
and encoded with word embeddings. Thus the goal is to study if it can be interesting
to add information regarding the Lexical Answer Type or Expected Answer Type into the
model explicitly. Alternatively we can also determine if the model already captures
the Answer Type information by analysing the predictions.

For the analysis, we take the gold standard answers provided by the BIOASQ and
use Metamap tool12 to annotate the answers to determine their semantic types13

from UMLS. These semantic types are our gold standard answer Expected Answer
Types (EAT). We determine the percentage of EAT matches provided by the gold
standard answers and the QA system’s response to analyze two aspects:

• If the Expected Answer Type inferred from the question by using the Lexical
Answer Type (LAT), matches gold standard answer types.

• If the Expected Answer Type inferred from the question is already captured by
the QA system’s response even when the answer is wrong.

12https://metamap.nlm.nih.gov
13https://mmtx.nlm.nih.gov/SemanticTypesAndGroups.shtml
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As we explain in the previous section, an Expected Answer Type (EAT) is the type of
the answer, whereas a Lexical Answer Type (LAT) is a word or words in the question
which is used to infer the EAT.

For the biomedical domain, (Neves and Kraus, 2016) released a corpus named
BiomedLat which consists of LAT and EAT annotations for BIOASQ questions14 which
were manually annotated with LAT words into them and their semantic group from
UMLS which are the EAT.

For our study, we consider different representations for the EAT from the questions:

• The Semantic Group of LAT. - This refers to the LAT from the question, whose
semantic groups from the UMLS semantic network15 are used - SGEAT - Se-
mantic Group Expected Answer Type.

• a word embedding for LAT (WEEAT - Word Embedding Expected Answer
Type) - word embeddings for LAT words obtained using a pre-trained word
embedding space. We use this to measure cosine distance between answer
word embeddings and the LAT embeddings (WEEAT). For computing WEEAT
when the LAT is made of several words, we compute the average of each word
embedding of the LAT. When a word has no embedding, we set its vector to 0.
We use Word2Vec skipgram model with 300 dimensions from (Tomas Mikolov,
Sutskever, et al., 2013) for computing word embeddings on the biomedical
texts of BioAsq 5A task data which consist of 12.8 Million PUBMED articles.

To determine if the Expected Answer Type can be useful for selecting an answer, we
study if the EAT given in the BiomedLat corpus by (Neves and Kraus, 2016) (the gold
standard EAT for questions (GoldEAT)) matches with the BIOASQ answer inferred
semantic types (the answers in the gold standard BIOASQ data (GoldAns)) and
with the answer semantic types for predicted answers by our QA system (PredAns).
Semantic types from the answers (gold or predicted) are inferred using the Metamap
tool which annotates the answers with a semantic type.

An example to explain the above terms:
Question: What disease in Loxapine prominently used for?
Gold Standard Expected Answer Type (GoldEAT) : Disease
Gold Standard Lexical Answer Type: disease.
Gold Standard Semantic Group: DISO Disease or Syndrome.

14https://github.com/mariananeves/BioMedLAT
15https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
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Answer (BIOASQ given): Schizophrenia
Answer Expected Answer Type (GoldAns): Disease
Predicted answer (QA model output): Clozapine
Predicted answer inferred Expected Answer Type (PredAns): Drug

In the above example, GoldEAT is Disease. GoldAns is Disease. Therefore the gold
standard answer given by BIOASQ matches the GoldEAT which is an expected
result.

PredAns is Drug which is inferred from the predicted answer Clozapine which is a
wrong answer for the question, therefore the answer types do not match.

Experiments and Results

For the experiments, we consider only the factoid questions from BiomedLat corpus.
We split the dataset into train and test sets (80% train and 20% test). The statistics
reported in the Figure 5.3 are for the factoid question test set.

We compute cosine similarities between LAT word embeddings in questions and
three different answer word embeddings which are detailed below:

• GoldStandard-maxCosine (crossed points): Answer words are Gold standard
data annotated with all answer representations that have the maximal cosine
similarity with WEEAT.

• DRQA-cosine-top1 (triangular points): Answer words are Top-1 answers from
DRQA output. The similarities of correct (resp. false) answers are plotted
above (resp. below) the X-axis.

• DRQA-maxCosine (round points): Answer words are from top 5 answers
of DRQA output that have the maximal cosine similarity with WEEAT. The
similarities of correct (resp. false) answers are plotted above (resp. below) the
X-axis.

From Figure 5.3, we can see that gold standard answers (GoldStandard-maxCosine)
show a significant correlation with LAT in terms of word embeddings, although there
are 6 questions whose LAT have 0 similarity with WEEAT caused by missing word
embeddings for the medical domain vocabulary. Another clear observation is that
many of top-1 wrong answers from DRQA system have low similarities (less than
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Fig. 5.3: The distribution of answers in three different answering settings for 59 questions:
the red crossed points are for gold-standard answers that have the maximal
similarity with the question LAT word embedding; So all the crossed points are
correct answers. The blue round points above the X-axis are correct answers
returned by DRQA system with maximal cosine similarity with WEEAT; The round
points under the X-axis are false answers found by DRQA system with maximal
cosine similarity. The absolute value is the similarity. The green triangles stand for
the top-1 results of DRQA system, where the upper parts are correct answers and
the low parts are wrong answers.

0.25), which indicates that we could remove some wrong answers according to this
criterion.

Moreover, Figure 5.3 shows that there are around 50% top-1 answers having zero
similarity with question LAT. This could be caused by the out-of-vocabulary problem
of word embeddings such as short answers with specific words that have never
appeared in the training corpus.

For the round points below the X-axis, they also present an important similarity
(around 0.5) correlation with WEEAT, which means that by simply selecting the
answer with highest similarity as the best answer is not an effective strategy. Indeed,
when we used this re-ranking strategy to select one answer from DRQA candidate
answers, the strict accuracy with respect to the annotated gold standard decreased
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from 38% to 33%. Again, the missing word embedding for correct answers has a
strong impact on this results.

The observations above show that a fine-grained study of word embeddings is
important for biomedical QA systems and missing vocabulary for biomedical terms
might cause performance degradations.

Tab. 5.7: SGEAT (Semantic Group Expected Answer Type) associated to answers

Dataset Answer count
Gold standard data 40/59

DRQA correct top-1 output 18/23
DRQA wrong top-1 output 16/36

To determine the importance of semantic types inferred from the lexical answer
types from question (SGEAT) in answer words, we studied if the SGEAT types are
present in the answers. We report this on three datasets, one being the Gold standard
answers in BIOASQ and other two being the correct and wrong predicted answers of
DRQA system (top-1).

Table 5.7 shows the count of matches of SGEAT and semantic types from answers. It
is clear that many correct answers (gold standard - 40/59) have a matching SGEAT.
For DRQA outputs, we compute how many correct and wrong top-1 answers has a
matching SGEAT. From the reported findings, there are more correctly answered
DRQA outputs (18/23) with matching SGEAT than the wrong ones (16/36) which
signifies that the model already captures this information correctly in most of the
cases. But 44% (16/36 questions) of wrongly answered questions have the matching
Expected Answer Types, which means that this feature is useful to improve wrongly
answered questions.

We studied different representations of the LAT words and EAT, based on structured
taxonomy or word embeddings, and showed a correlation with the correct answers.
When comparing with the answers provided by our QA model, we observe that the
wrong answers might be rejected by adding a criterion when the answer types do
not match.

5.2.3 Verification of the Expected Answer Types in Open
Domain

In our study of the open domain, we analyze the SQUAD dataset by (Rajpurkar,
J. Zhang, et al., 2016) for the presence of Expected Answer Types, which is based
on Wikipedia data. For analyzing this data, we need LAT and EAT information on
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the SQUAD dataset. The authors of (Madabushi and M. Lee, 2016) built a rule
based model which is highly accurate (97.2% in their evaluations) in determining
the question classes for input questions in a taxonomy defined in their work. We
obtain these annotations on SQUAD dataset questions upon request which we use
for the study of EAT for open domain.

We have created a simple taxonomy by using the higher level taxonomy from their
work to a version which is suitable for our work as shown in the Table 5.8. In open
domain data setting, the named entity types are mainly used to define the Expected
Answer Types (EAT). A taxonomy must be defined for mapping named entity types
to Expected Answer Types (EAT) of the questions. Table 5.8 shows the taxonomy we
used.

EAT Spacy annotated tag
HUM PERSON, ORG, NORP
LOC LOC, GPE, NORP
ENTY PRODUCT, EVENT, LANGUAGE, WORK_OF_ART, LAW, FAC, NORP
NUM DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL
ABBR -
DESC -

Tab. 5.8: Named entity annotation scheme following OntoNotes 5 corpus mapped with
EAT.

The annotations given by (Madabushi and M. Lee, 2016) contain high level EAT
mentioned in the table 5.8 on the left. The right side values "spacy annotated tags"
are the tags which are annotated by named entity recognition tool Spacy16 which
the answer words belong to. The mapping determines the which named entity
type belongs to which Expected Answer Type (EAT). Since ABBR - Abbreviations,
DESC- Description cannot be inferred from the named entities as they refer to textual
phrases and not exclusively entities, we exclude these from the analysis. These types
are present in Figures 5.4 and 5.5 because the gold standard data were not inferred
using the named entity types.

The annotations on SQUAD dataset by (Madabushi and M. Lee, 2016) contained
the following numbers of EAT as shown in the figures 5.4 and 5.5 across 6 different
categories of EAT.
16https://spacy.io/
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Fig. 5.4: EAT statistics on SQUAD dev set - contains 8026 annotations for 10,570 questions.

Fig. 5.5: EAT statistics on SQUAD train set - contains 66,659 annotations for 87,599 ques-
tions.

We annotate answer spans using the spacy named entity recognition tool and map
it with the EAT taxonomy as highlighted above to check how many of them match
correctly. For the dev set: There are 8026 questions with EAT annotations (subtract-
ing 24 ABBR and 1556 DESC tagged questions from 9606 total questions). 4029
questions out of 8026 match according to the EAT annotations, i.e. 50.19%. For the
train set: There are 66,659 questions with EAT annotations (subtracting 354 ABBR
and 11727 DESC tagged questions from 78,740 total questions). 31,924 questions
out of 65,419 match according to the EAT annotations. i.e. 48.79%.
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The above analysis shows that EAT match happens for 50.19% of questions on dev
set and 48.79% of questions on train set. The non matching questions might be
because of several reasons:

• Correct Expected Answer Type not being recognized by the rule based system
annotations of (Madabushi and M. Lee, 2016).

• Non recognition or wrong recognition of certain entities and their types in the
answers from the named entity recognition tool Spacy.

• Wrong taxonomy mapping for certain types. For ex: NORP named entity refers
to HUM, LOC and ENTY EAT types.

From the scores reported above, we observe that it is difficult to use EAT as a strong
feature for selecting an answer from the paragraph.

Experiment using QA model

In order to understand how many wrongly answered questions correspond to their
Expected Answer Type (EAT), we experiment using QA model predictions. We
only consider the questions which were wrongly answered to study if the predicted
answer type corresponds to the correct expected answer type from the question.

For this set of experiments we use DRQA model on Reading Comprehension task. We
train on the official SQUAD train set and predict on the official SQUAD dev set. We
analyze these wrong answers to check if they match the Expected Answer Types
from the questions.

