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Introduction

The key feature of superconductivity is a gap, ∆, in the excitation spectrum. Within the BCS theory of superconductivity, the amplitude of this gap is directly related not only to the strength of the pairing mechanism but also to the presence of excitations (quasiparticles) and their energy distribution. This is formally given by the self-consistent gap equation. While a stronger coupling constant can enhance the gap, excitations can only reduce it. Nevertheless it was recognized early on that engineering an out-of-equilibrium distribution function for the quasiparticles can lead to interesting unstable ground-states [1] or even to increase the critical temperature [2].

Quasiparticles can be excited thermally, by absorbing of radiation, and injection of nonsuperconducting electrons from a counter-electrode. When the perturbation is chargeless, which is the case for radiation or a nite temperature, only energy is transferred to the superconductor. Because of the intrinsic electron-hole symmetry of a BCS superconductor this results in a equal number of electron-like and hole like excitations. If instead a charged particle is injected into the superconductor the balance between electron and hole like excitation is broken, while charge neutrality is preserved by removing Cooper pairs from the condensate [3].

These two types of excitations correspond to dierent modes of the distribution function, called the energy and the charge mode. Formally they are classied based on the symmetry of the (nonequilibrium component) of the distribution function with respect to the Fermi level. These modes are also called longitudinal (f L ) and transverse (f T ), because they enter with a π/2 phase shift in the self-consistent gap equation [4].

The actual distribution function in the superconductor depends on quasiparticle excitation, relaxation and recombination rates. The dierent mechanisms at work set a hierarchy of the time-scales involved in relaxing f back to equilibrium. The key property of outequilibrium superconductivity is that quasiparticle recombination occurs through the emission of low energy phonons [5], where the excess energy is carried away by the phonon. As the density of states of phonons at energies of the order the superconducting gap (≈ 1meV) is low, and because the electron-phonon coupling is weak in BCS superconductors, the recombination time becomes the longest timescale, going up to 1ms [6]. As quasiparticles interact on a shorter timescale, set by the electron-electron interaction, in macroscopic samples, whose dimensions are larger than both the recombination and relaxation lengths, the distribution function is well described by a Fermi-Dirac distribution with an eective temperature higher than the bath one. Thus the energy mode excitations are the longest-lived ones, and are responsible for most observed nonequilibrium eects in superconductors. All other excitation modes relax at shorter time-scales, the details of (elastic) relaxation mechanisms are discussed in chapter 1 of this thesis.

Because quasiparticles are long-lived, superconductors can be used as ecient detectors of 1 2 CHAPTER 0. INTRODUCTION radiation [7]. On the other hand quasiparticle poisoning limits quantum coherence through (nite frequency) dissipation [8]. Therefore, there is a renewed interest in out-of-equilibrium superconductivity in the context of both cryogenic detection and superconducting qubits.

In superconducting circuits the central issue is the ability to drive quasiparticles away from the sensitive quantum device or alternatively in detectors to bring them closer to the sensor itself. Since the superuid electrically shorts the sample, quasiparticles can not be driven by an electric eld. Strategies based on quasiparticle trapping have been explored [9], where the idea is to conne the excitations to a part of the sample which is not superconducting. Once they have relaxed to an energy below the gap, quasiparticles can not leave this part of the sample, as the density of states is zero below E = ∆ in a BCS superconductor.

Developing a detailed theoretical framework to describe energy and charge transport is not an easy task, as the kinetic equations for quasiparticle diusion include (energy nonlocal) inelastic processes, which can locally change the number of quasiparticle and their distribution, and the order parameter. For instance, a low energy phonon, resulting from the recombination of two quasiparticles, can be reabsorbed elsewhere in the superconductor, breaking a Cooper pair in the process [10].

The situation is simpler when the size of the device becomes smaller than both the quasiparticle relaxation and recombination lengths. In absence of interactions, the distribution function is basically set by the boundary conditions. For instance for a wire connected to two reservoirs the (energy mode) distribution function at each point of the wire is a linear combination of the reservoir distribution functions. This is well described theoretically within the Keldysh-Usadel formalism [11,12,13], by neglecting the self-energy terms related to inelastic interactions.

The topic of this work is quasiparticle transport in this limit of negligible or weak quasiparticle interaction. Two specic questions, addressed in parts I and II of the thesis respectively, are:

• Can the spin degeneracy of the distribution function modes be lifted?

• Can the out-of-equilibrium distribution function have a dynamical feedback on the spectral properties of a superconductor?

The results presented in this thesis (hopefully) bring new insights into spin-dependent thermoelectric eects in mesoscopic superconductors and on the opportunities for coherent spin transport in these systems, as well as point to new routes for unconventional out-ofequilibrium states generated by both spin injection and microwave pumping.

Due to the nature od the theory used to describe these experiments simple analytical expressions which could be used to model the measurements are seldom available. Thus out of necessity, as well as personal curiosity, the theoretical calculations and modeling were performed by myself, with the goal of explaining the experimental data. Following this a decision was made to present both the literature review and the theoretical results specic to this work in the same style. It was brought to my attention by the referees that this made distinguishing the two dicult. To mitigate this comments at the beginning of chapters/sections briey describing their contents were introduced.

Introduction

For a long time, work on out-of-equilibrium superconductivity concentrated mainly on spinless excitations [4]. Based on symmetry, the out-of-equilibrium quasiparticle (QP) dis- [4,14]. The simplest f (E) which excites these modes are, respectively, an eective temperature T * QP and a QP chemical potential µ QP = 0 (measured from the Fermi energy). The study of charge and energy transport in superconductors has led to applications in cryogenic detection of radiation and thermometry [15].

tribution function f (E) can be decomposed into energy f L (E) = f (-E) -f (E) and charge f T (E) = 1 -f (E) -f (-E) modes
The energy mode can be excited by charge-neutral perturbations such as electromagnetic radiation whose frequency is larger than the superconducting energy gap ∆: the absorption of such radiation breaks pairs and creates quasiparticles [16]. The charge mode, on the other hand, can be excited by injecting charged carriers (i.e. electrons or holes) through a tunnel barrier into a superconductor, where they become quasiparticles [17]. As quasiparticles are not instantaneously converted into Cooper pairs, their chemical potential is shifted up or down with respect to that of Cooper pairs. This has been measured as a voltage drop between the superconductor and a normal electrode in contact with the superconductor via a tunnel barrier [18,19]. If electrons or holes are injected at energy |E| > ∆, both charge and energy modes are excited. The relaxation time for the energy mode is the inelastic (electronphonon) scattering time [15] while the charge mode relaxes over the charge relaxation length [19,20,21,22,23].

In a theoretical paper published in 1976, A. Aronov introduced the concept of spin injection into superconductors [24]. The main idea of his paper was to use spin injection to produce an internal magnetic eld in order to perform an NMR experiment in the superconducting state (the Meissner eect prevents external magnetic elds from penetrating into the volume of superconductors).

The possibility of dierent energy distribution functions for spin up and down electrons (or QPs) was then raised for both normal metals and superconductors. In superconductors [25,26,13,11,12,27], the decomposition of the quasiparticle distribution function f (E) above can be generalized to the spinful case by the addition of spin [11,12,13]. These new modes exist only if spin up and down QPs have dierent distribution functions, i.e. f ↑ (E) = f ↓ (E). For instance, a spin-dependent temperature (chemical potential) will give nite f L3 (f T 3 ) -see gure 1. By construction, f L and f L3 are odd in energy, while f T and f T 3 are even in energy.

f T 3 (E) = f T ↑ (E) -f T ↓ (E) and spin energy f L3 (E) = f L↑ (E) -f L↓ (E) modes
To generate f ↑ (E) = f ↓ (E), it is necessary to preferentially generate excitations of one spin species.

In a pioneering experiment, Johnson et al. [28] showed that spin injection from a ferromagnetic electrode into a normal metal is possible by applying a voltage bias across the interface between the two. The out-of-equilibrium magnetization created in the normal metal is detected electrically, by measuring the voltage between it and a second ferromagnetic electrode [29]. This nonlocal signal is directly proportional to the shift in the chemical potential, µ s , of spin up (down) electrons due to spin accumulation [30,31], in which spin up and down chemical potentials shift by the same amount, but in opposite directions. The spin relaxation length measured in high purity light metals (which have low spin-orbit coupling) can reach 100µm, and the spin relaxation time is ≈ 50ns [28].

Subsequently, evidence for dierent eective temperatures for spin up and down electron was observed in the nonlinear contribution to the magnetoresistance of metallic nanopillar spin valves [32]. Indeed, a spin-dependent eective temperature is the simplest manifestation of the spin energy mode, in which the two spin species carry dierent energy currents.

In thin superconducting lms, it is possible to preferentially excite QPs of one spin with current injection from a normal (rather than ferromagnetic) electrode, by applying an inplane magnetic eld H. This raises (lowers) the energy of spin up (down) QPs by E Z = g 2 µ B H = µ B H and splits the DOS so that only spin down excitations are allowed in the energy range ∆ -E Z < |E| < ∆ + E Z . H also couples to the orbital degree of freedom, inducing screening supercurrents and a rounding of the QP coherence peaks [33,34,35]. In our experiments, E Z > α, the orbital depairing energy, up to the H c , the critical eld of the superconductor. Thus, when we inject an electrical tunnel current from a normal metal into the superconductor, the DOS acts as an almost perfect spin lter for ∆ -E Z < |eV inj | < ∆ + E Z , even if the barrier transmission is spin-independent.

Spin injection into superconductors using this method was shown to result in a nite, longranged spin accumulation, arising either from f L or f T 3 [36,37,38]. Subsequent measurements of the spin-ip time, the spin-orbit scattering time and the spin imbalance lifetime indicate that the spin accumulation beyond the spin-ip length λ sf is almost entirely due to f L , as it relaxes over λ rec while f T 3 relaxes over λ SF [39,40].

Among excitation techniques besides those mentioned above, we note in particular charge and spin currents generated by the magnetic losses of the precessing magnetization of a ferromagnet also called spin pumping [41,42,43,44,45,46,[START_REF] Tserkovnyak | Nonlocal magnetization dynamics in ferromagnetic heterostructures[END_REF]. In the case of a ferromagnetic insulator in contact with a superconductor, a pure spin current with no charge should be injected [START_REF] Kajiwara | Transmission of electrical signals by spin-wave interconversion in a magnetic insulator[END_REF]. As this spin pumping technique injects spins at low energies, in contrast to spin-polarized current injection, it should in principle also result in little or no excitation of the charge mode. Nevertheless, while spin pumping into metals has been demonstrated experimentally, this technique has not been applied to superconductors.

In this part, the focus is on the f L3 or the spin energy mode by performing spin-sensitive spectroscopy on low-energy out-of-equilibrium quasiparticles generated by current injection from a normal metal. Within the spin-ip and electron-electron interaction lengths of the injection point, our measurements reveal quasiparticle distribution functions which are truly out-of-equilibrium, i.e. non-Fermi-Dirac. At a nite Zeeman eld, we observe a charge imbalance indicating the presence of the spin energy mode. Our results agree well with quasiclassical Green's function calculations.

Chapter 1

Theory

The many-body approach to BCS superconductivity is to construct the equations of motion for the Green's function ǧ, supplemented by the equations of motion for the anomalous part, which describes the superconducting correlations [START_REF] Kopnin | Theory of nonequilibrium superconductivity[END_REF][START_REF] Lifshitz | Statistical Physics (Part 2)[END_REF][START_REF] Alekseevich Abrikosov | Ekhiel'evich Dzyaloshinskii[END_REF][START_REF] Richard D Mattuck | A guide to Feynman diagrams in the many-body problem[END_REF][START_REF] Coleman | Introduction to many-body physics[END_REF].

In a disordered superconductor, in which the mean free path is shorter than the superconducting coherence length, one can integrate over momentum space of the Eilenberger equation [START_REF] Eilenberger | Transformation of Gor'kov's equation for type II superconductors into transport-like equations[END_REF] and obtain the Usadel equation [START_REF] Usadel | Generalized diusion equation for superconducting alloys[END_REF], which describes the system in terms of a position and energy dependent diusion equation.

The out-of-equilibrium state of the system can be described within the Keldysh formalism, in which the Green's function (GF) can be written down as ǧ = ĝR ĝK 0 ĝA

(1.1)
where ĝR/A is the retarded/advanced GF (related by ĝA = -τ 3 ĝR τ 3 ), and ĝK the Keldysh component which takes into account the (out-of-equilibrium) distribution function.

For the case of a superconductor in a spin-splitting eld the Usadel equation for the GF

ǧ reads: D∇ • (ǧ∇ǧ) + [iEτ 3 -ih • στ 3 -∆ -Σ, ǧ] = 0 (1.2)
where D is the normal state diusion coecient, E the energy, h the external magnetic eld, σ i and τ i the Pauli matrices in the spin and Nambu (electron-hole) subspaces respectively 1 , ∆ a matrix related to the (complex) order parameter, and Σ the self energy term.

In addition to the Usadel equation 1.2, one also needs to consider the so-called normalizing condition ǧ2 = Ǐ, where Ǐ is the unit matrix in the Nambu-spin space.

This chapter provides a detailed overview of the theory of spin-dependent transport phenomena in Zeeman-split superconductors introduced in [START_REF] Silaev | Long-range spin accumulation from heat injection in mesoscopic superconductors with zeeman splitting[END_REF], and described in more detail in [11,12], with a focus on the spin-energy mode, rst introduced in [13], and its experimental signatures. The scope of the discussion is restricted to the aspects relevant to the experiment.

Anticipating the experimental conditions, in particular the use of Al as the superconductor, gures presented in this chapter show energy in units of µeV rather than ∆.

1 Formally speaking σi = Î ⊕ σ i and τi = σ i ⊕ Î where σ i is the regular denition of the Pauli matrices.

For example

τ 2 =     0 0 -i 0 0 0 0 -i i 0 0 0 0 i 0 0     , and σ 3 =     1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 -1     .
For the σ matrices in the Usadel equation the direct product with the unity matrix is in the Nambu space is implied. 

Spectral equations

In the case of a uniform superconductor ( ∆ = const), in the R subspace (the "ĝ R " block of equation 1.2) the gradient term vanishes from the Usadel equation and one is left with:

[iEτ 3 -ih • στ 3 -∆ -Σ, ĝR ] = 0 (1.3)
In the absence of gradients one can choose a gauge in which ∆ is a real number, so that ∆ becomes ∆ = ∆τ 1 . In the following the self-energy contribution Σ describes the eects of spin relaxation through spin-ip and spin-orbit mechanisms, as well the eects of orbital depairing. Within the rst Born approximation the self-energy contributions are:

ΣSF = σ • τ 3 ǧτ 3 σ 8τ SF , ΣSO = σ • ǧσ 8τ SO , ΣORB = τ 3 ǧτ 3 6τ ORB (1.4)
In the principle the self-energy should also contain terms describing the electron-electron and electron-phonon interactions. However these terms would be non-local in energy and would increase the complexity of the problem signicantly.

If the out-of-equilibrium state is probed within a time shorter than the eective electronelectron interaction time, the eects of the pseudo-thermalization (i.e. redistribution of the quasiparticles towards a Fermi-Dirac-like distribution through particle collisions) will be small, and thus this term can be dropped. Likewise, if there is a faster relaxation mechanism than the quasiparticle recombination, which in this case is an absorbing boundary condition at the (geometrical) end of the system, the eects of the electron-phonon interaction can also be neglected. As a model without these contributions successfully captures the main physical eects observed in the experiment, which is shown in chapter 3.1, the omission of these terms is justied.

The normalization condition in the R subspace gives (ĝ R ) 2 = 1, which allows for a parametrization in the form ĝR = 3 j=0 g R j,1 τ 1 + g R j,3 τ 3 σ j . The components proportional to τ 1 are related to the anomalous part of the GF, and the ones proportional to τ 3 are related to the regular part. Similarly the components proportional to σ 0 describe singlet correlations, while the ones proportional to σ i={1,2,3} describe triplet correlations in x, y and z directions, respectively. For a BCS superconductor, at zero eld, we have g R 0,3

= E √ E 2 -∆ 2 and g R 0,1 = i∆ √ E 2 -∆ 2 ,
while the other ones are equal to zero. If the external magnetic eld is applied along the z direction only the σ 0 and σ 3 terms need to be kept. With the ∆ and the Σ as dened in eq. 1.4 the Usadel equation reduces to a system of nonlinear coupled algebraic equations, in terms of four complex numbers: g 0,1 , g 3,1 , g 0,3 and g 3,3 . A numerical solution, obtained using a variant of the Powell method [START_REF] Powell | A Fortran subroutine for solving systems of nonlinear algebraic equations[END_REF], of the Usadel equation presented in terms of the components of ĝR , calculated for the following parameters: H = 1T, ∆ = 235µeV, H = 1T, τ -1 ORB = 6.5µeV, τ -1 SO = 13µeV, τ -1 SF = 0 (these are the same values as for the rest of the theoretical gures in this document, unless otherwise stated), is shown in gure 1.1.

The spin-averaged density of states

N + = N ↑ +N ↓ 2
is directly given by N + = Re(g 0,3 ), while the DOS spin-dierence

N -= N ↑ -N ↓ 2
is given by N -= Re(g 3,3 ) (see gure 1.1). 

KINETIC EQUATIONS

Kinetic equations

After solving the spectral equations, and obtaining ĝR , we can now turn our attention to the kinetic part of the problem, which determines the out-of-equilibrium distribution function.

By utilizing the normalization condition, ǧ2 = 1, the Keldysh component can be rewritten as ĝK = ĝR ff ĝA , where f is the generalized distribution function f

= f L + f T τ 3 + 3 i=1 (f T i σ i + f Li σ i τ 3 )
. Following the same reasoning as before, if the external magnetic eld is applied along the z direction, the distribution function can be reduced to:

f = f L + f T τ 3 + f T 3 σ 3 + f L3 σ 3 τ 3 (1.5) In equilibrium only the f L component is nonzero with f eq L = tanh( E 2k B T
), where T is the temperature of the phonon bath. The particle distribution function can be obtained as

f p (E) = (1 -f L (E))/2.
The superconductor is considered out-of-equilibrium if the distribution function is dierent from f eq L (i.e. an eective temperature or chemical potential), while it is considered do be truly out-of-equilibrium if the distribution function is not a Fermi-Dirac one with an eective temperature and/or a chemical potential.

The spin-dependent particle distribution function can be recovered from eq. 1.5 as

f p ↓/↑ = 1 -f L -f T ∓ (f L3 + f T 3 ) /2.
If we allow the distribution function to be position dependent f = f (x), and substitute this into the Usadel equation (eq. 1.2), the gradient term will be nonzero. In the Keldysh subspace the equation then reads ∇ J -S = 0, which is in fact a continuity equation for the current J = Dĝ R ∇ĝ K with sink terms given by S = [ǧ, iEτ 3ih • στ 3 -∆ -Σ] K .

To compute physical observables, one needs to multiply J by an appropriate matrix and take the trace:

ja,b = 1 8 Tr τ a σ b J
The energy current density is given by j e = j0,0 (even in the electron-hole as well as the spin subspaces), the charge current density by j c = j3,0 (odd in the e-h subspace but even in the spin subspace), the spin current density by j s = j0,3 (e-h even, spin odd), and nally the spin-energy current is given by j se = j3,3 (odd in both subspaces). The total current is obtained by integrating these current densities with respect to energy:

J e = ∞ -∞ dEEj e (E), J c = e ∞ -∞ dEj c (E), J s = ∞ -∞ dEj s (E), J se = ∞ -∞ dEEj se (E).
If we go back to the energy resolved quantities and utilize the previously laid out parametrization for ĝR and f K we can obtain 2 a simple system of equations for the currents:

j e = D L ∇f L + D T 3 ∇f T 3 , j s = D L ∇f T 3 + D T 3 ∇f L , j c = D T ∇f T + D L3 ∇f L3 , j se = D T ∇f L3 + D L3 ∇f T (1.6)
In the equation 1.6, D L,T,L3,T 3 are the energy dependent diusion coecients given by the equation 1.7 and shown in gure 1.2.

D L = D 2 1 + |g 0,3 | 2 + |g 3,3 | 2 -|g 0,1 | 2 -|g 3,1 | 2 , D T 3 = D 2 g 3,3 g * 0,3 + g 0,3 g * 3,3 -g 3,1 g * 0,1 -g 0,1 g * 3,1 , D T = D 2 1 + |g 0,3 | 2 + |g 3,3 | 2 + |g 0,1 | 2 + |g 3,1 | 2 , D L3 = D 2 g 3,3 g * 0,3 + g 0,3 g * 3,3 + g 3,1 g * 0,1 + g 0,1 g * 3,1 (1.7) 
For each of these currents the sink terms can be computed in exactly the same way:

sa,b = 1 8 Tr τ a σ b S
The continuity equation can then be restated as: 2 As en example the energy current j e = 1 8 T r J is found to be

∇j e = 0, ∇j s = S T 3 f T 3 , ∇j c = R T f T + R L3 f L3 , ∇j se = (R T + S L3 )f L3 + R L3 f T (1.8)
j e = D 2 1 + |g 0,3 | 2 + |g 3,3 | 2 -|g 0,1 | 2 -|g 3,1 | 2 ∇f L + D 2 g 3,3 g * 0,3 + g 0,3 g * 3,3 -g 3,1 g * 0,1 -g 0,1 g * 3,1 ∇f T 3 .
The prefactor in front of ∇f L is identied as D L and the one in front of ∇f T 3 as D T 3 . The same quantities will appear in the expression for the spin current j s . Likewise in the j c -j se subspace.
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The relaxation rates R T and R L3 correspond to Andreev-like charge relaxation processes, while the S T 3 and S L3 correspond to spin relaxation processes. One can verify, by taking the appropriate traces and separating out the terms proportional to each of the distribution function modes, that they are as follows: R T = 2∆Re(g 0,1 ), R L3 = 2∆Re(g 3,1 ),

S L3 = R S Re(g 0,3 ) 2 -Re(g 3,3 ) 2 + β Re(g 3,1 ) 2 -Re(g 0,1 ) 2 , S T 3 = R S Re(g 0,3 ) 2 -Re(g 3,3 ) 2 -β Im(g 3,1 ) 2 -Im(g 0,1 ) 2 (1.9) where R S = R SO +R SF = 1 τ SO + 1 τ SF and β = R SF -R S0 R S
. Figure 1.2 also shows the relaxation rates, calculated for the same parameters as gure 1.1. At H = 0 all of the g 3,i components vanish and D T 3 and D L3 do so, too. The expressions for the currents 1.6 are reduced to:

j e = D L ∇f L , j s = D L ∇f T 3 , j c = D T ∇f T , j se = D T ∇f L3 (1.10) CHAPTER 1. THEORY
The transport of the spin dependent modes f T 3 and f L3 is then decoupled and the transport equations 1.10 recover the result from [13] (without the supercurrent contribution), giving a more direct interpretation of the spin-energy current as the spin resolved energy current.

Transport eigenmodes

The transport problem for the four out-of-equilibrium modes can be separated into two independent subspaces: the rst two equations from each of the systems 1.6-1.9 are expressed only in terms of the f L and f T 3 modes, while the remaining two are dependent only on f T and f L3 . In the following two subsections the transport equations in these two subspaces will be addressed separately.

1.3.1

The f L and f T 3 modes

The f Lf T 3 subspace of equation 1.6 can be rewritten as

j e j s = D L D T 3 D T 3 D L ∇ f L f T 3 (1.11)
while the same subspace of equation 1.9 reads

∇ j e j s = 0 S T 3 f T 3 (1.12)
Substituting the rst one into the second yields

D L D T 3 D T 3 D L ∇ 2 f L f T 3 = 0 S T 3 f T 3 (1.13) With the ansatz f L f T 3 = e kx v, we have k 2 D L k 2 D T 3 k 2 D T 3 k 2 D L -S T 3 v = 0 (1.14)
which has a nontrivial solution only if the determinant of the matrix is zero. Solving for k

yields two solutions k 2 1 = 0 and k 2 2 = D L S T 3 D 2 L -D 2 T 3
, with the corresponding null-space vectors

v 1 ∝ 1 0 and v 2 ∝ -D T 3 D L
. The top panel of gure 1.3 shows the energy dependence of k 2 . The rst solution corresponds to ∇ 2 f L = 0 because of the absence of any inelastic relaxation mechanism in the model. The eective relaxation is taken into account through an absorbing boundary condition at the ends of the wire (where large, well thermalized, metallic reservoirs are located). Assuming that the quasiparticles are injected at x = 0 and the reservoir is located at x = L the solution can be expressed as:

f L f T 3 = B 1 v 1 (L -x) + B 2 v 2 e -k 2 x + B + 2 v 2 e +k 2 x + f eq L 0 1.3. TRANSPORT EIGENMODES 15 
Once again, invoking the boundary condition

f L f T 3 x=L = f eq L 0
, where f eq L = tanh( E 2k B T ), one nds B + 2 = -B 2 e -2k 2 L . Finally the full form of the solution is found to be:

f L f T 3 = B 1 L -x 0 + B 2 v 2 e -k 2 x -e +k 2 (x-2L) + f eq L 0 (1.15)
The energy dependent coecients B 1 and B 2 are to be determined from the boundary condition at the point of quasiparticle injection. This is discussed in detail in section 1.3.3.

At vanishing magnetic eld the transport eigenmodes in the f L -f T 3 subspace decouple as well. The second mode describes just the decay of the spin mode, which then relaxes within the spin-ip length (S L3 is nonzero even at H = 0). The transport of the f L mode is the same as in [START_REF] Pierre | Energy Redistribution Between Quasiparticles in Mesoscopic Silver Wires[END_REF], only modied by the energy dependent diusion D L .

1.3.2

The f T and f L3 modes

By following the same procedure as in the previous section one can obtain the transport eigenmodes in the f Tf L3 subspace. From equations 1.6 and 1.8 we have:

k 2 D T -R T k 2 D L3 -R L3 k 2 D L3 -R L3 k 2 D T -R T -S L3 v = 0 (1.16)
In the limit of vanishing spin relaxation (S L3 = 0) two modes can be obtained with

k 3 = R L3 -R T D L3 -D T , v 3 ∝ -1 1 and k 4 = R L3 + R T D L3 + D T , v 4 ∝ 1 1 
.

Taking into account the boundary condition, the following solution can be obtained:

f T f L3 = B 3 v 3 e -k 3
xe +k 3 (x-2L) + B 4 v 4 e -k 4 xe +k 4 (x-2L)

(1.17)

If the spin relaxation rate is nite, the form of the solution 1.17 remains the same, however, v 3 and v 4 become energy dependent, while the expressions for k 3 and k 4 become slightly more complicated. The bottom panel of gure 1.3 shows the relaxation rates for both modes based on the calculation including the spin-relaxation mechanism.

At energies close to ∆ the transport of the f T and f L3 modes is closely coupled (because D L3 = 0). However, at higher energies D L3 → 0 so the modes become decoupled. We can also see this by investigating the components of the k 3 and k 4 modes in the basis of f T and f L3 . The decomposition of v 3 and v 4 is shown in gure 1.4; indeed at higher energies the k 3 mode becomes the charge mode, while the k 4 becomes the spin-energy mode.

Unlike the previous two modes, f T and f L3 are not completely decoupled at H = 0 as the relaxation (equation 1.9) mixes the two at all magnetic elds.

Injector boundary conditions

In the experiment that was performed, the injector junction is an NIS tunnel junction (Cu/Al 2 O 3 /Al). The current density through this junction is given by equation 1.18: where R is the barrier resistance normalized by the ratio of the junction surface area and the cross section of the wire. fi = f i -f N i is the dierence between the distribution function in the superconductor and in the normal metal (indicated by the superscript N ). The tunneling matrix is block-diagonal and again separates the problem into the f Lf T 3 and f Tf L3 subspaces.

    j e j s j c j se     = 1 R     N + N -0 0 N -N + 0 0 0 0 N + N - 0 0 N -N +         fL fT3 fT fL3     (1.
When the superconductor is Zeeman split N -= 0, and even if the spin (f T 3 ) and spinenergy (f L3 ) modes are not present, a nite spin and spin energy current will ow through the barrier: j s = N - r fL and j se = N - r fT .

This current through the tunnel barrier must be component-wise equal to the current along the wire at x = 0; there are two components to this current the one which ows to the left j ← (and relaxes in the reservoir at x = -L L < 0) and the one which ows to the right j → (relaxes at x = L R > 0). For the sake of simplicity only the case of a symmetric wire (L L = L R = L) will be discussed here, under which |j ← | = |j → | and allows one to consider only the right-moving current with an eective barrier resistance r = 2 R.

In the f Lf T 3 subspace, current conservation is given by (from equations 1.18 and 1.13):

D L D T 3 D T 3 D L ∇ f L f T 3 x=0 - 1 r N + N - N -N + f L f T 3 x=0 = 1 r N + N - N -N + f N L f N T 3 (1.19)
When a voltage is applied to the normal metal the distribution function is shifted by the voltage f (E, V ) = f 0 (E -V ). Tunneling across the barrier will imprint this distribution into the superconductor, resulting in quasiparticles up to the energy E ≈ eV , which can be parameterized by the four out-of-equilibrium modes. The normal metal will be driven outof-equilibrium by this process, and kinetic equations should be solved for the nonequilibrium state.

Because of the large thickness of the injector electrode compared to the thickness of the Al wire, the distribution function is assumed to be the Fermi-Dirac one, oset by the applied voltage -for one tunneled electron the density of excitations in the Cu electrode is much smaller: the distribution function is modied by ν N N N δf N = 1 = ν S N S δf S (ν is the volume and N the density of states at the Fermi level, the subscript N /S refers to the normal metal or the superconductor). As ν N ν S the superconductor is driven further out equilibrium, for a relatively small δf S one can safely neglect the nonequilibrium state in the normal metal.

The right hand side of equation 1.19 depends solely on the distribution function of the injection electrode; when a nite voltage is applied in the L/T parametrization the distribution

function is f N L/T = tanh E-eV k B T ± tanh E-eV k B T /2.
By using the expression 1.15, the left hand side can be expressed in terms of B 1 and B 2 .

By solving the linear system of equations, and making all the necessary substitutions, at the 18 CHAPTER 1. THEORY end one nds that the distribution function in the superconducting wire is given by:

f L (E, x) = χ L (E, x)f N L (E, V, T ) + f eq L (E, T ), f T 3 (E, x) = χ T 3 (E, x)f N L (E, V, T ), f T (E, x) = χ T (E, x)f N T (E, V, T ), f L3 (E, x) = χ L3 (E, x)f N T (E, V, T ) (1.20)
The χ coecients of equation 1.20, calculated for the same parameters as in gure 1.1 and x = 0, are shown in gure 1.5. If L L = L R the left and right moving currents are not the same, and a set of B parameters (eqs 1.15 and 1.17) determines both of them. However, by imposing the continuity of the distribution function at x = 0: f ← (x = 0) = f → (x = 0), the B ← can be expressed in terms of B → and the problem is eectively reduced to the symmetric case.

In the experiment the corresponding values are L R ≈ 6µm, and L L ≈ 4µm. For the sake of simplicity, the calculations have been performed with L R = L L = 5µm. Compared to the denition of the currents there is an extra τ 3 matrix, coming from the structure of the time derivative term in the Gor'kov equation [START_REF] Kopnin | Theory of nonequilibrium superconductivity[END_REF].

In terms of the components of the retarded Green's function and the generalized distribution function the accumulation of charge, spin, energy and spin-energy is respectively given by:

µ = ∞ -∞ Tr ĝ(E, x) K ]dE = ∞ -∞ f T Re(g 0,3 ) + f L3 Re(g 3,3 ) dE, µ z = ∞ -∞ Tr τ 3 σ 3 ĝ(E, x) K ]dE = ∞ -∞ f T 3 Re(g 0,3 ) + f L Re(g 3,3 ) dE, = ∞ -∞ Tr τ 3 ĝ(E, x) K ]EdE = ∞ -∞ f L Re(g 0,3 ) + f T 3 Re(g 3,3 ) EdE, z = ∞ -∞ Tr σ 3 ĝ(E, x) K ]EdE = ∞ -∞ f L3 Re(g 0,3 ) + f T Re(g 3,3 ) EdE (1.21)
The same result can be found using a more straight forward argument: in the particle (or electron-like) denition of the distribution function, and the semiconductor denition of the DOS, the density of spin up/down particles is given by ρ ↑/↓ = N ↑/↓ (E)f p ↑/↓ (E), where N ↑/↓ is the density of states for each of the spins and f p is the particle distribution function (i.e. in equilibrium the Fermi-Dirac distribution). The total (energy-independent) density of particles can be obtained by integrating this quantity ρ tot ↑/↓ = ∞ -∞ dEρ ↑/↓ (E). The total charge is then related to the number of particles present in the system ρ tot = ρ ↑ + ρ ↓ . To obtain the charge imbalance one just needs to subtract the number of particles in equilibrium ρ tot eq = ∞ -∞ N + (E)f 0 (E, T )dE where f 0 is the Fermi-Dirac distribution. Likewise the total magnetization can be determined as the dierence between the number of spin up and spin down quasiparticles. By using the expressions for the density of states N ↓/↑ = N + ± N -and the distribution function

f ↑/↓ = (1 -f L -f T ± (f L3 + f T 3
))/2 and by dropping the terms that yield zero under integration the same expressions for µ and µ z are obtained.

Finally, to determine the out-of-equilibrium component of the charge and spin accumulation the equilibrium one must subtract the equilibrium one (i.e. to replace f L with f Lf eq L in eq. 1.21):

µ z = ∞ -∞ dE f L (E) -f eq L (E) N -+ f T 3 N + , µ = ∞ -∞ dE f T (E)N + + f L3 N - (1.22)
The rst equation, describing the spin accumulation, tells us that in the presence of a spinsplitting eld the energy mode (f L ) results in a nite magnetization. In equilibrium and at nonzero temperatures this is the eect that results in a nite paramagnetic response of a superconductor [START_REF] Yosida | Paramagnetic susceptibility in superconductors[END_REF]. The second equation describes the charge imbalance of the system: the rst term describes the charge mode described by [18], while the second term describes the charge accumulation associated with the spin-energy mode.
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CHAPTER 1. THEORY Figure 1.6 shows the magnetic eld dependence of the spin accumulation as well as the charge accumulation proportional to the f T and f L3 modes versus the injection voltage (the eld dependence of ∆(H) is as discussed in the section 1.5). The spin accumulation is dominantly due to the induced f L mode and therefore grows with the magnetic eld (as N - becomes larger with increasing H), and again decays when ∆ → 0 as the eld approaches the critical one (H c ≈ 2.6T).

