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Preamble

As the thesis title suggests, I dedicated my PhD work to the interaction of sound

with matter in presence of acoustic orbital angular momentum. However, prior

to be involved in the topic of acoustics, I dedicated the first 6 months of my PhD

years to the study of the diffraction of light through a novel class of refractive op-

tical elements in collaboration with Vilnius University (Lithuania) that resulted

in the publication of an article published in 2016 [1]. These optical elements

are high-order axicons obtained by introducing cusp deformation (wrinkles) to

the conical surface of an usual axicon, which leads to geometrical singularities

(cusps). These axicons fabricated at the micron scale by femtosecond laser pho-

topolymerization technique are characterized by transverse cross-section profile

belonging to the families of hypocycloids and epicycloids. Experimental study

of light propagation after it has passed through these elements has been re-

ported and supported by numerical simulations in the paraxial regime. Also,

the effects of spin-orbit interaction of light due to the nonparaxial nature of the

diffracted light have been numerically investigated using finite-differences time

domain (FDTD) simulations. This allows discussing the relationship between

the topology of the contour associated to the wrinkled axicon and the gener-

ated optical phase singularities. Concretely, this study was the continuation of

a previous study made at LOMA a few years before [2] where the role of con-

tour topology of close-paths was discussed in the context of spin-orbit optical

vortex generation. Even though this work is not the core of my thesis and would

hardly find a logical place nearby the acoustic developments I carried out, it was

my introduction to research in experimental physics. Because of that, I decided

to add it as an Appendix at the end of the thesis with a reproduction of the

corresponding published results.
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C H A P T E R 1

Introduction

1.1 Emergence of phase singularities in waves

A wave is an energy transport phenomenon generated by the perturbation of a

medium or a field that evolves in time and space. The amplitude of a scalar wave

is described in complex notation as

Ψ(r, t) = ρ(r, t)eiθ(r,t) (1.1)

where ρ is the magnitude, θ is the phase, r is the position vector and t is the time.

The magnitude and phase functions depend of the geometry, the nature of the

source and the medium in which the wave propagates, making the wave propaga-

tion a non trivial problem in most of the real cases. Noteworthy, inhomogeneous

wave structures emerge even in simple ideal cases such as the interference of a

finite number of monochromatic plane waves. The plane wave is the idealization

of a perturbation, often used as the basis of any oscillating phenomenon. It is

characterized by its infinite spatial extension, a constant amplitude ρ = ρ0, and a

phase of the form θ = k ⋅ r − ωt, where k is the wave vector with magnitude ∣k∣ =

2π/λ, λ is the wavelength, and ω is the angular frequency. Namely,

Ψ(r, t) = ρ0e
i(k⋅r−ωt) (1.2)

It is well known that the coherent superposition of two monochromatic plane

waves differing only by their propagation direction leads to interference fringes,

see Fig. 1.1(first column) where the spatial distribution of intensity and phase

are shown in a given observation plane. Non-zero intensity regions exhibit con-

tinuous values of the phase that run between 0 and 2π along the interference

fringes. In contrast, the phase is undefined along the lines of zero intensity,

which corresponds to a π phase step and a change of sign of the amplitude in a

direction perpendicular to the fringes. As the number of interfering plane waves
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increases, another kind of phase discontinuities appear: phase singularities, see

Fig. 1.1(second column). They are points of zero intensity associated to a local

phase dependency characterized by an integer number ` = ±1, called topologi-

cal charge, which is defined as the line integral of a close loop inscribing the

singularity

` =
1

2π ∮
dθ =

1

2π ∮
θ′(ϕ)dϕ (1.3)

The sign of ` defines the handedness of the helical wavefront in the neighbour-

hood of the singularity. See Fig. 1.2 that illustrates the wavefront for the case

of right-handed (` > 0), left-handed (` < 0) and a plane (` = 0) wave. The case

of interference between three plane waves is illustrated in Fig. 1.1(second col-

umn). As the number of waves further increases, the intensity field increases in

complexity and the position of the singularities becomes random. However, the

topological charge of the singularities remains ` = ±1. This is depicted in in Fig.

1.1(third column) for N = 10. In practice, one can experience the emergence of

phase singularities in the speckle field obtained, for instance, from the diffuse

reflection of a laser beam, or the reflection of an ultrasonic pulse from a rough

surface.

In the next section we introduce the origin of the study of phase singularities

and the formation of helical wavefronts, also known as screw phase dislocations,

starting from their first detection. Then, the formation of artificially engineered

high-order phase singularities is introduced, motivated by its connection with the

orbital angular momentum carried by a propagating wave. Then, we review the

studies of phase singularities in the area of acoustics and their use related with

the transfer of orbital angular momentum of sound. Finally, we provide a survey

of the state of the art regarding the techniques of detection and measurement of

transfer orbital angular momentum via dissipative and non dissipative processes.

1.2 Phase singularities: the early days

The study of phase singularities could be traced from the early days of radio-

echoing, a technique used to estimate the shape and distance via the time delay

of radio signals. In the 1960s, the technique of radio-echoing started to be used

as a method to measure the thickness of Antarctic ice sheets as the change of
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Figure 1.1: Amplitude and phase of the interference pattern between N = 2, 3 and 10 plane

waves with random magnitudes and random propagation directions. Left: N = 2. The intensity

field shows stripes of zero amplitude that extend along the lines of phase dislocations. Per-

pendicular to the interference stripes, the phase exhibits a shift of π between stripes. Middle:

N = 3. The emergence of singularities of charge ` = ±1 starts, shown as points of null intensity

in the intensity field. Right: N = 10. Although the complexity of the intensity and phase fields

increase with N , the values of the topological charge of the singularities remain ` = ±1.

Figure 1.2: Illustration of wavefronts of waves carrying a phase singularity with topological

charge ` = (−1,0,+1). Adapted from [3].
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thickness reflects, indirectly, the change of the world climate and the worldwide

sea level. Prior to this technique, the first methods to detect the thickness of

the ice sheets consisted in the placement of an inland station at the South Pole

and detect the local rate of change of gravity, and interpret this change in term

of the increase or decrease of the thickness of the ice sheet. It was proved later

that 90% of the values measured were mostly due to the sinking of the station

[4]. Later, the use of radio-echoing was proposed as a more accurate method of

measurement. The implementation of this method proved to give a good rate of

successful results during the expeditions to Antarctica as reported by Robin et

al. in his expedition carried out in 1964 [5]. During that expedition, a distortion

of the spatio-temporal shape of the reflected radio signal, coined spatial fading

pattern, was reported.

In the early 1970s, Nye et al. [6] performed a laboratory analogue experiment

using ultrasonic waves instead of radio waves. The experiment consisted in a

scaled-down experiment using an ultrasonic pulse source and an aluminium foil

that allowed mimicking the radio pulses and the bedrock surface. The sensitivity

of the experiments allowed a detailed study of the phase, and wavefront disloca-

tions were observed as points of zero intensity. Two years later, Nye and Berry

[7] understood that these dislocations result from the interference of a number

of waves derived from the same source and propagating with different directions,

as it happens in a scattering problem, which can induce a sudden changes in the

phase of the wave. In the area of optics, Baranova et al. [8] studied the emer-

gence of similar phase singularities in inhomogeneous optical waves characterized

by the existence of points with zero amplitude in a plane, which form lines in

three dimensions. This was experimentally confirmed by interfering two laser

beams from the same source, one with the wavefront distorted by means of a

non-uniform phase plate simulating a speckled field, and the other one working

as a reference field [9]. Experimental results of interference of speckled field with

tilted reference wave observed by Baranova et al. [10] are depicted in Fig. 1.3.

Once the theoretical foundations of phase singularities have been established,

multiple methods to modulate on demand the wave front in a singular man-

ner were developed. The most straightforward option is the use of a spiral phase

plate. A spiral phase plate is a screw-like dislocated 3D plate that imparts a phase

profile φ = φ(ϕ) to the wave that interact with it, where ϕ is the azimuthal angle.

The mechanism through which the spiral phase plate introduces the screw-like
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(a) (b) (c)

Figure 1.3: (a) Speckle pattern of laser light source. (b) Same pattern modulated by the

interference with a tilted reference wave. (c) Zoom on two phase singularities having opposite

topological charge. Adapted from [10].

phase to a wave could be classified accordingly to the following process: trans-

mission, reflection and emission. Noteworthy, these mechanisms are associated

with distinct height of the spiral step in order to introduce a phase singularity

with topological charge `. Considering the propagation of a scalar wave at nor-

mal incidence onto a spiral phase plate, the step height is hs =
`
f ∣(

1
c1
− 1
c0
)
−1
∣ in

transmission and hs =
`c0
2f in reflection, with f the wave frequency, c1 the phase

velocity in the plate and c0 the phase velocity in the medium surrounding the

plate. In emission, the spiral wave generator has a step height of `λ.

In the area of electromagnetism, an early report of helicoidal spatial phase mod-

ulators was done by Bryngdahl in 1973 while studying the interference fringes of

optical elements with radial and angular phase dependencies [11]. Fresnel-lens-

type were designed to simulate the phase of an helicoidal shape filter. Surpris-

ingly, the use and study of spiral phase plates as elements introducing azimuthal-

dependent phase delays has been popularized only two decades later. One can

cite the work of Khonina et al. [12] in which they report the creation of a phase

rotor filter by lithographic technique, an optical element whose complex trans-

mittance linearly depends on the azimuthal angle. Also, there is the work of

Kristensen et al. of 1993 for microwaves in a cavity, where the key instracavity

element is an helical plate made of teflon [13]. Also, in 1994 Beijersbergen et

al. implemented the use of a spiral phase plate to convert a TEM00 visible laser

beam into a beam with helical wavefront [14]. This was made by fabricating

a monolithic spiral phase plate from a transparent acrylic plate using a milling

tool to remove the material radially. The fabrication challenges associated to

smaller wavelengths were overcome as the nanofabrication technology evolved.

This can be illustrated by the work of Peele et al. in 2002, who used an spiral
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phase plate built by photomask projection micromachining to introduced a spiral

phase distribution to incident x-ray waves [15]. Other ranges of the electromag-

netic spectrum have been studied such as the GHz and THz domains. In the

GHz range we mention the work of Tamburini et al. [16] in which they used a

split parabolic antenna to introduce a screw-like phase to radio waves. In the

THz range, there is for instance the work of Miyamoto et al., in which they used

a spiral phase plate mechanically carved in Tsurupica material [17]. A visual

summary of spiral phase plates for electromagnetic waves from radio-waves to

X-rays is shown in Fig. 1.4.

In the area of acoustics, Berry told us that, to his knowledge, the first experimen-

tal demonstration of a controlled dislocation was done by his colleague Walford

around 1974. By sending an ultrasonic beam to a cardboard cut in helicoidal

shape with a pitch of half-wavelength, see Fig. 1.5(a), he detected intensity

changes of the reflected wave that are associated with the generation of an ul-

trasonic vortex beam with unit topological charge. In 1999, Hefner and Marston

[18] used a cut annular sheet of polyvinylidene fluoride adopting a spiral shape

and attached it to an acoustic transducer. This acoustic source immersed in a

water tank and emitting waves at 300 kHz generated an intensity distribution

similar to a Laguerre-Gaussian beam, see Fig. 1.5(b). In 2004, Gspan et al.

[19] used an absorbing material carved with the desired helical shaped and irra-

diated by light pulses. Due to the thermal expansion of the material, acoustic

wave pulses with a screw-like wavefront are generated, see Fig. 1.5(c). In 2015,

Wunenburger et al. [20], introduced a screw dislocation to a transmitted focused

ultrasonic wave using a 3D printed plastic spiral phase plate, see Fig. 1.5(d). In

Figure 1.4: Summary of electromagnetic spiral phase plates implemented over a very broad

range of frequencies covering radio waves to X-rays.
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this thesis, by using a 3D printed monolithic spiralling structures, we introduce

phase singularities by reflection, see Fig. 1.5(e), which will be discussed in detail

in the chapter 2.

Although there are other techniques to introduce phase singularities to a field,

such as the use of holographic masks fabricated via computer-synthesized grat-

ings, see [21, 22], here we restrict our presentation to spiral phase plates since the

latter corresponds to the specific framework of this thesis. Finally, it is interest-

ing to note that shaping the structure of waves using spiral phase plates has also

been extended to situation other than electromagnetism and acoustics. Namely,

shaping phase singularities for electron and neutron wave functions have been re-

alized in recent years using appropriate materials, see [23] and [24] respectively.

Absorber

Ultrasound

Light

Figure 1.5: (a) Personal reconstruction of the spiral phase plate originally built by Walford

around 1974 according to Berry. (b) Sketch of the acoustic transducer used by Hefner et al.

formed by an annular sheet of polyvinylidene fluoride (PVDF) cut as a spiral. Adapted from

[18]. (c) Scheme of spiral phase plate absorber for optically-generated sound pulses. Adapted

from [19]. (c) 3D printed spiral phase plate mask used for ultrasonic transmission vortex

generation in fluids. Adapted from [20]. (d) 3D printed acoustic helical mirror that is further

used in this thesis (further details are given in chapter 2), enabling reflective acoustic vortex

generation in air.
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1.3 Orbital angular momentum associated with

phase singularities

The concept of waves carrying angular momentum is rather old. In the area of

optics, Sadovsky [25] and Poynting [26] independently predicted the existence an-

gular momentum for circular polarized light. In the area of quantum mechanics,

it was proved that the amount of angular momentum is associated to the spin of

the photon. This was tested experimentally by Beth [27] in 1936 by exploiting the

mechanical consequences of the polarization state changes as circular polarized

light passes through a half wave plate. By placing the half-wave plate a the tip

of a torsion pendulum, Beth detected and measured the spin angular momentum

of light. Indeed, the resulting net change of spin angular momentum per photon

by an amount of ±2h̵ (the sign corresponds to the input handedness of the cir-

cularly polarized light) leads to a torque exerted by the light on the half-wave

plate, as depicted in Fig. 1.6(a). Much later, in 1992, Allen et al. [28], inspired

by the results of Beth and the analogy between quantum mechanics and paraxial

optics, established theoretically that electromagnetic waves with an azimuthal

dependency of its amplitude of the form exp(i`ϕ) carries an angular momentum

per photon equal to `h̵. The demonstration was performed by considering the

so-called Laguerre-Gaussian modes, that form a complete and exact basis of the

paraxial field in a cylindrical coordinate system. The complex amplitude of these

modes, that are characterized by two indices ` ∈ Z and p ∈ N, have the following

expression (assuming propagation along z axis towards z > 0)

A`,p(r,ϕ, z, t) =
C`,p
w(z)

⎛

⎝

r
√

2

w(z)

⎞

⎠

∣`∣

L`p (
2r2

w2(z)
)

× exp [−
r2

w2(z)
+

ikr2z

2(z2 + z2
R)

] (1.4)

× exp[−i(2p + ∣`∣ + 1)ζ(z)] exp(i`ϕ − iωt + kz)

where C`,p =
√

2p!/(π(p + ∣`∣)!) is a normalization constant, L`p(⋅) is the gen-

eralized Laguerre-Gauss polynomial with radial index p and azimuthal index

`, ζ(z) = tan−1(z/zR) is the Gouy phase of the fundamental Gaussian beam,

w(z) = w0

√
1 + (z/zR)2 is the beam radius, w0 is the beam waist, and zR = πw2

0/λ

is the Rayleigh range. Noteworthy, for ` ≠ 0,a Laguerre-Gaussian beam carries

on-axis optical phase singularity. The intensity and phase distribution of a few
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Figure 1.6: Illustration of the experiment by Beth for spin angular momentum detection (a)

and the analogue suggested experiment by Allen et al. for orbital angular momentum detection

(b) experiments. (a) A λ/2 birefringent plate experiences a torque as the incident spin angular

momentum (have h̵ per photon) carried by a circular polarized light is flipped. (b) A set of

cylindrical lenses acting as a Laguerre-Gaussian converter is expected to experience a torque as

the incident orbital angular momentum (have `h̵ per photon) carried by a Laguerre-Gaussian

beam mode of azimuthal order ` is flipped. Adapted from [28].

Laguerre-Gaussian modes are shown in Fig. 1.7. Importantly, the nature of this

angular momentum differs from the spin one. In fact, this momentum is of an

orbital nature, hence associated with spatial degrees of freedom, in contrast to

the spin angular momentum related to the polarization state of light. Moreover,

Allen et al. proposed an experimental analogy with respect to the work by Beth

in order to detect and measure the mechanical effect of the transfer of orbital

angular momentum from light to matter, as illustrated in Fig. 1.6(b). The idea is

to suspend a Laguerre-Gaussian mode converter made from a pair of cylindrical

lenses hanging at the tip of a torsion wire. As a Laguerre-Gaussian beam of order

` passes through the converter, light transfers a net amount of 2`h̵ per photon to

the material system as the azimuthal order of the incident beam is flipped from `

to −`. This result triggered a growing interest regarding possible applications of

phase singularities, when mechanical effects come at play. In the area of optics,

this was beneficial for the development of optical manipulation techniques, see

[29] for a review. However, it is in the acoustic domain that we are focusing our

interest in this thesis and we further deal with developments made in acoustics.
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Figure 1.7: Intensity and phase of a few Laguerre-Gaussian beam modes at, z = 0, for different

values of p and `.

In acoustics, helical wavefronts were reintroduced by Hefner & Marston [30] in

1998 while calculating the flux of orbital angular momentum of acoustic beams

cylindrical symmetrical with azimuthal phase dependency of exp(i`ϕ), in partic-

ular the Laguerre-Gaussian beams. In 2003, Thomas & Marchiano [31] showed

the analogy between acoustic and optical vortex beams by introducing the con-

cept of pseudomomentum and obtained an identical result as the one derived by

Allen et al. in the optical domain. In 2006, Lekner et al. [32] extended the study

of Hefner & Marston [30] with the introduction of exact (nonparaxial) helicoidal

solutions of the Helmholtz equation for tightly focused acoustic beams.

After these first theoretical works dealing with“singular acoustics”, several groups

started to investigate the mechanical consequences of angular momentum of

sound to matter by dissipative and non-dissipative processes.

1.4 Detection and measurement of the orbital

angular momentum of sound

In this section, we review separately the experimental state of the art of the me-

chanical effects of orbital angular momentum transfer, distinguishing two cases:
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when an incident field is absorbed by an object (dissipative processes) and when a

object alters the incident orbital angular momentum of an incident field without

absorbing it (non-dissipative processes).