The official dev set has 10,570 questions and 3,242 questions (30.67%) are wrongly
answered by DRQA model. Out of the 3242 questions only 721 questions (22.23%)
has an EAT from the annotated set provided by (Madabushi and M. Lee, 2016) which
matched the named entity inferred answer type.

This signifies that the QA model predicted only a few number of answers (22.23%)
in the wrongly answered set which matched the corrected EAT but failed to capture
the right entity as the answer. This shows that there is a scope for highlighting entity
types as 77.77% of wrongly answered questions (2,521 questions) did not have a
matching EAT. Since 22.23% did not have correct answers in spite of their matching
answer types, shows that the entities were not correctly recognised.
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In the following section we address these issues by highlighting EAT in the paragraphs
and using EAT in the QA models.

5.3 Using Expected Answer Types and
Embeddings for the Answer Sentence
Selection task

Expected Answer Types (EAT) is one of the vital information which is important
for question answering systems to detect which type of answers do the questions
require and filter out the less important answer candidates. We hypothesize that this
information can be explicitly highlighted and used in the existing models to improve
performance.

In the Answer Sentence Selection task, a question and a set of sentences are provided
and the goal is to find which sentence is the correct answer to the question. There
can be multiple correct answer sentences per question. Our intuition is that when
the type of an entity (among several other entities in the sentence) present in the
sentence corresponds to the Expected Answer Type (EAT) from the question, this
sentence is more likely to be the correct answer sentence than a sentence that does
not contain such an entity type. Our goal is to better rank these kinds of sentences.
We proceed by highlighting, in the paragraphs, entities that correspond to the EAT.
We explain the process in detail in the following sections.

Our contributions in this regards are as follows. We introduce two different ways
of using Expected Answer Type EAT. We use a simple model of a recurrent neural
network which uses a pre-attention mechanism. We experiment with several datasets
along with TrecQA to determine if this would work better for a wider range of large
scale datasets. To annotate other datasets with EAT information, we propose a
multiclass classifier model which is trained on a dataset built by using an existing
rule-based system which predicts EAT for questions.

5.3.1 Highlighting Single Entity and Multiple Entity Types

An answer sentence contains several named entities and some of them correspond to
the Expected Answer Type (EAT). Highlighting these entities using their type might
help in improving the QA system performance. The authors of (Tayyar Madabushi
et al., 2018) propose a method for replacing words by special token embeddings
for highlighting entities that catch the EAT entity in sentences. In our work, this
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method is referred as “EAT (single type)" in the following experiments. The entities
belong to (HUM, LOC, ABBR, DESC, NUM or ENTY). HUM refers to a description,
group, individual, title. LOC refers to city, country, mountain, state. ABBR refers to
abbreviation, expansion. DESC refers to a definition, description, manner, reason.
NUM refers to numerical values such as code, count, date, distance, money, order etc.
ENTY refers to a numerous entity types such as animal, body, color, creation, currency,
disease etc. More details regarding the taxonomy can be found in (Madabushi and
M. Lee, 2016).

The entities, irrespective of which class they belong to, are treated similarly by replac-
ing them by two special tokens entity_left for entity occurrences and max_entity_left
for maximum occurring entity that corresponds to an entity that is at least twice the
number of occurrences when compared to the second maximum occurring entity.
Entity types are recognized using a named entity recognition tool. When an entity
type in a sentence matches the EAT from the question, entity_left token is used
to replace the entity mentions in the sentences; same applies for the maximum
occurring entity token max_entity_left as well.

Our proposition is to replace an entity according to the type it belongs to, instead
of replacing all kinds of entity by just one word i.e. entity_left. We do it based on
the different types of EAT it belongs to based on the taxonomy used in the original
work. The intuition behind this method is that the model would learn to better map
the relations between question words and specific entity type tokens when used
in a model with attention mechanisms, rather than learning the relation between
question words and the same generic entity type token for all entities. This way,
we can learn a different behaviour with an entity about location and with an entity
about a person for example.

5.3.2 Answer Sentence Selection Model - RNN-Similarity

The answer sentence selection task is a question answering task which is also referred
sometimes as Sentence Reranking or Sentence Ranking task. It involves ranking a set of
sentences S = {S1, ....., Sm} for a given question Q, so the correct answer sentences
are ranked higher. Sentence set S can contain the mixture of both negative and
positive sentences relevant to the question, often more than one positive sentence.

We model this task as a pairwise similarity scoring task. For each sentence related to
a question, we compute a similarity score against the question sentence and answer
sentence. i.e., (Qi − Si,j , Qi − Si,j+1, Qi − Si,j+2, ....Qi − Si,j+n).
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Recurrent neural networks such as LSTMs and GRUs are widely used in several
NLP tasks like machine translation, sequence tagging, and question answering
tasks such as reading comprehension and answer sentence selection. We propose
a simple model with recurrent neural networks and an attention mechanism to
capture sequential semantic information of words in both questions and sentences
and predict similarity scores between them. We refer to this model further in this
article as RNN-Similarity model whose code is available online17. Figure 5.6 shows
the architecture of the model.

Fig. 5.6: Proposed RNN-Similarity model

Question words Q = {q1, ....., qm} and Sentence words S = {s1, ....., sn} are se-
quences which are encoded using an embedding layer of dimension D.

E(Q) = {E(q1), .., E(qm)} (5.1)

E(S) = {E(s1), .., E(sn)} (5.2)

A pre-attention mechanism captures the similarity between sentence words and
questions words in the same layer. For this purpose, a feature Falign shown in
Equation 5.3 is added as a feature to the LSTM layer.
17https://github.com/rsanjaykamath/RNN-Similarity
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Falign(pi) = Σjai,jE(qj) (5.3)

Where ai,j is,

ai,j = exp (α(E(si)) · α(E(qj))
Σj′ exp(α(E(si)) · α(E(qj′)) (5.4)

which computes the dot products between nonlinear mappings of word embeddings
of question and sentence.

The above process is similar to the DRQA model by (Chen, Fisch, et al., 2017) and
PSPR model by (Y. Lin et al., 2018) for both Paragraph Selector and Paragraph
Reader who use LSTMs to encode Question and Paragraph words along with the
pre-attention mechanism as shown in Equation 5.3 . We use 3-layer Bidirectional
LSTM layers for both question and sentence encodings.

{E(q1), .., E(qn)} = Bi-LSTM({Ẽ(q1), .., Ẽ(qn}) (5.5)

{E(s1), .., E(sn)} = Bi-LSTM({Ẽ(s1), .., Ẽ(sn}) (5.6)

The LSTM output states are further connected to a linear layer and a sigmoid non-
linear activation function is applied on the output of the linear layer which outputs
the score ranging between 0-1, which signifies the similarity between the question
and the answer sentence.

We implement the RNN-Similarity model in Pytorch, and we use MSELoss (Mean
Squared Error loss) to minimize the error of predictions for relevance scores. The
code for the model along with default hyperparameters is publicly available on
Github 18. The QA task is presented in section 5.3.2 in detail. The model’s hyper-
parameters remain the same for all input settings. Only the modified input text
for question and paragraph as shown in section 5.3.1 is the change which shows
differences in performance. We use adamax optimizer and keep the missing words as
zero vectors. We create a random word embedding ranging between (-0.5 - 0.5) with
dimension D for each of the EAT words and encode the word with this embedding
when it appears in all our experiments.
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- Method Question Sentence

1 Original text

Who is the author of
the book, ‘The Iron
Lady: a biography of
Margaret Thatcher’

in ‘The Iron Lady,’
Young traces ...... the
greatest woman politi-
cal leader since Cather-
ine the Great.

2

Replacement -
(Tayyar Mad-
abushi et al.,
2018) (EAT
Single type)

Who is the author of
the book, ‘The Iron
Lady: a biography of
Margaret Thatcher’
max_entity_left en-
tity_left

in ‘The Iron Lady,’
max_entity_left traces
...... the greatest
woman political leader
since entity_left.

3
EAT
(Different types)

Who is the author of
the book, ‘The Iron
Lady: a biography of
Margaret Thatcher’
max_entity_left en-
tity_hum

in ‘The Iron Lady,’
max_entity_left traces
...... the greatest
woman political leader
since entity_hum.

4
EAT
(MAX + Dif-
ferent types)

Who is the author of
the book, ‘The Iron
Lady: a biography of
Margaret Thatcher’
max_entity_hum
entity_hum

in ‘The Iron Lady,’
max_entity_hum traces
...... the greatest
woman political leader
since entity_hum.

Tab. 5.9: Three methods for replacing entities along with an example from TrecQA dataset

5.3.3 Highlighting Process

The example in Table 5.9 shows the highlighting process. The row 1 is the original
text data from the dataset. The row 2 is the modification done by (Tayyar Madabushi
et al., 2018) to highlight maximum occurring entity and the EAT matching entity.
The row 3 and row 4 are our modifications. The row 3 refers to an example that has
an EAT as “HUM" from the taxonomy, so we replace it as entity_hum. We do the same
for other expected answer types such as entity_loc for “ LOC" type, entity_enty for “
ENTY" type, entity_num for “NUM" type, entity_desc for “DESC" type, entity_abbr for
“ABBR" type. We replace the entity mentions in the text whose types are matching the
EAT from questions same as the authors of (Tayyar Madabushi et al., 2018), but we
use separate entity highlighting according to their type, instead of using entity_left
for all entities.

We also experiment with a variant where the max_entity_left is replaced with the
entity type along with other entities as done in row 4 of Table 5.9. If the maximum

18https://github.com/rsanjaykamath/RNN-Similarity
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entity is of type “HUM", we replace it as max_entity_hum. This method is referred to
as “EAT (MAX + different types)" in the following experiments.

5.3.4 Prediction of the EAT

In order to experiment on the datasets without EAT annotations, we had to develop
our own annotation tools to annotate any dataset questions with EAT entities.

Since SQUAD-EAT (see section 5.3.5) is the result of a rule-based method with a
high accuracy score (97.2% as reported in (Madabushi and M. Lee, 2016)), we use it
to train a multiclass classifier based on a CNN model for text classification19 by (Kim,
2014), by modifying the outputs into a multi-class setting. We use the original CNN
model by (Kim, 2014) built for binary classification of sentiments because it captures
better semantic information from text than traditional ML models as pointed in their
work which also uses word embeddings from Word2vec (Tomas Mikolov, Sutskever,
et al., 2013) as input for their task. We further refer to our modified model as EAT
Classifier. We use 300 dimensions GloVe embeddings by (Pennington et al., 2014).
The output classes of the classifier refer to a type based on the taxonomy such as
ABBR, DESC, ENTY, HUM, LOC, NUM and a "NO_EAT" class to signify an EAT which
is not in the above list of classes.

We train the multi-class classifier model using the SQUAD-EAT dataset which gets an
accuracy score of 95.17% on the SQUAD-EAT dev in our experiment, according to
the annotation done by (Tayyar Madabushi et al., 2018) as reference. We release
the code for the EAT Classifier and the SQUAD-EAT dataset on Github20.

Below is an example from SQUAD-EAT with HUM:

Question: Which NFL team represented the AFC at Super Bowl 50?

Expected Answer Type: HUM.

5.3.5 Experiments and Results

Datasets

We experimented on the TrecQA dataset which is a standard dataset used to bench-
mark state of the art systems for answer sentence selection task. The authors of

19https://github.com/cmasch/cnn-text-classification
20https://github.com/rsanjaykamath/EAT-classifier
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(Tayyar Madabushi et al., 2018; Madabushi and M. Lee, 2016) provide the EAT
annotations for the TrecQA dataset based on their rule-based approach.