As discussed in [20,21], the orbital depairing induced by the magnetic eld facilitates the charge relaxation processes and therefore the f T mode is suppressed by a nite magnetic eld. However, as the charge imbalance due to the spin-energy mode µ L3 is a function of N -it shows a qualitatively dierent behavior: although the charge relaxation increases at nite elds, so does the span of energies at which N -is nonzero. These two contributions result in a charge imbalance which is maximal at ∆µ B H < V inj < ∆µ B H and doesn't monotonically decrease with the magnetic eld, as can be seen in gure 1.6. 

The self-consistency relation

Within the Keldysh formalism the self-consistency for the pairing potential ∆ is given by

∆ = λ 16i ω D -ω D T r (τ 1 -iτ 2 )g K (E) dE 1.5. THE SELF-CONSISTENCY RELATION 21
where λ is the BCS pairing potential, ω D is the Debye frequency, and the trace essentially "separates out" the anomalous part of the Keldysh component.

This expression can be expanded in terms of the distribution functions and the various components of the retarded GF:

∆ = λ 2 ω D -ω D dE Im(g 0,1 )f L + Im(g 3,1 )f T 3 + i Re(g 0,1 )f T + Re(g 3,1 )f L3 (1.23)
The rst term is nonzero even at equilibrium (with f L = tanh( E 2k B T )), while the other three are nonzero only out-of-equilibrium. The last two terms are related to the charge imbalance (given by the f T and f L3 ) and add a nonzero imaginary component to the ∆.

While it is true that at equilibrium one can always choose a gauge such that ∆ is strictly real, out-of-equilibrium this is not the case. As it was shown in section 1.2, the quasiparticle charge current is relaxed through Andreev processes, which means that the current is transferred from the quasiparticles to the condensate, which implies the existence of a nite phase gradient along the wire, which is precisely the meaning of the imaginary component of ∆ in equation 1. 23.

In order to solve the whole problem self-consistently one must:

• Solve the spectral equations at each position using the local ∆(x);

• Solve the transport problem in terms of all of the out-of-equilibrium modes (at each energy);

• Calculate the new ∆(x) using the self-consistency relation using the obtained modes at each x;

• Repeat the previous steps until convergence is reached.

While doing so one cannot rely on the previously laid out analytical results: the transport solution can no longer be obtained by diagonalizing the transport equations as the diusion and relaxation terms are now position dependent, as ∆ is a function of the position as well.

Therefore the solution needs to be obtained numerically from start to nish, including at the boundary condition, which increases the complexity of the calculation drastically. We can, however, calculate the ∆(x, V inj ) based on the analytical solution (without any gradients in ∆) to estimate the magnitude of the eect in our experimental situation. Figure 1.7 shows the absolute value, as well as the argument of ∆ at x = 0 (where one can naively expect the largest deviation from the equilibrium values) -the maximum suppression turns out to be in the order of ≈ 10%, justifying the previous approach.

The self-consistency relation in equilibrium as function of the magnetic eld will be further discussed in the section describing the sample properties (2 and 2.1).

Figure 1.7: The self-consistent calculation of ∆ at the injection sight (x = 0) as a function of the injection voltage at H = 0T (blue) and H = 1T (red). The top panel shows the absolute value of the complex ∆, while the bottom shows the argument. At H = 0 the argument is multiplied by a factor of 10 for clarity -this signies that the supercurrent induced in the wire is lower at H = 0, as it should be for a slower charge relaxation.

Self-consistency within the relaxation time approximation

In this section a simplied version of the transport equations is presented and selfconsistency for ∆ is discussed. The aim is to construct a simple model in order to describe the zero eld behavior shown in sections 2 and 3.2 on a qualitative level.

At H = 0 the complexity of the problem is greatly reduced as D T 3 , N -as well as other spin dependent quantities are equal to zero. Also, as quasiparticles are injected from a nonmagnetic electrode, the f T 3 and f L3 modes will not be excited. A simplication that can be made is to completely disregard the presence of the charge mode, which is valid close to the gap edge, and especially at H = 0, as charge is eciently relaxed there. Alternatively if the excitation junction is realized in the geometry proposed in [START_REF] Ali Ouassou | Voltage-induced thin-lm superconductivity in high magnetic elds[END_REF], one can excite only the f L mode.

Under these conditions the transport problem is greatly simplied as only the linearly decaying component of f L will be nonzero:

f L (x) = f L L-x L .
Most of the terms from the equation 1.19 vanish, and the gradient term can be simply replaced with f L /L, where L is 1.6. SELF-CONSISTENCY WITHIN THE RELAXATION TIME APPROXIMATION 23 the length of the wire. The equation can then be rewritten as:

N + (E) r f N L (E) -f L (E) = f L (E) τ (E) (1.24)
where the eective "relaxation time" is given by τ

(E) = L D L (E)
, and r describes the barrier resistance as in section 1.3.3. As shown in [START_REF] Heslinga | Enhancement of superconductivity far above the critical temperature in double-barrier tunnel junctions[END_REF] such a model will essentially "imprint" the (voltage biased) distribution function of the normal metal into the superconductor (see g.

1.8). Quasiparticles are injected up to the energy of E = eV inj , the height of the "step" is set by the ratio of D 0 r L (D 0 is the normal state diusion constant), while close to the gap edge due to the vanishing mobility of quasiparticles at the gap edge (D L → 0 as E → ∆) the distribution function will be peaked. Under the same set of assumptions the self-consistency relation is reduced only to the rst term of equation 1.23. Now for each injection voltage V inj the self-consistent value of ∆ can be computed (see gure 1.9), as well as the induced distribution function. Suciently below eV inj = ∆ 0 there is no suppression of the order parameter: at T = 0 the gap suppression would start at eV inj = ∆ 0 exactly, while at nite temperatures due to the thermal broadening of the distribution function it starts at eV inj + k B T ≈ ∆ 0 . When the injection voltage V inj ≈ ∆, the order parameter can become bistable along with the existence of an unstable branch: if the gap is not substantially reduced from its equilibrium value only the exponential of the distribution function will inject quasiparticles, but there also exists a solution with a substantial number of excitations present. The size of the "S" shaped region is strongly dependent on the value of D 0 r L and the temperature of the normal metal, and below a certain threshold value the unstable branch no longer exists. For clarity a set of parameters that highlights this behavior was used here, in practice this eect is signicantly smaller -if observable at all. CHAPTER 1. THEORY Figure 1.9: The suppression of the superconducting order parameter ∆ as a function of the voltage applied to the normal metal injector. The black curve is calculated for

D 0 r L = 0.05
and it is stable everywhere. The red-blue curve is calculated for D 0 r L = 0.2. It exhibits an S-shaped region of bistability, where the stable branches are given in blue, and the unstable one in red. The temperature of the normal metal is T = 0.05∆ 0 which accounts for the suppression at eV i nj ≈ ∆ 0 -3.5k B T .

Finally a comparison between the equilibrium and nonequilibrium self-consistency can be made. Close to equilibrium it can be shown that the suppression of the gap is given by the ratio of the number of quasiparticles and Cooper pairs [START_REF] Owen | Superconducting state under the inuence of external dynamic pair breaking[END_REF][START_REF] Lenander | Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles[END_REF][START_REF] Bhattacharjee | Spin polarized carrier injection into high-T c superconductors: a test for the superconductivity mechanism[END_REF], ∆ = ∆ 0 (1 -

N QP N CP ).
Far from equilibrium this no longer holds and ∆ is no longer a universal function of N QP . Figure 1.10 shows a comparison between the nonequilibrium case, as described above, and an eective temperature. As a consequence, to fully characterize an out-of-equilibrium state of a superconductor a detailed spectroscopic study is necessary, it is insucient to probe the gap ∆ of a superconductor, or even the number of quasiparticles. The critical temperature of the wire is T c ≈ 1.7K (the increase of the critical temperature compared to the bulk value of ≈ 1.2K is related to the disorder induced by the small lm thickness and is consistent with previous ndings [START_REF] Meservey | Properties of very thin aluminum lms[END_REF]), while the critical in plane magnetic eld is H c ≈ 2.7T. On both ends the wire is terminated with large, well thermalized, metallic reservoirs.

On top of the wire there are several tunnel junctions (using the native oxide as the tunnel barrier):

• The injector junction J inj (cyan in 2.1) -an NIS junction used for creating quasiparticle excitations in the wire by current injection. The normal metal N is Cu (100nm thick), the surface area of the junction is S = 200nm × 200nm and the normal state resistance is R = 13kΩ.

• The detector junctions J {1,2,3} (red in 2.1) -SIS junctions, where the counter electrode S is an d Al ≈ 8nm thick layer of Al with a mono-layer of Pt (d Pt = 1Å nominally) on top. The purpose and the eects of the Pt layer are described in detail in section 2.3. The surface area of these junctions is S = 50nm × 200nm, while their normal state resistances, as well as their distances from the injector junction are:

J 1 : R = 31.2kΩ, L 1 = 250nm J 2 : R = 38.3kΩ, L 2 = 1.89µm J 3 : R = 29.5kΩ, L 2 = 3.53µm
More details, the motivation for the used materials, parameters and geometry, as well as more information on the measurement setup are given in appendix A.

The basic idea of the experiment is the following: quasiparticles are injected into the wire by applying a current through J inj . As the diusion time to the reservoirs

τ dif = L 2 res D ≈ 20ns
is much shorter than the quasiparticle-quasiparticle recombination time τ rec ≈ 400ns [5] the quasiparticles relax only by diusing to the end of the wire and thermalizing with the phonon bath there. An externally applied magnetic eld will cause pair-breaking eects, and for an CHAPTER 2. SAMPLE OVERVIEW AND PROPERTIES in-plane eld the pair breaking energy is determined to be α ≈ 6.5 µeV T 2 (see gures 2.2 and 2.4). Consequently, all the way up to the critical eld αH 2 c < µ B H, which implies that the DOS of the superconductor will be Zeeman split, and allows us to create spin-polarized excitations by biasing the injector junction such that ∆ -

µ B H < V inj < ∆ -µ B H.
The out-of-equilibrium quasiparticles can then be probed by one of three spin-sensitive spectroscopic detectors, positioned at dierent distances away from the injection site. The spin relaxation mechanism in the wire is assumed to be through spin-orbit scattering and the eective relaxation time is estimated, based on [36], to τ SO = 50ps, giving a spin relaxation length of L SO ≈ 240nm, which is comparable to the distance between J inj and J 1 . Thus our device, due to the spin sensitivity of the detector, allows for the detection of a spin dependent distribution function at short distances from the injection site.

All of the measurements presented in this chapter were performed in a 3 He/ 4 He dilution The following sections will address the injection scheme (section 2.1) as well as the workings of the detectors in detail (sections 2.2 and 2.3).

refrigerator at T = 90mK. A J inj J 1 J 2 J 3 I 1μm

The NIS injector

In a superconductor quasiparticles can be excited by current (or voltage) biasing an NIS junction, where the tunnel barrier allows for a nite voltage drop across the junction and thus quasiparticles with energies up to the voltage bias, E ≈ eV , can be injected into the superconductor. Following [33] the tunneling current through such a junction is given by:

I(V ) = 1 eR N N (E)[f p (E) -f p N (E -eV )]dE (2.1)
while the dierential conductance is:

G(V ) = ∂I(V ) ∂V = 1 eR N N (E) ∂f p N (E -eV ) ∂V dE (2.2)
The quantity ∂f p N (E -eV ) ∂V becomes the Dirac-delta function at T = 0, and at nite temperatures is a bell-like curve with a FWHM of ≈ 3.5k B T . Therefore the G(V ) curve of the When a nite magnetic eld is applied to a superconductor there are several observable eects [34]. The rst of which is the orbital (Abrikosov-Gor'kov, AG) depairing, from the induced screening supercurrent, which results in a rounding of the DOS coherence peaks as well as a reduction of the spectroscopic gap below ∆. 

∆ -µ B H < E < ∆ + µ B .
However, this contribution is not directly observable with an NIS junction with a spin-independent transmission. This can be understood in terms of the out-of-equilibrium suppression of ∆: when a nite voltage is applied across the junction there is a nonzero current owing through it which, due to the relatively low resistance of the junction R(J inj ) = 13kΩ and the thin superconducting wire, induces an out-of-equilibrium state in the wire. This leads to deviations from the simple BCS model, which can be taken into account by considering a voltage dependent gap ∆ = ∆(H, V inj ). A calculation based on the model presented in section 1.6, can be used to illustrate this: gure 2.3 shows how the ∆(V inj ) dependence can make the I(V )/G(V ) curve sharper than at equilibrium.

At H = 1T (g. 2.2, the red trace), there are two observable peaks, corresponding to the spin down and spin up component of the DOS. The spin down peak, located at V ≈ 175µV is slightly sharper than the model, while the main dierence is in the spin up peak (located at V ≈ 290µV) is signicantly less pronounced than the equilibrium model predicts.

Figure 2.4 shows the G(V ) of the injection junction J inj as a function of the magnetic eld as a color-plot, as well as a numerical simulation of the same using the equilibrium ∆(H) dependence (based on 1.23) for comparison.

As a result of the nonequilibrium eects some of the sample properties, in particular the Abrikosov-Gor'kov depairing energy α, cannot be determined from a straightforward t. The depairing rate was determined to be α 0 = 6.5 µeV T 2 by using both the tunneling spectra of the injector junction as well as the detectors which also, albeit indirectly, probe the DOS without signicant out-of-equilibrium eects. This value was also used for the theoretical calculation As the AG energy is lower than the Zeeman energy α(H) = α 0 H 2 < µ B H all the way up to the critical eld, at nite elds the DOS will be well Zeeman split, as shown in the same gure.

Figure 2.3: The simulated equilibrium I(V ) for ∆ 0 = 1 and T = 0.05∆ 0 (the blue curve), as well as the nonequilibrium I(V ) with the ∆(V ) dependence included (red trace), based on the model presented in section 1.6. The dotted gray traces show the equilibrium I(V ) curves for lower values of ∆ = ∆ i , while the red dots represent the solutions of ∆(V i ) = ∆ i -as the voltage is increased, the nonequilibrium trace shifts between dierent equilibrium I(V, ∆ i ) traces leading to a sharper curve. 

CHAPTER 2. SAMPLE OVERVIEW AND PROPERTIES

The SIS detector

The current across an SIS has two main contributions: the Josephson supercurrent and the quasiparticle tunneling current. In this chapter we will discuss how the tunneling current can be used as a spectroscopic probe of the out-of-equilibrium state in a superconductor, as well as how the supercurrent contribution can be suppressed.

2.2.1

The Josephson current

The Josephson supercurrent through an extended SIS junction, at a nite magnetic eld, is given by [START_REF]Small Junctions in a Magnetic Field[END_REF]:

I s = d 2 -d 2 j s (x, H) sin(ϕ 0 + kx)dx (2.3)
where d is the junction width, and j s (x, H) describes both the current density prole along the axis orthogonal to the applied magnetic eld as well as the eld dependence of ∆(H). The wavenumber k = 2πH(2λ+d barrier )/Φ 0 (λ is the eld penetration depth and Φ 0 = 2×10 -15 Wb the magnetic ux quantum), describes the total magnetic eld ux trapped in the junction.

If the barrier is uniform, that is j c = const, the following result is obtained:

I s (ϕ) = js sin(d k 2 ) k/2
sin(ϕ). Then the critical current is always obtained at ϕ = π 2 and it follows the usual Fraunhofer pattern -it is equal to zero when the trapped ux is equal to one ux quantum.

If, on the other hand, the barrier is not spatially uniform and j s (x) has an odd component (x = 0 is the center of the junction), the supercurrent can be expressed as I s (ϕ) = A sin(ϕ) + B cos(ϕ), where the eld dependence is hidden in A(H) and B(H). The critical current then becomes I c = A(H) 2 + B(H) 2 . Because these two coecients are not simultaneously equal to zero the critical current cannot be fully suppressed by an application of the magnetic eld. However the minimum of I c is still obtained close to the eld at which there is one ux quantum in the junction.

Experimentally the critical current can be accessed directly by measuring the V (I) or by measuring the dierential conductance G(V ) = ∂I ∂V at V = 0. Additionally, there can be an excess supercurrent contribution at a nite voltage V , if the Josephson frequency matches a resonant frequency in the device 2eV = hf , which for the device in question happens at V ≈ 256µV (f ≈ 124GHz) -see the inset of gure 2.5. 

2.2.2

The quasiparticle tunneling current

The tunneling current through an SIS junction is (see [33]):

I(V ) = 1 eR N ∞ -∞ N D (E + eV )N (E)[f p (E) -f p D (E + eV )]dE (2.4)
where R N is the junction resistance, N and N D are the DOS functions for the probed superconductor and the detector electrode, respectively, while f p and f p D are the distribution functions in the particle picture.

By applying a voltage eV = ∆ + ∆ D to the detector junction the (electron side) gap edge of the detector is brought down to the gap edge of the superconductor at E = -∆. As the density of states of the detector is N D (E > 2∆ D ) ≈ 1 and the distribution function f p D (E > 2∆ D ) = 0, the electron side of the superconductor is probed by a at DOS with no excitations present. The tunneling on the hole side is blocked by the spectral gap of the detector down to E = ∆ -2∆ D . Therefore the total current will be directly proportional to the number of electron-like excitations in the probed superconductor. Likewise, if a negative voltage of the same magnitude is applied the number of hole-like excitations is measured by the tunneling current.

Measuring the G(V ) curves can provide spectroscopic information about the quasiparticle population. If the detector is at equilibrium and at a suciently low temperature it will host a vanishingly small number of quasiparticles and, therefore, the term in the G(V ) = ∂I ∂V

proportional to N D (E + eV ) ∂f p D (E + eV ) ∂V 1 can be neglected ( ∂f p ∂E is nonzero only in a window of 3.5k B T ∆). The other, nonzero, term is G(V ) = 1 eR N ∞ -∞ N (E)[f p (E) -f p D (E + eV )] ∂N D (E + eV ) ∂V dE
At sub-gap voltages (eV ≤ ∆ + ∆ D ) and in the relevant energy range (|E| > ∆, where N (E) > 0), f p can be replaced with f p (E, T = 0) (i.e. no quasiparticles are present in the detector which could contribute to the tunneling process), and so the term in the square brackets becomes δf

(E) = f p (E) -f p D (E + eV ) = f p (E) -f p (E, T = 0), which just accounts
for the (out-of-equilibrium) excitations in the superconductor. Finally the relevant expression for the dierential conductance becomes:

G(V ) = 1 eR N ∞ -∞ ∂N D (E + eV ) ∂V N (E)δf (E)dE (2.5)
The derivative ∂N D (E+eV ) ∂V is very sharply peaked at E ≈ ∆ D , and from this it is clear that the G(eV = E -∆ D ) ∝ N (E)δf (E) probes the number of excitations at energy E. This property allows for the use of an SIS junction as a spectroscopic detector of out-of-equilibrium quasiparticles.

A graphical representation showing all of this is given in gure 2.6, showing the DOS of the probed superconductor, an equilibrium distribution function, an out-of-equilibrium distribution function (only the f L mode is nonzero), the DOS of the detector as well as its derivative. Figure 2.7 shows the corresponding I(V ) and G(V ) curves, along with a comparison with N (E)f (E).

By integrating the previous expression for the G(V ) one again nds that the I(V ) measures the number total number of quasiparticles.

The whole discussion holds true in the spin-split case, the only dierence is that the dierent spin channels have to be considered separately and their contributions should be then added, as the spin is conserved by tunneling. CHAPTER 2. SAMPLE OVERVIEW AND PROPERTIES

The spin sensitive SIS detector

Contrary to an NIS junction, as shown in [START_REF] Meservey | Tunneling measurements on spinpaired superconductors with spin-orbit scattering[END_REF], the I(V )/G(V ) traces of an SIS junction will not show the Zeeman splitting under a nite magnetic eld. This is because both superconductors become Zeeman split, and as the tunneling process needs to be considered separately for the spin up and spin down, this just amounts to having the same shift in the chemical potential/Fermi energy ±µ B H on both sides of the junction. However, if the detector side of the junction is not spin split (i.e. N ↑ ≈ N ↓ ), which is the case of the spinmixing induced by spin-orbit interaction in the superconductor [START_REF] Meservey | Tunneling measurements on spinpaired superconductors with spin-orbit scattering[END_REF], it leads to an observable A detector made out of a non-Zeeman-split superconductor can be used as a spin sensitive detector: following the discussion in section 2.2.2 the spin down quasiparticles will be detected at a detector voltage of V ↓ = ∆µ B H -∆ D , while the spin up ones will be detected at Experimentally such a detector can be realized covering the Al detector electrode, with a mono-layer of Pt [START_REF] Tedrow | Critical magnetic eld of very thin superconducting aluminum lms[END_REF]. Because of the high atomic number of Pt it induces a strong spin-orbit eect in the detector and suppresses the Zeeman splitting. To verify this eect a separate 2.3. THE SPIN SENSITIVE SIS DETECTOR 39 set of samples, fabricated in roughly the same geometry as the nal device, were made with high resistance NIS junctions (R ≈ 250kΩ) to probe the equilibrium DOS. Figure 2.9 shows the magnetic eld dependence of the DOS, with and without the Pt doping, verifying that the doped sample is not Zeeman split. Although such a measurement is not a reliable way to determine the strength of the SO interaction precisely, the key point is that there is a single gap edge, which allows the junction to be a spin sensitive spectroscopic detector. The G(V ) 

V ↑ = ∆ + µ B H -∆ D .

Chapter 3 Nonspectroscopic measurements

As discussed in detail in section 2.2 the SIS junction can be used to measure the number of quasiparticles up to the energy E = ∆ + ∆ D by measuring the quasiparticle tunneling current at I(V = ∆ + ∆ D ). Through self-consistency the quasiparticle population results in a reduction of ∆, and this can also be measured using the same detector as the threshold voltage at which the current abruptly rises. Figure 3.1 shows the I(V ) curves of J 1 at equilibrium and at I inj = 120nA: an excess subgap current I QP ≈ 2nA can be observed together with a reduction in the gap.

These two properties will now be used to probe the out-of-equilibrium state, induced by current injection, as a function of space and magnetic eld. 

Spatially resolved number of QPs at high injection

In this chapter the validity of the claim that the quasiparticles relax solely by the thermalization at the ends of the wire is veried. First a theoretical argument is given and than 42 CHAPTER 3. NONSPECTROSCOPIC MEASUREMENTS the relevant measurements are presented.

A slight generalization of equations 1.13 and 1.16 reads:

D * (E)∇ 2 f (E) = I coll (f, E) (3.1)
where the D * (E) is the energy dependent diusion matrix, f (E) a vector describing the dierent distribution modes, and I coll (E) takes into account all of the dierent relaxation and scattering mechanisms.

The charge and spin relaxation processes, as well as an eective electron-electron interaction, conserve the number of quasiparticles. On the other hand the electron-phonon interaction will decrease the QP population through recombination. As a consequence at timescales shorter than the recombination time

∞ ∞ I coll (f, E)dE = 0 vanishes for any distri- bution function f .
If most of the quasiparticles are injected at high energies (i.e. E ∆), where D * is diagonal and proportional to D 0 (the normal state diusion coecient), one can simplify equation 3.1 by integrating over energy and disregarding the dependence at low energies, one gets:

D∇ 2 f = 0 (3.2)
To obtain a physical solution from the previous equation one must impose the proper boundary conditions, at the injector and at the ends of the wire.

As, at high energies, the number of quasiparticles is proportional only to f as the density of states is constant, according to the equation 3.2 one should expect a linear spatial dependence/decay of the number of quasiparticles.

As discussed in section 2.2.2, I D (eV D = ∆+∆ D ) probes the total number of quasiparticles in the wire. A measurement of this quantity as a function of the injection current is shown in gure 3.2, where the data has been re-scaled by the junction resistance and normalized to a unit slope at high injection for J 1 . The number of quasiparticles close to the injector (data from the detector J 1 ) has the following dependence on current: at low injection currents there is a rapid growth of the quasiparticle population, followed by a leveling o in the region I inj = 10 -50nA, after which there is again a linear dependence with a smaller slope than at low injection. The number of quasiparticles measured by J 2 and J 3 is smaller, in the beginning it has a concave shape and above I inj = 50nA it also becomes linear. At high injection currents, when the energy dependence of the diusion coecient doesn't play such a big role anymore, as well as when the electron-electron time is nite (resulting in a pseudo-thermal distribution function), the number of quasiparticles is linear with the injection current. The same holds true for the other two detectors J 2 and J 3 (also in gure 3.2.

In this high injection regime the relation becomes N QP = k(x)I inj , where only the slope of the curve depends on the position. If we take the slope itself to be a measure of the number of quasiparticles present in the wire, and plot it versus the position of the detector, we nd that it extrapolates to zero at the end of the wire (gure 3.3). Based on this we can safely argue that the quasiparticles relax to the equilibrium state by thermalization and recombination within the reservoirs at the end of the wire.

This model is only valid at high injection currents, and consequently high injection energies, when transport is linear and hence energy independent. The origin of the rapid increase 

Spatially resolved gap suppression and self-consistency

The gap suppression δ∆(I inj ) = ∆(I inj ) -∆ 0 was also measured as a function of the injection current for all three detectors (see gure 3.4). As predicted by the theory in section 1.6, the δ∆ curve is reminiscent of the I QP one (g. 3.2). By plotting δ∆ as a function of I QP , and comparing it to 1.10, a dierence between J 1 and the other two detectors can be observed (see gure 3.5): the traces for J 2 and J 3 collapse onto one curve while the J 1 trace is distinct.

The theory presented in the chapter 1, predicts that the distribution function induced by quasiparticle injection is a step-like function which extends up to E = eV inj . This result was obtained under the assumption of negligible electron-electron interaction, which is applicable at low quasiparticle densities and short timescales. The electron-electron lengthscale is in the order of l ee = √ Dτ ≈ 1µm [START_REF] Van Son | Inelastic scattering rate for electrons in thin aluminum lms determined from the minimum frequency for microwave stimulation of superconductivity[END_REF][START_REF] Santhanam | Inelastic electron scattering mechanisms in clean aluminum lms[END_REF]. At distances larger than this one, which is the case for J 2 and J 3 , the distribution function rapidly approaches a pseudo-thermal one. As L 1 < l ee the distribution function is better described by a step-like distribution function rather than a thermal one. One can then interpret gure 3.5, in analogy with gure 1.10, as evidence that at short distances away from the injection the superconductor is truly out-of-equilibrium (i.e. the distribution function f cannot be described by an eective temperature T * ). Additional spectroscopic evidence for this is presented in chapter 4. 

Field dependence of N QP and ∆

The measurement of the gap ∆ and the number of quasiparticles, up to the energy of E = ∆ + ∆ D , can be carried out at nite magnetic elds as well. The results of these experiments are shown in gures 3.6 and 3.7, respectively.

In the limit of very low injection currents I inj < 10nA, the same rapid increase of the number of quasiparticles, as well as the corresponding reduction of ∆ is observed. However the initial slope as well as the value at which these quantities level o are eld dependent. This can be understood in terms of the modied transport properties: as the magnetic eld is increased the strength of the orbital depairing grows quadratically which results in the rounding of the DOS as well as the energy dependent diusion constants (see gure 1.2).

This increases the number of slow-moving quasiparticles close to the gap edge, and thus increases their eective lifetime. Additionally, as the DOS is Zeeman-split the number of available states at the spectroscopic gap edge E ≈ ∆µ B H is halved. Therefore a smaller number of quasiparticles can be injected in this range of injection currents and energies, which accounts for the lower "saturation threshold" seen in both gures.

At high injection currents I inj > 50nA, when quasiparticles are injected at high energies where D T 3 , D L3 and N -are zero, the f L mode is dominant and we recover the same linear behavior, with roughly the same slope, at all magnetic elds.

In between these two limiting cases the behavior at dierent elds is qualitatively dierent. At H = 0T there is an almost linear increase of N QP / decrease of ∆. When the Zeeman splitting becomes larger than the temperature 2µ B H > 3.5k B T , a slight reduction of the measured N QP is observed. As discussed in section 2.2.2 at the detector voltage of eV = ∆ + ∆ D the measured current is directly proportional to the number of electron-like quasiparticles only if there are no quasiparticles below E = -∆ -2∆ D . Otherwise, the hole-like excitations can reduce the tunneling current. In practice this is a concern only at high elds where both ∆ and ∆ D are suciently suppressed. While this might contribute to the reduction of the measured N QP , the corresponding feature can be observed in the measurement of ∆ which does not have such a sharp cut-o -see gure 3.7. This behavior is not fully understood, it has been observed in several devices and only appears when the injector junction is relatively resistive R inj > 10kΩ. It is unlikely that this is a result of quasiparticle-quasiparticle recombination processes as we believe that this process is much slower than the diusion to the thermal reservoir at the end of the wire (as discussed in section 3.1). An argument can be made that this is due to the electron-electron interaction which relaxes the distribution function to a pseudo-thermal one. As the number of quasiparticles is increased, so is the rate for these scattering processes, but as this process conserves energy and is energy-nonlocal it is strongly dependent on the distribution function.

If there are only (or predominantly) quasiparticles at the gap edge ∆, the scattering rate will be small as none of them can scatter to energies below the gap edge. In section 4.1 it will be argued that, at H = 0T, such a pseudo-thermal distribution function describes the nonequilibrium state measured far away from the injector, while close to the injector the distribution function a shape such as the one shown in gure 1.8. At high magnetic elds for the same injection current QPs are injected in a larger energy range, which should lead to an increase of the electron-electron scattering and thus a faster pseudo-thermalization.

At the time of writing there is not enough data available to make a quantitative analysis of the eective electron-electron scattering rates. At the end of section 4.1 an experiment is 

Spectroscopic measurements

In this chapter the results of the spectroscopic study of the out-of-equilibrium state, induced by current injection through an NIS junction, will be presented. The rst section, 4.1, will show the results of the zero eld experiments which demonstrate that close to the injector junction the distribution function cannot be described by an eective temperature T * or an eective chemical potential µ * , or a combination of the two, and is thus truly outof-equilibrium. At the same time the results from the further detectors show a distribution function which is better described by an eective temperature because L J 2 ,J 3 > √ Dτ e-e . The second section, 4.2, will show that at nite magnetic elds the distribution function becomes spin dependent. Evidence for the presence of the spin-energy mode f L3 will be presented through the observation of the energy-localized charge imbalance. At the end, in section 4.3, a comparison of this charge imbalance with the previously observed charge mode f T is given.

Spectroscopy of injected quasiparticles at H = 0T

As shown in section 2.2.2 the SIS detector can be used as a spectroscopic probe: in the sub-gap region (eV

< ∆ + ∆ D ) the dierential conductance signal G(eV = E -∆ D ) is proportional to the number of quasiparticles at N QP (E) = N + (E)f (E)
. By measuring the G(V ) spectrum as a function of current injection one can then obtain spectroscopic information about the out-of-equilibrium state.

At zero magnetic eld the Josephson coupling between the detector and the superconductor is non-negligible which results in a nite conductance even at equilibrium, as shown by gure 2.5. Aside from the zero bias peak and the strongest resonances which are marked in said gure, there is also a series of smaller ones resulting in a nontrivial background. As the signal associated with the out-of-equilibrium state is also rather small, carrying out a deconvolution procedure to obtain the raw distribution function is challenging. Because of this the discussion will be focused mainly on the number of quasiparticles at the gap edge ∆. Figure 4.1 shows the G(V ) curve of the closest detector J 1 as a function of the current through the injector junction. At nite injection currents a peak becomes visible at V ≈ 70µV, which corresponds to eV = ∆ -∆ D . It shows up as soon as the injection voltage V inj reaches the spectroscopic gap of the superconductor (the red trace in g. 4.1), and steadily grows as the injection voltage / current is increased up to eV inj ≈ 2∆ (the purple, blue and green traces in g. 4.1), without changing its width (FWHM ≈ 16µV). This implies that the quasiparticles are well localized in energy fairly close to E = ∆. Only when the injection 50 CHAPTER 4. SPECTROSCOPIC MEASUREMENTS voltage goes above V inj > 4∆ a substantial number of quasiparticles does show up at higher energies (see the dashed black trace in g. 4.1). This can be understood in terms of the distribution functions calculated based on the theory from chapter 1, in particular the shape of the distribution function shown in gure 1.8, where most of the quasiparticles are found near the gap edge due to the peaks in the distribution function as well as the DOS. These quasiparticles are accumulated there because of the vanishingly small mobility at the gap edge (see gure 1.2), and thus a large lifetime set by the diusion.

To explain a QP peak of ≈ 0.35G N N at eV det = ∆ -∆ D ≈ 70µeV, with ∆ and ∆ D as in the experiment, requires an eective temperature T * ≈ 1.1K (the detector is assumed to be in equilibrium) -see the dotted blue trace in gure 4. At higher energies only a comparatively small step, whose height is set by the normal state diusion and the length of the wire, is found, which together with the at DOS corresponds to a much smaller QP density. This step extends up to E = V inj , and can be detected as a contribution in the G(V ) curve at eV det = eV inj -∆ D . This implies that the I(V ) curve of the injector is imprinted into the G(V ) curve of the detector as a threshold for the detection of nonequilibrium quasiparticles. To highlight this, gure 4.2 shows a 3D map of the detector conductance G(V ) in the sub-gap region, superimposed with the injector I(V ) curve oset by the detector gap. An increase of the detection signal at V det can be observed as soon as the injection voltage exceeds eV det = eV inj -∆ D , demonstrating unequivocally that the system is driven truly out-of-equilibrium by quasiparticle injection (i.e. the distribution function is not a thermal one). This is in contrast with the behavior observed at the other two detectors J 2 and J 3 shown in gure 4.3. At these distances the peak at eV = ∆ -∆ D is still present but is much less prominent, and at all injection currents which show an increased number of QPs the out-ofequilibrium population cannot be conned to a nite energy/voltage range. This is more in line with a pseudo-thermal distribution function with a long (exponentially decaying) tail, in which a cut-o energy is not well dened. To show this in a clearer way the following analysis can be conducted: the out-ofequilibrium contribution to the peak at eV = ∆ -∆ D can be integrated in a width corresponding to its FWHM, which measures only the quasiparticles close to the gap edge. This can then be compared to the total number of quasiparticles, and the ratio and/or dierence between the two determines whether the excitations are localized in energy or not. This is shown in gure 4.4 for all three detectors. The two traces from J 1 are identical up to I inj ≈ 20nA, which corresponds to V inj ≈ 1.4∆ 0 , and separate after that. Even at the highest injection shown in the gure more than 75% of the quasiparticles remain in the vicinity of the gap edge. The J 2 and J 3 traces, on the other hand, show a large number of quasiparticles at higher energies, roughly 50% of the total. Again this can be understood in terms of a pseudo-thermal distribution function with a long tail.