1.4.1 Dissipative process

The sound-matter transfer of both linear and angular momentum by absorption

is, to date, the situation that has been the most explored. The conservation

of linear and angular momentum for the “sound-matter” system implies that a

perfectly absorbing element intercepting a vortex beam of power P and topo-

logical charge ` propagating along z > 0 experiences a force F⃗ = P /cẑ and a

torque Γ⃗ = `P /ωẑ, where ẑ is the unit vector along the propagation direction

of the incident beam. One needs ` ≠ 0 in order to induce rotational mechanical

effects. The experimental techniques enabling the detection and measurement

of the angular momentum via mechanical consequences are using so far either a

torsional pendulum or a freely rotating object that we call hereafter a “spinner”.

These two approaches are described hereafter.

Torsional pendulum

In 2008, Volke-Sepúlveda et al. [33] and Skeldon et al. [34] presented inde-

pendently the first demonstration of orbital angular momentum transfer from

acoustic vortices to matter using propagating field in air via absorption, see Fig.

1.8(a) and 1.8(b). Both experimental setup consisted of a torque pendulum

made of an absorptive disk hanging on top of an array of 8 individual loudspeak-

ers distributed along a circle. Every source produces a continuous wave that

is phase-delayed with respect to its neighbour in order to generate a total field

that is a vortex with topological charge `. At steady state, the torque generated

by the absorption of the incident angular momentum is balanced by the elastic

restoring torque from the twisted wire. As a results, the pendulum is rotated by

angle θ0, proportional to the acoustic torque. Volke-Sepúlveda et al., performed

the study with acoustic vortex of charge ` = ±1 and ±2, while Skeldon et al.

[34] worked with ` = ±1. In 2018, Li et al. [35], extended the study of transfer

of angular momentum by absorption by using a polar array of sixteen acoustic

sources allowing the generation of vortices of charges from ` = ±1 up to ±7, see

Fig. 1.8(c).
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Figure 1.8: Illustration of experiments of transfer of angular momentum by a dissipative process

using a torsional pendulum. Adapted from [33], [34] and [35].

Spinners

In 2012, Anhäuser et al. [36] and Demore et al. [37] reported independently the

first direct measurement of acoustic orbital angular momentum via the observa-

tion of the steady rotational motion of an absorber made free to rotate on-axis.

On the one hand, Anhäuser et al. used an absorbing disk placed at the interface

between two fluids (aqueous glycerol solution and silicon oil) and centred with

the incident beam axis owing to a needle, see Fig. 1.9(a). On the other hand,

Demore et al. used an absorbing disk placed in a chamber filled with degassed

water and attached to a 5 ml syringe which allows the disk to spin and move

vertically, granting measurements of the transfer of both angular and linear mo-

mentum from sound to matter, see Fig. 1.9(b). In both experiments, a focused

ultrasonic transducer array was used as an acoustic vortex source. At steady

state, the torque generated by orbital angular momentum transfer is balanced

by the viscous torque exerted by the fluid surrounding the spinner. This leads

to a spinning motion at a constant angular frequency that is proportional to the

acoustic torque. Noteworthy, Anhäuser et al. noticed that sound attenuation

as the incident vortex beam propagates through the fluid also leads to orbital

angular momentum transfer to the fluid itself. This phenomenon is the angular

analogue of the usual acoustic streaming that refers to a force density directed

along the beam propagation direction as sound transfers linear momentum to

matter as it is attenuated during its propagation. Accordingly, the appearance

of an azimuthal flow was referred as rotational acoustic streaming. As a result,

a refined balance of torque has to take into account the fact that the total az-
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Figure 1.9: Illustration of experiments of transfer of angular momentum by a dissipative process

using spinners immersed in fluids. Adapter from [36], [37], [38] and [39].

imuthal velocity field possesses a rotational streaming contribution. In 2018, Li

et al. [38], proposed an experiment similar to that of Anhäuser et al.. Indeed,

they used a disk of 2.5 mm radius held by a needle and irradiated by and acoustic

vortex, see Fig. 1.9(c), but using a different source for the acoustic vortex beam.

In 2018, Baresch et al. [39] performed the trapping and spinning of immersed

elastic particles by applying a negative axial gradient force using a focused acous-

tic vortex, see Fig. 1.9(d). Here again, the acoustic torque is calculated from its

balance with the viscous torque.

1.4.2 Non-dissipative process

Beside dissipative orbital angular momentum processes, one could also formally

consider its non-dissipative counterpart, in presence of a change of the orbital

angular momentum state of a beam with power P , say from a topological charge

`input to `output. Indeed, from angular momentum conservation, this leads to an

acoustic torque Γ = (`input − `output)P /ω exerted on the non-absorbing scattering

object. This situation has been explored in a single work so far, a few years ago,

by Wunenburger et al. [20], see Fig. 1.10. In the latter work, the idea consisted

in mimicking the situation that happens in optics, where an incident Gaussian

beam (`input = 0) passes through a non-absorbing refractive spiral phase plate

having a topological charge `. In that case, the output beam is an acoustic vor-
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Figure 1.10: Illustration of experiment of Wunenburguer et al. A 3D printed helical struc-

ture was placed on the surface on the boundary of mineral oil and salted water. The helical

structures was irradiated by a focused Gaussian acoustic beam introducing a phase factor of

exp(i`ϕ) transforming the acoustic wave into a vortex. Adapted from [20].

tex beam with topological charge `output = `, which results in a radiation torque

exerted on the object that expresses as Γ = `P /ω. In practice, Wunenburger et al.

used a 3D printed spiral-shaped disk operating as a spiral phase plate of charge

` = 4, and irradiated by a focused ultrasonic acoustic beam carrying zero or-

bital angular momentum (` = 0). The spiral phase plate imprints an azimuthally

dependent phase factor exp(i`ϕ) to the transmitted field, hence generating an

acoustic vortex of charge `. Ensuring transfer of orbital angular momentum to

the spiral phase plate makes it to spin at steady angular velocity after a transient.

However, the fact that sounds propagates through an absorbing material with

substantial absorption prevents obtaining in practice a pure vortex mode conver-

sion. Indeed, the amplitude of the incident field is also modulated azimuthally,

which breaks the axisymmetry required to ensure the generation of the sought

after vortex beam. Nevertheless, it is important to recall that the material ab-

sorption does not prevent to conclude that the acoustic radiation torque arise

from chiral sound scattering. Also, the latter work stressed that the unavoidable

reflection was actually playing a role in the total angular momentum balance,

however without altering the main conclusion if the work.
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Sound-matter system: definition

and characterization

After reviewing the state of the art of the rotational effects of acoustic orbital

angular momentum at the end of the previous chapter, which emphasized the

barely studied case of non-dissipative angular momentum transfer process, we

present our contribution to the latter situation. The central issue is, therefore,

the definition of the sound-matter interaction geometry enabling us to get rid

of the sound absorption limitations pointed out in the work of Wunenburger et

al. [20]. Keeping the option of using a spiral phase plate as the chiral sound-

scattering element implies either to use an absorption-free material or, more

drastically, to discard the propagation of sound inside the material. The former

option of an absorption-free material is the ideal situation, which involves the

use of a material with as small as possible propagation losses at the considered

frequency. In contrast, the latter option is the most viable for experimental

implementation as it requires the use of a reflective (instead of transmissive)

spiral phase plate.

In this chapter, the analysis of this approach is first presented in terms of the

characteristics of the wave-matter interaction, such as the properties of the used

material and the sound wave. The characterization of the material system and

the used acoustic source will be also presented.

2.1 Sound-matter reflective geometry

Let us consider two materials in contact, labelled as ‘0’ and ‘1’, and bounded by

a planar interface. In the medium ‘0’, a plane wave propagates and impinges at

normal incidence with respect to the interface between the two media. Assuming
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1D propagation, an acoustic plane wave is described as

p(x, t) = p0 exp i(kx − ωt) (2.1)

where k is the complex wave number

k =
ω

c
+ iα (2.2)

where c is the speed (or phase velocity) of the carrier wave, and α is the attenu-

ation coefficient. The reflective coefficient for the pressure field is given as

r =
ρ1k0 − ρ0k1

ρ1k0 + ρ0k1

(2.3)

where ρ0 and ρ1 corresponds to the density of the medium ‘0’ and ‘1’ respectively.

The reflectivity coefficient, expressed as R = ∣r∣2, can be reformulated as

R = ∣1 −
2ρ0k1

ρ1k0 + ρ0k1

∣

2

(2.4)

From Eq. (2.4) we can observe that it is possible to reach the condition of

R ∼ 1 by fulfilling the condition of ρ0c0 ≪ ρ1c1, independently of the absorption

coefficients. Practically, using air as the incident medium and a solid material

with typical characteristics ρ1 ∼ 1000 kg m−3 and c1 ∼ 1000 ms−1, one can achieve

conditions of R = 1 within 0.03 % whatever the value of α. Consequently, we

opted for using a 3D printed reflective spiral phase plates, i.e. helical mirrors,

that operate in the air and a transducer emitting ultrasonic waves at 100 kHz

frequency in the air, in a continuous manner.

2.2 Helical mirror

2.2.1 Design

Our helical mirrors characterized by the integer number ` are designed to intro-

duce a phase factor of exp(−i`ϕ) to the reflected acoustic wave. They consist

in structures having circular cross-section, flat base and azimuthally dependent

height h(φ) = ±hs(φ/2π), where hs > 0 is the step height, see Fig. 2.1. Consid-

ering a normally incident acoustic wave have a smooth axisymetric phase profile
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Figure 2.1: Diagram of a spiral phase plate where hs corresponds to the height and ϕ is the

azimuthal angle in the xy plane.

and impinging on the screw-like surface, the value of the topological charge `′ of

the reflected vortex field just after the reflection is given by

`′ = −` with ` =
2hs

λ
(2.5)

where λ is the wavelength of the acoustic wave. For a topological charge of ` = 1,

we have hs = λ/2. In the case of high-charge helical mirrors (∣`∣ > 1), a piece-wise

design is adopted. Namely, the helical mirror is split in ∣`∣ sectors each of them

having the role of imparting a phase change between 0 and 2π in a linear manner

with respect to ϕ, see Fig. 2.2. In terms of the reflected field, there is no differ-

ence between the single-ramp and multi-ramp designs for integer charges ∣`∣ > 1

if one neglects diffraction over distances that corresponds to the step height.

As the helical mirrors will be set into rotation, the mechanical properties as-

sociated to their geometry, such as center of gravity, xG, yG and zG, and the

moment of inertia J around the z-axis are quantities of interest. The Cartesian

coordinates of the center of gravity is calculated as

xG =
ρ1 ∫ xdxdydz

M
= 0 (2.6)

yG =
ρ1 ∫ ydxdydz

M
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 piece-wise ramp (∣`∣ > 1)

2R
3π one ramp

(2.7)

zG =
ρ1 ∫ zdxdydz

M
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

hs
3 piece-wise ramp (∣`∣ > 1)

hs∣`∣
3 one ramp

(2.8)
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Figure 2.2: Phase distribution Φ in the transverse plane that is imparted to the reflected field

and phase as a function of the azimuthal angle ϕ for helical mirror with integer topological

charge ` = 1, 2 and 3. Namely, we deal with a transmittance function exp(i`′ϕ) with `′ = −`
for a helical mirror of order `.

where ρ1 is the density of the material of the mirror, M = ∫ ρdxdydz is the mass

of the mirror ans R is the radius of the mirror. The location of the center of

mass in the transverse plane for helical mirror of charge ` = 1,2,3 are depicted in

Fig.2.3. The moment of inertia around the axis of rotation z, J , is calculated as

J = ∫ ρr2rdrdθdz =
1

4
ρπR4hs (2.9)

Noting that the volume of the helical mirror is V = πR2 (hs
2
), Eq. 2.9 is rewritten

as

J =
1

2
MR2 (2.10)

whereM = ρV is the mass of the helical mirror, which corresponds to the moment

of inertia of a circular disk of mass M and radius R. Notice that, for a multi-

ramp mirrors, the axis of rotation passes through it center of mass. Therefore,

the acoustic torque is expressed as Γ⃗ = Γz⃗. However, for single-ramp mirrors, the

fact that the center of mass is not located along the z axis implies a gravitational
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Figure 2.3: Illustration of position of center of mass (xCM/R,yCM/R), denoted as a red dot,

for `-ramp helical mirrors with topological charge ` = 1, 2 and 3.

torque that tends to tilt mirror out of its initial plane in which is lying, namely,

the (x, y) plane. When considering a mirror deposited on a non rigid system

such as a fluid interface as we further use in this chapter, the axisymmetry is

broken. In practice this may lead to mechanical drawbacks towards quantitative

assessment of the acoustic torque. In order to avoid the latter issue, a two-ramp

design with step height hs = λ/4 is introduced when ∣`∣ = 1.

2.2.2 3D printing modelling: design

AutoCAD is a 3D modelling software used in the industry to design mechanical

structures. For this thesis, it is used to design the helical mirrors with the desired

geometrical characteristics, namely, thickness, radius and topological charge. The

method to design the helical mirrors is described hereafter (see also Fig. 2.4):

(a) The AutoCAD functions line, arc and helix are selected to draw the

skeleton of one sector of the mirror. First, a segment with the length R = 15

mm is drawn. Second, we draw an arc line with angle 2π/`, centered on

one end of the latter segment and connected to the center with a straight

line. Third, we draw a helical line running over (1/`) of a turn with height

of hs = 1.72 mm, which corresponds to half of a wavelength at 100 kHz

frequency, and centered on the origin of the sector. Finally, we draw a

rectangle, perpendicular to the flat surface of the sector, with height hs

and length R, which is the wall of the helical mirror step for the considered

sector.
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(b) Using the function loft, we generate the surface associated to two curves.

In this case, we generate horizontal and vertical surfaces that correspond

to the side walls, the planar base and the screwed roof of the helical mirror.

First, the walls are drawn by selecting the helix and arc lines, as well as

the top and bottom lines of the rectangle of the step. Second, the base is

drawn by selecting the arc and diameter line. Third, the roof is drawn by

selecting the helix and the vertical on-axis segment of step passing trough

the center. At this point, we have a shell of one of the sectors of the mirror.

(c) The function polar array generates copies of a selected structure and dis-

tribute them equidistant to a point. In this case, the center of the array

corresponds to the center of the mirror, and the number of sector corre-

sponds to `. First, we click in the function of polar array. Second, we select

the shell corresponding to one sector of the mirror. Third, we select the

center from which the polar arrangement will be generated. Fourth, we

select ` as number of sectors generated, where here corresponds to ` = 2.

The number of sectors have to be input manually as 6 sectors are selected

by default. Now, the shell of the helical mirror is completed. However,

each sector of the shell is bound by the function polar array, so we need to

unbind them.

(d) The function explode separate in simple elements (lines and surfaces) the

selected structure. First, We use this function to unbind the sectors that

have been combined at the latter step of the design process. Second, we use

the function union to make a single shell for defining the helical mirror.

Third, we select the function sculpt to generate a solid bounded by the

walls of the obtained empty shell. Now that the helical structure of the

mirror is obtained, we design a pedestal on which the mirror will be placed

in order to avoid teh zero-thickness issue at ϕ = 0.

(e) We select the function cylinder to make a disk-shape pedestal with height

hp = 1 mm and radius R = 15 mm.

(e) We select the helical structure and, using the function move, we place it

on the top of the pedestal and align their axis. We select the base and the

helical mirror and use the function union to join them as a single structure.

The design of the helical mirror is now ready.
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(a) (b) (c)

(d)
(e) (f)

Figure 2.4: Illustration of the main steps needed to design a helical mirror with ` = 2. (a)

Defining the geometry of one of the sectors of the helical mirror (radius, step height and

angular extent. (b) Making the shell of the sector. (c) Generating all sectors of the helical

mirror and placing them. (d) Unbinding the sectors into individual parts, making a whole

shell of the helical mirror and generating the desired solid volume to be printed (e) Making a

pedestal on which the helical structure will sit. (f) Placing and aligning the helical structure

on top of the pedestal.

Having the design of the mirror, the next step consists in exporting the AutoCAD

file as an .stl file which is the file extension that most of the 3D printing softwares

use. In our case, we use the 3D printing software Print Studio. The steps to

prepare the 3D model are detailed hereafter (see Fig. 2.5):

(a) The interface of Print Studio displays the area of the building head of

the 3D printer on which the structure will be fabricated. By selecting the

import option, the file is selected and placed in the printing area. One of

the first thing to consider is the centering and placement of the object to

be printed. It is recommended that the disk is centered with respect to the

printing head.

(b) After centering the structure, the next step is to check for any structural

error concerning the design, such as disjoint planes or empty holes. Usually,

when the structure is presented in red color, this indicate the presence of

a discontinuity in the object. Here, such errors appear always along the

on axis singularity. By selecting the option automatic repair the problem

is fixed automatically in most cases. If the software freezes during the
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(a)

(b) (c)

Figure 2.5: Illustration of the main steps to generate the file that will be used by the printer to

fabricate the structure. (a) Selecting the structure and centering it with respect to the printing

head. (b) Checking and fixing possible structural errors that are presented in red color. The

structure turns to blue when all the problems are fixed. (c) Select the thickness of the printing

layer. Eventually, the software generates a file that includes all necessary informations to be

sent to the printer.

correction process, it is necessary to check the design of the structure along

the vertical central axis in order to see if the substructures are connected

by a same line on the center. If still failing, one may choose to start over a

new design. Once the problem is solved, the structure turns in blue color.

(c) The final step before sending the file to the 3D printer is the definition of

the thickness of the printing layers. The values of thickness are restricted

by default to 50, 25 and 10 µm. In our case, we choose 10 µm corresponding

to the highest quality for this particular printer (50 µm is also used once

for checking the influence of the layer thickness, see later in chapter 4).

Once the thickness is selected, the software generates a file that includes

all necessary informations that will be sent to the printer.

2.2.3 3D Printing

The 3D printing file is further upload to the 3D printer. An Autodesk Ember

3D Printer is used, which is based on photopolymerization stereolithographic

technique. The Autodesk PR57-K Black prototype resin is used as photosensitive

resin. The steps to set the 3D printer are detailed below, see Fig. 2.6. We

stress the importance of wearing nitride gloves and safety glasses during the

manipulation of the resin and 3D printed structures before a curing process. The

sequence of action are the following:
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(a) Shake the resin gently for 10 to 20 seconds.

(b) Open the sliding door in front of the printer and pour the shaken resin

in the resin tray until the resin upper surface lies between Min and Max

marks located on one side of the tray.