We modify the QA dataset SQUAD (Rajpurkar, J. Zhang, et al., 2016) designed
for machine comprehension, into an answer sentence selection dataset to provide
the answers in their original context. We name it as SQUAD-Sent. We do this by
processing the dataset where each example is usually a triple of Question, Paragraph
and Answer span (Text and the answer start offset in the paragraph) into a dataset
where each triple is a Question, Sentence and Sentence label. The sentence label
is 1 if the answer is present inside the sentence, else it is 0. We perform sentence
tokenization using spacy toolkit21 on paragraphs of SQUAD and perform a check
for an exact match of answer strings in them. SQUAD-Sent is a special case dataset
where there is just one positive sentence per question and the other sentences
are negative examples. The motivation to do this is that we hypothesize that the
Reading Comprehension task on SQUAD dataset might perform better when the input
paragraph is a single sentence with an answer, instead of a paragraph with multiple
sentences. Since the answer is present in only one sentence in a paragraph, reducing
the paragraph size might increase the probability of finding the correct answer in
the paragraph. In order to obtain the single sentence with an answer we can rely
on Answer Sentence Selection task. Also since SQUAD dataset is a large scale human
annotated dataset, we decided to modify this for the Answer Sentence Selection task.
For the expected answer types of SQUAD questions, we use SQUAD-EAT which is
a dataset with EAT annotated questions on SQUAD v1 dataset questions which is
annotated by the authors of (Tayyar Madabushi et al., 2018; Madabushi and M. Lee,
2016) on our request.

WikiQA dataset by (Y. Yang et al., 2015) is another dataset used for answer sentence
selection task which was built using Bing search engine query logs. We use a
preprocessed version as used by (Rao et al., 2016) which has removed certain
examples without any positive answers and questions with more than 40 tokens to
compare the scores. The questions and answer sentences are annotated with EAT
information as described in section 5.3.4.

Annotation of the entities in paragraphs

We detect the entities in the sentences using Dbpedia Spotlight tool by (Daiber et al.,
2013). The detected entities by the spotlight are verified for their entity type match
using the Spacy NER tool which is mapped to EAT using the mapping shown in table
5.6. Only the matching entities are highlighted and others are discarded.

21https://spacy.io
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We also try using a named entity recognition tool to annotate entities in the text
directly without using Dbpedia spotlight. Spacy22 was used to annotate plain text
and the entities matching the EAT were annotated.

Dataset Split #Plain Q #EAT Q #Entities

Trec QA
Train 1229 649 (52.8%) 13.96
Dev 82 76 (92.68%) 5.02
Test 100 82 (82%) 7.82

SQUAD-Sent
Train 87,599 78,740 (89.99%) 0.44
Dev 10,570 9,606 (90.87%) 0.49
Test - - -

Wiki QA
Train 873 859 (98.39%) 0.15
Dev 126 124 (98.41%) 0.03
Test 243 236 (97.11%) 0.16

Tab. 5.10: Statistics of datasets with plain and EAT annotated questions. ‘#’ refers to
“Number of." #Plain Q is the number of questions in the whole dataset, #EAT Q
is the number of questions which are annotated with EAT (a subset of #Plain Q),
#Entities is the number of entities on average per question in the paragraphs for
the #EAT Q question set - only those entities which match the EAT are annotated
and not the rest.

Table 5.10 shows the statistics of the datasets with EAT annotated questions and
plain word level questions (regular datasets) and the number of entities annotated
in each set. EAT version of TrecQA dataset is as reported in (Tayyar Madabushi et al.,
2018) and available through this link23. SQUAD-Sent was annotated by the authors
of (Madabushi and M. Lee, 2016) upon our request. Wiki QA dataset although has
high number of questions with a predicted EAT (the rest are NO_EAT class), the
percentage of entities in the paragraphs which match the EAT are very low. This
can be because of three reasons as explained earlier, 1) Undetected entities in the
paragraph. 2) Wrongly predicted EAT. 3) Wrong taxonomy mapping.

Results

Table 5.11 shows various results on different versions of datasets. Note that the
questions in the following experiments of Table 5.11 contain all the questions from
the datasets, which includes questions which are highlighted with EAT and questions
which are not highlighted with EAT as well. Note that we test our systems on the
Raw version of TrecQA test dataset.

22https://spacy.io/
23www.harishmadabushi.com/research/answer-selection/
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Datasets Method Acc.@1 MAP MRR

TrecQA

Plain words - (Rao et al., 2016) - 78 83.4
EAT words - (Tayyar Madabushi et al., 2018) - 83.6 86.2
Plain words - RNN-S 78.95 80.24 84.81
EAT words (single type) - RNN-S 85.26 85.28 89.16
EAT words (different types) - RNN-S 85.26 85.48 88.11
EAT words (MAX+different types) - RNN-S 86.32 85.42 88.86

SQUAD-Sent

Plain words - Implementation of model by (Rao et al., 2016) - - 58.08
Plain words - RNN-S 83.94 - 90.5
EAT words (single type) - RNN-S 84.21 - 90.65
EAT words (different types) - RNN-S 84.26 - 90.70
EAT words (MAX+different types) - RNN-S 84.24 - 90.69

WikiQA

Plain words - (Rao et al., 2016) - 70.9 72.3
Plain words - (Tymoshenko and Moschitti, 2018) - 75.59 77.00
Plain words - RNN-S 56.79 69.07 70.55
EAT words (different types - NER) - RNN-S 55.14 66.56 68.10
EAT words (MAX+different types - NER) - RNN-S 55.14 66.25 67.92
EAT words (single type) - RNN-S 56.38 68.63 70.59
EAT words (different types) - RNN-S 58.4 70.04 71.56
EAT words (MAX+different types) - RNN-S 57.20 69.17 70.89

Tab. 5.11: Results reported on TrecQA, WikiQA, and SQUAD-Sent datasets. SQUAD-Sent
dataset is a modified version for answer sentence selection task. RNN-S is
RNN-Similarity model.

TrecQA

The current state of the art system is by (Tayyar Madabushi et al., 2018) that uses
EAT on word level model of (Rao et al., 2016). Henceforth both results are presented.
Our model RNN-Similarity on plain word level data fetches better result than the
model of (Rao et al., 2016) by 2.24 % on MAP and 1.41 % on MRR. Our EAT words
(single type), EAT words (different types) and EAT words (MAX + different types)
models outperforms the state of the art performance for both MAP (1.68%) and
MRR (2.96%) scores of the previous state of the art model by (Tayyar Madabushi
et al., 2018) where the MAP and MRR scores are higher for correct sentences being
ranked as Top-1. In this way, we obtained the best accuracy scores by integrating
the occurrence of the EAT in the answer sentences.

WikiQA

WikiQA dataset was annotated by our EAT-Classifier model which predicts EAT for the
questions. NO_EAT predicted type is excluded from the experiments. A recent model
by (Tymoshenko and Moschitti, 2018) which uses kernel methods outperforms all
the scores of our model. We note that the performance on our EAT level models is
higher than the ones on plain words. Plain text input fetches 69.07% on our RNN-S
model, whereas the entity highlighted input with different types of entities fetches
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70.04% with a slight improvement. Only a few number of entities are annotated by
spotlight compared to other datasets which is shown in the table 5.10. To annotate
entities better we experimented using Spacy NER types (marked as NER) directly
which resulted in more annotated entities but reduced the performance lower than
the word level scores.

SQUAD-Sent

SQUAD official test set is hidden to the public users. Although the difference between
word level and EAT word level is little, the difference highlights the fact that the
entity words replaced in the sentence would not worsen the performance of the
systems; instead it improves it subtly. We would like to note that the MAP and MRR
values were the same because of the existence of just 1 positive sentence amongst
other negative per question. Hence we only report MRR on this dataset. Plain words
- (Rao et al., 2016) performance is obtained using the implementation available
online24, which we experimented on SQUAD-Sent dataset.

One aspect to be highlighted is that the implementation24 of word level model by
(Rao et al., 2016) originally made for TrecQA dataset performs poorly (58.05%) on
SQUAD-Sent dataset (maybe because SQUAD-Sent has only one positive answer
sentence per question whereas other datasets have several ones) which motivated
us to build a model (RNN-Similarity) which works robustly for all the three datasets
we have experimented with, without changing any specific hyperparameters of these
models.

Datasets Method Acc.@1 MAP MRR
TrecQA EAT words (single type) 84.15 84.81 87.17
(EAT) EAT words (different types) 85.37 85.45 88.18

EAT words (MAX+different types) 85.37 85.06 89.20
SQUAD-Sent EAT words (single type) 83.81 - 90.53

(EAT) EAT words (different types) 84.04 - 90.61
EAT words (MAX+different types) 84.16 - 90.73

WikiQA EAT words (single type) 58.02 68.91 70.99
(EAT) EAT words (different types) 55.14 67.70 69.52

EAT words (MAX+different types) 56.38 68.16 69.83
Tab. 5.12: Results reported on TrecQA, SQUAD-Sent and WikiQA datasets using RNN-

Similarity model trained only on EAT annotated questions

24https://github.com/castorini/Castor
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Table 5.12 shows various results on TrecQA SQUAD-Sent and WikiQA datasets with
only the questions which are annotated with EAT information in the train and test
sets.

Training datasets contain questions which are annotated with EAT information, if
the question does not have an EAT annotated, it is discarded from the dataset below
are the set of experiments and results:

• TrecQA (EAT): EAT words (MAX + different types) version of the dataset
fetches the best scores on the test set with only EAT annotated questions. The
same experiment with same dataset performed by (Tayyar Madabushi et al.,
2018) fetches lower results (MAP: 81.74% and MRR: 82.93%).

• SQUAD-Sent(EAT): EAT words (MAX + different types) version of the dataset
fetches the best scores on this dataset.

• WikiQA (EAT): We remove the questions with ‘NO-EAT’ class which were 23
questions overall. The results are better with EAT (single type) which shows
that the method works well in certain cases better than different types of EAT
as in the above two datasets.

The results reported in table 5.12 show that there is not a high improvement over
different methods when trained only on questions with EAT information. Henceforth
it is better to train models with the entire dataset and highlight EAT information
only when the question contains the EAT information.

Conclusion

We report our findings on TrecQA, SQUAD-Sent and WikiQA dataset performance
and show that we outperform state of the art results on TrecQA dataset25 by the two
different ways of highlighting Expected Answer Types in the data compared to the
plain text input.

The Expected Answer Types are a useful piece of information that used to be
extensively exploited in the traditional QA systems. Using them with the current
state of the art DNN systems for Answer Sentence Selection task improves the system
performance. We propose a simple model using recurrent neural networks which
works robustly on three different datasets without any hyperparameter tuning and
annotate entities belonging to the expected answer type of the question. Our model

25https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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outperforms the previous state of the art systems in the answer sentence selection
task on TrecQA dataset. We also propose a model to predict the expected answer
type based on the question words using a multiclass classifier trained on a rule based
system’s output on a large scale QA dataset.

In the above set of experiments, we observed that highlighting Expected Answer
Types (EAT) in the sentences works better in the Answer Sentence Selection task.
Therefore we proceed to experiment on the Reading Comprehension task, whose goal
is to extract short answers from the answer sentences, by highlighting the entities.