The out-of-equilibrium distribution function can be calculated based on the formalism presented in section 1, including both the f L and the f T modes. Following this, a simulation of the SIS conductance traces can be calculated using the standard tunneling approach. A comparison of the G(V ) peak height at eV = ∆ -∆ D between the experiment and the calculation is shown in gure 4.5. For the closest detector J 1 the theory and the experiment show excellent agreement for low injection currents (I inj < 10nA). The theory predicts a saturation of the trace, because no interactions are included in the model, and thus the number of quasiparticles at low energies is not dependent on the number of quasiparticles injected at higher energies. The discrepancy between the two traces above I inj > 50nA, i.e. the increase of the experimental signal, can then be interpreted as an eect of pseudothermalization at high quasiparticle densities, as the electron-electron interaction rate is no longer negligible to the injection and relaxation rates: the eect of the electron-electron interaction is to drive the distribution function towards a thermal one, giving rise to an exponential tail and reducing the number of quasiparticles at the gap edge. The slight decrease of the experimental signal in the range 10nA < I inj < 50nA could, in principle, be a result of the non-locality in energy of the detection scheme: as shown in gure 2.6 the ∂N D (E)/∂V is strongly peaked at the spectroscopic gap edge, but above the coherence peak it also has a small negative part. When quasiparticles are injected in this region of energies the observed signal should be reduced. This is, however, dicult to reproduce as it is strongly dependent on the spectral properties of the detector, a small pair breaking contribution or nite lifetime could in principle successfully model the eect.

The two other traces, from J 2 and J 3 do not match the theoretical prediction. In the non-interacting model without quasiparticle recombination the spatial evolution of the distribution function is roughly equivalent to a rescaling by a factor of 1 -x L where x is the position of the detector and L the distance to the thermal reservoir. This preserves the large peak in the distribution function at E = ∆, which is clearly not present in the experimental data. It is important to note that this behavior is not dependent on the values of the parameters used for the calculation, as the linear decay of the f L mode is a general feature of the All of the above leads to a conclusion that close to the injection junction the superconductor is is truly out-of-equilibrium (i.e. it cannot be described by an eective temperature), and the distribution function is sharply peaked close to the spectroscopic gap. At larger distances, however, the diusion time approaches the electron-electron time and the distribution functions reach a pseudo-thermal state.

As the interaction mediated nite quasiparticle lifetime induces a Dynes(-like) density of states [START_REF] Rc Dynes | Tunneling study of superconductivity near the metal-insulator transition[END_REF][START_REF] Da Browne | Coulomb-induced anomalies in highly disordered superconductors: Application to tunneling[END_REF], the measurement of the (energy-resolved) QP lifetime can be performed in an experiment similar to this one, but with a normal-metal detector. As the phonon temperature of the (rest of the) system is not modied by current injection into the superconductor a second high resistance junction can be used to probe the DOS and thus determine the scattering rates through deconvolution.

Spectroscopy of injected quasiparticles at H = 1T

The same set of measurements as presented in the previous section can be performed at nonzero magnetic elds. The fundamental dierence is that at nite elds the distribution functions for the two spin species will not necessarily be the same: when the injector is biased for a spin sensitive spectroscopic study without the need for a spin polarized barrier. Figure 4.6 shows the G(V ) curve of the detector for I inj = 5nA, which corresponds to the maximum spin polarized current at higher elds, as well as I inj = 40nA (dashed traces), as a function of the applied magnetic eld. For clarity the traces are oset such that eV det = ∆ -∆ D is at V det = 0. At the higher of the two currents, when both spin up and spin down electrons are injected, two peaks are visible, separated by 2µ B H as indicated by the vertical black lines. 

such that ∆ -µ B H < V inj < ∆ + µ B H the
(V = 0) ≈ 3.25MΩ to R inj (∆ -µ B H) ≈ 13kΩ
). This changes the electromagnetic environment seen by the SIS detector junction drastically and can lead to an increase of the Josephson current [33].

When the detector is biased to a higher voltage/current, electrons of the other spin can also tunnel into the superconductor (red and purple traces in g. 4.7), and quasiparticles of the other spin are detected as a G(V ) peak at V ≈ 150µV (the separation between the two is ≈ 2µ B H). These results, as at H = 0T, show that quasiparticles injected at low energies do not scatter to higher energies close to the injector. The other feature which can be observed when spin down quasiparticles are preferentially injected into the superconductor is that an odd component in the G(V ) appears: the peak at positive voltages is slightly higher than the one at negative detection voltages. The odd parity of the signal, coupled to the fact that the sign of the asymmetry is reversed when a negative bias current is applied, implies that a nite charge imbalance is induced in the superconducting wire.

The classication of the dierent modes, presented in chapter 1, shows that a charge imbalance can be associated with either the f T or the f L3 mode. The charge imbalance related to the f L3 mode mode is conned to the region of energies where N -= 0, that is close to the gap edge of spin down quasiparticles, relaxes within the spin-ip length, and is not monotonically suppressed by the magnetic eld (for the details see section 1.4). On the other hand, f T is dominant at high energies and is monotonically suppressed by the magnetic eld due to the pair breaking of the orbital currents. These dierences allow one to determine the origin of the charge imbalance.

The same measurements as shown in gure 4.7 can be performed for the other two detectors, which are shown in gure 4.8. Unfortunately, due to slightly dierent values of the detector gap ∆ D the spin down peaks are not individually observable, but are merged with the Josephson zero-bias peak. Nevertheless, it is clear that there is no odd component in these traces. As the distance between these detectors and the injection junction is larger than L SO ≈ 240nm, this is consistent with the f L3 mode as the origin of the charge imbalance observed with J 1 .

To verify this claim the other two discriminative properties of the f L3 need to be utilized -the connement of the signal in the range ∆µ B H < ∆ < ∆ + µ B H and the characteristic eld dependence. To this end a very high resolution measurement of the sub-gap G(V ) was performed as a function of the injection current using the closest detector J 1 . For visual clarity the Josephson contribution was subtracted from the traces in the following way: the G(V ) trace can be modeled as a sum of 5 Gaussian peaks, one at V = 0 representing the Josephson component, while the others are located at ± Ṽ and ±( Ṽ + 2µ B H) representing the spin down and spin up electron-like quasiparticles (with the plus sign) and the spin down and spin up hole like quasiparticles (with the minus sign). Using Ṽ , the heights and widths of these peaks as tting parameters, the data can be reproduced (see gure 4.9), and the Josephson contribution can be subtracted.

The result of this procedure is reported in gure 4.10, which shows the same features as gure 4.7: when spin down electrons are injected only spin down quasiparticles are detected (as peaks at eV = ∆µ B H -∆ D ), and at higher injections quasiparticles of both spins are present. As at H = 0T, the colormap shows a dark blue "wing shaped" basin below I inj ≈ 25nA, which is an imprint of the injector V (I) curve oset by the detector gap V threshold = V inj (I inj )-∆ D /e (the black dashed trace). This again veries that the distribution function is truly out-of-equilibrium and that it has the step-like shape (with a peak at the gap edge) up to eV inj . The panel on the right of this gure shows the line cuts made along the dashed lines at eV = ∆µ B H -∆ D . These two traces, or rather the dierence thereof, show the evolution of the odd component of the G(V ) curve, which attains a maximum at the maximal 100% spin polarized injection current.

Using the theory presented in chapter 1, the full out-of-equilibrium distribution function, including all four modes, can be calculated. With a precise estimation of the detector parameters one can calculate the G(V ) theoretical curve, which is presented in the same way (e.g. as a colormap including the line cuts) in gure 4.11. At low injection currents, where the electron-electron interaction is negligible the theory reproduces the experimental data well.

At higher injections the theory predicts the same prominence for the spin down and spin up peaks, which is not the case in the experiment because of the quasiparticle interaction.

Unlike at H = 0T, where one looses all features above the coherence peak, at nite elds one can also probe the coherence peak, as well as the associated quasiparticles, at E = ∆ + µ B H, which could in principle be used to gauge the strength of the electron-electron interaction.

However, as both the DOS and the distribution function are probed simultaneously, this is a nontrivial problem. The fallo in the line cuts is present in both the theory and the experiment and is a result of the nonlocality in energy of the detection scheme, as a consequence of the high pair breaking induced broadening of the detector DOS. As a result of the same 58 CHAPTER 4. SPECTROSCOPIC MEASUREMENTS eect, the odd component of the G(eV = ∆µ B H -∆ D ) is suppressed at higher injection currents.

To verify that the charge imbalance is localized in the energy range ∆µ B H < V inj < ∆ + µ B H, the odd component of the G(V ) colorplot is shown in the left panel of gure 4.12. As expected for the f L3 , mode the charge imbalance is indeed localized in the region where N -= 0, and is dominantly observable at the voltage corresponding to the spectroscopic gap edge ∆-µ B H. The right panel shows the odd component of the line cuts at the quasiparticle peak. The odd component is absent at zero magnetic eld which is consistent with the charge imbalance associated with the f L3 mode, and shows up only when 2µ B H > 3.5k B T , that is when spin-polarized quasiparticles can be excited by injecting a current through an NIS junction. 

Dierentiating between the f T and the f L3 modes

As both of these modes contribute to the charge imbalance in a superconductor, one cannot distinguish between them by just measuring the voltage across a nearby normal metal probe, as was done previously [36]. The distinction between the two can, however, be made by performing a spectroscopic measurement: as shown in section 1.4 the f T mode is dominantly present at low magnetic elds and at high injection energies, while the spin-energy mode f L3 is localized within ∆µ B H < E < ∆ + µ B H and becomes more visible with increasing eld, but dies o close to H c .

To verify that the odd signal shown in the main text is indeed due to the spin-energy, the following analysis was performed. The left panel of gure 4.13 shows the G(V ) of detector J 1 at H = 0T for I inj = ±120nA (the gure is presented in a similar fashion as in 4.6, oset such that the QP peak is at zero and the equilibrium trace is subtracted). Above the QP peak there is a dierence between the traces, which changes sign with the sign of the injection current and detection voltage (only the positive part of the trace is shown here for clarity), indicating the presence of a charge imbalance induced by the f T mode (f L3 = 0 at H = 0 in our experiment). The odd component of the trace can be integrated over the regions marked in the gure (the negative peak at ≈ 200µV is related to the Josephson current and is therefore omitted), and the result is shown on the right panel of gure 4.13. The same panel also shows the results of a similar procedure done for H = 1T (integrated in the region 90µV ≤ V det ≤ 210µV -see gure 4.7 for reference), which shows no asymmetry, signifying that the contribution of the f T mode at H = 1T is negligible.

Together with section 4.2, the results presented here show that the charge imbalance observed at nite elds and close to the gap edge of the superconductor is associated with the presence of the f L3 mode excited by quasiparticle injection into a Zeeman split superconductor through an NIS junction. Spin-sensitive detector with in-gap states: Figure 4.15 shows data from a device with a spin sensitive detector (measured at T = 90mK and H = 1T). In this device instead of a Pt capping layer on top of the detector electrode, the detector was fabricated as a Al/Pt/Al sandwich. This resulted in some in-gap states leading to a nontrivial G(V ) curve at 

Introduction

Josephson junctions are widely used in quantum electronics as nondissipative nonlinear devices. When two superconductors are coupled through a thin insulating layer, the dynamics of the junction are set by the reservoir dynamics, as the tunneling time is in the order of a few fs [START_REF] Février | Tunneling time probed by quantum shot noise[END_REF]. Furthermore because of the large energy gap in the insulator (≈ 2eV) the barrier always remains in equilibrium.

The situation is dierent when the weak link is formed by a disordered (diusive) normalmetal wire. Because of the nite density of states at the Fermi level and the diusive transport in the wire two timescales appear [START_REF] Chiodi | Evidence for Two Time Scales in Long SNS Junctions[END_REF]: the coupling between the two superconducting reservoirs is set by the diusion time in the wire τ D = L 2

D

, while the other timescale is the energy relaxation time τ r at which the system returns back to thermal equilibrium. Therefore the dynamics of Josephson junctions in which the weak link is a normal metal (i.e. a Superconductor-Normal-Superconductor junction or SNS for short) is not related to the one found in the reservoirs but instead to diusion and relaxation of the electrons in the normal metal (N).

As Cooper pair tunneling is not the transport mechanism in SNS junctions an alternative mechanism gives rise to a nite supercurrent: an electron in N, with an energy equal to or smaller than the gap of the superconductor, cannot traverse the N/S interface as there are no available states at those energies. Instead it is reected back as a hole and a Cooper pair is transferred into the superconductor, this process is called Andreev reection. The backscattered hole acquires an extra phase equal to the one of the macroscopic wave function in the superconductor. The hole follows the time-reversed trajectory of the electron [START_REF] Klapwijk | Proximity Eect From an Andreev Perspective[END_REF] until it reaches the second N/S interface, at which it is converted back to an electron by removing a Cooper pair from the superconductor. The phase acquired during this whole process must be an integer multiple of 2π giving rise to bound states, also called Andreev bound states (ABS). Because of the diusive transport in SNS junctions these states form a continuum.

As a consequence of the nite normal metal wire length these bound states have a minimum energy in the order of the Thouless energy

E T = τ D = D L 2 .
The Josephson eect is then understood in terms of the supercurrent carried by the continuous ABS spectrum. This is strictly true only when the phases of the two superconducting reservoirs are equal. When the phase dierence ϕ is not zero, the minimum excitation energy is modied as ∝ | cos(ϕ/2)|.

This physical picture can be formalized theoretically by using the quasi-classical Green's function approach, in particular through the Usadel formalism which describes disordered systems [14,[START_REF] Usadel | Generalized diusion equation for superconducting alloys[END_REF]. The single particle excitation spectrum in the normal metal is found to be gapped, and in the long junction limit (E T ∆) it is equal to E g (ϕ = 0) ≈ 3.1E T and closes at ϕ = π. Likewise from the Usadel equation the spectral-supercurrent can be computed as a function of energy and the phase dierence j s (E, ϕ). To obtain the supercurrent through the junction one needs to multiply j s with the (odd component of the) distribution function 69 and integrate over energies [START_REF] Tero | Supercurrent-carrying density of states in diusive mesoscopic Josephson weak links[END_REF]. This results in a direct possibility of manipulating the SNS junction properties through a non-equilibrium distribution function. As an example, the fact rst pointed out by Yip [79] that the spectral supercurrent changes sign at high enough energy can be used to reverse the ow of supercurrent, by modifying the distribution function through the application of a voltage [START_REF] Baselmans | Direct Observation of the Transition from the Conventional Superconducting State to the π State in a Controllable Josephson Junction[END_REF], and gives rise to the "π state".

As pointed out by Eliashberg [START_REF] Eliashberg | Film superconductivity stimulated by a high-frequency eld[END_REF] for homogeneous superconductors and recently generalized theoretically to SNS junctions [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF], microwave radiation can also be used to drive the distribution function out-of-equilibrium, such that the low-energy states which carry the highest weight in the self-consistency relation and the spectral-supercurrent get depopulated.

Therefore this leads to an enhancement of the order parameter (for bulk superconductors) and an increase in the critical current for SNS weak links. In the same spirit, microwave pumping has been used also to increase the critical temperature of conventional superconductors by changing the energy distribution of thermally excited quasiparticles [START_REF] Klapwijk | Microwave-enhanced superconductivity in aluminium lms[END_REF].

Unlike in a homogeneous superconductor, in an SNS junction the induced mini-gap depends on the phase dierence ϕ, which in turn results in supercurrent that becomes phase dependent not only through the equilibrium dependence of j s (ϕ) but also through the absorption and emission rates which depend on the density of states [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF]. As a consequence the current phase relationship (CPR) acquires higher harmonics that are not present at equilibrium [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF][START_REF] Fuechsle | Eect of Microwaves on the Current-Phase Relation of Superconductor Normal-MetalSuperconductor Josephson Junctions[END_REF].

In this section we show that this anharmonicity induced by microwave pumping is not only related to the out-of-equilibrium distribution function but also, and primarily, to a dip in the spectral current density at the energy corresponding to the frequency of the microwave drive E = ±ω RF /2. This feature is a consequence of the microwave absorption induced quasiparticle transitions across the mini-gap and can be seen as a dynamical pair-breaking eect. Experimentally the harmonics of the current phase relation were accessed by measuring the AC Josephson radiation emitted by the SNS junction at f F ≈ 6GHz while being irradiated with a microwave drive with a frequency of the order of the mini-gap ω RF ≥ 2E g (0) [START_REF] Basset | Nonadiabatic dynamics in strongly driven diusive Josephson junctions[END_REF].

Chapter 5

Theory

This section covers several topics. Firstly it describes how a Josephson junction can be modeled electrically and how it responds to a current or a voltage bias, as well as a microwave drive in terms of the phase dynamics. Following this, the quasiclassical theory of the supercurrent in SNS junctions will be presented and the equilibrium transport properties will be calculated. At the end a novel out-of-equilibrium situation is discussed, from a microscopic point of view, in which both the spectral supercurrent and the distribution function are driven out-of-equilibrium, as a consequence of a microwave drive at a frequency greater than the minigap energy.

Electrical properties of an SNS junction in a circuit

5.1.1

The DC RSJ model

This section provides an overview of the well established Resistively Shunted Josephson

(RSJ) junction model, describing the (macroscopic) electrical response of an SNS junction under current bias [17,[START_REF]Voltage Current Characteristics[END_REF]. The result of the microscopic theory (presented in chapter 5.2)

is that an SNS junction can be characterized by the current phase relation (CPR) I = I s (ϕ)

as well as the 2nd Josephson equation which relates the voltage across the junction with the time derivative of the phase dierence V (t) = 2e φ(t) [START_REF] Bd Josephson | Coupled superconductors[END_REF]. The V = 0 solution, or equivalently φ = 0, corresponds to a supercurrent owing through the junction. If the junction is biased with a current smaller than the critical one, ϕ will attain a value such that I DC = I s (ϕ). For currents larger than the critical one a zero-voltage solution does not exist, and other transport channels need to be taken into account -the displacement current related to the charging and discharging of the junction capacitance and the dissipative current through the resistive channel. For an SNS junction the eective capacitance is usually negligible and only the resistive channel needs to be included [START_REF] Konstantinovich | Dynamics of Josephson junctions and circuits[END_REF][START_REF]Voltage Current Characteristics[END_REF].

The total current is then: At nite temperatures, aside from a suppression of the critical current I c (T ), one needs to consider the eects of thermal uctuations, which originate from the Johnson noise of the normal wire resistance. These can be included in the model by adding a Langevin term δI(t) to the current bias, which is assumed to have zero mean and to be white < δI(t + τ )δI(t) >= 2k B T R δ(τ ). The RSJ model then becomes a Fokker-Planck equation, which can be solved in terms of the probability distribution function for the phase σ(ϕ, t) (see [START_REF]Voltage Current Characteristics[END_REF]). At the end the intensity of the uctuations is described by γ = I c ek B T . The same approach can be used even if the source of the uctuations is not the Johnson noise of the normal state resistance but the noise of the biasing circuit, then γ (which can be determined by tting the V (I) curve) sets the eective noise temperature of the setup.

I DC = I s (ϕ(t)) + V R N = I s (ϕ(t)) + φ 2eR N (5.
The V (I) curves calculated with and without thermal uctuations are shown in gure 5.1 -the main eect of thermal uctuations is to wash out the sharp transition from the nondissipative to the dissipative regime seen in the RSJ solution. Irradiating a Josephson junction with microwaves leads to signicant changes in the V (I) curve -constant voltage steps appear at V DC = n ω RF 2e , where ω RF is the angular frequency of the microwave drive and n is an integer [START_REF] Shapiro | Josephson currents in superconducting tunneling: The eect of microwaves and other observations[END_REF]33]. The numerical value of 2e h ≈ 483MHz/µV means that one needs to apply radiation with a frequency above 1GHz to easily observe this eect experimentally.

If the junction is voltage biased by

V (t) = V DC + V RF cos(ω RF t)
the phase dierence will, according to the 2nd Josephson relation, evolve as

ϕ(t) = ϕ 0 + ω DC t + 2eV RF ω RF sin(ω RF t)
where ω DC = 2eV DC and ϕ 0 is a free parameter, the meaning of which will be discussed later.

For simplicity we can assume that the current phase relation is given by I(ϕ) = I c sin(ϕ), and by substituting the expression for ϕ(t) one gets [33,[START_REF] Grimes | Millimeter-wave mixing with Josephson junctions[END_REF]: The n = 0 term, proportional to J 0 (s), describes how the critical current is suppressed by microwave irradiation, while the higher order ones result in constant voltage steps. ϕ 0 is still a free parameter, and for a given ω DC = nω RF , it determines the value of the DC current: when the Josephson radiation and the RF drive are in phase ϕ 0 = 0 , and there will be no current. The extremal cases are when the two waves are dephased by ϕ 0 = ±π/2 and the corresponding current is I = ±I c J n (s), giving the full width of the step as 2I c |J n (s)|.

I(t) = I c n (-1) n J n ( 2eV RF ω RF ) sin ϕ 0 + ω DC t -nω RF t (5.3 
The generalization to the case of an arbitrary current phase relation, which has higher order terms in it, I(ϕ) = k I c,k sin(kϕ) is straightforward: the same expression for ϕ(t) is substituted into the CPR and the result is evaluated termwise. For the k-th harmonic of the current phase relation the resonant condition is kω DC = nω RF where n is the order of the conversion process. The corresponding current will scale as J n (ks), and the total current can be evaluated by summing over k.

In practice it is challenging to truly voltage bias devices with a low resistance, compared to the one of the electromagnetic environment, and thus they are often current biased. The resulting phase dynamics can be captured with the RSJ model by including a time dependent bias current on the left-hand side of the equation: 

I DC + I RF sin(ω RF t) = I s (ϕ(t)) + φ 2eR
ω RF = 3 2eI c R N , resulting in a Shapiro step at V DC = 3I c R N .
The traces correspond to dierent values of the microwave drive: the green curve corresponds to s = 0, the purple one corresponds to s = 1.84 which maximizes the width of the Shapiro step and the red one is close to s = 2.4 which suppresses the critical current fully. The higher order steps are also reproduced, but are not shown as they appear at higher voltages. In the current biased RSJ model the maximum width of the 1st Shapiro step is frequency dependent (see gure 5.5). The high frequency limit, ω RF 2eI c R N recovers the voltage biased result, while at low frequencies the eect is substantially suppressed (also see [START_REF] Russer | Inuence of microwave radiation on current-voltage characteristic of superconducting weak links[END_REF]). This is due to the nonlinearity of the junction at low bias currents, where the currents carried by the resistive and the superconducting channel are comparable and the V (I) curve is highly nonlinear. At higher frequencies the Shapiro steps appear at suciently high DC bias currents where the junction is approximately linear and the behavior is adequately described by a voltage bias V RF = I RF R N . This brute force approach is then computationally relatively challenging: the time step of the numerical integration is set by max(ω DC , ω RF ), while to have a good resolution it is necessary to integrate over long times. To mitigate this issue an alternative approach can be utilized. The phase dynamics can be separated into two components ϕ(t) = ϕ L (t) + ϕ H (t), where ϕ L (t)/ϕ H (t) are the low/high frequency components. Substituting this ansatz into equation 5.4, under the assumption that the high frequency component is dominantly carried by a resistive current, yields:

I DC + I RF sin(ω RF t) = Ĩ(ϕ L (t)) + φL 2eR + φH 2eR
(5.5) Compared to eq. 5.4, the I c sin(ϕ(t)) term is replaced by Ĩ(ϕ L (t)) which is the instantaneous low frequency current-phase relation, averaged over the period of the drive at ω RF . If the junction has a sinusoidal current phase relation I(ϕ) = I c sin(ϕ) the form of Ĩ(ϕ) can be found from equation 5.3. Separating the low and the high frequency components of the phase gives the result Ĩ(s, ϕ L (t)) = J 0 (s)I c sin(ϕ L (t)). If the current phase relation has higher order 5.1. ELECTRICAL PROPERTIES OF AN SNS JUNCTION IN A CIRCUIT 79 harmonics, Ĩ(s, ϕ) becomes, by analogy with the behavior of higher-order harmonics under voltage bias, Ĩ(s, ϕ) = n=1 I c,n J 0 (ns) sin(nϕ).

In general Ĩ(ϕ) can be calculated from the microscopic theory, taking into account outof-equilibrium eects and the high frequency phase dynamics. A theoretical framework for doing so is presented in section 5.3.

Matching the low and high frequency components on the left hand and right hand sides of equation 5.5 gives:

I DC = Ĩ(ϕ L (t)) + φL 2eR , I RF sin(ω RF t) = φH 2eR (5.6)
The second of the two equations is solved by ϕ 

H (t) = -2eI RF R N ω RF cos(ω RF t)
t(ϕ L ) = 2eR ϕ L 0 dφ [I DC -Ĩ(φ )] -1
(5.7)

The k-th harmonic of the emitted Josephson radiation (i.e. the power at kω DC ) can be obtained as:

V k = ω DC 2π 2π/ω DC 0 dte -ikω DC t V (t) = ω DC 4eπ 2π/ω DC 0 dte -ikω DC t φL (t) = V DC 2π 2π 0 dϕe -ik 2π t(2π) t(φ) (5.8) 
Using this result the amplitude of the Josephson emission can be calculated for an arbitrary current phase relation. If ω D is low this condition is met at a low bias current, close to the critical one and the resulting phase dynamics is highly nonlinear. This nonlinearity can produce a nite power at twice the frequency, where one should normally expect to see the emission from the second order process, even if the current phase relation is sinusoidal -see gure 5.7. At a suciently high frequency the emission spectrum approaches the linear response solution -no power is emitted at higher frequencies and the 1st harmonic attains the Bessel power dependence. If the current phase relation is I(ϕ) = I c,1 sin(ϕ)+I c,2 sin(2ϕ), the results are qualitatively the same: at low frequencies the nonlinearity mixes the radiation at ω DC and 2ω DC , while at higher frequencies the radiation at ω DC (2ω DC ) originates solely from the rst (second) harmonic of the CPR and evolves as J 0 (s) (J 0 (2s)) with the applied power.

It is important to note that at high powers the emission follows the Bessel function regardless of the measurement frequency. Thus by measuring the nite frequency spectrum of the emitted Josephson radiation one can noninvasively probe the adiabatic current phase relation of a Josephson junction. 

Equilibrium microscopic theory of SNS junctions

This section is provides a review of the physics, on a microscopic level, describing the properties of SNS junctions within the Usadel formalism.

The microscopic properties of an SNS junction can be described within the Keldysh-Usadel formalism presented in chapter 1 of part I. If the self energy contribution is neglected, at zero magnetic eld the Usadel equation reads:

D∇ • (ǧ∇ǧ) + [iEτ 3 -∆, ǧ] = 0
(5.9)

In the previous equation D is the normal state diusion constant, ǧ is the Keldysh-Usadel ĝR is the retarded component of the Green's function, ĝA the advanced one, and the Keldysh component of the Green's function is ĝK = ĝR ff ĝA , and f is the distribution function matrix, and ĝA = -τ 3 ĝR τ 3 (see chapter 1). The ∆ term in the previous equation describes the superconducting order parameter and is given by:

∆ = ∆ 0 0 ∆ , ∆ = 0 ∆(x) ∆ * (x) 0 (5.11)
The (local) value of ∆(x) is set by the self-consistency relation, while the phase gradients are directly related to a presence of a supercurrent.

A diusive SNS junction can be modeled as a normal metal wire terminated with two large superconducting reservoirs. In the normal wire the intrinsic pairing potential is zero and therefore in this region ∆ = 0. However, the wire can be proximitized through the contact with the superconducting reservoir, and Cooper pairs can diuse into it.

From the normalization condition (ĝ R ) 2 = 1 the retarded component of the Green's function can be parameterized as [START_REF] Tero | Supercurrent-carrying density of states in diusive mesoscopic Josephson weak links[END_REF]:

ĝ = cosh(θ) sinh(θ)e iχ -sinh(θ)e -iχ -cosh(θ) (5.12)
Here θ is the complex pairing angle and χ is the complex phase of the induced superconducting state. For a quasi one dimensional wire, pointing along the x axis, this parametrization reduces to θ = θ(E, x) and χ = χ(E, x). Substituting this into the Usadel equation (eq. 5.9), with a change of variables such that the length is measured in units of the wire length L and the energies are measured in units of the Thouless energy E T = D L 2 , gives the equations of motion for the parameters θ and χ are:

∂ x θ = -2iE sinh(θ) + 1 2 (∂ x χ) 2 sinh(2θ), j s = sinh 2 (θ)∂ x χ, ∂ x j s = 0 (5.13)
Unlike in chapter I, where only the homogeneous, spatially invariant, solution to the Green's function was of interest, in this case the spatial dependence is essential for describing the properties of the system. The quantity j s , introduced in the second line of 5.13, is the spectral supercurrent density.

In equilibrium the supercurrent owing along the wire is

I s = ∞ -∞ Im(j s )f L (E)dE (5.14) where f L (E) is the odd component of the distribution function. In equilibrium f L (E) = tanh( E 2k B T
). The third equation in 5.13 simply states that the current is conserved along the wire.

The NS interfaces at the end of the wire impose boundary conditions for equation 5.13, which can be described by a scattering matrix for interfaces of arbitrary transparency [START_REF] Yuli | Novel circuit theory of Andreev reection[END_REF].

For an ideal interface the boundary condition is just given by the continuity of the Green's function. If the volume of the normal wire is suciently small compared to the volume of the superconductors, one can assume that the order parameter is unmodied in the reservoirs.

The θ in the reservoirs is then θ reservoir = arctanh(|∆|/E). As the absolute value of the phase 5.2. EQUILIBRIUM MICROSCOPIC THEORY OF SNS JUNCTIONS 83 of the pairing potential is not observable, but only the phase dierence, the phases of the two superconducting leads can be set to χ L = -ϕ/2 and χ R = ϕ/2, where ϕ is the total phase dierence.

With ∆, E T , or rather the ratio of the two, and ϕ as the parameters properties of an SNS junction can now be calculated. For a diusive superconductor the coherence length is set by the diusion constant ξ = D ∆

. The ratio ∆/E T therefore classies the junction based on its length compared to the coherence length.

A short junction L < ξ corresponds to ∆/E T < 1, in which case the superconducting correlations "leak" into the wire and proximitize it completely, with the ϕ = 0 density of states similar to the one of the superconductor. In the limit of a long junction L > ξ (∆/E T > 1) the structure of the induced DOS, as well as the spectral supercurrent j s , are set solely by the Thouless energy [START_REF] Guéron | Superconducting proximity eect probed on a mesoscopic length scale[END_REF]. In the wire a position independent mini-gap is induced with the spectral gap equal to E g (ϕ = 0) ≈ 3.1E T [START_REF] Hélène | Phase controlled superconducting proximity eect probed by tunneling spectroscopy[END_REF]. Figure 5.9 shows the spatial dependence of the DOS for a long junction.

Junctions of intermediate length show properties of both: within ≈ ξ from the superconducting reservoirs a peak in the DOS at E = ∆ appears while in the center of the wire the DOS is similar to the one of the long junction (see gure 5.10). By solving the set of equations 5.13 it can be seen that a nonzero ϕ induces a nonzero gradient of the complex phase χ and therefore a nite supercurrent will ow along the wire. Figure 5.12 shows the evolution of Im(j s ) as a function of the energy and the phase dierence ϕ. At thermal equilibrium to obtain the total current through the junction, Im(j s ) should be multiplied by f L = tanh( E 2T ) (eq. 5.14) to account for the thermal activation of the current carrying states, and integrated over energy. Figure 5.13 shows the current-phase relation of a long junction at dierent temperatures. The high temperature traces, k B T > 5E T , show a sinusoidal current-phase relation, while at low temperatures the current-phase becomes anharmonic and the maximum shifts towards ϕ = π.

To understand this, j s (ϕ, E) can be Fourier transformed into j s (n, E) such that j s (ϕ, E) = n=1 j s (n, E) sin(nϕ) [START_REF] Tero | Supercurrent-carrying density of states in diusive mesoscopic Josephson weak links[END_REF]. The energy dependence of the rst ve harmonics of j s (n, E) is shown in gure 5.14 -only the rst harmonic has a contribution at energies larger than ≈ 10E T , and the higher order ones are well localized around E = 0 -see the left panel of gure 5.14. The total current through the junction is a sum of these terms, weighted by

f L = tanh E

2T

. Only when 3.5k B T < E g (ϕ) < 3.1E T , where E g (ϕ) is the phase dependent minigap (shown in g. 5.9), will the higher order harmonics contribute to the current.

The current phase relation I(ϕ) can also be expanded as I(ϕ) = The critical current I c (the maximum current that can ow through the junction without dissipation) can be found as I c = max(I(ϕ)), and the phase at which this current is maximized as ϕ c = argmax(I ϕ ). The temperature dependence of both of these quantities is shown in CHAPTER 5. THEORY gure 5.15. The low temperature saturation of I c , which can also be seen in the harmonics shown in g. 5.14, is due to the fact that the maximum current is obtained at a phase dierence smaller than π. Thus the DOS and the spectral supercurrent j s are gapped at this critical phase ϕ c , with a spectral gap of E c g . When 3.5k B T < E c g the distribution function can eectively be replaced with a sign function; a further reduction in temperature does not result in a higher activation of the current carrying states and so the critical current saturates.

It is important to note that in equilibrium the sign of the n-th harmonic alternates as (-1) (n+1) , which is visible directly in gure 5.14, as well as in gures 5.14 and 5.15 as a maximum of the current phase relation shifted towards ϕ = π at low temperatures. 

Microwave assisted supercurrent is SNS junctions

This section will present an overview of the theoretical results obtained in [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF] and how they can be utilized to model the experimental results presented in 6.3.

The paper investigates the eects of high intensity microwave radiation on supercurrents in long diusive Josephson junctions theoretically, with the aim of explaining the drastic supercurrent enhancements observed in e.g. [START_REF] Chiodi | Evidence for Two Time Scales in Long SNS Junctions[END_REF][START_REF] Fuechsle | Eect of Microwaves on the Current-Phase Relation of Superconductor Normal-MetalSuperconductor Josephson Junctions[END_REF].

As in equilibrium the diusive SNS junction can be modeled within the quasiclassical Usadel formalism, while the out-of-equilibrium eects can be taken into account through the Keldysh approach (i.e. the equation describing the system is formally the same as 5.9).

In the real time GF approach the microwave eld can be included through its vector potential A(t) = A 0 cos(ωt), where ω is the microwave frequency and A 0 points along the axis of the junction. The vector potential can be assumed to be position independent as the wavelength of the microwaves (≈ 1cm) is much larger compared to the typical lengths of SNS junctions (< 1µm). A 0 sets the amplitude of the radiation and relates to the s factor, introduced in 5.1.2, as s = 2eA 0 L. A consequence of this periodic drive is that the Green's function will be time dependent and can be expanded in terms of the harmonics at ω.

By Fourier transforming the Keldysh-Usadel equations to the energy representation the inclusion of the vector potential leads to a coupling between energies E and E +n ω, resulting in a coupled system of dierential equations, which reect the modulation of the GF at ω.