(c) With an hexagonal key, loosen the building plate before starting the print-

ing. This is to prepare the plate for a calibration process as the printing

starts.

(d) Once the calibration process is launched, the resin tray starts to move from

one side to the other to calibrate its position respect to the window through

which the UV light passes. Then, the fabrication stage displaces towards

the window of the resin tray.

(e) Once the fabrication plate is positioned parallel to the window of the tray,

we use two fingers of each hand to carefully press the building stage towards

the tray in order to assure that both surfaces are parallel. Once this is done,

we fix the building head with an hex key.

(f) Close the sliding door of the printer and launch the printing.

The average time of printing a helical mirror is around 36 min. Once the printing

is finished, remove the building plate and, with a napkin, clean the excess of

resin. With a bit of isopropyl alcohol, clean the resin on top of the structure and

carefully remove it with a spatula. Immerse the structure in isopropyl alcohol

for about 10 min. Finally, take out the structure, dry the excess of alcohol and

irradiate it with an UV light for 40 minutes to polymerise the surface of the

structure as the final curing process. In our case, a source of 365 nm wavelength

and 6 Watt of power was used for curing process.

Typical 3D printed helical mirrors are shown in Fig. 2.7. Fabricated hight-quality

structures are however fragile and must be handed with care. The set of `-ramp

helical mirrors with integer topological charge −5 ≤ ` ≤ 5 and two-ramp helical

mirrors with ` = ±1 have been built in collaboration with Vilnius University (L.

Jonusauskas and M. Malinauskas).
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(a) (b)

(c) (d)

(e) (f)

Max Min

Figure 2.6: Steps of preparation for 3D printing. (a) Shaking the resin. (b) Pouring the resin

in the tray. (c) Unfastening the building stage using an hex key. (d) Launching the calibration

process. (e) Fixing the building stage with the hex key. (f) Launching the printing.

Figure 2.7: Set of 3D printed helical mirrors for -5≤ ` ≤ -1 and ` = −1′ (two-ramps).
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2.2.4 Validation of printed helical mirrors

Once the first batch of helical mirrors has been printed, the validation of the

geometrical parameters led us to a surprise, which was not immediately noticed.

Indeed, the printed step height were not equal to the designed values, both for

the spiral and the pedestal. In fact, at first being not aware about such a serious

fabrication issue, we had no reason to be suspicious and we implemented the

first experimental attempts of detection and measurement of rotational mechan-

ical effects of acoustic vortices. It was only at the final analysis stage that we

realized this problem. The price to pay for this situation was substantial delay

in the project as we had to establish a protocol to achieve the desired topological

charge. In Table 2.1 we present a typical example of the mismatch between the

designed and measured values of the height of each step of a helical mirror with

topological charge ` = 5, recalling that the designed spiral step is hs = 1.72 mm

and the pedestal height is hp = 1 mm. The mismatch corresponds to a relative

discrepancy of 67% for hs and 54% for hp. We did not find an explanation since

we carefully followed the protocols of designing and printing as indicated in the

user manual of the software and printer. Moreover, the company Autodesk

abruptly announced the end of production of their recently released 3D printer

Ember, without providing an explanation to the consumers. In addition, we were

not able to obtain information concerning this issue or even address the problem

directly to the company. Since then, we had to work to find a solution by our-

selves with the purchased system in order to achieve our goal anyway. To get the

correct value of step height, we opted for a trial and error process. The idea is

to fabricate a set of structures with various designed values hd for the spiral step

and to compared them with step height hs of the printed elements. We found

that for a helical mirror with 30 mm diameter and ` = 5, the optimal height to

design for a target value hs = 1.72 mm is hd = 2.21 mm. Using this value as a

sector # 1 2 3 4 5 ⟨⋅⟩ ± std

h (mm) 2.68 2.71 2.81 2.70 2.65 2.71 ± 0.06

hp (mm) 1.56 1.57 1.67 1.56 1.37 1.546 ± 0.10

hs (mm) 1.12 1.14 1.14 1.14 1.28 1.164 ± 0.06

Table 2.1: Measurements of the total height (h), height of the pedestal (hp) and height of the

step (hs).
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Figure 2.8: Measured step height for helical mirrors with printing design value hd = 2.21 mm.

(a) Average step height over the ` sectors for topological charges −10 ≤ ` ≤ 10. (b) Percentage

of the relative deviation with respect to the ideal step height value hs = 1.72 mm.

reference, all the other structures were printed without a specific trial and error

process. In Fig. 2.8 we present the obtained values of hs for different values of

`, see Fig. 2.8 (a), and the relative deviation ∆ = (hs − λ/2)/(λ/2) with respect

to the desired value of hs = λ/2, see Fig. 2.8(b). From these results, we obtain

a deviation less than 7% in the range −10 ≤ ` ≤ +10 which we found satisfying

enough to pursue our studies.

In addition, we also checked the quality of the central part of the helical mirror.

Indeed, a morphological singularity is introduced by design in the center. The file

used by the 3D printer corresponds to a tessellation of the designed shell. When

the printing software tries to define the singularity, errors of continuity unavoid-

ably emerge. The software bypass this by smoothing the core, hence deforming

the surface. In order to quantify the deformation of the core, a helical mirror with

topological charge ` = 2 and radius R = 12 mm is cut in half through its center

and parallel to the two steps, see Fig. 2.9(a). The radial profile of the step height

is extracted numerically from a picture via contour analysis, see Fig. 2.9(b). The

obtained profile is shown in Fig. 2.9(c), using as a reference the value of hs(r = 0)

as shown in Fig. 2.9(b), where r is the distance from the center of the mirror.

The profile is empirically fitted with the ansatz hs(r) = h0(1 − exp(−r/r0)). In

this example we find h0 = 1.79 mm and r0 = 0.10 mm. We estimate from such

a topographic inspection of the helical mirror that the non-uniform region has a

maximal radius r0 ∼ 1 mm. Noting that the extreme situation that consists to

discard the mechanical effect of sound on a disk of radius r0, typically implies
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Figure 2.9: (a)Cross-section of a helical mirror with topological charge ` = 2. (b) Contour of

the cross-section shown in (a). (c) Height radial profile, taking the height of the base as the

reference value hs(r = 0).

uncontrolled sound matter interaction over a fraction of less than 1% of the to-

tal area of the helical mirror. Therefore, such imperfections can be considered

acceptable in practice.

2.3 Acoustic source: modelling

As it will be discussed later in this section, we use a planar disk-shaped piezo-

electric transducer operating in the air at 100 kHz frequency. Here, we start

by the ideal description of our acoustic source field and the presentation of the

used simulation tools whose implementation is validated by confronting obtained

values with known analytical solutions.

2.3.1 Analytical results

The pressure field of the acoustic transducer is modelled as a circular planar disk

of radius a mounted in a baffle of infinite spatial extent as we are considering

that all the pressure field propagates in the region z > 0 without back reflec-

tion. In addition, we discard any effects of diffraction due to the borders of the
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transducer, see Fig. 2.10. For a piston moving sinusoidally at uniform velocity

v(t) = v0 sin(ωt), with v0 a constant, we have

p(r, θ) =
−iωρ0v0

2π ∫
S

exp(ikR)

R
dS (2.11)

where S is the surface of the piston, ω is the frequency of the generated sound

wave, ρ0 is the mean mass density of the medium in which sound propagates

(air in our case), k = ω/c0 is the wave number, c0 is the speed of sound in the

air, and R = ∣r − r′∣. Also here, we neglect propagation losses. Integrating Eq.

(2.11) for any point is complicated and in most cases it can only be solved by

numerical approximations, see for instance [40]. However, closed-form solutions

can be found in particular cases. For instance:

(a) Far Field: r ≫ a

pfar = p(r, θ) = Aπa
2 [

2J1(ka sin θ)

ka sin θ
]
eikr

r
(2.12)

where A = −iωρ0v0/2π = −ip0/λ, p0 = ρ0cv0 is a pressure amplitude, λ is the

wavelength, θ is the angle between the transducer axis the position vector at the

observation point, see Fig. 2.10, and J1 is the first-order Bessel function of first

kind.

(b) Axial field: θ = 0

paxial = p(r = z, θ = 0) = A
4π

k
sin(k [

√
z2 + a2 − z] /2)

× e
(ik[

√

z2+a2+z]/2)
(2.13)

Figure 2.10: Diagram of acoustic transducer modelled as a planar disk of radius a mounted in

a baffle of infinite spatial extent.
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Note that, for z ≫ a, Eq. (2.13) corresponds to Eq. (2.12) evaluated at θ = 0.

Also, the magnitude expression given by Eq. (2.12) allows us to separate the

radial and angular component, r and θ respectively. Namely,

∣pfar(r, θ)∣ = ∣
Aπa2

r
∣ ∣

2J1(ka sin θ)

ka sin θ
∣

= ∣pfar(r)∣H(θ) (2.14)

In the literature, ∣pfar(r)∣ is known as the axial pressure and H(θ) is known was

the directional factor. After defining the pressure field in the axial and far field,

we define the acoustic intensity I as ∣p∣2, which corresponds to the energy per

unit of area of the propagating wave. From here, we can define the intensity asso-

ciated to the far field and the axial field pressures, Ifar = ∣pfar∣
2 and Iaxial = ∣paxial∣

2,

respectively. Comparing Eq. (2.12) at θ = 0 with Eq. (2.13), we define the

region in which the far field approximation is valid. In Fig. 2.11(a) we present

the intensity of the pressure field in decibel scale, IdB = 10 log(I(z)/Iaxial(0))

of the axial solution Iaxial and the far field solution Ifar and the error between

the two values ε = log(Ifar/Iaxial). Fig 2.11(a) allows introducing a characteristic

propagation distance zR = ka2/2, usually called Rayleigh length distance. For

propagation distances longer than zR, paxial(r > zR) typically presents an asymp-

totic behaviour that is close to the far field expression. In Fig. 2.11(b) we present

the directional factor H(θ) for a circular planar transducer with a relative size of

ka = 10, which roughly corresponds to the circular transducer used in this thesis.

2.3.2 Numerics: beam propagation method

As discussed above, the description of the acoustic source by an analytical func-

tion of the pressure field is restricted to limit cases. However, if one is interested

in the near field, numerical simulations are necessary. One of the available meth-

ods is the beam propagation method (BPM), which is the one we used in this

thesis. Since BPM method is a generic approach to all kinds of waves, let us de-

fine the wave function Ψ(x, y, z)e−iωt of a wave propagating along the z axis with

a wave number k = ω/c0. From the knowledge of the field at z = 0, Ψ(x, y,0), the

field can be calculated at any position z according to the following steps:

(a) Obtain the plane wave spectrum of the field at z = 0 via 2D Fourier trans-

form.
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Figure 2.11: (a) Comparison of the intensity of the pressure field for exact axial solution Iaxial

and far field solution Ifar, and the error between the two intensities (see text for details) as a

function of the distance from the transducer scaled with the Rayleigh length zR = ka2/2. (b)

Directional factor H(θ) for a transducer with reduced radius ka = 10.

(b) Apply the propagator factor exp(ikzz) to all the constitutive plane waves,

where kz = (k2 − k2
x − k

2
y)

1/2.

(c) Return to the real space by applying the inverse 2D Fourier transform.

This approach is summarized in Fig. 2.12. In order to benchmark our home-

made BPM calculations, we propose to evaluate the normalized intensity of the

field emitted by a uniform source with a circular aperture having a normalized

radius ka = 10 after propagation distances z = 0.5zR, zR and 2zR and compare it

with the intensity expected from the analytical solution, see Fig. 2.13. A mea-

surement of the absolute error between the two values is obtained by calculating

the difference, δ(I(r)/I(0)) = ∣
IBPM(r)
IBPM(0) −

Ianalytics(r)

Ianalytics(0)
∣. Absolute error is typically

< 0.01 for z > zR.

Figure 2.12: Diagram of BPM algorithm, where F (F−1) refers to the 2D (inverse) Fourier

Transform in the transverse plane.
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Figure 2.13: Top row: Normalized analytical and numerically calculated intensity profiles of

the field generated by a uniform disk-shape source field placed at z = 0 at propagation distances

z = 0.5zR, zR and 2zR. Bottom row: absolute error between the BPM calculations and the

analytical solution.

2.3.3 Gaussian-field approximation

Besides the possible use of analytical expressions in specific cases or the general

use of BPM, other kind of approximate analytical description of the acoustic field

is valuable. An example is the Gaussian description of the field at a distance

z > zR. Calculations of intensity profile and effective fitted Gaussian profile for

circular aperture are depicted in Fig. 2.14. It is seen that the intensity field at

a distance of z > zR, if simulated with a Gaussian profile, would present an error

of less than 0.01 with respect to the original profile. The simulation section is

ending here with providing, in Fig. 2.15(a) the the axisymetric intensity field

of the acoustic transducer that we used in experiments obtained by BPM. Each

plane of propagation is normalized by its own maximum for better readability.

In order to simplify further the description of an acoustic field, we compare the

latter situation with the situation without hole, namely, a plane transdcuer. The

results are shown in Fig. 2.15(b). The small level of discrepancy between the two

cases lead us to consider for further analysis that our transducer is a plane one,

especially noting that out experimental investigation towards the measurement

of the acoustic torque are made at a typical distance larger than z = 20 mm. In
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Figure 2.14: Top row: Normalized intensity profile calculated with BPM of the field emitted

by a circular aperture placed at z = 0 mm at propagation distances z = zR, 3zR and 5zR. Thin

dark curves refers to its Gaussian fit. Bottom row: Absolute error between BPM calculations

and Gaussian fit.

particular, the white dash curve in Fig. 2.15(b) corresponds to the distance from

the propagation axis z at which the normalized intensity is equal to e−2 and the

black solid line originating from the center of the transducer corresponds to the

linear fit of the asymptotic behaviour of the white curve. From the black line,

the Gaussian divergence angle is determined as θ0 = 0.274 rad (15.7○).

2.4 Acoustic source: experiments

As an acoustic source, we used the acoustic transducer from tec5 that is a part

of their AG Ultrasonic Levitator, see Fig. 2.16. It consists of a piezoelectric

transducer of 10 mm diameter with a hole of 1 mm passing through its center,

and driven by a power source at a constant frequency of 100 kHz. The power

source supply of the transducer is equipped with an analogue power controller

and a panel indicating the acoustic power in arbitrary units. The power source

works in the range of 3.5 < P̃0 < 6.5 where P̃0 stands for the total emitted acoustic

power in arbitrary units , where the number refers to the value displayed by the

power supply. It can be driven externally via a function generator. Using a
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Figure 2.15: Meridional normalized intensity profile calculated by BPM for a 10 mm diameter

circular transducer. The normalized intensity Ĩ is defined as Ĩ(x, y) = I(x, y)/max[I(x, y)].
(a) Transducer with a 1 mm diameter hole in its center. (b) Plane transducer.

piezoelectric sensor in order to convert the periodic variations of pressure of the

acoustic wave source into a periodic voltage, see Fig. 2.17(a), we can monitor the

pressure field. The latter is actually measured to have a 100 kHz frequency with

a precision less than 1%, as stated in the specifications of the manufacturer.

Once the acoustic transducer is on, we found that a warming-up time is necessary

as the power source presented a decrease of the acoustic power until it reaches

a steady value after a transient. In order to estimate quantitatively the latter

transient time, we monitor the pressure field as a function of the time using the 10

mm diameter piezoelectric sensor placed at a couple of centimetre distance from
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Figure 2.16: Illustration of the acoustic transducer (side and top view) and its power supply.

the transducer. As the transducer and the piezoelectric sensor form a cavity,

we adjust the position of the sensor to a high-pressure region allowing easier

detection of the signal. A data acquisition system from National Instruments (NI-

DAQ) is connected to the piezoelectric sensor, reading the variations of voltage

that corresponds to local changes of pressure of the field. The acoustic power

P is proportional to ⟨p2⟩ and the pressure p is proportional to the voltage V .

The information concerning the stabilization of the power of the acoustic source

is extracted from ⟨V 2⟩. The experimental values are fitted using the following

ansatz

V (t) = V0 − V1 (1 − exp(−t/τ)) (2.15)

where V0, V1 and τ are the adjustable parameters. The results of the fit is shown

in Fig. 2.17(b), which gives a relaxation time τ = 10.5 min. In practice we

wait 40 min before starting any measurement as a protocol ensuring a proper

stabilization of the acoustic source.

2.4.1 Power characterization

Another characteristic of interest it the acoustic power P0 delivered by the trans-

ducer. Its measurement is made by implementing radiation pressure experiments

with the aid of an electronic scale whose surface can be considered as an acoustic

perfect mirror. As sound reflects on it, a transfer of linear momentum between

the acoustic wave and the scale, a net force is exerted on the scale, which is
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Figure 2.17: (a) Screen of the oscilloscope during a measurement of the pressure field using a

piezoelectric sensor. The carrier frequency of the acoustic signal is measured to be 100 kHz

with a precision < 1%. (b) Transient dynamics of the quantity associated with the acoustic

power detected by a piezoelectric sensor. Exponential relaxation adjustment (red curve) allows

determining the characteristic transient time needed to achieve steady power emission.

read as a value of mass, m. In a first approximation, neglecting any cavity effect

between the scale and the transducer, the acoustic power is related to the mass

according to the expression:

P0 =
mgc0

2 cos θ
(2.16)

where g is the gravity acceleration, c0 is the speed of sound in the air and θ is

the angle of incidence of the wave respect to the normal to the plane of the scale.

Two approaches are considered: (a) oblique (θ = 45○) and (b) normal incidence

(θ = 0○) for the acoustic source. Also, with the aim at being in conditions as

close as possible to the experimental situations (see chapter 3), 3D printed disk

30 mm diameter is placed on the scale as depicted in Fig. 2.18.

Oblique incidence

The acoustic source is oriented at θ = 45○ incident angle, see Fig. 2.18(a). To

ensure that all the acoustic wave is inscribed in the disk, a distance d = 25 mm

from the transducer is chosen. A simulation of the projected intensity distribution

on the disk is depicted in Fig. 2.19. This leads us to validate that almost all the

acoustic power is collected by the flat mirror. An ae ADAM PW 254 analytical
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θ

Figure 2.18: Sketch of the radiation pressure experiments for total acoustic power measurement

at (a) oblique and (b) normal incidence.

balance with a sensibility of 0.1 mg is used for the mass measurements. The mass

measurements are performed for all the values of power displayed in the power

supply panel of the acoustic transducer. Namely, for P̃0 ranging from 3.5 to 6.5

by 0.1 step. The results are shown in Fig. 2.20(a), for which 10 measurements

are made at each power value. In particular, we show in Fig. 2.20(b) a set of 20

independent measurement at P̃0 = 5, which is the value used in the experiments

discussed in chapters 3 and 4. In the latter case, we find P0 = 25.0 ± 0.7 mW.
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Figure 2.19: Simulation of the acoustic intensity profile in the plane of the scale for the exper-

iment shown in Fig. 2.18(a) with θ = 45○. The white dashed circle corresponds to the rim of

the disk shaped flat mirror having a 30 mm diameter.
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Figure 2.20: (a) Mass as a function of power P̃0. (b) Details of set of 20 independent measure-

ments at P̃0 = 5, which gives P0 = 25.0 ± 0.7 mW.