5.4 Using Embeddings of Entities for the Reading
Comprehension task

In the previous sections we discuss about highlighting entities with respect to
Expected Answer Types for Answer Sentence Selection task. In the case of Reading
Comprehension task the same technique cannot be applied in a straightforward
manner because the answer tokens or words are substrings of the answer sentences
and if an answer word is an entity then replacing it with generic entity words such
as entity_left or entity_hum etc. will result in loss of information during evaluation.
Henceforth a different approach with the same intuition is carried over in this set of
experiments.

We propose to take into account entities using entity embeddings for Reading Com-
prehension task. Usually QA systems use pre-trained word embeddings trained using
Glove (Pennington et al., 2014), Word2Vec (Tomas Mikolov, Sutskever, et al., 2013)
or Fast-text models (Tomas Mikolov, Grave, et al., 2018) where entity words, stop
words, other words are considered. Using special entity embeddings for entities
have been shown to have better performance in certain state of the art methods for
evaluating word embeddings (Sherkat and Milios, 2017), (Dhingra, H. Liu, et al.,
2017), (Kamath et al., 2017b) and also in the above for Answer Sentence Selection
task where entities are represented with their type as a special embedding.

Often in the case of Reading Comprehension task the entity themselves play a role
in being the answer tokens therefore the same technique used in the above section
cannot be used here. Each entity has to be represented by its own embedding. In
order to learn specialized entity embeddings for the entities we chose to learn word
and entities embeddings (by highlighting entities during embeddings pre-training)
in the same embedding space. The intuition behind learning a representation of
words and entities is that the textual data sources such as Wikipedia dumps, news
data, common crawl data etc. often contain single or multi-word entities along with
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regular words which can be used to represent entities in a special manner along with
other non-entity words. For example, phrases "New York City" and "New Orleans"
contain the word "New" which has the same word embedding in both the phrases.
Our work shall use "New York City" as one single word embedding as it is a multi
word entity, same for "New Orleans" which will be a single word embedding. Our
hypothesis is that, doing so would improve sentence and entity matching and a
better association between the LAT word of the question and the entities without
any supplementary annotations required.

We describe our solution for encoding the information related to entities in a Reading
Comprehension QA model and show that using entity embeddings with word em-
beddings outperforms certain methods which use only word embeddings on factual
questions.

Motivation

Open-domain question answering systems often consists of question-answer pairs
where the answers are entities. As shown in Table 5.13 & 5.14, there is a high
number of questions whose answers are entities and their paragraphs contain 10
entities on average. Question answering systems input tokens in general do not
distinguish between regular words and entities. Apart from using input features
such as named entities, pos tags etc. the input tokens still remain at word level or
character level.

Data #Ques #Ques with Entities
Train Ques. 87599 61033 (69.67%)
Dev Ques. 10570 7359 (69.62%)

Tab. 5.13: Number of questions with at least one entity as answer, in SQUAD dataset

Data #Documents Avg # entities
Train Documents 87599 10
Dev Documents 10570 11

Tab. 5.14: Average number of entities in the SQUAD dataset paragraphs

We propose to use a joint representation of words and entities together in the text to
better represent entities. Multi-word entities (an entity described using more than 1
word) are clubbed into one single entity token.
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Joint Entity and Word embeddings

Concatenating a phrase of entity words into one token makes it easier to represent
multi-word entities like European Union Commission and European Union Law into a
richer contextual representation to distinguish between different entities. The QA
system then will have to retrieve a single entity token rather than an N-gram of word
tokens.

Encoding symbolic information such as knowledge bases with text documents has
become a reliable way to work with such information. Word and entity embeddings
are widely used nowadays in several NLP tasks. The former have shown that it is a
great tool to capture both semantic and syntactic information about words (Tomas
Mikolov, Sutskever, et al., 2013). Several works have been proposed for their
combination (Fang et al., 2016; Yamada et al., 2016) and we opt for the recent EAT
algorithm proposed by (Moreno et al., 2017) for its simplicity. This work jointly
learns words and entities (Entity + Word) in a unique embedding space (EW-Emb)
and restrict the entity usage to Wikipedia pages only. The underlying idea is to exploit
entity mentions, or anchor texts, within Wikipedia pages to calculate the entity
embeddings following (Tomas Mikolov, Sutskever, et al., 2013). When an anchor
text is found in a window, EAT processes two times the same window, one for the
word and another for the entity. In that way word embeddings are not downgraded
and unambiguous entity embeddings are learnt. However, extra pre-processing
steps are needed to ensure that anchor texts are not removed, entity entries in the
vocabulary are identified, and entity entries are normalized to avoid redundancy
(e.g., by applying all possible redirections in Wikipedia). These embeddings are used
as input for a simple question answering system. Our implementation is based on an
optimized version of Word2Vec using TensorFlow26 with parameters (embedding
size = 200, learning rate = 0.025, 5 epochs, Skipgram configuration, and window
size of 5). The obtained vocabulary is composed by more that 5.2M entries including
1.8M entities.

The QA system

The QA system used in this set of experiments is DRQA by (Chen, Fisch, et al., 2017)
whose model is explained in Section 4.1.1. The model remains exactly the same but
we have made certain changes for the input words.

We transform the SQUAD dataset which is built using Wikipedia dumps as shown in
the example below

26https://tinyurl.com/y8p4457e
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Q: What is the main executive body of the EU?

P: The European Commission is the main executive body of the Euro-
pean Union.

A: European Commission

Ent.Q: What is the main executive body of the Wikipage_European_Union?

Ent.P: The Wikipage_European_Commission is the main executive body of
the Wikipage_European_Union.

Ent.A: Wikipage_European_Commission

At input, we use word and entities embeddings for input tokens. The multi-word
entities become a single token because of entity embeddings. This results in change
of offsets and answer text for the answers in the paragraph which causes issues
for Exact Match evaluations as done by Reading Comprehension systems. Therefore
during the preprocessing time we build a mapping between multi-word entities
to their individual word offsets in the plain text paragraphs to use this during the
evaluation to perform evaluation on the official dev set answers provided by SQUAD.
The evaluation however is the official evaluation of SQUAD task based on plain text
entities.

An example of a QA pair is shown above, first box represents a regular QA pair, and
second box represents a QA pair after pre-processing with entities. Also note that
in this setting, the answer is always an entity. Offset refers to character level offset
to the start of the answer span. Mapping refers to the entity answer in plain text
which is represented by both start and end character offsets which is used during
evaluation.

We chose SQUAD data for our experiments because it is built using Wikipedia articles,
which are also used to train our embeddings. To annotate entities in SQUAD data,
we use DBpedia spotlight (Daiber et al., 2013), an off-the-shelf tool for annotating
mentions of DBpedia resources in text. We use redirections file from dbpedia 27 to
use the latest Wikipedia page titles for the entities after the redirections.

It was not suitable to find the wikipage for SQUAD paragraphs and use entities
from the wiki dump because Wikipedia does not annotate all entity occurrences in

27http://wiki.dbpedia.org/develop/datasets/downloads-2016-10
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the paragraph. Using Dbpedia spotlight we can annotate all the occurrences of the
entities in the text.

We evaluate on the official SQUAD dev set as the test set is not available for public
testing. Along with the whole dataset we also test only questions whose answers
contain entities (for Entity question answering).

Data Official (All questions) Pre-processed (Entity questions)
Train 86832 17407
Dev 10570 2705

Tab. 5.15: Number of questions in SQUAD dataset official vs pre-processed

To perform the evaluation of Entity question answering, we preprocess the SQUAD
dataset - train and dev sets to retain only those questions whose answers only contain
entities. Table 5.15 shows the dataset statistics before and after the pre-processing.
Questions after pre-processing contained 18% of Who, 11% of Which, 62% of What,
7% of Where types of questions.

Experiments and Results

Data & Embeddings EM F1
Words | Glove 69.5 78.8
Words | EW-Emb 66.59 74.89
Ent+words | EW-Emb 65.76 75.05

Tab. 5.16: Whole SQUAD dataset system performance with dev set of 10570 questions.
EW-EMB is the entity+word embeddings

Data & Embeddings EM F1
Words | EW-Emb 67.43 71.85
Words | Fast text 70.94 75.53
Words | Glove 72.90 77.35
Ent+Words | EW-Emb 79.55 80.35

Tab. 5.17: Entity QA system performance on pre-processed SQUAD dev set of 2705 ques-
tions. The same EW-Emb space does not perform well when used on only word
(W) representations. Glove performs the best on only words (W) representations
with comparable results on Fast text models.

We conduct experiments with three different embedding spaces:
1) EW-Emb (entity+word embeddings)
2) Global Vectors (Glove)
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3) Fast text vectors

Paragraphs with words (W) and paragraphs with Entities + Words (E+W) on entity
annotated SQUAD dataset questions and also on the whole SQUAD dataset questions.
Table 5.16 represents the results on Whole SQUAD dataset questions and 5.17
represents the results on the entity annotated SQUAD dataset questions.

One of the goal is to evaluate the performance of the system on extracting entities
from the text. We evaluate with exact match and F1 scores on the retrieved results.
Table 5.16 shows that using entity annotations and embeddings causes the results
to fall by around 1% on the whole SQUAD dataset in comparison with EW-Emb
embeddings. This might happen because the answers often are phrases and are not
tagged as entities. However the EW-Emb embeddings space does not perform well
when used on only words, compared to Glove embeddings space. It is then difficult
to get a true conclusion about using entity embeddings on this dataset.

In Table 5.17, the questions whose answers are entities perform much better with
entity annotations and embeddings by 7% increase in performance over Glove
embeddings. The Entity+Word representation performs the best with EW-Emb space
because of presence of entity tokens with entity embeddings.

In SQUAD dataset, the answers are textual phrases sometimes containing just one
entity (like in Entity QA setting) and sometimes containing an entity along with
other surrounding contextual words which might not be entities but stop words,
pronouns etc. (whole dataset setting). In some cases even short answers which
are entities are not annotated by named entity recognition tools. Because of this
phenomenon, Entity+Word embeddings perform better only when the answers are
single entities which are short answers. Longer answer phrases are better answered
with only word embeddings.

Conclusion

Entities are widely present in open domain textual corpus and using a jointly learnt
embedding space benefits in better performance of QA with entities. We have
reported our findings of using such embeddings with an open domain QA dataset
which we have annotated with entities. Results show that the entity embeddings
improve retrieval of entity answers over the regular word embedding spaces when
the answers are entities. The performance does not improve but gets worse when
the entities are not present in the answer spans.

144 Chapter 5 Leveraging Structured and Semantic Information into Question Answering Models



In the above sections, we have discussed several ways of improving QA models which
are mainly based on neural networks. These models focus only on getting better
performance on their Top-1 accuracy scores. In the following section, we propose
to post-process the output of neural network based QA models to further improve
accuracy using semantic features from different paragraphs relative to a question.

5.5 Improving the QA Performance using Semantic
and Structured Resources in a Ranking model

Fig. 5.7: An example of answer predicitons from BIOASQ data

Question Answering systems focus mainly on optimizing Top-1 accuracy of answers.
Throughout our experiments with DRQA or PSPR model, we find that the Top-5
accuracy is always marginally higher than Top-1 accuracy. Figure 5.7 shows an
example from the BIOASQ dataset predictions by the OpenQA model. The answer
highlighted in Green is the correct answer for the question but it is present in Top-3
position.