As heat transport is blocked by the NS interface if the microwave frequency is smaller than the gap in the superconducting reservoirs it is sucient to solve the Usadel equation only in the normal wire, with the BCS solution imposed as the boundary condition.

The inelastic energy relaxation is modeled within the relaxation time approximation, set by an eective relaxation rate Γ, the amplitude of which can be tuned to match the (temperature dependent) electron-phonon interaction strength. As usual, if Γ is too high the system will always be in equilibrium and if it is too low, the system will be driven out-ofequilibrium, to a state well described by an eective temperature. Thus it is vital to have the possibility of tuning the (eective) Γ in order to observe a nontrivial out-of-equilibrium state.

The kinetic equations, obtained from the Keldysh component, set the distribution function in the normal wire. If the relaxation time is suciently longer than the diusion time the distribution function becomes spatially independent. The kinetic equations then reduce to a balance between the microwave collision integral and the electron-phonon mediated relaxation:

Γ N δf = η -(E + )f + (1 -f 0 ) -η + (E)f 0 (1 -f + )η + (E -)f -(1 -f 0 ) -η -(E)f 0 (1 -f -) (5.15)
where N is the spatially averaged DOS, f 0 is the equilibrium Fermi-Dirac distribution function and δf is the deviation of the distribution function from equilibrium δf = ff 0 . All quantities with the +/-subscript are evaluated at E ± ω. The η + and η -terms are the microwave absorption and emission rates respectively and can be expressed in terms of the components of the (retarded) Green's function (see [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF] for details).

In the limit of small microwave power s < 1 and low frequencies ω RF < 2E g (ϕ) one can neglect the changes in the spectral equations and solve just the kinetic ones. The absorption 5.3. MICROWAVE ASSISTED SUPERCURRENT IS SNS JUNCTIONS 91 and emission rates then become:

η + (E) = η -(E + ω) = N N + + 1 4 Re (f R + f R * )(f R + + f R * + ) (5.16)
which gives the Mattis-Bardeen result [START_REF] Dc Mattis | Theory of the anomalous skin eect in normal and superconducting metals[END_REF] ( denotes the spatial average). The kinetic equation then recovers the Eliashberg result [START_REF] Eliashberg | Film superconductivity stimulated by a high-frequency eld[END_REF], in which the distribution function develops peaks above the spectral gap spaced by ω. However, at frequencies ω > 2E g (ϕ), where E g is the phase dependent spectral gap, this simplication is no longer valid for all powers and the full form of η based on the GF's must be used. Panel b of gure 5.16 shows the absorption rate η + calculated using the full theory and the approximate one. The largest dierence is at E = -4E T = -ω RF /2, where the absorption peak is greatly enhanced compared to the Mattis-Bardeen prediction. It induces transitions across the minigap (interband transitions)

which will be identied as the key ingredient necessary to explain the experimental results.

After solving the spectral and the kinetic equation, the supercurrent can be in the same way as in equation 5.14, but with the inclusion of the higher order AC harmonics in both the spectral supercurrent and the distribution function. To relate this to the experimentally accessible DC properties the time average needs to be taken. The "low frequency" currentphase relation computed in such a way takes into account the high frequency response of the junction to the applied microwave drive and in the limit of fast relaxation should reproduce the equilibrium Bessel dependence J 0 (s) of the critical current with the applied power. Figure 5.16 shows some of the results presented in [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF]: the absorption rate η + , the nonequilibrium modications of the distribution function δf and the modied current-phase relation. In contrast to what was found in equilibrium, the second harmonic induced by microwave irradiation (panel a of g. 5.16) has the same sign as the rst one and consequently the critical current is obtained below ϕ = π 

Sample fabrication and the experimental setup

The sample was fabricated on top of a Si/SiO 2 substrate, using e-beam lithography with a PMMA 495-A6/PMMA 950-A3 resist bi-layer. The junction is a L = 400nm long, w = 150nm wide and d = 40nm thick Ag wire, while the superconducting reservoirs are d = 70nm thick Nb pads -see gure 6.1. The metals were deposited by angle evaporation, where by evaporating at θ = 0 • Ag was deposited everywhere, and the Nb layer was evaporated at θ = 45 • such that the e-beam dened shadow-mask shields the normal wire from it. Because this technique results in a oset between the two layers it creates normal metal shadows next to the S reservoirs (but away from the wire), which act as quasiparticle traps [9] and aid in thermalization. . These approaches are compatible with a counting experiment, in which I is ramped and the time during which the previously dened conditions are met is measured.

The major benet of this approach is that a high resolution measurement can be made with a high repetition rate, giving a statistically precise result. The drawback is that the low value of γ reduces the accuracy, as there isn't a cusp which clearly identies the transition to the dissipative regime. The dierence between the extracted value I c,m and the true value I c is shown in gure 6.4. For the sake of simplicity the argument is made for the R(I) measurements, but the conclusions are applicable to the other approach as well. The upper inset shows the R(I) curve as well as its t, corresponding to the V (I) curve shown in gure 6.3. The black dashed line shows an example of a threshold resistance value that was typically used in the experiment. As the main focus of the latter results will be on the microwave power dependence of the critical current this is utilized for the demonstration, the colorplot show the dierential resistance R as a function of the applied power s and the DC bias current I DC under the assumption that I c (s) behaves as I c (s) = I c0 J 0 (s), where J 0 is the zeroth order Bessel function. The red trace shows the I c,m obtained for a relatively low threshold value, which diers substantially from the ground truth (black curve). However, as the bottom inset shows the dierence between the two is just a multiplicative factor. If one is only interested in the shape of this curve, as will be the case later, and not the absolute value, this approach gives adequate results.

To further characterize the junction the I c (T ) was measured, which is shown in gure 6.5. I c (T ) can be computed from the microscopic theory, or more directly by summing over the Matsubara frequencies as done in [START_REF] Dubos | Josephson critical current in a long mesoscopic S-N-S junction[END_REF], and gives a functional form I c R N = f (∆, E T , T ), where ∆ is the pairing potential in the superconducting reservoirs, and E T the Thouless energy. Based on the measurement of T c ≈ 6.6K (or equivalently ∆ ≈ 1meV), it can be safely assumed that ∆ will be roughly constant below T = 2K. The reduced value of the critical temperature, compared to the reference value of T c ≈ 9.3K [START_REF] Matthias | Superconductivity[END_REF], is due to the out-gassing of the PMMA resist during the evaporation of the Nb layer and the oxidation of the thin leads after lift-o. The value of E T extracted by tting the experimental data (black trace Figure 6.3: The V (I) curve of the sample measured at T = 1.6K (blue dots), the Langevin t with γ = 22.6 and I c = 5.25µA (red line), and the RSJ square root curve with the same I c . on gure 6. 5) is E T = 19µeV. Two additional junctions were made in the same geometry but with wire lengths L 2 = 250nm and L 3 = 150nm, and their Thouless energies are found to be E T 3 = 25µeV and E T 3 = 36µeV, respectively. Overall the Thouless energy scales as ∝ L -2 with an eective length which is about ≈ 250nm larger than the geometrical one. The same eect was observed before, e.g. in [START_REF] Dubos | Josephson critical current in a long mesoscopic S-N-S junction[END_REF], and can be attributed to the reduction of ∆ close to the NS interface, either due to the inverse-proximity eect or the intrinsic reduction of the pairing potential as a consequence of the fabrication process.

When the current is ramped from I DC = 0 upwards one measures the critical current as the transition to the dissipative state. However, when the current is ramped down the value at which the system transitions back to the non-dissipative state, the retrapping current I r (also shown in gure 6.5), can be dierent from I c . Above I c the nite voltage leads to Joule heating which can raise the temperature substantially. The eective electron temperature T ef f is the result of a balance between the Joule heating and the electron-phonon mediated cooling, which leads to the following law T 5 ef f = T 5 + P/K [START_REF] Fc Wellstood | Hot-electron eects in metals[END_REF]15], where T is the temperature of the phonon bath, P the dissipated power in the junction, and K the eective electron-phonon coupling. The value of K = ΩΣ where Σ is the electron-phonon scattering rate, and Ω the geometric volume of the normal wire (as heat transport is blocked by the NS interface at the end of the junction the volume and the value of Σ are set by the normal metal part only). At low temperatures a small value of P will lead to a signicant increase of T ef f and I c and I r diverge, while the same P at higher temperatures will lead only to a minor increase in T ef f and the two coincide -see gure 6.5. The critical currents of the shorter two samples as a function of temperature.

DC MEASUREMENTS AND SAMPLE CHARACTERIZATION

The value of K can be extracted from I r (T ) by tting the temperature and frequency dependence of the Shapiro steps. Both were performed and led to the same results. Here the second option is presented as it allows to verify the energy dependence of the electron-phonon cooling. Figure 6.6 shows the evolution of the R(I) with the applied microwave power. At low powers the R = 0 state is found only below I c (bottom trace), and as the power is increased several dips in the R(I) curve appear, which correspond to dierent constant voltage steps in the V (I) curve. The dominant one is located at 2eV = ω, which is the 1st Shapiro originating from the I c,1 sin(ϕ) component of the current phase relation. Other steps, which may not be perfectly at (i.e. ∂V ∂I > 0) also appear at 2(2eV ) = ω (the 2nd harmonic of the CPR), 3(2eV ) = ω and 3(2eV ) = 2 ω (the 1st and 2nd Shapiro steps coming from the 3rd harmonic of the CPR) and lastly at 4(2eV ) = ω (the fourth harmonic of the CPR), see the annotation in gure 6.6. As the data was taken at T = 1.6K

E T k B
the current-phase relation should have been almost purely sinusoidal, and only the step at 2eV = ω should be present. The origin of these higher order harmonics is still debated and will be discussed later on (see also [START_REF] Dubos | Josephson critical current in a long mesoscopic S-N-S junction[END_REF][START_REF] Kw Lehnert | Nonequilibrium ac Josephson eect in mesoscopic Nb-InAs-Nb junctions[END_REF]). in the following way: n/k denotes the n-th Shapiro step of the kth CPR harmonic; in equilibrium the full width of the step is given by 2I c,k J n (ks). n/k = 1/1 is abbreviated as 1.

The data was taken at T = 1.6K and the irradiation frequency was f = 35.18GHz.

With the goal of determining K only the rst harmonic of the current phase relation is considered, in particular the frequency dependence of the maximum width of the 1st Shapiro.

CHAPTER 6. EXPERIMENT

As the resistance of the sample R N ≈ 1.4Ω is much smaller than the characteristic impedance of the RF lines (50Ω), it is appropriate to assume that the sample is current biased by the microwaves. As was shown in section 5.1.2, at low irradiation frequencies the nonlinearity of the junction close to the critical current reduces the width of the Shapiro steps, only when it is larger than f = 2eI c R N h -1 the full width of the 1st Shapiro step becomes 2I c J 1 (s 1 = 1.84) (s = 1.84 maximizes J 1 ) -see gure 5.5. Figure 6.7 shows the maximum width of the 1st Shapiro step as a function of f RF at T = 1.38K. Unlike the RSJ prediction at high frequencies the step width decreases. This is attributed to overheating as elaborated below. The power dissipated at the junction is the sum of the DC and RF powers P = P DC + P RF , where

P DC = V 2 DC R N = 2 ω 2 RF 4e 2 R N and P RF = V 2 RF 2R N = s 2 1 2 ω 2 RF 8e 2 R N
. The dissipated power increases the eective electron temperature which in turn reduces I c . Compared to the RSJ result (dashed trace) there is a reduction of the step width due to overheating, which can be modeled with I c (T * ) (blue trace).

Focusing only on frequencies larger than f = 2eI c R N h -1 enables a direct probe of K, where the Shapiro width should be 2J 1 (s 1 )I c (T ef f ) ≈ 1.16I c (T ef f ). From the previously found I c (T ) dependence the data can be modeled as I shapiro = αI c (T ef f = 5 P tot (ω RF )/K + T 5 ), where α and K are tting parameters and T the phonon temperature. Figure 6.8 shows the temperature dependence of the maximum Shapiro step width for several RF frequencies (colored lines), the ts based on this model (dashed lines), and the extracted parameters in the inset graph. The simple model is able to reproduce the data well, which conrms the electron-phonon interaction as the cooling mechanism. The small frequency dependence of the parameters is not understood. At high frequencies, where most of the emission measurements 6.2. DC MEASUREMENTS AND SAMPLE CHARACTERIZATION 101 were taken the parameters are approximately constant. The value obtained for α is consistent with the expected value max(2|J 1 (s)|) = 1.164.

K is the product of the electron-phonon scattering rate (for Ag the electron-phonon scattering rate is Σ ≈ 3 nW µm 3 K 5 [103]) and the volume of the sample. To reproduce the value of K ≈ 2.8 nW K 5 , found at high frequencies, results in an eective volume about 300 times larger than the geometrical one. As there is no reason for Σ to be greatly enhanced this is understood to be the eect of the normal metal quasiparticle traps, which are the result of the angle evaporation (see g. 6.1). Using the extracted values of K, the electron-overheating can be included in the RSJ model as I c (T ef f ), where T ef f is found by iteratively computing the dissipated power and solving the RSJ model at the obtained I c until convergence. Figure 6.7 also shows the RSJ model with and without overheating computed for the base temperature of T = 1.38K.

In summary, at T = 1.6K the electron-overheating due to the dissipated power is limited for voltages below V DC = 100µV, or equivalently frequencies below ≈ 48GHz; the estimated reduction of the I c is at most 5%. Thus by performing measurements at this temperature enables one to explore novel nonequilibrium eects, beyond the well understood thermal ones. 6.9: The amplitude of the Josephson emission power (in arbitrary units) as detected by the setup as a function of the voltage across the sample. Two peaks, A and B, are visible, centered at ≈ 6µV and ≈ 12µV, respectively. This is consistent with the emission originating from the 2nd and 1st harmonic of the CPR through a lter with a center frequency of ≈ 6GHz. The measurement was performed at T = 1.6K and no applied RF power. relation and secondly the nonequilibrium theory (sec. 5.3) developed for V DC = 0 can be utilized to describe the system. Figure 6.12 shows the amplitudes of peaks A and B as a function of the applied power (upper two panels). In adiabatic equilibrium the eect of the microwave drive is to modulate the I c,n as J n (s), which is also shown in the same gure. At low powers the measurements can be explained by the Bessel function, but at higher ones, and especially if the frequency is high (right panel), there is a striking increase of the second harmonic, pointing to a nonequilibrium eect.

The nonequilibrium theory presented in section 5.3 is now used to calculate the timeaveraged adiabatic current phase relation. Using the parameter values extracted from the experiment gives the bottom two panels of gure 6.12. The Eliashberg approximation (i.e. replacing the absorption rate by the one given by equation 5.16) predicts that the 1st harmonic behaves qualitatively as J 0 (s), but severely underestimates the amplitude of the 2nd harmonic. Taking the AC harmonics of the Green's function in the expression for η gives a correct amplitude of the 2nd harmonic at higher powers, which implies that the AC component of the spectral supercurrent plays an important role. At s = 0 the theory reduces to the equilibrium one and the amplitude of the 2nd harmonic vanishes for k B T /E T > 5 (see gure 5.14). To explain the power dependence of the 2nd harmonic amplitude qualitatively a term can be added by hand as I c,2 = I 0 c,2 J 0 (2s) + I th c,2 (s), where I th c,2 is the calculated value and I 0 c,2 accounts for the second harmonic at s = 0, which yields a satisfying result in the full range of s. It's possible to consider the eects of the junction nonlinearity as well, which As in gure 6.9 the same two peaks, A and B, are visible, corresponding to the emission of the 2nd and the 1st CPR harmonic.

will enhance the 2nd harmonic emission. This will not give a qualitatively good result as the 2nd harmonic emission will not vanish for any power (see gure 5.8), which is the case experimentally (around s ≈ 1.2).

As discussed in section 5.3, microwave pumping can modify both the distribution function as well as the spectral characteristics of the junction. If the frequency of the microwaves is lower than ω RF < 2E g (ϕ) (intraband) transitions in the region above E = E g (ϕ) or below E = -E g (ϕ) (blue arrows in gure 6.13) are dominant and mostly the distribution function is modied with respect to the equilibrium value. Conversely, when the frequency is high enough to drive transitions across the gap (interband transmission) (green arrow in 6.13), which is possible if the frequency is higher than the phase dependent minigap 2E g (ϕ = 0), both the spectral supercurrent density and the distribution functions are driven out-of-equilibrium.

As the minigap vanishes when the phase approaches π this eect is, in principle, present at all irradiation frequencies, but will be small in our experiment below ω RF < 2E g (ϕ = 0) as the interband transitions can occur only a part of the time (i.e. lowering the frequency reduces the "duty cycle" of the interband pumping). The right panel of gure 6.13 shows the induced changes to the distribution function f as well as the nonequilibrium j s compared to the equilibrium one. In total the supercurrent is suppressed close to ϕ = π and for high enough values of s it even reverses sign (left panel of g 6.14), leading to a signicantly anharmonic current phase relation. .12: Top left: the observed amplitudes of peaks A and B as a function of microwave power at T = 1.6K and f = 20.72GHz. In all four panels the 2nd harmonic is shown on the right scale. The calibration of s was done such that the low power behavior of peak B follows J 0 (s). The second harmonic (peak A) roughly follows J 0 (2s) 2 . Top right: the same as top left but at f = 35.18GHz -at high powers the second harmonic (peak A) is signicantly increased compared to A(s = 0)J 0 (2s) 2 . Bottom left (right): theoretical curves computed using the theory presented in chapter 5.3, with Γ/E T = 0.4, k B T /E T = 7, ∆/E T = 55 and ω RF /E T = 3 ( ω RF /E T = 7), respectively. Within the Eliashberg approximation the second harmonic is negligible at all powers. Using the full theory the amplitude of the second harmonic is qualitatively in agreement at high s but it fails to reproduce the component at s = 0 as k B T > E T . Using I c,2 = I 0 c,2 J 0 (2s) + I th c,2 (s), where I 0 c,2 (< 0) is a free parameter produces a good qualitative match at all values of s. if the phase is close to π) there are signicant changes with respect to the equilibrium values, especially at E = ± ω RF /2 as a consequence of the absorption peak shown in 5.16. The parameters used for the calculation are the same as in gure 6.12 with ω RF /E T = 7.

CHAPTER 6. EXPERIMENT

In the formalism of chapter 5.3 both the distribution function f and the spectral supercurrent will be time dependent and can be expanded through the harmonics of the drive frequency ω RF . The total time dependent current will be given by an equation analogous to 5.14. As we are only interested in the DC value of the current an average over T = 2π ω RF needs to be taken, which will have contributions from the DC components of f DC and j DC s as well as the products of f n and j n s (where n enumerates the harmonics). This can now be used to investigate where does the observed anharmonicity originate from. By replacing f with the equilibrium one and using only the DC component of j s (the higher ones average out to zero) results in a CPR dierent than the full calculation, neither the amplitude nor the anharmonicity are reproduced -see gure 6.14. Likewise, j s can be replaced by the equilibrium value and only the DC component of f needs to be kept, doing so also leads to a signicantly dierent trace. Finally, if only the DC components of the nonequilibrium f and j s are kept the result is almost the same as the full calculation. In total this analysis implies that both the nonequilibrium form of f and j s are needed to explain the observed eects. Γ/E T = 0.4, k B T /E T = 7, ∆/E T = 55 and ω RF /E T = 7. Right and middle: the CPR computed using the full theoretical result, the equilibrium distribution function, the DC part of the distribution function, and the equilibrium spectral supercurrent at s = 0.77 and s = 1.5 respectively.

Downconverted Josephson radiation

In SNS junctions the timescale at which the two superconducting leads are coupled is set by the Thouless energy as τ = E T . The previous section focused on the low frequency response of the junction to a microwave drive at high frequencies: the average phase dierence ϕ is well dened and is either constant below the critical current or driven at a (comparatively low) frequency φ = 2eV DC while the microwaves induce transitions between the quasiparticle states above, below or across the minigap. The regime which is explored here is when φ exceeds the Thouless energy, where one might naively expect a breakdown of the Josephson eect.

Experimentally this can be explored by studying the high frequency Josephson emission up/down converted by the microwave drive. Figure 6.15 shows the detected power in an extended range of bias currents for several RF powers. In addition to the peaks A and B studied previously, one can identify peaks C and D (up and down converted Josephson emission of the 2nd harmonic around 4eV DC = ω RF ), F and G (down and up converted Josephson emission of the 2nd harmonic around 2eV DC = ω RF ) and lastly E and H (up and down converted Josephson emission of the 1st harmonic around 2eV DC = ω RF ). The power dependence of these peaks, for a high frequency RF drive, is shown on the left panel of gure 6.16. At low to moderate powers the amplitudes of these peaks are almost unchanged with respect to their adiabatic expectations. At high powers the most notable change, aside from the one observed for peaks A and B discussed earlier, is the increase of the down converted signal H compared to the up converted counterpart E. In spite of the higher DC voltage, and therefore the eective heating, at which it is observed. As shown in the right panel of gure 6.16 the strength of this eect is greatly increased as the drive frequency is raised well above the Thouless energy. The theoretical model used to explain previous results is not applicable here as the high frequency phase dynamics play an important role. The observed eect cannot be explained by the up/down conversion eciency within the RSJ model, which predicts an equal amplitude for the two peaks or even a reduced one for the down converted signal if the overheating is included.

At the time of writing a satisfactory explanation is not known and further investigation is needed. one must expand on the energy (f L -odd in energy) and charge modes (f T -even in energy)

through their spinful generalizations: the spin mode (f

T 3 = f T ↑ -f T ↓ 2
) and the spin-energy

mode (f L3 = f L↑ -f L↓ 2 
). To illustrate the physical meaning of these modes one can resort to the following: a nite quasiparticle (eective) temperature is associated with the energy mode f L , while a nonzero QP chemical potential induces the charge mode f T . Likewise, a spin-dependent QP temperature can be understood in terms of the spin-energy mode f L3 , and a spin-dependent chemical potential in terms of the spin mode f T 3 . Due to the symmetry of the (Zeeman-split) excitation spectrum, as well as the symmetry of the non-equilibrium modes, the energy and spin modes result in a nite spin accumulation in the superconductor, while the charge and the spin-energy modes lead to a charge imbalance. The charge mode relaxes through Andreev-like processes, the energy mode relaxes through inelastic electronphonon interactions (quasiparticle recombination), while the spin-energy and the spin mode decay through spin relaxation mechanisms (spin-orbit scattering or spin-ip events).

With the goal of probing these non-equilibrium modes several device were fabricated in the shape of a thin Al wire. By applying and in-plane eld the excitation spectrum becomes Zeeman-split, and by injecting quasiparticles (from a normal-metal tunnel junction, by applying a voltage or a current bias) in the energy range ∆µ B H < E < ∆ + µ B H (∆ is the gap of the superconductor) one can preferentially excite spin down quasiparticles.

In order to probe the excited state several superconducting tunnel junction detectors were placed at dierent distances from the injector, the closest of which was within the spin-ip length. The measurements were performed in a dilution refrigerator with a base temperature of T = 90mK. The coherence peak od the detector electrode at ∆ D can be used as a spectroscopic probe of the non-equilibrium state: by measuring the dierential conductance G det (V det ) one probes the QP density at E = ∆ D + eV det . The detector electrodes were also made out of Al with a thin Pt capping layer, which induces a high spin-orbit interaction in the detector and acts as a spin-mixer. Thus the detector electrode is not spin-split and results in a spin-sensitive detector: the spin down/up quasiparticles are detected at dierent voltages/energies eV

↓/↑ det = ∆ ∓ µ B H -∆ D .
The main results of the experiment can be broken down as follows:

114 SUMMARY

• Observation of a nontrivial out-of-equilibrium state: By applying a voltage V inj to the injector junction electrons with energies up to E ≈ eV inj tunnel into the superconductor, imprinting the distribution function of the normal metal onto the superconductor. The resulting distribution function is not equivalent to an eective temperature or a chemical potential and the superconductor is considered to be truly out-of-equilibrium. Such a state is observed at low to moderate injection currents and close to the injection junction, both spectroscopically as a step-like cuto in the detected quasiparticles coinciding with E ≈ eV inj , as well as through the measurements of the self-consistent gap as a function of the quasiparticle density ∆(N QP ). At large injection currents or further away from the injector a thermal-like state is observed, as the electron-electron interaction redistributes the quasiparticles. This eect was observed at both zero and nite magnetic elds.

• Observation of a spin-dependent distribution function: At nite Zeeman elds a charge imbalance was observed when spin-polarized quasiparticles were injected ∆µ B H < eV inj < ∆ + µ B H. By performing a spin-sensitive spectroscopic study it was found that the odd-in-energy component of the quasiparticle population was conned to ∆µ B H < E < ∆ + µ B H suggesting that the spin and charge of the quasiparticles are coupled. By investigating the eld dependence of said charge imbalance, comparing it to the charge mode observed at zero eld and a comparison with a theoretical model, the spin-energy mode was identied as the origin of the signal. This is the rst observation of a spindependent distribution function in a superconductor.

A direct follow-up to the experiment could be to improve the detection scheme and to perform a deconvolution to directly probe the distribution function, or to probe the electronelectron interaction rates while injecting quasiparticles. Additionally, using devices with similar geometry, one could look for the recently predicted spin-to-charge conversion [START_REF] Aikebaier | Supercurrent-induced chargespin conversion in spin-split superconductors[END_REF] and voltage induced superconductivity at high elds [START_REF] Ali Ouassou | Voltage-induced thinlm superconductivity in high magnetic elds[END_REF].

The second experiment deals with high-frequency transport properties of Superconductor-Normal-Superconductor (SNS) Josephson junctions. In such devices the normal metal is proximitized by the superconductors leading to a state which can support a nite supercurrent. Microscopically this is realized through Andreev reections of electrons at the NS interface, where the electrons pick up an extra phase equal to the one of the macroscopic wave-function in the superconductor. Requiring that the phase accumulated during one cycle is an integer multiple of 2π leads to a series of bound states (Andreev levels). In diusive samples, such as the one studied in this experiment, the states form a continuum with a minimum energy E g ≈ 3.1E T , set by the diusion time through the wire E T = D L 2 = τ D . The supercurrent through the junction is given by the spectrum of these states as well as their occupation numbers. Overall the phase dependence of the supercurrent (current-phase relation or CPR) can be Fourier expanded as I s n I c,n sin(nϕ), where I c,n is the (temperature dependent) current carried by the n-th harmonic, and ϕ the macroscopic phase dierence between the superconducting leads.

The experiment presented here explores the high-frequency dynamics of SNS junctions, in particular the response of the system to a drive whose frequency exceeds the inverse diusion time. The device under study is a mesoscopic SNS junction (S=Nb, N=Ag) of intermediate length (∆ S = 55E T ). The experiment was set up in such a way to enable DC biasing and measurements, as well as the application of RF radiation in a wide range of frequencies and the detection of emitted radiation in a narrow band (centered at ω D ). If the junction is biased in DC such that a nite voltage V DC appears, according to the 2nd Josephson relation, the phase dierence will be driven at a frequency ω J = 2eV DC . Then, nite RF power will be emitted by the junction (Josephson emission) at nω J with P n ∝ I 2 c,n . When nω J coincides with ω D , the detection frequency, this radiation can be detected and acts as a noninvasive probe of the junction current-phase relation. The experiments were performed in in a range of temperatures from T = 250mK to T = 4.2K for sample characterization, while most of the experiments were performed at T = 1.6K, where the junction CPR is almost sinusoidal (in equilibrium).

Again the results can be broken down into two parts:

• Enhanced quasiparticle cooling: During the rst part of the experiment the sample was characterized in detail. It was found, by measuring the temperature dependence of the critical and retrapping currents as well as the temperature and frequency dependence of the Shapiro step width, that the electron-phonon mediated cooling rate is several orders of magnitude larger than the expected value (inferred based on the geometry of the device and the e-ph interaction rate in Ag). The normal metal shadows adjacent to the junction, which are a consequence of the fabrication procedure, were found to behave as "quasiparticle traps" and are the source of this eect. Although this is a rather technical nding, this mechanism enabled the observation of a novel nonequilibrium state.

• Nonadiabatic dynamics of strongly driven junctions: When the junction is irradiated with radiation whose frequency is comparable to the mini-gap in N ω RF ≈ 2E g it was found that the critical current no longer follows the equilibrium Bessel relation

I c = I c,1 J 0 ( 2eV RF ω RF )
(for harmonic junctions), in particular it never vanishes. This is in contrast with the data taken at lower frequencies where the Bessel function dependence is recovered. By measuring the harmonic content of the emitted radiation an increase of the second harmonic I c,2 , and especially so at high irradiation powers, was detected. It is not possible to explain these results in terms of microwave-assisted cooling (Eliashberg eect). Based on a microscopic theoretical model a novel out-of-equilibrium state was identied as the cause, in which both the distribution function as well as the spectrum of the current carrying states are modied by quasiparticle pumping across the mini-gap in the normal wire.

Additionally, when the phase dierence is driven at a high frequency 2eV DC ≈ 2E g and the junction is irradiated with high-frequency microwaves the power dependence of the emitted radiation shows nontrivial behavior which is not yet understood.

The spectroscopic approach developed here could be used for several other types of weak links: it could be used to study the microwave induced CPR modications in atomic contacts [START_REF] Bergeret | Theory of microwave-assisted supercurrent in quantum point contacts[END_REF][START_REF] Bretheau | Exciting Andreev pairs in a superconducting atomic contact[END_REF]. In nanowire junctions with Majorana bound states, the microwave aected CPR might reveal signatures about the topologically forbidden transitions [START_REF] Russell S Deacon | Josephson radiation from gapless Andreev bound states in HgTe-based topological junctions[END_REF][START_REF] Ren | Topological superconductivity in a phase-controlled Josephson junction[END_REF][START_REF] Fornieri | Evidence of topological superconductivity in planar Josephson junctions[END_REF].

• The Al wire (green in gure A.1) was evaporated from above (i.e. perpendicular to the plane of the drawing), with a thickness of d = 6nm.

• An oxide layer was grown using dynamic-pressure oxidation at P ≈ 1e -1mBar of pure O 2 introduced in the chamber for t = 10min.

• The detector leads (blue in gure A.1) were evaporated at θ = -45 • (out of plane rotation, measured perpendicular from the wire axis) and ϕ = 27 • (in-plane rotation).

The material evaporated was Al and the thickness was d = 8nm

• A mono-layer (d = 1 ± 0.05) of Pt was evaporated at the same angles, as a capping layer for the detector leads.

• The injector electrode (red in gure A.1) was evaporated at θ = 45 • and ϕ = 17 • . The material chosen was Cu and the thickness was d = 100nm.

Before any evaporation was performed, and after the oxidation, the chamber was pumped down below P ≈ 1e -7mBar, and a short ash of Nb was evaporated to lower the 2 O concentration even further. During the evaporation the pressure in the chamber did not exceed P = 1e -6mBar. The thickness of the evaporated material was monitored using a quartz detector, the thickness quoted above is perpendicular to the plane of the chip, while the evaporated thickness at an angle was a factor 1/ √ 2 higher. Sometimes the Cu injector was covered with a thin Al layer for protection, but this did not make a dierence provided that the sample was quickly (less than 12h) placed under vacuum.

The following was taken into consideration while choosing the sample geometry and parameters:

• The orbital depairing, from an in-plane magnetic eld, increases as the square of the wire thickness, and so it is desirable to make it as thin as possible. However this would reduce the spin-relaxation, as the spin is preserved for about 1000 scattering events. As a balance between these two eects a thickness of d = 6nm was chosen.

• The oxide barrier transparency was chosen such that the injector resistance is in the order of 10kΩ, while at the same time this gives a detector resistance of about 30kΩ. A more transparent barrier would lead to non-equilibrium eects induced by the detectors, and a more resistive barrier would greatly reduce the number of QP's that can be injected near the gap edge. A two step fabrication procedure was attempted, which could greatly simplify the e-beam dened mask and decouple the injector and detector resistances, but it was unsuccessful as most of the detector junctions were open.

• While it would be benecial to reduce the detector thickness as well, as they are evaporated after the Al wire making them too thin causes breaks at the wire edge. The thickness of d = 8nm provided a reasonable balance between a low orbital depairing rate and sample yield. Pt was used as a spin-mixer as it does not oxidize, and because previous publications demonstrated the eect.

• The injector was made as thick as possible to keep it as close to equilibrium as possible.

Making it much thicker than d = 100nm would sometimes collapse the suspended mask and reduce the sample yield.

• Due to the thick injector the thin electrodes needed to be evaporated rst. As a consequence the oxidation step needs to be tuned for the detector junctions. An additional degree of freedom can be introduced by rst oxidizing the barrier heavily (i.e.

R det ≈ 200kΩ), and placing a thin layer of Pt below the injector junction to lower its resistance. Otherwise an additional oxidation step can be taken to increase the resistance of the injector junction.

• The injector J inj and the closest detector J 1 need to be spaced within λ SF of each other, while making sure that there is no electrical contact between them. The evaporation angles and the placement of the undercuts were chosen as a function of these limitations, and the requirement that the shadows (which can be seen in gure 3.3) from other evaporations do not touch the detector nger, at least not within 1µm from the junction.

A more detailed experimental set-up is shown in gure A.2. The sample was mounted in a enclosed Cu sample holder and cooled down to T = 90mK in a 3 He/ 4 He dilution refrigerator.

The magnetic eld was applied using a superconducting vector magnet, along the axis of the wire. The out of plane component was less than 0.5%.

The main results were obtained by current biasing the injector junction (by applying a voltage to a room temperature 100MΩ resistor), while measuring the I(V ) and G(V ) curves of a detector junction simultaneously. One of the ends of the wire was connected to ground through a (room temperature) current amplier with a gain of 1e7/1e8. A DC+AC voltage was applied to the detector junction; the DC component of the current was measured using a DMM and the AC one with a lock-in amplier (typically V AC ≤ 5µVrms and f AC = 17 -37Hz). This way the injection current would create an oset in the measured current, but this setup resulted in less noise than placing the current amplier in line with the detector excitation voltage.

The unused junctions, as well as the other end of the wire were connected to ground using resistances of 100MΩ or greater.

All of the lines leading to the sample were ltered by room temperature π lters (BW = 1MHz) and by a C = 1.5nF capacitance to ground within the shielded sample holder. 

Appendix B Long summary in English

This appendix provides a standalone summary of the thesis. For more details the reader is invited to consult the main text or the publications, which are reproduced in full in appendix D.

The key feature of superconductivity is a gap, ∆, in the excitation spectrum. Within the BCS theory of superconductivity, the amplitude of this gap is directly related not only to the strength of the pairing mechanism but also to the presence of excitations (quasiparticles) and their energy distribution. This is formally given by the self-consistent gap equation. While a stronger coupling constant can enhance the gap, excitations can only reduce it. Nevertheless it was recognized early on that engineering an out-of-equilibrium distribution function for the quasiparticles can lead to interesting unstable ground-states [1] or even to increase the critical temperature [2].