Normal incidence

Here, we perform the same experiment that above, but using θ = 0○, see Fig.

2.18(b). Importantly, now we have to pay attention to the fact that a cavity forms

between the transducer and the flat mirror. Towards a quantitative description,

Figure 2.21: (a) Mass as a function of the transducer-mirror distance at normal incidence.

Markers refer to measurements and solid curve refers to best adjustment using P0 and a distance

offset as adjustable parameters. (b) Illustration of the calculated convergence regarding the

applied force (here we plot the corresponding effective mass) as a function of the number of

round-trips N between the transducer and the mirror, at d = 25 mm.
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we ensure that there is only interaction between the acoustic source and the

mirror by placing an aperture of diameter 30 mm on top of the disk, without

touching neither the scale nor the flat mirror deposited on it. The results of the

mass measurements are shown in Fig. 2.21 for P̃0 = 5. The observed oscillations as

a function of the distance d between the transducer and the mirror reveal clearly

a cavity effect. Extracting the total acoustic power P0 from these oscillations

thus requires careful analysis.

This is done using BPM simulation, considering multiple reflections between the

transducer (considered as a mirror) and the mirror. We find that, considering a

few “impacts” of the wave on the mirror is enough to obtain a converged value

of the acoustic force exerted on the disk mirror. The simulation results are

shown in Fig. 2.21(b) for a given separation distance d = 25 mm, where the

mass that would correspond to the applied force is plotted a a function of the

number of round-trip N inside the cavity. This information is then used to fit the

experimental data of mass as a function of d, imposing N = 7 in the simulations.

Best fit is obtained for P0 = 27.9 mW.



C H A P T E R 3

Orbital acoustomechanics: a

spinning experiment

In the previous chapter, the two key elements enabling the implementation of

experiments dealing with controlled orbital angular momentum transfer have

been presented, namely, the acoustic source field and the helical mirrors. Let

us recall that the specificity of the present work is to address the case of non-

dissipative orbital angular momentum transfer between sound and matter. In

this chapter, the experimental developments in the framework of freely rotating

helical mirrors are reported. Spinning dynamics experiments is thus the core of

this chapter, starting with qualitative observation before going progressively to

the quantitative assessment of the acoustic radiation torque exerted by sound on

the irradiated helical mirrors.

3.1 Preliminary experiments

3.1.1 Preparing the experimental set-up

For the freely rotating spinning experiment, we use a pool of 37 mm of diameter

and 25 mm of depth, with a transparent plexiglass slab at the bottom working

as an optical window. The helical mirrors are marked with a white dye working

as a tracer. The pool is filled with pure water and the mirror lies at the air-water

interface owing to surface tension. The protocol used to place the helical mirror

at the interface is explained hereafter and summarized in Fig. 3.1:

(a) The pool is filled up to the top using a pipette until a convex air-water

interface is obtained.

(b) The helical mirror is placed next to the pool and gently slid from the side of

the pool while water is removed until the mirror get inside the pool. This
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Figure 3.1: Experimental protocol for mirror placing in the pool. (a) Filling the pool with water

(b) Placing the mirror at air-water interface and inducing the self-centering of the mirror. (c)

Aligning the mirror with respect to the transducer.

process has to be done slowly as the water can wet the upper surface of

the mirror, hence making it to sink. The extraction of water changes the

curvature of the interface, from convex to concave. This eventually leads

to a situation where the mirror is self-centered by capillary effects. Here,

we take care to keep the air-pool-water contact line attached to the rim of

the pool in order to ensure axisymmetry of the system. If the contact line

detaches, the process is restarted from step (a).

(c) The acoustic transducer is placed 0.5 cm above the centered mirror and

aligned on-axis with the mirror, owing to an optical fiber passing through

the central hole of the transducer. Then, the transducer is approached to

the upper surface of the mirror until the transducer and the mirror are

in contact. This defines the origin of the transducer-mirror distance d.

Finally, the transducer is moved up to set the distance of study.

3.1.2 Qualitative observation of spinners

A first set of experiments are run to define the experimental procedures that will

eventually lead to a quantitative assessment. A diagram (not on scale) of the

experimental setup is shown in Fig. 3.2(a). Ten helical mirrors, left- and right-

handed, with 10 mm diameter are used, see Fig. 3.2(b). The acoustic transducer
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is placed at a distance from the mirror of d = 35 mm and we set the acoustic

power to P̃0 = 3.5. The spinning experiments are performed as follow (see Fig.

3.2(c) and 3.2(d)):

� The mirrors is first irradiated by the acoustic wave during 30 s, which is

enough to ensure that a steady rotation is achieved.

� The dynamic of the mirror is then recorded for a time interval corresponding

to 10 full turns, see Fig. 3.2(c) for a sequence of snapshots illustratign one

full turn.

� From the recorded video file, we calculate the correlation coefficients be-

tween the first frame and all the subsequent ones in order to retrieve a

quantitative dynamic trace of the rotational motion. The rotation fre-

quency is then extracted from the Fourier transform of the dynamics of the

correlation coefficient, see Fig. 3.2(d) for a typical data set.

The angular frequency as a function of the topological charge is displayed in Fig.

3.4(a), which does not exhibit the a priori expected linear behaviour. A possible

reason is that, recalling that the mirror and the transducer form a cavity (see

chapter 2), there could be a position-dependent effective power for distinct exper-

iments. Indeed, we have typically a precision of 0.5 mm in the distance between

the transducer and the mirror. Therefore, it is likely that the experiments are

not performed at a constant distance d. To solve this situation, the spinning

frequencies are measured in the range 25 mm < d < 27 mm and fitted with the

function f(d) = A + B cos(kd + C), where (A, 0 < B < 1, C) are adjustable pa-

rameters. The latter expression corresponds to the most simple version of the

effect of multiple reflections between the mirror and the transducer, namely as-

suming interferences between two waves. In practice, this simple picture works

well enough to describe the behaviour of the frequency in the present range of

study as shown in Fig. 3.3. Then we update Fig. 3.4(a) using the maximal

frequency at the closes distance to d = 26 mm. The results are shown in Fig.

3.4(b). The non-linear trend is kept. Still, we note a reasonable symmetry of the

behaviour for ` > 0 and ` < 0, as expected from reverse acoustic radiation torque

with changing the sign of the topological charge of the helical mirror. Therefore,

in the following experiments we focus on ` > 0 only. Moreover, the experiments

show a good reproducibility and a low systematic error. Thus, even though the
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Figure 3.2: (a) Experimental setup to observe the transfer of orbital angular momentum to

a freely rotating helical mirror placed at air-fluid interface. The back side of the spinner is

painted to have naked-eye visualization of the rotation motion. (b) Set of 10 mm diameter

helical mirrors with integer values of ` from -5 to 5. Note that ` = 1 mirrors have two-ramp

design. (c) Snapshots of the rotation of helical mirror with 10 mm diameter and ` = ±2, at P̃0

= 3.5. (d) Typical dynamics of the correlation coefficient between the image at time t and t = 0

and its corresponding frequency power spectra evaluated by fast Fourier transform processing

(FFT).
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Figure 3.3: Measured spinning frequency as a function of d for helical mirrors with integer

topological charge -5 < ` < 5, and for total acoustic popwer P̃0 = 3.5.

details of the observed trend is at first unclear, these preliminary results confirm

the observation of a non dissipative transfer of angular momentum from sound

to matter.

3.2 Towards a quantitative description

Once having experienced the first spinning dynamics, we extended the size of the

used helical mirror to 30 mm diameter in order to better intercept acoustic wave

within the explored range of distance between the transducer and the helical

mirror. A new set of helical mirrors with integer topological charge from ` = 1
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Figure 3.4: (a) Steady spinning frequency as a function of the topological charge ` for helical

mirrors with 10 mm diameter, placed at 35 mm distance from the transducer and irradiated

at a power level P̃0 = 3.5. (b) Same as in (a) but taking the maximum frequency at the closest

distance from d = 26 mm after a study in the range 25 mm < d < 27 mm.

to ` = 5 are fabricated for this purpose and additional two-ramp mirror ` = 1.

The power of the source is now set to P̃0 = 5.0. Measurements of the rotational

frequency is performed from d = 0.5 mm to d = 25 mm by steps of 0.15 mm.

Concerning the video analysis, the extraction of correlation coefficients between

frames is improved by painting half of the base of each mirror in white in order

to have a periodic black-and-white pattern, see Fig 3.5(a). In addition to the

painting, the effective size of video analysis is reduced to a smaller area closer

to the center of rotation, and we increase the sampling rate of the video to

300 frames per second. For each d, 10 full turn rotation are recorded in order

to ensure spinning frequency determination with identical precision using FFT

processing, see Fig 3.5(b) that illustrates a typical result.

3.2.1 The particular case of ` = 1

As said above, the helical mirror with ` = 1 is available with on-ramp and two-

ramp design. As mentioned in chapter 2, only the two-ramp design ensures

on-axis rotation with respect to the center of mass. However, both mirrors are ex-

pected to experience the same transfer of angular momentum, hence they should

spin the same frequency under identical irradiation conditions. The measured

values of frequency as a function of d for ` = ±1 are shown in Fig 3.6 for single-
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Figure 3.5: (a) Cropped snapshots of the rotation of left-and-right-handed helical mirror with

30 mm diameter and ` = 1, at P̃0 = 5. (b) Typical correlation coefficient dynamics and corre-

sponding FFT as in Fig. 3.2.

ramp and two ramp design. In both cases, an oscillatory behaviour is found,

though its modulation depth is substantially larger fro the two-ramp design.

Since oscillating spinning frequency implies cavity effect between the transducer

and the mirror, our observations clearly indicate distinct field distribution asso-

ciated with the reflection of the incident wave as it impinges onto the mirror. In

order to understand more quantitatively what is going on, we perform numerical

BPM simulations and evaluate the total effective power actually acting on the

mirror by taking in account 10 round-trips of the wave between the transducer

and the mirror in both cases. The results are shown in Fig. 3.7(a). In fact, sim-

ulations predict striking different behaviour for the distance-dependent effective

power Peff . Namely, no oscillation is predicted for the single-ramp design while

oscillations with long modulation depth occur for the two-ramp design. This

can be understood by looking a the intensity distribution in the plane of the

transducer after the first reflection of the mirror, see Fig. 3.7(b). Indeed, there is

almost no reflected power bouncing back to the transducer for single-ramp, which
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Figure 3.6: Frequency as a function of the distance for helical mirrors with 30 mm diameter

and ` = ±1, for single-ramp and two-ramp designs, at P̃0 = 5. Experiments in the range of

0.5-6.5 mm and 5-25 mm correspond to two independent experimental set of measurements,

which explains the slight mismatch of the data around d = 5 mm.

prevents cavity effects to take place, in contrast to the two ramp design. Inter-

estingly, the occurrence of the residual oscillations observed experimentally can

be grasped by noting that fabricated helical mirror are never perfectly matching

with the designed spiral step height, as discussed in chapter 2. This is illustrated

in Fig. 3.7(c) where we compare the spinning frequency as a function of d for

` = 1 and ` = 1.1, assuming a 10% deviation for the step height. The corre-

sponding reflected intensity profile in the plane of the transducer for d = 25 mm

is shown in Fig. 3.7(d) . Summarizing, the emergence of oscillations associated

with broken axisymmetry for the reflected field supports our previous qualitative

explanation.

3.3 Influence of the topological charge

The spinning experiments as a function of the distance are performed for the

helical mirrors with integer charge from ` = 1 to ` = 5 at a distance 0.5 < d < 25

mm. The experimental results are summarized in Fig. 3.8(a). The amplitude
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Figure 3.7: (a) Simulations of the normalized effective power impinged on the helical mirror for

` = 1 as a function of d, both for single-ramp and two-ramp designs. (b) Calculated normalized

intensity distribution of the field reflected from the mirror in the plane of the transducer (see

its contour indicated by dashed circle taking d = 25 mm). (c) Same as in (a) but for ` = 1.1.

(d) Same as (b) but for ` = 1.1.

of the oscillations for the spinning frequency as a function of d decreased as d

increased. Eventually, the frequency settles around a constant value between

20 mm and 25 mm. Therefore, we choose to report on the dependence on the

topological charge by taking the mean and standard deviation values of frequency

determined from the latter interval for d. The corresponding results of frequency

as a function of the topological charge are shown in Fig. 3.8(b).

3.4 Determination of the acoustic torque

3.4.1 General consideration

Now that we have access to the spinning frequency as a function of `, a model is

needed to extract a measurement of the acoustic torque from the experimental

data. As sound reflects off the helical mirror, its amplitude acquired a pure
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Figure 3.8: (a) Spinning frequency as a function of distance from the transducer for integer

topological charges 1 ≤ ` ≤ 5 in the range 0.5 − 25mm for 30 mm-diameter helical mirrors and

power P̃0 = 5. The shaded area refer to the range over which is made an average for reporting

on the dependence of f on `. (b) Experimentally measured spinning frequency f as a function

of ` according to the data presented in (a).
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phase factor exp(−i`ϕ) by considering the helical mirror as a pure helical phase

mask, which assumes ideal helical morphology and neglects diffraction effects

over spatial scales of the order of the wavelength (let us recall that hs ∼ λ).

The conservation of the total angular momentum for the “sound-matter” system

implies that an acoustic torque Γ⃗ = `P
ω z⃗ is exerted on the helical mirror.

With the aim at measuring the acoustic torque, we rely on the equation of motion

of the rotating helical mirror, whose time-dependant angular frequency dynamics

Ω(t) = dϕ
dt is described by the equation:

J
dΩ

dt
= Γac + Γvisc (3.1)

where Γ⃗visc = Γviscz⃗ is the viscous drag torque exerted in the rotating object, whose

value Γvisc depends of the sign of the topological charge. At steady state, the

acoustic radiation torque and the viscous torque are balanced, namely, Γac+Γvisc =

0. In other words, if we are able to measure the viscous torque, we are measuring

the acoustic one. To do so, an option consists in describe quantitatively the

viscous torque.

The simplest approach is that neglecting inertial effects, which implies that the

Reynolds number Re = ΩD2ρ
4η is small enough, where η is the dynamic viscosity of

the surrounding fluid and ρ its density. In that case, Γvisc is a linear function of

Ω according to

Γvisc = −
16

3
ηR3Ω (3.2)

which is an analytical formula taken from the case of infinitely thin disk immersed

in an unbounded fluid. Note that the latter formula neglects the influence of the

upper half-space due to the high contrast of viscosity between the air and the

fluid. In the case of air-water interface we have that ηliquid/ηair ∼ 7 × 102.

Using the value of power obtained in chapter 2, namely 20.5 mW, we obtain

the prediction shown in Fig. 3.9 by the red markers. There is an important

quantitative mismatch with the experimental data. In fact, we can understand

the latter once the Reynolds number is evaluated since we find Re ∼ 300. Never-

theless, even though the Stokes approximation is not valid, we can benefit from

the analytical derivation of the inertial correction to the viscous torque made by

Ovseenko [41]. Namely, the first-order correction expresses as:

Γnl
visc = −

16

3
ηR3Ω(1 + αRe2) (3.3)
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Figure 3.9: Frequency f as a function of topological charge ` for experimental values and

theoretical values of frequency derived from a Stokes model for the viscous torque.

where α is an adimensional parameter that depends to the geometry and bound-

ary conditions of the system. According to Ovseenko, we have in our case

α ≃ 7 × 10−4. In order to test such inertial correction, we perform a non-linear

fitting of the experimental values by balancing Eq (3.3) with the acoustic torque,

say

Γnl
visc(α,Ω,Ω

3) +
`

ω
Peff = 0 (3.4)

by setting Peff and α as adjustable parameters. This is illustrated in Fig. 3.10

where the result of the non-linear fitting is shown as the blue curve, which gives

α = 0.14×10−4 and Peff = 10.1 mW which corresponds to a value of acoustic power

smaller than the one directly measured.

3.4.2 Viscous torque corrections: a comment

Here we would like to stress that the observed non-linear dependence of the spin-

ning frequency as a function of the topological charge is not particular to our

experiments. Indeed, this has also been reported by Demore et al. [37] when

measuring the transfer of angular momentum by absorption of acoustic vortex

beam, see Fig. 3.11)(a), and more recently by Li et al. [38], see Fig.3.11(b) . In

the article by Demore et al., the non-linearity is attributed to an experimental

drawback leading to a decrease of the incident beam power as the topological

charge increases. However, if we consider from their experiments the lowest ro-
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Figure 3.10: Fitting of the experimental data shown in Fig. 3.9 according to the balance

between the acoustic torque and the corrected viscous torque given by Eq. (3.3).

tation frequency expected from the Stokes approximation given a unit charge

incident vortex, a minimal absorbed power of 20 W, the 550 kHz carrier fre-

quency and the 10 cm diameter absorbing disk, this leads to αRe2
∼ 105. We

therefore point out here that a likely explanation of the unexpected non-linear

trend observed experimentally relies in the stray deviation to the Stokes approx-

imation. Nevertheless, we note that Demore et al. were able to be quantitative

at the end of their study, by making observations at the early stage of the dy-

namics where initial corrections of the viscous torque were not yet fully at work.

In the case of Li et al., their attempt to measure experimentally the acoustic ra-

diation torque is based on the Stokes approximation. Noting that they observed

Figure 3.11: (a) Angular momentum as a function of the topological charge for different acoustic

power values. (b) Torque as a function of incident power. Adapted from [37] and [38].
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typically 10 Hz rotation frequency with 5 mm-radius absorbing objects, one gets

αRe2
> 10. Therefore, a non-linear correction to the viscous torque must be taken

in account for a quantitative attempt to measure the acoustic torque, which was

unfortunately not done by the authors.