To understand the importance of ranking Top-K predictions on the performance,
we analyze Top-5 predictions on obtained from a QA model on a open domain
dataset and a biomedical domain dataset. We first present the open domain analysis
on SQUAD dataset (Rajpurkar, J. Zhang, et al., 2016) consisting of only wrongly
answered questions based on the predictions by the DRQA model (Chen, Fisch, et al.,
2017). We consider only the wrongly answered set to evaluate how many answers
would have been correctly answered in the Top-5 predictions. Out of 3242 wrongly
answered questions, 1433 questions had correct answers in Top-5 predictions. 44.2%
of wrongly answered questions had a correct answer in Top-5. SQUAD dataset has

5.5 Improving the QA Performance using Semantic and Structured Resources in a Ranking
model 145



10,570 total dev questions, 13.55% (1433/10,570) of questions which are wrong in
Top-1 predictions, contained an answer in Top-5 predictions.

We report a similar analysis on BIOASQ 5B (Tsatsaronis et al., 2015) dataset on the
wrongly answered questions. We use DRQA model pre-trained on SQUAD dataset
and fine-tuned to BIOASQ 5B dataset. Out of 98 wrongly answered questions in the
overall test set, 35 questions had correct answers in Top-5 predictions. 35.71% of
wrongly answered questions had a correct answer in Top-5. BIOASQ 5B dataset has
150 overall test questions (from 5 batches), 23.33% (35/150) of questions which
are wrong in Top-1 predictions, contained an answer in Top-5 predictions.

The above statistics show that there is a scope of improvement to score better on
Top-1 using only the Top-5 predictions from the model. We experiment with other
values of Top-K by modifying K for ranking experiments. Only for the above analysis
we use Top-5 predictions.

In the case of Open Question Answering task, due to the availability of several
paragraphs which might contain the answer, the answer candidates might end up
overlapping among different paragraphs answers. This overlap feature between
these paragraphs has proven to be highly reliable for ranking answers in feature
based QA models (Grappy, Grau, et al., 2011). The same kind of data (Open Question
Answering task data with several paragraphs) is present in the BIOASQ task where
the answers are contained in more than 1 paragraph and sometimes there are zero
answers.

In order to take into account, the possibility of answer overlap among different
paragraphs along with the other explicit semantic features we presented in the
preceding sections, we define a set of features which are detailed in the section
below and build ranking models based on Top-K answers predicted by the OpenQA
system.

5.5.1 Modelling

In this study, we intend to rank the predictions of the chosen OpenQA model,
therefore we present in detail its overall process.

The Paragraph Reader model extracts answer spans as shown in the DRQA model
(Chen, Fisch, et al., 2017). The model gives two probabilities (one for start and one
for end token given by two classifiers) as described in equation 5.7 and 5.8. The
answer probability Pr (a|q, pi) for each answer span where pi is ith paragraph in
Paragraph set P is computed as shown in the equation 5.9.
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Prs(i) ∝ exp (piWsq) (5.7)

Pre(i) ∝ exp (piWeq) (5.8)

Pr (a|q, pi) =
∑

j

Prs

(
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)
Pre

(
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)
(5.9)

The paragraph selector model gives a probability score Pr (pi|q, P ) for each para-
graph pi in the paragraph set P , where W is a learnt weight matrix and the probability
of each paragraph is calculated via a max-pooling and a softmax layer on question q
and paragraph p̂i inputs as shown in the equation 5.10.

Pr (pi|q, P ) = softmax

(
max

j

(
p̂j

i Wq
))

(5.10)

The softmax operation in equation 5.10 is applied over total number of paragraphs
per question therefore a probability value is predicted for each paragraph.

Combining the two probabilities (from eq.5.9 and eq.5.10), the overall answer (Top
1) is chosen by choosing the highest probable answer from Pr(a|q, P ) for a question
q which is calculated as :

Pr(a|q, P ) =
∑

pi∈P

Pr (a|q, pi)Pr (pi|q, P ) (5.11)

To perform ranking over Top-K predictions, we need K predictions for a pair of
question and a set of paragraphs. We use K as a hyperparameter and test with
different number of K.

The model of PSPR returns a Top-1 answer based on the maximum combined
probability (equation 5.11) computed by multiplying individual probabilities of
paragraph (equation 5.10) and answer (equation 5.9) per paragraph and summed
over all the paragraphs per question. In our case, we use Top-K answers using
the same formula, instead of Top-1 we choose Top-K and choose paragraph which
resulted in the prediction.
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The goal is to improve the top 1 prediction by reranking the top K predictions of the
model. We model the ranking task as a classification problem where only the top
answer prediction of the training data is marked as True class and other top K − 1
predictions are marked as False class.

For the classification task we use 1) Random Forests, 2) Adaboost, 3) MLP classifier
implementation using scikit learn28.

5.5.2 Features for classifiers

We define features for the classifiers which are 1) Single features - features computed
over a single paragraph. 2) Collective features - features computed over several
paragraphs. 3) Semantic features for dealing with EAT or LAT verification.

The input features to the classifier models are described below.

Single Features

• Answer Probability - as computed in Equation 5.9 is the probability of answer
spans obtained from the reader model (top answers have higher probabilities)

• Paragraph Probability - as computed in Equation 5.10 is the probability
of paragraph obtained from the selector model (top scored paragraphs have
higher probability to contain an answer)

• Paragraph and Answer length in characters

• Answer words overlap with paragraph words - Ratio of answer words over-
lapping with paragraph words. Length of A ∩ P

Collective Features

• Maximum value of answer probability - Maximum answer probability for a
prediction, over the number of paragraphs.

• Maximum value of paragraph probability - Maximum paragraph probability
for a prediction.

28https://scikit-learn.org/
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• Answer presence ratio - Count of number of predicted answer occurrences
across different paragraphs, which is divided by the number of paragraphs.

• Summation of answer probability - If an answer prediction is repeated
several times coming from different paragraphs, their probabilities are summed
into one value.

• Answer rank - Rank of the predicted answer according to the model.

Semantic Features

• EAT Match - Expected Answer Type from the question matching the answer’s
entity type - ’0’ when there is no EAT match, ’1’ when there is an EAT match
and ’-1’ when there is no EAT predicted in the question.

• Cosine distance between LAT and answer - Semantic feature - Lexical An-
swer Type words from questions and Answer prediction words are averaged
and checked for cosine distance between them in Glove word embeddings.

For the feature Cosine distance between LAT and answer, the LAT words are
computed using a classifier built using a CRF model named Wapiti29 by (Lavergne
et al., 2010) to determine which words in the question phrase are the LAT words.
The task is a sequence labelling task where the labels are "1" or "0" to predict if
a word belongs to a LAT or not. For the training dataset, we use the annotations
provided by (Madabushi and M. Lee, 2016) which also highlights important words
which contribute as LAT words.

For the feature EAT Match - we use the EAT Classifier explained in section 5.3.4,
which predicts an Expected Answer Type for an input question. The model is trained
on SQUAD EAT dataset provided by (Madabushi and M. Lee, 2016).

The same set of features (except the EAT Match) apply for both open domain and
biomedical datasets. We define some additional ones for Biomedical domain as listed
below.

• Lexical Answer Type UMLS semantic Type match - LAT word predicted using
Wapiti is annotated with Metamap for UMLS semantic type which is checked
for matching with Answer’s UMLS semantic type.

29https://wapiti.limsi.fr/
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• Lexical Answer Type UMLS semantic Group match - LAT word predicted
using Wapiti is annotated with Metamap for UMLS semantic group which is
checked for matching with Answer’s UMLS semantic group.

• Lexical Answer Type UMLS CUI match - LAT word predicted using Wapiti is
annotated with Metamap for CUI (Concept Unique Identifier) which is checked
for matching with Answer’s CUI.

The above features are marked as ’0’ when there is no match, ’1’ when there is a
match and ’-1’ when there is no EAT predicted in the question.

5.5.3 Experiments and Results

Classifiers

We experiment with a few classifiers which takes as input, numerical features and
predicts either True or False for input data. The scikit learn package provides several
algorithms for binary classification, we experimented with 10 different classifiers
mentioned in the post30 which compares different algorithms. We report results on
top 3 better performing classifiers - Randomforests, Adaboost and MLP Classifier.

Open Domain Data

Algorithm Accuracy
PSPR - Baseline 41.1
Randomforest 42.86
Adaboost 43.23
MLP classifier 42.23

Tab. 5.18: Experiments on QUASAR-T dataset using different algorithms with best hyper
parameters with all features Single, Collective and Semantic features from above.
The best K value was found to be 3 on this dataset.

We experiment with QUASAR-T dataset which is an OpenQA dataset with several
paragraphs per question. QUASAR-T dataset contains 37,012 training dataset ques-
tions and 3,000 dev and test dataset questions each. Results shown in Table 5.18 is
conducted using all the features explained in the section above using three different
algorithms. The results reported are chosen based on the best performing scores
validated on the official dev set and tested on the official test set. For all the classifiers
30https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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mentioned in the table 5.18, the hyperparameter Number of estimators was tested
with different values from 0 - 2000 and the best performing score on dev set was
chosen and results on the test set are reported.

For each question, we consider the answers which are predicted as True class and
consider Top-1 as the highest scored candidate. If there is no True class prediction
for a question, we consider the False class prediction with lowest scored candidate.

Top-K Accuracy
1 - Baseline 41.1
2 42.40
3 43.23
4 43.03
5 42.9
6 42.8
10 42.63

Tab. 5.19: Experiments on choosing K value for Top-K predictions using Adaboost algorithm
with all features mentioned above on QUASAR-T dataset.

Adaboost algorithm performs better than the other two models and beats the baseline
score of PSPR model by 2%. The baseline scores is computed on the predictions
taken by the model implementation provided on the author’s Github31 page. The K
value for Top-K predictions for the above set of experiments was 3.

Results shown in Table 5.19 show that choosing K value as 3 fetches the best result
on Adaboost algorithm. The more K value is increased, the lesser the accuracy
because of imbalance in True and False classes for Top-1 data which leads to more
negative samples.

Feature ablation

In order to understand which feature is more important compared to the rest, we
do a feature ablation test by using scikit learn feature importance plot and the list
below represents the 5 most important features in decreasing order of magnitude.

1. Maximum value of paragraph probability - Max Para. Prob. - 28.46%

2. Answer presence ratio - 27.69%

3. Summation of answer probability - 15.38%
31https://github.com/thunlp/OpenQA
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4. Paragraph Probability - Sent. Prob. - 09.23%

5. Answer Probability - 06.15%

Features removed from the best model Accuracy
Best model score 43.23
- Summation of answer probability 43.03
- Answer presence ratio 42.53
- Maximum value of paragraph probability 42.23
- Sentence Probability 43.2
- Answer Probability 43.06
- (Summation of Ans Prob. + Answer presence ratio) 42.46
- (Maximum value of paragraph probability + Answer presence ratio) 41.36

Tab. 5.20: Experiments on Feature ablation and importance of features. Computing de-
crease in performance when certain features are removed from the input

To understand the importance of input features, we remove some features listed in
the 5 most important features from above, and run the experiment to compute the
decrease in performance. Results shown in Table 5.20 highlight the importance of
choosing right features to increase performance. These features are important and
sufficient to model the complexity of the input. Removing some features penalizes
the performance. The most impactful features according to the above experiments
were Maximum value of paragraph probability and Answer presence ratio, removing
these two features drops the performance by 1.87%.