Quasiparticles can be excited thermally, by absorbing of radiation, and injection of nonsuperconducting electrons from a counter-electrode. When the perturbation is chargeless, which is the case for radiation or a nite temperature, only energy is transferred to the superconductor. Because of the intrinsic electron-hole symmetry of a BCS superconductor this results in a equal number of electron-like and hole like excitations. If instead a charged particle is injected into the superconductor the balance between electron and hole like excitation is broken, while charge neutrality is preserved by removing Cooper pairs from the condensate [3].

These two types of excitations correspond to dierent modes of the distribution function, called the energy and the charge mode. Formally they are classied based on the symmetry of the (nonequilibrium component) of the distribution function with respect to the Fermi level. These modes are also called longitudinal (f L ) and transverse (f T ), because they enter with a π/2 phase shift in the self-consistent gap equation [4].

The actual distribution function in the superconductor depends on quasiparticle excitation, relaxation and recombination rates. The dierent mechanisms at work set a hierarchy of the time-scales involved in relaxing f back to equilibrium. Thus the energy mode excitations are the longest-lived ones, and are responsible for most observed nonequilibrium eects in superconductors.

Developing a detailed theoretical framework to describe energy and charge transport is not an easy task, as the kinetic equations for quasiparticle diusion include (energy nonlocal) inelastic processes, which can locally change the number of quasiparticle and their distribution, and the order parameter. For instance, a low energy phonon, resulting from 122 APPENDIX B. LONG SUMMARY IN ENGLISH the recombination of two quasiparticles, can be reabsorbed elsewhere in the superconductor, breaking a Cooper pair in the process [10].

The situation is simpler when the size of the device becomes smaller than both the quasiparticle relaxation and recombination lengths. In absence of interactions, the distribution function is basically set by the boundary conditions. For instance for a wire connected to two reservoirs the (energy mode) distribution function at each point of the wire is a linear combination of the reservoir distribution functions. This is well described theoretically within the Keldysh-Usadel formalism [11,12,13], by neglecting the self-energy terms related to inelastic interactions.

The topic of this work is quasiparticle transport in this limit of negligible or weak quasiparticle interaction. Two specic questions, addressed in parts I and II of the thesis respectively, are:

• Can the spin degeneracy of the distribution function modes be lifted?

• Can the out-of-equilibrium distribution function have a dynamical feedback on the spectral properties of a superconductor? Part I: Spin physics in out-of-equilibrium superconductors For a long time, work on out-of-equilibrium superconductivity concentrated mainly on spinless excitations [4]. Based on symmetry, the out-of-equilibrium quasiparticle (QP) dis- [4,14]. The simplest f (E) which excites these modes are, respectively, an eective temperature T *

tribution function f (E) can be decomposed into energy f L (E) = f (-E) -f (E) and charge f T (E) = 1 -f (E) -f (-E) modes
QP and a QP chemical potential µ QP = 0 (measured from the Fermi energy). The energy mode contributes to a nite (non-equilibrium) energy stored in the QP excitations, while the charge mode leads to a nite charge imbalance [18].

The possibility of dierent energy distribution functions for spin up and down electrons (or QPs) was then raised for both normal metals and superconductors. In superconductors [25,26,13,11,12,27,[START_REF] Silaev | Long-range spin accumulation from heat injection in mesoscopic superconductors with zeeman splitting[END_REF], the decomposition of the quasiparticle distribution function f (E) above can be generalized to the spinful case by the addition of spin [11,12,13,[START_REF] Silaev | Long-range spin accumulation from heat injection in mesoscopic superconductors with zeeman splitting[END_REF]. By construction, f L and f L3 are odd in energy, while f T and f T 3 are even in energy. These new modes exist only if spin up and down QPs have dierent distribution functions, i.e. f ↑ (E) = f ↓ (E). To illustrate the physical meaning of these modes one can resort to the following: a nite quasiparticle (eective) temperature is associated with the energy mode f L , while a nonzero QP chemical potential induces the charge mode f T , which is shown on the top two panels of gure B.1. To fully understand the physical meaning of the spin-dependent modes it is easiest to consider the case of a Zeeman-split superconductor, obtained by applying an external magnetic eld H. This raises (lowers) the energy of spin up (down) QPs by E Z = g 2 µ B H = µ B H and splits the DOS so that only spin down (magnetized) excitations are allowed in the energy range

f T 3 (E) = (f T ↑ (E) -f T ↓ (E))/2 and spin energy f L3 (E) = (f L↑ (E) -f L↓ (E))/2 modes
∆ -E Z < |E| < ∆ + E Z .
A spin-dependent QP temperature can be understood in terms of the spin-energy mode f L3 , and a spin-dependent chemical potential in terms of the spin mode f T 3 , see the bottom two panels in gure B.1.

Due to the symmetry of the (Zeeman-split) excitation spectrum, as well as the symmetry of the non-equilibrium modes, the spin mode results in a nite spin accumulation in the 123 superconductor, and so does the energy mode provided that the superconductor is Zeemansplit. Likewise, the charge mode lead to a charge imbalance and so does the spin-energy mode at nite Zeeman elds. These statements are formally described by equation B.1:

µ z = ∞ -∞ dE f L (E)N -+ f T 3 N + , µ = ∞ -∞ dE f T (E)N + + f L3 N - (B.1)
where

N ± = N ↑ ±N ↓ 2
spin average / dierence of the quasiparticle density of states, µ the charge imbalance and µ z the spin imbalance. The energy mode can be excited by charge-neutral perturbations such as electromagnetic radiation whose frequency is larger than the superconducting energy gap ∆: the absorption of such radiation breaks pairs and creates quasiparticles [16]. The charge mode, on the other hand, can be excited by injecting charged carriers (i.e. electrons or holes) through a tunnel barrier into a superconductor, where they become quasiparticles [17]. As quasiparticles are not instantaneously converted into Cooper pairs, their chemical potential is shifted up or down with respect to that of Cooper pairs. This has been measured as a nonlocal voltage drop between the superconductor and a normal-metal tunnel electrode upon quasiparticle injection [18,19]. If electrons or holes are injected at energy |E| > ∆, both charge and energy modes are excited. The relaxation time for the energy mode is the inelastic (electronphonon) scattering time [15] while the charge mode relaxes over the charge relaxation length [19,20,21,22,23].

In a pioneering experiment, Johnson et al. [28] showed that spin injection from a ferromagnetic electrode into a normal metal is possible by applying a voltage bias across the interface between the two. The out-of-equilibrium magnetization created in the normal metal is detected electrically, by measuring the voltage between it and a second ferromagnetic electrode [29]. This nonlocal signal is directly proportional to the shift in the chemical potential, µ s , of spin up (down) electrons due to spin accumulation [30,31], in which spin up and down chemical potentials shift by the same amount, but in opposite directions. The spin relaxation length measured in high purity light metals (which have low spin-orbit coupling) can reach 100µm, and the spin relaxation time is ≈ 50ns [28].

In thin superconducting lms, it is possible to inject spin and to preferentially excite QPs of one spin with current injection from a normal (rather than ferromagnetic) electrode: the orbital screening currents are suppressed quadratic ally with the sample thickness, allowing one to apply a large enough magnetic eld to induce Zeeman-splitting in the sample. Then, spin can be injected into a superconductor by biasing the injector junction such that ∆-E Z < |eV inj | < ∆ + E Z . In this energy range, according to the previous discussion, only spin-down DOS is non-zero, leading to a nite spin accumulation in the superconductor.

Spin injection into superconductors using this method was shown to result in a nite, longranged spin accumulation, arising either from f L or f T 3 [36,37,38]. Subsequent measurements of the spin-ip time, the spin-orbit scattering time and the spin imbalance lifetime indicate that the spin accumulation beyond the spin-ip length λ sf is almost entirely due to f L , as it relaxes over λ rec while f T 3 relaxes over λ SF [39,40].

Around the same time evidence for dierent eective temperatures for spin up and down electron was observed in the nonlinear contribution to the magnetoresistance of metallic nanopillar spin valves [32]. Indeed, a spin-dependent eective temperature is the simplest manifestation of the spin energy mode, in which the two spin species carry dierent energy currents.

This work focuses on probing the out-of-equilibrium state generated by current injection from a normal metal, with a special focus on spin-energy mode f L3 .

In principle there are two possible approaches to achieve this: either to probe the spatial decay of charge and spin accumulations, as the four modes relax over dierent length-scales, or to perform spin-sensitive spectroscopy of the QP population. In this experiment we adopted the second approach.

To this end several device were fabricated in the shape of a thin diusive Al wire and quasiparticles are injected from a normal-metal tunnel junction. In our experiments, E Z > α, the orbital depairing energy, up to the H c , the critical eld of the superconductor, allowing us to fully resolve the spin down and up coherence peaks in the excitation spectrum. Thus, when we inject an electrical tunnel current the DOS acts as an almost perfect spin lter for ∆-E Z < |eV inj | < ∆+E Z , even if the barrier transmission is spin-independent, allowing us to inject spin and to induce f ↑ (E) = f ↓ (E) simultaneously. In order to probe the excited state several superconducting tunnel junction detectors were placed at dierent distances from the injector. With the goal of observing a spin-dependent distribution in mind the closest detector was within the spin-ip length away from the injector, as the relaxation length of the spin-energy mode is in the order of λ SF . In our experiment the spin relaxation length is estimated to ≈ 240nm, while the minimum injector-detector distance is 250nm. The other detectors were placed a few µm away, giving us information about the spatial distribution of quasiparticles. As argued in detail in the main text of the thesis, the coherence peak of the detector electrode at ∆ D can be used as a spectroscopic probe of the non-equilibrium state: by measuring the dierential conductance G det (V det ) one probes the QP density at E = ∆ D + eV det , where ∆ D is the detector gap. The detector electrodes were made out of Al with a thin Pt capping layer, which induces a high spin-orbit interaction in the detector and acts as a spin-mixer. Thus the detector electrode is not spin-split and results in a spinsensitive detector: the spin down/up quasiparticles are detected at dierent voltages/energies eV

↓/↑ det = ∆ ∓ µ B H -∆ D .
The measurements were performed in a dilution refrigerator with a base temperature of T = 90mK. All of the theoretical results were obtained using the framework developed in [START_REF] Silaev | Long-range spin accumulation from heat injection in mesoscopic superconductors with zeeman splitting[END_REF]. The corresponding manuscript can be found at [START_REF] Kuzmanovi¢ | Evidence for spin-dependent energy transport in a superconductor[END_REF], and is currently under review for publication. In this summary only the data obtained using the closest detector is shown, as the further ones show results consistent with the long-ranged eects observed in previous experiments [36,37,38].

The main results of the experiment can be broken down as follows:

• Observation of a nontrivial out-of-equilibrium state: By applying a voltage V inj to the injector junction electrons with energies up to E ≈ eV inj tunnel into the superconductor, imprinting the distribution function of the normal metal onto the superconductor. The resulting out-of-equilibrium state is a non-thermal one, characterized by a large number of quasiparticles at the gap edge, due to the sharp coherence peak and vanishing mobility of quasiparticles close to E = ∆, and a step-like tail up to E ≈ eV inj . By performing quasiparticle spectroscopy in the limit of low to moderate injection currents at H = 0 using the closest detector precisely this is found, as shown in gure B.2. The previous statement is strictly true only if the quasiparticle-quasiparticle interaction rate is vanishingly small. Indeed at higher injection currents or further away from the injection junction a more smeared quasiparticle population is found and the step-like cuto cannot be observed.

The argument for the shape of the distribution function can be justied more rigorously within the Keldysh-Usadel formalism: The diusion time of quasiparticles from the injector to the end of the wire, terminated with large metallic reservoirs (≈ 20ns), is much shorter than the inelastic quasiparticle-quasiparticle recombination time (≈ 400ns [5]), and the energy relaxation mechanism is identied as quasiparticle thermalization / trapping in the reservoirs. This claim was experimentally veried by probing the spatial decay of the out-of-equilibrium quasiparticles. Additionally if we focus on the low injection region the quasiparticle-quasiparticle interactions can also be neglected, thus removing all energynon-local inelastic interactions from the model, greatly simplifying the problem. Thus the transport equations can be easily solved, indeed resulting in a step-like distribution function. A simulation of the detector spectrum, obtained based on this calculation, is also shown in gure B.2, which is in qualitative agreement with the experimental result. This eect was observed at both zero and nite magnetic elds (see the dark blue regions close to I inj = 0 in the experimental panel of gure B.3) and indirectly through the measurements of the self-consistent gap as a function of the quasiparticle density ∆(N QP ). These ndings show that at short length-scales quasiparticle injection results in a non-thermal distribution function and the superconductor is considered to be truly out-of-equilibrium. • Observation of a spin-dependent distribution function: As discussed previously, at nite Zeeman elds injecting quasiparticles with energies ∆µ B H < |E| < ∆ + µ B H should, in principle, lead to a spin-dependent distribution function. In our experiment the focus was on the spin-energy mode, which can be detected through it's charge imbalance signature. It can be seen from gure B.1, as well as from equation B.1, that the presence of the spin-energy mode creates an unequal number of "low energy" excitations -spin down electron-like and spin up hole-like quasiparticles (both of these excitations carry the same magnetization as spin-up hole removes a spin down electron). This charge imbalance is located at the spectroscopic gap edge, and is only there if N ↓ = N ↑ i.e. if the superconductor is Zeeman split. These properties and signatures of the spin-energy mode were used to detect its presence experimentally. The spin sensitivity of our SIS detectors is achieved by using a non-split superconductor as the detector electrode. As before the detector G(V ) trace probes the quasiparticle number at E = eV det + ∆ D , while the quasiparticles close to the spin down/up coherence peaks are probed at eV Both of them exhibit 4 distinctive peaks P 1-4 corresponding to spin-down holes, spin-up holes, spin-down electrons and spin-up electrons respectively. Experimentally peaks P 1 and P 4 are smeared as injecting higher energy excitations necessitates injecting a higher current thus increasing QP density and reducing the QP-QP interaction time, leading to a smoothing of the distribution function. However, the low energy excitations, P If this charge imbalance is related to the spin-energy mode it should vanish as H → 0 (because N -→ 0). The right panel of gure B.4 shows the evolution of the odd component at the gap edge as a function of the magnetic eld, verifying that it indeed vanishes at H = 0. Based on this, along with additional checks to distinguish between the charge imbalance induced by the charge and spin-energy modes, we claim that the observed eects are attributed to the spin-energy mode induced by quasiparticle injection into a Zeemansplit superconductor. This is the rst observation of a spin-dependent distribution function Superconductor-Normal-Superconductor junction or SNS for short) is not related to the one found in the reservoirs but instead to diusion and relaxation of the electrons in the normal metal (N).

↓/↑ det = ∆ ∓ µ B H -∆ D .
As Cooper pair tunneling is not the transport mechanism in SNS junctions an alternative mechanism gives rise to a nite supercurrent: an electron in N, with an energy equal to or smaller than the gap of the superconductor, cannot traverse the N/S interface as there are no available states at those energies. Instead it is reected back as a hole and a Cooper pair is transferred into the superconductor, this process is called Andreev reection. The backscattered hole acquires an extra phase equal to the one of the macroscopic wave function in the superconductor. The hole follows the time-reversed trajectory of the electron [START_REF] Klapwijk | Proximity Eect From an Andreev Perspective[END_REF] until it reaches the second N/S interface, at which it is converted back to an electron by removing a Cooper pair from the superconductor. The phase acquired during this whole process must be an integer multiple of 2π giving rise to bound states, also called Andreev bound states (ABS). Because of the diusive transport in SNS junctions these states form a continuum.

As a consequence of the nite normal metal wire length these bound states have a minimum energy in the order of the Thouless energy E T = τ D = D L 2 . The Josephson eect is then understood in terms of the supercurrent carried by the continuous ABS spectrum. This is strictly true only when the phases of the two superconducting reservoirs are equal. When the phase dierence ϕ is not zero, the minimum excitation energy is modied as ∝ | cos(ϕ/2)|.

This physical picture can be formalized theoretically by using the quasi-classical Green's function approach, in particular through the Usadel formalism which describes disordered systems [14,[START_REF] Usadel | Generalized diusion equation for superconducting alloys[END_REF]. The single particle excitation spectrum in the normal metal is found to be gapped, and in the long junction limit (E T ∆) it is equal to E g (ϕ = 0) ≈ 3.1E T and closes at ϕ = π. Likewise from the Usadel equation the spectral-supercurrent can be computed as a function of energy and the phase dierence j s (E, ϕ). To obtain the supercurrent through the junction one needs to multiply j s with the (odd component of the) distribution function and integrate over energies [START_REF] Tero | Supercurrent-carrying density of states in diusive mesoscopic Josephson weak links[END_REF]:

I s = ∞ -∞ Im(j s )f L (E)dE (B.2)
The phase dependence of the supercurrent (current-phase relation or CPR) can be Fourier expanded as I s = n I c,n sin(nϕ), where I c,n is the (temperature) dependent current of the n-th harmonic and ϕ the macroscopic phase dierence between the superconducting leads. This results in a direct possibility of manipulating the SNS junction properties through a non-equilibrium distribution function. As an example, the fact rst pointed out by Yip [START_REF] Yip | Energy-resolved supercurrent between two superconductors[END_REF] that the spectral supercurrent changes sign at high enough energy can be used to reverse the ow of supercurrent, by modifying the distribution function through the application of a voltage [START_REF] Baselmans | Direct Observation of the Transition from the Conventional Superconducting State to the π State in a Controllable Josephson Junction[END_REF], and gives rise to the "π state".

As pointed out by Eliashberg [START_REF] Eliashberg | Film superconductivity stimulated by a high-frequency eld[END_REF] for homogeneous superconductors and recently generalized theoretically to SNS junctions [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF], microwave radiation can also be used to drive the distribution function out-of-equilibrium, such that the low-energy states which carry the highest weight in the self-consistency relation and the spectral-supercurrent get depopulated.

Therefore this leads to an enhancement of the order parameter (for bulk superconductors) and an increase in the critical current for SNS weak links. In the same spirit, microwave pumping has been used also to increase the critical temperature of conventional superconductors by changing the energy distribution of thermally excited quasiparticles [START_REF] Klapwijk | Microwave-enhanced superconductivity in aluminium lms[END_REF]. and the detection of emitted radiation through an band-pass lter centered at f D = 6GHz, with a width of about δf F = 2GHz. If the junction is biased in DC such that a nite voltage V DC appears across it, according to the 2nd Josephson relation, the phase dierence will be driven at a frequency ω J = 2eV DC . Then, nite RF power will be emitted by the junction (Josephson emission) at nω J with P n ∝ I 2 c,n , where n enumerates the harmonics of the CPR. When nω J coincides with ω D = 2πf D , the detection frequency, this radiation can be detected and acts as a noninvasive probe of the junction current-phase relation. The experiments were performed in in a range of temperatures from T = 250mK to T = 4.2K for sample characterization. The results shown here were obtained at T = 1.6K, where the junction CPR is almost sinusoidal (in equilibrium).

By measuring the the critical current of the junction as a function of temperature, I c (T ), and tting it to a theoretical model the Thouless energy is found to be E T = 19µeV (∆ S = 55E T ). This corresponds to irradiating the junction with radiation at f RF ≈ 28.5GHz to induce interband transitions at ϕ = 0 (2E g (ϕ = 0) = hf RF ).

Again the results can be broken down into two parts:

• Enhanced quasiparticle cooling: During the rst part of the experiment the sample was characterized in detail. It was found, by measuring the temperature dependence of the critical and retrapping currents as well as the temperature and frequency dependence of the Shapiro step width (and tting them using the usual T 5 phonon cooling law), that the eective cooling rate, K ≈ 2.8 nW K 5 , is about a hundred times larger than the expected value (inferred based on the geometry of the device and the e-ph interaction rate in Ag). The normal metal shadows adjacent to the junction, which are a consequence of the fabrication procedure, were found to behave as "quasiparticle traps" and are the source of this eect. Although this is a rather technical nding, this mechanism enabled the observation of a novel nonequilibrium state. This is technical result, but it is essential here as the higher relaxation rate allowed us to explore novel nonequilibrium eects, beyond the well understood thermal ones.

• Nonadiabatic dynamics of strongly driven junctions: To address the junction CPR through the Josephson emission spectrum we can rst measure the emitted power (without any external RF irradiation), as seen through the detection window, as a function of the V DC across the junction, as is given in gure B.6. Two peaks are distinguishable, labeled P 1 and P 2 . The Josephson emission can be modeled as two Gaussian-smeared peaks centered at ω J and 2ω J , corresponding to the emission associated with the rst two CPR harmonics. By using the peak heights and widths as tting parameters, and convolving the emission spectrum with the prole of our lter the experimental trace is nicely reproduced, conrming our association of these peaks to the rst two harmonics of the CPR.

With this result we can now proceed to study the response of the system to high frequency Therefore the spectral changes, as the ones shown in B.5, are essential for explaining the experimental data, revealing a novel dynamical out-of-equilibrium state as the origin of the eect.

The spectroscopic approach developed here could be used for several other types of weak links: it could be used to study the microwave induced CPR modications in atomic contacts [START_REF] Bergeret | Theory of microwave-assisted supercurrent in quantum point contacts[END_REF][START_REF] Bretheau | Exciting Andreev pairs in a superconducting atomic contact[END_REF]. In nanowire junctions with Majorana bound states, the microwave aected CPR might reveal signatures about the topologically forbidden transitions [START_REF] Russell S Deacon | Josephson radiation from gapless Andreev bound states in HgTe-based topological junctions[END_REF][START_REF] Ren | Topological superconductivity in a phase-controlled Josephson junction[END_REF][START_REF] Fornieri | Evidence of topological superconductivity in planar Josephson junctions[END_REF].

charges n'est pas une tâche facile, car les équations cinétiques de la diusion des quasiparticules comprennent des processus inélastiques (non locale en énergie), qui peuvent modier localement le nombre de quasiparticules et leur distribution, ainsi que le paramètre d'ordre supraconducteur. Par exemple, un phonon de faible énergie, résultant de la recombinaison de deux quasiparticules, peut être réabsorbé ailleurs dans le supraconducteur, brisant ainsi une paire de Cooper [10].

La situation est plus simple lorsque la taille du dispositif devient plus petite que les longueurs de relaxation et de recombinaison des quasiparticules. En l'absence d'interactions, la fonction de distribution est essentiellement xée par les conditions aux bords. Par exemple, pour un l connecté à deux réservoirs, la fonction de distribution à chaque point du l est une combinaison linéaire des fonctions de distribution des réservoirs. Ceci est bien décrit théoriquement dans le formalisme Keldysh-Usadel [11,12,13], en négligeant les termes de collision liés aux interactions inélastiques.

Le sujet de ce travail est le transport de quasiparticules dans cette limite de faible interaction. Les questions abordées respectivement dans les parties I et II de la thèse, sont :

• Est il possible d'enlever la dégénérescence de spin de la fonction de distribution ?

• La fonction de distribution hors équilibre peut-elle avoir un retour dynamique sur les propriétés spectrales d'un supraconducteur ?

Partie I : Physique du spin dans les supraconducteurs hors équilibre Pendant longtemps, les travaux sur la supraconductivité hors équilibre se sont concentrés principalement sur les excitations sans spin [4]. La fonction de distribution des quasiparticules (QP) hors équilibre f (E) peut être décomposée en une partie impaire par rapport au niveau de Fermi, c'est le mode d'énergie f L (E) = f (-E)f (E) et en une partie paire, c'est le mode de charge f T (E) = 1f (E)f (-E) [4,14]. Si on considère que f (E) est une fonction de Fermi alors les modes d'énergie et de charge peuvent être excités respectivement tout simplement par une température eective T * QP et un potentiel chimique µ QP = 0 (mesuré à partir de l'énergie de Fermi) comme représenté sur les deux panneaux supérieurs de la gure C.1. Le mode d'énergie contribue à une énergie nie (hors équilibre) stockée dans les excitations, tandis que le mode de charge conduit à un déséquilibre de charge [18], c'est-à-dire, un déséquilibre dans le nombre de QP de type trou et de type électon.

La possibilité de diérentes fonctions de distribution pour les électrons de spin up et down a été soulevée pour les métaux normaux et les supraconducteurs. Dans les supraconducteurs [25,26,13,11,12,27,[START_REF] Silaev | Long-range spin accumulation from heat injection in mesoscopic superconductors with zeeman splitting[END_REF], la décomposition de la fonction de distribution des quasiparticules f (E) décrite précedement peut être généralisée au cas de QP polarisées en spin par l'addition des modes de spin f 

T 3 (E) = (f T ↑ (E) -f T ↓ (E))/2 et d'énergie dépendant du spin f L3 (E) = (f L↑ (E)-f L↓ (E))/2 [
µ z = ∞ -∞ dE f L (E)N -+ f T 3 N + , µ = ∞ -∞ dE f T (E)N + + f L3 N - (C.1) où N ± = N ↑ ±N ↓ 2
, N ↑ et N ↓ sont les DOS des QP avec spin up et down respectivement, µ est le déséquilibre de charge et µ z le déséquilibre de spin.

Le mode énergie peut être excité par des perturbations neutres en charge telles que le rayonnement électromagnétique dont la fréquence est supérieure au gap supraconducteur [16].

Le mode de charge, en revanche, peut être excité en injectant des porteurs chargés (c'est-àdire des électrons ou des trous) à travers une barrière tunnel. Dans le supraconducteur ils deviennent des quasiparticules [17]. Comme les quasiparticules ne sont pas instantanément converties en paires de Cooper, leur potentiel chimique est décalé vers le haut ou vers le bas par rapport à celui des paires de Cooper. Ceci a été mesuré comme une chute de tension non locale entre le supraconducteur et une électrode en métal normal couplé au supraconducteur par une barrière tunnel [18,19]. Si des électrons ou des trous sont injectés à l'énergie |E| > ∆, les deux modes de charge et d'énergie sont excités. Le temps de relaxation du mode énergie est le temps de diusion inélastique (électron-phonon) [15] tandis que le mode de charge relaxe sur une longueur de relaxation de la charge [19,20,21,22,23].

Dans une expérience pionnière de type polariseur-analyseur, Johnson et al. [28] ont montré que l'injection de spins dans un métal normal à partir d'une électrode ferromagnétique est possible en appliquant une tension de polarisation à l'interface entre les deux. L'aimantation hors équilibre créée dans le métal normal est détectée électriquement, en mesurant la tension entre celui-ci et une seconde électrode ferromagnétique [29]. Ce signal non local est directement proportionnel au déplacement du potentiel chimique, µ s , des électrons de spin up (down) dû à l'accumulation de spin [30,31]. Les potentiels chimiques de spin up et down se déplacent de la même amplitude, mais avec des signes opposés. La longueur de relaxation du spin mesurée dans les métaux légers de haute pureté (qui ont un faible taux de collisions spin-orbite) peut atteindre 100µm, et le temps de relaxation du spin est d'environ 50ns [28]. été obtenus en utilisant la théorie développée dans [START_REF] Silaev | Long-range spin accumulation from heat injection in mesoscopic superconductors with zeeman splitting[END_REF]. Dans ce résumé, seules les données obtenues à l'aide du détecteur le plus proche sont présentées, car les autres montrent des résultats cohérents avec des expériences précédentes mais pas d'évidence de modes horséquilibre dépendant du spin. [36,37,38].

Les principaux résultats de l'expérience peuvent être ventilés comme suit :

• Observation d'une fonction de distribution hors-équilibre de type non-Fermi : En appliquant une tension V inj aux bords de la jonction tunnel d'injection, la fonction de distribution du métal normal est imprimée dans le supraconducteur. L'état hors équilibre qui en résulte est un état non thermique, caractérisé par un grand nombre de quasiparticules au bord du gap, en raison du pic de cohérence et de la mobilité décroissante des quasi-particules proches de E = ∆, et une queue avec une marche à E ≈ eV inj . En eectuant une spectroscopie de quasiparticules dans la limite des courants d'injection faibles à champ magnétique nul à l'aide du détecteur le plus proche, on obtient précisément ce résultat, comme le montre la gure C.2. L'armation précédente n'est strictement vraie que si l'interaction entre quasiparticules est faible. En eet, à des courants d'injection plus élevés ou si la jonction de détection est plus éloignée de la jonction d'injection, on trouve une population de quasiparticules plus étalée en énergie et la coupure en forme de marche ne peut pas être observée. Cet argument sur la forme de la fonction de distribution peut être justié plus rigoureusement dans le cadre du formalisme de Keldysh-Usadel : Le temps de diusion des qusiparticules de l'injecteur à l'extrémité du l, (≈ 20ns), est beaucoup plus court que le temps de recombinaison inélastique des quasiparticules (≈ 400ns [5]), et par conséquent la relaxation de l'énergie a lieu dans les réservoirs. Cette armation a été vériée expérimentalement en sondant la décroissance spatiale du nombre de quasiparticules 

Partie II : Dynamique des jonctions Josephson

Les jonctions Josephson sont largement utilisées en électronique quantique comme dispositifs non linéaires non dissipatifs. Lorsque deux supraconducteurs sont couplés à travers une ne couche isolante, la dynamique de la jonction est déterminée par la dynamique des réservoirs, car le temps tunnel est de l'ordre de quelques fs [START_REF] Février | Tunneling time probed by quantum shot noise[END_REF]. En outre, en raison du grand gap en d'énergie dans l'isolant (≈ 2eV), la barrière reste toujours à l'équilibre.

La situation est diérente lorsque le point faible entre les deux supraconducteurs est formé par un l métallique désordonné (diusif ). En raison de la densité nie des états au niveau de Fermi et du transport diusif dans le l, deux échelles de temps apparaissent [START_REF] Chiodi | Evidence for Two Time Scales in Long SNS Junctions[END_REF] ∆), il est égal à E g (ϕ = 0) ≈ 3, 1E T et se ferme à ϕ = π. De même, à partir de l'équation d'Usadel, on peut calculer le courant spectral en fonction de l'énergie et de la diérence de phase j s (E, ϕ), appelé aussi densité de courant spectrale. Pour obtenir le supercourant à travers la jonction, il faut multiplier j s par la (composante impaire de la) fonction de distribution et intégrer en fonction de l'énergie [START_REF] Tero | Supercurrent-carrying density of states in diusive mesoscopic Josephson weak links[END_REF] :

I s = ∞ -∞ Im(j s )f L (E)dE (C.2)
La dépendance en phase du supercourant (relation courant-phase ou CPR) apparait plus clairement en décomposant par la méthode de Fourier cette expression: I s = n I c,n sin(nϕ), où I c,n est le courant dépendant de l'harmonique n-th et ϕ la diérence de phase macroscopique entre les supraconducteurs. Il est donc possible de manipuler directement le courant à travers une jonction SNS par le biais d'une fonction de distribution hors équilibre. À titre d'exemple, Yip [START_REF] Yip | Energy-resolved supercurrent between two superconductors[END_REF] a montré que l'inversion du signe de la densité du courant spectral à une énergie susamment élevée peut être utilisé pour créer une jonction "π" [START_REF] Baselmans | Direct Observation of the Transition from the Conventional Superconducting State to the π State in a Controllable Josephson Junction[END_REF].

Comme l'a souligné Eliashberg [START_REF] Eliashberg | Film superconductivity stimulated by a high-frequency eld[END_REF] pour les supraconducteurs homogènes et récemment généralisé théoriquement aux jonctions SNS [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF], le rayonnement micro-ondes peut également être utilisé pour créer une fonction de distribution hors-équilibre, de sorte que les excitations de faible énergie qui ont le plus de poids dans l'aaiblissement de la supraconductivité sont dépeuplés. Cela conduit donc à une augmentation du paramètre d'ordre (pour les supraconducteurs homogènes) et du courant critique pour les jonctions SNS. Ainsi le pompage par micro-ondes a été utilisé pour augmenter la température critique des supraconducteurs en modiant la distribution en énergie des quasiparticules excitées thérmiquement [START_REF] Klapwijk | Microwave-enhanced superconductivity in aluminium lms[END_REF].

Dans une jonction SNS, le mini-gap, E g , produit un supercourant qui dépend de la phase non seulement par la densité de courant spectrale à l'équilibre mais aussi par les taux d'absorption et d'émission qui dépendent de la densité des états [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF]. On peut identier deux types diérents de transitions induites par les micro-ondes : les transmissions intrabandes qui redistribuent les quasi-particules dans la partie trou ou électron du spectre, et les transitions inter-bandes qui favorisent les transitions à travers le mini-gap, créant ainsi une paire d'excitations (électronique et trou). Ces transitions inter-bandes peuvent être comprises comme un eet dynamique de "rupture de paire", qui modie également les propriétés spectrales du système -un creux/crête apparaît dans le spectre (et la densité du courant spectral) à E = ± ω RF /2, ce qui est montré dans la gure C.5. Cela modiera intrinsèquement le courant qui circule dans la jonction et, par conséquent, la relation courant-phase, ou CPR, acquiert des harmoniques supérieures qui ne sont pas présentes à l'équilibre [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF][START_REF] Fuechsle | Eect of Microwaves on the Current-Phase Relation of Superconductor Normal-MetalSuperconductor Josephson Junctions[END_REF]. En comparant la mesure du courant critique de la jonction en fonction de la température, I c (T ), avec la théorie, on obtient l'énergie de Thouless ( E T = 19µeV,∆ S = 55E T ). Cela correspond à une fréquence f RF ≈ 28, 5GHz nécessaire pour induire des transitions interbande à ϕ = 0 (2E g (ϕ = 0) = hf RF ).

Ici à nouveau, les résultats peuvent être décomposés en deux parties :

• Refroidissement des quasiparticules : Pendant la première partie de l'expérience il a été constaté, en mesurant la dépendance en température du courant critique, du courant de re-trapping et des pas de Shapiro que le taux de refroidissement eectif, K ≈ 2, 8 nW K 5 , est environ cent fois plus grand que la valeur attendue (déduite sur la base de la géométrie du dispositif et du taux d'interaction electron-phonon dans l' Ag). Les contacts métalliques normales adjacentes à la jonction, qui sont une conséquence de la procédure de fabrication, se sont avérées étre des "pièges à quasi-particules" et sont considérés à l'origine de cet eet.

C'est un résultat technique, mais essentiel car ce taux de relaxation élevé nous a permis d'explorer des nouveaux eets hors-équilibre, au-delà des eets thermiques bien connus.