3.5 Improving the experimental implementation

3.5.1 Upgrading experimental setup

The previous section has shown the necessity to pay attention to the Reynolds

number while modelling the viscous drag towards a quantitative assessment of

the acoustic radiation torque from spinning experiments. From the experience

learned during previous experimental attempts, a new round of improvements

for the experimental setup has been made. Namely:

� Contact line control

In the previous experimental setup, the helical mirror was capillary trapped

and centered in the middle of the pool owing to the meniscus formed by

the edges of the pool and the edge of the mirror. We realized that the

contact line at the edge of the mirror presented an irregular pattern that

depends of the topological charge. As the disk starts to rotate, the broken

axisymmetry prevents from a safe modelling using axysimmetric Stokes

flow. In order to solve this situation, the helical mirror is now placed on

a circular pedestal of 32 mm diameter and 1 mm of thickness. Therefore,

when the system ‘mirror + boat’ is placed at the air-water interface, the

contact line attaches at the rim of the boat, hence ensuring an axisymmetric

fluid interface environment.

� Taming acoustic reflection feedback from air-water interface

As the accurate modelling of the observed effects implies a good knowledge

of the acoustic field, it is relevant to minimize any influence of unwanted

reflections by optimizing the design of the setup. Here, we improve the

system by placing a circular aperture with 32 mm diameter at the top of

the pool in order to suppress sound reflection from the curved air-water

interface around the mirror that could reach the transducer.
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� Trade-off between spinning frequency and Stokes approximation

In order to reduce the value of αRe2, a mixture of water and glycerol is

used instead of pure water. Adjusting the fraction of glycerol added to the

water, the density and the viscosity are modified, which allows a fine control

of the value of Re. A set of experiments with different glycerol-water ratios

is performed to define optimal operation conditions.

� Taming Fabry-Perot modulation of the spinning frequency

As we illustrated Fig. 3.6, the cavity effects between the mirror and the

transducer may lead to substantial modulation of the spinning frequency

depending on the distance between the mirror and the transducer. This is

a drawback in terms of reproducibility between different events due to our

limited precision when setting the distance d. However, we learned from

previous attempts that the modulation depth of the d-dependant spinning

frequency becomes fairly negligible at d ∼ 25 mm. Therefore, further ex-

periments are performed imposing d = 25 mm.

� Motion tracking sensibility

To improve the sensibility of the detection of the spinning angular dynamics

a small mark is painted at the bottom of the boat, at its rim, see Fig. 3.12.

A sketch of the improved experimental setup is shown in Fig. 3.12. Before

reporting on the results obtained with this upgraded approach, hereafter we first

present a study from which we eventually choose an appropriate glycerol-water

mixture.

3.5.2 Defining the appropriate Glycerol-Water mixture

In order to safely neglect the role of inertial effects on the viscous drag torque,

we are searching a condition where αRe2
≪ 1 taking our evaluation α ∼ 10−4.

Experimentally, this can be tested by measuring the spinning frequency for var-

ious glycerol-water mixtures. Since the determination of Re also requires the

knowledge of ρ and η of the fluid, we extracted them from the empirical formulas

of Cheng [42]. The values of density and viscosity for different weight fractions of

glycerol in water at experimental laboratory conditions of 1 atm of pressure and

a temperature of 22○ are depicted in Fig. 3.13. The red dots in Fig. 3.13 corre-
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Figure 3.12: Sketch of the improved experimental setup. An aperture of 32 mm of diameter is

placed on top of the pool and aligned with the mirror. A small marker is painted to the boat

of the mirror to follow the angular displacement of the disk.

spond to the glycerol %wt values chosen for the spinning frequency experiments.

These experiments are performed with a helical mirror with ` = 4 placed at a dis-

tance of d = 25 mm from the transducer and incident power P̃0. The results are

summarized in Fig. 3.14. Obviously, larger quantities of glycerol is preferable,

however, this comes with a drastic reduction of the spinning frequency, which

is detrimental for the sake of a robust measurement when considering extensive

experimental investigations. Therefore we choose 80%wt glycerol as a practical

trade-off for our investigation at d = 25 mm.

Figure 3.13: Solid lines: density and viscosity for different ratios of glycerol-water mixtures

from [42] . Red dots: values used in the experiment.
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Figure 3.14: (Left) Experimental results of spinning frequency for different mixtures of glycerol

%wt (see text for experimental conditions). (Right) Correction coefficient αRe2 associated to

the experimental values of frequency, accounting for the actual values of density and viscosity

according to Fig. 3.13.

3.6 Quantitative measurements: first attempt

A set of 5 experiments are performed at a distance d = 25 mm, one for each

topological charge. The experiments consists in irradiating the mirror at constant

power P̃0 = 5 for 15 min and measurement of spinning frequency is made at steady

state. Experimental results are shown in Fig. 3.15. Observed rotational motion

is robust and almost free from noise as illustrated in 3.15(b) that shows a typical

circular motion of the marker at the bottom of the helical mirror. These results

allow evaluating the acoustic torque via Stokes model via the relationship, see

Fig. 3.16(a) (red markers)

ΓStokes
ac =

32

3
πηR3f (3.5)

Fitting curve obtained according to ΓStokes
ac = `P

ω using P as the single adjustable

parameter gives P Stokes = 7.8 mW, see dash line in Fig. 3.16(a). The obtained

power value is substantially different from the expected power of 14.8 mW from

the analysis made in in chapter 2. In particular, we noticed that at d = 25

mm corresponds to a minimum of the effective power experienced by the mirror.

The obtained power mismatch invites us to question the validity of the Stokes

modelling, keeping in mind that the experimental system does not correspond to

the criteria of an unbounded fluid.

Therefore, in order to solve this issue, we performed a model-free approach in
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R

Figure 3.15: (a) Photo of helical mirror from behind showing the tracker as a white dot at a

distance R from the center. (b) Typical trajectory of the marker (grey) during the rotation of

the mirror adjusted by a circle (black). (c) Spinning frequency as a function of ` .

the Stokes regime, by writing

ΓFree
ac = C⟨Ω⟩ (3.6)

where ⟨Ω⟩ is the steady angular spinning frequency and C is the viscous coeffi-

cient. In this case, the angular spinning frequency is extracted from the angu-

lar displacement of the marker printed on the back side of the mirror, see Fig

3.16(b). From Fig. 3.16(b), the corresponding long-term linear dependency of

the azimuthal angle referring to the angular position of the marker, emphasizes

the stationarity of the experiment, that is to say a constant value of power de-

livered by the transducer as well as a stable air-water interface. From the slope

of the linear fitting of the steady angular displacement, we extract ⟨Ω⟩. The

viscous coefficient is extracted from the study of the relaxation dynamics once

the irradiation is turned off at t = t0. The relaxation dynamics derived from Eq.

(3.1) is expressed as

ϕ(t) = Ω(t0)t −Ω(t0)τ [1 − e−t/τ ] (3.7)

where τ = J/C the characteristic relaxation time. We evaluate C by fitting the

data for over 1 s duration using Ωs and τ as adjustable parameters, noting that

J is measure independently, see Fig. 3.16(b) dark thin curve. This was done

for 5 independent experiments for each ` from 1 to 5 for two distinct pedestal.

For each experiment, the helical mirror is replaced according to the protocol

described earlier. The evaluated results of acoustic torque derived from a model-

free viscous drag is shown in Fig. 3.16(a) black markers. Noticing that Stokes
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model and model-free analysis shows good agreement for ` = 1 to 4. For ` = 5, the

behaviour between the two models presents differences in terms of the predicted

torque, which could be associated to the fact that the experiments were made

in one-shot and no statistics were performed. Nevertheless, in the model-free

calculation the trend associated to the linear behaviour of the acoustic torque

as a function of ` is preserved. Just like in the Stokes model, a linear fitting is

preformed setting P as fitting parameter. The value of power associated in this

case corresponds to PFree = 8.9 mW. Therefore, we still face the issue of power

mismatch that we do not understand.

Figure 3.16: (a) Experimental values at 85 glycerol %wt of acoustic torque extracted from

Stokes model (red marker) and model-free (black marker), and linear fitting for each model.

The five experiments were performed in one-shot, so no statistics were performed. The values

of power P extracted from the linear fitting corresponds to P Stokes = 7.8 mW and PFree = 8.9

mW. (b) Typical relaxation dynamics of the angular position of the heclical mirror, where t = t0
refers to the time at which the acoustic source is turned off. Thick gray curve: experimental

data. Dark thin curve: fit giving access to the ratio C/J . Data refers to ` = 5 helical mirror.
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3.7 Quantitative measurement: final attempt

3.7.1 Improvement of experimental setup

In order to drastically get rid of undesirable cavity effects, the most convenient

option is to increase d, which is made at the expense of the power intercepted by

the helical mirror. The corresponding drawback regarding ensuring the reduction

of the spinning frequency is mitigated by reducing the viscosity, while preserving

αRe2 sufficiently small. In order to help the decision, we performed simula-

tion of the power P (d) intercepted by the helical mirror and the corresponding

power P ∗(d) intercepted by the transducer. The results are summarized in Fig.

3.17 . From the simulation, we choose d = 100 mm as a practical trade off be-

tween maximizing the power intercepted by the helical mirror and minimizing

the Fabry-Pérot cavity effect between the mirror and the transducer, which is

favoured at larger distances. This is illustrated in Figs. 3.17(a) and 3.17(b)

that respectively display the dependence in power P on the distance d and the

corresponding P ∗ of the reflected field intercepted by the transducer. This was

calculated by using BPM of the propagated acoustic field from the transducer,

calculating the power P (d) = ∫ I(d)dS in the area S of the helical mirror for

different distances of d. Each value of P (d) was normalized to the power in

the plane of the transducer P (0). The calculations of P ∗ where performed by

calculating the intensity field of the reflected acoustic beam in the plane of the

transducer, integrating in the area of the transducer and normalizing to P (0).

The (x, y) meridional cross-section of the calculated normalized intensity distri-

bution Ĩ = ∣A(x,0, z)∣2/maxx,y[∣A(x,0, z)∣2] of the incident and reflected field for

d = 100 mm are shown in Figs. 3.17(c) and 3.17(d). In particular Fig. 3.17(d)

allows qualitative understanding of the dependence of P ∗ on ` displayed in Fig.

3.17(b). Indeed, the doughnut intensity profile of the reflected vortex wave leads

to a drastic reduction at short distance (d ≲ 10 mm) of the cross-section of the

field with the transducer when using an helical mirror (` ≠ 0) instead of a flat

one (` = 0) This effect is strengthened as ` increases as expected from the fact

that the area of the vortex core region increase with ∣`∣. For intermediate dis-

tance (10 ≲ d ≲ 100 mm), interference between the field contributions from the

flat mirror and the helical mirror leads to non monotonous behaviour. This is

supported by the case of ` = 1∗ referring to an helical mirror of infinite extension,

which exhibits no power oscillation. Finally, the behaviour at large distances
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Figure 3.17: (a) Power P intercepted by the helical mirror placed as a function of its distance d

from the transducer. (b) Corresponding power P ∗ of the wave reflected field intercepted back

by the transducer for 0 < ` <5 and ` = 1′ corresponds to two-ramp ` = 1. Also, ` = 1∗ refers to

helical mirror with infinite extent. Both P and P ∗ are normalized to the total output power P0

of the transducer. (c) Normalized intensity distribution of the incident wave in the meridional

plane (x, z) as a function of d. (d) Same as panel (c) for the reflected field with ` = 2.
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(d ≲ 100 mm) is dictated by the reflection from the outer plate leading to a

nonzero on-axis intensity, see 3.17(d), and an asymptotic behaviour independent

of ∣`∣. From Fig. 3.17(a) we can see that the power at d = 100 mm corresponds to

P (100mm) = 0.37P0. As we are working in the Stokes regime, it is expected that

at the value of rotational angular frequency to be affected reducing the possibility

of detection. To solve this issue, a mixture of glycerol of 65 %wt is used as it

has shown to be a good compromised between angular frequency and viscosity

to keep the condition of Re ∼ 1.

For this novel set of experiments, two further improvements are brought, see

Fig. 3.18(a). The first modification consists in improved reproducibility in the

air-water-spinner surface. This is done by extracting water from the pool until

the upper face of the helical mirror aligns with the upper surface of the pool.

Another benefit of this method is that the measurement of the distance from the

transducer to the disk can be done directly with a ruler placed at the side of the

pool, without touching the mirror. The second modification consists in a new

way to align the transducer with the center of the mirror. In previous exper-

iments, the centering was performed by using an optical fiber passing through

the hole at the center of the transducer. However, after a few centimeters, the

optical fiber is no longer straight enough due to its coiled packing. This is solved

by illuminating the transducer hole with a white light source making a cone of

light that illuminates the helical mirror. As the cone of light and the transducer

have a common axis, by centring the cone of light with the helical mirror we

ensure the alignment of the mirror with the transducer. Finally, to define the

instant t0 at which the acoustic source is blocked, an visual element that appears

in the video while the source is blocked is introduced to the experiment, see Fig

3.18(b).

3.7.2 Acoustic torque measurement

A set of 5 independent experiments per helical mirror are performed using two

boats of 30 mm diameter. The use of another boat was to show that the ex-

perimental values of acoustic torque are independent to the boat used. For each

experiment, the helical mirror is removed and replaced according to the proto-

col described earlier. The experiment consists in recording the steady state and

relaxation dynamic of the mirror while irradiated at power P̃ = 5. From each
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Figure 3.18: Third modification of the experimental setup protocol. (a) A white light source

is used to illuminating through the hole of the transducer up to the helical mirror. The center

of the light cone associated with the center of the transducer is aligned with the axis of the

helical mirror to ensure alignment between transducer and helical mirror. (b) A needle (that

moves with the beam blocker) was placed between the pool and the camera, working as a visual

system that indicates the time t0 of the blocking of the acoustic source and the beginning of

the relaxation. Despite being out of focus, it is easily distinguishable.

experiments, values of C, ⟨Ω⟩ and Ω(t0) are extracted in the same manner as

in the case of d = 25 mm. Example of steady state and relaxation dynamics

for ` 1 to 5 are shown in Fig. 3.19 Since the steady rotation and the relaxation

dynamics are associated with distinct irradiation conditions, we evaluated the

acoustic torque from irradiation-free quantities, namely, Γ = CΩ(t0) noting that
Ω(t0)

Ω = 1.08 ± 0.18, see Fig. 3.21 to see the ratio of Ω(t0)
Ω for different topological

charges. The results of theses 50 independent experiments are shown as black

circle marks in Fig. 3.21(b). The results are generalized to half-integer topolog-

ical charges ` = n − 1/2 with n an integer from 1 to 5, which is done by using

an n-step design with n-dependent step height hn =
λ
2
(1 − 1

2n
). Here again, five

independent experiments are performed for each value of `. The corresponding

results of these 25 independent additional experiments are shown as blue squares

in Fig. 3.21(b). Noteworthy, non-integer values of ` do not corresponds to the

case of pure mode vortex conversion as originally discussed with Allen et al. This

is illustrated in Fig. 3.20, which corresponds to intensity and phase at the far

field of acoustic waves reflected from the helical mirrors with topological charge

` = 1/2, 1, 3/2 and 2 discarding the outer contribution reflected off the outer

flat mirror. Indeed, axisymmetrical doughnut-shape intensity profile and on-axis
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Figure 3.19: Experimental values and fitting of angular displacement as a function of time at

steady and relaxation state of helical mirror of ` = 1-5.
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Figure 3.20: Calculated far-field intensity and phase distribution of the wave reflected off from

an helical mirror with topological charge ` = 0.5,1.0,1.5 and 2.0.

phase singularity with topological charge `′ = −` is obtained for integer ` while a

constellation of singularities with charges ` = ±1 emerges otherwise. Quantitative

agreement is assessed recalling the expression Γ = `P
ω , which holds for non integer

values of ` as well. Linear fit of the data displayed in Fig. 3.21(b) using P as

adjustable parameter gives P = 4.0 mW, which corresponds to a value of power

lesser than the one measured.

At this point of the experiment, the reason of this mismatch of power was still

a mystery. Knowing that the protocol of extraction of C and Ω(t0) was robust,

we suspect in the experimental setup used for measuring radiation pressure at

normal incidence. For that case, we decided to re-do mass measurement investi-

gations by changing the equipment. Indeed, previous scale (AE Adam, PW 254)

was sometimes giving null-mass measurement as sound irradiation of the test-

disk is switched on, which were discarded when collecting a set of independent

measurements leading to m = 5.8 ± 0.3 mg. We now use another scale (Denver

Instrument, M-220) that also has a 0.1 mg precision. The disk, a -diameter disk

is placed on a pillar at 10 cm distance from the transducer (see sketch below).

Any spurious wave contribution that does not intercept the disk is discarded by

using a blocking plate (few mm-thick Plexiglass plate with a hole having a diam-

eter slightly larger than the diameter of the pillar), see Fig. 3.22. We measure

m = 5.0 ± 0.2 mg by repeating 10 times the protocol illustrated in Fig 3.22(b).

Namely,
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Figure 3.21: (a) Ratio of Ω(t0) and ⟨Ω⟩ as a function of the topological charge. (b)Acoustic

torque as a function of its topological charge. Markers: experimental data. Solid line: linear

fitting.

1) zeroing with no sound irradiation on the disk using a plastic beker

2) measurement

3) check of non-hysteresis once sound irradiation is off

Noting that the helical mirrors have a 30mm diameter, the sought-after acoustic

power P expresses is P =
mgc

2
(30

32
)

2
= 7.5 ± 0.3 mg. We also performed an ad-

ditional experiment to measure the total power P0, which consists to irradiate

the scale at 45○ incidence angle, by placing the transducer close enough the scale

to ensure that all power is reflected, see Fig. 3.22(c). Measured mass m = 10.4

mg gives P0 =
mgc
√

2
= 24.3 mW. Then from the simulations shown in Fig. 3.17,

we deduce P = 0.37P0 = 9.0 mW. Note that this method is appropriate for an

absolute measurement of P0, however, it is less recommended for the estimation

of P since it relies on propagation simulations while the measurement at normal

incidence described above is a direct one.



68 Chap 3 - Orbital acoustomechanics: a spinning experiment

Figure 3.22: Experiment of radiation pressure at d = 10 mm for irradiation at normal incidence

and 45○ using a electronics scale. (a) Sketch of experiment. (b) Snapshots of the experimental

measurements at normal incidence. (c) Photo of measurement at 45○.