BIOASQ dataset

BIOASQ task expects Top-5 answers per questions to evaluate Strict Accuracy (Top-1)
and Lenient Accuracy (Top 5). Therefore in this case, we use Top-K as Top-5 for this
purpose. That is why Lenient Accuracy remains the same in all experiments. In
the previous set of experiments on open domain data in table 5.19, we found that
choosing Top 3 answers performed with better results for Top 1 ranking, and the
performance decreased upon increasing K value because of increasing number of
negative answers in the data. Therefore we do not increase above 5.

In this set of experiments, the baseline system is the output from PSPR model
evaluated using official BIOASQ evaluation. From the results it is clear that the
Randomforest algorithm performs better when comparing with the rest. We evaluate
this the same way do with QUASAR-T dataset by considering a dev set to check for
the best hyper parameter and later apply it on the official test sets.
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Datasets Finetune BIOASQ 4 BIOASQ 5 BIOASQ 6
Strict 30.31 46.83 42.79

Baseline Lenient 45.00 52.66 53.41
Strict 39.37 44.00 45.96

Adaboost Lenient 45.00 52.66 53.41
Strict 38.75 46.00 46.58

Randomforest Lenient 45.00 52.66 53.41
Strict 34.37 46.00 38.50

MLP Lenient 45.00 52.66 53.41
Tab. 5.21: Experiments using different algorithms with best hyper parameters with all

features listed above for biomedical domain

Results shown in table 5.21 highlight the gain in the performance of Strict Accuracy
scores. For BIOASQ 4 and BIOASQ 6 datasets, there is an increase in performance,
but for BIOASQ 5 there is a small decrease in performance.

Feature ablation is important to understand which feature plays important role in
the classification. Here are the few important features as calculated using scikit learn
feature important plot. The list below represents the 5 most important features in
decreasing order of magnitude.

1. Maximum value of answer probability - 21.87%

2. Answer words overlap with paragraph words - 15.28%

3. Paragraph Probability - 11.72%

4. Lexical Answer Type UMLS semantic Type match - 10.06%

5. Lexical Answer Type UMLS CUI match - 09.82%

Features removed Finetune BIOASQ 4 BIOASQ 5 BIOASQ 6
Strict 38.75 46.00 46.58

Best model score Lenient 45.00 52.66 53.41

- Max. Ans Probability
Strict 38.75 43.33 44.72

Lenient 45.00 52.66 53.41

- Answer overlap
Strict 38.75 45.33 45.96

Lenient 45.00 52.66 53.41

- LAT Semantic Type
Strict 38.75 45.33 45.96

Lenient 45.00 52.66 53.41

- Paragraph Probability
Strict 38.75 44.66 45.96

Lenient 45.00 52.66 53.41

- (Feature 1 and 2)
Strict 37.5 42.66 44.72

Lenient 45.00 52.66 53.41
Tab. 5.22: Experiments on Feature ablation and importance of features.
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The most impactful features according to the above experiments were Maximum
Answer Probability and Answer words overlap with paragraph words, removing these
two features drops the performance by more than 1% on average on all the three
datasets. The semantic feature of LAT UMLS semantic type match has an impact on
the classifier performance which shows a decrease in performance when removed.

Conclusion

With the above set of experiments, we try to rank the predictions obtained from a
neural network to further improve the accuracy. In the case of open domain data
and two sets of biomedical domain datasets, the traditional ML classifiers work
better and improve the scores up by some margins, which gives an opportunity for
improving results of deep learning models.

5.6 Applying the Open QA model on different
datasets

Question answering systems have evolved over time, the former pipeline systems
focused on answering a question by performing document retrieval, followed by
paragraph ranking, and answer extraction. And currently individual task based
systems which focus on individual tasks such as paragraph ranking or answer
extraction have emerged. The goal always has been to build end-to-end systems
where one model does it all, but since it is a hard task to tackle for a single model,
smaller goal oriented systems are built.

Since there are different models for different individual tasks, different datasets with
different task goals exist. In this section, we try to use existing datasets which were
primarily built for a different task in a way that the pipeline approach would fit and
show more realistic version of the task implementation on the datasets.

For example, SQUAD dataset by (Rajpurkar, J. Zhang, et al., 2016) assumes that the
relevant paragraphs always exist for a question and the systems built on this dataset
should comply to this assumption. But generally getting relevant paragraphs itself is
a hard task which has been researched for decades. Therefore only Open Question
Answering scenario is feasible as some paragraphs may not be relevant. Therefore
we try to use SQUAD in such a way that it would fit as a Open Question Answering
task.
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5.6.1 OpenQA on SQUAD dataset

One way to use a Reading Comprehension task dataset as a OpenQA dataset is by
completely ignoring paragraphs and using an IR engine to fetch the paragraphs and
using it as input as done by (Chen, Fisch, et al., 2017). In this case, the IR engine
retrieval was not based on a machine learning model but used as an off-the-shelf
tool. Another way to build an end-to-end open domain question answering model is
to modify the retrieval phase as a weakly supervised task and build an end-to-end
with a single large scale model as done by (K. Lee et al., 2019) using the BERT
model.

In our work, we consider the SQUAD dataset and the paragraphs, and split the
paragraphs into sentences. In this setting we will only have one sentence with a
correct answer and all other sentences will be marked negative as they do not have an
answer. We hypothesize that determining a relevant sentence and extracting answers
from it will be better than extracting answers from a lengthy paragraph which
contains irrelevant sentences to the question. We call this dataset as SQUAD-SENT
dataset.

SQUAD-SENT dataset has been experimented on Answer Sentence Selection task in
section 5.3. In this section we apply the SQUAD-SENT dataset on OpenQA task for
answer extraction.

Model Accuracy
SQUAD-RC by (Chen, Fisch, et al., 2017) 69.5
SQUAD-SENT on PSPR 50.10
SQUAD-OPEN by (K. Lee et al., 2019) 26.5
SQUAD-OPEN by (Chen, Fisch, et al., 2017) 27.1
SQUAD-OPEN BM25+BERT by (K. Lee et al., 2019) 28.1

Tab. 5.23: Results on SQUAD variant dev datasets in Open Domain Question Answering
and Reading Comprehension settings

The results presented in Table 5.23 are on different variants of SQUAD datasets but
evaluated for the same answer extraction task as done in official SQUAD evluation
setting. SQUAD-RC by (Chen, Fisch, et al., 2017) is the DRQA model scores on the
SQUAD dataset with correct paragraphs.

SQUAD-SENT is a sentence level dataset which contains 1 correct sentence with an
answer and rest are wrong sentences. The results presented above on SQUAD-SENT
dataset is on the model of PSPR by (Y. Lin et al., 2018).
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SQUAD-OPEN is an open setting where no paragraphs are given and the model
itself uses some techniques to first retrieve a paragraph and then perform answer
extraction. The results presented above by (K. Lee et al., 2019) uses a BERT model
approach and learns the paragraph retrieval and answer extraction end-to-end using
a weakly supervised approach. The DRQA model by (Chen, Fisch, et al., 2017)
on the SQUAD-OPEN dataset setting use an answer retriever and answer reader
in cascading fashion. Their model fetches better result than BERT (K. Lee et al.,
2019) on SQUAD-OPEN data setting. The authors of (Chen, Fisch, et al., 2017)
implement their own IR model (based on TF-IDF weighted bag-of-word vectors
and include bi-gram features) without using machine learning for fetching relevant
paragraphs.

An important highlight from these experiments is that the performance of the state-
of-the-art model BERT (Devlin et al., 2018) on SQUAD v1.0 dataset is 87%, and
the same model modified to SQUAD-OPEN dataset setting which does not provide a
relevant paragraph to the model fetches 26.5% (K. Lee et al., 2019) on an end-to-
end OpenQA BERT model. It is the similar case even for the DRQA model (Chen,
Fisch, et al., 2017) which fetches 69.5% on SQUAD v1.0 dataset whereas the same
model fetches 27.1% on SQUAD-OPEN dataset setting. This shows the wide gap in
performance drop when the relevant paragraphs are not provided to the models.

Conclusion

The three different approaches with the above results show how different models
trained on SQUAD dataset (some in a realistic setting without always containing
a positive paragraph) cripples upon not having always some positive samples. As
discussed in Chapter 4 and highlighted by (Talmor and Berant, 2019), current state-
of-the-art deep learning models for QA are often overfitting on the task datasets and
failed to generalize. In this set of experiments we show that these task datasets which
are designed with specific goals do not perform similarly when some assumptions
do not apply.

End-to-end models for overall Question Answering (OpenQA) seems to under per-
form even when pre-trained models like BERT are used. This shows the complexity of
the overall QA task (fetching relevant paragraphs and extracting answers together).
Task specific models like Reading Comprehension tasks are simplified QA tasks whose
performance cannot be directly compared to OpenQA tasks.
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5.6.2 TrecQA as OpenQA task

TrecQA task had been a widely popular QA task in the past that has released several
small scale datasets released during 1999-2004 that are in different formats. From
2007 onwards, (M. Wang, Smith, et al., 2007) created and used these datasets for
Answer Sentence Selection task and a lot of works32 followed after that used this
dataset for the same task.

TrecQA task organizers originally released a regex pattern answer set for the QA
datasets which were used to judge the correct answers automatically. We use this
pattern set to obtain the answer spans for the paragraphs in the well known TrecQA-
13 (2004) dataset by (M. Wang, Smith, et al., 2007). We use the same regex patterns
to determine the answer span from the answer paragraphs. We create a dataset with
answer paragraphs and answer spans from the paragraph if they are relevant, if
the paragraphs are not relevant then there will not be an answer in it. We call this
dataset as TrecQA-RC and we release this publicly33. The number of questions and
paragraphs are the same as the one created by (M. Wang, Smith, et al., 2007) but
contains a binary label signifying the relevance of the paragraphs along with added
information.

We apply a QA model on this dataset to have a baseline score. Since TrecQA dataset
has both relevant and irrelevant snippets, it is more suitable for OpenQA task to be
applied, so we apply the model of PSPR on this dataset to report the performance.

Experiments and Results

TrecQA train dataset (∼1,000 questions) is relatively very small compared to the
scale of QUASAR-T dataset (∼40,000 questions) which is another dataset of the
same type. We experiment by training a model just on the TrecQA dataset and
predict on the test set. We also experiment using the pre-training and fine-tuning
approach by first training on QUASAR-T dataset and later finetuning on the TrecQA
dataset.

In table 5.24, we compare the previous state-of-the-art model results which used
non neural network approaches (Severyn and Moschitti, 2013; Yao et al., 2013a)
which report results on answer extraction task on TrecQA dataset without releasing
the dataset for this task. Both the models fetch better scores by atleast 9% higher
than the neural network models which we detail below.

32https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
33https://github.com/rsanjaykamath/trecqa-rc
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Model Accuracy
Sequence tagging model by (Yao et al., 2013a) 67.2
Tree kernels methods by (Severyn and Moschitti, 2013) 70.8
Trec only 45.68
Pretrained with QUASAR-T 49.38
RC mode 58.02

Tab. 5.24: Results on using TrecQA dataset for OpenQA task

We use the OpenQA model PSPR with TrecQA dataset for all experiments with slight
variations. Trec only experiment is trained and tested only on TrecQA dataset using
the PSPR model. Since the TrecQA dataset is small scale, we use a "pretrain and
finetune" method. Pretrained with QUASAR-T experiment is pre-trained firstly on
QUASAR-T dataset and fine-tuned with TrecQA dataset.

Training a DNN model for the small scale TrecQA dataset although fetches relatively
similar results to compared to the pre-trained ones with QUASAR-T, it is always
better to pre-train when there is a large scale dataset with similar task at disposal.