• Dynamique non-adiabatique haute fréquence : Pour étudier la CPR de la jonction à partir du spectre d'émission Josephson, nous pouvons d'abord mesurer la puissance émise (sans pompe) à travers le ltre passe-bande de détection, en fonction de la tension V DC à travers la jonction, comme le montre la gure C.6. On distingue deux pics, marqués P 1 et P 2 . L'émission Josephson peut être modélisée sous la forme de deux pics gaussiens centrés à ω J et 2ω J , correspondant à l'émission associée aux deux premières harmoniques de la 

INTRODUCTION

The Seebeck effect, in which a temperature gradient leads to a charge current, was first observed about two centuries ago. Together with its Onsager reciprocal, the Peltier effect, it forms the basis of the field of thermoelectricity or coupled charge and heat transport [1]. Coupled charge and spin transport, or spintronics, emerged in the late 1980s [2]. Later, spin caloritronics or coupled heat, charge and spin transport [3,4] became an experimental reality with the observation of the spin Seebeck effect [5] and spin-dependent Peltier effects [6] in normal metals, and very recently large spin-dependent thermoelectric effects in superconductor-based devices [7][8][9][10].

Early work in the field focused on temperature differences between (magnetic) materials associated with spin and/or charge currents. Within a given material, it was pointed out that spin up and down carriers (electrons or quasiparticles) can also have different temperatures [11][12][13][14][15][16]. When this happens, the spin energy mode of the system is excited and the two spin species carry different heat currents. Evidence for spin-dependent heat transport was recently observed in a normal metal [17] but not in superconductors. Moreover, due to the aggregate nature of the measurements in normal metals (giant magnetoresistance of a spin valve), detailed information on the distribution function could not be obtained.

Here, we study thin-film superconducting aluminium. As our measurements are spectroscopic, we are able to reveal quasiparticle (QP) populations which cannot be described by effective temperatures (i.e. they are strongly out-of-equilibrium). Instead, they carry an 'imprint' of the electron distribution function in the normal metal from which current is injected into the superconductor, to generate QPs. Further, unlike in normal metals, the spin energy mode in superconductors gives rise to a charge imbalance (i.e. different numbers of electron-and holelike quasiparticles) with a specific energy and magnetic field dependence. Our spectroscopic measurements allow us to observe this imbalance and thus unambiguously identify the spin energy mode. The presence of the spin energy mode in turn necessarily implies that the distribution functions of spin up and down quasiparticles are different.

SPINFUL EXCITATION MODES OF OUT-OF-EQUILIBRIUM SUPERCONDUCTORS

The ground state of conventional (Bardeen-Cooper-Schrieffer) superconductors is composed of Cooper pairs of electrons in a spin singlet configuration. In equilibrium, this macroscopic quantum state can carry a dissipationless charge current (known as a supercurrent), but not spin or energy currents. In contrast, the single particle excitations, or quasiparticles, are spin-1/2 fermions, which can carry spin, energy and charge currents. The density of states of these QPs (ρ(E)) is zero in an energy range ±∆ about the Fermi energy (E F ), and has coherence peaks just above this gap (Figure 1a).

Out-of-equilibrium quasiparticle populations in superconductors can be described by the particle energy distribution function f (E). Neglecting the QP spin, f (E) can be decomposed based on symmetry into energy f [18,19] modes are, respectively, an effective temperature (different from the lattice temperature) and a charge imbalance. In the presence of a charge imbalance, the number of electron-and hole-like quasiparticles are non-identical, and the quasiparticle chemical potential is different from the Fermi energy.

L (E) = f (-E) -f (E) and charge f T (E) = 1 -f (E) -f (-E) modes
In the spinful case, this decomposition can be generalised by the addition of spin and spin energy modes, [14,16]. f L3 is most simply excited by a spindependent temperature and f T 3 by a spin-dependent chemical potential. The spin and spin energy modes only exist if spin up and down QPs have different distribution functions, i.e. if f ↑ (E) = f ↓ (E). By construction, f L and f L3 are odd in energy, while f T and f T 3 are even in energy. In the following, we focus mainly on f L3 , the spin energy mode.

f T 3 (E) = f T ↑ (E) -f T ↓ (E) and f L3 (E) = f L↑ (E) - f L↓ (E)
To generate different spin up and down distribution functions, it is necessary to preferentially excite quasiparticles of one spin species. In thin superconducting films, this can be done by applying an in-plane magnetic field H, which lowers (raises) the energy of spin up (down) QPs by the Zeeman energy E Z and splits the DOS so that only spin up excitations (spin up electron-like and spin down hole-like quasiparticles) are allowed in the energy range ∆ -E Z ≤ |E| ≤ ∆ + E Z (Figure 1b). (E Z = µ B H, with µ B the Bohr magneton and H the magnetic field.) Current injection in this energy range thus creates spinpolarised quasiparticles regardless of the magnetic properties of the tunnel barrier or the injector electrode.

For our experiments, we use thin-film superconducting (S) aluminium wires, with a native insulating (I) oxide layer, across which lie normal metal (N) and superconducting (S') electrodes. The former is used as an injector and the latter as detectors (Figure 1f). S is terminated on both sides by reservoirs at a distance of about 5µm from the NIS junction. The magnetic field (H) is applied in the plane, parallel to S.

Our basic spectroscopy measurement consists of injecting a constant current I inj at the injector J inj , and measuring the current I det and/or the differential conductance G det = dI det /dV det as a function of the applied voltage (V det ) at one of the detectors (J det1 , J det2 and J det3 in Figure 1f). Measurements were performed in a dilution refrigerator with a base temperature of 90mK. J det1 lies within both a electron-electron interaction length (λ e-e ≈ 1µm [20,21]) and a spin-flip length (λ sf ≈ 300 nm [22]) of the injector. We model our system using the Usadel-Keldysh equations, which describe out-of-equilibrium diffusive superconductors. (See Supp. Info. for details.) Following Ref.s [16,23], we solve these numerically in one dimension, assuming negligible (inelastic) electron-electron and electron-phonon interactions, and include a Zeeman magnetic field. Experimental parameters are used in the model: the normal state diffusion constant D ≈ 10 cm 2 s , L = 10µm, R(J inj ) = 13kΩ. The diffusion time from the injector to the reservoirs is τ dif f = l 2 inj-res /D ≈ 20ns where l inj-res is the injector-reservoir distance ≈ L/2. As τ dif f is much small than the QP recombination time (τ rec > ∼ 1µs [24]), QPs relax and recombine at the reservoirs. At the interface with the injector, the boundary conditions are given by spectral current continuity and the injector distribution function f inj (E -eV inj ), assumed to be Fermi-Dirac.

In our numerical results for the closest detector (Figure 1c), we see that the quasiparticle distribution function bears signatures of both the density of states in S (Figure 1b) as well as the distribution function in the injector: It has a peak at E = ∆ and goes sharply to zero at E = V inj e. The distribution function is also spin-dependent.

To interpret our experimental results, it is helpful to understand the link between the spin energy mode f L3 and charge imbalance by considering the particle number as a function of energy: (Figure 1b) f T also creates a charge imbalance, which however appears at low magnetic fields and high energies. Our spectroscopic technique allows us distinguish between f L3 and f T , based on their different energy dependences. We refer the reader to Ref. [16] and the Supp. Info. for further theoretical details.

N (E) = N ↑ (E) + N ↓ (E) = f ↑ (E)ρ ↑ (E) + f ↓ (E)ρ ↓ (E) (1) 
= ρ + (E)[1 -f L (E) -f T (E)] -ρ -[f T 3 (E) + f L3 (E)] (2 

SPECTROSCOPIC SPIN-SENSITIVE QUASIPARTICLE DETECTION

We first characterise both injector and detector junctions, and explain our spectroscopy technique. Figure 2a shows the differential conductance of the injector G inj = dI inj /dV inj as a function of the applied voltage (V inj ) at different H. At the temperatures of our experiment, G inj is almost exactly proportional to the density of states in S [25]. We can see that H induces Zeeman splitting of the QP DOS. H also couples to the orbital degree of freedom, inducing screening supercurrents and hence a rounding of the QP coherence peak due to orbital depairing [25,26]. The depairing parameter, found by fitting the data with an Abrikosov-Gor'kov depairing (see Supp. Info.), is α = R ORB H 2 , with R ORB ≈ 6.5 µeV T 2 , and the critical field H c ≈ 2.7T. In the results shown here, the Zeeman energy is always greater than the depairing parameter. (See Supp. Info. for details.)

If the detector temperature is much smaller than the superconducting energy gap in S' (k B T det ∆ det , with We see the Zeeman splitting of the quasiparticle density of states in the superconducting wire as the detector is not Zeeman-split.

k B Boltzmann's constant), the differential conductance of SIS' junctions as a function of the applied voltage in the subgap region V < (∆ + ∆ det )/e is given by

G det (V det ) = 1 eR N ρ(E)f (E) ∂ρ det (E + eV det ) ∂V det dE (3) 
where ρ det (E) the density of states in S', e the electron charge and R N the normal state resistance of the detector junction.

Most of the integral comes from the coherence peak in ρ det at E = ∆ det . This peak picks out the number of quasiparticles in S (ρ(E)f (E)), shifted by ∆ det . In other words, G det (V det -∆ det /e) gives the number of QPs at energy E = eV det , while I det (V det -∆ det /e) gives the total number of QPs for E ≤ eV det . Our measurements thus give us spectroscopic information on the QPs. (See Supp. Info. for details.)

At finite magnetic fields, these spectroscopic measurements become spin-sensitive if Zeeman spin-splitting occurs in S but not in S'; the unsplit coherence peak in S' separately probes the number of QPs in S at the two gap edges for spins up and down, respectively at V ↑(↓) det = |∆ ± µ B H -∆ det |/e. We suppress the spin-splitting in S' through the strong spin-orbit coupling of sprinkled Pt, which acts as a spin-mixer. (See Methods, Supp. Info. and as Ref.s [26][27][28][29]) Figure 2b shows G det (V det ) at different H and I inj = 0. At H = 1T, we see two peaks, as expected for a nonspin-split detector. (Were there a Zeeman splitting in S' equal to that in S, the situation would be equivalent to two SIS junctions in parallel, one for each spin, and there would be a single peak in G det (V det ) instead of two [40].) We note also that the detector current is typically 0.1 -1nA I inj ∼ 10 -100nA throughout the subgap region: the detector is close to equilibrium

NON-FERMI-DIRAC QUASIPARTICLE ENERGY DISTRIBUTIONS

Measurements at zero magnetic field already reveal non-Fermi Dirac distributions. Figure 3a shows the current-voltage characteristics of the closest detector junction at two injection currents: 0nA (black trace) and 120nA (red trace). We focus on the low-voltage range before the abrupt rise of I det at V det = (∆ + ∆ det )/e, where the opposite-energy coherence peaks of S and S' align. We see that the red trace is higher than the black. This indicates the presence of additional QPs created by injection [41]. This creation of quasiparticles by current injection can also be seen in the differential conductance measurement, G det (V det ) at three values of I inj : 0nA, ≈ 13nA and 120nA (Figure 3b). Here, we see more clearly that most of the quasiparticles are at the gap edge (eV det = ∆). If we try to fit the trace at I inj ≈ 13nA with a thermal QP distribution, it is clear that this grossly over-estimates the number of QPs at high energies (Figure 3b, dotted line). The quasiparticles do not thermalise.

Instead, as shown in our calculations (Figure 1) and discussed earlier, the quasiparticle states in S are filled up to V inj : the electron distribution function in N is 'imprinted' onto the quasiparticles in S. This can be seen by overlaying the I inj (V inj ) measurement in Figure 3a, shifted by ∆ det /e, onto a plot of G det as a function of (V det ) and I inj (Figure 3c). Note that, at each current, the injector voltage falls exactly at the location of a step in G det (seen here as a change in colour). The accumulation of quasiparticles at the gap edge in S can also be seen on this colour scale as a yellow horizontal feature.

Our calculations reproduce both the step-like feature corresponding to I inj (V inj + ∆ det /e), as well as the horizontal feature (Figure 3d). Thus, at a distance of about 300nm λ e-e from the injector (i.e. at J det1 ) and in the energy range of interest for the detection of the f L3 mode, the quasiparticles have not yet thermalised, and it is reasonable to neglect electron-electron interactions. At finite magnetic fields, current injection at low energies becomes spin-polarised: we expect different distribution functions for spin up and down quasiparticles, and in particular to excite the spin energy mode. We show in Figure 4a calculations of G det as a function of V det (in the sub-gap region) and of I inj , at 1T where the density of states in S is well spin-split (Figure 2a). Following features from low to high energies, we expect peaks in G det (V det ) at eV det = (±|∆ -∆ det -E Z |) which we shall call P 2 and P 3 , corresponding to the coherence peaks of spin up excitations (spin up electron-like or spin down hole-like quasiparticles). Peaks at V det = ±|∆-∆ D +E Z | (P 1 and P 4 ), corresponding to the coherence peaks of spin down excitations, appear when I inj is increased and spin down QPs are also injected.

Comparing this to the data (Figure 4c), we see P 2 and P 3 clearly, but P 1 and P 4 are less prominent. This is due to the increased electron-electron interaction at high energies and QP number. (For clarity, the Josephson (i.e. supercurrent) contribution has been subtracted from G det . See Supp. Info. for details.)

Next, we compare the number of electron-and holelike quasiparticles by taking two slices of Figure 4c at eV det = +|∆ -∆ Dµ B H| (Figure 4d). The traces are not identical. The difference between them, which is the charge imbalance, is maximal at I inj ≈ 8nA, corresponding to maximal spin polarisation of the injection current, i.e. when the injection voltage is just below the coherence peak of the second spin species. This charge imbalance is also reproduced in the calculation (Figure 4b).

The charge imbalance associated with f L3 has particular energy and magnetic signatures: it is expected to appear in the energy range ∆ -E Z ≤ |E| ≤ ∆ + E Z . In Figure 5a, we plot the component of the data in Figure 4a which is odd in V det , which gives the charge imbalance. The odd component is indeed largest in the expected energy range. As the magnetic field is decreased, the charge imbalance is reduced, also as expected for the spin energy mode (Figure 5b): it is zero at zero magnetic field, and becomes visible when E Z > 3.5k B T . At H = 1T. Our calculations reproduce the data well (Figure 5b, dashdotted line).

The odd component of the data in Figures 4b and4d, which comes from f L3 , is small compared to the even component, which comes from either f L or f T 3 . The quasiparticles from f L or f T 3 contribute to a finite magnetisation in the superconductor, previously detected by other methods [30][31][32][33]. At H = 0, we recover the previously observed charge imbalance signal [34][35][36][37][38], associated with the f T mode, which occurs at high energies and low magnetic fields. (See Supp. Info.)

As expected, we do not observe f L3 at J det2 or J det3 , where the spin up and down QP distribution functions have become identical. (See Supp. Info.)

Compared to normal metals and semiconductors, the spin energy mode in superconductors has the advantage of being excitable by using the spin-split DOS. Its association with an energy-localised charge imbalance make it easy to distinguish from other modes. Using superconductors as detectors allowed us to have spectroscopic information on the quasiparticles, by using the coherence peak in the detector density of states. This work paves the way for new spin-dependent heat transport experiments, as well as the generation of spin supercurrents by out-of-equilibrium distribution functions in conventional superconductors [16,39]. Eliashberg approximation [17] in which the ac-spectral supercurrent plays no role [18,19].

To investigate the ac-Josephson emission, we have fabricated a radio-frequency compatible SNS junction by e-beam lithography. The junction is obtained by angular e-gun evaporation of a 70 nm thick layer of Nb (S) and a 40 nm thick layer of silver (N) [see Fig. 1(b)]. The normal metal length is L = 400 nm and it has a normal state resistance R N = 1.6 . Normal metal reservoirs (see inset of Fig. 1) act as heat sinks reducing the energy relaxation times of quasiparticles. The measurement circuit is presented in the Supplemental Material (SM) [20]. The sample is connected through two bias tees which allow dc biasing, microwave excitation (ω rf /2π ∈ [0 -40] GHz), and detection.

The temperature dependence of the critical current I c (T ) together with the retrapping current I r (T ) are presented in the main panel of Fig. 1. The two curves separate below T h ≈ 0.8 K, where self-heating becomes relevant [21]. We fit the I c data (black line in Fig. 1) to obtain an estimate of the Thouless energy E Th ≈ 19 ± 2 μeV [22], which sets the minigap to 2E g (0) ≈ 118 μeV ≡ 28.5 GHz. By comparing with two shorter samples we verified that the Thouless energy scales as 1/L 2 provided that the effective wire length is roughly 250 nm longer than the geometrical gaps between the Nb leads as observed in previous experiments (see SM [20] and [22][23][24]). Finally, the diffusion coefficient is found to be D ≈ 90 cm 2 /s (see SM [20], which also include Refs. [25][26][27][28][29]), which is close to previous experiments using similar junctions [24]. The inset of Fig. 1 shows the differential resistance as a function of the dc-current bias under microwave excitation (ω rf /2π = 35.18 GHz) at T ≈ 1.6 K > T h . The zero resistance plateaus correspond to Shapiro steps at V dc = n/m hω rf /2e (n and m integers) [30]. The tempera-ture dependence of the maximum amplitude I S of the main Shapiro step (n = 1, m = 1) allows one to verify the quality of the heat sinks (see Ref. [31] and SM [20]) and deduce the quasiparticle energy relaxation rate /2π ≈ 4.6 GHz, which corresponds to the escape time of the hot quasiparticles out of the junction given by the diffusion time τ D = 1/ ≈ 35 ps. To further characterize our junction we show in Fig. 2(a) the critical current [32] as a function of the normalized applied microwave field amplitude s = eV ac / hω rf for two excitation frequencies ω rf /2π = 20.72 GHz and ω rf /2π = 35.18 GHz. As one increases the microwave power the critical current follows roughly the zeroth order Bessel function |J 0 (2s)|. Note that the absolute value of s is hard to calibrate accurately. We have here chosen to scale s such that the minimum of the experimental data (I c ) and the minimum of |J 0 (2s)| (adiabatic limit) match. Interestingly, the critical current I c for ω rf /2π = 35.18 GHz does not vanish at s ≈ 1.2 as expected in the adiabatic limit [33,34]. We address this new regime by analyzing the CPR.

The CPR of long SNS junctions under microwave radiation has been investigated in Ref. [24] in a phase-biased configuration using a Hall sensor and low microwave frequencies (ω rf < 2E g / h). The alternative approach we take in this experiment is to directly measure the ac-Josephson emission spectral density N J (V 2 /Hz) generated by the junction when dc current biased across a microwave circuit allowing a galvanic coupling to microwaves. We perform the experiment in the limit where the Josephson frequency is small compared to the excitation frequency (ω J = 2eV dc / h < ω rf ) so that the two frequency scales are separated and we can consider a modified CPR with the fast oscillation averaged out (see SM [20] for details). The frequency of the emitted ac radiation from the nth harmonic of the CPR obeys the relation ω J,n /2π = 2enV dc /h. Therefore, at a fixed dc voltage the harmonic content of the CPR appears as multiple peaks in the spectrum of the emitted Josephson radiation. As it is technically very demanding to perform such an experiment in a large bandwidth, we adopted a strategy in which the radiation is measured in a band of about 2.5 GHz centered around ω 0 /2π = 6.5 GHz. In this experimental situation, the contribution from the nth harmonic appears as a radiation peak when the voltage is equal to V dc,n = hω 0 /2en.

We then measure the Josephson radiation spectral density N J as a function of the applied dc current and microwave power for different ω rf [35]. Such measurements, presented in Figs. 2(b) and 2(c), show two emission peaks at V dc ≈ hω 0 /4e ≈ 6 μeV (I dc = 6.5 μA at low power) and V dc ≈ hω 0 /2e ≈ 12 μeV (I dc = 10 μA at low power) corresponding respectively to the second and the first harmonic of the CPR [letters B and A in Fig. 2(b)]. The width of these two peaks is set by the combined effects of thermal noise and the finite measurement bandwidth of the setup [see SM [20] and dashed lines in Fig. 2(c)]. To avoid a reduction of I c,1 by electron heating due to the dc power, the bath temperature has to be sufficiently large, allowing the electron-phonon coupling in the heat sinks (see inset of Fig. 1) to be effective. In our case we evaluate T ≈ +1.6 mK at T = 1.6 K (see SM [20]). We follow the amplitude of peaks A and B as a function of the microwave power for two frequencies as shown in Figs. [36], vanishes, and then displays a second maximum at higher rf powers and high frequencies in a way whose height is not consistent with the adiabatic phase dynamics [compare yellow squares and lines in Figs. 2(d) and 2(e)].

From the power dependence of the harmonics weight of the CPR obtained from peaks A and B, it is possible to reconstruct, up to a scaling factor, a power-dependent critical current that one may compare to the measured one. To do so, we reconstruct a CPR based on the first two measured harmonics and take its maximum value. The result is reported as dashed lines in Fig. 2(a) and demonstrates reasonable agreement with the measured I c [37]. Such a verification indicates that measuring the ac-Josephson effect for small, but finite, dc voltage is a good probe of the CPR. This justifies the use of the existing theory of diffusive SNS junctions under microwave irradiation at zero dc voltage.

In the following we use the theory developed by Virtanen et al. [7] to account for our experimental data. In this theory both the spectral current density and the out-of-equilibrium distribution function can be obtained by solving the Usadel equation in the Keldysh-Nambu representation. When < 2E g / h, the microwave bias affects the distribution function more efficiently than the spectral current density which acquires, however, a component at the frequency of the drive. The dynamics of the current couples back to the distribution function which strongly modifies the CPR. To understand qualitatively the backcoupling of the ac current to the distribution function we can analytically write the modifications of (3)

Here, ρ is the spatially averaged density of states inside the junction. f 0 (E ) is the equilibrium Fermi-Dirac distribution function and η + (E ) and η -(E ) are the energy-dependent photon absorption and emission rates, respectively. At low frequencies ω rf < 2E g / h, the transition rates are given to a good accuracy by unperturbed spectral functions, similarly as in the Eliashberg [17] and Mattis-Bardeen [2] theories of photoabsorption. At ω rf > 2E g / h, however, the ac current flowing in the weak link starts to break Cooper pairs (i.e., promote quasiparticles across the gap). An accurate description of the energy dependence of this process requires a more complete consideration of the dynamics of the spectral quantities.

We solve the Usadel equations numerically using the experimental parameters E Th , ω rf and the quasiparticle relaxation rate close to the above inferred value. We compute the time-average spectral current under the high-frequency drive ω rf , which yields the effective current-phase relation I (ϕ, s) relevant for the lower-frequency phase dynamics (see SM [20] and [7]). The result is shown in Fig. 3(a) for the irradiation frequency ω rf /2π = 35.18 GHz. As the power is increased, the current-phase relation is distorted and shows a maximum shifted towards smaller phase values. This negative shift demonstrates that the second harmonic value is positive 032009-3 under illumination and not negative as expected from the equilibrium CPR at low temperatures [9]. We quantitatively extract the weights of the different harmonics by fitting the calculated CPR with the formula I = 9 k=0 I c,k sin(kϕ), where I c,k are the fitting parameters. We show in Figs. 2(f) and 2(g) the power dependence of the first two harmonics squared, I 2 c,1 and I 2 c,2 [Eq. ( 2)], which should be proportional to the experimental spectral density N J .

In order to obtain a comparison between the theory and the experiment, at low power, we have to include a negative phenomenological contribution I c,2 pheno to match the measured second harmonic at s = 0. Its precise origin remains to be determined [36]. In this way, the experimental data shown in Figs. 2(d) and 2(e) coincide with a corrected version of the calculations I 2 c,2 corr = (I c,2 -|I c,2 pheno |J 0 (4s)) 2 (see SM [20] for details). This correction provides a good agreement between the theory and the experimental data in the full power range with little effect at high power where the strongly nona-diabatic regime appears [see dashed and solid yellow lines around s ≈ 0.7 in Figs. 2(f) and 2(g)]. As demonstrated by the purple dashed lines in Figs. 2(f) and 2(g), the Eliashberg theory [17] fails to explain our experimental data because it neglects the coupling between the phase dynamics and the distribution function.

The distortion of the CPR can be understood by inspection of the microwave-induced changes of the spectral supercurrent j s (E , ϕ) and distribution functions -2δ f (E , ϕ) = -2[ f (E , ϕ)f 0 (E )] shown in Fig. 3(b). For small values of the phase ϕ [see top curves in Fig. 3(b)], the changes in the distribution function are dominated by intraband transitions leading to the function -2δ f and j s having the same sign and shape. For larger phase values instead, transitions across the gap are favored and visible as peaks in the distribution function [see central and lower curves in Fig. 3(b)]. These peaks are located at energies E = ±hω rf /2e, i.e., at the middle of the energy ranges |E | ∈ [E g , hω rf -E g ] participating in across-the-gap transitions. Note that the peak positions [vertical lines in Fig. 3(c)] are independent of E g . The peaks originate from the transition probability that is influenced by the ac response of the spectral supercurrent, which deviates from the equilibrium one as shown in Fig. 3(c). Importantly, these peaks have a sign that is opposite to the spectral current implying that the Cooper pair breaking results in a reduction of the total supercurrent.

In conclusion, we performed a microwave spectroscopy of the ac-Josephson effect in a diffusive weak link in the strongly nonadiabatic regime for which inelastic transitions across the minigap are possible. The microwaves are found to drastically enhance the second harmonic of the CPR as a result of the backcoupling of the ac-spectral supercurrent to the distribution function. Future experiments shall investigate the Josephson emission at high frequency in limits where the frequency of the emitted photons is comparable to the minigap in the normal wire [40,41]. Besides diffusive-metal SNS junctions, the spectroscopic approach could be used for several other types of weak links. In particular, microwaves also modify the CPR in atomic contacts [42,43]. In nanowire junctions with Majorana bound states, the microwave affected CPR might reveal signatures about the topologically forbidden transitions [44][45][46].
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 23 Bottom left (right): theoretical curves computed using the theory presented in chapter 5.3, with Γ/E T = 0.4, k B T /E T = 7, ∆/E T = 55 and ω RF /E T = 3 ( ω RF /E T = 7), respectively. Within the Eliashberg approximation the second harmonic is negligible at all powers. Using the full theory the amplitude of the second harmonic is qualitatively in agreement at high s but it fails to reproduce the component at s = 0 as k B T > E T . Using I c,2 = I 0 c,2 J 0 (2s) + I th c,2 (s), where I 0 c,2 (< 0) is a free parameter produces a good qualitative match at all values of s. . . . . . . . . . . . . . . . . . . . . . . . 6.13 Left: a schematic of the microwave induced transitions, the white dashed lines indicate the microwave frequency, the black arrow shows the allowed intraband transition, while the (dashed) red arrows show the (dis)allowed interband transition, due to the phase dependent minigap. The induced changes to the spectral supercurrent and the distribution function, calculated using the microscopic theory, are shown on the right panel, where the dashed vertical lines indicate the microwave frequency. If the minigap is suciently low (i.e. if the phase is close to π) there are signicant changes with respect to the equilibrium values, especially at E = ± ω RF /2 as a consequence of the absorption peak shown in 5.16. The parameters used for the calculation are the same as in gure 6.12 with ω RF /E T = 7. . . . . . . . . . . . . . . . . . . . . . . . . . 6.14 Left: the current phase relation computed using the nonequilibrium theory with Γ/E T = 0.4, k B T /E T = 7, ∆/E T = 55 and ω RF /E T = 7. Right and middle: the CPR computed using the full theoretical result, the equilibrium distribution function, the DC part of the distribution function, and the equilibrium spectral supercurrent at s = 0.77 and s = 1.5 respectively. . . . . . . xii LIST OF FIGURES 6.15 The Josephson emission measured directly (peaks A and B), or up/down converted (peaks C through H) by the microwave drive at f RF = 35.18GHz. The bottom trace is taken at P source = -10dBm and the top one at P source = 17dBm. The V (I) curves are shown on the right scale. The experiment was performed at T = 1.6K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.16 Left: the power dependence of the peaks A through H (shown in gure 6.15) at f RF = 35.18GHz (the traces are oset vertically for clarity). Right the power dependence of peaks E and H at several frequencies; the enhancement of the down-converted peak H is observed only for higher frequencies. Both data-sets were measured at T = 1.6K. . . . . . . . . . . . . . . . . . . . . . . 111 A.1 E-beam dened evaporation mask: the superconducting Al wire is colored green, the injector electrode red and the detector electrodes are blue. Pink regions are lower-dosed undercuts. . . . . . . . . . . . . . . . . . . . . . . . . . 117 A.2 A schematic of the experimental setup. . . . . . . . . . . . . . . . . . . . . . . 120 B.1 A depiction of the dierent distribution function modes: top left shows an eective temperature T * (H = 0), which is a specic realization of the energy mode f L , top right an eective chemical potential µ (with a nite temperature, H = 0) which is the simplest distribution function that excites the charge mode f T . The bottom left and bottom right panels show a spin-dependent temperature and chemical potential, corresponding to the simplest realizations of the spin-energy f L3 and spin f T 3 modes (H > 0). . . . . . . . . . . . . . . . 123 B.2 Left: The G(V det ) ∝ N QP (E = eV det +∆ D ) spectrum obtained using the closest detector at H = 0 as a function of the injection current. Two features can be identied: a large signal at E = ∆ along the horizontal dashed line. Secondly, no quasiparticles are detected within the purple region, which is bound by the experimental I inj (V inj ) curves of the injector (solid black lines), outside of which a nite QP density is detected. This implies that This implies that QPs are detected only at energies below E = eV inj (I inj ). The unaccountedfor purple areas outside of the I inj (V inj ) bounds are due to the nontrivial background subtraction, as detailed in the main text of the thesis. Right: A simulation of the detector spectrum based on the Keldysh-Usadel approach presented in the same fashion. The color-bar is common for the two panels. . . 126 B.3 Left: the theoretical (top) and experimental (bottom) G det (V det ) curves of the closest detector as a function of the injection current presented as a colormap at H = 1T. Right: the corresponding line cuts at eV = ∆µ B H -∆ D as a function of the injection current, taken along the dashed lines (the traces are color coded). The odd component in these traces implies the presence of a spin-dependent charge imbalance. . . . . . . . . . . . . . . . . . . . . . . . . 127 B.4 Left: the odd component of the experimental colormap shown in gure B.3. Right: the odd component of the G det (V det ) curves at eV det = ∆µ B H -∆ D as a function of the injection current, for several equidistantly spaced magnetic elds from H = 0T to H = 1T. The dot-dashed black line is the odd component of the theoretical curve shown in gure B.3. The traces are oset vertically for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 LIST OF FIGURES xiii B.5 Left: a schematic of the microwave induced interband transitions (red arrow), the white dashed lines indicate the microwave frequency. Right: The induced changes to the spectral supercurrent (solid blue line), and its value in equilibrium (dashed red line), at ϕ = 2π The dashed lines show that the frequency of the microwave drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 B.6 Left: the detected power N as as a function of the voltage across the junction. Right: the V (I) curve of the junction. The dashed horizontal lines indicate the voltages at which the two peaks are observed. . . . . . . . . . . . . . . . . 132 B.7 Top left: the observed amplitudes of peaks P 1 (left scale) and P 2 (right scale) as a function of microwave power at T = 1.6K and f = 20.72GHz. In all four panels the 2nd harmonic is shown on the right scale. The calibration of
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 2 Bottom left (right): theoretical curves computed using Γ/E T = 0.4, k B T /E T = 7, ∆/E T = 55 and ω RF /E T = 3 ( ω RF /E T = 7), respectively. Within the Eliashberg approximation the second harmonic is negligible at all powers. . . . . . . . . . . . . . 133 C.1 Une représentation des diérents modes de la fonction de distribution : en haut à gauche, une température eective T * QP (H = 0), qui est une réalisation spécique du mode d'énergie f L , en haut à droite un potentiel chimique eectif µ QP (avec une température nie, H = 0) qui est la fonction de distribution la plus simple qui excite le mode de charge f T . Les panneaux inférieur gauche et inférieur droit montrent une température et un potentiel chimique dépendant du spin, correspondant aux réalisations les plus simples des modes d'énergie dépandant du spinf L3 et spin f T 3 (H > 0). . . . . . . . . . . . . . . . . . . . . 138 C.2 A gauche : Le spectre G(V det ) ∝ N QP (E = eV det + ∆ D ) obtenu en utilisant le détecteur le plus proche à H = 0 en fonction du courant d'injection. Deux caractéristiques peuvent être identiées : un signal important à E = ∆ le long de la ligne horizontale en pointillés. Deuxièmement, aucune quasi-particule n'est détectée dans la région violette, qui est délimitée par les courbes expérimentales I inj (V inj ) de l'injecteur (lignes noires continues), en dehors desquelles aucune densité QP nie n'est détectée. Cela implique que les QP ne sont détectés qu'à des énergies inférieures à E = eV inj (I inj ).
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 61 Figure 1: A depiction of the dierent distribution function modes: top left shows an eective temperature T * (H = 0), which is a specic realization of the energy mode f L , top right an eective chemical potential µ (with a nite temperature, H = 0) which is the simplest distribution function that excites the charge mode f T . The bottom left and bottom right panels show a spin-dependent temperature and chemical potential, corresponding to the simplest realizations of the spin-energy f L3 and spin f T 3 modes (H > 0).

Figure 1 . 1 :

 11 Figure 1.1: A numerical solution of the Usadel equation shown in terms of the real (blue lines) and imaginary (red lines) parts of g 0,1 , g 3,1 , g 0,3 and g 3,3 .

Figure 1 . 2 :

 12 Figure 1.2: Top: the normalized (D = 1) energy dependent diusion coecients D L and D T 3 (left) as well as D T and D L3 (right). Bottom: the charge (R T and R L3 ) and spin (S L3 and S T 3 ) relaxation rates, normalized to 2∆ = 1 and R S = 1;

Figure 1 . 3 :

 13 Figure 1.3: The relaxation rates of the exponentially decaying modes normalized by the spinrelaxation length λ SF = √ Dτ SO in the f Lf T 3 (left) and f Tf L3 (right) subspaces. The labels are assigned to the traces based on the high energy behavior, as shown in gure 1.4.

Figure 1 . 4 :

 14 Figure 1.4: The decomposition of the k 3 (left) and k 4 (right) transport eigenmodes in terms of f T (charge, blue line) and f L3 (spin-energy, red line). The dashed black line indicates an equal mixture of the f T and f L3 modes. Note that below E ≈ 150µeV there are no quasiparticle states as indicated by the DOS (shown on the right scale).
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 15 Figure 1.5: The χ coecients from equation 1.20 calculated for the experimental parameters at H = 1T and x = 0. The top panel shows χ L and χ T 3 while the bottom one shows χ T and χ L3 ; in both panels the DOS for both spins is shown on the right scale.

1. 4 . 19 1. 4 8

 41948 SPIN AND CHARGE ACCUMULATION Spin and charge accumulationThe currents introduced in section 1.2 have a corresponding charge (density), which is dened as q a,b = 1 Tr τ 3 τ a σ b ĝK

Figure 1 . 6 :

 16 Figure 1.6: A color-plot showing the spin accumulation (left panel), the charge accumulation associated with the f T (top right) and f L3 (bottom right) modes as a function of the applied magnetic eld and the injection voltage. All quantities are plotted in arbitrary units.
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 18 Figure 1.8: The DOS of the superconductor (blue), the distribution function in the normal metal (orange, V inj = 2.2∆ 0 ) and the induced out-of-equilibrium distribution function (red). The step height is set by the value of D 0 r L = 0.2, and the temperature of the normal is T = 0.05∆ 0 .