3.8 Discussion of the power mismatch between

theory and experiment

The discrepancy between the power P evaluated from the acoustic torque and

force experiments calls for several comments. First, we note the possibility that

the acoustic transducer emits power at frequencies other than 100 kHz is neither

affecting the acoustic radiation force, which does not depend on the frequency ,

nor the acoustic radiation torque since the direct scaling Γ ∝ ω−1 is compensated

by the fact that ` ∝ λ−1 ∝ ω. Second, we recall that used expression Γ = `P /ω

is only valid in the paraxial approximation while any helical mirror a priori

does not behave in a paraxial manner in its center as the spiral slope angle

β(r) = arctan[`h/(2πr)] diverges as r → 0, r being the distance from the center.

A quantitative estimation of its impact on the total torque exerted on an helical
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mirror is obtained from the basics of the continuum mechanics, which gives

Γ =
4π

c ∫
I(r) sinβ(r) cos2 β(r)r2dr (3.8)

Here, accounting for the acoustic intensity profile given by the simulations, we

obtain that the acoustic torque experiment gives up to ∼ 7% underestimate of the

power P with respect to the paraxial framework. Third, the non-ideality of the

fabricated helical mirror, whose height is not independent on r in practice. For

further discussion check chapter 2. Fourth, we note that the effect of the acoustic

rotational streaming phenomenon, which corresponds here to the rotating airflow

induced by the dissipation of the acoustic vortex beam in the air, can be safetly

neglected here since the main source of the viscous torque comes from the liquid

due to a large contrast of viscosity (ηliquid/ηair) ∼ 7 × 102.

These comments being said, we admit that do not have a definitive explanation

for the observed acoustic power mismatch.

This study of the direct measurement of the transfer of angular momentum by

non-dissipative vortex mode has been accepted in November 2019 for publication

in Physical Review Letters journal with the title “Direct mechanical detection

and measurement of wave-matter orbital angular momentum transfer by non-

dissipative vortex mode conversion”.
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Orbital acoustomechanics: a

torsional pendulum experiment

In the previous chapter, helical mirrors have shown their effectiveness as non-

dissipative acoustic elements for experimental study of the transfer of orbital

angular momentum. This was done in the particular case of spinning experiments

under constant irradiation. In this chapter we explore the situation of time-

dependant excitation, with the aim at realizing a mechanical oscillator driven

by orbital angular momentum transfer. For this purpose we choose a torsional

pendulum framework, where the helical mirror is placed at the tip of a wire.

Under constant irradiation, the torque exerted on the mirror twists the wire up

to an angle at which the restoring elastic torque and the acoustic radiation torque

are balanced. When periodic time-dependent irradiation is used, a resonant

mechanical behaviour can be reached, and leads to an enhanced amplitude of the

angular displacement with respect to the static case. Such a study is performed

for various topological charges of the helical mirror. As discussed in the first

chapter, torsional pendulum approaches have already been implemented in the

earliest experiments of the dissipative transfer of orbital angular momentum of

sound to matter [33, 34, 35]. However, in all cases, a discrete set of acoustic

sources (namely, loudspeakers operating in the audible domain) emitting constant

acoustic waves have been used. Therefore, the gain expected from a mechanical

resonance has never been exploited so far. Our approach thus goes beyond every

of the latter aspects, making it one of a kind. In this chapter we cover the design

of the pendulum, the report of our first measurements both in the static and

resonant cases, and improved design and instrumentation towards quantitative

measurements of non-dissipative acoustic radiation torque.
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4.1 Theoretical background: predictions

The torsional pendulum is modelled as a mass-less circular cross-section wire

holding the helical mirror on which the torque is applied. The dynamics of the

angular displacement of the torsional pendulum is modelled as a forced damped

linear oscillator

Jθ̈ + γθ̇ + κθ = Γ (4.1)

where θ is the angular displacement (see Fig. 4.1), J is the moment of inertia of

the helical mirror along the direction of the wire, γ > 0 is the damping coefficient,

κ > 0 is the torsion constant and Γ⃗ = Γz⃗ is the external torque applied to the

system. In the case of a static torque Γ = Γstat, the angular displacement is

θstat =
Γstat

κ
(4.2)

An estimate of the static angular displacement can be obtained from the knowl-

edge acquired in the chapter 3. Indeed, κ is related to the natural frequency

Ω0 of the oscillator via the relationship Ω0 =
√
κ/J and our acoustic source can

deliver an acoustic torque of the order of 10 nNm, see Fig. 3.21(b). Therefore,

taking for J a typical the value of our mirrors, namely, J ∼ 10−7 kg m3, we can

estimate θstat as a function of the resonance frequency. The results are shown in

Fig. 4.2(a).

In the case of a biased harmonic external torque, Γ(t) = Γstat+Γdyn sin(Ωt) where

Ω is the modulation angular frequency and Γdyn corresponds to the amplitude of

the modulated torque, the dynamics of the angular displacement is expressed as

θ(t) = θstat + δθ(Ω̃) sin(Ωt + φ(Ω̃)) (4.3)

Figure 4.1: Diagram of a torque pendulum consisting on a wire holding an helical mirror. The

axis orientation is oriented in the frame of reference of the helical mirror.
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where we introduce the amplitude of the angular oscillation

δθ(Ω̃) =
Γdyn

JΩ2
0

√

(1 − Ω̃2)2 + (
γ
JΩ0

Ω̃)2
(4.4)

and the reduced angular frequency Ω̃ = Ω/Ω0, and the phase

φ(Ω̃) = arctan
⎡
⎢
⎢
⎢
⎣

γ

JΩ0

(
1

1 − Ω̃2
)
⎤
⎥
⎥
⎥
⎦
+ φ0 (4.5)

where φ0 is a constant. The maximal angular displacement amplitude δθmax is

reached at the resonant angular frequency

Ωr = Ω0

¿
Á
ÁÀ1 −

1

2
(
γ

JΩ0

)

2

(4.6)

In the limit (
γ
JΩ

)
2
≪ 1, which is satisfied in our studies, Ωr ≈ Ω0 and we have

δθmax =
Γdyn

γΩ0

(4.7)

An estimate of the expected value of δθmax therefore implies the knowledge of

the order of magnitude of the loss parameter γ. For a start, let us consider the

viscous torque of a rotating disk, as discussed in chapter 3. This leads us to

define, within the Stokes approximation and considering air as the external fluid

around the moving disk, the following external loss contribution

γext = (32/3)ηR3 (4.8)

where η = 2×10−5 Pa s is the dynamics viscosity of air and R is the radius of the

helical mirror. The validity of above equation implies that the inertial correction

to the viscous torque can be neglected, namely, αRe2 ≪ 1 with α ∼ 10−3 according

to Ovseenko [41] and α ∼ 10−4 according th our investigation reported in chapter

3. To verify this assumption, we note that all our experiments are made for

resonant oscillating frequency up to 100 Hz. This leads typically to αRe2 values

up to 1 in the worst case scenario. Therefore, there is no dramatic need for

refining the Stokes framework in order to carry out a first evaluation of γext.

Still, we note that there is another source of loss in our system. Indeed, the wire

behaves as a viscoelastic medium whose losses cannot be neglected a priori. In

order to ascertain the last statement, let us recall the experiment of the torsional
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Figure 4.2: (a) Static angular momentum θstat as a function of the natural frequency of the

oscillator. (b) Ratio γext/γint as a function of the natural frequency. (c) Maximum angular

displacement at resonance as a function of the natural frequency. (d) Normalized resonance

curves for the angular displacement. All these plots are calculated using the following typical

parameter that illustrates well the situation we have experimentally explored: G′ = 1 GPa,

G′′ = 0.1 GPa, J = 10−7 Kg m3, Lw = 50 mm, Dw = 1 mm and R = 15 mm

constant of a cylindrical wire of length Lw and diameter Dw fixed at one end. It

expresses as

κ =
πD4

w

32Lw

G (4.9)

where G is the shear modulus. However, G is complex for a viscoelastic medium.

Namely, G = G′ + iG′′ with (G′,G′′) > 0. Therefore, in Eq. (4.1) one has κ =
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πD4
w

32Lw
G′ = κ′, while an extra contribution adds to γext according to γ = γext + γint

with

γint =
κ′′

Ω
(4.10)

Since for our resin material we have typically G′ ∼ 1 GPa and G′′ ∼ 0.1 GPa

(these values are actually coming out from our measurements, as discussed later

in this chapter) we can estimate the ratio between the external and internal

contributions to the losses. This is summarized in Fig. 4.2(b) where γext/γint

is plotted as a function of Ω0. It turns out that γint dominates over γext in the

range of frequency of interest, and therefore γext is neglected in what follows.

As a result, we get

δθ(Ω̃) =
G′′

G′
δθmax

⎡
⎢
⎢
⎢
⎢
⎣

(1 − Ω̃2)2 + (
G′′

G′
)

2⎤
⎥
⎥
⎥
⎥
⎦

−1/2

(4.11)

with

δθmax =
Γdyn

κ′′
(4.12)

In Fig. 4.2(c) we plot δθmax as a function of the resonance frequency for Γdyn = 10

nNm and the normalized resonance curve for the angular displacement angular

displacement as is shown in Fig. 4.2(d).

4.2 Preliminary experiments

4.2.1 Definition of a pendulum design

It is clear from Figs. 4.2(a) and 4.2(c) that both static and dynamic angular

displacement are favoured by small values of the natural frequency. Since our

acoustic power supply specifications data sheet mentions minimal modulation

frequency of 10 Hz, we prepared a first design for F0 = 10 Hz, with F0 = Ω0/2π.

Also, we decided to work with a wire of length Lw = 50 mm and a base of height

HB = 1 mm and diameter DB = 30 mm, on which the helical mirror is placed,

see Fig. 4.3(a). The diameter of the wire is thus obtained from the expression

Ω0 =
√
κ′/J with G′ = 1 GPa as a guess value of the shear modulus [43]. The

value of resonance frequency as a function of the radius is illustrated in Fig.

4.3(b) and we choose Dw = 1 mm, which corresponds to a resonance frequency

of 11.7 Hz.
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Figure 4.3: (a) Definition of the geometrical parameters of the torsional pendulum, constituted

of three parts: a pedestal, a wire and a base. The helical mirror can be placed and removed

on-demand at the bottom of the base using double-side tape. (b) Resonance frequency F0 as

a function of the diameter Dw for a wire of length Lw = 50 mm and taking moment of inertia

J = 10−7 kg m3 for the “base+mirror” system.

4.2.2 3D printing: design and fabrication

The initial design of the pendulum was thought as a monolithic “pedestal +

wire” structure in order to keep the wire and the pedestal perpendicular to each

other by construction, see Fig. 4.3(a). Also, we include a pedestal of height

HP = 1 mm and diameter DP = 25 mm at the other end of the wire. By doing so,

the pendulum can be easily fixed to a 6-axis mirror mount, which ensures fine

tuning of the orientation and position of the pendulum. The modelling of the

pedestal-wire and base structures are described as follows, see Fig. 4.4:

(a) Using the function cylinder, we design the pedestal with height HP = 1 mm

and diameter DP = 25 mm .

(b) Using cylinder, we design the wire (red) with length L′w = 50.3 mm and

diameter Dw = 1 mm that is placed perpendicular to the disk surface of the

pedestal and centered with it. Here, we choose L′w = Lw + 0.3 mm because

the wire will be inserted into the base, as detailed below.

(c) A smooth transition from the pedestal to the wire is made in order to ease

the merging of the pedestal and the wire at the moment of 3D printing.

This is done by selecting the option fillet edge to generate a connector

surface between the pedestal and the wire.
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Figure 4.4: Design of pedestal-wire and base structures in AutoCAD. (a) Definition of the

pedestal of height HP = 1 mm and diameter DP = 25 mm. (b) Placing the wire with length

L′w = 50.3 mm and diameter Dw = 1 mm at the center of the pedestal. (c) Connecting the

surface of the pedestal with the wire. (d) Defining the base with height HB = 1 mm and

diameter DB = 30 mm that corresponds to the diameter of the helical mirrors. (e) Preparing

the base to host the wire of the pendulum, a small cylinder of 0.3 mm depth and 1 mm diameter

is drawn inside the base. (f) Removing the part corresponding to the latter cylinder defines

the hole.

(d) The base is designed using cylinder, selecting a height HB = 1 mm and a

diameter DB = 30 mm.

(e) In order to prepare the junction of the pedestal-wire with the base, we

design a hole with 1 mm diameter and 0.3 mm depth at the center of the

base where will be inserted, and glued, the tip of the wire.

(f) Using the function subtract and selecting the base and the latter cylinder

placed at the center of the base, a hole is formed.

After the design of the pedestal-wire and the base, both objects were sent in-

dependently for 3D printing. These two items are connected according to the

following process, see Fig. 4.5:
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Figure 4.5: Connecting the pedestal-wire with the base. The pedestal-wire is hold by a 6-axis

mirror mount and translated towards the base with a translational stage. The wire is inserted

into the hole of the base and permanently fixed owing to a droplet of glue.

(a) First, the pedestal-wire item is fixed on a 6-axis mirror mount, with the wire

perpendicular to the plane of the experimental table. The mirror mount is

fixed to a vertical translation stage ensuring controlled displacement along

the z axis.

(b) The base is placed on the experimental table with the hole facing to the

wire. With the 6-axis mirror mount, the wire is aligned with the center of

the hole.

(c) A droplet of glue is placed inside the hole and then we insert the wire into

the hole by applying a small force onto the base with the wire. We wait for

5 min. The pendulum structure is ready, yet being fragile. The structure

must be further handled with care since it easily breaks if dropped or held

from the wire (experienced unfortunate situation!)

4.2.3 Experimental setup

The torsional pendulum is finalized by fixing a helical mirror at the bottom of the

base. This is done by placing double-side tape on the flat side of the helical mirror

and pressing it with care on the base, paying attention to centering, which is

made visually. The transfer of angular momentum upon irradiation of the helical

mirror induces an acoustic torque exerted on the pendulum, making it to twist

by an angle θ with respect to its initial position that defines the origin, θ = 0.
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Figure 4.6: (a) Sketch of a laser beam reflected from a small mirror attached to the side of

the pendulum. (b) The laser beam impinges onto the mirror attached to the pendulum in the

plane of the base, at an angle i with respect to the normal of the mirror (blue). The rotation

of the pednulum by an angle θ leads to a deflection of the laser beam by an angle 2θ (red).

To measure this angle of rotation, we attach a small mirror on the side of the

base of the pendulum, whose position is monitored by analysing the reflection of

a beam impinging onto the mirror, see Fig. 4.6. The mirror is made by breaking

a coverslip with ∼ 100 µm thickness coated by a 200 mm thick gold layer. A

broken part with a few mm2 area is used as the mirror. As the pendulum is

rotated by an angle θ, the reflected beam is deflected by an angle 2θ, see Fig.

4.6(b). In practice, we use a He-Ne laser operating at 633 nm wavelength and

focused by a lens L1 with focal length f1 = 50 cm, see Fig 4.7(a). The focal plane

is adjusted to coincide with the plane of the mirror. The diameter of the beam

on the mirror is 0.5 mm and the small values of deflection angles (of the order of

1 mrad) prevent alignment drawbacks possibly associated with too large angular

deviation of the pendulum.

The detection setup is shown in Fig. 4.7(a). The idea is to directly image the

position of the reflected beam with a camera placed at the focal plane of a second

lens L2 having a focal length f2 = 1 m. The image of the beam spot in the plane

of the camera is shown in Fig. 4.7(a). Since the displacement along the x-axis is

2θf2, a vivid direct visualization of the angular displacement θ implies to choose

a situation for which the beam waist diameter 2w is at least of the order of 2θf2.

Practically, this means to place L2 at a large enough distance r from the mirror,

keeping in mind the beam diameter D2 in the plane of L2 should be smaller than

the lens diameter in order to prevent “beam clipping” that would alter the image

of the beamspot detected by the camera. We found that r ∼ 6 m, for which
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Figure 4.7: (a) Top-view sketch of the experimental setup to detect the mechanical consequence

of the acoustic torque exerted on the pendulum. A He-Ne laser beam is focused with a lens L1

with f1 = 500 mm focal length to a small mirror fixed on the side of the base of the pendulum.

The reflected beam propagates over a distance r from the mirror and reach the lens L2. The

displacement of the laser beam is detected with a camera placed at a distance f2 from L2. The

lateral displacement of the laser spot of 2w diameter corresponds to 2θf2 (b) Side-view of the

pendulum placed at a distance d and aligned with the acoustic source.

D2 ≃ 25 mm, is a good trade-off that led us to choose a lens L2 with 2 inches

diameter.

4.2.4 First observations

In this section we report on the experimental demonstration of the mechanical

detection of orbital angular momentum transfer. This is done by using a helical

mirror with ` = 4, placing the acoustic source at a distance d = 15 mm from it,

see Fig. 4.7(b), setting the acoustic power at a value P̃0 = 5. At rest (acoustic

source “off” using an acoustic beam block) the location of the beam spot ob-

served with the camera defines the origin of the lateral displacement x = 0, see

Fig. 4.8(a). When the acoustic source is “on” at constant power, we observe a

beam spot displacement xstat ∼ 20 µm, see Fig. 4.8(b). Then, we extend our ob-

servation to the case of a time-varying acoustic power. This is done by external

electrical driving of the transducer power supply using a function generator set

to a sinusoidal signal with frequency F and peak-to-peak amplitude of 2 Vpp.

As expected, δx strongly depends on F . The resonance is manually searched

around the target value of 10 Hz. A maximal displacement δxmax ∼ 150 µm is

found at F0 = 13.9 Hz, see Fig. 4.8(c) that displays the normalized superposition
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Figure 4.8: Image of position of laser beam spot detected by the camera. (a) Position of the

laser beam spot when the acoustic source is blocked (off). (b) The laser beam presents a slight

displacement when the source is unblocked (on). (c) Superposition of normalized images of

lateral displacement of power source modulated in time. (d) Time resolve displacement of each

frame with adjusted sinusoidal curve respect to maximum intensity values.

of all the images of a video recording of 30 sduration and 300 frames per second.

The time-resolved displacement is shown in Fig. 4.8(d), where each frame of the

video is transformed into a vector by summing the data of an image along the z

coordinate. Then, the points of maximum intensity of the latter spatio-temporal

dynamics are adjusted according to δx(t) = xstat+δxmax sin(2πFt+φ) using xstat,

δxmax, F and φ as adjustable parameters. We obtain xstat = 29 µm, δxmax = 154
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µm and F0 = 13.9 Hz, which equal the modulation frequency, as expected. Also,

we note that the latter value is close to the guess value F0 = 11.7 Hz inferred

from our preliminary estimation, see section 4.2.1.