Our model of RNN-SIMILARITY (Kamath et al., 2019) on Answer Sentence Selection
task has results of 85.2% MAP on TrecQA dataset for selecting the right answer
sentence. But using a similar RNN model like PSPR on OpenQA task which uses
paragraph selection and extraction module fetches around 45.68% results which is
low for the answer extraction objective.

The assumption of always having an answer in the paragraph in datasets like SQUAD
v1.0 gave rise to a huge amount of DNN based models on Reading Comprehension
task. We experiment with the same assumption by having only relevant paragraphs
(paragraphs with answers) to perform answer extraction. We term it as the RC
mode where the paragraphs always contain an answer. We use the model of DRQA
on this dataset. As expected from the previous experiments above, the Reading
Comprehension - RC mode fetches the better scores than OpenQA mode on the
TrecQA answer extraction as all the snippets are relevant.

The above results highlight that using neural network models does not always
necessarily fetch better results than the non neural network models.
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5.7 Conclusion

Specific domains, like biomedical domain, have plenty of resources handcrafted
or generated or annotated by human experts. Using this along with plain text
corpus for question answering is a challenging task and is not trivial. In this
chapter, we addressed one of our research questions on leveraging these expert
curated knowledge sources and semantic information effectively into state-of-the-art
question answering models on biomedical domain and open domain systems (with
other types of information apart from free text) to improve their performances.

Our goal was to utilize the availability of different sources of information and tools
to enrich the plain text datasets with additional information for question answering.
We believe that extracting features from text using knowledge sources and inputting
them in different ways to deep learning models will have some positive impact.
Since deep learning models are not best suited for small scale datasets, results on
methods involving pre-training and fine-tuning can further improve scores if domain
specific information is used in correct ways.

We highlighted the problem of lacking answer variants in biomedical domain dataset
BIOASQ and manually annotated answer variants to show the significant difference
the same model fetches upon annotating the answer labels correctly. We also
proposed a method to automatically generate these variants using Metamap tool
which fetched similar or even better results in some sets compared to manually
annotated answers.

We presented the use of Expected Answer Types in question answering by verifying
the presence of it in the answers. In both biomedical domain data and open domain
data, there is a scope of improvement of QA model performance because there is
a significant amount of wrongly answered questions whose answer types match
Expected Answer Types from questions.

We used the Expected Answer Types to highlight entities in plain text by using a
special method of annotation and entity embeddings to input this information.
These methods for open domain works well for Answer Sentence Selection which
scores better than merely on plain text data of TrecQA dataset. This method however
works better on Reading Comprehension task only when the answers consists of
entities and not long text phrases, the Reading Comprehension model performs better
at finding the right answer entities on SQUAD dataset.

Since deep learning models almost always focus towards building end-to-end systems,
not much emphasis is put towards post processing of the outputs to better rank the
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Top-K predictions. We used some traditional machine learning binary classification
models to rank a better answer candidate into Top-1 position and showed that there
was a scope for improvement on the predictions from the neural network models.
This applies both on biomedical question answering and open domain question
answering models on Open QA task.

We found that some datasets like SQUAD which focuses on Reading Comprehension
task performs poorly when the relevant paragraphs are removed and the task is
modified into an OpenQA task. We applied OpenQA models on SQUAD dataset which
is modified as a sentence level OpenQA task and showed the performance drop.
We created an Open QA version of TrecQA task by adding answer spans from the
paragraphs which can be extracted using the answer patterns provided by Trec.
We presented some baselines scores using PSPR model and Reading Comprehension
models on this dataset.

Inspite of using state-of-the-art massive language models like BERT, the performance
on OpenQA tasks such as SQUAD-OPEN as shown by the authors of (K. Lee et al.,
2019) is very low (26.5 on the end-to-end BERT model). This highlights the low
performance on overall QA task with current state-of-the-art models.

Our publications related to the work described in this chapter are listed below:

• 2019 - Predicting and Integrating Expected Answer Types into a Simple
Recurrent Neural Network Model for Answer Sentence Selection. - Sanjay
Kamath, Brigitte Grau, Yue Ma. 20th International Conference on Compu-
tational Linguistics and Intelligent Text Processing - CICLING 2019, April
2019.

• 2018 - An Adaption of BIOASQ Question Answering dataset for Machine
Reading systems by Manual Annotations of Answer Spans. - Sanjay Ka-
math, Brigitte Grau, Yue Ma. Proceedings of the 6th BioASQ Workshop A
challenge on large-scale biomedical semantic indexing and question answering.
EMNLP, October 2018.

• 2018 - Verification of the Expected Answer Type for Biomedical Question
Answering. - Sanjay Kamath, Brigitte Grau, Yue Ma. HQA workshop, compan-
ion proceedings of the The Web Conference 2018, April 2018.

• 2017 - A Study of Word Embeddings for Biomedical Question Answer-
ing. - Sanjay Kamath, Brigitte Grau, Yue Ma. 4e édition du Symposium sur
l’Ingénierie de l’Information Médicale, November 2017.
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6Conclusion and Future
Perspectives

In the context of GoASQ project1, our goal was to investigate, compare and combine
different approaches for answering questions formulated in natural language over
textual data using semi-structured and structured data.

We introduced question answering by defining and explaining the general process,
different types of tasks, different kinds of data used. Different QA systems are built
based on different types of tasks. In this thesis, we detailed all the above aspects
for the three tasks: Reading Comprehension, Answer Sentence Selection and Open
Question Answering, and report experiments on several datasets on these tasks.

One of our research focuses was towards building better QA systems for domain
specific datasets like biomedical domain data, although open domain is also studied
on certain tasks, such as answer sentence selection. We listed some of the hurdles
we encountered while building a deep learning based QA system using deep learning
models and our research questions were aligned towards addressing them:

1. How can we build models which work both on small scale and large scale
datasets without dropping performance?

2. How can we leverage semantic and structured knowledge effectively into
state-of-the-art question answering models?

We found that a hybrid QA system that can deals with these two aspects worked
the best for the QA task in biomedical domain - the BIOASQ task. In the chapter
4 we proposed to model the task as an OpenQA task which performed the best
and outperformed the state-of-the-art models which model BIOASQ as a Reading
Comprehension task. We showed that pre-training on multiple Reading Comprehension
datasets obtained the best performance scores on a state-of-the-art model for BIOASQ.
In the chapter 5, we proposed a method to annotate the answer variants in the
training and test sets automatically which improved results by a large margin. This
constitutes a realistic evaluation of the system performance. We also proposed to

1https://goasq.lri.fr/

161



use using semantic and structured information features from different paragraphs
and showed that it improved the performance on the BIOASQ task.

In summary, to build a best performing model for BIOASQ QA task, we conclude
that one can use multiple datasets in combination to pre-train the model, and
fine-tune it on all answer variants which can be annotated automatically. The
predictions from the above process can be further improved for better accuracy using
the ranking model which uses semantic and structured information features at the
post-processing phase.

In the following, we summarize the hybrid QA system details from both hybrid
model and hybrid data point of view and give some future perspectives.

Building Models for Small Scale and Large Scale Datasets

The chapter 4 presents our work on building better models for question answering
which suits both small scale and large scale datasets. The definition of Hybrid Data
in this context refers to building models which are trained on different datasets from
different domains to perform well on QA tasks.

Using deep learning models on small scale datasets will not fetch optimal results.
One of our first goals was to adapt deep learning models to work on small scale
datasets effectively. Therefore we began by choosing a model which worked well
on open domain QA dataset and adapted it to biomedical domain. This process is
called as domain adaptation. We formally defined domain adaptation which we
use extensively in many experiments. We adapted a RNN based QA model which
was built on open domain datasets such as SQUAD, towards biomedical dataset
BIOASQ. We show the importance of doing domain adaptation by comparing results
on models with and without domain adaptation.

According to this study, we believe that the domain adaptation will play a major
role for small scale and domain specific datasets. Mainly because creating large
scale datasets is not an easy task and it is more difficult and expensive when the
data is domain specific. Domain adaptation and transfer learning are the two most
important research disciplines to facilitate current open domain models to be used
on small scale datasets and different tasks.

While performing domain adaptation, we came across another way of modelling the
BIOASQ task, the OpenQA task, open domain question answering. It turns out that
OpenQA is more suitable for BIOASQ task than Reading Comprehension task because
of the nature of BIOASQ data which contains relevant and irrelevant paragraphs in
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the data relative to the gold standard answers provided. We compared two RNN
based models on these two tasks and adapt these models to biomedical domain. We
found that OpenQA model of PSPR better performed than the model of Reading
Comprehension task, which was the DRQA model. We presented some factors which
we considered as important before choosing a model to experiment and explained
why we did some of our choices of models.

Several ways of modelling reading comprehension task have been proposed lately
from works such as HotpotQA (Zhilin Yang, Qi, et al., 2018) and DROP (Dua et al.,
2019) which point out the simplicity of the original task defined by SQUAD dataset
(Rajpurkar, J. Zhang, et al., 2016). Harder QA tasks and datasets create a demand
for new models which focus on tackling these problems.

While performing above experiments, we wondered about pre-training the models
on different datasets. Therefore we experimented with different Reading Compre-
hension datasets by keeping the same model architecture and hyperparameters.
We showed the variability in the performance on downstream domain adaptation
when the initial models are trained with different datasets. SQUAD 2.0 dataset by
(Rajpurkar, Jia, et al., 2018) was the best performing single dataset for pre-training
the models. A combination of 4 Reading Comprehension datasets for pre-training
performed the best on the fine-tuning for BIOASQ dataset. For the above experi-
ments, we used BERT model by (Devlin et al., 2018) which was the state-of-the-art
model while experimenting. We also compared different pre-trained BERT models
and found BIOBERT (J. Lee et al., 2019) to be the best model for biomedical domain
adaptation.

More data leads to better performance has been proven for biomedical domain
adaptation in our experiments. In the future, we believe that more datasets should
be built by explicit mention of possible biases attached with the datasets to make
more people aware about the consequences.

Towards the goal of building end-to-end models which do not use explicit features but
perform feature extraction themselves, less emphasis is put on classical techniques
which have addressed the fundamental problems of question answering and have
proposed certain useful features and methods to handle certain types of data. More
emphasis should be put on creating diverse datasets, careful analysis of bias, and
most importantly highlight where the model fails to fetch correct answers which
provides insights on improvements required for future work. But the research articles
published in the recent times do not address any negative results from the models,
and also seldom do error analysis.
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Leveraging Structured and Semantic Information into
Question Answering Models

The Chapter 5 presents our work on leveraging semantic and structured knowledge
effectively into state-of-the-art question answering models on biomedical domain
and open domain systems to improve their performances.

Our goal was to utilize the existing information from different sources and tools
to enrich plain text datasets. Our hypothesis was that the deep learning based QA
model can be further improved using semantic and structured information from
external sources pertaining to the input text. The definition of Hydrid Data in this
context refers to using open domain data with domain specific data in a domain
adaptation process, plus integrating structured knowledge for annotating training
datasets and for enriching the input data. The definition of Hybrid model in this
context refers to an addition of a post processing reranker to account for structured
knowledge and collective features obtained from different paragraphs.

In this regard, we highlighted the problem of lacking answer variants in biomedical
domain dataset BIOASQ and showed a large performance difference when all the
answer variants are annotated and when the model learns from such annotated
data. We provided manual annotations for these answer variants and proposed an
automatic method which uses UMLS meta-thesaurus to generate these annotations
which fetched similar results. We release the manual annotations online2 along with
the code to generate automatic variants3.