1. 6 . 25 Figure 1 . 10 :

 625110 Figure 1.10: The dependence of ∆ as a function of the number of excitations present in the system, for a thermal distribution function (black), and the two nonequilibrium solutions shown in 1.9 (the blue dashed curve corresponds to the black trace on the previous gure).The region bounded by the dashed rectangle corresponds to the range accessible in the experiment.
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 21 Figure 2.1: An SEM micrograph of the sample, with a simplied schematic of the principal measurement setup: J inj (cyan) is current biased, and the I(V )/G(V ) curve of one of the detector junctions J {1,2,3} (red) is measured simultaneously.
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 1 THE NIS INJECTOR 29 NIS junction depends only on the DOS of the superconductor and the eective temperature in the normal metal (and at a suciently low temperature the G(V ) approaches the DOS of the superconductor).

Figure 2 .

 2 Figure 2.2 shows the G(V ) of the injector at H = 0T and at H = 1T. Both of these traces show features beyond the simple equilibrium model. In particular, at H = 0T (g. 2.2, the blue trace) the coherence peaks are sharper (higher and narrower) than what one should expect at T = 90mK.This can be understood in terms of the out-of-equilibrium suppression of ∆: when a nite

CHAPTER 2 .Figure 2 . 2 :

 222 Figure 2.2: The experimental NIS G(V ) curves at H = 0T (blue) and at H = 1T (red). The gray traces are the measured G(V ) traces up to H ≈ 1.8T in steps of ∆H ≈ 0.4T. The dashed blue and red traces are the simulated G(V ) curves for a BCS DOS at T = 90mK and an Abrikosov-Gor'kov DOS at H = 1T and α = 6.5µeV and the same temperature.

Figure 2 . 4 :

 24 Figure 2.4: A color-map of the NIS G(V ) curves as a function of the magnetic eld, from the experiment (left), and from the theory (right) using the equilibrium self-consistent ∆(H) (blue curve).

Figure 2 .

 2 Figure 2.5 shows the normalized dierential conductance at zero voltage bias of detector J 1 . As expected from the geometry (d junction ≈ 200nm, 2λ + d barrier ≈ 10nm) the Josephson critical current is minimal around H = 1T, and by measuring at (or close to) this magnetic eld allows us to probe only the quasiparticle current contribution (as described in the section 2.2.2). The curve does not exactly follow the shape of a (smeared out) cardinal sine function, which is primarily because of the ∆(H) and ∆ D (H) (detector) dependencies which are not taken into account.The residual Josephson contribution to the G(V ) curve at H = 1T, can be modeled as a Gaussian peak and subtracted from the trace, as is shown in gure 2.10.

Figure 2 . 5 :

 25 Figure 2.5: The measured magnetic eld dependence of the zero bias Josephson peak (G(V = 0) -blue curve) as well as the rst Josephson resonance (5.5G(V ≈ 256µV) -red curve) for the detector J 1 . The red trace stops at H = 1T as slightly above this eld the spectral gap closes below the threshold ∆ + ∆ D = 256µeV. The black dashed curve shows the Fraunhofer pattern normalized by the I c at H = 0. The inset shows the G(V ) curve at zero magnetic eld with the Josephson peak, as well as the rst two resonances labeled (red and green dots).

Figure 2 . 6 :

 26 Figure 2.6: Top: the calculated superconductor DOS N (E) (purple), the detector DOS N D (E) (black dashed), the equilibrium Fermi-Dirac distribution function (blue) and a nonequilibrium one (red, only f L = 0). Middle: The density of states as above and the nonequilibrium quasiparticle density N (E)f noneq (E). Bottom: The simulated DOS of the detector (black dashed, right scale), as well as its derivative at V det = 0µV (black), V det = 30µV (blue) and V det = 60µV (red). The two distribution functions shown in the top panel are also used used for the traces in gure 2.7.

Figure 2 . 7 :

 27 Figure 2.7: Left: the calculated I(V ) curve for the equilibrium and non-equilibrium distribution functions shown in gure 2.6. Right: the corresponding G(V ) curves and a comparison with N (E)f (E).

  Zeeman splitting in the G(V ) curve. The top panel of gure 2.8 shows the dierence between the DOS of a superconductor with a negligible spin-orbit interaction (R SO ∆, blue traces) and with a large spin-orbit interaction (R SO ∆, red traces) at H = 1T. The bottom panel of the same gure shows the normalized dierential conductance of an SIS junction made out of two superconductors with low SO interactions (blue) and an SIS where the one has a low and the other a high spin-orbit interaction.

Figure 2 . 8 :

 28 Figure 2.8: Top: The simulated spin down (dashed) and spin up (solid) DOS of a superconductor with R SO ∆ (blue), and the same for R SO ∆ (red). Bottom: If the simulated G(V ) curves of two SIS junctions -one couples two Zeeman split superconductors (blue), and the other one couples a Zeeman split superconductor with a non-split one (red).

  curve of the SIS at a nite magnetic eld, showing the Zeeman splitting, is shown in gure 2.10. For reference the same gure includes a trace from a previous sample at the same eld, where the detector electrode was Al only and is therefore Zeeman split, and the G(V ) traces do not show two separate coherence peaks. The dierence in the amplitude of the peaks is due to a lower orbital depairing.
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 29402 Figure 2.9: The tunneling dierential conductance G(V ) color-map as a function of the magnetic eld for an Al sample (left), and an Al/Pt sample. The black lines are the G(V ) traces at H = 2T. All data was taken at T = 90mK.

Figure 2 .

 2 Figure 2.10: The G(V ) curve of J 1 at H = 1T which shows the "splitting" of the coherence peaks at |eV det | = |∆ ± µ B H + ∆ D |, which is explained in detail in the section 2.3. The small Josephson contribution, close to V = 0, can be modeled as a Gaussian peak and subtracted from the data, as shown in the inset. The red trace (shown on the right scale) is from a previous device with a Zeeman-split detector, also at H = 1T.
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 31 Figure 3.1: The experimental I(V ) curves of J 1 at equilibrium (blue) and at I inj = 120nA (red). The nonequilibrium curve shows an excess subgap current as well as a reduction in eV = ∆ + ∆ D .
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 13233 Figure 3.2: The number of quasiparticles measured by each of the detectors at H = 0. The data is normalized such that the linear, high injection, part of the J 1 trace have a unit slope. The black dashed lines are linear extrapolations to zero. The dotted vertical line indicates eV inj ≈ 1.33∆ 0 and the dash-dot line indicates eV inj ≈ 2∆ 0 .
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 24534 Figure 3.4: The gap suppression δ∆(I inj ) = ∆(I inj ) -∆ 0 measured by each of the detectors at H = 0.
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 35 Figure 3.5: The gap suppression δ∆(I inj ) = ∆(I inj ) -∆ 0 measured by each of the detectors at H = 0.
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 3 FIELD DEPENDENCE OF N QP AND ∆ 47 proposed which could address this question.

Figure 3 . 6 :

 36 Figure 3.6: The number of quasiparticles measured at J 1 as a function of the applied magnetic eld (10 equidistant steps from H = 1.53T to H = 0T) and the injection current.

Figure 3 . 7 :

 37 Figure 3.7: The gap suppression δ∆(I inj ) = ∆(I inj ) -∆ 0 measured at J 1 as a function of the applied magnetic eld (10 equidistant steps from H = 1.53T to H = 0T) and the injection current.

1 .

 1 Additionally due to the long exponential tail of the Fermi-Dirac distribution function, such a model cannot reproduce the relatively sharp cuto in energy/voltage at which the quasiparticles are detected.The large accumulation of quasiparticles at the gap edge also suppresses ∆ eciently, as the anomalous part of the Green's function is peaked at the gap edge, resulting in the reduction observed in gure 3.4.

Figure 4 . 1 :

 41 Figure 4.1: Left: the measured sub-gap G(V ) curve of detector J 1 as a function of the injection current (H = 0T). The full black trace is the equilibrium one (I inj = 0nA), while the other ones are at nite currents. Right: the corresponding G(V ) curve (left scale) and the I(V ) curve (right scale) of the NIS injector junction. On top of the G(V ) curve there are several markers which correspond to the dierent detector traces shown in the left panel (the traces are color-coded). The dashed black curve shown in the left panel corresponds to I inj = 120nA. The dotted blue curve is an eective temperature t of the solid blue trace with T * = 1.1K.

Figure 4 . 2 :

 42 Figure 4.2: The detector G(V ) (at H = 0T) curve close to eV det = |∆ -∆ D | as a function of the injection current. The zero injection curve has been subtracted from the trace to remove the Josephson background. The black curve shown on top is the I(V curve of the injector junction. The equilibrium G(V ) trace was subtracted to remove the Josephson background and the color scale was chosen to highlight the step at eV det = eV inj -∆ D .

Figure 4 . 3 :

 43 Figure 4.3: The sub-gap G(V ) curve of detector J 2 (left) and detector J 3 (right) as a function of the injection current (H = 0T). The traces are color coded and correspond to the same injection currents as in gure 4.1.
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 1 SPECTROSCOPY OF INJECTED QUASIPARTICLES AT H = 0T

Figure 4 . 4 :

 44 Figure 4.4: The total number of quasiparticles measured with the detectors (full traces) and the number of quasiparticles close to superconducting gap ∆ (40µV < V < 100µV, dashed traces) for all three detectors as a function of the injection current. The traces are normalized such that the linear high injection part of the J 1 trace has a slope of unity.

3 Figure 4 . 5 :

 345 Figure 4.5: The peak in the G(V ) curves at eV = ∆ -∆ D from the experiment (full lines) as well as the theoretical ones (dashed lines) as a function of the injection current for all three detectors.

Figure 4 . 6 :

 46 Figure 4.6:The detector G(V ) at I inj = 40nA (dashed) and I inj = 5nA (solid) for dierent elds, showing the detection of both spin down and spin up quasiparticles. The traces are oset such that the (dominant) spin down peak is at V det = 0 and the G(V ) at I inj = 0 is subtracted. The right panel shows the injector G(V ) curves at the same eld as on the left. The circle and the diamond show the injection voltage at which I inj (V inj ) = 5nA and I inj (V inj ) = 40nA, respectively.

Figure 4 .

 4 Figure 4.7 shows the sub-gap G(V ) curves of J 1 as a function of the injection current in the same manner as at H = 0T (analogous to gure 4.1). When the injector voltage is in the range ∆µ B H < V inj < ∆ + µ B H only spin down quasiparticles are injected (blue and green traces in g. 4.7), and the dominant out-of-equilibrium contribution shows up as two peaks at V ≈ ±40µV which correspond to spin down electron-like and hole-like excitations in the superconductor. The Josephson component, observed as the zero-bias peak, is also enhanced compared to the equilibrium trace (black trace in g. 4.7). As the voltage across the NIS injection junction goes from zero to above the spectroscopic gap the

4. 2 . 57 Figure 4 . 7 :

 25747 Figure 4.7: Left: the sub-gap G(V ) curve of detector J 1 as a function of the injection current (H = 1T). The full black trace is the equilibrium one (I inj = 0nA), while the other ones are at nite currents. Right: the corresponding G(V ) curve (left scale) and the I(V ) curve (right scale) of the NIS injector junction. On top of the G(V ) curve there are several markers which correspond to the dierent detector traces shown in the left panel (the traces are color-coded).
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 485949 Figure 4.8: The sub-gap G(V ) curve of detector J 2 (left) and detector J 3 (right) as a function of the injection current (H = 1T). The traces are color coded and correspond to the same injection currents as in 4.7.

Figure 4 .

 4 Figure 4.10: Left: the experimental G(V ) curves of the closest detector J 1 as a function of the injection current presented as a colormap. The dashed white lines are the NIS ±I(Vδ D /e) traces. Right: the line cuts at eV = ∆µ B H -∆ D as a function of the injection current, taken along the dashed lines (the traces are color coded).

Figure 4 . 61 Figure 4 .

 4614 Figure 4.11: Left: the theoretical calculation of the G(V ) curves at a distance from the injector corresponding to the closest detector J 1 as a function of the injection current presented as a colormap. Right: the line cuts at eV = ∆µ B H -∆ D as a function of the injection current, taken along the dashed lines (the traces are color coded).

4. 4 . 63 Figure 4 . 13 :

 463413 Figure 4.13: Left: A set of G(V ) curves from the detector J 1 at H = 0T, for I inj = 120nA (red) and I inj = -120nA (blue), which show a charge imbalance signal at high energies (E ∆). Right the integrated charge imbalance at high energies, for H = 0T (red) and H = 1T (blue), showing the suppression of the f T mode by the applied magnetic eld.

Figure 4 .

 4 Figure 4.14: Left: an I(V ) curve (blue) and -I(-V ) (red, numerically obtained) from a spin-insensitive detector at H = 1.4T, T = 70mK and I inj = 25nA showing an odd component localized close to the superconducting gap ∆. Right: the (numerically obtained) odd component at the same eld and temperature as a function of the injection current.

Figure 4 .

 4 Figure 4.15: The G(V ) curves of the closest detector at equilibrium (black trace), I inj = 9nA (red trace) and I inj = -9nA (blue trace), showing the QP peak as well as an odd component. The data was taken at T = 90mK and H = 1T using an older sample.
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 1222222 If the bias current (i.e. left hand side of 5.1) is time independent and the current phase 72 CHAPTER 5. THEORY relation is I s (ϕ) = I c sin(ϕ), the RSJ equation can be integrated analytically to obtain:φ(t) = R N I DC + I c cos ω DC t (5.2)where ω DC = 2eRn I is the Josephson frequency. A Fourier series expansion of this result gives the DC voltage as V DC = R N I and the harmonics of the Josephson emission asV kω DC = 2V DC (I c R N ) k (I DC R N + V DC ) k (k ∈ N), which means that a pure DC current above the critical one generates both a DC and an RF voltage.

Figure 5 . 1 :

 51 Figure 5.1: The V (I) curve of a junction based on the RSJ model without uctuations (blue) and with a Langevin term (γ = I c ek B T = 50, red curve).

  ) where J n is the n-th Bessel function, and its parameter s = 2eV RF ω RF measures the eective power of the RF drive (the rst two Bessel functions are shown in gure 5.3). The current will have a DC component only if ω DC = nω RF , or alternatively 2eV DC = n ω RF -the energy of a 2e Cooper pair traversing a voltage drop V DC is converted into n photons of frequency ω RF .
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 5452 Figure 5.2: The V (I) curve computed using the RSJ model. The frequency of the drive isω RF = 3 2eI c R N , resulting in a Shapiro step at V DC = 3I c R N .The traces correspond to dierent values of the microwave drive: the green curve corresponds to s = 0, the purple one corresponds to s = 1.84 which maximizes the width of the Shapiro step and the red one is close to s = 2.4 which suppresses the critical current fully. The higher order steps are also

Figure 5 . 3 :Figure 5 . 4 :

 5354 Figure 5.3: The calculated power dependence of the critical current (blue dots) and the full width of the 1st Shapiro step (red dots) from the RSJ model (ω RF = 3 2eI c R N ) versus the power of the microwave drive s, as well as the absolute value of the rst two Bessel functions.

Figure 5 . 5 :

 55 Figure 5.5: The maximum of the Shapiro step width, computed using the RSJ model, as a function of the frequency of the microwave drive. The value of ≈ 1.16I c (dashed line) predicted for a voltage biased junction is attained only above ω RF = 2eI c R N .

Figure 5 . 6 :

 56 Figure 5.6: The power spectrum of the Josephson emission as a function of the radiation frequency and the applied I DC current, calculated using the RSJ model for s = 1.35 and ω RF ≈ 10 2eIcR N . The lines corresponding to direct emission (blue and red lines) are visible as well as many down converted (e.g. the dashed black and purple lines) and up converted ones (e.g. the dotted red line).

Figure 5 .

 5 Figure 5.7 and 5.8 show the power dependence of the Josephson emission, for a sinusoidal current phase relation and an anharmonic one respectively, as a function of the applied highfrequency microwave power. Anticipating the experimental design in which the emission is measured at a xed frequency, the traces show the amplitude of the rst two harmonics as a function of s for a xed Josephson frequency, i.e. V DC (I DC , s) = ω D 2e = const is solved for I DC at each s where ω D is the frequency at which the measurement is performed.If ω D is low this condition is met at a low bias current, close to the critical one and the

Figure 5 . 7 :

 57 Figure 5.7: The Josephson emission calculated using the adiabatic RSJ model for a sinusoidal current phase relation. The left panel shows the amplitude of the radiation emitted at ω = ω DC (full lines) and at ω = 2ω DC (dashed lines) as a function of applied microwave power. The traces correspond to the dierent values of ω = {1, 2, 4, 8}2eI c R N -1 (in order: yellow, green, blue and purple lines), while the black line is J 0 (s). The right panel shows the colorplot of the DC voltage across the junction as a function of the applied power and DC current, the colored lines correspond to solutions 2eV DC (I DC , s) = ω shown on the left, and the white line indicates I c (s). If the detection frequency is high enough compared to 2eI c R N -1 , the emission at ω = ω DC is a reliable measure of the critical current.

Figure 5 . 8 :

 58 Figure 5.8: The Josephson emission calculated using the adiabatic RSJ model non-sinusoidal current phase relation I(ϕ) = sin(ϕ) + 0.7 sin(2ϕ). The left panel shows the amplitude of the radiation emitted at ω = ω DC (full lines) and at ω = 2ω DC (dashed lines) as a function of the applied microwave power. The traces correspond to the dierent values of ω = {1, 2, 4, 8}2eI c R N -1 (in order: yellow, green, blue and purple lines), while the black (dashed) lines are J 0 (s) (J 0 (2s)). The right panel shows the colorplot of the DC voltage across the junction as a function of applied power and DC current, the colored lines correspond to solutions 2eV DC (I DC , s) = ω shown on the left, and the white line indicates I c (s). If the detection frequency is high enough compared to 2eI c R N -1 , or the applied microwave power is suciently high, the emission at ω = ω DC (ω = 2ω DC ) becomes a good probe of the amplitude of the rst (second) harmonic of the CPR.
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 84559510 Figure 5.9: The top panel shows a colormap of the DOS in the long junction limit, as a function of the energy and position along the wire. Cuts along the colored lines are shown in the bottom panel. Close to the superconducting leads there are no states, while in the middle of the wire a spectral gap of ≈ 3.1E T opens up. The calculation was performed for ∆/E T = 1000 and ϕ = 0.

Figure 5 .

 5 Figure 5.11: A colormap of the DOS of the proximitized wire as a function of the energy and the phase dierence ϕ (left panel). The colored horizontal lines correspond to the dierent traces shown in the right panel. The calculation was performed for ∆/E T = 1000 at x = 0.

Figure 5 .

 5 Figure 5.12: Left: a colormap of the imaginary part of the spectral supercurrent j s as a function of energy and the phase dierence ϕ. The contrast is enhanced to highlight the quasi-periodic changes in the sign of j s as a function of energy. The horizontal colored lines correspond to the slices shown in the right panel, where the rapid decay of |j s | as a function of energy can be seen. The calculation was performed for ∆/E T = 1000 at x = 0.
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  n=1 I c,n sin(nϕ). The amplitudes of the rst 5 harmonics as a function of temperature are shown in gure 5.14.
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 513514 Figure 5.13: The current-phase relation of a long SNS junction (∆/E T = 1000), as a function of temperature from k B T = 0 to k B T = 10E t in steps of 1E T .

Figure 5 . 15 :

 515 Figure 5.15: The critical current of a long SNS junction (blue, left scale) and the value of ϕ which maximizes the supercurrent as a function of temperature (red, right scale). The calculation was performed for ∆/E T = 1000 at x = 0.
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 2925166 Figure 5.16: Figures adapted from [82]. (a) Current-phase relation normalized to equilibrium critical current at k B T /E T = {15, 1} (blue and red, respectively) and s = 0.25 (solid) and 0.5 (dashed), for ω/E T = 4, ∆/E T = 100 and Γ/E T = 0.05. (b) Absorption rate η + for a high frequency ω/E T = 8 and ϕ = π/2, s = 0.25. Thin line shows the approximation from eq. 5.16. Inset: Schematic representation of the SNS junction. (c) Correction δf = ff 0 to the electron distribution function vs energy at two dierent temperatures for ϕ = π/2, ω/E T = 4, and s = 0.25. Solid lines correspond to the exact numerical results and the dashed lines to the approximation in eq. 5.16. The thin black line shows the spectral supercurrent j s (E) in the absence of microwaves. (d) The same as in (c) for k B T /E T = 15 and ϕ = 0.8π.
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 61946 Figure 6.1: An SEM micrograph of the sample showing the Ag wire (brown), the Ag quasiparticle traps (also brown) and the Nb superconducting reservoirs.

Figure 6 . 2 :

 62 Figure 6.2: Left: the schematic of the experimental setup. Right: the transmission coecient of the bandpass lter (shown on the left) used to measure the Josephson emission (the rightmost line in the schematic).

6. 2 .

 2 DC MEASUREMENTS AND SAMPLE CHARACTERIZATION 956.2 DC measurements and sample characterizationThe properties of the sample can be determined by measuring the V (I) or the ∂V ∂I curves.

Figure 6 .

 6 Figure 6.3 shows the V (I) curve of the sample measured at T = 1.6K (to avoid thermal hysteresis), along with a t which includes the Langevin noise, which gives the following values: I c = 5.24µA, R N = 1.4Ω and γ = 22.6. The square root V (I) curve predicted by the RSJ model (γ → ∞) is also shown in the same gure, for the same value of I c , and is quite dierent than the measured one. The eective noise temperature for the extracted value of γ is T N ≈ 11K. This rules out the Johnson noise of the normal state resistance as the source of the uctuations, they likely originate from the insucient ltering and the broad band (BW > 40GHz) of the RF line which is used for the microwave drive and should be only weakly temperature dependent.The most straightforward way of measuring the critical current, or the width of the Shapiro steps, is to dene a threshold voltage V th and to obtain the critical current as I c,m = argmax(V (I) < V th ). Likewise the measurement of the dierential resistance can be used in the same way yielding I c,m = argmax(R(I) < R th ) where R th is now the threshold resistance. These two methods, although slightly dierent, give consistent results. Similarly the width of the Shapiro steps can be measured as the range of I which satises |V (I) -V sh | < V th where V sh = ω RF 2e

Figure 6 . 4 :

 64 Figure 6.4: The simulated dierential resistance of an SNS junction with a nite Langevin term γ = 22.6 as a function of the DC bias current and the applied microwave power s assuming that I c (s) = J 0 (s)I 0 c . Top inset: the dierential resistance of the sample measured at T = 1.6K and s = 0 (blue dots) along with the Langevin t (red line). The black dashed line corresponds to a threshold resistance used to experimentally determine the critical current. Bottom inset: a comparison between the simulated critical current measurement I c,m (based on the threshold voltage of the top inset and the model of the main panel) and the ground truth I c J 0 (s), which can be recovered from the measured value by rescaling the data with an appropriate coecient.

Figure 6 . 5 :

 65 Figure 6.5: Left: The critical (blue dots) and the retrapping (red dots) current of the longest sample as a function of temperature, as well as a t with E T = 19µeV (black line). Right:

Figure 6 . 6 :

 66 Figure 6.6: The dierential resistance of the sample as a function of I DC and the microwave power (at the source) starting from P = -10dBm to P = 17dBm in 1dBm steps. The black trace is the one which maximizes the width of the 1st Shapiro step. The steps are labeled

Figure 6 . 7 :

 67 Figure 6.7: The measured maximum width of the 1st Shapiro step as a function of the drive frequency at T = 1.38K (the power was chosen such that the step width is maximized).

Figure 6 . 8 :

 68 Figure 6.8: The measured temperature dependence of the maximum Shapiro step width for several frequencies (all above 2eI c R N -1 ) as a function of temperature. Due to the electron overheating the steps saturate to a frequency dependent value at low temperature. A thermal model (black dashed traces), allows for the extraction of the eective electronphonon coupling (shown in the inset).

Figure

  Figure 6.9: The amplitude of the Josephson emission power (in arbitrary units) as detected

Figure 6 . 10 :

 610 Figure 6.10: The Josephson emission as a function of I DC for f = 20.72GHz (left, from P = -20dBm to P = 14dBm) and f = 35.18GHz (right, from P = -10dBm to P = 17dBm).As in gure 6.9 the same two peaks, A and B, are visible, corresponding to the emission of

6. 3 . 105 Figure 6 . 11 :Figure 6

 31056116 Figure 6.11: Left: the critical current measured in DC and reconstructed from the measured value of the rst two CPR harmonics as a function of the applied microwave power s at f = 20.72GHz and f = 35.18GHz. Right and middle: dierential resistance curves for the two frequencies (traces oset for clarity) -at f = 20.72GHz there is a value of s at which the critical current vanishes, while at f = 35.18GHz the critical current is substantially bigger than zero at all s. The data was taken at T = 1.6K and the power ranges are the same as in gure 6.10.

6. 3 . 107 Figure 6 .

 31076 Figure 6.13: Left: a schematic of the microwave induced transitions, the white dashed lines indicate the microwave frequency, the black arrow shows the allowed intraband transition, while the (dashed) red arrows show the (dis)allowed interband transition, due to the phase dependent minigap. The induced changes to the spectral supercurrent and the distribution function, calculated using the microscopic theory, are shown on the right panel, where the dashed vertical lines indicate the microwave frequency. If the minigap is suciently low (i.e.

Figure 6 . 14 :

 614 Figure 6.14: Left: the current phase relation computed using the nonequilibrium theory with

110 CHAPTERFigure 6 . 15 :

 110615 Figure 6.15: The Josephson emission measured directly (peaks A and B), or up/down converted (peaks C through H) by the microwave drive at f RF = 35.18GHz. The bottom trace is taken at P source = -10dBm and the top one at P source = 17dBm. The V (I) curves are shown on the right scale. The experiment was performed at T = 1.6K.

  Figure A.2: A schematic of the experimental setup.

Figure B. 1 :

 1 Figure B.1: A depiction of the dierent distribution function modes: top left shows an eective temperature T * (H = 0), which is a specic realization of the energy mode f L , top right an eective chemical potential µ (with a nite temperature, H = 0) which is the simplest distribution function that excites the charge mode f T . The bottom left and bottom right panels show a spin-dependent temperature and chemical potential, corresponding to the simplest realizations of the spin-energy f L3 and spin f T 3 modes (H > 0).

Figure B. 2 :

 2 Figure B.2: Left: The G(V det ) ∝ N QP (E = eV det + ∆ D ) spectrum obtained using the closest detector at H = 0 as a function of the injection current. Two features can be identied: a large signal at E = ∆ along the horizontal dashed line. Secondly, no quasiparticles are detected within the purple region, which is bound by the experimental I inj (V inj ) curves of the injector (solid black lines), outside of which a nite QP density is detected. This implies that This implies that QPs are detected only at energies below E = eV inj (I inj ). The unaccounted-for purple areas outside of the I inj (V inj ) bounds are due to the nontrivial background subtraction, as detailed in the main text of the thesis. Right: A simulation of the detector spectrum based on the Keldysh-Usadel approach presented in the same fashion. The color-bar is common for the two panels.

  Figure B.3 shows the spectrum of the closest detector at H = 1T as a function of the detection voltage and the injection current, both theoretically (top) and experimentally (bottom).

  2 and P 3 , are of main interest here. By plotting their heights as a function of the injection current (two panels to the right in gure B.3) an asymmetric component is found when quasiparticles are injected at ∆µ B H < |eV inj | < ∆ + µ B H, implying a spin-dependent charge imbalance. To verify that this charge imbalance is localized within ∆µ B H < |E| < ∆ + µ B H the odd component (with respect to the detection voltage) of the experimental trace is shown in gure B.4. The charge imbalance is indeed found only when a spin-polarized current is injected and close to the spectroscopic gap edge of the system.

Figure B. 3 :

 3 Figure B.3: Left: the theoretical (top) and experimental (bottom) G det (V det ) curves of the closest detector as a function of the injection current presented as a colormap at H = 1T. Right: the corresponding line cuts at eV = ∆µ B H -∆ D as a function of the injection current, taken along the dashed lines (the traces are color coded). The odd component in these traces implies the presence of a spin-dependent charge imbalance.

Figure B. 7 :

 7 Figure B.7: Top left: the observed amplitudes of peaks P 1 (left scale) and P 2 (right scale) as a function of microwave power at T = 1.6K and f = 20.72GHz. In all four panels the 2nd harmonic is shown on the right scale. The calibration of s was done such that the low power behavior of peak P 1 follows J 0 (s). The second harmonic (peak P 2 ) roughly follows J 0 (2s). Top right: the same as top left but at f = 35.18GHz -at high powers the second harmonic (peak P 2 ) is signicantly increased compared to P 2 (s = 0)J 0 (2s) 2 . Bottom left (right): theoretical curves computed using Γ/E T = 0.4, k B T /E T = 7, ∆/E T = 55 and ω RF /E T = 3 ( ω RF /E T = 7), respectively. Within the Eliashberg approximation the second harmonic is negligible at all powers.
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  L3 peut être compris en termes d'une température des QP dépendante du spin T ↑ = T ↓ , et le mode de spin f T 3 en termes d'un potentiel chimique dépendant du spin µ ↑ = µ ↓ , voir les deux panneaux inférieurs de la gure C.1. En raison de la symétrie du spectre d'excitation en présence d'un splitting Zeeman et des modes hors-équilibre, le mode de spin entraîne une accumulation de spin nie dans le supraconducteur, tout comme le mode d'énergie. De même, le mode de charge conduit à un déséquilibre de charge et il en va de même pour le mode d'énergie dépendant du spin. Ces armations sont formellement décrites par l'équation C.1 :

  Figure C.1: Une représentation des diérents modes de la fonction de distribution : en haut à gauche, une température eective T * QP (H = 0), qui est une réalisation spécique du mode d'énergie f L , en haut à droite un potentiel chimique eectif µ QP (avec une température nie, H = 0) qui est la fonction de distribution la plus simple qui excite le mode de charge f T . Les panneaux inférieur gauche et inférieur droit montrent une température et un potentiel chimique dépendant du spin, correspondant aux réalisations les plus simples des modes d'énergie dépandant du spinf L3 et spin f T 3 (H > 0).

  Figure C.2: A gauche : Le spectre G(V det ) ∝ N QP (E = eV det + ∆ D ) obtenu en utilisant le détecteur le plus proche à H = 0 en fonction du courant d'injection. Deux caractéristiques peuvent être identiées : un signal important à E = ∆ le long de la ligne horizontale en pointillés. Deuxièmement, aucune quasi-particule n'est détectée dans la région violette, qui est délimitée par les courbes expérimentales I inj (V inj ) de l'injecteur (lignes noires continues), en dehors desquelles aucune densité QP nie n'est détectée. Cela implique que les QP ne sont détectés qu'à des énergies inférieures à E = eV inj (I inj ). Les zones violettes non comptabilisées en dehors des limites de I inj (V inj ) sont dues à la soustraction de fond non négligeable, comme détaillé dans le texte principal de la thèse. A droite : Une simulation du spectre du détecteur basée sur l'approche Keldysh-Usadel présentée de la même manière. La barre de couleur est commune aux deux panneaux.

Figure C. 4 :

 4 Figure C.4: A gauche : la composante impaire de la carte de couleurs expérimentale présentée dans la gure C.3. A droite : la composante impaire des courbes G det (V det ) à eV det = ∆µ B H -∆ D en fonction du courant d'injection, pour plusieurs champs magnétiques équidistants de H = 0T à H = 1T. La ligne noire en pointillés est la composante impaire de la courbe théorique présentée sur la gure C.3. Les traces sont décalées verticalement pour plus de clarté.

Figure C. 5 :

 5 Figure C.5: A gauche : un schéma des transitions inter-bandes induites par la pompe (èche rouge), les lignes blanches pointillées indiquent la fréquence de la pompe. A droite : Modication du courant spectral (ligne bleue continue), et sa valeur à l'équilibre (ligne rouge en pointillés), à ϕ = 2π 3 . Comme pour la gure de droite les lignes pointillées montrent la fréquence de l'excitation micro-ondes.

Figure C. 7 :

 7 Figure C.6: Gauche : la puissance détectée N en fonction de la tension aux bornes de la jonction. A droite : la courbe V (I) de la jonction et le t théorique obtenu en utilisant le modéle Resistive-Shunted-Junctions (RSJ). Les lignes horizontales en pointillés indiquent les tensions auxquelles les deux pics sont observés.

Figure 1 |

 1 Figure1| Generation and detection of out-ofequilibrium quasiparticles (QP) in a superconductor. a, Spin up (blue) and down (red) QP density of states (DOS) in the superconductor in an in-plane magnetic field, which induces both a Zeeman splitting and orbital depairing. The blue and red shaded regions are proportional to, respectively, the number of spin up and spin down quasiparticles (N ↑ and N ↓ ) near the first detector. This was calculated with the density of states in a, the reservoir distribution function in e and the indicated injection voltage V inj . For clarity, the imbalance between the number of electron-like QPs and the number of hole-like QPs (the charge imbalance), has been multiplied five times. This can be seen to occur in a specific energy range. b, Zoom in of a. c, Predicted spin up (blue) and down (red) QP distribution functions at the indicated distance from the injector. The distribution functions show peaks at the superconducting gap edge, as well as a step-like cutoff at eV inj . d, Farther than an electron-electron interaction length (≈1µm) from the injector, we expect the quasiparticle distribution function to be spin-independent and close to an effective temperature. The trace shown here is an illustration, not a calculation. e, QPs are assumed to be at equilibrium at the reservoir. f, False colour scanning electron micrograph of the device, and a schematic drawing of the spectroscopy measurement setup. The horizontal superconducting wire is 6nm Al. The injector (100nm Cu, cyan) and the detectors (8 nm Al/0.1 nm Pt, red) form tunnel junctions with the wire, with the latter's native oxide as the barrier.

)

  Here ρ ↑ (E) and ρ ↓ (E) are the DOS of spin up and spin down QPs respectively, ρ+ (E) := 1 2 [ρ ↑ (E) + ρ ↓ (E)] = ρ(E) and ρ -(E) ≡ 1 2 [ρ ↑ (E) -ρ ↓ (E)].Here we notice that the term ρ -(E)f L3 (E) is even in energy, which means that the spin energy mode f L3 adds particles at both positive and negative energies, and raises the overall quasiparticle chemical potential, thus creating a charge imbalance. (Figure1b) In addition, the multiplication by ρ -(E) means that f L3 add particles in the energy range ∆ -E Z ≤ |E| ≤ ∆ + E Z , regardless of the injection voltage or other experimental parameters.