4.2.5 Quantitative analysis: setup and acquisition

In order to assess quantitatively the observed mechanical resonance, we need to

detect and measure the angular displacement of the pendulum as a function of

the frequency. This is done by sweeping the frequency between 1 and 30 Hz over

a time duration of one hour. Here, the experiment is made using a helical mirror

with ` = 2, using the distance d = 25 mm (at which we learnt from chapter 3

that the acoustic torque does not vary substantialy with small deviations from

the nominal distance value) and setting P̃0 = 6.5. The use of the camera for this

purpose implies a huge amount of data to process, as well as possible drawback

associated to tiny displacements due to the size of the pixel. To solve these

issues, we use a PDP90A lateral effect position sensor (Thorlabs) instead of the

camera. The sensor is a squared four-electrode light-controlled variable resistor.

The x and y positions of the laser beam impinging on the sensor are determined

proportionally to the distributed photocurrent generated at each electrode. Such

sensor is independent of the beam shape and can resolve a minimal displacement

of 0.75 µm at a 635 nm wavelength. The recommended spot size in the plane of

the sensor is between 0.2 mm and 7 mm diameter. The sensor is connected to a

KPA101 cube (Thorlabs), which is a motion controller that collects the values of

the voltage associated to the x and y positions, and total voltage, respectively

called XDIFF, YDIFF and SUM. In this experiment, we focus our attention to

the output values of XDIFF since the system is aligned in a way that the beam

oscillates along the x axis. With the help of a data acquisition system (DAQ)

connected to the KPA101 via a BNC cable, we extract and process the analogue

signal of voltage as a digital signal giving the value of x.

The angular displacement of the pendulum is retrieved from θ = x
2D1

where D1 is

the distance at which the pendulum is placed from the sensor. The experimental

setup is shown in Fig. 4.9. Note that we do not rely any more on the use of a

lens after the reflection of light on the mirror fixed on the pendulum. We use

D1 ∼ 78 cm, which corresponds to a distance at which the motion of the laser

beam is kept in the working area of the sensor, while ensuring a beam diameter
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Figure 4.9: Experimental setup for the first measurement of the lateral displacement of the

reflected laser beam.

that falls in the recommended range.

4.2.6 Data extraction and preliminary analysis

The experiment described in the previous section is performed four times in or-

der to obtain a robust data set for quantitative analysis. The typical temporal

trace x(t) resulting from sweeping experiments is illustrated in the inset of Fig.

4.10(a) The angular displacement amplitude of the oscillation δθ is extracted by

the method of wavelet transform. This approach allows to access to the temporal

spectrum of the signal as a function of time. In Fig. 4.10(b) we show a temporal

window of 300 s duration around the time that corresponds to the resonant fre-

quency F0 = 12.25 Hz of the pendulum. Noteworthy, the angular displacement

is not symmetrical with respect to the origin of the oscillation, see label θi and

red dashed line in Fig. 4.10(a). Indeed, the time trace exhibits a shift of the

angular mean position as the driving frequency increases that eventually reach

the value of θf , see blue dashed line in 4.10(a). This could be explained either

by a uncontrolled misalignment of the base of the pendulum during the exper-

iment or a systematic frequency-dependent mean power of the acoustic source

that increases with time (that is to say, with the modulation frequency F ). Also,

in Fig. 4.10(c), we observe the presence of an artefact around 5 Hz whose origin

is not properly understood. Finally, in Fig. 4.10(c), we show the experimental
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Figure 4.10: (a) Measurement of angular displacement as a function of time during the sweeping

frequency experiment for ` = 2, P̃0 = 6.5 and d = 25 mm. (b) Angular displacement dynamics

and its wavelet transform counterpart in an interval of 300 s centered on the time t0 corre-

sponding to the resonance frequency. (c) Reconstructed amplitude of the angular deviation of

the driven pendulum (thick gray) and best-fit from the harmonic linear oscillation model (thin

curve).

values of δθ as a function of the frequency, which reveals the lineshape of the

resonance. The latter curve is adjusted using Eq. (4.11), which gives a fair val-

idation of the description of the system as a linear forced harmonic oscillator.

More precisely, the latter fit involves 3 adjustable parameters, namely, δθ, G′ and

G′′ (noting that F0 = 1/2π
√
κ′/J is a function of G′ only since J is known) which

gives G′ = 1.13 GPa and G′′ = 0.092 GPa. Still, the tails of the resonance curve

are not nicely described, which invites us to check quantitatively the proper use

of the wavelet transform technique, and the hypothesis of a frequency-dependent

acoustic power. This is the purpose of the next section.

4.3 Towards quantitative experiments

4.3.1 Improved data processing

So far, the file format used to save the data is .csv, for which the data is dis-

tributed in columns and separated by comas. Such file is converted as a .mat

file to be used in MATLAB. The inconvenience of .csv files is the size of the files

reaching up to 1 Gb each, which is found to be a serious drawback for loading the

files efficiently. Therefore, we eventually changed it and we further use instead

.tdms file format, which suits the software LabVIEW that saves the information
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in a binary format, which reduces the size of the files by a factor ∼ 10.

4.3.2 Benchmarking the modulated source: model

Here we discuss how the data acquired by the position sensor is processed by

wavelet transform method. In order to benchmark the methodology of amplitude

extraction via wavelet transform, we consider a signal mimicking the pressure

field generated by the source that is linearly modulated both in frequency and

amplitude according to

s(t) = [1 +A(t) cos(2πF (t)t)] cos(2πft) (4.13)

where

A(t) =
A

Tsweep

t (4.14)

where A is a constant, f is the carrier frequency of the signal and

F (t) = f1 +
f2 − f1

Tsweep

t (4.15)

is the swept frequency where f1 and f2 correspond to the initial and final fre-

quency of the sweeping process whose time duration is Tsweep. Then we recall

that

i) The acoustic intensity is proportional to the mean square of the pressure

field.

ii) The acoustic torque is proportional to the acoustic power.

iii) The angular displacement is driven by the acoustic power.

Therefore, we are interested in monitor the mean square quantity ⟨s2(t)⟩T evalu-

ated over a time window with duration T over which both the relative variation

of the modulation amplitude A(t) and the phase 2πF (t)t can be neglected. This

is ideally implies 1/f ≪ T ≪ Tsweep, which gives

⟨s2(t)⟩T = ⟨[1 +A(t) cos(2πF (t)t)]
2
cos2(2πft)⟩T

≃
1

2
(1 +

A2(t)

2
) +A(t) cos(2πF (t)t) +

A2(t)

4
cos(4πF (t)t)(4.16)

We can see from Eq. (4.16) that such signal is the sum of 3 harmonic contribu-

tions at zero, F (t) and 2F (t) frequencies.
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Figure 4.11: (a) Input signals s(t), s2(t) and ⟨s2(t)⟩T in the interval 2 s < t < 2.1 s. (b) Wavelet

transform of ⟨s2(t)⟩T . The white and blue dotted boxes correspond to the regions from which

the values of AF and A2F are extracted by looking at the local maxima at each time t. (c,d)

Reconstructed signal of AF and A2F as a function of the frequency (thick gray curve), which

are compared to the input signal characteristics (thin dark curves).

In order to be as close as possible to the experimental characterization presented

in the next subsection, we examine a signal with A = 0.5, f = 100 kHz, f1 = 99.5

Hz, f2 = 100.5 Hz, Tsweep = 3 s, and T = 1 ms, which satisfy the double inequality

mentioned above. Moreover we account for the inherent under sampling of the

signal due to the DAQ system. Namely, we use a sampling frequency fs = 46 kHz.

For the sake of illustration we display in Fig. 4.11(a) s(t), s2(t) and ⟨s2(t)⟩T on

the interval 2 s < t < 2.1 s. In Fig. 4.11(b), we present the full wavelet trans-

form of ⟨s2(t)⟩T where we emphasize two “boxes” labelled “F -box” and “2F -box”

from which we extract the amplitude AF and A2F associated to the harmonics

F and 2F of Eq. (4.16). These amplitudes are compared with the expected

values AF = A and A2F = A2/4. The reconstructed time-dependante amplitudes
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AF and A2F obtained from the wavelet transform present a good agreement with

respect to the original signal, indicating that the method of amplitude extraction

via wavelet transform is trustworthy, see Fig 4.11(c,d). The method of wavelet

transform will be used hereafter for extracting the amplitude of the signal of

the lateral displacement sensor associated to the angular displacement of the

pendulum.

4.3.3 Benchmarking the modulated source: experiment

The quantitative characterization of the modulated power source is made by re-

placing the pendulum by a piezoelectric sensor. As done in the experiment made

to determine the warming-up time of the acoustic source (see chapter 2), the

piezoelectric sensor is placed at a distance that corresponds to a maximal pres-

sure field. The power source is set at P̃0 = 5.0, and the function generator is set

to deliver a sinusoidal wavefront with an amplitude of 2 Vpp, and we sweep the

frequency from 1 to 200 Hz in 10 min and we repeat the experiment six times

in a row, see Fig. 4.12(a). The frequency sweep corresponding to the first 600

s of experiment is used as a reference to identify precisely the starting point of

the sweeping in the next five experiments since the change in the amplitude of

modulation at the transition between the 200 Hz and 1 Hz is well defined.

The output signal from the piezoelectric sensor is extracted with a DAQ system

and in order to minimize the occurrence of artefacts due to signal under-sampling,

the data is extracted with a sampling frequency that is not a multiple integer of

the carrier frequency of the source. Specifically, we choose a sampling frequency

fs = 46 kHz. The value of the acoustic pressure p is associated with the voltage

signal V delivered by the piezoelectric sensor. Since the acoustic intensity is pro-

portional to ⟨p2⟩, the value ⟨V 2⟩ is proportional to the acoustic power intercepted

by the sensor.

The experiment consists to quantify how much is varying the amplitude of the

modulated power of the source as a function of the modulation frequency F . In

other words, by writing the modulated pressure field at frequency F as

pmod(t) = p0(1 + ε cos(2πF (t)t) cos(2πft) (4.17)

where p0 is a constant and ε is the amplitude modulation depth (0 < ε < 1), we

aim at measuring ε. This is done by analysing the mean square of the voltage
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Figure 4.12: (a) Mean square values of the voltage delivered by the piezoelectric sensor for 6

consecutive frequency sweeping experiments over 1 hour. Only the five last sweeping sequences

are used for data processing. (b) Value of AF extracted from the experiment.

measured from the piezoelectric sensor, namely, ⟨V 2
mod(t)⟩T ∝ ⟨p2

mod(t)⟩T using a

time window T = 1 ms. Since we have

⟨V 2
mod(t)⟩T = A0 +AF cos(2πF (t)t) +A2F cos(4πF (t)t)

∝
1

2
(1 +

ε2

2
) + ε cos(2πF (t)t) +

ε2

2
cos(4πF (t)t) (4.18)

the amplitude of the harmonic contribution at frequency F , AF , is proportional

to ε and is measured by wavelet transform processing. The results are shown in

Fig. 4.12(b). It appears that the modulation depth depends on the modulation

frequency at F < 50 Hz, which offers a decent explanation for the imperfect quan-

titative description of the resonance lineshape for the pendulum with resonant

frequency around 10 Hz shown in Fig. 4.10. This invites to design a second

generation of pendulum allowing the use of the linear oscillator model driven at

constant modulation depth in order to extract quantitative information on the

acoustic radiation torque.

4.3.4 Optimal pendulum design

Recalling that angular displacements are larger for small values of the resonance

frequency, a trade-off is necessary with the aim at working at constant modulation

depth. Therefore, we opt for a target resonance frequency F0 = 100 Hz. From
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Figure 4.13: Values of Lw and Dw of wire corresponding to a resonance frequency F0 = 100 Hz,

taking G′ = 1.13 GPa and G′ = 0.092 GPa

the knowledge of G′ inferred from the first generation of pendulum, we define

the set of wire parameters (Lw, Dw) that gives F0 = 100 Hz. This is shown in

Fig. 4.13, from which we choose Lw = 30 mm and Dw = 2.5 mm.

In addition, we explore the role of the thickness of the polymerized layer of the

3D printing process. Namely, we compare the behaviour of two pendulums with

thickness layer of 10 µm and 50 µm. The experiment is performed at a distance

of d = 25 mm using a helical mirror with ` = 2, power P̃0 = 5 and modulation

amplitude of the function generator of 2 Vpp. The experimental results are

shown in Fig. 4.14, where best fit are also presented. At first, we note that

chosen design actually gives F0 ∼ 100 Hz as expected. Also, we find (G′,G′′)

= (1.05 GPa, 80 MPa) for 10 µm layer and (0.90 GPa, 85 MPa) for 50 µm

layer. These values are consistent with qualitative expectations. Indeed, on the

one hand, thinner 3D printed layers implies deeper photopolymerization process

leading to stiffer behaviour, hence G′(10 µm) > G′(50 µm). On the other hand,

less polymerized layers are expected to provide larger viscous losses, hence G′′(50

µm) > G′′(10 µm). Of course, without a more systematic study, we cannot draw a

definitive statement and we stress that above comment remains at the qualitative

level. Anyway, the observed variations are not game-changing and we eventually

choose a printing layer thickness of 10 µm for the final set of experiments that

are described in the next section.
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Figure 4.14: (a) Experimental results and fitting curves of the resonant behaviour for pendu-

lum with 50 µm and 10 µm 3D printed thickness layer. (b) Normalized fitted curves. The

experiments are performed at a distance of d = 25 mm using a helical mirror with ` = 2, power

P̃0 = 5 and modulation amplitude of the function generator of 2 Vpp

4.4 Acoustic torque measurements

Helical mirrors with 1 ≤ ` ≤ 4 have been analysed. A set of five independent

experiments are performed for each of them, for d = 25 mm and d = 100 mm.

By doing so, we offer the possibility to compare obtained results with those of

chapter 3. In all cases, the experiments are performed at P̃0 = 5.0 and 2 Vpp for

amplitude modulation. The frequency sweeping is now restricted to the interval

of 80 Hz < F < 120 Hz. In all the experiments, the lateral displacement sensor

is placed at a propagation distance of 6.15 m from the pendulum. The latter

value differs from that used for the pendulum with F0 ∼ 10 Hz because the latter

one provided larger angular displacement, which required to place the sensor

closer to the mirror in order to prevent the oscillating beam spot to fall outside

the sensor area. The results are summarized in Fig. 4.15. In all cases, a good

reproducibility is obtained as demonstrated by the fact that the lineshape of

the resonance is clearly observed even though 5 independent experiments are

superimposed. We attribute the presence of a few spurious dots in each figure

to unavoidable environmental noise of the lab. Each experiment is fitted with

Eq. (4.11), using δθmax, G′ and G′′ as adjustable parameters according to the

equation
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Figure 4.15: Experimental results for helical mirrors with charge 1 ≤ ` ≤ 4 for five independent

frequency-sweeping experiments both for d = 25 mm and d = 100 mm. Other parameters fo the

experiment are given in the test
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δθ =
G′′/G′

√
(1 − (F /F0)

2)2 + (G′′/G′)2
δθmax (4.19)

where F0 =
1

2π

√
κ′/J , using the measured value of J for every of the used helical

mirror. The results are summarized in Fig. 4.16. In both cases, d = 25 mm

and d = 100 mm, the angular displacement exhibits a linear behaviour versus `,

as expected. Also, both G′ and G′′ are almost constant on all cases, as expected.

Figure 4.16: (a) Fitted curves angular displacement as a function of frequency for ` = 1-4 in the

range of 80-120 Hz for experiments at 25 mm and 100 mm from the transducer. (b) Angular

displacement at resonant frequency as a function of `, fitted real and complex shear modulus

for different values of ` for experiments at 25 mm and 100 mm from the transducer.
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Figure 4.17: Dynamic acoustic torque as a function of the topological charge ` for experiments

at 25 mm and 100 mm. Solid lines refers to linear adjustment whose corresponding slopes are

given in the plots

The final step towards the quantitative assessment of the acoustic radiation

torque is to link the measurement of δθmax with the modulated torque Γdyn. At

first, the idea is to recall their relationship, namely, Γdyn = JΩ2
0δθmax as expressed

in section 4.1. The dependence of Γdyn as a function of ` is shown in Fig. 4.17.

Then, we need to link Γdyn with the intercepted power P by the helical mirror

in the absence of modulation, which is eventually compared with the values

measured from radiation force experiments, namely, P = 14.8 mW at d = 25 mm

and P = 7.5 mW at d = 100 mm, see chapter 3.

Recalling that the acoustic intensity is proportional to ⟨V 2
mod⟩T , see Eq. (4.16),

one can express the modulated power intercepted by the helical mirror as

Pmod(t) = P (1 +
ε2

2
) + 2εP cos(2πFt) +

ε2

2
P cos(4πFt) (4.20)

Since we measured only the effect of the F harmonic of the modulated irradiating

power when using wavelet transform analysis, we have

Γdyn =
`(2εP )

ω
(4.21)

The remaining quantity to evaluate is the modulation depth ε of the modulated

pressure field. This is done by looking at the electrical signal delivered by the

piezoelectric sensor, which is proportional to the pressure field. Typical observa-

tion at modulation frequency 0 and F are shown in Fig. 4.18(a) at F = 100 Hz.
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Figure 4.18: (a) Photos of the oscilloscope at non-modulated (left) and modulated (right)

pressure field. Values of voltage at constant power V0 and 2δV for top and down envelope.(b)

values of (δV top + δV down)/2 and V ′top
0 − V ′down

0 )/2 in the range 80 Hz ≤ F ≤ 120 Hz.

According to the notation introduced in Fig. 4.18(a) we have

ε =
(δV top + δV down)/2

(V ′top
0 − V ′down

0 )/2
(4.22)

where we account for the top/down asymmetry of the modulator pressure field

by averaging the relevant quantity associated with the top/down envelope of the

signal. We find ε = 0.49 ± 0.01 over the range of frequencies 80 ≤ F ≤ 120 Hz,

which gives P = 27.3 mW for d = 25 mm and P = 9.5 mW for d = 100 Hz. Ob-

tained value for d = 25 mm is substantially larger than the expected 14.8 mW,

which could be attributed to drawback of the cavity effect for such small value of

d. However, when the cavity effect can be neglected, which is the case at d = 100

mm as discussed in chapter 3, the obtained value departs from the expected value

of 7.5 mW by ∼ 30 %.
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Therefore, we conclude that the pendulum apparatus enables a quantitative mea-

surement of the acoustic radiation torque with a reasonable agreement with re-

spect to the paraxial theory, which was not the case with the spinner approach.