In terms of future perspectives on the BIOASQ task and the dataset, we believe that it
is important to focus research on providing better annotations, proposing guidelines
for people from other domains, and performing fine grained analysis on the dataset
instead of just focusing on building better models which improves accuracy.

We presented the use of Expected Answer Types in question answering by verifying
the presence of it in the answers. In both biomedical domain data and open domain
data, there is a scope of improvement of QA model performance because there is a
significant amount of wrongly answered questions whose correct answer type match
as of the Expected Answer Type. On open domain, we presented some statistics of
SQUAD dataset questions containing Expected Answer Types as predicted by a model
of (Madabushi and M. Lee, 2016) and on the biomedical domain, we presented
some statistics on the BIOASQ dataset questions containing Lexical and Expected

2https://zenodo.org/record/1346193#.W3
3https://github.com/rsanjaykamath
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Answer Types annotated by (Neves and Kraus, 2016) to support the above study on
verification.

We use the Expected Answer Types to highlight entities in plain text by using a
special method of annotation and special embeddings to input this information.
These methods for open domain work well for Answer Sentence Selection. We
release the code for the model used in this experiment4. This method however
works better on Reading Comprehension task only when the answers consists of
entities and not long text phrases. The Reading Comprehension model performs
better at finding the right answer entities on SQUAD dataset. In the context of
Expected Answer Types from input questions, we released the model5 which predicts
an Expected Answer Type for input questions.

In terms of future perspectives we believe that neural models must better integrate
entity representations of knowledge coming from free text as well as from structured
resources like ontologies, knowledge bases. Works such as (Ferré, 2019) align two
different types of vector representations that capture part of their meanings with
entities and text in the form of word embeddings and ontology concepts in the form
of concept embeddings. The alignment is done in a supervised manner. This can be
further extended towards complex tasks like question answering where the model
integrates the knowledge from two sources while learning.

Since deep learning models almost always focus towards building end-to-end systems,
not much emphasis is put towards post processing of the outputs to further improve
predictions. We use some traditional machine learning models like randomforests,
adaboost, multilayer perceptron etc. for binary classification to rank a better answer
candidate into Top-1 position and show that there is a scope for improvement on
the predictions from the neural network models. This applies both on biomedical
question answering and open domain question answering models on Open QA
task.

Using classical ML techniques to improve predictions from deep learning models
are advantageous in the following ways: 1) Cheaper compute costs to improve
predictions than train a complex model. 2) Faster inference times. These classical
ML models might not be applicable for the overall QA task, but does improve scores
when used on the outputs of a deep learning model to further improve scores.

In the analysis of (Talmor and Berant, 2019), the authors point out the overfitting of
models to particular task and datasets they are trained. We find that some datasets
like SQUAD which is focused on Reading Comprehension task performs poorly when

4https://github.com/rsanjaykamath/RNN-Similarity
5https://github.com/rsanjaykamath/EAT-classifier
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the relevant paragraphs are removed and the task is modified into an OpenQA task.
We apply OpenQA models on SQUAD dataset which is modified as a sentence level
OpenQA task and show the performance drop. We create an Open QA version of
TrecQA task by adding answer spans from the paragraphs which can be extracted
using the answer patterns provided by Trec. We present some baselines scores
using PSPR model and Reading Comprehension models on this dataset. We release
this dataset online6. An end-to-end model for the OpenQA task was first proposed
by Lee et al. (K. Lee et al., 2019), which learns the retrieval and the extraction
phase together. This is one of the first works which aims at building an end-to-end
model for the overall QA task. The low results obtained using the latest state-of-
the-art model shows the real complexity of the overall QA task which cannot be
easily addressed using a single end-to-end deep learning model including the latest
pre-trained language models like BERT.

While we performed the majority of the above set of experiments, the contextual
language models such as BERT by (Devlin et al., 2018) had not been released.
Ever since then, the large scale pre-trained language models (LM) have changed
the way most of the NLP tasks are addressed today. Earlier models used CNNs or
RNNs with attention mechanisms for many tasks which are now being replaced by
these large scale LM models like BERT. We believe these new models have a large
scope for various NLP tasks and the traditional ML models like the classifiers we use
(randomforests, adaboost etc.) still hold good in certain cases where the dataset size
is small scale and might require domain expertise.

An end-to-end OpenQA model (K. Lee et al., 2019) which uses these pre-trained
contextual language models failed to obtain equivalent scores compared to LSTM
based models that use a pipeline approach. This shows the complexity involved in
building end-to-end models for overall OpenQA task. We believe that an hybrid
modelling approach is the way forward to build better systems on overall question
answering task.

6https://github.com/rsanjaykamath/trecqa-rc
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Résumé : La recherche de réponses à des questions 
relève de deux disciplines : le traitement du langage 
naturel et la recherche d’information. L’émergence 
de l’apprentissage profond dans plusieurs domaines 
de recherche tels que la vision par ordinateur, le 
traitement du langage naturel etc. a conduit à 
l’émergence de modèles de bout en bout. Les travaux 
actuels de l’état de l’art en question-réponse (QR) 
visent à mettre en œuvre de tels modèles. 
 
Dans le cadre du projet GoASQ, l’objectif est 
d’étudier, comparer et combiner différentes 
approches pour répondre à des questions formulées 
en langage naturel sur des données textuelles, en 
domaine ouvert et en domaine biomédical. Ce travail 
se concentre principalement sur 1) la construction de 
modèles permettant de traiter des ensembles de 
données à petite et à grande échelle, et 2) 
l’exploitation de connaissances sémantiques pour 
répondre aux questions par leur intégration dans les 
différents modèles. Nous visons à fusionner des 
connaissances issues de textes libres, d’ontologies, 
de représentations d’entités, etc.  
 
Afin de faciliter l’utilisation des modèles neuronaux 
sur des données de domaine de spécialité, nous nous 
plaçons dans le cadre de l’adaptation de domaine. 
Nous avons proposé deux modèles de tâches de QR 
différents, évalués sur la tâche BIOASQ de réponse à 
des questions biomédicales. Nous montrons par nos 
résultats expérimentaux que le modèle de QR ouvert 
convient mieux qu’une modélisation de type 
Compréhension machine. Nous pré-entrainons le 
modèle de Compréhension machine, qui sert de base 
à notre modèle, sur différents ensembles de données 
pour montrer la variabilité des performances. Nous 
constatons que l’utilisation d’un ensemble de 
données particulier pour le pré-entraînement donne 
les meilleurs résultats lors du test et qu’une 
combinaison de quatre jeux de données donne les 
meilleurs résultats lors de l’adaptation au domaine 
biomédical.  

Nous avons testé des modèles de langage à grande 
échelle, comme BERT, qui sont adaptés à la tâche 
de réponse aux questions. Les performances 
varient en fonction du type des données utilisées 
pour pré-entrainer BERT. Ainsi, le modèle de langue 
appris sur des données biomédicales, BIOBERT, 
constitue le meilleur choix pour le QR biomédical. 
 
Les modèles d’apprentissage profond visent à 
fonctionner de bout en bout. Les informations 
sémantiques provenant de sources de 
connaissances construites par des experts n’y sont 
généralement pas introduites. Nous avons annoté 
manuellement et automatiquement un jeu de 
données par les variantes des réponses de BIOASQ 
et montré l’importance d’apprendre un modèle de 
QR avec ces variantes. Ces types sont ensuite 
utilisés pour mettre en évidence les entités dans les 
jeux de données, ce qui montre des améliorations 
sur l’état de l’art. Par ailleurs l’exploitation de 
représentations vectorielles d’entités dans les 
modèles se montre positif pour le domaine ouvert. 
 
Nous faisons l’hypothèse que les résultats obtenus 
à partir de modèles d’apprentissage profond 
peuvent être encore améliorés en utilisant des 
traits sémantiques et des traits collectifs calculés à 
partir des différents paragraphes sélectionnés pour 
répondre à une question. Nous utilisons des 
modèles de classification binaires pour améliorer la 
prédiction de la réponse parmi les K candidats à 
l’aide de ces caractéristiques, conduisant à un 
modèle hybride qui surpasse les résultats de l’état 
de l’art. Enfin, nous avons évalué des modèles de 
QR ouvert sur des ensembles de données 
construits pour les tâches de Compréhension 
machine et Sélection de phrases. Nous montrons la 
différence de performance lorsque la tâche à 
résoudre est une tâche de QR ouverte et 
soulignons le fossé important qu’il reste à franchir 
dans la construction de modèles de bout en bout 
pour la tâche complète de réponse aux questions. 
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Abstract : Question Answering is a discipline which 
lies in between natural language processing and 
information retrieval domains. Emergence of deep 
learning approaches in several fields of research such 
as computer vision, natural language processing, 
speech recognition etc. has led to the rise of end-to-
end models. 
 
In the context of GoASQ project we investigate, 
compare and combine different approaches for 
answering questions formulated in natural language 
over textual data on open domain and biomedical 
domain data. The thesis work mainly focuses on 1) 
Building models for small scale and large scale 
datasets, and 2) Leveraging structured and semantic 
information into question answering models. Hybrid 
data in our research context is fusion of knowledge 
from free text, ontologies, entity information etc. 
applied towards free text question answering. 
 
The current state-of-the-art models for question 
answering use deep learning based models. In order 
to facilitate using them on small scale datasets on 
closed domain data, we propose to use domain 
adaptation. We model the BIOASQ biomedical 
question answering task dataset into two different 
QA task models and show how the Open Domain 
Question Answering task suits better than the 
Reading Comprehension task by comparing 
experimental results. We pre-train the Reading 
Comprehension model with different datasets to 
show the variability in performance when these 
models are adapted to biomedical domain. We find 
that using one particular dataset (SQUAD v2.0 
dataset) for pre-training performs the best on single 
dataset pre-training and a combination of four 
Reading Comprehension datasets performed the 
best towards the biomedical domain adaptation.  

We perform some of the above experiments using 
large scale pre-trained language models like BERT 
which are fine-tuned to the question answering 
task. The performance varies based on the type of 
data used to pre-train BERT. For BERT pre-training 
on the language modelling task, we find the 
biomedical data trained BIOBERT to be the best 
choice for biomedical QA. Since deep learning 
models tend to function in an end-to-end fashion, 
semantic and structured information coming from 
expert annotated information sources are not 
explicitly used. We highlight the necessity for using 
Lexical and Expected Answer Types in open domain 
and biomedical domain question answering by 
performing several verification experiments. These 
types are used to highlight entities in two QA tasks 
which shows improvements while using entity 
embeddings based on the answer type 
annotations. We manually annotated an answer 
variant dataset for BIOASQ and show the 
importance of learning a QA model with answer 
variants present in the paragraphs.  
 
Our hypothesis is that the results obtained from 
deep learning models can further be improved 
using semantic features and collective features 
from different paragraphs for a question. We 
propose to use ranking models based on binary 
classification methods to better rank Top-1 
prediction among Top-K predictions using these 
features, leading to an hybrid model that 
outperforms state-of-art-results on several 
datasets. We experiment with several overall Open 
Domain Question Answering models on QA sub-
task datasets built for Reading Comprehension and  
Answer Sentence Selection tasks. We show the 
difference in performance when these are 
modelled as overall QA task and highlight the wide 
gap in building end-to-end models for overall 
question answering task. 
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