Figure 2 |

 2 Figure 2 | Characterisation of injector and detector junctions. a, Differential conductance of the injector junction G inj as a function of injector voltage V inj and magnetic field H, and slices at H = 0T and H = 1T (black traces). b, Differential conductance of the detector junction G det as a function of the detector voltage V det at H = 1T without any injection current.We see the Zeeman splitting of the quasiparticle density of states in the superconducting wire as the detector is not Zeeman-split.

Figure 3 |

 3 Figure 3 | Non-Fermi-Dirac quasiparticle distribution. a, Current I det as a function of voltage V det across the SIS' detector junction J det1 for injection currents I inj = 0nA (black) and I inj = 120nA (red). On the right vertical scale, I inj as a function of voltage V inj across the NIS injector junction J inj (green). H = 0 throughout this figure. b, Differential conductance G det as a function of V det across J det1 for I inj = 0nA (black), I inj ≈ 13nA (blue, blue dot in a), and I inj = 120nA (red). The vertical dashed line indicates eV det = ∆ -∆ det ; G det at this voltage is proportional to the number of quasiparticles in the superconducting wire at E = ∆. An attempted fit with an effective temperature T * ≈ 1.1K in S reproduces the peak at I inj = 13nA, but grossly overestimates the QP population at higher energies (dashed blue line). In this fint, we use the experimentally determined values ∆ = 245µeV and ∆ det = 180µeV, T det = 90mK and a phenomenological depairing α ≈ 1%∆. c, G det at J det1 as a function of V det and I inj with the slice at I inj = 0 subtracted from all data. The black lines show the measurement of ±I inj (V inj ) from a shifted downwards by ∆ det /e. The black lines fall at the location of a step-like feature in the colour map, as expected: as shown in Figure 1b, QPs in S are created up E ≈ eV inj + k B T , leading to a step-like cutoff in the distribution function. The dashed line again indicates eV det = ∆ -∆ det , where the QP density is maximal due to the coherence peak in the DOS of S. d, Theoretical prediction of c, with the ∆, ∆ det and α as in b

Figure 4 |

 4 Figure 4 | Spin energy mode. a,c, Theoretical calculations for and measurements of the differential conductance as a function of voltage and injection current at J det1 for H = 1T. The peaks P 1 -P 4 observed experimentally and reproduced in our calculations are due to spin up (P 2 , P 3 ) and spin down (P 1 , P 4 ) excitations. b,d, Vertical slices of a and b at eV det = ±|∆ -∆ detµ B H| (red for + and blue for -), indicated by the dashed blue and red lines. A charge imbalance can be seen, i.e. the red and blue traces are not identical.

Figure 5 |

 5 Figure 5 | Close-up of the spin energy mode. a, The odd-in-energy component of Figure 4c, corresponding to a charge imbalance. This only appears at the gap edge: the vertical dashed lines indicate V det = ±|∆ -∆ det -E Z |/e. The signal is maximal (horizontal dotted lines) when only spins of one species are injected: G inj (V inj ) is shown (thin black line) on the left and top axes. b, A vertical slice of a at V det = (∆ -∆ det -E Z )/e and the same measurement at different magnetic fields linearly spaced down to H = 0T. The theoretical prediction for H = 1T is shown in black. The charge imbalance increases slightly then decreases as the magnetic field is lowered. At H = 0 it is undetectable.

4 FIG. 1 .

 41 FIG. 1. Temperature dependence of the critical and retrapping currents of the junction. Top inset: differential resistance dV/dI vs dc current I at T = 1.6 K for two irradiation powers (ω rf /2π = 35.18 GHz). The high power curve exhibits subharmonic Shapiro steps (see arrows and corresponding fractions). Bottom inset: scanning electron micrograph of the junction. Green shading highlights the superconductor (Nb) and light orange the normal part (Ag). Arrows point at metallic reservoirs acting as heat sinks.

  FIG. 2. (a) Power dependence of the critical current for two applied microwave frequencies together with reconstructed critical currents (see text). (b) ac-Josephson spectral density N J vs dc current for increasing microwave power (the powers expressed in dBm are the ones at the output of the microwave generator; the power step size between curves is 1 dBm) at ω rf /2π = 20.72 GHz. (c) Idem (b) for 35.18 GHz. Dashed curve is the expected emission within the ω 0 band (see SM [20]). (d) Power dependence of emission peak amplitudes A and B in Fig. 2(b) for ω rf /2π = 20.72 GHz. Bessel functions J 0 correspond to the adiabatic limit (see text) and are scaled to match the lowest power data points. (e) Idem (d) for 35.18 GHz. (f) Calculated power dependence of the squared harmonics I 2 c,1 and I 2 c,2 (proportional to experimental N J ) for parameters hω rf /E Th = 3, /E Th = 0.4, k B T /E Th = 7, and /E Th = 55. (g) Idem (f) but for hω rf /E Th = 7.

  the distribution function δ f = ff 0 in the linear response limit. It readsρ δ f = η -(E + hω rf ) f 0 (E + hω rf )[1f 0 (E )] -η + (E ) f 0 (E )[1f 0 (E + hω rf )] + η + (Ehω rf ) f 0 (Ehω rf )[1f 0 (E )] -η -(E ) f 0 (E )[1f 0 (Ehω rf )].

FIG. 3 .

 3 FIG. 3. (a) Calculated current-phase relation for different reduced power s. Calculation parameters are hω rf /E Th = 7, /E Th = 0.4, k B T /E Th = 7, and /E Th = 55. (b) Calculated equilibrium j s,eq and nonequilibrium j s spectral currents and modifications of the distribution function -2δ f for different phases. Calculation parameters are as in (a). Full (dashed) horizontal arrows represent the high (low) probability interband transitions. (c) Colorcoded sketch of the normalized energy-phase dependent density of states of a long diffusive SNS junction. Full (dashed) vertical arrows represent the high (low) probability inelastic transitions. Gray (blue) circles represent electronlike (holelike) quasiparticles.

  

  

  

  

  Les zones violettes non comptabilisées en dehors des limites de I inj (V eV det = ∆µ B H -∆ D en fonction du courant d'injection, pour plusieurs champs magnétiques équidistants de H = 0T à H = 1T. La ligne noire en pointillés est la composante impaire de la courbe théorique présentée sur la gure C.3. Les traces sont décalées verticalement pour plus de clarté. . . . . . 143

inj ) sont dues à la soustraction de fond non négligeable, comme détaillé dans le texte principal de la thèse. A droite : Une simulation du spectre du détecteur basée sur l'approche Keldysh-Usadel présentée de la même manière. La barre de couleur est commune aux deux panneaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 xiv LIST OF FIGURES C.3 A gauche : les courbes G det (V det ) théorique (en haut) et expérimentale (en bas) du détecteur le plus proche en fonction du courant d'injection présentées sous forme de carte de couleurs à H = 1T. A droite : les coupes de lignes correspondantes à eV = ∆-µ B H -∆ D en fonction du courant d'injection, prises le long des lignes pointillées (les traces sont codées en couleur). L'élément impair de ces traces implique la présence d'un déséquilibre de charge dépendant du spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 C.4 A gauche : la composante impaire de la carte de couleurs expérimentale présentée dans la gure C.3. A droite : la composante impaire des courbes G det (V det ) à C.5 A gauche : un schéma des transitions inter-bandes induites par la pompe (èche rouge), les lignes blanches pointillées indiquent la fréquence de la pompe. A droite : Modication du courant spectral (ligne bleue continue), et sa valeur à l'équilibre (ligne rouge en pointillés), à ϕ = 2π 3 . Comme pour la gure de droite les lignes pointillées montrent la fréquence de l'excitation micro-ondes. . 145 C.6 Gauche : la puissance détectée N en fonction de la tension aux bornes de la jonction. A droite : la courbe V (I) de la jonction et le t théorique obtenu en utilisant le modéle Resistive-Shunted-Junctions (RSJ). Les lignes horizontales en pointillés indiquent les tensions auxquelles les deux pics sont observés. . . . 147

C.7 En haut à gauche : les amplitudes observées des pics P 1 (échelle de gauche) et P 2 (échelle de droite) en fonction de la puissance de la pompe à T = 1, 6K et f = 20, 72GHz. Dans les quatre panneaux, la 2-éme harmonique est indiquée sur l'échelle de droite. L'étalonnage de s a été eectué de telle sorte que le comportement à faible puissance du pic P 1 suit J 0 (s). La deuxième harmonique (crête P 2 ) suit approximativement J 0 (2s). En haut à droite : même chose qu'en haut à gauche mais pour f = 35.18GHz -à des puissances élevées, la deuxième harmonique (crête P 2 ) est sensiblement augmentée par rapport à P 2 (s = 0)J 0 (2s) 2 . En bas à gauche (droite) : courbes théoriques calculées respectivement à l'aide de Γ/E T = 0, 4,

k B T /E T = 7, ∆/E T = 55 et ω RF /E T = 3 ( ω RF /E T = 7

). Dans l'approximation d'Eliashberg, la deuxième harmonique est négligeable à toutes les puissances. . . . . . . . . . . . . . 148 ductors" (my proposal for the title "Donald Duck explores superconductivity", a sequel to "Donald in Mathmagic Land" was promptly rejected by my supervisors, for reasons unknown to me), covers two of the several experiments that I worked on during my PhD. It's written in a rather utilitarian and non-verbose way (after all, a common exchange between my father and myself goes something like "So, how was the trip?" to which my answer would be just "Nice.", without feeling a need to provide a followup). I invite all readers to contact me without hesitation if further clarications are needed. During this period I have experienced many emotional highs and lows, as well as stress responses of both my body and mind previously unknown to me. In spite of this I would describe my PhD as an positive experience overall. The positives far outweigh the negatives:

  The strength of this eect is geometry dependent, and for a thin lm superconductor with an in-plane eld the depairing parameter is α = De 2 d 2 6 H 2 [33, 66], where d is the sample thickness and D the normal state diusion constant. The critical eld, at zero temperature, due to the orbital depairing is set by 2α(H) = ∆(H = 0), and at low elds the ∆(H) curve is roughly linear: ∆(H) ≈ ∆ 0 -0.4α(H). If the sample is thin, α is quadratically suppressed which leads to an increased H c . The second eect is the Zeeman splitting of the DOS, a result of the coupling of the

quasiparticle spin degree of freedom with the external eld, which shifts the spin up/down quasiparticle DOS by E z = ±µ B H (the Landé factor is g = 2)

[START_REF] Meservey | Magnetic eld splitting of the quasiparticle states in superconducting aluminum lms[END_REF]

. The Zeeman splitting can be observed only if the orbital smearing of the DOS is suciently small and if the (critical) eld is larger than the temperature of the superconductor µ B H > 3.5k B T . In the presence of the spin-orbit coupling, which is the relevant spin relaxation mechanism for this experiment, spin is only approximately a good quantum number, which leads to the spinmixing of the DOS, as shown in gure 1.4 and

[START_REF] Meservey | Tunneling measurements on spinpaired superconductors with spin-orbit scattering[END_REF] 

-the spin up DOS is nonzero even in the range

  , and the prefac-

	tor can be recognized as s =	2eI RF R N ω RF	introduced earlier. The solution of the rst equation
	can be obtained by integration:	

  Figure 6.16: Left: the power dependence of the peaks A through H (shown in gure 6.15) at f RF = 35.18GHz (the traces are oset vertically for clarity). Right the power dependence of peaks E and H at several frequencies; the enhancement of the down-converted peak H is observed only for higher frequencies. Both data-sets were measured at T = 1.6K.The rst experiment investigates non-equilibrium modes and transport in a Zeeman split superconducting Al wire. Unlike the ground state of BCS superconductors, which can carry an electrical current without dissipation but not an energy or a spin current, the quasiparticle excitation spectrum is composed out of spin 1/2 Fermions and can acquire a nite magnetization. To adequately describe the out of equilibrium state of a Zeeman split superconductor

	Summary				
	E f=35.18 GHz This thesis covers a part of the work that I did during my PhD. It is split into two parts, H f=35.18 GHz 10 each describing a separate experiment.
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  11, 12, 13,[START_REF] Silaev | Long-range spin accumulation from heat injection in mesoscopic superconductors with zeeman splitting[END_REF]. Par construction, f L et f L3 sont impairs en énergie, tandis que f T et f T 3 sont pairs. Ces nouveaux modes n'existent que si les QP de spin up et down ont des fonctions de distribution diérentes, c'est-à-dire f ↑ (E) = f ↓ (E). Pour bien comprendre la signication physique des modes dépendant du spin, il est plus facile de considérer le cas d'un supraconducteur en présence d'un splitting Zeeman de la densité d'états BCS (DOS), obtenu en appliquant un champ magnétique externe H. Cela augmente (diminue) l'énergie des QP de spin up (down) de E Z = g 2 µ B H = µ B H et divise le DOS de sorte que seules les excitations de spin down sont autorisées dans la plage d'énergie ∆ -E Z < |E| < ∆ + E Z . Toujours dans le cas simple d'une fonction de distribution de Fermi, le mode d'énergie dépendante du spin

  : le couplage entre les deux réservoirs supraconducteurs est xé par le temps de diusion dans le l τ D = L 2Cooper est transférée dans le supraconducteur, ce processus est appelé réexion d'Andreev.Le trou rétrodiusé acquiert une phase supplémentaire égale à celle de la fonction d'onde macroscopique dans le supraconducteur. Le trou suit la trajectoire inversée de l'électron[START_REF] Klapwijk | Proximity Eect From an Andreev Perspective[END_REF] jusqu'à ce qu'il atteigne la deuxième interface N/S, où il est reconverti en électron en absobant une paire de Cooper du supraconducteur. Des états liés apparaissent dans N car la phase acquise pendant ce processus doit être un multiple entier de 2π, ces états liés sont appelés états d'Andreev (ABS). En raison du transport diusif dans les jonctions SNS, ces états forment un continuum d'énergie inférieure au gap du supraconducteur. Mais en raison de la longueur nie du l métallique, ces états liés ont une énergie minimale, E g , de l'ordre de l'énergie de Thouless E T = τ D = D L 2 . L'eet Josephson est alors compris en termes de supercourant transporté par le spectre continu de ABS. Lorsque la diérence de phase ϕ entre les deux supraconducteurs n'est pas nulle, l'énergie d'excitation minimale est modiée comme ∝ | cos(ϕ/2)|, ainsi le supracourant dépend de ϕ.. image physique peut être formalisée théoriquement en utilisant l'approche quasiclassique de la fonction de Green, en particulier par le formalisme d'Usadel qui décrit les systèmes désordonnés[14,[START_REF] Usadel | Generalized diusion equation for superconducting alloys[END_REF]. On constate que le spectre d'excitation à une particule dans le métal normal possède un gap, et dans la limite de la jonction longue (E T

	Cette	
	D	,
	l'autre échelle de temps est le temps de relaxation de l'énergie τ e qui correspond au temps
	nécessaire pour que le l revienne à l'équilibre thermique. Par conséquent, la dynamique
	des jonctions Josephson de type supraconducteur-normal-supraconducteur ou SNS en abrégé
	n'est pas liée à la dynamique des réservoirs mais plutôt à la diusion et à la relaxation des
	électrons dans le métal normal (N).	

Comme le tunnel de paires de Cooper n'est pas le mécanisme de transport dans les jonctions SNS, un autre mécanisme donne lieu à un supercourant ni : un électron dans N, avec une énergie égale ou inférieure à ∆, ne peut pas traverser l'interface N/S car il n'y a pas d'états disponibles à cette énergie dans S. Il est donc rééchi comme un trou et une paire de

quasiparticules peut conduire à des états fondamantaux instables originaux[1] ou même à augmenter la température critique[2].Les quasiparticules peuvent être excitées thérmiquement, par absorption du rayonnement électromagnétique ou injection d'électrons non supraconducteurs. Lorsque la perturbation est sans charge, ce qui est le cas du rayonnement, seule l'énergie est transférée au supraconducteur. En raison de la symétrie électron-trou intrinsèque d'un supraconducteur BCS, il en résulte un nombre égal d'excitations de type électron et de type trou. Si au contraire une particule chargée est injectée dans le supraconducteur, l'équilibre entre les excitations de type électron et de type trou est rompu, tandis que la neutralité de la charge est préservée en retirant des paires de Cooper du condensat[3].Ces deux types d'excitation correspondent à des modes d'excitation diérents de la fonction de distribution, f , appelés mode d'énergie et mode de charge. Formellement, ils sont classés en fonction de la symétrie de la composante (hors équilibre) de la fonction de distribution par rapport au niveau de Fermi. Ces modes sont également appelés longitudinal (f L ) et transverse (f T ), car ils entrent avec un déphasage de π/2 dans l'équation auto-cohérente du gap[4].La fonction de distribution hors-équilibre dans le supraconducteur dépend du taux d'excitation, de relaxation et de recombinaison des quasiparticules. Les diérents mécanismes à l'÷uvre établissent une hiérarchie des échelles de temps impliquées dans la relaxation des diérentes composantes de f . Ainsi, le mode d'énergie étant, en générale, associé au temps de vie le plus long, il est responsable de la plupart des eets hors-équilibre observés dans les supraconducteurs.L'élaboration d'un cadre théorique détaillé pour décrire le transport de l'énergie et des

[36, 37, 38]. Les mesures du temps de relaxation de spin, de l'aimantation hors-équilibre et de diusion spin-orbite indiquent que l'accumulation nie de spin au-delà de la longueur de relaxation de spin λ sf est presque entièrement due à f L , car à la diérence de f T 3 ce mode relaxe sur une échelle bien plus grande λ rec[39, 40]. À peu près au même moment, des températures ecaces diérentes pour l'électron de spin up et down ont été observées dans des valves de spin[32]. En eet, une température ecace dépendante du spin est la manifestation la plus simple du mode d'énergie dépendant du spin, dans lequel les deux espèces de spin transportent des courants d'énergie diérents.Ce travail se concentre sur la recherche de l'état hors équilibre généré par l'injection d'un courant polarisé en spin à partir d'un métal normal, avec un accent particulier sur le mode d'énergie dépandant du spin f L3 .En principe, il existe deux approches possibles pour y parvenir : soit sonder la décroissance
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Part I

Spin physics in out-of-equilibrium superconductors CHAPTER 6. EXPERIMENT

Direct measurements of the Josephson emission

When the DC voltage across the Josephson junction is equal to 2eV DC = ω F the power measured by the detector is proportional to N ∝ I 2 c,1 . Likewise n2eV DC = ω F probes I 2 c,n with the same proportionality factor. Figure 6.9 shows the microwave detector power as a function of the voltage across the junction (see the measurement circuit 6.2), which exhibits two separated peaks A and B, centered at V A ≈ 6µV and V B ≈ 12µV. The data can be reproduced perfectly if the spectrum of the Josephson radiation is modeled by two Gaussian distributions centered at ω DC and 2ω DC , and by convolving it with the prole of the lter (gure 6.2).

The amplitudes and widths of the Gaussians are tting parameters, the best t is obtained for A B

A A = 25, σ A = 5µV and σ B = 1.1µV. One should expect that σ A > σ B as their widths are set by n2eδV = δω. The voltage noise δV is set by R N (I)δI, where R N (I) is the dierential resistance and δI the noise of the current biasing circuit. Although the value of σ B σ A predicted in this way is slightly lower than the observed one, the order of magnitude of the smearing is consistent with thermal noise in a bandwidth of ≈ 40GHz.

The origin of the peak at 4eV = ω F can, in principle, have two contributions. The rst is the intrinsic presence of the 2nd harmonic in the CPR and the second one is due to the nonlinearity of the junction at low bias currents as shown in gures 5.7 and 5.8. The observation of the Shapiro step at twice the frequency even at low RF power, shown in 6.6, suggests that the second harmonic is in fact present in the CPR, but the ratio of these two contributions cannot be gauged from this measurement. Higher order harmonics, which should as well be present based on the Shapiro steps -see gure 6.6, are vanishingly small and could not be observed in direct emission..

In the following the Josephson emission will be used as a probe of the harmonic content of the CPR to investigate how it is modied by microwave irradiation of variable power and frequency. The amplitude of the detected emission power versus the applied power and I DC is shown in gure 6.10 for two frequencies f = 20.72GHz and f = 35.17GHz. Two peaks corresponding to the rst two harmonics, labeled A and B, are visible but their amplitudes are strongly modied by the RF eld. They do not appear at the same I DC due to the changing critical current as a function of the applied power (see gure 6.11).

Assuming that the peak A originates only from the 2nd harmonic, the CPR can be reconstructed as I r (ϕ) ∝ √ B sin(ϕ) + √ A sin(2ϕ), and the critical current can be found as I r c = max(I r (ϕ)). Then the value measured in DC I m c , as described in the section 6.2, can be compared to the reconstructed one, with the proportionality factor as a free parameter the comparison is shown in gure 6.11. The main nding of these measurements is that if the irradiation frequency is higher than the 2E g (ϕ 0 ) the critical current will be nonzero, and even comparable to the one at s = 0. This cannot be explained with an adiabatic current phase relation in the form I(ϕ, s) = I c,1 J 0 (s) sin(ϕ) + I c,2 J 0 (2s) sin(2ϕ) with a constant I c,1 and I c,2 .

The reasonable agreement between the emission-reconstructed critical current and the DC one implies that the junction nonlinearity results in a negligible contribution to peak A and that the detected power is a reliable probe of harmonic-resolved critical current. Moreover, as the value obtained at a nite voltage and the one obtained in DC coincide, the eect of the V DC > 0 is limited to driving the phase at the corresponding frequency without further modifying the harmonic content of the CPR. This nding has two important consequences: rstly the Josephson emission can be used as a good probe of the low frequency current phase 6.3. DIRECT MEASUREMENTS OF THE JOSEPHSON EMISSION Appendix A

Sample fabrication and experimental details

The sample was fabricated on top of a Si/SiO 2 chip, using standard e-beam lithography techniques. The electron-sensitive resist used was a tri-layer of MMA 850/MMA 850/PMMA 950-A3 (bottom to top) spin-coated on the chip at 4000RPM (spin duration was 60s). The two MMA layers were used due to their higher sensitivity to the (back-scattered) electronbeam which created an undercut at low exposures, while leaving the top PMMA layer intact. This created a suspended mask suitable for an angle evaporation. The CAD le used for the e-beam lithography is shown in gure A.1, with the leads extending far beyond the shown area. The main features were exposed with 400 µC cm 2 , while the undercuts were dosed with 60 -160 µC cm 2 . The mask was developed in a 3 : 1 MIBK:IPA solution at T ≈ 20 • C.Each fabrication attempt consisted of a 4x4 grid of devices on a 1cm x 1cm chip. A direct follow-up to the experiment could be to improve the detection scheme and to perform a deconvolution to directly probe the distribution function, or to probe the electronelectron interaction rates while injecting quasiparticles. Additionally, using devices with similar geometry, one could look for the recently predicted spin-to-charge conversion [START_REF] Aikebaier | Supercurrent-induced chargespin conversion in spin-split superconductors[END_REF] and voltage induced superconductivity at high elds [START_REF] Ali Ouassou | Voltage-induced thinlm superconductivity in high magnetic elds[END_REF].

Part II: Dynamics of strongly driven SNS junctions

Josephson junctions are widely used in quantum electronics as nondissipative nonlinear devices. When two superconductors are coupled through a thin insulating layer, the dynamics of the junction are set by the reservoir dynamics, as the tunneling time is in the order of a few fs [START_REF] Février | Tunneling time probed by quantum shot noise[END_REF]. Furthermore because of the large energy gap in the insulator (≈ 2eV) the barrier always remains in equilibrium.

The situation is dierent when the weak link is formed by a disordered (diusive) normalmetal wire. Because of the nite density of states at the Fermi level and the diusive transport in the wire two timescales appear [START_REF] Chiodi | Evidence for Two Time Scales in Long SNS Junctions[END_REF]: the coupling between the two superconducting reservoirs is set by the diusion time in the wire τ D = L 2

D

, while the other timescale is the energy relaxation time τ r at which the system returns back to thermal equilibrium. Therefore the dynamics of Josephson junctions in which the weak link is a normal metal (i.e. a

APPENDIX B. LONG SUMMARY IN ENGLISH

Unlike in a homogeneous superconductor, in an SNS junction the induced mini-gap depends on the phase dierence ϕ, which in turn results in supercurrent that becomes phase dependent not only through the equilibrium dependence of j s (ϕ) but also through the absorption and emission rates which depend on the density of states [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF]. Two dierent types of microwave induced transitions can be identied: intraband transmissions which redistribute quasiparticles within the hole or electron part of the spectrum, and interband transitions which promote electrons across the spectral gap, thus creating a pair of (electron-and holelike) excitations. These interband transitions can be understood a dynamical "pair breaking" eect, which also change the spectral properties of the system -a dip/peak appears in the spectrum (and the spectral supercurrent) at E = ± ω RF /2, which is shown in gure B.5.

This will inherently change the current owing through the weak link and as a consequence the current phase relationship acquires higher harmonics that are not present at equilibrium [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF][START_REF] Fuechsle | Eect of Microwaves on the Current-Phase Relation of Superconductor Normal-MetalSuperconductor Josephson Junctions[END_REF]. The experiment presented here explores the high-frequency dynamics of SNS junctions, in particular the response of the system to a drive whose frequency exceeds the inverse diusion time, in order to look for these dynamical nonequilibrium eects. The theoretical part of the work is based on [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF], and was performed in collaboration with Pauli Virtanen and Tero

Heikkilä. The results are published in [START_REF] Basset | Nonadiabatic dynamics in strongly driven diusive Josephson junctions[END_REF].

The device under study is a mesoscopic SNS junction (S=Nb, N=Ag) of intermediate length. The experiment was set up in such a way to enable DC biasing and measurements, as well as the application of RF radiation in a wide range of frequencies (up to f RF = 40GHz) harmonics and J 0 is the Bessel function of rst kind. This behavior is found at low powers (s < 1, see the full lines in B.7), while at higher powers, and especially for the higher frequency, there is a signicant increase of the second harmonic amplitude, which is as expected from the interband transition picture.

To verify that this is a real eect we can reconstruct the CPR as I r (ϕ) ∝ √ P 1 sin(ϕ) + √ P 2 sin(2ϕ) based on these measurements. Most notably, for the higher frequency there isn't a value of s at which the amplitudes of both I c,1 (P 1 ) and I c,2 (P 2 ) vanish. This suggests that, unlike in equilibrium, the critical current of the junction cannot be (fully) suppressed by microwave irradiation. By calculating the critical current based on the reconstructed CPR and comparing it to the directly measured value, and using an overall refactor as a tting parameter, we achieved a good agreement between the two (see the full text of the thesis for the details). The implications of this result are twofold: rstly the Josephson spectroscopy gives a quantitatively good probe of the CPR, and more importantly shows that the system properties are unmodied compared to the V DC = 0 case, allowing us to use the theory assuming a phase bias [START_REF] Virtanen | Theory of Microwave-Assisted Supercurrent in Diusive SNS Junctions[END_REF] to calculate the CPR.

By using the experimentally obtained parameters of the system and calculating response of the system we obtain the bottom two panels of B.7, which exhibit the same features as in experiment. More importantly, here we can distinguish between dierent contributions to the second harmonic. By neglecting the spectral changes and working only with a nonequilibrium distribution function (i.e. within the Eliashberg approximation), the amplitude of the second harmonic is greatly underestimated (the purple lines in B.7). 
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METHODS

The superconducting wire is 6nm Al, while the injector is 100nm Cu and the detectors 8nm Al/0.1nm Pt. The devices were fabricated with standard electron-beam lithography and evaporation techniques. The NIS and SIS' junctions have conductances per unit area ≈ 1.9 mS µm 2 and ≈ 3.3 mS µm 2 respectively (corresponding to barrier transparencies of ≈ 2 × 10 -5 ). All measurements were performed using standard lock-in techniques in a dilution refrigerator with a base temperature of 90mK. The lockin frequency is typically 17 -37Hz and the excitation voltage 5µV. The out-of-plane component of H was compensated to be ≤ 1% of the total field.
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Rapid Communications

Nonadiabatic dynamics in strongly driven diffusive Josephson junctions J. Basset, 1,* M. Kuzmanović, 1 P. Virtanen, 2,3 T. T. Heikkilä, 3 J. Estève, 1 J. Gabelli, 1 C. Strunk, 1,4 and M. Aprili At sufficiently low temperatures, superconductors cannot absorb microwave radiation of energy smaller than the superconducting energy gap [1][2][3]. In Josephson weak links instead, where two superconductors (S) are weakly coupled through a long diffusive metallic wire (N), radiation can be absorbed in N because the induced gap in the density of states or minigap [4,5] is considerably smaller than . In this Rapid Communication we show that the out-of-equilibrium state originating from such absorption and its feedback on the quasiparticle spectrum of the wire strongly modifies the current-phase relation (CPR) [6] of the junction. In particular we observe a large increase of its second harmonic which reflects the peculiar out-of-equilibrium distribution function obtained under high frequency microwave irradiation. This finding is in good agreement with the quasiclassical theory of superconductivity in which the effect of the microwave drive on the spectral current density is taken into account [7].

In proximity-coupled Josephson junctions, Andreev reflections lead to a coherent superposition of electron-hole excitations in the weak link, which carry the supercurrent [8,9]. These excitations form a quasicontinuum of Andreev bound states (ABS) [5,9]. The single particle density of states in N develops a minigap E g (ϕ) whose amplitude depends on the phase difference, ϕ, between the two superconductors [6,10,11] and is minimal for ϕ = π [12,13]. In long wires the minigap is set by the diffusion time τ D = L 2 /D and is proportional to the Thouless energy, E Th = h/τ D as E g (0) ≈ * julien.basset@u-psud.fr
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and the published article's title, journal citation, and DOI. [14], where D and L stand for the diffusion coefficient and the length of the wire, respectively. The supercurrent is related to the Andreev spectrum via the spectral current density j s (E , ϕ) and the distribution function f (E , ϕ) [8]:

3.1E Th

where R N is the normal state resistance of the wire. The periodic phase dependence in j s (E , ϕ) gives rise to a Fourier expansion of I (ϕ) with coefficients I c,n , such that the CPR reads [9] 

At thermal equilibrium f (E ) is the Fermi distribution function and is independent of ϕ. The purpose of this work is to induce and probe the outof-equilibrium state obtained in the strongly nonadiabatic regime for which the frequency of the microwave drive ω rf exceeds both the energy relaxation rate and the minigap: < 2E g / h ω rf [15]. In this situation both the spectral supercurrent j s (E , ϕ) and the distribution function are altered by the pair-breaking induced by the microwave absorption, i.e., by a direct excitation of quasiparticles across the minigap.

Experimentally we address I c,n by measuring the ac-Josephson effect [16] under microwave illumination. We demonstrate that the harmonic content of the Josephson emission is drastically modified due to the quasiparticle energy redistribution within the normal wire. The comparison with the microscopic theory [7] reveals that the time dependence of the ABS spectrum is essential, as the effect arises from the backaction of the time-dependent spectrum to the out-of-equilibrium distribution function. This observation, in the strongly nonadiabatic regime, goes beyond the usual Physique (EDPIF) en Île-de-France Titre: Transport hors-équilibre et de spins dans les supraconducteurs mésoscopiques Mots clés: Supraconductivité hors-équilibre, Physique mésoscopique, Spintronique Résumé: A l'etat fondamental les supraconducteurs peuvent transporter un courant sans dissipation appelé supercourant mais pas de courant d'énergie ou de spin. En revanche, les excitations élémentaires des fermions de spin 1/2, connues sous le nom de quasi-particules (QP), peuvent transporter aussi bien de l'aimantation, de la charge et de la chaleur.

Dans ce travail, des quasiparticules ont été injectées dans un l supraconducteur ultra-mince (< 10nm) en aluminium par eet tunnel. Un champ magnétique appliqué parallèlement au l se couple au spin des quasiparticules par eet Zeeman et les excitations hors équilibre crées dans le l sont polarisées en spin. Une spectroscopie sensible au spin sur cet état hors équilibre, montre que la fonction de distribution devient dépendante du spin et en particulier que la dégérenescence de spin du mode d'énergie est supprimée (illustré par T ↓ = T ↑ ). De plus, en sondant la fonction de distribution à des échelles de longueur plus courtes que la longueur de l'interaction électron-électron, un état de non-équilibre non-thermique est observé (c'est-à-dire non Fermi-Dirac).

Dans une deuxième expérience, les eets hors-équilibre dus à l'absorption de radiation micro-ondes sur le transport coherent de jonctions Josephson SNS (supraconducteur-normal-supraconducteur) ont été étudiés. A cause du temps de diusion ni dans le métal normal, ces structures hybrides ont une dynamique électronique propre. Le couplage Josephson a été étudié en mesurant soit le courant critique, soit le rayonnement micro-onde émis par eet Josephson AC à tension V DC nie. L'eet Josephson AC est une sonde à fréquence nie noninvasive de la relation courant-phase de la jonction. Il a été observé que si la fréquence de la pompe micro-onde dépasse ω RF 2E g , où E g est le minigap de la jonction, les transitions interbandes induites par l'absorption des photons de la pompe dans le métal-normal augmentent fortement l'anharmonicité de la relation courant-phase. Pour expliquer cet eet, il faut prendre en compte la fonction de distribution hors-équilibre et les propriétés spectrales de la jonction. Cela révèle un nouvel état dynamique hors-équilibre. Title: Spin and out-of-equilibrium transport in mesoscopic superconductors Keywords: Out-of-equilibrium superconductivity, mesoscopic physics, spintronics Abstract: The ground state of conventional superconductors can carry a dissipationless current (a supercurrent) but not energy or spin currents. In contrast, single-particle excitations, known as quasiparticles (QP), can carry spin, charge and heat currents. In this work quasiparticles were injected into a superconducting Al wire by tunneling from a normal metal. If a Zeeman eld is applied the created excitations can be spin polarized. By performing spin-sensitive spectroscopy on this out-of-equilibrium state it was found that the distribution function becomes spin-dependent, in particular the spin-energy mode (most easily exemplied by T ↓ = T ↑ ) is excited. Additionally, by probing the distribution function at lengthscales shorter than the electron-electron interaction length a truly nonequilibrium state is found (i.e. not Fermi-Dirac).

In a second experiment, the eects of high-frequency microwave irradiation on the properties of SNS (Superconductor-Normal-Superconductor) Josephson junctions were studied. Junction properties were probed by measuring either the critical current or the emitted Josephson radiation at nite V DC which is a noninvasive probe of the junction current-phase relation. It was observed that if the irradiation frequency exceeds ω RF 2E g , where E g is the junction minigap, the induced interband transitions greatly increase the anharmonicity of the current-phase relation. To explain this eect, the nonequilibrium character of both the distribution function and the spectral properties of the junction need to be taken into account, revealing a novel nonequilibrium state.