The latter fact could be attributed to effects related to the fluid interface, the

contact line, and the aperture just above the helical, whose non-trivial impacts

on the observed effects have not yet been investigated.



Conclusion and perspectives

In this thesis we reported on our experimental efforts to measure quantitatively

the acoustic radiation torque arising from acoustic vortex generation after a sound

wave interacts with an helical mirror made of a 3D printed resin. The experi-

ments have been made using ultrasonic waves propagating in the air, which en-

ables dealing with a pure reflective sound-matter process. Such non-dissipative

transfer of orbital angular momentum from sound to matter has bean treated in

the framework of two kinds of independent experiments. First, using freely rotat-

ing helical mirror held at an air-fluid interface, which represents an experimental

implementation of the idea suggested by Allen et al. [28] in the optical domain

that remained so far unrealized whatever the nature of the wave. Second, using

a torsional pendulum driven by a modulated acoustic source, which represents

the orbital counterpart of the experiment of Beth [27] originally performed to

mechanically detect and measure the spin angular momentum of light. In both

cases, a quantitative test of the paraxial theory of orbital angular momentum

of propagating scalar waves has been made possible owing to complementary

acoustic radiation force experiments. It happens that only the pendulum ap-

proach enables a satisfying experimental validation of the theory. Now that we

have in hands an oscillator driven by the orbital angular momentum of sound,

this opens up other experiments where sound could be used to develop sensing

applications. To this aim, a relevant improvement to carry out would be to

work towards developing enhanced quality factor for the oscillator, which remain

modest so far.



APPENDIX A

Wrinkle Axicons

In this chapter we present the article“Wrinkled axicons: shaping light from cusps”

in its totality. This article corresponds to the first project that I developed during

my PhD before focusing in the topic of acoustic waves.



Annexe A - Wrinkle Axicons 97

Wrinkled axicons: shaping light from cusps
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1. Introduction

Lenses are refractive optical elements to focus light and form images. They generally consist of
a polished piece of transparent material whose shape defines its use. Spherical lenses correspond
to the most popular design where the lens shape is defined by two spherical surfaces. More
complex shapes are also common, such as astigmatic lenses whose shape is defined by at least one
surface having two distinct radii of curvature. Aspheric lenses are another example where at least
one surface has neither spherical nor cylindrical design, which finds use to minimize spherical
aberrations. All these cases refer to smooth surface geometries, however some situations imply
the use of singular designs such as helical or conical surfaces. The former example refers to
refractive spiral phase plates introduced in 1992 [1] that are nowadays widely used to generate
optical vortex beams associated with helical wavefronts. The latter case refers to conical lenses,
which belong to the family of axicons introduced in 1954 in the context of optical imaging [2].

Unlike usual lenses, axicons are characterized by a long depth of focus defined as ζ0 =

w0/[(n − 1)α0] where w0 is the radius of the beam entering the axicon, n is the refractive index
of the axicon, and α0 = arctan(H/R) (assumed to be small in the above expression) with H the
height of the cone and R the radius of the flat base. Besides imaging applications associated
with extended focus region, their practical use also encompasses beam shaping into a ring or the
generation of close approximation of non-diffractive Bessel beams, which find many applications
such as laser eye surgery [3], optical trapping and optical manipulation [4], or processing of
materials [5].

Bessel beams form a family of non-diffractive fields, each element being associated with
mth-order Bessel function within the paraxial approximation [4]. In practice, higher-order Bessel
beams (m ≥ 0) can be obtained from Gaussian beams by using binary amplitude masks [6] or
from Laguerre-Gaussian beams passing through usual axicons [7]. Here we propose a novel class
of higher-order axicons obtained by wrinkling the conical surface of a usual axicon. This is made
by introducing cusp deformations of the circular shape of a conical lens, namely hypocycloidal
(H) and epicycloidal (E) geometries for the purpose of demonstration. As such, this work can be
viewed as the birefringence-free three-dimensional (3D) extension of a previous study dedicated
to the topological shaping of light from form-birefringent cuspy metallic nanoslits [8, 9].

2. Design and fabrication

Wrinkled axicons are fabricated at the micron scale by using 3D femtosecond-laser photopoly-
merization technique [10], the fabrication parameters being given below. This is illustrated in
Fig. 1 that displays scanning electron microscope images of H- and E-axicons of various order
m that refers to the number of cusps of any cross-section of the optical element in a plane
perpendicular to the axicon axis. The corresponding designs are obtained by constructing cones
with base (located at z = 0) having hypocycloidal or epicycloidal shapes. On the one hand,
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H-axicons of order m ≥ 3 are defined by their surface

xHm (ρ, θ) =
ρR
m

{
(m − 1) cos θ + cos[(m − 1)θ]

}
, (1)

yHm (ρ, θ) =
ρR
m

{
(m − 1) sin θ − sin[(m − 1)θ]

}
, (2)

zHm (ρ) = (1 − ρ)H , (3)

with 0 ≤ θ ≤ 2π and 0 ≤ ρ ≤ 1. On the other hand, E-axicons of order m ≥ 1 are defined by

xEm (ρ, θ) =
ρR

m + 2

{
(m + 1) cos θ − cos[(m + 1)θ]

}
, (4)

yEm (ρ, θ) =
ρR

m + 2

{
(m + 1) sin θ − sin[(m + 1)θ]

}
, (5)

zEm (ρ) = (1 − ρ)H , (6)

also with 0 ≤ θ ≤ 2π and 0 ≤ ρ ≤ 1. Note that the parametrization variable θ should not be
confused with the usual azimuthal angle φ the (x , y) plane that satisfies tan φ = y/x.

In practice, various microscopic wrinkled axicons with fixed R = 50 µm are prepared using
already well established direct laser writing 3D lithography technique [10] using the SZ2080
material [11] doped with 2 wt% 2-benzyl-2-(dimethylamino)-4’-morpholinobutyrophenone
(from Sigma Aldrich) acting as a photoinitiator. The employed setup consisted of femtosecond
light source (Pharos, from Light Conversion) with 300 fs pulse width, 515 nm central wavelength,
200 kHz repetition rate and 35 µW optical power. Sample translation stages are synchronized
with galvanometric-scanner for beam deflection (assembled by Altechna R&D). The beam is
focused via microscope objective with magnification 63× and numerical aperture NA = 1.4. The
microstructures are realized by writing successive nested shells, which is implemented via 3D
Poli software (from Femtika). The first shell is the outer one that is defined by Eqs. (1-6). Inner
shells are then written by reducing both R and H by a common factor, the number of steps being
dependent on the aspect ratio of the structure. For instance, four shells are enough for α0 = 5◦ in
order to have fully polymerized structure in its entire volume, hence without need of additional

Fig. 1. Scanning electron microscope images of hypocycloidal and epicycloidal axicons of
order m, Hm (m = 3 to 7) and Em (m = 1 to 5), following the designs given by Eqs. (1-6)
for R = 50 µm and H = 50 µm. All the structures are imaged from top, except H6-axicon
that is observed at oblique incidence in order to emphasize the three-dimensional character
of the microstructures.
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UV post-cure. Prior to direct laser writing, the SZ2080 material [11] is successively heated at 40,
70 and 90◦C for 20 min. After exposure, the sample is immersed in 4-methyl-2-pentanone for
1 h. Obtained structures are inspected using scanning electron microscope (Hitachi TM-1000)
with no additional deposition of conductive layer. A typical example is given in Fig. 1 in the case
R = H , hence α0 = 45◦ while further optical characterization is made for smaller values of α0,
namely α0 = 5◦ and 15◦.

3. Optical characterization

3.1. Far-field analysis

Beam shaping capabilities of wrinkled axicons Hm (3 ≤ m ≤ 6) and Em (1 ≤ m ≤ 3) with
R = 50 µm are experimentally assessed, first by determining their angular spectrum. This is
done by placing the sample in the focal plane of a lens illuminated by a Gaussian laser beam at
wavelength λ = 633 nm. Obtained beam waist radius at exp(−2) from its maximum intensity is
w0 = 20 µm. Then Fourier transform of the latter plane is realized by using microscope objective
(100× , NA = 0.8) whose back focal plane is imaged on a camera using a relay lens. Results
are shown for α0 = 15◦ in the second line of Fig. 2, where the first line corresponds to direct
natural light imaging of the structures. In contrast to usual axicons that are characterized by
ring shape Fourier spectrum, one obtains non-closed-path spectra for wrinkled axicons that are
characterized by an azimuthally dependent angle α(φ) , α0 whose expression in the limit of
small α0 is

αXm (φ) =
α0R[

x2
Xm

(1, θ(φ)) + y2
Xm

(1, θ(φ))
]1/2 , (7)

with X = (H,E). Experimental data is compared to simulations in the third line of Fig. 2 that
shows the far-field intensity pattern IFF associated with the 2D Fourier transform of the field in
the plane of the sample neglecting the diffraction inside the optical element. Namely,

IFF ∝

∣∣∣∣FFT
[
tXm (r, φ) exp(−r2/w2

0)
] ∣∣∣∣2 , (8)

Fig. 2. Upper line: natural light imaging of a set a wrinkled axicons of hypocycloidal and
epicycloidal types. Middle line: far field intensity distribution obtained by Fourier transform
with a microscope objective for R = 50 µm and α0 = 15◦. Bottom line: simulations from
fast Fourier transform of the field just after the structure neglecting diffraction, see Eqs. (7)
and (8).
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where k = 2π/λ, n = 1.5, FFT refers to 2D fast Fourier transform, and

tXm (r, φ) = exp
[
−ikr (n − 1)αXm (φ)

]
(9)

is the complex amplitude transmittance mask of the wrinkled axicon Xm. Fair agreement between
experimental data and calculations is obtained though we note the presence of unexpected non-
zero on-axis intensity that is more pronounced for lowest-order wrinkled axicons. This can be
understood noting that the incident Gaussian beam tail leaks out of the finite-size structure.

3.2. Propagation analysis: scalar treatment

The propagation behavior is retrieved by imaging the intensity distribution at distance z from the
sample by translating a microscope objective (100× , NA = 0.8) along the z axis, the distance
between objective and camera being kept constant. Experimental data are shown in Fig. 3 both
for hypocycloidal and epicycloidal axicons, where the propagation distance is normalized to the
azimuth-averaged depth of focus

ζXm =
ζ0

2π

∫ 2π

0

α0

αXm (φ)
dφ. (10)

Observations are compared to simulations in Fig. 3 by using scalar beam propagation method
based on 2D fast Fourrier transform. Namely, the intensity pattern at z, I (x , y, z), is evaluated
following

I ∝
∣∣∣∣FFT−1

{
exp(ikz z)FFT

[
tXm (r, φ) exp(−r2/w2

0)
]}∣∣∣∣2 , (11)

where FFT−1 refers to 2D inverse fast Fourier transform and exp(ikz z), with kz = (k2 − k2
x −

k2
y )1/2, is the propagation operator in the Fourier domain. Overall agreement is obtained whatever

the propagation distance. Note that observed differences at z = 0 are merely due to the fact

Fig. 3. Propagation analysis for a set a wrinkled axicons of hypocycloidal and epicycloidal
types for R = 50 µm and α0 = 5◦ . For each structure, experimental intensity patterns in the
(x , y) plane as a function of normalized propagation distance z/ζXm are compared to beam
propagation method following Eq. (11). All images are normalized to their maximal values
in order to appreciate the intensity patterns despite overall intensity decrease with z.
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that 3D optical elements are modeled by 2D phase masks, which prevents by construction the
observation of the ridges of wrinkled axicons in the simulations.

In particular, on-axis intensity modulation may be interesting in the field of optical manipu-
lation, in the context of so-called optical bottles [12] that refer to null intensity surrounded by
bright regions in 3D. See for instance the sequence of intensity patterns at z/ζH4 = (0.4, 0.6, 0.8)
for H4-axicon. This is explored more quantitatively by plotting the on-axis intensity distribution,
as shown in Fig. 4(a) for a set of Hm-axicons with w0 = 20 µm, which indicates that higher-order
hypocycloidal axicons are not favorable for on-axis intensity modulation. On the other hand,
the number of oscillations increases with the incident beam waist, as shown in Fig. 4(b) for
w0 = 20, 40 and 60 µm. Arguably, the contrast of on-axis intensity modulation is not optimal,
still there are a few other better strategies to generate optical bottle arrays. One can mention
the use of interferences between two Bessel beams [13], the use of Laguerre-Gaussian beams
with higher-order radial index passing through usual axicon [14] or more recently the use of a
birefringent axicon [15].

Fig. 4. (a) Calculated on-axis intensity as a function of the propagation distance for wrinkled
axicons H3 (black curve), H4 (red curve) and H5 (blue curve) with R = 50 µm, α0 = 5◦

and w0 = 20 µm. (b) Same as in panel (a) for H3-axicon and incident beam waist w0 = 20,
40 and 60 µm. For both panels, upper images correspond to the corresponding intensity
patterns in the plane (x , z) for −20 µm ≤ x ≤ 20 µm and 0 ≤ z/ζHm ≤ 1.

3.3. Propagation analysis: full vectorial treatment

Although above intensity spatial modulation along the three spatial coordinates obtained within a
scalar approach provides with a satisfying zero-order description of the field in the limit of small
α0 angle, the scalar approach misses beam shaping features associated with the vectorial nature
of light. Indeed, it is known that focusing (i.e., nonparaxiality) is associated with spin-orbit
interaction of light [16]. In the present case the focusing properties of the wrinkled axicons are
azimuthally modulated as a consequence of the φ-dependent apex of the structures. We thus
expect azimuthal features associated with the vectorial nature of light. This is investigated by
performing numerical simulations of the propagation of light at the output of the structures by
using a FDTD software package (FDTD Solutions, Lumerical Solutions, Inc.). The simulations
do not only take into account the 3D character of the optical field, they also consider the 3D
nature of the structures in contrast to scalar approach that describes the 3D structures as 2D
phase masks. Practically, numerical analysis is performed for wrinkled axicons with R = 10, 15
and 20 µm and α0 = 10◦, 15◦ and 20◦ under plane wave illumination along the z axis. Also, we
impose almost null transmission for the incident light outside the basis of the structure at z = 0
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by placing there a perfect electrical conductor. This leads to define the azimuth-averaged depth
of focus as ζ ′0 = R/[(n − 1)α0] for a regular axicon and

ζ ′Xm =
ζ ′0
2π

∫ 2π

0

α2
0

α2
Xm

(φ)
dφ (12)

for a Xm-axicon. The case of an arbitrary uniform incident polarization state is constructed
by exploiting the linear superposition principle from two basic simulations performed for each
structure, namely by using x-polarized and y-polarized incident light. In addition, the simulation
box x × y × z dimensions are 2R × 2R × ζ ′Xm

and perfectly matched layer is placed at its
surface boundary, which prevents from unwanted effects that may arise from from finite-size
calculation volume and from the way the opaque mask outside the structure basis at z = 0 is
modeled, namely by a material with refractive index 710 + i710.

Here we consider both left- and right-handed circular polarization states described by the
unit vectors (x + σiy)/

√
2 with helicity σ = ±1. Indeed, such cases allow clear identification

of nonparaxial manifestation of spin-orbit interaction of light, as illustrated in the well-known
situation of a regular axicon [17] whose results are illustrated in the first line of Fig. 5 for

Fig. 5. FDTD simulations of the vectorial content of light in the plane located at a distance
z = ζ ′Hm

/2 from the basis of a regular axicon (A) and hypocycloidal axicons H3, H4 and
H5 in the case R = 10 µm and α0 = 10◦. See text for details on simulations parameters.
Incident field in a circularly polarized plane wave with helicity σ = +1, the case σ = −1
being also shown for H4 structure. Both intensity and phase of co-circularly (σ polarized),
contra-circular (−σ polarized) and longitudinal (z polarized) components of the output
light field. Scale bar at the bottom of each column refers to 5 µm. The factor indicated on
intensity panels refers to the ratio between the maximal intensity of the considered field
component and of the co-circular component.
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σ = +1, R = 10 µm and α0 = 10◦. Namely, the contra-circularly polarized component of the
output light field carries on-axis optical phase singularity with topological charge ` = 2σ, as
seen from the phase pattern that has an azimuthal dependence of the form `φ. In addition, the
longitudinal field component carries a phase singularity with charge ` = σ. We note that the
residual (unexpected [17]) broken axisymmetry of the intensity pattern of the contra-circular
component is due to the square-shaped cross-section of the simulation box.

The situation is rather different for wrinkled axicons, as illustrated in Fig. 5 for hypocycloidal
axicons Hm with m = (3, 4, 5) also for σ = +1, R = 10 µm and α0 = 10◦. Indeed, the
circulation of the phase around the z axis nearby the z axis now depends on the order m of the
axicon, namely we have ` = σ(2 − m). This implies a m-dependent optical spin-orbit interaction
that echoes previous work on 2D form-birefringent cuspy metallic nanoslits [8, 9]. Indeed it
was shown that hypocycloidal nanoslits are associated with the generation of optical phase
singularities with topological charge ` = σ(2 − m) for the contra-circular component of the
output light field, as observed here for 3D birefringence-free cuspy structures. Moreover, the
helicity-dependent manifestation of the spin-orbit interaction is also checked, see Fig. 5 in the
case of H4-axicon whose behavior is presented both for σ = ±1. Still, we note that higher-order
structures eventually lead to splitting of the on-axis high-charge singularity as observed in the
case of nanoslits [8, 9].

For epicycloidal geometries, the expected topological charge for the contra-circular component
is ` = σ(2 + m) [8, 9], however on-axis higher-order topological diversity was shown not to
follow such a behavior due to string translational symmetry breaking and ensuing substantial
splitting of high-charge vortices. Similarly conclusions are obtained for Em-axicons. Finally, we
note that our full set of simulations shows that the use of higher values of either R or α0 also
leads to high-charge splitting.

4. Conclusion

Wrinkled axicons represent a step in the conception of 3D optical elements endowed with
cusps. To date, one can mention transformation-optics 3D refractive optical element enabling
the measurement and sorting of orbital angular momentum of light [18, 19]. The use of cuspy
designs has also been proposed previously with 2D nanoslits used to generate optical vortices
from spin-orbit interaction of light owing to azimuthally varying form birefringence [8, 9]. In the
context of singular optics, the particular case of hypocycloid and epicycloid curves considered
here also brings spin-orbit interaction features that are associated with nonparaxiality instead
of anisotropy. In addition, from the micro-optical component point of view, the fabrication of
microscopic wrinkled axicons extends the set of singular optical elements fabricated by 3D direct
laser writing, which was restricted so far to spiral phase plates and usual axicons [20–22].
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